

HEMMERA ENVIROCHEM INC.

ATTN: Natasha Sandys

Suite 230 - 2237 2nd Avenue Whitehorse Yukon Y1A 0K7 Date Received: 26-JUN-14

Report Date: 08-JUL-14 16:54 (MT)

Version: FINAL

Client Phone: --

Certificate of Analysis

Lab Work Order #: L1477673

Project P.O. #: NOT SUBMITTED

Job Reference: 1343-005.02

C of C Numbers: 1

Legal Site Desc:

Brent Mack

Account Manager

[This report shall not be reproduced except in full without the written authority of the Laboratory.]

ADDRESS: 8081 Lougheed Hwy, Suite 100, Burnaby, BC V5A 1W9 Canada | Phone: +1 604 253 4188 | Fax: +1 604 253 6700 ALS CANADA LTD Part of the ALS Group A Campbell Brothers Limited Company

L1477673 CONTD.... PAGE 2 of 8 08-JUL-14 16:54 (MT)

ALS ENVIRONMENTAL ANALYTICAL REPORT

Version: FINAL

					versi	•	FINAL
	Sample ID Description Sampled Date Sampled Time Client ID	L1477673-1 Water 24-JUN-14 14:23 P03-06-02	L1477673-2 Water 24-JUN-14 15:22 P03-06-01	L1477673-3 Water 24-JUN-14 13:15 P03-06-06			
Grouping	Analyte						
WATER							
Physical Tests	Conductivity (uS/cm)	4730	4760	17300			
,	Hardness (as CaCO3) (mg/L)	1930	2130	12200			
	pH (pH)	5.26	5.06	3.89			
	Total Suspended Solids (mg/L)	870	47.8	6360			
Anions and Nutrients	Acidity (as CaCO3) (mg/L)	1470	1360	7360			
	Alkalinity, Total (as CaCO3) (mg/L)	<1.0	16.5	<1.0			
	Chloride (CI) (mg/L)	<10	<10	<25			
	Sulfate (SO4) (mg/L)	4060	4020	20100			
	Anion Sum (meq/L)	84.5	84.1	419			
	Cation Sum (meq/L)	95.0	92.9	443			
	Cation - Anion Balance (%)	5.9	5.0	2.8			
Total Metals	Aluminum (AI)-Total (mg/L)	30.7	3.82	20.2			
	Antimony (Sb)-Total (mg/L)	<0.0050	<0.0050	0.127			
	Arsenic (As)-Total (mg/L)	0.0286	<0.0050	1.38			
	Barium (Ba)-Total (mg/L)	0.471	0.0304	0.817			
	Beryllium (Be)-Total (mg/L)	<0.0050	0.0053	<0.050			
	Bismuth (Bi)-Total (mg/L)	<0.025	<0.025	<0.25			
	Boron (B)-Total (mg/L)	<0.50 DLA	<0.50	<5.0			
	Cadmium (Cd)-Total (mg/L)	0.0560	0.0917	0.277			
	Calcium (Ca)-Total (mg/L)	473	498	369			
	Chromium (Cr)-Total (mg/L)	0.0837	<0.0050	0.119			
	Cobalt (Co)-Total (mg/L)	2.66	3.78	1.43			
	Copper (Cu)-Total (mg/L)	0.107	0.052	4.45			
	Iron (Fe)-Total (mg/L)	919	716	3200			
	Lead (Pb)-Total (mg/L)	0.133	0.0325	18.7			
	Lithium (Li)-Total (mg/L)	0.203	0.179	0.34			
	Magnesium (Mg)-Total (mg/L)	205	211	2600			
	Manganese (Mn)-Total (mg/L)	191	246	366			
	Mercury (Hg)-Total (mg/L)	<0.000050	<0.000010	0.0118			
	Molybdenum (Mo)-Total (mg/L)	0.0035	<0.0025	<0.025			
	Nickel (Ni)-Total (mg/L)	3.13	4.15	1.37			
	Phosphorus (P)-Total (mg/L)	0.48	<0.10 DLA	0.88			
	Potassium (K)-Total (mg/L)	10.5	7.38	16.5			
	Selenium (Se)-Total (mg/L)	O.0050	<0.0050	<0.050			
	Silicon (Si)-Total (mg/L)	75.4	39.3	34.7			
	Silver (Ag)-Total (mg/L)	<0.00050	<0.00050	0.0495			
	Sodium (Na)-Total (mg/L)	26.3	26.3	92			

