Aquatic Resource Assessment Report for United Keno Hill Mines

Report Prepared for:

Elsa Reclamation and Development Company Ltd. Whitehorse, YT

Report Prepared by:

Minnow Environmental Inc. 2 Lamb Street Georgetown, Ontario L7G 3M9

March 2009

Aquatic Resource Assessment Report for United Keno Hill Mines

Report Prepared for:

Elsa Reclamation and Development Company Ltd. Whitehorse, YT

Report Prepared by:

Minnow Environmental Inc.

100

Jocelyn Kelly, M.Sc. Project Manager

Cynthia Russel, B.Sc. Project Principal

March 2009

TABLE OF CONTENTS

1.0 1.1 1.2 1.3	INTRODUCTION1Background1Study Objectives and Approach2Report Organization2
2.0 2.1 2.2	DESCRIPTION OF STUDY AREA 3 Drainage Areas – Natural and Mine-Influenced 3 Habitat Characteristics 4
3.0 3.1 3.2	WATER QUALITY 7 Approach 7 Current Water Quality 7
4.0 4.1 4.2	SEDIMENT QUALITY
5.0 5.1 5.2 5.3	BENTHIC COMMUNITY11Approach11Benthic Communities12Potential Relationship to Mine Influences13
6.0 6.1 6.2 6.3 6.4	FISH SURVEY15Approach15Fish Community17Fish Health18Metal Concentrations in Tissues18
7.0	SUMMARY
8.0 9.0	RECOMMENDATIONS
APPEI	NDIX A: SAMPLING STATIONS
APPEI	NDIX B: WATER QUALITY DATA
APPEI	NDIX C: SEDIMENT QUALITY

- APPENDIX D: BENTHIC INVERTEBRATE COMMUNITY
- APPENDIX E: FISHERIES DATA

LIST OF TABLES

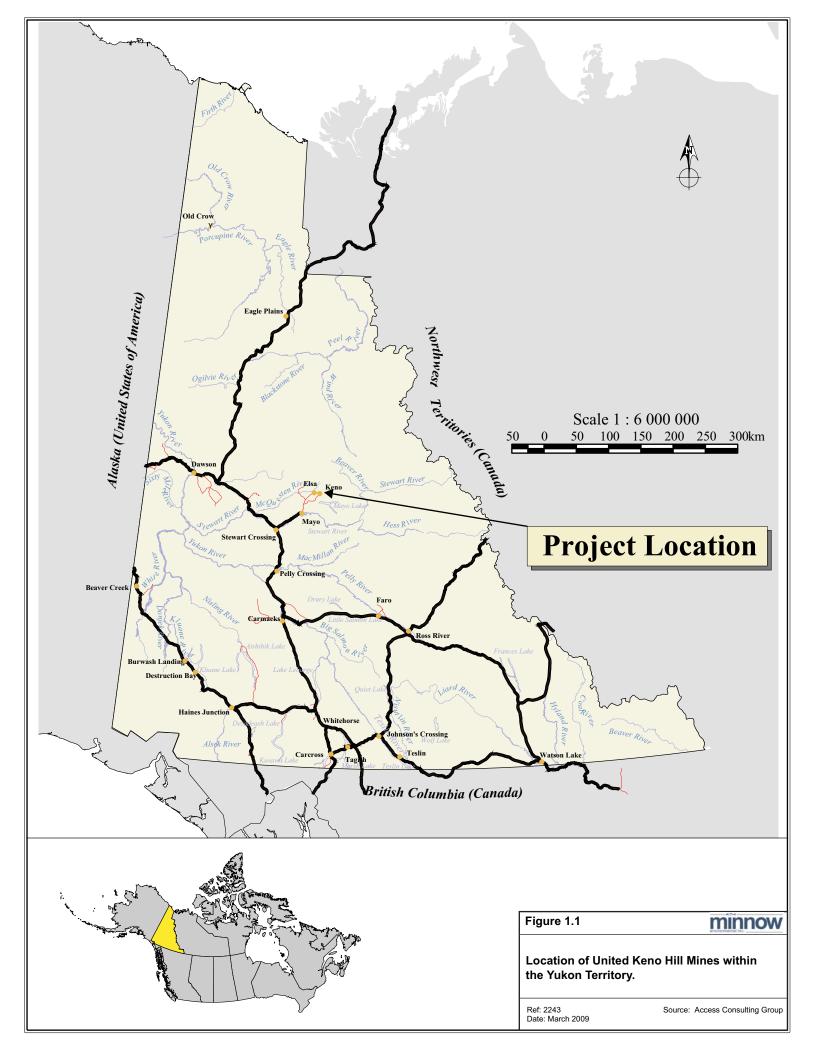
	After Page
Table 1.1	Environmental monitoring studies conducted at United Keno Hill Mines2
Table 2.1	Habitat characteristics4
Table 3.1	Parameters exceeding both background and water quality guideline in
	more than 10% of samples7
Table 3.2	Locations where parameters exceed background levels and guideline in
	more than 50% of samples7
Table 4.1	Mean concentrations of selected metals in sediment exceeding applicable
	guideline
Table 5.1	PCA of median (mid-2004 – mid-2007) for water quality parameters
Table 5.2	Correlations between water quality summary variables and benthic
	community metrics for 200714
Table 6.1	Fish tissue concentrations consumption benchmarks
Table 6.2	Fish presence-absence by station based on electrofishing and minnow
	trapping catch data, 2006 17
Table 6.3	Mean electrofishing catch per unit effort, 200617
Table 6.4	Summary statistics for concentrations of metals in Arctic grayling muscle,
	2006

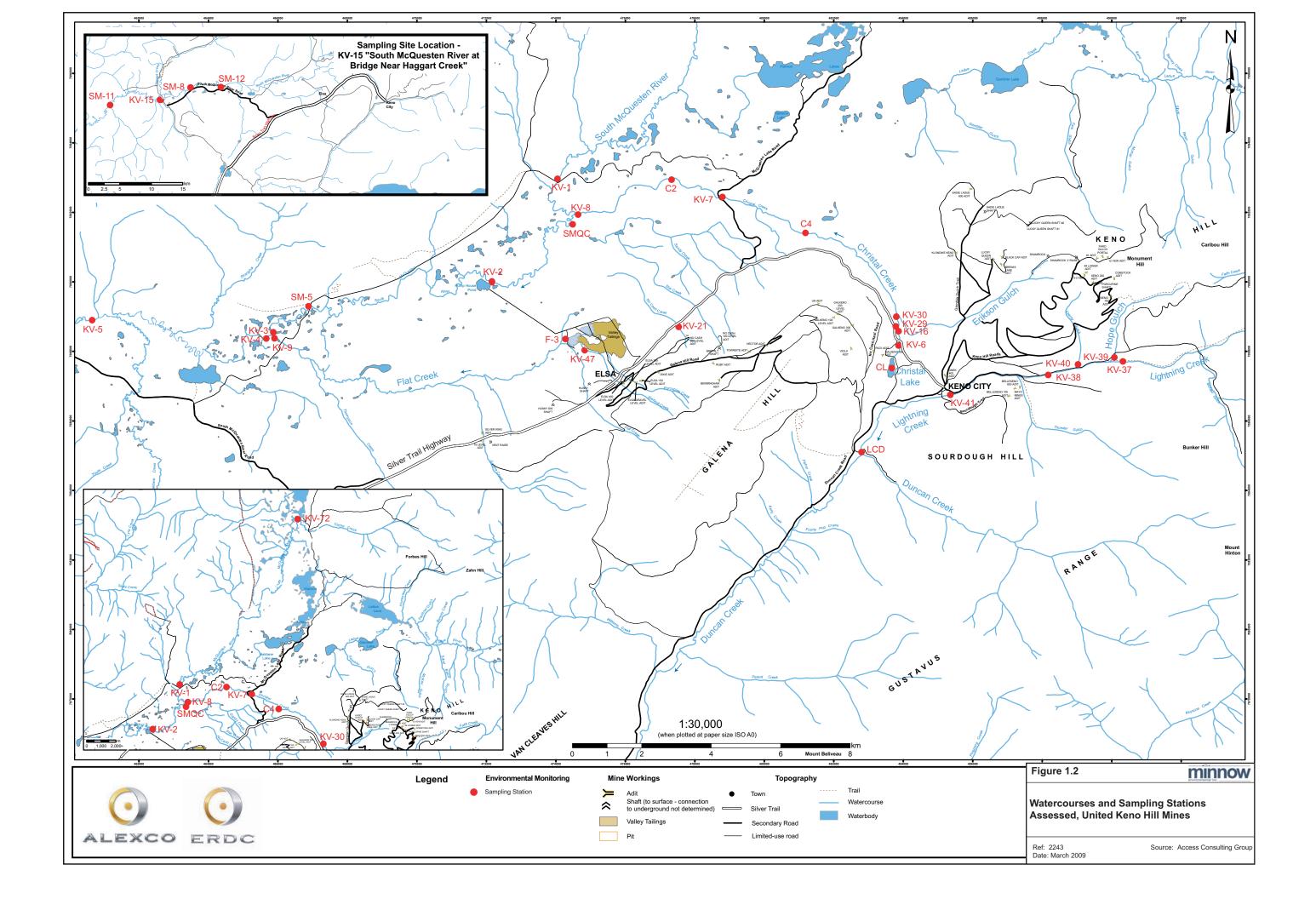
LIST OF FIGURES

After Page ...

Figure 1.1	Location of United Keno Hill Mines	1
Figure 1.2	Watersheds and sampling stations assessed	1
Figure 4.1	Concentrations of metals in sediment1	0
Figure 5.1	Mean benthic invertebrate community metrics by station1	2
Figure 5.2	Comparisons of benthic community metrics at individual stations1	2
Figure 5.3	Water quality at United Keno Hill Mines stations based on PCA of median	
	mid-2004 – mid-2007 values 1	3
Figure 5.4	Correlations between water quality and benthic community characteristics 1	4
Figure 6.1	Weight versus fork length of slimy sculpin captured by seining, 2006 1	8
Figure 6.2	Whole body metal concentrations in slimy sculpin relative to wildlife	
	consumption benchmarks1	8

1.0 INTRODUCTION


1.1 Background


United Keno Hill Mines Limited and UKH Minerals Ltd. were the previous owners of the properties located on and around Galena Hill, Keno Hill, and Sourdough Hill collectively known as the Keno Hill Mining Property. For the purposes of this report these mining areas are referred to as the United Keno Hill Mines (UKHM). The UKHM area is located in north-central Yukon Territory (Figure 1.1) near the towns of Elsa and Keno and is comprised of approximately 827 mineral claims spanning the three mountains, an area of approximately 15,000 ha (about 29 km long and 8 km wide). Associated with the site are abandoned adits, buildings/structures, a tailings impoundment area and other waste material which represent a source of contaminants to the downstream watersheds (Figure 1.2).

In June 2005, Alexco Resource Corp was selected as the preferred purchaser of the UKHM assets. As required in the purchase agreement, Alexco formed a company – Elsa Reclamation and Development Company Ltd. (ERDC), to own and manage the site. ERDC is required to develop a "Reclamation Plan for the Existing State of the Mine".

As part of the closure planning process, a water quality assessment for UKHM (Minnow 2008) was completed to evaluate current and historical water quality conditions and provide recommendations with respect to contaminants of concern. This information will support the development of water quality goals and objectives for the watersheds downstream of the mines. It is anticipated that the goals for the tributaries in the UKHM area (Lightning Creek, Christal Creek, Flat Creek) will focus on biological recovery whereas the goal for the main receiver (South McQuesten River) will focus on protection of existing resources (Figure 1.2). This will require an understanding of current biological communities and health in the drainages downstream of UKHM. While numerous chemical and biological studies of the downstream receiving environments have been undertaken in the past, the information has not previously been consolidated into one comprehensive assessment. Therefore, ERDC retained Minnow Environmental Inc. to review and assess the findings of previous studies and prepare an integrated aquatic resource assessment of the available data for the creeks and river downstream of the various UKHM sources.

1

1.2 Study Objectives and Approach

The objective of this assessment was to provide an integrated assessment of the available biotic (fish and benthic invertebrate community) and abiotic (water and sediment) data such that current conditions within the headwaters tributaries down gradient of the mine and further downstream in the South McQuesten River are characterized.

This report, along with the Water Quality Assessment Report for United Keno Hill Mines (Minnow 2008), will serve as key supporting documents for other ERDC initiatives, such as preparation of the Closure Plan, determination of water quality goals and objectives, and the development of a long-term monitoring program.

Numerous environmental monitoring studies have been conducted in this area, by environmental consultants (Laberge Environmental Services and White Mountain Environmental Consulting) as well as the Yukon Government, Department of the Environment (Table 1.1). For the purpose of this report a sub-set of recent and historical reports dating back to 1985 were used in this assessment. Generally, the studies assessed were those which employed common stations to allow for comparison of conditions between surveys. While historical surveys were assessed to consider changes over time, the primary focus of this assessment was on the most recent biological surveys in order to characterize current conditions.

1.3 Report Organization

Section 2.0 describes the watersheds within the study area and provides an overview of mine influences and habitat characteristics of each. The results of the recent water quality assessment for UKHM (Minnow 2008) are summarized in Section 3.0. Section 4.0 provides an evaluation of current and historical sediment quality near UKHM while benthic invertebrate community health is described in Section 5.0. An assessment of current and historical fisheries data including community composition, fish condition and metal concentrations in tissues, is discussed in Section 6.0. An integrated summary is presented in Section 7.0 and recommendations in Section 8.0. References cited throughout the report are listed in Section 9.0.

Author	Year	Title	Source
McLaren, R.E. and K.C. Lucas	1954	Pollution of streams in the Mayo District, Yukon Territory, December 7, 1954	From DFO Whitehorse Yukon files, unreferenced report
Environmental Protection Service	1978	Assessment of water quality and biological conditions in watersheds surrounding the United Keno Hill Mine, Elsa, Yukon, during the summers of 1974 and 1975	Fisheries and Environment Canada, Reg. Prog. Rep. 78-14
Benthel, G. and I. Soroka.	1981	Compliance evaluation of the United Keno Hill Mines Ltd. Elsa, Yukon Territory	Environment Canada, EPS. Reg. Prog. Rep. 81-23.
Northern Affairs Program	1985	United Keno Hill Mines Ltd. Information sheet for water-use application	
Yukon Territory Water Board	1985	United Keno Hill Mines Ltd. Water Licence Y1N850-O2RL	
Northern Biomes Ltd.	1986	United Keno Hill Mines Ltd., 1986 Benthic Fauna Sampling Program, Flat Creek and South McQuesten River.	Northern Biomes Ltd. 1986.
Northern Biomes Ltd.	1987	United Keno Hill Mines Ltd., 1987 Benthic Fauna Sampling Program, Flat Creek and South McQuesten River.	Northern Biomes Ltd. 1987.
Leverton and Associates.	1988	Biological Monitoring Program, United Keno Hill Mine Site.	Leverton and Associates.
Davidge, D. and G. Mackenzie- Grieve	1989	Environmental Quality of Receiving Waters at United Keno Hill Mines Ltd., Elsa Yukon	No. 89-04. Department of Environment, Environmental Protection, Pacific Region, Yukon Branch
Burns, B.E.	1990	Biological Monitoring Program at Flat Creek and South McQuesten River, Elsa Yukon, 1989	Laberge Environmental Services, 1990
Burns, B.E.	1991	Biological Monitoring Program at Flat Creek and South McQuesten River, Elsa Yukon, 1990	Laberge Environmental Services, 1991
Burns, B.E.	1992	Biological Monitoring Program at Flat Creek and South McQuesten River, Elsa Yukon, 1991	Laberge Environmental Services, 1992
Burns, B.E.	1992	Environmental quality of receiving waters at UKHM Mines Ltd. Elsa Yukon.	Regional Programing Report (draft), Dept. of Env., Env. Protection, Pacific Region, Yukon Branch
Burns, B.E.	1994	Environmental Data Compilation and Initial Monitoring at United Keno Hill Mine Area.	Laberge Environmental Services. 1994.
Environment Protection Yukon Division.	1995	Environmental Quality of Receiving Waters at United Keno Hill Mines Ltd. Elsa Yukon, 1990.	Regional Program Report No. 95-08.
Sparling, P.and M. Connor,	1995	. Fish and Fish Habitat Assessment Conducted Near Elsa, Yukon for United Keno Hill Mines August 1994 – September 1995	White Mountain Environmental Consulting
Access Mining Consultants Ltd.	1996	United Keno Hill Mine Ltd Site Characterization, Technical Appendix I – VI.	Access Mining Consultants Ltd. 1996
Burns, B.E.	1996	Biological Monitoring Survey at United Keno Hill Mine Area, 1994	Laberge Environmental Services. 1996
Environmental Services, Public Works and Government Services	2000	The Keno Valley / Dublin Gulch Environmental Baseline Assessment.	Environmental Services, Public Works and Government Services, March 2000
Burns, B.E.	2004	Receiving Water and Contaminant Pathway Monitoring in the Keno Valley, 2003. Special Projects #3.	Laberge Environmental Services. 2004.
Burns, B.E.	2005	Valley Receiving Water Monitoring Program, 2004/2005.	Laberge Environmental Services. 2005
Burns, B.E.	2006	Keno Valley Receiving Water Monitoring Program, 2005/2006. Two Volumes.	Laberge Environmental Services. 2006.
Sparling, P	2006	Fisheries Assessments Conducted in the Keno Hill Mining Area, Including Metals Analysis of Fish Tissue Samples, 2006	White Mountain Environmental Consulting
Burns, B.E.	2008	Keno Valley Stream Sediment and Benthic Invertebrate Monitoring Programs, 2007.	Laberge Environmental Services. 2008.

Shading indicates reports provided to Minnow for use in the present study.

^a list may not be exhaustive.

2.0 DESCRIPTION OF STUDY AREA

2.1 Drainage Areas – Natural and Mine-Influenced

UKHM is located within the Stewart River watershed which is part of the Yukon River Basin. Mine drainage to the north is captured in Christal and Flat Creeks which are tributaries of the South McQuesten River (Figure 1.2). The South McQuesten River originates at McQuesten Lake and flows south-west to its confluence with the Stewart River (Burns 2008). Mine drainage to the south is captured in Lightning Creek which flows southwest into Duncan Creek before joining the Mayo River and then discharging into the Stewart River further downstream. This assessment of aquatic resources for UKHM includes the mine influenced tributaries (Lightning, Christal and Flat Creeks) as well as the South McQuesten River (Figure 1.2).

Within the South McQuesten River watershed, Christal and Flat Creeks capture most of the mine-influenced drainage. Christal Creek originates at Christal Lake which receives seepage from mine structures and contains historical deposits of tailings (Burns 2008; Sparling 2006). Downstream of Christal Lake, the creek receives seepage from mine structures located on the west side of Keno Hill and the east side of Galena Hill (Burns 2008) then flows approximately 10 km northwest before it joins the South McQuesten River downstream of McQuesten Lake.

Flat Creek receives mine effluent from the valley tailings impoundment area at its headwaters and from adits on Galena Hill which drain to Flat Creek through small tributaries located along the south side of the drainage area. Flat Creek then flows about 7 km northwest where it drains into the South McQuesten River. Since mine drainage enters Flat and Christal Creeks at their headwaters, there are no upstream locations on these creeks suitable for monitoring background (reference) conditions. One of the historical reference monitoring locations that has been used for water, sediment, and biological studies is located on the South McQuesten River upstream of the confluence of Christal and Flat Creeks (KV-1). However, recently it was observed that water quality began to deteriorate at this location suggesting a possible unidentified upstream source load (Dan Cornett, Access Consulting, pers. comm.). For the purpose of this study, data from KV-1 (up to November 2007) was used as reference data. Another station located at the headwaters of the South McQuesten River (KV-72) and upstream of mine influences has recently been added to the routine monitoring program in order to assess its use as a long term reference location for the South McQuesten watershed (Figure 1.2).

Lightning Creek, a tributary of Duncan Creek, has been subject to placer mining activity and receives drainage from mine adits on Keno and Sourdough Hills (Burns 2008). Lightning Creek upstream of Hope Gulch does not receive mine discharges and serves as an additional reference station for environmental monitoring (station KV-37; Figure 1.2).

In general, the watersheds described above were the focus of past studies although the stations sampled within watersheds often varied between studies. For the purpose of this report, stations that were closely located (e.g. typically within a few hundred meters of each other) were considered the same. A list of station identifiers used in previous studies as well as the ones used in this report is provided in Appendix Table A.1.

2.2 Habitat Characteristics

Detailed data and information describing the habitat characteristics at sampling stations were documented in the summer of 2006 (Table 2.1; Sparling 2006). This information was supplemented by habitat characteristics from other studies with particular emphasis on Sparling and Connor (1996).

Water depths at the time of the 2006 study were generally < 0.5 m in tributaries and 0.6 to 1.2 m in the South McQuesten River, with flow velocities of \leq 1m/s at most locations, except in Lightning Creek and the mid-reaches of Christal Creek where flow velocities were slightly higher (> 1 m/s) (Sparling 2006). High flows associated with the spring freshet have generally been observed to occur in late May or June while low flows are between February and April. High flows also take place in summer and/or fall due to rainstorms that lead to significant flooding (Burns 2005).

Christal Lake, located at the headwaters of Christal Creek, is a small sub-alpine lake with a bed consisting of organic silt covered with vegetation and tailings piles at various locations around the lake (Table 2.1). Water depths in the lake are generally shallow with an estimated maximum of 3 m.

In general, Christal Creek is approximately 2 to 4 m wide characterized by mainly riffle/run habitat that includes occasional rapids, some pools and meandering reaches, and generally fine ($\leq 30\%$ sand/silt) to moderately coarse (gravel and cobble) substrate. From the headwaters of Christal Creek at Christal Lake to approximately 5 km downstream, the creek begins as a narrow (1 – 3 m) meandering channel with moderate flow velocities (0.8 m/s) before flowing through a confined valley with many pools, riffles and substrates of mainly gravel with boulder, cobble and sand (Sparling 2006; Sparling and Connor 1996). Habitat at station C4 is a high gradient, fast-flowing (> 1 m/s)

Table 2.1: Habitat characteristics recorded in June or August^a, 2006, United Keno Hill Mines, Yukon (modified from Sparling 2006)^b.

Chr	aracteristic	Lightni	ng Creek			Christal Creek			Flat Creek			South McQueston River		
Cha		KV41	LCD	CL	KV6	C4	KV7	KV8	KV9	KV72	KV1	KV2	KV4	KV15
	Latitude (hh mm.sss)	63 54.423 N	63 53.594 N	63 54.944 N	63 55.1739 N	63 56.8751 N	63 57.439 N	63 57.170 N	63 55.249 N	64 03.875 N	63 57.601 N	63 56.174 N	63 N	63 53.732 N
Station	Longitude (hh mm.sss)) 135 18.205 W	135 20.739 W	135 19.926 W	135 19.4620 W	135 22.3977 W	135 25.944 W	135 31.038 W	135 41.703 W	135 21.886 W	135 31.879 W	135 34.397 W	135 W	136 01.417 W
Description	Elevation (feet)	3,053	2,771	-	-	2,263	-	2,099	-	2,221	2,164	-	-	-
	Length of Reach Assessed (m)	250	250	n/a	175	900	350	265	180	650	250	200	-	350
	Gradient (narrative or %)	-	-	n/a	gentle	8	-	-	< 1	-	-	-	-	-
	Average Channel Width (m)	9	5	n/a	1 m at a distance 15 m u/s of culvert 3 m d/s of culvert 1 m at a distance 5 m us/	3	2.8	4	3.5	22	12	17		32
	Average Wetted Width (m)	9	3.5	n/a	of culvert 2 m d/s of culvert	2.5	2.3	3.5	3.7	18	12	20	-	18
	Average Riffle Depth (m)	-	-	n/a	-	-	-	-	0.2	0.5	0.5	-	-	-
	Average Pool Depth (m)	>1.5	2.2	n/a	1	0.7	1	1.5	0.8	1.7	0.9	>2	-	>1.5
Channel	Average Depth (m)	0.4	0.3	2 (estimate)	0.45 u/s culvert 0.15 d/s culvert	0.4	0.3 August, 0.4 June	0.4	0.3	0.7	0.6	1.2	-	0.7
Hydrology	Average Velocity (m/s)	>1.5	1.3 ^e	n/a	0.8 u/s culvert and pools 1 d/s culvert	>1	1	0.3	0.5	0.5	0.7	0.5	0.7	1
	General morphology	10% pool 10% riffle 80% rapid	10% pool 65% riffle 25% run	n/a	-	10% pool 70% riffle 20% run/rapid	15% pool 25% riffle 60% run	20% pool 60% glide ^d 20% run	20% pool 30% riffle 50% run	30% pool 15% riffle 55% run	15% pool 30% riffle 65% run	30% pool 10% riffle 60% run	-	10% pool 40% riffle 50% run
	Side Channels	u/s of both bridges	none	n/a	10% d/s culvert none u/s culvert	none	none	none	2 small areas	none	none	none	-	1 small
	Stream Flow Characteristics	well-defined channel within a human-made channel, consistenly fast flows d/s of bridge, plunge pools d/s culvert and old bridge	placer mine created channel, very little natural shape, flat bottom in all straight areas, one tight corner has a small deposition bar and deep corner pool, Duncan Ceek Road flattens a shallow riffle.	n/a	shifting sand, gentle meandering, some braiding d/s culvert, u/s highly meandering, small deep pools	channel flows mostly straight, occasional gentle meanders, flat bottom, occasional deep side areas	gentle meanders, channel often straight, extensive modification due to road construction, possible historic placer mining	channel confined in an open flood plain u/s of mouth, opens to series of 3 small pools at mouth	-	channel narrows becoming partially entrenched 300 d/s of lake	gentle meanders, flat- bottomed channel	mostly slow, even flows, deep riffles that do not scour substrate, wide curves and gentle meanders create large corner pools and debris traps	-	shifting channel, loose bed load and large deposition apron on one bank below confluence with Haggart Creek
	Bed Material	loosely compacted boulders in old placer mined area	well sorted, slightly compacted granular materials	organic silt with thick vegetative cover, small tailings piles at south end of lake	small gravel and sand moderately consolidated d/s culvert, fine silts and sand u/s culvert in pool, coarse consolidated substrate and some black mat u/s pool	mostly flat angular rocks tightly compacted	mostly concreted gravel and cobble, submerged bridge timbers	mostly fine with occasional cobble pockets, loosely consolidated	coarser away from mouth, moderately compacted and silted with algal growth	fine loose gravel with sandy edges near lake, coarser substrate with cobble and occasional boulders 300 m d/s	well compacted with very few smalls	highly compacted and very stable, extensive algal growth	-	loosely consolidated and shifting gravels
Channel Bed and Bank Features	Substrate (%)	10% sand 15% gravel 15% cobble 60% boulder	15% sand 40% gravel 40% cobble 5% boulder	-	10% sand/silt, 90% gravel d/s culvert, 100% fines u/s culvert in pool, 10% fines, 20% gravels, 30% cobble, 50% boulders u/s pool	20% gravel 50% cobble	15% sand 60% gravel 25% cobble	30% sand/silt 65% gravel 5% cobble	40% gravels 60% cobble fines in side channel	25% sand 50% gravel 20% cobble 5% boulder	10% sand (near ford) 20% gravel 50% cobble 30% boulder	30% sand 20% gravel 35% cobble 15% boulder	-	20% sand 60% gravel 20% cobble
	Bank Condition	shallow rising evenly and abruptly 0.5 to 1 m, modified by placer mining, culvert and old bridge	banks in placer mined	east shoreline mostly stable, west shoreline eroded, low, non-confining banks at outlet, marshy near outlet with beaver dam across entire width of lake	banks non-confining 20 m open flood plain d/s culvert, hill partially contains u/s, entrenched with abrupt 1 to 2 meter banks further up	mostly confined, occasionally entrenched, banks abrupt, rising 0.8 to >2m	confining, with >1m rise at bankful levels, open flood plain	abrupt, often undercut, rise 0.6 to 1.5 m above water line, less steep and washed from spring flooding at mouth	abrupt and confining rise 0.7 to 1.8m, open flood plain beyond	shallow, well-defined banks at McQuesten Lake outlet, entrenching 300 m d/s	old road crossing ford, banks well defined, mostly abrupt with 0.6 to 1.5m rise to open flood plain	stable and abrupt, rising 0.8 to 1.5 m above water line, 50% of bank areas undercut	-	open and exposed on or side, confined and deepe on other side
Riparian Features	Riparian Vegetation	willow, alder	willow, sedge	mature spruce, alder, birch, willow, poplar	willow and sedge	mostly alder with birch, willow, spruce	willow, spruce, alder	willow, sedge	willow, alder, spruce	mature spruce, sedge, covered flood plains	willow, alder, spruce	mature spruce, willow, alder	-	mature spruce, alder
	Debris	few sticks	none	-	none	very few sticks and bridge timbers	some sticks and bridge timber	occasional LOD ^c and sticks	log piles and sticks	very little	occasional stick pile	stick piles	-	stick and log pile in corne
In-stream Fish Habitat Features	Cover	plunge pools, perched boulders, turbulence	side banks, corner pool, light turbidity	thick aquatic vegetation	grass banks d/s of culvert, willow overhang u/s culvert and pools	perched flat rocks, cut banks, turbulence	limited, stick wads, cut banks, timber	LOD ^c , small cobbles, limited amounts	LOD ^c and undercut banks	scoured banks with roots, pools, depth	boulder, cut banks, turbulence, muck	depth, sumberged sticks, cut banks	-	corner pool with debris, cut banks and depth
	1		1	1	15% d/s culvert	1	1							

^a data collected in early September at station KV2

^a information on all stations except station SMQ C was available in Sparling (2006)

^c abbreviation used in Sparling (2006) possibly referring to "Large organic debris"

^d the term "glide" is redundant with "run" and is therefore a possible data entry error in Sparling (2006)

^e text in Sparling (2006) report indicates that velocity at LCD is < 1 m/s Note: percentages reported for KV1 and KV6 substrate and KV1 pool, riffle, run sum to > 100% n/a not applicable

riffle/rapid reach that flows straight with occasional meanders and pools. This reach flows over mainly gravel, cobble and boulder substrate through a steep canyon and has been subject to placer mining activity (Sparling 2006; Sparling and Connor 1996). Approximately 3 km downstream of C4, the reach at station KV-7 is straight with some meanders and moderate flows (1 m/s) (Sparling 2006) over mostly concreted gravel and cobble, while downstream at station C2, the creek flows through a wetland area that has generally well-defined banks (Sparling and Connor 1996). Station KV-8 at the mouth of Christal Creek consists of a confined channel with low average velocity (0.3 m/s) and substrate of mostly gravel with a relatively high proportion of sand/silt (30%) and some cobble (Table 2.1; Sparling 2006). Partial or complete barriers to flow and fish movement occur in Christal Creek (Sparling 2006; Sparling and Connor 1996). Several beaver dams present barriers along Christal Creek (Sparling and Connor 1996) as well as a large beaver dam in Christal Lake that controls water levels (Sparling 2006). Three barriers consisting of bridge timbers and stick jams, two of which are over a meter high, are located on Christal Creek at station C4. Christal Creek has been subject to extensive ice-damming which has been reported to persist until late spring (Sparling and Connor 1996).

Lower Flat Creek (KV-9) is characterized by riffle/pool sequences with average channel widths of approximately 3.5 m and areas dominated by either cobble/gravel or gravel/sand substrate (Table 2.1; Sparling 2006; Sparling and Connor 1996). Suitable fish habitat along Flat Creek is thought to be limited to a reach spanning approximately 400 m upstream of the mouth (Sparling 2006; Sparling and Connor 1996). Further upstream there are few cobble/gravel, riffle/pool sequences and a high proportion of bottom substrates dominated by coppery hued silt and mud which have been suggested to be old tailings (Sparling and Connor 1996). Log and stick debris found in many of the riffle areas of KV-9 in Flat Creek represent partial barriers to flow and fish movement (Sparling 2006).

Lightning Creek is wider than the other tributaries (3.5 to 9 m wetted width at time of survey) and characterized by coarse substrate including gravel, cobble and boulder and relatively fast water (> 1 m/s) in some up-stream areas, flowing as riffles and rapids (Table 2.1; Sparling 2006). Station KV-41 was noted as having turbid water at the time of the survey and also has plunge pools associated with a culvert and old bridge (Sparling 2006). Habitat at station LCD, at the confluence with Duncan Creek, includes some meanders and pools in addition to riffles and runs (Sparling 2006; Sparling and Connor 1996). The reach encompassing stations KV-41 and LCD has been largely

straightened and ditched as a result of historical placer mining activity (Sparling and Connor 1996).

Among the stations assessed during the 2006 survey, average depths and velocities in the South McQuesten River were comparable to the tributaries whereas channel and wetted widths were notably greater (overall range of 12 to 32 m; Table 2.1; Sparling 2006). Channel morphology includes meandering reaches accompanied by slow moving water and sloughs, riffle/run habitat and some deep, often silted pools. At the headwaters of the South McQuesten River, in the vicinity of reference station KV-72 downstream of McQuesten Lake, a plume of chalky turbidity is apparent as Cache Creek enters the river. Further downstream bottom substrate is largely comprised of gravel and cobble with a relatively high proportion of boulder at reference station KV-1 (Sparling 2006). Downstream of Flat Creek to station KV-15, silt substrate is more common (Sparling and Connor 1996) as the river flows through a large wetland and exhibits deep, wide runs in several locations (Sparling and Connor 1996).

3.0 WATER QUALITY

3.1 Approach

Data were analysed for 20 water quality stations located on permanent surface water courses upstream (reference/background) and downstream (receiving environment) of mine-related disturbances or inputs (e.g., roads, rock piles, adits, tailings area, etc.). These stations were located on various tributaries (Lightning Creek, Christal Creek, Flat Creek and No Cash Creek) and the South McQuesten River. The database used in the assessment covered the period from 1994 to spring 2007, although some data from early years were removed for some parameters because method detection limits exceeded the water quality guidelines to which the data were being compared (Minnow 2008). Also, outliers were removed to ensure the assessment was not biased by erroneous data or rare extreme events. Data from mine-exposed areas were compared to background concentrations and water quality guidelines to identify substances and locations with elevated concentrations.

