

Memorandum

То	Alistair Kent	Page 1
сс	Project team	
Subject	Hydrogeological Field Investiga	tion Summary
From	Ryan Mills	
Date	December 3, 2009	Project Number 112359

Introduction

This memorandum summarizes the results of the hydrogeological field investigation conducted at the abandoned Mt. Nansen mine during the summer and fall of 2009. The purpose of this task was to collect field data to help refine the hydrogeological conceptual model and support water balance development. All interpretation of field data and a detailed description of the hydrogeological conceptual model are provided in a separate memo.

Key Objectives of Task

The key objectives of this task were to:

- Document drilling observations and survey all wells on site;
- Develop and sample groundwater wells in July and September;
- Conduct hydraulic conductivity testing of tailings, soil and bedrock;
- · Characterize groundwater seepage emanating from the north face of the pit; and
- Determine the physical properties of the tailings.

Task Methodology

The field methods for each of the tasks are summarized below:

Borehole Drilling and Groundwater Monitor Installation

An extensive drilling program was planned during the spring of 2009 and conducted between July 7th and July 21st, 2009. Geotech Drilling Ltd. supplied a track mounted Geoprobe 8040DT drill rig with air rotary, mud rotary and direct push drilling capabilities. It was also equipped with a split spoon sampling device and an automatic SPT hammer for geotechnical testing purposes. The same drill rig was utilized for the hydrogeological (AECOM), geotechnical (AECOM) and geochemical (Lorax) investigations. An additional hand held drill was utilized by Lorax to install shallow, narrow diameter wells within the tailings facility; but are not discussed within the context of this memo.

A total of 21 new monitoring wells were installed as part of the combined hydrogeological, geotechnical and geochemical investigations within and surrounding the tailings management area (TMA), north of the Brown-McDade open pit and downslope of the mill building. Additional boreholes were completed to facilitate thermistor installation on the downstream face of the dam as part of the geotechnical program and are discussed in a separate memo. Within the TMA and downstream of the mill building, all drilling was conducted using direct push drilling technology. Drilling on the downstream face of the main tailings dam and around the open pit was conducted using air rotary drilling combined with split spoon sampling within unconsolidated sediments.

Direct push drilling technology was utilized to drill all boreholes within the TMA and downstream of the mill to facilitate collection of continuous 3" (76 mm) soil cores. Boreholes drilled using direct push technology includes MW09-01, MW09-02, MW09-03, MW09-04, MW09-05, MW09-06, MW09-07, MW09-11, MW09-16, MW09-17, MW09-18 and MW09-19. All cores were brought to surface within acrylic liners, cut open and logged for geologic properties including density, colour, grain size, moisture, plasticity and cohesiveness. All geologic materials were then classified according to the Unified Soil Classification System. After logging each borehole, photographs of each run were taken and representative samples of material were collected and placed in labelled polyethylene bags for later testing.

Air rotary drilling technology combined with the ODEX casing system was used for all drilling downstream of the main dam crest and for all boreholes in the vicinity of the open pit including MW09-08, MW09-13, MW09-14, MW09-15, MW09-20, MW09-21, MW09-22, MW09-23 and MW09-24. Geotechnical boreholes GT09-01, GT09-02, GT09-03, GT09-04 and GT09-05 were also drilled in the same way. Drilling in unconsolidated sediments on the downstream face of the tailings dam was conducted using a 4" (102 mm) air rotary/ODEX bit to drill and case from surface down to the bottom of the borehole. Standard penetration tests were conducted at regular intervals and split spoon samples were collected for later analysis.

Surrounding the open pit, drilling through the unconsolidated sediments overlying bedrock was conducted using a 4" (102 mm) air rotary/ODEX bit. After setting the casing into competent bedrock, the ODEX drill bit was retrieved and a 3-7/8" (98 mm) open hole bedrock bit was used to drill the remainder of each borehole. Drilling was completed without injecting water whenever possible. A record of bedrock encountered during drilling was preserved in chip trays by collecting chip samples approximately every 2 feet (0.61 m).

Following completion of each borehole within the TMA (MW09-01, MW09-02, MW09-03, MW09-04, MW09-05, MW09-06 and MW09-07), a flush-threaded 2" (52 mm) schedule 40 PVC groundwater monitoring well was installed through the casing. In all cases, a standard 10 slot screen was wrapped in nylon (Nitex) mesh with an opening of 5 µm to restrict the movement of tailings into each well. Screen lengths and target installation depths were selected in conjunction with Lorax staff to ensure the geochemical and hydraulic information provided by each well was optimal. Whenever possible, the use of a sand filter pack was avoided and wells were allowed to naturally develop. However, this was not always possible and 10/20 quartz filter sand was used when necessary to backfill the borehole annulus surrounding the screen. Following installation of the filter pack, each borehole was grouted to surface using bentonite chips and a 6" (152 mm) protective PVC casing was installed at surface and backfilled with quartz sand and the well was labelled.

All monitoring wells installed elsewhere on site were completed by lowering conventional 2" (52 mm) flushthreaded PVC screen and riser pipe down the borehole and installing a 10/20 quartz filter pack. Either 10-slot or 20-slot screens were used depending on the nature of the surrounding geologic materials. After installing the filter pack to approximately 0.5 m above the top of the screen, a bentonite chip plug was installed and hydrated. After hydration of the bentonite plug above the screen, a bentonite grout mixture was prepared and pumped down the borehole using a Moyno pump until grout return was observed at surface. A protective lockable steel casing was then installed and set in concrete and the annulus between the PVC riser pipe and the steel casing was backfilled with quartz sand and the well was labelled.

To help identify the nature of interactions between groundwater and surface water, 14 mini-piezometers were installed within the Dome Creek and Pony Creek drainages and within the TMA. Some of the mini-piezometers (MP09-04, MP09-05, MP09-09, MP09-10, MP09-11 and MP09-12) were installed as 1.25" (32 mm) PVC monitoring wells by Rocky Mountain Soil Sampling using a portable gas-powered hammer under the supervision of Lorax staff. The remainder of the mini-piezometers (MP09-01, MP09-02, MP09-03, MP09-06, MP09-07, MP09-08, MP09-13 and MP09-14) were 1" (25 mm) Solinst stainless steel drive points installed by AECOM hydrogeologists using a slide hammer apparatus. All drive point piezometers were fitted with LDPE tubing to facilitate water level measurement and sampling using a peristaltic pump.

A summary of monitoring well and mini-piezometer completion details is provided in Tables 1 and 2 and borehole logs for all monitoring wells that were part of the hydrogeological and geotechnical investigation are

included in Appendix A. The location of all groundwater monitoring wells and mini-piezometers installed during the July 2009 field investigation are shown on Figure 1.

Surveying

Following completion of the drilling program, all boreholes, monitoring wells and other points of interest were surveyed using a Thales Promark differential GPS. Prior to conducting the survey, a base station was set up and the rover unit was initialized. In most cases, the survey was conducted in kinetic mode; however, static mode was used for more remote locations. At each monitoring well location, the ground surface elevation was surveyed immediately adjacent to the well and the well stickup was measured. Following completion of the survey, the data was post-processed to provide corrected orthometric elevations of the ground surface surrounding each groundwater monitoring well. The elevation of the top of each piezometer was then calculated using the surveyed ground elevation and the measured vertical stickup of each monitor. A summary of surveyed borehole and monitoring well co-ordinates is provided in Table 1.

Groundwater Sampling

Prior to groundwater sample collection, each monitoring well was developed to improve the hydraulic connection between the well and the aquifer and remove drill cuttings from the borehole. Generally, a surge block and inertial footvalve was installed on 5/8" (16 mm) HDPE tubing and lowered to just above the well screen. Pumping was initiated above the well screen and the assembly was slowly lowered deeper into the well. Where permeability of the surrounding formation was sufficient, a Waterra Hydrolift was used to provide continuous pumping. Each well was developed for approximately one hour and then allowed to recover. In some cases, additional development was conducted due to the presence of suspended sediment in purge water.

Following well development, groundwater samples were collected using inertial footvalve pumps for wells surrounding the mill, wells located on the downstream face of the tailings facility and wells located in the vicinity of the open pit. Select wells located within the TMA and on the downstream face of the dam where parameters sensitive to redox conditions were to be analyzed were purged until field parameters stabilized and sampled using low-flow bladder pumps. The majority of groundwater sampling within the TMA was conducted by Lorax staff. Static groundwater levels were collected prior to sample collection in both July and September 2009 and are presented in Tables 1 and 2.

Two sets of groundwater samples were collected, with the first set of groundwater samples collected during the second and third week of July 2009 and the second set of samples collected during the first week of September 2009. Field parameters including pH, conductivity and temperature were recorded prior to collecting each sample. Samples were collected in laboratory provided bottles and placed in coolers complete with ice packs for shipment to the ALS Environmental, a CAEAL accredited laboratory located in Vancouver, British Columbia for analysis. Groundwater samples collected as part of the hydrogeological investigation were analyzed for pH, conductivity, total dissolved solids, hardness, ammonia, nitrate, nitrite, dissolved anions, cyanide species, total organic carbon and dissolved metals. In addition to the above analyses, LEPH, HEPH and polycyclic aromatic hydrocarbons were analyzed in samples collected from wells downslope of the mill building as part of a preliminary contaminant investigation targeted at identifying whether any large scale fuel or cyanide spills were impacting groundwater on site. Dissolved metals samples were field filtered and preserved with nitric acid prior to shipment, while nutrient parameters were preserved with sulphuric acid and some cyanide species were preserved with sodium hydroxide. The remainder of the parameters were shipped to the laboratory unpreserved. The results of the analytical testing conducted in 2009 by AECOM and Lorax are summarized in Table 3. The original laboratory results are provided in Appendix B.

Soil Sampling

During installation of groundwater monitors MW09-15, MW09-16, MW09-17 and MW09-18 downslope of the mill building, soil samples were collected from the continuous soil cores brought to surface during direct push drilling for the purposes of hydrocarbon and metals analysis. Two soil sample jars were filled from discrete intervals at or near the water table to help identify the presence of any light non-aqueous phase liquid (LNAPL) or metal contamination as a result of any fuel or ore concentrate spills in the area surrounding the mill building.

All samples were collected by hand using latex gloves. Large rocks were removed from the soil prior to placing it in the sample jars. Following sampling, soil samples were placed in coolers complete with ice packs and shipped to ALS Environmental in Vancouver, British Columbia for analysis of LEPH, HEPH and metals. The soil analytical results are summarized in Table 4 and the original laboratory results are provided in Appendix B.

Hydraulic Conductivity Testing

In order to understand the permeability of the various overburden and bedrock units found on site, rising and falling head slug tests were conducted in MW09-02, MW09-03, MW09-06, MW09-15 and MW09-23. In each case, the static groundwater level was measured using an electronic water level tape and a Solinst pressure transducer attached to a direct read cable was installed to a pre-determined depth and programmed to record groundwater pressure and temperatures at 1 second intervals. After allowing the water level to re-equilibrate, a solid slug of known dimensions was lowered into the well to displace the water column. After the water level recovered to static water level, the solid slug was removed. After the water level had again recovered to static, the pressure transducer was downloaded and removed from the well. This process resulted in a pair of slug tests for each well consisting of one falling head test and one rising head test. All slug test data was analyzed using the Bouwer and Rice solution for an unconfined aquifer. The results of the slug test analyses are presented in Appendix C and summarized in Table 5.

Pit Seepage Characterization

During the July and September field programs, an attempt was made to characterize the volume and quality of seepage entering the north end of the Brown-McDade pit through one of the abandoned cross-cut drifts. During the July visit, the site was accessed by boat and inspected on July 13, 2009 by two AECOM hydrogeologists. At the time of inspection, the drift remained largely full of ice from the previous winter, but evidence of slow melting was observed in the form of small runoff channels in the surface of the ice. Occasional drips of water were also falling from the ceiling at the time of the site visit. During the September site visit, the drift was again inspected and ice was still present in the drift, with only occasional dripping from the drift ceiling which formed a small puddle on the drift floor. Unfortunately no direct measurements of flow into the pit could be made as a result of the ice blockage (July) and general lack of concentrated flow (both July and September). The presence of numerous north trending faults and the long-term weathering of bedrock has likely resulted in inflows to the pit that take place largely below ground surface and are thus, immeasurable. However, the presence of a large block of ice in the drift, dripping water from the drift ceiling and the presence of a large icing which forms on top of the resistant quartize beds above the drift every fall and early winter indicates an input of groundwater to the pit. The geologic structure north of the pit is well described by R. Strohshein in a memo dated August 21, 2009 (Appendix D). The input of groundwater to the pit is most likely the result of flow through the shallow active zone and along northerly trending faults that are exposed in the pit walls and are inferred to extend beneath the Pony Creek channel which provides a source of recharge to the shallow groundwater system.

Physical Characterization of Tailings

To provide an understanding of the physical properties of on site materials including the coarse and fine fractions of tailings and the dam foundation materials, several soil samples were collected from 3" (76 mm) Geoprobe acrylic liners employed during direct push drilling in the vicinity of the TMA. After the soil core was logged, sampling intervals were identified based on soil texture and an understanding of site geology. Each soil sampling interval was separated from the remainder of the core using a utility knife and slid into tared heavy duty polyethylene sample bags for weighing in the field. Each sample bag was labelled with borehole and sampling interval information as well as the sample weight. Because samples were only obtained from full sections of core (i.e., no core loss), the soil volume was known and a field wet density was calculated. The results of field density calculations are provided in Table 6.

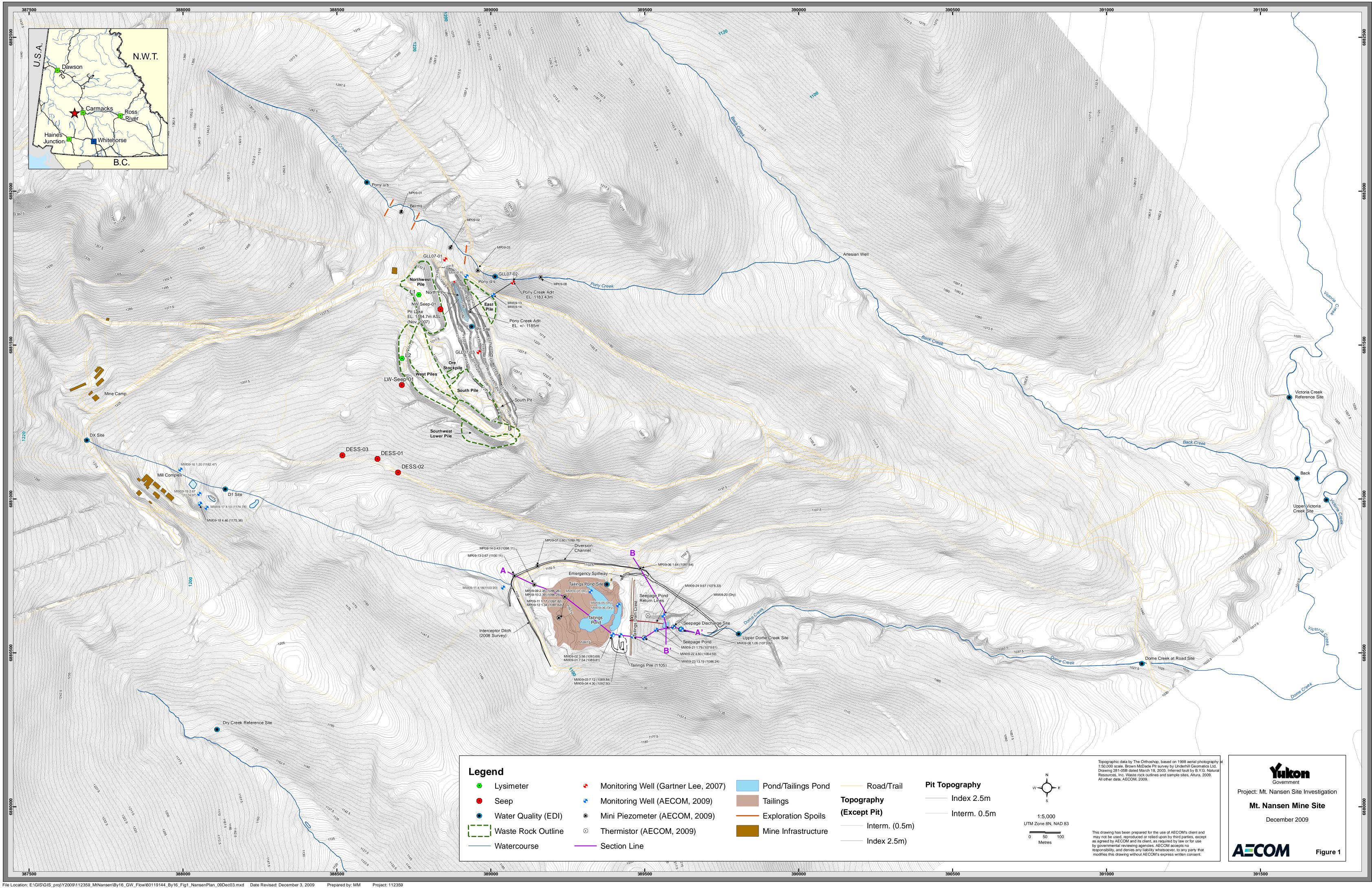
Following sample collection and measurement of field wet density, samples were shipped to MDH Engineered Solutions in Saskatoon, Saskatchewan for determination of grain size distributions, water contents, specific gravity, Atterberg limits and soil moisture characteristic curves, as appropriate. Original laboratory analytical certificates are provided in Appendix E.

Information Provided by Others

The following information, provided by others and/or in previous studies, was:

- Geological mapping of the area surrounding the Brown-McDade open pit and anecdotal information pertaining to groundwater inflows during mine operations was provided by Altura Environmental Consulting and Robert Stroshein; and
- Groundwater quality data for wells located within the TMA was provided by Lorax Environmental.

Key Results


The following sections describe the data and results obtained from the task:

- On site drilling observations were documented and all groundwater wells and mini-piezometers installed on site were surveyed using differential GPS to provide an accurate borehole location and elevation;
- All groundwater wells installed during July 2009 were developed and sampled in both July 2009 and September 2009;
- Hydraulic conductivity testing of tailings, soil and bedrock was conducted on wells MW09-02, MW09-03, MW09-06; MW09-15 and MW09-23;
- Several inspections of the north face of the Brown-McDade pit were conducted confirming that no observable groundwater seepage into the pit occurs above ground surface during the summer and early fall months. Seepage into the pit occurs through the shallow active layer in addition to the deep flow system below the regional water table; and
- The physical properties of the tailings and other sediments were determined based on sampling conducted as part of the July 2009 drilling program.

Attachments:

Figure 1	Mt. Nansen Mine Site Overview
Table 1	Summary of Groundwater Monitoring Well and Geotechnical Borehole Installation Details
Table 2	Summary of Mini-Piezometer Installation Details
Table 3	2009 Groundwater Quality Analytical Results
Table 4	2009 Soil Quality Analytical Results
Table 5	Permeability Testing Results
Table 6	Summary of Physical Soil Property Characterization
Appendix A	Borehole and Monitoring Well Logs
Appendix B	Laboratory Analytical Certificates
Appendix C	Permeability Testing Results
Appendix D	Open Pit Geological Considerations Memo
Appendix E	2009 Physical Soil Testing Analytical Results

RDM:mq Encl.

	Locat	ion		Elevat	ions				Depths			Water	Levels	Groundwat	er Elevations	
Station Name	Easting	Northing	Ground Surface Elevation	Top of Piezometer Elevation	Top of Screen Elevation	Bottom of Screen Elevation	Stickup	Borehole Depth Below Ground	Depth to Top of Screen Below Ground	Depth to Bottom of Screen Below Ground	Depth to Bottom of Well Below Top of Pipe	Jul-09	Sep-09	Jul-09	Sep-09	Comments
	m	m	m ASL	m ASL	m ASL	m ASL	m AGS	m BGS	m BGS	m BGS	m BTOP	m BTOP	m BTOP	m ASL	m ASL	
GT09-01	389459.00	6880612.00	1099.35	1100.37	N/A	N/A	1.03	30.09	N/A	N/A	31.12	N/A	N/A	N/A	N/A	
GT09-02	389498.00	6880549.00	1088.32	1089.13	N/A	N/A	0.80	16.77	N/A	N/A	17.57	N/A	N/A	N/A	N/A	Cross-ref. MW09-22
GT09-03	389510.00	6880620.00	1090.24	1091.11	N/A	N/A	0.88	19.81	N/A	N/A	20.73	N/A	N/A	N/A	N/A	
GT09-04	389593.00	6880583.00	1078.72	1079.55	N/A	N/A	0.83	16.23	N/A	N/A	16.93	N/A	N/A	N/A	N/A	Cross-ref. MW09-20
GT09-05	389591.00	6881551.00	1087.51	1088.08	N/A	N/A	0.57	19.81	N/A	N/A	20.43	N/A	N/A	N/A	N/A	Cross-ref. MW09-24
GLL07-01	388852.00	6881779.00	1210.46	1211.26	1199.79	1192.17	0.80	18.29	10.67	18.29	19.09	12.95	12.44	1198.31	1198.82	Borehole drilled in 2007, but PVC monitoring well installed in July 2009
GLL07-02	389071.00	6881706.00	1183.13	1184.51	1180.08	1177.35	1.38	5.78	3.05	5.78	7.16	dry	dry	<1177.352	<1177.352	
GLL07-03	388960.20	6881476.29	1184.84	1185.98	1175.94	1174.25	1.14	10.60	8.91	10.60	11.73	2.13	2.08	1183.85	1183.90	Borehole drilled in 2007, but PVC monitoring well installed in July 2009
MW09-01	389 394.6	6880 559.3	1096.25	1097.35	1086.80	1086.49	1.10	10.67	9.45	9.75	10.97	7.53	7.54	1089.82	1089.81	
MW09-02	389 395.7	6880 560.4	1096.28	1097.25	1093.24	1091.71	0.97	4.57	3.05	4.57	5.28	3.26	3.56	1093.99	1093.69	
MW09-03	389 421.1	6880 557.9	1096.15	1096.96	1088.07	1087.00	0.81	9.14	8.08	9.14	9.96	6.91	7.12	1090.05	1089.84	
MW09-04	389 421.0	6880 558.7	1096.02	1096.80	1090.53	1089.01	0.79	7.01	5.49	7.01	7.61	3.81	4.30	1092.99	1092.50	
MW09-05	389 413.4	6880 656.0	1095.26	1096.21	1089.48	1088.56	0.96	6.69	5.77	6.69	7.65	dry	dry	<1088.562	<1088.562	
MW09-06	389414.38	6880655.66	1095.32	1096.62	1093.63	1090.58	1.30	4.74	1.70	4.74	6.04	2.95	dry	1093.67	<1090.577	
MW09-07	389 324.2	6880 700.5	1095.75	1096.78	1093.65	1093.40	1.03	2.36	2.11	2.36	3.39	dry	dry	<1093.395	<1093.395	
MW09-08	389619.94	6880576.74	1073.94	1074.87	1072.63	1071.10	0.93	3.66	1.31	2.83	3.76	1.03	1.05	1073.84	1073.82	
MW09-11	389458.00	6880632.00	1107.31	1108.08	1104.62	1103.10	0.77	4.22	2.69	4.22	4.92	4.27	4.18	1103.81	1103.90	
MW09-13	389006.00	6881664.00	1208.11	1208.87	1178.24	1172.15	0.76	35.97	29.87	35.97	36.70	33.24	(frozen)	1175.64	#VALUE!	
MW09-14	389 008.2	6881 663.5	1207.85	1208.59	1202.37	1199.32	0.73	10.67	5.49	8.53	11.40	8.13 (frozen)	(frozen)	<1200.455	<1197.183	
MW09-15	388 920.5	6881 724.4	1206.82	1207.70	1172.84	1169.79	0.88	37.03	33.99	37.03	37.91	16.74	15.04	1190.96	1192.66	
MW09-16	387 992.2	6881 096.0	1182.81	1183.67	1182.55	1181.03	0.86	1.78	0.26	1.78	2.64	1.21	1.20	1182.46	1182.47	
MW09-17	388078.00	6880970.00	1178.03	1178.88	1174.67	1173.15	0.85	4.88	3.35	4.88	5.58	3.88	4.10	1175.00	1174.78	
MW09-18	388056.00	6880984.00	1178.93	1179.82	1172.84	1172.04	0.88	6.90	6.10	6.89	7.78	4.40	4.46	1175.41	1175.36	
MW09-19	388 052.5	6881 017.4	1176.84	1177.64	1173.26	1171.73	0.80	5.11	3.59	5.11	5.91	2.61	2.67	1175.03	1174.97	
MW09-20	389593.00	6880585.00	1078.64	1079.53	1077.39	1075.86	0.89	3.05	1.26	2.78	3.67	dry	dry	<1075.861	<1075.861	Cross-ref. GT09-04
MW09-21	389537.00	6880575.00	1080.68	1081.41	1079.36	1077.83	0.73	3.20	1.32	2.85	3.57	1.67	1.79	1079.74	1079.61	
MW09-22	389498.00	6880547.00	1088.34	1089.19	1085.48	1083.96	0.85	4.39	2.86	4.39	5.23	4.85	4.60	1084.34	1084.59	Cross-ref. GT09-02
MW09-23	389461.00	6880553.00	1098.52	1099.43	1085.04	1083.51	0.91	15.00	13.48	15.00	15.92	13.39	13.19	1086.04	1086.24	
MW09-24	389591.00	6881550.00	1087.33	1087.99	1081.27	1078.22	0.66	11.28	6.06	9.11	9.77	9.77	9.67	1078.22	1078.33	Cross-ref. GT09-05
TH09-01	389383.00	6880671.00	Not measured	No Well	No Well	No Well	No Well	5.18	No Well	No Well	No Well	No Well	No Well	N/A	No Well	

Table 1. Summary of Groundwater Monitoring Well and Geotechnical Borehole Installation Details

Notes: m BGS m AGS m ASL m BTOP

metres below ground surface metres above ground surface metres above mean sea level metres below top of PVC pipe

Table 2. Summary of Mini-Piezometer Installation Details

	Loca	ition		Eleva	tions				Depths				Wate	er Levels		
Station Name	Easting (NAD 83) m	Northing (NAD 83) m	Ground Surface Elevation m ASL	Top of Piezometer Elevation m ASL	Top of Screen Elevation m ASL	Bottom of Screen Elevation m ASL	Stickup m AGS	Borehole Depth Below Ground m BGS	Depth to Top of Screen Below Ground m BGS	Depth to Bottom of Screen Below Ground m BGS	Depth to Bottom of Well Below Top of Pipe m BTOP	Depth to Water below Top of Pipe July, 2009 m BTOP	Depth to Surface Water from Top of Pipe July 2009 m BTOP	Depth to Water below Top of Pipe Sept, 2009 m BTOP	Depth to Surface Water from Top of Pipe Sept, 2009 m BTOP	Comments
				-	_	_							_			
MP09-01	388707.00	6881933.00	1224.28	1225.73	1224.10	1223.80	1.45	N/A	0.18	0.48	1.63	1.13	1.12	1.02	1.08	Upper Pony Creek
MP09-02	388869.00	6881815.00	1204.86	1206.31	1204.66	1204.36	1.46	N/A	0.20	0.50	1.63	1.08	1.08	1.21	1.06	Upper Middle Pony Creek
MP09-03	388958.00	6881740.00	1196.22	1197.61	1195.92	1195.62	1.39	N/A	0.30	0.60	1.63	0.70	0.70	1.62	0.67	Lower Middle Pony Creek
MP09-04	-	-	-	-	-	-	1.30	N/A	0.84	1.75	3.05	2.26	Dry	Not measured	Dry	Seepage Pond North
MP09-05	-	-	-	-	-	-	0.99	N/A	0.31	0.61	1.83	1.40	Dry	1.43	Dry	Seepage Pond West
MP09-06	389 485.5	6880 774.0	1098.29	1099.28	1097.66	1097.36	0.99	N/A	0.63	0.93	1.63	dry	0.82	1.64	0.80	Div. Channel Bridge
MP09-07	389 151.6	6880 783.0	1099.51	1100.36	1098.66	1098.36	0.85	N/A	0.86	1.16	1.63	0.64	0.65	0.60	0.63	Div. Channel Reclaim
MP09-08	389160.00	6881722.00	1167.70	1168.81	1167.11	1166.81	1.11	N/A	0.59	0.89	1.63	0.68	0.89	0.66	0.88	Lower Pony Creek
MP09-09	389 240.2	6880 682.0	1097.20	1098.61	1093.14	1092.94	1.41	N/A	4.06	4.26	5.66	2.47	Dry	2.35	Dry	Tailings Pond North
MP09-10	389 240.4	6880 682.9	1097.23	1098.63	1093.37	1093.37	1.40	N/A	3.86	3.86	5.26	2.51	Dry	2.39	Dry	Tailings Pond North
MP09-11	389 220.7	6880 615.0	1097.78	1098.99	1094.30	1094.00	1.21	N/A	3.48	3.78	4.99	1.45	Dry	1.17	Dry	Tailings Pond South
MP09-12	389 220.7	6880 614.3	1097.78	1098.95	1095.01	1094.71	1.17	N/A	2.77	3.07	4.24	1.45	Dry	1.34	Dry	Tailings Pond South
MP09-13	389 076.6	6880 750.8	1099.94	1100.78	1099.57	1099.26	0.85	N/A	0.36	0.67	1.52	0.52	0.78	0.67	0.72	Div. Channel Dome Inlet
MP09-14	389 141.2	6880 721.6	1097.96	1098.54	1097.33	1097.03	0.58	N/A	0.63	0.93	1.51	0.77	dry	0.43	0.41	Tailings Pond North West

Notes:

m BGS metres below ground surface

m AGS metres above ground surface

m ASL metres above mean sea level

m BTOP metres below top of PVC pipe

Table 3. 2009 Groundwater Quality Analytical Results

																Groundwate	r Monitoring	a Wells														
Sample ID	GLL07-03	MW09-01	MW09-1	MW09-02	MW09-2	MW09-03	MW09-3		09-04	MW09-4	MWC		MW09-6	MW09-08	MW09-08	MW09-11	MW09-11	MW09-15	MW09-15	MW09-16	MW09-16	MW09-17	MW09-17	MWO		MW09-18	MW09-19		9-21	MW09-21	MW09-22	MW09-22
Date Sampled Time Sampled	1-Sep-09 00:00	12-Jul-09 00:00	3-Sep-09 00:00	12-Jul-09 00:00	3-Sep-09 00:00	11-Jul-09 00:00	3-Sep-09 00:00	11-Jul-09 00:00	11-Jul-09 00:00	3-Sep-09 00:00	13-Jul-09 00:00	13-Jul-09 00:00	3-Sep-09 00:00	8-Jul-09 00:00	1-Sep-09 00:00	22-Jul-09 00:00	2-Sep-09 00:00	14-Jul-09 00:00	1-Sep-09 00:00	19-Jul-09 00:00	1-Sep-09 00:00	19-Jul-09 00:00	1-Sep-09 00:00	19-Jul-09 00:00	19-Jul-09 00:00	1-Sep-09 00:00	1-Sep-09 00:00	21-Jul-09 00:00	21-Jul-09 00:00	1-Sep-09 00:00	22-Jul-09 00:00	1-Sep-09 00:00
ALS Sample ID	L814853-1	L791918-12			L815006-6			L791918-6	L791918-10	L815006-8	L791918-3	L791918-4	L815006-9	L796873-1	L814853-2	L796873-2	L814853-3	L796959-1	L814853-4	L796959-2	L814853-5	L796959-3	L814853-6	L796959-4	L796959-5	L814853-7	L814853-9	L796873-3	L796873-7	L814853-10	L796873-4	L814853-11
Matrix	Water	Water	Water	Water	Water	Water	Water	Water	Water	Water	Water	Water	Water	Water	Water	Water	Water	Water	Water	Water	Water	Water	Water	Water	Water	Water	Water	Water	Water	Water	Water	Water
Physical Tests Conductivity	1740		-	-	-	-	-	-	-	-	-	-	-	187	222	433	659	1010	937	1930	1770	2570	2570	2660	2660	2670	2470	1630	1640	1790	630	543
Hardness (as CaCO ₃)	1110	923	943	1390	1440	1470	1510	1410	1420	1480	1480	1490	1550	72.2	99.5	209	352	581	579	1210	1180	1760	1840	1830	1860	1920	1750	711	710	838	248	244
рН	5.66	-	-	-	-	-	-	-	-	-	-	-	-	7.5	6.92	7.96	7.78	7.08	7.28	7.38	7.23	7.74	7.42	7.71	7.71	7.47	7.16	7.1	7.17	6.67	7.12	6.92
Total Dissolved Solids Anions and Nutrients	1670		-	-	-	-	-	-	-	-	-	-	-	189	233	262	445	757	682	1650	1540	2380	2430	2490	2440	2560	2370	1230	1280	1420	389	378
Acidity (as CaCO ₃)	81.4	-	-	-	-	-	-	-	-	-	-	-	-	13.9	26.6	5.3	10.9	23.3	26.3	35.4	31.2	28.5	39.9	30.3	29.7	31.9	45.7	38.8	31.9	143	21.1	27.2
Alkalinity, Total (as CaCO ₃)	15.5	-	-	-	-	-	-	-	-	-	-	-	-	91.1	88.3	227	325	288	276	298	294	435	434	427	425	426	389	266	269	231	176	122
Ammonia as N	0.103	13.9	13.5	15.5	14	14.4	10.7	13.6	13.7	14.7	0.47	0.743	1.96	3.27	3.77	1.85	2.48	0.331	0.1	0.079	<0.020	0.229	< 0.020	0.041	0.066	0.021	2.24	6.3	12.1	17.9	6.65	4.37
Bromide (Br) Chloride (Cl)	<0.25 <2.5	<0.50 5.3	<5.0 <50	<0.50 <5.0	<2.5 <25	<0.50 <5.0	<1.0 <10	<0.50 <5.0	<0.50 <5.0	<1.0 <10	<0.50 <5.0	<0.50 <5.0	<1.0 <10	<0.50 <5.0	<0.25 <2.5	<0.050 3.23	0.05 4.9	<0.050 <0.50	<0.50 <5.0	<2.5 <25	<0.50 <5.0	<2.5 <25	<1.0 <10	<2.5 <25	<2.5 <25	<1.0 <10	<1.0 <10	<2.5 <25	<2.5 <25	<1.0 <10	<0.25 <2.5	<0.50 <5.0
Fluoride (F)	0.15	<0.20	0.076	0.43	0.729	0.57	0.56	0.4	0.53	0.68	<0.20	<0.20	<0.40	<0.20	<0.10	0.723	0.697	0.07	<0.20	0.152	<0.20	0.144	<0.40	0.143	0.122	<0.40	<0.40	0.057	0.059	<0.40	0.075	<0.20
Nitrate (as N) Nitrite (as N)	0.779 0.0544	<0.050 <0.010	<0.50 <0.10	<0.050 <0.010	<0.25 <0.050	7.07 0.694	7.15	<0.050 0.058	<0.050 0.085	<0.10 <0.020	0.401	0.197 0.375	<0.10 <0.020	<0.050 <0.010	<0.025 <0.0050	0.283	0.495	<0.0050 0.0027	<0.050 <0.010	<0.25 <0.050	0.201	<0.25 <0.050	0.3 <0.020	<0.25 <0.050	<0.25 <0.050	<0.10 <0.020	<0.10 <0.020	1.44 0.058	1.37 <0.050	<0.10 <0.020	4.79 0.0996	<0.050 <0.010
Sulfate (SO4)	529	646	<0.10 531	1730	<0.050	1700	1.14	1680	1650	1610	1400	1430	1450	<0.010	14.9	11	50.2	289	271	<0.050 934	832	1360	1400	<0.050	<0.050	1490	1340	617	<0.050	<0.020 818	126	156
Cyanides																													-			
Cyanide, Weak Acid Diss	-	0.0261	0.0209	0.326 0.547	0.0281	0.0305	0.0107	0.207	0.295	0.0239	< 0.0050	< 0.0050	<0.0050	<0.0050	<0.0050	<0.0050	<0.0050	-	-	<0.0050	<0.0050	<0.0050	<0.0050 <0.0050	<0.0050 <0.0050	<0.0050 <0.0050	<0.0050	<0.0050 0.0146	0.0331	0.0209	0.0169	<0.0050	< 0.0050
Cyanide, Total Cyanate (CNO)	-	<1.8	0.0525	0.547	4.7	0.254 <1.8	0.298	<1.8	<1.8	0.0425 5.9	0.0083 <0.50	0.0062 <0.50	<0.0050 <0.50	0.0542 <1.6	0.0104	<0.0050 <1.6	<0.0050 <0.50	-	-	<0.0050 <1.8	<0.0050 <0.50	<0.0050 <0.50	< 0.0050	< 0.0050	<0.0050	< 0.0050	5.75	0.0504 5	0.0465 6.9	0.0293 20.7	0.0165 <1.6	0.0102
Thiocyanate (SCN)	0.82	35	27.1	5.56	3.11	1	1.1	3.05	2.99	1.21	0.69	0.68	0.71	-	5.8	-	1.03	-	0.93	-	1.16	-	1.35	-	-	1.23	1.25	-	-	1.98	-	1.2
Organic / Inorganic Carbon Total Organic Carbon	1.27	41.4	66.8	7.48	6.00	10.2	8.8	7.67	7.22	5.16	6.05	5.87	6.05		23.3		26.2	_	4.62		3.67		5.01			2.89	80.8	_		42.5	_	13.7
Dissolved Metals	1.27	41.4	0.00	7.40	6.23	10.2	0.0	1.07	1.22	5.10	0.05	5.67	0.05	-	20.0	-	20.2		4.02	-	3.07		5.01	-		2.09	00.0	-		42.3		13.7
Aluminum (Al)-Dissolved	1.39	0.0696	0.0812	< 0.0050	< 0.010	0.0116	< 0.010	< 0.0050	< 0.0050	< 0.010	< 0.010	< 0.010	< 0.010	0.118	0.098	< 0.0050	< 0.0050	< 0.025	< 0.010	< 0.025	< 0.025	< 0.025	< 0.025	< 0.025	< 0.025	< 0.050	< 0.025	0.158	0.15	0.152	0.0332	0.0982
Antimony (Sb)-Dissolved Arsenic (As)-Dissolved	<0.0050 <0.0050	0.0124	0.00404 0.215	0.0235	0.0068	0.33 3.08	0.439 3.29	0.434 2.99	0.486	0.484 4.06	0.72	0.838	0.591 0.868	<0.00050 0.178	<0.00050 0.284	<0.00050 0.0182	<0.00050 0.0239	0.0178	0.0023	0.175	0.102	<0.0025 0.0119	<0.0025 0.0128	<0.0025 0.0382	<0.0025 0.0423	<0.0050 0.0526	<0.0025 0.0834	<0.0025 0.0329	<0.0025 0.0341	<0.0025 0.0443	<0.00050 0.014	<0.00050 0.0368
Barium (Ba)-Dissolved	<0.0050	0.0923	0.215	0.0165	0.0138	0.0652	0.0523	0.0105	0.011	0.00834	0.274	0.00598	0.00564	0.178	0.284	0.169	0.0239	<0.020	<0.020	0.034	<0.020	<0.020	<0.020	<0.0382	<0.0423	<0.020	0.0834	0.0329	0.0341	0.426	0.157	0.0366
Beryllium (Be)-Dissolved	<0.010	<0.0025	<0.0025	<0.0025	<0.0050	<0.0025	<0.0050	<0.0025	<0.0025	<0.0050	<0.0050	<0.0050	<0.0050	<0.0010	<0.0010	<0.0010	<0.0010	<0.0050	<0.0020	<0.0050	<0.0050	<0.0050	<0.0050	<0.0050	<0.0050	<0.010	<0.0050	<0.0050	<0.0050	<0.0050	<0.0010	<0.0010
Bismuth (Bi)-Dissolved Boron (B)-Dissolved	<0.20 <0.10	<0.0025 0.055	<0.0025 0.051	<0.0025 <0.050	<0.0050 <0.10	<0.0025 0.231	< 0.0050	<0.0025 0.151	<0.0025 0.152	<0.0050 0.23	<0.0050 0.24	<0.0050 0.28	<0.0050 0.36	<0.20 <0.10	<0.20 <0.10	<0.20 <0.10	<0.20 <0.10	<0.20 <0.10	<0.20 <0.10	<0.20 0.27	<0.20 0.19	<0.20 0.27	<0.20 0.16	<0.20 <0.10	<0.20 <0.10	<0.20 <0.10	<0.20 0.4	<0.20 <0.10	<0.20 <0.10	<0.20 <0.10	<0.20 <0.10	<0.20 <0.10
Cadmium (Cd)-Dissolved	0.436	<0.00085	<0.00085	0.000278	0.00019	0.231	0.28		0.000364	<0.00017	0.24	0.28	0.00827	<0.00017	<0.00017	<0.10	0.000038	0.00754	0.000758	0.27	0.19	<0.00085	<0.00085	<0.00085	<0.00085	<0.0017	0.4 <0.00085	<0.10	<0.10	<0.10	0.000109	0.000077
Calcium (Ca)-Dissolved	336	274	293	487	488	477	493	484	484	489	528	527	548	21.8	30.9	39.3	65.5	157	158	276	273	327	350	352	355	375	373	247	247	293	91.6	89.9
Chromium (Cr)-Dissolved Cobalt (Co)-Dissolved	<0.010 0.0144	0.0036	< 0.0070	< 0.0025	< 0.0050	< 0.0025	< 0.0050	< 0.0025	< 0.0025	<0.0050 0.0051	<0.0050 0.0056	<0.0050 0.0057	<0.0050 0.0038	0.0017	<0.0020 0.00147	<0.0010 0.00169	<0.0010 0.00096	<0.0050 <0.0015	<0.0020 0.00076	< 0.0050	<0.0050 <0.0015	<0.0050 <0.0015	<0.0050 <0.0015	<0.0050 <0.0015	<0.0050 <0.0015	<0.010	<0.0050 <0.0015	< 0.0050	< 0.0050	<0.0050 0.026	<0.0010 0.0134	<0.0020 0.0123
Copper (Cu)-Dissolved	0.0144	0.011	0.011	0.02	0.0122	0.0123 0.0006	0.0091 0.0018	0.00819 0.0006	0.00875	<0.0051	0.0058	0.0057	0.0038	<0.00145	<0.00147	<0.00189	<0.00096	<0.0015	<0.00076	0.002	0.0105	<0.0015	<0.0015	<0.0015	<0.0015	<0.0030 <0.010	<0.0015	0.0268	0.0272	<0.026	0.0036	0.00123
Iron (Fe)-Dissolved	11.6	57.1	66.4	4.85	9.46	0.118	0.126	<0.030	<0.030	<0.030	<0.030	<0.030	<0.030	31.9	40.7	0.596	1.52	0.192	1.58	0.389	0.331	<0.030	<0.030	<0.030	<0.030	<0.030	30.4	19	18.7	66.4	3.46	14.6
Lead (Pb)-Dissolved	0.0114	0.00255	0.00044	<0.00025	<0.00050	0.00041	<0.00050		<0.00025	<0.00050	<0.00050	<0.00050	0.00087	< 0.00050	<0.00050	<0.00050	<0.00050	0.0171	0.0059	0.0364	0.0284	<0.0025	<0.0025	< 0.0025	<0.0025	<0.0050	<0.0025	<0.0025	<0.0025	<0.0025	<0.00050	<0.00050
Lithium (Li)-Dissolved Magnesium (Mg)-Dissolved	<0.050 66.4	<0.025 57.9	<0.025 51.7	<0.025 43.3	<0.050 53.2	<0.025 68.9	<0.050 69	<0.025 50.2	<0.025 50.6	<0.050 62.7	<0.050 38.6	<0.050 41.4	<0.050 44	<0.0050 4.3	<0.0050 5.45	<0.0050 26.9	<0.0050 45.8	<0.025 45.7	<0.010 44.5	<0.025 126	<0.025 120	<0.025 230	<0.025 235	<0.025 231	<0.025 236	<0.050 240	<0.025 200	<0.025 22.9	<0.025 22.5	<0.025 26.1	<0.0050 4.57	<0.0050 4.84
Manganese (Mn)-Dissolved	10.5	6.16	6.05	21.8	23.7	0.555	0.761	4.94	3.31	3.32	12.6	17.1	14	2.09	2.32	0.987	1.42	0.905	0.681	0.389	0.208	0.0164	0.0096	0.349	0.409	0.427	1.97	7.52	7.66	6.73	3.88	3.2
Mercury (Hg)-Dissolved Molybdenum (Mo)-Dissolved	<0.00020	- 0.00292	- 0.00121	- 0.0135	- 0.00974	- 0.0229	- 0.0128	- 0.0122	- 0.0116	- 0.0105	- 0.0075	- 0.00899	- 0.00899	<0.00020	<0.00020	<0.000020	<0.000020	<0.00020	<0.00020	<0.00020	<0.00020	<0.00020	<0.000020 <0.0050	<0.00020 <0.0050	<0.00020	<0.000020 <0.010	<0.000020	<0.00020	<0.00020	<0.00020	<0.000020	<0.000020 <0.0010
Nickel (Ni)-Dissolved	0.014	0.00292	0.00121	0.0029	< 0.00574	<0.0229	<0.0050	<0.0025	<0.0025	< 0.0050	0.0075	0.00899	0.00599	<0.0010	<0.0010	0.0033	0.0079	<0.0050	<0.0020	0.0071	<0.0050	<0.0050	< 0.0050	< 0.0050	<0.0050	<0.010	<0.0050	<0.0050	<0.0050	<0.0050	0.0096	0.0092
Phosphorus (P)-Dissolved	<0.30	<0.30	<0.30	<0.60	<0.30	<0.30	<0.30	<0.30	<0.30	<0.30	<0.30	<0.30	<0.30	<0.30	<0.30	<0.30	<0.30	<0.30	<0.30	<0.30	<0.30	<0.30	<0.30	<0.30	<0.30	<0.30	0.41	<0.30	<0.30	<0.30	<0.30	<0.30
Potassium (K)-Dissolved	2.1	8.4	9	43.9	51.8	28.5	31	40.6	44	44 <0.00050	10.7 <0.00050	11.2 <0.00050	11.4 <0.00050	<2.0	<2.0	3.2	4.2	<2.0	<2.0 <0.0020	6.5	6.4	7.2	7.5 <0.0050	6.9 <0.0050	7.1	7.1 <0.010	4.9 <0.0050	8.2 <0.0050	8.1 <0.0050	9.4 <0.0050	5.7 <0.0010	4.4 <0.0010
Selenium (Se)-Dissolved Silicon (Si)-Dissolved	<0.010 4.92	<0.00050 5.79	<0.00050 6.65	<0.00050 5.19	<0.00050 5.36	<0.00050 4.62	<0.00050 5.29	<0.00050 10.2	<0.00050 10.1	9.61	7.58	7.42	7.43	<0.0010 8.28	<0.0010 8.72	0.001 5.5	<0.0010 6.03	<0.0050 5.85	6.32	<0.0050 5.29	<0.0050 5.28	<0.0050 4.74	4.75	<0.0050 4.8	<0.0050 4.87	4.85	<0.0050 7.6	<0.0050	<0.0050 5.61	<0.0050	4.69	5.51
Silver (Ag)-Dissolved	<0.00020	<0.000050	<0.000050	<0.000050	0.00014	<0.000050	0.00012	<0.000050	0.000071	<0.00010	<0.00010	<0.00010	<0.00010	< 0.000020	< 0.000020	<0.000020	< 0.000020	<0.00010	<0.000040	<0.00010	<0.00010	<0.00010	<0.00010	<0.00010	<0.00010	<0.00020	<0.00010	<0.00010	<0.00010	<0.00010	<0.000020	<0.000020
Sodium (Na)-Dissolved Strontium (Sr)-Dissolved	8 0.354	76.2	81.9 1.03	183 0.9	123 1.08	149 1.08	72.7	101 1.03	109 1.06	55.9 1.14	24.6 0.847	26.9 0.892	28.4 1.02	4.1 0.106	3.8 0.14	15.3 0.376	20.1 0.637	7.7	6.9 1.32	18.9 0.67	9 0.596	10.8 0.972	11 0.99	10 0.981	10.2 1	10.5 1.01	14 1.01	102 0.927	99.4 0.906	73.1	25.6 0.341	15.4 0.286
Thallium (TI)-Dissolved	<0.0020	<0.00050	<0.00050	<0.00050	< 0.0010	<0.00050	<0.0010	<0.00050	< 0.00050	<0.0010	<0.0010	<0.0010	<0.0010	< 0.00020	<0.00020	<0.00020	<0.00020	<0.0010	<0.00040	<0.0010	<0.0010	<0.0010	<0.0010	< 0.0010	<0.0010	<0.0020	<0.0010	<0.0010	<0.0010	<0.0010	<0.00020	<0.00020
Tin (Sn)-Dissolved	<0.0050	<0.00050	<0.00050	<0.00050	<0.0010	<0.00050	<0.0010	<0.00050	<0.00050	<0.0010	<0.0010	<0.0010	<0.0010	<0.00050	< 0.00050	<0.00050	<0.00050	<0.0025	<0.0010	<0.0025	<0.0025	<0.0025	<0.0025	<0.0025	<0.0025	<0.0050	<0.0025	<0.0025	<0.0025	<0.0025	<0.00050	<0.00050
Titanium (Ti)-Dissolved Uranium (U)-Dissolved	0.014	0.01	<0.010	0.026	<0.010 0.00048	<0.010 0.00514	<0.010 0.00513	<0.010 0.000486	<0.010 0.000501	<0.010 0.00015	<0.010 0.00489	<0.010 0.00501	<0.010 0.00309	<0.010 <0.00020	<0.010 <0.00020	<0.010 0.00273	<0.010 0.00346	0.011	0.011 0.0128	0.013	0.013 0.0029	0.014 0.007	0.014 0.007	0.015	0.014 0.007	0.014 0.0075	0.015	0.019	0.018	0.019 0.001	<0.010 0.00067	0.011 0.00071
Vanadium (V)-Dissolved	<0.0020	0.00209	0.0012	< 0.0050	< 0.010	< 0.00514		< 0.000480	< 0.0050	< 0.010	< 0.010	<0.00001	<0.010	0.0059	0.00020	0.00273	0.00346	< 0.0050	<0.0020	< 0.0050	< 0.0029	<0.007	< 0.007	<0.0050	<0.007	<0.0075	<0.0010	0.0018	0.0010	0.0064	0.00007	0.0044
Zinc (Zn)-Dissolved	23.2	0.0307	0.0094	0.197	0.462	<0.0050	<0.010	<0.0050	<0.0050	<0.010	0.123	0.129	0.121	<0.0050	0.0117	<0.0050	<0.0050	0.437	0.233	4.44	3.66	<0.0050	<0.0050	<0.0050	<0.0050	<0.0050	<0.0050	0.0099	0.0104	0.0076	<0.0050	<0.0050
Hydrocarbons EPH10-19		_	-	_	-	_	_		_	_	_	-			_					<0.25		<0.25	-	<0.25	<0.25							
EPH19-32	-		-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	<0.25	-	<0.25	-	<0.25	<0.25	-	-	-	-	-	-	-
LEPH	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	<0.25	-	<0.25	-	< 0.25	<0.25	-	-	-	-	-	-	-
HEPH Polycyclic Aromatic Hydrocarbons	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	<0.25	-	<0.25	-	<0.25	<0.25	-	-	-	-	-	-	-
Acenaphthene	-	-	-	-	-	-	-	-		-	-	-	-	-	-	-	-	-	-	<0.000050		<0.000050		<0.000050	< 0.000050	-	-	-	-	-		-
Acenaphthylene	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	< 0.000050	-	< 0.000050		< 0.000050	< 0.000050	-	-	-	-	-	-	-
Acridine Anthracene	-		-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	<0.000050 <0.000050	-	<0.000050 <0.000050		<0.000050 <0.000050	<0.000050 <0.000050	-	-	-	-	-		-
Benz(a)anthracene	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-		<0.000050	-	<0.000050		<0.000050	<0.000050	-	-	-	-	-		-
Benzo(a)pyrene	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	< 0.000010	-	< 0.000010		< 0.000010	< 0.000010	-	-	-	-	-	-	-
Benzo(b)fluoranthene Benzo(g,h,i)perylene	-		-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	<0.000050 <0.000050	-	<0.000050 <0.000050		<0.000050 <0.000050	<0.000050 <0.000050	-	-	-	-	-		
Benzo(g,n,)perylene Benzo(k)fluoranthene	-		-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-		<0.000050	-	<0.000050		<0.000050	<0.000050	-	-	-	-	-	-	-
Chrysene	-		-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	< 0.000050	-	< 0.000050	-	< 0.000050	< 0.000050	-	-	-	-	-	-	-
Dibenz(a,h)anthracene Fluoranthene	-		-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	<0.000050 <0.000050	-	<0.000050 <0.000050		<0.000050 <0.000050	<0.000050 <0.000050	-	-	-	-	-		-
Fluoranthene	-	-	-	-	-	-	-	-		-	-	-	-	-	-	-	-	-	-	<0.000050	-	<0.000050		<0.000050	<0.000050	-	-	-	-	-	-	-
Indeno(1,2,3-c,d)pyrene	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-		<0.000050	-	<0.000050		<0.000050	<0.000050	-	-	-	-	-	-	-
2-Methylnaphthalene Naphthalene	- 1	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-		-	-	- <0.000050	-	- 1	-	-	-	-	-	
Phenanthrene	-			-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	<0.000050		<0.000050		<0.000050	<0.000050	-	-	-	-	-	-	-
Pyrene	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-		< 0.000050		< 0.000050	-	<0.000050	< 0.000050	-	-	-	-	-	-	-
Quinoline	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	< 0.000050	-	< 0.000050	-	< 0.000050	< 0.000050	-	-	-	-	-	-	-
d10-Acenaphthene (SS) d9-Acridine (SS)	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	93 90	-	97 92	-	98 92	96 89	-	-	-	-	-	-	-
d12-Chrysene (SS)		-	· -	-	-		-			-	-	-	-	-		-	-	-	-	89		92	-	92	90	-	-	-	-	-	-	-
urz-oniyaene (00)																																
d8-Naphthalene (SS) d10-Phenanthrene (SS)	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	87 94	-	93 97	-	93 97	83 97	-	-	-	-	-	-	-

