Approach for Developing Water Quality Goals for United Keno Hill Mines

Report Prepared for:

Elsa Reclamation and Development Company Ltd. Whitehorse, YT

Report Prepared by:

Minnow Environmental Inc. 2 Lamb Street Georgetown, Ontario L7G 3M9

June 2011

Approach for Developing Water Quality Goals For United Keno Hill Mines

Report Prepared for:

Elsa Reclamation and Development Company Ltd.

Report Prepared by:

Minnow Environmental Inc.

Cynthia Russel, B.Sc. Project Manager

> Patti Orr, M.Sc. Project Principal

> > June 2011

EXECUTIVE SUMMARY

United Keno Hill Mines Limited and UKH Minerals Ltd. were the previous owners of the properties located on and around Galena Hill, Keno Hill and Sourdough Hill, collectively known as the Keno Hill Mining Property. Although the mine has not operated since 1989, abandoned adits (more than 44), buildings/structures, and waste dumps associated with the site represent sources of contaminants to the downstream watersheds. The most significant of these sources include the lime-treated discharge from the tailings pond system, Galkeno 900 Adit, Galkeno 300 Adit, Bellekeno 600 Adit, Silver King Adit and Valley Tailings. The influence from these sources is largely limited to the tributaries that drain the properties (Christal, Flat and Lightning creeks), although some influence on water and sediment quality can be measured further downstream in the South McQuesten River (Minnow 2008, 2009).

In June 2005, Alexco Resources Corp. was selected as the preferred purchaser of the UKHM assets. As required in the purchase agreement, Alexco formed a subsidiary company – Elsa Reclamation and Development Company Ltd. (ERDC), to own and manage the site. Another requirement of the purchase agreement is for ERDC to prepare and implement, to the satisfaction of the Governments, a Reclamation Plan to address historical mining liabilities on the UHKM claims. Funding for the development and implementation of the Closure Plan is primarily from the Government of Canada (represented by Indian and Northern Affairs Canada (INAC) with some cost sharing by ERDC.

Under the purchase agreement, ERDC is allowed to resume production at a historic mine by declaring it as a Production Unit. The terrestrial liability associated with historical mine operations within the Production Unit remains with the Government of Canada, however, ERDC becomes responsible for water related liabilities in addition to any new terrestrial liabilities associated with the redevelopment of mine operations within the Production Unit. Alexco Resources operates the Bellekeno Mine and is responsible for the BK625 treatment facility and new terrestrial liabilities associated with Bellekeno operations.

One of the mandates of ERDC is to develop a Reclamation Plan for the "Existing State of the Mine" such that historical mining liabilities may be addressed and future environmental conditions anticipated. ERDC is currently in the process of developing this reclamation plan.

As part of the development and implementation of a closure plan, EDRC, INAC, Yukon Government (YG), First Nations and other interested groups will need to establish criteria on which to evaluate closure conditions and set expectations for environmental performance within the downstream receiving environment. Based on a review of water quality data within the watersheds affected by historical UKHM operations, it is unlikely that concentrations of

key mine related contaminants (cadmium and zinc) will achieve any site specific water quality objective (SSWQO) developed through standard approaches (CCME 2003). Therefore, an alternative approach for setting water quality expectations should be considered for these historically affected areas.

EDRC retained Minnow Environmental Inc. to develop an approach to water quality goals and assessment in Christal and Flat creeks and the South McQuesten River. The approach provided herein is a conceptual level approach to water quality evaluation that needs to be considered by the various stakeholders associated with UKHM prior to proceeding with final objectives and goals for the various affected watercourses. This Framework will be reviewed by stakeholders (INAC, First Nations and YG) to arrive at final water quality objectives for the historic properties prior to the selection of closure options. Ultimately, specific details of an approved approach to water quality evaluation will need to be incorporated into future water license requirements.

Recognizing that the UKHM receiving environment has been effected over many years and decades by various mining operations, the objective of this study was to develop an approach to assessing water quality downstream of UKHM that would serve to protect existing biota within the immediate receiving environment (Flat and Christal creeks) and provide for no further degradation of the South McQuesten River relative to upstream conditions. In order to achieve this objective, water quality data was reviewed relative to the toxicological thresholds in the proposed Canadian Water Quality Guidelines (CWQG; Environment Canada 2009a, b), and upstream or regional background conditions.

South McQuesten River

In mid 2007, it was noted that concentrations of various metals including cadmium and zinc had increased upstream of UKHM on the South McQuesten River (KV-1). Further examination found that concentrations of cadmium and zinc have been above both the existing and proposed future CWQG in the South McQuesten River since mid-2006. Furthermore, cadmium and zinc concentrations showed an increasing trend both upstream of UKHM at KV-1 and downstream at KV-4 and KV-5 between 2006 and 2009. Comparison of the slopes of these increases determined that the concentrations of cadmium and zinc are increasing at the same rate downstream (KV-4 and KV-5) as upstream (KV-1) indicating that the source of the increase in water concentrations in the South McQuesten River is upstream of UKHM.

When background concentrations exceed a CWQG, a statistic describing the upper range of background concentrations (e.g. 95th percentile) can be used as a SSQWO (CCME 2003).

However, it is uncertain whether or for how long concentrations upstream of UKHM (KV-1) will continue to increase, so it is not currently possible to establish a single numerical value that represents the upper limit of upstream/background conditions. This means that an alternative approach must be considered for evaluating the influence of UKHM in downstream areas of the South McQuesten (KV-4, KV-5). Therefore, it is recommended that downstream water quality objectives for cadmium and zinc and possibly other contaminants be linked to concentrations upstream of UKHM (i.e., KV-1) such that no further degradation of water quality occurs downstream of UKHM (KV-4 and KV-5) relative to upstream conditions.

Flat Creek and Christal Creek

Over the past twenty years concentrations of cadmium and zinc have been elevated well above the CWQG (i.e., mean values more than ten times the CWQG) in Flat Creek and Christal Creek (Minnow 2008). Since 2006, concentrations of both cadmium and zinc have been decreasing in both Flat Creek (KV-9) and Christal Creek (KV-7), and concentrations are now in the same range as those observed in the South McQuesten River. The improvement in water quality within the tributaries is likely associated with remedial measures implemented by EDRC starting in 2006 (e.g. clarifies at Galkeno 300 and water management and treatment at the Galkeno 900). While it is expected that concentrations will continue to decrease, they are not expected to achieve CWQG in the near future due to continued contributions from non-point sources. Therefore, alternative water quality goals need to be developed for Flat and Christal creeks.

Mean cadmium and zinc concentrations (2009) in both Flat and Christal Creeks have been greater than proposed long-term term exposure guidelines and also, in the case of zinc, maximum concentrations are above the proposed short-term exposure guideline, suggesting potential for effects to biota within these watercourses.

It is recommended that water quality goals for Flat and Christal creeks should aim to prevent further degradation of water quality such that the diversity and abundance of the existing resident biota is protected. Routine monitoring conducted as part of the Long-Term Aquatic Monitoring Program (Minnow 2011) should be assessed annually to ensure conditions are stable or improved relative to previous conditions and background and the effects of these goals should be verified through routine biological monitoring. It is expect that as conditions improve and stabilize the magnitude and frequency will be reduced.

TABLE OF CONTENTS

1.0)	INTRODUCTION	1
	1.1	Background	
	1.2	Project Objectives and Approach	
	1.3	Document Organization	
2.0)	METHODS	5
_	2.1	Evaluation of Recent Water Quality	
		Assessment of Potential Impacts	
	2.2	· · · · · · · · · · · · · · · · · · ·	
	2.2	· · · · · · · · · · · · · · · · · · ·	
	2.3	Assessment of Water Quality Impacts	
3.0)	GOALS AND OBJECTIVES	8
		South McQuesten River	
	3.1		
	3.1		_
	2.2	River	
•		Tributaries	
	3.2		
	3.2		
	3.2	.3 Proposed Approach to Water Quality Goals	. 12
4.0)	CONCLUSIONS	.14
5.0)	REFERENCES	.15

APPENDIX A: Water Quality Data

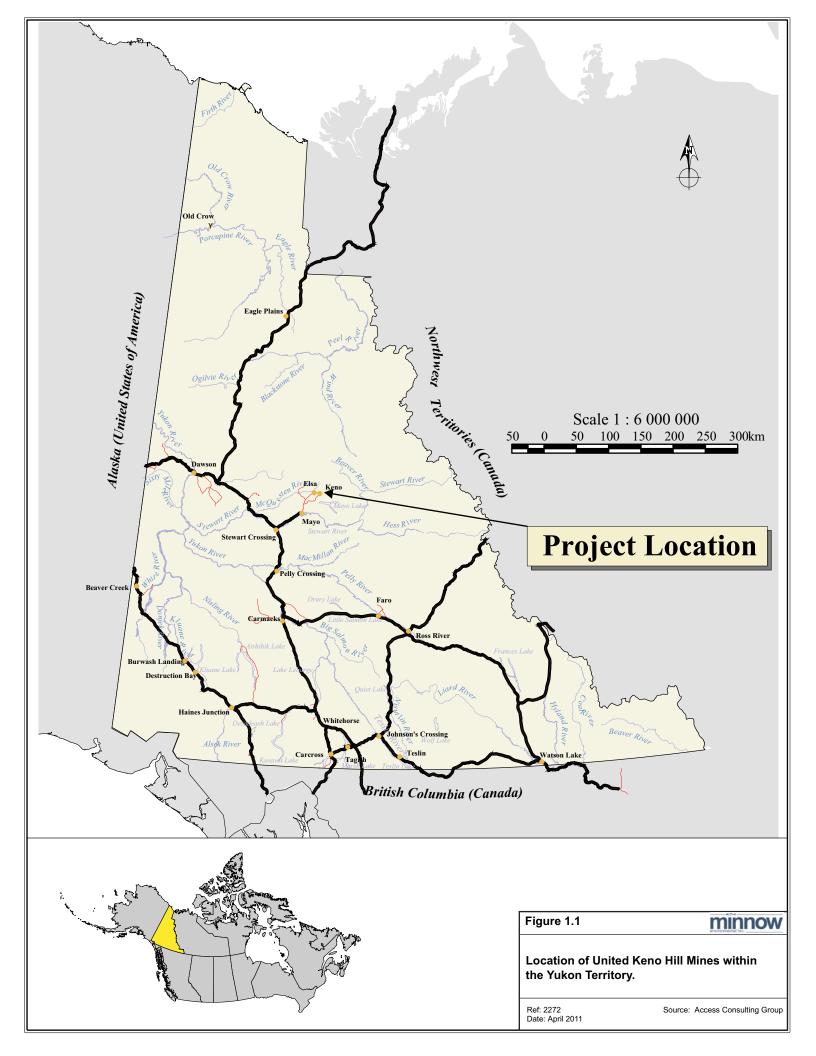
APPENDIX B: Cadmium Toxicity Data

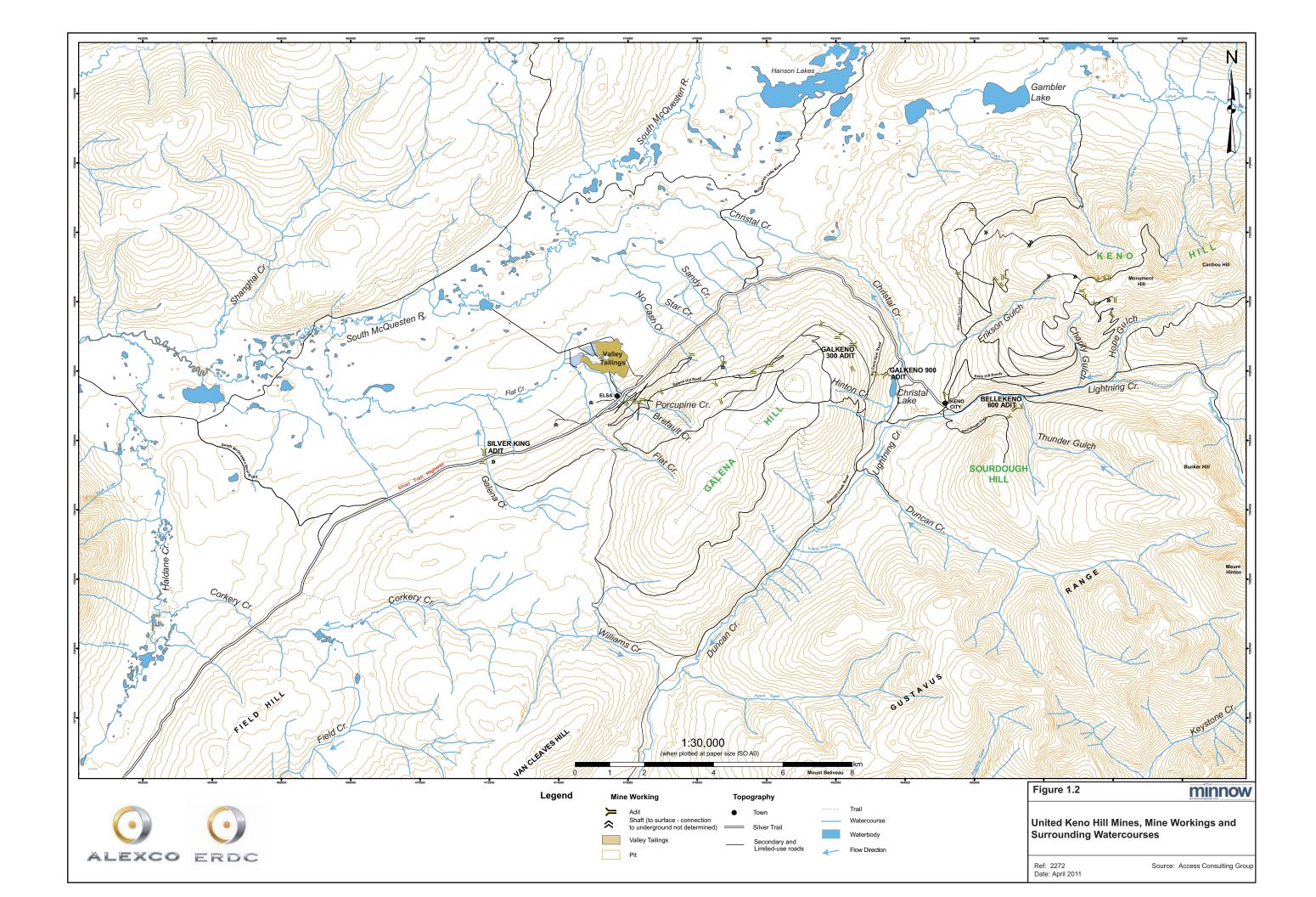
APPENDIX C: Zinc Toxicity Data

APPENDIX D: Hardness- Toxicity Relationships for Zn and Cd

LIST OF TABLES

	<u>Afte</u>	r Page:
Table 3.1:	Lowest effect endpoint reported for each freshwater species after a le	_
Table 3.2:	Lowest effect endpoint reported for each freshwater species after a le exposure to zinc	_
LIST OF	FIGURES	
	<u>Afte</u>	r Page:
Figure 1.1:	Location of United Keno Hill Mine complex	1
Figure 1.2:	Mine workings and surrounding watercourses	1
Figure 2.1:	Water monitoring stations used in assessment	5
Figure 3.1	Water concentration of total cadmium and zinc measured in the Sout	th
	McQuesten River 2006 to 2009	8
Figure 3.2:	Comparison of water concentrations over time in the South McQuest	
Figure 3.3:	Concentrations of total cadmium and zinc measured at Flat and Chri Creek, 2006 to 2009	stal
Figure 3.4:	Mean concentrations of total cadmium, total zinc and dissolved hards 2009	ness,
Figure 3.5:	Total cadmium and zinc concentrations at UKHM stations relative to	CWQG
Figure 3.6:	and toxicity thresholds. Number of Heptageniidae identified in samples collected in the vicini UKHM in August 2009	ty of


1.0 INTRODUCTION


1.1 Background

United Keno Hill Mines Limited and UKH Minerals Ltd. were the previous owners of the properties located on and around Galena Hill, Keno Hill and Sourdough Hill, collectively known as the Keno Hill Mining Property. For the purposes of this report these mining areas are referred to as the United Keno Hill Mines (UKHM). The UKHM complex is located in north-central Yukon Territory (Figure 1.1) and is comprised of approximately 827 mineral claims that cover an area of approximately 15,000 ha (about 29 km long and 8 km wide). Although the mine has not operated since 1989, there are abandoned adits (more than 44), buildings/structures, and waste dumps associated with the UKHM Complex that represent sources of contaminants to the downstream watersheds. The most significant of these sources include the lime-treated discharge from the tailings pond system, Galkeno 900 Adit, Galkeno 300 Adit, Bellekeno 600 Adit, Silver King Adit and Valley Tailings (Figure 1.2; Burns 2008). The influence from these sources is largely limited to the tributaries that drain the properties (Christal, Flat and Lightning creeks), although some influence on water and sediment quality can be measured further downstream in the South McQuesten River (Minnow 2008, 2009). In addition to the historical mining activities, the area is currently host to a number of placer mining operations which cause extensive alteration of the watercourses and impacts to habitat and water quality downstream (Dan Cornett, Access Consulting, pers. comm.; Pentz and Kostaschuk, 1999).

In June 2005, Alexco Resources Corp. was selected as the preferred purchaser of the UKHM assets. As required in the purchase agreement, Alexco formed a subsidiary company – Elsa Reclamation and Development Company Ltd. (ERDC), to own and manage the site. Another requirement of the purchase agreement was for ERDC to prepare and implement, to the satisfaction of the Governments, a Closure Plan to address historical mining liabilities on the UHKM claims. Funding for the development and implementation of the Closure Plan is primarily from the Government of Canada (represented by Indian and Northern Affairs Canada (INAC) with some shared costs by ERDC.

Under the purchase agreement, ERDC is allowed to resume production at a historic mine by declaring it as a Production Unit. The terrestrial liability associated with historical mine operations within the Production Unit remains with the Government of Canada, however, ERDC becomes responsible for water related liabilities in addition to any new terrestrial

liabilities associated with the redevelopment of mine operations within the Production Unit. Alexco Resources operates the Bellekeno Mine and is responsible for the BK625 treatment facility and new terrestrial liabilities associated with Bellekeno operations. Regardless of the current and potential future production units, INAC has, and will continue to have, significant involvement in the development of the Closure Plan for the UKHM property.

As part of the development and implementation of a closure plan, EDRC, INAC, YG, First Nations and other interested groups will need to establish criteria on which to evaluate closure conditions and set expectations for environmental performance within the downstream receiving environment. A review of water quality at UKHM identified cadmium and zinc as the primary contaminants of concern (Minnow 2008). The concentrations of these substances were substantially elevated in the tributaries of the South McQuesten River (Flat Creek and Christal Creek) but were generally within Canadian Water Quality Guidelines (CWQG; CCME, 1999) within the South McQuesten River downstream of UKHM. Therefore it was expected that the CWQG could be used as assessment values for the South McQuesten River. However, water quality within the tributaries (Flat and Christal creeks) is not expected to achieve the CWQG in the near future. Furthermore, it is unlikely that concentrations of these elements (cadmium and zinc) would achieve a site specific water quality objective (SSWQO) developed through standard approaches (CCME 2003). Therefore, an alternative approach for setting water quality expectations should be considered for these historically affected areas.

EDRC retained Minnow Environmental Inc. to develop an approach to water quality goals and assessment in Christal and Flat creeks and the South McQuesten River¹. This report summarizes our assessment of water quality conditions in both the tributaries and South McQuesten River and provides a recommended approach for future water quality assessment downstream of UKHM. The approach provided herein is a conceptual level approach to water quality evaluation that needs to be considered by the various stakeholders associated with UKHM prior to proceeding with final objectives and goals for the various affected watercourses. This Framework will be reviewed by stakeholders (INAC, First Nations and YG) to arrive at final water quality objectives for the historic properties prior to the selection of closure options. Ultimately, specific details of an

_

water quality objectives should be reassessed.

¹ Lightning Creek was not considered in this assessment as the existing data base indicated that concentrations within Lightning Creek were close to the CWQG. However, the data base for the creek was limited with respect to the extent of data and appropriate method detection limits. As additional monitoring data is obtained, the status of Lightning Creek with respect to the need for

approved approach to water quality evaluation will need to be incorporated into future water license requirements.

1.2 Project Objectives and Approach

As part of a previous water quality assessment (Minnow 2008), cadmium and zinc were identified as the primary contaminants of concern (COCs) related to the UKHM complex because they are the substances that are most elevated relative to guidelines and water quality in undisturbed areas. While a number of other substances were identified as possible COCs, these have yet to be confirmed². However, management of cadmium and zinc is expected to control other mine related substances. Thus, an approach to water quality goals is only recommended for cadmium and zinc at this time. Once sufficient information is compiled on the possible COCs, the need for water quality goals or objectives for these substances should be revisited.

Recognizing that the UKHM receiving environment has been effected over many years and decades by various mining operations, the objective of this study was to develop an approach to assessing water quality downstream of the historic UKHM complex that would:

- serve to protect the resident biota (no decline relative to current species diversity) and prevent further degradation of water quality with in the immediate receiving environment (Flat and Christal creeks) and
- provide for no further degradation in the South McQuesten River relative to upstream conditions.

In order to achieve this objective, recent water quality was reviewed relative to the toxicological thresholds in the proposed CWQG (Environment Canada 2009a, b), and upstream or regional background conditions.

1.3 Document Organization

Section 2.0 presents the methods used in the evaluation of data for this project. Section 3.0 summarizes the current water quality in the South McQuesten River and its tributaries, the toxicity data for cadmium and zinc presented in the scientific literature, and compares these values to recent water quality concentrations for aquatic environments downstream

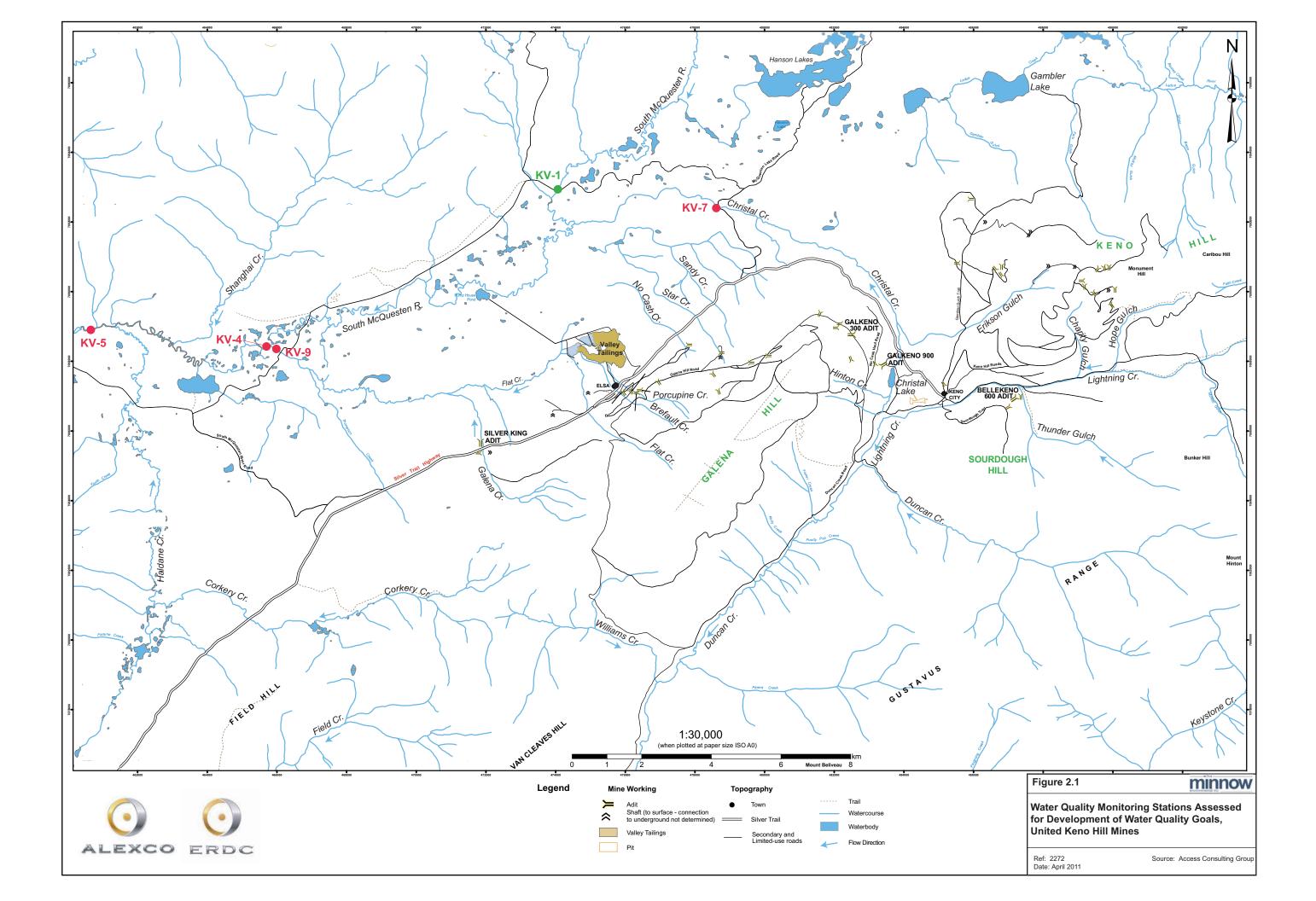
² EDRC has initiated a more robust water quality monitoring program in order to compile the data necessary to assess possible COCs. When two years of monitoring data at appropriate method detection limits has been compiled, the final list of mine COCs and monitoring parameters can be established.

of UKHM. Conclusions are presented in Section 4.0. References cited throughout the document are presented in Section 5.0

2.0 METHODS

2.1 Evaluation of Recent Water Quality

Aqueous cadmium and zinc concentrations were assessed for routine monitoring stations in Christal Creek (KV-7) and Flat Creek (KV-9), as well as in the South McQuesten River both upstream (KV-1) and downstream of UKHM inputs (KV-4 and KV-5) (Figure 2.1; Appendix A). The mine exposed stations selected delimit mine influence within each water course assessed. Concentrations of these substances were plotted over time (2006 to 2009) and relative to water quality guidelines. The current guidelines (CCME 1999) were initially used to evaluate past water quality data. However, new guidelines are in development for cadmium and zinc that incorporate the large number of studies published in the scientific literature since the original guidelines were developed and also involve a different method for guideline derivation (Environment Canada 2009 a, b). The proposed guidelines are therefore a better reflection of the state-of-the-science regarding aquatic effects of cadmium and zinc; however, they are still undergoing provincial agency review and then will need to be circulated for public comment prior to being adopted. Although this process may result in modification of the guideline values, any adjustments are expected to be minor, so the proposed guidelines were considered in the water quality evaluation for UKHM.


The existing CWQG for cadmium (CCME 1999) and proposed revised guidelines for both cadmium and zinc (Environment Canada 2009 a, b) depend on water hardness, because the toxicity of these substances declines as hardness increases. A hardness of 100 mg/L as CaCO₃ was selected as the basis for comparison in this evaluation, because water hardness downstream of the UKHM is rarely lower than this level (Appendix A) and the mean background concentration is also higher (i.e., 162 mg/L; Minnow 2008). Thus the water quality guidelines applied in this assessment were conservative in terms of flagging concentrations that might be of concern with respect to protection of aquatic biota in waters downstream of UKHM.

