FINAL

Faro Water Treatment Plant Sludge Characterization Report

Faro Mine, Yukon Territory Crown-Indigenous Relations and Northern Affairs Canada

SRK Consulting (Canada) Inc. • 1CA030.025 • July 2021

FINAL

Faro Water Treatment Plant Sludge Characterization Report

Faro Mine, Yukon Territory

Prepared for:

Crown-Indigenous Relations and Northern Affairs Canada 25 Eddy Street, 10th Floor Gatineau, QC, K1A 0H4 Canada

+1 867 667 3830 www.aadnc-aandc.gc.ca

Prepared by:

SRK Consulting (Canada) Inc. 1066 West Hastings Street, Suite 2200 Vancouver, BC V6E 3X2 Canada

+1 604 681 4196 www.srk.com

Lead Authors: Jonathon Doherty (GIT) and Céline Michiels (PhD) Initials: JD/CM

Reviewer: Kelly Sexsmith (PGeo) Initials: KS

File Name: Faro_WTP_Sludge_CharacterizationReport_1CA030.025_20210722_FNL.pdf

Suggested Citation:

SRK Consulting (Canada) Inc. 2021. Faro Water Treatment Plant Sludge Characterization Report. FINAL. Prepared for Crown-Indigenous Relations and Northern Affairs Canada: Gatineau, QC. Project number: 1CA030.025. Issued July. 2021.

Copyright © 2021

Contents

1	Introduction and Scope	1
2	Background	2
Z. I	2.1.1 Pagia Overview of Dit Lake Limpology	2
	2.1.1 Dasic Overview of Fit Lake Lifthology	۲
22	Z. I.Z Failo Fit Lake Geochemistry	Z
2.2	Sludge Storage	
3	CGM and Program Design	5
3.1	Conceptual Geochemical Model (CGM) for Sludge Stability	5
	3.1.1 Interaction of Sludge with Pit Lake Water	5
	3.1.2 Stability Under Acidic and Reducing Conditions	5
	3.1.3 Impact of Sludge Disposal on Pit Lake Water Quality	6
3.2	Program Design Rationale	6
4	Methods	8
4.1	Sample Collection	8
	4.1.1 Sludge Sample Collection, Storage and Preparation	
4.0	4.1.2 Pit Lake Water Sample Collection	10
4.Z	Analytical Methods	10
	4.2.1 Flysical Characterization	10
	4.2.2 Will clabyical Characterization	
	4.2.4 Pit Water Sample and Sludge Filtrate Analysis	
	4.2.5 Extraction Tests	
	426 Aging Tests	13
4.3	Data Quality Assurance (QA) and Quality Control (QC)	
5	Results	17
5.1	Sludge Filtrate and Pit Water Chemistry	17
5.2	Sludge Physical Characteristics	19
	5.2.1 Moisture and Solids Content	19
	5.2.2 Particle Size Distribution	19
5.3	Mineralogy	20
	5.3.1 Interpretation of SEM-EDS Data	20
	5.3.2 Bulk Mineralogy Data	20
	5.3.3 Zinc Deportment	
5.4	Solid Phase Chemistry	
5.5	Buffering Capacity	24
5.6	Leach Tests	
	5.6.1 Shake Flask Extractions	
	5.6.2 Sequential Extraction Lests	
5.7	Aging Tests	
	5.7.1 UXIC Aging Tests	
	5.7.2 Anoxic Aging Tests	

	5.7.3	Aging Test Loadings	38
6	Discussio	on	40
7	Conclusi	on	42
Refer	ences		45

Tables

Table 3-1: Program Design Rationale	7
Table 4-1: Pictures of WTP Sludge Following Storage	9
Table 4-2: Customized Extraction Test Procedure	12
Table 4-3: Aging Test Sample Schedule	16
Table 5-1: Summary of Pit Water and Filtrate Chemistry	
Table 5-2: Sludge Solids Content	19
Table 5-3: Summary of TIMA-X Bulk Mineralogy Results	21
Table 5-4: Zinc Deportment	
Table 5-5: Treatment Sludge Composition on a Dry Mass Basis	23
Table 5-6: Summary of SFE Results and Loadings	
Table 5-7: Sequential Extraction Results	
Table 5-8: Sequential Extraction Results - Percent Recovery by Fraction	31
Table 5-9: Summary of Oxic Aging Tests	34
Table 5-10: Summary of Anoxic Aging Test Data	37
Table 5-11: Summary of Aging Test Loadings	

Figures

Figure 4-1: Aging Test Variations	13
Figure 4-2: Oxic Aging Test Setup	14
Figure 4-3: Anoxic Aging Test Setup	15
Figure 5-1: Sludge Particle Size Distribution	19
Figure 5-2: Results of Sludge Titration	24
Figure 5-3: Element Recovery for Both Replicate Sequential Extractions in Relation to Initial Solid Phase	
Concentrations.	
Figure 5-4: pH vs Time; Oxic and Anoxic Aging Tests	35
Figure 5-5: EC vs Time; Oxic and Anoxic Aging Tests	35
Figure 5-6: Eh vs Time; Oxic and Anoxic Aging Tests	35
Figure 5-7: Dissolved Sulphate vs Time; Oxic and Anoxic Aging Tests	35
Figure 5-8: Dissolved Manganese vs Time; Oxic and Anoxic Aging Tests	35
Figure 5-9: Dissolved Zinc vs Time; Oxic and Anoxic Aging Tests	35
Figure 5-11: Ratio of DI Water Oxic Aging Test Loadings to DI Water SFE Loadings	

Faro Water Treatment Plant Sludge Characterization Report Contents • FINAL

Appendices

Appendix A: SGS TIMA-X Mineralogy Data Appendix B: QA/QC Results Appendix C: Solids Content, Pit Water and Filtrate Analysis, Elemental Content, Titration, Leach Test, Aging Test, and Selective Extraction Data Appendix D: Particle Size Analysis Laboratory Report

Appendix D: Particle Size Analysis Laboratory Re Appendix E: Aging Test Time Series Charts

Useful Definitions

This list contains definitions of symbols, units, abbreviations, and terminology that may be unfamiliar to the reader.

ARD	Acid rock drainage
AWT	Applied Water Treatment
DO	Dissolved oxygen
DOC	Dissolved organic carbon
EC	Electrical conductivity
EDS	Electron Dispersive Spectrometry
Global ARD	Global ARD Testing Services Inc.
HDS	High-density sludge
mg/kg	Milligrams per kilogram
mg/L	Milligrams per litre
ORP	Oxidation reduction potential
PWTP	Permanent Water Treatment Plant
QA	Quality assurance
QC	Quality control
SEM	Scanning Electron Microscope
SFE	Shake-flask extraction
TDS	Total dissolved solids
ТОС	Total organic carbon
TSS	Total suspended solids
Wt%	Weight percent

1 Introduction and Scope

SRK Consulting (Canada) Inc. has been retained by Crown-Indigenous Relations and Northern Affairs Canada (CIRNAC) to advance closure and remediation plans for the Faro lead-zinc mine, located in the central Yukon 200 km north-northeast of Whitehorse. Part of the overall remediation plan for the Faro Mine involves construction of a mine water capture and conveyance system and a Permanent Water Treatment Plant (PWTP). The Permanent Water Treatment Plant will use a high-density sludge (HDS) process which neutralizes acidic contact water and removes dissolved metals and other constituents. Sludge produced by the treatment process will be pumped to the bottom of Faro Pit Lake for permanent storage and disposal.

Over time, the Faro Pit Lake is expected to become acidic as acid-rock drainage (ARD) continues to develop in waste rock and tailings. The pit lake may also develop reducing conditions. Both acidic and reducing conditions could affect the long-term stability of the sludges, potentially contributing chemical loads of some constituents to the pit lake. As the pit lake will act as the main reservoir for storage of contact water and will be the main feed to the Permanent Water Treatment Plant, the chemical stability of the sludge within the Faro Pit Lake is an important consideration for water management at the site.

To understand the implications of sludge disposal within the Faro Pit Lake, SRK conducted a geochemical characterization program on water treatment sludges collected as part of a 2017 pilot plant testing program. The characterization program aimed to meet the following:

- Characterize the basic physical, geochemical and mineralogical properties of the sludge;
- Quantify loading of readily soluble constituents within sludge under neutral and acidic conditions; and
- Test solid-phase associations of parameters of concern and the potential for leaching of these under variable environmental conditions.

This report documents the results of the geochemical sludge testing program.

2 Background

2.1 Faro Pit Lake

2.1.1 Basic Overview of Pit Lake Limnology

The limnology within the Faro Pit Lake will influence sludge storage conditions at depth within the pit. The following summarized from Pieters and Lawrence (2016) provides a general overview of pit lake limnology – and more specifically stratification within pit lakes.

The behavior of pit lakes is a result of interactions between physical and chemical processes. Stratification, or the development of stable layers with varying physical and chemical characteristics is the most important physical process within pit lakes.

Most lakes in Canada stratify during summer months due to development of a thermocline. Heating of the near-surface water reduces its density, leading to development of stratification, with the upper less dense warm layer isolated from the lower more dense, cooler layer. In late summer or autumn, cooling of the upper layer usually leads to the two layers reaching a similar density. As the density contrast decreases to near parity, winds overturn the layering, resulting in mixing of the lake.

In pit lakes, other factors can lead to a possibility that the layering will persist year-round. Pit lakes are generally much deeper and have less surface area than natural lakes. These geometric factors tend to reduce the ability of winds to mix the lake. Another factor is chemistry. Water in pit lakes can have high TDS (i.e. >4,000 mg/L) which can affect the water's density. If the dissolved solids become concentrated in the lower portion of the lake, or if the upper layer becomes diluted by precipitation or surface runoff, a density gradient known as a "chemocline" can develop. Since the chemocline is unaffected by the late season cooling of the upper water, it has the potential to create year-round stratification.

"Meromixis" is as the limnological term for the condition were a lake is permanently stratified due to development of a chemocline. A condition of meromixis in the Faro Pit Lake would have significant implications for pit lake water quality, as it could create gradients in TDS, pH, and Eh with depth and promote the development of reducing (low Eh) conditions within the lower portion of the lake.

2.1.2 Faro Pit Lake Geochemistry

Current and future water quality within the pit lake is expected to influence sludge stability both as a result of direct chemical interactions and through indirect effects related to the limnology.

The Faro Pit Lake has been periodically profiled for conductivity, temperature, and water quality parameters since 2004, and regularly profiled since 2014. This work has identified that the pit lake exhibited salinity stratification during from 2004 to 2008 as freshwater was added to the lake surface and contact water with high TDS concentrations was pumped into the lake at depth. The salinity stratification slowly declined from 2009 to 2012 when the contact water with high TDS water was rerouted to the pit lake surface. 2007 and 2008 water quality profiling conducted when the salinity

stratification was at its peak showed that pit lake water at depths greater than 30 m had Eh values that ranged from 0.19 to 0.28 V, indicative of anoxic and moderately reducing waters that fall in the range of the redox ladder where nitrate and Mn⁴⁺ reduction occurs. Since 2008, continued discharge of mine contact waters to the surface of the lake has prevented salinity stratification from developing. pH conditions in the pit lake have remained neutral through 2020, but sulphate and metal concentrations have increased (SRK 2020).

Over time, as further development of ARD occurs in the waste rock and tailings, acidic pH conditions and increased concentrations of sulphate and metals are expected to develop within the pit lake. The predicted base case pit lake chemistry following complete onset of ARD based on the site wide water and load balance model (SRK 2019a) is summarized as follows:

- 1,200 to 2,700 mg/L SO₄
- 60 to 80 mg/L Ca
- 0.05 to 0.08 mg/L Cd
- 0.04 to 0.1 mg/L Co
- 0.5 to 1 mg/L Cu
- 50 to 1,000 mg/L Fe
- 80 to 100 mg/L Mg
- 16 to 19 mg/L Mn
- 0.05 to 0.25 mg/L Ni
- 60 to 180 mg/L Zn

SRK are currently evaluating whether different management approaches such as discharge of high TDS mine waters at depth or a one-time placement of a freshwater cap could be used to re-establish meromictic conditions within the pit lake. If this occurs, anoxic and slightly reducing to reducing conditions will likely develop at the bottom of the lake.

2.2 Treatment Process and Sludge Generation

The treatment process for Long-term Operations and Maintenance of the Faro Mine Site was selected to be High Density Sludge (HDS) lime neutralization. The HDS treatment process involves a three-step treatment process that involves:

- 1. Mixture of hydrated lime with sludge in a mix tank;
- 2. Reaction of lime/sludge mixture with contact water in an aerated reactor tank with a target pH endpoint of pH 9.6; and
- 3. Addition of flocculent in a clarifier to achieve separation of treated water and sludge; with some sludge being recycled back into the system.

The HDS process is effective at the removal of pH sensitive metals, acidity and sulphate (if concentrations are above gypsum saturation) through the precipitation of mixed metal hydroxides and gypsum.

Applied Water Treatment (AWT) conducted pilot plant testing of an HDS treatment system using a mixture of pit water and waste rock runoff that was targeted to be similar to predicted pit water concentrations during the Long-term Operations and Maintenance (AWT 2018). The pilot plant testing was carried out from August 15th to 29th, 2017 and produced sludge with a density of 19 to 24.7% solids, with the solid content of the sludge in the clarifier increasing through the duration of testing. The pilot tests included variations in reaction times, sludge recycle rates, and pH endpoints (ranging from 8.9 to 9.9). The density of sludge from the full-scale PWTP is expected to be 15 to 25% solids.

2.3 Sludge Storage

The current plan is for sludge produced by the treatment process to be pumped from the PWTP to the bottom of Faro Pit Lake for permanent disposal (SRK 2018). Two sludge pipelines (one spare) will transport the sludge from the WTP to Faro Pit. Based on an estimate of the storage capacity of the Faro Pit Lake, the pit lake has enough storage for >1,000 years of sludge deposition.

3 CGM and Program Design

3.1 Conceptual Geochemical Model (CGM) for Sludge Stability

3.1.1 Interaction of Sludge with Pit Lake Water

The Faro Pit Lake was selected as a disposal location for the treatment sludges due to the high storage capacity of the pit lake and the expected geochemical stability of the sludges under saturated conditions.

The current plan is to dispose the treatment sludges at the bottom of the pit lake via tremie lines. Following deposition, the sludges are expected settle and compact forming a layer of sludge at the base of the pit lake. Interactions between the sludge and pit lake water will therefore be limited to:

- Sludge particles which stay in suspension within the pit lake water column prior to settling;
- The interface between the sludge layer and the pit lake water; and
- Pit lake water which moves through the sludge layer following hydraulic and diffusive gradients.

Within the pore spaces of the sludge layer, excess hydroxide alkalinity will likely result in buffering of sludge porewaters to neutral to slightly alkaline conditions under which the sulphate and hydroxide minerals within the sludges are expected to be chemically stable. Interactions at the sludge/pit water interface and between sludge particles in suspension and the water column will likely therefore contribute the greatest loadings to the pit lake water column.

3.1.2 Stability Under Acidic and Reducing Conditions

Where interactions between sludge and pit lake water occur, at the surface of the sludge layer and in the pit lake water column prior to settling, the surface of the sludges is expected to be exposed to neutral to acidic, high total dissolved solids (TDS), and potentially reducing conditions in the pit lake water. Given the current understanding of the sludge's composition, the greatest risks to sludge stability are considered to be:

- Interaction of suspended sludge particles and the surface of the sludge layer with acidic pH which could cause:
 - Dissolution of hydroxide precipitates by reaction 1:
 - 1) (Fe, Mn, Zn, Ni, Cd)(OH)₂ + $2H^+ \rightarrow$ (Fe, Mn, Zn, Ni, Cd)²⁺+ $2H_2O$
 - Release of anions or cations that are sorbed to the hydroxide precipitates.
 - Sorption of anions and cations to remaining hydroxide precipitates.
 - Desorption of cations from hydroxide precipitates.
 - Buffering of pH.

Development of reducing conditions which could cause reductive dissolution of Fe³⁺ and Mn³⁺ oxides and hydroxides and subsequent release of Zn, Ni, Cd and other co-precipitates or sorbed species.

The long-term chemical stability of the sludge is therefore expected to be controlled by the sludge's stability under acidic and slightly reducing conditions.

3.1.3 Impact of Sludge Disposal on Pit Lake Water Quality

The main implications of sludge disposal within the Faro Pit Lake for pit lake water quality are considered to be:

- Release of dissolved constituent concentrations; and
- Buffering of acidity within the pit lake by alkalinity stored within the sludge and sludge porewaters.

The sludges likely contain at least several percent gypsum and if sulphate and calcium concentrations in the pit lake area below saturation, the sludge would be expected to contribute sulphate and calcium loadings to the pit lake. Loadings of the water-soluble fraction of other elements could also be possible and these need to be quantified.

Although the rate of sludge inflow will be small compared to the total volume of the pit lake (ratio of yearly inflow to total volume = 0.0008), the alkalinity stored within the sludges may have the potential to buffer the pH of the pit lake. The majority of the alkalinity contained in the sludge is expected to be stored as hydroxide alkalinity. If these hydroxide phases re-dissolve by reaction 1 or reaction 2 shown below they would consume acidity or release their hydroxide alkalinity back to the water column:

2) Fe, Mn, Zn, Ni, Cd (OH)_x \rightarrow (Fe, Mn, Zn, Ni, Cd)²⁺ + xOH⁻

Additional buffering capacity is also expected to be present within other neutralizing mineral phases within the sludges such as carbonates and as bicarbonate and hydroxide alkalinity within the sludge porewaters. Incorporation of these buffering effects can therefore be assessed by quantifying the buffering capacity of the sludge and the sludge porewaters.

3.2 Program Design Rationale

Following development of the CGMs, a laboratory geochemical testing program was designed to fill the gaps in understanding the physical and chemical characteristics of the WTP sludges and their geochemical stability under the range of expected disposal conditions. The information gaps and corresponding characterization procedures are summarized in Table 3-1.

Table 3-1: Program Design Rationale

Data Gap	Component	Characterization Program	
Physical Characteristics	Solids content and particle size distribution	Measurement of physical characteristics	
Mineralogy	Mineralogy of sludge	Characterization of sludge mineralogy by scanning electron microscope (SEM) automated mineralogy and electron dispersive spectrometry (EDS) spot analysis to determine chemistry of unknown mineral phases	
Chemical Characteristics	Elemental content of sludge	Analysis of sludge elemental content following aqua regia and whole rock digestion	
	Buffering capacity of sludge	Titration of sludge to measure buffering capacity	
	Water soluble fraction under neutral and acidic conditions	Customized shake-flask extractions conducted for range of pH conditions using de-ionized water and pit lake water	
Chemical Stability Under Disposal Conditions	Long term stability under range of pH and Eh conditions	Aging tests performed under varying combinations of neutral, acidic, oxic, and anoxic conditions using de-ionized water and pit lake water	
	Speciation of major and trace elements amongst chemical and mineralogical forms within sludge	Interpretation of mineralogy data and customized sequential extraction procedure	

Source: Z:\01_SITES\Faro\!101_Investigations\2020_WTP_SludgeCharacterization\4. Report\[ProgramDesignRationale_1CA030.025_JED_Rev00.xlsx]

Faro Water Treatment Plant Sludge Characterization Report Methods • FINAL

4 Methods

4.1 Sample Collection

4.1.1 Sludge Sample Collection, Storage and Preparation

Sludge samples were obtained from the 2017 HDS pilot plant testing program completed by AWT (2018). At the completion of the pilot plant testing program, SRK Engineer Marie-Christine Noel transferred the sludge within the pilot plant clarifier to five twenty-liter screw top buckets with sealable lids. The sludge was then stored in the SRK Vancouver office at room temperature until March 2020 when this program was initiated.

In March 2020 the sludge was transported to Global ARD Testing Services Inc. (Global ARD) in Burnaby, BC for sample preparation and testing. Following storage, the sludges remained fully saturated and remained the same color as when collected (pers comm. with AWT) with no visibly detectable signs of oxidation or chemical alteration. Photos of the sludge in each bucket following storage are shown in Table 4-1.

Faro Water Treatment Plant Sludge Characterization Report Methods • FINAL

Table 4-1: Pictures of WTP Sludge Following Storage

Bucket #1

Bucket #4

Bucket #2

Bucket #5

Bucket #3

Prior to removing aliquots of sludge for each test, buckets 1, 3, and 5 were combined and homogenized to create one master sample that represented the contents of the clarifier at the end of the pilot plant commissioning work. Buckets 2 and 4 were retained for future testing. Following homogenization, aliquots were removed for particle size distribution and solids content. The sludge sample was then vacuum filtered using filter papers with a particle retention of >25 μ m. After filtering, aliquots of filtered solids were removed for aging tests and sequential extractions, and the filtrate was submitted for analysis. The remaining filtered solids were then oven-dried at low temperature (<40 °C) with aliquots of dried sludge removed for shake-flask extractions, elemental and mineralogical analysis.

4.1.2 Pit Lake Water Sample Collection

In order to simulate interaction of the WTP sludge with both non-acidic and acidic pit lake water, water samples were collected from the Faro Pit Lake and the nearby Vangorda Pit Lake which had already developed acidic conditions and is expected to be analogous to future conditions within the Faro Pit Lake.

Water samples were collected from the Faro Pit Lake and the Vangorda Pit Lake by SRK water resources engineer Mark Sumka (EIT, BC) on March 17 and 18, 2020. At the Vangorda Pit Lake, a 20 L unfiltered and unpreserved water sample was collected from the bottom of the pit lake at 40 m depth using a Van Dorn sampler. Access to the Faro Pit Lake was restricted for safety reasons and a 20 L unfiltered and unpreserved sample was collected from the surface of the pit lake. Both samples were kept under refrigeration and immediately shipped to Global ARD in Burnaby, British Columbia.

4.2 Analytical Methods

4.2.1 Physical Characterization

Aliquots of fresh sludge were analyzed for total solids analysis at Global ARD by gravimetric analysis. An aliquot of fresh sludge was then submitted to the University of Saskatoon geochemical lab for particle size analysis using a Malvern Mastersizer.

4.2.2 Mineralogical Characterization

An aliquot of filtered sludge was submitted to SGS Minerals in Burnaby, BC for mineralogical analysis. At SGS, the sample was air dried then micro-riffled to prepare 2 carbon-coated polished sections using the dry polishing method to retain water-soluble mineral phases.

The sample was then analyzed for automated mineralogical analysis using the TESCAN Integrated Mineral Analyzer (TIMA-X). Energy Dispersive Spectrometry (EDS) analysis was used to quantify the chemistry of mineral phases not already present within the TESCAN mineral library. Further details on the mineralogical methods and quality assurance procedures are provided in Appendix A.

4.2.3 Static Characterization

An aliquot of filtered and dried sludge was analyzed at Global ARD for elemental content by ICP-MS analysis following an aqua regia partial digestion, elemental content by ICP-AES analysis following a

lithium metaborate near total digestion, total carbon and sulphur by Leco, and sulphate sulphur following a hydrochloric acid leach.

To measure the buffering capacity of the sludge, a 10g aliquot of filtered sludge was titrated with sulphuric acid at Global ARD. The procedure involved continuous addition of 1N sulphuric acid to the sample using a titration dropper while the sample was constantly agitated. The titration was continued until a pH endpoint of 2.

4.2.4 Pit Water Sample and Sludge Filtrate Analysis

The Vangorda Pit Lake Sample, the Faro Pit Lake Sample, and the sludge filtrate samples were analyzed at Global ARD for pH, electrical conductivity (EC), oxidation reduction potential (ORP), dissolved oxygen (DO), acidity, alkalinity, dissolved sulphate, chloride, fluoride, nitrate, nitrite, ammonia, orthophosphate, dissolved organic carbon (DOC), total suspended solids (TSS), turbidity, and analysis of dissolved concentrations of thirty-nine elements.

4.2.5 Extraction Tests

Shake Flask Extractions

Shake-flask extractions (SFEs) were conducted at Global ARD using a modified procedure with a 1:20 ratio of dry sludge to water (27.5 g of dry sludge to 750 mL of water) used in an effort to prevent solubility limits from being reached and limit the ability of the sludge to quickly buffer the test solution to alkaline pH. The SFEs were conducted with gentle agitation rather than shaking to mimic the storage conditions and a 96-hour reaction time was used so that equilibrium could be achieved. The SFE procedure was conducted with the following variations:

- 1. DI water (and duplicate test)
- 2. Faro pit water (to assess solubility under neutral conditions)
- 3. Vangorda pit water (to assess solubility under acidic conditions)

Sequential Extraction Tests

A customized sequential extraction test procedure was developed following review of the mineralogy data. The procedure aimed to test the solid phase associations of the major and trace elements within the sludges to determine the total amount of these elements hosted within exchangeable, water soluble, reducible, and acid soluble fractions. The procedure was intended to be performed on 1 g of dry sludge with the reagents and equilibration conditions summarized in Table 4-2. However, during the first iteration of the extraction the sample leachate volumes were insufficient to yield low detection limits and the sample was completely dissolved following the reducible step. The test was therefore repeated using a 10 g sample and proportionally larger volumes of reagents (i.e. 10x volumes). The final reagents, reagent volumes, and equilibration conditions used are summarized in Table 4-2. The 10 g sample was still dissolved by the reducible step and the final two steps could not be completed.

Table 4-2: Customized Extraction Test Procedure

Extraction Step	Target Phases	Target Minerals	Reagent	Equilibration Time	Reference	Note
1	Exchangeable	Elements adsorbed to ion exchange sites on Fe3+ and Mn3+ oxide surfaces	400 ml 1M CaCl2	2 hours end over end shaking	Pickering (1986)	
2	Water-Soluble	Sulphate Minerals	1000 ml DI water, wait for results and repeat step if SO4 >1500 mg/L	48 hrs, gentle swirl	variation of MEND (2009)	Step repeated until dissolved sulphate results <1,000 mg/L
3	Reducible	Fe and Mn oxides and hydroxides	400 ml 0.04 M hydroxylamine hydrochloride in 25% acetic acid	2 hours in 90 C water bath with mixing every 30 minutes	Tessier (1979)	Step repeated twice on replicate sample
4	Moderately acid soluble	Remaining sulphates and hydroxides	1N HCl added with titration dropper until pH holds steady at 3	Beaker constantly stirred as HCl is added, HCl addition and pH documented at each step as done for sludge titration	Customized method	Not completed
5	Residual	QA/QC	4-acid digestion		Standard Method	

Source: Z:\01_SITES\Faro\!101_Investigations\2020_WTP_SludgeCharacterization\1. Proposal and Lab instructions\Selective Extraction\[ExtractionMethodPlan_1CA030.025_JED_Rev01.xlsx]

The reproducibility of the method was tested by performing the entire method in replicate. Additionally, a blank was tested at steps 1, 3, and 4 to evaluate the contribution for each of the reagents.

4.2.6 Aging Tests

Test Work Program Design

The aging test work program was designed to test the long-term stability of the sludges under range of pH and Eh conditions. Each aging test was setup at Global ARD in Burnaby, BC using a using a low (1:20) ratio of sludge to water (25 g of dry sludge to 475 mL of water) in an effort to prevent solubility limits from being reached and limit the ability of the sludge to quickly buffer the test solution to alkaline pH. The aging tests were conducted under oxic and anoxic conditions, with the addition of 0.575 g/L ethanol (equivalent to 300 mg/L total carbon) in an attempt to force reducing conditions in the anoxic conditions, using the variations shown in Figure 4-1.

Figure 4-1: Aging Test Variations

Aging Test Setup

The oxic aging tests are shown in Figure 4-2. Setup of the tests consisted of the following:

- Placement of 25 g of dry sludge into twenty-four open-topped glass bottles (4 aging test variations, 1 bottle per sample interval).
- Preparation of acidic DI water solution by adding H₂SO₄ with a titration dropper until a pH of 4 was achieved.
- Addition of 475 mL of solution to each sample bottle using the variations outlined in Figure 4-1 with the bottle gently swirled following addition. Following mixing of the sludge with the solution, the pH and ORP were measured hourly for seven hours.
- <complex-block>
- The oxic aging tests were then covered with parafilm when not being manipulated.

Figure 4-2: Oxic Aging Test Setup

The anoxic aging test are shown in Figure 4-3. Setup of the tests consisted of the following:

- Placement of 25 g of dry sludge into twenty-four screw top glass bottles (4 aging test variations, 1 bottle per sample interval).
- Addition of 475 mL of solution to each sample bottle using the variations outlined in Figure 4-1 with the bottle gently swirled following addition.
- Setup of a blank sample (bottle filled with DI water) for each anoxic test variation which was treated identically to the other bottles throughout the duration of testing.
- Each bottle was then capped with a sealed screw top lid and placed in an anaerobic glove box.
 Within the glove box, each aging test was flushed for 2 hours with N₂ gas.

- Following flushing, the pH, EC, and ORP was measured and each test was dosed with ethanol (final concentration 0.575 g/L) to promote microbial reduction. The stopper for each screw-top bottle lid was then attached to a tedlar bag filled with nitrogen to mitigate any oxygen intrusion into the glove box.
- During the length of the aging tests, the glove box was flushed with N₂ weekly to maintain anoxic conditions and an oxygen absorber and indicator were used to facilitate and monitor low oxygen concentrations, respectively.

