

REVISION B: DRAFT FOR CLIENT REVIEW

PROJECT NO.: 0257-037-02 DATE: DECEMBER 23, 2005 DISTRIBUTION LIST: DELOITTE & TOUCHE INC. 0 COPIES ANVIL RANGE 0 COPIES NHC - VANCOUVER 1 COPY BGC - CALGARY 1 COPY BGC - VANCOUVER 0 COPIES

EXECUTIVE SUMMARY

This report presents the results of a geotechnical investigation undertaken to support the evaluation of options for increasing the capacity of the Rose Creek Diversion Canal at the Faro Mine, Yukon Territory.

The investigation included a review of existing data and reports, an engineering terrain analysis, shallow geophysical surveys, drilling of 23 boreholes at selected locations along the north and south sides of the existing canal, as well as along a proposed emergency overflow canal alignment located west of Station 46+00.

The area is underlain by metamorphic rocks, primarily a moderately strong calcareous phyllite, with igneous intrusive rocks (primarily strong gabbro) present in some locations below the existing canal. The bedrock is overlain by silty sand till and colluvial (slopewash) materials. The silty sand till contains 20 to 35 percent silt and clay size particles and is generally non-plastic. The colluvial materials vary widely in grain size distribution but in some locations contain 50 to 90 percent silt and clay size particles.

The depth to bedrock on the south (upslope) side of the existing canal ranged from 0 to a maximum of 8.7 meters in the boreholes. On the north (downslope) side of the canal, the depth to bedrock was generally greater than on the south side, and its presence could not be confirmed in some of the holes due to drilling refusal on cobbles and boulders. The maximum confirmed depth to bedrock on the north side of the canal was 12.2 metres.

Discontinuous permafrost was encountered in some of the holes drilled on the south side of the canal, between the diversion dam (Station11+00) and the left abutment of the Cross Valley Dam (Station 50+00). The permafrost in this area contains some excess ice, primarily within the upper 2 metres below ground surface. The underlying silty sand till contained very little excess ice and is expected to be thaw stable.

Permafrost which contained significant excess ice was encountered in the area west of Station 50+00, and particularly in the colluvial fan west of Station 54+00 of the existing canal. These materials would be very unstable when thawed.

The required design capacity of the diversion canal under the Probable Maximum Flood event will depend on whether or not permanent storm water retention ponds are constructed upstream from the canal. Once the required design capacity of the canal has been established, a cost benefit analysis should be undertaken to establish which of the various options for increasing the capacity of the canal will be most cost effective. It is expected that additional field investigations will be required to support the detailed design of the selected option.

TABLE OF CONTENTS

1.0	Intro	duction1
	1.1	General1
	1.2	Project Background 1
2.0	Sco	be Of Work
	2.1	Compile and Review Existing Data
	2.2	Terrain Analysis
	2.3	Shallow Geophysical Survey
	2.4	Terrain Analysis
3.0	Site	Conditions
	3.1	Topography and Drainage
	3.2	Geological Setting
	3.3	Bedrock
	3.4	Overburden Soils
	3.5	Conditions 5 Topography and Drainage 5 Geological Setting 6 Bedrock 6 Overburden Soils 7 Permafrost 7
	-	
4.0		al Construction and Performance8
	4.1	General
	4.2	Thermal Liner
	4.3	Canal Construction
	4.4	As Built Cross-Sections
	4.5	Canal Performance 10
5.0	Geo	technical Evaluation12
	5.1	General12
	5.2	Canal Widening
	5.3	Raise North Dike
	5.4	Emergency Spillway and Drop Structure15
	5.5	Pre-Design Studies
Refe	rences	s19

FIGURES

Figure 1	Site Location Plan
Figure 2	Mine Plan
Figure 3	Canal Plan and Profile – Station 0+00 to 35+00
Figure 4	Canal Plan and Profile – Station 35+00 to 60+00
Figure 5	Terrain Analysis
Figure 6	Bedrock Geology
Figure 7	Sketch of Geological Cross-Section
Figure 8	Grain Size Envelopes
Figure 9	Simplified Construction Schedule
Figure 10	Typical Cross-Sections of Existing Canal
Figure 11	Surface Erosion of Thermal Blanket (1982)
Figure 12	Instances of Instability in Canal Backslope (1994)
Figure 13	Conceptual Cross-Section – Canal Widening
Figure 14	Conceptual Cross-Section – Dike Raise

APPENDICES

Appendix A – Canal Cross-Sections

Appendix B – Borehole Logs Drilled in 1979 (Golder Associates, 1980)

Appendix C – Borehole Logs Drilled in 2005

LIMITATIONS OF REPORT

This report was prepared by BGC Engineering Inc. (BGC) for Deloitte & Touche Inc., the interim receiver for Anvil Range Mining Corporation and the Faro Mine Closure Office. The material in it reflects the judgement of BGC staff in light of the information available to BGC at the time of report preparation. Any use which a Third Party makes of this report or any reliance on decisions to be based on it is the responsibility of such Third Parties. BGC accepts no responsibility for damages, if any, suffered by any Third Party as a result of decisions made or actions based on this report.

As a mutual protection to our client, the public, and ourselves, all reports and drawings are submitted for the confidential information of our client for a specific project and authorization for use and / or publication of data, statements, conclusions or abstracts from or regarding our reports and drawings is reserved pending our written approval.

1.0 INTRODUCTION

1.1 General

This report presents the results of a geotechnical investigation undertaken to support the evaluation of options for increasing the capacity of the Rose Creek Diversion Canal at the Faro Mine, Yukon Territory.

The investigation was undertaken by BGC Engineering Inc. at the request of Mr. Doug Sedgwick of Deloitte & Touche Inc. who are the interim receivers for Anvil Range Mining Corp.

1.2 Project Background

The Faro Mine is located in the central Yukon, approximately 200 km northeast of Whitehorse. The Mine is accessible by an all weather road from Whitehorse and is about 22 km north of the Town of Faro, as shown on the site location map (Figure 1).

Mine operations began in 1969 and ceased in 1998, when the owner, Anvil Range Mining Corporation declared bankruptcy. Deloitte & Touche Inc. were appointed the interim receivers and are working with various regulatory agencies to develop and implement a mine closure plan.

The general arrangement of the Faro Mine is shown on Figure 2. As indicated, the Rose Creek diversion canal is located along the south side of the tailings area. The diversion canal was constructed to provide room for a tailings facility that was constructed in the Rose Creek valley. The canal diverts clean water from the North and South Forks of Rose Creek, around the south side of the tailings storage facility.

Plans and profiles along the existing diversion canal are presented on Figure 3, which shows the eastern (upstream) half of the canal and Figure 4, which shows the western (downstream) section. Cross-sections along the existing canal are presented in Appendix A.

The diversion canal was constructed in two separate stages. An upstream section of the canal, from near Station 10+00 to 19+00 (Figure 3) was completed in 1974 to carry clean water past the second tailings impoundment. A longer downstream section was completed in 1981, in preparation for construction of the intermediate tailings impoundment downstream (west) of the second tailings impoundment. This second reach extended the canal by about 3800 metres from about Station 19+00 to Station 57+00 (see Figure 4), where it discharges back into Rose Creek, downstream from the Cross Valley Dam. The existing canal is therefore about 4700 metres long.

The diversion canal was designed to carry a 1 in 50 year flood event, with 1 meter of freeboard. The contingency design capacity, with no freeboard, will carry a 1 in 500 year flood event. For mine closure, the canal must be designed to carry the Probable Maximum Flood. The capacity of the existing canal could be increased by either excavating the south cut slope to widen the canal, or by increasing the vertical height of the existing north dike.

The maximum design capacity required under the Probable Maximum Flood event will depend on whether or not permanent storm water retention ponds are constructed on either or both of the North and South Forks of Rose Creek to attenuate flows into the diversion canal.

At the time this report was prepared, a decision had not been made with respect to design of the storm retention ponds and therefore the required capacity of the diversion canal was not known. Therefore, the report only provides preliminary geotechnical recommendations.

As indicated on Figures 3 and 4, the existing gradient along the canal invert between Station 46+00 and 56+00 is relatively steep, with an average slope of about 4 percent. A series of drop weirs were installed along this reach of the canal in 1981 to reduce stream velocities. The weirs were designed on the basis of a 1 in 50 year flood event and would be destroyed under the flow volumes associated with the Probable Maximum Flood event.

Therefore, it will be necessary to provide an overflow spillway and drop structure to carry high flow volumes associated with the Probable Maximum Flood. The overflow spillway will be located near Station 46+00. The emergency drop structure could be located anywhere along the south valley wall, west of Station 46+00, with an overflow canal to direct excess water from the spillway at Station 46+00 to the drop structure. A tentative alignment for the proposed overflow canal is shown on Figure 4.

Subsurface conditions can be expected to have a significant effect on which of the various options will be most cost effective. It was therefore agreed that a preliminary geotechnical investigation should be undertaken to provide a better indication of the subsurface conditions along the canal.

This report presents the results of the field investigation, together with a preliminary geotechnical evaluation of the various options currently being considered. It is expected that the information presented in this report will be used to prepare conceptual designs and preliminary cost estimates of the various options. Once the most cost effective option has been determined, detailed geotechnical design recommendations can be prepared, as appropriate.

2.0 SCOPE OF WORK

The scope of work for the preliminary geotechnical investigation included four major tasks:

- Compile and review existing data, 1)
- 2) Conduct an engineering terrain analysis using available airphotos,
- 3) Conduct shallow geophysical surveys along the proposed alignment of the overflow canal west of Station 46+00.
- 4) Undertake a field drilling and laboratory testing program to characterize subsurface conditions along the existing canal and the proposed alignment of the overflow canal.

Compile and Review Existing Data 2.1

As indicated in the list of references at the end of the text, a considerable amount of information was available with respect to the design and construction of the diversion canal. Selected reports have been reviewed and relevant information has been incorporated into this field investigation report, as appropriate.

No design or construction reports were available for the section of the canal constructed in 1974. Subsurface information was available in a design report prepared by Golder Associates (1980) for the section of the diversion canal completed in 1981. The borehole logs from this investigation are presented in Appendix B for reference.

A report that describes the construction of the 1981 section of the canal was also available (Golder Associates, 1982). The diversion canal was inspected annually following construction, and some of these inspection reports were also available for review.

It should be noted that during the period from 1981 to 2003, all references to stations along the canal were referenced to the construction chainage for which chainage 0+00 was located near the diversion dam constructed in 1981. After 2003, a new chainage benchmark was established about 1900 metres upstream from the 1981 diversion dam, along the North Fork of Rose Creek (Figure 3). The approximate 2003 Stations have been estimated by adding 1900 metres to the construction chainages given in earlier reports and drawings. The accuracy of this conversion has not been determined but is thought to be within plus or minus 50 metres.

2.2 **Terrain Analysis**

A terrain analysis of the area adjacent to the diversion canal was undertaken using 1 to 10,000 scale airphotos taken in 2003 (Orthoshop, 2003). The terrain analysis delineated the surficial geology, existing drainage courses, unstable slopes and other topographic features of interest.

A site inspection was carried out by Mr. Gerry Ferris, P.Eng. of BGC Engineering, during the period from September 10 and 14, 2004 to confirm the results of the airphoto interpretation.

K:\Projects\0257 D&T\037 2005 RCDC Site Investigation\report\0257-037 Rev B Faro - Rose Creek Diversion Canal -3 Site Investigation Report.doc

The results of the terrain analysis are summarized on Figure 5. The bedrock geology in the vicinity of the canal is presented on Figure 6. Figure 7 is a sketch illustrating the major geological units in the area of interest.

2.3 Shallow Geophysical Survey

In the summer of 2004, shallow geophysical surveys were undertaken to determine the depth to bedrock below the proposed alignment of the overflow canal, west of Station 46+00. The survey used ground penetrating radar (GPR) and shallow seismic refraction equipment. The results of these geophysical surveys are presented in a report dated December 21, 2004 prepared by Aurora Geosciences Ltd.

Relevant information from the geophysical survey has been used to supplement observations made in the boreholes during the recent field investigation.

2.4 Field Drilling and Laboratory Testing

A site inspection was undertaken during the period from July 31 to August 4, 2005 by Messrs. G. Ferris and J. Severin (G.I.T.) of BGC Engineering Inc., to check site access for the drill rig and finalize borehole locations.

Field drilling was carried out during the period from August 8 to 20, 2005, during which time a total of 23 boreholes were drilled at selected locations as shown on Figures 3 and 4.

All holes were drilled using a CME-75 auger drill rig, owned and operated by Midnight Sun Drilling Limited of Whitehorse. The rig is equipped to drill with either hollow or solid stem augers and can recover soil samples using a Standard Penetration Test (SPT) sampler, shelby tubes or a CRREL core barrel.

All drilling and sampling was carried out under the supervision of Mr. Severin who logged each hole and collected disturbed and undisturbed soil samples at selected intervals.

In boreholes which stood open without sloughing and where fine grained soils were present, the holes were continuously cored with a CRREL barrel. Representative soil samples were taken from the recovered core. The CRREL barrel could not be used if the soil contained gravel or rocks, because the cutting teeth on the barrel would break off. At these locations, the holes were advanced using solid stem augers and disturbed samples were collected off of the auger flights.

In locations where the borehole was unstable due to sloughing soils, the holes were drilled with hollow stem augers and samples were collected with the SPT, provided the ground was not frozen. When used, SPT samples were collected every 2.5 feet to a depth of 10 feet. Below 10 feet, SPT samples were collected at 5 foot intervals to the end of the hole.

K:\Projects\0257 D&T\037 2005 RCDC Site Investigation\report\0257-037 Rev B Faro - Rose Creek Diversion Canal -Site Investigation Report.doc 4 On completion of drilling, all boreholes were backfilled with drill cuttings and the borehole locations were staked. The locations and elevations of the ground surface at each hole location were determined in the field by a survey crew from Yukon Engineering Services of Whitehorse.

The water contents of the soil samples were determined. Grain size analyses and Atterberg limits tests were carried out on selected representative samples to confirm visual soil classifications.

Laboratory testing on selected frozen core samples recovered with the CRREL barrel included bulk density, water content determinations, Atterberg limits and grain size analyses. Grain size envelopes for selected overburden materials are presented on Figure 8.

The borehole logs, which include the laboratory test results, are presented in Appendix C.

3.0 SITE CONDITIONS

3.1 Topography and Drainage

As indicated on Figure 1, the Rose Creek Diversion Canal is located near the toe of the south wall of the Rose Creek Valley. The south valley wall slopes range from 8 to 15 degrees to the horizontal, with short sections ranging up to about 20 degrees. The elevation difference between the valley bottom and the crest is about 500 metres, and the distance from the toe of the slope to the valley crest is about 3 km.

The valley slopes south of the canal are treed with a moderately dense black spruce forest with tree heights ranging to a maximum of about 10 metres. The surface vegetation in most locations consists of mosses and organic material which is generally about 0.3 metres thick in well drained areas of the slope and 1 or more metres thick in poorly drained areas.

The valley slopes south of the canal are generally well drained and trafficable to bulldozers during the thaw season. The area at the east end of the canal in the vicinity of Boreholes BGC05-14 and 15 is poorly drained and has poor trafficability. Surface drainage and trafficability were also poor on the lower valley slopes in the area between Boreholes BGC05-19 and 23.

Four well defined drainage courses are present on the south valley wall, at the locations shown on Figure 8. For convenience, each drainage course has been assigned a name, as follows:

- 1) Gilchrist Creek which intersects the existing canal near Station 11+00,
- 2) Goodall Creek, which intersects the existing canal near Station 26+00,
- 3) Cornish Creek, which intersects the existing canal near Station 51+00, and
- 4) Severin Creek, which intersects the proposed overflow canal near Station 55+00.

Both Goodall Creek and Cornish Creek are known to flow throughout the winter and caused significant icing problems during construction of the diversion canal in 1981. There is no record of similar difficulties in the vicinity of Gilchrist Creek near Station 11+00. There is no information on flows in Severin Creek.

In addition to these drainage courses, significant seepage was also observed during construction of the canal in 1981 in the vicinity of Stations 19+360, 21+010, 21+670, 21+900 and 22+760.

3.2 Geological Setting

The main geological units in the vicinity of the canal are illustrated on Figure 7. The area was subjected to glaciation, which left silty sand till deposits in the lower portion of the Rose Creek valley as indicated. During de-glaciation, the Rose Creek valley was an outwash channel, which left thick deposits of fluvial sands and gravels along the bottom of the valley, which are underlain by silty sand till.

As indicated on Figure 7, during the post-glacial period, the south slopes of the Rose Creek valley were overlain by more recent deposits including colluvium (slopewash) material which directly overlies the bedrock at higher elevations and the silty sand till at lower elevations.

The following sections provide a more detailed description of the soils and rocks along the existing canal alignment.

3.3 Bedrock

As shown on Figure 6, the area below the canal is underlain by metamorphic and igneous rocks of Ordovician age (400 million years before present). Between Stations 19+00 to 40+00 the bedrock consists primarily of calcareous phyllite which is a metamorphic rock similar to slate. Gabbro (an igneous rock) is present along the canal centreline between Stations 26+00 to 30+00 and along the entire existing canal section west (downstream) from Station 40+00.

The unconfined compressive strength of these rocks has not been determined, however they are medium strong to strong and during construction in 1981, it was necessary to drill and blast the rocks before they could be excavated.

The surface of the bedrock is highly variable along the length of the canal, but is generally higher on the left (south) side of the canal and deeper on the right (north) side. The depths to bedrock, as encountered in the test holes drilled in August, 2005 are shown on Drawings 3 and 4.

The near surface rocks are known to be highly fractured and at least within the upper few metres have a relatively high hydraulic conductivity (Golder Associates, 1982).

3.4 Overburden Soils

As indicated on the borehole logs and on Figure 5, the overburden soils consist primarily of colluvium and silty sand till. Grain size envelopes for both materials are presented on Figure 8.

The silty sand till in the vicinity of the canal consists of a well graded mixture of gravel, sand and silt. The fine grained fraction (silt and clay sized particles) generally ranged from 20 to 35 percent. The material is generally low to non-plastic, indicating it contains almost no clay minerals.

A hydraulic conductivity test (Golder Associates, 1980) on a remoulded, compacted sample of the silty sand till measured a hydraulic conductivity of 3×10^{-7} cm/sec. However the conductivity of the material increased by a factor of about 15 when it was subjected of several freeze-thaw cycles. The hydraulic conductivity could increase even more under field conditions over a period of several decades.

The colluvial material is much more variable as compared to the underlying till. As shown on Figure 8, the fine grained fraction of samples taken from Borehole BGC05-21, which is located in a colluvial fan downslope from Station 58+00 on proposed overflow canal (Figure 4), ranged from 50 to 90 percent, which is significantly higher than the fine grained fraction in the silty sand till.

3.5 Permafrost

The site is located in the discontinuous permafrost zone and average annual ground temperatures range between -0.5° C and $+0.5^{\circ}$ C. The permafrost in the vicinity of the canal is relatively warm and in most cases will degrade if the surface organic layer is disturbed or removed.

North Side of Canal

Permafrost was not encountered in any of the boreholes drilled at 7 locations in August 2005 on the north (downslope) side of the diversion canal (Boreholes BGC05-to 13).

South Side of Canal

Permafrost was not encountered in Boreholes BGC05-17 and 18 on the upslope side of the canal, which are located near Stations 33+00 and 38+00, respectively. However permafrost was encountered in the other 8 holes drilled on the upslope side of the canal between Stations 10+00 and 50+00.

In the holes in which permafrost was encountered, excess ice was found mainly in the near surface 1 or 2 metres. Surface trafficability was found to be poor on the upslope side of the canal between Stations 11+00 and 16+00, but was good in all other borehole locations between Stations 16+00 and 50+00.

The silty sand till located immediately upslope from the diversion canal does not appear to contain significant excess ice, between Stations 10+00 to 50+00. The silty sand till is relatively coarse grained and it is expected to be thaw stable.

West of Station 51+00

Permafrost which contains significant excess ice appears to be widespread west of Station 50+00. Trafficability in this area was found to be very poor in August, 2005. The soils in the colluvial fan contain significant excess ice and have a relatively high silt and clay content. They are expected to be unstable when thawed.

4.0 CANAL CONSTRUCTION AND PERFORMANCE

4.1 General

This section provides a brief summary of pertinent information extracted from the design, construction and post-construction monitoring reports. For more detailed information, the reader should refer to the original reports.

4.2 Thermal Liner

During design of the diversion canal, there was concern with respect to the short and long term stability of the permafrost in the cut slope along the south side of the canal. It was recognized that if the permafrost thawed faster than the melt water could drain out of the soil, the slope would become unstable. Therefore, in order to reduce the rate of thaw of the cut slope, it was planned to over-excavate the cut slope during the winter and place a layer of granular fill over the exposed slope.

Determining the thickness of thermal liner required to prevent thaw instability is largely a matter of judgement. In the winter of 1980, a short trial section of the canal was constructed near Station 40+00 to determine the effectiveness of using 1.7 metres of gravel over the exposed permafrost. The trial section was monitored over the following thaw season to confirm the performance of the slope. It has not been possible to locate the report which describes the configuration and results of this trial. It is understood, however that the trial only used one thickness of gravel over the permafrost. Therefore, it is not known if the cut slope would have remained stable if a thinner (or no) thermal lining had been placed over it (G. Gilchrist, 2005).

4.3 **Canal Construction**

A simplified schedule which highlights the major construction tasks is presented in Figure 9. As indicated, construction began in early October, 1980 and was completed 12 months later.

The volumes of common and rock excavation required to construct the diversion canal in 1981, are given in Table 1 below:

ltem	Description	Volume (cubic metres)
1	Common Excavation	465,000
2	Rock Excavation for Canal	55,000
3	Excavation of Rock Cutoff Trench	12,000
4	Thermal Liner	119,000

Table 1 – Common and Rock Excavation Volumes Rose Creek Diversion Canal in 1981 (Golder Associates, 1982)

Item 1, common excavation, included all materials (including frozen and unfrozen soil and fractured rock) that could be excavated without having to be blasted. Rock excavation was any material that had to be blasted before it could be excavated.

From the point of view of interpreting the post construction performance of the canal, a number of items are worth noting.

Common excavation took place primarily during the period from November to April, when temperature records show that average daily temperatures were below freezing. As mentioned, this timing was deliberate to prevent thawing of any ice rich material in the cut slope along the south side of the canal. The gravel thermal liner was placed over the exposed cut slope before spring breakup to minimize the risk of thaw induced instability.

However, winter construction presents a number of disadvantages with respect to earthworks construction. First of all, as noted in the construction report, it was not possible to determine the extent of permafrost (including ice rich permafrost) in the native material, because even though significant volumes of unfrozen material were encountered at depth, the face of the excavation usually froze within 24 hours.

Secondly, as indicated on Figure 9, a significant portion of the fill for the north dike was placed during March and April, when average air temperatures were below freezing. It is very difficult to achieve satisfactory placement and compaction of fill materials for the dike because the material is frozen and it cannot be adequately compacted. In addition, even if great care is taken by the inspectors and earthworks contractor, ice, snow and large rocks (which appear to be frozen lumps of soil) will be incorporated into the fills.

K:\Projects\0257 D&T\037 2005 RCDC Site Investigation\report\0257-037 Rev B Faro - Rose Creek Diversion Canal -9 Site Investigation Report.doc

Finally, it is worth noting that the contract incorporated a bonus / liquidated damages clause to ensure canal construction was substantially completed by October 1, 1981. The contractor would be paid \$10,000 per day for each day in advance of October 1 that construction of the canal was substantially completed and \$10,000 per day penalty for each day after October 1 until the canal was substantially completed. Such incentives are not uncommon; however, if the contractor believes that he cannot meet the target date, construction quality will suffer, despite the efforts of the most conscientious inspectors.

4.4 As Built Cross-Sections

Typical as built cross-sections of the diversion canal are presented on Figure 10. As shown, in locations where bedrock was not present, the south cut slope was over-excavated and trimmed to a slope of 2 horizontal to 1 vertical. About 1.7 metres of granular fill (thermal liner) was placed over the exposed permafrost to prevent it from becoming unstable during the following thaw season. The excavated material was used to construct the north dike. Silty clay till was placed on the inside slope of the north dike to reduce seepage through the dike. Riprap erosion protection was then placed over the slopes and invert of the canal to prevent erosion.

In locations where bedrock was encountered, the rock slope was trimmed to 0.5 to 1 vertical, and the overlying soil was trimmed to 2 horizontal to 1 (Figure 10). A thermal liner or riprap erosion protection was not required over the exposed rock; however it was required on top of the overlying soil as shown. The excavated material was used to construct the north dike and silty clay till was placed on the inside of the dike to reduce seepage. In locations where the north dike was constructed on bedrock, there was concern that there would be a significant amount of seepage through the near surface fractured bedrock below the dike. Therefore, a cutoff trench was excavated into the rock below the inside toe of the north dike. The trench was backfilled with compacted silty clay till to reduce seepage through the bedrock.

4.5 Canal Performance

The construction report (Golder Associates, 1982) provides an excellent summary of the performance of the canal earthworks during the period from May to September, 1981, the first thaw season after construction. Annual inspection reports since that time indicate that the canal has performed satisfactorily, requiring only minimal maintenance.

South Cut Slope

The construction report found virtually no thaw settlements or instability on the south cut slope of the canal during the first summer after construction.

During the summer of 1981, surface runoff flowed over the top of the cut slope and eroded the gravel thermal blanket in some locations, as shown on Figure 11. Drainage swales were therefore installed along the crest of the cut slope to direct surface water to rock filled drainage channels placed at strategic intervals along the cut slope.

An inspection carried out in June, 1994, identified three locations on the south side of the canal where instability was observed (Geo-Engineering MST, 1995):

- 1) An active slump, about 30 metres long, near Station 32+00 on Figure 3. A photo of the slump is presented on Figure 12. The slump is located near one of the till borrow sources used during canal construction. The slump is localized and may be the result of progressive melting of an ice lens within the till, or it may be a groundwater discharge area.
- 2) A minor slump in the vicinity of Station 35+50 (Figure 4) which appears to be associated with surface erosion at that location.
- 3) A fresh landslide, about 100 metres long near Station 39+00. A photo of this instability is also presented on Figure 12. The cause of this slide, which was first observed in the spring of 1994, is uncertain. The immediate cause is believed to have been water that ponded on the upslope (south) side of a construction access road at this location.

The bedrock slopes on the south slope of the diversion canal have remained stable since construction; however there are one or two locations where fractures in the rock are opening up and small scale rock falls may occur in the future.

North Dike

Cracking and settlements of the north dike were noted in a few localized areas and some minor seepage along the north toe of the dike was observed during the first thaw season after construction. None of these defects were of significant concern and continued monitoring and minor regrading of the dikes was recommended. Dike settlements were either the result of inadequate compaction of the fill materials during the previous winter or thaw settlement of ice rich permafrost within the foundation soils.

A report prepared by Golder Associates (1990) indicated that minor thaw settlements and dike slope movements were occurring in the vicinity of Stations 38+00 and 40+00. Some mitigative measures were constructed near Station 40+00 in 1989, however movements at that location were continuing at the time of the 1990 report.

In the decades since construction, the crest of the north dike between stations 31+00 and 41+00 settled a total of about 1 metre. In the summer of 2004, additional fill was placed along this section of the north dike to raise it back to its initial design elevation.

Drop Weirs

The drop weirs in the canal between stations 49+00 and 56+00 have performed satisfactorily. Some of the rock in the weirs was shifted when flows from a 1 in 40 year flood event occurred. This observation indicates that while the drop weirs conform to the design requirement of a 1 in 50 year flood event, they would most likely be damaged if higher flows were to occur.

5.0 GEOTECHNICAL EVALUATION

5.1 General

Conceptually, two basic approaches for increasing the capacity of the existing Rose Creek diversion canal can be considered:

- 1) Increasing the width of the canal by excavating material from the south side of the canal, or
- 2) Raising the height of the north dike, so that the water level in the canal can be increased.

The geotechnical aspects of the two options are discussed separately in the following sections, although it is recognized that the most cost effective approach may be to excavate material from the south side of the existing canal and use it to raise the height of the north dike.

5.2 Canal Widening

The capacity of the canal can be increased by widening the canal along the south side, as shown schematically on Figure 13.

Care should be taken during canal widening not to disturb or damage the compacted soil lining on the existing canal invert or on the slopes of the north dike. In addition, in those locations where bedrock is encountered on the invert of the widened portion of the canal, it may be necessary to extend the existing cutoff trench into the fresh bedrock excavation. This requirement would have to be confirmed by observations during construction.

It will be necessary to maintain water flow in the canal throughout construction, and in addition, it would be desirable not to damage the lining on the invert of the existing canal. Therefore, it is recommended that the invert elevation of the widened section of the canal remain about 1 metre above the normal water level in the canal during the construction season. This geometry will also cause flows to remain concentrated within the existing canal channel or, at low flows, in the pilot channel. This is particularly important during the early fall and winter to minimize icing in the canal.

For preliminary design, it is recommended that cut slopes in rock should not exceed 0.5 horizontal to 1 vertical. Slopes in bedrock should be scaled to remove loose boulders. It is expected that the rock slopes will remain stable in most locations; however the exposed rock cuts should be inspected by an experienced engineer to determine whether there are any local areas which will require slope flattening or rock reinforcement such as rock bolts or shotcrete.

For preliminary design, it is recommended that cut slopes in silty clay till be trimmed to 2 horizontal to 1 vertical. The silty clay on the cut slope and along the base of the canal section will be susceptible to erosion during periods of high flows in the canal. The requirement and class of riprap erosion projection on the cut slope and on the canal invert should be determined by a hydraulics engineer.

Observations over the past few decades, together with the information obtained from the recent geotechnical investigation, indicate that the frozen silty sand till will remain stable in most locations during the thaw season. It is expected however, that occasional pockets of ice rich soil will be encountered within the till which may result in localized sloughing in the short term. In addition, the overlying ice rich colluvial materials may have to be cut back and covered with gravel to control sloughing. It is not expected that it will be necessary to overexcavate the silty clay till and place a thick granular thermal blanket over the entire cut slope.

It is recommended that widening of the canal be undertaken during the thaw season, so that any ice rich zones can be readily identified and allowed to drain and stabilize as construction proceeds. If unstable areas are encountered in the excavation, a thermal liner can be added to those sections as necessary. Silty sand till excavated from the south side of the canal may be used in the construction of the north dike, provided it has thawed and drained before it is placed and compacted. Alternatively, the till could be used to provide a soil cover over the existing tailings.

It is expected that some fine grained, ice rich zones will be encountered on the south side of the canal, particularly in the near surface 1 to 2 metres below the natural ground surface. Those materials which contain a significant proportion of fine grained or organic material will have to be wasted. This is particularly a concern between Stations 11+00 and Station 16+00, where trafficability of the near surface soils is known to be poor.

If widening the canal proves to be the most cost effective option, It is recommended that at least one full size test excavation be constructed during the thaw season, at a suitable location in the vicinity of Station 14+00, to confirm the expected behaviour of the cut slopes as they thaw during construction. The observations made during the test excavation should be documented and the results should be made available to contractors who are considering bidding for the canal upgrading project.

As mentioned, the primary cause of erosion of the south cut slope following construction in 1981 was uncontrolled flow of surface runoff over the face of the slope (Figure 11). It is recommended that a shallow swale be constructed at the top of the slope to direct surface runoff into rock filled channels placed at strategic locations along the length of the canal. The locations of the drainage swales and rock filled channels will have to be established based on field observations made during the first few thaw seasons after construction.

It is expected that the thickness of the overburden materials over the bedrock will decrease towards the south (upslope) from the canal. However, it is not possible to provide a reliable estimate of the volumes of colluvium, silty sand till and rock that will be encountered in the excavation based on the information currently available. The volume of rock, in particular, should be determined more accurately, since it will have a significant effect on construction costs. In addition, if the most cost effective option is to both widen the canal and use the excavated material to increase the height of the north dike, it would be important to determine the volume of silty sand till as accurately as possible.

