

Elsa Reclamation and Development Company Keno Hill Silver District

Mass Loading Model 2008 Update

June 2009

Prepared by:

A MEMBER OF ALEXCO RESOURCE GROUP

3 Calcite Business Centre, 151 Industrial Road, Whitehorse, Yukon Y1A 2V3 PHONE (867) 668-6463 FAX (867) 667-6680 www.accessconsulting.ca mail@accessconsulting.ca

Table of Contents

1.0) Ir	troduction	۱	1
2.0	N	odel Obje	ctives	2
2	2.1	Methods.		2
	2.1.1	Usir	ng the Regional Hydrological Model to Determine MAR	2
	2.1.2	2 Othe	er Sources of Catchment Runoff	3
	2.1.3	B Con	taminant Monitoring and Data Collection	5
	2.1.4	Mod	leled Parameters	5
	2.1.5	5 Calo	culating Catchment Loads	5
	2.1.6	S Stru	cture of the Loading Model	5
	2.1.7	' Calo	culating Load and Attenuation	7
3	Data	and Resu	ults	9
3	3.1	Measure	d Contaminant Concentrations at Nodes	9
3	3.2	Calculate	ed Contaminant Loading at Nodes	10
3	3.3	Adit Site	Loads	11
3	3.4	Contamir	nant Loading by Watershed	13
4	Con	clusions		18

List of Tables

Table 1	Monthly Average Discharge Record for christal Creek at KV73
Table 2	Monthly Average Discharge Record for Lightning Creek at KV41
Table 3	Details of Mine Site Catchments4
Table 4	Details of Enclosed Basins Created by Open Pits4
Table 5	Adit Flows and Loads, 2006 - 200812

List of Figures

Figure 1	Mass Loading Model Inputs Flow Diagram	6
Figure 2	Mass Loading Model Elements Map	8
Figure 3	South McQuesten River Cadmium and Zinc Concentrations, by Station Type	.9
Figure 4	South McQuesten River Cadmium and Zinc Loading versus Annual Volumetric Flow (m ³) by Station Type	10
Figure 5	Keno Hill Mass Loading, 2006 – 2008 Total Zinc	14
Figure 6	Total Zinc Loading (kg/yr) at the South McQuesten River; All Sources Before Attenuation	15
Figure 7	Total Zinc Loading (kg/yr) at the South McQuesten River, Observed	16
Figure 8	Zinc Loading (kg/yr) at Lightning Creek; All Sources Before Attenuation	16
Figure 9	Total Zinc Loading (kg/yr) at Lightning Creek, Observed	17

1.0 INTRODUCTION

As part of the 1996 Site Characterization Report (UKHM, 1996) a site wide mass balance model was developed and a template for this was constructed in Microsoft Excel® to enable an assessment of site wide contaminant loadings. The model used data collected from the water quality monitoring program and site hydrological conditions to generate site wide loading estimates that would provide an understanding of how and if metals loads from various mine site components were affecting local receiving waters. In 2007, the site meteorological and hydrological conditions were appraised and updated by Clearwater Consulting Ltd. as part of a hydrological assessment for the project area. This study confirmed the continued use of hydrological input parameters used in the 1996 mass balance model.

The mass loading model update builds upon the existing excel loading model to refine the model for closure assessment purposes and uses the water quality and hydrology stored in the EQWIN database and makes it more readily accessible and user friendly using and ArcGIS package that interfaces with the site water quality database. This tool will then be used during consultation and discussions with stakeholders and regulatory authorities as part of the closure planning process to visualize and analyze the effect of the closure options being considered on water quality at specific points in local surface receiving waters.

2.0 MODEL OBJECTIVES

The primary mass loading model objectives are to quantify the volume of contaminants transported by water pathways on the Keno Hill property and thus to develop an understanding of the impact loading sources have on downstream waters. Beyond that, the model attempts to give insights into the ways in which contaminants are transported and the magnitude of their production and attenuation into the receiving environment. Results of the model can then be used to assess various closure options planned for the site and their effects to local receiving waters.

2.1 METHODS

2.1.1 Using the Regional Hydrological Model to Determine MAR

A hydrological model was developed in 1996 and used to estimate the mean annual runoff (MAR) in catchments within the Keno Hill area where no gauging data have been historically collected. The hydrology was developed on a regional level for basins outside of, but near the Keno Hill Mine to be used as an approximation of conditions in the Keno Hill area. The approach used an empirical model to establish a regional relationship between MAR and median elevation within a specific catchment. This relationship was used to extrapolate MAR conditions at ungauged Keno Hill stations.