Figure 4-3: Anoxic Aging Test Setup

Aging Test Sampling

Aging tests were sampled following the frequency outlined in Table 4-3. The sampling procedure for the oxic and anoxic aging test was identical. Anoxic aging tests were sampled outside the glove box as it took less than a minute to process the samples. Prior to sampling, the undisturbed sample solution was measured for pH, EC, and ORP. The sample was then swirled, with pH, EC, and ORP measured once again following swirling. These parameters were measured inside the glove box for the anoxic samples. The solution was then sampled for analysis of pH, ORP, EC, total alkalinity, acidity, sulphate, chloride, fluoride, bromide, nitrate, nitrite, ammonia, and a dissolved element scan by ICP-MS. Total organic carbon (TOC) and dissolved organic carbon (DOC) were also measured on the anoxic test variations for months four and seven.

Time Point	Oxic Aging Tests	Anoxic Aging Tests
Т0	2 weeks	-
T1	1 month	1 month
T2	2 months	2 months
Т3	3 months	3 months
T4	4 months	4 months
T5	7 months	7 months

Table	4-3:	Aaina	Test	Sample	Schedule
TUDIC	- v .	~giiig	1000	oumpic	ooncaalo

4.3 Data Quality Assurance (QA) and Quality Control (QC)

In addition to laboratory quality assurance and quality control (QA/QC) programs, SRK follows internal QA/QC procedures as outlined in the SRK Expectations for Laboratory Geochemical Data Quality (2019b). The sludge characterization program included the following QA/QC components in addition to the lab QA/QC procedures:

- Static characterization:
 - A duplicate sample (split following sludge homogenization) underwent static testing.
 - SRK monitors static results from duplicates, in addition to checking lab-initiated QC samples (duplicates, blanks and certified reference materials) against expected values.
- Pit water and sludge filtrate analysis:
 - A duplicate sludge filtrate sample was analyzed.
 - Data were evaluated for ion balance, for reproducibility, and deviations from previously observed trends.
- Shake-flask extraction tests:
 - A duplicate and blank extraction test were conducted.
 - Data were evaluated for ion balance, for contamination, and for reproducibility.
- Sequential extraction tests:
 - The entire extraction procedure was conducted in duplicate and blanks were tested at each step where reagents were added to evaluate contribution from reagents.
 - Data were evaluated for ion balance and for reproducibility.
- Aging tests:
 - A blank test was operated for each anoxic test variation to assess potential contamination from the test setup.
 - Data were evaluated for ion balance, for contamination, and deviations from previously observed trends.

Results that were outside SRKs criteria were subject to further evaluation or re-checks. QA/QC results of the sequential extraction tests are provided in Section 5.6.2 with results of SRK's QA/QC assessment for the remaining tests are provided in Appendix B. In summary, the data passed the QA/QC checks and were considered acceptable and no re-checks were outstanding.

5 Results

5.1 Sludge Filtrate and Pit Water Chemistry

A summary of the sludge filtrate pit water chemistry results for selected parameters is provided in Table 5-1 with the full set of analytical data provided in Appendix C.

The sludge filtrate had a slightly alkaline pH of 8.4 with low alkalinity (9.5 mg/L) and an electrical conductivity of 3000 μ S/cm. Cations within the sludge filtrate were dominated by calcium (480 mg/L) and magnesium (170 mg/L) with anions dominated by sulphate (2200 mg/L). Ammonia was the main nitrogen form within the filtrate at 1.1 mg/L, followed by nitrite (0.49 mg/L) and nitrate (0.18 mg/L) while total organic carbon was present in an abundance of 4.4 mg/L. Concentrations of all parameters in the sludge filtrate were less than concentrations in the Faro pit water. Zinc had a notably low concentration of 0.028 mg/L.

The Faro pit water had a neutral pH of 6.9 with measurable levels of acidity (66 mg/L as CaCO₃) and alkalinity (48 mg/L as CaCO₃) and an electrical conductivity of 1900 μ S/cm. Cations within the Faro pit water were dominated by calcium (210 mg/L), magnesium (110 mg/L) and acidity (66 mg/L) with anions dominated by sulphate (1200 mg/L). Ammonia was the main nitrogen form at 1.5 mg/L followed by nitrate at 0.15 mg/L while total organic carbon was present in an abundance of 1.1 mg/L. Compared to the sludge filtrate, the Faro pit water had slightly higher concentrations of most metals and trace elements (i.e. cadmium cobalt, copper, iron, nickel, and selenium) and significantly higher concentrations of manganese (12 mg/L) and zinc (33 mg/L).

The Vangorda pit water had an acidic pH of 3.6 with 560 mg/L acidity, no measurable alkalinity and an electrical conductivity of 2700 mg/L. Cations in the Vangorda pit water were dominated by calcium (230 mg/L), magnesium (150 mg/L) and iron (110 mg/L) with anions dominated by sulphate (1900 mg/L). Compared to the Faro pit water, the Vangorda pit water showed slightly higher concentrations of most trace elements (i.e. As, Cd, Co, Cu, Pb, Ni, Se) and significantly higher concentrations of zinc (160 mg/L), iron (110 mg/L) and manganese (49 mg/L). The Vangorda pit water showed concentrations in the range of those predicted in the Faro pit lake following acidification (Section 2.1.2) indicating that the Vangorda pit water is an appropriate analog to measure the interaction between the sludge and the Faro pit lake water following acidification.

Parameter	Unit	Sludge Filtrate	Vangorda Pit	Faro Pit
рН	pH units	8.4	3.6	6.9
EC	μS/cm	3000	2700	1900
Acidity	mg CaCO ₃ /L	<0.5	560	66
Alkalinity	mg CaCO₃/L	9.5	<0.5	48
Dissolved Sulphate	mg/L	2200	1900	1200
Nitrate (as N)	mg/L	0.18	0.1	0.19
Nitrite (as N)	mg/L	0.49	0.028	<0.005
Ammonia (as N)	mg/L	1.1	0.39	1.5
Dissolved Organic Carbon	mg/L	4.4	1.1	1.5
Total Organic Carbon	mg/L	4.4	0.8	1.1
Total Suspended Solids	mg/L	4.0	18	6.0
Sb	mg/L	<0.0001	<0.0001	<0.0001
As	mg/L	0.0007	0.0014	0.0003
Cd	mg/L	0.00009	0.079	0.011
Са	mg/L	480	230	210
Со	mg/L	0.0007	0.6	0.11
Cu	mg/L	0.0007	0.3	0.0013
Fe	mg/L	<0.02	110	0.27
Pb	mg/L	<0.0005	0.072	<0.0005
Mg	mg/L	170	150	110
Mn	mg/L	0.0013	49	12
Ni	mg/L	0.0026	0.46	0.19
К	mg/L	12	3	9.7
Se	mg/L	0.0009	0.0043	0.0021
Na	mg/L	31	7.6	24
Zn	mg/L	0.028	160	33

Table 5-1: Summary	of Pit Water and Filtrate Chemistry
--------------------	-------------------------------------

Source: Z:\01_SITES\Faro\!101_Investigations\2020_WTP_SludgeCharacterization\3. Working Files\[Faro Sludge_WorkingFiguresandTables_1CA030.025_Rev00.xlsx]

Notes: Elements represent dissolved concentrations

5.2 Sludge Physical Characteristics

5.2.1 Moisture and Solids Content

Results from total solids analysis are presented in Table 5-2. The laboratory values for the sludge slurry compared well with estimates of solids content and specific gravity performed on sludge following the pilot plant testing by AWT (2018). Full results are presented in Appendix C.

Sample ID	Sample Volume	Slurry Weight	Slurry Specific Gravity	Wet Cake Weight	Dry Cake Weight	% Moisture Filtered Sludge	Slurry % Solids
	mL	g	g/ml	g	g	%	%
Homogenized Sludge	1000	1100	1.1	790	230	71%	20%
Homogenized Sludge Duplicate	1000	1100	1.1	800	230	71%	20%

Table 5-2: Sludge Solids Content

Source: Z:\01_SITES\Faro\!101_Investigations\2020_WTP_SludgeCharacterization\3. Working Files\[Faro Sludge_WorkingFiguresandTables_1CA030.025_Rev00.xlsx]

5.2.2 Particle Size Distribution

The particle size distribution of the sludge is shown in Figure 5-1, with full results provided in Appendix D. The sludge particle size showed a relatively normal distribution with a median particle size of 20 microns (minimum and maximum= 0.7 um and 540 um or 0.54 mm respectively).

Figure 5-1: Sludge Particle Size Distribution

5.3 Mineralogy

5.3.1 Interpretation of SEM-EDS Data

Results of scanning electron microscope (SEM) electron dispersive spectrometry (EDS) spot analysis were used to interpret the spectra of an array of abundant oxygen rich phases containing various combinations of magnesium, iron, calcium, manganese, zinc, and sulphur which were not in the TIMA-X mineral library. As EDS cannot determine the abundances of light elements such as carbon and hydrogen, the chemical formula of each mineral must be determined based on the relative proportions of each element by mass. Based on review of the mineralogical composition of sludges produced through treatment of waste waters at similar mines (MEND 2013), it was determined that these phases likely represented hydroxy-sulphate, hydroxide, or oxy-hydroxide precipitates from the lime treatment process. Comparison of the relative abundances of oxygen and sulphur present within each phase to abundances of cations measured by SEM-EDS determined that the unknown mineral phases likely represent either non-hydrated or hydrated oxy-hydroxides as hydroxide phases would contain less oxygen mass and hydroxy-sulphate phases would contain a greater mass of sulphur than was measured by SEM-EDS. However, the precipitates could also represent a more complex phase such as the layered double hydroxides described by Gammons and Icopini (2019) of the type M(II)OH2- $_xM(III)(OH)_3(SO_4)_{x/2}$ where M(II) is Fe²⁺, Mg²⁺, Mn²⁺, or Zn²⁺ and M(III) is Al³⁺ or Fe³⁺. Double layered hydroxides with this composition would have similar levels of oxygen and sulphur as the range measured by SEM-EDS. As the mineralogy of these phases cannot conclusively be determined, they are henceforth referred to as "O-phases" within this report.

5.3.2 Bulk Mineralogy Data

The mineralogical results from TIMA-X bulk mineralogical analysis are provided in Table 5-3, with the full mineralogy laboratory report provided in Appendix A. Key points for the data are summarized as follows:

- The sample was dominated by O-phases which comprised 62 weight percent (wt %) of the sample. The Ox-phases had chemical variations which were organized within the TIMA-X software into five groupings:
 - Zn, Fe, Mg, Mn, S, (Ca, Si) O phase which contained 14% Zn, 9.9% Fe, 9.1% Mg, 6.7% Mn, 5.9% S, 4.5% Ca, 1.48% Si, and 48% O.
 - Ca, S, (Mn) O phase which contained 28% Ca, 21%S, 2% Mn, 0.4% Zn, 0.28% Mg, and 47% O.
 - Mg, Al, S, (Zn, Si) O phase which contained 20% Mg, 7.5% Al, 5.2% S, 3.8% Zn, 2.2% Si, 0.45% Ca, 0.018% Fe, and 61% O.
 - Fe, Zn, Mg, (S, Si) O phase which contained 16% Fe, 13% Zn, 13% Mg, 4.7% S, 1.5% Si, and 52% O.
 - Mg, Fe, Ca, Zn, (S) O Phase for which the mineral chemistry could not be quantified due to a lack of beam counts.

- Gypsum was the second most abundant phase and occurred in an abundance of 18 wt %, while the sulphates barite and jarosite were detected in trace quantities. SEM-EDS analysis of gypsum grains determined that gypsum contained 2% Mn, 0.4% Zn, and 0.28% Mg.
- The carbonate minerals calcite and dolomite/ankerite were detected in significant quantities (9.6 wt % and 3.6 wt % respectively).
- Oxide phases were detected in a total abundance of 6.0%, with 5.5% of the oxides made up of Zn-oxide (1.9%) and Mn, Zn-oxide (3.6%) and the remainder classified as undifferentiated oxide which could not be further segregated. SEM-EDS of the Mn-Zn oxide grains determined that this phase contained sub-equal proportions of Mn and Zn with trace iron (2.2%).
- The remainder of the sample was made up of traces of the sulphate minerals jarosite and barite, undifferentiated silicates, elemental sulphur, and undifferentiated sulphides which were described as containing traces of pyrite.

Overall, mineralogy of the Faro WTP sludge is similar to ARD neutralization sludges from several other mines in western Canada which also contained significant amounts of gypsum and traces of carbonates, barite, pyrite, and oxides (MEND 2013).

Mineral Group	Mineral	Formula	Modal Abundance (%)
O phases	Zn, Fe, Mg, Mn, S (Ca, Si) - O phase	-	28
O phases	Ca, S (Mn) - O phase	-	18
O phases	Fe, Zn, Mg (S, Si)- O Phase	-	13
O phases	Mg, Fe, Ca, Zn (S) - O phase	-	1.2
O phases	Mg, Al, S (Zn, Si) - O phase	-	1.1
	Gypsum	CaSO ₄	18
Sulphates	Jarosite	KFe ³⁺ 3(OH)6(SO ₄)2	trace
	Barite	BaSO ₄	trace
Carbonatos	Calcite	CaCO₃	9.6
Carbonales	Carbonates	(Ca, Mg, Fe)(CO ₃) ₂	3.6
	Mn, Zn (Fe) -Oxide	(Mn, Zn, Fe)O ₂	3.6
Oxides	Zn-Oxide	ZnO	1.9
_	Oxides		0.46
Silicates	Silicates		1.3
	Complex Sulfur		0.14
Sulphur Forms -	Sulphides		0.04

Table 5-3: Summary of TIMA-X Bulk Mineralogy Results

Source: Z:\01_SITES\Faro\!101_Investigations\2020_WTP_SludgeCharacterization\3. Working Files\[Mineralogy_Interp_1CA030.025_Rev00.xlsx] Notes:

Pyrite identified within sulphide grouping

Carbonate grouping includes dolomite and ankerite

5.3.3 Zinc Deportment

The deportment of zinc as calculated using the SEM-EDS concentration of zinc within each identified mineral phase and whole-rock zinc abundances is shown in Table 5-4 which shows that 77% of zinc is present within the array of O-phases with 22% hosted within Zn and Mn oxides. Trace amounts of zinc are also present with gypsum and calcite.

Table 5-4: Zinc Deportment

Mineral	Mass % of Zn
Zn, Fe, Mg, Mn, S, (Ca, Si) - O Phase	35
Ca, S, (Mn) - O Phase	23
Fe, Zn, Mg, (S, Si) - O Phase	16
Mg, Fe, Ca, Zn, (S) - O Phase	1.9
Mg, Al, S, (Zn, Si) - O Phase	0.69
Mn, Zn (Fe)-Oxide	11
Zn-Oxide	11
Gypsum	1.0
Calcite	0.31
Other	0.08

Source: Z:\01_SITES\Faro\!101_Investigations\2020_WTP_SludgeCharacterization\3. Working Files\[Mineralogy_Interp_1CA030.025_Rev00.xlsx]

5.4 Solid Phase Chemistry

Table 5-5 presents the treatment sludge composition results for a selected set of parameters on a dry mass basis with the full dataset of results provided in Appendix C.

Only 49% of the sludge's dry weight could be quantified and the sample had a loss on ignition of 28%, indicative of the presence of abundant volatiles such as OH and H₂O. Based on the mineralogical composition of the sample (Section 5.3), the loss on ignition likely reflects de-volatization of water and hydroxide from hydroxide and hydrated mineral phases.

Calcium (9.0%), magnesium (7.7%), iron (6.4%), sulphur (5.4%), manganese (2.2%), and carbon (1.5%) were the dominant major elements present within the sludge, reflecting the presence of these elements within the O-phases and within gypsum (calcium and sulphur) and carbonate (carbon). Potassium and sodium were not detected, while traces of silica (0.73%), aluminum (0.045%), and phosphorus (0.0044%) comprised the remainder of the sludge's major element composition.

HCl extractable sulphur (3.9%) comprised the majority of the sulphur within the sample, indicating that the majority of the sulphur was hosted in acid soluble phases such as gypsum or O-phases.

Zinc was the dominant trace element within the sludge with an abundance of 15%. Cobalt and nickel were also detected in appreciable amounts (280 and 310 ppm respectively), while other trace elements had near detection or relatively low concentrations.

Method	Parameter	Unit	Homogenized Sludge
	Total C	%	1.9
Leco	Total S	%	5.4
	HCI Extractable Sulphur	%	3.9
	Al	%	0.048
	ParameterUnitHomogenized SludgeTotal C%1.9Total S%5.4HCI Extractable Sulphur%3.9Al%0.048Ca%9.9Ca%9.9Fe%6.4K%<0.007	9.9	
		6.4	
	К	%	<0.007
Whole Rock Digestion	Mg	%	7.7
	Mn	%	2.2
-	Na	%	<0.006
-	Р	%	0.0044
-	Si	%	0.73
	As	ppm	2.2
	Cd	ppm	29
	Total C%Total S%HCl Extractable Sulphur%Al%Ca%Fe%K%Mg%Mn%Si%Si%CdppmCdppmCdppmCdppmCuppmNippmNippmSbppmSbppmSeppmVppm	280	
	Cr	ppm	3.0
	Cu	ppm	6.6
-	Мо	ppm	0.10
Aqua Regia	Ni	ppm	310
g	Pb	ppm	4.2
-	Sb	ppm	0.60
	Se	ppm	<1
	U	ppm	2.7
	V	ppm	31
	Zn	%	15

Table 5-5: Treatment Sludge Composition on a Dry Mass Basis

Source: Z:\01_SITES\Faro\!101_Investigations\2020_WTP_SludgeCharacterization\3. Working Files\[Faro Sludge_WorkingFiguresandTables_1CA030.025_Rev00.xlsx]

Faro Water Treatment Plant Sludge Characterization Report Results • FINAL

5.5 Buffering Capacity

At the pH endpoint of the treatment sludges following storage (pH 8 to 9), the total alkalinity remaining in solution is low (9 mg CaCO₃/L). Most of the alkalinity is stored in the form of hydroxide in the precipitated O-phases and as calcite, dolomite and ankerite. Results of the laboratory titration (Figure 5-2) indicated the sludge had the ability to buffer 0.0087 mols H⁺/g on a dry basis at a pH above 5. Incorporating the alkalinity of the sludge filtrate and the solids content of the homogenized sludge (Section 5.2.1), the sludge had the ability to buffer 2.0 mols H⁺/L at a pH range above 5. Using the expected solids content of the sludge during full scale operation (~25%), the sludge would have the ability to buffer 2.5 mols H⁺/L at a pH above 5.

Figure 5-2: Results of Sludge Titration

5.6 Leach Tests

5.6.1 Shake Flask Extractions

Results of the shake-flask extraction tests are expressed as loadings (i.e. as mg constituent/kg sludge). A summary of the SFE leachate concentrations and loadings for selected parameters is presented in Table 5-6, with the full analytical dataset provided in Appendix C. For the SFE variations conducted with Faro and Vangorda pit water as the lixiviant, the loadings calculations incorporated the initial load within the solution so that loadings only reflected the net release of chemical load from the sludge. For parameters which decrease upon reaction with the sludge, this results in negative loadings. This equation for each parameter is of the form:

$$Loading\left(\frac{mg}{kg}\right) = \frac{(Leachate \ conc.\left(\frac{mg}{L}\right)x \ Leachate \ Volume \ (L) - Lixiviant \ conc.\left(\frac{mg}{L}\right)x \ Lixiviant \ Volume \ (L))}{mass \ of \ sludge \ (kg)}$$

The results are discussed as follows:

- The sludge effectively buffered each of the three SFE variations to neutral pHs ranging from 8.3 to 8.7. In each SFE variation, acidity was below detection. Alkalinity showed net loadings of 310 and 500 mg/kg as CaCO₃ in the DI water and Vangorda pit water variations respectively but showed a reduction in alkalinity loadings within the Faro pit water variation.
- The sludge contributed significant loadings of sulphate (21,000 to 41,000 mg/kg), calcium (4300 to 9600 mg/kg) and magnesium (3900 to 5800 mg/kg) reflecting dissolution of water-soluble minerals including gypsum. The concentration of sulphate within the leachate of all three variations ranged from 2040 to 2940 mg/L which is the typical range at which gypsum precipitation occurs in the presence of elevated magnesium concentrations. This indicates release of sulphate and calcium was likely limited by equilibrium with gypsum and that loadings would be greater at higher water to solid ratios. Magnesium showed greater concentrations and loadings within the Faro pit water and Vangorda pit water variations (4200 and 5800 mg/kg respectively) suggesting leaching was likely controlled by pH.
- Loadings of zinc and manganese were slightly positive in the DI water variation (0.98 and 0.98 mg/kg respectively), while both parameters showed a negative loading for both pit water variations reflecting the limited solubility within the SFE leachates under buffered conditions.
- Several other parameters including CI, NO3, NO2, K, and Na showed lower but consistently
 positive loadings in all three SFE variations indicating the presence of these constituents within
 water soluble phases within the sludge.
- F, As, Cd, Co, and Mn showed slight positive loadings within the DI water SFE variation reflecting leaching under dilute conditions but negative loadings for both pit water variations likely reflecting the presence of solubility limits for these parameters or iron hydroxide minerals within the SFE tests under neutral pH conditions.
- Pb, Mo, Hg, Se, U, and V were detected near or below detection limits within both the pit water and the SFE leachates indicating the lack of these constituents within water-soluble phases within the sludge.

Table 5-6: Summary of SFE Results and Loadings

		Pit Water (Concentrations		SFE Resul	Its	SFE Loadings			
Parameter	Unit	Faro Pit	Vangorda Pit	DI Water	Faro Pit Water	Vangorda Pit Water	Unit	DI Water	Faro Pit Water	Vangorda Pit Water
Weight of dry sample	g			38	38	38	g	38	38	38
Volume of water	mL			750	750	750	mL	750	750	750
рН	pH units	6.9	3.6	8.7	8.8	8.3	pH units	8.7	8.8	8.3
EC	µS/cm	1900	2700	3100	3700	4100	µS/cm	3100	3700	4100
ORP	mV	120	280	120	50	130	mV	120	50	130
Acidity	mg CaCO₃/L	66	560	0.5	0.5	0.5	mg CaCO3/kg	<10	<10	<10
Alkalinity	mg CaCO₃/L	48	0.5	16	18	26	mg CaCO3/kg	310	-600	500
SO4	mg/L	1200	1900	2000	2500	2900	mg/kg	41000	26000	21000
Cl	mg/L	1.3	0.58	0.49	1.6	0.73	mg/kg	9.8	5.4	3
F	mg/L	0.48	0.48	0.34	0.41	0.46	mg/kg	6.8	-1	-0.4
Nitrate (as N)	mg/L	0.19	0.1	0.019	0.19	0.17	mg/kg	0.38	0.08	1.3
Nitrite (as N)	mg/L	0.005	0.028	0.11	0.099	0.12	mg/kg	2.2	2.1	1.9
Sb	mg/L	<0.0001	<0.0001	<0.0001	<0.0001	<0.0001	mg/kg	<0.002	<0.002	<0.002
As	mg/L	0.0003	0.0014	0.0003	0.0003	0.0003	mg/kg	0.006	0	-0.02
Cd	mg/L	0.011	0.079	0.00008	0.00013	0.0014	mg/kg	0.0016	-0.2	-2
Ca	mg/L	210	230	480	450	450	mg/kg	9600	4800	4300
Cr	mg/L	<0.0005	<0.0005	<0.0005	<0.0005	<0.0005	mg/kg	<0.01	<0.01	<0.01
Со	mg/L	0.11	0.6	0.0006	0.001	0.015	mg/kg	0.012	-2	-10
Cu	mg/L	0.0013	0.3	<0.0005	<0.0005	<0.0005	mg/kg	<0.01	-0.04	-6
Fe	mg/L	0.27	110	<0.02	<0.02	<0.02	mg/kg	<0.4	-6	-2000
Pb	mg/L	0.0005	0.072	<0.0005	<0.0005	<0.0005	mg/kg	<0.01	<0.01	-1
Mg	mg/L	110	150	200	320	440	mg/kg	3900	4200	5800
Mn	mg/L	12	49	0.0007	0.015	5.7	mg/kg	0.014	-200	-900
Hg	mg/L	<0.0005	<0.0005	<0.0005	<0.0005	<0.0005	mg/kg	<0.01	<0.01	<0.01
Мо	mg/L	0.0001	0.0005	0.0002	0.0002	0.0001	mg/kg	0.004	0.006	-0.008
Ni	mg/L	0.19	0.46	< 0.0005	0.0008	0.01	mg/kg	<0.01	-4	-9
K	mg/L	9.7	3	1.3	11	4.3	mg/kg	26	29	25
Se	mg/L	0.0021	0.0043	<0.0005	<0.0005	<0.0005	mg/kg	<0.01	-0.05	-0.1
Ag	mg/L	<0.00008	<0.00008	<0.00008	<0.00008	<0.00008	mg/kg	<0.002	<0.002	<0.002
Na	mg/L	24	7.6	3.5	27	11	mg/kg	70	76	57
U	mg/L	0.00027	0.0062	<0.00005	<0.00005	<0.00005	mg/kg	<0.001	-0.006	-0.1
V	mg/L	<0.001	<0.001	<0.001	<0.001	<0.001	mg/kg	<0.02	<0.02	<0.02
Zn	mg/L	33	160	0.049	0.059	0.13	mg/kg	0.98	-700	-3000

Source: Z:\01_SITES\Faro\!101_Investigations\2020_WTP_SludgeCharacterization\3. Working Files\[Faro Sludge_WorkingFiguresandTables_1CA030.025_Rev00.xlsx]

Notes:

Results expressed in two significant figures

5.6.2 Sequential Extraction Tests

Results of the sequential extraction tests are summarized in Table 5-7 and Table 5-8 with the full lab report provided in Appendix C.

The interpretation of these results needs to consider QA/QC issues such as trace element concentrations within the leach solutions and other experimental limitations, described as follows:

- In addition to calcium and chloride, the calcium chloride solution contained levels of arsenic, barium, cadmium, copper, potassium, selenium, sodium, and strontium greater than ten times the detection limit.
- The hydroxylamine hydrochloride and acetic acid solution contained levels of chromium, iron, lithium, manganese, silicon, sodium, titanium, and zinc greater than ten times the detection limit.
- The ion balance of the extract solutions from steps 1 and 2 was <10%. For step 3, fluoride could not be analyzed due to interference and the ion balance therefore exceeded 10%. An analytical recheck confirmed the anion results and the results were accepted as is.</p>
- The relative percent difference (RPD) between the replicates of steps 1, 2 and 3 was <30% for all parameters measured at concentrations greater than ten times the analytical detection limit except for barium which showed poor reproducibility for the water-soluble extraction step (step 2).</p>
- Total element recovery could not be evaluated since the remaining sludge following step 3 (<0.3 g) had insufficient volume for analysis. However, total recovery for steps 1, 2, and 3 (Figure 5-3) showed good reproducibility between both extractions (step 3 performed twice on duplicate step) for parameters detected greater than ten times the analytical detection limit. No parameters showed total element recovery exceeding 100%.</p>

Although the extractions could not be completed due to the near complete dissolution of the sludge during the reducible step (step 3), the results were considered acceptable for determining the exchangeable, water-soluble, and reducible fractions within the sludge. The near complete dissolution of sludge during the reducible step indicates that the moderately acid soluble and residual fractions were an insignificant component of the sludges.

Figure 5-3: Element Recovery for Both Replicate Sequential Extractions in Relation to Initial Solid Phase Concentrations. For Steps 1 and 3, the concentration within the reagents was subtracted from the final concentration to account for the composition of the reagent.

Step 1 of the sequential extraction test was intended to target elements adsorbed to ion exchange sites on Fe³⁺ and Mn³⁺ oxide surfaces using a leachate with a high ionic strength calcium chloride solution. This resulted in mobilization of sulphate (2000 mg/L), magnesium (310 to 330 mg/L), cadmium (0.0053 to 0.0066 mg/L), and zinc (0.45 to 0.46 mg/L) at levels more than one magnitude greater than concentrations in the leach solution. Mobilization of sulphate and magnesium likely reflects dissolution of water-soluble gypsum and magnesium bearing carbonates rather than cation exchange processes. Zinc was also identified as a trace constituent in gypsum (Section 5.3.2) and low levels of zinc and cadmium also likely reflect dissolution of gypsum rather than cation exchange processes. Overall, step 1 of the extraction indicated that the sludge did not contain significant trace metals present within the exchangeable phase.

Step 2 of the sequential extraction test was intended to target elements associated with sulphate minerals using a de-ionized water leachate. This yielded similar results as the SFE's, with the results indicating the sludge contained water-soluble sulphate, calcium, and magnesium content with relatively low levels of most trace elements. In contrast to the SFE results, most trace elements were detected at lower levels reflecting slight dissolution of water-soluble phases by step 1 and the lower solid to liquid ratio of the test (1:200 solid to liquid ratio vs 1:20 ratio).

