Water Treatment Costs

Report Prepared for

Deloitte & Touche Inc.

Report Prepared by

January 2004

Water Treatment Costs

Deloitte & Touche Inc.

Interim Receiver of Anvil Range Mining Corporation Suite 1900, 79 Wellington Street West Toronto, Ontario, M5K 1B9

SRK Project Number 1CD003.32

Steffen Robertson and Kirsten (Canada) Inc. Suite 800, 1066 West Hastings Street Vancouver, B.C. V6E 3X2

Tel: 604.681.4196 Fax: 604.687.5532

E-mail: vancouver@srk.com Web site: www.srk.com

January 2004

Compiled by:	Endorsed by:
J.T. Chapman, P.Eng	D F Hockley P Fna

Table of Contents

	Table of Contentsist of Appendices	iii.
1	ntroduction I.1 Terms of Reference I.2 Background I.3 Objectives I.4 Scope of Work	.1 .1 .1
2	Current Water Treatment Costs 2.1 System Descriptions 2.2 Current Operating Conditions 2.2.1 Vangorda/Grum 2.2.2 Faro Mill 2.2.3 Down Valley 2.3 Estimated System Performance 2.4 Estimated Operating Costs	.2 .2 .3 .4
3	HDS Water Treatment	. 7 . 7
4	Conclusions	9
5	References	10

List of Tables

	Summary of Vangorda/Grum Water Treatment Plant Water Quality Monitoring Results	
	Summary of Faro Pit Lake Water Quality Monitoring F	Results
	Summary of Down Valley Treatment System Influent Quality	Water
	Calculated Lime Utilizations	
	Summary of Calculated Operating Costs	
	Summary of HDS Treatment Plant Operating Costs T Vangorda/Grum Water	
Table 3.2	Summary of HDS Treatment Plant Operating Costs T	reating
Table 3.3	Summary of HDS Treatment Plant Operating Costs T	reating

List of Appendices

APPENDIX A Operating Cost Calculations APPENDIX B HDS Treatment System Modelling

1 Introduction

1.1 Terms of Reference

This project was initially conceived in program planning sessions carried out in a June 2003 planning workshop (Deloitte & Touche 2003). A scope of work for the assessment of current water treatment costs at Anvil Range was presented in a letter from SRK to Deloitte & Touche, dated September 8, 2003. The scope of work was authorized later in September 2003.

1.2 Background

Three water treatment systems are being operated at the Anvil Range complex, comprising:

- The Vangorda/Grum water treatment plant, which is a purpose designed system,
- The Faro Mill water treatment system, which utilizes pre-existing mill equipment, and,
- The Down Valley water treatment system, which consists of a slaking plant and an in-line system to mix the lime slurry with tailings pond water.

Detailed descriptions of each of these facilities have been prepared by EBA Engineering and Consultants (2003). That report included descriptions of the water management systems, but did not address water treatment costs.

1.3 Objectives

The primary objectives of this study were to:

- Develop updated water treatment performance and cost estimates based on the 2003 water treatment operations.
- Estimate sludge generation and disposal requirements that could be used to evaluate intermediate and long term water treatment cost implications for different closure scenarios.

1.4 Scope of Work

The water quality data for 2003 were compiled and reviewed to assess the water treatment system performance. For each system, chemical consumption rates and unit water treatment costs were assessed.

To provide a basis for comparison with standard High Density Sludge (HDS) water treatment performance and costs, Canadian Environmental & Metallurgical Inc. (CEMI) of Vancouver was commissioned to estimate feasibility level capital and operating costs, and sludge generation rates for the average water quality and flow rates for each of the three treatment systems.

Finally, the unit operating costs obtained from current water treatment practices, together with those from the HDS system modelling were summarised in a format suitable for direct use in the computer program AMD

TREAT, developed by the U.S. Office of Surface Mine Reclamation and Enforcement. The computer program has a cost modeling capability which can be used to predict the future costs associated with water treatment requirements under various closure scenarios.

2 Current Water Treatment Costs

2.1 System Descriptions

The existing water treatment facilities at the Anvil Range Mining Complex comprise:

- The Vangorda/Grum water treatment plant;
- The Faro Mill water treatment system; and,
- The Down Valley water treatment system (currently located at the Intermediate Impoundment Spillway.

Detailed descriptions of these facilities are available in EBA Engineering Consultants (EBA, 2003) and are not repeated here. The reader is referred to that document for complete descriptions.

2.2 Current Operating Conditions

2.2.1 Vangorda/Grum

The Vangorda/Grum water treatment plant was operated for a total of 45 days during the summer of 2003. The system was down from June 28th to July 7th while awaiting laboratory test results before discharge could commence. Repositioning of the barge required that the system be shut down for 1 day on the 21st of July, and for 2 days on the 11th and 12th of August. On the 17th and 18th of August a further 2 days of operation were lost due to repairs to a faulty motor on the barge pump, as well as repositioning the barge.

During the operational period the average water treatment rate was 2000 USgpm. Over the 45 days a total of about 414,000 m³ was treated in the system.

A total of 140 short tons of quick lime were used during this period and the average power consumption was about 700 kWh. Staffing comprised a total of 8 operators, working on a 4x4 -12 hr shift rotation.

The available influent water quality monitoring results are provided in Table 2.1. Acidity was not monitored but was calculated from the dissolved metal concentrations. As shown, dissolved zinc and manganese were elevated while the pH decreased slightly over the period, but remained near neutral. Iron increased marginally toward the end of the summer. This is likely a result of the draw-down of the Vangorda pit to an elevation where more reducing conditions were encountered.

Table 2.1 Summary of Vangorda/Grum Water Treatment Plant Influent Water Quality Monitoring Results

		2003 Water Quality Results			
Date	Units	Mar	Jun	Sep	
Alkalinity*	mg/L	71	37	46	
Acidity**	mg/L	149.8	109.5	168.2	
рН		7.4	7.0	6.9	
Al	mg/L	0.029	0.001	0.019	
Fe	mg/L	0.116	0.334	1.55	
Mn	mg/L	20.4	16.5	29.2	
Zn	mg/L	73.3	51.3	72.5	
SO ₄	mg/L	808	635	1041	
Ca	mg/L	179	146	262	
Mg	mg/L	71.6	52.3	82.8	
Na	mg/L	10.1	3.5	6.1	
K	mg/L	4.9	3.0	4.7	

Notes: * Acidity and Alkalinity in units of CaCO₃ eq

2.2.2 Faro Mill

The Faro Mill water treatment system was operated for a total of 66 days during the summer of 2003, with no down time during this period.

Water was treated in the system at an average flow rate of about 5300 USgpm. An estimated total volume of 1,906,000 m³ of water was treated during the operational period of the system, using a total of 240 short tons of quicklime.

The average power consumption during this period, which included the lighting circuit, was about 800 kWh. Staffing comprised a total of 4 operators, working on a 4x4 -12 hr shift rotation.

The available water quality monitoring results are shown in Table 2.2. Again, the acidity was not monitored but was calculated from the dissolved metal concentrations. The results indicated that the pH remained slightly alkaline through the treatment period.

^{**} Acidity calculated from metal concentrations.

Table 2.2 Summary of Faro Pit Lake Water Quality Monitoring Results

Date	Units	2003 Monitoring Results					
Date	Ullits	May	Jun	Jul	Aug	Sep	
Acidity	mg/L	11.2	23.8	21.2	21.9	26.8	
рН		7.8	7.4	7.4	7.6	7.7	
Al	mg/L	0.109	0.007	0.022	0.024	0.060	
Fe	mg/L	0.058	0.139	0.103	0.226	0.265	
Mn	mg/L	0.465	2.807	2.717	2.508	2.617	
Zn	mg/L	6.273	11.980	10.379	10.873	13.751	
SO ₄	mg/L	132	647	657	574	588	
Ca	mg/L	34.0	160.2	159.6	144.5	147.2	
Mg	mg/L	13.4	60.2	60.1	56.6	60.5	
Na	mg/L	3.5	24.6	23.1	19.6	20.1	
K	mg/L	1.9	14.9	14.3	11.7	12.1	

Notes: * Acidity calculated form metal concentrations in units of CaCO₃ eq.

2.2.3 Down Valley

The Down Valley water treatment system was operated for a total of 54 days during the summer of 2003. The system experienced no down time during the treatment period. Water was siphoned and treated in the system at an average flow rate of 1500 USgpm, which resulted in the treatment of approximately 442,000 m³ of water. A total of 220 short tons of quick lime were used to treat the water.

Power for operating the treatment system was generated with a CAT 350 kW generator set. Actual power draw was approximately 175 kWh. Diesel fuel consumption was about 200 US gallons per day.

The system was run using 4 operators rotated on a 4x4 12 hr shift rotation.

The available influent water quality monitoring results are provided in Table 2.3. Compared to the water treated in the Faro Mill and Vangorda/Grum treatment systems, the water treated in Cross Valley dam initially contained elevated iron concentrations. The iron concentration gradually decreased to below 1 mg/L by July. Since the pH did not decrease over this period, the results indicate that excess alkalinity was present in the water to neutralize the acidity associated with the iron.

Table 2.3 Summary of Down Valley Treatment System Influent Water Quality

		2003 Monitoring Results								
Parameter	Units	Jan	Feb	Mar	Apr	Jun	Jul	Aug	Sep	Oct
Acidity*	mg/L	78.6	93.8	84.1	87.2	41.8	36.1	37.7	38.9	40.5
pН		7.5	7.3	7.3	7.4	7.5	7.5	7.3	7.5	7.4
Al	mg/L	0.049	0.062	0.076	0.242	0.051	0.022	0.060	0.074	0.010
Fe	mg/L	10.9	19.1	15.9	17.0	1.3	0.19	0.39	0.28	0.12
Mn	mg/L	12.9	13.2	14.4	14.1	9.1	10.2	11.2	10.9	11.5
Zn	mg/L	16.7	11.9	9.7	9.4	14.1	11.0	10.4	11.7	12.5
SO ₄	mg/L	799	727	649	652	656	719	720	759	740
Ca	mg/L	202	199	211	207	163	184	185	184	201
Mg	mg/L	56.2	46.1	45.6	42.9	44.0	50.7	51.5	53.7	56.0
Na	mg/L	18.1	16.6	18.3	16.5	11.5	13.1	13.5	13.5	14.1
K	mg/L	6.5	6.1	7.0	6.9	4.7	5.2	5.3	5.2	5.6

Notes: * Acidity in units of CaCO₃ eq calculated from metal concentrations.

2.3 Estimated System Performance

The lime efficiencies for each of the three current systems were calculated from the total lime consumed and the calculated acidity in the treatment system influent. The calculation accounts for the lime equivalent required to increase the pH above 9.5 to achieve zinc removal. The results, as shown in Table 2.4, indicate that the lime utilization is highest for the Vangorda/Grum water treatment plant, and lowest for the Down Valley system. This is not unexpected since the Vangorda/Grum treatment plant is a purpose designed and built system. In the Down Valley system, the contact time is very short and the amount of agitation is very limited, which explains the lower utilization. Lime utilization in the Faro Mill system is better than that of the Down Valley system, but remains low at about 26 %.

Table 2.4 Calculated Lime Utilizations

Parameter	Units	Faro Mill	Vangorda	Down Valley
Volume Treated	m3	1,906,550	414,230	441,482
Average Acidity	mg CaCO₃ eq/L	27.9	142.5	59.8
Equiv. to pH 9.5	mg CaCO₃ eq/L	1.6	1.6	1.6
Total Acidity Equivalent	mg CaCO₃ eq/L	29.5	144.1	61.4
Lime consumed	short tons	240	140	220
Acidity equivalent	mg CaCO₃ eq/L	114	307	452
Lime Utilization	%	25.8	47.0	13.6

The water quality monitoring results also indicate a reduction in magnesium concentrations during treatment. Therefore, a proportion of the lime is consumed by the precipitation of magnesium hydroxide. Accounting for the precipitation of magnesium from solution the lime utilizations were recalculated as shown in Table 2.5.

