

Water Treatment Costs

Prepared for:

DELOITTE & TOUCHE INC. Interim Receiver of Anvil Range Mining Corporation Suite 1900, 79 Wellington Street West Toronto, Ontario, M5K 1B9

Prepared by:

Web Address: http://www.srk.com e-mail: vancouver@srk.com

> Project Reference Number: SRK 1CD003.32

> > June 2004

Water Treatment Costs

Deloitte & Touche

Interim Receiver of Anvil Range Mining Corporation Suite 1900, 79 Wellington Street West Toronto, Ontario, M5K 1B9

SRK Consulting (Canada) Inc.

Suite 800, 1066 West Hastings Street Vancouver, B.C. V6E 3X2

Tel: 604.681.4196 Fax: 604.687.5532 E-mail: vancouver@srk.com Web site: www.srk.com

SRK Project Number 1CD003.32

June 2004

Reviewed by:

D.E. Hockley, P.Eng

Prepared by:

J.T. Chapman, P.Eng.

Table of Contents

1	Introduction	1
	1.1 Terms of Reference	1
	1.2 Background	1
	1.3 Objectives	1
	1.4 Scope of Work	1
2	Current Water Treatment Costs	3
	2.1 System Descriptions	
	2.2 Current Operating Conditions	
	2.2.1 Vangorda/Grum	
	2.2.2 Faro Mill	4
	2.2.3 Down Valley	5
	2.3 Estimated System Performance	6
	2.4 Estimated Operating Costs	7
3	HDS Water Treatment	9
Ŭ	3.1 Vangorda/Grum Water	g.
	3.2 Faro Mill Water	10
	3.3 Down Valley Water	
4	Conclusions	12
-		
5	References	14

List of Tables

Table 2.1:	Summary of Vangorda/Grum Water Treatment Plant Influent Water Quality Monitoring	J
	Results	4
Table 2.2	Summary of Faro Pit Lake Water Quality Monitoring Results	5
Table 2.3:	Summary of Down Valley Treatment System Influent Water Quality	6
Table 2.4:	Calculated Lime Utilizations	6
Table 2.5:	Calculated Lime Utilization Including Magnesium Removal	7
Table 2.6:	Summary of Calculated Operating Costs	8
Table 3.1:	Summary of HDS Treatment Plant Operating Costs Treating Vangorda/Grum Water	9
Table 3.2:	Summary of HDS Treatment Plant Operating Costs Treating Faro Water	10
Table 3.3:	Summary of HDS Treatment Plant Operating Costs Treating Faro Water	11

List of Appendices

Appendix A	Operating Cost Calculations
------------	-----------------------------

Appendix B HDS Treatment System Modelling

1 Introduction

1.1 Terms of Reference

This project was initially conceived in program planning sessions carried out in a June 2003 planning workshop (Deloitte & Touche, 2003). A scope of work for the assessment of current water treatment costs at Anvil Range was presented in a letter from SRK to Deloitte & Touche, dated September 8, 2003. The scope of work was authorized later in September 2003.

1.2 Background

Three water treatment systems are being operated at the Anvil Range complex, comprising:

- The Vangorda/Grum water treatment plant, which is a purpose designed system,
- The Faro Mill water treatment system, which utilizes pre-existing mill equipment, and,
- The Down Valley water treatment system, which consists of a slaking plant and an in-line system to mix the lime slurry with tailings pond water.

Detailed descriptions of each of these facilities have been prepared by EBA Engineering Consultants (2003). That report included descriptions of the water management systems, but did not address water treatment costs.

1.3 Objectives

The primary objectives of this study were to:

- Develop updated water treatment performance and cost estimates based on the 2003 water treatment operations.
- Estimate sludge generation and disposal requirements that could be used to evaluate intermediate and long term water treatment cost implications for different closure scenarios.

1.4 Scope of Work

The water quality data for 2003 were compiled and reviewed to assess the water treatment system performance. For each system, chemical consumption rates and unit water treatment costs were assessed.

To provide a basis for comparison with standard High Density Sludge (HDS) water treatment performance and costs, Canadian Environmental & Metallurgical Inc. (CEMI) of Vancouver was commissioned to estimate feasibility level capital and operating costs, and sludge generation rates for the average water quality and flow rates for each of the three treatment systems.

Finally, the unit operating costs obtained from current water treatment practices, together with those from the HDS system modelling were summarised in a format suitable for direct use in the computer program AMD TREAT, developed by the U.S. Office of Surface Mine Reclamation and Enforcement. The computer program has a cost modeling capability which can be used to predict the future costs associated with water treatment requirements under various closure scenarios.

2 Current Water Treatment Costs

2.1 System Descriptions

The existing water treatment facilities at the Anvil Range Mining Complex comprise:

- The Vangorda/Grum water treatment plant;
- The Faro Mill water treatment system; and,
- The Down Valley water treatment system (currently located at the Intermediate Impoundment Spillway.

Detailed descriptions of these facilities are available in EBA Engineering Consultants (EBA, 2003) and are not repeated here. The reader is referred to that document for complete descriptions.

2.2 Current Operating Conditions

2.2.1 Vangorda/Grum

The Vangorda/Grum water treatment plant was operated for a total of 45 days during the summer of 2003. The system was down from June 28th to July 7th while awaiting laboratory test results before discharge could commence. Repositioning of the barge required that the system be shut down for 1 day on the 21st of July, and for 2 days on the 11th and 12th of August. On the 17th and 18th of August a further 2 days of operation were lost due to repairs to a faulty motor on the barge pump, as well as repositioning the barge.

During the operational period the average water treatment rate was 2,000 USgpm. Over the 45 days, a total of about $436,000 \text{ m}^3$ was treated in the system.

A total of 140 short tons of quick lime were used during this period and the average power consumption was about 700 kW. Staffing comprised a total of 8 operators, 2 operators per shift, working on a 4x4 - 12 hr shift rotation.

The available influent water quality monitoring results are provided in Table 2.1. Acidity was not monitored but was calculated from the dissolved metal concentrations. As shown, dissolved zinc and manganese were elevated while the pH decreased slightly over the period, but remained near neutral. Iron increased marginally toward the end of the summer. This is likely a result of the draw-down of the Vangorda pit to an elevation where more reducing conditions were encountered.

		2003 Water Quality Results			
Date	Units	Mar	Jun	Sep	
Alkalinity*	mg/L	71	37	46	
Acidity**	M`4L	149.8	109.5	168.2	
рН		7.4	7.0	6.9	
AI	mg/L	0.029	0.001	0.019	
Fe	mg/L	0.116	0.334	1.55	
Mn	mg/L	20.4	16.5	29.2	
Zn	mg/L	73.3	51.3	72.5	
SO ₄	mg/L	808	635	1041	
Са	mg/L	179	146	262	
Mg	mg/L	71.6	52.3	82.8	
Na	mg/L	10.1	3.5	6.1	
К	mg/L	4.9	3.0	4.7	

Table 2.1: Summary of Vangorda/Grum Water Treatment Plant Influent Water Quality Monitoring Results

Notes: * Acidity and Alkalinity in units of CaCO3 eq

** Acidity calculated from metal concentrations.

2.2.2 Faro Mill

The Faro Mill water treatment system was operated for a total of 66 days during the summer of 2003, with no down time during this period.

Water was treated in the system at an average flow rate of about 5,300 USgpm. An estimated total volume of 1,906,000 m³ of water was treated during the operational period of the system, using a total of 240 short tons of quicklime.

The average power consumption during this period, which included the lighting circuit, was about 800 kW. Staffing comprised a total of 4 operators, 1 operator per shift, working on a 4x4 - 12 hr shift rotation.

The available water quality monitoring results are shown in Table 2.2. Again, the acidity was not monitored but was calculated from the dissolved metal concentrations. The results indicated that the pH remained slightly alkaline through the treatment period.

Data	Unita	2003 Monitoring Results				
Date	Units	Мау	Jun	Jul	Aug	Sep
Acidity	mg/L	11.2	23.8	21.2	21.9	26.8
pН		7.8	7.4	7.4	7.6	7.7
AI	mg/L	0.109	0.007	0.022	0.024	0.060
Fe	mg/L	0.058	0.139	0.103	0.226	0.265
Mn	mg/L	0.465	2.807	2.717	2.508	2.617
Zn	mg/L	6.273	11.980	10.379	10.873	13.751
SO ₄	mg/L	132	647	657	574	588
Са	mg/L	34.0	160.2	159.6	144.5	147.2
Mg	mg/L	13.4	60.2	60.1	56.6	60.5
Na	mg/L	3.5	24.6	23.1	19.6	20.1
K	mg/L	1.9	14.9	14.3	11.7	12.1

Table 2.2 Summary of Faro Pit Lake Water Quality Monitoring Results

Notes: * Acidity calculated form metal concentrations in units of CaCO3 eq.

2.2.3 Down Valley

The Down Valley water treatment system was operated for a total of 54 days during the summer of 2003. The system experienced no down time during the treatment period. Water was siphoned and treated in the system at an average flow rate of 1,500 USgpm, which resulted in the treatment of approximately 442,000 m³ of water. A total of 220 short tons of quick lime were used to treat the water.

Power for operating the treatment system was generated with a CAT 350 kW generator set. Actual power draw was approximately 175 kW. Diesel fuel consumption was about 200 US gallons per day.

The system was run using 4 operators, 1 operator per shift, rotated on a 4x4 -12 hr shift rotation.

The available influent water quality monitoring results are provided in Table 2.3. Compared to the water treated in the Faro Mill and Vangorda/Grum treatment systems, the water treated in Cross Valley dam initially contained elevated iron concentrations. The iron concentration gradually decreased to below 1 mg/L by July. Since the pH did not decrease over this period, the results indicate that excess alkalinity was present in the water to neutralize the acidity associated with the iron.

			2003 Monitoring Results n Feb Mar Apr Jun Jul Aug Sep Oct .6 93.8 84.1 87.2 41.8 36.1 37.7 38.9 40.5 5 7.3 7.3 7.4 7.5 7.5 7.3 7.5 7.4 49 0.062 0.076 0.242 0.051 0.022 0.060 0.074 0.010 .9 19.1 15.9 17.0 1.3 0.19 0.39 0.28 0.12 .9 13.2 14.4 14.1 9.1 10.2 11.2 10.9 11.5							
Parameter	Units	Jan	Feb	Mar	Apr	Jun	Jul	Aug	Sep	Oct
Acidity*	mg/L	78.6	93.8	84.1	87.2	41.8	36.1	37.7	38.9	40.5
pН		7.5	7.3	7.3	7.4	7.5	7.5	7.3	7.5	7.4
AI	mg/L	0.049	0.062	0.076	0.242	0.051	0.022	0.060	0.074	0.010
Fe	mg/L	10.9	19.1	15.9	17.0	1.3	0.19	0.39	0.28	0.12
Mn	mg/L	12.9	13.2	14.4	14.1	9.1	10.2	11.2	10.9	11.5
Zn	mg/L	16.7	11.9	9.7	9.4	14.1	11.0	10.4	11.7	12.5
SO ₄	mg/L	799	727	649	652	656	719	720	759	740
Са	mg/L	202	199	211	207	163	184	185	184	201
Mg	mg/L	56.2	46.1	45.6	42.9	44.0	50.7	51.5	53.7	56.0
Na	mg/L	18.1	16.6	18.3	16.5	11.5	13.1	13.5	13.5	14.1
к	ma/L	6.5	6.1	7.0	6.9	4.7	5.2	5.3	5.2	5.6

Table 2.3: Summary of Down Valley Treatment System Influent Water Quality

Notes: * Acidity in units of CaCO3 eq calculated from metal concentrations.

2.3 Estimated System Performance

The lime efficiencies for each of the three current systems were calculated from the total lime consumed and the calculated acidity in the treatment system influent. The calculation accounts for the lime equivalent required to increase the pH above 9.5 to achieve zinc removal. The results, as shown in Table 2.4, indicate that the lime utilization is highest for the Vangorda/Grum water treatment plant, and lowest for the Down Valley system. This is not unexpected since the Vangorda/Grum treatment plant is a purpose designed and built system. In the Down Valley system, the contact time is very short and the amount of agitation is very limited, which explains the lower utilization. Lime utilization in the Faro Mill system is better than that of the Down Valley system, but remains low at about 15 %.