Table 3. 2009 Groundwater Quality Analytical Results

r	1			A									-				i
Sample ID	MW09-23	MW09-23	MW09-23	Nonitoring Wells MW09-24	MW09-24	MW09-26	MP09-04	MP09-05	MP09-5	MP09-09	MP09-09	lini-Piezometer MP09-10	s MP09-10	MP09-11	MP09-11	MP09-12	MP09-12
Date Sampled	21-Jul-09	1-Sep-09	3-Sep-09	22-Jul-09	1-Sep-09	1-Sep-09	13-Jul-09	13-Jul-09	3-Sep-09	12-Jul-09	2-Sep-09	12-Jul-09	2-Sep-09	11-Jul-09	2-Sep-09	12-Jul-09	2-Sep-09
Time Sampled	00:00	00:00	00:00	00:00	00:00	00:00	00:00	00:00	00:00	00:00	00:00	00:00	00:00	00:00	00:00	00:00	00:00
ALS Sample ID	L796873-5	L814853-12	L815006-10	L796873-6	L814853-13	L814853-14	L791918-1	L791918-2	L815006-11	L791918-11	L815006-1	L791918-9	L815006-2	L791918-7	L815006-3	L791918-8	L815006-4
Matrix	Water	Water	Water	Water	Water	Water	Water	Water	Water	Water	Water	Water	Water	Water	Water	Water	Water
Physical Tests																	
Conductivity	1930	1890	-	564	378	666	-	-	-	-	-	-	-	-	-	-	-
Hardness (as CaCO ₃)	1020	1030	1070	297	197	355	377	684	693	415	382	210	196	722	607	709	668
pH Total Dissolved Solids	7.5 1630	7.3 1610		7.75 364	7.69 255	7.85 434	-	-	-	-	-	-	-	-	-	-	-
Anions and Nutrients	1030	1010	-	304	200	434	-	-	-		-	-	-	-	-	-	
Acidity (as CaCO ₃)	21	24.4	-	7.5	5.9	9.1	-	-	-		-	-	-	-	-	-	-
Alkalinity, Total (as CaCO ₃)	269	247	-	210	107	317	-	-	-	-	-	-	-	-	-	-	-
Ammonia as N	9.49	8.73	9.27	0.032	<0.020	2.43	0.843	8.17	8.06	9.6	8.5	2.94	2.65	1.7	1.6	1.92	1.98
Bromide (Br)	<2.5	<0.50	<1.0	< 0.050	< 0.050	0.05	< 0.050	<0.50	< 0.50	< 0.050	<0.50	< 0.050	<0.50	<0.50	<0.50	<0.50	< 0.50
Chloride (Cl)	<25	<5.0	<10	0.76	<0.50	4.96	<0.50	<5.0	6.6	1.96	6.5	1.6	<5.0	11.2	8.5	<5.0	6.3
Fluoride (F)	0.058	<0.20	<0.40	<0.020	0.032	0.711	<0.020	<0.20	<0.20	0.568	0.64	1.5	1.67	0.197	0.218	<0.20	0.2
Nitrate (as N)	< 0.25	< 0.050	<0.10	2.2	2.52	0.544	9.55	15.2	5.7	< 0.0050	< 0.050	0.026	< 0.050	< 0.050	< 0.050	< 0.050	< 0.050
Nitrite (as N) Sulfate (SO4)	<0.050 879	<0.010 916	<0.020 976	0.0092 86.6	0.0016 81.7	0.0271 51.4	0.0264 297	0.028 634	0.119 530	<0.0010 136	<0.010 179	0.0019 263	<0.010 237	<0.010 <5.0	<0.010 <5.0	<0.010 79	<0.010 59.9
Cyanides	879	910	970	80.0	01.7	51.4	291	034	530	130	175	203	237	<5.0	<5.0	15	39.9
Cyanide, Weak Acid Diss	0.107	0.019	0.0583	<0.0050	< 0.0050	<0.0050	<0.0050	0.0149	0.0171	< 0.0050	0.0335	0.627	0.964	0.0124	0.0099	< 0.0050	< 0.0050
Cyanide, Total	0.419	0.0324	0.0729	0.012	0.0119	0.0074	<0.0050	0.02	0.0219	<0.0050	0.125	2.69	2.96	0.0591	0.0747	0.0326	0.0387
Cyanate (CNO)	3.5	2.34	3	<0.50	<0.50	<0.50	<0.50	0.87	3.42	<0.50	<0.60	2.1	0.54	<0.50	0.54	<0.50	<0.50
Thiocyanate (SCN)	-	3.72	5.86	-	<0.50	1.04	0.5	1.11	1.62	1.6	1.96	3.39	3.2	4.3	4.46	2.37	2.89
Organic / Inorganic Carbon Total Organic Carbon		18.8	18.1	-	4.18	26.8	5.24	15.2	24.3	32	35.4	49.2	48.5	164	142	45.2	55.9
Dissolved Metals	-	10.0	10.1	-	4.10	20.0	0.24	10.2	24.3	32	33.4	43.2	40.0	104	142	40.2	55.9
Aluminum (AI)-Dissolved	0.033	0.037	0.039	< 0.0050	<0.0050	<0.0050	0.0037	0.015	0.0198	0.0045	0.0023	<0.0050	<0.010	0.0353	0.0244	0.0058	0.0052
Antimony (Sb)-Dissolved	< 0.0025	<0.0025	<0.00050	<0.00050	<0.00050	<0.00050	0.00055	<0.00050	<0.00050	0.108	0.109	0.163	0.178	0.00148	0.00098	0.0653	0.0707
Arsenic (As)-Dissolved	0.01	0.0137	0.00912	0.00117	0.00102	0.0235	0.00105	0.00132	0.00355	6.58	5.73	24.9	24.2	1.16	1.33	7.56	9.27
Barium (Ba)-Dissolved	0.089	0.064	0.0683	0.077	0.056	0.315	0.0435	0.0441	0.044	0.0137	0.013	0.00475	0.00361	0.139	0.158	0.053	0.047
Beryllium (Be)-Dissolved	< 0.0050	<0.0050	<0.0025 <0.0025	<0.0010	<0.0010	<0.0010	<0.0010	<0.0025	<0.0025 <0.0025	<0.0010 <0.0010	<0.0010	<0.0025	<0.0050	<0.0010	<0.0010	<0.0025	< 0.0025
Bismuth (Bi)-Dissolved Boron (B)-Dissolved	<0.20 0.14	<0.20 0.14	<0.0025 0.152	<0.20 <0.10	<0.20 <0.10	<0.20 <0.10	<0.0010 0.076	<0.0025 0.073	<0.0025	<0.0010 <0.020	<0.0010 <0.020	<0.0025 <0.050	<0.0050 <0.10	<0.0010 0.027	<0.0010 0.027	<0.0025 0.119	<0.0025 0.114
Cadmium (Cd)-Dissolved	0.000184	0.000126	0.000132	0.000055	0.000034	0.000035	0.0028	0.00227	0.00239	0.000134	0.000166	0.000489	0.00089	0.000458	0.000229	0.00091	0.000546
Calcium (Ca)-Dissolved	327	332	353	88.7	60.4	65.8	121	237	232	122	115	80.6	76	147	129	195	185
Chromium (Cr)-Dissolved	< 0.0050	<0.0050	<0.0025	<0.0010	<0.0010	<0.0010	<0.0010	<0.0025	<0.0025	<0.0010	<0.0010	<0.0025	<0.0050	<0.0080	<0.0070	< 0.0035	<0.0025
Cobalt (Co)-Dissolved	0.0189	0.0171	0.017	0.00063	0.00063	0.00097	0.00153	0.0214	0.0211	0.00828	0.00954	0.0834	0.0896	0.0033	0.00276	0.00215	0.00208
Copper (Cu)-Dissolved	< 0.0050	< 0.0050	<0.00050	0.0085	0.0057	<0.0010	0.00513	0.0267	0.0324	0.0152	< 0.015	0.732	0.725	0.00107	0.00075	0.00199	0.00102
Iron (Fe)-Dissolved Lead (Pb)-Dissolved	3.86 <0.0025	7.93 <0.0025	5.55 <0.00025	<0.030 <0.00050	<0.030 <0.00050	1.45 <0.00050	<0.030 <0.00010	<0.030 <0.00025	0.346	0.192 0.00104	0.16 0.00077	0.381	0.496	8.55 0.00166	8.1 0.00023	0.661 0.00285	1.03 0.00404
Lithium (Li)-Dissolved	<0.025	<0.025	<0.025	<0.00050	<0.00050	<0.0050	<0.010	<0.025	<0.025	<0.010	<0.010	<0.0212	<0.050	<0.010	<0.010	<0.0285	< 0.025
Magnesium (Mg)-Dissolved	50.1	47.8	47.2	18.4	11.3	46.4	18	22.5	28	26.7	23	2.05	1.49	86.3	69	53.7	50.1
Manganese (Mn)-Dissolved	6.69	6.06	6.88	0.0115	0.00267	1.38	5.25	8.6	9.04	0.81	0.679	0.349	0.26	2.67	2.03	3.83	3.3
Mercury (Hg)-Dissolved	<0.000020	<0.000020		<0.000020	<0.000020	<0.000020	-	-	-	-	-	-	-	-	-	-	-
Molybdenum (Mo)-Dissolved	< 0.0050	< 0.0050	0.00252	< 0.0010	<0.0010	0.0078	0.00035	0.00049	0.00034	0.0148	0.0151	0.0139	0.0123	0.0223	0.0246	0.021	0.0235
Nickel (Ni)-Dissolved Phosphorus (P)-Dissolved	<0.0050 <0.30	<0.0050 <0.30	<0.0025 <0.30	<0.0010 <0.30	<0.0010 <0.30	0.0028	0.0064 <0.30	0.0068	0.0097 <0.30	0.0049 0.73	0.0084	0.0413	0.0367 0.54	0.0151 0.43	0.016	0.0127 <0.30	0.0133 <0.30
Potassium (K)-Dissolved	15.5	14.4	15.6	<2.0	<2.0	4.3	4.1	7.2	7.4	34.3	32	12.9	12.6	2.5	2.5	6.3	6.6
Selenium (Se)-Dissolved	<0.0050	<0.0050	<0.00050	<0.0010	<0.0010	<0.0010	<0.00050	<0.00050	<0.00050	0.00053	0.0006	0.00191	0.00259	0.00124	0.00111	<0.00050	0.00065
Silicon (Si)-Dissolved	5.35	5.69	5.33	5.74	5.62	6.06	9.19	3.94	5.07	22.8	22.7	16.2	15.9	13.5	12	16.1	16.7
Silver (Ag)-Dissolved	<0.00010	<0.00010	0.00128	<0.000020	<0.000020	<0.000020	<0.000020	<0.000050	<0.000050	0.000166	0.000079	0.0196	0.0285	0.000061	0.000068	<0.000050	< 0.000050
Sodium (Na)-Dissolved	59.5	56.9	80.9	9.2 0.467	8.7	20.3	21.2	92.8 0.706	79	34.8	36.8	105	106	44.6	39.1	41.4	40.1
Strontium (Sr)-Dissolved Thallium (TI)-Dissolved	0.736	0.698 <0.0010	0.752	<0.00020	0.295	0.645	0.299	< 0.00050	0.679 <0.00050	0.766	0.731 <0.00020	0.253	0.233	0.694	0.582	0.655	0.633
Tin (Sn)-Dissolved	<0.0025	<0.0025	<0.00050	<0.00050	< 0.00050	<0.00050	<0.00020	<0.00050	<0.00050	<0.00020	<0.00020	<0.00050	<0.0010	<0.00020	<0.00020	<0.00050	<0.00050
Titanium (Ti)-Dissolved	0.015	0.016	< 0.010	<0.010	< 0.010	< 0.010	<0.010	<0.010	<0.010	<0.010	< 0.010	<0.010	<0.010	0.014	< 0.010	< 0.010	<0.010
Uranium (U)-Dissolved	0.0023	0.0015	0.00157	0.00252	0.00058	0.00341	0.000252	0.00125	0.00133	0.00587	0.00337	0.00111	0.00077	0.000697	0.000211	0.0042	0.00384
Vanadium (V)-Dissolved	< 0.0050	< 0.0050	< 0.0050	< 0.0010	< 0.0010	0.0017	<0.0020	<0.0050	< 0.0050	< 0.0020	<0.0020	< 0.0050	< 0.010	0.0716	0.0507	0.0053	< 0.0050
Zinc (Zn)-Dissolved Hydrocarbons	<0.0050	<0.0050	<0.0050	<0.0050	<0.0050	<0.0050	0.011	0.0286	0.0354	0.0073	0.0044	0.0225	0.033	0.0158	0.0048	0.0451	0.038
EPH10-19	-	-		-	-	-	-	-	-	-	-	-	-	-	-	-	
EPH19-32	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
LEPH	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
HEPH	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
Polycyclic Aromatic Hydrocarbons Acenaphthene	ł									l							⊢]
Acenaphthylene	-	-		-	-	-		-		-	-	-	-	-	-	-	-
Acridine	-	-		-	-	-	-	-	-	-	-	-	-	-	-	-	- 1
Anthracene	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
Benz(a)anthracene	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
Benzo(a)pyrene	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
Benzo(b)fluoranthene Benzo(g,h,i)perylene	-	-		-	-				-	-	-		-	-	-	-	-
Benzo(g,n,i)perylene Benzo(k)fluoranthene	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
Chrysene	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
Dibenz(a,h)anthracene	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
Fluoranthene	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
Fluorene	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
Indeno(1,2,3-c,d)pyrene	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
2-Methylnaphthalene Naphthalene	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
Phenanthrene	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
Pyrene	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
Quinoline	-	-		-	-	-				-	-	-	-	-	-	-	-
d10-Acenaphthene (SS)	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
d9-Acridine (SS)	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
d12-Chrysene (SS) d8-Naphthalene (SS)	-	-	-	-	-	-		-	-	-	-	-	-	-	-	-	-
d8-Naphthalene (SS) d10-Phenanthrene (SS)	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
2.0.1. no.na.n(niono (00)				1						1				1	I		,

Table 4. 2009 Soil Quality Analytical Results

O amonda UD				NUMOD 40(04ET 00ET)		
Sample ID		MW09-17(11FT-12FT)	15-Jul-09			MW09-19(15FT-16FT9
Date Sampled	15-Jul-09	15-Jul-09		15-Jul-09	15-Jul-09	15-Jul-09
Time Sampled	00:00	00:00	00:00	00:00	00:00	00:00
ALS Sample ID	L796959-7	L796959-9	L796959-10	L796959-11	L796959-12	L796959-15
Matrix	Soil	Soil	Soil	Soil	Soil	Soil
Physical Tests						
Conductivity	-	-	-	-	-	-
Hardness (as CaCO ₃)	-	-	-	-	-	-
% Moisture	11.1	9.68	30.1	7.2	11.7	20
pH	7.64	7.97	6.39	8.14	6.96	7.13
Total Dissolved Solids	-	-	-	-	-	-
Anions and Nutrients			-			
Acidity (as CaCO ₃)	-	_	-	-	_	-
		-			-	-
Alkalinity, Total (as CaCO ₃)	-	-	-	-	-	-
Ammonia as N	-	-	-	-	-	-
Bromide (Br)	-	-	-	-	-	-
Chloride (Cl)	-	-	-	-	-	-
Fluoride (F)	-	-	-	-	-	-
Nitrate (as N)	-	-	-	-	-	-
Nitrite (as N)	-	-	-	-	-	-
Sulfate (SO4)	-	-	-	-	-	-
Cyanides	1			1	1	
Cyanide, Weak Acid Diss	-	-	-	-	-	-
Cyanide, Total	-	-	-	-	-	-
Cyanate (CNO)	-	-	-	-	-	-
Metals	+	-	-	-	-	-
Antimony (Sb)	162	.10	.10	11	000	.10
		<10	<10	11	898	<10
Arsenic (As)	1980	65.7	103	285	13000	9.4
Barium (Ba)	150	95.1	271	113	99.9	56.6
Beryllium (Be)	0.5	<0.50	<0.50	0.73	1.25	<0.50
Cadmium (Cd)	41.4	<0.50	<0.50	<0.50	91.1	<0.50
Chromium (Cr)	16.2	15.6	19.6	111	5.1	10.5
Cobalt (Co)	9.8	8.6	8.3	20	6.7	3.6
Copper (Cu)	111	44.9	54.5	71.9	401	6.4
Lead (Pb)	1570	<30	<30	<30	8260	<30
Mercury (Hg)	0.151	0.0419	0.0458	0.103	0.426	0.0076
Molybdenum (Mo)	<4.0	<4.0	<4.0	<4.0	<4.0	<4.0
Nickel (Ni)	11.8	8.1	12.2	47.8	7.1	5.9
Selenium (Se)	<2.0	<2.0	<2.0	<2.0	<2.0	<2.0
Silver (Ag)	35.2	<2.0	<2.0	<2.0	96.9	<2.0
Thallium (TI)	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0
Tin (Sn)	<5.0	<5.0	<5.0	<5.0	8.2	<5.0
Vanadium (V)	<5.0	<5.0	60.7	136	22.9	27.4
	2760			136		27.4
Zinc (Zn)	2760	60.1	60.3	127	4300	24.9
Dissolved Metals	_					
Aluminum (Al)-Dissolved	-	-	-	-	-	-
Antimony (Sb)-Dissolved	-	-	-	-	-	-
Arsenic (As)-Dissolved	-	-	-	-	-	-
Barium (Ba)-Dissolved	-	-	-	-	-	-
Beryllium (Be)-Dissolved	-	-	-	-	-	-
Bismuth (Bi)-Dissolved	-	-	-	-	-	-
Boron (B)-Dissolved	-	-	-	-	-	-
Cadmium (Cd)-Dissolved	-	-	-	-	-	-
Calcium (Ca)-Dissolved	-	-	-	-	-	-
Chromium (Cr)-Dissolved	-	-	-	-	-	-
Cobalt (Co)-Dissolved	-	-	-	-	-	-
Copper (Cu)-Dissolved	-	-	-	-	-	-
Iron (Fe)-Dissolved	-	-	-	-	-	-
Lead (Pb)-Dissolved	-	-	-	-	-	-
Lithium (Li)-Dissolved	-	-	-	-	-	-
Magnesium (Mg)-Dissolved	-	-	-	-	-	-
Magnese (Mn)-Dissolved	-	-		-		
	-	-	-	-	-	-
Mercury (Hg)-Dissolved						
Molybdenum (Mo)-Dissolved	-	-	-	-	-	-
Nickel (Ni)-Dissolved	-	-	-	-	-	-
Phosphorus (P)-Dissolved	-	-	-	-	-	-
Potassium (K)-Dissolved	-	-	-	-	-	-
Selenium (Se)-Dissolved	-	-	-	-	-	-
Silicon (Si)-Dissolved	-	-	-	-	-	-
Silver (Ag)-Dissolved	-	-	-	-	-	-
Sodium (Na)-Dissolved	-	-	-	-	-	-
Strontium (Sr)-Dissolved	-	-	-	-	-	-
Thallium (TI)-Dissolved	-	-	-	-	-	-
Tin (Sn)-Dissolved	-	-	-	-	-	-
Titanium (Ti)-Dissolved	-	-	-	-	-	-
Uranium (U)-Dissolved	-	-	-	-	-	-
Vanadium (V)-Dissolved	-	-	-	-	-	-
Zinc (Zn)-Dissolved				-	-	
LING (ZII)-DISSUIVED	-	-	-	-	-	-

Table 4. 2009 Soil Quality Analytical Results

Sample ID	MW09-16(6FT-7FT)	MW09-17(11FT-12FT)	MW09-18(2FT-3FT)	MW09-18(21FT-22FT)	MW09-19(7FT10	MW09-19(15FT-16FT9
Date Sampled	15-Jul-09	15-Jul-09	15-Jul-09	15-Jul-09	15-Jul-09	15-Jul-09
Time Sampled	00:00	00:00	00:00	00:00	00:00	00:00
ALS Sample ID	L796959-7	L796959-9	L796959-10	L796959-11	L796959-12	L796959-15
Matrix	Soil	Soil	Soil	Soil	Soil	Soil
Hydrocarbons						
EPH10-19	<200	<200	<200	<200	<200	<200
EPH19-32	<200	<200	<200	<200	<200	<200
LEPH	<200	<200	<200	<200	<200	<200
Polycyclic Aromatic Hydrocarbons						
Acenaphthene	<0.050	<0.050	<0.050	<0.050	<0.050	<0.050
Acenaphthylene	<0.050	<0.050	<0.050	<0.050	<0.050	<0.050
Acridine	-	-	-	-	-	-
Anthracene	<0.050	<0.050	<0.050	<0.050	< 0.050	<0.050
Benz(a)anthracene	<0.050	<0.050	<0.050	<0.050	<0.050	<0.050
Benzo(a)pyrene	<0.050	<0.050	<0.050	<0.050	< 0.050	<0.050
Benzo(b)fluoranthene	<0.050	<0.050	<0.050	<0.050	< 0.050	<0.050
Benzo(g,h,i)perylene	< 0.050	<0.050	<0.050	<0.050	< 0.050	<0.050
Benzo(k)fluoranthene	<0.050	<0.050	<0.050	<0.050	<0.050	<0.050
Chrysene	<0.050	<0.050	<0.050	<0.050	< 0.050	<0.050
Dibenz(a,h)anthracene	<0.050	<0.050	<0.050	<0.050	< 0.050	<0.050
Fluoranthene	< 0.050	<0.050	<0.050	<0.050	< 0.050	<0.050
Fluorene	< 0.050	<0.050	<0.050	<0.050	< 0.050	<0.050
Indeno(1,2,3-c,d)pyrene	<0.050	<0.050	<0.050	<0.050	< 0.050	<0.050
2-Methylnaphthalene	< 0.050	<0.050	<0.050	<0.050	< 0.050	<0.050
Naphthalene	< 0.050	<0.050	<0.050	<0.050	< 0.050	<0.050
Phenanthrene	< 0.050	<0.050	<0.050	<0.050	< 0.050	<0.050
Pyrene	< 0.050	<0.050	<0.050	<0.050	< 0.050	<0.050
Quinoline	-	-	-	-	-	-
d10-Acenaphthene (SS)	99	95	103	99	91	94
d9-Acridine (SS)	-	-	-	-	-	-
d12-Chrysene (SS)	72	70	84	71	74	66
d8-Naphthalene (SS)	94	95	100	97	89	91
d10-Phenanthrene (SS)	89	86	94	90	87	84

Table 5. Permeability Testing Results

Station Name	Stickup	Borehole Depth	Depth to Top of Screen	Depth to Bottom of Screen	Depth to Water		Depth to Top of Screen	HO	н	d	b	L	rc	rw	к	Analytical Solution
	m ags	m bgs	m bgs	m bgs	m btop	m bgs	m bswl	m	m		m	m	m	m	m/s	
MW09-02	0.97	4.57	3.05	4.57	3.26	2.29	0.76	0.305	2.28	0.76	2.28	1.52	0.025	0.030	1.04E-06	Bouwer-Rice (1976)
MW09-03	0.81	9.14	5.49	7.01	6.91	6.10	-0.61	0.255	3.04	0.00	3.04	1.07	0.025	0.030	5.53E-06	Bouwer-Rice (1976)
MW09-06	1.30	4.57	1.52	4.57	2.95	1.66	-0.13	0.472	2.92	0.00	2.92	3.05	0.025	0.030	2.04E-06	Bouwer-Rice (1976)
MW09-15	0.88	37.03	33.99	37.03	16.74	15.86	18.12	0.586	21.17	18.12	21.17	3.05	0.025	0.046	1.20E-06	Barker-Black (1983)
MW09-23	0.91	15.00	13.41	14.94	13.39	12.48	0.94	0.380	2.53	0.94	2.53	1.52	0.025	0.054	1.29E-05	Bouwer-Rice (1976)

Notes:

m ags Metres above ground surface

m bgs Metres below ground surface

m btop Metres below top of pvc piezometer

m bswl Metres below static water level

m Metres

m/s Metres per second

Table 6. Summary of Physical Soil Property Characterization

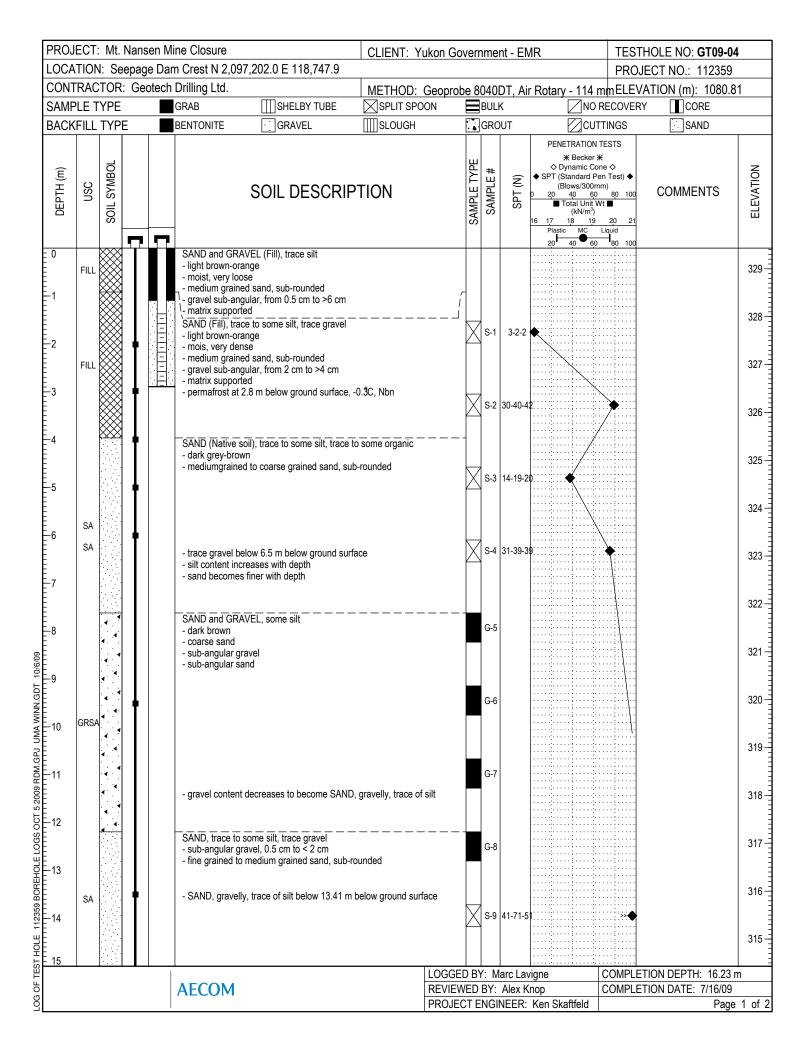
Sample Name	Loc	ation	Top of Interval	Bottom of Interval	Le	erval ngth	Soil Dian	Core neter	Volume		In-situ Densit	Material Type	Texture	Physical Testing Conducted
	Easting (m)	Northing (m)	ft BGS		ft	m	in	m	m3	kq	kg/m3			
MW09-01	389395	6880559	18	20	2	0.6096	3.25	0.0826	3.26E-03	4.03	1235	Tailings	Clay with minor silt	•
MW09-01	389395	6880559	26	29	3	0.9144	3.25	0.0826	4.89E-03	6.61	1351	Tailings	Clay	Moisture content, Atterberg limits, specific gravity, grain size, soil moisture characteristic curve
MW09-02	389396	6880560	10	15	5	1.5240	3.25	0.0826	8.16E-03	8.1	993	Tailings	Silty sand	Moisture content, Atterberg limits, specific gravity, grain size, soil moisture characteristic curve
MW09-03	389421	6880558	3	4	1	0.3048	3.25	0.0826	1.63E-03	1.88	1152	Tailings	Silty sand	-
MW09-03	389421	6880558	10	11	1	0.3048	3.25	0.0826	1.63E-03	2.26	1385	Tailings	Silty sand	•
MW09-03	389421	6880558	23	24	1	0.3048	3.25	0.0826	1.63E-03	2.31	1416	Tailings	Clay with minor silt	•
MW09-03	389421	6880558	27	28	1	0.3048	3.25	0.0826	1.63E-03	1.07	1312	Half core, Dam Fill	Fine to medium sand, minor silt	Grain size
MW09-04	389421	6880559	16	17	1	0.3048	3.25	0.0826	1.63E-03	2.91	1784	Tailings	Silty sand	
MW09-07	389324	6880701	11	13	2	0.6096	3.25	0.0826	3.26E-03	4.51	1382	Native	Silty sand	•
MW09-11	389458	6880632	10	13.8	3.8	1.1684	3.25	0.0826	6.25E-03	7.52	2405	Half core, Aeolian	Fine to medium sand	Grain size
TH09-01	389383	6880671	6	7	1	0.3048	3.25	0.0826	1.63E-03	2.39	1465	Tailings	Silty clay	
TH09-01	389383	6880671	13	14	1	0.3048	3.25	0.0826	1.63E-03	2.4	1471	Native	Aeolian sand	-

Notes: ft BGS

BGS feet below ground surface.