In the lime neutralization testing completed by Gartner Lee Limited (GLL, 2003), Grum water was treated with both lime and sodium hydroxide. A comparison of these results suggests that, at pH 9.5, the lime is only about 70% available. The estimated lime utilization for the Vangorda/Grum plant is in close agreement with the availability indicated by the GLL testing.

Table 2.5 Calculated Lime Utilization Including Magnesium Removal

Parameter	Units	Faro Mill	Vangorda	Down Valley
Volume Treated	m ³	1,906,550	414,230	441,482
Average Acidity	mg CaCO₃ eq/L	27.9	142.5	59.8
To pH Endpoint 9.5	mg CaCO₃ eq/L	1.6	1.6	1.6
Mg removal	mg CaCO₃ eq/L	26.5	84.2	12.2
Total Acidity Equivalent	mg CaCO₃ eq/L	56.0	228.3	73.6
Lime consumed Acidity equivalent	short tons mg CaCO ₃ eq/L	240 114	140 307	220 452
Lime Utilization	%	49.1	74.5	16.3

2.4 Estimated Operating Costs

The 2003 operating costs were calculated for each of the systems and are shown in Table 2.6. Complete calculations are provided in Appendix A. The calculations utilized a unit cost for lime FOB the site of \$320 per short ton, power at \$0.13 per kWh and labour at \$21.03 per hour. The costs for commissioning and mothballing the systems are not included in the operating cost summary.

As shown in Table 2.6, the power costs represent the major proportion of the overall operating costs for the Faro Mill system. The power cost of the Faro Mill system is also significantly higher than for the other systems. In the case of the Vangorda/Grum plant, labour costs are disproportionately high compared to the other systems. For the Down Valley system, the lime costs are disproportionately high, due to the low lime utilization rate.

Table 2.6 Summary of Calculated Operating Costs

Parameter	Faro Mill	Vangorda	Down Valley
Overall Operating Costs			
Quick Lime	\$ 76,800	\$ 44,800	\$ 70,400
Power	\$ 164,736	\$ 82,992	\$ 29,484
Labour	\$ 66,623	\$ 90,850	\$ 54,510
Total	\$ 308,159	\$ 218,642	\$ 154,394
Unit Operating Costs (\$/m³)			
Quick Lime	0.040	0.108	0.160
Power	0.086	0.200	0.067
Labour	0.035	0.219	0.124
Total	0.161	0.527	0.351

3 HDS Water Treatment

The current water quality and flow rates were input to a numerical model that simulates a high density sludge (HDS) treatment system to provide a direct comparison with current operating strategies, and allow projection of potential future water treatment capital and operating costs. The modelling results are presented in Appendices B, and key estimated operating and capital costs are summarised below. It should be noted that the HDS water treatment modelling assumes that the systems would be operated year round. Therefore, the capital costs for these systems are not directly comparable to those of the current systems. Operating costs, however, can be compared.

3.1 Vangorda/Grum Water

The HDS plant modelling indicates that the normalised operating costs for an HDS treatment plant treating Vangorda/Grum water will be about \$0.21 per m³. The current normalised treatment costs are about \$0.53 per m³.

The estimated operating costs are shown in Table 3.1. The estimated capital cost for a treatment plant treating 7571 L/min (2000 USgpm) is about \$4,670,000.

The modelling also indicated that the sludge generation from this water would be expected to be about 0.23 g/L of water treated, which can be used to project future sludge generation rates. The sludge that would be generated is expected to be at about 20% solids.

Item	Units	Consumption	Unit Cost (CDN\$)	Annual Cost (CDN\$/year)
Quicklime	tonnes/year	784	320	\$251,000
Flocculant	tonnes/year	12	6,000	\$71,000
Electric Power	million kW-hours	2.42	0.13	\$314,000
O & M Capital	% of capital cost	3	4,670,000	\$140,000
O & M Manpower	man-hours per day	8	21.03	\$61,000
Annual Operating	\$837,000			
Normalized Annua	\$0.21 /m ³			

Table 3.1 Summary of HDS Treatment Plant Operating Costs Treating Vangorda/Grum Water

3.2 Faro Mill Water

The HDS plant modelling indicates that the normalised operating costs for an HDS treatment plant treating water currently treated in the Faro Mill treatment system will be about \$0.14 per m³. This compares well with the current normalised treatment cost of about \$0.16 per m³.

The estimated operating costs are shown in Table 3.2. The estimated capital cost for an HDS treatment plant treating 20,062 L/min (5,300 USgpm) is about \$8,790,000.

The estimated rate of sludge generation for this water is expected to be about 0.10 g/L. The sludge that would be generated is expected to be at about 20% solids.

Table 3.2 Summary of HDS Treatment Plant Operating Costs Treating Faro Water

Item	Units	Consumption	Unit Cost (CDN\$)	Annual Cost (CDN\$/year)
Quicklime	tonnes/year	1294	320	\$414,000
Flocculant	tonnes/year	32	6,000	\$191,000
Electric Power	million kW-hours	4.57	0.13	\$594,000
O & M Capital	% of capital cost	3	8,790,000	\$264,000
O & M Manpower	man-hours per day	8	21.03	\$61,000
Annual Operating	\$1,524,000			
Normalized Annua	\$0.14 /m ³			

3.3 Down Valley Water

The HDS plant modelling indicates that the normalised operating costs for an HDS treatment plant treating water currently treated in the Down Valley treatment system will be about \$0.21 per m³. The estimated current normalised treatment cost is about \$0.35 per m³.

The estimated operating costs are shown in Table 3.3. The estimated capital cost for an HDS treatment plant treating 5,678 L/min (1,500 USgpm) is about \$3,870,000.

The estimated rate of sludge generation for this water is expected to be about 0.15 g per litre of water treated. The sludge that would be generated is expected to be at about 20% solids.

Table 3.3 Summary of HDS Treatment Plant Operating Costs Treating Faro Water

ltem	Units	Consumption	Unit Cost (CDN\$)	Annual Cost (CDN\$/year)
Quicklime	tonnes/year	429	320	\$137,000
Flocculant	tonnes/year	8.9	6,000	\$53,660
Electric Power	million kW-hours	2.03	0.13	\$263,000
O & M Capital	% of capital cost	3	3,870,000	\$116,000
O & M Manpower	man-hours per day	8	21.03	\$61,000
Annual Operating	\$631,000			
Normalized Annua	\$0.21 /m ³			

4 Conclusions

The assessment of the existing Anvil Range water treatment systems has indicated that the lime utilization ranges from about 16 percent for the Down Valley water treatment system, to about 75 percent for the purpose designed and built Vangorda/Grum water treatment plant. The estimated lime utilization for the Vangorda/Grum plant is very close to the lime availability determined by Gartner Lee Limited in their treatability testing of Grum Pit Lake water in October 2003. The lime utilization in the Faro Mill treatment system is about 50 percent.

Unit operating costs were derived for each of the treatment systems, and water quality types treated in the systems. CEMI was also commissioned to model HDS treatment systems and to estimate the expected performance, operating and capital costs. The unit costs are as follows:

		Vangorda	Faro Mill	Down Valley
Existing System				
Flow	US gpm	2000	5300	1500
Lime consumption	g/L as CaO	0.172	0.064	0.253
Lime utilization	%	74.5	49.1	16.3
Unit Operating Cost	\$/m ³	0.527	0.161	0.351
HDS System				
Flow	US gpm	2000	5300	1500
Lime consumption	g/L as CaO	0.197	0.123	0.144
Lime utilization	%	87	87	87
Sludge generation	g/L	0.228	0.097	0.151
Capital Cost	\$	4,670,000	8,790,000	3,870,000
Unit Operating Cost	\$/m ³	0.21	0.14	0.21

These unit operating costs and estimated capital costs can be utilized directly in the computer program AMD TREAT, developed by the U.S. Office of Surface Mine Reclamation and Enforcement. The computer program has a forward cost modeling capability which can be used to predict the water treatment costs associated with the various closure measures that will be considered over the next several months.

5 References

EBA Engineers and Consultants (2003). **Anvil Range Mine Complex, Existing Water Treatment Facilities.** Prepared for Deloitte & Touche, October 2003.

APPENDIX A

Operating Cost Calculations

	Unit Costs	
Lime	\$ 320.00	per short ton
Power	\$ 0.13	per kWh
Labour	\$ 21.03	per hour

Parameter	Units	Faro Mill	Vangorda	Down Valley
Operating Period	days	66	45	54
Downtime	days	0	7	0
Flow Rate	USgpm	5300	2000	1500
	L/s	334	126	95
Volume Treated	m ³	1,906,550	414,230	441,482
Lime consumption				
Consumed	short tons	240	140	220
	kg CaO	217,723	127,005	199,580
	mg/L	114	307	452
	mg CaCO₃ eq/L	204	548	807
Power				
Draw	kWh	800	700	175
Consumed	kWh	1267200	638400	226800
Genset Fuel	gals/day	n/a	na	200
Shift	hr	12	12	12
Rotation		4x4	4x4	4x4
Operators		4	8	4
Operating Costs				
Quick Lime		\$76,800	\$44,800	\$ 70,400
Power		\$ 164,736	\$ 82,992	\$ 29,484
Labour		\$ 66,623	\$90,850	\$ 54,510
Total		\$308,159	\$218,642	\$ 154,394
Unit Operating Costs				
Quick Lime	\$/m ³	0.040	0.108	0.159
Power	\$/m ³	0.086	0.200	0.067
Labour	\$/m ³	0.035	0.219	0.123
Total	\$/m ³	0.162	0.528	0.350

APPENDIX B

HDS Treatment System Modelling

HDS Process Design

Faro Mill 5300 usgpm

14 December, 2003 Conceptual Design Rev. 1

General Design Information

Design Flowrate: 20,062 L/min
Solids Generation 0.10 g/L plant feed

Recycle Ratio 69.9 (?:1) Solids SG 2.8

Feed pH 7.3

Reactor pH 9.3 pH Units Lime Sludge Mix Tank pH 13.5 pH Units

Clarifier U/F Density 20 %
Clarifier Overflow Solids 0 mg/L

Aeration Requirements

Feed Iron Content

Percentage Ferrous Iron

Average Density of Air

Oxygen Transfer Efficiency

0.3 mg/L

100 %

1.201 kg/m³

20 %

Vessel Residence Times:

Reactor Residence Time
Lime Sludge Mix Tank
Clarifier Upflow Ratio
Recycle Water Tank
60 minutes
5 minutes
1.200 (m³/hr)/m²
0.5 minutes

Flocculant Dosing System

Flocculant Dose Rate
440 mg floc/kg solids (range from 50 to 200)
Flocculant Addition Rate
3.0 mg floc/L plant feed (range from 1 to 10)
Undiluted Floc Concentration
0.5 %

Lime Dosing System

Lime Addition Rate (as Ca(OH)₂)

