

Anvil Range Mining Complex 2005 Seepage Investigation at the Grum Dump Area

2005/06 - Task 20e

Prepared for

Deloitte & Touche Inc.

on behalf of

The Faro Mine Closure Planning Office

Prepared by

In association with

Project Reference Number SRK 1CD003.073

January 2007

Anvil Range Mining Complex

Seepage Investigation at the Grum Dump Area

2005/06 Task 20e

Prepared For

Deloitte & Touche Inc.

On behalf of

The Faro Mine Closure Planning Office

SRK Consulting (Canada) Inc.

Suite 800, 1066 West Hastings Street Vancouver, B.C. V6E 3X2

Tel: 604.681.4196 Fax: 604.687.5532 E-mail: vancouver@srk.com Web site: www.srk.com

SRK Project Number 1CD003.73

January 2007

Authors Daniel Mackie, M.Sc. Dr. Christoph Wels, Ph. D., M.Sc.

> Reviewed by Cam Scott, P.Eng.

Executive Summary

As part of the Task 20e, "Continue seepage investigations" program, a series of monitoring wells have been installed along the Grum Dump toe access road to provide an improved understanding of subsurface conditions and groundwater quality in relation to potential contamination of Vangorda Creek. These new monitoring wells indicate that:

- There is a bedrock low in the area of P96-9 and SRK04-5 that has a relatively thin (2 to 6 meters), shallow, unconfined aquifer and a deeper, thicker confined aquifer that likely includes weathered bedrock (thickness of 6 to 7 meters at depths greater than 7 to10 meters).
- Overburden thickness decreases significantly west of P96-9, from about 20 meters near SRK04-5 to about five meters at SRK05-8 and less than five at SRK05-7.
- Water quality in the shallow aquifer generally shows higher sulphate concentrations than the deeper aquifer. Zinc concentrations are still relatively low (<0.02 mg/L) in both the shallow and the deep aquifer, compared to the current reference value for P96-9A of 0.078 mg/L, suggesting zinc attenuation along the flow path. Time trend plots suggest that sulphate concentrations in the shallow aquifer (at P96-9A) are still increasing (currently at 1,600 mg/L), though still below the reference value of 2308 mg/L, whereas zinc concentrations in the same well have remained fairly constant since 2003.

Preliminary loading calculations suggest that the zinc load in groundwater in this area is small (<0.2 tonnes/year). Therefore, seepage collection is not recommended at this time. However, this area should be monitored for any potential increase in zinc concentrations in the existing monitoring wells. If zinc concentrations in the local groundwater increase beyond currently observed levels, seepage interception may be required to protect Vangorda Creek.

At this time, it is recommended that routine monitoring in this area continue on at least a biannual basis. Routine monitoring should include water level monitoring and sampling for water quality analysis in all monitoring wells in this area (including replacement well P96-9B(R)), and an estimation of flow rate for flowing artesian wells.

During the 2006 summer monitoring program, note should be taken on whether P96-9B(R) is flowing freely (artesian) or the water level resides very close to ground surface. As the original P96-9B monitoring well was artesian, it is likely that the replacement will also be artesian. Freezing of shallow water levels during the winter months may be the cause of damage to the original well. If the well is indeed artesian, a mechanical packer ("margo" plug) should be installed at this well for the winter period to prevent freezing and possible damage to this replacement well, similar to that completed in SRK04-5A&B during the 2005 program.

Report Title:	Seepage Investigation at the Grum Dump Area - 2005/06 Task 20e
Prepared by:	SRK Consulting & In Association with Robertson GeoConsultants Inc.
Date Submitted:	19 January 2007
Number of Pages:	39
Number of Appendices:	4 (four)

Table of Contents

1	Introduction and Scope of Work	1
2	Background 2.1 Initial Data Review 2.2 2004 Seepage Investigation 2.3 Adaptive Management Plan (AMP)	. 1 . 3
3	Field Investigation. 3.1 Monitoring Well Drilling and Installation	. 3 . 5 . 6
4	Assessment of Contaminant Sources and Loading	8
5	Options for Seepage Interception System	9
6	Conclusions and Recommendations1	0
7	References1	12

List of Tables

Table 1:	Grum Monitoring Well Summary	4
Table 2.	Water Quality Summary	6
	Zinc loading estimates	

List of Figures

Figure 1 Grum Area Location Map Figure 2 Cross Section through Grum Creek Area Figure 3 Historical Water Quality at P96-9

List of Appendices

Appendix A Drillhole Logs Appendix B Water Quality Results Appendix C Margo Plug Technical Description

1 Introduction and Scope of Work

This report presents results of the 2005/2006 hydrogeology program for the Grum Dump area as part of Task 20e – Continue Seepage Investigations. Task 20e includes investigations at four areas: the Emergency Tailings Area (ETA), the S-cluster area, the Zone 2 Pit outwash area, and the Grum Dump area. The scope of work of this report covers the Grum Dump component, the primary objectives of which were:

- Completion of a shallow piezometer along Grum Creek to get information on very shallow groundwater flow,
- Capping of flowing artesian piezometers (SRK04-5a&5b),
- Replacement of piezometer P96-9b (deep piezometer); and
- Installation of a nested piezometer between the two un-named creeks west of P96-9.

Figure 1 shows location of the Grum area.

Both groundwater and surface water in this area have been investigated as part of different programs regarding potential impacts to Vangorda Creek, located down gradient of the Grum waste rock dump. While the 2005/2006 Task 20e investigation focused specifically on groundwater, surface water and a groundwater component have also been investigated as part of the AMP (Adaptive Management Plan) Event #4 Response. In essence, the Task 20e and AMP program in this area are providing a combined monitoring and assessment program for impacts to Vangorda Creek from the Grum Dump and Pit. As such, in order to avoid duplication, readers are referred to data assessments in the AMP reports, where appropriate.

In the report, a brief review of background information is presented in Section 2. Descriptions of field program methodologies and results are presented in Section 3. Contaminant sources and groundwater loading estimates are described in Section 4. Section 5 briefly discusses the implications of this study for seepage interception in this area.

2 Background

2.1 Initial Data Review

A series of memoranda were produced by Robertson GeoConsultants (RGC) in 2004, providing initial review and comments on groundwater quality downstream of the Faro, Grum and Vangorda waste rock dumps (WRDs):

• Initial Review of Groundwater Quality downstream of Faro, Grum and Vangorda WRDs, Yukon Territory, July 14, 2004 (RGC, 2004a); and

• Task 14b – Complete Seepage Investigations for Faro and Grum Waste Rock Dumps, August 13, 2004 (RGC, 2004b).

Five reaches were reviewed by RGC for potential ARD seepage from the Grum and Vangorda waste rock dumps (RGC, 2004a). The following is a brief review of findings.

Grum Dump draining southeast

Water quality data was reviewed from monitoring wells located in a tributary of Grum Creek below the central portion of the Grum Dump (P96-9). Seepage from the Grum Dump was interpreted to have had a smaller impact on local groundwater than seepage from the (older) Faro waste rock dumps. Sulphate concentrations in the shallow monitoring well had increased only in the last four years, from ~50 mg/L in 1996 to ~1250 mg/L in 2003. Zinc concentrations remained low in the shallow groundwater at ~0.01 mg/L. The deeper, confined aquifer showed consistently low sulphate concentrations for the period of record (~150 mg/L until 2001). The deep monitoring well (P96-9B) was damaged in 2001 and could no longer be monitored. Shallow groundwater along the southeast slopes of the Grum Dump was interpreted to represent seepage from the Grum Dump with limited dilution from recharge and/or local groundwater. It was thought that shallow seepage collection in this area could become a future issue (for protection of Vangorda Creek) and was given a moderate priority relative to the Faro sites. While no indication of breakthrough of seepage to the deeper, confined aquifer has been observed, this was considered an important monitoring point below the Grum Dump and replacement of P96-9B was recommended, though as a relatively low priority.

Grum Dump draining southwest

No groundwater monitoring wells were available in this area, but based on results from a seep survey by SRK in 2003, sulphate and zinc levels were observed to be low (SO4 <500 mg/L; Zn <0.03 mg/L). Groundwater quality to the southwest of Grum Dump was not expected to show significant impact of WRD seepage and seepage interception in this reach was given a low priority.

Potential Seepage from Grum Pit

Review of available pit and seepage water level elevations suggested a possible presence of pit induced seepage but water quality data from the pit and seeps ruled out pit water as a source of seepage. A desktop review of available material was suggested, with additional fieldwork based on results, if necessary.

Vangorda Dump draining towards Dixon Creek

Water quality data from the two available monitoring wells, V34 and V35, showed contrasting conditions. V34 was interpreted to be representative of background conditions with pH of 7.5-8.0, high alkalinity (~400 mg/L) and low metals (Zn ~0.01 mg/L). V35 showed limited influence of WRD seepage. Sulphate had increased over time, with peak concentrations of 750-1,000 mg/L, but zinc remained low (0.01-0.1 mg/L). Seepage collection in this area was given a low priority.

Vangorda Dump draining towards Vangorda Creek

Data from six monitoring wells were reviewed for this reach. All wells, with the exception of one, showed levels representative of background conditions. One well, V36 provided early indications of the potential presence of WRD seepage. In general, however, groundwater in this reach was interpreted to show very little impact of WRD seepage and seepage interception in this area was considered to be a low priority.

2.2 2004 Seepage Investigation

As a result of the RGC water quality review, recommendations were made for a field program, including installation of additional groundwater monitoring wells (RGC, 2004b). As part of the 2004 program, two monitoring wells were installed in the Grum area: SRK04-5a & 5b, shown on Figure 1. Details of these completions and borehole logs, as well as conclusions for preliminary seepage collection options, are presented in the 2004 program report: *Preliminary Seepage Collection Options – Faro and Grum Waste Rock Dumps (SRK, 2006)*.