Parameter	Units	Faro Mill	Vangorda	Down Valley
Volume Treated	m ³	1,906,550	436,032	441,482
Average Acidity	mg CaCO3 eq/L	27.9	142.5	59.8
Equiv. to pH 9.5	mg CaCO ₃ eq/L	1.6	1.6	1.6
Total Acidity Equivalent	mg CaCO ₃ eq/L	29.5	144.1	61.4
Lime consumed	short tons	240	140	220
Acidity equivalent	mg CaCO ₃ eq/L	204	520	807
Lime Utilization	%	14.5	27.7	7.6

Table 2.4: Calculated Lime Utilizations

The water quality monitoring results also indicate a reduction in magnesium concentrations during treatment. Therefore, a proportion of the lime is consumed by the precipitation of magnesium hydroxide. Accounting for the precipitation of magnesium from solution the lime utilizations were recalculated as shown in Table 2.5. These calculations assume that all of the dissolved magnesium is removed as hydroxide precipitates. However, in reality, only a proportion of the magnesium will be removed and the actual proportion that is removed would depend strongly on the actual pH achieved in the effluent water. The expected actual utilization is likely to fall somewhere between those shown in Table 2.4 and those shown in Table 2.5.

Parameter	Units	Faro Mill	Vangorda	Down Valley
Volume Treated	m³	1,906,550	436,032	441,482
Average Acidity	mg CaCO₃ eq/L	27.9	142.5	59.8
To pH Endpoint 9.5	mg CaCO₃ eq/L	1.6	1.6	1.6
Mg removal	mg CaCO₃ eq/L	27	84	12
Total Acidity Equivalent	mg CaCO₃ eq/L	56	228	74
Lime consumed	short tons	240	140	220
Acidity equivalent	mg CaCO₃ eq/L	204	520	807
Lime Utilization	%	27.5	43.9	9.1

Table 2.5: Calculated Lime Utilization Including Magnesium Removal

In the lime neutralization testing completed by Gartner Lee Limited (GLL, 2003), Grum water was treated with both lime and sodium hydroxide. A comparison of these results suggests that, at pH 9.5, the lime is only about 70% available under ideal conditions. The estimated lime utilization for the Vangorda/Grum plant is lower than the availability indicated by the GLL testing due to inefficiencies in the operating conditions. This likely represents an upper bound for the lime delivered to site.

2.4 Estimated Operating Costs

The 2003 operating costs were calculated for each of the systems and are shown in Table 2.6. Complete calculations are provided in Appendix A. The calculations utilized a unit cost for lime FOB the site of \$320 per short ton, power at \$0.13 per kWh and labour at \$21.03 per hour. The costs for commissioning and mothballing the systems are not included in the operating cost summary.

As shown in Table 2.6, the power costs represent the major proportion of the overall operating costs for the Faro Mill system. The power cost of the Faro Mill system is also significantly higher than for the other systems. In the case of the Vangorda/Grum plant, labour costs are disproportionately high compared to the other systems. For the Down Valley system, the lime costs are disproportionately high due to the low lime utilization rate.

Parameter	Faro Mill	Vangorda	Down Valley
Overall Operating Costs			
Quick Lime	\$76,800	\$44,800	\$70,400
Power	\$164,736	\$87,360	\$29,484
Labour	\$33,312	\$45,425	\$27,255
Total	\$274,848	\$177,585	\$127,139
Unit Operating Costs (\$/m ³)			
Quick Lime	0.040	0.103	0.159
Power	0.086	0.200	0.067
Labour	0.017	0.104	0.062
Total	0.144	0.407	0.288

Table 2.6: Summary of Calculated Operating Costs

3 HDS Water Treatment

The current water quality and flow rates were input to a numerical model that simulates a high density sludge (HDS) treatment system to provide a direct comparison with current operating strategies, and allow projection of potential future water treatment capital and operating costs. The modelling results are presented in Appendix B, and key estimated operating and capital costs are summarised below. It should be noted that the HDS water treatment modelling assumes that the systems would be operated year round. Therefore, the capital costs for these systems are not directly comparable to those of the current systems. Operating costs, however, can be compared.

The estimated sludge generation rates in these calculations also assume that only 20 % of the magnesium would be precipitated from solution.

3.1 Vangorda/Grum Water

The HDS plant modelling indicates that the normalised operating costs for an HDS treatment plant treating Vangorda/Grum water will be about \$0.21 per m³. The current normalised treatment costs are about \$0.407 per m³. The primary reason for this is that the current Vangorda treatment system is operated with two operators. A modern HDS system generally is fully automated, and can be operated by a single operator working an 8 hour day.

The estimated operating costs are shown in Table 3.1. The estimated capital cost for a treatment plant treating 7,571 L/min (2,000 USgpm) is about \$4,670,000.

The modelling also indicated that the sludge generation from this water would be expected to be about 0.23 g/L of water treated, which can be used to project future sludge generation rates. The sludge that would be generated is expected to be at about 20% solids.

ltem	Units	Consumption	Unit Cost (CDN\$)	Annual Cost (CDN\$/year)
Quicklime	tonnes/year	784*	320	\$ 251,000
Flocculant	tonnes/year	12	6,000	\$ 71,000
Electric Power	million kW-hours	2.42	0.13	\$ 314,000
O & M Capital	% of capital cost	3	4,670,000	\$ 140,000
O & M Manpower	man-hours per day	8	21.03	\$ 61,000
Annual Operating	\$ 837,000			
Normalized Annua	I Operating Cost:			\$ 0.21 /m ³

 Table 3.1: Summary of HDS Treatment Plant Operating Costs Treating

 Vangorda/Grum Water

Note: *Based on average water quality for 2003

3.2 Faro Mill Water

The HDS plant modelling suggests that the normalised operating costs for an HDS treatment plant used to treat water currently treated in the Faro Mill treatment system will be about \$0.14 per m³. This compares well with the current normalised treatment cost of about \$0.144 per m3 for the existing system.

The similarity in costs is partly due to the allowance for flocculant and an operating and maintenance (O and M) which is not accounted for in the existing treatment system operating costs.

The estimated operating costs are shown in Table 3.2. The estimated capital cost for an HDS treatment plant treating 20,062 L/min (5,300 USgpm) is about \$8,790,000.

The estimated rate of sludge generation for this water is expected to be about 0.10 g/L. The sludge that would be generated is expected to be at about 20% solids.

			Unit Cost	Annual Cost
Item	Units	Consumption	(CDN\$)	(CDN\$/year)
Quicklime	tonnes/year	1,294*	320	\$ 414,000
Flocculant	tonnes/year	32	6,000	\$ 191,000
Electric Power	million kW-hours	4.57	0.13	\$ 594,000
O & M Capital	% of capital cost	3	8,790,000	\$ 264,000
O & M Manpower	man-hours per day	8	21.03	\$ 61,000
Annual Operating	\$ 1,524,000			
Normalized Annua	I Operating Cost:			\$ 0.14 /m ³

Table 3.2: Summary of HDS Treatment Plant Operating Costs Treating Faro Water

Note: * based on worst water quality encountered during 2003.

3.3 Down Valley Water

The HDS plant modelling indicates that the normalised operating costs for an HDS treatment plant treating water currently treated in the Down Valley treatment system will be about \$0.21 per m3. The estimated current normalised treatment cost is about \$0.29 per m³.

The estimated operating costs are shown in Table 3.3. The estimated capital cost for an HDS treatment plant treating 5,678 L/min (1,500 USgpm) is about \$3,870,000.

The estimated rate of sludge generation for this water is expected to be about 0.15 g per litre of water treated. The sludge that would be generated is expected to be at about 20% solids.

ltem	Units	Consumption	Unit Cost (CDN\$)	Annual Cost (CDN\$/year)
Quicklime	tonnes/year	429*	320	\$137,000
Flocculant	tonnes/year	8.9	6,000	\$53,660
Electric Power	million kW-hours	2.03	0.13	\$263,000
O & M Capital	% of capital cost	3	3,870,000	\$116,000
O & M Manpower	man-hours per day	8	21.00	\$61,000
Annual Operating	\$631,000			
Normalized Annua	I Operating Cost:			\$0.21 /m ³

Table 3.3: Summary of HDS	Treatment Plant Operating Co	osts Treating Faro Water
---------------------------	-------------------------------------	--------------------------

Note: * Based on average water quality encountered during 2003.

4 Conclusions

The assessment of the existing Anvil Range water treatment systems has indicated that the lime utilization ranges from about 9.1 percent for the Down Valley water treatment system, to about 44 percent for the purpose designed and built Vangorda/Grum water treatment plant. The lime utilization in the Faro Mill treatment system is about 28 percent. These estimates were derived based on the available influent water quality monitoring data, which is limited and is typically collected on a monthly basis. Variability in the water quality will have a significant impact on the estimated utilizations. The estimated utilizations are also dependent on the proportion of magnesium removed. Nonetheless, the results indicate a significantly improved utilization for the purpose built Vangorda/Grum system over the Faro Mill and Down Valley systems.

Unit operating costs were derived for each of the treatment systems, and water quality types treated in the systems. CEMI was also commissioned to model HDS treatment systems and to estimate the expected performance, operating and capital costs. The unit costs are as follows:

		Faro Mill	Vangorda	Down Valley
Existing System				
Flow	US gpm	5,300	2,000	1,500
Lime consumption	g/L as CaO	0.114	0.291	0.452
Lime utilization	%	27.5	43.9	9.1
Unit Operating Cost	\$/m ³	0.144	0.407	0.288
HDS System				
Flow	US gpm	5,300	2,000	1,500
Lime consumption	g/L as CaO	0.123	0.197	0.144
Lime utilization	%	87	87	87
Sludge generation	g/L	0.097	0.228	0.151
Capital Cost	\$	8,790,000	4,670,000	3,870,000
Unit Operating Cost	\$/m ³	0.144	0.210	0.211

As shown in the table above, the HDS system lime consumption is expected to be significantly lower than for the Vangorda and Down Valley systems. For these calculations, the average water quality was used in all calculations. In contrast, the estimates for the Faro Mill are very similar. The reason for this is that the HDS system calculations were based on the peak worst water quality encountered over the treatment period rather than the average water quality as was the case for the other two systems. Hence, higher lime consumption resulted, even though higher lime utilization was assumed for the HDS system.

The lower unit operating costs estimated for the Vangorda and Down Valley HDS systems are primarily a result of the improved lime utilization and the lower labour costs anticipated for a fully automated treatment system.

In conclusion, the estimated operating and capital costs provide a range of rates for various conditions that can be used to assess post closure treatment costs. Furthermore, these unit operating costs and estimated capital costs can be utilized directly in the computer program AMD TREAT, developed by the U.S. Office of Surface Mine Reclamation and Enforcement. The computer program has a forward cost modeling capability which can be used to predict the water treatment costs associated with the various closure measures that will be considered over the next several months.

5 References

EBA Engineering Consultants Ltd., 2003. Anvil Range Mine Complex, Existing Water Treatment Facilities. Prepared for Deloitte & Touche, October 2003.

Deloitte & Touche Inc., 2003. Supplementary Sheet for 2003-2004 Projects, July 2003.

Gartner Lee Ltd. (2003). Anvil Range Mine, 2003 Studies of Care and Maintenance Management Alternatives for Grum Pit, Ref. GLL 23-586, October 2003.

Appendix A

Operating Cost Calculations

	Uni	t Costs	
Lime	\$	320.00	per short ton
Power	\$	0.13	per kWh
Labour	\$	21.03	per hour

Parameter	Units		Faro Mill		Vangorda	Do	wn Valley
Operating Period	days		66		45		54
Downtime	days		0		5		0
Flow Rate	USgpm		5300		2000		1500
	L/s		334		126		95
Volume Treated	m3		1,906,550		436,032		441,482
Lime consumption							
Consumed	short tons		240		140		220
	kg CaO		217,723		127,005		199,580
	mgCaO/L		114		291		452
	mg CaCO3 eq/L		204		520		807
Power							
Draw	k\Wh		800		700		175
Consumed	kWh		1267200		672000		226800
Genset Fuel	nals/day	n/a	1201200	na	072000		200
	galo, ady	1.ºC		110			200
Shift	hr		12		12		12
Rotation			4x4		4x4		4x4
Operators	Total		4		8		4
Operators/shift			2		4		2
Operating Costs							
Quick Lime		\$	76,800	\$	44,800	\$	70,400
Power		\$	164,736	\$	87,360	\$	29,484
Labour		\$	33,312	\$	45,425	\$	27,255
Total		\$	274,848	\$	177,585	\$	127,139
Unit Operating Costs							
Quick Lime	\$/m3		0.040		0.103		0.159
Power	\$/m3		0.086		0.200		0.067
Labour	\$/m3		0.017		0.104		0.062
Total	\$/m3		0.144		0.407		0.288

Appendix B

HDS Treatment System Modelling

APPENDIX B

HDS Treatment System Modelling

Operating Parameters

HDS Process Design

Faro Mill 5300 usgpm

14 December, 2003 Conceptual Design Rev. 1

General Design Information

Design Flowrate: Solids Generation Recycle Ratio Solids SG

Feed pH Reactor pH Lime Sludge Mix Tank pH

Clarifier U/F Density Clarifier Overflow Solids

Aeration Requirements

Feed Iron Content Percentage Ferrous Iron Average Density of Air Oxygen Transfer Efficiency

