

Anvil Range Mining Complex 2005 Seepage Investigation at the S-Cluster Area Below the Faro Waste Rock Dump

2005/06 - Task 20e

Prepared for

Deloitte & Touche Inc.

on behalf of

The Faro Mine Closure Planning Office

Prepared by

Project Reference Number SRK 1CD003.073

November 2006

2005 Seepage Investigation at the S-cluster Area Below the Faro Waste Rock Dump

Deloitte & Touche Inc.

On behalf of

The Faro Mine Closure Planning Office

SRK Consulting (Canada) Inc.

Suite 800, 1066 West Hastings Street Vancouver, B.C. V6E 3X2

Tel: 604.681.4196 Fax: 604.687.5532 E-mail: vancouver@srk.com Web site: www.srk.com

In association with Robertson GeoConsultants, Inc.

SRK Project Number 1CD003.73

November 2006

Authors

Dan Mackie, M.Sc. Dr. Christoph Wels, Ph. D., M.Sc.

Reviewed by

Cam Scott, P.Eng.

Executive Summary

Results of the 2005 field program suggest the presence of multiple aquifers and a laterally constrained contaminant plume, which is currently discharging into the NFRC. Geology data indicates separate shallow and deep porous media aquifers, constrained to the west by a bedrock high. At least the shallow aquifer may be oriented along a pre-mining creek alignment. Bedrock was intersected in all drillholes, drillholes generally extending to the interpreted base of the weathered bedrock profile. A single drillhole (SP-6) was drilled further into bedrock (>5m); overburden at this location was frozen and the monitoring well, which is completed in bedrock, has been dry since installation. Hydraulic testing was completed in most monitoring wells with results varying from approximately 1 x 10-4 to 4 x 10-7 m/s. The porous media aquifers are believed to be the primary zones of concern in this area.

Groundwater zinc concentrations range from a low of approximately 0.1mg/L at locations close to the eastern extent of the S-cluster area, to a high of 277 mg/L in the area of the pre-mining creek alignment. Surveys of the NFRC indicate discharge increased by 0.146 m³/s (9%) in reaches passing through the S-cluster area. Based on these data, loading estimates to the NFRC indicate that contaminated groundwater in the S-cluster area is discharging to the NFRC. Incremental zinc load in the NFRC as it passes through the S-cluster area is estimated at approximately 0.4 to 0.9 tonnes/yr under current conditions. Based on observed groundwater concentrations, zinc load could reach a maximum of 14 tonnes/yr.

An adaptive management plan approach consisting of a multi-phase seepage interception system is recommended for the S-cluster area, focused initially on groundwater with high contaminant concentrations. The initial system would be composed of a cut-off wall and permeable trench with pumping wells, all located along the alignment of the 2005 drilling program. An extensive monitoring system with both groundwater and surface water components, as well as specific contingency remedial actions, would be implemented to provide a flexible, responsive approach to contaminant interception. Additional pumping wells could be installed down gradient of the cut-off wall, in the vicinity of the original S-cluster wells, if monitoring results indicated that this specific area remained of concern.

* * *

Report Title:2005 Seeapge Investigation at the S-cluster Area Below the Faro Waste Rock
Dump - Task 20e 2005/06Prepared by:SRK Consulting Project 1CD003.073Date Submitted:November 8, 2006Number of Pages:61/138 (Body & Figures / Total report)Number of Appendices:4

Table of Contents

	Exe	cutive Summary	i
1	Intr	oduction and Scope of Work	. 1
2	Bac	kground	. 2
3	Fiel	d Investigation	3
Ŭ	31	Monitoring Well Drilling & Installation	3
	3.2	Geology	. 5
	0.2	3.2.1 Bedrock	. 0
		3.2.2 Overburden	7
	3.3	Monitoring Well Hydraulic Testing	. 7
	3.4	Stream Survey	. 9
	-	3.4.1 Methods	9
		3.4.2 Drivepoints	10
		3.4.3 Flow Survey Results	11
	3.5	Hydrogeologic Conceptual Model	13
		3.5.1 Hydrostratigraphy	13
		3.5.2 Groundwater Flow System	14
	3.6	Water Quality	16
		3.6.1 Historical Water Quality	16
		3.6.2 Current water Quality	18
4	Ass	sessment of Contaminant Sources & Loading	22
-	4 1	Contaminant Sources	22
	42	Contaminant Loading	 22
		4.2.1 Contaminant Loading in Groundwater	22
		4.2.2 Contaminant Loading to North Fork of Rose Creek	24
	4.3	Loading Scenarios	26
5	Cor	nceptual Design of Seepage Interception System	28
	5.1	Available Technologies	28
	5.2	Recommended Approach	29
		5.2.1 Initial SIS	30
		5.2.2 Initial Monitoring System	30
		5.2.3 Adaptive Management Program	31
	5.3	Further Work	34
6	Cor	nclusions & Recommendations	35
7	Rof	erences	37
	1761		

List of Tables

Table 1: NFRC/S-cluster Area Monitoring Well Summary	5
Table 2: Hydraulic Testing Summary	8
Table 3: NFRC Stream Survey Measurement Error	9
Table 4: NFRC Stream Survey Details	10
Table 5: NFRC Drivepoint Completion Summary	11
Table 6: NFRC Flow Survey Summary	11
Table 7: Drivepoint Measurements and Gradients	12
Table 8: NFRC Water Level Summary	15
Table 9: Groundwater Quality for May and September, 2005	19
Table 10: NFRC Water Quality and Discharge for August & December, 2005	20
Table 11: Estimated Groundwater Flux	23
Table 12: Estimated Sulphate and Zinc Loads in Groundwater	
Table 13: Calculated NFRC Loads	24
Table 14: Incremental Load for NFRC Reaches	25
Table 15: NFRC Loading Scenario Results	
Table 16: S-cluster Adaptive Management Plan Structure	32

List of Photographs

- Photograph 1: SRK05 SP4 Drill Core
- Photograph 2: Till Bedrock Contact at SRK05 SP6
- Photograph 3: Typical Drivepoint Installation

List of Figures

- Figure 1: S-Cluster Area Location Map
- Figure 2: Depth to Bedrock
- Figure 3: Cross-Section Location Map

Figure 4: Section A – A'

- Figure 5: Section B B'
- Figure 6: S-Cluster Historical Zinc and Sulphate Concentrations
- Figure 7: S-Cluster Historical pH, Alkalinity and Hardness
- Figure 8: P96-7 Historical Zinc and Sulphate Concentrations
- Figure 9: P96-7 Historical pH, Alkalinity and Hardness
- Figure 10: X2 Historical Zinc and Sulphate Concentrations
- Figure 11: X2 Historical pH, Alkalinity and Hardness
- Figure 12: Shallow Aquifer Sulphate Distribution
- Figure 13: Deep Aquifer Sulphate Distribution
- Figure 14: Shallow Aquifer Zinc Distribution
- Figure 15: Deep Aquifer Zinc Distribution
- Figure 16: Recommended SIS for S-cluster Area
- Figure 17: Schematic Cross-section of S-Cluster SIS

List of Appendices

- Appendix A: Drill Logs and Completion Diagrams
- Appendix B: Hydraulic Testing Analysis Sheets
- Appendix C: Laberge Stream Survey Memos
- Appendix D: Water Quality Analytical Results

1 Introduction and Scope of Work

This report presents results of the 2005/2006 hydrogeology program for the North Fork Rose Creek (NFRC) S-cluster area as part of Task 20e – Continued Seepage Investigations. Seepage from the Intermediate waste rock dump has been identified as a potential source of contamination to the North Fork Rose Creek. As a result, impacts and potential mitigation measures have been investigated. Figure 1 shows the location of the study area.

Task 20e includes investigations for four areas: the Emergency Tailings Area (ETA), Zone 2 Pit area, the S-cluster area, and the Grum area. The scope of work of this report covers the NFRC S-cluster component, the primary objectives of which are:

- Development of a hydrogeological model for the S-cluster area
- Delineation of the contaminant plume in the S-cluster area
- Assessment of contaminant loading to groundwater & surface water
- Development of a conceptual design for seepage interception

Initially, the final objective of this study was to update the conclusions of the 2004 field program described in: *Preliminary Seepage Collection Options – Faro and Grum Waste Rock Dumps* (*SRK, 2006*) and present a one-step collection option for the area. While reviewing the assessment of data collected during the 2005 program, consideration should be given to timing of other, more significant components of the overall mine closure plan (e.g. the ETA and tailings impoundments) and, subsequently, the concept of a phased collection system as a method to reduce uncertainty and improve long-term performance.

In the report, a description of methodologies and work completed during the 2005/06 field program are included in Section 2. Results of the field program and analysis of data collected are described in Section 3, including a hydrogeological conceptual model for flow. A description of contaminant sources as well as loading estimates to groundwater and the NFRC are presented in Section 4. Section 5 describes options for conceptual seepage collection systems.

2 Background

In July 2004, Robertson GeoConsultants, Inc. (RGC) presented a review of historical water quality data at the S-cluster area. This review indicated sulphate and zinc "breakthrough" times at the S-cluster observation wells in 1999 and 2003, respectively. RGC recommended additional field work to further assess contamination in the S-cluster area.

In August 2004, a short field program was completed in the S-cluster area consisting of limited drilling and monitoring well installation, hydraulic testing of the existing S-cluster monitoring wells, sampling for water quality and test pitting. A seismic survey was also conducted in this area. Details of this investigation can be found in the report: *Preliminary Seepage Collection Options-Faro and Grum Waste Rock Dumps (SRK, 2006)*.

Results of the 2004 program suggested that contaminant migration was dominated by a shallow pre-mining drainage that extended upgradient from the S-cluster area to under the footprint of the Intermediate waste rock dump. Water quality, measured at the S-cluster groundwater monitoring wells, was consistent with findings of the 2004 RGC water quality review, indicating that sulphate and zinc contamination from the waste rocks dumps was present. A conceptual seepage collection design was presented, consisting of a combination of groundwater and surface water collection elements. At the time this option was presented, significant uncertainty remained regarding the geologic and hydrogeologic conditions in this area.

As a result, recommendations in the 2004 report included:

- Additional drilling to constrain the spatial distribution of contamination
- Additional hydraulic testing to improve the groundwater collection system design
- Monitoring of contaminant loading to NFRC and installation of staff gauges to improve our understanding of stream-aquifer interaction

In August, 2005, SRK presented a proposal (*Task 20e proposal – Continued seepage investigations at Faro Mine*) for additional field work at multiple areas of the Anvil Range Mining Complex, including the S-cluster area. Additional field work was based on the recommendations presented in the 2004 report.

3 Field Investigation

The 2005 field program consisted of both groundwater and surface water investigations. Groundwater investigations included installation, testing and sampling of monitoring wells, plus the installation of shallow drivepoints along the banks of the NFRC. Surface water investigations included discharge surveys along the NFRC in the vicinity of the S-cluster on three occasions. Groundwater sampling was conducted once by Gartner Lee Limited (GLL) as part of the quarterly monitoring program, and surface water sampling was completed as part of two of the three stream surveys.

3.1 Monitoring Well Drilling & Installation

Monitoring wells were installed at six locations in the S-cluster area below the rock drain: SRK05-SP1 to SRK05-SP6 (Figure 1).

Monitoring wells were drilled by Sonic Drilling Services, a division of Boart Longyear of Alberta, using a Nodwell-mounted sonic drill. The sonic rig was equipped with a 4 x 6 system (4"/10cm core barrel and 6"/15cm casing) that allowed for continuous sampling in 3 meter runs (1 core barrel = 10ft; approximately 3 metres) by advancing the core barrel using ultra-sonic vibrations. Casing is advanced over the core barrel to below the bit to keep the hole open during barrel retrieval. Water is only used during casing advancement to prevent heave between barrel and casing. Water use was kept to the minimum required to advance casing.

Core is recovered in the drill tube and "extruded" into plastic bags, preserving most, if not all, of the natural stratigraphy. Plastic bags were laid out and the core samples logged as they were recovered. On some occasions, some or all of the core was lost from the core barrel or otherwise not recovered. Photograph 1 shows the core recovered at SRK05-SP4.

Photograph 1: SRK05-SP4 Drill Core (sonic drill in background). Core has been "split" to allow better characterisation

During drilling, drillhole water was recovered and electrical conductivity (EC) measured to provide preliminary field determination of the presence of contamination. In general, EC values of contaminated water in this area are greater than 1,000 μ S/cm, which are considered high relative to background levels (<500 μ S/cm).

Screen zones for each monitoring well were determined based on the stratigraphy encountered at each particular site and field-assessed water quality data. SRK05-SP-6, which was drilled predominantly in bedrock, was dry during construction.

A single monitoring well was installed in each borehole using 50 mm (2-inch) threaded PVC riser pipes and screens (#10 slot size). Filter sand was emplaced around the screen sections to a height of approximately 0.5 to 1.0m above the top of the sreen section. Bentonite chips were emplaced from the top of sand to ground surface and protective steel casings installed over all stick-ups.

Three of the six monitoring locations consist of "nested" shallow and deep monitoring wells, the monitoring wells of each "nest" completed in separate drillholes located within a couple of meters of each other (i.e., SRK05-SP1A & 1B, SRK05-SP3A & 3B and SRK05-SP4A & 4B).

Locations of the monitoring wells are shown on Figure 1. Table 1 summarises completion information for the new monitoring wells installed as part of this 2005 program, as well as information for the existing S-cluster monitoring wells. Field measurements of electrical conductivity (EC) for each screen zone are included.

2005 SRK Monitoring Wells	Easting	Northing	Total Depth (m)	Stick-up Elevation (m.a.s.l.)	Screen Interval (m.b.g.s.)	Field EC (mS/cm)	Purged Volume (L)	
SRK05-SP1A	584,727	6,912,901	19.2	1091.99	13.7 - 19.2	1.40	120	
SRK05-SP1B	584,726	6,912,901	12.3	1091.94	9 - 12.3	1.55	80	
SRK05-SP2	584,791	6,912,861	11.0	1086.70	7.9 - 11.0	0.36	160	
SRK05-SP3A	584,651	6,912,924	22.9	1088.50	17.4 - 21.9	0.88	220	
SRK05-SP3B	584,652	6,912,924	12.3	1088.41	8.3 - 11.4	1.15	120	
SRK05-SP4A	SRK05-SP4A 584,612		21.6	1087.27	16.5 - 21.0	0.80	200	
SRK05-SP4B	584,611	6,912,939	4.0	1087.44	0.6 - 3.5	7.94	180	
SRK05-SP5	584,576	6,912,956	14.0	1087.53	9.4 - 12.5	7.54	180	
SRK05-SP6	584,492	6,912,975	11.0	1097.73	3.1 - 11.0		dry	
S-cluster Monitoring Wells	Easting	Northing	Total Depth (m)	Stick-up Elevation (m.a.s.l.)	Screen Interval (m.b.g.s.)			
S1a	584 530	6 012 042	12.2	1085.43	9.2 - 12.2			
S1b	504,559	0,912,942	12.2	1085.27	1.3 - 4.3	n/a		
S2a	584 577	6 012 044	12.2	1086.03	9.2 - 12.2			
S2b		0,912,944	12.2	1086.30	3.7 - 6.7			
S3	584,585	6,912,918	5.6	1085.53	2.6 - 5.6			

Table 1: NFRC/S-cluster Area Monitoring Well Summary

Drill logs and completion diagrams for all boreholes are included in Appendix A.

3.2 Geology

3.2.1 Bedrock

Bedrock in the S-cluster area is comprised of the Mt Eye schist, and was described in the field as schist or phyllite. Weathered bedrock was characterised as brown to gray and damp, and was considered to be more easily drilled than unweathered bedrock. Iron precipitation on drill chips was frequently used an indicator of weathered bedrock. The thickness of the weathered bedrock varies from 0.6 to 1.5 metres along the studied transect.

Photograph 2 shows the contact between till and weathered bedrock at SRK05-SP6.

Photograph 2: Till-bedrock contact at SRK05-SP6

Figure 2 shows depth to bedrock for the S-cluster area.

Figure 3 is a map showing the location of cross-sections created for the site. Figures 4 and 5 show cross-sections through the S-cluster area with inferred stratigraphic units.

As seen on Figures 2 and 4, depth to bedrock in the 2005 drillholes and S-cluster drillholes is greatest at SRK05-SP4A and - SP3A, with depths to bedrock greater than 20 metres. Observed depth to bedrock is a minimum at SRK05-SP6, 3 metres, located closer to the toe of the waste rock dump and at higher ground elevation than SP4A and SP3A. Depth to bedrock increases further to the west at SRK04-2, where bedrock was not intersected at the total drillhole depth of 19.8 metres during the 2004 field program. Of note is the difference in bedrock elevation (listed in table on Figure 2) between S1A, S2A and SP5, as well as SP4A and SP3A. Bedrock elevation increases by approximately four metres from SP5 to S2A, which is located approximately 15 metres from SP5 in the down gradient direction. S1A, S2A and SP5 all have bedrock elevations eight metres or greater above those of SP4A and SP3A.

Comparison of depth to bedrock and ground elevation for each drillhole indicates that the bedrock surface in this area is undulating with significant variations between drillholes. A possible bedrock low may exist, trending along the alignment of the NFRC below the S-cluster area. A bedrock high extends south-eastwards towards the trough from the area of the western edge of the waste rock dump. Alternatively, bedrock may generally rise from the area of the 2005 SP wells towards the NFRC. Additional drilling near the NFRC would be required to better delineate the bedrock surface.

The seismic survey conducted in 2004 by Aurora Geophysics was completed along a transect close to the 2005 SP wells, but closer to the toe of the waste rock dump. At the time, there were no drillholes available to calibrate interpretations. Two of the 2005 drillholes are located close to the ends of the seismic profile line. Seismic data could be re-analysed using the currently available depth-to-bedrock data to provide improved definition of the bedrock surface.

3.2.2 Overburden

Drillcore indicates that the overburden material at the site generally consists of varying percentages of interbedded silt, sand and gravels, with trace to minor clay.

Coarse sands and gravels are generally located at greater depth, with the exception of a single location. At SRK05-SP4, approximately three metres of gravelly sand were identified relatively close to ground surface.

The sand and gravel units at greater depth are described as ranging from silty - gravelly fine to coarse sand to sandy-gravel with cobbles and trace silt. In general, it appears that the silt content in sandy intervals increases from east to west. The shallow layer of coarser materials in SRK05-SP4B is described as gravelly sand with silt and trace to minor clay. The shallow material is interpreted to represent fluvial deposits of limited lateral extent within the pre-mining drainage identified in earlier reports.

Separating the coarser sand to gravel-dominated units are finer-grained sandy-clayey silts to sandy-gravelly silts. Gravels ranged from angular to rounded and cobbles were identified in many of the drillholes. The finer-grained materials are generally interpreted as glacial till deposits.

The old drill logs of the existing S-cluster wells had indicated predominantly gravelly-sandy silt, interpreted as till. Relatively coarser materials had only been reported at the overburden-bedrock interface. In the drill logs for the deeper S-cluster wells (S2A and S1A) the interface of overburden and bedrock had generally been described as "weathered rock: some sand and gravel..." to "sand and gravel". No other sand and gravel units were identified. It is possible that relatively coarser grained materials are present on bedrock at these locations. In general, the 2005 drillholes show a larger percentage of sand and gravel materials in the overburden than the S-cluster wells.

3.3 Monitoring Well Hydraulic Testing

Hydraulic testing was completed in all 2005 monitoring wells with the exception of SRK05-SP-6, which was dry. The original S-cluster wells were also tested.

Tests were completed as standard slug tests or as "mini-pumping" tests. Standard slug tests were completed by "instantaneously" introducing a cylindrical slug (25mm x 1-1.5m/0.16-0.23 L) to the monitoring well and recording water level response. Mini-pumping tests were completed using a portable transfer pump with a suction line. Water was pumped for a period of time with discharge measured using a bucket and stopwatch. After the discharge period, the pump was shut off and recovery monitored. The suction line was fitted with a check-valve to keep water from flowing back into the monitoring well during shut-off. The recovery data from these mini pumping tests were interpreted using AquiferTest V4.0 by Waterloo Hydrogeologic. This software uses conversion of recovery data (Agarwal method) to allow the application of standard discharge analysis methods, such as Theis for confined aquifers and Hantush for leaky aquifers.

Water level data was collected by a combination of manual and automated methods. Solinst Leveloggers with resolution of 0.3cm were used for automated water level recording.

Results of hydraulic tests are listed in Table 2. Hydraulic test water level data and analysis sheets are included in Appendix B.

Note that no hydraulic testing was completed at SRK05-SP1A and -1B. In these bores, the depth to water was too great for the suction capacity of the available pump and no slug testing was carried out.

		Aquifer		2004 re- calculation		
Well ID	Test Type	Thickness (m)	Mini-pu	umping	Slug Testing	Slug Testing
			T (m²/s)	K (m/s)	K (m/s)	K (m/s)
SP1a	None	10.2		N	o Testing	
SP1b	None	3.3			oresting	
SP2	Mini-pumping	6.4	3.0x10 ⁻³	4.7 x10 ⁻⁴		
SP3a	Mini-pumping	13.7	1.2 x10 ⁻⁴	8.8 x10 ⁻⁶		
SP3b	Mini-pumping	3.2	5.0 x10 ⁻⁴	1.6 x10 ⁻⁴		
SP4a	Mini-pumping	6.1	4.0 x10 ⁻⁵	6.6 x10 ⁻⁶	-	
SP4b	Mini-pumping	3.5	1.1 x10 ⁻⁴	3.1 x10 ⁻⁵		
SP5	Mini-pumping	4.3	4.8 x10 ⁻⁴	1.1 x10 ⁻⁴		
SP6	None	7.9			Dry	
S1a	Mini-pumping	12.2	6.8 x10 ⁻⁴	5.6 x10 ⁻⁵	-	
S1b	Slug	4.5			3.9 x10⁻ ⁷	
S2a	Slug	12.2			1.5 x10 ⁻⁶	
S2b	Slug	7	-	-	2.4 x10 ⁻⁶	2.3 x10 ⁻⁶
S3	Slug	5.6			6.6 x10 ⁻⁶	6.8 x10 ⁻⁶

Table 2: Hydraulic Testing Summary

Slug testing was conducted on most of the original S-cluster wells. In the cases of S2b and S3, data from 2004 slug tests were re-interpreted with improved data filtering, suggested by reviewers of the 2004 Preliminary Seepage Investigations report, and are included in Table 2 for comparison. Data was interpreted using the same analytical methods as in 2004. At these two wells, hydraulic conductivity (K) values calculated from 2004 and 2005 test data are in very good agreement.

As expected, higher K values were generally observed in:

- shallow sand and gravel layers (e.g., SP3b and SP4b)
- areas of thicker sand and gravel sequences at greater depth (e.g., SP2)
- weathered bedrock (e.g., SP5)

Comparison of hydraulic conductivity values derived from mini-pumping vs. slug tests indicates slightly higher hydraulic conductivity values from mini-pumping tests. This may be a result of the geology of the screened zone, which for the S-cluster wells corresponds more closely to the inferred low permeability zones of the 2005 drillholes. Alternatively, differences in hydraulic conductivity values for mini-pumping tests may be a result of uncertainties in the estimation of aquifer thickness (required for back-calculation of K from T).

3.4 Stream Survey

3.4.1 Methods

Three stream surveys were conducted along the NFRC in the S-cluster area by Laberge Environmental Services (LES). River level and discharge (Q) measurements were completed at three to six locations for each survey. Monitoring stations in the North Fork of Rose Creek are shown on Figure 1 (marked with the affix "NFRC"). The four NFRC_SC-x locations were established specifically for this S-cluster area investigation. Two others, NFRC 20/21 and 22/23 were established as part of other investigations or routine monitoring programs. Station NFRC_22/23 corresponds with the routine water quality monitoring station X2.

Methodologies for stream surveys are included in the LES memoranda in Appendix C.

To assess measurement error, multiple measurements were made during each sampling event at a minimum of one station. Table 3 summarises measurement error for each flow survey.

