Mount Nansen June 2014 Groundwater Monitoring and Sampling

Prepared for:

Yukon Government

Assessment and Abandoned Mines Branch P.O. Box 2703 Whitehorse, Yukon Y1A 2C6

Prepared by: **Hemmerá Envirochem Inc.** 230 – 2237 2nd Avenue Whitehorse, YT Y1A 0K7

File: 1343-005.03 November 2014

TABLE OF CONTENTS

1.0	INTR	ODUCTIO	ON	1
	1.1	SITE L	OCATION	1
	1.2	SCOPE	OF WORK	1
	1.3	SAMPL	E SITES	5
2.0	METH	HODOLO	OGY	8
	2.1	PROTO	DCOLS	8
	2.2	WELL	MEASUREMENTS AND PURGING	8
	2.3	FIELD F	Parameters	9
	2.4	GROUN	NDWATER SAMPLING	10
	2.5	Data A	Analysis	10
	2.6	QUALIT	TY ASSURANCE AND QUALITY CONTROL	10
		2.6.1	Field QA/QC	10
		2.6.2	QA/QC	11
3.0	RESU	JLTS		12
	3.1	GROUN	NDWATER SAMPLING SUMMARY	12
	3.2	ANALY	TICAL RESULTS	16
		3.2.1	Dome Creek	16
		3.2.2	Mill Complex	16
		3.2.3	Brown McDade Pit	17
		3.2.4	Pony Creek	18
		3.2.5	Seepage Dam	18
		3.2.6	Tailings Facility	18
	3.3	QUALIT	TY ASSURANCE AND QUALITY CONTROL RESULTS	19
4.0	RECO	OMMEND	DATIONS	20
5.0	CLOS	SURE		21
6.0	REFE	RENCES	S	22
7.0	STAT	EMENT	OF LIMITATIONS	23

List of Tables (within text)

Table 1-1	Summary of Samples Collected at each Well Location	. 3
Table 2-1	Groundwater Sampling – Field Parameter Purging Criteria	. 9
Table 2-2	Groundwater Sampling – Preservation and Intended Analysis1	10
Table 3-1	Groundwater Field Parameters and Well Measurements for 2014 Spring Samplin Program	Ŭ
List of Figures	s (within text)	
Figure 1-1	Site Location – Mount Nansen Mine Complex	. 2
Figure 1-2	Groundwater Sampling Locations – Dome Creek and Tailings Facility	. 6
Figure 1-3	Groundwater Sampling Locations – Mill Complex and Brown McDade Pit	.7
List of Tables	(following text)	
Table A	Groundwater Sampling Analytical Results and CCME Guideline Exceedances for 201	14
	Spring Sampling Program	
Table B	QA/AC Analytical Data	

List of Appendices

Appendix A Site Photos

Appendix B Field Forms

Appendix C Laboratory Reports

1.0 INTRODUCTION

Hemmera Envirochem Inc. ("Hemmera") and Ecological Logistics & Research Ltd. (Hemmera / ELR) were retained by the Government of Yukon (GY), Assessment and Abandoned Mines (AAM) to conduct a groundwater monitoring and sampling program at the Mount Nansen Site in June of 2014. This report summarizes the activities conducted, the field conditions encountered, and the *in-situ* and laboratory analytical results for the program.

1.1 SITE LOCATION

The Mount Nansen Site (the Site) is located approximately 45 km west of the Town of Carmacks (70 km by road). This Type II abandoned mine site consists of three (3) primary areas of existing infrastructure: the Brown McDade Pit, a Mill Complex, and a Tailings Facility (**Figure 1-1**). Previously installed groundwater sampling stations exist throughout much of the site, a subset of which were sampled during the June 2014 groundwater monitoring and sampling program. The groundwater monitoring locations included in this program are described in **Sections 1.2 and 1.3**.

1.2 SCOPE OF WORK

The scope of work included the coordination and execution of the spring groundwater monitoring and sampling program and the preparation of this report. The report provides a summary of the monitoring and sampling activities, methodologies (including and deviations), laboratory analytical results, comparison to the applicable guidelines, and recommendations relating to sample procedures and monitoring well condition. This report does not provide an interpretation of the analytical results or provide recommendations relating to contaminated groundwater. Groundwater sampling at the Mount Nansen site was conducted over a four (4) day period, between June 26 and 29, 2014. Sampling was conducted by a team of four (4) field staff from Hemmera/ELR (Aaron Nicholson, Rusto Martinka, Andrew Brown, and Michelle McKay). A total of 65 groundwater wells were included in the June sampling event (**Table 1-1**).

At each well (sampling station) headspace gas concentrations were measured, basic well and water level parameters were measured (Depth-to-Water, Depth-to-Bottom, well diameter, and well stick-up height), the well was purged, then field water quality parameters were measured. Finally, water quality samples were collected for laboratory analysis. A detailed description of the sampling methods and water quality parameters monitored and sampled for is provided in **Section 2**, below.

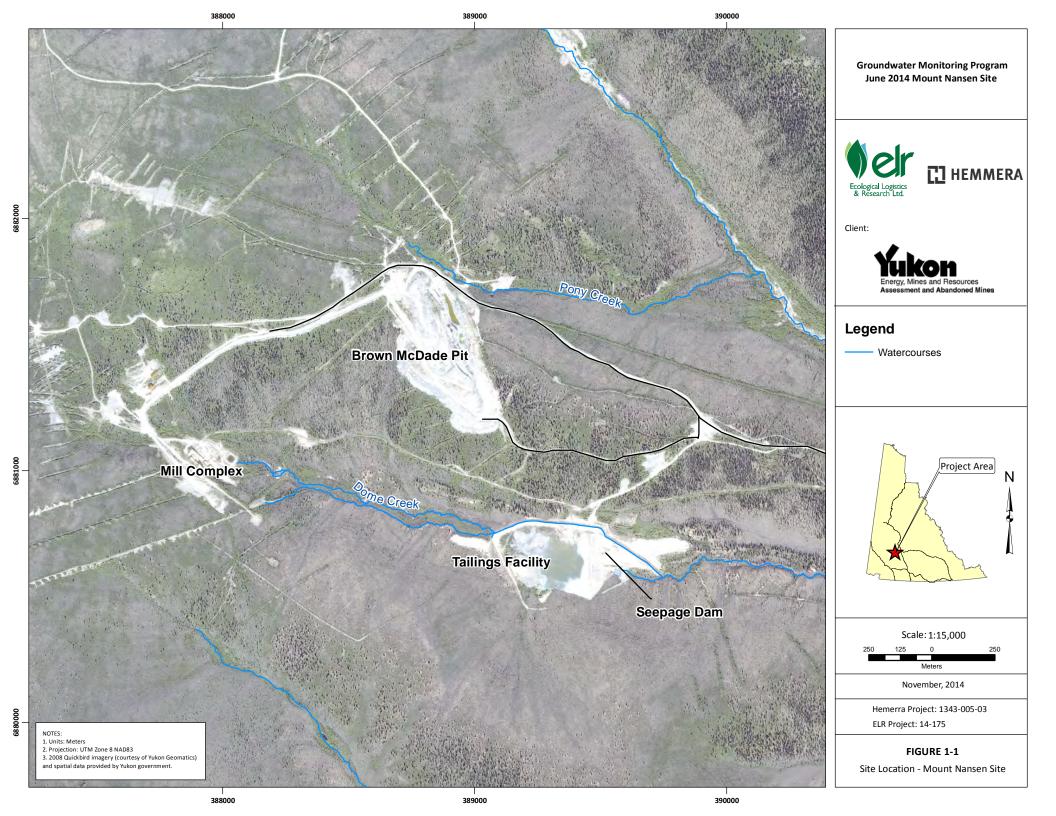
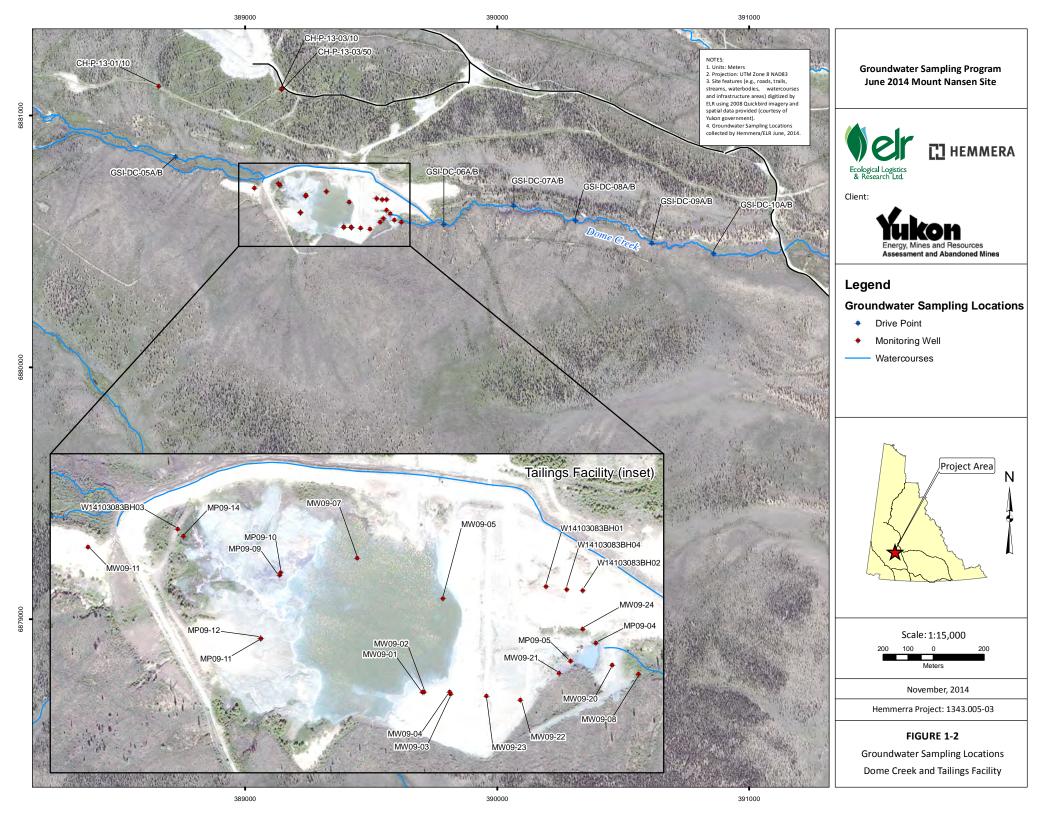
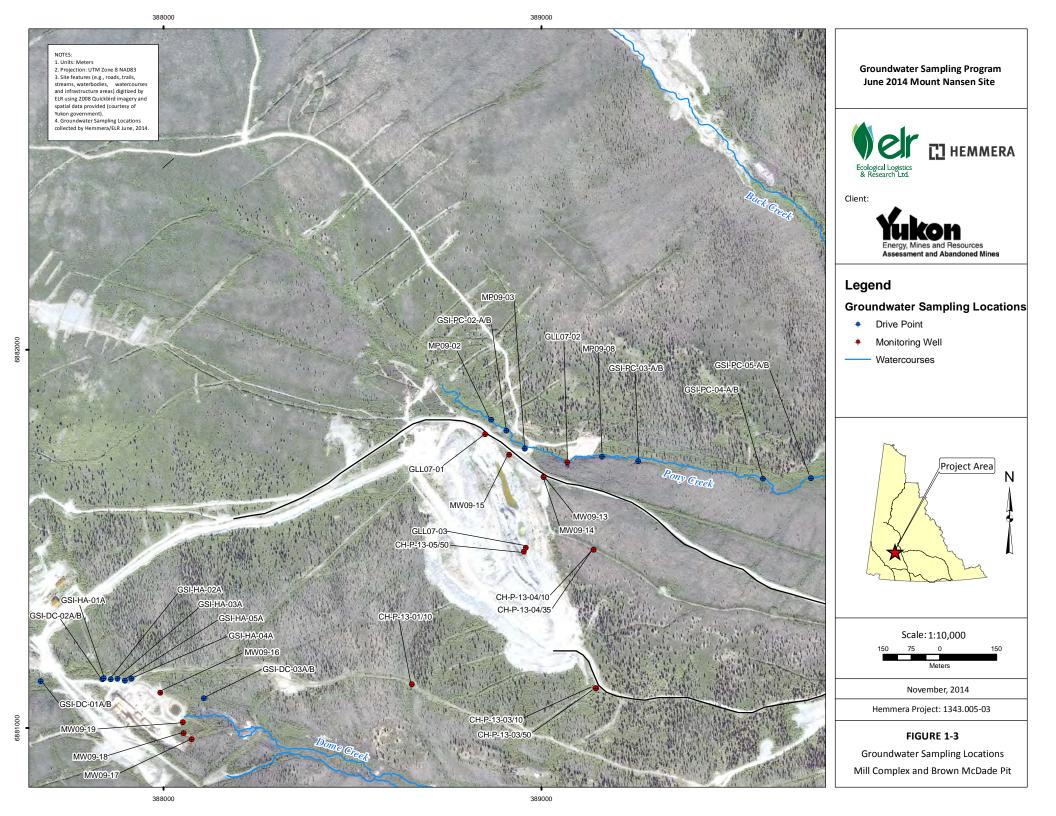


Table 1-1 Summary of Samples Collected at each Well Location

		UTM (Z	one 08N)		Sample	QA/QC
Area	Well Name	Easting	Northing	Status ¹	Collected	Sample Collected
	GSI-DC-01B	387675	6881124	Insufficient Volume	-	-
	GSI-DC-02B	387839	6881129	Insufficient Volume	-	-
	GSI-DC-03B	388107	6881079	Insufficient Volume	-	-
	GSI-DC-05B	388725	6880836	Insufficient Volume	-	-
Dome Creek	GSI-DC-06B	389788	6880567	Good	✓	-
Orook	GSI-DC-07B	390065	6880641	Good	✓	-
	GSI-DC-08-B	390311	6880583	Frozen	-	-
	GSI-DC-09-B	390614	6880494	Good	✓	-
	GSI-DC-10-B	390859	6880452	Good	✓	-
	GSI-HA-01A	387842	6881132	Insufficient Volume	-	-
	GSI-HA-02A	387861	6881129	Insufficient Volume	-	-
	GSI-HA-03A	387878	6881131	Insufficient Volume	-	-
	GSI-HA-04A	387916	65881130	Insufficient Volume	-	-
Mill Complex	GSI-HA-05A	387898	6881125	Insufficient Volume	-	-
Complex	MW09-16	387992	6881094	Good	✓	Duplicate
	MW09-17	388075	6880970	Good	✓	-
	MW09-18	388054	6880986	Good	✓	-
	MW09-19	388051	6881016	Good	✓	-
	CH-P-13-01/10	388657	6881116	Frozen	-	-
	CH-P-13-03/10	389145	6881105	Damaged ²	-	-
	CH-P-13-03/50	389143	6881105	Good	✓	-
	CH-P-13-04/10	389138	6881472	Insufficient Volume	-	-
	CH-P-13-04/35	389138	6881472	Obstruction ²	-	-
Brown	CH-P-13-05/50	388954	6881466	Good	✓	Duplicate
McDade	GLL07-01	388851	6881777	Frozen	-	-
Pit	GLL07-02	389069	6881703	Dry	-	-
	GLL07-03	388959	6881477	Good	✓	-
	MP14-01	N/A	N/A	Not installed	-	-
	MW09-13	389006	6881665	Frozen	-	-
	MW09-14	389006	6881663	Frozen	-	-
	MW09-15	388915	6881723	Frozen	-	-
	GSI-PC-01-B	388720	6881918	Destroyed ²	-	-
Pony Creek	GSI-PC-02-B	388907	6881786	Dry	-	-
J. 30K	GSI-PC-03-B	389256	6881706	Insufficient Volume	-	-

		UTM (Zo	one 08N)		Sample	QA/QC
Area	Well Name	Easting	Northing	Status ¹	Collected	Sample Collected
	GSI-PC-04-B	389586	6881660	Insufficient Volume	-	-
	GSI-PC-05-B	389713	6881661	Dry	-	-
Pony	MP09-01	N/A	N/A	Unable to Locate	-	-
Creek	MP09-02	388867	6881816	Good	✓	-
	MP09-03	388956	6881739	Insufficient Volume	-	-
	MP09-08	389160	6881718	Good	✓	-
	W14103083BH01	389522	6880669	Frozen	-	-
Seepage Dam	W14103083BH02	389561	6880665	Insufficient Volume	-	-
Bam	W14103083BH04	389544	6880666	Frozen	-	-
	MP09-04	389575	6880609	Good	✓	-
	MP09-05	389548	6880590	Good	✓	-
	MP09-09	389240	6880681	Good	✓	-
	MP09-10	389241	6880684	Good	✓	-
	MP09-11	389220	6880614	Good	✓	-
	MP09-12	389220	6880614	Good	✓	-
	MP09-14	389138	6880722	Insufficient Volume	-	-
	MW09-01	389391	6880557	Obstruction ²	-	-
	MW09-02	389393	6880557	Good	✓	Duplicate
	MW09-03	389421	6880555	Good	✓	-
Tailings	MW09-04	389420	6880557	Good	✓	-
Facility	MW09-05	389413	6880656	Unable to Access	-	-
	MW09-06	N/A	N/A	Unable to Locate ³	-	-
	MW09-07	389322	6880699	Good	✓	-
	MW09-08	389620	6880576	Good	✓	Duplicate
	MW09-11	389037	6880711	Dry	-	-
	MW09-20	389592	6880586	Dry	-	-
	MW09-21	389536	6880577	Good	✓	-
	MW09-22	389495	6880549	Good	✓	-
	MW09-23	389459	6880553	Good	✓	-
	MW09-24	389561	6880624	Good	✓	-
	W14103083BH03	389132	6880730	Insufficient Volume	-	-


Notes:
Insufficient Volume as defined by AAM where less than two litres of water could be purged from the well, and where less than two litres of water was present after allowing the well to recharge.


Further details concerning damaged, degraded, or obstructed wells are provided in Section 3.2.

Well MW09-06 was noted as 'submerged' during 2013 (as described in the Scope of Work). Based on field observations, this is the likely reason for that well not being located during the spring 2014 program.

1.3 SAMPLE SITES

Groundwater wells monitored during the spring event was conducted across six (6) areas of the Mount Nansen site (**Table 1-1**). The majority of spring well sites were located around previous infrastructure areas including the tailings facility (25 wells; including tailings facility and seepage pond/dam), the Brown McDade Pit (13 wells) and the Mill Complex (9 wells). Spring groundwater sampling was also completed via targeted drive-point piezometer installations in the vicinity of Dome and Pony Creeks (9 sample sites in each creek). **Table 1-1** describes the location, status of wells and sample recovery for groundwater wells included in the spring sampling program. The well locations are also illustrated in **Figures 1-2** and **1-3**. Photographs of each sample site are included in **Appendix A**.

2.0 METHODOLOGY

2.1 Protocols

Groundwater purging, monitoring and sampling conducted by Hemmera/ELR was in accordance with the Groundwater Sampling Standard Operating Procedures included in the document *Scope of Work: Groundwater Sampling Program – Mount Nansen Site June 2014.* At no time during the spring program did field methodologies deviate from the prescribed sampling procedures. These procedures were consistent with Yukon Environment's Protocol for the Contaminated Sites Regulation #7 - Sampling and Decommissioning (Yukon Environment, March 2011). Methods used were also consistent with the ASTM D4448-01 Standard Guide for Sampling Groundwater Monitoring Wells (ASTM, 2013), and the D6452-99 Guide for Purging Methods for Wells used for Groundwater Quality Investigations (ASTM, 2012).

2.2 WELL MEASUREMENTS AND PURGING

Upon arriving at each well, headspace gases were measured prior to any other well measurements. Oxygen (%), carbon dioxide (ppm), and methane (%LEL) were measured using a RAE Systems MultiRAE Four-Gas Monitor with photoionization detector (PID).

The well structure and casing of each well were inspected for damage, closure, and general conditions. Several measurements were then recorded from each well, including Depth-to-Water (DTW; m), Depth-to-Bottom (DTB; m), well diameter (cm), and well stick-up height (m).

DTB and DTW were measured using either a Solinst - Model 102 Water Level Meter (for 2.54 cm diameter wells) or a Heron Water Tape (for wells with diameter greater than 2.54 cm). DTB and DTW were measured from (in hierarchical order): 1) a black mark drawn on the top of the well; 2) the bottom of the most significant notch found on the top of the PVC if a mark was not present; or 3) a line that was drawn on the highest point of the well if no distinguishable point of measure was present. Stick-up height was measured from the lowest point on the bottom of the well casing to the highest point (or distinguishing mark) on the well. Water level meters were rinsed between each sample site with deionized water.

Following initial inspection and monitoring, groundwater wells were purged and sampled using dedicated equipment including high density polyethylene (HDPE) tubing and footvalves. In some cases existing tubing found within wells was not considered to be suitable for sampling. In such cases, the existing equipment was removed and new tubing installed. New dedicated tubing was also installed where no dedicated tubing was present. Groundwater wells were purged and sampled using one of three (3) techniques: 1) Hydrolift electric pump using Waterra tubing and footvalve, 2) manual purging using Waterra tubing and footvalve, or 3) GeoPump peristaltic pump. The purging technique chosen for each well was that which would produce the most representative groundwater sample.

Groundwater wells were determined to be sufficiently purged when either three successive field parameter measurements were recorded to be within an allowable tolerance level (as summarized in **Table 2-1**, below) or when a volume of water equivalent to three standing well volumes of water had been purged. Numerous groundwater wells were found to have a limited standing volume or recharge at the time of sampling, which was communicated to AAM during the field program. Instances where less than two litres of water could be purged from the well initially or where less than two litres of water was present after allowing the well to recharge, the well was determined to have an insufficient volume of water for sampling purposes.

Groundwater turbidity (NTU) was also measured prior to sampling (described below in **Section 2.3**) and was used as an indication of sample quality. Where possible samples were not collected until turbidity levels were less than 50 NTU. Purge volumes and purge rates were measured using a graduated container and stop watch.

All well measurements, purging details, and additional field notes were recorded on customized field forms in order to minimize the potential for field errors; this information is presented in **Table 3-1**.

Table 2-1 Groundwater Sampling – Field Parameter Purging Criteria

Field Parameter	Allowable Variance
Temperature (°C)	3%
рН	+0.1
Conductivity (µS/cm)	3%
Specific Conductivity (µS/cm)	3%

2.3 FIELD PARAMETERS

Hemmera/ELR measured *in-situ* water quality parameters using YSI Professional Plus and field meters, Lamotte 2020e or Hach 2100Q turbidity meters, and Hach DR 2800 Portable Spectrophotometers. Flow-through cells were used in conjunction with the YSI Professional Plus meters to minimize field parameter variability. The *in-situ* water quality parameters recorded at each sample site included; water temperature (°C), specific conductivity (μs/cm), conductivity (μs/cm), ORP (mv), and pH (pH units), sulphide (μg/l), and turbidity (NTU).

During purging, field parameters were monitored at 5 minute intervals, or at volume related intervals (e.g., every 500 mL) in the case of wells with slow recharge. A final set of measurements was recorded at the conclusion of purging.

2.4 GROUNDWATER SAMPLING

Groundwater quality samples were collected and preserved in accordance with laboratory directions, and using techniques consistent with Standard Methods for the Examination of Water and Wastewater (Rice et al., 2012). ALS Global was the analytical subcontractor chosen for this project, and an example summary of the sample set collected at each sample site, including parameters analysed and preservation techniques, is provided in **Table 2-2**.

Table 2-2 Groundwater Sampling – Preservation and Intended Analysis

Bottle Type	Parameters Analyzed	Sample Treatment	Preservative Added
1 L (plastic)	General Chemistry	-	-
120 ml (plastic)	Dissolved Metals	Field Filtered and Preserved	HNO ₃
120 MI (glass vial)	Dissolved Mercury	Field Filtered and Preserved	HCI
250 ml (glass amber)	NH3	Preserved	H ₂ SO ₄
250 ml (glass amber)	TIC – total inorganic carbon	-	-
120 ml (plastic)	Sulphide	Preserved	Zinc Acetate, capped and mixed, then NaOH
120 ml (plastic)	Thyocyanate	Preserved	HNO ₃
145 ml (plastic red cap)	Cyanide (total, free, and WAD)	Preserved	NaOH
145 ml (plastic red cap)	Cyanide (total, free, and WAD)	Preserved	NaOH

2.5 DATA ANALYSIS

Groundwater analytical results were compared to the Canadian Council of Ministers of the Environment (CCME) Water Quality Guidelines for the Protection of Freshwater Aquatic Life (FAL; CCME, 1999). All relevant CCME FAL guidelines are presented in **Table A**.

2.6 QUALITY ASSURANCE AND QUALITY CONTROL

2.6.1 Field QA/QC

Several controls were used by Hemmera/ELR staff while in the field to help ensure that sample integrity was maintained and that data were recorded completely and accurately. All equipment used during the sampling process was dedicated to individual wells, including tubing and Waterra footvalves. The project laboratory provided pre-cleaned sample containers, disposable filters, and disposable syringes. Field staff wore dedicated disposable nitrile gloves for all measurements, purging, and sampling. Water level meters were cleaned using de-ionized water between well locations, and field instruments (YSI field meters and turbidity meters) were checked and/or calibrated before each site visit to ensure the parameters recorded were as accurate as possible.

Project-specific field data sheets were created for the sampling event to help ensure that all required measurements were taken, and that information was recorded correctly. Field data sheets have been included as **Appendix B** of this report.

2.6.2 QA/QC

Analytical QA/QC measures were included in the spring sampling program as outlined in the scope of work and as per standard industry practice. This included the collection of travel blanks, duplicates, and field blanks. Duplicate samples were collected at a minimum rate of 10% of the regular sample collection rate (4 duplicates were collected in relation to 28 sample sites), and a field blank was collected for each day field sampling was conducted (a total of 4 field blanks were collected). Two travel blank accompanied the analytical supplies and samples from the lab to the field and back to the lab again (1 for each shipment).

The variation in sample and sample duplicate values is represented as relative percent difference (RPD). RPD provides a measure of the relative difference between two values in comparison to their mean value, and is calculated as the difference between a sample and its field duplicate over the average of two values. RPD values greater than 20% indicate a potential error that has affected the data precision. RPD was calculated according to the following formula:

$$\%RPD = \left(\frac{\left(\frac{x_1 - x_2}{x_1 + x_2}\right)}{2}\right) X 100$$

RPD is not calculated if either the sample or the field duplicate concentration is less than five times the detection limit.

The analytical results for field and travel blanks were reviewed to determine whether any of the parameters tested were detected (i.e., result exceeding the detection limit). In such cases, the parameter or element in question and its concentration were reviewed to determine potential sources of contamination or error.

3.0 RESULTS

Summary tables of the laboratory analytical results were prepared and are presented in **Table A** of this report. This table includes a comparison of results to CCME FAL guidelines. A summary of the QA/QC sampling results is also attached as **Table B**, including analytical data for duplicates, field blanks, and travel blanks, and RPD values. Copies of original laboratory analytical reports are provided as **Appendix C**.

3.1 GROUNDWATER SAMPLING SUMMARY

Groundwater sampling was completed between June 26 and June 29, 2014. Weather conditions varied throughout the time of sampling with ambient air temperature ranging from 8 to 24°C. Weather conditions were pre-dominantly clear and sunny with periods of overcast conditions. Of the 65 groundwater wells included in the spring sampling event, 60 were located and monitored during the sampling event. Of the five wells listed in the scope of work that were not assessed, two were not located (MP09-01 and MW09-06), one (GSI-PC-01-B) was found destroyed, one (MW09-05) was not accessible (as it was in the tailings pond), and one (MP14-01) had not yet been installed. Of the 60 monitored wells, groundwater samples were collected from 28 for laboratory analysis of select parameters.

There were several reasons for a low sampling rate during the program: eight (8) wells were frozen, five (5) wells were dry, sixteen (16) wells had insufficient groundwater volume to sample (minimal volume and recharge rate, according to criterial provided to Hemmera/ELR by AAM), and four (4) wells were either damaged or had an obstruction in the well, three (3) wells were either inaccessible or not located, and one (1) well listed in the SOW was not installed at the time of sampling. A summary of the condition (status) of groundwater wells is provided in **Table 1-1**, which also indicates where samples were successfully collected. A summary of all well measurements, purge details, and field parameter results is provided in **Table 3-1**.

Table 3-1 Groundwater Field Parameters and Well Measurements for 2014 Spring Sampling Program

Area	Location ID	Sample Date (yyyy-mm-dd)	Stick up Height (m)	Depth To Water (m) ¹	Depth to Bottom (m)	Standing Water Volume (L)	Volume Purged (L)	Purge Start Time	Purge End Time	Elapsed Purge Time	Purge Rate (//min)	Criteria¹ (3WV/PS)	Draw Down (m)	Hd	Temperature (°C)	Specific Conductance (µS/cm)	Conductivity, Uncorrected (µS/cm)	Redox, Uncorrected (mV)	Dissolved Oxygen (mg/L)	Dissolved Sulphide (µg/L)	Methane (%LEL)	Oxygen (%)	Carbon Dioxide (ppm)	Field Turbidity (NTU)	Method Used	Well Diameter (inches)
	GSI-DC-01A	2014-06-26	0.930	0.901	1.447	3.330	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	1
	GSI-DC-01B	2014-06-26	0.950	1.527	1.574	0.290	<0.5	18:15	18:16	0:01		-	-	-	-	-	-	-	-	-	-	-	-	-	Peristaltic	1
	GSI-DC-02A	2014-06-27	0.925	1.596	1.950	-	-	-	-	-		-	-	-	-	-	-	-	-	-	0	20.8	610	-	-	1
	GSI-DC-02B	2014-06-27	0.880	2.487	3.840	0.690	<0.5	7:21	7:26	0:05		-	-	7.54	2.6	320	291.4	-61.1	3.02	-	0	20.6	600	-	Peristaltic	1
	GSI-DC-03A	2014-06-27	0.910	1.208	1.325	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	0	20.6	610	-	-	1
	GSI-DC-03B	2014-06-27	0.910	1.533	2.405	0.440	<0.5	9:29	9:33	0:04		-	-	-	-	-	-	-	-	-	0	20.6	610	-	-	1
	GSI-DC-05A	2014-06-27	1.040	1.135	1.937	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	0	20.4	690	-	-	1
	GSI-DC-05B	2014-06-27	0.550	1.120	2.805	0.860	<0.5	10:40	10:46	0:06		-	-	-	-	-	-	-	-	-	0	20.4	690	-	-	1
Dome	GSI-DC-06A	2014-06-29	0.870	0.977	1.755	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	1
Creek	GSI-DC-06B	2014-06-27	0.510	0.855	1.394	0.270	1.2	14:35	14:39	0:04	0.30	3WV	-	7.10	8.1	402	250	-78.5	0.66	32	0	21	520	12.81	Peristaltic	1
	GSI-DC-07A	2014-06-29	0.940	1.325	1.985	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	0	20.6	0	-	-	1
	GSI-DC-07B	2014-06-29	0.930	1.323	1.925	0.310	3.0	15:45	16:12	0:27	0.11	3WV	-	7.03	2.8	1088	628	-84.4	0.42	1179	0	20.6	0	11.79	Peristaltic	1
	GSI-DC-08-A	2014-06-29	0.910	1.121	1.534	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	0	20.6	550	-	-	0.5
	GSI-DC-08-B	2014-06-29	0.270	Frozen	0.759	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	0	20.5	640	-	-	0.5
	GSI-DC-09-A	2014-06-29	0.910	1.094	1.359	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	0	20.9	470	-	-	0.5
	GSI-DC-09-B	2014-06-29	-	1.262	3.858	0.625	1.1	12:18	12:27	0:09	0.12	3WV	2.74	6.60	3.9	1940	1151	63.5	0.23	32	0	20.5	530	27.6	Peristaltic	0.5
	GSI-DC-10-A	2014-06-29	1.040	-	1.809	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	0	20.6	520	-	-	0.5
	GSI-DC-10-B	2014-06-29	1.030	0.981	3.763	0.900	2.8	14:20	14:35	0:15	0.19	3WV	1.05	6.60	3.2	1212	709	70.5	0.1	40	0	20.5	440	13.9	Peristaltic	0.5
	GSI-HA-01A	2014-06-27	1.220	2.380	3.120	0.380	<0.5	7:41	7:45	0:04		-	-	7.38	3	921	531	-54.2	4.9	-	0	20.9	630	-	-	1
	GSI-HA-02A	2014-06-27	1.490	2.414	2.480	0.034	-	-	-	-		-	-	-	-	-	-	-	-	-	0	20.9	600	-	-	1
	GSI-HA-03A	2014-06-27	0.930	1.512	2.170	0.330	<0.5	8:05	8:11	0:06		3WV	-	6.84	3.5	990	586	-60.6	1.83	-	0	20.9	610	-	Peristaltic	1
N. 4"II	GSI-HA-04A	2014-06-27	0.595	2.050	2.133	0.042	-	-	-	-		-	-	-	-	-	-	-	-	-	0	19.3	3100	-	-	1
Mill Complex	GSI-HA-05A	2014-06-27	0.960	1.375	1.770	0.200	<0.5	8:36	8:37	0:02		-	-	-	-	-	-	-	-	-	0	20.5	620	-	Peristaltic	2
	MW09-16	2014-06-26	1.220	1.686	2.680	2.020	7.5	13:15	13:40	0:25	0.30	3WV	1.69	6.67	4.8	1695	1040	136.6	3.62	3	0	20.6	4.38	3.86	Peristaltic	2
	MW09-17	2014-06-29	0.970	4.778	5.610	1.690	3.0	10:55	11:06	0:11	0.27	3WV	-	6.80	2.6	2788	1594	124	0.08	14	-	-	-	3.47	Peristaltic	2
	MW09-18	2014-06-26	0.900	4.555	7.770	6.530	20.0	15:57	16:56	1:01	0.33	3WV	4.57	7.01	1.5	1434	2590	31.3	0.8	42	0	20.6	2.76	6.49	Peristaltic	2
	MW09-19	2014-06-26	0.990	2.527	5.870	6.793	20.0	14:45	15:33	0:48	0.42	3WV	3.25	6.76	1.6	2327	1285	-86.7	2.19	125	0	20.6	2.92	2.46	Peristaltic	2

Table 3-1 Groundwater Field Parameters and Well Measurements for 2014 Spring Sampling Program

Area	Location ID	Sample Date (yyyy-mm-dd)	Stick up Height (m)	Depth To Water (m) ¹	Depth to Bottom (m)	Standing Water Volume (L)	Volume Purged (L)	Purge Start Time	Purge End Time	Elapsed Purge Time	Purge Rate (Vmin)	Criteria¹ (3WV/PS)	Draw Down (m)	Hd	Temperature (°C)	Specific Conductance (µS/cm)	Conductivity, Uncorrected (µS/cm)	Redox, Uncorrected (mV)	Dissolved Oxygen (mg/L)	Dissolved Sulphide (µg/L)	Methane (%LEL)	Oxygen (%)	Carbon Dioxide (ppm)	Field Turbidity (NTU)	Method Used	Well Diameter (inches)
	CH-P-13-01	2014-06-27	0.500	Frozen	2.630	-	1	-	-	1	-	-	-	-	-	-	-	-	-	-	0	20.5	640	-	-	2
	CH-P-13-03/10	2014-06-27	0.685	Damaged	5.136	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	0	20.5	490	-	-	2
	CH-P-13-03/50	2014-06-27	0.606	48.454	50.762	1.150	1.0	16:40	16:50	0:10	0.10	3WV	-	-	-	-	-	-	-	-	0	20.4	1390	70.1	1" bailer	1
	CH-P-13-04/10	2014-06-28	0.638	2.928	2.976	-	1	-	•	1	•	-	-	-	-	-	-	•	-	-	0	20.5	440	-	-	2
	CH-P-13-04/35	2014-06-28	0.608	Obstruction	6.505	-	-	-	-	1	-	-	-	-	-	-	-	-	-	-	0	20.5	690	-	-	1
Brown-	CH-P-13-05/50	2014-06-27	0.880	25.595	50.470	12.640	60.0	16:25	17:12	0:47	1.28	3WV	26.85	6.27	2.6	2864	1640	122.4	2.53	434	0	20.9	1.42	24.1	Hydrolift	1
McDade Pit	GLL07-01	2014-06-26	0.810	Frozen	12.876	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	0	20.9	1.4	-	-	2
	GLL07-02	2014-06-28	1.370	Dry	7.120	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	0	19.8	3840	-	-	6
	GLL07-03	2014-06-27	1.150	10.031	11.745	3.483	5.0	15:15	15:39	0:24	0.21	3WV	10.89	6.19	4.5	1659	1014	103.7	5.32	95	0	20.9	1.42	22	Manual	2
	MW09-13	2014-06-27	0.760	Frozen	8.995	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	0	20.1	2540	-	-	2
	MW09-14	2014-06-27	0.750	Frozen	5.098	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	0	20.4	550	-	-	2
	MW09-15	2014-06-26	0.910	Frozen	14.004	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	0	20.9	1.41	-	-	2
	GSI-PC-01-A	2014-06-27	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
	GSI-PC-01-B	2014-06-27	-	Destroyed	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
	GSI-PC-02-A	2014-06-27	-	0.919	1.297	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	0	20.5	460	-	-	0.5
	GSI-PC-02-B	2014-06-27	-	Dry	1.285	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	0	20.5	490	-	-	0.5
	GSI-PC-03-A	2014-06-28	0.920	1.095	2.006	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	0	20.9	470	-	-	0.5
	GSI-PC-03-B	2014-06-28	0.900	1.398	2.825	0.181	-	-	-	-	-	-	-	-	-	-	-	-	-	-	0	20.4	890	-	-	0.5
Pony	GSI-PC-04-A	2014-06-28	0.890	-	1.262	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	0	20.5	490	-	-	0.5
Creek	GSI-PC-04-B	2014-06-28	0.920	1.888	2.586	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	0	20.5	560	-	-	0.5
	GSI-PC-05-A	2014-06-28	0.920	-	1.306	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	0	20.5	470	-	-	0.5
	GSI-PC-05-B	2014-06-28	0.910	Dry	3.751	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	0	20.2	730	-	-	0.5
	MP09-01	2014-06-28	-	Unable to locate	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
	MP09-02	2014-06-27	1.360	1.228	1.970	0.100	2.5	9:45	10:38	0:53	0.05	3WV	-	7.22	3.3	522	304.9	75.8	5.4	24	0	20.5	450	1.96	Peristaltic	0.5
	MP09-03	2014-06-27	1.300	1.519	1.617	0.012	-	-	-	-	-	-	-	-	-	-	-	-	-	-	0	20.6	430	-	-	0.5
	MP09-08	2014-06-27	1.500	0.892	1.975	0.125	2.2	14:10	14:40	0:30	0.07	3WV	-	7.12	2.9	720.3	416.6	-95.5	1.64	124	0	20.6	490	1.02	Peristaltic	0.5
	W14103083BH01	2014-06-28	0.640	Frozen	6.646	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	0	21	521	-	-	2
Seepage Dam	W14103083BH02	2014-06-28	0.800	6.897	7.920	2.070	0.5	8:49	8:54	0:05	0.10	-	-	7.46	3.4	2436	1429	-46.2	1.6	-	0	21.3	602	-	Peristaltic	2
Jan	W14103083BH04	2014-06-28	0.800	Frozen	6.730	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	0	20.6	520	-	-	2

Table 3-1 Groundwater Field Parameters and Well Measurements for 2014 Spring Sampling Program

						ing camp	Jg																			
Area	Location ID	Sample Date (yyyy-mm-dd)	Stick up Height (m)	Depth To Water (m) ¹	Depth to Bottom (m)	Standing Water Volume (L)	Volume Purged (L)	Purge Start Time	Purge End Time	Elapsed Purge Time	Purge Rate (Vmin)	Criteria¹ (3WV/PS)	Draw Down (m)	Hd	Temperature (°C)	Specific Conductance (µS/cm)	Conductivity, Uncorrected (µS/cm)	Redox, Uncorrected (mV)	Dissolved Oxygen (mg/L)	Dissolved Sulphide (µg/L)	Methane (%LEL)	Oxygen (%)	Carbon Dioxide (ppm)	Field Turbidity (NTU)	Method Used	Well Diameter (inches)
	MP09-04	2014-06-28	1.200	2.034	3.070	2.110	7.0	11:04	11:39	0:35	0.20	3WV	2.15	7.04	3.6	1610	959	58.2	4.09	12	0	20.5	630	1.87	Peristaltic	2
	MP09-05	2014-06-28	1.200	1.414	1.820	0.450	1.5	16:47	16:59	0:12	0.13	3WV	1.58	6.75	8.5	2380	1723	-41.4	4.1	16	0	21.1	550	5.05	Peristaltic	1.5
	MP09-09	2014-06-29	2.240	2.924	5.630	2.980	3.5	9:15	9:30	0:15	0.23	3WV	5.3	9.66	5.8	275.4	174.3	-23.1	0.25	651	0	20.9	520	61	1" bailer	1.5
	MP09-10	2014-06-29	1.980	2.730	4.540	1.991	4.0	9:02	9:13	0:11	0.36	3WV	1	9.21	8.2	415.4	283	-46.7	7.04	ı	0	20.9	520	-	1" bailer	1.5
	MP09-11	2014-06-29	1.740	2.211	4.950	3.010	3.5	8:09	8:29	0:20	0.18	3WV	4.2	7.54	5.1	804.7	498.7	-146.2	0.37	411	31	19.7	830	34	1" bailer	1.5
	MP09-12	2014-06-29	1.700	2.229	4.175	2.140	2.5	7:55	8:05	0:10	0.25	3WV	3.6	7.46	6.5	518	333.9	-91.7	5.93	279	0	20.9	580	82.7	1" bailer	1.5
	MP09-14	2014-06-27	1.070	1.342	1.971	0.080	<0.1	17:36	17:38	0:02		-	-	-	-	-	-	-	-	-	0	20.9	470	-	-	0.5
	MW09-01	2014-06-27	0.820	2.946	8.680	11.650	-	-	-	-		-	-	-	-	-	-	-	-	-	0	20.6	650	-	-	2
	MW09-02	2014-06-27	0.750	2.021	4.705	5.440	17.0	12:55	13:33	0:27	0.63	3WV	3.24	7.13	4.7	2670	1670	-92.1	0.14	23	0	20.6	650	16.9	Peristaltic	2
	MW09-03	2014-06-27	0.560	4.787	9.930	10.450	32.0	15:15	16:07	0:52	0.62	3WV	5.15	7.22	3.5	2526	1492	-24.1	0.76	17	0	20.9	601.3	1.58	Peristaltic	2
	MW09-04	2014-06-27	0.500	2.697	7.670	10.110	30.0	14:06	15:08	1:02	0.48	3WV	5.01	8.64	3.6	2666	154.3	-147.3	0.28	27	0	20.6	602	5.68	Peristaltic	2
Tailing Facility	MW09-05	2014-06-28	-	Unable to access	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
	MW09-06	2014-06-28	-	Unable to locate	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
	MW09-07	2014-06-29	1.350	2.461	3.397	1.900	1.5	16:35	16:45	0:10	0.15	3WV	3.222	6.80	5.7	2411	1542	102.4	3.1	294	0	20.9	460	32.2	Peristaltic	2
	MW09-08	2014-06-28	1.080	1.340	3.905	5.210	18.0	11:55	12:40	0:45	0.40	3WV	1.45	6.82	3.3	381.2	216.7	-96.7	1.41	92	0	20.0	520	2.02	Peristaltic	2
	MW09-11	2014-06-29	0.820	Dry	4.909	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	0	20.5	440	-	-	2
	MW09-20	2014-06-28	0.910	Dry	3.670	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	0	20.4	1100	-	-	2
	MW09-21	2014-06-28	0.720	1.568	3.576	4.080	14.0	17:17	17:55	0:38	0.37	3WV	2.02	6.82	2	2544	1430	-64.8	1.91	63	0	20.6	550	11.1	Peristaltic	2
	MW09-22	2014-06-27	0.880	4.194	5.235	2.120	6.5	16:19	16:44	0:45	0.14	3WV	5.05	5.82	3.7	2073	1684	58.3	2.58	26	4	2.05	950	10.54	Peristaltic	2
	MW09-23	2014-06-27	0.940	11.913	15.805	7.900	30.0	11:49	12:23	0:34	0.88	3WV	12.16	7.12	2.1	2612	1468	-64.7	4.32	90	0	20.6	620	30.1	Waterra	2
	MW09-24	2014-06-28	0.680	9.389	11.170	3.620	12	9:3	10:00	0:25	0.48	3WV	10.04	7.34	2.6	1198	761	3.3	5.77	84	0	20.5	610	11.3	Manual Waterra	2
	W14103083BH03	2014-06-27	0.760	1.842	1.942	0.200	-	-	-	-	-	-	-	-	-	-	-	-	-	-	0	20.9	440	-	-	2
	CH-P-13-02	2014-06-27	-	8.125	8.200	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-

Notes: Depth to Water (DTW) values for frozen or damaged wells indicates depth to ice or blockage.

3.2 ANALYTICAL RESULTS

The following section provides a summary and brief discussion of the program analytical results, including a brief summary of CCME FAL guideline exceedances and a description of factors that may have influenced results. Details regarding well status, including a description of damaged, destroyed, or underperforming wells, are also discussed. In numerous instances, the reported laboratory method detection limits (MDL) for parameters exceeded applicable CCME FAL standards (values *italicized* and shaded light grey in **Table A**). In these cases, samples having high levels of certain materials required laboratory dilution in order to perform the required analyses, and thereby resulting in an elevated MDL. For the purpose of this report, samples where the reported MDL is higher than the applicable guideline have not been reported as CCME FAL exceedances.

3.2.1 Dome Creek

Groundwater along Dome Creek was sampled between June 27 and June 29, 2014. Samples were obtained from four (4) of the nine (9) drive-point piezometers located within this area identified for the sampling program. Sample sites GSI-DC-01B, GSI-DC-02B, GSI-DC-03B, GSI-DC-05B produced insufficient groundwater volume to obtain a sample. The remaining site, drive-point GSI-DC-08-B, was frozen at the time of the sampling program.

Concentrations of dissolved aluminum, arsenic, chromium, and iron exceeded the CCME FAL guidelines at one or more sample location in the Dome Creek area (**Table A**). Concentrations of ammonia also exceeded the CCME FAL guidelines in various sample locations.

The measurement of in-situ headspace vapours was made difficult at the Dome Creek sample sites due to dedicated sampling tubing being present in these small diameter wells. There was no space in the well head to sample vapours until dedicated sampling equipment was removed, after which time well head gases may have dispersed.

The turbidity of all samples collected within the Dome Creek area was less than 50 NTU (Table 3-1).

3.2.2 Mill Complex

Groundwater in the Mill Complex Area was sampled between June 26 and June 29, 2014. Samples were obtained from four (4) of the nine (9) wells identified in this area. Drive-points GSI-HA-01A, GSI-HA-02A, GSI-HA-03A, GSI-HA-04A, and GSI-HA-05A produced insufficient groundwater volumes to be sampled.

Concentrations of dissolved arsenic, cadmium, copper, iron and zinc exceeded the CCME FAL guidelines at one or more sample location in Mill Complex area.

Monitoring well MW09-17 was damaged at the surface during the sampling program. This was communicated to AAM, who approved an on-site repair during the program. Accordingly, the well was repaired by attaching a coupling and new well pipe, and installing a new bentonite seal (see photos 15-21, in **Appendix A**). The steel monument was also re-installed and secured with concrete. The well was then re-developed (purged until almost dry) the following morning (~25L purged before parameters or sampling took place). Finally, sampling was completed once the well had time to settle. Well head gases were not measured due to the repair of this well.

Monitoring well MW09-18 had vents installed on the side of the PVC stand pipe, which is likely to have influenced *in-situ* gas concentrations.

The turbidity of all samples collected within this area was less than 50 NTU (Table 3-1).

3.2.3 Brown McDade Pit

Groundwater wells in the Brown McDade Pit Area were sampled between June 27 and June 28, 2014. Samples were obtained from three (3) of the 13 sample sites located within this area. Five (5) wells were frozen during the time of sampling (CH-P-13-01, GLL07-01, MW09-13, MW09-14 and MW09-15), one well was damaged (CH-P-13-03/10; broken at the surface), one well had an obstruction affecting the ability to sample (CH-P-13-04/35), one (1) well had insufficient well volume to sample (CH-P-13-04/10), and one (1) well was dry during the time of sampling (GLL07-02). Well MP14-01 was listed as a sample site in the scope of work but had not been installed at the time of sampling.

CH-P-13-03/10 was found to be broken at the top coupler of the PVC pipe. The wells casing material (sand) was missing and presumed to have fallen into the well, as evidenced by the DTB measurement of 5.136 m being less than that previously documented (10 m). CH-P-13-04/35 was found to have a blockage at 6.505 m below the surface. Based on the sound and feel of vibration on the water level meter, it appeared to the crew as though it may be a plastic obstruction like a bailer, but this could not be confirmed.

Concentrations of dissolved cadmium, copper, iron and zinc exceeded the CCME FAL guidelines at one or more sample location in the Brown McDade Pit area.

The crew had some difficulty confirming the location of well CH-P-13-03/50. Based on UTM coordinates and by the marking *CH-P-13-03* on the well cap, the correct well was assumed, although the outer casing of the well was labeled as CH-P-13-02. Field parameters were not measured at site CH-P-13-03/50 due to inability to purge, sample collected with 1" disposable bailer the following day.

Wells CH-P-13-05/50 and GLL07-03 were not properly sealed (no PVC caps or J-plugs were observed during initial inspection). These caps could not be replaced during this sampling event, but the replacement of caps has been included in the recommendations of this report. Also, groundwater turbidity in CH-P-13-03/50 was measured 70.1 NTU at the time of sample collection which is considered to be higher than optimal. The turbidity of CH-P-13-05/50 and GLL07-03 were within an acceptable range during the start of sample collection but became extremely cloudy during the collection of the general chemistry and dissolved metals samples.

3.2.4 Pony Creek

Groundwater wells along Pony Creek were sampled on June 27, 2014. Samples were obtained from two (2) of the nine (9) sample sites in this area during the sampling event. Two (2) wells were dry during the time of sampling (GSI-PC-02-B and GSI-PC-05-B), three (3) drive-points did not produce sufficient volume (GSI-PC-03-B, GSI-PC-04-B, and MP09-03), one (1) well was not located (MP09-01), and one (1) was destroyed by placer mining operations (GSI-PC-01-B).

Concentrations of dissolved arsenic and iron exceeded the CCME FAL guidelines at one or more sample location in this area.

It should be noted that UTM coordinates provided in the scope of work show sample sites MP09-01 and MP09-08 at the same location. Only a single drive-point was found by Hemmera/ELR at this location (MP09-08) and no site marked MP09-01 was identified either upstream or downstream of this site. Sample site GSI-PC-01-A/B was found removed from the stream bed in a location currently being excavated by placer mining operations (as expected based on information provided by AAM).

The turbidity of all samples collected within this area was less than 50 NTU (Table 3-1).

3.2.5 Seepage Dam

Groundwater wells in the Seepage Dam area were not sampled during the 2014 spring sampling event. Sample sites W14103083BH01 and W14103083BH04 were frozen at the time of sampling, and site W14103083BH02 did not produce sufficient sample volume.

3.2.6 Tailings Facility

Groundwater wells in the Tailings Facility area were sampled between June 27 and June 29, 2014. Samples were obtained from 15 of the 22 sample sites located in this area.

Two (2) wells were dry during the time of sampling (MW09-11 and MW09-20), two (2) wells produced insufficient sample volume (MP09-14 and W14103083BH03), one (1) well was not located (MW09-06), one (1) well was not accessible as it was within the wetted tailings pond (MW09-05), and one (1) well had

an obstruction that limited the ability to sample (MW09-01). Well MW09-06 had been listed in the SOW as not sampled in the fall of 2013 because it was submerged in the tailings pond, and this was assumed to be the reason that this well could not be located during the June 2013 program. At well MW09-01, an obstruction was noted at approximately 3m below the ground surface, and it was not possible to lower either 3/8" or 3/16" diameter tubing to the level of the water. The tubing lowered into the well had sediment on its end, suggesting that there is sediment/soil built up at this obstruction.

Concentrations of dissolved arsenic, cadmium, chromium, copper, iron, mercury, selenium, silver and zinc exceeded the CCME FAL guidelines at one or more sample location in this area. Groundwater pH in the tailings facility area was also outside of CCME FAL guidelines at sample site MP09-10. Concentrations of Ammonia in groundwater also exceeded the CCME FAL guidelines at several locations.

Wells MP09-09, MP09-10, MP09-12, and MW09-07 had vents installed on the side of the PVC well, which likely influenced in-situ gas measurements. Groundwater turbidity of samples collected from MP09-09 and MP09-12 were greater than the target limit of 50 NTU for sampling (61 and 82.7 NTU), indicating that suspended solids could potentially affect the sample quality. Field turbidity and in-situ sulphide was not measured in samples collected from MP09-10 due extremely high observed turbidity at the time of sampling. The turbidity of all other samples collected within this area was less than 50 NTU (**Table 3-1**).

3.3 QUALITY ASSURANCE AND QUALITY CONTROL RESULTS

A total of four (4) duplicate groundwater samples were collected during the spring sampling event. Two travel blanks were provided by the laboratory and accompanied the samples throughout the sampling program. One field blank was prepared on site for each consecutive day of sampling (4 field blanks in total). Detailed results of QA/QC sampling is provided in **Table B**, including RPD values for all duplicate and sample pairs collected.

Field blank and travel blank analytical results were reported as less than the MDL for all analysed parameters with the exception of a single detection of Molybdenum and Manganese in one sample (FB1). Both reported values were very close to detection limits (< two times MDL) and are not considered to represent sampling or laboratory error.

The RDP value for total cyanide between DUP-3 and MW09-02 was 51.6%, which exceeded the desired limit and suggests a potential error affecting data precision. In the field it was recorded that the PVC cap at site MW09-02 did not fit properly on the well, but no other condition or occurrence that would affect data precision was recorded in the field. The RPD for other parameters including other cyanide analysis was less than 20%; thus there does not seem to be a systemic bias. Sample variation is considered to be the likely cause of the single variable result for cyanide.

All other RDP values were within an acceptable range of variability (less than 20%).

4.0 RECOMMENDATIONS

Hemmera/ELR has prepared the following recommendations based on the observations and results of the spring 2014 groundwater sampling program.

- 1. All groundwater wells should be properly sealed with PVC caps or J-plugs. Wells without caps have risk of becoming contaminated which may affect data precision or quality.
- 2. Damaged or degraded wells should be repaired. This includes wells where an obstruction is restricting ability to sample the well. Damaged or degraded wells include the following; CH-P-13-03/10, CH-P-13-04/35, and MW09-17. As stated in **Section 3.2.2**, well MW09-17 was found broken at the surface during the time of sampling. The well was repaired and re-developed (purged until almost dry) during the spring 2014 field event, although it should be re-developed the following season to ensure the well screen is free of fine particles.
- 3. Many of the drive-point piezometers included in the spring sampling event did not produce sufficient volumes necessary for sample collection. Issues with ice build-up were also observed at the drive-point sample locations. These sites should be re-developed and potentially re-installed if purge volumes do not improve. Alternatively, drive-point sites could be sampled later in the season (potentially early July) in order to ensure drive-points are free of ice.
- 4. Monitoring wells should be fitted for the measurement of in-situ headspace vapour. This would include installing PVC caps or J-plugs on each well, and addressing vents currently installed on the side of some of the PVC wells.
- 5. To avoid inclusion of acid or alkaline-generating solids that are not representative of an equilibrium condition with groundwater, it is recommended that samples for analysis of acidity, alkalinity, and hardness be field-filtered.
- 6. To avoid degassing of carbon dioxide, precipitation of calcium carbonate in sample bottles, and exclusion of the representative precipitate component from analysis, it is recommended that samples for analysis of alkalinity be collected in a separate bottle with zero headspace and that the laboratory be instructed to analyze the contents of the entire bottle.

5.0 CLOSURE

We have appreciated the opportunity of working with you on this project and trust that this report is satisfactory to your requirements. Please feel free to contact the undersigned regarding any questions or further information that you may require.

Report prepared by:

ELR

Aaron Nicholson, B.Sc. Environmental Scientist

aaron@elr.ca

Report senior reviewed by:

ELR

Chris Jastrebaski, M.Sc., R.P.Bio., P.Biol.

Project Manager chris@elr.ca

Report senior reviewed by:

Hemmera Envirochem Inc.

Jason Wilkins, P.Ag., EP, CSAP

Director, Land Development and Projects

jwilkins@hemmera.com

6.0 REFERENCES

- ASTM Standard D4448-01. 2013. Standard Guide for Sampling Groundwater Monitoring Wells. ASTM International, West Conshohocken, PA, 2013, www.astm.org.
- ASTM Standard D6452-99 2012 Guide for Purging Methods for Wells used for Groundwater Quality Investigations. ASTM International, West Conshohocken, PA, 2012, www.astm.org.
- Canadian Council of Ministers of the Environment (CCME). 2014. Canadian Water Quality Guidelines for the Protection of Aquatic Life. Accessed online at http://st-ts.ccme.ca/, July 2014.
- Rice, E.W., Baird, R.B., Eaton, A.D., and Clesceri, L.S. 2006. Standard Methods for the Examination of Water and Wastewater. 22nd Edition. American Water Works Association.
- Yukon Government. 2002. Environment Act O.I.C. 2002/171 Contaminated Sites Regulation.

7.0 STATEMENT OF LIMITATIONS

This report was prepared by Hemmera Envirochem Inc ("Hemmera"), based on fieldwork conducted by Hemmera, for the sole benefit and exclusive use of the Yukon Government. The material in it reflects Hemmera's best judgment in light of the information available to it at the time of preparing this Report. Any use that a third party makes of this Report, or any reliance on or decision made based on it, is the responsibility of such third parties. Hemmera accepts no responsibility for damages, if any, suffered by any third party as a result of decisions made or actions taken based on this Report.

Hemmera has performed the work as described above and made the findings and conclusions set out in this Report in a manner consistent with the level of care and skill normally exercised by members of the environmental science profession practicing under similar conditions at the time the work was performed.

This Report represents a reasonable review of the information available to Hemmera within the established Scope, work schedule and budgetary constraints. It is possible that the levels of contamination or hazardous materials may vary across the Site, and hence currently unrecognised contamination or potentially hazardous materials may exist at the Site. No warranty, expressed or implied, is given concerning the presence or level of contamination on the Site, except as specifically noted in this Report. The conclusions and recommendations contained in this Report are based upon applicable legislation existing at the time the Report was drafted. Any changes in the legislation may alter the conclusions and/or recommendations contained in the Report. Regulatory implications discussed in this Report were based on the applicable legislation existing at the time this Report was written.

In preparing this Report, Hemmera has relied in good faith on information provided by others as noted in this Report, and has assumed that the information provided by those individuals is both factual and accurate. Hemmera accepts no responsibility for any deficiency, misstatement or inaccuracy in this Report resulting from the information provided by those individuals.

The liability of Hemmera to the Yukon Government shall be limited to injury or loss caused by the negligent acts of Hemmera. The total aggregate liability of Hemmera related to this agreement shall not exceed the lesser of the actual damages incurred, or the total fee of Hemmera for services rendered on this project.

