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Cover description

Feldspar inclusions and polycrystalline feldspar wings, de-
rived from pegmatite in an ultramylonite with a dextral sense
of shear. The observation surface is the XZ plane of the finite
strain ellipsoid and the mylonitic foliation and banding are
parallel to the shear plane. The stubby feldspar of the
immature "stair-step” structure (A) makes a slightly greater
angle with the shear plane than do its highly attenuated wings.
In the mature examples (B and C), the long axes of both the
stubby inclusions make the same angle with respect to the
shear plane and their attenuated wings no longer describe a
stair-step geometry, but lie "in-plane”. If we consider the
inter-relationships between rotation rate, orientation and as-
pect ratio of inclusions in a flowing medium, the development
of these structures is readily explained in terms of general
noncoaxial flow, as opposed to simple shear. Central Me-
tasedimentary Belt boundary zone, Grenville Province,
Québec. See Figure 50. (GSC 204105-Q)
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SHEAR-SENSE INDICATORS:
A REVIEW

Abstract

The critical evaluation of the kinematic significance of natural geological deformation structures,
with particular reference to the determination of shear-sense, requires a high degree of familiarity
with the basic concepts of flow, and the influence of material properties (discontinuities, rheological
layering, anisotropy) on the nature of flow at the local scale. This contribution begins with a chapter
on flow, followed by three chapters which critically examine geological deformation structures which
are commonly used as shear-sense indicators: foliations, stiff inclusions and their attendant wings
and, finally, folds and veins.

Résumeé

L’ évaluation critique de la signification cinématique des structures de déformation naturelles,
surtout en ce qui concerne la détermination du sens de cisaillement, exige que I'on posséde des
compétences de base dans le domaine de I' écoulement et de I'influence des propriétés matérielles
rhéologiques (discontinuités, litage ou rubanement, anisotropie) sur I’ écoulement a I’ échelle locale.
Le premier chapitre du présent ouvrage porte sur I écoulement déformationel et est suivi de trois
chapitres qui présentent un examen critique de la signification cinématique des foliations, des objets
durs et de leurs appendices connexes et, enfin, des plis et des veines déformées.






INTRODUCTION

Rocks do not suffer deformation; they enjoy it. (Rob Knipe, 1982; quoted in Groshong 1988;

Geological Society of America Bulletin, p. 1329).

A truly benevolent creator would have implanted a regular three-dimensional grid in rocks prior
to their deformation ... He chose to set a problem by providing only parts of that grid ... (Hirsinger
and Hobbs, 1983; Journal of Structural Geology, p. 307).

During the past decade, geologists have attempted, with
varying degrees of success, to identify meso- to microscopic-
scale deformation structures which can be utilized as reliable
indicators of the sense of movement in shear zones. Earth
scientists are increasingly recognizing the importance of
shear zones, especially as they pertain to the contact zones
between tectonic plates, or to the boundaries of allochthonous
masses occurring at all scales within orogenic belts. It is
obvious that, having identified the existence of a shear zone,
the first question to resolve concerns its movement history.
Thus, the ability to recognize and to correctly use structures
from which one may reliably deduce shear-sense is becoming
an essential part of the field geologist’s repertoire. Only
through understanding of the mechanisms, processes and
progressive development of the structure can we critically
evaluate the kinematic significance of an observed geometry.

It is often possible to propose more than one origin for a
given shape. Since the kinematic significance of the observed
geometry depends on the structural path which led to its
development, the ability to critically discriminate between
causal models is a prerequisite to the undertaking of kine-
matic analysis, whatever the level of involvement of the
scientist. Geologists attempting to unravel the structural his-
tory of a specimen, an outcrop or a region should seek to
cross-check and confirm their initial interpretations. The onus
is on them to verify that a given structure is not a chance
occurrence, but is part of a population of such structures
whose geometry is systematically consistent with the kine-
matic model proposed for their formation. They must seek to
identify an assemblage of kinematically independent struc-
tures, formed by different processes, all of whose progressive
development histories indicate a consistent sense of shear.

To the non-specialist, the seemingly esoteric nature of
much of the literature on shear-sense indicators may appear
to represent a major hurdle. Leaping that hurdle involves two
steps: (i) understanding the nature of flow and of the rotations
of planes and lines that result from it and (i) understanding
the physical processes inherent in the development of the
structure. While the former may appear potentially complex
at first, it is the latter which is the most difficult. This is
because the development of fabrics and structures by inho-
mogeneous flow in crystalline materials is incompletely un-
derstood. Nevertheless, there are at least two reasons why the
scientist who would work with natural structures should strive
to take both of these steps. (1) The accumulating evidence

strongly suggests that natural deformations commonly repre-
sent significant deviations from the idealized simple models
presented in many text books and (2) the nature of the flow
at the scale at which geologists make their observations may
strongly deviate from the type of flow at the bulk scale.

In Part I, Flow and Rheology in Progressive Deformation,
we present an overview of the theoretical aspects of flow
which are essential to deciphering shear-sense indicators,
without which access to the rest of the paper would be
severely limited. Initially we examine flow in an homogene-
ous, isotropic medium and then consider the influence of
material properties, such as anisotropy and rheological layer-
ing, on the nature of the flow. Part IL is divided into three
chapters in which we critically examine an assemblage of
naturally occurring tectonic structures which have been util-
ized in the literature as shear-sense indicators. Our philoso-
phy in this paper will not only be to describe the geometry of
a given structure, but also to examine its progressive devel-
opment, from which its kinematic significance may be de-
duced. Furthermore, we will examine the influence of
variation in the nature of the flow on the geometry of such
structures. Classifying natural structures into groups is al-
ways a somewhat arbitrary exercise, one which no two geolo-
gists would necessarily agree upon. For better or worse, we
have chosen following scheme. Shape Fabrics (Foliations)
considers the kinematic significance of foliations, both with
respect to their formation and their rotational behaviour.
Inclusions deals with the rotation of stiff inclusions and
anisotropic objects as well as, where relevant, their attendant
appendages, be they ‘wings’, ‘tails’, shadows or fringes.
Veins and Folds is self explanatory.

It would not be appropriate here for us to attempt to review
the basic theory of deformation. For those readers seeking to
improve their understanding of the elementary principles of
deformation, we would recommend consulting one or several
of the excellent, comprehensive texts presently available (e.g.
Ramsay, 1967; Means, 1976; Hobbs et al., 1976; Ramsay and
Huber, 1983). For those readers lacking adequate library
facilities and funds, we suggest that the book by Park (1989)
represents good value for money.

Our aim here is to examine types of flow, and the kinemati-
cally significant structures which form in them, from a perspec-
tive which should be accessible to all interested geologists, yet
may also prove useful to the specialist. Regardless of what the



Inimitable Bard has to say about those who have similar ideas
at the same moment, the stimulus for us to write this contri-
bution jointly comes from our participation in the Subcom-
mission on the Rheology of Rocks , part of the Commission on
Tectonics (COMTEC) of the International Union of Geologi-
cal Sciences (IUGS). Other members of these groups are also
preparing reviews, textbooks and manuals on aspects of struc-
tural geology, placing particular emphasis on access, both
conceptual and material. We would like to propose this paper
as our contribution to this communal effort.

This is not the first attempt to review aspects of shear-
sense analysis (Simpson and Schmid, 1983: Hanmer, 1984a;
Simpson, 1986; White et al., 1986; Ramsay and Huber, 1987;
Passchier, 1988), but up until now, reviews have either con-
centrated on simple shear, or have been conceptually difficult
for the general readership. Our hope for the present contribu-
tion is that it will enable the reader to attain a degree of
familiarity and feel comfortable with such conceptual tools
as are necessary to competently undertake shear-sense analy-
sis of naturally deformed materials. What follows is not a
‘definitive’ account of visible shear criteria. Rather, we

would hope that our contribution will stimulate others to
critically re-examine some of the structures and the interpre-
tations which we present here and to reassess the kinematic
significance which we and others have placed upon them. The
great majority of shear-sense indicators are insufficiently
understood. Although we review here the already published
interpretations of these structures, as well as presenting some
of our own views, it is not our intention to convey the
erroneous impression that most of the problems have been
solved. In some cases, the appropriate questions have perhaps
not yet been asked!
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FLOW AND RHEOLOGY IN
PROGRESSIVE DEFORMATION

FLOW

In the following paragraphs, we shall present a simple, non-
mathematical summary of flow and progressive deformation.
For a more rigorous, quantitative approach, we recommend
that the interested reader consult some of the geologically
oriented sources on the subject (Elliot, 1972; Ramberg, 1975;
Ghosh and Ramberg, 1976; Means et al., 1980; Lister and
Williams, 1983; Passchier, 1986).

Velocity fields, stretching rate
and angular velocity

Deformation describes the change in shape and orientation,
as well as the displacement, of volumes of material between
initial and final states. Throughout this contribution, we will
use the term deformation in this general sense. The term strain
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Figure 1. Velocity fields representing the 2D displacements of
material particles for pure shear and simple shear flows. Lengths
of the markers are proportional to velocities. Note that the mark-
ers represent velocities and not displacements. The instantane-
ous stretching axes are indicated (arrows). In simple shear the
displacement vector is also shown.

has a more restricted significance, referring only to the
change in shape, or distortion, of the object. With change in
shape, material lines may change in length and undergo
rotation with respect to a reference frame. In homogeneous
progressive deformation, material lines all tend to rotate
towards a common plane: that plane is termed the flow plane.

Flow is the instantaneous displacement of material parti-
cles making up a deforming body. If the flow is homogene-
ous, the pattern of instantaneous particle velocities can be
described by a simple velocity field, or flow pattern (Fig. 1).
A velocity field is like a snapshot, describing the instantane-
ous motion of a population of material particles at a given
instant in time. However, as geologists, we are more likely to
be able to observe displacements rather than particle veloci-
ties. Displacements result when flow acts on a material for
more than just an instant. If the time period is as small as
possible, the correspondingly small displacement is an infini-
tesimal increment of deformation. A sequence of infinitesi-
mal increments of deformation is like a movie, describing the
accumulation of finite displacements of material particles
with time. The difference in the distribution of particles
between the initial state and the deformed state is known as
finite deformation. The process of ongoing deformation from
the initial state to the deformed state is known as progressive
deformation (Fig. 2).

We must be sure to clearly distinguish between the no-
tions of ongoing progressive deformation (straining, progres-
sive strain) and the end product of the progressive
deformation (strain, finite strain, total strain). Whereas we
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Figure 2. Deformation paths are sequences of accumulating
progressive deformation. Two paths are illustrated: progressive
pure shear and progressive simple shear. The instantaneous
stretching axes are indicated (arrows). The sequence of rotations
and changes in length of material lines is a reflection of the nature
of the flow type. In pure shear the strain accumulates coaxially,
whereas in simple shear it accumulates noncoaxially.



can often observe the latter, we are usually required to deduce
the former. It is this process of deduction which is central to
the analysis of shear-sense.

Rather than referring to particle velocities and displace-
ments, it is more practical to refer to the stretching rates and
angular velocities of material lines. During progressive de-
formation, both the lengths and the orientations of material
lines may change, according to their orientation in the flow.
Consider two flow types commonly referred to in the geologi-
cal literature: pure shear and simple shear. In Figure 2,
deformation paths due to these two flow types are illustrated:
an initial square is progressively deformed, either into a
rectangle (pure shear), or a parallelogram (simple shear). In
each case the finite deformation state can be considered as the result

of the accumulation of an infinite number of infinitesimally
small increments of infinitesimal shape change and rotation of
the material lines making up the deforming object (Fig. 3, 4).

Coaxial and noncoaxial flow

The nature of the infinitesimal deformation increments is a
reflection of the type of the flow (Fig. 4). However, as
geologists, we are often confronted with the final state of the
material lines (total strain). If we know the initial configura-
tion of the deformed material (i.e. its shape expressed as
lengths and angles), then we can determine the magnitude and
orientation of the total strain, but without supplementary
information we can say nothing about the deformation path

Figure 3. Flow types in 2D. In any flow type, the instantaneous
shape-change or distortion can be described by an ellipse (X, Z),
symmetrically divided into extensional (1 and 3, large arrows) and
shortening quadrants (2 and 4, small arrows) by two lines of zero
stretching rate, or instantaneous change in length. Quadrants are
numbered in the direction of the shear-sense. They correspond to
fields of instantaneous extension (1 and 3) and instantaneous
shortening (2 and 4). Ideally these ellipses should represent
infinitesimally small distortions from an initial circle and the lines
of zero stretching rate should cross each other at 90°. For clarity,
the representations of instantaneous shape change have been
slightly exaggerated. A second ellipse can be drawn representing
the finite shape-change (X, Zj) resulting from progressive
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defomation, assuming an invariant flow type. In this illustration
we have assumed a constant ratio of the instantaneous stretching
axes (Xi/Zj). Lines of zero finite change in length separate material
lines which have only undergone extension (white) from lines
which have undergone some shortening (shaded). The lines of
zero stretching rate maintain a constant angle with respect to X;,
whereas the lines of zero finite change in length rotate towards X;.

In progressive pure shear, the lines of zero finite change in length
rotate away from the lines of zero stretching rate. In progressive
simple shear, the following boundary conditions apply:

(1) All directions within the shear plane, including the axis of
rotation of the deformation, are directions of zero stretching rate.

(2) At any instant, the maximum and minimum instantaneous
stretching axes of the flow make fixed angles of 45° with the flow
plane.

(38) The principal directions of finite strain rotate away from the
maximum and minimum instantaneous stretching axes of the flow,
with the same sense as that of the imposed shear: in other words
the strain accumulates noncoaxially.

(4) Al markers and inclusions, material and non-material lines,
rotate with the same sense as the imposed shear.

Moreover, in the simple shear model, one of the lines of zero
stretching rate is materially attached to the shear plane of the
deformation. It follows that the corresponding line of zero finite
change in length is also fixed to the same material plane. There-
fore, the decrease in the angle between the lines of zero finite
change in length and X results in the rotation of X; towards the
shear plane.

The simplest deviation from simple shear is a two-dimensional
general noncoaxial flow, where a contemporaneous shortening
across the shear plane is accommodated by extension along the
shear direction. Flow remains two-dimensional since there is no
instantaneous change in length along the direction of the rotation
axis of the deformation. The flow can be considered in terms of
two main components; a component of simple shear and a
component of pure shear. The instantaneous flow can be repre-
sented by an ellipse derived by combining the ellipses repre-
senting the pure and simple shear components. The orientations
of the resultant X; (45° < « < 90°) and the lines of zero instantane-
ous change in length (0° < « < 45° and 90° < « < 135°) are
intermediate between those for the simple shear and pure shear
cases, and depend on the flow type.
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Figure 4. Progressive deformation results from the accumula-
tion of small increments of deformation. Two deformation paths
are illustrated here, based upon two flow types: pure shear
(coaxial) and simple shear (noncoaxial). The finite deformation
states are obtained by sequentially deforming the previous state
by the distortion represented by the instantaneous increment
characteristic of that flow type. Note that the progressive strain
accumulates coaxially in pure shear, but noncoaxially in simple
shear. As a consequence, the finite strain ellipsoid rotates with
respect to the instantaneous stretching axes in progressive simple
shear, but not in progressive pure shear.

(Fig. 5). Herein lies the nub of the problem, since it must be
borne in mind that many different deformation paths may lead
to the same end result (Fig 6).

While it is obvious that one can measure the change in
length of a line by comparing it to its original length (Fig. 5),
the concept of the rotation of a line requires some thought. In
order to be able to describe rotation, a frame of reference is
required. Although lacking in mathematical elegance (see
Ramberg (1975) and Passchier (1987a) for more mathemati-
cally lucid alternatives), we feel that the classical reference
frame for flow is more familiar to geologists (Fig. 7). More-
over, it enables the geologist to set the reference frame
parallel to tangible deformation structures. Hence, in any
noncoaxial (shearing s.l.) progressive deformation, we have
chosen to set the abscissa and ordinate of the external refer-
ence frame parallel to the flow plane and its normal. Since
this contribution will also be concerned with two-dimen-
sional deviations from simple shear by shortening normal to
the flow plane, we shall set the abscissa and ordinate of the
external reference frame parallel to the directions of maxi-
mum and minimum instantaneous stretch of the pure shear
component of any flow. Note that we take the maximum
instantaneous stretch (Xi) to be the direction of maximum
instantaneous extension and the minimum instantaneous
stretch (Zi) to be the direction of maximum instantaneous
shortening. In noncoaxial flows, orientations (e ) within the
external reference frame are measured from the ordinate, in
the direction of shear, unless otherwise specified.

Undeformed
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Figure 5. Material lines in flow. Most material lines rotate and
change in length with progressive deformation. However, there are
exceptions. In each flow type, there are lines which do not rotate. In
progressive pure shear, a pair of such lines lies parallel to the
instantaneous stretching axes of the flow. In simple shear, only the
flow plane is a direction of zero angular velocity. At any instant during
progressive deformation, there are lines whose finite length is the
same as it was in the initial state. In progressive pure shear, there
are two such lines of zero finite change in length. In progressive
simple shear, one of those two lines is fixed to the flow plane. Notice
that this is one of the fundamental distinctions between pure and
simple shear. Note also that without information concerning the
directions of zero angular velocity and of zero finite change in length,
the deformation path is kinematically indeterminate.

Consider a 2D velocity field, such as that corresponding
to pure shear (Fig. 1). It is symmetrically divided by two
mutually perpendicular directions corresponding to the prin-
cipal directions of instantaneous extension and shortening,
commonly referred to as the instantaneous stretching axes or
the principal stretches. These are the directions of maximum
and minimum rates of change in length (strain rate) of mate-
rial lines, referred to as the maximum and minimum instanta-
neous stretching axes. Within this velocity field, the rotation
of material lines can be measured with respect to the instan-
taneous stretching axes.

Rather than the rotation of individual material lines within
a velocity field, consider now the averaged angular velocity
of all material lines. This can be determined by taking the
average of the angular velocities for any two perpendicular
lines and applying the convention that the angular velocity of
a clockwise rotation is of opposite sign to that of an anticlock-
wise rotation (Fig. 8). In the case of pure shear, the averaged
angular velocity of material lines, measured with respect to
the instantaneous stretching axes, is clearly zero. This flow
type is coaxial. The term derives from the fact that the
averaged angular velocities of the two perpendicular material
lines which coincide with the instantaneous stretching axes is
zero (Fig. 8); therefore they must remain parallel to the
instantaneous stretching axes from one instant to the next
during progressive deformation (Fig. 3, 4).



Consider now another type of flow, commonly referred to
in the geological literature. The velocity field for simple shear
is much simpler than that for pure shear (Fig. 1). Although
the flow pattern is very different to that for pure shear, the
two are nevertheless related. A finite deformation resulting
from progressive simple shear can be considered as an incre-
ment of pure shear combined with an increment of rigid body
rotation (Fig. 3, 4). It is the component of rigid body rotation
that transforms the complex velocity field of pure shear into
the simple pattern for simple shear.

We can also express the difference between the pure and
simple shear flow types by considering the orientation of mate-
rial lines of zero angular velocity with respect to the velocity
field (Fig. 5). Whereas in pure shear such lines lie parallel to the
instantaneous stretching axes, in simple shear they lie parallel to
the flow plane. In other words, in progressive pure shear the
instantaneous stretching axes are fixed to material points,
whereas in progressive simple shear, the flow plane is fixed to
material points (Fig. 9). Given that the angular velocity of the
material line normal to the flow plane is non-zero, the averaged
angular velocity of all material lines in progressive simple shear
must be non-zero (see Fig. 8). As a consequence, material lines
rotate through the direction of the fixed instantaneous stretching
axes, towards the direction of the flow plane. Because the same
material lines do not remain parallel to the instantaneous stretch-
ing axes (Fig. 3, 4), the flow is noncoaxial. The rotational
component of the flow reflected by the averaged angular

velocity of material lines with respect to the instantaneous
stretching axes is referred to as the shear-induced vorticity
(‘internal vorticity’ of Means et al., 1980; Fig. 10). This vorticity
can be either positive or negative; the “sign’ of the vorticity of
the flow is more generally referred to as the sense of shear.

Kinematical vorticity number (Wg)

Having introduced the term vorticity, it is now possible to
precisely characterize the nature of an homogeneous flow by
referring to a quantity known as the kinematical vorticity
number, defined in terms of the stretching rates and angular
velocities of material lines. This can be illustrated graphically
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Figure 6. Kinematically indeterminate strain. Shape-change
or distortion (strain) is not, of itself, significant with respect to
shear-sense. Exactly the same shape of finite strain ellipsoid can
be produced from an initial circle by any of a number of deforma-
tion paths, coaxial or noncoaxial.

Figure 7. A frame of reference. Schematic representation of
the 2D kinematic reference frame for noncoaxial simple shear flow
used in this paper. The shear plane of the flow and its normal (N)
represent the abscissa and ordinate of the external reference
frame. The instantaneous stretching axes (X, Z;; ratios exagger-
ated for clarity) represent the internal reference frame. Orienta-
tions (=) are measured with respect to N, in the same direction as
the sense of shear. The numbered quadrants are fields of infini-
tesimal extension (1 and 3) and shortening (2 and 4) delimited by
the lines (planes in 3D) of zero instantaneous stretch, shown here
in positions corresponding to the special case of simple shear.
The order of the quadrant numbers follows the direction of the
sense of shear.

Rotations are expressed interms of angles measured with respect
to a reference frame. The observer may select several reference
frames and can allow for the rotation of one with respect to
another. However, of the several reference frames, one must be
fixed with respect to the observer; throughout this contribution, the
fixed reference frame is parallel to the flow plane and its normal.
Rotations described with respect to the fixed, or external, refer-
ence frame are ‘external rotations’. Rotations described with
respect to the internal reference frame are ‘internal rotations'.

This contribution is concerned with two-dimensional general non-
coaxial flows; in other words, simple shear plus a component of
shortening across the flow plane, accommodated by extension
along the flow direction. Therefore, we set the abscissa and
ordinate of the external reference frame parallel to the directions
of maximum and minimum instantaneous extension of the pure
shear component of any flow. In continuum mechanical terms, the
flow planes of both the coaxial and the noncoaxial components of
any flow are set parallel to the abscissa. The interested reader will
find a more detailed discussion of, and a different perspective on,
reference frameworks in structural geology in Passchier (1987a).



as follows. Consider again the velocity field for pure shear
(Fig. 1). The rate at which material lines change length and
their angular velocity are both a function of orientation with
respect to the instantaneous stretching axes of the flow (Fig.
5). If we plot the stretching rates and the angular velocities of
material lines against orientation with respect to the direc-
tions of zero instantaneous stretching rate of the flow, we see
that they plot as two sine curves, out of phase by 45° (Fig.
11). In other words, the faster a material line changes length,
the slower it rotates. The two curves each have maximum and
minimum values, corresponding to the instantaneous stretch-
ing axes in the one case and the directions of maximum and
minimum angular velocity in the other. The curves pass from
negative space into positive space, representing extension
and shortening on the one hand and clockwise and anticlock-
wise rotations on the other. Note also that, since both curves
cut the abscissa twice, there are two directions of zero angular
velocity and two direction of zero instantaneous change in
length in the flow (see also Fig. 5). In pure shear, material lines
parallel to the instantaneous stretching axes do not rotate at all.
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Figure 8. Averaged angular velocity. Taking the margins of
the page as the external reference frame, the averaged angular
velocity of any flow is the sum of the angular velocities of any two
mutually perpendicular lines. In this illustration, we have assumed
zero spin (see Fig. 10 and 13). In pure shear, the angular velocities
of all such pairs of lines sum to zero, be they parallel (top left) or
oblique (bottom row) to the instantaneous stretching axes. This is
true whether the volume in question deforms (bottom right) or not
(bottom left). In noncoaxial flow, such as simple shear (top right),
the line parallel to the flow plane has zero angular velocity, but its
normal rotates with the same sense as the bulk shear. Therefore,
the averaged angular velocity is non-zero.
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Figure 9. Fixed material lines. Most material lines rotate with
progressive deformation, towards the direction of zero angular
velocity which lies within the extensional quadrants of the flow. In
each flow type there are diagnostic exceptions. In progressive
pure shear, the instantaneous stretching axes are fixed to material
points (lines) within the deforming material. In progressive simple
shear, the flow plane is fixed to material points (lines). It is this
difference which determines that, with progressive shape change,
the finite strain ellipsoid rotates in simple shear, but not in pure
shear (see text).
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Figure 10. Shear-induced vorticity. In noncoaxial flows, such
as simple shear, material lines rotate with respect to the instanta-
neous stretching axes during progressive deformation. This is
termed shear-induced vorticity. In the illustration, the principal
finite extension (X¢) has rotated with respect to the maximum
instantaneous stretching axis (Xi), in the same sense as the bulk
imposed shear (arrows). X; remains fixed at 45° to external refer-
ence frame, represented by the flow plane.



Let us now perform the same operation for simple shear,
noting that in this case plotting the stretching rates and
angular velocities of material lines against orientation with
respect to the directions of zero instantaneous stretching rate
is equivalent to plotting with respect to the normal to the flow
plane (Fig. 11). We find that the curve representing the

stretching rates of material lines has the same form as that for
pure shear, but the curve of angular velocities now lies
entirely in positive space. This reflects the fact that, in simple
shear, lines rotate in one direction only. Graphically, the
curve of angular velocities of material lines has been shifted
vertically compared with the case of pure shear. Notice that
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Figure 11. Kinematical vorticity number (Wx). Flow types can be described in terms of the angular velocity and stretching rate
(instantaneous change in length) of material lines as a function of orientation with respect to the direction of zero stretching rate.
For each flow type, curves for angular velocity and for stretching rate of material lines are drawn (centre). With increase in
noncoaxiality, the angular velocity curve migrates upwards, while that for stretching rate remains fixed and the minimum angular
distance p between orientations of zero angular velocity decreases (thick line). The kinematical vorticity number Wy=Cos(p) is
therefore a direct measure of the noncoaxiality of the flow. Note that the symmetry of coaxial pure shear flow is orthorhombic, while
all noncoaxial flows are monoclinic (left). Note also that for general noncoaxial flows (0<Wi<1), there exists a subsidiary angular
field of rotation antithetic to the bulk imposed shear-sense (middle left). The orientations of the directions of zero angular velocity
and zero finite change in length with respect to the finite strain ellipsoid are also shown for various deformation paths (right). Note
that the flow plane is also a direction of zero angular velocity in all flow types.



the single direction of zero angular velocity of material lines now lies
at 45°to the instantaneous stretching axes of the flow, and coincides
with one of the directions of zero change in length (Fig. 5).

Assuming no change in the area of the deforming surface
of observation, we can now use the variable form of the
angular velocity curve to precisely identify different flow
types. In Figure 11, because of the vertical shift of the curve
of angular velocity, the minimum angular distance () be-
tween the two directions of zero angular velocity varies from
90°to (°. In pure shear, p is 90°. In simple shear p is 0°. Now
it is possible to define the quantity

Wi = Cos(B)

as the kinematical vorticity number (Means et al., 1980; Passch-
ier, 1986, 1987a), where Wi=0 for pure shear and Wi=1 for
simple shear. Intermediate values of Wk (0<Wk<1) describe
general noncoaxial flows. This flow type may also be referred
to as a general flow, general shearing flow, rotational flattening
(e.g. Choukroune and Lagarde, 1977), noncoaxial bulk inhomo-
geneous flattening (Bell, 1981, 1985) or non-ideal flow
(Hanmer, 1990); we will confine ourselves to the term general
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Figure 12. Internal versus external rotation. The rotational
behaviour of the finite strain ellipsoid within the fold limbs of two
common types of fold, derived at the expense of initially horizontal
layers, serves to illustrate the concept of internal and external
rotations. In a bending fold, the instantaneous stretching axes in
the inner and outer arcs of the fold remain fixed with respect to
the boundaries of the deforming layer. However, as the fold
develops, the fold limb itself rotates with respect to the Earth's
surface. We can say that while the finite strains show no internal
rotation with respect to the instantaneous stretching axes, the
latter show an external rotation with respect to the horizon. In the
case of a flexural slip fold, the finite strains do rotate with respect
to the instantaneous stretching axes. Thus we can say that the
internal rotation of the finite strains is to some degree countered
by an opposing external rotation of the instantaneous stretching
axes.

noncoaxial flow. It can be considered as a combination of the
two end-member flow types, i.e. simple shear plus a variable
component of pure shear (Fig. 3), wherein the maximum
instantaneous stretching axis of the pure shear component is
set parallel to the flow direction of the simple shear compo-
nent. Some authors have adopted a different method to ex-
press the combination of pure and simple shear in a general
noncoaxial deformation path. Ghosh and Ramberg (1976)
describe a pure shear/simple shear strain rate ratio (Sr), where
Sr = 0 for simple shear and Sr = « for pure shear.