^{*} Please refer to the Reference Information section for an explanation of any qualifiers detected.

L1477673 CONTD.... PAGE 3 of 8 08-JUL-14 16:54 (MT)

ALS ENVIRONMENTAL ANALYTICAL REPORT

Version: FINAL

	Sample ID Description Sampled Date Sampled Time Client ID	L1477673-1 Water 24-JUN-14 14:23 P03-06-02	L1477673-2 Water 24-JUN-14 15:22 P03-06-01	L1477673-3 Water 24-JUN-14 13:15 P03-06-06	
Grouping	Analyte				
WATER					
Total Metals	Strontium (Sr)-Total (mg/L)	1.97	2.32	0.20	
	Sulfur (S)-Total (mg/L)	1260	1280	7120	
	Thallium (TI)-Total (mg/L)	0.00055	DLA <0.00050	0.0158	
	Tin (Sn)-Total (mg/L)	<0.0055 DLA <0.0050	<0.0050 DLA <0.0050	0.0150 DLA <0.050	
	Titanium (Ti)-Total (mg/L)	1.01	<0.50	<5.0	
	Uranium (U)-Total (mg/L)	0.00423	0.00365	0.0556	
	Vanadium (V)-Total (mg/L)	0.00423	0.00505 DLA <0.050	<0.50	
	Zinc (Zn)-Total (mg/L)	32.9	29.6	2140	
	Zirconium (Zr)-Total (mg/L)	0.040	DLA <0.040	OLA <0.40	
Dissolved Metals	Dissolved Mercury Filtration Location	FIELD	FIELD	FIELD	
	Dissolved Metals Filtration Location	FIELD	FIELD	FIELD	
	Aluminum (Al)-Dissolved (mg/L)	1.45	4.20	2.16	
	Antimony (Sb)-Dissolved (mg/L)	OLA <0.0050	<0.0050	<0.050	
	Arsenic (As)-Dissolved (mg/L)	OLA <0.0050	O.0050	0.053	
	Barium (Ba)-Dissolved (mg/L)	0.0121	0.0156	OLA <0.025	
	Beryllium (Be)-Dissolved (mg/L)	OLA <0.0050	OLA <0.0050	OLA <0.050	
	Bismuth (Bi)-Dissolved (mg/L)	<0.025	OLA <0.025	OLA <0.25	
	Boron (B)-Dissolved (mg/L)	<0.50	OLA <0.50	DLA <5.0	
	Cadmium (Cd)-Dissolved (mg/L)	0.0530	0.107	0.0733	
	Calcium (Ca)-Dissolved (mg/L)	463	492	386	
	Chromium (Cr)-Dissolved (mg/L)	<0.0050	<0.0050	OLA <0.050	
	Cobalt (Co)-Dissolved (mg/L)	2.70	4.13	0.992	
	Copper (Cu)-Dissolved (mg/L)	<0.010	0.037	<0.10	
	Iron (Fe)-Dissolved (mg/L)	873	707	2200	
	Lead (Pb)-Dissolved (mg/L)	0.0110	0.0270	1.53	
	Lithium (Li)-Dissolved (mg/L)	0.159	0.147	0.33	
	Magnesium (Mg)-Dissolved (mg/L)	187	218	2730	
	Manganese (Mn)-Dissolved (mg/L)	195	265	368	
	Mercury (Hg)-Dissolved (mg/L)	<0.000010	<0.000010	<0.000010	
	Molybdenum (Mo)-Dissolved (mg/L)	<0.0025	<0.0025	<0.025	
	Nickel (Ni)-Dissolved (mg/L)	3.11	4.45	1.13	
	Phosphorus (P)-Dissolved (mg/L)	<0.10	<0.10	<0.50	
	Potassium (K)-Dissolved (mg/L)	6.68	7.30	15.2	
	Selenium (Se)-Dissolved (mg/L)	<0.0050	<0.0050	<0.050	
	Silicon (Si)-Dissolved (mg/L)	32.8	39.8	12.7	
	Silver (Ag)-Dissolved (mg/L)	<0.00050	<0.00050	<0.0050	
	Sodium (Na)-Dissolved (mg/L)	25.8	28.0	92	