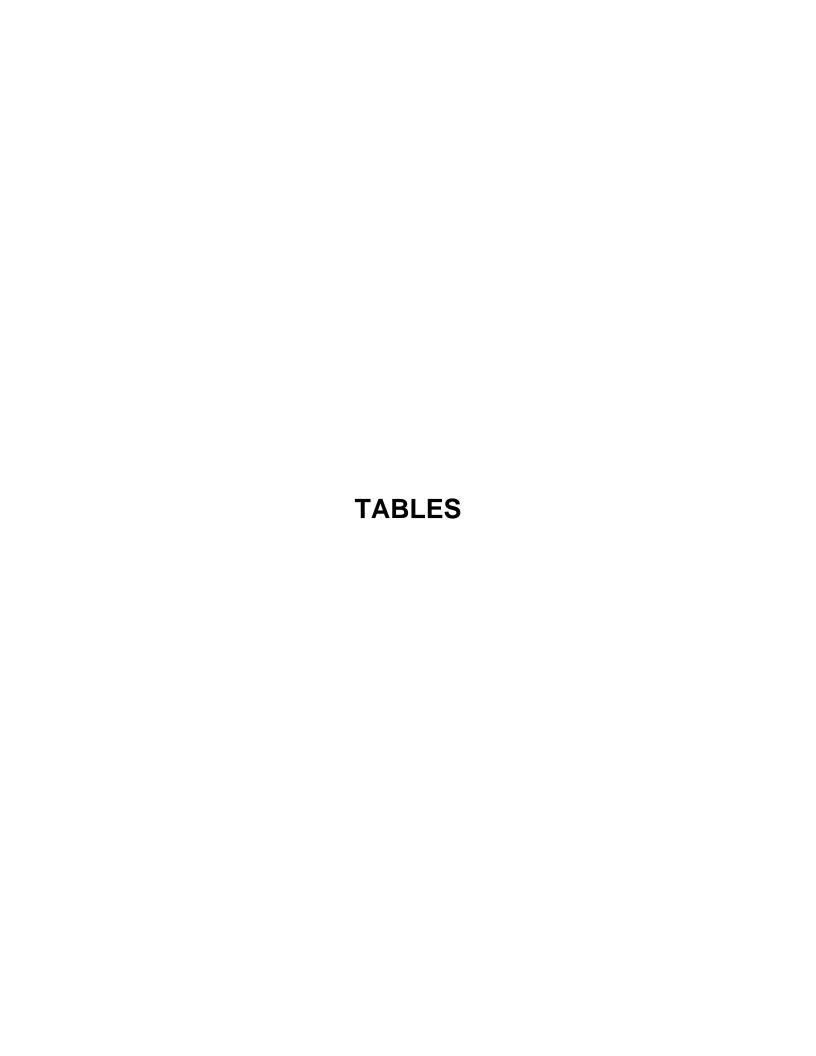


Table A
Groundwater Sampling Analytical Results

	_						Dome Creek				
		Sample ID:	GSI-DC-01B	GSI-DC-02B	GSI-DC-03B	GSI-DC-05B	GSI-DC-06-B	GSI-DC-07-B	GSI-DC-08-B	GSI-DC-09-B	GSI-DC-10-B
		Date Sampled:	-	-	-	-	29/06/2014	29/06/2014	-	29/06/2014	29/06/2014
		Job Number:					L1478849-16	L1478849-15		L1478849-11	L1478849-12
	ľ	Well Status:	Insufficient Volume	Insufficient Volume	Insufficient Volume	Insufficient Volume	Sampled	Sampled	Frozen	Sampled	Sampled
Parameter ^{1,2}	Units	CCME FAL 3,4									
Field Tests											
Field Conductance, Specific	μs/cm	-	-	-	-	-	402	1088	-	1940	1212
Field Conductivity	μs/cm	-	-	-	-	-	250	628	-	1151	709
Field Dissolved Oxygen	mg/L	-	-	-	-	-	0.66	0.42	-	0.23	0.1
Field pH (pH Units)	pH Units	-	-	-	-	-	7.1	7.03	-	6.6	6.6
Field Redox, Uncorrected	mV	-	-	-	-	-	-78.5	-84.4	-	63.5	70.5
Field Sulfide	mg/L	-	-	-	-	-	0.032	1.179	-	0.032	0.04
Field Turbidity	NTU	-	-	-	-	-	12.81	11.79	-	27.6	13.9
Field Temperature	°C	-	-	-	-	-	8.1	2.8	-	3.9	3.2
Physical Tests											
Conductivity	μs/cm	-	-	-	-	-	1260	1020	-	1510	1040
Hardness, Total (CaCO3)	mg/L	-	-	-	-	-	587	554	-	816	513
pH	pH Units	6.5-9 ⁵	-	-	-	-	8.2	7.48	-	7.49	6.71
Anions and Nutrients											
Alkalinity, Total (CaCO3)	mg/L	-	-	-	-	-	204	131	-	145	72.1
Ammonia	mg/L	0.029-153 ⁶	-	-	-	-	2.92	1.81	-	3.03	2.32
Chloride	mg/L	-	-	-	-	_	<5.000	<5.000	-	<5.000	<5.000
Fluoride	mg/L	0.12	-	-	-	_	<0.200	<0.200	-	<0.200	<0.200
Nitrate	mg/L	13	-	-	-	-	0.277	<0.050	-	<0.050	<0.050
Nitrite	mg/L	0.06	-	-	-	-	0.02	<0.010	-	<0.010	<0.010
Total Kjeldahl Nitrogen	mg/L	-	-	-	-	-	6.67	2.27	-	4.47	3.63
Sulfate (SO4)	mg/L	-	-	-	-	-	583	466	-	820	519
Sulfide	mg/L	-	-	-	-	-	<0.020	<0.020	-	0.024	<0.020
Anion Sum	mEq/L	-	-	_	-	-	16.2	12.3	-	20	12.2
Cation Sum	mEq/L	-	-	-	-	-	14.2	13.9	-	22.4	16.4
Cation - Anion Balance	%	-	-	-	-	-	-6.8	6.1	-	5.7	14.4
Organic / Inorganic Carbon											
Total Organic Carbon	mg/L	-	-	-	-	-	74.3	13	-	29.5	29.6
Total Inorganic Carbon	mg/L	-	-	-	-	-	19.7	17.2	-	29.9	13.6
Cyanides											
Total Cynanide	mg/L	-	-	-	-	.	<0.005	<0.005	-	0.0099	<0.005
Cyanide, Free	mg/L	0.005	-	-	-	-	<0.005	<0.005	-	<0.005	<0.005
Cyanide, WAD	mg/L	-	-	-	-	-	<0.005	<0.005	-	<0.005	<0.005
Thiocyanate (SCN)	mg/L	-	_	_	_	_	<0.5	<0.5	_	0.52	0.7

Table A
Groundwater Sampling Analytical Results

			Г								
				Ī	Ī	I I	Dome Creek	I	Ī	ı	<u> </u>
		Sample ID:	GSI-DC-01B	GSI-DC-02B	GSI-DC-03B	GSI-DC-05B	GSI-DC-06-B	GSI-DC-07-B	GSI-DC-08-B	GSI-DC-09-B	GSI-DC-10-B
		Date Sampled:	-	-	-	-	29/06/2014	29/06/2014	-	29/06/2014	29/06/2014
		Job Number:					L1478849-16	L1478849-15		L1478849-11	L1478849-12
		Well Status:	Insufficient Volume	Insufficient Volume	Insufficient Volume	Insufficient Volume	Sampled	Sampled	Frozen	Sampled	Sampled
Parameter ^{1,2}	Units	CCME FAL 3,4									
Dissolved Metals											
Aluminum	mg/L	0.005-0.1 ⁷	-	-	-	-	0.0507	0.0087	-	0.0205	0.142
Antimony	mg/L	-	-	-	-	-	0.00034	0.0002	-	0.00033	0.00031
Arsenic	mg/L	0.005	-	-	-	-	0.303	0.167	-	0.0361	0.0931
Barium	mg/L	-	-	-	-	-	0.22	0.158	-	0.0702	0.443
Beryllium	mg/L	-	-	-	-	-	<0.0001	<0.0001	-	<0.0001	<0.0001
Bismuth	mg/L	-	-	-	-	-	< 0.0005	<0.0005	-	<0.0005	<0.0005
Boron	mg/L	1.5	-	-	-	-	0.014	0.012	-	0.015	<0.01
Cadmium	mg/L	0.00021-0.00037 8	-	-	-	-	<0.00001	<0.00001	-	<0.00001	0.000011
Calcium	mg/L	-	-	-	-	-	143	153	-	199	147
Chromium ¹²	mg/L	0.001	-	-	-	-	0.00472	0.00035	-	0.00049	0.00207
Cobalt	mg/L	-	-	-	-	-	0.00282	0.00298	-	0.0034	0.0153
Copper	mg/L	0.00313-0.004 ⁹	-	-	-	-	<0.0002	<0.0002	-	0.00024	<0.0002
Iron	mg/L	0.3	-	-	-	-	20.5	31.5	-	61.7	82.4
Lead	mg/L	0.00484-0.007 10	-	-	-	-	0.000055	<0.00005	-	<0.00005	0.000139
Lithium	mg/L	-	-	-	-	-	<0.0005	0.00167	-	0.00059	0.00054
Magnesium	mg/L	-	-	-	-	-	55.5	41.5	-	77.7	35.5
Manganese	mg/L	-	-	-	-	-	4.87	2.41	-	1.97	11
Mercury	mg/L	0.000026	-	-	-	-	<0.00001	<0.00001	-	<0.00001	<0.00001
Molybdenum	mg/L	0.073	-	-	-	-	0.0096	0.000363	-	0.000346	0.000565
Nickel	mg/L	0.12276-0.180 ¹¹	-	-	-	-	0.0194	0.00103	-	0.00176	0.00386
Phosphorus	mg/L	-	-	-	-	-	0.159	0.061	-	0.142	<0.050
Potassium	mg/L	-	-	-	-	-	3.53	3.25	-	3.9	2.54
Selenium	mg/L	0.001	-	-	-	-	0.00051	<0.0001	-	0.00027	0.00023
Silicon	mg/L	-	-	-	-	-	10.1	6.95	-	6.51	8.18
Silver	mg/L	0.0001	-	-	-	-	<0.00001	<0.0001	-	<0.00001	<0.00001
Sodium	mg/L	-	-	-	-	-	19.7	20	-	54.4	24.3
Strontium	mg/L	-	-	-	-	-	0.726	0.474	-	0.633	0.555
Sulfur	mg/L	-	-	-	-	-	1.61	148	-	246	162
Thallium	mg/L	0.0008	-	-	-	-	<0.00001	<0.00001	-	<0.00001	0.000016
Tin	mg/L	-	-	-	-	-	<0.0001	<0.0001	-	<0.0001	<0.0001
Titanium	mg/L	-	-	-	-	-	<0.01	<0.01	-	<0.01	<0.01
Uranium	mg/L	0.015	-	-	-	-	0.000084	0.000067	-	0.000157	0.000294
Vanadium	mg/L	-	-	-	-	-	0.0131	0.0013	-	0.0017	0.0107
Zinc	mg/L	0.03	-	-	-	_	0.0063	0.0012	_	0.0024	0.0088

Table A
Groundwater Sampling Analytical Results

			Mill Complex									
	j						Iviiii Corripiex					
		Sample ID:	GSI-HA-01A	GSI-HA-02A	GSI-HA-03A	GSI-HA-04A	GSI-HA-05A	MW09-16	MW09-17	MW09-18	MW09-19	
		Date Sampled:	-	-	-	-	-	26/06/2014	29/06/2014	26/06/2014	26/06/2014	
		Job Number:						:L1478694-8	L1478849-19	L1478694-10	L1478694-6	
		Well Status:	Insufficient Volume	Sampled	Sampled	Sampled	Sampled					
Parameter ^{1,2}	Units	CCME FAL 3,4										
Field Tests												
Field Conductance, Specific	μs/cm	-	-	-	-	-	-	1695	2788	1434	2327	
Field Conductivity	μs/cm	-	-	-	-	-	-	1040	1594	2590	1285	
Field Dissolved Oxygen	mg/L	-	-	-	-	-	-	3.62	0.08	0.8	2.19	
Field pH (pH Units)	pH Units	-	-	-	-	-	-	6.67	6.8	7.01	6.76	
Field Redox, Uncorrected	mV	-	-	-	-	-	-	136.6	124	31.3	-86.7	
Field Sulfide	mg/L	-	-	-	-	-	-	0.003	0.014	0.042	0.125	
Field Turbidity	NTU	-	-	-	-	-	-	3.86	3.47	6.49	2.46	
Field Temperature	°C	-	-	-	-	-	-	4.8	2.6	1.5	1.6	
Physical Tests												
Conductivity	μs/cm	-	-	-	-	-	-	1710	2800	2580	2290	
Hardness, Total (CaCO3)	mg/L	-	-	-	-	-	-	1130	2010	1860	1530	
Н	pH Units	6.5-9 ⁵	-	-	-	-	-	7.74	7.94	7.81	7.54	
Anions and Nutrients												
Alkalinity, Total (CaCO3)	mg/L	-	-	-	-	-	-	312	451	464	443	
Ammonia	mg/L	0.029-153 ⁶	-	-	-	-	-	< 0.005	<0.005	0.0231	2.05	
Chloride	mg/L	-	-	-	-	-	-	<5.000	<10.000	<10.000	<10.000	
Fluoride	mg/L	0.12	-	-	-	-	-	<0.200	<0.400	<0.400	<0.400	
Nitrate	mg/L	13	-	-	-	-	-	0.247	0.11	<0.100	<0.100	
Nitrite	mg/L	0.06	-	-	-	-	-	<0.010	<0.020	<0.020	<0.020	
Total Kjeldahl Nitrogen	mg/L	-	-	_	-	-	-	0.121	0.092	0.137	2.99	
Sulfate (SO4)	mg/L	-	-	_	-	-	-	835	1590	1410	1130	
Sulfide	mg/L	-	-	-	-	-	-	<0.020	<0.020	<0.020	0.195	
Anion Sum	mEq/L	-	-	_	-	_	-	23.6	42	38.7	32.5	
Cation Sum	mEq/L	-	-	-	-	_	-	23.1	40.9	37.8	32.8	
Cation - Anion Balance	%	-	-	-	-	_	-	-1.1	-1.4	-1.1	0.4	
Organic / Inorganic Carbon												
Total Organic Carbon	mg/L	-	-	-	_	_	-	2.96	2.49	2.57	13.1	
Total Inorganic Carbon	mg/L	-	-	-	_	_	-	63.9	108	102	98.1	
Cyanides	.5-											
Total Cynanide	mg/L	-	-	-	_	_	.	<0.005	<0.005	<0.005	<0.005	
Cyanide, Free	mg/L	0.005	_	_	_	_	_	<0.005	<0.005	<0.005	<0.005	
Cyanide, WAD	mg/L	-	_	_	_	_	_	<0.005	<0.005	<0.005	<0.005	
Thiocyanate (SCN)	mg/L	- -	_	_	_	_	_	<0.5	<0.5	<0.5	<0.5	
THIOUYAHALE (OUIN)	iiig/∟	-	•		<u> </u>			νυ.υ	ζυ.5	\0. 0	νυ.υ	

Table A
Groundwater Sampling Analytical Results

			Mill County											
					Π	T	Mill Complex							
		Sample ID:	GSI-HA-01A	GSI-HA-02A	GSI-HA-03A	GSI-HA-04A	GSI-HA-05A	MW09-16	MW09-17	MW09-18	MW09-19			
		Date Sampled:	-	-	-	-	-	26/06/2014	29/06/2014	26/06/2014	26/06/2014			
		Job Number:						:L1478694-8	L1478849-19	L1478694-10	L1478694-6			
		Well Status:	Insufficient Volume	Sampled	Sampled	Sampled	Sampled							
Parameter ^{1,2}	Units	CCME FAL 3,4												
Dissolved Metals														
Aluminum	mg/L	0.005-0.1 ⁷	-	-	-	-	-	0.0023	<0.002	<0.002	0.0109			
Antimony	mg/L	-	-	-	-	-	-	0.0634	0.00043	0.00022	<0.0002			
Arsenic	mg/L	0.005	-	-	-	-	-	0.00902	0.0207	0.0537	0.0779			
Barium	mg/L	-	-	-	-	-	-	0.0137	0.00842	0.0083	0.0488			
Beryllium	mg/L	-	-	-	-	-	-	<0.0001	<0.0002	<0.0002	<0.0002			
Bismuth	mg/L	-	-	-	-	-	-	<0.0005	<0.001	<0.001	<0.001			
Boron	mg/L	1.5	-	-	-	-	-	0.131	0.096	<0.02	0.437			
Cadmium	mg/L	0.00021-0.00037 8	-	-	-	-	-	0.0249	<0.00002	0.000058	<0.00002			
Calcium	mg/L	-	-	-	-	-	-	262	367	357	326			
Chromium ¹²	mg/L	0.001	-	-	-	-	-	<0.0001	<0.0002	<0.0002	<0.0002			
Cobalt	mg/L	-	-	-	-	-	-	0.00018	<0.0002	<0.0002	0.00204			
Copper	mg/L	0.00313-0.004 ⁹	-	-	-	-	-	0.00558	0.00056	<0.0004	<0.0004			
Iron	mg/L	0.3	-	-	-	-	-	<0.01	<0.01	<0.01	18.5			
Lead	mg/L	0.00484-0.007 10	-	-	-	-	-	0.0069	<0.0001	<0.0001	<0.0001			
Lithium	mg/L	-	-	-	-	-	-	0.0086	0.0201	0.0202	0.0108			
Magnesium	mg/L	-	-	-	-	-	-	115	266	235	174			
Manganese	mg/L	-	-	-	-	-	-	0.0321	0.0369	0.375	4.54			
Mercury	mg/L	0.000026	-	-	-	-	-	<0.00001	<0.00001	<0.00001	<0.00001			
Molybdenum	mg/L	0.073	-	-	-	-	-	0.000089	<0.0001	<0.0001	0.00012			
Nickel	mg/L	0.12276-0.180 ¹¹	-	-	-	-	-	0.00328	<0.001	<0.001	<0.001			
Phosphorus	mg/L	-	-	-	-	-	-	< 0.050	<0.050	<0.050	0.234			
Potassium	mg/L	-	-	-	-	-	-	5.95	7.58	7.29	7.38			
Selenium	mg/L	0.001	-	-	-	-	-	<0.0001	<0.0002	<0.0002	0.00034			
Silicon	mg/L	-	-	-	-	-	-	4.78	5	4.85	9.3			
Silver	mg/L	0.0001	-	-	-	-	-	<0.00001	<0.00002	<0.00002	<0.00002			
Sodium	mg/L	-	-	-	-	-	-	7.08	11.7	10.7	14.7			
Strontium	mg/L	-	-	-	-	-	-	0.586	1.1	1.08	1.16			
Sulfur	mg/L	-	-	-	-	-	-	258	482	439	353			
Thallium	mg/L	0.0008	-	-	-	-	-	0.00025	0.000103	0.00028	<0.00002			
Tin	mg/L	-	-	-	-	-	-	<0.0001	<0.0002	<0.0002	<0.0002			
Titanium	mg/L	-	-	-	-		_	<0.01	<0.02	<0.02	<0.02			
Uranium	mg/L	0.015	-	-	-		_	0.00304	0.00794	0.00781	0.00056			
Vanadium	mg/L	-	-	-	-		_	<0.001	<0.002	<0.002	<0.002			
Zinc	mg/L	0.03	-	-	-	-	-	3.84	<0.002	0.003	<0.002			

Table A
Groundwater Sampling Analytical Results

			Brown McDade Pit												
		Sample ID:	CH-P-13-01	CH-P-13-03/10	CH-P-13-03/50	CH-P-13-04/10	CH-P-13-04/35	CH-P-13-05/50	GLL07-01	GLL07-02	GLL07-03	MP14-01	MW09-13	MW09-14	MW09-15
		Date Sampled:	-	-	28/06/2014	-	-	27/06/2014	-	-	27/06/2014	-	-	-	-
		Job Number:			L1478849-3			L1478694-1			L1478694-5				
		Well Status:	Frozen	Damaged	Sampled	Insufficient Volume	Obstruction	Sampled	Frozen	Dry	Sampled	Not Installed	Frozen	Frozen	Frozen
Parameter ^{1,2}	Units	CCME FAL 3,4													
Field Tests															
Field Conductance, Specific	μs/cm	-	-	-	-	-	-	2864	-	-	1659	-	-	-	-
Field Conductivity	μs/cm	-	-	-	-	-	-	1640	-	-	1014	-	-	-	-
Field Dissolved Oxygen	mg/L	-	-	-	-	-	-	2.53	-	-	5.32	-	-	-	-
Field pH (pH Units)	pH Units	-	-	-	-	-	-	6.27	-	-	6.19	-	-	-	-
Field Redox, Uncorrected	mV	-	-	-	-	-	-	122.4	-	-	103.7	-	-	-	-
Field Sulfide	mg/L	-	-	-	-	-	-	0.434	-	-	0.095	-	-	-	-
Field Turbidity	NTU	-	-	-	70.1	-	-	24.1	-	-	22	-	-	-	-
Field Temperature	°C	-	-	-	-	-	-	2.6	-	-	4.5	-	-	-	-
Physical Tests															
Conductivity	μs/cm	-	-	-	2130	-	-	2690	-	-	1640	-	-	-	-
Hardness, Total (CaCO3)	mg/L	-	-	-	1040	-	-	1810	-	-	974	-	-	-	-
рН	pH Units	6.5-9 ⁵	-	-	8.07	-	-	7.05	-	-	7.15	-	-	-	-
Anions and Nutrients															
Alkalinity, Total (CaCO3)	mg/L	-	-	-	338	-	-	116	-	-	74.8	-	-	-	-
Ammonia	mg/L	0.029-153 ⁶	-	-	0.153	-	-	0.0349	-	-	0.185	-	-	-	-
Chloride	mg/L	-	-	-	21	-	-	<10.000	-	-	<5.000	-	-	-	-
Fluoride	mg/L	0.12	-	-	<0.400	-	-	<0.400	-	-	<0.200	-	-	-	-
Nitrate	mg/L	13	-	-	<0.100	-	-	0.42	-	-	<0.050	-	-	-	-
Nitrite	mg/L	0.06	-	-	<0.020	-	-	<0.020	-	-	<0.010	-	-	-	-
Total Kjeldahl Nitrogen	mg/L	-	-	-	3.2	-	-	0.121	-	-	0.65	-	-	-	-
Sulfate (SO4)	mg/L	-	-	-	1050	-	-	1850	-	-	991	-	-	-	-
Sulfide	mg/L	-	-	-	0.027	-	-	<0.020	-	-	0.384	-	-	-	-
Anion Sum	mEq/L	-	-	-	29.3	-	-	40.9	-	-	22.1	-	-	-	-
Cation Sum	mEq/L	-	-	-	27.4	-	-	39.1	-	-	21.5	-	-	-	-
Cation - Anion Balance	%	-	-	-	-3.3	-	-	-2.3	-	-	-1.5	-	-	-	-
Organic / Inorganic Carbon															
Total Organic Carbon	mg/L	-	-	-	28.9	-	-	2.05	-	-	3.6	-	-	-	-
Total Inorganic Carbon	mg/L	-	-	-	78.4	-	-	16.5	-	-	9.95	-	-	-	-
Cyanides															
Total Cynanide	mg/L	-	-	-	0.0088	-	-	<0.005	-	-	<0.005	-	-	-	-
Cyanide, Free	mg/L	0.005	-	-	<0.005	-	-	<0.005	-	-	<0.005	-	-	-	-
Cyanide, WAD	mg/L	-	-	-	<0.005	-	-	<0.005	-	-	<0.005	-	-	-	-
Thiocyanate (SCN)	mg/L	-	-	-	<0.5	-	-	<0.5	-	-	<0.5	-	-	-	-

Table A
Groundwater Sampling Analytical Results

			Brown McDade Pit												
		Sample ID:	CH-P-13-01	CH-P-13-03/10	CH-P-13-03/50	CH-P-13-04/10	CH-P-13-04/35	CH-P-13-05/50	GLL07-01	GLL07-02	GLL07-03	MP14-01	MW09-13	MW09-14	MW09-15
		Date Sampled:	-	-	28/06/2014	-	-	27/06/2014	-	-	27/06/2014	-	-	-	-
		Job Number:			L1478849-3			L1478694-1			L1478694-5				
		Well Status:	Frozen	Damaged	Sampled	Insufficient Volume	Obstruction	Sampled	Frozen	Dry	Sampled	Not Installed	Frozen	Frozen	Frozen
Parameter ^{1,2}	Units	CCME FAL 3,4													
Dissolved Metals															
Aluminum	mg/L	0.005-0.1 7	-	-	0.0115	-	-	0.0444	-	-	0.0344	-	-	-	-
Antimony	mg/L	-	-	-	0.00105	-	-	<0.0005	-	-	<0.0005	-	-	-	-
Arsenic	mg/L	0.005	-	-	0.00422	-	-	0.00284	-	-	<0.0005	-	-	-	-
Barium	mg/L	-	-	-	0.0447	-	-	0.0111	-	-	0.00967	-	-	-	-
Beryllium	mg/L	-	-	-	<0.0002	-	-	<0.0005	-	-	<0.0005	-	-	-	-
Bismuth	mg/L	-	-	-	<0.001	-	-	<0.0025	-	-	<0.0025	-	-	-	-
Boron	mg/L	1.5	-	-	0.04	-	-	<0.05	-	-	<0.05	-	-	-	-
Cadmium	mg/L	0.00021-0.00037 8	-	-	0.000134	-	-	0.271	-	-	0.945	-	-	-	-
Calcium	mg/L	-	-	-	268	-	-	449	-	-	294	-	-	-	-
Chromium ¹²	mg/L	0.001	-	-	<0.0002	-	-	<0.0005	-	-	<0.0005	-	-	-	-
Cobalt	mg/L	-	-	-	0.0212	-	-	0.0322	-	-	0.0238	-	-	-	-
Copper	mg/L	0.00313-0.004 ⁹	-	-	0.00095	-	-	0.131	-	-	<0.001	-	-	-	-
Iron	mg/L	0.3	-	-	1.72	-	-	7.72	-	-	1.75	-	-	-	-
Lead	mg/L	0.00484-0.007 ¹⁰	-	-	0.00027	-	-	0.00396	-	-	0.00049	-	-	-	-
Lithium	mg/L	-	-	-	0.0035	-	-	0.0319	-	-	0.0245	-	-	-	-
Magnesium	mg/L	-	-	-	90.7	-	-	167	-	-	58.4	-	-	-	-
Manganese	mg/L	-	-	-	16.7	-	-	30.4	-	-	10.4	-	-	-	-
Mercury	mg/L	0.000026	-	-	<0.00001	-	-	<0.00001	-	-	<0.00001	-	-	-	-
Molybdenum	mg/L	0.073	-	-	0.00404	-	-	0.00076	-	-	0.00043	-	-	-	-
Nickel	mg/L	0.12276-0.180 ¹¹	-	-	0.0339	-	-	0.0136	-	-	0.0499	-	-	-	-
Phosphorus	mg/L	-	-	-	<0.050	-	-	<0.050	-	-	<0.050	-	-	-	-
Potassium	mg/L	-	-	-	8.84	-	-	5.18	-	-	2.45	-	-	-	-
Selenium	mg/L	0.001	-	-	0.00089	-	-	<0.0005	-	-	<0.0005	-	-	-	-
Silicon	mg/L	-	-	-	7.15	-	-	6.6	-	-	3.32	-	-	-	-
Silver	mg/L	0.0001	-	-	<0.00002	-	-	<0.00005	-	-	<0.00005	-	-	-	-
Sodium	mg/L	-	-	-	131	-	-	11	-	-	11	-	-	-	-
Strontium	mg/L	-	-	-	0.777	-	-	0.647	-	-	0.334	-	-	-	-
Sulfur	mg/L	-	-	-	316	-	-	589	-	-	313	-	-	-	-
Thallium	mg/L	0.0008	-	-	0.000029	-	-	0.000458	-	-	0.000391	-	-	-	-
Tin	mg/L	-	-	-	0.00107	-	-	<0.0005	-	-	<0.0005	-	-	-	-
Titanium	mg/L	-	-	-	<0.02	-	-	<0.05	-	-	<0.05	-	-	-	-
Uranium	mg/L	0.015	-	-	0.00809	-	-	0.000931	-	-	0.000117	-	-	-	-
Vanadium	mg/L	-	-	-	<0.002	-	-	<0.005	-	-	<0.005	-	-	-	-
Zinc	mg/L	0.03	-	-	0.0317	-	-	28.2	-	-	32	-	-	-	-

Table A
Groundwater Sampling Analytical Results

			Pony Creek										Seepage Dam			
		Sample ID:	GSI-PC-01-B	GSI-PC-02-B	GSI-PC-03-B	GSI-PC-04-B	GSI-PC-05-B	MP09-01	MP09-02	MP09-03	MP09-08	W14103083BH01	W14103083BH02	W14103083BH04		
		Date Sampled:	-	-	-	-	-	-	27/06/2014	-	27/06/2014	-	-	-		
		Job Number:							L1478694-4		L1478694-3					
		Well Status:	Destroyed	Dry	Insufficient Volume	Insufficient Volume	Dry	Unable to locate	Sampled	Insufficient Volume	Sampled	Frozen	Insufficient Volume	Frozen		
Parameter ^{1,2}	Units	CCME FAL 3,4														
Field Tests																
Field Conductance, Specific	μs/cm	-	-	-	-	-	-	-	522	-	720.3	-	-	-		
Field Conductivity	μs/cm	-	-	-	-	-	-	-	304.9	-	416.6	-	-	-		
Field Dissolved Oxygen	mg/L	-	-	-	-	-	-	-	5.4	-	1.64	-	-	-		
Field pH (pH Units)	pH Units	-	-	-	-	-	-	-	7.22	-	7.12	-	-	-		
Field Redox, Uncorrected	mV	-	-	-	-	-	-	-	75.8	-	-95.5	-	-	-		
Field Sulfide	mg/L	-	-	-	-	-	-	-	0.024	-	0.124	-	-	-		
Field Turbidity	NTU	-	-	-	-	-	-	-	1.96	-	1.02	-	-	-		
Field Temperature	°C	-	-	-	-	-	-	-	3.3	-	2.9	-	-	-		
Physical Tests																
Conductivity	μs/cm	-	-	-	-	-	-	-	512	-	705	-	-	-		
Hardness, Total (CaCO3)	mg/L	-	-	-	-	-	-	-	276	-	408	-	-	-		
рН	pH Units	6.5-9 ⁵	-	-	-	-	-	-	7.99	-	8.05	-	-	-		
Anions and Nutrients																
Alkalinity, Total (CaCO3)	mg/L	-	-	-	-	-	-	-	121	-	226	-	-	-		
Ammonia	mg/L	0.029-153 ⁶	-	-	-	-	-	-	0.0055	-	0.0309	-	-	-		
Chloride	mg/L	-	-	-	-	-	-	-	<0.500	-	<0.500	-	-	-		
Fluoride	mg/L	0.12	-	-	-	-	-	-	0.061	-	0.078	-	-	-		
Nitrate	mg/L	13	-	-	-	-	-	-	0.0717	-	<0.005	-	-	-		
Nitrite	mg/L	0.06	-	-	-	-	-	-	<0.001	-	<0.001	-	-	-		
Total Kjeldahl Nitrogen	mg/L	-	-	-	-	-	-	-	0.251	-	0.247	-	-	-		
Sulfate (SO4)	mg/L	-	-	-	-	-	-	-	159	-	180	-	-	-		
Sulfide	mg/L	-	-	-	-	-	-	-	<0.020	-	0.108	-	-	-		
Anion Sum	mEq/L	-	-	-	-	-	-	-	5.74	-	8.27	-	-	-		
Cation Sum	mEq/L	-	-	-	-	-	-	-	5.74	-	8.53	-	-	-		
Cation - Anion Balance	%	-	-	-	-	-	-	-	0	-	1.5	-	-	-		
Organic / Inorganic Carbon																
Total Organic Carbon	mg/L	-	-	-	-	-	-	-	6.39	-	5.01	-	-	-		
Total Inorganic Carbon	mg/L	-	-	-	-	-	-	-	25.3	-	49.5	-	-	-		
Cyanides																
Total Cynanide	mg/L	-	-	-	-	-	-	-	<0.005	-	<0.005	-	-	-		
Cyanide, Free	mg/L	0.005	-	-	-	-	-	-	<0.005	-	<0.005	-	-	-		
Cyanide, WAD	mg/L	-	-	-	-	-	-	-	<0.005	-	<0.005	-	-	-		
Thiocyanate (SCN)	mg/L	-	-	-	-	-	-	-	<0.5	-	<0.5	-	-	-		

Table A
Groundwater Sampling Analytical Results

		[Pony Creek										Seepage Dam		
		Sample ID:	GSI-PC-01-B	GSI-PC-02-B	GSI-PC-03-B	GSI-PC-04-B	GSI-PC-05-B	MP09-01	MP09-02	MP09-03	MP09-08	W14103083BH01	W14103083BH02	W14103083BH04	
		Date Sampled:	-	-	-	-	-	-	27/06/2014	-	27/06/2014	-	-	-	
		Job Number:							L1478694-4		L1478694-3				
		Well Status:	Destroyed	Dry	Insufficient Volume	Insufficient Volume	Dry	Unable to locate	Sampled	Insufficient Volume	Sampled	Frozen	Insufficient Volume	Frozen	
Parameter ^{1,2}	Units	CCME FAL 3,4													
Dissolved Metals															
Aluminum	mg/L	0.005-0.1 ⁷	-	-	-	-	-	-	0.0056	-	0.0038	-	-	-	
Antimony	mg/L	-	-	-	-	-	-	-	0.00067	-	<0.0001	-	-	-	
Arsenic	mg/L	0.005	-	-	-	-	-	-	0.00156	-	0.0111	-	-	-	
Barium	mg/L	-	-	-	-	-	-	-	0.0553	-	0.043	-	-	-	
Beryllium	mg/L	-	-	-	-	-	-	-	<0.0001	-	<0.0001	-	-	-	
Bismuth	mg/L	-	-	-	-	-	-	-	<0.0005	-	<0.0005	-	-	-	
Boron	mg/L	1.5	-	-	-	-	-	-	<0.01	-	<0.01	-	-	-	
Cadmium	mg/L	0.00021-0.00037 ⁸	-	-	-	-	-	-	0.000054	-	<0.00001	-	-	-	
Calcium	mg/L	-	-	-	-	-	-	-	81.3	-	113	-	-	-	
Chromium ¹²	mg/L	0.001	-	-	-	-	-	-	<0.0001	-	<0.0001	-	-	-	
Cobalt	mg/L	-	-	-	-	-	-	-	0.00015	-	0.00056	-	-	-	
Copper	mg/L	0.00313-0.004 ⁹	-	-	-	-	-	-	0.0008	-	<0.0002	-	-	-	
Iron	mg/L	0.3	-	-	-	-	-	-	0.041	-	0.795	-	-	-	
Lead	mg/L	0.00484-0.007 ¹⁰	-	-	-	-	-	-	<0.00005	-	<0.00005	-	-	-	
Lithium	mg/L	-	-	-	-	-	-	-	0.00091	-	0.00395	-	-	-	
Magnesium	mg/L	-	-	-	-	-	-	-	17.8	-	30.9	-	-	-	
Manganese	mg/L	-	-	-	-	-	-	-	0.013	-	0.852	-	-	-	
Mercury	mg/L	0.000026	-	-	-	-	-	-	<0.00001	-	<0.00001	-	-	-	
Molybdenum	mg/L	0.073	-	-	-	-	-	-	0.000126	-	0.000477	-	-	-	
Nickel	mg/L	0.12276-0.180 ¹¹	-	-	-	-	-	-	<0.0005	-	<0.0005	-	-	-	
Phosphorus	mg/L	-	-	-	-	-	-	-	<0.050	-	<0.050	-	-	-	
Potassium	mg/L	-	-	-	-	-	-	-	0.86	-	1.16	-	-	-	
Selenium	mg/L	0.001	-	-	-	-	-	-	<0.0001	-	<0.0001	-	-	-	
Silicon	mg/L	-	-	-	-	-	-	-	5.48	-	7	-	-	-	
Silver	mg/L	0.0001	-	-	-	-	-	-	<0.00001	-	<0.00001	-	-	-	
Sodium	mg/L	-	-	-	-	-	-	-	4.55	-	6.16	-	-	-	
Strontium	mg/L	-	-	-	-	-	-	-	0.652	-	1.29	-	-	-	
Sulfur	mg/L	-	-	-	-	-	-	-	53.2	-	60.9	-	-	-	
Thallium	mg/L	0.0008	-	-	-	-	-	-	<0.00001	-	<0.00001	-	-	-	
Tin	mg/L	-	-	-	-	-	-	-	<0.0001	-	<0.0001	-	-	-	
Titanium	mg/L	-	-	-	-	-	-	-	<0.01	-	<0.01	-	-	-	
Uranium	mg/L	0.015	-	-	-	-	-	-	0.00134	-	0.00316	-	-	-	
Vanadium	mg/L	-	-	-	-	-	-	-	<0.001	-	<0.001	-	-	-	
Zinc	mg/L	0.03	-	-	-	-	-	-	0.0033	-	0.0012	-	-	-	

Table A
Groundwater Sampling Analytical Results

			Tailings Facility and Seepage Pond											
		Sample ID:	MP09-04	MP09-05	MP09-09	MP09-10	MP09-11	MP09-12	MP09-14	MW09-01	MW09-02	MW09-03	MW09-04	MW09-05
		Date Sampled:	28/06/2014	28/06/2014	29/06/2014	29/06/2014	29/06/2014	29/06/2014	-	-	27/06/2014	27/06/2014	27/06/2014	-
		Job Number:	L1478849-4	L1478849-2	L1478849-17	L1478849-21	L1478849-18	L1478849-14			L1478694-12	L1478694-14	L1478694-11	
		Well Status:	Sampled	Sampled	Sampled	Sampled	Sampled	Sampled	Insufficient Volume	Obstruction	Sampled	Sampled	Sampled	Unable to Access
Parameter ^{1,2}	Units	CCME FAL 3,4												
Field Tests														
Field Conductance, Specific	μs/cm	-	1610	2380	275.4	415.4	804.7	518	-	-	2670	2526	2666	-
Field Conductivity	μs/cm	-	959	1723	174.3	283	498.7	333.9	-	-	1670	1492	154.3	-
Field Dissolved Oxygen	mg/L	-	4.09	4.1	0.25	7.04	0.37	5.93	-	-	0.14	0.76	0.28	-
Field pH (pH Units)	pH Units	-	7.04	6.75	9.66	9.21	7.54	7.46	-	-	7.13	7.22	8.64	-
Field Redox, Uncorrected	mV	-	58.2	-41.4	-23.1	-46.7	-146.2	-91.7	-	-	-92.1	-24.1	-147.3	-
Field Sulfide	mg/L	-	0.012	0.016	0.651	-	0.411	0.279	-	-	0.023	0.017	0.027	-
Field Turbidity	NTU	-	1.87	5.05	61	-	34	82.7	-	-	16.9	1.58	5.68	-
Field Temperature	°C	-	3.6	8.5	5.8	8.2	5.1	6.5	-	-	4.7	3.5	3.6	-
Physical Tests														
Conductivity	μs/cm	-	1630	2360	489	683	888	746	-	-	2840	2520	2680	-
Hardness, Total (CaCO3)	mg/L	-	1070	1360	197	280	485	444	-	-	1580	1560	1720	-
Н	pH Units	6.5-9 ⁵	7.92	7.68	8.74	9.07	8.14	8.16	-	-	6.96	7.84	7.96	-
Anions and Nutrients														
Alkalinity, Total (CaCO3)	mg/L	-	243	330	80.2	108	581	429	-	-	34.5	155	97.6	-
Ammonia	mg/L	0.029-153 ⁶	0.0056	8.16	4.12	7.74	5.03	3.91		-	12.1	2.37	6.82	
Chloride	mg/L	-	<5.000	<10.000	2.5	2.84	<5.000	<0.500		-	<10.000	<10.000	<10.000	
Fluoride	mg/L	0.12	<0.200	<0.400	1.65	1.63	0.49	0.356		-	0.47	<0.400	<0.400	
Nitrate	mg/L	13	0.478	1.66	0.0191	0.0306	<0.050	0.0218		-	<0.100	<0.100	0.31	-
Nitrite	mg/L	0.06	<0.010	0.035	0.0063	0.0023	<0.010	0.0017	_	-	<0.020	<0.020	0.059	_
Total Kjeldahl Nitrogen	mg/L	-	0.199	12.4	5.38	33.7	9	4.6	_	-	16.3	3.19	7.94	_
Sulfate (SO4)	mg/L	-	835	1310	136	253	31.2	48.5	_	-	1860	1640	1750	_
Sulfide	mg/L	-	<0.020	<0.020	<0.100	<0.020	0.03	<0.020	-	-	<0.020	<0.020	<0.020	_
Anion Sum	mEq/L	-	22.3	34	4.59	7.6	12.3	9.6	-	-	39.5	37.3	38.4	_
Cation Sum	mEq/L	_	22	33	5.46	7.66	12	9.75	_	-	40	34.9	37.9	_
Cation - Anion Balance	%	-	-0.7	-1.5	8.7	0.3	-1.4	0.8	-	-	0.7	-3.3	-0.7	_
Organic / Inorganic Carbon	,,		<u> </u>		0	0.0		0.0			0	0.0	0	
Total Organic Carbon	mg/L	_	5.48	24.1	28.3	45.6	48.4	13.8	_	-	5.82	6.7	5.88	_
Total Inorganic Carbon	mg/L	_	52.3	70.4	9.2	66.4	89.1	89.8	-	-	8.2	27.9	14.4	_
Cyanides	9, =		52.0		Ų. <u>L</u>			20.0			0.2	27.0		
Total Cynanide	mg/L	-	0.0078	0.0366	0.292	49.9	0.0323	0.0367	-	-	0.0557	0.0437	<0.005	_
Cyanide, Free	mg/L	0.005	<0.007	<0.005	0.0176	3.22	<0.005	<0.005	_	-	<0.005	0.0091	<0.005	_
Cyanide, WAD	mg/L	-	<0.005	0.0054	0.0319	3.49	<0.005	<0.005	-	- -	0.0076	0.0129	<0.005	_
Thiocyanate (SCN)	mg/L	-	<0.005	<2.5	<0.5	0.85	0.62	<0.005		-	1.36	<0.5	<0.005	

Table A
Groundwater Sampling Analytical Results

				Tailings Facility and Seepage Pond												
		Sample ID:	MP09-04	MP09-05	MP09-09	MP09-10	MP09-11	MP09-12	MP09-14	MW09-01	MW09-02	MW09-03	MW09-04	MW09-05		
		Date Sampled:	28/06/2014	28/06/2014	29/06/2014	29/06/2014	29/06/2014	29/06/2014	-	-	27/06/2014	27/06/2014	27/06/2014	-		
		Job Number:	L1478849-4	L1478849-2	L1478849-17	L1478849-21	L1478849-18	L1478849-14			L1478694-12	L1478694-14	L1478694-11			
		Well Status:	Sampled	Sampled	Sampled	Sampled	Sampled	Sampled	Insufficient Volume	Obstruction	Sampled	Sampled	Sampled	Unable to Access		
Parameter ^{1,2}	Units	CCME FAL 3,4														
Dissolved Metals																
Aluminum	mg/L	0.005-0.1 ⁷	0.0017	0.0224	0.0048	0.0088	0.005	0.0018	-	-	<0.005	<0.005	<0.002	-		
Antimony	mg/L	-	0.00185	0.0004	0.0897	0.0907	0.0195	0.0331	-	-	0.00345	0.503	0.342	-		
Arsenic	mg/L	0.005	0.00097	0.0276	18.7	9.72	11.3	5.41		-	20.3	1.28	3.83	-		
Barium	mg/L	-	0.0807	0.0811	0.00127	0.00083	0.0884	0.0532	1 - 1	-	0.00688	0.0364	0.006	-		
Beryllium	mg/L	-	<0.0001	<0.0002	<0.0002	<0.0002	<0.0002	< 0.0001	-	-	<0.0005	<0.0005	<0.0002	-		
Bismuth	mg/L	-	<0.0005	<0.001	<0.001	<0.001	<0.001	<0.0005	-	-	<0.0025	<0.0025	<0.001	-		
Boron	mg/L	1.5	0.017	0.122	0.299	0.342	0.037	0.052	-	-	0.058	0.126	0.247	-		
Cadmium	mg/L	0.00021-0.000378	0.00009	0.000961	0.000102	0.000658	<0.00002	0.000313	-	-	0.000627	0.000895	0.000037	-		
Calcium	mg/L	-	260	449	77.6	111	112	103	-	-	473	477	487	-		
Chromium ¹²	mg/L	0.001	0.00027	0.00079	<0.0002	<0.0002	0.00152	0.00029	-	-	<0.0005	<0.0005	<0.0002	-		
Cobalt	mg/L	-	0.00022	0.0157	0.0402	0.0468	0.00189	0.00169	-	-	0.0115	0.00422	0.001	-		
Copper	mg/L	0.00313-0.004 ⁹	0.00267	0.00378	0.383	0.0349	0.00049	0.00052	-	-	<0.001	<0.001	<0.0004	-		
Iron	mg/L	0.3	<0.01	21.5	0.401	0.229	11.7	3.89		-	37	0.218	<0.01	-		
Lead	mg/L	0.00484-0.007 ¹⁰	<0.00005	<0.0001	0.00185	0.0028	0.00144	0.00631	1 - 1	-	<0.00025	<0.00025	0.00022	-		
Lithium	mg/L	-	0.00079	<0.001	<0.001	<0.001	0.0031	0.00208	-	-	0.0192	<0.0025	0.0056	-		
Magnesium	mg/L	-	102	57.4	0.81	0.88	49.8	45.6	-	-	96.6	90.5	121	-		
Manganese	mg/L	-	0.0034	10.6	0.0591	0.0291	4.15	2.7	-	-	30.7	50.2	4.25	-		
Mercury	mg/L	0.000026	<0.00001	<0.00001	0.000036	<0.00005	<0.00001	<0.00001	-	-	<0.00001	<0.00001	<0.0001	-		
Molybdenum	mg/L	0.073	0.000162	0.00053	0.013	0.0142	0.00818	0.00255	-	-	0.00564	0.00371	0.00758	-		
Nickel	mg/L	0.12276-0.180 ¹¹	<0.0005	0.0036	0.0143	0.0146	0.0093	0.00521	-	-	0.0035	<0.0025	<0.001	-		
Phosphorus	mg/L	-	<0.050	<0.050	0.179	0.199	0.083	0.097	-	-	<0.050	0.06	0.072	-		
	mg/L	-	2.72	9.57	8.18	10.5	8.22	5.23	-	-	67	20.6	39.5	-		
Selenium	mg/L	0.001	0.00012	<0.0002	0.00183	0.0015	0.00032	<0.0001	-	-	<0.0005	<0.0005	<0.0002	-		
Silicon	mg/L	-	6.69	5.68	8.71	6.67	10.8	9.61	-	-	7	15.4	11.8	-		
	mg/L	0.0001	<0.00001	<0.00002	0.00189	0.00891	<0.00002	<0.00001	-	-	<0.00005	<0.00005	<0.00002	-		
	mg/L	-	12.8	80.6	22.7	28.1	21	3.5	-	-	64.1	26.2	43.5	_		
	mg/L	-	0.927	1.13	0.146	0.18	0.596	0.468	-	-	0.915	1.59	1.45	-		
	mg/L	-	265	398	132	116	11.9	16.3	-	-	589	506	570	-		
	mg/L	0.0008	<0.00001	0.000045	<0.00002	0.000046	<0.00002	0.000084	-	-	0.000254	<0.0005	0.000082	_		
	mg/L	-	<0.0001	<0.0002	<0.0002	<0.0002	<0.0002	<0.0001	-	-	<0.0005	<0.0005	<0.0002	-		
	mg/L	-	<0.01	<0.02	<0.02	<0.02	<0.02	<0.01	-	-	<0.05	<0.05	<0.02	_		
	mg/L	0.015	0.00247	0.00205	0.000542	0.000975	0.000762	0.000713	-	-	0.000678	0.00143	0.000227	_		
	mg/L	-	<0.001	<0.002	<0.002	<0.002	0.0056	<0.001	-	_	<0.005	<0.005	<0.002	_		
	mg/L	0.03	0.0036	0.013	0.009	0.0082	0.0206	0.0403		_	0.312	0.0065	0.953	-		

Table A
Groundwater Sampling Analytical Results

	_		Tailings Facility and Seepage Pond												
		Sample ID:	MW09-06	MW09-07	MW09-08	MW09-11	MW09-20	MW09-21	MW09-22	MW09-23	MW09-24	W14103083BH03			
		Date Sampled:	-	29/06/2014	28/06/2014	-	-	28/06/2014	27/06/2014	28/06/2014	28/06/2014	-			
		Job Number:		L1478849-13	L1478849-7			L1478849-1	L1478694-15	L1478849-6	L1478849-5				
		Well Status:	Unable to Locate	Sampled	Sampled	Dry	Dry	Sampled	Sampled	Sampled	Sampled	Insufficient Volume			
Parameter ^{1,2}	Units	CCME FAL 3,4													
Field Tests															
Field Conductance, Specific	μs/cm	-	-	2411	381.2	-	-	2544	2073	2612	1198	-			
Field Conductivity	μs/cm	-	-	1542	216.7	-	-	1430	1684	1468	761	-			
Field Dissolved Oxygen	mg/L	-	-	3.1	1.41	-	-	1.91	2.58	4.32	5.77	-			
Field pH (pH Units)	pH Units	-	-	6.8	6.82	-	-	6.82	5.82	7.12	7.34	-			
Field Redox, Uncorrected	mV	-	-	102.4	-96.7	-	-	-64.8	58.3	-64.7	3.3	-			
Field Sulfide	mg/L	-	-	0.294	0.092	-	-	0.063	0.026	0.09	0.084	-			
Field Turbidity	NTU	-	-	32.2	2.02	-	-	11.1	10.54	30.1	11.3	-			
Field Temperature	°C	-	-	5.7	3.3	-	-	2	3.7	2.1	2.6	-			
Physical Tests															
Conductivity	μs/cm	-	-	2240	277	-	-	2500	3020	2400	1430	-			
Hardness, Total (CaCO3)	mg/L	-	-	1300	139	-	-	1600	1700	1350	907	-			
pН	pH Units	6.5-9 ⁵	-	7.6	7.49	-	-	7.4	6.52	7.83	8.06	-			
Anions and Nutrients															
Alkalinity, Total (CaCO3)	mg/L	-	-	225	147	-	-	359	35.7	326	272	-			
Ammonia	mg/L	0.029-153 ⁶	-	4.6	2.01	-	-	11.6	2.27	7.77	<0.005	-			
Chloride	mg/L	-	-	<10.000	<0.500	-	-	<10.000	<10.000	<10.000	<5.000	-			
Fluoride	mg/L	0.12	-	<0.400	0.077	-	-	<0.400	<0.400	<0.400	<0.200	-			
Nitrate	mg/L	13	-	<0.100	<0.005	-	-	<0.100	11.9	<0.100	1.45	-			
Nitrite	mg/L	0.06	-	<0.020	0.0017	-	-	<0.020	0.326	<0.020	<0.010	-			
Total Kjeldahl Nitrogen	mg/L	-	-	6.55	2.9	-	-	16.8	10.6	11.8	0.331	-			
Sulfate (SO4)	mg/L	-	-	1320	12.9	-	-	1410	1990	1300	645	-			
Sulfide	mg/L	-	-	0.097	0.069	-	-	<0.020	0.023	<0.020	<0.020	-			
Anion Sum	mEq/L	-	-	32	3.2	-	-	36.5	43.1	33.7	19	-			
Cation Sum	mEq/L	-	-	32	5.71	-	-	37.2	43.3	32.6	18.5	-			
Cation - Anion Balance	%	-	-	0	28.1	-	-	1	0.2	-1.6	-1.1	-			
Organic / Inorganic Carbon															
Total Organic Carbon	mg/L	-	-	20.3	18.3	-	-	23.8	10.8	14	6.44	-			
Total Inorganic Carbon	mg/L	-	-	46	33.2	-	-	73.3	4.9	67	59.7	-			
Cyanides															
Total Cynanide	mg/L	-	-	<0.005	<0.005	-	-	0.0107	0.0225	0.0097	<0.005	-			
Cyanide, Free	mg/L	0.005	-	<0.005	<0.005	-	-	0.0066	0.0096	<0.005	<0.005	-			
Cyanide, WAD	mg/L	-	-	<0.005	<0.005	-	-	0.007	0.0132	<0.005	<0.005	-			
Thiocyanate (SCN)	mg/L	-	-	<0.5	<0.5	-	-	0.58	<0.5	<0.5	<0.5	-			

Table A
Groundwater Sampling Analytical Results

			Tailings Facility and Seepage Pond												
						1	rannigs racinty	and Scepage 1 of	l l	Ι	Ι				
		Sample ID:	MW09-06	MW09-07	MW09-08	MW09-11	MW09-20	MW09-21	MW09-22	MW09-23	MW09-24	W14103083BH03			
		Date Sampled:	-	29/06/2014	28/06/2014	-	-	28/06/2014	27/06/2014	28/06/2014	28/06/2014	-			
		Job Number:		L1478849-13	L1478849-7			L1478849-1	L1478694-15	L1478849-6	L1478849-5				
		Well Status:	Unable to Locate	Sampled	Sampled	Dry	Dry	Sampled	Sampled	Sampled	Sampled	Insufficient Volume			
Parameter ^{1,2}	Units	CCME FAL 3,4													
Dissolved Metals															
Aluminum	mg/L	0.005-0.1 ⁷	-	0.0306	0.0686	-	-	0.0588	0.0396	0.0154	0.0033	-			
Antimony	mg/L	-	-	0.0085	0.00024	-	-	0.00031	0.00027	0.00034	0.00033	-			
Arsenic	mg/L	0.005	-	0.564	0.198	-	-	0.0576	0.00666	0.00119	0.00319	-			
Barium	mg/L	-	-	0.027	0.128	-	-	0.147	0.0554	0.0649	0.0607	-			
Beryllium	mg/L	-	-	<0.0002	<0.0001	-	-	<0.0002	<0.0002	<0.0002	<0.0001	-			
Bismuth	mg/L	-	-	<0.001	<0.0005	-	-	<0.001	<0.001	<0.001	<0.0005	-			
Boron	mg/L	1.5	-	0.089	<0.01	-	-	0.11	0.024	0.18	0.014	-			
Cadmium	mg/L	0.00021-0.000378	-	0.000049	<0.0001	-	-	0.000029	0.000094	0.000032	0.0001	-			
Calcium	mg/L	-	-	396	41.6	-	-	474	587	355	241	-			
Chromium ¹²	mg/L	0.001	-	0.0004	0.00093	-	-	0.00087	0.00034	0.00026	0.00035	-			
Cobalt	mg/L	-	-	0.0243	0.00124	-	-	0.016	0.0153	0.0258	0.00014	-			
Copper	mg/L	0.00313-0.004 ⁹	-	0.00224	<0.0002	-	-	<0.0004	0.00112	<0.0004	0.00911	-			
Iron	mg/L	0.3	-	34.2	47.7	-	-	45	87.4	6.21	0.014	- 1			
Lead	mg/L	0.00484-0.007 ¹⁰	-	0.00024	0.000052		-	<0.0001	0.0002	<0.0001	0.000974	-			
Lithium	mg/L	-	-	0.0082	<0.0005	-	-	<0.001	<0.001	<0.001	0.00096	-			
Magnesium	mg/L	-	-	76.6	8.43	-	-	101	57.5	113	74.1	-			
Manganese	mg/L	-	-	15.4	3.52	-	-	14.9	17.9	12.2	0.00292	-			
Mercury	mg/L	0.000026	-	<0.00001	<0.00001	-	-	<0.00001	<0.00001	<0.00001	<0.00001	-			
Molybdenum	mg/L	0.073	-	0.00343	0.000071	_	-	0.00043	0.00012	0.00611	0.000305	-			
Nickel	mg/L	0.12276-0.180 ¹¹	-	0.0231	<0.0005	_	-	0.0016	0.0031	0.002	<0.0005	-			
Phosphorus	mg/L	-	-	<0.050	0.104	-	-	<0.050	<0.050	<0.050	<0.050	-			
Potassium	mg/L	-	-	22.1	1.45	_	-	12.9	5.92	15.7	1.85	-			
Selenium	mg/L	0.001	-	<0.0002	0.00011	_	-	<0.0002	0.00039	<0.0002	0.0002	-			
Silicon	mg/L	-	-	10.1	9.3	_	-	4.91	4.68	5.35	5.48	-			
Silver	mg/L	0.0001	-	0.000113	<0.0001	_	-	<0.00002	0.000045	<0.00002	<0.00001	-			
Sodium	mg/L	-	-	59.5	1.44	_	-	26.3	82	89.7	8.3	-			
Strontium	mg/L	-	-	0.915	0.182	_	-	1.29	1.31	0.873	0.632	-			
Sulfur	mg/L	-	-	396	3.99	_	-	433	634	405	199	-			
Thallium	mg/L	0.0008	-	<0.00002	<0.00001	_	_	<0.00002	<0.00002	<0.00002	<0.00001	_			
Tin	mg/L	-	-	<0.0002	<0.0001	_	_	<0.0002	<0.0002	<0.0002	<0.0001	_			
Titanium	mg/L	-	_	<0.02	<0.01	_	-	<0.02	<0.02	<0.02	<0.01	_			
Uranium	mg/L	0.015	_	0.00315	0.000077	_	-	0.00193	0.000229	0.00311	0.00584	.			
Vanadium	mg/L	-	_	<0.002	0.003	_	_	0.0039	<0.002	<0.002	<0.001	_			
Zinc	mg/L	0.03	_	1.61	0.0017	_	-	0.0025	0.0047	0.0299	0.0021	_			