LOCA	TION	I: Tai	lings [Dam Crest, near TH-	-03 N 2,097,210.5 E	CLIENT: Yu 118,707.1					PROJ	ECT NO.: 112359	
				tech Drilling Ltd.			Geoprobe 8	304	0DT. Ai	r Rotary - 114 m		ATION (m): 1101.4	4
SAMP	LE T	YPE		GRAB	SHELBY TUBE		ON C	BU	LK		ECOVER	Y CORE	
BACK	FILL	TYPE		BENTONITE	GRAVEL	SLOUGH		GR	OUT	CUT	TINGS	SAND	
DEPTH (m)	USC	SOIL SYMBOL		S	OIL DESCRIP	TION	SAMPLE TYPE	SAMPIF#	SPT (N)	PENETRATION T	e � n Test) ✦ n) 80 100	COMMENTS	
0 ·1				SAND (fill), trace gravel, - yellowish orange-brow - moist, compact to dens - medium grained sand, - sub-angular gravel, >0 - matrix supported	se sub-rounded	i							3
2				- presence of roots until	3.05 m below ground sur	face							;
3				- moist with dry lenses			×	s-	1 10-14-1	5			
4	FILL												
6													
7											· · · · · · · · · · · · · · · · · · ·		
3											· · · · · · · · · · · · · · · · · · ·		
9 10	FILL			- SAND and GRAVEL SAND (fill), trace to som - yellowish orange-brow	 e gravel, trace silt		/	s-	2 7-14-1	5			
10				 medium grained to fine sub-rounded gravel, >(matrix supported moist, compact to dense 	grained sand (trace coar).5 cm to <2 cm	rse sand), sub-rounde	ed						
12	FILL												
12 13													
14	FILL			- sub-angular gravel, >0	grained sand, sub-round			s-	3 43-57-4	8	>>• /		
15		××1		- clast supported			LOGGED B REVIEWED					TION DEPTH: 30.18 r TION DATE: 7/19/09	

				sen Mine Closure Dam Crest, near TH-	03 N 2 007 240 5 F	CLIENT: Y	UKOII GOVEI	nme	;ii(- ⊑i			HOLE NO: GT09-01	<u> </u>
				otech Drilling Ltd.	03 N 2,097,210.5 E		0	040		- Datama 444		JECT NO.: 112359	
SAMF			00	GRAB		METHOD:		BUL		<u>r Rotary - 114 m</u> NO R		<u>ATION (m): 1101.4</u> Y ∎CORE	.4
			_					_					
BACK		TYPE	-	BENTONITE	GRAVEL	SLOUGH]GRC				SAND	—
DEPTH (m)	NSC	SOIL SYMBOL		S	OIL DESCRIP	TION	SAMPLE TYPE	SAMPLE #	SPT (N)	PENETRATION T	e ◇ n Test) ✦ n) 80 100	COMMENTS	
15	FILL			- wet, dense to very den - GRAVEL (fill), sandy	se								3
16	SA			- dark grey	e to some silt, trace organ grained sand, sub-round		 [×	S-4	7-13-1	4			3
17	GRSA			SAND and GRAVEL, tra	<u>vith depth</u> ce silt (trace coarse sand), sub-i		ⁱ						3
18		4	Î	- sub-angular gravel, >0 - clast supported - wet, very loose SAND (native soil), trace	5 cm to 5 cm		'	S-5	2-1-2				
19 20	SA		ł	 dark grey fine sand, sub-rounded wet, very loose sand coarsens with de some gravel 									:
21			ł	SAND and GRAVEL, tra									:
22	GRSA		t	- dark grey-brown - medium sand, sub-roun - sub-angular gravel, >0 - clast supported - permafrost at 21.5 m b		n. 2.8C		S-6	4-20-4	7			:
23			Ī	SAND, trace to some sil - dark grey - medium grained to fine - sub-angular gravel, <1	t, trace gravel								:
24			Ī	- compact to dense - SAND and GRAVEL u	ntil approx. 27.4 m below	ground surface							
25	SA												
26				- fine sand content decre	eases with depth		×	S-7	31-61				
27 28				- some gravel									
28 29	GRSA			SAND and GRAVEL - light grey-brown - fine grained to medium - sub-angular gravel, <1 - coarsening downward	-coarse sand, sub-round cm sequences	led		G-8					
30		4 4 4					LOGGED B			viane		TION DEPTH: 30.18 r	m 3
				AECOM			REVIEWED			-		TION DATE: 7/19/09	


				en Mine Closure Dam Crest_near TH	-03 N 2,097,210.5 E	CLIENT: Yuk	on Gover	nme	nt - El	VIR		<u>HOLE NO: GT09-0</u> IECT NO.: 112359	
				tech Drilling Ltd.	55 T 2,007,2 T0.0 L		eonroha 9	3040		r Rotary - 11/ m		ATION (m): 1101.4	
SAMF				GRAB	SHELBY TUBE			BUL	<u>ы, л</u> К		ECOVER		TT
BACK			=	BENTONITE				GRC				SAND	
			-	DENTONITE			··•	101.00		PENETRATION T			
DEPTH (m)	NSC	SOIL SYMBOL		S	OIL DESCRIP	ΓΙΟΝ	SAMPLE TYPE	SAMPLE #	SPT (N)	# Becker # 	e � n Test) ✦ n) 80 100	COMMENTS	
30		•	•	END OF DRILLING at 3	0.18 m in permafrost (refu	sal)							
				- 10 cm of heaving at 17	7.53 m below ground surfa	се							3
-31				Thermistor install:									
-32				 - 2" PVC pipe SCHED 4 - grout from 30.2 m belo - 1" PVC pipe SCHED 4 - grout inside the annulu 	w ground surface to grour 0 install inside the 2" PVC	nd surface pipe SCHED 40							3
33													;
-34													;
-35													
-36													;
-37													2
-38													:
-39													:
39 -40 -41 -42 -43 -44													2
41													:
42													:
43													
44													
45	1			1		I	.OGGED B	Y: M	larc La	vigne		TION DEPTH: 30.18	m
				AECOM			REVIEWED					TION DATE: 7/19/09	
										Ken Skaftfeld		Page	

				line Closure	South Abutment N 2	CLIENT: Yuk						HOLE NO: GT09-0 ECT NO.: 112359	
			-	n Drilling Ltd.				3040		r Rotary - 11/		ATION (m): 1090.4	
SAMP				GRAB	SHELBY TUBE			BUL			RECOVER		T I
BACK			F	BENTONITE	GRAVEL			GRC			TTINGS	SAND	
DEPTH (m)	USC	SOIL SYMBOL			SOIL DESCRI		SAMPLE TYPE			PENETRATION	★ yen Test) ◆ nm) 0 80 100 Wt ■ 20 21	COMMENTS	
0 -1				SAND (fill), trace - medium brown - fine grained to r - moist, loose	silt nedium grained sand, sub	p-rounded							3
2 3	FILL			- some gravel be	low 2.13 m below ground	surface	X	S-1	5-7-10	•			
4				SAND, trace silt,				S-2					
5	SA			- wood debris, <2 - dark grey - sub-rounded - permafrost at 5 - gravel content i	2 cm .64 m below ground surfac ncreases with depth to "gr	ce, Nbn, 1.6C ravelly"			28-34-6				
7 8	GRSA			GRAVEL, sandy, - dark grey - medium to coar ∖- sub-angular gra SAND, trace silt - dark grey	trace silt se sand, sub-angular ivel, >0.5 cm to 2 cm				25-42-3	5	•		
9 10				- medium grained	d sand, sub-rounded 1.5 cm) below 8.84 m belo nedium grained sand belo			S-6	27-42-3				
10	SA				d sand below 10.36 m belo cm) below 10.67 m belov		X	S-7	37-38-4	6			
12 13				- fine grained to r surface	nedium grained sand belo	ow 12.19 m below grour	nd	S-8	38-47-5	6			
13 14				- some gravel be	low 13.41 m below ground	d surface	X	S-9	37-45-4	7			
15						IL	OGGED B	Y: M	larc Lav	/iqne		TION DEPTH: 16.23	m
				AECOM			EVIEWED					TION DATE: 7/17/09	

			en Mine Closure		CLIENT: Yul		nme				HOLE NO: GT09-0	
				South Abutment N 2,							ECT NO.: 112359	
			tech Drilling Ltd.		METHOD: G	eoprobe 8	<u>3040</u>	DT, Ai	<u>r Rotary - 114 m</u>	mELEV.	ATION (m): 1090.4	41
	PLE T		GRAB		SPLIT SPOO		BUL			ECOVER		
BACK	FILL	TYPE	BENTONITE	GRAVEL	SLOUGH]GRC	DUT		INGS	SAND	
DEPTH (m)	nsc	SOIL SYMBOL		SOIL DESCRI	PTION	SAMPLE TYPE	SAMPLE #	SPT (N)	PENETRATION T	e	COMMENTS	
15	SA		GRAVEL, sandy				S-10	38-49-6	0	».		3
-16 -17	GRSA		- yellowish oran - fine grained to - sub-angular gr clast supported	ge medium grained sand, sub avel, >0.5 cm to 2 cm						· · · · · · · · · · · · · · · · · · ·		3
			MW09-22 install - Screen interva							· · · · · · · · · · · · · · · · · · ·		:
18 19			- Filter pack inte - Bentonite seal	rval: 0.92 m - 4.27 m from ground surface to 0.9 PVC (22-Jul-09, 8:33:00 AN	2 m /)							;
20			- 1" PVC pipe S							· · · · · · · · · · · · · · · · · · ·		:
21												
22												;
23												
24												:
25												:
26												:
27												:
28												;
29												;
30												:
	. 1	. I				LOGGED B					TION DEPTH: 16.23	
			AECOM			REVIEWED	D1/				TION DATE: 7/17/09	

				en Mine Closure Dam, North Terrace	N 2,097,213.3 E 118	CLIENT: Y	ukon Gover	nme	nt - EN	/IR		HOLE NO: GT09-0 ECT NO.: 112359	
			-	btech Drilling Ltd.	14 2,007,210.0 L 110		Geonrobe 8	8040		Rotary - 11/		ATION (m): 1092.	
SAMF				GRAB	SHELBY TUBE			BUL			0 RECOVER		00
BACK			=	BENTONITE	GRAVEL	SLOUGH		GRC			UTTINGS	SAND	
DEPTH (m)	nsc	SOIL SYMBOL		S		TION	SAMPLE TYPE	SAMPLE #	SPT (N)	PENETRATIC	er ₩ Cone ◊ Pen Test) ♦ 0mm) 60 80 100 t Wt ■ ³) 9 20 21	COMMENTS	
0		~~~	7	SAND and GRAVEL(Fi	ll), trace silt			-			60 80 100		_
1	FI			- dark brown - moist, loose - medium grained sand - sub-angular gravel, 0. - clast supported - staining on gravel	, sub-angular			7					:
2				SAND (Aeolian), trace s - orange-brown - moist with dry lenses, - fine grained to mediur - sub-angular gravel, >(loose to compact			S-1	4-5-4				
3 4				- matrix supported			×	S-2	4-5-5				
5	SA			- some gravel below 5.5	33 m below ground surface	3	×	S-3	3-4-5				
6				-	0 m below ground surface		X	S-4	6-7-7				
7 3				- some gravel below 7.3	32 m below ground surface) 		S-5	4-7-5	•			
9	GRSA SA			 light brown-orange moist, compact medium grained sand sub-angular gravel, >(iron staining on gravel 									
10	GRSA			SAND, trace gravel, tra - orange-brown - moist, compact - medium grained sand - sub-rounded gravel, 1	ce silt (Aeolian)			S-6	3-7-9	•			
9 10 11				SAND and GRAVEL, tr SAND, trace gravel, tra	ace silt		i/×	S-7	6-8-4	•			
12 13	SA			- some gravel below 12	.19 m below ground surfac	ce	×	S-8	4-5-10				
14	GRSA			SAND and GRAVEL, tr - coarsening downward				S-9	3-7-2				:
15				AECOM			LOGGED B REVIEWED					TION DEPTH: 19.81 TION DATE: 7/19/09	
				ALCOM						Ken Skaftfeld		Page	

				Vine Closure		CLIENT: Yuk	on Gover	nme	nt - EN	/IK		HOLE NO: GT09-0	
					N 2,097,213.3 E 118,							ECT NO.: 112359	
			Geotec	h Drilling Ltd.		METHOD: G	eoprobe 8	040	DT, Ai	r Rotary - 114 m		ATION (m): 1092.3	33
SAMP				GRAB				BUL			ECOVERY		
BACK	FILL	TYPE		BENTONITE	GRAVEL	SLOUGH		GRC				SAND	
DEPTH (m)	NSC	SOIL SYMBOL		S	OIL DESCRIPT	ION	SAMPLE TYPE	SAMPLE #	SPT (N)	PENETRATION TI	e h Test) ♦ h) 80 100	COMMENTS	
15	GRSA		GF	RAVEL, sandy, trace	silt			S-10	5-24-16				
-16	GRSA		- C	oarsening downward	sequence				0241				3
·17			- 0 - V - fi	ND, some silt, trace live grey ery dense ne grained to mediun	n grained sand, sub-rounde	- — — — — — — — — — — — — — — — — — — —		S-11	25-52-3	4			3
18	SA		- S	ub-angular, >0.5 cm	to 1 cm n below ground surface								;
19													:
20				D OF DRILLING at 1	9.87 m in permafrost (refus	al)							:
21			- 1	PVC pipe SCHED 4 ip at 19.86 m below (10 ground surface								:
22													
23													
24													
25													
26													
24 25 26 27 28 29													
28													
29													
30											· · · · · · · · · · · · · · · · · · ·		
							OGGED B				COMPLET	FION DEPTH: 19.81	m
				AECOM			REVIEWED					TION DATE: 7/19/09	

				n Mine Closure	7,202.0 E 118,747.9	CLIENT: Yukon	Gover	nmei	nt - EN	VIR		HOLE NO: GT09-0 ECT NO.: 112359	
				ech Drilling Ltd.	,202.0 L 110,141.0		araha (0101	א דר	r Dotony 111 m		ATION (m): 1080.8	
SAMF			0000	GRAB	SHELBY TUBE			BUL		<u>r Rotary - 114 m</u> NO R			21
BACK				BENTONITE				GRO					
BAUN			-	BENTONITE	GRAVEL		••	JGRU	01			SAND	<u> </u>
DEPTH (m)	NSC	SOIL SYMBOL			SOIL DESCRIP	TION	SAMPLE TYPE	SAMPLE #	SPT (N)	PENETRATION TE	e ◇ Test) ◆ 1) 80 100	COMMENTS	
15	SA						🗙	S-10	67				3
-16	GRSA	. • . •		SAND and GRAV - dark grey-brown - medium sand, s - gravel sub-angu - silt content incre - permafrost	n sub-rounded ular, from 0.5 cm to > 4 cm		,- 						3
-17 -18				temperati description END OF DRILLIN MW09-20 install:	NG at16.23 m in permafrost (refusal)	_				· · · · · · · · · · · · · · · · · · ·		3
19				- Filter pack inter)-Slot 2" PVC SCHED 40 val: 1.10 m - 2.90 m from ground surface to1.10 m	1							
20				Thermistor instal - 1" PVC pipe SC - Tip at 16.10 m I									
21													:
22													;
24													:
25													
-26													
27											· · · · · · · · · · · · · · · · · · ·		:
28													:
29 30													:
							GED B					TION DEPTH: 16.23	
				AECOM			IEWED					TION DATE: 7/16/09	

					ne Closure		CLIENT: Y	ukon Gove	ernr	mer	nt - EIV	IR			DLE NO: GT09-0	
						Dam N 2,097,214.2									CT NO.: 112359	
			Ge		Drilling Ltd.		METHOD:	Geoprobe	80	40E	DT, Air	Rotary - 1	14 mmE	LEVAT	<u>ION (m): 1089.</u>	60
	PLE T				GRAB					ULK		<u> </u>	NO RECC			
BACK	FILL	TYPE			BENTONITE	GRAVEL	[]]]SLOUGH		G	RO	UT		CUTTING	S	SAND	
DEPTH (m)	NSC	SOIL SYMBOL		_		SOIL DESCRI	PTION		SAMPLE IYPE	SAMPLE #	SPT (N)		300mm) 60 80 Unit Wt ■ I/m ³) 19 20	i) ◆ 100 21	COMMENTS	
0				00		trace gravel (Aeolian)										3
1					 Medium brown moist, loose fine grained to r gravel sub-ange 	medium grained sand, sub ular, >0.5 cm to 2 cm	o-rounded			S-1	1-3-3	•				3
2 3				Y		nt decreases with depth				S-2	3-4-4			· · · · · · · · · · · · · · · · · · ·		
4					 coarsening dow moist with dry let 	nward sequence								· · · · · · · · · · · · · · · · · · ·		
5								2		S-3	4-9-8	•		· · · · · · · · · · · · · · · · · · ·		
7					- coarsening dow	nward sequence			Z:	S-4	5-8-10					
8	SA				- moist, dense	vn sand between 4.1 and 4 low 8.38 m below ground	-	surface	Z:	S-5	10-18-18	3				
9					- coarsening dow - wet, loose	vnward sequence			Z:	S-6	2-3-5			· · · · · · · · · · · · · · · · · · ·		
10 11									Z:	S-7	5-9-23			· · · · · · · · · · · · · · · · · · ·		
12					- Permafrost at a	pproximately 11.28 m belo	ow ground surface, l	Nbn	X:	S-8	23-32-4		•	· · · · · · · · · · · · · · · · · · ·		
13						VEL, trace silt (description	n from dill cuttinge)							· · · · · · · · · · · · · · · · · · ·		
14 15	GRSA SA	*				ravel, trace silt (description										
								LOGGED)N DEPTH: 19.81	
					AECOM			REVIEWE	DB	γ٠	ΔΙργ Κ	200	COM	IPI FTIC	ON DATE: 7/21/09	

		l· North		near Seenage	Dam N 2,097,214.2 E	CLIENT: Yuł = 118 738 1						HOLE NO: GT09-0	
				Drilling Ltd.	Dam N 2,037,214.2 [oonrok - 0	010	י דח	r Doton: 111		ECT NO.: 112359	
	PLE T			RAB		SPLIT SPOO		8040 BUL				ATION (m): 1089.6	50
		TYPE		ENTONITE				GRC					
SAUN				ENTONITE	GRAVEL		••	JGRU				SAND	
DEPTH (m)	nsc	SOIL SYMBOL			SOIL DESCRI	PTION	SAMPLE TYPE	SAMPLE #	SPT (N)	PENETRATION T	e � n Test) ✦ n) 80 100	COMMENTS	
15	SASI			cuttings)	I, trace gravel, trace organi creases with depth	c (description from d	<u>iii — — </u>				80 100		3
16					ome silt, trace gravel								3
17	SA			- sub-angular gra - matrix supporte	ed	-rounded	X	S-9	21-26-2	3			;
18				-	ic material, <2 cm								:
19	GRSA			SAND and GRA - gravel content - sub-angular gra - coarse sand, s	ncreases with depth avel, < 2 cm								
20		<u> </u>		MW09-24 install	NG at 19.87 m in permafros 8.23 m - 11.28 m	st (refusal)							
21				 Screen type: 10 Filter pack inter Bentonite seal 	0.25 m ² + 11.26 m 0-Slot 2" PVC SCHED 40 val: 7.82 m - 11.28 m from 0.61 m to 7.92 m n ground surface VC (22-Jul-09, 8:06:00 AN	0							:
22				Thermistor insta - 1" PVC pipe S0	l: CHED 40	1)							:
23				- Tip at 19.86 m	below ground surface								
24													
25													
26													
27													
28													
29													
30													
	1					1	_OGGED B	Y: M	larc Lav			TION DEPTH: 19.81	m
				AECOM			REVIEWED					TION DATE: 7/21/09	

				en Mine Closure de of tailings empour	dmont	CLIENT: Yuko	n Gover	nme	nt - Er	VIR		HOLE NO: MW09-	
				btech Drilling Ltd.	lument		onroha (040		irest Dush 111		JECT NO.: 112359 ATION (m): 1103 (
SAMF			000	GRAB	SHELBY TUBE			BULI					531.
		TYPE		BENTONITE	GRAVEL			GRC				SAND	
DEPTH (m)	nsc	SOIL SYMBOL		S	OIL DESCRIPT	TION	SAMPLE TYPE	SAMPLE #	SPT (N)	PENETRATION T	e � n Test) ✦ n) 80 100	COMMENTS	
0 -1 -2	FILL			SAND TAILINGS FILL - dark yellowish orange - moist, loose, non-cohe - fine grained sand, sub- SAND TAILINGS - dark reddish brown - wet, very loose, non-co - fine grained sand, sub-	-rounded 	dilatency							
-3 -4	SM	00000000 00000000		SILTY SAND TAILINGS - dark yellow brown - wet, loose, non-cohesi - fine grained sand	ve, non-plastic, rapid dilate			S-1					
5 6				CLAY TAILINGS - dark yellow brown - wet, medium stiff, cohe - minor silt, fining downy	esive, medium plasticity, sk vard and finely laminated	- — — — — — — — — –	I I	S-2					
7 8	CI			- damp from 7.62 m to 9	.14 m			S-3					
9 10	SM SA			SILTY SAND - brown - wet, very loose, non-co - fine grained sand, orga contact with overlying cl	hesive, non-plastic, rapid nic odour, twigs and orgar	dilatency nic matter embedded, sl		-					
-11	SA			SAND SAND - brown wet, very loose, non-co coarse subrounded sa	ands at approx. 10 m; swit								
12				SAND - brown grading to black - wet, dense, non-cohes - coarse sand with incre END OF DRILLING at 1	ive, non-plastic asing silt content downhole	e, organic odour							
13 14				MW09-01 installation: - Screen interval: 9.45 n - Screen type: 10-Slot 1 - Filter pack interval: 9. - Bentonite seal: 8.53 m - WL: 7.648 m bTOP (8-	.25" PVC SCHED 40 14 m - 9.75 m - 9.14 m								
15							GGED B					TION DEPTH: 10.67	 m
				AECOM			VIEWED			Lavigne (Ken Skaftfeld	COMPLE	TION DATE: 7/7/09 Page	

CONTRACTOR: Gediech Drilling Lid. SAMPLE TYPE GRAS GRAS GRAS SAMPLE TYPE SAMP E TALINGS FIL - samp shown or ange - moli, topic non-oblesive - moli, topic non-					en Mine Closure de of tailings empour	udment	CLIENT: Yukon	Gover	nme	nt - El	MR		HOLE NO: MW09-0	02
SAMPLE TYPE Image: Sample ty			E TYPE GRAB SHELBY TUBE					naha (040		ina at Duala 111			(act)
BACKFILL TYPE BENTONTE GRAVEL GLOUGH COROUT CUTTINGS AND SOIL DESCRIPTION SOIL DES					•									est.
E SOIL DESCRIPTION E Protect Truth TS:05 (0) Openet Group on the Openet				-										
Bit Dec Bit Dec <t< th=""><th>BAUK</th><th></th><th></th><th></th><th>BENTONITE</th><th>GRAVEL</th><th>IIIIISLOUGH</th><th>••</th><th>JGRU</th><th></th><th></th><th></th><th>SAND</th><th></th></t<>	BAUK				BENTONITE	GRAVEL	IIIIISLOUGH	••	JGRU				SAND	
0 Image: Set of the set of	DEPTH (m)	nsc	SOIL SYMBOL		S	OIL DESCRIPT	ION	SAMPLE TYPE	SAMPLE #	SPT (N)	# Becker # 	e ♦ n Test) ♦ n) 80 100 t ■ 20 21 .iquid	COMMENTS	
FILL	0		\boxtimes	Пf							20 40 60	80 100		
2 sx Image: address of the system of th	1	FILL			- moist, loose, non-cohe	sive rounded								
4 SM 11/1 SAND TALINGS - dark yellow brown - well, losse, non-obseive, non-plastic, rapid dilatency - Integrating and - Regranded and 5-1 5 MW09-02 installation: - Screen there 1.35 m - 4.57 m - Screen there 1.35 m	2	SA			 dark reddish brown 	— — — — — — — — — — — — — — — — — — —	dilatency							
4 SM Image: SM fine grained sand 5 END OF DRILLING at 4.57 m 6 filter pack interval: 0.5 m: 4.57 m 6 filter pack interval: 0.5 m: 4.57 m 7 filter pack interval: Naturally developed 8 metric set: Non 9 metric set: Non 10 metric set: Non 11 metric set: Non 12 metric set: Non 13 metric set: Non 14 metric set: Non 15 metric set: Non 14 metric set: Non	3		000		 dark vellow brown 		- — — — — — — —	- +	_					
5 MW09-02 installation: - Screen interval: 3.05 m - 4.57 m - Screen interval: 7.4br/ally developed - Bentrval: Naturally developed - Bentrval: Naturally developed - WL: 3.211 m bTOP (9-Jul-09, 11:35 AM) 7 MI: 3.211 m bTOP (9-Jul-09, 11:35 AM) 7 MI: 3.211 m bTOP (9-Jul-09, 11:35 AM) 8 MI: 3.211 m bTOP (9-Jul-09, 11:35 AM) 10 MI: 3.211 m bTOP (9-Jul-09, 11:35 AM) 11 MI: 3.211 m bTOP (9-Jul-09, 11:35 AM) 12 MI: 3.211 m bTOP (9-Jul-09, 11:35 AM) 13 MI: 4.21 m bTOP (9-Jul-09, 11:35 AM) 14 MI: 4.21 m bTOP (9-Jul-09, 11:35 AM)	4	SM		- - - - -	- fine grained sand				S-1					
6 - Filter pack interval: Naturally developed - Benchonie seai: None - WL: 3.211 m bTOP (9-Jul-09, 11:35 AM) 7 - 8 - 9 - 10 - 11 - 12 - 13 - 14 - 15 - LOGGED BY: Ryan Milis COMPLETION DEPTH: 4.57 r	5				MW09-02 installation: - Screen interval: 3.05 m	- 4.57 m								
11 12 12 13 14 14 15 LOGGED BY: Ryan Mills COMPLETION DEPTH: 4.57 r	6				 Filter pack interval: Na Bentonite seal: None 	turally developed	1 in 5 micron Nitex cloth							
11 12 12 13 14 14 15 LOGGED BY: Ryan Mills COMPLETION DEPTH: 4.57 r	7													
11 12 12 13 14 14 15 LOGGED BY: Ryan Mills COMPLETION DEPTH: 4.57 r	8													
11 12 12 13 14 14 15 LOGGED BY: Ryan Mills COMPLETION DEPTH: 4.57 r	9													
11 12 12 13 14 14 15 LOGGED BY: Ryan Mills COMPLETION DEPTH: 4.57 r	10													
13 14 15 LOGGED BY: Ryan Mills COMPLETION DEPTH: 4.57 r														
14 15 LOGGED BY: Ryan Mills COMPLETION DEPTH: 4.57 r	12													
15 LOGGED BY: Ryan Mills COMPLETION DEPTH: 4.57 r	13													
LOGGED BY: Ryan Mills COMPLETION DEPTH: 4.57 r	14													
LOGGED BY: Ryan Mills COMPLETION DEPTH: 4.57 r											· · · · · · · · · · · · · · · · · · ·			
	15				L		106	GED B	 Y: R	van Mi	lls		TION DEPTH 4 57 m	<u></u> า
AECOM REVIEWED BY: Marc Lavigne COMPLETION DATE: 7/7/09					AECOM								TION DATE: 7/7/09	

				en Mine Closure	day and NLO 007 405	CLIENT: Yul	kon Gove	ern	mer	nt - EN	/R		HOLE NO: MW09-0)3
				de of tailings empoun	ament N 2,097,195.								ECT NO.: 112359	
			Geo	tech Drilling Ltd.									ATION (m): 1103 (e	est.
SAMP				GRAB					BULK					
BACK	FILL	TYPE		BENTONITE	GRAVEL	SLOUGH			GRO	UT		INGS	SAND	
DEPTH (m)	NSC	SOIL SYMBOL		SC	DIL DESCRIP	TION		SAMPLE TYPE	SAMPLE #	SPT (N)	PENETRATION T	e ◇ i Test) ◆ 1) 80 100	COMMENTS	
0	FILL			SAND TAILINGS FILL										
-1 -2	SM	ୠୄୄୄୄୄୠୄୢୄୄୄୄୄୠୄୄୄୄୄୄୄ ୠୄ୕ୠୄୢୄୄୄୄୄୠୄୄୠୄୄୠୄୄ		 moist, loose, non-cohes fine grained sand, sub-r SILTY SAND TAILINGS dark yellowish orange moist becoming wet at 2 fine grained sand, sub-r 	2.31 m. loose, non-cohes		/ / / _ dilatency		S-1					
3								I	S-2					
4	SASI SICL			- fine grained sand, sub-r	n-cohesive, non-plastic, s rounded	slow dilatency 	!					· · · · · · · · · · · · · · · · · · ·		
5 6	SM	000000000000000000000000000000000000000		I- dark yellow brown - wet, soft, cohesive, med SILTY SAND - dark yellow brown - wet, medium dense, no - fine grained sand, sub-r	n-cohesive, non-plastic, r		 							
7	CL	000		CLAY TAILINGS - dark yellow brown wet, soft, cohesive, high	plasticity. slow dilatency				S-3					
8	CB SA			COBBLES AND SAND A - brown - wet, dense, non-cohesir - loose fine sand, silt and	ND SILT		` ing on /		S-4					
9				SAND - brown - wet, loose, non-cohesiv - fine to medium sand wit	e, non-plastic, rapid dilat	— — — — — — — - ency e dam fill	' [
10				END OF DRILLING at 9. MW09-03 installation: - Screen interval: 8.08 m	- 9.14 m									
11				 Screen type: 10-Slot 2" Filter pack interval: 7.9 Bentonite seal: 7.32 m WL: 6.910 m bTOP (22) 	3 m - 9.14 m · 7.92 m									
12														
13														
14 15														
-		I		AECOM				ED I	BY:	Marc L	ls (TION DEPTH: 9.14 m TION DATE: 7/8/09 Page	

				en Mine Closure	dmont	CLIENT: Yukon	Gover	nmei	nt - El	MR		HOLE NO: MW09-0)4
				de of tailings empour otech Drilling Ltd.			nah r O	040	ם דח	ire of Duch 444		ECT NO.: 112359	oct \
SAMF			Get	GRAB	SHELBY TUBE			BULI			IN MELEV / ECOVERY	ATION (m): 1103 (CORE	est.
BACK			:	BENTONITE	GRAVEL			GRO					
SACK			<u>-</u>	BENTONITE		IIIISLOUGH		GRU		PENETRATION TI * Becker *	ESTS	[]SAND	
DEPTH (m)	nsc	SOIL SYMBOL	1	S	OIL DESCRIPT	ION	SAMPLE TYPE	SAMPLE #	SPT (N)	 ◇ Dynamic Cone ◆ SPT (Standard Per (Blows/300mn) ○ 40 60 ■ Total Unit Wn (kl/Vm³) 16 17 18 19 Plastic MC L 20 40 60 	n Test) ♦ 1) 80 100	COMMENTS	
0 -1 -2	FILL	00000000000000000000000000000000000000		SILTY SAND TAILINGS - dark vellowish orange	sive, non-plastic, slow dilate rounded		 _] ncy						
-3							I	S-1			· · · · · · · · · · · · · · · · · · ·		
-4	SASI SICL			SANDY SILT TAILINGS - dark yellowish orange - wet, medium dense, no - fine grained sand, sub- I SILTY CLAY TAILINGS	on-cohesive, non-plastic, slo rounded		 - -				· · · · · · · · · · · · · · · · · · ·		
5	SM	0000000		- dark yellow brown - wet, soft, cohesive, me SILTY SAND - dark yellow brown	dium plasticity, slow dilaten		 	S-2			· · · · · · · · · · · · · · · · · · ·		
7				- fine grained sand, sub-	rounded								
8				 Filter pack interval: Na Bentonite seal: None 	" PVC SCHED 40 wrapped turally developed	in 5 micron Nitex cloth							
9 10				- WL: 3.810 m bTOP (22	2-Jul-09)								
11 12													
13													
14													
15						I							
							GED B					ION DEPTH: 7.01 m	1
				AECOM						Lavigne (Ken Skaftfeld	JOMPLET	ION DATE: 7/9/09 Page	

				en Mine Closure	admont N 2 007 224 (CLIENT: Yu	kon Gove	ernme	ent - E	MR		THOLE NO: MW09-0)5
				de of tailings empour otech Drilling Ltd.	iument N 2,097,224.			004	- דח		-	JECT NO.: 112359	0 2 ¹
SAMF			Geo	GRAB				8040 BUI			RECOVER	/ATION (m): 1103 (Y CORE	est.
		TYPE	-					GR					
SACK			_	BENTONITE	GRAVEL	[]]]]SLOUGH	<u>.</u>	∎]GR				[]SAND	-
DEPTH (m)	NSC	SOIL SYMBOL	_	S	OIL DESCRIP	TION		SAMPLE # PE	SPT (N)		€ ne ♦ en Test) ♦ m) 80 100 /t ■ 20 21 Liquid	COMMENTS	
0				SILTY CLAY TAILINGS						20 40 60	80 100		
·1	SICL			- wet, soft, cohesive, me	edium plasticity, rapid dilat	ency							
				SILTY SAND TAILINGS	5								
2	SM	000		- wet, loose, non-cohesi - fine to medium grained	ve, non-plastic, rapid dilat sand, sub-rounded	ency							
3				CLAY TAILINGS - dark yellow brown	e, high plasticity, rapid dila	atency							
					-, 								
4	CL										· · · · · · · · · · · · · · · · · · ·		
F													
5	OR SM										· · · · · · · · · · · · · · · · · · ·		
6		ol Vol 9		¦ - dark brown □¦- wet ¦- primarily moss									
	SA			SILTY SAND	- — — — — — — — —		 						
7				II- fine to medium sand, s	sub-rounded, occasional a	ngular clast up to 10	mm 						
8				ISAND	sive, non-plastic, slow dila	atency							
				soil horizon	sive, non-plastic, slow dila or silt inferred to be native	aeolian sand with de	eveloped				· · · · · · · · · · · · · · · · · · ·		
9 10				END OF DRILLING at 6 MW09-05 installation:	i./1 m								
10				 Screen interval: 5.79 n Screen type: 10-Slot 2 Filter pack interval: 5. 	2" PVC SCHED 40						· · · · · · · · · · · · · · · · · · ·		
10				- Filter pack interval. 5.4 - Bentonite seal: 5.18 m - WL: Dry (22-Jul-09)	- 5.79 m						· · · · · · · · · · · · · · · · · · ·		
11													
12													
13													
14											· · · · · · · · · · · · · · · · · · ·		
15										· · · · · · · · · · · · · · · · · · ·	· · · · · · · · · · · · · · · · · · ·		
							LOGGED I					TION DEPTH: 6.71 m	1
				AECOM			REVIEWE			Lavigne Ken Skaftfeld	COMPLE	TION DATE: 7/9/09 Page	

				en Mine Closure	ndment N 2,097,224.9		II Gover					HOLE NO: MW09-0	0
				tech Drilling Ltd.	iument in 2,097,224.3			0401				ECT NO.: 112359	t
	PLE T			GRAB		SPLIT SPOON		BULI			ECOVER	ATION (m): 1103 (Y CORE	est.
			=	BENTONITE				GRO					
DACK			-	BEINTOINITE	GRAVEL		··•						
DEPTH (m)	NSC	SOIL SYMBOL		S	OIL DESCRIP	ΓΙΟΝ	SAMPLE TYPE	SAMPLE #	SPT (N)	# Becker # 	e ◇ n Test) ◆ n) 80 100	COMMENTS	
0				SILTY CLAY TAILINGS - dark yellow orange	edium plasticity, rapid dilat	070/							
1	SICL					ency							
2	SM			SILTY SAND TAILINGS - dark yellowish brown - wet, loose, non-cohes - fine to medium grained	ive. non-plastic. rapid dilat								
3				CLAY TAILINGS	e, high plasticity, rapid dila								
4	CL			,,,		-y							
4			- - -	END OF DRILLING at 4	.57 m — — — — — —								
5				MW09-06 installation: - Screen interval: 1.52 r - Screen type: 10-Slot 2	2" PVC SCHED 40 wrappe	ed in 5 micron Nitex clot							
6				 Filter pack interval: Na Bentonite seal: None WL: 2.95 m bTOP (22) 	aturally developed								
7													
8													
9													
9 10 11 12 13 14													
-													
11													
12													
13											· · · · · · · · · · · · · · · · · · ·		
14													
15													
						LC	GGED B	Y: R	yan Mi	lls (TION DEPTH: 4.57 m	1
				AECOM		R	VIEWED	BY:	Marc I	avigne	COMPLE	TION DATE: 7/10/09	

				en Mine Closure le of tailings empoun	dmont	CLIENT: Yukon C	Gover	nmei	nt - EN	MR		HOLE NO: MW09-0)7
				tech Drilling Ltd.				0.401				ECT NO.: 112359	+ \
SAMP			. 060	GRAB				BULI			ECOVER	ATION (m): 1103 (Y CORE	est.
			_										
BACK		IYP	=	BENTONITE	GRAVEL	SLOUGH		GRO	UT			SAND	
DEPTH (m)	nsc	SOIL SYMBOL	-		DIL DESCRIPT	ION	SAMPLE TYPE	SAMPLE #	SPT (N)	PENETRATION T	e ◇ n Test) ✦ n) 80 100	COMMENTS	
0 -1 -2	SM SM OR			SILTY SAND FILL - brown - dry, loose, non-cohesiv - native fill used for drill p	e, non-plastic ad construction								
-3	OR SA CL SM		<u>. [-] .</u>	- dark yellowish brown - moist, medium dense, r - fine to medium grained ORGANICS - dark brown to black - moist									
-4 -5		000	-	SAND	becoming more decompos sive, non-plastic inferred to be developing								
6				ICLAY I- light grey - moist, very dense, cohe - clay sized volcanic ash SILTY SAND - dark grey to black	sediments		=== == 				· · · · · · · · · · · · · · · · · · ·		
.7				END OF DRILLING at 4. MW09-07 installation:	, organic rich, grading coar 57 m	rser with depth	_						
9				 Screen interval: 2.31 m Screen type: 10-Slot 2' Filter pack interval: 2.0 Bentonite seal: None WL: Dry (22-Jul-09) 	PVC SCHED 40 wrapped	d in 5 micron Nitex cloth					· · · · · · · · · · · · · · · · · · ·		
10											· · · · · · · · · · · · · · · · · · ·		
11											· · · · · · · · · · · · · · · · · · ·		
12													
13 14													
15											· · · · · · · · · · · · · · · · · · ·		
									yan Mi			TION DEPTH: 4.57 m	1
				AECOM		REVI	EWED	BY:	Marc I	Lavigne		TION DATE: 7/8/09	

				en Mine Closure eam of Seepage Dan	n N 2,097,199.8 E 11	CLIENT: Yukoi 8,756.2					PRO.J	HOLE NO: MW09-0 ECT NO.: 112359	
				tech Drilling Ltd.			probe 8	8040	DT, Ai	r Rotary - 114 m		ATION (m): 1076.0	
SAMF	PLE T	YPE		GRAB	SHELBY TUBE	SPLIT SPOON		BUL			ECOVER		
BACK	FILL	TYPE	<u> </u>	BENTONITE	GRAVEL	SLOUGH	•	GRC	DUT	CUTI	TINGS	SAND	
DEPTH (m)	nsc	SOIL SYMBOL			OIL DESCRIPT	ΓΙΟΝ	SAMPI F TYPF	SAMPLE #	SPT (N)	PENETRATION T	e � n Test) ♠ n) 80 100	COMMENTS	
0	GRSA			SAND and GRAVEL, tra - orange-brown	ce silt								
-1		•		- moist, loose - medium grained sand, - gravel sub-angular to s - clast supported - presence of organic (ro	ub-angular, 0.5 cm to 5 cr	n							3
-2	SA			SAND, some silt, some of - dark grey - moist to wet, loose - fine grained to medium	organic								;
-3	GRSA SA	•	: <u> = :</u> 	- presence of roots SAND and GRAVEL, tra - dark yellowish brown - medium grained sand, - sub-angular gravel, 0.5	sub-rounded		 						:
-4				- clast supported - permafrost at 3.05 m be SAND, trace silt - dark brown and grey	elow ground surface, Nbn]						
-5				 very dense medium grained sand presence of wood debr permafrost, Nbn 									
				MW09-08 install: - Screen interval: 1.52 m	66 m in permafrost (refuse	aı)							
.7				 Screen type: 10-Slot 2 Filter pack interval: 1.2 Bentonite seal from gro WL: 1.028 mTPVC (22- 	" PVC SCHED 40 2 m - 3.58 m ound surface to 1.22 m								
-8 -9													
10													
-11 -12 -13													
12													
-13													
·14													
15	<u> </u>					LO	GGED B	3Y: M	larc La	vigne	COMPLE	TION DEPTH: 3.66 m	 n
				AECOM			VIEWED					TION DATE: 7/15/09	

				en Mine Closure	at of Diversion Chan	CLIENT: Yuko			ent - El	MR		HOLE NO: MW09-1	1
				tech Drilling Ltd.	est of Diversion Chan				י דח	inant Durch 444		JECT NO.: 112359	1
SAMP			Geo	GRAB				BUL			RECOVER	/ATION (m): 1102.2	.4
SAIVIP BACKI				BENTONITE	GRAVEL								
BACKI	FILL		=	BENTONITE	GRAVEL	IIIISLOUGH	· •	JGRU				[]SAND	-
DEPTH (m)	NSC	SOIL SYMBOL		S	OIL DESCRIPT	ΓΙΟΝ	SAMPI F TYPF	SAMPLE #	SPT (N)	PENETRATION T	e � n Test) ♦ n) 80 100	COMMENTS	i i i
0			40	SAND (Aeolian)									
-1				 grey brown dry, loose, non-cohesi uniform fine to medium becoming moist at 1.3 medium dense (incres) 								3	
-2	SA			 increasing silt content non-cohesive, non-pla 	with depth with medium sa	ind interbeds, thinly bed	ded						3
-3				- saturated at 3.25 m, de	ense, sandy silt interbed <	1 cm thick							3
4				1 - permafrost 4.11 m to 4	ozen sand between 3.66 r .22 m, refusal at 4.22 m u: .22 m in permafrost (refus	sing direct push drilling i	metho d	S-1					3
5				 MW09-11 install: - Screen interval: 2.69 n - Screen type: 10-Slot 2 - Filter pack interval: 2.3	n - 4.22 m " PVC SCHED 40	~,							3
6				Bentonite seal from 1.8 Drill cutting from grour <u>WL: 4.27 m BTOP (22</u>)	33 m to 2.39 m		 						3
7													3
8													3
9 10 11 12 13 14													3
10													3
11													3
12													:
13													:
14													:
15				I			GGED B	 Y: R	l Ivan Mi	lls	COMPLF	TION DEPTH: 4.22 m	
				AECOM			VIEWED					TION DATE: 7/8/09	
										Ken Skaftfeld		Page	1

				en Mine Closure		CLIENT: Y	ukon Gove	rnme	ent - El	MR		HOLE NO: MW09-1	13
				st of Brown-McDade tech Drilling Ltd.	pit N 2,097,531.2 E 1			00.15		<u> </u>		ECT NO.: 112359	<u>م</u>
			Geo	-			Geoprobe	8040	<u>)DT, Ai</u>	<u>r Rotary - 114 n</u>		ATION (m): 1209.3	35
SAMF				GRAB				BUL					
BACK				BENTONITE	GRAVEL	SLOUGH	<u></u>	GR				SAND	
DEPTH (m)	USC	SOIL SYMBOL		S	OIL DESCRIPT	ΓΙΟΝ	SAMDI E TVDE	SAMPLE # FE	SPT (N)		€ n Test) ♦ m) <u>80 100</u> ft ■ <u>20 21</u> Liquid	COMMENTS	
0				CLAY (minor SAND and	d some SILT)					20 40 60	80 100		
-1	CL			- brown - dry, loose, cohesive, p	plasic, rapid dilatency when	n wet		S-1					3
								S-2					:
2				yellow-orangedry, highly weathered	with iron staining, chips ve fractured bedrock aquifer	ry coarse							
				 inferred to be shallow becoming wet 	fractured bedrock aquifer			S-3					
3								S-4					
		≡ III•						S-5					
													:
4	BE							S-6					
				- casing to 1 57 m				S-7					
5				- casing to 4.57 m									
								S-8		åå- ååå-			
								S-9					:
6				- borehole producing an	oprox. 1-2 L/min during air (development							
					un v	· · · · · · · · · · · · · · ·		S-10	D				
7				GRANODIORITE				S-1'	1				
				- moist, moderately wea	athered, abundant iron stain ent downhole	ning, chips fine							
				- increasing matic conte				S-12	2				:
8								S-13	3				
				- chips coarser from 8.5	53 m to 10.46 m								:
9					-			S-14	4				
	BE							S-18	5				
9 10													:
10								S-16	6				
								S-17	7				
11													
								S-18	3				
10								S-19	9				:
12													
				- light grey	l feldspars, quartz rich, low	matic contact mas	sive	S-20	D				:
13		⊨ IIII.		structure				S-2	1	·····			
	BE			 unreactive with HCl, or rock 	verall less weathered and	more competent tha	n overlying						
14	DE							S-22	2				'
14								S-23	3				
								`					
15	1			1			LOGGED E	BY· F	 Rvan Mi	lls	COMPLE	TION DEPTH: 35.97	 m
				AECOM			REVIEWE					TION DATE: 7/12/09	
										Ken Skaftfeld		Page	e 1

			Mine Closure	pit N 2,097,531.2 E 1	CLIENT: Yul	kon Gove	rnme	nt - EN	1R		HOLE NO: MW09- 1 ECT NO.: 112359	13
			ch Drilling Ltd.	pit in 2,007,001.2 L		eonrohe	80/0		: Rotary - 11/ m		ATION (m): 1209.3	35
		ГҮРЕ	 GRAB	SHELBY TUBE			BULI	<u>ы, л</u> К		ECOVERY		
		TYPE	BENTONITE	GRAVEL			GRC				SAND	
			BENTONITE			<u>• •</u>			PENETRATION TE			
DEPTH (m)	nsc	SOIL SYMBOL	S	OIL DESCRIPT	ΓΙΟΝ	CAMBLE TVBE	SAMPLE 11PE	SPT (N)	※ Becker ※ ◇ Dynamic Cone ◆ SPT (Standard Pen (Blows/300mm) 0 40 60 ■ Total Unit Wt (kN/m ³) 16 17 18 19	♦ Test) ♦ 80 100	COMMENTS	
15							S-24		20 40 60	80 100		
15												
							S-25					
16							S-26		·····			
17							S-27					
							S-28		· · · · · · · · · · · · · · · · · · ·			
	BE						0.20					:
18	1						S-29					
	1											
	1						S-30					
9							S-31					
20							S-32					
			ORNEBLENDE DIORI	ГЕ — — — — — — — — — — — — — — — — — — —			S-33					
			dark grey drv. potassium feldspar	and horneblende mildly v	weathered, chips fine		5-33					
21							S-34					
							S-35					;
22							S-36					
							0.00					
23							S-37					
							0.00					
							S-38					
24							S-39					
	1											
							S-40					
25	BE						S-41					
24 25 26 27 28 29	1						0.41					
26	1						S-42					
	1						a					
	1						S-43					
27	1						S-44					
	1											.
20							S-45					;
20							S-46					
	1						0-40					:
29	1						S-47					
	1											
20	1						S-48					:
30	1					LOGGED E	BY: R	yan Mil			ION DEPTH: 35.97	m
			AECOM		ł	REVIEWEI	D BY:	Marc L	.avigne C		TION DATE: 7/12/09	
									Ken Skaftfeld		Page	2