^{*} Please refer to the Reference Information section for an explanation of any qualifiers detected.

L1477673 CONTD.... PAGE 4 of 8 08-JUL-14 16:54 (MT)

ALS ENVIRONMENTAL ANALYTICAL REPORT

Version: FINAL

					vers	 FINAL
	Sample ID Description Sampled Date Sampled Time	L1477673-1 Water 24-JUN-14 14:23 P03-06-02	L1477673-2 Water 24-JUN-14 15:22	L1477673-3 Water 24-JUN-14 13:15 P03-06-06		
	Client ID	P03-06-02	P03-06-01	P03-06-06		
Grouping	Analyte					
WATER						
Dissolved Metals	Strontium (Sr)-Dissolved (mg/L)	1.96	2.43	0.20		
	Sulfur (S)-Dissolved (mg/L)	1270	1290	6580		
	Thallium (TI)-Dissolved (mg/L)	<0.00050	<0.00050	<0.0050		
	Tin (Sn)-Dissolved (mg/L)	<0.0050	<0.0050	<0.050		
	Titanium (Ti)-Dissolved (mg/L)	<0.50	<0.50	<5.0		
	Uranium (U)-Dissolved (mg/L)	0.00154	0.00375	0.0309		
	Vanadium (V)-Dissolved (mg/L)	<0.050	<0.050	<0.50		
	Zinc (Zn)-Dissolved (mg/L)	34.2	29.0	2050		
	Zirconium (Zr)-Dissolved (mg/L)	<0.040	<0.040	<0.40		

^{*} Please refer to the Reference Information section for an explanation of any qualifiers detected.

L1477673 CONTD.... PAGE 5 of 8 08-JUL-14 16:54 (MT)