Step 3 of the sequential extraction test was intended to target elements associated with Fe and Mn oxides and hydroxides using a hydroxylamine hydrochloride and acetic acid solution. This step of the test resulted in near complete dissolution of the sludge. This was likely achieved by total reduction of

the hydroxide (O-phases) and oxide phases within the sludge by the reductant hydroxylamine hydrochloride and dissolution of the carbonates within the sludge due to interaction with the acetic acid. The final pH of the extract leachate (pH 3.4) following one cycle suggested near-total dissolution of carbonates. Dissolution of these phases resulted in release of the majority of the elemental content of the sludge with the extraction leachate showing highest concentrations of aluminum, calcium, cadmium, cobalt, iron, magnesium, manganese, silica, and zinc. Overall, step 3 of the sequential extraction indicated the majority of the major and trace elements within the sludge were hosted within reducible phases.

As stated previously, the near complete dissolution of sludge during the reducible step indicates that the moderately acid soluble and residual fractions were an insignificant component of the sludges. However, it should be noted that some of the phases that dissolved in the reducible step could also be susceptible to mobilization under acidic conditions if reducing conditions were not present. In other words, it is likely that the phases that were mobilized in step 3 would have been mobilized in step 4 if step 3 had been skipped.

Table 5-7: Sequential Extraction Results

				Step-1: Exchangeable		S	tep-2: Water Sol	luble Step-3: Reducible				
Parameter	Unit	Detection Limit	Extraction 1	Duplicate Extraction	CaCl2 Stock Solution	Extraction 1	Duplicate Extraction	DI Water Solution	Extraction 1	Duplicate Extraction Cycle 1	Duplicate Extraction Cycle 2	Stock Solution
pН	pH units	0.01	7.3	7.4		8.3	8.4		3.4	3.4	2.4	
EC	μS/cm	1	130000	140000		3100	3400	_	12000	12000	4500	
Acidity	mg CaCO₃/L	0.5	64	45		<0.5	<0.5		190000	190000	220000	
Alkalinity	mg CaCO₃/L	0.5	13	14		13	14		<0.5	<0.5	<0.5	
SO4	mg/L	50	2000	2000	<50	580	660		1300	1200	170	<50
CI	mg/L	5	57000	59000	59000	15	9.3		1300	1300	1500	1500
F	mg/L	0.2	0.37	0.31	<0.2	0.3	0.33					18000
Nitrate (as N)	mg/L	0.005	<0.005	<0.005	<0.005	<0.005	<0.005		53	46	280	280
Nitrite (as N)	mg/L	0.005	<0.005	<0.005	<0.005	<0.005	<0.005		48	53	200	220
AI	mg/L	0.02/0.001	<0.02	0.03	0.07	<0.001	<0.001	<0.001	7.4	6.7	0.32	<0.01
Sb	mg/L	0.002/0.0001	<0.002	<0.002	0.003	<0.0001	<0.0001	<0.0001	0.006	0.006	<0.001	<0.001
As	mg/L	0.0002	0.012	0.012	0.014	<0.0002	<0.0002	<0.0002	0.041	0.043	0.02	0.004
Cd	mg/L	0.00001	0.0053	0.0066	0.0003	0.00003	0.00002	<0.00001	0.57	0.63	0.0036	<0.0001
Са	mg/L	0.05	36000	36000	37000	210	230	<0.05	1500	1400	17	<0.5
Cr	mg/L	0.01/0.0005	<0.010	<0.010	<0.010	<0.0005	<0.0005	<0.0005	0.012	0.013	0.008	0.009
Со	mg/L	0.0001	0.003	<0.002	<0.002	<0.0001	<0.0001	<0.0001	5.3	5.5	0.033	<0.001
Cu	mg/L	0.01/0.0005	<0.010	0.01	0.018	0.0005	0.0007	<0.0005	0.16	0.15	0.006	<0.005
Fe	mg/L	1.0/0.02	<1	<1	<1	0.01	0.01	<0.02	1300	1300	15	0.2
Pb	mg/L	0.01/0.0005	<0.010	<0.010	0.021	<0.0005	<0.0005	<0.0005	0.09	0.079	0.008	<0.005
Mg	mg/L	0.05	310	330	5.8	13	13	<0.005	1200	1200	7.6	<0.05
Mn	mg/L	0.0002	0.005	0.005	0.026	<0.0002	0.0002	<0.0002	420	460	2.4	0.005
Hg	mg/L	0.01/0.0005	<0.010	<0.010	<0.010	<0.0005	<0.0005	<0.0005	<0.005	<0.005	<0.005	<0.005
Мо	mg/L	0.0001	0.021	0.02	0.022	0.0006	0.0007	<0.0001	0.003	0.002	0.001	<0.001
Ni	mg/L	0.0005	0.06	0.036	0.015	0.0013	<0.0005	<0.0005	6.9	7.3	0.015	<0.005
К	mg/L	0.05	730	730	750	0.14	0.15	<0.05	<0.5	<0.5	<0.5	<0.5
Se	mg/L	0.01/0.0005	<0.010	0.02	0.012	<0.0005	<0.0005	<0.0005	0.043	0.056	<0.005	<0.005
Si	mg/L	0.05	6	7	<5	<0.05	<0.05	<0.05	110	110	4.1	3.3
Ag	mg/L	0.0016/0.00008	<0.0016	<0.0016	<0.0016	<0.0008	<0.0008	<0.0008	<0.0008	<0.0008	<0.0008	<0.0008
Na	mg/L	0.02	1300	1300	1400	0.23	0.27	<0.02	1.1	1	0.6	0.4
S	mg/L	0.5	650	600	420	180	210	<0.5	410	380	<5	<5
W	mg/L	0.002/0.0001	<0.002	<0.002	<0.002	<0.0001	<0.0001	<0.0001	<0.001	<0.001	<0.001	<0.001
U	mg/L	0.001/0.00005	<0.0010	<0.0010	<0.0010	<0.00005	<0.00005	<0.00005	0.053	0.048	0.001	0.0009
Zn	mg/L	0.001	0.45	0.46	0.04	0.015	0.02	<0.001	3200	3400	19	0.08

Source: Z:\01_SITES\Faro\!101_Investigations\2020_WTP_SludgeCharacterization\3. Working Files\[Faro Sludge_WorkingFiguresandTables_1CA030.025_Rev00.xlsx]

Notes

All values provided in two significant figures
Table 5-8: Sec	uential Extraction	Results - Percent	Recoverv b	v Fraction
				,

	Step-1: Exc	hangeable	Step-2: Wa	ter Soluble		Step-3: Reducible	9
Parameter	Extraction 1	Duplicate Extraction	Extraction 1	Duplicate Extraction	Extraction 1	Duplicate Extraction Cycle 1	Duplicate Extraction Cycle 2
AI	<mdl< td=""><td>0%</td><td><mdl< td=""><td><mdl< td=""><td>62%</td><td>56%</td><td>3%</td></mdl<></td></mdl<></td></mdl<>	0%	<mdl< td=""><td><mdl< td=""><td>62%</td><td>56%</td><td>3%</td></mdl<></td></mdl<>	<mdl< td=""><td>62%</td><td>56%</td><td>3%</td></mdl<>	62%	56%	3%
Sb	<mdl< td=""><td><mdl< td=""><td><mdl< td=""><td><mdl< td=""><td>40%</td><td>40%</td><td><mdl< td=""></mdl<></td></mdl<></td></mdl<></td></mdl<></td></mdl<>	<mdl< td=""><td><mdl< td=""><td><mdl< td=""><td>40%</td><td>40%</td><td><mdl< td=""></mdl<></td></mdl<></td></mdl<></td></mdl<>	<mdl< td=""><td><mdl< td=""><td>40%</td><td>40%</td><td><mdl< td=""></mdl<></td></mdl<></td></mdl<>	<mdl< td=""><td>40%</td><td>40%</td><td><mdl< td=""></mdl<></td></mdl<>	40%	40%	<mdl< td=""></mdl<>
As	0%	0%	<mdl< td=""><td><mdl< td=""><td>67%</td><td>71%</td><td>29%</td></mdl<></td></mdl<>	<mdl< td=""><td>67%</td><td>71%</td><td>29%</td></mdl<>	67%	71%	29%
Cd	1%	1%	0%	0%	78%	86%	0%
Са	0%	0%	21%	23%	59%	57%	1%
Cr	<mdl< td=""><td><mdl< td=""><td><mdl< td=""><td><mdl< td=""><td>4%</td><td>5%</td><td>0%</td></mdl<></td></mdl<></td></mdl<></td></mdl<>	<mdl< td=""><td><mdl< td=""><td><mdl< td=""><td>4%</td><td>5%</td><td>0%</td></mdl<></td></mdl<></td></mdl<>	<mdl< td=""><td><mdl< td=""><td>4%</td><td>5%</td><td>0%</td></mdl<></td></mdl<>	<mdl< td=""><td>4%</td><td>5%</td><td>0%</td></mdl<>	4%	5%	0%
Со	0%	<mdl< td=""><td><mdl< td=""><td><mdl< td=""><td>77%</td><td>80%</td><td>0%</td></mdl<></td></mdl<></td></mdl<>	<mdl< td=""><td><mdl< td=""><td>77%</td><td>80%</td><td>0%</td></mdl<></td></mdl<>	<mdl< td=""><td>77%</td><td>80%</td><td>0%</td></mdl<>	77%	80%	0%
Cu	<mdl< td=""><td>0%</td><td>1%</td><td>1%</td><td>96%</td><td>90%</td><td>4%</td></mdl<>	0%	1%	1%	96%	90%	4%
Fe	<mdl< td=""><td><mdl< td=""><td>0%</td><td>0%</td><td>79%</td><td>80%</td><td>1%</td></mdl<></td></mdl<>	<mdl< td=""><td>0%</td><td>0%</td><td>79%</td><td>80%</td><td>1%</td></mdl<>	0%	0%	79%	80%	1%
Pb	<mdl< td=""><td><mdl< td=""><td><mdl< td=""><td><mdl< td=""><td>86%</td><td>75%</td><td>8%</td></mdl<></td></mdl<></td></mdl<></td></mdl<>	<mdl< td=""><td><mdl< td=""><td><mdl< td=""><td>86%</td><td>75%</td><td>8%</td></mdl<></td></mdl<></td></mdl<>	<mdl< td=""><td><mdl< td=""><td>86%</td><td>75%</td><td>8%</td></mdl<></td></mdl<>	<mdl< td=""><td>86%</td><td>75%</td><td>8%</td></mdl<>	86%	75%	8%
Mg	16%	17%	2%	2%	65%	65%	0%
Mn	0%	0%	<mdl< td=""><td>0%</td><td>77%</td><td>84%</td><td>0%</td></mdl<>	0%	77%	84%	0%
Hg	<mdl< td=""><td><mdl< td=""><td><mdl< td=""><td><mdl< td=""><td><mdl< td=""><td><mdl< td=""><td><mdl< td=""></mdl<></td></mdl<></td></mdl<></td></mdl<></td></mdl<></td></mdl<></td></mdl<>	<mdl< td=""><td><mdl< td=""><td><mdl< td=""><td><mdl< td=""><td><mdl< td=""><td><mdl< td=""></mdl<></td></mdl<></td></mdl<></td></mdl<></td></mdl<></td></mdl<>	<mdl< td=""><td><mdl< td=""><td><mdl< td=""><td><mdl< td=""><td><mdl< td=""></mdl<></td></mdl<></td></mdl<></td></mdl<></td></mdl<>	<mdl< td=""><td><mdl< td=""><td><mdl< td=""><td><mdl< td=""></mdl<></td></mdl<></td></mdl<></td></mdl<>	<mdl< td=""><td><mdl< td=""><td><mdl< td=""></mdl<></td></mdl<></td></mdl<>	<mdl< td=""><td><mdl< td=""></mdl<></td></mdl<>	<mdl< td=""></mdl<>
Мо	0%	0%	60%	70%	120%	80%	40%
Ni	1%	0%	0%	<mdl< td=""><td>88%</td><td>93%</td><td>0%</td></mdl<>	88%	93%	0%
K	0%	0%	20%	21%	<mdl< td=""><td><mdl< td=""><td><mdl< td=""></mdl<></td></mdl<></td></mdl<>	<mdl< td=""><td><mdl< td=""></mdl<></td></mdl<>	<mdl< td=""></mdl<>
Se	<mdl< td=""><td><mdl< td=""><td><mdl< td=""><td><mdl< td=""><td><mdl< td=""><td><mdl< td=""><td><mdl< td=""></mdl<></td></mdl<></td></mdl<></td></mdl<></td></mdl<></td></mdl<></td></mdl<>	<mdl< td=""><td><mdl< td=""><td><mdl< td=""><td><mdl< td=""><td><mdl< td=""><td><mdl< td=""></mdl<></td></mdl<></td></mdl<></td></mdl<></td></mdl<></td></mdl<>	<mdl< td=""><td><mdl< td=""><td><mdl< td=""><td><mdl< td=""><td><mdl< td=""></mdl<></td></mdl<></td></mdl<></td></mdl<></td></mdl<>	<mdl< td=""><td><mdl< td=""><td><mdl< td=""><td><mdl< td=""></mdl<></td></mdl<></td></mdl<></td></mdl<>	<mdl< td=""><td><mdl< td=""><td><mdl< td=""></mdl<></td></mdl<></td></mdl<>	<mdl< td=""><td><mdl< td=""></mdl<></td></mdl<>	<mdl< td=""></mdl<>
Si	3%	4%	<mdl< td=""><td><mdl< td=""><td>56%</td><td>56%</td><td>0%</td></mdl<></td></mdl<>	<mdl< td=""><td>56%</td><td>56%</td><td>0%</td></mdl<>	56%	56%	0%
Ag	<mdl< td=""><td><mdl< td=""><td><mdl< td=""><td><mdl< td=""><td><mdl< td=""><td><mdl< td=""><td><mdl< td=""></mdl<></td></mdl<></td></mdl<></td></mdl<></td></mdl<></td></mdl<></td></mdl<>	<mdl< td=""><td><mdl< td=""><td><mdl< td=""><td><mdl< td=""><td><mdl< td=""><td><mdl< td=""></mdl<></td></mdl<></td></mdl<></td></mdl<></td></mdl<></td></mdl<>	<mdl< td=""><td><mdl< td=""><td><mdl< td=""><td><mdl< td=""><td><mdl< td=""></mdl<></td></mdl<></td></mdl<></td></mdl<></td></mdl<>	<mdl< td=""><td><mdl< td=""><td><mdl< td=""><td><mdl< td=""></mdl<></td></mdl<></td></mdl<></td></mdl<>	<mdl< td=""><td><mdl< td=""><td><mdl< td=""></mdl<></td></mdl<></td></mdl<>	<mdl< td=""><td><mdl< td=""></mdl<></td></mdl<>	<mdl< td=""></mdl<>
Na	0%	0%	39%	46%	48%	41%	14%
S	17%	13%	33%	38%	30%	28%	<mdl< td=""></mdl<>
W	<mdl< td=""><td><mdl< td=""><td><mdl< td=""><td><mdl< td=""><td><mdl< td=""><td><mdl< td=""><td><mdl< td=""></mdl<></td></mdl<></td></mdl<></td></mdl<></td></mdl<></td></mdl<></td></mdl<>	<mdl< td=""><td><mdl< td=""><td><mdl< td=""><td><mdl< td=""><td><mdl< td=""><td><mdl< td=""></mdl<></td></mdl<></td></mdl<></td></mdl<></td></mdl<></td></mdl<>	<mdl< td=""><td><mdl< td=""><td><mdl< td=""><td><mdl< td=""><td><mdl< td=""></mdl<></td></mdl<></td></mdl<></td></mdl<></td></mdl<>	<mdl< td=""><td><mdl< td=""><td><mdl< td=""><td><mdl< td=""></mdl<></td></mdl<></td></mdl<></td></mdl<>	<mdl< td=""><td><mdl< td=""><td><mdl< td=""></mdl<></td></mdl<></td></mdl<>	<mdl< td=""><td><mdl< td=""></mdl<></td></mdl<>	<mdl< td=""></mdl<>
U	<mdl< td=""><td><mdl< td=""><td><mdl< td=""><td><mdl< td=""><td>77%</td><td>69%</td><td>0%</td></mdl<></td></mdl<></td></mdl<></td></mdl<>	<mdl< td=""><td><mdl< td=""><td><mdl< td=""><td>77%</td><td>69%</td><td>0%</td></mdl<></td></mdl<></td></mdl<>	<mdl< td=""><td><mdl< td=""><td>77%</td><td>69%</td><td>0%</td></mdl<></td></mdl<>	<mdl< td=""><td>77%</td><td>69%</td><td>0%</td></mdl<>	77%	69%	0%
Zn	0%	0%	0%	0%	86%	92%	1%

Source: Z:\01_SITES\Faro\!101_Investigations\2020_WTP_SludgeCharacterization\3. Working Files\[Faro Sludge_WorkingFiguresandTables_1CA030.025_Rev00.xlsx]

Notes

All Values Provided in Two Significant Figures

<MDL indicates parameter below method detection limit in either extraction leachate or sludge solids sample

5.7 Aging Tests

5.7.1 Oxic Aging Tests

Data for the oxic aging tests in summarized in Table 5-9 with the full set of analytical data provided in Appendix C and timeseries charts for each parameter provided in Appendix E. Results from the raw water used in each aging test variation are included in Table 5-9 as the initial (T0) result for reference. Based on observations, once the test solution was added, the sludge settled and stayed at the bottom of the bottle after initial homogenization.

For the oxic aging tests, the sludge buffered the pH of each test solution to neutral pH in the range of 7.6 to 7.7 by week two or month two (the Vangorda pit water variation). Once at neutral pH, the test solutions maintained pH conditions in the range of 6.5 to 7.8 for the duration of testing (7 months; Figure 5-4). Eh covered a range of oxidizing conditions from 0.34 to 0.59 and did not show any consistent trends with time (Figure 5-6). Electrical conductivity (EC) ranged from 1500 to 5100 μ S/cm and showed an increasing trend to month three that levelled off but still showed slight increases with time in each aging test variation (Figure 5-5).

Acidity was measured at low levels (i.e. <5 mg/L as CaCO₃) throughout the duration of both tests conducted with de-ionized water, likely reflecting low levels of carbonic acid caused by equilibration with atmospheric CO₂. Within the variations conducted with Faro and Vangorda pit water, acidity showed a decreasing trend until reaching low levels by month two progressive buffering by the sludges. Alkalinity was consistently detected in the range of 17 to 48 mg/L as CaCO₃ for all four aging test variations and did not show any consistent trends, other than the addition of alkalinity to the Vangorda pit water oxic aging test following reaction with the sludge.

Similar to the SFE leachate results (Section 5.6.1) sulphate (2200 to 4200 mg/L) was the dominant anion in the aging test solutions, while calcium (290 to 480 mg/L) and magnesium (290 to 740 mg/L) were the dominant cations. Chloride and fluoride (<2 mg/L) and sodium and potassium (<30 mg/L) showed low concentrations and did not exhibit any trends with time. Sulphate (Figure 5-7), calcium, and magnesium (Table 5-9) showed similar trends to EC with increasing trends to month three and then slight increases with time in each aging test variation.

Ammonia (1.0 to 1.7 mg/L as N) was the dominant nitrogen form in all four oxic aging test variations and did not show any consistent trends with time. Nitrate and nitrate were consistently measured in low concentrations (i.e. <0.5 mg/L as N) and did not shown any consistent trends, except for the Vangorda pit water variation which showed a slight increase in nitrate and nitrite concentrations over the period of testing. Indeed, a decrease in ammonia concentrations in the Vangorda pit water in parallel with an increase in nitrate and nitrite indicates low rates of microbial nitrification (ammonium oxidation to nitrite or nitrate) at less than 0.005 N-mg/L/d. The other tests did not exhibit the same reactions.

Similar to the SFE leachate results (Section 5.6.1), zinc (0.059 to 26 mg/L) and manganese (0.0024 to 29 mg/L) were the dominant trace elements within the oxic aging test solutions. Both parameters showed slight increasing trends (Figure 5-8 and Figure 5-9) that stabilized by month three in the test

variations conducted with de-ionized water and significant (i.e. greater than one order of magnitude) decreasing trends in the test variations conducted with pit water.

The majority of trace elements including antimony, arsenic, cadmium, chromium, copper, lead, mercury, molybdenum, and selenium showed near or below detection limit results. Concentrations of these elements showed either stable (antimony, mercury, molybdenum and selenium) or decreasing (cadmium, chromium, cobalt, copper, lead, and nickel) trends reflecting decreased solubility with progressive buffering by the sludges. Arsenic showed slight increasing trends in the later stages of testing, but concentrations remained less than ten times the detection limit.

Overall, interaction of the sludge with the test solutions under oxic conditions over seven months resulted in buffering the test solutions to neutral pH, loadings of sulphate, calcium, and magnesium to the test solutions, and attenuation of zinc and manganese from the pit water solutions.

Table 5-9: Summary of Oxic Aging Tests

Parameter			De-	Ionized Wat	er pH 4			De	-Ionized Wat	er pH 7		Faro Pit Water				Vangorda Pit Water					
Week or Month	_	Blank (T0)) 2-week	2-month	4-month	7-month	Blank (T0)	2-week	2-month	4-month	7-month	Blank (T0)	2-week	2-month	4-month	7-month	Blank (T0)	2-week	2-month	4-month	7-month
рН	-	4.1	7.5	7.7	6.4	6.1	7.1	7.7	7.7	7.1	6.5	6.9	7.5	7.8	7.2	6.4	3.6	5.7	7.6	7.2	6.5
Eh	V	0.59	0.44	0.46	0.45	0.44	0.43	0.43	0.47	0.45	0.44	0.34	0.43	0.46	0.44	0.44	0.5	0.47	0.47	0.44	0.43
EC	uS/cm	56	1500	3400	3600	3800	12	1700	2900	3500	3700	1900	2800	3800	4300	4700	2700	3300	4000	4700	5100
Acidity	mg CaCO₃/L		<0.5	<0.5	5	4.2		<0.5	<0.5	5	3.7	66	8.5	<0.5	5	3.4	560	68	<0.5	3.3	2.4
Alkalinity	mg CaCO₃/L		27	23	18	19		23	27	18	19	48	48	35	18	19	<0.5	27	22	17	17
Sulphate	mg/L		2200	2400	2900	2900		2100	2400	2800	3100	1200	2900	3100	3400	3500	1900	3500	3300	4100	4200
Chloride	mg/L		0.5	0.7	0.6	0.6		0.6	0.5	0.7	0.8	1.3	2.2	1.9	1.7	1.6	0.58	1.4	1	1	1.1
Fluoride	mg/L		0.3	<0.2	<0.2	<0.2		0.3	<0.2	<0.2	<0.2	0.48	0.5	0.5	0.2	0.5	0.48	0.6	<0.2	0.3	0.34
Nitrate (as N)	mg/L		<0.05	<0.05	<0.05	<0.05	_	0.05	<0.05	<0.05	<0.05	0.19	0.41	0.24	0.2	0.17	0.1	0.17	0.18	0.21	0.23
Nitrite (as N)	mg/L		0.08	0.08	0.13	0.1		0.13	0.11	0.12	0.1	<0.005	0.12	0.2	0.13	0.1	0.028	0.13	0.2	0.16	0.2
Ammonia (as N)	mg/L		1.3	1	1.1	1		1.3	1.1	1	1	1.5	1.7	1.8	1.6	1.5	0.39	2	1.8	1.3	1.1
Sb	mg/L		<0.0001	<0.0001	<0.0001	<0.0001		<0.0001	<0.0001	<0.0001	<0.0001	<0.0001	<0.0001	<0.0001	<0.0001	<0.0001	<0.0001	<0.0001	<0.0001	<0.0001	<0.0001
As	mg/L		<0.0002	<0.0002	0.001	0.002		<0.0002	<0.0002	0.0008	0.0011	0.0003	<0.0002	<0.0002	0.0008	0.0011	0.0014	0.0004	<0.0002	0.0007	0.0011
Cd	mg/L		0.00007	0.00009	0.00012	0.00012		0.00007	0.00015	0.0001	0.00022	0.011	0.00084	0.0003	0.00017	0.00019	0.079	0.024	0.011	0.001	0.00094
Са	mg/L		290	340	460	480		290	360	440	480	210	360	400	440	460	230	390	430	440	460
Cr	mg/L		0.001	<0.0005	0.0006	0.0009		0.0007	<0.0005	0.0007	0.0009	<0.0005	<0.0005	<0.0005	0.0011	0.0016	<0.0005	0.0015	<0.0005	0.002	0.003
Со	mg/L		0.0003	0.0007	0.0009	0.0008		0.0011	0.0009	0.0013	0.0019	0.11	0.0083	0.005	0.0025	0.0062	0.6	0.2	0.15	0.0023	0.0019
Cu	mg/L		<0.0005	0.0006	<0.0005	<0.0005		<0.0005	<0.0005	0.0014	0.0018	0.0013	<0.0005	0.0005	0.0009	0.0014	0.3	0.0024	0.0014	0.0008	0.0009
Fe	mg/L		<0.02	<0.02	<0.02	<0.02		<0.02	<0.02	<0.02	<0.02	0.27	<0.02	<0.02	<0.02	<0.02	110	<0.02	<0.02	<0.02	<0.02
Pb	mg/L		<0.0005	<0.0005	<0.0005	<0.0005		<0.0005	<0.0005	<0.0005	<0.0005	<0.0005	<0.0005	<0.0005	<0.0005	<0.0005	0.072	<0.0005	<0.0005	<0.0005	<0.0005
Mg	mg/L		290	410	450	470		290	400	450	460	110	460	540	580	590	150	540	640	710	740
Mn	mg/L		0.0024	0.0034	0.0042	0.0055		0.0064	0.014	0.015	0.018	12	4	0.91	0.079	0.073	49	29	17	0.005	0.013
Hg	mg/L		<0.0005	<0.0005	<0.0005	<0.0005		<0.0005	<0.0005	<0.0005	<0.0005	<0.0005	<0.0005	<0.0005	<0.0005	<0.0005	<0.0005	<0.0005	<0.0005	<0.0005	<0.0005
Мо	mg/L		0.0005	0.0003	0.0003	0.0003		0.0003	0.0003	0.0003	0.0005	<0.0001	0.0002	0.0003	0.0002	0.0002	0.0005	0.0002	0.0003	0.0003	0.0004
Ni	mg/L		<0.0005	0.0012	0.0009	0.0016		<0.0005	0.0014	0.0016	0.0021	0.19	0.014	0.0066	0.0034	0.0029	0.46	0.13	0.085	0.0021	0.0019
К	mg/L		1.4	1.6	1.6	1.6		1.4	1.5	1.6	1.7	9.7	12	12	11	12	3	4.7	4.6	4.9	5.1
Se	mg/L		<0.0005	<0.0005	<0.0005	<0.0005		<0.0005	<0.0005	<0.0005	<0.0005	0.0021	<0.0005	<0.0005	<0.0005	<0.0005	0.0043	0.0028	<0.0005	<0.0005	<0.0005
Na	mg/L		3.8	4.5	5	5.3		5.8	6.1	6.8	7.1	24	28	28	29	29	7.6	11	12	13	14
Zn	mg/L		0.059	0.19	0.14	0.21		0.089	0.19	0.36	0.41	33	0.45	0.47	0.24	0.22	160	26	15	0.32	0.28

Source: Z:\01_SITES\Faro\!101_Investigations\2020_WTP_SludgeCharacterization\3. Working Files\[Faro Sludge _AgingTestWorkingFile_JED_spinner_Rev01.xlsx]

Notes:

T0 for the aging tests using pit water shows initial pit water concentrations prior to addition of sludge

Figure 5-8: Dissolved Manganese vs Time; Oxic and Anoxic Aging Tests

Figure 5-6: Eh vs Time; Oxic and Anoxic Aging Tests

Figure 5-9: Dissolved Zinc vs Time; Oxic and Anoxic Aging Tests

5.7.2 Anoxic Aging Tests

Data for the anoxic aging tests in summarized in Table 5-10 with the full set of analytical data provided in Appendix C and timeseries charts for each parameter provided in Appendix E. Results from the raw water used in each aging test variation are included in Table 5-10 as the initial (T0) result for reference.

For the anoxic aging tests, the sludge buffered the pH of each test solution to neutral pH by the first sample session (2-months). Once neutral conditions were reached, pH conditions were maintained in the range of 6.8 to 8.1 for the duration of testing (7 months; Figure 5-4). The Eh and dissolved oxygen concentration of the test solutions remained relatively stable and ranged from 0.34 to 0.59 V and 0.1 to 0.5 mg/L respectively reflecting a range of anoxic and slightly reducing conditions. Despite the abundant dissolved carbon (301 to 440 mg/L) and maintenance of anoxic conditions the test solutions did not reach the range of Eh conditions (0.19 to 0.28 V) observed within the bottom of the Faro Pit Lake in 2008 when meromixis was established. Levels of total and dissolved organic carbon remained greater than 290 mg/L, showing low consumption rates of carbon relative to the 300 mg/L dosage added at the beginning of the tests.