Monthly streamflow distribution from Water Survey of Canada (WSC) stream gauging locations in the vicinity of the Keno Hill mine were obtained to assist in pairing gauged catchment basins with ungauged catchments located on the property. WSC catchments that most closely resembled the basin and streamflow characteristics of Keno Hill catchments were used to approximate MAR conditions at ungauged Keno Hill stations. The selection was based primarily on the median elevation of each catchment. In 2007, site meteorological and hydrological conditions were reviewed by Clearwater Consulting Ltd. and the information to the model was updated as part of a broader hydrological assessment for the project area. Tables 1 and 2, extracted from the Clearwater report, summarize the mine site catchments and MAR.

The MAR for a given catchment at Keno Hill is generally incorporated into the loading model in terms of annual runoff. However, the loading model can also be broken down by quarter, to refine the model and more precisely determine the amount of load produced by a catchment (Table 3). This is done by using the annual streamflow distribution to identify how much of the MAR passes through a catchment during a specific quarter.

2.1.2 Other Sources of Catchment Runoff

The regional hydrology is established through the above model, but does not take account of the influence of adits and open pits to the flow of water in the catchment. For that reason, open pits and adits have been worked into the hydrology separately (Table 4). For adit drainage, these are treated as node inputs to the model and are *added* to the MAR for the catchment within which they are located. Much of the runoff generated in enclosed areas that drain into open pits and glory holes ultimately report to the adits, and as a result the water drained by these areas may be counted in the model twice. Therefore, these areas are *subtracted* from each catchment MAR.

At adits, particularly treatment site adits, flow data are collected regularly on either a daily or monthly basis. These data are used to supplement the information estimated from the regional hydrological study.

Year	Jan	Feb	Mar	Apr	May	Jun	Jul	Aug	Sep	Oct	Nov	Dec
2003								0.420	0.510			
2004			0.150	0.166	1.153	0.314	0.119	0.112	0.163	0.135	0.103	0.101
2005		0.122	0.112	0.391	1.540	0.264	0.294	0.398	0.335	0.259	0.189	0.150
2006	0.166	0.138	0.120	0.124	1.089	0.519	0.397	0.278	0.415	0.368	0.203	0.142
2007	0.151	0.120			0.757	0.327	0.540	0.218	0.335	0.154		
Average	0.159	0.126	0.127	0.227	1.135	0.356	0.337	0.285	0.352	0.229	0.165	0.131

Table 1 Monthly Average Discharge Record for Christal Creek at KV7 (m³/s)

Mean annual runoff = ~0.304 m³/s, or 221 mm.

Table 2 Monthly Average Discharge Record for Lightning Creek at KV41 (m³/s)

Year	Jan	Feb	Mar	Apr	May	Jun	Jul	Aug	Sep	Oct	Nov	Dec
2004								0.433	0.315	0.240	0.153	0.125
2005	0.098	0.067	0.056	0.130	1.802	1.418	0.989	1.111	0.958	0.637	0.452	0.299
2006	0.219	0.192	0.194	0.272	0.793	1.994	1.326	0.921	1.083	0.889	0.554	0.447
2007					1.231	1.926	1.193					
Average	0.159	0.129	0.125	0.201	1.275	1.779	1.169	0.821	0.785	0.589	0.386	0.290

Mean annual runoff = ~0.645 m³/s, or 344 mm.