Table B QA/AC Analytical Data

		Sample ID:	MW09-16	DUP-1 (Field Duplicate of MW09-16)	RPD (%) ¹³	CH-P-13- 05/50	DUP-2 (Field Duplicate of CH-P-13- 05/50)	RPD (%) ¹³	MW09-02	DUP-3 (Field Duplicate of MW09-02)	RPD (%) ¹³	MW09-08	DUP-5 (Field Duplicate of MW09-08)	RPD (%) ¹³	FB-1	FB-2	FB-3	FB-4	TRAVEL BLANK	TRAVEL BLANK
		Date Sampled:	26/06/2014	26/06/2014		27/06/2014	27/06/2014		27/06/2014	27/06/2014		28/06/2014	28/06/2014		26/06/2014	27/06/2014	28/06/2014	29/06/2014	28/06/2014	30/06/2014
		Well Status:	Sampled	Sampled		Sampled	Sampled		Sampled	Sampled		Sampled	Sampled		Sampled	Sampled	Sampled	Sampled	Sampled	Sampled
Parameter ^{1,2}	Units	CCME FAL 3,4																		
Field Tests																				
Field Conductance, Specific	μs/cm	-	1695	1695	-	2864	2864	-	2670	2670	-	381.2	381.2	-	-	-	-	-	-	-
Field Conductivity	μs/cm	-	1040	1040	-	1640	1640	-	1670	1670	-	216.7	216.7	-	-	-	-	-	-	-
Field Dissolved Oxygen	mg/L	-	3.62	3.62	-	2.53	2.53	-	0.14	0.14	-	1.41	1.41	-	-	-	-	-	-	-
Field pH	pH Units	-	6.67	6.67	-	6.27	6.27	-	7.13	7.13	-	6.82	6.82	-	-	-	-	-	-	-
Field Redox, Uncorrected	mV	-	136.6	136.6	-	122.4	122.4	-	-92.1	-92.1	-	-96.7	-96.7	-	-	-	-	-	-	-
Field Sulfide	mg/L	-	0.003	0.003	-	0.434	0.434	-	0.023	0.023	-	0.092	0.092	-	-	-	-	-	-	-
Field Turbidity	NTU	-	3.86	3.86	-	24.1	24.1	-	16.9	16.9	-	2.02	2.02	-	-	-	-	-	-	-
Field Temperature	°C	-	4.8	4.8	-	2.6	2.6	-	4.7	4.7	-	3.3	3.3	-	-	-	-	-	-	-
Physical Tests																				
Conductivity	μs/cm	-	1710	1710	0.0	2690	2690	0.0	2840	2810	1.1	277	277	0.0	<2.0	<2.0	<2.0	<2.0	<2.0	<2.0
Hardness, Total (CaCO3)	mg/L	-	1130	1140	0.9	1810	1830	1.1	1580	1560	1.3	139	139	0.0	<0.500	<0.500	<0.500	<0.500	<0.500	<0.500
рН	pH Units	6.5-9 ⁵	7.74	7.84	1.3	7.05	7.08	0.4	6.96	6.95	0.1	7.49	7.3	2.6	5.4	5.3	5.53	5.42	5.23	5.22
Anions and Nutrients																				1
Alkalinity, Total (CaCO3)	mg/L	-	312	314	0.6	116	115	0.9	34.5	36	4.3	147	147	0.0	<2.000	<2.000	<2.000	<2.000	<2.000	<2.000
Ammonia	mg/L	0.0168-231 ⁶	<0.005	<0.005	nc	0.0349	0.0355	1.7	12.1	12.3	nc	2.01	2	0.5	<0.005	<0.005	<0.005	<0.005	0.0077	0.0216
Chloride	mg/L	-	<5.000	<5.000	nc	<10.000	<10.000	nc	<10.000	<10.000	nc	<0.500	<0.500	nc	<0.500	<0.500	<0.500	<0.500	<0.500	<0.500
Fluoride	mg/L	0.12	<0.200	<0.200	nc	<0.400	<0.400	nc	0.47	0.46	nc	0.077	0.071	nc	<0.020	<0.020	<0.020	<0.020	<0.020	<0.020
Nitrate	mg/L	13	0.247	0.242	2.0	0.42	0.4	4.9	<0.100	<0.100	nc	<0.005	<0.005	nc	<0.005	<0.005	<0.005	<0.005	<0.005	<0.005
Nitrite	mg/L	0.06	<0.010	<0.010	nc	<0.020	<0.020	nc	<0.020	<0.020	nc	0.0017	<0.001	nc	<0.001	<0.001	<0.001	<0.001	<0.001	<0.001
Total Kjeldahl Nitrogen	mg/L	-	0.121	0.133	nc	0.121	0.131	nc	16.3	16.5	1.2	2.9	2.67	8.3	<0.050	<0.050	<0.050	<0.050	<0.050	<0.050
Sulfate (SO4)	mg/L	-	835	833	nc	1850	1850	0.0	1860	1830	nc	12.9	12.8	0.8	<0.500	<0.500	<0.500	<0.500	<0.500	<0.500
Sulfide	mg/L	-	<0.020	<0.020	nc	<0.020	<0.020	nc	<0.020	<0.020	nc	0.069	0.075	nc	<0.020	<0.020	<0.020	<0.020	<0.020	<0.020
Anion Sum	mEq/L	-	23.6	23.6	-	40.9	40.8	-	39.5	38.8	-	3.2	3.2	-	<0.10	<0.10	<0.10	<0.10	<0.10	<0.10
Cation Sum	mEq/L	-	23.1	23.2	-	39.1	39.6	-	40	39.7	-	5.71	5.71	-	<0.10	<0.10	<0.10	<0.10	<0.10	<0.10
Cation - Anion Balance	%	-	-1.1	-0.8	-	-2.3	-1.5	-	0.7	1.1	-	28.1	28.2	-	0	0	0	0	0	0
Organic / Inorganic Carbon																				1
Total Organic Carbon	mg/L	-	2.96	2.84	4.1	2.05	2.03	nc	5.82	5.92	1.7	18.3	17.8	2.8	<0.500	<0.500	<0.500	<0.500	<0.500	<0.500
Total Inorganic Carbon	mg/L	-	63.9	65.9	nc	16.5	16.4	nc	8.2	6.3	26.2	33.2	30.9	7.2	< 0.500	< 0.500	< 0.500	< 0.500	< 0.500	<0.500

Table B QA/AC Analytical Data

							DUP-2 (Field												1	т п
		Sample ID:	MW09-16	DUP-1 (Field Duplicate of MW09-16)	RPD (%) ¹³	CH-P-13- 05/50	Duplicate of CH-P-13- 05/50)	RPD (%) ¹³	MW09-02	DUP-3 (Field Duplicate of MW09-02)	RPD (%) ¹³	MW09-08	DUP-5 (Field Duplicate of MW09-08)	RPD (%) ¹³	FB-1	FB-2	FB-3	FB-4	TRAVEL BLANK	TRAVEL BLANK
		Date Sampled:	26/06/2014	26/06/2014		27/06/2014	27/06/2014		27/06/2014	27/06/2014		28/06/2014	28/06/2014		26/06/2014	27/06/2014	28/06/2014	29/06/2014	28/06/2014	30/06/2014
		Well Status:	Sampled	Sampled		Sampled	Sampled		Sampled	Sampled		Sampled	Sampled		Sampled	Sampled	Sampled	Sampled	Sampled	Sampled
Parameter ^{1,2}	Units	CCME FAL 3,4																		
Cyanides																				
Cyanide	mg/L	-	<0.005	< 0.005	nc	<0.005	< 0.005	nc	0.0557	0.0944	51.6	<0.005	<0.005	nc	<0.005	<0.005	<0.005	<0.005	<0.005	<0.005
Cyanide, Free	mg/L	0.005	<0.005	<0.005	nc	<0.005	<0.005	nc	<0.005	<0.005	nc	<0.005	<0.005	nc	<0.005	<0.005	<0.005	<0.005	<0.005	<0.005
Cyanide, WAD	mg/L	-	<0.005	<0.005	nc	<0.005	<0.005	nc	0.0076	0.0211	nc	<0.005	<0.005	nc	<0.005	<0.005	<0.005	<0.005	<0.005	<0.005
Thiocyanate (SCN)	mg/L	-	<0.5	<0.5	nc	<0.5	<0.5	nc	1.36	1.35	0.7	<0.5	<0.5	nc	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5
Dissolved Metals																				
Aluminum	mg/L	0.005-0.1 ⁷	0.0023	0.002	nc	0.0444	0.0461	3.8	<0.005	<0.005	nc	0.0686	0.0693	1.0	<0.001	<0.001	<0.001	<0.001	-	-
Antimony	mg/L	-	0.0634	0.069	8.5	<0.0005	<0.0005	nc	0.00345	0.00343	0.6	0.00024	0.00024	nc	<0.0001	<0.0001	<0.0001	<0.0001	-	-
Arsenic	mg/L	0.005	0.00902	0.00868	3.8	0.00284	0.00259	9.2	20.3	19.7	3.0	0.198	0.197	0.5	<0.0001	<0.0001	<0.0001	<0.0001	-	-
Barium	mg/L	-	0.0137	0.0137	0.0	0.0111	0.0115	3.5	0.00688	0.00638	7.5	0.128	0.127	0.8	<0.00005	<0.00005	<0.00005	<0.00005	-	-
Beryllium	mg/L	-	<0.0001	<0.0001	nc	<0.0005	<0.0005	nc	<0.0005	<0.0005	nc	<0.0001	<0.0001	nc	<0.0001	<0.0001	<0.0001	<0.0001	-	-
Bismuth	mg/L	-	<0.0005	<0.0005	nc	<0.0025	<0.0025	nc	<0.0025	<0.0025	nc	<0.0005	<0.0005	nc	<0.0005	<0.0005	<0.0005	<0.0005	-	-
Boron	mg/L	1.5	0.131	0.143	8.8	<0.05	<0.05	nc	0.058	0.059	1.7	<0.01	<0.01	nc	<0.01	<0.01	<0.01	<0.01	-	-
Cadmium	mg/L	0.00021-0.000378	0.0249	0.0246	1.2	0.271	0.272	0.4	0.000627	0.00063	0.5	<0.00001	<0.00001	nc	<0.00001	<0.00001	<0.00001	<0.00001	-	-
Calcium	mg/L	-	262	265	1.1	449	457	1.8	473	470	0.6	41.6	42	1.0	<0.05	<0.05	<0.05	<0.05	-	-
Chromium ¹²	mg/L	0.001	<0.0001	<0.0001	nc	<0.0005	<0.0005	nc	<0.0005	<0.0005	nc	0.00093	0.00096	3.2	<0.0001	<0.0001	<0.0001	<0.0001	-	-
Cobalt	mg/L	-	0.00018	0.00018	nc	0.0322	0.0322	0.0	0.0115	0.0116	0.9	0.00124	0.00117	5.8	<0.0001	<0.0001	<0.0001	<0.0001	-	-
Copper	mg/L	0.00313-0.004 9	0.00558	0.00552	1.1	0.131	0.13	0.8	<0.001	<0.001	nc	<0.0002	<0.0002	nc	<0.0002	<0.0002	<0.0002	<0.0002	-	-
Iron	mg/L	0.3	<0.01	<0.01	nc	7.72	7.77	0.6	37	36.8	0.5	47.7	47.6	0.2	<0.01	<0.01	<0.01	<0.01	-	-
Lead	mg/L	0.00484-0.007 10	0.0069	0.00784	12.8	0.00396	0.00385	2.8	<0.00025	0.00032	nc	0.000052	0.000059	nc	<0.00005	<0.00005	<0.00005	<0.00005	-	-
Lithium	mg/L	-	0.0086	0.00946	9.5	0.0319	0.0316	0.9	0.0192	0.02	4.1	<0.0005	<0.0005	nc	<0.0005	<0.0005	<0.0005	<0.0005	-	-
Magnesium	mg/L	-	115	115	0.0	167	167	0.0	96.6	95	1.7	8.43	8.37	0.7	<0.1	<0.1	<0.1	<0.1	-	-
Manganese	mg/L	-	0.0321	0.0328	2.2	30.4	30.5	0.3	30.7	31	1.0	3.52	3.45	2.0	0.000093	<0.00005	<0.00005	<0.00005	-	-
Mercury	mg/L	0.000026	<0.00001	<0.00001	nc	<0.00001	<0.00001	nc	<0.00001	<0.00001	nc	<0.00001	<0.00001	nc	<0.00001	<0.00001	<0.00001	<0.00001	-	-
Molybdenum	mg/L	0.073	0.000089	0.000105	nc	0.00076	0.00075	nc	0.00564	0.00569	0.9	0.000071	0.000075	nc	0.000058	<0.00005	<0.00005	<0.00005	-	-
Nickel	mg/L	0.12276-0.180 ¹¹	0.00328	0.00336	2.4	0.0136	0.0135	0.7	0.0035	0.0036	nc	<0.0005	<0.0005	nc	<0.0005	<0.0005	<0.0005	<0.0005	-	-
Phosphorus	mg/L	-	<0.00005	<0.00005	nc	<0.00005	<0.00005	nc	<0.00005	<0.00005	nc	0.000104	0.000102	nc	<0.00005	<0.00005	<0.00005	<0.00005	-	-
Potassium	mg/L	-	5.95	5.83	2.0	5.18	5.17	0.2	67	66	1.5	1.45	1.42	2.1	<0.1	<0.1	<0.1	<0.1	-	-
Selenium	mg/L	0.001	<0.0001	<0.0001	nc	<0.0005	<0.0005	nc	<0.0005	<0.0005	nc	0.00011	0.00011	nc	<0.0001	<0.0001	<0.0001	<0.0001	-	-
Silicon	mg/L	-	4.78	4.78	0.0	6.6	6.69	1.4	7	6.95	0.7	9.3	9.28	0.2	<0.05	<0.05	<0.05	<0.05	-	-
Silver	mg/L	0.0001	<0.00001	0.000017	nc	<0.00005	<0.00005	nc	<0.00005	<0.00005	nc	<0.00001	<0.00001	nc	<0.00001	<0.00001	<0.00001	<0.00001	-	-
Sodium	mg/L	-	7.08	7.07	0.1	11	10.9	0.9	64.1	63.6	0.8	1.44	1.41	2.1	<0.05	<0.05	<0.05	<0.05	-	-
Strontium	mg/L	-	0.586	0.637	8.3	0.647	0.668	3.2	0.915	0.935	2.2	0.182	0.184	1.1	<0.0002	<0.0002	<0.0002	<0.0002	-	-
Sulfur	mg/L	-	0.258	0.261	1.2	0.589	0.58	1.5	0.589	0.583	1.0	0.00399	0.00394	1.3	<0.0005	<0.0005	<0.0005	<0.0005	-	-
Thallium	mg/L	0.0008	0.00025	0.000294	16.2	0.000458	0.00045	1.8	0.000254	0.00026	2.3	<0.00001	<0.00001	nc	<0.00001	<0.00001	<0.00001	<0.00001	-	-
Tin	mg/L	-	<0.0001	<0.0001	nc	<0.0005	<0.0005	nc	<0.0005	<0.0005	nc	<0.0001	<0.0001	nc	<0.0001	<0.0001	<0.0001	<0.0001	-	-
Titanium	mg/L	-	<0.01	<0.01	nc	<0.05	<0.05	nc	<0.05	<0.05	nc	<0.01	<0.01	nc	<0.01	<0.01	<0.01	<0.01	-	-
Uranium	mg/L	0.015	0.00304	0.00353	14.9	0.000931	0.000917	1.5	0.000678	0.000717	5.6	0.000077	0.000079	2.6	<0.00001	<0.00001	<0.00001	<0.00001	-	-
Vanadium	mg/L	-	<0.001	<0.001	nc	<0.005	<0.005	nc	<0.005	<0.005	nc	0.003	0.003	nc	<0.001	<0.001	<0.001	<0.001	-	-
Zinc	mg/L	0.03	3.84	3.78	1.6	28.2	29.1	3.1	0.312	0.309	1.0	0.0017	0.0013	nc	<0.001	<0.001	<0.001	<0.001	-	

Table B QA/AC Analytical Data

			1	1 1			I		ı					ı			1		1	
		Sample ID:	MW09-16	DUP-1 (Field Duplicate of MW09-16)	RPD (%) ¹³	CH-P-13- 05/50	DUP-2 (Field Duplicate of CH-P-13- 05/50)	RPD (%) ¹³	MW09-02	DUP-3 (Field Duplicate of MW09-02)	RPD (%) ¹³	MW09-08	DUP-5 (Field Duplicate of MW09-08)	RPD (%) ¹³	FB-1	FB-2	FB-3	FB-4	TRAVEL BLANK	TRAVEL BLANK
		Date Sampled:	26/06/2014	26/06/2014		27/06/2014	27/06/2014		27/06/2014	27/06/2014		28/06/2014	28/06/2014		26/06/2014	27/06/2014	28/06/2014	29/06/2014	28/06/2014	30/06/2014
		Well Status:	Sampled	Sampled		Sampled	Sampled		Sampled	Sampled		Sampled	Sampled		Sampled	Sampled	Sampled	Sampled	Sampled	Sampled
Parameter ^{1,2}	Units	CCME FAL 3,4																		
Total Metals																				
Aluminum	mg/L	0.005-0.17	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	<0.003	<0.003
Antimony	mg/L	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	<0.0001	<0.0001
Arsenic	mg/L	0.005	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	<0.0001	<0.0001
Barium	mg/L	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	<0.00005	<0.00005
Beryllium	mg/L	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	<0.0001	<0.0001
Bismuth	mg/L	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	<0.0005	<0.0005
Boron	mg/L	1.5	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	<0.01	<0.01
Cadmium	mg/L	0.00021-0.00037 8	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	<0.00001	<0.00001
Calcium	mg/L	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	<0.05	<0.05
Chromium	mg/L	0.001	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	<0.0001	<0.0001
Cobalt	mg/L	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	<0.0001	<0.0001
Copper	mg/L	0.00313-0.004 ⁹	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	<0.0005	<0.0005
Iron	mg/L	0.3	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	<0.01	<0.01
Lead	mg/L	0.00484-0.007 10	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	<0.00005	<0.00005
Lithium	mg/L	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	<0.0005	<0.0005
Magnesium	mg/L	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	<0.1	<0.1
Manganese	mg/L	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	<0.00005	<0.00005
Mercury	mg/L	0.000026	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	<0.00001	<0.00001
Molybdenum	mg/L	0.073	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	<0.00005	<0.00005
Nickel	mg/L	0.12276-0.180 ¹¹	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	<0.0005	<0.0005
Phosphorus	mg/L	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	<0.00005	<0.00005
Potassium	mg/L	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	<0.0001	<0.0001
Selenium	mg/L	0.001	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	<0.0001	<0.0001
Silicon	mg/L	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	<0.05	<0.05
Silver	mg/L	0.0001	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	<0.00001	<0.00001
Sodium	mg/L	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	<0.05	<0.05
Strontium	mg/L	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	<0.0002	<0.0002
Sulfur	mg/L	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	<0.0005	<0.0005
Thallium	mg/L	0.0008	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	<0.00001	<0.00001
Tin	mg/L	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	<0.0001	<0.0001
Titanium	mg/L	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	<0.01	<0.01
Uranium	mg/L	0.015	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	<0.00001	<0.00001
Vanadium	mg/L	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	<0.001	<0.001
Zinc	mg/L	0.03	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	< 0.003	< 0.003

Notes

- (1) CCME guideline exceedences shaded with dark grey. Light grey shading denotes reportable detection limit in exceedence of CCME Guideline.
- (2) -= No standard or not analyzed
- (3) CCME = Canadian Council of Ministers of the Environment, Canadian Environmental Quality Guidelines, 1999, updated to November, 2014
- (4) CCME FAL = Chapter 4, Canadian Water Quality Guidelines for the Protection of Aquatic Life, Freshwater, updated to November, 2014
- (5) CCME FAL stipulates pH not < 6.5 and not > 9
- (6) Ammonia varies with pH and temperature for CCME FAL; see the CCME ammonia

fact sheet for details regarding the applicable criteria, ammonia-NH3

versus total ammonia-N, and other usage guidelines

when field pH values are not available, lab pH is used. When field and lab pH are both not available, the most stringent guideline has been used.

(7) Aluminum varies with pH as follows for CCME FAL:

0.005 mg/L if pH<6.5 .01 mg/L if pH>=6.5

when field pH values are not available, lab pH is used. When field and lab pH are both not available, the most stringent guideline has been used.

(8) Cadmium varies with Hardness in mg/L as follows for CCME FAL:

0.00004 mg/L if H<17

0.00004 - 0.00037 mg/L if H>=17 and H<=280 as follows;

CWQG (μ g/L) = 10{0.83(log[hardness]) – 2.46}

0.00037mg/L if H>280

(9) Copper varies with Hardness in mg/L as follows for CCME FAL:

0.002 mg/L if H<82

0.002 - 0.004 mg/L if $H \ge 82$ and $H \le 180$ as follows;

CWQG (μ g/L) = 0.2 * e{0.8545[ln(hardness)]-1.465}

0.004 mg/L if H>=180

(10) Lead varies with Hardness in mg/L as follows for CCME FAL:

0.001 mg/L if H<60

0.001 - 0.007 mg/L if H>=60 and H<=180 as follows;

CWQG (μ g/L)= e{1.273[ln(hardness)]-4.705}

0.007 mg/L if H>180

(11) Nickel varies with Hardness in mg/L as follows for CCME FAL:

0.025 mg/L if H<60

0.025 - 0.150 mg/L if H>=60 and H<=180 as follows;

CWQG ($\mu g/L$) = e{0.76[ln(hardness)]+1.06}

0.150 mg/L if H>180

(12) Chromium CCME FAL guidelines are expressed in chromium, hexavalent (CrVI).

All laboratory data is expressed in total chromium. Total chromium values over 0.001 mg/l are flagged as exceedences.

(13) RPD = Relative Percent Difference. RPD is calculated as the difference between

a sample and its field duplicate over the average of two values.

nc = not calculated. RPD is not calculated if either the sample or the field

duplicate concentration is less than five times the detection limit.

Bold Indicates QAQC values exceed expected results (RDP values exceed 20% or QAQC analysis is above reportable detection limits.

APPENDIX A Site Photos

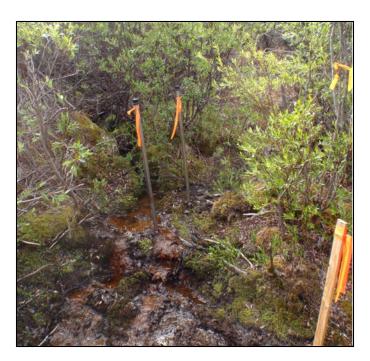


Photo 1: View of drive point wells GSI-DC-01A and GSI-DC-01B. Photo taken on June 26th, 2014.

Photo 2: View of drive point wells GSI-DC-02A and GSI-DC-02B. Photo taken on June 27th, 2014.

Photo 3: View of drive point wells GSI-DC-03A and GSI-DC-03B. Photo taken on June 27th, 2014.

Photo 4: View of drive point wells GSI-DC-05A and GSI-DC-05B. Photo taken on June 27th, 2014.



Photo 5: View of drive point wells GSI-DC-06A and GSI-DC-06B. Photo taken on June 29th, 2014.

Photo 6: View of drive point wells GSI-DC-07A and GSI-DC-07B. Photo taken on June 29th, 2014.

Photo 7: View of drive point wells GSI-DC-08A and GSI-DC-08B. Photo taken on June 29th, 2014.

Photo 8: View of drive point wells GSI-DC-09A and GSI-DC-09B. Photo taken on June 29th, 2014.

Photo 9: View of drive point wells GSI-DC-10A and GSI-DC-10B. Photo taken on June 29th, 2014.

Photo 10: View of drive point well GSI-HA-01A. Photo taken on June 27th, 2014.

Photo 11: View of drive point well GSI-HA-02A. Photo taken on June 27th, 2014.

Photo 12: View of drive point well GSI-HA-03A. Photo taken on June 27th, 2014.

Photo 13: View of drive point well GSI-HA-04A. Photo taken on June 27th, 2014.

Photo 14: View of well MW09-16. Photo taken on June 26th, 2014.

Photo 15: View of well MW09-17. Stick-up and steel monument broken upon arrival at site. Loose earth up earth above well suggests excavator could have damaged the well. Photo taken on June 26th, 2014.

Photo 16: View of damaged well MW09-17. Existing bailer stuck in well due to large amount of soil that had fallen into well. Photo taken on June 26th, 2014.

Photo 17: View of the first step of well repair for well MW09-17. A hole was excavated around well to the top of where the stick-up was broken. Photo taken on June 28th, 2014.

Photo 18: View of the second step during well repair for well MW09-17. A cup-link and new PVC pipe were attached. Photo taken on June 28th, 2014.

Photo 19: View of the third step during well repair for well MW09-17. Bentonite chips were used to seal the previously dug hole around stick-up. Photo taken on June 28th, 2014.

Photo 20: View of the fourth step during well repair of well MW09-17. The bentonite seal was covered with soil and well redeveloped manually using waterra tubing. Photo taken on June 28th, 2014.

Photo 21: View of the fifth step during well repair of well MW09-17. The steel monument was replaced around the PVC well with concrete. Photo taken on June 29th, 2014.

Photo 22: View of well MW09-18. Photo taken on June 26th, 2014.

Photo 23: View of well MW09-19. Photo taken on June 26th, 2014.

Photo 24: View of well CH-P-13-01. Photo taken on June 27th, 2014.

Photo 25: View of wells CH-P-13-03/10 and CH-P-13-03/50. CH-P-03/10 did not have a label on the well, however provided GPS coordinates show this well to be CH-P-03/10. Photos taken on June 27th, 2014.

Photo 26: View of wells CH-P-13-04/10 and CH-P-13-04/35. Photo taken on June 28th, 2014.

Photo 27: View of well CH-P-13-05/50. Photo taken on June 26th, 2014.

Photo 28: View of GLL07-01. Photo taken on June 26th, 2014.

Photo 29: View of well GLL07-02. This well was found to be dry, but also had no proper stick-up inside steel monument. Photo taken on June 28th, 2014.

Photo 30: View of well GLL07-02 showing the absence of a stick-up. Photo taken on June 28th, 2014.

Photo 31: View of well GLL07-03. Photo taken on June 26th, 2014.

Photo 32: View of wells MW09-13 and MW09-14. Photo taken on June 27, 2014.

Photo 33: View of well MW09-15. Photo taken on June 26th, 2014.

Photo 34: View of well GSI-PC-01A and GSI-PC-01B. Wells have been destroyed by excavator due to area being part of an active Placer Mine. Photo taken on June 27, 2014.

Photo 35: View of drive point wells GSI-PC-02A and GSI-PC-02B. Photo taken on June 27th, 2014.

Photo 36: View of drive point wells GSI-PC-03A and GSI-PC-03B. Photo taken on June 28th, 2014.

Photo 37: View of drive point wells GSI-PC-04A and GSI-PC-04B. Photo taken on June 28th, 2014.

Photo 38: View of drive point wells GSI-PC-05A and GSI-PC-05B. Photo taken on June 28th, 2014.

Photo 39: View of drive point well MP09-02. Photo taken on June 27th, 2014.

Photo 40: View of well MP09-03. Photo taken on June 27th, 2014.

Photo 41: View of well MP09-08. Photo taken on June 27th, 2014.

Photo 42: View of well W14103083BH01. Photo taken on June 28th, 2014.

Photo 43: View of well W14103083BH02. Photo taken on June 28th, 2014.

Photo 44: View of well W14103083BH04. Photo taken on June 28th, 2014.

Photo 45: View of well MP09-04. Photo taken on June 28th, 2014.

Photo 46: View of well MP09-05. Photo taken on June 28th, 2014.

Photo 47: View of well MP09-09 and MP09-10. Photo taken on June 29th, 2014.

Photo 48: View of wells MP09-11 and MP09-12. Photo taken on June 29th, 2014.

Photo 49: View of well MP09-14. Photo taken on June 27th, 2014.

Photo 50: View of wells MW09-01 and MW09-02. Photo taken on June 27th, 2014.

Photo 51: View of well MW09-01. Unable to get any more tubing into well due to large amount of soil found on waterra tubing already existing in well. Photo taken on June 27th, 2014.

Photo 52: View of wells MW09-03 and MW09-04. Photo taken on June 27th, 2014.

Photo 53: View of well MW09-05. Well located within the water of the tailings pond. Photo taken on June 28^{th} , 2014.

Photo 54: View of well MW09-07. Photo taken on June 28th, 2014.

Photo 55: View of well MW09-08. Photo taken on June 28th, 2014.

Photo 56: View of well MW09-11. Photo taken on June 29th, 2014.

Photo 57: View of well MW09-20. Photo taken on June 28th, 2014.

Photo 58: View of well MW09-21. Photo taken on June 28th, 2014.

Photo 59: View of well MW09-22. Photo taken on June 27th, 2014.

Photo 60: View of well MW09-23. Photo taken on June 27th, 2014.

Photo 61: View of well MW09-24. Photo taken on June 28th, 2014.

Photo 62: View of well W1403083BH03. Photo taken on June 27th, 2014.

APPENDIX B Field Forms

Well Number:	QS1-4	1A-05	A	Project Number:	1343-0	25.0 <u>8</u>	Date:			Q9-0	wn=14
Approximate Date Drilled:				Client:	MaaM		Samı	oler:		요.ખ/	MM
Piezometer Diameter I Screen Length:	1" 1	<i>Db</i>		Project Name:	MN GW	(Spr. 19)	Weat	her/Ten	perature:	SMA	ciountiu
CHV (ppm / % LEL):	_			Duplicate Collected	: 🗌 Yes	☑Nõ	Reco	very:		☐ Goo	d 🔄 Bad
Purge Method											
Waterra	Р	eristaltic		Disp. Bailer	Stee	el Bailer	(Centrif.	Pump		Air Lift
		\searrow									
Initial Depth to Water (m):	1.3	75		Calculations:	Purge St	art Time:	8:36	>	Purge End	Time:	
Depth to Bottom (m):	۱, ۳	7 7	C>.34	X066X3	Time (_) minute i	nterval:				
Submerged Tubing Depth (n):			.6019B	Depth (m)					
Well Stick-up Height (m):	0.0	76)		Tempera	ture (ºC)					
Estimated Water Volume (L): 0,8	3006			pН				FF		
(DTB – DTW) x 2 (for 2" well	diameter)	= 1 well			Cond. (µ	s/cm)					
volume	alamotor,	1 110			Specific	Specific Cond. (µs/cm)					
					Redox (n	nV)			$D \vee X$		
(DTB-DTW) x 1.1 (for 1.5" d volume	iameter) =	1 well			DO (mg/l	_) .			100		
Volume											
2" casing has 0.16 USgal	/ft or 2.032	2 l/m				nce & Odou ilty, HC odo					****
1" casing has 0.04 USgal					etc.)	iity, no oac	ours,				
8" sand pack has 0.73 USg					,						
6 5/8" sand pack has 0.50 U	Sgal/ft or 6	5.35 l/m			Total Pui	rge Volume	:				
Sample Method											
Waterra	ı	Peristaltic	: \	Disp. Bailer	Steel Bail	er (Centrif. Po	ump	Air L	ift	Other
Analysis											
Sample ID Parameters A	nalyzed	Sample	Time	Container Types	Preservative	1	urbidity (NTU)		Com	ments
					Yes	and the same of th		. s. u neces es en 21 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	TO THE PARTY OF TH	name i national de la constanti	ognoon teens misse to see the teens the teens to the teens
					 □ No						

Sample Site (Con't): 🥞 🖰 🕒	NA-05	
⊣冷つ5 UTM Location: Zn:♡後∨		•-
UTM Location: Zn:♡⊗√	Easting:උයළුඅල්බ	Northing: 6 రిస్ట్రి ఏక్

Photo No.:

Well Head Space Gases:

	%	ppm
Methane (CH4)		0
Oxygen (O2)	80.5	
Carbon Dioxide (C02)	680	

General Notes (Condition of well or other features):

	ameters (ronowing runge).
Time	
Temperature (°C)	
DO (mg/L)	
Specific Cond. (µs/cm)	
Cond. (µs/cm)	
рН	
Redox (mV)	
Turbidity (NTU)	
Sulphide mg/L μg/L	
DO (mg/L)	

General Notes (Condition of well or other features):
- purge CEL before going ONY (0.8:37
- purge CEL before going any @ 8:37 - Insufficient == volume of water; unable to
Sample / purge.
V

Well Number:	MPO	7-10		Project Number:	1343-0	XX) . O3	Date	:		J9-5	Jun	14
Approximate Date Drilled				Client:	ARM		100000000000000000000000000000000000000	pler:		BM.	MH	-
Piezometer Diameter / Screen Length:	1.5`	.``		Project Name:	HN GI	U(spring)	Wea	ther/Ten	nperature:	oven	(C)	
CHV (ppm / % LEL):				Duplicate Collected	: Yes	☐ No	Rec	overy:		│ [] Go	od 🛮	Bad
Purge Method												
Waterra		Peristaltic		Disp. Bailer	Ste	el Bailer		Centrif.	Pump		Air Lift	
		\times										
Initial Depth to Water (m):	ର.	730		Calculations:	Purge S	tart Time:	9:02		Purge End	Time:	9:13	
Depth to Bottom (m):	4.	54			Time (_	_) minute i		9:13			·	and a part
Submerged Tubing Depth	(m): \sim				Depth (r	n)						
Well Stick-up Height (m):	1.0	18			Tempera	ature (ºC)		ଖ. ଧ				
Estimated Water Volume	(L): \ \.C	105	X3=	5.973	рН			9.21				
(DTB DTW) x 2 (for 2" we	ell diameter) = 1 well			Cond. (μ	ıs/cm)		283.0	:}			
volume					Specific	Cond. (µs/c	m)	415.4				
					Redox (mV)		-46.7				
(DTB-DTW) x 1.1 (for 1.5' volume	•	= 1 well			DO (mg/	'L)		7.04	i			
2" casing has 0.16 USg 1" casing has 0.04 USg 8" sand pack has 0.73 US	al/ft or 2.03 al/ft or 0.50 Sgal/ft or 9.)8 I/m 271 I/m				ance & Odou Silty, HC odo		Jeng John Oxina				
6 5/8" sand pack has 0.50	USgal/ft or	6.35 l/m			Total Pu	ırge Volume	•	41				
Sample Method												
Waterra	1	Peristaltion	:	Disp. Bailer	Steel Ba	iler (Centrif. P	ump	Air L	.ift	Otl	ner
Analysis												
Sample ID Parameters	Analyzed	Sample	Time	Container Types	Preservative	9 1	urbidity	(NTU)		Co	mments	
MEDI-10 GISE INTO	WWX -	17:3))	as before	☐ Yes ☐ No					igul	j Tu	Moi

Sample Site	Con't):	120g-	O
Dailible Dife	COIL I.	£"	,

Photo No.: (ama # 608)

Well Head Space Gases:

	%	ppm
Methane (CH4)		
Oxygen (O2)	20.9	
Carbon Dioxide (C02)	520	
(0)		

(ු) General Notes (Condition of well or other features):

	anieters (Following Purge).
Time	17:30
Temperature (ºC)	8.2
DO (mg/L)	7.04
Specific Cond. (µs/cm)	415.0
Cond. (µs/cm)	⊋ % 3.0
рН	9.21
Redox (mV)	-46.7
Turbidity (NTU)	
Sulphide mg/L µg/L	
DO (mg/L)	7.04

General Notes (Condition of well or other features):
- vent on Side of course in no est sed -new 3/16" Eusing added
- new 3/16", busing addies
-5/8" worther a Ssed to reclevelage due
tolorge amount of soil
L) attempted to redevelop, large amount of sand
to in well rosing
Home torbid water column
AS CCOUNTRICALLY.
- purge early in the program, return later
to sample (use 1" bailer)
-11 bailer used

}		551 - OC - C	ン(1分~	75WL=0.90/M) Bottom =	1.447	(m)	ం. *	*\S _	. = 5 til		
Well Number:		C186 - DC-	$\partial \mathcal{B}$	Project Number:	1343-005.	ුර Dat	e:		65-1	June-14		
Approximate Date Dril	led:			Client:	AAM	San	npler:		호된 /	MM		
Piezometer Diameter I Screen Length:	23 23 23 23 23 ES	1" steel of		Project Name:	MNGWE	Spany) Wei	ather/Ter	mperature:	Sunn	1, 200-H Y		
CHV (ppm / % LEL):				Duplicate Collected	: ☐ Yes ☐	√o Rec	overy:			od Bad		
Purge Method												
Waterra		Peristaltio	;	Disp. Bailer	Steel Bai	ler	Centrif.	Pump	er førsik.	Air Lift		
		入			111111111111111111111111111111111111111							
Initial Depth to Water (m):	4.527		Calculations:	Purge Start Til	me: 1816	5	Purge End	Time:			
Depth to Bottom (m):		1.574	30	rell volumes	Time () mi	nute interval:	-					
Submerged Tubing De	pth (m): NI.55		.095504 X3	Depth (m)							
Well Stick-up Height (r	Height (m): 0.95		leight (m): 0 95		=0.886512		Temperature (Temperature (°C)				
Estimated Water Volur	ne (L):	6.095509	(0.00010	pН							
(DTB – DTW) x 2 (for 2'	" well di	iameter) = 1 well			Cond. (µs/cm)							
volu		,	60	1-DC-01A	Specific Cond. (µs/cm)							
(DTD DTA) 4.4 (f	4 = " "		1		Redox (mV)							
(DTB-DTW) x 1.1 (for volu		imeter) = 1 well	141	.10047243	DO (mg/L)							
2" casing has 0.16 t 1" casing has 0.04 t 8" sand pack has 0.73	JSgal/ft JSgal/ft 3 USgal	t or 0.508 I/m I/ft or 9.271 I/m	1)	3,399416	Appearance & (Clear, Silty, H							
6 5/8" sand pack has 0	.50 US(gal/ft or 6.35 l/m			Total Purge Vo	olume:	0,5	L				
Sample Method												
Wate	er ra	Peristalti	С	Disp. Bailer	Steel Bailer	Centrif.	oump -	Air L	.ift	Other		
Analysis												
Sample ID Paramete	ers Ana	alyzed Sample	Time	Container Types	Preservative	Turbidity	(NTU)		Con	nments		
615-02-					☐ Yes							
01B				\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \	No							

	$C \subset C$	\sim	770
Sample Site (Con't)	: <u>40</u> \~	-77(-	+0

UTM Location: Zn: OB J Easting: OB 7445 Northing: 681104

Photo No.: Cam 7 0049

Well Head Space Gases:

	% ppm
Methane (CH4)	
Oxygen (O2)	
Carbon Dioxide (C02)	

General Notes (Condition of well or other features):

	(i ciicaii)	
Time		
Temperature (°C)		
DO (mg/L)		
Specific Cond. (µs/cm)		
Cond. (µs/cm)		
рН		
Redox (mV)		
Turbidity (NTU)		
Sulphide mg/L µg/L		
DO (mg/L)		

General Notes (Condition of well or other features):
-o.sl, well went dry.
-unable to sample to, not a large enough
Water Column, Azambed insteadly.
27-June-14-spoor well recovery, collected kess than
Don't of water

Well Number	:	<u>W1410308384</u>	Project Number:	13-02 03	Date:		28- 5	ا جهرز	
Approximate	Date Drilled:		Client:	M CAM	Sampler:		84/1	104	
Piezometer D Screen Leng	9333409509093349345434343459595934446941	2,,	Project Name:	W GW (SDSING	WGW(S) Side Weather/Temperature: S			sunny	
CHV (ppm / %	% LEL):		Duplicate Collected	Yes No	Recovery:		☐ Ġood ☐ Bad		
Purge Metho	d								
Wat	terra	Peristaltic	Disp. Bailer	Steel Bailer	Centrif.	Pump	t garagada	Air Lift	
Initial Depth	to Water (m):	6.730	Calculations:	Purge Start Time:		Purge End	Time:		
Depth to Bot	tom (m):	LD F	bzen	Time () minute ir	nterval:				
Submerged 7	Tubing Depth (n	n):		Depth (m)					
Well Stick-up	Height (m):	0.9	ينتمير يندني	Temperature (°C)) i government	and I am	~. A		
Estimated Water Volume (L):				PH \					
(DTB – DTW) x 2 (for 2" well diameter) = 1 well				Cond. (µs/cm)	1		$/$ $($ t \geqslant	<i>∂</i>	
(515 5111	volume	and motory 1 won		Specific Cond. (µs/c					
				Redox (mV)	K AL				
(DTB-DTW)	x 1.1 (for 1.5" di volume	ameter) = 1 well		DO (mg/Ľ)	\/				
1" casing 8" sand pad	has 0.16 USgal/ has 0.04 USgal/ ck has 0.73 USga	ft or 0.508 I/m al/ft or 9.271 I/m		Appearance & Odou (Clear, Silty, HC odo etc.)					
6 5/8" sand բ	pack has 0.50 US	Sgal/ft or 6.35 l/m		Total Purge Volume:		•		·····	
Sample Meth	nod .								
	Waterra	Peristaltic	Disp. Bailer	Steel Bailer C	entrif. Pump	Air L	ift	Other	
Analysis									
Sample ID	Parameters Ar	nalyzed Sample Ti	me Container Types	Preservative T	urbidity (NTU)		Com	ments	
				Yes		ere en escara (10 militario del profesio (1000) (1000)			
				No					
<u> </u>									

Sample Site (Con't): WIUBHOU

UTM Location: Zn: Oby Easting: 0589544 Northing: 6880666

Photo No.: Carn d #0066

Well Head Space Gases:

	%	ppm
Methane (CH4)		
Oxygen (O2)	20.6	
Carbon Dioxide (C02)	14520	
/ _		

General Notes (Condition of well or other features):

Time	
Temperature (°C)	
DO (mg/L)	
Specific Cond. (µs/cm)	
Cond. (µs/cm)	
pH	
Redox (mV)	
Turbidity (NTU)	
Sulphide mg/L µg/L	
DO (mg/L)	

General Notes (Condition of well or other features):	
General Notes (Condition of well or other features): From Pour lost bailer Obstanction (Frozen) @ 6.73 m Live @ Exp of water level meter. - revisited 24. July - 14, still frozen	and the second s

Well Number:	MP09-03	Project Number:	1343-005.	ଡଟ Date:		2014/06/22			
Approximate Date Drilled:	valenoura	Client:	Yukon AF	Sampler:		AN, AB			
Piezometer Diameter / Screen Length:	05"/whenou	oje oc name:	MN GW Sam Program		emperature:				
CHV (ppm / % LEL):	not acorder	not recorded Duplicate Collected:		No Recovery:		Good Bad			
Purge Method N. / A									
Waterra	Peristaltio	Disp. Bailer	Steel Bai	ler Centri	f. Pump	Air Lift			
Initial Depth to Water (m):	1,519	Calculations:	Purge Start Ti	me:	Purge End 1	lime:			
Depth to Bottom (m):	1.617	- well not sealed.	Time () mi	nute interval:		0-1011 (41.50/1/2010/)			
Submerged Tubing Depth (m): N/4	-stick up weasured from	Depth (m)						
Well Stick-up Height (m):	1230 m	creek bank.	Temperature (°C)					
Estimated Water Volume (L):		- stick up from cree	μ pH		N-C00	61-08-10			
(DTB – DTW) x 2 (for 2" well diameter) = 1 well		bed = 0.82 m.	Cond. (µs/cm)		3/				
volume			Specific Cond	. (µs/cm)	WY JAN				
(CTC CT)		12:05 - pumped wel	HOUGH (III.)		19/2/				
(DTB-DTW) x 1.1 (for 1.5" d volume	liameter) = 1 well	dry with peristalti			5				
0.5 " casing has o.	127 Vm.	pump. Yield < 100m	!						
2" casing has 0.16 USgal	/ft or 2.032 I/m		Appearance & (Clear, Silty, H			4,			
1" casing has 0.04 USgal			etc.)	odours,					
8" sand pack has 0.73 USg 6 5/8" sand pack has 0.50 U									
0 9/0 Sand pack has 0.50 0	Sgaint of 6.55 inii		Total Purge Vo	olume:	•				
Sample Method - 11///									
. Waterra	Peristalti	c Disp. Bailer	Steel Bailer	Centrif. Pump	Air Lif	t Other			
Analysis									
Sample ID Parameters A	nalyzed Sample	Time Container Types	Preservative	Turbidity (NTU)		Comments			
me09/08)		The same of the sa	☐ Yes		® No	stenovah water			
			☐ No		1+0	of enough water sample			

Sample Site (Con't): ____ ベ ゃ っ き - o ろ

UTM Location: Zn: 08 V Easting: 63 88 95 Northing: 68 81 ラ 3 9

Photo No.: 0081,0082,0083. (lanera 1)

Well Head Space Gases:

	%	ppm	
Methane (CH4) しをじん	0.0		
Oxygen (O2)	20.6 %	Note that the second se	for well not sealed
Carbon Dioxide (C02)	<u> </u>	430 ppm	

General Notes (Condition of well or other features):

Time	
Temperature (⁰ C)	
DO (mg/L)	
Specific Cond. (µs/cm)	
Cond. (µs/cm)	
рН	
Redox (mV)	
Turbidity (NTU)	
Sulphide mg/L μg/L	
DO (mg/L)	

General Notes (Con-	dition of we	ll or other f	eatures):		
-Carnot piros well volund	05 E	Sampe	due ta	7 IUSMIJIGI	et

Well Numbe	r:	MF09-	14		Project Number:	1343	1343 -005.03		Date:		2014/06/27		2	
Approximate	Date Drilled:	un h	unknown. C		Client:	AA	n		Sampler:		AN, AB.			
Piezometer Screen Leng		1 0.5"/wknon		.5"/whow. Pr		WN	MN OW Sampling frogram.		Weather/Temperature:		(Cean, 50 mm).			
CHV (ppm /	% LEL):	400	vy corde	-d.	Duplicate Collecte	1: 🗌 Y	es 🛛 N	0	Reco	very:		☐ Go	od 🔯	Bad
Purge Metho	od							,				1	/	
Wa	terra	F	eristaltic		Disp. Bailer		Steel Baile	er .	(Centrif.	Pump	Air Lift		
		(ow	flow.											
Initial Depth	to Water (m):	1	.342		Calculations:	Purg	e Start Tim	ie:	17:3	6	Purge End	Time:		
Depth to Bo	ttom (m):	1.	971	Micr	e watera was	Time	() min	ute inter	val:	17:38			λ	
Submerged	Tubing Depth (n	1): ~	1.5	Ls.~	oved from well.	Dept	h (m)			ı			X	
Well Stick-u	p Height (m):	1.	07		alled 19" tubine	Tem	Temperature (°C)					1 0	W	
Estimated Water Volume (L):		l ' ' ' ' ' ' ' ' ' ' ' ' ' ' ' ' ' ' '			рН					11/201				
(DTB – DTW) x 2 (for 2" well diameter) = 1 well		= 1 well	1 1		Cond	Cond. (µs/cm)				1.9	hart e e			
(0.0 0.11	volume		, ,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	3 m. of tolong plus cylon Libes a min of purging. Well		Spec	Specific Cond. (µs/cm)			1				
						Redo	Redox (mV)				Jel Low			
(DIB-DIW)) x 1.1 (for 1.5" di volume	ameter) =	= 1 well			DO (i	DO (mg/L)							
2" casing has 0.16 USgal/ft or 2.032 l/m 1" casing has 0.04 USgal/ft or 0.508 l/m 8" sand pack has 0.73 USgal/ft or 9.271 l/m 6 5/8" sand pack has 0.50 USgal/ft or 6.35 l/m		8 I/m :71 I/m	dry yelding \$100 ml of maker. stick up measured from bottom of pond 86 cm stick up from maker suff		(Clea etc.)	Appearance & Odour (Clear, Silty, HC odours, etc.)			well Ory. after purgina 100 m	doesn't	rechargi	e during flow a	very	
Sample Metr	od MA									100 3.	<u></u>			
•	Waterra	ı	Peristaltic		Disp. Bailer	Steel	Bailer	Cent	trif. Pu	ımp	Air L	if+	Otl	ner
Analysis								30111		ипр	All L	IIL	Oti	ier
Sample ID	Parameters An	alyzed	Sample	Time	Container Types	Preserva	tive	Turh	idity (NTII		Co	nments	
		-	•			Yes							•	,
f = 2 - 1"						☐ Tes ☑ No						erough mple	. nater	to

Sample Site (Con't): ______ MP 0 9 - 14

UTM Location: Zn: 08√

Easting: 0389138

Northing: 488 0 7.52

Photo No .: (04 - 106 (Canera 1)

Well Head Space Gases:

	%	ppm
Methane (CH4)	0.0	
Oxygen (O2)	20.9	for many annich strate and a finding of confidence representations of the same
Carbon Dioxide (C02)	470 pp.	Anny against the second of the

a well not sented, no cap

General Notes (Condition of well or other features):

Final Groundwater Field Parameters (Following Purge):

Time	
Temperature (⁸ C)	
DO (mg/L)	
Specific Cond. (µs/cm)	
Cond. (µs/cm)	
рН	
Redox (mV)	
Turbidity (NTU)	
Sulphide mg/L µg/L	
DO (mg/L)	

General Notes (Condition of well or other features): -0.5" (approx) drive point well -/ ~ 3/2" Puc tobing inside - existing micro hotter inside, replaced al ~3~ of
1/4 puc + silicon for pari pump by Hennera - convert prope or some due to insufficient will Willes

see reverse CH-P-13-03/10 \$ Well Number: **Project Number:** 1343-005 07 Date: 27 June 2014 Approximate Date Drilled: unknown Client: Yokon AAM Sampler: AN 2" PUC -/ cap/ Piezometer Diameter / Mt Nangen Ch Clear , Junna **Project Name:** Weather/Temperature: Screen Length: Snaple unknown ~72°C Not recorded CHV (ppm / % LEL): **Duplicate Collected:** ☐-Yes ── ☐ No Recovery: Good Bad Purge Method N / A Waterra Peristaltic Disp. Bailer Steel Bailer Centrif. Pump Air Lift NA (dry) Initial Depth to Water (m): Calculations: Purge Start Time: **Purge End Time:** 5.136 -- Well broken @ Depth to Bottom (m): Time () minute interval: Submerged Tubing Depth (m): NIA Coupler & grand Surface inside Stick Depth (m) Well Stick-up Height (m): Temperature (°C) - up pretector. All Sta Sand in stick up protector fell into Estimated Water Volume (L): pН Cond. (µs/cm) (DTB - DTW) x 2 (for 2" well diameter) = 1 well volume Specific Cond. (µs/cm) Redox (mV) well casim (DTB-DTW) x 1.1 (for 1.5" diameter) = 1 well DO (mg/L) volume (likely Causing discrepancy beforeen measured Appearance & Odour 2" casing has 0.16 USgal/ft or 2.032 I/m (Clear, Silty, HC odours, 1" casing has 0.04 USgal/ft or 0.508 l/m DTB and implied 8" sand pack has 0.73 USgal/ft or 9,271 l/m OTE (10 m) based on 6 5/8" sand pack has 0.50 USgal/ft or 6.35 l/m well ID **Total Purge Volume:** Sample Method Waterra Peristaltic Disp. Bailer Steel Bailer Centrif. Pump Air Lift Other **Analysis** Sample ID Parameters Analyzed Sample Time Container Types Preservative **Turbidity (NTU)** Comments Yes □ No

HEMMERA

p^{2/2}

Sample Site (Con't): <u>CH-P-13-03/10</u> [●]

UTM Location: Zn: 08 U Easting: 0389 145 Northing: 688 1105

Photo No.: 6098, 0699, 0100, 6101 Canera 1

Well Head Space Gases:

				STATE OF THE PARTY OF	100 BAN 100	
Methane (CH4)	% LEL		///	//	//	1
Oxygen (O2)	10.5%		//	//	//	1
Carbon Dioxide (C02)	190 pam	U	//	7	//	<i>//</i> -

- casing pulled apart a couple when trying to remove threuded PVC, head space questionable

General Notes (Condition of well or other features):

Final Groundwater Field Parameters (Following Purge):

	\
Time	
Temperature (°C)	
DO (mg/L)	
Specific Cond. (µs/cm)	
Cond. (µs/cm)	
PH	
Redox (mV)	
Turbidity (NTU)	
Sulphide mg/L µg/L	
DO (mg/L)	

General Notes (Condition of well or other features):

Well ID in field maked on stick up as CH-P-13

however our map and GPS coordinates show this

Should be CH-P-13-03/10

Lo See note on reverse re. coupler (unthrended) coming

apart a ground surface, causing sand from inside

stick up protector to full inside well casing

(see photos)

Lo see info in AB field notes as nell

- well cooling glued book together on 29-Junetla

Well Numbe	r.	W1410	3083BH0	3	Project Number:		1343 - 005.	.oz	Date:			2014	106/2	7
Approximat	e Date Drilled:		«noun		Client:		MAM		Sampl	er:		AN,		
Piezometer Screen Leng			n know		Project Name:		MN GW Sar Progra		Weath	er/Ten	perature:	clea.	15°C.	.7.
CHV (ppm /	% LEL):	not	12 (0.70	led.	Duplicate Collecte	ed:		2 No N //-	Recov	ery:		Go	od 🛭	Bad
Purge Metho	od <i> </i>													
Wa	iterra	1	Peristaltic		Disp. Bailer	***************************************	Steel	Bailer	C	entrif.	Pump		Air Lif	t
						TO THE PERSON NAMED IN COLUMN 1								
Initial Depth	to Water (m):	f	.842		Calculations:		Purge Start	t Time:			Purge End	Time:		*****
Depth to Bo	ttom (m):	1	. 942		was reported in t		Time ()	minute inte	rval:					
Submerged	Tubing Depth (n	n): 🏻 🎷	V/A	Scope	e of work as 10m	٠., ٦	Depth (m)							1
Well Stick-u	p Height (m):	6	.76	Poten	atial safill of w	ال. [Temperatu	re (°C)					Ň	
Estimated Water Volume (L): ~ 200 L				emough volum		рН				10	W.	,	-	
(DTB – DTW) x 2 (for 2" well diameter) = 1 well) = 1 well	€«	somple and	· [Cond. (µs/c	cm)			I V.V.	(10	
`	volume		,	pie	rayl.	Γ	Specific Co	ond. (µs/cm)			1/60/1	Q.	1 0	
(07D 074					8		Redox (mV	")			1	V	15	
(DIB-DIW) x 1.1 (for 1.5" di volume	ameter)	= 1 well				DO (mg/L)				70/0		Y _	7
1" casing 8" sand pa	ı has 0.16 USgal/ ı has 0.04 USgal/ ck has 0.73 USga pack has 0.50 US	ft or 0.50 al/ft or 9.2	8 l/m 271 l/ m				Appearanc (Clear, Silty etc.)	e & Odour y, HC odours	5,			7		7
		ogamic or	0.00 1/111		New York Control of the Control of t		Total Purge	e Volume:						
Sample Met	1													
	Waterra		Peristaltio	:	Disp. Bailer	5	Steel Bailer	Cen	trif. Pun	np	Air Li	ft	01	her
Analysis					#5#/									
Sample ID	Parameters Ar	alyzed	Sample	Time	Container Types	Pres	servative	Turb	oidity (N	TU)			nments	
					•		Yes				F-N B	enous	h and	~
							No				® N≥+ te	Sam	ple	

Sample Site (Con't): W14103083 - BH03

Northing: 6880730

UTM Location: Zn: 08 ✓ Easting: 6389 132

Photo No.: 107 - 110 ((anera 2))

Well Head Space Gases:

	%	ppm		
Methane (CH4)	0.0			
Oxygen (O2)	20.9		\	hell not sealed
Carbon Dioxide (C02)	440 ppm.			

General Notes (Condition of well or other features):

Time	
Temperature (°C)	
DO (mg/L)	
Specific Cond. (µs/cm)	
Cond. (µs/cm)	
рН	
Redox (mV)	
Turbidity (NTU)	
Sulphide mg/L µg/L	
DO (mg/L)	

General Notes (Condition of well or other features):	
- existing 1 4 plastic bailer in well	
- Henner did not add any new tobing, not	
- Henrien did not add any new tubing, not enough who to sample (= 200 mL)	

1/2

Well Number		MW09-14	Project Number:	1343-005,003	Date:	20	4/06/27.
Approximate	Date Drilled:	uknown	Client:	AAM	Sampler:	6.000.000.000.000.000	V,AB.
Piezometer I Screen Leng		2"/unknow	Project Name:	MN GW Sampling Program.	Weather/Ten	nperature: CC	20 r, sonn y. ~15°C.
CHV (ppm / 9	% LEL):	not record	ا الحاد Duplicate Collected:	☐ Yes ☐ No	Recovery:	_	Good Bad
Purge Metho	d			<u></u>			
Wa	terra	Peristaltic	Disp. Bailer	Steel Bailer	Centrif.	Pump	Air Lift
Initial Depth	to Water (m):		Calculations:	Purge Start Time:		Purge End Time	•
Depth to Bot	tom (m):		Depth to see: 5.0982	Time () minute in	terval:		
Submerged ⁻	Tubing Depth (m	1):	Existing 5/0" water co	Depth (m)			
Well Stick-up	Height (m):	o. 75	Existing s/g"waterra stock in well.	Temperature (°C)			-
Estimated W	ater Volume (L):			рН			,
(DTB – DTW) x 2 (for 2" well d	liameter) = 1 well		Cond. (µs/cm)		- 50	/
	volume			Specific Cond. (µs/cn	1) 🛴		
/DTD DT40	4 4 75 4 59 11			Redox (mV)	1		
(DIB-DIW)	x 1.1 (for 1.5" dia volume	ameter) = 1 well		DO (mg/L)			
	has 0.16 USgal/f			Appearance & Odour (Clear, Silty, HC odou			
	has 0.04 USgal/f			etc.)	115,		
	ck has 0.73 USga back has 0.50 US						
o ore sand p	Jack Has 0.50 03	gaint or 0.35 inii		Total Purge Volume:			
Sample Meth	od						
	Waterra	Peristaltio	Disp. Bailer	Steel Bailer Co	entrif. Pump	Air Lift	Other
Analysis					-		
Sample ID	Parameters An	alyzed Sample	Time Container Types P	reservative Tu	rbidity (NTU)		Comments
			E	Yes			
				No			
		• • • • • • • • • • • • • • • • • • • •					

Sample Site (Con't): MW09-19

UTM Location: Zn: 08V Easting: 038900%

Northing: 688/663

Photo No.: 0084,0085,0086 (camera 1)

Well Head Space Gases:

	%	ppm	
Methane (CH4)	0% LEL		1 well sealed of corp, no slits in riser
Oxygen (O2)	20.4%		
Carbon Dioxide (C02)	550 ppm		
	(1		<u> </u>

General Notes (Condition of well or other features):

	reacts (reliewing runge).
Time	
Temperature (°C)	
DO (mg/L)	
Specific Cond. (µs/cm)	
Cond. (µs/cm)	
рН	
Redox (mV)	
Turbidity (NTU)	
Sulphide mg/L µg/L	
DO (mg/L)	

Gene	eral Notes (Condition	of well or other feat	ures):	

P1/2

Well Numbe	r:	MW09-13		Project Number:	1343 -005.	oo3 Date	er.	2014	106/27		
Approximate	e Date Drilled:	viknown		Client:	AAM	AA M Sampler:		25/2004	AN, AB		
Piezometer Screen Leng	\$20 2 577520583057577550505050555555555555	2"/ un le non	~~ <u>,</u>	Project Name:		MN GW Samples Weather/Temperature:		S	Sung, clear.		
CHV (ppm /	% LEL):	not vecous	led.	Duplicate Collecte	d: ☐ Yes ″ ☐	No Rec	overy:	☐ Go	☐ Good ☐ Bad		
Purge Metho	od										
Wa	iterra	Peristaltio	;	Disp. Bailer	Steel Ba	ailer	Centrif. Pump		Air Lift		
Initial Depth	to Water (m):			Calculations:	Purge Start 1	ime:	Purge Ei	nd Time:	Time:		
Depth to Bot	ttom (m):		Deat	h to blockage	Time () n	Time () minute interval:					
Submerged Tubing Depth (m):			195 ~	Depth (m)							
Well Stick-u	Well Stick-up Height (m):		1		Temperature	(°C)					
Estimated W	Estimated Water Volume (L):			precexisting tubin	pH			1,			
(DTB – DTW) x 2 (for 2" well diameter) = 1 well] ¿`^ (pre-existing tobia well. atially frozen	Cond. (µs/cm	1)		\$ / _	7		
volume		Poten	ntially frozen	Specific Con	d. (µs/cm)	100					
			•	Redox (mV)		1					
(DTB-DTW) x 1.1 (for 1.5" diameter) = 1 well volume				DO (mg/L)			1				
volume							7				
2" casing has 0.16 USgal/ft or 2.032 l/m				Appearance & Odour (Clear, Silty, HC odours,							
_	1" casing has 0.04 USgal/ft or 0.508 l/m		etc.)								
	ck has 0.73 USga pack has 0.50 US				-						
0 5/0 Sang	pack has 0.50 03	gaint or 6.33 inn			Total Purge \	/olume:					
Sample Meth	nad										
	Waterra	Peristalti	C	Disp. Bailer	Steel Bailer	Centrif. P	ump Air	Lift	Other		
Analysis									· · · · · · · · · · · · · · · · · · ·		
Sample ID	Parameters An	alyzed Sample	Time	Container Types	Preservative	Turbidity	(NTU)	Cor	nments		
					Yes	-	•				
					□ No						
			<u>l</u>								

Sample Site (Con't): Mwoq - 13

UTM Location: Zn: 08V Easting: 0387006 Northing: 6881665

Photo No.: 0086, 0085 (carrier 1)

Well Head Space Gases:

	%	ppm	
Methane (CH4)	0 % LEL		•
Oxygen (O2)	20.1%		
Carbon Dioxide (C02)	2540 pom	10011	

lits in eitler side of PVC riser ell capped

General Notes (Condition of well or other features):

	3 3
Time	
Temperature (°C)	
DO (mg/L)	
Specific Cond. (µs/cm)	
Cond. (µs/cm)	
рН	
Redox (mV)	
Turbidity (NTU)	
Sulphide mg/L µg/L	
DO (mg/L)	
	<u> </u>

	General Notes (Condition of Well or other features):
L	

Approximate Date Drilled: \(\text{Nown} \) Client: \(A A M \) Sampler: \(A N A B \) Piezometer Diameter / Screen Length: \(\text{Project Name:} \) Project Name: \(MN GW Sampler	-1
Screen Length: Project Name: Weather/Temperature: ~15'C	7
CHV (ppm / % FI): Duplicate Collected: Vos No. Possionii	
CHV (ppm / % LEL): Duplicate Collected: Yes No Recovery: Good	Bad
Purge Method N/A	
Waterra Peristaltic Disp. Bailer Steel Bailer Centrif. Pump Air Lift	t
Initial Depth to Water (m): Note: Calculations: Purge Start Time: Purge End Time:	
Depth to Bottom (m): - Area of well location Time () minute interval:	
Submerged Tubing Depth (m): has become active Depth (m)	
Well Stick-up Height (m): Place writing operation Temperature (°C)	
Estimated Water Volume (L): F Set photos. pH	
Cond (us/cm)	POV
volume Specific Cond. (us/cm)	14
found beside excavator Redox (mV)	
(DTB-DTW) x 1.1 (for 1.5" diameter) = 1 well volume Volume DO (mg/L)	
sem-ved from stream	
2" casing has 0.16 USgal/ft or 2.032 l/m Page Appearance & Odour	1
1" casing has 0.04 USgal/ft or 0.508 l/m (Clear, Silty, HC odours, etc.)	
8" sand pack has 0.73 USgal/ft or 9.271 l/m	
6 5/8" sand pack has 0.50 USgal/ft or 6.35 l/m Total Purge Volume:	1
Sample Method Λ / A	
Waterra Peristaltic Disp. Bailer Steel Bailer Centrif. Pump Air Lift Ot	her
Analysis	
Sample ID Parameters Analyzed Sample Time Container Types Preservative Turbidity (NTU) Comments	
N/A Yes	
□ No	

p2/2

Sample Site (Con't): (-5] - (C-01-12)

UTM Location: Zn: Easting: N/A . Northing: N/A -

Photo No.: 0094, 0093,0092,0091,0090,0089,0089,0087. (camera ().