It is understood that there is concern that shallow skin flows could occur on the slopes south of the diversion canal, which could block the canal. Skin flows can be initiated by events such as forest fires or unusually heavy rainfall. It is recommended that the slopes be inspected during the late summer months by an experienced geotechnical engineer to confirm surface drainage conditions and the properties of the near surface soils. This information is required to evaluate the risk of skin flows occurring on these slopes in the future.

5.3 Raise North Dike

The second basic approach for increasing the capacity of the canal is to raise the height of the north dike of the canal, as illustrated conceptually on Figure 14. The dike could be raised by using material excavated from the south side of the canal or by importing material from designated borrow sources.

As indicated on the figure, the outside shell of the north dike can be constructed of waste rock hauled from the existing rock dumps or from rock liberated by widening the canal to the south. In any case, it will be necessary to place silty sand till on the south side of the dike to prevent seepages losses through the dike. The silty sand till could be excavated from sources located on the south side of the canal or from any other designed borrow source in the area. It may be necessary to place filter cloth or filter gravel between the silty clay liner and the outside shell of the north dike, depending on the gradation of the material used to construct the shell.

Riprap erosion protection will be required over the silty clay liner placed on the north dike to control erosion from surface precipitation as well as water flowing in the canal during design flood events. The class of riprap should be determined by a hydraulics engineer.

Care will be required during construction not to disturb the compacted silty clay liner that is present on the south slope of the existing dike.

As indicated on Figure 14, a significant portion of the enlarged north dike will extend into the area where tailings were deposited during mine operations. A comparison of the topography prior to placement of the tailings, with that which currently exists, indicates that from Stations 19+00 to 38+00, the foundation soils along the north side of the existing dike should provide adequate support for an enlarged dike.

However, in the section from Stations 38+00 to 44+00, soft, compressible tailings, which range up to 20 metres in thickness, are present close to the toe of the existing dike. These materials will not provide a stable foundation for an enlarged dike. There are three options that can be considered for overcoming this difficulty.

- 1) Subexcavate or densify the tailings to provide a stable foundation for the dike. This option may not be practical depending on the properties of the tailings,
- 2) Limit the maximum height of the dike, to a height that can be accommodated in this section, without having to extend the dike onto the tailings, and
- 3) Realign the section of the dike between Stations 38+00 to 44+00, as necessary, so that the dike can be enlarged without placing fill on the tailings.

It is recommended that a cost benefit analysis be undertaken during the next stage of design to determine which of these options is most cost effective.

The availability of silty clay till on the south side of the canal may limit the maximum height to which the north dike can be raised. As mentioned in the previous section, once the optimum design for increasing the capacity of the diversion canal has been established, a series of probe holes should be drilled along the south side of the canal so that a more reliable estimate of the available volume of silty clay till can be established.

5.4 Emergency Spillway and Drop Structure

As mentioned, the drop weirs in the existing canal west of Station 46+00 (Figure 4) could be eroded away under extreme flow events in the canal.

The existing drop weirs could be replaced with a single reinforced concrete drop structure in the vicinity of Station 46+00. As indicated on Figure 4, the structure would be relatively large, since the vertical drop is about 30 metres and it would have to incorporate a fish ladder to allow fish passage upstream under normal flow conditions. A reinforced concrete drop structure would be relatively expensive and in addition, would require ongoing maintenance to prevent the concrete from deteriorating. Ultimately, after many decades, it might become necessary to construct a replacement structure.

A better option would be to maintain the existing canal alignment, including the drop weirs, which are designed to allow fish passage up this section of the canal. The existing canal would carry normal stream flows up to about a 1 in 50 year event. An emergency spillway and drop structure would be provided which would be designed to carry excess flows above the 1 in 50 year event. Under this scheme, the emergency spillway and drop structure would only be rarely used.

Since bedrock occurs relatively close to the surface below the south valley wall, it should be possible to construct at least the upper portion of the drop structure in rock. Conceptually the structure could be located anywhere along the proposed alignment of the overflow canal between Station 44+00 and Borehole BGC05-23 (Figure 4).

From a geotechnical point of view it would be preferable to locate the drop structure close to the emergency spillway, somewhere between Stations 44+00 and 46+00, for the following reasons:

- The bedrock between Stations 44+00 and 46+00 is expected to consist of gabbro, a hard igneous rock which is more durable than the calcareous phyllite that underlies the area below the south valley wall west of Station 50+00 (Figure 6).
- 2) Examination of the airphotos indicates that debris flows have occurred periodically in Severin Creek, which crosses near Station 55+00 of the proposed overflow canal. The data obtained in the bore hole drilled in this area indicates that at least three debris flows have occurred at this location in the past. The frequency of occurrence of the debris flows is not known, but could be in the order of every few decades or centuries, depending on climate changes.
- 3) Consideration was given to placing the drop structure east of Severin Creek, between Stations 49+00 and 54+00 of the proposed overflow canal. However, this option would require that a relatively large embankment be constructed between the existing canal and the bottom of the drop structure to direct storm water away from the existing canal, downstream from Station 52+00. The embankment would have to be constructed on the colluvial fan, which, as indicated on Borehole Log BGC05-23 consists of ice rich, thaw unstable soils which extend to depths of about 4 metres.

Ideally, an emergency drop structure between Stations 44+00 and 46+00, should be excavated in bedrock over its entire height. The bedrock is visible at ground surface near the existing canal in this area and was encountered at a depth of 8.6 metres in Borehole BGC05-10.

If a decision is made to locate the emergency spillway and drop structure in this area, it will be necessary to determine the surface topography of the bedrock more accurately so that the design of the emergency spillway, drop structure and outlet structures can be optimized. It is expected that this work can be accomplished by drilling probe holes in combination with geophysical methods. In addition, it is recommended that core samples be obtained of the rock below the proposed location for the drop structure, to establish the rock lithology, depth of weathering, durability, unconfined compressive strength and other properties.

A significant advantage of locating the drop structure between Stations 44+00 and 46+00 is that the outflow would be directed upstream from the Cross Valley Dam. It is understood that this dam may be breached as part of mine closure; however a final decision has not been made.

If the dam is breached, the breach should be located near the north abutment, so that remnants of the dam embankment would outflow from the emergency drop structure away from the downstream section of the existing canal. If the dam is not breached, then it would be necessary to increase the size of the existing emergency spillway located near the north abutment of the dam. If the capacity of the emergency spillway of the dam increased, the topography of the bedrock surface in the vicinity of the spillway should be determined using a combination of probe holes and geophysical methods. In addition, core samples of the rock should be obtained to confirm the properties of the rock below this area.

5.5 Pre-Design Studies

Once the required design capacity of the canal under the Probable Maximum Precipitation event has been established, it is recommended that conceptual designs for increasing the capacity of the canal and for the emergency spillway and drop structure be prepared. The conceptual designs should be based on the geotechnical recommendations presented in this report and should include cross-sections spaced at 100 to 200 metres along the canal, so that material volumes can be estimated to an acceptable level of accuracy.

Preliminary cost estimates for the various options should be prepared so that the most cost effective combination of options can be determined.

It is expected that once the most cost effective approach for increasing the capacity of the diversion canal has been determined, it will be necessary to undertaken additional field drilling to support detailed design. Detailed geotechnical design and construction recommendations can be prepared once the subsurface information from these investigations is available.

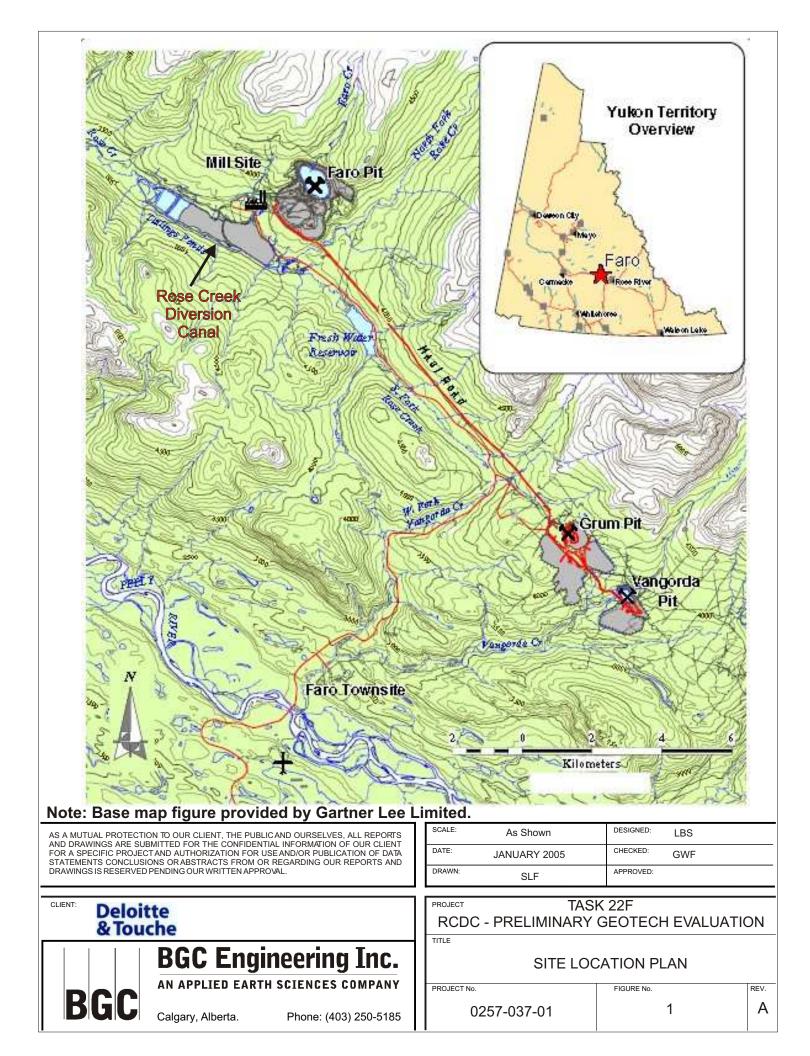
BGC Engineering Inc.

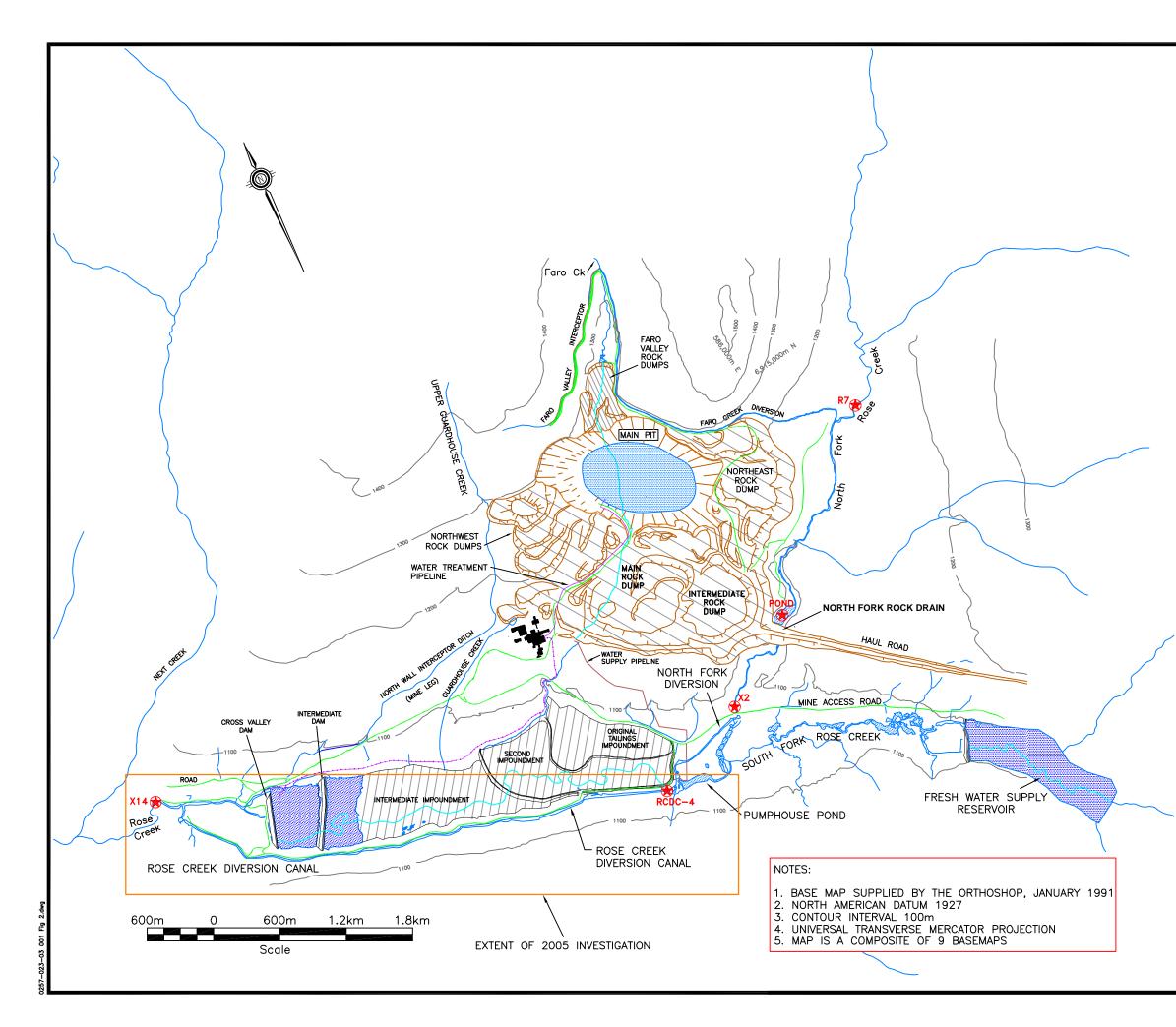
Per:

Bruce Smith, M.Sc., P.Eng. Project Engineer

Gerry Ferris, M.Sc., P.Eng. Review Engineer

REFERENCES


- Aurora Geosciences Ltd, 2004. *Ground Penetrating Radar and Seismic Refraction Surveys at the Faro Mine, Yukon Territory*. Report prepared for BGC Engineering Inc, dated December 21, 2004.
- BGC Engineering Inc. 2004a. *Hydraulic Capacity Assessment, Rose Creek Diversion Canal.* Report prepared for Deloitte & Touche Inc. June 30, 2004
- BGC Engineering Inc. 2004b. *Evaluation of the North Fork Rock Drain*. Draft report prepared for Deloitte & Touche Inc.
- Golder Associates, 1980. *Final Design Recommendations for the Down Valley Tailings Disposal Project, Faro, Yukon Territory.* Report prepared for Cyprus Anvil Mining Corporation, June 1980.
- Golder Associates, 1982. Down Valley Tailings Containment Project, 1980-81 Construction, Faro, Yukon. Report prepared for Cyprus Anvil Mining Corporation.
- Golder Associates, 1990. 1989 Performance Monitoring of the Down Valley Tailings Project, Faro Mine, Volume 1. Report to Curragh Resources Inc., March, 1990.
- Golder Associates, 2004. Rose Creek Tailings Impoundment, Site Characterization and Seismic Stability Assessment Report, Anvil Range Mining Complex, Yukon. Report submitted to SRK Consulting Inc.
- Geo-Engineering (M.S.T.) Ltd., 1989. *Faro Mine, Report on 1988 Inspection.* Report prepared for Northern Affairs Program, Whitehorse, Y.T., dated January, 1989.
- Geo-Engineering (M.S.T.) Ltd., 1991. *Faro Mine, Report on 1990 Inspection.* Report prepared for Northern Affairs Program, Whitehorse, Y.T, dated January, 1991.
- Geo-Engineering (M.S.T.) Ltd., 1995. *Faro Mine, Report on 1994 Inspection*. Report prepared for Northern Affairs Program, Whitehorse, YT, dated January, 1995.
- Gilchrist, G., 2005. Personnel communication.
- Hydrocon Engineering (Continental) Ltd. 1980. *Hydrologic and Hydraulic Design of Down Valley Tailings Disposal Project, Cyprus Anvil Mining Corporation, Faro Mine, YT.* Report Prepared for Golder Associates, May 1980.
- Hydrocon Engineering (Continental) Ltd. 1982. Rose Creek Diversion, Down Valley Tailings Disposal Project, Cyprus Anvil Mining Corporation, Review of Licensing Requirements and As-Built Conditions. Report prepared for Golder Associates. May 1980.


K:\Projects\0257 D&T\037 2005 RCDC Site Investigation\report\0257-037 Rev B Faro - Rose Creek Diversion Canal -Site Investigation Report.doc 19

- Pigage, L.C., 2001. *Geological map of Mount Mye (NTS 105K/6W), Central Yukon (1:25,000 scale)*. Exploration and Geological Services Division, Yukon Region, Indian and Northern Affairs Canada, Open File 20010-28.
- Northwest Hydraulic Consultants 2001. *Hydrotechnical Assessment for Faro Mine Site.* Report prepared for BGC Engineering Inc.
- Northwest Hydraulic Consultants 2003. Rose Creek Diversion Channel at Faro Mine, Yukon, Hydrotechnical Investigation. Submitted to BGC Engineering Inc.
- Northwest Hydraulic Consultants 2004. *Hydrotechnical Study for Closure Planning, Faro Mine Site Area, Yukon*. Report submitted to SRK Consulting Inc.
- Sigma Resource Consultants Ltd. 1975. *Rose Creek Diversion Works, Observations and Measurements Made During Spring Runoff 1975.* Report prepared for Cyprus Anvil Mining Corporation, June 1975.
- SRK Consulting Inc. 2003. Scoping Studies for Final Closure and Reclamation Plan, Faro Mine, Faro, Yukon. Report prepared for Deloitte & Touche Inc. January 2003.
- The Orthoshop 2003. 1:20,000 and 1:10,000 scale airphotos of the Faro Mine. Prepared for SRK Consulting Inc.

K:\Projects\0257 D&T\037 2005 RCDC Site Investigation\report\0257-037 Rev B Faro - Rose Creek Diversion Canal - Site Investigation Report.doc

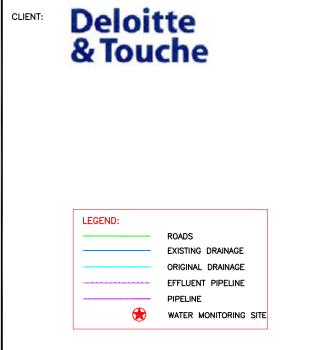
	BGC EN	GINEERING INC.	
	AN APPLIED EAR	TH SCIENCES COMPANY	
BGC	Calgary, AB	Phone: (403) 250 5185	

DATE:	JAN 2006	
DRAWN:	JMS	
DESIGNED:	LBS	
CHECKED:	GWF	
APPROVED:		A CONTRACTOR OF A CONTRACTOR O
PROJECT	Т	ASK 22F
RCDC	- PRELIMINAR	Y GEOTECHNICAL EVALUATION
TITLE		

MINE PLAN

FIGURE No.

2

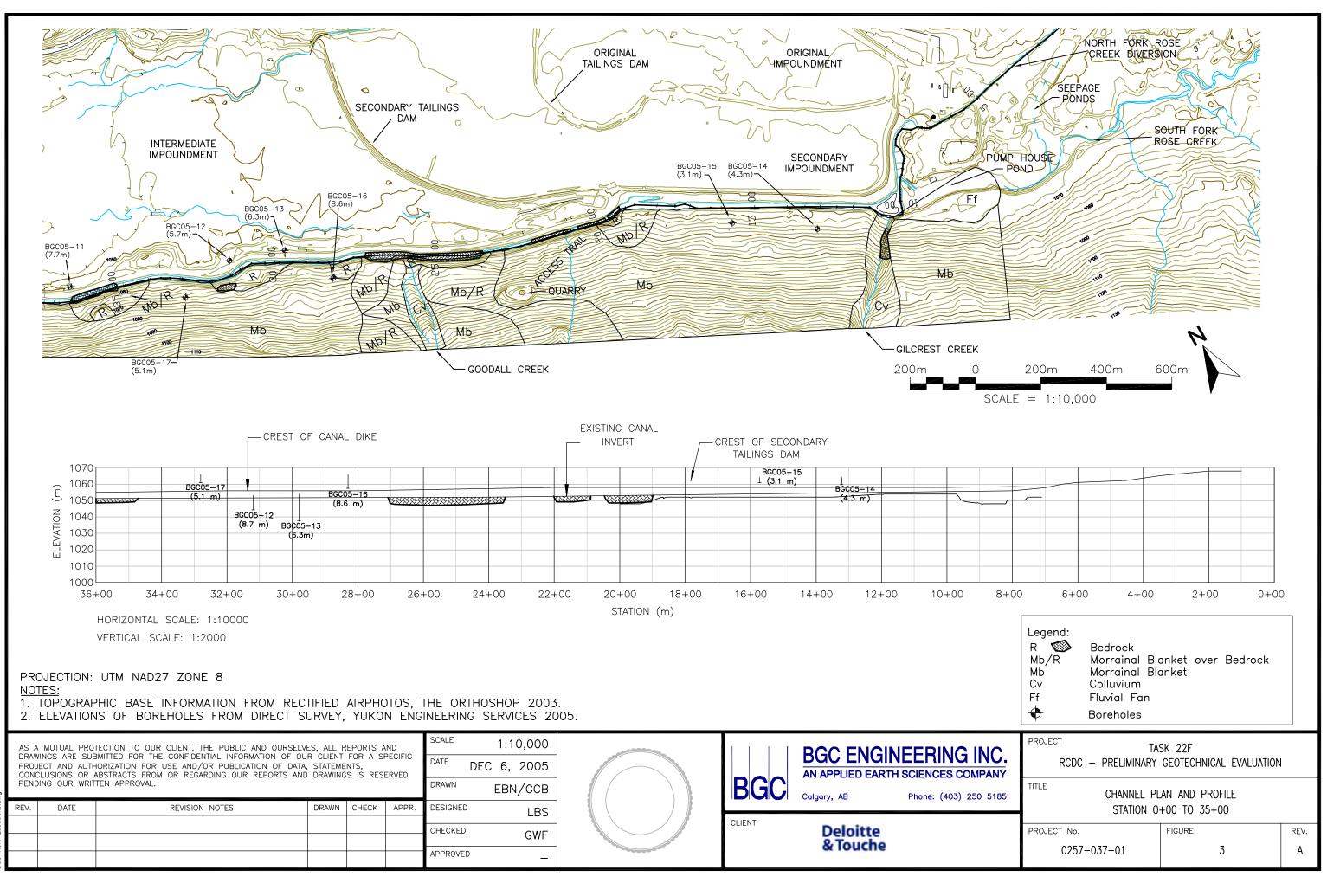

REV.

Α

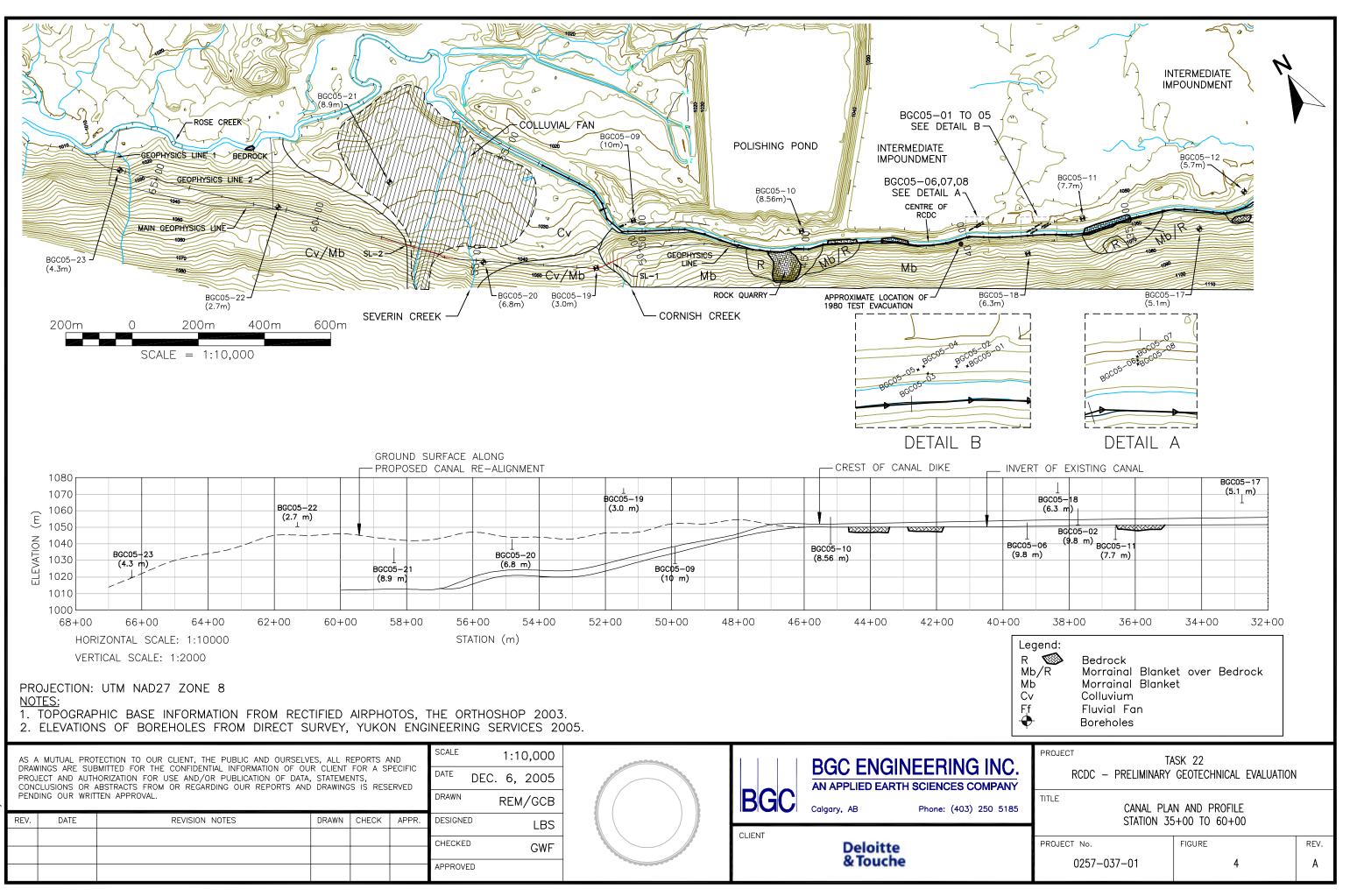
AS SHOWN

REV.	DATE	REVISION NOTES	DRAWN	CHECKED	APPROVED

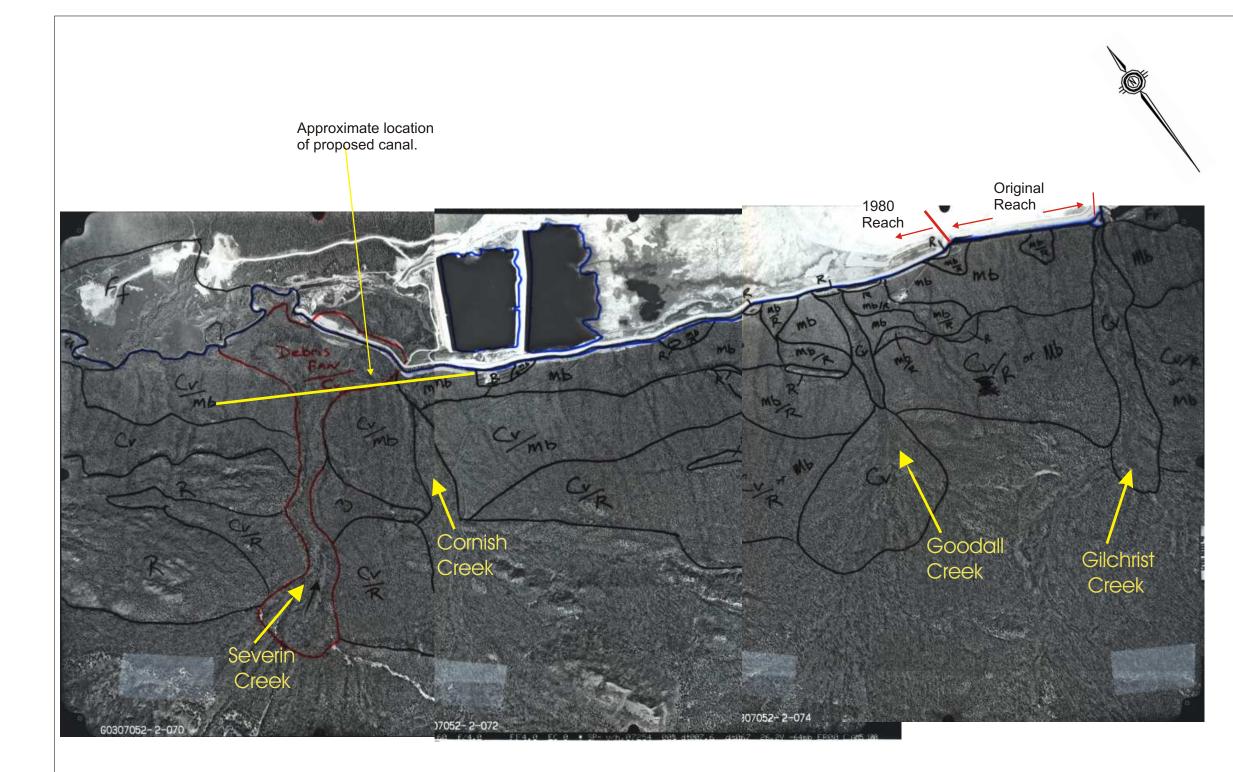
AS A MUTUAL PROTECTION TO OUR CLIENT, THE PUBLIC AND OURSELVES, ALL REPORTS AND DRAWINGS ARE SUBMITTED FOR THE CONFIDENTIAL INFORMATION OF OUR CLIENT FOR A SPECIFIC PROJECT AND AUTHORIZATION FOR USE AND/OR PUBLICATION OF DATA, STATEMENTS, CONCLUSIONS OR ABSTRACTS FROM OR REGARDING OUR REPORTS AND DRAWINGS IS RESERVED PENDING OUR WRITTEN APPROVAL.


CLIENT:

SCALE:

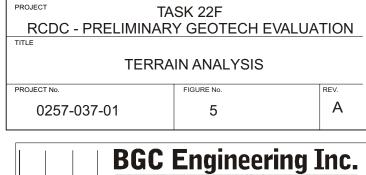

DATE:

PROJECT No.


0257-037-02

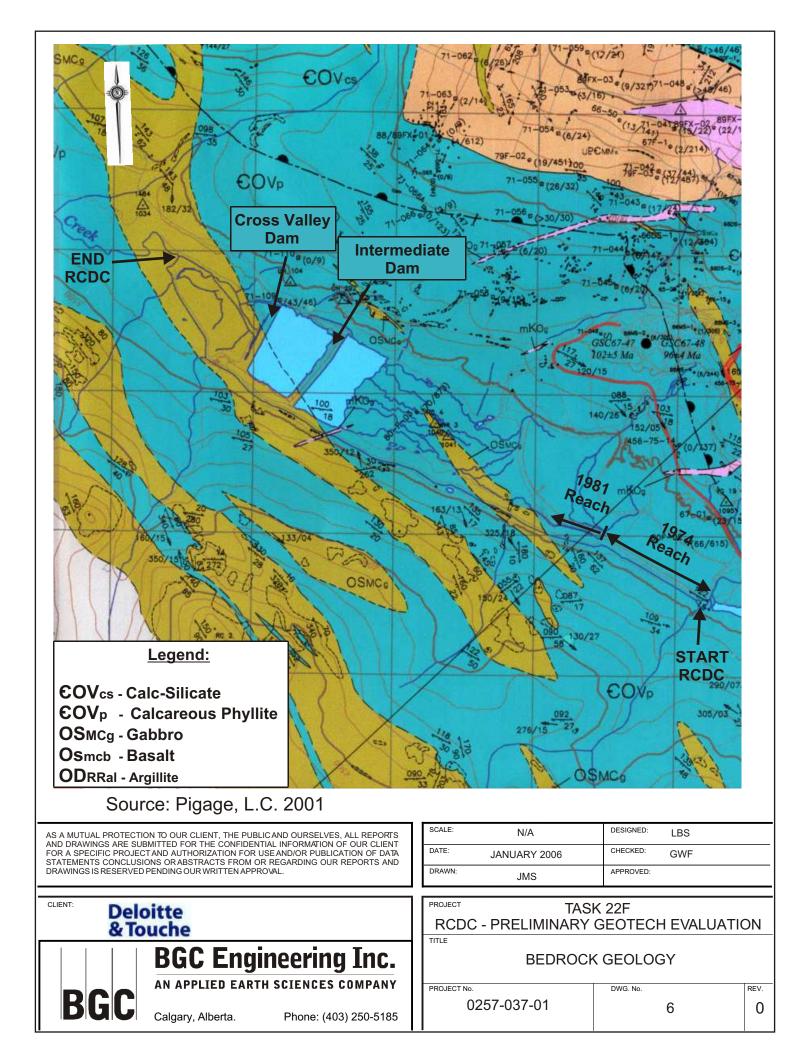
C Hole Locations.