Table 3 Details of Mine Site Catchments

Element	Outflow Station	Catchment Description	Catchment Area (km ²)	Catchment Median Elevation (m.a.s.l.)	MAR - Mean Annual Runoff (mm)	Jan - Mar	Apr - Jun	Jul - Sept	Oct - Dec	1000m3/yr
		Average monthly flows for minesite streams			% MAR	4.8	54.8	28.5	11.9	100
Element 1	KV-6	Christal Creek above Station KV-6	7.7	990	240	87.5	998.4	519.2	216.8	1821.9
Element 2	KV-7	Christal Creek between Stations KV-6 and KV-7	35.8	970	230	392.3	4478.9	2329.4	972.6	8173.2
Element 3	KV-55	Sandy Creek above LES-63	2.3	1180	290	31.2	355.9	185.1	77.3	649.5
Element 4	KV-21	No Cash Creek above LES-21	1.5	1200	300	18.7	213.1	110.8	46.3	388.8
Element 5	KV-2	South McQuesten River above S10 and below LES-1, S 19, LES-21, and LES-63	32.9	650	150	233.0	2660.3	1383.5	577.7	4854.5
KV-1	KV-1	South McQuesten River above LES-1	476	940	230	5255.0	59995.0	31201.8	13028.1	109480.0
Element 6	KV-12 & KV-58	Catchment of Dam No. 3 of Elsa Tailings Impoundment	4.3	760	180	37.2	424.2	220.6	92.1	774.0
Element 7	KV-47	Porcupine Creek Diversion Channel above LES-47	10.1	1110	270	130.9	1494.4	777.2	324.5	2727.0
Element 8	KV-59	Galena Creek above the mouth	10.9	970	240	122.8	1402.5	729.4	304.6	2559.3
Element 9	KV-9	Flat Creek above S9 and below LES-57, LES-47, and S1	31.2	700	170	254.6	2906.6	1511.6	631.2	5304.0
Element 10	KV-4	South McQuesten River above S11 and below S10 and S9	29.9	670	160	229.6	2621.6	1363.4	569.3	4784.0
Element 11	KV-5	South McQuesten River above LES-5 and below S11 and LES-10	95	850	200	912.0	10412.0	5415.0	2261.0	19000.0
LES-10	LES-10	Haldane Creek above South McQuesten Road	88.8	830	200	852.5	9732.5	5061.6	2113.4	17760.0

Table 4 Details of Enclosed Basins Created by Open Pits

	Enclosed Basin Description	Catchment Area	Catchment Median	MAR - Mean Annual	1000m3/y
		(km²)	Elevation (m.a.s.l.)	Runoff (mm)	r
Element 1	Open pits within catchment of Element 1 (Calumet "C" and Onek)	0.09	1180	290	26.1
Element 2	Open pits within incremental catchment of Element 2 (sime 6, Sime 4, 35 Vein, and				
	Miller)	0.19	1280	320	60.8
Element 2	Open pits within catchment of Element 3 (Western portion of Calumet 4-11 Veins)				
Element 5		0.05	1400	350	17.5
Element 4	Open pits within catchment of Element 4 (Bermingham and Bermingham SW)				
Element 4		0.18	1350	340	61.2
Flow out F	Open pits within incremental catchment of Element 5 (Calumet 3, Calumet 2, and				
Element 5	part of Calumet 4-11 Veins)	0.23	1380	350	80.5
Element 8	Open pits within catchment of Element 8 (Silver King)	0.27	860	210	56.7

2.1.3 Contaminant Monitoring and Data Collection

Contaminant concentration data are regularly captured under a water surveillance network sampling program. This program has existed in various incarnations over a period of time dating from the 1970s. Data considered reliable for use in the model dates from 1994, but consistent comprehensiveness of the network of nodes was not achieved until ERDC took over care and maintenance of the site in 2006. For that reason, it is not possibly to accurately determine loadings for many common parameters before 1996.

2.1.4 Modeled Parameters

For the purposes of this study, the major contaminant of concern, zinc, and a tracer parameter, silicon, were studied. Dissolved zinc was used over total zinc, as a result of its immobility by virtue of it being in solution. Total zinc is more readily picked up and removed from suspension and can be influenced by morphological factors. For example, erosion along stream banks where contaminant residue may be present can provide a significant input of a given contaminant to waterways.

2.1.5 Calculating Catchment Loads

Loading data is mathematically calculated from a combination of the runoff inputs (both MAR and adit/open pit drainage) and contaminant concentrations measured at sites in the monitoring network.

2.1.6 Structure of the Loading Model

The loading model is structured after the reality of the drainage at Keno Hill. The Keno Hill Property contains three main watersheds: Flat Creek, Christal Creek and Lightning Creek. Two of these (Flat and Christal Creeks) drain into the South McQuesten River before they leave the property owned by ERDC. Therefore, the model is built in two parts, one to determine contaminant loadings in the South McQuesten River, and the other to determine loadings to Lightning Creek (for watershed delineation, see Figures 1).