2.3 Adaptive Management Plan (AMP)

At the same time as the 2004 seepage investigation, an adaptive management plan was being established by Gartner Lee Limited for the Anvil Range Mine, including the Vangorda Creek area. The AMP is described in the following document:

Anvil Range Mine Adaptive Management Plan Implementation Protocol, Draft Report – Gartner Lee Limited, 2004.

This report provides trigger levels and general response actions for the Grum Creek area. As noted in the report, sulphate levels at seep monitoring station V2 were above trigger limits at the time of report submission. As a result of this trigger, an investigation into contaminant sources and installation of additional monitoring wells was completed. The 2005 groundwater component of Task 20e overlapped with the AMP Event #4 response.

3 Field Investigation

3.1 Monitoring Well Drilling and Installation

Six new monitoring wells were drilled in the Grum area in 2005. Three of these monitoring wells were drilled specifically under Task 20e. The remaining three were part of the on-going AMP program. Details of all six wells are included in this report. Table 1 lists completion details for these monitoring wells. The completion details for the monitoring wells installed at grum in 2004 are also shown for ease of reference. Borehole logs for all newly completed monitoring wells are provided in Appendix A.

Well ID	Informal Name	Easting	Northing	Total Depth (m)	Top of Casing Elevation (m.a.s.l.)	Screen Interval (m.b.g.s.)
		2004	1 Monitoring W	/ells		
SRK04-5A	n/a	592,871	6,903,205	23.7	1103.93	22.2-23.7
SRK04-5B	n/a	592,871	6,903,205	14.6	1103.95	13.1-14.6
		2005	5 Monitoring W	/ells		
P96-9B(R)	n/a	592,747	6,903,172	18.6	1101.06	15.5-18.6
SRK05-5C	n/a	592,873	6,903,208	3.2	1104.08	1.5-3.0
SRK05-6	Moose Well 1	593,032	6,902,991	3.2	1073.83	0.7-2.7
SRK05-7	n/a	592,477	6,903,011	4.3	1107.29	0.5-3.5
SRK05-8 n/a		592,690	6,903,063	5.8	1105.25	0.75-5.8
SRK05-9 Well 2		593,058	6,902,986	7.6	1072.82	2.1-7.6

Table 1: Grum Monitoring Well Summary

Note that two of the monitoring wells, SRK05-6 and SRK05-9, have been informally called Moose Well 1 and Moose Well 2, respectively. These informal names have been used in the Gartner Lee Ltd (GLL) water quality database, as well as other reports. P96-9B(R) is a replacement monitoring well for P96-9B, which was damaged in 2001.

The 2005 Grum drilling program was conducted using two different drill types: A track mounted sonic drill owned and operated by SDS Sonic Drilling out of Calgary, Alberta; and a hand-portable Pionjar hammer drill operated by Rocky Mountain Soil Sampling, Inc. of North Vancouver, BC.

The sonic rig was equipped with a 4x6 system (4-inch core barrel and 6-inch casing) that allowed for continuous sampling in 10-foot runs (1 core barrel: approximately 3 metres) by advancing the core barrel using ultra-sonic vibrations. Casing was advanced over the core barrel to below the bit to keep the hole open during barrel retrieval. Water was only used during casing advancement to prevent heave between barrel and casing. Run samples were extruded into 4-inch diameter clear plastic sample bags for logging and grab sampling. Rods and casing were in imperial units and all units have been converted to metric. Final drillhole diameter was 152 mm (six-inches). All boreholes drilled with the Sonic rig were completed as monitoring wells using 50 mm (2-inch) polyvinyl chloride (PVC) screen and casing.

The portable Pionjar hammer drill is a flexible system suitable to work in areas where access is difficult, such as the Moose Pond area at Grum. It is mainly suitable for shallow boreholes, as its investigation depth is usually limited to around 10-12 m below surface. It is equipped with a 2-inch split-tube sampler that allows for continuous sampling in 2.5-foot runs (75 cm long core sample). The sampler was pushed ('hammered') down by a portable gasoline combustion engine connected to the top of the rod string and the entire rod string (split-tube sampler plus rods) was retrieved between

runs using a manual jack. The retrieved soil core was laid down on a sheet of canvas for logging and grab sampling.

Representative grab samples of the different stratigraphic intervals were collected into plastic sample bags. The final drillhole diameter was 2-inch (approximately 51 mm). These smaller diameter boreholes were completed as shallow piezometers using 1 ¼ -inch (approximately 32 mm) PVC screen and casing.

3.2 Hydrostratigraphy

Based on geology from available drillholes, four hydrostratigraphic units are defined for the Grum area:

- Surficial aquifer: gravelly fine to coarse sand with variable organics. Present at ground surface in vicinity of SRK05-5C and Grum Creek. Thickness varies from 2 to 6 meters.
- Till: clayey to sandy silt with trace gravel. Present in all drillholes, ranging in thickness from 2.5 to over 8 meters and in depth from just below ground surface to a maximum of approximately 15 meters. Acts as confining unit for deeper aquifer. This unit is likely the confining unit where the deep aquifer is present.
- Deep Aquifer: fine to coarse sand with gravel and underlying weathered bedrock. This deep aquifer was encountered at SRK04-5 and P96-9. Thickness in range of six to seven meters.
- Bedrock: chlorite schist to phyllite. Depths range from approximately 2 meters to approximately 20 meters below ground surface. Assumed to have a relatively low hydraulic conductivity.

Figure 2 is a cross-section through the site showing interpreted bedrock topography and overburden geology. The only significant feature is a bedrock low present in the vicinity of P96-9 and SRK04-5. To the west of P96-9, bedrock is much closer to ground surface and, consequently, the overburden units thin significantly. Insufficient data is available to the east of former Grum Creek (SRK04-5) to project the cross section in this direction. However, the local topography, as well as the presence of isolated bedrock outcrops, suggest that bedrock may also come closer to ground surface in this direction.

Available information suggests that the majority of groundwater flow occurs within the area of the bedrock depression. The exact extents of this bedrock low to the east of SRK04-5 are unknown, but the presence of isolated bedrock outcrops indicates that bedrock likely becomes closer to ground surface. Water level contours for the shallow aquifer are shown on Figure 2. While only limited monitoring points exist, these data suggest that the water table generally mimics surface topography. The potentiometric surface for the deeper aquifer is artesian (i.e. groundwater potentials are above ground surface) and likely shows a more subdued relationship with surface topography. This deep, artesian aquifer may extend to Vangorda Creek.

3.3 Water Quality

The AMP monitoring location for the Grum Creek Area is station V2, a surface water station on Grum Creek prior to the confluence with Vangorda Creek (shown on Figure 1). Sulphate concentrations at V2 exceeded the proposed trigger at the presentation of the AMP implementation report. Additional monitoring points, including the groundwater monitoring network described herein, are to aid in understanding the groundwater contaminant contributions to V2.

Samples for water quality have been taken from the majority of monitoring wells installed in 2005, as well as SRK04-5A/B installed in 2004. Laboratory analysis results are included in Appendix B. Available results are summarised in Table 2. The initial water quality results from the 2004 field program (for SRK04-5A/B) are also shown for comparison.

ID	Date	Lab pH	Lab Conductivity (µS/cm)	SO4 (mg/L)	Zn-D (mg/L)							
Moose Well 2	10/3/05	7.66	1730	763	0.0094							
SRK04-5A	9/25/04	n/a	n/a	108	0.0081							
SKR04-5A	5/9/05	7.96	449	89.8	0.0105							
SRK04-5B	9/25/04	n/a	n/a	100	0.0154							
SKK04-5D	5/9/05	8.08	435	85.3	0.0066							
SRK05-5C	11/22/05	7.51	651	173	<0.0050							
P96-9A	5/9/05	1600	0.0160									
P96-9B	DAMAGED N	/ONITORIN	G WELL									
P96-9B(R)	NOT SAMPL	ED										
SRK05-7	NO WATER	AT TIME OF	SAMPLING									
SRK05-8	NO WATER	NO WATER AT TIME OF SAMPLING										

Table 2. Water Quality Summary

Station P96-9 was established as a Reference Water Quality Station in the AMP Implementation Protocol Report (GLL, 2004). As of January 1, 2006, the reference value for P96-9 was 2308 mg/L and 0.078 mg/L for dissolved sulphate and dissolved zinc, respectively, based on the mean plus 3 standard deviations protocol used in the GLL "WATER" database. At this time, neither P96-9A nor any other groundwater monitoring well have concentrations exceeding these values.

The greatest impact is observed at P96-9A, screened in the shallow aquifer, which shows elevated sulphate concentrations (~1,600 mg/L) and slightly elevated zinc concentrations (0.016 mg/L). In comparison, groundwater quality from SRK05-5C, also located in the shallow aquifer, but much closer to Grum Creek itself, shows very little impact, with sulphate concentrations (173 mg/L) only slightly above background and no detetable zinc concentrations. Contamination by relatively clean drilling water can be ruled out, since SRK05-5C was drilled and installed using the portable hammer drill. The very dilute groundwater quality observed at SRK05-5C may indicate dilution from Grum Creek or, alternatively, that contamination is more focused in the area of P96-9a.

The deeper artesian aquifer generally shows a much lower impact, if any, from waste rock dump seepage. Both piezometers screened in the deep aquifer near former Grum Creek (SRK-04-05A/B) show characteristically low sulphate concentrations (~100 mg/L) and very low, but detectable zinc concentrations (~0.01 mg/L). Very similar groundwater quality has been historically reported in the deep piezometer P96-9B in the drainage to the west of Grum Creek (now replaced by P96-9B(R)). Potential sources for the low, but detectable zinc concentrations would include (i) leakage of Grum WRD seepage into the deep aquifer, and/or (ii) recharge of this deep aquifer from the Grum Pit Lake.