3.2 Current Water Quality

The benchmark selected for screening water quality parameters was either a summary statistic (mean ± t-value x standard deviation) of reference station KV-1 and KV-37 data or the applicable water quality guideline, whichever was higher and available. There has been some concern recently that the water quality at KV-1 began to be impacted by an unknown upstream source resulting in increased concentrations (Dan Cornett, Access Consulting, pers. comm.). Review of water quality at KV-1 indicates that metal concentrations began to rise in mid-2006 (Appendix Figure B.15) thereby possibly leveraging background values presented in the Water Quality Assessment Report (Minnow 2008) which incorporated data up to June 2007. As a result, a recommendation of the water quality assessment was that a comparative assessment of the two background stations on the South McQuesten River should be undertaken when more data at the new reference area (KV-72) are available (Minnow 2008).

Numerous parameters measured at stations within the various watersheds downstream of UKHM exceeded benchmark concentrations in at least 10% of samples (Table 3.1). However, a much smaller set of parameters and locations had concentrations above benchmarks at a high frequency (at least 50% of samples or median value) and/or magnitude (Table 3.2). These parameters, identified as potential contaminants of concern (PCOCs), included: aluminum, arsenic, cadmium, chromium, copper, iron, lead,

Table 3.1: Parameters exceeding both background concentrations and water quality guideline (if available) in more than 10% of
samples collected at each location. Parameters in bold exceeded highest benchmark (background or guideline)
in more than 50% of samples (i.e. median value exceeded both benchmarks) ^{1,2,3}.

Watercourse	Station	Parameter
Lightning Creek	KV39	As , Cd , Pb, NO ₂ , Zn
	KV40	NO ₂ , Se , S
	KV38	Ag
	KV41	AI, As, Cr, Fe, Pb, NO ₂ , Si, Ag, TSS, Zn
	KV6	As, Cd , Ca, Conductivity, Hardness, Fe, Pb , Mg, Mn, NO ₂ , Se, Si, Ag, SO ₄ , S, TSS, U, Zn
	KV16	As, Cd , Ca, Cr, Conductivity, Hardness, Fe, Pb, Mg, Mn, NO₂, P , Se, Si, Ag, Sr, SO ₄ , S, U, Zn
Christal Creek	KV29	Alk-T, Al, As, Cd , Ca, Cr, Co, Conductivity, Cu, Hardness, Fe, Pb, Mg, Mn , NO ₂ , P, Si, Ag, Sr, SO ₄ , S, TDS, TSS, U, V, Zn
Christal Creek	KV30	Al, As, Cd , Ca, Cr, Conductivity, Hardness, Fe, Pb, Mg, Mn, NO₂ , P, Si, Ag, Sr, SO₄ , S, TDS, TSS, U, Zn
	KV7	As, Cd , Ca, Cr, Conductivity, Hardness, Fe, Pb, Mg, NO ₂ , Si, Ag, SO ₄ , S, TSS, Zn
	KV8	Cd, Ca, Conductivity, Hardness, Fe, Pb, Mg, NO ₂ , P Si, Ag, Sr, SO ₄ , S, Zn
No Cash Creek	KV21	AI, Cd, Ca, Cr, Cu, Hardness, Fe, Pb, Mg, Mn, NO ₂ , S, Zn
Flat Creek	KV47	Al, As, HCO ₃ , Cd , Ca, Cr, Conductivity, Hardness, Fe , Pb, Mg, Mn, Si, Ag , Sr, S, TDS, TSS, Zn
	KV9	HCO₃, Ca, Cd, Conductivity, Hardness, Fe, Pb, Mg, Ag, SO₄ , S, Zn
	KV2	Conductivity, Fe, Ag
	KV3	Ag
South McQuesten River	KV4	Conductivity, Fe, Pb, Ag, Zn
	KV5	Conductivity, P Ag
	KV15	As, Conductivity, Fe, Ag, TSS

parameters for which 50% or more of samples were below the method detection limit but above the guideline value

¹17 parameters were screened against only background or guideline since both were not available

 2 pH and total alkalinity (Alk-T) were screened for >10% of samples that were below benchmarks.

³ CN and Hg were not included due to small sample sizes

Table 3.2: Locations where parameter concentrations exceeded both background levels and guideline (if available) in 50% or more of samples (i.e. median value exceeded). Highlight indicates median values exceeded benchmark(s) by a factor of two or more. Sample sizes (n) shown in parentheses for each parameter/location ¹.

Watercourse	Station	Aluminum	Arsenic	Cadmium	Chromium	Copper	Iron	Lead	Manganese	Nitrite	Phosphorus	Selenium	Silver	Sulphate	Zinc
	KV39		√ (2)	√ (2)						√ (2)					√ (2)
l inhanin n Casala	KV40											√(1)			
Lightning Creek	KV38														
	KV41														
	KV6			√ (36)				√ (35)						√ (21)	√ (81)
	KV16			√ (35)						√ (3)	√ (16)			√ (19)	√ (42)
Christal Creek	KV29			√ (35)					√ (40)	√ (4)				√ (22)	√ (42)
Chilistal Creek	KV30			√ (34)						√ (3)				√ (19)	√ (41)
	KV7			√ (37)										√ (20)	√ (79)
	KV8			√ (34)										√ (20)	√ (40)
No Cash Creek	KV21	√ (2)		√ (1)	√(1)	√(1)		√ (1)	√ (2)	√ (1)					√ (2)
Flat Creek	KV47			√ (3)			√ (14)						√ (2)		√ (16)
T Iat Creek	KV9													√ (6)	
	KV2														
South	KV3														
McQuesten	KV4														
River	KV5														
	KV15														

 $\sqrt{}$ median exceeded background and / or guideline

(#) sample size

¹4 parameters (ammonia, beryllium, nitrate and nitrite) were screened only against guideline since a background benchmark was not available

manganese, nitrite, selenium, silver, sulphate and zinc (Appendix B). These generally occurred in the tributary stations located immediately downstream of mine sources (Christal Creek, Lightning Creek, Flat Creek and No Cash Creek; Figure 1.2). Due to insufficient data and/or adequate analytical method detection limits at some or all stations, risks to aquatic biota related to aluminum, arsenic, chromium, copper, cyanide, manganese, mercury, nitrite, phosphorus, selenium and silver could not be definitively determined; however, the data suggested that the spatial extent and/or magnitude of any influence from these parameters was likely limited. Additional data need to be collected to determine if these parameters should be considered COCs at UKHM (Minnow 2008).

Based on the above, lead, sulphate, cadmium and zinc were retained as preliminary COCs and examined further. Lead was identified as mainly in the particulate form and therefore of low bioavailability, and concentrations of sulphate downstream of mine sources were below levels associated with toxic responses among aquatic biota; hence, lead and sulphate were eliminated as COCs. The final stages of the water quality assessment identified cadmium and zinc as key COCs in water at UKHM, with highest and most frequent elevations evident in Christal Creek (Minnow 2008). Since 1994 concentrations of zinc in Christal Creek have generally decreased and there is evidence of a similar trend for cadmium from mid-2004 to 2007 (Minnow 2008). While cadmium and zinc concentrations in tributaries downstream of UKHM may cause toxicity to some species, concentrations in the South McQuesten River are currently below levels of concern.

4.0 SEDIMENT QUALITY

4.1 Approach

Sediment quality near the UKHM was evaluated using the results of studies conducted in 1985 (Davidge and MacKenzie-Grieve 1989), 1994 (Burns 1996), 2004 (Burns 2005) and 2007 (Burns 2008). Metal concentration data for sediments sampled from reference and mine-exposed stations located along three tributaries (Lightning Creek, Christal Creek and Flat Creek) and the South McQuesten River were compiled and summarized to allow comparisons against applicable sediment quality guidelines and to assess sediment quality spatially and temporally.

Some study-to-study variability has occurred in terms of sampling station locations, laboratory methods/instrumentation, as well as the parameters reported. Triplicate samples were collected in 2004 and 2007 at each station using a trowel, whereas a single composite sample from each station was taken by trowel in 1994, and triplicate samples collected in 1985 were either taken by scoop shovel (slow flowing areas) or corer (fast-flowing waters). In addition, 1985 sediment samples were frozen prior to analysis while samples from other years were kept cool but not frozen. Furthermore, samples taken in 1994, 2004, and 2007 were (presumably) oven-dried before analysis, samples taken in 1985 were freeze-dried (D. Davidge, personal communication). Lastly, only the portion of the dried sediments passing through a 0.15mm sieve was analyzed in 1985 and 1994, whereas a sieve size of 0.053 mm was used in 2004 and 2007.

Sediment metal chemistry data from each study were compiled and mean sediment metal values were calculated (except in 1994 when there was no replication) for each metal and sampling station. Spatial comparisons with respect to mine influences, an assessment of temporal patterns, and comparisons to applicable federal and provincial sediment quality guidelines were undertaken. Guidelines considered included, in order of preference, the Probable Effect Level (PEL) of the Canadian Council of Ministers of the Environment (CCME 1999), British Columbia Sediment Quality Guidelines (PEL if available; BCMOE 2006) and the Severe Effect Levels (SEL) defined by the Ontario Ministry of Environment (OMOE 1993; Appendix Table C.1). PELs are described as the concentration of a contaminant in sediment above which "significant and immediate hazards to exposed organisms" (CCME 1995, p. 19) are likely to occur. Ontario SELs are similarly defined as concentrations above which the health of the majority of benthic species may be impaired. However, these guidelines apply to whole (bulk) sediments, so comparisons to data for selected fractions of sediment (e.g., the fine fraction

concentrations reported for previous sediment analyses at UKHM) must be interpreted with caution.

4.2 Sediment Quality

In 2007, arsenic concentrations in fine-grained sediments exceeded the PEL at all stations, but only slightly so at reference station KV1, whereas the mean arsenic concentration at reference station KV37 on Lightning Creek was more than 6 times the PEL (Table 4.1). Arsenic concentrations in the fine fraction of sediment samples collected at mine-exposed stations were as much as 34 times the PEL (KV9).

Concentrations of other metals measured in sediments from reference stations KV1 and KV37, as well as mine-exposed station KV41 (Lightning Creek) were low relative to guidelines and the other stations. Sediment metal concentrations were generally highest at KV9 on Flat Creek, although concentrations of cadmium, lead, and zinc were well above sediment quality guidelines in the fine fraction of the sediments analyzed from most mine-exposed stations, including stations in the South McQuesten River downstream of mine inputs.

Comparison to sediment data from previous years did not indicate any consistent increasing or decreasing trends (Appendix Tables C.2 to C.5), although this may be partly attributable to differences in sampling methods or analysis among studies (Section 4.1). Elevations in sediment levels of arsenic, cadmium, lead and zinc were also evident at mine-exposed stations sampled in previous years (Appendix Tables C.3 to C.5). As observed in 2007, sediment metal concentrations were generally highest in Flat Creek (KV9) in 1994, but concentrations observed in 2004 were generally highest in Christal Creek, particularly at Station KV6 (Figure 4.1).

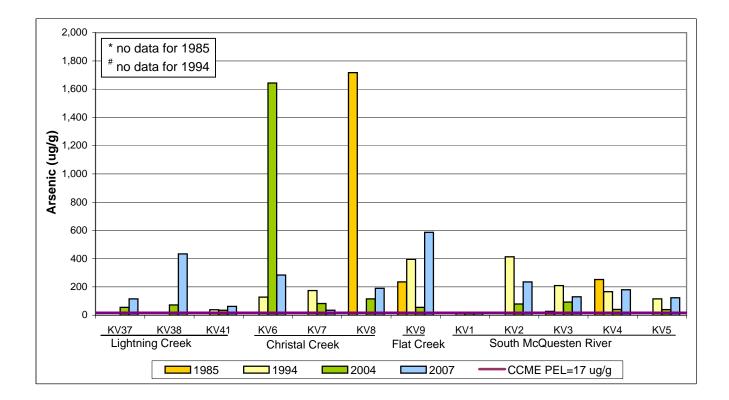
As metal concentrations and particle size distributions in whole sediments collected near UKHM have not been analyzed, the significance of elevated metal levels in the fine fraction of sediments with respect to potential effects on biota cannot be determined without an understanding of the proportion of fines within the sediment. For example, if the fines represent a small portion of the total (bulk) sediment then the effects of the metal concentrations are likely less than would be suggested based on comparison to sediment quality guidelines (which are based on whole/bulk sediments). Such analyses should be done to determine the relevance of future sediment monitoring for assessing ecological health and tracking conditions over time in the drainages downstream of UKHM.

Table 4.1: Mean concentrations of selected metals in sediment exceeding applicable guidelines, United Keno Hill Mines, Yukon, 2007^{a, e}.

Parameter	Units	MDL ^b		Sediment	Lig	htning Cre	ek	С	hristal Cre	ek	Flat Creek		South	McQueste	n River	
	Units	WIDL	Quality G	uidelines ^c	KV37	KV38	KV41	KV6	KV7	KV8	KV9	KV1	KV2	KV3	KV4	KV5
			Guideline	Value	KV37 KV30 KV41				100			100		i tvo		
Arsenic	ug/g	0.2	CCME	17	115	433	63	284	35	190	586	18.8	235	130	180	124
Cadmium	ug/g	0.05	CCME	3.5	2.7	31.2	3.4	28.2	3.7	24.8	57.1	3.3	18	14	17.0	12
Iron	ug/g	1	BCMOE	43,766	27,633	34,833	26,000	27,133	20,367	34,600	75,533	17,533	28,267	25,467	31,800	30,000
Lead	ug/g	0.3	CCME	91.3	40.0	642	82.2	954	56.4	498	6,290	13.9	707	423	985	271
Manganese	ug/g	0.3	OMOE	1,100	708	2,167	650	3,277	758	3,140	< 0.3 ^d	754	3,600	3,117	4,303	4,290
Mercury	ug/g	0.003	BCMOE	0.486	0.08	0.23	0.055	0.1	0.068	0.14	0.589	0.054	0.109	0.09	0.173	0.11
Nickel	ug/g	0.1	BCMOE	75	30	42.3	30.4	27.9	22.6	44.1	32	74.0	92.2	69.4	66.8	133
Selenium	ug/g	0.3	BCMOE	2	1.4	2	0.8	2.5	1	3.6	11.0	1.2	3	2.5	3.5	3.4
Zinc	ug/g	0.5	CCME	315	125	1,637	247	1,483	404	2,067	3,143	512	1,410	1,054	1,333	1,400

^a Reported by Burns (2008)

^b MDL = method detection limit


^c see Table C.1 for explanatory footnotes

^d concentration considerably lower then all other values and therefore considered suspect

^e values represent means of three replicate samples

Note: concentrations measured using very fine-sized sediment (i.e. fraction passing through a 0.053 mm sieve)

Shading indicates selected benchmark and measured values exceeding benchmark.

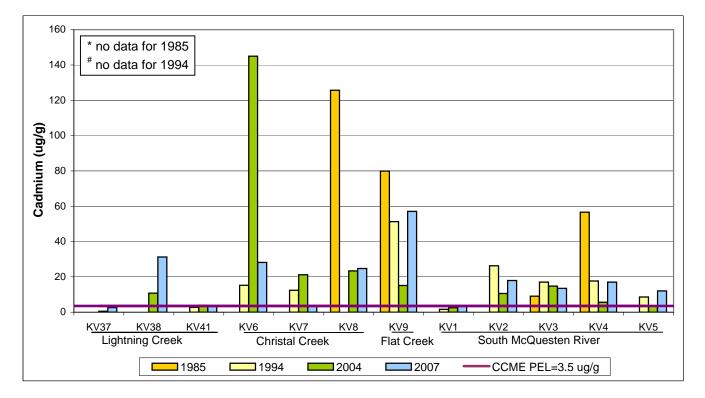
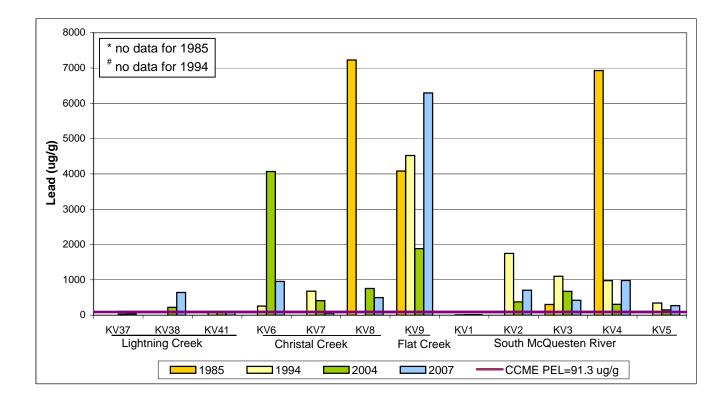



Figure 4.1: Concentrations of metals in fine fraction of sediments near United Keno Hill Mine, 1985 - 2007.

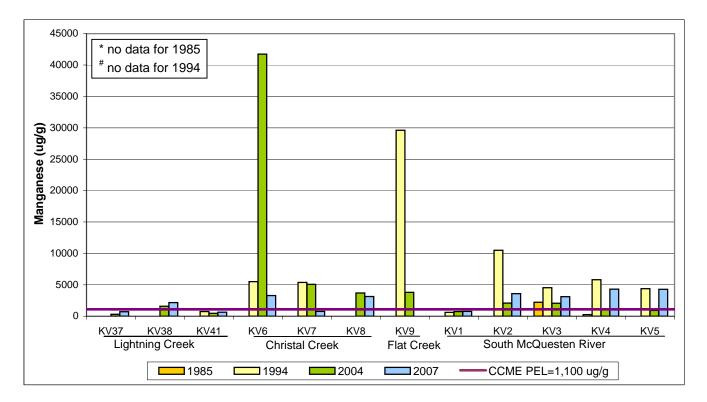


Figure 4.1: Concentrations of metals in fine fraction of sediments near United Keno Hill Mine, 1985 - 2007.

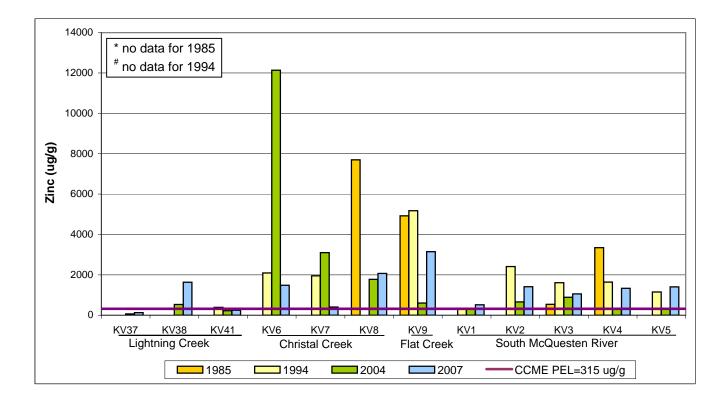


Figure 4.1: Concentrations of metals in fine fraction of sediments near United Keno Hill Mine, 1985 - 2007.

5.0 BENTHIC COMMUNITY

5.1 Approach

Benthic community data from 2007 (Burns 2008) were evaluated and compared to data from previous studies conducted in 1994 (Burns 1996), and 1985 (Davidge and Mackenzie-Grieve 1989). All three surveys were based on artificial substrates (rock baskets) deployed for approximately six weeks in mid-summer. Benthic invertebrates retained by a 500 um (1985) or 300 um (1994 and 2007) sieve were identified to the lowest practical level, which was species, genus, or higher taxonomic classifications, depending upon the degree of precision permitted by available taxonomic keys and the experience of the taxonomist.

The benthic communities at each station were summarized on the basis of various commonly used metrics, including abundance, number of taxa, and relative abundance of major taxon groups (abundance as a percentage of total individuals in the sample). At times, in comparing stations or areas, it was necessary to collapse some taxa to a higher level of organization in order to avoid biasing comparisons of stations or areas. Unidentifiable immature stages of a genus, if numerous, were sometimes proportionally attributed to species within the same genus identified at that or nearby stations. Pupae, in contrast, cannot be attributed proportionally to known taxa, since pupae found in a sample represent only that subset of the known taxa that are at the emergence stage of their life cycle. Consequently, pupae are not counted as a member of a taxon in summary metrics.

A large number of water chemistry variables (pH, hardness, nutrient, and metal concentrations) were measured at benthic macroinvertebrate sampling stations over a 3-year period (mid-2004 to mid-2007 water quality data provided by Access and Burns 2008). It is not possible to reliably determine the associations between a large suite of benthic metrics and a large set of supporting measures (water chemistry, sediment chemistry, etc.) due to the increased probability of declaring false positive relationships. To reduce the number of correlations and minimize false associations between supporting measures and benthic metrics, Principal Components Analysis (PCA) of $log_{10}(x + 1)$ metals concentrations was used to reduce the median values (mid 2004 – mid 2007) of the 18 commonly measured water chemistry variables to a reduced suite of four PCA variables (PCA axes). However, since the number of stations was small relative to the number of variables, the PCA results must still be viewed with some caution.

Potential relationships between benthic metrics and water chemistry were examined using Pearson correlations calculated between the PCA (3-year median water chemistry) results and the suite of benthic community metrics. Owing to the large number of tested correlations, a Bonferroni-type correction was also applied, to minimize the risk of falsely declaring relationships.

5.2 Benthic Communities

Organism abundance often decreases in environments exposed to toxic effluents, but organic enrichment effluents (i.e., high in nutrients) can cause increases in abundance to high levels before declining in response to anoxia or smothering. Mean abundances were lowest in lower Christal (KV7, KV8) and Flat (KV9) Creeks (Figure 5.1a). Mean abundances were highest at KV5 in the South McQuesten River and KV6 in upper Christal Creek.

The number of benthic taxa per station is a simple and robust expression of benthic community diversity. Community diversity, and by extension, number of taxa, tends to decline in areas exposed to toxic concentrations of contaminants and may either increase (at low levels) or decrease (at high levels) in areas exposed to enriching effluent discharge. Number of benthic taxa had lowest mean value at KV7, KV8 and KV6, all located on Christal Creek (Figure 5.1b). Flat Creek station KV9, receiving drainage from the Valley Tailings management area was also characterized by low numbers of taxa. Stations on Lightning Creek (KV37, KV38, KV41) tended to have moderate to high numbers of taxa.

In many situations, abundance increases or decreases in a correlated manner with number of taxa, which was observed at UKHM benthic sampling stations (Figure 5.2a). The few samples from 1985 tended to have both low abundance and low number of taxa compared to more recent years, possibly reflecting different methods for sample collection or analysis rather than environmental differences. Samples from 1994 and 2007 showed similar patterns of variation in abundance and number of taxa, with samples at station KV5 in the South McQuesten River (1994) exhibiting maximal abundance. Samples at station KV5 and KV4 in both 1994 and 2007 generally showed high abundance and number of taxa, whereas stations KV7, KV8 (Christal Creek) and KV9 (Flat Creek) had lowest values of both metrics (Figure 5.2a).

Dominant taxa included both chironomid (non-biting midge) larvae, and representatives of the "sensitive" EPT (Ephemeroptera, Plecoptera, Trichoptera) orders (Figure 5.1c,d).

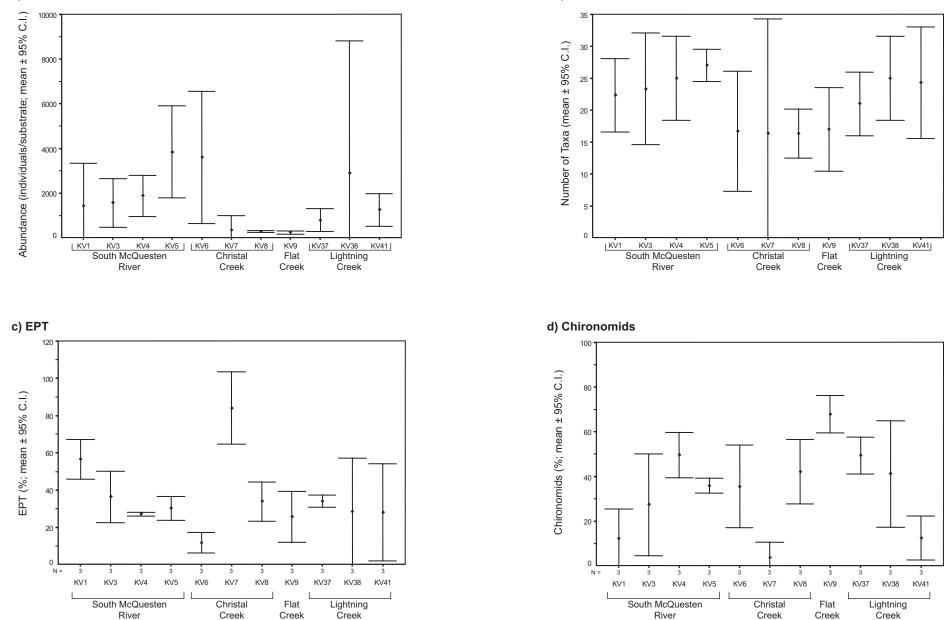


Figure 5.1: Mean benthic invertebrate community metrics by station. Values shown are mean ± 95% confidence intervals (n=3 for each station). United Keno Hill, 2007.

b) Number of Taxa

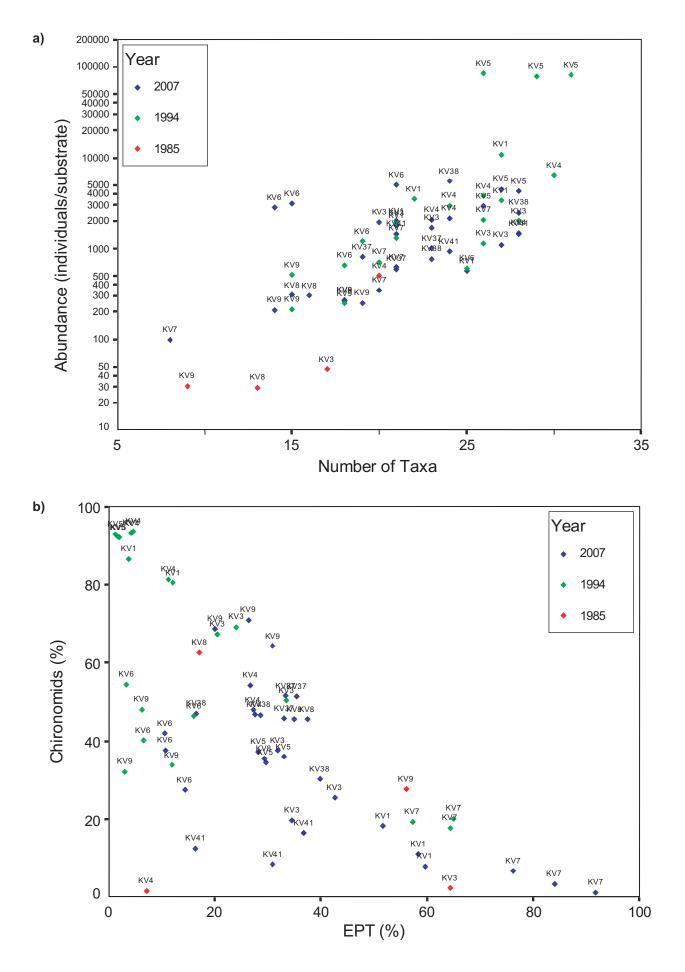


Figure 5.2: Comparisons of benthic community metrics at individual stations sampled in 1985, 1994 and 2007: a) number of taxa versus density, and b) % EPT versus % chironomids.

In 2007, samples at station KV6, in the outflow from Christal Lake, had the lowest average percent EPT, whereas KV7 further downstream had the greatest average percent EPT (Figure 5.1c; Appendix Table D.2). Chironomids were found at the lowest overall average percent in KV7 samples in 2007, and reached maximum average abundance in KV9 samples in Flat Creek just upstream of its confluence with the South McQuesten River (Figure 5.1d).

Although chironomids encompass a large number of species, with a wide range of effluent tolerance, a high percentage of this group when compared to that of the EPT group can indicate environmental stress or different (more depositional) habitat. At UKHM monitoring stations, the association between these two major taxon groups can be seen in the scatterplot of Figure 5.2b. Samples at station KV7 on Christal Creek in both 1994 and 2007 showed consistently high percent EPT and correspondingly low percent chironomids. Interestingly, KV1 samples on the South McQuesten River had low percent EPT (and high percent chironomids) in 1994, but showed the reverse of this in 2007, suggesting a dramatic change in these communities.

5.3 Potential Relationship to Mine Influences

As noted above, water quality data were summarized by Principal Components Analysis (PCA). The first four PCA axes accounted for over 93% of the overall variance in the water quality dataset (Table 5.1). The first axis, PC-1, explained the greatest amount of variation (47.2%), and separated areas with highest water concentrations of chiefly mine-related variables such as sulphate, cadmium, manganese, uranium, hardness, zinc, and conductivity (stations KV6, KV7, KV8) from other areas (Figure 5.3). All other stations had lower PC-1 scores, particularly those on Lightning Creek (KV37, KV38, KV41) indicating lower concentrations of the previous list of variables and higher relative concentrations of aluminum and total suspended solids. PC-2, explaining 21.3% of the total variance, primarily contrasted stations with higher alkalinity and strontium levels (station KV9 on Flat Creek and South McQuesten stations KV1, 3, 4, 5) against those characterized by higher total suspended solids, arsenic, nitrite, and selenium concentrations (most notably KV41 and KV6; Figure 5.3, Table 5.1). PC Axes 3 and 4 explained lower amounts of variance. PC-3 explained variability between some metals (copper, aluminum, iron) and nitrite, and PC-4 primarily separated KV9 from other stations based upon higher lead concentrations measured at this station.

Bivariate Pearson's correlations were calculated between PCA axes (representing 3year median water chemistry results) and the suite of benthic metrics. Correlations

Table 5.1: PCA of median values (mid 2004 - mid 2007) for water quality parameters.

	Water Quality	Water Quality	Water Quality	Water Quality
	PC-1 (47.2%)	PC-2 (21.3%)	PC-3 (16.3%)	PC-4 (8.4%)
log10 (1+Hardness (as CaCO3 in mg/L) 3-y Median)	0.907	-0.346	0.217	0.046
log10 (1+Total Suspended Solids (mg/L) 3-y Median)	-0.321	0.773	0.387	0.175
log10 (1+Alkalinity-Total (as CaCO3 in mg/L) 3-y Median)	0.730	-0.519	0.373	0.157
log10 (1+Nitrite (mg/L) 3-y Median)	0.488	0.720	-0.320	-0.097
log10 (1+Sulphate*-Dissolved (mg/L) 3-y Median)	0.975	-0.098	0.074	0.098
log10 (1+Aluminum-Total (mg/L) 3-y Median)	-0.330	0.443	0.806	-0.011
log10 (1+Arsenic-Total (mg/L) 3-y Median)	0.008	0.754	-0.159	0.426
log10 (1+Cadmium-Total (mg/L) 3-y Median)	0.933	0.230	-0.200	-0.027
log10 (1+Copper-Total (mg/L) 3-y Median)	-0.146	-0.280	0.916	0.085
log10 (1+Iron-Total (mg/L) 3-y Median)	0.024	0.635	0.762	0.003
log10 (1+Lead-Total (mg/L) 3-y Median)	0.582	0.216	0.060	0.747
log10 (1+Manganese-Total (mg/L) 3-y Median)	0.925	0.212	-0.035	-0.029
log10 (1+Selenium-Total (mg/L) 3-y Median)	0.623	0.703	-0.025	-0.291
log10 (1+Strontium-Total (mg/L) 3-y Median)	0.796	-0.465	0.343	-0.060
log10 (1+Uranium-Total (mg/L) 3-y Median)	0.919	0.236	-0.156	0.049
log10 (1+Zinc-Total (mg/L) 3-y Median)	0.905	0.154	-0.154	-0.217
log10 (1+Conductivity (uS/cm) 3-y Median)	0.902	-0.307	0.203	0.152
pH (pH units) 3-y Median	0.391	0.217	0.377	-0.724

Indicates strong positive weighting on axis. Indicates strong negative weighting on axis.

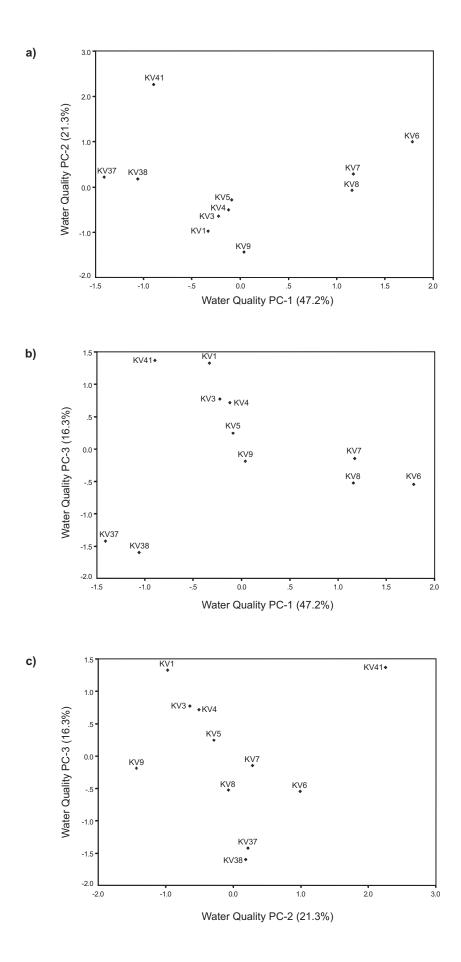


Figure 5.3: Water quality at United Keno Hill Mines stations based on PCA of median values from mid-2004 to mid-2007.

included all 11 stations. The primary correlation of interest was found to occur between the number of benthic taxa and PC-1 (Table 5.2, Figure 5.4a). Although the data are somewhat clumped, which may inflate the correlation, it was apparent that low number of taxa coincided with high values of PC-1 scores (high sulphate, cadmium, manganese, uranium, hardness, zinc, conductivity) associated with the Christal Creek stations KV6, KV7, and KV8, and to a lesser extent station KV9 on Flat Creek. A significant correlation between PC-2 and relative hydracarina (water mite) abundance does not appear to be meaningful because it was based on high values of these variables at a single station (KV41) rather than a continuous relationship.

In summary, the benthic community within Christal Creek and Flat Creek has shown impairment through reduced abundance and number of taxa relative to the other watercourses sampled in the area. The benthic communities within the South McQuesten River and Lightning Creek had higher numbers of taxa and abundance suggesting limited impairment at these locations. Correlation analysis indicate a relationship between the number of taxa and water PC-1, suggesting that the number of taxa decrease in response to increases in sulphate, cadmium, manganese, uranium, hardness, zinc and conductivity consistent with conditions observed in Christal and Flat Creeks.