Date	Repetition Measurements	Q Error Range (m ³ /s)	Assumed Q Error (m ³ /s)
July 7, 2005	NFRC 20/21 & 22/23	n/a	n/a
August 10, 2005	NFRC 22/23	0.051	0.051
December 19, 2005	NFRC SC-2 to SC-4	0.010 – 0.057	0.057

Table 3: NFRC Stream Survey Measurement Error

In cases where multiple flow measurements were taken at an individual station, reported discharge is taken as the average of measurements.

As part of the creek monitoring, water quality was assessed. Samples of creek water were taken for lab analysis from each station for two of the three sampling events. Additionally, surface water seeps along the river banks were measured for field conductivity using a hand-held conductivity meter. Locations of ponded surface water were labelled as "SCS" stations and are shown on Figure 1.

Details of each sampling event are listed in Table 4.

Date	NFRC SC-x Stations	NFRC SC-x Stations 22/23 Stations		Q (flow quantity) Discharge Measurement Type		Seep Conductivity
July 7, 2005	\checkmark	\checkmark	\checkmark	MF	-	\checkmark
August 10, 2005	\checkmark	\checkmark	\checkmark	MF	\checkmark	-
December 19, 2005	√ (No SC-1)	-	\checkmark	SD		_

Table 4: NFRC Stream Survey Details

*MF = Mechanical Flowmeter

*SD = Salt Dilution

3.4.2 Drivepoints

Four shallow drivepoints were installed along the north bank of the North Fork of Rose Creek, immediately down-gradient of the groundwater monitoring wells to improve understanding of stream-aquifer gradients. Drivepoint locations are shown on Figure 1. Drivepoints were constructed of prefabricated 6-inch x 1-inch (15 x 2.5cm) stainless-steel points with screened perforations (purchased from Solinst, Inc. of Ontario, Canada). The stainless-steel points were attached to 1-inch (2.5cm) carbon steel pipe and driven in using a post-driver. In areas where river velocity was high around the drivepoint, a section of PVC was put around the drivepoint to allow measurement of static river head at the drivepoint location. Photograph 3 shows a drivepoint installation in the Zone 2 pit area. The white teflon tubing protruding from the steel casing is sample tubing.

Photograph 3: Typical Drivepoint Installation

Drivepoint completion information are summarised in Table 5. Most drivepoints are angled due to intersecting boulders during installation. As a result, correction factors are required to convert depths to water to true vertical. Correction multipliers for each drivepoint are included in Table 5.

2005 SRK Drivepoint	Easting	Northing	Angle Correction Multiplier	Total Vertical Depth Below River Bottom (m)	Stick-up Elevation (m.a.s.l.)
SRK05-DP1	584,630	6,912,887	0.99	1.14	1083.97
SRK05-DP2	584,554	6,912,904	0.82	0.53	1082.55
SRK05-DP3	584,514	6,912,901	0.93	0.75	1081.89
SRK05-DP4	584,535	6,912,911	1.0	0.94	1082.19

Table 5: NFRC Drivepoint Completion Summary

Drivepoint SRK05-DP4 is a sampling drivepoint. Teflon tubing is directly attached to the stainless-steel drivepoint to allow extraction of water samples without contacting the carbon steel riser pipe (see example in Photograph 3).

3.4.3 Flow Survey Results

Discharge measurements from the three stream surveys are summarised in Table 6. Measurement station locations are shown on Figure 1.

Flow Station	Q (m³/s)							
Flow Station	July 7, 2005	August 10, 2005	December 19, 2005					
NFRC 20/21	1.421	1.114	n/a					
NFRC SC_1	1.627	1.656	n/a					
NFRC SC_2	1.447	1.346	0.385					
NFRC SC_3	1.553	1.496	0.505					
NFRC SC_4	1.540	1.510	0.553					
NFRC 22/23 (X2)	1.593	1.538	n/a					

 Table 6: NFRC Flow Survey Summary

Relative differences in discharge values between each reach provide an indication of the relative direction of water flux between the NFRC and the groundwater system.

Results from the July and August surveys indicate that discharge increases significantly from NFRC 20/21, located upstream of the rock drain, to NFRC SC-1, immediately upstream of the S-cluster area itself. In other words, the NFRC is a gaining stream in the general vicinity of the rock drain with groundwater discharge representing the most likely source (no significant surface inflows were reported along this reach). Note, however the large variations in streamflow gains between the two surveys. At other stations the two summer flow measurements agreed much better suggesting problems with flow measurements at NFRC 20/21 in one of those two surveys.

Between NFRC SC-1 and NFRC SC-2, discharge decreased for both the July and August surveys. In August, reported discharge values indicate a decrease of 310 L/s, or approximately 19% of the flow at NFRC SC-1.

Between NFRC SC-2 and NFRC 22/23, net discharge increases, though discharge values at NFRC 22/23 were not as high as those of NFRC SC-1.

The presence of gaining and losing reaches suggests that surface water and groundwater (at least shallow groundwater) are in good hydraulic connection along much of the length through the S-cluster area.

Comparison with gradients derived from shallow drivepoints located along the banks of the NFRC, shown in Table 7, provides additional insight into creek dynamics. The location of drivepoints is included on Figure 1.

Ι)	Vertical Wate	Depth to r (m)	Gradient		
Date	Drivepoint	GW	River	Differential	Direction	
9-Sep-05	DP3	1.04	1.02	0.02	gradient down	
9-Sep-05	DP2	1.25	0.81	0.44	gradient down	
9-Sep-05	DP1	0.69	0.64	0.05	gradient down	
13-Sep-05	DP3	1.03	1.01	0.02	gradient down	
13-Sep-05	DP2	1.20	0.80	0.39	gradient down	
13-Sep-05	DP1	0.66	0.65	0.00	gradient down	
15-Sep-05	DP3	1.05	1.04	0.01	gradient down	
15-Sep-05	DP2	1.21	0.84	0.37	gradient down	
15-Sep-05	DP1	0.66	0.66	-0.01	gradient up	
18-Sep-05	DP4	1.66	1.46	0.20	gradient down	

Table 7: Drivepoint Measurements and Gradients

Attempts to measure water levels in January 2006 were unsuccessful as the drivepoints were frozen.

All drivepoints are located within the reach between NFRC SC-2 and NFRC SC-3, which has a shown a net increase in stream discharge during the three monitoring surveys. The majority of drivepoint gradients, recorded only in September soon after installation, indicate downward gradients from the NFRC to the groundwater system.

The reason for the contradictory evidence is unclear, but may be related to the depth of the drivepoint screen sections. Screen sections are roughly 0.5 to 1 metre below the bed of the NFRC. If shallow groundwater flow is dominantly occurring within the near surface materials (e.g., macropores in organics), inflow to the creek may occur laterally, very close to the ground surface.

The change in river discharge observed between SC-1 and NFRC 22/23, during August, 2005, generally support the concept of a shallow, hyporheic flow system. A loss of approximately 310 L/s occurred from SC-1 to SC-2 during the August monitoring event. Approximately 62% (192 L/s) is gained back to the NFRC between SC-2 and SC-3. Another 17% (42 L/s) is gained between SC-3 and NFRC 22/23. It is feasible that the gains in lower reaches are just water returning to the creek that was lost in upper reaches.

3.5 Hydrogeologic Conceptual Model

3.5.1 Hydrostratigraphy

Based on the geology and results of hydraulic testing, four hydrostratigraphic units are defined for the S-cluster area:

- Unit 1: Shallow aquifer unit
- Unit 2: Low conductivity unit
- Unit 3: Deep aquifer unit
- Unit 4: Bedrock

Unit 1: The shallow aquifer unit is characterised by sand and gravel materials confined to a narrow band trending along the alignment of a pre-mining drainage feature. Hydraulic conductivity is approximately 3×10^{-5} m/s. The much higher water levels in this zone (Figure 4) suggest that this shallow aquifer is perched.

Unit 2: The low conductivity unit is defined as predominantly fine-grained materials and represents a confining layer for the shallow (perched) aquifer and the underlying, confined aquifer. The unit appears to be laterally continuous, though likely inter-fingers with coarser grain materials. Direct hydraulic conductivity data is not available for this unit. Grain size analyses completed on samples from surface exposures of these materials, taken from a test pitting program in 2004, suggest maximum hydraulic conductivity values in the range of 2×10^{-7} to 3×10^{-7} m/s.

Unit 3: The deep aquifer unit includes sand and gravel materials found at depth and/or overlying bedrock, as well as the weathered bedrock profile. Thickness varies across the site from <1 metre to approximately 10 metres. In some areas, such as SRK05-SP5 and –SP6, the deep aquifer unit may consist predominantly of weathered bedrock with only a minor component of unconsolidated material. Hydraulic conductivity ranges from 1×10^{-4} to 9×10^{-6} m/s.

Unit 4: The bedrock in the S-cluster area consists of schist of the Mt. Mye Formation. Bedrock is defined as a calcareous schist to calc-silicate. In the area of the S-cluster, bedrock has a phyllitic texture and has been called phyllite in the drill logs. No significant fractures or structures have been identified, but drilling generally did not continue far into bedrock and the drilling method precludes recovery of continuous core. Hydraulic testing was not carried out in this unit; however, the

hydraulic conductivity of the bedrock is expected to be orders of magnitude lower than the overlying aquifer units 1 and 3.

The distribution of aquifer units 1 and 3 varies across the site. Unit 1 appears to be confined to the pre-mining drainage. To the west of the S-cluster area, unit 3 is the only aquifer unit present and may, in isolated areas, get close to ground surface, depending on bedrock topography. To the east of the S-cluster area, closer to the rock drain, unit 3 increases in thickness and is dominated by sand and gravel deposits.

On the southeast facing slope northwest of the S-cluster, discontinuous (possibly relict) permafrost has been intersected in test pits and drillholes. In SRK05-SP5, ice lenses up to 2mm thickness were identified at depths up to 3.7 meters. Based on exposure, the permafrost may have cracks and fissures in the upper sections that act to increase permeability, but overall the permafrost is considered to be relatively impermeable compared to aquifer materials. Permafrost has only been identified at shallow depths in unit 2.

3.5.2 Groundwater Flow System

Measurements of water level in monitoring wells were taken on numerous occasions during the summer field program. Water levels were taken using a standard water level tape from a marked datum on each monitoring well stickup, if present, or from the top of the PVC monitoring well casing. Total depths of monitoring wells were measured with the water level tape in order to prevent confusion as to which monitoring wells were deep and which were shallow. Table 8 summarises water level data.

A complete set of water level data is not available on any specific date, but comparison of measurements on different dates indicates that water levels were not changing significantly.

	Date	25-Aug-05		12-Sep-05		13-Sep-05		14-Sep-05		15-Sep-05		18-Sep-05	
Drillhole	Datum Elevation	Depth to water	Water Elevation (m.a.s.l.)										
SRK05-SP-1A	1091.99	7.345	1084.64	7.344	1084.64	7.330	1084.66						
SRK05-SP-1B	1091.94	7.444	1084.50	7.445	1084.50								
SRK05-SP-2	1086.70	2.096	1084.61	2.099	1084.60								
SRK05-SP-3A	1088.50	4.725	1083.78			4.710	1083.79	4.665	1083.84				
SRK05-SP-3B	1088.41	4.015	1084.40			4.000	1084.41	3.959	1084.45				
SRK05-SP-4A	1087.27	4.075	1083.19					4.032	1083.23				
SRK05-SP-4B	1087.44	1.448	1086.00					1.446	1086.00				
SRK05-SP-5	1087.53	6.012	1081.52					5.962	1081.57	5.957	1081.57		
SRK05-SP-6	1097.73	dry											
SRK05-DP1	1083.97					0.665	1083.31			0.656	1083.31		
SRK05-DP2	1082.55					1.463	1081.09			1.207	1081.34		
SRK05-DP3	1081.89					1.100	1080.79			1.048	1080.84		
SRK05-DP4	1082.19											1.660	1080.53
S1A	1085.43							4.042	1081.39	3.587	1081.84		
S1B	1085.27									2.370	1082.90		
S2A	1086.03							2.775	1083.26	2.812	1083.22		
S2B	1086.30							2.662	1083.64	3.580	1083.58		
S3	1085.53									1.870	1083.66		

Table 8: NFRC Water Level Summary

Page 15

Interpretation of water table data is included on Figures 12 through 15, which also display water quality data and are discussed in Section 3.6.

The groundwater table at the S-cluster site generally mimics topography, suggesting flow from high elevations to relatively lower elevations. The NFRC alignment itself represents a local low elevation feature at the site and likely affects the overall shape of the water table.

Water level data is currently only available for the north side of the NFRC, between the NFRC and the Intermediate waste rock dump. As shown on Figures 12 and 13, both shallow and deep groundwater flow direction is towards the NFRC from the surrounding higher elevations. On the south side of the creek, where there is no available water level data, groundwater is also assumed to flow towards the creek.

Depth to bedrock will affect the overall groundwater flow direction in the deep aquifer system. Available bedrock depth data supports the concept of flow towards the NFRC on the north side of the creek, but the lack of bedrock depth data the south of the creek precludes an interpretation of groundwater flow in this area. Despite the lack of data to the south of the NFRC, topographic control on groundwater flow directions is a very common feature in mountainous environments and is considered reasonable for both the deep and shallow groundwater systems in this area.

Groundwater flow directions are suggested to be affected by shallow, hyporheic flow system near the NFRC itself. Discharge measurements suggest that the NFRC loses water to the shallow groundwater system in reaches immediately upgradient of the S-cluster wells, and gains water from the shallow groundwater system along reaches at the S-cluster wells and downgradient.

3.6 Water Quality

Groundwater and surface water were sampled as part of the 2005 field program. These data were compared with historical water quality in this area to improve understanding of trends.

3.6.1 Historical Water Quality

As part of the assessment of current and potential future contaminant loading in groundwater and the NFRC in the S-cluster area, records for long-term monitoring locations were updated. Historical data are available for the locations listed below.

Groundwater:

- S-cluster wells: S1A, S1B, S2A, S2B, S3 (Figures 6 and 7) Date of record – 1989 to present
- P96-7: located close the toe of the waste rock dump, upgradient from the S-cluster wells (Figures 8 and 9)
 Date of record – 1996 to present

Surface Water:

 X2: NFRC water quality monitoring station located where the NFRC crosses the main access road (Figures 10 and 11)
 Date of record – 1987 to present

Graphical representations of data for each location are included in the figures referred to for each record description. Figures include sulphate and zinc concentrations, as well as alkalinity and pH.

S-cluster

As shown on Figure 6, sulphate and zinc concentrations have shown increasing concentrations over time.

- Sulphate concentrations began to show a gradual increase since start of monitoring in 1989. Average breakthrough of the sulphate contamination occurred around 1999.
- Zinc shows a significant breakthrough in three of the five S-cluster monitoring between 2001 and 2003. Data from 2004 and 2005 suggest zinc concentrations may be levelling off.
- pH, alkalinity and hardness, shown on Figure 7, have remained relatively stable.

Concentrations of both sulphate and zinc are generally highest in S1A, S2A and S3. S1A and S2A are completed in weathered bedrock and overlying materials interpreted to be part of the deep aquifer system. S3, interpreted to be part of the shallow system, also shows higher relative concentrations and may indicate either connection between S3 and SRK05-SP4b or that the deep aquifer is thicker than believed based on available drill logs. Alternatively, upwelling groundwater from the deep to shallow aquifer systems in the vicinity of S3, may be the cause for higher the higher concentrations observed at S3.

Physical parameters for the S-cluster wells (pH, total alkalinity and hardness) are relatively stable for the length of record. pH is generally circum-neutral, tending to be slightly acidic. The pH has not fallen below a value of 5 over the course of record.

Of note at S1B and S2B, during the period May, 2002 to present, are apparent seasonal fluctuations, particularly evident in alkalinity and hardness values, suggestive of the influence of surface runoff or increased groundwater flow during the spring, freshet, period.

All drill logs for the S-cluster wells indicate a predominance of till.

P96-7

Sulphate and zinc concentrations are shown on Figure 8. Sulphate has shown a steady increase since monitoring began in 1996, from concentrations of approximately 500 mg/L in 1998 to close to 2,000 mg/L in 2005. Zinc concentrations have not shown the same trend. With the exception of a spike during 1997, zinc concentrations have generally remained close to 0.01-0.02 mg/L.

- Sulphate concentrations suggest the influence of seepage from the waste rock dumps, possibly indicating breakthrough in late 1998 to early 1999. Sulphate concentrations to do yet appear to be levelling.
- Zinc concentrations have remained relatively low, suggesting either attenuation of zinc upgradient from this monitoring location or that the zinc plume has not reached this area.
- pH, alkalinity and hardness have remained relatively stable for the period of record (Figure 9).

X2

Figures 10 and 11 present data for station X2, a NFRC monitoring station located downstream of the S-cluster monitoring wells. Trends for the NFRC do not show the same "breakthrough" as observed in the groundwater monitoring wells, but do provide insight into possible connection between the NFRC and underlying groundwater system.

- Sulphate (analysis changed from total sulphates to dissolved sulphates in 2002) shows annual variation, with highest concentrations in the fall and winter and lowest concentrations in the late spring.
- This annual sulphate trend suggests year-round loading with increased dilution during freshet conditions.
- Overall, sulphate concentrations suggest a slow increase over time.
- Total zinc concentrations do not suggest an increase over the period of record. The highest concentrations were recorded in 2000, prior to the significant zinc breakthrough at the S-cluster in 2001. Variation in total zinc concentrations may not indicate effects of groundwater, but the effects of particulates in surface waters.
- Dissolved zinc concentrations may suggest an overall increase in early 2002. Prior to 2002, zinc concentrations are typically recorded as "<0.01", presumably representing the limit of detection at the time. After 2002, dissolved zinc concentrations are typically greater than 0.01 mg/L.

3.6.2 Current Water Quality

Groundwater from the 2005 and original S-cluster monitoring wells was sampled by GLL on September 12, 2005, soon after the 2005 monitoring wells were installed. Samples were collected using standard GLL protocols.

Samples of NFRC waters for water quality analyses were obtained during the August and December flow surveys by LES. Samples were collected using standard field techniques, including field filtration and preservation for metal analyses. Samples were submitted to ALS Canada Ltd. in Vancouver for analysis, including: physical tests, major cations and anions, total metals and dissolved metals. Full analytical results from GLL for groundwater samples, and from ALS for surface water samples, are included in Appendix D.

Results

Summary results of September 2005 groundwater quality analyses are listed in Table 9. S-cluster results from May 2005 are included for comparison.

Monito	ring Well	S1A	S1B	S2A	S2B	S3	SP1A	SP1B	SP2	SP3A	SP3B	SP4A	SP4B	SP5
	Conductivity	n/a	n/a	n/a	n/a	n/a								
5/5/2005	SO4	4550	403	1860	1760	4610	Monitoring wells not installed at this time							
	Zn-D	113	0.067	127	8.65	158								
	Conductivity	5600	1430	5440	3660	5850	1130	1170	359	512	537	750	6190	5720
9/12/2005	SO4	4070	703	3910	2510	4360	383	309	45.4	245	261	158	4680	4170
	Zn-D	118	0.051	178	1.19	165	1.63	0.144	0.161	1.04	0.628	1.10	277	153

Table 9: Groundwater Quality for May and September, 2005

Sulphate and zinc levels, considered to be indicators of the level of contamination for this study, show significant variation both between shallow and deep aquifer and between individual wells. Sulphate and zinc levels show variations of up to two orders of magnitude:

- Sulphate varies from 45.4 mg/L at SP2 to 4680 mg/L at SP4b. Significant variation can be seen between shallow and deep monitoring locations (e.g. S1B and S1A, respectively) and between shallow monitoring locations, such as S1B and SP4b.
- Zinc varies from 0.051 mg/L in the shallow aquifer (at S1B) to 118 mg/L in the deeper aquifer unit (at S1A), located at the same position. Significant variation is also observed between monitoring wells of the same aquifer unit. Zinc concentration varies, from 0.051 mg/L at S1B to 277 mg/L at SP4b, both considered to be representative of the shallow aquifer.

The interpreted distribution of sulphate and zinc are shown on Figures 12 through 15.

- Figures 12 and 13 show sulphate distribution for the shallow and deep aquifer, respectively.
- Figures 14 and 15 show zinc distribution for the shallow and deep aquifer, respectively.

Based on the interpreted distribution of sulphate and zinc at the S-cluster area from the August 2005 sampling data, contamination in the shallow aquifer is considered to be relatively constrained when compared with the deeper aquifer. Contamination in the deeper aquifer, in particular sulphate, is relatively widespread and has likely travelled much further down gradient compared to zinc.

Contamination in the shallow aquifer is believed to be constrained to the pre-mining drainage alignment. Concentrations decreases rapidly away from this alignment. Hydraulic conductivities of shallow materials are also interpreted to decrease away from the alignment.

Contamination appears to be more dispersed in the deep aquifer unit, which is considered to be more broad an aquifer unit than the shallow system. Bedrock topography likely plays a role in the distribution of contaminants.

Table 10 summarises results of August and December sampling of the NFRC itself. Discharge values are included if available.

Station	Lab Conductivity (uS/cm)	SO4 (mg/L)	Zn-D (mg/L)	August Discharge (m ³ /s)	December Discharge* (m³/s)
NFRC 20/21 – August	n/a	n/a	n/a	1.114	
NFRC 20/21 – December	n/a	n/a	n/a	-	n/a
NFRC_SC-1 – August	180	10.8	0.0063	1.656	
NFRC_SC-1 – December	260	18.0	0.0111		n/a
NFRC_SC-2 – August	180	10.8	0.0079	1.346	
NFRC_SC-2 – December	259	18.3	0.0122		0.385
NFRC_SC-3 – August	184	12.7	0.0158	1.496	
NFRC_SC-3 – December	263	21.8	0.0566		0.505
NFRC_SC-4 – August	186	13.5	0.0168	1.510	
NFRC_SC-4 – December	271	25.4	0.0610		0.553
NFRC 22/23 (X2) – August	185	15.1	0.018	1.538	
NFRC 22/23 (X2) – December	n/a	n/a	n/a		n/a

 Table 10:
 NFRC Water Quality and Discharge for August & December, 2005

*December discharge values calculated as average of repeat measurements

In the NFRC, sulphate and zinc concentrations generally increase in a downstream direction through the S-cluster area. Between stations NFRC SC-1 and SC-4, sulphate increased by approximately 40% in both August and December. Between the same stations, zinc increased by approximately 166% in August and 450% in December. Two observations can be made:

- Concentrations vary over time
- The relative increase in concentrations through the S-cluster area is greater for zinc than sulphate

Review of the historic record of X2, located downstream of the S-cluster area (Figures 10 and 11), suggests seasonal variation in concentrations in the NFRC. Seasonal variation is much more regular in sulphate concentrations than zinc concentrations, but, in general, both zinc and sulphate concentrations in the NFRC are higher during baseflow periods (winter to early spring), than other times of the year. This suggests that the observed loads include significant contributions from groundwater or re-entry of hyporheic flow, supporting the results of the LES discharge surveys. Loading calculations (following section) will show that this load cannot all be originating from re-entry of NFRC water lost upstream of the S-cluster, but must have a component of external groundwater input.

The August and December data indicate that sulphate and zinc concentrations in the NFRC increase by differing amounts. Zinc concentrations increased three to ten times greater than sulphate concentrations between NFRC SC-1 and SC-4. This may be a result of the distribution of contaminants.

As shown in Figures 12 through 15 (concentration contour maps), the sulphate "plume" is interpreted to have moved further down gradient than the zinc "plume". This interpretation is consistent with historical trends of groundwater quality in the S cluster wells which indicate an earlier breakthrough of sulphate compared to zinc. Sulphate concentrations in groundwater, where it discharges to the creek, may have become relatively "stable" over time in terms of total potential load to the creek.

Zinc concentrations at the S-cluster have not yet "plateaued" as observed for sulphate. While zinc concentrations, in general, do appear to be stabilising, this trend has only been apparent within the past couple of years. At this time, the mechanisms controlling these variable concentrations are uncertain.