Figure 3 summarises the historic zinc and sulphate time trends for monitoring wells P96-9A and P96-9B, which have been monitored since 1996. The time trends indicate that sulphate concentrations at P96-9a have increased steadily since about 1999. This increasing trend appears to continue to date except for some seasonal dilution during spring runoff. In contrast, zinc concentrations have remained fairly constant (at ~0.02 mg/L) since about 2003. Note that sulphate concentrations at P96-9A are similar to those observed in toe seepage from the Grum WRD, whereas zinc concentrations are still at least two orders of magnitude lower. It is therefore likely that zinc is currently attenuated in the aquifer. Additional monitoring will be required to ascertain if and when the attenuation capacity of the aquifer is exhausted and zinc concentration will increase.

Additional discussion of water quality in this area is included in the adaptive management plan report (SRK, 2006).

3.4 Capping of SRK04-5A&5B

After completion of SRK04-5A&5B in 2004, both monitoring wells exhibited artesian flow. Flows continued through the 2004/05 winter and into the spring. In an effort to stop this free flow, mechanical packers were installed in each monitoring well. The margo plug is a mechanical rubber packer fitted to a relatively long "riser" pipe that is inserted by hand down the monitoring well. Once in position, the rubber packer is compressed by rotating a part of the riser pipe. A technical description of a margo plug is included in Appendix C. NOTE: the center rod passing through the rubber packer was sealed off to keep water in the packed zone.

4.6 meter margo plugs were installed to the maximum possible depth. The exact depth of the packer is not known, but packers were installed to the maximum depth possible by hand, and are estimated to be at least 2.5 meters below ground surface.

After installation, water remaining on top of the plug was pumped out using a peristaltic pump. A quick inspection during spring 2006 indicated no observable flow from the PVC, or from the well annulus, suggesting that the packers have successfully stopped the artesian flow. Evacuation of each annular area above the packers should be completed after each use if freezing conditions are expected prior to the next sampling round.

4 Assessment of Contaminant Sources and Loading

Assessment of contamination in the Grum Creek area is discussed in the AMP Event #4 report (SRK, 2006). In general, deeper groundwater has been considered to be relatively free of contaminants, but the record is terminated in 2001, when monitoring well P96-9B was damaged (likely due to freezing). The highest observed zinc and sulphate levels in the area occur within groundwater at SRK04-5A and P96-9A, which are considered parts of the deep and shallow aquifer, respectively.

While only limited hydrogeologic information is available for determining potential groundwater contaminant loads in this area, conservative estimates are presented here for the purpose of comparison with other areas.

The following assumptions were used for these calculations:

- 1. Contamination is dominantly constrained to the shallow aquifer in the area of the bedrock low,
- 2. The shallow aquifer has an average thickness of five meters and width of 200 meters (dimensions were determined based on the cross-section in Figure 2),
- 3. Hydraulic conductivity is homogeneous and isotropic with a value of 2×10^{-5} m/s, and
- 4. The hydraulic gradient is similar to ground surface topography.

Our best estimate of hydraulic conductivity for both the shallow and deep aquifer ($K=2x10^{-5}$ m/s) is based on slug tests performed in both the shallow and deep aquifer at P96-9 (RGC, 1996).

The following loading scenarios were calculated:

- Scenario 1: Best Estimate for Shallow Aquifer
- Scenario 2: Conservative (High) Estimate for Shallow Aquifer
- Scenario 2: Best Estimate for Deep Aquifer
- Scenario 4: Conservative (High) Estimate for Deep Aquifer.

Table 3 summarizes the input parameters and resulting zinc loading estimates for the four scenarios.

Scenario	Thickness (m)	Width (m)	Hydraulic Conductivity (m/s)	Gradient	Flux (L/s)	Zn Concentration (mg/L)	Load (tonnes/yr)
1	5	200	2x10 ⁻⁵	0.1	2	0.02	0.001
2	5	1000	1x10 ⁻⁴	0.1	50	0.02	0.032
3	20	200	2x10 ⁻⁵	0.1	8	0.02	0.005
4	20	1000	1x10 ⁻⁴	0.1	200	0.02	0.126

Table 3. Zinc loading estimates

These calculations present a range of loading estimates based on very simple assumptions. It is recognized that the area is likely more complex than assumed here, but additional detail is not justified based on the available data. Based on these scoping calculations, the current zinc loads in the shallow and deep aquifers are estimated to be very small (0.001 t/yr and 0.005 t/yr, respectively). Assuming "worst-case" conditions, the zinc loading in the shallow and deep aquifer would still be less than 0.2 tonnes/year combined. Note that a width of 1000 m for these "worst-case" scenarios is considered very conservative, i.e. significantly greater than what is expected based on our experience. Even for these "worst-case" conditions the estimated zinc load in groundwater (<0.2 tonnes/year) would be much lower than the estimated zinc load in seepage from other waste rock dump areas (in particular at the Faro Mine) at the Anvil Range Mining Complex.

Based on these estimates and current observed conditions, seepage collection is not recommended at this time. However, this area should be monitored for any potential increase in zinc concentrations in the existing monitoring wells. If zinc concentrations in the local groundwater should increase beyond currently observed levels, seepage interception may be required to protect Vangorda Creek.

5 Options for Seepage Interception System

In the event that groundwater quality in the Grum area deteriorates to a level that it could impact the downstream aquatic environment (Vangorda Creek) seepage collection will be required. Preliminary seepage collection options were presented previously in the SRK report: *Design Options for Seepage Collection, Grum Waste Rock Dump, June 2004*. Three seepage collection options were presented in that report:

- 1. Sediment and seepage control ditches,
- 2. Sediment control ditch, seepage collection sumps and pipes, and
- 3. Groundwater collection wells.

Readers are referred to the report for detailed descriptions of these options. At this time, these options remain appropriate for the Grum area. If future monitoring determined that contamination remained constrained to the shallow aquifer, a collection system comprised of ditches and sumps may be sufficient. If significant contamination occurs in the deeper aquifer system, groundwater

pumping wells would likely be required. These options could be integrated into an adaptive management plan based on observed conditions at the time of installation.

6 Conclusions and Recommendations

As part of Task 20e – continue seepage investigations, a series of monitoring wells have been installed along the Grum Dump toe access road to provide an improved understanding of subsurface conditions and groundwater quality. These new monitoring wells indicate that:

- There is a bedrock low in the area of P96-9 and SRK04-5 that has a relatively thin (2 to 6 meters), shallow, unconfined aquifer and a deeper, thicker confined aquifer that likely includes weathered bedrock (thickness of 6 to 7 meters at depths greater than 7 to10 meters).
- Overburden thickness decreases significantly west of P96-9, from about 20 meters near SRK04-5 to about five meters at SRK05-8 and less than five at SRK05-7.
- Water quality in the shallow aquifer generally shows higher sulphate concentrations than the deeper aquifer. Zinc concentrations are still relatively low (<0.02 mg/L) in both the shallow and the deep aquifer, compared to the current reference value for P96-9A of 0.078 mg/L, suggesting zinc attenuation along the flow path. Time trend plots suggest that sulphate concentrations in the shallow aquifer (at P96-9A) are still increasing (currently at 1,600 mg/L), though still below the reference value of 2308 mg/L, whereas zinc concentrations in the same well have remained fairly constant since 2003.

Preliminary loading calculations suggest that the zinc load in groundwater in this area is (still) very small (<0.2 tonnes/year). Therefore, seepage collection is not recommended at this time. However, this area should be monitored for any potential increase in zinc concentrations in the existing monitoring bores. If zinc concentrations in the local groundwater should increase beyond currently observed levels, seepage interception may be required to protect Vangorda Creek.

At this time, it is recommended that routine monitoring in this area continue, on at least a biannual basis. Routine monitoring should include water level monitoring and sampling for water quality analysis in all monitoring wells in this area (including replacement well P96-9B(R)), and an estimation of flow rate for flowing artesian wells.

During the 2006 summer monitoring program, note should be taken on whether P96-9B(R) is flowing freely (artesian) or the water level resides very close to ground surface. As the original P96-9B monitoring well was artesian, it is likely that the replacement will also be artesian. Freezing of shallow water levels during the winter months may be the cause of damage to the original well. If the well is indeed artesian, a margo plot should be installed at this well for the winter period to prevent freezing and possible damage to this replacement well. This report, "**Task 20e, 2005/06 Seepage Investigation at the Grum Dump Area**", has been prepared by SRK Consulting (Canada) Inc. and in Association with Robertson GeoConsultants Inc.

Dan Mackie, M.Sc.

Dr. Christoph Wels, Ph. D., M.Sc.

Reviewed by

Cam Scott, P.Eng.

Page 12

7 References

RGC, 2004a, Initial Review of Groundwater Quality downstream of Faro, Grum and Vangorda WRDs, Yukon Territory, Memorandum to Deloitte and Touche, Robertson GeoConsultants, July 14, 2004.

RGC, 2004b, Task 14b – Complete Seepage Investgations for Faro and Grum Waste Rock Dumps, Memorandum to Deloitte and Touche, Robertson GeoConsultants, August 13, 2004.

RGC, 1996. Groundwater Drilling Program at Anvil Range Mine Site, RGC Report 033002/1 submitted to Anvil Range Mining Corporation, December 1996.

SRK, 2006, Preliminary Seepage Collection Options – Faro and Grum Waste Rock Dumps, Report to Faro Mine Closure Office, SRK Consulting, April, 2006.