		Water Quality	Water Quality	Water Quality	Water Quality
		PC-1 (47.2%)	PC-2 (21.3%)	PC-3 (16.3%)	PC-4 (8.4%)
Density (individuals/substrate) Mean	Pearson Correlation	0.034	0.183	-0.065	0.004
	p-value (2-tailed)	0.92012	0.59044	0.84974	0.99011
Number of Taxa Mean	Pearson Correlation	-0.692	0.053	0.304	-0.182
	p-value (2-tailed)	0.01834	0.87759	0.36267	0.59165
EPT (%) Mean	Pearson Correlation	0.122	-0.153	0.174	-0.555
	p-value (2-tailed)	0.72096	0.65421	0.60939	0.07622
Chironomids (%) Mean	Pearson Correlation	-0.134	-0.437	-0.484	0.506
	p-value (2-tailed)	0.69421	0.17846	0.13178	0.11223
Hydracarina (%) Mean	Pearson Correlation	-0.542	0.657	0.371	0.128
(water mites)	p-value (2-tailed)	0.08534	0.02813	0.26172	0.70676
Ephemeroptera (%) Mean	Pearson Correlation	-0.127	-0.405	0.552	-0.396
(mayflies)	p-value (2-tailed)	0.71027	0.21647	0.07803	0.22757
Plecoptera (%) Mean	Pearson Correlation	0.178	0.116	-0.350	-0.235
(stoneflies)	p-value (2-tailed)	0.60047	0.73498	0.29107	0.48633
Trichoptera (%) Mean	Pearson Correlation	0.363	0.264	0.319	-0.371
(cadisflies)	p-value (2-tailed)	0.27296	0.43297	0.33846	0.26067
Simuliids (%) Mean	Pearson Correlation	0.531	0.028	-0.010	-0.029
(blackflies)	p-value (2-tailed)	0.09311	0.93458	0.97568	0.93348

Table 5.2: Correlations between water quality summary variables (PC scores based on median concentration of mid 2004 - mid 2007) and benthic community metrics for 2007.

p < 0.05

p < 0.00139 (p = 0.05 adjusted for 36 simultaneous tests)

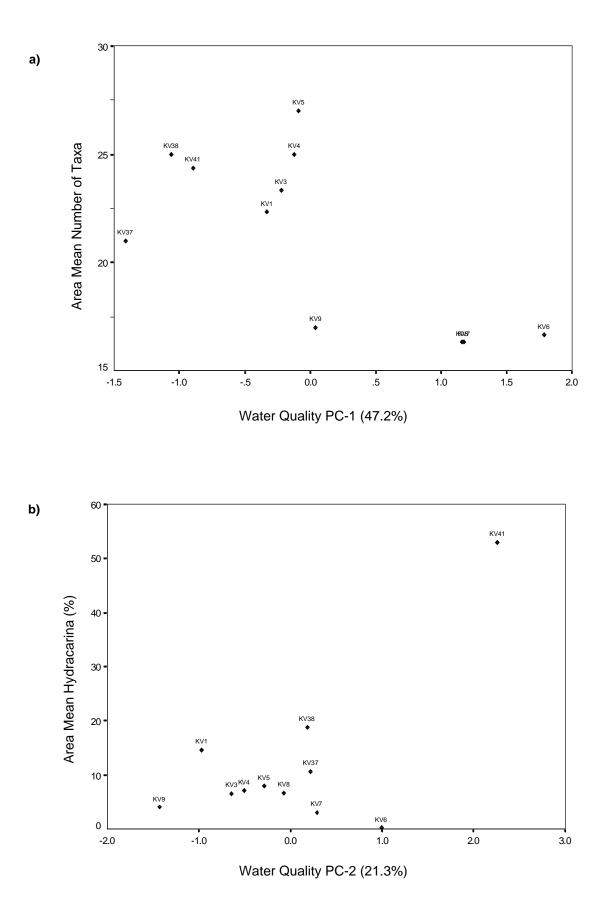


Figure 5.4: Correlations between water quality (summarized by PCA) and benthic community characteristics that were statistically significant at the unadjusted p-value of 0.05.

6.0 FISH SURVEY

6.1 Approach

Fish community composition, fish health and fish tissue metal concentrations collected in 2006 (Sparling 2006) were evaluated and compared to 1994/1995 data (Sparling and Connor 1996). Seasonal timing of the fish survey included spring (May-June), summer (July-August) and/or autumn (September) sampling during these historical studies. However, seasonal differences for each of the above fish survey components were not analyzed in this review. As for previous study components, data were available from mine-exposed Lightning, Christal and Flat Creeks, as well as the South McQuesten River downstream (mine-exposed) and upstream (reference) of UKHM operations.

Fish were collected using a variety of techniques, including backpack electrofishing, minnow trapping, angling, gill netting and/or seine netting. Backpack electrofishing and minnow trapping were the primary collection methods employed during the 2006 study and therefore findings associated with these collection measures served as the focus for the current fish community evaluation. At each sampling location, backpack electrofishing was conducted by a three man crew (electrofisher operator and two netters/recorders). Stopnet barriers were only used during the 2006 summer survey at creek stations, whereas electrofishing was completed on 'open' stations (i.e., no stopnet barriers) in the South McQuesten River and at creek stations during the fall and spring 2006 surveys. Regardless of whether stopnets were used, all sampling was completed using a single pass removal technique. At the conclusion of each electrofishing pass, captured fish were identified, enumerated and then released. In 2006, fish captured by seine were retained for tissue sampling while methods used to capture fish for metal analyses were not specified in 1994/1995. Fishing effort (i.e., electrofishing seconds) was then recorded to allow calculation of semi-quantitative estimates of relative fish abundance. Standard 'Gee' minnow traps ($\frac{1}{4}$ '' galvanized mesh) baited with salmon roe (and/or dog kibble) were deployed as bottom, overnight sets at each sampling area. Information collected for each minnow trap set included set duration (based on deployment and retrieval date and time) and the type and number of fish captured. Fish community characteristics were summarized and compared according to species presence-absence and/or relative abundance, depending on data source. Semiquantitative estimates of relative fish abundance were compared through analysis of electrofishing catch-per-unit-effort (CPUE), which was calculated as the total catch of each fish species per minute of electrofishing effort.

Slimy sculpin (Cottus cognatus) and Arctic grayling (Thymallus arcticus) were typically targeted for any tissue metals analysis during historical studies, and therefore only results associated with these species are considered in the current analysis. In general, attempts were made to collect at least five adult specimens of each species (i.e., fork length >80 mm and >200 mm for slimy sculpin and Arctic grayling, respectively) from each sampled station. However, success rates in reaching this target were variable and in some cases, fish size objectives were not met necessitating the analysis of composite tissue samples. For all sacrificed fish, length and/or fresh weight measurements were also typically collected. Slimy sculpin were generally collected as whole body tissue samples whereas Arctic grayling tissues were collected as muscle tissue, liver tissue and/or whole-body samples. Because the most consistently collected tissue for Arctic grayling was skinless, boneless muscle, this report focussed on this tissue type for this species. Fish tissue samples were analyzed for total metals typically using Inductively-Coupled Plasma (ICP) emission spectrometry techniques, with total mercury analysis conducted only during the 1994-1995 study. All tissue metal results were expressed in μ g/g wet weight units in the current analysis, which for 1994-1995 data required conversion from reported dry weight metal concentrations using a percent moisture content of 78% as determined from the same study.

Fish tissue metal concentrations were evaluated in relation to potential influences from UKHM. Metals in whole body and/or edible muscle tissues were also compared to relevant human and/or wildlife consumption benchmarks (Table 6.1). Benchmarks for human consumption were derived utilizing published tolerable daily intake (TDI) values for various metals (Health Canada 1995 and IRIS 2006), potential mean daily fish consumption quantities for representative regional peoples (e.g., First Nations; Receuver et al. 1998; SENES 2006) and representative body mass values for human toddlers, children and adults (16.5 kg, 32.9 kg and 70.7 kg, respectively; Richardson 1997). These benchmarks represent the tissue concentrations considered protective of longterm human health while taking age into consideration. For this report, the most conservative human consumption benchmark (toddler) was selected for screening purposes (Table 6.1). Tissue metal benchmarks for piscivorous wildlife represented the dietary metal concentration that results in a dose equivalent to the NOAEL (No Observed Adverse Effect Level; Sample et al. 1996). The benchmark values utilized were representative of the most sensitive piscivorous wildlife species, which was either river otter (Lutra canadensis) or belted kingfisher (Ceryle alcyon; Table 6.1).

Parameter	Tolerable Daily Intake	Н	uman Consume	r ^b	Piscivorous Wildlife
	(mg/kg.day) ^a	Toddler	Child	Adult	Consumer ^c
Arsenic	0.0003 ^d	0.20	0.56	1.0	0.28
Barium	0.016 ^e	10	30	52	
Beryllium	0.002 ^d	1	4	7	
Cadmium	0.0008 ^d	0.5	1.5	2.6	3.90
Chromium	0.001 ^d	0.7	1.9	3.3	
Copper	0.03 ^d	20	56	98	61.8
Lead	0.0036 ^d	2.4	6.8	11.8	4.9
Manganese	0.1402 ^d	92	264	459	358
Mercury	0.0001 ^d	0.07	0.19	0.33	0.45
Molybdenum	0.005 ^d	3.3	9.4	16.4	
Nickel	0.0013 ^e	0.9	2.4	4.3	
Selenium	0.005 ^d	3.3	9.4	16.4	
Strontium	0.6 ^d	393	1,128	1,964	
Uranium	0.0006 ^e	0.4	1.1	2.0	
Zinc	0.3 ^d	196	564	982	650

Table 6.1: Fish tissue metal concentration consumption benchmarks (mg/kg)for humans and piscivorous (fish-eating) wildlife

^a Where values were reported by both IRIS (2006) and Health Canada (1995), the lowest value was used for benchmark ^b Benchmarks for human consumers based on mean consumption rate of 16.5 g, 17.5 g and 21.6 g of fish muscle

tissue per day for toddler (10.8 kg), child (32.9 kg) and adult (70.7 kg), respectively (SENES 2006).

^c Most conservative food metal concentration resulting in a dose equivalent to the NOAEL (Sample et al. 1996)

^d IRIS (2006).

^e Health Canada (1995)

Shaded value indicates benchmark used for data comparisons.

6.2 Fish Community

In total, seven fish species were found in water bodies near UKHM during the 2006 study (Table 6.2). Slimy sculpin and Arctic grayling were generally the most widely encountered species, both spatially (Table 6.2) and in terms of relative abundance (i.e., highest densities relative to other fish; Table 6.3). Each of these fish species was observed in the three mine-exposed tributaries as well as downstream and upstream of the confluence of each respective creek in the South McQuesten River (Table 6.2). The presence of juvenile Arctic grayling in most watersheds (Table 6.2) indicates suitable rearing habitat and suggests spawning also occurs in the same watercourses. Although round whitefish (*Prosopium cylindraceum*), Chinook salmon (*Oncorhyncus tshawytsha*), northern pike (*Esox lucius*), burbot (*Lota lota*) and Arctic lamprey (*Lampetra japonica*) were also collected in the study area, relative abundance of each of these species was low throughout the study area (Table 6.2).

Fish community comparisons between mine-exposed areas and reference areas located upstream of mine influence on the South McQuesten River (Stations KV1 and KV72) showed no clear differences in overall fish species diversity between respective watercourses (Table 6.2). In addition, average relative fish abundance at all mineexposed creeks and downstream areas of the South McQuesten River were similar to or higher than at the reference area (Table 6.3). Spatially, no clear differences in either species diversity or relative abundance were observed with distance from mine sources in individual watercourses, with the exception of lower fish diversity in Christal Creek at areas closest to the mine. For instance, only a single species (slimy sculpin at KV6 and Arctic grayling at C4) or no fish (Station KV7) were observed in some areas of Christal Creek compared to five species at areas closest to the creek mouth (Station KV8; Table 6.2). Possibly beaver dams, other barriers along Christal Creek and a high gradient at station C4 (Section 2.2) limit fish distribution. Overall, it is unclear whether decreased fish diversity throughout much of Christal Creek and Flat Creek compared to downstream reaches (stations KV8 and KV9, respectively) is related to physical habitat conditions or source area exposure.

Temporal comparisons between the 2006 and 1994-1995 studies indicated some minor differences in fish species diversity and/or relative abundance within some watercourses. Fish species diversity was slightly higher in Christal Creek in 2006 (round whitefish and northern pike absent in earlier study), although relative fish abundance tended to be slightly lower compared to 1994-1995 (Table 6.3 compared to Appendix Table E.3). Fish species diversity of both mine-exposed and reference areas in the

Watershed	Station	Arctic g	Irayling	round whitefish ^b	chinook salmon ^b	slimy sculpin ^b	northern pike ^b	burbot ^b	Arctic lamprey ^b
		juvenile	adult	-	-	-	-	-	-
Lightning Creek	KV41		Xc	Х					
Lighting Creek	LCD		Х			х			
	CL					х			
	KV6					X			
Christal Creek	C4	x	Х						
	KV7								
	KV8	Х	Х	X		х	Х	х	
Flat Creek	KV9	Х				X	X	Х	
	KV72		Х			x	x		
	KV1	Х				X			Х
South McQuesten	SMQ C	x				х		Х	Х
River	KV2	х				x			
	KV3					X			X
	KV4	Х				Х			
	KV15	Х	Х		Х	Х	Х		

Table 6.2: Fish presence-absence by station based on electrofishing and minnow trapping catch data, United Keno Hill Mines, 2006^a.

^a prepared using data from Sparling (2006)

^b life stage of specimens (e.g., adult versus juvenile) was not consistently reported

^c Sparling (2006) data tables report "sub-adults" while "juveniles" are mentioned in the text

"adult" includes individuals identified as sub-adults

Watershed	Station	n	Arctic grayling	slimy sculpin	northern pike	burbot	round whitefish	Arctic lamprey
Lightning Creek	KV41	3	1.84	0	0	0	0.03	0
Lightining Creek	LCD	1	0.18	2.82	0	0	0	0
	KV6	3	0	9.37	0	0	0	0
Christal Creek	C4	3	0.43	0	0	0	0	0
Chilistal Cleek	KV7	3	0	0	0	0	0	0
	KV8	3	0.50	0.85	0	0.01	0.03	0
Flat Creek	KV9	3	0.06	2.43	0.04	0.07	0	0
	KV72	1	0.10	0.49	0.10	0	0	0
	KV1	3	0.22	2.81	0	0	0	0.06
South McQueston	SMQ C	1	0.09	2.48	0	0.14	0	0.09
South McQuesten River	KV2	1	0.06	4.75	0	0	0	0
	KV3	2	0	3.70	0	0	0	0.05
	KV4	1	0.23	5.63	0	0	0	0
	KV15	1	0.16	3.29	0.05	0	0	0

Table 6.3: Mean electrofishing catch per unit effort (number of fish per minute), United Keno Hill Mines, 2006^a.

^a prepared using data from Sparling (2006)

South McQuesten River was slightly lower in 2006 compared to 1994-1995 (longnose sucker absent in 2006). Relative abundance also appeared to be somewhat lower in 2006 compared to 1995-95 at the South McQuesten River reference area, but no large or consistent patterns were evident between surveys for mine-exposed tributaries or downstream areas of the South McQuesten River. Because no important differences in fish species diversity or relative abundance were observed at study watercourses between studies, any apparent changes in these endpoints were likely associated with natural or sampling variability as opposed to any changes in mine-related influences over time.

6.3 Fish Health

In 2006, slimy sculpin at mine-exposed areas appeared to have lower body weight relative to length (i.e., reduced condition) compared to those from reference Station KV72 (Figure 6.1). However, sample sizes were extremely small at all areas sampled (i.e., three to eight fish), a limited number of stations were sampled and no age determinations were conducted to determine if such differences in condition were related to size-at-age differences. In addition, weight data was very limited for the 1994-1995 study. Therefore, no definitive conclusions regarding fish health among areas and time periods could be drawn from the available information.

6.4 Metal Concentrations in Tissues

Fish tissues have been analyzed historically to assess whether fish tissue quality has been influenced by each mine site. This assessment also provides an interpretation of the significance of observed metal concentrations to the health of human and/or wildlife consumers of targeted fish species. As slimy sculpin are generally not consumed by humans, assessment of the significance of tissue metal concentrations for human consumers was conducted using only Arctic grayling muscle tissue data. Similar limitations were not applicable for wildlife consumers.

In slimy sculpin collected in 2006, whole body arsenic and lead concentrations were the only metals consistently elevated in samples collected at all mine-exposed areas relative to reference (Stations KV1 and KV72; Figure 6.2). Of these metals, mean whole body arsenic concentrations were well above the wildlife consumption benchmark of 0.28 mg/kg at all mine-exposed areas, whereas mean whole body lead concentrations exceeded the wildlife consumption benchmark (of 4.9 mg/kg) only at the most upstream station in Christal Creek (Station KV6) and at Flat Creek (KV9; Figure 6.2).

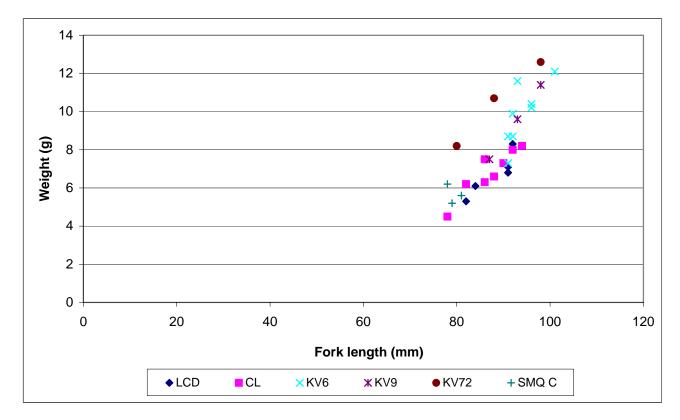
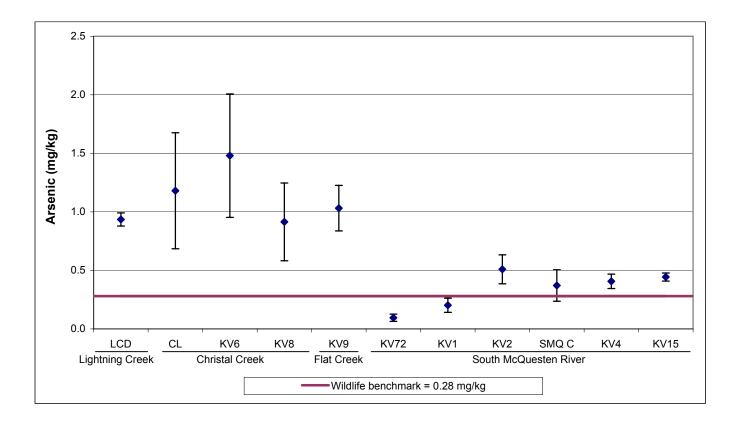



Figure 6.1: Weight vs fork length of slimy sculpin captured by seining, United Keno Hill Mines, 2006.

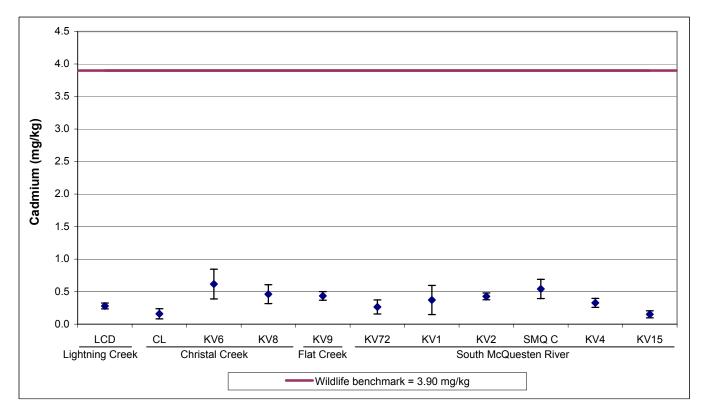
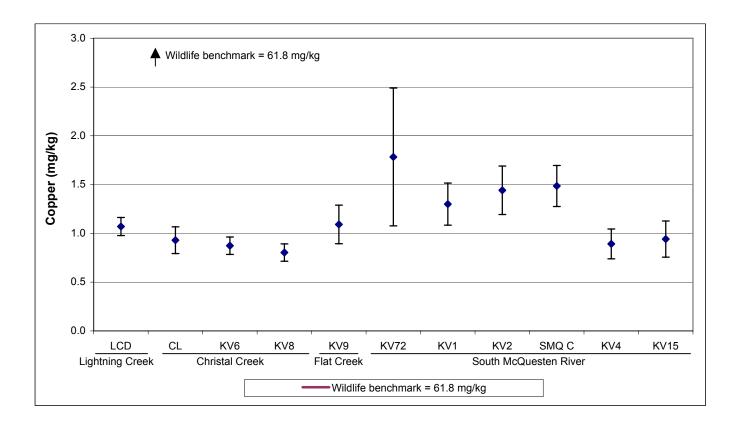



Figure 6.2: Whole body metal concentrations in slimy sculpin (± 95% confidence interval) relative to wildlife consumption benchmarks

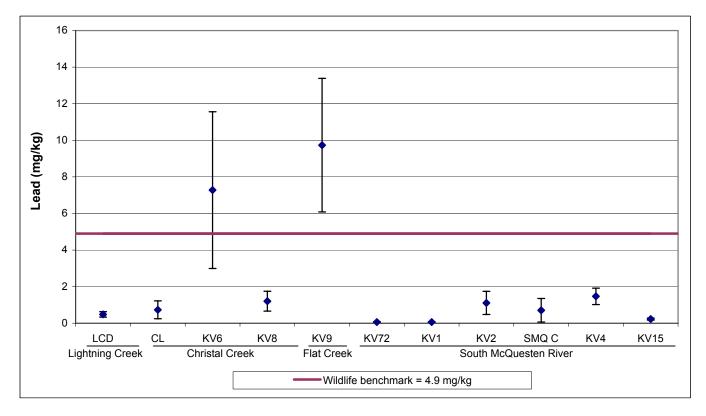
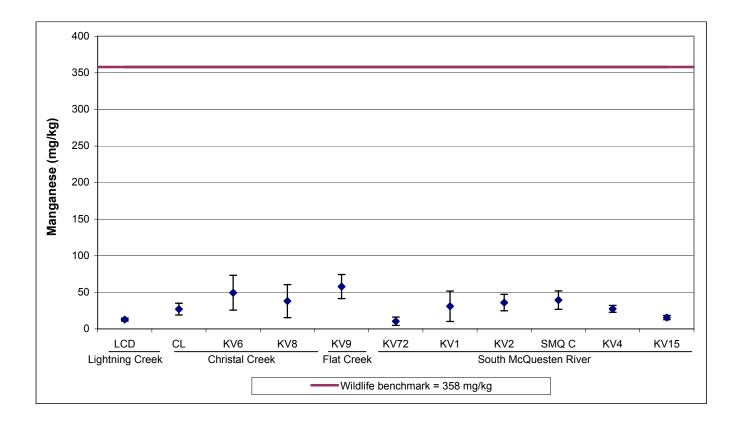



Figure 6.2: Whole body metal concentrations in slimy sculpin (± 95% confidence interval) relative to wildlife consumption benchmarks

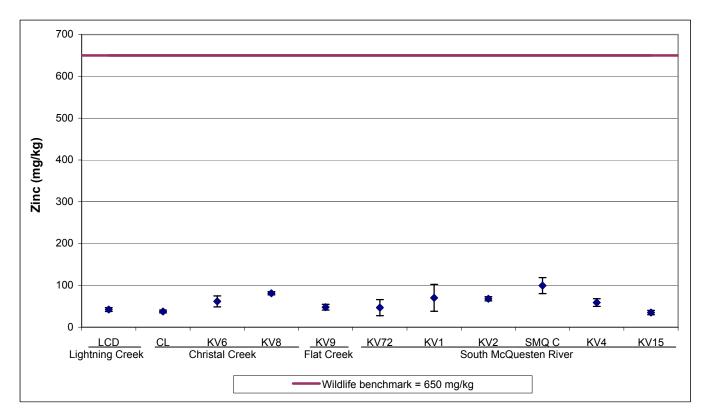


Figure 6.2: Whole body metal concentrations in slimy sculpin (± 95% confidence interval) relative to wildlife consumption benchmarks

Average Arctic grayling muscle tissue metal concentrations were well below the most conservative human consumption benchmarks in both Lightning (station LCD) and Christal Creeks (station C4) in 2006 (Table 6.4), although a single muscle sample from Lightning Creek exceeded the toddler and wildlife consumption benchmark for arsenic (Appendix Table E.5). In addition, all mean whole body metal concentrations were below respective wildlife consumption benchmarks at these areas. Where data from 1994-95 were available for the same areas sampled in 2006, a similar pattern of slimy sculpin and Arctic grayling tissue concentrations were observed, with no consistent increases or decreases in most metal concentrations evident since 1994-1995 (Appendix Tables E.5-E.10). However, mean zinc concentrations in Arctic grayling muscle and in whole body slimy sculpin were generally lower in 2006 than in 1994 – 1995 in Christal Creek (stations C4 and KV6, respectively; Table 6.4; Appendix Tables E.7, E.10 – E.11).

			Li	ghtning Cr	eek (statior	n LCD)	(Christal Cr	eek (statior	n C4)
Parameter	Toddler benchmark ^b	Wildlife benchmark ^b	n	mean	Standard Deviation	95% Confidence Limit	n	mean	Standard Deviation	95% Confidence Limit
Aluminum			5	12.34	20.53	17.994	5	3.64	2.35	2.062
Antimony			5	< 0.011	0.002	0.002	5	< 0.010	0	-
Arsenic	0.20	0.28	5	0.164	0.154	0.135	5	0.1286	0.030	0.027
Barium	10		5	1.21	0.880	0.772	5	0.57	0.130	0.114
Beryllium	1		5	< 0.10	0	-	5	< 0.10	0	-
Bismuth			5	< 0.10	0	-	5	< 0.10	0	-
Cadmium	0.5	3.90	5	0.0443	0.043	0.038	5	0.0582	0.016	0.014
Calcium			5	7440	4,139	3628	5	5954	1,331	1167
Chromium	0.7		5	< 0.11	0.013	0.012	5	< 0.10	0	-
Cobalt			5	0.069	0.053	0.047	5	0.035	0.012	0.011
Copper	20	61.8	5	0.528	0.232	0.203	5	0.499	0.076	0.067
Lead	2.4	4.9	5	0.135	0.155	0.136	5	0.130	0.069	0.061
Lithium			5	< 0.10	0	-	5	< 0.10	0	-
Magnesium			5	314	118.71	104	5	302	27.48	24
Manganese	92	358	5	3.59	3.07	2.688	5	6.24	2.89	2.531
Molybdenum	3.3		5	< 0.010	0	-	5	< 0.010	0	-
Nickel	0.9		5	< 0.10	0	-	5	< 0.10	0	-
Selenium	3.3		5	1.68	0.64	0.557	5	0.97	0.21	0.181
Strontium	393		5	6.86	3.63	3.184	5	4.66	1.07	0.936
Thallium			5	< 0.010	0	-	5	< 0.010	0	-
Tin			5	< 0.050	0	-	5	< 0.050	0	-
Uranium	0.4		5	< 0.0029	0.0021	0.002	5	< 0.0020	0	-
Vanadium			5	< 0.10	0.0089	0.008	5	< 0.10	0	-
Zinc	196	650	5	18.51	8.56	7.500	5	21.02	4.20	3.680

 Table 6.4: Summary statistics for concentrations of metals in Arctic grayling muscle (mg/kg wet weight) collected in August and September, United Keno Hill Mines, 2006^a.

toddler benchmark exceeded

toddler and wildlife benchmarks exceeded

^a prepared using data from Sparling (2006)

^b see Table 6.1 for sources

7.0 SUMMARY

In general, studies used for the Aquatic Resource Assessment were those which employed common stations to allow for comparison of conditions between surveys. Data from these reports related to water and sediment chemistry, benthic invertebrate communities, and fisheries were compiled and evaluated to characterize current conditions relative to historical conditions and relevant environmental quality guidelines or benchmarks.

The study area that was considered included Christal, Flat and Lightning Creeks as well as the South McQuesten River. Christal and Flat Creeks, which capture most of the mine-influenced drainage from UKHM, drain northwest into the South McQuesten River. Lightning Creek, a tributary of the Mayo River via Duncan Creek, also receives mine drainage (adits on Keno and Sourdough Hills). Portions of Christal and Lightning Creeks have been affected by placer mining.

A previous analysis of water quality identified cadmium and zinc as key contaminants of concern in waters downstream of UKHM. Concentrations of these substances are at levels that are potentially toxic to aquatic biota in portions of the tributaries receiving mine drainage (particularly Christal Creek). However, contaminant levels in the South McQuesten River are currently below levels of concern.

Sediment quality data from 2006 showed that arsenic levels are consistently elevated in the fine fraction of sediments (<0.15mm) at all areas downstream of UKHM, including the South McQuesten River. Concentrations of up to 34 times the Probable Effect Levels of the Canadian Sediment Quality Guidelines have been observed. Fine sediment concentrations of cadmium, lead, and zinc were also elevated at most mine-exposed stations relative to both reference area concentrations measured in whole sediment samples (not just the fine fraction), so potential risks to benthic biota cannot be ascertained from the available data. No consistent patterns were observed in sediment concentrations over time, although the evaluation was confounded by differences in methods for sampling and analysis.

Benthic invertebrate communities in lower Christal and Flat Creeks were characterized by relatively low abundance and number of taxa compared to reference and other, mineexposed areas. Correlation analysis suggested that reduced number of taxa may be related to elevated water concentrations of mine-related variables such as major ions (e.g., sulphate, hardness, conductivity), cadmium, and zinc.

The fish communities of the tributaries and South McQuesten River are dominated by Arctic grayling and slimy sculpin. The presence of both adult and juvenile Arctic grayling in most watercourses indicates availability of suitable spawning and rearing habitats. Portions of Christal Creek showed limited fish diversity and densities, particularly at KV7 where no fish were found in 2006. Although some differences in diversity or density were evident in comparison to a previous study (1994-95), no large and consistent patterns were evident in mine-exposed areas that would suggest that conditions had either improved or degraded over time.

Whole body analysis of slimy sculpin showed levels of arsenic in excess of reference sediment concentrations and wildlife consumption benchmarks at most areas downstream of UKHM, particularly in Christal and Flat Creeks. These observations are consistent with elevations in sediment arsenic and lead levels observed in the same areas. Metal concentrations in Arctic grayling muscle were less than human or wildlife consumption benchmarks in almost all samples from all areas. Overall, no consistent increases or decreases were evident over time based on comparison of data from 2006 to data from 1994-95.

8.0 RECOMMENDATIONS

The following recommendations should be considered in the context of future monitoring programs:

- Expand on the habitat characterization by Sparling (2006), presented in Table 2.1, to ensure consistent information is available among areas where benthic and fish communities are typically assessed.
- 2. Review monitoring station locations to ensure that each station provides unique information relative to source loads.
- 3. Analyze particle size and chemistry of whole sediment samples collected in reference and mine-exposed areas to determine if metal concentrations, particularly arsenic, are high enough to potentially affected biota.
- 4. Evaluate the sample collection methods and the sampling design that have been used in past assessments of benthic community health to identify opportunities for improvement. For example, changes to the sampling design are recommended to allow for statistical comparison of conditions in mine-exposed versus reference areas and thus allow for quantification of changes over time. Specific design options should be developed and evaluated as part of the longterm monitoring design.
- 5. Once the long-term monitoring program is established, standard operating procedures (SOPs) should be developed.
- 6. Evaluate sites that could serve as additional reference areas in future surveys to enhance evaluation of mine-exposed areas through improved understanding of reference conditions and variability.
- Consider replacing potentially impacted KV-1 with the new reference area KV-72 by conducting a comparative assessment of the two stations when more data at KV-72 are available.
- 8. Collect more detailed fish health data during fisheries assessments and also measure major organ weights (e.g., gonads, livers) and fish age for any specimens that are sacrificed for tissue analysis.

9.0 REFERENCES

- BCMOE (British Columbia Ministry of Environment). 2006. British Columbia Approved Water Quality Guidelines (Criteria), 2006 Edition. Updated August 2006.
- Burns, B., 1996. Biological Monitoring Survey at United Keno Hill Mine Area, 1994. Laberge Environmental Services, Whitehorse, YT, 1996.
- Burns, B., 2005. Keno Valley Receiving Water Monitoring Program, 2004/2005. Laberge Environmental Services, Whitehorse, YT, March 2005.
- Burns, B., 2008. Keno Valley Stream Sediment and Benthic Invertebrate Monitoring Programs, 2007. Laberge Environmental Services, Whitehorse, YT. March 2008.
- CCME (Canadian Council of Ministers of the Environment). 1995. Protocol for the Derivation of Canadian Sediment Quality Guidelines for the Protection of Aquatic Life. CCME EPC-98E. Prepared by Environment Canada, Guidelines Division, Technical Secretariat of the CCME Task Group on Water Quality Guidelines, Ottawa.
- CCME (Canadian Council of Ministers of the Environment). 1999. Canadian Environmental Quality Guidelines. 1999 (plus updates), Canadian Council of Ministers of the Environment, Winnipeg
- Davidge, D. and G. Mackenzie-Grieve, 1989. Environmental Quality of Receiving Waters at United Keno Hill Mines Ltd., Elsa Yukon. Regional Program Report No. 89-04. Department of Environment, Environmental Protection, Pacific Region, Yukon Branch. September 1989.
- Health Canada. 1995. Investigating Human Exposure to Contaminants in the Environment: A Handbook for Exposure Calculations. Minister of Supply and Services Canada. Cat. No. H49-96/1-1995E.
- IRIS (Integrated Risk Information System). 2006. U.S. Environmental Protection Agency. <u>http://www.epa.gov/iris</u>. Accessed March 27, 2006.
- Minnow Environmental Inc., 2008. Water Quality Assessment Report for United Keno Hill Mines. Prepared for Elsa Reclamation and Development Company, Whitehorse, YT, July 2008.