Reference Information

Qualitiers for In	dividual Samples Lis	stea:			
Sample Number	Client Sample ID	Qualifier	Description		
L1477673-1	P03-06-02	WSMT	Water sample(s) for to HCl preservative. Res		cury analysis was not submitted in glass container with y be biased low.
L1477673-3	P03-06-06	WSMT	Water sample(s) for to HCl preservative. Res		cury analysis was not submitted in glass container with y be biased low.
C Samples with	Qualifiers & Comme	ents:			
QC Type Descrip	tion	Parameter	Qua	alifier	Applies to Sample Number(s)
Duplicate		Aluminum (Al)-Di	ssolved DL	Α.	L1477673-1, -2, -3
Duplicate		Beryllium (Be)-Di		A	L1477673-1, -2, -3
Duplicate		Bismuth (Bi)-Diss			L1477673-1, -2, -3
Duplicate		Boron (B)-Dissolv			L1477673-1, -2, -3
Duplicate		Cadmium (Cd)-Di		A	L1477673-1, -2, -3
Duplicate		Chromium (Cr)-D		A	L1477673-1, -2, -3
Duplicate		Cobalt (Co)-Disso			L1477673-1, -2, -3
Duplicate		Copper (Cu)-Diss			L1477673-1, -2, -3
Duplicate		Lead (Pb)-Dissolv			L1477673-1, -2, -3
Duplicate		Nickel (Ni)-Dissol			L1477673-1, -2, -3
Duplicate		Selenium (Se)-Di			L1477673-1, -2, -3
Duplicate		Silver (Ag)-Dissol			L1477673-1, -2, -3
Duplicate		Thallium (TI)-Diss			L1477673-1, -2, -3
Duplicate		Tin (Sn)-Dissolve			L1477673-1, -2, -3
Duplicate		Titanium (Ti)-Diss			L1477673-1, -2, -3
Duplicate		Vanadium (V)-Dis			L1477673-1, -2, -3
Duplicate		Zinc (Zn)-Dissolv			L1477673-1, -2, -3
Matrix Spike		Barium (Ba)-Diss			L1477673-1, -2, -3
Matrix Spike		Strontium (Sr)-Dis			L1477673-1, -2, -3
Matrix Spike		Barium (Ba)-Diss			L1477673-1, -2, -3
Matrix Spike		Sodium (Na)-Diss			L1477673-1, -2, -3
Matrix Spike		Strontium (Sr)-Dis			L1477673-1, -2, -3
Matrix Spike		Barium (Ba)-Diss			L1477673-1, -2, -3
Matrix Spike		Barium (Ba)-Diss			L1477673-1, -2, -3
Matrix Spike		Strontium (Sr)-Dis			L1477673-1, -2, -3
	dividual Parameters	. ,			
Qualifier	Description				
DLA	Detection Limit adjust	ed for required dilution			
	Detection Limit Adjust	•			
			ly calculated due to high a	analvte h	ackground in sample.
est Method Ref			, , ,		O
LS Test Code	matrix	Test Description			Method Reference**
ACY-PCT-VA	Water	Acidity by Automatic	: Titration		APHA 2310 "Acidity"
				y". Acidit	ty is determined by potentiometric titration to a specifie
ACY-PCT-VA	Water	Acidity by Automatic	c Titration		APHA 2310 Acidity
This analysis is cendpoint.	carried out using proce			y". Acidit	ty is determined by potentiometric titration to a specifie
ALK-COL-VA	Water	Alkalinity by Colouri			EPA 310.2

ALK-PCT-VA Water Alkalinity by Auto. Titration APHA 2320 "Alkalinity"

colourimetric method.

This analysis is carried out using procedures adapted from APHA Method 2320 "Alkalinity". Total alkalinity is determined by potentiometric titration to a pH 4.5 endpoint. Bicarbonate, carbonate and hydroxide alkalinity are calculated from phenolphthalein alkalinity and total alkalinity values.

This analysis is carried out using procedures adapted from EPA Method 310.2 "Alkalinity". Total Alkalinity is determined using the methyl orange

ALK-PCT-VA Water Alkalinity by Auto. Titration APHA 2320 Alkalinity

Reference Information

L1477673 CONTD....

PAGE 6 of 8

08-JUL-14 16:54 (MT)

Version: FINAL

This analysis is carried out using procedures adapted from APHA Method 2320 "Alkalinity". Total alkalinity is determined by potentiometric titration to a pH 4.5 endpoint. Bicarbonate, carbonate and hydroxide alkalinity are calculated from phenolphthalein alkalinity and total alkalinity values.

ANIONS-CL-IC-WR

Water

Chloride by Ion Chromatography

EPA 300.1

This analysis is carried out using procedures adapted from EPA Method 300.1, "Determination of Inorganic Anions by Ion Chromatography", Revision 1.0, April 1999 and from "Determination of Inorganic Anions in Environmental Waters Using a Hydroxide-Selective Column", Application Note 154 v.19, Dionex 2003.

ANIONS-SO4-IC-WR

Water

Sulphate by Ion Chromatography

EPA 300.1

This analysis is carried out using procedures adapted from EPA Method 300.1, "Determination of Inorganic Anions by Ion Chromatography", Revision 1.0, April 1999 and from "Determination of Inorganic Anions in Environmental Waters Using a Hydroxide-Selective Column", Application Note 154 v.19, Dionex 2003.

