

AFE CREEK

YUKON TERRITORY

Scale 1:100 000 - Échelle 1/100 000

Projection transverse universelle de Mercator

© Droits de la Couronne réservés

Universal Transverse Mercator Projection

© Crown copyrights reserved

LOCATION MAP

LEGEND

This legend is common to maps 1786A to 1789A, coloured legend blocks indicate map units that appear on this map

QUATERNARY

HOLOCENE - POST McCONNELL GLACIATION ORGANIC DEPOSITS: peat and muck several metres to tens of metres thick; formed predominantly by the accumulation of vegetative material in bogs and fens, depressions and valley bottoms. Permafrost is commonly present within 1 m of the surface in blanket bog; thermokarst collapse and palsa growth are common in bogs and fens

EOLIAN DEPOSITS: well sorted sand transported and deposited by wind action; greater than 1 m thick and generally forming parabolic and linear dunes

COLLUVIAL DEPOSITS: stony diamicton or rubble resulting from the breakdown of bedrock through physical and chemical weathering and the downslope movement of previously deposited surficial material; variably reworked and transported by gravitational processes such as creep, solifluction, debris flow, snow avalanching, and rockfall

Colluvial blanket sediments: diamicton or rubble; greater than 1 m thick

Colluvial veneer sediments: diamicton or rubble; less than 1 m thick and/or discontinuous

Colluvial apron sediments: bouldery diamicton, poorly sorted sand and gravel forming a wedge-like slope-toe complex of small steep debris flow and avalanche-dominated fans and solifluction deposits ranging from less than 1 m at the upslope limit to 10 m or more in the thickest part of the apron

Rockfall deposits: bouldery, angular rockfall deposits that form aprons up to 10 m or more in maximum thickness along the bases of steep slopes

ALLUVIAL DEPOSITS: gravel to silt size sediments deposited by streams; deposits are commonly stratified and moderately to well sorted, except for some alluvial fan deposits

Floodplain sediments: cobble to pebble gravel capped by sand and silt; greater than 1 m thick; includes lacustrine and organic deposits in abandoned channels and bog and fen areas; floodplain deposits subject to periodic inundation and reworking by floods

Alluvial terrace sediments: cobble to pebble gravel capped by sand and silt; greater than 1 m thick; underlies one or more benches along the margins of active floodplains

Alluvial fan sediments: gravel, sand, silt, and diamicton up to 10 m or more thick; alluvial fans subject to stream avulsion and flooding and, on smaller and steeper fans, inundation by debris flows

Alluvial sediments, undivided: floodplains, fans, and terraces that cannot be subdivided at this map scale

WISCONSINAN - McCONNELL GLACIATION

buried or supporting ice

GLACIOLACUSTRINE DEPOSITS: well stratified sand, silt, clay, and minor gravel and diamicton deposited in lakes ponded by glacial ice; sediments may have regular surfaces or have ridged, hummocky, or pitted surfaces caused by meltout of buried glacial ice. They commonly contain segregated ground ice and are affected by contemporary thermokarst collapse and retrogressive thaw flow slides along rivers

Glaciolacustrine plain: sand, silt, and clay with minor dropstones; 5 m or more thick

Glaciolacustrine blanket: silt and clay with minor sand; 1 to 5 m thick

Glaciolacustrine veneer: silt and clay; less than 1 m thick or discontinuous

Glaciolacustrine complex: sand, silt, and clay; hummocky, pitted, and ridged; comprises up to 10 per cent gravel and diamicton layers and lenses and dropstones; usually more than

GLACIOFLUVIAL DEPOSITS: sand, gravel, and minor silt, greater than 1 m thick, deposited by streams flowing from or in contact with glacial ice, including deltas graded to former glacial lake levels. Sorting ranges from good to poor and stratification from thin bedded to massive. Sediments commonly display evidence of syndepositional collapse due to meltout of

Glaciofluvial plain and fan sediments: pebble to cobble gravel capped by sand and silt; greater than 1 m thick

Glaciofluvial terrace sediments: pebble to cobble gravel capped by sand and silt; greater

Glaciofluvial delta: sand, gravel, and minor silt and clay; greater than 5 m thick

Glaciofluvial complex: sand, gravel, diamicton, and minor silt and clay; greater than 5 m thick; forming hummocks, kettles, esker and crevasse-fill ridges; includes minor elements of

MORAINAL DEPOSITS: glacial diamicton, mainly till, generally consisting of a silty sandy matrix containing pebbles, cobbles, and minor boulders; deposited either directly by glacial

ice or by gravity flow from glacier ice Till blanket: greater than 1 m thick but conforming to the underlying topography

Till veneer: less than 1 m thick or discontinuous; in places contains extensive areas of thin

MIDDLE PLEISTOCENE - REID GLACIATION

(less than 1 m) and patchy colluvium

GLACIOFLUVIAL SEDIMENTS: sand, gravel, and minor silt and clay; greater than 5 m thick; deposited as deltas by meltwater streams entering glacial and proglacial lakes

MORAINAL DEPOSITS: glacial diamicton, mainly till, generally consisting of a silty sandy matrix containing pebbles, cobbles, and minor boulders; less than 1 m thick or discontinuous; in places contains extensive areas of thin (less than 1 m) and patchy colluvium

EARLY PLEISTOCENE - PRE-REID GLACIATION

MORAINAL DEPOSITS: glacial diamicton, mainly till, generally consisting of a silty sandy matrix containing pebbles, cobbles, and minor boulders; many of the clasts are highly weathered; less than 1 m thick or discontinuous; in places contains extensive areas of thin (less than 1 m) and patchy colluvium

PALEOZOIC TO TERTIARY

BEDROCK: includes areas of thin colluvial cover blockfields and sorted stone polygons in

Bedrock areas subject to rapid mass wasting processes (rockfall and snow avalanches)

Canadä

L. Could be is BlailOingo ...

Ward, B.C., and Jackson, L.E., Jr. 1993: Surficial geology, Afe Creek, Yukon Territory; Geological Survey of Canada, Map 1788A, scale 1:100 000

STRATIGRAPHIC SECTIONS

partially covered, rippled sand at base, interstratified sand and silt at top

Gravel: cobbles to

Sand and silt:

10 m to river

ripple and planar graded bedding; some slumping and diapirs present

Sand and silt: well stratified, rippled

diamicton: gravel disorganized and

Gravel: pebbles to

Sand and silt: partially covered well stratified

ravel: cobbles to

stratified, medium

Gravel: cobbles to

Diamicton: striated clasts, massive Gravel: poorly sorted

LEGEND

Glaciofluvial sediments

Geology by B.C. Ward and L.E. Jackson Jr., 1987-1989

Geological cartography by Y.F. St. Pierre Savard, Geological Survey of Canada

Colour separations were produced using digital methods

Any revisions or additional geological information known to the user would be welcomed by the Geological Survey of Canada

Base map assembled by the Geological Survey of Canada from maps 105 L/3, 4 (1979), 105 L/5, 6 (1973), published at 1:50 000 scale by the Surveys and Mapping Branch

Copies of the topographical editions covering this map area may be obtained from the Canada Map Office, Department of Energy, Mines and Resources, Ottawa, Ontario, K1A 0E9

Mean magnetic declination 1993, 29°31′ E, decreasing 11.3′ annually.

Readings vary from 29°13' E in the SW corner to 29°42' E

in the NE corner of the map

Elevations in feet above mean sea level

Glaciolacustrine sediments

Vertical scale (m)

dropstones abundant in lower half