CONTRACTO SAMPLE TY BACKFILL T (U) HLdO 30 BE -31 BE -32 BE -33 BE -34 BE -35 -36 -37 -38 -39 -40 -41 -42			แมะสร			110 560 0						OT NO . 440250	
SAMPLE TY BACKFILL T (m) HLdH 30 BE 30 BE -31 BE -32 IIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIII					pit N 2,097,531.2 E 1			0.40				ECT NO.: 112359	
3ACKFILL T (W) HLding 30 BE 31 BE 32 Image: Second secon			Geo	-				040 BULI		<u>r Rotary - 114 m</u>		ATION (m): 1209.3	5
(iii) U				GRAB									
30 BE 30 BE -31 BE -32 IIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIII		YPE		BENTONITE	GRAVEL	[[]]SLOUGH	<u>.</u>	GRC				SAND	_
-31 BE E		SOIL SYMBOL		S	OIL DESCRIPT	ΓΙΟΝ	SAMPLE TYPE	SAMPLE #	SPT (N)		e ♦ n Test) ♦ n) 80 100 ■ 20 21 iquid	COMMENTS	
31 BE 32 IIII 33 IIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIII		I	E	QUARTZOLITE				S-49		20 40 60	80 100		
-32				 white to light grey primarily quartz with mi very hard (drilling at ap 	nor plagioclase feldspar a prox. 1.5 m/hour)	and biotite		S-50					3
33		≡ ≡ ≡						S-51 S-52					:
34 BE		= ≡ =		GRANODIORITE				S-53 S-54					
35	IIII = [· · E · ·] - dīy, high quartz content with minor amount of highly weat IIII = [· · E · ·] feldspar IIII = [· · E · ·] IIII = [· · E · ·] BE IIII = [· · E · ·] IIII = [· · E · ·] IIII = [· · E · ·]		ghly weathered potassium		S-55					:			
36 37 38		≡ ÷					S-56 S-57					:	
38		≡ ≡ ≡		ND OF DRILLING at 35.97 m			S-58					:	
				- Screen type: 20-Slot 2 - Filter pack interval: 28.3	13 install: n interval: 29.87 m - 35.97 m n type: 20-Slot 2" PVC SCHED 40								:
 39 40 41 42 				 Bentonite seal from 27. Grouted to ground surfation WL: 33.24 m BTOP (22) 	43 m to 28.34 m ace								:
40 41 42											· · · · · · · · · · · · · · · · · · ·		
41													
42													
													:
43													:
44													:
45													
						LO	GED B	Y: R	yan Mi	lls (COMPLET	TION DEPTH: 35.97 r	n
				AECOM			/IEWED					ION DATE: 7/12/09	

			nsen Mine Closure		CLIENT: Yuko	n Govern	men	nt - EN	/R		HOLE NO: MW09-1	
			east of Brown-McDad	e pit							IECT NO.: 112359	
			eotech Drilling Ltd.		METHOD: Geo	prob <u>e 80</u>)40C)T, Ai	<u>r Rotary - 114 m</u>	mELEV	ATION (m): 1209 (est.)
SAMP			GRAB							RECOVER		
BACK	FILL	TYPE	BENTONITE	GRAVEL	[]]] SLOUGH		GROL	JT	CUT	TINGS	SAND	
DEPTH (m)	NSC	SOIL SYMBOL		SOIL DESCRIPT	FION	SAMPLE TYPE	SAMPLE #	SPT (N)		e	COMMENTS	
0			CLAY (minor SAND a	nd some SILT)					20 40 60	80 100		
1	CL		- brown	, plasic, rapid dilatency when	wet		S-1					
2			DIORITE - yellow-orange - dry, highly weathere	d with iron staining, chips ver	- — — — — — — — - ry coarse		S-2 S-3					
3	 ⇒ inferred to be shallow fractured bedrock aquifer → becoming wet ⇒ ⇒ ⇒ 				S-4							
4		= = =					S-5 S-6					
5			- casing to 4.57 m				S-7					
6							S-8 S-9					
			- borehole producing a	approx. 1-2 L/min during air c — — — — — — — — — —	development 		S-10					
7			 light grey moist, moderately with the second s	eathered, abundant iron stair tent downhole	ning, chips fine		S-11 S-12					
8		= [= = [= = [= =	- chips coarser from 8	.53 m to 10.46 m			S-13					
9							S-14 S-15					
10						S	S-16					
11												
12												
12 13 14												
14												
									·····			
15			AECOM			GGED BY VIEWED E				COMPLE	TION DEPTH: 10.67 TION DATE: 7/12/09	m

			sen Mine Closure		CLIENT: Yukon	Govern	nmer	nt - El	/IR		HOLE NO: MW09-	
			ast of Brown-McDade	e pit			• · -		.		ECT NO.: 112359	
			otech Drilling Ltd.			probe 8	040	<u>) T, Ai</u>	r Rotary - 114 m		ATION (m): 1209 ((est.
SAMP			GRAB				BULK			ECOVERY		
BACK		TYPE	BENTONITE	GRAVEL	SLOUGH	•	GRO	UT	Ситт		SAND	
DEPTH (m)	USC	SOIL SYMBOL	S	OIL DESCRIPT	ION	SAMPLE TYPE	SAMPLE #	SPT (N)	PENETRATION TE	e ◇ Test) ◆ 1) 80 100	COMMENTS	
15												
-16												
·17												
18												
19										· · · · · · · · · · · · · · · · · · ·		
20												
21												
22										· · · · · · · · · · · · · · · · · · ·		
23												
24												
25												
26												
24 25 26 27 28 29												
28												
29												
30										······		
						GED B					ION DEPTH: 10.67	
			AECOM		REV	IEWED	BY:	Marc I	avigne		ION DATE: 7/12/09	_

				en Mine Closure	nit	CLIENT: Yukon	Goveri	nme	nt - El	MR		HOLE NO: MW09-	
				st of Brown-McDade	μι							ECT NO.: 112359	
			Geo	tech Drilling Ltd.			probe 8	040	<u>DT, A</u> ⁄	ir Rotary - 114 m		ATION (m): 1209 (est.)
SAMP			-	GRAB				BULI			ECOVERY		
BACK	FILL	TYPE	:	BENTONITE	GRAVEL	SLOUGH		GRO	UT			SAND	
DEPTH (m)	USC	SOIL SYMBOL		S	OIL DESCRIPT	ION	SAMPLE TYPE	SAMPLE #	SPT (N)	PENETRATION TI	e	COMMENTS	
30													
-31													
32													
33													
34													
35				END OF DRILLING at 10.67 m WW09-14 install: • Screen interval: 5.49 m - 8.53 m • Screen type: 20-Slot 2" PVC SCHED 40 • Filter pack interval: 5.18 m - 8.53 m • Bentonite seal from 0 m to 5.18 m • WL: Frozen at 8.13 m BTOP (22-Jul-09)									
36													
37													
38				- WL: Frozen at 8.13 m E	3TOP (22-Jul-09)								
39													
40													
41													
39 40 41 42 43 44													
43													
44													
45				1			GED B	 Y· P	van Mi			TION DEPTH: 10.67	 m
				AECOM								TION DATE: 7/12/09	
										Ken Skaftfeld		Page	

			sen Mine Closure	N 2,097,550.1 E 118,	<u>CLIENT: Y</u> 1 541.3	ukon Goverr	nmer	nt - EN	ΛK		<u>FHOLE NO: MW09-1</u> JECT NO.: 112359	15
			eotech Drilling Ltd.	, ,, - , - -, - --, - -,		Geoprobe 8	040[DT, Ai	r Rotary - 114 m		/ATION (m): 1208 (est.
SAMP			GRAB	SHELBY TUBE	SPLIT SPO		BUL		NO R	ECOVER		
BACK	FILL	TYPE	BENTONITE	GRAVEL	SLOUGH		GRO	UT	СОТТ	INGS	SAND	
DEPTH (m)	USC	SOIL SYMBOL	S	SOIL DESCRIP	TION	SAMPLE TYPE	SAMPLE #	SPT (N)		e ♦ n Test) ♦ 1) 80 100 20 21 iquid	COMMENTS	
0			CLAY (minor SAND an	d some GRAVEL)					20 40 60	80 100		
-1			- brown - dry, loose, cohesive, l	non-plastic, rapid dilatency	when wet		S-1					
-3	CL						S-2					
4							S-3					
5	BE		- vellow-orange	with iron staining, chips ve fractured bedrock aquifer	ery coarse	/	S-4 S-5 S-6 S-7 S-8					
·6 ·7	BE		- light grey	d, occasional iron staining, rox. 1 L of water in hole aft	chips coarse er changing bit		S-9					
8							S-10 S-11					
9 10			 highly weathered 8.53 dry, absence of mafic inferred conductive fra slightly weathered fro dry, light grey 	minerals, high degree of ir acture zone when saturated	— — — — — — — on staining d		S-12 S-13					
10			kiy, iigin gicy				S-14 S-15					
11			- quartz vein 10.97 m t	o 11.58 m			S-16 S-17					
12 13 14							S-18 S-19					
14							S-20 S-21					
45	BE	≡	GRANODIORITE						·····			
15	DE		AECOM			LOGGED BY REVIEWED	BY:	Marc L			TION DEPTH: 38.10 TION DATE: 7/11/09 Page	

				en Mine Closure		CLIENT: Y	ukon Gove	ernme	ent - El	ИR		HOLE NO: MW09-	
				Brown-McDade pit N btech Drilling Ltd.	2,097,550.1 E 118,		<u> </u>	00.10		D (ECT NO.: 112359	
			Geo	-						r Rotary - 114		ATION (m): 1208 (est
		YPE	_	GRAB				BUL			RECOVER		
BACK	FILL	TYPE	-	BENTONITE	GRAVEL	SLOUGH	<u>[.</u>	GRO				SAND	
DEPTH (m)	NSC	SOIL SYMBOL		S	DIL DESCRIP	TION		SAMPLE IYPE SAMPLE #	SPT (N)	PENETRATION	K ne ◇ en Test) ◆ nm) 80 100 Vt ■ 20 21 Liquid	COMMENTS	
15				- grey-brown - moist from 14.63 m to 1	6 46 m and dry below hi	ichly weathered and	iron	S-22	2	20 40 60	80 100		
		≡		stained		igniy weathered and	lion	S-23	3				
16				 rapid drilling rates highly fractured bedrock zone of cave during we 	k 15.94 m to 16.92 m (rap	pid drilling)		S-24	1				
				- zone of cave during we	Il installation			0-2-	.				
	BE							S-25	5				
17													
								S-26					
18								S-27	7				
			•	HORNEBLENDE DIORI	re								
				 light grey dry, moderately weather 		denar chine fine		S-28	8				
19				- ury, moderately weathe	aeu, minor polassium telo	uspai, chips illie		S-29	9				
20	BE							S-30	D				
								S-31	1				
								3-31	'				
21								S-32	2				
				GRANODIORITE									
00	BE			 grey-brown moist, highly weathered 	. heavily fractured and in	on stained ranid drill	ing rates	S-33	5				
22				mener, mener would be	.,			S-34	4				
23	5			- light grey	rad trace folderer			S-35	5				
	BE	≡III[- dry, moderately weathe	areu, irace ieiuspar			S-36	6				
									-1				
24				- orange-brown			6 H	S-37	7				
	BE			 moist, highly weathered potentially conductive fit 	i with high clay mineral co acture zone	ontent inferred to be	tault gouge	S-38					
25		<u> </u> ≡						3-30					
-				HORNEBLENDE DIORI - light grey				S-39	Э	····÷			
				- dry, moderately weathe	red, minor iron staining, o	chips fine							
26								S-40	ו				
								S-41	1				
27													
<u>-</u> 1								S-42	2				
	BE							S-43	3				
28								0-40	-				
								S-44	4				
20								C 41	_				
29				- less than 1 m of water i	n borehole after sitting ov	vernight without rods	in hole	S-45					
								S-46	6				
30		₩≣											
				AECOM			LOGGED REVIEWE					TION DEPTH: 38.10 TION DATE: 7/11/09	
				AECOM						Ken Skaftfeld	JUNFLE	Page	

				en Mine Closure Brown-McDade pit N	V 2,097,550.1 E 118,5	CLIENT: Yuko 641.3	n Gover	nme	nt - EN	//R		HOLE NO: MW09- 1 IECT NO.: 112359	15
				tech Drilling Ltd.			porobe 8	3040	DT. Ai	r Rotary - 114 m		ATION (m): 1208 (est.
SAMP	PLE T	YPE		GRAB	SHELBY TUBE	SPLIT SPOON	E	BUL	<u> </u>		ECOVER		
BACK	FILL	TYPE	-	BENTONITE	GRAVEL	SLOUGH		GRC	DUT	CUT	TINGS	SAND	
DEPTH (m)	NSC	SOIL SYMBOL		S	OIL DESCRIPT	ION	SAMPLE TYPE	SAMPLE #	SPT (N)	PENETRATION T	e � n Test) ✦ n) 80 100	COMMENTS	
30 -31 -32	BE			DIORITE - light grey - dry, soft, moderately w	reathered, minor iron stainin	ng		S-47 S-48 S-49 S-50					
-33								S-51 S-52					
-34 -35	BE			- highly weathered from	34.14 m to end of hole at 3	38.10 m		S-53 S-54 S-55					
-36				- moist from 35.36 m to	35.38 m			S-56 S-57	i				
-37				- wet from 35.38 m to er	nd of hole at 38.10 m			S-58 S-59					
-38 -39		≡Ш	-	END OF DRILLING at 3 MW09-15 install: - Screen interval: 33.98	m - 37.03 m			S-60					
-40				remove cave and stabili	.22 m - 37.03 m 1.00 m to 33.22 m face ymer used to avoid loss of h ze borehole	nole; re-drilled 7 times to							
41				- WL: 16.74 m BTOP (2	z-Jul-U9)								
42													
43 44													
45						Т							
45							GGED B					TION DEPTH: 38.10	
				AECOM			VIEWED			Lavigne Ken Skaftfeld	COMPLE	TION DATE: 7/11/09 Page	

				en Mine Closure		CLIENT: Yukor	n Gover	nme	nt - El	MR		HOLE NO: MW09-1	16
			<u> </u>	tech Drilling Ltd.				0.40				ECT NO.: 112359	+ \
SAMP			. 060	GRAB	SHELBY TUBE			BULI			nnnaL⊏V/ ECOVERY	ATION (m): 1187 (CORE	esi.
BACK			=	BENTONITE				GRC				SAND	
DEPTH (m)	nsc	SOIL SYMBOL	_	_			SAMPLE TYPE		SPT (N)	PENETRATION TI	ESTS	COMMENTS	
0-1	GR			GRAVEL FILL with some - dark yellowish-brown - dry, dense, non-cohesi - gravel up to 3" diamete - inferred to be waste roo - becomes wet at 1.07 m	ve, non-plastic						80 100		
-2 -3	SASI			SANDY SILT	hesive, rapid dilatency 66 m t with depth, sand fine to m		I	S-1					
4			-	SILTY SAND		·	 [
5				 fine to medium grained inferred to be aeolian s END OF DRILLING at 4. MW09-16 install: Screen interval: 0.30 m 	- 1.83 m	pid dilatency cs - — — — — — — — — –	 						
7 8				- Screen type: 20-Slot 2 - Filter pack interval: 0.1: - Bentonite seal from 0 n - WL: 1.21 m BTOP (22-	5 m - 1.83 m n to 0.15 m								
9 10													
10											· · · · · · · · · · · · · · · · · · ·		
11 12													
13											· · · · · · · · · · · · · · · · · · ·		
14											· · · · · · · · · · · · · · · · · · ·		
15													L
							GGED B					ГІО <mark>N DEPTH: 4.57 m</mark> ГІОN DATE: 7/14/09	1
				AECOM						Ken Skaftfeld		Page	. 1

				en Mine Closure adient of Mill N 2,097	310 7 E 119 296 2	CLIENT: Yukon	Gover	nme	ent - El	VIR		HOLE NO: MW09-1	17
				tech Drilling Ltd.	,519.7 E 110,200.2			040		ins at Durch 111		ECT NO.: 112359	10
SAMF			000	GRAB		METHOD: Geo		BUL			RECOVERY	ATION (m): 1179.4 CORE	ŧU
			=	BENTONITE				GRC					
BAUN			=	BENTONITE	GRAVEL		••	JGRU				SAND	<u> </u>
DEPTH (m)	nsc	SOIL SYMBOL		S	OIL DESCRIPT	TION	SAMPLE TYPE	SAMPLE #	SPT (N)		e ◇ n Test) ◆ n) 80 100 t ■ 20 21 _iquid	COMMENTS	
0				SILTY CLAY with some	SAND and GRAVEL					20 40 60	80 100		
-1	SICL			 orange dry, dense, cohesive, le inferred to be waste root 	ow plasticity ck fill used for road bed cor	nstruction							3
2				- becomes moist at 1.37 	m 								:
3	SASI	* • • • • • • • • •		- odour likely the result of	cohesive, medium plasticit f organics in soil; does not AY, SILT and SAND filling i	smell like hydrocarbon		S-1					:
4	GR			 wet to saturated, dense gravel to 10 cm along I inferred to be colluvium 	e, non-cohesive, non-plasti ong axis I	ic fines, highly weathered		S-2					:
5	BE			BEDROCK - dark grey - wet, very dense, fine te		- — — — — — — — — — — — — — — — — — — —							:
6				- refusal at what is inferr END OF DRILLING at 4 MW09-17 install:	88 m — — — — — — — — — — — — — — — — — —		_ i						:
7				 Screen interval: 3.35 m Screen type: 10-Slot 2 Filter pack interval: 2.7 Bentonite seal from 0 m W(1:2:99 m ETOP (22) 	" PVC SCHED 40 4 m - 4.88 m n to 2.74 m								:
8				- WL: 3.88 m BTOP (22-	Jui-U9)								
9													
9 10													
11													
12													:
13													
14													
15										· · · · · · · · · · · · · · · · · · ·			
							GED B					FION DEPTH: 4.88 m	۱
				AECOM		REV	/IEWED	BY:	Marc	Lavigne	COMPLET	TION DATE: 7/14/09	

CONTRACTOR: Geotech SAMPLE TYPE BACKFILL TYPE (L) HLA GRSA GRSA GRSA GRSA GRSA GRSA CONTRACTOR: Geotech SAU CONTRACTOR: CONTRACTOR SAU CONTRACTOR: CONTRACTOR SAU CONTRACTOR CONTRACTOR SAU CONTRACTOR SAU CONTRACTOR SAU CONTRACTOR CON	1 Mine Closure	CLIENT: Yukon G	joveri	nmer	nt - EN	/IR		HOLE NO: MW09-1	0
SAMPLE TYPE BACKFILL TYPE				0405	ים דר	reat Duch 111		ECT NO.: 112359	06
BACKFILL TYPE (U) HLA (U) HL		METHOD: Geopr		U4UL BULK		<u>rect Push - 114 </u> NO R		ATION (m): 1181.0	0
(iii) HLAG SASI Iog SASI				GRO					
Image: Sass Image: Sass Sass <th< th=""><th>BENTONITE · GRAVEL</th><th></th><th>·•</th><th>GRU</th><th>01</th><th></th><th></th><th>SAND</th><th></th></th<>	BENTONITE · GRAVEL		·•	GRU	01			SAND	
SASI	SOIL DESCRIPTIC)N	SAMPLE TYPE	SAMPLE #	SPT (N)	PENETRATION TE	e ◇ Test) ◆) 80 100	COMMENTS	
-5 SM -5 SM -6 GRSA -7 -7 -7 -7 -7 -7 -7 -7 -7 -7 -7 -7 -7 -	SANDY SILT brown with red staining dry, loose, non-cohesive, non-plastic organic rich with pervasive roots, mild unknown odou SILTY SAND brown with yellow staining dry, medium dense, non-cohesive, non-plastic organics present, sand fine to medium inferred to be waste rock fill moist from 1.52 m to 3.81 m, becomes red-brown bel gravel/boulders		_/= I	S-1					3
	dry from 3.81 m to 4.88 m; loose								
GRSA GRSA SA GRSA SA GRSA SA 	SILTY SAND TAILINGS		 I	S-2					
-10 -12 -13	SAND and GRAVEL with minor CLAY brown wet, loose, non-cohesive, non-plastic angular gravel sized clasts inferred to be colluvium, potential bedrock contact at i			S-3					
-9 - Si - Fi - Bi - W -10 -11 -12 -13	- inferred to be colluvium, potential bedrock contact at END OF DRILLING at 6.86 m WW09-18 install: - Screen interval: 6.70 m - 6.86 m	b./U m	-'						:
-11 -12 -13	Screen type: 10-Slot 2" PVC SCHED 40 Filter pack interval: 5.94 m - 6.86 m Bentonite seal from 0 m to 5.94 m WL: 4.40 m BTOP (22-Jul-09)								:
12							· · · · · · · · · · · · · · · · · · ·		:
13									
									:
14									
15									
		LOGG	ED B	<u>۲</u> : R۱	/an Mil	ls (COMPLE	TION DEPTH: 6.86 m	<u>ו</u>
	AECOM							TION DATE: 7/15/09	

				en Mine Closure		CLIENT: Yukon	Gover	nme	nt - El	MR		THOLE NO: MW09-1	
				adient of Mill otech Drilling Ltd.				0.10	D T -			JECT NO.: 112359	
			Geo	-		METHOD: Geop	probe 8	BULI	<u>DT, D</u>			/ATION (m): 1182 (est.
SAMP			-	GRAB				_			RECOVER		
BACK		IYPE	:	BENTONITE	GRAVEL	SLOUGH	•]GRC		СОТ		SAND	
DEPTH (m)	NSC	SOIL SYMBOL		S(OIL DESCRIPT	ION	SAMPLE TYPE	SAMPLE #	SPT (N)	PENETRATION	é ne ◇ n Test) ✦ m) 80 100	COMMENTS	
0	SM	ØØ		$\overline{SAND}, \overline{silty} = $									
		•		- orange-brown			- j			·····			
1		∢ . [™] .		- dry, loose - fine grained to medium	grained sand		;						
	GRSA	• • • •		SAND and GRAVEL, tra	ce silt		-						
•		. .		 dark brown to orange moist, dense 									
2				- medium grained sand,	sub-rounded								
		د گرد ډ		- gravel sub-rounded to s - clast supported	sub-angular, 0.5 cm to 7 cr	m (limited by core barrel)	4	G-1 G-2					
3	SA OR			- presence of wood debr			1	G-3					
0				ORGANIC, some silt, tra	ce sand		- j						
				- moist, loose			4			·····	····;····		
4	SA		E	- presence of roots SAND, gravelly, trace of			_ j						
			日	- orange-brown	Silt								
			E	- moist, dense	rounded		i 🗖	G-4					
5			<u> </u>	- fine grained sand, sub- volcanic ash marker	rounded		1	G-4					
				UORGANIC, some silt, tra	ce sand								
				- dark brown - moist, loose									
6				r presence of roots									
				SAND, some silt, trace g	ravel		- į						
-				- wet, loose			¦			·····	· · · · : · · · · · · ·		
1				∣- medium grained sand, ⊢ sub-angular gravel, 1 c			-11-						
				 matrix supported 			_						
8				END OF DRILLING at 5.	11 m in permafrost (refusa	al)							
•				MW09-19 install:						· · · · · · · · · · · · · · · · · · ·			
				 Screen interval: 3.58 m Screen type: 10-Slot 2 	- 5.11 m " PVC SCHED 40								
9				- Filter pack interval: 3.28	3 m - 5.11 m								
				- Bentonite seal from gro - WL: 2.614 mTPVC (22-	ound surface to 3.28 m								
9 10													
10										·····			
44													
11													
											····		
12													
13													
14													
15											····;····		
15						IOG	GED B	Y: M	l larc I a	viane	COMPI F	ETION DEPTH: 5.11 m	n n
				AECOM			IEWED					TION DATE: 7/15/09	
						PRC	JECT	FNGI	NFFR	Ken Skaftfeld		Page	

				en Mine Closure Dam N 2,097,199.5 E	118 730 8	CLIENT: Yukon	Gover	nme	ent - El	VIR			HOLE NO: MW09-2	
				tech Drilling Ltd.	110,730.0								ECT NO.: 112359	
SAMP			Geo	GRAB		SPLIT SPOON		BUL	<u>ו UI, A</u> ג	r Rotary	<u>/ - 114 mm</u> //NO REC		ATION (m): 1082.7 Y	//
BACK				BENTONITE				GR						
BACK		IYPE	<u> </u>	BENTONITE	GRAVEL		••	JGRU					SAND	
DEPTH (m)	NSC	SOIL SYMBOL	-	S	OIL DESCRIPT	TION	SAMPLE TYPE	SAMPLE #	SPT (N)	♦ Dr ♦ SPT (S (B 0 20 ■ T 16 17	otal Unit Wt ■ (kN/m³) 18 19 20 c MC Liqui	> est) ♦ 30 100	COMMENTS	
0	FILL	\bigotimes		Ditch Armour on surface - cobbles and boulders u										
-1	FILL			 iron staining GRAVEL, sandy, trace s orange-brown dry, very dense fine grained to medium gravel/cobble sub-angu 			/ H) \	G-1 S-1	19-32-{	50.				3
2	FILL			- clast supported SAND, gravelly, trace sili - orange-brown - medium/fine sand, sub-	rounded		-1					$\langle \cdot \rangle$		
3	SASI SA	<u>, , , , , , , , , , , , , , , , , , , </u>] - sub-angular gravel, fror	n 0.5 cm to > 5 cm es matrix supported with o	depth 		S-2	41-50	-		.>>		3
4				I- dark brown SAND, some silt, trace g - dark brown - medium sand, sub-rour										:
5				I- sub-angular gravel, >0. - matrix supported SAND, some silt, trace to	5 cm to <1 cm	ash marker)								;
6				MW09-21 install:	20 m in permafrost (refuse	ai)	_							;
7				 Screen interval: 1.52 m Screen type: 10-Slot 2' Filter pack interval: 1.22 Bentonite seal from gro WI + 1.668 mTD/C (22) 	" PVC SCHED 40 2 m - 3.05 m und surface to 1.22 m									:
8				- WL: 1.668 mTPVC (Ž2-	Jui-09, ŏ:31:00 AM)									
9														:
10														
11														
12														
13														
14														
15				1		LOG	GED B	 Y: N	I Iarc La	vigne		OMPLE	TION DEPTH: 3.20 m	n
				AECOM			IEWED						TION DATE: 7/17/09	

ALS Laboratory Group ANALYTICAL CHEMISTRY & TESTING SERVICES

Environmental Division

		Certificate of Ar		
AECOM CAN			-	18-AUG-09 12:24 (MT)
ATTN: MARK	(LAVIG	NE	Version:	FINAL REV. 2
SPERLING PI SUITE 490, 64 BURNABY BI	400 ROE	BERTS STREET 4C9		
Lab Work Orde	er #:	L796873	Date Receive	ed: 24-JUL-09
Project P.O. #	# :	MT. NANSEN HYDROGEO		
Job Referenc	e:	112359		
Legal Site De				
CofC Number	rs:	C085792		
Other Informa	tion:			
Comments:	Please	DNAL 10-AUG-09 17:55 note that Cyanate detection limits have been increased for ysis. Furthermore, these samples were analyzed past re-	or some of the samples due to the lov commended holding time of 14 days	v sample volumes available for Cyanate analysis.
		ision, 2, of the report replaces and supersedes all previo rt. All other data remains unchanged.	us revisions. The results of Cyanate a	anlaysis have been added to
		MATASHA MARKOVIC-MIROVIC Account Manager	,	

THIS REPORT SHALL NOT BE REPRODUCED EXCEPT IN FULL WITHOUT THE WRITTEN AUTHORITY OF THE LABORATORY. ALL SAMPLES WILL BE DISPOSED OF AFTER 30 DAYS FOLLOWING ANALYSIS. PLEASE CONTACT THE LAB IF YOU REQUIRE ADDITIONAL SAMPLE STORAGE TIME.

ALS Canada Ltd. Part of the ALS Laboratory Group 1988 Triumph Street, Vancouver, BC V5L 1K5 Phone: +1 604 253 4188 Fax: +1 604 253 6700 www.alsglobal.com A Campbell Brothers Limited Company

L796873 CONTD.... PAGE 2 of 9

ALS LABORATORY GROUP ANALYTICAL REPORT

18-AUG-09 12:26

	Sample ID Description	L796873-1	L796873-2	L796873-3	L796873-4	L796873-5
	Sampled Date Sampled Time	08-JUL-09	22-JUL-09	21-JUL-09	22-JUL-09	21-JUL-09
	Client ID	MW09-08	MW09-11	MW09-21	MW09-22	MW09-23
Grouping	Analyte					
VATER						
Physical Tests	Conductivity (uS/cm)	187	433	1630	630	1930
	Hardness (as CaCO3) (mg/L)	72.2	209	711	248	1020
	рН (рН)	7.50	7.96	7.10	7.12	7.50
	Total Dissolved Solids (mg/L)	189	262	1230	389	1630
Anions and Nutrients	Acidity (as CaCO3) (mg/L)	13.9	5.3	38.8	21.1	21.0
	Alkalinity, Total (as CaCO3) (mg/L)	91.1	227	266	176	269
	Ammonia as N (mg/L)	3.27	1.85	6.30	6.65	9.49
	Bromide (Br) (mg/L)	<0.50	<0.050	<2.5	<0.25	<2.5
	Chloride (CI) (mg/L)	<5.0	3.23	<25	<2.5	<25
	Fluoride (F) (mg/L)	<0.20	0.723	0.057	0.075	0.058
	Nitrate (as N) (mg/L)	<0.050	0.283	1.44	4.79	<0.25
	Nitrite (as N) (mg/L)	<0.010	0.0059	0.058	0.0996	<0.050
	Sulfate (SO4) (mg/L)	16.0	11.0	617	126	879
Cyanides	Cyanide, Weak Acid Diss (mg/L)	<0.0050	<0.0050	0.0331	<0.0050	0.107
	Cyanide, Total (mg/L)	0.0542	<0.0050	0.0504	0.0165	0.419
	Cyanate (CNO) (mg/L)	<1.6	<1.6	5.0	<1.6	3.5
Dissolved Metals	Aluminum (Al)-Dissolved (mg/L)	0.118	<0.0050	0.158	0.0332	0.033
	Antimony (Sb)-Dissolved (mg/L)	<0.00050	<0.00050	<0.0025	<0.00050	<0.0025
	Arsenic (As)-Dissolved (mg/L)	0.178	0.0182	0.0329	0.0140	0.0100
	Barium (Ba)-Dissolved (mg/L)	0.102	0.169	0.300	0.157	0.089
	Beryllium (Be)-Dissolved (mg/L)	<0.0010	<0.0010	<0.0050	<0.0010	<0.0050
	Bismuth (Bi)-Dissolved (mg/L)	<0.20	<0.20	<0.20	<0.20	<0.20
	Boron (B)-Dissolved (mg/L)	<0.10	<0.10	<0.10	<0.10	0.14
	Cadmium (Cd)-Dissolved (mg/L)	<0.000017	0.000082	0.000196	0.000109	0.000184
	Calcium (Ca)-Dissolved (mg/L)	21.8	39.3	247	91.6	327
	Chromium (Cr)-Dissolved (mg/L)	0.0017	<0.0010	<0.0050	<0.0010	<0.0050
	Cobalt (Co)-Dissolved (mg/L)	0.00145	0.00169	0.0268	0.0134	0.0189
	Copper (Cu)-Dissolved (mg/L)	<0.0010	<0.0010	<0.0050	0.0036	<0.0050
	Iron (Fe)-Dissolved (mg/L)	31.9	0.596	19.0	3.46	3.86
	Lead (Pb)-Dissolved (mg/L)	<0.00050	<0.00050	<0.0025	<0.00050	<0.0025
	Lithium (Li)-Dissolved (mg/L)	<0.0050	<0.0050	<0.025	<0.0050	<0.025
	Magnesium (Mg)-Dissolved (mg/L)	4.30	26.9	22.9	4.57	50.1
	Manganese (Mn)-Dissolved (mg/L)	2.09	0.987	7.52	3.88	6.69
	Mercury (Hg)-Dissolved (mg/L)	<0.000020	<0.000020	<0.000020	<0.000020	<0.000020
	Molybdenum (Mo)-Dissolved (mg/L)	<0.0010	0.0100	<0.0050	0.0017	<0.0050
	Nickel (Ni)-Dissolved (mg/L)	<0.0010	0.0033	<0.0050	0.0096	<0.0050
	Phosphorus (P)-Dissolved (mg/L)	<0.30	<0.30	<0.30	<0.30	<0.30
	Potassium (K)-Dissolved (mg/L)	<2.0	3.2	8.2	5.7	15.5
	Selenium (Se)-Dissolved (mg/L)	<0.0010	0.0010	<0.0050	<0.0010	<0.0050
	Silicon (Si)-Dissolved (mg/L)	8.28	5.50	5.69	4.69	5.35
	Silver (Ag)-Dissolved (mg/L)	<0.000020	<0.000020	<0.00010	<0.000020	<0.00010

L796873 CONTD.... PAGE 3 of 9 18-AUG-09 12:26

	Sample ID	L796873-6	L796873-7		
	Description Sampled Date	22-JUL-09	21-JUL-09		
	Sampled Time Client ID	MW09-24	MW09-25		
Grouping	Analyte				
	Palatyte				
	Conductivity (uS/am)	504	1010		
Physical Tests	Conductivity (uS/cm)	564	1640		
	Hardness (as CaCO3) (mg/L)	297	710		
	pH (pH)	7.75	7.17		
Autor 1	Total Dissolved Solids (mg/L)	364	1280		
Anions and Nutrients	Acidity (as CaCO3) (mg/L)	7.5	31.9		
	Alkalinity, Total (as CaCO3) (mg/L)	210	269		
	Ammonia as N (mg/L)	0.032	12.1		
	Bromide (Br) (mg/L)	<0.050	<2.5		
	Chloride (CI) (mg/L)	0.76	<25		
	Fluoride (F) (mg/L)	<0.020	0.059		
	Nitrate (as N) (mg/L)	2.20	1.37		
	Nitrite (as N) (mg/L)	0.0092	<0.050		
	Sulfate (SO4) (mg/L)	86.6	617		
Cyanides	Cyanide, Weak Acid Diss (mg/L)	<0.0050	0.0209		
	Cyanide, Total (mg/L)	0.0120	0.0465		
	Cyanate (CNO) (mg/L)	<0.50	6.90		
Dissolved Metals	Aluminum (Al)-Dissolved (mg/L)	<0.0050	0.150		
	Antimony (Sb)-Dissolved (mg/L)	<0.00050	<0.0025		
	Arsenic (As)-Dissolved (mg/L)	0.00117	0.0341		
	Barium (Ba)-Dissolved (mg/L)	0.077	0.294		
	Beryllium (Be)-Dissolved (mg/L)	<0.0010	<0.0050		
	Bismuth (Bi)-Dissolved (mg/L)	<0.20	<0.20		
	Boron (B)-Dissolved (mg/L)	<0.10	<0.10		
	Cadmium (Cd)-Dissolved (mg/L)	0.000055	0.000188		
	Calcium (Ca)-Dissolved (mg/L)	88.7	247		
	Chromium (Cr)-Dissolved (mg/L)	<0.0010	<0.0050		
	Cobalt (Co)-Dissolved (mg/L)	0.00063	0.0272		
	Copper (Cu)-Dissolved (mg/L)	0.0085	<0.0050		
	Iron (Fe)-Dissolved (mg/L)	<0.030	18.7		
	Lead (Pb)-Dissolved (mg/L)	<0.00050	<0.0025		
	Lithium (Li)-Dissolved (mg/L)	<0.0050	<0.025		
	Magnesium (Mg)-Dissolved (mg/L)	18.4	22.5		
	Manganese (Mn)-Dissolved (mg/L)	0.0115	7.66		
	Mercury (Hg)-Dissolved (mg/L)	<0.000020	<0.000020		
	Molybdenum (Mo)-Dissolved (mg/L)	<0.0010	<0.0050		
	Nickel (Ni)-Dissolved (mg/L)	<0.0010	<0.0050		
	Phosphorus (P)-Dissolved (mg/L)	<0.30	<0.30		
	Potassium (K)-Dissolved (mg/L)	<2.0	8.1		
	Selenium (Se)-Dissolved (mg/L)	<0.0010	<0.0050		
	Silicon (Si)-Dissolved (mg/L)	5.74	5.61		
	Silver (Ag)-Dissolved (mg/L)	<0.000020	<0.00010		

L796873 CONTD.... PAGE 4 of 9

ALS LABORATORY GROUP ANALYTICAL REPORT

PAGE 4 of 9 18-AUG-09 12:26

	Sample ID	L796873-1	L796873-2	L796873-3	L796873-4	L796873-5
	Description Sampled Date	08-JUL-09	22-JUL-09	21-JUL-09	22-JUL-09	21-JUL-09
	Sampled Time Client ID	MW09-08	MW09-11	MW09-21	MW09-22	MW09-23
Grouping	Analyte					
WATER						
Dissolved Metals	Sodium (Na)-Dissolved (mg/L)	4.1	15.3	102	25.6	59.5
	Strontium (Sr)-Dissolved (mg/L)	0.106	0.376	0.927	0.341	0.736
	Thallium (TI)-Dissolved (mg/L)	<0.00020	<0.00020	<0.0010	<0.00020	<0.0010
	Tin (Sn)-Dissolved (mg/L)	<0.00050	<0.00050	<0.0025	<0.00050	<0.0025
	Titanium (Ti)-Dissolved (mg/L)	<0.010	<0.010	0.019	<0.010	0.015
	Uranium (U)-Dissolved (mg/L)	<0.00020	0.00273	0.0016	0.00067	0.0023
	Vanadium (V)-Dissolved (mg/L)	0.0059	0.0015	0.0052	0.0019	<0.0050
	Zinc (Zn)-Dissolved (mg/L)	<0.0050	<0.0050	0.0099	<0.0050	<0.0050

L796873 CONTD

PAGE	5	of	9
18-AUG	-09	12:	26

	Sample ID Description Sampled Date	L796873-6 22-JUL-09	L796873-7 21-JUL-09
	Sampled Time Client ID	MW09-24	MW09-25
Grouping	Analyte		
WATER			
Dissolved Metals	Sodium (Na)-Dissolved (mg/L)	9.2	99.4
	Strontium (Sr)-Dissolved (mg/L)	0.467	0.906
	Thallium (TI)-Dissolved (mg/L)	<0.00020	<0.0010
	Tin (Sn)-Dissolved (mg/L)	<0.00050	<0.0025
	Titanium (Ti)-Dissolved (mg/L)	<0.010	0.018
	Uranium (U)-Dissolved (mg/L)	0.00252	0.0016
	Vanadium (V)-Dissolved (mg/L)	<0.0010	0.0051
	Zinc (Zn)-Dissolved (mg/L)	<0.0050	0.0104

Additional Comments	for Sample L	isted:	
Samplenum	Matrix	Report Remarks	Sample Comments
Methods Listed (if app	licable):		
ALS Test Code	Matrix	Test Description	Analytical Method Reference(Based On)
ACY-PCT-VA	Water	Acidity by Automatic Titration	APHA 2310 "Acidity"
This analysis is carried or specified endpoint.	ut using proce	dures adapted from APHA Method 2310 "Ac	idity". Acidity is determined by potentiometric titration to a
ACY-PCT-VA	Water	Acidity by Automatic Titration	APHA 2310 Acidity
This analysis is carried or specified endpoint.	ut using proce	dures adapted from APHA Method 2310 "Ac	idity". Acidity is determined by potentiometric titration to a
ALK-COL-VA	Water	Alkalinity by Colourimetric (Automated)	APHA 310.2
This analysis is carried or colourimetric method.	ut using proce	dures adapted from EPA Method 310.2 "Alka	alinity". Total Alkalinity is determined using the methyl orange
ALK-PCT-VA	Water	Alkalinity by Auto. Titration	APHA 2320 "Alkalinity"
			calinity". Total alkalinity is determined by potentiometric titration to om phenolphthalein alkalinity and total alkalinity values.
ALK-PCT-VA	Water	Alkalinity by Auto. Titration	APHA 2320 Alkalinity
			calinity". Total alkalinity is determined by potentiometric titration to om phenolphthalein alkalinity and total alkalinity values.
ANIONS-BR-IC-VA	Water	Bromide by Ion Chromatography	APHA 4110 B.
This analysis is carried or Conductivity" and EPA M	ut using proce ethod 300.0 "	dures adapted from APHA Method 4110 B. ' Determination of Inorganic Anions by Ion Ch	Ion Chromatography with Chemical Suppression of Eluent romatography".
ANIONS-CL-IC-VA	Water	Chloride by Ion Chromatography	APHA 4110 B.
		dures adapted from APHA Method 4110 B. ' Determination of Inorganic Anions by Ion Ch	Ion Chromatography with Chemical Suppression of Eluent romatography".
ANIONS-F-IC-VA	Water	Fluoride by Ion Chromatography	APHA 4110 B.
		dures adapted from APHA Method 4110 B. ' Determination of Inorganic Anions by Ion Ch	Ion Chromatography with Chemical Suppression of Eluent romatography".
ANIONS-NO2-IC-VA	Water	Nitrite by Ion Chromatography	APHA 4110 B.
	ethod 300.0 "		Ion Chromatography with Chemical Suppression of Eluent romatography". Specifically, the nitrite detection is by UV
ANIONS-NO3-IC-VA	Water	Nitrate by Ion Chromatography	APHA 4110 B.
	ethod 300.0 "		Ion Chromatography with Chemical Suppression of Eluent romatography". Specifically, the nitrate detection is by UV
ANIONS-SO4-IC-VA	Water	Sulfate by Ion Chromatography	APHA 4110 B.
		dures adapted from APHA Method 4110 B. ' Determination of Inorganic Anions by Ion Ch	Ion Chromatography with Chemical Suppression of Eluent romatography".

L796873 CONTD.... PAGE 7 of 9

Reference Information

Methods Listed (if app	licable):		
ALS Test Code	Matrix	Test Description	Analytical Method Reference(Based On)
This analysis is carried or determined by sample dis	ut using procestillation and	edures adapted from APHA Method 4500-CN "Cyanic analysis using the chloramine-T colourimetric method	le". Total or strong acid dissociable (SAD) cyanide are
CN-T-MID-HH-COL-VA	Water	Total Cyanide by HH Distillation	APHA 4500-CN "Cyanide"
This analysis is carried ou determined by sample dis	ut using procestillation and	edures adapted from APHA Method 4500-CN "Cyanic analysis using the chloramine-T colourimetric method	e". Total or strong acid dissociable (SAD) cyanide are
CN-T-MID-HH-COL-VA	Water	Total Cyanide by HH Distillation	APHA 4500-CN Cyanide
		edures adapted from APHA Method 4500-CN "Cyanic analysis using the chloramine-T colourimetric method	le". Total or strong acid dissociable (SAD) cyanide are
CN-WAD-MID-COL-VA	Water	Weak Acid Cyanide by Colorimetric	APHA 4500-CN "Cyanide"
This analysis is carried or by sample distillation and	ut using proc analysis usir	edures adapted from APHA Method 4500-CN "Cyanic ng the chloramine-T colourimetric method.	e". Weak acid dissociable (WAD) cyanide are determined
CN-WAD-MID-COL-VA	Water	Weak Acid Cyanide by Colorimetric	APHA 4500-CN Cyanide
This analysis is carried or by sample distillation and	ut using proc analysis usi	edures adapted from APHA Method 4500-CN "Cyanic ng the chloramine-T colourimetric method.	e". Weak acid dissociable (WAD) cyanide are determined
CNO-SIE-VA	Water	Cyanate by SIE	APHA 4500-CN Cyanide
This analysis is carried ou method using an ammon		edures adapted from APHA Method 4500-CN "Cyanic lectrode.	e". Cyanate is determined by the cyanate hydrolysis
EC-PCT-VA	Water	Conductivity (Automated)	APHA 2510 Auto. Conduc.
This analysis is carried ou electrode.	ut using proc	edures adapted from APHA Method 2510 "Conductivi	ty". Conductivity is determined using a conductivity
F-SIE-VA	Water	Fluoride by SIE	APHA 4500-F "Fluoride"
			 Fluoride is determined using a selective ion electrode. Al3+ is present in the sample at a concentration greater
F-SIE-VA	Water	Fluoride by SIE	APHA 4500-F Fluoride
			¹ . Fluoride is determined using a selective ion electrode. Al3+ is present in the sample at a concentration greater
HARDNESS-CALC-VA	Water	Hardness	APHA 2340B
Hardness is calculated fro	om Calcium a	and Magnesium concentrations, and is expressed as o	calcium carbonate equivalents.
States Environmental Pro involves a cold-oxidation	of the acidifie	cy (EPA). The procedures may involve preliminary sa	EPA 3005A/245.7 ination of Water and Wastewater" published by the valuating Solid Waste" SW-846 published by the United ample treatment by filtration (EPA Method 3005A) and ion of the sample with stannous chloride. Instrumental

- MET-DIS-CCME-ICP-VA Water
- Diss. Metals in Water by ICPOES (CCME)

EPA SW-846 3005A/6010B

This analysis is carried out using procedures adapted from "Standard Methods for the Examination of Water and Wastewater" published by the American Public Health Association, and with procedures adapted from "Test Methods for Evaluating Solid Waste" SW-846 published by the United States Environmental Protection Agency (EPA). The procedures may involve preliminary sample treatment by acid digestion, using either hotblock or

L796873 CONTD.... PAGE 8 of 9

Reference Information

ALS Test Code	Matrix	Test Description	Analytic	al Method Reference(Based On)
microwave oven, or filt Method 6010B).	ration (EPA Me	ethod 3005A). Instrumental analysis is t	by inductively coupled plasma - option	cal emission spectrophotometry (EPA
MET-DIS-CCME-MS-V	A Water	Diss. Metals in Water by ICPMS (C	CME) EPA SV	V-846 3005A/6020A
American Public Healt States Environmental I	h Association, Protection Age	cedures adapted from "Standard Method and with procedures adapted from "Tes ncy (EPA). The procedures may involve ethod 3005A). Instrumental analysis is b	t Methods for Evaluating Solid Was e preliminary sample treatment by a	te" SW-846 published by the United cid digestion, using either hotblock or
MET-DIS-ICP-VA	Water	Dissolved Metals in Water by ICPO	ES EPA SV	V-846 3005A/6010B
American Public Healt	h Association, Protection Age	cedures adapted from "Standard Method and with procedures adapted from "Tes ncy (EPA). The procedure involves filtra EPA Method 6010B).	t Methods for Evaluating Solid Was	te" SW-846 published by the United
NH3-SIE-VA	Water	Ammonia by SIE	APHA 4	500 D NH3 NITROGEN (AMMONIA)
		uric acid preserved samples, using proce monia selective electrode.	edures adapted from APHA Method	4500-NH3 "Nitrogen (Ammonia)".
PH-PCT-VA	Water	pH by Meter (Automated)	APHA 4	500-H "pH Value"
This analysis is carried electrode	l out using proo	cedures adapted from APHA Method 45	00-H "pH Value". The pH is determi	ned in the laboratory using a pH
РН-РСТ-VA	Water	pH by Meter (Automated)	APHA 4	500-H pH Value
This analysis is carried electrode	l out using proc	cedures adapted from APHA Method 45	00-H "pH Value". The pH is determi	ned in the laboratory using a pH
ſDS-VA	Water	Total Dissolved Solids by Gravimet	ric APHA 2	540 C - GRAVIMETRIC
		cedures adapted from APHA Method 25 ample through a glass fibre filter, TDS is		
		w in-house procedures, which are gene S Test Code column indicate the laborat		
Laboratory Definitio	n Code La	aboratory Location	Laboratory Definition Code	Laboratory Location
VA		S LABORATORY GROUP - NCOUVER, BC, CANADA		

Methods Listed (if applicable):

ALS Test Code	Matrix	Test Description	Analytical Method Reference(Based On)

GLOSSARY OF REPORT TERMS

Surr - A surrogate is an organic compound that is similar to the target analyte(s) in chemical composition and behavior but not normally detected in enviromental samples. Prior to sample processing, samples are fortified with one or more surrogate compounds.

The reported surrogate recovery value provides a measure of method efficiency.

mg/kg (units) - unit of concentration based on mass, parts per million

mg/L (units) - unit of concentration based on volume, parts per million

N/A - Result not available. Refer to qualifier code and definition for explanation

Test results reported relate only to the samples as received by the laboratory. UNLESS OTHERWISE STATED, ALL SAMPLES WERE RECEIVED IN ACCEPTABLE CONDITION.

Although test results are generated under strict QA/QC protocols, any unsigned test reports, faxes, or emails are considered preliminary.

ALS Laboratory Group has an extensive QA/QC program where all analytical data reported is analyzed using approved referenced procedures followed by checks and reviews by senior managers and quality assurance personnel. However, since the results are obtained from chemical measurements and thus cannot be guaranteed, ALS Laboratory Group assumes no liability for the use or interpretation of the results.