Well Head Space Gases:

	%	ppm
Methane (CH4)		
Oxygen (O2)		
Carbon Dioxide (C02)	٠.	

General Notes (Condition of well or other features):

	neters (ronowing runge).
Time	
Temperature (°C)	
DO (mg/L)	
Specific Cond. (µs/cm)	
Cond. (µs/cm)	
рН	
Redox (mV)	
Turbidity (NTU)	
Sulphide mg/L µg/L	\
DO (mg/L)	
	N.

General Notes (Condition of well or other features):
Three drive point wells found pulled out by
excavator c side of current excavation, pulled
from unknown locations
Flagging (existing) on wells indicate
- GS1-PC-01-B
- unreadable (peribly PC-01-A) > See photos
- 09-01 (very faint)

P1/2

Well Number:	651-PC-02	- ら Project Number	r: 1343-005	.∅} D a	ite:		2014/0	6/27		
Approximate Date Drilled:	on known	1/10/05/2009/05/2009/05/2009/05/2009/05/2009	Yukan 1	AAM S	impler:		AR AN	j		
Piezometer Diameter <i>I</i> Screen Length:	0.5"/ m kno		Mt Nanse Sauple	Mt Nausen Chr Washar Tompont		nperature:				
CHV (ppm / % LEL):	not record	Duplicate Colle			ecovery:		☐ Good Bad			
Purge Method N/A			- Contraction of the Contraction	<u> </u>						
Waterra	Peristaltic	Disp. Baile	r Steel	Bailer	Centrif.	Pump	Ai	r Lift		
Initial Depth to Water (m):	1.285	Calculations:	Purge Star	rt Time: N /	A	Purge End	Time:			
Depth to Bottom (m):	1.795	helldry, probe	Time ()	minute interval	:	THE RESERVE OF THE PROPERTY OF	100101100000000000000000000000000000000			
Submerged Tubing Depth (m	- 1	I doe of a bottom	Depth (m)							
Well Stick-up Height (m):	0.89	deeps a botton	Temperatu	ıre (°C)			-			
Estimated Water Volume (L)	: N/A	t e	_ рн			1 1				
(DTB – DTW) x 2 (for 2" well diameter) = 1 well		\$ See reverse for about	Cond. (µs/	Cond. (µs/cm)		nt.	//			
volume		details about	Specific C	ond. (µs/cm)		W.				
/CTO CTIAN 4 4 /C 4 C 1	·	GS1=PC-02-A	Redox (m\	V)		4				
(DTB-DTW) x 1.1 (for 1.5" dia volume	ameter) = 1 well	GS1=10-00-17	DO (mg/L)				1			
• •	•									
2" casing has 0.16 USgal/l				ce & Odour ty, HC odours,				-		
1" casing has 0.04 USgal/			etc.)	ly, no odours,						
8" sand pack has 0.73 USga										
6 5/8" sand pack has 0.50 USgal/ft or 6.35 l/m			Total Purg	je Volume:			•	····		
Sample Method N/A										
≪ Waterra	Peristaltic	C Disp. Bailer	Steel Bailer	r Centrif.	Pump	Air Li	ft de la	Other		
Analysis										
Sample ID Parameters An	nalyzed Sample	Time Container Types	s Preservative	Turbidit	ty (NTU)		Comm	ents		
NIA			☐ Yes		23300003 3 0 -233000374 11100	The state of the s	NOTE - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 -	327000000000000000000000000000000000000		
			□ No							

Sample Site (Con't): GSI-PC-02-6

UTM Location: Zn:08 U Easting: 0388907 Northing: 6881786 3 and GST-FC-02-A

Photo No .: 0074 - 77 ((quera 1)

Well Head Space Gases:

Well Head Space Gases.		
Methane (CH4)	0% LEL	070
Oxygen (O2)	20.5%	20.5%
Carbon Dioxide (C02)	490 ppm	460 ppm

But Puc cap A with ziphe logs flygging tape

General Notes (Condition of well or other features):

	incers (ronowing range).
Time	
Temperature (°C)	
DO (mg/L)	
Specific Cond. (µs/cm)	
Cond. (µs/cm)	
рН	
Redox (mV)	
Turbidity (NTU)	
Sulphide mg/L µg/L	
DO (mg/L)	

General Notes (Condition of well or other features):
GSI-PC-02-A
0th = 0.919 DTB= 1.297 Stickup= 0.88m
Lamate in A but not sampled according to work plan,
unknown recovery in A
Both A + 10 ~ 1/2 steel casing wells, each
have small lip (throughs) a ~ 0.91 m btos
15:00 June 28- revisit A) to see if rechange present
and well could be sampled, measure DTB = 1.310m
and no mater. No sample possible at either location

Well Number:	L-	151-47-01	-14	Project Number:	11343-00	343-065,68 Date:			27. June - 14			
Approximate	Date Drilled:			Client:	NAM		Sampler:			MN		
C25/446504666575564000040564564000	Piezometer Diameter / Screen Length:			Project Name:	MN GW (Sp	MN GW (Spring) Weather/Temperature		perature:	8			
CHV (ppm / %	CHV (ppm / % LEL):			Duplicate Collecte	d: ☐ Yes ┖	No	Recovery:		☐ Go	od 🖸 Bad		
Purge Method	l					,			1			
Wate	erra	Peristaltic		Disp. Bailer	Steel Ba	iler	Centrif.	Pump		Air Lift		
		\sim										
Initial Depth to	o Water (m):	2.380		Calculations:	Purge Start T	ime: 🍞	:41	Purge End	Time:			
Depth to Botte	om (m):	3.120	1.503	368.X3	Time () m	inute inter	val: 7:45					
Submerged T	ubing Depth (m):	~3.6] - y	51104	Depth (m)							
Well Stick-up	Height (m):	1. 22 -			Temperature	(°C)	3.0					
Estimated Wa	ter Volume (L):	©35892		420014S	рН		7.3%	`	·V			
(DTB – DTW)	(DTB – DTW) x 2 (for 2" well diameter) = 1 well		= 1	.18776	Cond. (µs/cm	Cond. (µs/cm) 531		- 1				
,	volume	, , , , , , ,			Specific Con-	Specific Cond. (µs/cm)						
(DTD DTA)	4.4.6. 4.50 1				Redox (mV)		-54.a			1/		
(DIB-DIVV)	k 1.1 (for 1.5" diam volume	neter) = 1 well			DO (mg/L)	DO (mg/L) 均,			Λ(A		
2" casing has 0.16 USgal/ft or 2.032 l/m 1" casing has 0.04 USgal/ft or 0.508 l/m 8" sand pack has 0.73 USgal/ft or 9.271 l/m		-			Appearance & Odour (Clear, Silty, HC odours, etc.)		2	and the state of t				
6 5/6 sand pa	ack has 0.50 USga	ai/π or 6.35 i/m			Total Purge \	/olume:			·			
Sample Metho	od											
	Waterra	Peristaltion	;	Disp. Bailer	Steel Bailer	Cent	trif. Pump	Air Li	ft	Other		
Analysis										*****		
Sample ID	Parameters Anal	yzed Sample	Time	Container Types	Preservative	Turb	idity (NTU)		Cor	nments		
					Yes		and the second s	The second section of the second seco	ACCOUNT AND			
					□ No							
									7777444			

Sample Site	(Con't): <u>GS</u>	-	1A - Ol
1.0			

UTM Location: Zn: OBy

Easting: 038 7043 Northing: 686 83

0

Photo No.:

Well Head Space Gases:

	%	ppm
Methane (CH4)		0
Oxygen (O2)	20.9	
Carbon Dioxide (C02)	680	

CH-P-B-P2

8.125 (10W)

8.120 (0TW)

- well was not an sample hat provided by

Chert Depth wo states.

General Notes (Condition of well or other features):

Final Groundwater Field Parameters (Following Purge):

Time	
Temperature (°C)	
DO (mg/L)	
Specific Cond. (µs/cm)	
Cond. (µs/cm)	
pH	
Redox (mV)	
Turbidity (NTU)	
Sulphide mg/L µg/L	
DO (mg/L)	
	1
	`\.

General Notes (Condition	of well or other features):
--------------------------	-----------------------------

- mouth close well volume; whathe to puze / sample.

-new 3/16" today added to well

	(<u> </u>	22 IV	11/m)W(n) 1	<u> 35 - U761</u>	m) 1.45+	2	41 (IR- U	IMIO	1.04	
Well Numbe	r. (981-DC-0	25E	Project Number:	1343-005	である Dat	NOTE OF THE PROPERTY OF THE PR			N. K. K. S.	- jù
Approximate	Date Drilled:	te Drilled:		Client:	NOW S	XC-00050000	Sampler:		CH / HAM		
Piezometer I Screen Leng	\$500E65410E5650E60E60100E6555EE557E6501E664	1" DP	>	Project Name:	MN GW	् 	ather/Ten	perature:		Swy	
CHV (ppm / 1	% LEL):	" And the state of		Duplicate Collecte	ed: Yes	No Red	overy:		Good		Bad
Purge Metho	ıd							1000000	-1		
Wa	terra	Peristaltic		Disp. Bailer	Steel B	ailer	Centrif.	Pump		Air Lift	
Initial Depth	to Water (m):	1.120		Calculations:	Purge Start	Time: (0:40		Purge End	Time:		
Depth to Bot	tom (m):	2.805	٥.٩	35598 X-3	Time () r	ninute interval:	10:46				
Submerged	Tubing Depth (m)	: [~J.3	1	2,56794	Depth (m)	,		not to	sen n	of pr	OLICI PI
Well Stick-up	o Height (m):	0.55		0,26117	Temperature	e (°C)	3.4				J
Estimated W	ater Volume (L):	0.85598	2		рН		7.07			-	
(DTB – DTW) x 2 (for 2" well dia	ameter) = 1 well			Cond. (µs/cn	n)	1107				
(volume				Specific Con	nd. (µs/cm)	1623	,	100		
(DTD DT • 0	4 4 (5 4 -1) 1:				Redox (mV)		-66.1		5 D T		1 1
(DIR-DIM)	x 1.1 (for 1.5" diar volume	neter) = 1 well			DO (mg/L)		2,79			M	Ä.
2" casing has 0.16 USgal/ft or 2.032 l/m 1" casing has 0.04 USgal/ft or 0.508 l/m 8" sand pack has 0.73 USgal/ft or 9.271 l/m				Appearance (Clear, Silty, etc.)						,	
6 5/8" sand i	oack has 0.50 USg	al/ft or 6.35 l/m	1		Total Purge	Volume:					
Sample Meti	iod										
	Waterra	Peristaltion	-	Disp. Bailer	Steel Bailer	Centrif. I	Pump	Air L	ift	Oth	er
Analysis											
Sample ID	Parameters Ana	lyzed Sample	Time	Container Types	Preservative	Turbidity	(NTU)		Com	ments	
					Yes						
					□ No						

	\triangle	C ~	Parent Parent
Sample Site (Con't):	(2)	- ()(-	\bigcirc

UTM Location: Zn: つもり Easting: ○うらき Northing: ららからっ

Photo No.: Cam2 #0058

Well Head Space Gases:

	%	ppm -
Methane (CH4)		
Oxygen (O2)	2004	264
Carbon Dioxide (C02)	690	690
(0)		

General Notes (Condition of well or other features):

	, , , , , , , , , , , , , , , , , , ,
Time	
Temperature (°C)	
DO (mg/L)	
Specific Cond. (µs/cm)	
Cond. (µs/cm)	,
pH	
Redox (mV)	
Turbidity (NTU)	
Sulphide mg/L μg/L	
DO (mg/L)	

General Notes (Condition of well or other features):
@F10:46 well went day of asl purged
- Insufficient well volume, cannot sounde/
purge
-rew 3/16" tusing added to will.

CO2 - 6/0% CH4 - 0ppm

2 - 20.6% CO - 0ppm

GROUNDWATER SAMPLE COLLECTION SHEET

GS1-00-03A DW(M)1,200 G61-DC-03R Well Number: **Project Number:** BB-005.02 Date: 2=-June-14 Approximate Date Drilled: Client: AAU Sampler: 2M/UU Piezometer Diameter / **Project Name:** MN GWEDTIA Weather/Temperature: Screen Length: 17No CHV (ppm / % LEL): ☐ Yes ☐ Good **Duplicate Collected:** Recovery: ☐ Bad **Purge Method** Peristaltic Waterra Disp. Bailer Steel Bailer Centrif, Pump Air Lift 533 Initial Depth to Water (m): 09:20 Calculations: Purge Start Time: Purge End Time: Depth to Bottom (m): 2,405 9:33) minute interval: Submerged Tubing Depth (m): ~1.6 Depth (m) 2.30 0.91 Well Stick-up Height (m): Temperature (°C) 3.0 0. 9476 Estimated Water Volume (L): 7.4 рΗ Cond. (us/cm) 572 (DTB - DTW) x 2 (for 2" well diameter) = 1 well volume Specific Cond. (us/cm) 936 Redox (mV) (DTB-DTW) $\times 1.1$ (for 1.5" diameter) = 1 well DO (mg/L) 5.34 volume Appearance & Odour 2" casing has 0.16 USgal/ft or 2.032 l/m (Clear, Silty, HC odours, 1" casing has 0.04 USgal/ft or 0.508 l/m etc.) 8" sand pack has 0.73 USgal/ft or 9.271 l/m 6 5/8" sand pack has 0.50 USgal/ft or 6.35 l/m **Total Purge Volume:** Sample Method Waterra Peristaltic Disp. Bailer Steel Bailer Centrif. Pump Air Lift Other ! Analysis Sample ID Parameters Analyzed Sample Time **Container Types** Preservative **Turbidity (NTU)** Comments ☐ Yes √ No

Sample Site (Con't): (S) - ()		
UTM Location: Zn: 🕞 , E	Easting:つろららして No	rthing: 6081079
Photo No.: (ama #005)	•	
Well Head Space Gases:		
	%	ppm
Methane (CH4)		
Oxygen (O2)	20.6	
Carbon Dioxide (C02)	60	
General Notes (Condition of	·	
i mai Groundwater meid Parame	sters (Following Furge).	General Notes (Condition of well or other features):
Time		Q9:33 Disand COS
Temperature (°C)		Manual Manual Comment any
DO (mg/L)		- Meanticient man rough, Garner trude
Specific Cond. (µs/cm)		80mple
Cond. (µs/cm)		@9:33 purged <0.5%, well went any - Insufficient well volume, Connot purge, 8011776 -rew 3/16" Evising added to well
рН		
Redox (mV)		
Turbidity (NTU)		
Sulphide mg/L µg/L		
DO (mg/L)		

Well Number:	1-90 WM	Project Number:	1343005.0	<u>ු Dat</u>	e:		26-June-14				
Approximate Date Drilled:		Client:	144V	Sar	Sampler:			RU/MU			
Piezometer Diameter I Screen Length:	2"	Project Name:	MN GWCSPF	₩e	Weather/Temperature:			porting cloudy +			
CHV (ppm / % LEL):		Duplicate Collected	Yes 🖸 N	o Re o	covery:		□Go	od [] Bad		
Purge Method			D00-1								
Waterra	Peristaltic	Disp. Bailer	Steel Baile	r	Centrif. I	Pump Air		Air Lift	est a		
	X						1				
Initial Depth to Water (m):	1.686	Calculations:	Purge Start Tim	ie: 3:5		Purge End	Time:	13:4	40		
Depth to Bottom (m):	2.495		Time (5) min	ute interval:	13:20	13:25	13130	131,35	13:4		
Submerged Tubing Depth	(m):	Total Purge	Depth (m)		1.69	1.69	1.69				
Well Stick-up Height (m):		WE @ 3x	Temperature (°0	4.8	4.4	5.6	4.8	4.8			
Estimated Water Volume (L): 🔎 矣 🕒 🤭 💮		2.61782	рН	6.69	6.63	6.67	6.68	6.6			
(DTB – DTW) x 2 (for 2" well diameter) = 1 well		~ (CC-71) (Cond. (µs/cm)		1085	(639	1045	1041	1040		
volume		=6.05346	Specific Cond.	Redox (mV) 136.1 (U		(694	1695	695	1695		
			Redox (mV)			147.3	1379 136,7 136				
(DTB-DTW)'x 1.1 (for 1.5" ovolume	diameter) = 1 well		DO (mg/L)		414	3.90	3.73	3.61	3.62		
2" casing has 0.16 USgal/ft or 2.032 l/m 1" casing has 0.04 USgal/ft or 0.508 l/m 8" sand pack has 0.73 USgal/ft or 9.271 l/m			Appearance & ((Clear, Silty, HC etc.)		agan. Us. Geol	0000mg 400 61 800	Cless Po Colour	Cler, no assour	''		
6 5/8" sand pack has 0.50 t	JSgal/ft or 6.35 l/m		Total Purge Vol	lume:	7.5	<u> </u>	•				
Sample Method		•									
Waterra	Peristaltio	Disp. Bailer	Steel Bailer	Centrif.	Pump	Air L	_ift	Ot	her		
Analysis	×										
Sample ID Parameters A	Analyzed Sample	Time Container Types	Preservative	Turbidit	y (NTU)		Co	mments			
MMOd-16 Goverts	13:40	112 11 - 11 - 11	☐ Yes ☑ No	3.86	y go an garanaan halla	coronnelle (A. A. A	Set	Gack	<u> </u>		

Collection becompres

Dies Metal Dies Murchy NH3 TIC Supplied 180 M PROSIC Y F 1840 M Gluss Y F 1850 M Sluss Y 1800 M Sluss Y 1800 M S Calbration 1.09 Calibrated to 10 10 10,06 to 10,0

Sample Site (Con't): \(\text{\text{MWO9-16}} \)

MWC9-16 UTM Location: Zn: 080 Easting: 6387992 Northing: 688694

Photo No.: 20039 Can

Well Head Space Gases:

	%	ppm
Methane (CH4)	G (LEL)	
Oxygen (O2)	20.6	
Carbon Dioxide (C02)	4.38	
/: // \ \ \ \ \		

General Notes (Condition of well or other features):

Time	13:40
Temperature (°C)	4.8
DO (mg/L)	5.62
Specific Cond. (µs/cm)	1695
Cond. (µs/cm)	1040
рН	6.67
Redox (mV)	136.6
Turbidity (NTU)	3.86
Sulphide mg/L µg/L	3.0
DO (mg/L)	

General Notes (Condition of well or other features):								
-bailes	Lound	in well	<u> </u>					
-new	3/16"	tubing	s adued	40	۱۱عیق			

Well Number:	GSI-DC	-08-B	Project Number:	1343-005.03	Date:		2014/06	129
Approximate Date Drilled:	unknou	ta.	Client:	AAM	Sampler:		AN, AB	
Piezometer Diameter I Screen Length:	0.5"/~~k.	nown.	Project Name:	MN GW sampling Program.	Weather/Temp	erature:	~ 10°	,
CHV (ppm / % LEL):	not reco	wded.	Duplicate Collected:	☐ Yes ⊠ No	Recovery:		Good	Bad
Purge Method								
Waterra	Perist	altic	Disp. Bailer	Steel Bailer	Centrif. Pu	ımp	Ai	r Lift
Initial Depth to Water (m):			Calculations:	Purge Start Time:	Pi	urge End	Time:	
Depth to Bottom (m):		Well	sealed with	Time () minute int	erval:	N		
Submerged Tubing Depth (n	n):	plas	itic cap.	Depth (m)			1	
Well Stick-up Height (m):	0.27	· Exis	ting nicro waterra	Temperature (ºC)			$\Delta \mathbb{R}^{\mathbb{N}}$	
Estimated Water Volume (L)):	froze	ting nicro waterra en in well.	pН		1		
(DTB – DTW) x 2 (for 2" well diameter) = 1 well ーナルトル		ing removed with e effort throshice	Cond. (µs/cm)		1/4			
volume			e effort throubice	Specific Cond. (µs/cm	1)) -	1	
			a a bla to re-insert Redox (IIIV)					
(DTB-DTW) x 1.1 (for 1.5" di volume	iameter) = 1 we		may part ice block	DO (mg/L)				
2" casing has 0.16 USgal/ft or 2.032 l/m		th to blockage:	Appearance & Odour (Clear, Silty, HC odou		4			
1" casing has 0.04 USgal 8" sand pack has 0.73 USg		_	0.759 m.	etc.)			1	
6 5/8" sand pack has 0.50 U		m -ice	observed along leke banks.	> cont. on bac	k			
·	- 3-11.0	crea	ek banks.	Total Purge Volume:				
Sample Method								
Waterra	Peris	taltic	Disp. Bailer	Steel Bailer Ce	entrif. Pump	Air Li	ftstyrig (sig	Other
Analysis								
Sample ID Parameters A	nalyzed Sar	nple Time	Container Types Pr		rbidity (NTU)		Comm	ents
				Yes				
	1			No				

Sample Site (Con't): 651-00-08-B

UTM Location: Zn: 08 V Easting: 039 03(1 Northing: 6880583

Photo No.: 0155 - 0159 (Camera #1).

Well Head Space Gases:

	%	ppm
Methane (CH4) しらん	6.0	
Oxygen (O2)	20.5	
Carbon Dioxide (C02)	640 pp-	

General Notes (Condition of well or other features):

,
<u> </u>
*

General N	otes (Condition of well or other features):
651 - DC	-08-A
COZ - S OZ - Z	50
DTW-	d with ziplock bag. 1.121 m 1.534 m.
Stick u	p - 0.91 m.
	DC-08-14 was purged DRY using preexisting niero water
- Wai	ted 10 min. Recharge was 0.10 m, which would
bc	insufficient unto to sample even if A mas in
5.00	Op

Well Number:	MW09-4	Project Number:	1343-005-03	Date:	29 June 2014
Approximate Date Drilled:	Unknown	Client:	Yukon AAM	Sampler:	AB AN
Piezometer Diameter / Screen Length:	2" PVC/ inknown	Project Name:	M+ Nausen Elv Sample	Weather/Temperature:	overcast, cost,
CHV (ppm / % LEL):	not recorded	Duplicate Collected:	Yes No	Recovery:	Good Bad
Purge Method N/A					
Waterra	Peristaltic	Disp. Bailer	Steel Bailer	Centrif. Pump	Air Lift
Initial Depth to Water (m):	N/A(dry)	Calculations:	Purge Start Time:	Purge End	NADIA CEDIA VICINI DAGILIA
Depth to Bottom (m):	4.909	N/A	Time () minute in	terval:	
Submerged Tubing Depth (n	n): N/A	• ,	Depth (m)		
Well Stick-up Height (m):			Temperature (°C)		
Estimated Water Volume (L)	: N/A		рН		
(DTB – DTW) x 2 (for 2" well	diameter) = 1 well		Cond. (µs/cm)		<u> </u>
volume			Specific Cond. (µs/cm)		
			Redox (mV)		,
(DTB-DTW) x 1.1 (for 1.5" di volume	iameter) = 1 well		DO (mg/L)		
2" casing has 0.16 USgal/ft or 2.032 l/m 1" casing has 0.04 USgal/ft or 0.508 l/m 8" sand pack has 0.73 USgal/ft or 9.271 l/m			Appearance & Odour (Clear, Silty, HC odou etc.)		
6 5/8" sand pack has 0.50 US	Sgal/ft or 6.35 l/m		Total Purge Volume:		1 1
Sample Method 1/ / /			Transport Marcel (1995) (1997) (1997) (1997) (1997) (1997)	and develope of the separate and a separate of the separate of	
Waterra	Peristaltic	Disp. Bailer	Steel Bailer C	entrîf. Pump Air	Lift Other
Analysis					
Sample ID Parameters A	nalyzed Sample T	ime Container Types P	reservative Ti	urbidity (NTU)	Comments
] Yes	03/100016	2000 - 1000 - 1000 - 1000 - 1000 - 1000 - 1000 - 1000 - 1000 - 1000 - 1000 - 1000 - 1000 - 1000 - 1000 - 1000 -
	war and the second] No		
<u> </u>				i	

Existing It plastic bailer in well

Sample Site (Con't): MW09-11

UTM Location: Zn: 08 U Easting: 0369037 Northing: 6880711

Photo No .: Camera 1. 0151 - 0154

Well Head Space Gases:

	-5404	///ppm
Methane (CH4)	O % LEL	
Oxygen (O2)	20-5%	1///
Carbon Dioxide (C02)	440 ppn	Market and a second

well sealed or plastic

caf. but holes cut in

top of blank to hold

bailer turne (atmospheric intrusion)

General Notes (Condition of well or other features):

Final Groundwater Field Parameters (Following Purge):

Time	
Temperature (°C)	
DO (mg/L)	
Specific Cond. (µs/cm)	
Cond. (µs/cm)	
рН	
Redox (mV)	
Turbidity (NTU)	
Sulphide mg/L µg/L	
DO (mg/L)	

General Notes (Condition of well or other features):

PUC + stick up protector in good shape (other than slits)
In "savd dune" area

Well Number:	CH-P-13-04	(/10 Project Number:	1343-005.02	Date:		28 Ju	<u>رد</u> 701	'e/
Approximate Date Drilled:	unknoun	Client:	Yokon AAM	Sampler:		AB 1	7W	
Piezometer Diameter I Screen Length:	2" PVC -/e-p	Project Name:	Mt Nonsen Chr Sample	Weather/Tem	perature:		50An	~{
CHV (ppm / % LEL):	not recorded	Duplicate Collected:	699a	Recovery:		☐ Goo	d 🔲	Bad
Purge Method N/A								
Waterra	Peristaltic	Disp. Bailer	Steel Bailer	Centrif. P	² ump		Air Lift	Karijan
	7~	see reverse						
Initial Depth to Water (m):	2.928 €	Calculations:	Purge Start Time:	N/A F	Purge End	Time:	NIA	
Depth to Bottom (m):	5.1	Wall escelled	Time () minute in	nterval:				
Submerged Tubing Depth (n	n): N/A	Well essentially day, not enough water to purple or sample	Depth (m)					
Well Stick-up Height (m):	0.639	dry, not enough	Temperature (ºC)					
Estimated Water Volume (L)	: N/A	water to purge	рН	1/1/2	PF	1866	<u> </u>	
(DTB – DTW) x 2 (for 2" well diameter) = 1 well volume		· · · · · · · · · · · · · · · · · · ·	Cond. (µs/cm)				<u> </u>	
		or sample	Specific Cond. (µs/ci	m) //o	SAV	npd	E	
		,	Redox (mV)					
(DTB-DTW) x 1.1 (for 1.5" diameter) = 1 well volume			DO (mg/L)					
2" casing has 0.16 USgal/ft or 2.032 l/m 1" casing has 0.04 USgal/ft or 0.508 l/m 8" sand pack has 0.73 USgal/ft or 9.271 l/m			Appearance & Odou (Clear, Silty, HC odo etc.)					
6 5/8" sand pack has 0.50 US	Sgal/ft or 6.35 l/m		Total Purge Volume:		<u> </u>		L	
Sample Method W / /			700 St. Co. Co. Co. Co. Co. Co. Co. Co. Co. Co					
Waterra	Peristaltic	Disp. Bailer	Steel Bailer C	Centrif, Pump	Air Li	ift	Oth	ıer
Analysis				-				
Sample ID Parameters Ar	nalyzed Sample T	Fime Container Types F	Preservative T	urbidity (NTU)		Com	iments	
		T Tr	☐ Yes					
l l	1	1	_ '''				***************************************	

Sample Site (Con't): CH-P-13-04/10

UTM Location: Zn: 08 U Easting:0389138 Northing: 688 1472

Photo No.: Camera 1 -> 0111 - 0113

Well Head Space Gases:

	- Mary	/ppm
Methane (CH4)	0% LEL	
Oxygen (O2)	20.5%	1/////
Carbon Dioxide (C02)	440 ppm	1000

hall sealed weap

General Notes (Condition of well or other features):

Final Groundwater Field Parameters (Following Purge):

Time	
Temperature (°C)	
DO (mg/L)	
Specific Cond. (µs/cm)	
Cond. (µs/cm)	
pH	
Redox (mV)	
Turbidity (NTU)	
Sulphide mg/L µg/L	
DO (mg/L)	

General Notes (Condition of well or other features):

_ No existing tubing or bailers in well, none oulded - hell in good condition, in middle of road blocker by bem of gravel & main read, hike in to access

- unknown why measured DTB < 10 m implied by will name and sprendsheet Quesn't feel like blookage or ice (feels like well ensing bottom), but could be

Well Number:	MW09-20	Project Number:	1343-00505	Date:	28- June 14		
Approximate Date Drilled:		Client:	AAM	Sampler:	RH/MH		
Piezometer Diameter I Screen Length:	2	Project Name:	MD GM @ burg	Weather/Temperature:	STALES -		
CHV (ppm / % LEL):		Duplicate Collected:	☐ Yes ☐ No	Recovery:	☐ Good ☐ Bad		
Purge Method							
Waterra	Peristaltic	Disp. Bailer	Steel Bailer	Centrif. Pump	Air Lift		
Initial Depth to Water (m):		Calculations:	Purge Start Time:	Purge End	Time:		
Depth to Bottom (m):	30.67		Time () minute inte	erval:			
Submerged Tubing Depth (m);		Depth (m)				
Well Stick-up Height (m):	(0.91)		Temperature (°C)				
Estimated Water Volume (L	.):		pH 🔷	1			
(DTB – DTW) x 2 (for 2" well	diameter) = 1 well		Cond. (µs/cm)	8			
volume	diamotoly		Specific Cond. (µs/cm				
			Redox (mV)				
(DTB-DTW) x 1.1 (for 1.5" o volume	diameter) = 1 well		DO (mg/L)				
Volume							
2" casing has 0.16 USgal/ft or 2.032 l/m			Appearance & Odour (Clear, Silty, HC odour				
1" casing has 0.04 USgal	I I		etc.)				
8" sand pack has 0.73 USg	·						
6 5/8" sand pack has 0.50 U	/Sgal/ft or 6.35 l/m		Total Purge Volume:	\			
Sample Method							
Waterra	Peristaltic	Disp. Bailer	Steel Bailer Ce	ntrif. Pump Air L	ift Other		
Analysis							
Sample ID Parameters A	nalyzed Sample Time	Container Types Pr	reservative Tu	rbidity (NTU)	Comments		
	- Constant		Yes		ray paga ar ang mara mada 16 1000 13 15 15 16 16 16 16 16 16 16 16 16 16 16 16 16		
			No				
l			-				

Sample Site (Con't): 💯	N09-20
------------------------	--------

UTM Location: Zn: OB Easting: 0380592 Northing: 68805 86

Photo No.: (am #2 #007)

Well Head Space Gases:

	%	ppm
Methane (CH4)		Ó
Oxygen (O2)	20.4	
Carbon Dioxide (C02)	11000	

General Notes (Condition of well or other features):

\

General Not	General Notes (Condition of well or other features):					
-unable	700	ÇKEŞÇ.	CAT !	sample,	ory well	

Well Number:	GLL	.07-02		Project Number:	1343-005.0	> 3	Date:			2014	106/a	8
Approximate Date Drilled:	V	henown		Client:	AAM		Sampl	er:		ANA	8	****
Piezometer Diameter / Screen Length:		m steel		Project Name:	MN GW Sa Program		Weath	er/Tem	perature:	Clea	v, sun- 20°C.	٠٧.
CHV (ppm / % LEL):	۸,	of record	ed.	Duplicate Collected:	∏ Yes ້⊠	No	Recov	ery:		☐ Go	od 🗌	Bad
Purge Method												
Waterra		Peristaltic		Disp. Bailer	Steel Ba	ailer	C	entrif.	Pump		Air Lift	
								Local				
Initial Depth to Water (m):		DRY		Calculations:	Purge Start T	ime:			Purge End	Time:		,
Depth to Bottom (m):		チ.1ス			Time () n	ninute inte	erval:	get een				* a -e*
Submerged Tubing Depth (r	n):	M/A.	1	da 1c	Depth (m)							
Well Stick-up Height (m):	1	1.37	بمار	itic brite	Temperature	(°C)						
Estimated Water Volume (L)):		المراجعة	Shire mlands	рН							
(DTB – DTW) x 2 (for 2" well	diamet	er) = 1 well	1000	21. 1 21. CAOCH	Cond. (µs/cm	1)						
volume	aidino.	.01) 1 110	and string already in steel casing,		Specific Cond. (µs/cm)							
				malar in casinal	Redox (mV)							
(DTB-DTW) x 1.1 (for 1.5" d volume	iamete	er) = 1 well	A/Q	water in casing/	DO (mg/L)					part .		
voiume			500	iler .						,		
2" casing has 0.16 USgala	/ft or 2	.032 l/m			Appearance							
1" casing has 0.04 USgal	ft or 0	.508 l/m			(Clear, Silty, etc.)	HC odour	5 ,					
8" sand pack has 0.73 USg.												
6 5/8" sand pack has 0.50 U	Sgal/ft	or 6.35 l/m			Total Purge	Volume:			1		1,	1
Sample Method												
Waterra		Peristaltion	:	Disp. Bailer	Steel Bailer	Се	ntrif. Pu	mp	Air Li	ft	Ot	her
Analysis								····				
Sample ID Parameters A	nalyze	d Sample	Time	Container Types F	reservative	Tui	bidity (N	ITU)		Co	mments	
		and the second of the second o		<u> </u>	Yes			egores et soldle				
			ĺ	-	No							
		}										

Sample Site (Con't): 6LL07-02

UTM Location: Zn: 08 V Easting: 0387 067 Northing: 688 17 0 ラ

Photo No.: Comeca 2 0144 - 0147

Well Head Space Gases:

	% ppm
Methane (CH4) ८ ८ ८	0.0 % LEL
Oxygen (O2)	19.8 %
Carbon Dioxide (C02)	3840 pm.

General Notes (Condition of well or other features):

Final Groundwater Field Parameters (Following Purge):

	meters (ronowing runge).
Time	
Temperature (°C)	
DO (mg/L)	
Specific Cond. (µs/cm)	
Cond. (µs/cm)	
pH	
Redox (mV)	
Turbidity (NTU)	
Sulphide mg/L µg/L	
DO (mg/L)	

General Notes (Condition of well or other features):

- 15.5 cm & steel easily in ground, no inert PVC/ strictes steel inside NOT A MONITORING WELL

- Entered GPS coordinates into GPS unit and navigate to this exact location

Well Number:	CH-P-13-	0×1/35	Project Number:	1343-005.03	Date:		28 June	2014
Approximate Date Drilled:	unknewn		Client:	Yokon AAM	Sampler:		AR AN	
Piezometer Diameter / Screen Length:	1" PVC V		Project Name:	Mt Nomsen GW Sample	Weather/Tem	perature:	clear, su	
CHV (ppm / % LEL):	not recons	20	Duplicate Collected:	☐ Yes ☐ No	Recovery:		Good	Bad
Purge Method // / /								
Waterra	Perista	tic	Disp. Bailer	Steel Bailer	Centrif. F	ump	Air Lif	t dat
Initial Depth to Water (m):	6.505°	Đ	Calculations:	Purge Start Time:		Purge End	Time:	
Depth to Bottom (m):	6.505		Blockage in	Time () minute int	erval:	540,40a f		
Submerged Tubing Depth (n				Depth (m)				
Well Stick-up Height (m):	0.608		e 6.505m	Temperature (°C)				
Estimated Water Volume (L)	: N/A) b+0	c, vulnovn.	рН	1/00	F4	RGE,	
(DTB DTW) x 2 (for 2" well of	diameter) = 1 w	ł		Cond. (µs/cm)				
volume	2.2	Soun	ds/feels plastic/	Specific Cond. (µs/cm	1) 1/0	SA	n 0	
			ou, not like ice	Redox (mV)) 1		
(DTB-DTW) x 1.1 (for 1.5" di volume	ameter) = 1 wel	luas	on existing built	DO (mg/L)				
2" casing has 0.16 USgal/ 1" casing has 0.04 USgal/ 8" sand pack has 0.73 USga	ft or 0.508 I/m al/ft or 9.271 I/m	ik u bloc Prob	nell, mon't pass skage se deeps e loloskage	Appearance & Odour (Clear, Silty, HC odou etc.)	rs,			
6 5/8" sand pack has 0.50 US	Sgal/ft or 6.35 l/i	n		Total Purge Volume:				
Sample Method								
Waterra	Perist	ıltic	Disp. Bailer	Steel Bailer Co	entrif. Pump	Aîr L	ift O	ther
Analysis								
Sample ID Parameters Ar	nalyzed Sam	ole Time	Container Types P	reservative Tu	rbidity (NTU)		Comments	i
	5.5 (4.6.	ermanetatiotetetiitiitiitiitiitiitiitiitiitiitiitii		Yes				
				7 No				

Sample Site (Con't): <u>CH -P-13-04/35</u>

UTM Location: Zn: 0% U Easting: 03%9 13% Northing: 68%1472

Photo No.: Careva 1 > OIII- OII]

Well Head Space Gases:

	%	ppm
Methane (CH4)	0% LEC	
Oxygen (O2)	70-5%	
Carbon Dioxide (C02)	690 ppm	

General Notes (Condition of well or other features):

Final Groundwater Field Parameters (Following Purge):

	ameters (ronowing Furge).
Time	
Temperature (°C)	
DO (mg/L)	
Specific Cond. (µs/cm)	
Cond. (µs/cm)	
рН	
Redox (mV)	
Turbidity (NTU)	
Sulphide mg/L µg/L	
DO (mg/L)	

General Notes (Condition of well or other features):

Well of oversized cap for 1" pVC (poor fit/seal) ofterise

Stick up in good Condition

Unknown blockage @ 6.505 m (assume mildenth is

35 m based on name + Spreadsheet)?

Well Number:	GS1-PC-03-	Reproject Number:	1343-005.03	Date:	2014/06/28
Approximate Date Drilled:	unknown	. Client:	AAM.	Sampler:	AN, AB
Piezometer Diameter / Screen Length:	0.5"/rnknon	Project Name:	MN GW Sampling Program.	Weather/Temperature:	clear, sunny ~20°C.
CHV (ppm / % LEL):	not record	Duplicate Collected:	∐ Yes ⊠ No	Recovery:	☐ Good Bad
Purge Method					
Waterra	Peristaltic	Disp. Bailer	Steel Bailer	Centrif. Pump	Air Lift
micro waterva (manue	H).				
Initial Depth to Water (m):	1.398	Calculations:	Purge Start Time:	Purge End	Time:
Depth to Bottom (m):	2.825	well sealed with plastic	Time () minute inte	erval:	
Submerged Tubing Depth (n	n): ~ 2.5	cap.	Depth (m)		
Well Stick-up Height (m):	0.70	Micro nateria found	Temperature (°C)	\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \	
Estimated Water Volume (L)	0.181	frozen in well. Tubing dislodged and	рН		es \f
(DTB – DTW) x 2 (for 2" well	diameter) = 1 well	ice removed	Cond. (µs/cm)	1201, 27	<u> </u>
volume	a.a	well purged, yielding	Specific Cond. (µs/cm)		0
		~150 mL.	Redox (mV)	100	/ /
(DTB-DTW) x 1.1 (for 1.5" d volume	iameter) = 1 well	DTW post purge = 2.360m	DO (mg/L)		
2" casing has 0.16 USgal 1" casing has 0.04 USgal 8" sand pack has 0.73 USg	/ft or 2.032 l/m /ft or 0.508 l/m al/ft or 9.271 l/m	Waited 5 min. DTW = 2.350 m Waited another 5 min. DTW = 2.350 m.	Appearance & Odour (Clear, Silty, HC odour etc.)	rs,	
6 5/8" sand pack has 0.50 U	Sgal/ft or 6.35 l/m	Insufficient water to samp	Total Purge Volume:		
Sample Method					
Waterra	Peristalti	c Disp. Bailer	Steel Bailer Ce	ntrif. Pump Air l	ift Other
Analysis					
Sample ID Parameters A	nalyzed Sample	Time Container Types Pi	reservative Tui	rbidity (NTU)	Comments
] Yes] No		The state of the s
			7 .40		

Sample Site (Con't): GSI-PC-03 B

UTM Location: Zn: 080 Easting: 0389256 Northing: 688706

Photo No.: 0128 - 0131 (camera #1)

Well Head Space Gases:

	%	ppm
Methane (CH4)	0.0	
Oxygen (O2)	20.4	
Carbon Dioxide (C02)	890 ppm.	

General Notes (Condition of well or other features):

Final Groundwater Field Parameters (Following Purge):

ameters (Following Purge).

General Notes (Condition of well or other features):

Well head space:

well sealed with Ziplook bag.

Well Number:		651-	PC-04-	- B	Project Number:		1343-00	5.03	Daf	te:		2014	106/2	8
Approximate D	ate Drilled:	vnk	noun,		Client:		AAM.			npler:		AN, F	9 B	
Piezometer Dia Screen Length			mknon		Project Name:		MN GW	samplin	り We	ather/Tem	perature:	clean	20°C	~7.
CHV (ppm / % l	LEL):	not i	recolde.	d .	Duplicate Collecte	d:	Yes	⊠ No	Red	covery:		☐ Go	od 🖂	Bad
Purge Method														
Water		· · · · · · · · · · · · · · · · · · ·	eristaltic		Disp. Bailer		Steel	Bailer		Centrif. F	oump -		Air Lift	INSAC
micro wa	terra. (man	nual).												
Initial Depth to	Water (m):	1.	ප පිරි		Calculations:		Purge Star	t Time:			ourge End	Time:		
Depth to Botto	m (m):	2.	. 586	Well	sealed with plasti	c	Time ()	minute	interval:		\		el certific	8.40 at .
Submerged Tu	bing Depth (m):	: \~ 2	3	cap.	المسالم المسالم		Depth (m)				7		٠ -	
Well Stick-up H	leight (m):		.92	cap. Blockage found in well e 1.245 m (presumed ice). Micro waterra found			Temperatu	re (°C)			A. C.	()	3	
Estimated Water	er Volume (L):	0.	0886				рН				M Y	· , , `		
(DTB – DTW) x	: 2 (for 2" well dia	amet e r)	= 1 well	Stuck in well. Tubing dislodged and		Cond. (µs/	cm)		100	. 50	3/			
Ĺ	volume	ŕ				Specific C	ond. (µs/	cm)			7/			
/DTD DTM	4 4 /5 4 E" dias		المسال	blockage cleared.			Redox (m\	······································	·		100			
(DIR-DIAA) X	1.1 (for 1.5" diar volume	neter) =	= i weii	Pump	ed DRY using mic	ro.	DO (mg/L)				X			
0.5" מולים ליים ליים ליים ליים ליים ליים ליים			2 I/m 8 I/m 271 I/m	waterra, gielded < 100ml Waited 10 min. OTW was 2387. - Insufficent worter		J. v. ().	Appearanc (Clear, Silt etc.)						Constituting of	
6 5/8" sand pad	ck has 0.50 USg	al/π or	6.35 I/m	,	o sample.		Total Purg	e Volume	} :					
Sample Method	d													
	Waterra		Peristaltic		Disp. Bailer		Steel Baile		Centrif.	Pump	Air L	ift	Otl	her
Analysis														
Sample ID P	Parameters Ana	lyzed	Sample	Time	Container Types	Pr	eservative		Turbidit	y (NTU)		Cor	nments	
							Yes						,	
							No							

Sample Site (Con't): GSI-PC-04-B

UTM Location: Zn: 08 ∪ Easting: 0389 586 Northing: 688 1660

Photo No.: 0121 - 0127 ((amera #1)

Well Head Space Gases:

	%	ppm
Methane (CH4) しをし	6.0	
Oxygen (O2)	20.5	
· Carbon Dioxide (C02)	560 ppm.	

General Notes (Condition of well or other features):

Final Groundwater Field Parameters (Following Purge):

Time	
Temperature (°C)	
DO (mg/L)	
Specific Cond. (µs/cm)	
Cond. (µs/cm)	
pH	
Redox (mV)	
Turbidity (NTU)	
Sulphide mg/L µg/L	
DO (mg/L)	N. Company
	\\

General Notes (Condition of well or other features):

631-PC-04-H

Well head space:

LEL = 0.0

02: 20.5

CO2 = 490

- well sealed with Ziplock bong.

- no pre-existing tubing.

Stick up = 0.89 m.

DTB: 1,262 m

DTW = DRY.

Well Number:	G	51-PC-05-B	Project Number:	1343-005.03	Date:	2014/06/20
Approximate Da	te Drilled:	vakaoun	Client:	AAM	Sampler:	AN, AB
Piezometer Dian Screen Length:		.5"/vuknow		MN GW Sampling Program	Weather/Temperature:	clear, svany. ~ 20°C
CHV (ppm / % LF	EL):	not recorde	Duplicate Collected:	☐ Yes ☒ No	Recovery:	Good Bad
Purge Method						
Watern	а	Peristaltic	Disp. Bailer	Steel Bailer	Centrif. Pump	Air Lift
Initial Depth to V	Vater (m):	ロアイ	Calculations:	Purge Start Time:	Purge End	6225/338/G/6936/49360
Depth to Bottom	ı (m):	3.751	Well found dry @ 12:00.	Time () minute inte	erval:	
Submerged Tubing Depth (m): N/A			Existing micro waterra	Depth (m)		
Well Stick-up He	eight (m):	6.91	Existing micro materia and D25 foot value found in well.	Temperature (°C)		
Estimated Water	r Volume (L):		found in well.	рН		<u> </u>
(DTB – DTW) x 2 (for 2" well diameter) = 1 well			well sealed with fuccap	Cond. (µs/cm)		
(3.3 3.10) (2	volume		q	Specific Cond. (µs/cm)) \\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\	
				Redox (mV)		
(DTB-DTW) x 1	l.1 (for 1.5" diam volume	eter) = 1 well		DO (mg/L)		
	VOIGITIE	THE PARTY OF THE P				
2" casing has	s 0.16 USgal/ft o	or 2.032 I/m		Appearance & Odour	_	
	s 0.04 USgal/ft o			(Clear, Silty, HC odour etc.)	5,	
'	as 0.73 USgal/ft			,		
6 5/8" sand pack	k has 0.50 USga	al/ft or 6.35 l/m		Total Purge Volume:		·
Sample Method						
	Waterra	Peristaltic	Disp. Bailer	Steel Bailer Ce	ntrif. Pump Air I	_ift Other
Analysis		\				
Sample ID Pa	arameters Analy	yzed Sample	Time Container Types P	reservative Tui	rbidity (NTU)	Comments
				Yes		
		***************************************		□ No		
				J . 10		

Sample Site (Con't): (SI-PC-05)

UTM Location: Zn: 0% U Easting: 389 713 Northing: 688 1661

Photo No.: 0114 - 6120 (camera #1).

Well Head Space Gases:

	%	ppm
Methane (CH4)	0. 0	
Oxygen (O2)	20.2	and the state of t
Carbon Dioxide (C02) LEL	730 ppm.	The second and applicable of the second and the second

General Notes (Condition of well or other features):

Final Groundwater Field Parameters (Following Purge):

Final Groundwater Field Par	
Time	
Temperature (°C)	
DO (mg/L)	
Specific Cond. (µs/cm)	
Cond. (µs/cm)	
рН	
Redox (mV)	
Turbidity (NTU)	
Sulphide mg/L μg/L	\.\.\.\.\.\.\.\.\.\.\.\.\.\.\.\.\.\.\.
DO (mg/L)	

General Notes (Condition of well or other features):

GSI-PC-OS-A

- well located @ same UTM as 'GSI-PC-OS-B'.

Well Head Space Gases (A)

CO2 = 470

O2 = 20.5

LEL = 0.0

- well sealed with ziplock bag.

- well also found DRY.

DTW: DRY

OTB: 1.306 m

Stick up: 0.92 m.

- no pre-existing tubing.

Well Number:	MP09-	01	Project Number:	1343-005.03	Date	e:		2014	106/28	3
Approximate Date Drilled:			Client:	AAM		npler:		AN, F	18	
Piezometer Diameter / Screen Length:			Project Name:	MN GW Sampling	ੀ Wea	ather/Tem	perature:		, s	~ 1
CHV (ppm / % LEL):			Duplicate Collected:	Yes No	Rec	overy:		☐ Go	od 🗌	Bad
Purge Method										
Waterra	Peri	staltic	Disp. Bailer	Steel Bailer		Centrif. I	Pump		Air Lift	
Initial Depth to Water (m):			Calculations:	Purge Start Time:			Purge End	Time:		
Depth to Bottom (m):		We	11 not located.	Time () minute	interval:		21,242.5			
Submerged Tubing Depth (n	n): \	VTI	M provide in the	Depth (m)			\ \ <u>\</u>			
Well Stick-up Height (m):		5006	M provide in the se of work is se as well	Temperature (°C)			100	1		
Estimated Water Volume (L)	:	Sau	e ac well	pН		No.		9 .		
(DTB = DTW) x 2 (for 2" well a	(DTB – DTW) x 2 (for 2" well diameter) = 1 well		-	Cond. (µs/cm)	Cond. (µs/cm)		1 , 2	,		
volume	alamotor) i			Specific Cond. (µs/cm)		10co		1		
		Me	09-08 was located	Redox (mV)						
(DTB-DTW) x 1.1 (for 1.5" di volume	iameter) = 1 v	well 🏎	d sampled.	DO (mg/L)						
2" casing has 0.16 USgal/ft or 2.032 l/m 1" casing has 0.04 USgal/ft or 0.508 l/m 8" sand pack has 0.73 USgal/ft or 9.271 l/m		m I/m		Appearance & Odo (Clear, Silty, HC od etc.)						
6 5/8" sand pack has 0.50 US	Sgal/ft or 6.35	5 l/m		Total Purge Volum	ie:		1		J	
Sample Method										
Waterra	Per	istaltic \	Disp. Bailer	Steel Bailer	Centrif.	Pump	Air L	ift	Oth	ier
Analysis		/								
Sample ID Parameters A	nalyzed Sa	ample Time	Container Types	Preservative	Turbidity	(NTU)		Co	mments	
				Yes						
				☐ No			***************************************			

Sample Site (Cor	't): MPO9 -	0	
------------------	-------------	---	--

UTM Location: Zn:

Easting:

Northing:

Photo No.:

Well Head Space Gases:

	%	ppm
Methane (CH4)		
Oxygen (O2)		
Carbon Dioxide (C02)		

General Notes (Condition of well or other features):

Final Groundwater Field Parameters (Following Purge):

General Notes	(Condition	of well or	other	features)	
---------------	------------	------------	-------	-----------	--

Well not located.

see front for details

Well Number:	MW09-05	Project Number:	1343-005.05	Date:	28-June 14
Approximate Date Drilled:		Client:	AAM	Sampler:	RM/MM
Piezometer Diameter I Screen Length:		Project Name:	MN GW (500/19)	Weather/Temperature:	SUNY.
CHV (ppm / % LEL):		Duplicate Collected:	TYes No	Recovery:	Good Bad
Purge Method					
Waterra	Peristaltic	Disp. Bailer	Steel Bailer	Centrif. Pump	Air Lift
Initial Depth to Water (m):		Calculations:	Purge Start Time:	Purge End	mesancomeranea
Depth to Bottom (m):			Time () minute inte	erval:	Selection of the select
Submerged Tubing Depth (n	n):		Depth (m)	7 17	
Well Stick-up Height (m):		NOI	Temperature (°C)	-1-170	
Estimated Water Volume (L)	: /		pН		
(DTB DTW) x 2 (for 2" well of	diameter) = 1 well		Cond. (µs/cm)		
volume		CII	Specific Cond. (us/cm	1	
		OLL	Redox (mV)		
(DTB-DTW) x 1.1 (for 1.5" di volume	iameter) = 1 well		DO (mg/L)		
2" casing has 0.16 USgal/ 1" casing has 0.04 USgal/ 8" sand pack has 0.73 USga	/ft or 0.508 l/m al/ft or 9.271 l/m		Appearance & Odour (Clear, Silty, HC odour etc.)	rs,	
6 5/8" sand pack has 0.50 US	Sgal/ft or 6.35 l/m		Total Purge Volume:		<u>. 1 1.</u>
Sample Method					
Waterra	Peristaltic	Disp. Bailer	Steel Bailer Ce	ntrif. Pump Air L	_ift Other
Analysis					
Sample ID Parameters Ar	nalyzed Sample T	ime Container Types Pr	reservative Tu	rbidity (NTU)	Comments
] Yes		
] No		
L				<u> </u>	

Sample Site	(Con't):	uwoq.	-05
oumpic one	OO11 L1.		\sim

UTM Location: Zn:の含v Eastingの58943 Northing: 6880636

Photo No.: Cama #0064

Well Head Space Gases:

	%	ppm
Methane (CH4)		
Oxygen (O2)		
Carbon Dioxide (C02)		

General Notes (Condition of well or other features):

0.00	incors (rollowing runge).
Time	
Temperature (°C)	
DO (mg/L)	
Specific Cond. (µs/cm)	
Cond. (µs/cm)	
рН	
Redox (mV)	
Turbidity (NTU)	
Sulphide mg/L µg/L	
DO (mg/L)	`\

General Notes (Condition of well or other	
- well located within tai	linge Dom
-well located within tail	to deep former worker
therofore could not p	
er.	

Well Number	:	UW09-06	Project Number:	1543-005.03	Date:	192 June - 14
Approximate	Date Drilled:		Client:	QQ-IN	Sampler:	RM/MU
Piezometer D Screen Lengt			Project Name:	HUGWEDTIED	Weather/Tempera	iture: www.
CHV (ppm / %	& LEL):		Duplicate Collected:	Yes No	Recovery:	☐ Good ☐ Bad
Purge Metho	d					
Wat	terra	Peristaltic	Disp. Bailer	Steel Bailer	Centrif. Pum	p Air Lift
Initial Depth	to Water (m):		Calculations:	Purge Start Time:	Purg	e End Time:
Depth to Bott	tom (m):			Time () minute inte	erval:	
Submerged 1	Tubing Depth (m):		Depth (m)		
Well Stick-up	Height (m):	N. N.	<i>i</i>	Temperature (°C)		Som
Estimated Wa	ater Volume (L):		A 1 / many	pH // /	N NA/ TI	
(DTB – DTW) x 2 (for 2" well diameter) = 1 well		iameter) = 1 well		Cond. (µs/cm)		
volume				Specific Cond. (µs/cm))	
(DTD DTAK				Redox (mV)	1	
(DTB-DTW) x 1.1 (for 1.5" diameter) = 1 well volume		imeter) = 1 weii	The state of the s	DO (mg/L)	ndon.	
			The state of the s			
_	has 0.16 USgal/fl	Į.	The state of the s	Appearance & Odour (Clear, Silty, HC odour	s.	
_	has 0.04 USgal/fl k has 0.73 USgal			etc.)	<i>'</i>	
	oack has 0.73 USgal Dack has 0.50 US					
		30		Total Purge Volume:		
Sample Meth						
	Waterra	Peristaltic	Disp. Bailer	Steel Bailer Cer	ntrif. Pump	Air Lift Other
Analysis						
Sample ID	Parameters An	alyzed Sample	Time Container Types Pr	reservative Tur	bidity (NTU)	Comments
				Yes		
				No		
		·		-		

Sample Site (Con't): MWOH - O.6	
UTM Location: Zn: Easting: Northin	97 1 00 0 7 1-
Photo No.:	T LOCATE
Well Head Space Gases:	
%	ppm
Methane (CH4)	
Oxygen (O2)	
Carbon Dioxide (C02)	
General Notes (Condition of well or other features): Final Groundwater Field Parameters (Following Purge):	
That Groundwater Field Faranteers (Following Farge).	Concret Nation (Condition of well as all as first
Time Temperature (°C) DO (mg/L) Specific Cond. (µs/cm) Cond. (µs/cm) pH Redox (mV) Turbidity (NTU) Sulphide mg/L µg/L DO (mg/L)	General Notes (Condition of well or other features): - worde to locate well him GPS to the plan - no other wells in the area (Danaged, destroyed, cerrored)

Well Number:	<u> 4850501111W</u>	1-100	Project Number:	1343-003	5.03	Date:		<u> </u>	June 14
Approximate Date Drilled:		\ <u></u>	Client:	<u> PARU</u>		Sampler:		RH/	MK
Piezometer Diameter I Screen Length:	a`		Project Name:	MN GW	Usprig)	Weather/Tem	perature:	SUV	WA .
CHV (ppm / % LEL):			Duplicate Collected	: ☐ Yes [No	Recovery:		God	od 🗌 Bad
Purge Method									
Waterra	Peristaltic		Disp. Bailer	Steel	Bailer	Centrif. F	ump		Air Lift
	\rightarrow								
Initial Depth to Water (m):	6,007		Calculations:	Purge Start	t Time:):4 8	Purge End	Time:	
Depth to Bottom (m):	7.92			Time ()	minute inte	erval: 🥝:54			
Submerged Tubing Depth (m): 🕢 ⇉ . 👹			Depth (m)			~	11 1	
Well Stick-up Height (m):	0,9			Temperatu	ге (⁰ С)	3.4		NO	<u></u>
Estimated Water Volume (L	.): 2.078736	43 = 6,236 <i>3</i> 00		pН		7.46		1 1	
(DTB - DTW) x 2 (for 2" well	diameter) = 1 well			Cond. (µs/d	Cond. (µs/cm) 499 C			7///	
volume	alameter, the			Specific Co	ond. (µs/cm)) 2436			
				Redox (mV	')	-46.0			
(DTB-DTW) x 1.1 (for 1.5" o	diameter) = 1 well			DO (mg/L)		1.6			
2" casing has 0.16 USgal/ft or 2.032 l/m 1" casing has 0.04 USgal/ft or 0.508 l/m 8" sand pack has 0.73 USgal/ft or 9.271 l/m				Appearanc (Clear, Silty etc.)	e & Odour y, HC odour	e, Ogar	2		
6 5/8" sand pack has 0.50 L	JSgal/ft or 6.35 l/m			Total Purge	e Volume:	0.51			
Sample Method									
Waterra	Peristaltion	C	Disp. Bailer	Steel Bailer	Ce	ntrif. Pump	Air L	.ift	Other
Analysis									
Sample ID Parameters A	Analyzed Sample	Time	Container Types	Preservative	Tui	rbidity (NTU)		Cor	mments
				☐ Y e s					
				□ No					

Sample Site (Con't):	W141030832HO2

W148人のう
UTM Location: Zn: つかv Easting: 038956 Northing: 6980665

Photo No.: Cama #oogs

Well Head Space Gases:

	%	ppm
Methane (CH4)		
Oxygen (O2)	21.3	
Carbon Dioxide (C02)	600	

General Notes (Condition of well or other features):

· .