Spin

In the foregoing discussion of vorticity, we have implicitly taken
the instantaneous stretching axes of the flow as our frame of
reference, against which to measure the rotation of material lines
(Fig. 3). However, this ignores the possibility of rotation of
material lines with respect to an external reference frame.
Therefore, let us now suppose that the flow is itself rotating with
respect to an external reference frame; the length and width of
the page for example. We could now describe the rotation of
material lines in two ways: an internal rotation with respect to
the instantaneous stretching axes of the flow and an external
rotation with respect to an external reference frame (Fig. 12).
The external reference frame is usually taken to be fixed with
respect to the observer. Rotation of the instantaneous stretching
axes of the flow with respect to the sides of the page would add
a uniform angular velocity to all material lines, even in the case
of coaxial pure shear. The technical term for the rotation of the
instantaneous stretching axes with respect to an external refer-
ence frame is spin (Fig. 13).

From Figure 12, it is obvious that coaxial flows can spin.
Accordingly, material lines have a non-zero averaged angular
velocity with respect to the external reference frame; in this case
the horizontal and the vertical. Such a flow or progressive
deformation path is referred to as rotational. Note that the
rotational component (‘external vorticity’ of Means et al.
(1980)) of the flow can be accommodated either by shear-in-
duced vorticity, by spin, or a combination of the two (Fig 13).
Let us now consider two geological examples by way of illus-
tration of these concepts. In Figure 14, a volume of rock on the
flat of a ductile thrust zone is subjected to progressive noncoax-
ial, non-spinning deformation. Material lines rotate with respect
to the instantaneous stretching axes (shear-induced vorticity),
but the instantaneous stretching axes remain fixed with respect
to the thrust plane and the observer. Figure 15 on the other hand
illustrates a case of spinning, noncoaxial progressive deforma-
tion. We have chosen the case of a fold limb dominated by
flexural flow, wherein the clockwise shear-induced vorticity is
more or less balanced by the anticlockwise rotation of the
evolving fold limb. Ideally, this could result in an irrotational,
noncoaxial, spinning deformation path.

Let us now summarize the foregoing discussion. Non-
coaxial deformation paths, except under very special circum-
stances, are rotational. Coaxial deformation paths may be
irrotational. However, unless the geologist can be certain of
all the boundary conditions, it must be borne in mind that
coaxial deformation paths may well be rotational. It is the
rotational component of a deformation path which now
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concerns us. The rotational component of a progressive co-
axial deformation can only be due to the spin of the instanta-
neous stretching axes with respect to the external reference
frame. In a non-spinning progressive simple shear deforma-
tion, the rotational component is entirely due to the shear-in-
duced rotation of material lines, or shear-induced vorticity.
The important point here is that, in progressive deformation,
the averaged angular velocity of material lines with respect
to an external reference frame (rotational component) can be
accomplished either by shear-induced vorticity or by spin.
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Rigid Body Rotation  Spin in Shear Zone

Shear-Induced Vorticity
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Figure 13. The rotational component of the flow is the aver-
aged angular velocity of material lines with respect to an external
reference frame. This can be accommodated in a number of ways.
Spin is the rotation of the instantaneous stretching axes with
respect to the external reference frame, whereas shear-induced
vorticity is the rotation of material lines with respect to the instan-
taneous stretching axes. Consider some geological examples. A
rotating rigid body spins, but its constituent material lines undergo
no shear-induced vorticity. A set of deformable domino-like blocks
in a shear zone may spin without shear-induced vorticity. The
limbs of a bending fold develop with spin, but little or no shear-in-
duced vorticity (see Fig. 12). However, material lines in a ductile
shear zone deformed by progressive simple shear are subjected
to shear-induced vorticity without spin (see Fig. 10).
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Figure 14. Noncoaxial non-spinning flow. Material lines (X)
subjected to progressive simple shear on the non-rotating flat of
a linked ductile thrust system rotate with respect to instantaneous
stretching axes (Xi) which are fixed with respect to the horizon.
The rotational component of the flow is entirely accommodated by
shear-induced vorticity with zero spin.
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Figure 15. Noncoaxial spinning flow. Material lines (Xy) sub-
jected to progressive simple shear on the limb of a flexural slip
fold rotate clockwise with respect to instantaneous stretching axes
(Xi) which are fixed with respect to the deforming layers (shear-
induced vorticity). However, as the fold develops, the limb and the
instantaneous stretching axes rotate anticlockwise with respect to
the horizon (spin). If the two rotational components cancelled each
other, the material lines would have zero angular velocity with
respect to the external reference frame and the deformation path
would be irrotational.



In most flows, the velocity field is divided into separate
domains of clockwise and anticlockwise rotation of material
lines by the directions of zero angular velocity (Fig. 5, 11).
The domain of clockwise rotation is equal in size to that of
anticlockwise rotation in pure shear, whereas only one
rotation sense pertains in simple shear. However, in general
noncoaxial flows, although most material lines will rotate
with the same sense as the vorticity of the bulk flow, material
lines oriented in the acute angular field bounded by the two
directions of zero angular velocity rotate antithetically. The
size of the field of antithetic rotation increases with increasing
deviation from simple shear; in other words as Wk increases
from 0 to 1. Clearly the geologist must understand the
relationship between orientation and flow type in order to

successfully deduce the shear-sense of the bulk flow from
local observations of the rotational behaviour of material
lines.

Progressive deformation

So far we have concentrated on the instantaneous velocities
and stretching rates of material lines in flow. Now consider
what happens to material lines subjected to an invariant,
volume-constant flow type over a finite period of time. In all
flow types we can identify directions of zero angular velocity
of material lines as well as directions of zero instantaneous
stretch (Fig. 5, 11). Directions of zero instantaneous stretch
separate quadrants of instantaneous extension (e.g. boudinage)
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Figure 16. Progressive extension and shortening. At any instant in flow, there are two quadrants of instantaneous shortening
(fine dots) and two quadrants of instantaneous extension (white; see Fig. 3 and 7). In the three flows illustrated here (left), only two
quadrants are shown, separated by the directions of zero stretching rate (vertical and horizontal lines). All of the flow types are
oriented such that their maximum instantaneous stretching axis (dashed) is fixed with respect to the reader. For each flow type,
two increments of finite strain are drawn (centre and right). Since, for any flow, lines rotate from the shortening quadrants to the
extensional quadrants of the flow, the angular width of the latter decreases with progressive deformation as a third field opens up
comprised of lines which, having initially been shortened, are subsequently extended (coarse dots). This is the field of boudined
folds. Note the absence of a field of folded boudins. In noncoaxial flows, material lines rotate with respect to the instantaneous
stretching axes (lower right). Hence, with respect to the instantaneous stretching axes, the finite deformation resulting from
noncoaxial deformation paths reflects the monoclinic symmetry of the flow types, whereas progressive pure shear reflects the
orthorhombic symmetry of coaxial flow. Directions of zero angular velocity are shown for passive markers (left).



and shortening (e.g. folding). Since material lines rotate with
progressive deformation from the instantaneous shortening
quadrant into the instantaneous extensional quadrant, there
exists an intermediate domain wherein lines which were
initially shortened have subsequently been extended, but not
vice versa (Fig. 16). In progressive pure shear, the disposition
of the directions of zero angular velocity and of zero finite
change in length is symmetrical about the instantaneous
stretching axes (Fig. 11). Such a flow has orthorhombic
symmetry. On the other hand, the symmetry of all noncoaxial
flows is monoclinic. The symmetry of the flow type is directly
reflected in the symmetry of the finite deformation (Fig. 16)
and it is by identifying the symmetry of the flow from that of
the the finite deformation structures and fabrics available to
us as geologists that we deduce the sense of shear.

Partitioning of the rotational component
of the flow

Pure and simple shear are two ideal end-members of a range
of more general flow types. This range of flow types repre-
sents a spectrum from irrotational to more rotational flows.
Alternatively, we could consider the range of flow types as
representing a spectrum of ratios of shear-induced vorticity
to spin. In other words, shear-induced vorticity may be con-
verted into spin (and vice versa) to produce the same rota-
tional component in progressive deformation. Thus we can
speak of the rotational component of the flow being parti-
tioned between shear-induced vorticity and spin. Moreover,
we can consider situations where, due to changes in material
properties and boundary conditions, the nature of the parti-
tioning may change such that the rotational component is
repartitioned between shear-induced vorticity and spin.

Why is the notion of partitioning of the rotational compo-
nent of the flow between shear-induced vorticity and spin
important to us as geologists? Geologists often deal with
tectonic features whose boundaries are determined at a scale
very much broader than that at which their observations are
made. This has undoubtedly drawn geologists to continuum
mechanics, of which a principal axiom is that in a continuous,
homogeneous isotropic medium, flow at all scales must re-
flect the displacements at the boundaries of the system in
order to satisfy the requirements of strain compatibility. How-
ever, rocks are not continuous media. They are granular
aggregates, with discontinuities and layers of different rheo-
logical properties represented at a variety of scales. As we
shall now see, deviations from material ideality influence the
partitioning of the rotational component of the flow and hence
determine what the geologist will observe at any given scale.

KINEMATIC FRAMEWORK

Orienting the flow in the field

Most field geologists are familiar with the axiom that slaty
cleavage lies subparallel to the XY plane of the finite strain
ellipsoid and is therefore perpendicular to the principal direc-
tion of finite shortening. While there are grounds for questioning
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the simple identity of cleavage and extension lineation with
principal planes (XY) and directions (X) of the finite strain
ellipsoid (e.g. Schwerdtner, 1973a; Williams, 1976, 1977;
Hobbs et al., 1976), the closeness of the approximation
(Ghosh, 1982; Treagus, 1983),.coupled with its practical
usefulness in the field, lead many to find it an acceptable
compromise.

Kinematic indicators are structures from which the geolo-
gist can make reliable inferences about flow in rocks during
progressive deformation. As an example, consider the re-
sponse of quartz veins to deformation as a function of their
orientation with respect to the instantaneous stretching axes
of the flow (Fig. 17). Veins oriented within the instantaneous
extensional quadrants will boudin, whereas those oriented in
the shortening quadrants will be shortened, perhaps by fold-
ing. In reality the situation is complicated by the fact that,
with progressive deformation, material lines rotate from ori-
entations where they are being actively shortened to orienta-
tions where they are being actively extended. One cannot
always tell from the geometry of a folded vein whether or not
it has been subjected to extension.

Shear-sense indicators are a subset of kinematic indica-
tors which indicate the sense of shear in a progressively
noncoaxially deformed material. Somewhat more techni-
cally, a shear-sense indicator is a structure, resulting from
progressive deformation, whose geometry is indicative of the
progressive rotation of the finite strain axes with respect to
the instantaneous stretching axes and/or the flow plane, at
the scale of observation. The reader will recognize that this
is the same thing as saying that a shear-sense indicator is a
structure whose geometry indicates the sense of averaged
angular velocity of material lines, in other words the vorticity
of the flow.

Figure 17. Kinematic indicators are structures from which the
geologist can make reliable inferences about the displacement
field of material particles (flow) in the rock during progressive
deformation. The response of quariz veins to progressive defor-
mation in a folded slate is a function of their orientation with respect
to the extensional and shortening quadrants of the flow. Boudined
veins have extended, whereas folded veins have shortened. In
reality the situation is complicated by the fact that, with progressive
deformation, material lines rotate from orientations where they are
being actively shortened to orientations where they are being
actively extended. (GSC 203942-G)



Shear plane and shear direction

As geologists dealing with the finite end-products of pro-
gressive deformation, we should not forget the essential
distinction between the instantaneous flow plane and the
shear plane of the finite deformation. Whereas the flow
plane is the plane of zero angular velocity towards which
most other planes rotate at any instant (Fig. 3, 4, 11), the
shear plane is the mean position of the flow plane during
progressive deformation. Similarly, the shear direction is the
mean position of the flow direction.

How does the geologist identify the shear plane and the
shear direction in the field? The problem may be fairly trivial
when deflected markers are available (e.g. Ramsay, 1980a)
or when the shear plane is materially manifested in the rock,
as in C/S fabrics (see section Strain-sensitive fabrics). Until
quite recently, geologists have tended to describe most, if not
all, natural shearing flows in terms of simple shear. Accord-
ingly, it is often assumed that (i) the extension lineation
measured on the ground closely tracks the shear direction in
strongly strained rocks (e.g. Escher and Watterson, 1974),
and (ii) that shear-sense observations should be made in the
XZ plane of the finite strain ellipsoid (Fig. 18). Rather than
starting from such assumptions, the geologist can determine
the approximate orientation of the shear plane if a strain
gradient can be identified, since the one must lie perpendicu-
lar to the other (Fig. 19; Ramsay and Graham, 1970). Alter-
natively, if the rocks in question are known to have

Figure 18. Kinematic framework in the field. A subhorizontal
extension lineation developed on vertical foliation planes in a
highly strained mylonite. Since lines rotate towards the direction
of maximum extension of the finite strain ellipsoid, the orientation
of the isoclinal fold (right), representing a significant increment of
finite strain, confirms that the streaked-out polycrystalline aggre-
gates and ribbons which it parallels do indeed constitute an
extension lineation. Thus, the foliation is taken to lie approximately
parallel the XY plane of the finite strain ellipsoid, the lineation is
taken to mark the X direction. According to the simple shear model
(Fig. 3 and 4), the extension lineation measured on the ground is
taken to closely track the shear direction in strongly strained rocks.
Therefore, if deformation results from progressive simple shear,
the mylonitic foliation lies very close to the shear plane of the
deformation and the lineation indicates the shear direction. Ac-
cordingly, shear-sense data should be sought on the top (XZ)
surface of this outcrop. (GSC 204775-P)

undergone noncoaxial progressive deformation and if it can
be demonstrated that the total finite strain is of significant
magnitude, as forexample inmany mylonites, one may utilize
the fact that all planar features rotate towards the flow plane
to deduce that the shear plane is subparallel to the mylonitic
foliation. In many of the illustrations in this contribution, the
shear plane was identified in the field in just this manner (see
Fig. 18).

There are many instances of natural deformation where
the application of the principle that the observed extension
lineation marks the shear direction is warranted (e.g. Michard
et al., 1984; Choukroune et al., 1986; Takagi, 1986; Lacassin,
1987; Malavieille, 1987; Bossart et al., 1988; Hanmer,
1988a,b). It has been shown to apply in some complex dip-
slip/strike-slip movements (Brun and Burg, 1982; Van den
Driessche, 1986a; Mattauer and Collot, 1986; Burg et al.,
1987; Schmid et al., 1987). Indeed, it has been demonstrated
in natural examples of flow in salt (Talbot, 1979) and in ice
(e.g. Hudleston, 1983). Some workers have even attempted
to show that the extension lineation can track drastic changes
in the shear direction during progressive deformation (Merle
and Brun, 1984; Harris, 1985; Dietrich and Durney, 1986).
However, contrary to the assumption made in many of the
cited studies, confirmation of this simple relationship be-
tween finite extension lineation and shear direction does not
demonstrate that the deformation histories studied corre-
spond to simple shear; the extension lineation would tend to
track the shear direction even in a two-dimensional general
noncoaxial flow (Fig. 3, 11). Furthermore, it is the experience
of a number of workers that, at least locally, the extension
lineation measured on the ground lies at an high angle to the
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Figure 19. Strain gradient and shear plane. In a ‘card-deck’
model of a shear zone, corresponding to progressive simple
shear, it is intuitively obvious that the strain gradient must lie
normal to the shear plane . Now replace the ‘card-deck’ with a set
of strain trajectories, and the same relationship between strain
gradient and shear plane still holds true.
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shear direction; a phenomenon often attributed either to sys-
tematic three-dimensional transpression (Harland, 1971;
Sanderson and Marchini, 1984; L. Nadeau and S. Hanmer,
unpub. data, 1990) or to more ad hoc explanations (e.g. Lister
and Price, 1978; Ave Lallemant, 1983; Bouchez et al., 1984;
Hanmer and Ciesielski, 1984; Lagarde and Michard, 1986).

The foregoing serves to emphasize that it is essential that
the geologist confirm (i) that the linear structure observed is
truly an extension lineation and (ii) that the lineation is
subparallel to the direction of transport.

Trajectories of Maximum Instantaneous Stretch
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Figure 20. Fault bends and terminations. If a shear zone
terminates at both ends within a continuous medium, the finite
displacement characteristic of its central part must attenuate to
zero at the tips. In the dextral example illustrated, this creates
domains of extension normal (upper right and lower left) and
parallel (lower right and upper left) to the shear plane. Even if flow
in the central part of the shear zone corresponds to simple shear,
flow must be of a general noncoaxial type near the terminations
(see Ramsay and Allison, 1979; Ramsay, 1980a). Similarly, fault
bends are analogous to fault terminations because of the de-
crease in slip rate at the deflection compared with the master fault
plane. Bends across which a component of compression is ex-
erted at an high angle to the local shear plane are analogous to
the upper right and lower left domains of the example of fault
terminations. Since this impedes slip, they are known as restrain-
ing bends. Releasing bends are analogous to the lower right and
upper left domains of the fault terminations (see Sibson, 1986).
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Fault bends, terminations and flow type

Itis well known that, even in the simplest shear zones, flow
only corresponds to simple shear in their central portions
(Fig. 20). This is because most shear zones terminate
within continuous media rather than at at free face, such as
the Earth’s surface or a tectonic plate boundary (cf. transform
faults (Freund, 1974)). Therefore, the finite offset across the
shear zone must attenuate to zero at its terminations. As a
consequence, domains of shear-parallel compression and ex-
tension develop on either side of the terminal segments of the
shear zone (Fig. 20), in violation of the boundary conditions
of simple shear flow (Chinnery, 1969; Coward, 1976; Ram-
say and Allison, 1979; Ramsay, 1980a; Ramsay and Huber,
1987, p. 619). Given that deflections in the trend of the shear
plane lead to restraining and releasing bends (Fig. 20; Sibson,
1986) which are kinematically very similar to termination
segments, in that they cause the magnitude of displacement
to vary along the shear plane, we might expect that flow types
and deformation paths in most shear zones will be variable.

ROTATION

Why do finite strains rotate in noncoaxial
Jlows?

Ideal simple shear (Fig. 3, 4) is a mathematically convenient,
two-dimensional representation of noncoaxial flow, which is
well illustrated by the ‘card-deck’ model (Fig. 21). The
deformation resulting from such a flow can be described as a
distortion accompanied by a rigid-body rotation of the prin-
cipal directions of finite strain (Fig. 4). The instantaneous
stretching axes remain fixed at 45° to the flow plane (Fig, 3).
Why, with progressive deformation, do the principal direc-
tions of finite strain rotate in the sense of the imposed bulk
shear, away from the instantaneous stretching axes and to-
wards the flow plane? (Fig. 4). There are many ways to
explain this rotation, but the following is particularly materi-
alistic. In simple shear, one of the two lines of zero stretching
rate is materially attached to the flow plane (Fig. 9, 22), as in
the ‘card-deck’ model (Fig. 21). It follows that the corre-
sponding line of zero finite change in length is also fixed to
the same material plane. Therefore, the decrease in the angle
between the lines of zero finite change in length and the
direction of maximum finite extension (Xf), which occurs
during any finite distortion (Fig. 5, 11, 16), results in the
rotation of Xy towards the flow plane.

Rotation : rate and direction

Many shear-sense indicators are composed of geometrical ele-
ments of various shapes, such as porphyroclasts, or tectonic
inclusions, with attached ‘wings’ or tails. Since the kinematic
significance of a structure is generally deduced from the relative
rotations of its component parts, we shall now examine rota-
tional behaviour of rigid inclusions in a viscous fluid in some
detail (Fig. 23). For more detailed and quantitative treatments,
the reader is referred to Ramberg (1975), Ghosh and Ramberg
(1976), Ghosh (1977) and Passchier (1987b, 1988).



The relationship between the rotation rate of an inclusion and
its orientation is partly a function of the flow type. However, the
rotation rate of an inclusion is also a function of its aspect ratio,
Let us consider Figure 23. In progressive simple shear all
inclusions rotate with the same sense as the bulk flow. Although
the rotation rate for all non-circular inclusions decreases as the
long axis of the inclusion approaches the flow plane, only
passive markers and inclusions of high aspect ratio come to rest
in the flow plane. Since passive markers rotate both towards and
away from the flow plane, their rest position is one of unstable
equilibrium.

Deviation from simple shear introduces an angular field
of back-rotation. In progressive general noncoaxial flow,
inclusions whose long dimensions are oriented in this field

Simple Shear 'Card-Deck’ Model
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g
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Figure 21. Rheologically controlled flow. Idealised model
analogues, where the bulk deformation is entirely accommodated
by slip on discrete surfaces bounding incompressible blocks or
cards. Both examples represent the same angular shear (45°), but
the finite strain ellipsoid in the ‘domino’ model results from a
deformation path representing simple shear plus a component of
pure shear, with consequent extension of the shear plane along
the shear direction. In the ‘card-deck’ model, slip along the
close-spaced, shear-parallel discontinuities satisfies the bound-
ary conditions of simple shear flow. Note that the cards do not
change dimension. The ‘domino’ or ‘book-shelf’ model (Freund,
1974; Mandl, 1987) involves slip along spaced discontinuities,
oblique to the bulk shear plane and satisfies the boundary condi-
tions of two-dimensional general noncoaxial flow. The illustration
presented here represents the special case of discontinuities
initially oriented at 90° to the bulk shear plane. Frequently, the
discontinuities initiate at 70° to the bulk shear plane, in which case
the ‘dominoes’ could rotate antithetically with respect to the im-
posed bulk shear. The domino medel also illustrates the impor-
tance of the scale at which the flow is considered. At the scale of
the boundaries between the individual dominos, the deformation
path can be described as a spinning simple shear, whereas at the
bulk scale the deformation path corresponds to a non-spinning
general noncoaxial flow type.

rotate antithetically with respect to the bulk shear-sense (see
also Fig. 11). However, the introduction of an angular field
of back-rotation means that it must be separated from the field
of forward rotation by positions of zero angular velocity or
rotation rate (see also Fig. 11). The orientation () at which
an inclusion can stop rotating during progressive noncoaxial
deformation is a partial function of its shape (Fig. 23). Inclu-
sions of critical aspect ratio (R¢) can only stop rotating at a
single critical orientation (ec). Inclusions of aspect ratio
greater than Re will rotate antithetically when their long
dimensions are oriented in the angular field of back-rotation.
The curves describing their rotational behaviour cut across
the zero rotation rate abscissa at two orientations (90° <o <o.c
and a>0.c<180°), representing two rest positions for each
different inclusion shape. Because inclusions rotate towards
aac, such orientations are positions of stable equilibrium; the
latter are therefore positions of unstable equilibrium. Inclu-
sions of aspect ratio less than Rc have no rest position and
rotate continuously with the same sense as the imposed bulk shear.

The field of back-rotation, bounded by the two zero
intercepts of the rotation rate curve for passive markers, opens
within the angular range 90°<a<135°, adjacent to the flow
plane, and widens with decrease in W. The field of back-ro-
tation opens up as the curves of rotational behaviour migrate

Instantaneous
Stretches & Quadrants

Finite Strain
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Figure 22. Zero stretching rate in the flow plane. In simple
shear, one of the directions of zero stretching rate (no instantane-
ous stretch = n.i.s) lies parallel to the flow plane. Directions of zero
stretching rate separate the instantaneous extensional (shaded)
and shortening quadrants (white) of the flow. Given that this
direction is fixed to material points within the deforming medium,
it must also coincide with one of the two directions of zero finite
change in length (no finite longitudinal strain = n.f.l.s). With
progressive deformation, the angle between the two n.f.ls de-
creases. Since one of them is attached to material points, the
entire finite strain ellipsoid must rotate towards the flow plane as
the angle decreases.
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in § /o space, downward and toward the right (Fig. 23). Note
that the migration of the rotation rate curves is such that the
left-hand rest-position for passive markers always lies at
a=90°. Consequently, with decreasing noncoaxiality of the
flow, the rotational singularity for inclusions of critical
aspect ratio migrates from o.c= circa 90° towards o.c= circa
135°, and the critical aspect ratio Rc approaches 1. Whereas
the wavelength of the rotation rate curves is the same as that
for simple shear, their amplitude is inversely proportional to
Wk. Let us illustrate the consequences of this by considering
two cases of flow characterized by identical components of
simple shear. A passive marker in simple shear attains its
maximum rotation rate when oriented at «=0°. In contrast, a
passive marker subjected to a general noncoaxial flow of
0<Wg<<1, attains an order of magnitude greater maximum
rotation rate, but when oriented at o= circa 45°. Note the
"flight from o>ac": the rotation of inclusions is such that
they rotate away from positions of unstable equilibrium
a>oc) towards positions of stable equilibrium o.<a.c).

The fact that, for a given flow type, the rotation rate %)
of an inclusion is a function of both its aspect ratio (R) and
its orientation (o), has very important geological conse-
quences (Fig. 23). For example, the apparent or relative
rotation of an equant inclusion with respect to the foliation of
its enclosing matrix is taken by some geologists to directly
indicate the bulk shear-sense of the progressive deformation;
but consider Figure 23. In any given flow, all of the rotation
rate curves pass through two common cross-over or inflection
points, the orientations of which are a function of the flow
type. Thus in simple shear (W=1), a passive marker oriented
at 0°<a<45° rotates faster than an equant inclusion, whereas
the relative rotation rates are inverted if the passive marker
lies at 45°<a<90°. However, now compare the preceding
observation with the relative rotation rates for inclusions and

markers at (°<a<45° and 45°<0.<90° for a general noncoaxial
flow (0<Wk<<1, Fig. 23); the relative rotation rates (¢) of
inclusions and markers, for most orientations (0°<« <90°), are
inverted. The tangible consequence of this is that, in a struc-
ture composed of geometrical elements of different shapes,
the relative or apparent finite rotation observed between the
elements is not only a partial function of their aspect ratios
(R) and of the flow type, but also of their initial orientations
and subsequent rotation history.

PARTITIONING AND
REPARTITIONING

The foregoing theoretical review of flow should convey the
message that intuitive or empirical deduction of the kinematic
significance of a structure from its geometry alone is an
hazardous undertaking (cf. Choukroune et al., 1987). However,
the discussion has so far focused only on rotational behaviour
in homogeneous deformation. We shall now examine the
situation where the distribution of the components of the flow
within the deforming material is heterogeneous. In this dis-
cussion, as elsewhere in this paper, we shall refer to deform-
ing media as ‘continuous’ or ‘discontinuous’ (Berthé et al.,
1979a; Vialon, 1979; Sirieys, 1984; Cobbold et al., 1984).
These terms refer to the presence or absence of material
discontinuities which permit or provoke discontinuities in the
particle velocity field during progressive deformation.

Isotropic media

In cases where the bulk flow deviates from simple shear, the
rotational component can be locally partitioned between shear-
induced vorticity and spin (Fig. 24, 25), to the point where either

Figure 23 (opposite). Rotation of inclusions and markers. Calculated curves and pictorial illustrations of the ideal rotational
behaviour of rigid inclusions and passive markers set in a Newtonian viscous matrix. The idealized curves should only be taken as
a guide to the behaviour of natural examples where the inclusions may not be rigid and the matrix viscosity may not be Newtonian.
The rotational behaviour is represented in terms of rotation rate & (normalized to the shear strain rate ¥) and orientation () with
respect to the flow plane normal. Curves are presented for three flow types; simple shear (A) and two general noncoaxial flow
types, 0<Wi <1 (B) and 0<Wk<<1 (C). Aspect ratios of inclusions (R) are indicated on the curves; the rotational behaviour of a rigid
inclusion whose aspect ratio is greater than about 6 is essentially the same as that of a passive marker (P). Arrows on curves
indicate the sense of rotation of the inclusions. (D) shows the kinematic reference frame for the graphs; X; and Z; are maximum
and minimum instantaneous stretching axes, the ellipse is an exaggerated representation of instantaneous strain ellipse. (E) and
(F) are graphs showing the possible rest positions of inclusions as a function of R, Wi and «.