0.15 g lime/L plant feed
Lime Slurry Concentration

12 %

Slurry pH 14 pH Units Solids SG 2.4

Storage Requirements 24 hours

Available CaO 92.0 %

Lime use 0.12 g lime (CaO)/L plant feed

Operating Costs

Lime Cost 320 CDN\$/tonne Flocculant Cost 6000 CDN\$/tonne

Power Cost 700 hp 0.13 CDN\$/kw-hour

Manpower Cost 8 man-hours/day 21.03 CDN\$/man-hour

O&M Capital 3 % of capital cost 8,790,000 CDN\$ total capital

Water Quality and Sludge Generation Prediction

HDS Process Design Faro Mill 5300 usgpm 14 December, 2003

lon	lon Wt. (g/mol)	Hydroxide Formula	Hydroxide Weight (g/mol)	Mass of Ion Present (mg/L)	Mass of OH ⁻ (mg/L)	Mass of Precip. (mg/L)
Al	26.98	AI(OH) ₃	78.01	0.12	0.23	0.35
Ag	107.87	AgOH	124.88	0.00	0.00	0.00
As	74.92	As(OH) ₃	125.95	0.00	0.00	0.00
Bi	208.98	Bi(OH) ₃	260.01	0.00	0.00	0.00
Ca	40.08	Ca(OH) ₂	74.1	160.20	0.00	0.00
Cd	112.41	Cd(OH) ₂	146.43	0.00	0.00	0.00
Cu	63.55	$Cu(OH)_2$	97.57	0.00	0.00	0.00
Fe	55.85	Fe(OH) ₃	106.88	0.30	0.27	0.57
Pb	207.2	Pb(OH) ₂	241.22	0.00	0.00	0.00
Mg	24.31	$Mg(OH)_2$	58.33	12.94	18.11	31.05
Mn	54.94	MnO_2	86.94	2.80	0.00	4.43
Ni	58.71	Ni(OH) ₂	92.73	0.00	0.00	0.00
S*	32.06	CaSO ₄ .2H ₂ O	172.18	0.00	0.00	0.00
Sb	121.75	Sb(OH) ₃	172.78	0.00	0.00	0.00
Se	78.96	Se(OH) ₄	147	0.00	0.00	0.00
Si	28.09	Si(OH) ₂	62.11	0.00	0.00	0.00
Zn	65.38	$Zn(OH)_2$	99.4	28.50	14.83	43.33
SO ₄ ^{2-*}	96.06	CaSO ₄ .2H ₂ O	172.18	657.00	0.00	0.00
CO ₃ ²⁻	59.98	CaCO ₃	100.06	0.00	0.00	0.00
TSS	n/a	n/a	n/a	n/a	n/a	0.00
Total					33.44	79.73

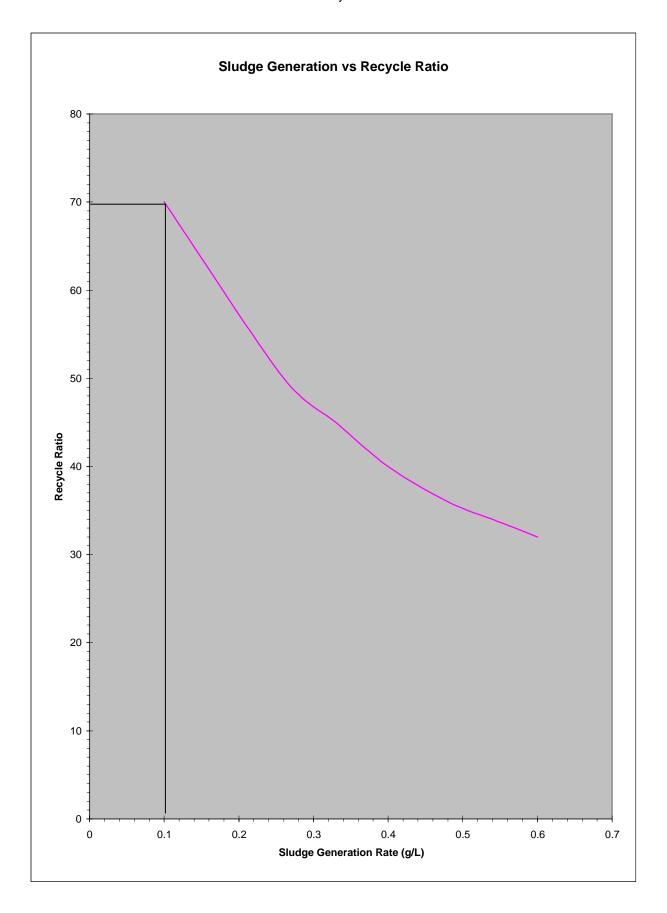
Residual SO₄²⁻ concentration 1800 mg/L (pure solubility range from 1240 - 1435 mg/L)

* Use either (S) or (SO4).

Based on calcium requirements

Solids Generation = 0.10 g/L (includes 8.0 % lime enerts) (includes 5.0 % unreacted lime solids)

Lime Requirements


0.21 g Ca(OH)2/L effluent **OR** (SO₄²-based)

0.00 g Ca(OH)2/L effluent (S based)

Based on hydroxide requirements 0.07 g Ca(OH)2/L effluent

Lime Utilization = 95.0 % Available CaO = 92.0 %

Lime use = $0.15 \text{ g Ca(OH)}_2/\text{L}$ effluent Lime use = 0.12 g lime (CaO)/L effluent

Sludge Quality Prediction

HDS Process Design Faro Mill 5300 usgpm 14 December, 2003

lon	Mass of Ion Present (mg/L)	Mass of OH ⁻ (mg/L)	Mass of Precip. (mg/L)	Mass of Metal (mg/L)	Sludge Composition (%)
	0.40	0.00	0.05	0.40	0.40
Al	0.12	0.23	0.35	0.12	0.12
Ag	0.00	0.00	0.00	0.00	0.00
As	0.00	0.00	0.00	0.00	0.00
Bi	0.00	0.00	0.00	0.00	0.00
Ca	160.20	0.00	0.00	0.00	0.00
Cd	0.00	0.00	0.00	0.00	0.00
Cu	0.00	0.00	0.00	0.00	0.00
Fe	0.30	0.27	0.57	0.30	0.31
Pb	0.00	0.00	0.00	0.00	0.00
Mg	12.94	18.11	31.05	12.94	13.34
Mn	2.80	0.00	4.43	2.80	2.89
Ni	0.00	0.00	0.00	0.00	0.00
CaSO ₄ .2H ₂ O	0.00	0.00	0.00	n/a	0.00
Sb	0.00	0.00	0.00	0.00	0.00
Se	0.00	0.00	0.00	0.00	0.00
Si	0.00	0.00	0.00	0.00	0.00
Zn	28.50	14.83	43.33	28.50	29.38
CaSO ₄ .2H ₂ O	657.00	0.00	0.00	n/a	0.00
CaCO ₃	0.00	0.00	0.00	n/a	0.00
TSS	n/a	n/a	0.00	n/a	0.00
Lime Inerts	n/a	n/a	17.28	n/a	17.81
Total	100.00.0	33.44	97.01	44.66	63.85

Balance Check: 100.00 %

Annual Average Data:

Operating days = 365 days/year
Plant feed rate = 20,062 L/minute

Total dry solids production = 2.8 tonnes/day 1023.0 tonnes/year
Sludge volume purged = 12.2 m³/day 4457.2 m³/year

Volume at ultimate density = 3.8 m³/day 1388.3 m³/year

Pond volume required = 27,770 m³

Process Design

Vessel Sizes

			<u> </u>	<u> Fank Dimensions (no f</u>	<u>reeboard</u>	l included)	aspect ratio
Lime Sludge Mix Tank:	$3 \text{ m}^3 =$	816 USgal	D =	1.7 m or 5.6 ft	H =	1.4 m or 4.5 ft	1.25
Reactor Vessels:	1241 m ³ =	327785 USgal	D =	12.9 m or 42.2 ft	H =	9.5 m or 31.3 ft	1.35
Clarifier Diameter:	36 m =	118 ft					
Lime Storage Tank:	$36 \text{ m}^3 =$	9592 USgal	D =	3.8 m or 12.5 ft	H =	3.2 m or 10.5 ft	1.19
Recycled Water Tank:	10 $m^3 =$	2669 USgal	D =	2.5 m or 8.2 ft	H =	2.1 m or 6.8 ft	1.21

Aeration Requirements

Total Iron Content = 0 mg/L

Percent Ferrous Iron = 100 %

Oxygen Transfer Efficiency = 20 %

Total Flow In = 20062 L/min

Total Ferrous Iron = 0.0 kg/min

= 0.4 kg/hr

Aeration required = $1.0 \text{ m}^3/\text{hour}$

= **0.6** SCFM

Sludge and Reagent Flowrates

Sludge Purge and Recycle

Sludge Purge Data			Sludge Recycle Data		
Sludge Purge = Solids Generation =	2 kg/min =	4 lbs/min	Solids Recycled =	136 kg/min =	300 lbs/min
Solids Volume =	1 L/min =	0 USgpm	Solids Volume =	49 L/min =	13 USgpm
Water Flow =	8 L/min =	2 USgpm	Water Flow =	544 L/min =	144 USgpm
Total Flow =	8 L/min =	2 USgpm	Total Flow =	593 L/min =	157 USgpm
SG Slurry =	1.15		SG Slury =	1.15	
pH Slurry =	9.3 pH Units		pH Slurry =	9.3 pH Units	
SG Solids =	2.8		SG Solids =	2.8	
Slurry % Solids =	20.00 %		Slurry % Solids =	20.00 %	

Lime Circuit

Lime Dosing			Lime Loop Out Of Storag	e Tank		Lime Loop Return To St	orage Tank	
Solids Mass =	3 kg/min =	7 lbs/min	Solids Mass =	13 kg/min =	29 lbs/min	Solids Mass =	10 kg/min =	22 lbs/min
Solids Volume =	1 L/min =	0 USgpm	Solids Volume =	5 L/min =	1 USgpm	Solids Volume =	4 L/min =	1 USgpm
Water Flow =	24 L/min =	6 USgpm	Water Flow =	95 L/min =	25 USgpm	Water Flow =	72 L/min =	19 USgpm
Total Slurry Flow =	25 L/min =	7 USgpm	Total Slurry Flow =	101 L/min =	27 USgpm	Total Slurry Flow =	76 L/min =	20 USgpm
Slurry SG =	1.08		Slurry SG =	1.08		Slurry SG =	1.08	
pH Slurry =	14 pH Units		pH Slurry =	14 pH Units		pH Slurry =	14 pH Units	
SG Solids =	2.4		SG Solids =	2.4		SG Solids =	2.4	
Slurry % Solids =	12.00 %		Slurry % Solids =	12.00 %		Slurry % Solids =	12.00 %	

Flocculant Dosing Lime Dosing

Floc Dosing Rate =	3 mg/L efflue	nt treated	Lime Dosing Rate =	0.1 g lime/L effluent treated
Flow Into Floc Tank =	20680 L/min =	5463 USgpm	Lime Dosing Rate =	0.1 g lime (CaO + inerts)/L \treated
Undiluted Floc Flowrate =	13 L/min =	3 USgpm	Average Plant Feed =	20062.25 L/minute
Diluted Floc Flowrate =	125 L/min =	33 USgpm	Daily Consumption =	3.5 tonnes/day
Floc Consumption =	90 kg/day =	199 lbs/day	Annual Consumption=	1294 tonnes/year quicklime

Mass Balance

Tank Flows

Out Of Lime/Sludge Mix	<u>c Tank</u>		Out Of Reactor Tank		
Solids Mass =	139 kg/min =	307 lbs/min	Solids Mass =	138 kg/min =	304 lbs/min
Solids Volume =	50 L/min =	13 USgpm	Solids Volume =	49 L/min =	13 USgpm
Water Flow =	568 L/min =	150 USgpm	Water Flow =	20630 L/min =	5450 USgpm
Total Slurry Flow =	618 L/min =	163 USgpm	Total Slurry Flow =	20680 L/min =	5463 USgpm
Slurry SG =	1.14		Slurry SG =	1.00	
pH Slurry =	13.5 pH Units		pH Slurry =	9.3 pH Units	
SG Solids =	2.79		SG Solids =	2.80	
Slurry % Solids =	19.69 %		Slurry % Solids =	0.66 %	
			Into Clarifier		
			Solids Mass =	138 kg/min =	304 lbs/min
			Solids Volume =	49 L/min =	13 USgpm
			Water Flow =	20755 L/min =	5483 USgpm
			Total Slurry Flow =	20805 L/min =	5496 USgpm
			Slurry SG =	1.00	
			pH Slurry =	9.3 pH Units	
			SG Solids =	2.80	
			Slurry % Solids =	0.66 %	