EC, alkalinity, acidity, and major ions showed similar levels and trends as the oxic aging tests. Iron, manganese, and zinc showed lower concentrations within the anoxic tests relative to the oxic tests indicating reductive dissolution was not occurring over the range of Eh conditions measured.

Ammonia (1.0 to 1.8 mg/L as N) and nitrite (<0.25 mg/L as N) showed similar levels as the oxic aging tests, but nitrate showed a decreasing trend in each of the anoxic test variations and was near the detection limit by month four (Table 5-10) reflecting progressive reduction of nitrate under these Eh conditions. Reduction of nitrate likely indicates microbial denitrification (reduction of nitrate to nitrite or nitrogen gas) under anoxic conditions. However, the rates achieved in the anoxic tests remained low, with a maximum of 0.003 N mg/L/d. This is in line with the fact that the levels of carbon added to the tests remained were not consumed indicating a lack of microbial activity, and no sulphate reduction was observed. Therefore, the lack of reducing conditions appears to be due to a combination of slow nitrate reduction and redox buffering from the sludge.

Overall, the interaction with the sludge under reducing conditions similar to those previously observed in the Faro Pit Lake could not be tested as the abundant oxidizing mineral phases within the sludge limited the development of reducing conditions within the time frame of the tests. Under the conditions tested, which reflect anoxic and slightly reducing waters (confirmed by slight reduction of nitrate), interaction of the sludge with the test solutions over seven months resulted in buffering of the test solutions to neutral pH, loadings of sulphate, calcium, and magnesium to the test solutions, and attenuation of zinc and manganese from the pit water solutions.

Table 5-10: Summary of Anoxic Aging Test Data

Parameter		Ano	xic De-Ioniz	ed Water pH	14	Ano	xic De-Ionize	ed Water pH	17	Anoxic Faro Pit Water				Anoxic Vangorda Pit Water			
Week or Month	-	Blank (T0)	2-month	4-month	7-month	Blank (T0)	2-month	4-month	7-month	Blank (T0)	2-month	4-month	7-month	Blank (T0)	2-month	4-month	7-month
pH	-	4.1	7.7	8.1	6.9	7.1	8	7.9	7.4	6.9	7.9	8	7	3.6	6.8	7.9	7.4
Eh	V	0.59	0.36	0.42	0.38	0.43	0.37	0.42	0.39	0.34	0.36	0.4	0.38	0.5	0.43	0.4	0.38
EC	uS/cm	56	3400	4100	4100	12	3300	4000	4200	1900	4200	4600	4500	2700	4800	5100	5000
Dissolved Oxygen	mg/L	0.06	0.5	0.4	0.3	0.11	0.3	0.4	0.2	9.2	0.3	0.2	0.3	8.5	0.3	0.2	0.3
Acidity	mg CaCO₃/L		<0.5	<0.5	0.6		<0.5	<0.5	0.5	66	<0.5	<0.5	0.5	560	45	<0.5	0.5
Alkalinity	mg CaCO₃/L		20	18	17		22	15	16	48	36	17	17	<0.5	14	17	17
Sulphate	mg/L		2300	2900	2800		2200	2800	2900	1200	2900	3200	3300	1900	3400	3600	3800
Chloride	mg/L		2	0.6	0.9		1.2	0.5	<0.5	1.3	1.8	1.7	1.6	0.58	1	1.8	1.6
Fluoride	mg/L		<0.2	<0.2	<0.2		<0.2	<0.2	<0.2	0.48	<0.2	0.2	0.2	0.48	0.2	0.3	0.3
Nitrate (as N)	mg/L		1.4	<0.05	<0.05		<0.05	<0.05	<0.05	0.19	0.27	0.05	<0.05	0.1	0.19	<0.05	<0.05
Nitrite (as N)	mg/L		0.12	0.13	0.11		0.13	0.11	0.08	<0.005	0.1	0.24	0.1	0.028	0.16	0.24	0.22
Ammonia (as N)	mg/L		1.2	1	1.1		1	1.1	1	1.5	1.8	1.5	1.3	0.39	1.7	1.3	1
Sb	mg/L		0.0002	<0.0001	<0.0001		0.0001	<0.0001	<0.0001	<0.0001	<0.0001	<0.0001	<0.0001	<0.0001	<0.0001	<0.0001	<0.0001
As	mg/L		<0.0002	0.0007	0.0011		<0.0002	0.0009	0.0012	0.0003	<0.0002	0.0012	0.0019	0.0014	0.0002	0.0009	0.0011
Cd	mg/L		0.00015	0.00009	0.00006		0.00017	0.00017	0.00013	0.011	0.00031	0.00018	0.00012	0.079	0.024	0.00085	0.00077
Са	mg/L		320	450	440		340	430	450	210	390	460	490	230	410	460	480
Cr	mg/L		<0.0005	0.0015	0.002		<0.0005	0.0008	0.001	<0.0005	<0.0005	<0.0005	<0.0005	<0.0005	<0.0005	<0.0005	<0.0005
Со	mg/L		0.0006	0.0006	0.0007		0.0009	0.0005	0.0005	0.11	0.004	0.001	0.001	0.6	0.12	0.0017	0.0013
Cu	mg/L		<0.0005	0.0013	0.0016		<0.0005	0.0007	0.0009	0.0013	<0.0005	0.0014	0.0019	0.3	0.0025	0.001	0.001
Fe	mg/L		<0.02	<0.02	<0.02		<0.02	<0.02	<0.02	0.27	<0.02	<0.02	<0.02	110	<0.02	<0.02	<0.02
Pb	mg/L		<0.0005	<0.0005	<0.0005		<0.0005	<0.0005	<0.0005	<0.0005	<0.0005	<0.0005	<0.0005	0.072	<0.0005	<0.0005	<0.0005
Mg	mg/L		380	440	430		390	450	470	110	510	560	580	150	610	680	700
Mn	mg/L		0.011	0.0013	0.0009		0.014	0.003	0.005	12	0.74	0.0035	0.0022	49	20	0.0032	0.0022
Hg	mg/L		<0.0005	<0.0005	<0.0005		<0.0005	<0.0005	<0.0005	<0.0005	<0.0005	<0.0005	<0.0005	<0.0005	<0.0005	<0.0005	<0.0005
Мо	mg/L		0.0004	0.0002	0.0002		0.0002	0.0003	0.0002	<0.0001	0.0001	0.0002	0.0002	0.0005	0.0001	0.0002	0.0002
Ni	mg/L		0.0008	0.0011	0.002		0.0011	<0.0005	<0.0005	0.19	0.0044	0.0011	0.0009	0.46	0.076	0.0013	0.0009
К	mg/L		1.9	1.5	1.2		2.1	1.6	1.3	9.7	11	11	9.7	3	4.2	4.3	4.5
Se	mg/L		<0.0005	<0.0005	<0.0005		<0.0005	<0.0005	<0.0005	0.0021	<0.0005	<0.0005	<0.0005	0.0043	0.0022	0.0006	<0.0005
Na	mg/L		5.7	7.1	7.8		6.1	5.4	5.1	24	27	27	26	7.6	12	13	12
Zn	mg/L		0.17	0.043	0.034		0.16	0.058	0.044	33	0.17	0.073	0.055	160	17	0.13	0.073

Source: Z:\01_SITES\Faro\!101_Investigations\2020_WTP_SludgeCharacterization\3. Working Files\[Faro Sludge _AgingTestWorkingFile_JED_spinner_Rev01.xlsx]

Notes:

T0 for the aging tests using pit water shows initial pit water concentrations

5.7.3 Aging Test Loadings

To interpret the chemical loadings of the sludge to the aging test solutions, loadings were calculated for the duration of testing (i.e. total load contributed to the test solution by month seven) using the method described in Section 5.6.1. Parameters which decreased in concentration upon reaction with the sludge exhibit negative loadings. The resulting summary of the aging test loadings for selected parameters is presented in Table 5-11. The results are discussed as follows:

- Similar to the SFEs, the sludge contributed significant loadings of sulphate (36,000 to 58,000 mg/kg), calcium (4700 to 9200 mg/kg) and magnesium (8200 to 11,000) to the aging test solutions.
- Eh conditions did not appear to have a strong control on leaching and most parameters showed similar loadings between the oxic and anoxic aging tests except cadmium, manganese, nickel, and zinc which showed higher loadings under oxic conditions.
- Similar to the SFE loadings, interaction within the pit water solutions and the sludge resulted in attenuation of cobalt, iron, lead, manganese, nickel selenium, and zinc.
- Loadings of sulphate, chloride, arsenic cadmium, chromium, cobalt, copper, magnesium, manganese, nickel, potassium sodium, and zinc were higher in the oxic aging test variations conducted with DI water (Figure 5-11) relative to the SFE loadings (Figure 5-11) reflecting continued leaching of these parameters over the longer time frame of testing.
- Overall, the sludges contributed the highest loadings of calcium, magnesium, and sulphate to the test solutions and resulted in the highest levels of attenuation of iron, manganese, and zinc concentrations from the pit water solutions.

Figure 5-10: Ratio of DI Water Oxic Aging Test Loadings to DI Water SFE Loadings

Table 5-11: Summary of Aging Test Loadings

			Ox	ic Aging Tests		Anoxic Aging Tests				
Parameter		De-Ionized Water pH 4	De-Ionized Water pH 7	Faro Pit Water	Vangorda Pit Water	De-Ionized Water pH 4	De-Ionized Water pH 7	Faro Pit Water	Vangorda Pit Water	
Acidity	mg CaCO₃/kg	80	70	-1000	-10000	11	9.5	-1000	-10000	
Alkalinity	mg CaCO₃/kg	370	360	-600	320	320	310	-600	320	
Sulphate	mg/kg	56000	58000	44000	44000	54000	55000	39000	36000	
Chloride	mg/kg	11	15	5.7	9.9	17	<9.5	5.7	19	
Fluoride	mg/kg	<3.8	<3.8	0.38	-3	<3.8	<3.8	-5	-3	
Nitrate (as N)	mg/kg	<0.95	<0.95	-0.3	2.5	<0.95	<0.95	-3	<0.95	
Nitrite (as N)	mg/kg	1.9	1.9	1.8	3.3	2.1	1.5	1.8	3.6	
Ammonia (as N)	mg/kg	19	19	-0.6	13	20	19	-4	12	
Sb	mg/kg	<0.0019	<0.0019	<0.0019	<0.0019	<0.0019	<0.0019	<0.0019	<0.0019	
As	mg/kg	0.038	0.021	0.015	-0.006	0.021	0.023	0.03	-0.006	
Cd	mg/kg	0.0023	0.0042	-0.2	-1	0.0011	0.0025	-0.2	-1	
Са	mg/kg	9200	9100	4700	4300	8400	8500	5300	4900	
Cr	mg/kg	0.017	0.017	0.021	0.048	0.038	0.019	<0.0095	<0.0095	
Со	mg/kg	0.015	0.036	-2	-10	0.013	0.0095	-2	-10	
Cu	mg/kg	<0.0095	0.034	0.0019	-6	0.03	0.017	0.011	-6	
Fe	mg/kg	<0.38	<0.38	-5	-2000	<0.38	<0.38	-5	-2000	
Pb	mg/kg	<0.0095	<0.0095	<0.0095	-1	<0.0095	<0.0095	<0.0095	-1	
Mg	mg/kg	9000	8800	9200	11000	8200	8900	8900	11000	
Mn	mg/kg	0.1	0.35	-200	-900	0.017	0.095	-200	-900	
Hg	mg/kg	<0.0095	<0.0095	<0.0095	<0.0095	<0.0095	<0.0095	<0.0095	<0.0095	
Мо	mg/kg	0.0057	0.0095	0.0019	-0.002	0.0038	0.0038	0.0019	-0.006	
Ni	mg/kg	0.03	0.04	-3	-9	0.038	0.0095	-3	-9	
K	mg/kg	31	32	35	40	23	25	-0.8	28	
Se	mg/kg	<0.0095	<0.0095	-0.03	-0.07	<0.0095	<0.0095	-0.03	-0.07	
Na	mg/kg	100	130	110	110	150	97	55	91	
Zn	mg/kg	4	7.8	-600	-3000	0.65	0.84	-600	-3000	

Source: Z:\01_SITES\Faro\!101_Investigations\2020_WTP_SludgeCharacterization\3. Working Files\[Faro Sludge _AgingTestWorkingFile_JED_spinner_Rev01.xlsx]

6 Discussion

The analysis of the sludge composition found that the most abundant elements within the sludge were zinc, calcium, magnesium, iron, sulphur, and manganese and that the sludge was comprised dominantly of oxy-hydroxides or more complex layered hydroxides (collectively referred to as O-phases), gypsum, and carbonates. Zinc is dominantly hosted within the array of O-phases and also to a lesser degree within zinc and manganese oxides.

Short and long-term leach tests have quantified the water-soluble fraction within the sludge under neutral and acidic conditions across a range of Eh conditions ranging from oxidizing to slightly reducing to strongly reducing. These tests have determined that the sludge will contribute significant loadings of calcium, magnesium, and sulphate under neutral conditions to both acidic and non-acidic pit water reflecting leaching of gypsum, O-phases, and carbonate minerals. Based on the significant loadings of calcium and magnesium, loadings of these parameters are expected to be released until the gypsum saturation limit is reached within the pit lake. The release of magnesium may further increase the concentrations of sulphate in equilibrium with gypsum due to common ion effects. Higher sulphate concentrations in the pit lake may result in higher sulphate concentrations in treated effluent from the water treatment plant.

The sludge also is also expected to contribute lesser loadings of chloride, chromium, nitrate, nitrite, potassium, and sodium across the range of expected disposal conditions. Loadings of antimony, arsenic, silver, mercury, lead, vanadium, and selenium are not expected to be an issue as these parameters were near detection limits in all aging test and extraction test variations. For the remaining pH sensitive elements present within the pit waters as divalent cations (i.e. iron, manganese, zinc) the loadings from the pit lake sludge or attenuation of the pit waters is expected to largely be controlled by the prevalent pH conditions within the pit lake. If the sludge is able to effectively buffer the pH of the pit lake or if the pit lake remains neutral then sludge deposition is expected to result in attenuation of zinc, manganese, and iron and to a lesser degree cobalt, copper, and nickel from the pit lake water column. The current test work program was not able to quantify the stability of the sludge under un-buffered acidic conditions and stability under these conditions remains uncertain.

Results of the laboratory titration determined that the sludge is expected to have a buffering capacity of 2.5 mols H⁺/L at a pH range above pH 5. Using the volume of the pit lake (29 to 31 million cubic meters) and assuming the pit lake develops a pH of 3.5, the pit lake would contain (9.5 x 10⁶) moles of acidity. Using the estimated rate of sludge deposition (25,000 m³/year), the buffering capacity of the sludge deposited each year would represent approximately 6.5 times the total acidity within the pit lake assuming no additional inflows were occurring. Based on this preliminary comparison, sludge deposition would theoretically have an influence on the pH of the pit lake – if the sludges are allowed to mix and react with the pit lake. A more detailed assessment should be completed using the rates of acidic inflows to understand the role of the sludge's buffering capacity.

Results from the reducible step of the sequential extraction indicated that the majority of the trace elements within the sludge are present within reducible phases. The long-term aging tests were not able to fully quantify the stability of the sludge over the expected range of reducing conditions due to the slow rates of microbial reduction. However, the test results did reflect a lack of increased loadings

of iron, manganese, and zinc over slightly reducing conditions in the range of 0.34 to 0.59 V. If meromixis were to redevelop, and the sludges don't provide buffering of redox conditions, Eh conditions would likely drop back to levels similar to or lower than those observed in 2008 (0.19 to 0.28 V). Under Eh conditions similar to those observed in 2008 denitrification and reduction of manganese oxides would likely occur, but destabilization of the hydroxide treatment precipitates would be unlikely because the reduction of Fe³⁺ occurs at lower Eh. If the Eh dropped below 2008 levels (i.e. <0.1 Eh), both iron and manganese reduction would occur, and the hydroxide treatment precipitates would likely start to destabilize. In contrast, deposition of sludges may provide buffering of redox conditions, as was observed in the anoxic aging tests. If that occurs, then the Eh conditions in the anoxic tests may be representative of future conditions, and the sludges would remain stable.

Overall, storage of the sludge within the pit lake is expected to bring concentrations of calcium, magnesium, and sulphate to gypsum saturation and result in loadings of chloride, chromium, nitrate, nitrite, potassium, and sodium across the range of expected disposal conditions. The sludge is expected to have a buffering effect on the pH of the pit lake and iron, manganese, and zinc will be attenuated if the pit lake is effectively buffered. Development of reducing conditions within the pit lake is expected to result in result in de-nitrification and reduction of manganese oxides. The degree to which the sludge will interact with the water column remains uncertain and therefore considerations of the impact of sludge deposition should reflect total potential loadings to the pit lake.

7 Conclusion

This report presents the results of a laboratory characterization program of the sludge from the Faro high-density sludge pilot plant testing program, and the depositional environment for the sludge. The chemical and mineralogical composition and short and long-term stability of the sludges was tested using solids chemistry, mineralogy, shake-flask extractions, selective extractions, and aging tests.

The investigation found the following:

- Sludge Filtrate:
 - Filtrate from the sludge had a slightly alkaline pH of 8.4 with low alkalinity (9.5 mg/L). Cations within the sludge filtrate were dominated by calcium (480 mg/L) and magnesium (170 mg/L) with anions dominated by sulphate (2200 mg/L). The sludge filtrate did not show enrichments in any parameters relative to the Faro pit water and zinc had a notably low concentration of 0.028 mg/L.
- Elemental and mineralogical composition:
 - The methods used could account for 49% of the sludge's dry mass indicating high volatile content. The quantified mass was dominated by zinc (15%), calcium (9.0%), magnesium (7.7%), iron (6.4%), sulphur (5.4%), manganese (2.2%), and carbon (1.5%). Cobalt and nickel were detected at 280 and 310 ppm respectively, while other trace elements had near detection limit or relatively low concentrations.
 - The sludge was composed dominantly of an array of oxy-hydroxide or more complex (i.e. double layered hydroxide) phases which contained variable concentrations of AI, Ca, Fe, Mg, Mn, S, Si, and Zn. The remainder of the sludge was dominantly composed of zinc and manganese oxides, gypsum and carbonates including calcite, ankerite, and dolomite.
- Buffering capacity:
 - The sludge is expected to have the ability to buffer 2.5 mols H^+/L at a pH above 5.
- Water-soluble fraction and chemical stability under expected disposal conditions:
 - Under the range of expected conditions, the sludge is expected to contribute loadings of calcium, magnesium, and sulphate to the pit lake. Concentrations of calcium and sulphate are expected to increase until the gypsum saturation limit is reached. Magnesium released from the sludges will result in an increase in the solubility limits for gypsum.
 - The sludge was measured to have detectable levels (i.e. <10 mg/kg) of water-soluble zinc and manganese in tests conducted with de-ionized water; however, attenuation of these elements within tests conducted with pit waters indicate sludge deposition also has potential to reduce concentrations of these constituents within pit waters. The remaining trace elements showed low water-soluble fractions (i.e. <0.5 mg/kg) under neutral pHs across a range of oxidizing to slightly reducing conditions indicating a low potential for leaching.

- Under acidic conditions, the sludge is expected to release elements hosted within carbonates (calcium, magnesium, and alkalinity). The stability of the oxide and hydroxide precipitates under prolonged acidic conditions remains uncertain.
- Under the likely range of reducing conditions should meromixis redevelop, microbial reduction is not expected to reach the iron reduction step and the hydroxide precipitates which host the majority of the trace elements within the sludge would likely be stable. However, the ability of the sludge to buffer Eh within the sludges and the stability of the sludge precipitates under more reducing conditions remains uncertain.

Faro Water Treatment Plant Sludge Characterization Report Closure • FINAL

Closure

This report, Faro Water Treatment Plant Sludge Characterization Report, was prepared by

This signature has been scanned. The author has giver permission for its up fit in particular confirment. The original signature is held on file.

Jonathon Doherty, MSc Consultant (Geochemistry)

and

This signature author's sive use in other use is not this doce

Céline Michiels, PhD Consultant (Water Quality)

and reviewed by

This signature has been The original signature is held on file.

Kelly Sexsmith, PGeo (BC) Principal Consultant (Geochemistry)

All data used as source material plus the text, tables, figures, and attachments of this document have been reviewed and prepared in accordance with generally accepted professional engineering and environmental practices.

References

Applied Water Treatment (AWT). (2018). Faro Water Treatment Onsite HDS Pilot Plant Testing Report.

- Chao, T. T., & Zhou, L. (1983). Extraction Techniques for Selective Dissolution of Amorphous Iorn Oxides from Soils and Sediments. *Soil Science Society of America Journal*, 225-232.
- Gammons, C. H., & Icopini, G. A. (2019). Improvements to the Water Quality of the Acidic Berkeley Pit Lake due to Copper Recovery and Sludge Disposal. *Mine Water and the Environment*, Technical Article Published Online; https://doi.org/10.1007/s1023 0-019-00648 -8).
- MEND. (2009). *Prediction Manual for Drainage Chemistry from Sulphidic Geologic Materials*. MEND Report 1.20.1; Version 0 Dec. 2009.
- MEND. (2013). Characterization and Prediction of Trace Metal Bearing Phases in ARD Neutralization Sludges. MEND Report 3.44.1.
- Pickering, W. F. (1986). Metal Ion Speciation soils and sediments (a review). Ore Geology Reviews, 83-146.
- Pieters, R., & Lawrence, G. A. (2016). Salinity Stratification in Faro Pit Lake, 2004-2015. Greg Lawrence and Associates Ltd.
- SRK Consulting (Canada) Inc. (2018). *Water Management Plan Faro Mine Remediation Project.* Prepared for Crown-Indigenous Relations and Northern Affairs Canada.
- SRK Consulting (Canada) Inc. (2019a). *Site-wide Water and Load Balance Model Report, Faro Mine Site.* Prepared for Northern Contaminated Sites Branch Crown-Indigenous Relations and Northern Affairs Canada.
- SRK Consulting (Canada) Inc. (2019b). Expectations for Laboratory Geochemical Data Quality. Internal Memo.
- SRK Consulting (Canada) Inc. (2020). *Fall 2020 Faro Pit Monitoring Report.* Prepared for CIRNAC, SRK Project Number 1CA030.025.

Appendix A: SGS TIMA-X Mineralogy Data

To :	Jonathan Doherty
From :	Lain Glossop
Company :	SRK Consulting (Canada) Inc. (17925-01)
Date :	July 06, 2020 Updated February 5, 2021
Copies :	Logan Jameson, Landon Kapusianyk

Total pages: 21

Re: TIMA Mineralogical Analysis on Faro Sludge sample Sample

This memo summarizes testwork completed by the mineralogy group at SGS in Vancouver, on one sediment sample from SRK Consulting (Canada) Inc. The objective of this program was to mineralogically characterize the sample by TIMA-X (TESCAN Integrated Mineral Analyser). All techniques were used to evaluate and report the occurrence of sulphur containing minerals within the sample of Faro Sludge sample.

1. Sample Preparation

One sample was provided for the project. The sample was weighed and inventoried, with all information entered into a Laboratory Information Management System (LIMS) with assigned number MI7017-APR20.

The sample was air dried and deagglomerated, then micro-riffled to obtain a ~10 g subsample for major elements by Whole Rock Analysis (WRA) using X-ray Fluorescence (XRF) and total sulphur by LECO Carbon and Sulphur Analyzer (CSA). A further ~10 g subsample was produced to prepare 2x polished section from the sample. The polish was conducted using the dry method, as to retain any water-soluble phases.

2. TIMA-X Mineralogy (Alternative Automated Mineralogical Analysis)

TIMA-X is an acronym for TESCAN Integrated Mineral Analyzer which is one of the newest Automated Scanning Electron Microscopy (ASEM) instruments on the market. It is based on four Energy Dispersive X-Ray (EDX) silicon drift detectors (SDD) attached to a TESCAN MIRA (field-emission gun – FEG) platform which also include a backscattered electron (BSE) and secondary electron (SE) detectors. The TIMA system utilizes both the EDX and BSE signals to identify minerals at each measurement point (or each homogenous segment of a grain, depending upon the analysis mode) and it is optimized to deal with rapidly acquired low-count spectra. These EDX (and BSE) spectra (and BSE data) are compared to entries in a mineral library on a first match principle to identify the mineral phase, where this mineral library is based on theoretical mineral/phase composition or created by the user based from BSE, X-ray spectral windows counts and/or ratios.

TIMA-X has four X-ray analysis scanning modes to identify mineral/compounds: High-Resolution Mapping (THRM), Point Spectrometry (TPS), Line Mapping (TLM) and Dot Mapping (TDM) which can be used further optimized for different analysis types (Figure 1). The THRM collects a BSE signal and an X-Ray spectrum at a set resolution by the user to map the particles and fields (in the case of a polished thin sections or core), it is used to collect modal and textural information like liberation or exposure analysis. For the TPS, individual phases/grains are determined using the BSE only, areas of the similar BSE brightness are identified as homogenous regions and then at the centre of each of these regions an X-ray analysis point is taken. In the line mapping mode (TLM), each field is covered by equidistant horizontal lines using a specified line spacing, which is user dependent. At a set pixel spacing on each line an X-ray analysis mode uses a BSE grid at a determined pixel spacing to segment areas of homogenous BSE intensities and identifies the centre of the greatest inscribed circle (similar to the point spectroscopy), it then created a grid for the X-ray acquisition with the specified resolution spacing the same as the BSE. The X-ray data from zones of similar BSE and EDS signals are summed to produce a single higher quality spectra for each final segment, this

is used for the mineral identification. This analysis mode is good for modal mineralogy, grain size and liberation analysis.

Figure 1: TIMA-X Analysis Modes

2.1. TIMA Assay Reconciliation

Key TIMA mineralogical assays have been regressed with chemical assays for the samples to validate the data. The QA/QC results are presented in Table 1 for the whole rock elements. The assay reconciliation is shown graphically in Figure 2. Overall correlation, as measured by R-squared criteria was 0.98, indicating a satisfactory QA/QC reconciliation.

Figure 2: TIMA Calculated and Direct Chemical Assay Reconciliation for the Sample

Table 1:	ΤΙΜΑ	Assay	Reconciliation	
----------	------	-------	----------------	--

Element	Alum	ninum	Cal	cium	Ire	on	Potas	ssium	Magnesium		Manganese	
Sample Name	Al (Calc)	AI (Assay)	Ca (Calc)	Ca (Assay)	Fe (Calc)	Fe (Assay)	K (Calc)	K (Assay)	Mg (Calc)	Mg (Assay)	Mn (Calc)	Mn (Assay)
Sludge Sample	0.11	0.05	9.22	8.53	5.79	5.79	0.00	0.00	6.61	6.87	1.98	1.83
Element	ement Phosphorus		Sili	Silicon		Sulphur		Strontium		Zinc		
Sample Name	P (Calc)	P (Assay)	Si (Calc)	Si (Assay)	S (Calc)	S (Assay)	Sr (Calc)	Sr (Assay)	Zn (Calc)	Zn (Assay)		
Sludge Sample	0.00	0.01	0.99	0.66	4.68	4.41	0.03	0.03	12.5	14.6		

2.2. Modal Mineralogy

The bulk modal mineralogy by TIMA analysis is summarized in Table 2 and represented in Figure 3.

The Faro Sludge sample contained multiple sulphates of Zn, Fe, Mg, Mn, S, (Ca, Si)-O Phase at 28.2% and Ca, S, (Mn)-O Phase at 18.4%. Gypsum was at 17.6% with minor to trace amounts of calcite (9.55%), Mn,Zn-Oxide (Fe) (3.63%), carbonates (3.57%), Zn-Oxide (1.92%), silicates (1.32%), complex sulphur (0.14%), and sulphides (0.04%).

Quantitative SEM-EDS analysis and TIMA images of sulphur mineral elemental compositions are presented in Appendix A to B.

Mineral Mass	Sludge Sample
Sulphides	0.04
Silicates	1.32
Zn-Oxide	1.92
Mn, Zn, (Fe) Oxide	3.63
Oxides	0.46
Calcite	9.55
Carbonates	3.57
Gypsum	17.6
Jarosite	0.00
Barite	0.00
Complex Sulfur	0.14
Zn, Fe, Mg, Mn, S, (Ca, Si) - O Phase	28.2
Ca, S, (Mn) - O Phase	18.4
Mg, Al, S, (Zn, Si) - O Phase	1.08
Fe, Zn, Mg, (S, Si) - O Phase	12.9
Mg, Fe, Ca, Zn, (S) - O Phase	1.20
Other	0.10
Total	100.0

Table 2: Bulk Modal Mineralogy by TIMA

Figure 3: Bulk Modal Mineralogy by TIMA

Sulphur occurs predominantly in gypsum and Mg, Al, S, (Zn, Si)-O Phase with elemental abundances of 44.8% and 25.0%, respectively. Minor elemental abundances of sulphur in other phases ranging from 0.21% to 14.3%, with contaminates of Al and Si. There were 3 grains of pyrite within the sulphide grouping at 0.41% (Figure 4).