In progressive simple shear (A), all inclusions rotate with the same sense as the imposed shear. The rotation rate for all non-circular
inclusions decreases as the long axis of the inclusion approaches the flow plane («=90¢) and only passive markers and inclusions
of high aspect ratio (curve P) come to rest in the flow plane at positions of unstable equilibrium. In general flow types (0<Wk<1),
there is an angular field of back-rotation, wherein inclusions rotate antithetically with respect to the bulk shear-sense. There is a
‘critical’ aspect ratio, below which inclusions rotate permanently and above which they cease rotating at positions of either stable
or unstable equilibrium (E and F). The Rc values for the general noncoaxial flow types illustrated here are 1.28 (B) and 1.05 (C)
respectively. The stable positions are unique for specific Rc and Wk values (F). For material lines (passive markers), they coincide
with the directions of zero angular velocity, one of which is parallel to the flow plane («=90°). For elliptical objects with R exceeding
Re, they lie between the two directions of zero angular velocity. Note that whereas the wavelength of the curves is the same as
that for simple shear, their amplitudes are inversely proportional to to Wx. Note also that the rotational pattern in general shearing
flow is such that inclusions rotate away from rest-positions of unstable equilibrium (darker shading) towards the rest-positions of
stable equilibrium (lighter shading). Adapted and modified from Ghosh and Ramberg (1976), Hanmer (1984a) and Passchier

(1987b).
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one of these two components may tend towards a zero value.
Repartitioning can occur in nature if the local conditions of flow
change with time. Consider three hypothetical examples.

(1) First, if a layer of material were to weaken with respect
toslip, while it lost its ability to accommodate shortening
across the flow plane, it would no longer be able to
accommodate a flow which deviated from simple shear.
A geological example might be the concentration of
aligned phyllosilicates by preferential removal of more
soluble quartz through a process of mass transfer (e.g.
White and Knipe, 1978; see Fig. 21).

(i) Alternatively, if a layer were to develop the ability to
accommodate extension parallel to the flow plane, its re-
sponse to the imposed bulk flow could change such that Wy
decreased. A geological example might be the development
of fractures or discrete shears oblique to the bulk flow plane
(e.g. White et al., 1980; Hanmer, 1989: see Fig. 21).

Xi (bulk)

// Xf (bulk)

/

Rotation of Xi (local)
and X1 (local)

Vo

By

Figure 24. Rotating anisotropy and flow partitioning. A
model shear zone with a set of internal, inclined planes of easy
slip (anisotropy) to illustrate the principles of repartitioning of the
rotational component of the flow between shear-induced vorticity
and spin. Deformable sheets are attached by swivel joints to rigid
walls. The walls are displaced dextrally according to the boundary
conditions of bulk ideal simple shear. Had the shear zone com-
prised an isotropic, homogeneous material, the kinematics of local
flow would have reflected those of the bulk flow (upper left), i.e. a
finite value for shear-induced vorticity, but zero spin. This is
reflected in the orientation of the maximum instantaneous stretch-
ing axis (Xi(bulk)) and the rotation of the direction of maximum
finite extension (X«(bulk)) with respect to Xi(bulk).

In the anisotropic case, the sheets were initially oriented perpen-
dicular to the bulk flow plane. As they rotate in the bulk simple
shear flow, they stretch so as to preserve the constant width of
the shear zone. If their contacts are planes of zero resistance to
slip, the sheets will extend by internal coaxial flow with zero
shear-induced vorticity. Within the sheets, the principal directions
of finite strain (black ellipses) remain parallel to the instantaneous
stretching axes of the local flow. Compared with the homogene-
ous, isotropic case, the rotational component of the bulk flow is
entirely repartitioned into spin. This is reflected in the rotation of
the direction of the instantaneous stretching axes within the sheets
(Xi local), with respect to the bulk shear plane of the deformation.
Note that X; local tracks the rotation of the anisotropy (lower right).
Adapted and modified from Lister and Williams (1983).
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(iii) Thirdly, if the pattern of bulk boundary displacements
imposed upon a layer of material changed with time, the
local flow type would similarly evolve. A geological
example might be the intersection of a propagating shear
zone with an unconstrained boundary (e.g. Tapponier et
al., 1982; Peltzer and Tapponier, 1988).

Consequently, in all three examples, compensatory ad-
Jjustment of the flow type (increase or decrease of Wk) would
be required in the adjacent material in order to maintain
material continuity and strain compatibility, All of these
changes in flow type can be described in terms of repartition-
ing of the rotational component of the flow between shear
induced vorticity and spin.

Geologists often make spot observations at scales several
orders of magnitude smaller than those at which they seek to
apply their deductions (e.g. Schwerdtner, 1973b). One obvi-
ous geological consequence of repartitioning is that the ge-
ologist may be confronted with deformation, resulting from
a bulk noncoaxial flow, where the local observations only
record a coaxial deformation history. It is therefore necessary
to review the concept of the distribution of flow and its
coaxial and noncoaxial components in space and the role of
material properties that influence that distribution.

In homogeneous simple shear in an isotropic, homogeneous
medium, the instantaneous stretching axes of the flow do not rotate
with respect to the extemal reference frame (Fig. 3, 4). Accord-
ingly, the spin component of the deformation is zero and the
rotational component of the deformation is entirely represented by
the shear-induced vorticity (Fig. 10). How can the rotational
component of a deformation be repartitioned into spin?

Rotating anisotropy

Consider now a deforming medium which, while statistically
homogeneous, is strongly anisotropic. Geologically such an
anisotropy might represent discrete rheological layering or a
schistosity. Lister and Williams (1983) utilize the simple, but
highly effective, analogue model of a shear zone subjected to
progressive simple shear, comprised of deformable sheets
attached by swivel joints to either wall (Fig. 24). A geological
equivalent might be represented by shearing across bedding
or layering, or across a set of fractures (e.g. Hanmer, 1989).
In Figure 24 the sheets were initially oriented perpendicular to
the flow plane. As they rotate with the bulk imposed shear, they
stretch so as to preserve the constant width of the shear zone (a
condition of simple shear; see Fig. 21). If their contacts are planes
of zero resistance to slip, the sheets will extend coaxially with
zero shear-induced vorticity. Within the sheets, the principal
directions of finite strain remain parallel to the local instantane-
ous stretching axes of the flow. Compared with an homogene-
ous, isotropic material, the rotational component of the bulk flow
is entirely repartitioned into spin. This is reflected in the rotation
of the instantaneous stretching axes within the sheets, with
respect to the bulk flow plane (Fig. 24). Clearly, the rotation of
discrete surfaces of easy slip can accommodate part or all of the
rotational component of the flow. The geological consequence
is that observations made at a finer scale than that of the spacing
of discrete planes or zones of easy slip in rocks may lead the



Simple Shear General Coaxial Flow

Homogeneous Homogeneous \l/
Isotropic Case Isotropic Case N

-~

_—

: ¢ SKH
CWP

Heterogeneous Case

Heterogeneous Case _ ,
with Local Anisotropy

with Local Anisotropy

Figure 25. Non-rotating anisotropy and flow partitioning. Idealised model shear zones with sets of internal, shear-par-
allel planes of easy slip. If, in bulk simple shear (left), progressive deformation were to lead to the development of an
incompressible, inextensible, well lubricated, anisotropic ‘card-deck’ (lower left; see Fig. 21) within an initially isotropic,
homogeneous simple shear zone (upper left), the flow would be redistributed such that more intense simple shear occurs in
the anisotropic zone, but less deformation is accommeodated in the adjacent isotropic part of the model. This is reflected in
the greater strain ratio and the greater rotation of the finite strain ellipsoid in the ‘card-deck’, with respect to the instantaneous
stretching axes. However, the orientation of the maximum instantaneous stretching axes in both the homogeneous case and
the anisotropic case must be identical. Note that, for clarity, this illustration represents the idealized case where the anisotropic
zone corresponds to a perfect ‘card-deck’ model and the slip-surfaces are planes of zero shear stress; hence the isotropic
volume experiences no strain at all.

In the case of two-dimensional general noncoaxial flow (right), the deformation induced development of a similar ‘card-deck’
would result in repartitioning of the rotational component of the flow. The anisotropic zone is incapable of shortening normal
to the flow plane, but can accommodate all of the simple shear component of the bulk progressive deformation. The result
is a progressive repartitioning of the rotational component of the bulk imposed deformation. In the anisotropic insert, a
counterclockwise spin accompanies an increase in the clockwise shear-induced vorticity (W) as the local flow changes from
general noncoaxial flow to simple shear. In the isotropic part of the model, the shear-induced vorticity decreases to zero as
the rotational component of the flow is entirely repartitioned into clockwise spin.

unwary geologist to draw erroneous kinematic conclusions.
Look again at Figure 24: observation of only the central area
could lead to the mistaken conclusion that bulk progressive
deformation corresponded to a sinistral general noncoaxial
flow, wherein the flow plane was inclined at a significant
angle to what we know to be the true orientation. Observations
confined to the interior of one of the sheets would only indicate
coaxial flow.

What differences would be introduced into this model by
replacing the bulk boundary conditions with those of a gen-
eral noncoaxial flow? Quite simply, extension along the flow
direction allows the shear zone to behave as a book-shelf or
domino model (Fig. 21). Whether or not this occurs depends
on the relative roles of slip and distortion of the anisotropic
material in accommodating the deformation. The lower the
resistance to slip, or the stiffer the sheets, the greater the
tendency to accommodate the bulk flow by slip.



Non-rotating anisotropy

Consider now the case of surfaces of easy slip which are
already parallel to the flow plane and can no longer rotate
(Fig. 25; Schwerdtner, 1973a). The ‘card-deck’ model of
homogeneous simple shear is one possible analogue (Fig. 21),
whereas a strongly foliated, phyllosilicate-rich schist repre-
sents a possible geological example. Clearly in this trivial
case the spin is zero and the rotational component of the
deformation is entirely accommodated by the shear-induced
vorticity (Fig. 10). In fact, this case is essentially the same as
that of an homogeneous, isotropic medium subjected to ideal
simple shear (Fig. 25).

In order to examine a case of non-zero spin, first consider
the deformation of an homogeneous, isotropic medium, such
as a non-foliated granite, subjected to a general noncoaxial
flow (Fig. 25). The pure and simple shear components of the
flow are each homogeneously distributed throughout the
material, at both the bulk and local scales. Now introduce a
narrow zone of thin sheets of incompressible material, paral-
lel to the bulk flow plane, each sheet being bounded by

surfaces of easy slip (Fig. 25). Geologically, this could be
approximated by an elongate xenolithic raft, particularly rich
in aligned phyllosilicates, flanked by the isotropic granite.
Alternatively, it could represent a microscopic micaceous
lamina which developed with progressive deformation by
localized pressure solution. In the model (Fig. 25), the incom-
pressible zone is only capable of accommodating the simple
shear component of the bulk flow; it can not accommodate
shortening perpendicular to the slip surfaces. Obviously this
shortening must be accommodated within the flanking iso-
tropic material. The result is local repartitioning of the pure
and simple shear components of the flow; the kinematical
vorticity number (Wk) increases from the bulk imposed value
within the anisotropic zone, but decreases within the flanking
isotropic material. In terms of repartitioning, the shear-in-
duced vorticity decreases in the isotropic material as the
maximum instantaneous stretching axis spins clockwise to-
wards the flow plane. In the anisotropic material, counter-
clockwise spin occurs as the rotational component of the
deformation increases and is accommodated by clockwise
shear-induced vorticity.

Figure 26. Refraction in multilayers. Local refraction of the
principal directions of bulk coaxial flow+through rheologically lay-
ered materials, oriented at 60° (upper) and 30° (lower) with respect
to the direction of maximum instantaneous stretch of the bulk flow,
such as might occur in a fold limb. Shaded material represents a
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background mean rheology. White layers are either less compe-
tent, or more competent, than the mean rheology. Stiffness in
each white layer increases from the upper boundary to the lower
boundary such that maximum rheological contrasts occur at the
upper boundary of the less competent and the lower boundary of
the more competent layers. The oblique angle between layering
and the maximum instantaneous stretching axis of the bulk flow
results in the resolution of shear along the layering, accompanied
by normal stretches operating across the layering. We can de-
scribe the flow in the layered material as a general noncoaxial
flow. Three trajectories are represented within the layers: the
maximum instantaneous stretching axis (1) and the directions of
maximum finite extension for moderate (2), and greater (3) mag-
nitudes of finite strain. In particular, note that:

(i) The maximum instantaneous stretching axis (1) refracts across
arheological interface, such that, in the stronger material, the local
(1) is deflected towards either the plane of the interface or its
normal, whichever is the closer in terms of angular distance.
Refraction induced deflection of (1) in the weaker material is just
the opposite.

(ii) The local finite extension (2, 3) always tends fo lie closer to the
plane of the rheological interface in incompetent layers, but rotates
with progressive deformation towards the interface normal in
competent layers. The degree of rotation is obviously a function
of the initial orientation of the maximum instantaneous stretching
axis (1) in the same layer.

(iii) Refraction results in the redistribution of the shear components
of the flow. The rotational component is redistributed according to
the strength of the material; the instantaneous flow in the compe-
tent material approaches pure shear while that in the incompetent
material approaches simple shear.

The reader will note the similarity between these statements and
the description of repartitioning in the text. Adapted from Treagus
(1983).



STRAIN AND FLOW REFRACTION

Many rocks are multilayers at the scale of an hand specimen, an
outcrop or a map unit. A multilayer is simply a volume of rock
made of alternating layers of at least two distinct rheologies or
degrees of stiffness. Most geologists are familiar with the phe-
nomenon of strain refraction at theological interfaces, usually
illustrated in textbooks by examples of cleavage refraction. The
common occurrence of cleavage refraction should suffice to
indicate the potential pitfalls of extrapolating from local struc-
tural observations to the bulk scale. However, relatively few
studies have specifically examined the deviation of local defor-
mation histories from that of the bulk structure (e.g. Hobbs et al.,
1976, p. 286; Treagus, 1981, 1983, 1988).

Treagus has examined in detail the progressive of de-
formation of obliquely strained multilayers (Fig. 26). The
maximum instantaneous stretching axis refracts across a
rheological interface, such that, in the stronger material, it
deflects towards either the plane of the interface or its normal,
whichever is the closer in terms of angular distance. Refrac-
tion induced deflection of the maximum instantaneous
stretching axis in the weaker material is just the opposite. The
local direction of maximum finite extension always tends to
lie closer to the plane of the rheological interface in incom-
petent layers, but rotates with progressive deformation
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Figure 27. Refraction and folds. Schematic representation of
the orientations of folds and refracted minimum instantaneous
stretching axis in competent layers lying parallel, perpendicular,
and oblique to the flow plane and the direction of flow. The
undistorted rectangular box (broken lines) is a cartesian reference
frame for the dextral strike-slip shear zone. For simplicity, extreme
refraction has been assumed, such that the local minimum instan-
taneous stretching axis (shortening direction) lies within the lay-
ers. Fold axes are generated at high angles to the minimum
instantaneous stretching axis within each layer. Local instantane-
ous stretching axes within the initially horizontal layer show the
least deviation from the bulk directions and folds initiate at circa
45° to the bulk flow plane. In the initially vertical layer, where the
minimum instantaneous stretching axis is refracted towards the
flow direction, folds initiate with vertical plunges. In the initially
oblique layer, refraction is more complex. Initial folds make low
angles with both the flow direction and the trace of the flow plane.
Adapted from Marcoux et al. (1987).

towards the interface normal in competent layers. The degree
of rotation is obviously a function of the initial orientation of
the maximum instantaneous stretching axis in the same layer.
Clearly, refraction results in the creation of a rotational com-
ponent in the flow. The rotational component is distributed
according to the strength of the material; flow in the compe-
tent material approaches pure shear while that in the incom-
petent material approaches simple shear (Fig. 26).

The point being made here is that, at the scale of observa-
tion, deformation structures within multilayers may reflect
local deformation histories which deviate in both orientation
and flow type from the imposed bulk deformation history.
The initiation of essentially symmetrical folds in experimen-
tal shear zones (Ghosh, 1966; Manz and Wickham, 1978;
Anthony and Wickham, 1978), instead of the asymmetrical
folds which some geologists might have intuitively expected,
serves as an appropriate illustration.
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Figure 28. Refraction and shear zones. Schematic repre-
sentation of the local directions of maximum finite strain (thin
arrows) in competent (white) and less competent layers (shaded).

(A) Simple layer-parallel thrusting. Stiff layers are represented as
rigid, so deformation is only accommodated in the incompetent
layer.

(B) Transcurrent shear on planes normal to layering. Both com-
petent and incompetent layers must participate in the flow in order
to preserve material continuity across the rheological interfaces.
All layers show the same orientation of maximum finite extension.

(C) Thrusting and transcurrent shear combined. The stiff layers
only resolve the wrench component while the incompetent layer
resolve both components. In this example only the principal
directions of local finite strain in the incompetent layer are parallel
to those of the bulk finite strain. After Ridley (1986).
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Figure 29. Where to look. A self-explanatory illustration of where to look for shear-sense criteria in a shear zone corresponding
to either progressive simple shear, or 2D general noncoaxial flows of the type discussed in the text. Valid observations of
shear-sense criteria should be made on the surface facing the observer in our illustration: perpendicular to the newly formed foliation

and parallel to the extension lineation.

As another example, consider the orientation of the instan-
taneous stretching axes within a stiff layer, itself inclined
obliquely to both the flow plane and the vertical rotation axis of
a strike-slip shear zone (Fig. 27). What would be the initial
orientation of fold axes generated within that layer, compared
with folds generated in a layerinitially normal or initially parallel
to the rotation axis of the shear zone? (e.g. Treagus and Treagus,
1981; Marcoux et al., 1987). Local instantaneous stretching
directions within an initially horizontal layer would show the
least deviation from the bulk direction and folds would initiate
at circa45°to the flow plane. In an initially vertical layer, where
the minimum instantaneous stretching axis is refracted towards
the flow direction, folds would initiate with vertical plunges. In
an initially oblique layer, refraction is more complex. Initial
folds can make low angles with both the flow direction and the
trace of the flow plane (Fig. 27).

As a more complex example, consider the orientation of the
directions of apparent maximum finite extension within a multi-
layer subjected to shear on two mutually perpendicular flow planes,
as in the case of combined thrusting and transcurrent shear (Fig.
28). The stiff layers would only resolve the wrench component
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while the incompetent layers would resolve both compo-
nents. Only the principal directions of local finite strain in the
incompetent layer are parallel to those of the bulk finite strain.
Such a situation might characterize the transition from the
frontal section of a thrust zone to a lateral ramp (e.g. Coward
and Kim, 1981; Coward and Potts, 1983). The lateral ramp
may essentially be a transcurrent structure. The bulk flow in
the transition zone would therefore represent a complex hy-
brid of transcurrent and thrust related components. Refraction
in a suitably oriented multilayer would result in differential
accommodation of the components of the flow according to
the rheology of the layers (Ridley, 1986).

WHERE TO LOOK

Having examined flow in some detail, it is perhaps timely
to remind ourselves of where we should look to find struc-
tures which will enable us to deduce the shear-sense of the
flow, before going on to look at the structures themselves.
This is summarized in Figure 29.



SHAPE FABRICS (FOLIATIONS)

In this section we shall deal with three aspects of shape
fabrics: the development of (i) simple and of (ii) complex
fabrics in shear zones and (iii) the deflection of existing
fabrics around stiff inclusions, or into shear zones.

Simple shape fabrics

Strain-sensitive fabrics

The modern analysis of shear-sense indicators began in the
late 1960s with such studies as Ramsay and Graham’s (1970)
examination of the variation of the orientation and magnitude
of finite strain across zones of concentrated deformation. This
study is still an excellent guide to modern students of kine-
matic analysis in their own endeavors.

Ramsay and Graham (see also Ramsay, 1980a) presented
a model, couched in terms of strain variation and strain
compatibility within a continuous, ductile material undergo-
ing progressive simple shear, which accounted for the ob-
served geometry of some natural structures. They recognized
that the penetrative foliation which formed within a materi-
ally continuous shear zone initially made an angle of circa 45°
with the shear plane and that, being strain-sensitive, it rotated,
with the finite strain ellipsoid, towards the boundaries of the
shear zone during progressive deformation (Fig. 30; cf. In-
gles, 1986). From these observations, they were able to dem-
onstrate that

(i) The initial orientation of the foliation is approximately
normal to the minimum instantaneous stretching axis of
the flow.

(ii) The progressive curvature of the foliation, from the outer
parts of the shear zone to the inner parts, tracks the
rotation of the finite strain ellipsoid with respect to the
instantaneous stretching axes and reflects the variation
in strain intensity and the associated rotation of the finite
strain ellipsoid in response to the vorticity of the flow.

(iii) At high magnitudes of finite strain, the extension line-
ation on the foliation surface marks the approximate
movement of the rigid wall rocks bounding the shear
zone.

(iv) Assuming an invariant simple shear deformation path,
the total displacement across the shear zone can be
measured by integration of the finite strains, determined
from the orientation of the foliation at points along a
transverse profile.

(v) The relationship of the distribution of strain across the
shear zone to the displacement of its wall rocks is a
consequence of the boundary conditions of the deformation.

Figure 30. Strain-sensitive simple fabrics. A continuous sin-
istral shear zone, developed in isotropic meta-gabbro by progres-
sive simple shear, from the type locality described by Ramsay and
Graham (1970). The term continuous refers to the manner in
which the shear strain varies across the shear zone. The plane of
observation corresponds to the XZ plane of the finite strain ellip-
soid. Shear-sense along the shear plane and the inferred instan-
taneous stretching axes of the simple shear flow are indicated
(arrows). Within the shear zone, the foliation has rotated anti-
clockwise with progressive deformation, recording the rotation of
the finite strain ellipsoid with respect to the instantaneous stretch-
ing axes. By assuming an invariant simple shear deformation path
(a reasonable assumption given the isotropic wall-rock), the total
displacement across a segment of the continuous shear zone can
be measured by integration of the finite strains, determined from
the orientation of the foliation at points along a transverse profile.
Castell Odair, N. Uist, looking down. (GSC 203942-E)

Strain-insensitive fabrics

Strain-insensitive fabrics do not closely track the finite strain
ellipsoid during noncoaxial progressive deformation. In
highly strained rocks, such as some mylonites, compositional
layering and highly attenuated polycrystalline ribbons lie
subparallel to the shear plane. This fabric component is often
referred to as the mylonitic foliation, Sm, or more commonly
Sa (Law et al. 1984). A penetrative microscopic shape fabric,
Sb, defined by elongate quartz grains lying at an angle of
about 20-30° to Sa, is very commonly developed within
monomineralic quartz ribbons in mylonites formed at all
metamorphic grades (Fig. 31; e.g. Brunel, 1980; Lister and
Snoke, 1984; Burg, 1986; Law et al., 1986; Law and Potts,
1987; Knipe and Law, 1987). Few examples of pelymineralic
Sb (several minerals participating as foliation-forming ele-
ments) have been described in the literature and only from
mylonitic rocks formed at amphibolite or granulite facies
(e.g. Hanmer, 1984b; Fig. 31D). In monomineralic aggre-
gates, Sp is typically straight and may maintain a fairly
constant orientation within a given ribbon.
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A theoretical description of the process whereby fabric form-
ing elements, developed in a monomineralic aggregate undergo-
ing noncoaxial progressive deformation, would not track the
rotating principal directions of finite strain, was first given by
Means (1981; see also Jessel, 1988). He proposed that a shape
fabric (Sp) will not rotate in noncoaxial progressive deformation
if the fabric-forming processes are balanced by fabric-weakening
processes (Fig. 31A). Means argued thata grain undergoing strain
participates in the definition of a shape fabric (foliation) in the
aggregate and begins to rotate as the foliation attempts to track the
finite strain ellipsoid. However, in response to the increase in
internal strain energy (dislocation density), a distorted grain will
dynamically recrystallize to form a sub-aggregate of fine, equant
grains (Nicolas and Poirier, 1976; Poirier and Guillopé, 1979;
Poirier, 1985). Equant grains do not contribute to the definition of
ashape fabric. Moreover, because the aggregate is monomineralic,
the outline of the parent grain is no longer visible, given that its
neighbours have also recrystallized.

In order to reduce the relatively elevated surface energy
inherent to the fine grain size, the sub-aggregate coarsens by
grain boundary migration (Kerrich et al., 1980; Urai et al., 1986
and references therein). The coarsening grains are subject to
on-going deformation and the cycle of strain and participation
in the shape fabric of the overall aggregate begins anew (Fig.
31A). We must emphasize that, although our description relates
to the history of a single parent grain, all stages of the cycle of
deformation and recrystallization will be represented in the

Progressive
Grain Growth Deformation
Grain Growth Dynamic

Recrystalltsatlon
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aggregate at any given instant. With the next increment of
strain, the equant grain will transform to a shape whose long
axis lies close to the orientation of the maximum instantane-
ous stretching axis of the flow. In other words, the degree to
which the foliation reflects the instantaneous stretching axes,
rather than the principal finite strains, is a function of the
relative efficiency of the fabric-weakening processes. The
overall orientation of the fabric-forming elements (Sp) will
therefore lie within the extensional quadrants of the flow, some-
where between the maximum instantaneous stretching axis of
the flow and the position to which a deforming grain rotates prior
to dynamic recrystallization, Hence, from the angular relation-
ship between Sp and the strain-insensitive fabric the geologist
can determine the shear-sense of the flow.

Strain-insensitive fabrics may also develop in polymineralic
aggregates, The outlines of the strained, monomineralic, poly-
crystalline sub-aggregates should still be preserved after the
initiation of dynamic recrystallization and should continue to
participate in a recognizable strain-sensitive shape fabric, unless
something happens to disperse them. Very little work has been
done to determine how such aggregates are destroyed in polym-
ineralic strain-insensitive fabrics. Hanmer (1984b) proposed
that, in geological circumstances where the kinetic barriers to
mass transfer by diffusion are low, even a relatively mild de-
crease in the free energy of the aggregate might suffice to drive
a process of dispersion of the monomineralic sub-aggregates
by mass transfer. The necessary conditions include very fine




grain size and elevated temperatures and would be enhanced
by the (transient?) presence of an aqueous phase in the grain
boundary network. Such conditions might apply to mylonites
forming under upper amphibolite and granulite facies meta-
morphic conditions. However, the only ‘hard data’ derive
from 20 year old petrographic studies (Vernon, 1968; Flinn,
1969) which indicate that grain boundaries between phases
of the same mineral (‘like’ boundaries) have higher interfa-
cial energies than those between different minerals (‘unlike’
boundaries). If these optical estimates of relative interfacial
energies are valid, enhancement of the occurrence of ‘unlike’
boundaries at the expense of ‘like’ boundaries might lead to
diffusive dispersal of the monomineralic sub-aggregates and
the destruction of their outlines, thus allowing the formation
of a strain-insensitive fabric (Sp). Clearly more work is re-
quired to accurately assess the magnitude of the energy
difference between ‘like’ and ‘unlike’ grain boundaries be-
fore placing too much weight on Hanmer’s (1984b) interpre-
tation. As in the case of monomineralic aggregates, the
orientation of Sb with respect to the instantaneous stretching
axes of the flow, is a function of the relative efficacy of the
fabric-forming and fabric-weakening processes. The occa-
sional occurrence of sigmoid deflections of Sp into local, near
monomineralic Sa bands (Fig. 32; Hanmer, 1984b) is a reflec-
tion of spatial variation in the relative efficacy of these
processes perhaps due, for example, to variation in shear
strain rate (Hanmer, 1984b).

Complex shape fabrics

Kinematically significant complex fabrics are comprised of two
distinct sets of planes. We shall examine two types of complex
fabric. Both comprise one set of planes oriented parallel to the flow
plane. However, in one type a penetrative strain-sensitive cleavage
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Figure 32. Locally sigmoid strain-insensitive foliation. Ho-
mogeneously distributed, isolated laths of e.g. biotite forming a
strain-insensitive foliation in a strongly deformed dextral quartzo-
feldspathic mylonite. In bands where the biotite is more highly
concentrated the laths show a greater tendency to attempt to track
the rotation of the finite strain ellipsoid with progressive deforma-
tion (see text).

Figure 31a (opposite). Strain insensitive simple fabrics. Under certain circumstances, a foliation may not rotate with the finite
strain ellipsoid during noncoaxial progressive deformation. A grain (1) undergoing distortion (2) participates in the definition of
a shape fabric (foliation). In response to the increase in internal strain energy, the distorted grains dynamically recrystallize to form
a sub-aggregate of fine, equant grains (3). In order to reduce the relatively elevated surface energy inherent to fine grain size, the
sub-aggregate coarsens by grain boundary migration (4). The coarsening grains are subject to on-going deformation and the cycle
of distortion and participation in the shape fabric of the overall aggregate begins anew. Hence the overall orientation of the
fabric-forming elements lies close to the maximum instantaneous stretching axis of the flow. Adapted and modified from Means

(1981).