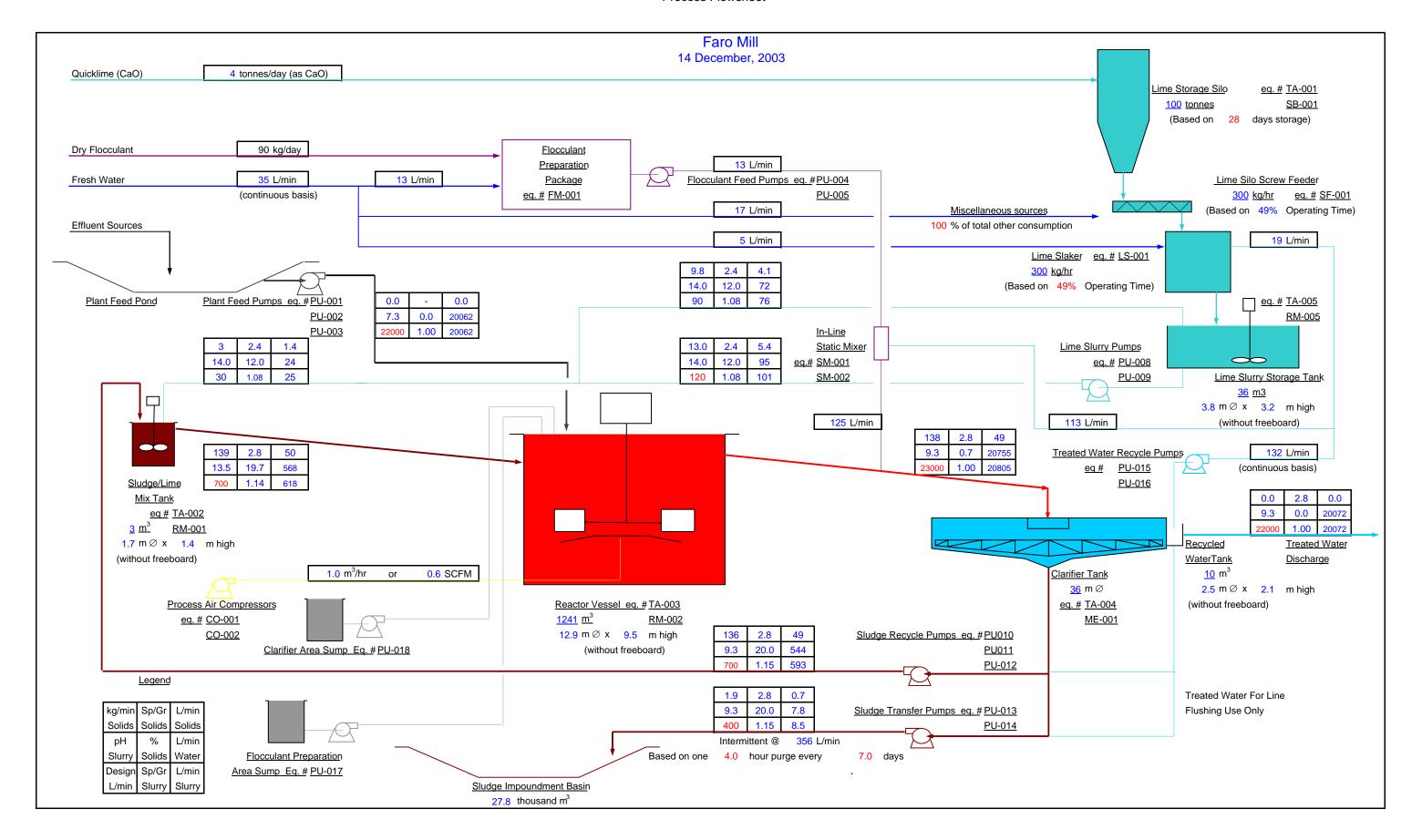
Clarifier Flows

Clarifier Overflow			Clarifier Underflow		
Solids Mass =	0 kg/min =	0 lbs/min	Solids Mass =	138 kg/min =	304 lbs/min
Solids Volume =	0 L/min =	0 USgpm	Solids Volume =	49 L/min =	13 USgpm
Water Flow =	20203 L/min =	5337 USgpm	Water Flow =	552 L/min =	146 USgpm
Total Slurry Flow =	20203 L/min =	5337 USgpm	Total Slurry Flow =	601 L/min =	159 USgpm
Slurry SG =	1		Slurry SG =	1.15	
pH Slurry =	9.3 pH Units		pH Slurry =	9.3 pH Units	
SG Solids =	2.80		SG Solids =	2.80	
Slurry % Solids =	0 %		Slurry % Solids =	20.00 %	
Balance Check (Overal	D				
Total Solids In =	1.95 kg/min		Total Water In =	20211 L/min	
Total Solids Out =	1.95 kg/min		Total Water Out =	20211 L/min	
% Deviation =	0.00 %		% Deviation =	0.00 %	
Balance Check (Clarifie	ne)				
Balance Check (Clarine	<u>=1.7</u>				
Total Solids In =	138 kg/min		Total Water In =	20755 L/min	
Total Solids Out =	138 kg/min		Total Water Out =	20755 L/min	
% Deviation =	0.00 %		% Deviation =	0.00 %	

Operating Cost Estimate

Faro Mill 5300 usgpm 14 December, 2003

Reagent	Dose Rate (mg/L plant feed)	Annual Average Plant Flow Rate (L/min)	Annual Reagent Consumption (tonnes/year)	Reagent Unit Cost (CDN\$/tonne)	Annual Reagent Cost (CDN\$/year)
Quicklime	123	20,062	1294	320	414,000
Flocculant	3	20,062	32	6000	191,000
				Sub-total:	\$605,000
Item	4	Annual Consumption	1	Unit Cost (CDN\$)	Annual Cost (CDN\$/year)
Electric Power	4.57	million kW-hours	0.13	594,000	
O & M Capital	3	% of capital cost	8790000	264,000	
O & M Manpower	8	man-hours per day		21.03	61,000
				Sub-total:	\$919,000
	Total Ann	ual Operating Cost:	\$1,524,000	/year	(CDN dollars)
	Normalized Ann	ual Operating Cost:	\$0.14	/m³	(CDN dollars)
			\$0.55	/1000 USgal	(CDN dollars)
	Di	scount Interest Rate:	10%		
	Ехр	ected Plant Lifetime:	20	years	
ľ	Present Value of Pla	nt Operating Costs:	\$12,975,000	CDN dollars	


Net Present Value of Plant:

\$21,765,000 CDN dollars

Mechanical Equipment List

Faro Mill 5300 usgpm

Equipment Number	Description	Motor hp	Туре	Capacity/Size	Material
FM-001	Flocculant Preparation System	** AMP	Vendor Package	180 kg/day	
SM-001	Flocculant Static Mixer			188 L/min	
SM-002	Flocculant Static Mixer			188 L/min	
TA-001	Lime Storage Silo	** HP		100 tonnes	c.s.
SB-001	Lime Silo Baghouse	111		100 tornes	0.5.
SF-001	Lime Silo Screw Feeder	** HP		300 kg/hour	c.s.
LS-001	Lime Slaker	* HP + ** HP		300 kg/hour	0.0.
00.004	Dan and Air Community 14	** HP		1 m³/hour	
CO-001	Process Air Compressor #1			1 m ³ /hour	
CO-002	Process Air Compressor #2	** HP		1 m³/nour	
RM-001	Sludge/Lime Mix Tank Agitator	** HP			c.s.
RM-002	Lime Reactor #2 Tank Agitator	** HP			c.s.
ME-001	Clarifier Rake Mechanism	** HP + ** HP			C.S.
RM-005	Lime Slurry Storage Tank Agitator	** HP			C.S.
IXIVI-003	Line Sidify Storage Tank Agitator	1117			0.5.
PU-001	Plant Feed Pump #1 V.S.D.	** HP	Vertical Turbine	11000 L/min	
PU-002	Plant Feed Pump #2 V.S.D.	** HP	Vertical Turbine	11000 L/min	
PU-003	Plant Feed Pump #3 V.S.D.	** HP	Vertical Turbine	11000 L/min	
PU-004	Flocculant Feed Pump #1	** HP	Prog. Cavity	19 L/min	
PU-005	Flocculant Feed Pump #2	** HP	Prog. Cavity	19 L/min	
PU-008	Lime Slurry Pump #1	** HP	Cantilever	120 L/min	
PU-009	Lime Slurry Pump #2	** HP	Cantilever	120 L/min	
PU010	Sludge Recycle Pump #1 V.S.D.	** HP	Centrifugal	350 L/min	
PU011	Sludge Recycle Pump #2 V.S.D.	** HP	Centrifugal	350 L/min	
PU-012	Sludge Recycle Pump #3 V.S.D.	** HP	Centrifugal	350 L/min	
	land ago itosyste i amp no ito.		o o maga.	333 2	
PU-013	Sludge Transfer Pump #1	** HP	Centrifugal	400 L/min	
PU-014	Sludge Transfer Pump #2	** HP	Centrifugal	400 L/min	
PU-015	Treated Water Recycle Pump #1	** HP	Centrigugal	263 L/min	
PU-016	Treated Water Recycle Pump #2	** HP	Centrigugal	263 L/min	
PU-017	Flocculant Preparation Area Sump Pump	** HP	Cantilever	400 L/min	
PU-018	Clarifer Area Sump Pump	** HP	Cantilever	400 L/min	
. 5 515	January Tuda Gamp Tump		Carmiovoi	100 13111111	
TA-002	Sludge/Lime Mix tank			2 m ∅ x 1 m High (w/o F/B)	C.S.
TA-003	Lime Reactor Tank			13 m ∅ x 10 m High (w/o F/B)	c/s
TA-004	Clarifier Tank			36 m ∅	c/s
TA-005	Lime Slurry Storage Tank			4 m Ø x 3 m High (w/o F/B)	c/s

HDS Process Design

Grum/Vangorda Pit 2000 usgpm

14 December, 2003 Conceptual Design Rev. 1

General Design Information

Design Flowrate: 7,571 L/min
Solids Generation 0.23 g/L plant feed
Recycle Ratio 53.3 (?:1)
Solids SG 2.8

Feed pH 6.9

Reactor pH 9.3 pH Units Lime Sludge Mix Tank pH 13.5 pH Units

Clarifier U/F Density 20 %
Clarifier Overflow Solids 0 mg/L

Aeration Requirements

Feed Iron Content
Percentage Ferrous Iron
Average Density of Air
Oxygen Transfer Efficiency

1.5 mg/L
100 %
1.201 kg/m³
20 %

Vessel Residence Times:

Reactor Residence Time
Lime Sludge Mix Tank
Clarifier Upflow Ratio
Recycle Water Tank
60 minutes
5 minutes
1.200 (m³/hr)/m²
0.5 minutes

Flocculant Dosing System

Flocculant Dose Rate

240 mg floc/kg solids (range from 50 to 200)

Flocculant Addition Rate

3.0 mg floc/L plant feed (range from 1 to 10)

Undiluted Floc Concentration

0.5 %

Lime Dosing System

Lime Addition Rate (as Ca(OH)₂)