Vessel Residence Times:

Reactor Residence Time Lime Sludge Mix Tank Clarifier Upflow Ratio Recycle Water Tank 20,062 L/min 0.10 g/L plant feed 69.9 (?:1) 2.8

7.3 9.3 pH Units 13.5 pH Units

> 20 % 0 mg/L

0.3 mg/L 100 % 1.201 kg/m³ 20 %

60 minutes 5 minutes 1.200 (m³/hr)/m² 0.5 minutes

Flocculant Dosing System

Flocculant Dose Rate Flocculant Addition Rate Undiluted Floc Concentration 440 mg floc/kg solids (range from 50 to 200) 3.0 mg floc/L plant feed (range from 1 to 10) 0.5 %

Lime Dosing System

Lime Addition Rate (as Ca(OH)₂) Lime Slurry Concentration Slurry pH Solids SG Storage Requirements

Available CaO Lime use

Operating Costs

Lime Cost Flocculant Cost Power Cost Manpower Cost O&M Capital 0.15 g lime/L plant feed 12 % 14 pH Units 2.4 24 hours

92.0 % 0.12 g lime (CaO)/L plant feed

320 CDN\$/tonne 6000 CDN\$/tonne 700 hp 8 man-hours/day 3 % of capital cost

0.13 CDN\$/kw-hour 21.03 CDN\$/man-hour 8,790,000 CDN\$ total capital

Water Quality and Sludge Generation Prediction

HDS Process Design Faro Mill 5300 usgpm 14 December, 2003

			Hydroxide	Mass of	Mass of	Mass of
lon	Ion Wt.	Hydroxide	Weight	Ion Present	OH ⁻ (mg/L)	Precip.
-	(g/mor)	Tornula	(g/mor)	(ing/L)	(iiig/L)	(iiig/⊏)
AI	26.98	AI(OH) ₃	78.01	0.12	0.23	0.35
Ag	107.87	AgOH	124.88	0.00	0.00	0.00
As	74.92	As(OH) ₃	125.95	0.00	0.00	0.00
Bi	208.98	Bi(OH) ₃	260.01	0.00	0.00	0.00
Са	40.08	Ca(OH) ₂	74.1	160.20	0.00	0.00
Cd	112.41	Cd(OH) ₂	146.43	0.00	0.00	0.00
Cu	63.55	Cu(OH) ₂	97.57	0.00	0.00	0.00
Fe	55.85	Fe(OH) ₃	106.88	0.30	0.27	0.57
Pb	207.2	Pb(OH) ₂	241.22	0.00	0.00	0.00
Mg	24.31	Mg(OH) ₂	58.33	12.94	18.11	31.05
Mn	54.94	MnO ₂	86.94	2.80	0.00	4.43
Ni	58.71	Ni(OH) ₂	92.73	0.00	0.00	0.00
S*	32.06	CaSO ₄ .2H ₂ O	172.18	0.00	0.00	0.00
Sb	121.75	Sb(OH) ₃	172.78	0.00	0.00	0.00
Se	78.96	Se(OH) ₄	147	0.00	0.00	0.00
Si	28.09	Si(OH) ₂	62.11	0.00	0.00	0.00
Zn	65.38	Zn(OH) ₂	99.4	28.50	14.83	43.33
SO4 ²⁻ *	96.06	CaSO ₄ .2H ₂ O	172.18	657.00	0.00	0.00
CO32-	59.98	CaCO ₃	100.06	0.00	0.00	0.00
TSS	n/a	n/a	n/a	n/a	n/a	0.00
Total					33.44	79.73
Residual S	O ₄ ²⁻ concentration	n 1800	mg/L	(pure solubility r	ange from 124	l0 - 1435 mg/l
* Use either (S) o	or (SO4).		Soli	ds Generation =	• 0.10	g/L
			(includes	s 8.0	% lime enerts	5) Viena a a Viela (
Lime Requirement	<u>115</u>		(Includes	5 5.0	% unreacted	lime solids)
Based on calcium	Based on calcium requirements		g Ca(OH)2/L e	effluent OR	(SO ₄ ²⁻ based)	
		0.00	g Ca(OH)2/L e	effluent	(S based)	
Based on hydroxic	le requirements	0.07	g Ca(OH)2/L e	ffluent		
Lime Utilization =	95.0) %				
Available CaO =	92.0)%				
Lime use =	0.15	5 g Ca(OH) ₂ /L eff	luent			
Lime use =	Lime use = 0.12 g lime (CaO)/L effluent					

Sludge Quality Prediction HDS Process Design Faro Mill 5300 usgpm 14 December, 2003

lon	Mass of	Mass of	Mass of Precip	Mass of Metal	Sludge
	(mg/L)	(mq/L)	(mg/L)	(mg/L)	(%)
AI	0.12	0.23	0.35	0.12	0.12
Ag	0.00	0.00	0.00	0.00	0.00
As	0.00	0.00	0.00	0.00	0.00
Bi	0.00	0.00	0.00	0.00	0.00
Ca	160.20	0.00	0.00	0.00	0.00
Cd	0.00	0.00	0.00	0.00	0.00
Cu	0.00	0.00	0.00	0.00	0.00
Fe	0.30	0.27	0.57	0.30	0.31
Pb	0.00	0.00	0.00	0.00	0.00
Mg	12.94	18.11	31.05	12.94	13.34
Mn	2.80	0.00	4.43	2.80	2.89
Ni	0.00	0.00	0.00	0.00	0.00
CaSO₄.2H₂O	0.00	0.00	0.00	n/a	0.00
Sh	0.00	0.00	0.00	0.00	0.00
Se	0.00	0.00	0.00	0.00	0.00
Si	0.00	0.00	0.00	0.00	0.00
Zn	28.50	14.83	43.33	28.50	29.38
CaSO ₄ .2H ₂ O	657.00	0.00	0.00	n/a	0.00
CaCO ₃	0.00	0.00	0.00	n/a	0.00
TSS	n/a	n/a	0.00	n/a	0.00
Lime Inerts	n/a	n/a	17.28	n/a	17.81
Total		33-44	97.01	44.66	63-85
Balance Check:	100.00 %		01101		
c.	Colido non crotion	0.4	e.//		
Lilitimata drain	od porcont colide -	0.1	9/L 0/		
Oltimate drained percent solids = 50 %					
		20	youro		
Annual Average	<u>e Data:</u>				
Operating days = 365 days/year					
	Plant feed rate =	20,062	L/minute		
Total dry	solids production =	2.8	tonnes/day	1023.0	tonnes/year
Sludg	e volume purged =	12.2	m³/day	4457.2	m°/year
Volume a	t ultimate density =	3.8	m³/day	1388.3	m³/year
Pond	volume required =	27,770	m³		

Vessel Sizes

			Tank Dimensions (no freeboard inclu	<u>ıded)</u> as r	spect
Lime Sludge Mix Tank:	3 m ³ =	816 USgal	D = 1.7 m or 5.6 ft $H = 1.4$	m or 4.5 ft	1.25
Reactor Vessels:	1241 m ³ =	327785 USgal	D = 12.9 m or 42.2 ft $H = 9.5$	m or 31.3 ft 1	1.35
Clarifier Diameter:	36 m =	118 ft			
Lime Storage Tank:	$36 \text{ m}^3 =$	9592 USgal	D = 3.8 m or 12.5 ft $H = 3.2$	m or 10.5 ft 1	1.19
Recycled Water Tank:	10 $m^3 =$	2669 USgal	D = 2.5 m or 8.2 ft $H = 2.1$	m or 6.8 ft 1	1.21

Aeration Requirements

0 mg/L	Total Iron Content =
100 %	Percent Ferrous Iron =
20 %	Oxygen Transfer Efficiency =
20062 L/min	Total Flow In =
0.0 kg/min	Total Ferrous Iron =
0.4 kg/hr	=
1.0 m ³ /hour	Aeration required =
0.6 SCFM	=

Sludge and Reagent Flowrates

Sludge Purge and Recycle

Sludge Purge Data			Sludge Recycle Data		
Sludge Purge = Solids Generation =	2 kg/min =	4 lbs/min	Solids Recycled =	136 kg/min =	300 lbs/min
Solids Volume =	1 L/min =	0 USgpm	Solids Volume =	49 L/min =	13 USgpm
Water Flow =	8 L/min =	2 USgpm	Water Flow =	544 L/min =	144 USgpm
Total Flow =	8 L/min =	2 USgpm	Total Flow =	593 L/min =	157 USgpm
SG Slurry =	1.15		SG Slury =	1.15	
pH Slurry =	9.3 pH Units		pH Slurry =	9.3 pH Units	
SG Solids =	2.8		SG Solids =	2.8	
Slurry % Solids =	20.00 %		Slurry % Solids =	20.00 %	

Lime Circuit

Lime Dosing			Lime Loop Out Of Storage	<u>e Tank</u>		Lime Loop Return To Sto	orage Tank	
Solids Mass =	3 kg/min =	7 lbs/min	Solids Mass =	13 kg/min =	29 lbs/min	Solids Mass =	10 kg/min =	22 lbs/min
Solids Volume =	1 L/min =	0 USgpm	Solids Volume =	5 L/min =	1 USgpm	Solids Volume =	4 L/min =	1 USgpm
Water Flow =	24 L/min =	6 USgpm	Water Flow =	95 L/min =	25 USgpm	Water Flow =	72 L/min =	19 USgpm
Total Slurry Flow =	25 L/min =	7 USgpm	Total Slurry Flow =	101 L/min =	27 USgpm	Total Slurry Flow =	76 L/min =	20 USgpm
Slurry SG =	1.08		Slurry SG =	1.08		Slurry SG =	1.08	
pH Slurry =	14 pH Units		pH Slurry =	14 pH Units		pH Slurry =	14 pH Units	
SG Solids =	2.4		SG Solids =	2.4		SG Solids =	2.4	
Slurry % Solids =	12.00 %		Slurry % Solids =	12.00 %		Slurry % Solids =	12.00 %	

Flocculant Dosing

Floc Dosing Rate =	3 mg/L efflue	nt treated	Lime Dosing Rate =	0.1 g lime/L effluent treated
Flow Into Floc Tank =	20680 L/min =	5463 USgpm	Lime Dosing Rate =	0.1 g lime (CaO + inerts)/L \treated
Undiluted Floc Flowrate =	13 L/min =	3 USgpm	Average Plant Feed =	20062.25 L/minute
Diluted Floc Flowrate =	125 L/min =	33 USgpm	Daily Consumption =	3.5 tonnes/day
Floc Consumption =	90 kg/day =	199 lbs/day	Annual Consumption=	1294 tonnes/year quicklime

Mass Balance

Tank Flows

Out Of Lime/Sludge Mix Tank

Out Of Reactor Tank

304 lbs/min	138 kg/min =	Solids Mass =	307 lbs/min	139 kg/min =	Solids Mass =
13 USgpm	49 L/min =	Solids Volume =	13 USgpm	50 L/min =	Solids Volume =
5450 USgpm	20630 L/min =	Water Flow =	150 USgpm	568 L/min =	Water Flow =
5463 USgpm	20680 L/min =	Total Slurry Flow =	163 USgpm	618 L/min =	Total Slurry Flow =
	1.00	Slurry SG =		1.14	Slurry SG =
	9.3 pH Units	pH Slurry =		13.5 pH Units	pH Slurry =
	2.80	SG Solids =		2.79	SG Solids =
	0.66 %	Slurry % Solids =		19.69 %	Slurry % Solids =

Into Clarifier

Solids Mass =	138 kg/min =	304 lbs/min
Solids Volume =	49 L/min =	13 USgpm
Water Flow =	20755 L/min =	5483 USgpm
Total Slurry Flow =	20805 L/min =	5496 USgpm
Slurry SG =	1.00	
pH Slurry =	9.3 pH Units	
SG Solids =	2.80	
Slurry % Solids =	0.66 %	

Checks

Clarifier Flows

Clarifier Overflow

Clarifier Underflow

Solids Mass =	0 kg/min =	0 lbs/min	Solids Mass =	138 kg/min =	304 lbs/min
Solids Volume =	0 L/min =	0 USgpm	Solids Volume =	49 L/min =	13 USgpm
Water Flow =	20203 L/min =	5337 USgpm	Water Flow =	552 L/min =	146 USgpm
Total Slurry Flow =	20203 L/min =	5337 USgpm	Total Slurry Flow =	601 L/min =	159 USgpm
Slurry SG =	1		Slurry SG =	1.15	
pH Slurry =	9.3 pH Units		pH Slurry =	9.3 pH Units	
SG Solids =	2.80		SG Solids =	2.80	
Slurry % Solids =	0 %		Slurry % Solids =	20.00 %	

Balance Check (Overall)