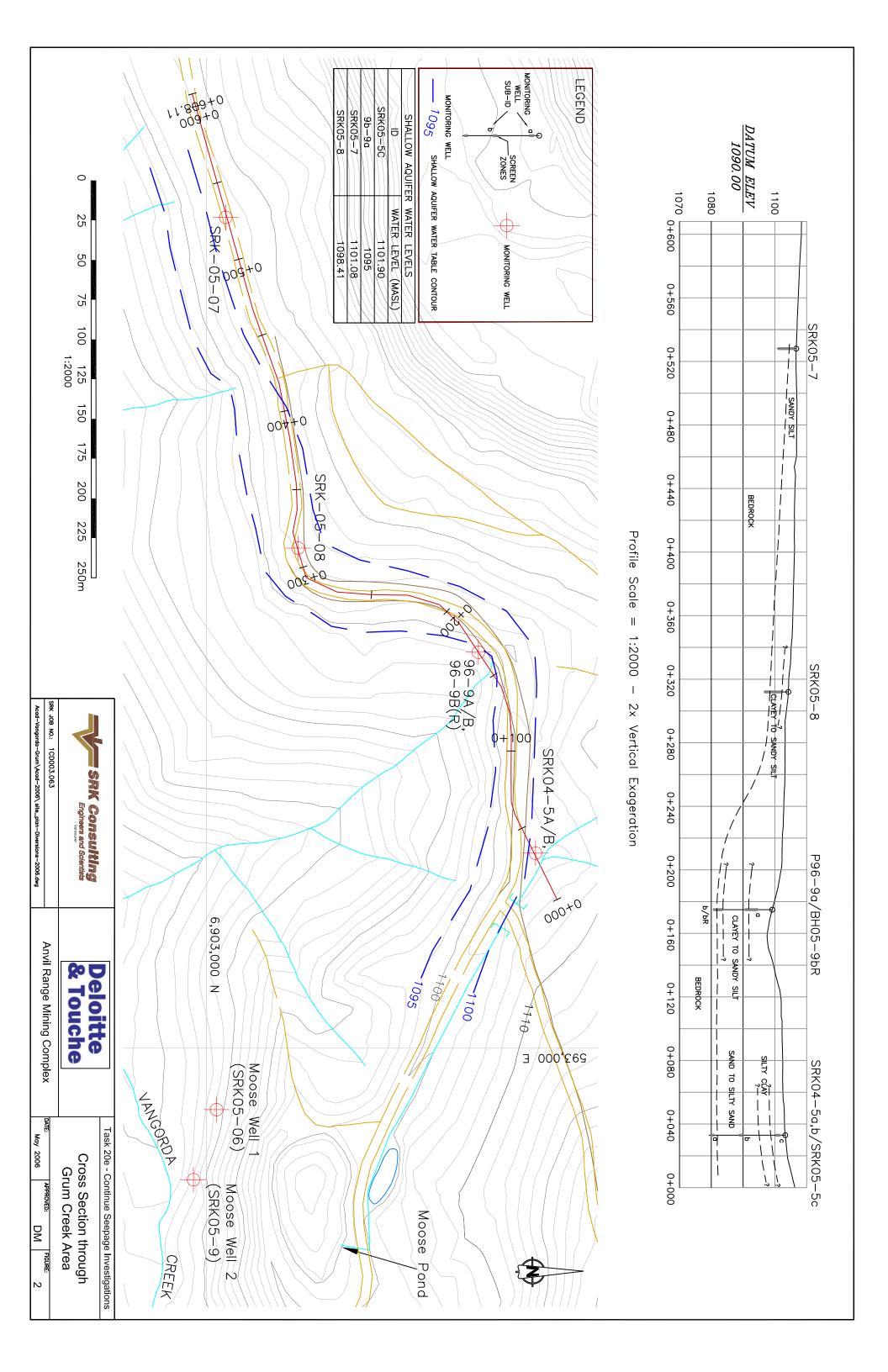
GLL, 2004, Anvil Range Mine Adaptive Management Plan Implementation Protocol, Draft Report – Gartner Lee Limited, 2004

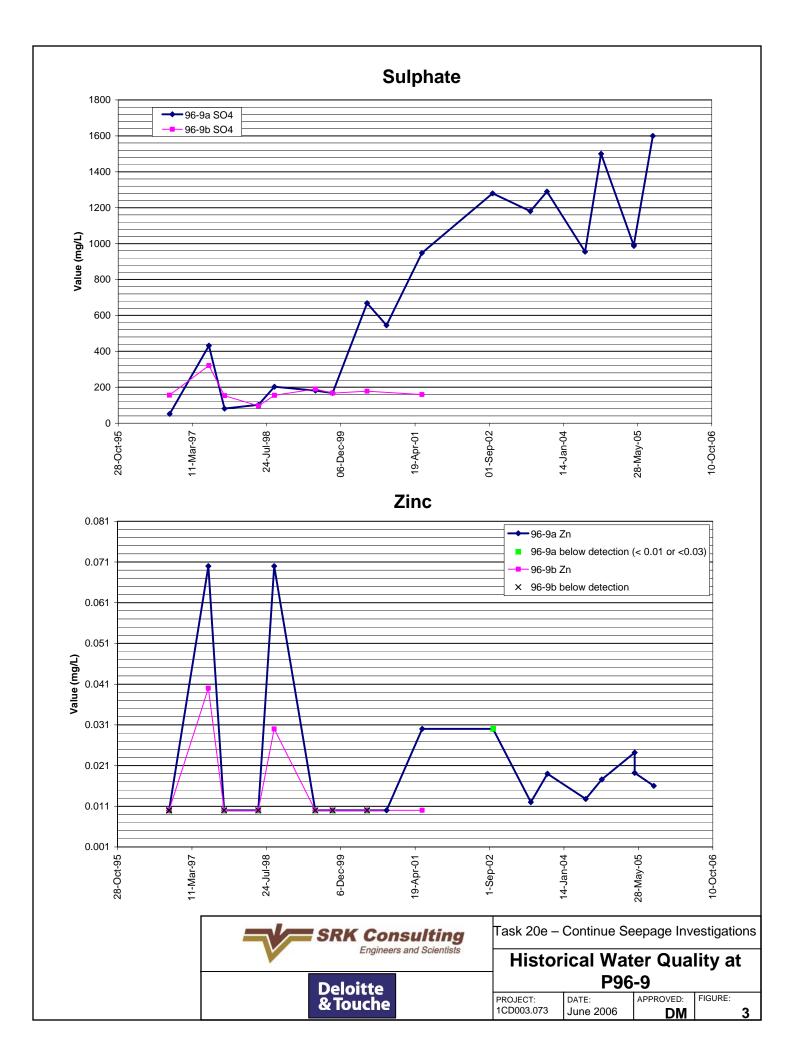
SRK, 2004, Design Options for Seepage Collection, Grum Waste Rock Dump, Report to Deloitte and Touche, SRK Consulting, June 2004

Figures

<u>Legend</u>

- Reference Water Quality Stations
- Dump Toe Seeps
- Downgradient Monitoring Stations
- Groundwater Monitoring Well


Date of Photography: 03/07/25 Scale of Photography: 1:20000 Survey control derived from existing 1:20000 photography Survey control based on: UTM Projection, NAD27 Compiled by The ORTHOSHOP, Calgary, September 2003 wo 8856



Sulphide cell outline from as-built drawing, Feb. 1996, as reported in Figure 1, Anvil Range Mining Corporation, May 1996.

			Task 20e - (Continue Seepage	e Investigation			
у	SRK Consulting Engineers and Solentists	Deloitte & Touche	2005 Grum Area - Monitoring Well Locations					
	SRK JOB NO.: 1CD003.063.0100	Anvil Range Mining Complex	DATE:	APPROVED:	FIGURE:			
	Acad-Vangorda-Grum\Acad-2008\site_plan_2006-Photo.dwg	And Range Mining Complex	June 2006	D.M.	1			

Appendices

Appendix A Drillhole Logs

Client Name: Anvil Range Mining Corp.	Driller: Midnight Sun Drilling		BOREHOLE NO: BH96	-9
Location: Fara, Yukon	Track-mounted Air-rotary (Ol)EX) – 175 mm	PROJECT NO: 033001	
BH Loc: South of Grumm Rock Dump	UTM ZONE: - N - E -		ELEVATION:	
SAMPLE TYPE DISTURBED 🛛 NO RECOVER	r 🛛 SPT 🛛 🗖	A-CASING	Shelby tube 🚺 core	
BACKFILL TYPE BENTONITE : PEA GRAVEL	IIII SLOUGH	CEMENT I	DRILL CUTTINGS 🔣 SAND	(
Image: Solid state Image: Solid state Image: Solid state Image: Solid state <td></td> <td>17 1</td> <td>Additional Comments</td> <td>SAMPLE TYPE DEPTH(ft)</td>		17 1	Additional Comments	SAMPLE TYPE DEPTH(ft)
0.0 SILT (FILL) — some sand, gravel, high organic content, moist to wet, swam smell, soft, dark brown.		9B (dee - well co	ickups: Illow) — 0.70 m ags ep) — 0.60 m ags mpleted with 6" er steel protective	5.0
GRAVEL (COBBLES, BOULDERS - FILL) some sand, high organic content, m dark brown. 6.0 GRAVEL - subangular, some sand to s some silt, damp to moist, dark brow - water encountered at about 6 m.	oist, 	9A -	levels: nber 8, 1996) 4.82 m bgs flowing	15.0
 SAND - well graded, trace gravel, silt, wet, brown. SILT - sandy, trace clay, slight trace gravel, wet (PROBABLY FROZEN - PERMAFROST), light green-brown. SILT (TILL?) - sandy, gravelly, gravel Subrounded, fine, moist, dense, dark 12.0 	·	- PROBA	BLE PERMAFROST	30.0
SAND (TILL?) — silty, some fine subrou gravel, damp, dense, dark grey. SILT AND SAND — very fine to fine grad sand, trace fine gravel, damp, dark grey.	ned	3 %	size analysis: gravel sand silt	40.0
SAND – well graded, some gravel, trac silt, wet, permeable, dark grey. PHYLUTE BEDROCK – aphanitic, well faliated, grey, relatively little water. BOREHOLE TERMINATED AT 18.0 m IN F BEDROCK. TWO MONITORING WELLS INSTALLED. ROBERTSON GEOCONSULT	HYLLITE	BY: TH/CW D BY: AR	COMPLETION DEPTH: 1 COMPLETE: 07/09/96	60.0 65.0 65.0 65.0
Vancouver, B.C.	Fig. No:			Page 1 of 1
96/12/10 02:25PN (MORWELL2)	[hy. No.	~		