Figure 4: S Deportment by TIMA

Zinc occurs predominantly in Zn, Fe, Mg, Mn, S, (Ca, Si)-O Phase and Ca, S, (Mn)-O Phase with elemental abundances of 35.1% and 23.4%, respectively. Remaining elemental abundances are within Zn-Oxide, Mn,Zn (Fe) -Oxide and Fe, Zn, Mg, (S, Si)-O Phase at 10.6%, 11.1% and 15.7%, respectively. Trace amounts in other phases determined by EDS analysis. (Figure 5).

Figure 5: Zn Deportment by TIMA

3. Additional Notes

- Majority of the sample was Mg, Al, S, (Zn, Si)-O Phase and Zn, Fe, Mg, Mn, S, (Ca, Si)-O Phase

 Almost all phases had a range of S, with contaminates of Al and Si.
- Gypsum was the 2nd most abundant mineral.
- Main carbonates were mostly dolomite and ankerite.
- Trace amounts of pyrite were observed within the sulphide grouping.

Appendix A – Quantitative SEM-EDS Analysis

≡ 唱 ②

Figure 1: SEM-EDS of Ca, S, (Mn)-O Phase

Figure 2: SEM-EDS of Mg, Al, S, (Zn, Si)-O Phase

Figure 3: SEM-EDS of Zn, Fe, Mg, Mn, S, (Ca, Si)-O Phase

Figure 4: SEM-EDS of Fe, Zn, Mg, (S, Si)-O Phase

Figure 5: SEM-EDS of Mn, Zn, (Fe) - Oxide

Figure 6: SEM-EDS of Mn, Zn, (Fe) - Oxide

≡ ੴ

Figure 7: SEM-EDS of Mg, Fe, Ca, Zn, S-O Phase

Appendix B – TIMA Images

Pyrite

Field F03 - Primary phases

Top Left: BSE Image Top Right: TIMA Phases Bottom Left: Relative Intensity of Fe Bottom Right: Relative Intensity of S.

Figure 1: TIMA Image of Pyrite

Zn-Oxide

Top Left: BSE Image Top Right: TIMA Phases Bottom Left: Relative Intensity of Mg Bottom Right: Relative Intensity of S.

Figure 2: TIMA Image of Mn, Zn, (Fe) - Oxide

Mg.Zn.(Fe.Ca.S)- Phase

Field E07 - S-K

Top Left: BSE Image Top Right: TIMA Phases Bottom Left: Relative Intensity of Zn Bottom Right: Relative Intensity of S.

<u>Gypsum</u>

Field B16 - BSE

Top Left: BSE Image Top Right: TIMA Phases Bottom Left: Relative Intensity of Ca Bottom Right: Relative Intensity of S.

Figure 4: TIMA Image of Gypsum

Mn, Zn-Oxide

Field B10 - Zn-K

Top Left: BSE Image Top Right: TIMA Phases Bottom Left: Relative Intensity of Mn Bottom Right: Relative Intensity of Zn.

Figure 5: TIMA Image of Mn, Zn, (Fe) - Oxide

Appendix B: QA/QC Results

Faro WTP Sludge QA/QC Results

QC Test	SRK QC Criteria	Results
	paste pH	
Standard Potoronoo Material (n=1)	Within specified tolerance ranges	All passed
Standard Reference Material (n=1)	Total C and TIC	All passed.
	For samples > 10X the detection	
	limit (DL), Total Carbon should be	
	greater than Total Inorganic	
Carbon balance (Total $C > T(C)$ (n=0)	Carbon, if not the % difference	No TIC reported
	For samples $> 10X$ the detection	
Crush Duplicate (n=1) for Total C	limit (DL), % RPD within +/-30%	All passed.
		· · · ·
Standard Reference Material (n=1) for Total C	Within specified tolerance ranges.	All passed.
Tota	I S & Total Sulphate	
	For samples $> 10X$ the detection	
	limit (DL), Total Sulphur should be	
	greater than Total Sulphate, if not	
	the % difference should be within	
Sulphur balance (total S > sulphate S) (n=1)	+/-20%	All passed.
	For samples > 10X the detection	
Crush Duplicate (n=1) for Total S	limit (DL), % RPD within +/-30%	All passed.
Standard Reference Material (n=1) for SO4	Within specified tolerance ranges.	All passed.
Tota	I S-Leco and S-ICP	· ·
Comparison between Total S Less and S ICP $(n=2)$	For samples >10X detection limit $(DI) = \% RPD$ within $\pm 120\%$	
Trace Elements (Ag	ua Regia Digestion with ICP Finis	h)
Method Blank (n=1)	<2X Detection Limit	All passed.
	For samples >10X detection limit	
	(DL), % RPD within +/- 30%, For	
	for 10% of parameters to be	
Crush Duplicate (n=1)	outside of this criterion.	All passed.
	Within +/-15 % Difference or	· ·
Standard Reference Material (n=1)	within the tolerance ranges	All passed.
Mathed Diank (n=4)	WRA-ICP	
		ni passeu.
	For samples >10X detection limit	
	(DL), % RPD within +/- 30%, For	
	for 10% of parameters to be	
Crush Duplicate (n=1)	outside of this criterion.	All passed.
		SrO - outside 15% and the
	Within +/-15 % Difference or	tolerance ranges but there's no
Standard Reference Material (n=1)	Paw Water	
	EC>100uS/cm, % difference	
lon Balance (n=4)	should be within +/-10%	All passed.
	For samples >10X detection limit	
	(DL), % RPD within +/- 20%, For	
	ICP metal scan, it is acceptable	
	for 10% of parameters to be	
Leacnate Duplicate (n=1)	outside of this criterion.	All passed.
	For samples $> 10X$ the detection	
SO(4-S) vs $S-ICP(n=4)$	IImit (DL), the % difference should be within +/-20%	Faro Pit - S-ICP >10x DL but
	55 WILLIN 1/-2070	
Standard Reference Material (n=1)	Within specified tolerance ranges.	All passed.

	Custom SFE	
Method Blank (n=1)	<2X Detection Limit	All passed.
	EC>100uS/cm, % difference	All passed
Ion Balance (n=4)	should be within +/-10%	All passed.
	For samples >10X detection limit	
	ICP metal scan, it is acceptable	
	for 10% of parameters to be	
Leachate Duplicate (n=1)	outside of this criterion.	All passed.
	For samples > 10X the detection	
SO(4, S) (s) $S (CD (n-4))$	limit (DL), the % difference should	All passed
304-3 vs 3-ICP (II-4)	De Within +/-20%	All passed.
Standard Reference Material (n=1)	Within specified tolerance ranges.	All passed.
	Oxic_DI_pH4	
		EC, ORP and Dissolved Oxygen
		limit for DO, pH, and ORP so
		these shouldn't be evaluated
Method Blank (n=1)	<5X Detection Limit	using the <5x DL QAQC criteria.
	EC>100uS/cm, % difference	
Ion Balance (n=6)	should be within +/-10%	All passed.
	For samples $> 10X$ the detection	
	limit (DL), the % difference should	
SO4-S vs S-ICP (n=6)	be within +/-20%	All passed.
	Oxic_DI_pH7	
		FC OBB and Dissolved Ovurgen
		>5X DI There is no detection
		limit for DO, pH, and ORP so
		these shouldn't be evaluated
Method Blank (n=1)	<5X Detection Limit	using the <5x DL QAQC criteria.
Ion Balance (n=6)	EC>100uS/cm, % difference	All passed
	For samples > 10X the detection	
	limit (DL), the % difference should	
SO4-S vs S-ICP (n=6)	be within +/-20%	All passed.
	Oxic_Vangorda	
		FC. ORP and Dissolved Oxygen
		>5X DL. There is no detection
		limit for DO, pH, and ORP so
		these shouldn't be evaluated
Method Blank (n=1)	<5X Detection Limit	using the <5x DL QAQC criteria.
Ion Balance (n=6)	should be within +/-10%	All passed
	For samples > 10X the detection	
	limit (DL), the % difference should	
SO4-S vs S-ICP (n=6)	be within +/-20%	All passed.
	Uxic_Faro	EC and ORP >5X DL. There is no
		detection limit for DO. pH. and
		ORP so these shouldn't be
		evaluated using the <5x DL
Method Blank (n=1)	<5X Detection Limit	QAQC criteria.
Ion Balance (n=6)	should be within +/-10%	All passed
	For samples > 10X the detection	
	limit (DL), the % difference should	
SO4-S vs S-ICP (n=6)	be within +/-20%	All passed.

	Anoxic_DI_pH4	
		EC and ORP >5X DL. There is no detection limit for DO, pH, and ORP so these shouldn't be evaluated using the <5x DL
Method Blank (n=2)	<5X Detection Limit	QAQC criteria.
	EC>100uS/cm, % difference	
Ion Balance (n=5)	should be within +/-10%	All passed.
SO4 S VS S ICD (n=5)	For samples > 10X the detection limit (DL), the % difference should be within 1/ 209/	All peaced
304-3 V\$ 3-ICP (II-5)		All passed.
		EC and ORP >5X DL There is no
Method Blank (n=2)	<5X Detection Limit	detection limit for DO, pH, and ORP so these shouldn't be evaluated using the <5x DL QAQC criteria.
	EC>100uS/cm, % difference	
Ion Balance (n=5)	should be within +/-10%	All passed.
SO4-S vs S-ICP (n=5)	For samples > 10X the detection limit (DL), the % difference should be within +/-20%	All passed.
Α	noxic Vangorda	1 •
Method Blank (n=2)	<5X Detection Limit	EC and ORP >5X DL; The following parameters failed the <5X DL: Acidity (to pH 8.3), Alkalinity (to pH 4.5), Ammonia (as N), and various Dissolved Metals. There is no detection limit for DO, pH, and ORP so these shouldn't be evaluated using the <5x DL QAQC criteria.
Ion Balance (n=5)	should be within +/-10%	All passed.
SO4-S vs S-ICP (n=5)	For samples > 10X the detection limit (DL), the % difference should be within +/-20%	All passed.
	Anoxic_Faro	1
		EC and ORP >5X DL; The following parameters failed the <5X DL: Acidity (to pH 8.3), Alkalinity (to pH 4.5), Ammonia (as N), Dissolved Sulphate, and various Dissolved Metals. There is no detection limit for DO, pH, and ORP so these shouldn't be evaluated using the <5x DL
Method Blank (n=2)	<pre><5X Detection Limit EC>100uS/cm, % difference</pre>	
Ion Balance (n=5)	should be within +/-10%	All passed.
SO4-S vs S-ICP (n=5)	For samples > 10X the detection limit (DL), the % difference should be within +/-20%	All passed.

Sec	quential Extraction	
Method Blank (n=3)	<5X Detection Limit	Several parameters exceeded 5x the DL in the reagents. These results were incorporated in interpretation of the results.
lon Balance (n=8)	EC>100uS/cm, % difference should be within +/-10%	All passed except the leachates from the third extraction step for which fluoride could not be quantified due to interference. A recheck confirmed the anion and nutrient values and the results were accepted as is.

Appendix C: Solids Content, Pit Water and Filtrate Analysis, Elemental Content, Titration, Leach Test, Aging Test, and Selective Extraction Data

Globa		
ARD Testing	Services	Inc.

CERTIFICATE OF ANALYSIS • ABA RESULTS

GLOBAL PROJECT NO: 2011 CLIENT: SRK Consulting Inc. CLIENT PROJECT NAME / NO: Faro Studge Aging Test REPORT VERSION: 6

								HCI Leach	Na2CO3 Leach	1			
S No.	Samola ID	Paste nH	Fizz	Total	Total	CaCO,	Total	Sulphate	Sulphate	-			-
J. 140.	Jampie 12	r aave pro	Rating	Carbon	Inorganic C	Equivalents"	Sulphur	Sulphur	Sulphur	AP'3	Mod. ABA NP	NNP ¹⁴	NPR"
	Units:	pH Units		wt%	wt %	kg CaCO3/tonne	wt%	wt%	wt %		kg CaCO3/Tonne		
	Reported Detection Limit:	0.01		0.01	0.02	1.7	0.01	0.01	0.01	0.3	0.5		
1	Sludge Homogenized			1.88			5.42	3.94	4.70				1
18	Sludge Homogenized			1.88			5.46						1
					QUAL	TY ASSURANCE /	QUALITY CONT	ROL					
Replic	cate Analysis:												
	1												1
													i
Certifi	ied Reference Material (CRM	Analysis:											
Certifi	ed Reference Material	KZK-1		GS310-7				RTS-3a					
CRM	True Value	8.80		4.16				1,10					[
											*****	******	
Refere	ance Material Results	8.84		4.11				1.07					
Todera	ance (+/-) or Acceptance												1
Range		0.09		90 - 110%				0.99 - 1.21					
Metho	od Blank Analysis:												
Metho	d Blank Results			<0.01				<0.01					
				HCI leach/	HCI leach/								
GLOE	SAL SOP No. / Method:	ARD-004	ARD-005	Coulometer	Coulometer	Celc.	LECO	ARD-013	(HCI leach)	Calc.	ARD-005	Ce/c	Calc.

NOTES: Julo No: VR2010304 Acceptance coltenia at Global APD Testing for all CRMs is ±10 % of certified value. Date of Analysis. Apr. 22, 2020 of Of Water used 5.67 EC of Of Water used 0.45 <u>Marranne</u>.

pri of D start set 43 of 14 of

CERTIFICATE OF ANALYSIS - AS-RECEIVED SAMPLE

GLOBAL PROJECT NO: 2011
CLIENT: SRK Consulting Inc.
GLOBAL PROJECT NO: 2011
CLIENT: SRK Consulting Inc.
CLIENT PROJECT NAME / NO: Faro Sludge Aging Test
REPORT VERSION: 6

		1		1	1 D	2	3
Records a	Marked .	11-10	001		San	nple ID	
Parameter	Method	Onic	RDL	Sludge Filtrate	Sludge Filtrate	Vangorda Pit	Faro Pit
					(Dub)		
- Li	Mater	old unite	0.01	9.4	le s	2.6	6.02
EC	Motor	uG/cm	4	2010	2040	2720	1957.0
OPP	Motor	m\/	-	124	124	201	122.0
Disashard Occase	Mater	and and		0.4	0.7	0.5	0.0
Asidhu (Is al.U.D.2)	Meter Titatian	mg CaCO-4	0.5	0.4	0.7	0.0	9.2
Abdity (ib ph 6.3)	Titation	ma CaCOJL	0.5	SU.D	~U.0	100.5	40.0
Pleasing (ib pH 4.5)	Calaurimates	ing Gaooge	0.5	9.0	2.0	4000	40.0
Obsolved Supriate (SO4)	cooutimety	ing.	50	2100	2160	1900	1200
Critoride	iu cur	ingr.	0.0	2.00	2.00	0.6	0.40
Plucide			0.05	0.00	0.00	0.400	0.40
Number (as N)		mar.	0.05	0.100	0.150	0.100	10.109
Neurose isas (vi	Calarata		0.05	4,050	4.000	0.020	NU.000
Administrational (as in)	Coloumery	mat	0.01	1.000	1.000	0.390	11.020
COD	Spectrophotometer	mai	4.0	c.10	22.0	66.0	154 1/10
Odhashashala	Specirophotometer	ingr.	10.0	< 10 +0.45	-0.45	00.0	N 10
Citrophosphate	Coolumeay	ingr.	0.15	SO. 15	4.0	NU.15	0.27
Tatal Cardia Carbon	Combustion	ingr.	0.5	4.4	4.2	0.0	11.0
Total Organic Galidon	Compassion	ing L	0.0	*.*	a.a	40	
Total Suspended Solids	Oravineuy DC Titesta	ingr.	2	4	4 0 F	10	000
Disaster Matels Assteria to M	PC Titale	ings-	0.1	0.7	0.5	60.U	20.9
Dissolved metals Analysis by IC	r-wa.		0.5	4040.0	1010.0	4400.0	0.70
Dissolved Haldness (CaCU3)	ICP-MS	mgiL	0.5	1910.0	1910.0	1180.0	9/9
Auminum Dissolved	ICP-MS	mgiL	0.001	<0.001	<0.001	1.6	0.015
Antmony Dissolved	ICP-MS	mgiL	0.0001	<0.0001	<0.0001	<0.0001	<0.0001
Arsenic Lissolved	ICP-MS	mgiL	0.0002	0.0007	0.0006	0.0014	0.0003
Banum Dissowed	ICP-MS	mgiL	0.0002	0.0192	0.0202	0.0181	0.0119
Beryllum Dissolved	ICP-MS	mgiL	0.0001	<0.0001	<0.0001	0.0002	<0.0001
Bismuth Dissolved	ICP-MS	mgiL	0.0001	<0.0001	<0.0001	<0.0001	<0.0001
Boron Dissolved	ICP-MS	mgL	0.01	<0.01	<0.01	<0.01	<0.01
Cadmium Dissolved	ICP-MS	mgL	0.00001	0.00009	0.00009	0.0792	0.0106
Calcium Dissolved	ICP-MS	mgL	0.05	481.0	483.0	228.0	209
Chromium Dissolved	ICP-MS	mgL	0.0005	<0.0005	<0.0005	<0.0005	<0.0005
Cobalt Dissolved	ICP-MS	mgL	0.0001	0.0007	0.0007	0.601	0.113
Copper Dissolved	ICP-MS	mgL	0.0005	0.0007	0.0007	0.303	0.0013
Iron Dissolved	ICP-MS	mal	0.02	<0.02	<0.02	106	0.27
Lead Dissolved	ICP-MS	mal.	0.0005	<0.0005	<0.0005	0.0722	<0.0005
Lithium Dissolved	ICP-MS	mal	0.0005	0.1070	0.1080	0.0463	0.0663
Magnesium Dissolved	ICP-MS	maL	0.05	172.0	172.0	148.0	
Manganese Dissolved	ICP-MS	mal	0.0002	0.0013	0.001	49.4	12.1
Mercury Dissolved	ICP-MS	mgiL	0.0005	<0.0005	<0.0005	<0.0005	<0.0005
Morybdenum Dissorved	ICP-MS	mgit	0.0001	0.0014	0.0006	0.0005	<0.0001
Nickel Dissolved	ICP-MS	mgL	0.0005	0.0026	0.0009	0.46	0.185
Phosphorus Dissolved	ICP-MS	mgL	0.05	<0.05	<0.05	<0.05	<0.05
Potassium Dissolved	ICP-MS	mgL	0.05	12.3	12.5	3.01	9.74
Selenium Dissolved	ICP-MS	mgL	0.0005	0.0009	0.0009	0.0043	0.0021
Silicon Dissolved	ICP-MS	mgL	0.05	0.17	0.17	4.58	3.39
Silver Dissolved	ICP-MS	mgL	0.00008	<0.00008	<0.00008	<0.00008	<0.00008
Sodium Dissolved	ICP-MS	mgL	0.02	31.1	30.7	7.63	23.5
Strontium Dissolved	ICP-MS	mgL	0.0002	8.84	9.12	1.07	0.902
Sulphur Dissolved	ICP-MS	mgL	0.5	631.0	629.0	545.0	317
Tellurium Dissolved	ICP-MS	mgL	0.0002	< 0.0002	<0.0002	<0.0002	< 0.0002
Thallium Dissolved	ICP-MS	mgL	0.00005	0.00139	0.00145	0.00105	0.00056
Thorium Dissolved	ICP-MS	mg/L	0.0001	< 0.0001	<0.0001	0.0001	< 0.0001
Tin Dissolved	ICP-MS	mgL	0.0005	< 0.0005	<0.0005	<0.0005	<0.0005
Titanium Dissolved	ICP-MS	mg/L	0.0005	<0.0005	<0.0005	0.0019	8000.0
Tungsten Dissolved	ICP-MS	mgL	0.0001	< 0.0001	<0.0001	<0.0001	<0.0001
Uranium Dissolved	ICP-MS	mgL	0.00005	< 0.00005	<0.00005	0.00623	0.00027
Vanadium Dissolved	ICP-MS	mgL	0.001	<0.001	<0.001	<0.001	<0.001
Zinc Dissolved	ICP-MS	mgL	0.001	0.028	0.025	164.000	33.3
Zirconium Dissolved	ICP-MS	mg/L	0.0001	< 0.0001	<0.0001	<0.0001	<0.0001
Ion Balance:							
Maior Anions	Calc.	meg/L		45.78	45.76	39.63	26.04
Major Cations	Calc.	meg/L		40.02	40.12	34.83	22.34
Difference	Calc.	meg/L		-5.75	-5.65	4.81	-3.70
Balance (%)	Calc.	%		-6.7%	-6.6%	-6.5%	-7.6%
		Chaire	Elsek Extract (D)	1070222	1070261	1077044	1077055

Shake Fask Exect D 107332 0079211 0079241 077644 05 MOTES: Job No 2079 0231 20795203 Date A Acaptag (24 N; Jun 71 17, Jun 2) Date A Acaptag (24 N; Jun 71 17, Jun 2) Date A Acaptag (24 N; Jun 71 17, Jun 2) Date A Acaptag (24 N; Jun 71 17, Jun 2) Date A Acaptag (24 N; Jun 71 17, Jun 2) Date A Acaptag (24 N; Jun 71 17, Jun 2) Date A Acaptag (24 N; Jun 71 17, Jun 71

GLOBAL PROJECT NO	2011
CLENT	BPK Cerembine Inc.
CLEM PROJECT NAME INC.	Fare Barber Antre Text
APORT VERSON	

GLOBAL PROJECT ND: 2011 CLIRIT: IFIC Growting In. CLIRIT PROJECT NAME (ND: Fars Singe Aging To NEPORT VERSION: 6

1.00	lampia D		q. 3	11.	113	1.5		13 E 2	351.	e (Ca)	14 L 0	111	- (Ge) 245	845	111	2 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4		(Ng) 5 621	Ϊł.	n (Ma) n (Ma) ppm a M	12.3	1 L 1	1812	- 	lî la	ā la			111	146	1 1 2 2 2 2	(b) (b) (c) (c) (c) (c) (c) (c) (c) (c) (c) (c	2 23	212	1812	(74) 15 641	1013	a 1.1	51-2	lets St.	4443	1
	Duter Networket	NA 108	146 J	2		1.60 1.61	38.20 38.80	1648			14	6. 4.5. N 1.16	944 026	63	4.005 4.005	19	64		ND N12		49 69	- HRL	339.	A	12 11	42 12	1.44 1.40	UEL	4	91.		863.	- 44. 63	-946		491 691	49K	279	H	(646 62	
Canton 1920 Trans V Colline Roman Roman Roman Roman	d Salcense Keteriel Litter der Efficielen eine Al- Rienk Tech	414 414 11 11 11	605 604 624 624	01 MU 73 14 45 12 46	53 3 14 53 84 51 54 54 54	110 134 134 144	134 134 135 248 449	414 - 26 414 - 64 66 - 3 68 - 64 492 - 61	40 4 44 44	65 65 69 69	536 14 544 14 54 14 53 14 635 14	0 40 1 12 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	636 67	430 440 444 455	038 675 27 824 4:000	14 (4 (4 (4 (4) (4) (4)	04 8 04 8 74 70 249 14 04 4	0 (20) (23) (23) (24) (24) (24)	1907 1988 34 4,892 4	100 100 116 118	(4) (3) (4) (4)	1340 14 14 14	207 543 44 42	112 122 124 2442 25	063 063 034 04	81 83 31 44	116 8 8 4.80	18 3 10 8 14 1 14 1			130 149 16 40	10 ⁻³ 10 ⁻³ 13 ⁻¹ 14 14 14 14 14 14 14 14 14 14 14 14 14	30 (34 (3 (3) (3) (3)		03 40 43 49 43	5 NE 5 N 5 N 5 N 5 N 5 N 5 N 5 N 5 N 5 N 5 N	(1) (3) 43 44			6 43 6 44	1207 1404 1208 1402 137 124 14 14 15 15 14 14 15 14 14	
Analysi Analysis NED Makine Analysis Analysis Analysis Analysis Analysis Analysis	nal II athenis (M.1.200) a Mathem A. 201, god ya go of herbindy scholars disarted digester is remo- dy establisation during to factors Popleate (a regionale to Oxpleate (a regionale to Oxpleate (a regionale to	b do saropit k diper o dek mathadi deresti is termar i antig may maad o sa sad-saropit see s 2nd sad-saropit se	instantis POOL (* Intel dipositor Int. 1 same inst of An. Inspect From a single inspectional by p	CO. HC. HT I Igenties to a Land D.	n 10 mL. (r) Cana Iy partial for some presidenti per eller anomi spili el tra	Cranillanin Cranillanin Langin	ada uggar bada arab arat anis arapin anatan	n matalana 4	186, 50, 7a ar	a D																																
AD + In NH + No An Cas An year NH + No An Tea Al Thur	Interviewie Responsiel Mark Einkonsen Baser Interviewie in anderspolitik Responsel in ihr Garitik resear Interviewie Naturel in a naturepolitik Values' industed in pres	rial and Talanan Spinistic Idean DJ, JJ valen Hi ale O'Andysis Spinistic Idean Spinistic Idean	er beite dass sei s fracht an Certife e beite dass sei s dass an yer Certif	eruitain talar 1 Valare tel eruitain talar sale 17 Analy	e of the standard nated in grown are e of the standard with (CON) - with o	induative enty	,																																			

CERTIFICATE OF ANALYSIS - METALS RESULTS BY AQUA REGIA DISEST & ICP-MS ANALYSIS ON SOLIDS

dathed in

CERTIFICATE OF ANALYSIS • RESULTS OF WHOLE ROCK ANALYSIS BY LITHIUM METABORATE FUSION & ICP-AES ANALYSIS (on solids)

GLOBAL PROJECT NO: 2011 CLIENT: SRK Consulting Inc. CLIENT PROJECT NAME / NO: Faro Sludge Aging Test REPORT VERSION: 6

		Method	WRA-310														
		Analyte	AI2O3	BaO	CaO	Cr2O3	Fe2O3	K2O	MgO	MnO	Na2O	P2O5	SiO2	Sr0	TiO2	LOI	Total
S. No.	Sample ID	Units	%	%	%	%	%	%	%	%	%	%	%	%	%	%	%
		LOR	0.01	0.1	0.01	0.01	0.01	0.01	0.01	0.01	0.01	0.01	0.01	0.01	0.01	0.01	
		Sample Ty	pe														
1	Sludge Homogenized	Pulp	0.09	<0.1	13.91	<0.01	9.12	<0.01	12.69	2.82	<0.01	0.02	1.35	0.03	<0.01	28.34	68.38
1 R	Sludge Homogenized	Pulp	0.10	<0.1	13.79	< 0.01	9.03	< 0.01	12.65	2.81	<0.01	0.02	1.30	0.04	<0.01	28.36	68.09
QUAL	TY ASSURANCE / QU.	ALITY CON	TROL														
Pulp R	eplicates																

Certifie	d Reference Material																
STD SY	(-4		21.74	<0.1	8.46	< 0.01	6.53	1.70	0.59	0.120	7.42	0.140	52.31	0.16	0.300		
True Va	alue STD SY-4		20.69	0.034	8.05	N/A	6.21	1.66	0.54	0.108	7.10	0.131	49.90	0.12	0.287		
% Differ	rence (2)		5.07		5.09		5.15	2.41	9.26	11.11	4.51	6.87	4.83	34.34	4.53		
Tolerar	nce (+/-)		0.08	0.0005	0.04		0.03	0.02	0.01	0.001	0.05	0.004	0.10	0.0012	0.003		
Method	d Blank																
Method	Blank		<0.01	<0.1	<0.01	< 0.01	<0.01	<0.01	<0.01	< 0.01	<0.01	<0.01	<0.01	<0.01	<0.01		

Notes:

Job No: YVR2010304

Analytical Methods:

A representative pulp sample is subjected to a Li₂B₀/ LiBO₂ fusion, followed by ICP analysis for major oxides and LOI (Loss On Ignition by sintering at 1000°C). A 0.5 g of pulp sample is leached in hot (95°C) 3:1 aqua regia followed by ICP-AESICP-MS analysis. Gold determinations by this method are semi-quantitative due to the small sample weight used (0.5 g).