For stations where water quality trends were observed over time, slopes were plotted and statistically compared using analysis of covariance (ANCOVA) (SPSS 2003).

2.2 Assessment of Potential Impacts

2.2.1 Toxicity Data Sources and Organization

Recently-prepared toxicity data summaries for zinc and cadmium, along with copies of much of the source literature were obtained from Environment Canada's Guidelines and

Standards Office in Gatineau Quebec, augmented by relevant scientific literature from Minnow's in-house files. The source literature was reviewed to verify the accuracy of the data sets provided and allow for clarification of test conditions. The reviews of source literature resulted in some minor modifications of the original data sets.

Raw data tables presented details of each toxicity test, including results of replicate exposures within studies, if available. The tabulated information included species common and scientific name, test duration, test endpoint, observed effect concentration, test conditions (e.g., hardness, pH, etc., if reported) and source (author, year). Toxicity test data were distinguished as short-term versus long-term exposures. Depending on the species and life-stage tested, short-term exposures were defined as less than one (algae), four (invertebrates and larval fish), or seven days (older fish), consistent with current Environment Canada protocols (Environment Canada 2008, 2009). Long-term exposure data were considered most relevant for assessing potential effects associated with chronic exposure to mine-related contaminants at UKHM so toxicity evaluations for cadmium and zinc focussed primarily on long-term exposure data.

2.2.2 Assessing Relative Species Sensitivities

The toxicities of cadmium and zinc are influenced by various water quality factors, of which the best characterized is hardness (Environment Canada 2009 a, b). In order to rank the relative sensitivities of different aquatic species to these contaminants, it was necessary to convert reported effect concentrations to common water hardness, thereby removing the influence of variable test conditions on relative species toxicity thresholds. A conservative hardness of 100 mg L⁻¹ as CaCO₃ was selected as the basis for comparison, because water hardness downstream of the UKHM is rarely lower than this level. However, effects at other hardnesses were also evaluated (see below).

Hardness-toxicity relationships were first defined for individual species for which adequate data were available. This was done by examining the raw data to identify toxicity tests for which the hardness of the exposure water was reported and identifying species for which there were data for the same or similar endpoints over a range of exposure water hardness levels (>2-fold range), including at least one exposure with water hardness of at least 100 mg/L. For zinc, only tests conducted at pH \geq 7.4 were included to minimize the variability associated with this potentially confounding factor (more data were available for a basic than neutral-acidic range of exposure pH). If there were replicate test results within a study for the same endpoint at the same or similar water hardness, geometric mean hardness and effect concentrations were computed before using the data to define the hardness-toxicity relationship for the substance.

The resulting data were then plotted for each species based on a regression of natural logarithm (Ln) of toxicant concentration as the dependent variable against Ln hardness as the independent variable. This yielded the species-specific slope for the hardness-toxicity relationship. For both substances (Cd, Zn), there were sufficient data to derive a slope for at least one plant/alga, invertebrate, and fish species.

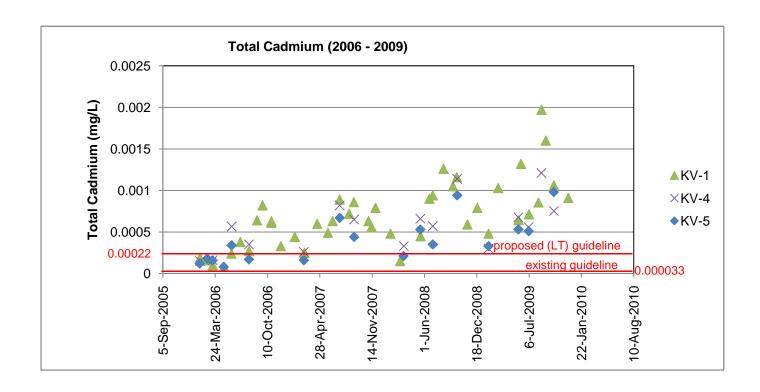
For each contaminant, the slopes for the hardness-toxicity relationship were tested for differences among species and, if not different, the slopes were combined to generate an average slope. After consideration of the data and potential implications of applying different slopes for different species or groups of species, a decision was made to generate a combined slope (including short- and long-term exposure data). This recognized that the range of slopes for short- versus long-term exposure data overlapped, there were no differences in slope that could be confidently ascribed to particular species or group, and this approach would ensure better consistency with respect to data handling for both contaminants.

To assess relative species sensitivity, the lowest toxic effect concentration corresponding to an exposure hardness of 100 mg/L was identified for each study and species. For studies not including an exposure hardness of 100 mg/L, the toxic effect concentration for each study-species combination was adjusted to an exposure hardness of 100 mg/L based on the combined slope for the hardness-toxicity relationship. The lowest value for each species (at hardness of 100 mg/L) was then identified and used to rank all species in terms of relative sensitivity. In cases where there were both effect (e.g., EC10, IC25, maximum acceptable toxicant concentration [MATC], etc.) and no-effect (NOEC) endpoints reported, the lowest effect concentration was selected.

For species for which the original test hardness was reported, the same slope factors described above were also used to estimate toxicity at other water hardness values (than 100 mg/L). If test hardness was not reported, an adjustment could not be made and the same reported effect concentration for the species was assumed for all water hardnesses.

2.3 Assessment of Water Quality Impacts

Recent water concentrations of cadmium and zinc measured at key locations downstream from UKHM were compared to toxic threshold concentrations reported in the literature for different aquatic species (at a water hardness of 100 mg/L). This was done to identify species that may be adversely affected by current water quality and take this into account in setting future water quality goals.


3.0 GOALS AND OBJECTIVES

3.1 South McQuesten River

3.1.1 Current Conditions

Prior to 2006, water concentrations of cadmium and zinc in the South McQuesten River downstream of UKHM were generally less than the existing CWQG (Minnow 2008). Therefore, it was expected that the CWQG could be used as benchmarks for assessment of future water quality and that site-specific water quality goals or objectives would not be required. However, in mid 2007, it was noted that concentrations of various metals including cadmium and zinc had increased upstream on the South McQuesten River at KV-1. Further examination of cadmium and zinc concentrations indicated that the concentrations have been above both the existing and proposed future CWQG both upstream and downstream of UKHM since mid-2006 (Figure 3.1). In addition, concentrations showed an increasing trend both upstream of UKHM at KV-1 and downstream at KV-4 and KV-5 between 2006 and 2009. Comparison of the slopes of these increases determined that the concentrations of cadmium and zinc are increasing at the same rate downstream (KV-4 and KV-5) as upstream (KV-1; Figure 3.2). Furthermore, mean zinc concentrations adjusted for date were significantly lower at stations downstream of the UKHM discharges (KV-4 and KV-5; p<0.001) than at upstream station KV-1 over the same period. Similarly, cadmium concentrations at KV-5 were significantly lower than at KV-1 (p=0.001), while mean cadmium concentrations at KV-4 and KV-1 were similar (p=0.208; Appendix Table A.2c). These results indicate that a source upstream of KV-1 was responsible for the increase in water concentrations in the South McQuesten River (KV-1, KV-4 and KV-5) and that UKHM is not causing a measurable increase in concentrations downstream of the site at KV-4 and KV-5.

When background concentrations exceed a CWQG, a statistic describing the upper range of background concentrations (e.g. 95th percentile) can be used as a site specific water quality objective (SSQWO; CCME 2003). However, it is uncertain whether or for how long concentrations upstream of UKHM (KV-1) will continue to increase, so it is not currently possible to establish a single numerical value that represents the upper limit of upstream background conditions. This means that an alternative approach must be considered for evaluating the influence of UKHM in downstream areas of the South McQuesten (KV-4, KV-5).

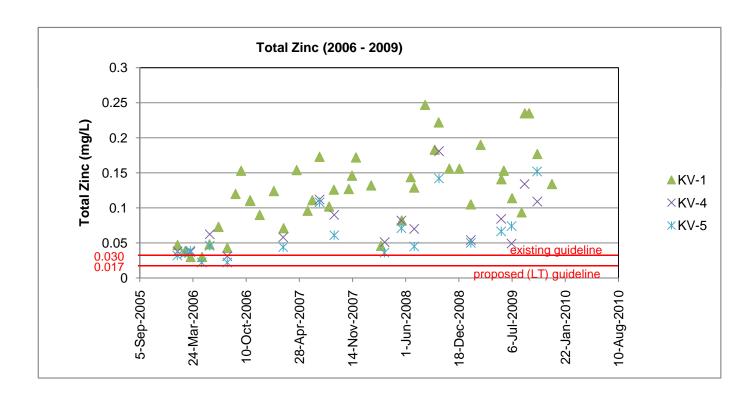
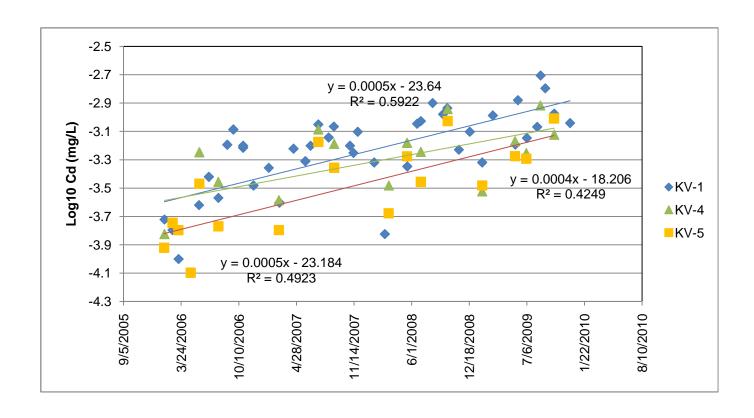



Figure 3.1: Water concentrations of total cadmium and zinc measured in the South McQuesten River at KV-1, KV-4 and KV-5 between 2006 and 2009 relative to existing (CCME 1999) and proposed long-term (LT) exposure guidelines based on a water hardness of 100 mg/L (Environment Canada 2009 a,b).

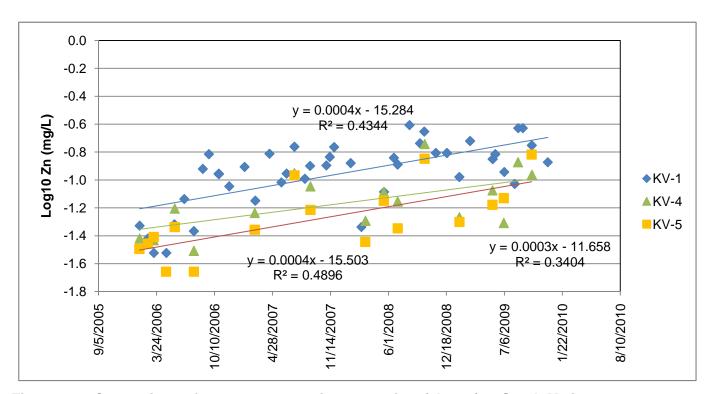


Figure 3.2: Comparison of water concentrations over time (slopes) at South McQuesten River stations KV-1, KV-4 and KV-5, 2006 to 2009. Slopes were not significantly different at p=0.05 (Appendix Table A.2).

3.1.2 Proposed Approach for Water Quality Assessment in the South McQuesten River

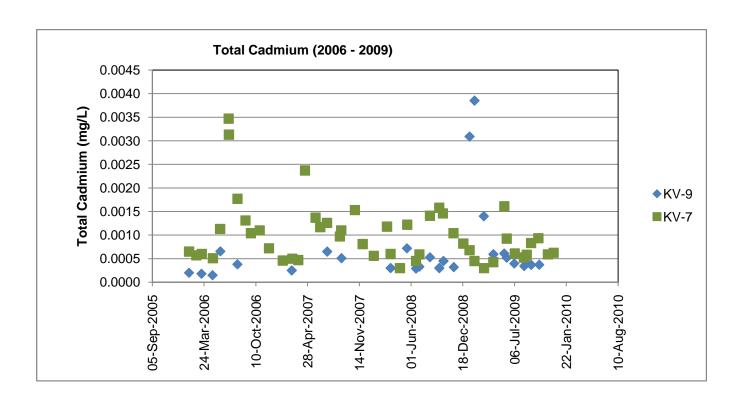
As noted above, concentrations of cadmium and zinc have been increasing downstream of UKHM as a result of increasing concentrations upstream. Until the concentrations upstream are reduced or stabilize, a single water quality criterion cannot reasonably be employed downstream in the South McQuesten River. Therefore, downstream water quality objectives for cadmium and zinc and possibly other contaminants should be linked to concentrations upstream of UKHM (i.e., KV-1) such that no further degradation of water quality occurs downstream of UKHM (KV-4 and KV-5) relative to upstream conditions. A possible approach to evaluating water quality within the South McQuesten River might include:

- An annual evaluation of monthly water samples collected at KV-1, KV-4 and KV-5, relative to all substances associated with UKHM, particularly cadmium and zinc.
- The mean annual concentrations of cadmium and zinc at KV-4 and KV-5 should not exceed those measured upstream at KV-1. Means should be statistically compared using ANOVA. An increase in mean cadmium and/or zinc that is not statistically significant should still be investigated to determine if it may be an early indicator of an increasing trend associated with historic UKHM inputs (e.g., perhaps examine trends in water quality monitoring data from upstream source areas based on both concentrations and loads).
- Water quality trends at all areas should be evaluated by a qualified professional at a frequency consistent with detailed watershed reporting as recommended in the Long-Term Aquatic Monitoring Program (LTAMP; Minnow 2011).
- The slope of downstream concentrations (KV-4 and KV-5) should be statistically compared to KV-1 (ANCOVA) to confirm that the rates of change downstream are equal to or less than that measured upstream.

3.2 Tributaries

3.2.1 Current Water Quality

Lightning Creek was not considered in this assessment as the existing data base indicated that concentrations within Lightning Creek were close to the CWQG (CCME 1999). However, the data base for the creek was limited with respect to the extent of data and appropriate method detection limits. The status of Lightning Creek with respect to the need for water quality objectives should be reassessed when additional monitoring data is


obtained and in light of proposed changes to the CCME cadmium and zinc guidelines (Environment Canada 2009a,b). In addition, there is extensive placer mining within the Lightning Creek and Duncan Creek watersheds and this will need to be taken into consideration as a potential contributor when an approach to water quality assessment is developed for Lightning Creek.

In Flat Creek and Christal Creek, concentrations of cadmium and zinc have historically been elevated well above the CWQG (i.e., mean values more than ten times the CWQG; Minnow 2008). Although closure and associated remediation measures are planned and/or underway, it is not possible to accurately predict future concentrations due to the number of sources and uncertainty of future loads from surface contamination within these catchments (i.e., remedial measures are aimed at addressing specific known sources but it is unclear to what extent total loadings can be expected to decrease).

Since 2006, concentrations of both cadmium and zinc have been decreasing in both Flat Creek (KV-9) and Christal Creek (KV-7; Figure 3.3), and concentrations are now in the same range of those observed in the South McQuesten River (Figure 3.4). The improvement in water quality within the tributaries is likely associated with remedial measures implemented by EDRC starting in 2006 (e.g. clarifies at Galkeno 300 and water management and treatment at the Galkeno 900). While it is expected that concentrations will continue to decrease, they are not expected to achieve CWQG in the near future due to continued contributions from non-point sources (e.g. disbursed tailings dust on surface soils). Therefore, alternative water quality goals need to be developed for these creeks. Mean cadmium and zinc concentrations (2009) in both Flat and Christal Creeks have been greater than proposed long-term term exposure guidelines and in the case of zinc, maximum concentrations are also above the proposed short-term exposure guideline, suggesting potential for effects to biota within these watercourses (Environment Canada 2009 a, b; Figure 3.5). Potential site-specific impacts are evaluated in more detail below.

3.2.2 Review of Toxicity Information

While concentrations are expected to remain above the long-term CWQG for the foreseeable future, the implications to resident and locally important biota is species-specific because effect concentrations vary widely between aquatic species and are dependent upon site specific water quality factors. Also, the CWQG presented are based on a conservative water hardness of 100 mg/L, which is lower than the hardnesses observed in Flat Creek and Christal Creek during the past three years (i.e., 80% of values > 200 mg/L and mean values ≥ 300 mg/L) (Figure 3.4; Appendix Table A.1).

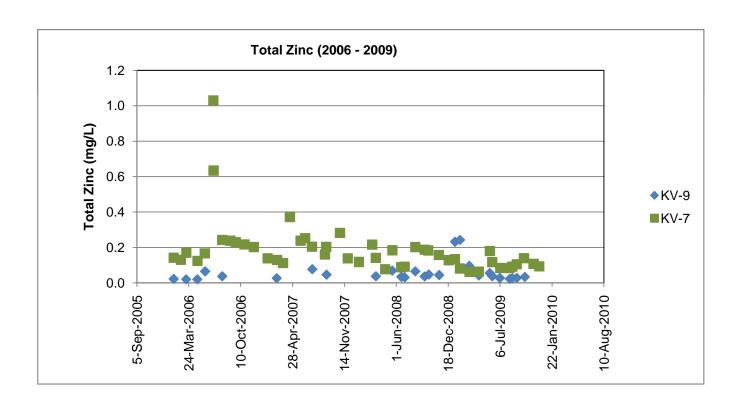
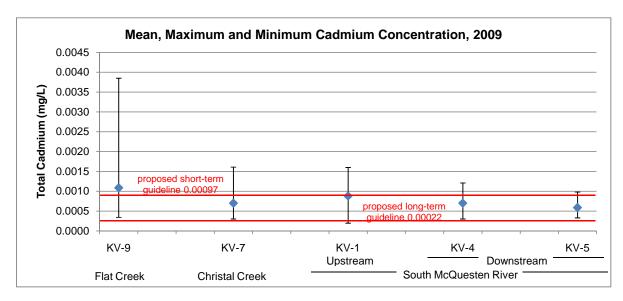
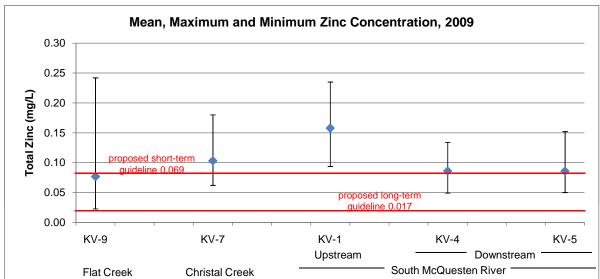




Figure 3.3: Concentrations of total cadmium and zinc measured at Flat Creek (KV-9) and Christal Creek (KV-7) between 2006 and 2009.

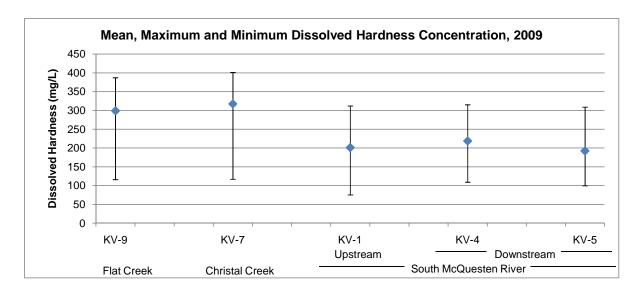
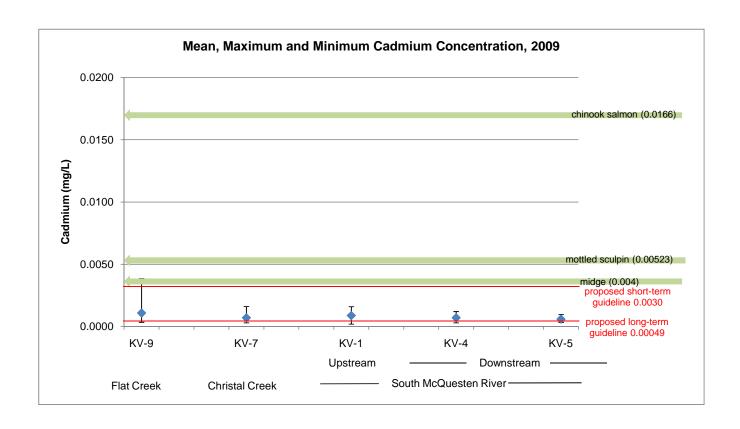



Figure 3.4: Mean water concentration (with maximum and minimum) of total cadmium, total zinc and dissolved hardness at key stations near UKHM in 2009.

Guidelines are based on water hardness of 100 mg/L.

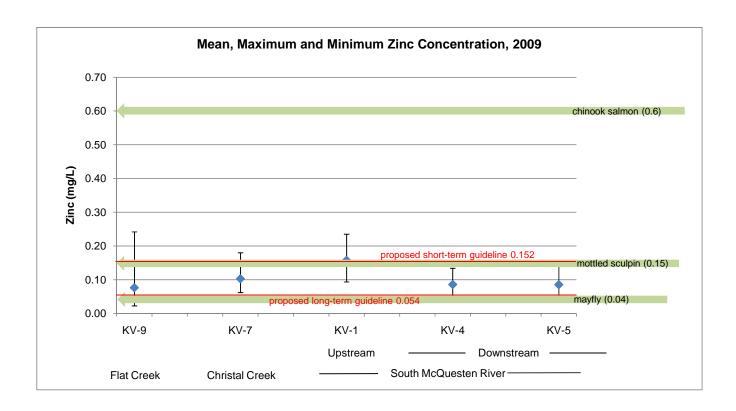


Figure 3.5: Total cadmium and zinc concentrations at selected UKHM stations relative to proposed CWQG and toxicity thresholds reported in the literature for selected species based on a water hardness of 300 mg/L.

The aquatic toxicities of zinc and cadmium are lower at higher water hardness (Appendix Figure D.1 and D.2), so effects to resident biota are likely less than would be predicted by CWQG established for a hardness of 100 mg/L. Therefore, potential impacts to aquatic biota near UKHM are discussed in more detail below relative to observed concentrations of cadmium, zinc and hardness and toxicity data presented in the literature.

In 2009, mean **cadmium** concentrations in Flat (KV-9) and Christal (KV-7) creeks were 0.0011 and 0.0007 mg/L, respectively (Figure 3.4). These concentrations were above the toxic thresholds of some aquatic biota at water hardnesses up to 300 mg/L (Table 3.1). Although this suggests that current water quality may affect some sensitive biota within these tributaries, the majority of species would not likely be affected, even during periods when water hardness is below average for each tributary (Table 3.1). In particular, fish species such as sculpin³ and Chinook salmon would not be affected at cadmium and hardness levels typically observed in each creek (Figure 3.5). While long-term exposure data were not available for arctic grayling, a short-term (4-day) test in very low water hardness (41 mg/L) resulted in mortality to 50% of exposed organisms (LC50) at 0.004 mg/L (Buhl and Hamilton 1991), suggesting arctic grayling are also not affected by current water quality downstream of UKHM. Overall, it is expected that if cadmium concentrations remain stable or decline over time that further biological impacts will be minimal and existing biological communities will be protected.

Mean **zinc** concentrations in 2009 were 0.077 and 0.103 mg/L in Flat Creek and Christal Creek respectively (Figure 3.4). The majority of species tested would not likely be affected by such concentrations, particularly at typical water hardnesses of 300 mg/L (Table 3.2). This includes locally important fish species such as sculpin and Chinook salmon. Long-term exposure data are lacking for Arctic grayling, but 96-h LC50s of 0.11 to 0.17 mg/L zinc were reported in exposures involving very low water hardness, so effect concentrations would be higher (lower toxicity) at water hardnesses typically observed in Flat and Crystal creeks. Generally, the effects associated with current zinc levels are probably low, although the upper concentrations reported in both creeks have the potential to affect locally important species if sustained. Nonetheless, as indicated for cadmium, current biological communities will be protected if future concentrations remain stable or decline relative to current levels.

The above results are consistent with continued observations of both sculpin and grayling in Flat and Christal creeks (Minnow 2009).

_

³ Toxicity data are available for mottled sculpin, whereas slimy sculpin is the species present near UKHM.

Table 3.1: Lowest effect endpoint reported for each freshwater species after a long-term exposure to cadmium (adapted from Minnow 2010).

	Scientific Name	Duration	Endpoint	Observed Effect	Test Hardness (mg/L)	Reported Effect Concentration (mg/L)	Hardness-Adjusted Effect Concentration			
Species Common Name							Effect Concentration (mg/L) at 50 mg/L Hardness ^a	Effect Concentration (mg/L) at 100 mg/L Hardness ^a	Effect Concentration (mg/L) at 200 mg/L Hardness ^a	Effect Concentration (mg/L) at 300 mg/L Hardness ^a
Water flea	Daphnia magna	7 d	EC10	Reproduction - Brood size	179	0.00014	0.00004	0.00008	0.00016	0.00024
Water flea	Ceriodaphnia reticulata	7 d	MATC	Reproduction - Number of young per adult	240	0.00043	0.00009	0.00018	0.00036	0.00054
Amphipod - scud	Hyalella azteca	28 d	IC25	Biomass, decrease in	280	0.00051	0.00009	0.00018	0.00036	0.00055
Rainbow trout	Oncorhynchus mykiss	65 wks	MATC	Reproduction - delay in oogenesis	250	0.00091	0.00018	0.00036	0.00072	0.00110
Midge	Chironomus tentans	60 d	IC25	Hatching success	280	0.004	0.001	0.001	0.003	0.004
Mottled sculpin	Cottus bairdi	21 d	EC50	Biomass, decrease in	104	0.00177	0.00084	0.00170	0.00346	0.00523
Atlantic salmon	Salmo salar	496 d	LOEC/L	Weight and Length	28	0.00047	0.00085	0.00173	0.00351	0.00532
Bull trout	Salvelinus confluentus	55 d	MATC	Growth	30.6	0.00055	0.00091	0.00184	0.00375	0.00567
Green hydra	Hydra viridissima	7 d	NOEC/L	Population growth inhibition	19.5	0.0004	0.0010	0.0021	0.0043	0.0066
Amphipod - gammarid	Echinogammarus meridionalis	6 d	LOEC/L	Feeding inhibition	263.4	0.0064	0.0012	0.0024	0.0048	0.0073
Amphipod - gammarid	Gammarus pulex	5 d	LOEC/L	Mortality	269.2	0.0075	0.0013	0.0027	0.0055	0.0084
Brown trout	Salmo trutta	30 d	IC20	Biomass, decrease in	29.2	0.0009	0.0015	0.0031	0.0062	0.0094
Brook Trout	Salvelinus fontinalis	126 d	MATC	Biomass, decrease in	45	0.002	0.002	0.005	0.009	0.014
Coho salmon	Oncorhynchus kisutch	27 d	MATC	Biomass, decrease in	45	0.0021	0.0023	0.0048	0.0097	0.0146
Chinook salmon	Oncorhynchus tshawytscha	8 d	LC10	Mortality	23	0.0012	0.0027	0.0054	0.0110	0.0166
Water flea	Daphnia pulex	14 d	MATC	Reproduction - Number of young per adult	240	0.0137	0.0028	0.0056	0.0114	0.0172
Green algae	Ankistrodesmus falcatus	96 h	NOEC/L	Growth	118.0	0.01	0.00	0.01	0.02	0.03
Water flea	Ceriodaphnia dubia	14 d	MATC	Reproduction	17.0	0.002	0.006	0.012	0.025	0.038
White Sucker	Catostomus commersoni	40 h	MATC	Biomass, decrease in	45	0.0071	0.0079	0.0161	0.0327	0.0494
Northern pike	Esox lucius	35 d	MATC	Biomass, decrease in	45	0.0074	0.0082	0.0167	0.0340	0.0515
Lake Trout	Salvelinus namaycush	41 d	MATC	Biomass, decrease in	45	0.0074	0.0082	0.0167	0.0340	0.0515
Marsh snail	Lymnaea palustris	4 weeks	EC50	Growth	284	0.0582	0.0098	0.0200	0.0407	0.0616
Great pond snail	Lymnaea stagnalis	4 weeks	NOEC/L	Growth	284	0.08	0.01	0.03	0.06	0.08
Midge	Chironomus riparius	17 d	MATC	Mortality	98.0	0.0474	0.0238	0.0484	0.0983	0.1489
Duckweed	Lemna minor		EC50	Growth rate	166.0	0.214	0.063	0.127	0.259	0.392
Northwestern salamander	Ambystoma gracile	24 d	MATC	Weight	45	0.0972	0.1083	0.2200	0.4471	0.6769

a If reported toxicity applied to a different water hardness than that shown, a hardness adjusted toxicity value was calculated using the following equation: EXP(LN(effect conc)-(1.023)*(LN(measured water hardness)-LN(desired water hardness)))

Table 3.2: Lowest effect endpoint reported for each freshwater species after a long-term exposure to zinc (adapted from Minnow 2010).