GEI		COREH			LOCATION: GRUM - T FILE No: FARO (1 BORING DATE: 2005- DIP: 90.00 AZIN COORDINATES: 6900 r P96-9B; Stickup heigi	COORDINATES: 6903172.14 N 592747.06 E DATUM: PVC 1101.06 P96-9B; Stickup height: 1.08m; Water level = 1100.35 masl on Sept. 8, 2005; Samples:1-1.22m, .93, 10-15.85.						rel S	L PLUG MATERIALS Bentonite / Grout Cuttings Sand S Split spoon S Auger Sample n, 5-9.14m,
		WELL		STRATIG	RAPHY		s	SAMF	LES	;			
DEPTH - ft	DEPTH - m	DETAILS & WATER LEVEL - m	ELEVATION - m DEPTH - m 1069.88	DESCRI Natural ground sur		TVBE AND	TYPE AND NUMBER	CONDITION	RECOVERY %	RQD %	SAMPLE DESCRIPTION	DEPTH - m	LABORATORY and IN SITU TESTS
20 10 10 10 10 10 10 10 10 10 1	6		0.00 <u>1096.08</u> <u>3.90</u> <u>1092.58</u> 7.40	Sandy silts. Well-graded sands.		3					 0.00 Sandy silt (fine to coarse sand), with fine to coarse, subangular to subrounded gravel and rare cobles (dia. ~10cm), dark brown, with organic matter (roots), loose, damp. 1.20 Clayey silt, trace to minor fine sand, dark brown to black, with organic matter (roots), loose, damp. 1.90 Fine to coarse sandy silt, trace clay, with fine to coarse, subangular to subrounded gravel, dark brown, with organic matter, loose, damp. 3.30 Silty medium to coarse sand with fine sand, trace to minor clay and fine to coarse subangular to subrounded gravel, dark brown, with organic matter, loose, damp. 3.90 Gravelly medium to coarse sand with fine sand, and fine to coarse, subangular to subrounded gravel, trace to minor silt, with sparse cobbles, brown, wet. 6.00 Medium to coarse sand with fine sand, fine to coarse subangular to subrounded gravel and trace silt, brown, loose, wet. 7.40 Clayey silt, with fine to coarse sand, fine to coarse, subangular to subrounded gravel and trace silt, brown, loose, wet. 7.40 Clayey silt, with fine to coarse sand, fine to coarse, subangular to subrounded gravel and trace rounded cobbles, gray, stiff, damp, with low plasticity. Till. 	1 3 4 5 7 8 9	

GEN					BORING DATE: 2005-08-11 TO 2005-08-11 DIP: 90.00 AZIMUTH: COORDINATES: 6903172.14 N 592747.06 E DATUM: or P96-9B; Stickup height: 1.08m; Water level = 1100.35 14.93, 10-15.85.						BOREHOLE: 96-9B(R) PAGE: 2 OF 2 DRILL TYPE: Sonic DRILL: 4x6 CASING: 2" TUM: PVC 1101.06 00.35 masl on Sept. 8, 2005; Samples:1-1.22m, 2-3.05m, 3-4.	led bed re LER re barrel	ELL PLUG MATERIALS Dentonite / Grout Cuttings Sand SS Split spoon AS Auger Sample S2m, 5-9.14m,
		WELL DETAILS		STRATIG	RAPHY		SAMI	PLES					
DEPTH - ft	DEPTH - m	& WATER LEVEL - m	ELEVATION - m DEPTH - m	DESCRI	PTION	SYMBOL	TYPE AND NUMBER	CONDITION	RECOVERY %	RQD %	SAMPLE DESCRIPTION	DFDTH - m	
35 40 45 50 55 55 60 60 60 60 60 60 60 60 60 60 60 60 60	16 17		<u>1084.48</u> 15.50 <u>1082.58</u> 17.40 <u>1081.38</u> 18.60	Sandy-silt. Weathered bedrock			8				15.50 Gravelly-sandy silt with fine to coarse subangular to subroun gravel, with sparse cobbles, gray, friable, very damp. Till. 17.40 Weathered bedrock: Greenish-gray phyllite, slightly damp.	11 12 13 14 14 14 14 15 14 15 15	
X:V06 REFEREN	19 1		10.00									19	

					PROJECT: AMP EV	ent a	#4 Respo	onse			BOREHOLE: SRK05-05C	SAMPLE CONDITION	WEL	L PLUG MATERIALS
		SR SR	K C.	onsulting neers and Scientists	LOCATION: Grum C	reek					PAGE: 1 OF 1	Remoulded		Bentonite / Grout
				Jilbanting	FILE No: FARO	(1CI	D003.063	3)			DRILL TYPE: Portable Hammer	Lost		Cuttings
	V		Engii	neers and Scientists	BORING DATE: 200				2005-(08-04	DRILL: Pionjar	Rock core	1444	Sand
											CASING: 2"	TYPE OF SAMPLER		
	B	OREHO	DLF	E LOG		COORDINATES: 6903208.00 N 592873.00 E DATUM: PVC 1104.08					DC Diamond core barre	S Split spoon		
					COORDINATES: 69	9032	08.00 N	5928	73.00	E DA	TOM: PVC 1104.08	GS Grab sample	A	S Auger Sample
		- COMMENTSStic												
		WELL		STRATIGE	RAPHY		:	SAM	PLES					
		DETAILS	E											
<i></i> "	۲ ۲	& WATER LEVEL - m	× E			Ľ	AND BER	NO	ڊ× ۲	%				
ΙĘ	H		H			1BC	AI NBE	E	Ϋ́Ε̈́Η	â			е -	
DEPTH	DEPTH		ELEVATION - DEPTH - m	DESCRI	PTION	SYMBOL	TYPE ANI NUMBER	CONDITION	RECOVERY %	RQD			Ŧ	LABORATORY
			□□□□			•,	⊢ ~	ŏ	ШЧ		SAMPLE DESCRIPTION	1	DEPTH	and IN SITU TESTS
		· · · · · · · · · · ·	1103.14	Natural ground sur Sand, gravelly, with s	face									
ŀ	-		0.00	Sand, gravelly, with s	int and clay						0.00 Top soil: fine to coarse sand, with clay and gr	avel (fine to coarse),	_	
<u>,</u>	-					X					dark grey, damp, loose, with organic matter (r	oots).	_	
-	F					4							_	
8	F					/	SS-1						_	
	- 1						33-1						1-	
2	-					1							_	
-	Ē	040-04 04-0-04 04-0-04			ie. t)							_	
2	5					<i>/</i> 6								
- Lal.	_	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~				\mathbf{y}	00.0				1.75		_	
	- 2	epth 2					SS-2				Silt or clay, brown, with fine to medium sand a gravel, damp, with some plasticity.	and fine to coarse	2-	
	-					•/•					2.10	/	_	
						•					Fine to coarse sand, brown, with trace clay or coarse subangular to subrounded gravel, wet	silt, with fine to	_	
	-					$^{\prime}$	SS-3				sand)		_	
	-					9							_	
- 1	0 - 3		1099.94		×		00.4				0.40		3-	
	-	<u>**</u> **********************************	3.20	END OF BOREHOLE	• · · · · · · · · · · · · · · · · · · ·	• • • • •	<u></u>				3.10 Sandy clay (fine to coarse sand), with fine gra	vel, brown to	_	
101-04	-										greenish grey, with low plasticity, damp (wet).		_	
- Iden	F	IJ									3.2m.			
	-												-	
	- 4												4-	
≤ -	F													
	<u>_</u>												_	
Ľ− 1 ∠	3- -												-	
	Ē												-	