Figure 31b (opposite). Detail ( 1800, mx1200um) of a polycrystalline, monomineralic quartz ribbon, oriented parallel to the shear
plane (Sa) in a mylonite, contains an internal oblique strain-insensitive shape fabric (Sp). Observed in the XZ plane of the finite
strain ellipsoid. The shear plane is shown (arrows). The fabric-forming elements are elongate quartz grains with sutured margins.
The suturing is due to bulges of similar size to the small, equant grains scattered through the microstructure, suggesting that the
equant grains are derived by the dynamic recrystallization of the elongate grains (Vernon, 1981; Urai et al., 1986). Note that the
ribbon exhibits discrete internal surfaces oriented parallel to the shear plane. Although the structure geometrically resembles a
strain-sensitive C/S fabric, the strong deformation which the mylonite and the ribbon have undergone would result in a very small
CAS angle. On the other hand, the quartz grain shape fabric (Sv) is strain-insensitive and indicates the disposition of the extensional
quadrants of the flow with respect to the shear plane. From these angular relations we can deduce that the shear-sense here is
dextral. Great Slave Lake Shear Zone, N.W.T., looking down. (GSC 205186-C)

Figure 31c (opposite). Detail (1200pm x 800um) of (Sw) from within a wide polycrystalline, monomineralic quartz ribbon in a
mylonite showing many of the microstructural features described in A. Observed in the XZ plane of the finite strain ellipsoid. The
shear plane is shown (arrows). The boundary of the ribbon (lower-left and centre) is parallel to the shear plane (Sa). From the
angular relations between the shear plane (Sa) and (Su) we can deduce the disposition of the extensional quadrants of the flow
with respect to the shear plane and determine that the shear-sense here is sinistral. Central Metasedimentary Belt boundary thrust
zone, Grenville Province, Ontario, looking north-northeast. (GSC 204776-R).

Figure 31d (opposite). Detail (3500, m x 2500u m) of a polymineralic quartz-feldspar-biotite band of mylonite within which the small
dark biotites are all aligned at circa 40° (upper left to lower right) to the shear plane. Observed in the XZ plane of the finite strain
ellipsoid. The shear plane is shown (arrows). Note how the biotites are isolated single grains, homogeneously distributed throughout
the mylonitic band. However, the large biotite lath (bottom) is aligned in the plane of the mylonite band itself and has probably
rotated into parallel with the shear plane with progressive deformation. We interpret the fine grained microstructure with its aligned
small biotites as a strain-insensitive foliation in a sinistral shear zone; the shear plane and the inferred instantaneous stretching
axes of the flow are shown accordingly (arrows). Central Gneiss Belt, Grenville Province, Ontario, looking northeast,
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is initially developed oblique to the flow plane, oriented in C/S fabrics

the extensional quadrants of the flow (Fig. 33A). In the other, o ) )

a set of discrete shear bands is developed oblique to the flow The standard work on the description and interpretation of

plane, oriented in the angular range 90°<a<135° (Fig. 33B). complex fabrics composed of (C)isaillement (shear) and
(S)chistosité (cleavage) planes (Fig. 33) is that of Berthé et
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Figure 33. C/S fabrics versus asymmetrical extensional shear bands. (A) Zones of C/S fabric are discontinuous shear zones.
The term discontinuous refers to the manner in which shear strain varies across the shear zone. The extensional (shaded) and
shortening (white) quadrants of the flow are shown. C planes are discrete shear zones, up to tens of centimetres in length by a
millimetre or so in thickness, spaced at centimetre intervals. The S fabric describes a sigmoid shape within the lithon between any
two adjacent C planes (left). Each C plane may be considered as a small scale shear zone, bounded on either side by strain
gradients. The sense of rotation of the S planes along the strain gradients is a reflection of the rotation of the finite strain ellipsoid
with respect to the instantaneous stretching axes of the flow (shear-induced vorticity). Both this fine scale rotation and the rotation
of the average orientation of the S planes (right), with respect to the larger scale shear zone boundaries (rotational component of
the flow), reflect the sign of the vorticity (shear-sense) of the flow. Note that at high finite strains, the S and C planes can no longer
be separated; to the naked eye, both lie parallel to the shear plane of the deformation. After Berthé et al. (1979a). (B) Asymmetrical
extensional shear bands oriented within the angular range 90°<«<135° in a general noncoaxial flow (see text).
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al. (1979a, 1979b; see also Vernon et al., 1983; Lister and
Snoke, 1984). S planes represent a penetratively developed
strain-sensitive flattening (sensu lato) fabric which attempts
to track the XY plane of the finite strain ellipsoid during
progressive deformation, much like the schistosity developed
in a continuous shear zone (Fig. 33A). C planes are discrete
narrow shear zones which are taken to lie parallel to the flow
plane of the progressive deformation.

Inany C/S fabric, it is possible to observe different stages
in the progressive accumulation of the finite strain, even
within a hand-specimen or a thin section. Each individual C
plane is a narrow shear zone, bounded on either side by strain
gradients (Fig. 33A, 34) and so resemble continuous shear
zones. Continuing the analogy, the sigmoid S surfaces rotate
towards the shear plane (C) with increasing strain. Hence,
taking the C plane as our reference, the distal segment of an
S surface lies closer to the maximum instantaneous stretching
axis, while the proximal segment lies closer to the bulk
direction of maximum finite extension (Fig. 33). Therefore,
the progressive rotation of the finite strain ellipsoid with
respect to the instantaneous stretching axes (shear-induced
vorticity) can be deduced directly from the distal to proximal
curvature of the S surfaces, from which one determines the
shear-sense.

C planes form in rocks where the strain distribution is
heterogeneous at the grain-scale, such as in granites deformed
at temperatures below the crystal-plastic limit for feldspars.
Although most workers describe C/S fabrics from granitoids,
they have been successfully simulated in laboratory experi-
ments using halite and carbonate (Jordan, 1987). They are
rarely developed in granitoid rocks deformed under high
temperature metamorphic conditions, where both plagioclase
and K-feldspar may recrystallize dynamically (e.g. Hanmer,
1982b; Tullis, 1983; Tullis and Yund, 1985, but see Simpson
and Wintsch, 1989). Stiff feldspars act as centimetre-size
stress raisers and their boundaries may be the loci of locally
high strain rates. Where the grain boundaries of several
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Figure 34a. Natural C/S fabrics. Sinistral C/S fabrics developed
in deformed granite, observed in the XZ plane of the finite strain
ellipsoid. C planes are discrete shear zones, oriented parallel to
the bulk shear plane, spaced at intervals equal to the size of the
stiff feldspar grains. S planes form a penetrative cleavage, lying
in the extensional quadrants of the flow. Chedabucto Fault Zone,
Nova Scotia, looking up, specimen inverted!

neighboring feldspars are aligned in a plane parallel to the
shear plane of the deformation, a C plane nucleating on one
feldspar can readily propagate across to the others (see also
Tullis and Yund, 1977, 1979).

Figure 33A is a simplified representation of C/S fabrics
developed in progressive simple shear. The range of potential
initial CAS angles is a function of two factors. The first is a
reflection of the influence of the flow type on the orientation of
the instantaneous stretching axes of the flow (Fig. 3). As already
discussed, the angle made by the maximum instantaneous
stretching axis with the flow plane decreases with increasing
shortening across the flow plane. The second factor is the finite
strain and accompanying rotation required to form a set of S
planes detectable by the human eye (White and Knipe, 1978;
Ingles, 1986). Assuming a shortening of about 30% (Ramsay,
1967, p. 180) and progressive simple shear, the finite strain
ellipsoid would already have rotated through approximately 15°
with respect to the instantaneous stretching axes before the
geologist can even see a foliation plane.

Berthé et al. (1979a) described composite C/S fabrics as
continuous-discontinuous (Fig. 33A; see also Burg and
Laurent, 1978), as opposed to the continuous nature of Ram-
say and Graham (1970) shear zones (Fig. 30). This implies
that the C planes are not simply narrow ductile shear zones.
Berthé et al. (1979a) documented discrete brittle slip along
some C planes which cut and off-set mica grains. They also
described the C planes as zones of comminuted feldspar,
recrystallized quartz, mica and insoluble residue. Clearly C
planes are shear zones characterized by a complex interplay
of crystal-plastic, mass transfer and brittle deformation proc-
esses. Some workers have opted to refer to C planes by the
non-specific term shear bands; that is, thin planar zones along
which differential movement has been accommodated. We
find this practice unfortunate since it introduces confusion
with another type of structure known as ‘shear band foliation’
(see next section).

Figure 34b. Demonstrates that C planes in a dextral C/S fabric
represent discrete micro-shear zones. A thin aplite vein em-
placed along the S planes is offset by several millimetres as it
crosses certain C planes. The lack of offset across other C
planes suggests that the distribution of slip on a population of C
planes is heterogeneous. Wopmay Fault Zone, N.W.T., looking
down. (GSC 204128-D).
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Asymmetrical extensional shear bands

Shear band foliation (White et al., 1980), C' Berthé et al.,
1979b), and asymmetrical extensional crenulation cleavage
(Platt and Vissers, 1980) are three terms used in the literature
to designate one of the commonest shear-sense indicators.
Anisotropic rocks, such as many mylonites, phyllites and
micaschists, subjected to noncoaxial flow along the plane of
the anisotropy, often respond by developing a set of discrete
shear zones or ‘shear bands’ oriented at about 15-25° to the
bulk flow plane (Fig. 33B; e.g. Platt, 1984; Dennis and Secor,
1987). The exact geometry varies from case to case, but an
average, representative description can be given (Fig. 35).
The shear bands are up to several millimetres thick, by up to
10 centimetres long. As a general rule, they are less continu-
ous than any associated C planes (Berthé et al., 1979b). They
may be homogeneously developed and constitute a foliation
or crenulation cleavage,.or they may occur sporadically.
Ideally, only one set of shear bands is developed, whose sense
of slip is synthetic to the shear-sense on the bulk shear plane
(Fig. 36). However, it is not uncommon for a conjugate, but
numerically subordinate set to form (Harris and Cobbold,
1985; Behrmann, 1987). The shear bands may be composed
of the same mineralogy as the rest of the rock (e.g. Gapais
and White, 1982), or they may show compositional changes
suggestive of retrograde metamorphic reactions (e.g. Mc-
Caig, 1987; Norrell et al., 1989) or the concentration of less
soluble material by mass transfer.

We have adopted term asymmetrical extensional shear
bands for this structure in an attempt to avoid the semantic
confusion which has entered the structural literature concern-
ing the use of the term ‘shear band foliation’. The terms
cleavage and foliation suggest a penetrative fabric and are
perhaps injudicious terms to refer to often sporadically devel-
oped fabric elements. Shear band is a metallurgical and rock
mechanics term referring to the concentration of noncoaxial

flow in a narrow band of finite thickness. Some authors have
used the term to refer to the C plane component of C/S fabrics,
which lies parallel to the bulk flow plane of the progressive
deformation (e.g Lister and Snoke, 1984; Bell and Hammond,
1984; Platt, 1984; Malavieille and Cobb, 1986; Davis et al.,
1987; Behrmann, 1987; Saltzer and Hodges, 1988). Although
this is technically correct, such usage leads to confusion since
‘shear band’ is most commonly used by geologists to desig-
nate asymmetrical extensional shears (White et al., 1980).
This has perhaps led some authors to confuse composite
fabrics with asymmetrical extensional shear bands (e.g. Fig.
5 in Simpson and Schmid, 1983). In an homogeneous, iso-
tropic material, subjected to an homogeneous deformation,
entirely accommodated by slip on discrete slip surfaces,
active extensional slip planes should rotate towards the flat-
tening (X/Y) plane of the bulk finite strain ellipsoid (Freund,
1974). It is therefore quite remarkable that illustrations of
asymmetrical extensional shears developed in geographically
dispersed anisotropic mylonites, of variable geological age
and metamorphic grade, should resemble each other so
closely (e.g. White et al., 1980; Platt and Vissers, 1980;
Gapais and White, 1982; Simpson and Schmid, 1983; Wei-
jermars and Rondeel, 1984; O’Brien et al., 1987; McCaig,
1987; Blumenfeld and Bouchez, 1988). All show single sets
of shears, lying at approximately 15-25° to the mylonite
foliation, yet theoretically the shears should back-rotate to-
wards the flow plane, lock and be overprinted by successive
sets initiating at circa 25° (Platt and Vissers, 1980).

We are unable to offer a comprehensive explanation for
the apparent lack of clearly documented cases of rotated and
overprinting sets of asymmetrical extensional shear bands.
However, we can at least consider why they work as shear-
sense indicators. Slip on extensional shears would result in a
component of extension within the bulk flow plane, in a
direction perpendicular to the intersection of the extensional
shears with the bulk flow plane. Unless there is a component

Figure 35. Asymmetrical extensional shear bands developed in protomylonite and mylonite, observed in the XZ plane of the
finite strain ellipsoid. The bulk shear plane, here subparallel to the mylonitic foliation, and the bulk shear-sense are indicated (parallel
arrows). (a) Irregularly distributed, short shear bands indicative of dextral sense of shear on the bulk shear plane. (GSC 204776-Y).
(b) Long, homogeneously distributed dextral shear bands, indistinguishable in this view from C/S fabrics (compare with Fig. 34).
However, the bulk strain gradient within this same outcrop is oriented parallel to the short dimension of the photograph and indicates
that these shear bands are oblique to the bulk shear plane of the deformation; hence they can not be C planes (see Fig. 19, 33).
(GSC 204776-X). Both are from Great Slave Lake Shear Zone, N.W.T., looking down.
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Figure 36. Why are extensional shears bands asymmetri-
cal? Slip on extensional shears results in a component of exten-
sion within the flow plane (general noncoaxial flow), in a direction
perpendicular to the intersection of the extensional shears with
the main mylonitic foliation, itself oriented parallel to the bulk flow
plane. Atthe moment of their initiation, the potential conjugate sets
of shear bands are symmetrically disposed about the maximum
instantaneous stretching axis of the bulk flow, itself oriented at less
than 45° with respect to the bulk flow plane. The set of shearbands
whose orientation is closest to that of the rheological anisotropy
(e.g. mylonitic foliation) can be expected to be preferentially
developed. From this set, the geologist is able to determine the
approximate orientation of the kinematic quadrants of the flow with
respect to the bulk flow plane and hence deduce the sense of
shear.
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Figure 37. Deflections and shear zones. Where a pre-existing external marker intersects a shear zone, it is deflected from its

original orientation and thinned from its original thickness as it enter:
entering a zone of simple shear. Compare the observed deflection i

s the zone of high strain. (A) and (B) represent a marker layer
n the plane of observation in (A) with that in (B). The apparent

deflection of a marker in two-dimensions will always accurately reflect the bulk shear-sense where the intersection of the marker
with the flow plane lies at an high angle to the plane of observation and/or where the true displacement vector lies very close to the
plane of observation; the vertical face in A for example. Where the intersection lies close to the plane of observation, and/or makes

an high angle with the true displacement vector, as in B, there is a

statistically significant probability that the observed deflection

of the marker in that plane will be opposite to the sense of the bulk shear.
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of shortening along the general direction of the mylonitic
foliation within the material between the shear bands, the bulk
deformation corresponds to a progressive general noncoaxial
flow, which results in extension of the shear plane. The
initiation of discrete extensional shear bands in a material
which was previously able to deform homogeneously appears
to be a response to hardening of the deforming mylonite (e.g.
White et al., 1980; Passchier, 1986). Why does only one set
of shear bands develop, as opposed to two conjugate sets? At
the moment of their initiation, the potential conjugate sets of
shear bands are symmetrically disposed about the instantane-
ous stretching axes of the bulk flow (Fig. 36). The mechanism
of initiation of shear bands is related to the amplification of
perturbations in the planar anisotropy of the foliated host rock
(Cobbold et al., 1971; Cobbold, 1976). Accordingly, the set
of shear bands whose orientation is closest to that of the
anisotropy can be expected to be preferentially developed.
From this set, the geologist is able to determine the approxi-
mate orientation of the shortening and extensional quadrants
of the flow and hence deduce the sense of shear.

Comparison of fabrics

By what criteria can CIS fabrics be identified? Geometrically,
C/S fabrics resemble an early penetrative cleavage, cut and
crenulated by a second spaced cleavage (polyphase S1/52;
see Fig. 33A, 34). Berthé et al. (1979a) demonstrated that, at
the scale of a thin-section, the development of an initial S
fabric precedes its deflection into the nascent C planes. How-
ever, at the scale of the hand specimen or of the outcrop, they
showed that the S and C components of the fabric develop
simultaneously. The corollary is that, where the fabric can be
traced back along a strain gradient into less deformed proto-
lith, the C and S components should attenuate at approxi-
mately the same place. In the case of polyphase S1/S2 this
would represent a remarkable coincidence.

By what criteria can asymmetrical extensional shear
bands be distinguished from C planes? Geometrically, a
mylonitic foliation cut by asymmetrical extensional shear
bands bears some resemblance to a C/S fabric (compare Fig.
34B, 35B). Berthé et al. (1979a) point out that the C planes
of a C/S fabric lie very close to the shear zone boundary and
the shear plane of the bulk deformation. Furthermore they
document that, in the presence of a strain gradient, the spacing
of the C planes decreases with increasing deformation (Fig.
33A). Since the direction of the strain gradient lies perpen-
dicular to the flow plane (see also Cobbold, 1977), we have
only to compare it to the orientation of the discrete shear
bands in question. If they are clearly oblique to the deduced
shear plane (Fig. 33B), the shear bands are not C planes.

Strain-sensitive C/S and strain-insensitive Sa/Sb fabrics
may superficially resemble each other geometrically, al-
though the sigmoid character of the S component in C/S
fabrics is the rule, rather than the exception. However, the
processes involved in their formation and their relationships
to progressive deformation are quite distinct. Unfortunately,
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Figure 38. Deflection and inclusions. The apparent "drag" of
matrix foliation around an equant inclusion reflects the relative
rotation rates of elements of different aspect ratio (R; see Fig. 23),
the initial orientation («) with respect to the flow plane and the flow
type. Simple shear: (A) The foliation, initially parallel to the shear
plane of the flow, is deflected by the anticlockwise rotation of the
equant inclusion. The sense of the deflection directly reflects the
shear-sense of the flow (arrows). (B) The foliation was initially
oriented perpendicular to the shear plane. The inclusion rotated
anticlockwise (sinistrally), yet the apparent deflection could be
described as a relative clockwise rotation of the inclusion with
respect to the foliation. This reflects the fact that in simple shear,
a passive marker oriented at 0°<u>45° rotales faster than a
circular inclusion. General shearing flow: (C) Inspection of Fig.23
shows that, with significant shortening across the flow plane, a
foliation oriented within the angular range 45°<x<90° may rotate
faster than a circular inclusion. Hence, the apparent sense of
"drag" can be opposite to the bulk shear-sense. (A) and (B)
adapted from Ghosh (1975). (C) adapted from Ghosh (1977).



published terminology is rather confusing, since the label
‘C/S’ has been attached to strain-sensitive fabrics (Berthé et
al., 1979a) and the label ‘S/C’ has been attached to strain-in-
sensitive fabrics (Lister and Snoke, 1984). Although Lister
and Snoke were careful to discriminate between strain sensi-
tive Type I S/C fabrics and strain-insensitive Type II S/C
fabrics, some other workers have been less discriminating in
their use of the S/C label. If for this reason alone, we strongly
suggest that C/S be reserved for strain-sensitive composite
fabrics and that strain-insensitive fabrics be described in
terms of Sa/Sb components (Law et al., 1984).

Deflection of foliations and layers

The deflection of a planar marker as it enters a shear zone, is
often colloquially referred to as "drag". Deduction of shear-
sense from the resulting geometry is then predicated on the
sense of drag. We will examine the kinematic significance of
two types of deflection structure which are commonly used
as shear-sense indicators; the deflection of markers into shear
zones and around stiff inclusions.

Shear zones

It is practically axiomatic that the deflection of a line or a
plane into the flow plane is a direct reflection of the sense of
shear. While this may well hold true under some circum-
stances, where the data are two-dimensional there are situ-
ations where the geologist would be well advised to exercise
caution (see Wheeler, 1987; Fig. 37A, B). Where an external
pre-existing layer intersects an ideal simple shear zone, it is
deflected from its original orientation and thinned, or thick-
ened, from its original dimensions as it enters the zone of high
strain. The apparent deflection of a marker plane in
two-dimensions will accurately reflect the bulk shear-sense
(i) where the intersection of the marker with the wall of the
shear zone lies at an high angle to the plane of observation;
and/or (ii) where the true displacement vector of the wall
rocks lies very close to the plane of observation (Fig. 37A).

Where the intersection lies close to the plane of observation
and/or makes an high angle with the true displacement vector,
the observed deflection of the marker in that plane may be
opposite to the sense of the bulk shear (Fig. 37B).

Inclusions

The asymmetry of the deflection of matrix foliation around
approximately equant porphyroclasts has been used as a
shear-sense indicator in mylonitic rocks (e.g. Simpson and
Schmid, 1983; Takagi, 1986). However, this approach does
not yield unique solutions unless the geologist is able to
independently establish the initial orientation of the foliation
and the nature of the flow regime (Fig. 38). The apparent
deflection of matrix foliation around an equant inclusion
reflects the relative rotation rates of elements of different
aspect ratio (R; see section Rotations). However, while the
normalized rotation rate of a circular inclusion is a constant
(6/4=0.5), that of a passive marker is dependent on both flow
type and orientation (e ) of the marker (Ghosh and Ramberg,
1976; Fig. 23). This means that it is necessary to know both
the initial, or at least some intermediate orientation of the
foliation and the flow type in order to deduce the kinematic
significance of the observed deflection.

Consider a foliation initially oriented perpendicular to the
bulk flow plane and subjected to sinistral ideal simple shear
(Fig. 38B). Without an established kinematic frame of refer-
ence, the observed deflection could be described either as a
relative clockwise rotation of the inclusion with respect to the
foliation, or as a relative anticlockwise rotation of the folia-
tion with respect to the inclusion. This reflects the fact that in
simple shear, a passive marker oriented at (°<a<45° rotates
faster than a circular inclusion. Simply assuming that the
foliation initially lay parallel to the shear plane (as in Fig.
38A) would lead to incorrect deduction of both the sense of
shear and the orientation of the shear plane (Fig. 38B).
Experimental work by Ghosh (1977) has demonstrated that
similarly equivocal geometries can be readily generated in
general noncoaxial flow (Fig. 38C).
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INCLUSIONS AND APPENDAGES

We shall now examine seven aspects of inclusions: (i) the
rotational behaviour of inclusions; (ii) why many inclusions
do not rotate at all , even in bulk noncoaxial flows; (iii) the
positions in which some inclusions are ‘at rest’, after having
rotated; (iv) the rotational behaviour of appendages associ-
ated with inclusions; (v) the formation of pressure fringes and
pressure shadows; (vi) asymmetrically disposed structures in
domains of layer-parallel and layer-normal shortening adja-
cent to inclusions; and (vii) the ‘tiling’ of inclusions.

Inclusions of stiff material, included in a relatively soft
matrix undergoing noncoaxial progressive deformation, may
rotate with respect to the flow plane. The qualified nature of
this statement may surprise some readers, but consider for a
moment an hypothetical, well exposed outcrop of strongly
sheared, mylonitic orthogneiss, laden with large feldspar
porphyroclasts, such as might be derived by the deformation
of a megacrystic granite. Most of the large feldspars are
elliptical, but almost all are oriented with their long axes lying
in the mylonitic foliation (shear plane), aligned along the
extension lineation (shear direction; see section Shear plane
and shear direction). However, the outcrop may contain one
or two "textbook" examples of ‘rotated feldspars’, upon
which the kinematic interpretation of the outcrop is based (see
section Winged porphyroclasts). Our hypothetical outcrop is
fairly representative of many "type" shear-sense locations.
Readers may be reminded of their own favorite "show-and-
tell" outcrops, or of those they have visited on field trips. The
rotated feldspars are indeed of great kinematic interest, but
an equally important aspect of the deformation is all too often
overlooked: why do the other feldspars show no apparent
evidence of the non-coaxiality of the flow?

Students of inclusions have tended to consider them under
three headings: (1) porphyroblasts, (2) porphyroclasts, and
(3) stiff inclusions in general, each of which has been consid-
ered in terms of both simple shear and general noncoaxial
flows. We shall first look at the theoretical and experimental
analysis of the special cases of porphyroblasts and winged
porphyroclasts. Then we will consider the general case of stiff
inclusions, with and without wings and will apply our discus-
sion to natural examples.

PORPHYROBLASTS

The rotation of porphyroblasts, i.e. crystals which have grown
in the solid state, during or after their growth, is well de-
scribed in the literature and is known to most geologists, at
least at an intuitive level (e.g. Spry, 1969; Rosenfeld, 1968,
1970; Wilson, 1971; de Wit, 1976; Dixon, 1976; Schoneveld,
1977, 1978; Ghosh and Ramberg, 1978; Powell and Vernon,
1979; Williams and Schoneveld, 1981; Lister et al., 1986;
Vissers, 1987; Jamieson and Vernon, 1987; Mandal and
Banerjee, 1987). Porphyroblasts contain trails of inclusions

34

which represent segments of matrix foliation overgrown by,
and included in, the porphyroblast. The trails are referred to
as the internal foliation, as opposed to the external foliation
of the matrix (Fig. 39). The difference between the orienta-
tions of the internal and external foliations can be used to
determine the relative rotation of the porphyroblast with
respect to the far-field foliation in the matrix. However, as
pointed out by T.H. Bell (1981, 1985; Bell et al., 1986), it is
not necessarily a simple matter to determine which of the two,
porphyroblast or matrix foliation, underwent true rotation
with respect to the flow plane (see also Dixon, 1976; Ghosh
and Ramberg, 1978). Ideally, at least the later increments of
growth of the porphyroblast should have been contempora-
neous with the rotation in order to maintain continuity from
the internal to the external foliations. Although many porphy-
roblastic species are deformable (e.g. andalusite), the porphy-
roblast is usually assumed to be rigid (e.g. garnet) and its
rotation is taken to represent the rolling of a rigid body. We
remind the reader that while many studies, including the
present one, take the foliation, in its present position, to lie
close to the shear plane of the deformation in highly strained
rocks, this is nevertheless an assumption.

Many rocks comprise large, relatively stiff, weakly ani-
sotropic porphyroblasts set in a finer grained, anisotropic
matrix. According to the models of Rosenfeld (1968, 1970)
and Schoneveld (1977, 1978), a growing, rotating porphyro-
blast will incorporate two types of included material (Fig. 39).
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Figure 39. Rotated garnet porphyroblast. An helicitic garnet,
observed in the XZ plane of the finite strain ellipsoid. The sense
of shear along the flow plane is shown. The internal foliation is a
spiral trail of inclusions of matrix material making three left-handed
360° turns from the centre of the porphyroblast. The porphyroblast
has rotated anticlockwise in response to sinistral shear during its
growth. Garnet diameter = 5 mm. Specimen #512, Schoneveld
collection, University of Utrecht. (GSC 205184).



On faces making an high angle with the maximum instanta-
neous stretching axis of the flow, inclusions of pressure
shadow material (see section Pressure shadows) are incorpo-
rated into the body of the growing porphyroblast. On those
faces making an high angle with the minimum instantaneous
stretching axis, grains of matrix material often aligned in the
matrix foliation are incorporated. The result is two spiral
inclusions trails, each composed of different inclusions and
linked across the porphyroblast boundary to the exterior at
different places around the porphyroblast perimeter.

In a recent series of papers, Bell has highlighted the role
of porphyroblasts, and of material properties in the adjacent
matrix, in the repartitioning of the rotational component of a
bulk noncoaxial deformation (Bell, 1981, 1985; Bell et al.,
1986). Instead of assuming a uniform flow type throughout
the flowing material, he considers the nature of the flow as a
function of the variably anisotropic character of the deform-
ing rock (Fig. 40). Bell considered the specific case of a
genetic spatial relationship between microstructural variation
in the matrix and the presence of porphyroblasts. The pertur-
bation represented by the porphyroblasts leads to an hetero-
geneous strain distribution in the adjacent matrix. During
progressive deformation, pressure solution generates
strongly anisotropic, phyllosilicate-rich zones adjacent to
porphyroblast faces making an high angle with the minimum
instantaneous stretching axis. Such a genetic relationship is
not essential to our discussion. For our purposes here, it
suffices to consider porphyroblasts set in a matrix which

contains abundant, phyllosilicate-rich zones, oriented subpar-
allel to the flow plane, some of which lie adjacent to the
porphyroblasts.