	General Notes (Condition of well or other features):
ŀ	-new 3/16" busing added
Ì	-bailer in well found to its inside
-	-could not morne morter level during projets
ı	due to be build by account well amusis
	-dry@11, will return to theck recharge
	- mouth event well udume could not
	sande orquige
1	

Well Number:	W1020838401	Project Number:	1343-005.63	Date:	09-June-14
Approximate Date Drilled:		Client:	PAM .	Sampler:	RM/MM
Piezometer Diameter / Screen Length:	21	Project Name:	MN GW(EXTIG)	Weather/Temperate	
CHV (ppm / % LEL):		Duplicate Collected:	☐ Yès ☐ No	Recovery:	Good Bad
Purge Method					
Waterra	Peristaltic	Disp. Bailer	Steel Bailer	Centrif. Pump	Air Lift
Initial Depth to Water (m):	6.646	Calculations:	Purge Start Time:	Purge	End Time:
Depth to Bottom (m):	₹ E	nzeen	Time () minute inte	erval:	
Submerged Tubing Depth (m			Depth (m)		
Well Stick-up Height (m):	0.64		Temperature (ºC)		
Estimated Water Volume (L)			pH		
(DTB – DTW) x 2 (for 2" well o	liameter) = 1 well		Cond. (µs/cm)		
volume		\	Specific Cond. (µs/cm)		
		`	Redox (mV)		
(DTB-DTW) x 1.1 (for 1.5" diameter) = 1 well			DO (mg/L)		
volume					
2" casing has 0.16 USgal/	ft or 2.032 I/m		Appearance & Odour		
1" casing h a s 0.04 USgal/	ft or 0.508 I/m		(Clear, Silty, HC odour etc.)	5,	
8" sand pack has 0.73 USga	!		,		
6 5/8" sand pack has 0.50 US	Sgal/ft or 6.35 l/m		Total Purge Volume:		
Sample Method					
Waterra	Peristaltic	Disp. Bailer	Steel Bailer Cer	ntrif. Pump	Air Lift Other
Analysis					
Sample ID Parameters Ar	nalyzed Sample Time	Container Types P	reservative Tur	bidity (NTU)	Comments
	-	F	Yes		A. A
] No		96 M

Sample Site (Con't): [W1410303938]	
Sample Site (Con't): WILLO363938 HOI WILLO363938 HOI UTM Location: Zn: OSV Easting: 63895	parthing: 68ම්රාරයල
Photo No.: Cama #0067	
Well Head Space Gases:	^
Section of the sectio	ppm Z nc clook
Methane (CH4)	ppm Znoall
Oxygen (O2)	
Carbon Dioxide (C02)	
General Notes (Condition of well or other feat	tures):
Final Groundwater Field Parameters (Following Pu	irge):
	General Notes (Condition of well or other features):
Time	-obstauction (Frezent @ 6.646m
Temperature (°C)	Wice of the troop is
DO (mg/L)	- The water level
Specific Cond. (µs/cm)	-obstruction (Frazer) @ 6.646m Wice @ the tip of the water level -revisited 39-July-14, still frazer
Cond. (µs/cm)	
рН	
Redox (mV)	
Turbidity (NTU)	
Sulphide mg/L μg/L	
DO (mg/L)	

Well Number:	M	MW09-19			Project Number:	/343	1343-005.03 Date			e: 26-June - 14			14	
Approximate Date Dri	lled:			Client:	(A)	AM		Sam	Sampler:		Ru /MM			
Piezometer Diameter Screen Length:	I ,	2''		Project Name:	MN	MN OMODUA) Me		Weat	Weather/Temperature:			porty suny, chood		
CHV (ppm / % LEL):					Duplicate Collected	l: 📗 Y	′es 🛮	No	Reco	very:		<u> 460</u>	íoď 🗆	Bad
Purge Method														
Waterra		Per	istaltic		Disp. Bailer		Steel Ba	ailer		Centrif. F	ump		Air Lift	erek alemena le Program
			~									<u> </u>		
Initial Depth to Water	(m):	2.5	1.†		Calculations:	Purg	ge Start T	Fime:	1:45	- }	^P urge End	l Time:	15:3	3
Depth to Bottom (m):		2′ &	\₹	2 :	(202 =	Time	e (💯) m	ninute inte	rval:	14750	K:04	15:13	15:22	15:33
Submerged Tubing Do	epth (m):			2 X	3 * 6.793 =		th (m)			2.89	3,25	3,25	3.25	3.25
Well Stick-up Height ((m):	3,99				Temperature (°C)			2.2	1.7	١.٦	1.6	1.6	
Estimated Water Volume (L): 6,793		3	20378928		рH	pH (6.59	6.75	676	6.76	6.76	
(DTB – DTW) x 2 (for 2" well diameter) = 1 well		1 well			Con	Cond. (µs/cm)			2421	1309	1363	1289	1285	
	lume					Spe	Specific Cond. (µs/cm)		1356	2371	2353	2334	2327-	
						Red	Redox (mV)			-66.6	- 78.6	-පිටු.ම	-86.5	-81.7
(DTB-DTW) x 1.1 (for 1.5" diameter) = 1 well volume		well			DO (DO (mg/L)			0,94	2.66	2.64	2.44	2.19	
2" casing has 0.16 1" casing has 0.04 8" sand pack has 0.7 6 5/8" sand pack has 0	USgal/ft o USgal/ft o '3 USgal/ft	r 0.508 l/ t or 9.271	/m I/m			(Cle etc.)	ar, Silty,	& Odour HC odour	s,	0000 'Cro Gran'	9) ON.		C. C	agan Va Char
0 5/6 Sanu pack nas t	0.50 USga	int or 6.3	111/1 05			Tota	il Purge \	Volume:		- Land	5	ω_{\setminus}	15	20
Sample Method														
Wat	terra	Pe	ristaltic		Disp. Bailer	Steel	Bailer	Cei	ntrif. P	ump	Airl	_ift	Ot	her
Analysis			X											
Sample ID Parame	ters Analy	yzed S	Sample	Time	Container Types	Preserv	ative	Tur	bidity	(NTU)		Co	mments	
	acna (Yals (b)		5.'34		250m/ 0 N	☐ Yes ☐ No		a	.46			Pa b	ack	

49/201

oen chem Janial Cyanote NA3 Sulphidu Schi

Sample Site (Con't): MUO9- (9 MWO9-19 UTM Location: Zn: OBU Easti

Easting:038805

Northing: 68910%

Cam? Photo No.: OCHO +004/

Well Head Space Gases:

	%	ppm
Methane (CH4)		
Oxygen (O2)	20.6	
Carbon Dioxide (C02)	2.90	

General Notes (Condition of well or other features):

15:34
1.6
2.19
2327
1960
6.76
- 2 86 - 7
246
125

General Notes	(Condition of w うづと oら し	ell or other feat	tures):	
- Daile 1075	side) 7	
-bailes 1675 -new 3/16"	Jubing oc	ide <i>d</i>		

Well Number:	$N_{N} = 0$	S Project Number:	(348 - 005, OS	Date:	27-June-14
Approximate Date Drilled:	- 1	Client:	DALL	Sampler:	RM/MM.
Piezometer Diameter / Screen Length:	8"	Project Name:	MN PM (Ebylid)	Weather/Temperature:	Sunny
CHV (ppm / % LEL):		Duplicate Collected:	☑ Yes ☐ No	Recovery:	Good Bad
Purge Method					
Waterra	Peristaltic	Disp. Bailer	Steel Bailer	Centrif. Pump	Air Lift
Initial Depth to Water (m):	<u> </u>	Calculations:	Purge Start Time:	Purge End	Time:
Depth to Bottom (m):	4.705	3* 001	Time () minute inte	1000 - 10-1	13:16 13:00
Submerged Tubing Depth (m): ∼Ц		Depth (m)	<u> 2.565 3.06</u>	3.21 3.24
Well Stick-up Height (m):	0.75	2163164 purguol	Temperature (°C)	4.5 4.2	48 47
Estimated Water Volume (L): 5.43899 -	- Law	рН	7.17 7.15	7.12
(DTB – DTW) x 2 (for 2" well	diameter) = 1 well		Cond. (µs/cm)	2614 1589	1651 1670
volume			Specific Cond. (µs/cm)	1586 2621	2694 2670
			Redox (mV)	-8A.A -76.\	-91.4 -92.1
(DTB-DTW) x 1.1 (for 1.5" o volume	diameter) = 1 well		DO (mg/L)	039090	0.15 0.14
Voidifie				Cear Clean	
2" casing has 0.16 USga	I/ft or 2.032 I/m		Appearance & Odour (Clear, Silty, HC odour	V06 1.06	-> ->
1" casing has 0.04 USga			etc.)	, coper coper/	
8" sand pack has 0.73 USg	- I		·		
6 5/8" sand pack has 0.50 U	JSgal/ft or 6.35 l/m		Total Purge Volume:	1 5	17 17
Sample Method					
Waterra	Peristaltic	Disp. Bailer	Steel Bailer Ce	ntrif. Pump Air I	.ift Other
Analysis					
Sample ID Parameters A	nalyzed Sample Ti	me Container Types Pr	reservative Tur	rbidity (NTU)	Comments
Human-02 gen Chark	B.33	10 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	Yes \b.	9	Sebeile :
7/0	3.85		l No	1	/ COCO -
Cyanish	,	140m 8	.1		

1016-2

Josephilit Just makal (E) Schildl Shishildl Chiss Mucony (P) 140mi P 140mi D 120mi P 11 11 11 11

Sample Site (Con't): MWG9 - OQ

UTM Location: Zn: 🗸 🖧

Easting: △ 3명여명(3 Northing: 6명영 등 등구

Photo No.: 5059 -> COUNTAIN

Well Head Space Gases:

	%	ppm
Methane (CH4)		
Oxygen (O2)	20.6	
Carbon Dioxide (C02)	650	

General Notes (Condition of well or other features):

Time	13:23
Temperature (°C)	4.7
DO (mg/L)	0.14
Specific Cond. (µs/cm)	2670
Cond. (µs/cm)	670
рН	7.3
Redox (mV)	-92.1
Turbidity (NTU)	10.2
Sulphide mg/L ug/L	93
DO (mg/L)	0.14

General Notes (Condition of well or other features):
- (aer (ab.
- Lens 1/19, though output for mall

Well Number	r:	Mwo	MW00-03		Project Nun	nber:	M 1434 -	1434-005.03 Date:				19=-	Durve	- /4	
Approximate	Date Drilled:	\			Client:		MAK			Sampler:			KM /MM		
Piezometer I Screen Leng		6	ə" — — — — — — — — — — — — — — — — — — —		Project Nan	ne:	MM (P)	MN GW (Esting)		Weather/Temperature:			surry. 24°C		
CHV (ppm / '	% LEL):				Duplicate C	ollected:	☐ Yes	☐ No	Reco	overy:		₽Ġo	od 🔲	Bad	
Purge Metho	od											4.	1		
Wa	terra	P	eristaltic		Disp. B	Bailer	Ste	el Bailer	(Centrif. F	Pump	Air Lift			
			×												
Initial Depth	to Water (m):	ij.	L (c)		Calculation	s:	Purge S	tart Time:	15:1	<u>5</u>	Purge End	d Time:		4.4	
Depth to Bot	ttom (m):	0.5	23				Time (_	_) minute int	erval:	15:15	15.25	15:40	15:55	16.07	
Submerged '	Tubing Depth (n	n): \sim	9				Depth (r	n)		5.06	5.15	5,15	5.15	5.15	
Well Stick-up	p Height (m):	ڻ. ن	56				Tempera	ature (ºC)		3.5	3.8	3.9	3,6	3.5	
Estimated W	ater Volume (L)	: 10,	4505%	×3=31.351728			рН		7.82	7.41	7.21	7,02	7.22		
(DTB – DTW) x 2 (for 2" well diameter) = 1 well volume						Cond. (ıs/cm)	1526		1503	1489	1493			
						Specific	Specific Cond. (µs/cm)			<i>a</i> s38	9525	3233	2526		
(DTD DT)	4.4.75 4.50 4.50					Redox (Redox (mV)			- 42.4	-28.1	-25.4	-24.1		
(DIB-DIW)) x 1.1 (for 1.5" di volume	ameter) =	1 well			DO (mg/	DO (mg/L)			0.41	0.7	D J,T	0.76		
1" casing 8" sand pag	has 0.16 USgal/ has 0.04 USgal/ ck has 0.73 USga pack has 0.50 US	ft or 0.508 al/ft or 9.2	3 I/m 71 I/m					ince & Odour Silty, HC odou	rs,	2002 2002 6/62	> -	**		7	
		sgame or e).33 I/III	NAME OF THE PROPERTY OF THE PARTY OF THE PAR			Total Pu	irge Volume:		2L	- C(L	161	9óL	391	
Sample Meti		,													
	Waterra	F	Peristaltic	;	Disp. Baile	er	Steel Ba	ler Ce	ntrif. P	ump	Air I	_ift	Oth	er	
Analysis			入												
Sample ID	Parameters Ar	alyzed	Sample	Time	Container T	ypes -F	reservative	e Tu	rbidity	(NTU)		Col	nments		
MW 09-03	gen chum NH3 TIC		[6:08	}	52041 0	77 [Yes No	1.5	В		<	366 500	(A		
	Chologe Chologe Chologe Chologe				120m1 p 11 11 11 11 140m1 p	4 2 4 4 4 4					· · · · · · · · · · · · · · · · · · ·	, 1444	·		

Sample Site (Con't): MW09-03

UTM Location: Zn: 08 U Easting: 038942 Northing: 6880555

Photo No.: Cand #006/

Well Head Space Gases:

	%	ppm
Methane (CH4)		
Oxygen (O2)	20.9	
Carbon Dioxide (C02)	601.3	
CO		٥

General Notes (Condition of well or other features):

Time	(6:08
Temperature (°C)	3.5
DO (mg/L)	0.76
Specific Cond. (µs/cm)	2526
Cond. (µs/cm)	1493
pH	7.32
Redox (mV)	- 24./
Turbidity (NTU)	1.58
Sulphide mg/L (µg/L)	17
DO (mg/L)	0.76

General Notes (Condition of well or other features):	
-transducer present. -new 3/16" Eusing added to well	

Well Number:		MW09-22		Project Number:	1343-005	.o₃ Dat	e:		27-	Zure	- 4	
Approximate	Date Drilled:			Client:			npler:		27-June - 14 24/MM			
Piezometer D Screen Lengt		9,,		Project Name:	MV GWISON	ে) We	Weather/Tem		Temperature: SUN			
CHV (ppm / %	LEL):			Duplicate Collected	☐ Yes ☐ ↑	lo Re c	Recovery:		Go	od 🖸	Bad -7	
Purge Method	i											
Wat	erra	Peristaltic		Disp. Bailer	Steel Baile	er	Centrif.	Pump	T	Air Lif	t	
		\sim					•					
Initial Depth t	o Water (m):	4,199		Calculations:	Purge Start Tin	ne: 16:10	7	Purge End	l Time:			
Depth to Bott	om (m):	5. 935			Time () mir	nute interval:	16:00	16.27	16:37	16-44		
Submerged Tubing Depth (m): 신부 용		10.3		Depth (m)								
Well Stick-up	Height (m):	ව.පිල	B X	rolume thirds)	Temperature (º	C)	4.4		3.6	3.7		
Estimated Wa	ter Volume (L):	: 2.115312	¥3	volume (preje) =6.345936	рH		5.67		5.83	5.82		
(DTB – DTW) x 2 (for 2" well diameter) = 1 well					Cond. (µs/cm)				1696			
volume					Specific Cond. (µs/cm)				2071	2072		
(DTB-DTW) x 1.1 (for 1.5" diameter) = 1 well volume 2" casing has 0.16 USgal/ft or 2.032 l/m 1" casing has 0.04 USgal/ft or 0.508 l/m 8" sand pack has 0.73 USgal/ft or 9.271 l/m 6 5/8" sand pack has 0.50 USgal/ft or 6.35 l/m					Redox (mV) 30.5 DO (mg/L) 0.65			53.0	58.1	58.3		
								1.49	257			
					Appearance & (Clear, Silty, Hoetc.)	Sugar Sugar			agan 1.0 Gery			
о э/в запо ра	ack has 0.50 US	ogal/π or 6.35 l/m			Total Purge Vo	lume:	16	2L	46	6.5	L	
Sample Metho												
	Waterra	Peristaltio	:	Disp. Bailer	Steel Bailer	Centrif. I	ump	Air L	.ift	Ot	her	
Analysis												
	Parameters An	alyzed Sample	Time	Container Types . F	reservative	Turbidity	(NTU)		Cor	nments		
1000 SD 1000	1163 Art Cureu	16:5	0	35 W B	∫ ∕∕es ☑ No	/o.54		5	ee l) s = c (in the second	
***************************************	ycariole			(MOM)	1		***************************************					

Sample Site (Con't): <u>MW69-92</u>

MW60-92

UTM Location: Zn: ○8v Easting: ○38940 Northing: 6886549

Photo No.: Cama 40062

Well Head Space Gases:

	%	ppm
Methane (CH4)		4
Oxygen (O2)	2.05	
Carbon Dioxide (C02)	950	
(D		

උර General Notes (Condition of well or other features):

Titlal Groundwater Fleid Fara	\ .
Time	161.50
Temperature (°C)	3.7
DO (mg/L)	2.50
Specific Cond. (µs/cm)	2673
Cond. (µs/cm)	1684
рН	5.82
Redox (mV)	58.3
Turbidity (NTU)	10.54
Sulphide mg/L µg/L	26
DO (mg/L)	2.5%

General Notes (Condition of well or other features):
-new 3/16" to orded to wall

Well Number		MW09-18	Proj	ect Number:	1343-	205.0 <u>2</u>	Date	•		26-	Teme.	- /Li
Approximate	Date Drilled:		Clie	nt:	MAA		E0000000000000000000000000000000000000	pler:		RM	MIL	
Piezometer I Screen Leng		2	Proj	ect Name:	MN G	W(Spring) Wea	ther/Terr	perature:	SUNY	y coc	17. E
CHV (ppm / s	% LEL):	j	Dup	icate Collect	ed: 🗌 Yes	Ū√No	Reco	overy:		U/Go	od [Bad
Purge Metho	od											
Wa	terra	Peristaltic		Disp. Bailer	Ste	el Bailer		Centrif. I	Pump		Air Lift	i e
		_										
Initial Depth	to Water (m):	4.555	Calc	ulations:	Purge S	tart Time:	15:5	7	Purge End	i Time:		
Depth to Bot	ttom (m):	7.77	6.53.28	- S. J. J.	Time (_	_) minute i	nterval:	16:03	16:14	16:27	16:46	16:56
Submerged '	Tubing Depth (m	n: ~7.27	= 19.50		Depth (n	n)		4.57	4.57	4.57	4.57	4.57
Well Stick-up	p Height (m):	C - 90		001	Tempera	ature (ºC)		2.3	1.8	1,6	1.5	1.5
Estimated W	/ater Volume (L):	653288			pН			6.84	6.75	6.97	7.03	7.01
(DTB – DTW) x 2 (for 2" well o	liameter) = 1 well			Cond. (μ	ıs/cm)		1460	1447	1438	430	1434
`	volume	,			Specific	Cond. (µs/c	:m)	2575	2591	2594	2593	25%
(DTD DTM	4 . 4 . 4				Redox (ı	nV)		33.3	26.8	8 8 0	29.9	313
(סום-טועי)) x 1.1 (for 1.5" dia volume	ameter) = 1 weii			DO (mg/	L)		0.49	0.44		0.64	0,80
1" casing 8" sand pag	has 0.16 USgal/i has 0.04 USgal/i ck has 0.73 USga pack has 0.50 US	t or 0.508 I/m I/ft or 9.271 I/m			(Clear, S etc.)	nce & Odou ilty, HC odo	ours,	200 C	00/01/5 00/01/5		200	0.660 i
Sample Metr	iod				, ota, i o	ige voiume			5	0	15	20
	Waterra	Peristaltio	Dis	p. Bailer	Steel Bai	ler (Centrif. P	ump	Δîr l	_ift	Ot	ner
Analysis		X										
Sample ID	Parameters An	alyzed Sample	Time Cont	ainer Types(Preservative	1	urbidity	(NTU)		Coi	nments	
hm709-18	000 Chow U.G. NH3	16:5		D X	Yes No	6.0	A CONTROL OF THE PROPERTY OF T	• • • • • • • • • • • • • • • • • • •		Sub		
į	ors metal consider consider		120m 140ml	à Y								

Sample Site (Con't): <u>せいの</u> / 包

UWØ9-18 UTM Location: Zn: ੴ√

Easting: 6386654 Northing: 6886986

Photo No.: (an#1 >0042

Well Head Space Gases:

	%	ppm
Methane (CH4)		
Oxygen (O2)	20,6	
Carbon Dioxide (C02)	2.74	
(p		\circ

General Notes (Condition of well or other features):

Final Groundwater Field Parameters (Following Purge):

I Illai Giouliuwater Field Fala	meters (i onowing i dige).
Time	16:57
Temperature (°C)	1.5
DO (mg/L)	0.80
Specific Cond. (µs/cm)	1434
Cond. (µs/cm)	2590
рН	7.01
Redox (mV)	31.3
Turbidity (NTU)	6.49
Sulphide mg/L µg/L	42
DO (mg/L)	0.80
	-

General Notes	(Condition	of well or	other features):
----------------------	------------	------------	------------------

- vents on side of PVC, could influence gas reading
- new 3/16" tubing added to well.
- bailer inside well

Well Number:	G	SI-DC-09-	B	Project Number:	134	43-00	5.03	Date	•		2014	1/06/3	<u>ک گر</u>	1
Approximate Date D	AND CAMPAGE AND CA	unknowsa		Client:	A	AM		Sam	pler:		AN	AB.		
Piezometer Diamete Screen Length:	er/ 0.5	5"/ un kno	wn.	Project Name:		from	ampling	Wea	ther/Ten	nperature	over	cast.		
CHV (ppm / % LEL):		not recove	led.	Duplicate Collecte	d: 🗆	Yes 🗓	No	Reco	very:		Go	od 🔀	Bad	1
Purge Method											Symula	red at 1	J. 196.	flow
Waterra		Peristaltic		Disp. Bailer		Steel Ba	ailer	(i	Centrif.			Air Lift		
		lar flow											****	1 '
Initial Depth to Wate	er (m):	1.262 ~	\	Calculations:	Pur	ge Start T	Fime: 17	:18		Purge En	d Time:	12:27		1
Depth to Bottom (m):	3.856	3 C	12:15, post	Tim	ne (<u>3</u> 3) п	ninute inte	rval:	12:21	12:24	12:27			1
Submerged Tubing	Depth (m):	~3.0~		kst earlier this	Dep	oth (m)			2.46	2.67	2,74			1
Well Stick-up Heigh	t (m):		, ,	rmina		nperature	(°C)		3.4	3.8	3.9			1
Estimated Water Vo	lume (L):	2.6 × .125	1		pН				6.42	6.53	10.60			1
(DTB – DTW) x 2 (fo	r 2" well diam	eter) = 1 well	1	775	Cor	nd. (µs/cm	1)		1217	1194	1151			1
	olume/	,		. 275 - 215	Spe	ecific Con	id. (µs/cm)		2075	1995	1946			1
/DTD DTM 4 4 /6	5 4 FD C	(-) 4 B		625 +3	Rec	dox (mV)			68.9	72.1	63-5			1
(DTB-DTW) x 1.1 (f v	or 1.5 diame volume	iter) = 1 Well		1.9L = 3 4	, DO	(mg/L)			0.75	0.49	0.23			1
2" casing has 0.1 1" casing has 0.0 8" sand pack has 0 6 5/8" sand pack has	04 USgal/ft or 0.73 USgal/ft o	0.508 l/m or 9.271 l/m		ded 5m of waterra	Apr (Cle etc.	.) Alammul.	HC odours		light brown, Silty	mostly	Clear			
	5 0.00 00ga#	11 01 0.00 1/111			Tot	al Purge \	Volume: ﴿	-)	0.5	6.8	Üŧ			
Sample Method														
	aterra	Peristaltic		Disp. Bailer	Stee	l Bailer	Cen	trif. P	ımp	Air	Lift	Oth	ıer	
Analysis		low flow												
	eters Analyz	•	energianopoetan en	Container Types	Preserv	March United States	CHRONIA STATE OF THE PROPERTY OF SALES	oidity (0.0000000000000000000000000000000000000		Coi	nments		
08-B COI	zuite	12:35.	New d	Full suite-	⊠ Yes ⊠ No		27.6 NT Sample 60							

Stopped purge a 12:27 because of draudown mater clear 2 sets stable parameters, almost 3 mell values, purge rate of ~ 100 ml/min has write level stable. Recharge to 2.17 m a 12 32 and 1.45 m a 12 35

Sample Site (Con't): 651 - DC - 69 - B

UTM Location: Zn: 08 V Easting: 0390614 Northing: 6880494

Photo No.: 0158-0164 (Converse # 1).

Well Head Space Gases:

	%	ppm
Methane (CH4)	0.0	
Oxygen (O2)	⊋0.5	
Carbon Dioxide (C02)	530 ppm	

- well sealed with plastic cap.

- unterva tobing jammed in well making

it difficult to measure gases.

General Notes (Condition of well or other features):

Final Groundwater Field Parameters (Following Purge):

	3
Time	
Temperature (°C)	
DO (mg/L)	
Specific Cond. (µs/cm)	
Cond. (µs/cm)	
pН	
Redox (mV)	
Turbidity (NTU)	
Sulphide 52 mg/L µg/L	32
DO (mg/L)	

General Notes (Condition of well or other features):

Well Numbe	r;	GS1-DC-10.	- 3	Project Number:	1343-005.0	3 Date	:		29 3	une 20	114	
Approximate	Date Drilled:	un knowen		Client:	AAM	19999999999	ıpler:		AB A			
Piezometer I Screen Leng		0.5"/ unkno	√ η.	Project Name:	MN GW Samp Program	Wea	ther/Ter	nperature:	0000	cast 10°C.		
CHV (ppm /	% LEL):	not record	enl.	Duplicate Collected:	☐ Yes Ū√No		overy:		⊠Go	od 🗀	Bad	
Purge Metho	od											
Wa	terra	Peristaltic		Disp. Bailer	Steel Bailer		Centrif.	Pump		Air Lift		
		a low flow								5 5Li	toled fil	e interval
Initial Depth	to Water (m):	0.981 -	Λ	Calculations:	Purge Start Time	: 14:70		Purge End	d Time:		14: 24:	pump
Depth to Bo	ttom (m):	3.763	S port	- purper test earlier	Time (3+) minu	ıte interval:	14:23	14:76	14:29	14:32	17 013	
Submerged	Tubing Depth (n	n): ~3.0 m	+ his	morning (maker up of)	Depth (m)		. 986	.986	1.05	1.15	0.99 1.05	500ed
Well Stick-u	p Height (m):	1.03		(ice cleared?)	Temperature (°C)	4.3	4.2	3.2	3.1	3.3 3.2	slightly
Estimated W	/ater Volume (L)	: 200ml -	>	~ 2.8 m x. 125	рH		6-54	16.54	6.54	1,57	6.58 6.60	water (
(DTB DTW) x 2 (for 2" well	diameter) = 1 well	{	900-1	Cond. (µs/cm)		726	725	695	768	712 769	
,	volume				Specific Cond. (us/cm)	1189	1201	1216	1	1218 1212	1 ,,,,,
(DTD DT 10				ded 5m of 14"	Redox (mV)		57.3	59.5	64.9	688	61.4 76.5	1
עאוט-פוט)) x 1.1 (for 1.5" di volume	ameter) = 1 well	waf.	error.	DO (mg/L)		6.30	0.15	0.14	0-12	0.10 0.10	
1" casing 8" sand pa	াহি has 0.16 USgal/ has 0.04 USgal/ ck has 0.73 USga	ft or 0.508 l/m			Appearance & O (Clear, Silty, HC etc.)	odours, શ	brown, very Silky	patielly clear, fight promise,	mostly clear, foint inhteen	clear	clear Cle	tar
0 5/0 Sanu	pack has 0,50 Oc	syaint or 6.35 inii	erretare avvetore ve		Total Purge Volu	ime: [L]	6.4	٥. ک	1.3	1.8	2.3	2.8
Sample Met	nod											
	Waterra	Peristaltic	;	Disp. Bailer	Steel Bailer	Centrif. F	ump	Airl	_ift	Ot	her	
Analysis		lowflo										
Sample ID	Parameters Ar		CONTRACTOR	Container Types Pr	eservative	Turbidity	(NTU)		Co	mments		
GS1-DC -10-B	full suite	14: 38 -	1	full suite		NTU Fro.				gar gan arendere en seu an Africa (en	### Company of the Parket of t	
			· · · · · · · · · · · · · · · · · · ·	······································	(2	in clen			*****			ı

Sample Site (Con't): 651-06-10-8

UTM Location: Zn: ○ δ \forall

Easting: 0390859 Northing: 6880452

Photo No .: 0164 - 0166. (Canara #1).

Well Head Space Gases:

	%	ppm
Methane (CH4) ∠らし	0.0	
Oxygen (O2)	20.5	
Carbon Dioxide (C02)	440 ppm.	

- sealed with plastic cap.

- tubing stuck in well (jammed in light).

making mensuring goes difficult.

General Notes (Condition of well or other features):

Final Groundwater Field Parameters (Following Purge):

	training tra
Time	
Temperature (°C)	
DO (mg/L)	
Specific Cond. (µs/cm)	
Cond. (µs/cm)	
рН	
Redox (mV)	
Turbidity (NTU)	
Sulphide mg/L µg/L	40
DO (mg/L)	

DTW. DRY
DTB-1.809 m.
Stick up. 1.04 m.
-Sealed with a ziplock bag.

Well Number:	Ų	MW09-07		Project Number:	1343-005.03	Date) ;		2014	1/06/2	එ 👍		
Approximate Da	te Drilled:	en known		Client:	AAM	AAM Sampler:					4N, 4B		
Piezometer Dian Screen Length:	neter/	2"/vaknon	~~ .	Project Name:	MN OW Soumpl Program	cloudy / sunney							
CHV (ppm / % L	EL):	not recorde	.d	Duplicate Collected:	Program	Rec	overy:		Go	od 🖔	Bad		
Purge Method			·		2								
Waterr	a	Peristaltic		Disp. Bailer	Steel Bailer		Centrif.	Pump		Air Lift	accommonations.		
		lon flow.											
Initial Depth to V	Vater (m):	2.461		Calculations:	Purge Start Time:	16:33	5	Purge End	Time:				
Depth to Bottom	ı (m):	3.397	Wello	overed with PUC	Time (≦) minut	e interval:	16:40	16:45					
Submerged Tub	ing Depth (m):	: ~3.10	رمو.	Slits out rato	Depth (m)		2.880	3.222					
Well Stick-up He	eight (m):	1.35	PVC	pipe for bailer.	Temperature (°C)			5.7					
Estimated Water	Volume (L):	~1.9	lurges	1.5 L. Well not	рН			6.80					
(DTB – DTW) x 2	? (for 2" well dia	meter) = 1 well	a sha	cases Stopped	Cond. (µs/cm)			1542					
,	volume	,	THE SALE	rging. Stopped meg, will return	Specific Cond. (µ	7	24 11						
(0.70.0.71)	4 4 4 4 - 11 41		F. J.	with the state of	Redox (mV)			102.4					
(DTB-DTW) x 1	.1 (for 1.5" dian volume	neter) = 1 well	1	ing day for sampl	DO (mg/L)			3.10			***************************************		
-	_	or 0.508 l/m ft or 9.271 l/m	fo san	129 re-visited well- ple. (07:25). prior to sample 6 m	Appearance & Od (Clear, Silty, HC o etc.)	dours,	Poige safe seduce	Stop. Overto down	~				
Sample Method													
	Waterra	Peristaltio		Disp. Bailer	Steel Bailer	Centrif. P	ump	Air L	ift	Oth	er		
Analysis		le low fla	זהו ני				·····						
Sample ID Pa	rameters Anal	lyzed Sample	Time	Container Types F	Preservative	Turbidity	(NTU)		Coi	nments			
MW09-07 F	ull suite	7:40-		full suite -> [sample Hy more			***************************************		CANCOLORS SAL		

La DTLA post sample = 3.085

Used of m Yy + silicon

Ly stopped here Wigen classisty, no more mater for pump ~ 250 ml only (filled last)

2014/06/29

Sample Site (Con't): MW01-07

UTM Location: Zn: クδ V

Easting: 0389322

Northing: 6880699

Photo No.: 0148 - 0150 (camera #1).

Well Head Space Gases:

	PIE	ppm
Methane (CH4) LEL	6.0 % LEL	
Oxygen (O2)	20.9%	
Carbon Dioxide (C02)	460 ppm	

mell capped of plastic cop,

bot holes/slifs cut in PVC blank for

holding bouile twine

1 21 plastic bouler already in place in well

General Notes (Condition of well or other features):

Final Groundwater Field Parameters (Following Purge):

Time	
Temperature (°C)	
DO (mg/L)	
Specific Cond. (µs/cm)	
Cond. (µs/cm)	
рН	
Redox (mV)	
Turbidity (NTU)	32.2 NTU pest som
Sulphide 5 mg/L (µg/L)	294
DO (mg/L)	

General Notes (Condition of well or other features):

2" PVC Mu (asing in larger 6" PVC casing

(pand protector?)

- son photos

Well Number:	M509-19	Project Number:	1343-005.03	Date:		29-Ju	un = 14
Approximate Date Drilled:		Client:	AAM	Sampler:		RW/1	WG,
Piezometer Diameter / Screen Length:	(5)	Project Name:	HN GW (SOPING)	Weather/Ten	nperature:	0780	ast.
CHV (ppm / % LEL):		Duplicate Collected:	☐ Yes ☐ No	Recovery:		Good	Bad Bad
Purge Method							
Waterra	Peristaltic	Disp. Bailer	Steel Bailer	Centrif.	Pump		Air Lift
	\sim						
Initial Depth to Water (m):	2.239	Calculations:	Purge Start Time:	7.55	Purge End	Time:	3:05
Depth to Bottom (m):	4.175		Time () minute into	erval: 8005			
Submerged Tubing Depth (n	n): ~3.8		Depth (m)	3.6			
Well Stick-up Height (m):	1.70		Temperature (°C)	6.5			
Estimated Water Volume (L)	: 2.1406]*3=6.4018	рН	7.46			
(DTB DTW) x 2 (for 2" well o	diameter) = 1 well		Cond. (µs/cm)	33.39	?		
volume			Specific Cond. (µs/cm) 518.0			
(DTD DT)			Redox (mV)	-917			
(DTB-DTW) x 1.1 (for 1.5" di volume	ameter) = 1 well		DO (mg/L)	5.93)		
30701110				turble	d		
2" casing has 0.16 USgal/			Appearance & Odour (Clear, Silty, HC odour	no no			
1" casing has 0.04 USgal/			etc.)	odour			
8" sand pack has 0.73 USga 6 5/8" sand pack has 0.50 US							
0 3/0 Sand pack has 0.50 00	ogaint or 0.55 init		Total Purge Volume:	2L			
Sample Method							
Waterra	Peristalti	Disp. Bailer	Steel Bailer Ce	ntrif. Pump	Air L	ift	Other
Analysis							
Sample ID Parameters Ar	nalyzed Sample	Time Container Types /	Preservative Tu	rbidity (NTU)		Com	ments
MOST 3 SECTION	B:18	$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	Yes 82.	7	Se	u Wa	J.

Sample Site (Con't): HPG9_12

UTM Location: Zn: ੴ√

Easting: つろなのみら Northing: しろらつくり

0

Photo No.: (am 2 #0080

Well Head Space Gases:

	%	ppm
Methane (CH4)		6
Oxygen (O2)	20.9	
Carbon Dioxide (C02)	580	

General Notes (Condition of well or other features):

Final Groundwater Field Parameters (Following Purge):

	meters (i ollowing Parge).
Time	13:19
Temperature (°C)	6.5
DO (mg/L)	5.93
Specific Cond. (µs/cm)	-5(BL)
Cond. (µs/cm)	333.9
pH	7.46
Redox (mV)	-91.7
Turbidity (NTU)	82.7
Sulphide mg/L µg/L	272
DO (mg/L)	5,98

General Notes (Condition of well or other features): - cut in DVC : no gos soul 8:06 drawdown & ton fast, purged 254, wort for across -new 3/16" tabing odded -1" bailer used. -recconnotation
-purge @ the beginning of the program, +
return to sample ("barrer")

	GS1-01-07	7 10w(m):1.325	DTR(M) 1.98	55 Ed-	10k-UD	(H). O.S	<u> </u>
Well Number:	CESV- DC-074	Project Number:	1843 - Coss , C	O Date:		29-74	4-14
Approximate Date Drilled:		Client:	AAM	Sampler:			
Piezometer Diameter I Screen Length:	\\ (tu	لسل Project Name:	AN GUER	Weather/Te	mperature:	Sund	
CHV (ppm / % LEL):		Duplicate Collected:	☐ Yes ☐ No	Recovery:		⊠.Good	☐ Bad
Purge Method							
Waterra	Peristaltic	Disp. Bailer	Steel Bailer	Centrif	. Pump	A	ir Lift
	\times						
Initial Depth to Water (m):	\.33?	Calculations:	Purge Start Time:	15:45	Purge End	Time: /	16:12
Depth to Bottom (m):	1,925		Time () minut	e interval: । ५५:५४	15,54	16:02/6	or/2 "
Submerged Tubing Depth (m): ~1.70		Depth (m)				
Well Stick-up Height (m):	ტ.ඉ		Temperature (°C)	4.8	2.9	2.7 2	.B
Estimated Water Volume (L): ·		рН	6.98	3a. F 6	7-3 7	. - 3
(DTB – DTW) x 2 (for 2" well	diameter) = 1 well		Cond. (µs/cm)	667	632		28
volume			Specific Cond. (µs				s&{
(DTD DT00 4.4 (\$ 4.5" -1	l'		Redox (mV)	-960	3 - 26-7	-1845-1	84.4
(DTB-DTW) x 1.1 (for 1.5" d volume	liameter) = 1 well		DO (mg/L)	0.0	(1.% 4)	5.460	.42
2" casing has 0.16 USgal 1" casing has 0.04 USgal 8" sand pack has 0.73 USg 6 5/8" sand pack has 0.50 U	/ft or 0.508 l/m al/ft or 9.271 l/m		Appearance & Od (Clear, Silty, HC o etc.)		·	₽>	
0 5/6 Sand pack has 0.50 0	Sgai/it or 6.35 i/m		Total Purge Volum	ne: 050	1.5	3L	
Sample Method							
Waterra	Peristaltic	Disp. Bailer	Steel Bailer	Centrif. Pump	Air L	ift	Other
Analysis .	×						
Sample ID Parameters A		Time Container Types Pr	reservative	Turbidity (NTU)		Comn	nents
GSI-DC-Diss. Themle Diss. tes SCN	16:15	s as E	Y e s No	11.79			

Token LB-H Gen Clem TIC NH3 Cymale Cyanide

Sample Site (Con't):	-DC-073	
UTM Location: Zn:	Easting: O 340065	Northing: 6원원이중식 (
Photo No.: Camo # 000	36	
Well Head Space Gases:	R	A
	%	ppm
Methane (CH4)	0	

20.6

0

20.6

© ♡ General Notes (Condition of well or other features):

Final Groundwater Field Parameters (Following Purge):

Oxygen (O2)

Carbon Dioxide (C02)

Time	16:15 *
Temperature (°C)	2.8
DO (mg/L)	0.42
Specific Cond. (µs/cm)	(688
Cond. (µs/cm)	608
рН	7.03
Redox (mV)	- Q 4.U
Turbidity (NTU)	
Sulphide mg/L (µg/L)	1(679)
DO (mg/L)	6.43

General Notes (Condition of well or other features):					
-new 3/16" Lubing added					
and the second second					
	r				

	\subseteq	<u> </u>	6.0:(m):0.0	0801 FF	<u>∂.1.758</u>	7 8	4 <u>ick-</u> 0	J(M) (D	O.87.
Well Number:	G	SI -DC - O6	Project Number:	1343-005.	ු Dat	e:		29-T	m-14
Approximate Dat	e Drilled:		Client:	MAA		npler:		**	MH
Piezometer Diam Screen Length:	eter /	1" (me	لـــــز) Project Name:	NN GM (B)	⟨ → ⟩	ather/Terr	perature:	SANO)), posty
CHV (ppm / % LE	iL):		Duplicate Collecte	ed: Yes 🗀 🛚	o Rec	overy:		God	od 🛭 Bad 🗧
Purge Method								-	
Waterra	1	Peristaltic	Disp. Bailer	Steel Baile	r	Centrif.	Pump		Air Lift
		\sim							
Initial Depth to W	/ater (m):	0.855	Calculations:	Purge Start Tim	e: 14735		Purge End	l Time:	14. 30
Depth to Bottom	(m):	1,394		Time () min	ute interval:	141:36	141:38	14:34	
Submerged Tubi	ng Depth (m):	~\.@		Depth (m)					
Well Stick-up Hei	ight (m):	6.51	purge volum	Temperature (°C)	8.8	8.1	8,1	
Estimated Water	Volume (L):	5.2380	*3 =0.89	рH		7.18	7.\0	7.10	
(DTB – DTW) x 2	(for 2" well dia	1	0	Cond. (µs/cm)		264	248	250	
, , , , , , , , , , , , , , , , , , , ,	volume			Specific Cond.	(µs/cm) 🤚	390	399	400	
(OTD OT 10 4	4 (5. 4 = " +			Redox (mV)		-001	-82.3	- 78.5	
(DTB-DTW) x 1.	1 (för 1.5" diam volume	neter) = 1 well		DO (mg/L)		2.01	0.75	0,66	
	•	or 0.508 l/m t or 9.271 l/m		Appearance & (Clear, Silty, HC etc.)	odours,	ogan Veor	no.	00/00/12 100 01/00/1	
				Total Purge Vol	ume:	0, (O.8	6.1	
Sample Method	Waterra	Peristaltic	Disp. Bailer	Chaol Daile	0				
Analysis	· ·	renstatic	Disp. baller	Steel Bailer	Centrif. F	'ump	Air L	_ift	Other
	ameters Anal	yzed Sample 1	Time Container Types	Preservative	Truckidit	(A)TEN			•
	s metals (F		120M/ { YC		Turbidity	(N1U)			nments
060	i avardii	1-1,40		Yes Tivo	12-8	* Advantage of the State of the		E LLE	Oclu
dis 927 710 Wy		(F)	40m g 7 16 2 N 250m g N				'		VIII

Sami	ole Site	(Con't):	<u>651-</u>	-20	06

UTM Location: Zn: On Easting: 389 38 Northing: 688 5567

Photo No.: Coma #0084

Well Head Space Gases:

	%	ppm
Methane (CH4)		
Oxygen (O2)	21.0	
Carbon Dioxide (C02)	520	
(0)	-	ð

্ৰ General Notes (Condition of well or other features):

	meters (t onowing 7 drye).
Time	14:40
Temperature (°C)	8.1
DO (mg/L)	0.66
Specific Cond. (µs/cm)	402
Cond. (µs/cm)	250
рН	710
Redox (mV)	-78,5
Turbidity (NTU)	12.81
Sulphide mg/L µg/L	32
DO (mg/L)	0.66

7 4 0 0		ٺ	odasa		
	•				

Well Number:	4809-09	Project Number:	1343-005.03	Date:	20-July-14		
Approximate Date Drilled:		Client:	BOM	Sampler:	RM/MH		
Piezometer Diameter / Screen Length:	1.5"	Project Name:	MU GIN GORIN	Weather/Temperature:	Ourcests		
CHV (ppm / % LEL):	\	Duplicate Collected:	☐ Yes ☐ No	Recovery:	☐ Good ☐ Bad		
Purge Method							
Waterra	Peristaltic	Disp. Bailer	Steel Bailer	Centrif. Pump	Air Lift		
		-					
Initial Depth to Water (m):	2924	Calculations:	Purge Start Time:	QNS Purge End	I Time: 9:30		
Depth to Bottom (m):	5,63		Time () minute in	terval: 9:20 9:25	9:28 9:30		
Submerged Tubing Depth (n			Depth (m)	3, 4,2	4.91 8.30		
Well Stick-up Height (m): 2.84			Temperature (ºC)	5.9 5.2	5.8 5.8		
Estimated Water Volume (L): 2.4766		X3-8,9098	pН	9.67 9.65	A.68 P.66		
(DTB – DTW) x 2 (for 2" well diameter) = 1 well			Cond. (µs/cm)	184.2 169.1	731 743		
volume	and the state of t		Specific Cond. (µs/cr	n) 28542714	2731 2754		
			Redox (mV)	-36.9 -31.3	-375 -23.1		
(DTB-DTW) x 1.1 (for 1.5" di volume	ameter) = 1 well		DO (mg/L)	0.84 6.43	0.34 0.05		
volume				LRS 1790			
2" casing has 0.16 USgal/	ft or 2.032 l/m		Appearance & Odour	TOWO WAS A			
1" casing has 0.04 USgal/	ft or 0.508 l/m		(Clear, Silty, HC odor etc.)	μ 3, $+$ $\circ \cap \cup$ $\circ \cap$	7 7		
8" sand pack has 0.73 USga			5.5.,	odar gran			
6 5/8" sand pack has 0.50 US	Sgal/ft or 6.35 l/m		Total Purge Volume:	IL QL	34		
Sample Method				SSI CONSTITUTE CONTROL	2		
Waterra	Peristaltio	Disp. Bailer	Steel Bailer C	entrif. Pump Air I	_ift Other		
Analysis							
Sample ID Parameters Ar	alyzed Sample	Time Container Types P	reservative T	urbidity (NTU)	Comments		
MPO9-109 (200)		I IYONI S	Yes	1			
MICH OF KIES MICANY	19:9)S Homia	No) 5	be back		

Sample Site (Con't): MPOG - OG UTM Location: Zn: Gy Easting: OSBG DYO Northing: 6880000

Photo No.: Cama # 008)

Well Head Space Gases:

	%	ppm
Methane (CH4)		0
Oxygen (O2)	20.9	
Carbon Dioxide (C02)	520	

General Notes (Condition of well or other features):

	3 3 7
Time	12:25
Temperature (°C)	12:25 5.8
DO (mg/L)	0.25
Specific Cond. (µs/cm)	275.4
Cond. (µs/cm)	174.3
рН	9.66
Redox (mV)	-23.1
Turbidity (NTU)	61
Sulphide mg/L (μg/L)	651
DO (mg/L)	6 25

General Notes (Condition of well or other features):
-vent in side of cosing is no gos son!
- new 3/16" tubing added
- You recovery, purging stopped @ 356
recomendation
- purge convinting program + potrum
- purge conty in the program + roturn later +0 same (1" baids)
- in parter used

Well Numbe	r:	MP09-11		Project Number:	184	3- asi	5 O3 N	Date:		<i>\$</i> 4-	145	[4]
Approximate	Date Drilled:			Client:		N		Sampler:		8P.	Pully S	>
Piezometer I Screen Leng		15		Project Name: 서의 GW (Spining) Weather/Tempe			perature:	ure: overast				
CHV (ppm /	% LEL):			Duplicate Collecte	d: 🗌 Y	es 🗔 ƙ	lo I	Recovery:		☐ Go	od 🗗	Bad ≤ ik
Purge Metho	od		,		,							
Wa	iterra	Peristaltic		Disp. Bailer		Steel Baile	er	Centrif.	Pump		Air Lift	
		\sim										
Initial Depth	to Water (m):	0.211		Calculations:	Purg	e Start Tin	ne: β_{γ}	09	Purge End	l Time:	8:30	·
Depth to Bot	ttom (m):	4.05			Time	() mir	nute interv	Time	8:22	8:20		`
Submerged	Tubing Depth (m): ~4.7			Dept	:h (m)		0.75	·	4.20		***************************************
Well Stick-u	p Height (m):	1.74			Tem	perature (º	C)	7.4	5.1	5.1		
Estimated W	/ater Volume (L):	3.6129	#3=9.0387		рН				7.61	754		
(DTB – DTW	(DTB – DTW) x 2 (for 2" well diameter) = 1 well		7, 0 ,,908+		Con	Cond. (µs/cm)				498.7		
(2.2.2)	volume	idinotory 1 tooli			Spec	ific Cond.	(µs/cm)	3763 561.0		F 125		
					Rede	ox (mV)		- 92.9	- 141.3	1		
(DTB-DTW)) x 1.1 (for 1.5" dia volume	ameter) = 1 well			DO (mg/L)		0.78	0.72	0.37		
					Ann	earance &	Oda	J.605/	tucoio.	せんりは		
_	has 0.16 USgal/f has 0.04 USgal/f					ar, Silty, HO		70	000m	1000 V		
_	ck has 0.73 USga				etc.)		-	999	000		***************************************	
-	pack has 0.50 US											
					lota	l Purge Vo	lume:	IL	<u> </u>	3.56	\$2500 No.	
Sample Meti		Desire to	T	B: B:			T					
Analysis	Waterra	Peristaltion	3	Disp. Bailer	Steel	Bailer	Centr	if. Pump	Air l	_ift	Oth	er
	_			\sim								
Sample ID	Parameters An	alyzed Sample	Time	Container Types	Preserva	itive	Turbio	dity (NTU)		Con	nments	
WYON IT	gen cours	131.31			☐ Yes∕ ☐ No		34		8	uban		
	yan da			40m D Y								
	Oblana bo Oslabinsko			n k y	:							
	Š.	· .	£ 4	20m la V								
				u a y								

Sample Site (Con't): \(\lambda \rangle \text{O} \frac{Q}{-1} \)

UTM Location: Zn: ロラシ

Easting: 038000

Northing: 68906/4

Photo No.: Cam & # 00000

Well Head Space Gases:

	%	ppm
Methane (CH4)		31
Oxygen (O2)	(9.7	
Carbon Dioxide (C02)	&30	

General Notes (Condition of well or other features):

	incers (ronowing runge).
Time	Pe 13:39
Temperature (°C)	5.1
DO (mg/L)	0.37
Specific Cond. (µs/cm)	804.7
Cond. (µs/cm)	498.7
pH	7.54
Redox (mV)	-146.2
Turbidity (NTU)	34
Sulphide mg/L µg/L	1.65+ 411
DO (mg/L)	6.37

General Notes (Condition of well or other features):
- 8:30 - purging shopped @ 3.5L due to
took and down, whiting for sections
-new 3//6" tarbing added
- The Object of used
- recognition abion
+ purise early in the program + of or
later to adapte

Well Number	:	MW09-2	,	Project Number:	1343 - 0	20 . Tet	Date:			68 -	June	<u>in Jane</u>	
Approximate	Date Drilled:		*****	Client:	MUSH		Sampler			214	MY		
Piezometer E Screen Leng		0		Project Name:	MO GW	· (Spn rig)	Weather	Weather/Temperature:			Deerly Cloudy		
CHV (ppm / 9	6 LEL):			Duplicate Collected:	☐ Yes	☑Ńo	Recover	y:		Good Bad		Bad	
Purge Metho	d												
Wa	ter ra	Peristaltic		Disp. Bailer	Stee	l Bailer	Cen	Centrif. Pump			Air Lift		
		~											
Initial Depth	to Water (m):	1,568		Calculations:	Purge St	art Time:	7:17	Pu	ırge End	Time:	17:5	5	
Depth to Bot	tom (m):	3.576			Time (_) minute inte	erval: 💢	:alli	7,97	(2:35	17:47	(7:53	
Submerged 7	Γubing Depth (ո	n): ~ 3			Depth (m)	1.7	9 1.	.91	1.93	2.01	202	
Well Stick-up	Height (m):	0-72	Pu	use norming.	Tempera	ture (ºC)	3.	9 8	2.4	20	2,\	2.0	
Estimated W	ater Volume (L)	: 4.0Ps	X3=	12.04	рН		6.		.82	6.83	6.82	6-82	
(DTB – DTW	x 2 (for 2" well o	diameter) = 1 well	-		Cond. (µs	s/cm)	\43	3 11	196	Nept	1424	1450	
(,	volume				Specific	Specific Cond. (µs/cm)			9514	9543	2547	2544	
					Redox (m	ıV)	-(-	<u>09</u> -	-60.1	-64.5	-649	-64.8	
(DTB-DTW)	x 1.1 (for 1.5" di volume	ameter) = 1 well	1		DO (mg/L	DO (mg/L)			D.49	1.93	1,93	191	
	*Oldino							2 88 9 28	V605/	() 40°C			
2" casing	has 0.16 USgal/	ft or 2.032 l/m				nce & Odour Ity, HC odour	Ι.	^ I		arts (13)	t		
•	has 0.04 USgal/				etc.)	ity, no odour	S,		7,000	STORE .			
•	k has 0.73 USga								_^^_				
o 5/8 sand p	back has 0.50 US	Sgal/ft or 6.35 l/m			Total Pur	ge Volume:	11	_	5 L	AsL	121	141	
Sample Meth	iod												
	Waterra	Peristaltion	:	Disp. Bailer	Steel Bail	er Ce	ntrif. Pump)	Air L	ift	Ot	her	
Analysis		><											
Sample ID	Parameters Ar	nalyzed Sample	Time	Container Types/	reservative	Tur	rbidity (NTI	J)		Col	nments		
MWOR-21	gen cheni	18:	20	rs v] Yes/	11		The second second second	50		1	A CONTRACTOR OF THE PROPERTY O	
	NH3	' & ')	asomic All] No				- 13				
	rds s				/				<u> </u>	***************************************			

Sample Site (Con't): MWOG-SA UTM Location: Zn: OSy East

Easting: 03/90536 Northing: 6050577

Photo No.: Cam∂ \$6079

Well Head Space Gases:

	%	ppm
Methane (CH4)		
Oxygen (O2)	20.6	
Carbon Dioxide (C02)	550	

General Notes (Condition of well or other features):

	and the second s
Time	18:00
Temperature (°C)	2.0
DO (mg/L)	1.91
Specific Cond. (µs/cm)	2544
Cond. (µs/cm)	1430
рН	6.82
Redox (mV)	-64.8
Turbidity (NTU)	11.11
Sulphide mg/L µg/L	-63
DO (mg/L)	1.91

General No	otes (Conditio ರಿಗರಿ " ಕುಹಿ	n of well or oth	ner features):	
	2/10 tus	e adaleal		

Well Number	•	MD09-05	Project Number:	1343-005.03	Date:		200		
Approximate	Date Drilled:	1170100	Client:	AAM	Sampler:	2M/MM		June 14	
Piezometer E Screen Leng)iameter /	1.5"	Project Name:	HO GW GARA	100000000000000000000000000000000000000	nperature:	POR -	geroudy.	
CHV (ppm / %	6 LEL):		Duplicate Collected	: ☐ Yes ☐ No	Recovery:		Good D Ba		
Purge Metho	d				1				
Wat	terra	Peristaltic	Disp. Bailer	Steel Bailer	Centrif.	Pump		Air Lift	
		\times							
Initial Depth	to Water (m):	1.414	Calculations:	Purge Start Time:	6:47	Purge End	Time:	16:59	
Depth to Bot	tom (m):	1.89		Time () minute in	terval: 16,50	16:551	6:59		
Submerged 1	Tubing Depth (m	1): ~1,8		Depth (m)	1.48	1.55	1.5%		
Well Stick-up	Height (m):	1.0	Purge voi	Temperature (°C)	10.1	8.9	3.5		
Estimated Wa	ater Volume (L)	: 0.4466	Purge 101 *3=13398	р Н	第6.71		6-75		
(DTB – DTW)	x 2 (for 2" well o	diameter) = 1 well		Cond. (µs/cm)	1664		723		
(= 1.0 = 2.11)	volume			Specific Cond. (µs/cm			2390		
				Redox (mV)	_467		-4j, 4		
(DIR-DIW)	x 1.1 (for 1.5" dia volume	ameter) = 1 well		DO (mg/L)	4.9	1	1.10		
volume 2" casing has 0.16 USgal/ft or 2.032 l/m 1" casing has 0.04 USgal/ft or 0.508 l/m 8" sand pack has 0.73 USgal/ft or 9.271 l/m				Appearance & Odour (Clear, Silty, HC odou etc.)		1750	2000- 700 3.00		
6 5/8" sand p	eack has 0.50 US	gal/ft or 6.35 l/m		Total Purge Volume:	0-5	<u>-</u>	1.5L		
Sample Meth	od								
	Waterra	Peristaltio	Disp. Bailer	Steel Bailer Co	entrif. Pump	Air Li	ft	Other	
Analysis									
Sample ID	Parameters An	alyzed Sample	Time Container Types	Preservative Tu	rbidity (NTU)		Con	nments	
	en Chem VHz Til:	17:00	क्रिक्स अंद्र [Yes 5			ee / D=1		
(lyanide lyanate Descriptions		Homis 3 Homis 3 Homis 4						

Sample Site (Con't): MP09-05

UTM Location: Zn: 0 含v Easting: 0 3% で Northing: 6 分ので つ

Photo No.: Cama #0078

Well Head Space Gases:

	%	ppm
Methane (CH4)		0
Oxygen (O2)	21.1	
Carbon Dioxide (C02)	550	

General Notes (Condition of well or other features):

	to the second second
Time	16:59
Temperature (°C)	8.5
DO (mg/L)	4.10
Specific Cond. (µs/cm)	2380
Cond. (µs/cm)	V7 03
рH	6.75
Redox (mV)	-414
Turbidity (NTU)	5.05
Sulphide mg/L ug/L	0
DO (mg/L)	4.0

General Notes - New 3//	(Condition of	f well or other	features):	

Well Number	•	CH-P-	13-03,	150	Project Number:		13-60	5.0	2 Date	:			27 J	une 7	2!4 b	, 0
Approximate	Date Drilled:	Unknown		Client:		Yukan 1	lukan AAM Samp		Sampler:			AB IAN				
Piezometer D Screen Leng		;	V cap,		Project Name:		Mt Nans		-₩ Wea	ther/Ten	npera	perature: Clear Sounk				
CHV (ppm / %	% LEL):	not reco	raed		Duplicate Collecte	ed:	☐ Yes	☑ No	Reco	very:			⊠ Go	od [Bad	
Purge Metho	d															
Wa	terra	Pe	eristaltic		Disp. Bailer		Steel	Baile	r	Centrif.	Pump	.		Air Lil	t	
man	al.								- 27 ج	June 2	2014					
Initial Depth	to Water (m):	48.	454		Calculations:		Purge Star	t Tim	CONTRACTOR L	.12	No. of Concession, Name of Street, or other party of the Concession, Name of Street, or other pa	e End	Time:			1
Depth to Bot	tom (m):		.762	2.3	ms 508		Time ()	min	ute interval:	16:50						1
Submerged 1	Tubing Depth (n		ler				Depth (m)		······							
Well Stick-up	Height (m):		006m	1	approx In below	7	Temperatu	ıre (°C)							
Estimated W	ater Volume (L)	: ~1	.15	16:40 - after to form		рН			7						1	
(DTR _ DTM/) x 2 (for 2" well o	diameter) :	= 1 well			Cond. (µs/	cm)									
(010-0144)	volume	diameter)	- I Wen			Specific C	ond. ((µs/cm)							1	
				Withern + Dik footwolve		Redox (m\	/)					***************************************				
(DTB-DTW)	x 1.1 (for 1.5" di	iameter) =	1 well	(no 2" baster), linited		DO (mg/L)			U						1	
	volume			(no d	won't even read	ch.			\d	vable	,					1
-	has 0.16 USgal/		. I/m	5.16	c. 1	Appearance & Odour (Clear, Silty, HC odours,			to purge				,	من الم	fer	
_	has 0.04 USgal/		1/m 71 //	D. (-fl. x ~ "	1,41	etc.)	,,	,		du.	eters	mue ms	ured	All wa	,
8" sand pack has 0.73 USgal/ft or 9.271 l/m 6 5/8" sand pack has 0.50 USgal/ft or 6.35 l/m		7 L I/III 535 I/m	υ; ~ ,	efter 5/8" revove	اکترا ۱۱				6-4	ged	,\w\÷\$	warfer Lewan	1' '.	June!		
		ogal/It of o	.00 1/111	of collections and collections and collections are collections and collections are collections and collections are collections	19.55 m. Nord 1	/	Total Purg	e Vol	ume:	~ L		[:/\ 0	.,	1	`	_
Sample Meth	od															
	Waterra	P	eristaltic	:	Disp. Bailer		Steel Bailer	r	Centrif. P	ump	100	Air Li	ft	0	ther	
Analysis					1" bailer.											
Sample ID	Parameters Ar	Service Association (Control of	Sample '	2002/2009/05/2009	Container Types	Pro	eservative		Turbidity	(NTU)			Cal	nments		
5.1 217 12/m	[11 -]		Start O7		full svite I	X	Yes	@ 1	time of so	~~ ple						
CH - P-13 -13/50	full suite		End 09	.JU	to 11 50 + +	য়ে	No		7AI NTO	1 /000						

Used 3/8" wattern + DIG footvalve to attempt to purge et no success (not evoryh unter) ~ ~ 52m Returned to sample on 2014/06/28. DTW @ time of sample = 48.45 m (fully recharged to previous depth).