Total Solids In =	1.95 kg/min	Total Water In =	20211 L/min
Total Solids Out =	1.95 kg/min	Total Water Out =	20211 L/min
% Deviation =	0.00 %	% Deviation =	0.00 %

Balance Check (Clarifier)

Total Solids In =	138 kg/min	Total Water In =	20755 L/min
Total Solids Out =	138 kg/min	Total Water Out =	20755 L/min
% Deviation =	0.00 %	% Deviation =	0.00 %

Operating Cost Estimate

Faro Mill 5300 usgpm 14 December, 2003

Reagent	Dose Rate (mg/L plant feed)	Annual Average Plant Flow Rate (L/min)	Annual Reagent Consumption (tonnes/year)	Reagent Unit Cost (CDN\$/tonne)	Annual Reagent Cost (CDN\$/year)
Quicklime	123	20,062	1294	320	414,000
Flocculant	3	20,062	32	6000	191,000
				Sub-total:	\$605,000
ltem		Annual Consumption	1	Unit Cost (CDN\$)	Annual Cost (CDN\$/year)
Electric Power 4.57 million kW-hours				0.13	594,000
O & M Capital	3	8790000	264,000		
O & M Manpower	8	man-hours per day		21.03	61,000
				Sub-total:	\$919,000
	Total Ann	ual Operating Cost:	\$1,524,000	/year	(CDN dollars)
	Normalized Ann	ual Operating Cost:	\$0.14	/m³	(CDN dollars)
			\$0.55	/1000 USgal	(CDN dollars)
	Di	scount Interest Rate:	10%		
	Exp	ected Plant Lifetime:	20	years	
F	Present Value of Plan	nt Operating Costs:	\$12,975,000	CDN dollars	
	Net Pres	sent Value of Plant:	\$21,765,000	CDN dollars	

Mechanical Equipment List

Faro Mill 5300 usgpm

Equipment Number	Description	Motor hp	Туре	Capacity/Size	Material
FM-001	Flocculant Preparation System	** AMP	Vendor Package	180 kg/day	
SM 001	Floogulant Statio Miyor			199 L (min	
SIM-001	Flocculant Static Mixer			188 L/MIN 199 L/min	
3101-002				100 L/IIIII	
TA-001	I ime Storage Silo	** HP		100 toppes	6.5
SB-001	Lime Silo Bagbouse				0.5.
SF-001	Lime Silo Screw Feeder	** HP		300 ka/hour	C.S.
LS-001	Lime Slaker	* HP + ** HP		300 kg/hour	
				-	
CO-001	Process Air Compressor #1	** HP		1 m ³ /hour	
CO-002	Process Air Compressor #2	** HP		1 m ³ /hour	
RM-001	Sludge/Lime Mix Tank Agitator	** HP			C.S.
RM-002	Lime Reactor #2 Tank Agitator	** HP			C.S.
ME-001	Clarifier Rake Mechanism	** HP + ** HP			C.S.
DM 005	Line Okama Okama Tank Asilatan	** 110			
RIM-005	Lime Siurry Storage Tank Agitator	"" HP			C.S.
PLI-001	Plant Feed Pump #1 V S D	** HD	Vertical Turbine	11000 L/min	
PU-002	Plant Feed Pump #2 V S D	** HP	Vertical Turbine	11000 L/min	
PU-003	Plant Feed Pump #3 V S D	** HP	Vertical Turbine	11000 L/min	
10000			Voltical Parbino		
PU-004	Flocculant Feed Pump #1	** HP	Prog. Cavity	19 L/min	
PU-005	Flocculant Feed Pump #2	** HP	Prog. Cavity	19 L/min	
PU-008	Lime Slurry Pump #1	** HP	Cantilever	120 L/min	
PU-009	Lime Slurry Pump #2	** HP	Cantilever	120 L/min	
PUICE		** 115			
PU010	Sludge Recycle Pump #1 V.S.D.	** HP	Centrifugal	350 L/min	
PU011	Sludge Recycle Pump #2 V.S.D.	** HP	Centrifugal	350 L/min	
P0-012	Sludge Recycle Pump #3 V.S.D.	THP 1	Centrilugal	350 L/min	
PI I-013	Sludge Transfer Pump #1	** HD	Centrifugal	400 L/min	
PU-014	Sludge Transfer Pump #2	** HP	Centrifugal	400 L/min	
10011			Continugui		
PU-015	Treated Water Recycle Pump #1	** HP	Centrigugal	263 L/min	
PU-016	Treated Water Recycle Pump #2	** HP	Centrigugal	263 L/min	
PU-017	Flocculant Preparation Area Sump Pump	** HP	Cantilever	400 L/min	
PU-018	Clarifer Area Sump Pump	** HP	Cantilever	400 L/min	
TA 000					
IA-002	Sludge/Lime Mix tank			$2 \text{ m} \oslash \text{x}$ 1 m High (w/o F/B)	C.S.
IA-003	LIME Reactor Lank			$13 \text{ m} \otimes x$ 10 m High (w/o F/B)	C/S
TA-004	Clarifier Tank			36 m Ø	cle
17-004				50 m Ø	0/3
TA-005	Lime Slurry Storage Tank			4 m∅x 3 m High (w/o F/B)	c/s
	, , ,			3 (-

Operating Parameters

HDS Process Design

Grum/Vangorda Pit 2000 usgpm

14 December, 2003 Conceptual Design Rev. 1

Flocculant Dosing System

Flocculant Dose Rate Flocculant Addition Rate Undiluted Floc Concentration 240 mg floc/kg solids (range from 50 to 200) 3.0 mg floc/L plant feed (range from 1 to 10) 0.5 %

Lime Dosing System

Lime Addition Rate (as Ca(OH)₂) Lime Slurry Concentration Slurry pH Solids SG Storage Requirements

Available CaO Lime use

Operating Costs

Lime Cost Flocculant Cost Power Cost Manpower Cost O&M Capital 0.2 g lime/L plant feed 12 % 14 pH Units 2.4 24 hours

> 92.0 % 0.2 g lime (CaO)/L plant feed

320 CDN\$/tonne 6000 CDN\$/tonne 370 hp 8 man-hours/day 3 % of capital cost 4,

0.13 CDN\$/kw-hour 21.03 CDN\$/man-hour 4,670,000 CDN\$ total capital

General Design Information

Design Flowrate: Solids Generation Recycle Ratio Solids SG

Feed pH Reactor pH Lime Sludge Mix Tank pH

Clarifier U/F Density Clarifier Overflow Solids

Aeration Requirements

Feed Iron Content Percentage Ferrous Iron Average Density of Air Oxygen Transfer Efficiency

Vessel Residence Times:

Reactor Residence Time Lime Sludge Mix Tank Clarifier Upflow Ratio Recycle Water Tank 60 minutes 5 minutes 1.200 (m³/hr)/m² 0.5 minutes

7.571 L/min

53.3 (?:1)

2.8

6.9

0.23 g/L plant feed

9.3 pH Units

13.5 pH Units

0 mg/L

1.5 mg/L

100 %

 1.201 kg/m^3

20 %

20 %

Water Quality and Sludge Generation Prediction

HDS Process Design Grum/Vangorda Pit 2000 usgpm 14 December, 2003

lon	lon Wt. (g/mol)	Hydroxide Formula	Hydroxide Weight (g/mol)	Mass of Ion Present (mg/L)	Mass of OH ⁻ (mg/L)	Mass of Precip. (mg/L)
AI	26.98	AI(OH) ₂	78.01	0.03	0.06	0.09
Ag	107.87	AgOH	124.88	0.00	0.00	0.00
As	74.92	As(OH) ₃	125.95	0.00	0.00	0.00
Bi	208.98	Bi(OH) ₃	260.01	0.00	0.00	0.00
Ca	40.08	Ca(OH) ₂	74.1	262.00	0.00	0.00
Cd	112.41	Cd(OH) ₂	146.43	0.00	0.00	0.00
Cu	63.55	Cu(OH) ₂	97.57	0.00	0.00	0.00
Fe	55.85	Fe(OH) ₃	106.88	1.50	1.37	2.87
Pb	207.2	Pb(OH) ₂	241.22	0.00	0.00	0.00
Mg	24.31	Mg(OH) ₂	58.33	16.56	23.17	39.73
Mn	54.94	MnO ₂	86.94	29.20	0.00	46.21
Ni	58.71	Ni(OH) ₂	92.73	0.00	0.00	0.00
S*	32.06	CaSO ₄ .2H ₂ O	172.18	0.00	0.00	0.00
Sb	121.75	Sb(OH) ₃	172.78	0.00	0.00	0.00
Se	78.96	Se(OH) ₄	147	0.00	0.00	0.00
Si	28.09	Si(OH) ₂	62.11	0.00	0.00	0.00
Zn	65.38	Zn(OH) ₂	99.4	73.30	38.14	111.44
SO4 ^{2-*}	96.06	CaSO ₄ .2H ₂ O	172.18	1041.00	0.00	0.00
CO32-	59.98	CaCO ₃	100.06	0.00	0.00	0.00
TSS	n/a	n/a	n/a	n/a	n/a	0.00
Total					62.74	200.34
Residual S	O ₄ ²⁻ concentration	n <u>1800</u>	mg/L	(pure solubility r	ange from 124	0 - 1435 mg/
* Use either (S) of <u>Lime Requirement</u>	or (SO4). <u>nts</u>		Solids Generation =0.23 g/L(includes8.0 % lime enerts)(includes5.0 % unreacted lime		g/L ;) lime solids)	
Based on calcium	requirements	0.32	a Ca(OH)2/L e	ffluent OR	(SQ ²⁻ based)	1
		0.00	g Ca(OH)2/L e	ffluent	(S based)	
Based on hydroxic	le requirements	0.14	g Ca(OH)2/L e	ffluent		
Lime Utilization =	95.0	%				
Available CaO =	92.0	%				
Lime use = Lime use =	0.24 0.20	g Ca(OH)₂/L efi g lime (CaO)/L	fluent effluent			

Sludge Quality Prediction HDS Process Design Grum/Vangorda Pit 2000 usgpm 14 December, 2003

	Mass of	Mass of	Mass of	Mass of	Sludge
lon	Ion Present	OH	Precip.	Metal	Composition
	(mg/L)	(mg/L)	(mg/L)	(mg/L)	(%)
AI	0.03	0.06	0.09	0.03	0.01
Ag	0.00	0.00	0.00	0.00	0.00
As	0.00	0.00	0.00	0.00	0.00
Bi	0.00	0.00	0.00	0.00	0.00
Ca	262.00	0.00	0.00	0.00	0.00
Cd	0.00	0.00	0.00	0.00	0.00
Cu	0.00	0.00	0.00	0.00	0.00
Fe	1.50	1.37	2.87	1.50	0.66
Pb	0.00	0.00	0.00	0.00	0.00
Ma	16.56	23.17	39.73	16.56	7.26
Mn	29.20	0.00	46.21	29.20	12.80
NI	0.00	0.00	0.00	0.00	0.00
	0.00	0.00	0.00	0.00	0.00
$CaSO_4.2H_2O$	0.00	0.00	0.00	n/a	0.00
Sb	0.00	0.00	0.00	0.00	0.00
Se	0.00	0.00	0.00	0.00	0.00
Si	0.00	0.00	0.00	0.00	0.00
Ζn	73.30	38.14	111.44	73.30	32.14
CaSO ₄ .2H ₂ O	1041.00	0.00	0.00	n/a	0.00
CaCO ₃	0.00	0.00	0.00	n/a	0.00
TSS	n/a	n/a	0.00	n/a	0.00
Lime Inerts	n/a	n/a	27.75	n/a	12.17
Total		62.74	228.09	120.59	65-04
Balance Check:	100.00 %	•			
L Utime et et alme in	Solids generation =	0.2	g/L		
Ultimate drain	ed percent solids =	50	%		
5100	age pona litetime =	20	years		
Annual Average	e Data:				
	Operating days =	365	days/year		
	Plant feed rate =	7,571	L/minute		
Total dry	solids production =	2.5	tonnes/day	907.6	tonnes/year
Sludg	e volume purged =	10.8	m³/day	3954.6	m³/year
Volume a	t ultimate density =	3.4	m³/day	1231.8	m ³ /year
Pond	volume required =	24640	m ³		

Vessel Sizes

			<u>Ta</u>	Tank Dimensions (no freeboard included)			
Lime Sludge Mix Tank:	$2 m^3 =$	550 USgal	D =	1.5 m or 4.9 ft	H =	1.2 m or 3.9 ft	1.27
Reactor Vessels:	479 m ³ =	126596 USgal	D =	9.0 m or 29.5 ft	H =	7.5 m or 24.7 ft	1.19
Clarifier Diameter:	22 m =	72 ft					
Lime Storage Tank:	22 m ³ =	5814 USgal	D =	3.3 m or 10.8 ft	H =	2.6 m or 8.4 ft	1.28
Recycled Water Tank:	$4 m^3 =$	1007 USgal	D =	1.8 m or 5.9 ft	H =	1.5 m or 4.9 ft	1.20