In the case of bulk general noncoaxial flow, the relatively
low resistance to slip in the highly anisotropic, phyllosilicate-
rich parts of the matrix enhances their ability to accommodate
the simple shear component of the flow. Because phyllosili-
cates are relatively insoluble compared to quartz, Bell sug-
gests that, depending on the orientation of the anisotropy with
respect to the bulk flow plane, phyllosilicate-rich zones will
not readily accommodate the pure shear component of the
flow. On the other hand, the porphyroblasts and the less
anisotropic parts of the matrix do not efficiently accommo-
date simple shear. Rather, unless they are rigid, they may
respond to the imposed deformation by a more or less coaxial
local flow (compare Fig. 41 with the right-hand side of Fig.
25). The result would be a repartitioning of the rotational
component of the bulk flow. If we now apply the same
arguments to the case of bulk simple shear, it follows that the
more efficiently the anisotropic zones are able to accommo-
date slip, the lower the strain rate in the porphyroblast and its
adjacent matrix. The result is a special case; redistribution of
the flow, without repartitioning of its rotational component
(see left-hand side of Fig. 25).

When considering some natural examples of supposedly
rotated helicitic garnets, Bell (1985) accounts for the sigmoid
geometry of the internal foliation as an asymmetrically

Bell (1985).

Figure 40. To rotate, or not to rotate... .Variation in microstructure can lead to a
systematic partitioning of the rotational component of the flow such that the local flow
type nowhere corresponds to that of the bulk flow (see Fig. 25). Consider an ‘island’ of
isotropic, relatively stiff material, enclosed in a foliated matrix within which there are highly
anisotropic zones (a) whose resistance to slip is low and which cannot readily accom-
modate layer-normal shortening. This might correspond to a porphyroblast (p) with
pressure shadows, flanked by phyllosilicate-rich zones. The local flow, contributing to the
accommodation of a bulk general noncoaxial flow, would be variable within such a
differentiated microstructure. The anisotropic zones can efficiently accommodate the
noncoaxial simple shear component by slip. Rotation of the anisotropy towards the local
shear plane may make a minor contribution towards accommodating the shortening
normal to the bulk flow plane. The contribution of the isotropic ‘island’ to accommodating
the simple shear component of the flow will be relatively minor. It will depend on the
stiffness of the material, as will the ability of the ‘island’ to accommodate shortening
normal to the bulk flow plane. For example, the central ‘island’ in the accompanying
illustration is drawn as if it contained a rigid porphyroblast. The other four ‘islands’ are
represented as stiff, but deformable volumes, either of matrix or of deformable porphy-
roblast material. In any case, relative to the bulk regime, flow in the ‘islands’ tends to be
more coaxial, while in the anisotropic zones it tends towards simple shear. Modified after
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micro-folded or crenulated foliation, whose hinge zones are
overgrown and preserved by the stiff porphyroblast (Fig. 41).
According to Bell, the micro-fold closures are sites of prefer-
ential nucleation and growth of the porphyroblasts (Bell et
al., 1986). Metamorphic segregation during the folding proc-
ess tends to concentrate phyllosilicates in the fold limbs.
Hence, the limbs are predestined to become zones of easy slip.
Continued deformation leads to the total transposition of the
micro-fold limbs into a new foliation which wraps around the
porphyroblasts. The crenulation fold closures are obliterated,
except where they are fossilized as sigmoid trails in the stiff
porphyroblasts. The repartitioning of the rotational compo-
nent of the flow is such that ‘islands’ of coaxial, irrotational
progressive deformation nucleate about the porphyroblasts.
In other words, many "helicitic" porphyroblasts may not have
rotated at all.

Bell’s perceptive analysis and reinterpretation of sigmoid
inclusion trails in some porphyroblasts is supported by similar
analysis of micas (Vernon, 1988). It offers an elegant expla-
nation of the all too often overlooked absence of rotated
porphyroclasts in many sheared rocks. However, it does not
explain why the geometry of curved inclusion trails is usually
symmetrical with respect to the core of the porphyroblast
(M.R. St-Onge, pers. comm., 1989). We do not consider that
all sigmoid internal foliations formed without rotation of the
porphyroblast during growth. For example, Bell’s model
does not predict continuous spiral inclusion trails which curve
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through angles much greater than 180° (Fig. 39). The point
here is that these kinds of studies clearly demonstrate that
geologists must carefully weigh the evidence before deter-
mining shear-sense from such microstructures.

STIFF INCLUSIONS

Theoretical prelude

Before considering natural examples of stiff inclusions set in
a matrix which has undergone noncoaxial progressive defor-
mation, let us first examine the predictions which can be made
based on ideal theoretical models (e.g. Ghosh and Ramberg,
1976; Hanmer, 1984a; Passchier, 1987b). As discussed in the
section Rotation: rate and direction, the rotational behaviour
of inclusions and passive markers, in a given flow type, is a
partial function of their aspect ratio (Fig. 23). Inclusions of
circular section rotate continuously at a constant angular
velocity, except in coaxial flow when they do not rotate at all.
Passive markers rotate towards the flow plane at an angular
velocity whose magnitude depends upon their orientation

Figure 41. Rotated porphyroblast or fossilized crenulation?
(A) and (B) represent two models of porphyroblasts with an
included internal foliation oblique to the external foliation. In (A),
a component of simple shear flow along the external foliation
results in rotation of the porphyroblast. If the porphyroblast grew
during rotation then it may include and preserve a sigmoid internal
foliation from whose geometry one can deduce the shear-sense
of the flow. However, in (B), the porphyroblast is shown overgrow-
ing an older foliation which in the matrix is seen to be tightly
crenulated by a second dominant foliation (enlargement). The
presence of the stiff porphyroblast provokes a repartitioning of the
rotational component of the flow such that local flow adjacent to
the porphyroblast is more coaxial, whereas the flow in the matrix
away from the porphyroblastis more noncoaxial than the bulk flow.
Without the boundary displacements shown in the illustration, the
deformation histories of (A) and (B) could not be unequivocally
distinguished. (C) An euhedral 'helicitic’ garnet in a paragneiss,
observed in the XZ plane of the finite strain ellipsoid. The ‘internal
foliation’ is an 'S'-shaped sigmoid trail of quartz and biotite
inclusions. Has the garnet rotated sinistrally through some 90°
during porphyroblast growth, or is the internal foliation a fossilised
pre- to syn-growth microfold closure? Central Metasedimentary
Belt boundary thrust zone, Ontario, looking northeast.



with respect to the flow plane. Upon reaching the flow plane,
they cease rotating. Elliptical inclusions rotate at an angular
velocity which depends upon their orientation, their shape
and the flow type. In progressive simple shear, the angular
velocity is ‘pulsating’. In a general noncoaxial flow type,
elliptical objects whose aspect ratio is greater than the critical
aspect ratio (R¢) can come to rest at positions partly deter-
mined by their shape.

‘Naked’ inclusions

By naked, we simply mean that the inclusions are discrete
objects, without lateral appendages, or wings. The statistical
analysis of the orientation frequency of a population of such
inclusions could reflect both the sign of the vorticity (shear-
sense) of the flow and the flow type (Fernandez et al., 1983;
cf. Hooper and Hatcher, 1988). Several recent studies have
attempted to address this question (Hanmer, 1984a, 1986a,
1990; Passchier, 1987b).

From the symmetrical distribution of the rotation rate
curves for simple shear in Figure 23, it follows that the
orientations of stiff inclusions should constitute a normal
distribution, symmetrical about the flow plane. On the other
hand, in general noncoaxial flows, the rotation rate curves are
displaced towards higher values of . Given that inclusions
of aspect ratio R>R¢ have stable positions in the flow, and
given the "flight" of inclusions from unstable rest-positions
oriented at o>ac (Fig. 23), histograms of the orientation
frequency should be skewed such that their modes lie within
the angular range 90°<a. <ac,

Few data on inclusion aspect ratio (R) versus orientation
(e ) are available for natural populations of rotated inclusions
(Hanmer, 1986a; Passchier, 1987b; Tagaki and Ito, 1988).
Such measurements would be most easily obtained in porphy-
roclast-bearing mylonites. In the data sets from two studies
presented in Figure 42, the skewness towards the angular
range 90°<a.<135° in both populations is subtle, but system-
atic. We would suggest that this skewness of the data reflects
the general noncoaxial nature of the flow and that the sense
of skewness reflects the sign of the vorticity (shear-sense) of
the flow. However, we must stress here that the natural data
do not conform very closely to the theoretical predictions
outlined above (Fig. 42E, F). This probably reflects deviation
of the natural case from the ideal model due to non-Newto-
nian behaviour of the matrix, ductility of the inclusions,
deviation from elliptical inclusion shape and interference
between inclusions, as well as possible variation in flow type
during progressive deformation.

Winged porphyroclasts

A winged porphyroclast, observed looking along the rotation
axis of the flow, comprises a circular to elliptical monocrys-
talline core attached to thin, planar, polycrystalline, wing-like
appendages, often similar in composition to the porphyroclast
itself. The wings may be in-plane, that is they may lie in a
single material plane which passes through the centre of the
porphyroclast and lies subparallel to the flow plane, except

immediately adjacent to the porphyroclast, which itself may
be markedly oblique to the flow plane. The long dimension
of the elliptical porphyroclast often lies within the angular
range 90°<a<180° of the flow (Fig. 43A). Alternatively, the
structure forms a stair-step wherein the wings are flats,
linked by the porphyroclast. Triangular volumes of matrix are
generally entrained between the porphyroclast and its wings.
Winged porphyroclasts are often derived by the mechanical
degradation of granitic pegmatite in a strongly sheared my-
lonitic host rocks and often occur as trains of objects aligned
along the mylonitic foliation (Fig. 43C). Itis important to note
that, since fold structures are absent in the mylonitic foliation
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Figure 42. ‘Naked’ inclusions. The frequency distribution of
orientations in a population of inclusions should be a partial
function of the flow type. A naked inclusion is a discrete elliptical
object, without lateral appendages or wings. (A) and (B) are data
for porphyroclasts in mylonites from the dextral transcurrent Great
Slave Lake Shear Zone, N.W.T. (Hanmer, 1986a, 1988). (C) and
(D) are data for porphyroclasts in mylonites of the sinistral trans-
current Median Tectonic Line, Japan, taken from Takagi and Ito
(1988). These data were measured in the XZ section of the finite
strain ellipsoid. Each population is mildly, but systematically,
skewed towards the angular range 90°<« <1807, in agreement with
theoretical prediction for general noncoaxial flows (see Fig. 23).

Theory predicts that the orientations of those inclusions at restare
a partial function of the aspect ratio (Fig. 23). However, two
populations of data from Great Slave Lake Shear Zone (E and F)
do not show a detectable correlation between R and «. This
presumably reflects deviation of the natural case from the ideal
model due to (i) non-Newtonian behaviour of the matrix, (ii)
ductility of the inclusions, (iii) deviation from elliptical inclusion
shape and (iv) interference between inclusions.
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Figure 43. Winged inclusion geometry. The geometry of an
elliptical winged inclusion, observed looking along the rotation axis
of the flow, may correspond to any one of a number of develop-
mental stages. Shear-sense along the flow plane is shown. (A)
The stair-step (#1) and in-plane (#2) geometries of two winged
inclusions superficially resemble each other. However, inclusion
#2 has rotated dextrally through the flow plane. Its wings lie in a
single material plane which passes through the centre of the
inclusion and lies parallel to the flow plane, except immediately
adjacent to the inclusion. Inclusion #1 has rotated sinistrally. Its
wings have rotated into parallel with the flow plane, while the long
dimension of the inclusion is still markedly oblique. The structure
forms a right-stepping stair-step wherein the wings are flats linked
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by the inclusion. (B) In general, mature in-plane geometries imply
a component of extension in the flow plane. Here a sequence of
geometries (1-4) is developed from an inclusion and its wings,
initially oriented in the extensional quadrants of the flow (see
Simpson and Schmid, 1983), but undergoing a general noncoaxial
flow. Because objects of high aspect ratio rotate faster in general
noncoaxial flow (0<Wk<<1) than stubby objects oriented in the
range 45°<a<90°, the wings of the structure show a stair-step
configuration in the less mature stages of development (B2). In
simple shear, the inclusion would have rotated faster than the
wings (see Fig. 23). Furthermore, the sequence from B1 to B3
could not occur in simple shear, because it requires that the flow
plane extend in the shear direction in order to allow the wings to
approach the in-plane configuration (B3). Note however that,
although in-plane geometries reflect total deformations corre-
sponding to progressive general noncoaxial flow, the instantane-
ous nature of the flow remains unknown; the same geometry could
result from a variety of sequences of simple shear and pure shear
flows. A mature winged inclusion will only preserve a stair-step
geometry where the progressive deformation path was simple
shear. (C) Four natural examples of inclusions (white arrows), very
similar to A2 and B4, derived by the mechanical degradation of
granitic pegmatite in an ultramylonite, observed in the XZ plane
of the finite strain ellipsoid. The sense of shear is sinistral. All four
inclusions lie at with their long dimensions oriented within the
angular range 90°<ux <180°. Note the absence of fold structures in
the mylonitic foliation; the porphyroclasts are not simply the short
limbs of asymmetrical folds. Parry Sound, Grenville Province,
Ontario, looking northeast. (GSC 204337-J)



of the host rock in the examples illustrated in this study, the
porphyroclasts are clearly not simply the short limbs of
asymmetrical folds (Fig. 43C).

The way in which a porphyroclast responds to progres-
sive deformation distinguishes it from stiff inclusions com-
prised of rock fragments (see section General winged
inclusions). When a relatively large single crystal deforms
by crystal-plastic processes, the concentration of lattice dis-
tortion in its outer parts is relaxed by dynamic recrystallization
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Figure 44. Experimental ‘winged’ porphyroclasts I. In the
deformation experiments of Passchier (Passchier and Simpson,
1986), a rigid cylinder of circular section was set in a soft matrix.
A passive marker circle inscribed on the matrix around the cylin-
der, subjected to sinistral simple shear, simulates a soft polycrys-
talline mantle about a rigid core. The maximum instantaneous
stretching axis runs from top left to bottom right. By incrementally
transferring the shape of the deformed passive marker to a new
model, into which is set a cylinder of smaller diameter, the
experiment sequentially simulates progressive recrystallization of
the core, as well as deformation and rotation of the mantle.
Accordingly, the experimentalist can vary the ratio of the recrys-
tallization rate (R) to the shear strain rate (}). In all cases, the soft
polycrystalline mantle is initially drawn out along the direction of
maximum finite extension. With progressive deformation, the
distal part of the deformed mantle flows along the direction of
maximum finite extension and tracks its rotation towards the flow
plane. The geometry which results is in part dependent upon the
R/y ratio. At high normalized recrystallisation rates (R/), a full
mantle is maintained around the porphyroclast and the overall
core-and-mantle geometry resembles the Greek letter sigma (o).
At low normalized recrystallisation rates, the geometry of the
structure resembles the Greek letter delta (5). Taken from Pass-
chier and Simpson (1986).

(e.g. Nicolas and Poirier, 1976; Poirier and Guillopé, 1979;
Poirier, 1985; Tullis and Yund, 1985). This results in a
core-and-mantle microstructure; a relatively stiff relic
monocrystalline core, surrounded by a relatively soft poly-
crystalline mantle (White, 1976). The soft mantle may de-
form into a pair of lateral appendages or wings, drawn out
on either side of the inclusion. In a series of physical experi-
ments, Passchier (Passchier and Simpson, 1986) and Van
den Driessche and Brun (1987) have successfully modelled
the evolution of the geometry of core-and-mantle structures
subjected to bulk progressive simple shear (Fig. 44, 45).

By varying the ratio of the recrystallization rate to the
shear strain rate (R/y), Passchier was able to produce a range
of different geometries with increasing strain (Fig. 44). The
basis of the experiment is that when a stiff crystal, circular in
section, progressively recrystallizes at its periphery it feeds
new grains into a soft, polycrystalline mantle capable of
undergoing shape change. For experimental convenience, the
deformation was performed in steps; an increment of recrys-
tallization followed by an increment of imposed bulk simple
shear. The geometry which results is in part dependent upon
the R/y ratio. Recrystallization feeds new daughter grains into
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Figure 45. Experimental ‘winged’ porphyroclasts Il. In the
deformation experiments of Van den Driessche and Brun (1987)
a relatively stiff, rectangular core was set in a soft matrix. Colour
added to the matrix immediately adjacent to the core simulated a
soft polycrystalline mantle, rheologically indistinct from the enclos-
ing matrix. The mantle was initially of even thickness all around
the inclusion. Prior to deformation, the inclusion was oriented with
its long dimension at «=90° (upper and middle) or «=45° (lower).
The initial configuration was subjected to progressive simple
shear. The mantle flowed with the matrix and the resulting wings
attempted to track the direction of maximum finite extension. In
keeping with progressive simple shear, the inclusion has rotated
faster than the attenuated mantle wings (Fig. 23). The overall
structure shows a marked stair-step geometry (Fig. 43). With one
exception (middle-right), the wings are curved along much of their
length, despite the high shear strain values (y). Taken from Van
den Driessche and Brun (1987).
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the proximal parts of the deforming polycrystalline mantle and
attempts to compensate the attenuation of the mantle shape. At
high normalized recrystallization rates (R/}), a full mantle is
maintained around the porphyroclast and the overall core-and-
mantle geometry resembles the Greek letter sigma (o). At low
normalized recrystallization rates, the mantle is rapidly depleted
at the edge of the porphyroclast and most of the porphyroclast
is in direct contact with the rock matrix (d in Fig. 44). The
core-mantle contacts are reduced to two small zones, one on
either side of the porphyroclast. Initially these zones lie in the
extensional quadrants of the flow, but rotate progressively to lie
in the shortening quadrants. At this stage, the geometry of the
structure resembles the Greek letter delta (3).

In natural examples, the deflection of the attenuated man-
tle adjacent to the core occurs due to viscous drag as the
circular porphyroclast rotates. Because the mantle is effec-
tively uncoupled from the core, the point of contact between
the rotating porphyroclast and the mantle can only migrate to
the point where the mantle makes a tangent with the porphy-
roclast outline. Further rotation of the porphyroclast does not
modify the geometry of the structure. Note that both ¢ and &
structures result in a stair-step geometry (Fig. 43), wherein
the attenuated mantle flats are linked by a core step.

The boundary conditions of the experiments performed
by Van den Driessche and Brun (1987) were very similar to
those of Passchier (Passchier and Simpson, 1986) for low R/y
ratios. However, these experiments were carried to greater
shear strains than those of Passchier, and the initial core was
rectangular. Van den Driessche and Brun showed that even
at shear strains of y>11, the wings of the structure are strik-
ingly curved, clearly oblique to the flow plane all along their
length and show a marked stair-step geometry (Fig. 45).

In their initial stages of development, the shear-sense
significance of natural o and § structures is readily deduced,
since the direction of elongation of the polycrystalline mantle
is clearly close to that of the maximum infinitesimal extension
(Fig. 44). However, even assuming that the orientation of the
bulk flow plane is known, does the sense of obliquity between
the deformed mantle and the flow plane give an unambiguous
sense of shear in the more mature stages of mantle develop-
ment? (e.g. a8 and b8 in Fig. 44). Clearly not, since a single
example of such a geometry does not enable the geologist to
observe evidence for a rotation of the principal directions of
finite strain with respect to the instantaneous stretching axes
of the flow, or with respect to the flow plane. Moreover, the
geometry of a mature o structure bears a resemblance to a
rotated pressure shadow (see section Rotated pressure shad-
ows); yet, kinematically the two structures represent opposite
senses of shear (compare a5-al0 and b5-b10 in Fig. 44 with
Fig. 63B). The kinematic significance of mature ¢ structures
is only apparent when a number of examples are present in
the rock, representing several stages of development, from
which to reconstruct the progressive deformation history.

By way of contrast, a single example of a mature §
structure contains all of the information required to determine
the sense of shear. The shear-sense is directly read from the
sense of drag of the polycrystalline wing in the vicinity of the

porphyroclast. While this is intuitively obvious, the technical
explanation may be read in the rotational behaviour curves
for simple shear (Fig. 23). Referring to Figure 44, in simple
shear, a passive marker oriented at an angle of «>45° (d1)
rotates more slowly than an inclusion of circular, or sub-cir-
cular section. As its shape becomes attenuated with strain, the
rotational behaviour of the mantle wing approaches that of a
passive marker, hence its rotation rate slows to zero as it
approaches the flow plane (d3-d10). Note that, beyond the
initial stages of deve]opmem (d2), the rheology of the poly—
crystalline mantle is not pertinent to the discussion, since
even rigid elongate appendages would show the same rota-
tional behaviour as a passive marker. The core continues to
rotate with progressive deformation ata constant rate and, due
to the viscous drag at its boundary, deflects the proximal part
of the mantle wing (d3-d7). The deflection reflects the rota-
tion of the porphyroclast, which directly reflects the shear-
sense of the flow.

General winged inclusions

In addition to winged porphyroclasts, where the wings are
derived by recrystallization of the central inclusion, it is
possible to define a more general set of winged structures. We
use the term winged inclusion to refer to any stiff inclusion
attached to relatively thin, planar, external wing-like append-
ages (Hanmer, 1984a). Others have used the term rolling
structure (Van den Driessche, 1986b). Independently of
their internal structure, the overall geometry of winged inclu-
sions generally conforms to the following geometry, as ob-
served looking along the rotation axis of the flow (Fig. 43):

(1) The inclusion is elliptical; only rarely is it circular in
section.

(2) The long dimension of the inclusion can make any angle
(a) with the normal to the shear plane. Nonetheless, we
are struck by the frequent occurrence of field examples
where the long dimension of the inclusion lies within the
angular range 90°<a<180° of the flow (Fig. 43C, 47A,
48, 49 and 50). Given the small number of examples in
any given outcrop, it is difficult to support this contention
statistically. However, quantitative support is derived
from the analysis of ‘naked inclusions’ (section Naked
inclusions).

(3) In the mature structure, the wings are often straight and
in-plane (Fig. 43C, 46A, 47B, 48, 49 and 50). The wings
of the structure may show a stair-step geometry in the
less mature stages of development, though some mature
examples preserve the stair-step (Fig. 46B, 47A).

Some inclusions are comprised of porphyroclasts of
feldspar, often the relics of once very coarse pegmatite
which has suffered extensive dynamic grain size reduc-
tion. The fine grained, polycrystalline wings attached to
these inclusions may be either monomineralic feldspar or
quartzo-feldspathic aggregates. There is no prima facie
reason to suppose that the wings were derived from the
porphyroclast with which they are now spatially associ-
ated (Fig. 46A, B). Other inclusions are polycrystalline



Figure 46. Natural winged porphyroclasts. Dextrally rotated ‘5-type’ winged feldspar porphyroclasts in mylonite, observed in
the XZ plane of the finite strain ellipsoid. Derived by the mechanical degradation of pegmatite. Shear-sense along the shear plane
is shown. Note the triangular volumes of matrix entrained between the inclusion and the wings. (a) The porphyroclast is circular
in cross section. The wings are straight, except adjacent to the porphyroclast, and show an in-plane geometry, implying that the
flow plane was significantly extended during part or all of the progressive deformation. (b) The long dimension of the elliptical
porphyroclast lies in the angular range 90°<« <180°. The wings are straight, except adjacent to the porphyroclast, and show a subtle
stair-step geometry, stepping to the left. While the orientation of the inclusion could indicate general noncoaxial flow, the preservation
of the ‘stair-step’ geometry suggests that extension of the shear plane was probably minor. Both examples are from Great Slave
Lake Shear Zone, N.W.T., looking down. (GSC 204776-P and GSC 204337-I)

Figure 47. Natural winged inclusions I. Elliptical, dextrally rotated winged quartzite inclusions in a marble mylonite, observed in
the XZ plane of the finite strain ellipsoid. Shear-sense along the shear plane is shown. Triangular volumes of matrix were entrained
between the inclusions and their wings. The white marble of the wings is similar to marble bands within the mylonite matrix; it was
not derived from the silicious inclusions. (a) The wings show a subtle stair-step geometry. Away from the inclusion, the right-hand
wing shows a similar sweeping curve to those produced experimentally in ideal simple shear (Fig. 45). The marble wings are
composed of relatively coarse, graphite-poor material, initially formed in pressure shadows in the extensional quadrants of the flow
(see section Pressure shadows). The pressure shadows, the right-hand one of which is particularly well preserved, have rotated
toward the shear plane with progressive deformation. An imaginary line linking the proximal parts of the pressure shadows has
been rotated into the angular range 90°<a <180°. Whereas the orientation of the inclusion is probably not kinematically significant,
the preservation of the stair-step geometry of the wings suggests that extension of the flow plane was relatively minor. (b) The
wings show an in-plane geometry. Unlike (a), there is no evidence to suggest that the wings were derived by the deformation of
pressure shadow material. Note the entrained triangular volume of matrix between the wing and the inclusion (right). The combined

features of the structure suggest that extension of the shear plane of the deformation was important during some part of the
deformation.

Both examples from the Central Metasedimentary Belt, Grenville Province, Ontario, looking northeast. (GSC 204775-F and
GSC 204776-M).
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and often polymineralic. Their wings may be deformed
pressure shadows (Fig. 47A) or they may be bands of matrix
material, entrained by the rotating inclusion (Fig. 47B). Several
of the examples of inclusions illustrated here are simply thicker
segments of otherwise thin rock layers and are not necessarily
rheologically distinct from their wings (Fig. 48, 49). The salient
points to retain here are that a general model for the rotational
behaviour of winged inclusions (i) cannot be specific to a given
process of wing differentiation (cf. Passchier and Simpson,
1986), (ii) must account for both stair-step and in-plane geome-
tries (cf. van den Driessche and Brun, 1987), and (i) it must

Figure 48. Natural winged inclusions Il. A dextrally rotated
swell in an heterogeneously extended amphibolite dyke in a
mylonite matrix, observed in the XZ plane of the finite strain
ellipsoid. Shear-sense along the shear plane is shown. The long
dimension of the inclusion lies in the angular range 90°<«<180°.
The wings are materially continuous with the inclusion and show
an in-plane geometry. Note the development of pegmatite (light
grey) in the extensional quadrants of the flow, adjacent to the
inclusion (upper right and lower left). The orientation of the inclu-
sion and the in-plane geometry of the wings imply that the flow
plane was significantly extended during part, or all, of the defor-
mation history. Great Slave Lake Shear Zone, N.W.T, looking
down. (GSC 204337-N)

allow for cases where the wings are materially continuous with
the inclusion, as well as cases where the wings and the inclusion
are uncoupled.

Instead of a stair-step configuration (Fig. 46B, 47A), the
overall geometry of many natural examples of well developed
winged inclusions is one of in-plane straight wings, deflected
out of their far-field orientation in the vicinity of the inclusion
(Fig. 43C, 46A, 47B, 48, 49 and 50). There are two possibili-
ties: either the stair-step was never present, or it has been
destroyed during progressive deformation.

First consider the case where an initial stair-step may have
been destroyed. In order for an initial stair-step to transform
to a mature structure wherein the wings lie in-plane, both the
inclusion and the wings must have lain in-plane at some
intermediate stage of the deformation (Fig. 43B). This can
only occur if the entire structure is extended in the flow plane,
such as would be the case in general noncoaxial flow. Further
progressive shearing will have no effect on the orientation of
the attenuated wings in the mature structure, since they are at
restin the flow plane (Fig. 23). Only the stubby inclusion will
continue to rotate forwards (Fig. 43B) and, in doing so, it will
deflect the proximal part of the wings. From a comparison of
Figure 23 and the section Naked inclusions, the overall ge-
ometry of an in-plane winged inclusion structure, wherein the
inclusion itself has attained a rest position within the angular
range 90°<a<135°, can be readily explained in terms of a
progressive general noncoaxial flow. A natural example
showing many of the above mentioned stages of development
is described in detail in Figure 50. A corollary to the foregoing
model is that those mature winged inclusions which preserve
a stair-step in their overall geometry (Fig. 46B, 47A) must
have formed in flow approximating simple shear.