4 Assessment of Contaminant Sources & Loading

4.1 Contaminant Sources

The primary contaminant sources to the S-cluster area are the Main East and Intermediate waste dumps (ME and ID WRDs, respectively). In particular, the sulphide cells associated with each dump are expected to be a source of significant metals contamination. In addition to sulphide cells, observations of exposed sulphide and "free-dumped" sulphide materials on the slopes of the Intermediate dump may add to the contaminant load. For additional details regarding the composition of individual WRDs and the potential loads, readers are directed to the ICAP Report (RGC, 1996). A review of potential loadings to the S-clsuter area is currently in progress as part of the overall refinement of the water and load balance for the entire mine site (SRK, in progress).

4.2 Contaminant Loading

4.2.1 Contaminant Loading in Groundwater

Sulphate and zinc loads in groundwater in the S-cluster area were determined based on available geology and hydrogeology data, using water quality data from the September sampling event.

Groundwater flux values were determined based on the current understanding of the area hydrogeology. Flux values were calculated separately for the shallow and deep aquifers along the section defined by the new SP series of wells. In addition, for the deep aquifer separate flux values were calculated for areas of high and low contaminant concentrations. The separation between these areas was defined as the approximate location between monitoring wells where concentrations decreased significantly (e.g. between SRK05-SP-5 and –SP-4A where zinc concentration decreases from 153 mg/L to 1.10 mg/L).

Flux calculations were based on the following information:

- Cross-sectional area along the section line as determined from average aquifer thickness and width (Figure 4)
- Average hydraulic conductivity values for each aquifer unit based on results from the 2004 and 2005 hydraulic testing (Table 2).
- Hydraulic gradients estimated along a straight line extending from the line of the main cross-section (Figure 4) to the NFRC along the trend of the maximum observed concentrations.

Table 11 summarises groundwater flux for the shallow and deep aquifers. Flux for the deep aquifer high concentration and low concentration zones are shown separately.

	Average Area (m2)	Gradient	Min K (m/s)	Ave K (m/s)	Max K (m/s)	Min Flux (L/s)	Ave Flux (L/s)	Max Flux (L/s)
Shallow Aquifer	75	0.05	1.8E-6	1.9E-5	1.1E-4	6.6E-3	0.07	0.41
Deep Aquifer – high concentration	90	0.03	1.8E-5	1.8E-4	6.8E-4	4.9E-2	0.49	1.8
Deep Aquifer – low concentration	595	0.01	4.0E-5	2.9D-4	3.0E-3	2.4E-1	1.7	1.8
TOTAL	760	-	-	-	-	0.30	2.26	4.0

Table 11: Estimated Groundwater Flux

K = Hydraulic Conductivity

Based on these calculations, total flux from the deep aquifer is more than one order of magnitude greater than flux from the shallow aquifer.

Estimates of solute loads in groundwater were determined using the flux values presented in Table 11 and transmissivity-weighted concentration data from the August, 2005 sampling event. The use of transmissivity-weighted average concentrations gives a greater weight to monitoring bores with higher groundwater flow and therefore provides more representative average concentrations for loading calculations. Maximum and minimum loading values were calculated using the maximum and minimum concentration and flux values. Table 12 summarises the results.

	Observed S	O ₄ Concentra	SO ₄ Load (tonnes/yr)			
SO₄	High	T-wtd Average*	Low	High	T-wtd Average*	Low
Shallow Aquifer	4,680	4,346	703	61	9	0.1
Deep Aquifer – high concentration	4,170	4,108	3,910	240	62	6
Deep Aquifer – low concentration	383	83	45	210	5	0.3
Total Loads					76	6.4
	Observed Zn Concentrations (mg/L) Zn Load (tor					s/yr)
Zn	High	T-wtd Average*	Low	High	T-wtd Average*	Low
Shallow Aquifer	277	111	0.051	3.5	0.2	1x10 ⁻⁵
Deep Aquifer – high concentration	178	133	118	10	2.0	0.18
Deep Aquifer – low concentration	1.63	0.264	0.144	0.9	0.01	1x10 ⁻³
Total Loads					2.2	~0.18

Table 12: Estimated Sulphate and Zinc Loads in Groundwater

*T-wtd Average = Transmissivity-weighted average

Based on these analyses, the average annual sulphate loading is estimated to be 76 tonnes/year, with a possible maximum of 511 tonnes/year. Average annual zinc loading is 2.2 tonnes/year with a possible maximum of 14.4 tonnes/yr. According to these loading calculations, the highly

contaminated portion of the deep aquifer unit represents the large majority of total contaminant loading in this area (i.e. 81% and 91% of the total sulphate and zinc loading, respectively).

4.2.2 Contaminant Loading to North Fork of Rose Creek

Sulphate and zinc loading to the NFRC was determined for September and December, 2005. Table 13 lists flows, concentrations and calculated sulphate and zinc loads at each monitoring station for the August and December sampling events. Note that the solute loads listed in Table 13 represent total, cumulative loads calculated for each monitoring point. Table 14 lists the incremental sulphate and zinc load for each reach of the monitored NFRC length.

Flow Station	Q (m³/s)	Change from Upstream Station (m ³ /s)	SO4-D (mg/L)	Cumulative SO4 Load (tonnes/yr)	Zn-D (mg/L)	Cumulative Zn Load (tonnes/yr)
NFRC SC-1 – August	1.656	0.542*	10.8	564	0.0063	0.31
NFRC SC-1 – December	n/a	n/a	18.0	n/a	0.0111	n/a
NFRC SC-2 - August	1.346	-0.310	10.8	459	0.0079	0.35
NFRC SC-2 - December	0.385	n/a	18.3	222	0.0122	0.15
NFRC SC-3 - August	1.496	0.150	12.7	600	0.0158	0.76
NFRC SC-3 - December	0.505	0.120	21.8	347	0.0566	0.90
NFRC SC-4 - August	1.510	0.014	13.5	643	0.0168	0.79
NFRC SC-4 - December	0.553	0.048	25.4	443	0.0610	1.06
NFRC 22/23 (X2) - August	1.538	0.018	15.1	733	0.018	0.88
NFRC 22/23 (X2) - December	n/a	n/a	n/a	n/a	n/a	n/a

Table 13: Calculated NFRC Loads

Change at NFRC SC-1 calculated from NFRC 20/21 located upstream of the rock drain

All August NFRC water quality data from August 10 sampling event, with exception of X2, which is from August 22

Zn-D = Dissolved zinc

 SO_4 -D = Dissolved sulphate

Flow Station	Discharge (m³/s)	Change from Upstream Station (m ³ /s)	Incremental SO4 Load (tonnes/yr)	Incremental Zn Load (tonnes/yr)	
NFRC SC_1 – August	1.656	0.542*	n/a	n/a	
NFRC SC_1 – December	n/a	n/a	n/a	n/a	
NFRC SC_2 - August	1.346	-0.310	-105	0.04	
NFRC SC_2 - December	0.385	n/a	n/a	n/a	
NFRC SC_3 - August	1.496	0.150	141	0.41	
NFRC SC_3 - December	0.505	0.120	125	0.75	
NFRC SC_4 - August	1.510	0.014	43	0.03	
NFRC SC_4 - December	0.553	0.048	96	0.16	
NFRC 22/23 (X2) - August	1.538	0.018	90	0.09	
NFRC 22/23 (X2) - December	n/a	n/a	n/a	n/a	
Load increase SC-2 to SC-4 (A	184	0.44			
Load increase SC-2 to SC-4 (D	221	0.91			

Table 14: Incremental Load for NFRC Reaches

Based on the results shown in Tables 13 and 14, an increase in both sulphate and zinc load in the NFRC occurs along reaches passing through the S-cluster area. Discussion of variations in load through the S-cluster area will focus on the August monitoring event as there is a full data set. In December, a sample for station SC-1 could not be taken due to ice conditions, nor was data for station X2 available.

Between stations SC-1 and SC-4, representing the length of the NFRC passing through the direct S-cluster area, discharge decreases by 0.146 m³/s, or approximately 9%. Through this same reach, zinc load shows a net increase of 0.48 tonnes/yr (155%), while sulphate shows a net increase of 79 tonnes/yr (14%).

Between stations SC-1 and SC-2, NFRC discharge decreases by $0.310 \text{ m}^3/\text{s}$ (19%). In this reach, sulphate load decreased by 105 tonnes/yr (19%), while zinc load showed a marginal increase of 0.04 tonnes/year (13%).

Finally, between stations SC-2 and SC-4, in which NFRC discharge increases by $0.164 \text{ m}^3/\text{s}$ (12%), zinc load increased by 0.44 tonnes/yr (126%), while sulphate increased by 184 tonnes/yr (40%).

Comparison of the net change in sulphate and zinc load suggests variable influence of shallow hyporheic and groundwater discharge to the NFRC between different reaches on the loads themselves. The net decrease in sulphate load between SC-1 and SC-2 of 79 tonnes/yr is equivalent to 43% of the net increase observed between SC-2 and SC-4. This suggests that almost half of the total increase in sulphate load observed through downstream reaches of the S-cluster area may be reintroduction of NFRC waters lost in upstream reaches. By comparison, zinc load increases

through all reaches. Consequently, there is more confidence that the change in zinc load through the S-cluster is a result of groundwater discharge to the NFRC.

4.3 Loading Scenarios

Simple loading calculations were carried out to assess the possible contribution of contaminated groundwater to the observed increase in the NFRC load.

The four scenarios presented assume a single source of water (i.e. impacted groundwater from the S-cluster area) is mixing with the North Fork Rose Creek water. The following assumptions were made in the different scenarios:

- 1. Required concentrations to obtain observed loads based on the observed increase in creek discharge between SC-2 and SC-4 (164 L/s during the August monitoring event);
- 2. Required shallow groundwater concentrations to obtain observed creek load based on shallow groundwater flux alone (0.07 L/s);
- 3. Calculated creek concentrations assuming all estimated loading from the S-cluster area in reaching the creek (76 tonnes/yr sulphate and 2.2. tonnes/yr zinc);
- 4. The required flux of "unimpacted" groundwater combined with shallow groundwater flux (0.07 L/s) and concentration to obtain observed creek concentrations.

Table 15 summarises results of these scenarios. Bold numbers are assumed and represent model input.

Scenario	Description	Groundwater	Inferred Seepage Concentrations (mg/L)		
		Flux (L/S)	SO4	Zn	
1	Observed increase in discharge (August)	164	36	0.09	
2	Shallow seepage only	0.07	100,358	416	
3	Total seepage	2.29	3,053	12.6	
4	Shallow seepage	0.07	4,346	111	
	Plus unimpacted groundwater	67	100	0	

Table 15: NFRC Loading Scenario Results

Scenario 1 assumes that the observed increase in NFRC flux and load comes completely from groundwater flowing through the S-cluster area. This scenario indicates that this seepage would have to have an average concentration of 36 mg/L SO4 and 0.09 mg/L zinc.

Results of scenario 2 suggests that if the observed load in the NFRC was from shallow groundwater only, sulphate concentrations in seepage from the S cluster area would have to be significantly greater than observed, and seepage zinc concentrations approximately four times the amount of the transmissivity-weighted average (111 mg/L).

The results of scenario 3, representing a diluted combination of deep and shallow groundwater, indicate that observed combined concentrations in shallow and deep groundwater could lead to the observed creek concentrations.

Results of scenario 4 indicate that only 67 L/s of clean groundwater would be required to mix with S-cluster groundwater under observed concentrations to obtain observed creek concentrations.

The results of scenarios 3 and 4 also suggest that, if the interpreted sulphate concentration distribution for the deep aquifer shown in Figure 13 is reasonable, additional loading from the deep aquifer to the NFRC could be occurring downstream of the S-cluster.

In summary, assessment of the available data indicates that contaminant load in the NFRC increases in the area of the S-cluster, and is likely resulting from a combination of deep and shallow groundwater plus water lost upstream or entering the creek for the first time. While it is not possible to accurately define the exact source, there is a high level of confidence that deep and shallow groundwater must be both contributing to load in the NFRC at the S-cluster area.

Based on observed concentrations in the NFRC during the August and December monitoring events, and calculated maximum groundwater flux, annual loading estimates are provided:

Annual load based on current observed zinc load at NFRC SC-4:

0.8 – 1.0 tonnes/yr

Potential maximum annual zinc load at NFRC SC-4 based on maximum observed concentrations:

14 tonnes/yr

NOTE: These estimates generally coincide with values determined as part of the Faro Mine Water and Load Balance

5 Conceptual Design of Seepage Interception System

Based on the loading calculations presented in the previous section, contaminated groundwater from the S-cluster area currently discharges to the NFRC and likely exists in the groundwater system beneath and around the creek. Remedial actions will be required for the S-cluster area to prevent further contamination of the NFRC.

The primary source of contamination in the S-cluster area is the Intermediate Dump, which will not be removed as part of the mine closure, though options to reduce infiltration through the dump and, subsequently, load from the dump, are being considered. Consequently, collection systems to intercept the main flow of contaminated groundwater emanating from the dumps will be required for an indefinite period of time. This extended period of time will allow any capture system to be refined and upgraded in order to achieve the required capture efficiency.

An adaptive management plan is proposed for the design and implementation of the seepage interception system (SIS) that would ensure that the required capture efficiency is met with a high degree of confidence. The initial design will focus on the relatively well-defined area of high concentrations that currently dominates contaminant load to the NFRC. An extensive monitoring network would be implemented to assess the performance of the initial collection system. If required, the initial design would then be upgraded using contingency measures that are clearly defined in the adaptive management plan.

5.1 Available Technologies

Numerous types and configurations of groundwater interception systems are potentially available for the S-cluster SIS:

Pumping wells – The use of pumping wells is an extensively utilised approach to capture contaminated groundwater. Pumping wells are relatively quick to design and install, and can be adapted somewhat to different geologic conditions. A significant drawback to pumping wells is the inability to accurately predict the influence of geologic heterogeneity on capture zone distribution and, subsequently, the potential for contaminant by-pass.

Cut-off walls – Cut-off walls form a low-permeability, physical barrier to groundwater flow. Cutoff walls require significantly more construction than pumping wells. Cut-off walls can be constructed of slurry materials (e.g., mixtures of bentonite grout and soil) or sheet piles. Cut-off walls can be installed to significant depths (>20m) using either trenching or jet-grouting techniques, depending on local soil conditions. A pumping system is required to remove the blocked groundwater. **Shallow sumps and trenches** - In areas of shallow groundwater (within approximately 5 meters of ground surface), sumps or trenches can be used as passive collection systems. If soil material can be excavated to below the water table and designed with stable sidewalls, shallow groundwater will naturally seep into the excavation and can be collected by use of sump pumps or gravity drainage. Passive sump or trench systems are not practical for deeper groundwaters.

Permeable reactive barriers – Permeable reactive barriers (PRBs) have seen significant use in hydrocarbon-contaminated sites and at isolated mine sites for ARD seepage (e.g., Nickel Rim Mine, Ontario). PRBs are a passive technology that acts to treat water *in situ*, as it passes through a reactive media. PRBs are constructed by placing a high permeability medium within a trench. The trench cross-cuts the contaminated area, allowing groundwater to flow through the reactive medium, where the contaminants of concern are geochemically altered to allow precipitation or conversion to a more inert form. While use of a PRB negates the requirement for *ex situ* water treatment, appropriate design of both the reactive material and the system hydraulics requires significant field and laboratory investigation. Furthermore, the reactive material has a fixed lifetime, and the system likely has to be replaced with fresh reactive material, if required for long periods of time. Finally, significant care is required when installing the reactive material to ensure that the system hydraulics are not compromised (e.g., by-pass or pipe flow).

Stream isolation – In certain situations, where the environmental receptor at a contaminated site is a surface water course, it may be possible to physically remove the water course from the system. Removal or protection of the water course could be accomplished by lining a creek channel or re-aligning the water course to an area less susceptible to inflow from contaminated water. While significant construction activity is required, particularly if the water course has high flow rates, isolation or re-alignment of the stream provides more opportunity (space) for installation of other groundwater capture technologies while minimising the hydraulic effects due to surface water leakage.

5.2 Recommended Approach

The S-cluster SIS should utilise a combination of methods installed in phases. The use of a combination of methods is recommended due to two factors:

- 1. the heterogeneous nature of the overburden geology, and
- 2. the relatively broad distribution of contamination in the deep aquifer.

Due to these factors, the individual use of any of the collection methods described would not likely provide the required level of confidence for contaminant capture.

The initial installation phase would focus on the high concentration/high load zones. Additional system upgrades would be implemented in other areas, as required. These contingency measures may, for example, be required in lower concentration/load zones, not initially targeted.

Contingency remedial phases would be implemented in a timely manner according to a well-defined adaptive management plan integrated with an extensive monitoring network.

5.2.1 Initial SIS

The initial high concentration zone SIS would consist of a cut-off wall and permeable pumping trench running parallel to the creek, close to the alignment of the 2005 SP monitoring wells. Figure 16 illustrates the layout of the proposed system and Figure 17 illustrates the pumping trench and cut-off wall installations.

The cut-off wall, located downgradient of the permeable trench, would provide a physical barrier to groundwater flow and improve hydraulics of the pumping system. The permeable trench would be comprised of a high permeability material, such as gravel, installed using the same equipment as that for the cut-off wall. The permeable trench would cross all lithologic zones, providing improved hydraulic connection and minimizing the required number of pumping wells. The cut-off wall and trench would be keyed into weathered bedrock along the entire length.

Both the cut-off wall and permeable trench would be constructed using conventional excavation technologies. The cut-off wall would be constructed using a bentonite grout – soil slurry (or equivalent) of low permeability relative to the surrounding overburden materials. The permeable trench would be constructed using a bio-degradable slurry material, such as Revert mud. Multiple pumping wells would be installed in the permeable materials. The Revert mud decomposes to a higher viscosity fluid over time and can be pumped out of the highly permeable material.

The proposed alignment will not capture contaminated groundwater already present down gradient of the cut-off wall. This residual contamination would be addressed by a fence of temporary pumping wells installed into weathered bedrock of the deep aquifer down gradient of the cut-off wall and pumping trench. If necessary, a shallow trench could be installed in this area to capture shallow groundwater. This secondary SIS would only be operated for a limited period of time, i.e. until the residual contamination in this area downgradient of the primary SIS system has been cleaned up.

Water from all pumping wells would be directed to a pipeline leading to a water treatment plant.

The proposed alignment takes advantage of the relatively high level of confidence in geologic conditions from the SP wells and would overlap with the known high concentration zones in the shallow and deep aquifers. The SIS ends extend somewhat into areas of interpreted lower concentrations to provide a margin of safety for capturing the high concentration plume.

5.2.2 Initial Monitoring System

The initial monitoring network would have components installed along the entire length of the NFRC in the S-cluster area. The layout of a preliminary monitoring system is shown on Figure 16.
Monitoring wells would be installed within the permeable trench, downgradient of the cut-off wall/permeable trench alignment, alongside the entire length of the NFRC in the S-cluster area, and along the hillside southwest of the S-cluster area. All monitoring wells will be screened in the overburden soils and weathered bedrock and, at selected locations in the underlying competent bedrock. The majority of monitoring wells focus on areas of known contamination. Monitoring wells located along the southwest hillside would allow early detection of a potential breakthrough of contaminated seepage from the southwest edge of the waste rock dump.

Five surface water discharge and water quality monitoring stations would be located along the NFRC itself, extending from the rock drain to the current X2 water quality monitoring station.

The combined data from the monitoring system would be assessed for three components:

- 1. Groundwater gradients
- 2. Groundwater concentrations
- 3. Creek load

Groundwater levels in targeted monitoring wells both within the pumping trench and around its perimeter would be monitored to assess the hydraulic performance of the capture system, namely, that the induced gradient is towards the trench. Water levels would be monitored continuously using dataloggers to provide detailed information on system performance, at least during initial stages of SIS activation.

Monitoring of groundwater concentrations and creek load would be conducted on a quarterly basis, including baseflow conditions in the winter and high flow conditions during the spring freshet. System performance would be assessed by comparing groundwater concentrations with pre-system-installation levels, and monitoring any changes in contaminant loading in the creek.

Intercepted groundwater would also be monitored. Flow meters would be installed on pumping wells and, combined with samples of pumped water, would be used to determine total load captured.

5.2.3 Adaptive Management Program

Four management zones would be used to identify potential system failures and delineate areas requiring contingency remedial measures (shown on Figure 16):

- 1. Upstream Zone Reach 1
- 2. Capture Zone Reach 2
- 3. Downstream Zone Reach 3
- 4. NFRC End Zone Reach 4

Data collected from the monitoring system components in each zone would be used to determine if triggers had been reached and an investigation of causes was required. Triggers would include hydraulic performance of the active collection system, contaminant concentrations in monitoring wells and/or contaminant load in the NFRC itself. Response actions would be defined for each failure type in an adaptive management plan, including contingency remedial measures.

Table 16 summarises a conceptual adaptive management plan for the S-cluster area.

Management	_	Monitoring			Response	
Zone	Component	Location	Trigger	Level 1	Level 2	Level 3
Unstroom Zono	Groundwater	SP1, SP2 and along NFRC	Groundwater concentrations	Additional Pumping	Extension of initial SIS	
opstream zone	Creek	Reach 1	Creek Load	Wells		
	Crewedurates	Monitoring wells downgradient of wall,	Hydraulic gradient	Investigate and repair pumping system	Additional pumping wells in permeable trench	
Capture Zone	Groundwater	at ends of wall and along NFRC	Groundwater concentrations	Underflow: grout curtain in bedrock	Additional pumping wells immediately	
	Creek	Reach 2	Creek load	Edge bypass: pumping wells at edges	off wall; extension of initial SIS if required	NFRC Isolation and downstream collection system components
Downstream	Groundwater	Monitoring wells along NFRC and southwest hillside	Groundwater concentrations	Additional Pumping	Extension of initial SIS or installation of	
Zone	Creek	Reach 3	Creek load	Wells	additional pumping wells	
End Zone	Groundwater	Monitoring wells along NFRC	Groundwater concentrations	Additional Pumping	Installation of second	
	Creek	Reach 4 (X2)	Creek load	Wells	pumping wells	

Three levels of response action are defined, 1 to 3, the utility of which are two-fold. First, increasing levels of response action recognizes the potentially time-sensitive nature of a response: a Level 1 response can be achieved relatively quickly; Level 3 responses require a more significant lead time. Secondly, if the initial phase is itself not adequate, the increasing response levels provide an iterative approach to attaining overall objectives.

The following paragraphs briefly summarize the proposed monitoring components and response actions for each management zone.

Upstream Zone – NFRC monitoring stations N1 and N2 (Reach 1) and up gradient groundwater monitoring stations. Triggers would include groundwater concentrations and NFRC load.

If an observed increase in groundwater concentrations was believed to be limited to a specific area ("hot spot"), a Level 1 response would be implemented involving installation of one or more pumping wells in this area. Additional monitoring wells would be installed in the area to assess performance of the pumping well(s). If the increase in groundwater concentrations was widespread, or pumping wells could not adequately capture the affected areas, a Level 2 response could be initiated, involving extension of the full SIS system, i.e. cut-off wall and pumping trench system. Level 3, isolation of the NFRC, would be implemented if the initial contingency measures were not successful or if capture with the appropriate confidence could not be accomplished.

Capture Zone –NFRC monitoring stations N2 and N3 (Reach 2) and upgradient groundwater monitoring stations both around and in the permeable trench. Triggers would include groundwater concentrations, NFRC load, and water levels close to the cut-off wall and permeable trench.

If the increase in groundwater concentrations was believed to be related to incomplete capture by the pumping trench due to underflow or edge by-pass, Level 1 response would be implemented: in the case of underflow, a grout curtain would be installed in bedrock under the trench; to stop edge by-pass, pumping wells would be installed at the edges of the cut-off wall. If groundwater concentrations down gradient of the active system continued to increase, Level 2 would be initiated, involving installation of additional pumping wells down gradient of the cut-off wall or extension of the initial SIS if the contaminant plume was interpreted to have spread laterally. Level 3, isolation of the NFRC, would be implemented if initial contingency measures were not successful or if capture with the appropriate confidence could not be accomplished.