- OMOE (Ontario Ministry of the Environment), 1993. Guidelines for the Protection and Management of Aquatic Sediment Quality in Ontario, 1993
- Receveur, O., N. Kassi, H.N. Chan, P.B. Berti, H.V. Kuhnlien. 1998. Yukon First Nations' Assessment of Dietary Benefit/Risk. Centre for Indigenous Peoples' Nutrition and Environment (CINE). McGill University. Ste-Anne-de-Bellevue, Quebec, May.
- Richardson, G.M. 1997. Compendium of Canadian Human Exposure Factors for Risk Assessment. O'Connor Associates Environmental Inc.
- Sample, B.E., D.M. Opresko and G.W. Suter II. 1996. Toxicological Benchmarks For Wildlife: 1996 Revision. United States Department of Energy, Oak Ridge National Laboratory. ES/ER/TM-86/R3. June 1996.
- Senes Consultants Limited. 2006. Anvil Range Mine Tier 2 Ecological and Human Health Risk Assessment of Remediation Scenarios. Prepared for Deloitte and Touche Inc., Interim Receiver of Anvil Range Mining Corporation. April 2006.
- Sparling, P., 2006. Fisheries Assessments Conducted in the Keno Hill Mining Area, Including Metals Analysis of Fish Tissue Samples, 2006. White Mountain Environmental Consulting, Whitehorse, YT. January 2006.
- Sparling, P.and M. Connor, 1996. Fish and Fish Habitat Assessment Conducted Near Elsa, Yukon for United Keno Hill Mines August 1994 – September 1995. White Mountain Environmental Consulting, Whitehorse, YT, December 1995.

APPENDIX A

SAMPLING STATIONS

			Sediment qualit	у			Benthic inverte	ebrate community		Water	quality		Fisheries	
Watershed	1985 station ID ¹	1994 station ID ²	2004 station ID ³	³ 2007 station ID ⁴	Present study station ID	1985 station ID ¹	1994 station ID	² 2007 station ID ⁴	Present study station ID	2004 - 2007 station ID ^{4,5}	Present study station ID	1994-1995 station ID ⁶	2006 station ID ⁷	Present study station ID
			KV37	KV37	KV37			KV37	KV37	KV37	KV37		10	
					-				-	KV39				
										KV40				
Lightning Creek			KV38	KV38	KV38			KV38	KV38	KV38	KV38			
			KV41	KV41	KV41			KV41	KV41	KV41	KV41		LgT K	KV41
													LgT D	LCD
												LC		LC
												CL	CL	CL
		6	KV6	KV6	KV6		6	KV6	KV6	KV6	KV6	C5	KV6	KV6
										KV16				
										KV29				
Christal Creek										KV30				
												C4	C4	C4
		7	KV7	KV7	KV7		7	KV7	KV7	KV7	KV7	C3	KV7	KV7
												C2		C2
	2		KV8	KV8	KV8	2					KV8	C1	KV8	KV8
No Cash Creek										KV21				
										KV47				
Flat Creek												F3		F3
	7		KV9	KV9	KV9	7	9	KV9	KV9	KV9	KV9	F1	KV9	KV9
												SML	SMQ1	KV72
			KV1	KV1	KV1		1	KV1	KV1	KV1	KV1	SM2	KV1	KV1
			10.00	10.0	10.00					10.10		SM3	SMQC	SMQ C
			KV2	KV2	KV2					KV2		SM4	KV2	KV2
South			10.00	10.0	10.00			10.0	10.0	10.10	10.00	SM5		SM5
McQuesten	8		KV3	KV3	KV3	8	3	KV3	KV3	KV3	KV3	SM6		KV3
River	9		KV4	KV4	KV4	9	4	KV4	KV4	KV4	KV4	SM7	KV4	KV4
			KV5	KV5	KV5		5	KV5	KV5	KV5	KV5	SM13		KV5
												SM12		SM12
												SM8		SM8
										KV15		SM9&SM10	SMQ H	KV15
¹ Davidge and Macke												SM11		SM11

Table A.1: Station identifications used in the present and previous studies.

¹ Davidge and Mackenzie-Grieve (1989)

² Burns (1996)

³ Burns (2005)

⁴ Burns (2008)

⁵ Minnow (2008)

⁶ Sparling and Connor (1996)

⁷ Sparling (2006)

APPENDIX B

WATER QUALITY DATA

Station	% < DL, > CWQG	% > DL, > CWQG	% >Background, >CWQG	n	mean	median	stdev	min	max	n <mdl< th=""></mdl<>
KV39	0	0	0	2	0.013	0.013	0.008	0.008	0.02	0
KV40	0	0	0	2	0.009	0.009	0.001	0.008	0.01	1
KV38	0	0	0	10	0.022	0.011	0.027	0.005	0.09	4
KV41	0	43	29	14	0.390	0.087	0.543	0.019	1.80	0
KV6	0	24	2	46	0.089	0.019	0.158	0.005	0.76	12
KV16	0	39	10	41	0.218	0.070	0.361	0.005	1.55	4
KV29	0	51	27	41	1.156	0.111	2.859	0.007	15.3	3
KV30	0	45	18	40	0.331	0.070	0.532	0.008	2.15	1
KV7	0	20	5	41	0.096	0.029	0.190	0.008	0.87	4
KV8	0	22	0	37	0.074	0.014	0.126	0.005	0.61	7
KV21	0	100	50	2	5.092	5.092	6.941	0.184	10.0	0
KV47	0	67	33	9	0.518	0.490	0.468	0.009	1.28	1
KV9	0	0	0	16	0.013	0.010	0.009	0.005	0.03	7
KV2	0	31	0	36	0.088	0.048	0.099	0.010	0.39	3
KV3	0	35	0	20	0.086	0.065	0.079	0.010	0.32	0
KV4	0	36	0	14	0.080	0.085	0.058	0.006	0.18	0
KV5	0	18	0	28	0.062	0.035	0.081	0.005	0.40	0
KV15	0	8	0	13	0.049	0.021	0.051	0.005	0.18	1

Table B.1: Aluminum (mg/L) Summary Statistics for Receiving Environment Stations, 1994-2007.

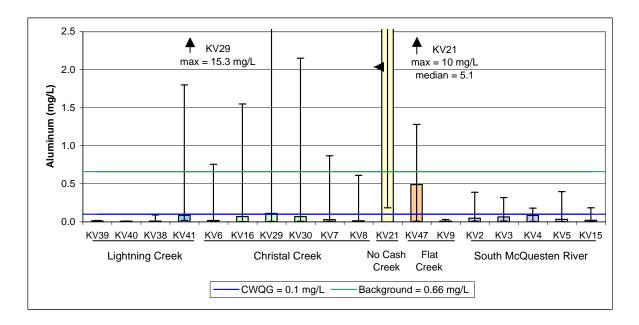
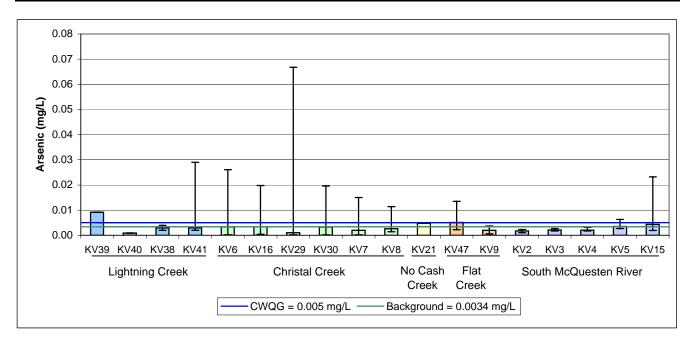



Figure B.1: Aluminum (mg/L) Median Values with Minimum and Maximum for Receiving Environment Stations, 1994 - 2007.

Station	% < DL, > CWQG	% > DL, > CWQG	% >Background, >CWQG	n	mean	median	stdev	min	max	n <mdl< th=""></mdl<>
KV39	0	100	100	2	0.00918	0.00918	0.0001	0.0091	0.0093	0
KV40	0	0	0	1	0.0009	0.0009	-	0.0009	0.0009	0
KV38	0	0	0	9	0.00287	0.0029	0.0006	0.002	0.0039	0
KV41	0	30	30	10	0.00796	0.00294	0.0105	0.002	0.029	0
KV6	0	31	31	35	0.00535	0.0033	0.0051	0.0002	0.0261	1
KV16	0	29	29	34	0.00451	0.00345	0.0037	0.0004	0.0198	1
KV29	0	26	26	34	0.00504	0.001	0.0118	0.0002	0.0668	2
KV30	0	32	32	34	0.00473	0.00325	0.004	0.0002	0.0196	1
KV7	0	14	14	36	0.00341	0.002	0.0035	0.0002	0.015	2
KV8	0	6	6	33	0.00292	0.0026	0.0019	0.0014	0.0114	1
KV21	0	0	0	1	0.0048	0.0048	-	0.0048	0.0048	0
KV47	0	67	67	3	0.00693	0.0051	0.0059	0.0022	0.0135	0
KV9	0	0	0	11	0.00201	0.002	0.0013	0.0006	0.0037	0
KV2	0	0	0	25	0.00171	0.0017	0.0003	0.001	0.0023	0
KV3	0	0	0	11	0.00214	0.0021	0.0003	0.0017	0.0027	0
KV4	0	0	0	10	0.00213	0.00205	0.0004	0.0017	0.0031	0
KV5	0	5	5	21	0.00359	0.0035	0.0008	0.0027	0.0063	0
KV15	0	33	33	12	0.00719	0.00435	0.0073	0.0019	0.0232	0

Table B.2: Arsenic (mg/L) Summary Statistics for Receiving Environment Stations, July 20, 2004-2007.

Figure B.2: Arsenic (mg/L) Median Values with Minimum and Maximum for Receiving Environment Stations, July 20, 2004 - 2007.

Station	% < DL, > CWGQ	% > DL, > CWGQ	% >Background, >CWQG	n	mean	median	stdev	min	max	n <mdl< th=""></mdl<>
KV39	0	100	100	2	0.00377	0.00377	0.00037	0.00350	0.00403	0
KV40	0	0	0	1	0.00004	0.00004	0.00000	0.00004	0.00004	0
KV38	0	100	0	9	0.00024	0.00020	0.00014	0.00008	0.00048	0
KV41	0	90	0	10	0.00020	0.00016	0.00012	0.00004	0.00042	0
KV6	0	100	92	36	0.00185	0.00159	0.00128	0.00008	0.00527	0
KV16	0	100	100	35	0.00239	0.00146	0.00420	0.00071	0.02600	0
KV29	0	100	100	35	0.01570	0.00634	0.02396	0.00229	0.11900	0
KV30	0	100	100	34	0.00206	0.00153	0.00148	0.00065	0.00689	0
KV7	0	100	81	37	0.00144	0.00113	0.00101	0.00046	0.00430	0
KV8	0	100	97	34	0.00154	0.00130	0.00080	0.00060	0.00340	0
KV21	0	100	100	1	0.04780	0.04780	0.00000	0.04780	0.04780	0
KV47	0	100	100	3	0.00247	0.00255	0.00045	0.00198	0.00287	0
KV9	0	100	18	11	0.00036	0.00036	0.00020	0.00014	0.00069	0
KV2	4	96	0	25	0.00020	0.00018	0.00009	0.00009	0.00040	0
KV3	0	100	8	12	0.00029	0.00025	0.00024	0.00013	0.00100	0
KV4	0	100	9	11	0.00033	0.00027	0.00020	0.00013	0.00080	0
KV5	4	86	0	21	0.00015	0.00015	0.00007	0.00003	0.00034	0
KV15	0	58	0	12	0.00009	0.00008	0.00007	0.00002	0.00023	0

Table B.3: Cadmium (mg/L) Summary Statistics for Receiving Environment Stations,July 20, 2004-2007.

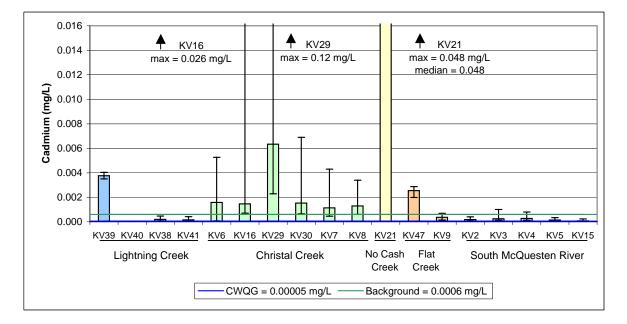


Figure B.3: Cadmium (mg/L) Median Values with Minimum and Maximum for Receiving Environment Stations, July 20, 2004 - 2007.

Station	% < DL, > CWQG	% > DL, > CWQG	% >Background, >CWQG	n	mean	median	stdev	min	max	n <mdl< th=""></mdl<>
KV39	0	0	0	2	0.0005	0.0005	0.00000	0.0005	0.0005	2
KV40	0	0	0	1	0.0005	0.0005	-	0.0005	0.0005	1
KV38	0	0	0	8	0.0005	0.0005	0	0.0005	0.0005	8
KV41	0	30	30	10	0.00107	0.0005	0.00109	0.0005	0.0038	5
KV6	0	8	8	36	0.00071	0.0005	0.00037	0.0005	0.002	22
KV16	0	19	19	36	0.00105	0.0005	0.00172	0.0005	0.0106	26
KV29	0	30	30	33	0.00139	0.0005	0.00166	0.0005	0.0065	20
KV30	0	15	15	33	0.00077	0.0005	0.00051	0.0005	0.0028	23
KV7	0	11	11	35	0.00074	0.0005	0.00053	0.0005	0.0026	27
KV8	0	6	6	33	0.00069	0.0005	0.00041	0.0005	0.0022	24
KV21	0	100	100	1	0.0024	0.0024	0.00000	0.0024	0.0024	0
KV47	0	33	33	3	0.00113	0.00089	0.00078	0.0005	0.002	1
KV9	0	0	0	11	0.00051	0.0005	3E-05	0.0005	0.0006	10
KV2	0	0	0	25	0.00053	0.0005	0.00011	0.0005	0.001	24
KV3	0	0	0	12	0.00059	0.0005	0.00019	0.0005	0.001	11
KV4	0	0	0	11	0.00055	0.0005	0.00015	0.0005	0.001	11
KV5	0	0	0	21	0.00051	0.0005	0.00014	0.0001	0.001	20
KV15	0	8	8	12	0.00056	0.0005	0.0002	0.0005	0.0012	11

Table B.4: Chromium (mg/L) Summary Statistics for Receiving Environment Stations,July 20, 2004-2007.

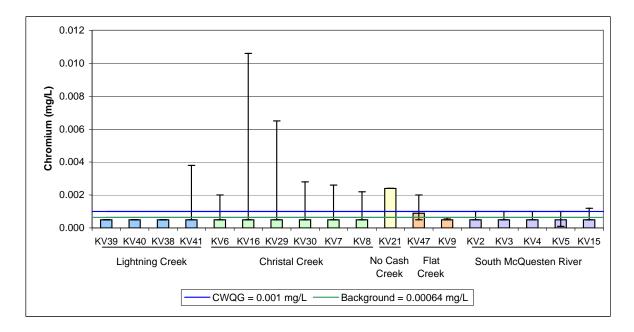


Figure B.4: Chromium (mg/L) Median Values with Minimum and Maximum for Receiving Environment Stations, July 20, 2004 - 2007.

Station	% < DL, > CWQG	% > DL, > CWQG	% >Background, >CWQG	n	mean	median	stdev	min	max	n <mdl< th=""></mdl<>
KV39	0	0	0	2	0.0016	0.0016	0.0008	0.0010	0.0021	1
KV40	0	0	0	1	0.0010	0.0010	-	0.0010	0.0010	1
KV38	11	0	0	9	0.0015	0.0010	0.0013	0.0010	0.0050	7
KV41	0	30	10	10	0.0026	0.0010	0.0025	0.0010	0.0080	4
KV6	0	9	0	35	0.0018	0.0010	0.0013	0.0010	0.0070	19
KV16	0	9	0	34	0.0018	0.0010	0.0012	0.0010	0.0060	16
KV29	0	36	12	33	0.0042	0.0020	0.0049	0.0010	0.0250	2
KV30	0	21	3	33	0.0021	0.0010	0.0017	0.0010	0.0080	15
KV7	0	20	3	35	0.0021	0.0010	0.0020	0.0010	0.0100	16
KV8	0	15	0	33	0.0021	0.0010	0.0016	0.0010	0.0070	12
KV21	0	100	100	1	0.0080	0.0080	-	0.0080	0.0080	0
KV47	0	67	0	3	0.0038	0.0040	0.0027	0.0010	0.0064	1
KV9	0	18	0	11	0.0021	0.0010	0.0018	0.0010	0.0070	1
KV2	0	4	0	25	0.0017	0.0010	0.0009	0.0010	0.0040	7
KV3	0	0	8	12	0.0028	0.0015	0.0025	0.0010	0.0090	5
KV4	0	18	0	11	0.0021	0.0020	0.0013	0.0010	0.0050	3
KV5	0	5	0	20	0.0020	0.0020	0.0009	0.0010	0.0040	5
KV15	0	0	0	12	0.0014	0.0010	0.0007	0.0010	0.0030	3

Table B.5: Copper (mg/L) Summary Statistics for Receiving Environment Stations,July 20, 2004-2007.

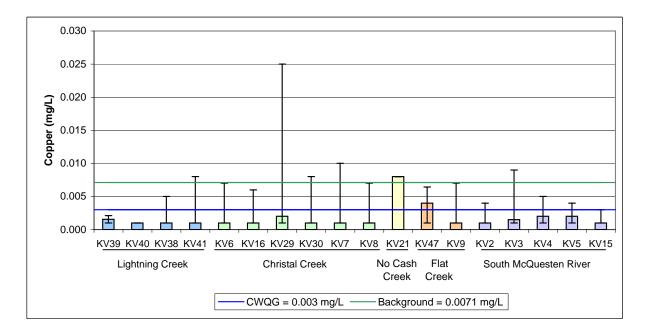
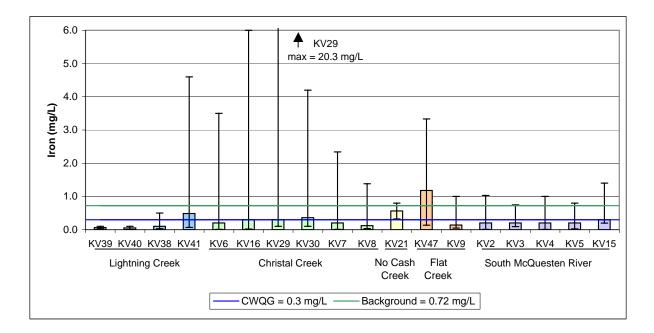



Figure B.5: Copper (mg/L) Median Values with Minimum and Maximum for Receiving Environment Stations, July 20, 2004 - 2007.

Station	% < DL, > CWQG	% > DL, > CWQG	% >Background, >CWQG	n	mean	median	stdev	min	max	n <mdl< th=""></mdl<>
KV39	0	0	0	2	0.07	0.07	0.05	0.030	0.10	2
KV40	0	0	0	2	0.05	0.05	0.07	0.003	0.10	1
KV38	10	0	0	10	0.14	0.10	0.13	0.028	0.50	8
KV41	0	53	41	17	0.99	0.49	1.37	0.068	4.60	3
KV6	0	37	19	79	0.48	0.20	0.65	0.010	3.50	4
KV16	0	45	21	42	0.63	0.30	1.00	0.019	6.00	4
KV29	0	41	35	37	1.81	0.30	3.81	0.100	20.3	10
KV30	0	53	33	40	0.82	0.36	1.00	0.100	4.20	2
KV7	0	25	16	77	0.34	0.20	0.46	0.010	2.34	8
KV8	0	27	12	41	0.30	0.12	0.34	0.033	1.38	7
KV21	0	100	50	2	0.56	0.56	0.34	0.322	0.80	0
KV47	0	79	71	14	1.38	1.18	0.94	0.137	3.33	0
KV9	0	22	17	23	0.30	0.14	0.34	0.049	1.00	7
KV2	0	23	17	47	0.31	0.20	0.30	0.010	1.03	0
KV3	0	9	5	22	0.24	0.20	0.13	0.092	0.75	1
KV4	0	29	13	45	0.32	0.20	0.29	0.010	1.00	0
KV5	0	7	4	28	0.23	0.20	0.13	0.024	0.80	0
KV15	0	40	13	15	0.44	0.30	0.34	0.198	1.40	0

Table B.6: Iron (mg/L) Summary Statistics for Receiving Environment Stations, 1994-2007.

Figure B.6: Iron (mg/L) Median Values with Minimum and Maximum for Receiving Environment Stations, 1994 - 2007.

Station	% < DL, > CWQG	% > DL, > CWQG	% >Background, >CWQG	n	mean	median	stdev	min	max	n <mdl< th=""></mdl<>
KV39	0	50	50	2	0.00352	0.00352	0.00144	0.0025	0.00454	0
KV40	0	0	0	1	0.0001	0.0001	-	0.0001	0.0001	0
KV38	0	0	0	9	0.0008	0.0005	0.0006	0.0003	0.0019	1
KV41	0	30	30	10	0.0062	0.0017	0.0101	0.0005	0.0316	0
KV6	0	60	60	35	0.01489	0.0049	0.02413	0.0005	0.12	0
KV16	0	44	44	34	0.00508	0.00385	0.00512	0.0003	0.0268	0
KV29	0	26	26	34	0.00338	0.00115	0.00485	0.0001	0.0203	2
KV30	0	42	42	33	0.00537	0.0036	0.00486	0.0004	0.0246	0
KV7	0	14	14	35	0.00372	0.0015	0.00635	0.0004	0.024	1
KV8	0	23	23	31	0.00256	0.0017	0.00197	0.0006	0.0068	0
KV21	0	100	100	1	0.0052	0.0052	-	0.0052	0.0052	0
KV47	0	33	33	3	0.0451	0.0037	0.0735	0.0017	0.1300	0
KV9	0	45	45	11	0.0074	0.0033	0.0096	0.0009	0.0333	0
KV2	0	8	8	25	0.00127	0.0007	0.0013	0.0003	0.0049	0
KV3	0	9	9	11	0.00181	0.0013	0.00172	0.0009	0.00694	0
KV4	0	20	20	10	0.00399	0.00175	0.007	0.0006	0.0237	0
KV5	0	10	10	21	0.0018	0.0013	0.00168	0.0004	0.008	0
KV15	0	8	8	12	0.00148	0.00105	0.00137	0.0002	0.0049	0

Table B.7: Lead (mg/L) Summary Statistics for Receiving Environment Stations, July 20, 2004-2007.

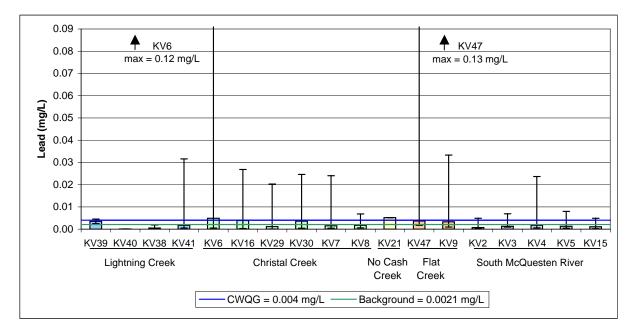


Figure B.7: Lead (mg/L) Median Values with Minimum and Maximum for Receiving Environment Stations, July 20, 2004 - 2007.

Station	% < DL,	% > DL,	% >Background,	5	meen	median	otdov	min	max	n <mdl< th=""></mdl<>
Station	> BCWQG	> BCWQG	>BCWQG	n	mean	meulan	stdev	min	max	
KV39	0	0	0	2	0.01	0.01	0.00	0.01	0.01	1
KV40	0	0	0	2	0.00	0.00	0.00	0.00	0.01	0
KV38	0	0	0	10	0.01	0.01	0.01	0.01	0.02	6
KV41	0	0	0	17	0.05	0.02	0.06	0.00	0.22	0
KV6	0	16	16	80	0.77	0.56	0.61	0.01	2.60	0
KV16	0	20	20	41	1.36	0.72	1.95	0.23	9.27	0
KV29	0	53	53	40	14	1.61	25	0.01	101	0
KV30	0	31	31	39	1.56	0.92	1.75	0.29	7.65	0
KV7	0	0	0	75	0.29	0.24	0.22	0.01	0.92	0
KV8	0	0	0	40	0.20	0.26	0.25	0.07	1.28	0
KV21	0	100	100	2	3.20	3.20	1.16	2.38	4.02	0
KV47	0	43	43	14	1.34	1.11	0.78	0.52	3.00	0
KV9	0	0	0	23	0.06	0.05	0.03	0.01	0.15	0
KV2	0	0	0	45	0.08	0.07	0.04	0.04	0.20	0
KV3	0	0	0	19	0.07	0.07	0.02	0.04	0.12	0
KV4	0	0	0	44	0.10	0.09	0.06	0.03	0.34	0
KV5	0	0	0	26	0.07	0.07	0.03	0.00	0.13	0
KV15	0	0	0	15	0.08	0.08	0.05	0.01	0.19	0

Table B.8: Manganese (mg/L) Summary Statistics for Receiving Environment Stations, 1994-2007.

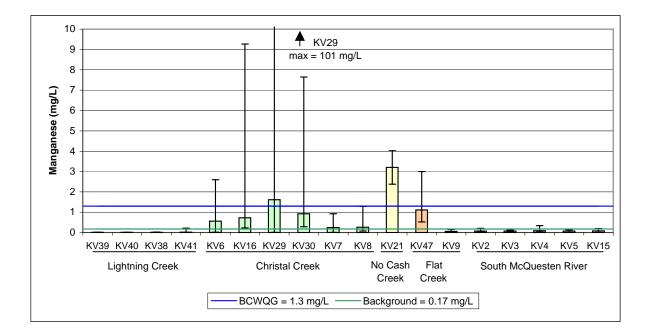


Figure B.8: Manganese (mg/L) Median Values with Minimum and Maximum for Receiving Environment Stations, 1994 - 2007.

Station	% < DL, > CWQG	% > DL, > CWQG	n	mean	median	stdev	min	max	n <mdl< th=""></mdl<>
KV39	0	50	2	0.138	0.138	0.124	0.050	0.226	0
KV40	-	-	0	-	-	-	-	-	-
KV38	0	0	3	0.043	0.040	0.015	0.030	0.059	1
KV41	0	20	5	0.028	0.030	0.025	0.002	0.063	1
KV6	0	29	7	0.045	0.050	0.044	0.002	0.120	0
KV16	0	67	3	0.077	0.080	0.035	0.040	0.110	0
KV29	0	75	4	0.565	0.210	0.828	0.040	1.800	0
KV30	0	67	3	0.087	0.090	0.045	0.040	0.130	0
KV7	0	38	8	0.060	0.050	0.067	0.002	0.200	2
KV8	0	0	4	0.040	0.036	0.024	0.005	0.060	0
KV21	0	100	1	0.070	0.070	-	0.070	0.070	0
KV47	0	0	5	0.030	0.029	0.026	0.002	0.060	0
KV9	0	0	8	0.023	0.018	0.023	0.002	0.060	7
KV2	0	0	7	0.020	0.030	0.016	0.002	0.040	5
KV3	0	0	7	0.013	0.005	0.013	0.002	0.030	6
KV4	0	0	7	0.017	0.008	0.016	0.002	0.040	4
KV5	0	0	5	0.030	0.030	0.018	0.002	0.050	1
KV15	0	0	1	0.030	0.030	-	0.030	0.030	0

Table B.9: Nitrite (mg/L) Summary Statistics for Receiving Environment Stations, 1994-2007.

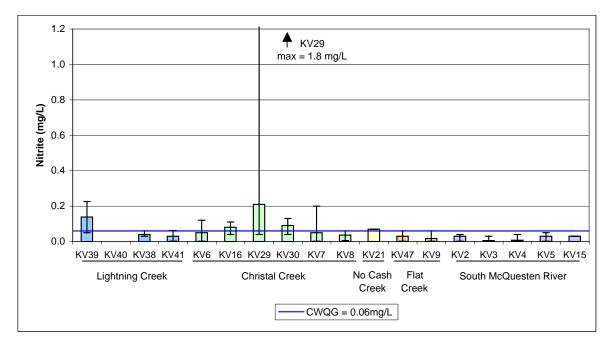


Figure B.9: Nitrite (mg/L) Median Values with Minimum and Maximum for Receiving Environment Stations, 1994 - 2007.

Station	% < DL, > PWQO	% > DL, > PWQO	% >Background, >PWQO	n	mean	median	stdev	min	max	N <mdl< th=""></mdl<>
KV39	-	-	-	0	-	-	-	-	-	0
KV40	100	0	0	1	0.06	0.06	-	0.06	0.06	1
KV38	100	0	0	1	0.06	0.06	-	0.06	0.06	1
KV41	33	67	0	3	0.05	0.06	0.02	0.03	0.07	1
KV6	77	15	0	13	0.06	0.06	0.01	0.05	0.08	10
KV16	25	75	63	16	0.41	0.45	0.33	0.06	1.20	4
KV29	44	56	44	9	0.43	0.16	0.51	0.06	1.34	4
KV30	29	71	14	7	0.22	0.12	0.32	0.06	0.94	2
KV7	30	60	0	10	0.08	0.07	0.04	0.03	0.18	4
KV8	67	33	17	6	0.11	0.06	0.10	0.06	0.31	4
KV21	100	0	0	1	0.06	0.06	-	0.06	0.06	2
KV47	33	67	0	6	0.07	0.06	0.01	0.06	0.09	2
KV9	86	0	0	7	0.05	0.06	0.01	0.03	0.06	7
KV2	50	40	0	10	0.07	0.06	0.02	0.03	0.12	6
KV3	60	20	0	5	0.06	0.06	0.02	0.03	0.07	4
KV4	40	40	0	5	0.07	0.06	0.04	0.03	0.14	3
KV5	60	40	20	5	0.10	0.06	0.09	0.06	0.27	3
KV15	100	100	0	2	0.06	0.06	0	0.06	0.06	2

Table B.10: Phosphorus (mg/L) Summary Statistics for Receiving Environment Stations, 1994-2007.

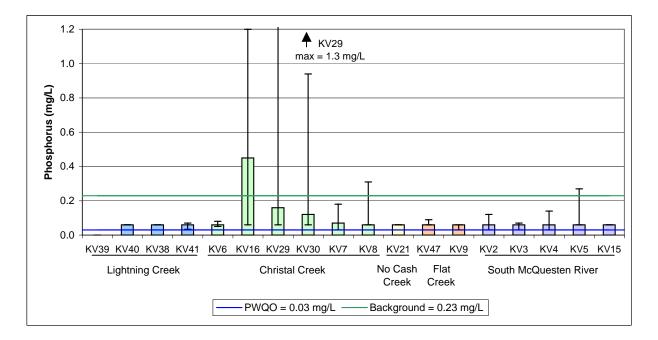
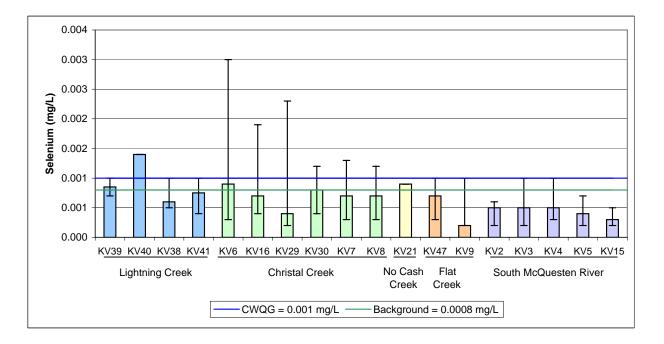



Figure B.10: Phosphorus (mg/L) Median Values with Minimum and Maximum for Receiving Environment Stations, 1994 - 2007.

Station	% < DL, > CWQG	% > DL, > CWQG	% >Background, >CWQG	n	mean	median	stdev	min	max	n <mdl< th=""></mdl<>
KV39	0	0	0	2	0.0009	0.0009	0.0002	0.0007	0.0010	1
KV40	0	100	100	1	0.0014	0.0014	-	0.0014	0.0014	0
KV38	0	0	0	9	0.0007	0.0006	0.0002	0.0005	0.0010	2
KV41	0	0	0	10	0.0008	0.0008	0.0002	0.0004	0.0010	1
KV6	0	20	20	35	0.0009	0.0009	0.0004	0.0003	0.0030	1
KV16	0	14	14	35	0.0008	0.0007	0.0003	0.0004	0.0019	1
KV29	0	9	9	33	0.0006	0.0004	0.0004	0.0002	0.0023	8
KV30	0	9	9	33	0.0008	0.0008	0.0002	0.0004	0.0012	1
KV7	0	9	9	35	0.0007	0.0007	0.0002	0.0003	0.0013	2
KV8	0	9	9	32	0.0007	0.0007	0.0002	0.0003	0.0012	1
KV21	0	0	0	1	0.0009	0.0009	-	0.0009	0.0009	0
KV47	0	0	0	3	0.0007	0.0007	0.0004	0.0003	0.0010	1
KV9	0	0	0	11	0.0003	0.0002	0.0002	0.0002	0.0010	3
KV2	0	0	0	25	0.0005	0.0005	0.0001	0.0002	0.0006	2
KV3	0	0	0	11	0.0005	0.0005	0.0002	0.0002	0.0010	1
KV4	0	0	0	10	0.0005	0.0005	0.0002	0.0003	0.0010	1
KV5	0	0	0	21	0.0004	0.0004	0.0001	0.0002	0.0007	2
KV15	0	0	0	12	0.0003	0.0003	0.0001	0.0002	0.0005	3

Table B.11: Selenium (mg/L) Summary Statistics for Receiving Environment Stations,July 20, 2004 - 2007.

Figure B.11: Selenium (mg/L) Median Values with Minimum and Maximum for Receiving Environment Stations, July 20, 2004 - 2007.

Station	% < DL, > CWQG	% > DL, > CWQG	% >Background, >CWQG	n	mean	median	stdev	min	max	n <mdl< th=""></mdl<>
KV39	0	0	0	2	0.0001	0.0001	0.0000	0.0000	0.0001	1
KV40	0	0	0	1	0.0001	0.0001	-	0.0001	0.0001	1
KV38	0	13	13	8	0.0001	0.0001	4.8E-05	0.000022	0.0002	6
KV41	0	30	30	10	0.00021	0.0001	0.00025	0.000059	0.0009	6
KV6	0	32	32	34	0.0003	0.0001	0.00046	0.0001	0.0019	21
KV16	0	19	19	32	0.00014	0.0001	0.00013	0.0001	0.0008	24
KV29	0	24	24	29	0.00016	0.0001	0.00014	0.0001	0.0007	19
KV30	0	23	23	31	0.00014	0.0001	0.0001	0.0001	0.0005	21
KV7	0	26	26	34	0.00015	0.0001	0.00011	0.0001	0.0005	24
KV8	0	23	23	31	0.00014	0.0001	9.2E-05	0.0001	0.0005	19
KV21	0	0	0	1	0.0001	0.0001	-	0.0001	0.0001	1
KV47	0	50	50	2	0.00112	0.00112	0.00144	0.0001	0.00214	1
KV9	0	18	18	11	0.00012	0.0001	3.8E-05	0.0001	0.0002	7
KV2	0	16	16	25	0.00016	0.0001	0.00017	0.0001	0.0008	16
KV3	0	20	20	10	0.00014	0.0001	9.7E-05	0.000099	0.0004	6
KV4	0	20	20	10	0.00014	0.0001	7.5E-05	0.0001	0.0003	7
KV5	0	14	14	21	0.00015	0.0001	0.00018	0.0001	0.0009	16
KV15	0	17	17	12	0.00013	0.0001	6.2E-05	0.0001	0.0003	9

Table B.12: Silver (mg/L) Summary Statistics for Receiving Environment Stations,July 20, 2004 - 2007.