Abbreviations:

 R7. Rep : Reglicate (a replicate) is a sub-sample scooped from a single sample bag produced per client sample)

 D7. Dp = Duplicate (a dopticate) is 2 do sub-sample bag produced by processing a second split of the original client sample neceived)

 MDL = Measurable Detection Limits

 MDL = Measurable Detection Limits

 ND = Pollicate (Analysia,

 ND = Note (Reint Control (Reint))

 ND = Note (Reint)

 ND = Note (Reint)

 ND = Note (Reint)

 ND = Note (Reint)

 ND = Note (Reint)

On Tolerance:

Any one element in a run reporting outside tolerance limits does not constitute failure of the standard. All 'True Values' indicated in green are indicative values as per Certificate Of Analysis (COA) - not certified values. Appendix C4: Titration

CERTIFICATE OF ANALYSIS • TITRATION CURVE

Global

Sample ID: Sludge Homogenized Sample Wt: 10 g (Dry) Acid: 1N Sulphuric Acid GLOBAL PROJECT NO: 2011 CLIENT: SRK Consulting Inc. CLIENT PROJECT NAME / NO: Faro Studge Aging Test REPORT VERSION: 6

	L.u.
1N H2SO4 (mL)	pН
)	8.9
1.2	8.76
).4	8.42
0.6	8.11
2.8	7.92
1	7 71
12	7 47
1.4	7.32
1.4	7.32
1.6	7.28
1.8	7.28
2	7.24
2.4	7.08
2.8	6.96
3.2	6.89
3.6	6.77
1	6.72
14	6.64
1.0	0.04
+.0	0.01
5.2	90.09
5.6	6.351
3	6.47
3.4	6.46
3.8	6.45
72	6.45
7.6	6.44
	8.4
2	0.4
5.6	6.37
9.2	6.33
9.8	6.28
10.5	6.24
11.5	6.19
12.5	6.16
13.5	6.11
14.6	6.06
14.0	0.00
10.0	0.01
10.0	D'A1
17.5	5.94
18.5	5.89
19.5	5.99
20.5	5.93
21.5	6.01
22.5	5.99
23.5	5.95
10.0	5.00
20	0.93
4	0.87
51	5.73
37	5.63
19	5.7
34	5.7
34	5.61
109	5.59
119	5.5
190	6.24
	5.00
104	0.29
174	5.12
194	4.93
219	4.83
227	4.58
243	4.25
268	3.25
273	2.76
200	0.50
283	2.03
298	2.32
318	2.14
343	1.95

5 of 16

CERTIFICATE OF ANALYSIS • CUSTOM SFE (96h)

GLOBAL PROJECT NO: 2011 CLIENT: SRK Consulting Inc. CLIENT PROJECT NAME / NO: Faro Sludge Aging Test REPORT VERSION: 6

			1	1	1 R	2	3	
Parameter	Method	Unit	RDL	DilWatas	Distance (Dec)	Carro 00	Manager and a Dis	Method Blank
				Di water	Di Water (Rep)	Paro Pit	vangorda Pit	
Weight of dour complex used	Weighing Scole	ь	0.01	27.5		27.5	h7 5	has
Veloce of water used	Graduated Culledar		0.60	260	N/A	750	37.0	750
ell	Motor	obl unite	0.01	0.74		9.90	9.22	4.99
50	Mater	Class	4	0.74	•••••	0.00	4400	4.4
000	Mator	wi/		110	*****	60	120	
Addition (No. old 9, 2)	Titration	mo CaCO-A	0.5	c0.5		c0.5	20.5	
Alkalinity (to nH 4 5)	Titration	m CaCO A	0.5	15.5		18.0	25.5	
Dissolved Sulphate (SO4)	Colourimetry	mol	50	2040	2020	2510	2940	
Chipride	IC.	mol	0.05	0.49	0.49	1.57	0.7	
Fluoride	SIE	mol	0.02	0.34	0.32	0.41	0.46	
Nitrate (as N)	IC.	form	0.005	0.019	0.019	0 193	0.165	
Nitrite (as N)	IC.	mol	0.005	0 111	0.118	0.099	0.124	
Dissolved Metals Analysis by	ICP-MS:							-
Dissolved Hardness (CaCO3)	ICP-MS	molL	0.5	2000.0	1987.0	2450.0	2910.0	<0.5
Aluminum Dissolved	ICP_MS	front	0.001	<0.001	<0.001	<0.001	0.003	<0.001
Antimony Dissolved	ICP-MS	mol	0.0001	<0.0001	<0.0001	<0.0001	<0.0001	<0.0001
Arsenic Dissolved	ICP-MS	mat	0.0002	0.0003	0.0003	0.0003	0.0003	<0.0002
Barium Dissolved	ICP-MS	mgL	0.0002	0.0092	0.0078	0.0116	0.0152	<0.0002
Bervilium Dissolved	ICP-MS	mol	0.0001	<0.0001	<0.0001	<0.0001	<0.0001	<0.0001
Bismuth Dissolved	ICP-MS	mol	0.0001	<0.0001	<0.0001	<0.0001	<0.0001	<0.0001
Boron Dissolved	ICP-MS	mgL	0.01	<0.01	<0.01	<0.01	<0.01	<0.01
Cadmium Dissolved	ICP-MS	mgiL	0.00001	80000.0	0.00009	0.00013	0.00137	<0.00001
Calcium Dissolved	ICP-MS	mo'L.	0.05	479.0	474	449.0	445.0	<0.05
Chromium Dissolved	ICP-MS	mg/L	0.0005	<0.0005	<0.0005	<0.0005	<0.0005	<0.0005
Cobalt Dissolved	ICP-MS	mg/L	0.0001	0.0006	0.0006	0.001	0.0154	<0.0001
Copper Dissolved	ICP-MS	mail	0.0005	<0.0005	<0.0005	<0.0005	<0.0005	<0.0005
Iron Dissolved	ICP-MS	mgL	0.02	<0.02	<0.02	<0.02	<0.02	<0.02
Lead Dissolved	ICP-MS	mgL	0.0005	<0.0005	<0.0005	<0.0005	<0.0005	<0.0005
Lithium Dissolved	ICP-MS	mail	0.0005	0.0109	0.0102	0.0736	0.0520	<0.0005
Magnesium Dissolved	ICP-MS	mg/L	0.05	195.0	196	323.0	436.0	<0.005
Manganese Dissolved	ICP-MS	mg/L	0.0002	0.0007	0.0006	0.0151	5.73	<0.0002
Mercury Dissolved	ICP-MS	ngL	0.0005	<0.0005	<0.0005	<0.0005	<0.0005	<0.0005
Molybdenum Dissolved	ICP-MS	mg/L	0.0001	0.0002	0.0002	0.0002	0.0001	<0.0001
Nickel Dissolved	ICP-MS	mg/L	0.0005	<0.0005	<0.0005	0.0008	0.0101	<0.0005
Phosphorus Dissolved	ICP-MS	mg/L	0.05	<0.05	<0.05	<0.05	<0.05	<0.05
Potassium Dissolved	ICP-MS	ngL	0.05	1.3	1.29	11.2	4.27	<0.05
Selenium Dissolved	ICP-MS	mo'L	0.0005	<0.0005	<0.0005	<0.0005	<0.0005	<0.0005
Silicon Dissolved	ICP-MS	mg/L	0.05	0.2	0.20	0.23	0.34	<0.05
Silver Dissolved	ICP-MS	mg/L	80000.0	<0.00008	<0.00008	<0.00008	<0.00008	<0.00008
Sodium Dissolved	ICP-MS	mo'L	0.02	3.51	3.44	27.3	10.5	<0.02
Strontium Dissolved	ICP-MS	mg/L	0.0002	2.89	2.89	3.13	3.26	<0.0002
Sulphur Dissolved	ICP-MS	mg/L	0.5	642.0	643	748.0	894.0	<0.5
Telunum Dissolved	ICP-MS	mgiL	0.0002	<0.0002	<0.0002	<0.0002	×0.0002	<0.0002
Thalium Dissorved	ICP-MS	mgrL	0.00005	0.00209	0.00218	0.00323	0.003	<0.00005
Thonum Dissolved	ICP-MS	mgr	0.0001	<0.0001	<0.0001	<0.0001	<0.0001	<0.0001
Tin Dissolved	ICP-MS	mgL	0.0005	<0.0005	<0.0005	<0.0005	×0.0005	R0.0005
Titanium Dissolved	ICP-MS	mgi	0.0005	<0.0005	<0.0005	<0.0005	×0.0005	<0.0005
Tungsten Likssowed	ICP-MS	mat.	0.0001	<0.0001	40.0001	<0.0001	×0.0001	-0.0001
Granium Dissolved	IUP-MD	ing L	0.00005	-0.00005	-0.00005	-0.00005	-0.00005	-0.00005
venerorm unsolved	ICP-MD	ing L	0.001	90.001	0.001	N0.001	0.001	-0.001
Zinc bissowed	1LC-MD	IIGL.	0.001	0.040	0.000	0.000	2.140	1-0.001
Ion Balance	CALCULAR OF A		9.0000 I		0.0001	-0.0001	-0.0001	
Major Anjons	Calo	licem		42.85	42.12	52 74	61.83	
Major Cations	Calc.	meg/L		40.20	40.03	50.53	58.93	
Difference	Calo	menil		-2.65	2.10	.2.21	2 90	
Balance (%)	Calc.	%		-3.2%	-2.6%	-2.1%	-2.4%	
		Shake	Flask Extract ID:	1087001	1087001	1087006	1097007	1087009

APPER Table 1 Sector 1 Sector
 Sector 1 Sector 1

GLOBAL PROJECT NO: 2011 CLENT: SPRK Consuling Inc. CLENT PROJECT NAME / NO: Fairo Studge Aging Test REPORT VERSION: 6

[1		Slank	0.5h	1b	1.5h	25	26	-m	55	6h	7h	2 week	1 month	2 month	3 month	4 month	7 month
Domination .	Herbert	11.0.0	201	Sample ID															
Parameter		UTIL .	~~~~	Ovic Di olità															
	1		1																
Weight of dry sample used	avegring scale	9	0.01											45	29 		45	40	
Volume of water used	Graduated Cytroler	WL.	0.50											4/5	4/5	4/5	4/5	4/5	4/5
an Indestabled	Meller	SH UND	- 9901 - 5-54	4.2	а. <u>у</u>	N.X	#Z	8.3	E.9.	a.y.	4×	8.M		(.2	1			9.4	
sid (Eilered)	Meter	old units	0.04								******			8.7	4.5	0.4	2.2	7.5	7.0
(historia)	Mater	i Girm	1	56	1124	1252	1245	1245	1265	1276	1265	1264	1263	1504	1500	1400	1950	1000	1010
C (Stead)	Mater	is im	1			(2275)	TTT	13.17			ITTE	1977		2820	1100	1520	4220	1800	1930
EC (Filtered)	Meter	µ⊈ion	1.00								******			2930	3400	3700	\$550	4000	4020
ORP (Undisturbed)	Meter	stV	1	369	22	21	27	22	41	42	40	42	41	215	243	240	253	225	220
ORP (Stred)	Meter	99V	1											112	100	180	200	2:12	222
ORP (Unlikered)	Meter	4W	1.00											114	161	160	256	229	228
Dissolved Drygen	Meter	ngL	1	4.9															
Acidity to pH 0.31	Tatation	TR CaCO-L	0.5											10.5	19.5	10.5	14.4	\$.0	4.2
Alkalinity (to pH 4.5)	Tération	ing CalobyE												26.5	218	23.0	205		19.4
Citacitied Suprate (SOR)	Coournery	ngi	50											2200	2270	2300	2490	2880	040
Chinde	L.	ngi	0.5											9.5	0.7	0.7	1.0	0.0	0.0
Huonge	2h		8.K											9.30	8.49	192	-92		
Mitrate (ar N)	28	1995.	0.05								*****			1922	10.5	40.05	1925	10.0	10.05
Mittin (as N)	r.	mal	0.05								******			0.00	0.4	0.00	0.1	0.1	0.5
Ammonia (as M)	Colourimetry	mal	0.04											1 29	1 000	1.040	1.090	102/105	1.02
Dissolved Metals Analysis by	ICP-MS:																		
Dissolved Hardness (CaCO3)	ICP-MS	mg L	0.5											1910	2450	2540	2760	3020	3140
Aluminum Dissolved	ICP-MS	mal	0.001											0.002	0.001	0.001	10.001	0.002	0.004
Antimony Dissolved	ICP-MS	mal.	0.0001											+0.0001	10,0001	10.0001	+0.0001	10.0001	+0.0001
Arsenic Dissolved	ICP-MS	ngt	0.0002											+0.0002	+0.0002	+0.0002	+0.0002	0.001	0.002
Sarium Dissolved	ICP-MS	ngt	0.0002											0.0017	0.0029	0.0033	3.0037	0.006	0.009
Servitum Dissolved	ICP-MS													+0.0001	\$9,8991	10.0001	19,0001		0.0001
Sixmuth Dissolved	ICP-MS	mat	0.0001											10.0001	19,0001	10.0001	+9.0001	19.0001	10.0001
action Disactived	EP-05	ngi	0.01											40.01	49.01	40.01	40.01	0.01	0.01
Capital Lakeoved	LP40		0499901											3,0000/	9.0000M	0.00009	3,00024	9,00912	0.00012
Calcum Dissorted	CO MC	1995	100											250	242	20.0007	266	4902	10000
Cohait Dissolved	COMS	mal	0.0004											1,0001	0.0007	0.0007	1.002	0.0000	0.0000
Concer Dissolved	CD.MS	mal	0.0005								******			#0.0005	0.0006	0.0006	#0.0005	40.0005	10,0005
Inn Displant	ICD.MS	mai	0.02								**********			#0.02	40.02	10.02	#1.02	#0.02	40.02
Lead Dissolved	CP-MS	naL	0.0005								***********			+0.0005	10.0005	+0.0005	+0.0005	10.0005	+0.0005
Uthium Dissolved	ICP-MS	mal.	0.0005											3,0102	0.0098	0.0098	3,0103	0.0122	0.0146
Magnesium Dissolved	ICP-MS	mal.	0.05											285	299	414	429	450	472
Manganese Dissolved	ICP-MS	ngt	6.0002											3.0024	0.0034	0.0034	3.0216	0.0042	0.0055
Mencury Dissolved	ICP-MS	ngL	0.0005											+0.0005	<0.0005	+0.0005	+0.0005	10.0005	+0.0005
Wolybdenum Dissolved	CP-MS	naL	0.0001											3,0005	0.0003	0.0003	2.0002	0.0003	0.0003
Nickel Disuspeed	CP-MG		0.0005											10.0005	0.0009	9.9912	9,0027	0,0009	0.0016
Phosphorus Diseosed	EP-05	ngi	0.00											Ruus	49.50	40.00	- CU UN	1020	HUUD
Folget an Disaster d	COM	ings.	0.0000											1.74	1.00	1.00	1.00	1.00	100000
Gilcon Dissolant	C D.MPS	1045	100000											3.45	6.04	0.34	5.41	A DE	E 26
Silver Dissolved	ICP-MS	naL	0.00008								*****			10,00008	+0.00008	+0.00000	+0.00000	+0.00008	+0.00008
Sodium Dissolved	ICP-MS	naL	0.02											1.79	4.15	4.47	4.57	5.01	5.33
Strontium Dissolved	ICP-MS	naL	0.0002											3.901	1.02	1.2	1.34	1.37	1.35
Sulphur Dissolved	ICP-MS	ngL.	2.5											709	762	788	879	985	200
Tellurium Dissolved	ICP-MS	ngL.	0.0002		1								1	+0.0002	+0.0002	+0.0002	+0.0002	+0.0002	+0.0002
Thailium Dissolved	ICP-MS	mal.	0.00005											2.00231	0.00302	0.00302	2.00321	0.0034	0.0033
Thorium Dissolved	ICP-MS	ma1	0.0001											10.0001	10,0001	10.0001	19.0001	10.0001	+0.0001
Tin Dissolved	ICP-MS	ngL	0.0005											+0.0005	+0.0005	+0.0005	+0.0005	+0.0005	+0.0005
Titanium Diesolved	CP-MS	mat.	0.0005											+0.0005	10.0005	+0.0005	10.0005	0.0008	+0.0005
tunation Dissolved	CP40	1995	Lossof											2,0003	19 29 01	10.00000	19199921	- SHANKS	HUUUUU
Character Dissolated	CO ME	ings.	Coorers											-2.024	10.004	10.001	-0.004	Cheveral D	10.000
Terrorise Construction	CO ME	ings.	0.004											1.000	0.084	0.000	1.774	0.437	0.044
Anna Armenous	LCD MC	1145	0.0004											10,0004	K.000	10.000 I	4.417	- K.ME	Lin noni
ion Balance:	ALC: NO	1995	range -		1	1	1	1	1	1	1		1	the second	Taxanood	Consection of the section of the sec	Canada and	Taxabool .	- Consect
Major Artions	Cak.	meal.												46.29	47.82	49.54	52.32	60.37	01.65
Major Cations	Cak.	meal.												31.29	49.19	51.49	55.49	60.67	63.19
Orference	Čak.	neqt.												-8.10	1.37	1.96	3.17	0.50	1.54
	1		** AAAA.0000000					1				· · · · · · · · · · · · · · · · · · ·	1 0.000 0.000 0.000					1	11 mm

Globa	
ARO Testing	Services Inc.

GLOBAL PROJECT NO: 2011 CLENT: SPRK Consuling Inc. CLENT PROJECT NAME / NO: Fairo Studge Aging Test REPORT VERSION: 6

[Mank	0.5h	1b	1.55	25	26	-6h	55	6h	7h	2 week	1 month	2 month	1 month	4 month	7 month
Domination .	Mathead		201	Sample ID															
Paratest		U III	Part 1	Ovic Di oli7															
			1													-			
Weight of dry sample used	wegning scale	9	0.01											45	29 		45	45	40
VOLINE OF MANY Used	Lataouased Lyander	AL.	0.50											4/5	4/5	4/5	4/0	4/5	4/5
an Indestabled	View	CHI UNIS	9901		84	NX	A3	¥P	E.Y.		4×	8.M	a.y.	12	(9	- <u>Classes</u>		· · ·	0.2 T.A
SH (Silarad)	Meter	per units	891								*****			1.6	8.6	8.4	7.4	7.4	7.2
(Planting)	and an	of loss	ew.	10	1107	1482	1170		1100	1100	1497	1100	1107	44.70	1433	10000	100	1400	1.2
EC (Struct)	Meter	uGim	4				11.00	1177		179H	1.799			1000	1420	1470	4070	1250	ligan
EC (Fibered)	Meter	ula lom	1.00								***********			1920	3450	1660	4370	4075	4055
ORP (Undisturbed)	Meter	1W	1	206	17	10	10	22	23	41	41	42	42	207	243	251	250	228	221
ORP (Stred)	Meter	τV	1										******	145	164	205	217	222	226
ORP (Unlinered)	Meter	ŧΨ	1.00											547	163	200	261	226	224
Dissolved Dogen	Meter	ngL	1	49															
Acidity to pH 8.31	Tatation	the CarCo.L	0.5											10.5	10.5	10.5	10.0	\$,0	b.7
Akalinitrito pH 4.5)	Teration	ing CaCO ₂ L	0.5											22.5	24.0	26.5	20.6	17.5	18.9
Dissolved Sulphate (SO4)	Colourimetry	ngt	50											2140	2220	2350	2650	2810	3050
Chipride	C	ngt	0.5											3.6	0.5	0.5	1.0	0.7	0.8
Fluoride	96	mak	. 82											2,20	9.29		192	. 182	H92
acomide	SK	mai.	0.2											19.5	19.5	10.5	+9.5	10.5	10.5
NETIDO (AE N)	L.	ngi	0.00											3.050	0.170	ADTP	Ruus	1000	90.05
NETH (AL N)	L.	1991	920											4.1	0.1	0.1	9.2	Q.1	4.1
Ammonia tas no	LOOUTHETY	TOL	221											1200	1.09	1.90	1.92	1.04	1.02
Cleaning Heaters (CoCC)	Lon Mr.		6.F											1010	2420	14100	1750	1000	1040
Abreiro an Disached	CDARS	nol	0.004								*****			40.001	0.007	10.001	(0.001	0.002	0.000
Antimory Dissolut	CD.MS	mail.	0.0004											40.0001	40.0004	40.0001	40.0001	+0.0004	40.0001
Arsenic Dissolved	CP-MS	naL	0.0002											+0.0002	+0.0002	+0.0002	+0.0002	0.0008	0.0011
Barium Dissolved	CP-MS	naL	0.0002								***********			0.0055	0.0008	0.0012	2.0058	0.0061	0.0067
Servium Dissolved	CP-MS	naL	0.0001								***********			+0.0001	+0.0001	+0.0001	+0.0001	0.0003	0.0005
Bismuth Dissolved	CP-MS	naL	0.0001											+0.0001	+0.0001	+0.0001	+0.0001	+0.0001	+0.0001
Soron Dissolved	ICP-MS	ngL	0.01											+0.01	40.01	+0.01	40.01	+0.01	+0.01
Cadmium Dissolved	CP-MS	mal.	0.00001											2,00007	0.0001	0.00015	2,00034	0,0001	0.00022
Calcium Dissolved	ICP-MG	naL	0.05											289	225		297	444	477
Chromium Dissolved	CP-MS	ngL	0.0005											0.0007	<0.0005	+0.0005	+0.0005	0.0007	0.0009
Cobalt Dissolved	ICP-MS	ngt	0.0001											0.0011	0.0006	0.0009	3.002	0.0013	0.0019
Copper Dissolved	CP-MS	mail	0.0005											+0.0005	0.0006	10.0005	+9.0005	0.0014	0.0018
Fon Lissioned	CD MC	1993.	0.0004											10.02	10.000 m	10.000	10.02	10.000	10.02
Liblar Dissilari	COME	ng.	0.0000											1.0004	0.0403	0.044	1.04	0.0445	0.0404
Manager Disabled	CD MC	1945	C000004											200000	w.occed.	101	4.92	450	442
Mannana Dissolution	C D.MS	1945	6.666											3.0054	0.054	0.0141	1.0017	0.0148	0.0163
Manuary Dissolved	CDARS	nal	0.0005								******			#0.0005	40.0005	10,0005	40.0005	10,0005	10.0005
Wolvodenum Dissolved	CP-MS	nal	0.0001											0.0003	0.0003	0.0003	0.0001	0.0003	0.0005
Nickel Disactived	CP-MS	Tal	0.0005											+0.0005	0.0014	0.0014	1.0025	0.0016	0.0021
Phosphorus Dissolved	ICP-MS	ngL	0.05									1		+0.05	10.05	+0.05	+0.05	+0.05	+0.05
Potessium Dissolved	ICP-MS	ngL	0.05									1		1.38	1.49	1.47	1.45	1.57	1.66
Selenium Dissolved	CP-MS	naL.	0.0005											+0.0005	10.0005	+0.0005	+0.0005	<0.0005	+0.0005
Silicon Disabled	ICP-MS	ngL	0.05											0.19	0.23	0.32	0.43	0.38	2.4
Silver Dissolved	ICP-MS	ngL	0.00008											+0.00008	+0.00008	40.00008	+0.00008	+0.00008	+0.00008
Sodium Dissolved	CP-MS	mak	9.92											5.84	5.90	4.54	4.25	6,81	7.06
Strontium Dissolved	CP-MS	mai	0.0002											3.908	1.05	1.52	1.35	1.2	1.33
Suphar Dissolved	LP4D	1991	15											989	/38	/82	Ckill	904	1006
teausuri Dasoved	LP4D	1991	0.0002											40.0002	40.0002	40.0002	40.0002	0.0003	0.0002
Instant Dissolved	LP-4D	199 F	5.50005											3.00241	0.00313	0.00011	3 2033	0.0036	0.0041
The Classifierd	CP-ND	094L	205551											-100001	10,0000	- 90.0007		190000	10,0001
Trackers Directed	CDARS	nol	0.0005								*****			40.0005	40.0005	10.0005	10.0005	0.0008	0.0007
Turgeten Dissolved	CDAMS	tral	0.0004								**********			40.0001	40.0004	40.0001	40.0001	40.0004	40.0001
Utanium Dissolved	CP-MS	naL	0.00005											+0.00005	+0.00005	-0.00005	+0.00005	+0.00005	-0.00005
Vanadium Dissolved	CP-MS	naL	0.001											10.001	+0.001	10.001	10,001	10.001	+0.001
Zinc Dissolved	CP-MS	naL	0.001											2.009	0.089	0.194	2.483	0.358	0.411
Zirconium Dissolved	CP-MS	naL	0.0001											+0.0001	+0.0001	+0.0001	10,0001	+0.0001	+0.0001
ion Balance:																			1
Major Anions	Calc.	neat.												45.07	46.27	49.50	\$5.65	\$8.91	\$3.94
Major Cations	Calc	nest.												38.51	40.63	\$1.39	\$5.22	\$9.56	\$2.21
Clifference	Cak.	treqL												6.56	1.06	1.09	-0.43	0.64	-1.24

Global	
ARD Testing Se	rvices Inc.

GLOBAL PROJECT NO: 2011 CLENT: SPRK Consuling Inc. CLENT PROJECT NAME / NO: Fairo Studge Aging Test REPORT VERSION: 6

[Slank	0.5h	16	1.55	25	26	-m	53	6h	7h	2 week	1 month	2 month	1 month	4 month	7 month
				Sample ID															
Patareaser	Method	Une	RUL	Only Free															
				Cast, Fait															
Weight of dry sample used	Weighing Scale	9	0.01		25										25	25	25	25	25
Volume of water used	Graduated Cylinder	πL.	0.50		475										475	475	475	475	475
oH (Lindisturbed)	Moter	oH units	0.01	4.0	7.6	A.2	7.A	7.6	7.5	7.5	7.4	7.4	7.4	7.5	7.A	7.4	7.8	7.2	6.4
aH (Sitted)	Meter	pHLunits	\$.R1											A.1	8.5	0.2	1.2	7.4	7.0
pH (Fibered)	Motor	pH units	0.01											4.0	8.6	6.3	7.6	7.4	6.9
EC (Undisturbed)	Moter	45.lon	1	1904	2550	2579	2590	2530	2500	2590	2550	2550	2550	2800	2090	1820	4860	4250	4690
EC.(Stired)	Meter	usion	1											2910	4220	4410	4950	4382	4770
EC (Fibered)	Motor	plaion.	1.00											3930	4343	4210	\$310	4850	4810
CRP (Undisturbed)	Meter	πV	1	215	9	58	\$7	69	64	76	74	78	01	208	244	240	239	218	224
ORP (Stred)	Meter	8K	1											118	170	205	220	218	220
ORP (Utilitated)	Meter	wV.	1.00											122	178	183	252	225	226
Dissolved Dxygen	Meter	ngL	1	4.9															
Acidity do pH 8.3)	Tération	ma Cacove	0.5											4.5	195	10.5	10.6	\$.0	0.4
Alkalinity (to pH 4.5)	Tération	ing Calco,L	<u>95</u>											48.9	36.5		25.6		10.0
Creatived Suprate (SD4)	Coournery	ngr	30											2870	1950	3000	3250	3410	3540
Chipride	C	ngt	0.5											2.2	2.3	1.9	1.3	1.7	1.6
Fluoride	96	mak	. 82											2.50	8.49	0.50	2.50	. P.29	0.50
acomide	SK	mai	0.2											19.5	19.5	10.5	+9.5	10.5	10.5
NU380 (BE N)	£.	ngr	920											0.410	0.220	0.240	3.290	0.200	0.172
Ntria (as N)	C	ngL	0.05											9.1	0.1	0.2	3.3	0.1	0.1
Ammonia (as Ni	Coburimetry	rai	0.01											1 700	1.660	1.750	1.700	1.576	1,490
CREASINGS BOOMS ANALYSIS BY	RP-MS:																		
CREASIVED HANDHERE (CBCCCI)	EP-8D	ngr	0.5											2760	3090	3210	3640	3490	3610
Aurrinum Disectved	CP-MS	mail	0.001											+9.001	19,991	10.001	+9.001	0,001	0.000
Actimony Dissolved	CP-MG	ma1	0.0001											19.0001	10,0001	19.6991	19.0001	19.0001	10.0001
Artienic Dissolated	CP4D	ngi	0.0002											40.0002	10.0002	10.0000	40.0002	0.0008	0.0011
sanuti Dissolied	CP4D	ngi	0.0002											3.00%0	0.007	0.008	3 0088	0.0001	0.00546
serveum Dissolved	CP4D	194 L	84550											20.0001		20,0001	-91,0001	9,0091	0.00016
Bismuth Dissolved	CP-MS	mai	0.0001											19.0001	19,0001	10.0001	+9.0001	19,0995	10.0001
action Disactived	LP4D	1991	0.01											40.01	49.91	40.01	10.01	0.01	0.013
Capital Lakeoved	LP-ND	1991	0499901											3,000394	9.0093	0.0000	1 00022	8,09917	0.00019
Calcum Dissorted	CP-ND	094L	2.00											100	20/	100	101	940	100
Cabab Disseland	CD MC	1945	0.0004											1.0000	0.000	0.000	1.0073	0.0001	0.0010
COOLE CREMINES	to Presid	192	*****											4 508.3	0.003	0.000	4 667 3	0.0000	0.0000
Copper Disagned	LP-4D	1991.	61996D											40,0000	0.0011	0.0005	1,0005	0,0009	0.0016
Kon Lissoned	CD MC	1993.	0.0000											10.02	10.000 m	10.000	10.02	10.000	10.02
Liblar Dissilari	COME	ng.	0.0000											1.000	0.0745	0.074	1,0000	0.0055	0.0000
Manager Disabled	CD MC	1945	1. F											455	V.00.10	437	4.43.94	V.0000	too.
Mannana Dissolution	C D.MS	1945	6.002											165	1 77	0.94	1.54	0.0784	0.0712
Manager Offensite of	CO ME		0.0000											-1.000	-0.0004	-0.0007	-0.0007	-0.0004	-0.0007
Malikation Disasteral	CD MC	1945	0.0004											1.0000	0.0003	0.0000	1,0004	0.0000	0.0000
Makel Classifierd	CO MC	1945	0.0000								***********			2.0004	0.0067	0.0000	1.0003	0.0004	0.0000
Shoanhona Dissoland	CD.MS	mal.	0.05											1005	ents	10.05	40.05	10.05	10.05
Potentium Dissolved	CDAMS	nal	0.05											11.0	12.4	12	114	113	116
Selectors Disarband	CDARS	nal	0.0005								******			#0.0005	40.0005	10,0005	40.0005	10.0005	10.0005
Silicon Dissolved	CP-MS	tal	648											0.05	0.6	0.61	0.66	636	12.44
Silver Dissolved	CP-MS	naL	0.00008											+0.00008	0.00017	+0.00008	10,00008	+0.00008	-0.00008
Sodium Dissohed	CD.MPS	mal	0.02								***********			27.8	28.4	20	28.2	28.0	29.1
Structium Dissolved	CDAMS	tral	0.0002											1.35	15	1.6	1.50	1.45	H.4
Sulphur Dissolved	CP-MS	naL	2.5								***********			894	934	1010	1070	1150	1185
Tellurium Dissolved	CP-MS	naL	0.0002											+0.0002	+0.0002	+0.0002	+0.0002	0.0002	0.0003
Thailium Dissolved	CP-MS	naL	0.00005											0.00287	0.00355	0.00391	2.00433	0.00438	0.00447
Dodum Dissolved	CD.MS	nol	0.0004											#0.0001	40.0004	10,0001	#0.0001	40.0004	10.0001
Tin Dissolved	CP-MS	naL	0.0005											+0.0005	10.0005	+0.0005	+0.0005	+0.0005	+0.0005
Titarium Dissolved	CP-MS	naL	0.0005								***********			+0.0005	0.0005	+0.0005	+0.0005	+0.0005	+0.0005
Tungsten Dissolved	CP-MS	nal	0.0001											+0.0001	+0.0001	+0.0001	10,0001	10,0001	+0.0001
Utanium Dissolved	ICP-MS	ngL.	0.00005		1								1	+0.00005	+0.00005	+0.00005	10.00005	+0.00005	+0.00005
Vanadium Disso/ved	CP-MS	ngL.	0.001											+0.001	+0.001	+0.001	40.001	+0.001	+0.001
Zinc Dissolved	CP-MS	naL	0.001											2.447	0.158	0.469	2.595	0.238	0.223
Zirconium Dissolved	CP-MS	naL	0.0001						1	1				+0.0001	+0.0001	+0.0001	+0.0001	+0.0001	+0.0001
ion Balance:			1	1	1			1	1	1	1		1	1		1	1	1	1
Major Anione	Calc.	meal.												90.87	42.29	64.33	\$8.30	71.46	74.21
Major Cations	Calc.	meal.												56.85	43.32	45.70	70.31	71.39	73.10
Cifference	Cak.	negL												-4.02	1.03	1.37	2.00	-0.07	-1.11
Salance (%)	Cak.	5												3.4%	0.8%	1.1%	1.4%	0.0%	10.8%