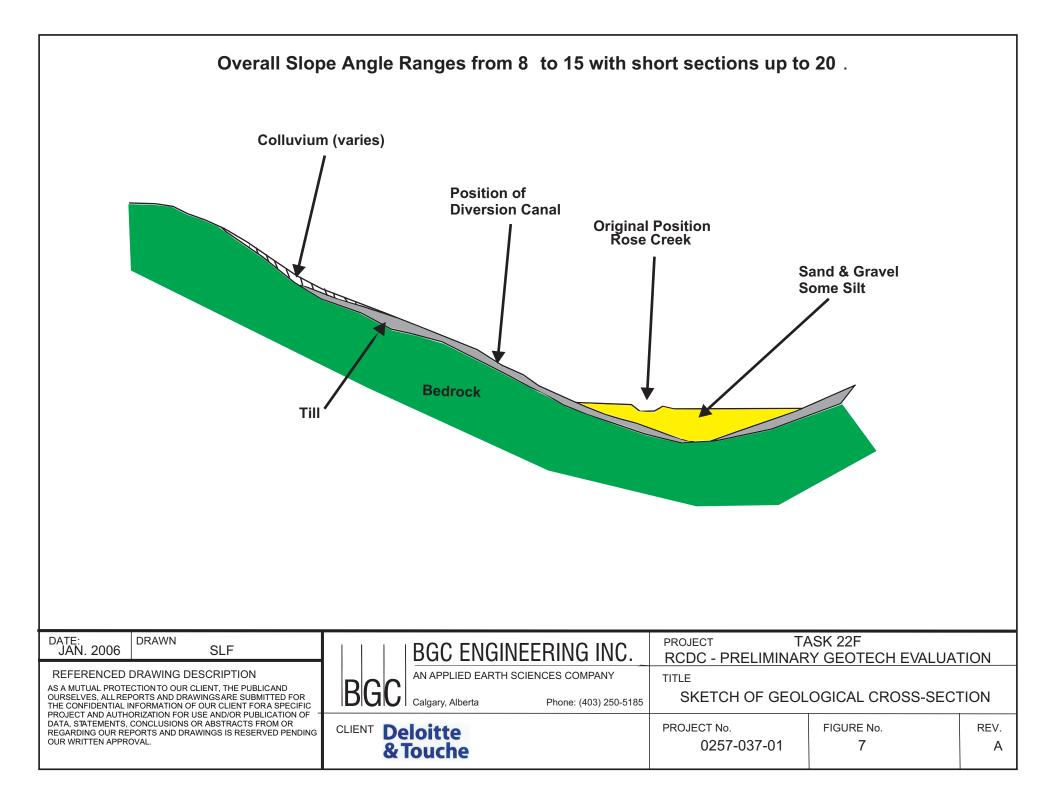
C Hole Locations

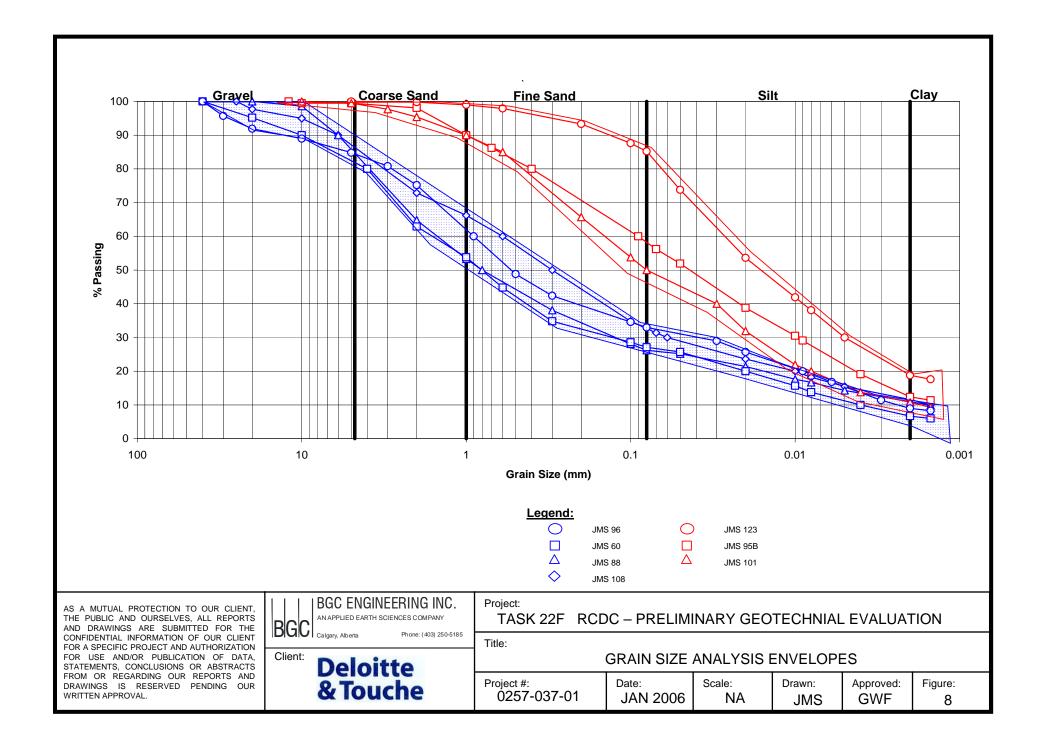

Source: Airphotos G0307052-2-(070,072,074) Scale 1:10,000 taken 07-25-03 The Orthoshop, Calgary, AB Legend: Ff- Fluvial Fan Cv - Colluvium R - Rock Cv/R - Thin Colluvium Overlying Rock Mb - Moraine Mb/R - Thin Moraine overlying Rock Cv/Mb - Thin Colluvium Overlying Moraine CLIENT:

AS A MUTUAL PROTECTION TO OUR CLIENT, THE PUBLICAND OURSELVES, ALL REPORTS AND DRAWINGS ARE SUBMITTED FOR THE CONFIDENTIAL INFORMATION OF OUR CLIENT FOR A SPECIFIC PROJECTAND AUTHORIZATION FOR USEAND/OR PUBLICATION OF DATA STATEMENTS CONCLUSIONS OR ABSTRACTS FROM OR REGARDING OUR REPORTS AND DRAWINGS IS RESERVED PENDING OUR WRITTEN APPROVAL.

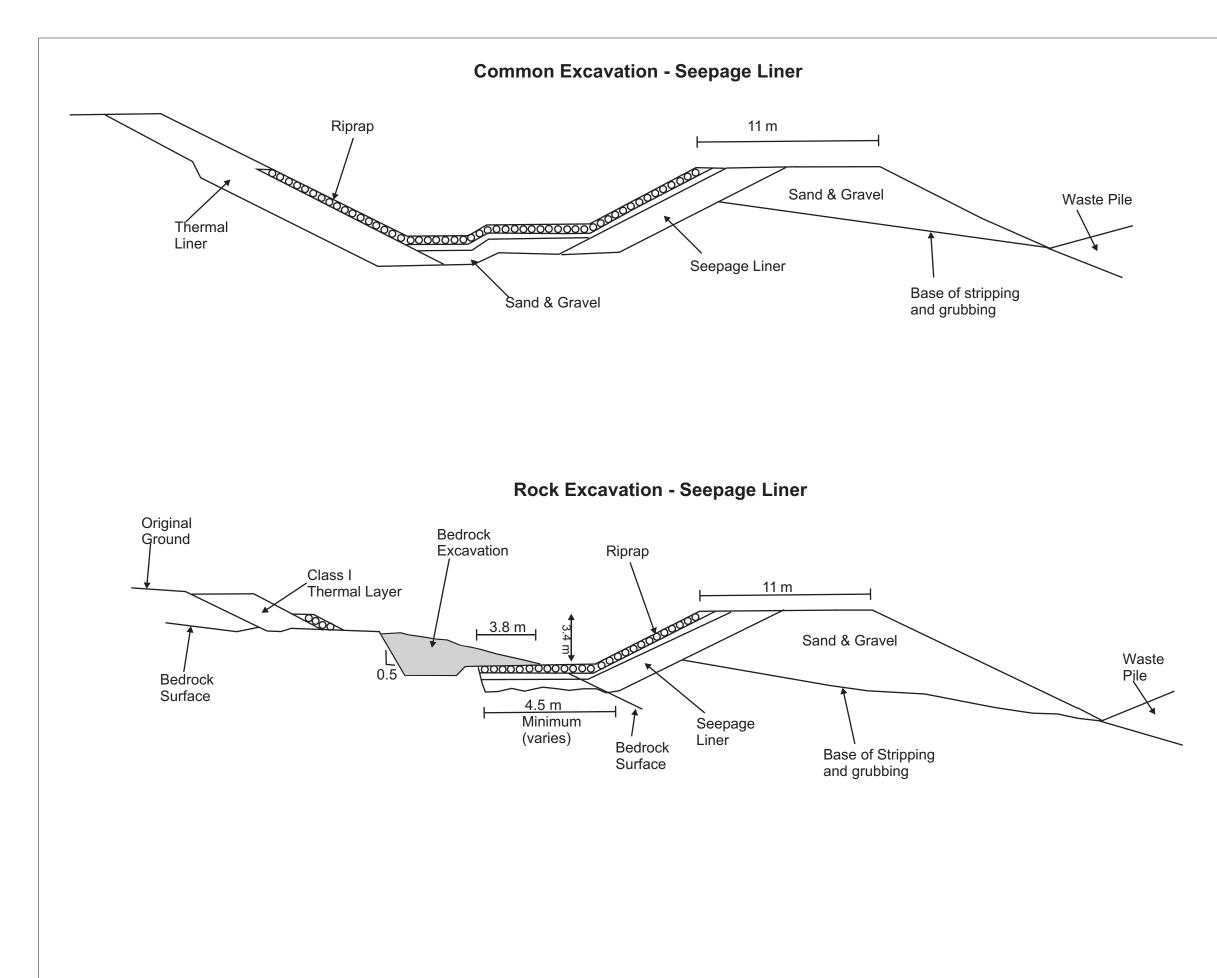
	-	-	-	-	-
-	-	-	-	-	-
-	-	-	-	-	-
REV.	DATE	REVISION NOTES	DRAWN	CHECKED	APPROVED


SCALE:	N/A	and the second s
	ARY 2005	
DRAWN:	SLF	
DESIGNED:	LBS	
CHECKED:	GWF	
APPROVED:		Concernent of




AN APPLIED EARTH SCIENCES COMPANY

Phone: (403) 250-5185


BGC Calgary Alberta

		19	80		1981											
	s	0	N	D		F	м	А	м	J	J	A	s	0	N	D
1 Start Canal Construction		٠														
2 Clearing and Grubbing		_			-			-								
3 Common Excavation		_		•				-								
4 Canal Rock Excavation		_			_			-								
5 Excavate Rock Cutoff Trench															l	
6 Place Thermal Liner on South Slope					_											
7 Construct Canal Dikes					-					ĺ						
8 Place Silty Clay Liner																
9 Construct Diverson Dam								_								
10 Place Fish Gravel																
11 Rose Creek Diverted into New Canal									•	1	1	1				-
12 Canal Construction Completed														٠		
										ĺ	ĺ				l	
MUTUAL PROTECTION TO OUR CLIENT, JUBLIC AND OURSELVES, ALL REPORTS DRAWINGS ARE SUBMITTED FOR THE DENTIAL INFORMATION OF OUR CLIENT Alberta Phot			Projec TA		22F	RCD	C – P	RELI	MINA	ARY (GEO	TECH	INIAL	- EVAI	LUAT	ΓΙΟΝ
SPECIFIC PROJECT AND AUTHORIZATION JSE AND/OR PUBLICATION OF DATA, MENTS, CONCLUSIONS OR ABSTRACTS	. ,		Title:			SIM	1PLIF	IED C	CONS	STRL		ON SO	CHED	DULE		
OR REGARDING OUR REPORTS AND NGS IS RESERVED PENDING OUR EN APPROVAL.			Projec 02	ct #: 257-0	37-01		Date: JAN	1 2006	-	cale: NA		Drawr JN		Appro GW		Figu

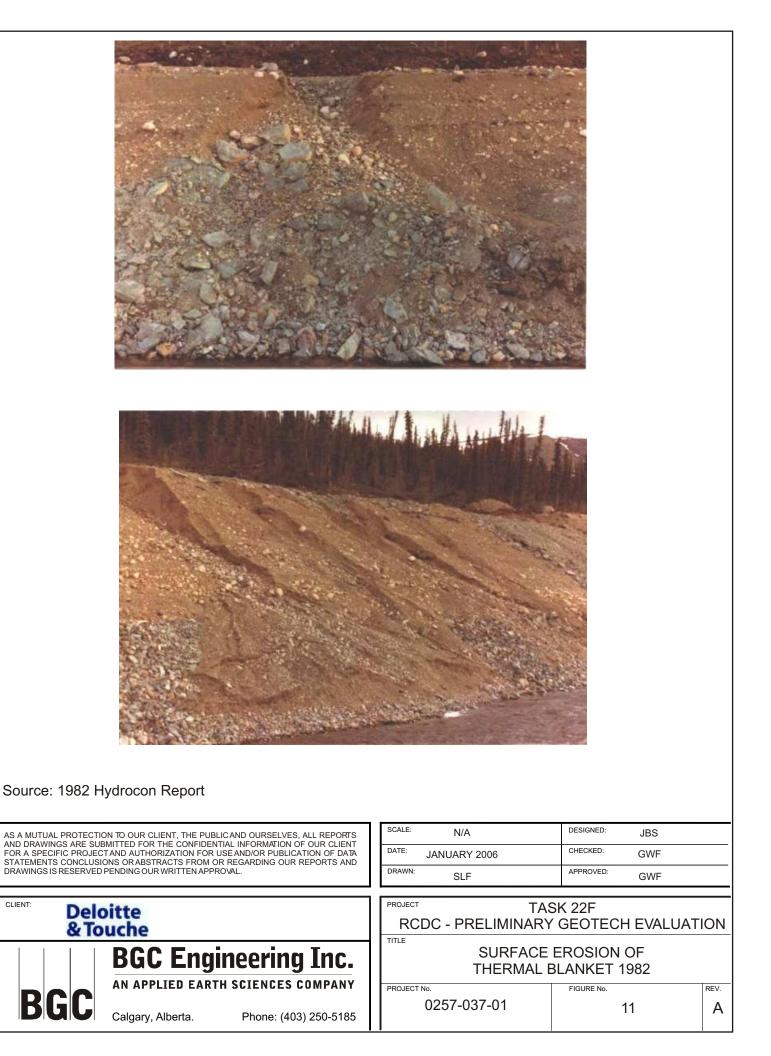
CLIENT:

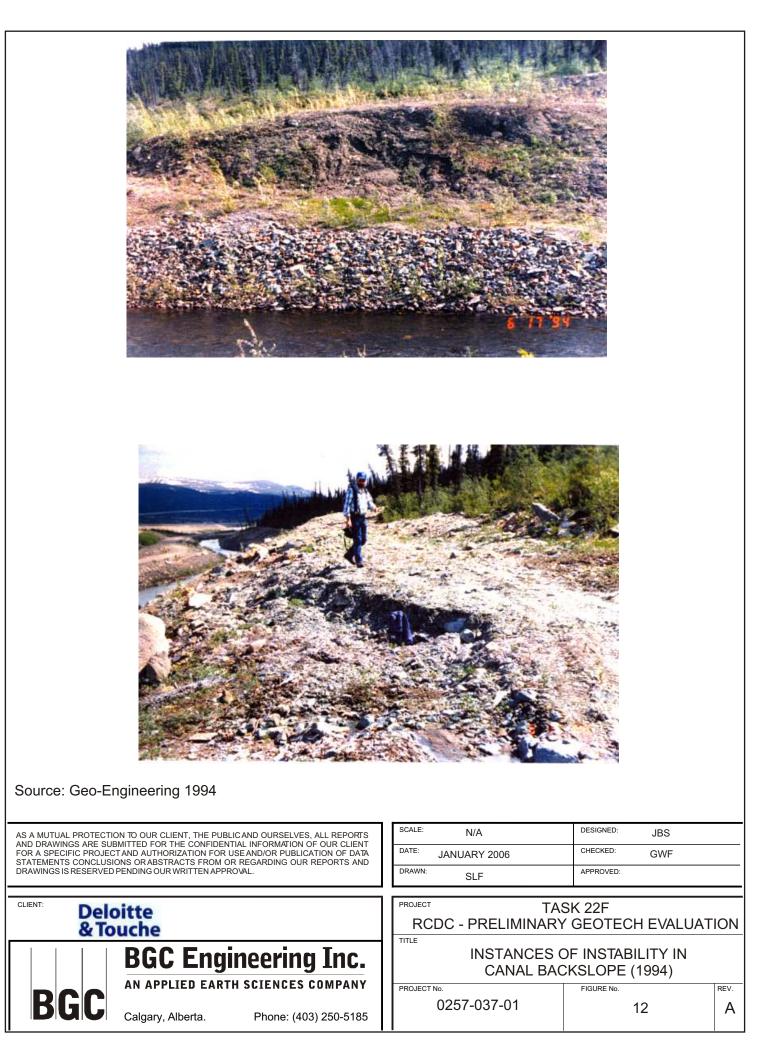
AS A MUTUAL PROTECTION TO OUR CLIENT, THE PUBLICAND OURSELVES, ALL REPORTS AND DRAWINGS ARE SUBMITTED FOR THE CONFIDENTIAL INFORMATION OF OUR CLIENT FOR A SPECIFIC PROJECTAND AUTHORIZATION FOR USEAND/OR PUBLICATION OF DATA STATEMENTS CONCLUSIONS OR ABSTRACTS FROM OR REGARDING OUR REPORTS AND DRAWINGS IS RESERVED PENDING OUR WRITTEN APPROVAL.

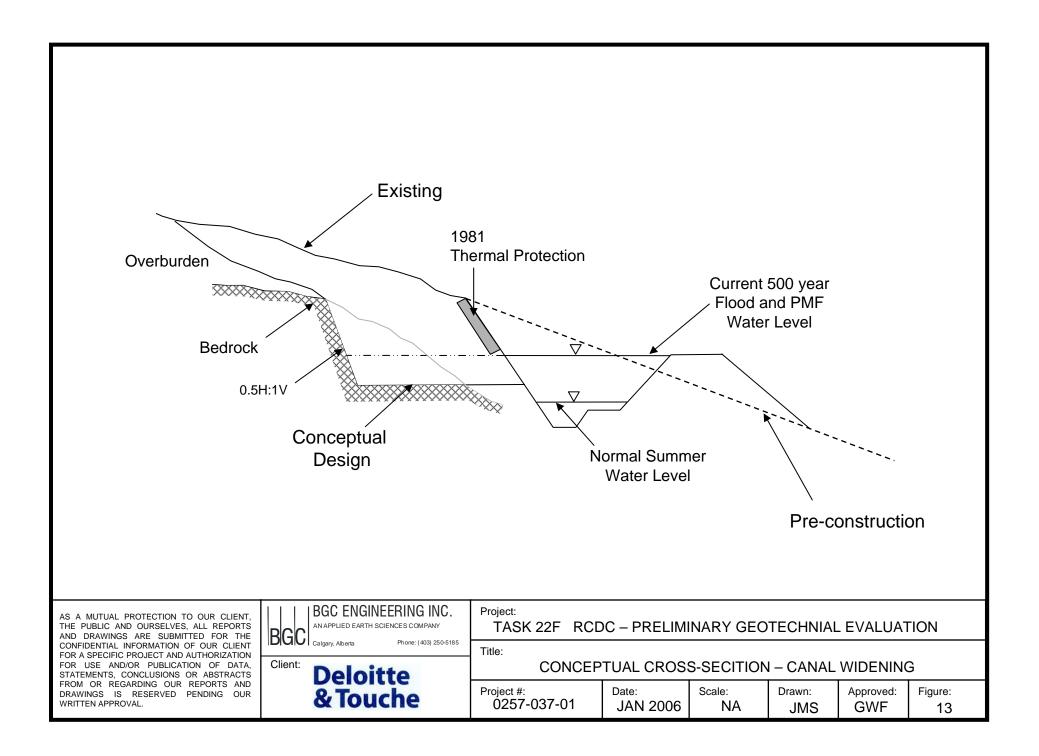
	-	-	-	-	-
		-			
-	-	-	-	-	-
		-			
-	-	-	-	-	-
		-			
REV.	DATE	REVISION NOTES	DRAWN	CHECKED	APPROVED

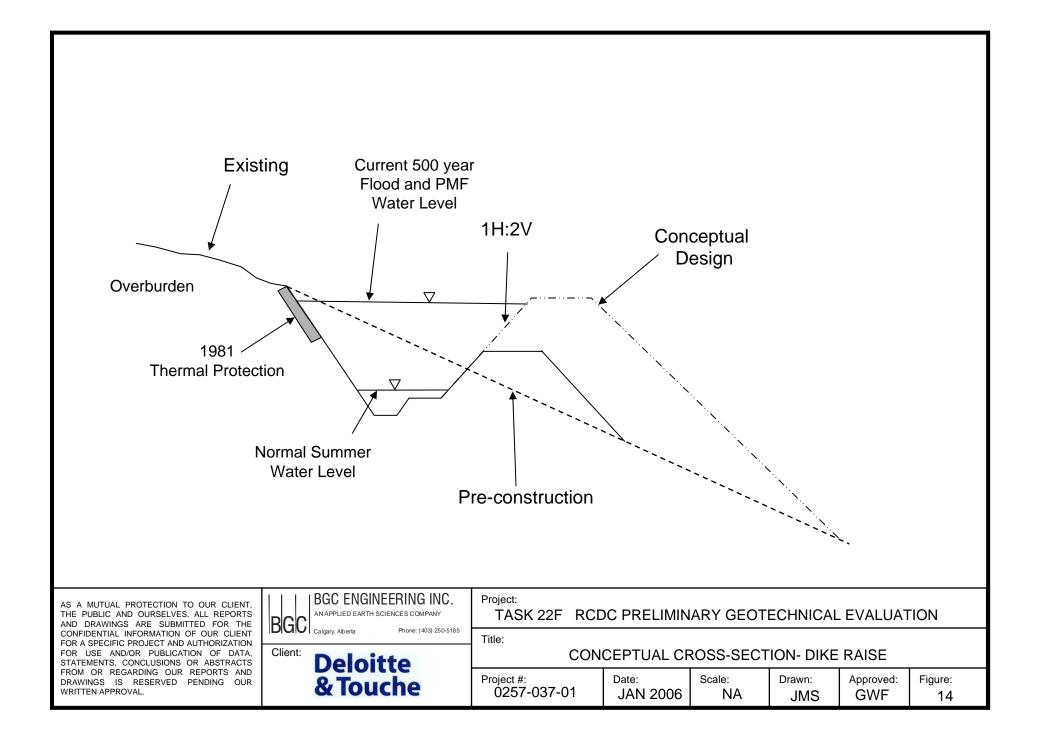
SCALE:	N/A	and the second se
DECEM	BER 2005	
DRAWN:	SLF	
DESIGNED:	GWF	
CHECKED:	GWF	
APPROVED:	GWF	A Constant of the second secon

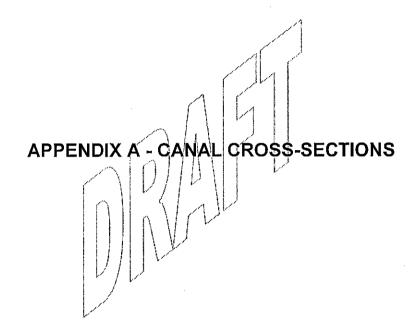
RCDC - SITE INVESTIGATION						
TITLE						
PROJECT No.	FIGURE No.	REV.				
0257-037-01	10	0				
	1					

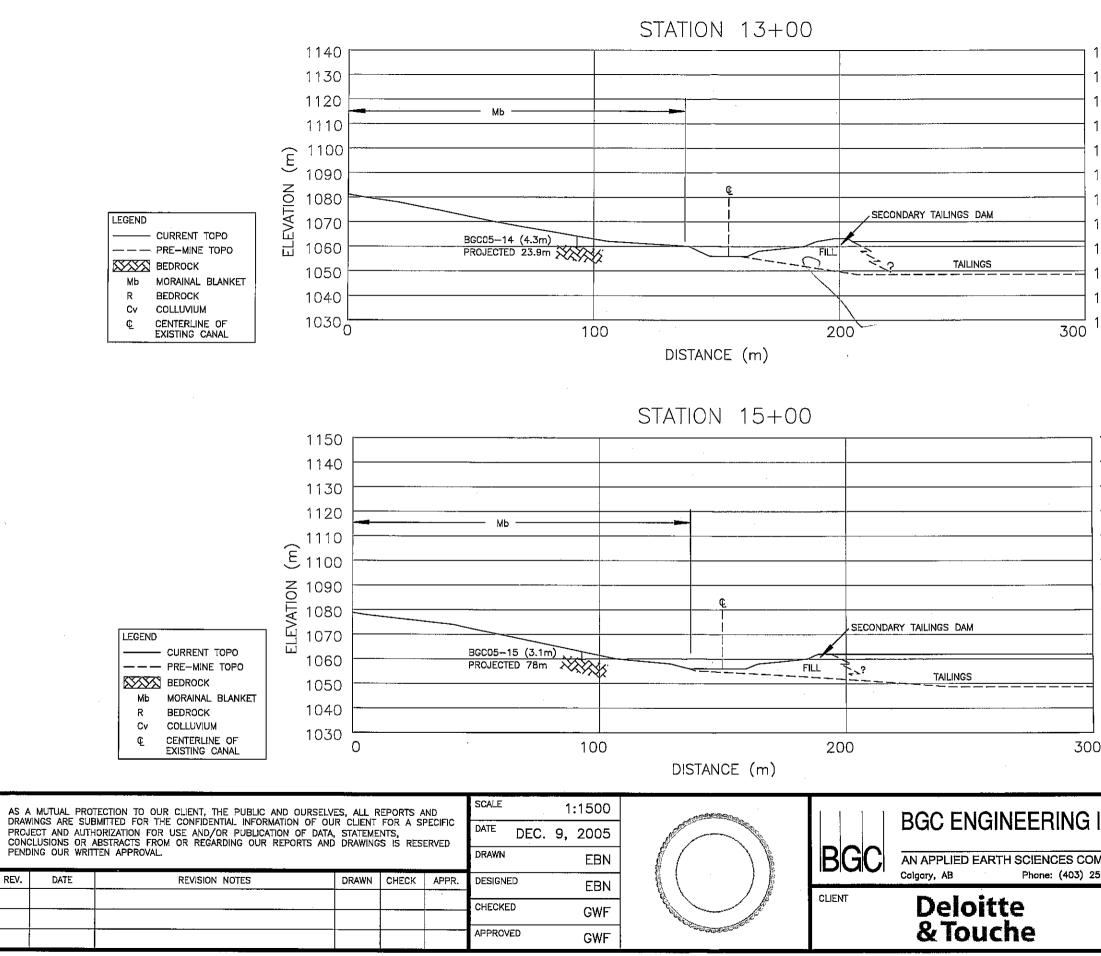

BGC Engineering Inc.