Aeration Requirements

2 mg/L	Total Iron Content =
100 %	Percent Ferrous Iron =
20 %	Oxygen Transfer Efficiency =
7571 L/min	Total Flow In =
0.0 kg/min	Total Ferrous Iron =
0.7 kg/hr	=
1.9 m ³ /hour	Aeration required =
1.1 SCFM	=

Sludge and Reagent Flowrates

Sludge Purge and Recycle

Sludge Purge Data			Sludge Recycle Data		
Sludge Purge = Solids Generation =	2 kg/min =	4 lbs/min	Solids Recycled =	92 kg/min =	203 lbs/min
Solids Volume =	1 L/min =	0 USgpm	Solids Volume =	33 L/min =	9 USgpm
Water Flow =	7 L/min =	2 USgpm	Water Flow =	368 L/min =	97 USgpm
Total Flow =	8 L/min =	2 USgpm	Total Flow =	401 L/min =	106 USgpm
SG Slurry =	1.15		SG Slury =	1.15	
pH Slurry =	9.3 pH Units		pH Slurry =	9.3 pH Units	
SG Solids =	2.8		SG Solids =	2.8	
Slurry % Solids =	20.00 %		Slurry % Solids =	20.00 %	

Lime Circuit

Lime Dosing			Lime Loop Out Of Storag	<u>le Tank</u>		Lime Loop Return To Sto	<u>orage Tank</u>	
Solids Mass =	2 kg/min =	4 lbs/min	Solids Mass =	8 kg/min =	17 lbs/min	Solids Mass =	6 kg/min =	13 lbs/min
Solids Volume =	1 L/min =	0 USgpm	Solids Volume =	3 L/min =	1 USgpm	Solids Volume =	2 L/min =	1 USgpm
Water Flow =	14 L/min =	4 USgpm	Water Flow =	58 L/min =	15 USgpm	Water Flow =	43 L/min =	11 USgpm
Total Slurry Flow =	15 L/min =	4 USgpm	Total Slurry Flow =	61 L/min =	16 USgpm	Total Slurry Flow =	46 L/min =	12 USgpm
Slurry SG =	1.08		Slurry SG =	1.08		Slurry SG =	1.08	
pH Slurry =	14 pH Units		pH Slurry =	14 pH Units		pH Slurry =	14 pH Units	
SG Solids =	2.4		SG Solids =	2.4		SG Solids =	2.4	
Slurry % Solids =	12.00 %		Slurry % Solids =	12.00 %		Slurry % Solids =	12.00 %	

Flocculant Dosing

Floc Dosing Rate =	3 mg/L efflue	ent treated	Lime Dosing Rate =	0.2 g lime/L effluent treated
Flow Into Floc Tank =	7987 L/min =	2110 USgpm	Lime Dosing Rate =	0.2 g lime (CaO + inerts)/L \treated
Undiluted Floc Flowrate =	5 L/min =	1 USgpm	Average Plant Feed =	7570.66 L/minute
Diluted Floc Flowrate =	47 L/min =	13 USgpm	Daily Consumption =	2.1 tonnes/day
Floc Consumption =	34 kg/day =	75 lbs/day	Annual Consumption=	784 tonnes/year quicklime

Mass Balance

Tank Flows

Out Of Lime/Sludge Mix Tank

Out Of Reactor Tank

Solids Mass =	94 kg/min =	207 lbs/min	Solids Mass =	94 kg/min =	207 lbs/min
Solids Volume =	34 L/min =	9 USgpm	Solids Volume =	33 L/min =	9 USgpm
Water Flow =	383 L/min =	101 USgpm	Water Flow =	7953 L/min =	2101 USgpm
Total Slurry Flow =	416 L/min =	110 USgpm	Total Slurry Flow =	7987 L/min =	2110 USgpm
Slurry SG =	1.14		Slurry SG =	1.01	
pH Slurry =	13.5 pH Units		pH Slurry =	9.3 pH Units	
SG Solids =	2.79		SG Solids =	2.80	
Slurry % Solids =	19.72 %		Slurry % Solids =	1.17 %	

Into Clarifier

Solids Mass =	94 kg/min =	207 lbs/min
Solids Volume =	33 L/min =	9 USgpm
Water Flow =	8001 L/min =	2114 USgpm
Total Slurry Flow =	8034 L/min =	2122 USgpm
Slurry SG =	1.01	
pH Slurry =	9.3 pH Units	
SG Solids =	2.80	
Slurry % Solids =	1.16 %	

Checks

Clarifier Flows

Clarifier Overflow

Clarifier Underflow

Solids Mass =	0 kg/min =	0 lbs/min	Solids Mass =	94 kg/min =	207 lbs/min
Solids Volume =	0 L/min =	0 USgpm	Solids Volume =	33 L/min =	9 USgpm
Water Flow =	7626 L/min =	2015 USgpm	Water Flow =	375 L/min =	99 USgpm
Total Slurry Flow =	7626 L/min =	2015 USgpm	Total Slurry Flow =	409 L/min =	108 USgpm
Slurry SG =	1		Slurry SG =	1.15	
pH Slurry =	9.3 pH Units		pH Slurry =	9.3 pH Units	
SG Solids =	2.80		SG Solids =	2.80	
Slurry % Solids =	0 %		Slurry % Solids =	20.00 %	

Balance Check (Overall)

Total Solids In =	1.73 kg/min	Total Water In =	7633 L/min
Total Solids Out =	1.73 kg/min	Total Water Out =	7633 L/min
% Deviation =	0.00 %	% Deviation =	0.00 %

Balance Check (Clarifier)

Total Solids In =	94 kg/min	Total Water In =	8001 L/min
Total Solids Out =	94 kg/min	Total Water Out =	8001 L/min
% Deviation =	0.00 %	% Deviation =	0.00 %

Operating Cost Estimate

Grum/Vangorda Pit 2000 usgpm 14 December, 2003

Reagent	Dose Rate (mg/L plant feed)	Annual Average Plant Flow Rate (L/min)	Annual Reagent Consumption (tonnes/year)	Reagent Unit Cost (CDN\$/tonne)	Annual Reagent Cost (CDN\$/year)
Quicklime	197	7,571	784	320	251,000
Flocculant	3	7,571	12	6000	71,000
				Sub-total:	\$322,000
ltem		Annual Consumption	n	Unit Cost (CDN\$)	Annual Cost (CDN\$/year)
Electric Power	2.42	million kW-hours		0.13	314,000
O & M Capital	3 % of capital cost			4670000	140,000
O & M Manpower	8	8 man-hours per day			61,000
				Sub-total:	\$515,000
	Total Ann	ual Operating Cost:	\$837,000	/year	(CDN dollars)
	Normalized Ann	ual Operating Cost:	\$0.21	/m³	(CDN dollars)
			\$0.80	/1000 USgal	(CDN dollars)
	Di	scount Interest Rate:	10%		
	Exp	ected Plant Lifetime:	20	years	
F	Present Value of Plan	nt Operating Costs:	\$7,126,000	CDN dollars	
	Net Pre	sent Value of Plant:	\$11,796,000	CDN dollars	

Mechanical Equipment List

Grum/Vangorda Pit 2000 usgpm

Equipment Number	Description	Motor hp	Туре	Capacity/Size	Material
EM 001	Electulant Droparation System	** ^ MD	Vandar Daakaga		
FIM-001	Flocculant Preparation System	Alvip	venuor Package	bo kg/day	
SM-001	Flocculant Static Mixer			71 L/min	
SM-002	Flocculant Static Mixer			71 L/min	
TA-001	Lime Storage Silo	** HP		50 tonnes	C.S.
SB-001	Lime Silo Baghouse	** 110			
SF-001	Lime Silo Screw Feeder	* UD , ** UD		150 kg/hour	C.S.
L3-001				150 kg/1001	
CO-001	Process Air Compressor #1	** HP		2 m ³ /hour	
CO-002	Process Air Compressor #2	** HP		$2 \text{ m}^3/\text{hour}$	
RM-001	Sludge/Lime Mix Tank Agitator	** HP			C.S.
RM-002	Lime Reactor #2 Tank Agitator	** HP			C.S.
ME-001	Clarifier Rake Mechanism	** HP + ** HP			C.S.
RM-005	Lime Slurny Storage Tank Agitator	** HD			<u> </u>
1101-005	Line Oldry Glorage Fank Agitator	111			0.3.
PU-001	Plant Feed Pump #1 V.S.D.	** HP	Vertical Turbine	4150 L/min	
PU-002	Plant Feed Pump #2 V.S.D.	** HP	Vertical Turbine	4150 L/min	
PU-003	Plant Feed Pump #3 V.S.D.	** HP	Vertical Turbine	4150 L/min	
PU-004	Flocculant Feed Pump #1	** HP	Prog. Cavity	7 L/min	
PU-005	Flocculant Feed Pump #2	** HP	Prog. Cavity	7 L/min	
PLI-008	Lime Slurny Pump #1	** HD	Cantilever	80 I /min	
PU-009	Lime Slurry Pump #2	** HP	Cantilever	80 L/min	
10000			Garniever		
PU010	Sludge Recycle Pump #1 V.S.D.	** HP	Centrifugal	250 L/min	
PU011	Sludge Recycle Pump #2 V.S.D.	** HP	Centrifugal	250 L/min	
PU-012	Sludge Recycle Pump #3 V.S.D.	** HP	Centrifugal	250 L/min	
PU-013	Sludge Transfer Pump #1	** HP	Centrifugal	350 L/min	
PU-014	Sludge Transfer Pump #2	** HP	Centrifugal	350 L/min	
PLL-015	Treated Water Recycle Pump #1	** HD	Centrifugal	109 L/min	
PU-016	Treated Water Recycle Pump #2	** HP	Centrifugal	109 L/min	
10010			Continugui		
PU-017	Flocculant Preparation Area Sump Pump	** HP	Cantilever	400 L/min	
PU-018	Clarifer Area Sump Pump	** HP	Cantilever	400 L/min	
TA-002	Sludge/Lime Mix tank			2 m \varnothing x 1 m High (w/o F/B)	C.S.
TA-003	Lime Reactor Tank			9 m ∅ x 8 m High (w/o F/B)	c/s
TA-004	Clarifier Tank			22 m Ø	cle
1A-004				22 111 20	6/5
TA-005	Lime Slurry Storage Tank			3 m ∅ x 3 m High (w/o F/B)	c/s
	, ,			3 () 1 ()	

Operating Parameters

HDS Process Design

Down Valley 1500 usgpm

14 December, 2003 Conceptual Design Rev. 1

Flocculant Dosing System

Flocculant Dose Rate Flocculant Addition Rate Undiluted Floc Concentration 310 mg floc/kg solids (range from 50 to 200)3.0 mg floc/L plant feed (range from 1 to 10)0.5 %

Lime Dosing System

Lime Addition Rate (as Ca(OH)₂) Lime Slurry Concentration Slurry pH Solids SG Storage Requirements

Available CaO Lime use

Operating Costs

Lime Cost Flocculant Cost Power Cost Manpower Cost O&M Capital 0.17 g lime/L plant feed 12 % 14 pH Units 2.4 24 hours

92.0 % 0.14 g lime (CaO)/L plant feed

320 CDN\$/tonne 6000 CDN\$/tonne 310 hp 8 man-hours/day 3 % of capital cost 3

0.13 CDN\$/kw-hour 21.03 CDN\$/man-hour 3,870,000 CDN\$ total capital

General Design Information

Design Flowrate: Solids Generation Recycle Ratio Solids SG

Feed pH Reactor pH Lime Sludge Mix Tank pH

Clarifier U/F Density Clarifier Overflow Solids

Aeration Requirements

Feed Iron Content Percentage Ferrous Iron Average Density of Air Oxygen Transfer Efficiency

Vessel Residence Times:

Reactor Residence Time Lime Sludge Mix Tank Clarifier Upflow Ratio Recycle Water Tank 60 minutes 5 minutes 1.200 (m³/hr)/m² 0.5 minutes

5.678 L/min

63.2 (?:1)