Sample very slow given small bailer

28 Jun. 2014

Sample Site (Con't): CH-13-03/50 0389143

UTM Location: Zn: 08 0 Easting: B Northing: 688 1105

Photo No.: 0098, 102, 103 (amera 2 Well Head Space Gases: right side, beside 03/10

	%	/ppm/	ļ
Methane (CH4)	0% LEZ		
Oxygen (O2)	20.4%		
Carbon Dioxide (C02)	1390 pm		

well sealed u/ cap and intact

General Notes (Condition of well or other features):

Final Groundwater Field Parameters (Following Purge):

といせい シャンドド	
Time	09:30
Temperature (°C)	
DO (mg/L)	
Specific Cond. (µs/cm)	
Cond. (µs/cm)	
pH	
Redox (mV)	
Turbidity (NTU)	
Sulphide mg/L µg/L	256
DO (mg/L)	

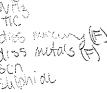
General Notes (Condition of well or other features):

PASSUME this is CH-P-13-03/50, despite stick up

protector labelled as CH-P-13-02

- hell cap faintly says CH-P-13-03 though?

- Can't purge of 5/8" watern, natur column too low


to reach ground (Fills tubing almost to surface only)

> See AB field notes for more into

Well Number:	u U	<u> 1909-04</u>	Project Number:	1843-005	్ర Date:			28-June-2014		
Approximate	Date Drilled:		Client:	DAM	Samj	Sampler:		RMARCH		
Piezometer D Screen Lengt	2017/2018/06/2019/2018/09/2017/2017/2017	a``	Project Name:	MIO GIO (EDO DE) WE		Weather/Temperature:		suniy		
CHV (ppm / %	LEL):		Duplicate Collected:	Yes No	Reco	very:		960	od 🗌	Bad
Purge Method	i									
Wat	егга	Peristaltic	Disp. Bailer	Steel Bailer	r (Centrif.	Pump	Air Lift		
		<u> </u>								
Initial Depth t	o Water (m):	2.034	Calculations:	Purge Start Time	e: (네: 64		Purge End	Time:	11:30	7
Depth to Bott		F0.6		Time (minu	ite interval:	11,07	PIM	11:29	11:39	
Submerged T	ubing Depth (m):	~ J \$	and the second	Depth (m)		2.1	2.12	ට. ්ර්	215	
Well Stick-up	Height (m):	1.9	Riga volunik = 1/2 = 6.315456	Temperature (°C	Temperature (°C)			3, A	3.6	
Estimated Wa	iter Volume (L):	2.105152	X8 = 6.315456	pН		6.94	7,04			
(DTB DTW)	x 2 (for 2" well diar	meter) = 1 well		Cond. (µs/cm)		1016	49 47	The same	959	
,	volume	,		Specific Cond. (μs/cm) [승구구			1604	607	1610	
(DYD D714)	4 4 65 4 511 15			Redox (mV)		76,0	6.65	60.9		
(DIR-DIM)	x 1.1 (for 1.5" diam volume	eter) = 1 well		DO (mg/L)		% -8		4 OB	1	
1" casing t 8" sand pact	nas 0.16 USgal/ft or nas 0.04 USgal/ft or k has 0.73 USgal/ft	r 0.508 l/m or 9.271 l/m		Appearance & O (Clear, Silty, HC etc.)	odours,	agos Lo Jan		÷	7	
0 5/6 Sand p	ack has 0.50 USga	MILOL 0.35 MI		Total Purge Volu	ıme:	}	ج. ر	5L	W7L	7
Sample Meth	od									**
	Waterra	Peristaltic	Disp. Bailer	Steel Bailer	Centrif. Pu	ımp :	Air L	ift	Oti	ner
Analysis		\sim								····
Sample ID	Parameters Analy	zed Sample		reservative	Turbidity (NTU)		Cor	mments	
16-60 GM	yen Chilin Syantal Manatre	11:40	ILP P ZY C	Yes	.87	(1000)		se b	WWW.WIESENSOWE	

Sample Site (Con't): MP 09 - 04

UTM Location: Zn: 08 V Easting: 0380575 Northing: 6880609

Photo No.: Com 2#6069

Well Head Space Gases:

	%	ppm
Methane (CH4)		Constant Constant
Oxygen (O2)	20,5	
Carbon Dioxide (C02)	630	

General Notes (Condition of well or other features):

	receis (Coloming Curge).
Time	11:39
Temperature (°C)	23,4
DO (mg/L)	4.09
Specific Cond. (µs/cm)	1610
Cond. (µs/cm)	059
рН	704
Redox (mV)	5%. Q
Turbidity (NTU)	1287
Sulphide mg/L µg/L	16
DO (mg/L)	4.09

-	(Condition of well or other features):	
-new 3/16"	twing added.	

Well Number:	MN09-24	Project Number:	1343-005.03	Date:	28-Jone-14
Approximate Date Drilled:		Client:	PAM	Sampler:	BH /MM Y
Piezometer Diameter / Screen Length:	a``	Project Name:	MNEMODERY	Weather/Temperature	ure: SUMY
CHV (ppm / % LEL):		Duplicate Collected:	☐ Yes X No	Recovery:	☐/Good ☐ Bad
Purge Method					
Waterra	Peristaltic	Disp. Bailer	Steel Bailer	Centrif. Pump	Air Lift
Initial Depth to Water (m):	9.389	Calculations:	Purge Start Time:	9:35 Purge	End Time: \O'.OO
Depth to Bottom (m):	[N, []		Time () minute in	iterval: 9.35 9:4	9,55 10:00
Submerged Tubing Depth (r	08, ⊙, 1 (n		Depth (m)	9.5	72 10.02 10.04
Well Stick-up Height (m):	0.68		Temperature (°C)	2.9 2.	6 Z-6 Z.G
Estimated Water Volume (L)	: 3.6189QQ	x 3=10.856G76	рН	7.56 7.0	43 7.34 7.34
(DTB – DTW) x 2 (for 2" well	diameter) = 1 well	0-8476	Cond. (µs/cm)	790 76	3 762 761
volume			Specific Cond. (µs/cr	n) 1340 138	25 1199 1198
(200 200)			Redox (mV)	-40.2-51	1.1 3.4 3.3
(DTB-DTW) x 1.1 (for 1.5" d volume	ıameter) = 1 well		DO (mg/L)	5.7 1.01	2 5.81 5.77
2" casing has 0.16 USgal, 1" casing has 0.04 USgal, 8" sand pack has 0.73 USg	/ft or 0.508 l/m al/ft or 9.271 l/m		Appearance & Odou (Clear, Silty, HC odou etc.)		
6 5/8" sand pack has 0.50 U	Sgal/ft or 6.35 l/m		Total Purge Volume:	3 (9 12
Sample Method					
Waterra	Peristaltio	Disp. Bailer	Steel Bailer C	entrif. Pump	Air Lift Other
Analysis		X			
Sample ID Parameters A	nalyzed Sample	Time Container Types P	reservative Ti	urbidity (NTU)	Comments
MUB9-24 10:20	->	Sergion .	Yes (1.2)	>	se back

Gen Che 31 8 (1064)
With 25 One of (Reserved)
TTC (1 11 (1069)
Cyanda 140A1 8 (2008)
Cyanales 4 11 11 11

SCN SOME (PRO) SCN SOME (PRO) SCN SOME (PRO)

Sample	Site	(Con't):	WWX	7	24	
Sample	JILE	CONTRACTOR	5 m - 1 / m - 1		2.20	

UTM Location: Zn: 60 Easting: \$8956 Northing: 686624

Photo No.: Cama \$2068

Well Head Space Gases:

	%	ppm
Methane (CH4)		
Oxygen (O2)	20.5	
Carbon Dioxide (C02)	610	

General Notes (Condition of well or other features):

Timal Grandwater Fleid Fara	3 3
Time	10:00
Temperature (°C)	2.6
DO (mg/L)	5.77
Specific Cond. (µs/cm)	(198
Cond. (µs/cm)	761
pH	7.34
Redox (mV)	3.3
Turbidity (NTU)	11.3
Sulphide mg/L ug/L	84
DO (mg/L)	S.77

General Notes	(Condition of w	vell or other features):		
- Mew 1/8	vatiero.	tubing added	a foot	

176 Time

Well Numbe	241	111,100 00	Project Number:	10 42	roz Da'			10-, -1	133	7
	e Date Drilled:	MWC9-33	Client:	1343-005. AAM	Exercise Services	npler:		RM / M	urse - 14/	-
Piezometer I Screen Leng	Diameter /	2	Project Name:	Hn GM(es)	4, 50N		perature:		Cloudy,	-
CHV (ppm /			Duplicate Collected:	Yes 1	vio Re	covery:		Good	 I ☐ Bad	-
Purge Metho	od				<u> </u>	•		1 —		
Wa	iterra	Peristaltic	Disp. Bailer	Steel Bail	er	Centrif.	Pump		Air Lift	222
入			//// 10 - 10 - 10 - 10 - 10 - 10 - 10 -							
Initial Depth	to Water (m):	11.913	Calculations:	Purge Start Tir	ne: \\.ЦС	4	Purge End	Time: \	a:23	1
Depth to Bot	ttom (m):	· ~ ~ ~ ~			nute interval:	- Y POPE	12:03	920050000000000000000000000000000000000	0:13 12:18	13:5
Submerged	Tubing Depth (n		3 well volums.	Depth (m)		10.07	12.16		2.16 12.16	Q.1
Well Stick-up	p Height (m):	0.94	→ *3 every 23.726. 5L	Temperature (°C)	7.5	2.7	i — i —	24 20	<i>a.</i> \
Estimated W	/ater Volume (L)	: 7.908544	25.72b. 5L	рН		698	7.09		112 7.10	<u>`</u> 38. (
(DTR = DTM	Λ x 2 (for 2" well a	diameter) = 1 well		Cond. (µs/cm)		73	4922	-	198 1475	146
(010-0199	volume	nameter) – r well		Specific Cond.	. (µs/cm)	131	840 a	26552		
				Redox (mV)		-1305			65.3 - 65.5	-64
(DTB-DTW)) x 1.1 (for 1.5" di volume	ameter) = 1 well		DO (mg/L)		19.68			.82 4.14	4.3
1" casing 8" sand pag	ı has 0.16 USgal/ı ı has 0.04 USgal/ı ck has 0.73 USga	ft or 0.508 I/m al/ft or 9.271 I/m		Appearance & (Clear, Silty, Hetc.)		200 200 200 200 200 200 200 200 200 200	40200	2000016	wide turbid	
6 5/8" sand	pack has 0.50 US	Sgal/ft or 6.35 l/m		Total Purge Vo	olume:	12	10	15	30 05	3/
Sample Met	nod							,	,	
	Waterra	Peristaltic	Disp. Bailer	Steel Bailer	Centrif.	Pump	Air l	-ift	Other	522
Analysis			•><							
Sample ID	Parameters An	alyzed Sample T	ime Container Types F	reservative	Turbidit	y (NTU)		Com	nents	
1440 09- 83	-gen Chen - TC - NHz	7:40	A SOMO NE	Yes (30.1			26 D	e de la companyamenta del companyamenta del companyamenta de la companyamenta de la companyamenta de la companyamenta del companyament	500
	- CYANGE - CYANGE - OUSS - METO - SUNGNOW - TEN	Smed (T)	14 140mil 0 4 120mil 0 1			***************************************	——————————————————————————————————————	· · · · · · · · · · · · · · · · · · ·	***************************************	_1

Sample Site (Co	18: MW	109 - J	3
-----------------	--------	---------	---

UTM Location: Zn:グラッ Easting: ○ ろらりょう GNorthing: 6 あらってうる

Photo No.: Can 2 #0063

Well Head Space Gases:

	%	ppm
Methane (CH4)		
Oxygen (O2)	20.6	
Carbon Dioxide (C02)	620	

General Notes (Condition of well or other features):

Time	7:40
Temperature (°C)	2.1
DO (mg/L)	4.32
Specific Cond. (µs/cm)	260
Cond. (µs/cm)	1468
pН	7.10
Redox (mV)	-64.7
Turbidity (NTU)	30.1
Sulphide mg/L µg/L	90. m
DO (mg/L)	4.30

General Notes (Condition of well or other features):
-new 5/8" Eubing added
- Sample taken July 28 to bailer, water too
Eurisid for comple directly offer jurge.

Well Number:		MW 09-08	Proj	ect Number:	1343-	005.00	Date			128	Tune	J-14	
Approximate Date I	Drilled:	Z-00 =	Clie	nt:	Mag		Samı	pler:		1214	/MA	<u> </u>	
Piezometer Diamete Screen Length:	er <i>l</i>	<u> </u>	Proj	ect Name:	3 CM	-NJ(spring	Weat	ther/Ten	perature:		ŵ&.		
CHV (ppm / % LEL)	:		Dup	licate Collecte	e d: ☑Yes	☐ No	Reco	very:		G	ood 🗌	Bad	
Purge Method													
Waterra		Peristaltic		Disp. Bailer	Ste	el Bailer		Centrif.	Pump		Air Lift		
		<u> </u>											
Initial Depth to Wat	er (m):	1. 74O	Calc	ulations:	Purge St	tart Time:	11:55		Purge Enc	l Time:			
Depth to Bottom (m	1):	3.905	5.21Lx	3 =	Time (_\	🗿 minute ir	nterval:	11:53	12:05	12:15	12:25	12:35	12:0
Submerged Tubing	Depth (m		_		Depth (n	1)			1.45	1.45	1.45	1.45	١. (
Well Stick-up Heigh	nt (m):	1,0%	15	,64	Tempera	ture (ºC)		_	4.3	4.0	3.2	3.3	3.
Estimated Water Vo	olume (L):	5.21			рН			_	6.28	6.89	6,84	6.81	6
(DTB – DTW) x 2 (fo	or 2" well d	iameter) = 1 well			Cond. (µ	s/cm)		(see	163.1	154.1	215.7	217.3	21
	volume				Specific	Cond. (µs/ci	m)		274.2	259.3	3778	380.1	38
					Redox (r	nV)		800	-91.3	-942	-95.3	-961	-0
(DTB-DTW) x 1.1 (for 1.5″ dia volume	imeter) = 1 well			DO (mg/	L)			0.48	1.05	1,36	138	Į į,
2" casing has 0.0 1" casing has 0.0 8" sand pack has 0 6 5/8" sand pack ha	16 USgal/fl 04 USgal/fl 0.73 USgal	t or 0.508 I/m /ft or 9.271 I/m			(Clear, S etc.)	nce & Odou ilty, HC odo	urs,	Spare			Yellow Hingle Sulphin Line Oscico	7 4	*.
		9			Total Pu	rge Volume:			46	87	ML	166	18
Sample Method V	Vaterra	Peristaltic	Die	sp. Bailer	Steel Bai	lar C	entrif. Pı	ump	Air L	:64	<u>~</u>	her	
Analysis		V V		p. Dunet	Oleci Bai	iei C	endin. F	ump	All	_11 L	Ot Ot	rier	-
-	neters An	alyzed Sample	Time Conf	ainer Types	Preservative	т т	urbidity ((NTII)		CA	mments		
MOR-08873	and the same as a section of the sec	19:41	IL (250 S		☐ Yes ☐ No		. 2		3/	2000 to 1000 to	(A		

Sample Site (Con't): MPO9-09

UTM Location: Zn: ∂⊗_V

Easting: 03용9620 Northing: 6용용이하6

Photo No.: Cama 0070

Well Head Space Gases:

	%	ppm
Methane (CH4)		
Oxygen (O2)	20.64	
Carbon Dioxide (C02)	<50	
(0		

General Notes (Condition of well or other features):

Time	10:41
Temperature (°C)	3.3
DO (mg/L)	1.41
Specific Cond. (µs/cm)	384.2
Cond. (µs/cm)	216.7
рН	6.83
Redox (mV)	-96.7
Turbidity (NTU)	2.02
Sulphide mg/L µg/L	92.0
DO (mg/L)	1,41

General Notes (Condition of well or other features):					
Bailer in the wall.					
Het new tubing added. 3/16°					

MP09-09 * Well Number: Project Number: Date: 27 June 2014 1347-005.03 AS AN Approximate Date Drilled: unknown Client: Sampler: Yukan AAM ~ 1/2" steel drive point/ Llear, sunny Piezometer Diameter / Mi Nansen Ew **Project Name:** Weather/Temperature: Screen Length: ~200 VNKnown Small Bad ellow flow No CHV (ppm / % LEL): **Duplicate Collected:** ☐ Yes not recorded Recovery: ₩ Good **Purge Method** Waterra **Peristaltic** Disp. Bailer Steel Bailer Centrif, Pump Air Lift micro (mitial Deri Dumo ow Initial Depth to Water (m): 6.892 Calculations: **Purge Start Time:** Purde End Time: 14:10 14:40 1.975 Imx .175 1/m= .1252 Depth to Bottom (m): Time () minute interval: 14:75 14:32 14:37 14:40 Submerged Tubing Depth (m) Colombia (1.09) Notes DTW Depth (m) 0.892 0.89> Well Stick-up Height (m): Temperature (°C) 005-~1.5 3.3 2.8 2.9 14:10-14:75 Estimated Water Volume (L): Samole ~ -175 Hα 7.12 7.24 7.10 7.13 purged IL -/ micro hatter Cond. (us/cm) 415.2 416.6 = 0910 422.4 416.2 (DTB - DTW) x 2 (for 2" well diameter) = 1 well efootunive in place, very broun/dock grey, silty, Specific Cond. (us/cm) volume 720.3 721.0 7231 mbtos Redox (mV) -101.9 -99.1 -97.3 -95.5 sulphur odour (DTB-DTW) \times 1.1 (for 1.5" diameter) = 1 well DO (ma/L) 2.34 209 1.92 1.64 volume 14:37 - start peri pump 0.125 Fer /7" Appearance & Odour 500 Clear. 2" casing has 0.16 USgal/ft or 2.032 l/m purge not25 (Clear, Silty, HC odours, 1" casing has 0.04 USgal/ft or 0.508 l/m Sulphur etc.) 8" sand pack has 0.73 USgal/ft or 9.271 l/m adour Commontive 6 5/8" sand pack has 0.50 USgal/ft or 6.35 l/m Total Purge Volume: 1.9 2, 2, 1.3 1.6 Sample Method Waterra Peristaltic Disp. Bailer Steel Bailer Centrif. Pump Air Lift Other **Analysis** flow Sample ID Parameters Analyzed Sample Time **Container Types Preservative Turbidity (NTU)** Comments full suite 14.42-MP09-08 full suite 🛂 Yes LAZ NTU 141.55 ⊠ No

Hemmera added 3 n /4 + silicon

Sample Site (Con't): MP69 - 08

UTM Location: Zn: 08 U Easting: 0389160 Northing: 6881718

Photo No.: 0095 - 0097 (amera 1

Well Head Space Gases:

	144	ppin
Methane (CH4) % LEL	0 % LEL	
Oxygen (O2) º/₅	20.6%	
Carbon Dioxide (C02)	490	

well not sealed you cap

General Notes (Condition of well or other features):

Final Groundwater Field Parameters (Following Purge):

500	1-1-125
Time	14:40
Temperature (°C)	2.9
DO (mg/L)	1.64
Specific Cond. (µs/cm)	7,00.3
Cond. (µs/cm)	416.6
рН	7.12
Redox (mV)	- 95.5
Turbidity (NTU)	1.02
Sulphide 52 mg/L (µg/L)	124
DO (mg/L)	1.64

General Notes (Condition of well or other features):

By Have a figure and spreadsheet w/ UTM (0-ords showing MP09-01 = 09-08 In same place. In field, no flagging hope workings & this location so ASSUME this is MP09-09 because older of MP09 wells named as more down creek and saw flagging for a "09-01" drive point well ripped out by excavator near GSI -PC-01-A+B

Well Numbe	r:	MP09 .	1P09 -02		MP09 - 02 Project Number:		1343-00	5.03	3 Date:			2014/06/27			1
Approximate	e Date Drilled:	mknown.		Client:		AAM	√ Sampler:		pler:	ler:		AN,18			
Piezometer Screen Leng		~0.5" / on be nown		"/ ~ k - ~ . Project Name:		MN BW S Proof	temple.			~12°C					
CHV (ppm /	% LEL):	not	المدمد	ed.	Duplicate Collecte	d: Yes	区 No	Reco	overy:		⊠ Go	od 🗌	Bad C	low flow	
Purge Metho	bd														
Wa	iterra	F	Peristaltic		Disp. Bailer	Steel	Bailer		Centrif. Pump		Pump Air Lift				
initial Micro	nullen	10-	flow.							1305 tear.	+ peri c	umo			
Initial Depth	to Water (m):	1.	228		Calculations:	Purge Sta	rt Time:	न न पर	-	Purge End	l Time:	10:32	3		
Depth to Bo	ttom (m):	l	. 970	Brsed	on 12" cooling and	Time ()	minute	e interval:	10:25	16 30	10:33	10:34	10:36		
Submerged	Tubing Depth (m): 2	.5m	0.17	27 1/m for well volume	Depth (m)			\	1-25	11/2-		_ `` >>	N/R Inot	
Well Stick-u		ove book ove trisling	1.09 Hom 1.36	41)	volume	Temperatu	ıre (ºC)		Ovroy Eci	3.5	3.4	3.4	3.3	recorded	
Estimated V	/ater Volume (L):	~/	100 m L			pН			154	7.38	7.28	7.23	7.22	1 .	
(DTB DTW	/) x 2 (for 2" well d	iameter)	= 1 well	Start	page of existing	Cond. (µs/	cm)		V mills	308.6	305.7	305.5	304.9	1.	
(0.0 0	volume			Milro	watton (-1/2" +	Specific C	ond. (µs	s/cm)	hatlera,	522.8	524.1	520-5	522.0	1	
		_		micro	foot valve), good	Redox (m)	V)		5e &	70.1	71.9	75.3	75.8]	
(DIR-DIM) x 1.1 (for 1.5" dia volume	ameter) =	= 1 well		ry but sample very	DO (mg/L)			notes	5.78	5.80	5.54	5.49	1	
0.5" ca	sing has o.	127 1/	m.	+""	old. Smitch to			,	DARCH.					1	
2" casing	has 0.16 USgal/fl	t or 2.03	2 I/m	Oz ń.	pump and sample	Appearance (Clear, Silf			Silkii	Clear _			<u></u> →		
· -	has 0.04 USgal/fi				ediately clear	etc.)	.y, 110 0t	uours,	+ fine						
-	ck has 0.73 USgal pack has 0.50 USg				•	lone	molative		Briticies						
6 5/6 Sand	pack has 0.50 05	gai/it or	6.30 I/III	DTW	post sample = 1.22	Na Total Purg	je Volun	ne: (¿)	1-5	1.75	Z	2.75	2.5	1	
Sample Met	hod														
	Waterra		Peristaltio	; [Disp. Bailer	Steel Baile	r	Centrif. P	ump	Air L	_ift	Otl	her	1	
Analysis		10	~ {lo~								,		· · · · · · · · · · · · · · · · · · ·	1	
Sample ID	Parameters Ana	alyzed	Sample	Time	Container Types	Preservative		Turbidity	(NTU)		Co	mments			
m 807 - 02	C. (-1		10:425	fart		Yes	@ +.~	e of sa-	ple	andrea para tresses			Assect 0-000AA100204(00)00	1	
V-1 - 1 - 0	whole of full ships		10:53 cha		full suite	· ☑ No		96 NTU startians							

Sample Site (Con't): MPG9-62

UTM Location: Zn: 08 U Easting: 03 888 67 Northing: 688 1816

Photo No.: 0071-6073 (amera 1

Well Head Space Gases:

	1/42/	/ ppm-
Methane (CH4)% LEL	0 % LEL	Well (drive point)
Oxygen (O2) %	20.5%	not copped / Senled
Carbon Dioxide (C02) pm	450 ppm	1

General Notes (Condition of well or other features):

Final Groundwater Field Parameters (Following Purge):

	revers (ronowing raige).
Time	10:36
Temperature (ºC)	3.7,
DO (mg/L)	5.49
Specific Cond. (µs/cm)	502.0
Cond. (µs/cm)	304.9
рН	7.00
Redox (mV)	75.8
Turbidity (NTU)	1.96
Sulphide 5 ^{t-} mg/L µg/L	24 Mal
DO (mg/L)	5.4a
	7

General Notes (Condition of well or other features):

Drive point of - 5/6" metal casing + - 1/2" PVC tubing inside Existing mice water + looking in well, page/ sample too turbid Hemner added In 14 pre + silicon for pei pomp

19.1-2

Well Number:	CH-P-13-05/	50 Project Number:	1343-005.0	3 Date			2014/06/26 + 27	
Approximate Date Drilled:	unknown	. Client:	AAM.	Sam	pler:		AN, AB.	
Piezometer Diameter I Screen Length:	1"/mknom		MN GW sample	weather/Temperature:		overcast. ~12°C.		
CHV (ppm / % LEL):	not recorde	J Duplicate Collected	: ⊠Yes □ N	Reco	overy:		☑ Go	od Bad
Purge Method		- DODP.	2					
Waterra	Peristaltio	Disp. Bailer	Steel Baile	r	Centrif. F	ump		Air Lift
Hydrolift.								
Initial Depth to Water (m):	25.595	Notes Calculations:	Purge Start Tim	e: 16:2	5	Purge End	Time:	17:12.
Depth to Bottom (m):	50.470	- Installed 52 m of	_Time (25) miss	interval:	16:46	17:03	17:12	
Submerged Tubing Depth (r	n): ~47.0	5/8" waterra, relid	Depth (m)		26.650	27.29	26.85	
Well Stick-up Height (m):	0.38	Di6 footvalue.	Temperature (°C	C)	2.5	2.2	2.6	
Estimated Water Volume (L)	: 72.6365		pН		6.26	6.31	6.27	
(DTB – DTW) x 2 (for 2" well	diameter) = 1 well		Cond. (µs/cm)	Cond. (µs/cm)		1626	1640	
volume			Specific Cond.	(µs/cm)	2862	2877	2864	
			Redox (mV)		104.9	117.0	122.4	
(DTB-DTW) x 1.1 (for 1.5" di volume	iameter) = 1 well		DO (mg/L)	DO (mg/L)		2.54	2.53	
2" casing has 0.16 USgala 1" casing has 0.04 USgala 8" sand pack has 0.73 USg	/ft or 0.508 I/m al/ft or 9.271 I/m		Appearance & ((Clear, Silty, HC etc.)	odours,	gray. brown, silty	brown mostly	faint light browns orest wroth clear	
6 5/8" sand pack has 0.50 US	Sgai/π or 6.35 i/m		Total Purge Vol	ume: (،)	25℃	50	60	
Sample Method								
Waterra	Peristalti	c Disp. Bailer	Steel Bailer	Centrif. P	ump	Air L	.ift	Other
Analysis AMMAN =	CONSTRUCTION CONTRACTOR AND	id adjaination)						
Sample ID Parameters A	and the control of th	Time Container Types	Preservative	Turbidity				nments
CH-P-13-05/50 School Cyana TIC, NH3, Ois	it, cyanide, 08:1	8	☐ Yes ☐ 2 fin	ne of same	nle = 2 N	4.1 D	rw@ple:	1:-e of 25.642 m
* Full suite park (refer to ba		Sac revi	150.	P05+ sampl	z = 103	NTV		
DUP-Z		full suite of	plicate					

E HEMMERA

2-2.

UTM Location: Zn: 08 ∨

Easting: 0388954

Northing: 6281466.

Photo No.: 0070, 0069, 0069 Carera 2

Well Head Space Gases:

	%	ppm
Methane (CH4) % にモレ	0-0	
Oxygen (O2) %	20.9	
Carbon Dioxide (C02) %	1.42	

General Notes (Condition of well or other features):

Final Groundwater Field Parameters (Following Purge):

	3 3 3
Time	17:12
Temperature (°C)	2.6
DO (mg/L)	⋧.\$}
Specific Cond. (µs/cm)	2864
Cond. (µs/cm)	1640
рН	6.27
Redox (mV)	122.4
Turbidity (NTU)	24.1
Sulphide mg/L µg/L	52- 434
DO (mg/L)	

* Full suite package

· Ceneval Chem. (RAW). 1000 ML plastic.

· Dir. Metals (field filter, nitrie acid) -125 ml plastic

· NH3 (42504). 250 ml glass ember.

· Dis. Merery (field filter, HCL) 40 mL glass.

· TIC (RAW) - 250 ml glass amber.

· Sulphide (Zine Acchele, + NAOH) - 125 ml plastic

· SCN (HNO) - 125 -L plastic

· Cyoniate (NaOH) - 145 mc plastic

· Cyanate (NaOH) - 145 m L plastic

General Notes (Condition of well or other features):

1' PVC W/no cap (not sealed). Small bailer inside

Nill be tight fit for 47m of 5/8" tobing + footvalue D25

so used footvalue D16. (assed some initial furbidity +
aggitation, but water become slear by End of funge

- Recorded turbidity @ 17:30, reading 84 NTU.

- did not sample 2014/06/26. Will return 2014/06/27 to sample.