0.2 g lime/L plant feed

12 %

Slurry pH

14 pH Units

Solids SG

2.4

Storage Requirements

24 hours

Available CaO 92.0 %

Lime use 0.2 g lime (CaO)/L plant feed

Operating Costs

 Lime Cost
 320 CDN\$/tonne

 Flocculant Cost
 6000 CDN\$/tonne

 Power Cost
 370 hp
 0.13 CDN\$/kw-hour

 Manpower Cost
 8 man-hours/day
 21.03 CDN\$/man-hour

 O&M Capital
 3 % of capital cost
 4,670,000 CDN\$ total capital

Water Quality and Sludge Generation Prediction

HDS Process Design Grum/Vangorda Pit 2000 usgpm 14 December, 2003

lon	lon Wt. (g/mol)	Hydroxide Formula	Hydroxide Weight (g/mol)	Mass of Ion Present (mg/L)	Mass of OH ⁻ (mg/L)	Mass of Precip. (mg/L)
Al	26.00	A1(OL1)	70.04	0.03	0.00	0.09
	26.98	AI(OH) ₃	78.01		0.06	
Ag	107.87	AgOH	124.88	0.00	0.00	0.00
As	74.92	As(OH) ₃	125.95	0.00	0.00	0.00
Bi	208.98	Bi(OH) ₃	260.01	0.00	0.00	0.00
Ca	40.08	Ca(OH) ₂	74.1	262.00	0.00	0.00
Cd	112.41	Cd(OH) ₂	146.43	0.00	0.00	0.00
Cu	63.55	Cu(OH) ₂	97.57	0.00	0.00	0.00
Fe	55.85	Fe(OH) ₃	106.88	1.50	1.37	2.87
Pb	207.2	Pb(OH) ₂	241.22	0.00	0.00	0.00
Mg	24.31	$Mg(OH)_2$	58.33	16.56	23.17	39.73
Mn	54.94	MnO_2	86.94	29.20	0.00	46.21
Ni	58.71	Ni(OH) ₂	92.73	0.00	0.00	0.00
S*	32.06	CaSO ₄ .2H ₂ O	172.18	0.00	0.00	0.00
Sb	121.75	Sb(OH) ₃	172.78	0.00	0.00	0.00
Se	78.96	Se(OH) ₄	147	0.00	0.00	0.00
Si	28.09	Si(OH) ₂	62.11	0.00	0.00	0.00
Zn	65.38	$Zn(OH)_2$	99.4	73.30	38.14	111.44
SO ₄ ²⁻ *	96.06	CaSO₄.2H₂O	172.18	1041.00	0.00	0.00
CO ₃ ²⁻	59.98	CaCO ₃	100.06	0.00	0.00	0.00
TSS	n/a	n/a	n/a	n/a	n/a	0.00
Total	1774	11/0	11/4	1110	62.74	200.34

Residual SO₄²⁻ concentration 1800 mg/L (pure solubility range from 1240 - 1435 mg/L)

* Use either (S) or (SO4).

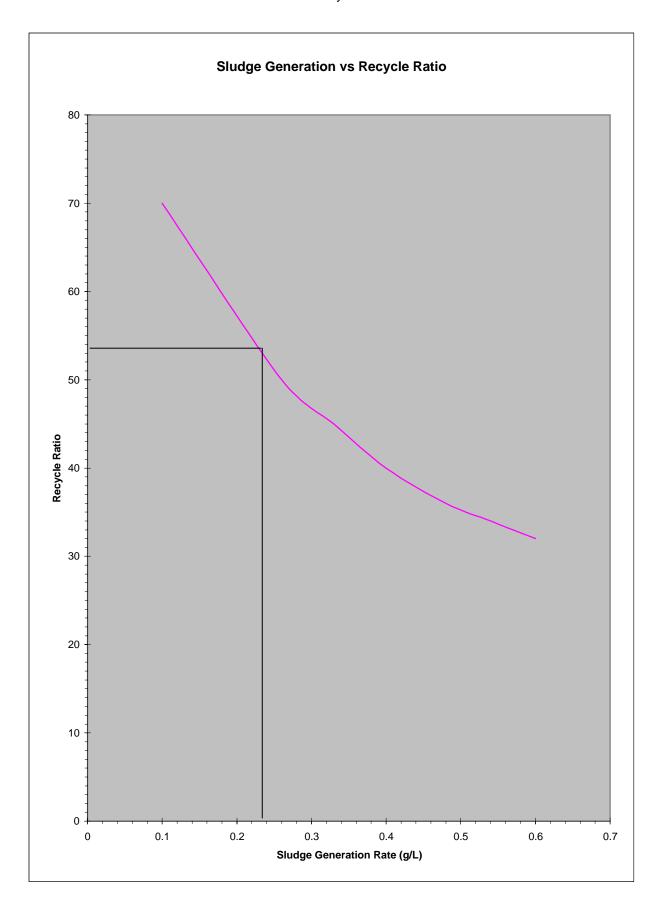
Lime Requirements

Solids Generation = 0.23 g/L (includes 8.0 % lime enerts) (includes 5.0 % unreacted lime solids)

(SO₄²-based)

Based on calcium requirements

g Ca(OH)2/L effluent OR 0.32 0.00


g Ca(OH)2/L effluent (S based)

Based on hydroxide requirements

0.14 g Ca(OH)2/L effluent

Lime Utilization = 95.0 % Available CaO = 92.0 %

0.24 g Ca(OH)₂/L effluent Lime use = Lime use = 0.20 g lime (CaO)/L effluent

Sludge Quality Prediction

HDS Process Design Grum/Vangorda Pit 2000 usgpm 14 December, 2003

lon	Mass of Ion Present (mg/L)	Mass of OH ⁻ (mg/L)	Mass of Precip. (mg/L)	Mass of Metal (mg/L)	Sludge Composition (%)
Al	0.03	0.06	0.09	0.03	0.01
Ag	0.00	0.00	0.00	0.00	0.00
As	0.00	0.00	0.00	0.00	0.00
Bi	0.00	0.00	0.00	0.00	0.00
Ca	262.00	0.00	0.00	0.00	0.00
Cd	0.00	0.00	0.00	0.00	0.00
Cu	0.00	0.00	0.00	0.00	0.00
Fe	1.50	1.37	2.87	1.50	0.66
Pb	0.00	0.00	0.00	0.00	0.00
Mg	16.56	23.17	39.73	16.56	7.26
Mn	29.20	0.00	46.21	29.20	12.80
Ni	0.00	0.00	0.00	0.00	0.00
CaSO ₄ .2H ₂ O	0.00	0.00	0.00	n/a	0.00
Sb	0.00	0.00	0.00	0.00	0.00
Se	0.00	0.00	0.00	0.00	0.00
Se Si	0.00	0.00	0.00	0.00	0.00
Zn	73.30	38.14	111.44	73.30	32.14
CaSO ₄ .2H ₂ O	1041.00	0.00	0.00	n/a	0.00
CaCO ₃	0.00	0.00	0.00	n/a	0.00
TSS	n/a	n/a	0.00	n/a	0.00
Lime Inerts	n/a	n/a	27.75	n/a	12.17
Total	400.00	62.74	228.09	120.59	65.04

Balance Check: 100.00 %

Annual Average Data:

Operating days = 365 days/year
Plant feed rate = 7,571 L/minute

Total dry solids production = 2.5 tonnes/day 907.6 tonnes/year
Sludge volume purged = 10.8 m³/day 3954.6 m³/year
Volume at ultimate density = 3.4 m³/day 1231.8 m³/year
Pond volume required = 24640 m³

Process Design

Vessel Sizes

			<u>Ta</u>	ank Dimensions (no fr	eeboard	lincluded)	aspect ratio
Lime Sludge Mix Tank:	$2 \text{ m}^3 =$	550 USgal	D =	1.5 m or 4.9 ft	H =	1.2 m or 3.9 ft	1.27
Reactor Vessels:	$479 \text{ m}^3 =$	126596 USgal	D =	9.0 m or 29.5 ft	H =	7.5 m or 24.7 ft	1.19
Clarifier Diameter:	22 m =	72 ft					
Lime Storage Tank:	22 m ³ =	5814 USgal	D =	3.3 m or 10.8 ft	H =	2.6 m or 8.4 ft	1.28
Recycled Water Tank:	$4 \text{ m}^3 =$	1007 USgal	D =	1.8 m or 5.9 ft	H =	1.5 m or 4.9 ft	1.20

Aeration Requirements

Total Iron Content = 2 mg/L

Percent Ferrous Iron = 100 %

Oxygen Transfer Efficiency = 20 %

Total Flow In = 7571 L/min

Total Ferrous Iron = 0.0 kg/min

= 0.7 kg/hr

Aeration required = $1.9 \text{ m}^3/\text{hour}$

= **1.1** SCFM

Sludge and Reagent Flowrates

Sludge Purge and Recycle

Sludge Purge Data			Sludge Recycle Data		
Sludge Purge = Solids Generation =	2 kg/min =	4 lbs/min	Solids Recycled =	92 kg/min =	203 lbs/min
Solids Volume =	1 L/min =	0 USgpm	Solids Volume =	33 L/min =	9 USgpm
Water Flow =	7 L/min =	2 USgpm	Water Flow =	368 L/min =	97 USgpm
Total Flow =	8 L/min =	2 USgpm	Total Flow =	401 L/min =	106 USgpm
SG Slurry =	1.15		SG Slury =	1.15	
pH Slurry =	9.3 pH Units		pH Slurry =	9.3 pH Units	
SG Solids =	2.8		SG Solids =	2.8	
Slurry % Solids =	20.00 %		Slurry % Solids =	20.00 %	

Lime Circuit

Lime Dosing			Lime Loop Out Of Storage	e Tank		Lime Loop Return To Sto	orage Tank	
Solids Mass =	2 kg/min =	4 lbs/min	Solids Mass =	8 kg/min =	17 lbs/min	Solids Mass =	6 kg/min =	13 lbs/min
Solids Volume =	1 L/min =	0 USgpm	Solids Volume =	3 L/min =	1 USgpm	Solids Volume =	2 L/min =	1 USgpm
Water Flow =	14 L/min =	4 USgpm	Water Flow =	58 L/min =	15 USgpm	Water Flow =	43 L/min =	11 USgpm
Total Slurry Flow =	15 L/min =	4 USgpm	Total Slurry Flow =	61 L/min =	16 USgpm	Total Slurry Flow =	46 L/min =	12 USgpm
Slurry SG =	1.08		Slurry SG =	1.08		Slurry SG =	1.08	
pH Slurry =	14 pH Units		pH Slurry =	14 pH Units		pH Slurry =	14 pH Units	
SG Solids =	2.4		SG Solids =	2.4		SG Solids =	2.4	
Slurry % Solids =	12.00 %		Slurry % Solids =	12.00 %		Slurry % Solids =	12.00 %	

Flocculant Dosing Lime Dosing

0.2 g lime/L effluent treated	Lime Dosing Rate =	ent treated	3 mg/L efflu	Floc Dosing Rate =
0.2 g lime (CaO + inerts)/L \treat	Lime Dosing Rate =	2110 USgpm	7987 L/min =	Flow Into Floc Tank =
7570.66 L/minute	Average Plant Feed =	1 USgpm	5 L/min =	Undiluted Floc Flowrate =
2.1 tonnes/day	Daily Consumption =	13 USgpm	47 L/min =	Diluted Floc Flowrate =
784 tonnes/year quicklime	Annual Consumption=	75 lbs/day	34 kg/day =	Floc Consumption =