					Test R	eported	Hardness-Adjusted Effect Concentration			
			For the start		Hardness	Effect	Effect	Effect	Effect	Effect
Succion Common Name							Concentration	Concentration	Concentration	Concentration
Species Common Name	Scientific Name	Duration	Endpoint	Observed Effect	(mg/L)	Concentration	(mg/L) at 50 mg/L	(mg/L) at 100	(mg/L) at 200	(mg/L) at 300
						(mg/L)	Hardness a	mg/L Hardness a	mg/L Hardness a	mg/L Hardness a
Green algae	Pseudokirchneriella subcapitata	7 d	EC10	Growth	NR	0.0011	0.0011	0.0011	0.0011	0.0011
Mayfly	Epeorus latifolium	4 weeks	IC10	emergence	83	0.0144	0.0094	0.0169	0.0303	0.0427
Water flea	Ceriodaphnia dubia	4 weeks	LOEC	Reproduction - Number of young per adult	97.6	0.025	0.014	0.026	0.046	0.065
Green alga	Chlorella vulgaris	72 h	EC50	biomass	NR	0.034	0.034	0.034	0.034	0.034
Water flea	Daphnia magna	50 d	MATC	Reproduction - Brood size	51.9	0.0217	0.0210	0.0378	0.0679	0.0957
Snail	Potamopyrgus jenkinsi	12 weeks	MATC	Growth	159	0.091	0.034	0.061	0.110	0.156
Chironomids	Tanytarsus dissimilis	10 d	LC50	Mortality	46.8	0.0368	0.0389	0.0700	0.1257	0.1772
Rotifer	Brachionus havanaensis	18 d	EC10	Population growth inhibition	NR	0.0782	0.0782	0.0782	0.0782	0.0782
Green alga	Chlorella pyrenoidosa	24 h	MATC	Cell density	25.51	0.0283	0.0500	0.0898	0.1615	0.2275
Rainbow trout	Oncorhynchus mykiss	30 d	LC10	Mortality	31.72	0.0345	0.0507	0.0911	0.1638	0.2309
Green algae	Scenedesmus quadricauda	15 d	IC10	Growth	NR	0.0961	0.0961	0.0961	0.0961	0.0961
Chironomids	Chironomus riparius	11 weeks	LOEC	Development	NR	0.100	0.100	0.100	0.100	0.100
Mottled sculpin	Cottus bairdi	30 d	LC50	Mortality	48.6	0.032	0.033	0.059	0.106	0.149
Green hydra	Hydra viridissima	7 d	EC10	Population growth inhibition	20	0.0522	0.1134	0.2038	0.3664	0.5163
Chinook salmon	Oncorhynchus tshawytscha	200 h	LC10	Mortality	23	0.068	0.131	0.236	0.424	0.597
Amphipod	Hyalella azteca	7 d	LC50	Mortality	18	0.056	0.133	0.239	0.429	0.605
Duckweed	Lemna minor	7 d	IC10	Growth	NR	0.318	0.318	0.318	0.318	0.318
Brook Trout	Salvelinus fontinalis	24 w	MATC	egg fragility	45.9	0.174	0.187	0.336	0.604	0.852
Pink hydra	Hydra vulgaris	7 d	EC10	Population growth inhibition	20	0.1779	0.3863	0.6943	1.2481	1.7588
Common duckmeat	Spirodela polyrrhiza	4 d	IC50	Growth	NR	0.935	0.935	0.935	0.935	0.935
Cutthroat trout	Oncorhynchus clarkii	14 d	LC10	Mortality	40	0.453	0.547	0.983	1.768	2.491
Bryozoan	Pectinatella magnifica	96 h	LC10	Mortality	205	2.286	0.693	1.245	2.239	3.155
Star duckweed	Lemna trisulca	14 d	EC50	final yield (oven dry weight)	20.37	0.327	0.699	1.256	2.258	3.183
Atlantic salmon	Salmo salar	14 d	LC50	Mortality	351	3.640	0.700	1.258	2.262	3.187
Snail	Physa gyrina	30 d	LC50	Mortality	36	0.771	1.018	1.830	3.289	4.635
Bryozoan	Plumatella emarginata	96 h	LC10	Mortality	205	3.474	1.053	1.893	3.402	4.794
Bryozoan	Lophopodella carteri	96 h	LC50	Mortality	205	4.093	1.241	2.230	4.008	5.649
Diatom	Cyclotella meneghiniana	5 d	LC10	Growth rate	121	2.803	1.327	2.386	4.288	6.043
Mayfly	Rhithrogena hageni	10 d	EC10	Mortality	44.4	2.069	2.288	4.113	7.392	10.417
	Chlamydomonas sp.	10 d	LC10	Growth rate	121	8.381	3.968	7.133	12.821	18.068
Crayfish	Orconectes virilis	14 d	LC10	Mortality	26	9.920	17.249	31.006	55.733	78.540

^a If reported toxicity applied to a different water hardness than that shown, a hardness-adjusted toxicity value was calculated using the following equation: EXP(LN(effect conc)-(0.846)*(LN(measured water hardness)-LN(desired water hardness))) NR - not reported

3.2.3 Proposed Approach to Water Quality Goals

Based on the previous sections, water quality goals for Flat and Christal creeks should aim to prevent further degradation of water quality to protect the diversity and abundance of the existing resident biota. In order to accomplish this, a number of water quality goals are proposed:

- Monthly water samples should be collected in Flat Creek at KV-9 and in Christal Creek at KV-7 and concentrations of all substances associated with UKHM, particular cadmium and zinc, should be evaluated annually.
- Mean concentrations of cadmium and zinc should be equal to or less than the previous year based on statistical comparison of means by analysis of variance (ANOVA). An increase in mean concentrations, even if not statistically significant, should be investigated to determine if may be an early indicator of an increasing trend related to historic or possibly other sources within the watershed (e.g., possibly through examining trends in loads or concentrations from specific upstream source areas). Changes in background concentrations should also be considered in this assessment such that if an increase is observed in the background concentration of cadmium and/or zinc, the concentrations within the tributaries are normalized for this increase.
- Trends in the concentrations of cadmium and zinc at KV-9 and KV-7 should be evaluated by a qualified professional at a frequency consistent with detailed watershed reporting as recommended in the Long-Term Aquatic Monitoring Program (LTAMP; Minnow 2011).
- An increasing trend should trigger investigation and, if appropriate, remediation of the cause.

The effects of these goals should be verified through routine biological monitoring (i.e., LTAMP) the scope of which should include:

• The number of benthic invertebrate taxa (i.e., diversity) measured through routine environmental monitoring programs should not be less than previously observed at each area (KV-9 and KV-7) using appropriate statistical methods and assuming the use of standardized timing and methods of collection. Similar to water quality, this assessment will need to consider changes in reference locations such that changes associated with natural temporal variability are not attributed to historic UKHM influence.

One of the most sensitive organisms to zinc is a mayfly (*Epeorus latifolium*) which a member of the family Heptageniidae. This family of mayflies is present in the South McQuesten River watershed and several local streams (Minnow 2011, in preparation; Figure 3.6). The abundance of organisms within this family should be monitored over time as a potential indicator of zinc toxicity at KV-7. The objective would be to see an increase in Hepageniidae over time. It is not recommended that this indicator be used at KV-9 as the habitat at this station is generally not suitable to this family (slower flow and soft-bottom substrate).

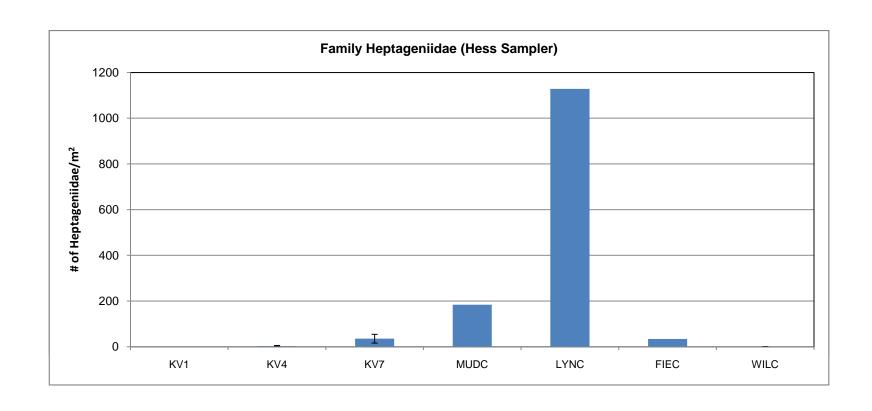


Figure 3.6: Number of heptageniidae identified in samples collected (by Hess) in August 2009 in the vicinity of United Keno Hill Mines

4.0 CONCLUSIONS

Based on the assessment of water quality presented in this report, the following conclusions are provided:

- Concentrations of cadmium and zinc have been increasing in the South McQuesten River downstream of UKHM (KV-4, KV-5) as a result of increasing concentrations upstream at KV-1. The concentrations and the rate of increase (slope) at downstream stations are equal to or lower than those upstream, indicating that the mine complex is not causing measurable increases in cadmium and zinc concentrations.
- Due to increasing concentrations upstream, a single water quality criterion can not reasonably be established for the South McQuesten River downstream of UKHM and an alternative approach is required.
- Water quality goals for cadmium and zinc should be linked to upstream concentrations and allow for no further degradation of water quality. The mean concentrations of cadmium and zinc should not exceed those measured upstream at KV-1 and the slope of concentrations relative to time at downstream stations should be equal to or less than that measured upstream at KV-1.
- Lightning Creek was not considered in this assessment as the existing data base
 indicated that concentrations within Lightning Creek were close to the CWQG.
 However, the data base for the creek was limited with respect to the extent of data
 and appropriate method detection limits. As additional monitoring data is obtained,
 the status of Lightning Creek should be reassessed with respect to the need for
 water quality objectives.
- Over the past twenty years concentrations of cadmium and zinc have been elevated well above the current CWQG (i.e., mean values more than ten times the CWQG) in Flat Creek and Christal Creek (Minnow 2008). It is expected that concentrations will decrease over time, but they are not expected to achieve the CWQG in the near future. Therefore, an alternative water quality goal is needed.
- Protection of current biological diversity and abundance in Flat and Christal creeks
 is predicated on prevention of further degradation of water quality. Therefore,
 annual mean concentrations of cadmium and zinc associated with the historic
 UKHM complex should not increase relative to the previous year and background
 conditions and trends over time should be stable or declining.

5.0 REFERENCES

- Anderson, R.L., C.T. Wallbridge, and J.T. Fiandt. 1980. Survival and growth of *tanytarsus dissimilis* (Chironomidae) exposed to copper, cadmium, zinc, and lead. Archives of Environmental Contamination and Toxicology 9:329-335.
- Baer, K.N., M.C. Ziegenfuss, D. Banks, and Z. Ling. 1999. Suitability of high-hardness combo medium for ecotoxicity testing using algae, daphnids, and fish. Bulletin of Environmental Contamination and Toxicology 63:289-296.
- Barata, C., and D.J. Baird. 2000. Determining the ecotoxicological mode of action of chemicals from measurements made on individuals: Results from instar-based tests with *Daphnia magna* Straus. Aquatic Toxicology 48:195-209.
- Belanger, S.E., and D.S. Cherry. 1990. Interacting effects of pH acclimatation, pH, and heavy metals on acute and chronic toxicity to *Ceriodaphnia dubia* (Cladocera). Journal of Crustacean Biology 10:225-235.
- Bengtsson, B.E. 1974. Effect of zinc on growth of the minnow *Phoxinus phoxinus*. OIKOS 25:370-373.
- Benhra, A., C.M. Radetski, and J.F. Férard. 1997. Cryoalgotox: Use of cryopreserved alga in a semistatic microplate test. Environmental Toxicology and Chemistry 16:505-508.
- Benoit, D.A. and G.W. Holcombe. 1978. Toxic effects of zinc on fathead minnows *Pimephales promelas* in soft water. Journal of Fish Biology 13:701-708.
- Besser, J.M., C.A. Mebane, D.R. Mount, C.D. Ivey, J.L. Kunz, I.E. Greer, T.W. May, and C.G. Ingersoll. 2007. Sensitivity of mottled sculpins (*Cottus bairdi*) and rainbow trout (*Oncorhynchus mykiss*) to acute and chronic toxicity of cadmium, copper, and zinc. Environmental Toxicology and Chemistry 26:1657-1665.
- Biesinger, K.E., and G.M. Christensen. 1972. Effects of various metals on survival, growth, reproduction and metabolism of *Daphnia magna*. Journal of the Fisheries Research Board of Canada 29:1691-1700.

- Borgmann, U., K.M. Ralph, and W.P. Norwood. 1989. Toxicity test procedures for *Hyalella azteca*, and chronic toxicity of cadmium and pentachlorophenol to *H. azteca, Gammarus fasciatus*, and *Daphnia magna*. Archives of Environmental Contamination and Toxicology 18:756-764.
- Borgmann, U., W.P. Norwood, and C. Clarke. 1993. Accumulation, regulation and toxicity of copper, zinc, lead and mercury in *Hyalella azteca*. Hydrobiologia 259:79-89.
- Borgmann, U., Y. Couillard, P. Doyle, and D.G. Dixons. 2005. Toxicity of sixty-three metals and metalloids to *Hyalella azteca* at two levels of water hardness. Environmental Toxicology and Chemistry 24(3):641-652.
- Brinkman, S., and J. Woodling. 2005. Zinc toxicity to the mottled sculpin (*Cottus bairdi*) in high-hardness water. Environmental Toxicology and Chemistry 24(6):1515-1517.
- Brinkman, S.F. and D.L. Hansen. 2007. Toxicity of cadmium to early life stages of brown trout (*Salmo trutta*) at multiple water hardnesses. Environmental Toxicology and Chemistry 26:1666-1671.
- Brinkman, S. F., and W.D. Johnston. 2008. Acute toxicity of aqueous copper, cadmium, and zinc to the mayfly *Rhithrogena hageni*. Archives of Environmental Contamination and Toxicology 54:466-472.
- Brown, V., D. Shurben, W. Miller, and M. Crane. 1994. Cadmium toxicity to rainbow trout *Oncorhynchus mykiss* Walbaum and brown trout *Salmo trutta* L. over extended exposure periods. Ecotoxicology and Environmental Safety 29:38-46.
- Buhl, K.J. and S.J. Hamilton. 1991. Relative sensitivity of early life stages of arctic grayling, coho salmon and rainbow trout to nine inorganics. Ecotoxicology and Environmental Safety 22: 184-197
- Burns, B., 2008. Keno Valley Stream Sediment and Benthic Invertebrate Monitoring Programs, 2007. Laberge Environmental Services, Whitehorse, YT. March 2008.
- Cairns, J., A.L. Buikema, A.G. Heath, and J.I. Parker. 1978. Effects of temperature on aquatic organisms to selected chemicals. Blacksburg, VA, USA, Virginia Water

- Resources Research Center, Virginia Polytechnic Institute and State University. Bulletin 106.
- Cairns, J., R.R. Garton, and R.A. Tubb. 1982. Use of fish ventilation frequency to estimate chronically safe toxicant concentrations. Transactions of the American Fisheries Society 111:70-77.
- CCME (Canadian Council of Ministers of the Environment). 2003. Guidance on the Site-Specific Application of Water Quality Guidelines in Canada: Procedures for Deriving Numerical Water Quality Objectives. In: Canadian Environmental Quality Guidelines. 1999. Canadian Council of Ministers of the Environment, Winnipeg.
- Canadian Council of the Ministers of the Environment (CCME). 1999. Canadian water quality guidelines for the protection of aquatic life for cadmium, published in Canadian Environmental Quality Guidelines. Winnipeg, Manitoba, Canadian Council of the Ministers of the Environment.
- Chapman, G.A. 1978. Toxicities of cadmium, copper and zinc to four juvenile stages of Chinook salmon and steelhead. Transactions of the American Fisheries Society 107:841-847.
- Chapman, G.A., S. Ota, and F. Recht. 1980. Effects of Water Hardness on the Toxicity of Metals to *Daphnia magna* (Status report January 1980). Corvallis, Oregon, Corvallis Environmental Research Laboratory.
- Chen, C.Y., K.C. Lin, and D.T. Yang. 1997. Comparison of the relative toxicity relationships based on batch and continuous algal toxicity tests. Chemosphere 35(9):1959-1965.
- Chiaudani, G., and M. Vighi. 1978. The use of *Selenastrum capricornutum* batch cultures in toxicity studies. Mitt Internat Verein Limnol 21:316-329.
- Coeurdassier, M., A. De Vaufleury, and P.M. Badot. 2003. Bioconcentration of cadmium and toxic effects on life-history traits of pond snails (*Lymnaea palustris* and *Lymnaea stagnalis*) in laboratory bioassays. Archives of Environmental Contamination and Toxicology 45:102-109.

- De Schamphelaere, K.A.C., and C.R. Janssen. 2004. Bioavailability and chronic toxicity of zinc to juvenile rainbow trout (*Oncorhynchus mykiss*): Comparison with other fish species and development of a Biotic Ligand Model. Environmental Science and Technology 38:6201-6209.
- De Schamphelaere, K.A.C., D.G. Heijerick, and C.R. Janssen. 2004. Comparison of the effect of different pH buffering techniques on the toxicity of copper and zinc to *Daphnia magna* and *Pseudokirchneriella subcapitata*. Ecotoxicology 13:697-705.
- De Schamphelaere, K.A.C., S. Lofts, and C.R. Janssen. 2005. Bioavailability models for predicting acute and chronic toxicity of zinc to algae, daphnids, and fish in natural surface waters. Environmental Toxicology and Chemistry 24(5):1190-1197.
- Dirilgen, N., and Y. Inel. 1994. Effects of zinc and copper on growth and metal accumulation in duckweed, *Lemna minor*. Bulletin of Environmental Contamination and Toxicology 53:442-449.
- Dorgelo, J., H. Meester, and C.V. Velzen. 1995. Effects of diet and heavy metals on growth rate and fertility in the deposit-feeding snail *Potamopyrgus jenkinsi* (Smith) (Gastropoda: Hydrobiidae). Hydrobiologia 316:199-210.
- Drost, W., M. Matzke, and T. Backhaus. 2007. Heavy metal toxicity to *Lemna minor*. studies on the time dependence of growth inhibition and the recovery after exposure. Chemosphere 67:36-43.
- Eaton, J.G., J.M. McKim, and G.W. Holcombe. 1978. Metal toxicity to embryos and larvae of seven freshwater fish species I. Cadmium. Bulletin of Environmental Contamination and Toxicology 19:95-103.
- Elnabarawy, M.T., A.N. Welter, and R.R. Robideau. 1986. Relative sensitivity of three daphnid species to selected organic and inorganic chemicals. Environmental Toxicology and Chemistry 5(393):398.
- Enserink, E.L., J.L. Maas-Diepeveen, and C.J. Van Leeuwen. 1991. Combined effects of metals; an ecotoxicological evaluation. Water Research 25(6):679-687.

- Environment Canada. 2009a. Canadian water quality guideline: Zinc. Scientific Supporting Document (draft January 2009). Ecosystem Health: Science-based Solutions. National Guidelines and Standards Office, Environment Canada, Ottawa.
- Environment Canada. 2009b. Canadian water quality guideline: Cadmium. Scientific Supporting Document (draft January 2009). Ecosystem Health: Science-based Solutions. National Guidelines and Standards Office, Environment Canada, Ottawa.
- Errécalde, O., M. Seidl, and P.G.C. Campbell. 1998. Influence of a low molecular weight metabolite (citrate) on the toxicity of cadmium and zinc to the unicellular green alga *Selenastrum capricornutum*: An exception to the free-ion model. Water Research 32(2):419-429.
- Felten, V., G. Charmantier, R. Mons, A. Geffard, P. Rousselle, M. Coquery, J. Garric, and O. Geffard. 2007. Physiological and behavioural responses of *Gammarus pulex* (Crustacea Amphipoda) exposed to cadmium. Aquatic Toxicology 86(3):413-425.
- Gaur, J.P., N. Noraho, and Y.S. Chauhan. 1994. Relationship between heavy metal accumulation and toxicity in *Spirodela polyrhiza* (L.) Schleid. and *Azolla pinnata* R. Br. Aquatic Botany 49(2-3):183-192.
- Hansen, J.A., P.G. Welsh, J. Lipton, and M.J. Suedkamp. 2002. The effects of long-term cadmium exposure on the growth and survival of juvenile bull trout (*Salvelinus confluentus*). Aquatic Toxicology 58:165-174.
- Hatakeyama, S. 1989. Effect of copper and zinc on the growth and emergence of *Epeorus latifolium* (Ephemeroptera) in an indoor model stream. Hydrobiologia 174(1):17-27.
- Heijerick, D.G., K.A.C. De Schamphelaere, and C.R Janssen. 2002. Biotic ligand model development predicting Zn toxicity to the algae *Pseudokirchneriella subcapitata:* possibilities and limitations. Comparative Biochemistry and Physiology C Toxicology and Pharmacology 133:207-218.
- Heijerick, D., C.R. Janssen, and W.M. De Coen. 2003. The combined effects of hardness, pH and dissolved organic carbon on the chronic toxicity of Zn to D.

- *magna*: Development of a surface response model. Archives of Environmental Contamination and Toxicology 44:210-217.
- Heijerick, D.G., K.A.C. De Schamphelaere, P.A. Van Sprang, and C.R. Janssen. 2005. Development of a chronic zinc biotic ligand model for *Daphnia magna*. Ecotoxicology and Environmental Safety 62:1-10.
- Hodson, P.V., and J.B. Sprague. 1975. Temperature-induced changes in acute toxicity of zinc to Atlantic salmon (*Salmo salar*). Journal of the Fisheries Research Board of Canada 32:1-10.
- Holcombe, G.W., D.A. Benoit, and E.N. Leonard. 1979. Long-term effects of zinc exposures on brook trout (*Salvelinus fontinalis*). Transactions of the American Fisheries Society 108:76-87.
- Holdway, D.A., K. Lok, and M. Semaan. 2001. The acute and chronic toxicity of cadmium and zinc to two hydra species. Environmental Toxicology 16(6):557-565.
- Huang, W., L. Cao, X. Shan, Z. Xiao, Q. Wang, and S. Dou. 2009. Toxic effects of zinc on the development, growth, and survival of red sea bream *Pagrus major* embryos and larvae. Arch. Environ. Contam. Toxicol. 58(1):140-150.
- Huebert, D.B., and J.M. Shay. 1992. Zinc toxicity and its interaction with cadmium in the submerged aquatic macrophyte *Lemna trisulca*. Environmental Toxicology and Chemistry 11:715-720.
- Ince, N.H., N. Dirilgen, I.G. Apikyan, G. Tezcanli, and B. Ustün. 1999. Assessment of toxic interactions of heavy metals in binary mixtures: A statistical approach. Archives of Environmental Contamination and Toxicology 36:365-372.
- Ingersoll, C.G., and N. Kemble. 2001. Revised Description of Toxicity Data on Cadmium: Chronic Water-only Exposures with the Amphipod *Hyalella azteca* and the Midge *Chironomus tentans*. Roberts, C. Columbia, Missouri, United States Department of the Interior, U.S. Geological Survey.
- Juárez-Franco, M.F., S.S.S. Sarma, and S. Nandini. 2007. Effect of cadmium and zinc on the population growth of *Brachionus havanaensis* (Rotifera: Brachionidae).

- Journal of Environmental Science and Health Part A-Environmental Science and Engineering & Toxic and Hazardous Substance Control 42:1489-1493.
- Källqvist, T. 2007. Effect of water hardness on the toxicity of cadmium to the alga *Pseudokirchneriella subcapitata*. Oslo, Norwegian Institute for Water Research. SNO 5422-2007.
- Kraak, M.H.S., Y.A. Wink, S.C. Stuijfzand, M.C. Buckert-de Jong, C.J. De Groot, and W. Admiraal. 1994. Chronic ecotoxicity of Zn and Pb to the zebra mussel *Dreissena polymorpha*. Aquatic Toxicology 30:77-89.
- Kühn, R., M. Pattard, K.D. Pernak, and A. Winter. 1989. Results of the harmful effects of water pollutants to *Dapnia magna* in the 21 day reproduction test. Water Research 23:501-510.
- Lazorchak, J.M., and M.E. Smith. 2007. Rainbow trout (*Oncorhynchus mykiss*) and brook trout (*Salvelinus fontinalis*) 7-day survival and growth test method. Archives of Environmental Contamination and Toxicology 53:397-405.
- Lin, K.C., Y.L. Lee, and C.Y. Chen. 2007. Metal toxicity to *Chlorella pyrenoidosa* assessed by a short-term continuous test. Journal of Hazardous Materials 142:236-241.
- Magliette, R.J., F.G. Doherty, D. McKinney, and E.S. Venkataramani. 1995. Need for environmental quality guidelines based on ambient freshwater quality criteria in natural waters- case study "zinc". Bulletin of Environmental Contamination and Toxicology 54:626-632.
- Marshall, J.S., J.I. Parker, D.L. Mellinger, and C. Lei. 1983. Bioaccumulation and effects of cadmium and zinc in a Lake Michigan plankton community. Canadian Journal of Fisheries and Aquatic Sciences 40(1469):1479.
- Masters, J.A., M.A. Lewis, D. Davidson, and R.D. Bruce. 1991. Validation of a four-day *Ceriodaphnia* toxicity test and statistical considerations in data analysis. Environmental Toxicology and Chemistry 10:47-55.