2.8

7.3

0.15 g/L plant feed

9.3 pH Units

13.5 pH Units

0 mg/L

19 mg/L

100 %

 1.201 kg/m^3

20 %

20 %

Water Quality and Sludge Generation Prediction

HDS Process Design Down Valley 1500 usgpm 14 December, 2003

lon	lon Wt. (g/mol)	Hydroxide Formula	Hydroxide Weight (g/mol)	Mass of Ion Present (mg/L)	Mass of OH ⁻ (mg/L)	Mass of Precip. (mg/L)
AI	26.98	AI(OH) ₃	78.01	0.24	0.46	0.70
Ag	107.87	AgOH	124.88	0.00	0.00	0.00
As	74.92	As(OH) ₃	125.95	0.00	0.00	0.00
Bi	208.98	Bi(OH) ₃	260.01	0.00	0.00	0.00
Са	40.08	Ca(OH) ₂	74.1	210.80	0.00	0.00
Cd	112.41	Cd(OH) ₂	146.43	0.00	0.00	0.00
Cu	63.55	Cu(OH) ₂	97.57	0.00	0.00	0.00
Fe	55.85	Fe(OH) ₃	106.88	19.10	17.45	36.55
Pb	207.2	Pb(OH) ₂	241.22	0.00	0.00	0.00
Mg	24.31	Mg(OH) ₂	58.33	11.24	15.73	26.97
Mn	54.94	MnO ₂	86.94	14.40	0.00	22.79
Ni	58.71	Ni(OH) ₂	92.73	0.00	0.00	0.00
S*	32.06	CaSO ₄ .2H ₂ O	172.18	0.00	0.00	0.00
Sb	121.75	Sb(OH) ₃	172.78	0.00	0.00	0.00
Se	78.96	Se(OH) ₄	147	0.00	0.00	0.00
Si	28.09	Si(OH) ₂	62.11	0.00	0.00	0.00
Zn	65.38	Zn(OH) ₂	99.4	28.50	14.83	43.33
SO4 ^{2-*}	96.06	CaSO ₄ .2H ₂ O	172.18	799.00	0.00	0.00
CO32-	59.98	CaCO ₃	100.06	0.00	0.00	0.00
TSS	n/a	n/a	n/a	n/a	n/a	0.00
Total					48.47	130.34
Residual S	O ₄ ²⁻ concentration	1800	mg/L	(pure solubility r	ange from 124	0 - 1435 mg/l
* Use either (S) or (SO4). Lime Requirements		Solids Generation =0.15 g(includes8.0 % lime enerts)(includes5.0 % unreacted lin		g/L :) lime solids)		
Based on calcium requirements 0.		0.23	q Ca(OH)2/L e	ffluent OR	(SO ²⁻ based)	
		0.00	g Ca(OH)2/L e	ffluent	(S based)	
Based on hydroxic	le requirements	0.11	g Ca(OH)2/L e	ffluent		
Lime Utilization =	95.0	%				
Available CaO =	92.0	%				
Lime use = Lime use =	0.17 0.14	g Ca(OH)₂/L eff g lime (CaO)/L	fluent effluent			

Sludge Quality Prediction HDS Process Design Down Valley 1500 usgpm 14 December, 2003