ALS Laboratory Group ANALYTICAL CHEMISTRY & TESTING SERVICES

CHAIN OF CUSTODY / ANALYTICAL REQUEST FORM

CANADA TOLL FREE 1-800-668-9878

coc#C085792

Page ____ of

Environmental	Division	(ALS)		<u>www.a</u>	alsenviro.cc	m	112 12	1952						10.200	1967 - A		35.85-6-19			
REPORT TO:		2011 - C	REPOR	T FORMAT / DISTRIBU	TION		SERVICE REQUESTED													
COMPANY: AECO	DM		STAND		IER	additional &	REGULAR SERVICE (DEFAULT)				100									
CONTACT: Marc	Lavigne		PDF		STOM	FAX	1	RUSH	SER	VICE	(2-3	DAY	S)	10		in the	1. 1990 (14			
ADDRESS: 225	2nd Aven	ne	EMAIL 1	marc-andreil	avigne	earecom.com	14	PRIOF	RITY	SERV	/ICE	(1 DA	Y or /	ASAP	')	η. A	Sever St	14.	1	A.S.
Whitehor	se YT YIA :	5WI	EMAIL 2	- <u>5</u> 9	- 2 .7	1 9713		EMER	GEN	CYS	ERVI	CE (<	<1 DA	Y/W	EEKE	END) ·	CON	TACT	ALS	
PHONE: \$67.633			· ·		N.						1	ANAL	YSIS	REQ	UEST	1			1	1
INVOICE TO: SAME	AS REPORT ? YES	NO NO	INDICATI	BOTTLES: FILTERED / P	RESERVED (F/	$P) \qquad \rightarrow \rightarrow \rightarrow$	/		Ep	e	10	/	\angle	\angle	\leq	1	\square		10	1.14
COMPANY:			CLIENT	/ PROJECT INFORMA	TION:			3	201	100										
CONTACT:			JOB #:	112359				Clemistry	letal	1.1	-		100						ED ?	ERS
ADDRESS:		C. B. Cart	PO /AFE	Ht. Nansen	Hydro	geo.		5	E										ATE	AINI
196		an tally	Legal Si	te Description:	5	U sent set state		3	2	2	2	FL.	ę 4	1		36.5		~	AMIP	UNT
PHONE:	FAX:	all the second	QUOTE	#:				3	2	5	ide							SUC	CONTAMINATED	DF C
Lab Work Order # (lab use only)	L796873		1		SAMPLER (Initials):	MAL		23	To	t.	3	é.						RDC		ER O
Sample # (This	SAMPLE IDENT description will app		ort)	DATE	TIME	SAMPLE TYPE		Geer	Diss	Nutrients	J	J	5 55 1013	1		n (m) Arrel		HAZARDOUS	НІСНГУ	NUMBER OF CONTAINERS
MWD	1-08		.att 2	July 08/09		GW		V	V	V	V		1							4
MWOG	and a state of the		4	July 22/09		GW	195	1	1	~	V	Reference in	1961.70	y. (1987)			1000	acri.	N 2.	4
MWO		A A MARK		July 21/09		GW		V	1	1	V			121						4
AND REPORTED IN THE REPORT OF THE	1-22	ALC: NO		July 22/09	6.1 8	GW		V	1	~	1		16.98	a. 1		100		ATT		4
and the second se	1-23	and the second second		July 21/09		Gw		5	V	1	~	Sale -		1.39					1	4
Contraction of the Property of the	1-24	AREA I	a series a	July 22/09	1994 - 1715	GW		1	V	1	~			CT NO	2.2			1.45		4
Contraction of the local distance of the loc	1-25	1947 (4.1 - 5 - 7	ala.	July 21/09	6.412245	Eaus	1	V	V		1	and a second	20		and a	etty.	12.4	1	- May	4
	An estimation of the second		1.044.12	s jerrer						aler.				4						
STORP:		10 00 000 (mtr) (10 00 000)	1255 1 1.4.5 %		210000		7			101			- 44- 10-						2 ang	104
GUI	DELINES / REGUL	ATIONS	i des		S	PECIAL INSTRU	СТІС	ONS /	HAZ	AR	000	S D	ETA	ILS	241					
ar a star			ing wear	ALL T	1 1 1 A	A Star Star		and the second		14	1999 1999				1				1	
Duth				rtions of this form																1.2
RELINQUISHED BY.		TE & TIME: 13;00		agrees with the T	erms and	DATE & TIME:		ied oi	n the						lab u			cop	by.	
Orn Them	too 1	wy 24/09		MS		July27	T	EMPER	ATURE		SAMP	LES F	RECEIN	VED IN	and the second	and the star of the start of the	NDITIO	N ? Y	ES/	NO
REVINQUISHED BY:	DA	TE WITIME!	RECEIVE	D BY:		DATE & TIME:		5			(If no p	provid	e detai	ls)						
REFER TO BACK PAG	SE FOR REGIONAL LO	CATIONS AND SA	AMPLING	INFORMATION	WHITE - F	REPORT COPY, PINK	- Ell	F COP	Y YE	110	N - C	IIEN	T CO	ΡY				GEN	F14 0	0

ALS Laboratory Group ANALYTICAL CHEMISTRY & TESTING SERVICES

Environmental Division

		Certificate of Analysis		
AECOM CANA	ADA LTI	Э.	Report Date:	19-AUG-09 09:58 (MT)
ATTN: RYAN	I MILLS		Version:	FINAL REV. 2
SPERLING PL SUITE 490, 64 BURNABY BC	100 ROE	BERTS STREET 4C9		
Lab Work Orde	er #:	L796959	Date Receive	ed: 24-JUL-09
Project P.O. # Job Reference Legal Site Des CofC Number Other Informa	e: sc: ·s:	YUKON GOV'T 112359- MT NANSEN A014936, A014937		
Comments:	during th ADDITIC Please r for analy This rev	note that certain metals detection limits have been increased for some of the analysis. DNAL 10-AUG-09 17:52 note that Cyanate detection limits have been increased for some of the sar sis. Furthermore, these samples were analyzed past recommended hold ision, 2, of the report replaces and supersedes all previous revisions. The rt. All other data remains unchanged.	mples due to the low ing time of 14 days f	r sample volumes available or Cyanate analysis.
	PORT CHI			

ALL SAMPLES WILL NOT BE REPRODUCED EXCEPT IN FULL WITHOUT THE WRITTEN AUTHORITY OF THE LABORATORY. ALL SAMPLES WILL BE DISPOSED OF AFTER 30 DAYS FOLLOWING ANALYSIS. PLEASE CONTACT THE LAB IF YOU REQUIRE ADDITIONAL SAMPLE STORAGE TIME.

ALS Canada Ltd. Part of the ALS Laboratory Group 1988 Triumph Street, Vancouver, BC V5L 1K5 Phone: +1 604 253 4188 Fax: +1 604 253 6700 www.alsglobal.com A Campbell Brothers Limited Company

L796959 CONTD.... PAGE 2 of 14

ALS LABORATORY GROUP ANALYTICAL REPORT

19-AUG-09 10:00

	Sample ID Description Sampled Date	L796959-7 15-JUL-09	L796959-9 15-JUL-09	L796959-10 15-JUL-09	L796959-11 15-JUL-09	L796959-12 15-JUL-09
	Sampled Time Client ID	MW09-16(6FT-	MW09-17(11FT-	MW09-18(2FT-	MW09-18(21FT-	MW09-19(7FT10
N a	Analida	7FT)	12FT)	3FT)	22FT)	
Grouping	Analyte					
SOIL						
Physical Tests	% Moisture (%)	11.1	9.68	30.1	7.20	11.7
	рН (рН)	7.64	7.97	6.39	8.14	6.96
Metals	Antimony (Sb) (mg/kg)	162	<10	<10	11	898
	Arsenic (As) (mg/kg)	1980	65.7	103	285	13000
	Barium (Ba) (mg/kg)	150	95.1	271	113	99.9
	Beryllium (Be) (mg/kg)	0.50	<0.50	<0.50	0.73	1.25
	Cadmium (Cd) (mg/kg)	41.4	<0.50	<0.50	<0.50	91.1
	Chromium (Cr) (mg/kg)	16.2	15.6	19.6	111	5.1
	Cobalt (Co) (mg/kg)	9.8	8.6	8.3	20.0	6.7
	Copper (Cu) (mg/kg)	111	44.9	54.5	71.9	401
	Lead (Pb) (mg/kg)	1570	<30	<30	<30	8260
	Mercury (Hg) (mg/kg)	0.151	0.0419	0.0458	0.103	0.426
	Molybdenum (Mo) (mg/kg)	<4.0	<4.0	<4.0	<4.0	<4.0
	Nickel (Ni) (mg/kg)	11.8	8.1	12.2	47.8	7.1
	Selenium (Se) (mg/kg)	<2.0	<2.0	<2.0	<2.0	<2.0
	Silver (Ag) (mg/kg)	35.2	<2.0	<2.0	<2.0	96.9
	Thallium (TI) (mg/kg)	<1.0	<1.0	<1.0	<1.0	<1.0
	Tin (Sn) (mg/kg)	<5.0	<5.0	<5.0	<5.0	8.2
	Vanadium (V) (mg/kg)	56.7	76.0	60.7	136	22.9
	Zinc (Zn) (mg/kg)	2760	60.1	60.3	127	4300
Hydrocarbons	EPH10-19 (mg/kg)	<200	<200	<200	<200	<200
	EPH19-32 (mg/kg)	<200	<200	<200	<200	<200
	LEPH (mg/kg)	<200	<200	<200	<200	<200
	HEPH (mg/kg)	<200	<200	<200	<200	<200
Polycyclic Aromatic	Acenaphthene (mg/kg)	<0.050	<0.050	<0.050	<0.050	<0.050
Hydrocarbons						
	Acenaphthylene (mg/kg)	<0.050	<0.050	<0.050	<0.050	<0.050
	Anthracene (mg/kg)	<0.050	<0.050	<0.050	<0.050	<0.050
	Benz(a)anthracene (mg/kg)	<0.050	<0.050	<0.050	<0.050	<0.050
	Benzo(a)pyrene (mg/kg)	<0.050	<0.050	<0.050	<0.050	<0.050
	Benzo(b)fluoranthene (mg/kg)	<0.050	<0.050	<0.050	<0.050	<0.050
	Benzo(g,h,i)perylene (mg/kg)	<0.050	<0.050	<0.050	<0.050	<0.050
	Benzo(k)fluoranthene (mg/kg)	<0.050	<0.050	<0.050	<0.050	<0.050
	Chrysene (mg/kg)	<0.050	<0.050	<0.050	<0.050	<0.050
	Dibenz(a,h)anthracene (mg/kg)	<0.050	<0.050	<0.050	<0.050	<0.050
	Fluoranthene (mg/kg)	<0.050	<0.050	<0.050	<0.050	<0.050
	Fluorene (mg/kg)	<0.050	<0.050	<0.050	<0.050	<0.050
	Indeno(1,2,3-c,d)pyrene (mg/kg)	<0.050	<0.050	<0.050	<0.050	<0.050
	2-Methylnaphthalene (mg/kg)	<0.050	<0.050	<0.050	<0.050	<0.050
	Naphthalene (mg/kg)	<0.050	<0.050	<0.050	<0.050	<0.050
	Phenanthrene (mg/kg)	<0.050	<0.050	<0.050	<0.050	<0.050

L796959 CONTD.... PAGE 3 of 14 19-AUG-09 10:00

	Sample ID Description	L796959-15
	Sampled Date Sampled Time	15-JUL-09
	Client ID	MW09-19(15FT- 16FT9
Grouping	Analyte	101 19
SOIL		
	% Moisture (%)	20.0
Physical Tests		20.0
Matala	pH (pH)	7.13
Metals	Antimony (Sb) (mg/kg)	<10
	Arsenic (As) (mg/kg)	9.4
	Barium (Ba) (mg/kg)	56.6
	Beryllium (Be) (mg/kg)	<0.50
	Cadmium (Cd) (mg/kg)	<0.50
	Chromium (Cr) (mg/kg)	10.5
	Cobalt (Co) (mg/kg)	3.6
	Copper (Cu) (mg/kg)	6.4
	Lead (Pb) (mg/kg)	<30
	Mercury (Hg) (mg/kg)	0.0076
	Molybdenum (Mo) (mg/kg)	<4.0
	Nickel (Ni) (mg/kg)	5.9
	Selenium (Se) (mg/kg)	<2.0
	Silver (Ag) (mg/kg)	<2.0
	Thallium (TI) (mg/kg)	<1.0
	Tin (Sn) (mg/kg)	<5.0
	Vanadium (V) (mg/kg)	27.4
	Zinc (Zn) (mg/kg)	24.9
Hydrocarbons	EPH10-19 (mg/kg)	<200
	EPH19-32 (mg/kg)	<200
	LEPH (mg/kg)	<200
	HEPH (mg/kg)	<200
Polycyclic Aromatic	Acenaphthene (mg/kg)	<0.050
Hydrocarbons		
	Acenaphthylene (mg/kg)	<0.050
	Anthracene (mg/kg)	<0.050
	Benz(a)anthracene (mg/kg)	<0.050
	Benzo(a)pyrene (mg/kg)	<0.050
	Benzo(b)fluoranthene (mg/kg)	<0.050
	Benzo(g,h,i)perylene (mg/kg)	<0.050
	Benzo(k)fluoranthene (mg/kg)	<0.050
	Chrysene (mg/kg)	<0.050
	Dibenz(a,h)anthracene (mg/kg)	<0.050
	Fluoranthene (mg/kg)	<0.050
	Fluorene (mg/kg)	<0.050
	Indeno(1,2,3-c,d)pyrene (mg/kg)	<0.050
	2-Methylnaphthalene (mg/kg)	<0.050
	Naphthalene (mg/kg)	<0.050
	Phenanthrene (mg/kg)	<0.050

L796959 CONTD.... PAGE 4 of 14

ALS LABORATORY GROUP ANALYTICAL REPORT

19-AUG-09 10:00

	Sample ID Description	L796959-7	L796959-9	L796959-10	L796959-11	L796959-12
	Sampled Date Sampled Time	15-JUL-09	15-JUL-09	15-JUL-09	15-JUL-09	15-JUL-09
	Client ID	MW09-16(6FT- 7FT)	MW09-17(11FT- 12FT)	MW09-18(2FT- 3FT)	MW09-18(21FT- 22FT)	MW09-19(7FT10
Grouping	Analyte					
SOIL						
Polycyclic Aromatic Hydrocarbons	Pyrene (mg/kg)	<0.050	<0.050	<0.050	<0.050	<0.050
	Surrogate: d10-Acenaphthene (SS) (%)	99	95	103	99	91
	Surrogate: d12-Chrysene (SS) (%)	72	70	84	71	74
	Surrogate: d8-Naphthalene (SS) (%)	94	95	100	97	89
	Surrogate: d10-Phenanthrene (SS) (%)	89	86	94	90	87

L796959 CONTD.... PAGE 5 of 14 19-AUG-09 10:00

Sample ID	L796959-15
Description Sampled Date	15-JUL-09
Sampled Time	
Client ID	MW09-19(15FT- 16FT9
Analyte	
Pyrene (mg/kg)	<0.050
Surrogate: d10-Acenaphthene (SS) (%)	94
Surrogate: d12-Chrysene (SS) (%)	66
Surrogate: d8-Naphthalene (SS) (%)	91
Surrogate: d10-Phenanthrene (SS) (%)	84
	Description Sampled Date Sampled Time Client ID Pyrene (mg/kg) Surrogate: d10-Acenaphthene (SS) (%) Surrogate: d12-Chrysene (SS) (%) Surrogate: d8-Naphthalene (SS) (%)

L796959 CONTD.... PAGE 6 of 14

ALS LABORATORY GROUP ANALYTICAL REPORT

19-AUG-09 10:00

	Sample ID Description	L796959-1	L796959-2	L796959-3	L796959-4	L796959-5
	Sampled Date Sampled Time	14-JUL-09	19-JUL-09	19-JUL-09	19-JUL-09	19-JUL-09
	Client ID	MW09-15	MW09-16	MW09-17	MW09-18	MW09-18R
Grouping	Analyte					
WATER						
Physical Tests	Conductivity (uS/cm)	1010	1930	2570	2660	2660
•	Hardness (as CaCO3) (mg/L)	581	1210	1760	1830	1860
	рН (рН)	7.08	7.38	7.74	7.71	7.71
	Total Dissolved Solids (mg/L)	757	1650	2380	2490	2440
Anions and Nutrients	Acidity (as CaCO3) (mg/L)	23.3	35.4	28.5	30.3	29.7
	Alkalinity, Total (as CaCO3) (mg/L)	288	298	435	427	425
	Ammonia as N (mg/L)	0.331	0.079	0.229	0.041	0.066
	Bromide (Br) (mg/L)	<0.050	<2.5	<2.5	<2.5	<2.5
	Chloride (Cl) (mg/L)	<0.50	<25	<25	<25	<25
	Fluoride (F) (mg/L)	0.070	0.152	0.144	0.143	0.122
	Nitrate (as N) (mg/L)	<0.0050	<0.25	<0.25	<0.25	<0.25
	Nitrite (as N) (mg/L)	0.0027	<0.050	<0.050	<0.050	<0.050
	Sulfate (SO4) (mg/L)	289	934	1360	1490	1470
Cyanides	Cyanide, Weak Acid Diss (mg/L)		<0.0050	<0.0050	<0.0050	<0.0050
	Cyanide, Total (mg/L)		<0.0050	<0.0050	<0.0050	<0.0050
	Cyanate (CNO) (mg/L)		<1.8	<0.50	<0.50	<0.50
Dissolved Metals	Aluminum (Al)-Dissolved (mg/L)	<0.025	<0.025	<0.025	<0.025	<0.025
	Antimony (Sb)-Dissolved (mg/L)	0.0178	0.175	<0.0025	<0.0025	<0.0025
	Arsenic (As)-Dissolved (mg/L)	0.122	0.0506	0.0119	0.0382	0.0423
	Barium (Ba)-Dissolved (mg/L)	<0.020	0.034	<0.020	<0.020	<0.020
	Beryllium (Be)-Dissolved (mg/L)	<0.0050	<0.0050	<0.0050	<0.0050	<0.0050
	Bismuth (Bi)-Dissolved (mg/L)	<0.20	<0.20	<0.20	<0.20	<0.20
	Boron (B)-Dissolved (mg/L)	<0.10	0.27	0.27	<0.10	<0.10
	Cadmium (Cd)-Dissolved (mg/L)	0.00754	0.0558	<0.000085	<0.00085	<0.000085
	Calcium (Ca)-Dissolved (mg/L)	157	276	327	352	355
	Chromium (Cr)-Dissolved (mg/L)	<0.0050	<0.0050	<0.0050	<0.0050	<0.0050
	Cobalt (Co)-Dissolved (mg/L)	<0.0015	0.0020	<0.0015	<0.0015	<0.0015
	Copper (Cu)-Dissolved (mg/L)	<0.0050	0.0100	<0.0050	<0.0050	<0.0050
	Iron (Fe)-Dissolved (mg/L)	0.192	0.389	<0.030	<0.030	<0.030
	Lead (Pb)-Dissolved (mg/L)	0.0171	0.0364	<0.0025	<0.0025	<0.0025
	Lithium (Li)-Dissolved (mg/L)	<0.025	<0.025	<0.025	<0.025	<0.025
	Magnesium (Mg)-Dissolved (mg/L)	45.7	126	230	231	236
	Manganese (Mn)-Dissolved (mg/L)	0.905	0.389	0.0164	0.349	0.409
	Mercury (Hg)-Dissolved (mg/L)	<0.000020	<0.000020	<0.000020	<0.000020	<0.000020
	Molybdenum (Mo)-Dissolved (mg/L)	<0.0050	<0.0050	<0.0050	<0.0050	<0.0050
	Nickel (Ni)-Dissolved (mg/L)	<0.0050	0.0071	<0.0050	<0.0050	<0.0050
	Phosphorus (P)-Dissolved (mg/L)	<0.30	<0.30	<0.30	<0.30	<0.30
	Potassium (K)-Dissolved (mg/L)	<2.0	6.5	7.2	6.9	7.1
	Selenium (Se)-Dissolved (mg/L)	< 0.0050	<0.0050	<0.0050	<0.0050	<0.0050
	Silicon (Si)-Dissolved (mg/L)	5.85	5.29	4.74	4.80	4.87
	Silver (Ag)-Dissolved (mg/L)	<0.00010	<0.00010	<0.00010	<0.00010	<0.00010

L796959 CONTD.... PAGE 7 of 14 19-AUG-09 10:00

	Sample ID Description Sampled Date	L796959-6 19-JUL-09
	Sampled Time Client ID	
	Client ID	MW09-19
Grouping	Analyte	
WATER		
Physical Tests	Conductivity (uS/cm)	2570
	Hardness (as CaCO3) (mg/L)	1740
	pH (pH)	7.29
	Total Dissolved Solids (mg/L)	2260
Anions and Nutrients	Acidity (as CaCO3) (mg/L)	52.7
Humonto	Alkalinity, Total (as CaCO3) (mg/L)	389
	Ammonia as N (mg/L)	3.24
	Bromide (Br) (mg/L)	<2.5
	Chloride (Cl) (mg/L)	<25
	Fluoride (F) (mg/L)	0.095
	Nitrate (as N) (mg/L)	<0.25
	Nitrite (as N) (mg/L)	<0.050
	Sulfate (SO4) (mg/L)	1390
Cyanides	Cyanide, Weak Acid Diss (mg/L)	<0.0050
,	Cyanide, Total (mg/L)	<0.0050
	Cyanate (CNO) (mg/L)	4.26
Dissolved Metals	Aluminum (Al)-Dissolved (mg/L)	<0.025
	Antimony (Sb)-Dissolved (mg/L)	<0.0025
	Arsenic (As)-Dissolved (mg/L)	0.0769
	Barium (Ba)-Dissolved (mg/L)	0.082
	Beryllium (Be)-Dissolved (mg/L)	<0.002
	Bismuth (Bi)-Dissolved (mg/L)	<0.0000
	Boron (B)-Dissolved (mg/L)	0.32
	.,,	
	Cadmium (Cd)-Dissolved (mg/L)	<0.000085
	Calcium (Ca)-Dissolved (mg/L)	368
	Chromium (Cr)-Dissolved (mg/L)	<0.0050
	Cobalt (Co)-Dissolved (mg/L)	0.0024
	Copper (Cu)-Dissolved (mg/L)	<0.0050
	Iron (Fe)-Dissolved (mg/L)	40.6
	Lead (Pb)-Dissolved (mg/L)	<0.0025
	Lithium (Li)-Dissolved (mg/L)	<0.025
	Magnesium (Mg)-Dissolved (mg/L)	200
	Manganese (Mn)-Dissolved (mg/L)	2.39
	Mercury (Hg)-Dissolved (mg/L)	<0.000020
	Molybdenum (Mo)-Dissolved (mg/L)	<0.0050
	Nickel (Ni)-Dissolved (mg/L)	<0.0050
	Phosphorus (P)-Dissolved (mg/L)	0.46
	Potassium (K)-Dissolved (mg/L)	4.4
	Selenium (Se)-Dissolved (mg/L)	<0.0050
	Silicon (Si)-Dissolved (mg/L)	7.88
	Silver (Ag)-Dissolved (mg/L)	<0.00010

L796959 CONTD.... PAGE 8 of 14

ALS LABORATORY GROUP ANALYTICAL REPORT

19-AUG-09 10:00

		14-JUL-09	19-JUL-09	19-JUL-09	19-JUL-09	19-JUL-09
	Sampled Time Client ID	MW09-15	MW09-16	MW09-17	MW09-18	MW09-18R
Grouping	Analyte					
WATER						
Dissolved Metals	Sodium (Na)-Dissolved (mg/L)	7.7	18.9	10.8	10.0	10.2
Dissolved Metals	Strontium (Sr)-Dissolved (mg/L)	1.48	0.670	0.972	0.981	1.00
	Thallium (TI)-Dissolved (mg/L)	<0.0010	<0.0010	<0.0010	<0.0010	<0.0010
	Tin (Sn)-Dissolved (mg/L)	<0.0010	<0.0010	<0.0010	<0.0010	<0.0010
	Titanium (Ti)-Dissolved (mg/L)	<0.0025 0.011	0.013	0.014	<0.0025 0.015	<0.0025
	Uranium (U)-Dissolved (mg/L)					
		0.0860 <0.0050	0.0037	0.0070	0.0068	0.0070
	Vanadium (V)-Dissolved (mg/L)		<0.0050	<0.0050	<0.0050	<0.0050
Hudrossehana	Zinc (Zn)-Dissolved (mg/L) EPH10-19 (mg/L)	0.437	4.44	<0.0050 <0.25	<0.0050	<0.0050
Hydrocarbons	(2)				<0.25	<0.25
	EPH19-32 (mg/L)		<0.25	<0.25	<0.25	<0.25
	LEPH (mg/L)		<0.25	<0.25	<0.25	<0.25
	HEPH (mg/L)		<0.25	<0.25	<0.25	<0.25
Polycyclic Aromatic Hydrocarbons	Acenaphthene (mg/L)		<0.000050	<0.000050	<0.000050	<0.000050
	Acenaphthylene (mg/L)		<0.000050	<0.000050	<0.000050	<0.000050
	Acridine (mg/L)		<0.000050	<0.000050	<0.000050	<0.000050
	Anthracene (mg/L)		<0.000050	<0.000050	<0.000050	<0.000050
	Benz(a)anthracene (mg/L)		<0.000050	<0.000050	<0.000050	<0.000050
	Benzo(a)pyrene (mg/L)		<0.000010	<0.000010	<0.000010	<0.000010
	Benzo(b)fluoranthene (mg/L)		<0.000050	<0.000050	<0.000050	<0.000050
	Benzo(g,h,i)perylene (mg/L)		<0.000050	<0.000050	<0.000050	<0.000050
	Benzo(k)fluoranthene (mg/L)		<0.000050	<0.000050	<0.000050	<0.000050
	Chrysene (mg/L)		<0.000050	<0.000050	<0.000050	<0.000050
	Dibenz(a,h)anthracene (mg/L)		<0.000050	<0.000050	<0.000050	<0.000050
	Fluoranthene (mg/L)		<0.000050	<0.000050	<0.000050	<0.000050
	Fluorene (mg/L)		<0.000050	<0.000050	<0.000050	<0.000050
	Indeno(1,2,3-c,d)pyrene (mg/L)		<0.000050	<0.000050	<0.000050	<0.000050
	Naphthalene (mg/L)		<0.000050	<0.000050	<0.000050	<0.000050
	Phenanthrene (mg/L)		<0.000050	<0.000050	<0.000050	<0.000050
	Pyrene (mg/L)		<0.000050	<0.000050	<0.000050	<0.000050
	Quinoline (mg/L)		<0.000050	<0.000050	<0.000050	<0.000050
	Surrogate: d10-Acenaphthene (SS) (%)		93	97	98	96
	Surrogate: d9-Acridine (SS) (%)		90	92	92	89
	Surrogate: d12-Chrysene (SS) (%)		89	91	92	90
	Surrogate: d8-Naphthalene (SS) (%)		87	93	93	83
	Surrogate: d10-Phenanthrene (SS) (%)		94	97	97	97

L796959 CONTD.... PAGE 9 of 14 19-AUG-09 10:00

	Sample ID Description	L796959-6
	Sampled Date Sampled Time Client ID	19-JUL-09 MW09-19
• ·		
Grouping	Analyte	
WATER		
Dissolved Metals	Sodium (Na)-Dissolved (mg/L)	20.5
	Strontium (Sr)-Dissolved (mg/L)	0.973
	Thallium (TI)-Dissolved (mg/L)	<0.0010
	Tin (Sn)-Dissolved (mg/L)	<0.0025
	Titanium (Ti)-Dissolved (mg/L)	0.015
	Uranium (U)-Dissolved (mg/L)	<0.0010
	Vanadium (V)-Dissolved (mg/L)	<0.0050
	Zinc (Zn)-Dissolved (mg/L)	0.0088
Hydrocarbons	EPH10-19 (mg/L)	<0.25
	EPH19-32 (mg/L)	<0.25
	LEPH (mg/L)	<0.25
	HEPH (mg/L)	<0.25
Polycyclic Aromatic Hydrocarbons	Acenaphthene (mg/L)	<0.000050
	Acenaphthylene (mg/L)	<0.000050
	Acridine (mg/L)	<0.000050
	Anthracene (mg/L)	<0.000050
	Benz(a)anthracene (mg/L)	<0.000050
	Benzo(a)pyrene (mg/L)	<0.000010
	Benzo(b)fluoranthene (mg/L)	<0.000050
	Benzo(g,h,i)perylene (mg/L)	<0.000050
	Benzo(k)fluoranthene (mg/L)	<0.000050
	Chrysene (mg/L)	<0.000050
	Dibenz(a,h)anthracene (mg/L)	<0.000050
	Fluoranthene (mg/L)	<0.000050
	Fluorene (mg/L)	<0.000050
	Indeno(1,2,3-c,d)pyrene (mg/L)	<0.000050
	Naphthalene (mg/L)	<0.000050
	Phenanthrene (mg/L)	<0.000050
	Pyrene (mg/L)	<0.000050
	Quinoline (mg/L)	<0.000050
	Surrogate: d10-Acenaphthene (SS) (%)	99
	Surrogate: d9-Acridine (SS) (%)	93
	Surrogate: d12-Chrysene (SS) (%)	93
	Surrogate: d8-Naphthalene (SS) (%)	95
	Surrogate: d10-Phenanthrene (SS) (%)	99

Additional Commer Samplenum	Matrix	Report Remarks	Sample Comments
•		Report Komarko	Campie Commente
Methods Listed (if a ALS Test Code	Matrix	Test Description	Analytical Method Reference(Based On)
ALO TOSTODUC	Wathx		
ACY-PCT-VA	Water	Acidity by Automatic Titration	APHA 2310 "Acidity"
This analysis is carrie specified endpoint.	d out using pro	cedures adapted from APHA Method 2310 "Aci	dity". Acidity is determined by potentiometric titration to a
ACY-PCT-VA	Water	Acidity by Automatic Titration	APHA 2310 Acidity
This analysis is carrie specified endpoint.	d out using pro	cedures adapted from APHA Method 2310 "Aci	dity". Acidity is determined by potentiometric titration to a
ALK-COL-VA	Water	Alkalinity by Colourimetric (Automated)	APHA 310.2
This analysis is carrie colourimetric method.	d out using pro	cedures adapted from EPA Method 310.2 "Alka	inity". Total Alkalinity is determined using the methyl orange
ANIONS-BR-IC-VA	Water	Bromide by Ion Chromatography	APHA 4110 B.
		cedures adapted from APHA Method 4110 B. "I "Determination of Inorganic Anions by Ion Chro	on Chromatography with Chemical Suppression of Eluent omatography".
ANIONS-CL-IC-VA	Water	Chloride by Ion Chromatography	APHA 4110 B.
		cedures adapted from APHA Method 4110 B. "I "Determination of Inorganic Anions by Ion Chro	on Chromatography with Chemical Suppression of Eluent omatography".
ANIONS-F-IC-VA	Water	Fluoride by Ion Chromatography	APHA 4110 B.
		cedures adapted from APHA Method 4110 B. "I "Determination of Inorganic Anions by Ion Chro	on Chromatography with Chemical Suppression of Eluent omatography".
ANIONS-NO2-IC-VA	Water	Nitrite by Ion Chromatography	APHA 4110 B.
	A Method 300.0		on Chromatography with Chemical Suppression of Eluent omatography". Specifically, the nitrite detection is by UV
ANIONS-NO3-IC-VA	Water	Nitrate by Ion Chromatography	APHA 4110 B.
	A Method 300.0		on Chromatography with Chemical Suppression of Eluent or anatography". Specifically, the nitrate detection is by UV
ANIONS-SO4-IC-VA	Water	Sulfate by Ion Chromatography	APHA 4110 B.
		cedures adapted from APHA Method 4110 B. "I "Determination of Inorganic Anions by Ion Chro	on Chromatography with Chemical Suppression of Eluent omatography".
CN-T-MID-HH-COL-V	A Water	Total Cyanide by HH Distillation	APHA 4500-CN "Cyanide"
		cedures adapted from APHA Method 4500-CN I analysis using the chloramine-T colourimetric	'Cyanide". Total or strong acid dissociable (SAD) cyanide are nethod.
CN-T-MID-HH-COL-V	A Water	Total Cyanide by HH Distillation	APHA 4500-CN Cyanide

Methods Listed (if applicable): ALS Test Code Matrix Test Description Analytical Method Reference(Based On) This analysis is carried out using procedures adapted from APHA Method 4500-CN "Cyanide". Weak acid dissociable (WAD) cyanide are determined by sample distillation and analysis using the chloramine-T colourimetric method. **CN-WAD-MID-COL-VA** Weak Acid Cyanide by Colorimetric Water APHA 4500-CN Cyanide This analysis is carried out using procedures adapted from APHA Method 4500-CN "Cyanide". Weak acid dissociable (WAD) cyanide are determined by sample distillation and analysis using the chloramine-T colourimetric method. **CNO-SIE-VA** Water Cyanate by SIE APHA 4500-CN Cyanide This analysis is carried out using procedures adapted from APHA Method 4500-CN "Cvanide". Cvanate is determined by the cvanate hydrolysis method using an ammonia selective electrode. EC-PCT-VA Water APHA 2510 Auto. Conduc. Conductivity (Automated) This analysis is carried out using procedures adapted from APHA Method 2510 "Conductivity". Conductivity is determined using a conductivity electrode. **EPH-SF-FID-VA** Water EPH in Water by GCFID BCMOE EPH GCFID This analysis is carried out in accordance with the British Columbia Ministry of Environment, Lands and Parks (BCMELP) Analytical Method for Contaminated Sites "Extractable Petroleum Hydrocarbons in Water by GC/FID" (Version 2.1, July 1999). The procedure involves extraction of the entire water sample with dichloromethane. The extract is then solvent exchanged to toluene and analysed by capillary column gas chromatography with flame ionization detection (GC/FID). EPH results include Polycyclic Aromatic Hydrocarbons (PAH) and are therefore not equivalent to Light and Heavy Extractable Petroleum Hydrocarbons (LEPH/HEPH). **EPH-TUMB-FID-VA** Soil BCMELP CSR EPH in Solids by Tumbler and GCFID Extractable Hydrocarbons in Sediment/Soil This analysis is carried out in accordance with the British Columbia Ministry of Environment, Lands and Parks (BCMELP) Analytical Method for Contaminated Sites "Extractable Petroleum Hydrocarbons in Solids by GC/FID, Version 2.1 July 1999". The procedure, based on EPA 3570, uses a rotary extraction technique to extract a subsample of the sediment/soil with a 1:1 mixture of hexane and acetone. The extract is then solvent exchanged to toluene or kept in hexane/acetone and analyzed by capillary column gas chromatography with flame ionization detection (GC/FID). EPH results include Polycyclic Aromatic Hydrocarbons (PAH) and are therefore not equivalent to Light and Heavy Extractable Petroleum Hydrocarbons (LEPH/HEPH). Accuracy target values for Reference Materials used in this method are derived from averages of long-term method performance, as certified values do not exist for the reported parameters. **F-SIE-VA** Water Fluoride by SIE APHA 4500-F "Fluoride" This analysis is carried out using procedures adapted from APHA Method 4500-F "Fluoride". Fluoride is determined using a selective ion electrode. This method has a significant negative interference (i.e. results could be biased low) when Al3+ is present in the sample at a concentration greater than 2.5 mg/L. **F-SIE-VA** Water Fluoride by SIE APHA 4500-F Fluoride This analysis is carried out using procedures adapted from APHA Method 4500-F "Fluoride". Fluoride is determined using a selective ion electrode. This method has a significant negative interference (i.e. results could be biased low) when Al3+ is present in the sample at a concentration greater than 2.5 mg/L. HARDNESS-CALC-VA Water Hardness APHA 2340B Hardness is calculated from Calcium and Magnesium concentrations, and is expressed as calcium carbonate equivalents. **HG-CCME-CVAFS-VA** Soil CVAFS Hg in Soil (CCME) CCME

This analysis is carried out using procedures from CSR Analytical Method 8 "Strong Acid Leachable Metals (SALM) in Soil", BC Ministry of Environment, Lands and Parks, 26 June 2001, and procedures adapted from "Test Methods for Evaluating Solid Waste", SW-846 Method 3050B United States Environmental Protection Agency (EPA). The sample is manually homogenized, dried at 60 degrees Celsius, sieved through a 2 mm (10 mesh) sieve, and a representative subsample of the dry material is weighed. The sample is then digested at 90 degrees Celsius for 2 hours by block digester using a 1:1 ratio of concentrated nitric and hydrochloric acids. Instrumental analysis is by atomic fluorescence spectrophotometry (EPA Method 7000 series).

L796959 CONTD.... PAGE 11 of 14

Methods Listed (if applicable):

ALS Test Code	Matrix	Test Description	Analytical Method Reference(Based On)

Method Limitation: This method is not a total digestion technique. It is a very strong acid digestion that is intended to dissolve those metals that may be environmentally available. By design, elements bound in silicate structures are not normally dissolved by this procedure as they are not usually mobile in the environment.

HG-DIS-CCME-CVAFS- Water Diss. Mercury in Water by CVAFS (CCME)

VA This analysis is carried out using procedures adapted from "Standard Methods for the Examination of Water and Wastewater" published by the American Public Health Association, and with procedures adapted from "Test Methods for Evaluating Solid Waste" SW-846 published by the United States Environmental Protection Agency (EPA). The procedures may involve preliminary sample treatment by filtration (EPA Method 3005A) and involves a cold-oxidation of the acidified sample using bromine monochloride prior to reduction of the sample with stannous chloride. Instrumental analysis is by cold vapour atomic fluorescence spectrophotometry (EPA Method 245.7).

LEPH/HEPH-CALC-VA Water LEPHs and HEPHs

Light and Heavy Extractable Petroleum Hydrocarbons in Solids. These results are determined according to the British Columbia Ministry of Environment, Lands, and Parks Analytical Method for Contaminated Sites "Calculation of Light and Heavy Extractable Petroleum Hydrocarbons in Solids or Water". According to this method, LEPH and HEPH are calculated

by subtracting selected Polycyclic Aromatic Hydrocarbon results from Extractable Petroleum Hydrocarbon results. To calculate LEPH, the individual results for Naphthalene and Phenanthrene are subtracted from EPH(C10-19). To calculate HEPH, the individual results for Benz(a)anthracene, Benzo(b)fluoranthene, Benzo(k)fluoranthene, Benzo(a)pyrene, Dibenz(a,h)anthracene, Indeno(1,2,3-c,d)pyrene, and Pyrene are subtracted from EPH(C19-32). Analysis of Extractable Petroleum Hydrocarbons adheres to all prescribed elements of the BCMELP method "Extractable Petroleum Hydrocarbons in Solids by GC/FID" (Version 2.1, July 20, 1999).

LEPH/HEPH-CALC-VA Soil LEPHs and HEPHs

Light and Heavy Extractable Petroleum Hydrocarbons in Solids. These results are determined according to the British Columbia Ministry of Environment, Lands, and Parks Analytical Method for Contaminated Sites "Calculation of Light and Heavy Extractable Petroleum Hydrocarbons in Solids or Water". According to this method, LEPH and HEPH are calculated

by subtracting selected Polycyclic Aromatic Hydrocarbon results from Extractable Petroleum Hydrocarbon results. To calculate LEPH, the individual results for Naphthalene and Phenanthrene are subtracted from EPH(C10-19). To calculate HEPH, the individual results for Benz(a)anthracene, Benzo(b)fluoranthene, Benzo(k)fluoranthene, Benzo(a)pyrene, Dibenz(a,h)anthracene, Indeno(1,2,3-c,d)pyrene, and Pyrene are subtracted from EPH(C19-32). Analysis of Extractable Petroleum Hydrocarbons adheres to all prescribed elements of the BCMELP method "Extractable Petroleum Hydrocarbons in Solids by GC/FID" (Version 2.1, July 20, 1999).

MET-CSR-FULL-ICP-VA Soil

Metals in Soil by ICPOES (CSR SALM)

BCMELP CSR SALM METHOD 8

This analysis is carried out using procedures from CSR Analytical Method 8 "Strong Acid Leachable Metals (SALM) in Soil", BC Ministry of Environment, Lands and Parks, 26 June 2001, and procedures adapted from "Test Methods for Evaluating Solid Waste", SW-846 Method 3050B United States Environmental Protection Agency (EPA). The sample is manually homogenized, dried at 60 degrees Celsius, sieved through a 2 mm (10 mesh) sieve, and a representative subsample of the dry material is weighed. The sample is then digested at 90 degrees Celsius for 2 hours by block digester using a 1:1 ratio of concentrated nitric and hydrochloric acids. Instrumental analysis is by inductively coupled plasma - optical emission spectrophotometry (EPA Method 6010B).

Method Limitation: This method is not a total digestion technique. It is a very strong acid digestion that is intended to dissolve those metals that may be environmentally available. By design, elements bound in silicate structures are not normally dissolved by this procedure as they are not usually mobile in the environment.

MET-DIS-CCME-ICP-VA Water

Diss. Metals in Water by ICPOES (CCME)

This analysis is carried out using procedures adapted from "Standard Methods for the Examination of Water and Wastewater" published by the American Public Health Association, and with procedures adapted from "Test Methods for Evaluating Solid Waste" SW-846 published by the United States Environmental Protection Agency (EPA). The procedures may involve preliminary sample treatment by acid digestion, using either hotblock or microwave oven, or filtration (EPA Method 3005A). Instrumental analysis is by inductively coupled plasma - optical emission spectrophotometry (EPA Method 6010B).

MET-DIS-CCME-MS-VA Water

Diss. Metals in Water by ICPMS (CCME)

EPA SW-846 3005A/6020A

EPA SW-846 3005A/6010B

This analysis is carried out using procedures adapted from "Standard Methods for the Examination of Water and Wastewater" published by the American Public Health Association, and with procedures adapted from "Test Methods for Evaluating Solid Waste" SW-846 published by the United States Environmental Protection Agency (EPA). The procedures may involve preliminary sample treatment by acid digestion, using either hotblock or microwave oven, or filtration (EPA Method 3005A). Instrumental analysis is by inductively coupled plasma - mass spectrometry (EPA Method 6020A).

MET-DIS-ICP-VA

BC MOE LABORATORY MANUAL (2005)

BC MOE LABORATORY MANUAL (2005)

EPA 3005A/245.7

ALS Test Code	Matrix	Test Description	Analytical Method Reference(Based On)
American Public Health A	ssociation,	and with procedures adapted from "Test Methods ncy (EPA). The procedure involves filtration (EPA	Examination of Water and Wastewater" published by the for Evaluating Solid Waste" SW-846 published by the United Method 3005A) and analysis by inductively coupled plasma -
MOISTURE-VA	Soil	Moisture content	ASTM METHOD D2974-00
This analysis is carried ou	ut gravimetri	cally by drying the sample at 105 C for a minimum	n of six hours.
NH3-SIE-VA	Water	Ammonia by SIE	APHA 4500 D NH3 NITROGEN (AMMONIA)
		uric acid preserved samples, using procedures ad monia selective electrode.	apted from APHA Method 4500-NH3 "Nitrogen (Ammonia)".
PAH-SF-MS-VA	Water	PAH in Water by GCMS	EPA Methods 3510, 3630 & 8270
published by the United S dichloromethane. The ext	states Enviro	onmental Protection Agency (EPA). The procedure solvent exchanged to toluene prior to analysis by	g Solid Waste" SW-846, Methods 3510, 3630 & 8270, a involves extraction of the entire water sample with capillary column gas chromatography with mass spectrometric nces from the sample matrix prevent accurate quantitation.
PAH-SURR-MS-VA	Soil	PAH Surrogates for Soils	EPA METHODS 3570, 3545A & 8270
PAH-TUMB-H/A-MS-VA	Soil	PAH by Tumbler HEX/ACE with GCMS	EPA METHODS 3570 & 8270.
the United States Environ sediment/soil with a 1:1 m	ut using proo mental Prot nixture of he ohy with ma	cedures adapted from "Test Methods for Evaluatin tection Agency (EPA). The procedure uses a mec exane and acetone. The extract is then solvent ex- ss spectrometric detection (GC/MS). Surrogate re	g Solid Waste" SW-846, Methods 3570 & 8270, published by hanical shaking technique to extract a subsample of the changed to toluene. The final extract is analysed by capillary coveries may not be reported in cases where interferences
PH-1:2-VA	Soil	CSR pH by 1:2 Water Leach	BC WLAP METHOD: PH, ELECTROMETRIC, SOIL
Physical/Inorganic and M	isc. Constitu		metric in Soil and Sediment method - Section B The procedure involves mixing the dried (at <60°C) and o water. The pH of the solution is then measured using a
PH-PCT-VA	Water	pH by Meter (Automated)	APHA 4500-H "pH Value"
This analysis is carried ou electrode	ut using proc	cedures adapted from APHA Method 4500-H "pH	Value". The pH is determined in the laboratory using a pH
PH-PCT-VA	Water	pH by Meter (Automated)	APHA 4500-H pH Value
This analysis is carried ou electrode	ut using proc	cedures adapted from APHA Method 4500-H "pH	Value". The pH is determined in the laboratory using a pH
TDS-VA	Water	Total Dissolved Solids by Gravimetric	APHA 2540 C - GRAVIMETRIC
			". Solids are determined gravimetrically. Total Dissolved Solids ed by evaporating the filtrate to dryness at 180 degrees celsius.
TL-CSR-MS-VA	Soil	ICPMS TI in Soil by CSR SALM	BCMELP CSR SALM Method 8

This analysis is carried out using procedures from CSR Analytical Method 8 "Strong Acid Leachable Metals (SALM) in Soil", BC Ministry of Environment, Lands and Parks, 26 June 2001, and procedures adapted from "Test Methods for Evaluating Solid Waste", SW-846 Method 3050B United States Environmental Protection Agency (EPA). The sample is manually homogenized, dried at 60 degrees Celsius, sieved through a 2 mm (10 mesh) sieve, and a representative subsample of the dry material is weighed. The sample is then digested at 90 degrees Celsius for 2 hours by either hotplate or block digester using a 1:1 ratio of concentrated nitric and hydrochloric acids. Instrumental analysis is by inductively coupled plasma mass spectrometry (EPA Method 6020A).