AN APPLIED EARTH SCIENCES COMPANY

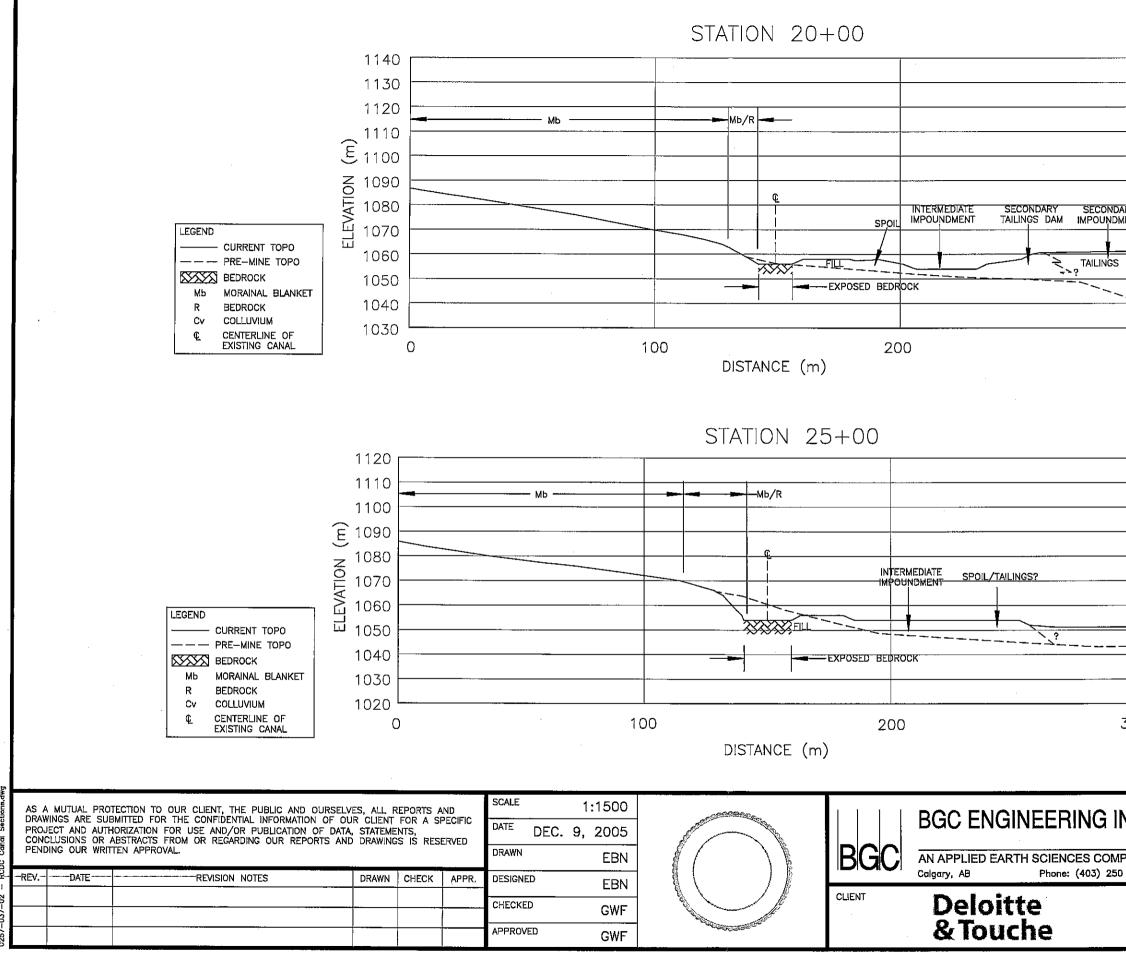

Phone: (403) 250-5185


Calgary Alberta


BGC



K:\Projects\0257 D&T\037 2005 RCDC Site Investigation\report\0257-037 Rev B Faro - Rose Creek Diversion Canal -Site Investigation Report.doc

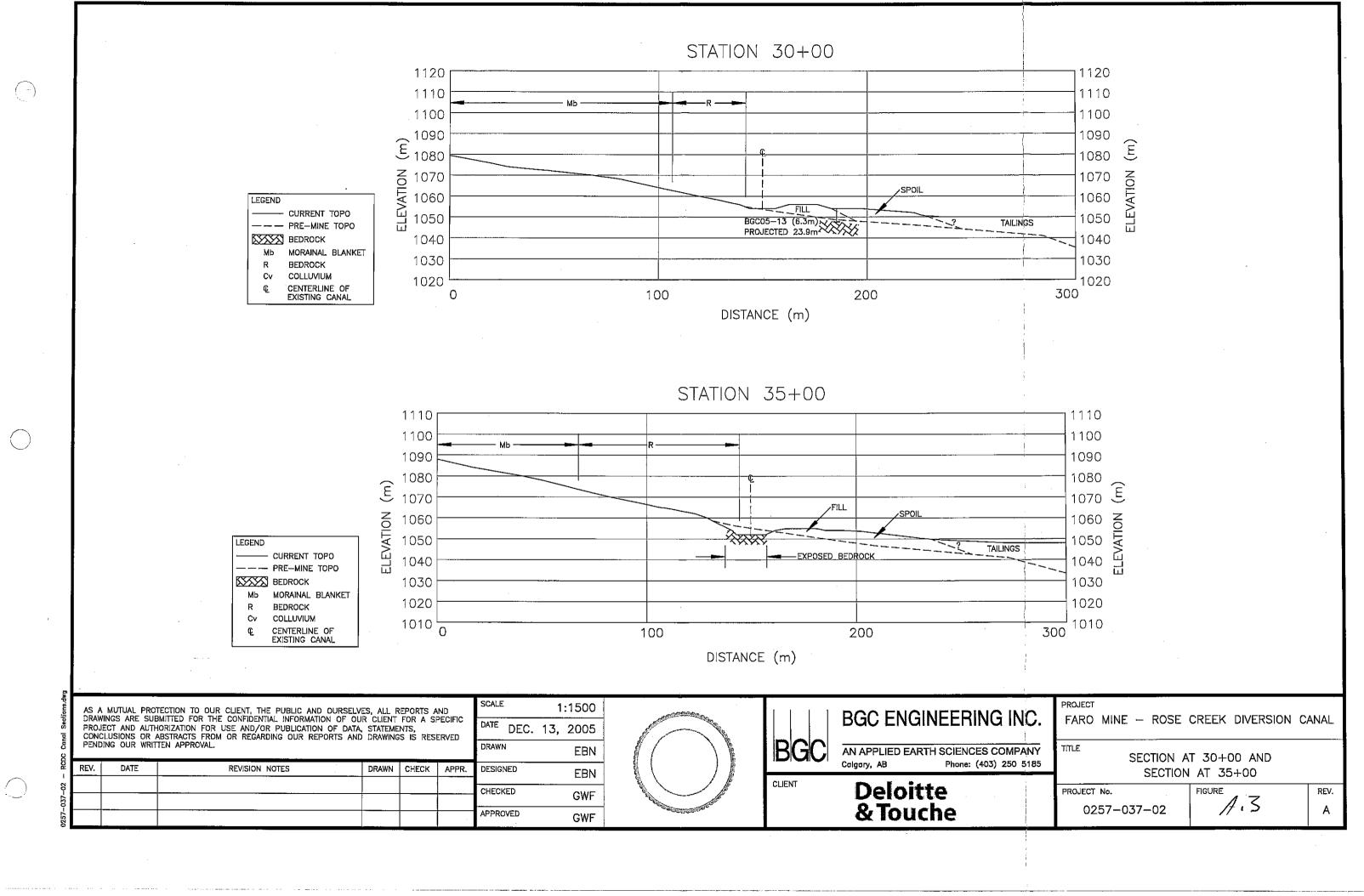

CDC Canal Sections.d

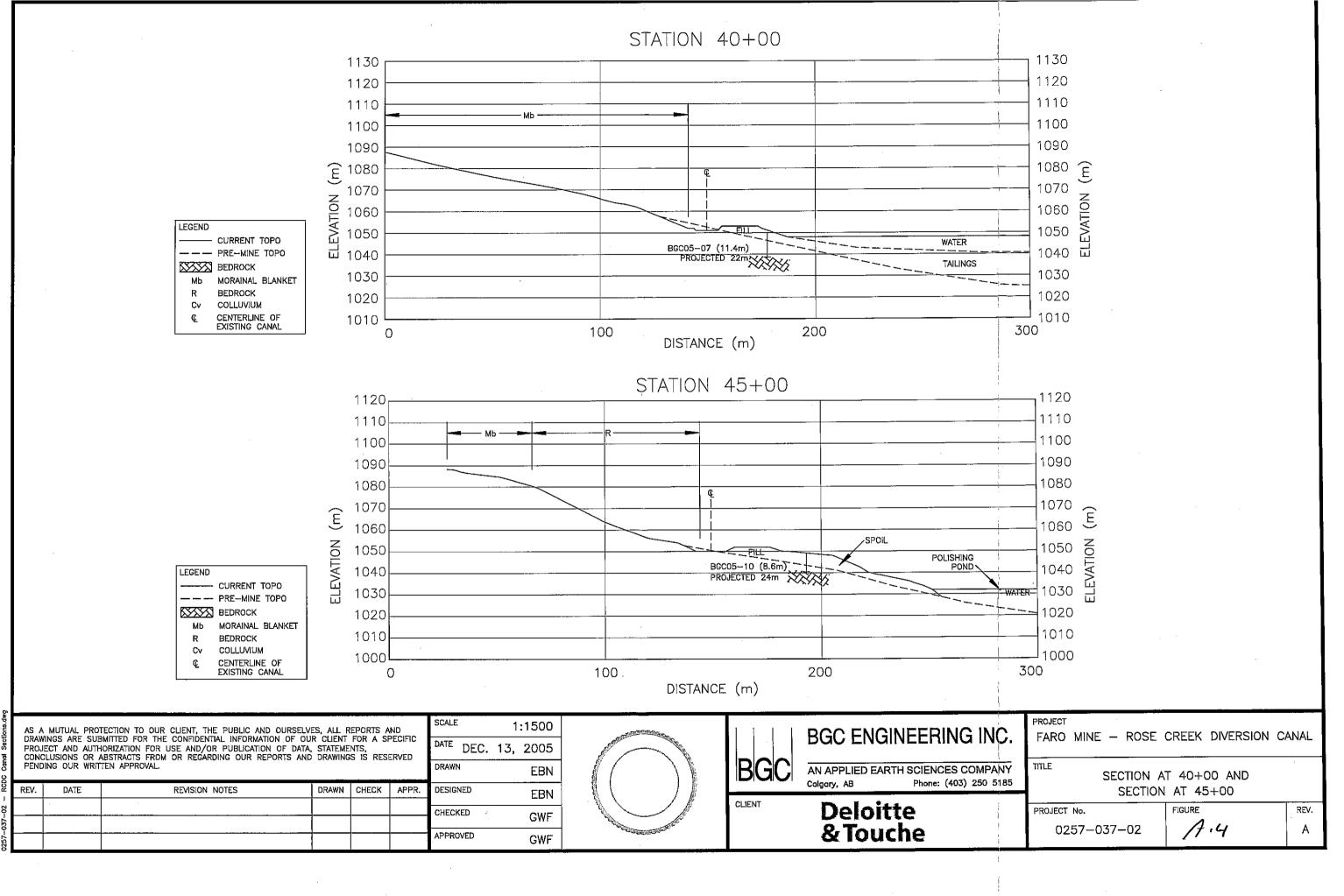
()

 \bigcirc

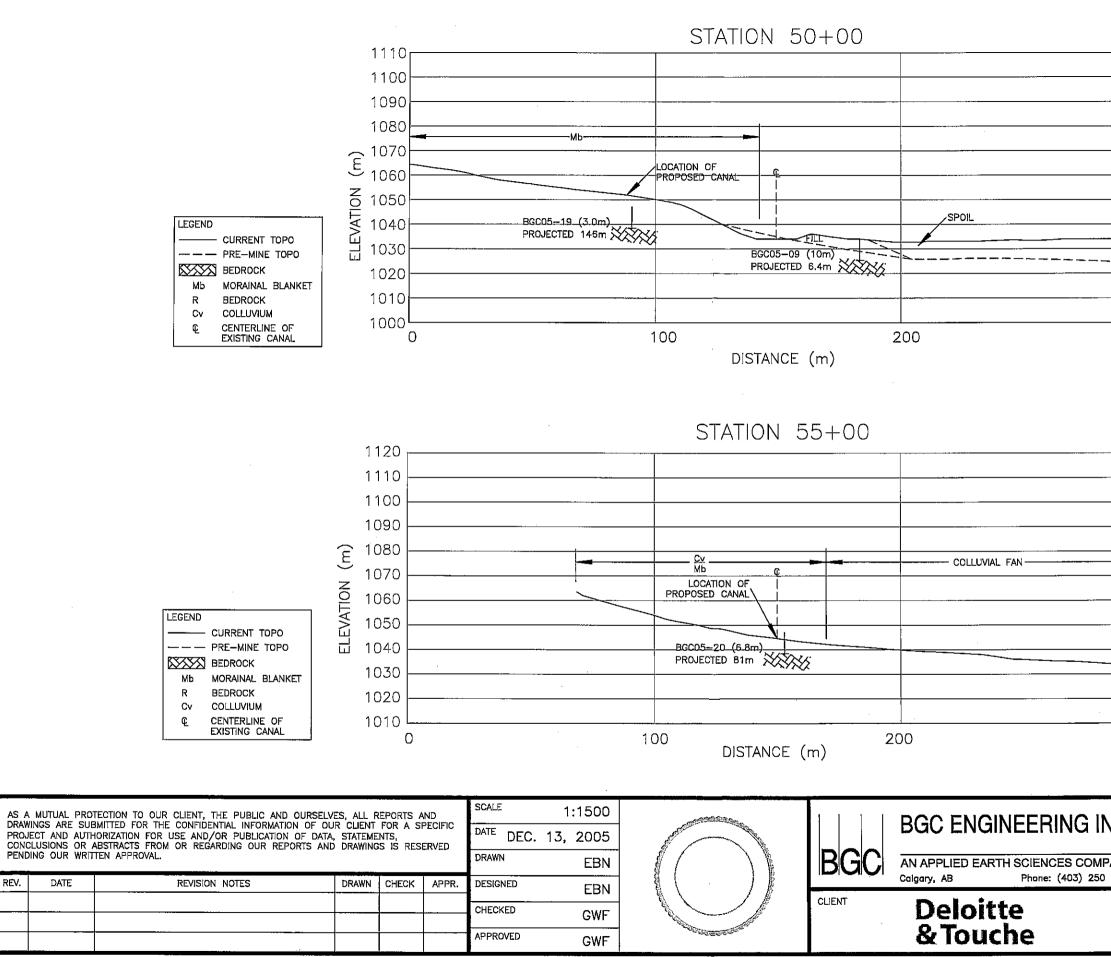
 \bigcirc

140 130 120 110 100 \widehat{c}	
10p -	
100 (m) 080 000 070 060 11 050 040 030	
1150 1140 1130	
1120 1110 (E) 1090 NOL	
1090 NOLLY 1080 HEAL 1070 HEAL 1060 1050	
1040 1030	
NC. FARO MINE - ROSE CREEK DIVERSION CANA	-
APANY TITLE SECTION AT 13+00 AND SECTION AT 15+00	
PROJECT No. FIGURE RE 0257-037-02 A.I A	



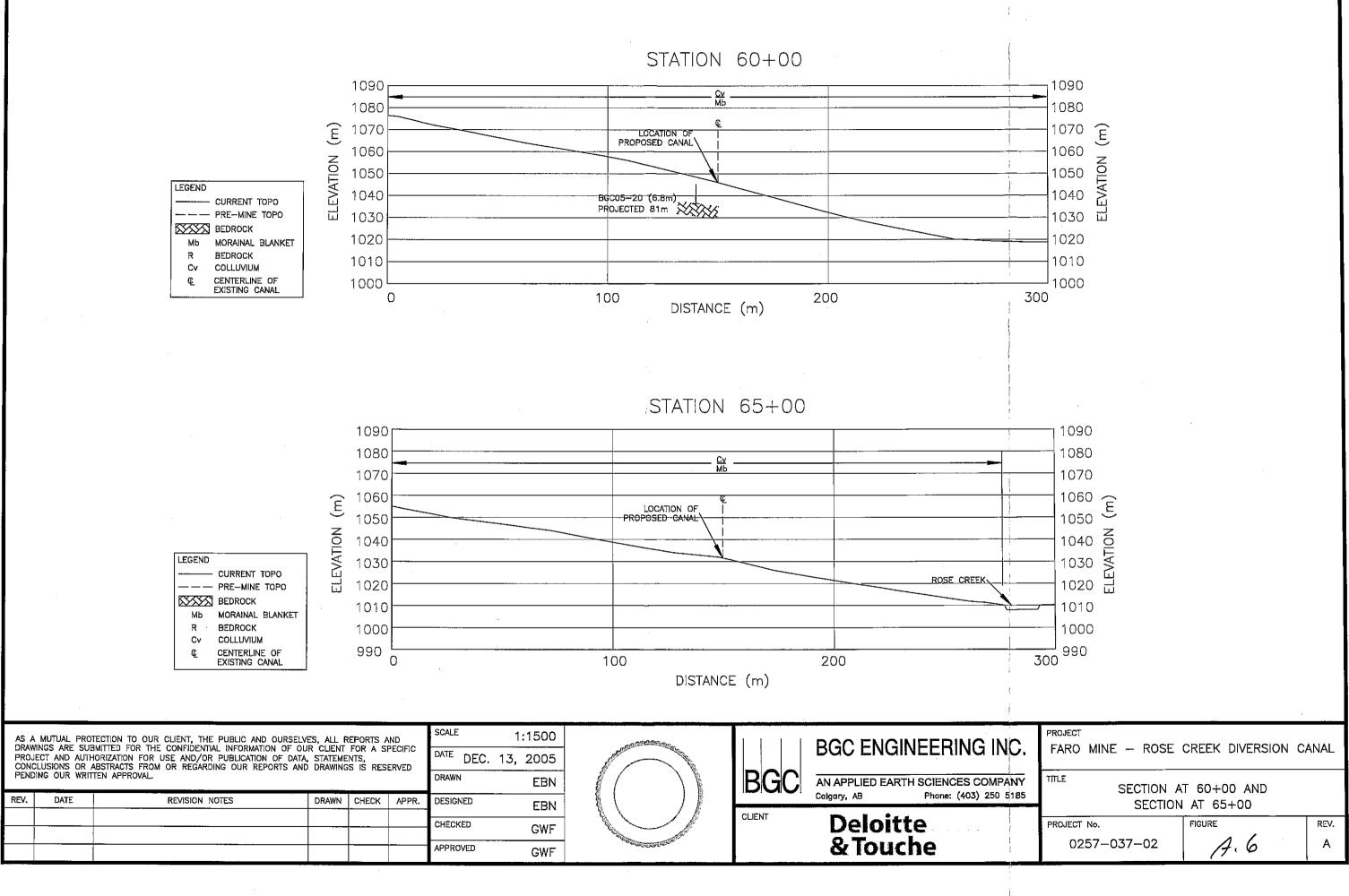

()

 \bigcirc


 \bigcirc

11 11 11 11 10 RNT 10 10 10 10 10 10 10 10 10 10	40 30 20 10 00 90 90 90 90 90 90 90 90 90 90 90 90
112 111 109 109 108 107 106 105 104 103 102 300	ELEVATION (m) 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
IC.	PROJECT FARO MINE ROSE CREEK DIVERSION CANAL
2ANY 5185	SECTION AT 20+00 AND SECTION AT 25+00
	PROJECT No. 0257-037-02 FIGURE A A A A

()



()

()

REV.

	1110	
	1100 1090 1080	
	1070 (f) 1060 (f) 1050 NO 1040 HEAT 1030 HEAT 1020 1010	
300	1000	
	$ \begin{array}{c} 1120\\ 1110\\ 1100\\ 1090\\ 1080\\ \underline{(E)}\\ 1070\\ \underline{NO}\\ 1060\\ 106$	
	1060 NOL 1050 X 1040 H 1030 1020 1010	
300		
NÇ.	FARO MINE - ROSE CREEK DIVERSION CANAL	
PANY 5185	SECTION AT 50+00 AND SECTION AT 55+00	
	PROJECT No. FIGURE REV. 0257-037-02 A, 5 A	

()

 $\langle \rangle$

()

APPENDIX B - BOREHOLE LOGS DRILLED IN 1979 (Golder Associates, 1980)

K:\Projects\0257 D&T\037 2005 RCDC Site Investigation\report\0257-037 Rev B Faro - Rose Creek Diversion Canal - Site Investigation Report.doc

A drawing showing the location of these borehole logs is currently under preparation.

BOR	ation (See Figure ³) Ehole type <i>Rotory wi</i> Pler hammer weight <i>63.5 kg</i>	<i>ith c</i> g. DRC	o <i>ir</i> OP 7	16.2		BÓREH	DATE DLE DI <i>Gro</i>	AMETE	R 120) mm	R.
ELEV. DEPTH (m)	SOIL PROFILE DESCRIPTION	STRATIGRAPHY PLOT		SAMPLE TYPE	BLOWS / FUUT	· · · · · · · · · · · · · · · · · · ·	ATER CC WP 10 2	олтент W 	₩ _L	S INS NT AE LA	EZOMETER OR TANDPIPE TALLATION DDITIONAL B. TESTING
1 <u>078-80</u> 0.0	<u>Cleared</u> Surface Some boulders / Frozen greenish grey sandy silt TILL, no visible ice		2	//mm //mm // //	62		0		2 4 4 4 4 4 4	20 34 36 10 20 30 34 16 20 34 20 34 20 34 20 34 20 34 20 34 20 34 20 34 20 34 20 34 20 36 20 36 20 36 20 36 36 20 36 36 20 36 36 20 36 36 20 36 36 36 36 36 36 36 36 36 36 36 36 36	ockfillz.
] boulder [] ice [Drills more easily -	and the factor of the second	4	" >/	36 000		0 0 0		20 4020	-35 P.V -20 -334 -25 -15 -40 +C 45	L. pipe-
<u>1068:43</u> 10.37 <u>1066.0</u> 12:8	may not be frozen Brown to red-brown medium to coarse sand (alluvium) probably frozen] cobble / boulder [] cobble [shist bedrock						2			Co m	oved-in naterial _{Zr}
1062-65 16.15	End of Borehole										

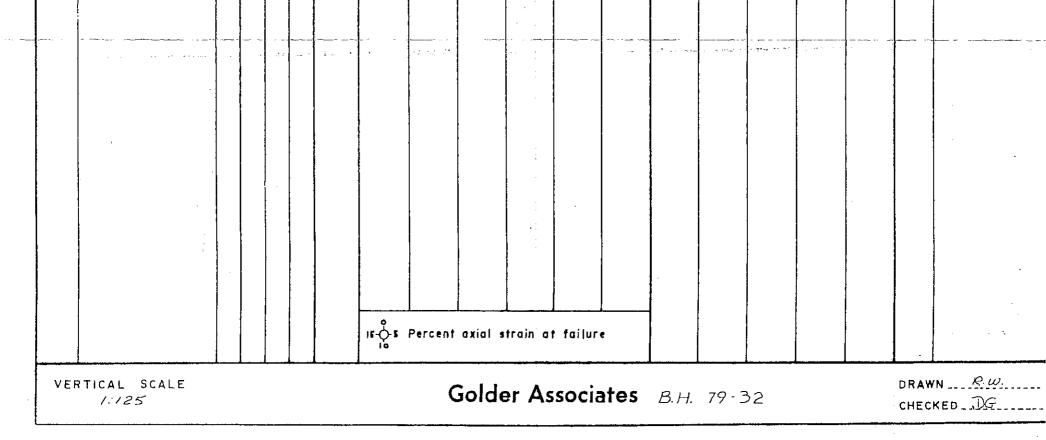
92-2025	LOC/ BOR	RE 9.83 N; -198.86 E ATION (See Figure 3) EHOLE TYPE <i>Rotary wi</i> PLER HAMMER WEIGHT 63-5	th mi	uď			80 80	REHOLE	e 19 Al diameter	114 17	קרו ר
No. 7		SOIL PROFILE	· · · · · · · · · · · · · · · · · · ·		-			er i na li i	· · · · · ·		PIEZOMETER
Project	elev. Depth (<i>m</i>)	DESCRIPTION	STRATIGRAPHY PLOT	SAMPLE NUMBER	SAMPLE TYPE	THIN COE 1 SWOLD	ELEVATION SCALE	WATER WP	CONTENT PI		OR STANDPIPE INSTALLATION ADDITIONAL LAB. TESTING
	0-00	Cleared ground surface Frozen olive brown to grey fine sandy SILT TILL, occ. coarse sar and gravel pockets		· · · · · · · · · · · · · · · · · · ·	76 m	17 > 100				G-55	4 I
		and gravel pockets		N		>100				5-20 M+C -15	No installations
		End of Borehole Borehole abandoned		t.		065					
	of pit attern but al Boret	Borehole abandoned seal. Four borehole pted with mud in t had to be abandon ole 79-22A was dri	nis c his c red. lled i	vit	р, Ба	air					
the second se											
									ı		
	VERT	FICAL SCALE :/25	Go	ld	er	As	soc	iates .	BH.79-:		DRAWN <u>RK</u> CHECKED <u>DG</u>
-										·	

792_2025	LOCA BORI SAMI	0.84 N; -185.90 E ation (See Figure 3) ehole type <i>Rotary w</i> pler hammer weight 63.8	5 <i>kg</i> Df	ir		ı	BC BC	ORING OREHOL	DATE E D C <i>lec</i>	: 21 NAMET	Aug ER gro	114 r. ound	nm	ace
Project No. 7	elev. Depth (<i>m</i>)	DESCRIPTION	STRATIGRAPHY PLOT	SAMPLE NUMBER	SAMPLE TYPE	BLOWS 1 300 MM	ELEVATION SCALE	-o;	5 (ER C		-5 + T PEF		O STAN INSTAL ADDITI LAB. T	IDPIPE LATIO IONAL ESTINO
	1081-90 0-00 1079-46 2-44	Cleared ground surfac Frozen alternating brown & grey fine sandy SILT TILL, noi plastic to low plastic acc. organic layers	e 6/16/18/10/16/1							4			Clear surtad 19mm PVC p Thermi	dia. ipe-
		Frozen grey to green grey sandy SILT TIL	ish L							50	et. 27	779		#2 *3
	1066.66	Casier drilling	and a state of the st	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~									- Sandpo	#4 ackz
	15·24 1063·61	= organic Dark grey SILT, non plastic, bcc. cobbie or pebble End of Borehole			W.5								Cave- mater	
		TICAL SCALE	Go					•					DRAWN	RK

792-2025	ΙΟΟΑΤΙ	41 N; -387.72 E ON (See Figure 3) OLE TYPE Rotary air to ER HAMMER WEIGHT					в	IOLE 79 DRING DATE DREHOLE D ATUM CUT	22.	Aug 19 R 114 1 Lund sl	179 mm irface	
No.		SOIL PROFILE				тт	LE LE				PIEZOMET OR STANDPI	
Project	ELEV. DEPTH	DESCRIPTION			АМРLE ТҮРЕ	1 COE / SMO1	ELEVATION SCALE	₩ _P			INSTALL AT ADDITIONA LAB. TEST	TON .
	1083.17 C	ut ground surfa		<u>, v</u>	ŝ	60			0 30	40	Ground surface	R
	<i>000</i>	lce seams to 12 thickness	mm (200		16 m D.O.	‴ ≻IDO		þ		6 - 35 5 - 31 M+C- 34		7
	5	Frozen brown to gi ine sandy SILT TI some visible ice sear surface	rey LL,	<u>2000 000000000000000000000000000000000</u>	- II	>Iœ		0		C bl - 1 G - 25 S - 40 M+C- 24	Reltonite seal Z	
\bigcirc	2	organic		1. S. C. B.						Сы-с	sandpact	× · · ·
JL	<u>1074-03</u> 9-14] (a	Organic black fi coarse SAND & GR ippears to be unfr	ne to AVEL 103en)	M	n 1	90				4 - 4. 5 - 30 M+C - 13	27 Sept 79 Petur	
	⊐ <i>107<u>0</u>∙0</i> €	совые 5AND ¢ GRAVEL	•0								pneumati piezomete	
	13.11	Grey fine sandy s TILL	5/LT (1998)	La Carlor Car Carlor Carlor Carlo				NOTE: Piegome auxi Ilia	ter i ty be	nstalleo prehole	d in drilled East	
		Boulder	LELEN STATE					of BH. 7	, <i>app</i> 19-23	UT 4M	LAST	
	1064:88 18:29 E	nd of Borehole										
	NOTE: B rotting Hole sig	Borehole abandor of permafrost ge at surface ≈ C	ned due ‡ cavir p.7m dia	. to 9.								:
), - <u>e</u>		CAL SCALE 125	G	old	er	As	isoc	iates B	ц. 79-	-23	DRAWN Z CHECKED Z	2 <u>K</u>

PROJECT No. 792-2025

, ,	161·40 N; 1222	0.50	E	<u> </u>			RECC	RD O	F BORI	EHOLE	. 79	-24	- · <u></u>		,	<u> </u>	
, L	OCATION (See Figure	3))				BORING	DATE 2	2 Aug 19	79		DATI	JM CI	eare	d qi		d surface
	BORE	HOLE	т	YPE	R	Rotar	y with r	nud		BORE	HOLE DI	АМЕТЕР	x 114	mm	2	:	
s	AMPLER HAMMER WE	EIGHT	63	3-5 F	<i>kg</i>	DROP	76.2 cm		-	PEN.	TEST !	HAMMER	WEIGH	т	(RÓP	
 	SOIL PROFILE		SAI	MPLE	ES	Ē			TION RESIST		ΤΕΛ	APERA	ATURE	, °,	C		· · · · · · · · · · · · · · · · · · ·
		10	~		шш	N SCALE		BLOWS	/ FT	•	-0·5		 +⊖_	5 +/-	0	NAL STIN(PIEZOMETER
ELEVN DEPTH (m)		STRAT PLOT	NUMBER	TYPE	BLOW5/300 mm	ELEVATION	SHEAR	STRENGTH	C _U , LB./S	а, FT.		TER CO	NTENT,	PERCE	NT	ADDITIC LAB. TE	PIEZOMETER OR STANDPIPE INSTALLATION
DANCA	Ground surface																Ground surface 7
0.00 108235	Olive brown fine sandy SILT TILL, compact to dense		1	16mm D.D. 2	29						0			G.	5 * 2.74	Cb1 6 G-52 S-30	W.L. 21 5ept 79 2
	Grey fine sandy SILT TILL, low plasticity, fissured, compac			11	ł							0				4-19 5-24 6-15 8-15 5-32 8-32 8-32 8-21	Thormictor
	to dense (cold but not frogen)		3	и 2	31						0		2-12			5-32 M-32 C-21	#2
1075 <i>8</i> 0 8•84] sample_seems frozen		5	ш >	·ICC						0			5ept: 21	7/79	G- 2 5- 3) M-30 G-18	
	Grey clayey SILT to sandy SILT TILL, hard													h	•		19 mm dia. VC pipe
		0000															#4.
1070-01																	Peltonite seal 2-
	Blue sandy to clayey SILT TILL, hard				-												#5


Ì,

VERTICAL SCALE /:/00	Golder Associates BH. 79-24	drawn <u><i>RK</i></u> checked <u>D</u> G
	IS-O-S Percent axial strain at failure	
1061-78 22-86 End of Borehole	strong th testing. Q'= 33"	pneumatic piezometer
Light grey clayey SILT TILL, low to medium plasticity, hard	Composite somple formed from somples 2,3, and 5 for strength testing. \$'= 33°	Sandpack Petur

--

ELEV. DEPTH (M) DEPTH (M) DEPTH (M) DESCRIPTION (M) DESCRIPTION (M) DESCRIPTION (M) DESCRIPTION (M) DESCRIPTION (M) DESCRIPTION (M) DESCRIPTION (M) DESCRIPTION (M) (M) DESCRIPTION (M) (M) DESCRIPTION (M) (M) (M) (M) (M) (M) (M) (M) (M) (M)	8	- !	TYPE	BLOWS / COO MIT	-0.	5 0 -	TURE, °C	PIEZOMETEI OR STANDPIPE INSTALLATIC ADDITIONAL LAB. TESTIN
0.00 Organic SILT & debris 1086-09 1085:48 Sandy SILT TILL 1.52		4 4 4 4						
Schisty TILL 1082-73 4.27 5CHIST BOULDER 1080-90 6-10 Sandy SILT TILL 6-55 1079-68 5CHIST BEDROCK 7-32 Relatively hard 5CHIST BEDROCK 10-36 Relatively soft SCHIST BEDROCK 1074-81 12-19 End of Borehole							Sept. 27/19	Ground Surface Thermistor #1 #2 27 Sept 79 W.L. #3 #4 Peltonite Seal #5 #6 #7 #8 #9 Petur pneumatic piezomete

	SAMPLER HAMMER W	е .Э EHOL) ד ב ד	Г Ү Р I 5 З.З.	б Кд	DROP	8 Rotary 76-2	ORING with		Dec. 4	¢, 1979	BOR PEN	EHOLE	DA DIAMET HAMM	TUM P ER / ER WEIG	<i>49 m,</i> GHT	** 	ROP	· · · · · · · · · · · · · · · · · · ·
ELE VN DEPTH		STRAT PLOT	er er		BLOWS / FT.	Ā			STRENG	VS/FT,					r of pe cm./s	RMEABI EC. T, PERC W	LITY K, L ENT L	ADDITIONAL AB. TESTING	PIEZOMETER OR STANDPIPE INSTALLATION
1085.37 0.00 1082.63 2.74 2.74 1017.44 7.73	Cleared Ground Surface Brown SAND & Gravel TILL Greenish grey schist BEDROCK OCC. silty layer End of borehole		7	c:5 ως ″															Dry

<u>752.20</u> 25	Conal Sta. 2+370 IGOD. 2 N IGA. B E LOCATION (See Figure 3) BOREHOLE TYPE ROTORY WIT SAMPLER HAMMER WEIGHT 140 LE	'h <i>ai</i>	i,	F 30 1		BC	OLE DRING DREHOL	DATE	<i>Fel</i> ameti	ER /	00 n	
No.	SOIL PROFILE									•••		PIEZOMETER
Project	ELEV. DEPTH (m.)	STRATIGRAPHY PLOT	SAMPLE NUMBER	SAMPLE TYPE	BLOWS / FOOT	ELEVATION SCALE	WAT WAT		w 0	W	L	STANDPIPE INSTALLATION ADDITIONAL LAB. TESTING
	1090.66 Cleared ground surfac	e							:			i
	1090.66 Electred gibbins Surride 0.0 1090.06 Brown, organic SILT, - Frozen - Frozen - Frozen - Frozen - Greenish-brown to brown SAND and GRAVEL TILL (frozen) - Brown fine SAND - Brown fine SAN						No	test	2009			Backfilled With Cuttingsz Bentonite Seol Sand & Gravel Pack 2 Slotted 20mm PUC Pipe
	10.7 End of Borehole											Dry at 10.0 m March 8 180
 	VERTICAL SCALE 1:100	Go	ld	er	A	ssoc	iate	S <i>B.1</i>	4. <i>80</i>	-47	<u> </u>	DRAWN <u>RW</u> CHECKED <u>DG</u>

<i>Se07741</i>	15CC Loca Bori	DAL SEA. 2+300 B. 5N 227.7 E ATION (See Figure 3) EHOLE TYPE <i>Rotory WI</i> PLER HAMMER WEIGHT 140 LB	th 2	<u></u> ji P			BC	DRING DA	TE , DIAM	Fed eter	100.	
N0.	<u> </u>	SOIL PROFILE			 							PIEZOMETER OR
Project	ELEV. DEPTH	DESCRIPTION	STRATIGRAPHY PLOT	SAMPLE NUMBER	SAMPLE TYPE	BLOWS / FOOT	ELEVATION SCALE	WATER WP	CONT W 20	ENT F		STANDPIPE INSTALLATION ADDITIONAL LAB. TESTING
	-											
	j	Cleared ground surface	<u>, 155</u>	 	 	!						
	0.6	Frozen organic_SILT Frozen, greenish- brown SAND & GRAVEL TILL, Some ice in cuttings		مست مدمد المالية المالية المالية المحالية المحالية المحالية المحالية المحالية المحالية المحالية المحالية المحالية								Cuttings back fills
\sum	1083.79											Bentonite
	6.1 1082.59	Disturbed bedrock		****								Sand & grovel pack 2
	7.3	Grey, schisty, BEDROCK	本が		W.5.							Slotted 20mm PVC Pipe 2
	1080.79 9.1	End of Borehole		 								Dry at 8.2 m March 8/86
The second se												
	VER	TICAL SCALE 1:100	Go	۶ld	er	A:	ssoc	iates	B.H.	80-	-48	DRAWN <u>R.W.</u> CHECKED <u>DG</u>
¹ -u					<u></u>							