- Mebane, C.A., D.P. Hennessy, and F.S. Dillon. 2008 Developing acute-to-chronic toxicity ratios for lead, cadmium and zinc using rainbow trout, a mayfly and a midge. Water, Air, and Soil Pollution 188:41-66.
- Minnow Environmental Inc., 2008. Water Quality Assessment Report for United Keno Hill Mines. Prepared for Elsa Reclamation and Development Company, Whitehorse, YT, July 2008.
- Minnow Environmental Inc., 2009. Aquatic Resource Assessment Report for United Keno Hill Mines. Prepared for Elsa Reclamation and Development Company, Whitehorse, YT, March 2009.
- Minnow Environmental Inc. 2010. Aquatic Impact Assessment Related to Current and Future Zinc, Cadmium and Sulphate Concentrations at Faro Mine, Yukon. Prepared for the Assessment and Abandoned Mines Branch, Energy Mines and Resources, Government of Yukon, Whitehorse, Yukon, February 2010.
- Minnow Environmental Inc., 2011. Interim Long-term Aquatic Monitoring Program for United Keno Hill Mines. Prepared for Elsa Reclamation and Development Company, Whitehorse, YT, April 2011.
- Mirenda, R.J. 1986. Acute toxicity and accumulation of zinc in the crayfish, *Orconectes virilis* (Hagen). Bulletin of Environmental Contamination and Toxicology 37(3):387-394.
- Münzinger, A., and F. Monicelli. 1991. A comparison of the sensitivity of three *Daphnia magna* populations under chronic heavy metal stress. Ecotoxicology and Environmental Safety 22:24-31.
- Muyssen, B.T.A., and C.R. Janssen. 2001. Zinc acclimation and its effect on the zinc tolerance of *Raphidocelis subcapitata* and *Chlorella vulgaris* in laboratory experiments. Chemosphere 45:507-514.
- Muyssen, B.T.A., and C.R. Janssen. 2002. Tolerance and acclimation to zinc of *Ceriodaphnia dubia*. Environmental Pollution 117:301-306.
- Nebeker, A.V., A. Stinchfield, C. Savonen, and G.A. Chapman. 1986. Effects of copper, nickel and zinc on three species of Oregon freshwater snails. Environmental Toxicology and Chemistry 5:807-811.

- Nebeker, A.V., G.S. Schuytema, and S.L. Ott. 1995. Effects of cadmium on growth and bioaccumulation in the Northwestern salamander *Ambystoma gracile*. Archives of Environmental Contamination and Toxicology 29:492-499.
- Nehring, R. B., and J.P. Goettl. 1974. Acute toxicity of a zinc-polluted stream to four species of salmonids. Bulletin of Environmental Contamination and Toxicology 12(4): 464-469.
- Norberg, T.J. and D.I. Mount. 1985. A new fathead minnow (*Pimephales promelas*) subchronic toxicity test. Environmental Toxicology and Chemistry 4:711-718.
- Norberg-King, T.J. 1989. An evaluation of the fathead minnow seven-day subchronic test for estimating chronic toxicity. Environmental Toxicology and Chemistry 8:1075-1089.
- Pardue, W.J., and T.S. Wood. 1980. Baseline toxicity data for freshwater bryozoa exposed to copper, cadmium, chromium, and zinc. Journal of the Tennessee Academy of Science 55 (1): 27-31.
- Pardos, M., C. Benninghoff, and R.L. Thomas. 1998. Photosynthetic and population growth response of the test alga *Selenastrum capricornutum* Printz to zinc, cadmium and suspended sediment elutriates. Journal of Applied Phycology 10:145-151.
- Pascoe, D., K.A. Williams, and D.W.J. Green. 1989. Chronic toxicity of cadmium to *Chironomus riparius* Meigen Effects upon larval development and adult emergence. Hydrobiologia 175:109-115.
- Paulauskis, J.D. and R.W. Winner. 1988. Effects of water hardness and humic acid on zinc toxicity to *Daphnia magna* Straus. Aquatic Toxicology 12:273-290.
- Pentz, S.B. and Kostaschuk, R.A. 1999. Effect of placer mining on suspended sediments in reaches of sensitive fish habitat. Environmental Geology, 37:78-89.
- Pestana, J.L.T., A. Ré, A.J.A. Nogueira, and A.M.V.M. Soares. 2007. Effects of cadmium and zinc on the feeding behaviour of two freshwater crustaceans: *Atyaephyra desmarestii* (Decapoda) and *Echinogammarus meridionalis* (Amphipoda). Chemosphere 68:1556-1562.

- Pickering, Q.H., and W.N. Vigor. 1965. The acute toxicity of zing to eggs and fry of the fathead minnow. The Progressive Fish-Culturist 27:153-157.
- Pickering, Q.H. 1968. Some effects of dissolved oxygen concentration upon the toxicity of zinc to the bluegill, *Lepomis macrochirus*, Raf. Water Research 2:187-194.
- Rombough, P.J. and E.T. Garside. 1982. Cadmium toxicity and accumulation in eggs and alevins of Atlantic salmon *Salmo salar*. Canadian Journal of Zoology 60:2006-2014.
- Sinley, J.R., J.P. Goettl, and P.H. Davies. 1974. The effect of zinc on rainbow trout (*Salmo gairdneri*) in hard and soft water. Bulletin of Environmental Contamination and Toxicology 12(2):193-201.
- Spehar, R.L., and A.R. Carlson. 1984. Derivation of site-specific water quality criteria for cadmium and the St. Louis River basin, Duluth, Minnesota. Environmental Toxicology and Chemistry 3:651-665.
- SPSS Inc. 2003. SPSS Version 12. 233 S. Wacker Drive, 11th floor Chicago, Illinois, U.S.A.
- Stanley, J.K., B.W. Brooks, and T.W. La Point. 2005. A comparison of chronic cadmium effects on *Hyalella azteca* in effluent-dominated stream mesocosms to similar laboratory exposures in effluent and reconstituted hard water. Environmental Toxicology and Chemistry 24:902-908.
- Starodub, M.E., P.T.S Wong, and C.I. Mayfield. 1987. Short-term and long-term studies on individual and combined toxicities of copper, zinc and lead to *Scenedesmus quadricauda*. The Science of the Total Environment 63:101-110.
- Suedel, B.C., J.H. Rodgers, and E. Deaver. 1997. Experimental factors that may affect toxicity of cadmium to freshwater organisms. Archives of Environmental Contamination and Toxicology 33:188-193.
- Timmermans, K.R., W. Peeters, and M. Tonkes. 1992. Cadmium, zinc, lead and copper in *Chironomus riparius* (Meigen) larvae (Diptera, Chironomidae): uptake and effects. Hydrobiologia 241(2):119-134.

- Williams, N.D. and D.A. Holdway. 2000. The effects of pulse-exposed cadmium and zinc on embryo hatchability, larval development, and survival of Australian crimson spotted rainbow fish (Melanotaenia fluviatilits). Environ. Toxicol. 15(3):165-173.
- Winner, R.W. 1981. A comparison of body length, brood size and longevity as indices of chronis copper and zinc stresses in *Daphnia magna*. Environmental Pollution Series A, Ecological and Biological 26:33-37.
- Winner, R.W. 1988. Evaluation of the relative sensitivities of 7-d *Daphnia magna* and *Ceriodaphnia dubia* toxicity tests for cadmium and sodium pentachlorophenate. Environmental Toxicology and Chemistry 7:153-159.
- Woodling, J., S. Brinkman, and S. Albeke. 2002. Acute and chronic toxicity of zinc to the mottled sculpin *Cottus bairdi*. Environmental Toxicology and Chemistry 21(9):1922-1926.

APPENDIX A

Raw Water Quality Data From Selected UKHM Stations 2006 to 2009

Table A.1: Total Cadmium, Zinc and Dissolved Hardness, 2006 - 2009

	KV-9 KV-7					KV-	-1			KV-	-4		KV-5						
	Total	Total	Dissolved		Total	Total	Dissolved		Total	Total	Dissolved		Total	Total	Dissolved		Total	Total	Dissolved
Sample	Cadmium	Zinc	Hardness	Sample	Cadmium	Zinc	Hardness	Sample	Cadmium	Zinc	Hardness	Sample	Cadmium	Zinc	Hardness	Sample	Cadmium	Zinc	Hardness
Date	(mg/L)	(mg/L)	(mg/L)	Date	(mg/L)	(mg/L)	(mg/L)	Date	(mg/L)	(mg/L)	(mg/L)	Date	(mg/L)	(mg/L)	(mg/L)	Date	(mg/L)	(mg/L)	(mg/L)
25-Jan-2006	0.0002	0.022	300	25-Jan-2006	0.00065	0.142	408	25-Jan-2006	0.00019	0.047	233	25-Jan-2006	0.00015	0.038	244	24-Jan-2006	0.00012	0.032	235
14-Mar-2006	0.00018	0.02	285	22-Feb-2006	0.00057	0.13	400	22-Feb-2006	0.00016	0.038	240	14-Mar-2006	0.00016	0.037	273	22-Feb-2006	0.00018	0.035	263
26-Apr-2006	0.00015	0.02	332	15-Mar-2006	0.0006	0.17	372	15-Mar-2006	0.0001	0.03	243	26-May-2006	0.000566	0.0623	122	14-Mar-2006	0.00016	0.039	268
26-May-2006	0.000655	0.0648	129	27-Apr-2006	0.00051	0.124	397	27-Apr-2006	0.00008	0.03	220	31-Jul-2006	0.00035	0.031		26-Apr-2006	0.00008	0.022	237
31-Jul-2006	0.00038	0.037		25-May-2006	0.00113	0.166	120	25-May-2006	0.00024	0.048	72	26-Feb-2007	0.00026	0.058		26-May-2006	0.00034	0.046	86
26-Feb-2007	0.00025	0.026		27-Jun-2006	0.00347	1.03		28-Jun-2006	0.00038	0.073		13-Jul-2007	0.00082	0.112		31-Jul-2006	0.00017	0.022	
13-Jul-2007	0.00065	0.077		28-Jun-2006	0.00313	0.634		31-Jul-2006	0.00027	0.043		6-Sep-2007	0.00065	0.09		26-Feb-2007	0.00016	0.044	
06-Sep-2007	0.00051	0.046		31-Jul-2006	0.00177	0.242		31-Aug-2006	0.00064	0.12		14-Mar-2008	0.00033	0.051	321	13-Jul-2007	0.00067	0.108	
8-Sep-2007				31-Aug-2006	0.00131	0.238		21-Sep-2006	0.00082	0.153		16-May-2008	0.00066	0.082	142	6-Sep-2007	0.00044	0.061	
14-Mar-2008	0.0003	0.037	340	21-Sep-2006	0.00104	0.229		25-Oct-2006	0.00061	0.111		3-Jul-2008	0.00057	0.07	219	13-Mar-2008	0.00021	0.036	283
16-May-2008	0.00072	0.069	146	25-Oct-2006	0.0011	0.217		25-Oct-2006	0.00063	0.11		4-Oct-2008	0.00114	0.181	193	16-May-2008	0.00053	0.071	134
20-Jun-2008	0.00029	0.034	298	30-Nov-2006	0.00072	0.202		30-Nov-2006	0.00033	0.09		1-Feb-2009	0.0003	0.054	315	3-Jul-2008	0.00035	0.045	186
03-Jul-2008	0.00033	0.031	331	22-Jan-2007	0.00046	0.138		22-Jan-2007	0.00044	0.124		26-May-2009	0.000677	0.0842	109	4-Oct-2008	0.00094	0.142	177
13-Aug-2008	0.00053	0.065	195	28-Feb-2007	0.0005	0.129		28-Feb-2007	0.00025	0.071		4-Jul-2009	0.000559	0.0491	249	1-Feb-2009	0.00033	0.05	309
18-Sep-2008	0.0003	0.036	267	23-Mar-2007	0.00047	0.112		18-Apr-2007	0.0006	0.154		22-Aug-2009	0.00121	0.134		26-May-2009	0.000531	0.0664	99.5
04-Oct-2008	0.00045	0.047	248	18-Apr-2007	0.00237	0.372		29-May-2007	0.00049	0.096		9-Oct-2009	0.000753	0.109	205	4-Jul-2009	0.00051	0.0741	172
13-Nov-2008	0.00032	0.044	340	29-May-2007	0.00137	0.238		16-Jun-2007	0.00063	0.111						8-Oct-2009	0.00098	0.152	189
13-Jan-2009	0.00309	0.232	344	16-Jun-2007	0.00117	0.252		13-Jul-2007	0.00089	0.173									
01-Feb-2009	0.00385	0.242	351	12-Jul-2007	0.00126	0.204		18-Aug-2007	0.00072	0.102									
09-Mar-2009	0.0014	0.096	301	31-Aug-2007	0.00097	0.16		5-Sep-2007	0.00086	0.126									
15-Apr-2009	0.000593	0.0419	324	5-Sep-2007	0.0011	0.203		31-Oct-2007	0.00063	0.127									
26-May-2009	0.00061	0.0548	116	28-Oct-2007	0.00153	0.282		12-Nov-2007	0.00056	0.146	200								
05-Jun-2009	0.000519	0.0374	199	27-Nov-2007	0.00081	0.138	355	27-Nov-2007	0.00079	0.172	226								
04-Jul-2009	0.000397	0.0276	278	9-Jan-2008	0.00056	0.118	384	23-Jan-2008	0.00048	0.132	254								
12-Aug-2009	0.000343	0.0226	376	29-Feb-2008	0.00118	0.216	437	29-Feb-2008	0.00015	0.046	314								
22-Aug-2009	0.000409	0.0259		14-Mar-2008	0.0006	0.141	383	17-May-2008	0.00045	0.082	165								
08-Sep-2009	0.000369	0.0281	313	19-Apr-2008	0.0003	0.077	414	20-Jun-2008	0.0009	0.144	172								
09-Oct-2009	0.000371	0.0333	302	17-May-2008	0.00122	0.184	171	3-Jul-2008	0.00094	0.129	179								
				20-Jun-2008	0.00045	0.088	345	13-Aug-2008	0.00126	0.247	162								
				3-Jul-2008	0.00059	0.091	286	18-Sep-2008	0.00105	0.183	186								
				13-Aug-2008	0.00141	0.202	227	3-Oct-2008	0.00116	0.222	186								
				18-Sep-2008	0.00158	0.187	233	12-Nov-2008	0.00059	0.156	203								
				2-Oct-2008	0.00146	0.183	254	20-Dec-2008	0.00079	0.156	229								
				12-Nov-2008	0.00104	0.157	304	1-Feb-2009	0.00048	0.105	312								
				20-Dec-2008	0.00082	0.128	348	10-Mar-2009	0.00103	0.19	306								
				13-Jan-2009	0.00068	0.134	326	27-May-2009	0.000642	0.141	75.3								
				1-Feb-2009	0.00045	0.081	401	5-Jun-2009	0.00132	0.153	129								
				10-Mar-2009		0.062	369	6-Jul-2009		0.114	163								
				15-Apr-2009		0.0628	384	11-Aug-2009		0.0936	194								
				27-May-09		0.18	117	23-Aug-2009		0.235									
				5-Jun-09	0.000925	0.117	160	8-Sep-2009		0.235	176								
					0.00061	0.084	330	9-Oct-2009		0.177	181								
				11-Aug-2009		0.0832	378	3-Dec-2009		0.134	298								
				22-Aug-2009		0.091													
				8-Sep-2009	0.000833	0.105	281												
				6-Oct-2009		0.139	323												
				12-Nov-2009		0.107	357												
				4-Dec-2009		0.0932	366												
			ı	. 2 30 2000	3.5550 <u>-</u> 1	5.500 <u>L</u>					I				I.			I .	

Table A.2: Statistical comparison of cadmium and zinc concentrations over time between KV-1, KV-4 and KV-5.

a) Linear regression of concentration versus time

Substance	Station	P value	r ²
Cadmium	KV-1	0.000	0.492
	KV-4	0.006	0.425
	KV-5	0.000	0.592
Zinc	KV-1	0.000	0.434
	KV-4	0.018	0.340
	KV-5	0.002	0.490

b) Comparison of slopes of cadmium and zinc concentrations over time

Substance	Comparison	Significantly Different	P value
Cadmium	KV-1 vs KV-4	N	0.381
	KV-1 vs KV-5	N	0.966
Zinc	KV-1 vs KV-4	N	0.415
	KV-1 vs KV-5	N	0.986

c) ANCOVA comparisons of means adjusted for date

Substance	Comparison	Log Adjusted Mean	Significantly Different	Difference Relative to KV-1	P value
Cadmium	KV-1 vs KV-4	KV-1 -3.244	N	_	0.208
		KV-4 -3.327	IN	_	0.200
	KV-1 vs KV-5	KV-1 -3.260	Υ		0.001
		KV-5 -3.480	ı	•	0.001
Zinc	KV-1 vs KV-4	KV-1 -0.954	Υ	•	0.000
		KV-4 -1.170	1	•	0.000
	KV-1 vs KV-5	KV-1 -0.965	Υ		0.000
		KV-5 -1.261	ľ	•	0.000

APPENDIX B Cadmium Toxicity Data

Table B.1: Summary of long-term effects of cadmium on a variety of aquatic organisms

								Effect			
						Test	Effect	Concentration			
						Hardness	Concentration	(ug/L) at 100 mg/L			
Species Common Name	Scientific Name	Life stage	Duration	Endpoint	Observed Effect	(mg/L)	(ug/L)	Hardness ¹	рН	Authors	Year
Amphipod - gammarid	Echinogammarus meridionalis	Adult	6 d	LOEC/L	Feeding inhibition	263.4	6.35	2.4	7.92 (+-0.02)	Pestana et al.	2007
Amphipod - gammarid	Echinogammarus meridionalis	Adult	6 d	NOEC/L	Feeding inhibition	263.4	4.2	1.6	7.92 (+-0.02)	Pestana et al.	2007
Amphipod - gammarid	Gammarus pulex	Adult	5 d	LOEC/L	Behaviour - Inhibition of swimming ability	269.2	7.5	2.7	7.19 +- 0.02	Felten et al.	2007
Amphipod - gammarid	Gammarus pulex	Adult	7 d	LOEC/L	Behaviour - Inhibition of swimming ability	269.2	7.5	2.7	7.19 +- 0.02	Felten et al.	2007
Amphipod - gammarid	Gammarus pulex	Adult	7 d	LOEC/L	Feeding inhibition	269.2	15	5.4	7.19 +- 0.02	Felten et al.	2007
Amphipod - gammarid	Gammarus pulex	Adult	5 d	LOEC/L	Mortality	269.2	7.5	2.7	7.19 +- 0.02	Felten et al.	2007
Amphipod - gammarid	Gammarus pulex	Adult	7 d	LOEC/L	Mortality	269.2	15	5.4	7.19 +- 0.02	Felten et al.	2007
Amphipod - gammarid	Gammarus pulex	Adult	5 d	LOEC/L	Respiration	269.2	15	5.4	7.19 +- 0.02	Felten et al.	2007
Amphipod - gammarid	Gammarus pulex	Adult	7 d	LOEC/L	Respiration	269.2	7.5	2.7	7.19 +- 0.02	Felten et al.	2007
Amphipod - gammarid	Gammarus pulex	Adult	7 d	MATC	Feeding inhibition	269.2	10.6	3.8	7.19 +- 0.02	Felten et al.	2007
Amphipod - gammarid	Gammarus pulex	Adult	7 d	MATC	Mortality	269.2	10.6	3.8	7.19 +- 0.02	Felten et al.	2007
Amphipod - gammarid	Gammarus pulex	Adult	5 d	MATC	Respiration	269.2	10.6	3.8	7.19 +- 0.02	Felten et al.	2007
Amphipod - gammarid	Gammarus pulex	Adult	7 d	NOEC/L	Feeding inhibition	269.2	7.5	2.7	7.19 +- 0.02	Felten et al.	2007
Amphipod - gammarid	Gammarus pulex	Adult	7 d	NOEC/L	Mortality	269.2	7.5	2.7	7.19 +- 0.02	Felten et al.	2007
Amphipod - gammarid	Gammarus pulex	Adult	5 d	NOEC/L	Respiration	269.2	7.5	2.7	7.19 +- 0.02	Felten et al.	2007
Amphipod - scud	Hyalella azteca	7-8 d old	28 d	IC25	Biomass, decrease in	280	0.51	0.2	7.80	Ingersoll and Kemble	2001
Amphipod - scud	Hyalella azteca	7-8 d old	28 d	IC25	Length	280	2.6	0.9	7.80	Ingersoll and Kemble	2001
Amphipod - scud	Hyalella azteca	7-8 d old	42 d	IC25	Mortality	280	1.9	0.7	7.80	Ingersoll and Kemble	2001
Amphipod - scud	Hyalella azteca	7-8 d old	42 d	IC25	Reproduction	280	1.4	0.5	7.80	Ingersoll and Kemble	2001
Amphipod - scud	Hyalella azteca	7-8 d old	28 d	IC25	Weight	280	0.74	0.3	7.80	Ingersoll and Kemble	2001
Amphipod - scud	Hyalella azteca	7-8 d old	28 d	LOEC/L	Mortality	139.6	22.97	16.3	7.0 (0.3)	Stanley et al.	2005
Amphipod - scud	Hyalella azteca	7-8 d old	42 d	LOEC/L	Mortality	139.6	22.97	16.3	7.0 (0.3)	Stanley et al.	2005
Amphipod - scud	Hyalella azteca	7-8 d old	28 d	LOEC/L	Mortality	162.7	5.09	3.1	7.9 (0.1)	Stanley et al.	2005
Amphipod - scud	Hyalella azteca	7-8 d old	28 d	MATC	Mortality	139.6	12.52	8.9	7.0 (0.3)	Stanley et al.	2005
Amphipod - scud	Hyalella azteca	7-8 d old	42 d	MATC	Mortality	139.6	12.52	8.9	7.0 (0.3)	Stanley et al.	2005
Amphipod - scud	Hyalella azteca	7-8 d old	28 d	MATC	Mortality	162.7	3.56	2.2	7.9 (0.1)	Stanley et al.	2005
Amphipod - scud	Hyalella azteca	7-8 d old	28 d	NOEC/L	Mortality	139.6	6.82	4.8	7.0 (0.3)	Stanley et al.	2005
Amphipod - scud	Hyalella azteca	7-8 d old	42 d	NOEC/L	Mortality	139.6	6.82	4.8	7.0 (0.3)	Stanley et al.	2005
Amphipod - scud	Hyalella azteca	7-8 d old	28 d	NOEC/L	Mortality	162.7	2.49	1.5	7.9 (0.1)	Stanley et al.	2005
Amphipod - scud	Hyalella azteca	Juvenile	14 d	MATC	Mortality	17.0	0.16	1.0	5.5-7.7	Suedel et al	1997
Amphipod - scud	Hyalella azteca	Juvenile	7 d	MATC	Mortality	17.0	1.4	8.6	5.5-7.7	Suedel et al	1997
Amphipod - scud	Hyalella azteca	Juvenile	10 d	MATC	Mortality	17.0	1.4	8.6	5.5-7.7	Suedel et al	1997
Amphipod - scud	Hyalella azteca	Juvenile	14 d	NOEC/L	Growth	17.0	2	12.3	5.5-7.7	Suedel et al	1997
Atlantic salmon	Salmo salar	Egg	470 d	LOEC/L	Biomass, decrease in	28	2.5	9.2	7.3 (6.8-7.5)	Rombough and Garside	1982
Atlantic salmon	Salmo salar	Egg	470 d	LOEC/L	Weight	28	2.5	9.2	7.3 (6.8-7.5)	Rombough and Garside	1982
Atlantic salmon	Salmo salar	Egg	496 d	LOEC/L	Weight and Length	28	0.47	1.7	7.3 (6.8-7.5)	Rombough and Garside	1982
Atlantic salmon	Salmo salar	Egg	402 d	MATC	Biomass, decrease in	19	5.5	30.1	6.5 (6.3-6.8)	Rombough and Garside	1982
Atlantic salmon	Salmo salar	Egg	496 d	MATC	Biomass, decrease in	28	0.61	2.2	7.3 (6.8-7.5)	Rombough and Garside	1982
Atlantic salmon	Salmo salar	Early gastrulation	78 d	MATC	Hatching success	19	88	481	6.5 (6.3-6.8)	Rombough and Garside	1982
Atlantic salmon	Salmo salar	Eyed egg stage	45 d	MATC	Hatching success	19	156	853	6.5 (6.3-6.8)	Rombough and Garside	1982
Atlantic salmon	Salmo salar	Egg	96 d	MATC	Hatching success	19	156	853	6.5 (6.3-6.8)	Rombough and Garside	1982
Atlantic salmon	Salmo salar	Egg	45 d	MATC	Hatching success	28	490	1802	7.3 (6.8-7.5)	Rombough and Garside	1982
Atlantic salmon	Salmo salar	Egg	48 d	MATC	Hatching success	28	490	1802	7.3 (6.8-7.5)	Rombough and Garside	1982
Atlantic salmon	Salmo salar	Egg	158 d	MATC	Mortality after hatch	19	156	853	6.5 (6.3-6.8)	Rombough and Garside	1982
Atlantic salmon	Salmo salar	Egg	92 d	MATC	Mortality after hatch	28	4.5	16.5	7.3 (6.8-7.5)	Rombough and Garside	1982
Atlantic salmon	Salmo salar	Egg	92 d	MATC	Mortality after hatch	28	490	1802	7.3 (6.8-7.5)	Rombough and Garside	1982
Atlantic salmon	Salmo salar	Egg		MATC	Weight	19	5.5	30.1	6.5 (6.3-6.8)	Rombough and Garside	1982

Table B.1: Summary of long-term effects of cadmium on a variety of aquatic organisms