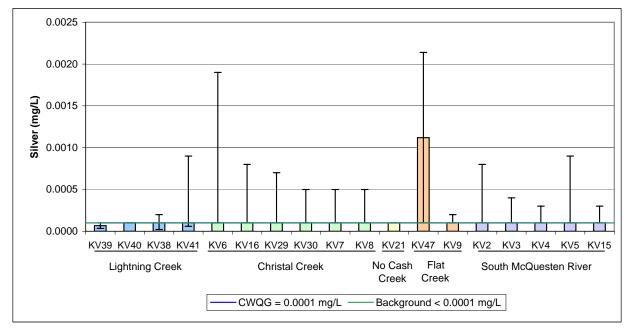


Figure B.12: Silver (mg/L) Median Values with Minimum and Maximum for Receiving Environment Stations, July 20, 2004 - 2007.

Station	% < DL, > BCWQG	% > DL, > BCWQG	% >Background, >BCWQG	n	mean	median	stdev	min	max	n <mdl< th=""></mdl<>
KV39	0	100	0	1	57	57	-	57	57	0
KV40	-	-	-	-	-	-	-	-	-	-
KV38	0	0	0	5	34	36	6	25	43	0
KV41	0	40	0	5	42	50	14	22	54	0
KV6	0	100	86	21	256	281	79	73	334	0
KV16	0	100	100	19	333	320	149	150	900	0
KV29	0	100	100	22	931	905	154	540	1250	0
KV30	0	100	100	19	337	342	71	159	457	0
KV7	0	100	95	20	240	252	57	105	340	0
KV8	0	90	85	20	214	239	76	50	310	1
KV21	-	-	-	-	-	-	-	-	-	-
KV47	0	100	0	1	59	59	-	59	59	0
KV9	0	83	67	6	126	139	51	42	190	0
KV2	0	90	0	21	78	84	21	26	104	0
KV3	0	86	0	7	78	93	27	27	104	0
KV4	0	83	0	6	79	83	24	38	104	0
KV5	0	82	6	17	75	79	23	22	110	0
KV15	0	75	0	8	63	64	26	22	100	0

Table B.13: Sulphate (mg/L) Summary Statistics for Receiving Environment Stations, July 20, 2004-2007.

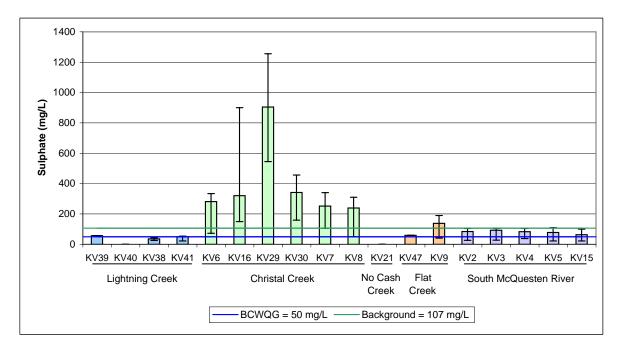
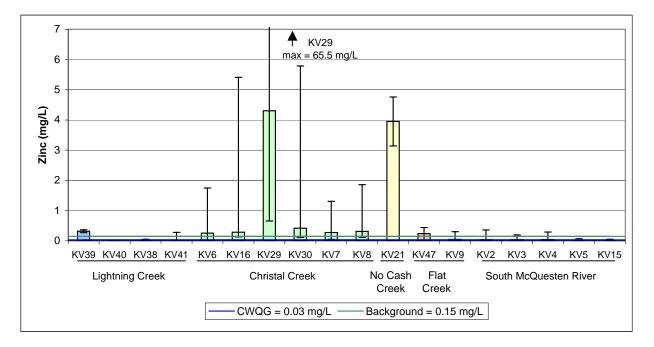
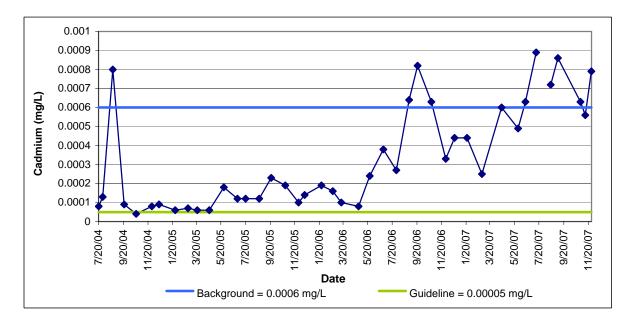


Figure B.13: Sulphate (mg/L) Median Values with Minimum and Maximum for Receiving Environment Stations, July 20, 2004 - 2007.

Station	% < DL, > CWQG	% > DL, > CWQG	% >Background, >CWQG	n	mean	median	stdev	min	max	n <mdl< th=""></mdl<>
KV39	0	100	100	2	0.32	0.32	0.065	0.271	0.36	0
KV40	0	0	0	2	0.01	0.01	0.004	0.003	0.01	0
KV38	0	30	0	10	0.03	0.03	0.013	0.014	0.05	0
KV41	0	47	11	19	0.05	0.03	0.068	0.004	0.28	0
KV6	0	91	78	81	0.33	0.26	0.275	0.001	1.75	0
KV16	0	100	95	42	0.81	0.29	1.305	0.135	5.41	0
KV29	0	100	100	42	11.7	4.31	17.78	0.658	65.5	0
KV30	0	100	95	41	1.02	0.42	1.413	0.111	5.79	0
KV7	0	100	85	79	0.34	0.27	0.238	0.048	1.31	0
KV8	0	100	98	40	0.42	0.32	0.341	0.118	1.86	0
KV21	0	100	100	2	3.95	3.95	1.146	3.140	4.76	0
KV47	0	94	94	16	0.25	0.24	0.116	0.003	0.44	0
KV9	0	78	19	27	0.09	0.05	0.084	0.020	0.30	0
KV2	0	72	6	50	0.06	0.04	0.057	0.010	0.36	0
KV3	0	75	4	24	0.05	0.04	0.036	0.016	0.19	0
KV4	0	74	11	46	0.07	0.04	0.063	0.010	0.29	0
KV5	0	45	0	29	0.03	0.03	0.015	0.010	0.07	0
KV15	0	25	0	16	0.02	0.02	0.017	0.003	0.06	0

Table B.14: Zinc (mg/L) Summary Statistics for Receiving Environment Stations, 1994-2007.




Figure B.14: Zinc (mg/L) Median Values with Minimum and Maximum for Receiving Environment Stations, 1994 - 2007.

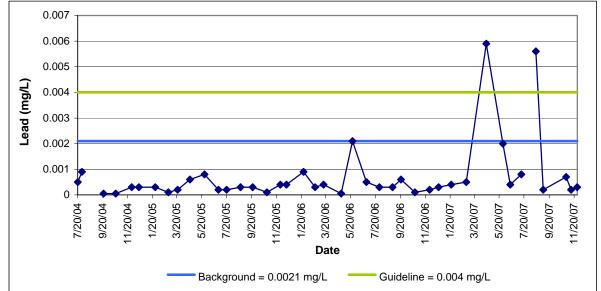

Watershed	Station	Alkalinity-Total (as CaCO3)	Aluminum-Total	Arsenic-Total	Cadmium-Total	Conductivity	Copper-Total	Hardness (as CaCO3)	Iron-Total	Lead-Total
	Units	mg/L	mg/L	mg/L	mg/L	uS/cm	mg/L	mg/L	mg/L	mg/L
	KV37	30	0.021	0.0029	0.000005	129.5	0.0005	53.0	0.05	0.0002
Lightning Creek	KV38	36	0.011	0.0027	0.0002	155	0.0005	66.5	0.05	0.0005
	KV41	46	0.28	0.004	0.00023	197	0.0024	76	0.5	0.0030
	KV6	130	0.025	0.0037	0.00158	686	0.0010	416	0.2	0.0055
Christal Creek	KV7	144	0.032	0.0021	0.0011	625	0.0010	390	0.2	0.0016
	KV8	146	0.017	0.0026	0.0013	680	0.0010	392	0.1	0.0020
Flat Creek	KV9	194	0.01	0.0024	0.0004	615	0.0020	302	0.05	0.0045
0 11	KV1	120	0.153	0.0014	0.00021	377	0.0035	204	0.2	0.0003
South McQuesten	KV3	118	0.097	0.0021	0.00025	319	0.0026	237	0.2	0.0013
River	KV4	130	0.0896	0.0022	0.00028	417	0.0020	216	0.2	0.0020
	KV5	140	0.034	0.0035	0.00016	429	0.0020	212	0.2	0.0014

Table B.15: Water quality medians (mid-2004 - mid-2007) used in PCA, United Keno Hill Mines^a.

Watershed	Station	Manganese- Total	Nitrite	рН	Selenium-Total	Strontium-Total	Sulphate*- Dissolved	Total Suspended Solids	Uranium-Total	Zinc-Total
	Units	mg/L	mg/L	pH units	mg/L	mg/L	mg/L	mg/L	mg/L	mg/L
	KV37	0.009	0.026	7.67	0.0004	0.060	23.0	2.0	0.0003	0.003
Lightning Creek	KV38	0.0025	0.045	7.62	0.0005	0.078	35.8	1	0.0003	0.025
	KV41	0.044	0.050	7.73	0.0007	0.086	46.5	17.2	0.0005	0.031
	KV6	0.456	0.060	7.80	0.0009	0.226	281	1	0.0051	0.218
Christal Creek	KV7	0.273	0.060	7.84	0.0008	0.243	245	2	0.0027	0.227
	KV8	0.180	0.050	7.82	0.0007	0.241	230	1	0.0025	0.287
Flat Creek	KV9	0.065	0.015	7.45	0.0002	0.212	138	1	0.0010	0.043
Quarth	KV1	0.098	0.015	7.79	0.0004	0.223	71.5	1.0	0.0008	0.048
South McQuesten — River	KV3	0.083	0.016	7.80	0.0005	0.207	82.3	1	0.0008	0.047
	KV4	0.078	0.015	7.88	0.0005	0.201	76.0	1.5	0.0008	0.058
	KV5	0.077	0.040	7.81	0.0004	0.227	77.5	1	0.0008	0.036

^a prepared using data from Minnow (2008) and Burns (2008).

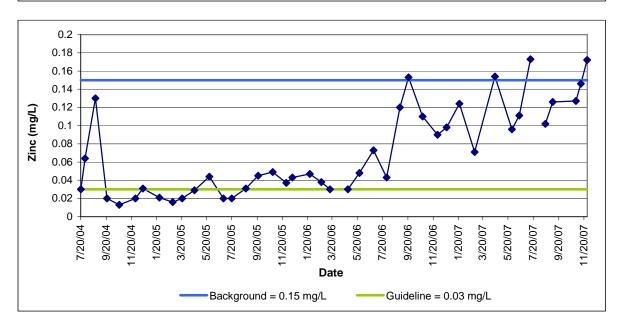


Figure B.15: Concentrations of cadmium, lead and zinc at station KV-1, United Keno Hill Mines, mid-2004 - 2007.

APPENDIX C

SEDIMENT QUALITY

			Sedi	ment Qua	lity Guide	lines	
Parameter	Units	Cana	dian ^a	British C	olumbia ^b	Onta	ario ^e
		ISQG ^c	PEL ^d	ISQG ^c	PEL ^d	LEL ^f	SEL ^g
Aluminum	ug/g						
Antimony	ug/g						
Arsenic	ug/g	5.9	17	5.9	17	6	33
Barium	ug/g						
Beryllium	ug/g						
Bismuth	ug/g						
Cadmium	ug/g	0.6	3.5	0.6	3.5	0.6	10
Calcium	ug/g						
Chromium	ug/g	37.3	90	37.3	90	26	110
Cobalt	ug/g						
Copper	ug/g	35.7	197	35.7	197	16	110
Iron	ug/g			21,200	43,766	20,000	40,000
Lead	ug/g	35.0	91.3	35	91	31	250
Lithium	ug/g						
Magnesium	ug/g						
Manganese	ug/g					460	1,100
Mercury	ug/g			0.170	0.486	0.2	2
Molybdenum	ug/g						
Nickel	ug/g			16	75	16	75
Phosphorus	ug/g					600	2,000
Potassium	ug/g						
Selenium	ug/g			2	2 ^f		
Silicon	ug/g						
Silver	ug/g						
Sodium	ug/g						
Strontium	ug/g						
Sulfur	ug/g						
Thallium	ug/g						
Thorium	ug/g						
Tin	ug/g						
Titanium	ug/g						
Uranium	ug/g						
Vanadium	ug/g						
Zinc	ug/g	123	315	123	315	120	820
Zirconium	ug/g						
рН	pH units						

Table C.1: Guidelines selected for evaluating sediment quality at United Keno Hill Mines

^a CCME (1999)

^b BCMOE (2006)

^c Interim sediment quality guideline

^d Probable effect level

^e OMOE (1993)

^f Lethal effect level.

^g Severe effect level.

Shading indicates value used in evaluating measured sediment concentrations at United Keno Hill.

Parameter	Units	MDL ^b	Selected S		Lig	htning Cr	eek	Cł	nristal Cre	ek	Flat Creek		South	McQueste	en River	
Farameter	Units	MDL	Quality Gu Guideline	Value	KV37	KV38	KV41	KV6	KV7	KV8	KV9	KV1	KV2	KV3	KV4	KV5
Aluminum	ug/g	1			12,533	9,023	8,693	9,410	7,253	11,200	7,323	8,050	8,770	8,140	9,557	12,733
Antimony	ug/g	0.5			0.6	14	0.7	14.8	< 0.5	6	150	< 0.5	15.3	15.6	32.3	6
Arsenic	ug/g	0.2	CCME	17	115	433	63	284	35	190	586	18.8	235	130	180	124
Barium	ug/g	0.03			232	160	186	251	226	301	342	133	155	163	195	247
Beryllium	ug/g	0.01			0.3	0.23	0.3	0.3	0.2	0.38	0.32	0.24	0.29	0.26	0.32	0.44
Bismuth	ug/g	0.5			2.7	4.0	2.2	2.9	1.9	3.4	8.5	1.4	2.6	2.6	3.0	3
Cadmium	ug/g	0.05	CCME	3.5	2.7	31.2	3.4	28.2	3.7	24.8	57.1	3.3	18	14	17.0	12
Calcium	ug/g	2			3,560	5,113	3,837	5,760	15,500	14,433	8,237	7,217	8,910	11,100	9,183	12,417
Chromium	ug/g	0.04	CCME	90	22.0	37.8	23	16.7	13.2	21	15.8	12.5	18	14.3	15.8	19.6
Cobalt	ug/g	0.05			11.0	13.4	10.4	10.5	7.49	13.8	10.1	19.5	24	18.2	20.1	35
Copper	ug/g	0.05	CCME	197	42	56	33.8	41.3	26.6	63.0	194	25.4	49.5	41.5	59.0	54.3
Iron	ug/g	1	BCMOE	43,766	27,633	34,833	26,000	27,133	20,367	34,600	75,533	17,533	28,267	25,467	31,800	30,000
Lead	ug/g	0.3	CCME	91.3	40.0	642	82.2	954	56.4	498	6,290	13.9	707	423	985	271
Lithium	ug/g	0.1			19.3	13.9	13.0	15.1	13	20	12	13.1	14.1	13.6	15.2	20
Magnesium	ug/g	1			3,993	5,013	3,913	4,167	6,910	6,650	5,150	4,467	5,180	5,313	5,727	7,037
Manganese	ug/g	0.3	OMOE	1.100	708	2,167	650	3.277	758	3,140	< 0.3 ^d	754	3,600	3,117	4,303	4,290
Mercury	ug/g	0.003	BCMOE	0.486	0.08	0.23	0.055	0.1	0.068	0.14	0.589	0.054	0.109	0.09	0.173	0.11
Molybdenum	ug/g	0.05			1.4	5	1.7	0.7	1	1.6	0.2	0.63	1.5	0.7	0.7	1.1
Nickel	ug/g	0.1	BCMOE	75	30	42.3	30.4	27.9	22.6	44.1	32	74.0	92.2	69.4	66.8	133
Phosphorus	ug/g	0.5	OMOE	2,000	1,100	1,070	991	1,053	988	1,007	755	1,020	1,093	1,040	1,047	1,029
Potassium	ug/g	5			350	270	360	397	387	567	475	410	464	437	527	693
Selenium	ug/g	0.3	BCMOE	2	1.4	2	0.8	2.5	1	3.6	11.0	1.2	3	2.5	3.5	3.4
Silicon	ug/g	1			315	311	355	312	263	265	314	139	175	104	251	141
Silver	ug/g	0.2			0.8	15.0	1.9	12.2	0.8	7.1	16.0	0.3	11.8	7	16.2	4.4
Sodium	ug/g	1			43	43	59	67	83	80	81	73	84	95	79	88
Strontium	ug/g	0.02			19.9	21.2	18.6	23.5	40.0	42.0	29	29.7	39	32.8	26.1	44.3
Sulfur	ug/g										_	-			_	
Thallium	ug/g	0.3			0.5	3.0	0.4	5.6	0.4	4.9	46	1.0	6.4	5	7.6	6.3
Thorium	ug/g						-		-	-	-	-	-	-	-	
Tin	ug/g	0.2			0.3	7.2	3	0.9	0.2	0.6	9.1	0.2	1.6	1	1.7	0.7
Titanium	ug/g	0.05			44	79	135	72	107	73	38	105	105	104	95	83
Uranium	ug/g															
Vanadium	ug/g	0.1			30	26	29	26	22	31	22	20	22	21	25	26
Zinc	ug/g	0.1	CCME	315	125	1,637	247	1,483	404	2,067	3,143	512	1,410	1,054	1,333	1,400
Zirconium	ug/g	0.05			1	2.0	3	2.2	3	3.5	2.2	2.2	2.6	2.3	2.6	3.0

Table C.2: Sediment quality data for stations near United Keno Hill Mines, Yukon, 2007^{a,e}.

^a Reported by Burns (2008)

^b MDL - method detection limit

^c see Table C.1 for explanatory footnotes

^d concentration considerably lower then all other values and therefore considered suspect

^e values represent means of three replicate samples

Note: concentrations measured using very fine-sized sediment (i.e. fraction passing through a 0.053 mm sieve)

Shading indicates measured values exceeding benchmark.

Demonster	ll-M-	MDIP	Selected		Lig	htning Cr	eek	Cł	nristal Cre	ek	Flat Creek		South I	McQueste	en River	
Parameter	Units	MDL⁵	Quality Guideline	Value	KV37	KV38	KV41	KV6	KV7	KV8	KV9	KV1	KV2	KV3	KV4	KV5
Aluminum	ug/g	5	Guideime	value	11,300	5.877	5,853	7,573	5.810	6.800	4.100	9.187	9.133	10.967	14,557	7,930
Antimony	ug/g	0.2			2.00	9	4.83	87	11	15.5	23.0	0.8	13	15.4	9.3	5.86
Arsenic	ug/g	0.2	CCME	17	55.9	72	35.4	1,643	83	116	55.2	21.2	78.8	93.3	40.5	40
Barium	ug/g	1	CONIL	17	168	87	88.3	89.1	263	174	238	183	151	195	370	139
Beryllium	ug/g	0.1			0.2	0	0.1	< 0.5	0.14	0.2	0.1	0.19	0.2	0.2	0.27	0.15
Bismuth	ug/g	0.1			0.2	0	< 0.2	< 2	0.14	0.2	0.1	0.15	0.2	0.2	0.27	0.33
Cadmium	ug/g	0.01	CCME	3.5	0.54	11	4.0	145	21.2	23.4	15	2.52	10.6	14.8	5.6	3.6
Calcium	ug/g ug/g	200	COME	5.5	2,887	3,657	2,700	11,067	15,867	6,713	3,953	10,547	9,153	12,100	35,827	7,073
Chromium	ug/g	0.5	CCME	90	14.5	8	11.8	11	9.5	10	8.24	11.3	12.1	11.8	16.5	10.7
Cobalt	ug/g	0.0	COME	00	6.2	8	6.27	42	10.3	7.82	6.15	15.1	11.7	13.1	9.4	7.28
Copper	ug/g	1	CCME	197	19.7	29	21.7	83	23	22.9	35.6	17.5	22.2	28.5	27.2	14
Iron	ug/g	10	BCMOE	43.766	13.600	17.033	14,300	64.800	16.267	16.200	12.767	14,367	17.400	16.867	18.033	13,533
Lead	ug/g	0.1	CCME	91.3	27	223	76.7	4,067	413	755	1,883	12	377	677	310	150
Lithium	ug/g	1	COME	01.0	10	7	6.7	8	7.6	8.4	7	9.2	8.3	8.5	12	8
Magnesium	ug/g	200			3.740	6.447	4,433	5,327	8.140	5.573	4.237	6,583	6.700	6.760	15.960	6.027
Manganese	ug/g	5	OMOE	1.100	300	1,577	471	41,733	5,063	3,683	3,797	733	2,087	2,060	1,196	909
Mercury	ug/g	5	BCMOE	0.486	500	1,077	771	+1,700	0,000	0,000	0,101	100	2,007	2,000	1,100	505
Molybdenum	ug/g	1	DOMOL	0.400	1.1	3	1.3	< 5	2.4	1.6	1	1.2	1.2	1	2	1
Nickel	ug/g	0.5	BCMOE	75	16	15	16	92.1	29.9	20.3	14.3	47	39.0	44.5	26	24.0
Phosphorus	ug/g	30	OMOE	2.000	684	434	424	505	992	711	735	768	838	907	748	636
Potassium	ug/g	400	OINIOL	2,000	330	223	213	677	680	407	340	693	623	917	2,267	563
Selenium	ug/g	0.2	BCMOE	2	0.3	0	< 0.10	< 1	< 0.10	0.14	< 0.10	0.72	0.57	1	0.5	0.1
Silicon	ug/g	0.2	DOMOL	L	0.0	0	< 0.10		< 0.10	0.14	< 0.10	0.72	0.07	1	0.0	0.1
Silver	ug/g	0.1			0.59	1.60	1.7	9.2	4.08	6.52	9.34	0	6.35	8.12	3.4	2.13
Sodium	ug/g	400			< 200	< 200	< 200	< 200	< 200	< 200	< 200	200	200	< 200	223	207
Strontium	ug/g	1			10	8.0	7.1	29	21.7	13.5	13.5	26.7	22.8	22	38.4	16
Sulfur	ug/g				10	0.0		20	2	10.0	10.0	20.1	22.0		00.1	10
Thallium	ug/g	0.1			0.1	0.06	0.03	0.2	0.1	0.1	0.4	0.1	0.1	0.15	0.2	0.1
Thorium	ug/g	.			0	0.00	0.00	0	.	0	U	0		00		<u></u>
Tin	ug/g	1			< 0.5	1	1	< 5	1	2	1	0.87	2	1	1	1
Titanium	ug/g	0.5			88.7	112	351	143	86	97.4	86.6	198	154	155	146	145
Uranium	ug/g	0.5			1	1	1	5.1	1.1	0.92	0.44	100	0.8	1	1.2	0.53
Vanadium	ug/g	0.0			20.3	15	18.0	24	16	15.9	17.3	20.5	19.7	20.5	28.4	18
Zinc	ug/g	1	CCME	315	61.6	535	226	12,140	3,103	1,773	605	303	659	885	342	323
Zirconium	ug/g	1			1	2.4	2.1	< 5	2.1	1.9	1.2	2.6	2.2	2.3	3.5	2

Table C.3: Sediment quality data for stations near United Keno Hill Mines, Yukon, 2004^{a,d}.

^a Reported by Burns (2005)

^b MDL - method detection limit

^c see Table C.1 for explanatory footnotes

^d values represent means of three replicate samples

Note: concentrations measured using very fine-sized sediment (i.e. fraction passing through a 0.053 mm sieve)

Shading indicates measured values exceeding benchmark.

Parameter	Units	MDL ^{b,e}	Selected S		Lig	htning Cr	eek	Cł	ristal Cre	ek	Flat Creek		South	McQueste	n River	
Falameter	Units	WIDL	Guideline	Value	KV37	KV38	KV41	KV6	KV7	KV8	KV9	KV1	KV2	KV3	KV4	KV5
Aluminum	ug/g	-					13,700	8,970	8,930		9,020	9,880	6,210	12,400	9,430	10,800
Antimony	ug/g	-					4	8	16		150	< 2	5	35	41	18
Arsenic	ug/g	-	CCME	17			39	128	174		395	18	413	210	166	116
Barium	ug/g	-					223	223	298		394	185	142	262	190	253
Beryllium	ug/g	-					0.3	< 0.1	< 0.1		< 0.1	0.3	< 0.1	0.2	< 0.1	< 0.1
Bismuth	ug/g	-					<5	< 5	< 5		< 5	< 5	< 5	< 5	< 5	< 5
Cadmium	ug/g	-	CCME	3.5			2.7	15.2	12.4		51.3	1.6	26.3	17	17.7	8.6
Calcium	ug/g	-					6,230	10,800	13,900		9,060	9,450	8,910	11,000	8,690	11,200
Chromium	ug/g	-	CCME	90			26.7	16.1	15		19	16.7	12	22	15.8	16.7
Cobalt	ug/g	-					13.3	11	9.4		10.1	10.4	10.6	11.5	8.3	9.6
Copper	ug/g	-	CCME	197			43.5	34.5	27.9		116	22.4	48.4	49.4	40.9	29.2
Iron	ug/g	-	BCMOE	43,766			27,900	27,600	29,000		61,000	21,500	41,500	34,000	31,000	29,800
Lead	ug/g	-	CCME	91.3			70	260	680		4,520	10	1,750	1,100	980	344
Lithium	ug/g	-					16.8	11.5	10.6		8.7	13.5	9	13.9	11.5	12
Magnesium	ug/g	-					4,690	5,600	5,970		3,500	5,820	4,650	5,700	4,820	6,500
Manganese	ug/g	-	OMOE	1,100			739	5,500	5,380		29,600	602	10,500	4,530	5,800	4,390
Mercury	ug/g	-	BCMOE	0.486												
Molybdenum	ug/g	-					<1	< 1	< 1		< 1	3	< 1	< 1	< 1	< 1
Nickel	ug/g	-	BCMOE	75			33.7	36.3	30		36.8	36.2	33.7	41.4	28.5	47.5
Phosphorus	ug/g	-	OMOE	2,000			948	895	1,110		575	865	878	910	829	817
Potassium	ug/g	-					990	650	860		1,310	1,090	310	1,760	940	1,050
Selenium	ug/g	-	BCMOE	2			<2	< 2	< 2		< 2	< 2	< 2	< 2	< 2	< 2
Silicon	ug/g	-					283	231	243		303	206	142	218	194	193
Silver	ug/g	-					0.5	4.2	7.3		55.2	< 0.5	5.1	14.4	14.2	6
Sodium	ug/g	-					153	120	137		162	149	102	212	147	169
Strontium	ug/g	-					29	26	30		26	31	22	31	23	32
Sulfur	ug/g	-					140	1,110	1,600		2,030	570	3,350	1,600	1,340	780
Thallium	ug/g	-							,		, , , , , , , , , , , , , , , , , , ,					
Thorium	ug/g	-					7	3	2		< 1	4	< 1	4	3	2
Tin	ug/g	-					<1	< 1	< 1		< 1	< 1	< 1	< 1	< 1	< 1
Titanium	ug/g	-					803	380	349		301	465	104	506	415	474
Uranium	ug/g	-					<5	< 5	< 5		< 5	< 5	< 5	< 5	< 5	< 5
Vanadium	ug/g	-					42	27	25		25	31	15	36	27	30
Zinc	ug/g	-	CCME	315			389	2,090	1,950		5,180	310	2,410	1,610	1,640	1,150
Zirconium	ug/g	-					8.6	5.2	4.5		0.6	6	4.8	6.9	5	4

Table C.4: Sediment quality data for stations near United Keno Hill Mines, Yukon, 1994^{a,d}.

^a Reported by Burns (1994)

^b MDL - method detection limit

^c see Table C.1 for explanatory footnotes

^d values represent one composite sample

^e MDL values not reported in Burns (1994)

Note: concentrations measured using fine-sized sediment (i.e. fraction passing through a 0.15 mm sieve)

Shading indicates measured values exceeding benchmark.

Deremeter	Units	MDL ^{b,f}		Sediment	Lig	htning Cr	eek	Cł	ristal Cr	eek	Flat Creek		South	McQueste	n River	
Parameter	Units	MDL*,	Quality G		KV37	KV38	KV41	KV6	KV7	KV8	KV9	KV1	KV2	KV3	KV4	KV5
			Guideline	Value												ļ
Aluminum	ug/g	-								5,717	6,040			8,093	5,575	ļ
Antimony	ug/g	-														ļ
Arsenic	ug/g	-	CCME	17						1,717	235			27	253	ļ
Barium	ug/g	-								148	305			221	953	ļ
Beryllium	ug/g	-								< 2	< 0.2			< 0.2	< 0.2	ļ
Bismuth	ug/g	-														L
Cadmium	ug/g	-	CCME	3.5						126	79.9			9.1	56.7	L
Calcium	ug/g	-								7,333	6,763			9,380	7,075	L
Chromium	ug/g	-	CCME	90						16.7	21.1			25.0	20.8	
Cobalt	ug/g	-								6.0	13.5			9.90	11.3	
Copper	ug/g	-	CCME	197						120	127.3			28.4	150.5	
Iron	ug/g	-	BCMOE	43,766						114,333	44,033			21,600	42,800	
Lead	ug/g	-	CCME	91.3						7,227	4,083			303	6,925	
Lithium	ug/g	-														
Magnesium	ug/g	-								5,753	3,720			5,910	3,965	
Manganese	ug/g	-	OMOE	1,100						< 0.2 ^d	< 0.2 ^d			2,213	244	
Mercury	ug/g	-	BCMOE	0.486												
Molybdenum	ug/g	-								25.3	< 0.8			< 0.8	< 0.8	
Nickel	ug/g	-	BCMOE	75						13	46			23	36	
Phosphorus	ug/g	-	OMOE	2,000						718	481			667	556	
Potassium	ug/g	-														
Selenium	ug/g	-	BCMOE	2												
Silicon	ug/g	-								70	697			727	665	
Silver	ug/g	-														
Sodium	ug/g	-								123	157			247	155	
Strontium	ug/g	-								19.8	27.5			25.7	26.6	
Sulfur	ug/g	-									-					
Thallium	ug/g	-														
Thorium	ug/g	-														
Tin	ug/g	-								< 2	14			6	8	
Titanium	ug/g	-								268	346			860	381	
Uranium	ug/g	-														
Vanadium	ug/g	-								33.4	27.4			38.5	26.7	
Zinc	ug/g	-	CCME	315						7,700	4,920			536	3,345	
Zirconium	ug/g	-								.,	.,				-,	

Table C.5: Sediment quality data for stations near United Keno Hill Mines, Yukon, 1985^{e,e}.

^a Reported by Davidge and Mackenzie-Grieve (1989)

^b MDL - method detection limit

^c see Table C.1 for explanatory footnotes

^d concentration considerably lower then other values and therefore considered suspect

^e values represent means of three replicate samples

^fMDL values not reported in Davidge and Mackenzie-Grieve (1989)

Note: concentrations measured using fine-sized sediment (i.e. fraction passing through a 0.15 mm sieve)

Shading indicates measured values exceeding benchmark.