L796959 CONTD PAGE 13 of 14

Methods Listed (if applicable):

	-		
ALS Test Code	Matrix	Test Description	Analytical Method Reference(Based On)

Method Limitation: This method is not a total digestion technique. It is a very strong acid digestion that is intended to dissolve those metals that may be environmentally available. By design, elements bound in silicate structures are not normally dissolved by this procedure as they are not usually mobile in the environment.

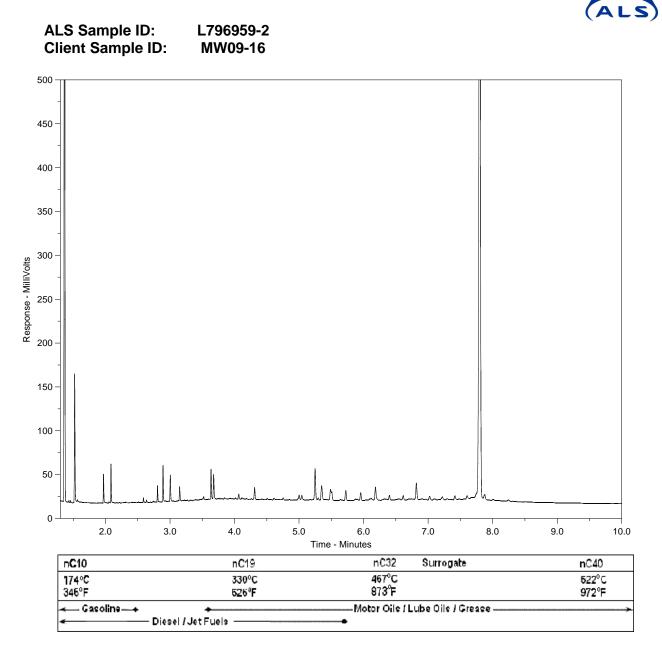
** Laboratory Methods employed follow in-house procedures, which are generally based on nationally or internationally accepted methodologies. The last two letters of the above ALS Test Code column indicate the laboratory that performed analytical analysis for that test. Refer to the list below:

Laboratory Definition Code	Laboratory Location	Laboratory Definition Code	Laboratory Location
VA	ALS LABORATORY GROUP - VANCOUVER, BC, CANADA		

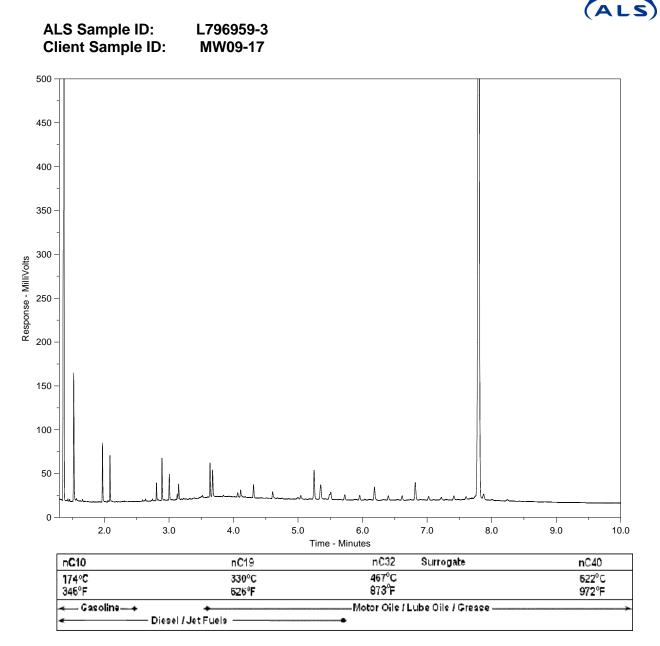
GLOSSARY OF REPORT TERMS

Surr - A surrogate is an organic compound that is similar to the target analyte(s) in chemical composition and behavior but not normally detected in environmental samples. Prior to sample processing, samples are fortified with one or more surrogate compounds.

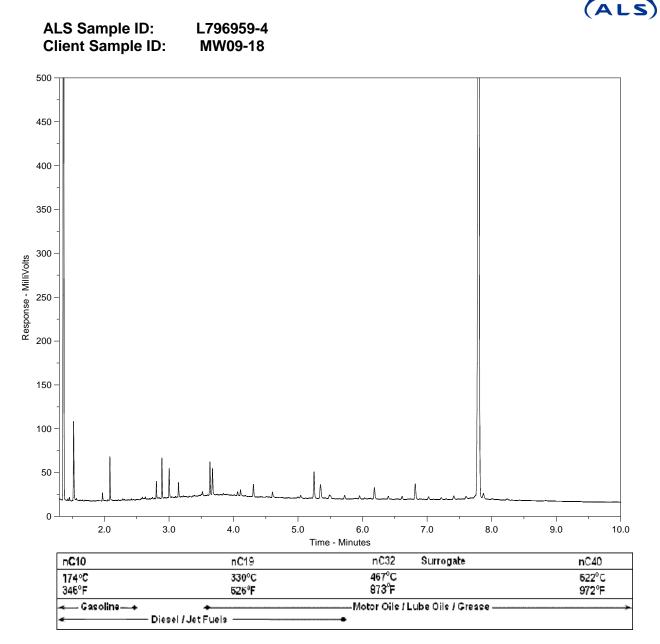
The reported surrogate recovery value provides a measure of method efficiency.


mg/kg (units) - unit of concentration based on mass, parts per million

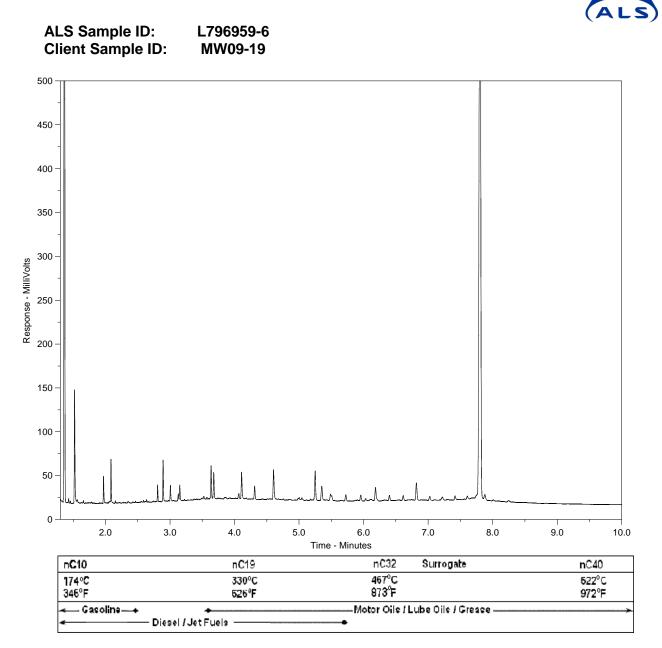
mg/L (units) - unit of concentration based on volume, parts per million

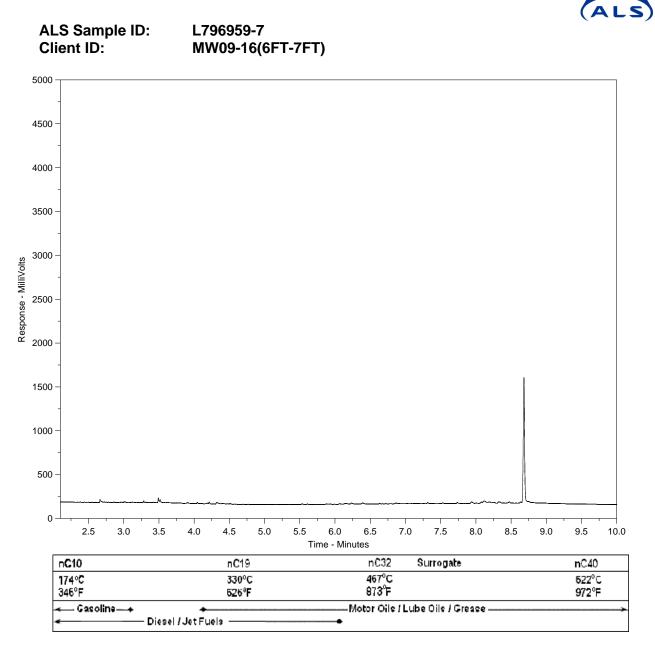

N/A - Result not available. Refer to qualifier code and definition for explanation

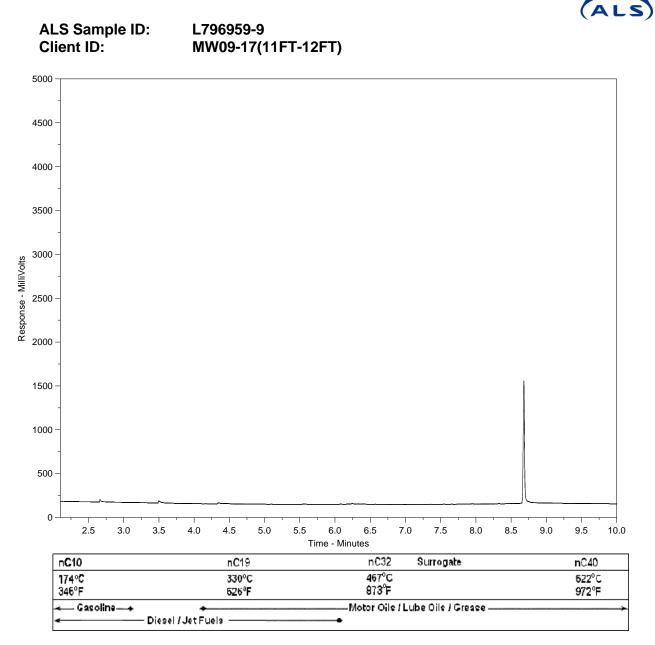
Test results reported relate only to the samples as received by the laboratory. UNLESS OTHERWISE STATED, ALL SAMPLES WERE RECEIVED IN ACCEPTABLE CONDITION. Although test results are generated under strict QA/QC protocols, any unsigned test reports, faxes, or emails are considered preliminary.

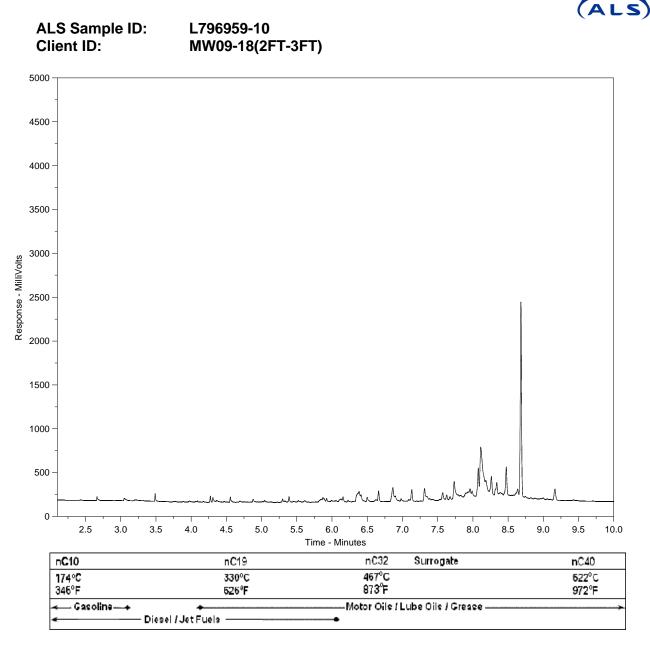

ALS Laboratory Group has an extensive QA/QC program where all analytical data reported is analyzed using approved referenced procedures followed by checks and reviews by senior managers and quality assurance personnel. However, since the results are obtained from chemical measurements and thus cannot be guaranteed, ALS Laboratory Group assumes no liability for the use or interpretation of the results.

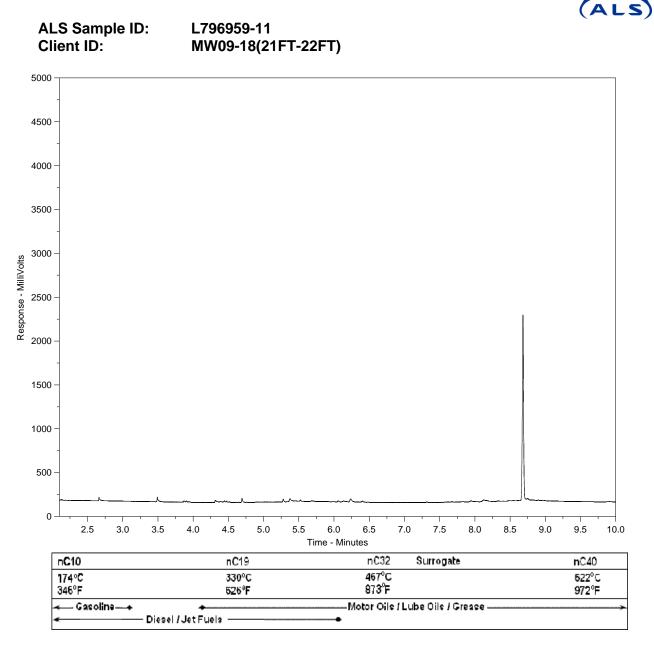

Chromatograms from the ALS HDR Reference Library indicate the patterns of hydrocarbon compounds found in petroleum products, reference standards, and some examples of natural plant and organic materials. The chromatogram from left to right roughly corresponds to increasing boiling point from approximately 174°C to 522°C, a range encompassing most middle distillate and residual petroleum products (diesel, fuel oils, lubricating oils, etc). Comparison of library chromatograms with those of unknown samples may aid in the identification of contaminants. Surrogate compounds, which are added to samples by the laboratory, are not present in HDR library chromatograms.

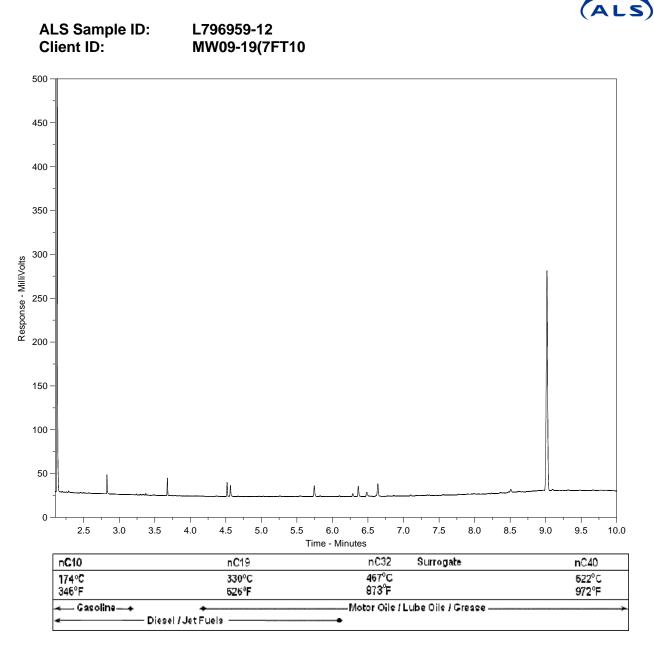

Chromatograms from the ALS HDR Reference Library indicate the patterns of hydrocarbon compounds found in petroleum products, reference standards, and some examples of natural plant and organic materials. The chromatogram from left to right roughly corresponds to increasing boiling point from approximately 174°C to 522°C, a range encompassing most middle distillate and residual petroleum products (diesel, fuel oils, lubricating oils, etc). Comparison of library chromatograms with those of unknown samples may aid in the identification of contaminants. Surrogate compounds, which are added to samples by the laboratory, are not present in HDR library chromatograms.

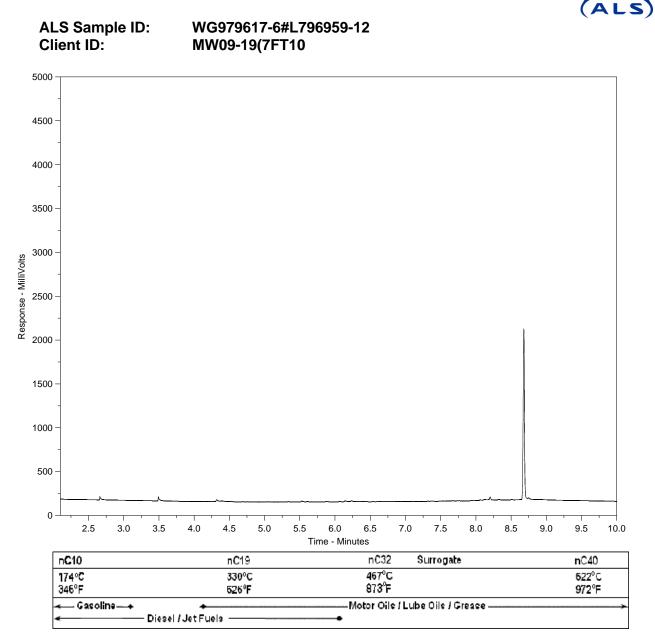

Chromatograms from the ALS HDR Reference Library indicate the patterns of hydrocarbon compounds found in petroleum products, reference standards, and some examples of natural plant and organic materials. The chromatogram from left to right roughly corresponds to increasing boiling point from approximately 174°C to 522°C, a range encompassing most middle distillate and residual petroleum products (diesel, fuel oils, lubricating oils, etc). Comparison of library chromatograms with those of unknown samples may aid in the identification of contaminants. Surrogate compounds, which are added to samples by the laboratory, are not present in HDR library chromatograms.

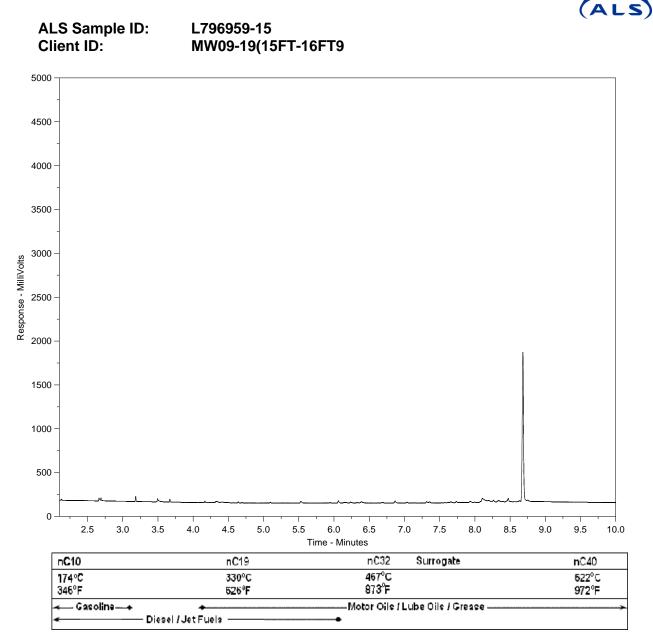

Chromatograms from the ALS HDR Reference Library indicate the patterns of hydrocarbon compounds found in petroleum products, reference standards, and some examples of natural plant and organic materials. The chromatogram from left to right roughly corresponds to increasing boiling point from approximately 174°C to 522°C, a range encompassing most middle distillate and residual petroleum products (diesel, fuel oils, lubricating oils, etc). Comparison of library chromatograms with those of unknown samples may aid in the identification of contaminants. Surrogate compounds, which are added to samples by the laboratory, are not present in HDR library chromatograms.


Chromatograms from the ALS HDR Reference Library indicate the patterns of hydrocarbon compounds found in petroleum products, reference standards, and some examples of natural plant and organic materials. The chromatogram from left to right roughly corresponds to increasing boiling point from approximately 174°C to 522°C, a range encompassing most middle distillate and residual petroleum products (diesel, fuel oils, lubricating oils, etc). Comparison of library chromatograms with those of unknown samples may aid in the identification of contaminants. Surrogate compounds, which are added to samples by the laboratory, are not present in HDR library chromatograms.


Chromatograms from the ALS HDR Reference Library indicate the patterns of hydrocarbon compounds found in petroleum products, reference standards, and some examples of natural plant and organic materials. The chromatogram from left to right roughly corresponds to increasing boiling point from approximately 174°C to 522°C, a range encompassing most middle distillate and residual petroleum products (diesel, fuel oils, lubricating oils, etc). Comparison of library chromatograms with those of unknown samples may aid in the identification of contaminants. Surrogate compounds, which are added to samples by the laboratory, are not present in HDR library chromatograms.


Chromatograms from the ALS HDR Reference Library indicate the patterns of hydrocarbon compounds found in petroleum products, reference standards, and some examples of natural plant and organic materials. The chromatogram from left to right roughly corresponds to increasing boiling point from approximately 174°C to 522°C, a range encompassing most middle distillate and residual petroleum products (diesel, fuel oils, lubricating oils, etc). Comparison of library chromatograms with those of unknown samples may aid in the identification of contaminants. Surrogate compounds, which are added to samples by the laboratory, are not present in HDR library chromatograms.


Chromatograms from the ALS HDR Reference Library indicate the patterns of hydrocarbon compounds found in petroleum products, reference standards, and some examples of natural plant and organic materials. The chromatogram from left to right roughly corresponds to increasing boiling point from approximately 174°C to 522°C, a range encompassing most middle distillate and residual petroleum products (diesel, fuel oils, lubricating oils, etc). Comparison of library chromatograms with those of unknown samples may aid in the identification of contaminants. Surrogate compounds, which are added to samples by the laboratory, are not present in HDR library chromatograms.


Chromatograms from the ALS HDR Reference Library indicate the patterns of hydrocarbon compounds found in petroleum products, reference standards, and some examples of natural plant and organic materials. The chromatogram from left to right roughly corresponds to increasing boiling point from approximately 174°C to 522°C, a range encompassing most middle distillate and residual petroleum products (diesel, fuel oils, lubricating oils, etc). Comparison of library chromatograms with those of unknown samples may aid in the identification of contaminants. Surrogate compounds, which are added to samples by the laboratory, are not present in HDR library chromatograms.

Chromatograms from the ALS HDR Reference Library indicate the patterns of hydrocarbon compounds found in petroleum products, reference standards, and some examples of natural plant and organic materials. The chromatogram from left to right roughly corresponds to increasing boiling point from approximately 174°C to 522°C, a range encompassing most middle distillate and residual petroleum products (diesel, fuel oils, lubricating oils, etc). Comparison of library chromatograms with those of unknown samples may aid in the identification of contaminants. Surrogate compounds, which are added to samples by the laboratory, are not present in HDR library chromatograms.

Chromatograms from the ALS HDR Reference Library indicate the patterns of hydrocarbon compounds found in petroleum products, reference standards, and some examples of natural plant and organic materials. The chromatogram from left to right roughly corresponds to increasing boiling point from approximately 174°C to 522°C, a range encompassing most middle distillate and residual petroleum products (diesel, fuel oils, lubricating oils, etc). Comparison of library chromatograms with those of unknown samples may aid in the identification of contaminants. Surrogate compounds, which are added to samples by the laboratory, are not present in HDR library chromatograms.

Chromatograms from the ALS HDR Reference Library indicate the patterns of hydrocarbon compounds found in petroleum products, reference standards, and some examples of natural plant and organic materials. The chromatogram from left to right roughly corresponds to increasing boiling point from approximately 174°C to 522°C, a range encompassing most middle distillate and residual petroleum products (diesel, fuel oils, lubricating oils, etc). Comparison of library chromatograms with those of unknown samples may aid in the identification of contaminants. Surrogate compounds, which are added to samples by the laboratory, are not present in HDR library chromatograms.

AECOM-		FAX	REGULAR SERVICE (DEFAULT) RUSH SERVICE (2-3 DAYS)
LAS RUNNARY R.C. VSLIM	SEMAIL 2:		EMERGENCY SERVICE (1 DAY / WEEKEND) -
631-6213 FAX:			ANALYSIS REQUES
SAME AS REI	INDICATE BOTTLES: FILTERED / PRESERVED (F/P)	RESERVED (F/P) $\rightarrow \rightarrow \rightarrow$	12/2/2/11
COMPANY:	CLIENT / PROJECT INFORMATION:	TION: YUKON LON'T	INDE
CONTACT:	JOB # 112359 - N	MT. NANSEN.	+ 10
ADDRESS:	ΠŪ.		r.s -
	Legal Site Description:	A CARL CARL AND A	KAR ~
PHONE: FAX:	QUOTE #		AD/
(lab use only) L796954	and the second se	(Initials): RDW	LVED L/W.
Sample SAMPLE IDENTIFICATION # (This description will appear on the report)	() DATE	TIME SAMPLE TYPE	LEP DSSO TOTA Anio Amu Alka
MM09-15	JULY H/09	WATER	X X X X
MW09-16	JULY 19/09		XXXXXX
ti-bomm			XXXXXXX
MW09-18			XXXXXXX
MW09-18-R.	4		XXXXXXX
MWO9-19			-
MW09-16 (6FT-7FT)	JULT 15/09	SOIL	
1			
MW09-17 (11FT-12FT)			
MW09-18 (2 FT - 3 FT		(Å	「山田」「山田」
GUIDELINES / REGULATIONS		SPECIAL INSTRU	INSTRUCTIONS / HAZARDOUS DETAILS
CLIME AVIDENINES + BEST DET. LIMITS		10000	で、現代に、「酸
And the Manager of the state	Failure to complete all portions of this form may delay analysis. e user acknowledges and agrees with the Terms and Conditions	may delay analysis. Plea erms and Conditions as s	Please fill in this form <i>LEGIBLY</i> . as specified on the reverse page
By the use of this form the user acknowledge	RECEIVED BY:	DATE & TIME: JULY & Y	SAMPLE CONDITION (lab use only
By the use of this form the user acknowledges and agrees with the Terms and Conditions as specified on the reverse page of the white report copy. By the use of this form the user acknowledges and agrees with the Terms and Conditions as specified on the reverse page of the white report copy. Received by: Date & time: Received by: Date & time: Samples conditions (lab use only) Samples condition (lab use only) WMM Duty 22/07 20/07 2			TEMPERATURE SAMPLES RECEIVED IN GOOD CONDITION ? YES / NO

ALS Laboratory Group ANALYTICAL CHEMISTRY & TESTING SERVICES

CHAIN OF CUSTODY / ANALYTICAL REQUEST FORM

CANADA TOLL FREE 1-800-668-9878

coc#A014937

Environmental Division (ALS)	www.a	lsenviro.cor	<u>n</u>			2					(Sile)	
REPORT TO:	REPORT FORMAT / DISTRIBUT	ΓΙΟΝ			SERVIC	E REQUE	STED					
COMPANY: AECOM	STANDARD OTHE	ER			REGUL	AR SERVI	CE (DEFA	ULT)		110	1210	
CONTACT: BYAN MILLS			AX		RUSH	SERVICE (2-3 DAYS					
ADDRESS: 275-3001 WAYBURNE DR.	EMAIL 1: ryan mil	lsearc	ion.com		PRIOR	TY SERVI	CE (1 DAY	or ASAP)			
BURNARY, B.C. NSG 4W3	EMAIL 2:				EMERC	SENCY SE	RVICE (<1	DAY / W	EEKEND) -	CONTA	CT ALS	3
PHONE: 604-631-6213FAX:							ANALI	SIS REQ	UEST			
INVOICE TO: SAME AS REPORT ? YES NO	INDICATE BOTTLES: FILTERED / PR	RESERVED (F/P) $\rightarrow \rightarrow \rightarrow$	/	1	11	M	\wedge		/		
COMPANY:	CLIENT / PROJECT INFORMAT	TION:										
CONTACT:	JOB#: 112359			E	S						03	RS
ADDRESS:	PO /AFE:		1 12 115/16/16 25		L <u>Ŧ</u>						ATE	AINE
	Legal Site Description:			HERA		11					WIN .	L NO
PHONE: FAX:	QUOTE #:			Ē	3			1			SIL	U U U
Lab Work Order # L796959		SAMPLER (Initials):		Ŧ	- W							ER O
Sample SAMPLE IDENTIFICATION # (This description will appear on the repo	ort) DATE	TIME	SAMPLE TYPE	Hdan	M U U						HIGHLY CONTA	NUMBER OF CONTAINERS
MW09-18 (21 FT - 22 F	F) JULY 15/09	18 Berlin	SOIL	×	×	-	v ² - 31	\$39	- Sunday	En internet	he para	g
MW09-19 (7 FT 10"-8		and and a state		X	×	20 E	Same	line -	e in setterate	Roles (1)	ii ad	(Bar)
MW09-19 (8FT 4" - 8 F			123.19								1	
MW09-19 YOFT 9"-8			A COMPLET	12.20		1949	1.5			di Ali		
MW09-19 (15FT-16F			The	X	X	0.8		1100			- 22	
C.	1			1		3 22						123
	AT THE APPLY OF MELTING	1	1. 3100 Sec.		2.5			6 65	1011 1010			1
The second s	W PARA PARA	13.812.	to the first	-		80.90		1.1				
		And Address of the	and the second	1	1.10							12
			Non March of	1			in the second		1 - 1		1.1.1	196
GUIDELINES / REGULATIONS		SE	PECIAL INSTRU	CTIC	NS/H	AZARD	OUS DE	TAILS		_	10,303	1904
COME + BEST DETECTIONS PO	SIBLE HOUTS 6		SAMPI									
	te all portions of this form											
By the use of this form the user acknowled	A DESCRIPTION OF THE OWNER OF THE	erms and (DATE & TIME:	pecif	led on				(lab use on		opy.	-
RELINQUISHED BY: DATE & TIME			DATE & TIME 10:00	T	empera IZ	TURE S		ECEIVED IN	N GOOD CON		? YES/	NO
		and the second statement	10:00	1000	IA	2. W. C						

ALS Laboratory Group ANALYTICAL CHEMISTRY & TESTING SERVICES

Environmental Division

AECOM CANADA LT	Certificate of Ana		16-SEP-09 15:59 (MT)
ATTN: RYAN MILLS	J.	Version:	
275 - 3001 WAYBURI BURNABY BC V5G			
Lab Work Order #:	L814853	Date Receive	ed: 03-SEP-09
Project P.O. #: Job Reference: Legal Site Desc: CofC Numbers:	112359 MT NANSEN MINE,YT		
Other Information:			
Comments: Certain analysis	Metals detection limits have been increased for some of th	e samples due to the interferences	encountered during the
	MATASHA MARKOVIC-MIROVIC Account Manager		

THIS REPORT SHALL NOT BE REPRODUCED EXCEPT IN FULL WITHOUT THE WRITTEN AUTHORITY OF THE LABORATORY. ALL SAMPLES WILL BE DISPOSED OF AFTER 30 DAYS FOLLOWING ANALYSIS. PLEASE CONTACT THE LAB IF YOU REQUIRE ADDITIONAL SAMPLE STORAGE TIME.

ALS Canada Ltd. Part of the ALS Laboratory Group 1988 Triumph Street, Vancouver, BC V5L 1K5 Phone: +1 604 253 4188 Fax: +1 604 253 6700 www.alsglobal.com A Campbell Brothers Limited Company

L814853 CONTD.... PAGE 2 of 11

ALS LABORATORY GROUP ANALYTICAL REPORT

16-SEP-09 16:00

	Sample ID Description	L814853-1	L814853-2	L814853-3	L814853-4	L814853-5
	Sampled Date Sampled Time	01-SEP-09	01-SEP-09	02-SEP-09	01-SEP-09	01-SEP-09
	Client ID	GLL07-03	MW09-08	MW09-11	MW09-15	MW09-16
Grouping	Analyte					
WATER						
Physical Tests	Conductivity (uS/cm)	1740	222	659	937	1770
-	Hardness (as CaCO3) (mg/L)	1110	99.5	352	579	1180
	рН (рН)	5.66	6.92	7.78	7.28	7.23
	Total Dissolved Solids (mg/L)	1670	233	445	682	1540
Anions and Nutrients	Acidity (as CaCO3) (mg/L)	81.4	26.6	10.9	26.3	31.2
	Alkalinity, Total (as CaCO3) (mg/L)	15.5	88.3	325	276	294
	Ammonia as N (mg/L)	0.103	3.77	2.48	0.100	<0.020
	Bromide (Br) (mg/L)	<0.25	<0.25 *	0.050	<0.50	<0.50
	Chloride (Cl) (mg/L)	<2.5	<2.5 *	4.90	<5.0	<5.0
	Fluoride (F) (mg/L)	0.15	<0.10 *	0.697	<0.20	<0.20
	Nitrate (as N) (mg/L)	0.779	<0.025 *	0.495	<0.050	0.201
	Nitrite (as N) (mg/L)	0.0544	<0.0050 *	0.0277	<0.010	<0.010
	Sulfate (SO4) (mg/L)	529	14.9 *	50.2	271	832
Cyanides	Cyanide, Weak Acid Diss (mg/L)		<0.0050	<0.0050		<0.0050
	Cyanide, Total (mg/L)		0.0104	<0.0050		<0.0050
	Cyanate (CNO) (mg/L)		<0.50	<0.50		<0.50
	Thiocyanate (SCN) (mg/L)	0.82	5.8	1.03	0.93	1.16
Organic / Inorganic Carbon	Total Organic Carbon (mg/L)	1.27	23.3	26.2	4.62	3.67
Dissolved Metals	Aluminum (Al)-Dissolved (mg/L)	1.39	0.0980	<0.0050	<0.010	<0.025
	Antimony (Sb)-Dissolved (mg/L)	<0.0050	<0.00050	<0.00050	0.0023	0.102
	Arsenic (As)-Dissolved (mg/L)	<0.0050	0.284	0.0239	0.187	0.0391
	Barium (Ba)-Dissolved (mg/L)	<0.020	0.126	0.311	<0.020	<0.020
	Beryllium (Be)-Dissolved (mg/L)	<0.010	<0.0010	<0.0010	<0.0020	<0.0050
	Bismuth (Bi)-Dissolved (mg/L)	<0.20	<0.20	<0.20	<0.20	<0.20
	Boron (B)-Dissolved (mg/L)	<0.10	<0.10	<0.10	<0.10	0.19
	Cadmium (Cd)-Dissolved (mg/L)	0.436	<0.000017	0.000038	0.000758	0.0419
	Calcium (Ca)-Dissolved (mg/L)	336	30.9	65.5	158	273
	Chromium (Cr)-Dissolved (mg/L)	<0.010	<0.0020	<0.0010	<0.0020	<0.0050
	Cobalt (Co)-Dissolved (mg/L)	0.0144	0.00147	0.00096	0.00076	<0.0015
	Copper (Cu)-Dissolved (mg/L)	0.550	<0.0010	<0.0010	<0.0020	0.0105
	Iron (Fe)-Dissolved (mg/L)	11.6	40.7	1.52	1.58	0.331
	Lead (Pb)-Dissolved (mg/L)	0.0114	<0.00050	<0.00050	0.0059	0.0284
	Lithium (Li)-Dissolved (mg/L)	<0.050	<0.0050	<0.0050	<0.010	<0.025
	Magnesium (Mg)-Dissolved (mg/L)	66.4	5.45	45.8	44.5	120
	Manganese (Mn)-Dissolved (mg/L)	10.5	2.32	1.42	0.681	0.208
	Mercury (Hg)-Dissolved (mg/L)	<0.000020	<0.000020	<0.000020	<0.000020	<0.000020
	Molybdenum (Mo)-Dissolved (mg/L)	<0.010	<0.0010	0.0079	<0.0020	<0.0050
	Nickel (Ni)-Dissolved (mg/L)	0.014	<0.0010	0.0027	<0.0020	<0.0050
	Phosphorus (P)-Dissolved (mg/L)	<0.30	<0.30	<0.30	<0.30	<0.30
	Potassium (K)-Dissolved (mg/L)	2.1	<2.0	4.2	<2.0	6.4

L814853 CONTD.... PAGE 3 of 11

ALS LABORATORY GROUP ANALYTICAL REPORT

16-SEP-09 16:00

	Sample ID Description	L814853-6	L814853-7	L814853-8	L814853-9	L814853-10
	Sampled Date Sampled Time	01-SEP-09	01-SEP-09	01-SEP-09	01-SEP-09	01-SEP-09
	Client ID	MW09-17	MW09-18	TRIP BLANK	MW09-19	MW09-21
Grouping	Analyte					
WATER						
Physical Tests	Conductivity (uS/cm)	2570	2670	<2.0	2470	1790
-	Hardness (as CaCO3) (mg/L)	1840	1920	<1.1	1750	838
	рН (рН)	7.42	7.47	5.66	7.16	6.67
	Total Dissolved Solids (mg/L)	2430	2560	<10	2370	1420
Anions and Nutrients	Acidity (as CaCO3) (mg/L)	39.9	31.9	<1.0	45.7	143
	Alkalinity, Total (as CaCO3) (mg/L)	434	426	<2.0	389	231
	Ammonia as N (mg/L)	<0.020	0.021	<0.020	2.24	17.9
	Bromide (Br) (mg/L)	<1.0	<1.0	<0.050	<1.0	<1.0
	Chloride (Cl) (mg/L)	<10	<10	<0.50	<10	<10
	Fluoride (F) (mg/L)	<0.40	<0.40	<0.020	<0.40	<0.40
	Nitrate (as N) (mg/L)	0.30	<0.10	<0.0050	<0.10	<0.10
	Nitrite (as N) (mg/L)	<0.020	<0.020	<0.0010	<0.020	<0.020
	Sulfate (SO4) (mg/L)	1400	1490	<0.50	1340	818
Cyanides	Cyanide, Weak Acid Diss (mg/L)	<0.0050	<0.0050	<0.0050	<0.0050	0.0169
	Cyanide, Total (mg/L)	<0.0050	<0.0050	<0.0050	0.0146	0.0293
	Cyanate (CNO) (mg/L)	<0.50	<0.50	<0.50	5.75	20.7
	Thiocyanate (SCN) (mg/L)	1.35	1.23	<0.50	1.25	1.98
Organic / Inorganic Carbon	Total Organic Carbon (mg/L)	5.01	2.89	<0.50	80.8	42.5
Dissolved Metals	Aluminum (AI)-Dissolved (mg/L)	<0.025	<0.050	<0.0050	<0.025	0.152
	Antimony (Sb)-Dissolved (mg/L)	<0.0025	<0.0050	<0.00050	<0.0025	<0.0025
	Arsenic (As)-Dissolved (mg/L)	0.0128	0.0526	<0.00050	0.0834	0.0443
	Barium (Ba)-Dissolved (mg/L)	<0.020	<0.020	<0.020	0.077	0.426
	Beryllium (Be)-Dissolved (mg/L)	<0.0050	<0.010	<0.0010	<0.0050	<0.0050
	Bismuth (Bi)-Dissolved (mg/L)	<0.20	<0.20	<0.20	<0.20	<0.20
	Boron (B)-Dissolved (mg/L)	0.16	<0.10	<0.10	0.40	<0.10
	Cadmium (Cd)-Dissolved (mg/L)	<0.000085	<0.00017	<0.000017	<0.000085	0.000162
	Calcium (Ca)-Dissolved (mg/L)	350	375	<0.10	373	293
	Chromium (Cr)-Dissolved (mg/L)	<0.0050	<0.010	<0.0010	<0.0050	<0.0050
	Cobalt (Co)-Dissolved (mg/L)	<0.0015	<0.0030	<0.00030	<0.0015	0.0260
	Copper (Cu)-Dissolved (mg/L)	<0.0050	<0.010	<0.0010	<0.0050	<0.0050
	Iron (Fe)-Dissolved (mg/L)	<0.030	<0.030	<0.030	30.4	66.4
	Lead (Pb)-Dissolved (mg/L)	<0.0025	<0.0050	<0.00050	<0.0025	<0.0025
	Lithium (Li)-Dissolved (mg/L)	<0.025	<0.050	<0.0050	<0.025	<0.025
	Magnesium (Mg)-Dissolved (mg/L)	235	240	<0.10	200	26.1
	Manganese (Mn)-Dissolved (mg/L)	0.0096	0.427	<0.00030	1.97	6.73
	Mercury (Hg)-Dissolved (mg/L)	<0.000020	<0.000020	<0.000020	<0.000020	<0.000020
	Molybdenum (Mo)-Dissolved (mg/L)	< 0.0050	<0.010	< 0.0010	<0.0050	< 0.0050
	Nickel (Ni)-Dissolved (mg/L)	<0.0050	<0.010	< 0.0010	<0.0050	<0.0050
	Phosphorus (P)-Dissolved (mg/L)	<0.30	<0.30	<0.30	0.41	<0.30
	Potassium (K)-Dissolved (mg/L)	7.5	7.1	<2.0	4.9	9.4

L814853 CONTD PAGE 4 of 11

ALS LABORATORY GROUP ANALYTICAL REPORT

16-SEP-09 16:00

	Sample ID Description Sampled Date	L814853-11	L814853-12	L814853-13	L814853-14
	Sampled Date Sampled Time	01-SEP-09	01-SEP-09	01-SEP-09	01-SEP-09
	Client ID	MW09-22	MW09-23	MW09-24	MW09-26
Grouping	Analyte				
WATER					
Physical Tests	Conductivity (uS/cm)	543	1890	378	666
-	Hardness (as CaCO3) (mg/L)	244	1030	197	355
	рН (рН)	6.92	7.30	7.69	7.85
	Total Dissolved Solids (mg/L)	378	1610	255	434
Anions and Nutrients	Acidity (as CaCO3) (mg/L)	27.2	24.4	5.9	9.1
	Alkalinity, Total (as CaCO3) (mg/L)	122	247	107	317
	Ammonia as N (mg/L)	4.37	8.73	<0.020	2.43
	Bromide (Br) (mg/L)	<0.50	<0.50	<0.050	0.050
	Chloride (Cl) (mg/L)	<5.0	<5.0	<0.50	4.96
	Fluoride (F) (mg/L)	<0.20	<0.20	0.032	0.711
	Nitrate (as N) (mg/L)	<0.050	<0.050	2.52	0.544
	Nitrite (as N) (mg/L)	<0.010	<0.010	0.0016	0.0271
	Sulfate (SO4) (mg/L)	156	916	81.7	51.4
Cyanides	Cyanide, Weak Acid Diss (mg/L)	<0.0050	0.0190	<0.0050	<0.0050
	Cyanide, Total (mg/L)	0.0102	0.0324	0.0119	0.0074
	Cyanate (CNO) (mg/L)	1.14	2.34	<0.50	<0.50
	Thiocyanate (SCN) (mg/L)	1.20	3.72	<0.50	1.04
Organic / Inorganic Carbon	Total Organic Carbon (mg/L)	13.7	18.8	4.18	26.8
Dissolved Metals	Aluminum (AI)-Dissolved (mg/L)	0.0982	0.037	<0.0050	<0.0050
	Antimony (Sb)-Dissolved (mg/L)	<0.00050	<0.0025	<0.00050	<0.00050
	Arsenic (As)-Dissolved (mg/L)	0.0368	0.0137	0.00102	0.0235
	Barium (Ba)-Dissolved (mg/L)	0.115	0.064	0.056	0.315
	Beryllium (Be)-Dissolved (mg/L)	<0.0010	<0.0050	<0.0010	<0.0010
	Bismuth (Bi)-Dissolved (mg/L)	<0.20	<0.20	<0.20	<0.20
	Boron (B)-Dissolved (mg/L)	<0.10	0.14	<0.10	<0.10
	Cadmium (Cd)-Dissolved (mg/L)	0.000077	0.000126	0.000034	0.000035
	Calcium (Ca)-Dissolved (mg/L)	89.9	332	60.4	65.8
	Chromium (Cr)-Dissolved (mg/L)	<0.0020	<0.0050	<0.0010	<0.0010
	Cobalt (Co)-Dissolved (mg/L)	0.0123	0.0171	0.00063	0.00097
	Copper (Cu)-Dissolved (mg/L)	0.0015	<0.0050	0.0057	<0.0010
	Iron (Fe)-Dissolved (mg/L)	14.6	7.93	<0.030	1.45
	Lead (Pb)-Dissolved (mg/L)	<0.00050	<0.0025	<0.00050	<0.00050
	Lithium (Li)-Dissolved (mg/L)	<0.0050	<0.025	<0.0050	<0.0050
	Magnesium (Mg)-Dissolved (mg/L)	4.84	47.8	11.3	46.4
	Manganese (Mn)-Dissolved (mg/L)	3.20	6.06	0.00267	1.38
	Mercury (Hg)-Dissolved (mg/L)	<0.000020	<0.000020	<0.000020	<0.000020
	Molybdenum (Mo)-Dissolved (mg/L)	<0.0010	<0.0050	<0.0010	0.0078
	Nickel (Ni)-Dissolved (mg/L)	0.0092	<0.0050	<0.0010	0.0028
	Phosphorus (P)-Dissolved (mg/L)	<0.30	<0.30	<0.30	<0.30
	Potassium (K)-Dissolved (mg/L)	4.4	14.4	<2.0	4.3