EC-PCT-VA

Water

Conductivity (Automated)

APHA 2510 Auto. Conduc.

This analysis is carried out using procedures adapted from APHA Method 2510 "Conductivity". Conductivity is determined using a conductivity electrode.

HARDNESS-CALC-VA

Water

Hardness

APHA 2340B

Hardness (also known as Total Hardness) is calculated from the sum of Calcium and Magnesium concentrations, expressed in CaCO3 equivalents. Dissolved Calcium and Magnesium concentrations are preferentially used for the hardness calculation.

HG-DIS-LOW-CVAFS-VA

Water

Dissolved Mercury in Water by CVAFS(Low)

EPA SW-846 3005A & EPA 245.7

This analysis is carried out using procedures adapted from "Standard Methods for the Examination of Water and Wastewater" published by the American Public Health Association, and with procedures adapted from "Test Methods for Evaluating Solid Waste" SW-846 published by the United States Environmental Protection Agency (EPA). The procedures may involve preliminary sample treatment by filtration (EPA Method 3005A) and involves a cold-oxidation of the acidified sample using bromine monochloride prior to reduction of the sample with stannous chloride. Instrumental analysis is by cold vapour atomic fluorescence spectrophotometry or atomic absorption spectrophotometry (EPA Method 245.7).

HG-TOT-LOW-CVAFS-VA Water

Total Mercury in Water by CVAFS(Low)

EPA 245.7

This analysis is carried out using procedures adapted from "Standard Methods for the Examination of Water and Wastewater" published by the American Public Health Association, and with procedures adapted from "Test Methods for Evaluating Solid Waste" SW-846 published by the United States Environmental Protection Agency (EPA). The procedure involves a cold-oxidation of the acidified sample using bromine monochloride prior to reduction of the sample with stannous chloride. Instrumental analysis is by cold vapour atomic fluorescence spectrophotometry or atomic absorption spectrophotometry (EPA Method 245.7).

IONBALANCE-VA

Water

Ion Balance Calculation

APHA 1030F

Cation Sum, Anion Sum, and Ion Balance (as % difference) are calculated based on guidance from APHA Standard Methods (1030E Checking Correctness of Analysis). Because all aqueous solutions are electrically neutral, the calculated ion balance (% difference of cations minus anions) should be near-zero.

Cation and Anion Sums are the total meq/L concentration of major cations and anions. Dissolved species are used where available. Minor ions are included where data is present. Ion Balance is calculated as:

Ion Balance (%) = [Cation Sum-Anion Sum] / [Cation Sum+Anion Sum]

MET-D-CCMS-VA

Water

Dissolved Metals in Water by CRC ICPMS

APHA 3030 B&E / EPA SW-846 6020A

This analysis is carried out using procedures adapted from "Standard Methods for the Examination of Water and Wastewater" published by the American Public Health Association, and with procedures adapted from "Test Methods for Evaluating Solid Waste" SW-846 published by the United States Environmental Protection Agency (EPA). The procedures may involve preliminary sample treatment by acid digestion, using hotblock, or filtration (APHA 3030B&E). Instrumental analysis is by collision cell inductively coupled plasma - mass spectrometry (modified from EPA Method 6020A).

MET-DIS-LOW-ICP-VA

Water

Dissolved Metals in Water by ICPOES

EPA 3005A/6010B

This analysis is carried out using procedures adapted from "Standard Methods for the Examination of Water and Wastewater" published by the American Public Health Association, and with procedures adapted from "Test Methods for Evaluating Solid Waste" SW-846 published by the United States Environmental Protection Agency (EPA). The procedure involves filtration (EPA Method 3005A) and analysis by inductively coupled plasma optical emission spectrophotometry (EPA Method 6010B).