					KV-28
					KV-32
				Element 1 (KV-6)	KV-45
			Element 2 (KV-7)		LES-66
					INC.CATCH
				KV-53	
				INC.CATCH	
		Element 5 (KV-2)		KV-55	
				INC.CATCH	
				KV-18	
				KV-19	
Element 11 (KV-5)				KV-20	
				INC.CATCH	
			KV-1		
			INC.CATCH		
				Decant from KV-12	
			ειειπειτό (κν-ου)	Seepage from KV-58	
			Element 7 (KV-47)		
		Element 9 (KV-9)		KV-14	
			(צכ-אא) א זחפוחפום	INC.CATCH	
			KV-17		
			INC.CATCH		
	INC.CATCH				

Figure 1 Mass Loading Model Inputs Flow Diagram

INC.CATCH: Incremental catchment

The model is further broken down into element components, which can be considered loading 'checkpoints' that are geographically smaller, more accurate representations of the input data. The network of sampling nodes captures smaller drainage basins via an output node (station) at the outlet of flow for each area. The data captured by output nodes is threefold in nature, with the intention of estimating the total runoff drained at that point. This includes all data measured at nodes within that basin, plus data from the output nodes of upstream basins and meteoric runoff from the incremental catchment. Table 5 describes the relationship of input nodes, output nodes, and incremental catchment runoff. In the case of Keno Hill, there are eleven basins that make up drainage reporting to the South McQuesten River, and three basins that make up drainage reporting to Lightning Creek (refer to Figure 2 for drainage basin locations).

At the smallest level, the model is made up of all of model 'nodes' or what are effectively the sampling stations of the monitoring network. Raw data is collected at this level and agglomerated to form basins, which are in turn agglomerated to form the larger watersheds.

The network of nodes that form the basis of the mass balance model include adit and stream discharges. These two inputs are additives to the loading balance. Data collected at these points are discharges and water quality, as discussed above.

2.1.7 Calculating Load and Attenuation

There are two ways of calculating the total load produced by a watershed. The first method involves calculating the mass loading at the final outlet on the South McQuesten and Lightning Creek waterways based on observed flows and concentrations at the outlet station. The second method involves calculating the amount of load produced by watershed elements and summing those loads, irrespective of what the observed downstream loads are. The model is structured in such a way as to incorporate both of these methods and use them as a means for literally balancing the model. There is a feedback mechanism incorporated where the observed load feeds back into the calculated load to determine the net loading (or attenuating) capacity of the specific basin.

The result is that the model is balanced and produces at a minimum an order of magnitude estimate of the natural attenuating or contaminating capacity of each drainage basin.

3 DATA AND RESULTS

Appendix I contains the mass loading model. Catchment runoff, adit and pit drainage, water quality monitoring results, and loading calculations are all stored and processed within this spreadsheet.

3.1 MEASURED CONTAMINANT CONCENTRATIONS AT NODES

In general, contaminant concentrations at Keno trend higher together in linear correlation (Figure 3). Concentrations at adit sites draining the mine workings are significantly higher than concentrations measured at stream waterways. In the Christal Creek watershed, this is especially pronounced at Onek Adit, which produces the highest zinc and cadmium levels of any adit on the site, and to a lesser extent at No Cash 500 and Bermingham Adits.

3.2 CALCULATED CONTAMINANT LOADING AT NODES

Contaminant loading at sites within the South McQuesten watershed is to a certain degree, a function of the volume of water passing through that particular site (Figure 4). Receiving waters sites produce the most water on an annual basis of any site type, by virtue of their being streams and other significant water pathways. Contaminant concentrations at these locations, being lower than at adit sites, produce vastly smaller loads than the loads produced at adit sites for the same volume of water. Viewed another way, for the same or similar loading levels, receiving waters will show an order of magnitude or more than adits in terms of water volume. At adit sites, overall loads are high even at low flows as a result of higher contaminant concentrations. At treatment sites, the general trend between the volume of water passing through the site and the contaminant load that is produced there is along the same trend as what is seen in receiving waters.

Figure 4 South McQuesten River Cadmium and Zinc Loading versus Annual Volumetric Flow (m³) by Station Type

Access Consulting Group, June 2009

3.3 ADIT SITE LOADS

Adit sites are the heaviest producers of contamination on the site. Adit waters in some cases flow directly to watercourses, while other adits report to ground. This fact accounts for the discrepencies witnessed in receiving waters where large loads from adits are not seen in downstream waters (Figures 5a through 6b). Table 5 displays the results of field monitoring and contaminant concentrations for adits which contribute a zinc load to the property.