Ion Ion Present Ori Intervent Intervent <thintervent< th=""> <thintervent< th=""> Intervent</thintervent<></thintervent<>	lon	Mass of	Mass of	Mass of	Mass of	Sludge
Al 0.24 0.46 0.70 0.24 0.16 Ag 0.00 0.00 0.00 0.00 0.00 0.00 As 0.00 0.00 0.00 0.00 0.00 0.00 Bi 0.00 0.00 0.00 0.00 0.00 0.00 Ca 210.80 0.00 0.00 0.00 0.00 0.00 Cd 0.00 0.00 0.00 0.00 0.00 0.00 Cd 0.00 0.00 0.00 0.00 0.00 0.00 Cd 0.00 0.00 0.00 0.00 0.00 0.00 Fe 19.10 17.45 36.55 19.10 12.68 Pb 0.00 0.00 0.00 0.00 0.00 0.00 Mn 14.40 0.00 22.79 14.40 9.56 Ni 0.00 0.00 0.00 0.00 0.00 0.00 Sb 0.00 </th <th>1011</th> <th>(ma/l)</th> <th>(ma/l)</th> <th>(mg/l)</th> <th></th> <th>(%)</th>	1011	(ma/l)	(ma/l)	(mg/l)		(%)
Al 0.24 0.46 0.70 0.24 0.16 Ag 0.00 0.00 0.00 0.00 0.00 0.00 As 0.00 0.00 0.00 0.00 0.00 0.00 Bi 0.00 0.00 0.00 0.00 0.00 0.00 0.00 Ca 210.80 0.00 0.00 0.00 0.00 0.00 0.00 Ca 0.00 0.00 0.00 0.00 0.00 0.00 0.00 Ca 0.00 0.00 0.00 0.00 0.00 0.00 0.00 Ca 0.00 0.00 0.00 0.00 0.00 0.00 0.00 Mi 11.24 15.73 26.97 11.24 7.46 Min 14.40 0.00 0.00 0.00 0.00 0.00 Sb 0.00 0.00 0.00 0.00 0.00 0.00 0.00 Sb 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00		(iiig/L)	(iiig/L)	(iiig/L)	(ing/L)	(70)
Ag 0.00	AI	0.24	0.46	0.70	0.24	0.16
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	Aa	0.00	0.00	0.00	0.00	0.00
Bi 0.00 0.00 0.00 0.00 0.00 0.00 Ca 210.80 0.00 0.00 0.00 0.00 0.00 Cd 0.00 0.00 0.00 0.00 0.00 0.00 Cu 0.00 0.00 0.00 0.00 0.00 0.00 Fe 19.10 17.45 36.55 19.10 12.68 Pb 0.00 0.00 0.00 0.00 0.00 Mg 11.24 15.73 26.97 11.24 7.46 Mn 14.40 0.00 22.79 14.40 9.56 Ni 0.00 0.00 0.00 n/a 0.00 Sb 0.00 0.00 0.00 n/a 0.00 Se 0.00 0.00 0.00 0.00 0.00 Za 28.50 14.83 43.33 28.50 18.93 CaSO ₄ .2H ₂ O 799.00 0.00 0.00 n/a 0.00 <td>As</td> <td>0.00</td> <td>0.00</td> <td>0.00</td> <td>0.00</td> <td>0.00</td>	As	0.00	0.00	0.00	0.00	0.00
$\begin{array}{c ccccc} Ca & 210.80 & 0.00 & 0.00 & 0.00 & 0.00 \\ Cd & 0.00 & 0.00 & 0.00 & 0.00 & 0.00 \\ Cu & 0.00 & 0.00 & 0.00 & 0.00 & 0.00 \\ Fe & 19.10 & 17.45 & 36.55 & 19.10 & 12.68 \\ \hline Pb & 0.00 & 0.00 & 0.00 & 0.00 & 0.00 & 0.00 \\ Mg & 11.24 & 15.73 & 26.97 & 11.24 & 7.46 \\ Mn & 14.40 & 0.00 & 22.79 & 14.40 & 9.56 \\ \hline Ni & 0.00 & 0.00 & 0.00 & 0.00 & 0.00 & 0.00 \\ CaSO_4.2H_2O & 0.00 & 0.00 & 0.00 & n/a & 0.00 \\ Sb & 0.00 & 0.00 & 0.00 & 0.00 & 0.00 & 0.00 \\ Sb & 0.00 & 0.00 & 0.00 & 0.00 & 0.00 \\ Se & 0.00 & 0.00 & 0.00 & 0.00 & 0.00 \\ Si & 0.00 & 0.00 & 0.00 & 0.00 & 0.00 \\ Zn & 28.50 & 14.83 & 43.33 & 28.50 & 18.93 \\ CaSO_4.2H_2O & 799.00 & 0.00 & 0.00 & n/a & 0.00 \\ CaCO_3 & 0.00 & 0.00 & 0.00 & n/a & 0.00 \\ TSS & n/a & n/a & 0.00 & n/a & 0.00 \\ \hline Lime Inerts & n/a & n/a & 20.25 & n/a & 13.45 \\ \hline Total & 48.47 & 150.59 & 73.48 & 62.24 \\ \hline Balance Check: & 100.00 \% \\ \hline Solids generation = & 0.2 g/L \\ Ultimate drained percent solids = & 50 \% \\ Sludge pond lifetime = & 20 years \\ \hline Annual Average Data: \\ \hline Operating days = & 365 days/year \\ \hline Plant feed rate = & 5.678 L/minute \\ Total dry solids production = & 1.2 tonnes/day & 449.4 tonnes/year \\ \hline Sludge volume purged = & 5.4 m^3/day & 609.9 m^3/year \\ \hline \end{array}$	Bi	0.00	0.00	0.00	0.00	0.00
$\begin{array}{c ccccc} Cd & 0.00 & 0.00 & 0.00 & 0.00 & 0.00 \\ Cu & 0.00 & 0.00 & 0.00 & 0.00 & 0.00 \\ Fe & 19.10 & 17.45 & 36.55 & 19.10 & 12.68 \\ Pb & 0.00 & 0.00 & 0.00 & 0.00 & 0.00 & 0.00 \\ Mg & 11.24 & 15.73 & 26.97 & 11.24 & 7.46 \\ Mn & 14.40 & 0.00 & 22.79 & 14.40 & 9.56 \\ \hline Ni & 0.00 & 0.00 & 0.00 & 0.00 & 0.00 & 0.00 \\ CaSO_4.2H_2O & 0.00 & 0.00 & 0.00 & 0.00 & 0.00 \\ Sb & 0.00 & 0.00 & 0.00 & 0.00 & 0.00 & 0.00 \\ Se & 0.00 & 0.00 & 0.00 & 0.00 & 0.00 \\ Se & 0.00 & 0.00 & 0.00 & 0.00 & 0.00 \\ Si & 0.00 & 0.00 & 0.00 & 0.00 & 0.00 \\ Zn & 28.50 & 14.83 & 43.33 & 28.50 & 18.93 \\ \hline CaSO_4.2H_2O & 799.00 & 0.00 & 0.00 & n/a & 0.00 \\ CaSO_4.2H_2O & 799.00 & 0.00 & 0.00 & n/a & 0.00 \\ CaSO_4.2H_2O & 799.00 & 0.00 & 0.00 & n/a & 0.00 \\ \hline CaSO_4.2H_2O & 799.00 & 0.00 & 0.00 & n/a & 0.00 \\ \hline CaSO_4.2H_2O & 799.00 & 0.00 & 0.00 & n/a & 0.00 \\ \hline CaSO_4.2H_2O & 799.00 & 0.00 & 0.00 & n/a & 0.00 \\ \hline CaSO_4.2H_2O & 799.00 & 0.00 & 0.00 & n/a & 0.00 \\ \hline CaSO_4.2H_2O & 799.00 & 0.00 & 0.00 & n/a & 0.00 \\ \hline CaSO_4.2H_2O & 799.00 & 0.00 & 0.00 & n/a & 0.00 \\ \hline CaSO_4.2H_2O & 799.00 & 0.00 & 0.00 & n/a & 0.00 \\ \hline CaSO_4.2H_2O & 799.00 & 0.00 & 0.00 & n/a & 0.00 \\ \hline CaSO_4.2H_2O & 799.00 & 0.00 & 0.00 & n/a & 0.00 \\ \hline CaSO_4.2H_2O & 799.00 & 0.00 & 0.00 & n/a & 0.00 \\ \hline CaSO_4.2H_2O & 799.00 & 0.00 & 0.00 & n/a & 0.00 \\ \hline CaSO_4.2H_2O & 799.00 & 0.00 & 0.00 & n/a & 0.00 \\ \hline CaSO_4.2H_2O & 799.00 & 0.00 & 0.00 & n/a & 0.00 \\ \hline CaSO_4.2H_2O & 799.00 & 0.00 & 0.00 & n/a & 0.00 \\ \hline CaSO_4.2H_2O & 799.00 & 0.00 & 0.00 & n/a & 0.00 \\ \hline CaSO_4.2H_2O & 799.00 & 0.00 & 0.00 & n/a & 0.00 \\ \hline CaSO_4.2H_2O & 799.00 & 0.00 & 0.00 & n/a & 0.00 \\ \hline CaSO_4.2H_2O & 799.00 & 0.00 & 0.00 & n/a & 0.00 \\ \hline Solids generation = & 0.2 g/L \\ \hline Solids gener$	Са	210.80	0.00	0.00	0.00	0.00
Cu 0.00 0.00 0.00 0.00 0.00 0.00 Fe 19.10 17.45 36.55 19.10 12.68 Pb 0.00 0.00 0.00 0.00 0.00 Mg 11.24 15.73 26.97 11.24 7.46 Mn 14.40 0.00 22.79 14.40 9.56 Ni 0.00 0.00 0.00 n/a 0.00 Sb 0.00 0.00 0.00 0.00 0.00 Sb 0.00 0.00 0.00 0.00 0.00 Sb 0.00 0.00 0.00 0.00 0.00 Si 0.00 0.00 0.00 0.00 0.00 Za 28.50 14.83 43.33 28.50 18.93 CaSO ₄ .2H ₂ O 799.00 0.00 0.00 n/a 0.00 CaCO ₃ 0.00 0.00 n/a 0.00 n/a 0.00 Lime Iner	Cd	0.00	0.00	0.00	0.00	0.00
Fe 19.10 17.45 36.55 19.10 12.68 Pb 0.00 0.00 0.00 0.00 0.00 Mg 11.24 15.73 26.97 11.24 7.46 Mn 14.40 0.00 22.79 14.40 9.56 Ni 0.00 0.00 0.00 0.00 0.00 Sb 0.00 0.00 0.00 0.00 0.00 Sb 0.00 0.00 0.00 0.00 0.00 Se 0.00 0.00 0.00 0.00 0.00 Si 0.00 0.00 0.00 0.00 0.00 Za 28.50 14.83 43.33 28.50 18.93 CaSO ₄ .2H ₂ O 799.00 0.00 0.00 n/a 0.00 ZaCO ₃ 0.00 0.00 n/a 0.00 n/a 0.00 Lime Inerts n/a n/a 150.59 73.48 62.24 Balance Check:	Cu	0.00	0.00	0.00	0.00	0.00
Pb 0.00 0.00 0.00 0.00 0.00 0.00 Mg 11.24 15.73 26.97 11.24 7.46 Mn 14.40 0.00 22.79 14.40 9.56 Ni 0.00 0.00 0.00 0.00 0.00 CaSO ₄ .2H ₂ O 0.00 0.00 0.00 0.00 0.00 Sb 0.00 0.00 0.00 0.00 0.00 0.00 Se 0.00 0.00 0.00 0.00 0.00 0.00 Se 0.00 0.00 0.00 0.00 0.00 0.00 Si 0.00 0.00 0.00 0.00 0.00 0.00 Za 28.50 14.83 43.33 28.50 18.93 CaSO ₄ .2H ₂ O 799.00 0.00 0.00 n/a 0.00 CaCO ₃ 0.00 0.00 n/a 0.00 n/a 0.00 Lime Inerts n/a n/a	Fe	19.10	17.45	36.55	19.10	12.68
$\begin{array}{c c c c c c c c c c c c c c c c c c c $						
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	Pb	0.00	0.00	0.00	0.00	0.00
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	Mg	11.24	15.73	26.97	11.24	7.46
Ni 0.00 0.00 0.00 0.00 0.00 CaSO ₄ .2H ₂ O 0.00 0.00 0.00 n/a 0.00 Sb 0.00 0.00 0.00 0.00 0.00 0.00 Se 0.00 0.00 0.00 0.00 0.00 0.00 Si 0.00 0.00 0.00 0.00 0.00 0.00 Zn 28.50 14.83 43.33 28.50 18.93 CaSO ₄ .2H ₂ O 799.00 0.00 0.00 n/a 0.00 CaSO ₄ .2H ₂ O 799.00 0.00 0.00 n/a 0.00 CaSO ₄ .2H ₂ O 799.00 0.00 0.00 n/a 0.00 CaSO ₄ .2H ₂ O 799.00 0.00 0.00 n/a 0.00 CaSO ₄ .2H ₂ O 799.00 0.00 0.00 n/a 0.00 Lime Inerts n/a n/a 1.3.45 13.45 Solids generation = 0.2 g/L 148.47 150.59	Mn	14.40	0.00	22.79	14.40	9.56
Ni 0.00 0.00 0.00 0.00 0.00 CaSO ₄ .2H ₂ O 0.00 0.00 0.00 n/a 0.00 Sb 0.00 0.00 0.00 0.00 0.00 0.00 Se 0.00 0.00 0.00 0.00 0.00 0.00 Si 0.00 0.00 0.00 0.00 0.00 0.00 Zrn 28.50 14.83 43.33 28.50 18.93 CaSO ₄ .2H ₂ O 799.00 0.00 0.00 n/a 0.00 CaCO ₃ 0.00 0.00 0.00 n/a 0.00 CaCO ₃ 0.00 0.00 0.00 n/a 0.00 Lime Inerts n/a n/a 0.00 n/a 0.00 Lime Inerts n/a n/a 13.45 Solids generation = 0.2 g/L 100.00 % Ultimate drained percent solids = 50 % Sol						
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	Ni	0.00	0.00	0.00	0.00	0.00
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	CaSO ₄ .2H ₂ O	0.00	0.00	0.00	n/a	0.00
Se 0.00 0.00 0.00 0.00 0.00 Si 0.00 0.00 0.00 0.00 0.00 Zn 28.50 14.83 43.33 28.50 18.93 CaSO ₄ .2H ₂ O 799.00 0.00 0.00 n/a 0.00 CaCO ₃ 0.00 0.00 0.00 n/a 0.00 TSS n/a n/a 0.00 n/a 0.00 Lime Inerts n/a n/a 0.00 n/a 0.00 Lime Inerts n/a n/a 0.00 n/a 13.45 Total n/a 100.00 % 73.48 62.24 Balance Check: 100.00 % 100.00 % 50% 50% 50% Sludge pond lifetime = 20 years 20 years 20 years 20 years Annual Average Data: Sludge poduction = 1.2 tonnes/day 449.4 tonnes/year Sludge volume purged = 5.4 m³/day 1958.1 m³/year 49.4 tonnes/year Volume at ultimate d	Sb	0.00	0.00	0.00	0.00	0.00
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	Se	0.00	0.00	0.00	0.00	0.00
$\begin{array}{c c c c c c c c } \hline Zn & 28.50 & 14.83 & 43.33 & 28.50 & 18.93 \\ \hline CaSO_4.2H_2O & 799.00 & 0.00 & 0.00 & n/a & 0.00 \\ \hline CaCO_3 & 0.00 & 0.00 & 0.00 & n/a & 0.00 \\ \hline TSS & n/a & n/a & 0.00 & n/a & 0.00 \\ \hline Lime Inerts & n/a & n/a & 20.25 & n/a & 13.45 \\ \hline Total & & 48.47 & 150.59 & 73.48 & 62.24 \\ \hline Balance Check: & 100.00 \% & & & & & & & \\ \hline Solids generation = & 0.2 g/L \\ Ultimate drained percent solids = & 50 \% \\ Sludge pond lifetime = & 20 years \\ \hline \hline Annual Average Data: & & & & & \\ \hline Plant feed rate = & 5,678 L/minute \\ \hline Total dry solids production = & 1.2 tonnes/day & 449.4 tonnes/year \\ \hline Sludge volume purged = & 5.4 m^3/day & 1958.1 m^3/year \\ \hline Volume at ultimate density = & 1.7 m^3/day & 609.9 m^3/year \\ \hline \end{array}$	Si	0.00	0.00	0.00	0.00	0.00
$\begin{array}{c cccc} CaSO_4.2H_2O & 799.00 & 0.00 & 0.00 & n/a & 0.00 \\ CaCO_3 & 0.00 & 0.00 & 0.00 & n/a & 0.00 \\ TSS & n/a & n/a & 0.00 & n/a & 0.00 \\ \hline \\ Iime Inerts & n/a & n/a & 20.25 & n/a & 13.45 \\ \hline \\ Total & & & & & & & & & & & & & & & & & & &$	Zn	28.50	14.83	43.33	28.50	18.93
$\begin{array}{c c c c c c c c c c c c c c c c c c c $						
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	CaSO ₄ .2H ₂ O	799.00	0.00	0.00	n/a	0.00
TSSn/an/a0.00n/a0.00Lime Inertsn/an/a20.25n/a13.45Totaln/a20.25n/a13.45Balance Check:100.00 %48.47150.5973.4862.24Solids generation =0.2 g/L0.2 g/L0.2 g/L0.2 g/LUltimate drained percent solids =50 %50 years50 yearsAnnual Average Data:0.2 g/L0.2 g/L1.2 tonnes/day449.4 tonnes/yearTotal dry solids production =1.2 tonnes/day449.4 tonnes/yearSludge volume purged =5.4 m³/day1958.1 m³/yearVolume at ultimate density =1.7 m³/day609.9 m³/year	CaCO ₃	0.00	0.00	0.00	n/a	0.00
Lime Inertsn/an/a20.25n/a13.45Total48.47150.5973.4862.24Balance Check:100.00 %501ds generation =0.2 g/LSolids generation =0.2 g/LUltimate drained percent solids =50 %Sludge pond lifetime =20 yearsAnnual Average Data:Operating days =365 days/yearPlant feed rate =5,678 L/minuteTotal dry solids production =1.2 tonnes/day449.4 tonnes/yearSludge volume purged =5.4 m³/day1958.1 m³/yearVolume at ultimate density =1.7 m³/day609.9 m³/year	TSS	n/a	n/a	0.00	n/a	0.00
Lime Inertsn/an/a20.25n/a13.45Total48.47150.5973.4862.24Balance Check:100.00 %5050.5962.24Solids generation =0.2 g/L0.2 g/L0.2 g/LUltimate drained percent solids =50 %50 %Sludge pond lifetime =20 yearsAnnual Average Data:0Operating days =365 days/yearPlant feed rate =5,678 L/minuteTotal dry solids production =1.2 tonnes/day449.4 tonnes/yearSludge volume purged =5.4 m³/day1958.1 m³/yearVolume at ultimate density =1.7 m³/day609.9 m³/year						
Total Balance Check:48.47150.5973.4862.24Solids generation = Ultimate drained percent solids = Sludge pond lifetime =0.2 g/L50 %Sludge pond lifetime =20 yearsAnnual Average Data: Plant feed rate = Total dry solids production = Sludge volume purged = Sludge volume purged = Sludge = Sludge volume purged = Sludge = Sludge volume purged = Sludge volume pu	Lime Inerts	n/a	n/a	20.25	n/a	13.45
Hotal46.47130.3973.4862.24Balance Check:100.00 %Solids generation = 0.2 g/L Ultimate drained percent solids = 50% Sludge pond lifetime =20 yearsAnnual Average Data:Operating days = 365 days/year Plant feed rate = $5,678 \text{ L/minute}$ Total dry solids production = 1.2 tonnes/day 449.4 tonnes/yearSludge volume purged = $5.4 \text{ m}^3/\text{day}$ Yolume at ultimate density = $1.7 \text{ m}^3/\text{day}$ Construction = $1.7 \text{ m}^3/\text{can}$ Construction = <td>Total</td> <td></td> <td>40 47</td> <td>150 50</td> <td>72 49</td> <td>62.24</td>	Total		40 47	150 50	72 49	62.24
Solids generation = 0.2 g/L Ultimate drained percent solids = 50 % Sludge pond lifetime = 20 years Annual Average Data: 0 Operating days = 365 days/year Plant feed rate = 5,678 L/minute Total dry solids production = 1.2 tonnes/day 449.4 tonnes/year Sludge volume purged = 5.4 m³/day 1958.1 m³/year Volume at ultimate density = 1.7 m³/day 609.9 m³/year	Ralanco Chock:	100.00.%	40.47	150.59	73.40	02.24
Solids generation =0.2 g/LUltimate drained percent solids =50 %Sludge pond lifetime =20 yearsAnnual Average Data:Operating days =365 days/yearPlant feed rate =5,678 L/minuteTotal dry solids production =1.2 tonnes/day449.4 tonnes/yearSludge volume purged =5.4 m³/dayVolume at ultimate density =1.7 m³/day609.9 m³/year	Dalance Check.	100.00 /6				
Ultimate drained percent solids = 50 % Sludge pond lifetime = 20 years Annual Average Data: 20 years Operating days = 365 days/year Plant feed rate = 5,678 L/minute Total dry solids production = 1.2 tonnes/day Sludge volume purged = 5.4 m³/day Volume at ultimate density = 1.7 m³/day	ç	Solids generation =	0.2	a/l		
Sludge pond lifetime = 20 years Annual Average Data: 20 years Operating days = 365 days/year Plant feed rate = 5,678 L/minute Total dry solids production = 1.2 tonnes/day 449.4 tonnes/year Sludge volume purged = 5.4 m³/day 1958.1 m³/year Volume at ultimate density = 1.7 m³/day 609.9 m³/year	Ultimate drain	ed percent solids =	50	9, - %		
Annual Average Data: Derive yours Operating days = 365 days/year Plant feed rate = 5,678 L/minute Total dry solids production = 1.2 tonnes/day 449.4 tonnes/year Sludge volume purged = 5.4 m³/day 1958.1 m³/year Volume at ultimate density = 1.7 m³/day 609.9 m³/year	Slue	dae pond lifetime =	20	vears		
Annual Average Data:Operating days =365 days/yearPlant feed rate =5,678 L/minuteTotal dry solids production =1.2 tonnes/daySludge volume purged =5.4 m³/dayVolume at ultimate density =1.7 m³/day0609.9 m³/year	•••••	age perior meanie) 00.10		
Operating days = Plant feed rate =365 days/year 5,678 L/minuteTotal dry solids production =1.2 tonnes/day449.4 tonnes/yearSludge volume purged =5.4 m³/day1958.1 m³/yearVolume at ultimate density =1.7 m³/day609.9 m³/year	Annual Average	<u>e Data:</u>				
Plant feed rate =5,678 L/minuteTotal dry solids production =1.2 tonnes/day449.4 tonnes/yearSludge volume purged =5.4 m³/day1958.1 m³/yearVolume at ultimate density =1.7 m³/day609.9 m³/year		Operating days =	365	days/year		
Total dry solids production =1.2 tonnes/day449.4 tonnes/yearSludge volume purged =5.4 m³/day1958.1 m³/yearVolume at ultimate density =1.7 m³/day609.9 m³/year	Plant feed rate =		5,678	L/minute		
Sludge volume purged = $5.4 \text{ m}^3/\text{day}$ 1958.1 m $^3/\text{year}$ Volume at ultimate density = $1.7 \text{ m}^3/\text{day}$ $609.9 \text{ m}^3/\text{year}$	Total dry	solids production =	1.2	tonnes/day	449.4	tonnes/year
Volume at ultimate density = $1.7 \text{ m}^3/\text{day}$ $609.9 \text{ m}^3/\text{year}$	Sludg	e volume purged =	5.4	m³/day	1958.1	m ³ /year
, , , , , , , , , , , , , , , , , , , ,	Volume a	t ultimate density =	1.7	m ³ /day	609.9	m ³ /year
Pond volume required = 12.200 m^3	Pond	volume reauired =	12.200	m ³		