If hydraulic gradients in the area of the SIS were determined to indicate poor performance of the SIS, Level 1 would be implemented: pumping wells in the trench would be assessed for operational issues (e.g. pump failure, loss of well efficiency etc). If necessary, Level 2 would be implemented: additional pumping wells would be installed in the trench to improve gradient control.

Downstream Zone – NFRC monitoring stations N3 and N4 (Reach 3) and groundwater monitoring wells up gradient and along the NFRC. Triggers would include groundwater concentrations and NFRC load.

If the increase in groundwater concentrations was believed to be confined to a small area, a Level 1 response would be implemented involving installation of one or more pumping wells in this area. Additional monitoring wells would be installed in the area to assess performance of the pumping well(s). If the increase in groundwater concentrations was widespread or pumping wells could not adequately capture affected areas, Level 2 could be initiated, involving either an extension of the initial SIS cut-off wall and pumping trench, or installation of a second cut-off wall and pumping trench system. Level 3, isolation of the NFRC, would be implemented if initial contingency measures were not successful or if capture with the appropriate confidence could not be accomplished.

End Zone – NFRC monitoring stations N4 and X2 (Reach 4) and groundwater monitoring wells along the NFRC. Triggers would include groundwater concentrations and NFRC load.

If the increase in groundwater concentrations was believed to be limited, a Level 1 response would be implemented involving installation of one or more pumping wells in the "hot" area. Additional monitoring wells could be installed in the area to assess performance of the pumping well(s). If the increase in groundwater concentrations was widespread or pumping wells could not adequately capture affected areas, Level 2 could be initiated, involving installation of a second SIS, or cut-off wall and stand-alone pumping wells. Level 3, isolation of the NFRC, would be implemented if initial contingency measures were not successful or if the contaminant load to the NFRC remained above project requirements.

5.3 Further Work

Additional design work could be completed on two issues regarding the S-cluster area SIS:

- 1. Location Variants
- 2. Method Variants

Alignment of the SIS along the SP well alignment could lead to continued, though decreased, loading to NFRC for an interim period, due to the residual contamination present down gradient of the cut-off wall and permeable trench. While temporary pumping wells are proposed to address this issue, an alternative location for the SIS closer to the NFRC would reduce the size of the residual contamination zone and therefore the potential for short to medium-term discharge of contaminated groundwater to the NFRC. At the present time, there is insufficient data available on the hydrostratigraphy close to the NFRC, particularly depth to bedrock, to allow a defensible design in this location. Additional drilling would be required before a SIS system along this alignment could be designed.

Alternative methods exist for installation of the cut-off wall and permeable trench, as well as technology variants for other components of the SIS. A cost analysis of these different options should be completed prior to final design with respect to both system requirements and capture confidence.

6 Conclusions & Recommendations

An assessment of groundwater flow and groundwater quality conditions, combined with loading estimates to the NFRC, indicate that contaminated groundwater in the S-cluster area is discharging to the NFRC. Drilling indicates that highly impacted groundwater occurs in both a shallow (perched) aquifer unit and a deep aquifer unit but is limited to a well-defined zone of limited lateral extent (<100m). Loading calculations suggest that highly impacted groundwater from both aquifer units is currently discharging into the NFRC. Based on observed concentrations, zinc load to the NFRC could reach a maximum of approximately 14 tonnes/yr under current conditions. Therefore, a seepage interception system (SIS) will be required in the S-cluster area, probably for an indefinite period of time. The anticipated long time frame should be incorporated into the overall SIS approach.

A multi-phase SIS is recommended for the S-cluster area, focused initially on groundwater with high contaminant concentrations. The initial system would be composed of a cut-off wall and permeable trench with pumping wells both in the trench and down gradient of the cut-off wall. An extensive monitoring system and an adaptive management plan, including specific contingency remedial actions, would be implemented to provide a flexible, responsive approach to contaminant interception.

Recommendations for future work include the following:

- 1. Integration of S-cluster area loading calculations with the site-wide water and load balance.
- 2. Installation of the initial phase SIS as soon as reasonably possible to stop the current discharge to the NFRC and maximise the amount of time for initial system performance monitoring and optimisation,
- 3. Continue detailed groundwater monitoring in the S-cluster area to evaluate time trends in contaminant concentrations and to develop a baseline for future system performance monitoring:
 - i. Monthly water level monitoring in all existing and newly installed monitoring wells and drive points in the area; and
 - ii. Quarterly sampling of all existing and newly installed monitoring wells and drive points in the area for water quality analysis.
- 4. Continue detailed surface water monitoring along the NFRC, including drivepoints, to improve understanding of the interaction between the local groundwater and stream water, including loading to the NFRC:
 - i. Monthly water level readings at all existing streamflow stations and drive points in the area; and
 - ii. Quarterly monitoring of stream flows and stream water quality at the existing weirs (X2) and newly installed stream monitoring stations (S1 to S4) in the NFRC.

This report, **"2005 Seepage Investigation at the S-cluster Area Below the Faro Waste Rock Dump – 2005/06 Task 20e"**, has been prepared by SRK Consulting (Canada) Inc.

Dan Mackie, M.Sc.

Dr. Christoph Wels, Ph. D., M.Sc.

Reviewed by

Cam Scott, P.Eng.

7 References

SRK, 2006 Preliminary Seepage Collection Options – Faro and Grum Waste Rock Dumps; prepared for Deloitte and Touche, Interim Receiver for Anvil Range Mining.

Figures

File Refi FARD SITE PLAN-updated-DM.dw

B'

С

<u>8a. CROSS-SECTION B-B'</u>

File Refi faro Site plan-updated-dm.d

В

C'

PROJECT NO.	DATE	APPROVED	FIGURE
1CD003.053	Mar. 2006	DM	5

Appendix A Drill Logs and Completion Diagrams

2005 SP Monitoring Wells

		SR	KC	onsulting	PROJECT: LOCATION: NFRC	- Nor	th Fork R	ose C	reek		BOREF PAGE:	IOLE	E: SF O	२K05 F :	-SP1 2	IA
0	V		Engl	ineers and Scientists	FILE No: FARO	(1C	D003.73)		0005		DRILL	TYPI	E:			
	V				BORING DATE: 20	05-08	3-12 I ITH·	0	2005-	08-12	DRILL: CASIN	G٠				
	B	OREH	OLI	E LOG	COORDINATES: (69129	01.00 N	5847	727.00	E DA	TUM:	0.				
SAN		CONDITION	TYPE	OF SAMPLER	LABOR	ATOF		N SIT	U TES	STS	K. The sum of a subject with the					
	_ R∉ ØUr	emoulded ndisturbed	GS Gr	amond core barrei ab sample	D E	Jonson Bulk de	ensity (kg	/m3)			Kf Thermal conductivity	/ Fro:	rozen zen (V	(vv / 1 V / m'	°C))
	Lo	ost	SS Sp	lit spoon	Dr S	Specifi	c gravity		. ,		PS Particle size analysis	3				
				STRATIGE		Satura	ted hydra		PLES	cm/s)		Τ_				
		DETAILS	ε							-		w	ATE	R CC	ONT	ENT
1 - ft	- m	& WATER LEVEL - m	- u			5	D K	NO	۲ %	D	LABORATORY	;	and L	-IMI	ГS ('	%)
EPTF	PTH		PTH			MBC	NBE MBE	EQ	VEF	r RG	and					
B	DE			DESCRI	PTION	sγ	Υ ^T	CON	ВСС	Z			w _P ⊢	₩ —⊙	V	[₩] ∟
			1091.99						œ			20	0 40	60 8	0 10	0120
-	-	000 000 000 000 000 00 00 00 00 00 000 000 000 000	0.00	Sandy, clayey silt, mir	nor gravel.		1		-							
-	_	DA . DA . DA . DA D. 08 0 AV D. 08 0 AV . DA . D. D. DA . DA														
-	- 1		-													
-	-		-													
- 5	-		- -													
-	2		, ,												\square	_
-	_						2									
-	-															
- 10	- 3														\vdash	
-	-															
-	-															
-	- 4		1087.99 4.00	Boulder								\vdash		+	\vdash	
-	-						3									
15 -	-		1087.39 4.60	Sandy, clayey silt, mi	nor gravel.											
-	_ 5		, ,			•						\vdash		+	\vdash	
-	-						4									
-	_					ف ا										
- - 20	_ 6		, ,				5 6					\vdash		+		_
-	_					i e										
	-		-													
	- 7	DA DA DA DA DA DADAD DADAD DA DADADAD DA DA DA DA										H		+	\vdash	+
-	-	0.07 007.00.00 000 .D0 .D0 .D0 .D0 0.07 000.00 00	- -				-									
25	-	DD DD DD DD DD DD DD DD DD DD DD DD DD D					(
	- 8	00000000000000000000000000000000000000				•									\square	+
5-	-	DO DO DO DO DO DO DO DO DO DO DO DO DO DO]													
	-	DD DD DD DD DD DD DD DD DD DD DD DD DD	1082 00													
- 30	- 9	D. D D D D D D D D D D D D D D D D D D	9.00	Fine to coarse sand, and silty.	gravel, sand clayey	• •	8									\top
-	-	DD · DD · DD · DD DD · DD V DD V DD V DD · DD V DD V					9	╞╋╋								
	-	00000000000000000000000000000000000000				A 8										

	_/	SR	KC	onsultina	PROJECT: LOCATION: NFRC	- Nor	th Fork R	ose C	Creek		BOREI PAGE:	HOLE	:: SI O	RK05 • F :	-SP1 2	1A
	V		Enal	ineers and Scientists	FILE No: FARO	(1CI	D003.73)				DRILL	TYPE	≣:			
	V		Ligi	neers and odemass	BORING DATE: 20	05-08	3-12 T	0	2005-	08-12	DRILL	:				
	B	OREH	OLE	E LOG			TH:	504	707.00		CASIN	G:				
SAN	IPLE		TYPE	OF SAMPLER	LABOR	ATOF	RY AND I	5847 N SIT	U TES	STS						
	C Re	emoulded	DC Dia	amond core barrel	с с	onsol	idation				Ku Thermal conductivity	/ Unfr	ozen	(W /	m°C	;)
	Ø Ur ■ Lo	ndisturbed ost	GS Gr SS Sp	ab sample Ilit spoon	D B Dr S	ulk de pecifi	ensity (kg. c gravity	/m3)			Kf I hermal conductivityPS Particle size analysis	y⊢roz s	en (V	v / m	°C)	
] Co	ore			Ksat S	atura	ted hydra	ulic co	ond. (d	cm/s)						
		WELL		STRATIG	RAPHY			SAM	PLES	5	-					
ŧ	٤	& WATER	ι - Ε				0	z	%	•		W	ATE)NT TS (ENT
Ē	Ŧ	LEVEL - m	E F			BOL	ANI BER	Ê	ΈRΥ	RQD	and		ina i	_111111	10 (, /0)
DEP	DEP		EVA DEP	DESCRI	PTION	λM	YPE		COV	l or	IN SITU TESTS		w _P	w	١	νL
							⊢ ~	ŭ	RE	~		20	⊢) 40		0 10)0120
-		0000000000000000 000000000000000000000											<u> </u>	++	Ĥ	
E		0°08 000 000 000 000 • 00• 00 • 00• 00 • 00• 00				0										
- 35		DA DA DA DA DA DAR DAR DAR DAR DA DA DA DAR DAR				0 0 0 0	10									
Ŀ	- 11	007.0000000000000000000000000000000000				* * * *							+	+	\vdash	
-		· Dp				0.9 0.0										
-	-	000 000 000 000 000 00 00 00 000 000 000					11									
Ē.,	- 12	· Dp · Dp · Dp Dp D p V D p V D p V D p V Dp · Dp · Dp · Dp ·				00	10						+	_		
- 40	Ē	00000000000000000000000000000000000000				60	12									
Ŀ		$\begin{array}{cccccccccccccccccccccccccccccccccccc$				• •	13									
-	- 13	DDD DDD DDD DDD DD · DD · DD · DD DD · DD · DD · DD ·				9 °							+		\vdash	
-		000.000 000.000 000.000 000.000				•	14									
- - 45						/.										
F	- 14					•••	15						+		\vdash	
E						0.										
Ŀ						• •										
Ŀ	- 15					0 0	16						_		\vdash	
- 50 -	-					0	-									
-						8 0 9 9										
-	- 16					0 9 0							+	+	\vdash	
E	-					• •	17									
- 55																
	- 17		1074.89			0 4						\parallel	+	+	\vdash	_
5- -			17.10	Weathered bedrock, t	triable.	Ň										
4 1	-						18									
-	- 18							┝╋╋				\parallel	+		$\mid \downarrow \mid$	
- 60																
-	È						19									
-	- 19		1070 70										+		$\mid \downarrow \mid$	
			10/2.79	END OF BOREHOLE		KTK						+	+	+	\vdash	
-																
- 65	_															

	_	_			PROJECT:						BORE	HOLE:	SR	K05-(SP1	В
	٦'	/ SR	K C	onsulting	LOCATION: NFRC	- Nor	th Fork R	ose C	reek		PAGE:	1	OF	2		
0	V		Enai	neers and Scientists	FILE No: FARC) (1C	D003.73)				DRILL	TYPE:				
	V		mingh	nooro ana coroniolo	BORING DATE: 2	005-08	3-12 T	0	2005-	-08-12	DRILL	:				
	R	OREH) I F	LOG	DIP: /	AZIMU	ITH:				CASIN	G:				
					COORDINATES:	69129	01.00 N	5847	726.00	DE DA	TUM:					
	VIPLE (CONDITION emoulded	DC Dia	OF SAMPLER amond core barrel	C (Conso	Iidation	N SH	UIE	515	Ku Thermal conductivity	/ Unfroz	en (\	W/n	n°C)	
	🖾 Ur	ndisturbed	GS Gr	ab sample	DI	Bulk d	ensity (kg	/m3)			Kf Thermal conductivity	/ Frozer	ו (W	/ m°(C)	
	Lo	st	SS Sp	lit spoon	Dr S	Specifi	c gravity			()	PS Particle size analysis	S				
		ore		STRATICE		Satura	ted nydra		ona. (a DI ES	cm/s)		1				
		DETAILS	ε	SINAIIGI						, 	-	WAT	red	<u> </u>	NTE	-NT
±	E	& WATER	ΞĘ			Ι.	~ ۵	z	۲ %			an	d Ll	MIT	S (9	-ivi %)
Ē	TH.	LEVEL - m	THO THO			BOL	ANBEF	E	ER	RQI	and				• (/	•,
Ē	EP			DESCR	PTION	Μ	IUM	N N	NO N	۲ ۵	IN SITU TESTS	w	D	w	w	/ ₁
-						0	ŕz	8	REC	Z		H				+
		Ro. Ro. Ro. Ro	1091.94	Sandy clayey silt mi	por gravel	R I I							10 6	080	100	120
-	-	POVDOVDERVDOV POVDOVDEVDOV POVDOVDEVDOV	0.00	Gandy, clayey sit, mil	ioi gravei.		1		-							
È	-	P P, V P P V P P, V P P V P P, D P, D P, D P P P, V P P, V, P P V P P V														
È	-	$\begin{array}{cccccccccccccccccccccccccccccccccccc$					1									
Ē	- '	RAV DAY RAV DAV DA DA DA DA														
- 5	-	DD .DD DD DD DD DD .DD DD DD DD DD DD DD DD DD														
-	-	D D D D D D D D D D D D D D D D D D D				i je										
È	- 2						2						$\left \right $	\vdash	+	
È	-															
Ē	-															
- 10	- 3													\vdash	_	_
ŀ	-		-													
Ŀ	-		-													
E			1087.94													
	- 4		4.00	Boulder												
L 15	-		1087.34				3									
- 13	-		4.60	Sandy, clayey silt, mir	nor gravel.	•										
E	- 5		-										+	\vdash	+	-
-		D & F & P & T B & P & P & P & P & P & P & P & P & P &				•	4									
E	-	DD. DD DDD. DD DDV. DDV DDV DDV DDV. DDV DDV DDV														
F	- 6	DD DD DD DD DD DD DD DD DD DD DD DD DD D					5						\parallel	\vdash	_	_
F 20	-	00000000000000000000000000000000000000					6		-							
2	E	DD DD DD DD DD DD DD DD DD DD DD DD DD D					1									
2	[DD DD DD DD DD DD DD DD DD														
	- 1	00000000000000000000000000000000000000														
	-	DA · DA · DA · DA · DA · DA · DA · DA · DA · DA ·					7									
- 25	-	$\begin{array}{c} D \not p \nabla & D & D \nabla \nabla & D & D \nabla & D & D \\ D \not p & \cdot & D p & \cdot & D p & \cdot & D p \\ \end{array}$				•										
	- 8	8 & V · D D V · D D V · D D V • D p • D p • D p • D p D p 7 • D p 7 P p 7 • D p 7											$\left \right $	\vdash	+	+
	-	DD· DD DD· DD DD· DD DD DD DD· DD DD DD	-													
			1083.14													
5-	- 9		8.80	Sand, gravel, minor c	lay and silt.	00			1				\square	$\mid \downarrow$	\downarrow	
- 30 -	Ē						8									
-						0 9		┝╋╋								
	-						9									

S	AM	B PLE C Re Un Los	CONDITION moulded disturbed st	C Engr C C C C C C C C C C C C C C C C C C C	C LOG DF SAMPLER amond core barrel ab sample lit spoon	PROJECT: LOCATION: NFRC FILE No: FARO BORING DATE: 20 DIP: A COORDINATES: 0 LABOR C C D E Dr S Ksat S	- Nor (1Cl 005-08 ZIMU 69129 ATOF Consol sulk de pecifi	th Fork R 2003.73) 3-12 T TH: 01.00 N RY AND I idation ensity (kg c gravity ted bydra	ose C 7 0 5847 N SIT /m3)	2005- 726.00 U TES	08-12 E DA STS	BOREI PAGE: DRILL DRILL: CASIN TUM: Ku Thermal conductivity Kf Thermal conductivity PS Particle size analysis	HOLE 2 TYPE G: / Unfr / Froz	i: Si G E: rozen zen (V	RK05 /F : /(W / N / m	-SP1 2 m°C °C)	1B ;)
17 DTO 10		DEPTH - m	WELL DETAILS & WATER LEVEL - m	ELEVATION - m DEPTH - m	STRATIGE	RAPHY	SYMBOL	TYPE AND NUMBER	CONDITION	RECOVERY %	N or RQD	LABORATORY and IN SITU TESTS	W. 20	ATE and I W P 	R CC	>NT ГS (\ 0 10	ENT ^(%) → 00120
	35	- 11						10									
	40	- 13	<u>22023000</u>] <u>Helioto</u>	1079.64	END OF BOREHOLE												
	50	- 15 - 16															
sty PLOTTED: 2006-01-03 14:45hrs	55	- 17															
X:\templates\templatestoglog_SRK_m23_Fraro.	60	- 19															

		CONDITION emoulded ndisturbed ore WELL	C C C C C C C C C C C C C C C C C C C	onsulting neers and Scientists C LOG F SAMPLER amond core barrel ab sample lit spoon	PROJECT: LOCATION: NFRC FILE No: FARC BORING DATE: 2 DIP: // COORDINATES: LABOF C (D I Dr S Ksat S	C - Nort 0 (1Cl 005-08 AZIMU 69128 RATOF Consol Bulk de Specifi Satura	th Fork R 2003.73) 3-21 1 TH: 61.00 N RY AND I idation ensity (kg c gravity ted hydra	ose C FO 5847 N SIT (/m3) nulic co SAM	791.00 U TES	08-21 E DAT TS m/s)	BOREF PAGE: DRILL DRILL: CASIN FUM: KI Thermal conductivity PS Particle size analysis	IOLE: 1 TYPE: G: / Unfro: / Froze:	SRK OF zen (M n (W /	05-SF 2 / / m° m°C)	22 C)
DEPTH - ft	DEPTH - m	DETAILS & WATER LEVEL - m	ELEVATION - m 1086.70	DESCRI	PTION	SYMBOL	TYPE AND NUMBER	CONDITION	RECOVERY %	N or RQD	LABORATORY and IN SITU TESTS	WA an w 20	TER (id LIN P V 40 60	CON /IITS V ⊙	TENT (%) W
X (#mulates) logical SKK m23 Frace. Sky m23 Frace.		P\$. P\$ <	0.00 <u>1083.30</u> <u>3.40</u> <u>1083.00</u> <u>3.70</u> <u>1082.10</u> <u>4.60</u>	Till Organic silt. Boulder Alluvium			1 2 3 4 5 6 7 8 9 10 11 12 13								

	-	V	SR	K C Engl	onsulting	PROJECT: LOCATION: NFRC FILE No: FARO	- Nor (1Cl	th Fork Ro D003.73)	ose C	reek	08.24	BOREF PAGE: DRILL	10LE: 2 TYPE	SRI OF	К05-S 2	iP2
		B	OREH	OLI	e log	DIP: A	05-08 ZIMU 9128	3-21 T TH: 61.00 N	0 5847	2005- 791.00	08-21) E DA⁻	DRILL: CASIN FUM:	G:			
S.	AMF	PLE (Re Un Lo Co	CONDITION emoulded ndisturbed st ore	TYPE (DC Dia GS Gr SS Sp	DF SAMPLER amond core barrel ab sample lit spoon	LABOR C C D B Dr S Ksat S	ATOF onsol ulk de pecifi atura	RY AND II lidation ensity (kg/ c gravity ted hydrau	M SIT (m3) ulic co	UTE:	STS cm/s)	Ku Thermal conductivity Kf Thermal conductivity PS Particle size analysis	y Unfro y Froze	vzen (\ ∍n (W	/ m / m°C	°C) ;)
0EPTH - ft		DEPTH - m	WELL DETAILS & WATER LEVEL - m	ELEVATION - m DEPTH - m	STRATIGE	RAPHY PTION	SYMBOL	TYPE AND NUMBER	CONDITION	RECOVERY %	N or RQD	LABORATORY and IN SITU TESTS	WA a v 20	NTER nd LI V _P 40 6	CON MITS W 	JTENT \$ (%) W L
-	35	- 11		1076.30 10.40 1075.70 11.00	Bedrock END OF BOREHOLE			14								
	40	- 12														
	45	- 13														
-		- 14														
	50	- 16														
3 14:45hrs	55	- 17														
PLOTTED: 2006-01-(- 18														
SRK m23 Fraro.stv	60 	10														
X:\templatesVoglog {	65	19														

		S R	KC	onsulting	PROJECT: LOCATION: NFR FILE No: FAR	C - Nor O (1C	th Fork R D003.73)	lose C	Creek		BORE PAGE: DRILL	HOLE	: SF 0	RK05- I F 3	SP3A
	V		Engi	neers and Scientists	BORING DATE: 2	2005-08	3-13 1	го			DRILL	:			
	B	OREH	OLE	E LOG	DIP: COORDINATES:	69129	JTH: 24.00 N	5840	651.00	E DA	CASIN TUM:	G:			
	MPLE Re Ur Lc	CONDITION emoulded ndisturbed ost ore	TYPE C DC Dia GS Gra SS Sp	DF SAMPLER amond core barrel ab sample lit spoon	LABO C D Dr Ksat	RATOF Conso Bulk de Specifi Satura	RY AND I lidation ensity (kg ic gravity ted hydra	I/m3)	Ond. (c	STS cm/s)	Ku Thermal conductivity Kf Thermal conductivity PS Particle size analysis	y Unfr y Froz s	ozen en (V	(W / r V / m°	n°C) C)
DEPTH - ft	DEPTH - m	WELL DETAILS & WATER LEVEL - m	DEPTH - m DEPTH - m	STRATIGF	RAPHY PTION	SYMBOL	TYPE AND NUMBER	CONDITION	RECOVERY %	N or RQD	LABORATORY and IN SITU TESTS	W/ a	ATE Ind L N _P I 40	R CO LIMIT W 60 8(NTENT 'S (%) W L
	-	Pp Pp<	0.00	Top organic soil layer			1								
- - - 5 - -		P P	1087.40 1.10	Sandy-clayey silt, with gravel			2		-						
- - - - - - - - - - - - - - - - -	3	$\begin{array}{c} c_{p,q} \\ c_{p,q} \\$					3								
- - 15 - -	- 4 	DP DP DP DP DP PP DP DP DP PP DP DP					4		-						
- - - - - 20		DA DA <thda< th=""> DA DA DA<!--</td--><td></td><td></td><td></td><td></td><td>5</td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td></thda<>					5								
03 14:45hrs	- - - - - - 7	P V P V P V P V P V P													
PLOTTED: 2006-01-(- 8	EP DP EP DP P P P P P P P P P P P P P P P P P P P P P P P P P P P P P P P P P P P P P P P P P P P P P P P P P P P P P P P P P P P P P P P P P					6		-						
SRK m23 Fraro.sty	9	P P	1080.30 8.20	Sand and gravel, som	e silt		7								
X:\templates\loglog		P P	<u>1079.20</u> 9.30	Silty sand/sandy silt, v cobbles	vith gravel and		8		-						