MET-T-CCMS-VA

Water

Total Metals in Water by CRC ICPMS

APHA 3030 B&E / EPA SW-846 6020A

This analysis is carried out using procedures adapted from "Standard Methods for the Examination of Water and Wastewater" published by the American Public Health Association, and with procedures adapted from "Test Methods for Evaluating Solid Waste" SW-846 published by the United States Environmental Protection Agency (EPA). The procedures may involve preliminary sample treatment by acid digestion, using hotblock, or filtration (APHA 3030B&E). Instrumental analysis is by collision cell inductively coupled plasma - mass spectrometry (modified from EPA Method 6020A).

MET-TOT-LOW-ICP-VA

Water

Total Metals in Water by ICPOES

EPA 3005A/6010B

This analysis is carried out using procedures adapted from "Standard Methods for the Examination of Water and Wastewater" published by the American Public Health Association, and with procedures adapted from "Test Methods for Evaluating Solid Waste" SW-846 published by the United States Environmental Protection Agency (EPA). The procedures may involve preliminary sample treatment by acid digestion, using either hotblock or microwave oven (EPA Method 3005A). Instrumental analysis is by inductively coupled plasma - optical emission spectrophotometry (EPA Method 6010B).

PH-PCT-VA

Water

pH by Meter (Automated)

APHA 4500-H "pH Value"

Reference Information

L1477673 CONTD....

PAGE 7 of 8

08-JUL-14 16:54 (MT)

Version: FINAL

This analysis is carried out using procedures adapted from APHA Method 4500-H "pH Value". The pH is determined in the laboratory using a pH electrode

It is recommended that this analysis be conducted in the field.

PH-PCT-VA Water pH by Meter (Automated)

APHA 4500-H pH Value

This analysis is carried out using procedures adapted from APHA Method 4500-H "pH Value". The pH is determined in the laboratory using a pH electrode

It is recommended that this analysis be conducted in the field.

S-DIS-ICP-VA

Water

Dissolved Sulfur in Water by ICPOES

EPA SW-846 3005A/6010B

This analysis is carried out using procedures adapted from "Standard Methods for the Examination of Water and Wastewater" published by the American Public Health Association, and with procedures adapted from "Test Methods for Evaluating Solid Waste" SW-846 published by the United States Environmental Protection Agency (EPA). The procedures may involve preliminary sample treatment by acid digestion, using either hotblock or microwave oven, or filtration (EPA Method 3005A). Instrumental analysis is by inductively coupled plasma - optical emission spectrophotometry (EPA Method 6010B).

Method Limitation: This method will not give total sulfur results for all samples. Sulfide or other volatile forms of sulfur that may be present in submitted samples, is often lost during the sampling, preservation and analysis process. The data reported as total and/or dissolved sulfur represents all non-volatile forms of sulfur present in a particular sample.

S-TOT-ICP-VA

Water

Total Sulfur in Water by ICPOES

EPA SW-846 3005A/6010B

This analysis is carried out using procedures adapted from "Standard Methods for the Examination of Water and Wastewater" published by the American Public Health Association, and with procedures adapted from "Test Methods for Evaluating Solid Waste" SW-846 published by the United States Environmental Protection Agency (EPA). The procedures may involve preliminary sample treatment by acid digestion, using either hotblock or microwave oven, or filtration (EPA Method 3005A). Instrumental analysis is by inductively coupled plasma - optical emission spectrophotometry (EPA Method 6010B).

Method Limitation: This method will not give total sulfur results for all samples. Sulfide or other volatile forms of sulfur that may be present in submitted samples, is often lost during the sampling, preservation and analysis process. The data reported as total and/or dissolved sulfur represents all non-volatile forms of sulfur present in a particular sample.