	Table 5 Adit Flows and Loads, 2006 - 2008											
Site	Description	2006	2007	2008	2006	2007	2008	2006	2007	2008	Source of Data/Comment	
		F	low (1000m	³)	Conc	entration (r	ng/L)	Lo	Load (Kg/year)			
KV-32	Galkeno 900 Adit	101.97	114.55	88.36	0.02	0.18	0.14	2.35	20.05	12.55	Ongoing data collected by ERDC	
KV-45	Onek Adit	9.78	9.78	9.78	97.70	114.00	61.10	955.79	1115.25	597.73	Average of measured flows (ERDC/Access data)	
LES-66	Natural spring near Christal Lake	78.89	78.89	78.89	0.00	0.00	0.00	0.00	0.00	0.00	Average of two spot measurements taken in 1995 by LES	
KV-28	Galkeno 300 Adit	322.52	315.58	258.77	38.23	13.73	0.38	12329.57	4331.60	98.07	Ongoing data collected by ERDC	
KV-53	UN Adit	0.00	0.00	0.00	0.00	0.11	0.00	0.00	0.00	0.00	Dry	
KV-18	Bermingham Adit	63.12	63.12	63.12	4.05	4.87	3.43	255.62	307.37	216.49	Average of measured flows (ERDC/Access data)	
KV-19	Ruby 400 Adit	47.34	47.34	47.34	1.27	1.23	1.31	60.12	58.22	62.01	Average of measured flows (ERDC/Access data)	
KV-20	No Cash 500 Adit	138.85	138.85	138.85	12.60	14.00	11.30	1749.55	1943.95	1569.04	Average of measured flows (ERDC/Access data)	
KV-58	Dam No.3 seepage	-	-	-	-	-	-	-	-	-	No data available - assumed negligible	
KV-14	Silver King Adit	205.12	205.12	205.12	0.17	0.14	0.09	35.28	27.90	18.67	Average of measured flows (ERDC/Access data)	
KV-17	Husky SQ Adit	104.14	104.14	104.14	0.94	2.03	1.01	97.79	211.40	105.39	Average of measured flows (ERDC/Access data)	
KV-43	Bellekeno 600 Adit	72.58	72.58	72.58	0.33	0.75	0.21	23.59	54.07	15.17	Average of measured flows (ERDC/Access data)	
KV-33	Keno 700 Adit	66.27	66.27	66.27	1.23	1.46	1.58	81.65	96.56	104.71	Average of measured flows (ERDC/Access data)	
	High flows (>100,000m ³ /year)											
	High concentrations (>5mg/L)											
	High loads (>500Kg/year)											

3.4 CONTAMINANT LOADING BY WATERSHED

As discussed, the drainage in each basin is determined by the sum of the flow at nodes within that basin, including both the incremental flow to the outlet node and the flow from outlet nodes of upstream basins. Ultimately, these data sum to obtain the total annual contaminant load within the South McQuesten and Lightning Creek watersheds (Figure 5).

Under the first method of load estimation, the mass loading at the final outlet on the South McQuesten and Lightning Creek waterways is based on observed flows and concentrations at the outlet station. This provides a real-world view of the contamination present in Keno Hill waters. These data calculations are graphically presented in figures 6 and 8. By the second method of load estimation, the attenuation capacity of the site is not factored in and the loads represent the amount of contamination produced by all sources that may end up in Keno Hill waters and land resources (figures 7 and 9).

Figure 6 Total Zinc Loading (kg/yr) at the South McQuesten River; All Sources Before Attenuation

Figure 7 Total Zinc Loading (kg/yr) at the South McQuesten River, Observed

Figure 8 Zinc Loading (kg/yr) at Lightning Creek; All Sources Before Attenuation

Figure 9 Total Zinc Loading (kg/yr) at Lightning Creek, Observed

4 CONCLUSIONS

The mass loading model has provided a valuable tool for determining the level of contaminant loading from various parts of the Keno Hill site, as well as the level of actual contamination observed downstream. This has lead to a method for estimating the capacity for the site to absorb contaminants and reduce overall loads produced by contamination sources.

The model will be used to model the effects of varoius perferred closure options and assess the degree to which they may be successful or appropriate at a given site, particulary for water management at the mine adits and valley tailings.