ELEV. DESCRIPTION Image: Stand stan	LOCATION (See Figure BOREHOLE TYPE RO SAMPLER HAMMER WEI	IGHT 140 LB. DF			N.	во	REHOLE	DIAMETE	9. 23, 19 R 100 / Ground	77 M 54 F f O C
Product 23 Frogen organic SILT Image: State of the state of t	ELEV. DESCRIPT	NOIA RATIGRAPHY PLOT	MPLE NUMB	LE TY	/ F0		W _P			PIEZOME OR STANDE INSTALL A ADDITION LAB. TES
	1088.23 Frozen organia 0.6 boulder [boulder Greenish-br brown SAND GRAVEL TIL to about 4. Very dry (possibly dr bedrock) 1079.73 9.1 Grey Schist BEDROCK	c SILT	TATION PROPERTIES AND THE CONTRACT AND THE				No ta	sting		backfi slottea

192 2025	1475 LOCI BOR	DL Sto 2+100 T.B.N. 404.4 E ATION (See Figure B) EHOLE TYPE ROTOPY PLER HAMMER WEIGHT I		-77			BC	RING REHOL	DATE E D	Fe2	5 <i>71/2</i> ER /	00 r.	23, 1980 mm. ' S4rface	
No.		SOIL PROFILE	· · · · · · · · · · · · · · · · · · ·	-									PIEZOMETER	2
Project N	ELEV. DEPTH (metres)	DESCRIPTION	STRATIGRAPHY PLOT	SAMPLE NUMBER	SAMPLE TYPE	BLOWS / FOOT	ELEVATION SCALE	WAT W W	P		T PER W 0 4		STANDPIPE INSTALLATIO ADDITIONAL LAB. TESTIN	N
	1085.66	Cleared ground su	Irface											il
	0.0	Frozen brown organic SILT												
		Greenish brown and GRAVEL TILL I Unfrozen											 	
	2.4	Brown SAND and GRAVEL, LINF 103	9 1 0										Cuttings bock fill	
	1080.76							NO	test	ina		1	Bentonite	
	4.9. 1077.74	Grey silt and so Cuttings, probable disturbed BEDRO Very dry, probably rippable	ny ock,										Sond & Sond & gravel bockfilly slotted	
	7.9	Schisty BEDROC											20mm PVC	
	1076.5L 9.1	End of Boreh	ole										Dry of 8.0 Morch 8/80	
	VER	TICAL SCALE	Go	ld	er	A:	ssoc	iate	s Z	314. E	80-5		CHECKED	
	<u> </u>													

	1432 LOCA BORE	2 5Ea Et 000 3.0 N 4B2.5 E TION (See Figure 3) EHOLE TYPE ROTORY WITH PLER HAMMER WEIGHT 140 LB.	50	7/7-			BC BC	OLE B.H. 80-51 RING DATE Feb. 23, 1980 REHOLE DIAMETER 100 mm TUM Cleared ground surface
Project No.	ELEV. DEPTH (metres)	SOIL PROFILE	STRATIGRAPHY PLOT	SAMPLE NUMBER	SAMPLE TYPE	BLOWS / FOOT	ELEVATION SCALE	Temperature C PIEZOMETER OR OR -2 -1 0 -1 -1 INSTALLATION WATER CONTENT PERCENT ADDITIONAL Wp W -0 -1 10 20 20 30
	0.0	Grey schisty BEDROCK				M		March & Bo A A A A A A A A A A A A A A A A A A A
		End of Borehole TICAL SCALE 1:100	Go	sId	ler	A	5500	ciates BH 80-51 DRAWN RW CHECKED DG

<u>792 202</u> 5	/369 LOCA BORE	Sta. 1+890 SN GIB SE TION (See Figure 3) HOLE TYPE ROTORY WIT PLER HAMMER WEIGHT 140 LI	h 0.	ir-) F 30		во	RING REHOI	E DIA	<i>Feb.</i> Meter	23, 19 100 mi	
Project No.	ELEV. DEPTH (metres)	SOIL PROFILE DESCRIPTION	STRATIGRAPHY PLOT	SAMPLE NUMBER	SAMPLE TYPE	BLOWS / FOOT	ELEVATION SCALE		/p 	TENT F W 0	PERCENT WL 40	OR STANDPIPE INSTALLATION ADDITIONAL LAB. TESTING
		Cleared ground surface Frozen, bwn., Organic SILT Frozen, greenish- grey, SAND and GRAVEL TILL SAND and GRAVEL TIL					No	tes,	eing			Sand & grovel pock- Bentonite Seal Sand & grovel pock-
	1080.31 9.1	With sandy silt pockets (unfrozen) End of Borehole Note:		107.7.7.7.0.								Slotted 20 mm PVC Pipe Dry at 7.8 m March 8/80
		Log based on driller's observatio	ns									
	VER	TICAL SCALE	G		ler	 A	ssoc	iate	es <i>3</i>	H. 8	0-52	DRAWN <u>R.W</u> . CHECKED <u>DG</u>

. RECORD OF TEST PIT SHEETS Other Than Along Diversion Canal Test Pit No. 1 to 20 incl. 23 to 25 incl.

3.

 \sum

,....)) (______,

ι

Golder Associates

	HOD OF EXCAVATION DB CC SOIL PROFILE						 			
elev n. Depth (<i>m</i>)	DESCRIPTION	141	SAMPLE NUMBER	SAMPLE TYPE	ELEVATION SCALE	WATE WP H- 10	 W 0	T, PERC W1 0 40	ADDITIONAL LAB. TESTING	GROUNDWATER
0.00	Brown to brown grey									
1053:33	3	0 0 0	/	C.5		0				
1051-B3	Frozen, oxidized med. to coarse SAND, some gravel (to Im. dia.), dense thaws quickly 3	7 0 0 0	2	<u> </u>		C			G - 49 5 - 49 M+C-	2
<i>4.</i> c	Olive brown fine t coarse SAND, little med. gravel	0 0 0	N)	3 C.E	5.	0			G - 4E 5-50 M+C-	
1049-8 6-00	33 O Bottom of Test Pin	 ≁								

	SOIL PROFILE										
elev N. DEPTH (<i>m</i>)	DESCRIPTION	STRATIGRAPHY PLOT	SAMPLE NUMBER	SAMPLE TYPE	ELEVATION SCALE	WA W	<u> </u>	₩ 	v	ADDITIONÀL LAB TESTING	GROUNDWATER
0.00	Ground surface Organic silt & debris, moss White volcanic ash White volcanic ash White volcanic ash White volcanic ash White volcanic ash (max. size 0.5 m)	0.000000000000000000000000000000000000									
1052-49 3-20				с.5.		0					· · ·
1050-09 5-60	Bottom of Test Pit	0	-2-	<i>с.</i>		0				Cb1-10 G-54 S-35 M+C=) 1%

(m. 1057 1051 0-1 1056	EVN. PTH DESCRIPTIO T1) 57:58 Ground surf 57:58 Black frozen 57:58 Ground surf 57:58 Black frozen 57:58 Black frozen 56:56 Black froz	f <u>ace</u> debris organic ows	- SAMPLE NUMBER	SAMPLE TYPE	ELEVATION SCALE	WATE	R CONT W	ENT, PEF	ADDITIONAL D'WS- LAB. TESTING	CC	
1054 0	90 728 Moss & organic 30 Black frozen o SILT w >> WP material fil when thaweo 1-22	debris organic ows	1	C.5.					G- 78 5М,С:	22	
A A A A A A A A A A A A A A A A A A A	5423 3-35 Bottom of Test Depth variee length of pin										

	SOIL PROFILE				}							
elevn. Depth (m)	DESCRIPTION	STRATIGRAPHY PLOT	SAMPLE NUMBER	SAMPLE TYPE	ELEVATION SCALE	WATER Wp	r coi			ADDITIONAL LAB TESTING	GROUND	
	Ground surface Frogen organic SILTS & debris with moss at top of stratum, some fine & medium to coarse sand pockets											
1057-16 3-66	Frogen gravelly SAND (no cobbles or coarse gravel) Bottom of Test Pin	0 0 0 0						· · · · · · · ·				
· · · ·												

7-2025	¦ ∟ I ∙ ∧	TADO	0 2 N 10N (S 0D OF	ee Fig	ure 3)	REC DB G	מ	DATE	: 2	5 AL	ig l	979		DA	тим		und surface Ley
707			SOIL	PROF	ILE				_								
				DESCR	IPTION	- 1. W 1. - 1.	STRATIGRAPHY PLOT	SAMPLE NUMBER	SAMPLE TYPE	ELEVATION SCALE	WAT W	P	ONTEN W 20 3	W		ADDITIONAL LAB. TESTING	GROUNDWATER CONDITIONS
• •	105	7.00	Grou Surfi Sand with ¢ orgo mate	cial	orge	CE VEL ockets sions, ghly	00.00 []]]										
	105	5.99	Bottc								I						Pit abandone
																	due to seepage
							4										
						<u></u>					, , , , , , , , , , , , , , , , , , ,						
	VE		al sca 50	LE				C	Gol	der	As	soci	ates	5 T. f	? 79	7-1Z	drawn <i>RK</i> checked JG

No. 792 202	METH	NOD OF EXCAVATION D -8		ر <u>چر</u> /						- y /		
Project No	ELEV N. DEPTH (m)	DESCRIPTION	STRATIGRAPHY PLOT	SAMPLE NUMBER	SAMPLE TYPE	ELEVATION SCALE	WATER WP 10		NT, PER(W 30 4	L	ADDITIONAL LAB. TESTING	GROUNDWATE
		· · · · · · · · · · · ·										
	0.0	Ground-Surface Frozen Organic silt & debris										
		Frozen greenis grey SAND & GRAVEL TILL occasional ice lenses, most of material is		17. 1. J. M. I. P. J.								Frozen Dry
	1083.4	highly friable	1411/2019	<u> </u>	cs eve	rol-	sample	-s tok	0 ren		5 W = = = 5 8 8 8 4 = =	1999 Kg/m³ 1917 Kg/m³ 1781 Kg/m³ 2082 Kg/m³ 1866 Kg/m³
	4.0	End of Test Pit NOTE: This pit subsequently incorporated into the test excavation.	4									

	-792-2025	LOCAT METH	ION (See Figure) IOD OF EXCAVATION DBC	C	DATE	: 2	6 AI	T PIT <i>Jg 197</i> 9 ROJECT <i>De</i>		DATUM	Gro	und surfac
0.00 Moss, E. organic 0.30 Frozen organic 5/LT, volcanic ash, some volcanic ash, some 1030.2 boulders 107 Frozen brown sandy GRAVEL (ALLUVIUM), some silty pockets 1087.6 3.66 Bottom of Test Pit	Ŝ	DEPTH	SOIL PROFILE					₩ _₽ 	W 	₩L 	ADDITIONAL LAB. TESTING	GROUNDWATER
		0.00 0.30 1090.2 1-07	Moss e organic debris Frogen organic SIL volcanic ash, some boulders Frogen brown sandy GRAVEL (ALLUVIUM), some silty pockets Bottom of Test Pit			- C.5		0			G-47 5-39	7

2-2025	LOCAT METH	FION (See Figure)	۵	DATE	Ξź	26 A	ST PIT T.P. 0+195 ugust 1979 DATUM Ground surface ROJECT Down Valley
79	SOIL PROFILE						
Project No.	ELEV N. DEPTH (m)	DESCRIPTION	STRATIGRAPHY PLOT	SAMPLE NUMBER	SAMPLE TYPE	ELEVATION SCALE	WATER CONTENT, PERCENT WP W WL 10 20 30 40
	0.00 0.28 1089.9 2.44	Brown silty GRAVEL TILL, high proportion of schist rock boulder lag at approx. 1: 83 m Bottom of Test Pit Surveyed pit bottom elevation 1090.2	Date Construction		- с.5		C - 73 5 · 18 M · 9 Non - pisstic
		ICAL SCALE /: 50			Go	lde	Associates T.P. 0+195 DRAWN KK CHECKED DG

.

792-2025	RECORD OF TEST PIT T.P. 0+760 LOCATION (See Figure) DATE 26 Aug 1979 DATUM Ground surfa METHOD OF EXCAVATION D8 Cat & ripper PROJECT Down Valley												
oject No.	SOIL PROFILE ELEV N. DEPTH (m)		SAMPLE NUMBER SAMPLE TYPE	ELEVATION SCALE	WATER CONTENT, F Wp W 	2 PERCENT WL 40	ADDITIONAL LAB. TESTING	GROUNDWATER CONDITIONS					
	1091.9 Ground surface Organic debris & moss 0-15 White volcanic ash Greenish brown Silty fine SAND TILL 1090.22 168		/-C.S.	•	Ο		G -51 5 -28 M-20 C - 1	non- plastic					
	Greenish grey massive metavolcari rock dipping into slope	NUM STAN											
	1087.94 3.96 Bottom of Test Pit												
	surveyed pit bottom elevation 1088.8	7											
Filed of the													
<u>ت</u> ت	VERTICAL SCALE 1:50		Go 	lder	Associates	T.P. O+	16()	DRAWN <i>RK</i> CHECKED DG-					

	SOIL PROFILE					
elevn. Depth (m)	DESCRIPTION	STRATIGRAPHY PLOT		ELEVATION SCALE		NDWATER
0.00 1089.2 0.30 1.92 1087.1 2.44	Olive brown fine sandy SILT TILL (frozen below 1.22 m) Frozen black organic SILT Frozen SAND & GRAVEL Frozen greenish brown fine sandy SILT TILL		1-0.5	5.	Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q	

1	REC(tion (see Figure) hod of excavation DB CC	ł	DATE	= 2	26 A	ug 19		DAT	UM Grol	und surface
	SOIL PROFILE									
ELEVN. DEPTH (m)	DESCRIPTION	STRATIGRAPHY PLOT	SAMPLE NUMBER	SAMPLE TYPE	ELEVATION SCALE	WATE WP IO	R CONTE W 20	NT, PERC WL 30 40		GROUNDWATER
0.00 1086.1 0.43	Frozen organic SILT & Brown Sandy SILT COLLUVIUM Brown Sandy SILT to Silty fine SAND COLLUVIUM with Several organic	1 2)	- / -	С. 5.			O		(7-39 5-32 M1-28 C-1	3
. <i>1082.2</i> 4.27	Greenish brown fine sandy SILT TILL Bottom of Test Pit		N	с. <i>5</i> .		O			G-5: 5-3; M-12 C-2	
	Surveyed pit bottom elevation 1082.G									

	SOIL PROFILE	-								· · · · · · · · · · · · · · · · · · ·
elev N. Depth (<i>m</i>)	DESCRIPTION	ЗТ RATIGRAPHY PLOT	SAMPLE NUMBER	SAMPLE TYPE	ELEVATION SCALE	₩ _₽ 	CONTENT W 20 30	, PERCENT WL 40	ADDITIONAL LAB TESTING	- GROUNDWATE
1 <u>084.0</u> 0.00 1083.7 0.30		A A A A A A A A A A A A A A A A A A A								· · · ·
	Frogen, mixed brown sandy SILT (TILL) COLLUVIUM e organic SILT, some visible ice	a sold	- /-	C.S.			0		G-25 5-34 M-32 C-9	
1080.65 3-05 1076.6 3:96 1072-41 4-27	Brown silty SAND		2-	c.s.		0			C1-35 S-38 M-24 C- 3	
	Note: Test pit elevation estimated from diversion canal baseline profile.									

	SOIL PROFILE								9	
ELEV N. DEPTH	DESCRIPTION	STRATIGRAPHY PLOT	SAMPLE NUMBER	SAMPLE TYPE	ELEVATION SCALE	WATER CO WP IO 20	w o	W _L	ADDITIONAL LAB, TESTING	GROUNDWATE
083.5 0-00 [[83.] 0-4]	Ground surface Mass & organic SILT									
	Brown fine sandy		-/-	с.з.		p			G - 45 5 - 25 G - 5 G - 5	
	Brown fine sandy SILT TILL, non- plastic to low plasticity, friable boulder layer at 5.5 m	ANN DE MAR	-2	-C.5.		D			G-45 5-34 M-20 C-1	
			n)	-c.5						
<u>/076.7</u> 6-8=	Bottom of Test Pit		4	-c.s						

		DEC				TF	ST PI	Тт	-0 /	ر Q بر 2	<u> </u>		
2025	LOCA	TION (See Figure)					ig 19					Groui	nd surface
i i i i i i i i i i i i i i i i i i i	, METH	HOD OF EXCAVATION DBC	a †	∉ r	ripf	per i	PROJECT			Da	0W17	Val	Ley
() No. 79		SOIL PROFILE											
			PLOT	ĒR		SCALE	· · · ·			· ··		testing	GROUNDWATER
Project	ELEV N. DEPTH	DESCRIPTION	зарну	NUMBER	ТҮРЕ		WATE	R CON	TENT	, PERC	ENT	ADDITIONAL AB. TESTIN	CONDITIONS
	(m)		STRATIGRAPHY	SAMPLE	SAMPLE	ELEVATION		<u> </u>	₩ 	W	L 0	- V - L	
	~		n -	S	<i>и</i> л	цц.		20					
	1086.0	Ground surface											
	0.00	Organic debris											
4 ************************************	0.61	Frozen olive brown fine sandy SILT COLLUVIUM											
i della Te		Frozen brown sandy SILT COLLUVIUM, contains visible ice											
۲	<i>1083.5</i> 7 1•52	crystals, organic layer & cobbles at_1.2 m											
- 1			200 200										
		Frozen brown sandy SILT TILL, ice rich,	Į.										
(Jane 1		Frozen brown sandy SILT TILL, ice rich, non plastic to low plasticity									÷		
- 1	100001		6.1.2										
	1079.91 3:66	Frozen grey & brown								1			
		Frozen grey & brown fine sandy SILT TILL, organic seam at 4.6 m										G-19	
				-/-	C.5.			0				5-30 M-39	Þ 7
and the second	1074.73	Bottom of Test Pit											NOTE: Surficial mud
······													NOTE: Surficial mud flows occurring thawing progresses
						. 							
		Note: Test pit elevation estimated from											
		diversion conal base Line profile.	-										
	-												
	VEDTIC	CAL SCALE		<u> </u>	 ~ 1	<u> </u>		•					drawn <i>RK</i>
9 1	1	50		0	100	der	Asso	ciat	tes	T.P. 2	2+91	7 1	CHECKED DG
						_							

No. 2222		SOIL PROFILE										<u> </u>
Project N	ELEV N. DEPTH	DESCRIPTION	STRATIGRAPHY PLOT	SAMPLE NUMBER	SAMPLE TYPE	ELEVATION SCALE	wa ⁻ w		0	T, PER	ADDITIONAL LAB. TESTING	GROUNDWATE
- - - - -	<u>/072.3</u> 0.00 /071.69	Ground surface Frozen organic SILT & debris & thin volcanic ash seams, cobble lag at base of stratum										·
		Frozen brown grey fine sandy SILT with organic seams at approx. 15 m interva some coarse sand seams adjacent to organics						-				
	1065.59	Unfrozen GRAVEL & SAND with boulder lag at top cf stratum, some silty pockets										
	3.66	Bottom of Test Pit										
		Note: Test pit elevotion estimated from diversion canal baseline profile.										
												L

K:\Projects\0257 D&T\037 2005 RCDC Site Investigation\report\0257-037 Rev B Faro - Rose Creek Diversion Canal -Site Investigation Report.doc

Project : Instrument Replacement

Page 1 of 1 Project No. : 0257-035-01

Location : Faro, YT

Co-ordinates (m) : 580888.50E, 6913408.70N Co-ordinates in NAD 27 Ground Elevation (m) : 1054.1 AMSL

Drill Designation : CME 75 Drilling Contractor : Midnight Sun Ltd Drill Method : Hollow Stem Auger Sampling Method : Standard Penetration Test Boring Diameter : 20 cm

Start Date : 02 Aug 05 Finish Date : 02 Aug 05 Final Depth of Hole (m) : 2.4 Logged by : J.Severin Reviewed by : G. Ferris

	,			— —				<u> </u>					Su - kPa		
	d Depth (m)	Sample Type	Sample No.	Recovery	Permafrost Condition	Lithologic Description		Backfill	Instrument Details	SPT Blows per 300mm	VANE PEAK REMOLD * %	♦ [Fines	2 12 <u>AB</u> ▲	20 16 UC/2 Pocket I (blows/30 (blows/30 (blows/30 (blows/30) (blow	Pen /2 T DOmm) W.% X
-	- 1	X	JMS 01		UF	SAND (FILL) Some Gravel, trace Silt. Dense, non-plastic, moist, reddish brown. SILT (FILL) Some Gravel, some Sand. Dense, non-plastic to low plasticity, grey. at 1.3 m, some oxidation, white powdery crystals.		Cuttings		33	Ο				
) - 2	X	JMS 02 JMS 03					о 		30 100	0				
	- 3					End of Hole: 2.4 m, auger refusal on cobble/boulder At 2.3 m, SPT gives 50 blows for 2 inches. Abandoned hole. No water observed. No sloughing observed.			- - - - - - - - - - - - - - - - - - -						
	BC		AN A		D EAR	GINEERING INC. TH SCIENCES COMPANY Phone (403) 250 5185	Client:		Deloitte &Touche						

Loca Co-o Co-o	tion rdina rdina	Faro tes (tes i	b,YT m):∺ n/NA	58088 .D 27	acement 31.10E, 6913412.60N 054.1 AMSL	BOREHOLE # Drill Designation : CME Drilling Contractor : Mi Drill Method : Hollow S Sampling Method : Sta Boring Diameter : 20 c	E 75 idnight Sun Lto item Auger indard Penetra		Test		ن ن ن	Start Da Finish E Final De Logged Reviewe	te:02 ate:02 pthof by:J.	Aug 05 2 Aug 0 <i>Hole (r</i> Severir)5 n):9.8 I	
Depth (m)	Sample Type	Sample No.	Recovery	Permafrost Condition	Litholog	ic Description		Backfill	Instrument Defails		SPT Blows per 300mm	VANE PEAK REMOLD	FIELD		120 UC/2	160 2 2 300mi 3/300mi
- 1		JMS 05		UF	See BGC05-01 Borehold SILT (FILL) Some Sand, some Grav Compact, non-plastic, m	el.		Cuttings			27	0				
- 3	SAND (TILL) Some Gravel, some Silt. Compact, non-cohesive, moist,					moist, reddish brown.		Bentonite			20	00				
- 4		JMS 08 JMS 09			At 4.0 m, SILT, some Sa Visible quartz and biotite at 4.7 m, some iron stair	e gravel fragments.		Sand			23 19	0				
		I		· · ·	(C GINEERING INC TH SCIENCES COMPANY	Continued on next page)	Client:	 	Deloi & Tou	tte che	_	! <u> </u>		<u>l</u>		

Project : Instrument Replacement

Page 2 of 3 Project No. : 0257-035-01

Location : Faro, YT

Co-ordinates (m) : 580881.10E, 6913412.60N Co-ordinates in NAD 27 Ground Elevation (m) : 1054.1 AMSL Drill Designation : CME 75 Drilling Contractor : Midnight Sun Ltd Drill Method : Hollow Stem Auger Sampling Method : Standard Penetration Test Boring Diameter : 20 cm Start Date : 02 Aug 05 Finish Date : 02 Aug 05 Final Depth of Hole (m) : 9.8 Logged by : J.Severin Reviewed by : G. Ferris

di Depth (m)	Sample Type	Sample No.	Recovery	Permafrost Condition	Lithologic Description		Backfill			SPT Blows per 300mm	VANE PEAK REMOLD * %	Fines	, <u>AB</u> ■ △ • • • • • • • • • • • • •	120 1/2 UC/2 Pocket (blows/3 & SPT N	т
-													,		
6					at 6.1 m, bigher moisture content, 1.5 inch thick	laver of grey	Bentonite								
		JMS 10			at 6.1 m, higher moisture content, 1.5 inch thick silt, slightly higher fines content than above, less gravel, mottled grey with brown and buff tan laye	s sand and				18	0				
8	X	JMS 11	\square	UF	at 7.6 m, iron staining, schistosic gravel clasts, r greenish grey brown.	nottled	Cuttings			33	0				
- - - 9		JMS 12	~~		at 9.1 m, on rock?, less gravel, silt content incre	ases, trace	Bentonite			100					
-			<u></u>		clay, low plasticity. at 9.6 m, clayey silt cuttings before drill refusal		Sand	200							
		_	_		(Continued on next page) GINEERING INC.	Client:) Deloi	tte						
BC	GC		Igary,		H SCIENCES COMPANY Phone (403) 250 5185			Deloi & Tou	che						

Project : Instrument Replacement

Page 3 of 3 Project No. : 0257-035-01

Location : Faro, YT

Co-ordinates (m) : 580881.10E, 6913412.60N Co-ordinates in NAD 27 Ground Elevation (m) : 1054.1 AMSL Drill Designation : CME 75 Drilling Contractor : Midnight Sun Ltd Drill Method : Hollow Stem Auger Sampling Method : Standard Penetration Test Boring Diameter : 20 cm Start Date : 02 Aug 05 Finish Date : 02 Aug 05 Final Depth of Hole (m) : 9.8 Logged by : J.Severin Reviewed by : G. Ferris

Depth (m)	Sample Type	Sample No.	Recovery	Permafrost Condition	Lithologic Description		Backfili	Instrument Details	SPT Blows per 300mm	4 VANE PEAK REMOLD * %	♦ [Fines Moisture	AB ■ □ △ Content 8 W%	UC/2 Pocket SP (blows/30	Pen /2 T D0mm) WL% ×
					End of Hole: 9.75 m, drill refusal, likely on cobbles/b SPT at 9.75 m: 10 blows for 0 inches. Hole sloughed 10 cm at bottom of hole. No water observed. at 9.4 m: Piezometer (RST P100 - 030137) installed. Piezometer installed in 25 mm diameter protective P ¹ Stick up of PVC is 0.55 m. Protective casing installed at surface. 10-20 Frac Sand.		Slough							
- 														
- 14														
15-	GC	AN A		D EART	GINEERING INC. H SCIENCES COMPANY Phone (403) 250 5185	Client:	 2 8	eloitte Touche			I		I	

	Proj	ect : l	nstru	ımen	t Rep	lacement	BOREHOLE	# BGC05-0)3				Proje	ect No	<i>Pag</i> . : 0257-	e 1 of 1 035-01
\langle) Co-c ⊂Co-c	ordina	ites (ites i	(m): 'n N4	5808(D 27	58.50E, 6913418.40N 1054.1 AMSL	Drill Designation : (Drilling Contractor Drill Method : Hollo Sampling Method : Boring Diameter : :	: Midnight Sun Lt w Stem Auger Standard Penetra		Test		Start Da Finish D Final De Logged Reviewe	ate:0: pthof by:J.	3 Aug <i>Hole (</i> Severi	05 (<i>m</i>):4.7 in	
	Depth (m)	Sample Type	Sample No.	Recovery	Permafrost Condition	Lithologi	c Description		Backfill	Instrument Details	SPT Blows per 300mm	4 VANE PEAK REMOLD ★ % W _P % X	Fines Moisti		120 ▲ UK ▲ Pc ● (bic ent & SPT	160 2/2 SPT Ws/300mm) N
	0 1 1 2 2 2				UF	Hole drilled for the installa 030139) at depth 4.0 m. f to 4.7m. Cuttings appear BGC05-02, No sampling.	lole drilled with Hollow	/ Stem Auger	Cuttings							
	- 3 - - - - - - -					End of Hole: 4.7 m at targ No sloughing observed. No water observed. at 4.0 m: Piezometer (RST P100 - Piezometer installed in 25 Stick up of PVC is 0.5 m. Protective casing installed 10-20 Frac Sand.	030139) installed. i mm diameter protecti	ve PVC.	Sand Bentonite							
ba utumda Podela Inford	BC	GC	AN A		D EAR	GINEERING INC. TH SCIENCES COMPANY Phone (403) 250 5185		Client:	[8)eloitte & Touche		J <u>, , , , , , , , , , , , , , , , , , , </u>		_I		

1	Proj	ect : I	nstru	men	t Rep	lacement	BOREHOLE	:#BGC05-0)4					Proje	ct No. :	<i>Page</i> 1 0257-03	
C)Co-c (Co-c	ordina	ites (i ites il	m): nNA	5808 D 27	64.70E, 6913420.20N 1054.1 AMSL	Drill Designation : Drilling Contractor Drill Method : Hollo Sampling Method : Boring Diameter :	: Midnight Sun Li w Stem Auger Standard Penetr		n Test			Start Da Finish L Final De Logged Reviewe	Date:04 Spth of by:J.	4 Aug 09 Hole (m Severin) : 12.1	
	o Depth (m)	Sample Type	Sample No.	Recovery	Permafrost Condition	Lithologi	c Description		Backfill	Instrument Details		SPT Blows per 300mm	VANE PEAK REMOLD * %	Finas		120 1 UC/2 Pockel (blows/: & SPT N	60
					UF	Hole drilled for the installa drilled with Hollow Stem A consistent with BGC05-0*	Auger to 12.1m. Cuttin I and BGC05-02, No s	gs appeared sampling.	Bentonite and Cement Concrete								
) 		BG	C	EN		ntinued on next page)						<u>.</u>				
AGA TO GUE DATA	BC	SC	AN A		DEART	TH SCIENCES COMPANY Phone (403) 250 5185		Client:	۲ ٤	Deloitt & Touc	he he						