1200					PROJECT:						BORE	IOLE	: SF	K05-	SP3A	
-	٦'	SR SR	K C	onsultina	LOCATION: NFRC	- Nor	th Fork R	ose C	reek		PAGE:	2	or	= 3		
() - C			Engl	incom and Colonlista	FILE No: FARC) (1C	D003.73)				DRILL	TYPE	:			
	V		Engi	neers and ocientists	BORING DATE: 2	005-08	3-13 T	ю			DRILL:					
	D				DIP: /	AZIMU	TH:				CASIN	G:				
	D	OKEH	JLI	LUG	COORDINATES:	69129	24.00 N	5846	651.00	E DA	TUM:					
SAN		CONDITION		OF SAMPLER			RY AND I	N SIT	UTES	STS		Unfr		() / / r		
	Ur Ur	ndisturbed	GS Gr	ab sample	DI	Bulk de	ensity (kg	/m3)			Kf Thermal conductivity	Froze	en (W	// m°	C)	
	Lc	ost	SS Sp	lit spoon	Dr	Specifi	c gravity				PS Particle size analysis	;				
		ore			Ksat S	Satura	ted hydra	ulic co	ond. (o	cm/s)	1	r				
			c.	STRATIG	RAPHY	1		SAM	PLES	5	-					
±	ε	& WATER	μ - Ε					z	%	_		WA	ATER			Т
Ξ	÷	LEVEL - m	ē ÷			р Г	AND	₽ I	ΞRΥ	β	LABORATORY	a	na L		5 (%)	
Ē	EPT		VAT	DESCR		N.	μ	Ĩ	OVE	or F	IN SITU TESTS	v	N	w	w.	_
				DESCR	IF HON	Ś	≿ z	8	REC	z			⁻ Р 		— L	-
									ш			20	40 6	50 80) 10012	20
-		D D D D D D D D D D D D D D D D D D D				• / ⁶										
F.	-	$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$					9									
- 35		DOV. DOV. DOV. DOV. DO. DO. DO. DO. DOV. DOV. DOV.				20										
F	- 11	DP DP DP DP DP PPV PPV PPV				• • •							-	\square		
F	_	$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$														
F		$ \begin{array}{cccccccccccccccccccccccccccccccccccc$				1	10									
F	- 12	$\begin{array}{c c} D\rho & D\rho & D\rho & D\rho \\ \rho \rho \nabla & \rho \rho \nabla & \rho \rho \nabla & \rho \rho \nabla \end{array}$				a 0	10						_			
- 40	_	PP PP PP PP PP PP PP PP PP PP PP PP PP P														
È.	_	D P V P P V D P V P P V D P D P D P P P D P V P P V P P V				9										
F	- 12	PP DP DP PP PPR PPR PPR PPR				o Po										1
F		$\begin{array}{cccccccccccccccccccccccccccccccccccc$				A	11									
Ł		D D D D D D D D D D D D D D D D D D D				8	12									
- 45		DP DP DP DP DPV DPV DPV DPV														
Ł	- 14	DOV DOV DOV DOV DD DD DD DD												+		
Ł		DOV DOV DOV DOV DO DO DO DO DO DOV DOV DOV				\$ 7										
Ł		$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$														
Ł	- 15	DAT DAT DAT DAT DA DA DA DA DAT				•	13						_	+		
- 50	Ē	DO DO DO DO DO DO DO DO DO DO DO DO DO DO DO				9 9 A										
E	Ē	$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$														
F	16	DDV DDV DDV DDV DD DD DD DD				0										
F	- 10	Do Do Do Do Do Do Do Do Do Do Do Do Do														
F	-	DO DR DO DO ROVDOY ROVDOY				2/6	14									
- - 55	_															
1-03 1-	- 17						15						-	+		
	-															
TED: 2	-								-							
PLOT	- - 18												\perp	\square	\square	
AS 0	Ę															
23 Fra																
RK H	È						16									
alog S	- 19 -												1	$ \uparrow $		·
ates Voc						0										
Memory 65	È					1	17	╞╋								
×LĨ	F								1							

SA		CONDITION emoulded ndisturbed ost ore	COLLE COLE CO	C LOG C SAMPLER amond core barrel ab sample lit spoon	PROJECT: LOCATION: NFRC FILE No: FARO BORING DATE: 20 DIP: A COORDINATES: 0 LABOR C C D E Dr S Ksat S	- Nori (1Cl 005-08 AZIMU 69129 Consol Bulk de Specifi Satura	th Fork R D003.73) 3-13 TH: 24.00 N RY AND I lidation ensity (kg c gravity ted hydra	tose C TO 5840 IN SIT g/m3)	Creek 651.00 U TES ond. (d) E DA ⁻ STS	BOREF PAGE: DRILL DRILL: CASIN FUM: KI Thermal conductivity KI Thermal conductivity PS Particle size analysis	HOLE 3 TYPE G: / Unfr / Froz	: SI O :: ozen en (V	₹K05- F : (W / V / m'	-SP3, 3 m°C) °C)	4
DEPTH - ft	DEPTH - m	WELL DETAILS & WATER LEVEL - m	ELEVATION - m DEPTH - m	STRATIGF	RAPHY PTION	SYMBOL	TYPE AND NUMBER	CONDITION	RECOVERY %	N or RQD	LABORATORY and IN SITU TESTS	W/ a 1 20	ATE	R CC _IMIT W 	ONTE TS (% W 0 100	ENT 6) / L -)120
- - - - - - 7(- - -	- - - - - - - - - - - - - - - - - - -		1066.60 21.00	Weathered bedrock (abullita)		18 19		-							
- - - - - - - - - - - - - - -	- 22 		1065.60 22.90	END OF BOREHOLE	: :		20									
- - - 80 - - - - - -	- - - - - - - - - - - - - - 25															
01-03 14:45hrs 1-11 - 1 - 1 - 1 - 1 58	26 															
3K m23 Fraro.stv PLOTTED: 2006.	- - - - - - - - - - - - - - - - - - -															
X:\templates/logiog_SI	29 															
SAN		CONDITION emoulded ndisturbed ost ore	C C C C C C C C C C C C C C C C C C C	C LOG C LOG DF SAMPLER amond core barrel ab sample lit spoon	PROJECT: LOCATION: NFRC FILE No: FARC BORING DATE: 2 DIP: // COORDINATES: LABOF C C D E Dr S Ksat S	- Nor (1Cl 005-08 AZIMU 69129 RATOF Consol Bulk de Specifi Satura	th Fork R D003.73) 3-13 T TH: 24.00 N RY AND II idation ensity (kg c gravity ted hydra	ose C O 5840 N SIT /m3) ulic co	creek 2005- 652.00 U TES ond. (c	08-13) E DA' STS	BOREN PAGE: DRILL DRILL: CASIN TUM: KI Thermal conductivity KI Thermal conductivity PS Particle size analysis	HOLE: 1 TYPE: G: / Unfroz / Frozer	SRI OF zen (\ n (W	<05-\$ 2 W / m / m°C	¥P3B ۱°C) ۲)	
--	-----------	--	---	--	---	--	--	--	---	-------------------------	---	---	-----------------------------	-------------------------------	--------------------	---------------------
DEPTH - ft	DEPTH - m	WELL DETAILS & WATER LEVEL - m	ELEVATION - m DEPTH - m 1088'41	DESCRI	RAPHY PTION	SYMBOL	TYPE AND NUMBER	CONDITION	RECOVERY %	N or RQD	LABORATORY and IN SITU TESTS	WA an W	ΓER d LI P 40 6	CON MITS W 0 80	NTE S (% W	NT) L 120
- 5 - 5 - 10 - 10 - 12 - 20 - 21 - 20 		D> <	0.00 <u>1087.31</u> 1.10 <u>1080.21</u> <u>8.20</u>	Sand and gravel, som	n gravel		1 2 3 4 5 7									
	-			cobbles			8									

	SAM		CONDITION emoulded adisturbed st	C Eng C C C C C C C C C C C C C C C C Eng C C C C Eng C C C Eng C C C Eng C C C C C C C C C C C C C C C C C C C	onsulting ineers and Scientists E LOG DF SAMPLER amond core barrel rab sample bit spoon	PROJECT: LOCATION: NFRC FILE No: FARO BORING DATE: 20 DIP: A COORDINATES: 6 LABOR C C D E Dr S	- Nori (1Cl 005-08 ZIMU 59129 ATOF Consol sulk de	th Fork R D003.73) I-13 T TH: 24.00 N RY AND I idation ensity (kg c gravity	ose C T O 5846 N SIT /m3)	2005- 652.00	08-13) E DA STS	BOREI PAGE: DRILL DRILL: CASIN TUM: Ku Thermal conductivity Kf Thermal conductivity PS Particle size analysis	HOLE 2 TYPE G: / Unfr / Froz	E: o rozen zen (\	RK05 F : (W / N / m	-SP3 2 m°C °C)	3B ;)
	DEPTH - ft	DEPTH - m	WELL DETAILS & WATER LEVEL - m	ELEVATION - m DEPTH - m	STRATIGF	Ksat S RAPHY PTION		TYPE AND NUMBER		BLES RECOVERY %	cm/s)	LABORATORY and IN SITU TESTS	W. 20	ATE and I W P J 40	R CC LIMI ⁻ W 60 8	ONT TS (10 10	ENT ⁽ %) ⁽) ⁽) ⁽) ⁽) ⁽) ⁽)
	35	- - - - - - - - - - - - - - - - - - -						9 10									
	40	- - - - - - - - - - - - - - - - - - -	<u>****</u>	1076.11 12.30	END OF BOREHOLE												
	50	- - - - - - - - - - - - - - - - - - -															
sty PLOTTED: 2006-01-03 14:45hrs	55	- - - - - - - - - - - - - - - - - - -															
X:\templatesVoglog_SRK_m23_Fraro	60 65	- - - - - - - - - - - - - - - - - - -															

S4		B B CLE C Re Un Los	CONDITION moulded disturbed st	C Eng C C C C C C C C C C C C C C C C Eng C C C C C C C C C C C C C C C C C C C	Consulting ineers and Scientists E LOG OF SAMPLER iamond core barrel rab sample olit spoon	PROJECT: LOCATION: NFRC FILE No: FARO BORING DATE: 20 DIP: A COORDINATES: 0 LABOR C 0 D E Dr 5	- Nori (1Cl 005-08 AZIMU 69129 ATOF Consol Bulk de Specifi	th Fork R D003.73) B-13 T TH: 24.00 N RY AND I idation ensity (kg c gravity	ose C TO 5846 N SIT /m3)	2005- 652.00 U TES	08-13) E DA STS	BOREI PAGE: DRILL DRILL: CASIN TUM: Ku Thermal conductivity Kf Thermal conductivity PS Particle size analysis	HOLE 2 TYPI G: / Unfi / Froz	E: C E: rozer zen ('	RK05)F 1 (W / W / m	;-SP 2 'm°C)°C)	3B
DEPTH - ft		DEPTH - m	WELL DETAILS & WATER LEVEL - m	ELEVATION - m DEPTH - m	STRATIGE	Ksat S RAPHY PTION	Saturat NOBMYS	TYPE AND NUMBER			cm/s)	LABORATORY and IN SITU TESTS	W 20	ATE and W _P 1 0 40	R C(LIMI W 60 1	ONT TS (「ENT (%) ₩ L — 00120
- 3	55	11						9 10									
- 4 - 4 - 4	.0	12		<u>1076.1</u> 12.30	END OF BOREHOLE												
- - - - - - 5	0	14															
5-01-03 14:45hrs 	5	16															
SRK m23 Fraro.sty PLOTTED:200(0 0	18															
X:\templates\loglog	5																

	MPLE Re Ur La Ca	CONDITION emoulded ndisturbed st ore WELL DETAILS	C C Eng COLI TYPE C DC Dia GS Gr SS Sp E	onsulting ineers and Scientists E LOG OF SAMPLER amond core barrel rab sample blit spoon	PROJECT: LOCATION: NFRC FILE No: FARO BORING DATE: 20 DIP: A COORDINATES: 6 LABOR C C D E Dr S Ksat S	- Nor (1C 005-08 AZIML 69129 ATOF Conso Bulk d Specifi Satura	th Fork R D003.73) 3-13 T ITH: 24.00 N RY AND I lidation ensity (kg ic gravity ted hydra	ose C 5846 N SIT /m3) ulic co SAMI	2005- 652.00 U TES	08-13) E DA STS cm/s)	BOREI PAGE: DRILL DRILL CASIN FUM: KI Thermal conductivity PS Particle size analysi	HOLE: 1 TYPE: G: / Unfroz / Frozen s WAT	SR# OF en (V i (W ,	<pre>(05-S 2 2 // m°C // m°C COI</pre>	۲ ۲ ۲°C) ۲) ۲ ۲ ۲	-oli
DEPTH - ft	DEPTH - m	& WATER LEVEL - m	ELEVATION	DESCRI	PTION	SYMBOL	TYPE AND NUMBER	CONDITION	RECOVERY %	N or RQD	LABORATORY and IN SITU TESTS	an W 20 4	d LII P 10_6(MITS ₩ 	S (% W 1001) L 120
	- - - - - - - - - -						CT-1									
- - 5 - -	- - - - - 2						CT-2									
- - - - - 10	- - - - - - - - - - - - - - - - - - -						CT-3									
-	- - - - - - - - - - - - - - - - - - -						CT-4									
- - - 15 - -	- 5						CT-5									
- - - - - 20	6						CT-6									
	- - - - - - - 7						CT-7									
- 25	- - - - - - 8						CT-8									
	- - - - - - - - - - - - - - - 9						CT-9									
- 30	-						CT-10									

SAI		CONDITION emoulded adisturbed st pre	C C C C C C C C C C C C C C C C C C C	onsulting ineers and Scientists E LOG DF SAMPLER amond core barrel ab sample blit spoon	PROJECT: LOCATION: NFRC FILE No: FARO BORING DATE: 20 DIP: A COORDINATES: 6 LABOR C C D B Dr S Ksat S	- Nor (1C 05-08 ZIMU 69129 ATOF conso ulk de pecifi atura	th Fork Re D003.73) 3-13 T ITH: 24.00 N RY AND II lidation ensity (kg, c gravity ted hydrai	ose C O 5846 N SIT (m3) ulic co	2005-(652.00 U TES	08-13 E DA⁻ STS	BOREI PAGE: DRILL DRILL CASIN TUM: Ku Thermal conductivity Kf Thermal conductivity PS Particle size analysis	HOLE: 2 TYPE: G: y Unfroz y Frozer s	SRI OF zen (\ r (W	<05-S 2 W / m / m°C	°C) ;)
DEPTH - ft	DEPTH - m	WELL DETAILS & WATER LEVEL - m	ELEVATION - m DEPTH - m	STRATIGF	RAPHY	SYMBOL	TYPE AND NUMBER	CONDITION	RECOVERY % a14	N or RQD	LABORATORY and IN SITU TESTS	WA ⁻ an W	ΓER d LI P 40 6		JTENT \$ (%) W L 100120
- - - - 35 - - - - - - - - - - - - - - -	- - - - - - - - - - - - - - - - - - -						CT-11A CT-11B CT-11C CT-11D		4 4						
- - - - - - - 45 - - - - - - - - - - - -	- - - - - - - - - - - - - - - - - - -						CT-12A CT-12C CT-13A CT-13B CT-13C CT-13D CT-14A		x x x x x x						
- - - - - - - - - - - - - - -							CT-14D CT-14D CT-15A CT-15B		* * *						
PLOTTED: 2006-01-03 14:45hrs	- - - - - - - - - - - - - - - - - - -														
X: templates/loglog_SRK_m23_Fraro.s 29 29	- - - - - - - - - - - - - - - - - - -														

	_	-			PROJECT:						BORE	HOLE	: SR	K05-8	SP4A	
	۲.	/ SRI	K C	onsulting	LOCATION: NFR	C - Nor	th Fork R	ose C	reek		PAGE:	: 1	OF	: 3		
0	V		Enai	neers and Scientists	FILE No: FARG	D (1C	D003.73)				DRILL	TYPE	:			
	V				BORING DATE: 2	2005-08	3-14 T	ю			DRILL					
	B	OREH	JLF	E LOG	DIP:	AZIMU	TH:				CASIN	G:				
SAL					COORDINATES:	69129	39.00 N	5846	312.00		IUM:					
		emoulded	DC Dia	amond core barrel	C	Consol	idation		0 120		Ku Thermal conductivity	y Unfro)zen (W / m	۱°C)	
	Ur	ndisturbed	GS Gr	ab sample	D	Bulk de	ensity (kg	/m3)			Kf Thermal conductivity	y Froze	ən (W	/ m°C	2)	
		ore	55 Sp	lit spoon	Dr Ksat	Specifi	c gravity ted hvdra	ulic c	ond. (c	:m/s)	PS Particle size analysis	s				
		WELL		STRATIGE	APHY			SAM	PLES							
		DETAILS	E									w.	TER	col	NTE	NT
± -	<u>۽</u>	& WATER	- NC			<u>ب</u>	₽ ¥	S	۲ %	Q	LABORATORY	a	nd L'	іміт	S (%)
IE	TH		ATIC PTH			ABO		Ē	VER	RO	and					
Ш	DEI			DESCRI	PTION	SYN	I A D	N	0 C	ō N	IN SITU TESTS	V	۷ _P	w	w	L
								0	R			20	40 E	- 30 80	1001	120
	-	DO DO DO DO	1087.27 0.00	Silty, gravelly sand, cl	ayey.							1	+-	++	+	+-
E	Ē	00000000000000000000000000000000000000					1									
E	Ē	·DD · DD				0.9	2									
E	- 1	DO DO DO DO DO DO DO DO DO DO											_	\square	_	_
	-	00000000000000000000000000000000000000					2									
- 5	-					00	3									
	E,	00000000000000000000000000000000000000	1085.27			• •										
E	Ē	DO DO DO DO DO DO DO BODO	2.00	Silt, gravelly, sandy, c	layey.	•										
E	E	DO DO DO DO DO DO DO DO DO				5										
Ł	E	▷ > ∇ ▷ > ∇╋ > ∇ ▷ > ∇ · ▷ > ` ▷ > ℃ ▷ > ∇ ▷ > ∇₩ > ∇ ▷ > ∇					4									
- 10	- 3	DO DO 100 000 000 DO DO 00000000000000000000000												+	+	+
Ł		DOV DOVED DOV DO DO DO DO														
E	_	00000000000000000000000000000000000000														
E	- 4	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$											+-	\vdash	+	_
-	-	D 0 7 D 0 7 D 0 7 D 0 7 D 0 7 D 0 D 0 D 0 D 0 D 0 7 D 0 7 D 0 0 0 0 0 0 0 0 0 0 0 0 0				•										
- 15	-	DD . DD . DD . DD. DD DD DD DD DD. DD . DD . DD . DD.					5									
Ł	- 5	DD DD DD DD DD DD DD DD DD												\square	\perp	_
E		D & V . D & V & V & V & V & V & V & V & V & V &				0										
E		D0 D0 D0 D0 D0 D000000000000000 D0 D0 D0 D0														
		00000000000000000000000000000000000000														
- 20	- 6	$\begin{array}{cccccccccccccccccccccccccccccccccccc$														
E	-	D0 D0 D0 D0 D0 D0 D0 D0 D0 D0 D0 D0 D0 D0 D0														
:45hrs	-	D & V D & V D & D & D & D & D & D & D &				0	6									
1-03 14	- 7	00.00000000000000000000000000000000000												\vdash	+	+
0.900	Ē	00000000000000000000000000000000000000														
25 - 25	-	0 6 V 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0														
PLOT	- 8	-D0 D0 D0 D0 D0 D0 D0 D0 D0 D0 D0 D0 D0 D0 D0]				_	\square	+	_
aro.stv	E	DOVDOVDOVDOV DO DO DO DOV					7									
23 Fr	F															
SRK m	Ē,	DØ DØ DØ DØ DØ DØVDØVDØVDØV DØ DØ DØ					0	╞╋╋								
<u>8</u> 30	Ē	DDD DDD DDD DDD DD DD DD DD DD DD DAT DD DD	1078.07	Gravel and cond citta	clavev with		ō	┝┛						\square	1	
lates Vc	Ē	DD DD DD DD DD DD DD DD DD DD	5.20	cobbles.	, olayoy, willi		9									
: \temp	E	DD DD DD DD DD DD DD DD DD DD DD DD DD D				6	10									
^Ľ		100000000000000	1			11-19-			1							_

2-					PROJECT:						BORE	IOLE:	SRI	K05-	SP4A
		V SR	KC	onsultina	LOCATION: NF	RC - Nor	th Fork R	ose C	creek		PAGE:	2	OF	3	
			Ena	incom and Colonlista	FILE No: FA	RO (1C	D003.73)				DRILL	TYPE:			
	V		Engl	neers and ocientists	BORING DATE	: 2005-08	3-14 1	ю			DRILL:				
	1	ODEII			DIP:	AZIMU	TH:				CASIN	G:			
	I	DUKERU	JLI	LOG	COORDINATES	5: 69129	39.00 N	5840	612.00	E DA	TUM:				
SAI			TYPE	OF SAMPLER	LAB	Conso	RY AND I	N SIT	UTES	STS	Ku Thermal conductivity	/ Linfro:		W / n	n°C)
	⊴ ' ⊠ ເ	Indisturbed	GS Gr	ab sample	D	Bulk de	ensity (kg	/m3)			Kf Thermal conductivity	/ Frozer	יין (W	/ m°(C)
	L	lost	SS Sp	lit spoon	Dr	Specifi	c gravity				PS Particle size analysis	\$			
		Core	1		Ksat	Satura	ted hydra	ulic c	ond. (c	cm/s)					
				STRATIG	RAPHY				PLES		-				
±	ε	& WATER	Ξ Ξ					z	%	-		WA	IER ALL		
Ιż	Ė	LEVEL - m	Êż			2 2 2	AND	E E	ΞRΥ	g	LABORATORY	an			5 (%)
E E			EPT	DESCR		ΥME	ШЩ	Q	OVI	orF	IN SITU TESTS	w	_	w	w .
						ري	≿ ₹	8	С Ш С	z		F	Р		I `
									"			20 4	40 6	0 80	100120
F	È	DD. DD DD. DD. DD DD. DD DD. DD. DD. DD DD. DD.													
F		DDV DDV DDV DDV DD DD DD DD DD DD DD DD DD													
- 35	E	DO DO DO DO DO DO DO DO DO DO													
F	- 1 [.]	$\begin{array}{cccccccccccccccccccccccccccccccccccc$				0 0	11								
F	E	DAV DAV DAV DAV DAV DA DAV DAV													
F	E	· DD DD DD DD DD DD DD DD DD DD DD													
F	- 1:	$2 \begin{array}{ c c c c c c c c c c c c c c c c c c c$										<u> </u>	+	\vdash	
- 40	-	D' P D D D D D D D D D D D D D D D D D D													
L.	E	- DD . DD . DD . DD DD . DD . DD . DD DD . DD . DD . DD													
E.	L 1	2 DD DD DD DD DD DD DD DD DD DD DD DD DD				•									
F	È '	00000000000000000000000000000000000000	•) /6									
È.	E	- DP · DP · DP · DP D P V D P V D P V D P V				•	12								
- 45	E	BAT DAT BAT DAT				e 0									
F	- 1/ -	4 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0												\square	
Ł	E	DD DD DD DD DD DD DD DD DD DD DD DD DD D				•			-						
Ł	E	DO	-				13								
Ł	- 1	5 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0												\vdash	
- 50	E	· DP · DP · DP · DP D'DV DPV DPV DPV				e e	14								
Ł	E	DOV. DOV DOV. DOV DO . DO DO . DO				•		┝╌┫╌							
F	- -	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0				9									
F	Ē	0					15								
F	Ē														
- - 55	F					ļ									
1-03 1-	- 1	7					16							\vdash	
0.000-0	Ē														
TED: 2	Ē														
PLOT	- - 18	8										\square	\square	$\mid \downarrow$	$\parallel \parallel$
AS- 60	Ē					•									
23 Fra															
RK m.	Ē						17								
llog S	19 	9											\square	\square	++
tes Voc			1												
temple A	È														
×	F														