TSS-I OW-WR

Water

Total Suspended Solids by Grav. (1 mg/L)

APHA 2540 D

This analysis is carried out using procedures adapted from APHA Method 2540 "Solids". Solids are determined gravimetrically. Total Suspended Solids are determined by filtering a sample through a glass fibre filter and drying the filter at 104 degrees celsius.

ZR-D-MS-VA

Water

Dissolved Zr in Water by ICPMS

EPA SW-846 3005A/6020A

This analysis is carried out using procedures adapted from "Standard Methods for the Examination of Water and Wastewater" published by the American Public Health Association, and with procedures adapted from "Test Methods for Evaluating Solid Waste" SW-846 published by the United States Environmental Protection Agency (EPA). The procedures may involve preliminary sample treatment by acid digestion, using either hotblock or microwave oven, or filtration (EPA Method 3005A). Instrumental analysis is by inductively coupled plasma - mass spectrometry (EPA Method 6020A).

ZR-T-MS-VA

Water

Total Zr in Water by ICPMS

EPA SW-846 3005A/6020A

This analysis is carried out using procedures adapted from "Standard Methods for the Examination of Water and Wastewater" published by the American Public Health Association, and with procedures adapted from "Test Methods for Evaluating Solid Waste" SW-846 published by the United States Environmental Protection Agency (EPA). The procedures may involve preliminary sample treatment by acid digestion, using either hotblock or microwave oven, or filtration (EPA Method 3005A). Instrumental analysis is by inductively coupled plasma - mass spectrometry (EPA Method 6020A).

** ALS test methods may incorporate modifications from specified reference methods to improve performance.

The last two letters of the above test code(s) indicate the laboratory that performed analytical analysis for that test. Refer to the list below:

Laboratory Definition Code	Laboratory Location
WR	ALS ENVIRONMENTAL - WHITEHORSE, YUKON, CANADA
VA	ALS ENVIRONMENTAL - VANCOUVER, BRITISH COLUMBIA, CANADA

Chain of Custody Numbers:

Reference Information

L1477673 CONTD....

PAGE 8 of 8

08-JUL-14 16:54 (MT)

Version: FINAL

GLOSSARY OF REPORT TERMS

Surrogate - A compound that is similar in behaviour to target analyte(s), but that does not occur naturally in environmental samples. For applicable tests, surrogates are added to samples prior to analysis as a check on recovery.

mg/kg - milligrams per kilogram based on dry weight of sample.

mg/kg wwt - milligrams per kilogram based on wet weight of sample.

mg/kg lwt - milligrams per kilogram based on lipid-adjusted weight of sample.

mg/L - milligrams per litre.

< - Less than.

D.L. - The reported Detection Limit, also known as the Limit of Reporting (LOR).

N/A - Result not available. Refer to qualifier code and definition for explanation.

Test results reported relate only to the samples as received by the laboratory.

UNLESS OTHERWISE STATED, ALL SAMPLES WERE RECEIVED IN ACCEPTABLE CONDITION.

Analytical results in unsigned test reports with the DRAFT watermark are subject to change, pending final QC review.