Now consider under what circumstances an in-plane
winged inclusion might form without passing through a
stair-stepped stage. The structure could have been heteroge-
neously extended along the shear plane of the deformation
prior to rotation of the inclusion (Fig. 51A). This implies that

Figure 49. Natural winged inclusions lll . Setting and detail of a sinistrally rotated, thick segment of quartzo-feldspathic gneissic

layering, materially continuous with the stretched and thinned part of the same layer, observed in the XZ plane of the finite strain
ellipsoid. Shear-sense along the shear plane is shown. The strongly attenuated layering is parallel to the shear plane. The long
dimension of the inclusion lies in the angular range 90°<« <180°, suggesting general noncoaxial flow. Central Metasedimentary Belt
boundary thrust zone, Grenville Province, Ontario, looking north-northeast. (GSC 204775-A)
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Figure 50. Fast wings and slow inclusions. Occasionally, the rotational behaviour of the component parts of natural winged
inclusions can be observed at various stages of structural development. This illustration is of feldspar inclusions and polycrystalline
feldspar wings, derived by the mechanical degradation of granitic pegmatite in an ultramylonite with a dextral sense of shear. The
observation surface is the XZ plane of the finite strain ellipsoid. Shear-sense along the shear plane is shown. The stair-stepgeometry
of the immature structure (a) can be described in terms of two elements: (i) an inclusion of moderate to low aspect ratio, oriented
with its long dimension lying in the extensional quadrants of the flow at approximately «=80° and (ii) straight wings of very high
aspect ratio, attached to the apices of the inclusion and oriented in the extensional quadrants of the flow at «=85°.

Insimple shear, within the range 45°<« <90°, the wings would rotate towards the shear plane more slowly than the inclusion, because
of the sensitivity of the rotation rate to the aspect ratio of the object (see Fig. 23). Hence, an ad hoc explanation would be required
to account for the observed geometry. However, in a general noncoaxial flow, where 0<Wk<<1, the relative rotation rates of the
inclusion and the wings could be used to predict the observed geometry (see Fig. 43B). Had deformation continued, example a
would have progressed to an ‘S’ shaped stair-step geometry, wherein each straight wing would be parallel to the shear plane along
its length, even adjacent to the inclusion. (b) and (c) represent more advanced stages. Note that their wings lie in-plane and that
the inclusions both lie with their long dimension oriented within the angular range 90°<« <180°. Compare these with the geometries
in Figures 43C, 48 and 49. The in-plane geometries of (b) and (c) can only be derived from initial stages such as a if there is a
component of extension along the flow direction; in other words in general noncoaxial flow. Central Metasedimentary Belt boundary
zone, Grenville Province, Québec. Taken from Hanmer and Ciesielski (1984). (GSC 204105-Q)

the inclusion was initially subjected to coaxial flow prior
to rotation, or that it was insufficiently differentiated from
its incipient wings in the earlier stages of a general non-
coaxial flow. This is probably a fairly common occurrence
in nature. Another possibility is that the wings and the
inclusion formed by inhomogeneous extension of a layer
which initially lay in the extensional quadrants of progres-
sive simple shear at «=45°. Such a layer may initially
extend inhomogeneously in its own plane (Fig. 51B).
Within the angular range 45°<a<90°, the stubby swells
rotate faster than the attenuated pinches with progressive
deformation (Fig. 23). When the line of centres of the

swells has rotated to subparallel to the flow plane, the long
dimensionsofthe swells willhaverotated intotheshortening
quadrants of the flow. There would of course be a limit to the
degreeof separationbetweentheswells. Thisscenario, while
theoretically possible,representsaserendipitoussetoffortui-
touscircumstances;itisonly includedhereforcompleteness.

In some examples, the high angle made by the wing with
the border of the inclusion at the symmetrical stage is pre-
served in the mature stage. This indicates good cohesion
between the inclusion and its rock matrix, resulting in a
contact strain area (Ramsay, 1967, p. 416) which rotates
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Figure 51. In-plane winged inclusions in simple shear. Rather
than forming by progressive general noncoaxial flow, in-plane
winged inclusions could form as a result of rotation in response to
simple shear. (A) A layer initially subjected to coaxial inhomoge-
neous extension, is subsequently subjected to simple shear along
its own plane. The stubby swells rotate with the same sense as
the vorticity of the simple shear, but the attenuated pinches remain
in the flow plane. (B) Alternatively, a layer oriented at a=45¢ in
simple shear may initially extend inhomogeneously in its own
plane. However, within the angular range 45°<a<90°, the stubby
swells rotate faster than the attenuated pinches with progressive
deformation (see Fig. 23). When the line of centres of the swells
has rotated to sub-parallel to the flow plane, the long dimensions
of the swells will have rotated into the angular range 90°<« <180°.
In light of the relative rotation and extension rates, this scenario
is rather unrealistic. It is only included for completeness.

with the inclusion. The fact that the wings are continuous
from the contact strain area into the far-field matrix, indi-
cates that the inclusion does not necessarily uncouple from
the wings (cf. Fig. 44, 45),

We wish to re-emphasise the difficulties and complexi-
ties involved in trying to interpret the rotational behaviour
of inclusions and their attendant appendages. The models
described above, predicated on the assumption of homoge-
neous flow, are easier to present than to apply unequivo-
cally to rheologically heterogeneous natural examples.
Other complexities will become even more apparent as we
now turn to examine (i) the problem of antithetic rotation
and (ii) the internal structure of pressure fringes.

BACK-ROTATED STRUCTURES

The kinematic significance of many shear-sense indicators is
directly inferred from the sense of rotation of their component
parts, as in the case of winged inclusions (see section General
winged inclusions) or C/S fabrics (see section C/S fabrics).
However, there is a category of shear-sense indicators which
rotate antithetically with respect to the sense of the bulk flow.

As we have already seen in the case of apparent deflection
of foliation wrapping around stiff inclusions, to cite but one
example (see section Inclusions), geometry alone does not
suffice to distinguish true rotation from apparent rotation.
Clearly, before proposing that a given structure has not only
undergone a true rotation, but an antithetic one at that, the
onus is on the geologist to demonstrate that other possible
interpretations can be reasonably discounted. In order to
identify true back-rotation of a structure the geologist must
be able to reasonably infer the orientation of the structure in
question, with respect to the instantaneous stretching axes
and the flow plane, prior to the rotation of the structure. Let
us therefore begin with an examination of some natural
examples of demonstrably apparent back-rotation, with re-
spect to the flow plane (Fig. 52), before turning to consider
possible examples of true antithetic rotation.

Apparent back-rotation

Consider a soft matrix subjected to coaxial progressive defor-
mation. Set a stiff layer into the matrix such that it makes an
initial angle of just under 45° with the maximum instantane-
ous stretching axis of the bulk flow and lies, therefore, within
the extensional quadrants of the flow (Fig. 52B top). Flow
within the soft matrix transmits stresses into the stiff layer
across the cohesive rheological interface. If we now continue
to subject the stiff layer to progressive deformation following
an invariant deformation path, it will extend heterogeneously
and breakup into a train of boudins. In our illustration, we
have set the rheological contrast between the stiff layer and
its matrix high enough that the boudins are blocky (Fig. 52B
top). Prior to boudinage, strain refraction across the ma-
trix/layer interface (see section Strain and flow refraction)
causes the maximum instantaneous stretching axis within the
stiff layer to lie parallel to the interface, oblique to the
extension in the matrix. Thus, the resulting train of boudins
is initially symmetrical.

Now, consider the flow pattern after the initiation of boudi-
nage. Instead of a stiff layer, the soft matrix now contains a train
of discrete stiff objects of relatively low aspect ratio, whose
rotational behaviour is a function of their shape, their orientation
with respect to the instantaneous stretching axes of the flow and
the flow type (Fig. 52B top; see also section Rotation). However,
the line of centres of the individual boudins represents a passive
marker which must also rotate. From Figure 23, it is obvious that
the rotation of the individual boudins with progressive deforma-
tion will lag behind that of the line of their centres (Fig. 52B top).
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Figure 52. Kinematically equivocal rotated boudinage. The
photograph (a) illustrates a natural occurrence of boudins whose
long dimensions are oblique to the line of their centres. The line
drawings (b) illustrate three different models capable of producing
that geometry. The case of rotated boudinage by coaxial progres-
sive deformation is adapted from Ramsay (1967). The general
noncoaxial case is indistinguishable from the first without inde-
pendent knowledge of the flow type and the orientation of the layer
with respect to the flow. The third case illustrates the application
of simple shear along the length of a train of already extended
stubby boudins. Clearly, it is not possible to determine shear-
sense from (A) without additional data. (A) is from the Central
Metasedimentary Belt boundary thrust zone, Grenville Province,
Ontario, looking southwest. (GSC 204128-C)

The result of the above experiment is well known and has
been termed rotated boudinage (Ramsay, 1967, p. 108-109).
Now extend this example to a case of general noncoaxial flow
(Fig. 52B middle). Here, the stiff layer was initially set at an
angle of just less than 45° with respect to both the maximum
instantaneous stretching axis of the coaxial component of the
flow and the flow plane of the simple shear component. The
result is geometrically very similar to that for the previous
pure shear case, except that now we can describe the apparent
anticlockwise rotation of the boudins as apparently antithetic
with respect to the shear-sense of the bulk flow. However, in
the absence of independent information concerning the flow
type and, if appropriate, the orientation of the shear plane of
the deformation, the unwary geologist might be tempted to
see in our illustrations a train of inclusions which had under-
gone a real anticlockwise rotation with respect to the line of
their centres. Clearly the anticlockwise rotation is only appar-
ent, in both of our examples (compare with 52B bottom).

The foregoing leads us to reiterate: in order to identify true
back-rotation of a structure the geologist must be able to
reasonably infer the orientation of the structure in question,
with respect to the instantaneous stretching axes and the flow
plane, prior to the rotation of the structure. Although this is
often easier said than done, let us now consider the possibility
of real back-rotation of geological structures.

Back-rotated foliation segments

The geometry of several naturally occurring structures has
been attributed by some workers to back-rotation with respect
to the flow plane, antithetic to the shear-sense of the bulk
flow. These include foliation fish, back-rotated anisotropic
pinch-and-swell structures (Type Ila pull-aparts of Hanmer,
1984a, 1986b) and mica fish (Lister and Snoke, 1984).

These structures all share the following common features
when observed in the XZ plane of the finite strain ellipsoid:

(1) They comprise volumes which are elongate in cross-
section.

(2) They contain an internal planar anisotropy, oriented
approximately parallel to the long dimension of the
volume.

(3) The trace of the internal anisotropy and of the long
dimension of the volume make a consistent angle of
5-10° with the bulk flow plane in the surrounding, exter-
nal material. In a population of such structures, the sense
of obliquity is constant.

Mica fish and back-rotated pinch-and-swell structures
represent volumes of material of different composition and/or
grain size compared with their enclosing matrix. In contrast,
foliation fish are simply segments of the same foliated mate-
rial as the surrounding rock, distinguished only by the orien-
tation of their internal anisotropy. Hanmer (1986b)
considered back-rotated swells and foliation fish in two sub-
sets: (i) those associated with discrete asymmetrical exten-
sional shears (see section Asymmetrical extensional shear
bands; Fig. 53) and (ii) those without (Fig. 54). In the former

45



Figure 53. Natural back-rotated layer segments. Type IIb
asymmetrical pull-aparts. (a) Back-rotated segments of layers
ina banded mylonite, observed in the XZ plane of the finite strain
ellipsoid. The segments are delimited by a set of asymmetrical
extensional shear bands (section Asymmetrical extensional
shear bands) which have preferentially developed in a more
amphibolitic layer. Dextral shear-sense. The extensional shear
bands and the layer segments rotated backwards as the layer
extended. (b) Detail of A. The sense of shear along the shear
plane is shown. Great Slave Lake Shear Zone, N.W.T., looking
down. Taken from Hanmer and Lucas (1985). (GSC 204775-J
and GSC 04129-B)
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Figure 54. Natural back-rotated swells. Type lla asymmet-
rical pull-aparts. (a) Back-rotated swells in a light coloured
heterogeneously extended layer in a mylonite, observed in the
XZ plane of the finite strain ellipsoid. Note the absence of
discrete extensional shear bands between the back-rotated
swells. Dextral shear-sense. (b) Detail of a. The sense of shear
along shear plane is shown. Compart this structure with that
illustrated in Fig. 53. Great Slave Lake Shear Zone, N.W.T.,
looking down. Taken from Hanmer (1986b). (GSC 204775-1 and
GSC 204128-W)



sub-set, the back-rotation of the fish or swell is simply a
consequence of the slip on, and rotation of the asymmetrical
extensional shear bands which bound them (Fig. 53). How-
ever, in the latter sub-set, it is not intuitively obvious what
drives the structure backwards, against the shear-sense of the
bulk flow (Fig. 54).

Laboratory simulation and tentative models

Back-rotated pinch-and-swell structure has been successfully
simulated in laboratory experiment (Fig. 55; Hanmer, 1986b).
Internally anisotropic blocky boudins and pinch-and-swell
structure were deformed in bulk simple shear. The swell
structures back-rotated, whereas the blocky boudins did not.
By comparing the response of the blocky boudins with that
of the pinch-and-swell structure in these experiments, Han-
mer (1986b) proposed that the internal anisotropy was the
major factor controlling the back-rotation of the swells. Let

us examine Hanmer’s reasoning, bearing in mind that "the
fact that a particular rheological model can be used to produce
a particular geometry may merely be a demonstration of the
flexibility of the modelling process rather than its physical
aptness" (Lister and Williams, 1983, p. 26).

Two factors influence the distribution of flow within the
inserts: (i) a geometrical stress-concentrator effect due to the
presence of the sharp corners and a material stress-concentra-
tor effect due to the viscosity contrast between the insert and the
matrix (Stephanson and Berner, 1971; Stromgard, 1973; Selk-
man, 1978; Lloyd & Ferguson, 1981); and (ii) the canalizing
effect of a rheological anisotropy which maximizes slip along
the anisotropy plane (Lister and Williams, 1983).

The response of the blocky boudins suggests that the first
set of factors predominate over the second in their case.
Angular corner volumes are sites of anomalously high mean
stress (Selkman, 1978), while the inter-boudin gaps are sites

Figure 55. Asymmetrical pull-aparts in experiment. The back-
rotation of segments of planar anisotropy has been simulated in
laboratory experiment. Sections of internally anisotropic inserts,
set in a matrix of isotropic silicone putty, were subjected to bulk
simple shear. The sense of shear along the flow plane is shown.
The inserts, made of finely laminated plasticine and silicone putty,
were prepared and inlaid such that their internal anisotropy was

—'_C

parallel to their length and such that their long dimensions were
parallel to the bulk flow plane of the experiment. Two kinds of insert
were prepared to simulate initial pre-shear blocky boudins and
pinch-and-swell structure. Each boudin or swell was constructed
with an aspect ratio of circa 5-6:1 in order to suppress the tendency
to rotate through the shear plane (see Fig. 23). Prior to deformation,
arectangular grid was scribed onto the upper surface of the model.
The three photos illustrate the initial model (a), the sheared model
(b) and a detail of the sheared model (c) after a sinistral shear
strain of y=2. A third layer of very thin swells was included as a
control. The minor initial perturbation on the right of the layer did
not propagate during deformation.

The initially blocky boudins did not rotate; their long dimensions
remained in the experimental flow plane. However, the upper-left
and lower-right corner volumes adopted a curved or hooked
aspect as the boudin material flowed towards the inter-boudin gap.
The pinch-and-swell structures rotated antithetically with respect
to the vorticity of the bulk flow. The outlines of the individual,
initially symmetrical swells show a mild left-handed skewness,
reflecting sinistral slip along the internal anisotropy. Given that the
bulk deformation corresponds to ideal simple shear, the rotation
of the swells cannot simply be due to shortening along the shear
plane, i.e. they are not the limbs of folds. Note the absence of any
discrete shears in the pinches. Taken from Hanmer (1986b).
(GSC 204105-J K,L)
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of low mean stress. The boudin corner volumes respond by
ductile flow towards the region of low mean stress (Ramberg,
1955). In the case of layer-parallel shearing, the existence of
a local noncoaxial flow along the boudin long-side will result
in an asymmetrical flow distribution within the boudin. Maxi-
mum strain rates will develop in those corner volumes lying
within the extensional quadrants of the flow (Selkman, 1978).
Hence, the initially symmetrical blocky boudins develop an
asymmetry by flow from these corner volumes towards the
inter-boudin gaps. From this asymmetry the disposition of the
extensional and shortening quadrants of the flow can be
determined. Since the curvature of the ‘hook’-shaped corner
volumes records the rotation of the finite strain ellipsoid with
respect to the instantaneous stretching axes, the shear-sense
of the flow can be deduced from such asymmetrical boudins
(Fig. 56).

On the other hand, the absence of well developed corners
in the pinch-and-swell structure suggests that the canalizing
role of the internal anisotropy predominates over the compe-
tence contrast in influencing the flow within the competent
material. In the absence of geometrical stress concentrators,
the distribution of strain rate within an individual swell is
more homogeneous than in the case of angular boudins.
Therefore, the response to bulk shear is distributed through-
out a given swell and the influence of the internal anisotropy
on the flow pattern within the swell is enhanced relative to
that of viscosity contrast. In fact, the enhancement is such that
the presence of a viscosity contrast has no detectable influ-
ence and the structure can be considered as a segment of
planar anisotropy. Hence, the discussion can now be extended
to include foliation fish.

The mechanical effect of a rheological anisotropy is to
canalize and maximize slip along the anisotropy plane. Con-
sider a train of linked swells in bulk progressive simple shear.
What would be the consequence if the orientation of the
internal anisotropy deviated slightly, but randomly, from that

Figure 56. Natural shear-modified blocky boudin. Initially
blocky boudin in ultramylonite, observed in the XZ plane of the
finite strain ellipsoid. The dextral sense of shear along the shear
plane is shown. Compare with Figure 55. Note how the long
dimension of the boudin remains aligned in the shear plane of the
bulk deformation. Great Slave Lake Shear Zone, N.W.T., looking
down. Taken from Hanmer (1986b). (GSC 204129-K)
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of the bulk flow plane, while the long dimension of the swell
lay in the bulk flow plane? There are three limiting cases, the
first two of which are trivial. (i) Where the internal anisot-
ropy lies in the bulk flow plane, slip on the anisotropy results
in oblique extension of the swell, but no rotation of the
internal anisotropy, if the strain rates within the swell and the
matrix remain identical (see below). (ii) Where the internal
anisotropy lies within the shortening quadrants of the bulk
flow, extensional slip on the internal anisotropy produces an
antithetic rotation of the internal anisotropy into the bulk flow
plane (Freund, 1974; Platt and Vissers, 1980), so correcting
the deviation and suppressing the perturbation. (iii) Where
the internal anisotropy lies in the extensional quadrants of the
bulk flow, the local flow along the oblique anisotropy is a
general noncoaxial flow, because the local slip plane makes
an angle of more than 45° with the minimum instantaneous
stretching axis of the bulk flow, inducing shortening across
the local flow plane (Fig. 57). If there is material continuity
or good cohesion between the volume of oblique anisotropy
and the surrounding matrix, the general noncoaxial flow will
extend a short distance into the matrix. The long dimension
of the volume of oblique anisotropy will thus lie within the
field of back-rotation generated by the flow in its own matrix
envelope. Back-rotation of the volume of oblique anisotropy
further accentuates the deviation from simple shear within
and about the volume. The process is, however, self-regulat-
ing since back-rotation and the increasing angle between the

Bulk Simple Shear

Local General
’ Noncoaxial Flow

T /\4

Long Dimension of
Volume of Oblique  Figld of
Anisotropy Back-rotation
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Figure 57. Back-rotation of foliation segments. Model for the
back-rotation of foliation segments proposed by Hanmer (1986b).
Because of its canalizing effect, where a segment of oblique
anisotropy lies in the extensional quadrants of the bulk flow, the
flow within the volume it occupies is a general noncoaxial shear,
even when the bulk flow is simple shear. The enlargement shows
the orientation of the canalized flow within the volume of oblique
anisotropy. The canalized flow plane is oblique to the bulk flow
plane and makes an angle greater than 45° with the minimum
instantaneous stretching axis of the bulk flow; hence the local flow
is a general noncoaxial flow. If there is material continuity or good
cohesion between the volume of oblique anisotropy and the
surrounding matrix, the general noncoaxial flow will extend a short
distance into the matrix. The long dimension of the volume lies
within the field of back-rotation generated by the flow in its own
matrix envelope (lower right). Field observation suggests empiri-
cally that back-rotation is balanced by rotational hardening after
antithetic rotation of the order of 10-15°. Modified after Hanmer
(1986b).



oblique anisotropy and the minimum instantaneous stretching
axis of the bulk flow leads to a hardening of the oblique
anisotropy with respect to slip. When slip on the oblique
anisotropy becomes difficult, the deviation from simple shear
in the enveloping matrix will attenuate and the volume of
oblique anisotropy will tend to rotate synthetically in re-
sponse to continuing bulk simple shear, so softening the
oblique anisotropy with respect to slip (Fig. 57; Hanmer,
1986b).

However, it should not surprise the reader to find that
there are alternative possibilities. Consider a relatively stiff
domain in a noncoaxial flow. It can respond by a rotation of
the entire stiff volume in the same direction as the bulk
shear-sense, or shear induced vorticity may be repartitioned
into spin of the same sense. A similar, but opposite effect
could result from the presence of a relatively soft volume of
material, for example caused by the presence of a foliation.
If slip on the internal foliation results in a higher strain rate
in the weak volume than that of the bulk flow, the entire
volume must rotate antithetically in order to maintain com-
patibility; locally enhanced shear induced vorticity is coun-
tered by spin in the opposite direction. Again, this
‘back-rotation’ could be reversed by hardening after a certain
amount of rotation.

While it is tempting to attempt to apply the models out-
lined here to explain natural occurrences of back-rotated
foliation fish, etc., we must remind ourselves that they are just
models and as such they require further testing. For example,
can one demonstrate synthetic slip along the oblique anisot-
ropy segments in natural examples? So far, we have not been
able to do so.

Mica fish

Mica fish (Eisbacher, 1970; Lister and Snoke, 1984) have
certain geometrical features in common with the foliation fish
described here (Fig. 58). However, they are also frequently
associated with long, straight, narrow trails of fine white mica
which extend from the apices of the mica fish, along the shear
plane, for distances an order of magnitude greater than the
size of the mica fish. They commonly occur in mylonites
where they are oriented in the extensional quadrants of the
flow, making an angle of about 10-15° with the shear plane.
There is at present no satisfactory explanation of how mica
fish form, nor why they occur with their particular angular
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Figure 58. Mica fish. (a and b). White mica fish in quartzo-feld-
spathic mylonites oriented with their long dimensions systemati-
cally counterclockwise with respect to the mylonitic foliation, itself
parallel to the shear plane of the deformation. Observed in the
XZ plane of the finite strain ellipsoid. The sense of shear along
the shear plane is indicated. The 001 cleavage planes of the mica
fish are always oriented subparallel to the long dimensions of the
fish. Note that the trails of fine mica parallel to the shear plane
are often attached to the apices of the mica fish. Photos courtesy
of Larry Lane. Columbia River Fault, Revelstoke, British Colum-
bia, looking north (see Lane et al., 1989).

(c) ‘Calving’ of daughter mica fish from a parent grain as proposed
by Lister and Snoke (1984). Note that this sequence implies a
general noncoaxial flow. The horizontal lines drawn in a-c from
the apices of the fish are sometimes decorated with fine mica
grains. We note that the reorientation of the daughter grain in the
step from b to ¢ in this model is not self-evident. Noris it obvious
from this model why the fish do not rotate forwards with progres-
sive deformation and thus deflect the proximal parts of the fine
mica trails. Taken from Lister and Snoke (1984).

49



50



(2861) "B 10 3|jiainB[e| o) uayel (<) (2861 eliieinelejy pue jedooayoly
wouy usyel (3-y) ‘saimns auy Ag umoys (1uyBu 8y} 0} SAIND [e1SIp 0} [ewixo.d) simeand
papuey-ybu syl woiy Jo ‘maib AeuBuo Asuyr yoiym jsurebe seoey uoisnjoul auy}
o1 syuawbas aiqy Buiyoiew Aq peal eq Jaylia UED MO} 8U) JO 9SUas-Iesys [eixap ay}
‘Areusaiul *(4) plosdijje uress ajiul 8U jo uonejuslio eyl Buiosyal AewwAs [eisie|iq e
spiemo} spua} suino abully sui Jo Ajswoasb jjeiano sy ‘abuly sinssaid sinjew ayi uj

“JBaYs JO 8suas UsAID B J0j JUBISUOD S| S8Imins 8y} JO 8JNJBAIND JO 8SUSS ay] ‘seiqly
auy1 Jo 1By 0 JseAU02 U] *(4) suieped ainns xa|dwod o} asu aAlb Aew pue soeuns
uoisnjoul ay} uo AyrenBa jueoyiubis Aue Je wio} sainins yong *(3) aqno ajuAd au)
Jo J8us00 Buielol 8y} Jo soel} B} SHIeW ydiym sbuuy sinsseid sy} uiyim swo) (is)
a/mins € ‘18410 yoea o} Jejnolpuadied pajuslio aie S8oe) UoISNjoul JUsoelpe om} uo
moiB yoiym sjuswbes aiqy snosuelodwsjuod aoulg (3) ebuwy ainssaid sy jo pua
[ewixo.d paLulojep Ssa| aui 1e paaasaid Ajuo st ainjeaino Buong “plosdijje uiess ajuly
au) jo auejd AX 8y} ¥oel 0} Jdwsele pue WIoJap SaA|esWaY} Saiql) Bu} se pajenuale
SI @InjeAInd aigy 8y} ‘UmolB pue UOILOISID ‘UONEIO) JO SJUBWaIOUl [BIBABS Jaly
‘(2 Bi4 @9s) piosdijje uless ayul 8y} Jo

aued (A/x) Buiuene)y Buielos A|MO|S BI0LU B} SPIEMO] UOKBIUSLIO Yimoib pajjosuod
-goe} Buibueyd Apides Ajsanejes Jisy) Wwouj uonew.ojep anissaiboid Aqg psios)jep aie
s8.1q1} 8y} {japou siy} ul adfy moyj Jeays ajdwis sy} pue saiql 8y} Jo ainjeu s|gellioep
sy} spoajjal siy] ‘(4 pue 3 yum g asedwos 3 ped ul §) UOISUSIXS 81Ul WNWIXEU JO
uonoaIp 8y} Wwouj Aeme Jo piemo) Buyeios sem Buimoib sism saiqy ey yoiym jsurebe
aoe} [e1sA10 8y} O} [BWLIOU By} Jayjaym uodn Buipuadep ‘e|qeueA S| suewbes uiLlim
8.nJBAIND JO 8SUSS By} ‘1enamoH (3 ‘ybu ey 0} 8AIND [BISIP O [ewixoid) BINjeAIND
papuey-ybu e smoys Juswbss o} Juswbas wol uolejusuo a.qy abeieae 8yl

‘g0e} [E1SAI0 8lIAd By} 0 Jejnoipuadiad pajusiio saiql syl yim smoib

[eusyew sBuLly mau Jo Juswwasoul 1xau ay | *(gz ‘Bi4 88s !q) uoisnjoul 8y} woy Aeme |ind
0} pusa) pue (adeys ey} jo asneoaq) aiukd sy} ueyl Aimojs siow ayeios ssbully ay |
-1ayjab0] Wwiojep abuly ainssaid 8y} pue XuewW ay} ajiym ‘suin} ajuAd sy ‘Jusweloul
|epouw 1xeu ay} Buung *(q) 9o} [eishio aluAd sy o} sejnolpuadied pajualio aie S8.qy
au1 1By} yons says aunssaid-mo| asay) je smoib [eueiew snoiqi4 “mojj 8y Jo sixe Bul
-(2]81}S SNOSUBIURISUI WNWIXEW 8} yiim sa|Bue jueoyiubis Bunjew saoej o jusoelpe
xi1ew s}l pue ajuAd sy} usamiaq uado o} sdeb 1o} Aouspual e si a1y} ‘Moj} ¥Ing 8yl Jo
siueipenb Bujusuioys sy} ul wajqoid aoeds auy} sjeirs|ie Aew uonnjos s.nssald ajIUM
‘(D) yorew jou op aoepajul xuyew/siuAd

paLuIojep [epoW 8} pue uoisnjoul pajelol ayy Aq paidnaoo sawnjoa ay ‘(g) pue ()
Bujuiquio “soepsiul xuyew/a1Ad ay) ssoloe 1senuo [eaiBojoay. aul Buuoubi ‘ejuAd
ay1 Jo sunno sy Buiwiojep Aq pajuesaidas si sy ‘japow syl Ul *(g) adA) moy Jesys
edwis sy} 108|181 YoIym suonelos pue ubus| ul ssbueys obiepun xurew Buisojous
oy} Ul Seul| [BusIEW ‘Bl SWeS 8yl Y (3 0} @ O ) uole)ol By} syoey asenbs
jlews ay} ‘(gz "Bi4) Jeays yng pasodwi sy} 8y} Se 9SUSS SLUES 8} Ul 8Bl JUBISUOD
E e sejelol aqno auAd e ‘uoisnjoul Juenba ue sy ‘Yimoib jo Jusliaoul Ue pue uol
-BLUIOJEP 1O JUSLUSIOU| UB SE UOIBUIIO) 81q1) JO JUSWaJoul Ue [apoll (/86 1) dlielAele|
pue Jedooayolg ‘Xulew 8y} Se Yeam SE aq 0} pawnsse S| [eusiew abuly ay) aisy
pajessn|) ajdwexe sy} uj “1eays ajdwis [enxep ansselb0.d ul pauLIOjep pue pauLIo)
$81ql} 8|qELLLIOEP ‘Pa||0AIUCD-30B "S3iql} I|GBULIOOP Pa||ojuod-ad. "6S ainbi4

51



relationship to the mylonitic foliation. We suggest that the
analysis of back-rotated anisotropy segments summarized
above may provide a potentially fruitful avenue in the search
for a kinematic explanation for the shear-sense which Lister
and Snoke (1984) originally proposed for the structure. Note
that Lister and Snoke consider mica fish as porphyroclasts,
whereas it is possible that the micas could grow synkinemati-
cally.