S/		E CONDITION Remoulded Undisturbed Lost	C C Engr C C Engr C C C C C C C C C C C C C C C C C C C	C LOG DF SAMPLER amond core barrel rab sample blit spoon	PROJECT: LOCATION: NFRC FILE No: FARO BORING DATE: 20 DIP: A COORDINATES: 6 LABOR C C D B Dr S	- Nor (1Cl 005-08 ZIMU 69129 ATOF Consol sulk de	th Fork R D003.73) 3-14 T ITH: 39.00 N RY AND II lidation ensity (kg c gravity	ose C T O 5846 N SIT /m3)	512.00 U TES	E DAT	BOREH PAGE: DRILL DRILL: CASIN FUM: Ku Thermal conductivity Kf Thermal conductivity PS Particle size analysis	IOLE: 3 TYPE: G: 7 Unfrc	SF Ol :: vzen en (V	₹K05- F 3 (W / r V / m°	SP4A ; n°C) C)
DFPTH - ft	DFPTH - m	Core WELL DETAILS & WATER LEVEL - m	ELEVATION - m DEPTH - m	STRATIG	Ksat S RAPHY	Satura SAMBOL	TYPE AND NUMBER			cm/s)	LABORATORY and IN SITU TESTS	WA ai v	TEF nd L V _P 40		NTENT 'S (%) W L
- - - - - - - - - - - - - -	······································	21	1066.87 20.40 1065.67 21.60	Weathered bedrock,	phyllite.		18								
- 7	5 - 2 	23													
- 8 - - - - - - - - - - - - - 8	5 5 5 5	25													
PLOTTED: 2006-01-03 14:45hrs		27													
X:\templatesVoglog SRK m23 Fraro.stv	5	29													

SAN	BIPLE CCC	CONDITION emoulded ndisturbed ist pre WELL DETAILS	C C C C C C C C C C C C C C C C C C C	onsulting neers and Scientists E LOG DF SAMPLER amond core barrel ab sample lit spoon STRATIGE	PROJECT: LOCATION: NFRC FILE No: FARC BORING DATE: 24 DIP: A COORDINATES: LABOF C C D E Dr S Ksat S	i - Nor (1C 005-08 AZIML 69129 Ballk d Specifi	th Fork R D003.73) 3-21 1 ITH: 39.00 N RY AND I lidation ensity (kg ic gravity ted hydra	ose C 5846 /m3) ulic cc	reek 2005- 311.00 U TES ond. ((08-21) E DA STS cm/s)	BOREI PAGE: DRILL DRILL: CASIN FUM: KI Thermal conductivity PS Particle size analysis	HOLE: 1 TYPE: G: v Unfrozen s w totat	SRK0: OF ≥n (W / (W / n	5-SP4 1 / m°C) n°C)	.в) FNT
DEPTH - ft	DEPTH - m	& WATER LEVEL - m	- MOLTHON - DEPTH - M 1082.44	DESCR	IPTION	SYMBOL	TYPE AND NUMBER	CONDITION	RECOVERY %	N or RQD	LABORATORY and IN SITU TESTS	and W F 20 4	3 LIM	ITS (9	×) × ∟ ⊣ 0120
- 5 - 7 - 7 - 7 - 7 - 7 - 7 - 7 - 7 - 7 - 7			0.00 1085.44 2.00	Silty, gravelly sand, c	layey Slayey		1 2 3 4 5								

SAN		CONDITION emoulded ndisturbed ost ore WELL DETAIL S	C C Engl C C Dia C C Dia C C Dia C S Sp	onsulting meers and Scientists C LOG DF SAMPLER amond core barrel ab sample lit spoon STRATIGE	PROJECT: LOCATION: NFRC FILE No: FARO BORING DATE: 20 DIP: A COORDINATES: 0 LABOR C C D E Dr S Ksat S	- Nor (1C 005-00 AZIMU 669129 Conso Bulk d Specifi Satura	th Fork R D003.73) 3-21 1 ITH: I39.00 N RY AND I lidation ensity (kg ic gravity ted hydra	ose C 5846 N SIT /m3) ulic cc SAMI	2005- 611.00 U TES	08-21) E DA STS cm/s)	BOREI PAGE: DRILL DRILL: CASIN FUM: KI Thermal conductivity PS Particle size analysis	HOLL 1 TYPI : G: y Unfi y Froz s	E: C E: rozen zen (\	RK05)F 1 (W / W / m ¹	-SP4 m°C) ^C)	B
DEPTH - ft	DEPTH - m	& WATER LEVEL - m	ELEVATION - n DEPTH - m 1082.44	DESCR	PTION	SYMBOL	TYPE AND NUMBER	CONDITION	RECOVERY %	N or RQD	LABORATORY and IN SITU TESTS	2'	ATE and W _P)NTE FS (% 0 10(=NI %) V L ⊣ 0120
			1087.44 0.00	Silty, gravelly sand, c	layey Slayey		1 2 3 4 4									

(2-					PROJECT:						BORE	HOLE	: SR	K05-	SP5	
		SR SR	K C	onsultina	LOCATION: NFRC	- Nor	th Fork Ro	ose C	reek		PAGE	: 1	OF	- 2		
1		_	Enn	and Painetiste	FILE No: FARO	(1CI	D003.73)				DRILL	TYPE	÷			
	V		Engi	neers and Scientists	BORING DATE: 20	005-08	3-13 T	o	2005-	08-13	DRILL					
					DIP: A	ZIMU	TH:				CASIN	G:				
	Ľ	SOKEHO	JLł	LOG	COORDINATES:	69129	56.00 N	5845	576.00	E DA	TUM:					
SAI	MPLE	CONDITION	TYPE (OF SAMPLER	LABOR	ATOF	RY AND I	N SIT	U TES	STS						
	<] R ℤ ⊔	emoulded	GS Gr	amond core barrei ab sample		Sonsoi Bulk de	idation ensity (ka/	/m3)			Ku Thermal conductivity	y Untro v Froz	ozen (en (W	.vv / m / / m°(1°C) 2)	
	Lo	ost	SS Sp	lit spoon	Dr S	Specifi	c gravity				PS Particle size analysis	s		,	-)	
	C C	ore			Ksat S	Satura	ted hydrai	ulic co	ond. (c	cm/s)						
		WELL		STRATIG	RAPHY		5	SAM	PLES	5	-					
1	_		<u>ع</u> -					_	%			W	ATER		NTE	INT
١÷	-	LEVEL - m	NO -			Ы	ND ND	NO	Ϋ́	ð	LABORATORY	a	nd L	IMIT	S (%	6)
E	μ		PTI			MB	E A MBI	Ы	NE N	r R						
۳ ۲				DESCR	IPTION	SY	ΝU	NÖ		z	IN 5110 12515		^N P	W	w	L
								0	R			20	40 €	08 0	100	1 120
-	-	DOV DOV DOV DOV	0.00	Sandy silt, clayey, gra	avelly	0							┷┿┷	+	-+-	4
-	F	DP DP DP DP DP DPV DPV DPV DPV DP DP DP DP DP				0										
E	F	D D D D D D D D D D D D D D D D D D D					1									
-	F 1	DO DO DO DO DO DO DO DO													+	_
E	Ē	Dp Dp Dp Dp Dp Dp Dp Dp Dp Dp Dp Dp Dp Dp Dp				•										
- 5	F	DRV DRV DRV DRV DR DR DR DR					2									
-	Ē.	DO DO DO DO DO DO DO DO DO DOV DOV DOV					3									
-	2	$\begin{array}{ c c c c c c c c c c c c c c c c c c c$				i e							-	\square	+	
Ē	E							_								
-	E	D D D D D D D D D D D D D D D D D D D														
- 10	<u>⊢</u> 3						4						_	\vdash	+	_
Ē	E	DOVDOVDOVDOV DO DOVDOVDOV					4									
Ł	F	00000000000000000000000000000000000000														
E	F,	DD DD DD DD DD DD DD DD DD DD DD					6									
-	4	DOV DOVEDV DOV DO DO DO DO					5									
- 15	F	D 0 V D 0 V D 0 V D 0 V D 0 D 0 D 0 D 0 D 0 D 0 V D 0 V 0 0 V 0 0 V				6	0									
- 15	Ë	DD DD BDD DD DD DD BDD DD														
F	- 5	DOV DOVEDV DOV. DO DO DO DO					7						—	\vdash	+	_
-	E	DO D														
Ē	È					•										
-	È a	$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$														
- 20	Ė	DOVDOVDOVDOVDOV DO DO DO DO														
<u> </u>	E					o / •										
4:45hr	F	Do Do Do Do DOV DOV DOV DOV DO DO DO DO														
1-03 1-	7	DO DO DO DO DO												+	+	
000-0	F	DO DO DO DO DO DO DO DO DO DO DO DO DO					8									
25 – 25	F	DP DP DP DP DP DPV DPV PPV DPV DP DP DP DPV DPV														
PLOT	- 8	PPV DPV DPV DPV PP DP DP DP													\perp	
ro.stv	Ē	DP DP DP DP DP DP DP DP DP						╞╋	$\left \right $							
3 Fra	Ē															
Ж Ш	Ē	DDVDDVDDVDDV														
ぶ- <u>8</u> - 30	j⊨ 9						9						+		+	+
tesVog	È															
templa	E															
ž-	F					0										

SAM		CONDITION emoulded ndisturbed ost ore WELL DETAILS & WATER LEVEL m	C C C C C C C C C C C C C C C C C C C	onsulting neers and Scientists C LOG DF SAMPLER amond core barrel ab sample lit spoon STRATIGE	PROJECT: LOCATION: NFRC FILE No: FARO BORING DATE: 20 DIP: A COORDINATES: 6 LABOR C C D E Dr S Ksat S	- Nor (1Cl 005-08 ZIMU 69129 ATOF Consol Bulk de Becifi Satura	th Fork R D003.73) B-13 T TH: 56.00 N RY AND II iidation ensity (kg c gravity ted hydra	ose C 5845 N SIT /m3) ulic cc SAMI	2005- 576.00 U TES Dond. (0 PLES	08-13) E DA' STS cm/s)	BOREH PAGE: DRILL DRILL: CASIN TUM: KI Thermal conductivity KI Thermal conductivity PS Particle size analysis	HOLE: 2 TYPE: G: V Unfro Froze	SR OF zen (n (W TER	K05- : 2 	sP5 n°C) C) NTE	ENT %)
DEPTH	рертн		ELEVATIO DEPTH	DESCRI	PTION	SYMBC	TYPE AI NUMBE	CONDITI	RECOVER	N or RC	and IN SITU TESTS	W 	Р 40 ғ	₩ 	W 0 100	/ L -)120
- - - - 35 -	- 11		10.10	Sand, gravel, cobbles	in silty matrix		10 11									
- - - - -	- - - - - - - - - - - - - - - - - - -		1076.23 11.30	Weathered bedrock			12									
-	- 13						13						+			
- - 45 - - -	- - - - - - - - - - - - - - - - - - -		<u>1073.53</u> 14.00	END OF BOREHOLE												
- - - - - 50 -	15 15															
-	- 16 															
- 55 - - -	- - - - - - -															
60	18															
- 65	- 19 															

				CD		oncult	ing	PROJECT	T: N: NFRC	- Nort	th Fork R	ose C	Creek			BOREH PAGE:	OLE	: SI	RK05 DF	i-SP 2	-6
100	-11			SVI		Uliguit	iiiy	FILE No:	FARO	(1CI	D003.73)					DRILL 1	TYPE	:		_	
		V			Eng	gineers and Sci	entists	BORING	DATE: 20	005-08	3-23 T	ю	2005-	08-23		DRILL:					
		D		TIL	ο τ		r	DIP:	A	ZIMU	TH:					CASING	3:				
		В	OK	EH	JL.	E LUC	J	COORDIN	ATES:	69129	75.00 N	5844	492.00	E DA	TUM:						
S/	MP	PLE (ON		OF SAMPLER	rol		LABOR		Idation	N SIT	UTES	STS	Ku Thermal.cor	ductivity	Unfr	ozen	(M /	m°C	
		Un	ndisturbe	d	GS G	Grab sample			D E	Bulk de	ensity (kg	/m3)			Kf Thermal cor	nductivity	Froz	en (V	√ / m	°C)	·)
		Lo	st		SS S	Split spoon			Dr S	Specifi	c gravity				PS Particle size	analysis					
		Co	ore						Ksat S	Saturat	ted hydra		ond. (c	:m/s)							
			DET	ELL AILS	ε	31	RAIIG							•	-		w	ATE		דואר	
#		ε	& W.	ATER	ż	:				.	۵~	z	۲ %	0		עפע	a	and		TS ((%)
Ē		Ē	LEVE	EL - m	EE					BOI	ANBEF	E	ĒR	RQI	and	<i>и</i> кт					,,,,
		ШU				i	DESCR	PTION		λM	Y PE NUM		0 0	o l	IN SITU TE	STS	١	w _P	w	١	w L
		_									⊢ ~	ŭ	R	2			20			0 10	
	+		PPVPPV	DOV DOV	1097.7 0.00	3 Sandy silt/si	ilty sand, o	gravelly		1:111 1:111								- -	+		
F	E		0000000 000000 00000	0000000 000000 00000			.,,	5 5		0	1										
F	E		0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	0000000 000000 000000						(* * *											
F	Ē	1	- D0 - D0 1000 000 100 - D0	· Do · Do Do V Do V · Do · Do							2								\perp		
Ł	Ē		007 007 00 00 007 00	0000000 000000							2										
F	5		DD DD DD DD DD	DD DD DD DD DD						6/0	3										
Ł	Ē	-	DDVDDV DDVDDV DD	DD						6											
Ł	E	2	000000 000000 0000000	DDV DDV DD DD DDV DDV	2.10	Boulder, col	bbles				6										
Ł	E				2.40	Sand and g	ravel in a	silty matrix		•											
Ł	Ē				1094 7	'3				• •	7										
	0	- 3			3.00	Weathered	bedrock,	schist										+	1		
F	Ē																				
F	Ē																				
F	E	4																+	+		
F.	_																				
	5																				
F	-	- 5																+	+-		
F	E																				
F	Ē										8										
F,		6																_	+		
Ē	Ē																				
hrs	E																				
3 14:45	-	. 7																			
6-01-0	Ę	ŕ																			
D:200																					
OTTE	Ē																				
sty PI	F	8																+	+		
8 Fraro	F																				
K m23	F																				
28 DO 38	0	9									9							+	+		
tesVogl	Ē																				
templai	Ē																				
×-	H																				

			SR	KC	onsultina	PROJECT: LOCATION: NFRC - North Fork Rose Creek						BOREHOLE: SRK05-SP-6 PAGE: 2 OF 2					
Ľ		V		Ena	ineers and Scientists	FILE No: FARO	(1CI	D003.73)				DRILL	ТҮР	E:			
		V		Lingi	neers and Scientists	BORING DATE: 2005-08-23 TO 2005-08-23 DRILL:											
		R	OREH) I I	E LOG	DIP: A	ZIMU	TH:				CASIN	G:				
	2 4 84					COORDINATES: 6	9129	75.00 N	5844	492.00		TUM:					
] Re	emoulded	DC Dia	amond core barrel	C C	onsol	idation	1 311	0 12.	515	Ku Thermal conductivity	/ Unf	rozen	1 (W / 1	m°C	;)
	Undisturbed GS Grab sample					D B	ulk de	ensity (kg/	/m3)			Kf Thermal conductivity	/ Fro	zen (V	N / m°	ΥĊ)	
			st ore	55 Sh		Ksat S	atura	ted hydrai	ulic c	ond. (cm/s)		5				
F			WELL		STRATIGR	APHY		5	SAM	PLES	3						
	#-HI	TH - m	DETAILS & WATER LEVEL - m	ATION - m PTH - m			30L	BOL AND BER	DITION	/ERY %	RQD	LABORATORY and	w	ATE and i	R CC)NT IS (ENT (%)
	Ē	DEF		DEF	DESCRI	PTION	SYN	TY PE NUN	SONE	ECO.	N or	IN SITU TESTS		W P	W	١	″ L
				ш					U	R			2				0120
-	35	-		1086 73													
-		- 11		11.00	END OF BOREHOLE												
F	40	- 12															
-		- 13															
-	45	-															
F		- 14															
-		- 15															
F	50	-															
F		- 16															
14:45hrs	55																
OTTED: 2006-01-03		- 17															
ro.sty PL	60	- 18											\vdash				
SRK m23 Fra		- 19															
X:\templatesVoglog	65																

Original S-cluster Monitoring Wells

08/20/2004 02:26 FAX	20/2004 02:26 FAX 867 633 6321 Gartner Lee Ltd 2004											
PIEZOMETER INSTALLATION	I - FARO PIT Drill Rig: Ch	E 750, Solid Shaft Augers	BUELOLE Ho. 10020-02									
Faro, Yukon			Project No: 0201-10029 52									
CURRACH RESOURCES INC.	The zone:	- N - E -	ELEVATION 0.00 (m)									
SAMPLE TYPE GLAP S	THE NO BECOMENT X STIL		<u>(II)</u>									
	SOIL/ROCK											
DEPT	DESCRIPTION	PLASTIC LLC LIQUI 1 20 40 60 80										
	TILL (SM) - sand and silt aroyally.											
-1.0 -1 PT ==	occasional cobble, moist, greyis brown.	h										
-2.0 2 SM ==	— bacoming brownish grey		5.0									
			50 mm I.D. PVC STANOPIP									
	ter at teion primozed —	BENTO SEAL										
-40		SCRE VIII										
-5.0 5 SM		GEOTT SOCK										
- 6 SM	- saturated											
7 SM			-20.0									
-7.0	WEATHERED ROCK — sand and grave silt, saturated, brownish orang	, EOME BENTONÍ SEAL	TE -24.0									
	- occasional cobble											
-90 - 10	— becoming light greyish brown	· · · · · · · · · · · · · · · · · · ·										
-10 0 - 11		•	SCREEM									
-11.0 12												
-12.0 13	BEDROCK — phyllite		UEATHERED									
-	END OF BOREHOLE AT 12.2 m.		42.0									
			44.0									
-140			46.0									
			18.0									
EBA Engine	ering Consultants Ltd	CONFLETION DEPTH 12.2 D	COMPLETE 69/04/21									
	tenorse, Yukon	LOGGED BY TRM	DAG NO.10029-03 Page 1 of 1									
.*												

.

7/20/2004 02:27 FAX 867 633 6321	Gartner Lee Ltd
PIEZOMETER INSTALLATION - PARO PIT	Drill Rig: CME 750, Solid Shaft Augers
Sam Yukon	

2 005 BOREHOLE No. 10028-03

Faro. Yukor	0				Project No: 0201-10028 (53)					
CUERAGH R	ESOU	RCES I	NC.	TH ZONE: - N - E		ELEVATION 0.00 (m)				
SAMPLE TY	PE -	GRAF	SIMPLE NO RECOVER	Y STANDARD PEN.						
DEPTH (m) Sample TYPE	SAMPLE NU	USC	SOIL/I DESCRI	ROCK PTION	PLASTIC LLC UQUO					
-1.0 -2.0 -3.0 -4.0 -5.0 -5.0 -5.0 -7.0 -7.0 -10.0 -11.0 -11.0 -12.0	1 2 3 4 5 6		ORGANIC COVER TILL (SM) — sand and e occasional cobble, rounded, moist, de brown. BEDROCK/BOULDER — refueal at 5.64 ENU OF BOREHULE A Note: Bedrock or beuide dnilling past 1.5 m approximately 3 m of this borehole to	angular to sub- anse, dark greyish white quartzite, auger m. T 5.54 m and procluded in two attempts in north and west of acation.	20 40 60 80 20 50 m 1.D. 50 m 1.D. 51 50 m 1.D. 51 10 51 10 510	BENTONITTE SEAL -2.0 CUTTINGS -2.0 CUTTINGS -2.0 BENTONITE -2.0 SEAL -2.0 BENTONITE -2.0 SEAL -2.0 BENTONITE -2.0 SEAL -2.0 BENTONITE -2.0 SCREEN -2.0 H4.0 -2.0 FRAC -16.0 SAND -18.0 ZZ.0 -24.0 ZZ.0 -28.0 ZZ.0 <th-28.0< th=""> <!--</td--></th-28.0<>				
- -13.0 - -140 -						-42.0 -44.0 -46.0 -48.0				
	RA		incoming Conquil	tents Itd	COMPLETION DEPTH 6.6 m	COMPLETE 89/04/21				
	DA	епå		Lattis LLa.						
L			Intehorse, Juke		LOGGED BI IKH	DIG NULIOUED-04 PEGELOLL				

P96-7 Monitoring Well

Client Nam	ie: Anvil Range Mining C	orp.	Driller: Midnight Su	un Drilling	BOREHOLE NO: BH96-7				
Location: F	Taro, Yukon		Track-mounted A	r-rotary (ODEX) -	- 175 mm	PROJECT NO: (PROJECT NO: 033001		
BH Loc: Fo	aro Rock Dump,		<u>utm zone: - n</u>	<u> </u>		ELEVATION:			
SAMPLE T	YPE DISTURBED	NO RECOVERY	🔀 ЅРТ	A-CAS	SING []	Shelby tube	CORE		
BACKFILL	TYPE BENTONITE	PEA GRAVEL	IIII SLOUCH	CEMEN	ιτ 🛛	DRILL CUTTINGS	SAND		
DEPTH(m) SOIL SYMBOL		SOILS/R DESCRIP'	OCK FION	1	-	Additional Comments		SAMPLE TYPE	
0.0 00 00 00 00 00 00 00 00 00 00 00 00	SAND — fine grained, moist, medium brow SAND — very fine to f silt to silty, slight tr micaceous, dry to c — increasing gravel o	silty, some gravel, m. ine grained, some race gravel, lamp, light brown. content below 5.5			 well st well codiameter casing water on Sep 	ickup: 0.66 m ag impleted with 6" er steel protectiv level 5.17 m bgs tember 8, 1996	js e		
- 8.0 - 10.0	<u>– becomes moist to</u> PHYLLITE BEDROCK – foliated, fractured, I water. BOREHOLE TERMINATEL BEDROCK. MONITORING WELL INS [*]	wet at about 7.6 aphanitic, well ight green, some AT 9.2 m IN PHY FALLED.	<u>m.</u>						
- - 12.0 -									
- 14.0									-
- 16.0									
- 18.0									-
20.0								ΙĒ	_
DU.	REDERON CEC	CONSTITUA	NTS INC	LOGGED BY: TH	1/cw	COMPLETION	DEPTH: 9.2	m –	
RU.	DURIDUN GEC	ICONSOLIA	NID INC.	REVIEWED BY:	AR	COMPLETE:	06/09/96		
	Vonco	INTOR RC		Fig. Not 7			Da	t ar	7

Appendix B Hydraulic Testing Analysis Sheets

2005 SP Monitoring Wells

Location: NFRC - S-Cluster Area - Faro Mine	Pumping Test: Mini recovery for SP2	Pumping well: SRK05-SP-2
Test conducted by: M.Prado		Test date: 10/27/2005
Analysis performed by: D.Mackie	Recovery - all time	Date: 10/27/2005
Aquifer Thickness: 6.40 m	Discharge: variable, average rate 0.28797 [l/	/s]