Species Common Name	Scientific Name	Life stage	Duration	Endpoint	Observed Effect	Test Hardness (mg/L)	Effect Concentration (ug/L)	Effect Concentration (ug/L) at 100 mg/L Hardness ¹	рН	Authors	Year
Brook Trout	Salvelinus fontinalis	Larva	126 d	LOEC/L	Biomass, decrease in	45	3.8	8.6	7.6 (7.2-7.8)	Eaton et al.	1978
Brook Trout	Salvelinus fontinalis	Larva	126 d	MATC	Biomass, decrease in	45	2	4.5	7.6 (7.2-7.8)	Eaton et al.	1978
Brook Trout	Salvelinus fontinalis	Larva	126 d	NOEC/L	Biomass, decrease in	45	1.1	2.5	7.6 (7.2-7.8)	Eaton et al.	1978
Brown trout	Salmo trutta	Swim-up fry	30 d	IC20	Biomass, decrease in	29.2	0.87	3.1	7.54 (0.13)	Brinkman and Hansen	2007
Brown trout	Salmo trutta	Egg	55 d	IC20	Biomass, decrease in	30.6	2.22	7.5	7.72 (0.12)	Brinkman and Hansen	2007
Brown trout	Salmo trutta	Swim-up fry	30 d	IC20	Biomass, decrease in	67.6	2.18	3.3	7.60 (0.10)	Brinkman and Hansen	2007
Brown trout	Salmo trutta	Egg	55 d	IC20	Biomass, decrease in	71.3	4.71	6.7	7.75 (0.14)	Brinkman and Hansen	2007
Brown trout	Salmo trutta	Swim-up fry	30 d	IC20	Biomass, decrease in	151.0	6.62	4.3	7.51 (0.12)	Brinkman and Hansen	2007
Brown trout	Salmo trutta	Egg	55 d	IC20	Mortality	149.0	13.6	9.0	7.83 (0.14)	Brinkman and Hansen	2007
Brown trout	Salmo trutta	Swim-up fry	30 d	LOEC/L	Mortality	29.2	1.4	4.9	7.54 (0.13)	Brinkman and Hansen	2007
Brown trout	Salmo trutta	Egg	55 d	LOEC/L	Mortality	30.6	4.87	16.4	7.72 (0.12)	Brinkman and Hansen	2007
Brown trout	Salmo trutta	Swim-up fry	30 d	LOEC/L	Mortality	67.6	2.58	3.9	7.60 (0.10)	Brinkman and Hansen	2007
Brown trout	Salmo trutta	Egg	55 d	LOEC/L	Mortality	71.3	8.64	12.2	7.75 (0.14)	Brinkman and Hansen	2007
Brown trout	Salmo trutta	Egg	55 d	LOEC/L	Mortality	149.0	19.1	12.7	7.83 (0.14)	Brinkman and Hansen	2007
Brown trout	Salmo trutta	Swim-up fry	30 d	LOEC/L	Mortality	151.0	8.88	5.8	7.51 (0.12)	Brinkman and Hansen	2007
Brown trout	Salmo trutta	Swim-up fry	30 d	LOEC/L	Weight	29.2	2.72	9.6	7.54 (0.13)	Brinkman and Hansen	2007
Brown trout	Salmo trutta	Swim-up fry	30 d	LOEC/L	Weight	67.6	4.49	6.7	7.60 (0.10)	Brinkman and Hansen	2007
Brown trout	Salmo trutta	Swim-up fry	30 d	NOEC/L	Mortality	29.2	0.74	2.6	7.54 (0.13)	Brinkman and Hansen	2007
Brown trout	Salmo trutta	Egg	55 d	NOEC/L	Mortality	30.6	2.54	8.5	7.72 (0.12)	Brinkman and Hansen	2007
Brown trout	Salmo trutta	Swim-up fry	30 d	NOEC/L	Mortality	67.6	1.3	1.9	7.60 (0.10)	Brinkman and Hansen	2007
Brown trout	Salmo trutta	Egg	55 d	NOEC/L	Mortality	71.3	4.68	6.6	7.75 (0.14)	Brinkman and Hansen	2007
Brown trout	Salmo trutta	Egg	55 d	NOEC/L	Mortality	149.0	9.62	6.4	7.83 (0.14)	Brinkman and Hansen	2007
Brown trout	Salmo trutta	Swim-up fry	30 d	NOEC/L	Mortality	151.0	4.81	3.2	7.51 (0.12)	Brinkman and Hansen	2007
Brown trout	Salmo trutta	Swim-up fry	30 d	NOEC/L	Weight	29.2	1.4	4.9	7.54 (0.13)	Brinkman and Hansen	2007
Brown trout	Salmo trutta	Swim-up fry	30 d	NOEC/L	Weight	67.6	2.58	3.9	7.60 (0.10)	Brinkman and Hansen	2007
Brown trout	Salmo trutta	Embryo	83 d	LOEC/L	Biomass, decrease in	45	11.7	26.5	7.6 (7.2-7.8)	Eaton et al.	1978
Brown trout	Salmo trutta	Embryo	31 d	LOEC/L	Biomass, decrease in	45	11.2	25.4	7.6 (7.2-7.8)	Eaton et al.	1978
Brown trout	Salmo trutta	Larva	60 d	LOEC/L	Biomass, decrease in	45	11.7	26.5	7.6 (7.2-7.8)	Eaton et al.	1978
Brown trout	Salmo trutta	Larva	61 d	LOEC/L	Biomass, decrease in	45	3.7	8.4	7.6 (7.2-7.8)	Eaton et al.	1978
Brown trout	Salmo trutta	Larva	61 d	MATC	Biomass, decrease in	45	2	4.5	7.6 (7.2-7.8)	Eaton et al.	1978
Brown trout	Salmo trutta	Embryo	31 d	MATC	Biomass, decrease in	45	6.4	14.5	7.6 (7.2-7.8)	Eaton et al.	1978
Brown trout	Salmo trutta	Larva	60 d	MATC	Biomass, decrease in	45	6.7	15.2	7.6 (7.2-7.8)	Eaton et al.	1978
Brown trout	Salmo trutta	Embryo	83 d	MATC	Biomass, decrease in	45	6.7	15.2	7.6 (7.2-7.8)	Eaton et al.	1978
Brown trout	Salmo trutta	Larva	61 d	NOEC/L	Biomass, decrease in	45	1.1	2.5	7.6 (7.2-7.8)	Eaton et al.	1978
Brown trout	Salmo trutta	Embryo	31 d	NOEC/L	Biomass, decrease in	45	3.7	8.4	7.6 (7.2-7.8)	Eaton et al.	1978
Brown trout	Salmo trutta	Larva	60 d	NOEC/L	Biomass, decrease in	45	3.8	8.6	7.6 (7.2-7.8)	Eaton et al.	1978
Brown trout	Salmo trutta	Embryo	83 d	NOEC/L	Biomass, decrease in	45	3.8	8.6	7.6 (7.2-7.8)	Eaton et al.	1978
Bull trout	Salvelinus confluentus	Juvenile	55 d	LOEC/L	Growth	30.6	0.786	2.6	7.55 (SD = 0.12)		2002
Bull trout	Salvelinus confluentus	Juvenile	55 d	LOEC/L	Mortality	30.6	0.786	2.6	7.55 (SD = 0.12)		2002
Bull trout	Salvelinus confluentus	Juvenile	55 d	MATC	Growth	30.6	0.549	1.8	7.55 (SD = 0.12)		2002
Bull trout	Salvelinus confluentus	Juvenile	55 d	MATC	Mortality	30.6	0.549	1.8	7.55 (SD = 0.12)		2002
Bull trout	Salvelinus confluentus	Juvenile	55 d	NOEC/L	Growth	30.6	0.383	1.3	7.55 (SD = 0.12)		2002
Bull trout	Salvelinus confluentus	Juvenile	55 d	NOEC/L	Mortality	30.6	0.383	1.3	7.55 (SD = 0.12)		2002
Chinook salmon	Oncorhynchus tshawytscha	Swim-up fry		LC10	Mortality	23	1.2	5.4	7.1-7.5	Chapman	1978
Chinook salmon	Oncorhynchus tshawytscha	Alevin	8 d	LC10	Mortality	23	>6	>27	7.1-7.5	Chapman	1978

Table B.1: Summary of long-term effects of cadmium on a variety of aquatic organisms

						Tool	Effect	Effect Concentration			
						Test Hardness		(ug/L) at 100 mg/L			
Species Common Name	Scientific Name	Life stage	Duration	Endpoint	Observed Effect	(mg/L)	(ug/L)	Hardness ¹	pН	Authors	Year
Cladocerans	Ceriodaphnia reticulata	Less than 24hrs		MATC	Reproduction - Number of young per adult	240	0.43	0.2	8.0 +- 0.3	Elnabarawy et al	1986
Cladocerans	Ceriodaphnia reticulata	Less than 24hrs	9 d	LOEC/L	Mortality	67.0	15.2	22.9	7.2-7.8	Spehar and Carlson	1984
Cladocerans	Ceriodaphnia reticulata	Less than 24hrs	9 d	LOEC/L	Reproduction	67.0	7.2	10.8	7.2-7.8	Spehar and Carlson	1984
Cladocerans	Ceriodaphnia reticulata	Less than 24hrs		MATC	Mortality	67.0	10.5	15.8	7.2-7.8	Spehar and Carlson	1984
Cladocerans	Ceriodaphnia reticulata	Less than 24hrs		MATC	Reproduction	67.0	4.9	7.4	7.2-7.8	Spehar and Carlson	1984
Cladocerans	Ceriodaphnia reticulata	Less than 24hrs	9 d	NOEC/L	Mortality	67.0	7.2	10.8	7.2-7.8	Spehar and Carlson	1984
Cladocerans	Ceriodaphnia reticulata	Less than 24hrs	9 d	NOEC/L	Reproduction	67.0	3.4	5.1	7.2-7.8	Spehar and Carlson	1984
Coho salmon	Oncorhynchus kisutch	Embryo	27 d	LOEC/L	Biomass, decrease in	45	3.4	8	7.6 (7.2-7.8)	Eaton et al.	1978
Coho salmon	Oncorhynchus kisutch	Embryo	47 d	LOEC/L	Biomass, decrease in	45	12.5	28	7.6 (7.2-7.8)	Eaton et al.	1978
Coho salmon	Oncorhynchus kisutch	Larva	62 d	LOEC/L	Biomass, decrease in	45	12.5	28	7.6 (7.2-7.8)	Eaton et al.	1978
Coho salmon	Oncorhynchus kisutch	Embryo	27 d	MATC	Biomass, decrease in	45	2.1	5	7.6 (7.2-7.8)	Eaton et al.	1978
Coho salmon	Oncorhynchus kisutch	Embryo	47 d	MATC	Biomass, decrease in	45	7.2	16	7.6 (7.2-7.8)	Eaton et al.	1978
Coho salmon	Oncorhynchus kisutch	Larva	62 d	MATC	Biomass, decrease in	45	7.2	16	7.6 (7.2-7.8)	Eaton et al.	1978
Coho salmon	Oncorhynchus kisutch	Embryo	27 d	NOEC/L	Biomass, decrease in	45	1.3	3	7.6 (7.2-7.8)	Eaton et al.	1978
Coho salmon	Oncorhynchus kisutch	Embryo	47 d	NOEC/L	Biomass, decrease in	45	4.1	9	7.6 (7.2-7.8)	Eaton et al.	1978
Coho salmon	Oncorhynchus kisutch	Larva	62 d	NOEC/L	Biomass, decrease in	45	4.1	9	7.6 (7.2-7.8)	Eaton et al.	1978
Duckweed	Lemna minor	Not reported		EC50	Growth rate	166.0	214	127	5.5 +- 0.2	Drost et al.	2007
Duckweed	Lemna minor	Not reported	6 d	EC50	Growth rate	166.0	214	127	5.5 +- 0.2	Drost et al.	2007
Duckweed	Lemna minor	Not reported	5 d	EC50	Growth rate	166.0	315	188	5.5 +- 0.2	Drost et al.	2007
Duckweed	Lemna minor	Not reported	3 d	EC50	Growth rate	166.0	393	234	5.5 +- 0.2	Drost et al.	2007
Duckweed	Lemna minor	Not reported	4 d	EC50	Growth rate	166.0	337	201	5.5 +- 0.2	Drost et al.	2007
European shrimp	Atyaephyra desmarestii	Adult	6 d	LOEC/L	Feeding inhibition	263.4	6.53	2.4	7.92 (+-0.02)	Pestana et al.	2007
European shrimp	Atyaephyra desmarestii	Adult		NOEC/L	Feeding inhibition	263.4	4.2	1.6	7.92 (+-0.02)	Pestana et al.	2007
Fathead minnow	Pimephales promelas	Juvenile	32 d	LOEC/L	Mortality	67.0	26.7	40.2	7.2-7.8	Spehar and Carlson	1984
Fathead minnow	Pimephales promelas	Juvenile		MATC	Mortality	67.0	18.9	28.5	7.2-7.8	Spehar and Carlson	1984
Fathead minnow	Pimephales promelas	Juvenile	32 d	NOEC/L	Mortality	67.0	13.4	20.2	7.2-7.8	Spehar and Carlson	1984
Fathead minnow	Pimephales promelas	Larva		MATC	Mortality	17.0	1.4	8.6	5.5-7.7	Suedel et al	1997
Fathead minnow	Pimephales promelas	Larva	7 d	MATC	Mortality	17.0	4.9	30.0	5.5-7.7	Suedel et al	1997
Fathead minnow	Pimephales promelas	Larva	14 d	MATC	Mortality	17.0	2.4	14.7	5.5-7.7	Suedel et al	1997
Fathead minnow	Pimephales promelas	Larva	10 d	NOEC/L	Growth	17.0	2	12.3	5.5-7.7	Suedel et al	1997
Fathead minnow	Pimephales promelas	Larva	14 d	NOEC/L	Growth	17.0	3	18.4	5.5-7.7	Suedel et al	1997
Great pond snail	Lymnaea stagnalis	Adult		EC50	Growth	284	142.2	48.9	6.65-8.14	Coeurdassier et al.	2003
Great pond snail	Lymnaea stagnalis	Adult		NOEC/L	Growth	284	80	27.5	6.65-8.14	Coeurdassier et al.	2003
Green alga	Ankistrodesmus falcatus	Population		NOEC/L	Growth	118.0	10	8	7.7 (7.2-8.2)	Baer et al.	1999
Green alga	Pseudokirchneriella subcapitata	Population		NOEC/L	Growth	118.0	5	4	7.7 (7.2-8.2)	Baer et al.	1999
Green alga	Pseudokirchneriella subcapitata	Population		EC50	Growth	250	43.5	17	8.1	Benhra et al.	1997
Green alga	Pseudokirchneriella subcapitata	Population		EC10	Growth rate	3.42	2.8	88	6.71	Kallqvist	2007
Green alga	Pseudokirchneriella subcapitata	Population		EC10	Growth rate	6.21	7.5	129	6.85	Kallqvist	2007
Green alga	Pseudokirchneriella subcapitata	Population		EC10	Growth rate	16.21	8.5	55	6.74	Kallqvist	2007
Green alga	Pseudokirchneriella subcapitata	Population		EC10	Growth rate	46.21	6	13	6.65	Kallqvist	2007
Green alga	Pseudokirchneriella subcapitata	Population		Mean EC10	Growth rate	-	5.7	53.6		Mean	
Green hydra	Hydra viridissima	,		NOEC/L	Population growth inhibition	19.5	0.4	2.1	7.25-7.53	Holdway et al.	2001
Lake Trout	Salvelinus namaycush	Embryo		LOEC/L	Biomass, decrease in	45	12.3	27.8	7.6 (7.2-7.8)	Eaton et al.	1978
Lake Trout	Salvelinus namaycush	Larva	64 d	LOEC/L	Biomass, decrease in	45	12.3	27.8	7.6 (7.2-7.8)	Eaton et al.	1978
Lake Trout	Salvelinus namaycush	Embryo		MATC	Biomass, decrease in	45	7.4	16.7	7.6 (7.2-7.8)	Eaton et al.	1978
Lake Trout	Salvelinus namaycush	Larva		MATC	Biomass, decrease in	45	7.4	16.7	7.6 (7.2-7.8)	Eaton et al.	1978
Lake Trout	Salvelinus namaycush	Embryo	41 d	NOEC/L	Biomass, decrease in	45	4.4	10.0	7.6 (7.2-7.8)	Eaton et al.	1978
Lake Trout	Salvelinus namaycush	Larva		NOEC/L	Biomass, decrease in	45	4.4	10.0	7.6 (7.2-7.8)	Eaton et al.	1978

Table B.1: Summary of long-term effects of cadmium on a variety of aquatic organisms

				1		1		Effect		T	$\overline{}$
						Test	Effect	Concentration			
						Hardness	Concentration	(ug/L) at 100 mg/L			
Species Common Name	Scientific Name	Life stage	Duration	Endpoint	Observed Effect	(mg/L)	(ug/L)	Hardness ¹	рН	Authors	Year
Marsh snail	Lymnaea palustris	Adult	4 weeks	EC50	Growth	284	58.2	20.0	6.65-8.14	Coeurdassier et al.	2003
Marsh snail	Lymnaea palustris	Adult	4 weeks	EC50	Repro - No. egg masses per individual	284	60.9	20.9	6.65-8.14	Coeurdassier et al.	2003
Marsh snail	Lymnaea palustris	Adult	4 weeks	EC50	Repro - No. eggs per egg mass	284	124	42.6	6.65-8.14	Coeurdassier et al.	2003
Marsh snail	Lymnaea palustris	Adult	4 weeks	EC50	Repro - No. eggs per individual	284	64.7	22.2	6.65-8.14	Coeurdassier et al.	2003
Marsh snail	Lymnaea palustris	Adult	4 weeks	NOEC/L	Growth	284	40	13.8	6.65-8.14	Coeurdassier et al.	2003
Marsh snail	Lymnaea palustris	Adult	4 weeks	NOEC/L	Repro - No. egg masses per individual	284	40	13.8	6.65-8.14	Coeurdassier et al.	2003
Marsh snail	Lymnaea palustris	Adult	4 weeks	NOEC/L	Repro - No. eggs per individual	284	40	13.8	6.65-8.14	Coeurdassier et al.	2003
Midge	Chironomus riparius	1st instar	17 d	LOEC/L	Mortality	98.0	150	153.1	7.6	Pascoe et al.	1989
Midge	Chironomus riparius	1st instar	17 d	MATC	Mortality	98.0	47.4	48.4	7.6	Pascoe et al.	1989
Midge	Chironomus riparius	1st instar	17 d	NOEC/L	Mortality	98.0	15	15.3	7.6	Pascoe et al.	1989
Midge	Chironomus tentans	Less than 24hrs	20 d	IC25	Biomass, decrease in	280	10.3	3.6	7.80	Ingersoll and Kemble	2001
Midge	Chironomus tentans	Less than 24hrs	60 d	IC25	Hatching success	280	4	1.4	7.80	Ingersoll and Kemble	2001
Midge	Chironomus tentans	Less than 24hrs	20 d	IC25	Mortality	280	16.4	>5.7	7.80	Ingersoll and Kemble	2001
Midge	Chironomus tentans	Less than 24hrs	60 d	IC25	Percent emergence	280	8.1	2.8	7.80	Ingersoll and Kemble	2001
Midge	Chironomus tentans	Less than 24hrs	60 d	IC25	Repro - No. eggs per individual	280	>16.4	>5.7	7.80	Ingersoll and Kemble	2001
Midge	Chironomus tentans	Less than 24hrs	20 d	IC25	Weight	280	9.9	3.5	7.80	Ingersoll and Kemble	2001
Midge	Chironomus tentans	2nd instar	7 d	LOEC/L	Growth	17.0	500	3063.5	5.5-7.7	Suedel et al	1997
Midge	Chironomus tentans	2nd instar	10 d	LOEC/L	Growth	17.0	500	3063.5	5.5-7.7	Suedel et al	1997
Midge	Chironomus tentans	2nd instar	14 d	LOEC/L	Growth	17.0	100	612.7	5.5-7.7	Suedel et al	1997
Midge	Chironomus tentans	2nd instar	7 d	MATC	Mortality	17.0	707	4331.8	5.5-7.7	Suedel et al	1997
Midge	Chironomus tentans	2nd instar	10 d	MATC	Mortality	17.0	707	4331.8	5.5-7.7	Suedel et al	1997
Midge	Chironomus tentans	2nd instar	14 d	MATC	Mortality	17.0	707	4331.8	5.5-7.7	Suedel et al	1997
Mottled sculpin	Cottus bairdi	Swim-up fry	28 d	EC50	Biomass, decrease in	102	2.4	2	8.21	Besser et al.	2007
Mottled sculpin	Cottus bairdi	Swim-up fry	21 d	EC50	Biomass, decrease in	104	1.77	2	8.23	Besser et al.	2007
Northern pike	Esox lucius	Embryo	35 d	LOEC/L	Biomass, decrease in	45	12.9	29	7.6 (7.2-7.8)	Eaton et al.	1978
Northern pike	Esox lucius	Embryo	35 d	MATC	Biomass, decrease in	45	7.4	17	7.6 (7.2-7.8)	Eaton et al.	1978
Northern pike	Esox lucius	Embryo	35 d	NOEC/L	Biomass, decrease in	45	4.2	10	7.6 (7.2-7.8)	Eaton et al.	1978
Northwestern salamander	Ambystoma gracile	Larva	24 d	LOEC/L	Weight	45	193.1	437	6.8	Nebeker et al	1995
Northwestern salamander	Ambystoma gracile	Larva	10 d	LOEC/L	Weight	45	227.3	514	6.8	Nebeker et al	1995
Northwestern salamander	Ambystoma gracile	Larva	24 d	MATC	Weight	45	97.2	220	6.8	Nebeker et al	1995
Northwestern salamander	Ambystoma gracile	Larva	10 d	MATC	Weight	45	155.4	352	6.8	Nebeker et al	1995
Northwestern salamander	Ambystoma gracile	Larva	24 d	NOEC/L	Weight	45	48.9	111	6.8	Nebeker et al	1995
Northwestern salamander	Ambystoma gracile	Larva	10 d	NOEC/L	Weight	45	106.3	241	6.8	Nebeker et al	1995
Rainbow trout	Oncorhynchus mykiss	Adult	65 wks	LOEC/L	Reproduction - delay in oogenesis	250	1.77	0.7	7.4-8.0	Brown et al	1994
Rainbow trout	Oncorhynchus mykiss	Adult	65 wks	MATC	Reproduction - delay in oogenesis	250	0.91	0.4	7.4-8.0	Brown et al	1994
Rainbow trout	Oncorhynchus mykiss	Adult	65 wks	NOEC/L	Reproduction - delay in oogenesis	250	0.47	0.2	7.4-8.0	Brown et al	1994
Rainbow trout	Oncorhynchus mykiss	Alevin	8 d	LC10	Mortality	23	>6	>27	7.1-7.5	Chapman	1978
Rainbow trout	Oncorhynchus mykiss	Swim-up fry	8 d	LC10	Mortality	23	1	4.5	7.1-7.5	Chapman	1978
Rainbow trout	Oncorhynchus mykiss	Early life stage	62 d	EC10	Length	29.4	>2.5	>8.7	7.19 (SD = 0.30)	Mebane et al.	2007
Rainbow trout	Oncorhynchus mykiss	Early life stage	53 d	EC10	Mortality	19.7	0.82	4.3	6.75 (5.0-7.7)	Mebane et al.	2007
Rainbow trout	Oncorhynchus mykiss	Early life stage	62 d	EC10	Mortality	29.4	1.6	5.6	7.19 (SD = 0.30)	Mebane et al.	2007
Rainbow trout	Oncorhynchus mykiss	Early life stage	62 d	EC10	Weight	29.4	0.15	0.5	7.19 (SD = 0.30)	Mebane et al.	2007
Rainbow trout	Oncorhynchus mykiss	Early life stage	62 d	LOEC/L	Length	29.4	0.16	0.6	7.19 (SD = 0.30)		2007
Rainbow trout	Oncorhynchus mykiss	Early life stage	53 d	LOEC/L	Mortality	19.7	1.3	6.9	6.75 (5.0-7.7)	Mebane et al.	2007
Rainbow trout	Oncorhynchus mykiss	Early life stage	62 d	LOEC/L	Mortality	29.4	2.5	8.7	7.19 (SD = 0.30)		2007
Rainbow trout	Oncorhynchus mykiss	Early life stage	62 d	LOEC/L	Weight	29.4	0.16	0.6	7.19 (SD = 0.30)		2007
Rainbow trout	Oncorhynchus mykiss	Early life stage	53 d	MATC	Mortality	19.7	0.88	4.6	6.75 (5.0-7.7)		2007
Rainbow trout	Oncorhynchus mykiss	Early life stage	62 d	MATC	Mortality	29.4	1.6	5.6	7.19 (SD = 0.30)		2007
Rainbow trout	Oncorhynchus mykiss	Early life stage	53 d	NOEC/L	Mortality	19.7	0.6	3.2	6.75 (5.0-7.7)		2007
Rainbow trout	Oncorhynchus mykiss	Early life stage	62 d	NOEC/L	Mortality	29.4	1	3.5	7.19 (SD = 0.30)		2007

Table B.1: Summary of long-term effects of cadmium on a variety of aquatic organisms

						Test Hardness	Effect Concentration	Effect Concentration (ug/L) at 100 mg/L			
Species Common Name	Scientific Name	Life stage	Duration	Endpoint	Observed Effect	(mg/L)	(ug/L)	Hardness ¹	pН	Authors	Year
Water flea	Ceriodaphnia dubia	Not reported	14 d	MATC	Mortality	17.0	11.4	69.8	5.5-7.7	Suedel et al	1997
Water flea	Ceriodaphnia dubia	Not reported	10 d	MATC	Mortality	17.0	11.4	69.8	5.5-7.7	Suedel et al	1997
Water flea	Ceriodaphnia dubia	Not reported	7 d	MATC	Mortality	17.0	11.4	69.8	5.5-7.7	Suedel et al	1997
Water flea	Ceriodaphnia dubia	Not reported	14 d	MATC	Reproduction	17.0	2	12.3	5.5-7.7	Suedel et al	1997
Water flea	Ceriodaphnia dubia	Not reported	10 d	MATC	Reproduction	17.0	2	12.3	5.5-7.7	Suedel et al	1997
Water flea	Ceriodaphnia dubia	Not reported	7 d	MATC	Reproduction	17.0	2	12.3	5.5-7.7	Suedel et al	1997
Water flea	Daphnia magna	Adult	7 d	EC10	Feeding inhibition	179	0.13	0.1	8.07 +- 0.07	Barata and Baird	2000
Water flea	Daphnia magna	Adult	7 d	EC10	Repro - brood mass	179	0.13	0.1	8.07 +- 0.07	Barata and Baird	2000
Water flea	Daphnia magna	Adult	7 d	EC10	Reproduction - Brood size	179	0.14	0.1	8.07 +- 0.07	Barata and Baird	2000
Water flea	Daphnia magna	Adult	7 d	EC10	Weight	179	1.65	0.9	8.07 +- 0.07	Barata and Baird	2000
Water flea	Daphnia magna	Adult	7 d	LC10	Mortality	179	1.15	0.6	8.07 +- 0.07	Barata and Baird	2000
Water flea	Daphnia magna	Less than 24hrs	21 d	EC16	Reproduction	45.3	0.17	0.4	7.74 (7.4-8.2)	Biesinger and Christensen	1972
Water flea	Daphnia magna	Not reported	21 d	LOEC/L	Reproduction - Number of young per adult	130	1.86	1.4		Borgmann et al	1989
Water flea	Daphnia magna	Not reported	21 d	MATC	Reproduction - Number of young per adult	130	0.64	0.5		Borgmann et al	1989
Water flea	Daphnia magna	Not reported	21 d	NOEC/L	Reproduction - Number of young per adult	130	0.22	0.2		Borgmann et al	1989
Water flea	Daphnia magna	Less than 24hrs	21 d	MATC	Repro - Number of young per survivor	53	1.52	2.9	7.5 +- 0.2	Chapman et al	1980
Water flea	Daphnia magna	Less than 24hrs	21 d	MATC	Repro - Number of young per survivor	103	0.21	0.2	7.9 +- 0.3	Chapman et al	1980
Water flea	Daphnia magna	Less than 24hrs	21 d	MATC	Reproduction - Number of young per adult	53	0.15	0.3	7.5 +- 0.2	Chapman et al	1980
Water flea	Daphnia magna	Less than 24hrs	21 d	MATC	Reproduction - Number of young per adult	103	0.38	0.4	7.9 +- 0.3	Chapman et al	1980
Water flea	Daphnia magna	Less than 24hrs	14 d	MATC	Reproduction - Number of young per adult	240	4.3	1.8	8.0 +- 0.3	Elnabarawy et al	1986
Water flea	Daphnia magna	24h	21 d	LOEC/L	Reproduction	249.8	1.94	0.8	8.0 +- 0.2	Kuhn et al	1989
Water flea	Daphnia magna	24h	21 d	MATC	Reproduction	249.8	1.09	0.4	8.0 +- 0.2	Kuhn et al	1989
Water flea	Daphnia magna	24h	21 d	NOEC/L	Reproduction	249.8	0.6	0.2	8.0 +- 0.2	Kuhn et al	1989
Water flea	Daphnia magna	Not reported	7 d	MATC	Mortality	78.0	7.1	9.2	6.9-8.3	Suedel et al	1997
Water flea	Daphnia magna	Not reported	10 d	MATC	Mortality	78.0	7.1	9.2	6.9-8.3	Suedel et al	1997
Water flea	Daphnia magna	Not reported	14 d	MATC	Mortality	78.0	7.1	9.2	6.9-8.3	Suedel et al	1997
Water flea	Daphnia magna	Neonate	7 d	MATC	Growth	90	1.2	1.3		Winner	1988
Water flea	Daphnia pulex	Less than 24hrs	14 d	MATC	Reproduction - Number of young per adult	240	13.7	5.6	8.0 +- 0.3	Elnabarawy et al	1986
White Sucker	Catostomus commersoni	Embryo	40 h	LOEC/L	Biomass, decrease in	45	12	27	7.6 (7.2-7.8)	Eaton et al.	1978
White Sucker	Catostomus commersoni	Embryo	40 h	MATC	Biomass, decrease in	45	7.1	16	7.6 (7.2-7.8)	Eaton et al.	1978
White Sucker	Catostomus commersoni	Embryo	40 h	NOEC/L	Biomass, decrease in	45	4.2	10	7.6 (7.2-7.8)	Eaton et al.	1978