We are unable to offer an explanation for the mica trails.
Clearly, since they are not ubiquitous, they do not constitute
an essential feature of mica fish. Lister and Snoke (1984)
suggested that the mica grains comprising the trails are ‘frag-
ments’, implying that they represent debris torn away from
the mica fish (Fig. 58). Their length should therefore be
related to the amount of slip accommodated on a given slip
surface within the matrix enclosing the mica fish. We hesitate
to subscribe to the notion of fragments, since it is quite
possible that the trails include acomponent of material carried
along a direction of easy transport by advective or diffusive
mass transfer.

In summary, mica fish have been shown empirically to
show a systematic angular relationship to shear-sense in cases
where the shear-sense of the flow has been independently
established. While they are useful tools, further efforts are
required if we are to understand them.

PRESSURE SHADOWS
AND FRINGES

Pressure fringes (Fig. 59, 60) are elongate volumes of quartz
or calcite precipitated adjacent to stiff crystals or aggregates
in fine grained rocks (e.g. Fairbairn, 1950; Zwart and Oele,
1966; Choukroune, 1971; Durney and Ramsay, 1973; Beut-
ner and Diegel, 1985; Etchecopar and Malavieille, 1987). In
terms of their general shape and spatial relationship to inclu-
sions, pressure shadows resemble pressure fringes, but they
are polycrystalline aggregates without internal shape fabrics.
Put loosely, fringes have an internal fibrous structure, while
shadows do not (Spry, 1969, p. 240-247). While Spry’s
definition of a pressure fringe is certainly more complex than
this, very few structures correspond exactly to Spry’s formu-
lation. Pressure fringes have recently been comprehensively
reviewed (Ramsay and Huber 1983; Etchecopar and Mala-
vieille, 1987). Despite their more common occurrence, pres-
sure shadows have not received the same detailed
consideration.

All pressure fringes and most pressure shadows are vol-
umes of material deposited at the contact between the stiff
inclusion and its less competent matrix by precipitation from
solution. Material may be transported to the site of precipita-
tion by diffusive and/or advective mass transfer. The nature
of the inclusion may range from a cubic crystal of pyrite to a
block of amphibolite, while the precipitated material can be
anything from quartz or calcite to mica or feldspar. Some
workers have extended the term ‘pressure shadow’ to include
features derived by the deformation of core-and-mantle mi-
crostructure (Takagi and Ito 1988), essentially identical to the
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initial stages of formation of sigma-shaped (¢ ) winged porphy-
roclasts (Fig. 44). Unfortunately, we find that this practise leads
to some confusion. We suggest that the terms ‘shadow’ and
‘fringe’ should only be employed in reference to material not
derived by recrystallisation from the associated stiff inclusion.

What determines the site of precipitation at the inclu-
sion/matrix interface? When subjected to progressive defor-
mation, the soft matrix tends to flow away from those
inclusion faces making an high angle with the maximum
instantaneous stretching axis of the flow, simply because the
matrix extends faster than does the stiff inclusion. The result
is a zone of anomalously low pressure. Whether by fluid
advection or by fluid-enhanced diffusion, material migrates
along the pressure, or more correctly the chemical potential
gradient, towards the low pressure zones (e.g. Durney and
Ramsay, 1973; Rutter, 1976, 1983). The distinction between
pressure fringes and mass-transfer associated pressure shad-
ows is a reflection of the processes occurring at the reaction
site in the low pressure zone.

Pressure fringes

The general outline of a pressure fringe can be smooth to
irregular. The disposition of the long dimension of the fringe
with respect to the general orientation of the matrix foliation is
variable. Some examples are oblique, while others are parallel;
the longer the fringe, the greater the tendency to a parallel
disposition. The internal structure of the fringe is often seg-
mented. The material within each segment is fibrous and the
fibre orientation may change abruptly across the segment
boundaries. Durney and Ramsay (1973) distinguished two end-
member types of fringe; (i) crinoid-type, where fibres grow
syntaxially with respect to the inclusion, and (ii) pyrite-type
where the fibres grow antitaxially. The latter type is by far the
more common and will be dealt with here; we refer the interested
reader to the excellent illustrations of the former in Ramsay and
Huber (1983). Two types of phyllosilicate fringe have been
described. Mugge (1930) described fan-like phyllosilicate
fringes; however, we are not aware of any publication using such
structures as shear-sense indicators. Williams (1972) described
beard-like mica fringes which may be considered as a simple
phyllosilicate equivalent of the geometrically more complex
quartz or calcite fringes. In this contribution, we shall concen-
trate on quartz and calcite fringes.

Pressure fringe fibres are classified into two types, accord-
ing to the nature of the phenomena controlling their orienta-
tion at the growth site; (i) face-controlled, where the fibres
grow perpendicular to the growth surface, and (ii) displace-
ment-controlled, where the fibres grow parallel to the direc-
tion of displacement of the walls of the void filled by
precipitation of the fibres (Fig. 61; Durney and Ramsay,
1973; Ramsay and Huber, 1983).

Displacement-controlled fibres

The internal geometries of displacement-controlled fringes
are relatively simple. Even in noncoaxial flow, if the flow
type remains invariant, the orientation of the boundaries of



new fibre segments is constant throughout the progressive
deformation (Fig. 60). The inclusion need not be bound by
euhedral crystal faces, but could consist of framboidal pyrite,
or any kind of aggregate. However, even adjacent to euhe-
dral pyrite crystals, the fibres can lie oblique to the py-
rite/matrix interface (Choukroune 1971; Ramsay and Huber
1983; Etchecopar and Malavieille 1987). During progressive
simple shear, flow in the matrix tends to draw the previous
growth increment(s) of fringe material away from the inclu-
sion; the inclusion undergoes a rigid-body rotation while the
fringe undergoes a rotation and possibly a shape-change.
New fibre segments are formed at the inclusion/matrix inter-
face, oriented at «=45°, parallel to the maximum instantane-
ous stretching axis. After several increments of rotation and
growth the average fibre orientation from segment to seg-
ment describes a proximal to distal curvature, reflecting the
rotation of the finite strain ellipsoid with respect to the
directions of the instantaneous stretching axes and indicating
the shear-sense of the flow (Fig. 61B).

Face-controlled fibres

The internal geometries of face controlled fringes are poten-
tially more complex than those of displacement controlled
ones. The classical examples of face-controlled fibres are
associated with euhedral crystals of pyrite in fine grained
meta-pelites (Fig. 59, 61). Elongate crystals (fibres) of quartz

or calcite grow adjacent to the pyrite. As an equant inclusion,
a pyrite cube rotates at a constant rate in the same sense as
the imposed bulk shear. At the same time, material lines in
the enclosing matrix undergo length changes and rotations
which reflect the simple shear nature of the flow. There is a
tendency for the matrix material to flow away from the pyrite
in the extensional quadrants of the deformation (Fig. 59).
Fibres of new material grow in optical continuity with the
matrix grains on which they nucleate and are oriented perpen-
dicular to the pyrite crystal face. During subsequent deforma-
tion increments, the pressure fringe material is carried along
or deforms with the flowing matrix. According to theoretical
models (Fig. 59), the pyrite rotates while the pressure fringe
pulls away and uncouples from the inclusion. The new incre-
ment of fringe material grows in the resultant gap, with the
fibres oriented perpendicular to the pyrite crystal face. Mean-
while, the fibres of the previous growth increment(s) undergo
a further change in length and/or a rotation. In simple shear,
because of the difference in aspect ratio (R), the elongate
fringe rotates more slowly than the equant inclusion (Fig. 59).

Since contemporaneous fibre segments which grow on
two adjacent inclusion faces are oriented perpendicular to
each other, a suture forms within the pressure fringe which
marks the trace of the rotating corner of the pyrite cube (Fig.
59; see Ramsay and Huber (1983) and Etchecopar and Mala-
vieille (1987) for detailed description and analysis). In con-
trast to the fibre orientation, the sense of curvature of sutures

Figure 60. Displacement-controlled rigid fibres formed in dextral simple shear. In the example illustrated here the fringe material
is assumed to be as stiff as the inclusion. Etchecopar and Malavieille (1987) model an increment of fibre formation as an increment
of deformation and an increment of growth. In their model, the principles governing formation of the site of growth of the pressure
fringe material are as outlined in Figure 59. During the increment of deformation, flow in the matrix draws the pressure fringe away
from the inclusion. Both the inclusion and the fringe undergo a clockwise rotation. In the model, because of the difference in their
aspect ratios, the inclusion and the fringe rotate at different rates; since the bulk model flow is simple shear, the equant inclusion
rotates faster than the pressure fringe, within the range 45°<a<90° (Fig.23).

New fibre segments are formed at the inclusion/matrix interface, oriented at «=45°, parallel to the maximum instantaneous stretching
axis of the flow. After several increments of rotation and growth the average fibre orientation from segment to segment describes
a right-handed curvature (proximal to distal curvature to the right), reflecting the rotation of the finite strain ellipsoid with respect to
the instantaneous stretching axes. In a mature pressure fringe, the overall geometry of the fringe outline tends toward an
asymmetrical ‘hook’ shape whose overall right-handed curvature (proximal to distal curve to the right) marks the dextral sense of
rotation of the structure.

The fibres in the distal segments are more curved than in the more proximal segments. This reflects a deceleration of the rotation
rate of the pressure fringe with increasing deformation. At a constant bulk strain rate in simple shear, two factors lead to a decrease
in the rotation rate of an inclusion (Fig. 23): (i) a decrease in the obliquity with the shear plane and (i) an increase in the aspect
ratio. Both of the factors apply to the case examined here and contribute to the decreasing curvature of the fibres.

lllustration taken from Etchecopar and Malavielle (1987).
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Figure 61. Natural rigid fibres. (a) Rigid, face-controlled fibres in
pressure fringes showing a variety of internal geometries and stages
of development on 1-2 mm subhedral pyrite cubes in dextrally
sheared quartzite. (b) Rigid, displacement-controlled fibres in pres-
sure fringe developed on 2 mm euhedral pyrite crystal in sinistrally
sheared metapelite. (¢) As in a, except that the sense of shear is
sinistral and the face-control on the orientation of the quartz fibres
is clearly visible. All examples observed in XZ plane of the finite strain
ellipsoid. Shear-sense along the shear plane indicated. (a) South
Armorican Shear Zone, Brittany, looking down. (b) French Pyrenees
(Lourdes); photo courtesy of Jacques Malavieille. (GSC 203942-K).
(c) Wilson Island Group, Great Slave Lake, N.W.T., looking
northeast, top to right. (GSC 205186-A)
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Figure 62. Simple pressure shadows. Dextral pressure shadows developed in mylonites, observed in the XZ
plane of the finite strain ellipsoid. Shear-sense along the shear plane is shown. (a) Non-fibrous quartz pressure
shadows developed at the boundary of a feldspar porphyroclast. The sharp outlines of the discrete pressure
shadows suggest that they are void-fill precipitates, rather than metasomatic in origin. (b) Non-fibrous plagioclase
pressure shadows developed at the boundary of a garnet porphyroclast in a mylonite, observed in the XZ plane of
the finite strain ellipsoid. The indistinct outlines of the pressure shadows suggests that they might be metasomatic
in origin, rather than void-fill precipitates. Both (a) and (b) formed in the extensional quadrants of the flow. New
material was added to the shadows at the interface with the inclusion. The mildly developed ‘S*-shaped sigmoid
form of the shadows is due to the deformation and rotation of the more distal parts of the shadows which in turn
reflects the clockwise rotation of the finite strain ellipsoid with respect to the instantaneous stretching axes
of the flow and the flow plane. Both examples are from Great Slave Lake Shear Zone, N.W.T., looking down.
(GSC 204775-Q and GSC 204786-T)



is constant for a given sense of shear. Internally, the shear-sense
of the bulk flow can either be read by matching fibre segments
to the inclusion faces against which they originally grew, or
from the proximal to distal curvature of the suture.

Fibre stiffness

Ramsay and Huber (1983) examined the relative rheology of
fibres in fringes. Deformable fibres undergo distortion with the
matrix and the overall shape of the fringe tends to resemble that
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of the strain ellipse in the section of observation (Fig. 59). In
noncoaxial flow, assuming displacement-controlled growth,
the older sections of fibre would attempt to track the XY plane
of the finite strain ellipsoid and rotate towards the flow plane.
Thus the proximal to distal curvature of the fibres within the
fringe records the sign of the shear-induced vorticity of the
flow, and can be used to determine the sense of shear. How-
ever, the complexity of the internal fibre geometry in the older
growth increments is attenuated with progressive deforma-
tion as the internal angular discordances are modified by
change in length and rotation of the fibres. Note that the
rotation of the inclusion itself is not necessarily a factor in the
determination of the shear-sense of the flow. If we assume
face controlled growth (Fig. 59), the resulting internal struc-
ture of the pressure fringe is more complex.

Rigidfibres form under similar conditions of flow and growth
to those described for deformable fibres. However, they record the
rotational component of the deformation as a rigid-body rotation
(Fig. 60, 61). Since the pressure fringe itself is rigid, the growth
site could potentially switch to the distal ends of the fringe, where
secondary fringes recording the displacement direction may form.
Such fringes may be spectacularly developed (Choukroune, 1971.
Fig. 3). Since the fibres are rigid, the complexity of the internal
fibre geometry in the older growth increments does not attenuate
with progressive deformation, but is preserved (Fig. 61).

A paradox?

At this point we wish to point out an apparent internal
contradiction within both the displacement-controlled and
face-controlled fibre models. Most workers accept, implicitly
or explicitly, that the axis of rotation of both the inclusion and
the components of the fringe lies within the pyrite (Etcheco-
par and Malavieille, 1987). This implies that the fringe does
not uncouple from the inclusion. Yet, it is a simple observa-
tion that the proximal parts of pressure fringes are not en-
trained by the rotation of the adjacent inclusion, in the manner
of delta-shaped (5) winged inclusions (see section Winged
porphyroclasts). Furthermore, we point out that whereas the

Figure 63. Rotated pressure shadows. (a) Pressure shadow
form adjacent to those faces of stiff inclusions which make an high
angle with the maximum instantaneous stretching axis of the flow
in the matrix. However, if the entire structure were to rotate, the
pressure shadow could be readily misinterpreted as having
formed in sinistral shear.

(b) Quartz pressure shadows on feldspar porphyroclasts in mylo-
nite, observed in the XZ plane of the finite strain ellipsoid. Al-
though the long dimension of the pressure shadows lies
anticlockwise with respect to the mylonite foliation, the pressure
shadows make contact with the lower right and upper left parts of
the perimeters of the porphyroclasts. Are these pressure shadows
formed during noncoaxial progressive deformation with a sinistral
sense of shear, or are they deformed and rotated pressure shad-
ows whose proximal parts have been dragged into the shortening
quadrants of the flow in a progressive deformation of dextral
shear-sense? In this particular case, abundant independent evi-
dence allows us to opt for the latter! (see Hanmer, 1988a). Great
Slave Lake Shear Zone, N.W.T., looking down. (GSC 204776-A)
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internal structure of face-controlled fringes is taken by all
workers to reflect the relative rotation of the pyrite with
respect to the long dimension of the fringe, there is nothing
inherent about the structure of displacement-controlled
fringes which requires that the inclusion must have rotated
with respect to the long dimension of the fringe. However,
where displacement-controlled fibres grow adjacent to an euhe-
dral pyrite crystal (Etchecopar and Malavieille, 1987, Fig. 9 and
10), re-entrants form in the outline of the fringe which match
symmetrically on either side of the inclusion (Fig. 60). They are
caused by variation in the surface area of contact at the fringe/py-
rite interface due to the relative rotation of the inclusion, coupled
with the pulling away of the fringe.

In both the displacement-controlled and the face-control-
led fibre models in simple shear, the problem remains: (i) if
uncoupling does not occur, how can pyrites and fibre fringes
rotate at different rates without entrainment of the fringes
adjacent to the pyrites? and (ii) if uncoupling does occur, why
do the two halves of pressure fringes rotate about an axis
centred on the inclusion? A potentially fruitful avenue of
research might be to investigate general noncoaxial flow
models where the fringe does not rotate, except in its most
immature stages of development.

Fibre growth

What are the processes occurring at the proximal growth site
in a pressure fringe? Most authors accept, either implicitly or
explicitly, a process of plucking of the matrix and existing
fringe material away from the inclusion, lack of material
continuity/cohesion at the inclusion/matrix interface and the
filling of a potential void (Ramsay and Huber, 1983; Beutner
and Diegel, 1985; Etchecopar and Malavieille, 1987). How-
ever, as we have seen, there is an apparent contradiction
between the uncoupling, void-fill growth model and the
rotational behaviour of both the fringe and the inclusion. This
poses a fundamental problem since, if the fringe does not
uncouple from the inclusion, how can the fibrous material
precipitate at the proximal deposition site as proposed? In-
deed, how can oriented fibres develop at all? In a general
discussion of fibrous structures, Durney and Ramsay (1973)
argued that in the case of displacement-controlled fibres
growth must have taken place in the solid-state, without
uncoupling. They proposed that the fibres grow in the direc-
tion of least resistance to growth-induced local volume in-
crease. However, such a growth model would still not account
for (i) the paired re-entrants in the fringe outline in displace-
ment-controlled fibres, (ii) synchronous growth and rotation
in face-controlled fibres, both of which require decoupling,
or (iii) the absence of entrainment of the proximal parts of
fringes adjacent to the rotating pyrite.

Pressure shadows

In terms of their general shape and spatial relationship to
inclusions, pressure shadows resemble pressure fringes.
However, pressure shadows are polycrystalline aggregates
without an internal shape fabric. There are at least four
possible modes of formation:
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(i) Precipitation of a non-fibrous fill in a void at the inclu-
sion/matrix interface in the same manner as discussed
above for fringes (Fig. 62A).

(ii) Metasomatic replacement or metamorphic differentia-
tion of matrix material adjacent to the inclusion (Fig.
62B). These processes both involve changes in mineral
and/or chemical composition of the matrix material in a
pressure shadow. Examination of the details of these
processes is beyond the scope of this contribution; the
interested reader is referred to the literature (e.g. Robin,
1979; Wintsch, 1986; van der Molen, 1985). For our
purpose, it suffices to recognize that material moves into
and out of the pressure shadow by mass transfer associ-
ated with diffusion and/or advection. However, whereas
the reaction site is fixed with respect to the orientation of
the instantaneous stretching axes, the early formed parts
of the shadow flow with the matrix, away from the
inclusion, If the strain rate is slow enough, the weak
matrix can flow into the low pressure zone between the
inclusion and the existing shadow material. Continued
reaction, leading to compositional change in the newly
arrived matrix material, would result in proximal addi-
tion to the developing pressure shadow. Pressure shad-
ows formed in this way may be difficult to distinguish
from these formed by precipitation of non-fibrous void
fill. However, one would expect to find rather diffuse
contacts between shadow and matrix in the former case
and sharp contacts in the latter.

(ii1) Mantle flow in a core-and-mantle microstructure: a situ-
ation which we have already discussed under the heading
of winged objects (see section Winged porphyroclasts).
We strongly recommend that the geologist interpret such
structures as winged inclusions rather than pressure
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Figure 64. Material quarters and noncoaxial flow. The pres-
ence of a stiff inclusion perturbs the flow in the adjacent matrix,
which can be considered in terms of four material quarters. In this
illustration, the inclusion is set in a foliated matrix undergoing
progressive simple shear along the foliation plane, as indicated.
Note the local component of shortening, normal to the flow plane,
induced by the perturbation. In two quarters (upper-left and
lower-right), the matrix foliation lies in the extensional quadrants
of the local flow. Inthese quarters, foliation-normal shortening may
lead to concentration of less soluble phases such as micas. In the
other two quarters, the foliation lies in the shortening quadrants of
the local flow and may respond to foliation-parallel shortening by
folding.



shadows and we only mention them in this section because
they have already been considered as pressure shadows
in the literature. The structure can usually be distin-
guished from pressure shadows, as discussed above, by
the fact that central object and tails are of the same
mineral composition and the progressive microstruc-
tural transition between the wings and the central inclu-
sion.

(iv) Recrystallization of a pressure fringe.

Sigmoid pressure shadows whose proximal parts lie in the
extensional quadrants of the flow, but whose distal parts are
subparallel to the shear plane, are common (Fig. 62). The
outlines of such pressure shadows are very similar to those of

pressure fringes composed of deformable fibres, discussed
above (Fig. 60). In that discussion we saw that the pressure
fringe material deforms with the matrix and attempts to record
the orientation of the finite strain ellipsoid. In the same way, the
proximal to distal curvature of sigmoid pressure shadows re-
cords the progressive rotation of the finite strain ellipsoid with
respect to the instantaneous stretching axes, from which one can
deduce the sign of the shear-sense of the flow.

Rotated pressure shadows

White and Wilson (1978) have suggested that, if a mature
pressure shadow develops a good cohesive contact with the
inclusion, it could itself be entrained by the rotation of the
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Figure 65. Quarter structures. Different types of structures
develop in the quarters (Fig. 64) in the matrix adjacent to stiff
inclusions, according to the angular relations between the local
perturbed flow and the foliation/layering in the matrix. In a bulk
coaxial flow, the foliation/layering of the matrix in all four quarters
would be subjected to layer normal shortening. However, in bulk
noncoaxial flow, the perturbed local flow is asymmetrically dis-
posed about the stiff inclusion in a manner which directly reflects
the sign of the vorticity of the bulk flow in the matrix (see Fig. 64).
The examples shown here are observed in the XZ plane of the
finite strain ellipsoid. The sense of shear along the shear plane,
and in C the extensional and shortening quadrants of the flow, are
shown.

(a) A quarter fold developed adjacent to a 1 mm feldspar porphy-
roclast in an ultramylonite where the foliation/layering was sub-
jected to layer-parallel shortening. (GSC 204776-U). (b) Quarter
mats of muscovite developed adjacent to a 1.5 mm feldspar
porphyroclast in a mylonite where the foliation was subjected to
layer-normal shortening. The mats form by removal of the quartz
component of the normal matrix by mass transfer, resulting in a
concentration of the less soluble mica which has subsequently
recrystallized. (GSC 204775-Y). (c) Disposition of kinematically
controlled myrmekite developed within K-feldspar porphyroclasts
(Or), adjacent to inclusion faces making an high angle with the
minimum instantaneous stretching axis of the bulk flow, from
whose angular relationship to the shear plane of the deformation
one deduces a sinistral sense of shear. Discussed in text. (a) and
(b) from Great Slave Lake Shear Zone, N.W.T., looking down.
(c) is taken from Simpson (1985).
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Figure 66. ‘Tuilage’ or tiling. (A) Rotating inclusions in dextral
shear may block at right-stepping overlaps; in sinistral shear they
may block at left-stepping overlaps (Blumenfeld, 1983). Note that
in the illustration it is assumed that the distance between the
centres of rotation of neighboring inclusions remains constant
during the progressive deformation. However, the geometries
illustrated in (A) could equally have resulted from the clockwise or
anticlockwise rotation of sets of ‘domino structures’ (B); for exam-
ple a feldspar grain transected by a set of slip surfaces oriented
an high angle to the bulk shear plane and subjected to general
shearing flow. In our example, we allow the distance between the
centres of rotation of the individual ‘dominoes’ to increase with
progressive deformation. Our ‘dominoes' are defined by slip sur-
faces making an oblique angle (70°) to the layer. In either pure
shear, or a general noncoaxial flow, the rotation of the dominoes
is a function of the angle they make with maximum instantaneous
stretching axis of the coaxial component of the flow (i.e. the bulk
flow plane). (C) How would the reader propose to discriminate
between models A and B in order to interpret this natural
example of tiling? We suggest that such structures are not
reliable shear-sense indicators. (A) is adapted from Blumen-
feld (1983). (C) Monte Rosa Nappe, Italy. (GSC 204776-N)

inclusion (Fig. 63). At least the proximal part of the pressure
shadow could rotate out of the low pressure region and into
an higher pressure region, adjacent to a face of the inclusion
making a high angle with the minimum instantaneous stretch-
ing axis. If solution, transport and precipitation in the mass
transfer process were all operating with a high degree of
efficiency, the entrained pressure shadow material would be
removed into solution, perhaps to eventually reprecipitate
elsewhere in a low pressure region. However, where the
solution process is relatively inefficient, perhaps due to de-
crease in water activity with retrogression (Yardley, 1981),
or to a decrease in temperature, or simply to an increase in
the strain rate, the rotated pressure shadow configuration may
be preserved. The rotated nature of pressure shadows is
readily observed where they are long, narrow and deform-
able; to some degree, their geometry resembles that of &
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porphyroclasts (Fig. 63B). This is less obvious in the case of
short, stubby and stiff pressure shadows, which may rotate as
an integral part of the inclusion (Fig. 63A). They are easily
confused with non-rotated pressure shadows; such an inter-
pretation would give the incorrect sense of shear .

QUARTER STRUCTURES

Asymmetrical folds and concentrations of relatively insol-
uble material, such as micas, are often observed adjacent
to stiff inclusions, especially at the microscopic scale
(Simpson and Schmid, 1983; Vernon, 1987). Where the
matrix foliation is deflected around a stiff inclusion, folds
form in two diametrically opposed material quarters of the



matrix adjacent to the inclusion, whereas the insoluble con-
centrates form in the other two quarters. We call these fea-
tures quarter structures.

Consider a soft matrix, subjected to noncoaxial flow,
whose foliation or layering is symmetrically wrapped about
a stiff inclusion. Away from the inclusion, the deformation is
oriented such that the bulk flow plane is parallel to the average
foliation direction. The presence of the inclusion perturbs the
flow so as to create four quarters in the immediately adjacent
matrix, wherein the instantaneous stretching axes lie at dif-
ferent orientations with respect to those of the bulk flow. We
refer to these as material quarters (Fig. 64), which should not
be confused with the shortening and extensional quadrants
of the flow. In two of the quarters, the matrix foliation may
lie in the extensional quadrants of the local flow, whereas in
the other two quarters it may lie in the shortening quadrants
(Fig. 64; cf. Bell, 1981). In a bulk coaxial flow, the folia-
tion/layering of the matrix in all four quarters would be
subjected to layer normal shortening. However, in bulk non-
coaxial flow, the perturbed local flow is asymmetrically
disposed about the stiff inclusion in a manner which directly
reflects the shear-sense of the bulk flow in the matrix (Fig. 64).

Where subjected to local foliation-parallel shortening,
the matrix may respond by the formation of micro-folds,
asymmetrically disposed about the inclusion (Fig. 65A). As
the fold amplifies and tightens with progressive deformation,
so its axial plane will attempt to track the rotation of the finite
strain ellipsoid with respect to the instantaneous stretching
axes of the flow. In those quarters where the foliation is
subjected to local foliation-normal shortening, deformation
may be accommodated by local volume loss of soluble ma-
terial leading to the formation of polycrystalline aggregates
or mats of less soluble phyllosilicates, asymmetrically dis-
posed about the inclusion (Fig. 65B). Both the external out-
line and the internal shape fabric of the mat will be aligned at
an high angle to the minimum instantaneous stretching axis
of the bulk flow. We propose the terms quarter folds and
quarter mats for these asymmetrically disposed structures
developed in the matrix adjacent to porphyroclasts.