Calculation after AGARWAL + Theis									
Observation well	Transmissivity	к	Storage coefficient	Radial distance to PW					
	[m²/s]	[m/s]		[m]					
SRK05-SP-2	3.09 × 10 ⁻³	4.83 × 10 ⁻⁴	8.06 × 10 ⁻⁴	0.03					

Location: NFRC - S-Cluster Area - Faro Mine	Pumping Test: Mini recovery for SP3a	Pumping well: SRK05-SP-3A		
Test conducted by: M.Prado	•	Test date: 10/27/2005		
Analysis performed by: D.Mackie	Recovery - all time	Date: 10/27/2005		
Aquifer Thickness: 13.70 m	Discharge: variable, average rate 0.088637 [l/s]			

Calculation after AGARWAL + Theis										
Observation well	Transmissivity	К	Storage coefficient	Radial distance to PW						
	[m²/s]	[m/s]		[m]						
SRK05-SP-3A	1.24 × 10 ⁻⁴	9.05 × 10 ⁻⁶	6.68 × 10 ⁻²	0.03						

Location: NFRC - S-Cluster Area - Faro Mine	Pumping Test: Mini recovery for SP3b	Pumping well: SRK05-SP-3B
Test conducted by: M.Prado		Test date: 10/27/2005
Analysis performed by: D.Mackie	Recovery - mid to late time	Date: 10/27/2005
Aquifer Thickness: 3.20 m	Discharge: variable, average rate 0.17235 [l	/s]

Calculation after AGARWAL + Hantush										
Observation well	Transmissivity	К	Storage coefficient	Hydr. resistance	Radial distance to PV					
	[m²/s]	[m/s]		[s]	[m]					
SRK05-SP-3B	5.13 × 10 ⁻⁴	1.60 × 10 ⁻⁴	5.03 × 10 ⁻⁶	5.01 × 10 ⁷	0.03					

No good match for Theis recovery Hantush allows better match assuming "leakage"

Location: NFRC - S-Cluster Area - Faro Mine	Pumping Test: Mini recovery for SP4a	Pumping well: SRK05-SP-4A
Test conducted by: M.Prado		Test date: 10/27/2005
Analysis performed by: D.Mackie	Recovery - all time - Theis	Date: 10/27/2005
Aquifer Thickness: 6.10 m	Discharge: variable, average rate 0.029741 [l/s]	

Calculation after AGARW	/AL + Theis				
Observation well	Transmissivity	К	Storage coefficient	Radial distance to PW	
	[m²/s]	[m/s]		[m]	
SRK05-SP-4A	4.50 × 10 ⁻⁵	7.37 × 10 ⁻⁶	1.11 × 10 ⁻¹	0.03	

Location: NFRC - S-Cluster Area - Faro Mine	Pumping Test: Mini recovery for SP4b	Pumping well: SRK05-SP-4B
Test conducted by: M.Prado		Test date: 10/28/2005
Analysis performed by: D.Mackie	Recovery mid to late time	Date: 10/28/2005
Aquifer Thickness: 3.50 m	Discharge: variable, average rate 0.023745 [l/s]	

Calculation after AGARWAL + Theis					
Observation well	Transmissivity	К	Storage coefficient	Radial distance to PW	
	[m²/s]	[m/s]		[m]	
SRK05-SP-4B	1.15 × 10 ⁻⁴	3.28 × 10 ⁻⁵	8.06 × 10 ⁻⁴	0.03	

Location: NFRC - S-Cluster Area - Faro Mine	Pumping Test: Mini recovery for SP5	Pumping well: SRK05-SP-5
Test conducted by: M.Prado		Test date: 10/26/2005
Analysis performed by: D.Mackie	Recovery - all time	Date: 10/26/2005
Aquifer Thickness: 4.30 m	Discharge: variable, average rate 0.14033 [l/s]	

Calculation after AGARWAL + Theis					
Observation well	Transmissivity	К	Storage coefficient	Radial distance to PW	
	[m²/s]	[m/s]		[m]	
SRK05-SP-5	4.75 × 10 ⁻⁴	1.10 × 10 ⁻⁴	5.20 × 10 ⁻⁴	0.03	

S-cluster Monitoring Wells – 2005

Location: NFRC - S-Cluster Area - Faro Mine	Pumping Test: Mini recovery for S1a	Pumping well: S1A
Test conducted by: M.Prado		Test date: 10/28/2005
Analysis performed by: D.Mackie	Recovery - Theis - all	Date: 10/28/2005
Aquifer Thickness: 12.20 m	Discharge: variable, average rate 0.36522 [l/s]

Calculation after AGARW	/AL + Theis				
Observation well	Transmissivity	К	Storage coefficient	Radial distance to PW	
	[m²/s]	[m/s]		[m]	
S1A	6.80 × 10 ⁻⁴	5.57 × 10 ⁻⁵	5.00 × 10 ⁻¹	0.03	

Location: NFRC - S-Cluster Area - Faro Mine	Slug Test: S1b slug	Test Well: S1B	
Test conducted by: M.Prado		Test date: 10/28/2005	
Analysis performed by: D.Mackie	Hvorslev - Final match	Date: 10/28/2005	
Aquifer Thickness: 4.50 m			

Calculation after Hvorslev	/	
Observation well	к	
	[m/s]	
S1B	3.89 × 10 ⁻⁷	

Location: NFRC - S-Cluster Area - Faro Mine	Slug Test: S2a slug out	Test Well: S2A	
Test conducted by: M.Prado		Test date: 10/28/2005	
Analysis performed by: D.Mackie	Hvorslev - Final match	Date: 10/28/2005	
Aquifer Thickness: 12.20 m			

Calculation after Hvorslev	/	
Observation well	к	
	[m/s]	
S2A	1.50 × 10 ⁻⁶	

Location: NFRC - S-Cluster Area - Faro Mine	Slug Test: S2b slug out	Test Well: S2B	
Test conducted by: M.Prado		Test date: 10/28/2005	
Analysis performed by: D.Mackie	Final match	Date: 10/28/2005	
Aquifer Thickness: 7.00 m			

Calculation after Hvorsle	V	
Observation well	к	
	[m/s]	
S2B	2.43 × 10 ⁻⁶	

Location: NFRC - S-Cluster Area - Faro Mine	Slug Test: S3 slug in	Test Well: S3
Test conducted by: M.Prado		Test date: 10/26/2005
Analysis performed by: D.Mackie	Hvorslev - Final match	Date: 10/26/2005
Aquifer Thickness: 5.60 m		

Calculation after Hvorsle	v	
Observation well	к	
	[m/s]	
S3	7.76 × 10 ⁻⁶	

Location: NFRC - S-Cluster Area - Faro Mine	Slug Test: S3 slug out	Test Well: S3	
Test conducted by: M.Prado	-	Test date: 10/27/2005	
Analysis performed by: D.Mackie	Hvorslev - Final match	Date: 10/27/2005	-
Aquifer Thickness: 5.60 m			

Calculation after Hvorslev	,	
Observation well	ĸ	
	[m/s]	
S3	5.50 × 10 ⁻⁶	

S-cluster Monitoring Wells – 2004
Location: NFRC - S-Cluster Area - Faro Mine	Slug Test: S2b-2004 Data - Slug in	Test Well: S2B		
Test conducted by: D.Mackie		Test date: 9/30/2004		
Analysis performed by: D.Mackie	Hvorslev - Final match	Date: 10/31/2005		
Aquifer Thickness: 7.00 m				

Calculation after Hvorsle	V	
Observation well	К	
	[m/s]	
S2B	3.89 × 10 ⁻⁷	

Location: NFRC - S-Cluster Area - Faro Mine	Slug Test: S2b-2004 Data - slug out	Test Well: S2B	
Test conducted by: D.Mackie		Test date: 9/30/2004	
Analysis performed by: D.Mackie	Hvorslev - Final match	Date: 10/31/2005	
Aquifer Thickness: 7.00 m			

Calculation after Hvorslev	V	
Observation well	к	
	[m/s]	
S2B	1.40 × 10 ⁻⁶	

LATE TIME DATA (AFTER 1000s) NOT INCLUDED IN ANALYSIS. LEVELOGGER RESOLUTION COULD NOT MEET TEST REQUIREMENTS AFTER APPROXIMATELY 800s.

Location: NFRC - S-Cluster Area - Faro Mine	Slug Test: S3-2004 Data - slug in	Test Well: S3	
Test conducted by: D.Mackie		Test date: 9/30/2004	
Analysis performed by: D.Mackie	Hvorlsev Final Match	Date: 10/31/2005	
Aquifer Thickness: 5.70 m			

Calculation after Hvorslev		
Observation well	К	
	[m/s]	
S3	5.75 × 10 ⁻⁶	

Location: NFRC - S-Cluster Area - Faro Mine	Slug Test: S3-2004 Data - slug out	Test Well: S3		
Test conducted by: D.Mackie		Test date: 9/30/2004		
Analysis performed by: D.Mackie	Hvorslev - Final match	Date: 10/31/2005		
Aquifer Thickness:				

Calculation after Hvorslev	V	
Observation well	к	
	[m/s]	
S3	7.90 × 10 ⁻⁶	

TIME AFTER APPROXIMATELY 150 s NOT INCLUDED IN ANALYSIS. LEVELOGGER RESOLUTION COULD NOT MEET TEST REQUIREMENTS AFTER THIS TIME

Appendix C Laberge Stream Survey Memos

<u>Memorandum</u>

To: SRK

September 12, 2005

Cc: Deloitte, Faro Project Office, RGC, BGC

From: Ken Nordin - LES

Re: Observations at NFRC near the S-Cluster wells

The following is a summary of data related to the flow investigation along the NFRC above and below the S-Cluster monitoring wells for RGC/SRK.

NFRC_20/21 North Fork Rose Creek Upstream NF Rock Drain at Zone II

This station includes two staff gauges – NFRC_20 and NFRC_21, with a bench mark. Discharge measurements, taken to date are summarized below.

Date	Time (start Q)	Discharge (m³/sec)	NFRC_20 (m)	Elevation NFRC_20(m)	NFRC_21 (m)	Elevation NFRC_21 m)
13-May-05		nm (>4.12)	>top		>top	
10-Jun-05		nm (>2.64)	>top		>top	
07-Jul-05	09:00	1.421	0.395	1094.462	0.433	1094.353
10-Aug-05	13:10	1.114	0.370	1094.437	0.425	1094.345
<mark>17-Aug-05</mark>	<mark>18:10</mark>	<mark>1.132</mark>	<mark>0.340</mark>		<mark>0.405</mark>	In question
02-Sept-05	14:00	1.069	0.325	1094.400	0.400	1094.330

Notes: Yukon Engineering Services elevation noted on BM as 1095.88m August 10, 2005 Gauge zero NFRC_20 = 1094.067 Gauge zero NFRC_21 = 1093.920

North Fork Rose Creek Downstream of NF Rock Drain

Four sites were selected for discharge measurements along the NFRC between the rock drain and road crossing by RGC and SRK to evaluate the flow regime above and below the "S-cluster" monitoring wells. The four sites, called NFRC_SC_ 1 to 4 were established on July 7, 2005. Temporary bench marks (flagged ½" lag screws in trees) were established at each site and elevation of the water surface relative to these assumed datums was noted during each discharge measurement.

NFRC_SC_1 North Fork Rose 1st downstream of NF Rock Drain upstream of S-Cluster

UTM NAD 27 08V 0584629mE 6913056mN

Date	Time (start Q)	Discharge (m³/sec)	Elevation (m)	рН	Conductivity <i>u</i> S/cm	sample
07-Jul-05	11:25	1.627	97.471	7.87	150.4	no
10-Aug-05	13:50	1.656	97.461	nm	nm	yes

Two significant ponds along the left bank between the rock drain and NFRC_SC_1 were noted. The ponded seepage "SCS_2" was located at 0584554 6912988 with conductivity of 186.2. The second ponded seepage "SCS_3" was at 0584663 6912971 with conductivity of 537 uS/cm.

NFRC_SC_2 North Fork Rose 2nd downstream of NF Rock Drain upstream of S-Cluster

UTM NAD 27 08V 0584540mE 6913056mN

Date	Time (start Q)	Discharge (m³/sec)	Elevation (m)	рН	Conductivity <i>u</i> S/cm	sample
07-Jul-05	11:25	1.447	98.503	7.77	150.1	no
10-Aug-05	14:30	1.346	98.486	nm	nm	yes

NFRC_SC_3 North Fork Rose 3rd downstream of NF Rock Drain downstream of S-Cluster

UTM NAD 27 08V 0584540mE 6913056mN

Date	Time (start Q)	Discharge (m³/sec)	Elevation (m)	рН	Conductivity <i>u</i> S/cm	sample
07-Jul-05	12:15	1.553	98.659	7.72	154.1	no
10-Aug-05	15:10	1.496	98.680	nm	nm	yes

NFRC_SC_4 North Fork Rose 3rd downstream of NF Rock Drain downstream of S-Cluster

Date	Time (start Q)	Discharge (m³/sec)	Elevation (m)	рН	Conductivity <i>u</i> S/cm	sample
07-Jul-05	13:10	1.540	98.366	7.73	156.7	no
10-Aug-05	15:10	1.510	98.349	nm	nm	yes
			7 00) / 050 4070	- 004004	4	

UTM NAD 27 08V 0584278mE 6912911mN

Note that there is a seep "SCS_1" at 0584207mE 6912928mN with conductivity of 3,420 *u*S/cm. On July 7 this seep was barely flowing and not connected by surface to NFRC.

NFRC_22/23 (X_2) North Fork Rose Creek Upstream Access Road

This station includes two staff gauges – NFRC_22 and NFRC_23, with a bench mark in a cottonwood tree on the right bank. Discharge measurements are summarized below.

Date	Time (start Q)	Discharge (m ³ /sec)	NFRC_22 (m)	Elevation NFRC_22(m)	NFRC_23 (m)	Elevation NFRC_23 (m)
12-May-05	09:20	6.312				
10-Jun-05	12:38	1.930				
07-Jul-05	14:00	1.593				
10-Aug-05	17:00	1.538*				
17-Aug-05	19:15	1.270				
02-Sept-05	15:00	1.329				

Notes: Yukon Engineering Services elevation of 011508 is 1072.61m September 12, 2005. Gauge zero NFRC_22 =

Gauge zero NFRC_23 = 1069.335

Memorandum

To:Dan Mackie SRK, Christoph Wels RGCDecember 30, 2005Copies:Deloitte, GLL, Faro Project OfficeFrom:Ken Nordin LES

Re: Monitoring of North Fork Rose Creek in the "S" Cluster Zone December 2005

This is a brief description of the results of the project *Monitoring of North Fork of Rose Creek in the "S" Cluster Zone* for December 2005.

SC_1 1st Station below NFRC Rock Drain

Time10:06pH7.20Conductivity262 uS/cmTDS 111 mg/LTemp-0.2 °C

Discharge not measured. Sampled through 10 cm ice at x-section SC_1.

SC_2 2nd Station below NFRC Rock Drain

Time	10:40	
pН	7.22	
Conductivity	254 <i>u</i> S/cm	TDS 109 mg/L
Temp	-0.3 ⁰ C	

Robust flow, sampled by cutting 10 cm ice near open lead. Discharge by salt slug injection between two open leads. Note peizometer on RB between open leads, two trials.

SC_3 Station just downstream of S Cluster wells

Time	11:20
pН	7.20
Conductivity	262 <i>u</i> S/cm
Temp	0.2 ⁰ C

Sampled at turbulent open lead just downstream of an island and 10 m upstream of the flgged station. Measure discharge two trials salt slug injection. Ronnie took skidoo down creek, broke through, followed on foot and also fell through. Got wet, accessed SC_4 overland.

SC_4 Last station, about 100 m upstream of X_2.

Time	12:10	
pН	7.17	
Conductivity	272 <i>u</i> S/cm	TDS 116 mg/L
Temp	0.2 ⁰ C	-
Sampled direct	ly below flagged	station. Open leads for salt slug injection,

Field notes and Chain of Custody form attached. Salt Slug injection workbook in Excel format sent separately.

Discharge summary: (Note that 1st trial may be more reliable due to more mass and shorter time interval)

 SC_2
 Trial 1 0.358
 Trial 2 0.412

 SC_3
 Trial 1 0.500
 Trial 2 0.510

 SC_4
 Trial 1 0.581
 Trial 2 0.524

20 21 Dec. 19,2005 Mass, 7489 g Dec. 19,2005 Tint, 5 sec 104704 · met Ronne Mens @ Lab, got skidos · skidos in to "S" Cluster Mix L N 35m 104855 area, start at SC-1 254 293 266 258 256 266 291 265 258 256 SC-1 10:06 AM 274 288 264 258 255 pH 7.35 280 286 263 257 255 COND 260 MS/CM TDS 111 ms/L 283 262 257 255 290 296 281 262 257 255 TOC -0.2°C Tan - 20°C 300 278 261 257 274 261 256 302 · samples; 1L, 250×2 · pictures ×2 299 272 260 256 256 298 270 260 297 269 259 256 295 267 259 256 5C-2. 10:40 -> pH 7.22 Mass, 46519 Tinta 10 sec 1056:33 COND 254 MS/cm 10:5810 TOS 109 ms/L 255 281 263 257 T°C - 0.3°C 279 261 257 256 258 · Samples; 12, 2x 250 found TBM, Re-Flagged, 275 260 256 255 261 270 259 256 274 to salt dily, ZNP 280 266 259 256 hale is a piezo meter 284 265 258 256

22		23
Dec. 19, 2005	1031	Dec 19,2005
SC-3 11:20->	Mass 2 4 8 7 6	
p1+ 7.20	264 283 266	113508
10x10 262 us/cm 264	280 279 265	113550
TDS	287 277 264	
toc .2°2	294 275	
	295 272	
· Samples; 14, 2×250 mL	293 270 -	1
· cample open lead, the pulset	290 269×2	
about 15 m us of flag	287 268	
	285 268	
Marp=, 543 + 5353 112453	268	
264 300 769 1126 58	267	
283 793 769		
303 289 769 Tint Ssee	Ronnie went to F	SSC4
377 284 765	broke thru, then	~ I
340 282 24-7-266	fell in Athin ice	, then
249 275 264	go around to sc	4
347 276		
243 275	SC-4 12:10 =	\rightarrow
221 228	10H 7.18	
- 351 510	IOND. 270	
212 24	TDS 116	
2/08 272	TUC 0.2	
-0.0 ~10	50malos: 11 2×2	SAnd
	- Cringhand) it, 2 he	a de me

24					2 4	1.1						25
			-	Dec.	19,2005	5		1 1 1		and the second	Deci	19,2005
1	SC-	4 sal	Adday.	-	-	13			Mas	52 [1	59	
	n	nass, =	1.075	56 Ka				-	Tin	tz 53	Sec	
1.2.2.4.4	-	Tinti =	5 se	- 0	- yet a a	f	272	295	276	274	-	
ZTR		5	25 +	.55	06	1	277	293	辞	273		St.
972	307	1		1209	120	1	283.	290	275	273		A. S.
281	303	279		1210	. 91		291	. 288	275	273		
288	297	277	274				290	286	27.4	273		
294	294	277	274	273			305	28S	274	272	3:57	
301	292	278	274.	272	4:19.		307	283	274			
310	289	277	274				312	282	274			
313	288	277	274			,	310	280	273		a 12 2 2	
322	286	276	274			1-	308	279	213			
326	285	276	273	11.240			307	278	273		Star St.	
320	284	275	273	4 - 1			30A	277	273		Contract.	
319	282	275	273				301	277	213	Sec. 1	1. 3.2	
2.7	281	275	273				298	276	273	No. alte		
312	280	275	213									
1			*			1		1.12.54 12				
		12/2/01/2				1		15. 4	4 ⁵			
N. C.			1.									- A
a danta												1.10
						- 191					1	
N. Salar		1.5	1	1. 5 5 . 1			1	15.	1.1.1		S. Same	1.1.2.

CHINGE CONSTITUTE CONSTITUTE <td colspan="2" constitu<="" th=""><th></th><th>11/19 #2 - 3020 10011 311991, FUL 31, JUNI DU CARARA VIJ 3093 191, 230-103-3601 FAX. 230-103-3600</th><th>214-5450</th></td>	<th></th> <th>11/19 #2 - 3020 10011 311991, FUL 31, JUNI DU CARARA VIJ 3093 191, 230-103-3601 FAX. 230-103-3600</th> <th>214-5450</th>			11/19 #2 - 3020 10011 311991, FUL 31, JUNI DU CARARA VIJ 3093 191, 230-103-3601 FAX. 230-103-3600	214-5450
ADDRESS S. LITTE BOD 1006 WEST HASTINGS OTT. JANCOLALET FROM TELEPRONE #104 601 441 Bavelor Lass TELEPRONE #104 601 441 Bavelor 624 5521 CONTRICT DALI MACKIE PROJECTIVAREA NO	SEND REPORT TO: CLIENT: SRK CONSULTING	CHAIN OF CUSTODY FORM	PAGE OF		
СПТ. ДАЛССИДЕТ РПОИ. СОП. ИС. РОЗИЧСКИ СОП. ИС. РОЗИЧСКИ СТАНИССИДЕТ РООТ. ТЕГЕРНОЛЕ ПОИ. ТЕГЕРНОЛЕ ПОИ. ТЕГЕРНОЛЕ ПОИ. ПОСТИКЕ ХАЛА ПАКАКЕ РОССТИМИЕ АЮ. МЕР.С. 5 С.1.05712. 2 SAVIER. J. E.S. ОООТЕЮ. РООТЕЙС. РООТЕЙСКИ СТАНАТИКЕ АЮ. МЕР.С. 5 С.1.05712. 2 SAVIER. J. E.S. ОООТЕЮ. РООТЕЙСКИ СТАНАТИКЕ АЮ. МЕР.С. 5 С.1.05712. 2 E. ALS CONTOCT (ДИ ДАЛА) ВЕОПТРОМИЕ П. ДИНОСОРИ П. АМИ. НООТЕЙС 2 С.	ADDRESS. SUITE ROD ID66 WE	ST HASTINGS ANALYSIS REQUESTED:			
FOR LAB USE ONLY DEFINITION DATE: ADDRESS. ADDRE	CITY: VANCOLALER PROV.: B.C. TELEPHONE: 604 691 419 64x 644 627 533 PROJECT NAME & NO: AVER C SCLUSTED PROJECT NAME & NO: AVER C SCLUSTED	POSTAL CODE: <u>VIDE</u> ZK2 POSTAL CODE: <u>VIDE</u> ZK2 CONTACT: <u>DAN</u> <u>MACKIE</u> <u>MUTY</u> SAMPLER: <u>LES</u> ALSCONTACT: <u>MUTY</u> ALSCONTACT: <u>MUTY</u> ALSCONTACT: <u>MUTY</u> ALSCONTACT: <u>MUTY</u> POES			
MOTES IN COLUCIENT MATHY SC-1 SC-1 SC-1 SC-1 SC-1 SC-2 SC-4 TUNS-12-1912110		mackie Berkromer 200			
Х-12-14 10:06 11.0 СССС ССС ССС ССС ССС ССС ССС	SAMPLE IDENTIFICATION	DATE / TIME COLLECTED MATRIX	NOTES (sample specifi comments, due dates, e		
Хлио эси поч 272 272 272 272 272 272 272 27	SC-1 200	5-12-19 10:06 11 2 2 2 2 2 2			
Хлю Эси али ноч Х	SC-2 201	5-12-1910:00 HVO V V V V			
	SC-3 20	5-12-1911:20 HW 44 44			
	SC-4 W	5-12-1412:10 A.2 4 4 4 4			
	รก อง				
	4.1 FO				
	F				
		E: (surcharge may apply) RELINOUISHED BY: DATE DEC. 20, 0	A BECEIVED BY: DATE		
SEND INVOICE TO: SAME AS REPORT INVOICE FORMAT: HARDCOPY DPF FAX NORD/N TIME 2:20 RECEIVED BY: DATE 2:20 RECEIVED	SEND INVOICE TO: SAME AS REPORT INVOICE FOR	AT: HARDCOPY DF FAX KEX/ NO/2D/N TIME 2:30	RECEIVED BY: DATE		
SPECIAL INSTRUCTIONS: M S an plus belo than and preaved coolersel internet sample temperature: of cooling methody in yes in no in yes in y	SPECIAL INSTRUCTIONS: all samplus field Alta	1 and Public Cooler SEAL INTACT? SAMPLE TEMPERATI	AB USE ONLY ATURE: 00 COOLING METHOD? ES 00		

Memorandum

To:Christoph Wels RGC, Dan Mackie SRKCopies:DeloitteFrom:Ken Nordin LES

February 2, 2006

Re: Drive points and well monitoring Zone II and S-Cluster area of NFRC

Drive points in the Zone II area were frozen solid. We chopped out and thawed DP-5 and found that it was frozen to the gravel substrate. 116.5 cm from top of steel to the level of ice in the Teflon tube. 153.5 cm from top of steel to frozen substrate.