APPENDIX D

BENTHIC INVERTEBRATE COMMUNITY

Source	DOE ¹ DOE ¹	DOE 1	DOE 1		Laberge	2	L	.aberge ²	2	L	Laberge ²	2		.aberge ²	2		Laberge	2	1	Laberge ²		L	aberge	2		Laberge	3	L	aberge ³	3
Year	1985 1985	1985	1985		1994			1994		i	1994			1994			1994	<u> </u>		1994			1994			2007			2007	
Watershed Current Station ID	South McQuesten River KV3 KV4	Christal Creek KV8	Flat Creek KV9	K\/1_1	K\/1-2	K\/1_3	K\/2_1			Jesten Riv		K\//1-3	K\/5_1	K\/5_2	K\/5_2	K\/6_1	KV/6-2		al Creek	KV7-2	K\/7_2		lat Cree		K\/1_1			Lesten Riv		K\/2_2
	KV3 KV4	r.vo	KV9	KVI-I	KV1-2	KV1-3	KV3-1	KV3-2	KV3-3	KV4-1	KV4-2	KV4-3	KV5-1	KV3-2	KV3-3	KV0-1	KV0-2	KV0-3	KV7-1	KV7-2	KV7-3	KV9-1	KV9-2	Kv9-3	KVI-I	KV1-2	KV1-3	KV3-1	KV3-2	KV3-3
PHYLUM COELENTERATA/CNIDAR	IA																													
Class Hydrozoa					10	10				0						10	40													
Hydra sp.				32	49	16				8	1					16	42	6									2			
PHYLUM NEMATODA	2	1							4	8			67	65	69	1	6	2					1		8		2	4	12	12
Class Oligochaeta Family Enchytraeidae J																									8					
Family Enchytraeidae	1	1						2	1					64		1									0					
Family Naididae																														
Naididae Unid J/D					400	64	0	0	40	20	0	0	400	400	200	400	005	400				400	400	204	1					4
Chaetogaster sp Nais sp					136	64	8	8	16 1	32	8	8	128	138	320	189	225 2	482				100	108	324						4
Family Tubificidae J									1								2									24	10	6	8	12
Family Tubificidae, unid., uv.		1																												
Tubifex sp		3																												
Class Hirudinae																														
Order Rhynchobdellida																														
Family Piscicolidae																														
Piscicola salmonsitica												1			1															
PHYLUM ARTHROPODA																1														
Class Arachnida													l			1														
Order Hydracarina																														
Hydracarina, unid J/D				137	48	128	48	88	68	64	240	32	4037	3845	4003	2	1		12			3	1							
Kawamuracarus sp Lebertia sp										4	16		67 1	3 192	194	1						2	2	1						
Neumannia sp				8	9						10		2	64	134	1						2	2						4	
Sperchon sp				19	24	16			8	25			323	256	394	2	1						1	1	8		4	2	4	
Torrenticola sp																1	2			8	2		1	1	80	88	32	30	32	12
Unioncola sp Oribatei																									160	112	72 2	48	136	44
Oribatei																											2			
Class Insecta																														
Order Collembola																														
Collembola Unid J																						1								
Hypogastrura sp Isotomurus sp																1						1								
Podura sp																														
Order Ephemeroptera Family Ameletidae																														
Ameletus sp										8									3	4							2			
Family Baetidae																														
Baetis sp	8 4			190		99	271	207	261	57	107	8	466	850	794	5			1	4	4		1	1	894	1039	217	109	351	191
Family Ephemerellidae Drunella flavilinia																														
Drunella doddsi		1											1																	
Ephemerella (Drunella)	4 3		1																											
Ephemerella grandis				3	3	1	4	2	3	13	2	2	11	26	37															
Ephemerella sp Ephemerellidae J				22	17	30		10		2	1	14	1		2	-									15	2		1		
Family Heptageniidae																														
Cinygmula sp									-						-															-
Epeorus																-			4											
Epeorus (Iron) sp Heptagenia sp				11	4	12													4											
Rhithrogena sp	5 1			102	18		52	9	21	18	30	15	3	68	1	1			4		4									
Family Leptophlebiidae															-															
Paraleptophlebia sp				4	17	91		1	1	8	1	3	5			1									8		2	6	4	1
Order Plecoptera													1			1														
Plecoptera, Unid, J/D				9			8	56	32	24	16	8		64	64			2	846	479	244	4	7	2						
Family Capnidae															-															
Capnidae unid Capnia sp		7	7	10		32	81	106	4.4	32	169	56	129	133	4			4	241	227	80	1	c	0	57	32	14	273	226	222
Family Chloroperlidae				16		32	01	aui	44	32	109	00	129	133	1			1	241	221	00	4	8	9	5/	32	11	213	220	222
Alloperla sp	1												1			1														
Sweltsa Grp																												1		3
Sweltsa sp gp				1				1		1	1		2				2													
Family Leuctridae Leuctra sp																														
ELEVIT OF		1		1	1	1 1											1		•								1			

Source Year	DOE ¹ 1985	DOE ¹ 1985	DOE ¹ 1985	DOE ¹ 1985	Laberge 1994	2		Laberge 1994	2		Laberge ² 1994	2		Laberge 1994	2		Laberge 1994			Laberge ² 1994	2	I	Laberge 1994	2	I	Laberge 2007	3		Laberge 2007	3
Watershed		uesten River	Christal Creek	Flat Creek	1554		1		uth McQ	uesten Ri				1334			1334		al Creek	1334		F	Flat Creel	k			uth McQ	uesten Ri		
Current Station ID	KV3	KV4	KV8	KV9	KV1-1 KV1-2	KV1-3	KV3-1					KV4-3	KV5-1	KV5-2	KV5-3	KV6-1	KV6-2			KV7-2	KV7-3				KV1-1					KV3-3
Malenka sp	4	4		-		-																	-					-	-	
Podmosta sp		2		32												13	10	6	4	1			1	1						
Zapada (oregonensis)		1	3																											
Zapada sp					3	20	5		1	50	31	11	94	29	160	52	19	22	99	52	28	2	4		11	26	6	36	40	80
Family Perlidae																														L
Acroneuria sp	21	12																												L
Classenia sabulosa					2	1	3	1			1			4	3												-			<u> </u>
Hesperoperla sp		-																							4	1	2	5		1
Family Perlodidae	0		2							-																				<u> </u>
Arcynopteryx (compacta)	2	4	3							4	4			4					0	1	0									+
Isoperla sp										1	1		1	1				1	2	1 2	3									+
Megarcys sp Skwala curvata													1			-			3	2	4									<u> </u>
Skwala paralella					1					1			5	5	4	1			3	2	3	1		2						<u> </u>
Family Pteronarcyidae										1			5	5	4	1			5	2	3	1		2						<u> </u>
Pteronarcella sp																												4		
Pteronarcella regularis	4	12			2 1		1	2	7		10	1	18	14	20															
Pteronarcys sp	•	1 .2										•													4	1	2	5		1
Pteronarcys californica		1			4 2	6	4	2	2	2	2	1	1	3	2	1			1								-			
Pteronarcys dorsata	5	10			1	-	1	1		1			1	-	1	1			1							1	1	l		
Family Taenioptergidae													L																	Ē.
Taenionema sp													L						41	16	4	1								L
·				-																										
Order Trichoptera																														
Trichoptera Unid J					9 1			1		16	8	8	1	1	1				3	9	7	1	1						2	L
Trichoptera A																														L
Family Brachycentridae							I									I		_	1											
Brachycentrus sp					4	17		2	4		1		23	30	30		-	_	-				1		3	2	6	1	1	
Micrasema sp		-											2	5	4															
Family Glossosmatidae																														<u> </u>
Glossosoma sp		-																												<u> </u>
Family Hydropsychidae								_		4.0		_		407															4.0	
Arctopsyche sp	30	36		11	8	21	21	8	4	13	25	5	142	137	140	3	1								31	57	30	16	16	12
Family Hydroptilidae											0		20	50	01	1						1			0					<u> </u>
Hydroptila sp											9		39	50	91							I			8		4			<u> </u>
Hydroptilidae J Oxyethira sp					63	24				10	1	1	3	10	8			1					2		3	1	5	2	1	17
Family Lepidostomatidae					03	24				10	1	I	5	10	0			1					2		5	1	5	2		
Lepidostoma sp					1	1				1															3	2	1			
Family Limnephilidae					-																				0	2				
Clostoeca sp		1	2																											
Dicosmoecus sp			-					1		1										2								1		[
Ecclysomyia																1														[
Grensia sp														1																
Limnephilus sp																18	10	6												1
Nemotaulius sp												1																		
Onocosmoecus sp	1																													
Family Polycentropodidae													+	+		<u> </u>														
Polycentropus sp						1												_	-											
Family Rhyacophilidae																			-											<u> </u>
Rhyaccophila acropedes	1	1				+				ł			—		+			_	_						-	_		^		-
Rhyacophila acropedes or vao		+			1	-	-						1	-	-	-		-	6	1	4	1			7	2	1	2	28	8
Rhyacophila hyalinata Rhyacophila sp J/D					10	3				16	4		7	14	13				60	28	18									<u> </u>
					10	3	+	+		01	1		/	14	13	1	-	-	68	20	10				-	1				<u> </u>
Order Coleoptera		1			1 1	-	<u> </u>						1	-					1											
Ephemerella dorothea infrequens	5	12			1 1	1	t	1		ł			1	1	1	1	1		1						-	1	1	1	1	
Haliplidae, unid., adult	0	1			1 1	1	t	1		1			1	1	1	1			1							1	1			
		1			1			1		1			1			1														
Order Diptera		1						1								1											1			[
Diptera Unid A		1				1	t	1					2			1			1						1		1	1		
Diptera L										1						1										1			1	í
Family Ceratopogonidae																														
Bezzia sp																														
Culicoides sp								<u> </u>																						
Palpomyia sp																		1												
Family Chironomidae																														<u> </u>
Chironomidae unid J/D					1689 2352	8081	984	1002	416	4344	1944	1521	34686	30542	32544	93	106	288	269	96	91	84	28	140						
Chironomidae A					1			1																						
Chironomidae J					1					ļ			ļ	-											104	138	62	220	276	533
Chironomidae P	1	3	9	6	8		ļ			8		8		7	4	4	1	1		4		1	4	1				2		-
Phaenopsectra						1	ļ											_	1									2		16
Thienemannimyia		1																							1	8	15	7	20	4
Sub Family Chironomiinae						1	ļ											_	1											
Constempelina sp						1	ļ						1			+		_	1			1								l
Micropsectra sp	1					1	1	1		I			I	1	1	1			I							L	1		I	L

Source	DOE 1	DOE ¹	DOE ¹	DOE 1		Laberge	2		Laberge	2		Laberge	2		Laberge	2		Laberge	2		Laberge	2		Laberge	2 ²	T	Laberge	3	I	_aberge ³
Year	1985	1985	1985	1985		1994		'	1994			1994		'	1994			1994			1994			1994	-	1	2007		-	2007
Watershed	South McC	uesten River	Christal Creek	Flat Creek							uesten R								Christa	al Creek				Flat Cree	ek		Sc	outh McQ	uesten Riv	ver
Current Station ID	KV3	KV4	KV8	KV9	KV1-1				KV3-2	KV3-3		KV4-2							KV6-3	KV7-1	KV7-2	KV7-3	KV9-1	KV9-2	KV9-3	3 KV1-1	KV1-2	KV1-3	KV3-1	KV3-2 KV3
Rheotanytarsus sp					707	136	801	160	107	93	664	618	568	33834	33644	37732	19	19	30	9	4	6	1		1				2	4
Sub Family Diamesinae																														
Diamesa sp																				1							8	6	2	4 8
Monodiamesa sp																			1											
Sub Family Orthocladiinae																				-										
Brillia sp			15											400	400	400		_		2	13									1
Cardiocladius sp		4	2		40	400	00.4	0.1	70	40	070	40	404	128	129	193	36	2	48	12	4	2	0	-						4
Corynoneura sp Cricotopus sp	1	6	19	13	46 78	160 72	224 272	24 16	73 48	10	272 224	40 89	184 97	64 838	64 996	844	25	2 40	96	11		8	2	2	1	24	48	12	26	57 50
Eukiefferiella sp	I	0	19	13	59	104	336	57	33	8 17	224	122	163	1286	996 1454	848	35 16	28	96 64	11 69	51	0 18	<u>6</u> 1	11	4	8	16	6	20 14	57 50 17 16
Euryhapsis sp					- 59	104	330	57		17	234	122	105	1200	1404	040	2	20	04	09	51	10	I		5	0	10	0	14	17 10
Heleniella sp																	2	2	4											
Heterotrissocladius sp		8	10	5													-	2	-											
Thienemanniella sp		Ŭ	10	0	16	8	80	16	48		24	8	24		10					25	48	8		2	1					
Sub Family Tanypodinae			1			Ť					<u> </u>	Ť		1			1							-	· ·	+		1		
Procladius sp				1			1	1			1			1			1			1						1				
Thienemannimyia sp		1		· · ·	63	152	217	40	33	26	189	213	162	3458	5048	5464	71	61	114	10	7	2	21	17	10					
Family Empididae																														
Chelifera sp					11			8	8	4		8		70	15	17				1		1	3		2		1	2	6	4 1
Clinocera sp																		1						1						
Hemerodromia sp																										\perp				
Weidemannia sp																									1					
Family Muscidae																														
Limnophora sp														1									1							
Family Psychodidae																														
Pericoma sp		· .																		2	15	1								
Psychoda sp		1																												
Family Simulidae Simulidae Unid J/D					16		16										-									_				
Cnephia L					10		10																			9	2	4	2	
Prosimulium L																										9	2	4	2	
Prosimulium P																	-													
Prosimulium sp																				4	4	2								
Simulium sp L	42	1347	10	9																		_				300	386	35	243	672 41
Simulium sp P	1	15	1	4				3		1		1	1		1	2				1								1	6	13 13
Simulium sp					8		16	52	79	20		9		64	128	194	6		4	287	206	160	2		2					
Family Tipulidae																														
Tipulidae Unid J/D														1																
Dicronata sp																				1						\perp			2	
Gonomyodes sp																														
Tipula sp			1	2	+				ļ																	4	-			
Class Crustacea					_																			-			-			
Sub Class Ostracoda		-				-				4									40											
Candona sp		+	+		-	8	-			4		+					6	68	10								-			
PHYLUM MOLLUSCA		+			-																			-						
Class Gastropoda		+	+		-		-					+					+										-			
Gastropoda unid. dam		+	+		4	45	F		2	10	1	+	2				+										-			
					4	15	5		3	12	1		2											-			1	1		3 1
Fossaria sp Fossaria modicella		1	+		8	35	20	9	18	18	4		2						+					-			1	1		3 1
Gyraulus parvus		1	+		0	5	20	9	10	2	4	+	2				+							-		+	-			
Physa gyrina		1			3	7	6	1	6	1	10	+	4	1			+		+	1				1	+	+	1	1		
Physella gyrina Physella gyrina		1			5	1	0		U	1	10		4											1		+				
Valvata sincera	1				3	+	1	1	23	25	9	+	1	1		1	+		+		1	-			+	+		2		
Family Lymnaeidae	1	1	1 1		Ŭ	1			20	20	, j						1							1		+		2		
Stagnicola (kennicotti)	2	1	1				1				1						1							1		1		1		
		1					1				1						1			1				1		1				
Class Pelecypoda (Bivalva)		1					1																	1		1				
Pisidium sp		1					1		8		1						1			1				1		1				
¹ Davidge and Mackenzie Grieve (1989)																														

¹ Davidge and Mackenzie-Grieve (1989) ² Burns (1994) ³ Burns (2008)

Source	I	Laberge	-		Laberge	-	!	Laberge	-		Laberge	-		Laberge	-		Laberge	-		Laberge	-	└─── ′	Laberge	-	└──'	Lab
Year		2007		uesten Ri	2007			2007			2007			2007			2007	le .		2007		L	2007 ghtning Cr		<u> </u>	20
Watershed Current Station ID	KV/4_1					KV5-3	K\/6_1	KV6-2	KV/6 2		hristal Cre	ek KV7-3	K1/0 1	KV8-2	K1/0 2	KV9-1	Flat Cree		K1/27 1	K1/27.2	K1/27.2			reek KV38-3	K)/41 1	KV
Current Station ID	KV4-1	KV4-2	KV4-3	KV5-1	KV5-2	KV5-3	KV6-1	KV6-2	KV6-3	KV7-1	KV7-2	KV7-3	KV8-1	KV8-2	KV8-3	KV9-1	KV9-2	KV9-3	KV37-1	KV37-2	KV37-3	KV38-1	KV38-2	KV38-3	KV41-1	KV4
PHYLUM COELENTERATA/CNIDA																								-		
Class Hydrozoa																										
Hydra sp.							28	50	25													[
PHYLUM NEMATODA	8	1	24	13	28	2		2	8	1	1					1			2		1	1	1			<u> </u>
																						 			<u> </u>	
PHYLUM ANNELIDA																						<u> </u>			<u> </u>	
Class Oligochaeta Family Enchytraeidae J		8		1						2	3											1	8		9	
Family Enchytraeidae 5	-	0		1						2	3				-								0		9	<u> </u>
Family Naididae																										
Naididae Unid J/D																										
Chaetogaster sp	8		8		16																					
Nais sp	4																					L				
Family Tubificidae J	12	32	16	16	16	24	3			3					3							3	1	1	6	1
Family Tubificidae, unid., uv.																						 			<u> </u>	
Tubifex sp																						 			 	
Class Hirudinas																						<u> </u>			<u> </u>	
Class Hirudinae																						 	+	+	+	<u> </u>
Order Rhynchobdellida Family Piscicolidae				-																		<u> </u>	+	+	<u> </u>	<u> </u>
Piscicola salmonsitica										1												i	+	+	<u> </u>	-
				1	1					1							1		1				<u> </u>	<u> </u>	<u> </u>	
PHYLUM ARTHROPODA																										
Class Arachnida																										
Order Hydracarina																										
Hydracarina, unid J/D										16				40		2	2	24	24	48	56	88	168	16		
Kawamuracarus sp																						L				L
Lebertia sp				24	56	16								1	1				2		1	I	14	16	38	8
Neumannia sp	10				8										-				1			<u> </u>	2			<u> </u>
Sperchon sp	16	8	8	88	32	40				4	1		4						1	3	3	3	25	76	76	7
Torrenticola sp Unioncola sp	28 72	48 80	24 112	106 129	161 192	48 88	16		8	1	3	2	1	6	3	1	1	1	1 46	28	33	8 67	2 158	32 919	460	70
Oribatei	12	80	112	129	8	00	10		0	1	1	2	/	0	3			I	40	20	33	67	156	919	460	
Olibalei					0					1	1				1							<u> </u>	<u> </u>			<u> </u>
Class Insecta				t																		1	+	1		
Order Collembola										1							1					[1		1	
Collembola Unid J			1							1									t			[1	1	1	4
Hypogastrura sp							1			1	1															4
Isotomurus sp					1								1	1	1								1		1	
Podura sp						1								2	4								<u> </u>	<u> </u>	<u> </u>	<u> </u>
																						I	+	'	 	──
Order Ephemeroptera																						 	<u> </u>	<u> </u>	──	──
Family Ameletidae	4		0							40	4.4	45	_							4	4					├──
Ameletus sp Family Baetidae	4		8							18	44	15	2							1	1	 	8	3	25	<u> </u>
Baetis sp	113	221	150	760	947	764	1	24	32	1	5		10	4	2	5	-	1	8	6	19	2	15	129	7	<u> </u>
Family Ephemerellidae	113	221	150	100	341	104		24	52		5		10	4	2	5	1		0	U	13		13	123	<u> </u>	<u> </u>
Drunella flavilinia	6			ł	1	1				1							1	1	1	5	1		1	+	6	
Drunella doddsi	~			1	· ·					1							1	1	1	Ť	· ·	[<u> </u>	1	Ť	
Ephemerella (Drunella)				L	L												L	L								
Ephemerella grandis	-														-							1	1		1	
Ephemerella sp																						Ļ	<u> </u>	<u> </u>	\square	\square
Ephemerellidae J		2	8	7	7											1		1				I	+	'	 	──
Family Heptageniidae																	-					<u> </u>	-			<u> </u>
Cinygmula sp		8																	3	5	7	7	30	12	18	4
Epeorus																			5	5	16	4	13	4	10	4
Epeorus (Iron) sp Heptagenia sp				-																		<u> </u>	+	+	<u> </u>	<u> </u>
Rhithrogena sp				1		1													6		3	1	9	8	+	<u> </u>
Family Leptophlebiidae										1											5		3		<u> </u>	<u> </u>
Paraleptophlebia sp	5	8	1	18	19					1							1					[1		1	
	-	-	· ·			1	1			t			1			1	1	1	t			[1	1	1	
Order Plecoptera																						(1	
Plecoptera, Unid, J/D																										
Family Capnidae										L									L						L	
Capnidae unid																						Ļ	<u> </u>	<u> </u>	\square	
Capnia sp	112	124	236	82	93	41	32			85	94	7	16	26	16	31	23	19	3	3	7	44	111	266	126	4
Family Chloroperlidae																						 	<u> </u>	<u> </u>	 	
Alloperla sp	~		4	L	4		4				40	-						-				 	-	-	 	
Sweltsa Grp	3		1		1		1		1		19	5						2		1			2	2	 	1
						l													l			└──	+	<u>+</u> '	 	├──
Sweltsa sp gp																										
Family Leuctridae Leuctra sp																								-	<u> </u>	

I	aberge	3
	2007	
	10/144 0	101/44 0
	KV41-2	KV41-3
	7	6
	13	
		8
		0
	86	56
	74	44
	761	388
	701	2
	4	
	4	
		0
		9
		6
	1	3
	4	11
		2
	4	28
	1	3
		2
		2

Source		Laberge			Laberge	J		Laberge	5		Laberge	U		Laberge	v		Laberge	5		Laberge	J		Laberge			La
Year		2007			2007			2007			2007	-		2007			2007 Flat Cree	1.		2007		1.1.1	2007			
Watershed Current Station ID	K\// 1			uesten R		K\/5 2	K\/6_1	K\/6.2	KV/6 2		hristal Cre		K\/0 1	K1/0 2	K1/0 2				K\/27.1	K1/27 2	K1/27.2	Lig KV38-1	htning C	TEEK	KV/41_1	k
Malenka sp	KV4-1	r\v4-2	KV4-3	KV3-1	KV3-2	KV5-5	KV0-1	KV0-2	KV0-3	KV7-1	KV7-2	KV7-3	KV0-1	KV0-2	KV0-3	KV9-1	KV9-2	KV9-3	KV37-1	KV37-2	KV37-3	KV30-1	KV30-2	KV30-3	r v41-1	
Podmosta sp																										1
Zapada (oregonensis)																										1
Zapada sp	80	139	82	32	34	8	537	230	127	96	259	56	48	34	47	25	11	4	152	249	258	224	487	431	220	
Family Perlidae																										
Acroneuria sp																										
Classenia sabulosa																										_
Hesperoperla sp	3		1	2		1																				
Family Perlodidae																										
Arcynopteryx (compacta)																										+
lsoperla sp Megarcys sp	-																									+
Skwala curvata																										+
Skwala paralella							1		2		1		6	14	8	4	2	4	1	2	10	3	6	7	3	-
Family Pteronarcyidae									-				Ű				_		·	_			Ű		Ŭ	
Pteronarcella sp	3	3	8	5	9	7																				
Pteronarcella regularis																										
Pteronarcys sp	3		1	2		1																				
Pteronarcys californica																										
Pteronarcys dorsata																										
Family Taenioptergidae										-				-	-						-					+
Taenionema sp				13	4	19	38	37	42	3			5	2	9	9	14	17	3	-	2	+	4	4	20	+
Order Trichoptera																										+
Trichoptera Unid J		+	8	+			38	1		27	4	6	8	6	20		1	1	1		1	5		17	6	+
Trichoptera A	-		0				30	1		21	4	0	0	0	20		I	I			1	5		1	3	+
Family Brachycentridae																								1	5	+
Brachycentrus sp	4	19	12	76	39	24								2			1	1								-
Micrasema sp														-											2	-
Family Glossosmatidae																										
Glossosoma sp																									26	
Family Hydropsychidae																										
Arctopsyche sp	18	16	34	54	60	81						1	1		1										4	
Family Hydroptilidae																										_
Hydroptila sp	8	8		33	32	1																				
Hydroptilidae J	12	10	47	4	4						4						1					-				-
Oxyethira sp	10	10	17	1	4						1															+
Family Lepidostomatidae Lepidostoma sp				6	3	6	1																			+
Family Limnephilidae				0	5	0																				+
Clostoeca sp										26	80				1											-
Dicosmoecus sp										0			1													1
Ecclysomyia											2														1	
Grensia sp																										
Limnephilus sp							7	1																		
Nemotaulius sp																										_
Onocosmoecus sp																										_
Family Polycentropodidae																					1					
Polycentropus sp Family Rhyacophilidae	-																				1					-
Rhyaccophila acropedes																										+
Rhyacophila acropedes or vao	16			90	51	3	59	2	117	7	10		1	1		1	1	4	8	6	4	12	12	15	50	-
Rhyacophila hyalinata						Ū		-											4	1	3	2		1	1	t
Rhyacophila sp J/D																										
Order Coleoptera																										
Ephemerella dorothea infrequens																										
Haliplidae, unid., adult																										_
																										_
Order Diptera						-																				
Diptera Unid A		1	1		2	3	1			_	1	1								1		0	1			+
Diptera L										3	1		1		1							6	17	1		-
Family Ceratopogonidae Bezzia sp		1																								+
Culicoides sp	1	1																								
Palpomyia sp		+		+	1	1	1	1	1	t			1				1	1		1		1	1	1	+	⊢
Family Chironomidae	-	+	+	1	1	+	1	+	1	1			1				1		1	1		1	1	1		\vdash
Chironomidae unid J/D		1			1	1	1	1	1				1				1	1		1		1	1	1		\vdash
Chironomidae A		1		8	1	1	1	1	1				1		1		1	1		1		1	1	1	1	\vdash
Chironomidae J	469	819	940	1139	1170	846	640	460	782	9	6		25	21	19	41	36	35	119	88	123	23	569	1812	1	t
Chironomidae P					1	1	2	2	8		2		2	1	1	3	5	1	5	13	9	37	84	17	8	
Phaenopsectra		8			8																					
Thienemannimyia	34	32	32	16	50		26	4		1						3	5		L			1				1
Sub Family Chironomiinae																										
Constempelina sp																										
Micropsectra sp		1	1	1	1	1	1	1	1	1	1		1	1	1	1	1	1	1	1	1	1	1	1	1	1

aberge 2007	3
KV41-2	KV41-3
121	146
121	110
_	
2	
	5
5	3
10	6
32	11
49	50
73	50
-	
33	19
11	5

Source	burce Laberge ³ Laberge ³ Laberge ³		3		Laberge ³ Laberge ³		3		Laberge	Laberge ³		aberge	3		Laberge	3		Laberge	3								
Year		2007			2007	,		2007			2007			2007			2007			2007			2007			2007	
Watershed			uth McQ	uesten R				2001		С	hristal Cr	eek		2007			Flat Cree	k		2001		Lia	htning Ci	reek			
Current Station ID	KV4-1			KV5-1		KV5-3	KV6-1	KV6-2	KV6-3				KV8-1	KV8-2	KV8-3	KV9-1			KV37-1	KV37-2	KV37-3	KV38-1	KV38-2	KV38-3	KV41-1	KV41-2	KV41-3
Rheotanytarsus sp	12	24		104	56	8							14	10	11				5	4	3	2	1	16		<u></u>	
Sub Family Diamesinae						-																					
Diamesa sp	16	8	9	34	32	24	10	16	24		1		1		1	3	2	3	106	150	234	93	229	527	92	94	29
Monodiamesa sp																											
Sub Family Orthocladiinae																											
Brillia sp		8	9		3	17						1	11	39	60	1						2			4	ļ'	2
Cardiocladius sp							423	206	94									1	12	129	110	18	26	5	12	14	2
Corynoneura sp	400		400	8	400				10	·	4.0				4-	100		1					400		101		
Cricotopus sp Eukiefferiella sp	129	86	123 40	221 41	166 35	117 27	86 171	61 299	40 335	11 1	10		23 43	11	17 26	103	94	138	17 4	24	28 7	41 14	189	67 120	104	21 5	11 9
Euryhapsis sp	16		40	41	35	21	171	299	335	1	1		43	26	20	2	2	2	4	3		14	41	120	8	5	9
Heleniella sp																2	2	1							4	'	
Heterotrissocladius sp																											
Thienemanniella sp	4															1										I	
Sub Family Tanypodinae																										I	
Procladius sp				1								1	1			1			1			1		1	1	I	
Thienemannimyia sp				İ																						I	
Family Empididae																											
Chelifera sp	28	24	1	49	33	1	33	16		17	51		1	2		1		1					2	13			
Clinocera sp																											
Hemerodromia sp																										ļ'	1
Weidemannia sp																			1			5	4	4	18	8	20
Family Muscidae																										ļ'	
Limnophora sp																		1					4			¦'	
Family Psychodidae							10													_		4.0					
Pericoma sp							18		1	1	2					1			4	8	6	10	20	17	50	46	25
Psychoda sp Family Simulidae																											
Simulidae Unid J/D																										'	
Cnephia L																											
Prosimulium L																			7	6	14	19	87	604	4	!	
Prosimulium P																				Ŭ	1	10	6	5		I	
Prosimulium sp																							-	Ū		I	
Simulium sp L	192	283	211	1005	994	683	2791	1373	1402	1	9	5	34	55	44	6	2	3	33	14	36	14	75	278			
Simulium sp P	6	30	4	32	54	38	8	9	19	1	1			1			1					2		16			
Simulium sp																											
Family Tipulidae																										ļ	
Tipulidae Unid J/D																										ļ'	
Dicronata sp	4									8	5								2		1	1	14		10	13	11
Gonomyodes sp																			1					1		ļ'	
Tipula sp						1					-											2				1	
Class Crustacea					-							-															
Sub Class Ostracoda																											
Candona sp					-	-																		+		'	
				-																						I	
PHYLUM MOLLUSCA				1								-	1			1								+		I	
Class Gastropoda				1									1			1								+		I	
Gastropoda unid. dam	1			1							1	1	1			1						ł		+		!	
Fossaria sp																								1		I	
Fossaria modicella				1								1	1			1			1					1	1	I	
Gyraulus parvus				İ																						I	
Physa gyrina																											
Physella gyrina				1																							
Valvata sincera																											
Family Lymnaeidae																											
Stagnicola (kennicotti)																											
																										ļ'	
Class Pelecypoda (Bivalva)																								1			
Pisidium sp																			1			1			1	·	
¹ Davidge and Mackenzie-Grieve (1989)																											

² Burns (1994) ³ Burns (2008)

Table D.2: Summar	y statistics for benthic communit	y metrics at United Keno Hill Mines, 2007 ^a .
-------------------	-----------------------------------	--

				•	a .	95% Confid	ence Interval		
		_	Mean	Standard Deviation	Standard Error		Upper Bound	Minimum	Maximum
Density (individuals/substrate)	KV1	n 3	1438.333	770.767	445.002	-476.357	3353.024	559.000	Maximum 1997.00
	KV1 KV3	3	1568.333	436.447	251.983	484.138		1086.000	1936.00
	KV3 KV4	3	1881.667	367.710		968.225		1459.000	2128.00
	KV4 KV5	3	3844.333	824.852		1795.288	5893.379	2900.000	4424.00
	KV6	3	3610.333	1186.309			6557.289	2793.000	4971.00
	KV0 KV7	3	353.667	260.108	150.174	-292.478	999.812	98.000	618.00
	KV8	3	288.000		13.204	231.190		262.000	305.00
	KV9	3	239.000			164.187	313.813	202.000	265.00
	KV37	3	796.000		118.972	284.105	1307.895	587.000	203.00 999.00
	KV37 KV38	3	2890.667	2380.357	1374.299	-3022.467	8803.800	764.000	5462.00
	KV30 KV41	3	1260.333	2380.337	168.668	534.615	1986.052	923.000	1430.00
	Total	33	1260.333	1456.353	253.519	1135.478	2168.279	923.000	5462.00
Number of Taxa	KV1	33							25.00
Number of Taxa	KV1 KV3		22.333	2.309	1.333	16.596		21.000	
	KV3 KV4	3	23.333 25.000	3.512 2.646	2.028 1.528	14.609 18.428	32.057 31.572	20.000 23.000	27.00 28.00
	KV4 KV5	3	25.000		0.577	24.516		26.000	28.00
	KV5 KV6	3	16.667	3.786	2.186	7.262		14.000	28.00
		3							
	KV7 KV8	3	16.333 16.333	7.234 1.528	4.177 0.882	-1.637 12.539	34.304	8.000 15.000	21.00 18.00
	KV8 KV9	3	16.333		0.882	12.539	20.128 23.572	15.000	18.00
	KV9 KV37	3	21.000		1.528	10.428		14.000	23.00
	KV37 KV38	3	21.000			18.428		23.000	23.00
	KV38 KV41	3	25.000 24.333	2.646 3.512	2.028	18.428		23.000 21.000	
	Total	33	24.333	4.812	0.838	19.597	23.007	21.000	28.000
Hydracarina (%)	KV1	33	14.597	4.812	2.801	2.547	23.009	10.015	19.678
lyulacalilla (70)	KV3	3	6.595	2.958	1.708	-0.754		3.327	9.09
	KV4	3	7.109	0.734	0.423	5.287	8.931	6.608	3.03 7.95
	KV5	3	7.103	2.558	1.477	1.584	14.293	5.241	10.33
	KV6	3	0.194	0.171	0.099	-0.230	0.619	0.000	0.322
	KV0 KV7	3	2.979		1.594	-3.880		0.809	6.08
	KV8	3	6.716	7.561	4.365	-12.066		1.684	15.41
	KV9	3	4.037	4.676		-7.579	15.652	1.220	9.434
	KV37	3	10.646	1.865	1.077	6.011	15.280	9.309	12.77
	KV37 KV38	3	18.748	3.347	1.932	10.434	27.062	15.127	21.728
	KV41	3	52.863	12.215	7.052	22.521	83.206	40.140	64.49
	Total	33	12.038	14.681	2.556	6.833	17.244	0.000	64.49
EPT (%)	KV1	3	56.539	4.237	2.446	46.014		51.700	59.579
	KV3	3	36.315	5.560	3.210	22.504	50.126	31.848	42.54
	KV4	3	27.058	0.389	0.224	26.093	28.024	26.645	27.41
	KV5	3	30.198	2.554	1.474	23.854	36.541	28.083	33.03
	KV6	3	11.804	2.234	1.290	6.253	17.354	10.466	14.38
	KV7	3	84.016	7.802	4.505	64.634	103.399	76.232	91.83
	KV8	3	33.867	4.231	2.443	23.357	44.377	29.180	37.40
	KV9	3	25.703			12.127	39.279	20.000	30.894
	KV37	3	33.931				37.135	33.049	35.412
	KV38	3	28.262				57.247	16.459	39.79
	KV41	3	27.969	10.505	6.065	1.874	54.065	16.317	36.713
	Total	33	35.969	19.229	3.347	29.151	42.788	10.466	91.83
Chironomids (%)	KV1	3	12.258	5.269	3.042	-0.832	25.347	7.789	18.068
	KV3	3	27.464	9.148				19.576	37.493
	KV4	3	49.551	4.060	2.344	39.465		46.607	54.182
	KV5	3	35.793	1.378	0.796	32.369	39.216	34.381	37.13
	KV6	3	35.558	7.454		17.041	54.074	27.318	41.832
	KV7	3	3.641	2.845		-3.426		1.020	6.66
	KV8	3	42.095	5.789		27.713		35.410	45.45
	KV9	3	67.927	3.386	1.955	59.515		64.228	70.87
	KV37	3	49.451	3.289	1.899			45.656	51.452
	KV38	3	41.204	9.614	5.551	17.321	65.088	30.105	46.94
	KV41	3	12.367	3.977	2.296			8.342	16.29
	Total	33	34.301	19.114	3.327	27.523	41.078	1.020	70.87
Simuliids (%)	KV1	3	14.717	6.614				7.156	19.42
	KV3	3	28.015					23.112	35.38
	KV4	3	12.961	2.607	1.505			10.103	15.20
	KV5	3	24.396	0.623	0.360			23.689	24.86
	KV3			5.099	2.944	38.040		46.332	56.30
		3	50.706	0.033					
	KV6	3	50.706 2.433			-3.451	8.318	0.580	5.10
	KV6 KV7	3	2.433	2.369	1.368		8.318 22.182	0.580 12.977	5.10 18.36
	KV6 KV7 KV8	3 3	2.433 15.384	2.369 2.737	1.368 1.580	8.586	22.182	12.977	18.36
	KV6 KV7 KV8 KV9	3 3 3	2.433 15.384 1.676	2.369 2.737 0.681	1.368 1.580 0.393	8.586 -0.015	22.182 3.366	12.977 1.132	18.36 2.43
	KV6 KV7 KV8 KV9 KV37	3 3 3 3	2.433 15.384 1.676 4.804	2.369 2.737 0.681 2.176	1.368 1.580 0.393 1.256	8.586 -0.015 -0.601	22.182 3.366 10.210	12.977 1.132 2.494	18.36 2.43 6.81
	KV6 KV7 KV8 KV9	3 3 3	2.433 15.384 1.676	2.369 2.737 0.681	1.368 1.580 0.393 1.256	8.586 -0.015 -0.601	22.182 3.366 10.210 25.086	12.977 1.132	18.36 2.43

 Total
 33
 14.956
 14.841
 2.583
 9.694

 ^a prepared using data from Burns (2008), Burns (2005), Burns (1996) and Davidge and Mackenzie-Grieve (1989).

