Climate Change, a Challenge to Mine Reclamation in the North

Igor Holubec, Heather Auld, Sharon Fernandez & Baoling Wang

Northern Latitudes Mine Reclamation Workshop Sep 8-11, 2009, Yellowknife, NT

I. Holubec Consulting Inc.

Environment Canada

MAJOR CHALLENGES

- Mines are remote
- Climate warming
- Permafrost ground temperature warming
- Erosion
- Durability of reclamation long-term
- Monitoring & maintenance, if necessary
- Conclusions
- Some design options

2

Operating, recently closed & future mines

NRCan Maps

Global Projections of Climate Changes

From IPCC 2007 AR4 Reports

Global mean temperature anomalies (compared to 1961-1990) for the years 1850 to 2005

Canadian Climate Change Projections

Canada

Canada

I. Holubec Consulting Inc.

Mean Annual Air Temperature Changes

I. Holubec Consulting Inc.

Canada

<u>Air Temperature Normals</u>

- <u>Present Normals</u> are average values over 30 years.
- Last available Normals are for 1971 to 2000.
- Dynamic Normals.
- More representative of temperatures undergoing climate warming.
- 2008 30Year Dynamic Normals are:
- •<u>0.6°C warmer</u> in Yukon and Mackenzie River Valley
- •<u>I.8°C warmer</u> in Central and Eastern North.

Environnement

Canada

onment

2008 Mean Annual Air Temperatures

I. Holubec Consulting Inc.

Homogenous Zones of Recent Climate Warming Rates

2008 Mean Annual Ground Temperatures

I. Holubec Consulting Inc.

<u>Climatic Warming Impact on Permafrost</u> <u>across Central North</u>

Present MAGT / Warming Rate = Projected Years for Permafrost to begin to Thaw

In Range of 50 to 100 Years

11

Solid Waste Storage

Environment

Rock Embankments

I. Holubec Consulting Inc.

Environnement

Canada

<u>Impact on</u> <u>Reclaimed Mine Components</u>

Presently majority of mine components are frozen and on frozen ground

Long-term Impacts – Permafrost will likely thaw within 100 years

•Mine waste <u>permafrost encapsulation</u> not viable

•<u>Physical stability</u> of mine waste embankments and tailings containments endangered

•<u>Seepage</u> through thawing foundation beneath dams; unless kept artificially frozen

Erosion in Nature

In sedimentary rocks

Mackenzie River

I. Holubec Consulting Inc.

In igneous rock, Iqaluit

Gully in sand

Erosion major Adversary to Mine Reclamation

Tailings dam failure

Tailings erosion

Crushed rock cover erosion

I. Holubec Consulting Inc.

Soil cover slide & erosion

Impact of Erosion

Results from recent workshops

- Erosion on the long-term inevitable
- Dry covers service life is 30 to 50 years
- Wet covers continuous monitoring and maintenance

<u>Reclamation – Long-term ?</u>

- Guidelines state that reclamation is for the long-term; but did not elaborate.
- 2007 Geoscience Forum Poll

Definition of Long-term:	Results form Poll
10 years	0
50 years	0
100 to 200 years	80%
Forever?	20%

Monitoring & Maintenance

- In reality, closure and reclamation plans address relatively short monitoring durations, about 7 to 20 years after closure.
- Several workshops concluded that monitoring & maintenance may be needed for long-term sustainability; degree depends on design and climate.

Conclusions

- Many larger closed mine sites in temperate climates are being continually monitored and maintained.
- Closed mine sites in the North with permafrost have extra challenges due to impact of climate warming, erosion and poor access.
- Guidelines require closure & rehabilitation designs to be for the long-term; should be designed for 100 years and longer.
- Need to minimize/eliminate monitoring & maintenance due to remoteness and to design beyond permafrost environment.

Some Design Measures for Long-term

- Design for permafrost absence.
- Segregate potential harmful rock and dispose in encapsulated spaces.
- Select sites and design disposal facilities to minimize stream and surface erosion.
- Design dumps, tailings containment and landfills with extra physical stability and massive erosion protection to slow rate of erosion, using 'extra clean' rock.
- Eliminate dams at closure.