DP-5

DP-1 54.0 cm from top of steel to ice in tube 70.0 cm from top of steel to frozen substrate

DP1 looking upstream

DP-1 looking downstream

DP-3 only tube above ice, repaired

DP-4 - only a few cm of steel above ice

SRK SP-5 6.40m from top of PVC to water. 20.4

cm from PVC to convex of steel casing.

SRK 05 SP-6 was damp at 11.86 m. There was red mud on the probe but not enough to set off the dipper.

S2-A 3.89 m to top of 2" gray plastic casing with black cap (measured to top of lower casing piece)

S2-B 5.049 m to top of 2" plastic extension – where waterra ends.

S1-A 4.510 m to top of 2" gray extension with black screw cap– waterra ends is in the lower piece

S1-B 4.209 to top of casing with screw cap.

S2 A&B

S1-A&B

Appendix D Water Quality Analytical Results ProjectNFRC/ETA Water AnalysisReport toRobertson GeoConsultants Inc.ALS File No.W2913Date Received8/12/2005Date:8/30/2005

RESULTS OF ANALYSIS

Sample ID Date Sampled	NFRC SC-1 8/10/2005	NFRC SC-2 8/10/2005	NFRC SC-3 8/10/2005	NFRC SC-4 8/10/2005
Time Sampled			•	
ALS Sample ID	1	2 Mater	3 Motor	4 Water
Nature	vvater	vvater	vvaler	vvalei
Physical Tests				
Conductivity (uS/cm)	180	180	184	186
рН	7.97	8.01	8.04	8.03
Dissolved Anions				
Bromide Br	<0.050	<0.050	<0.050	<0.050
Chloride Cl	<0.50	<0.50	<0.50	<0.50
Fluoride F	0.110	0.108	0.107	0.111
Sulphate SO4	10.8	10.8	12.7	13.5
Nutrionte				
Nitrate Nitrogen N	0 0293	0.0288	0.0268	0.0278
Nitrite Nitrogen N	<0.0010	<0.0010	< 0.0010	< 0.0010
Total Metals				
Aluminum T-Al	0.0172	0.0187	0.0151	0.0183
Antimony T-Sb	<0.00010	<0.00010	<0.00010	<0.00010
Arsenic T-As	0.00062	0.00061	0.00063	0.00063
Barium T-Ba	0.0449	0.0443	0.0462	0.0461
Beryllium T-Be	<0.00050	<0.00050	<0.00050	<0.00050
Bismuth T-Bi	<0.00050	<0.00050	<0.00050	<0.00050
Boron T-B	<0.010	<0.010	<0.010	<0.010
Cadmium T-Cd	<0.000050	<0.000050	<0.000050	<0.000050
Calcium T-Ca	26.8	26.8	27.1	27.3
Chromium T-Cr	<0.0020	<0.0020	<0.0020	<0.0020
Cobalt T-Co	<0.00010	<0.00010	<0.00010	<0.00010
Copper T-Cu	0.00066	0.00077	0.00068	0.00067
Iron T-Fe	0.152	0.149	0.146	0.159
Lead T-Pb	0.000531	0.000699	0.000495	0.000559
Lithium T-Li	<0.0050	<0.0050	<0.0050	<0.0050
Magnesium T-Mg	5.72	5.67	5.97	6.07
Manganese T-Mn	0.0241	0.0183	0.0225	0.0277
- Molybdenum T-Mo	0.000531	0.000500	0.000499	0.000512
Nickel T-Ni	<0.00050	<0.00050	<0.00050	<0.00050
Phosphorus T-P	<0.30	<0.30	<0.30	<0.30
Potassium T-K	<2.0	<2.0	<2.0	<2.0
Selenium T-Se	<0.0010	<0.0010	<0.0010	<0.0010
Silicon T-Si	4.71	4.61	4.71	4.65

Sample ID Silver T-Ag Sodium T-Na Strontium T-Sr Thallium T-TI Tin T-Sn Titanium T-Ti Uranium T-U Vanadium T-V Zinc T-Zn	NFRC SC-1 <0.000010 <2.0 0.104 <0.00010 <0.00010 <0.010 0.00101 <0.0010 0.0070	NFRC SC-2 <0.000010 <2.0 0.103 <0.00010 <0.00010 <0.010 0.000993 <0.0010 0.0074	NFRC SC-3 <0.00010 <2.0 0.107 <0.00010 <0.0010 0.00102 <0.0010 0.0183	NFRC SC-4 <0.000010 <2.0 0.108 <0.00010 <0.0010 0.00102 <0.0010 0.0185
Dissolved Metals				
Aluminum D-Al	0.0072	0.0067	0.0068	0.0077
Antimony D-Sb	<0.00010	<0.00010	<0.00010	<0.00010
Arsenic D-As	0.00053	0.00053	0.00052	0.00054
Barium D-Ba	0.0444	0.0442	0.0442	0.0449
Beryllium D-Be	<0.00050	<0.00050	<0.00050	<0.00050
Bismuth D-Bi	<0.00050	<0.00050	<0.00050	<0.00050
Boron D-B	<0.010	<0.010	<0.010	<0.010
Cadmium D-Cd	<0.000050	<0.000050	<0.000050	<0.000050
Calcium D-Ca	26.2	26.3	26.4	26.3
Chromium D-Cr	<0.0020	<0.0020	<0.0020	<0.0020
Cobalt D-Co	<0.00010	<0.00010	<0.00010	<0.00010
Copper D-Cu	0.00069	0.00058	0.00058	0.00061
Iron D-Fe	0.070	0.064	0.065	0.073
Lead D-Pb	0.000202	0.000163	0.000167	0.000275
Lithium D-Li	<0.0050	<0.0050	<0.0050	<0.0050
Magnesium D-Mg	5.58	5.60	5.80	5.86
Manganese D-Mn	0.0167	0.0112	0.0174	0.0218
Molybdenum D-Mo	0.000522	0.000505	0.000514	0.000505
Nickel D-Ni	<0.00050	<0.00050	<0.00050	<0.00050
Phosphorus D-P	<0.30	<0.30	<0.30	<0.30
Potassium D-K	<2.0	<2.0	<2.0	<2.0
Selenium D-Se	<0.0010	<0.0010	<0.0010	<0.0010
Silicon D-Si	4.55	4.61	4.58	4.51
Silver D-Ag	<0.000010	<0.000010	<0.000010	<0.000010
Sodium D-Na	<2.0	<2.0	<2.0	<2.0
Strontium D-Sr	0.106	0.104	0.104	0.107
Thallium D-Tl	<0.00010	<0.00010	<0.00010	<0.00010
Tin D-Sn	<0.00010	<0.00010	<0.00010	<0.00010
Titanium D-Ti	<0.010	<0.010	<0.010	<0.010
Uranium D-U	0.00101	0.00101	0.000989	0.000995
Vanadium D-V	<0.0010	<0.0010	<0.0010	<0.0010
Zinc D-Zn	0.0063	0.0079	0.0158	0.0168

Footnotes:

Results are expressed as milligrams per litre except where noted. < = Less than the detection limit indicated.

ProjectNFRC/ETA Water AnalysisReport toRobertson GeoConsultants Inc.ALS File No.W2913Date Received8/12/2005Date:8/30/2005

DETECTION LIMITS

•

Sample ID	NFRC SC-1	NFRC SC-2	NFRC SC-3	NFRC SC-4
Date Sampled	8/10/2005	8/10/2005	8/10/2005	8/10/2005
Time Sampled				
ALS Sample ID	1	2	3	4
Nature	Water	Water	Water	Water
Physical Tests				
Conductivity (uS/cm)	2.0	2.0	2.0	2.0
nH	0.010	0.010	0.010	0.010
P				
Dissolved Anions				
Bromide Br	0.050	0.050	0.050	0.050
Chloride Cl	0.50	0.50	0.50	0.50
Fluoride F	0.020	0.020	0.020	0.020
Sulphate SO4	0.50	0.50	0.50	0.50
Nutrients				
Nitrate Nitrogen N	0.0050	0.0050	0.0050	0.0050
Nitrite Nitrogen N	0.0010	0.0010	0.0010	0.0010
Total Metals				
Aluminum T-Al	0.0010	0.0010	0.0010	0.0010
Antimony T-Sb	0.00010	0.00010	0.00010	0.00010
Arsenic T-As	0.00010	0.00010	0.00010	0.00010
Barium T-Ba	0.000050	0.000050	0.000050	0.000050
Beryllium T-Be	0.00050	0.00050	0.00050	0.00050
Bismuth T-Bi	0.00050	0.00050	0.00050	0.00050
Boron T-B	0.010	0.010	0.010	0.010
Cadmium T-Cd	0.000050	0.000050	0.000050	0.000050
	0.050	0.050	0.050	0.050
Chromium T-Cr	0.0020	0.0020	0.0020	0.0020
Cobalt T-Co	0.00010	0.00010	0.00010	0.00010
Copper T-Cu	0.00010	0.00010	0.00010	0.00010
Iron T-Fe	0.030	0.030	0.030	0.030
lead T-Pb	0.000050	0.000050	0.000050	0.000050
Lithium T-Li	0.0050	0.0050	0.0050	0.0050
Magnesium T-Mg	0.10	0.10	0.10	0.10
Manganese T-Mn	0.000050	0.000050	0.000050	0.000050
Molybdenum T-Mo	0.000050	0.000050	0.000050	0.000050
Nickel T-Ni	0.00050	0.00050	0.00050	0.00050
Phosphorus T-P	0.30	0.30	0.30	0.30
Potassium T-K	2.0	2.0	2.0	2.0
Selenium T-Se	0.0010	0.0010	0.0010	0.0010
Potassium T-K Selenium T-Se	2.0 0.0010	2.0 0.0010	2.0 0.0010	2.0 0.0010

Sample ID	NFRC SC-1	NFRC SC-2	NFRC SC-3	NFRC SC-4
Silicon T-Si	0.050	0.050	0.050	0.050
Silver T-Ag	0.000010	0.000010	0.000010	0.000010
Sodium T-Na	2.0	2.0	2.0	2.0
Strontium T-Sr	0.00010	0.00010	0.00010	0.00010
Thallium T-TI	0.00010	0.00010	0.00010	0.00010
Tin T-Sn	0.00010	0.00010	0.00010	0.00010
Titanium T-Ti	0.010	0.010	0.010	0.010
Uranium T-U	0.000010	0.000010	0.000010	0.000010
Vanadium T-V	0.0010	0.0010	0.0010	0.0010
Zinc T-Zn	0.0010	0.0010	0.0010	0.0010
Dissolved Metals				
Aluminum D-Al	0.0010	0.0010	0.0010	0.0010
Antimony D-Sb	0.00010	0.00010	0.00010	0.00010
Arsenic D-As	0.00010	0.00010	0.00010	0.00010
Barium D-Ba	0.000050	0.000050	0.000050	0.000050
Beryllium D-Be	0.00050	0.00050	0.00050	0.00050
Bismuth D-Bi	0.00050	0.00050	0.00050	0.00050
Boron D-B	0.010	0.010	0.010	0.010
Cadmium D-Cd	0.000050	0.000050	0.000050	0.000050
Calcium D-Ca	0.050	0.050	0.050	0.050
Chromium D-Cr	0.0020	0.0020	0.0020	0.0020
Cobalt D-Co	0.00010	0.00010	0.00010	0.00010
Copper D-Cu	0.00010	0.00010	0.00010	0.00010
Iron D-Fe	0.030	0.030	0.030	0.030
Lead D-Pb	0.000050	0.000050	0.000050	0.000050
Lithium D-Li	0.0050	0.0050	0.0050	0.0050
Magnesium D-Mg	0.10	0.10	0.10	0.10
Manganese D-Mn	0.000050	0.000050	0.000050	0.000050
Molybdenum D-Mo	0.000050	0.000050	0.000050	0.000050
Nickel D-Ni	0.00050	0.00050	0.00050	0.00050
Phosphorus D-P	0.30	0.30	0.30	0.30
Potassium D-K	2.0	2.0	2.0	2.0
Selenium D-Se	0.0010	0.0010	0.0010	0.0010
Silicon D-Si	0.050	0.050	0.050	0.050
Silver D-Ag	0.000010	0.000010	0.000010	0.000010
Sodium D-Na	2.0	2.0	2.0	2.0
Strontium D-Sr	0.00010	0.00010	0.00010	0.00010
Thallium D-TI	0.00010	0.00010	0.00010	0.00010
Tin D-Sn	0.00010	0.00010	0.00010	0.00010
Titanium D-Ti	0.010	0.010	0.010	0.010
Uranium D-U	0.000010	0.000010	0.000010	0.000010
Vanadium D-V	0.0010	0.0010	0.0010	0.0010
Zinc D-Zn	0.0010	0.0010	0.0010	0.0010

ALS Environmental

CERTIFICATE OF ANALYSIS

- Date: January 3, 2006
- ALS File No. W9115
- Report On: NFRC "S" Cluster Water Analysis
- Report To:SRK Consulting (Canada) Inc.Suite 8001066 West Hastings St.Vancouver, BCV6E 3X2
- Attention: Mr. Dan Mackie
- Received: December 21, 2005

ALS ENVIRONMENTAL

per:

Andie 5

Andre Langlais, M.Sc. - Project Chemist Can Dang, B.Sc. - Project Chemist

File No. W9115 **REMARKS**

For sample SC-3, we checked and confirmed that for some of the metals the Dissolved are greater than the Total.

For some of the submitted water samples, the measured concentration of specific dissolved parameters is greater than the corresponding total parameters concentration. The explanation for these findings is one or a combination of the following:

- laboratory method variability;

- field sampling method variability;

- bias introduced during general handling, storage, transportation and/or analysis of the sample;

- field sample grab bias - where separate grab samples are processed to produce total and dissolved samples;

- field sample split bias - where total and dissolved parameters samples are produced from the same grab sample.

For further clarification on any of the above information, please contact your ALS representative.

File No. W9115

RESULTS OF ANALYSIS - Water

Sample ID Sample Date Sample Time <i>ALS ID</i>			SC-1	SC-2	SC-3	SC-4	SC-4
			05-12-19 10:06 <i>1</i>	05-12-19 10:40 2	05-12-19 11:20 3	05-12-19 12:10 <i>4</i>	
Physical Tests Conductivity pH	(uS/cn	n)	260 8.02	259 7.90	263 7.05	271 7.37	
Dissolved Anions Alkalinity-Total Bromide Chloride Fluoride Sulphate	Br Cl F SO4	CaCO3	123 <0.050 <0.50 0.139 18.0	125 <0.050 <0.50 0.140 18.3	129 <0.050 <0.50 0.139 21.8	125 <0.050 <0.50 0.139 25.4	
<u>Nutrients</u> Nitrate Nitrogen Nitrite Nitrogen		N N	0.239 <0.0010	0.240 0.0010	0.240 <0.0010	0.240 <0.0010	

Remarks regarding the analyses appear at the beginning of this report. Results are expressed as milligrams per litre except where noted. < = Less than the detection limit indicated.

File No. W9115

RESULTS OF ANALYSIS - Water

Sample ID		SC-1	SC-2	SC-3	SC-4
Sample Date		05-12-19	05-12-19	05-12-19	05-12-19
Sample Time		10:06	10:40	11:20	12:10
ALS ID		<i>1</i>	2	3	<i>4</i>
Total Metals Aluminum Antimony Arsenic Barium Beryllium	T-Al T-Sb T-As T-Ba T-Be	<0.20 <0.20 <0.20 0.072 <0.0050	<0.20 <0.20 <0.20 0.072 <0.0050	<0.20 <0.20 <0.20 0.072 <0.0050	<0.20 <0.20 <0.20 0.072 <0.0050
Bismuth	T-Bi	<0.20	<0.20	<0.20	<0.20
Boron	T-B	<0.10	<0.10	<0.10	<0.10
Cadmium	T-Cd	<0.010	<0.010	<0.010	<0.010
Calcium	T-Ca	41.7	41.6	42.2	43.3
Chromium	T-Cr	<0.010	<0.010	<0.010	<0.010
Cobalt	T-Co	<0.010	<0.010	<0.010	<0.010
Copper	T-Cu	<0.010	<0.010	<0.010	<0.010
Iron	T-Fe	0.129	0.159	0.151	0.182
Lead	T-Pb	<0.050	<0.050	<0.050	<0.050
Lithium	T-Li	<0.010	<0.010	<0.010	<0.010
Magnesium	T-Mg	9.30	9.30	9.95	10.6
Manganese	T-Mn	0.0350	0.0381	0.0558	0.0830
Molybdenum	T-Mo	<0.030	<0.030	<0.030	<0.030
Nickel	T∽Ni	<0.050	<0.050	<0.050	<0.050
Phosphorus	T-P	<0.30	<0.30	<0.30	<0.30
Potassium	T-K	<2.0	<2.0	<2.0	<2.0
Selenium	T-Se	<0.20	<0.20	<0.20	<0.20
Silicon	T-Si	5.73	5.76	5.76	5.83
Silver	T-Ag	<0.010	<0.010	<0.010	<0.010
Sodium	T-Na	3.2	3.2	3.5	3.3
Strontium	T-Sr	0.172	0.172	0.174	0.178
Thallium	T-Tl	<0.20	<0.20	<0.20	<0.20
Tin	T-Sn	<0.030	<0.030	<0.030	<0.030
Titanium	T-Ti	<0.010	<0.010	<0.010	<0.010
Vanadium	T-V	<0.030	<0.030	<0.030	<0.030
Zinc	T-Zn	0.0100	0.0114	0.0535	0.0595

Remarks regarding the analyses appear at the beginning of this report. Results are expressed as milligrams per litre except where noted. < = Less than the detection limit indicated.

File No. W9115

RESULTS OF ANALYSIS - Water

Sample ID		SC-1	SC-2	SC-3	SC-4
Sample Date		05-12-19	05-12-19	05-12-19	05-12-19
Sample Time		10:06	10:40	11:20	12:10
ALS ID		<i>1</i>	2	3	<i>4</i>
Dissolved Met Aluminum Antimony Arsenic Barium	als D-Al D-Sb D-As D-Ba	<0.20 <0.20 <0.20 0.074	<0.20 <0.20 <0.20 0.070	<0.20 <0.20 <0.20 0.077	<0.20 <0.20 <0.20 0.075
Beryllium	D-Be	<0.0050	<0.0050	<0.0050	<0.0050
Bismuth	D-Bi	<0.20	<0.20	<0.20	<0.20
Boron	D-B	<0.10	<0.10	<0.10	<0.10
Cadmium	D-Cd	<0.010	<0.010	<0.010	<0.010
Calcium	D-Ca	42.9	40.6	45.3	44.4
Chromium	D-Cr	<0.010	<0.010	<0.010	<0.010
Cobalt	D-Co	<0.010	<0.010	<0.010	<0.010
Copper	D-Cu	<0.010	<0.010	<0.010	<0.010
Iron	D-Fe	<0.030	0.041	0.040	0.057
Lead	D-Pb	<0.050	<0.050	<0.050	<0.050
Lithium	D-Li	<0.010	<0.010	<0.010	<0.010
Magnesium	D-Mg	9.58	9.07	10.7	11.0
Manganese	D-Mn	0.0324	0.0334	0.0563	0.0800
Molybdenum	D-Mo	<0.030	<0.030	<0.030	<0.030
Nickel	D-Ni	<0.050	<0.050	<0.050	<0.050
Phosphorus	D-P	<0.30	<0.30	<0.30	<0.30
Potassium	D-K	<2.0	<2.0	<2.0	<2.0
Selenium	D-Se	<0.20	<0.20	<0.20	<0.20
Silicon	D-Si	5.98	5.63	6.15	5.99
Silver	D-Ag	<0.010	<0.010	<0.010	<0.010
Sodium	D-Na	3.3	3.1	3.8	3.5
Strontium	D-Sr	0.177	0.168	0.188	0.183
Thallium	D-TI	<0.20	<0.20	<0.20	<0.20
Tin	D-Sn	<0.030	<0.030	<0.030	<0.030
Titanium	D-Ti	<0.010	<0.010	<0.010	<0.010
Vanadium	D-V	<0.030	<0.030	<0.030	<0.030
Zinc	D-Zn	0.0111	0.0122	0.0566	0.0610

Remarks regarding the analyses appear at the beginning of this report. Results are expressed as milligrams per litre except where noted. < = Less than the detection limit indicated.

File No. W9115 Appendix 1 - METHODOLOGY

Outlines of the methodologies utilized for the analysis of the samples submitted are as follows

Conductivity in Water

This analysis is carried out using procedures adapted from APHA Method 2510 "Conductivity". Conductivity is determined using a conductivity electrode.

Recommended Holding Time: Sample: 28 days Reference: APHA

Laboratory Location: ALS Environmental, Vancouver

pH in Water

This analysis is carried out using procedures adapted from APHA Method 4500-H "pH Value". The pH is determined in the laboratory using a pH electrode.

Recommended Holding Time: Sample: 2 hours Reference: APHA

Laboratory Location: ALS Environmental, Vancouver

Alkalinity in Water by Colourimetry

This analysis is carried out using procedures adapted from EPA Method 310.2 "Alkalinity". Total Alkalinity is determined using the methyl orange colourimetric method.

Recommended Holding Time: Sample: 14 days Reference: APHA

Laboratory Location: ALS Environmental, Vancouver

Dissolved Anions in Water by Ion Chromatography

This analysis is carried out using procedures adapted from APHA Method 4110 "Determination of Anions by Ion Chromatography" and EPA Method 300.0 "Determination of Inorganic Anions by Ion Chromatography". Anions are determined by filtering the sample through a 0.45 micron membrane filter and injecting the filtrate onto a Dionex IonPac AG17 anion exchange column with a hydroxide eluent stream. Anions routinely determined by this method include: bromide, chloride, fluoride, nitrate, nitrite and sulphate.

Recommended Holding Time: Sample: 28 days (bromide, chloride, fluoride, sulphate)

File No. W9115 Appendix 1 - METHODOLOGY - Continued

Sample: 2 days (nitrate, nitrite) Reference: APHA and EPA

Laboratory Location: ALS Environmental, Vancouver

Metals in Water

This analysis is carried out using procedures adapted from "Standard Methods for the Examination of Water and Wastewater" 20th Edition 1998 published by the American Public Health Association, and with procedures adapted from "Test Methods for Evaluating Solid Waste" SW-846 published by the United States Environmental Protection Agency (EPA). The procedures may involve preliminary sample treatment by acid digestion, using either hotplate or microwave oven, or filtration (EPA Method 3005A). Instrumental analysis is by atomic absorption/emission spectrophotometry (EPA Method 7000 series), inductively coupled plasma - optical emission spectrophotometry (EPA Method 6010B), and/or inductively coupled plasma - mass spectrometry (EPA Method 6020).

Recommended Holding Time: Sample: 6 months Reference: EPA

Laboratory Location: ALS Environmental, Vancouver

Results contained within this certificate relate only to the samples as submitted.

This Certificate Of Analysis shall only be reproduced in full, except with the written approval of ALS Environmental.

End of Report