APPENDIX E FISHERIES DATA

Watershed	Station	arctic grayling (fry)	arctic grayling	slimy sculpin	northern pike	burbot	chinook salmon	arctic lamprey	longnose sucker
	CL			Х					
	KV6			Х					
Christal Creek	C4		Х						
Chinstal Creek	KV7	X							
	C2			Х					
	KV8	х		Х		Х			
Flat Creek	KV9	Х		Х		Х			
	KV72				Х				
	KV1	Х		Х		Х		Х	Х
	SMQ C	х		Х	Х	Х		Х	х
Quality	KV2	X		Х	Х	Х		X	Х
South McQuesten	SM5			Х					
River	KV3	X		Х	Х	Х			
	KV4	х		Х	Х	Х			
	SM12			Х	Х	Х		X	
	SM8			Х	Х	Х			
	KV15	X		Х	Х	Х	Х		Х

Appendix Table E.1: Fish presence-absence by station based on electrofishing and minnow trapping catch data, United Keno Hill Mines, 1994 - 1995^a.

^a prepared using data from Sparling and Connor (1996)

Table E.2: Catch per unit effort by method, United Keno Hill Mines, 1994-95 and 2006.

Watershed	Station	Date ^a	Capture method	Units	arctic grayling	slimy sculpin	northern pike	burbot	chinook salmon	round whitefish	arctic lamprey	longnose sucker
-	KV41	7-Jun-06	electrofishing	# fish / minute	0.85	0	0	0	0	0	0	0
Lightning Creek	KV41	5-Aug-06	electrofishing	# fish / minute	2.19	0	0	0	0	0.09	0	0
-	KV41	19-Sep-06	electrofishing	# fish / minute	2.49	0	0	0	0	0	0	0
	LCD	4-Aug-06	electrofishing	# fish / minute	0.18	2.82	0	0	0	0	0	0
-	KV6	Jul-95	electrofishing	# fish / minute	0	1.70	0	0	0	0	0	0
-	KV6	Sep-94	electrofishing	# fish / minute	0	1.28	0	0	0	0	0	0
-	KV6	6-Jun-06	electrofishing	# fish / minute	0	3.04	0	-	-	0	0	0
-	KV6	4-Aug-06	electrofishing	# fish / minute	0	6.40	0	0	0	0	0	0
-	KV6	22-Sep-06	electrofishing	# fish / minute	0	18.7	0	0	0	0	0	0
-	C4	Jul-95	electrofishing	# fish / minute	2.54	0	0	0	0	0	0	0
-	C4	Sep-94	electrofishing	# fish / minute	0	0	0	0	0	0	0	0
-	C4	5-Jun-06	electrofishing	# fish / minute	0	0	0	0	0	0	0	0
-	C4	5-Aug-06	electrofishing	# fish / minute	1.06	0	0	0	0	0	0	0
	C4	20-Sep-06	electrofishing	# fish / minute	0.23	0	0	0	0	0	0	0
Christal Creek	KV7	Sep-94	electrofishing	# fish / minute	0.06	0	0	0	0	0	0	0
	KV7	Jul-95	electrofishing	# fish / minute	0	0	0	0	0	0	0	0
	KV7	4-Jun-06	electrofishing	# fish / minute	0	0	0	0	0	0	0	0
-	KV7	4-Aug-06	electrofishing	# fish / minute	0	0	0	0	0	0	0	0
-	KV7	19-Sep-06	electrofishing	# fish / minute	0	0	0	0	0	0	0	0
-	C2	Sep-94	electrofishing	# fish / minute	0	0.07	0	0	0	0	0	0
ļ	C2	Jul-95	electrofishing	# fish / minute	0	0	0	0	0	0	0	0
ļ	KV8	Sep-94	electrofishing	# fish / minute	0.47	0.23	0	0.06	0	0	0	0
F	KV8	Jul-95	electrofishing	# fish / minute	7.21	0.72	0	0	0	0	0	0
F	KV8	5-Jun-06	electrofishing	# fish / minute	0	0.24	0	0	0	0	0	0
F	KV8	3-Aug-06	electrofishing	# fish / minute	1.38	1.46	0	0	0	0.09	0	0
	KV8	18-Sep-06	electrofishing	# fish / minute	0.13	0.87	0	0.04	0	0	0	0
F	F3	Sep-94	electrofishing	# fish / minute	0	0	0	0	0	0	0	0
	KV9	Sep-94	electrofishing	# fish / minute	0.06	1.58	0	0	0	0	0	0
	KV9	May/June-95	electrofishing	# fish / minute	0	2.51	0	0.16	0	0	0	0
Flat Creek	KV9	Jul-95	electrofishing	# fish / minute	1.52	5.10	0	0	0	0	0	0
-	KV9	4-Jun-06	electrofishing	# fish / minute	0	1.59	0.08	0.08	0	0	0	0
-	KV9	1-Aug-06	electrofishing	# fish / minute	0.13	2.91	0.04	0.08	0	0	0	0
	KV9	21-Sep-06	electrofishing	# fish / minute	0.06	2.78	0	0.06	0	0	0	0
-	KV72	19-Sep-06	electrofishing	# fish / minute	0.10	0.49	0.10	0	0	0	0	0
-	KV1	Sep-94	electrofishing	# fish / minute	0.44	6.51	0	0.03	0	0	0	0.72
-	KV1	Jul-95	electrofishing	# fish / minute	0.52	4.66	0	0	0	0	0.10	0
-	KV1	5-Jun-06	electrofishing	# fish / minute	0.38	0.96	0	0	0	0	0.19	0
-	KV1	3-Aug-06	electrofishing	# fish / minute	0.29	2.60	0	0	0	0	0	0
-	KV1	18-Sep-06	electrofishing	# fish / minute	0	4.86	0	0	0	0	0	0
_	SMQ C	Sep-94	electrofishing	# fish / minute	0.05	4.93	0.11	0.05	0	0	0.05	0.60
-	SMQ C	18-Sep-06	electrofishing	# fish / minute	0.09	2.48	0	0.14	0	0	0.09	0
_	KV2	Sep-94	electrofishing	# fish / minute	0	0.59	0	0.07	0	0	0.07	0.07
_	KV2	Jul-95	electrofishing	# fish / minute	0.10	2.46	0.30	0	0	0	0.05	0
Cauth	KV2	21-Sep-06	electrofishing	# fish / minute	0.06	4.75	0	0	0	0	0	0
South McQuesten	KV3	Sep-94	electrofishing	# fish / minute	0.06	4.17	0.06	0.06	0	0	0	0
River	KV3	May/June-95	electrofishing	# fish / minute	0	4.62	0	0	0	0	0	0
-	KV3	Jul-95	electrofishing	# fish / minute	0	0.65	0.65	0	0	0	0	0
	KV3	4-Jun-06	electrofishing	# fish / minute	0	2.88	0	0	0	0	0	0
_	KV3	1-Aug-06	electrofishing	# fish / minute	0	4.52	0	0	0	0	0.10	0
_	KV4	Sep-94	electrofishing	# fish / minute	0.21	6.02	0.07	0.07	0	0	0	0
	KV4	May/June-95	electrofishing	# fish / minute	0	2.13	0	0	0	0	0	0
	KV4	Jul-95	electrofishing	# fish / minute	0	0.84	0.42	0	0	0	0	0
	KV4	21-Sep-06	electrofishing	# fish / minute	0.23	5.63	0	0	0	0	0	0
	SM12	May/June-95	electrofishing	# fish / minute	0	6.71	0.12	0.12	0	0	1.97	0
F	SM8	May/June-95	electrofishing	# fish / minute	0	27.3	0	0.20	0	0	0	0
	KV15	May/June-95	electrofishing	# fish / minute	0.26	2.66	0.09	0	0	0	0	0.60
	KV15	21-Sep-06	electrofishing	# fish / minute	0.16	3.29	0.05	0	0	0	0	0
	LCD	05-Jun-06	minnow trapping	# fish / day	0	0	0	0	0	0	0	0
Lightning Creek	LCD	3-Aug-06	minnow trapping	# fish / day	0	0.47	0	0	0	0	0	0
	KV41	06-Jun-06	minnow trapping	# fish / day	0	0	0	0	0	0	0	0
	KV41	2-Aug-06	minnow trapping	# fish / day	0	0	0	0	0	0	0	0
	CL	10-Sep-94	minnow trapping	# fish / day	0	0	0	0	0	0	0	0
[CL	11-Sep-94	minnow trapping	# fish / day	0	0.25	0	0	0	0	0	0
	CL	12-Sep-94	minnow trapping	# fish / day	0	0	0	0	0	0	0	0
	CL	13-Sep-94	minnow trapping	# fish / day	0	0	0	0	0	0	0	0
	CL	15-Jul-95	minnow trapping	# fish / day	0	0.31	0	0	0	0	0	0
	CL	16-Jul-95	minnow trapping	# fish / day	0	0	0	0	0	0	0	0
Christal Creek	CL	22-Sep-06	minnow trapping	# fish / day	0	4.83	0	0	0	0	0	0
	KV6	19-May-95	minnow trapping	# fish / day	0	1.02	0	0	0	0	0	0
F	KV6	15-Jul-95	minnow trapping	# fish / day	0	0.75	0	0	0	0	0	0
ľ	KV6	16-Jul-95	minnow trapping	# fish / day	0	0.63	0	0	0	0	0	0
ľ	KV6	05-Jun-06	minnow trapping	# fish / day	0	1.43	0	0	0	0	0	0
-	KV6	3-Aug-06	minnow trapping	# fish / day	0	2.19	0	0	0	0	0	0
-	C4	11-Sep-94	minnow trapping	# fish / day	0	0	0	0	0	0	0	0
	C4	19-May-95	minnow trapping	# fish / day	0	0	0	0	0	0	0	0
	C4	15-Jul-95	minnow trapping	# fish / day	0	0	0	0	0	0	0	0
L	04	10 001-90		# non / uay	Page 1 of 3	0	5	5	0	5	0	5

Table E.2: Catch per unit effort by method, United Keno Hill Mines, 1994-95 and 2006.

Watershed	Station	Date ^a	Capture method	Units	arctic grayling	slimy sculpin	northern pike	burbot	chinook salmon	round whitefish	arctic lamprey	longnose sucker
	C4	16-Jul-95	minnow trapping	# fish / day	0	0	0	0	0	0	0	0
	C4	4-Aug-06	minnow trapping	# fish / day	0	0	0	0	0	0	0	0
	KV7	05-Sep-94	minnow trapping	# fish / day	0	0	0	0	0	0	0	0
	KV7 KV7	09-Sep-94 19-May-95	minnow trapping minnow trapping	# fish / day # fish / day	0	0	0	0	0	0	0	0
	KV7	15-Jul-95	minnow trapping	# fish / day	0	0	0	0	0	0	0	0
	KV7	16-Jul-95	minnow trapping	# fish / day	0	0	0	0	0	0	0	0
Christal Creek	KV7	3-Jun-06	minnow trapping	# fish / day	0	0	0	0	0	0	0	0
	KV7	1-Aug-06	minnow trapping	# fish / day	0	0	0	0	0	0	0	0
	C2	15-Jul-95	minnow trapping	# fish / day	0	0	0	0	0	0	0	0
	C2	16-Jul-95	minnow trapping	# fish / day	0	0	0	0	0	0	0	0
	KV8	07-Sep-94	minnow trapping	# fish / day	0	0	0	0	0	0	0	0
	KV8	15-Jul-95	minnow trapping	# fish / day	0	0	0	0	0	0	0	0
	KV8	16-Jul-95	minnow trapping	# fish / day	0	0	0	0	0	0	0	0
	KV8	04-Jun-06	minnow trapping	# fish / day	0	0	0	0	0	0	0	0
	KV8	1-Aug-06	minnow trapping	# fish / day	0.04	0	-	-	0.09	0	0	0
	F3 F3	17-Jul-95 18-Jul-95	minnow trapping minnow trapping	# fish / day # fish / day	0	0	0	0	0	0	0	0
	KV9	05-Sep-94	minnow trapping	# fish / day	0	0	0	0	0	0	0	0
	KV9	06-Sep-94	minnow trapping	# fish / day	0	0	0	0	0	0	0	0
	KV9	08-Sep-94	minnow trapping	# fish / day	0.17	0	0	0	0	0	0	0
Flat Creek	KV9	20-May-95	minnow trapping	# fish / day	0	0	0	0	0	0	0	0
	KV9	17-Jul-95	minnow trapping	# fish / day	0	0	0	0	0	0	0	0
	KV9	18-Jul-95	minnow trapping	# fish / day	0	0.39	0	0	0	0	0	0
	KV9	01-Jun-06	minnow trapping	# fish / day	0	0	0	0	0	0	0	0
	KV9	03-Jun-06	minnow trapping	# fish / day	0	0	0	0	0	0	0	0
	KV9	31-Jul-06	minnow trapping	# fish / day	0	0.16	0	0	0	0	0	0
	KV72	17-Jul-95	minnow trapping	# fish / day	0	0	0	0	0.20	0	0	0
	KV72	18-Jul-95	minnow trapping	# fish / day	0	0	0	0	0.42	0	0	0
	KV1	05-Sep-94	minnow trapping	# fish / day	0	0	0	0	0	0	0	0
	KV1 KV1	19-May-95 16-Jul-95	minnow trapping	# fish / day # fish / day	0	0.17	0	0	0	0	0	0
	KV1 KV1	04-Jun-06	minnow trapping minnow trapping	# fish / day	0	0.25	0	0	0	0	0	0
	KV1	1-Aug-06	minnow trapping	# fish / day	0	0.10	0	0	0	0	0	0
	SMQ C	16-Jul-95	minnow trapping	# fish / day	0	0	0	0	0	0	0	0
	SMQ C	1-Aug-06	minnow trapping	# fish / day	0	0	0	0	0	0	0	0
	KV2	06-Sep-94	minnow trapping	# fish / day	0	0	0	0	0	0	0	0
	KV2	07-Sep-94	minnow trapping	# fish / day	0	0	0	0	0	0	0	0
	KV2	19-May-95	minnow trapping	# fish / day	0	0	0	0	0	0	0	0
	KV2	21-May-95	minnow trapping	# fish / day	0	0	0	0	0	0	0	0
	KV2	16-Jul-95	minnow trapping	# fish / day	0	0	0	0	0	0	0	0
	KV2	17-Jul-95	minnow trapping	# fish / day	0	0	0	0	0	0	0	0
	SM5	05-Sep-94	minnow trapping	# fish / day	0	0	0	0	0	0	0	0
	SM5	06-Sep-94	minnow trapping	# fish / day # fish / day	0	0	0	0	0	0	0	0
	SM5 SM5	15-Sep-94 20-May-95	minnow trapping minnow trapping	# fish / day	0	0.50	0	0	0	0	0	0
South	SM5	17-Jul-95	minnow trapping	# fish / day	0	0	0	0	0	0	0	0
McQuesten	SM5	18-Jul-95	minnow trapping	# fish / day	0	0	0	0	0	0	0	0
River	KV3	05-Sep-94	minnow trapping	# fish / day	0	0	0	0	0	0	0	0
	KV3	06-Sep-94	minnow trapping	# fish / day	0	0	0	0	0	0	0	0
	KV3	20-May-95	minnow trapping	# fish / day	0	0	0	0	0	0	0	0
	KV3	17-Jul-95	minnow trapping	# fish / day	0	0	0	0	0	0	0	0
	KV3	18-Jul-95	minnow trapping	# fish / day	0	0	0	0	0	0	0	0
	KV3	31-Jul-06	minnow trapping	# fish / day	0	0	0	0	0	0	0	0
	KV4	05-Sep-94	minnow trapping	# fish / day	0	0	0	0	0	0	0	0
	KV4	06-Sep-94	minnow trapping	# fish / day	0	0	0	0	0	0	0	0
	KV4	20-May-95	minnow trapping	# fish / day	0	0	0	0	0	0	0	0
	KV4	20-Jul-95	minnow trapping	# fish / day	0	0	0	0	0.09	0	0	0
	KV4 SM12	31-Jul-06 02-Jun-95	minnow trapping	# fish / day # fish / day	0	0	0	0	0	0	0	0
	SM12 SM8	02-Jun-95 02-Jun-95	minnow trapping minnow trapping	# fish / day # fish / day	0	0	0	0	0	0	0	0
	SM8	18-Jul-95	minnow trapping	# fish / day	0	0	0	0	0.21	0	0	0
	SM8	19-Jul-95	minnow trapping	# fish / day	0	0	0	0	0.21	0	0	0
	KV15	20-May-95	minnow trapping	# fish / day	0	0	0	0.18	0	0	0	0
	KV15	02-Jun-95	minnow trapping	# fish / day	0	0	0	0	0	0	0	0
	KV15	19-Jul-95	minnow trapping	# fish / day	0	0	0	0	5.48	0	0	0
	KV15	20-Jul-95	minnow trapping	# fish / day	0	0	0	0	0.99	0	0	0
	KV15	31-Jul-06	minnow trapping	# fish / day	0.11	0.32	0.11	0	0	0	0	0
Lightning Creek	LC	29-Jul-95	angling	# fish/15 min.	4.55	0	0	0	0	0	0	0

Table E.2: Catch per unit effort by method, United Keno Hill Mines, 1994-95 and 2006.

Watershed	Station	Date ^a	Capture method	Units	arctic grayling	slimy sculpin	northern pike	burbot	chinook salmon	round whitefish	arctic lamprey	longnose sucker
	C4	9-Sep-94	angling	# fish/15 min.	2.50	0	0	0	0	0	0	0
Christal Creek	C2	16-Sep-94	angling	# fish/15 min.	1.50	0	0	0	0	0	0	0
Offinistal Ofeek	C2	22-May-95	angling	# fish/15 min.	0	0	0	0	0	0	0	0
	KV8	7-Sep-94	angling	# fish/15 min.	1.0	0	0	0	0	0	0	0
_	KV72	22-May-95	angling	# fish/15 min.	1.0	0	0.6	0	0	0	0	0
	KV1	5-Sep-94	angling	# fish/15 min.	0	0	0	0	0	0	0	0
	KV1	22-May-95	angling	# fish/15 min.	0	0	0	0	0	0	0	0
	KV2	6-Sep-94	angling	# fish/15 min.	0.17	0	0	0	0	0	0	0
_	KV2	7-Sep-94	angling	# fish/15 min.	0.91	0	0	0	0	0	0	0
	KV2	19-May-95	angling	# fish/15 min.	0	0	0	0	0	0	0	0
	KV2	16-Jul-95	angling	# fish/15 min.	0.85	0	0.21	0	0	0	0	0
South	SM5	5-Sep-94	angling	# fish/15 min.	1.50	0	0	0	0	0	0	0
McQuesten	SM5	8-Sep-94	angling	# fish/15 min.	0.50	0	0	0	0	0	0	0
River	SM5	23-May-95	angling	# fish/15 min.	0	0	0	0	0	0	0	0
	KV3	6-Sep-94	angling	# fish/15 min.	1	0	0	0	0	0	0	0
	KV3	20-May-95	angling	# fish/15 min.	0	0	0	0	0	0	0	0
	KV3	22-May-95	angling	# fish/15 min.	0	0	0	0	0	0	0	0
	KV4	22-May-95	angling	# fish/15 min.	0	0	0	0	0	0	0	0
	SM8	20-May-95	angling	# fish/15 min.	0.50	0	0	0	0	0	0	0
	KV15	20-May-95	angling	# fish/15 min.	0	0	0	0	0	0	0	0
	KV15	23-May-95	angling	# fish/15 min.	0	0	0	0	0	0	0	0
	KV15	18-Jul-95	angling	# fish/15 min.	1.25	0	0.63	0	0	0	0	0
_	LC	Sep-94	seining	# fish/m ²	0.02	0	0	0	0	0	0	0
Lightning Creek	LC	May/June-95	seining	# fish/m ²	0.003	0	0	0	0	0	0	0
	LC	Jul-95	seining	# fish/m ²	0.01	0	0	0	0	0	0	0
	KV6	May/June-95	seining	# fish/m ²	0	0.17	0	0	0	0	0	0
Christal Creek	KV7	Sep-94	seining	# fish/m ²	0	0	0	0	0	0	0	0
	KV8	Sep-94	seining	# fish/m ²	8.2	0	0	0	0	0	0	0
Flat Creek	KV9	Sep-94	seining	# fish/m ²	0.12	0.26	0.007	0	0	0	0	0
	KV9	Jul-95	seining	# fish/m ²	0.16	0.12	0	0	0	0	0	0
-	KV72	May/June-95	seining	# fish/m ²	0	0.01	0	0	0	0	0	0
	KV72	Jul-95	seining	# fish/m ²	0.19	0.01	0.004	0	0	0.01	0	0
	KV1	Sep-94	seining	# fish/m ²	0.09	0.27	0	0	0	0	0	0.03
-	KV1	May/June-95	seining	# fish/m ²	0	0.04	0	0	0	0.002	0	0
-	KV1	Jul-95	seining	# fish/m ²	0.24	0.07	0	0	0	0	0.007	0.10
-	SMQ C	Sep-94	seining	# fish/m ²	0.14	0.30	0	0	0	0.005	0	0.04
-	SMQ C	May/June-95	seining	# fish/m ²	0.02	0	0	0	0	0	0.02	0
-	SMQ C	Jul-95	seining	# fish/m ²	0.45	0.26	0	0	0	0.002	0.002	0.03
-	KV2	Sep-94	seining	# fish/m ²	0.02	0.81	0.01	0	0	0.01	0	0
South McQuesten	KV2	Jul-95	seining	# fish/m ²	0.11	0.26	0.003	0	0	0	0	0.003
River	KV3	Sep-94	seining	# fish/m ²	0.05	0.40	0.009	0	0	0	0	0.009
	KV3	May/June-95	seining	# fish/m ²	0	0.03	0	0	0	0	0	0
-	KV3	Jul-95	seining	# fish/m ²	0.04	0.16	0.007	0	0	0	0	0
	KV4	Sep-94	seining	# fish/m ²	0.05	0.17	0	0	0	0	0	0
	KV4	Jul-95	seining	# fish/m ²	0.69	0.22	0	0	0	0.005	0	0
-	KV5	Jul-95	seining	# fish/m ²	0.90	0.43	0	0	0	0.01	0	0.24
-	SM12	Jul-95	seining	# fish/m ²	0.32	0.23	0.003	0.003	0	0.01	0	0
	SM8	Jul-95	seining	# fish/m ²	0.05	0.25	0.006	0	0	0	0	0.22
	KV15	May/June-95	seining	# fish/m ²	0.04	0.12	0	0	0	0.002	0	0.009
-	KV15	Jul-95	seining	# fish/m ²	0.64	0.05	0	0	0.04	0.06	0	0.03
	SM11	Jul-95	seining	# fish/m ²	0.14	0.20	0	0	0.08	0.01	0	0

^a date for minnow trapping is set date

^b "day" for minnow trapping where multiple traps were set at a station was calculated by adding set-time/24hours togther for all traps at the station. CPUE was total number of fish captured with all traps divided by day.

^c prepared using data from Sparling (2006) and Sparling and Connor (1996)

Watershed	Station	n	arctic grayling	slimy sculpin	northern pike	burbot	arctic lamprey	longnose sucker
	KV6	2	0	1.49	0	0	0	0
	C4	2	1.27	0	0	0	0	0
Christal Creek	KV7	2	0.03	0	0	0	0	0
	C2	2	0	0.04	0	0	0	0
	KV8	2	3.84	0.48	0	0.03	0	0
Elat Crook	F3	1	0	0	0	0	0	0
Flat Creek	KV9	3	0.53	3.06	0	0.05	0	0
	KV1	2	0.48	5.59	0	0.02	0.05	0.36
	SMQ C	1	0.05	4.93	0.11	0.05	0.05	0.60
	KV2	2	0.05	1.53	0.15	0.03	0.06	0.03
South McQuesten	KV3	3	0.02	3.14	0.23	0.02	0	0
River	KV4	3	0.07	3.00	0.16	0.02	0	0
	SM12	1	0	6.71	0.12	0.12	1.97	0
	SM8	1	0	27.31	0	0.20	0	0
	KV15	1	0.26	2.66	0.09	0	0	0.60

Appendix Table E.3: Mean electrofishing catch per unit effort (number of fish per minute), United Keno Hill Mine, 1994 - 95^a.

^a prepared using data from Sparling and Connor (1996)

LCD	LCD-1 LCD-2 LCD-3 LCD-4 LCD-5 n mean SD CL-1 CL-2 CL-3	91 82 91 92 84 5 88 4.6 88	7.1 5.3 6.8 8.3 6.1 5 6.7 1.1 6.6	0.94 0.96 0.90 1.07 1.03 5 1.0 0.1
LCD	LCD-3 LCD-4 LCD-5 n mean SD CL-1 CL-2	91 92 84 5 88 4.6 88	6.8 8.3 6.1 5 6.7 1.1	0.90 1.07 1.03 5 1.0
LCD	LCD-4 LCD-5 n mean SD CL-1 CL-2	92 84 5 88 4.6 88	8.3 6.1 5 6.7 1.1	1.07 1.03 5 1.0
LCD	LCD-5 n mean SD CL-1 CL-2	84 5 88 4.6 88	6.1 5 6.7 1.1	1.03 5 1.0
	n mean SD CL-1 CL-2	5 88 4.6 88	5 6.7 1.1	5 1.0
	mean SD CL-1 CL-2	88 4.6 88	6.7 1.1	1.0
	SD CL-1 CL-2	4.6 88	1.1	
	CL-1 CL-2	88		0.1
	CL-2		6.6	
		00		0.97
	CL-3	92	8	1.03
		86	6.3	0.99
	CL-4	78	4.5	0.95
	CL-5	82	6.2	1.12
CL	CL-6	86	7.5	1.18
	CL-7	94	8.2	0.99
	CL-8	90	7.3	1.00
	n	8	8	8
	mean	87	6.8	1.03
	SD	5.2	1.2	0.08
	KV6-1	92	8.7	1.12
	KV6-2	91	8.7	1.15
KV6-3 96				1.15
	KV6-4	91	7.3	0.97
	KV6-5	96	10.4	1.18
KV6		92		1.27
	KV6-7	101	12.1	1.17
				1.44
	n	8	8	8
	mean	94	9.9	1.2
	SD		1.6	0.1
	KV9-1	98	11.4	1.21
	KV9-2	87	7.5	1.14
		93		1.19
KV9	n	3		3
	mean	93	10	1
				0.04
		98	12.6	1.34
			10.7	1.57
10/20				1.60
KV72				3
				1.5
				0.1
				1.05
				1.31
				1.05
SMQ C		-		3
			-	1.1
				0.1
	СL КV6 КV9 КV72 SMQ C	CL CL-6 CL-7 CL-8 n mean SD KV6-1 KV6-2 KV6-3 KV6-3 KV6-4 KV6-3 KV6-4 KV6-5 KV6-6 KV6-7 KV6-8 n mean SD KV9-1 KV9-2 KV9-3 n mean SD KV9-2 KV9-3 n mean SD KV72-1 KV72-2 KV72-3 n mean SD SMQ C-1 SMQ C-2 SMQ C-2 SMQ C-2 SMQ C-2 SMQ C-2	CL CL-6 86 CL-7 94 CL-8 90 n 8 mean 87 SD 5.2 KV6-1 92 KV6-2 91 KV6-3 96 KV6-4 91 KV6-5 96 KV6-6 92 KV6-7 101 KV6-8 93 n 8 mean 94 SD 3.5 KV9 101 KV6-8 93 n 8 mean 94 SD 3.5 KV9 198 KV9-2 87 KV9-3 93 n 3 mean 93 KV72-1 98 KV72-2 88 KV72-3 80 KV72-3 80 Machan 89 SD 9.0 S	CL CL-6 86 7.5 CL-7 94 8.2 CL-8 90 7.3 n 8 8 mean 87 6.8 SD 5.2 1.2 KV6-1 92 8.7 KV6-2 91 8.7 KV6-3 96 10.2 KV6-4 91 7.3 KV6-5 96 10.4 KV6-6 92 9.9 KV6-7 101 12.1 KV6-8 93 11.6 n 8 8 mean 94 9.9 SD 3.5 1.6 KV9 101 12.1 KV6-8 93 11.4 KV9-1 98 11.4 KV9-2 87 7.5 KV9 93 9.6 n 3 3 mean 93 10 SD 5.5 <

Table E.4: Morphometrics for slimy sculpin captured by seine, United Keno Hill Mine, 2006^a.

SD - standard deviation

^a prepared using data from Sparling (2006)

	Toddler	Wildlife			Lightning Cree	k				Christal Creek		
Parameter	benchmark	benchmark	LCD-1	LCD-2	LCD-3	LCD-4	LCD-5	C4-1	C4-2	C4-3	C4-4	C4-5
Aluminum			49.0	4.9	< 2.0	2.1	3.7	< 2.0	2.2	2.7	3.6	7.7
Antimony			0.014	< 0.010	< 0.010	< 0.010	< 0.010	< 0.010	< 0.010	< 0.010	< 0.010	< 0.010
Arsenic	0.20	0.28	0.432	0.100	0.035	0.130	0.123	0.092	0.109	0.132	0.138	0.172
Barium	10		2.70	0.763	0.471	1.26	0.847	0.403	0.481	0.625	0.615	0.734
Beryllium	1		< 0.10	< 0.10	< 0.10	< 0.10	< 0.10	< 0.10	< 0.10	< 0.10	< 0.10	< 0.10
Bismuth			< 0.10	< 0.10	< 0.10	< 0.10	< 0.10	< 0.10	< 0.10	< 0.10	< 0.10	< 0.10
Cadmium	0.5	3.90	0.118	0.0497	0.0188	0.0169	0.0179	0.0833	0.0514	0.0413	0.0537	0.0614
Calcium			13600	5530	2310	8220	7540	4830	4610	5940	7880	6510
Chromium	0.7		0.13	< 0.10	< 0.10	< 0.10	< 0.10	< 0.10	< 0.10	< 0.10	< 0.10	< 0.10
Cobalt			0.159	0.054	< 0.020	0.046	0.067	0.022	0.033	0.026	0.042	0.052
Copper	20	61.8	0.832	0.617	0.192	0.481	0.516	0.614	0.513	0.404	0.469	0.494
Lead	2.4	4.9	0.294	0.315	< 0.020	0.022	0.022	0.081	0.053	0.125	0.165	0.228
Lithium			< 0.10	< 0.10	< 0.10	< 0.10	< 0.10	< 0.10	< 0.10	< 0.10	< 0.10	< 0.10
Magnesium			432	343	115	358	322	282	279	291	345	313
Manganese	92	358	8.85	2.81	1.03	3.34	1.94	3.14	3.94	6.17	7.64	10.3
Molybdenum	3.3		< 0.010	< 0.010	< 0.010	< 0.010	< 0.010	< 0.010	< 0.010	< 0.010	< 0.010	< 0.010
Nickel	0.9		< 0.10	< 0.10	< 0.10	< 0.10	< 0.10	< 0.10	< 0.10	< 0.10	< 0.10	< 0.10
Selenium	3.3		1.88	1.87	0.56	1.91	2.16	0.68	0.96	0.87	1.11	1.21
Strontium	393		11.7	5.01	1.96	8.06	7.56	3.19	4.53	4.38	5.11	6.11
Thallium			< 0.010	< 0.010	< 0.010	< 0.010	< 0.010	< 0.010	< 0.010	< 0.010	< 0.010	< 0.010
Tin			< 0.050	< 0.050	< 0.050	< 0.050	< 0.050	< 0.050	< 0.050	< 0.050	< 0.050	< 0.050
Uranium	0.4		0.0067	< 0.0020	< 0.0020	< 0.0020	< 0.0020	< 0.0020	< 0.0020	< 0.0020	< 0.0020	< 0.0020
Vanadium			0.12	< 0.10	< 0.10	< 0.10	< 0.10	< 0.10	< 0.10	< 0.10	< 0.10	< 0.10
Zinc	196	650	31.5	18.7	7.66	16.0	18.7	17.9	17.3	19.5	23.0	27.4

Appendix Table E.5: Concentrations of metals in arctic grayling muscle (mg/kg wet weight) collected in August and September 2006, United Keno Hill Mines^a.

toddler benchmark exceeded

toddler and wildlife benchmarks exceeded

^a prepared using data from Sparling (2006)

Appendix Table E.6: Concentrations of metals (mg/kg wet weight^d) in arctic grayling muscle and liver collected in the fall 1994 - 95, United Keno Hill Mines^e.