¹ If adjusted from another hardness, value was calculated using the following equation: EXP(LN(EFFECT conc)-(1.023)*(LN(measured water hardness)-LN(desired water hardness))) most sensitive effect end-point for species

APPENDIX C Zinc Toxicity Data

Table C.1: Summary of long-term effects of zinc on a variety of aquatic organisms

						Effect Concentration	Test Hardness	Effect Concentration (ug/L) at 100 mg/L			
Species Common Name	Scientific Name	Life Stage	Duration	Endpoint	Observed Effect	(ug/L)	(mg/L)	Hardness ¹	pН	Authors	Year
Amphipod	Hyalella azteca	1 week	10 weeks	LOEC	Mortality	180	130	144	7.9-8.6	Borgmann et al	1993
Amphipod	Hyalella azteca	1 week	10 weeks	MATC	Mortality	134.16	130	107	7.9-8.6	Borgmann et al	1993
Amphipod	Hyalella azteca	1 week	10 weeks	NOEC	Mortality	100	130	80	7.9-8.6	Borgmann et al	1993
Amphipod	Hyalella azteca	1- 11 days	7 d	LC50	Mortality	56	18	239	6.44-8.68	Borgmann et al	2005
Amphipod	Hyalella azteca	1- 11 days	7 d	LC50	Mortality	70	18	299	6.44-8.68	Borgmann et al	2005
Amphipod	Hyalella azteca	1- 11 days	7 d	LC50	Mortality	222	124	185	7.23-8.98	Borgmann et al	2005
Atlantic salmon	Salmo salar	parr	14 d	LC50	Mortality	3640	351	1258	7.6	Hodson and Sprague	1975
Atlantic salmon	Salmo salar	parr	14 d	LC50	Mortality	5046	351	1744	7.6	Hodson and Sprague	1975
Atlantic salmon	Salmo salar	parr	14 d	LC50	Mortality	5198	351	1797	7.6	Hodson and Sprague	1975
Bluegill	Lepomis macrochirus	Not reported	20 d	TLM	Mortality	11300	370	3736	7.8 (7.7-8.0)	Pickering	1968
Brook Trout	Salvelinus fontinalis	Egg	100 weeks	EC10	Hatching success	418	45.9	808	7.2-7.9	Holcombe et al.	1979
Brook Trout	Salvelinus fontinalis	Egg	24 w	IC10	egg fragility	200	45.9	386	7.2-7.9	Holcombe et al.	1979
Brook Trout	Salvelinus fontinalis	Egg	8 weeks	LC10	Embryo (6 hours old) survival to hatch	1114	45.9	2153	7.2-7.9	Holcombe et al.	1979
Brook Trout	Salvelinus fontinalis	Embryo	12 weeks	LC10	Mortality	1215	45.9	2348	7.2-7.9	Holcombe et al.	1979
Brook Trout	Salvelinus fontinalis	Egg	24 w	LOEC	egg fragility	266	45.9	514	7.2-7.9	Holcombe et al.	1979
Brook Trout	Salvelinus fontinalis	Egg	100 weeks	LOEC	Hatching success	534	45.9	1032	7.2-7.9	Holcombe et al.	1979
Brook Trout	Salvelinus fontinalis	Embryo	12 weeks	LOEC	Mortality	1382	45.9	2671	7.2-7.9	Holcombe et al.	1979
Brook Trout	Salvelinus fontinalis	Embryo	12 weeks	LOEC	Mortality	2099	45.9	4056	7.2-7.9	Holcombe et al.	1979
Brook Trout	Salvelinus fontinalis	Embryo	8 weeks	LOEC	Mortality	1382	45.9	2671	7.2-7.9	Holcombe et al.	1979
Brook Trout	Salvelinus fontinalis	Egg	24 w	MATC	egg fragility	174	45.9	336	7.2-7.9	Holcombe et al.	1979
Brook Trout	Salvelinus fontinalis	Egg	8 weeks	MATC	Embryo (6 hours old) survival to hatch	990	45.9	1913	7.2-7.9	Holcombe et al.	1979
Brook Trout	Salvelinus fontinalis	Egg	100 weeks	MATC	Hatching success	377	45.9	729	7.2-7.9	Holcombe et al.	1979
Brook Trout	Salvelinus fontinalis	Embryo	12 weeks	MATC	Mortality	990	45.9	1913	7.2-7.9	Holcombe et al.	1979
Brook Trout	Salvelinus fontinalis	Embryo	8 weeks	MATC	Mortality	1000	45.9	1932	7.2-7.9	Holcombe et al.	1979
Brook Trout	Salvelinus fontinalis	Embryo	8 weeks	MATC	Mortality	1685	45.9	3256	7.2-7.9	Holcombe et al.	1979
Brook Trout	Salvelinus fontinalis	Egg	24 w	NOEC	egg fragility	114	45.9	220	7.2-7.9	Holcombe et al.	1979
Brook Trout	Salvelinus fontinalis	Egg	100 weeks	NOEC	Hatching success	266	45.9	514	7.2-7.9	Holcombe et al.	1979
Brook Trout	Salvelinus fontinalis	Embryo	12 weeks	NOEC	Mortality	709	45.9	1370	7.2-7.9	Holcombe et al.	1979
Brook Trout	Salvelinus fontinalis	Embryo	12 weeks	NOEC	Mortality	1353	45.9	2615	7.2-7.9	Holcombe et al.	1979
Brook Trout	Salvelinus fontinalis	Embryo	8 weeks	NOEC	Mortality	724	45.9	1399	7.2-7.9	Holcombe et al.	1979
Brook Trout	Salvelinus fontinalis	30-45-d old fry	7 d	IC25	Growth	486.61		487		Lazorchak and Smith	2007
Brook Trout	Salvelinus fontinalis	30-45-d old fry	7 d	LC50	survival	798.91		799		Lazorchak and Smith	2007
Brook Trout	Salvelinus fontinalis	30-45-d old fry	7 d	LOEC	Growth	500		500		Lazorchak and Smith	2007
Brook Trout	Salvelinus fontinalis	30-45-d old fry	7 d	LOEC	survival	594.6		595		Lazorchak and Smith	2007
Brook Trout	Salvelinus fontinalis	30-45-d old fry	7 d	MATC	survival	443		443		Lazorchak and Smith	2007
Brook Trout	Salvelinus fontinalis	30-45-d old fry	7 d	NOEC	Growth	287.17		287		Lazorchak and Smith	2007
Brook Trout	Salvelinus fontinalis	30-45-d old fry	7 d	NOEC	survival	329.87		330		Lazorchak and Smith	2007
Brook Trout	Salvelinus fontinalis	Juvenile	14 d	LC10	Mortality	445		445	7.3	Nehring and Goettl	1974
Brook Trout	Salvelinus fontinalis	Juvenile	14 d	LC50	Mortality	960		960	7.3	Nehring and Goettl	1974
Bryozoan	Lophopodella carteri	2-3 days	96 h	LC50	Mortality	4093	205	2230	6.7-7.0	Pardue and Wood	1980
Bryozoan	Lophopodella carteri	2-3 days	96 h	LC50	Mortality	5630	205	3067	6.7-7.0	Pardue and Wood	1980
Bryozoan	Pectinatella magnifica	2-3 days	96 h	LC10	Mortality	2286	205	1245	6.7-7.0	Pardue and Wood	1980
Bryozoan	Pectinatella magnifica	2-3 days	96 h	LC50	Mortality	4310	205	2348	6.7-7.0	Pardue and Wood	1980
Bryozoan	Plumatella emarginata	2-3 days	96 h	LC10	Mortality	3474	205	1893	6.7-7.0	Pardue and Wood	1980
Bryozoan	Plumatella emarginata	2-3 days	96 h	LC50	Mortality	5300	205	2888	6.7-7.0	Pardue and Wood	1980
Chinook salmon	Oncorhynchus tshawytscha	Alevin	200 h	LC10	Mortality	364-661	23	1262-2292	7.1	Chapman	1978
Chinook salmon	Oncorhynchus tshawytscha	Fry	200 h	LC10	Mortality	68	23	236	7.1	Chapman	1978
Chinook salmon	Oncorhynchus tshawytscha	Fry	200 h	LC50	Mortality	97	23	336	7.1	Chapman	1978
Chironomid	Chironomus riparius	1st instar	11 weeks	LOEC	Development	100		100	7.3-7.7	Timmermans et al.	1992
Chironomid	Tanytarsus dissimilis	Larva	10 d	LC50	Mortality	36.8	46.8	70	7.3- 7.7	Anderson et al	1980
Common duckmeat	Spirodela polyrrhiza	Adult	4 d	IC50	Growth	935	ND	935		Gaur et al.	1994
crayfish	Orconectes virilis	Adult	14 d	LC10	Mortality	9920	26	31006	7.1	Mirenda	1986

Table C.1: Summary of long-term effects of zinc on a variety of aquatic organisms

								Effect			
						Effect		Concentration			
						Concentration	Test Hardness	(ug/L) at 100 mg/L			
Species Common Name	Scientific Name	Life Stage	Duration	Endpoint	Observed Effect	(ug/L)	(mg/L)	Hardness ¹	pН	Authors	Year
crayfish	Orconectes virilis	Adult	14 d	LC50	Mortality	84000	26	262550	7.1	Mirenda	1986
Cutthroat trout	Oncorhynchus clarkii	Juvenile	14 d	LC10	Mortality	453	40	983	7.2	Nehring and Goettl	1974
Cutthroat trout	Oncorhynchus clarkii	Juvenile	14 d	LC50	Mortality	670	40	1455	7.2	Nehring and Goettl	1974
Diatom	Cyclotella meneghiniana	Population	5 d	LC10	Growth rate	10689	121	9097	6.8	Cairns et al.	1978
Diatom	Cyclotella meneghiniana	Population	5 d	LC10	Growth rate	2803	121	2386	6.8	Cairns et al.	1978
Diatom	Cyclotella meneghiniana	Population	5 d	LC10	Growth rate	5716	121	4865	6.8	Cairns et al.	1978
Duckweed	Lemna minor	Adult	7 d	IC10	Growth	318		318	6.30-6.40	Dirilgen and Inel	1994
Duckweed	Lemna minor	Not reported	7 d	EC50	Growth	3014.48		3014	5.5 +/- 0.2	Drost et al	2007
Duckweed	Lemna minor	Not reported	7 d	EC10	Growth	1379.05		1379	6	Ince et al	1999
Duckweed	Lemna minor	Not reported	7 d	EC50	Growth	9600		9600	6	Ince et al	1999
Eurasian minnow	Phoxinus phoxinus	Yearling	150 d	LC10	Mortality	102	71	136	7.1-8.2	Bengtsson	1974
Eurasian minnow	Phoxinus phoxinus	Adult	30 d	LOEC	Growth	200	71	267	7.1-8.2	Bengtsson	1974
Eurasian minnow	Phoxinus phoxinus	Adult	150 d	LOEC	Growth	200	71	267	7.1-8.2	Bengtsson	1974
Eurasian minnow	Phoxinus phoxinus	Yearling	30 d	LOEC	Growth	130	71	174	7.1-8.2	Bengtsson	1974
Eurasian minnow	Phoxinus phoxinus	Yearling	150 d	LOEC	Growth	50	71	67	7.1-8.2	Bengtsson	1974
Eurasian minnow	Phoxinus phoxinus	Adult	30 d	MATC	Growth	161	71	215	7.1-8.2	Bengtsson	1974
Eurasian minnow	Phoxinus phoxinus	Adult	150 d	MATC	Growth	161	71	215	7.1-8.2	Bengtsson	1974
Eurasian minnow	Phoxinus phoxinus	Yearling	30 d	MATC	Growth	81	71	108	7.1-8.2	Bengtsson	1974
Eurasian minnow	Phoxinus phoxinus	Yearling	150 d	MATC	Growth	32	71	43	7.1-8.2	Bengtsson	1974
Eurasian minnow	Phoxinus phoxinus	Adult	30 d	NOEC	Growth	130	71	174	7.1-8.2	Bengtsson	1974
Eurasian minnow	Phoxinus phoxinus	Adult	150 d	NOEC	Growth	130	71	174	7.1-8.2	Bengtsson	1974
Eurasian minnow	Phoxinus phoxinus	Yearling	30 d	NOEC	Growth	50	71	67	7.1-8.2	Bengtsson	1974
Eurasian minnow	Phoxinus phoxinus	Yearling	150 d	NOEC	Growth	20	71	27	7.1-8.2	Bengtsson	1974
Fathead minnow	Pimephales promelas	Egg	NR	EC10	Eggs adhesiveness	46.9	46	90	7-8	Benoit and Holcombe	1978
Fathead minnow	Pimephales promelas	Egg	NR	LOEC/L	Eggs adhesiveness	145	46	280	7-8	Benoit and Holcombe	1978
Fathead minnow	Pimephales promelas	Egg	NR	LOEC/L	Hatching success	295	46	569	7-8	Benoit and Holcombe	1978
Fathead minnow	Pimephales promelas	Egg	NR	LOEC/L	Mortality	295	46	569	7-8	Benoit and Holcombe	1978
Fathead minnow	Pimephales promelas	Egg	NR	MATC	Eggs adhesiveness	106	46	204	7-8	Benoit and Holcombe	1978
Fathead minnow	Pimephales promelas	Egg	NR	MATC	Hatching success	207	46	399	7-8	Benoit and Holcombe	1978
Fathead minnow	Pimephales promelas	Egg	NR	MATC	Mortality	207	46	399	7-8	Benoit and Holcombe	1978
Fathead minnow	Pimephales promelas	Egg	NR	NOEC/L	Eggs adhesiveness	78	46	150	7-8	Benoit and Holcombe	1978
Fathead minnow	Pimephales promelas	Egg	NR	NOEC/L	Hatching success	145	46	280	7-8	Benoit and Holcombe	1978
Fathead minnow	Pimephales promelas	Egg	NR	NOEC/L	Mortality	145	46	280	7-8	Benoit and Holcombe	1978
Fathead minnow	Pimephales promelas	Larva	7 d	ChV	Growth	430	190	250	8.3-8.7	Magliette et al.	1995
Fathead minnow	Pimephales promelas	Larva	7 d	LC50	Mortality	780	190	453		Magliette et al.	1995
Fathead minnow	Pimephales promelas	Larva	7 d	LOEC/L	Growth	630	190	366		Magliette et al.	1995
Fathead minnow	Pimephales promelas	Larva	7 d	IC10	Growth	83.9	48	156	0.5-0.7	Norberg and Mount	1985
Fathead minnow	Pimephales promelas	Larva	7 d	LOEC	Growth	374	48	696		Norberg and Mount	1985
Fathead minnow	Pimephales promelas	Larva	7 d	LOEC	Mortality	184	48	342		Norberg and Mount	1985
Fathead minnow	Pimephales promelas	Larva	7 d	MATC	Growth	262	48	487		Norberg and Mount	1985
Fathead minnow	Pimephales promelas	Larva	7 d	MATC	Mortality	125	48	233		Norberg and Mount	1985
Fathead minnow	·		7 d	NOEC		184	48	342		-	1985
	Pimephales promelas	Larva			Growth			157		Norberg and Mount	
Fathead minnow	Pimephales promelas	Larva	7 d	NOEC	Mortality	84.6	48		7.4.0.0	Norberg and Mount	1985
Fathead minnow	Pimephales promelas	Larva	7 d	ChV	Growth	184	47	349	7.4-8.2	Norberg-King	1989
Fathead minnow	Pimephales promelas	Larva	7 d	ChV	Growth	315	47	597	7.4-8.2	Norberg-King	1989
Fathead minnow	Pimephales promelas	Larva	32 d	ChV	Mortality	188	47	356	7.4-8.2	Norberg-King	1989
Fathead minnow	Pimephales promelas	Larva	7 d	LC50	Mortality	250	47	474	7.4-8.2	Norberg-King	1989
Fathead minnow	Pimephales promelas	Larva	7 d	LC50	Mortality	283	47	536	7.4-8.2	Norberg-King	1989
Fathead minnow	Pimephales promelas	Larva	7 d	LOEC	Growth	278	47	527	7.4-8.2	Norberg-King	1989
Fathead minnow	Pimephales promelas	Larva	7 d	LOEC	Growth	454	47	860	7.4-8.2	Norberg-King	1989
Fathead minnow	Pimephales promelas	Larva	32 d	LOEC	Mortality	275	47	521	7.4-8.2	Norberg-King	1989
Fathead minnow	Pimephales promelas	Larva	7 d	NOEC	Growth	122	47	231	7.4-8.2	Norberg-King	1989

Table C.1: Summary of long-term effects of zinc on a variety of aquatic organisms

Species Common Name	Scientific Name	Life Stage	Duration	Endpoint	Observed Effect	Effect Concentration (ug/L)	Test Hardness (mg/L)	Effect Concentration (ug/L) at 100 mg/L Hardness ¹	рН	Authors	Year
Fathead minnow	Pimephales promelas	Larva	7 d	NOEC	Growth	218	47	413	7.4-8.2	Norberg-King	1989
Fathead minnow	Pimephales promelas	Larva	32 d	NOEC	Mortality	129	47	244	7.4-8.2	Norberg-King	1989
Fathead minnow	Pimephales prometas	Egg	12 d	NOEC	Mortality	1050	186	621	7.5-7.6	Pickering and Vigor	1965
Fathead minnow	Pimephales promelas	Fry	7 d	NOEC	Mortality	560	186	331	7.5-7.6	Pickering and Vigor	1965
Fathead minnow	Pimephales promelas	Egg	7 d	TLM	Mortality	1690	186	1000	7.5-7.6	Pickering and Vigor	1965
Fathead minnow	Pimephales promelas	Egg	12 d	TLM	Mortality	1630	186	964	7.5-7.6	Pickering and Vigor	1965
Fathead minnow	Pimephales prometas	Fry	7 d	TLM	Mortality	870	186	515	7.5-7.6	Pickering and Vigor	1965
Green alga	Chlamydomonas sp.	Population	10 d	LC10	Growth rate	8381	121	7133	6.8	Cairns et al.	1978
Green alga	Chlamydomonas sp.	Population	10 d	LC10	Growth rate	9398	121	7998	6.8	Cairns et al.	1978
Green alga	Chlorella pyrenoidosa	Not reported	24 h	EC50	Growth	57	25.51	181	0.0	Lin et al	2007
Green alga	Chlorella pyrenoidosa	Not reported	24 h	LOEC	Cell density	40	25.51	127		Lin et al	2007
Green alga	Chlorella pyrenoidosa	Not reported	24 h	MATC	Cell density	28.28	25.51	90		Lin et al	2007
Green alga	Chlorella pyrenoidosa	Not reported	24 h	NOEC	Cell density	20.28	25.51	64		Lin et al	2007
Green alga	Chlorella vulgaris	exponential growth phase	72 h	EC50	biomass	34	20.01	34		Muyssen and Janssen	2007
-	Chlorella vulgaris	exponential growth phase	72 h	EC50	Growth	153		153		Muyssen and Janssen	2001
Green alga Green alga	Pseudokirchneriella subcapitata	Not reported	24 h	EC50	Growth	15		15		Chen et al	1997
Green alga	Pseudokirchneriella subcapitata	·	96 h	EC50	Growth	178		178		Chen et al	1997
Green alga	Pseudokirchneriella subcapitata	Not reported Not reported	7 d	EC30	Growth	1.05		1.1	6.0-6.3	Chiaaudani and Vighi	1978
	Pseudokirchneriella subcapitata		96 h	EC10	Growth	1.32		1.3	6.0-6.3	Chiaaudani and Vighi Chiaaudani and Vighi	1978
Green alga	·	Not reported	96 h	EC10	Growth	11.74		1.3	6.0-6.3	Chiaaudani and Vighi	1978
Green alga	Pseudokirchneriella subcapitata Pseudokirchneriella subcapitata	Not reported	7 d	EC10	Growth	13.48		13	6.0-6.3	ğ	1978
Green alga	·	Not reported	7 d	EC10	Growth				6.0-6.3	Chiaaudani and Vighi	
Green alga	Pseudokirchneriella subcapitata	Not reported	96 h	EC50	Growth	4.1		4.1	6.0-6.3	Chiaaudani and Vighi	1978 1978
Green alga	Pseudokirchneriella subcapitata	Not reported	96 h	EC50		27		4.4		Chiaaudani and Vighi	1978
Green alga	Pseudokirchneriella subcapitata	Not reported			Growth			32	6.0-6.3	Chiaaudani and Vighi	
Green alga	Pseudokirchneriella subcapitata	Not reported	7 d	EC50	Growth	32	40.0	231	6.0-6.3	Chiaaudani and Vighi	1978
Green alga	Pseudokirchneriella subcapitata	Population	72 h	EC50	biomass	58.1	19.6		8	De Schamphelaere et al.	2004
Green alga	Pseudokirchneriella subcapitata	Population	72 h	EC50	biomass	62.3	19.6	247	8	De Schamphelaere et al.	2004
Green alga	Pseudokirchneriella subcapitata	Population	72 h	EC50	biomass	71.2	19.6	283	8	De Schamphelaere et al.	2004
Green alga	Pseudokirchneriella subcapitata	Population	72 h	EC50	biomass	85	19.6	337	7	De Schamphelaere et al.	2004
Green alga	Pseudokirchneriella subcapitata	Population	72 h	EC50	biomass	131	19.6	520	7	De Schamphelaere et al.	2004
Green alga	Pseudokirchneriella subcapitata	Population	72 h	EC50	biomass	142	19.6	564	6	De Schamphelaere et al.	2004
Green alga	Pseudokirchneriella subcapitata	Population	72 h	EC50	biomass	142	19.6	564	7	De Schamphelaere et al.	2004
Green alga	Pseudokirchneriella subcapitata	Population	72 h	EC50	biomass	191	19.6	758	6	De Schamphelaere et al.	2004
Green alga	Pseudokirchneriella subcapitata	Population	72 h	EC50	biomass	215	19.6	853	6	De Schamphelaere et al.	2004
Green alga	Pseudokirchneriella subcapitata	less than 72h	72 h	IC50	biomass	4.12	40	8.9	7.3	Errécalde et al.	1998
Green alga	Pseudokirchneriella subcapitata	less than 72h	72 h	IC50	biomass	32.7	40	71	7.3	Errécalde et al.	1998
Green alga	Pseudokirchneriella subcapitata	less than 72h	72 h	IC50	biomass	39.24	40	85	7.3	Errécalde et al.	1998
Green alga	Pseudokirchneriella subcapitata	less than 72h	72 h	IC50	Growth rate	11.12	40	24	7.3	Errécalde et al.	1998
Green alga	Pseudokirchneriella subcapitata	less than 72h	72 h	IC50	Growth rate	45.13	40	98	7.3	Errécalde et al.	1998
Green alga	Pseudokirchneriella subcapitata	less than 72h	72 h	IC50	Growth rate	68.68	40	149	7.3	Errécalde et al.	1998
Green alga	Pseudokirchneriella subcapitata	Population	72 h	EC50	biomass	10.5	24.4	35	7.8	Heijerick et al.	2002
Green alga	Pseudokirchneriella subcapitata	Population	72 h	EC50	biomass	15.8	24.4	52	7.7	Heijerick et al.	2002
Green alga	Pseudokirchneriella subcapitata	Population	72 h	EC50	biomass	21.1	24.4	70	7.65	Heijerick et al.	2002
Green alga	Pseudokirchneriella subcapitata	Population	72 h	EC50	biomass	26.4	24.4	87	7.3	Heijerick et al.	2002
Green alga	Pseudokirchneriella subcapitata	Population	72 h	EC50	biomass	26.4	24.4	87	7.4	Heijerick et al.	2002
Green alga	Pseudokirchneriella subcapitata	Population	72 h	EC50	biomass	29	24.4	96	7.6	Heijerick et al.	2002
Green alga	Pseudokirchneriella subcapitata	Population	72 h	EC50	biomass	47.5	24.4	157	7.1	Heijerick et al.	2002
Green alga	Pseudokirchneriella subcapitata	Population	72 h	EC50	biomass	94.8	24.4	313	6.8	Heijerick et al.	2002

Table C.1: Summary of long-term effects of zinc on a variety of aquatic organisms