Mass Balance

Tank Flows

Out Of Lime/Sludge Mix	x Tank		Out Of Reactor Tank		
Solids Mass =	94 kg/min =	207 lbs/min	Solids Mass =	94 kg/min =	207 lbs/min
Solids Volume =	34 L/min =	9 USgpm	Solids Volume =	33 L/min =	9 USgpm
Water Flow =	383 L/min =	101 USgpm	Water Flow =	7953 L/min =	2101 USgpm
Total Slurry Flow =	416 L/min =	110 USgpm	Total Slurry Flow =	7987 L/min =	2110 USgpm
Slurry SG =	1.14		Slurry SG =	1.01	
pH Slurry =	13.5 pH Units		pH Slurry =	9.3 pH Units	
SG Solids =	2.79		SG Solids =	2.80	
Slurry % Solids =	19.72 %		Slurry % Solids =	1.17 %	
			Into Clarifier		
			Solids Mass =	94 kg/min =	207 lbs/min
			Solids Volume =	33 L/min =	9 USgpm
			Water Flow =	8001 L/min =	2114 USgpm
			Total Slurry Flow =	8034 L/min =	2122 USgpm
			Slurry SG =	1.01	
			pH Slurry =	9.3 pH Units	
			SG Solids =	2.80	
			Slurry % Solids =	1.16 %	

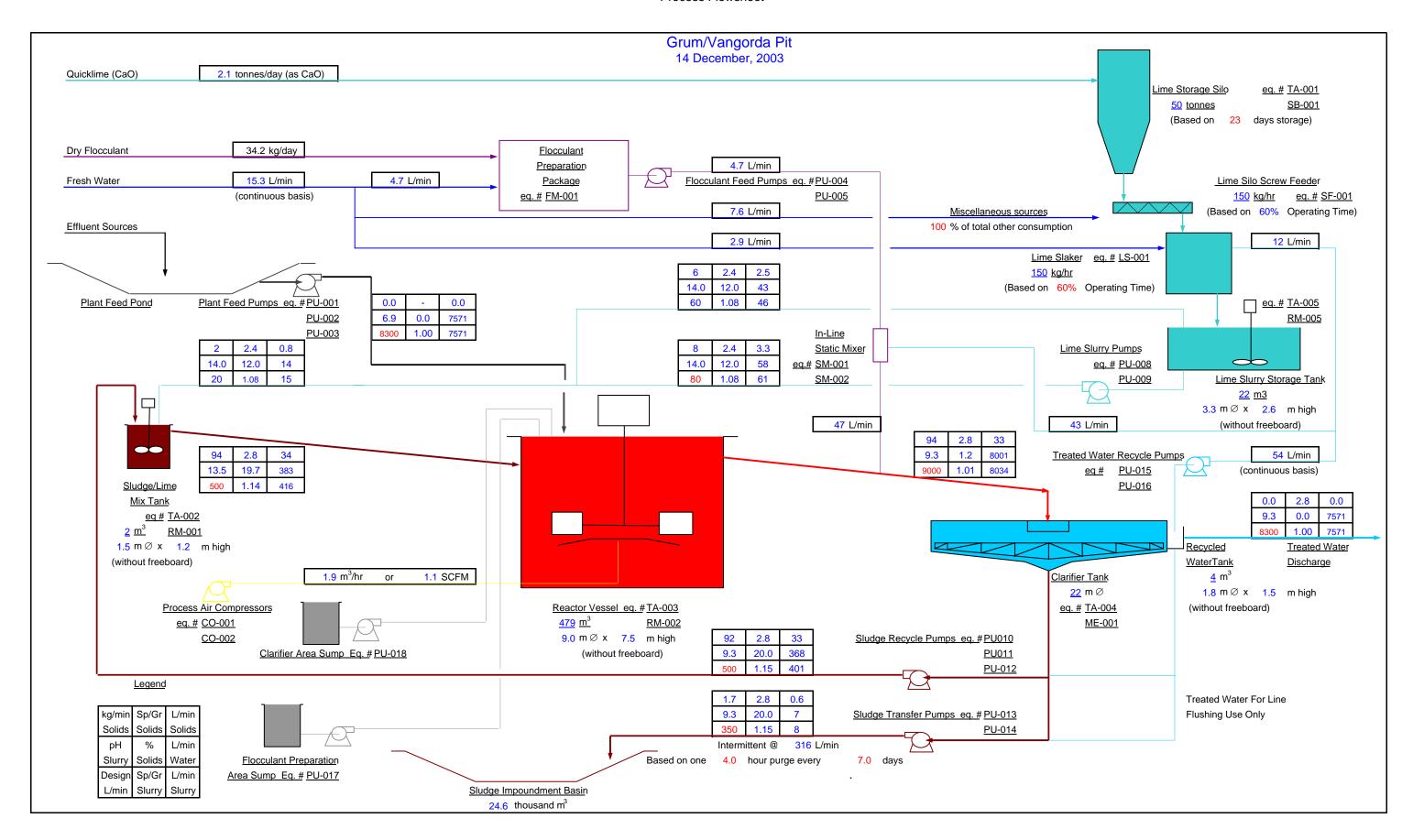
Clarifier Flows

Clarifier Overflow			Clarifier Underflow		
Solids Mass =	0 kg/min =	0 lbs/min	Solids Mass =	94 kg/min =	207 lbs/min
Solids Volume =	0 L/min =	0 USgpm	Solids Volume =	33 L/min =	9 USgpm
Water Flow =	7626 L/min =	2015 USgpm	Water Flow =	375 L/min =	99 USgpm
Total Slurry Flow =	7626 L/min =	2015 USgpm	Total Slurry Flow =	409 L/min =	108 USgpm
Slurry SG =	1		Slurry SG =	1.15	
pH Slurry =	9.3 pH Units		pH Slurry =	9.3 pH Units	
SG Solids =	2.80		SG Solids =	2.80	
Slurry % Solids =	0 %		Slurry % Solids =	20.00 %	
Balance Check (Overa	<u>II)</u>				
Total Solids In =	1.73 kg/min		Total Water In =	7633 L/min	
Total Solids Out =	1.73 kg/min		Total Water Out =	7633 L/min	
% Deviation =	0.00 %		% Deviation =	0.00 %	
Balance Check (Clarifi	or)				
Balance Check (Claim	<u>ei j</u>				
Total Solids In =	94 kg/min		Total Water In =	8001 L/min	
Total Solids Out =	94 kg/min		Total Water Out =	8001 L/min	
% Deviation =	0.00 %		% Deviation =	0.00 %	

Operating Cost Estimate

Grum/Vangorda Pit 2000 usgpm 14 December, 2003

Reagent	Dose Rate (mg/L plant feed)	Annual Average Plant Flow Rate (L/min)	Annual Reagent Consumption (tonnes/year)	Reagent Unit Cost (CDN\$/tonne)	Annual Reagent Cost (CDN\$/year)
Quicklime	197	7,571	784	320	251,000
Flocculant	3	7,571	12	6000	71,000
				Sub-total:	\$322,000
ltem	4	Annual Consumption	1	Unit Cost (CDN\$)	Annual Cost (CDN\$/year)
Electric Power	2.42	million kW-hours	0.13	314,000	
O & M Capital	3	% of capital cost	4670000	140,000	
O & M Manpower	8	man-hours per day		21.03	61,000
				Sub-total:	\$515,000
	Total Ann	ual Operating Cost:	\$837,000	/year	(CDN dollars)
	Normalized Ann	ual Operating Cost:	\$0.21	/m³	(CDN dollars)
			\$0.80	/1000 USgal	(CDN dollars)
	Di	scount Interest Rate:	10%		
	Exp	ected Plant Lifetime:	20	years	
F	Present Value of Pla	nt Operating Costs:	\$7,126,000	CDN dollars	


Net Present Value of Plant:

\$11,796,000 CDN dollars

Mechanical Equipment List

Grum/Vangorda Pit 2000 usgpm

Equipment Number	Description	Motor hp	Туре	Capacity/Size	Material
FM-001	Flocculant Preparation System	** AMP	Vendor Package	68 kg/day	
SM-001	Flocculant Static Mixer			71 L/min	
SM-002	Flocculant Static Mixer			71 L/min	
TA-001	Lime Storage Silo	** HP		50 tonnes	c.s.
	Lime Silo Baghouse	111		30 tornes	0.3.
SF-001	Lime Silo Screw Feeder	** HP		150 kg/hour	c.s.
LS-001	Lime Slaker	* HP + ** HP		150 kg/hour	0.0.
00.004	D 4: 0 #4	** 1.15		2 m³/hour	
	Process Air Compressor #1	** HP			
CO-002	Process Air Compressor #2	** HP		2 m³/hour	
RM-001	Sludge/Lime Mix Tank Agitator	** HP			c.s.
RM-002	Lime Reactor #2 Tank Agitator	** HP			c.s.
ME-001	Clarifier Rake Mechanism	** HP + ** HP			C.S.
RM-005	Lime Slurry Storage Tank Agitator	** HP			c.s.
	Plant Feed Pump #1 V.S.D.	** HP	Vertical Turbine	4150 L/min	
PU-002	Plant Feed Pump #2 V.S.D.	** HP	Vertical Turbine	4150 L/min	
PU-003	Plant Feed Pump #3 V.S.D.	** HP	Vertical Turbine	4150 L/min	
PU-004	Flocculant Feed Pump #1	** HP	Prog. Cavity	7 L/min	
PU-005	Flocculant Feed Pump #2	** HP	Prog. Cavity	7 L/min	
PU-008	Lime Slurry Pump #1	** HP	Cantilever	80 L/min	
PU-009	Lime Slurry Pump #2	** HP	Cantilever	80 L/min	
DUOAO	Childre Desirele Direct #4 V.C.D.	** ! ! !	Contributed	050 L/min	
PU010 PU011	Sludge Recycle Pump #1 V.S.D. Sludge Recycle Pump #2 V.S.D.	** HP ** HP	Centrifugal Centrifugal	250 L/min 250 L/min	
PU-012	Sludge Recycle Pump #3 V.S.D.	** HP	Centrifugal	250 L/min	
PU-012	Sludge Recycle Fullip #3 V.S.D.	ПР	Centinugai	250 L/IIIII	
PU-013	Sludge Transfer Pump #1	** HP	Centrifugal	350 L/min	
PU-014	Sludge Transfer Pump #2	** HP	Centrifugal	350 L/min	
PU-015	Treated Water Recycle Pump #1	** HP	Centrifugal	109 L/min	
PU-016	Treated Water Recycle Pump #2	** HP	Centrifugal	109 L/min	
PU-017	Flocculant Preparation Area Sump Pump	** HP	Cantilever	400 L/min	
PU-017	Clarifer Area Sump Pump	** HP	Cantilever	400 L/min	
F 0-010	Clarifer Area Sump Fump	III	Carilliever	400 L/IIIII	
TA-002	Sludge/Lime Mix tank			2 m Ø x 1 m High (w/o F/B)	c.s.
TA-003	Lime Reactor Tank			9 m Ø x 8 m High (w/o F/B)	c/s
TA-004	Clarifier Tank			22 m Ø	c/s
TA-005	Lime Slurry Storage Tank			3 m ∅ x 3 m High (w/o F/B)	c/s

HDS Process Design

Down Valley 1500 usgpm

14 December, 2003 Conceptual Design Rev. 1

General Design Information

Design Flowrate: 5,678 L/min
Solids Generation 0.15 g/L plant feed
Recycle Ratio 63.2 (?:1)
Solids SG 2.8

Feed pH 7.3

Reactor pH 9.3 pH Units Lime Sludge Mix Tank pH 13.5 pH Units

Clarifier U/F Density 20 %
Clarifier Overflow Solids 0 mg/L

Aeration Requirements

Feed Iron Content

Percentage Ferrous Iron

Average Density of Air

Oxygen Transfer Efficiency

19 mg/L

100 %

1.201 kg/m³

20 %

Vessel Residence Times:

Reactor Residence Time
Lime Sludge Mix Tank
Clarifier Upflow Ratio
Recycle Water Tank
60 minutes
5 minutes
1.200 (m³/hr)/m²
0.5 minutes

Flocculant Dosing System

Flocculant Dose Rate
310 mg floc/kg solids (range from 50 to 200)
Flocculant Addition Rate
3.0 mg floc/L plant feed (range from 1 to 10)
Undiluted Floc Concentration
0.5 %

Lime Dosing System

Lime Addition Rate (as Ca(OH)₂)