L814853 CONTD.... PAGE 5 of 11

ALS LABORATORY GROUP ANALYTICAL REPORT

PAGE 5 of 11 16-SEP-09 16:00

	Sample ID Description Sampled Date	L814853-1	L814853-2	L814853-3	L814853-4	L814853-5
	Sampled Time	01-SEP-09	01-SEP-09	02-SEP-09	01-SEP-09	01-SEP-09
	Client ID	GLL07-03	MW09-08	MW09-11	MW09-15	MW09-16
Grouping	Analyte					
WATER						
Dissolved Metals	Selenium (Se)-Dissolved (mg/L)	<0.010	<0.0010	<0.0010	<0.0020	<0.0050
	Silicon (Si)-Dissolved (mg/L)	4.92	8.72	6.03	6.32	5.28
	Silver (Ag)-Dissolved (mg/L)	<0.00020	<0.000020	<0.000020	<0.000040	<0.00010
	Sodium (Na)-Dissolved (mg/L)	8.0	3.8	20.1	6.9	9.0
	Strontium (Sr)-Dissolved (mg/L)	0.354	0.140	0.637	1.32	0.596
	Thallium (TI)-Dissolved (mg/L)	<0.0020	<0.00020	<0.00020	<0.00040	<0.0010
	Tin (Sn)-Dissolved (mg/L)	<0.0050	<0.00050	<0.00050	<0.0010	<0.0025
	Titanium (Ti)-Dissolved (mg/L)	0.014	<0.010	<0.010	0.011	0.013
	Uranium (U)-Dissolved (mg/L)	<0.0020	<0.00020	0.00346	0.0128	0.0029
	Vanadium (V)-Dissolved (mg/L)	<0.010	0.0048	0.0018	<0.0020	<0.0050
	Zinc (Zn)-Dissolved (mg/L)	23.2	0.0117	<0.0050	0.233	3.66

L814853 CONTD PAGE 6 of 11

ALS LABORATORY GROUP ANALYTICAL REPORT

16-SEP-09 16:00

	Sample ID Description Sampled Date	L814853-6 01-SEP-09	L814853-7 01-SEP-09	L814853-8 01-SEP-09	L814853-9 01-SEP-09	L814853-10 01-SEP-09
	Sampled Time Client ID	MW09-17	MW09-18	TRIP BLANK	MW09-19	MW09-21
Grouping	Analyte					
WATER	-					
Dissolved Metals	Selenium (Se)-Dissolved (mg/L)	<0.0050	<0.010	<0.0010	<0.0050	<0.0050
	Silicon (Si)-Dissolved (mg/L)	4.75	4.85	<0.050	7.60	5.69
	Silver (Ag)-Dissolved (mg/L)	<0.00010	<0.00020	<0.000020	<0.00010	<0.00010
	Sodium (Na)-Dissolved (mg/L)	11.0	10.5	<2.0	14.0	73.1
	Strontium (Sr)-Dissolved (mg/L)	0.990	1.01	<0.0050	1.01	1.00
	Thallium (TI)-Dissolved (mg/L)	<0.0010	<0.0020	<0.00020	<0.0010	<0.0010
	Tin (Sn)-Dissolved (mg/L)	<0.0025	<0.0050	<0.00050	<0.0025	<0.0025
	Titanium (Ti)-Dissolved (mg/L)	0.014	0.014	<0.010	0.015	0.019
	Uranium (U)-Dissolved (mg/L)	0.0070	0.0075	<0.00020	<0.0010	0.0010
	Vanadium (V)-Dissolved (mg/L)	<0.0050	<0.010	<0.0010	<0.0050	0.0064
	Zinc (Zn)-Dissolved (mg/L)	<0.0050	<0.0050	<0.0050	<0.0050	0.0076

L814853 CONTD.... PAGE 7 of 11 16-SEP-09 16:00

ALS LABORATORY GROUP ANALYTICAL REPORT

			1	1		
	Sample ID Description	L814853-11	L814853-12	L814853-13	L814853-14	
	Sampled Date Sampled Time	01-SEP-09	01-SEP-09	01-SEP-09	01-SEP-09	
	Client ID	MW09-22	MW09-23	MW09-24	MW09-26	
Grouping	Analyte					
WATER						
Dissolved Metals	Selenium (Se)-Dissolved (mg/L)	<0.0010	<0.0050	<0.0010	<0.0010	
	Silicon (Si)-Dissolved (mg/L)	5.51	5.69	5.62	6.06	
	Silver (Ag)-Dissolved (mg/L)	<0.000020	<0.00010	<0.000020	<0.000020	
	Sodium (Na)-Dissolved (mg/L)	15.4	56.9	8.7	20.3	
	Strontium (Sr)-Dissolved (mg/L)	0.286	0.698	0.295	0.645	
	Thallium (TI)-Dissolved (mg/L)	<0.00020	<0.0010	<0.00020	<0.00020	
	Tin (Sn)-Dissolved (mg/L)	<0.00050	<0.0025	< 0.00050	<0.00050	
	Titanium (Ti)-Dissolved (mg/L)	0.011	0.016	<0.010	<0.010	
	Uranium (U)-Dissolved (mg/L) Vanadium (V)-Dissolved (mg/L)	0.00071	0.0015 <0.0050	0.00058 <0.0010	0.00341 0.0017	
	Zinc (Zn)-Dissolved (mg/L)	<0.0044	<0.0050	<0.0010	< 0.0050	
		0.0000		<0.0000	<0.0000	

Additional Cor	nments for Sample Li	isted:		
Samplenum	Matrix	Report Remarks	Sample Comments	
Qualifiers for I	ndividual Parameters	Listed:		
Qualifier	Description			
DLM	Detection Limit Adjus	tment For Sample Ma	trix Effects	
Samples with	Qualifiers for Individu	al Parameters as lis	ed above:	
Sample Numbe	r Client Sample ID		Parameters Quali	fier
L814853-2	MW09-08		Nitrate (as N)DLMSulfate (SO4)Bromide (Br)Chloride (Cl)Nitrite (as N)Fluoride (F)	
	d (if applicable):			
ALS Test Code	e Matrix	Test Description	Analytical Metho	d Reference(Based On)
ACY-PCT-VA	Water	Acidity by Automation	: Titration APHA 2310 "Acid	lity"
This analysis is specified endpo		dures adapted from A	PHA Method 2310 "Acidity". Acidity is determined by poten	tiometric titration to a
ACY-PCT-VA	Water	Acidity by Automation	Titration APHA 2310 Acid	ty
This analysis is specified endpo		dures adapted from A	PHA Method 2310 "Acidity". Acidity is determined by poten	tiometric titration to a
ALK-COL-VA	Water	Alkalinity by Colouri	metric (Automated) APHA 310.2	
This analysis is colourimetric me		dures adapted from E	PA Method 310.2 "Alkalinity". Total Alkalinity is determined	using the methyl orange
ALK-PCT-VA	Water	Alkalinity by Auto. T	itration APHA 2320 "Alka	linity"
			PHA Method 2320 "Alkalinity". Total alkalinity is determined alinity are calculated from phenolphthalein alkalinity and tot	
ALK-PCT-VA	Water	Alkalinity by Auto. T	itration APHA 2320 Alka	inity
			PHA Method 2320 "Alkalinity". Total alkalinity is determined alinity are calculated from phenolphthalein alkalinity and tot	
ANIONS-BR-IC-	VA Water	Bromide by Ion Chro	omatography APHA 4110 B.	
			PHA Method 4110 B. "Ion Chromatography with Chemical anic Anions by Ion Chromatography".	Suppression of Eluent
ANIONS-CL-IC-	/A Water	Chloride by Ion Chro	APHA 4110 B.	
			PHA Method 4110 B. "Ion Chromatography with Chemical anic Anions by Ion Chromatography".	Suppression of Eluent
ANIONS-F-IC-VA	Water	Fluoride by Ion Chro	matography APHA 4110 B.	
			PHA Method 4110 B. "Ion Chromatography with Chemical anic Anions by Ion Chromatography".	Suppression of Eluent
ANIONS-NO2-IC		Nitrite by Ion Chrom	atography APHA 4110 B.	

This analysis is carried out using procedures adapted from APHA Method 4110 B. "Ion Chromatography with Chemical Suppression of Eluent Conductivity" and EPA Method 300.0 "Determination of Inorganic Anions by Ion Chromatography". Specifically, the nitrite detection is by UV absorbance and not conductivity.

L814853 CONTD.... PAGE 9 of 11

ALS Test Code	Matrix	Test Description	Analytical Method Reference(Based On)
ANIONS-NO3-IC-VA	Water	Nitrate by Ion Chromatography	APHA 4110 B.
	Method 300.0		Ion Chromatography with Chemical Suppression of Eluent omatography". Specifically, the nitrate detection is by UV
ANIONS-SO4-IC-VA	Water	Sulfate by Ion Chromatography	APHA 4110 B.
This analysis is carried Conductivity" and EPA I	out using pro Method 300.0	cedures adapted from APHA Method 4110 B.	Ion Chromatography with Chemical Suppression of Eluent omatography".
CARBONS-TOC-VA	Water	Total organic carbon by combustion	APHA 5310 "TOTAL ORGANIC CARBON (TOC)
This analysis is carried	out using pro	cedures adapted from APHA Method 5310 "Tot	al Organic Carbon (TOC)".
CARBONS-TOC-VA	Water	Total organic carbon by combustion	APHA 5310 TOTAL ORGANIC CARBON (TOC)
This analysis is carried	out using pro	cedures adapted from APHA Method 5310 "Tot	al Organic Carbon (TOC)".
CN-SCN-VA	Water	Thiocyanate by Colour	APHA 4500-CN "CYANIDE"
weak acid dissociable (NAD) cyanid	e are determined by sample distillation and ana	"Cyanide". Total or strong acid dissociable (SAD) cyanide and lysis using the chloramine-T colourimetric method. Cyanate is a. Thiocyanate is determined by the ferric nitrate colourimetric
CN-SCN-VA	Water	Thiocyanate by Colour	APHA 4500-CN CYANIDE
weak acid dissociable (NAD) cyanid	e are determined by sample distillation and ana	"Cyanide". Total or strong acid dissociable (SAD) cyanide and lysis using the chloramine-T colourimetric method. Cyanate is a. Thiocyanate is determined by the ferric nitrate colourimetric
CN-T-MID-HH-COL-VA	Water	Total Cyanide by HH Distillation	APHA 4500-CN "Cyanide"
		cedures adapted from APHA Method 4500-CN d analysis using the chloramine-T colourimetric	"Cyanide". Total or strong acid dissociable (SAD) cyanide are method.
CN-T-MID-HH-COL-VA	Water	Total Cyanide by HH Distillation	APHA 4500-CN Cyanide
		cedures adapted from APHA Method 4500-CN d analysis using the chloramine-T colourimetric	"Cyanide". Total or strong acid dissociable (SAD) cyanide are method.
CN-WAD-MID-COL-VA	Water	Weak Acid Cyanide by Colorimetric	APHA 4500-CN "Cyanide"
		cedures adapted from APHA Method 4500-CN sing the chloramine-T colourimetric method.	"Cyanide". Weak acid dissociable (WAD) cyanide are determined
CN-WAD-MID-COL-VA	Water	Weak Acid Cyanide by Colorimetric	APHA 4500-CN Cyanide
		cedures adapted from APHA Method 4500-CN sing the chloramine-T colourimetric method.	"Cyanide". Weak acid dissociable (WAD) cyanide are determined
CNO-SIE-VA	Water	Cyanate by SIE	APHA 4500-CN Cyanide
This analysis is carried method using an ammo			"Cyanide". Cyanate is determined by the cyanate hydrolysis
EC-PCT-VA	Water	Conductivity (Automated)	APHA 2510 Auto. Conduc.
This analysis is carried electrode.	out using pro	cedures adapted from APHA Method 2510 "Co	nductivity". Conductivity is determined using a conductivity

L814853 CONTD.... PAGE 10 of 11

ALS Test Code	Matrix	Test Description	Analytical Method Reference(Based On)
HARDNESS-CALC-VA	Water	Hardness	APHA 2340B
Hardness is calculated fr	om Calcium	and Magnesium concentrations, and is expressed as o	alcium carbonate equivalents.
HG-DIS-CCME-CVAFS-		Diss. Mercury in Water by CVAFS (CCME)	EPA 3005A/245.7
States Environmental Pr involves a cold-oxidation	otection Age of the acidi	and with procedures adapted from "Standard Methods for the Exam and with procedures adapted from "Test Methods for E ency (EPA). The procedures may involve preliminary sa fied sample using bromine monochloride prior to reduct orescence spectrophotometry (EPA Method 245.7).	ample treatment by filtration (EPA Method 3005A) and
MET-DIS-CCME-ICP-VA	Water	Diss. Metals in Water by ICPOES (CCME)	EPA SW-846 3005A/6010B
American Public Health A States Environmental Pr	Association, otection Age	ency (EPA). The procedures may involve preliminary sa	ination of Water and Wastewater" published by the valuating Solid Waste" SW-846 published by the United ample treatment by acid digestion, using either hotblock or oupled plasma - optical emission spectrophotometry (EPA
MET-DIS-CCME-MS-VA	Water	Diss. Metals in Water by ICPMS (CCME)	EPA SW-846 3005A/6020A
American Public Health A States Environmental Pr	Association, otection Age		valuating Solid Waste" SW-846 published by the United ample treatment by acid digestion, using either hotblock or
MET-DIS-ICP-VA	Water	Dissolved Metals in Water by ICPOES	EPA SW-846 3005A/6010B
American Public Health	Association, otection Age	ency (EPA). The procedure involves filtration (EPA Met	ination of Water and Wastewater" published by the valuating Solid Waste" SW-846 published by the United hod 3005A) and analysis by inductively coupled plasma -
NH3-SIE-VA	Water	Ammonia by SIE	APHA 4500 D NH3 NITROGEN (AMMONIA)
		uric acid preserved samples, using procedures adapted amonia selective electrode.	I from APHA Method 4500-NH3 "Nitrogen (Ammonia)".
PH-MAN-VA	Water	pH by Manual Meter	APHA 4500-H "pH Value"
This analysis is carried o electrode.	out using pro	cedures adapted from APHA Method 4500-H "pH Value	e". The pH is determined in the laboratory using a pH
PH-MAN-VA	Water	pH by Manual Meter	APHA 4500-H pH Value
This analysis is carried o electrode.	out using pro	ocedures adapted from APHA Method 4500-H "pH Value	". The pH is determined in the laboratory using a pH
PH-PCT-VA	Water	pH by Meter (Automated)	APHA 4500-H "pH Value"
This analysis is carried o electrode	out using pro	ocedures adapted from APHA Method 4500-H "pH Value	". The pH is determined in the laboratory using a pH
PH-PCT-VA	Water	pH by Meter (Automated)	APHA 4500-H pH Value
This analysis is carried of electrode	out using pro	cedures adapted from APHA Method 4500-H "pH Value	". The pH is determined in the laboratory using a pH
TDS-VA	Water	Total Dissolved Solids by Gravimetric	APHA 2540 C - GRAVIMETRIC

ALS Test Code	Matrix	Test Description	Analytical Method Reference(Based On)

This analysis is carried out using procedures adapted from APHA Method 2540 "Solids". Solids are determined gravimetrically. Total Dissolved Solids (TDS) are determined by filtering a sample through a glass fibre filter, TDS is determined by evaporating the filtrate to dryness at 180 degrees celsius.

** Laboratory Methods employed follow in-house procedures, which are generally based on nationally or internationally accepted methodologies. The last two letters of the above ALS Test Code column indicate the laboratory that performed analytical analysis for that test. Refer to the list below:

Laboratory Definition Code	Laboratory Location	Laboratory Definition Code	Laboratory Location
VA	ALS LABORATORY GROUP - VANCOUVER, BC, CANADA		

GLOSSARY OF REPORT TERMS

Surr - A surrogate is an organic compound that is similar to the target analyte(s) in chemical composition and behavior but not normally detected in environmental samples. Prior to sample processing, samples are fortified with one or more surrogate compounds.

The reported surrogate recovery value provides a measure of method efficiency.

mg/kg (units) - unit of concentration based on mass, parts per million

mg/L (units) - unit of concentration based on volume, parts per million

N/A - Result not available. Refer to qualifier code and definition for explanation

Test results reported relate only to the samples as received by the laboratory. UNLESS OTHERWISE STATED, ALL SAMPLES WERE RECEIVED IN ACCEPTABLE CONDITION. Although test results are generated under strict QA/QC protocols, any unsigned test reports, faxes, or emails are considered preliminary.

ALS Laboratory Group has an extensive QA/QC program where all analytical data reported is analyzed using approved referenced procedures followed by checks and reviews by senior managers and quality assurance personnel. However, since the results are obtained from chemical measurements and thus cannot be guaranteed, ALS Laboratory Group assumes no liability for the use or interpretation of the results.

ALS Laboratory Group	Chain of Custody / Analytical Request Form Canada Toll Free: 1 800 668 9878	Request Form 668 9878			0	COC #	* 					Í				
Environmental Division	www.alsqlobal.com	E								Pa	Page	I.	 	, <u>,</u>	N	
Report to:	Report Format / Distribution	on		Sen	Service Requested:	equ	sted	"								
Company: AECOM (GAR200)	Standard Cother			য	Regular Service (Default)	lar S	ervice	00	ault)							
Contact: Ryan Mills	য	Fax		٦	Rush Service (2-3 Days)	Ser	108 ()	μ	ays)		1					
	Email 1: Ryan.Mills@aecom.com	om.com		٦	Priority Service (1 Day or ASAP)	ty Se	Nice	(1 D	y or	ASA	P					
		gne@aecom.com		Ť	Emergency Service (<1 Day / Wkend) - Contact ALS	Genc	y Ser	vice	4)ay /	Wke	nd)	° S	onta	ct AL	S
Phone: Fax:								Anal	Analysis Request	Req	uest	~				
Invoice To: 🔽 Same as Report		Indicate Bottles:	Indicate Bottles: Filtered / Preserved (F/P) ${\rightarrow}{\rightarrow}{\rightarrow}$	- 10				-	ס ס	5	9	-	Ц			
Company:	Client / Project Information:	n:								_	-	_				
Contact:	Job #: 112359	9		/A								_	_			
Address:	PO/AFE:			:P-V				_		_					d?	_
Sample	Legal Site Description:	Mt Nansen Mine, YT	ΥT	+IC	CN										nate	
Phone: Fax:	Quote #:			ME	6, S						_				mir	
Lab Work Order # L814853	ALS NatashaMM	Sampler M	HAL/JE	IS-CC	, TDS		ty-T	Scan		N			nia	lous?	Conta	r of C
Sample Sample Identification	Date	Time	Sample Type	T-D	, EC	dity		_	-CN	<u>D-C</u>		_	mor	zarc	hly	
# (This description will appear on the report)	dd-mmm-yy	hh:mm	(Select from drop-down list)	-	PH	Aci						<u></u>	Am	Ha	Hig	
GLL07-03	01-Sep-09		Water	×	×	×	×	×	+	+	$\overline{}$	×	×			7
80-60MW	01-Sep-09		Water	×	×	×	×	×	×	Ŷ		×	×			5
MW09-11	02-Sep-09		Water	×	×	×	×	××	^ ×	^ ×	-	×	×			٤
MW09-15	01-Sep-09		Water	×	×	×	×	×	-			×	×			7
MW09-16	01-Sep-09		Water	×	×	×	×	×	××	^ ×		×	×			5
MW09-17	01-Sep-09		Water	×	×	×	×	×	××	^ ×		×	×			5
MW09-18	01-Sep-09		Water	×	×	×	×	×	×	×	-	×	×			5
				+			+	+		+						
Guidelines / Regulations			Special Instruction	ctions / Hazardous Details	zardo	ŬS D	etail	Ĩ								
	2															
Failure to complete all pertions	ste all pertions of this form ma	may delay analysis. Please fill in this with the Terms and Conditions as spe	of this form may delay analysis. Please fill in this form LEGIBLY.	s form LEGIBLY. cified on the adjacent worksheet	IBLY.	acen.	wor	kshe	2							
Relinquished /////Date & Time:		Date & Time:	A 12				Sa	mple Condition	onditio		(lab use only)	only)			I	
7 11 T		/)	1	Tomporatura	raturo		~	N	1			1		1	

inquished	Marley	Relinquished	M M			Guideli				MW09-26	MW09-24	MW09-23	MW09-22	MW09-21		TRIP BLANK	Sample # (This des	Lab Work Order # (lab use only)		Sample	Address:	Contact:	Company:	Invoice To: 🐱 Same as Report	Phone: F		Address: 275 - 3001 WAYBURNE DR, Burnaby BC	Contact: Ryan Mills	Company: AECOM (GAR200)	Report to:	ALS Laboratory Group	
- 1	400/00/00	Date & Time:	the use of this form the user acknowledges and agr	Failure to complete all bortions		Guidelines / Regulations										C ア	Sample Identification (This description will appear on the report)	いためのないないではない	Fax:					'n	Fax:		E DR, Burnaby BC					
Received	By:	Received	knowledges a	e all bortions	D													ALS Contact:	Quote #:	Legal Site [PO/AFE:	Job #:	Client / Pro			Email 2:	Email 1: F	F PDF	Standard	Report For	Canada] <u>w</u>	
1	1		and agrees with th	orthis form hav delay analysis. Ple					-	02-Sep-09	01-Sep-09	01-Sep-09	02-Sep-09	02-Sep-09	01-Sep-09	03-50709	Date dd-mmm-yy	NatashaMM	1	Legal Site Description: N		112359	Client / Project Information:			Marc-Andre.Lavigne@aecom.com	Ryan.Mills@aecom.com	Excel	d 「Other	Report Format / Distribution	Canada Toll Free: 1 800 668 9878 www.alsqlobal.com	
Date & Time:	Date & Time.	Date & Time:	es with the Terms and Cond	delav analvsis													Time hh:mm	(Initials):		Mt Nansen Mine,			-	Indicate Bottles: Filte		e @ aecom.com	moo.	Fax			8 9878	
1	019	a all	Conditions as specified on the adjacent worksheet.	. Please fill in this form LEGIBLY.		Special Instructions / Hazardous Details				Water	Water	Water	Water	Water	Water	WATER	Sample Type (Select from drop-down list)	MAL JE		9, YT				s; Filtered / Preserved (F/P)								
	T		d on th			ns/Ha	-	+	-	×	×	×	×	×	×	X	C MET-	DIS-C	CME	E+IC	P-V	/A				-	٦	7	2	Sen		
K	Temperature		e adja	BLY		Tardo				×	×	×	X	×	×	×	PH, E	C, TD	s, s	CN						Emer	Priori	Rush	Regu	Service Requested:		
/	alura		acent				\neg	-	+	-+		×	×	×	×	-	Acidity			-			_	_		Emergency Service (<1 Day / Wkend) -	Priority Service (1 Day or ASAP)	Rush Service (2-3 Days)	Regular Service (Default)	eque		
~ 4	2	San	worl			Phile	\neg	-+	+	+	×	×	XX	XX	XX	x	Alkalin									y Sen	Nice	ice (2	arvice	sted:	*	F
Condition? Y	and and	Tiple Co	kshee			ŀ	-	-	+	+	× ×	× ×	XX	××	××		Anion						-	7.	Analy	vice ((1 Da	1-3 Da) (Def			
A 240	DA	undition	et.			ŀ	+		+	-+	-	$\frac{2}{2}$	^ ×	×	^ ×	XX	Tot-Cl WAD-							5	ysis I	^1 D	ly or /	ays)	ault)			
No.	Samples Brief in Cont	1 (lab u				ŀ	+	-†	+	-+	-+	×	×	×	×	-	CNO		-		-		-	7	Analysis Request	ay / W	ASAP				Page	
(if no	Cont I	ise ont				I				×	×	×	×	×	×		TOC							2	est	Vkenc	3				ē	
ľ	11	\$								×	×	×	×	×	×	X	Ammo	nia								- 0					N	
100						1											Hazar	dous?								Contact ALS					9	
						- H	-+	-+-	-+-	-+	-+									_			_	-	1	21)				1 1	

ALS Laboratory Group ANALYTICAL CHEMISTRY & TESTING SERVICES

Environmental Division

LORAX ENVIRONME	ENTAL SERVICES	Certifica	ate of Analysis	Report Date:	16-SEP-09 13:32 (MT)
ATTN: SKYA FAWO	ETT			Version:	
2289 BURRARD STR	REET				
VANCOUVER BC V	′6J 3H9				
Lab Work Order #:	L815006			Date Receive	ed: 04-SEP-09
Project P.O. #: Job Reference: Legal Site Desc:	NOT SUBMITTED 907-2 MT.NANSEN				
CofC Numbers:	08-038864, 08-038865				
Other Information: Comments:					
		ndui			
	Andre Lang Account Ma	glais	0		

THIS REPORT SHALL NOT BE REPRODUCED EXCEPT IN FULL WITHOUT THE WRITTEN AUTHORITY OF THE LABORATORY. ALL SAMPLES WILL BE DISPOSED OF AFTER 30 DAYS FOLLOWING ANALYSIS. PLEASE CONTACT THE LAB IF YOU REQUIRE ADDITIONAL SAMPLE STORAGE TIME.

ALS Canada Ltd. Part of the ALS Laboratory Group 1988 Triumph Street, Vancouver, BC V5L 1K5 Phone: +1 604 253 4188 Fax: +1 604 253 6700 www.alsglobal.com A Campbell Brothers Limited Company

L815006 CONTD.... PAGE 2 of 10

ALS LABORATORY GROUP ANALYTICAL REPORT

	Sample ID Description	L815006-1	L815006-2	L815006-3	L815006-4	L815006-5
	Sampled Date Sampled Time	02-SEP-09	02-SEP-09	02-SEP-09	02-SEP-09	03-SEP-09
	Client ID	MP09-09	MP09-10	MP09-11	MP09-12	MW09-1
Grouping	Analyte					
WATER						
Physical Tests	Hardness (as CaCO3) (mg/L)	382	196	607	668	943
Anions and	Ammonia as N (mg/L)	8.50	2.65	1.60	1.98	13.5
Nutrients		0.00	2.00			1010
	Bromide (Br) (mg/L)	<0.50	<0.50	<0.50	<0.50	<5.0
	Chloride (Cl) (mg/L)	6.5	<5.0	8.5	6.3	<50
	Fluoride (F) (mg/L)	0.64	1.67	0.218	0.20	0.076
	Nitrate (as N) (mg/L)	<0.050	<0.050	<0.050	<0.050	<0.50
	Nitrite (as N) (mg/L)	<0.010	<0.010	<0.010	<0.010	<0.10
	Sulfate (SO4) (mg/L)	179	237	<5.0	59.9	531
Cyanides	Cyanide, Weak Acid Diss (mg/L)	0.0335	0.964	0.0099	<0.0050	0.0209
	Cyanide, Total (mg/L)	0.125	2.96	0.0747	0.0387	0.0525
	Cyanate (CNO) (mg/L)	<0.60	0.54	0.54	<0.50	5.1
	Thiocyanate (SCN) (mg/L)	1.96	3.20	4.46	2.89	27.1
Organic / Inorganic Carbon	Total Organic Carbon (mg/L)	35.4	48.5	142	55.9	66.8
Dissolved Metals	Aluminum (AI)-Dissolved (mg/L)	0.0023	<0.010	0.0244	0.0052	0.0812
	Antimony (Sb)-Dissolved (mg/L)	0.109	0.178	0.00098	0.0707	0.00404
	Arsenic (As)-Dissolved (mg/L)	5.73	24.2	1.33	9.27	0.215
	Barium (Ba)-Dissolved (mg/L)	0.0130	0.00361	0.158	0.0470	0.163
	Beryllium (Be)-Dissolved (mg/L)	<0.0010	<0.0050	<0.0010	<0.0025	<0.0025
	Bismuth (Bi)-Dissolved (mg/L)	<0.0010	<0.0050	<0.0010	<0.0025	<0.0025
	Boron (B)-Dissolved (mg/L)	<0.020	<0.10	0.027	0.114	0.051
	Cadmium (Cd)-Dissolved (mg/L)	0.000166	0.00089	0.000229	0.000546	<0.000085
	Calcium (Ca)-Dissolved (mg/L)	115	76.0	129	185	293
	Chromium (Cr)-Dissolved (mg/L)	<0.0010	<0.0050	<0.0070	<0.0025	<0.0070
	Cobalt (Co)-Dissolved (mg/L)	0.00954	0.0896	0.00276	0.00208	0.0110
	Copper (Cu)-Dissolved (mg/L)	<0.015	0.725	0.00075	0.00102	<0.00050
	Iron (Fe)-Dissolved (mg/L)	0.160	0.496	8.10	1.03	66.4
	Lead (Pb)-Dissolved (mg/L)	0.00077	0.00311	0.00023	0.00404	0.00044
	Lithium (Li)-Dissolved (mg/L)	<0.010	<0.050	<0.010	<0.025	<0.025
	Magnesium (Mg)-Dissolved (mg/L)	23.0	1.49	69.0	50.1	51.7
	Manganese (Mn)-Dissolved (mg/L)	0.679	0.260	2.03	3.30	6.05
	Molybdenum (Mo)-Dissolved (mg/L)	0.0151	0.0123	0.0246	0.0235	0.00121
	Nickel (Ni)-Dissolved (mg/L)	0.0084	0.0367	0.0160	0.0133	0.0033
	Phosphorus (P)-Dissolved (mg/L)	0.68	0.54	0.41	<0.30	< 0.30
	Potassium (K)-Dissolved (mg/L)	32.0	12.6	2.5	6.6	9.0
	Selenium (Se)-Dissolved (mg/L)	0.00060	0.00259	0.00111	0.00065	<0.00050
	Silicon (Si)-Dissolved (mg/L)	22.7	15.9	12.0	16.7	6.65
	Silver (Ag)-Dissolved (mg/L)	0.000079	0.0285	0.000068	<0.000050	< 0.000050
	Solium (Na)-Dissolved (mg/L)	36.8	106	39.1	<0.000050	<0.000050
	Strontium (Sr)-Dissolved (mg/L)	0.731	0.233	0.582	0.633	1.03
						<0.00050
	Thallium (TI)-Dissolved (mg/L)	<0.00020	<0.0010	<0.00020	<0.00050	

L815006 CONTD.... PAGE 3 of 10

ALS LABORATORY GROUP ANALYTICAL REPORT

	Sample ID Description	L815006-6	L815006-7	L815006-8	L815006-9	L815006-10
	Sampled Date Sampled Time	03-SEP-09	03-SEP-09	03-SEP-09	03-SEP-09	03-SEP-09
	Client ID	MW09-2	MW09-3	MW09-4	MW09-6	MW09-23
Grouping	Analyte					
WATER						
Physical Tests	Hardness (as CaCO3) (mg/L)	1440	1510	1480	1550	1070
Anions and	Ammonia as N (mg/L)	14.0	10.7	14.7	1.96	9.27
Nutrients						
	Bromide (Br) (mg/L)	<2.5	<1.0	<1.0	<1.0	<1.0
	Chloride (Cl) (mg/L)	<25	<10	<10	<10	<10
	Fluoride (F) (mg/L)	0.729	0.56	0.68	<0.40	<0.40
	Nitrate (as N) (mg/L)	<0.25	7.15	<0.10	<0.10	<0.10
	Nitrite (as N) (mg/L)	<0.050	1.14	<0.020	<0.020	<0.020
	Sulfate (SO4) (mg/L)	1690	1570	1610	1450	976
Cyanides	Cyanide, Weak Acid Diss (mg/L)	0.0281	0.0107	0.0239	<0.0050	0.0583
	Cyanide, Total (mg/L)	0.361	0.298	0.0425	<0.0050	0.0729
	Cyanate (CNO) (mg/L)	4.7	1.74	5.9	<0.50	3.0
	Thiocyanate (SCN) (mg/L)	3.11	1.10	1.21	0.71	5.86
Organic / norganic Carbon	Total Organic Carbon (mg/L)	6.23	8.80	5.16	6.05	18.1
Dissolved Metals	Aluminum (Al)-Dissolved (mg/L)	<0.010	<0.010	<0.010	<0.010	0.0390
	Antimony (Sb)-Dissolved (mg/L)	0.0068	0.439	0.484	0.591	<0.00050
	Arsenic (As)-Dissolved (mg/L)	15.3	3.29	4.06	0.868	0.00912
	Barium (Ba)-Dissolved (mg/L)	0.0138	0.0523	0.00834	0.00564	0.0683
	Beryllium (Be)-Dissolved (mg/L)	<0.0050	<0.0050	<0.0050	<0.0050	<0.0025
	Bismuth (Bi)-Dissolved (mg/L)	<0.0050	<0.0050	<0.0050	<0.0050	<0.0025
	Boron (B)-Dissolved (mg/L)	<0.10	0.28	0.23	0.36	0.152
	Cadmium (Cd)-Dissolved (mg/L)	0.00019	0.00018	<0.00017	0.00827	0.000132
	Calcium (Ca)-Dissolved (mg/L)	488	493	489	548	353
	Chromium (Cr)-Dissolved (mg/L)	<0.0050	<0.0050	<0.0050	<0.0050	<0.0025
	Cobalt (Co)-Dissolved (mg/L)	0.0122	0.0091	0.0051	0.0038	0.0170
	Copper (Cu)-Dissolved (mg/L)	<0.0010	0.0018	<0.0010	0.0045	<0.00050
	Iron (Fe)-Dissolved (mg/L)	9.46	0.126	<0.030	<0.030	5.55
	Lead (Pb)-Dissolved (mg/L)	<0.00050	<0.00050	<0.00050	0.00087	<0.00025
	Lithium (Li)-Dissolved (mg/L)	<0.050	<0.050	<0.050	<0.050	<0.025
	Magnesium (Mg)-Dissolved (mg/L)	53.2	69.0	62.7	44.0	47.2
	Manganese (Mn)-Dissolved (mg/L)	23.7	0.761	3.32	14.0	6.88
	Molybdenum (Mo)-Dissolved (mg/L)	0.00974	0.0128	0.0105	0.00899	0.00252
	Nickel (Ni)-Dissolved (mg/L)	<0.0050	<0.0050	<0.0050	0.0059	<0.0025
	Phosphorus (P)-Dissolved (mg/L)	<0.30	<0.30	<0.30	<0.30	<0.30
	Potassium (K)-Dissolved (mg/L)	51.8	31.0	44.0	11.4	15.6
	Selenium (Se)-Dissolved (mg/L)	<0.00050	<0.00050	<0.00050	<0.00050	<0.00050
	Silicon (Si)-Dissolved (mg/L)	5.36	5.29	9.61	7.43	5.33
	Silver (Ag)-Dissolved (mg/L)	0.00014	0.00012	<0.00010	<0.00010	0.00128
	Sodium (Na)-Dissolved (mg/L)	123	72.7	55.9	28.4	80.9
	Strontium (Sr)-Dissolved (mg/L)	1.08	1.18	1.14	1.02	0.752
	Thallium (TI)-Dissolved (mg/L)	<0.0010	<0.0010	<0.0010	<0.0010	<0.00050

L815006 CONTD PAGE 4 of 10

ALS LABORATORY GROUP ANALYTICAL REPORT

	Sample ID Description	L815006-11	L815006-12	L815006-13	
	Sampled Date Sampled Time	03-SEP-09	03-SEP-09	03-SEP-09	
	Client ID	MP09-5	MW09-200	TS	
Grouping	Analyte				
WATER					
Physical Tests	Hardness (as CaCO3) (mg/L)	693	1470	1760	
Anions and	Ammonia as N (mg/L)	8.06	15.4	0.0197	
Nutrients		0.00	10.4	0.0107	
	Bromide (Br) (mg/L)	<0.50	<1.0	<1.0	
	Chloride (Cl) (mg/L)	6.6	<10	<10	
	Fluoride (F) (mg/L)	<0.20	0.64	0.121	
	Nitrate (as N) (mg/L)	5.70	<0.10	0.31	
	Nitrite (as N) (mg/L)	0.119	<0.020	<0.020	
	Sulfate (SO4) (mg/L)	530	1750	1750	
Cyanides	Cyanide, Weak Acid Diss (mg/L)	0.0171	0.128		
	Cyanide, Total (mg/L)	0.0219	0.857		
	Cyanate (CNO) (mg/L)	3.42	<1.8		
	Thiocyanate (SCN) (mg/L)	1.62	2.67	0.54	
Organic / Inorganic Carbon	Total Organic Carbon (mg/L)	24.3	6.76		
Dissolved Metals	Aluminum (AI)-Dissolved (mg/L)	0.0198	<0.010	<0.010	
	Antimony (Sb)-Dissolved (mg/L)	<0.00050	0.0045	0.0500	
	Arsenic (As)-Dissolved (mg/L)	0.00355	13.5	0.0026	
	Barium (Ba)-Dissolved (mg/L)	0.0440	0.0142	0.0513	
	Beryllium (Be)-Dissolved (mg/L)	<0.0025	<0.0050	<0.0050	
	Bismuth (Bi)-Dissolved (mg/L)	<0.0025	<0.0050	<0.0050	
	Boron (B)-Dissolved (mg/L)	0.071	<0.10	<0.10	
	Cadmium (Cd)-Dissolved (mg/L)	0.00239	<0.00017	0.0114	
	Calcium (Ca)-Dissolved (mg/L)	232	504	522	
	Chromium (Cr)-Dissolved (mg/L)	<0.0025	<0.0050	<0.0050	
	Cobalt (Co)-Dissolved (mg/L)	0.0211	0.0117	0.0296	
	Copper (Cu)-Dissolved (mg/L)	0.0324	<0.0010	<0.0013	
	Iron (Fe)-Dissolved (mg/L)	0.346	8.12	<0.030	
	Lead (Pb)-Dissolved (mg/L)	<0.00025	<0.00050	<0.00050	
	Lithium (Li)-Dissolved (mg/L)	<0.025	<0.050	<0.050	
	Magnesium (Mg)-Dissolved (mg/L)	28.0	50.6	112	
	Manganese (Mn)-Dissolved (mg/L)	9.04	20.0	5.62	
	Molybdenum (Mo)-Dissolved (mg/L)	0.00034	0.0108	0.00053	
	Nickel (Ni)-Dissolved (mg/L)	0.0097	<0.0050	0.0792	
	Phosphorus (P)-Dissolved (mg/L)	<0.30	<0.30	<0.30	
	Potassium (K)-Dissolved (mg/L)	7.4	49.6	8.5	
	Selenium (Se)-Dissolved (mg/L)	<0.00050	<0.00050	<0.00050	
	Silicon (Si)-Dissolved (mg/L)	5.07	4.88	6.26	
	Silver (Ag)-Dissolved (mg/L)	<0.000050	<0.00010	<0.00010	
	Sodium (Na)-Dissolved (mg/L)	79.0	158	6.4	
	Strontium (Sr)-Dissolved (mg/L)	0.679	1.03	1.24	
	Thallium (TI)-Dissolved (mg/L)	< 0.00050	<0.0010	<0.0010	

L815006 CONTD.... PAGE 5 of 10

ALS LABORATORY GROUP ANALYTICAL REPORT

	Sample ID Description	L815006-1	L815006-2	L815006-3	L815006-4	L815006-5
	Sampled Date Sampled Time	02-SEP-09	02-SEP-09	02-SEP-09	02-SEP-09	03-SEP-09
	Client ID	MP09-09	MP09-10	MP09-11	MP09-12	MW09-1
Grouping	Analyte					
WATER						
Dissolved Metals	Tin (Sn)-Dissolved (mg/L)	<0.00020	<0.0010	<0.00020	<0.00050	<0.00050
	Titanium (Ti)-Dissolved (mg/L)	<0.010	<0.010	<0.010	<0.010	<0.010
	Uranium (U)-Dissolved (mg/L)	0.00337	0.00077	0.000211	0.00384	0.00120
	Vanadium (V)-Dissolved (mg/L)	<0.0020	<0.010	0.0507	<0.0050	0.0125
	Zinc (Zn)-Dissolved (mg/L)	0.0044	0.033	0.0048	0.0380	0.0094

L815006 CONTD PAGE 6 of 10

ALS LABORATORY GROUP ANALYTICAL REPORT

	Sample ID Description Sampled Date	L815006-6 03-SEP-09	L815006-7 03-SEP-09	L815006-8 03-SEP-09	L815006-9 03-SEP-09	L815006-10 03-SEP-09
	Sampled Time Client ID	MW09-2	MW09-3	MW09-4	MW09-6	MW09-23
Grouping	Analyte					
WATER						
Dissolved Metals	Tin (Sn)-Dissolved (mg/L)	<0.0010	<0.0010	<0.0010	<0.0010	<0.00050
	Titanium (Ti)-Dissolved (mg/L)	<0.010	<0.010	<0.010	<0.010	<0.010
	Uranium (U)-Dissolved (mg/L)	0.00048	0.00513	0.00015	0.00309	0.00157
	Vanadium (V)-Dissolved (mg/L)	<0.010	<0.010	<0.010	<0.010	<0.0050
	Zinc (Zn)-Dissolved (mg/L)	0.462	<0.010	<0.010	0.121	<0.0050

L815006 CONTD.... PAGE 7 of 10 16-SEP-09 13:35

ALS LABORATORY GROUP ANALYTICAL REPORT

	Sample ID Description Sampled Date Sampled Time Client ID	L815006-11 03-SEP-09 MP09-5	L815006-12 03-SEP-09 MW09-200	L815006-13 03-SEP-09 TS	
Grouping	Analyte				
	Analyte				
Grouping WATER Dissolved Metals	Analyte Tin (Sn)-Dissolved (mg/L) Uranium (U)-Dissolved (mg/L) Vanadium (V)-Dissolved (mg/L) Zinc (Zn)-Dissolved (mg/L)	<0.00050 <0.010 0.00133 <0.0050 0.0354	<0.0010 <0.010 0.00042 <0.010 0.244	<0.0010 <0.010 0.00019 <0.010 0.952	

Additional Comments for Sample Listed:				
Samplenum	Matrix	Report Remarks	Sample Comments	
Methods Listed (if appl	licable):			
ALS Test Code	Matrix	Test Description	Analytical Method Reference(Based On)	
ANIONS-BR-IC-VA	Water	Bromide by Ion Chromatography	APHA 4110 B.	
		dures adapted from APHA Method 4110 Determination of Inorganic Anions by Ion	B. "Ion Chromatography with Chemical Suppression of Eluent Chromatography".	
ANIONS-CL-IC-VA	Water	Chloride by Ion Chromatography	APHA 4110 B.	
		dures adapted from APHA Method 4110 Determination of Inorganic Anions by Ion	B. "Ion Chromatography with Chemical Suppression of Eluent Chromatography".	
ANIONS-F-IC-VA	Water	Fluoride by Ion Chromatography	APHA 4110 B.	
		dures adapted from APHA Method 4110 Determination of Inorganic Anions by Ion	B. "Ion Chromatography with Chemical Suppression of Eluent Chromatography".	
ANIONS-NO2-IC-VA	Water	Nitrite by Ion Chromatography	APHA 4110 B.	
This analysis is carried ou Conductivity" and EPA M absorbance and not cond	ethod 300.0 "	dures adapted from APHA Method 4110 Determination of Inorganic Anions by Ion	B. "Ion Chromatography with Chemical Suppression of Eluent Chromatography". Specifically, the nitrite detection is by UV	
ANIONS-NO3-IC-VA	Water	Nitrate by Ion Chromatography	APHA 4110 B.	
	ethod 300.0 "		B. "Ion Chromatography with Chemical Suppression of Eluent Chromatography". Specifically, the nitrate detection is by UV	
ANIONS-SO4-IC-VA	Water	Sulfate by Ion Chromatography	APHA 4110 B.	
		dures adapted from APHA Method 4110 Determination of Inorganic Anions by Ion	B. "Ion Chromatography with Chemical Suppression of Eluent Chromatography".	
CARBONS-TOC-VA	Water	Total organic carbon by combustion	APHA 5310 "TOTAL ORGANIC CARBON (TOC)"	
This analysis is carried ou	ut using proce	dures adapted from APHA Method 5310	"Total Organic Carbon (TOC)".	
CARBONS-TOC-VA	Water	Total organic carbon by combustion	APHA 5310 TOTAL ORGANIC CARBON (TOC)	
This analysis is carried ou	ut using proce	dures adapted from APHA Method 5310	"Total Organic Carbon (TOC)".	
CN-SCN-VA	Water	Thiocyanate by Colour	APHA 4500-CN "CYANIDE"	
weak acid dissociable (W	AD) cyanide	are determined by sample distillation and	CN "Cyanide". Total or strong acid dissociable (SAD) cyanide and analysis using the chloramine-T colourimetric method. Cyanate is ode. Thiocyanate is determined by the ferric nitrate colourimetric	
CN-SCN-VA	Water	Thiocyanate by Colour	APHA 4500-CN CYANIDE	
weak acid dissociable (W	AD) cyanide	are determined by sample distillation and	CN "Cyanide". Total or strong acid dissociable (SAD) cyanide and analysis using the chloramine-T colourimetric method. Cyanate is ode. Thiocyanate is determined by the ferric nitrate colourimetric	
CN-T-L-MAC-HH-COL-VA	A Water	Total Cyanide- Low Level by HH Distill	at APHA 4500-CN CYANIDE	
		dures adapted from APHA Method 4500- analysis using the chloramine-T colourime	CN "Cyanide". Total or strong acid dissociable (SAD) cyanide are tric method.	