								Effect			
						Effect		Concentration			, , , , , , , , , , , , , , , , , , ,
						Concentration	Test Hardness	_			, , , , , , , , , , , , , , , , , , ,
	Scientific Name	Life Stage	Duration	Endpoint	Observed Effect	(ug/L)	(mg/L)	Hardness 1	рН	Authors	Year
Green alga	Pseudokirchneriella subcapitata	Population	72 h	EC50	biomass	119	24.4	392	6.2	Heijerick et al.	2002
Green alga	Pseudokirchneriella subcapitata	Population	72 h	EC50	biomass	224	24.4	739	5.6	Heijerick et al.	2002
Green alga	Pseudokirchneriella subcapitata	Population	72 h	EC50	biomass	8.44	37.2	19	7.5	Heijerick et al.	2002
Green alga	Pseudokirchneriella subcapitata	Population	72 h	EC50	biomass	10.5	37.2	24	7.5	Heijerick et al.	2002
Green alga	Pseudokirchneriella subcapitata	Population	72 h	EC50	biomass	10.9	62.3	16	7.5	Heijerick et al.	2002
Green alga	Pseudokirchneriella subcapitata	Population	72 h	EC50	biomass	11.1	62.3	17	7.5	Heijerick et al.	2002
Green alga	Pseudokirchneriella subcapitata	Population	72 h	EC50	biomass	14.9	112.3	14	7.5	Heijerick et al.	2002
Green alga	Pseudokirchneriella subcapitata	Population	72 h	EC50	biomass	27.9	112.3	25	7.5	Heijerick et al.	2002
Green alga	Pseudokirchneriella subcapitata	Population	72 h	EC50	biomass	15.4	162.3	10	7.5	Heijerick et al.	2002
Green alga	Pseudokirchneriella subcapitata	Population	72 h	EC50	biomass	33.2	162.3	22	7.5	Heijerick et al.	2002
Green alga	Pseudokirchneriella subcapitata	Population	72 h	EC50	biomass	17.5	212.4	9	7.5	Heijerick et al.	2002
Green alga	Pseudokirchneriella subcapitata	Population	72 h	EC50	biomass	34.4	212.4	18	7.5	Heijerick et al.	2002
Green alga	Pseudokirchneriella subcapitata	Population	72 h	EC50	biomass	54.9	262.6	24	7.5	Heijerick et al.	2002
Green alga	Pseudokirchneriella subcapitata	exponential growth phase	72 h	EC50	biomass	39		39		Muyssen and Janssen	2001
Green alga	Pseudokirchneriella subcapitata	exponential growth phase	72 h	EC50	Growth	138	400	138	7000	Muyssen and Janssen	2001
Green alga	Pseudokirchneriella subcapitata	Not reported	48 h	EC50	Growth	96	130	77	7.8-8.8	Pardos et al	1998
Green alga	Scenedesmus quadricauda	Population	5 d	LC10	Growth rate	10451	121	8894	6.8	Cairns et al.	1978
Green alga	Scenedesmus quadricauda	Population	5 d	LC10	Growth rate	9559	121	8135	6.8	Cairns et al.	1978
Green alga	Scenedesmus quadricauda	Population	15 d	IC10	Growth	96.1		96	4.5	Starodub et al.	1987
Green alga	Scenedesmus quadricauda	Population	14 d	LOEC LOEC	Growth	225		225	6.5	Starodub et al.	1987
Green alga	Scenedesmus quadricauda	Population	14 d		Growth	500		500	8.5	Starodub et al.	1987
Green alga	Scenedesmus quadricauda	Population	15 d	LOEC MATC	Growth Growth	100 150		100 150	4.5	Starodub et al.	1987
Green alga	Scenedesmus quadricauda	Population	14 d 14 d	MATC		335		335	6.5	Starodub et al.	1987 1987
Green alga	Scenedesmus quadricauda	Population	14 d	NOEC	Growth	100		100	8.5 6.5	Starodub et al. Starodub et al.	1987
Green alga	Scenedesmus quadricauda	Population		NOEC	Growth	225		225	8.5		1987
Green alga Green hydra	Scenedesmus quadricauda	Population Not reported	14 d 7 d	EC10	Growth Population growth inhibition	52.23	20	204	7.25-7.53	Starodub et al.	2001
•	Hydra viridissima Hydra viridissima	Not reported	7 d	LOEC	Population growth inhibition	75	20	293	7.25-7.53	Holdway et al	2001
Green hydra	Hydra viridissima	Not reported	7 d	MATC		53.4	20	293	7.25-7.53	Holdway et al Holdway et al	2001
Green hydra Green hydra	Hydra viridissima	Not reported	7 d	NOEC	Population growth inhibition Population growth inhibition	38	20	148	7.25-7.53	Holdway et al	2001
Mayfly	Epeorus latifolium	Not reported Larva	4 weeks	IC10	emergence	14.4	83	17	7.25-7.55	Hatakeyama	1989
Mayfly	Epeorus latifolium	Larva	4 weeks	LC10	Mortality	15	83	18	7.9-8.0	Hatakeyama	1989
Mayfly	Rhithrogena hageni		10 d	EC10	Mortality	2069.2	44.4	4113	7.9-6.0	Brinkman and Johnston	2008
Mayfly	Rhithrogena hageni	nymph	10 d	LOEC	Mortality	10800	44.4	21465	7.77	Brinkman and Johnston	2008
Mayfly	Rhithrogena hageni	nymph nymph	10 d	MATC	Mortality	7565.71	44.4	15037		Brinkman and Johnston	2008
Mayfly	Rhithrogena hageni	nymph	10 d	NOEC	Mortality	5300	44.4	10534	7.77	Brinkman and Johnston	2008
Mixed invertebrates	N/A	Population	14 d	LOEC	Community similarity	17.1	135	13	7.11	Marshall et al.	1983
Mixed invertebrates	N/A	Population	14 d	LOEC	Primary productivity	17.1	135	13		Marshall et al.	1983
Mixed invertebrates	N/A	Population	14 d	LOEC	Specific zooplanton populations	17.1	135	13		Marshall et al.	1983
Mixed invertebrates	N/A	Population	14 d	LOEC	Zooplanction species diversity	17.1	135	13		Marshall et al.	1983
Mottled sculpin	Cottus bairdi	less than 2 months old	30 d	EC10	Mortality	155.7	154	108	7.5 (7.4-7.7)	Brinkman and Woodling	2005
Mottled sculpin	Cottus bairdi	less than 2 months old	30 d	LOEC	Mortality	379	154	263		Brinkman and Woodling	2005
Mottled sculpin	Cottus bairdi	less than 2 months old	30 d	MATC	Mortality	255	154	177		Brinkman and Woodling	2005
Mottled sculpin	Cottus bairdi	less than 2 months old	30 d	NOEC	Mortality	172	154	119		Brinkman and Woodling	2005
Mottled sculpin	Cottus bairdi	newly emerged	30 d	LC50	Mortality	32	48.6	59		Woodling et al	2003
Pink hydra	Hydra vulgaris	Not reported	7 d	EC10	Population growth inhibition	177.93	20	694		Holdway et al	2002
Pink hydra	Hydra vulgaris	Not reported	7 d	LOEC	Population growth inhibition	250	20	976	7.25-7.53	Holdway et al	2001
Rainbow trout	Oncorhynchus mykiss	Embryo	7 d 72 d	LC10	Mortality	458	25	1480	6.9-7.1	Cairns and Garton	1982
Rainbow trout	Oncorhynchus mykiss	Embryo	72 d	LOEC	Mortality	819	25	2646	6.9-7.1	Cairns and Garton	1982
Rainbow trout	Oncorhynchus mykiss	Embryo	72 d	MATC	Mortality	603	25	1948	6.9-7.1	Cairns and Garton	1982
Rainbow trout	Oncorhynchus mykiss	Embryo	72 d	NOEC	Mortality	444	25	1435	6.9-7.1	Cairns and Garton	1982
Rainbow trout	Oncorhynchus mykiss	Alevin	186 h	LC10	Mortality	256	23	888	7.1	Chapman Chapman	1902

Table C.1: Summary of long-term effects of zinc on a variety of aquatic organisms

					1			Effect		1	
						Effect		Concentration			!
						Concentration	Test Hardness	(ug/L) at 100 mg/L			'
Species Common Name	Scientific Name	Life Stage	Duration	Endpoint	Observed Effect	(ug/L)	(mg/L)	Hardness ¹	рН	Authors	Year
Rainbow trout	Oncorhynchus mykiss	Swim-up fry	200 h	LC10	Mortality	54	23	187	7.1	Chapman	1978
Rainbow trout	Oncorhynchus mykiss	Alevin	186 h	LC50	Mortality	555	23	1924	7.1	Chapman	1978
Rainbow trout	Oncorhynchus mykiss	Swim-up fry	200 h	LC50	Mortality	93	23	322	7.1	Chapman	1978
Rainbow trout	Oncorhynchus mykiss	Juvenile	30 d	LC10	Mortality	312	29.1	887	5.68	De Schamphelaere and Janssen	2004
Rainbow trout	Oncorhynchus mykiss	Juvenile	30 d	LC10	Mortality	46.1	29.1	131	7.65	De Schamphelaere and Janssen	2004
Rainbow trout	Oncorhynchus mykiss	Juvenile	30 d	LC10	Mortality	73.6	29.1	209	7.58	De Schamphelaere and Janssen	2004
Rainbow trout	Oncorhynchus mykiss	Juvenile	30 d	LC10	Mortality	99.1	29.1	282	6.78	De Schamphelaere and Janssen	2004
Rainbow trout	Oncorhynchus mykiss	Juvenile	30 d	LC10	Mortality	38.4	29.6	108	7.45	De Schamphelaere and Janssen	2004
Rainbow trout	Oncorhynchus mykiss	Juvenile	30 d	LC10	Mortality	34.5	31.72	91	7.58-7.87	De Schamphelaere and Janssen	2004
Rainbow trout	Oncorhynchus mykiss	Juvenile	30 d	LC10	Mortality	171	104.99	164	7.58-7.87	De Schamphelaere and Janssen	2004
Rainbow trout	Oncorhynchus mykiss	Juvenile	30 d	LC10	Mortality	290	190.35	168	7.58-7.87	De Schamphelaere and Janssen	2004
Rainbow trout	Oncorhynchus mykiss	Juvenile	30 d	LC10	Mortality	337	398.68	105	7.58-7.87	De Schamphelaere and Janssen	2004
Rainbow trout	Oncorhynchus mykiss	Juvenile	30 d	LOEC	Growth	>1280	29.1	>3637	6.7	De Schamphelaere and Janssen	2004
Rainbow trout	Oncorhynchus mykiss	Juvenile	30 d	LOEC	Growth	>1280	29.1	>3637	7.74	De Schamphelaere and Janssen	2004
Rainbow trout	Oncorhynchus mykiss	Juvenile	30 d	LOEC	Growth	>1740	29.1	>4944	7.58	De Schamphelaere and Janssen	2004
Rainbow trout	Oncorhynchus mykiss	Juvenile	30 d	LOEC	Growth	>800	29.1	>2273	5.68	De Schamphelaere and Janssen	2004
Rainbow trout	Oncorhynchus mykiss	Juvenile	30 d	LOEC	Growth	345	29.1	980	7.61	De Schamphelaere and Janssen	2004
Rainbow trout	Oncorhynchus mykiss	Juvenile	30 d	LOEC	Growth	>375	29.6	>1050	7.45	De Schamphelaere and Janssen	2004
Rainbow trout	Oncorhynchus mykiss	Juvenile	30 d	LOEC	Growth	2310	29.6	6470	7.87	De Schamphelaere and Janssen	2004
Rainbow trout	Oncorhynchus mykiss	Juvenile	30 d	LOEC	survival	162	29.1	460	7.65	De Schamphelaere and Janssen	2004
Rainbow trout	Oncorhynchus mykiss	Juvenile	30 d	LOEC	survival	166	29.1	472	7.61	De Schamphelaere and Janssen	2004
Rainbow trout	Oncorhynchus mykiss	Juvenile	30 d	LOEC	survival	117	29.6	328	7.45	De Schamphelaere and Janssen	2004
Rainbow trout	Oncorhynchus mykiss	Juvenile	30 d	LOEC	survival	2310	29.6	6470	7.87	De Schamphelaere and Janssen	2004
Rainbow trout	Oncorhynchus mykiss	Juvenile	30 d	NOEC	Growth	166	29.1	472	7.61	De Schamphelaere and Janssen	2004
Rainbow trout	Oncorhynchus mykiss	Juvenile	30 d	NOEC	Growth	974	29.6	2728	7.87	De Schamphelaere and Janssen	2004
Rainbow trout	Oncorhynchus mykiss	Juvenile	30 d	NOEC	survival	45.4	29.1	129	7.73	De Schamphelaere and Janssen	2004
Rainbow trout	Oncorhynchus mykiss	Juvenile	30 d	NOEC	survival	78.9	29.1	224	7.61	De Schamphelaere and Janssen	2004
Rainbow trout	Oncorhynchus mykiss	Juvenile	30 d	NOEC	survival	31.5	29.6	88	7.45	De Schamphelaere and Janssen	2004
Rainbow trout	Oncorhynchus mykiss	Juvenile	30 d	NOEC	survival	974	29.6	2728	7.87	De Schamphelaere and Janssen	2004
Rainbow trout	Oncorhynchus mykiss	Juvenile	30 d	LC10	Mortality	259	23.4	885	6.15	De Schamphelaere et al.	2005
Rainbow trout	Oncorhynchus mykiss	Juvenile	30 d	LC10	Mortality	185	28.2	540	6.8	De Schamphelaere et al.	2005
Rainbow trout	Oncorhynchus mykiss	Juvenile	30 d	LC10	Mortality	219	31.5	582	7.08	De Schamphelaere et al.	2005
Rainbow trout	Oncorhynchus mykiss	Juvenile	30 d	LC10	Mortality	902	103.7	875	7.76	De Schamphelaere et al.	2005
Rainbow trout	Oncorhynchus mykiss	Juvenile	30 d	LC10	Mortality	578	176.3	358	8.13	De Schamphelaere et al.	2005
Rainbow trout	Oncorhynchus mykiss	Juvenile	30 d	LC50	Mortality	582	23.4	1989	6.15	De Schamphelaere et al.	2005
Rainbow trout	Oncorhynchus mykiss	Juvenile	30 d	LC50	Mortality	406	28.2	1185	6.8	De Schamphelaere et al.	2005
Rainbow trout	Oncorhynchus mykiss	Juvenile	30 d	LC50	Mortality	337	31.5	895	7.08	De Schamphelaere et al.	2005
Rainbow trout	Oncorhynchus mykiss	Juvenile	30 d	LC50	Mortality	1970	103.7	1910	7.76	De Schamphelaere et al.	2005
Rainbow trout	Oncorhynchus mykiss	Juvenile	30 d	LC50	Mortality	1850	176.3	1145	8.13	De Schamphelaere et al.	2005
Rainbow trout	Oncorhynchus mykiss	Juvenile	30 d	NOEC	Mortality	370	23.4	1264	6.15	De Schamphelaere et al.	2005
Rainbow trout	Oncorhynchus mykiss	Juvenile	30 d	NOEC	Mortality	324	28.2	945	6.8	De Schamphelaere et al.	2005
Rainbow trout	Oncorhynchus mykiss	Juvenile	30 d	NOEC	Mortality	199	31.5	529	7.08	De Schamphelaere et al.	2005
Rainbow trout	Oncorhynchus mykiss	Juvenile	30 d	NOEC	Mortality	771	103.7	748	7.76	De Schamphelaere et al.	2005
Rainbow trout	Oncorhynchus mykiss	Juvenile	30 d	NOEC	Mortality	696	176.3	431	8.13	De Schamphelaere et al.	2005
Rainbow trout	Oncorhynchus mykiss	15-25-d old fry	7 d	IC25	Growth	148.03		148		Lazorchak and Smith	2007
Rainbow trout	Oncorhynchus mykiss	15-25-d old fry	7 d	LC50	survival	195.38		195		Lazorchak and Smith	2007
Rainbow trout	Oncorhynchus mykiss	15-25-d old fry	7 d	LOEC	Growth	250		250		Lazorchak and Smith	2007
Rainbow trout	Oncorhynchus mykiss	15-25-d old fry	7 d	LOEC	survival	250		250		Lazorchak and Smith	2007
Rainbow trout	Oncorhynchus mykiss	15-25-d old fry	7 d	MATC	survival	177		177		Lazorchak and Smith	2007
Rainbow trout	Oncorhynchus mykiss	15-25-d old fry	7 d	NOEC	Growth	114.63		115		Lazorchak and Smith	2007
Rainbow trout	Oncorhynchus mykiss	15-25-d old fry	7 d	NOEC	survival	125		125		Lazorchak and Smith	2007
Rainbow trout	Oncorhynchus mykiss	Fry	69 days	EC10	Length	300	19.7	1186	6.75 +/- 0.4	Mebane et al	2008

Table C.1: Summary of long-term effects of zinc on a variety of aquatic organisms

						Effect Concentration	Test Hardness	Effect Concentration (ug/L) at 100 mg/L			
Species Common Name	Scientific Name	Life Stage	Duration	Endpoint	Observed Effect	(ug/L)	(mg/L)	Hardness ¹	pН	Authors	Year
Rainbow trout	Oncorhynchus mykiss	Fry	69 days	EC10	Mortality	88	19.7	348	6.75 +/- 0.4	Mebane et al	2008
Rainbow trout	Oncorhynchus mykiss	Fry	69 days	EC10	Weight	199	19.7	787	6.75 +/- 0.4	Mebane et al	2008
Rainbow trout	Oncorhynchus mykiss	Fry	69 days	EC20	Mortality	147	19.7	581	6.75 +/- 0.4	Mebane et al	2008
Rainbow trout	Oncorhynchus mykiss	Fry	69 days	EC20	Weight	387	19.7	1530	6.75 +/- 0.4	Mebane et al	2008
Rainbow trout	Oncorhynchus mykiss	Fry	69 days	LOEC	Length	365	19.7	1443	6.75 +/- 0.4	Mebane et al	2008
Rainbow trout	Oncorhynchus mykiss	Fry	69 days	LOEC	Mortality	117	19.7	462	6.75 +/- 0.4	Mebane et al	2008
Rainbow trout	Oncorhynchus mykiss	Fry	69 days	LOEC	Weight	365	19.7	1443	6.75 +/- 0.4	Mebane et al	2008
Rainbow trout	Oncorhynchus mykiss	Fry	69 days	MATC	Length	279	19.7	1103	6.75 +/- 0.4	Mebane et al	2008
Rainbow trout	Oncorhynchus mykiss	Fry	69 days	MATC	Weight	279	19.7	1103	6.75 +/- 0.4	Mebane et al	2008
Rainbow trout	Oncorhynchus mykiss	Fry	69 days	NOEC	Length	214	19.7	846	6.75 +/- 0.4	Mebane et al	2008
Rainbow trout	Oncorhynchus mykiss	Fry	69 days	NOEC	Weight	214	19.7	846	6.75 +/- 0.4	Mebane et al	2008
Rainbow trout	Oncorhynchus mykiss	Juvenile	14 d	LC10	Mortality	318	37	737	7.3	Nehring and Goettl	1974
Rainbow trout	Oncorhynchus mykiss	Juvenile	14 d	LC50	Mortality	410	37	951	7.3	Nehring and Goettl	1974
Rainbow trout	Oncorhynchus mykiss	Fingerling	22 months	LOEC/L	Mortality	640	333	231	7.81	Sinley et al.	1974
Rainbow trout	Oncorhynchus mykiss	Fingerling	22 months	MATC	Mortality	453	333	164	7.81	Sinley et al.	1974
Rainbow trout	Oncorhynchus mykiss	Fingerling	22 months	NOEC/L	Mortality	320	333	116	7.81	Sinley et al.	1974
Rotifer	Brachionus havanaensis	adults and juveniles	18 d	EC10	Population growth inhibition	78.2		78	7.1-7.3	Juarez-Franco et al	2007
Rotifer	Brachionus havanaensis	adults and juveniles	18 d	LOEC	Population growth inhibition	141.94		142	7.1-7.3	Juarez-Franco et al	2007
Rotifer	Brachionus havanaensis	adults and juveniles	18 d	MATC	Population growth inhibition	100.36		100	7.1-7.3	Juarez-Franco et al	2007
Rotifer	Brachionus havanaensis	adults and juveniles	18 d	NOEC	Population growth inhibition	70.96		71	7.1-7.3	Juarez-Franco et al	2007
Sea trout	Salmo trutta	Juvenile	14 d	LC10	Mortality	504	39	1118	7.2	Nehring and Goettl	1974
Sea trout	Salmo trutta	Juvenile	14 d	LC50	Mortality	640	39	1420	7.2	Nehring and Goettl	1974
Snail	Physa gyrina	Adult	30 d	LC50	Mortality	771	36	1830	6.9	Nebeker et al.	1986
Snail	Physa gyrina	Adult	30 d	NOEC/L	Mortality	570	36	1353	6.9	Nebeker et al.	1986
Snail	Potamopyrgus jenkinsi	Juvenile	12 weeks	EC50	Growth	103	159	70	7.8-8.2	Dorgelo et al.	1995
Snail	Potamopyrgus jenkinsi	Juvenile	12 weeks	LOEC	Growth	115	159	78	7.8-8.2	Dorgelo et al.	1995
Snail	Potamopyrgus jenkinsi	Juvenile	12 weeks	MATC	Growth	91	159	61	7.8-8.2	Dorgelo et al.	1995
Snail	Potamopyrgus jenkinsi	Juvenile	12 weeks	NOEC	Growth	72	159	49	7.8-8.2	Dorgelo et al.	1995
Star duckweed	Lemna trisulca	Not reported	14 d	EC50	final yield (oven dry weight)	327	20.37	1256	7.8-8.3 +/- 0.3	Huebert and Shay	1992
Star duckweed	Lemna trisulca	Not reported	14 d	EC50	multiplication rate (number of fronds)	915.6	20.37	3518		Huebert and Shay	1992
Water flea	Ceriodaphnia dubia	Less than 24hrs	4 weeks	LOEC	Reproduction - Number of young per adult	25	97.6	26		Belanger et Cherry	1990
Water flea	Ceriodaphnia dubia	Less than 24hrs	4 weeks	LOEC	Reproduction - Number of young per adult	25	97.6	26	8	Belanger et Cherry	1990
Water flea	Ceriodaphnia dubia	Less than 24hrs	4 weeks	LOEC	Reproduction - Number of young per adult	50	97.6	51	9	Belanger et Cherry	1990
Water flea	Ceriodaphnia dubia	Less than 24hrs	4 weeks	LOEC	Reproduction - Number of young per adult	100	113.6	90	6, 8, 9	Belanger et Cherry	1990
Water flea	Ceriodaphnia dubia	Less than 24hrs	4 weeks	LOEC	Reproduction - Number of young per adult	100	182	60		Belanger et Cherry	1990
Water flea	Ceriodaphnia dubia	Less than 24hrs	4 weeks	LOEC	Reproduction - Number of young per adult	50	182	30		Belanger et Cherry	1990
Water flea	Ceriodaphnia dubia	Less than 24hrs	4 weeks	MATC	Reproduction - Number of young per adult	35	97.6	36		Belanger et Cherry	1990
Water flea	Ceriodaphnia dubia	Less than 24hrs	4 weeks	MATC	Reproduction - Number of young per adult	71	113.6	64		Belanger et Cherry	1990
Water flea	Ceriodaphnia dubia	Less than 24hrs	4 weeks	MATC	Reproduction - Number of young per adult	71	182	43	8	Belanger et Cherry	1990
Water flea	Ceriodaphnia dubia	Less than 24hrs	4 weeks	NOEC	Reproduction - Number of young per adult	25	97.6	26	9	Belanger et Cherry	1990
Water flea	Ceriodaphnia dubia	Less than 24hrs	4 weeks	NOEC	Reproduction - Number of young per adult	50	113.6	45		Belanger et Cherry	1990
Water flea	Ceriodaphnia dubia	Less than 24hrs	4 weeks	NOEC	Reproduction - Number of young per adult	100	182	60		Belanger et Cherry	1990
Water flea	Ceriodaphnia dubia	Less than 24hrs	4 weeks	NOEC	Reproduction - Number of young per adult	50	182	30	8	Belanger et Cherry	1990
Water flea	Ceriodaphnia dubia	60-84 h	96 h	ChV	Mortality	70	169	45	7.8-8.2	Masters et al.	1991
Water flea	Ceriodaphnia dubia	Less than 24hrs	7 d	ChV	Mortality	90	169	58	7.8-8.2	Masters et al.	1991
Water flea	Ceriodaphnia dubia	60-84 h	96 h	ChV	Reproduction - Brood size	45	169	29	7.8-8.2	Masters et al.	1991
Water flea	Ceriodaphnia dubia	Less than 24hrs	7 d	ChV	Reproduction - Brood size	105	169	67	7.8-8.2	Masters et al.	1991
Water flea	Ceriodaphnia dubia	Juvenile	9 d	EC50	Immobility	354	280	148	7.8	Muyssen and Janssen	2002
Water flea	Daphnia magna	Less than 24hrs	21 d	EC16	Repro - Number of young per survivor	70	49	128	7.4-8.2	Biesinger and Christensen	1972
Water flea	Daphnia magna	Less than 24hrs	21 d	EC50	Repro - Number of young per survivor	102	49	187	7.4-8.2	Biesinger and Christensen	1972
Water flea	Daphnia magna	Less than 24hrs	21 d	LC50	Immobility	158	49	289	7.4-8.2	Biesinger and Christensen	1972
Water flea	Daphnia magna	Less than 24hrs	21 d	EC10	Reproduction - Number of young per adult	92.1	26.5	283		De Schamphelaere et al.	2005

Table C.1: Summary of long-term effects of zinc on a variety of aquatic organisms

						Effect Concentration	Test Hardness	Effect Concentration (ug/L) at 100 mg/L			
Species Common Name	Scientific Name	Life Stage	Duration	Endpoint	Observed Effect	(ug/L)	(mg/L)	Hardness 1	рН	Authors	Year
Water flea	Daphnia magna	Less than 24hrs	21 d	EC10	Reproduction - Number of young per adult	378	122.4	319	6.8	De Schamphelaere et al.	2005
Water flea	Daphnia magna	Less than 24hrs	21 d	EC10	Reproduction - Number of young per adult	59.2	124.7	49	8.4	De Schamphelaere et al.	2005
Water flea	Daphnia magna	Less than 24hrs	21 d	EC10	Reproduction - Number of young per adult	265	183.2	159	8	De Schamphelaere et al.	2005
Water flea	Daphnia magna	Less than 24hrs	21 d	EC10	Reproduction - Number of young per adult	171	189.3	100	8	De Schamphelaere et al.	2005
Water flea	Daphnia magna	Less than 24hrs	21 d	EC10	Reproduction - Number of young per adult	126	196.4	71	8.2	De Schamphelaere et al.	2005
Water flea	Daphnia magna	Less than 24hrs	21 d	EC10	Reproduction - Number of young per adult	196	250.5	90	7.2	De Schamphelaere et al.	2005
Water flea	Daphnia magna	Less than 24hrs	21 d	EC50	Reproduction - Number of young per adult	112	26.5	344	7.3	De Schamphelaere et al.	2005
Water flea	Daphnia magna	Less than 24hrs	21 d	EC50	Reproduction - Number of young per adult	536	122.4	452	6.8	De Schamphelaere et al.	2005
Water flea	Daphnia magna	Less than 24hrs	21 d	EC50	Reproduction - Number of young per adult	171	124.7	142	8.4	De Schamphelaere et al.	2005
Water flea	Daphnia magna	Less than 24hrs	21 d	EC50	Reproduction - Number of young per adult	473	183	284	8	De Schamphelaere et al.	2005
Water flea	Daphnia magna	Less than 24hrs	21 d	EC50	Reproduction - Number of young per adult	313	189	183	8	De Schamphelaere et al.	2005
Water flea	Daphnia magna	Less than 24hrs	21 d	EC50	Reproduction - Number of young per adult	242	196.4	137	8.2	De Schamphelaere et al.	2005
Water flea	Daphnia magna	Less than 24hrs	21 d	EC50	Reproduction - Number of young per adult	299	250.5	137	7.2	De Schamphelaere et al.	2005
Water flea	Daphnia magna	Less than 24hrs	21 d	NOEC	Reproduction - Number of young per adult	62.6	13.8	334	6	De Schamphelaere et al.	2005
Water flea	Daphnia magna	Less than 24hrs	21 d	NOEC	Reproduction - Number of young per adult	94.5	26.5	291	7.3	De Schamphelaere et al.	2005
Water flea	Daphnia magna	Less than 24hrs	21 d	NOEC	Reproduction - Number of young per adult	491	122.4	414	6.8	De Schamphelaere et al.	2005
Water flea	Daphnia magna	Less than 24hrs	21 d	NOEC	Reproduction - Number of young per adult	72.7	124.7	60	8.4	De Schamphelaere et al.	2005
Water flea	Daphnia magna	Less than 24hrs	21 d	NOEC	Reproduction - Number of young per adult	251	183	151	8	De Schamphelaere et al.	2005
Water flea	Daphnia magna	Less than 24hrs	21 d	NOEC	Reproduction - Number of young per adult	244	189.3	142	8	De Schamphelaere et al.	2005
Water flea	Daphnia magna	Less than 24hrs	21 d	NOEC	Reproduction - Number of young per adult	143	196.4	81	8.2	De Schamphelaere et al.	2005
Water flea	Daphnia magna	Less than 24hrs	21 d	NOEC	Reproduction - Number of young per adult	155	250.5	71	7.2	De Schamphelaere et al.	2005
Water flea	Daphnia magna	Population	21 d	EC10	Population growth inhibition	420	225	211	8.1	Enserink et al.	1991
Water flea	Daphnia magna	Population	21 d	EC50	Population growth inhibition	570	225	287	8.1	Enserink et al.	1991
Water flea	Daphnia magna	Less than 24hrs	21 d	LC50	Mortality	840	225	423	8.1	Enserink et al.	1991
Water flea	Daphnia magna	Less than 24hrs	21 d	LOEC	Length	120	225	60	8.1	Enserink et al.	1991
Water flea	Daphnia magna	Less than 24hrs	21 d	LOEC	Mortality	1000	225	504	8.1	Enserink et al.	1991
Water flea	Daphnia magna	Less than 24hrs	21 d	LOEC	Repro - Number of young per survivor	1000	225	504	8.1	Enserink et al.	1991
Water flea	Daphnia magna	Not reported	21 d	EC10	Reproduction	328	35	797	7.25	Heijerick et al.	2003
Water flea	Daphnia magna	Not reported	21 d	EC10	Reproduction	233	110	215	8	Heijerick et al.	2003
Water flea	Daphnia magna	Not reported	21 d	EC10	Reproduction	277	110	256	6.5	Heijerick et al.	2003
Water flea	Daphnia magna	Not reported	21 d	EC10	Reproduction	313	110	289	6.5	Heijerick et al.	2003
Water flea	Daphnia magna	Not reported	21 d	EC10	Reproduction	557	110	514	8	Heijerick et al.	2003
Water flea	Daphnia magna	Not reported	21 d	EC10	Reproduction	179	240	85	7.25	Heijerick et al.	2003
Water flea	Daphnia magna	Not reported	21 d	EC10	Reproduction	308	240	147	7.25	Heijerick et al.	2003
Water flea	Daphnia magna	Not reported	21 d	EC10	Reproduction	331	240	158	7.25	Heijerick et al.	2003
Water flea	Daphnia magna	Not reported	21 d	EC10	Reproduction	394	240	188	7.25	Heijerick et al.	2003
Water flea	Daphnia magna	Not reported	21 d	EC10	Reproduction	502	240	239	7.25	Heijerick et al.	2003
Water flea	Daphnia magna	Not reported	21 d	EC10	Reproduction	634	240	302	8.5	Heijerick et al.	2003
Water flea	Daphnia magna	Not reported	21 d	EC10	Reproduction	911	240	434	7.25	Heijerick et al.	2003
Water flea	Daphnia magna	Not reported	21 d	EC10	Reproduction	423	240	202	6	Heijerick et al.	2003
Water flea	Daphnia magna	Not reported	21 d	EC10	Reproduction	114	370	38	6.5	Heijerick et al.	2003
Water flea	Daphnia magna	Not reported	21 d	EC10	Reproduction	341	370	113	6.5	Heijerick et al.	2003
Water flea	Daphnia magna	Not reported	21 d	EC10	Reproduction	600	370	198	8	Heijerick et al.	2003
Water flea	Daphnia magna	Not reported	21 d	EC10	Reproduction	90	370	30	8	Heijerick et al.	2003
Water flea	Daphnia magna	Not reported	21 d	NOEC	Reproduction	445	35	1082	7.25	Heijerick et al.	2003
Water flea	Daphnia magna	Not reported	21 d	NOEC	Reproduction	209	110	193	8	Heijerick et al.	2003
Water flea	Daphnia magna	Not reported	21 d	NOEC	Reproduction	320	110	295	6.5	Heijerick et al.	2003
Water flea	Daphnia magna	Not reported	21 d	NOEC	Reproduction	445	110	411	6.5	Heijerick et al.	2003
Water flea	Daphnia magna	Not reported	21 d	NOEC	Reproduction	630	110	581	8	Heijerick et al.	2003
Water flea	Daphnia magna	Not reported	21 d	NOEC	Reproduction	1000	240	477	7.25	Heijerick et al.	2003
Water flea	Daphnia magna	Not reported	21 d	NOEC	Reproduction	209	240	100	7.25	Heijerick et al.	2003
Water flea	Daphnia magna	Not reported	21 d	NOEC	Reproduction	320	240	153	7.25	Heijerick et al.	2003