				PRO	OJECT: Faro N	Mine S	eepage I	nvesti	gation		В	OREHOLE	: SR	K04-	05			
		/ SRI	{ C (onsulting eers and Scientists BO	CATION: Grum	Creek	area				P	AGE: 1	O	F 3	;			
_			Engin	FIL	E No: FARO	(1CI	D003.053	5)			DRILL TYPE: ODEX 6"							
	V		Lingin	BO	RING DATE: 20	004-09	9-06 T	0	2004-	09-09	D	RILL: A	r Rota	ary				
	P	OREH (न ।		: 90.00 A	ZIMU	TH:				CASING: 2"							
			JLL		COORDINATES: 6903205.00 N 592871.00 E DATUM:													
GEN	ERAL	L COMMENTS:			PLUG MATERI Bentonite	AL					pH Rinse pH	D IN SITU		S Extra	ction			
					Cuttings						Cond Rinse cond	uctivity						
				· · · · · · · · · · · · · · · · · · ·	Grout						ABA Acid Base A	Accounting						
				STRATIGRAPH	Sand			PLES		Metals Metal ICP								
		WELL DETAILS	۶ı	STRATIGRAPH	T						-	w						
Ŧ	ε	& WATER	ш - Ш - Ш			Ι.	0	z	% ,	•				R CO LIMIT				
DEPTH - ft	Ë	LEVEL - m	ELEVATION DEPTH - n			SYMBOL	TYPE AND NUMBER	CONDITION	RECOVERY %	or RQD	LABORATOR and	Y C			0(/	"		
ЕР	DEPTH		DEPTH	DESCRIPTIO	N	Μ	ΠUM	QN	No No	or	IN SITU TEST	s ,	wp	w	w	' L		
	-					o	ĘΖ	8	REC	z			Ļ.	-0-		1		
			<u>1103.14</u> 0.00	Organics, Alluvium		h~~~							20 4	06	8 0	30 		
E			0.00	organios, Anuviulli														
F						<u>}</u>												
	_			Stickup Heights: 1103.95m (1103.93m (deep).	shallow),													
	- 1	$\bigotimes \boxtimes \bigotimes$	1101.92	Fine to coarse sand with sub	-angular to													
- 5	_		1.22	sub-rounded gravel plus TR		•												
ŀ	_																	
-	- 2					.										-		
-	_					•												
-	_			Wells are 2" Sched. 40 PVC		•												
- 10	3					.0 .0												
-	_					y 0												
-	-					• •												
-	- 4																	
	-					Ģ.												
್ಷ- ನೈ– 15	-		1098.57 4.57	Clay with fine to coarse sand	1 and minor	• • •/•/•/												
0-0007		a a a a		gravel.		//												
	- 5	A A A A																
S-4.50	_																	
- 20	- 6	$\bigotimes\bigotimes\bigotimes$				10										+		
	-																	
01/41-1	-					/./												
-11971	- 7					/•/								$\left - \right $	<u> </u>	-		
	-																	
- 25	-					//												
Landroi	- 8					//												
			1094.91 8.23	Fine to coarse sand with fine	e to coarse													
	-			gravel.		ð 6												
	-					0.0												
- - - 30	- 9																	
	-					•												
200	-					0 9 0 0												
<	-					0 0												

_					PROJECT: Faro M	line S	eepage li	nvesti	gatior	ı	В	OREHO	LE: S	RK0	4-05		
		/ SRI	KC	onsultina	LOCATION: Grum	Creek	area				Р	PAGE: 2 OF 3 DRILL TYPE: ODEX 6" DRILL: Air Rotary					
			Enai	onsulting neers and Scientists	FILE No: FARO	(1CI	D003.053	5)			D						
	V		Liigi		BORING DATE: 20	04-09	-06 T	0	2004-	09-09							
	R	BOREHO	JIF		DIP: 90.00 A	ZIMU	TH:				С	ASING:	2"				
			JLI		COORDINATES: 6		05.00 N	5928	371.00	E DA							
GEN	ERA	L COMMENTS:			WELL PLUG MATERIA	AL					pH Rinse pH	D IN SIT			raction	n	
					Cuttings						Cond Rinse conductivity						
					Grout Sand						ABA Acid Base Accounting Metals Metal ICP						
		WELL		STRATIG			9	SAM	PLES								
		DETAILS	۲ ۲	011110						-		,	WAT	ER C	ONTI	ENT	
÷	Ξ.	& WATER	- E			_	⊆∝	z	γ %	Δ				WATER CONTEN and LIMITS (%)			
DEPTH - ft		LEVEL - m	ELEVATION - DEPTH - m			SYMBOL	TYPE AND NUMBER	I	RECOVERY %	or RQD	and						
DEF	DEPTH		EV/	DESCR	IPTION	SYN	YPE	CONDITION	co	N or	IN SITU TEST	S	w _P	, w	W	V L	
			Ш				F -	Ŭ	RE	-			1 → → 1				
-	_					e p										+	
F	-					• •											
- 35						<u>ہ</u>											
-	- 11					9 a						_					
-	_					•••											
F	_					• •											
-	- - 12					0 e											
- 40						¢ 0											
-	-					• •											
Ł	-		1090.34 12.80	Fine to coarse grave	with fine to coarse												
	- 13 -			sand and silt.													
-			<u>1089.73</u> 13.41	Fine sand with minor													
- 45				sand, TRC gravel and	d silt.	•											
-	- 14			0.010 Slot 2" PVC sc	reen	9									+		
0.60 6	_					0 0											
						• •											
	- 15	· · · · · · · · · · · · · · · · · · ·				0 0 0 0						_		_	—		
- 50	-					•											
1 1 1	-																
	_ 16																
7-Lab-			1086.68														
			16.46	Same as above but v coarse sand.	vith increasing	• - T - I •											
- 55 -	_ 17	0.0	1086.07	uaise saiiu.													
	- ''	6.6 2.6 6.6	17.07	Clay with some medi	um to coarse sand.												
	-		1085.46														
duanh		5 5 5 5 6 6 5 5 6 5	17.68	Fine to coarse sand angular-sub-rounded		•											
1 1	- 18 -	6 S 0 0 9 0		phyllite downwards.	graver. moredally	• •						F			1		
- 60 -	-	0 0 0 0 0				a											
	-	A 6 9 9 6				• •											
	- 19					o . A						\vdash		+	+		
	-																
						0 0											
≦— 65 <_	_					•											

		SRI	K C Engi	onsulting neers and Scientists	PROJECT: Faro M LOCATION: Grum (FILE No: FARO BORING DATE: 20	Creek (1Cl	area D003.053	3)	-	י 09-09	BOREHOLE: SRK04-05 PAGE: 3 OF 3 DRILL TYPE: ODEX 6" DRILL: Air Rotary					
	B	OREH	OLE	E LOG	DIP: 90.00 A COORDINATES: 6	ZIMU		5928	371.00			NG: 2"				
GEN	GENERAL COMMENTS: WELL PLUG MATERIAL LABORATORY AND IN SITU TESTS December 2010 pH Rinse pH LE December 2010 Cuttings Cond Rinse conductivity Grout ABA Acid Base Accounting Sand Metals Metal ICP										ction					
DEPTH - ft	DEPTH - m	WELL DETAILS & WATER LEVEL - m	ELEVATION - m DEPTH - m	STRATIGF		TYPE AND NUMBER CONDITION RECOVERY % N or RQD			or RQD	LABORATORY and IN SITU TESTS	a N	nd L ^W P	R COI .IMIT: W 	S (%	5) L	
- - - -	- 21		<u>1082.41</u> 20.73	Same as above but w phyllite.	ith more fresh	0 9 9										
- - - 70 - - -	-		<u>1081.80</u> 21.34	Weathered bedrock												
- - - - - 75	-															
- - - -	- 23 - - - - - -	× • • • • • • • • • •		0.020 Slot 2" PVC scr	een											
- - - - - - - -	- 24 - - - - - -	<u>'å':0':4':6:4</u>	1079.06 24.08	END OF BOREHOLE												
- - - - - - - - - - - - - - - - - - -	- 25 - - - - - -															
	- 26															
	- 27															
	- 28 - - - - -															
X/06 KEFERENCE MALERIAL S060066/0016m0ales/0014/MARKI/Siar-KUD-40-76-76-76-76-76-76-76-76-76-76-76-76-76-	- 29 															

GEN	B	OREHO	OLF		DIP: 90.00 AZIMUTH: COORDINATES: 6902982.00 N 593043.00 E DATUM: PV es/bags: 1.32m, 2.18m, 3.2m						BOREHOLE: SRK05-06 SAMPLE CONDITION PAGE: 1 OF Remoulded DRILL TYPE: Portable Hammer Lost DRILL: Pionjar Rock core CASING: 2 " TYPE OF SAMPLER DC Diamond core barred GS Grab sample	Þ þ Þ A S	L PLUG MATERIALS Bentonite / Grout Cuttings Sand S Split spoon Auger Sample
DEPTH - ft	DEPTH - m	WELL DETAILS & WATER LEVEL - m	ELEVATION - m DEPTH - m	STRATIGE DESCRI	PTION	SYMBOL	TYPE AND NUMBER	CONDITION	RECOVERY %	RQD %	SAMPLE DESCRIPTION	DEPTH - m	LABORATORY and IN SITU TESTS
latesVoqPMWeil Strat-ROD-Samp-Lab.sty PLOTTED: 2006-06-09 08:05hrs 1 10	- 1		<u>1073.07</u> 0.00	Sand, clayey, gravelly			SS-1 SS-2 SS-3 SS-4 SS-5				0.00 Top organic soil, black. 0.10 Sand and gravel, poorly graded, brown, loose, damp. 0.30 Fine to medium sand, brown, with trace silt, loose, damp, well graded. 1.60 Fine to medium sand, with clay, with fine to coarse gravel, brown, wet. Some more clayey levels presenting low plasticity. 2.70 Sandy clay (fine to medium sand), with fine to coarse gravel, dark grey, wet, with low plasticity.	2-	
X-106. REFERENCE, MATERIALS Verone, Joquemp 51	- - - - - - - - - - - - - - - - - - -		3.20	END OF BOREHOLE								4	