	Toddler	Wildlife				Christal Creek	(Flat Creek			South McQ	uesten River		
Parameter	benchmark	benchmark	C4-1	C4-2	C4-3	C4-4	C4-5	C4-L ^a	KV7-1	KV9-1 ^b	KV1-1	KV1-2	KV1-3	KV1-4	KV1-5	KV1-L ^c
	Denominark	Deneminark	muscle	muscle	muscle	muscle	muscle	liver	whole fish	whole fish	muscle	muscle	muscle	muscle	muscle	liver
Arsenic	0.20	0.28	< 0.44	< 0.44	< 0.44	< 0.44	< 0.44	< 0.44	0.44	0.66	< 0.44	< 0.44	< 0.44	< 0.44	< 0.44	< 0.66
Cadmium	0.5	3.90	0.02	< 0.01	< 0.04	0.04	< 0.01	2.07	0.11	0.18	0.02	0.02	0.06	0.06	0.02	0.58
Chromium	0.7	-	0.22	0.22	0.22	0.40	0.20	0.09	0.15	0.20	0.18	0.20	0.22	0.22	0.20	0.11
Cobalt	-	-	0.09	< 0.02	0.07	0.09	0.04	0.29	0.04	0.04	< 0.02	0.04	0.07	0.04	0.09	0.44
Copper	20	61.8	0.35	0.40	0.35	0.22	0.31	3.87	0.84	1.06	0.42	0.48	0.53	0.59	0.55	3.08
Lead	2.4	4.9	0.22	0.22	0.22	0.44	0.22	0.22	0.44	3.08	< 0.22	< 0.22	< 0.22	0.44	< 0.22	0.88
Mercury	0.07	0.45	< 0.02	< 0.02	< 0.02	0.02	< 0.02	0.02	< 0.02	< 0.02	0.04	0.02	0.04	< 0.02	0.02	0.02
Nickel	0.9	_	0.09	0.53	0.13	0.18	0.13	0.11	0.09	0.18	0.09	0.13	0.13	0.11	0.99	0.37
Zinc	196	650	29	28	30	51	26	28	36	38	18	19	27	27	21	22

toddler benchmark exceeded

toddler and wildlife benchmarks exceeded

Note: samples consisted of one individual fish unless otherwise indicated

^a composite sample of livers from fish C4-1 to C4-5

^b composite of four fish

^c composite sample of livers from fish KV1-1, KV1-2 and KV1-5

^d dry weight values reported in Sparling and Connor (1996) converted to wet weight assuming 78% moisture and using the formula [dry weight value * 0.22].

^e prepared using data from Sparling and Connor (1996)

				Christal C	reek (station	C4)	Sou	th McQues	ten River (stat	ion KV1)
Parameter	Toddler benchmark	Wildlife benchmark	n	mean	Standard Deviation	95% Confidence Limit	n	mean	Standard Deviation	95% Confidence Limit
Arsenic	0.20	0.28	5	< 0.44	0	0	5	< 0.44	0	0
Cadmium	0.5	3.90	5	0.02	0.01	0.01	5	0.03	0.022	0.02
Chromium	0.7	-	5	0.25	0.08	0.07	5	0.20	0.02	0.02
Cobalt	-	-	5	0.06	0.03	0.03	5	0.05	0.03	0.02
Copper	20	61.8	5	0.33	0.07	0.06	5	0.51	0.07	0.06
Lead	2.4	4.9	5	0.26	0.10	0.09	5	0.26	0.10	0.09
Mercury	0.07	0.45	5	0.02	0	0.00	5	0.03	0.01	0.01
Nickel	0.9	-	5	0.21	0.18	0.16	5	0.29	0.39	0.34
Zinc	196	650	5	33	10	9	5	22	4.3	3.8

Appendix Table E.7: Concentrations of metals (mg/kg wet weight) in arctic grayling muscle collected in the fall 1994 - 95, United Keno Hill Mines^a.

toddler benchmark exceeded

toddler and wildlife benchmarks exceeded

Appendix Table E.8: Concentrations of metals in slimy sculpin (mg/kg wet weight) collected in August, September and October, United Keno Hill Mines, 2006^d.

			Lightnir	ng Creek		Chri	istal Lake West	-end		CI	hristal Lake Out	let							Christal Creek					
Parameter	Wildlife benchmark	LCD-1	LCD-3	LCD-4	LCD-5	CLW-1	CLW-2	CLW-3	CLO-1	CLO-2	CLO-3	CLO-4	CLO-5	KV6-1	KV6-2	KV6-3	KV6-4	KV6-5	KV6-6	KV6-7	KV6-8	KV8-1	KV8-2ª	KV8-3 [♭]
Aluminum		44.7	46.6	81.3	55.5	19.5	29.6	11.1	21.1	30.8	16.6	19.2	30.0	22.1	16.3	41.7	39.2	32.3	53.8	3.6	148	11.0	20.7	13.3
Antimony		0.028	0.013	0.020	0.021	0.020	0.017	0.019	0.032	0.045	0.041	0.039	0.165	0.044	0.074	0.108	0.167	0.135	0.037	0.020	0.015	0.018	0.093	0.017
Arsenic	0.28	0.855	0.934	0.985	0.966	0.447	1.12	0.925	1.10	1.21	0.741	1.06	2.84	1.23	1.32	1.50	2.99	2.05	1.42	0.542	0.789	0.67	0.834	1.24
Barium		2.61	3.17	3.33	3.82	0.808	1.01	1.13	1.42	1.67	0.799	0.908	1.40	1.21	2.26	1.97	3.93	2.41	2.00	0.920	1.09	1.90	2.65	1.52
Beryllium		< 0.10	< 0.10	< 0.10	< 0.10	< 0.10	< 0.10	< 0.10	< 0.10	< 0.10	< 0.10	< 0.10	< 0.10	< 0.10	< 0.10	< 0.10	< 0.10	< 0.10	< 0.10	< 0.10	< 0.10	< 0.10	< 0.10	< 0.10
Bismuth		< 0.10	< 0.10	< 0.10	< 0.10	< 0.10	< 0.10	< 0.10	< 0.10	< 0.10	< 0.10	< 0.10	< 0.10	< 0.10	< 0.10	< 0.10	< 0.10	< 0.10	< 0.10	< 0.10	< 0.10	< 0.10	< 0.10	< 0.10
Cadmium	3.90	0.348	0.252	0.258	0.260	0.0363	0.0512	0.0554	0.197	0.256	0.133	0.189	0.355	0.375	0.636	0.557	1.26	0.924	0.354	0.548	0.277	0.349	0.433	0.601
Calcium		9360	11100	6670	10400	11400	10300	10100	8820	7880	7050	6280	8480	10400	10100	10300	14000	12700	7790	9690	5450	11400	13300	7450
Chromium		0.20	0.19	0.27	0.14	0.14	0.12	0.11	< 0.10	0.16	0.13	0.13	0.14	< 0.10	0.13	0.14	0.17	0.16	0.46	< 0.10	0.28	< 0.10	0.16	< 0.10
Cobalt		0.101	0.096	0.145	0.126	0.031	0.090	0.037	0.053	0.067	0.054	0.046	0.055	0.039	0.043	0.049	0.093	0.061	0.081	< 0.020	0.146	0.052	0.106	0.058
Copper	61.8	1.00	1.00	1.08	1.20	0.653	0.874	0.727	0.993	1.28	1.02	0.853	1.04	1.04	0.876	0.921	0.917	0.883	0.883	0.583	0.884	0.813	0.877	0.720
Lead	4.9	0.308	0.396	0.604	0.617	0.100	0.173	0.237	0.580	1.19	0.445	0.934	2.20	3.26	9.93	6.22	19.0	12.8	2.68	3.11	1.21	0.674	1.32	1.61
Lithium		< 0.10	< 0.10	< 0.10	< 0.10	< 0.10	0.11	< 0.10	< 0.10	< 0.10	< 0.10	< 0.10	< 0.10	< 0.10	< 0.10	0.10	0.11	< 0.10	0.17	< 0.10	0.40	< 0.10	< 0.10	< 0.10
Magnesium		344	363	314	359	346	329	336	351	310	322	282	316	361	464	351	373	385	351	431	352	354	370	327
Manganese	358	11.5	11.4	12.4	15.9	11.5	16.1	27.6	37.6	46.5	18.6	29.2	29.4	31.7	68.3	44.0	118	69.7	26.3	23.6	14.2	34.4	59.5	20.1
Molybdenum		0.022	0.022	0.027	0.027	0.019	0.020	0.02	0.018	0.028	0.022	0.017	0.025	0.039	0.037	0.030	0.035	0.042	0.044	0.019	0.021	0.018	0.022	0.019
Nickel		0.22	0.19	0.28	0.24	< 0.10	0.16	< 0.10	0.12	0.16	< 0.10	< 0.10	0.13	0.21	0.24	0.26	0.41	0.26	0.37	0.18	0.47	0.25	0.37	0.18
Selenium		2.84	2.93	2.55	2.67	0.93	0.76	1.05	1.01	1.16	1.31	1.26	1.03	1.17	0.97	1.03	0.88	0.95	0.97	0.81	1.04	1.15	1.39	1.43
Strontium		8.00	9.42	6.60	9.62	4.48	4.04	3.71	3.47	3.22	2.85	2.55	2.95	3.83	4.23	3.96	6.29	5.05	3.35	3.81	2.28	9.07	12.2	5.55
Thallium		< 0.010	< 0.010	< 0.010	< 0.010	< 0.010	< 0.010	< 0.010	< 0.010	< 0.010	< 0.010	< 0.010	< 0.010	< 0.010	< 0.010	< 0.010	< 0.010	< 0.010	< 0.010	< 0.010	< 0.010	< 0.010	< 0.010	< 0.010
Tin		< 0.050	< 0.050	< 0.050	< 0.050	< 0.050	< 0.050	< 0.050	< 0.050	< 0.050	< 0.050	< 0.050	< 0.050	< 0.050	< 0.050	< 0.050	< 0.050	< 0.050	< 0.050	< 0.050	< 0.050	< 0.050	< 0.050	< 0.050
Uranium		0.0098	0.0095	0.0129	0.0121	0.0046	0.0114	0.0168	0.0095	0.0109	0.0058	0.0064	0.0171	0.0125	0.0371	0.0196	0.0635	0.0208	0.0127	0.0314	0.0045	0.0086	0.0088	0.0053
Vanadium		0.19	0.18	0.28	0.19	< 0.10	0.13	< 0.10	< 0.10	< 0.10	< 0.10	< 0.10	< 0.10	< 0.10	0.12	0.17	0.22	0.17	0.14	0.11	0.37	0.11	0.16	< 0.10
Zinc	650 enchmark exceeded	41.8	39.8	38.3	49.1	32.1	36.2	33.9	41.7	44.8	35.1	33.0	43.7	48.4	78.6	54.9	81.9	89	46.8	57.7	36.7	83.1	83.0	77.3

Note: samples consisted of one individual fish unless otherwise indicated

^a composite sample of three fish

^b composite sample of four fish

^c composite sample of two fish

^d prepared using data from Sparling (2006)

Page 1 of 3

Appendix Table E.8: Concentrations of metals in slimy sculpin (mg/kg wet weight) collected in August, September and October, United Keno Hill Mines, 2006^d.

				Flat Creek															South McQu	lesten River				
Parameter	Wildlife benchmark	KV9-1	KV9-2	KV9-3	KV9-4 ^a	KV9-5ª	KV72-1	KV72-2	KV72-3	KV1-1°	KV1-2ª	KV1-3 ^b	KV2-1 ^a	KV2-2ª	KV2-3ª	KV2-4 ^b	KV2-5 ^b	SMQ C-1	SMQ C-2	SMQ C-3	SMQ C-4ª	SMQ C-5 ^b	KV4-1	KV4-2°
Aluminum		38.9	17.6	22.7	13.0	9.0	29.0	28.4	13.9	13.0	20.4	22.3	47.1	42.3	12.4	12.4	33.2	14.4	18.9	40.6	51.7	21.2	5.5	5.1
Antimony		0.189	0.251	0.326	0.148	0.070	< 0.010	< 0.010	< 0.010	< 0.010	0.011	0.010	0.025	0.054	< 0.010	< 0.010	0.013	0.013	0.012	0.012	0.043	0.093	0.016	0.017
Arsenic	0.28	0.803	1.02	1.40	0.980	0.954	0.072	0.088	0.126	0.146	0.252	0.208	0.664	0.649	0.344	0.461	0.428	0.193	0.281	0.418	0.598	0.364	0.296	0.412
Barium		2.33	1.80	1.93	2.01	1.82	1.91	1.12	0.793	1.35	3.47	2.30	2.96	3.71	2.12	2.27	2.35	3.42	2.38	3.46	3.47	2.29	2.15	1.75
Beryllium		< 0.10	< 0.10	< 0.10	< 0.10	< 0.10	< 0.10	< 0.10	< 0.10	< 0.10	< 0.10	< 0.10	< 0.10	< 0.10	< 0.10	< 0.10	< 0.10	< 0.10	< 0.10	< 0.10	< 0.10	< 0.10	< 0.10	< 0.10
Bismuth		< 0.10	< 0.10	< 0.10	< 0.10	< 0.10	< 0.10	< 0.10	< 0.10	< 0.10	< 0.10	< 0.10	< 0.10	< 0.10	< 0.10	< 0.10	< 0.10	< 0.10	< 0.10	< 0.10	< 0.10	< 0.10	< 0.10	< 0.10
Cadmium	3.90	0.476	0.478	0.448	0.469	0.301	0.328	0.311	0.155	0.160	0.553	0.401	0.452	0.503	0.349	0.388	0.443	0.402	0.321	0.637	0.707	0.639	0.263	0.289
Calcium		9890	5730	9900	10700	9630	14700	11800	9190	10800	17000	11900	13300	14100	11400	14100	11300	19400	15400	13600	13400	14400	15700	12500
Chromium		0.15	0.13	0.12	< 0.10	< 0.10	< 0.10	< 0.10	< 0.10	< 0.10	< 0.10	0.14	< 0.10	0.15	< 0.10	< 0.10	0.14	0.17	0.16	< 0.10	0.15	0.15	< 0.10	< 0.10
Cobalt		0.034	0.030	0.029	0.036	< 0.020	0.394	0.231	0.093	0.086	0.275	0.192	0.345	0.469	0.287	0.203	0.496	0.116	0.17	0.727	0.439	0.313	0.049	0.069
Copper	61.8	0.890	1.20	1.42	1.06	0.888	2.3	1.96	1.09	1.20	1.18	1.52	1.62	1.52	1.25	1.06	1.76	1.16	1.35	1.76	1.66	1.5	0.797	0.777
Lead	4.9	12.3	11.4	14.3	5.78	4.89	0.079	0.059	0.045	0.070	0.062	0.054	1.25	2.31	0.592	0.633	0.756	0.43	0.279	0.362	2.02	0.437	2.28	1.34
Lithium		< 0.10	< 0.10	< 0.10	< 0.10	< 0.10	< 0.10	< 0.10	< 0.10	< 0.10	< 0.10	< 0.10	< 0.10	< 0.10	< 0.10	< 0.10	< 0.10	< 0.10	< 0.10	< 0.10	< 0.10	< 0.10	< 0.10	< 0.10
Magnesium		286	256	297	330	325	409	387	318	350	417	366	380	374	340	402	367	438	403	375	374	389	374	320
Manganese	358	63.7	72.0	74.2	51.2	28.4	15.5	10.6	5.44	13.3	49.9	29.6	35.5	52.0	24.2	22.9	45.3	28.1	32.3	64.3	37.0	35.3	19.6	25.4
Molybdenum		0.021	0.028	0.022	0.024	0.023	0.038	0.028	0.020	0.019	0.021	0.022	0.031	0.030	0.022	0.020	0.026	0.018	0.017	0.024	0.033	0.023	0.014	0.025
Nickel		0.11	0.12	< 0.10	0.13	< 0.10	1.39	0.92	0.28	0.42	0.82	0.75	1.08	1.24	0.87	0.69	1.23	0.52	0.62	1.88	1.40	0.97	0.23	0.21
Selenium		0.45	0.46	0.41	0.88	0.55	1.36	1.42	1.13	1.13	1.03	1.15	1.29	1.35	1.12	1.17	1.20	1.43	1.23	1.75	1.66	1.40	0.91	0.89
Strontium		6.53	4.22	5.4	8.01	5.31	14.9	11.5	9.77	12.3	18.4	13.3	13.1	14.5	11.2	13.6	10.8	18.7	15.1	14.2	13.6	14.0	12.6	10.3
Thallium		0.018	0.013	0.018	0.019	0.013	< 0.010	< 0.010	< 0.010	< 0.010	< 0.010	< 0.010	< 0.010	< 0.010	< 0.010	< 0.010	< 0.010	< 0.010	< 0.010	< 0.010	< 0.010	< 0.010	< 0.010	< 0.010
Tin		< 0.050	< 0.050	< 0.050	< 0.050	< 0.050	< 0.050	< 0.050	< 0.050	< 0.050	< 0.050	< 0.050	< 0.050	< 0.050	< 0.050	< 0.050	< 0.050	< 0.050	< 0.050	< 0.050	< 0.050	< 0.050	< 0.050	< 0.050
Uranium		0.0061	0.0037	0.0042	0.0025	0.0022	0.0077	0.0074	0.0025	0.0046	0.0077	0.0059	0.0148	0.0110	0.0049	0.0035	0.0061	0.0071	0.0057	0.0132	0.0101	0.0074	0.0038	0.0023
Vanadium		0.24	< 0.10	< 0.10	< 0.10	< 0.10	< 0.10	< 0.10	< 0.10	< 0.10	0.17	0.11	0.17	0.18	< 0.10	0.12	0.11	0.13	0.11	0.11	0.19	0.14	< 0.10	< 0.10
Zinc	650	50.7	43.6	49.3	58.3	37.4	62.1	49.9	28.4	39.2	95.0	76.4	65.9	75.5	61.0	65.9	71.5	108	73.2	87.7	131	97.8	64.1	43.3

Note: samples consisted of one individual fish unless otherwise indicated

^a composite sample of three fish

^b composite sample of four fish

^c composite sample of two fish

^d prepared using data from Sparling (2006)

Page 2 of 3

Appendix Table E.8: Concentrations of metals in slimy sculpin (mg/kg wet weight) collected in August, September and October, United Keno Hill Mines, 2006^d.

Parameter	Wildlife benchmark	KV4-3℃	KV4-4 ^a	KV4-5ª	KV15-1ª	KV15-2ª	KV15-3°	KV15-4 [°]	KV15-5ª
Aluminum		20.2	8.4	7.8	16.5	13.2	9.8	14.9	14.0
Antimony		0.012	0.013	0.012	0.013	< 0.010	< 0.010	0.014	0.012
Arsenic	0.28	0.399	0.486	0.441	0.506	0.444	0.400	0.443	0.424
Barium		2.23	2.290	2.64	2.42	1.99	2.26	2.41	1.83
Beryllium		< 0.10	< 0.10	< 0.10	< 0.10	< 0.10	< 0.10	< 0.10	< 0.10
Bismuth		< 0.10	< 0.10	< 0.10	< 0.10	< 0.10	< 0.10	< 0.10	< 0.10
Cadmium	3.90	0.265	0.440	0.379	0.253	0.0886	0.134	0.127	0.156
Calcium		12200	13300	16100	13000	10500	13300	14700	10800
Chromium		0.16	0.14	< 0.10	< 0.10	0.12	< 0.10	0.13	0.13
Cobalt		0.088	0.122	0.094	0.071	0.044	0.049	0.075	0.059
Copper	61.8	0.737	1.01	1.14	1.17	0.681	0.778	1.12	0.960
Lead	4.9	1.62	1.09	1.01	0.315	0.182	0.171	0.261	0.199
Lithium		< 0.10	< 0.10	< 0.10	< 0.10	< 0.10	< 0.10	< 0.10	< 0.10
Magnesium		314	370	412	366	290	355	384	331
Manganese	358	29.1	34.3	28.8	21.4	13.1	13.7	14.5	14.8
Molybdenum		0.019	0.025	0.021	0.021	0.017	0.018	0.019	0.023
Nickel		0.27	0.45	0.43	0.21	0.13	< 0.10	0.19	0.17
Selenium		0.74	1.06	1.24	2.09	2.02	1.51	3.03	1.38
Strontium		10.9	12.1	15.7	13.9	11.3	13.9	14.9	11.5
Thallium		< 0.010	< 0.010	< 0.010	< 0.010	< 0.010	< 0.010	< 0.010	< 0.010
Tin		< 0.050	< 0.050	< 0.050	< 0.050	< 0.050	< 0.050	< 0.050	< 0.050
Uranium		0.0033	0.0032	0.0036	0.0036	< 0.0020	0.0029	0.0038	0.0027
Vanadium		0.14	< 0.10	0.11	< 0.10	< 0.10	< 0.10	< 0.10	< 0.10
Zinc	650	54.2	70.2	62.7	41.8	27.0	38.9	35.6	31.6

Note: samples consisted of one individual fish unless otherwise indicated

^a composite sample of three fish

^b composite sample of four fish

^c composite sample of two fish

^d prepared using data from Sparling (2006)

Page 3 of 3

Appendix Table E.9: Concentrations of metals (whole body mg/kg wet weight^c) in slimy sculpin collected in the fall, United Keno Hill Mines, 1994 - 95^d.

Parameter	Wildlife				Christal Creek						Flat Creek		
Farameter	benchmark	CL-1	CL-2	CL-3	CL-4	KV6-1	KV6-2	C2-1	KV9-1 ^ª	KV9-2 ^a	KV9-3 ^ª	KV9-4	KV9-5 ^b
Arsenic	0.28	0.88	0.88	0.88	1.1	3.96	1.32	0.88	0.66	0.66	1.54	2.86	1.1
Cadmium	3.90	0.0396	0.0418	0.0704	0.066	1.0362	0.2068	0.2816	0.22	0.3256	0.3938	0.4862	0.22
Chromium	-	0.198	0.198	0.198	0.198	0.682	0.286	0.198	0.22	0.22	0.264	0.264	0.22
Cobalt	-	0.088	0.066	0.088	0.088	0.176	0.132	< 0.022	0.022	0.022	0.044	0.044	0.022
Copper	61.8	0.396	0.484	0.528	0.594	1.342	0.506	0.638	1.012	1.078	1.518	2.86	1.012
Lead	4.9	< 0.22	< 0.22	< 0.22	0.44	14.96	1.98	0.88	5.06	8.58	11.88	24.2	5.5
Mercury	0.45	< 0.022	< 0.022	< 0.022	< 0.022	< 0.022	< 0.022	< 0.022	< 0.022	< 0.022	< 0.022	< 0.022	< 0.022
Nickel	-	0.22	0.308	0.352	0.22	1.1	0.55	0.22	0.132	0.22	0.198	0.176	0.132
Zinc	650	71	69	80	75	188	72	64	43	58	57	63	41

wildlife benchmark exceeded

Note: samples consisted of one individual fish unless otherwise indicated

^a composite of four fish

^b composite of seven fish

^c dry weight values reported in Sparling and Connor (1996) converted to wet weight assuming 78% moisture and using the formula [dry weight value * 0.22].

^d prepared using data from Sparling and Connor (1996)

Table E.10: Summary of metal concentrations in whole body slimy sculpin (mg/kg wet weight), United Keno Hill Mines, 2006^a.

			L	ightning Cre	eek						С	hristal Cree	ek							Flat Creek	
Parameter	Wildlife benchmark ^b	n	mean	Standard Deviation	95% Confidence Limit	n	mean	Standard Deviation	95% Confidence Limit	n	mean	Standard Deviation	95% Confidence Limit	n	mean	Standard Deviation	95% Confidence Limit	n	mean	Standard Deviation	95% Confidence Limit
				LCD				CL				KV6				KV8				KV9	
Aluminum		4	57.03	16.85	16.517	8	22	7.19	4.981	8	44.63	44.65	30.938	3	15.00	5.07	5.735	5	20.24	11.62	10.184
Antimony		4	0.021	0.01	0.006	8	0.05	0.05	0.034	8	0.075	0.06	0.039	3	0.043	0.04	0.049	5	0.197	0.10	0.086
Arsenic	0.28	4	0.935	0.06	0.056	8	1.18	0.71	0.495	8	1.480	0.76	0.527	3	0.915	0.29	0.332	5	1.031	0.22	0.194
Barium		4	3.23	0.50	0.489	8	1.14	0.32	0.223	8	1.97	0.97	0.672	3	2.02	0.58	0.651	5	1.98	0.21	0.188
Beryllium		4	0.1	0.00	-	8	< 0.10	0.00	-	8	0.1	0.00	0.000	3	0.1	0.00	0.000	5	0.1	0.00	-
Bismuth		4	0.1	0.00	-	8	< 0.10	0.00	-	8	0.1	0.00	0.000	3	0.1	0.00	0.000	5	0.1	0.00	-
Cadmium	3.90	4	0.280	0.05	0.045	8	0.16	0.11	0.078	8	0.616	0.33	0.228	3	0.461	0.13	0.145	5	0.434	0.08	0.066
Calcium		4	9,383	1,945	1,906	8	8789	1734.57	1,202	8	10,054	2,651	1,837	3	10,717	2,984	3,377	5	9,170	1,965	1,722
Chromium		4	0.20	0.05	0.052	8	0.13	0.02	0.013	8	0.19	0.12	0.085	3	0.12	0.03	0.039	5	0.12	0.02	0.019
Cobalt		4	0.117	0.02	0.022	8	0.05	0.02	0.013	8	0.067	0.04	0.028	3	0.072	0.03	0.033	5	0.030	0.01	0.005
Copper	61.8	4	1.070	0.09	0.093	8	0.93	0.20	0.137	8	0.873	0.13	0.089	3	0.803	0.08	0.089	5	1.092	0.23	0.197
Lead	4.9	4	0.481	0.15	0.151	8	0.73	0.70	0.488	8	7.276	6.18	4.284	3	1.201	0.48	0.542	5	9.734	4.16	3.649
Lithium		4	0.1	0.00	-	8	0.10	0.00	-	8	0.1475	0.10	0.073	3	0.10	0.00	0.000	5	0.1	0.00	-
Magnesium		4	345	22.23	21.781	8	324	22.07	15.294	8	384	42.19	29.236	3	350	21.73	24.593	5	299	30.24	26.510
Manganese	358	4	12.8	2.12	2.073	8	27	11.55	8.001	8	49.5	34.34	23.798	3	38.0	19.95	22.570	5	57.9	18.80	16.476
Molybdenum		4	0.025	0.00	0.003	8	0.02	0.00	0.003	8	0.033	0.01	0.006	3	0.020	0.00	0.002	5	0.024	0.00	0.002
Nickel		4	0.23	0.04	0.037	8	0.12	0.03	0.018	8	0.30	0.10	0.072	3	0.27	0.10	0.109	5	0.11	0.01	0.011
Selenium		4	2.75	0.17	0.167	8	1.06	0.18	0.124	8	0.98	0.11	0.075	3	1.32	0.15	0.171	5	0.55	0.19	0.168
Strontium		4	8.41	1.41	1.378	8	3.41	0.65	0.449	8	4.10	1.18	0.819	3	8.94	3.33	3.765	5	5.89	1.44	1.260
Thallium		4	0.01	0.00	-	8	< 0.010	0.00	-	8	0.01	0.00	-	3	0.01	0.00	-	5	0.0162	0.00	0.003
Tin		4	0.05	0.00	-	8	< 0.050	0.00	-	8	0.05	0.00	0.000	3	0.05	0.00	0.000	5	0.05	0.00	-
Uranium		4	0.011	0.00	0.002	8	0.01	0.005	0.003	8	0.025	0.02	0.013	3	0.008	0.00	0.002	5	0.004	0.00	0.001
Vanadium		4	0.21	0.05	0.046	8	0.10	0.01	-	8	0.18	0.09	0.061	3	0.12	0.03	0.036	5	0.13	0.06	0.055
Zinc	650	4	42.3	4.79	4.691	8	38	5.06	3.506	8	61.8	18.99	13.161	3	81.1	3.32	3.757	5	47.9	7.85	6.884

wildlife benchmark exceeded

^a prepared using data from Sparling (2006)

^b see Table 6.4 for sources

Page 1 of 2

Table E.10: Summary of metal concentrations in whole body slimy sculpin (mg/kg wet weight), United Keno Hill Mines, 2006^a.

													South McQu	este	en River										
Parameter	Wildlife benchmark ^b	n	mean	Standard Deviation	95% Confidence Limit	n	mean	Standard Deviation	95% Confidence Limit	n	mean	Standard Deviation	95% Confidence Limit	n	mean	Standard Deviation	95% Confidence Limit	n	mean	Standard Deviation	95% Confidence Limit	n	mean	Standard Deviation	95% Confidence Limit
				KV72				KV1				KV2				SMQ				KV4	-			KV15	
Aluminum		3	23.77	8.55	9.675	3	18.57	4.91	5.560	5	29.48	16.37	14.350	5	29.36	16.01	14.033	5	9.40	6.20	5.437	5	13.68	2.49	2.184
Antimony		3	0.010	0.00	0.000	3	0.010	0.00	0.001	5	0.022	0.02	0.016	5	0.035	0.04	0.031	5	0.014	0.00	0.002	5	0.012	0.00	0.002
Arsenic	0.28	3	0.095	0.03	0.031	3	0.202	0.05	0.060	5	0.509	0.14	0.124	5	0.371	0.15	0.134	5	0.407	0.07	0.062	5	0.443	0.04	0.034
Barium		3	1.27	0.57	0.650	3	2.37	1.06	1.202	5	2.68	0.66	0.576	5	3.00	0.61	0.536	5	2.21	0.32	0.280	5	2.18	0.26	0.230
Beryllium		3	0.1	0.00	0.000	3	0.1	0.00	0.000	5	0.1	0.00	-	5	0.1	0.00	-	5	0.1	0.00	-	5	0.1	0.00	-
Bismuth		3	0.1	0.00	0.000	3	0.1	0.00	0.000	5	0.1	0.00	-	5	0.1	0.00	-	5	0.1	0.00	-	5	0.1	0.00	-
Cadmium	3.90	3	0.265	0.10	0.108	3	0.371	0.20	0.224	5	0.427	0.06	0.052	5	0.541	0.17	0.148	5	0.327	0.08	0.069	5	0.152	0.06	0.054
Calcium		3	11,897	2,756	3,119	3	13,233	3,308	3,743	5	12,840	1,399	1,227	5	15,240	2,455	2,152	5	13,960	1,822	1,597	5	12,460	1,776	1,556
Chromium		3	0.10	0.00	0.000	3	0.11	0.02	0.026	5	0.12	0.02	0.022	5	0.15	0.03	0.024	5	0.12	0.03	0.025	5	0.12	0.02	0.013
Cobalt		3	0.239	0.15	0.170	3	0.184	0.09	0.107	5	0.360	0.12	0.108	5	0.353	0.24	0.214	5	0.084	0.03	0.024	5	0.060	0.01	0.012
Copper	61.8	3	1.783	0.62	0.706	3	1.300	0.19	0.216	5	1.442	0.28	0.249	5	1.486	0.24	0.210	5	0.892	0.17	0.153	5	0.942	0.21	0.185
Lead	4.9	3	0.061	0.02	0.019	3	0.062	0.01	0.009	5	1.108	0.72	0.632	5	0.706	0.74	0.646	5	1.468	0.51	0.449	5	0.226	0.06	0.053
Lithium		3	0.10	0.00	0.000	3	0.10	0.00	0.000	5	0.1	0.00	-	5	0.1	0.00	-	5	0.1	0.00	-	5	0.1	0.00	-
Magnesium		3	371	47.48	53.727	3	378	34.99	39.595	5	373	22.45	19.674	5	396	26.40	23.136	5	358	40.91	35.863	5	345	36.34	31.854
Manganese	358	3	10.5	5.03	5.693	3	30.9	18.34	20.749	5	36.0	12.78	11.204	5	39.4	14.32	12.555	5	27.4	5.42	4.746	5	15.5	3.37	2.950
Molybdenum		3	0.029	0.01	0.010	3	0.021	0.00	0.002	5	0.026	0.00	0.004	5	0.023	0.01	0.006	5	0.021	0.00	0.004	5	0.020	0.00	0.002
Nickel		3	0.86	0.56	0.630	3	0.66	0.21	0.242	5	1.02	0.24	0.209	5	1.08	0.57	0.496	5	0.32	0.11	0.100	5	0.16	0.04	0.039
Selenium		3	1.30	0.15	0.173	3	1.10	0.06	0.073	5	1.23	0.09	0.081	5	1.49	0.21	0.184	5	0.97	0.19	0.166	5	2.01	0.65	0.570
Strontium		3	12.06	2.61	2.953	3	14.67	3.27	3.702	5	12.64	1.59	1.390	5	15.12	2.08	1.819	5	12.32	2.10	1.841	5	13.10	1.61	1.408
Thallium		3	0.01	0.00	-	3	0.01	0.00	-	5	0.01	0.00	-	5	0.01	0.00	-	5	0.01	0.00	-	5	0.01	0.00	-
Tin		3	0.05	0.00	0.000	3	0.05	0.00	0.000	5	0.05	0.00	-	5	0.05	0.00	-	5	0.05	0.00	-	5	0.05	0.00	-
Uranium		3	0.006	0.00	0.003	3	0.006	0.00	0.002	5	0.008	0.00	0.004	5	0.009	0.00	0.003	5	0.003	0.00	0.001	5	0.003	0.00	0.001
Vanadium		3	0.10	0.00	0.000	3	0.13	0.04	0.043	5	0.14	0.04	0.032	5	0.14	0.03	0.029	5	0.11	0.02	0.015	5	0.10	0.00	-
Zinc	650	3	46.8	17.06	19.308	3	70.2	28.41	32.151	5	68.0	5.62	4.926	5	99.5	21.78	19.095	5	58.9	10.42	9.137	5	35.0	5.86	5.137

wildlife benchmark exceeded

^a prepared using data from Sparling (2006)

^b see Table 6.4 for sources

Page 2 of 2

					Christa	I Creek					F	lat Creek	
Parameter	Wildlife benchmark	n	mean	Standard Deviation	95% Confidence Limit	n	mean	Standard Deviation	95% Confidence Limit	n	mean	Standard Deviation	95% Confidence Limit
				CL				KV6				KV9	
Arsenic	0.28	4	0.94	0.11	0.096	2	2.64	-	-	5	1.36	0.912	0.800
Cadmium	3.90	4	0.054	0.016	0.014	2	0.6215	-	-	5	0.33	0.115	0.101
Chromium	-	4	0.198	0	0	2	0.484	-	-	5	0.24	0.024	0.021
Cobalt	-	4	0.083	0.011	0.010	2	0.154	-	-	5	0.03	0.012	0.011
Copper	61.8	4	0.501	0.083	0.073	2	0.924	-	-	5	1.50	0.791	0.694
Lead	4.9	4	0.28	0.110	0.096	2	8.47	-	-	5	11	7.8	6.9
Mercury	0.45	4	< 0.022	0	0	2	< 0.022	-	-	5	0.02	0	0
Nickel	-	4	0.28	0.07	0.058	2	0.825	-	-	5	0.17	0.039	0.034
Zinc	650	4	74	5	4	2	130	-	-	5	52	9.9	8.7

Appendix Table E.11: Concentrations of metals (mg/kg wet weight) in whole body of slimy sculpin collected in the fall 1994 - 95, United Keno Hill Mines^a.

wildlife benchmark exceeded

^a prepared using data from Sparling and Connor (1996)