L815006 CONTD.... PAGE 9 of 10

Reference Information

ALS Test Code	Matrix	Test Description	Analytical Method Reference(Based On)
CN-T-MID-HH-COL-VA	Water	Total Cyanide by HH Distillation	APHA 4500-CN "Cyanide"
		edures adapted from APHA Method 4500-CN "Cy analysis using the chloramine-T colourimetric met	anide". Total or strong acid dissociable (SAD) cyanide are hod.
CN-T-MID-HH-COL-VA	Water	Total Cyanide by HH Distillation	APHA 4500-CN Cyanide
		edures adapted from APHA Method 4500-CN "Cy analysis using the chloramine-T colourimetric met	anide". Total or strong acid dissociable (SAD) cyanide are hod.
CN-WAD-MID-COL-VA	Water	Weak Acid Cyanide by Colorimetric	APHA 4500-CN "Cyanide"
		edures adapted from APHA Method 4500-CN "Cy ng the chloramine-T colourimetric method.	anide". Weak acid dissociable (WAD) cyanide are determined
CN-WAD-MID-COL-VA	Water	Weak Acid Cyanide by Colorimetric	APHA 4500-CN Cyanide
		edures adapted from APHA Method 4500-CN "Cy ng the chloramine-T colourimetric method.	anide". Weak acid dissociable (WAD) cyanide are determined
CNO-SIE-VA	Water	Cyanate by SIE	APHA 4500-CN Cyanide
This analysis is carried ou method using an ammonia			anide". Cyanate is determined by the cyanate hydrolysis
-SIE-VA	Water	Fluoride by SIE	APHA 4500-F "Fluoride"
			ide". Fluoride is determined using a selective ion electrode. en Al3+ is present in the sample at a concentration greater
-SIE-VA	Water	Fluoride by SIE	APHA 4500-F Fluoride
			ide". Fluoride is determined using a selective ion electrode. en Al3+ is present in the sample at a concentration greater
HARDNESS-CALC-VA	Water	Hardness	APHA 2340B
Hardness is calculated fro	m Calcium	and Magnesium concentrations, and is expressed	as calcium carbonate equivalents.
MET-DIS-ICP-VA	Water	Dissolved Metals in Water by ICPOES	EPA SW-846 3005A/6010B
American Public Health A	ssociation, a tection Ager	and with procedures adapted from "Test Methods fncy (EPA). The procedure involves filtration (EPA	xamination of Water and Wastewater" published by the or Evaluating Solid Waste" SW-846 published by the United Method 3005A) and analysis by inductively coupled plasma -
MET-DIS-LOW-MS-VA	Water	Dissolved Metals in Water by ICPMS(Low)	EPA SW-846 3005A/6020A
American Public Health A States Environmental Pro	ssociation, a tection Ager		
MET-DIS-ULTRA-MS-VA	Water	Diss. Metals in Water by ICPMS (Ultra)	EPA SW-846 3005A/6020A
This analysis is carried ou	t using proc	edures adapted from "Standard Methods for the F	xamination of Water and Wastewater" published by the

This analysis is carried out using procedures adapted from "Standard Methods for the Examination of Water and Wastewater" published by the American Public Health Association, and with procedures adapted from "Test Methods for Evaluating Solid Waste" SW-846 published by the United States Environmental Protection Agency (EPA). The procedures involves preliminary sample treatment by filtration (EPA Method 3005A). Instrumental analysis is by inductively coupled plasma - mass spectrometry (EPA Method 6020A).

NH3-COL-VA

L815006 CONTD.... PAGE 10 of 10

Reference Information

ALS Test Code	Matrix	Test Description	Analytical Method Reference(Based On)
This analysis is carrid determined using the			Method 4500-NH3 "Nitrogen (Ammonia)". Ammonia is
NH3-COL-VA	Water	Ammonia by Colour	APHA 4500-NH3 Nitrogen (Ammonia)
This analysis is carried determined using the			Method 4500-NH3 "Nitrogen (Ammonia)". Ammonia is
NH3-SIE-VA	Water	Ammonia by SIE	APHA 4500 D NH3 NITROGEN (AMMONIA)
		ric acid preserved samples, using procedures adapted nonia selective electrode.	I from APHA Method 4500-NH3 "Nitrogen (Ammonia)".
SE-D-HVAF-VA	Water	Dissolved Selenium in Water by HVAFS	APHA 3030B&E/ISO/CD 17378&9-1 2006:DRAFT
American Public Hea Atomic Fluorescence	alth Association, a Spectrometry (H		

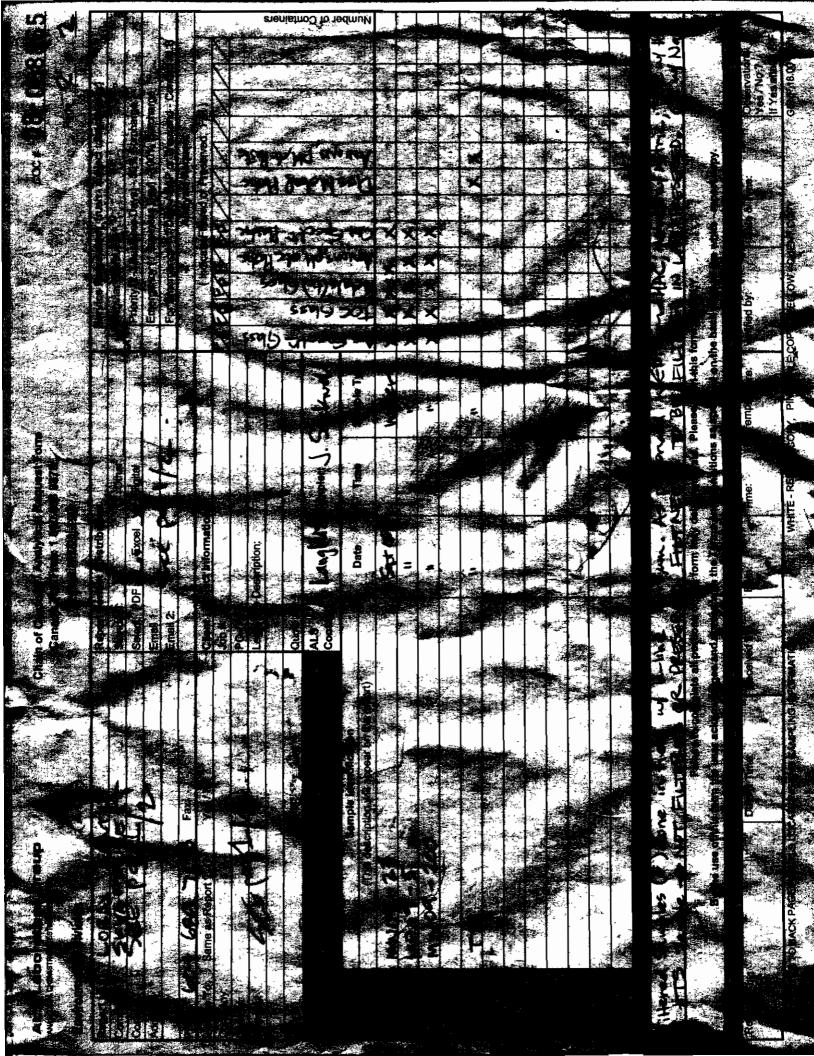
Laboratory Definition Code	Laboratory Location	Laboratory Definition Code	Laboratory Location
VA	ALS LABORATORY GROUP -		
	VANCOUVER, BC, CANADA		

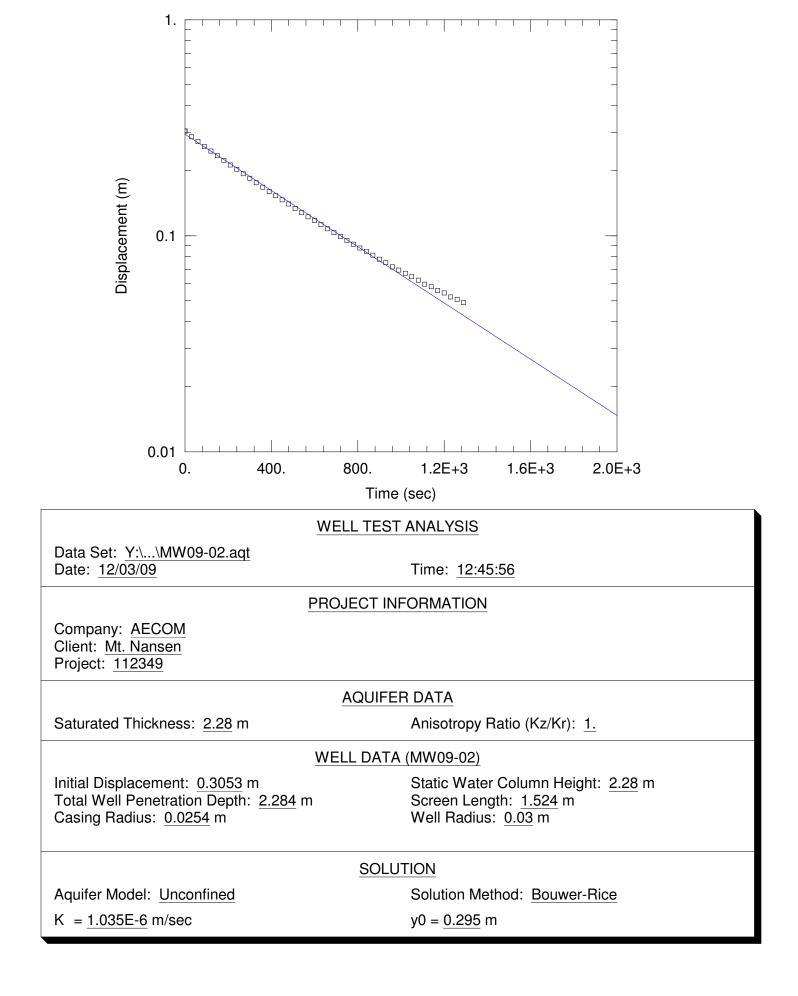
GLOSSARY OF REPORT TERMS

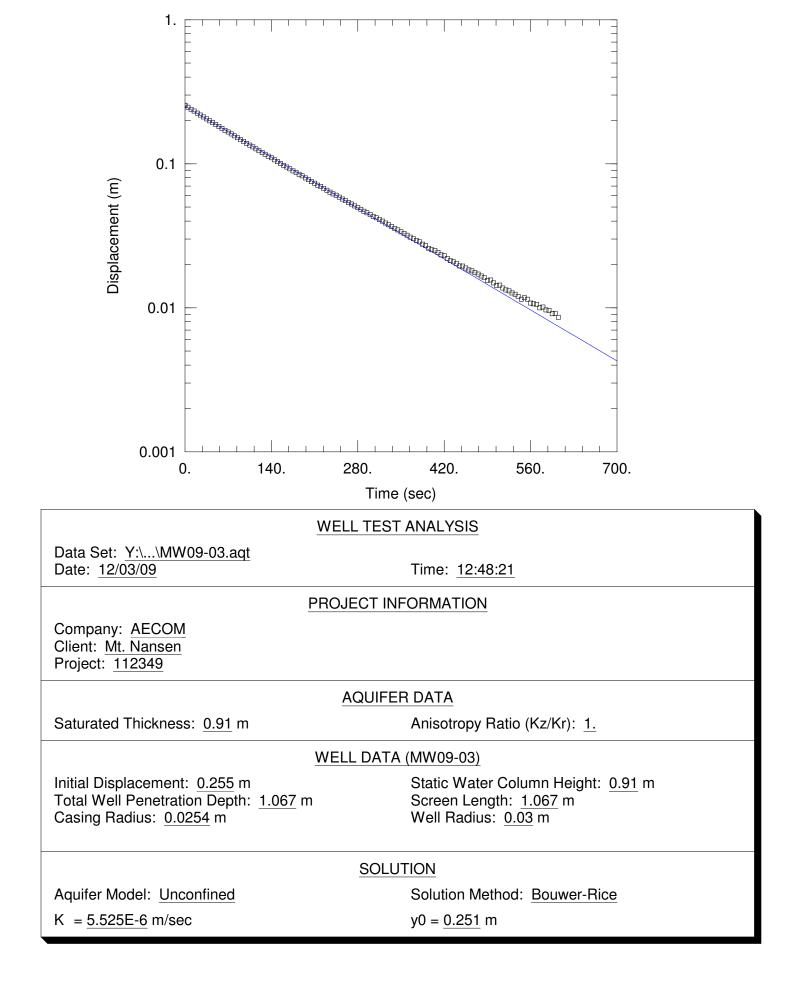
Surr - A surrogate is an organic compound that is similar to the target analyte(s) in chemical composition and behavior but not normally detected in environmental samples. Prior to sample processing, samples are fortified with one or more surrogate compounds.

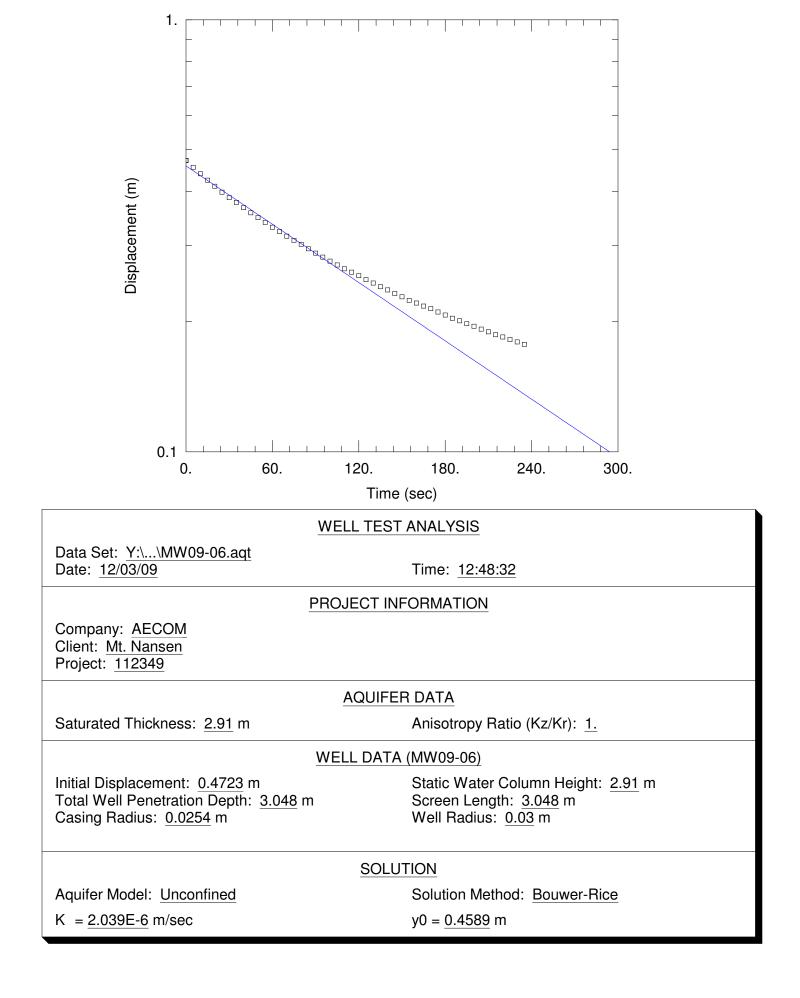
The reported surrogate recovery value provides a measure of method efficiency.

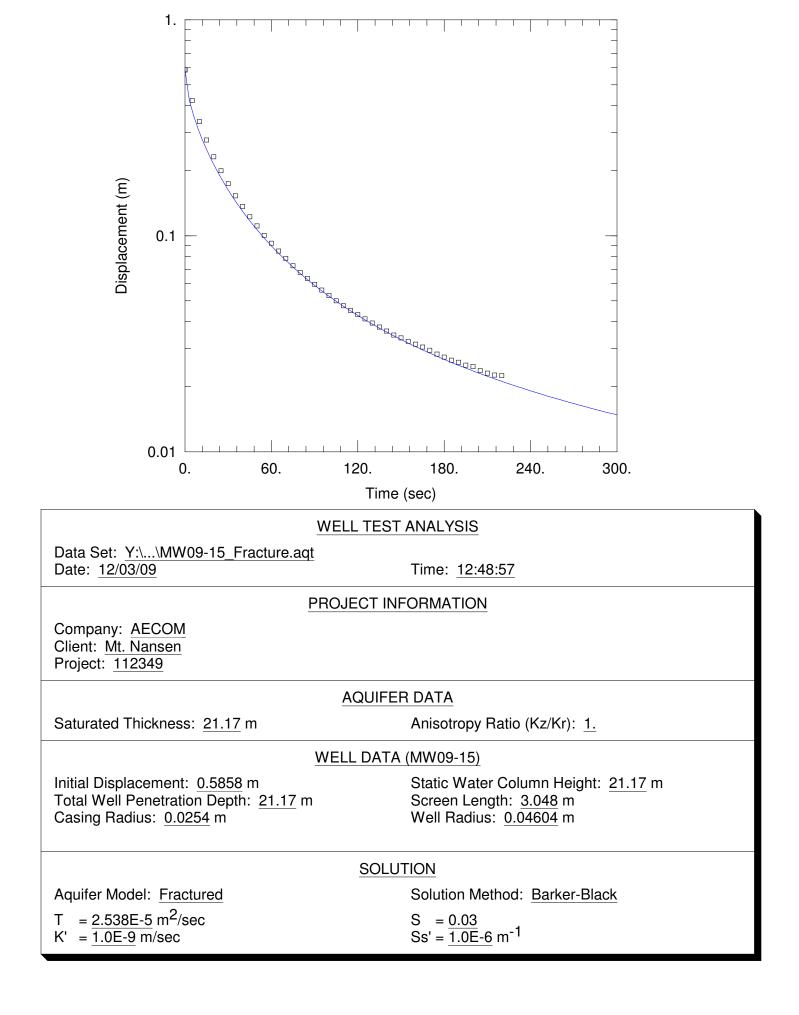
mg/kg (units) - unit of concentration based on mass, parts per million

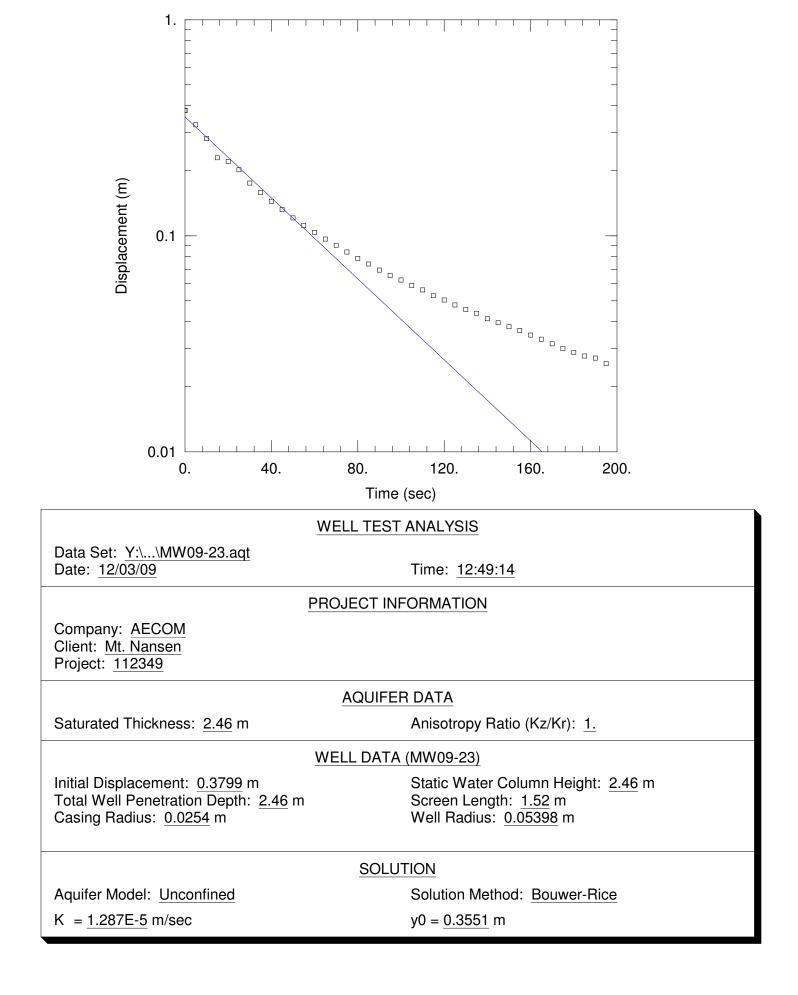

mg/L (units) - unit of concentration based on volume, parts per million


N/A - Result not available. Refer to qualifier code and definition for explanation


Test results reported relate only to the samples as received by the laboratory. UNLESS OTHERWISE STATED, ALL SAMPLES WERE RECEIVED IN ACCEPTABLE CONDITION. Although test results are generated under strict QA/QC protocols, any unsigned test reports, faxes, or emails are considered preliminary.


ALS Laboratory Group has an extensive QA/QC program where all analytical data reported is analyzed using approved referenced procedures followed by checks and reviews by senior managers and quality assurance personnel. However, since the results are obtained from chemical measurements and thus cannot be guaranteed, ALS Laboratory Group assumes no liability for the use or interpretation of the results.





MEMORANDUM

August 21, 2009

To: Diane Lister

From: Robert Stroshein

Re: Geological Considerations at the Brown-McDade Open Pit

The Brown-McDade open pit mine occurs in a major structurally weak zone that began with the emplacement of the felsic dykes that host the mineralization. There have been multiple episodes of faulting since the emplacement of the deposit. The geology of the pit area is controlled by the structural weakness of the generally northwest trending zone.

The host rocks are a layered metamorphic sequence (LMS) in fault or intrusive contact with Cretaceous (?) aged hornblende diorite to hornblende granodiorite. The LMS is composed of metamorphosed sedimentary, volcanic and igneous rocks. The LMS appears to dip to the northat a shallow dip angle. The intrusive suite is coeval with the Mount Nansen volcanic rocks in the area. The mineralization is a late stage event related to hypabyssal rocks (felsic dykes) of the plutonic suite.

The region was unglaciated during the last period of continental glaciation and therefore the rocks a deeply weathered especially the faulted and altered sequences. The deep end of the pit was mined to the depth of weathering. There was increasing sulphide mineralization at depth in the pit. The sulphide mineralization consisted of primairily pyrite with fine grained sphalerite (Zn) and galena (Pb).

Lithologies

The lithological contacts are generally fault or intrusive related. Along the east wall of the pit diorite to granodiorite intrusive rocks are in fault contact with the metamorphic rocks that dominate the west side of the pit. There are locally thin veneers and slices of fault bounded altered and mineralized rock on the east pit wall.

The central portion of the pit is the mined out ore zone that was intensely altered and weathered. Approximately one fourth to one third of the mined material was milled and with the tailings going to the pond the remainder of the removed material was stacked in the waste piles around the pit. The oxidized and sulphide ore material was hosted by clay altered felsic dykes that have been deformed by multiple stage faulting. At the north end the breccia body has been mined below the weathered and oxidized ore and sulphides (pyrite) are exposed in the pit at and below the water level. There are local patches of interstially weathered pyrite mineralization that exhibit a white oxide coating at surface (possibly hydrozincite). Several selvages and veneers of altered and mineralized rock were left in the pit wall above the water level. There are no visible sulphides in these zones but locally also exhibit the white oxide coating.

The west side of the pit is predominantly metamorphic rocks with fault bounded blocks of ganodiorite and felsic dyke material. The dykes tend to be unaltered but locally thin segments contain mineralization. The southern half the pit wall is composed of primarily sedimentary metamorphic rocks (LMS a) with older intrusive rocks that form gneiss and schist. The northern half of the pit wall is predominantly thick bedded, white to tan weathered metamorphic

sandstones (LMS b) that form resistant quartzite. Near the north end of the pit a unit of calcareous quartzite (metamorphosed sandstone) is exposed in the pit wall.

The north end of the pit is made of light weathering grey quartzite overlain by highly weathered metamorphic rocks (unit LMS c) of gneiss and schist.

There is limited rock exposure north of the pit in the Pony Creek drainage. On the northeast side of the creek there are hornblende granodiorite rocks exposed in old exploration trenches. Within the drainage area a number of exploration diamond drill holes have been located. Examination of some of the drill holes and log records indicate the metamorphic units in fault contact with granodiorite and hornblende granodiorite. Multiple fault/shear zones occur within the drilled sequence. The fault zones are commonly coarse granular host rock to sandy with some clay content. The zones range from less than one meter to intervals of five meters and larger zones with multiple faults. The material is strongly weathered and appears to be porous and permeable. The fault zones cut all the rock units including the granodiorite.

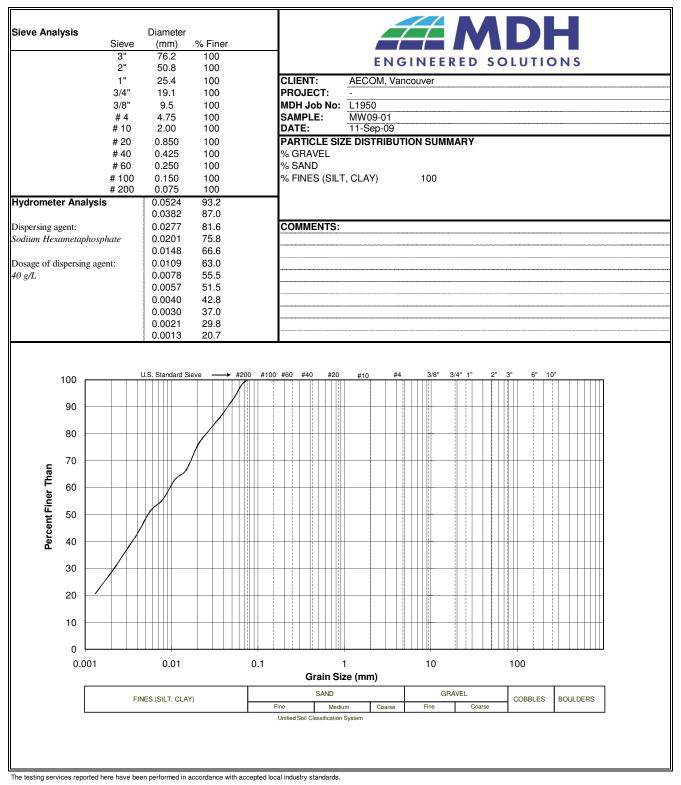
Structural Geology

A number of fault surfaces were observed in the open pit. There are two dominant orientations to the faulting and cross cutting relationships suggest that the faulting occurred as separate episodes after the mineralization was deposited.

The most prominently defined faulting trends northwest and contains the deposit within a graben like structure. The two defining faults are exposed in the pit. The footwall (FW) fault juxtaposes unaltered granodiorite/hornblend diorite with the strongly altered rocks enclosing the mineralized zone. The hanging wall (HW) fault occurs within the altered rocks on the west side pit wall face. The FW fault dips steeply west and the HW fault dips steeply east. Slickensides on the fault surfaces indicate vertical and lateral movement along the faults. The structure defines the predominant northwest trending zone of alteration and structural weakness.

The second set of dominant faulting trends northerly and displace the northwest trending FW and HW faults. Movement along the northerly trending faults is vertical with very little lateral movement as indicated by slickensides on exposed faults. The northerly trending faults dip moderately east forming a series of steps. Drill hole intersections at the northern end of the open pit indicate a swarm of these faults cross cutting all rock types.

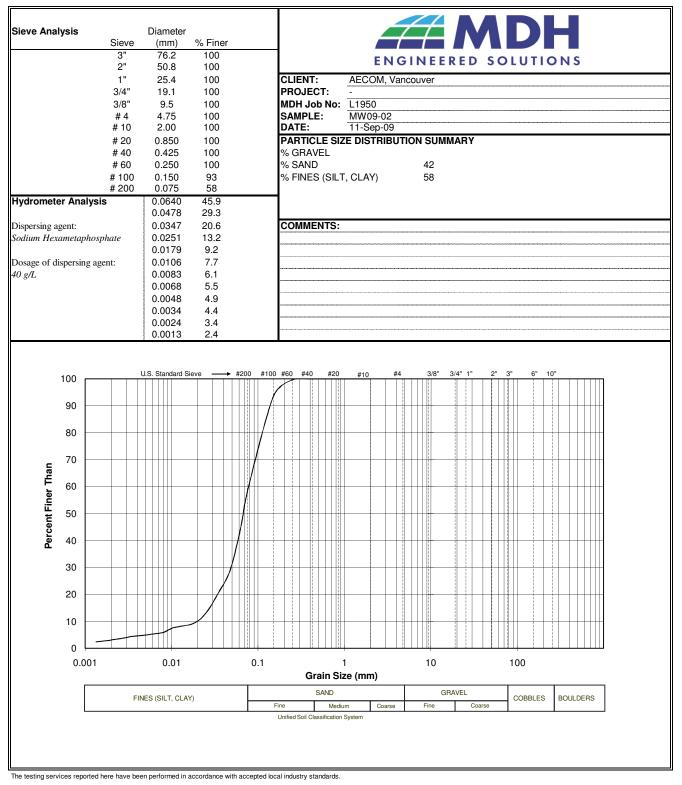
Summary


The Brown-McDade open pit is located and bounded by a major structural zone. The pit and the structural zone trend northwesterly. The structural zone intersects the Pony Creek drainage between 100 and 200 meters north of the pit. The structural zone is composed of multiple fault sets that intersect at acute angles. The fault zones have variable widths up to five (5) meters observed in drill hole intersections and are composed of coarse to fine granular material and clay. The intersecting faults create a network of porous and permeable channels.

The south end of the pit is poorly exposed but the structure appears to narrow and is at a higher elevation than the north end of the pit.

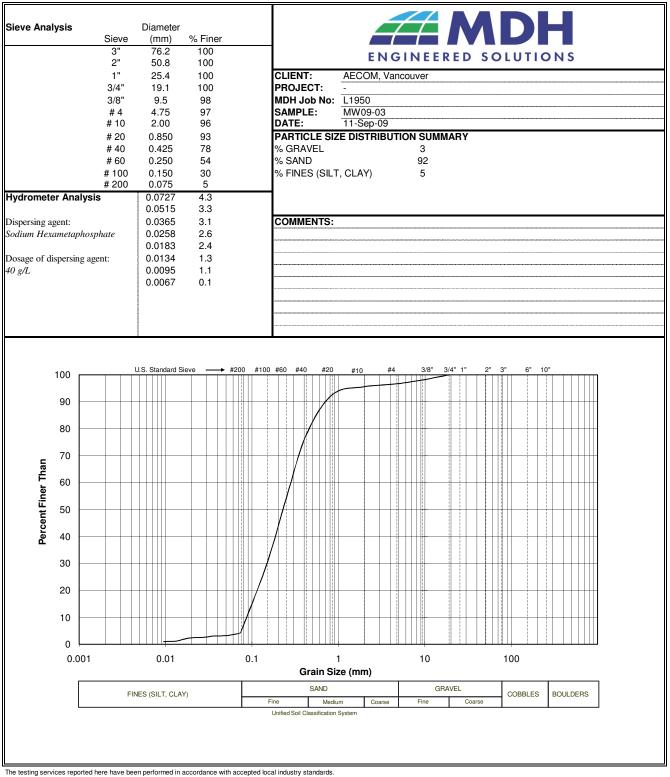
The quartzite unit (LMS b) is a resistant bed that does not weather readily and although it is no doubt faulted the lack of weathering the unit has a damming effect on the ground water flow. This has been observed at the north end of the pit where water cascades over the resistant quartzite beds. Photo

approximate location of seepage horizon, North end of Brown McDade pit


(Test Reference: ASTM D 422)

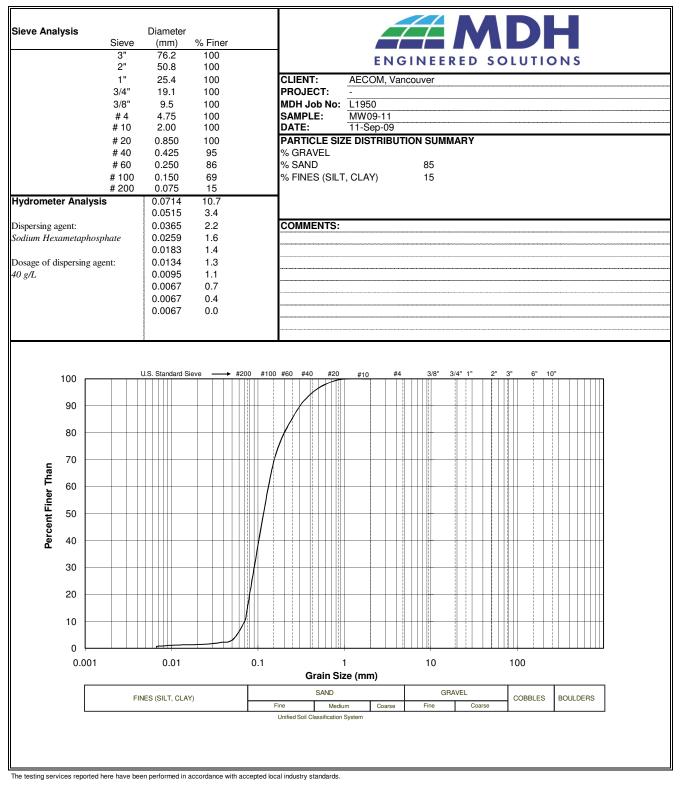
The results presented are for the sole use of the designated client only.

This report constitutes a testing service only. It does not represent any interpretation or opinion regarding specification compliance or material suitability.


(Test Reference: ASTM D 422)

The results presented are for the sole use of the designated client only.

This report constitutes a testing service only. It does not represent any interpretation or opinion regarding specification compliance or material suitability.


(Test Reference: ASTM D 422)

The results presented are for the sole use of the designated client only.

This report constitutes a testing service only. It does not represent any interpretation or opinion regarding specification compliance or material suitability.

(Test Reference: ASTM D 422)

The results presented are for the sole use of the designated client only.

This report constitutes a testing service only. It does not represent any interpretation or opinion regarding specification compliance or material suitability.

	SF	PECIFIC GRAVITY TEST (FINE MATERIAL)
	Project:	AECOM, Vancouver
A MDH		L1950
ENGINEERED SOLUTIONS		
	Techniciar	n: CEO Date: Aug 24/09
Sample: MW 09-01		
PYCNOMETER DATA:		
Pycnometer #: <u>C2A</u>		
Mass of pycnometer empty & dry (g):	179.76	
Mass of pycnometer with water (g):	678.63	
Temperature (°C): 20.8		
PRE-TEST SAMPLE INFORMATION:		
Water Content (wet sample):		Wet weight (g):
Tare #:		Calc. Dry Weight (g): 49.84
Tare Mass (g):		
Wet sample + tare (g):		
Dry sample + tare (g):		
Water Content (%):		
POST-TEST INFORMATION:		
Mass of pycnometer, water, & sample (g):	709.52	2
Temperature (°C):	21.8	
Mass of dry sample (g):	49.84	
Specific gravity: 2.64		
Comments:		

	SF	PECIFIC GRAVITY TEST (FINE MATERIAL)
	Project:	AECOM, Vancouver
A MDH		L1950
ENGINEERED SOLUTIONS		
	Techniciar	n: CEO Date: Aug 24/09
Sample: MW 09-02	-	
PYCNOMETER DATA:		
Pycnometer #: <u>C8A</u>		
Mass of pycnometer empty & dry (g):	186.78	
Mass of pycnometer with water (g):	685.15	
Temperature (°C): 21.1		
PRE-TEST SAMPLE INFORMATION:		
Water Content (wet sample):		Wet weight (g):
Tare #:		Calc. Dry Weight (g): 49.92
Tare Mass (g):		
Wet sample + tare (g):		
Dry sample + tare (g):		
Water Content (%):		
POST-TEST INFORMATION:		
Mass of pycnometer, water, & sample (g):	716.71	
Temperature (°C):	21.8	
Mass of dry sample (g):	49.92	
Specific gravity: 2.73		
Comments:		

WATER CONTENT/ BULK DENSITY/TOTAL ORGANIC CARBON - REPORT

ENGINEERED SOL Sample # Tare # Tare Mass (g)	MW 09-01 DN3 106.59	Client: Project: MDH Project No: Date: Water Con MW 09-02 M3 99.29	19-Aug-09			
Wet sample + tare (g) Dry sample + tare (g)	541.16 393.76	562.56 462.97				
Wt. Dry sample (g)	287.17	363.68				
Water Content (%)	51.3	27.4				
/		Bulk Den	sity	1	1	1
Sample #						
Mass of sample in air (g):						
Mass of sample + wax in air (g):						
Mass of sample + wax in water (g):						
Wet density (kg/m^3):						
Dry density (kg/m^3):						
Specific gravity of solids						
Total porosity						
Air-filled porosity						
Degree of saturation						
	Total Or	ganic Carbon - I	norg & Total C	(%)		
Sample #						
Inorganic Carbon						
Total Organic Carbon						
CaCO ₃ Equivalent						
Total Carbon by Combustion						
Comments:						

The testing services reported here have been performed in accordance with accepted local industry standards.

The results presented are for the sole use of the designated client only.

This report constitutes a testing service only. It does not represent any interpretation or opinion regarding specification compliance or material suitability.

Soil-Water Characteristic Curve Test Report (reference standards: ASTM D6836-02)

EN	GINE		SOL		CLIENT: AECOM, Vancouver PROJECT: - MDH Job No. L1950 DATE: Sept. 24, 2009					
Water	used in	tion/Sar test: uration:	-	escripti	MW 09 de-aireo saturati	d wa				
Test sa data:	ample	Initial w Initial w		sity = 1.6 ntent = {		Method	Extraction pressure, kPa	Gravimetric water content, %		
Retaini	ng ring	; г	<u>_</u>				∎ C	<u> 비 효 모</u> 10	<u>ʊ ≥ ʊ</u> 44.6%	
Specim H = D =	Sc ten dime 31.00 72.70	mm	mple	9		H	с с с с с с	21 50 100 200 400	42.0% 39.0% 37.2% 33.6% 30.6%	Pressure Plate Test
	Me	ethod A colum	n test	_			Method	measured suction, kPa	Gravimetric water content, %	Test
		levation (cm) base	average suction, kPa	Gravimetric water content, %			D D D D	7040 9810 45750	20.1% 5.5% 4.3% 2.2%	Chilled Mirror Hygrometer Test
	3 6 9 15 28 53	0.0 3.0 6.0 12.0 25.0 50.0	0.2 0.5 0.8 1.4 2.7 5.2	47.4% 47.1% 47.7% 46.9% 46.6% 45.9%						Chilled Mirro
2 Water Content 5 5 1	0% 0% 0% 0% 0% 0%	1		10	100	1000 on (kPa)		Chilled	e Plate test mirror hygrom on water cont olumn 100000	

Soil-Water Characteristic Curve Test Report (reference standards: ASTM D6836-02)

EN	GINE		SOL		N S	CLIENT:AECOM, VancouverPROJECT:-MDH Job No.L1950DATE:Sept. 24, 2009				
Water	used in	tion/Sar test: uration:	-	escriptio	on:	MW 09 de-aire saturati	d wa	ter hamber		
Test sa data:	ample	Initial w Initial w		sity = 1.6 ntent = 2		Method	Extraction pressure, kPa	Gravimetric water content, %		
Retaining ring D Soil sample Specimen dimensions H = 47.00 mm D = 72.70 mm							M C C C C	<u>前 古 地</u> 10 21 50 100	5 8 8 25.1% 17.1% 9.8% 7.5%	Pressure Plate Test (101mm diameter cell)
-		ethod A colum	n test	ing			Method	measured suction, kPa	Gravimetric water content, %	est
		elevation n (cm) base	average suction, kPa	Gravimetric water content, %						Chilled Mirror Hygrometer Test
	3 6 9 15 28 53	0.0 3.0 6.0 12.0 25.0 50.0	0.2 0.5 0.8 1.4 2.7 5.2	35.5% 35.4% 35.3% 35.2% 34.5% 32.2%						Chilled Mirror
40% 35% 30% 20% 15% 10% 5% 0%									tent 	

ATTERBERG LIMITS TEST REPORT

(Test Reference: ASTM D 4318)

				Client:	AE	COM, Vanco	ouver		
		\D		Project	-				
				MDH Job No:	L19	950			
ENGINE				Technician:	CE				
				Date:		Sep-2009			
Sample: M\	V 09-01			(air-dried)					
				· · · ·					
Perce	ntage of s	ample retaine	ed on 425-	um (No. 40) sie	eve:	NA			
Plastic Limit				Liquid Limit (met	hod A)	n	T	r
	_		1	# of Blows		19	25	49	
Tare #	46A	69A	-	Tare #		15A	65A	9A	
Tare Wt, g	14.17	14.37	-	Tare Wt, g		14.57	14.33	14.28	
Wet + Tare, g	18.56	19.35		Wet + tare, g		19.16	18.50	18.17	
Dry + Tare, g	17.53	18.17		Dry + tare, g		17.55	17.07	16.90	
M%	30.7%	31.1%	30.9%	Water content		54.0%	52.2%	48.5%	
SUMMARY Plastic Limit: Liquid Limit: Plasticity Index: Classification: Natural Water C 70% 60% I 50% 50% 40% U Ation 30%	MH	51.0%		55% 54% (%) 53% 53% 52% 51% 49% 48% 48% 10	CH	smold g g z # o U-line H or OH	f Blows		100
00 10% 10% 0% Comments: -	10%	CL 0 20% 30	ML o			MH or OH 70% 80	% 90%	100%	

The testing services reported here have been performed in accordance with accepted local industry standards.

The results presented are for the sole use of the designated client only.

This report constitutes a testing service only. It does not represent any interpretation or opinion regarding specification compliance or material suitability. Engineering interpretation will be provided by MDH Engineered Solutions Corp upon request.

ATTERBERG LIMITS TEST REPORT

(Test Reference: ASTM D 4318)

				Client:	AECOM, Vand	couver		
				Project	-			
	M			MDH Job No:	L1950			
ENGINEE					BC			
					11-Sep-2009			
Sample: MV	V 09-02			(air-dried)				
Perce	ntage of sam	ple retaine	ed on 425-	um (No. 40) sie	ve: NA			
Plastic Limit				Liquid Limit (method A)		1	
	-		1	# of Blows	-	-	-	
Tare #	-	-	-	Tare #	-	-	-	
Tare Wt, g	-	-		Tare Wt, g	-	-	-	
Wet + Tare, g	-	-	-	Wet + tare, g	-	-	-	
Dry + Tare, g	-	-	average	Dry + tare, g	-	-	-	
M%	-	-	-	Water content	-	-	-	
SUMMARY Plastic Limit: Liquid Limit: Plasticity Index: Classification: Natural Water C	Non Plasti	c n/a		27.5% 27.0% 26.5% 26.5% 25.5% 25.0% 24.5% 24.0% 24.0%	52 blows #	of Blows		100
70%								
60%					U-line			
₫ 50%						Astine		
ý 40% –					CH or OH			
Blasticity Index, P %05 P %05 P %05 P								
<u>198</u> 20%		CLO			MH or OF	4		
10%	CL-M		ML o	r OL		•		
0%								
0%	10% 2	20% 30'	% 40%	50% 609 Liquid Limit	% 70% 8	0% 90%	100%	
Comments: Ma	iterial canno	t be rolle	d. Non-pla	astic				

The testing services reported here have been performed in accordance with accepted local industry standards.

The results presented are for the sole use of the designated client only.

This report constitutes a testing service only. It does not represent any interpretation or opinion regarding specification compliance or material suitability. Engineering interpretation will be provided by MDH Engineered Solutions Corp upon request.