Chain of Custody (COC) / Analytical Request Form

L1477673-COFC

Page 1 of

COC Number: 1 -

Environmental Canada Toll Free: 1 800 668 9878

	www.alsglobal.com					-						_	- 1								
eport To					Report Forma						/low (Rush Tumaround Time (TAT) is not available for all tests)										
ompany:	Hemmera Environchem Inc.				port Format: ☑PDF	R Regular (Standard TAT if received by 3 pm - business days)															
ontact:	Natasha Sandys		Quality Control (QC) Report with Report ☑ Yes ☐ No																		
ddress:	230 - 2237 2nd Avenue			Criteria on Report - provide details below if box checked				E Emergency (1-2 bus. days if received by 3pm) 100% surcharge - contact ALS to confirm TAT											firm TAT		
	Whitehorse, YT			Select Distribution:					E2 Same day or weekend emergency - contact ALS to confirm TAT and surcharge												
Phone: 867-456-4865 Email 1 or Fax insandys@hemmera.com, irmartinka@hemmera.com																					
				Email 2	chris@elr.ca			Analysis Request Indicate Filtered (F), Preserved (P) or Filtered and Preserved (F/P) below													
voice To	Same as Report To	▽ Yes	∏ No		Invoice Di	stribution		L,	Indic	ate Filte	ered (F)	, Preser	ved (P)	_		_	erved (F/I	P) below			
	Copy of Invoice with Report	☐ Yes	IF: No			MAIL MAIL	□FAX	$oxed{oxed}$							F/P	Р					
company:	Hemmera Environchem Inc).		Email 1 o	r Fax nsandys@hemme	ra.com															
Contact:	Natasha Sandys			Email 2	chris@elr.ca															s _i	
	Project Info	rmation			Oil and Gas Require	d Fleids (client	use)	<u> </u>				,		1					1	ië	
I.S Quote #:	Q45291			Approver	ID:	Cost Center:]						<i>€</i>						j ji	
ob #:	1343-005.02			GL Accou	int:	Routing Code:]						SE)		1	1			₽)	
O / AFE:				Activity C	ode:]						total (TSS)						Ďe.	
.SD:	<u>. </u>			Location:				ଳ						ds, t	_o					Number of Containers	
ALS Lab Wo	ALS Lab Work Order # (lab use only)		ALS Con	ALS Contact:		RM, AB, AN, M	(to pH 8	ıty		tivity		gų	ded solids,	ed metals	etals						
ALS Sample # (lab use only)	I		and/or Coordina		Date (dd-mmm-yy)	Time (hh:mm)	Sample Type	acidity (alkalinity	chloride	conductivity	표	sulphate	papuadsns	dissolved	total metals					
	P03-06-02	<u> </u>	· · · · · · · · · · · · · · · · · · ·		24-Jun-14	14:23	Water	R	R	R	R	R	R	R	R	R				3	
	P03-06-01				24-Jun-14	15:22	Water	R	R	R	R	R	R	R	R	R				3	
	P03-06-06			-	24-Jun-14	13:15	Water	R	R	R	R	R	R	R	R	R				3	
									<u> </u>			<u> </u>									
						 		1								<u> </u>			1		
						<u> </u> 	-	-				 		<u> </u>		┢		-	+		
						ļ								-		┼—	<u> </u>				
								_								ļ			ļ	ļ	
						·										ļ <u>.</u>			ļ		
																İ					
			·					1													
							<u> </u>	 	 				╁┈╴	t		1			1-		
	<u> </u>							╁	L	<u> </u>	RAMP	LECC	NDIT	ON A	SRE	CEIV	ED (lab	use on	 v)	1	
Drinkin	g Water (DW) Samples ¹ (cli	ent use)	Sp	ecial Instructions	/ Specify Criteria to add o	on report (client	Use)	Froze	∍n							rvatio		es 🗀			
☐ Yes		uired.	ulS format common to Faro Mine Remediation Project. Contact client if l. eter sheet for required detection limits.				acks ing Init	iated	TEMPE	No RATUR		Cust				es					
Are samples for human drinking water use? ☐ Yes								8				1111			1.5						
	SHIPMENT RELEASE	(client uses)	<u> </u>	INI	TIAL SHIPMENT RECEP	TION (lah use o	only)	+-			FIN	IAL SI	IIPME	NT R	ECE	PTION	l (lab us	e only)			
Released by:	Da	te: DL/14	Time: 1	Received by	I PAR OTHER PROPERTY.	Date:	Time: 1/220	Rec	eived b	oy:					Dat			ime:			
C - C - C - C - C - C - C - C - C - C -	White for the Local Tiple	0.44014	I FOR MATION		10/1	ITE LABORATO	DRY COPY YE	LLOW.	CHEN	IT COE	- V		_			NAFIA	326e v09 Franti	04 January 201	1		