	_				PROJECT: AMP E		#4 Respo	onse			BOREHOLE: SRK05-07	SAMPLE CONDITION		Bentonite / Grout	
		SK	n c	onsulting	LOCATION: GRUM						PAGE: 1 OF 1	Undisturbed		Cuttings	
			Engi	ineers and Scientists	FILE No: FARO	(1CI	D003.063	3)			DRILL TYPE: Sonic	Lost		Sand	
			Liigi		BORING DATE: 200	05-08	3-24 1	ю	2005-	08-24	DRILL: 4x6	Rock core			
					DIP: 90.00 A	ZIMU	TH:				CASING: 2"	TYPE OF SAMPLER		2. Split appop	
	-	BOREH	ULI	LOG	COORDINATES: 6	ATES: 0000044.00 NL 500477.00 F DATUM: DVC 4407.00						DC Diamond core barro	barrel SS Split spoon AS Auger Sample		
GE	INER	AL COMMENTSwe	ll drv at	time of installation; st								GS Grab sample	~		
		WELL		STRATIG	RAPHY		;	SAMI	PLES	;					
		DETAILS	E						%						
۲, I			z z			_	₽₩	NO		•					
ΙĘ		LEVEL - m	E			BO	AND BER	Ē	ĒR	% 0			ε		
DEPTH		i n	ELEVATION - m DEPTH - m	DESCR		SYMBOL	TYPE AND NUMBER	CONDITION	RECOVERY	RQD			÷	LABORATORY	
10						S	≿ z	S	Ш	-			DEPTH	and	
			1106.52	Natural ground su	rface				œ		SAMPLE DESCRIPTIO	N	B	IN SITU TESTS	
-	-	DO OD DO OD ROV.D.D. DV DV.D.DV	0.00	Sandy silt with grave							0.00		=		
L.	E	DP . DP DA . DP PP . DP D P . DP DP . DP DP DP . DP DP . DP DP . DP DP . DP . DP DP.									Sandy silt (fine to coarse sand), with fine to c sub-angular gravel, brown, with abundant or	oarse angular to	Ξ		
hrs	F					•					wood fragments), dry, loose. From 1.3-1.6m:	cobbles and gravel.	=		
09:1	Ē	1				<mark>ہ</mark> ! ! •	1						1-		
60-90	Ē												=		
	5												=		
ED: 2	E														
101	F	2	1104.32				2				2.00		2		
sty P	E		2.20	Weathered bedrock,	phyllite		_				Till: As above, consolidated, grevish brown, v	with coarser gravel			
-Lab.	F					X					(diam.~5-7cm) at the interface with weathere	d bedrock. Friable,	-		
Samp	Ē										dry. 2.20				
á – 1	0	3				Ŵ					Weathered bedrock (phyllite: Silver grey, dry.		3-		
trat-F	F										recovered. Some oxidised (orange nodes) lev 5.3m hit harder/fresher bedrock.	vels present. Dry. At	-		
Vell-S	Ē					X					S.Shi hit hardel/nesher bedrock.		-		
IMAN	Ē	ර ර ර ර											4-		
esVoc	E	- 200				X	3								
emplat	5	Б													
logte	Ĩ	dep				¥\$							3		
eotec.	-	5 ^E											5		
TS/06	F	1 2	•			ŚŚ							=		
ERIA	Ē					X									
MAT	Ē		1100.52			S									
- 2	20	6	6.00	END OF BOREHOLE	E	<u>11711</u>							6		
FERE	F														
6 RE	E														
X:10	F														

L				PROJECT: AMP Event	#4 Resp	onse			BOREHOLE: SRK05-08				
		SR	K Conculting	LOCATION: GRUM					PAGE: 1 OF 1	Remoulded		Bentonite / Grout	
			A oursuiting	FILE No: FARO (10	003.06	3)			DRILL TYPE: Sonic	Undisturbed Lost		Cuttings	
L	V		K Consulting Engineers and Scientists	BORING DATE: 2005-0		-	2005-	08-24	DRILL: 4x6	Rock core		Sand	
L							2000-	00-24		TYPE OF SAMPLER			
L	P	ROREH	OLE LOG	DIP: 90.00 AZIMI					CASING: 2"	DC Diamond core barre	el S	S Split spoon	
L	COORDINATES. 0903003.00 1							E DA	TUM: PVC 1105.25	GS Grab sample	A	S Auger Sample	
G	GENERAL COMMENTS Stickup height = 0.78m												
L		WELL		GRAPHY		SAM	PLES	5	-				
3 114010	DEPTH - M	DETAILS & WATER LEVEL - m	NOILEAN NOILEAN HIGHAN Natural ground s		TYPE AND NUMBER	CONDITION	RECOVERY %	RQD %	SAMPLE DESCRIPTION			LABORATORY and IN SITU TESTS	
F	Ē	DA . DO DA . DO. DD. V. DD V DD V. D. DV	0.00 Sandy silt, gravel						0.00	to outprounded find to	-		
		φ φ </th <th>1098.68 5.80 Weathered to fresh</th> <th></th> <th>1 2 3 4 4</th> <th></th> <th></th> <th></th> <th>Sandy silt (fine to coarse sand(, with angular t coarse gravel, brown, slightly moist, with abur (white ash layers present ~1-2cm thick) 0.70 Fine sand, well sorted (minor medium-coarse with minor fine-coarse subangsubrounded g of the layer, yellowish-brown, loose,dry. 1.30 Gravelly fine to coarse sand (predominant fine coarse angular to sub-angular gravel), trace s dry. 1.50 Till: Sandy silt (fine to coarse sand), trace clay angular to sub-angular gravel and sparse cob greenish-grey, compact, damp, gray. From 3. (slow drilling). 5.80 Slightly weathered to fresh bedrock (phyllite). fragments plus ground rock (powder/dust) rec detected. Granite cobbles in the contact betw</th> <th>fractions), trace silt, ravel at top and base e fraction), (fine to silt, dark brown, loose, y, with fine to coarse bles (diam.~10cm), 6m: gets very hard</th> <th>2_ 3_ 6_ 7_</th> <th></th>	1098.68 5.80 Weathered to fresh		1 2 3 4 4				Sandy silt (fine to coarse sand(, with angular t coarse gravel, brown, slightly moist, with abur (white ash layers present ~1-2cm thick) 0.70 Fine sand, well sorted (minor medium-coarse with minor fine-coarse subangsubrounded g of the layer, yellowish-brown, loose,dry. 1.30 Gravelly fine to coarse sand (predominant fine coarse angular to sub-angular gravel), trace s dry. 1.50 Till: Sandy silt (fine to coarse sand), trace clay angular to sub-angular gravel and sparse cob greenish-grey, compact, damp, gray. From 3. (slow drilling). 5.80 Slightly weathered to fresh bedrock (phyllite). fragments plus ground rock (powder/dust) rec detected. Granite cobbles in the contact betw	fractions), trace silt, ravel at top and base e fraction), (fine to silt, dark brown, loose, y, with fine to coarse bles (diam.~10cm), 6m: gets very hard	2_ 3_ 6_ 7_		
- 100	Ē		7.60 END OF BOREHO	-E									

						PROJECT: AMP Event #4 Response BO							MPLE CONDITION	WEL	L PLUG MATERIALS
			S R	KC	onsulting	LOCATION: GRUM-I	Моо	se Pond				PAGE: 1 OF 1		DDV	Bentonite / Grout
					Unsaiting	FILE No: FARO	(1CI	D003.063	5)			DRILL TYPE: Portable Hammer	Lost		Cuttings
		V		Eng	ineers and Scientists	BORING DATE: 200	5-09	9-17 T	0	2005-	09-17	DRILL: Pionjar	Rock core	<u></u>	Sand
						DIP: 90.00 AZ		TH:					PE OF SAMPLER		
		BO	REH	OLI	E LOG	COORDINATES: 69			5930)58 50	F DA	DC	Diamond core barre		S Split spoon S Auger Sample
GE	GENERAL COMMENTSStickup height=1m (approx.)											GS	Grab sample	A	S Auger Sample
			WELL		STRATIG	RAPHY			SAMI	PLES	;				
			ETAILS	ELEVATION - m DEPTH - m						%					
<u>۳</u>			WATER EVEL - m	Z -			۲	д ж	CONDITION						
DEPTH				THE			SYMBOL	TYPE AND NUMBER	E	RECOVERY	° 0			н -	
					DESCR	IPTION	۶X	μΥΡ	INC	CO	RQD			Ŧ	LABORATORY
							•,	F -	Ŭ	RE		SAMPLE DESCRIPTION		DEPTH	and IN SITU TESTS
				1071.83	Natural ground sur Top soil layer, no rec							0.00			
F	-	D P P V	Do Do DI Do Do DI Do Do DI	ş 0.00 ▼	Top soil layer, no rec	overy						0.00 Top soil layer, very soft, no recovery.		-	
<u>ه</u>	-	D D V	07.00	V										_	
9:12hr	F		~												
060-	F							SS-1						_	
06-06	-	1												1-	
:D: 20	F	55													
OTTE	Ē		₩ 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4	1070.3											
sty PI	5			1.50	Silty sand with grave		•					1.50 Silty fine to coarse sand, with some fine to coarse,	angular to	_	
-Lab.s	E											subangular gravel, greyish brown, soft, wet. Interca	calated organic	_	
Samp	-	2						SS-2				silt-clay (peat, black) layers, 5-8cm thick, and thin a	ash (white)	2-	
RQD-	E											layers (max 2cm thick).		-	
Strat-	E			2.2			•							_	
glPMWell-Strat-RQD-Samp-I	E						9					2.60		-	
MAN	F						•					As above, less fines, sub-angular to sub-rounded f	fine to coarse,	_	
ates/	0	3		~			٩					gravel, wet. Contains minor silt.		3-	
templ	F						٩	SS-3						_	
ec.log	-		0000000											_	
l geoti	F						•							-	
RIALS	-			1067.9	3 Weathered bedrock,		0.					3.90		_	
FERENCE MATERIALS 100	F	4 6 6 6		0.30				SS-4				Weathered bedrock, schist, orangish-brown, wet.		4	
ICE A	F			4.30	3 END OF BOREHOLE										
- 1	5					-								-	
i REF	Ē														
X:106	F													_	