- filled 6. Cham. last (most turbid sample); aggitation

t filled metals

from Withern

Well Number:		6LL 07-03		Project Number:	1343-005.03	Date	:		2014,	105/26 +	2014/06/27
Approximate D	ate Drilled:	vulenouv	٠٠. ,	Client:	AAM	Sam	pler:		DN/s	್ ಕರೆ	
Piezometer Dia Screen Length:		2"/mk-c	wn.	Project Name:	MN GW Sampling	Weat	ther/Tem	perature:		~56. 10 ° C.	
CHV (ppm / % L	_EL):	not rec	orded.	Duplicate Collected:	☐ Yes 🖾 No	Reco	overy:		God	od 🗵 Bad	
Purge Method											
Water	ra	Peristal	ic	Disp. Bailer	Steel Bailer	(Centrif. F	^D ump		Air Lift	
~~~vo	τ)										
Initial Depth to	Water (m):	10.031	Noles	. Calculations:	Purge Start Time:	5:15		Purge End	Time:	15:39.	
Depth to Bottor	m (m):	11.745	000	u down can not	Time ( <u>S</u> ) minute int	erval:	15:18	15:34	15:39		
Submerged Tul	bing Depth (m	<b>)</b> : ~ [1,0	2×c~	ed 10.888 - depth.	Depth (m)		10.450	10.660	10:885		
Well Stick-up H	leight (m):	1.15	Y2	of the collision.	Temperature (°C)			3.8	4.5		
Estimated Water	er Volume (L):	3.4828	Purge	stopped from	На			6.18	6.19		
(DTB – DTW) x	2 (for 2" well o	liameter) = 1 we	15:1	8 fo 15:30.	Cond. (µs/cm)			994	1014		
(= : = = : : )	volume	,	Rosa	ed @ 15:30.	Specific Cond. (µs/cm	)		1663	1659		
			15:3	DOTW. 10.420 m.	Redox (mV)			103.4	103.7		
(D1R-D1M) X	1.1 (tor 1.5" dia volume	am <b>ete</b> r) = 1 well	Pura	ing stopped e	DO (mg/L)			3.37	5. 32		
1" casing ha 8" sand pack l	as 0.16 USgal/l as 0.04 USgal/l has 0.73 USga		-15:3 dram	7. 1/2 of H ₂ 0 collum m down- 33 PTW 10.854 38 DTW 10.826	Appearance & Odour (Clear, Silty, HC odour etc.)	rs,	no readings yst shotto off. Purge Persed	light, brom grent tribid.	. Some. M. Stopped parge.	1	
0 0/0 Sand pac	JK 1143 0.00 OC	gaint of 0.55 (A)	- 1 1	See next pg >	Total Purge Volume:		1	2	5		
Sample Method											
	Waterra	Perista	tic	Disp. Bailer	Steel Bailer Ce	ntrif. P	ump	Air L	.ift	Other	
Analysis	nanval										
Sample ID P	arameters An	alyzed Samp	le Time	Container Types Pr		rbidity			Con	nments	
CLL07-03	full suite		10 start	[ full 50.4% =	Yes Turbity @ = 22.0	start NT	of san	ple Dt.	w post s	ample 11.028	

29/4/06/27

Turbidity e and of sample. = 826 AU

Gen Clem + fellered metals reflected last as manual wattra couses increased agaitation

# THEMMERA

pg. 2-2.

Sample Site (Con't): 6LL07-03

Easting: 0388959 Northing: 6881477

Photo No.: 0067, 0066, (taken an carmera #1).

Well Head Space Gases:

UTM Location: Zn: 08 ✓

	%	ppm
Methane (CH4) % いさし	0.0	
Oxygen (O2) %	20.9	
Carbon Dioxide (C02) %	1.42	

#### General Notes (Condition of well or other features):

Final Groundwater Field Parameters (Following Purge): See previous page.

Tillal Gloulidwater Fleid Para	meters (i onowing i arge):
Time	15:39
Temperature (°C)	45
DO (mg/L)	5.32
Specific Cond. (µs/cm)	1624
Cond. (µs/cm)	614
рН	6-19
Redox (mV)	163.7
Turbidity (NTU)	22.0
Sulphide mg/L µg/L	95.0 52-
DO (mg/L)	5. 32

#### General Notes (Condition of well or other features):

General Notes (Condition of well or other features):

Removed transduser @ 15:03. 2014/06/26.

No PVC cap an well.

Transduser reinstalled @ 15:42 2014/06/26.

Installed 13 m of 5/8" waterra thing, including D25 foot valve.

Re-visited well on 2014/6/27.

- removed transduser @ 07:04.

DTW @ time of sample: 10.735 m

Filled b. Chem. last (most two desample).



Well Number:	WHWOG- OF	Project Number:	1343-005	, 🖂 Date			Ω= -	Jury	- 14	
Approximate Date Drilled:		Client:	ARM	13233333	pler:		<u> </u>	MM		
Piezometer Diameter / Screen Length:	2	Project Name:	MAMGA	Wea	ther/Tem	perature:	sun	ny z	34,5	
CHV (ppm / % LEL):		Duplicate Collecte	<b>d:</b> ☐ Yes ☐ No	Reco	overy:		Ū Go	od 🗀	Bad	
Purge Method										
Waterra	Peristaltic	Disp. Bailer	Steel Bailer		Centrif. F	ump	1.55	Air Lift		
	mine							ī		
Initial Depth to Water (m):	<u> </u>	Calculations:	Purge Start Time	H.06		Purge End	l Time:	1510	***************************************	
Depth to Bottom (m):	7.67		Time () minu	te interval:	14:11	14:24	14:31	14:39	14149.	14.2
Submerged Tubing Depth (	m):		Depth (m)		3.129	3,55	4.00	4.59	4.91	4.9
Well Stick-up Height (m):	0.50		Temperature (°C	)	4.8	4.8	4.0	3.9	3.8	3.8
Estimated Water Volume (L	): 10.105 Pol	718 = 30, 315408	рН		8,58	82,8	867	8.65	8.60	8.6
(DTB – DTW) x 2 (for 2" well	diameter) = 1 well		Cond. (µs/cm)		590	543	525	1597	157,2	156
volume			Specific Cond. (	us/cm)	957	<del>9</del> 93	876	2667	2635	266
			Redox (mV)		-200.6	-181.7	93,58	170.1	J-15%,U	-15
(DTB-DTW) x 1.1 (for 1.5" d volume	liameter) = 1 well		DO (mg/L)		6.38	6.90	0.19	2.3	0.04	<u></u> 6.3
2" casing has 0.16 USgal 1" casing has 0.04 USgal 8" sand pack has 0.73 USg	/ft or 0.508 l/m pal/ft or 9.271 l/m		Appearance & C (Clear, Silty, HC etc.)		Cleur no cidosis	> -	P -	7	<b>&gt;</b> -	> .
6 5/8" sand pack has 0.50 U	Sgai/it or 6.35 i/m		Total Purge Voli	ıme:		6	10	15	20	25
Sample Method										
Waterra	Peristaltion	Disp. Bailer	Steel Bailer	Centrif. P	ump	Air I	_ift	Ot	her	
Analysis										
Sample ID Parameters A	nalyzed Sample	Time   Container Types	Preservative	Turbidity	(NTU)		Co	mments		
M mad - because	15,0		☐ Yes ☐ No	5. 6	8		see	bac	le	
0195 00/01 Subjected		120m/ ? 7					M *			



Sample Site (Con't): MW 09-04

UTM Location: Zn: OBv Easting: 63894120 Northing: 6886557

Photo No.: COGI (Cam 2)

Well Head Space Gases:

and the second s	%	ppm
Methane (CH4)		
Oxygen (O2)	20.6	
Carbon Dioxide (C02)	6.02.0	

General Notes (Condition of well or other features):

Time	15.10
Temperature (°C)	3.6
DO (mg/L)	
Specific Cond. (µs/cm)	266
Cond. (µs/cm)	154.3
рН	154.3
Redox (mV)	-147.3
Turbidity (NTU)	5.68
Sulphide mg/L (µg/L)	27.0
DO (mg/L)	0.28

General Notes (Condition of well or other features):
- Transduces present.
- Transducer presents New 3/16" taking added to well



Well Number:	Ch	1-D-13-01	-	Project Number:	1343 -	1343-665 65 Date:				18 27 - June - W		- 161
Approximate Date Drille	d:			Client:	MAA		Sample	Sampler:		RH/NUL		
Piezometer Diameter / Screen Length:		2``		Project Name:	MW GI	m fwegring Weath		ther/Temperature:		ure: Swwy		
CHV (ppm / % LEL):		1		Duplicate Collecte	<b>∄:</b> ☐ Yes	□ No	Recove	ry:		Good Bad		Bad
Purge Method												
Waterra		Peristaltic		Disp. Bailer	Ste	el Bailer	Ce	ntrif. Pur	mp		Air Lift	
Initial Depth to Water (m	ı):	3		Calculations:	Purge S	tart Time:		Pu	rge End	ge End Time:		
Depth to Bottom (m):		2.63			Time (_	) minute inte	erval:			Tarent I		
Submerged Tubing Dep	th (m):				Depth (r	n)						
Well Stick-up Height (m	):	6.5			Temper	ature (ºC)				, (		
Estimated Water Volum	e (L):				pН			1	77			
(DTB – DTW) x 2 (for 2"	well dian	neter) = 1 well			Cond. (	ıs/cm)			7 (	\	\	
volur		10.017			Specific	Specific Cond. (µs/cm)						
					Redox (	mV)						
(DTB-DTW) x 1.1 (for 1. volur		eter) = 1 well			DO (mg	DO (mg/L)			\C	٦.		
2" casing has 0.16 Us 1" casing has 0.04 Us 8" sand pack has 0.73	Sgal/ft or Sgal/ft or USgal/ft	0.508 l/m or 9.271 l/m	**************************************			ance & Odour Silty, HC odou	rs,		30	F	N	
6 5/8" sand pack has 0.5	o USgai	/π or 6.35 l/m			Total Pu	ırge Volume:		and the second second	:	A all ridge are and		
Sample Method												
Water	ra	Peristaltic	•	Disp. Bailer	Steel Ba	iler Ce	ntrif. Pum	ip	Air Li	ft	Otl	ne <b>r</b>
Analysis				the same and the s								
Sample ID Parameter	rs Analy	zed Sample	Time	Container Types	Preservativ	e Tu	rbidity (N	FU)		Cor	nments	
					Yes	A STATE OF THE STA	-various, w.				ggg en no n'este aven siès de l'és	
					INU		1444					



Sample Site	(Con't): <u>CH-D-</u>	13-01
~ ~ ~ /	÷. > ' ————	

UTM Location: Zn: OO Easting: 0388657 Northing: 6891116.

Photo No.: Com#2 #0057

Well Head Space Gases:

Carbon Dioxide (C02)	640	
Oxygen (O2)	20.5	
Methane (CH4)		(a)
	%	ppm

#### General Notes (Condition of well or other features):

	nictors (r onowing r urge).
Time	
Temperature (°C)	
DO (mg/L)	
Specific Cond. (µs/cm)	
Cond. (µs/cm)	
рН	
Redox (mV)	
Turbidity (NTU)	`
Sulphide mg/L µg/L	
DO (mg/L)	

General Notes (Condition of well or other featu	ıres):	
- well is dig (flows?) cannot &	Sample	00
ach		



Well Number	•	<u>GSI- HIA-C</u>	🏸 📮 Project Number:	<u> </u>	)공 Date:		97 - T	June - 14
Approximate	Date Drilled:		Client:	1PPM	Sampler:		RH/N	.Au
Piezometer D Screen Lengt		1" DP	Project Name:	Mn Cm (apti	(Weather/Te	mperature:	11. E-42.	NA O
CHV (ppm / %	۵ LEL):		Duplicate Collected	: ☐ Yes ☐ No	Recovery:		Good	Bad
Purge Metho	d							
Wat	erra	Peristaltic	Disp. Bailer	Steel Bailer	Centrif.	Pump	Α	ir Lift
Initial Depth	to Water (m):	2550	Calculations:	Purge Start Time:		Purge End	Time:	
Depth to Bot	tom (m):	Q.133	0,04A/44 (Q.	Time () minute	e interval:			
Submerged 1	ubing Depth (m		=0.126409.	Depth (m)	,			
Well Stick-up	Height (m):	0,595	= 0, 10,0100.	Temperature (ºC)	$\cap$	NAIA		
Estimated W	ater Volume (L):	19/042/PA		pH				
(DTB – DTW)	x 2 (for 2" well o	diameter) = 1 well		Cond. (µs/cm)		A A AS	)	
(=	volume	,		Specific Cond. (µs	s/cm)		Lawrence 34	
/DTD D7740	4464 - 11 11			Redox (mV)				
(DIB-DIW)	x 1.1 (for 1.5" dia volume	ameter) = 1 well		DO (mg/L)	, and the same of			
	10,0,110				100	The second second		
2" casing	has 0.16 USgal/t	ft or 2.032 l/m		Appearance & Od (Clear, Silty, HC o		104		
	has 0.04 USgal/t			etc.)	dodis,	No. and Association		
1	k has 0.73 USga							
65/8 sand p	ack has 0.50 US	Sgal/ft or 6.35 l/m		Total Purge Volun	ne:			
Sample Meth	od							
	Waterra	Peristaltio	Disp. Bailer	Steel Bailer	Centrif. Pump	Air Lif	t	Other
Analysis								
Sample ID	Parameters An	alyzed Sample	Time Container Types	Preservative	Turbidity (NTU)		Comm	ients
				Yes			enement (California (California California)	oce necessition in the second
				No				



Sample Site (Con't):	HA-04	
UTM Location: Zn: OS	Easting:0787916	Northing: 658 127
Photo No : C a so O	e-fig. has	-

Well Head Space Gases:

	%	ppm
Methane (CH4)		
Oxygen (O2)	19:3	
Carbon Dioxide (C02)	3100	

General Notes (Condition of well or other features):

Time	
Temperature (°C)	
DO (mg/L)	
Specific Cond. (µs/cm)	
Cond. (µs/cm)	
pH	
Redox (mV)	
Turbidity (NTU)	
Sulphide mg/L µg/L	
DO (mg/L)	

General Notes (Condition of well or other features):
-Controt sample on purge, incufficients well volume, < 0.52
volume, Lo.5L



Well Number	:	361-HA-05	4	Project Number:	(843 - cc	503	Date:		<b>37</b> -	1-0015	<u>14</u>
Approximate	Date Drilled:			Client:	PAH		Sampler:		RM/A	NU	
Piezometer D Screen Leng		In Db		Project Name:	MN GWG?	end)	Weather/T	emperature:	over	osと・ 	
CHV (ppm / %	6 LEL):			Duplicate Collecte	d: Yes 🗓	l No	Recovery		☐ God	od 🔄	Bad
Purge Metho	d										
Wat	terra	Peristalti	C	Disp. Bailer	Steel Ba	ailer	Centr	if. Pump		Air Lift	
					į						
Initial Depth	to Water (m):	2.414		Calculations:	Purge Start	Fime:		Purge End	Time:		
Depth to Bot	tom (m):	a.48	J 0.13	4110 45	Time () n	ninute inter	val:				
Submerged 1	Tubing Depth (m	):		102336	Depth (m)						
Well Stick-up	Height (m):	1.49			Temperature	e (°C)					
Estimated W	ater Volume (L):	0.03352		uid Not puress Samphe Moient well	рН		N		(		
(DTB DTW	) x 2 (for 2" well di			o another	Cond. (µs/cn	n)				7	
(	volume	,	100	0000	Specific Cor	rd. (µs/cm)		$\leq \Delta M$	$\mathcal{M}$		
.575			1130	ancier well	Redox (mV)			$\Psi V''$			
(DIB-DIW)	x 1.1 (for 1.5" dia volume	imeter) = 1 well	1	WAL.	DO (mg/L)		_	5 E	į )	OT	
	70,4,110		1	33528×3			(		70		
_	has 0.16 USgal/fl		-	0.100584	Appearance (Clear, Silty,						
_	has 0.04 USgal/fl				etc.)	no ododio	,				
•	ok has 0.73 USgal Dack has 0.50 US						160 Conto-200				
0 0/0 Sand p	Pack Has 0.50 OO	gaint of 0.00 int			Total Purge	Volume:					
Sample Meth											
	Waterra	Peristal	ic	Disp. Bailer	Steel Bailer	Cen	trif. Pump	Air L	ift	Oth	er
Analysis											
Sample ID	Parameters An	alyzed Sampl	e Time	Container Types	Preservative	Turb	idity (NTU)		Cor	nments	
			,,,,,,		Yes						
					☐ No						
		······································		·			***************************************		-		



Sample Site (Con't):	GSI-	-CAR-COS
	****	****

UTM Location: Zn: 08/ Easting: 0387861

Northing: 등등등। 신부

Photo No.: Com a coss

Well Head Space Gases:

	%	ppm
Methane (CH4)		
Oxygen (O2)	20,9	
Carbon Dioxide (C02)	600	

General Notes (Condition of well or other features):

Time	
Temperature (ºC)	
DO (mg/L)	
Specific Cond. (µs/cm)	
Cond. (µs/cm)	
рН	
Redox (mV)	
Turbidity (NTU)	
Sulphide mg/L µg/L	
DO (mg/L)	

General Notes (Condition of well or	r other featu	ıres):		
- Insufficient well Qolume,	Cannot	sample	೦೯	purge.
< 0.52				



Well Number:	MWOR-		01	Project Number:	1343-	1343-005.03		Date:			07-June-14		
Approximate Date Drilled:				Client:	POM		Samp	Sampler:			SM/WW		
Piezometer Diameter I Screen Length:	<u>a</u>	9"		Project Name:		NUNG	() Gいつう () Weather/Temperature		perature:	sunvy.			
CHV (ppm / % LEL):	,			Duplicate Collected:	Yes 🗌	□No	Reco	very:		☐ God	od 🗌 Bad		
Purge Method													
Waterra	F	Peristaltic		Disp. Bailer	Ste	el Bailer	C	entrif. F	ump	Air Lift			
		$\geq$			and the second								
Initial Depth to Water (m):	ත.	046		Calculations:	Purge St	art Time:		Í	Purge End	l Time:			
Depth to Bottom (m):		680			Time (	_) minute int	terval:						
Submerged Tubing Depth (		<u>ත                                    </u>			Depth (m	1)				А			
Well Stick-up Height (m):	<u></u>	82			Tempera	iture (°C)	N IN IN						
Estimated Water Volume (L): 11.651488		651488	7 *3=34.954469.		рН		HAIA						
(DTB – DTW) x 2 (for 2" well diameter) = 1 well					Cond. (µs/cm)								
volume					Specific Cond. (µs/cm)				Mrs				
					Redox (mV)					di V			
(DTB-DTW) x 1.1 (for 1.5" o volume	liameter) :	≂ 1 well			DO (mg/L)			N. VICO					
2" casing has 0.16 USgal/ft or 2.032 l/m 1" casing has 0.04 USgal/ft or 0.508 l/m 8" sand pack has 0.73 USgal/ft or 9.271 l/m					Appearance & Odour (Clear, Silty, HC odours, etc.)					3	10 N		
6 5/8" sand pack has 0.50 U	Sgai/π or	0.35 I/M			Total Pu	rge Volume:							
Sample Method													
Waterra		Peristaltic	;	Disp. Bailer	Steel Bai	ler Co	entrif. Pu	ımp	Air Li	ft	Other		
Analysis													
Sample ID Parameters A	nalyzed	Sample	Time	Container Types I	Preservative	: Tu	ırbidity (	NTU)		Cor	nments		
			Andrew Market		Yes No								



Sample Site (Con't):	MW09-01
----------------------	---------

UTM Location: Zn: グラッ Easting: ○ 3 8 9 3 2 \ Northing: 6 9 8 0 5 5 국

Photo No.: 6m2 70059, 0060

Well Head Space Gases:

	% ppm
Methane (CH4)	à
Oxygen (O2)	G. 6
Carbon Dioxide (C02)	650

# General Notes (Condition of well or other features):

	nice13 (Following Furge).
Time	
Temperature (ºC)	
DO (mg/L)	
Specific Cond. (µs/cm)	
Cond. (µs/cm)	
pH	
Redox (mV)	
Turbidity (NTU)	
Sulphide mg/L µg/L	
DO (mg/L)	

General Notes (Condition of well or other features):
-could not purge or somple due to an
obstruction inside the well asing a vising from too.
- could not fit 3/8" or 3/16"
Europe out the obstruction
- soil payor cip 60 for abstruction
DER 61.049 #20090



Well Number:	GS1-HA-05A	Project Number:	1343-005.0	⊃3 <b>Date</b> :			27- June -14			
Approximate Date Drilled:		Client:	1914 1914	Samı	Sampler:			2M/MM		
Piezometer Diameter / Screen Length:	I" DP	Project Name:	MNGWGP	ি ু Weat	Weather/Temperature:			overce of .		
CHV (ppm / % LEL):		Duplicate Collected:	☐ Yes ☐ Ñ	o Reco	very:		☐ Go	od <b>⊡</b> ∕Bad		
Purge Method										
Waterra	Peristaltic	Disp. Bailer	Steel Baile	er (	Centrif. P	ump	Air Lift			
	$\times$						!			
Initial Depth to Water (m):	1.510	Calculations:	Purge Start Tim	i <b>e:</b>   음:◌ʻ	<b>F</b>	urge End	Time:	8:11		
Depth to Bottom (m):	2.17	1 the same of the	Time () min	ute interval:	8:11					
Submerged Tubing Depth (	m): ∼ L.8	Commence of the second	Depth (m)							
Well Stick-up Height (m):	D.930		Temperature (°	C)	3.5					
Estimated Water Volume (L	): Q334QC4	0.234264 1/3	рH		6.84					
(DTB DTW) x 2 (for 2" well	diameter) = 1 well	0.334264 <i>y</i> /3 = 1.002792	Cond. (µs/cm)		586					
volume	diamoid:) , woii	1.00	Specific Cond.	(µs/cm)	<u>9</u> 90		~ /			
			Redox (mV)		-60.6		7-7-1	$\wedge$		
(DTB-DTW) x 1.1 (for 1.5" d volume	liameter) = 1 well		DO (mg/L)		1.83	\	i b			
2" casing has 0.16 USgal 1" casing has 0.04 USgal 8" sand pack has 0.73 USg	/ft or 0.508 l/m al/ft or 9.271 l/m		Appearance & (Clear, Silty, HC etc.)							
6 5/8" sand pack has 0.50 U	Sgal/ft or 6.35 l/m		Total Purge Vo	lume:	0-5	<u> </u>		<u> </u>		
Sample Method										
Waterra	Peristaltic	Disp. Bailer	Steel Bailer	Centrif. P	u <b>mp</b>	Air Li	ft	Other		
Analysis						-				
Sample ID Parameters A	nalyzed Sample T	ime Container Types P	reservative	Turbidity	NTU)		Cor	mments		
			Yes No							
<u> </u>										



Sample Site (Con't)	GS1-MA-03	
---------------------	-----------	--

HIAOS
UTM Location: Zn: OB, Easting: 0387878 Rorthing: 688(63)

Photo No.: Cam 2#0054

Well Head Space Gases:

	%	ppm
Methane (CH4)		
Oxygen (O2)	26.9	
Carbon Dioxide (C02)	610	

## ۩ General Notes (Condition of well or other features):

Tillal Gloutiuwater Field Pala	l and the state of
Time	
Temperature (°C)	
DO (mg/L)	
Specific Cond. (µs/cm)	
Cond. (µs/cm)	
рН	
Redox (mV)	
Turbidity (NTU)	
Sulphide mg/L µg/L	
DO (mg/L)	

General Notes (Condition of well or other features):
-new 3/16" tubing added to well
- well dry @ 40.5L
- mouth anoth well volume, sample / purge not
poserve



	{	√ ~\ (	<u> </u>		<u> PPC-((MYVVQ)</u>	<u> </u>	31.43	<u> </u>							
Well Number		GS1-1	)C-02	2B	Project Number:	1 <b>934</b> 5 0	ಸ್ಥಾತ ಕ್ಷಾ	Date	<b>):</b>		07-June - 14				
Approximate	Date Drilled:	_	`		Client:	NAA .		Sampler:			RM/HM				
Piezometer I Screen Leng		1" DP			Project Name:	MN GV	næblika)	Weather/Temp			iture: Overcost				
CHV (ppm / 9	% LEL):				Duplicate Collecter	i: Yes	□No	No Recovery:			Good Bad				
Purge Metho	ıd														
Wa	terra	F	Peristaltic		Disp. Bailer	Ste	el Bailer		Centrif. I	² ump	p Air Lift				
			~												
Initial Depth	to Water (m):	3	187.		Calculations:	Purge S	tart Time:	7:21		Purge End	Time:				
Depth to Bot	tom (m):	г.	84	3:/~	H443646	Time (	_) minute i	nterval:	7:25						
Submerged [*]	Tubing Depth (n	າ): ໄ $\sim$ .	3, <del>3</del>	- 2	ASSOCIAL TO	Depth (n	n)		3.70						
Well Stick-up	Height (m):	0.	<i>8</i> 6	شننگ		Tempera	ature (ºC)		2.6		\	17			
Estimated Water Volume (L): 이 다음구중있다			0.6	184 JREEB	рН	pH 7.54				MI					
(DTB – DTW	) x 2 (for 2" well (	diameter	) = 1 well	= 2.06/972		Cond. (µ	Cond. (µs/cm)		291.4		\T	1			
	volume		,	0 0		Specific	Specific Cond. (µs/cm)			320,0					
(DTD DT)	4 4 75 . 4 =11 .15					Redox (ı	Redox (mV)					_ <	167		
(DIB-DIVV)	x 1.1 (for 1.5" di volume	ameter)	= 1 Well			DO (mg/	DO (mg/L) දී රබ				e de la companya del companya de la companya del companya de la co	V->1			
2" casing has 0.16 USgal/ft or 2.032 l/m 1" casing has 0.04 USgal/ft or 0.508 l/m 8" sand pack has 0.73 USgal/ft or 9.271 l/m 6 5/8" sand pack has 0.50 USgal/ft or 6.35 l/m				(Clear, S etc.)	ince & Odou Silty, HC odo	ours,									
		yamı or	0.00 ////			Total Pu	rge Volume	:							
Sample Meth															
	Waterra		Peristaltic	;	Disp. Bailer	Steel Bai	ler (	Centrif. Pump A		Air L	ift	Ot	her		
Analysis			$\times$			The state of the s									
Sample ID	Parameters Ar	alyzed	Sample	Time	Container Types	Preservative	e 1	urbidity	(NTU)		Co	mments			
09% G6)-CC-						Yes No									



		O = 1	Action to the second	Acres 1889
Sample Site (	(Con't):	(55)	-11-	$C \otimes V$

UTM Location: Zn: Co Easting: O36 7839 Northing: 688/129

Photo No.: Cand # 0057

Well Head Space Gases:

	%	ppm
Methane (CH4)	0	
Oxygen (O2)	20.6	20.8
Carbon Dioxide (C02)	600	610

### General Notes (Condition of well or other features):

Time	
Temperature (°C)	
DO (mg/L)	
Specific Cond. (µs/cm)	
Cond. (µs/cm)	
pH	
Redox (mV)	
Turbidity (NTU)	
Sulphide mg/L μg/L	
DO (mg/L)	

- well dry (0 less from 056 (27-3me-14)	
- full gurge / sampling not possible aus to	
trauffaient well volume	



p/2

Well Numbe	r:	GLL07-01	Project Number:	1343-005.03	Date:	2014/	06/26	
Approximate	e Date Drilled:	unknown	Client:	AAM	Sampler:	AN/A	3	
	Piezometer Diameter I 2" / know Screen Length:			MN GW Sampling	Weather/Temperatur		cloudy/sunny.	
CHV (ppm /	% LEL):	not recorde	Duplicate Collected:	☐ Yes	Recovery:	Good	Bad 🗌	
Purge Metho	od							
Wa	iterra	Peristaltic	Disp. Bailer	Steel Bailer	Centrif. Pump		Air Lift	
		1					***********	
	to Water (m):		Calculations:	Purge Start Time:	Purge E	End Time:		
Depth to Bo			Depth to blockage/ice	Time () minute into	erval:			
Submerged	Tubing Depth (m)	·	= 12.876 ~ .	Depth (m)				
Well Stick-u	p Height (m):	0.81		Temperature (ºC)				
Estimated W	/ater Volume (L):			рН	FAOZ			
(DTB – DTW	/) x 2 (for 2" well di	ameter) = 1 well		Cond. (µs/cm)	-100			
	volume	amotor)   11011		Specific Cond. (µs/cm	)			
l				Redox (mV)				
(DTB-DTW)	) x 1.1 (for 1.5" dia volume	meter) = 1 well		DO (mg/L)				
	Volume							
2" casing	has 0.16 USgal/ft	or 2.032 l/m		Appearance & Odour				
: -	has 0.04 USgal/ft			(Clear, Silty, HC odour	rs,			
1	ck has 0.73 USgal			(10.7)				
6 5/8" sand	pack has 0.50 USg	gal/ft or 6.35 l/m		Total Purge Volume:				
Sample Met	nod							
	Waterra	Peristaltio	Disp. Bailer	Steel Bailer Ce	ntrif. Pump A	ir Lift	Other	
Analysis					•			
Sample ID	Parameters Ana	ilyzed Sample	Time Container Types Pr	eservative Tur	rbidity (NTU)	Comi	ments	
				Yes				
				No				
	·	l						



p2/z

Sample Site (Con't): 6LL07-01

UTM Location: Zn: oð V Easting: o3 88 85 に

Northing: 68881777

Photo No.: 0065,0064,0063.

Well Head Space Gases:

	繊維	ppm
Methane (CH4) % LEL	0.0	
Oxygen (O2) %	20.9	The second secon
Carbon Dioxide (C02) 🥠	1.40	

#### General Notes (Condition of well or other features):

General Notes (Condition of well or other features):
well was sealed with PVC cap.
5/8" waterre tobing frozen in well.



Well Number:	MW09-15	Project Number:	1343-005.03	Date:	2014/06/26	
Approximate Date Drilled:	unknomen.	Client:	AAM	Sampler:	AN/AB	
Piezometer Diameter / Screen Length:	2"/vm know	Project Name:	MN GW Samping Weather/Temper		cloudy/sunay.	
CHV (ppm / % LEL):		Duplicate Collected:	☐ Yes ☐ No	Recovery:	☐ Good ☐ Bad	
Purge Method						
Waterra	Peristaltic	Disp. Bailer	Steel Bailer	Centrif. Pump	Air Lift	
Initial Depth to Water (m):	13.947	Calculations:	Purge Start Time:	Purge End	Time:	
Depth to Bottom (m):	14.004		Time () minute int	erval:		
Submerged Tubing Depth (m)	):		Depth (m)			
Well Stick-up Height (m):	0.91		Temperature (°C)		1	
Estimated Water Volume (L):			pН		<b>-</b> -	
(DTB - DTW) x 2 (for 2" well di	ameter) = 1 well		Cond. (µs/cm)			
volume			Specific Cond. (µs/cm	) ( N	-	
			Redox (mV)			
(DTB-DTW) x 1.1 (for 1.5" dia volume	meter) = 1 well		DO (mg/L)	5		
•0.00.10						
2" casing has 0.16 USgal/ft	or 2.032 l/m		Appearance & Odour (Clear, Silty, HC odou			
1" casing has 0.04 USgal/ft			etc.)	13,		
8" sand pack has 0.73 USgal						
6 5/8" sand pack has 0.50 USg	gai/it or 6.35 i/m		Total Purge Volume:			
Sample Method						
Waterra	Peristaltic	Disp. Bailer	Steel Bailer Ce	entrif. Pump Air L	ift Other	
Analysis						
Sample ID Parameters Ana	alyzed Sample	Time Container Types Pr	eservative Tu	rbidity (NTU)	Comments	
			Yes			
			No			



Sample Site (Con't): MW09-15

UTM Location: Zn: లరీ√ Easting: 0388715

Northing: 仏881ランラ

Photo No.: 0062,0061

Well Head Space Gases:

Carbon Dioxide (C02) 1/2	1.41	
Oxygen (O2) %	20.9	
Methane (CH4) % しモレ	0.0	
	毒	ppm

#### General Notes (Condition of well or other features):

Final Groundwater Field Parameters (Following Purge):

	neters (i onowing Furge).
Time	
Temperature (°C)	
DO (mg/L)	
Specific Cond. (µs/cm)	
Cond. (µs/cm)	
рН	
Redox (mV)	
Turbidity (NTU)	
Sulphide mg/L μg/L	
DO (mg/L)	

#### General Notes (Condition of well or other features):

No PVC cap on well.

Removed fransdvser @ 13:35 (In depth).

2nd Transdvser in well @ greater depth, 2nd transdvser stuck in well. potentially frazen in.

Well depth recorded from previous sampling event >35m.

Well depth recorded @ 2014/06/26 14 m.

Potential blockage or Frozen well.

NOT SAMPLED.

Transd-ser placed back in well @ 13:44.



Well Number:	MWO	9-17		Project Number:	1343 - 005	O3 8	Date:		126	7-864	June-	14 +29 Ju
Approximate Date Drilled:				Client:	NOW		Sampler:		유!사./			,
Piezometer Diameter I Screen Length;	0	11		Project Name:	NN GW	(Syring)	Weather/Te	mperature:	SUC	ð		
CHV (ppm / % LEL):				Duplicate Collected	☐ Yes ☑	No No	Recovery:		1. Go	od 🗌	Bad	
Purge Method												1
Waterra		Peristaltic		Disp. Bailer	Steel B	ailer	Centrif.	Pump	7 4 5 24	Air Lift	J. 1887	manual TP
<b>×</b>	1	$\times$										Peday dop.
Initial Depth to Water (m):	4.	178		Calculations:	Purge Start	Fime: 15	<i>\\$5</i>	Purge End	Time:	106		Soprally
Depth to Bottom (m):	5.	61			Time () л	ninute interv	/al: 105	9 11:04	11:06			J- peri
Submerged Tubing Depth	(m): 📐	5-1			Depth (m)							5mw/6.
Well Stick-up Height (m):		9.9			Temperature	e (°C)	4.3	2.9	2.6			
Estimated Water Volume (	L): 1.6	,9	X3=	5.07	рН		6.95	5 6.80	6.80			
(DTB – DTW) x 2 (for 2" we	ll diameter	r) = 1 well			Cond. (µs/cn	n)	1685	5 1600	1594			
volume		,			Specific Con	ıd. (µs/cm)	2774		2789			
10770 07715 4 4 15 4 5 7					Redox (mV)		119.3	(a.86/ 2	Ď. 461			
(DTB-DTW) x 1.1 (for 1.5" volume	diameter)	= 1 well			DO (mg/L)		0.13		0.02			
2" casing has 0.16 USg 1" casing has 0.04 USg 8" sand pack has 0.73 US	al/ft or 0.50 gal/ft or 9.	08 I/m .271 I/m			Appearance (Clear, Silty, etc.)		() edi () edi () edi	77 -1	7			
6 5/8" sand pack has 0.50	JSgai/π or	6.35 I/M			Total Purge	Volume:	28	3L				
Sample Method												
Waterra		Peristaltic	:	Disp. Bailer	Steel Bailer	Cent	rif. Pump	Air L	ift	Oth	ner	
Analysis		$\prec$										
Sample ID Parameters		Sample	Time	Container Types	Preservative	Turbi	dity (NTU)		Co	mments		
MMOH-11 Gen. com		11:07		as [	Yes No	3,4	17	2	se foct	<u></u>		

Diss. 48
SCN
Sulfile
Cyanide
Cyanide



Sample Site	(Con't)	MINO	-17
-------------	---------	------	-----

UTM Location: Zn: OBy Easting: OBy Northing: 688070

Photo No.: Com 2 # 0043,0044,0045,0046,0047,0048,0072,0072,0073,0074,0075,0076,0077

Well Head Space Gases:

	%	ppm
Methane (CH4)		
Oxygen (O2)		
Carbon Dioxide (C02)		**

> not taken due to repair of

#### General Notes (Condition of well or other features):

Final Groundwater Field Parameters (Following Purge):

	neters (ronowing Purge).
Time	
Temperature (°C)	
DO (mg/L)	
Specific Cond. (µs/cm)	
Cond. (µs/cm)	
рН	
Redox (mV)	
Turbidity (NTU)	
Sulphide mg/L (µg/L)	14
DO (mg/L)	

General Notes (Condition of well or other features):
of well of well
Exig & well;
Dog has acound well down to top of where the well will wishood prototop of where the
DAtoch copilità new pipe (photo #00=5)
3 Cover to Bentonite Chip (photo#00076)
(4) Compered well #0077
(5) Place steel monument & add centent
- adeveloped well twice before sampling
or taking parameters

-425 L purged before soundle or parameters

# **APPENDIX C Laboratory Reports**



HEMMERA ENVIROCHEM INC.

ATTN: Natasha Sandys 230 - 2237 2nd Avenue Whitehorse YK Y1A 0K7 Date Received: 28-JUN-14

Report Date: 10-JUL-14 17:11 (MT)

Version: FINAL

Client Phone: 867-456-4865

### **Certificate of Analysis**

Lab Work Order #: L1478694

Project P.O. #: NOT SUBMITTED

Job Reference: 1343-005.03

C of C Numbers: 1, 2

Legal Site Desc:

BJ Mak

Brent Mack Account Manager

[This report shall not be reproduced except in full without the written authority of the Laboratory.]

ADDRESS: 8081 Lougheed Hwy, Suite 100, Burnaby, BC V5A 1W9 Canada | Phone: +1 604 253 4188 | Fax: +1 604 253 6700

ALS CANADA LTD Part of the ALS Group A Campbell Brothers Limited Company

Environmental 🚴

www.alsglobal.com

RIGHT SOLUTIONS RIGHT PARTNER

L1478694 CONTD.... PAGE 2 of 17 10-JUL-14 17:11 (MT)

#### ALS ENVIRONMENTAL ANALYTICAL REPORT

Version: FINAL

	Sample ID Description Sampled Date Sampled Time Client ID	L1478694-1 Water 27-JUN-14 08:18 CH-P-13-05/50	L1478694-2 Water 27-JUN-14 08:18 DUP-2	L1478694-3 Water 27-JUN-14 14:42 MP09-08	L1478694-4 Water 27-JUN-14 10:52 MP09-02	L1478694-5 Water 27-JUN-14 07:10 GLL07-03
Grouping	Analyte					
WATER						
Physical Tests	Conductivity (uS/cm)	2690	2690	705	512	1640
	Hardness (as CaCO3) (mg/L)	1810	1830	408	276	974
	pH (pH)	7.05	7.08	8.05	7.99	7.15
Anions and Nutrients	Alkalinity, Total (as CaCO3) (mg/L)	116	115	226	121	74.8
	Ammonia, Total (as N) (mg/L)	0.0349	0.0355	0.0309	0.0055	0.185
	Chloride (CI) (mg/L)	<10 DLA	<10 DLA	<0.50	<0.50	<5.0
	Fluoride (F) (mg/L)	<0.40 DLA	<0.40 DLA	0.078	0.061	<0.20
	Nitrate (as N) (mg/L)	0.42	0.40	<0.0050	0.0717	<0.050
	Nitrite (as N) (mg/L)	<0.020	<0.020	<0.0010	<0.0010	<0.010
	Total Kjeldahl Nitrogen (mg/L)	0.121	0.131	0.247	0.251	0.650
	Sulfate (SO4) (mg/L)	1850	1850	180	159	991
	Sulphide as S (mg/L)	<0.020	<0.020	0.108	<0.020	0.384
	Anion Sum (meq/L)	40.9	40.8	8.27	5.74	22.1
	Cation Sum (meq/L)	39.1	39.6	8.53	5.74	21.5
	Cation - Anion Balance (%)	-2.3	-1.5	1.5	0.0	-1.5
Cyanides	Cyanide, Weak Acid Diss (mg/L)	<0.0050	<0.0050	<0.0050	<0.0050	<0.0050
	Cyanide, Total (mg/L)	<0.0050	<0.0050	<0.0050	<0.0050	<0.0050
	Thiocyanate (SCN) (mg/L)	<0.50	<0.50	<0.50	<0.50	<0.50
	Cyanide, Free (mg/L)	<0.0050	<0.0050	<0.0050	<0.0050	<0.0050
Organic / Inorganic Carbon	Total Inorganic Carbon (mg/L)	16.5	16.4	49.5	25.3	9.95
	Total Organic Carbon (mg/L)	2.05	2.03	5.01	6.39	3.6
Total Metals	Aluminum (AI)-Total (mg/L)					
	Antimony (Sb)-Total (mg/L)					
	Arsenic (As)-Total (mg/L)					
	Barium (Ba)-Total (mg/L)					
	Beryllium (Be)-Total (mg/L)					
	Bismuth (Bi)-Total (mg/L)					
	Boron (B)-Total (mg/L)					
	Cadmium (Cd)-Total (mg/L)					
	Calcium (Ca)-Total (mg/L)					
	Chromium (Cr)-Total (mg/L)					
	Cobalt (Co)-Total (mg/L)					
	Copper (Cu)-Total (mg/L)					
	Iron (Fe)-Total (mg/L)					
	Lead (Pb)-Total (mg/L)					
	Lithium (Li)-Total (mg/L)					

^{*} Please refer to the Reference Information section for an explanation of any qualifiers detected.

L1478694 CONTD.... PAGE 3 of 17 10-JUL-14 17:11 (MT)

ALS ENVIRONMENTAL ANALYTICAL REPORT

Version: FINAL 4-9 L1478694-10

	Sample ID Description Sampled Date Sampled Time Client ID	L1478694-6 Water 26-JUN-14 15:34 MW09-19	L1478694-7 Water 26-JUN-14 15:34 FB-1	L1478694-8 Water 26-JUN-14 13:40 MW09-16	L1478694-9 Water 26-JUN-14 13:40 DUP-1	L1478694-10 Water 26-JUN-14 16:57 MW09-18
Grouping	Analyte					
WATER						
Physical Tests	Conductivity (uS/cm)	2290	<2.0	1710	1710	2580
	Hardness (as CaCO3) (mg/L)	1530	<0.50	1130	1140	1860
	pH (pH)	7.54	5.40	7.74	7.84	7.81
Anions and Nutrients	Alkalinity, Total (as CaCO3) (mg/L)	443	<2.0	312	314	464
	Ammonia, Total (as N) (mg/L)	2.05	<0.0050	<0.0050	<0.0050	0.0231
	Chloride (CI) (mg/L)	<10	<0.50	<5.0	<5.0 DLA	<10 DLA
	Fluoride (F) (mg/L)	<0.40	<0.020	<0.20 DLA	<0.20 DLA	<0.40
	Nitrate (as N) (mg/L)	<0.10	<0.0050	0.247	0.242 DLA	<0.10 DLA
	Nitrite (as N) (mg/L)	<0.020	<0.0010	<0.010	<0.010	<0.020
	Total Kjeldahl Nitrogen (mg/L)	2.99	<0.050	0.121	0.133	0.137
	Sulfate (SO4) (mg/L)	1130	<0.50	835	833	1410
	Sulphide as S (mg/L)	0.195	<0.020	<0.020	<0.020	<0.020
	Anion Sum (meq/L)	32.5	<0.10	23.6	23.6	38.7
	Cation Sum (meq/L)	32.8	<0.10	23.1	23.2	37.8
	Cation - Anion Balance (%)	0.4	0.0	-1.1	-0.8	-1.1
Cyanides	Cyanide, Weak Acid Diss (mg/L)	<0.0050	<0.0050	<0.0050	<0.0050	<0.0050
	Cyanide, Total (mg/L)	<0.0050	<0.0050	<0.0050	<0.0050	<0.0050
	Thiocyanate (SCN) (mg/L)	<0.50	<0.50	<0.50	<0.50	<0.50
	Cyanide, Free (mg/L)	<0.0050	<0.0050	<0.0050	<0.0050	<0.0050
Organic / Inorganic Carbon	Total Inorganic Carbon (mg/L)	98.1	<0.50	63.9	65.9	102
	Total Organic Carbon (mg/L)	13.1	<0.50	2.96	2.84	2.57
Total Metals	Aluminum (Al)-Total (mg/L)					
	Antimony (Sb)-Total (mg/L)					
	Arsenic (As)-Total (mg/L)					
	Barium (Ba)-Total (mg/L)					
	Beryllium (Be)-Total (mg/L)					
	Bismuth (Bi)-Total (mg/L)					
	Boron (B)-Total (mg/L)					
	Cadmium (Cd)-Total (mg/L)					
	Calcium (Ca)-Total (mg/L)					
	Chromium (Cr)-Total (mg/L)					
	Cobalt (Co)-Total (mg/L)					
	Copper (Cu)-Total (mg/L)					
	Iron (Fe)-Total (mg/L)					
	Lead (Pb)-Total (mg/L)					
	Lithium (Li)-Total (mg/L)					

^{*} Please refer to the Reference Information section for an explanation of any qualifiers detected.

L1478694 CONTD.... PAGE 4 of 17 10-JUL-14 17:11 (MT)

#### ALS ENVIRONMENTAL ANALYTICAL REPORT

Version: FINAL

	Sample ID Description Sampled Date Sampled Time Client ID	L1478694-11 Water 27-JUN-14 15:09 MW09-04	L1478694-12 Water 27-JUN-14 13:23 MW09-02	L1478694-13 Water 27-JUN-14 13:23 DUP-3	L1478694-14 Water 27-JUN-14 16:08 MW09-03	L1478694-15 Water 27-JUN-14 16:50 MW09-22
Grouping	Analyte					
WATER						
Physical Tests	Conductivity (uS/cm)	2680	2840	2810	2520	3020
	Hardness (as CaCO3) (mg/L)	1720	1580	1560	1560	1700
	pH (pH)	7.96	6.96	6.95	7.84	6.52
Anions and Nutrients	Alkalinity, Total (as CaCO3) (mg/L)	97.6	34.5	36.0	155	35.7
	Ammonia, Total (as N) (mg/L)	6.82	12.1	12.3	2.37	2.27
	Chloride (CI) (mg/L)	<10 DLA	<10 DLA	<10 DLA	<10 DLA	<10 DLA
	Fluoride (F) (mg/L)	<0.40	0.47	0.46	<0.40	<0.40 DLA
	Nitrate (as N) (mg/L)	0.31	<0.10 DLA	<0.10	<0.10	11.9
	Nitrite (as N) (mg/L)	0.059	<0.020	<0.020	<0.020	0.326
	Total Kjeldahl Nitrogen (mg/L)	7.94	16.3	16.5	3.19	10.6
	Sulfate (SO4) (mg/L)	1750	1860	1830	1640	1990
	Sulphide as S (mg/L)	<0.020	<0.020	<0.020	<0.020	0.023
	Anion Sum (meq/L)	38.4	39.5	38.8	37.3	43.1
	Cation Sum (meq/L)	37.9	40.0	39.7	34.9	43.3
	Cation - Anion Balance (%)	-0.7	0.7	1.1	-3.3	0.2
Cyanides	Cyanide, Weak Acid Diss (mg/L)	<0.0050	0.0076	0.0211	0.0129	0.0132
	Cyanide, Total (mg/L)	<0.0050	0.0557	0.0944	0.0437	0.0225
	Thiocyanate (SCN) (mg/L)	<0.50	1.36	1.35	<0.50	<0.50
	Cyanide, Free (mg/L)	<0.0050	<0.0050	<0.0050	0.0091	0.0096
Organic / Inorganic Carbon	Total Inorganic Carbon (mg/L)	14.4	8.2	6.3	27.9	4.9
	Total Organic Carbon (mg/L)	5.88	5.82	5.92	6.7	10.8
Total Metals	Aluminum (Al)-Total (mg/L)					
	Antimony (Sb)-Total (mg/L)					
	Arsenic (As)-Total (mg/L)					
	Barium (Ba)-Total (mg/L)					
	Beryllium (Be)-Total (mg/L)					
	Bismuth (Bi)-Total (mg/L)					
	Boron (B)-Total (mg/L)					
	Cadmium (Cd)-Total (mg/L)					
	Calcium (Ca)-Total (mg/L)					
	Chromium (Cr)-Total (mg/L)					
	Cobalt (Co)-Total (mg/L)					
	Copper (Cu)-Total (mg/L)					
	Iron (Fe)-Total (mg/L)					
	Lead (Pb)-Total (mg/L)					
	Lithium (Li)-Total (mg/L)					

^{*} Please refer to the Reference Information section for an explanation of any qualifiers detected.

L1478694 CONTD.... PAGE 5 of 17 10-JUL-14 17:11 (MT)

#### ALS ENVIRONMENTAL ANALYTICAL REPORT

Version: FINAL

	Sample ID Description Sampled Date Sampled Time Client ID	L1478694-16 Water 27-JUN-14 16:50 FB-2	L1478694-17 Water 28-JUN-14 TRAVEL BLANK		
Grouping	Analyte				
WATER					
Physical Tests	Conductivity (uS/cm)	<2.0	<2.0		
	Hardness (as CaCO3) (mg/L)	<0.50	<0.50		
	pH (pH)	5.30	5.23		
Anions and Nutrients	Alkalinity, Total (as CaCO3) (mg/L)	<2.0	<2.0		
	Ammonia, Total (as N) (mg/L)	<0.0050	0.0077		
	Chloride (CI) (mg/L)	<0.50	<0.50		
	Fluoride (F) (mg/L)	<0.020	<0.020		
	Nitrate (as N) (mg/L)	<0.0050	<0.0050		
	Nitrite (as N) (mg/L)	<0.0010	<0.0010		
	Total Kjeldahl Nitrogen (mg/L)	<0.050	<0.050		
	Sulfate (SO4) (mg/L)	<0.50	<0.50		
	Sulphide as S (mg/L)	<0.020	<0.020		
	Anion Sum (meq/L)	<0.10	<0.10		
	Cation Sum (meq/L)	<0.10	<0.10		
	Cation - Anion Balance (%)	0.0	0.0		
Cyanides	Cyanide, Weak Acid Diss (mg/L)	<0.0050	<0.0050		
	Cyanide, Total (mg/L)	<0.0050	<0.0050		
	Thiocyanate (SCN) (mg/L)	<0.50	<0.50		
	Cyanide, Free (mg/L)	<0.0050	<0.0050		
Organic / Inorganic Carbon	Total Inorganic Carbon (mg/L)	<0.50	<0.50		
	Total Organic Carbon (mg/L)	<0.50	<0.50		
Total Metals	Aluminum (AI)-Total (mg/L)		<0.0030		
	Antimony (Sb)-Total (mg/L)		<0.00010		
	Arsenic (As)-Total (mg/L)		<0.00010		
	Barium (Ba)-Total (mg/L)		<0.000050		
	Beryllium (Be)-Total (mg/L)		<0.00010		
	Bismuth (Bi)-Total (mg/L)		<0.00050		
	Boron (B)-Total (mg/L)		<0.010		
	Cadmium (Cd)-Total (mg/L)		<0.000010		
	Calcium (Ca)-Total (mg/L)		<0.050		
	Chromium (Cr)-Total (mg/L)		<0.00010		
	Cobalt (Co)-Total (mg/L)		<0.00010		
	Copper (Cu)-Total (mg/L)		<0.00050		
	Iron (Fe)-Total (mg/L)		<0.010		
	Lead (Pb)-Total (mg/L)		<0.000050		
	Lithium (Li)-Total (mg/L)		<0.00050		

^{*} Please refer to the Reference Information section for an explanation of any qualifiers detected.

L1478694 CONTD.... PAGE 6 of 17 10-JUL-14 17:11 (MT)

#### ALS ENVIRONMENTAL ANALYTICAL REPORT

Version: **FINAL** L1478694-1 Sample ID L1478694-2 L1478694-3 L1478694-4 L1478694-5 Description Water Water Water Water Water 27-JUN-14 27-JUN-14 27-JUN-14 27-JUN-14 27-JUN-14 **Sampled Date** Sampled Time 08:18 08:18 14:42 10:52 07:10 DUP-2 CH-P-13-05/50 MP09-08 MP09-02 GLL07-03 Client ID Grouping **Analyte WATER** Magnesium (Mg)-Total (mg/L) **Total Metals** Manganese (Mn)-Total (mg/L) Mercury (Hg)-Total (mg/L) Molybdenum (Mo)-Total (mg/L) Nickel (Ni)-Total (mg/L) Phosphorus (P)-Total (mg/L) Potassium (K)-Total (mg/L) Selenium (Se)-Total (mg/L) Silicon (Si)-Total (mg/L) Silver (Ag)-Total (mg/L) Sodium (Na)-Total (mg/L) Strontium (Sr)-Total (mg/L) Sulfur (S)-Total (mg/L) Thallium (TI)-Total (mg/L) Tin (Sn)-Total (mg/L) Titanium (Ti)-Total (mg/L) Uranium (U)-Total (mg/L) Vanadium (V)-Total (mg/L) Zinc (Zn)-Total (mg/L) Dissolved Mercury Filtration Location **Dissolved Metals FIELD FIELD FIELD FIELD FIELD** Dissolved Metals Filtration Location **FIELD FIELD FIELD FIELD FIELD** Aluminum (Al)-Dissolved (mg/L) 0.0444 0.0461 0.0038 0.0056 0.0344 Antimony (Sb)-Dissolved (mg/L) < 0.00050 < 0.00050 < 0.00010 0.00067 < 0.00050 Arsenic (As)-Dissolved (mg/L) 0.00284 0.00259 0.0111 0.00156 < 0.00050 Barium (Ba)-Dissolved (mg/L) 0.0111 0.0115 0.0430 0.0553 0.00967 Beryllium (Be)-Dissolved (mg/L) <0.00050 <0.00050 < 0.00050 < 0.00010 < 0.00010 Bismuth (Bi)-Dissolved (mg/L) <0.0025 <0.0025 <0.0025 < 0.00050 < 0.00050 Boron (B)-Dissolved (mg/L) <0.050 < 0.050 < 0.050 <0.010 < 0.010 Cadmium (Cd)-Dissolved (mg/L) 0.271 0.272 < 0.000010 0.000054 0.945 Calcium (Ca)-Dissolved (mg/L) 81.3 113 294 Chromium (Cr)-Dissolved (mg/L) < 0.00050 < 0.00050 < 0.00010 < 0.00010 < 0.00050 Cobalt (Co)-Dissolved (mg/L) 0.00056 0.0322 0.0322 0.00015 0.0238 Copper (Cu)-Dissolved (mg/L) <0.0010 < 0.00020 0.00080 0.131 0.130 Iron (Fe)-Dissolved (mg/L) 7.72 7.77 0.795 0.041 1.75 Lead (Pb)-Dissolved (mg/L) 0.00396 0.00385 < 0.000050 < 0.000050 0.00049 Lithium (Li)-Dissolved (mg/L) 0.0319 0.0316 0.00395 0.00091 0.0245 Magnesium (Mg)-Dissolved (mg/L) 167 167 30.9 17.8 58.4

^{*} Please refer to the Reference Information section for an explanation of any qualifiers detected.

L1478694 CONTD.... PAGE 7 of 17 10-JUL-14 17:11 (MT)

#### ALS ENVIRONMENTAL ANALYTICAL REPORT

Version: FINAL Sample ID L1478694-6 L1478694-7 L1478694-8 L1478694-9 L1478694-10

	Sample ID Description Sampled Date Sampled Time Client ID	L1478694-6 Water 26-JUN-14 15:34 MW09-19	L1478694-7 Water 26-JUN-14 15:34 FB-1	L1478694-8 Water 26-JUN-14 13:40 MW09-16	L1478694-9 Water 26-JUN-14 13:40 DUP-1	L1478694-10 Water 26-JUN-14 16:57 MW09-18
Grouping	Analyte					
WATER						
Total Metals	Magnesium (Mg)-Total (mg/L)					
	Manganese (Mn)-Total (mg/L)					
	Mercury (Hg)-Total (mg/L)					
	Molybdenum (Mo)-Total (mg/L)					
	Nickel (Ni)-Total (mg/L)					
	Phosphorus (P)-Total (mg/L)					
	Potassium (K)-Total (mg/L)					
	Selenium (Se)-Total (mg/L)					
	Silicon (Si)-Total (mg/L)					
	Silver (Ag)-Total (mg/L)					
	Sodium (Na)-Total (mg/L)					
	Strontium (Sr)-Total (mg/L)					
	Sulfur (S)-Total (mg/L)					
	Thallium (TI)-Total (mg/L)					
	Tin (Sn)-Total (mg/L)					
	Titanium (Ti)-Total (mg/L)					
	Uranium (U)-Total (mg/L)					
	Vanadium (V)-Total (mg/L)					
	Zinc (Zn)-Total (mg/L)					
Dissolved Metals	Dissolved Mercury Filtration Location	FIELD	FIELD	FIELD	FIELD	FIELD
	Dissolved Metals Filtration Location	FIELD	FIELD	FIELD	FIELD	FIELD
	Aluminum (AI)-Dissolved (mg/L)	0.0109	<0.0010	0.0023	0.0020	<0.0020
	Antimony (Sb)-Dissolved (mg/L)	O.00020	<0.00010	0.0634	0.0690	0.00022
	Arsenic (As)-Dissolved (mg/L)	0.0779	<0.00010	0.00902	0.00868	0.0537
	Barium (Ba)-Dissolved (mg/L)	0.0488	<0.000050	0.0137	0.0137	0.00830
	Beryllium (Be)-Dissolved (mg/L)	O.00020	<0.00010	<0.00010	<0.00010	<0.00020
	Bismuth (Bi)-Dissolved (mg/L)	O.0010	<0.00050	<0.00050	<0.00050	O.0010
	Boron (B)-Dissolved (mg/L)	0.437	<0.010	0.131	0.143	O.020
	Cadmium (Cd)-Dissolved (mg/L)	<0.000020	<0.000010	0.0249	0.0246	0.000058
	Calcium (Ca)-Dissolved (mg/L)	326	<0.050	262	265	357
	Chromium (Cr)-Dissolved (mg/L)	OLA <0.00020	<0.00010	<0.00010	<0.00010	OLA <0.00020
	Cobalt (Co)-Dissolved (mg/L)	0.00204	<0.00010	0.00018	0.00018	OLA <0.00020
	Copper (Cu)-Dissolved (mg/L)	<0.0040	<0.00020	0.00558	0.00552	O.00040
	Iron (Fe)-Dissolved (mg/L)	18.5	<0.010	<0.010	<0.010	<0.010
	Lead (Pb)-Dissolved (mg/L)	O.00010	<0.00050	0.00690	0.00784	<0.010 DLA <0.00010
	Lithium (Li)-Dissolved (mg/L)	0.0108	<0.00050	0.00860	0.00764	0.0202
	Magnesium (Mg)-Dissolved (mg/L)	174	<0.10	115	115	235
		174	\0.10	110	113	255

^{*} Please refer to the Reference Information section for an explanation of any qualifiers detected.

L1478694 CONTD.... PAGE 8 of 17 10-JUL-14 17:11 (MT)

#### ALS ENVIRONMENTAL ANALYTICAL REPORT

Version: FINAL

	Sample ID Description Sampled Date Sampled Time Client ID	L1478694-11 Water 27-JUN-14 15:09 MW09-04	L1478694-12 Water 27-JUN-14 13:23 MW09-02	L1478694-13 Water 27-JUN-14 13:23 DUP-3	L1478694-14 Water 27-JUN-14 16:08 MW09-03	L1478694-15 Water 27-JUN-14 16:50 MW09-22
Grouping	Analyte					
WATER						
Total Metals	Magnesium (Mg)-Total (mg/L)					
	Manganese (Mn)-Total (mg/L)					
	Mercury (Hg)-Total (mg/L)					
	Molybdenum (Mo)-Total (mg/L)					
	Nickel (Ni)-Total (mg/L)					
	Phosphorus (P)-Total (mg/L)					
	Potassium (K)-Total (mg/L)					
	Selenium (Se)-Total (mg/L)					
	Silicon (Si)-Total (mg/L)					
	Silver (Ag)-Total (mg/L)					
	Sodium (Na)-Total (mg/L)					
	Strontium (Sr)-Total (mg/L)					
	Sulfur (S)-Total (mg/L)					
	Thallium (TI)-Total (mg/L)					
	Tin (Sn)-Total (mg/L)					
	Titanium (Ti)-Total (mg/L)					
	Uranium (U)-Total (mg/L)					
	Vanadium (V)-Total (mg/L)					
	Zinc (Zn)-Total (mg/L)					
Dissolved Metals	Dissolved Mercury Filtration Location	FIELD	FIELD	FIELD	FIELD	FIELD
	Dissolved Metals Filtration Location	FIELD	FIELD	FIELD	FIELD	FIELD
	Aluminum (Al)-Dissolved (mg/L)	<0.0020	<0.0050	<0.0050	<0.0050	0.0396
	Antimony (Sb)-Dissolved (mg/L)	0.342	0.00345	0.00343	0.503	0.00027
	Arsenic (As)-Dissolved (mg/L)	3.83	20.3	19.7	1.28	0.00666
	Barium (Ba)-Dissolved (mg/L)	0.00600	0.00688	0.00638	0.0364	0.0554
	Beryllium (Be)-Dissolved (mg/L)	<0.00020	<0.00050	<0.00050	<0.00050	<0.00020
	Bismuth (Bi)-Dissolved (mg/L)	<0.0010	<0.0025	<0.0025	<0.0025	<0.0010
	Boron (B)-Dissolved (mg/L)	0.247	0.058	0.059	0.126	0.024
	Cadmium (Cd)-Dissolved (mg/L)	0.000037	0.000627	0.000630	0.000895	0.000094
	Calcium (Ca)-Dissolved (mg/L)	487	473	470	477	587
	Chromium (Cr)-Dissolved (mg/L)	<0.00020	<0.00050	<0.00050	<0.00050	0.00034
	Cobalt (Co)-Dissolved (mg/L)	0.00100	0.0115	0.0116	0.00422	0.0153
	Copper (Cu)-Dissolved (mg/L)	<0.00040	<0.0010	<0.0010	<0.0010	0.00112
	Iron (Fe)-Dissolved (mg/L)	<0.010	37.0	36.8	0.218	87.4
	Lead (Pb)-Dissolved (mg/L)	0.00022	<0.00025	0.00032	<0.00025	0.00020
	Lithium (Li)-Dissolved (mg/L)	0.0056	0.0192	0.0200	<0.0025	<0.0010
	Magnesium (Mg)-Dissolved (mg/L)	121	96.6	95.0	90.5	57.5

^{*} Please refer to the Reference Information section for an explanation of any qualifiers detected.

L1478694 CONTD.... PAGE 9 of 17 10-JUL-14 17:11 (MT)

#### ALS ENVIRONMENTAL ANALYTICAL REPORT

Version: FINAL

	Sample ID Description Sampled Date Sampled Time Client ID	L1478694-16 Water 27-JUN-14 16:50 FB-2	L1478694-17 Water 28-JUN-14 TRAVEL BLANK		
Grouping	Analyte				
WATER					
Total Metals	Magnesium (Mg)-Total (mg/L)		<0.10		
	Manganese (Mn)-Total (mg/L)		<0.000050		
	Mercury (Hg)-Total (mg/L)		<0.000010		
	Molybdenum (Mo)-Total (mg/L)		<0.000050		
	Nickel (Ni)-Total (mg/L)		<0.00050		
	Phosphorus (P)-Total (mg/L)		<0.050		
	Potassium (K)-Total (mg/L)		<0.10		
	Selenium (Se)-Total (mg/L)		<0.00010		
	Silicon (Si)-Total (mg/L)		<0.050		
	Silver (Ag)-Total (mg/L)		<0.000010		
	Sodium (Na)-Total (mg/L)		<0.050		
	Strontium (Sr)-Total (mg/L)		<0.00020		
	Sulfur (S)-Total (mg/L)		<0.50		
	Thallium (TI)-Total (mg/L)		<0.000010		
	Tin (Sn)-Total (mg/L)		<0.00010		
	Titanium (Ti)-Total (mg/L)		<0.010		
	Uranium (U)-Total (mg/L)		<0.000010		
	Vanadium (V)-Total (mg/L)		<0.0010		
	Zinc (Zn)-Total (mg/L)		<0.0030		
Dissolved Metals	Dissolved Mercury Filtration Location	FIELD			
	Dissolved Metals Filtration Location	FIELD			
	Aluminum (Al)-Dissolved (mg/L)	<0.0010			
	Antimony (Sb)-Dissolved (mg/L)	<0.00010			
	Arsenic (As)-Dissolved (mg/L)	<0.00010			
	Barium (Ba)-Dissolved (mg/L)	<0.00050			
	Beryllium (Be)-Dissolved (mg/L)	<0.00010			
	Bismuth (Bi)-Dissolved (mg/L)	<0.00050			
	Boron (B)-Dissolved (mg/L)	<0.010			
	Cadmium (Cd)-Dissolved (mg/L)	<0.000010			
	Calcium (Ca)-Dissolved (mg/L)	<0.050			
	Chromium (Cr)-Dissolved (mg/L)	<0.00010			
	Cobalt (Co)-Dissolved (mg/L)	<0.00010			
	Copper (Cu)-Dissolved (mg/L)	<0.00020			
	Iron (Fe)-Dissolved (mg/L)	<0.010			
	Lead (Pb)-Dissolved (mg/L)	<0.000050			
	Lithium (Li)-Dissolved (mg/L)	<0.00050			
	Magnesium (Mg)-Dissolved (mg/L)	<0.10			

^{*} Please refer to the Reference Information section for an explanation of any qualifiers detected.

L1478694 CONTD.... PAGE 10 of 17 10-JUL-14 17:11 (MT)

#### ALS ENVIRONMENTAL ANALYTICAL REPORT

ersion:	FINAL
---------	-------

	Sample ID Description Sampled Date Sampled Time Client ID	L1478694-1 Water 27-JUN-14 08:18 CH-P-13-05/50	L1478694-2 Water 27-JUN-14 08:18 DUP-2	L1478694-3 Water 27-JUN-14 14:42 MP09-08	L1478694-4 Water 27-JUN-14 10:52 MP09-02	L1478694-5 Water 27-JUN-14 07:10 GLL07-03
Grouping	Analyte					
WATER						
Dissolved Metals	Manganese (Mn)-Dissolved (mg/L)	30.4	30.5	0.852	0.0130	10.4
	Mercury (Hg)-Dissolved (mg/L)	<0.000010	<0.000010	<0.000010	<0.000010	<0.000010
	Molybdenum (Mo)-Dissolved (mg/L)	0.00076	0.00075	0.000477	0.000126	0.00043
	Nickel (Ni)-Dissolved (mg/L)	0.0136	0.0135	<0.00050	<0.00050	0.0499
	Phosphorus (P)-Dissolved (mg/L)	<0.050	<0.050	<0.050	<0.050	<0.050
	Potassium (K)-Dissolved (mg/L)	5.18	5.17	1.16	0.86	2.45
	Selenium (Se)-Dissolved (mg/L)	<0.00050	<0.00050	<0.00010	<0.00010	<0.00050
	Silicon (Si)-Dissolved (mg/L)	6.60	6.69	7.00	5.48	3.32
	Silver (Ag)-Dissolved (mg/L)	<0.000050	<0.000050	<0.000010	<0.000010	<0.000050
	Sodium (Na)-Dissolved (mg/L)	11.0	10.9	6.16	4.55	11.0
	Strontium (Sr)-Dissolved (mg/L)	0.647	0.668	1.29	0.652	0.334
	Sulfur (S)-Dissolved (mg/L)	589	580	60.9	53.2	313
	Thallium (TI)-Dissolved (mg/L)	0.000458	0.000450	<0.000010	<0.000010	0.000391
	Tin (Sn)-Dissolved (mg/L)	<0.00050	<0.00050	<0.00010	<0.00010	<0.00050
	Titanium (Ti)-Dissolved (mg/L)	<0.050	<0.050	<0.010	<0.010	<0.050
	Uranium (U)-Dissolved (mg/L)	0.000931 DLA	0.000917 DLA	0.00316	0.00134	0.000117 DLA
	Vanadium (V)-Dissolved (mg/L)	<0.0050	<0.0050	<0.0010	<0.0010	<0.0050
	Zinc (Zn)-Dissolved (mg/L)	28.2	29.1	0.0012	0.0033	32.0

^{*} Please refer to the Reference Information section for an explanation of any qualifiers detected.

L1478694 CONTD.... PAGE 11 of 17 10-JUL-14 17:11 (MT)

#### ALS ENVIRONMENTAL ANALYTICAL REPORT

Version: FINAL

	Sample ID Description Sampled Date Sampled Time Client ID	L1478694-6 Water 26-JUN-14 15:34 MW09-19	L1478694-7 Water 26-JUN-14 15:34 FB-1	L1478694-8 Water 26-JUN-14 13:40 MW09-16	L1478694-9 Water 26-JUN-14 13:40 DUP-1	L1478694-10 Water 26-JUN-14 16:57 MW09-18
Grouping	Analyte					
WATER						
Dissolved Metals	Manganese (Mn)-Dissolved (mg/L)	4.54	0.000093	0.0321	0.0328	0.375
	Mercury (Hg)-Dissolved (mg/L)	<0.00010	<0.000010	<0.000010	<0.000010	<0.000010
	Molybdenum (Mo)-Dissolved (mg/L)	0.00012	0.000058	0.000089	0.000105	<0.00010
	Nickel (Ni)-Dissolved (mg/L)	<0.0010	<0.00050	0.00328	0.00336	<0.0010
	Phosphorus (P)-Dissolved (mg/L)	0.234	<0.050	<0.050	<0.050	<0.050
	Potassium (K)-Dissolved (mg/L)	7.38	<0.10	5.95	5.83	7.29
	Selenium (Se)-Dissolved (mg/L)	0.00034	<0.00010	<0.00010	<0.00010	<0.00020
	Silicon (Si)-Dissolved (mg/L)	9.30	<0.050	4.78	4.78	4.85
	Silver (Ag)-Dissolved (mg/L)	<0.000020	<0.000010	<0.000010	0.000017	<0.000020
	Sodium (Na)-Dissolved (mg/L)	14.7	<0.050	7.08	7.07	10.7
	Strontium (Sr)-Dissolved (mg/L)	1.16	<0.00020	0.586	0.637	1.08
	Sulfur (S)-Dissolved (mg/L)	353	<0.50	258	261	439
	Thallium (TI)-Dissolved (mg/L)	<0.000020	<0.000010	0.000250	0.000294	0.000280
	Tin (Sn)-Dissolved (mg/L)	<0.00020	<0.00010	<0.00010	<0.00010	<0.00020
	Titanium (Ti)-Dissolved (mg/L)	<0.020	<0.010	<0.010	<0.010	<0.020
	Uranium (U)-Dissolved (mg/L)	0.000560	<0.000010	0.00304	0.00353	0.00781
	Vanadium (V)-Dissolved (mg/L)	<0.0020	<0.0010	<0.0010	<0.0010	<0.0020
	Zinc (Zn)-Dissolved (mg/L)	<0.0020	<0.0010	3.84	3.78	0.0030

^{*} Please refer to the Reference Information section for an explanation of any qualifiers detected.

L1478694 CONTD.... PAGE 12 of 17 10-JUL-14 17:11 (MT)

## ALS ENVIRONMENTAL ANALYTICAL REPORT

ersion:	FINAL
C. 3.0	

	Sample ID Description Sampled Date Sampled Time Client ID	L1478694-11 Water 27-JUN-14 15:09 MW09-04	L1478694-12 Water 27-JUN-14 13:23 MW09-02	L1478694-13 Water 27-JUN-14 13:23 DUP-3	L1478694-14 Water 27-JUN-14 16:08 MW09-03	L1478694-15 Water 27-JUN-14 16:50 MW09-22
Grouping	Analyte					
WATER						
	Client ID					

^{*} Please refer to the Reference Information section for an explanation of any qualifiers detected.

L1478694 CONTD.... PAGE 13 of 17 10-JUL-14 17:11 (MT)

## ALS ENVIRONMENTAL ANALYTICAL REPORT

	Sample ID Description Sampled Date Sampled Time Client ID	L1478694-16 Water 27-JUN-14 16:50 FB-2	L1478694-17 Water 28-JUN-14 TRAVEL BLANK		
Grouping	Analyte				
WATER					
Dissolved Metals	Manganese (Mn)-Dissolved (mg/L)	<0.000050			
	Mercury (Hg)-Dissolved (mg/L)	<0.000010			
	Molybdenum (Mo)-Dissolved (mg/L)	<0.000050			
	Nickel (Ni)-Dissolved (mg/L)	<0.00050			
	Phosphorus (P)-Dissolved (mg/L)	<0.050			
	Potassium (K)-Dissolved (mg/L)	<0.10			
	Selenium (Se)-Dissolved (mg/L)	<0.00010			
	Silicon (Si)-Dissolved (mg/L)	<0.050			
	Silver (Ag)-Dissolved (mg/L)	<0.000010			
	Sodium (Na)-Dissolved (mg/L)	<0.050			
	Strontium (Sr)-Dissolved (mg/L)	<0.00020			
	Sulfur (S)-Dissolved (mg/L)	<0.50			
	Thallium (TI)-Dissolved (mg/L)	<0.000010			
	Tin (Sn)-Dissolved (mg/L)	<0.00010			
	Titanium (Ti)-Dissolved (mg/L)	<0.010			
	Uranium (U)-Dissolved (mg/L)	<0.000010			
	Vanadium (V)-Dissolved (mg/L)	<0.0010			
	Zinc (Zn)-Dissolved (mg/L)	<0.0010			

^{*} Please refer to the Reference Information section for an explanation of any qualifiers detected.

## L1478694 CONTD....

PAGE 14 of 17 10-JUL-14 17:11 (MT)

10-JUL-14 17:11 (MT)

Version: FINAL

### **Reference Information**

QC Samples with Qualifiers & Comments:

QC Type Description	Parameter	Qualifier	Applies to Sample Number(s)
Matrix Spike	Total Organic Carbon	MS-B	L1478694-1, -10, -11, -12, -13, -14, -15, -16, -17, -2, -3, -4, -5, -6, -7, -8, -9
Matrix Spike	Total Inorganic Carbon	MS-B	L1478694-1, -10, -11, -14, -16, -17, -2, -3, -4, -5, -6, -7, -8, -9
Matrix Spike	Total Inorganic Carbon	MS-B	L1478694-1, -10, -11, -14, -16, -17, -2, -3, -4, -5, -6, -7, -8, -9
Matrix Spike	Barium (Ba)-Dissolved	MS-B	L1478694-1, -10, -11, -12, -13, -14, -15, -16, -2, -3, -4, -5, -6, -7, -8, -9
Matrix Spike	Molybdenum (Mo)-Dissolved	MS-B	L1478694-1, -10, -11, -12, -13, -14, -15, -16, -2, -3, -4, -5, -6, -7, -8, -9
Matrix Spike	Sodium (Na)-Dissolved	MS-B	L1478694-1, -10, -11, -12, -13, -14, -15, -16, -2, -3, -4, -5, -6, -7, -8, -9
Matrix Spike	Strontium (Sr)-Dissolved	MS-B	L1478694-1, -10, -11, -12, -13, -14, -15, -16, -2, -3, -4, -5, -6, -7, -8, -9
Matrix Spike	Uranium (U)-Dissolved	MS-B	L1478694-1, -10, -11, -12, -13, -14, -15, -16, -2, -3, -4, -5, -6, -7, -8, -9
Matrix Spike	Sulfate (SO4)	MS-B	L1478694-1, -10, -11, -12, -13, -14, -15, -16, -17, -2, -3, -4, -5, -6, -7, -8, -9
Matrix Spike	Total Inorganic Carbon	MS-B	L1478694-12, -13, -15

#### Qualifiers for Individual Parameters Listed:

Qualifier	Description
DLA	Detection Limit adjusted for required dilution
MS-B	Matrix Spike recovery could not be accurately calculated due to high analyte background in sample.
RRA	Reported Result Is The Average Of 2 Or More Analyses
RRV	Reported Result Verified By Repeat Analysis

#### **Test Method References:**

ALS Test Code Matrix		Test Description	Method Reference**
ALK-COL-VA	Water	Alkalinity by Colourimetric (Automated)	EPA 310.2

This analysis is carried out using procedures adapted from EPA Method 310.2 "Alkalinity". Total Alkalinity is determined using the methyl orange colourimetric method.

ANIONS-CL-IC-WR Water Chloride by Ion Chromatography EPA 300.1

This analysis is carried out using procedures adapted from EPA Method 300.1, "Determination of Inorganic Anions by Ion Chromatography", Revision 1.0, April 1999 and from "Determination of Inorganic Anions in Environmental Waters Using a Hydroxide-Selective Column", Application Note 154 v.19, Dionex 2003

ANIONS-F-IC-WR Water Fluoride by Ion Chromatography EPA 300.1

This analysis is carried out using procedures adapted from EPA Method 300.1, "Determination of Inorganic Anions by Ion Chromatography", Revision 1.0, April 1999 and from "Determination of Inorganic Anions in Environmental Waters Using a Hydroxide-Selective Column", Application Note 154 v.19, Dionex 2003.

ANIONS-NO2-IC-WR Water Nitrite Nitrogen by Ion Chromatography EPA 300.1

This analysis is carried out using procedures adapted from EPA Method 300.1, "Determination of Inorganic Anions by Ion Chromatography", Revision 1.0, April 1999 and from "Determination of Inorganic Anions in Environmental Waters Using a Hydroxide-Selective Column", Application Note 154 v.19, Dionex 2003. Nitrate is detected by UV absorbance.

ANIONS-NO3-IC-WR Water Nitrate Nitrogen by Ion Chromatography EPA 300.1

This analysis is carried out using procedures adapted from EPA Method 300.1, "Determination of Inorganic Anions by Ion Chromatography", Revision 1.0, April 1999 and from "Determination of Inorganic Anions in Environmental Waters Using a Hydroxide-Selective Column", Application Note 154 v.19, Dionex 2003. Nitrate is detected by UV absorbance.

ANIONS-SO4-IC-WR Water Sulphate by Ion Chromatography EPA 300.1