Alternatively, metamorphic reactions may occur within
some species of porphyroclast in those quarters where the
porphyroclast surface is oriented at an high angle to the bulk
minimum instantaneous stretching axis. K-feldspar, for ex-
ample, may develop an asymmetrically disposed myrmekite

microstructure (Fig. 65C). Compression in these quarters
reduces the concentration of space lattice vacancies within
the K-feldspar. This induces diffusion of vacancies towards
the compressed volume resulting in a charge imbalance
which is neutralized by the rapid diffusion of small Na cations
(Simpson, 1985). However, since myrmekite is a common
post-tectonic feature of many mylonites (Hanmer, 1982a), it
is necessary to demonstrate that the microstructure used in
shear-sense determination is truly syntectonic in origin.

The disposition of kinematically distinctive quarters, as
described here, is a direct reflection of the orientation of the
instantaneous stretching axes of the flow, from which the
shear-sense of the bulk flow may be determined. The effect
of a general noncoaxial flow, rather than simple shear, is to
add a component of extension to all four quarters; hence
distinctive asymmetrical quarter structures are unlikely to
form in flows where Wi << 1.

TILING AND DOMINO-
STRUCTURES

Mutually interfering inclusions may block each other’s rota-
tional behaviour. Rotating inclusions in dextral shear may
block at right-stepping overlaps; in sinistral shear they may
block at left-stepping overlaps (Fig. 66A). Such structures
have been coined tuilage or tiling structures by Blumenfeld
(1983; Blumenfeld and Bouchez, 1988). However, this sim-
ple interpretation is not a unique explanation of the observed
geometry (Fig. 66B, C). Consider a set of domino type slip
surfaces within an inclusion, subjected to general noncoaxial
flow. A given geometry might result from forward directed
rotation of the slip surfaces in a bulk flow of a given shear-
sense (Fig. 66A). However, if the slip surfaces rotated anti-
thetically, the same geometry could equally well be produced
by bulk noncoaxial flow of the opposite sense (Fig 66B). Note
also that, with a suitably oriented initial configuration, iden-
tical geometries can result from both noncoaxial and coaxial
progressive deformations (Fig. 66B). Thus tiling structure is
not a reliable shear-sense indicator. By the same reasoning,
we strongly advise against attempting to determine the shear-
sense of the bulk flow from the slip and rotation of any
domino-like structures (cf. Simpson and Schmid, 1983;
Brunel, 1986; Takagi, 1986).
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VEINS AND FOLDS

In this section we examine the kinematic significance of an
eclectic assemblage of structures: (i) sigmoid synkinematic
veins, (ii) oblique and curved fibres in synkinematic veins, (iii)
deformed competent and incompetent veins, and (iv) asymmet-
rical folds. Some have long been tacitly assumed to be shear-
sense indicators par excellence. Others, although widespread,
have only recently been proposed as kinematically useful.

VEINS AND VEIN ARRAYS

Fibrous veins

Dilational veins have long been used to determine the orien-
tation of the finite strain ellipsoid and its progressive rotation
with respect to the instantaneous stretching axes of the flow
(e.g. Choukroune and Seguret, 1968; Ramsay and Graham,
1970; Wilcox et al., 1973; Beach, 1975; Gamond, 1983). In
en-echelon arrays of sigmoid veins (tension gashes), the
reasonable assumption is that the propagating tips open per-
pendicular to the maximum instantaneous stretching axis
(Fig. 67). The mid-sections of each vein, representing a
greater finite strain than the tips, have rotated in the same
sense as the bulk shear. Hence the sigmoid shape of the veins
is an excellent shear-sense indicator (Ramsay and Graham,
1970). Note that, unlike the situation illustrated in Figure 67,
in general noncoaxial flows the veins will not initiate at 45°
with respect to the shear plane.

Instantaneous
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Figure 67. Sigmoid tension gashes. The sigmoid form of
en-echelon tension gashes reflects the fact that the younger,
narrower tips form as fractures initially oriented perpendicular to
the maximum instantaneous stretching axis of the flow, while the
older dilated central portion rotates with the same sense as the
vorticity of the flow during progressive deformation.
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Where veins are straight, either arranged in en-echelon
arrays or otherwise disposed, a fibrous quartz or calcite fill
may mark their progressive dilation (Fig. 68). The fibres of
the fill may be straight, orthogonally or obliquely oriented
with respect to the vein, or curved. If the relationship between
fibre orientation and wall rock displacement during vein
formation were simple, it would be fairly easy to use arrays
of fibrous veins to reconstruct the orientation of the finite
strain ellipsoid through time and to determine the sense of
vorticity of the flow. However, there are two main schools of
thought concerning the kinematic significance of fibrous
vein-fill. For some workers, the orientation of new fibre
growth is displacement-controlled (see section Displacement
controlled fibres). Ramsay (1980b) described a process of
vein growth by sequential cracking and sealing whereby
quartz or calcite fibres, oriented at a high angle to the vein
wall, are associated with fibre-parallel trails of inclusions or
zones of inclusion bands (Fig. 69). He interpreted the trails
and the bands of inclusions as reflecting the chemical influ-
ence of the wall rock minerals at the vein/wall rock interface

Figure 68. Quartz veins with fibrous fill. Two sets of quartz
veins with fibrous vein-fill. Note the curved nature of the
fibres.
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Figure 69. Displacement-controlled fibres in dilational veins.
In the opinion of some workers, fibrous crystals in quartz or calcite
vein-fill are displacement-controlled and will track the opening
vector of the dilating vein during its formation. In the example
illustrated here, new fibre growth occurs at the vein wall, sealing
successive fractures between the wall rock and the older vein-fill.
The fibres are not in optical continuity with wall rock grains. The
median line is a train of relic fragments of wall rock, marking the
initial fracture. Inclusion trails and inclusion bands reflect chemical
control of the wall rock mineralogy on the composition of the
immediately adjacent vein-fill. According to the ‘crack-seal '
model, both the quartz/carbonate fibres and the inclusion
trails/bands track the opening vector through the dilation history
of the developing vein: in this case, orthogonal to the vein wall.
Redrawn from Ramsay (1980b).

during vein dilation. He also implicitly interpreted the quartz
and calcite fibres as displacement controlled. Accordingly,
the orientation of the opening vector of the dilating vein can
be read from the orientation of optically strain-free fibres and
the associated inclusion trails and zones of inclusion bands
(Fig. 69; Durney and Ramsay, 1973; Wickham, 1973; Philip
and Etchecopar, 1978; Casey et al., 1983; Ramsay and Huber,
1983).

However, by comparing fibre orientations with inclusion
trails within the veins, or with offset markers in the vein wall,
other workers have found that quartz or calcite fibres do not
necessarily track the opening vector of the vein (Cox and
Etheridge, 1983; Cox, 1987; van der Pluijm, 1984; Williams
and Urai, 1989). Cox (1987) observed that the quartz and
calcite fibres are not necessarily parallel to inclusion trails
and the boundaries of zones of inclusion bands (Fig. 70). He
proposed that fibres grow perpendicular to the vein wall,
irrespective of the opening vector of the vein: in other words,
they are face-controlled (see section Face-controlled fibres).
Only the inclusion trails, which must be directly related to
mineral grains in the wall rock, would track the opening
history of the dilating vein (Fig. 70). Furthermore, Williams
and Urai (1989) have shown that some natural examples of
curved, optically strain-free fibrous crystals are in fact recrys-
tallized, deformed fibres which were initially straight and
orthogonal to the vein wall. As stated by these authors,
without independent evidence to prove the relationship of
crystal growth to the vein opening vector (e.g. Passchier and
Urai, 1988), the orientation of curved or oblique vein fibres
should not be used to infer the kinematics of vein formation.

Deformed veins

Rheologically, deformed veins fall into three categories:
more competent, less competent, and of equal competence
with respect to their wall rocks. The response of the veins to
the imposed bulk deformation is a partial function of the
rheological contrast with the wall rock. Where there is no
competence contrast, individual veins are passive markers

Wall-Rock ¥

™~ Fibres of Quartz

Inclusion Trail or Calcite

Oblique to Fibres

&7

Opening Vector

SH.H®
oW

Figure 70. Face-controlled fibres in dilational veins. In some
fibrous veins, inclusiontrails are not parallel to the long dimensions
of quartz or calcite fibres. Clearly, they cannot both track the
opening of the vein. This illustration is redrawn from Cox (1987)
who proposed that the inclusion trails are displacement controlled,
whereas the fibres are face-controlled.

Figure 71. Folded boudins. Amphibolite layers in granitic gneiss
were heterogeneously extended (boudined) prior to subsequent
folding. Note how the boudins are clearly visible in the hinge zone
of the fold, not just in the limbs. Central Gneiss Belt, Grenville
Province, Ontario. (GSC 204105)
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Figure 72. Oblique internal foliation in concordant veins. A
natural example of a vein, lying concordant with respect to the
mylonitic foliation of the wall rocks. It carries an internal foliation
which is oblique to both the vein wall and the shear plane in the
mylonite. Often, the internal oblique fabric is sufficiently weak to
preserve some of the igneous aspects of the vein. The obliquity
of the weaker fabric with respect to the mylonitic fabric may be
considered to indicate the approximate relative orientations of the
principal finite strains associated with the mylonite and the the
internal foliation. If it is assumed that these finite strains are two
components of a progressive deformation, then the angle between
the two foliations indicates the sense of rotation of the principal
finite strains with respect to the flow plane, thereby allowing
deduction of the shear-sense of the flow. Accordingly, our
example is sinistral. Central Metasedimentary Belt boundary
thrust zone, Grenville Province, Ontario, looking northeast.
(GSC 204776-L)

and cannot be used to determine shear-sense. Competent
veins will fold or boudin according to their orientation with
respect to the instantaneous stretching axes of the flow.
However, if the competence contrast is extreme, strain refrac-
tion will simplify the local angular relationships; shortening
will tend to be either vein-parallel or vein-normal (Fig. 27).
A similar kinematic picture applies to the case of incompetent
veins. However, the shapes of folds in shortened veins will
be quite distinctive, while extension of veins will occur
homogeneously, without boudinage (Talbot, 1982).

Folded and boudined veins have long been used as indi-
cators of the orientations of the principal directions of the
finite strain ellipsoid (e.g. Talbot, 1970, 1982: see Fig. 17). A
number of authors (e.g. Talbot, 1970; Hutton, 1982; Passch-
ier, 1990a, b) have shown that if a population of differently
oriented veins is subjected to progressive noncoaxial defor-
mation, the spatial distribution of veins which have been
folded, boudined, or initially folded prior to subsequent
boudinage (boudined folds), is a function of finite strain,
dilatancy rate and vorticity. Although, in theory, absolute
values for these parameters could be established from the
distribution of deformed veins (Passchier, 1990), this is rarely
possible in practice. However, the distribution of orientations
of initially folded and subsequently boudined veins can be
used to determine the angular disposition of fields of exten-
sion and shortening, from which the sense of shear can then
be deduced (Fig. 16).
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Figure 73. Oblique boudin trains. Natural examples of oblique
boudin trains derived by the heterogeneous extension of oblique
veins, observed in the XZ plane of the finite strain ellipsoid in
mylonites of ductile thrust zones of the Grenville Province, On-
tario. The sense of shear and the extensional and shortening
quadrants of the flow are shown. Strictly speaking only the latter
can be deduced from such structures; the shear-sense indicated
here was deduced independently. In all three examples, the vein,
having lost its rheological integrity as a continuous, competent
sheet, has extended in its own plane along the approximate
direction of the maximum instantaneous stretching axis of the flow,
(a) Central Metasedimentary Belt, looking northeast. (b) Matrix
beginning to flow around the extending vein. Parry Sound Thrust
Zone, looking northeast. (GSC 204775-0 and GSC 2904776-S).



We wish to draw attention here to the importance of folded
boudins (Fig. 71). In general noncoaxial flows (0<Wk<1),
veins which initially lie in the shortening quadrants of the
flow and are folded, will rotate with progressive deformation
into the extensional quadrants, where they may subsequently
boudin. However, veins which were initially boudined will
not subsequently fold because they do not rotate into the
shortening quadrants of the flow (Fig. 16). Although folded
boudins can easily form in polyphase deformation, they can
only form in progressive deformation in the special case of
spinning simple shear (Wy>1), or in a noncoaxial flow
associated with change in area of the surface of observation
(Passchier, 1990a, b). Therefore, the occurrence of folded
boudined veins in shear zone rocks should alert the geologist
to attempt a special study of their orientation and geometry,
since the special circumstances of their formation imply that
they may yield important information on vorticity or volume
change (Von Brun and Talbot, 1986) associated with the local
deformation history (see Passchier, 1990a, b).

Natural examples of deformed veins have been used by
some workers to determine shear-sense (e.g. Davidson, 1984;
Hanmer, 1984a). Two kinds of vein geometry have been used
by these authors: obliquely foliated concordant veins (Fig.
72) and oblique boudin trains (Fig. 73). Both occur as intru-
sive sheets, cutting highly strained mylonites whose foliation
lies parallel to the regional shear plane. The first kind com-
prise concordant granitic or pegmatitic veins which carry a
systematically oblique, internal foliation. The second type
comprises trains of boudins, derived by the heterogeneous
extension of obligue veins such that the train of boudin centres
is itself systematically oblique to the mylonitic foliation of
the wall rock. In both cases, the coarse grain size, the rela-
tively poorly developed foliation and the association with
other crosscutting veins indicates that the veins were em-
placed late-syntectonically with respect to the mylonitisation.
However, this apparent simplicity is in fact very complicated.
Without due care and attention, plus a degree of serendipity,
such veins as illustrated here can be kinematically ambigu-
ous, as we shall now see.

Rheological interfaces and
induced noncoaxial flow

In any progressive deformation, planar elements such as veins
rotate towards the flow plane. Where there is a competence
contrast across the interface, a component of induced non-
coaxial flow, directly reflecting the shear-sense of the bulk
flow, may be resolved along the vein wall, if the vein is
oblique to the instantaneous stretching axes of a bulk non-
coaxial flow. In addition, a component of noncoaxial flow
associated with the rotation of the vein itself may be induced
along the contact (Fig 74). This locally induced noncoaxial
flow is of opposite sense to that of the rotation of the vein.
The reader will remember that the relationship between the
rotation sense and rotation rate, and the orientation of any
material line is a function of the flow type (Fig. 16). Also, the
sense of rotation of a layer in a noncoaxial progressive
deformation is a partial function of its orientation with respect
to the flow plane. Therefore, the ratio of the shear strain rates

of these two components of noncoaxial flow depends in part
on the orientation of the vein, and in part on the nature of the
bulk flow.

Incompetent veins

Incompetent veins respond to the bulk imposed flow by
developing an internal fabric (Berger, 1971; Talbot, 1982).
The orientation and geometry of the internal fabric is in part
a reflection of the bulk deformation. However, it is also, in
part, a reflection of the locally induced noncoaxial flow
within the vein as the vein rotates in response to the bulk flow
(Fig. 74). If the resultant flow within the vein is noncoaxial,
then the internally developed fabric will lie oblique to the
vein/wall rock interface, given that the local flow plane is
parallel to the vein walls. With progressive deformation, the
internal foliation rotates towards the vein wall. The sign of
the angle between the internal foliation and the vein wall, and
the direction of rotation of the internal foliation with progres-
sive deformation, are direct reflections of the shear-sense of
the flow within the vein (Berger, 1971; Talbot, 1982). Com-
monly the most intense shear strain develops at the vein
boundary. As in any shear zone (Fig. 30), the internal foliation
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Figure 74. Local induced flow. In any progressive deformation,
planar elements, such as veins, rotate towards the direction of
zero angular velocity of the flow (see Fig. 23). Where there is a
competence contrast across the interface, a locally induced non-
coaxial flow is set up along the vein wall, of opposite sense to that
of the rotation of the vein itself, is induced along the vein wall.
Whether the locally induced flow occurs within the vein or within
the wall rock depends upon the relative competencies of the two
materials. The upper illustration is for bulk coaxial flow. In bulk
noncoaxial flow (lower illustration), the locally induced flow may
be of opposite shear-sense to that of the bulk flow.
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develops a sigmoid configuration along the strain gradient,
reflecting the progressive rotation of the of material lines
(shear-induced vorticity) with respect to the instantaneous
stretching axes of the local flow within the vein.

We must emphasize here that local observation of oblique
internal foliation in a vein only yields information concerning
the local noncoaxial history. In general noncoaxial flows,
because of the relatively rapid rotation rates (Fig. 23), it is
particularly likely that the locally induced component of
noncoaxial flow will dominate over that induced by the bulk
flow. Only in the special case where it can be shown that the
vein was initially concordant to the bulk shear plane of the
deformation can the bulk shear-sense be directly determined
from the orientation of the oblique internal foliation (Fig. 72).
For all other cases, the sense of shear within the veins may be
opposite to the bulk shear-sense. Only with knowledge of the
initial orientation of the vein and the flow type can the
geologist determine the bulk shear-sense from such veins
(Fig. 74).
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Figure 75. In-plane separation of boudins. As acompetent vein
is heterogeneously extended, it loses its rheological integrity. The
continued separation of the boudins will depend upon the angle
between the line of centres of the boudins and the maximum
instantaneous stretching axis of the bulk flow. If the angle is small,
then the extension will continue to be in-plane.
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Figure 76. Fold asymmetry. With progressive deformation, folds
produced in noncoaxial flow by the shortening of layers oblique to
the flow plane, will change their asymmetry as a normal conse-
quence of the deformation. In the example here, a train of ‘'S’ folds
evolves to a *Z' asymmetry at modest values of shear strain. While
it would require improbably extensive homogeneous deformation
to 'switch’ the asymmetry of folds over a regionally extensive area,
the structural sequence illustrated here should caution the geolo-
gist against hasty attribution of kinematic significance to local
observations of fold asymmetry. Adapted from Ramsay et al.
(1983).

Competent veins

Consider a competent vein oriented in the extensional quadrants
of the flow ina deforming matrix. As long as the vein maintains
its integrity as a competent sheet, and if strain refraction is
important (see section Strain and flow refraction), the vein will
initially extend heterogeneously in its own plane (in-plane),
irrespective of the flow type. As the vein divides into segments,
either by boudinage, or by ductile necking and strain softening,
it loses its rheological integrity as a competent sheet. The
continued separation of the boudins will now depend upon the
angle between the line of centres of the boudins and the direction
of maximum infinitesimal extension in the matrix. If the angle
is smatl, then the boudins will continue to separate approxi-
mately in-plane (Fig. 75). If the angle is large, in-plane separa-
tion is no longer possible because the boudins and the line of
their centres will rotate at different rates, on account of their
different aspect ratios (see Fig. 23, 52). In other words, in order
to identify the approximate orientation of the maximum instan-
taneous stretching axis of the bulk flow from oblique boudin
trains, the geologist must be able to identify the stage at which
the vein loses its integrity as a continuous, competent sheet and
begins to reflect flow in the matrix. Clearly, these are very
specific requirements. We must emphasise that this structure
only yields data on the approximate orientation of the bulk
instantaneous stretching axes (Fig. 75), but that data itself can
be used to support, or to test, shear-sense determinations based
upon other criteria.

FOLD ASYMMETRY

Of all shear-sense indicators, the asymmetry of shear associ-
ated folds is perhaps the most venerable. Usually, in strongly
deformed rocks, the geologist is only able to observe the final



shape of the folds and cannot demonstrate the folding history.
The determination of the kinematic significance of asymmet-
rical folds is based upon a series of often injudicious assump-
tions that the geologist rarely seeks to justify:

(1) The folds are "drag-folds", or the shape of the initially
symmetrical folds was modified by later noncoaxial pro-
gressive deformation (Ramberg, 1963).

(2) The scale of the observed folds is appropriate to directly
reflect the vorticity of the imposed bulk flow. This as-
sumption is rarely justifiable. According to the ‘Pumpel-
lyan’ principal of fold symmetry, the asymmetry of
minor folds on a major fold switches from ‘S’ to “Z’

Figure 77. Rotation of fold axial planes. Fold trains in mylo-
nites with profiles of various degrees of tightness, observed in the
XZ plane of the finite strain ellipsoid. The sense of shear along the
shear plane is shown. The rotation of fold axial planes with
progressive tightening of the folds reflects the rotation of the
principal directions of finite strain with respect to the instantaneous
stretching axes of the flow. (a) The axial plane of the tighter fold
(Ieft) has rotated clockwise compared to the axial plane of the
more open fold (right), indicating dextral shear. (b) The axial plane
of the near-isoclinal fold (lower field) has rotated anticlockwise
compared to the axial planes of the train of more open folds
developed in the white layer, indicating sinistral shear. This is
confirmed by the presence of a weakly developed set of asym-
metric extensional shear bands in the lower field. Both examples
are from Great Slave Lake Shear Zone, N.W.T., looking down.
(GSC 204775-G and GSC 204776-B)

Figure 78. Sheath folds. If subjected to sufficiently high finite
strain, a fold axis will tend to rotate towards the direction of
maximum finite extension (L=X), while the fold axial plane wil
rotate towards the XY plane of the finite strain ellipsoid. Since real
fold axes are not perfectly straight, and since the maximum
extension direction varies slightly throughout any real flowing
material, different segments of a given fold axis rotate in opposite
directions towards X. The result is that the fold axis curves about
the direction of finite extension. At high strains, the fold axis
resembles an hair-pin bend whose long segments are subparallel
to the finite extension direction; such structures are termed
sheath-folds. Kinematic interpretation of the geometry of the fold
profile is obviously dependent on the location of the profile in the
fold structure. Taken from Quinquis et al. (1978).
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Figure 79. Fold axes parallel to the flow direction. There are
numerous ways to produce fold axes which lie subparallel to the
flow direction in noncoaxial flows. One way involves a locally
induced noncoaxial flow associated with the rotation of a compe-
tent layer towards the XY plane of the finite strain ellipsoid (see
Fig. 74). A competent layer initially makes an angle of less than
90° with the minimum instantaneous stretching axis of the bulk
flow. With progressive deformation, the layer rotates towards the
flow plane. This rotation is three dimensional and induces a local
component of noncoaxial flow along the layer, such that the local
flow direction is oriented at an high angle to the bulk flow direction.
Folds which form in response to local flow will initiate with their
fold axes sub-parallel to the bulk flow direction. Note the asym-
metry of such folds is a function of the orientation of the competent
layer with respect to the shear zone. Recall thatthe locally induced
noncoaxial flow will tend to be all the more important if there is a
strong component of shortening across the bulk shear plane.
Compare this structure with Figures 27 and 78. Adapted from Brun
and Merle (1988).
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Figure 80. Asymmetrical amplification of a single fold. An
example of a fold which has grown by amplification of a single
local perturbation in shear-parallel layering (centre-left), observed
inthe XZ plane of the finite strain ellipsoid. The bulk sense of shear
is shown. The initial perturbation was probably provoked by flow
of the now folded layer into the isolated gap caused by the
heterogeneous extension of the adjacent layer. The fold has
amplified along a direction oriented within the extensional quad-
rant of the flow, reflecting the dextral shear-sense. Central Me-
tasedimentary Belt boundary zone, Grenville Province, Québec,
looking down. (GSC 204776-E)

across the major axial plane. Clearly, even if the shape
of the major fold is directly related to the vorticity of
imposed flow, the symmetry of its associated minor folds
will vary from place to place.

(3) The symmetry of the observed fold has not changed as
the fold developed. However, even relatively moderate
values of shear strain may suffice to reverse the sense of
asymmetry of folds related to noncoaxial flow (Ramsay
etal., 1983; Fig 76).

Under what circumstances can observation of fold asym-
metry be used to infer shear-sense? Where a readily identifi-
able set of contemporaneous folds shows a regionally
extensive consistent asymmetry, it is reasonable to assume
that the fold shape does reflect the sense of the regionally
imposed shear. Where the geologist can observe evidence of
the progressive development of the fold shape with deforma-
tion, the rotation of planar structures (axial planes, fold limbs)
with respect to the instantaneous stretching axes of the flow
(shear-induced vorticity) directly reflects the shear-sense of
the flow (Fig. 77; Murphy, 1987).

Under what circumstances should fold asymmetry not be
used to infer shear-sense? Many folds initially form with their
axes oriented at an high angle to the direction of maximum
finite extension, but may evolve into sheath folds (Fig. 78;
Quinquis et al., 1978; Cobbold and Quinquis, 1980). Sheath-
folds form at all scales from centimetres to kilometres in
wavelength (Lacassin and Mattauer, 1985). It is therefore
quite possible for a geologist working on a segment of a
kilometric sheath fold to observe a consistent sense of fold
asymmetry. Moreover, a competent layer, oriented obliquely
with respect to the flow plane of a shear zone, might readily
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develop consistent asymmetrical folds with axes subparallel
to the flow direction (Fig. 79). Setting aside for the moment
the question of shear-sense, it is obvious that the unwary
geologist could incorrectly infer the shear direction from
such observations (see case study in Hanmer, 1981). Regard-
ing the sense of shear, assuming that the questions of major
versus minor fold scale and consistency of observed fold
shape have been considered, the geologist must still be able
to demonstrate the sense of rotation of the fold axis in the
sheath fold example, in order to extrapolate from the field
data to the regional shear-sense; this is rarely feasible. In the
example of an oblique layer, the fold asymmetry is more
likely to reflect the sense of the locally induced noncoaxial
flow associated with the folding layer (Fig. 79), rather than
the shear-sense of the bulk deformation, especially if de-
formed in general noncoaxial flow.

Some authors have suggested that, where the total geome-
try of the fold can be observed, the asymmetry of sheath-folds
per se can be taken to directly reflect the shear-sense of the
bulk flow. This undoubtedly holds true where a given sheath-
fold is the result of the amplification of a single perturbation
in shear-parallel layering (Fig. 80). While many observed
sheath-folds are single, isolated fold closures or pairs of
closures, this geometry does not preclude their formation as
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Figure 81. Fold mechanisms and bulk flow. According to the
mechanism of ideal kink folding (Paterson and Weiss, 1962,
1965), the rotation of the short fold limb is driven by slip along the
rotating foliation segment. Accordingly, the sense of slip on the
rotating segment would be antithetic to the sense of rotation of the
segment itself. If an asymmetrical set of kinks forms during bulk
noncoaxial deformation, there must be compatibility between the
slip on the foliation, both within and external to the kinks. This is
readily appreciated if one considers the former as a set of ‘ramps’
and the latter as ‘flats’. Hence, the sense of rotation of the kink
fold limb is antithetic to the sense of the imposed bulk shear. This
breaks down if the deformation is driven by shear stresses re-
solved onto the kink band boundaries (e.g. Dewey, 1965, 1969).
However, it is unlikely that the geologist will be able to unequivo-
cally discriminate between these two possibilities.



classical intrafolial folds, by the transposition and disruption
of once continuous fold trains of minor folds on larger, major
folds. In such a case, the questions raised above regarding
scale and evolving fold shape with progressive deformation
and the problems they imply for kinematic interpretation of
fold asymmetry (Fig. 76), apply equally to sheath-folds.

When attempting to determine shear-sense from fold ge-
ometries, the implicit assumption is often made that the
folding mechanism involved a component of drag (see dis-
cussion in Ramberg, 1963). Let us not forget that there are a
number of ideal models of folding and that some of them may
involve internal noncoaxial flows which must interact with
the bulk flow. As an illustration, let us look at one particularly
simple fold type. A kink fold comprises two kink band
boundaries which separate an internal rotated segment of
foliation or layering (short limb) from the external foliation
or layering (long limb), which may or may not itself undergo
arotation of opposite sense to that of the short limb (Fig. 81).

According to the mechanism of classical kink folding, the
rotation of the short limb of a kink involves slip on the rotating
segment, antithetic to the sense of rotation of the fold limb (e.g.
Paterson and Weiss, 1962, 1965; Ramsay, 1967, p. 452). In a
volume constant deformation, if slip occurs on the foliation or
layering segments outside of the kink band boundaries and these
external segments do not themselves rotate, then the sense of slip
on the short limbs and that on the long limbs must be the same
in order to maintain compatibility and material continuity. Put
simply, contrary to the "drag-fold" model, Z-shaped kinks are
favoured by bulk sinistral shear, while S-shaped kinks are fa-
voured by dextral shear. This has been documented in both
natural examples (Hanmer, 1982b) and laboratory simulation
(Reches and Johnson, 1976).

In summary, while fold asymmetry can be kinematically
significant, we suggest that it should be used more judiciously
than the published literature would indicate has been the case
until now.
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