						BOREHOLE	# BGC05-0)4						Page 2	of 3
Proje	ect : I	nstru	ment	t Repl	acement							Projec	:t No. : (
o-o ^{`(} 0-0	ordina ordina	tes (I tes il	n):: 1 NA	58086 .D 27		Drilling Contractor : Drill Method : Hollow Sampling Method :	: Midnight Sun Lt w Stem Auger Standard Penetra		Test	•	Finish E Final De Logged	ate:04 pthofF by:J.S	Aug 05 Iole (m) everin	: 12,1	
ې Depth (m)	Sample Type	Sample No.	Recovery	Permafrost Condition	Lithologi	c Description		Backfill	Instrument Details	SPT Blows per 300mm	VANE PEAK REMOLD * %	FIELD L	80 1 <u>AB</u> ▲ □ △ ■ ○ ■ ○ ■ ○ ■ ○ ■ ○ ■ ○	20 1 UC/2 Pocket (blows/3 & SPT N	
- 6														14	
- 7 8 				UF				Bentonite and Cement			2				
- - - - - - -		·			GINEERING INC.	ontinued on next page}	Client:	D	eloitte Touche						
		Location Co-ordina Ground E Cobth (m) Co-Debth (m) Co-Deb	Location : Farc Co-ordinates (i Co-ordinates in Ground Elevation () () () () () () () () () () () () ()	Location : Faro, YT Co-ordinates (m) : Co-ordinates in NA Ground Elevation (() () () () () () () () () () () () ()	Location : Faro, YT Co-ordinates (m) : 58086 Co-ordinates in NAD 27 Ground Elevation (m) : 1 (u) tide (u) tide	Co-ordinates (m) : 580864.70E, 6913420.20N Co-ordinates in NAD 27 Ground Elevation (m) : 1054.1 AMSL Image:	Project : Instrument Replacement Location : Faro, YT Co-ordinates (m) : 580864.70E, 6913420.20N Co-ordinates in NAD 27 Ground Elevation (n) : 1054.1 AMSL Diff Bell and a strength Lithologic Description Image: Strength St	Project : Instrument Replacement Drill Designation : CME 75 Co-ordinates (m) : 580864.70E, 5913420.20N Drill Mestignation : CME 75 Co-ordinates (m) : 1054.1 AMSL Drill Mestignation : CME 75 Sampling Method : Standard Penetr Boring Diameter : 20 cm Sampling Method : Standard Penetr Boring Diameter : 20 cm Image: Sampling Method : Standard Penetr Boring Diameter : 20 cm Lithologic Description Image: Sampling Method : Standard Penetr Boring Diameter : 20 cm Image: Sampling Method : Standard Penetr Boring Diameter : 20 cm Image: Sampling Method : Standard Penetr Boring Diameter : 20 cm Image: Sampling Method : Standard Penetr Boring Diameter : 20 cm Image: Sampling Method : Standard Penetr Boring Diameter : 20 cm Image: Sampling Method : Standard Penetr Boring Diameter : 20 cm Image: Sampling Method : Standard Penetr Boring Diameter : 20 cm Image: Sampling Method : Standard Penetr Boring Diameter : 20 cm Image: Sampling Method : Standard Penetr Boring Diameter : 20 cm Image: Sampling Method : Standard Penetr Boring Diameter : 20 cm Image: Sampling Method : Standard Penetr Boring Diameter : 20 cm Image: Sampling Method : Standard Penetr Boring Diameter : 20 cm Image: Sampling Method : Standard Penetr Boring Diameter : 20 cm Image: Sampling Method : Sampling Method	Location : Faro, YT Co-ordinates (m) : 560964.70E, 6913420.20N Co-ordinates (m) : 560964.70E, 6913420.20N Co-ordinates (m) : 1054.1 AMSL Ground Elevation (m) : 1054.1 AMSL UII Method : Holow Stem Auger Sandard Penetration Boring Diameter : 20 cm UI ging 0 0 0 0 0 0 0 0 0 0 0 0 0	Project : Instrument Replacement Location : Faro, YT Co-ordinates (m) : 58064.70E, 5913420.20N Ground Elevation (h) : 1054.1 AMSL Drill Designation : CME 75 Drill Designation : CME 75 Drill Designation : CME 75 Drill Method : Standard Penetration Test Boring Diameter : 20 cm	Project : Instrument Replacement Drill Designation : CME 75 Location : Faro, YT Drill Designation : CME 75 Co-ordinates (m) : 50804.70E, 6913420.20N Drill Mesignation : CME 75 Ground Elevation (n) : 1054.1 AMSL Drill Designation : CME 75 Ground Elevation (n) : 1054.1 AMSL Drill Mesignation : CME 75 (u) give (m) : 1054.1 AMSL Drill Mesignation : CME 75 (u) give (m) : 1054.1 AMSL Drill Mesignation : CME 75 (u) give (m) : 1054.1 AMSL Drill Mesignation : CME 75 (u) give (m) : 1054.1 AMSL Drill Mesignation : CME 75 (u) give (m) : 1054.1 AMSL Drill Mesignation : CME 75 (u) give (m) : 1054.1 AMSL Ulthologic Description (u) give (m) : 1054.1 AMSL Iteme (m) : 1054.1 AMSL (u) give (m) : 1054.1 AMSL Iteme (m) : 1054.1 AMSL (u) give (m) : 1054.1 AMSL Iteme (m) : 1054.1 AMSL (u) give (m) : 1054.1 AMSL Iteme (m) : 1054.1 AMSL (u) give (m) : 1054.1 AMSL Iteme (m) : 1054.1 AMSL	Project : Instrument Replacement Location : Faro, YT Co-ordinates (m) : 5008A 70E, 6913420.20N Drill Designation : CME 75 Friend D Co-ordinates (m) : 1024.1 AMSL Drill Designation : CME 75 Sampling Mathice' : Holinght Sin Lud Friend D Ground Elevation (m) : 1024.1 AMSL Drill Designation : CME 75 Co-ordinates (m) : 5008A 70E, 6913420.20N Drill Designation : CME 75 Friend D Ground Elevation (m) : 1024.1 AMSL Drill Designation : CME 75 Sampling Mathice' : Standard Penetration Test Friend D Ground Elevation (m) : 1024.1 AMSL Lithologic Description Image: Comparison of the standard Penetration Test Friend D Ground Elevation (m) : 1024.1 AMSL Lithologic Description Image: Comparison of the standard Penetration Test Friend D Ground Elevation (m) : 1024.1 AMSL Lithologic Description Image: Comparison of the standard Penetration Test Friend D Ground Elevation (m) : 1024.1 AMSL Lithologic Description Image: Comparison of the standard Penetration Test Friend D Ground Elevation (m) : 1024.1 AMSL Lithologic Description Image: Comparison of the standard Penetration Test Friend D Ground Elevation (m) : 1024.1 AMSL Comparison of the standard Penetration Test Image: Comparison of the standard Penetration Test Friend D Ground Elevation (m) : 1024.1 AMSL Image: Comparison of the standard Pen	Project : Instrument Replacement Project Location : Fan, YT South State (0.4) Coordinates in NAD 27 Bold Designation : CME 75 Ground Elevation (m) : 1054.1 AMSL Defl Designation : CME 75 Sampling Method : Holow Sten Alager Sampling Method: Holow Sten Alager Ground Elevation (m) : 1054.1 AMSL Defl Description Image: State Contract (State (Project : Instrument Replacement Project No. : 1 Location : Fan, YT ES08084-70E, 6913420.20N Dott Designation : CME 76 Stort Date : 20 Aug 05 Coordinates in NAD 27 Boding Contractors (Minight Sun Lud) Project No. : 1 Stort Date : 20 Aug 05 Coordinates in NAD 27 Boding Contractors (Minight Sun Lud) Project No. : 1 Stort Date : 20 Aug 05 Ground Elevation (m) : 1054. : AMSL Datit Boding Contractors (Standard Penetration Test) Stort Date : 20 Aug 05 Image Date : 20 Cm Image Date : 20 Cm Image Date : 20 Cm Image Date : 20 Cm Image Date : 20 Cm Image Date : 20 Cm Image Date : 20 Cm Image Date : 20 Cm Image Date : 20 Cm Image Date : 20 Cm Image Date : 20 Cm Image Date : 20 Cm Image Date : 20 Cm Image Date : 20 Cm Image Date : 20 Cm Image Date : 20 Cm Image Date : 20 Cm Image Date : 20 Cm Image Date : 20 Cm Image Date : 20 Cm Image Date : 20 Cm Image Date : 20 Cm Image Date : 20 Cm Image Date : 20 Cm Image Date : 20 Cm Image Date : 20 Cm Image Date :	Project : Instrument Replacement Project No.: 0227-031 Location: Fiero, YT ESOBRATOR: \$5913400.00N Drill Designation: CME 75 Start Date: \$30,043,010; Start Date: \$30,010; Start Date: \$30,010;

BOREHOLE	# BGC05-04
----------	------------

Project : Instrument Replacement

Page 3 of 3 Project No. : 0257-035-01

Location : Faro, YT

Co-ordinates (m) : 580864.70E, 6913420.20N Co-ordinates in NAD 27 Ground Elevation (m) : 1054.1 AMSL Drill Designation : CME 75 Drilling Contractor : Midnight Sun Ltd Drill Method : Hollow Stem Auger Sampling Method : Standard Penetration Test Boring Diameter : 20 cm Start Date : 03 Aug 05 Finish Date : 04 Aug 05 Final Depth of Hole (m) : 12.1 Logged by : J.Severin Reviewed by : G. Ferris

-	Depth (m)	Sample Type	Sample No.	Recovery	Permafrost Condition	Lithologic Description	ل ب ب ب ت	Backfill	Instrument Details	SPT Blows per 300mm	4 VANE PEAK REMOLD ★ % W _P % ×2	Fines Moisture	AB ■ △ • • • • • • • • • • • • •	20 16 UC/2 Pocket (blows/30 & SPT N & SPT N	² en /2 1 100mm)
	-10- -11) -12 -13				UF	End of Hole: 12.1 m at target depth. No sloughing observed. Protective casing installed at surface. Thermistor installed at 11.9 m in a 1 inch protecti casing. Zero marker on thermistor located 0.09 m ground surface. Thermistor beads located at 0.41 0.91 m, 1.91 m, 2.91 m, 3.91 m, 5.91 m, 9.91 m, below ground surface. Stick-up of PVC protective m.	/e P\/C	Bentonite and Cement							
E-MCHIDBOOLSEE AL MANUAL TO A	BC		AN A		D EART	GINEERING INC. TH SCIENCES COMPANY Phone (403) 250 5185	Client:	De &	eloitte Touche				- <u></u>		

	Proj	ect : l	nstru	men	t Rep	BOREH.	lOLE)5					Proje	ct No. :	<i>Page</i> 1 0257-03	
)Co-c Co-c	ordina	tes (i tes ir	n): 1 NA	58086 D 27	32.30E, 6913421.70N Drilling Con- Drill Method 1054.2 AMSL Sampling Method	ation : CME 75 tractor : Midnight Sun Lt ' : Hollow Stem Auger ethod : Standard Penetra neter : 20 cm		n Test			Start Da Finish L Final De Logged Reviewe	04 ate: 04 14 pth of 1 15 by: J.S	Aug 05 Hole (m) Severin	: 10.7	
	o Depth (m)	Sample Type	Sample No.	Recovery	Permafrost Condition	Lithologic Description		Backfill	Instrument Details	R.Z.d	SPT Blows per 300mm	VANE PEAK REMOLD * %	Fines		20 UC/2 Pocke (blows/ & SPT N	160 t Pen /2 PT 300mm) — — — — — — — — — — — — — — — — — — —
	-0				UF	Hole drilled for the installation of 2.75 inc Indicator Casing. Hole drilled with Hollow depth of 10.7m. Cuttings appeared cons and BGC05-02, No sampling.	v Stem Auger to a Istent with BGC05-01	Bentonite and Cement Concrete								
and the strength of the streng			******			GINEERING INC. Th sciences company	Client:	I	Deloit & Touc	te						
daca Canche 16	BC	ЭС	Ca	lgary, .	AB	Phone (403) 250 5185		ĺ	X IOUC	ne						

- [

(

							BOREHOLE	# BGC05-0)5						Page 2	of 3
	Proj	ect : I	nstru	men	t Rep	lacement							Projec	t No. : (0257-03	5-01
) Co-c Co-c	ordina	ites (ites i	m): n NA	58080 D 27	62.30E, 6913421.70N 1054.2 AMSL	Drill Designation : (Drilling Contractor Drill Method : Hollo Sampling Method : Boring Diameter : 2	: Midnight Sun Lt w Stem Auger Standard Penetra		Test		Finish E Final De Logged	te:04 A Date:04 Poth of H by:J.S Pod by:0	Aug 05 Iole (m) everin	: 10.7	
			_								E			Su - kPa		
	ს Depth (m)	Sample Type	Sample No.	Recovery	Permafrost Condition	Lithologic	Description		Backfill	Instrument Details	SPT Blows per 300mm	VANE PEAK REMOLD	FIELD L. ◆ I ◇ (UC/2 Pocket SF (blows/3	T 00mm)
	-5	Sal	Sal	Å.	Pei				ä	<u>us</u>	Ъ	×	0 4	o	<u></u>	× 0
	-															
	— 6 -															
	\sum															
	— 7 -								int							
	-				UF				e and Cement							
-	8								Bentonite							
• • • •	-															
-	-															
-	- 9 -															
-	-															
F	-															
, ju	<u>10</u>	1			-		ntinued on next page)		·			<u>_</u>		<u> </u>	I	
All Linemand Stational Spe	RC	30	AN A	PPLIE	DEAR	GINEERING INC.		Client:	[8)eloitte & Touche						
\$L				ilgary,	<u>АВ</u>	Phone (403) 250 5185		L								

:(

							BOREHOLE	# BGC05-0)5						Page 3	
	Proje	ect : l	nstru	men	t Repl	acement							Projec	:t No. : 0	257-035	-01
C)Co-o Co-o	rdina	tes (i tes i	m): 1 NA	58086 D 27	52.30E, 6913421.70N 054.2 AMSL	Drill Designation : (Drilling Contractor Drill Method : Hollo Sampling Method : Boring Diameter : 2	: Midnight Sun Lt w Stem Auger Standard Penetr		Test		Logged	ate:04 pthofF by:J.S	Aug 05 Iole (m)		
	다 다 Depth (m)	Sample Type	Sample No.	Recovery	Permafrost Condition	Lithologic	Description		Backfill	Instrument Details	SPT Blows per 300mm	VANE PEAK REMOLD * % W ₇ % X _ 2	FIELD L	AB ■ △ ■ △ ■ △ ■ ○ ■ ○ ■ ○ ■ ○ ■ ○ ■ ○ ■ ○ ■ ○ ■ ○ ■ ○	20 16 UC/2 Pocket SP (blows/3 & SPT N 	Pen /2 T 20mm) W.% X
	- - - -11					End of Hole: 10.7 m due to	o drill refusal in sloug)	ning gravel.								
	- 					Hole sloughed at 10.5 m. Water level observed at 9. 2.75 inch PVC Slope Indic 11.1 m, casing sunk into s (wrt magnetic north). Fall I north). Stick up of 0.73 m.		at a depth of ight. A ^o at 26 º t magnetic								
-	- 															
•	- 14 															
, s	- `15—															
to cound Induction	BC	SC	AN A		D EART	CINEERING INC. TH SCIENCES COMPANY Phone (403) 250 5185		Client:	[Deloitte & Touche						

Project : Instrument Replacement

Page 1 of 3 Project No. : 0257-035-01

Location : Faro, YT

Co-ordinates (m) : 580715.30E, 6913517.50N Co-ordinates in NAD 27 Ground Elevation (m) : 1050.3 AMSL

Drill Designation : CME 75 *Drilling Contractor* : Midnight Sun Ltd *Drill Method* : Hollow Stem Auger *Sampling Method* : Standard Penetration Test *Boring Diameter* : 20 cm

Start Date : 05 Aug 05 Finish Date : 05 Aug 05 Final Depth of Hole (m) : 9.8 Logged by : J.Severin Reviewed by : G. Ferris

┢		1	·					1	<u>.</u>	<u> </u>				Su - kF	a	
	Depth (m)	Sample Type	Sample No.	Recovery	Permafrost Condition	Lithologic Description		Backfill	Instrument Details		SPT Blows per 300mm	VANE PEAK REMOLE	Fines	B0 <u>AB</u> ▲ □ ∠ re Conter W% 0 • 40	Po (blo	cket Pen /2 SPT vs/300mm)
-						SAND (FILL) Some Gravel, trace Silt. Medium grained sand, loose, non-plastic, moist, lig	ht brown.	Concrete								
	- 1	X	JMS 13 JMS 14					Cuttings	AVALATION CHEMENCHEMENT AND ACHEMENT AND ACHEMENT AND AN	AND HONONONONONONONONON	8	0				
	- 2		JMS 15	Z	UF	at 2.3 m, gravel up to 15 mm, compact.		Bentonite	ACACAL		14	0				
	- 3	X	JMS 16					Sand			15	o				
	- 4	X	JMS 17	\sim				Bentonite		X	22	0			-	
() I STATE TO AND A	BC	SC	AN A		D EART	(Continued on next page) GINEERING INC. H SCIENCES COMPANY Phone (403) 250 5185	Client:		Deloit & Touc				·			

Project : Instrument Replacement

Page 2 of 3 Project No. : 0257-035-01

Location : Faro, YT

Co-ordinates (m) : 580715.30E, 6913517.50N Co-ordinates in NAD 27 Ground Elevation (m) : 1050.3 AMSL

Drill Designation : CME 75 Drilling Contractor : Midnight Sun Ltd Drill Method : Hollow Stem Auger Sampling Method : Standard Penetration Test Boring Diameter : 20 cm

Start Date : 05 Aug 05 Finish Date : 05 Aug 05 Final Depth of Hole (m) : 9.8 Logged by : J.Severin Reviewed by : G. Ferris

ł													Su - kPa	<u>.</u>	
	h Depth (m)	Sample Type	Sample No.	Recovery	Permafrost Condition	Lithologic Description	Backfill		Instrument Details	SPT Blows per 300mm	VANE PEAK REMOLD * %	Fines		UC/2 Pocket SP (blows/3	νT 00mm)
-						SILT and SAND (TILL) Some Gravel, trace Clay. Compact, low plasticity to non-plastic, moist, greenish brown. at 5.5 m, Driller's Note: Easier drilling.		NCNCNCNCNCNCN		NAPA PAPAPAPAPA					
	- 6		JMS 18			at 6.1 m, Driller's Note: Material is squeezing and sticking to rods.	Cutting	CHENCHENCHENCHE			0			3	
-	- 7 - - - 8	X	JMS 19		UF	at 7.7 m, large schist rock fragment in SPT.	Bantonite			17477 22	0				
-	- - - 9 -		JMS			at 9.1 m, some oxidation, dry.									
- 	- - - 10—		20 JMS _21			Schist Bedrock (Continued on next page)	Bentonite			15 50					
Steedult Richtwart Hawaranst 12	BC	GC	AN A		D EAR	Client Phone (403) 250 5185	:	De &	eloitte Touche	ł					

Project : Instrument Replacement

Page 3 of 3 Project No. : 0257-035-01

Location : Faro, YT

Co-ordinates (m) : 580715.30E, 6913517.50N Co-ordinates in NAD 27 Ground Elevation (m) : 1050.3 AMSL Drill Designation : CME 75 Drilling Contractor : Midnight Sun Ltd Drill Method : Hollow Stem Auger Sampling Method : Standard Penetration Test Boring Diameter : 20 cm Start Date : 05 Aug 05 Finish Date : 05 Aug 05 Final Depth of Hole (m) : 9.8 Logged by : J.Severin Reviewed by : G. Ferris

	C Depth (m)	Sample Type	Sample No.	Recovery	Permafrost Condition	Lithologic Description	Backfill	Instrument Details	SPT Blows per 300mm	VANE PEAK REMOLD * %	Fines	AB AB C C C C C C C C C C C C C	20 11 UC/2 Pocket (blows/3 & SPT N	
	-11					End of Hole: 9.8 m, drill refusal in bedrock. No vater observed. Protective casing installed at surface. at 3.5 m: Piezometer (RST P100 - 030138) installed. Piezometer installed in 25 mm diameter protective PVC. Stick up of PVC is 0.5 m. at 8.8 m: Piezometer (RST P100 - 030136) installed. Piezometer installed in 25 mm diameter protective PVC. Stick up of PVC is 0.5 m.								
The statement of the st	BC	GC	AN A		DEAR	Client: Phone (403) 250 5185		Deloitte & Touche					_	

	Proj	ect : l	nstru	men	t Rep	acement							Projec	<i>t No.</i> : C	257-038	5-01
	Co-c Co-c	ordina	ites (i ites i	m): n NA	5807 [.] D 27	14.00E, 6913518.10N 050.3 AMSL	Drill Designation : (Drilling Contractor Drill Method : Hollo Sampling Method : Boring Diameter : 5	: Midnight Sun Li w Stem Auger Standard Penetr		Test		Start Da Finish D Final De Logged Reviewe	ate:06 pth of H by:J.S	Aug 05 Iole (m) everin		
	o Depth (m)	Sample Type	Sample No.	Recovery	Permafrost Condition	Lithologic	Description		Backfill	Instrument Details	SPT Blows per 300mm	4 VANE PEAK REMOLD * % Wp% X -2	FIELD LA Fines Molsture	AB □ △ □ △ □ ○ □ ○ □ ○ □ ○	UC/2 Pocket (blows/3 SPT N	
	-0				UF	Hole drilled for the installa drilled with Hollow Stem A consistent with BGC05-06	uger to 11.4 m. Cuttin	SC05-01). Hole igs appeared	Bentonite and Cement Concrete							
(\)]]	/	1		20			ntinued on next page)				····					
STALINGA TO GO						TH SCIENCES COMPANY		Client:	[Deloitte & Touche						
	D	<u>」し</u>	Ca	ilgary,	AB	Phone (403) 250 5185										

Page 1 of 3

Ī							BOREHOLE	# BGC05-0	7						Page 2	of 3
	Proje	ect : I	nstru	ment	t Repl	acement							Projec		0257-035	
)Со-о Со-о	rdina	tes (i tes ii	m): 1 NA	5807* D 27	14.00E, 6913518.10N 050.3 AMSL	Drill Designation : C Drilling Contractor : Drill Method : Hollov Sampling Method : S Boring Diameter : 2	Midnight Sun Lt v Stem Auger Standard Penetra		Test		Start Da Finish L Final De Logged Reviewe	Date:06 Pth of F by:J.S	Aug 05 Iole (m) everin		
-	տ Depth (m)	Sample Type	Sample No.	Recovery	Permafrost Condition	Lithologic	Description		Backfill	Instrument Details	SPT Blows per 300mm	VANE PEAK REMOLD * %	FIELD L	AB ■ △ ■ △ • Content { ₩%	20 16 UC/2 Pocket SP (blows/3	T 00mm) WL% X
	- 6 - 7 - 8 - 9				UF	ΓCαν	tinued on next page)		Bentonite and Cement							
() [[]	<u>/</u>	1 1					ntinued on next page)									
di komula Y						GINEERING INC. H SCIENCES COMPANY		Client:	[)eloitte & Touche						
the second s	RC	<u>¦C</u>							8	Touche						
Ĩ			Ca	lgary,	AB	Phone (403) 250 5185										

Project : Instrument Replacement

Page 3 of 3 Project No. : 0257-035-01

Location : Faro, YT

Co-ordinates (m) : 580714.00E, 6913518.10N Co-ordinates in NAD 27 Ground Elevation (m) : 1050.3 AMSL

Drill Designation : CME 75 Drilling Contractor : Midnight Sun Ltd Drill Method : Hollow Stem Auger Sampling Method : Standard Penetration Test Boring Diameter : 20 cm

Start Date : 06 Aug 05 Finish Date : 06 Aug 05 Final Depth of Hole (m) : 11.1 Logged by : J.Severin Reviewed by : G. Ferris

Depth (m)	Sample Type	Sample No.	Recovery	Permafrost Condition	Lithologic Description		Backfill	Instrument Details	SPT Blows per 300mm	VANE PEAK REMOLD * %	♦ [Fines		20 16 UC/2 Pocket (blows/3 & SPT N 	Pen /2 T D0mm) W ₆ %
		JMS 22 A & B		UF	Phyllite / Schist Bedrock Moist, weathered End of Hole: 11.4 m due to auger refusal in bedro No sloughing observed. No water observed. Thermistor installed in 1 inch protective PVC casi marker on thermistor located 0.66m above groun Thermistor beads located at 0.09 m, 0.34 m, 0.84 2.34 m, 3.34 m, 5.34 m, 9.34 m, and 11.34 m bel surface. Stick-up of PVC 0.38 m.		Bentonite and Cement		21	O				
	GC	AN A		D EAR1	GINEERING INC. TH SCIENCES COMPANY Phone (403) 250 5185	Client:	[Deloitte & Touche				¥+		

Pr	oject :	Instru	imen	it Rep	lacement							Proje	ct No. :	0257-03	5-01
Co Co	-ordin	ates (ates i	'm): 'n N/	5807 [.] AD 27	12.10E, 6913518.60N 1050,4 AMSL	Drill Designation : (Drilling Contractor Drill Method : Hollo Sampling Method : Boring Diameter : 5	: Midnight Sun L w Stem Auger Standard Penetr		Test		Start Da Finish I Final De Logged Reviewe	Date:07 epthof by:J.	7 Aug 05 <i>Hole (m</i> j Severin) : 12.2	
Depth (m)	Sample Type	Sample No.	Recovery	Permafrost Condition		Description		Backfill	Instrument Details	SPT Blows per 300mm	VANE PEAK REMOLD * %	Fines		120 UC/2 Pocke (blows/ & SPT N	160 PT 300mm)
					Hole drilled for the installa Indicator Casing. Hole dril depth of 12.2 m. Cuttings and BGC05-07, no sampli	led with Hollow Stem . appeared consistent v	Auger to a	Concrete							
- 2				UF				Bentonite and Cement							
- - - - - - - - - - - - - - - - - -					(Co	ntinued on next page)									
		B	GC	EN	GINEERING INC.			r) ol olitto		· · · ·				
В	GC	AN A		ED EAR	TH SCIENCES COMPANY Phone (403) 250 5185		Client:	1	Deloitte & Touche						

(

Page 1 of 3

Proj	ect:	nstru	men	t Rep	lacement	BOREHOLE	# BGC05-0	8			ļ	Project N	Pag 10. : 0257-	e 2 <i>of</i> 3 035-01
Co-0	ordina	ites (i ites il	m): n NA	5807 ⁻ D 27	12.10E, 6913518.60N 1050.4 AMSL	Drill Designation : Cl Drilling Contractor : Drill Method : Hollow Sampling Method : S Boring Diameter : 20	Midnight Sun Lte Stem Auger Standard Penetra		Test		Start Date Finish Dat Final Dept Logged by Reviewed	e:07 Au h of Hole /:J.Seve	g 05 e <i>(m)</i> : 12. erin	2
් Depth (m)	Sample Type	Sample No.	Recovery	Permafrost Condition	Lithologia	: Description		Backfill	Instrument Details	SPT Blows per 300mm	PEAK REMOLD * % Fin	80 ELD LAB ♦ ■ ♦ □		160 5/2 scket Pen /2 SPT ws/300mm) N
- 6														
- 7				UF				Bentonite and Cement						
- - - - - -														
B	GC	AN A		D EAR	(Co GINEERING INC, TH SCIENCES COMPANY Phone (403) 250 5185	ntinued on next page)	Client;	08)eloitte Touch	8				

"(

							BOREHOLE	# BGC05-0	8						Page 3	of 3
	Proje	ect :	nstru	men	t Rep	lacement							Projec	:t No. : C		
	ेCo-o Co-o	rdina	tes (i tes il	m) : n NA	5807 D 27	12.10E, 6913518.60N 050.4 AMSL	Drill Designation : (Drilling Contractor Drill Method : Hollo Sampling Method : Boring Diameter : :	: Midnight Sun Lt w Stem Auger Standard Penetr		Test		Start Da Finish D Final De Logged Reviewe	ate:07 pthofF by:J.S	Aug 05 Iole (m) everin	: 12.2	
					ю						mmO	4	οε	Su-kPa 10 1:	20 1	50
	Ê	Type	No.	Ŋ	Permafrost Condition	Lithologic	Description		_	Instrument Defails	SPT Blows per 300mm	VANE PEAK REMOLD	◆ ◇		UC/2 Pocket SF (blows/3	
	년 더 Depth (m)	Sample Type	Sample No.	Recovery	Permafi				Backfill	Instrum	SPT BI	W,% X — 2		e Content 8 W% —- 0 — 10 6	SPTN	
	- - - - -11					- -			Bentonite and Cement							
	- - 				UF				Slough							
-	- 					End of Hole: 12.2 m at targ Hole sloughed at 10.5 m. Depth to water 9.1 m. 2.75 inch PVC Slope Indic 12.2 m as casing sunk into not measured but is appro of the slope. Stick up 1.52	ator Casing installed slough with applied v ximately coincident w	weight. A ^v was								
	- 14 - - - - - 5-															
143 addammada PO-Caud Sardin is	BC	SC	AN A		DEAR	CINEERING INC. TH SCIENCES COMPANY Phone (403) 250 5185		Client:	[8	Deloitte & Touche						

	Loca Co-o Co-o	ation ordina ordina	: Faro tes (i tes il	o,YT m):: n:NA	57982 D 27	ersion Canal Investigation 24.40E, 6914048.60N 032.8 AMSL Drill Designation : Drilling Contractor Drill Method : Hollo Sampling Method : Boring Diameter :	: Midnight Sun Lt w Stem Auger		n Test		Finish D Final De Logged	Project te:08 A late:08 / pth of H by:J.Se ed by:G	ug 05 Aug 05 ole (m) everin	257-037 : 10	-01
┢													Su - kPa		
	Depth (m)	Sample Type	Sample No.	Recovery	Permafrost Condition	Lithologic Description		Backfill	Instrument Details	SPT Blows per 300mm	4 VANE PEAK REMOLD * % 1 We% X	FIELD LA	B ▲ ■	UC/2 Pocket SP (blows/31 SPT N	Pen /2 T 20mm) WL% ×
			-			SAND (FILL) Some Cobbles, some Gravel. Compact, non-plastic, moist, grey brown.									
	– 1	X	JMS 23			SILT and SAND (FILL) Some Gravel, trace Clay. Dark brown, minor oxidation.				14	0				
) - 2		JMS 24 A&B			SAND and SILT (FILL) Some Gravel, trace Clay. Compact to Loose, low plasticity, reddish brown oxidation.				14	0				
			JMS 25		UF	at 2.9 m, clay content increases slightly. at 3.1 m, organic material present mixed with S	and	ings		9	0				
	- 3	X	JMS 26 A&B			Non-plastic, dark brown, musty smell, fibrous. Possible Original Ground Surface SAND and SILT (TILL) Some Gravel, trace Clay. Loose, low plasticity, reddish brown, minor oxid		Cuttings		8	0			0	
	- 4		JMS 27	~		SAND and GRAVEL				10	0				
-	-5 					(Continued on next page,) 			1					
D STRINGS TO GOOD ON	RC		AN A		D EART	CINEERING INC. TH SCIENCES COMPANY Phone (403) 250 5185	Client:]	Deloitte & Touche						

Page 1 of 3

Project : Rose Creek Diversion Canal Investigation

Page 2 of 3 Project No. : 0257-037-01

Location : Faro, YT

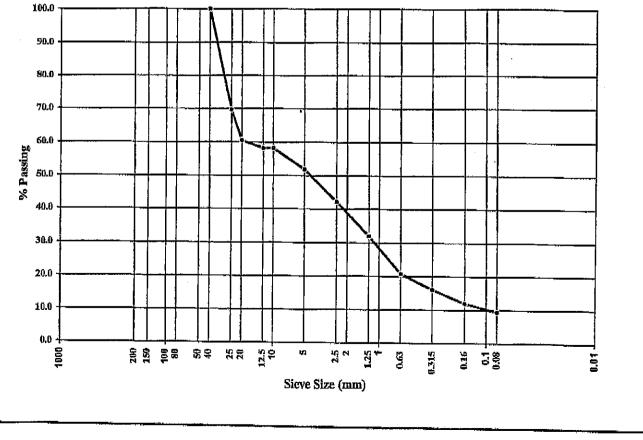
Co-ordinates (m) : 579824.40E, 6914048.60N Co-ordinates in NAD 27 Ground Elevation (m) : 1032.8 AMSL Drill Designation : CME 75 Drilling Contractor : Midnight Sun Ltd Drill Method : Hollow Stem Auger Sampling Method : Standard Penetration Test Boring Diameter : Start Date : 08 Aug 05 Finish Date : 08 Aug 05 Final Depth of Hole (m) : 10 Logged by : J.Severin Reviewed by : G. Ferris

	1			r								Su - kPa		
ch Depth (m)	Sample Type	Sample No.	Recovery	Permafrost Condition	Lithologic Description		Backfill	Linstrument Details	SPT Blows per 300mm	VANE PEAK REMOLD * %	¢ C Fines	0 12 AB ▲ □ △ □ △ □ △ □ ○ □ ○	UC/2 Pocket I SP (blows/30	⁵ en /2 1 10mm) WL% X
6					trace Silt. Compact, non-plastic, moist, light brown, well-sort	ed.								
-7 -7		JMS 28	22	UF			Cuttings		15	0				
- - 8 - - -		JMS 29			at 7.9 m, gravel content increases slightly. Gravel 48% Sand 42% Silt 10% Clay 0%				26	o				
- 9		JMS 30			SAND and SILT Trace Clay Compact, tan, stratified. Silt begins to dominate below 9.4 m, organics with laminations. at 9.9 m, non-laminated SILT and SAND.	hin			17	C				
B	GC	ANA		D EAR	(Continued on next page) GINEERING INC. H SCIENCES COMPANY Phone (403) 250 5185	Client:		Deloitte & Touche						