Appendix B Water Quality Results

Project Report to ALS File No. Date Received Date:

10/6/2005							
10/21/2005	SRK05-9						
	Moose Well	SRK04-5a	SRK04-5b	SRK05-50	P96-9a	Replicate	e Results
RESULTS OF ANALYSIS							
Sample ID	MOOSE POND Well #2	SRK-04-ARTA	SRK-04-ARTB	SRK05-5c	V96-9A	MOOSE POND Well #2	MOOSE POND Well #
Date Sampled Time Sampled	10/3/2005 15:45	5/9/2008 16:20	5/9/2008 16:16	11/22/2005 9:45	5/9/2008 17:00	10/3/2005 15:45	QC# 468375
ALS Sample ID	5	9	10.10	9.45 1	6	5	
Nature	Water	Water	Water	Water	Water	Water	
Physical Tests Conductivity (uS/cm)	1730	449	435	651	3070	1730	1740
Hardness (CaCo3)	n/a	172	172	n/a	1810		1140
рН	7.66	7.96	8.08	7.51	7.41	7.66	7.95
Dissolved Anions							
Acidity (to pH 8.3) CaCO3	9.9	n/a	n/a	14.9	n/a		
Alkalinity-Total CaCO3 Chloride Cl	325 <2.5	154 n/a	153 n/a	187 <0.50	469 n/a	325 <2.5	324 <2.5
Sulphate SO4	<2.5 763	89.8	85.3	173	1600	763	764
Total Metals							
Aluminum T-Al	37.3	n/a	n/a	n/a	n/a		
Antimony T-Sb Arsenic T-As	0.00401 0.222	n/a n/a	n/a n/a	n/a n/a	n/a n/a		
Arsenic T-As Barium T-Ba	1.70	n/a n/a	n/a n/a	n/a n/a	n/a n/a		
Beryllium T-Be	<0.0025	n/a	n/a	n/a	n/a		
Bismuth T-Bi	<0.0025	n/a	n/a	n/a	n/a		
Boron T-B	<0.050	n/a	n/a	n/a	n/a		
Cadmium T-Cd	0.00428	n/a	n/a	n/a	n/a		
Calcium T-Ca Chromium T-Cr	258 0.201	n/a n/a	n/a n/a	n/a n/a	n/a n/a		
Chromium I-Cr Cobalt T-Co	0.201	n/a n/a	n/a n/a	n/a n/a	n/a n/a		
Copper T-Cu	0.333	n/a	n/a	n/a	n/a		
ron T-Fe	90.4	n/a	n/a	n/a	n/a		
Lead T-Pb	1.39	n/a	n/a	n/a	n/a		
Lithium T-Li	0.063	n/a	n/a	n/a	n/a		
Magnesium T-Mg	157 2.19	n/a n/a	n/a n/a	n/a n/a	n/a n/a		
Manganese T-Mn Molybdenum T-Mo	2.19	n/a n/a	n/a n/a	n/a n/a	n/a n/a		
Nickel T-Ni	0.207	n/a	n/a	n/a	n/a		
Phosphorus T-P	1.51	n/a	n/a	n/a	n/a		
Potassium T-K	7.5	n/a	n/a	n/a	n/a		
Selenium T-Se	<0.0050	n/a	n/a	n/a	n/a		
Silicon T-Si	52.8	n/a	n/a	n/a	n/a		
Silver T-Ag Sodium T-Na	0.00285 10.9	n/a n/a	n/a n/a	n/a n/a	n/a n/a		
Strontium T-Sr	0.909	n/a	n/a	n/a	n/a		
Thallium T-TI	0.00117	n/a	n/a	n/a	n/a		
Tin T-Sn	0.00172	n/a	n/a	n/a	n/a		
Titanium T-Ti	0.679	n/a	n/a	n/a	n/a		
Uranium T-U	0.0300	n/a	n/a	n/a	n/a		
Vanadium T-V Zinc T-Zn	0.107	n/a	n/a	n/a	n/a	0.020	0.028
Zinc T-Zn	0.930	n/a	n/a	n/a	n/a	0.930	0.938
Dissolved Metals							
Aluminum D-Al	0.0647	<0.010	<0.010	<0.20	<0.050		
Antimony D-Sb	<0.00050	<0.00050	<0.000050	<0.20	<0.0025		
Arsenic D-As	0.00114	0.0121	0.0169	< 0.20	< 0.0050		
Barium D-Ba Beryllium D-Be	0.0953 <0.0025	0.032 <0.0050	0.049 <0.0050	0.091 <0.0050	0.055 <0.0050		
Bismuth D-Bi	<0.0025	<0.0050 n/a	<0.0050 n/a	<0.0050	<0.0050 n/a		
Boron D-B	<0.050	<0.10	<0.10	<0.10	<0.10		
Cadmium D-Cd	0.00027	<0.000050	<0.000050	<0.010	0.00101		
Calcium D-Ca	216	47.5	47.6	78.6	347		
Chromium D-Cr	<0.0025	< 0.00050	<0.00050	<0.010	< 0.0025		
Cobalt D-Co Copper D-Cu	<0.00050 0.00265	<0.00050 <0.0010	<0.00050 <0.0010	<0.010 <0.010	<0.0025 <0.0050		
Copper D-Cu Iron D-Fe	<0.00265	<0.0010	<0.0010 0.479	<0.010	<0.0050		
Lead D-Pb	0.00169	<0.0010	<0.0010	<0.050	<0.0050		
Lithium D-Li	<0.025	<0.050	<0.050	<0.010	<0.050		
Magnesium D-Mg	131	13	12.9	26.8	228		
Manganese D-Mn	0.00194	0.08	0.08	1.05	0.077		
Molybdenum D-Mo Nickel D-Ni	0.00149 <0.0025	0.0179 <0.0050	0.0204 <0.0050	<0.030 <0.050	<0.0050 <0.025		
Nickel D-Ni Phosphorus D-P	<0.0025	<0.0050 n/a	<0.0050 n/a	<0.050	<0.025 n/a		
Potassium D-K	2.9	n/a	n/a	<2.0	n/a		
Selenium D-Se	<0.0050	<0.0010	<0.0010	<0.20	<0.0050		
Silicon D-Si	4.50	n/a	n/a	4.54	n/a		
Silver D-Ag	<0.000050	<0.000050	<0.000050	<0.010	<0.00025		
Sodium D-Na	8.5	13.2	15.8	16.8	9.8		
Strontium D-Sr	0.777	n/a	n/a	0.385	n/a		
Thallium D-TI Tin D-Sn	<0.00050	<0.00020 n/a	<0.00020 n/a	<0.20 <0.030	<0.0010 n/a		
Titanium D-Ti	<0.00050 <0.010	<0.050	n/a <0.050	<0.030	<0.050		
Uranium D-U	0.0256	0.00114	0.00201	<0.010 n/a	0.0316		
Vanadium D-V	<0.0050	<0.030	<0.030	<0.030	<0.050		
Zinc D-Zn	0.0094	0.0105	0.0066	<0.0050	0.016		
	1		1	1		1	1

Appendix C Margo Plug Technical Descriptions

MARGO PLUG

Description: A mechanical type hollow stem hole plug, it comes in all standard sizes and lengths. The MARGO PLUG comes with 4 sturdy rubber sleeves.

Function: Mainly used to seal off underground drill holes or pump grout through.

Direction: Insert MARGO PLUG into the drill hole and tighten nut on the end of the plug. This will expand the rubber sleeves to shut the hole off. Now all fluid will flow up the middle of the plug. This flow can be controlled by a ball valve.

	MARGO 1	BLE PLUG	
CATALOGUE	INCHES	MILLIMETER	HOLE SIZE
M-112-36	1-1/8 X 36	28 X 900	1-1/4 IN.
M-112-48	1-1/8 X 48	28X1200	
M-125-36	1-1/4 X 36	32 X 900	1-3/8 IN.
M-125-48	1-1/4 X 48	32 X 1200	
M-137-36	1-3/8 X 36	35 X 900	1-1/2 IN
M-137-48	1-3/8 X 48	35 X 1200	
M-162-36	1-5/8 X 36	41 X 900	1-3/4 IN.
M-162-48	1-5/8 X 48	41 X 1200	
M-175-36 A W/L	1-3/4 X 36	44 X 900	1-7/8 IN.
M-175-48	1-3/4 X 48	44 X 1200	
M-187-36	1-7/8 X 36	47 X 900	2 IN.
M-187-48	1-7/8 X 48	47 X 1200	
M-212-36	2-1/8 X 36	45 X 900	2-1/4 IN.
M-212-48	2-1/8 X 48	54 X 1200	
M-225-36	2-1/4 X 36	57 X 900	2-3/8 IN.
M-225-48 B W/L	2-1/4 x 48	57 x 1200	
M-237-36	2-3/8 x 36	60 x 900	2-1/2 IN.
M-237-48	2-3/8 x 48	60 x 1200	
M-262-36	2-5/8 x 36	66 x 900	2-3/4 IN.
M-262-48	2-5/8 x 48	66 x 1200	
M-287-36 N W/L	2-7/8 x 36	73 x 900	3 IN.
M-287-48	2-7/8 x 48	73 x 1200	
M-350-48 H W/L	3-3/4 x 36 3-3/4 x 48	95 x 900 95 x 1200	3-7/8 IN·

WESTCOAST DRILLING SUPPLIES LTD.

8069 River Way, Delta British Columbia, V4G 1L3 Canada Telephone (604) 940-6050 • Fax (604) 940-6080 www.westcoastdrilling.com

NOTE: See disclaimer for supplier responsibility.