GLOBAL PROJECT NO: 2011 CLENT: SPRK Consuling Inc. CLENT PROJECT NAME / NO: Fairo Studge Aging Test REPORT VERSION: 6

[Slank	0.5h	1b	1.55	25	2h	-m	55	6h	7h	2 week	1 month	2 month	2 month	4 month	7 month
				Sample ID															
Parameter		U III	~~~~	Ovic Vancosta															
			1																
Weight of dry sample used	wegning scale	9	0.01											49	10	-0-	45	45	40
Volume of water used	Graduated Cylinder	St.	0.50	14	13	7.5	4.2	4.7	6.0	10	1.5			4/5	4/5	4/5	4/5	4/5	4/5
an Innanused	Meller	CHI UNIS	- 9001	42	P.J.	12	92		84	9.4	9.4	<u>6.1</u>	9.1	2/	(A	1.9	1.0	12	<u></u>
ski (Eihered)	Motor	ski unite	0.04								******			7.2	1.6	0.3	2.3	7.7	17.3
(hotshata)	Meter	if im	1	2790	1310	1220	1290	1000	1210	1230	1280	1100	1310	1340	1000	4020	\$500	4230	5050
EC (Stired)	Meter	uG kom	1						20.12	1775	TTP:			4570	4320	440	\$390	5000	5210
C (Filtered)	Meter	µ⊈ (om	1.00											4510	4340	4490	\$910	\$380	5290
ORP (Undisturbed)	Meter	WV.	1	328	11	1	9	12	14	32	29	22	15	247	244	248	253	215	210
ORP (Stred)	Meter	11W	1											165	170	221	240	2:12	207
ORP (Unlikered)	Meter	4V	1.00											166	178	193	260	294	209
Dissolved Dogen	Meter	ngL	1	2.6															
Acidity 80 pH 8.31	Tération	ma Cacove	0.5											47.5	19.5	10.5	175	3.3	2.4
Alkalinity (to pH 4.5)	Tération	ing Calco,L	<u>95</u>											27.0	22.8	32.0	20.0		
Philodae	Containing	ng.	0.0											11	1.1	1.0	1.0	4410	1.1
Charles .	6. CF	ng.	4.5											0.00	0.40	1.0	-0.0	0.30	0.04
Enomide	de. GE	1945	0.2											40.5	#0%	40.5	40.5	40.5	Los
Nitrate (as N)	C	naL	0.05								***********			0.170	0.180	0.180	0.200	0.210	0.230
Nitrin (at N)	C	naL	0.05								***********			0.1	0.3	0.2	0.2	0.2	0.2
Ammonia (as N)	Colourimetry	naL	0.01											2.000	1.90	1.75	1.45	1,290	1.070
Dissolved Metals Analysis by	ICP-MS:																		1
Dissolved Hardness (CaCO3)	ICP-MS	ngt	0.5											3210	3620	3710	3850	4000	4200
Aluminam Disacived	CP-MS	194L	0.001											+0.001	0.001	10.001	+9.001	+0.001	0.002
Actimony Dissolved	ICP-MG	ma1	0.0991											10.0001	19,0001	10.0001	10,0001	10.0001	+0.0001
Artenic Dissoled	CP-05	ngi	0.0002											0.0004	0.0005	40.0002	40.0002	0.0007	0.0011
saruh Discoed	CP-05	ngi	0.0002											0.0549	0.0125	0.0122	3.0112	0.0105	0.00546
section Discoved	CO MS	//95	1095501										******	90,0001	19/8990	10,0001	-0.0001	0.0002	0.0003
Boson Dissolved	CD-MS	mai.	0.01								*****			40.001	10.051	40.01	40,01	1929990	0.000
Cadmium Disaritant	ICD.MIS	nal	0.00001											0.0238	0.0238	0.0112	0.00741	0.00104	0.00094
Caldum Dissolved	ICP-MS	naL	0.25											390	424	430	441	436	456
Chromium Dissolved	ICP-MS	ngL	0.0005		1							1		0.0015	10.0005	+0.0005	+0.0005	0.002	0.003
Cobalt Dissolved	ICP-MS	ngL	0.0001		1							1		0.195	0.209	0.548	0.043	0.0023	0.0019
Copper Dissolved	ICP-MS	mal.	0.0005											3,0024	0.0023	0.0014	1,0008	0,0008	0.0009
ton Dissolved	ICP-MS	mal.	0.02											+9.02	10.02	10.02	+9.02	10.02	10.02
Lead Dissolved	ICP-MS	ngt	0.0005											+0.0005	+0.0005	+0.0005	+0.0005	<0.0005	+0.0005
Upsurs Disabled	CP-90	1991.	61996D											9,6001	0.0029	0.0531	10049	0.0582	0.0013
Magneteurs Disepsed	CO ME	7995	2.55 7.555											- 244	522		007	1987	1/64
Manager Dissolved	CDARS	nol	0.0005								*****			40.0005	10.0005	10.0005	40,0005	10.0005	40.0005
Mohdorum Dissolved	ICD.MIS	nal	0.0004											0.0002	0.0003	0.0003	0.0002	0.0003	0.0004
Nickel Dissolved	CP-MS	nal	0.0005								***********			0.125	0.111	0.0845	0.0209	0.0021	0.0019
Phosphorus Dissolved	ICP-MS	ngL.	0.05		1							1		+0.05	10.05	+0.05	+0.05	+0.05	+0.05
Potessium Dissolved	ICP-MS	ngL	0.05		1							1		4.60	4.78	4.6	4.49	4.05	5.11
Selenium Dissolved	CP-MS	naL.	0.0005											3,0028	0.0016	-0.0005	+0.0005	<0.0005	+0.0005
Silicon Disabled	ICP-MS	ngt	0.05											1.02	1.03	5.84	0.68	0.32	0.27
Silver Descrived	CP4D	ngs	0.00008											1000008	40.00003	10.00008	40.00008	10.00008	10.00008
Sodium Dissolved	LPMD	1991												13.4	112	11.8		122	13.6
Septement Lissoned	CO MS	1993.	235552											1.00	1.56	1.91	1.34	1.79	1.7
Tehrium Disarked	CDARS	nol	0.0002											10.00	+0.0002	40.0002	40.0002	0.0003	0.0004
Thailum Dissohed	ICD.MIS	nal	0.00005											0.00395	0.00454	0.0044	0.00453	0.00458	0.00466
Thotum Dissolved	CP-MS	nal	0.0001								***********			+0.0001	10.0001	+0.0001	10,0001	10.0001	+0.0001
Tin Dissolved	ICP-MS	ngL	0.0005											+0.0005	+0.0005	+0.0005	+0.0005	+0.0005	+0.0005
Titanium Dissolved	CP-MS	mal.	0.0005											+0.0005	0.0006	0.0006	0,0006	0,0008	0.0008
Tunasten Dissolved	ICP-MG	mal	0.0001											10.0001	10,0001	10.0001	19,0001	10.0001	10.0001
Uranium Dissolved	ICP-MS	ngL	0.00005											+0.00005	+0.00005	+0.00005	+0.00005	+0.00005	+0.00005
Vanadium Disso/ved	ICP-MS	ngL	0.001											+0.001	+0.001	+0.001	+0.001	+0.001	+0.001
ACC LY INCOME	LPAD	7995	RR1											42.0	AB5	14.8	9.48	1.142	0.40
orconum used/ed	0240	705	0.0005	-	-	-	-	-	-			-	-	40.0001	10,0001	10000	10000	100001	10000
Adultation distances	Cab													13.63	13.45	10.05	13.08	10.45	100.74
Major Cations	Calc	month.												66.74	74.06	75.45	77.93	80.67	14.73
Difference	Cak.	teal												6.30	1.54	8.36	1.8	-4.51	Hel
								1											

Global 🎒

CERTIFICATE OF ANALYSIS . ANOXIC AGING TEST

GLOBAL PROJECTING: 2011 CLENT: SPR Consuling Inc. CLENT PROJECT NAME / NO: Faro Sludge Aging Test REPORT VERSION: 6

Blank (73) | 1 month | 2 month | 4 month | 7 month | Blank (7 month) Sample ID Method Unit RDL arameter 25 475 7.6 8.2 8.8 25 475 7,9 8,4 7,6 4000 153 0,5 0.01 0.50 0.01 0.01 0.01 25 475 blame of water used H (Lindebabed) Graduated Cylinder Meter Meter Meter Meter still sH units sH units sH units uSilom 7.7 8.2 8.0 6.9 7.0 7.0 8<u>1.</u> 82. oli (Lindiputed) oli (Streed) pli (Streed) EC. (RP Dissolved Ceygen Acdity (to pli 8.3) Akality (to pli 8.3) Akality (to pli 8.3) Dissolved Substate (SOR) Chickás Fuantide Fuantide 8.5 4135 198 0.4 +0.5 17.5 2880 0.6 Meler Meler Meler Itradion Titudion Colourinetry C Sili, Sil 2200 122 02 40.5 3410 137 05 40.5 4070 163 0.3 0.6 16.9 2840 0.9 40.2 40.2 40.2 40.5 6 0.1 1.000 280 301 4500 10/ 100 CaCOJL 100 CaCOJL 100 L 00000 21.3 2410 1.6 40.2 40.5 0.210 0.100 1.120 20.0 2020 2.40 9.20 40.5 6.580 0.160 1.31 koride uoride trate (as N) trite (as N) nmonie (as N) nacional (as N) dal Organic Carti sociard (crossic 2.00 +0.2 +0.5 1.400 0.120 1.20 02 02 028 045 045 40.2 40.5 40.5 0.1 1.02 205 Restance Canbon Restance Restance Canbon Executive Restance Response Union Constraints Attinuery Disabled Attinuery Disabled Attinuery Disabled Rests, Disabled Rests, Disabled Rests, Disabled Attinuery Disabled Attinuery Disabled Attinuery Disabled Disabled Attinuery Disabled Attinuery Disabled Cooper Insched Coopering, Disabled Coopering, Disabled Coopering, Disabled Attinuer, Disabled Magnetical Disabled Magnetical Disabled Magnetical Disabled
 an and Data
 Particular

 Barta Particular
 Particular

 Bar 2880 0.001 0.001 0.001 0.001 0.001 0.001 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.001 0.0000 0.00000 0.0000 0.0000 0.00000 0.00000 0.0000 0.0000 0.0000 0.5 0.0001 0.0002 0.0001 0.0002 0.0001 0.0001 0.0001 0.0001 0.0005 0.0005 0.0005 0.0005 0. 2250.0 40.001 50.002 50.004 40.0001 40.0001 40.0001 40.0001 40.0001 40.0001 40.0001 40.0001 40.0005 50.0005 24400 +0.001 0.0002 0.0051 +0.0001 40.0001 40.0001 40.0001 40.0001 40.0001 40.0005 40.005 0.0006 40.005 0.0006 0.0005 0.005 0.0005 0. 2560.0 +0.0001 10.0002 20.0054 +0.00001 20.001 20.001 20.001 20.001 20.001 20.001 20.001 20.005 2 2940 5000 40.0001 40.0001 40.0001 40.0001 40.001 0.5 0.0001 0.0002 0.0003 0.0001 0.0001 0.0001 0.0001 0.0001 0.0001 0.00001 Mar Mar 0.0001 0.0005 0.05 0.005 0.005 0.0005 0.0000 0.00000 0.00002 0.00002 0.0002 0.002 +0.05 1.22 +0.0005 0.69 +0.00008 7.84 1.33 972 +0.0002 0.00422 20001 2001 -0.05 242 -0.0005 152 -0.0005 152 -0.0002 137 433 137 433 -0.0002 -0.0001 -0.0005 20011 -0.0005 -0.005 -0.00 0.0011 +0.05 1.52 +0.0005 0.61 0.5 0.00021 6.45 40.00005 40.00008 00000 Silicon Dissolved Bilver Dissolved Sociam Dissolved Strottium Dissolved Indiana Dissolved Indiana Dissolved Indiana Dissolved Indiana Dissolved Cardon Dissolved Lington Dissolved Lington Dissolved Lington Dissolved Sconium Dissolved Sconium Dissolved 0.61 +0.0000 7.12 1.34 994 +0.0002 0.00405 +0.0005 +0.0005 +0.0005 +0.0005 +0.0005 +0.0005 +0.0001 +0.0001 +0.0001 +0.0001 +0.0001 +0.00000 +0.000000 +0.00000 +0.00000 +0 5.71 1.1 746.0 0.0004 0.0004 40.0001 40.0005 0.0013 40.0001 40.0005 40.0001 40.0005 40.0001 40.0005 40.0011 0.0005 40.0011 0.0005 40.0011 0.0005 40.0001 40.0005 40.005 40.00 0.56 894,0 0.0004 40.0001 40.0005 0.0002 0.0002 0.0002 40.001 0.0002 0.00005 40.001 0.0002 0002 5 0002 00005 0.00422 +0.0001 +0.0005 0.0006 +0.0001 +0.00005 +0.001 0.034 +0.0001 0001 0005 0005 0001 00005 001 001 And Dissolved Zinc Dissolved Zinconium Dissolved Ans Balance: Major Antore Major Antore Major Antore Difference. 0.0001 000 Cak. Cak meal. meal. meal. 42.57 45.37 2.80 3.25 47.64 47.61 49.02 50.69 51.55 0.85 00.37 59.15 -1.22 59.53 57.98 -1.55 lance (%)

NOTES: Date of Analysis / COA: Start: April 27, 2020 / NA

Global

CERTIFICATE OF ANALYSIS • ANOXIC AGING TEST

GLOBAL PROJECT NO: 2011 GLENT: STR: Consuling Inc. CLIENT PROJECT NAME / NO: Faro Sludge Aging Test REPORT VERSION: 6

Proventing .	Multined	11-0	-	Diank (T0) Sample ID	1 month	2 month	3 month	4 month	7 month	Blank (5 month)
Falantin			mur.	Anoxic_D(_pH)	7					
Weight of dry sample used	Weighing Scale		0.01		25	25	25	25	25	
Volume of water used	Graduated Cylinder	rs.	0.50	475	475	475	475	475	475	475
pH (Undisturbed)	Meter	oHunita	0.01		7.9	8.0	7.9	7.9	7.4	6.8
off (Ditreet)	Meter	offunite	0.01		4.5	8,0	7.4	8.2		••••
60	Side in a	affirm.		12	11100	1310	(380	4040	4100	12
CEP	Meter	wh/	1	205	145	154	147	195	160	193
Dissolved Oxygen	Meter	mal	1	0.1	0.1	0.3	0.4	0.4	0.2	0.0
Acidity (to pH 8.3)	Tération	mg CaCO/L	0.5		+0.5	+0.5	7.5	+0.5	0.5	0.6
Alkalinity (to pH 4.5)	Titation	mg CaCO/L	0.5		22.0	22.0	20.0	15.0	16.1	1.1
Dissolved Subhate (SO4)	Colourimetry	mail.	50		2040	2230	2400	2830	2910	4
Chloride	IC	mail.	0.5		0.60	1.20	1.5	0.5	+0.5	-0.5
Fluoride	50	mail.	0.2		0.20	+0.2	+0.2	+0.2	+0.2	-0.20
Bromide	55		0.2		+0.5	+0.5	:R.5	+0.5	+0.5	-0.50
Nitrate (as N)	IC	mg1.	0.05		+0.05	+0.05	0.440	+0.05	+0.05	
Nirite (as N)	IC	mgl	0.05		0.130	0.130	0.120	0.1	0.1	
Ammonia (as N)	Colourimetry	mgl	0.01		0.99	1.00	1.090	1.050	1.020	
Idea Organic Carbon		ngi						3/9	244	
Dissolved Organic Carbon	. W.C.	ngi	2		_			29/1	206	
Disasterid Manhana (CaCCO)	LCD MF		0.0		11100.0	2442.0	3683.0	1000	1033	
Number Participation	CO ME	- March	0.004		1,000	0.003	0.001	0.004	0.007	0.001
Antimory Disarked	CP-MG	mail	0.0001		#0.0001	0.0001	0.0004	#0.0001	+0.0001	-0.0001
Americ Dissolut	CD.MS	mail	0.0002		#0.0002	e0.0002	e0.0002	0.0000	0.0012	-0.0002
Barium Dissolved	ICP-MS	mal	0.0002		0.0058	0.0062	0.0075	0.0055	0.0096	0.0003
Bervilium Dissolved	CP-MS	mal	0.0001		+0.0001	+0.0001	+0.0001	0.0002	0.0002	-0.0001
Dismuth Dissolved	ICP-MS	mal	0.0001		+0.0001	+0.0001	+0.0001	+0.0001	+0.0001	-0.0001
Boron Dissolved	CP-MS	mal	0.01		0.07	0.07	0.08	0.02	0.01	-0.01
Cadmium Dissolved	CP-MS	mail	0.00001		0.00011	0.00017	0.00021	0.00017	0.00013	-0.00001
Calcium Dissolved	CP-MS	mail.	0.05		290.0	344.D	270.0	427	445	-0.05
Chromium Dissolved	CP-MS	mail.	0.0005		+0.0005	+0.0005	+0.0005	0.0008	0.001	-0.0005
Cobalt Dissolved	ICP-NS	mail.	0.0001		0.0004	0.0009	0.0014	0.0005	0.0005	-0.0001
Copper Dissolved	CP-MS	mail.	0.0005		9,0017	+0.0005	+0.0005	0.0007	0.0009	0.0005
Iron Dissolved	ICP-M5		0.02		+0.02	+0.02	+0.02	+0.02	+0.02	-0.02
Lead Dissolved	CP-MS	mal	0.0005		+0.0005	+0.0005	+0.0005	+0.0005	+0.0005	-0.0005
Lithium Dissolved	ICP-NS	mal	0.0005		0.0102	0.0104	0.0108	0.0121	0.0133	-0.0005
Macheleum Literowed	UP-M0					207.0			*/8	
Marcanese Dissoved	UP-ND		0.0002		2,0112	0.0139	0.0104	0.003	9,000	-0.0002
Mercury Descret	CP-NG	mai.	0.0005		*p.0005	*p.0005	40.0005	*U.UUUD	*0.000D	-0.0005
Maked Disashard	CO ME	- March	0.0001		0.0002	0.00014	0.0012	+0.0005	+0.0004	0.0001
President Disaction	CP-MG	mail	0.05		+0.05	+0.05	+0.05	+0.05	+0.05	-0.05
Dobesium Dissolved	CD.MS	mail	0.05		1.61	2.11	2.93	1.64	1.31	-0.05
Selenium Dissolved	ICP-MS	mal	0.0005		+0.0005	+0.0005	+0.0005	+0.0005	+0.0005	-0.0005
Silicon Dissolved	CP-MS	mal	0.05		0.44	0.53	0.66	0.83	0.96	-0.05
Sher Dissolved	ICP-MS	mgl	0.00005		+0.00008	+0.00008	+0.00008	0.0001	0.00016	-0.00008
Sodium Dissolved	ICP-MS	mg1.	0.02		5.59	6.12	6.71	5.4	\$.1	0.03
Strontum Dissolved	ICP-MS	mgl	0.0002		0.974	1.12	1.25	1.32	1.44	-0.0002
Sulphur Dissolved	ICP-MS	mgiL	0.5		093.0	744.D	872.0	925	960	-0.5
Tellurium Dissolved	ICP-MS	mg1.	0.0002		+0.0002	+0.0002	+0.0002	0.0005	0.0003	-0.0002
Thalium Dasoled	ICP-MS	mgl	0.00005		0.00323	0.00355	0.00373	0.00418	0.00442	-0.00005
Thorium Dissolved	ICP-NS	mail,	0.0001		*0.0001	*0.0001	*R.9901	*0.0001	+0.0001	-0.0001
Tin Dissolved	ICP-NS	mail,	0.0005		+0.0005	+0.0005	+0.0005	*0.0005	*0.0005	-0.0005
Titacium Dissolved	ICP-MS	mail.	0.0005		0.0015	0.0011	0.0009	0.0014	0.0011	-0.0005
rungsoon Leasoned	UP-ND	TQL.	0.0001			49.0001		*9.9901	*51,0001	-9.9001
Ceareum Lisaceved	IUP-ND		0.00005		19.0005	19,00005		*1.00005	*1.00005	-0.0005
vanadum Laadoved	CO ME	mai.	0.001		10,000					-0.001
And a science of the	LCD ME		h and		+0.0001	-0.0001	+0.0001			0.0001
ing Balance:	100,000	190	proof.		10.001	10.000	10.000	14.9501	10,0001	10.000/
Mairy Anires	Calr	menil			42.95	45.03	51.72	10.77	60.95	
Mairy Calicon	Calc	menil			44.80	40.75	54.00	58.80	61.21	
Difference	Calc.	megl			1.94	2.42	2.25	-0.47	0.27	
Balance (%)	Calc.	5			2.2%	2.5%	2.2%	-0.4%	0.2%	

NOTES: Date of Analysis / COA: Start: April 27, 2020 / NA

Global

CERTIFICATE OF ANALYSIS • ANOXIC AGING TEST

GLOBAL PROJECT NO: 2011 GLENT: STR: Consuling Inc. CLIENT PROJECT NAME / NO: Faro Sludge Aging Test REPORT VERSION: 6

Parameter	Method	line	201	Dlank (T0) Sample ID	1 month	2 month	3 month	4 month	7 month	Blank (5 month)
Falantin			mur.	Anoxic_Faro						
Weight of dry sample used	Weighing Scale	R	0.01		25	25	25	25	25	
Volume of water used	Graduated Cylinder	mL.	0.50	475	475	475	475	475	475	475
pH (Undisturbed)	Neter	oHunita	0.01	5.0	7.8	7.9	8.0	8.0	7.0	7.2
off (Ditreet)	Meter	offunite	0.01		8,5	8.2	7.3	87	7.8	
60	Mater	diam.		1004	4000	1210	41.22	48.95	46.30	1845
CEP	Meter	wh/	4	205	142	138	543	100	154	100
Dissolved Oxygen	Veter	mal	1	0.2	0.2	0.3	0.3	0.2	0.3	0.4
Acidity (to pH 8.3)	Titration	mg CaCO/L	0.5		+0.5	+0.5	12.5	+0.5	0.5	72.0
Alkalinity (to pH 4.5)	Titation	mg CaCO/L	0.5		34.5	36.0	43.8	16.7	17.3	40.0
Dissolved Subhate (SO4)	Colourimetry	mail.	50		2730	2900	2070	3200	3270	1240
Chloride	IC.	mail,	0.5		2.30	1.80	1.6	1.7	1.6	1.2
Fluoride	56	mail.	0.2		9,40	+0.2	+0.2	0.20	0.20	0.50
Bromide	56	mail.	0.2		+0.5	•9.5	:0.5	+0.5	+0.5	-0.50
Nitrate (as N)	IC	mg1.	0.05		0.210	0.270	0.290	0.050	+0.05	0.205
Nirite (as N)	IC	mgl	0.05		0.100	0.100	0.110	0.2	0.1	0.0
Ammonia (as N)	Colourimetry	ngL	0.01		1.920	1.770	1.670	1.520	1.310	1.670
Ices urganic Labon		mgi	C					402	2/4	
Dissolved Urganic Carbon	we.	ngi	9					405	2//	
Disarchered Management (CarCO2)	CO ME		0.0		1860.0	3183.0	1333.0	1460	1660	4000
Number Participation	CO ME	ingr.	0.004		+0.001	+0.001	+0.004	0.001	0.000	0.044
Antimory Disarked	CD.MS	mail	0.0001		#0.0001	+0.0001	#0.0001	#0.0001	+0.0001	-0.0001
Americ Dissolut	CD.MS	mail	0.0002		#0.0002	#0.0002	e0.0002	0.0012	0.0019	0.0002
Barium Dissolved	CP-MS	mail	0.0002		0.0087	0.0091	0.0095	0.0092	0.0122	0.0122
Bervilium Dissolved	ICP-MS	mal	0.0001		+0.0001	+0.0001	+0.0001	+0.0001	+0.0001	-0.0001
Dismuth Dissolved	CP-MS	mail	0.0001		+0.0001	+0.0001	+0.0001	+0.0001	+0.0001	-0.0001
Boron Dissolved	ICP-MS	mal	0.01		+0.01	0.01	0.02	0.02	0.03	-0.01
Cadmium Dissolved	ICP-MS	mg1.	0.00001		0.00039	0.00031	0.00028	0.00018	0.00012	0.0104
Calcium Dissolved	CP-MS	mail.	0.05		355.0	291.0	427.0	400	400	231
Chromium Dissolved	ICP-MS	mail.	0.0005		+0.0005	+0.0005	+0.0005	+0.0005	+0.0005	-0.0005
Cobalt Dissolved	ICP-NS	mail,	0.0001		0.004	0.004	0.0039	0.001	0.001	0.123
Copper Dissolved	ICP-MS	mail.	0.0005		0.0012	+0.0005	+0.0005	0.0014	0.0019	0.001
Iron Dissolved	ICP-M5	mail.	0.02		+0.02	+0.02	+0.02	+0.02	+0.02	0.28
Lead Dissolved	CP-MS	mal	0.0005		+0.0005	+0.0005	+0.0005	+0.0005	+0.0005	-0.0005
Lithium Dissolved	ICP-NG	mal	0.0005		0.0668	0.0711	0.0728	0.0815	0.093	0.0555
Macheleum Literowed	UP-MS		9,95		494.0		243.0	2014	. 21/	
Marcanese Dissoved	UP-MS		0.0002		1.2	8.79	0.33	0.0035	0.0022	14.9
Mercury Descret	CP-NG	mai.	0.0005		*p.0005	40.0005	40.0005	*0.0005	*0.000D	-0.0005
Maked Disselved	CD ME	ingr.	0.0001		0.0000	0.0001	0.0001	0.0004	0.0000	0.0001
President Disaction	CD.MS	mail	0.05		+0.05	+0.05	10.05	+0.05	+0.05	-0.05
Dobesium Dissolved	CD.MS	mal	0.05		11.4	11.1	11	10.5	9.7	9.65
Selenium Dissolved	CP-MS	mal	0.0005		+0.0005	+0.0005	+0.0005	+0.0005	+0.0005	0.0024
Silicon Dissolved	ICP-MS	mal	0.05		0.01	0.77	0.09	0.44	0.4	3.5
Sher Dissolved	CP-MS	mgL	0.00008		+0.00008	+0.00008	+0.00008	+0.00008	+0.00008	-0.00008
Sodium Dissolved	ICP-MS	mg1.	0.02		27.6	27.4	27	27	25.4	23
Strontium Dissolved	ICP-MS	mgiL	0.0002		1.51	1.5	1.47	1.45	1.4	0.9
Sulphur Dissolved	ICP-MS	mg1.	0.5		865.D	\$74.D	1293.0	1900	1070	330
Tellurium Dissolved	ICP-MS	mg1.	0.0002		+0.0002	+0.0002	+0.0002	+0.0002	+0.0002	-0.0002
Thalium Dasoled	ICP-MS	mgl	0.00005		0.00378	0.00411	0.00441	0.00465	0.00453	0.00059
Thorium Dissolved	ICP-NG	mail,	0.0001		10.0001	*R.9001	+0.0001	*0.0001	10.0001	-0.0001
Tin Dissolved	ICP-NG	mail,	0.0005		10.0005	*R.0005	+0.0005	*0.0005	10.0005	-0.0005
Titacium Dissolved	CP-MS	mal	0.0005		0.0021	0.0023	0.0023	0.0008	0.0005	0.0006
rungsoon Leasoned	UP-ND	TQL.	0.0001		10000	es.sout	10.0001	*0.0001	*51.95521	-9.9001
Leareum Lossoned	CD ME	1001.	0.00005		10,000	10,00005	10,00005	10.004	*0.0045	0.00040
vanadum Laadoved	CP-ND		0.001		1,457	*0.001	0.001	50.001	10.001	-9.001
And a second second	CO ME		0.0004		10.14Y	-0.0001	+0.0001	10.0001	+0.0004	0.0001
ing Balance:	547 TRM	ing.	e seed		Teresol .	Taxaad I	The sear of	TM SOM (1999000	50.00001
Mairy Anires	Calc	menil			17.65	61.21	64 QD	67.05	68.52	
Mairy Calicon	Cair	manil			58.43	63.15	67.40	20.42	73.25	
Difference	Calc.	regl			2.75	1.97	2.59	3.37	4.76	
Balance (%)	Calc.	5			2.7%	1.6%	2.0%	2.5%	3.7%	****************