Table C.1: Summary of long-term effects of zinc on a variety of aquatic organisms

	0 : 25 1				0. 15"	Effect Concentration	Test Hardness				
	Scientific Name	Life Stage	Duration	Endpoint	Observed Effect	(ug/L)	(mg/L)	Hardness 1	<u>рН</u>	Authors	Year
Water flea Water flea	Daphnia magna	Not reported	21 d	NOEC	Reproduction	575 575	240 240	274 274	7.25 7.25	Heijerick et al.	2003 2003
Water flea	Daphnia magna	Not reported	21 d	NOEC NOEC	Reproduction	630	240	300		Heijerick et al.	2003
	Daphnia magna	Not reported	21 d 21 d	NOEC	Reproduction	425	240	203	8.5 6	Heijerick et al.	2003
Water flea Water flea	Daphnia magna Daphnia magna	Not reported	21 d	NOEC	Reproduction Reproduction	320	370	106		Heijerick et al. Heijerick et al.	2003
Water flea	, ,	Not reported Not reported	21 d	NOEC	Reproduction	320	370	106	8 6.5	Heijerick et al.	2003
Water flea	Daphnia magna Daphnia magna	Not reported	21 d	NOEC	Reproduction	630	370	208	6.5	Heijerick et al.	2003
Water flea	, ,	,	+	NOEC	,	630	370	208		•	2003
Water flea	Daphnia magna	Not reported Adult	21 d 21 d	EC50	Reproduction Reproduction	196	50	352	<u>8</u> 7	Heijerick et al. Heijerick et al.	2003
Water flea	Daphnia magna	Adult	21 d	EC50	Reproduction	202	50	363	6.5	Heijerick et al.	2005
Water flea	Daphnia magna Daphnia magna	Adult	21 d	EC50	Reproduction	218	50	392	6	Heijerick et al.	2005
Water flea	Daphnia magna	Adult	21 d	EC50	Reproduction	233	50	419	7.5	Heijerick et al.	2005
Water flea	Daphnia magna	Adult	21 d	EC50	Reproduction	239	50	430	5.5	Heijerick et al.	2005
Water flea	Daphnia magna Daphnia magna	Adult	21 d	EC50	Reproduction	262	50	471	8	Heijerick et al.	2005
Water flea	Daphnia magna	Adult	21 d	NOEC	Reproduction	117	50	210	8	Heijerick et al.	2005
Water flea	Daphnia magna	Adult	21 d	NOEC	Reproduction	133	50	239	7.5	Heijerick et al.	2005
Water flea	Daphnia magna	Adult	21 d	NOEC	Reproduction	154	50	277	7.5	Heijerick et al.	2005
Water flea	Daphnia magna	Adult	21 d	NOEC	Reproduction	161	50	289	5.5	Heijerick et al.	2005
Water flea	Daphnia magna	Adult	21 d	NOEC	Reproduction	162	50	291	6.5	Heijerick et al.	2005
Water flea	Daphnia magna	Adult	21 d	NOEC	Reproduction	168	50	302	6	Heijerick et al.	2005
Water flea	Daphnia magna	Less than 48h old	21 d	IC10	Reproduction - Number of young per adult	67.6	64.9	97	7.6-7.8	Münzinger and Monicelli	1991
Water flea	Daphnia magna	Less than 48h old	21 d	LOEC	Mortality	150	64.9	216	7.6-7.8	Münzinger and Monicelli	1991
Water flea	Daphnia magna	Less than 48h old	21 d	LOEC	Reproduction - Number of young per adult	150	64.9	216	7.6-7.8	Münzinger and Monicelli	1991
Water flea	Daphnia magna	Less than 48h old	21 d	MATC	Mortality	122	64.9	176	7.6-7.8	Münzinger and Monicelli	1991
Water flea	Daphnia magna	Less than 48h old	21 d	MATC	Reproduction - Number of young per adult	122	64.9	176	7.6-7.8	Münzinger and Monicelli	1991
Water flea	Daphnia magna	Less than 48h old	21 d	NOEC	Mortality	100	64.9	144	7.6-7.8	Münzinger and Monicelli	1991
Water flea	Daphnia magna	Less than 48h old	21 d	NOEC	Reproduction - Number of young per adult	100	64.9	144	7.6-7.8	Münzinger and Monicelli	1991
Water flea	Daphnia magna	Less than 24hrs	50 d	IC10	Reproduction - Brood size	29.8	51.9	52	8.39	Paulauskis and Winner	1988
Water flea	Daphnia magna	Less than 24hrs	50 d	IC10	Reproduction - Brood size	32.8	51.9	57	8.39	Paulauskis and Winner	1988
Water flea	Daphnia magna	Less than 24hrs	50 d	IC10	Reproduction - Brood size	55.7	51.9	97	8.39	Paulauskis and Winner	1988
Water flea	Daphnia magna	Less than 24hrs	50 d	IC10	Reproduction - Brood size	65.8	101.8	65	8.32	Paulauskis and Winner	1988
Water flea	Daphnia magna	Less than 24hrs	50 d	IC10	Reproduction - Brood size	158	197	89	8.29	Paulauskis and Winner	1988
Water flea	Daphnia magna	Less than 24hrs	50 d	IC10	Reproduction - Brood size	214	197	121	8.29	Paulauskis and Winner	1988
Water flea	Daphnia magna	Less than 24hrs	50 d	MATC	Mortality	111.8	51.9	195	8.39	Paulauskis and Winner	1988
Water flea	Daphnia magna	Less than 24hrs	50 d	MATC	Mortality	120.2	51.9	209	8.39	Paulauskis and Winner	1988
Water flea	Daphnia magna	Less than 24hrs	50 d	MATC	Mortality	86.6	51.9	151	8.39	Paulauskis and Winner	1988
Water flea	Daphnia magna	Less than 24hrs	50 d	MATC	Mortality	124.4	101.8	123	8.32	Paulauskis and Winner	1988
Water flea	Daphnia magna	Less than 24hrs	50 d	MATC	Mortality	178.7	197	101	8.29	Paulauskis and Winner	1988
Water flea	Daphnia magna	Less than 24hrs	50 d	MATC	Mortality	237.2	197	134	8.29	Paulauskis and Winner	1988
Water flea	Daphnia magna	Less than 24hrs	50 d	MATC	Reproduction - Brood size	21.7	51.9	38	8.39	Paulauskis and Winner	1988
Water flea	Daphnia magna	Less than 24hrs	50 d	MATC	Reproduction - Brood size	99.2	51.9	173	8.39	Paulauskis and Winner	1988
Water flea	Daphnia magna	Less than 24hrs	50 d	MATC	Reproduction - Brood size	86.6	101.8	85	8.32	Paulauskis and Winner	1988
Water flea	Daphnia magna	Less than 24hrs	50 d	MATC	Reproduction - Brood size	174.6	197	98	8.29	Paulauskis and Winner	1988
Water flea	Daphnia magna	Less than 24hrs	50 d	MATC	Reproduction - Brood size	224.7	197	127	8.29	Paulauskis and Winner	1988
Water flea	Daphnia magna	Less than 24hrs	50 d	NEC	Mortality	112.5	51.9	196	8.39	Paulauskis and Winner	1988
Water flea	Daphnia magna	Less than 24hrs	50 d	NEC	Mortality	120.8	51.9	210	8.39	Paulauskis and Winner	1988
Water flea	Daphnia magna	Less than 24hrs	50 d	NEC	Mortality	87.5	51.9	152	8.39	Paulauskis and Winner	1988

Table C.1: Summary of long-term effects of zinc on a variety of aquatic organisms

Species Common Name	Scientific Name	Life Stage	Duration	Endpoint	Observed Effect	Effect Concentration (ug/L)	Test Hardness (mg/L)	Effect Concentration (ug/L) at 100 mg/L Hardness ¹	рН	Authors	Year
Water flea	Daphnia magna	Less than 24hrs	50 d	NEC	Mortality	125	101.8	123	8.32	Paulauskis and Winner	1988
Water flea	Daphnia magna	Less than 24hrs	50 d	NEC	Mortality	179.2	197	101	8.29	Paulauskis and Winner	1988
Water flea	Daphnia magna	Less than 24hrs	50 d	NEC	Mortality	237.5	197	134	8.29	Paulauskis and Winner	1988
Water flea	Daphnia magna	Less than 24hrs	50 d	NEC	Reproduction - Brood size	100	51.9	174	8.39	Paulauskis and Winner	1988
Water flea	Daphnia magna	Less than 24hrs	50 d	NEC	Reproduction - Brood size	25	51.9	44	8.39	Paulauskis and Winner	1988
Water flea	Daphnia magna	Less than 24hrs	50 d	NEC	Reproduction - Brood size	87.5	101.8	86	8.32	Paulauskis and Winner	1988
Water flea	Daphnia magna	Less than 24hrs	50 d	NEC	Reproduction - Brood size	175	197	99	8.29	Paulauskis and Winner	1988
Water flea	Daphnia magna	Less than 24hrs	50 d	NEC	Reproduction - Brood size	225	197	127	8.29	Paulauskis and Winner	1988
Water flea	Daphnia magna	Less than 24hrs	134 d	LOEC	Growth	100	145	73	8.2-9.5	Winner	1981
Water flea	Daphnia magna	Less than 24hrs	134 d	LOEC	Reproduction - Brood size	300	145	219	8.2-9.5	Winner	1981
zebra mussel	Dreissena polymorpha	Adult	10 weeks	EC50	Filtration rate	131	268	57	7.9	Kraak et al.	1994
zebra mussel	Dreissena polymorpha	Adult	10 weeks	LC10	Mortality	517	268	225	7.9	Kraak et al.	1994
zebra mussel	Dreissena polymorpha	Adult	10 weeks	LC50	Mortality	1065	268	463	7.9	Kraak et al.	1994
zebra mussel	Dreissena polymorpha	Adult	10 weeks	LOEC	Filtration rate	382	268	166	7.9	Kraak et al.	1994
zebra mussel	Dreissena polymorpha	Adult	10 weeks	MATC	Filtration rate	196	268	85	7.9	Kraak et al.	1994
zebra mussel	Dreissena polymorpha	Adult	10 weeks	NOEC	Filtration rate	101	268	44	7.9	Kraak et al.	1994

If adjusted from another hardness, value was calculated using the following equation: EXP(LN(EFFECT conc)-(0.846)*(LN(measured water hardness)-LN(desired water hardness))) most sensitive effect end-point

APPENDIX D

Hardness – Toxicity Relationships For Zinc and Cadmium

Table D.1: Data used to develop hardness-zinc toxicity relationships for long-term exposures to zinc.

Family	Species Common	Scientific Name	Duration	Endpoint	Life Stage	Observed Effect	Test Hardness	Effect Concentration	Mean Effect Concentration	pН	Author(s)	Year
	Name			·			(mg/L)	(μg/L)	if Applicable (ug/L)		, ,	
			72 h	EC50	Population	biomass	212.4	17.5	←	7.5	Heijerick et al.	2002
			72 h	EC50	Population	biomass	212.4	34.4	← 24.5	7.5	Heijerick et al.	2002
			72 h	Mean EC50 EC50	Population	biomass	162.3	15.4	24.5 ←	7.5	Heijerick et al.	2002
			72 h	EC50	Population	biomass	162.3	33.2	· ←	7.5	Heijerick et al.	2002
				Mean EC50					22.6			1
			72 h	EC50	Population	biomass	112.3	14.9	←	7.5	Heijerick et al.	2002
Algae	Green	Pseudokirchneriella	72 h	EC50	Population	biomass	112.3	27.9	←	7.5	Heijerick et al.	2002
195	Algae	subcapitata	70.1	Mean EC50	5 1 "		20.0	40.0	20.4			0000
			72 h 72 h	EC50 EC50	Population Population	biomass biomass	62.3 62.3	10.9 11.1	← ←	7.5 7.5	Heijerick et al. Heijerick et al.	2002
			7211	Mean EC50	Fopulation	DIOTIASS	02.3	11.1	11.0	7.5	rieijerick et al.	2002
			72 h	EC50	Population	biomass	37.2	8.44	← ←	7.5	Heijerick et al.	2002
			72 h	EC50	Population	biomass	37.2	10.5	←	7.5	Heijerick et al.	2002
				Mean EC50					9.41			
			72 h	EC50	Population	biomass	262.6	54.9		7.5	Heijerick et al.	2002
			21 d	EC10	< 24 hrs	Reproduction - # young / adult	196.4	126		8.2	De Schamphelaere et al.	2005
			21 d	EC10	< 24 hrs	Reproduction - # young / adult	189.3	171 265		8	De Schamphelaere et al. De Schamphelaere et al.	2005
			21 d 21 d	EC10 EC10	< 24 hrs < 24 hrs	Reproduction - # young / adult Reproduction - # young / adult	183.2 124.7	265 59.2		8 8.4	De Schamphelaere et al. De Schamphelaere et al.	2005 2005
			21 d	EC10	Not reported	Reproduction (1)	110	233	←	8	Heijerick et al.	2003
			21 d	EC10	Not reported	Reproduction (1)	110	557	←	8	Heijerick et al.	2003
				Mean EC10					360			
			21 d	EC10	Not reported	Reproduction (1)	240	634		8.5	Heijerick et al.	2003
			21 d	EC10	Not reported	Reproduction (1)	370	600	←	8	Heijerick et al.	2003
			21 d	EC10 Mean EC10	Not reported	Reproduction (1)	370	90	232	8	Heijerick et al.	2003
		Daphnia magna	50 d	IC10	< 24 hrs	Reproduction - Brood size	51.9	29.8	∠52	8.39	Paulauskis and Winner	1988
			50 d	IC10	< 24 hrs	Reproduction - Brood size	51.9	32.8	←	8.39	Paulauskis and Winner	1988
	Water Flea		50 d	IC10	< 24 hrs	Reproduction - Brood size	51.9	55.7	←	8.39	Paulauskis and Winner	1988
				Mean IC10					37.9			_
Invertebrates			50 d	IC10	< 24 hrs	Reproduction - Brood size	101.8	65.8		8.32	Paulauskis and Winner	1988
			50 d 50 d	IC10 IC10	< 24 hrs < 24 hrs	Reproduction - Broad size	197 197	158 214	← ←	8.29 8.29	Paulauskis and Winner	1988 1988
			50 u	Mean IC10	< 24 IIIS	Reproduction - Brood size	197	214	184	0.29	Paulauskis and Winner	1900
			21 d	EC10	Population	Population growth inhibition	225	420	101	8.1	Enserink et al.	1991
			21 d	EC16	< 24 hrs	Reproduction - Number of young per survivor	49	70		7.4-8.2	Biesinger and Christensen	1972
				IC10	< 48 hrs	Reproduction - Number of young per adult	64.9	67.6		7.6-7.8	Münzinger and Monicelli	1991
			7 d	ChV	24hrs	Reproduction - Brood size	169	105		7.8-8.2	Masters et al.	1991
		Ceriodaphnia dubia	4 weeks 4 weeks	MATC MATC	< 24 hrs < 24 hrs	Reproduction - Number of young per adult Reproduction - Number of young per adult	97.6 113.6	35 71	← ←	9 6, 8, 9	Belanger et Cherry Belanger et Cherry	1990 1990
		Corrodaprima dabra	4 weeks	Mean MATC	24hrs	Reproduction- Number of young per adult	106		50	0, 0, 0	Detailing of Ottoning	1000
			4 weeks	MATC	24hrs	Reproduction - Number of young per adult	182	71		8	Belanger et Cherry	1990
			7 d	LC50	1- 11 days	Mortality (1)	18	56	←	6.44-8.68	Borgmann et al	2005
	Amphipod	Hyalella azteca	7 d	LC50	1- 11 days	Mortality (1)	18	70	←	6.44-8.68	Borgmann et al	2005
			7 d 7 d	Mean LC50 LC50	1- 11 days	Mortality (1) Mortality (1)	124	222	63	7 22 0 00	Poramonn of al	2005
			30 d	LC50 LC10	1- 11 days Juvenile	Mortality (1)	31.72	34.5			Borgmann et al De Schamphelaere and Janssen	2005
			30 d	LC10	Juvenile	Mortality (1)	104.99	171			De Schamphelaere and Janssen	2004
			30 d	LC10	Juvenile	Mortality (1)	190.35	290			De Schamphelaere and Janssen	2004
			30 d	LC10	Juvenile	Mortality (1)	398.68	337			De Schamphelaere and Janssen	2004
			30 d	LC10	Juvenile	Mortality (1)	29.6	38.4	←	7.45	De Schamphelaere and Janssen	2004
	Dainhan		30 d	LC10	Juvenile	Mortality (1)	29.1	46.1 73.6	←		De Schamphelaere and Janssen	2004
	Rainbow Trout	Oncorhynchus mykiss	30 d	LC10 Mean LC10	Juvenile	Mortality (1)	29.1 29.3	73.6	50.7	7.58	De Schamphelaere and Janssen	2004
			30 d	LC10	Juvenile	Mortality (1)	29.1	99.1	50.1 ←	6.78	De Schamphelaere and Janssen	2004
Fish			30 d	LC10	Juvenile	Mortality (1)	28.2	185	←	6.8	De Schamphelaere et al.	2005
				Mean LC10					135			
			30 d	LC10	Juvenile	Mortality (1)	31.5	219		7.08	De Schamphelaere et al.	2005
			30 d	LC10	Juvenile	Mortality (1)	176.3	578			De Schamphelaere et al.	2005
			30 d 32 d	LC10 ChV	Juvenile Larva	Mortality (1) Mortality	103.7 47	902 188		7.76 7.4-8.2	De Schamphelaere et al. Norberg-King	2005 1989
			7 d	LC50	Larva	Mortality	190	780		8.3-8.7	Magliette et al.	1989
	Fathead Minnow	Pimephales promelas	NR		Egg	Mortality	46	207		7-8	Benoit and Holcombe	1978
	IVIII II IUW		7 d	MATC	Larva	Mortality	48	125			Norberg and Mount	1985
			7 d	TLM	Fry	Mortality	186	870		7.5-7.6	Pickering and Vigor	1965

[&]quot; \leftarrow " values included in mean

Table D.2: Data used to develop hardness-cadmium relationships for long-term exposure to cadmium.

								Effect	Mean Effect			
	Species Common						Average	Concentration	Concentration if Applicable			
Family	Name	Scientific Name	Duration	Endpoint	Life stage	Observed Effect	Hardness	(ug/L)	(ug/L)	рН	Authors	Year
			72 h	EC10	Population	Growth rate	3.42	2.8	←	6.71	Kallqvist	2007
			72 h	EC10	Population	Growth rate	6.21	7.5	←	6.85	Kallqvist	2007
Algae	Green Algae	Pseudokirchneriella	72 h	EC10	Population	Growth rate	16.21	8.5	←	6.74	Kallqvist	2007
Algae	Green Algae	subcapitata	72 h	EC10	Population	Growth rate	46.21	6	←	6.65	Kallqvist	2007
							18.01		5.7			
			72 h	EC50	Population	Growth	250	43.5		8.1	Benhra et al.	1997
			21 d	EC16	Less than 24hrs	Reproduction	45.3	0.17		7.74 (7.4-8.2)	Biesinger and Christensen	1972
			21 d	MATC	Less than 24hrs	Reproduction - Number of young per adult	53	0.15		7.5 +- 0.2	Chapman et al	1980
			7 d	MATC	Neonate	Growth	90	1.2			Winner	1988
Invertebrates	Water Flea	Daphnia magna	21 d	MATC	Not reported	Reproduction - Number of young per adult	130	0.64			Borgmann et al	1989
			7 d	EC10	Adult	Repro - brood mass	179	0.13		8.07 +- 0.07	Barata and Baird	2000
			21 d	MATC	24h	Reproduction	249.8	1.09		8.0 +- 0.2	Kuhn et al	1989
			14 d	MATC	Less than 24hrs	Reproduction - Number of young per adult	240	4.3		8.0 +- 0.3	Elnabarawy et al	1986
			30 d	IC20	Swim-up fry	Biomass, decrease in	29.2	0.87		7.54 (0.13)	Brinkman and Hansen	2007
			61 d	MATC	Larva	Biomass, decrease in	45	2	←	7.6 (7.2-7.8)	Eaton et al.	1978
			60 d	MATC	Larva	Biomass, decrease in	45	6.7	←	7.6 (7.2-7.8)	Eaton et al.	1978
Fish	Brown Trout	Salmo trutta		mean MATC			45		3.7			
			30 d	IC20	Swim-up fry	Biomass, decrease in	67.6	2.18		7.60 (0.10)	Brinkman and Hansen	2007
			30 d	IC20	Swim-up fry	Biomass, decrease in	151.0	6.62		7.51 (0.12)	Brinkman and Hansen	2007
			50 d	ChV	Embryo-larval		250	16.49			Brown et al. (as cited by EPA 2001)	1994

[&]quot;←" values included in mean

Table D.3: Hardness-Toxicity Relationships for Zinc and Cadmium

Parameter	Species	n	Slope	p-value	r ²
	Pseudokirchneriella subcapitata	6	0.785	0.007	0.869
	Daphnia magna	13	1.027	0.004	0.541
	Ceriodaphnia dubia	3	0.983	0.432	0.606
Zinc	Hyalella azteca	2	0.656	-	1.000
	Oncorhynchus mykiss	9	0.719	0.046	0.455
	Pimephales promelas	5	1.135	0.006	0.944
	Combined Slope (p = 0.909)	38	0.846	0.000	0.804
	Pseudokirchneriella subcapitata	2	0.771	-	1.000
Cadmium	Daphnia magna	7	1.159	0.148	0.370
Caumum	Salmo trutta	5	1.179	0.022	0.864
	Combined Slope (p = 0.830)	14	1.023	0.830	0.810

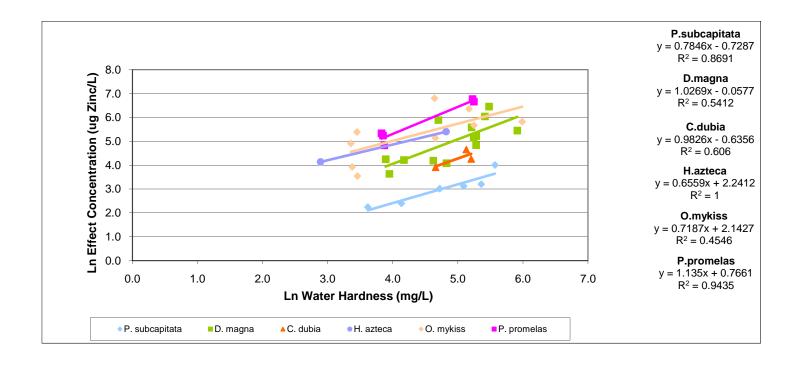


Figure D.1: Comparison of zinc hardness-toxicity relationships for various aquatic species in long-term exposures. Data in Appendix Table D.1.

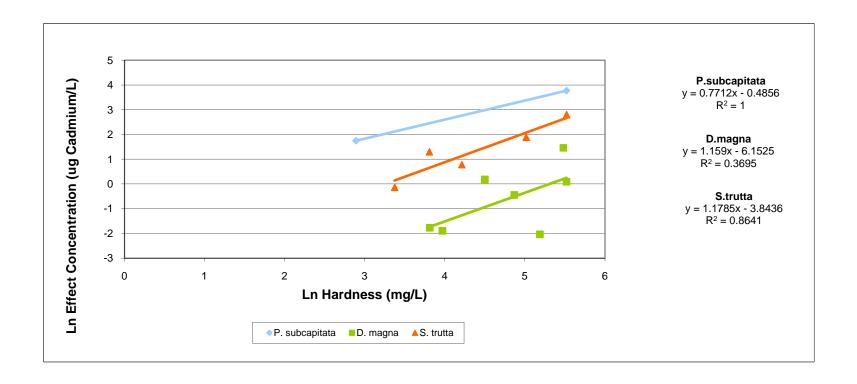


Figure D.2: Comparison of cadmium hardness-toxicity relationships for various aquatic species in long-term exposures (Data in Appendix Table D.2).