0.17 g lime/L plant feed
Lime Slurry Concentration

12 %

Slurry pH

14 pH Units

Solids SG

2.4

Storage Requirements

24 hours

Available CaO 92.0 %

Lime use 0.14 g lime (CaO)/L plant feed

Operating Costs

 Lime Cost
 320 CDN\$/tonne

 Flocculant Cost
 6000 CDN\$/tonne

 Power Cost
 310 hp
 0.13 CDN\$/kw-hour

 Manpower Cost
 8 man-hours/day
 21.03 CDN\$/man-hour

 O&M Capital
 3 % of capital cost
 3,870,000 CDN\$ total capital

Water Quality and Sludge Generation Prediction

HDS Process Design Down Valley 1500 usgpm 14 December, 2003

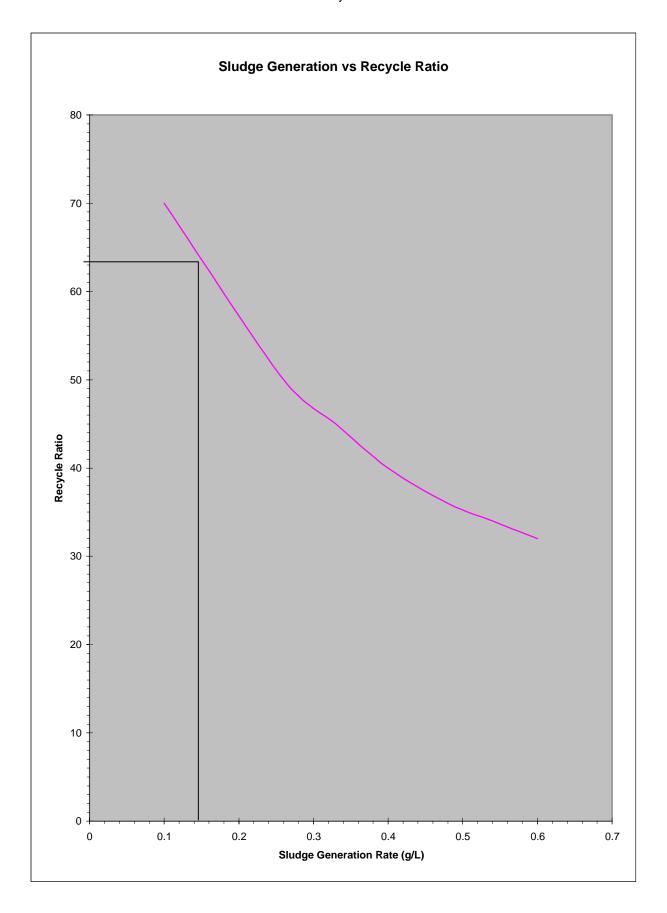
lon	lon Wt. (g/mol)	Hydroxide Formula	Hydroxide Weight (g/mol)	Mass of Ion Present (mg/L)	Mass of OH ⁻ (mg/L)	Mass of Precip. (mg/L)
Al	26.98	AI(OH) ₃	78.01	0.24	0.46	0.70
Ag	107.87	AgOH	124.88	0.00	0.00	0.00
As	74.92	As(OH) ₃	125.95	0.00	0.00	0.00
Bi	208.98	Bi(OH) ₃	260.01	0.00	0.00	0.00
Ca	40.08	Ca(OH) ₂	74.1	210.80	0.00	0.00
Cd	112.41	Cd(OH) ₂	146.43	0.00	0.00	0.00
Cu	63.55	Cu(OH) ₂	97.57	0.00	0.00	0.00
Fe	55.85	Fe(OH) ₃	106.88	19.10	17.45	36.55
Pb	207.2	Pb(OH) ₂	241.22	0.00	0.00	0.00
Mg	24.31	$Mg(OH)_2$	58.33	11.24	15.73	26.97
Mn	54.94	MnO_2	86.94	14.40	0.00	22.79
Ni	58.71	Ni(OH) ₂	92.73	0.00	0.00	0.00
S*	32.06	CaSO ₄ .2H ₂ O	172.18	0.00	0.00	0.00
Sb	121.75	Sb(OH) ₃	172.78	0.00	0.00	0.00
Se	78.96	Se(OH) ₄	147	0.00	0.00	0.00
Si	28.09	Si(OH) ₂	62.11	0.00	0.00	0.00
Zn	65.38	$Zn(OH)_2$	99.4	28.50	14.83	43.33
SO ₄ ^{2-*}	96.06	CaSO ₄ .2H ₂ O	172.18	799.00	0.00	0.00
CO ₃ ²⁻	59.98	CaCO ₃	100.06	0.00	0.00	0.00
TSS	n/a	n/a	n/a	n/a	n/a	0.00
Total					48.47	130.34

Residual SO_4^{2-} concentration 1800 mg/L (pure solubility range from 1240 - 1435 mg/L)

* Use either (S) or (SO4).

Lime Requirements

Solids Generation = 0.15 g/L
(includes 8.0 % lime enerts)
(includes 5.0 % unreacted lime solids)


Based on calcium requirements

0.23 g Ca(OH)2/L effluent OR (SO₄²⁻ based) 0.00 g Ca(OH)2/L effluent (S based)

Based on hydroxide requirements 0.11 g Ca(OH)2/L effluent

Lime Utilization = 95.0 % Available CaO = 92.0 %

Lime use = $0.17 \text{ g Ca(OH)}_2/\text{L}$ effluent Lime use = 0.14 g lime (CaO)/L effluent

Sludge Quality Prediction

HDS Process Design Down Valley 1500 usgpm 14 December, 2003

lon	Mass of Ion Present (mg/L)	Mass of OH ⁻ (mg/L)	Mass of Precip. (mg/L)	Mass of Metal (mg/L)	Sludge Composition (%)
	(···· 3 ··-/	(····g·-/	(···· g · – /	(***3'-/	(1-1)
Al	0.24	0.46	0.70	0.24	0.16
Ag	0.00	0.00	0.00	0.00	0.00
As	0.00	0.00	0.00	0.00	0.00
Bi	0.00	0.00	0.00	0.00	0.00
Ca	210.80	0.00	0.00	0.00	0.00
Cd	0.00	0.00	0.00	0.00	0.00
Cu	0.00	0.00	0.00	0.00	0.00
Fe	19.10	17.45	36.55	19.10	12.68
Pb	0.00	0.00	0.00	0.00	0.00
Mg	11.24	15.73	26.97	11.24	7.46
Mn	14.40	0.00	22.79	14.40	9.56
Ni	0.00	0.00	0.00	0.00	0.00
CaSO ₄ .2H ₂ O	0.00	0.00	0.00	n/a	0.00
Sb	0.00	0.00	0.00	0.00	0.00
Se	0.00	0.00	0.00	0.00	0.00
Si	0.00	0.00	0.00	0.00	0.00
Zn	28.50	14.83	43.33	28.50	18.93
CaSO ₄ .2H ₂ O	799.00	0.00	0.00	n/a	0.00
CaCO ₃	0.00	0.00	0.00	n/a	0.00
•					
TSS	n/a	n/a	0.00	n/a	0.00
Lime Inerts	n/a	n/a	20.25	n/a	13.45
Total	100.00.9	48.47	150.59	73.48	62.24

Balance Check: 100.00 %

Annual Average Data:

Operating days = 365 days/year
Plant feed rate = 5,678 L/minute

Total dry solids production = 1.2 tonnes/day 449.4 tonnes/year
Sludge volume purged = 5.4 m³/day 1958.1 m³/year
Volume at ultimate density = 1.7 m³/day 609.9 m³/year
Pond volume required = 12,200 m³

Process Design

Vessel Sizes

			<u>Ta</u>	ank Dimensions (no fre	eboard	<u>included)</u>	aspect ratio
Lime Sludge Mix Tank:	1 $m^3 =$	322 USgal	D =	1.3 m or 4.3 ft	H =	0.9 m or 3.0 ft	1.42
Reactor Vessels:	$355 \text{ m}^3 =$	93862 USgal	D =	8.2 m or 26.9 ft	H =	6.7 m or 22.1 ft	1.22
Clarifier Diameter:	19 m =	63 ft					
Lime Storage Tank:	12 m ³ =	3181 USgal	D =	2.8 m or 9.2 ft	H =	2.0 m or 6.4 ft	1.43
Recycled Water Tank:	$3 \text{ m}^3 =$	755 USgal	D =	1.7 m or 5.6 ft	H =	1.3 m or 4.1 ft	1.35

Aeration Requirements

Total Iron Content = 19 mg/L

Percent Ferrous Iron = 100 %

Oxygen Transfer Efficiency = 20 %

Total Flow In = 5678 L/min

Total Ferrous Iron = 0.1 kg/min

= 6.5 kg/hr

Aeration required = 18 m³/hour

= **11** SCFM

Sludge and Reagent Flowrates

Sludge Purge and Recycle

Sludge Purge Data			Sludge Recycle Data		
Sludge Purge = Solids Generation =	1 kg/min =	2 lbs/min	Solids Recycled =	54 kg/min =	119 lbs/min
Solids Volume =	0 L/min =	0 USgpm	Solids Volume =	19 L/min =	5 USgpm
Water Flow =	3 L/min =	1 USgpm	Water Flow =	216 L/min =	57 USgpm
Total Flow =	4 L/min =	1 USgpm	Total Flow =	235 L/min =	62 USgpm
SG Slurry =	1.15		SG Slury =	1.15	
pH Slurry =	9.3 pH Units		pH Slurry =	9.3 pH Units	
SG Solids =	2.8		SG Solids =	2.8	
Slurry % Solids =	20.00 %		Slurry % Solids =	20.00 %	

Lime Circuit

Lime Dosing			Lime Loop Out Of Storage	e Tank		Lime Loop Return To Sto	orage Tank	
Solids Mass =	1 kg/min =	2 lbs/min	Solids Mass =	4 kg/min =	10 lbs/min	Solids Mass =	3 kg/min =	7 lbs/min
Solids Volume =	0 L/min =	0 USgpm	Solids Volume =	2 L/min =	0 USgpm	Solids Volume =	1 L/min =	0 USgpm
Water Flow =	8 L/min =	2 USgpm	Water Flow =	32 L/min =	8 USgpm	Water Flow =	24 L/min =	6 USgpm
Total Slurry Flow =	8 L/min =	2 USgpm	Total Slurry Flow =	33 L/min =	9 USgpm	Total Slurry Flow =	25 L/min =	7 USgpm
Slurry SG =	1.08		Slurry SG =	1.08		Slurry SG =	1.08	
pH Slurry =	14 pH Units		pH Slurry =	14 pH Units		pH Slurry =	14 pH Units	
SG Solids =	2.4		SG Solids =	2.4		SG Solids =	2.4	
Slurry % Solids =	12.00 %		Slurry % Solids =	12.00 %		Slurry % Solids =	12.00 %	

Flocculant Dosing Lime Dosing

	Floc Dosing Rate =	3 mg/L efflue	nt treated	Lime Dosing Rate =	0.2 g lime/L effluent treated
	Flow Into Floc Tank =	5922 L/min =	1564 USgpm	Lime Dosing Rate =	0.1 g lime (CaO + inerts)/L \treated
ı	Undiluted Floc Flowrate =	4 L/min =	1 USgpm	Average Plant Feed =	5677.995 L/minute
	Diluted Floc Flowrate =	35 L/min =	9 USgpm	Daily Consumption =	1.2 tonnes/day
	Floc Consumption =	26 kg/day =	56 lbs/day	Annual Consumption=	429 tonnes/year quicklime