Project : Rose Creek Diversion Canal Investigation

Page 3 of 3 Project No. : 0257-037-01

Location : Faro, YT


Co-ordinates (m) : 579824.40E, 6914048.60N Co-ordinates in NAD 27 Ground Elevation (m) : 1032.8 AMSL Drill Designation : CME 75 Drilling Contractor : Midnight Sun Ltd Drill Method : Hollow Stem Auger Sampling Method : Standard Penetration Test Boring Diameter : Start Date : 08 Aug 05 Finish Date : 08 Aug 05 Final Depth of Hole (m) : 10 Logged by : J.Severin Reviewed by : G. Ferris

ľ												Su -	kPa		
					Ĕ				E	.	10	80	12	20 1	60
					ditic			ails	8	VANE	FIELD	LAB		UC/2	I
		e			Con	Lithologic Description		Deta	per	PEAK REMOLD	•		Δ	Pocket	Pen /2
	Ê	Sample Type	Sample No.	2	Permafrost Condition			Instrument Details	SPT Blows per 300mm	* %			•	SF (blows/3	
	Depth (m)	ple	ble	Recovery	nafr		Backfill	Ē				ure Con	lent &	SPT N	
	Dep	San	San	Rec	Беп		Ba	Inst	SPI	× –	. <u>—</u> — — —	c 40	/‰ ⊃ · 6(×
ŀ	—10—		JMS			Biotite Schist	_		93						ļ
	-	à	JMS 31	$^{\prime\prime}$											
						Top 1 inch weathered surface in contact with SAND and SILT.									
ľ	-										1				
╞	-														
	-														
						End of Hole: 9.9 m, auger refusal in possible bedrock. Sample taken below 9.9 m by SPT.									
ſ	-11					Depth to water 9.1 m.									
ŀ	-					Sloughing not observed due to Hollow Stem Auger.						.			
-	-														
	2														
Ì	-														
	-12														
	_														
													1		
ŀ	-														
-	-														
ŀ	-13														
ŀ	-														
	-														
ŀ	-			ĺ							1				
╞	-										ł				
ļ	-14										1				
	.,														
ľ	-														
┢	-														
ļ	-														
					-										
ļ	-														
.ب _ق ر. (~15						1	J	1	1	l				L
_ الأ	ÍÍ	1 1	BG	<u>.</u>	FN	GINEERING INC.									
in state of the second second						TH SCIENCES COMPANY Client:		Deloitte & Touche							
N Sector	BC	C		igary,		Phone (403) 250 5185		& louche							
٩L	1.000		08	ugery,	-14 -	r 1038 (400) 200 0 100									· · · · · ·

Aggregate Analysis Report

Sieve Size (mm)	% Passing	Client	BGC Engineering Inc.		
(conci)		Address	Suite 1605, 840 - 7th Avenue S.W.		
200			Calgary, Alberta T2P 3G2		
150		Attention	Mr. Jordan Severin		
100					
80		Project	BGC # 0257-037-01	Job #	55-099-02-1
50					
40	100.0				
25	69.7	Date Sampled	Rec'd Oct.3/05	Ву	CBL
20	60.5	Date Tested	Oct.6/05	Ву	ML
12.5	58.2			-	
10	58.2	Aggregate Type	Sand & Gravel		
5	51.9				
2.5	42.3				
1.25	32.1				
0.63	20.8	Comments	JMS-29		
0.315	16.1		Moisture Content = 4.9%		
0.16	12.1				
0.08	9.5				

Project : Rose Creek Diversion Canal Investigation

Page 1 of 2 Project No. : 0257-037-01

Location : Fare, YT

Co-ordinates (m) : 580245.80E, 6913763.70N Co-ordinates in NAD 27 Ground Elevation (m) : 1049.1 AMSL Drill Designation : CME 75 Drilling Contractor : Midnight Sun Ltd Drill Method : Hollow Stem Auger Sampling Method : Standard Penetration Test Boring Diameter : Start Date : 08 Aug 05 Finish Date : 08 Aug 05 Final Depth of Hole (m) : 8.6 Logged by : J.Severin Reviewed by : G. Ferris

		<u> </u>)					······						Su - kPa		
	Depth (m)	Sample Type	Sample No.	Recovery	Permafrost Condition	Lithologic Description		Backfill	Instrument Details	SPT Blows per 300mm	4 VANE PEAK REMOLD * %	FIELD LA C	B ▲ I △ Content & W%	UC/2 Pocket I SP (blows/30 SPT N	2en /2 1 10mm) W.% X
	- - -					SILT and SAND (FILL/SPOIL) Some Gravel. Gravel is angular, compact, non-plastic, moist, g slight oxidation.	rey brown,								
	- 1 - -		JMS 32			at 1.2 m, Driller's Notes: Chunky / Bony Drilling. at 1.3 m, sandy cuttings.				10	0			2	
	_) 2 -		JMS 33			at 2.1 m, cuttings become dark brown.				13	0				
1	- - - 3		JMS 34		UF	SILT (FILL) Some Sand, some Gravel, trace Clay. Compact, non-plastic, moist, dark brown, red and streaks, some oxidation, musty smell, organic pa throughout sample JMS 34 (mostly 6 inches from at 3.1 m, sporadic oxidation, few organics preser	articles n base).	Cuttings		15	· · · · · · · · · · · · · · · · · · ·	0			
	- - - - 4		JMS 35			at 3.4 m, some organics present. Possible Original Ground Surface SILT (TILL) Some Sand, some Gravel. Compact to dense, low plasticity, moist, green br oxidation, organic material present.				21	c				
j.	- - - -		JMS 36							45	0				
a source fragments	BC	GC	ANA		ED EAR	(Continued on next page) GINEERING INC. TH SCIENCES COMPANY Phone (403) 250 5185	Client:		Deloitte & Touche						

	ocatio o-ord	on : F linate linate	=aro es (n es in	, YT n): { NA	58024 D 27	ersion Canal Investigation Drill Designation : CME 75 D5.80E, 6913763.70N Drilling Contractor : Midnight Sun Drill Method : Hollow Stem Auger 049.1 AMSL Sampling Method : Standard Pene Boring Diameter :		n Test		Start Date : Finish Date Final Depth Logged by Reviewed b	08 Aug : 08 Au of Hole : J.Seve	g 05 e <i>(m)</i> : 8,1 erin	
Depth (m)		sample Type	Sample No.	Recovery	Permafrost Condition	Lithologic Description	Backfill	Instrument Details	SPT Blows per 300mm	40 VANE FIE PEAK 4 REMOLD 4 * % Fines We% N X	80 LAB T S	Δ P	160 IC/2 Ocket Pen /2 SPT ows/300mm) N W.'
			MS 37		UF	at 5.8 m, Driller's Notes: Chunky / Bony drilling. Phyllite (BEDROCK) Weak, highly weathered with quartz veins, some oxidation. No distinct discontinuities. End of Hole: 8.56m, auger refusal in bedrock. No water observed. Sloughing not observed due to Hollow Stem Auger.	Cuttings		34	0			
			AN AF		EAR	BINEERING INC. H SCIENCES COMPANY Phone (403) 250 5185		Deloitte & Touche					

							BOREHOLE	# BGC05-1	1						Page 1 o	
	Proj	ect : F	lose	Cree	ek Div	ersion Canal Investigation							Project	No. : 02	257-037	-01
	Co-0	ordina	tes (i tes il	m): n NA	5810(D 27	01.40E, 6913375.90N 1051.6 AMSL	Drill Designation : C Drilling Contractor : Drill Method : Hollov Sampling Method : Boring Diameter :	: Midnight Sun Lt w Stem Auger		ı Test		Start Dat Finish D. Final Dej Logged I Reviewe	ate:09 A oth of Ho by:J.Se	Nug 05 b <i>le (m)</i> : verin	9.7	
,														Su - kPa		
	Depth (m)	Sample Type	Sample No.	Recovery	Permafrost Condition		Description		Backfill	Instrument Details	SPT Blows per 300mm	40 VANE PEAK REMOLD * % F W _P % X _ 20	FIELD LA	B ▲ I △ Content & W%	UC/2 Pocket I SP (blows/30 SPT N	Pan /2 1 00mm) W.% X
		V	JMS			SAND (FILL / SPOIL) Some Silt, some Gravel, s Dense, moist, light brown.	ome Cobbles.				24	Q				
	- - - 2		39 JMS 40			at 1.5 m, some oxidation a	and organic materials,	compact.			12	0				
-	- - -		JMS 41		UF	at 2.3 m, fines content inc	reases, some oxidation	n.	Cuttings		12	0				
-	- 3	X	JMS 42			SILT and SAND (FILL) Some Gravel. Compact, low plasticity, m			0		10	0				
	- 4		JMS 43								17		0			
\]	<u>.</u> 1 1		BC	<u>C</u>	EN		ntinued on next page)									
annals Dicklood Ger	BC		AN A	PPLIE	DEAR	TH SCIENCES COMPANY		Client:		Deloitte & Touche						
1	עויין		Ċŧ	ilgary,	AB	Phone (403) 250 5185										

ĺ

BOREHOLE # BGC05-11

A B B B Compact And	ſ							BOREHOLE	# BGC05-1	11						Page 2	of 3
Co-continuese (m): 58 1001 ADE, 6913375.50N Ground Elevation (m): 1051.6 AMSL Dolling Contractor: Midnight Sun LLd Sampling Method: 3 Eardard Penetration Test Boring Diameter : Finish Decit to Aug 05 Finish Decit to Aug 05 Sampling Method: 3 Eardard Penetration Test Boring Diameter : 0		Proj	ect : I	Rose	Cree	ek Div	ersion Canal Investigation							Projec	:t No. : I	0257-03	7-01
Image: Section of the section of t		Co-c	ordina ordina	ites (i ites il	m): n NA	58100 \D 27		Drilling Contractor Drill Method : Hollo Sampling Method :	: Midnight Sun Lt w Stem Auger		ו Test		Finish I. Final De Logged	Date:09 epth of H by:J.S	Aug 05 Iole (m) everin	: 9.7	
6 Arristing, Consider Original Ground Surface SAND and SLT (TILL) Some Gravel, Compact, low plasticity, moist, light brown, some oxidation. 19 7 F 6 Arristic Compact, low plasticity, moist, light brown, some oxidation. 7 F 7 F 8 F 9 Arrist 9 Arrist 10 Compact, low plasticity, moist, light weathered (W 5/6), some oxidation, distinct foliation across SPT sample. 9 Arrist 10 End of Hole: 9.7 m, auger refusal in bedrock. 10 Continued on next page) BCC ENGINEERING INC. Cilent: Deloitte & Touche		n Depth (m)	Sample Type	Sample No.	Recovery	Permafrost Condition	Lithologi	ic Description		Backfill	Instrument Details	Blows per	VANE PEAK REMOLD * %	FIELD L ♦ I Fines Moistur	0 1 <u>AB</u> ▲ □ △ ■ △ ■ ○ ■ ○ ■ ○ ■ ○ ■ ○ ■ ○ ■ ○ ■ ○	20 1 UC/2 Pocket (blows/2 & SPT N	Pen /2 27 300mm) WL%
BCC AN APPLIED EARTH SCIENCES COMPANY Client: Deloitte & Touche		- 7		JMS JMS		UF	drilling. <u>Possible Original Ground</u> SAND and SILT (TILL Some Gravel. Compact, low plasticity, n at 7.4 m, wet. Phyllite / Schist Dark grey, weak, slightly distinct foliation across S at 8.5 m, rock becomes n	<u>H Surface</u> -) noist, light brown, some weathered (W 5/6), so PT sample. nore competent.	e oxidation.	Cuttings		20	Ο				
BCC AN APPLIED EARTH SCIENCES COMPANY Client: Deloitte & Touche	۶L.	-10 —						optinued on next pages		ļ							
AN APPLIED EARTH SCIENCES COMPANY Client: Deloitte & Touche		 1	1		20									<u> </u>			
	Carmala Divik							•	Client:		Deloitte & Touche						
		B	ار	Ce	ilgary,	AB	Phone (403) 250 5185										

Project ; Rose Creek Diversion Canal Investigation

Page 3 of 3 Project No. : 0257-037-01

Location : Faro, YT Co-ordinates (m) : 581001.40E, 6913375.90N Co-ordinates in NAD 27 Ground Elevation (m) : 1051.6 AMSL Drill Designation : CME 75 Drilling Contractor : Midnight Sun Ltd Drill Method : Hollow Stem Auger Sampling Method : Standard Penetration Test Boring Diameter : Start Date : 09 Aug 05 Finish Date : 09 Aug 05 Final Depth of Hole (m) : 9.7 Logged by : J.Severin Reviewed by : G. Ferris

	Sample Type		Sample No. Recovery	Permafrost Condition	Lithologic Description		Instrument Details		Su - kPa				
는 Depth (m)		ample No.						SPT Blows per 300mm	4	0	80	120	160
									VANE PEAK	FIELD		UC/2	•.•
									REMOLD			S Pocke	t Pen /2
						EII			* %		•	s (blows/	PT 300mm)
spth						Backfill	strur		Moisture Col W _P %		re Conter W%	ntent & SPT N W% W1/W O	
	ي م	ڻ 	ñ	ፈ			5	5	^ _ z	a 	40	60	
					Depth to water 7.4 m. Sloughing not observed due to Hollow Stem Auger.								
F													
-													
-		-											
L I								Ì					
-12													
-				ĺ									
-													
-													
-13													
F													
-													
-													
-													
-14													
				1									
-													
-											1		
-							1						
الر ₁₅							1]		
					GINEERING INC.]	Deloitte						
RCC & Touche													
		Ca	igary,	AB	Phone (403) 250 5185								

Pro	ject : F	Rose	Cree	k Div	BOREHOLE ersion Canal Investigation	# BGC05-1	2				Projec	ct No. : (Page 1 (
Co-	ordina	tes (i tes il	m):: n:NA	58146 D 27	Drill Designation : 57.20E, 6913201.00N Drilling Contractor Drill Method : Hollo 053.2 AMSL Boring Diameter :	: Midnight Sun Ll w Stem Auger		n Test		Start Da Finish E Final De Logged Reviewe	Date:09 Ppth of F by:J.S	Aug 05 Iole (m) everin	: 5.7	
> Depth (m)	Sample Type	Sample No.	Recovery	Permafrost Condition	Lithologic Description		Backfill	Instrument Details	SPT Blows per 300mm	VANE PEAK REMOLD * %	FIELD L	AB ■ □ △ ■ • • • • • • • • •	20 16 UC/2 Pocket SP (blows/3	Pen /2 T 00mm) X
- - -					SAND and SILT (TILL) Some Gravel, trace Clay. Dense, low plasticity, moist to wet, dark brown, gap graded, well rounded gravel clasts. at 0.7 m, Gravel, trace Sand.	well graded to						ł		
- 1 		JMS 47							38	0				
-2		JMS 48			at 1.8 m, silt content increases, not as moist.				20	0				
- 3		JMS 49		UF	at 2.5 m, dry to moist.		Cuttings		35	0				
-	X	JMS 50			at 3.0 m, faster drilling, wet.				29	0				
- - 4 -														
5-					(Continued on next page)								
B	GC	AN /		ED EAR	GINEERING INC. TH SCIENCES COMPANY Phone (403) 250 5185	Client:		Deloitte & Touche						

(

							BOREHOLE	# BGC05-1	2						Page 2	of 2
	Proje	ect : I	Rose	Cree	ek Div	ersion Canal Investigation							Projec		257-037	
C	ेCo-a Co-a	ordina	tes (tes i	m): n NA	58146 D 27	97.20E, 6913201.00N 053.2 AMSL	Drill Designation : (Drilling Contractor Drill Method : Hollo Sampling Method : Boring Diameter :	: Midnight Sun Lt w Stem Auger		n Test		Start Da Finish E Final De Logged Reviewe	ate:09 pth of H by:J.S	Aug 05 Iole (m) everin		
	Depth (m)	Sample Type	Sample No.	Recovery	Permafrost Condition	Lithologi	c Description		Backfill	Instrument Details	SPT Blows per 300mm	VANE PEAK REMOLD * %	FIELD L Fines Moistur	Content &	UC/2 Pocket SP (blows/3)	T 20mm) WL% ×
	5 -				UF											
	- 6					End of Hole: 5.7 m, aug bedrock. Depth to water 3.0 m. Sloughing not observed o				009009					• - •	
\langle	-7															
	-															
	— 8 -															
	- - - 9 -															
	-															
(^g	10—			L		<u></u>	• <u>••••</u> -•••••••••		I	I	L	I	L			
49 Stolumeda Tibrdadd Derbre	BC	GC	AN A		ED EAR	CINEERING INC. TH SCIENCES COMPANY Phone (403) 250 5185		Client:		Deloitte & Touche						

Project : Rose Creek Diversion Canal Investigation

Page 1 of 2 Project No. : 0257-037-01

Location : Faro, YT

Co-ordinates (m) : 581627.40E, 6913145.80N Co-ordinates in NAD 27 Ground Elevation (m) : 1052.4 AMSL Drill Designation : CME 75 Drilling Contractor : Midnight Sun Ltd Drill Method : Hollow Stem Auger Sampling Method : Standard Penetration Test Boring Diameter : Start Date : 09 Aug 05 Finish Date : 09 Aug 05 Final Depth of Hole (m) : 6.5 Logged by : J.Severin Reviewed by : G. Ferris

+		m 1		[]									Su - kPa		
	o Depth (m)	Sample Type	Sample No.	Recovery	Permafrost Condition	Lithologic Description		Backfill	Instrument Details	SPT Blows per 300mm	VANE PEAK REMOLD * %I	C 80 FIELD LA C Fines	1: B A Content & W%	20 16 UC/2 Pocket (blows/30 & SPT N	Pen /2 T 30mm)
• • • • • • •	- - - - 1 -	X	JMS 51			SAND (FILL) Silty, some Gravel, some Cobbles. Dense to compact, non-plastic, moist, light brown.				27	0				
	2 2		JMS 53 JMS 52							11	00				
-	- -	X	JMS 54		UF	at 2.3 m, some oxidation.		Cuttings		10	0				
	- 3 - - - - 4 -	X	JMS 55			Possible Original Ground Surface SILT (TILL) Sandy, some Gravel. Loose, low plasticity, moist, dark brown, some oxidation, organics present.	, few	0		9	o			- - -	
Ā	- -		JMS 56			at 4.6 m, wet.				8	0				
20 addarmada Thedeoldinon a	B	GC	AN /		ED EAR	(Continued on next page) GINEERING INC. TH SCIENCES COMPANY Phone (403) 250 5185	Client:		Deloitte &Touche						

Project : Rose Creek Diversion Canal Investigation

Page 2 of 2 Project No. : 0257-037-01

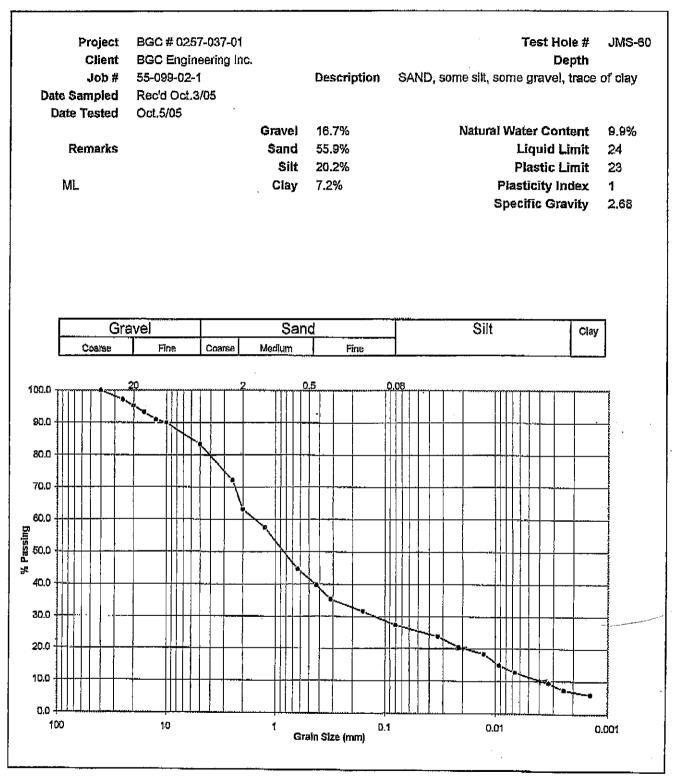
Location : Faro, YT

Co-ordinates (m) : 581627.40E, 6913145.80N Co-ordinates in NAD 27 Ground Elevation (m) : 1052.4 AMSL Drill Designation : CME 75 Drilling Contractor : Midnight Sun Ltd Drill Method : Hollow Stem Auger Sampling Method : Standard Penetration Test Boring Diameter : Start Date: 09 Aug 05 Finish Date: 09 Aug 05 Final Depth of Hole (m): 6.5 Logged by: J.Severin Reviewed by: G. Ferris

	ன் Depth (m)	Sample Type	Sample No.	Recovery	Permafrost Condition	Lithologic Description		Backfill	Instrument Details	SPT Blows per 300mm	VANE PEAK REMOLD ★ %	♦ E Fines	AB A Content 8	20 16 UC/2 Pocket ((blows/30 3 SPT N 50 80	2en /2
	- 6 - 7 - 8 - 9		JMS 57		UF	SAND Some Silt. Loose, non-cohesive, wet, grey brown, massive, Phyllite (BEDROCK) Weak, weathered (W5), no oxidation. End of Hole: 6.48m, auger refusal in bedrock. Depth to water 4.6 m. Sloughing not observed due to Hollow Stem Aug				80	0				
40 15Cauren he 3 Kaulacai Gantiny St	BC	SC	AN A		D EAR1	GINEERING INC. TH SCIENCES COMPANY Phone (403) 250 5185	Client:	[}	Deloitte & Touche						

Project : Rose Creek Diversion Canal Investigation

Page 1 of 1 Project No. : 0257-037-01


Location : Faro, YT

Co-ordinates (m) : 583072.10E, 6912389.00N Co-ordinates in NAD 27 Ground Elevation (m) : 1063.9 AMSL Drill Designation : CME 75 Drilling Contractor : Midnight Sun Ltd Drill Method : CRRL / Solid Stem Auger Sampling Method : CRRL / Solid Stem Auger Boring Diameter : Start Date : 10 Aug 05 Finish Date : 10 Aug 05 Final Depth of Hole (m) : 4.3 Logged by : J.Severin Reviewed by : G. Ferris

o Depth (m)	Sample Type	Sample No.	Recovery	Permafrost Condition	Lithologic Description	Backfill	Instrument Details	SPT Blows per 300mm	VANE PEAK REMOLD * %	Fines	20 16 UC/2 Pocket 1 (blows/30 2 SPT N 0 8(Pen /2 F Domm) WL% X
		59		J	 SAND (TOP SOIL) Silty, high organic content (approx. 35%) Peat, Roots, Wood Fragments, Moss. Loose, non-plastic, wet, dark brown, cold to touch. SAND (TILL) Some Silt, some Gravel, trace Clay, Organic material present (approx 20%). Low plasticity, wet, dark brown, Phyllite inclusions. at 1.6 m, Vx = 5% Gravel 17% Sand 56% Silt 20% Clay 7% at 2.75 m, CRRL Barrel had to be replaced by Solid Stem Auger due to rocks. at 2.9 m, Vx = 2% ③ 3.05 m, cobble/boulder encountered. ④ 3.38 m, cobble/boulder encountered. 	Cuttings			0	*		
5 B	GC	AN A		D EAR1	GINEERING INC. TH SCIENCES COMPANY Phone (403) 250 5185		Deloitte & Touche					

Grain Size Distribution

Project : Rose Creek Diversion Canal Investigation

Page 1 of 1 Project No. : 0257-037-01

Location : Faro, YT

Co-ordinates (m) : 582856.10E, 6912526.10N Co-ordinates in NAD 27 Ground Elevation (m) : 1063.5 AMSL

Drill Designation : CME 75 Drilling Contractor : Midnight Sun Ltd Drill Method : CRRL / Solid Stem Auger Sampling Method : CRRL / Solid Stem Auger Boring Diameter :

Start Date : 11 Aug 05 Finish Date : 11 Aug 05 Final Depth of Hole (m) : 4 Logged by : J.Severin Reviewed by : G. Ferris

	<u> </u>											Su - kPa		<u> </u>
Depth (m)	Sample Type	Sample No.	Recovery	Permafrost Condition	Lithologic Description		Backfill	Instrument Details	SPT Blows per 300mm	VANE PEAK REMOLD ★ %	Fines	AB Δ Δ Φ α Content & W%	20 160 UC/2 Pocket F (blows/30 k SPT N 0 80	Pen /2 0mm)
		JMS 63 JMS 65 56 56 56 JMS 67 JMS 67 JMS 70		UF	 SAND (TOP SOIL) Some Silt, trace Clay, Organic content (approx 20%), Me Grass, Roots, Wood Fragments. Loose, non-plastic, wet, dark brown SILT (COLLUVIUM) Sandy, some Gravel, trace Clay, Organic materials pres (approx. 25%). Moist, dark brown, Phyllite clasts very angular. from 0.3 to 1.5 m, Core Frozen, Nbn SAND (TILL) Some Silt, some Gravel, trace Clay. Moist, light brown. @ 2.8 m, Organic material present (0.2m). @ 2.9 m, Sand lense (0.3 cm), dry to moist. PHYLLITE Fine-grained, greenish grey, weak, weathered (W 4/5), oxidized layers, friable. 		Cuttings				0			
-					End of Hole: 4.0 m, auger refusal in bedrock. No water observed. No sloughing observed.									
	GC	ÁN.		ED EAR	GINEERING INC. TH SCIENCES COMPANY Phone (403) 250 5185	Client:		Deloitte & Touche			. <u> </u>			

Project : Rose Creek Diversion Canal Investigation

Page 1 of 2 Project No. : 0257-037-01

Location : Faro, YT

Co-ordinates (m) : 581714.00E, 6912992.60N Co-ordinates in NAD 27 Ground Elevation (m) : 1064.2 AMSL

Drill Designation : CME 75 Drilling Contractor : Midnight Sun Ltd Drill Method : CRRL / Solid Stem Auger Sampling Method : CRRL / Solid Stem Auger Boring Diameter :

Start Date : 11 Aug 05 Finish Date : 11 Aug 05 Final Depth of Hole (m) : 8.7 Logged by : J.Severin Reviewed by : G. Ferris

Depth (m)	Sample Type	Sample No.	Recovery	Permafrost Condition	Lithologic Description		Backfill	Instrument Details	SPT Blows per 300mm	VANE PEAK REMOLD * %	♦ ⊘ Fines	kPa 12(▲ △	UC/2 Pocket I SP (blows/30 SPT N	Pen /2 T 00mm) X
		JMS 73 JMS 71 JMS 72 JMS 75 JMS 74		UF	SAND (TOP SOIL) Silty, Organic material present (Wood, Peat, Moss) Loose, wet, dark brown, frozen. SAND (TILL) Some Silt, some Gravel, trace Clay. Dense, non-plastic, moist, light brown, frozen. from 0.7 to 1.8 m, Core Frozen, Nbn.					O	c			>>(
- 2		JMS _76 	111/1/1/1/1/1/1/1/1/1/1/1/1/1/1/1/1/1/1/	UF			Cuttings			0 0				
- 4		JMS 79 JMS 		UF	at 3.5 m, Vx = 5% at 3.8 m, swiched to Solid Stem Auger drilling. at 4.1 m, zone of oxidation, 200 mm thick.					0				
	GC	AN A		D EAR	(Continued on next page) GINEERING INC. H SCIENCES COMPANY Phone (403) 250 5185	Client:]	Deloitte & Touche				 		

		-				ersion Canal Investigation						ct No. : 02	257-037-01	
	Co-o	rdina rdina	tes (i tes ii	m): { 1 NA	58171 D 27	Drill Method :	actor : Midnight Sun Li CRRL / Solid Stem Au hod : CRRL / Solid Ste	iger	uger		Start Date : 11 Finish Date : 1 ⁻ Final Depth of Logged by : J.3 Reviewed by :	l Aug 05 <i>Hole (m)</i> : Severin	8.7	
╞						······				-		Su - kPa		
					tion				ഗ	300mm		80 120	D 160 UC/2	
					Permafrost Condition	Lithologic Description			Instrument Details	per	VANE FIELD PEAK ◆ REMOLD ◇		Pocket Pen /2	2
	Ê	Type	No.	2	ost C	u ,		E	ient [Blows	* % Fines	•	SPT (blows/300mm	
	Depth (m)	Sample Type	Sample No.	Recovery	rmafi			Backfill	strum	SPT BI	Moiste W _P % X — — — —	ure Content &	SPTN	.; /լ% ×
_	ല് 5	Sa	Sa	Ř	Ъ			<u> </u>		ŝ	20	40 60) 80	<u> </u>
- - - - - - - - -	- - - 6 -													
	- 7 8		JMS 81	22	UF			Cuttings			O			
	-					at 8.5 m, silt-rich, looks like decomposed i	rock.							
	- - 9 -	1	JMS 82_			End of Hole: 8.69 m, auger refusal in pos No water observed. No sloughing observed.	ssible bedrock.				o			
5	- - -))													
7 Biolonia Trodeolandmis	B	GC			ED EAR	GINEERING INC. TH SCIENCES COMPANY Phone (403) 250 5185	Client:		Deloitte & Touche					

 $\left(\right)$

Page 2 of 2

Project : Rose Creek Diversion Canal Investigation

Page 1 of 2 Project No. : 0257-037-01

Location : Faro, YT

Co-ordinates (m) : 581288.30E, 6913174.20N Co-ordinates in NAD 27 Ground Elevation (m) : 1065.2 AMSL Drill Designation : CME 75 Drilling Contractor : Midnight Sun Ltd Drill Method : CRRL / Solid Stem Auger Sampling Method : CRRL / Solid Stem Auger Boring Diameter : Start Date : 12 Aug 05 Finish Date : 12 Aug 05 Final Depth of Hole (m) : 5.6 Logged by : J.Severin Reviewed by : G. Ferris

			<u>.</u>			· · · · · · · · · · · · · · · · · · ·							Su - kPa		
	Depth (m)	Sample Type	Sample No.	Recovery	Permafrost Condition	Lithologic Description		Backfill	Instrument Details	SPT Blows per 300mm	4 <u>VANE</u> PEAK REMOLD * % W _P % ×	Fines		20 16 UC/2 Pocket i (blows/30 & SPT N 	Pen /2 T 00mm) W.% X
	0 _ -					SILT (TOP SOIL) Sandy, trace Clay, Organic Material (Moss, Pear Loose, low plasticity, moist, dark brown.	, Wood chips).								
	- 1 -		JMS B3 JMS 84A			SAND (TILL) Some Silt, some Gravel, some Clay. Moist to wet, light brown.					o	0			
	- 2		JMS _B4B			at 1.8 m, Gravelly, red decomposed clasts and I (15-25%).	Phyllite clasts				o				
	- - - 3 -		JMS 85 JMS 86		UF	at 2.7 m, trace Gravel, 5%.		Cuttings			0				
	- - - - 4		JMS 87			at 3.4 m, Gravelly, 15-20%, materials oxidized.					o				
11	-		JMS 89 JMS 88			Gravel 13% Sand 61% Silt 15% Clay 11%					0	**			
$\left(\begin{array}{c} \\ \\ \\ \end{array} \right)$	~- -		-			(Continued on next page)									
An Information Standards Continues	BC	GC	AN		D EAR	GINEERING INC. TH SCIENCES COMPANY Phone (403) 250 5185	Client:		Deloitte & Touche						

Project : Rose Creek Diversion Canal Investigation

Page 2 of 2 Project No. : 0257-037-01

Location : Faro, YT

Co-ordinates (m) : 581288.30E, 6913174.20N Co-ordinates in NAD 27 Ground Elevation (m) : 1065.2 AMSL

Drill Designation : CME 75 Drilling Contractor : Midnight Sun Ltd Drill Method : CRRL / Solid Stem Auger Sampling Method : CRRL / Solid Stem Auger Boring Diameter :

Start Date : 12 Aug 05 Finish Date : 12 Aug 05 Final Depth of Hole (m) : 5.6 Logged by : J.Severin Reviewed by : G. Ferris