NOTES: Date of Analysis / COA: Start: April 27, 2020 / NA

Global

CERTIFICATE OF ANALYSIS • ANOXIC AGING TEST

ANUXEL PLAND 10... GLOBAL PROJECT NO: 2011 CLEMT: SINK Consuling Inc. CLEMT PROJECT NAME / NO: Fairs Studge Aging Test REPORT VERSION: 6

				101 01	Blank (T0) Sample ID	1 month	2 month	3 month	4 month	7 month	Blank (7 month)
arameter	Method	Unit	RDL		Anosic_Vang	orda					
black of decompleters of	Minister Paula		Te.cu			- Fe	- Iv	19	- Der		
and a second second	Contrained Collector		0.00		478	478		178	170		1.77
Elliventeteri	Meter	the units	0.04	0.50	15	5.0	4.0	26	79	2.4	4.2
i (Strad)	Meter	chi unite	0.04	0.50	-	19	7.0	7.7		7.0	
(Fibered)	Meter	oH units	0.01	2.10		7.1	7.1	7.3	0.5	7.9	
0	Motor	usion	1	10.00	2790	4790	48.30	\$550	5080	\$020	2700
RP	Meter	10	1	10.00	328	219	207	213	180	163	1204
issolved Oxygen	Meter	ngL	1	5.00	0.2	0.2	6.0	0.3	0.2	0.3	0.2
cidity (to pH 8.3)	Titration	ing CaCO ₂ L	0.5	5.00		64.0	45.0	26.9	+0.5	0.5	540.0
kalinity (to pH 4.5)	Tération	Ind CaCOaL	0.5	5.00		12.0	14.0	14.4	16.7	17.4	-0.5
(unc)ved Sulphate (SOH)	Colourimetry			500.00	_		3370			3810	1549
nonce	E	nor .	0.5	5.00	_	1.40	1.00	0.9	1.8	1.0	9.5
ucede	28.	mar.		2.00		140	2.49	0.20		0.30	0.40
Prote (set N)	25	mail.	100	1.50		0.230	0.100	6 126	40.05	40.05	10.110
tribs (not N)	r	mal	0.05	0.50		0.550	0.100	0.100	0.2	0.2	0.082
mmonia (as M	Columnetry	mal	0.04	0.50		1 750	1 200	1.450	1 250	1.040	0.404
stal Organic Carbon		naL	5	\$0.00					416	201.0	
issolved Organic Carbon		ngL	\$	\$0.00					435	294.000	
is solved Metals Analysis by	KP-MS:			0.00							
issolved Hardness (CaCO3)	ICP-MS	ma L	0.5	5.00		3670.0	3540.0	3530.0	1950	4110	1180
luminum Dissolved	ICP-MS	ngL	0.001	0.01	_	+0.001	+0.001	+0.001	40.001	3.003	1.5
ntimory Dissolved	ICP-MS	ngL	0.0001	0.001		+0.0001	40.0001	40.0001	+0.0001	+0.0001	-0.0001
menic Dissolved	CP-MS	mat	0.0002	0.002		0.0004	3.0002	0.0002	0.0009	9,0011	0.0016
aturi Davoke	CP-NR		1.000sk	1002		0.0110			0.0000	1.0000	0.0194
ingent Dissolut	CO MC	ing.	0.0004	1.004		10.0001	-0.0004	-0.0004	0.0004	+2.0003	0.0004
new Diseast and	CO MC	ing.	0.04	1 600		0.0001	1.00	0.04	0.00	1.00	0.04
admium Disarium	CD.MS	mal.	0.00001	1,0001		0.0241	0.0041	0.0118	0.00005	0.00077	0.0788
aldum Dissolved	ICP-MS	naL	0.05	0.500		429.0	410.0	416.0	461	404	223
heomium Dissolved	ICP-MS	mal	0.0005	0.005		+0.0005	+9.0005	+0.0005	+0.0005	+0.0005	-0.0005
obait Dissolved	ICP-MS	mal.	0.0001	2.001		0.221	0.117	0.0015	0.0017	3,001,3	0.59
opper Dissolved	ICP-MS	ngL	0.0005	0.005		0.0046	0.0025	0.0012	0.001	3.001	0.294
on Dissolved	ICP-MS	ngL	0.02	0.200		+0.02	+0.02	+0.02	+0.02	+0.02	110
ad Dissolved	CP-MS	mat	0.0005	0.01		+0.0005	+0.0005	+0.0005	+0.0005	+1.0005	0.0734
thium Disaphed	ICP-MS	mak	0.0005	2.01		0.0523	0.0532	0.0543	2.9570	2.0905	0.0471
agreeun classed	CP-05	ngi	0.00	0.50		631.0	610.0	000.0	GBU	702	340
andanese presorved	CP-9D	1991	0.00002	100		30.5			0.0032	3.0022	
ercury Dissolved	C D.MS	1995	22000	1001		0.0001	10,0000		0.0002	1,0002	14 0005
ckel Disached	CD.MS	mal	0.0005	0.05		0 105	0.035	0.0471	0.0013	0.0009	0.45
hourshopus Dissolved	CD.MS	mal	0.05	0.50		10.05	(0.05	10.05	10.05	#0.05	0.05
otassium Dissolved	ICP-MS	naL	0.05	0.50		4.05	4.23	4.41	4.20	4.47	1.27
elenium Dissolved	ICP-MS	ngL	0.0005	3.01	_	0.0011	0.0022	0.0023	0.0006	+0.0005	0.0038
licon Dissolved	ICP-MS	mgL	0.05	0.50		1.54	0.87	0.62	0.34	0.28	4.6
Iver Dissolved	CP-MS	mal.	0.000008	2.00		-0.00008	+9.00000	10,00008	+0.00008	+0.00000	-0.00008
odium Dissolved	ICP-MS	ngL	0.02	0.20		11.8	11.8	11.9	13	12.4	7.55
bortium Dissolved	ICP-MS	ngL	0.0002	0.00		1.92	1.93	1.99	1.82	1.77	1.06
uphur Disso/ved	CP-MS		0.5	5.00		1140.0	1115.0	1109.0	1230		535
Harrish Charlowed	CO MS	1991	0.00007	1002		0.0002	10,0002	0.00407	0.0003	2,00022	0.0002
and in Disabad	CO MC	1995	0.0004	1.004		10,0004	-0.0004	-0.004	0.00011	+0.0004	0.0004
a Disashad	CO MC	1995	0.0000	1.04		10.0001	-0.0007	-0.0004	-0.0007	-0.0007	0.0007
tarken Disasted	CD.MS	mail	0.0005	0.01		0.0018	0.0045	0.0023	0.0009	0.0011	0.002
ingsten Dissolved	CP-MS	naL	0.0001	2.00		10.0001	+0.0001	+0.0001	10.0001	10,0001	-0.0001
nanium Dissolved	CP-MS	naL	0.00005	2.00		-0.00005	+0.00005	+0.00005	+0.00005	10,00005	0.00622
anadium Dissolved	CP-MS	naL	0.001	2.01		+0.001	+0.001	+0.001	10.001	10.001	-0.001
nc Dissolved	ICP-MS	mgL	0.001	0.01		28.200	17.300	11.100	0.127	0.073	155
rconium Dissolved	ICP-MS	ngL	0.0001	0.00		+0.0001	+0.0001	40.0001	+0.0001	40.0001	-0.0001
n Balance:											
ajor Anions	Calc	meal				72.40	70.50	71.57	76.23	79.78	134.20
ajor Cabone	Car.	meqt				(D.Me)	r# 26	72.09	Taki	84.00	130.09
merence	Lac	19935				1.58	4.89	8.5×		4.84	1.1.14
atance (%)	11 100 T	100				14.47%	11.475	11.475	10.000	11.075	10.00

NOTES: Date of Analysis / CDA: Start: April 27, 2020 / NA

CERTIFICATE OF ANALYSIS - SEQUENTIAL EXTRACTION

GLOBAL PROJECT NO: 2011 CLIENT: SRK Consulting Inc. CLIENT PROJECT NAME / NO: Faro Sludge Aging Test

					REPORT VERS	ION: 7		
					Step-1: Exchan	geable	Step-2:	Water Soluble
				1	1 (D)	CaCl2 Solution	1	1 (D)
Parameter	Method	Unit	RDL					
Weight of dry sample used	Weighing Scale		0.01	10	10		Step 1 Pes	Step 1 Pes
weight of dry sample used	weighting Scale	y	0.01	10	10		Step-1 Res.	Step-1 Res.
Reagent				CaCl2	CaCl2		DI Water	DI Water
Reagent Concentration		M		1	1		N/A	N/A
Volume Reagent	Graduated Cylinder	mL	0.50	400	400		1000	1000
Mixing Type				Over-End	Over-End		Gentle Swirl	Gentle Swirl
Mixing Time		Hours		2	2		48	48
pН	Meter	pH units	0.01	7.3	7.4		8.3	8.4
EC	Meter	µS/cm	1	133400	135500		3120	3400
ORP	Meter	mV	1	315	326		180	163
Acidity (to pH 8.3)	Titration	mg CaCO ₃ /L	0.5	64.0	45.0		<0.5	<0.5
Alkalinity (to pH 4.5)	Litration	mg CaCO ₃ /L	0.5	13.0	14.0	.50	13.4	13.7
Dissolved Sulphate (SO4)	Colourimetry	mg/L	50	2030	1960	<50	5//	658
Chioride		mg/∟	0.0	0.27	58700	58700	14.0	9.3
nuonae Nitrate (as N)	SIE IC	mg/L	0.2	0.37	0.01	<0.2	<0.005	0.33
Nitrite (as N)		mg/L	0.005	<0.005	<0.005	<0.005	<0.005	<0.005
Dissolved Metals Analysis by		ilig/L	0.005	~0.005	×0.005	×0.005	~0.005	~0.005
Dissolved Hardness (CaCO3)	ICP-MS	ma/l	0.5	91900 0	92200.0	92200 0	572	632
Aluminum Dissolved	ICP-MS	mg/L	0.02/0.001	<0.02	0.03	0.07	<0.001	<0.001
Antimony Dissolved	ICP-MS	mg/L	0.02/0.001	<0.02	<0.03	0.07	<0.001	<0.001
Arsenic Dissolved	ICP-MS	mg/L	0.0002/0.0001	0.012	0.012	0.00	<0.0001	<0.0001
Barium Dissolved	ICP-MS	mg/L	0.0002	1 16	1 17	1.22	0.0078	0.0247
Beryllium Dissolved	ICP-MS	mg/L	0.002/0.0001	<0.002	<0.002	<0.002	<0.0001	<0.001
Bismuth Dissolved	ICP-MS	mg/L	0.002/0.0001	<0.002	<0.002	<0.002	<0.0001	<0.0001
Boron Dissolved	ICP-MS	mg/L	0.01	0.4	0.3	0.2	0.01	0.01
Cadmium Dissolved	ICP-MS	mg/L	0.00001	0.0053	0.0066	0.0003	0.00003	0.00002
Calcium Dissolved	ICP-MS	mg/L	0.05	36300.0	36400.0	36900.0	208	232
Chromium Dissolved	ICP-MS	mg/L	0.01/0.0005	< 0.010	<0.010	<0.010	<0.0005	<0.0005
Cobalt Dissolved	ICP-MS	mg/L	0.0001	0.003	< 0.002	<0.002	< 0.0001	< 0.0001
Copper Dissolved	ICP-MS	mg/L	0.01/0.0005	<0.010	0.01	0.018	0.0005	0.0007
Iron Dissolved	ICP-MS	mg/L	1.0/0.02	<1	<1	<1	0.01	0.01
Lead Dissolved	ICP-MS	mg/L	0.01/0.0005	<0.010	<0.010	0.021	<0.0005	<0.0005
Lithium Dissolved	ICP-MS	mg/L	0.0005	0.7430	0.7030	0.7250	0.0007	<0.0005
Magnesium Dissolved	ICP-MS	mg/L	0.05	313.0	329.0	5.8	12.8	12.9
Manganese Dissolved	ICP-MS	mg/L	0.0002	0.005	0.005	0.026	<0.0002	0.0002
Mercury Dissolved	ICP-MS	mg/L	0.01/0.0005	<0.010	<0.010	<0.010	<0.0005	<0.0005
Molybdenum Dissolved	ICP-MS	mg/L	0.0001	0.021	0.02	0.022	0.0006	0.0007
Nickel Dissolved	ICP-MS	mg/L	0.0005	0.06	0.036	0.015	0.0013	< 0.0005
Phosphorus Dissolved	ICP-MS	mg/L	5/0.05	<5	<5	<5	<0.05	< 0.05
Potassium Dissolved	ICP-MS	mg/L	0.05	726	732	748	0.14	0.15
Selenium Dissolved	ICP-MS	mg/L	0.01/0.0005	<0.010	0.02	0.012	<0.0005	<0.0005
Silicon Dissolved	ICP-MS	mg/L	0.05	6	7	<5	< 0.05	<0.05
Silver Dissolved	ICP-MS	mg/L	0.0016/0.00008	<0.0016	<0.0016	<0.0016	<0.00008	<0.0008
Sodium Dissolved	ICP-MS	mg/L	0.02	1330	1330	1370	0.23	0.27
Strontium Dissolved	ICP-MS	mg/L	0.0002	24.7	24.2	25.8	0.55	0.58
Supnur Dissolved	ICP-MS	mg/L	0.5	048.0	599.0	419.0	1//	206
Tellurium Dissolved	ICP-MS	mg/L	0.004/0.0002	<0.004	0.004	0.005	<0.0002	<0.0002
Therium Dissolved	ICP-M5	mg/L	0.001/0.00005	0.0027	0.0031	<0.0010	0.0006	0.0006
Tin Dissolved	ICP-MS	ing/L	0.002/0.0001	<0.002	<0.002	<0.002	<0.0001	<0.0001
Titanium Dissolved		mg/L	0.01/0.0005	~0.010	<0.010	0.010	~0.0005	<0.0005
Tungsten Dissolved		mg/L	0.01/0.0005	<0.011	<0.010	0.012	<0.0008	<0.0005
Iranium Dissolved	ICP-MS	mg/L	0.001/0.0001	<0.002	<0.002	<0.002	<0.0001	<0.0001
Vanadium Dissolved	ICP-MS	mg/L	0.02/0.001	<0.02	<0.0010	<0.02	<0.00000	<0.00000
Zinc Dissolved	ICP-MS	ma/l	0.001	0.450	0.460	0.040	0.015	0.02
Zirconium Dissolved	ICP-MS	mg/L	0.002/0.0001	<0.002	<0.400	<0.002	<0.0001	<0.02
Ion Balance:	101-1110	- Myre	0.002/0.0001	3.002	-0.002	-0.002	.3.0001	-0.0001
Maior Anions	Calc.	mea/L		1645.39	1694.65	1653.52	12.72	14.26
Major Cations	Calc	meg/L		1914.12	1920.57	1921.10	11.46	12.67
Difference	Calc.	mea/L		268.73	225.92	267.58	-1.26	-1.59
Balance (%)	Calc.	%		7.5%	6.2%	7.5%	-5.2%	-5.9%

NOTES: Test was repeated 3 times First: With 1g of sample which resulted in high RDL due to low volume of water available for analysis Second: With 5g of sample which resulted in very little to no residue after Step-3 to proceed Third: With 1g of sample. Results from this are reported in the table above. Not enough solids were available for QAQC by 4-Acid digesiton. Fluroide Analysis: For Step-3, Fluroide concentration could not be reported due to high acetic acid concentration. The acetate peak masks the Fluoride peak.

Page 16 of 16

				Step-3: Strongly Reducible			Step-4: Moderately Acid Soluble			
				1	1 (D) - Cycle 1	1 (D) - Cycle 2	Stock Solution	1	1 (D)	DI Water
Parameter	Method	Unit	RDI							
i ulunetei	metriou	onne	RDE							
	· · · · · · - ·		1							
Weight of dry sample used	Weighing Scale	g	0.01	Step-2 Res.	Step-2 Res.	Step-2 Res.	Step-2 Res.	Step-3 Res.	Step-3 Res.	
Peogent				NH20H/HCI IN	NH2OH/HCI IN	NH20H/HCI IN	NH20H/HCI IN			
Reagent	***			25% (V/V) HOAC	25% (V/V) HOAC	25% (V/V) HOAC	25% (V/V) HOAC			
Volumo Reagent	Craduated Culindar	ml	0.50	400	400	400	400	1000	1000	
Mixing Tupo	Graduated Cylinder		0.50	400	Votex @ 00°C	400 Vortex @ 00°C	Votor @ 00°C	1000	1000	4.2
Mixing Type		Hours		vonex @ 90 C	2 vonex (@ 90 C	vortex @ 90 C	2 vontex (0) 90 C			4.2
	Motor	nH unito	0.01	2.4	2 4	2 4	2	1	1	5
PH EC	Meter	uS/cm	1	12020	11070	2.4				1
OPP	Motor	mV	1	2020	11370	110				5
	Titration	mg CaCO ₂ /I	0.5	200	102626	200				10
Alkalinity (to pH 4.5)	Titration	mg CaCO ₃ /L	0.5	<0.5	<0.5	<0.5				<0.5
Dissolved Sulphate (SO4)	Colourimetry	mg/l	50	1310	1170	170	<50			1640
Chloride	IC	mg/L	5	1200	1300	1510	1540			1040
Eluoride	SIE	mg/L	0.2	1230	1300	1510	1340			
Nitrate (as N)	IC	mg/L	0.005	53	46	281	282			
Nitrite (as N)		mg/L	0.005	48	53	201	218			
Dissolved Metals Analysis by IC	P-MS-	IIIg/L	0.005	40	55	205	210			
Dissolved Hardness (CaCO3)		ma/l	0.5	8750	8650	73 3	<0.5			<0.5
Aluminum Dissolved		mg/L	0.02/0.001	7 36	6.67	0.32	<0.01	-		<0.01
Antimony Dissolved	ICP-MS	mg/L	0.02/0.001	0.006	0.07	<0.02	<0.01			<0.001
Arsenic Dissolved	ICP-MS	mg/L	0.002/0.0001	0.000	0.000	0.02	0.001			<0.0001
Barium Dissolved		mg/L	0.0002	0.047	0.040	0.02	<0.002			<0.0002
Bandlin Dissolved		mg/L	0.0002	0.007	0.007	<0.001	<0.002			<0.0002
Bismuth Dissolved		mg/L	0.002/0.0001	<0.004	<0.004	<0.001	<0.001			<0.0001
Boron Dissolved		mg/L	0.002/0.0001	0.2	<0.1	<0.1	<0.1			<0.001
Cadmium Dissolved		mg/L	0.0001	0.2	0.628	0.0036	<0.0001			<0.0001
Calcium Dissolved		mg/L	0.00001	1460	1420	16.8	<0.5	-		<0.05
Chromium Dissolved		mg/L	0.03	0.012	0.013	0.008	0.000			<0.005
Cobalt Dissolved		mg/L	0.0001	5.20	5.5	0.000	<0.003			<0.0003
Copper Dissolved		mg/L	0.01/0.0005	0.158	0.148	0.006	<0.005			<0.0005
Iron Dissolved		mg/L	1 0/0 02	1260	1280	15.3	0.000			<0.000
Lead Dissolved	ICP-MS	mg/L	0.01/0.0005	0.09	0.079	0.008	<0.005			<0.02
Lithium Dissolved	ICP-MS	mg/L	0.0005	0.03	0.016	0.000	0.011			<0.0005
Magnesium Dissolved	ICP-MS	mg/L	0.05	1240	1240	7.61	<0.05			<0.005
Magnesian Dissolved	ICP-MS	mg/L	0.0002	418	459	2.35	0.005			<0.000
Mercury Dissolved	ICP-MS	mg/L	0.01/0.0005	<0.005	<0.005	<0.005	<0.005			<0.0005
Molybdenum Dissolved	ICP-MS	mg/L	0.0001	0.003	0.002	0.001	<0.001			<0.0001
Nickel Dissolved	ICP-MS	mg/L	0.0005	6.85	7.31	0.015	<0.005			<0.0005
Phosphorus Dissolved	ICP-MS	mg/L	5/0.05	4.6	59	<0.5	<0.5			<0.05
Potassium Dissolved	ICP-MS	mg/L	0.05	<0.5	<0.5	<0.5	<0.5			<0.05
Selenium Dissolved	ICP-MS	mg/L	0.01/0.0005	0.043	0.056	<0.005	<0.005			<0.0005
Silicon Dissolved	ICP-MS	mg/L	0.05	106	106	4.1	3.3			<0.05
Silver Dissolved	ICP-MS	ma/L	0.0016/0.00008	<0.0008	<0.0008	<0.0008	<0.0008			<0.0008
Sodium Dissolved	ICP-MS	mg/L	0.02	1.1	1	0.6	0.4			<0.02
Strontium Dissolved	ICP-MS	mg/L	0.0002	3.86	3.35	0.113	<0.002			< 0.0002
Sulphur Dissolved	ICP-MS	mg/L	0.5	410	382	<5	<5			<0.5
Tellurium Dissolved	ICP-MS	mg/L	0.004/0.0002	<0.002	0.002	< 0.002	< 0.002			<0.0002
Thallium Dissolved	ICP-MS	mg/L	0.001/0.00005	0.0017	0.0015	<0.0005	<0.0005			<0.00005
Thorium Dissolved	ICP-MS	mg/L	0.002/0.0001	<0.001	< 0.001	<0.001	<0.001			< 0.0001
Tin Dissolved	ICP-MS	mg/L	0.01/0.0005	<0.005	< 0.005	<0.005	< 0.005			<0.0005
Titanium Dissolved	ICP-MS	mg/L	0.01/0.0005	0.162	0.167	0.073	0.029			<0.0005
Tungsten Dissolved	ICP-MS	mg/L	0.002/0.0001	<0.001	< 0.001	< 0.001	< 0.001			<0.0001
Uranium Dissolved	ICP-MS	mg/L	0.001/0.00005	0.0526	0.0477	0.001	0.0009			<0.00005
Vanadium Dissolved	ICP-MS	mg/L	0.02/0.001	0.54	0.56	<0.01	<0.01			<0.001
Zinc Dissolved	ICP-MS	ma/L	0.001	3150	3380	18.8	0.08			< 0.001
Zirconium Dissolved	ICP-MS	mg/L	0.002/0.0001	0.006	0.005	< 0.001	< 0.001			<0.0001
Ion Balance:										
Major Anions	Calc.	meg/L		63.63	60.99	46.08				
Maior Cations	Calc.	mea/L		333.17	340.31	2.74				
Difference	Calc.	mea/L		269.54	279.31	-43.33				
Balance (%)	Calc.	%		67.9%	69.6%	-88.8%				

MOTES: Test was repeated 3 times First: With 1g of sample which resulted in high RDL due to low volume of water available for an Second: With 5g of sample which resulted in very little to no residue after Step-3 to proceed Third: With 10g of sample. Results from this are reported in the table above. Not enough solids Fluroide Analysis: For Step-3, Fluroide concentration could not be reported due to high acetic aci

Appendix D: Particle Size Analysis Laboratory Report

Operator notes: Pump Speed 1200 RPM

Appendix E: Aging Test Time Series Charts

SRK Consulting Z:\01_SITES\Faro\!101_Investigations\2020_WTP_SludgeCharacterization\4. Report\Appendices\Faro Sludge Charts_2020_report_rtc.xlsx February 2021

SRK Consulting Z:\01_SITES\Faro\!101_Investigations\2020_WTP_SludgeCharacterization\4. Report\Appendices\Faro Sludge Charts_2020_report_rtc.xlsx February 2021

SRK Consulting Z:\01_SITES\Faro\!101_Investigations\2020_WTP_SludgeCharacterization\4. Report\Appendices\Faro Sludge Charts_2020_report_rtc.xlsx February 2021

SRK Consulting Z:\01_SITES\Faro\!101_Investigations\2020_WTP_SludgeCharacterization\4. Report\Appendices\Faro Sludge Charts_2020_report_rtc.xlsx February 2021

SRK Consulting Z:\01_SITES\Faro\!101_Investigations\2020_WTP_SludgeCharacterization\4. Report\Appendices\Faro Sludge Charts_2020_report_rtc.xlsx February 2021

SRK Consulting Z:\01_SITES\Faro\!101_Investigations\2020_WTP_SludgeCharacterization\4. Report\Appendices\Faro Sludge Charts_2020_report_rtc.xlsx February 2021

SRK Consulting Z:\01_SITES\Faro\!101_Investigations\2020_WTP_SludgeCharacterization\4. Report\Appendices\Faro Sludge Charts_2020_report_rtc.xlsx February 2021

SRK Consulting Z:\01_SITES\Faro\!101_Investigations\2020_WTP_SludgeCharacterization\4. Report\Appendices\Faro Sludge Charts_2020_report_rtc.xlsx February 2021

SRK Consulting Z:\01_SITES\Faro\!101_Investigations\2020_WTP_SludgeCharacterization\4. Report\Appendices\Faro Sludge Charts_2020_report_rtc.xlsx February 2021

SRK Consulting Z:\01_SITES\Faro\!101_Investigations\2020_WTP_SludgeCharacterization\4. Report\Appendices\Faro Sludge Charts_2020_report_rtc.xlsx February 2021

SRK Consulting Z:\01_SITES\Faro\!101_Investigations\2020_WTP_SludgeCharacterization\4. Report\Appendices\Faro Sludge Charts_2020_report_rtc.xlsx February 2021

SRK Consulting Z:\01_SITES\Faro\!101_Investigations\2020_WTP_SludgeCharacterization\4. Report\Appendices\Faro Sludge Charts_2020_report_rtc.xlsx February 2021

SRK Consulting Z:\01_SITES\Faro\!101_Investigations\2020_WTP_SludgeCharacterization\4. Report\Appendices\Faro Sludge Charts_2020_report_rtc.xlsx February 2021

SRK Consulting Z:\01_SITES\Faro\!101_Investigations\2020_WTP_SludgeCharacterization\4. Report\Appendices\Faro Sludge Charts_2020_report_rtc.xlsx February 2021

SRK Consulting Z:\01_SITES\Faro\!101_Investigations\2020_WTP_SludgeCharacterization\4. Report\Appendices\Faro Sludge Charts_2020_report_rtc.xlsx February 2021

SRK Consulting Z:\01_SITES\Faro\!101_Investigations\2020_WTP_SludgeCharacterization\4. Report\Appendices\Faro Sludge Charts_2020_report_rtc.xlsx February 2021

SRK Consulting Z:\01_SITES\Faro\!101_Investigations\2020_WTP_SludgeCharacterization\4. Report\Appendices\Faro Sludge Charts_2020_report_rtc.xlsx February 2021

SRK Consulting Z:\01_SITES\Faro\!101_Investigations\2020_WTP_SludgeCharacterization\4. Report\Appendices\Faro Sludge Charts_2020_report_rtc.xlsx February 2021