Mass Balance

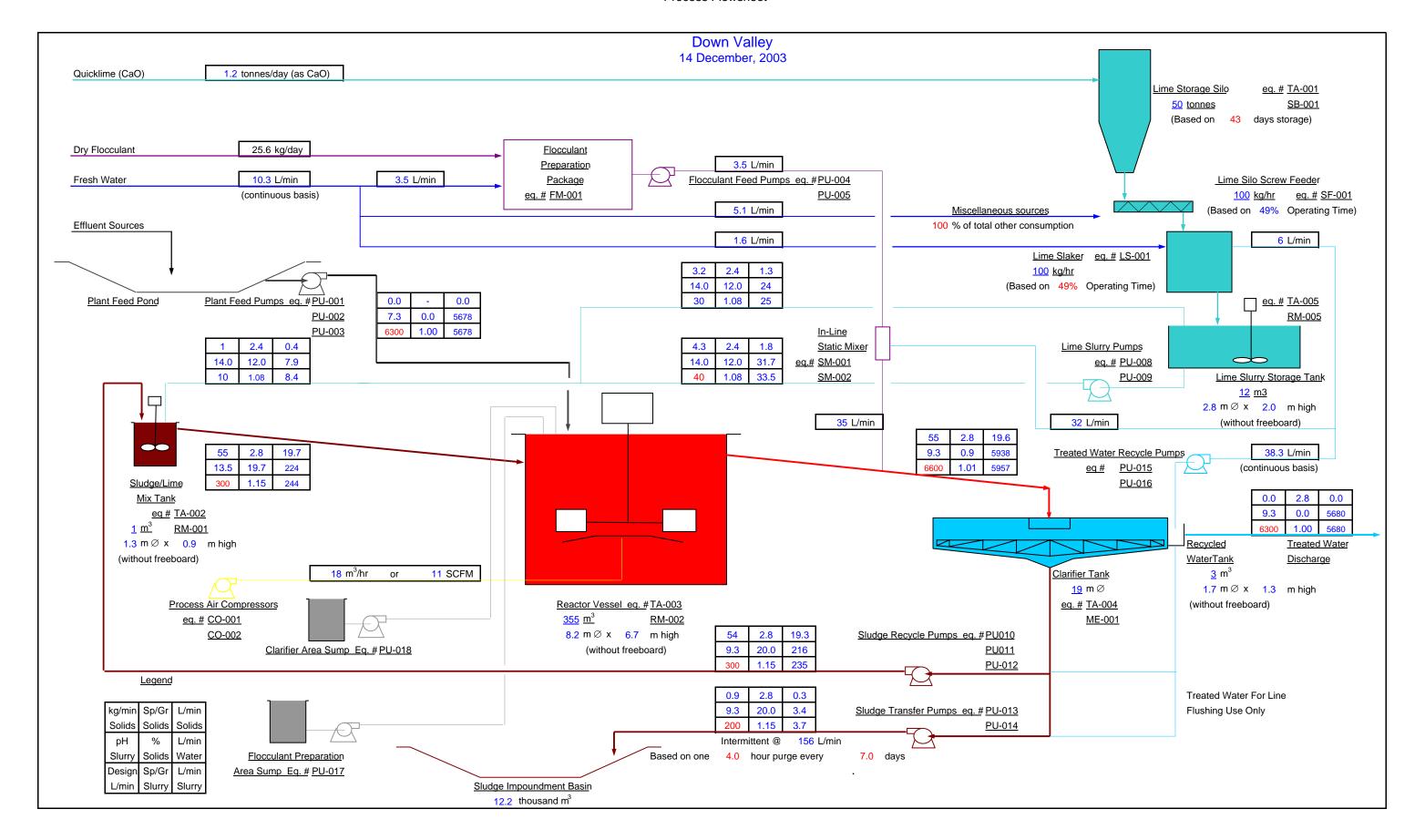
Tank Flows

Out Of Lime/Sludge Mix	<u>c Tank</u>		Out Of Reactor Tank		
Solids Mass =	55 kg/min =	122 lbs/min	Solids Mass =	55 kg/min =	121 lbs/min
Solids Volume =	20 L/min =	5 USgpm	Solids Volume =	20 L/min =	5 USgpm
Water Flow =	224 L/min =	59 USgpm	Water Flow =	5902 L/min =	1559 USgpm
Total Slurry Flow =	244 L/min =	64 USgpm	Total Slurry Flow =	5922 L/min =	1564 USgpm
Slurry SG =	1.15		Slurry SG =	1.01	
pH Slurry =	13.5 pH Units		pH Slurry =	9.3 pH Units	
SG Solids =	2.79		SG Solids =	2.80	
Slurry % Solids =	19.74 %		Slurry % Solids =	0.92 %	
			Into Clarifier		
			Solids Mass =	55 kg/min =	121 lbs/min
			Solids Volume =	20 L/min =	5 USgpm
			Water Flow =	5938 L/min =	1569 USgpm
			Total Slurry Flow =	5957 L/min =	1574 USgpm
			Slurry SG =	1.01	
			pH Slurry =	9.3 pH Units	
			SG Solids =	2.80	
			Slurry % Solids =	0.92 %	

Clarifier Flows

Clarifier Overflow			Clarifier Underflow		
Solids Mass =	0 kg/min =	0 lbs/min	Solids Mass =	55 kg/min =	121 lbs/min
Solids Volume =	0 L/min =	0 USgpm	Solids Volume =	20 L/min =	5 USgpm
Water Flow =	5718 L/min =	1511 USgpm	Water Flow =	220 L/min =	58 USgpm
Total Slurry Flow =	5718 L/min =	1511 USgpm	Total Slurry Flow =	239 L/min =	63 USgpm
Slurry SG =	1		Slurry SG =	1.15	
pH Slurry =	9.3 pH Units		pH Slurry =	9.3 pH Units	
SG Solids =	2.80		SG Solids =	2.80	
Slurry % Solids =	0 %		Slurry % Solids =	20.00 %	
Balance Check (Overa	<u>II)</u>				
Total Solids In =	0.86 kg/min		Total Water In =	5721 L/min	
Total Solids Out =	0.86 kg/min		Total Water Out =	5721 L/min	
% Deviation =	0.00 %		% Deviation =	0.00 %	
Polonos Chook (Clorifi	an)				
Balance Check (Clarifi	<u>er)</u>				
Total Solids In =	55 kg/min		Total Water In =	5938 L/min	
Total Solids Out =	55 kg/min		Total Water Out =	5938 L/min	
% Deviation =	0.00 %		% Deviation =	0.00 %	

Operating Cost Estimate


Down Valley 1500 usgpm 14 December, 2003

Reagent	Dose Rate (mg/L plant feed)	Annual Average Plant Flow Rate (L/min)	Annual Reagent Consumption (tonnes/year)	Reagent Unit Cost (CDN\$/tonne)	Annual Reagent Cost (CDN\$/year)
Quicklime	144	5,678	429	320	137,000
Flocculant	3	5,678	8.9	6000	53,660
				Sub-total:	\$191,000
Item	4	Annual Consumption	1	Unit Cost (CDN\$)	Annual Cost (CDN\$/year)
Electric Power	2.03	million kW-hours	0.13	263,000	
O & M Capital	3	3 % of capital cost			116,000
O & M Manpower	8	man-hours per day		21.03	61,000
				Sub-total:	\$440,000
	Total Ann	ual Operating Cost:	\$631,000	/year	(CDN dollars)
	Normalized Annu	ual Operating Cost:	\$0.21	/m³	(CDN dollars)
			\$0.80	/1000 USgal	(CDN dollars)
	Di	scount Interest Rate:	10%		
	Ехр	ected Plant Lifetime:	20	years	
F	Present Value of Plan	nt Operating Costs:	\$5,372,000	CDN dollars	
	Net Pres	sent Value of Plant:	\$9,242,000	CDN dollars	

Mechanical Equipment List

Down Valley 1500 usgpm

Equipment Number	Description	Motor hp	Туре	Capacity/Size	Material
FM-001	Flocculant Preparation System	** AMP	Vendor Package	51 kg/day	
SM-001	Flocculant Static Mixer			53 L/min	
SM-002	Flocculant Static Mixer			53 L/min	
TA-001	Lime Storage Silo	** HP		50 tonnes	c.s.
SB-001	Lime Silo Baghouse			oo tornies	0.5.
SF-001	Lime Silo Screw Feeder	** HP		100 kg/hour	c.s.
LS-001	Lime Slaker	* HP + ** HP		100 kg/hour	0.0.
00.004	D 4: 0 #4	** 1.15		34	
CO-001	Process Air Compressor #1	** HP		21 m ³ /hour	
CO-002	Process Air Compressor #2	** HP		21 m³/hour	
RM-001	Sludge/Lime Mix Tank Agitator	** HP			c.s.
RM-002	Lime Reactor #2 Tank Agitator	** HP			C.S.
	-				
ME-001	Clarifier Rake Mechanism	** HP + ** HP			C.S.
RM-005	Lime Slurry Storage Tank Agitator	** HP			C.S.
DII 004	51 . 15 . 18	** 1.10	V .: 1 = 1:	0450 1 / 1	
PU-001	Plant Feed Pump #1 V.S.D.	** HP ** HP	Vertical Turbine	3150 L/min 3150 L/min	
PU-002 PU-003	Plant Feed Pump #2 V.S.D.	** HP	Vertical Turbine Vertical Turbine	3150 L/min	
PU-003	Plant Feed Pump #3 V.S.D.	m HP	vertical Turbine	3150 L/min	
PU-004	Flocculant Feed Pump #1	** HP	Prog. Cavity	5 L/min	
PU-005	Flocculant Feed Pump #2	** HP	Prog. Cavity	5 L/min	
PU-008	Lime Slurry Pump #1	** HP	Cantilever	40 L/min	
PU-009	Lime Slurry Pump #2	** HP	Cantilever	40 L/min	
PU010	Sludge Recycle Pump #1 V.S.D.	** HP	Centrifugal	150 L/min	
PU011	Sludge Recycle Pump #2 V.S.D.	** HP	Centrifugal	150 L/min	
PU-012	Sludge Recycle Pump #3 V.S.D.	** HP	Centrifugal	150 L/min	
PU-013	Sludge Transfer Pump #1	** HP	Centrifugal	200 L/min	
PU-014	Sludge Transfer Pump #2	** HP	Centrifugal	200 L/min	
PU-015	Treated Water Recycle Pump #1	** HP	Centrifugal	77 L/min	
PU-016	Treated Water Recycle Pump #2	** HP	Centrifugal	77 L/min	
PU-017	Flocculant Preparation Area Sump Pump	** HP	Cantilever	400 L/min	
PU-018	Clarifer Area Sump Pump	** HP	Cantilever	400 L/min	
1 0 010	Claimer Area Gamp Famp		Cartillever	400 E/IIIII	
TA-002	Sludge/Lime Mix tank			1 m ∅ x 1 m High (w/o F/B)	C.S.
TA-003	Lime Reactor Tank			8 m ∅ x 7 m High (w/o F/B)	c/s
TA-004	Clarifier Tank			19 m ∅	c/s
17-004	Claimer Fairk			13 III Ø	US
TA-005	Lime Slurry Storage Tank			$3 \text{ m} \varnothing x 2 \text{ m High (w/o F/B)}$	c/s

Page 11

SRK Report Distribution Record

Complete this form and include it as the final page for each copy of the report produced.				
Report No.				
Copy No.				
Name/Title	Commons	Comit	Doto	Authoricad by
Name/mile	Company	Сору	Date	Authorised by
Name/Title	Company	Сору	Date	Authorised by
Name/fille	Company	Сору	Date	Authorised by
Name/fille	Company	Сору	Date	Authorised by
Name/fille	Company	Сору	Date	Authorised by
Name/fille	Company	Сору	Date	Authorised by

This report is protected by copyright vested in **SRK Canada Inc**. It may not be reproduced or transmitted in any form or by any means whatsoever to any person without the written permission of the copyright holder, SRK.