Vessel Sizes

			<u>Ta</u>	ank Dimensions (no fr	eeboard	included)	aspect ratio
Lime Sludge Mix Tank:	$1 m^3 =$	322 USgal	D =	1.3 m or 4.3 ft	H =	0.9 m or 3.0 ft	1.42
Reactor Vessels:	355 m ³ =	93862 USgal	D =	8.2 m or 26.9 ft	H =	6.7 m or 22.1 ft	1.22
Clarifier Diameter:	19 m =	63 ft					
Lime Storage Tank:	12 m ³ =	3181 USgal	D =	2.8 m or 9.2 ft	H =	2.0 m or 6.4 ft	1.43
Recycled Water Tank:	$3 m^3 =$	755 USgal	D =	1.7 m or 5.6 ft	H =	1.3 m or 4.1 ft	1.35

Aeration Requirements

Total Iron Content =	19 mg/L	
Percent Ferrous Iron =	100 %	
Oxygen Transfer Efficiency =	20 %	
Total Flow In =	5678 L/min	
Total Ferrous Iron =	0.1 kg/min	
=	6.5 kg/hr	
Aeration required =	18 m ³ /hour	
=	11 SCFM	

Sludge and Reagent Flowrates

Sludge Purge and Recycle

Sludge Purge Data			Sludge Recycle Data		
Sludge Purge = Solids Generation =	1 kg/min =	2 lbs/min	Solids Recycled =	54 kg/min =	119 lbs/min
Solids Volume =	0 L/min =	0 USgpm	Solids Volume =	19 L/min =	5 USgpm
Water Flow =	3 L/min =	1 USgpm	Water Flow =	216 L/min =	57 USgpm
Total Flow =	4 L/min =	1 USgpm	Total Flow =	235 L/min =	62 USgpm
SG Slurry =	1.15		SG Slury =	1.15	
pH Slurry =	9.3 pH Units		pH Slurry =	9.3 pH Units	
SG Solids =	2.8		SG Solids =	2.8	
Slurry % Solids =	20.00 %		Slurry % Solids =	20.00 %	

Lime Circuit

Lime Dosing			Lime Loop Out Of Storag	<u>ge Tank</u>		Lime Loop Return To Sto	orage Tank	
Solids Mass =	1 kg/min =	2 lbs/min	Solids Mass =	4 kg/min =	10 lbs/min	Solids Mass =	3 kg/min =	7 lbs/min
Solids Volume =	0 L/min =	0 USgpm	Solids Volume =	2 L/min =	0 USgpm	Solids Volume =	1 L/min =	0 USgpm
Water Flow =	8 L/min =	2 USgpm	Water Flow =	32 L/min =	8 USgpm	Water Flow =	24 L/min =	6 USgpm
Total Slurry Flow =	8 L/min =	2 USgpm	Total Slurry Flow =	33 L/min =	9 USgpm	Total Slurry Flow =	25 L/min =	7 USgpm
Slurry SG =	1.08		Slurry SG =	1.08		Slurry SG =	1.08	
pH Slurry =	14 pH Units		pH Slurry =	14 pH Units		pH Slurry =	14 pH Units	
SG Solids =	2.4		SG Solids =	2.4		SG Solids =	2.4	
Slurry % Solids =	12.00 %		Slurry % Solids =	12.00 %		Slurry % Solids =	12.00 %	

Flocculant Dosing

Lime Dosing

Floc Dosing Rate =	3 mg/L efflue	ent treated	Lime Dosing Rate =	0.2 g lime/L effluent treated
Flow Into Floc Tank =	5922 L/min =	1564 USgpm	Lime Dosing Rate =	0.1 g lime (CaO + inerts)/L \treated
Undiluted Floc Flowrate =	4 L/min =	1 USgpm	Average Plant Feed =	5677.995 L/minute
Diluted Floc Flowrate =	35 L/min =	9 USgpm	Daily Consumption =	1.2 tonnes/day
Floc Consumption =	26 kg/day =	56 lbs/day	Annual Consumption=	429 tonnes/year quicklime

Mass Balance

Tank Flows

Out Of Lime/Sludge Mix Tank

Out Of Reactor Tank

121 lbs/min	55 kg/min =	Solids Mass =	122 lbs/min	55 kg/min =	Solids Mass =
5 USgpm	20 L/min =	Solids Volume =	5 USgpm	20 L/min =	Solids Volume =
1559 USgpm	5902 L/min =	Water Flow =	59 USgpm	224 L/min =	Water Flow =
1564 USgpm	5922 L/min =	Total Slurry Flow =	64 USgpm	244 L/min =	Total Slurry Flow =
	1.01	Slurry SG =		1.15	Slurry SG =
	9.3 pH Units	pH Slurry =		13.5 pH Units	pH Slurry =
	2.80	SG Solids =		2.79	SG Solids =
	0.92 %	Slurry % Solids =		19.74 %	Slurry % Solids =

Into Clarifier

Solids Mass =	55 kg/min =	121 lbs/min
Solids Volume =	20 L/min =	5 USgpm
Water Flow =	5938 L/min =	1569 USgpm
Total Slurry Flow =	5957 L/min =	1574 USgpm
Slurry SG =	1.01	
pH Slurry =	9.3 pH Units	
SG Solids =	2.80	
Slurry % Solids =	0.92 %	

Checks

Clarifier Flows

Clarifier Overflow

Clarifier Underflow

Solids Mass =	0 kg/min =	0 lbs/min	Solids Mass =	55 kg/min =	121 lbs/min
Solids Volume =	0 L/min =	0 USgpm	Solids Volume =	20 L/min =	5 USgpm
Water Flow =	5718 L/min =	1511 USgpm	Water Flow =	220 L/min =	58 USgpm
Total Slurry Flow =	5718 L/min =	1511 USgpm	Total Slurry Flow =	239 L/min =	63 USgpm
Slurry SG =	1		Slurry SG =	1.15	
pH Slurry =	9.3 pH Units		pH Slurry =	9.3 pH Units	
SG Solids =	2.80		SG Solids =	2.80	
Slurry % Solids =	0 %		Slurry % Solids =	20.00 %	

Balance Check (Overall)

Total Solids In =	0.86 kg/min	Total Water In =	5721 L/min
Total Solids Out =	0.86 kg/min	Total Water Out =	5721 L/min
% Deviation =	0.00 %	% Deviation =	0.00 %

Balance Check (Clarifier)

Total Solids In =	55 kg/min	Total Water In =	5938 L/min
Total Solids Out =	55 kg/min	Total Water Out =	5938 L/min
% Deviation =	0.00 %	% Deviation =	0.00 %

Operating Cost Estimate

Down Valley 1500 usgpm 14 December, 2003

Reagent	Dose Rate (mg/L plant feed)	Annual Average Plant Flow Rate (L/min)	Annual Reagent Consumption (tonnes/year)	Reagent Unit Cost (CDN\$/tonne)	Annual Reagent Cost (CDN\$/year)
Quicklime	144	5,678	429	320	137,000
Flocculant	3	5,678	8.9	6000	53,660
				Sub-total:	\$191,000
ltem	ļ	ı	Unit Cost (CDN\$)	Annual Cost (CDN\$/year)	
Electric Power	2.03	million kW-hours		0.13	263,000
O & M Capital	3	% of capital cost	3870000	116,000	
O & M Manpower	8	man-hours per day		21.03	61,000
				Sub-total:	\$440,000
	Total Ann	ual Operating Cost:	\$631,000	/year	(CDN dollars)
	Normalized Ann	ual Operating Cost:	\$0.21	/m³	(CDN dollars)
			\$0.80	/1000 USgal	(CDN dollars)
	Di	scount Interest Rate:	10%		
	Exp	ected Plant Lifetime:	20	years	
F	Present Value of Plai	nt Operating Costs:	\$5,372,000	CDN dollars	
	Net Pres	sent Value of Plant:	\$9,242,000	CDN dollars	

Mechanical Equipment List

Down Valley 1500 usgpm

Equipment Number	Description	Motor hp	Туре	Capacity/Size	Material
FM-001	Flocculant Preparation System	** AMP	Vendor Package	51 kg/day	
SM-001	Flocculant Static Mixer			53 L/min	
SM-002	Flocculant Static Mixer			53 L/min	
TA-001	Lime Storage Silo	** HP		50 tonnes	C.S.
SB-001	Lime Silo Baghouse				
SF-001	Lime Silo Screw Feeder	** HP		100 kg/hour	C.S.
LS-001	Lime Slaker	* HP + ** HP		100 kg/hour	
				3 -	
CO-001	Process Air Compressor #1	** HP		21 m [°] /hour	
CO-002	Process Air Compressor #2	** HP		21 m ³ /hour	
RM-001	Sludge/Lime Mix Tank Agitator	** HP			C.S.
RM-002	Lime Reactor #2 Tank Agitator	** HP			C.S.
ME-001	Clarifier Rake Mechanism	** HP + ** HP			C.S.
514.005		** • • •			
RM-005	Lime Slurry Storage Tank Agitator	** HP			C.S.
DU 004	Diant Food Dump #1 V.C.D.	** 110	Vertical Turking		
PU-001	Plant Feed Pump #1 V.S.D.	** HP	Vertical Turbine	3150 L/min	
PU-002	Plant Feed Pump #2 V.S.D.	** HP	Vertical Turbine	3150 L/min	
PU-003	Plant Feed Pump #3 V.S.D.	HP	ventical Turbine	3150 L/min	
PLL-004	Flocculant Feed Pump #1	** HD	Prog. Cavity	5 L/min	
PU-005	Flocculant Feed Pump #2	** HP	Prog. Cavity	5 L/min	
10000			Trog. Ouvity		
PU-008	l ime Slurry Pump #1	** HP	Cantilever	40 I /min	
PU-009	Lime Slurry Pump #2	** HP	Cantilever	40 L/min	
			Cartarovor		
PU010	Sludge Recycle Pump #1 V.S.D.	** HP	Centrifugal	150 L/min	
PU011	Sludge Recycle Pump #2 V.S.D.	** HP	Centrifugal	150 L/min	
PU-012	Sludge Recycle Pump #3 V.S.D.	** HP	Centrifugal	150 L/min	
PU-013	Sludge Transfer Pump #1	** HP	Centrifugal	200 L/min	
PU-014	Sludge Transfer Pump #2	** HP	Centrifugal	200 L/min	
			-		
PU-015	Treated Water Recycle Pump #1	** HP	Centrifugal	77 L/min	
PU-016	Treated Water Recycle Pump #2	** HP	Centrifugal	77 L/min	
PU-017	Flocculant Preparation Area Sump Pump	** HP	Cantilever	400 L/min	
PU-018	Clarifer Area Sump Pump	** HP	Cantilever	400 L/min	
TA-002	Sludge/Lime Mix tank			1 m \varnothing x 1 m High (w/o F/B)	C.S.
TA-003	Lime Reactor Tank			8 m ∅ x 7 m High (w/o F/B)	c/s
TA 66				10 0	,
I A-004	Clarifier Tank			19 m Ø	c/s
TA 005	Lime Churry Charges Tenk				-/-
CUU-A I	Lime Suny Storage Tank			S m ⊘ x ∠ m ⊨ign (w/o F/B)	C/S

SRK Report Distribution Record

Complete this form and include it as the final page for each copy of the report produced.

Report No.

Copy No.

Name/Title	Company	Сору	Date	Authorised by

Approval Signature:

This report is protected by copyright vested in **SRK Canada Inc**. It may not be reproduced or transmitted in any form or by any means whatsoever to any person without the written permission of the copyright holder, SRK.