										5	Su - kPa
	പ Depth (m)	Sample Type	Sample No.	Recovery	Permafrost Condition	Lithologic Description	Backfill	Instrument Details	SPT Blows per 300mm	×	
	-9		JMS 90	\mathcal{N}						0	
ŀ	-		JMS 91	\mathbb{N}		PHYLLITE (BEDROCK)					
-		-- -	_91		UF	Fine-grained, greenish grey colour, weak, slightly weathered (W5), no visible fabric. at 5.4 m, switched to Solid Stem Auger.					
-						End of Hole: 5.64m, auger refusal in bedrock.					
-	6 -					No water observed. Hole sloughes below 3.0 m.					
	- :										
°~~≓											
	-7		1								
	,										
-											
	-						1				
F	-										
-	-8										
-	-										
ŀ											
ŀ	-										
┢	-										
-	- 9										
╞	-										
┢	-										
ŀ											
┝	-										
, al	-10								ļ		
-	; <u>*</u>	ł	B	GC	EN	GINEERING INC.		Doloitto			
PORTICI LAND						Client:		Deloitte & Touche			
Griden 25	DL		Ca	algary,	AB	Phone (403) 250 5185				· · · · ·	

Grain Size Distribution

Project Client Job # Date Sampled Date Tested	BGC # 0257 BGC Engine 55-099-02-1 Rec'd Oct.2 Oct.5/05	eering Inc. I	Gravel	Description	T SAND, some silt, some g Natural Wate		JMS-86 clay 10.5%
Remarks CL - ML			Sand Silt Clay	60.8% 15.1% 11.1%	Lĭe Pla Plasti	guid Limit astic Limit city Index fic Gravity	25 20 5 2.68
Gra	avel		San	d	Silt	Clay	1
00.0 <u>1111111111</u>	20	Coarse2	Medium). <u>5</u>	ров 		-
90.0							
30.0	┼──┼┼┼┼┿━						1
70.0							
70.0 50.0 40.0							
80.0 70.0 60.0 50.0 40.0 30.0							

0.1

0.001

0.01

100

10

1

Grain Size (mm)

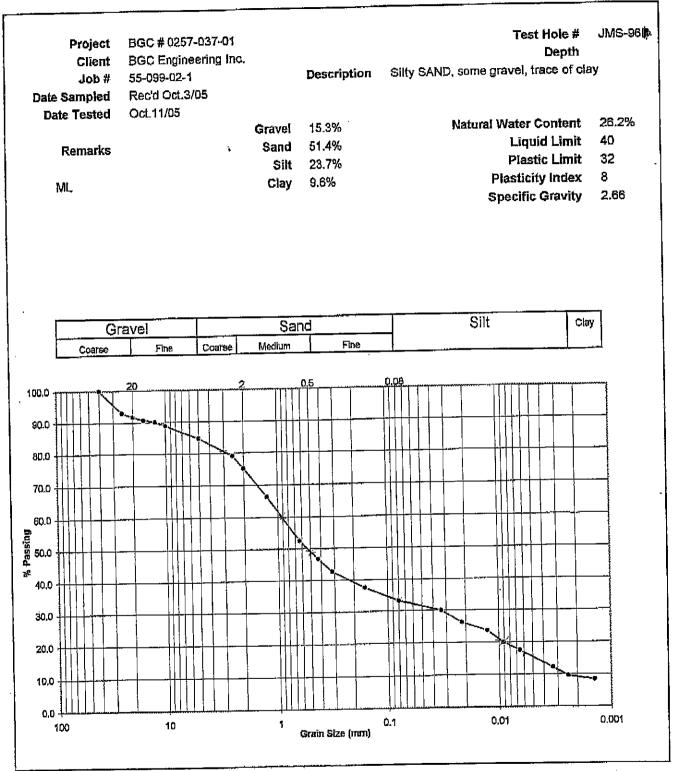
Project : Rose Creek Diversion Canal Investigation

Page 1 of 2 Project No. : 0257-037-01

Location : Faro, YT

Co-ordinates (m) : 580808.00E, 6913361.80N Co-ordinates in NAD 27 Ground Elevation (m) : 1067.4 AMSL

Drill Designation : CME 75 Drilling Contractor : Midnight Sun Ltd Drill Method : CRRL / Solid Stem Auger Sampling Method : CRRL / Solid Stem Auger Boring Diameter :


Start Date : 12 Aug 05 Finish Date : 12 Aug 05 Final Depth of Hole (m) : 6.3 Logged by : J.Severin Reviewed by : G. Ferris

Depth (m)	Sample Type	Sample No.	Recovery	Permafrost Condition	Lithologic Description		Backfill	Instrument Details	SPT Blows per 300mm	VANE PEAK REMOLD * %	Fines	B A Content 8 W% 0	20 160 UC/2 Pocket Pen (biows/300m 3 SPT N 0 80	
-		JMS 93_			SILT Sandy, Organic Materials (Moss, Peat, Wood Fra Loose, moist, dark brown. SAND (TILL)	gments).						>		
		JMS 92		UF	Silty, some Gravel, trace Clay. Low plasticity to non-plastic, moist, light brown. Phyllite clasts up to 7cm with platy shape.					0				
- 2		JMS 94			at 1.8 m, some oxidation.		S			0				
- - - - - - - - - - - - - - - - - -		JMS 95 JMS 96		<u> </u>	@ 3 m, groundwater encountered, wet. at 3.3 m, possible thin frozen zone (0.1 m). at 3.4 m, switch to solid stem auger drilling. No sa recovered below this depth due to soft wet nature Gravet 15% Sand 51% Silt 24% Clay 10%	amples	Cuttings			0				
- - - - - -				UF	(Continued on next page)									
$\frac{1}{1}$	1	BC	30	EN	GINEERING INC.									
BC	GC	AN A		DEART	TH SCIENCES COMPANY Phone (403) 250 5185	Client:		Deloitte & Touche						

							BOREHOLE	BOREHOLE # BGC05-18					Page 2 of 2						
	Proje	ect ; f	Rose	Cree	ek Div	ersion Canal Investigation					Project No. : 0257-037-01								
C	Co-0	ordina	rtes (i Intes il	<i>m) :</i> n NA	58080 D 27	98.00E, 6913361.80N 067.4 AMSL	Drilling Contractor : Drill Method : CRRL	Drill Designation : CME 75 Drilling Contractor : Midnight Sun Ltd Drill Method : CRRL / Solid Stem Auger Sampling Method : CRRL / Solid Stem Auger Boring Diameter :					Start Date : 12 Aug 05 Finish Date : 12 Aug 05 Final Depth of Hole (m) : 6.3 Logged by : J.Severin Reviewed by : G. Ferris						
														Su - kPa		•- -			
	Depth (m)	Sample Type	Sample No.	Recovery	Permafrost Condition	Lithologic	: Description		Backfill	Instrument Details	SPT Blows per 300mm	4 PEAK REMOLD * %	FIELD 14		UC/2 Pocket I SP (blows/30	Pen /2 F 00mm} W _L %			
					UF				Cuttings										
_	-						refusal, possible bedro	refusal, possible bedrock surface.											
						Depth to water 3 m. Hole sloughed below 3.4	m.												
	-				-							4							
	- - 9 - -																		
	-																		
	`_10— 	<u> </u>	L	1					I	I	I	· .	F						
SID LECENTRICLE TRACINOSIDE	R		AN	APPLI	ED EAR	GINEERING INC. TH SCIENCES COMPANY		Client:		Deloitte & Touche									
Transf			<u>'l C</u>	algary	, AB	Phone (403) 250 5185													

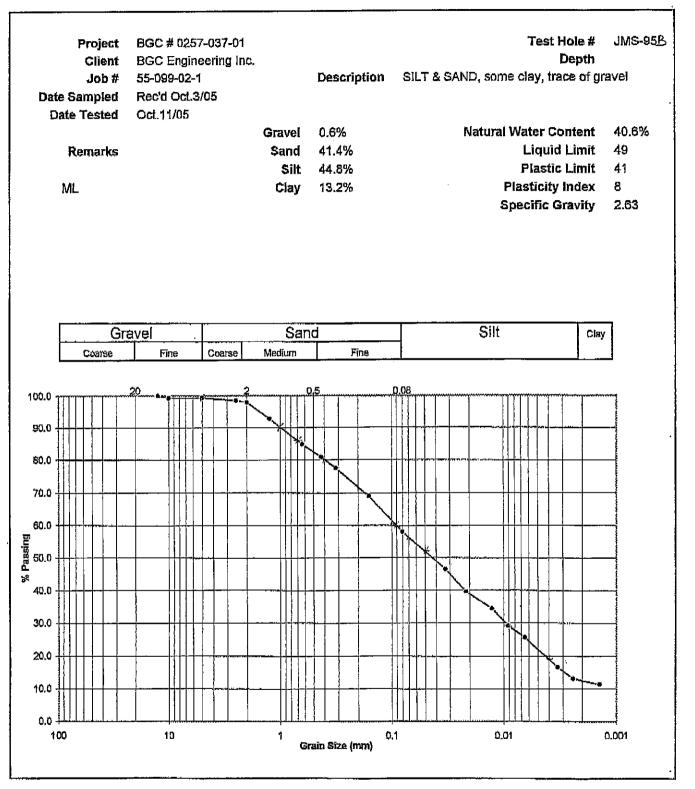
Grain Size Distribution

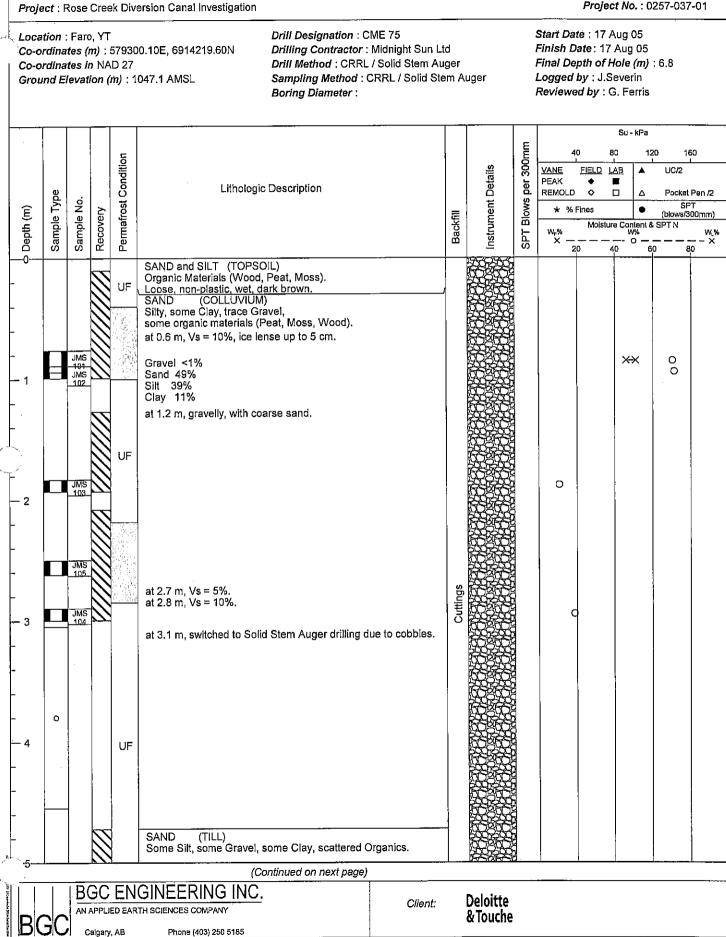
Project : Rose Creek Diversion Canal Investigation

Page 1 of 1 Project No. : 0257-037-01

Location : Faro, YT

Co-ordinates (m) : 579662.90E, 6913972.00N Co-ordinates in NAD 27 Ground Elevation (m) : 1049.0 AMSL


Drill Designation : CME 75 Drilling Contractor : Midnight Sun Ltd Drill Method : CRRL / Solid Stem Auger Sampling Method : CRRL / Solid Stem Auger Boring Diameter :


Start Date: 16 Aug 05 Finish Date: 16 Aug 05 Final Depth of Hole (m): 3 Logged by: J.Severin Reviewed by: G. Ferris

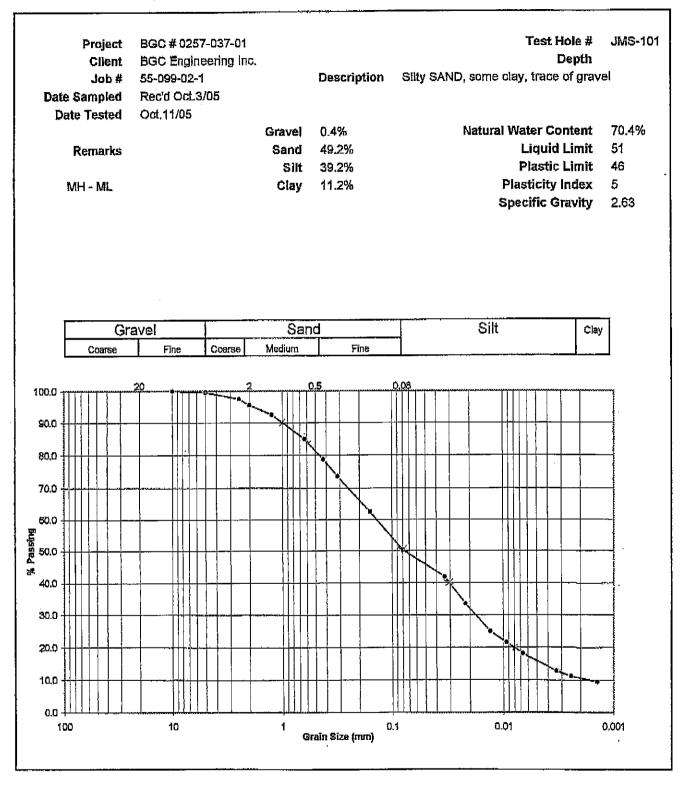
					· · · · · · · · · · · · · · · · · · ·	<u> </u>	<u> </u>				Su - kPa		
b Depth (m)	Sample Type	Sample No.	Recovery	Permafrost Condition	Lithologic Description	Backfill	Instrument Details	SPT Blows per 300mm	VANE PEAK REMOLD * %	Fines	0 12	UC/2 Pocket Pr SPT (blows/300 SPT N	en /2
		JMS 948 968 968 JMS 968 JMS 100		UF	SAND (TOP SOIL) Silty, Organic Materials (Moss, Wood fragments, Bark). Loose, low plasticity, wet, dark brown. SILT and SAND (COLLUVIUM) Some Clay, trace Gravel, occasional Organic interbeds. Low plasticity, moist, medium brown. Gravel 1% Sand 41% Silt 45% Clay 13% at 1.4 m, Vs = 10%, 1-2 cm ice lenses. at 1.6 m, Vs = 15%, 3-5 cm ice lenses. at 2.1 m, stratified sand, silt, and organic material. at 2.9 m, Vs = 5%, 2-3 mm ice lenses along organic beds. End of Hole: 2.97m, auger refusal on possible bedrock. No water observed. No sloughing observed. Three attempts made in area. Auger refusal at 2.9, 2.1 and 2.7 m.	Cuttings					× ××		
B	GC	AN		ED EAR	Client: Phone (403) 250 5185		Deloitte & Touche						

Grain Size Distribution

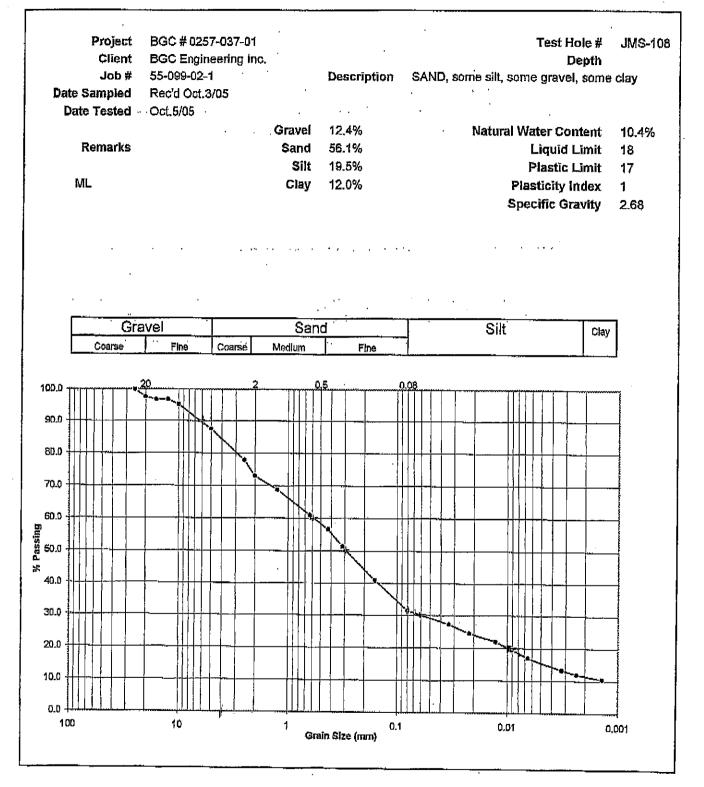
Page 1 of 2 Project No. : 0257-037-01

Project : Rose Creek Diversion Canal Investigation

Page 2 of 2 Project No. : 0257-037-01


Location : Faro, YT

Co-ordinates (m) : 579300.10E, 6914219.60N Co-ordinates in NAD 27 Ground Elevation (m) : 1047.1 AMSL Drill Designation : CME 75 Drilling Contractor : Midnight Sun Ltd Drill Method : CRRL / Solid Stem Auger Sampling Method : CRRL / Solid Stem Auger Boring Diameter : Start Date : 17 Aug 05 Finish Date : 17 Aug 05 Final Depth of Hole (m) : 6.8 Logged by : J.Severin Reviewed by : G. Ferris


			_			······································							Su - kPa		
	لب Depth (m)	Sample Type	Sample No.	Recovery	Permafrost Condition	Lithologic Description		Backfill	Instrument Details	SPT Blows per 300mm	4 PEAK REMOLD * % 1 W ₆ % X2	FIELD LA	B ▲	UC/2 Pocket F SPT (blows/30 SPT N	2en /2 (0mm) W.%
			JMS 107 JMS 106		UF	Low plasticity, wet, grey brown. Gravel 12% Sand 56% Silt 20% Clay 12%		Cuttings			0				
	7 7 8 8					End of Hole: 6.78m, auger refusal on possible bedro No water observed. Sloughing observed below 5.8 m. Six attempts made in area. Auger refusal for all attem above 6.78 m.									
الحق	- - - - - -														
Fit Satesmade Stadleted interest	BC	GC	AN A		ED EAR	GINEERING INC. TH SCIENCES COMPANY Phone (403) 250 5185	Client:		Deloitte &Touche						

Grain Size Distribution

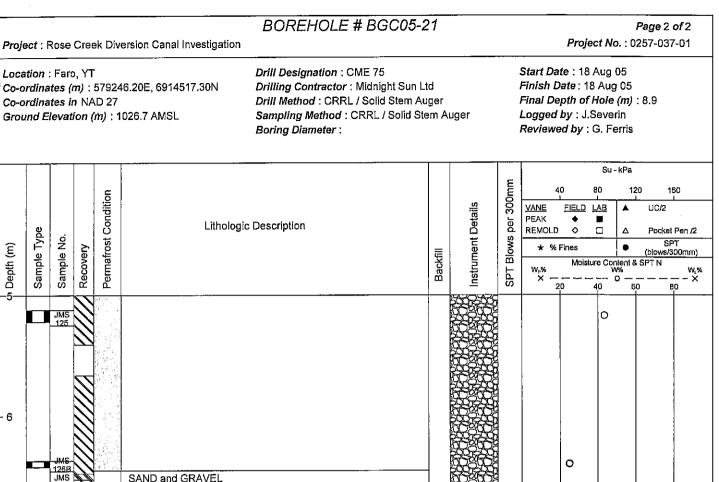
Grain Size Distribution

7505 - 40 Street SE Calgary, Alberta T2C 2H5 Telephone: (403) 236-8880

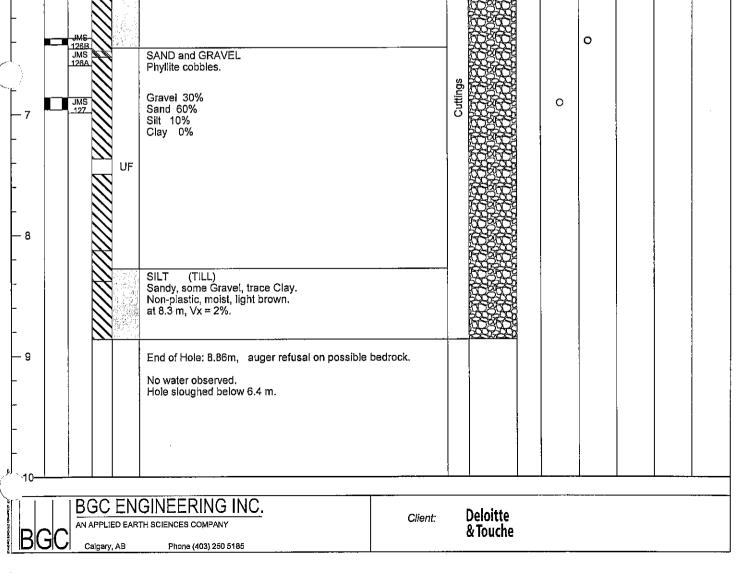
₱00 Ø

Project : Rose Creek Diversion Canal investigation

Page 1 of 2 Project No. : 0257-037-01

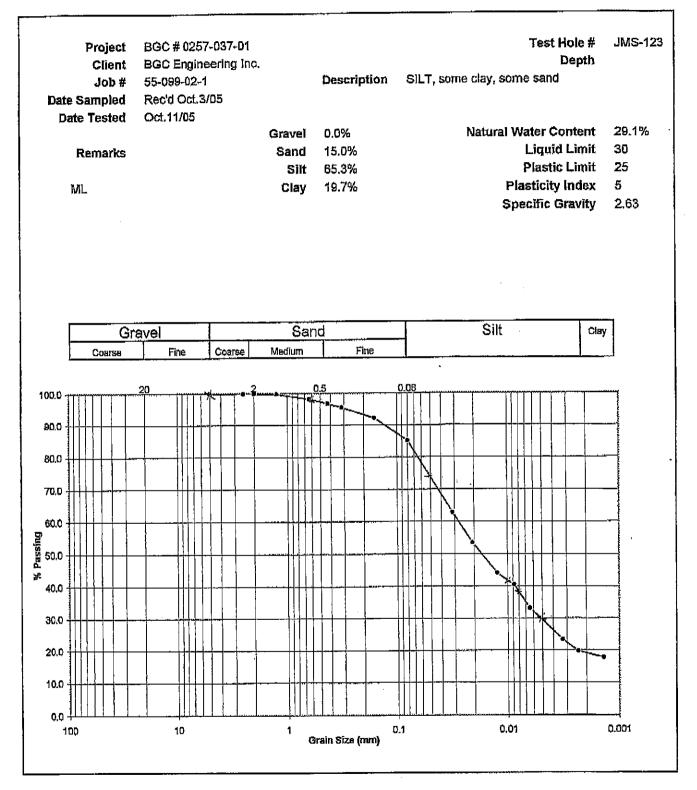

Location : Faro, YT

Co-ordinates (m) : 579246.20E, 6914517.30N Co-ordinates in NAD 27 Ground Elevation (m) : 1026.7 AMSL


Drill Designation : CME 75 Drilling Contractor : Midnight Sun Ltd Drill Method : CRRL / Solid Stem Auger Sampling Method : CRRL / Solid Stem Auger Boring Diameter :

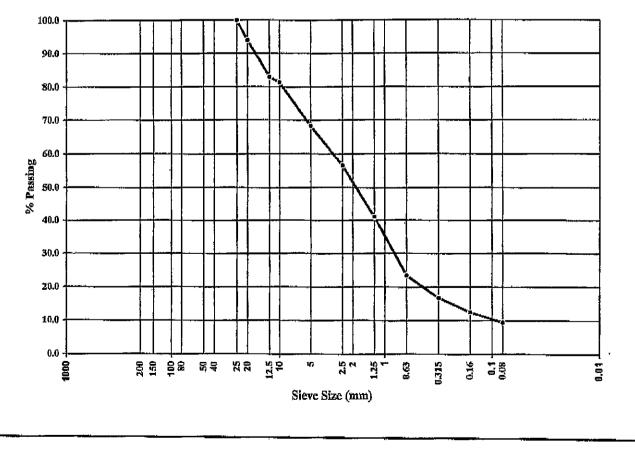
Start Date : 18 Aug 05 Finish Date : 18 Aug 05 Final Depth of Hole (m) : 8.9 Logged by : J.Severin Reviewed by : G. Ferris

				_					шц	4	0 8	Su-k 10	Pa 120	160	
(H	t Type	e No.	iry	Permafrost Condition	Lithologic Description			Instrument Details	SPT Blows per 300mm	VANE PEAK REMOLD			▲ △	UC/2 Pocket Pe SPT blows/300	
Depth (m)	Sample Type	Sample No.	Recovery	_			Backfill	Instrum	SPT BI	W _p % × -	Moistur 0 4	e Conte W% 0	ent & SF	YN 	₩.% ~ X
Ļ		JMS _112		UF	SAND (TOPSOIL) Silty, Organic material (Wood chips, Moss) prese 30%).	ent (approx									>>(
-		112 JMS 113	$\langle \rangle$		Loose, non-plastic, wet, dark brown. CLAY - Organics present, dense, green. SILT (ASH)					į				þ	
-		JMS 114_	\int		Low plasticity, wet, white. at 0.4m, Vs = 20%, ice lense up to 3mm. SILT (COLLUVIUM)								0		
- 1		JMS 115 JMS	\bigcup		Some Clay, come Sand, Organic Material (Mess	, Wood).							5		
-		116	\mathbb{N}	: 	Dense, non-plastic, dark grey brown. at 0.6 m, Vx = 5%, ice crystals up to 4 mm. at 1.0 m, Vx = 25%, up to 2 cm. at 1.2 m, Sand, some Silt. Stratified with lenses of fines and organic materi										
-		JMS 117	\square		Stratified with lenses of fines and organic materi	als. 					p				
∕ `∓						ł									
- 2		JMS 118									0				
-		JMS 119													
-		119	$\sum_{i=1}^{n}$												
F		JMS	$\sum_{i=1}^{n}$:	Cuttings								
- 3	Η	120 JMS 121 JMS			at 3.1 m, Vs = 20%, ice lenses up to 1 cm.		Cutt				0				>>
-		122 JMS 123	\mathbb{N}		Gravel 0%						××				
_				رہ ان اور کا ماہور کی	Sand 15% Silt 65%										
-			\mathcal{H}		Clay 20%										
- 4			\mathbb{N}												
-			\square												
-		JMS 124													
"`•5—		<u> </u>			(Continued on next page)		!		2			1		I	
					GINEERING INC. Th sciences company	Client:		Deloitte & Touche							
B(<u>)(</u>	c c	algary,	AB	Phone (403) 250 5185						<u> </u>				



Depth (m)

Grain Size Distribution


SECOND REPORT

600 🕅

Aggregate Analysis Report

Sieve Size	% Passing	Client	BGC Engineering Inc.		
(mm)					
		Address	Suite 1605, 840 - 7th Avenue S.W.		
200			Calgary, Alberta T2P 3G2		
150		Attention	Mr. Jordan Severin		
100					
80		Project	BGC # 0257-037-01	Job #	55-099-02-1
50					
40					
25	100.0	Date Sampled	Rec'd Oct.3/05	Ву	CBL
20	94.0	Date Tested	Oct.6/05	Ву	ML
12.5	83.0				
10	81.4	Aggregate Type	Sand & Gravel		
5	68.2				
2.5	56.6	·			
1.25	41.1				
0.63	23.5	Comments	JMS-127		
0.315	16.7		Moisture Content = 8.4%		
0.16	12.5				
0,08	9.4				

Project : Rose Creek Diversion Canal investigation

Page 1 of 1 Project No. : 0257-037-01

Location : Faro, YT

Co-ordinates (m) : 578921.00E, 6914612.70N Co-ordinates in NAD 27 Ground Elevation (m) : 1045.6 AMSL Drill Designation : CME 75 Drilling Contractor : Midnight Sun Ltd Drill Method : CRRL / Solid Stem Auger Sampling Method : CRRL / Solid Stem Auger Boring Diameter : Start Date : 19 Aug 05 Finish Date : 19 Aug 05 Final Depth of Hole (m) : 3.3 Logged by : J.Severin Reviewed by : G. Ferris

ŀ							1	1		r		Su - kPa		\neg
	· Depth (m)	Sample Type	Sample No.	Recovery	Permafrost Condition	Lithologic Description	Backfill	Instrument Details	SPT Blows per 300mm	40 VANE PEAK REMOLD * % F W _P % X 20	D 80 FJELD LA ♦ ■ ♦ E) 12 ▲ ▲ ▲ ▲ ▲ ▲ ▲ ▲ ▲ ▲ ▲ ▲ ▲	UC/2 Pocket Pen /2 SPT (blows/300mm) SPT N W.9	%
	-0		JMS 128 JMS 129 JMS 130 JMS 131		UF	SAND (TOPSOIL) Silty, frace Clay, Organic Materials (Moss, Peat, Wood). Loose, non-plastic, wet, dark brown. SAND (COLLUVIUM) Silty, some Gravel, trace Clay. Low plasticity, light brown, ice stratified. at 0.5 m, Vs = 30%, ice lenses up to 3 cm. at 0.9 m, Vs = 40%, ice lenses up to 3 cm. from 1.0 m to 1.5 m, Vx = 20%, ice lenses up to 1 cm. at 1.8 m, Vs = 40%, ice lenses up to 3 cm. Phyllite (BEDROCK) Fine grained, green colour, no distinct fabric or discontinuities. End of Hole: 3.3m, drill refusal in bedrock. No water observed. Hole sloughing observed. Two attempts made. Drill refusal at 3.3 and 1.8 m.	Cuttings				0			
Bir stringte († 10 stjar de tarden 18	BC	GC	AN.		ed ear	Client: Phone (403) 250 5185		Deloitte & Touche		<u>.</u>				

Project : Rose Creek Diversion Canal Investigation

Page 1 of 1 Project No. : 0257-037-01

Location : Faro, YT

Co-ordinates (m) : 578561.90E, 6914958.40N Co-ordinates in NAD 27 Ground Elevation (m) : 1021.5 AMSL Drill Designation : CME 75 Drilling Contractor : Midnight Sun Ltd Drill Method : CRRL / Solid Stem Auger Sampling Method : CRRL / Solid Stem Auger Boring Diameter : Start Date : 19 Aug 05 Finish Date : 19 Aug 05 Final Depth of Hole (m) : 4.3 Logged by : J.Severin Reviewed by : G. Ferris

		·1			—							Su - kPa		
	v Depth (m)	Sample Type	Sample No.	Recovery	Permafrost Condition	Lithologic Description	Backfill	Instrument Details	SPT Blows per 300mm	VANE PEAK REMOLD * %	Fines	B ▲	UC/2 Pocket F SPT (blows/30 SPT N	2en /2 Dmm) W_%
-	-0				UF	SILT (TOP SOIL) Sandy, some Gravel, trace Clay, Organic Material (Peat, Roots). Loose, low plasticity, light brown colour. Interbedded with organic materials, large clasts up to 7 cm.				0				
	• 1		JMS 132 JMS 133 JMS			at 1.0 m, Organic layer 2" thick. SAND (COLLUVIUM) Gravelly, some Silt, trace Clay. Light brown, highly variable. at 1.3 m, Vx = 30%.					þ			
) - 2		134				Cuttings							
	- 3		JMS _135			at 2.4 m, Vx = 30%, ice lense up to 3 cm. at 2.5 m, Vx = 5%. at 2.9 m, Organic layer 4" thick.							0	
-	- 4		JMS 136 JMS 137			at 3.5 m, oxidized layer (1 cm).								
	-5					End of Hole: 4.3 m, drill refusal on cobbles/boulders. No water observed. Hole sloughing observed. Four attempts made in area. Auger refusal at 4.3, 1.4, 1.5, and 2.1 m.								
di Malimuk Tipologi Qurdini	B	GC	AN		ED EAR	GINEERING INC. ITH SCIENCES COMPANY Phone (403) 250 5185		Deloitte &Touche	L					