This analysis is carried out using procedures adapted from EPA Method 300.1, "Determination of Inorganic Anions by Ion Chromatography", Revision 1.0, April 1999 and from "Determination of Inorganic Anions in Environmental Waters Using a Hydroxide-Selective Column", Application Note 154 v.19, Dionex 2003

CARBONS-TIC-VA Water Total inorganic carbon by CO2 purge APHA 5310 TOTAL ORGANIC CARBON (TOC)

This analysis is carried out using procedures adapted from APHA Method 5310 "Total Organic Carbon (TOC)".

CARBONS-TOC-VA Water Total organic carbon by combustion APHA 5310 TOTAL ORGANIC CARBON (TOC)

This analysis is carried out using procedures adapted from APHA Method 5310 "Total Organic Carbon (TOC)".

CN-FREE-CFA-VA Water Free Cyanide in water by CFA ASTM 7237

L1478694 CONTD....

PAGE 15 of 17

10-JUL-14 17:11 (MT)

Version: FINAL

This analysis is carried out using procedures adapted from ASTM Method 7237 "Free Cyanide with Flow Injection Analysis (FIA) Utilizing Gas Diffusion Separation and Amperometric Detection". Free cyanide is determined by in-line gas diffusion at pH 6 with final determination by colourimetric analysis.

CN-SCN-VA Water Thiocyanate by Colour APHA 4500-CN CYANIDE

This analysis is carried out using procedures adapted from APHA Method 4500-CN- M "Thiocyanate" Thiocyanate is determined by the ferric nitrate colourimetric method.

CN-T-CFA-VA Water Total Cyanide in water by CFA ISO 14403:2002

This analysis is carried out using procedures adapted from ISO Method 14403:2002 "Determination of Total Cyanide using Flow Analysis (FIA and CFA)". Total or strong acid dissociable (SAD) cyanide is determined by in-line UV digestion along with sample distillation and final determination by colourimetric analysis. Method Limitation: This method is susceptible to interference from thiocyanate (SCN). If SCN is present in the sample, there could be a positive interference with this method, but it would be less than 1% and could be as low as zero.

CN-WAD-CFA-VA Water Weak Acid Diss. Cyanide in water by CFA APHA 4500-CN CYANIDE

This analysis is carried out using procedures adapted from APHA Method 4500-CN I. "Weak Acid Dissociable Cyanide". Weak Acid Dissociable (WAD) cyanide is determined by in-line sample distillation with final determination by colourimetric analysis.

EC-PCT-VA Water Conductivity (Automated) APHA 2510 Auto. Conduc.

This analysis is carried out using procedures adapted from APHA Method 2510 "Conductivity". Conductivity is determined using a conductivity electrode.

HARDNESS-CALC-VA Water Hardness APHA 2340B

Hardness (also known as Total Hardness) is calculated from the sum of Calcium and Magnesium concentrations, expressed in CaCO3 equivalents. Dissolved Calcium and Magnesium concentrations are preferentially used for the hardness calculation.

HG-DIS-LOW-CVAFS-VA Water Dissolved Mercury in Water by CVAFS(Low) EPA SW-846 3005A & EPA 245.7

This analysis is carried out using procedures adapted from "Standard Methods for the Examination of Water and Wastewater" published by the American Public Health Association, and with procedures adapted from "Test Methods for Evaluating Solid Waste" SW-846 published by the United States Environmental Protection Agency (EPA). The procedures may involve preliminary sample treatment by filtration (EPA Method 3005A) and involves a cold-oxidation of the acidified sample using bromine monochloride prior to reduction of the sample with stannous chloride. Instrumental analysis is by cold vapour atomic fluorescence spectrophotometry or atomic absorption spectrophotometry (EPA Method 245.7).

HG-TOT-LOW-CVAFS-VA Water Total Mercury in Water by CVAFS(Low) EPA 245.7

This analysis is carried out using procedures adapted from "Standard Methods for the Examination of Water and Wastewater" published by the American Public Health Association, and with procedures adapted from "Test Methods for Evaluating Solid Waste" SW-846 published by the United States Environmental Protection Agency (EPA). The procedure involves a cold-oxidation of the acidified sample using bromine monochloride prior to reduction of the sample with stannous chloride. Instrumental analysis is by cold vapour atomic fluorescence spectrophotometry or atomic absorption spectrophotometry (EPA Method 245.7).

IONBALANCE-VA Water Ion Balance Calculation APHA 1030E

Cation Sum, Anion Sum, and Ion Balance (as % difference) are calculated based on guidance from APHA Standard Methods (1030E Checking Correctness of Analysis). Because all aqueous solutions are electrically neutral, the calculated ion balance (% difference of cations minus anions) should be near-zero.

Cation and Anion Sums are the total meq/L concentration of major cations and anions. Dissolved species are used where available. Minor ions are included where data is present. Ion Balance is calculated as:

Ion Balance (%) = [Cation Sum-Anion Sum] / [Cation Sum+Anion Sum]

MET-D-CCMS-VA Water Dissolved Metals in Water by CRC ICPMS APHA 3030 B&E / EPA SW-846 6020A

This analysis is carried out using procedures adapted from "Standard Methods for the Examination of Water and Wastewater" published by the American Public Health Association, and with procedures adapted from "Test Methods for Evaluating Solid Waste" SW-846 published by the United States Environmental Protection Agency (EPA). The procedures may involve preliminary sample treatment by acid digestion, using hotblock, or filtration (APHA 3030B&E). Instrumental analysis is by collision cell inductively coupled plasma - mass spectrometry (modified from EPA Method 6020A).

MET-DIS-LOW-ICP-VA Water Dissolved Metals in Water by ICPOES EPA 3005A/6010B

This analysis is carried out using procedures adapted from "Standard Methods for the Examination of Water and Wastewater" published by the American Public Health Association, and with procedures adapted from "Test Methods for Evaluating Solid Waste" SW-846 published by the United States Environmental Protection Agency (EPA). The procedure involves filtration (EPA Method 3005A) and analysis by inductively coupled plasma optical emission spectrophotometry (EPA Method 6010B).

MET-T-CCMS-VA Water Total Metals in Water by CRC ICPMS APHA 3030 B&E / EPA SW-846 6020A

This analysis is carried out using procedures adapted from "Standard Methods for the Examination of Water and Wastewater" published by the American Public Health Association, and with procedures adapted from "Test Methods for Evaluating Solid Waste" SW-846 published by the United States Environmental Protection Agency (EPA). The procedures may involve preliminary sample treatment by acid digestion, using hotblock, or filtration (APHA 3030B&E). Instrumental analysis is by collision cell inductively coupled plasma - mass spectrometry (modified from EPA Method 6020A).

MET-TOT-LOW-ICP-VA Water Total Metals in Water by ICPOES EPA 3005A/6010B

This analysis is carried out using procedures adapted from "Standard Methods for the Examination of Water and Wastewater" published by the American Public Health Association, and with procedures adapted from "Test Methods for Evaluating Solid Waste" SW-846 published by the United

L1478694 CONTD....

PAGE 16 of 17

10-JUL-14 17:11 (MT)

Version: FINAL

States Environmental Protection Agency (EPA). The procedures may involve preliminary sample treatment by acid digestion, using either hotblock or microwave oven (EPA Method 3005A). Instrumental analysis is by inductively coupled plasma - optical emission spectrophotometry (EPA Method 6010B).

NH3-F-VA

Water

Ammonia in Water by Fluorescence

J. ENVIRON. MONIT., 2005, 7, 37-42, RSC

This analysis is carried out, on sulfuric acid preserved samples, using procedures modified from J. Environ. Monit., 2005, 7, 37 - 42, The Royal Society of Chemistry, "Flow-injection analysis with fluorescence detection for the determination of trace levels of ammonium in seawater", Roslyn J. Waston et al.

PH-PCT-VA

Water

pH by Meter (Automated)

APHA 4500-H "pH Value"

This analysis is carried out using procedures adapted from APHA Method 4500-H "pH Value". The pH is determined in the laboratory using a pH electrode

It is recommended that this analysis be conducted in the field.

PH-PCT-VA

Water

pH by Meter (Automated)

APHA 4500-H pH Value

This analysis is carried out using procedures adapted from APHA Method 4500-H "pH Value". The pH is determined in the laboratory using a pH electrode

It is recommended that this analysis be conducted in the field.

S-DIS-ICP-VA

Water

Dissolved Sulfur in Water by ICPOES

EPA SW-846 3005A/6010B

This analysis is carried out using procedures adapted from "Standard Methods for the Examination of Water and Wastewater" published by the American Public Health Association, and with procedures adapted from "Test Methods for Evaluating Solid Waste" SW-846 published by the United States Environmental Protection Agency (EPA). The procedures may involve preliminary sample treatment by acid digestion, using either hotblock or microwave oven, or filtration (EPA Method 3005A). Instrumental analysis is by inductively coupled plasma - optical emission spectrophotometry (EPA Method 6010B).

Method Limitation: This method will not give total sulfur results for all samples. Sulfide or other volatile forms of sulfur that may be present in submitted samples, is often lost during the sampling, preservation and analysis process. The data reported as total and/or dissolved sulfur represents all non-volatile forms of sulfur present in a particular sample.

S-TOT-ICP-VA

Water

Total Sulfur in Water by ICPOES

EPA SW-846 3005A/6010B

This analysis is carried out using procedures adapted from "Standard Methods for the Examination of Water and Wastewater" published by the American Public Health Association, and with procedures adapted from "Test Methods for Evaluating Solid Waste" SW-846 published by the United States Environmental Protection Agency (EPA). The procedures may involve preliminary sample treatment by acid digestion, using either hotblock or microwave oven, or filtration (EPA Method 3005A). Instrumental analysis is by inductively coupled plasma - optical emission spectrophotometry (EPA Method 6010B).

Method Limitation: This method will not give total sulfur results for all samples. Sulfide or other volatile forms of sulfur that may be present in submitted samples, is often lost during the sampling, preservation and analysis process. The data reported as total and/or dissolved sulfur represents all non-volatile forms of sulfur present in a particular sample.

S2-T-COL-VA

Water

Total Sulphide by Colorimetric

APHA 4500-S2 Sulphide

This analysis is carried out using procedures adapted from APHA Method 4500-S2 "Sulphide". Sulphide is determined using the methlyene blue colourimetric method.

TKN-F-VA

Water

TKN in Water by Fluorescence

APHA 4500-NORG D.

This analysis is carried out using procedures adapted from APHA Method 4500-Norg D. "Block Digestion and Flow Injection Analysis". Total Kjeldahl Nitrogen is determined using block digestion followed by Flow-injection analysis with fluorescence detection.

** ALS test methods may incorporate modifications from specified reference methods to improve performance.

The last two letters of the above test code(s) indicate the laboratory that performed analytical analysis for that test. Refer to the list below:

Laboratory Definition Code	Laboratory Location
WR	ALS ENVIRONMENTAL - WHITEHORSE, YUKON, CANADA
VA	ALS ENVIRONMENTAL - VANCOUVER, BRITISH COLUMBIA, CANADA

Chain of Custody Numbers:

1

2

L1478694 CONTD....

PAGE 17 of 17

10-JUL-14 17:11 (MT)

Version: FINAL

#### **GLOSSARY OF REPORT TERMS**

Surrogate - A compound that is similar in behaviour to target analyte(s), but that does not occur naturally in environmental samples. For applicable tests, surrogates are added to samples prior to analysis as a check on recovery.

mg/kg - milligrams per kilogram based on dry weight of sample.

mg/kg wwt - milligrams per kilogram based on wet weight of sample.

mg/kg lwt - milligrams per kilogram based on lipid-adjusted weight of sample.

mg/L - milligrams per litre.

< - Less than.

D.L. - The reported Detection Limit, also known as the Limit of Reporting (LOR).

N/A - Result not available. Refer to qualifier code and definition for explanation.

Test results reported relate only to the samples as received by the laboratory.

UNLESS OTHERWISE STATED, ALL SAMPLES WERE RECEIVED IN ACCEPTABLE CONDITION.

Analytical results in unsigned test reports with the DRAFT watermark are subject to change, pending final QC review.

7

FB-1

MW09-16

### Chain of Custody (COC) / Analytical **Request Form**

COC Number: 1 -

R R R R

R R R R R R R R

R R R R R R

R R R

9

9

R

Environmental 1 of Canada Toll Free: 1 800 668 9878 www.alsglobal.com Report To Report Format / Distribution Select Service Level Below (Rush Turnaround Time (TAT) is not available for all tests) Hemmera Environchem Inc. Company: Select Report Format: √PDF **▼EXCEL** DEDD (DIGITAL) Regular (Standard TAT if received by 3 pm - business days) Natasha Sandys Contact: Quality Control (QC) Report with Report √ Yes □ No Priority (2-4 bus, days if received by 3pm) 50% surcharge - contact ALS to confirm TAT Address: 230 - 2237 2nd Avenue Criteria on Report - provide details below if box checked Emergency (1-2 bus, days if received by 3pm) 100% surcharge - contact ALS to confirm TAT Whitehorse, YT Select Distribution: **FEMAIL** ☐MAIL []FAX E2 Same day or weekend emergency - contact ALS to confirm TAT and surcharge Phone: 867-456-4865 Email 1 or Fax nsandys@hemmera.com, rmartinka@hemmera.com Specify Date Required for E2,E or P: Email 2 chris@elr.ca Analysis Request Invoice To Same as Report To ∇ Yes ୮ No invoice Distribution Indicate Filtered (F), Preserved (P) or Filtered and Preserved (F/P) below Copy of Invoice with Report ₩ No **VEMAIL** Select Invoice Distribution: **I**✓MAIL FAX F/P Company: Hemmera Environchem Inc. Email 1 or Fax insandys@hemmera.com Bala Contact: Natasha Sandys Kjeldahi N (TKN) chris@elr.ca Email 2 CaC03) Project Information Sum, Cation/Anion fotal Inorganic Carbon, Total Organic Oil and Gas Required Fields (client use) of Container Dissolved Metals, including Mercury ALS Quote #: Q45291 Approver ID: Cost Center: (as Job #: 1343-005.03 GL Account: Routing Code: (as CBCO3) Š PO / AFE: Total Activity Code: SD: Location: Suffate (S04) Cation ( Ammonia N (total), ALS Lab Work Order # (lab use only) otal Alkalinity Total Free ALS Contact: Sampler: RM, AB, AN, MI 쓚 Anion Sum, Cyanide, Sample Identification and/or Coordinates Nitrate, 1 ALS Sample # Date Time 屲 (lab use only) Sample Type (This description will appear on the report) (dd-mmm-yy) (hh:mm) ರ CH-P-13-05/50 27-Jun-14 8:18 Water R R R Ř R R R R R R R R R 9 DUP-2 27-Jun-14 8:18 Water R R R R R R R R R R R 9 MP09-08 27-Jun-14 14:42 Water R R R R R R R R R R R R g u MP09-02 27-Jun-14 10:52 R Water R R R R R R R R R R R R 9 5 GLL07-03 27-Jun-14 7:10 Water R R R R R R R R R R R R R 9 MW09-19 26-Jun-14 15:34 Water R R R R R R 9

R 9 DUP-1 26-Jun-14 13:40 R Water R R R R R R R R R R R 9 MW09-18 26-Jun-14 16:57 Water R R R Ŕ R R R R R R R R R 9 MW09-04 27-Jun-14 15:09 Water R R R R R Ŕ R R R R R R R 9 MW09-02 27-Jun-14 13:23 Water R R R R R R 9 SAMPLE CONDITION AS RECEIVED (lab use only) Drinking Water (DW) Samples¹ (client use) Special Instructions / Specify Criteria to add on report (client Use) Frozen SIF Observations Yes Are samples taken from a Regulated DW System? ice packs Yes Custody seal intact Yes П ₩ No See attached parameter sheet for required metals Cooling Initiated Are samples for human drinking water use? INITIAL COOLER TEMPERATURES °C FINAL COOLER TEMPERATURES °C ☐ Yes SHIPMENT RELEASE (client use) INITIAL SHIPMENT RECEPTION (lab use only) Released by: C. Joshnelsh FINAL SHIPMENT RECEPTION (lab use only) Time: Received by Received by: Date: Time: 07:43 REFER TO BACK PAGE FOR ALS LOCATIONS AND SAMPLING INFORMATION WHITE - LABORATORY COPY YELLOW ~ CLIENT COPY NA-FM-03256 von Front/04 January 2014 Failure to complete all portions of this form may delay analysis. Please fill in this form LEGIBLY. By the use of this form the user acknowledges and agrees with the Terms and Conditions as specified on the back page of the white - report copy.

15:34

13:40

26-Jun-14

26-Jun-14

Water

Water

R R R R R

R R R R R

# ALS Environmental

## Chain of Custody (COC) / Analytical Request Form

L1478694-COFC

Page	2 of	2

COC Number: 1 -

Canada Toll Free: 1 800 668 9878

	www.alsglobal.com				<u>``</u> ,															
Report To		Report Format / Distribution Select Service Level Below (Rush Turnaround Time (TAT) is not available for all tests)									its)									
Company:	Hemmera Environchem Inc.	Select Report Fo	ormat: ☑PoF	☑EXCEI.	EDD (DIGITAL)	R Regular (Standard TAT if received by 3 pm - business days)														
Contact:	Natasha Sandys		Quality Control (	QC) Report with R	eport 🗗 Ye	s FNo	_ ,, _ ,, , , , , , , , , , , , , , , ,													
Address:	230 - 2237 2nd Avenue		Criteria on Repor	t - provide details belov	w if box checked		Emergency (1-2 bus, days if received by 3pm) 100% surcharge - contact ALS to confirm TAT								nn TAT					
	Whitehorse, YT		Select Distribution			[]FAX	E2	bam	e day o	weeker	id emer	gency -	contact	t ALS (	o confi	ım TA	and s	urcharg	e	
Phone:	867-456-4865		Email 1 or Fax	nsandys@hemme	ra.com, rmartink	a@hemmera.coi	Spec	ify Dat	e Requ	uired fo	r E2,E	or P:								
		<del></del>	Email 2	chris@elr.ca			<u> </u>					Αı	ıalysi	s Re	quest					
Invoice To	Same as Report To	_ No		Invoice Di	stribution		L	lodi	cate Filt	ered (F),	Preser	ved (P)	or Filte	red ar	d Pres	erved	(F/P) be			
	Copy of Invoice with Report	₽ No	Select Invoice D	istribution: 🛂 🗆 🖹	MAIL. MAIL	FAX													F/P	
Company:	Hemmera Environchem Inc.		Email 1 or Fax	nsandys@hemme	ra.com		]		5				alar					Carbo	- 1	
Contact:	Natasha Sandys			chris@elr.ca		<del>_</del>	වූ		활				ᇤ					ပ္သ		δ
	Project Information		Oil	and Gas Require	d Fields (client	use)	CaC03)		Z.	Ì			ğ				•	Total Organic		aine
ALS Quote #:	Q45291		Approver ID:		Cost Center:	<u>.</u>	(as		idat				ğ					õ	Ме	ti o
Job #:	1343-005.03		GL Account:	-	Routing Code:		ess	ଛି	조				ပ္မ	SS.				ğ	Ē	ofC
PO / AFE:			Activity Code:				틸	ğ	Tota				Sum, Cation/Anion Balar	ğρ				n,	등	pë pë
LSD:			Location:				Ţ	as (	a),		304)			( Aci				Gart	22	Number of Containers
ALS Lab Work Order # (lab use only)			ALS Contact:		Sampler:	RM, AB, AN, M	Conductivity, ph	Total Alkalinity (as CaCO3)	Ammonia N (total), Total Kješdahl N (TKN)	Nitrite	Sulfate (S04)	Sulphide as S	Anlon Sum, Cation	Cyanide - Weak Acid Diss.	e, Total	Cyanide, Free	Thiocyanate	Fotal Inorganic Carbon,	Dissolved Metats, including Mercury	
ALS Sample #	Sample Identification	and/or Coordinate	es	Date	Time	Carrella Tuno	1 월	¥ \	nou	Nitrate,	E.	hid	S	nide	Cyanide,	nide	\S	Ě	ě.	
(lab use only)	(This description will a	ppear on the report	t)	(dd-mmm-yy)	(hh:mm)	Sample Type	Š	Tota	Am	ž	ΰ	Sulp	풀	Суа	Cy2	တ်	`Ĕ	벌	S O	
13	DUP-3			27-Jun-14	13:23	Water	R	R	R	R	R	R	R	R	R	R	R	R	R	9
74	MW09-03			27-Jun-14	16:08	Water	R	R	R	R	R	R	R	R	R	R	R	R	R	9
15	MW09-22			27-Jun-14	16:50	Water	R	R	R	R	R	R	R	R	R	R	R	R	R	9
16	FB-2			27-Jun-14	16:50	Water	R	R	R	R	R	R	R	R	R	R	R	R	R	9
17	Travel Blank					Water	R	R	R	R	R	R	R	R	R	R	R	R	R	9
							<u> </u>													
							<u> </u>													$\neg \neg$
							<b> </b>													$\overline{}$
						<del></del>					,									
Drinkina	Water (DW) Samples ¹ (client use)	Spec	cial Instructions / Speci	fy Criteria to add o	n report (client U	Se)				SAMPI	E CO	NDITI				<u> </u>				
	•					<del>-</del>	Froze			닏					vation		Yes		Νo	닏닏
	en from a Regulated DW System? es ☑ No	. See attached nam	ameter sheet for requir	red metals					Yes		No		Custo	ody S	eal in	tact	Yes		No	
Ϊ́Υ	,	oca attached pare	amotor officer for requir				L	ng Initi							mak) 4.1	0000			rumero -	
•	human drinking water use? es ▼ No						INII	HAL CO	OLER.	TEMPER	CATURE	:5 °C		. <u> </u>	-INAL	WOL	-K LEV	MPERA	URES	U .
[- Y	·												I		-1.5	<u> </u>				
	SHIPMENT RELEASE (client use)			HIPMENT RECEP	<del></del>		Pos	ninger L		FIN.	AL SH	IPME	NT RE			l (lab i			_	
Released by:	Testnelshi 28/J-/14	07:45	eceived by:		Date:	Time:		eived b						Date			Time:			
REFER TO BACK	K PAGE FOR ALS LOCATIONS AND SAMPLIN	G INFORMATION		WH	ITE - LABORATO	RY COPY YEU	TOM -	CLIEN	IT COP	Υ					NA FM O	26a v09 Fr	onel POlmo	sary 2014		



HEMMERA ENVIROCHEM INC.

ATTN: Natasha Sandys 230 - 2237 2nd Avenue Whitehorse YK Y1A 0K7 Date Received: 30-JUN-14

Report Date: 11-JUL-14 16:01 (MT)

Version: FINAL

Client Phone: 867-456-4865

## **Certificate of Analysis**

Lab Work Order #: L1478849

Project P.O. #: NOT SUBMITTED

Job Reference: 1343-005.03

C of C Numbers: 1, 2

Legal Site Desc:

13 Mack

Brent Mack Account Manager

[This report shall not be reproduced except in full without the written authority of the Laboratory.]

ADDRESS: 8081 Lougheed Hwy, Suite 100, Burnaby, BC V5A 1W9 Canada | Phone: +1 604 253 4188 | Fax: +1 604 253 6700 ALS CANADA LTD Part of the ALS Group A Campbell Brothers Limited Company

Environmental 🔈

www.alsglobal.com

L1478849 CONTD.... PAGE 2 of 20 11-JUL-14 16:01 (MT)

## ALS ENVIRONMENTAL ANALYTICAL REPORT

	Sample ID	L1478849-1	L1478849-2	L1478849-3	L1478849-4	L1478849-5
	Description	Water	Water	Water	Water	Water
	Sampled Date	28-JUN-14	28-JUN-14	28-JUN-14	28-JUN-14	28-JUN-14
	Sampled Time Client ID	18:00 MW09-21	17:00 MP09-05	07:30 CH-P-13-03/50	11:40 MP09-04	10:20 MW09-24
O						
Grouping WATER	Analyte					
	0 - 4 - 4 - 4 - 4 - 4 - 4 - 4 - 4 - 4 -					
Physical Tests	Conductivity (uS/cm)	2500	2360	2130	1630	1430
	Hardness (as CaCO3) (mg/L)	1600	1360	1040	1070	907
<u> </u>	pH (pH)	7.40	7.68	8.07	7.92	8.06
Anions and Nutrients	Alkalinity, Total (as CaCO3) (mg/L)	359	330	338	243	272
	Ammonia, Total (as N) (mg/L)	11.6	8.16	0.153	0.0056	<0.0050
	Chloride (CI) (mg/L)	<10	<10 DLA	21	<5.0	<5.0 DLA
	Fluoride (F) (mg/L)	<0.40	<0.40	<0.40	<0.20	<0.20
	Nitrate (as N) (mg/L)	OLA <0.10	1.66	<0.10	0.478	1.45
	Nitrite (as N) (mg/L)	O.020	0.035	<0.020	<0.010	<0.010
	Total Kjeldahl Nitrogen (mg/L)	16.8	12.4	3.20	0.199	0.331
	Sulfate (SO4) (mg/L)	1410	1310	1050	835	645
	Sulphide as S (mg/L)	<0.020	<0.020	0.027	<0.020	<0.020
	Anion Sum (meq/L)	36.5	34.0	29.3	22.3	19.0
	Cation Sum (meq/L)	37.2	33.0	27.4	22.0	18.5
	Cation - Anion Balance (%)	1.0	-1.5	-3.3	-0.7	-1.1
Cyanides	Cyanide, Weak Acid Diss (mg/L)	0.0070	0.0054	<0.0050	<0.0050	<0.0050
	Cyanide, Total (mg/L)	0.0107	0.0366	0.0088	0.0078	<0.0050
	Thiocyanate (SCN) (mg/L)	0.58	<2.50	<0.50	<0.50	<0.50
	Cyanide, Free (mg/L)	0.0066	<0.0050	<0.0050	<0.0050	<0.0050
Organic / Inorganic Carbon	Total Inorganic Carbon (mg/L)	73.3	70.4	78.4	52.3	59.7
	Total Organic Carbon (mg/L)	23.8	24.1	28.9	5.48	6.44
Total Metals	Aluminum (AI)-Total (mg/L)					
	Antimony (Sb)-Total (mg/L)					
	Arsenic (As)-Total (mg/L)					
	Barium (Ba)-Total (mg/L)					
	Beryllium (Be)-Total (mg/L)					
	Bismuth (Bi)-Total (mg/L)					
	Boron (B)-Total (mg/L)					
	Cadmium (Cd)-Total (mg/L)					
	Calcium (Ca)-Total (mg/L)					
	Chromium (Cr)-Total (mg/L)					
	Cobalt (Co)-Total (mg/L)					
	Copper (Cu)-Total (mg/L)					
	Iron (Fe)-Total (mg/L)					
	Lead (Pb)-Total (mg/L)					
	Lithium (Li)-Total (mg/L)					

^{*} Please refer to the Reference Information section for an explanation of any qualifiers detected.

L1478849 CONTD.... PAGE 3 of 20 11-JUL-14 16:01 (MT)

## ALS ENVIRONMENTAL ANALYTICAL REPORT

	Sample ID Description Sampled Date Sampled Time Client ID	L1478849-6 Water 28-JUN-14 07:40 MW09-23	L1478849-7 Water 28-JUN-14 12:41 MW09-08	L1478849-8 Water 28-JUN-14 11:40 FB-3	L1478849-9 Water 28-JUN-14 12:00 TRAVEL BLANK	L1478849-10 Water 28-JUN-14 12:41 DUP-5
Grouping	Analyte					
WATER						
Physical Tests	Conductivity (uS/cm)	2400	277	<2.0	<2.0	277
	Hardness (as CaCO3) (mg/L)	1350	139	<0.50	<0.50	139
	pH (pH)	7.83	7.49	5.53	5.22	7.30
Anions and Nutrients	Alkalinity, Total (as CaCO3) (mg/L)	326	147	<2.0	<2.0	147
	Ammonia, Total (as N) (mg/L)	7.77	2.01	<0.0050	0.0216	2.00
	Chloride (CI) (mg/L)	<10 DLA	<0.50	<0.50	<0.50	<0.50
	Fluoride (F) (mg/L)	<0.40 DLA	0.077	<0.020	<0.020	0.071
	Nitrate (as N) (mg/L)	<0.10 DLA	<0.0050	<0.0050	<0.0050	<0.0050
	Nitrite (as N) (mg/L)	<0.020	0.0017	<0.0010	<0.0010	<0.0010
	Total Kjeldahl Nitrogen (mg/L)	11.8	2.90	<0.050	<0.050	2.67
	Sulfate (SO4) (mg/L)	1300	12.9	<0.50	<0.50	12.8
	Sulphide as S (mg/L)	<0.020	0.069	<0.020	<0.020	0.075
	Anion Sum (meq/L)	33.7	3.20	<0.10	<0.10	3.20
	Cation Sum (meq/L)	32.6	5.71	<0.10	<0.10	5.71
	Cation - Anion Balance (%)	-1.6	28.1	0.0	0.0	28.2
Cyanides	Cyanide, Weak Acid Diss (mg/L)	<0.0050	<0.0050	<0.0050	<0.0050	<0.0050
	Cyanide, Total (mg/L)	0.0097	<0.0050	<0.0050	<0.0050	<0.0050
	Thiocyanate (SCN) (mg/L)	<0.50	<0.50	<0.50	<0.50	<0.50
	Cyanide, Free (mg/L)	<0.0050	<0.0050	<0.0050	<0.0050	<0.0050
Organic / Inorganic Carbon	Total Inorganic Carbon (mg/L)	67.0	33.2	<0.50	<0.50	30.9
	Total Organic Carbon (mg/L)	14.0	18.3	<0.50	<0.50	17.8
Total Metals	Aluminum (Al)-Total (mg/L)				<0.0030	
	Antimony (Sb)-Total (mg/L)				<0.00010	
	Arsenic (As)-Total (mg/L)				<0.00010	
	Barium (Ba)-Total (mg/L)				<0.000050	
	Beryllium (Be)-Total (mg/L)				<0.00010	
	Bismuth (Bi)-Total (mg/L)				<0.00050	
	Boron (B)-Total (mg/L)				<0.010	
	Cadmium (Cd)-Total (mg/L)				<0.000010	
	Calcium (Ca)-Total (mg/L)				<0.050	
	Chromium (Cr)-Total (mg/L)				<0.00010	
	Cobalt (Co)-Total (mg/L)				<0.00010	
	Copper (Cu)-Total (mg/L)				<0.00050	
	Iron (Fe)-Total (mg/L)				<0.010	
	Lead (Pb)-Total (mg/L)				<0.000050	
	Lithium (Li)-Total (mg/L)				<0.00050	

^{*} Please refer to the Reference Information section for an explanation of any qualifiers detected.

L1478849 CONTD.... PAGE 4 of 20 11-JUL-14 16:01 (MT)

## ALS ENVIRONMENTAL ANALYTICAL REPORT

	Sample ID Description Sampled Date Sampled Time Client ID	L1478849-11 Water 29-JUN-14 12:35 GSI-DC-09-B	L1478849-12 Water 29-JUN-14 14:38 GSI-DC-10-B	L1478849-13 Water 29-JUN-14 07:40 MW09-07	L1478849-14 Water 29-JUN-14 13:18 MP09-12	L1478849-15 Water 29-JUN-14 16:15 GSI-DC-07-B
Grouping	Analyte					
WATER						
Physical Tests	Conductivity (uS/cm)	1510	1040	2240	746	1020
	Hardness (as CaCO3) (mg/L)	816	513	1300	444	554
	pH (pH)	7.49	6.71	7.60	8.16	7.48
Anions and Nutrients	Alkalinity, Total (as CaCO3) (mg/L)	145	72.1	225	429	131
	Ammonia, Total (as N) (mg/L)	3.03	2.32	4.60	3.91	1.81
	Chloride (CI) (mg/L)	<5.0 DLA	<5.0 DLA	<10 DLA	<0.50	<5.0 DLA
	Fluoride (F) (mg/L)	<0.20 DLA	<0.20 DLA	<0.40	0.356	<0.20 DLA
	Nitrate (as N) (mg/L)	<0.050	<0.050	<0.10	0.0218	<0.050
	Nitrite (as N) (mg/L)	<0.010	<0.010	<0.020	0.0017	<0.010
	Total Kjeldahl Nitrogen (mg/L)	4.47	3.63	6.55	4.60	2.27
	Sulfate (SO4) (mg/L)	820	519	1320	48.5	466
	Sulphide as S (mg/L)	0.024	<0.020	0.097	<0.020	<0.020
	Anion Sum (meq/L)	20.0	12.2	32.0	9.60	12.3
	Cation Sum (meq/L)	22.4	16.4	32.0	9.75	13.9
	Cation - Anion Balance (%)	5.7	14.4	0.0	0.8	6.1
Cyanides	Cyanide, Weak Acid Diss (mg/L)	<0.0050	<0.0050	<0.0050	<0.0050	<0.0050
	Cyanide, Total (mg/L)	0.0099	<0.0050	<0.0050	0.0367	<0.0050
	Thiocyanate (SCN) (mg/L)	0.52	0.70	<0.50	<0.50	<0.50
	Cyanide, Free (mg/L)	<0.0050	<0.0050	<0.0050	<0.0050	<0.0050
Organic / Inorganic Carbon	Total Inorganic Carbon (mg/L)	29.9	13.6	46.0	89.8	17.2
	Total Organic Carbon (mg/L)	29.5	29.6	20.3	13.8	13.0
Total Metals	Aluminum (Al)-Total (mg/L)					
	Antimony (Sb)-Total (mg/L)					
	Arsenic (As)-Total (mg/L)					
	Barium (Ba)-Total (mg/L)					
	Beryllium (Be)-Total (mg/L)					
	Bismuth (Bi)-Total (mg/L)					
	Boron (B)-Total (mg/L)					
	Cadmium (Cd)-Total (mg/L)					
	Calcium (Ca)-Total (mg/L)					
	Chromium (Cr)-Total (mg/L)					
	Cobalt (Co)-Total (mg/L)					
	Copper (Cu)-Total (mg/L)					
	Iron (Fe)-Total (mg/L)					
	Lead (Pb)-Total (mg/L)					
	Lithium (Li)-Total (mg/L)					

^{*} Please refer to the Reference Information section for an explanation of any qualifiers detected.

L1478849 CONTD.... PAGE 5 of 20 11-JUL-14 16:01 (MT)

## ALS ENVIRONMENTAL ANALYTICAL REPORT

Version: **FINAL** Sample ID L1478849-16 L1478849-17 L1478849-18 L1478849-19 L1478849-20 Description Water Water Water Water Water 29-JUN-14 29-JUN-14 29-JUN-14 29-JUN-14 29-JUN-14 **Sampled Date** Sampled Time 14:40 12:25 13:39 11:07 16:15 MP09-11 GSI-DC-06-B MP09-09 MW09-17 FB-4 Client ID Grouping **Analyte WATER Physical Tests** Conductivity (uS/cm) 1260 489 888 2800 <2.0 Hardness (as CaCO3) (mg/L) 587 197 485 2010 < 0.50 pH (pH) 8.20 8.74 8.14 7.94 5.42 Anions and Alkalinity, Total (as CaCO3) (mg/L) 581 204 80.2 451 <2.0 **Nutrients** Ammonia, Total (as N) (mg/L) < 0.0050 < 0.0050 2.92 4.12 5.03 DLA DLA Chloride (CI) (mg/L) <5.0 <5.0 2.50 <10 < 0.50 DLA DLA Fluoride (F) (mg/L) < 0.40 <0.20 1.65 < 0.020 0.49 DLA Nitrate (as N) (mg/L) < 0.050 0.277 0.0191 < 0.0050 0.11 DLA Nitrite (as N) (mg/L) 0.020 0.0063 < 0.010 < 0.020 < 0.0010 Total Kjeldahl Nitrogen (mg/L) < 0.050 6.67 5.38 9.0 0.092 Sulfate (SO4) (mg/L) 1590 < 0.50 583 136 31.2 DLM Sulphide as S (mg/L) < 0.10 0.030 < 0.020 < 0.020 < 0.020 Anion Sum (meg/L) 12.3 42.0 < 0.10 16.2 4.59 Cation Sum (meg/L) 14.2 5.46 12.0 40.9 < 0.10 Cation - Anion Balance (%) -6.8 8.7 -1.4 -1.4 0.0 **Cyanides** Cyanide, Weak Acid Diss (mg/L) <0.0050 0.0319 < 0.0050 <0.0050 < 0.0050 Cyanide, Total (mg/L) < 0.0050 < 0.0050 0.292 0.0323 < 0.0050 Thiocyanate (SCN) (mg/L) < 0.50 < 0.50 0.62 < 0.50 < 0.50 Cyanide, Free (mg/L) < 0.0050 0.0176 < 0.0050 < 0.0050 < 0.0050 Total Inorganic Carbon (mg/L) Organic / 19.7 9.20 89.1 108 < 0.50 **Inorganic Carbon** Total Organic Carbon (mg/L) 28.3 48.4 2.49 < 0.50 74.3 Aluminum (Al)-Total (mg/L) **Total Metals** Antimony (Sb)-Total (mg/L) Arsenic (As)-Total (mg/L) Barium (Ba)-Total (mg/L) Beryllium (Be)-Total (mg/L) Bismuth (Bi)-Total (mg/L) Boron (B)-Total (mg/L) Cadmium (Cd)-Total (mg/L) Calcium (Ca)-Total (mg/L) Chromium (Cr)-Total (mg/L) Cobalt (Co)-Total (mg/L) Copper (Cu)-Total (mg/L) Iron (Fe)-Total (mg/L) Lead (Pb)-Total (mg/L)

Lithium (Li)-Total (mg/L)

^{*} Please refer to the Reference Information section for an explanation of any qualifiers detected.

L1478849 CONTD.... PAGE 6 of 20 11-JUL-14 16:01 (MT)

## ALS ENVIRONMENTAL ANALYTICAL REPORT

	Sample ID Description Sampled Date Sampled Time Client ID	L1478849-21 Water 29-JUN-14 17:30 MP09-10		
Grouping	Analyte			
WATER	,			
Physical Tests	Conductivity (uS/cm)	683		
•	Hardness (as CaCO3) (mg/L)	280		
	pH (pH)	9.07		
Anions and Nutrients	Alkalinity, Total (as CaCO3) (mg/L)	108		
	Ammonia, Total (as N) (mg/L)	7.74		
	Chloride (CI) (mg/L)	2.84		
	Fluoride (F) (mg/L)	1.63		
	Nitrate (as N) (mg/L)	0.0306		
	Nitrite (as N) (mg/L)	0.0023		
	Total Kjeldahl Nitrogen (mg/L)	33.7		
	Sulfate (SO4) (mg/L)	253		
	Sulphide as S (mg/L)	<0.020		
	Anion Sum (meq/L)	7.60		
	Cation Sum (meq/L)	7.66		
	Cation - Anion Balance (%)	0.3		
Cyanides	Cyanide, Weak Acid Diss (mg/L)	3.49		
	Cyanide, Total (mg/L)	49.9		
	Thiocyanate (SCN) (mg/L)	0.85		
	Cyanide, Free (mg/L)	3.22		
Organic / Inorganic Carbon	Total Inorganic Carbon (mg/L)	66.4		
	Total Organic Carbon (mg/L)	45.6		
Total Metals	Aluminum (Al)-Total (mg/L)			
	Antimony (Sb)-Total (mg/L)			
	Arsenic (As)-Total (mg/L)			
	Barium (Ba)-Total (mg/L)			
	Beryllium (Be)-Total (mg/L)			
	Bismuth (Bi)-Total (mg/L)			
	Boron (B)-Total (mg/L)			
	Cadmium (Cd)-Total (mg/L)			
	Calcium (Ca)-Total (mg/L)			
	Chromium (Cr)-Total (mg/L)			
	Cobalt (Co)-Total (mg/L)			
	Copper (Cu)-Total (mg/L)			
	Iron (Fe)-Total (mg/L)			
	Lead (Pb)-Total (mg/L)			
	Lithium (Li)-Total (mg/L)			

^{*} Please refer to the Reference Information section for an explanation of any qualifiers detected.

L1478849 CONTD.... PAGE 7 of 20 11-JUL-14 16:01 (MT)

**FINAL** 

Version:

## ALS ENVIRONMENTAL ANALYTICAL REPORT

Sample ID L1478849-1 L1478849-2 L1478849-3 L1478849-4 L1478849-5 Description Water Water Water Water Water 28-JUN-14 28-JUN-14 28-JUN-14 28-JUN-14 28-JUN-14 **Sampled Date** Sampled Time 18:00 17:00 07:30 11:40 10:20 MW09-21 MP09-05 CH-P-13-03/50 MP09-04 MW09-24 Client ID Grouping **Analyte WATER** Magnesium (Mg)-Total (mg/L) **Total Metals** Manganese (Mn)-Total (mg/L) Mercury (Hg)-Total (mg/L) Molybdenum (Mo)-Total (mg/L) Nickel (Ni)-Total (mg/L) Phosphorus (P)-Total (mg/L) Potassium (K)-Total (mg/L) Selenium (Se)-Total (mg/L) Silicon (Si)-Total (mg/L) Silver (Ag)-Total (mg/L) Sodium (Na)-Total (mg/L) Strontium (Sr)-Total (mg/L) Sulfur (S)-Total (mg/L) Thallium (TI)-Total (mg/L) Tin (Sn)-Total (mg/L) Titanium (Ti)-Total (mg/L) Uranium (U)-Total (mg/L) Vanadium (V)-Total (mg/L) Zinc (Zn)-Total (mg/L) Dissolved Mercury Filtration Location **Dissolved Metals FIELD FIELD FIELD FIELD FIELD** Dissolved Metals Filtration Location **FIELD FIELD FIELD FIELD FIELD** Aluminum (Al)-Dissolved (mg/L) 0.0588 0.0224 0.0115 0.0017 0.0033 Antimony (Sb)-Dissolved (mg/L) 0.00031 0.00040 0.00105 0.00185 0.00033 Arsenic (As)-Dissolved (mg/L) 0.0576 0.0276 0.00422 0.00097 0.00319 Barium (Ba)-Dissolved (mg/L) 0.147 0.0811 0.0447 0.0807 0.0607 Beryllium (Be)-Dissolved (mg/L) <0.00020 <0.00020 <0.00020 < 0.00010 < 0.00010 DLA Bismuth (Bi)-Dissolved (mg/L) <0.0010 <0.0010 < 0.0010 < 0.00050 < 0.00050 Boron (B)-Dissolved (mg/L) 0.040 0.014 0.110 0.122 0.017 Cadmium (Cd)-Dissolved (mg/L) 0.000029 0.000961 0.000134 0.000090 0.000100 Calcium (Ca)-Dissolved (mg/L) 474 449 260 268 241 Chromium (Cr)-Dissolved (mg/L) 0.00087 0.00079 < 0.00020 0.00027 0.00035 Cobalt (Co)-Dissolved (mg/L) 0.0157 0.0212 0.00022 0.00014 0.0160 Copper (Cu)-Dissolved (mg/L) < 0.00040 0.00378 0.00095 0.00267 0.00911 Iron (Fe)-Dissolved (mg/L) 1.72 < 0.010 0.014 45.0 DLA Lead (Pb)-Dissolved (mg/L) <0.00010 <0.00010 0.00027 < 0.000050 0.000974 Lithium (Li)-Dissolved (mg/L) <0.0010 <0.0010 0.0035 0.00079 0.00096 Magnesium (Mg)-Dissolved (mg/L) 90.7 101 57.4 102 74.1

^{*} Please refer to the Reference Information section for an explanation of any qualifiers detected.

L1478849 CONTD.... PAGE 8 of 20 11-JUL-14 16:01 (MT)

## ALS ENVIRONMENTAL ANALYTICAL REPORT

	Sample ID Description Sampled Date Sampled Time Client ID	L1478849-6 Water 28-JUN-14 07:40 MW09-23	L1478849-7 Water 28-JUN-14 12:41 MW09-08	L1478849-8 Water 28-JUN-14 11:40 FB-3	L1478849-9 Water 28-JUN-14 12:00 TRAVEL BLANK	L1478849-10 Water 28-JUN-14 12:41 DUP-5
Grouping	Analyte					
WATER						
Total Metals	Magnesium (Mg)-Total (mg/L)				<0.10	
	Manganese (Mn)-Total (mg/L)				<0.000050	
	Mercury (Hg)-Total (mg/L)				<0.000010	
	Molybdenum (Mo)-Total (mg/L)				<0.000050	
	Nickel (Ni)-Total (mg/L)				<0.00050	
	Phosphorus (P)-Total (mg/L)				<0.050	
	Potassium (K)-Total (mg/L)				<0.10	
	Selenium (Se)-Total (mg/L)				<0.00010	
	Silicon (Si)-Total (mg/L)				<0.050	
	Silver (Ag)-Total (mg/L)				<0.000010	
	Sodium (Na)-Total (mg/L)				<0.050	
	Strontium (Sr)-Total (mg/L)				<0.00020	
	Sulfur (S)-Total (mg/L)				<0.50	
	Thallium (TI)-Total (mg/L)				<0.000010	
	Tin (Sn)-Total (mg/L)				<0.00010	
	Titanium (Ti)-Total (mg/L)				<0.010	
	Uranium (U)-Total (mg/L)				<0.000010	
	Vanadium (V)-Total (mg/L)				<0.0010	
	Zinc (Zn)-Total (mg/L)				<0.0030	
Dissolved Metals	Dissolved Mercury Filtration Location	FIELD	FIELD	FIELD		FIELD
	Dissolved Metals Filtration Location	FIELD	FIELD	FIELD		FIELD
	Aluminum (Al)-Dissolved (mg/L)	0.0154	0.0686	<0.0010		0.0693
	Antimony (Sb)-Dissolved (mg/L)	0.00034	0.00024	<0.00010		0.00024
	Arsenic (As)-Dissolved (mg/L)	0.00119	0.198	<0.00010		0.197
	Barium (Ba)-Dissolved (mg/L)	0.0649	0.128	<0.000050		0.127
	Beryllium (Be)-Dissolved (mg/L)	<0.00020	<0.00010	<0.00010		<0.00010
	Bismuth (Bi)-Dissolved (mg/L)	<0.0010	<0.00050	<0.00050		<0.00050
	Boron (B)-Dissolved (mg/L)	0.180	<0.010	<0.010		<0.010
	Cadmium (Cd)-Dissolved (mg/L)	0.000032	<0.000010	<0.000010		<0.000010
	Calcium (Ca)-Dissolved (mg/L)	355	41.6	<0.050		42.0
	Chromium (Cr)-Dissolved (mg/L)	0.00026	0.00093	<0.00010		0.00096
	Cobalt (Co)-Dissolved (mg/L)	0.0258	0.00124	<0.00010		0.00117
	Copper (Cu)-Dissolved (mg/L)	<0.00040	<0.00020	<0.00020		<0.00020
	Iron (Fe)-Dissolved (mg/L)	6.21	47.7	<0.010		47.6
	Lead (Pb)-Dissolved (mg/L)	<0.00010	0.000052	<0.000050		0.000059
	Lithium (Li)-Dissolved (mg/L)	<0.0010	<0.00050	<0.00050		<0.00050
	Magnesium (Mg)-Dissolved (mg/L)	113	8.43	<0.10		8.37

^{*} Please refer to the Reference Information section for an explanation of any qualifiers detected.

L1478849 CONTD.... PAGE 9 of 20 11-JUL-14 16:01 (MT)

## ALS ENVIRONMENTAL ANALYTICAL REPORT

Version: **FINAL** Sample ID L1478849-11 L1478849-12 L1478849-13 L1478849-14 L1478849-15 Description Water Water Water Water Water 29-JUN-14 29-JUN-14 29-JUN-14 29-JUN-14 29-JUN-14 **Sampled Date** Sampled Time 12:35 14:38 07:40 13:18 16:15 GSI-DC-10-B GSI-DC-09-B MW09-07 MP09-12 GSI-DC-07-B Client ID Grouping **Analyte WATER Total Metals** Magnesium (Mg)-Total (mg/L) Manganese (Mn)-Total (mg/L) Mercury (Hg)-Total (mg/L) Molybdenum (Mo)-Total (mg/L) Nickel (Ni)-Total (mg/L) Phosphorus (P)-Total (mg/L) Potassium (K)-Total (mg/L) Selenium (Se)-Total (mg/L) Silicon (Si)-Total (mg/L) Silver (Ag)-Total (mg/L) Sodium (Na)-Total (mg/L) Strontium (Sr)-Total (mg/L) Sulfur (S)-Total (mg/L) Thallium (TI)-Total (mg/L) Tin (Sn)-Total (mg/L) Titanium (Ti)-Total (mg/L) Uranium (U)-Total (mg/L) Vanadium (V)-Total (mg/L) Zinc (Zn)-Total (mg/L) **Dissolved Metals** Dissolved Mercury Filtration Location **FIELD FIELD FIELD FIELD FIELD** Dissolved Metals Filtration Location **FIELD FIELD FIELD FIELD FIELD** Aluminum (Al)-Dissolved (mg/L) 0.0205 0.142 0.0306 0.0018 0.0087 Antimony (Sb)-Dissolved (mg/L) 0.00033 0.00031 0.00850 0.0331 0.00020 Arsenic (As)-Dissolved (mg/L) 0.0361 0.0931 0.564 5.41 0.167 Barium (Ba)-Dissolved (mg/L) 0.0702 0.443 0.0270 0.0532 0.158 Beryllium (Be)-Dissolved (mg/L) <0.00020 < 0.00010 < 0.00010 < 0.00010 < 0.00010 Bismuth (Bi)-Dissolved (mg/L) < 0.0010 < 0.00050 < 0.00050 <0.00050 < 0.00050 Boron (B)-Dissolved (mg/L) 0.015 <0.010 0.089 0.052 0.012 Cadmium (Cd)-Dissolved (mg/L) < 0.000010 0.000011 0.000049 0.000313 < 0.000010 Calcium (Ca)-Dissolved (mg/L) 199 147 396 103 153 Chromium (Cr)-Dissolved (mg/L) 0.00049 0.00207 0.00040 0.00029 0.00035 Cobalt (Co)-Dissolved (mg/L) 0.0243 0.00169 0.00298 0.00340 0.0153 Copper (Cu)-Dissolved (mg/L) 0.00024 < 0.00020 0.00224 0.00052 < 0.00020 Iron (Fe)-Dissolved (mg/L) 61.7 82.4 34.2 3.89 31.5 Lead (Pb)-Dissolved (mg/L) < 0.000050 0.000139 0.00024 0.00631 < 0.000050 Lithium (Li)-Dissolved (mg/L) 0.00059 0.00054 0.0082 0.00208 0.00167 Magnesium (Mg)-Dissolved (mg/L) 77.7 35.5 76.6 41.5 45.6

^{*} Please refer to the Reference Information section for an explanation of any qualifiers detected.

L1478849 CONTD.... PAGE 10 of 20 11-JUL-14 16:01 (MT)

## ALS ENVIRONMENTAL ANALYTICAL REPORT

	Sample ID Description Sampled Date Sampled Time Client ID	L1478849-16 Water 29-JUN-14 14:40 GSI-DC-06-B	L1478849-17 Water 29-JUN-14 12:25 MP09-09	L1478849-18 Water 29-JUN-14 13:39 MP09-11	L1478849-19 Water 29-JUN-14 11:07 MW09-17	L1478849-20 Water 29-JUN-14 16:15 FB-4
Grouping	Analyte					
WATER						
Total Metals	Magnesium (Mg)-Total (mg/L)					
	Manganese (Mn)-Total (mg/L)					
	Mercury (Hg)-Total (mg/L)					
	Molybdenum (Mo)-Total (mg/L)					
	Nickel (Ni)-Total (mg/L)					
	Phosphorus (P)-Total (mg/L)					
	Potassium (K)-Total (mg/L)					
	Selenium (Se)-Total (mg/L)					
	Silicon (Si)-Total (mg/L)					
	Silver (Ag)-Total (mg/L)					
	Sodium (Na)-Total (mg/L)					
	Strontium (Sr)-Total (mg/L)					
	Sulfur (S)-Total (mg/L)					
	Thallium (TI)-Total (mg/L)					
	Tin (Sn)-Total (mg/L)					
	Titanium (Ti)-Total (mg/L)					
	Uranium (U)-Total (mg/L)					
	Vanadium (V)-Total (mg/L)					
	Zinc (Zn)-Total (mg/L)					
Dissolved Metals	Dissolved Mercury Filtration Location	FIELD	FIELD	FIELD	FIELD	FIELD
	Dissolved Metals Filtration Location	FIELD	FIELD	FIELD	FIELD	FIELD
	Aluminum (Al)-Dissolved (mg/L)	0.0507	0.0048	0.0050	<0.0020	<0.0010
	Antimony (Sb)-Dissolved (mg/L)	0.00034	0.0897	0.0195	0.00043	<0.00010
	Arsenic (As)-Dissolved (mg/L)	0.303	18.7	11.3	0.0207	<0.00010
	Barium (Ba)-Dissolved (mg/L)	0.220	0.00127	0.0884	0.00842	<0.000050
	Beryllium (Be)-Dissolved (mg/L)	<0.00010	<0.00020	<0.00020	<0.00020	<0.00010
	Bismuth (Bi)-Dissolved (mg/L)	<0.00050	<0.0010	<0.0010	<0.0010	<0.00050
	Boron (B)-Dissolved (mg/L)	0.014	0.299	0.037	0.096	<0.010
	Cadmium (Cd)-Dissolved (mg/L)	<0.000010	0.000102	<0.000020	<0.000020	<0.000010
	Calcium (Ca)-Dissolved (mg/L)	143	77.6	112	367	<0.050
	Chromium (Cr)-Dissolved (mg/L)	0.00472	<0.00020	0.00152	<0.00020	<0.00010
	Cobalt (Co)-Dissolved (mg/L)	0.00282	0.0402	0.00189	<0.00020	<0.00010
	Copper (Cu)-Dissolved (mg/L)	<0.00020	0.383	0.00049	0.00056	<0.00020
	Iron (Fe)-Dissolved (mg/L)	20.5	0.401	11.7	<0.010	<0.010
	Lead (Pb)-Dissolved (mg/L)	0.000055	0.00185	0.00144	<0.00010	<0.000050
	Lithium (Li)-Dissolved (mg/L)	<0.00050	<0.0010	0.0031	0.0201	<0.00050
	Magnesium (Mg)-Dissolved (mg/L)	55.5	0.81	49.8	266	<0.10

^{*} Please refer to the Reference Information section for an explanation of any qualifiers detected.

L1478849 CONTD.... PAGE 11 of 20 11-JUL-14 16:01 (MT)

**FINAL** 

Version:

## ALS ENVIRONMENTAL ANALYTICAL REPORT

L1478849-21 Sample ID Description Water 29-JUN-14 **Sampled Date** Sampled Time 17:30 MP09-10 Client ID Grouping **Analyte WATER Total Metals** Magnesium (Mg)-Total (mg/L) Manganese (Mn)-Total (mg/L) Mercury (Hg)-Total (mg/L) Molybdenum (Mo)-Total (mg/L) Nickel (Ni)-Total (mg/L) Phosphorus (P)-Total (mg/L) Potassium (K)-Total (mg/L) Selenium (Se)-Total (mg/L) Silicon (Si)-Total (mg/L) Silver (Ag)-Total (mg/L) Sodium (Na)-Total (mg/L) Strontium (Sr)-Total (mg/L) Sulfur (S)-Total (mg/L) Thallium (TI)-Total (mg/L) Tin (Sn)-Total (mg/L) Titanium (Ti)-Total (mg/L) Uranium (U)-Total (mg/L) Vanadium (V)-Total (mg/L) Zinc (Zn)-Total (mg/L) **Dissolved Metals** Dissolved Mercury Filtration Location **FIELD** Dissolved Metals Filtration Location **FIELD** Aluminum (Al)-Dissolved (mg/L) 0.0088 Antimony (Sb)-Dissolved (mg/L) 0.0907 Arsenic (As)-Dissolved (mg/L) 9.72 Barium (Ba)-Dissolved (mg/L) 0.00083 Beryllium (Be)-Dissolved (mg/L) <0.00020 Bismuth (Bi)-Dissolved (mg/L) <0.0010 Boron (B)-Dissolved (mg/L) 0.342 Cadmium (Cd)-Dissolved (mg/L) 0.000658 Calcium (Ca)-Dissolved (mg/L) Chromium (Cr)-Dissolved (mg/L) < 0.00020 Cobalt (Co)-Dissolved (mg/L) 0.0468 Copper (Cu)-Dissolved (mg/L) 0.0349 Iron (Fe)-Dissolved (mg/L) 0.229 Lead (Pb)-Dissolved (mg/L) 0.00280 Lithium (Li)-Dissolved (mg/L) <0.0010 Magnesium (Mg)-Dissolved (mg/L) 0.88

^{*} Please refer to the Reference Information section for an explanation of any qualifiers detected.

L1478849 CONTD.... PAGE 12 of 20 11-JUL-14 16:01 (MT)

## ALS ENVIRONMENTAL ANALYTICAL REPORT

Version: **FINAL** L1478849-1 Sample ID L1478849-2 L1478849-3 L1478849-4 L1478849-5 Description Water Water Water Water Water 28-JUN-14 28-JUN-14 28-JUN-14 28-JUN-14 28-JUN-14 **Sampled Date** Sampled Time 18:00 17:00 07:30 11:40 10:20 MW09-21 MP09-05 CH-P-13-03/50 MP09-04 MW09-24 Client ID Grouping **Analyte** WATER **Dissolved Metals** Manganese (Mn)-Dissolved (mg/L) 14.9 10.6 16.7 0.00340 0.00292 Mercury (Hg)-Dissolved (mg/L) < 0.000010 < 0.000010 < 0.000010 < 0.000010 < 0.000010 Molybdenum (Mo)-Dissolved (mg/L) 0.00043 0.00053 0.00404 0.000162 0.000305 Nickel (Ni)-Dissolved (mg/L) 0.0016 0.0036 < 0.00050 0.0339 < 0.00050 Phosphorus (P)-Dissolved (mg/L) < 0.050 < 0.050 < 0.050 < 0.050 < 0.050 9.57 _{DLA} Potassium (K)-Dissolved (mg/L) 8.84 1.85 12.9 2.72 Selenium (Se)-Dissolved (mg/L) <0.00020 < 0.00020 0.00089 0.00012 0.00020 Silicon (Si)-Dissolved (mg/L) 4.91 5.68 7.15 6.69 5.48 DI A Silver (Ag)-Dissolved (mg/L) < 0.000020 < 0.000020 < 0.000010 < 0.000020 < 0.000010 Sodium (Na)-Dissolved (mg/L) 80.6 8.30 26.3 131 12.8 Strontium (Sr)-Dissolved (mg/L) 1.29 0.777 0.927 0.632 1.13 Sulfur (S)-Dissolved (mg/L) 398 316 265 199 433 Thallium (TI)-Dissolved (mg/L) <0.000020 0.000029 0.000045 < 0.000010 < 0.000010 Tin (Sn)-Dissolved (mg/L) <0.00020 <0.00020 0.00107 < 0.00010 < 0.00010 DLA DLA DLA Titanium (Ti)-Dissolved (mg/L) < 0.020 <0.020 < 0.020 < 0.010 < 0.010 Uranium (U)-Dissolved (mg/L) 0.00193 0.00205 0.00247 0.00584 0.00809 Vanadium (V)-Dissolved (mg/L) 0.0039 <0.0020 <0.0020 <0.0010 < 0.0010 Zinc (Zn)-Dissolved (mg/L) 0.0025 0.0130 0.0317 0.0036 0.0021

^{*} Please refer to the Reference Information section for an explanation of any qualifiers detected.

L1478849 CONTD.... PAGE 13 of 20 11-JUL-14 16:01 (MT)

## ALS ENVIRONMENTAL ANALYTICAL REPORT

	Sample ID Description Sampled Date Sampled Time Client ID	L1478849-6 Water 28-JUN-14 07:40 MW09-23	L1478849-7 L1478849-8 Water Water 28-JUN-14 28-JUN-14 12:41 11:40 MW09-08 FB-3		L1478849-9 Water 28-JUN-14 12:00 TRAVEL BLANK	L1478849-10 Water 28-JUN-14 12:41 DUP-5
Grouping	Analyte					
WATER						
Dissolved Metals	Manganese (Mn)-Dissolved (mg/L)	12.2	3.52	<0.000050		3.45
	Mercury (Hg)-Dissolved (mg/L)	<0.00010	<0.000010	<0.000010		<0.000010
	Molybdenum (Mo)-Dissolved (mg/L)	0.00611	0.000071	<0.000050		0.000075
	Nickel (Ni)-Dissolved (mg/L)	0.0020	<0.00050	<0.00050		<0.00050
	Phosphorus (P)-Dissolved (mg/L)	<0.050	0.104	<0.050		0.102
	Potassium (K)-Dissolved (mg/L)	15.7	1.45	<0.10		1.42
	Selenium (Se)-Dissolved (mg/L)	<0.00020	0.00011	<0.00010		0.00011
	Silicon (Si)-Dissolved (mg/L)	5.35	9.30	<0.050		9.28
	Silver (Ag)-Dissolved (mg/L)	<0.000020	<0.000010	<0.000010		<0.000010
	Sodium (Na)-Dissolved (mg/L)	89.7	1.44	<0.050		1.41
	Strontium (Sr)-Dissolved (mg/L)	0.873	0.182	<0.00020		0.184
	Sulfur (S)-Dissolved (mg/L)	405	3.99	<0.50		3.94
	Thallium (TI)-Dissolved (mg/L)	<0.000020	<0.000010	<0.000010		<0.000010
	Tin (Sn)-Dissolved (mg/L)	<0.00020	<0.00010	<0.00010		<0.00010
	Titanium (Ti)-Dissolved (mg/L)	<0.020	<0.010	<0.010		<0.010
	Uranium (U)-Dissolved (mg/L)	0.00311	0.000077	<0.000010		0.000079
	Vanadium (V)-Dissolved (mg/L)	<0.0020	0.0030	<0.0010		0.0030
	Zinc (Zn)-Dissolved (mg/L)	0.0299	0.0017	<0.0010		0.0013

^{*} Please refer to the Reference Information section for an explanation of any qualifiers detected.

L1478849 CONTD.... PAGE 14 of 20 11-JUL-14 16:01 (MT)

**FINAL** 

Version:

## ALS ENVIRONMENTAL ANALYTICAL REPORT

L1478849-13 Sample ID L1478849-11 L1478849-12 L1478849-14 L1478849-15 Description Water Water Water Water Water 29-JUN-14 29-JUN-14 29-JUN-14 29-JUN-14 29-JUN-14 **Sampled Date** Sampled Time 12:35 14:38 07:40 13:18 16:15 GSI-DC-09-B GSI-DC-10-B MW09-07 MP09-12 GSI-DC-07-B Client ID Grouping **Analyte WATER Dissolved Metals** Manganese (Mn)-Dissolved (mg/L) 1.97 11.0 15.4 2.70 2.41 Mercury (Hg)-Dissolved (mg/L) < 0.000010 < 0.000010 < 0.000010 < 0.000010 < 0.000010 Molybdenum (Mo)-Dissolved (mg/L) 0.000346 0.000565 0.00343 0.00255 0.000363 Nickel (Ni)-Dissolved (mg/L) 0.00176 0.00386 0.0231 0.00103 0.00521 Phosphorus (P)-Dissolved (mg/L) < 0.050 0.097 0.142 < 0.050 0.061 Potassium (K)-Dissolved (mg/L) 3.25 3.90 2.54 22.1 5.23 Selenium (Se)-Dissolved (mg/L) 0.00027 0.00023 <0.00020 < 0.00010 < 0.00010 Silicon (Si)-Dissolved (mg/L) 6.51 8.18 10.1 9.61 6.95 Silver (Ag)-Dissolved (mg/L) < 0.000010 0.000113 < 0.000010 < 0.000010 < 0.000010 Sodium (Na)-Dissolved (mg/L) 24.3 59.5 3.50 20.0 54.4 Strontium (Sr)-Dissolved (mg/L) 0.633 0.555 0.915 0.468 0.474 Sulfur (S)-Dissolved (mg/L) 246 162 16.3 148 396 DLA Thallium (TI)-Dissolved (mg/L) <0.000020 < 0.000010 0.000016 0.000084 < 0.000010 Tin (Sn)-Dissolved (mg/L) < 0.00010 < 0.00010 <0.00020 < 0.00010 < 0.00010 DLA Titanium (Ti)-Dissolved (mg/L) < 0.010 < 0.010 < 0.020 < 0.010 < 0.010 Uranium (U)-Dissolved (mg/L) 0.000157 0.000294 0.00315 0.000713 0.000067 Vanadium (V)-Dissolved (mg/L) 0.0017 0.0107 <0.0020 <0.0010 0.0013 Zinc (Zn)-Dissolved (mg/L) 0.0024 0.0088 1.61 0.0403 0.0012

^{*} Please refer to the Reference Information section for an explanation of any qualifiers detected.

L1478849 CONTD.... PAGE 15 of 20 11-JUL-14 16:01 (MT)

## ALS ENVIRONMENTAL ANALYTICAL REPORT

	Sample ID Description Sampled Date Sampled Time Client ID	L1478849-16 Water 29-JUN-14 14:40 GSI-DC-06-B	L1478849-17 Water 29-JUN-14 12:25 MP09-09	L1478849-18 Water 29-JUN-14 13:39 MP09-11	L1478849-19 Water 29-JUN-14 11:07 MW09-17	L1478849-20 Water 29-JUN-14 16:15 FB-4
Grouping	Analyte					
WATER						
Dissolved Metals	Manganese (Mn)-Dissolved (mg/L)	4.87	0.0591	4.15	0.0369	<0.000050
	Mercury (Hg)-Dissolved (mg/L)	<0.000010	0.000036	<0.000010	<0.000010	<0.000010
	Molybdenum (Mo)-Dissolved (mg/L)	0.00960	0.0130	0.00818	O.00010	<0.000050
	Nickel (Ni)-Dissolved (mg/L)	0.0194	0.0143	0.0093	<0.0010	<0.00050
	Phosphorus (P)-Dissolved (mg/L)	0.159	0.179	0.083	<0.050	<0.050
	Potassium (K)-Dissolved (mg/L)	3.53	8.18	8.22	7.58	<0.10
	Selenium (Se)-Dissolved (mg/L)	0.00051	0.00183	0.00032	<0.00020	<0.00010
	Silicon (Si)-Dissolved (mg/L)	10.1	8.71	10.8	5.00	<0.050
	Silver (Ag)-Dissolved (mg/L)	<0.000010	0.00189	<0.000020	<0.000020	<0.000010
	Sodium (Na)-Dissolved (mg/L)	19.7	22.7	21.0	11.7	<0.050
	Strontium (Sr)-Dissolved (mg/L)	0.726	0.146	0.596	1.10	<0.00020
	Sulfur (S)-Dissolved (mg/L)	1.61	132	11.9	482	<0.50
	Thallium (TI)-Dissolved (mg/L)	<0.000010	<0.000020	<0.000020	0.000103	<0.000010
	Tin (Sn)-Dissolved (mg/L)	<0.00010	<0.00020	<0.00020	<0.00020	<0.00010
	Titanium (Ti)-Dissolved (mg/L)	<0.010	<0.020	<0.020	<0.020	<0.010
	Uranium (U)-Dissolved (mg/L)	0.000084	0.000542	0.000762	0.00794	<0.000010
	Vanadium (V)-Dissolved (mg/L)	0.0131	<0.0020	0.0056	<0.0020	<0.0010
	Zinc (Zn)-Dissolved (mg/L)	0.0063	0.0090	0.0206	<0.0020	<0.0010
	Zilic (Zil)-Dissoivea (Ilig/L)	0.0063	0.0090	0.0206	<0.0020	<0.0010

^{*} Please refer to the Reference Information section for an explanation of any qualifiers detected.

L1478849 CONTD.... PAGE 16 of 20 11-JUL-14 16:01 (MT)

## ALS ENVIRONMENTAL ANALYTICAL REPORT

	Sample ID Description Sampled Date Sampled Time Client ID	L1478849-21 Water 29-JUN-14 17:30 MP09-10		
Grouping	Analyte			
WATER				
		0.0291 <0.000050 0.0142 0.0146 0.199 10.5 0.00150 6.67 0.00891 28.1 0.180 116 0.000046 <0.00020 0.000975 DLA <0.0020 0.0082		

^{*} Please refer to the Reference Information section for an explanation of any qualifiers detected.

## L1478849 CONTD.... PAGE 17 of 20

11-JUL-14 16:01 (MT)

### **Reference Information**

QC Samples with Qualifiers & Comments:

QC Type Description	Parameter	Qualifier	Applies to Sample Number(s)
Matrix Spike	Total Organic Carbon	MS-B	L1478849-10, -11, -12, -14, -15, -17, -18, -19, -2, -20, -21, -3, -4, -5, -6, -8, -9
Matrix Spike	Total Organic Carbon	MS-B	L1478849-1, -13, -16, -7
Matrix Spike	Total Inorganic Carbon	MS-B	L1478849-1, -10, -11, -12, -13, -14, -15, -16, -17, -19, -2, -20, -21, -4, -5, -6, -8
Matrix Spike	Total Inorganic Carbon	MS-B	L1478849-1, -10, -11, -12, -13, -14, -15, -16, -17, -19, -2, -20, -21, -4, -5, -6, -8
Matrix Spike	Barium (Ba)-Dissolved	MS-B	L1478849-1, -10, -11, -12, -13, -14, -15, -16, -17, -18, -19, -2, -20, -21, -3, -4, -5, -6, -7, -8
Matrix Spike	Molybdenum (Mo)-Dissolved	MS-B	L1478849-1, -10, -11, -12, -13, -14, -15, -16, -17, -18, -19, -2, -20, -21, -3, -4, -5, -6, -7, -8
Matrix Spike	Sodium (Na)-Dissolved	MS-B	L1478849-1, -10, -11, -12, -13, -14, -15, -16, -17, -18, -19, -2, -20, -21, -3, -4, -5, -6, -7, -8
Matrix Spike	Strontium (Sr)-Dissolved	MS-B	L1478849-1, -10, -11, -12, -13, -14, -15, -16, -17, -18, -19, -2, -20, -21, -3, -4, -5, -6, -7, -8
Matrix Spike	Uranium (U)-Dissolved	MS-B	L1478849-1, -10, -11, -12, -13, -14, -15, -16, -17, -18, -19, -2, -20, -21, -3, -4, -5, -6, -7, -8
Matrix Spike	Total Inorganic Carbon	MS-B	L1478849-18, -3, -7, -9

#### **Qualifiers for Individual Parameters Listed:**

Qualifier	Description
CNP	Cyanide test sample appears to have been preserved, but pH was <10 at time of testing. Results may be biased low, particularly for Free CN species.
DLA	Detection Limit adjusted for required dilution
DLIV	Detection Limit Adjusted: Lower Initial Volume
DLM	Detection Limit Adjusted due to sample matrix effects.
MS-B	Matrix Spike recovery could not be accurately calculated due to high analyte background in sample.
RRV	Reported Result Verified By Repeat Analysis

#### **Test Method References:**

ALS Test Code	Matrix	Test Description	Method Reference**
ALK-COL-VA	Water	Alkalinity by Colourimetric (Automated)	EPA 310.2
This small rais is service	al a 4 a ! . a	dunce adopted from EDA Mathead 240 0 II Allialiaituil. T	Tatal Alliadia italia datamaina di vairan tha mathrid annon

This analysis is carried out using procedures adapted from EPA Method 310.2 "Alkalinity". Total Alkalinity is determined using the methyl orange colourimetric method.

ANIONS-CI -IC-WR

Water Chloride by Ion Chromatography

EPA 300.1

This analysis is carried out using procedures adapted from EPA Method 300.1, "Determination of Inorganic Anions by Ion Chromatography", Revision 1.0, April 1999 and from "Determination of Inorganic Anions in Environmental Waters Using a Hydroxide-Selective Column", Application Note 154 v.19, Dionex 2003.

ANIONS-F-IC-WR

Water

Fluoride by Ion Chromatography

EPA 300.1

This analysis is carried out using procedures adapted from EPA Method 300.1, "Determination of Inorganic Anions by Ion Chromatography", Revision 1.0, April 1999 and from "Determination of Inorganic Anions in Environmental Waters Using a Hydroxide-Selective Column", Application Note 154 v.19, Dionex 2003.

ANIONS-NO2-IC-WR

Water

Nitrite Nitrogen by Ion Chromatography

EPA 300.1

This analysis is carried out using procedures adapted from EPA Method 300.1, "Determination of Inorganic Anions by Ion Chromatography", Revision 1.0, April 1999 and from "Determination of Inorganic Anions in Environmental Waters Using a Hydroxide-Selective Column", Application Note 154 v.19, Dionex 2003. Nitrate is detected by UV absorbance.

ANIONS-NO3-IC-WR

Water

Nitrate Nitrogen by Ion Chromatography

EPA 300.1

This analysis is carried out using procedures adapted from EPA Method 300.1, "Determination of Inorganic Anions by Ion Chromatography", Revision 1.0, April 1999 and from "Determination of Inorganic Anions in Environmental Waters Using a Hydroxide-Selective Column", Application Note 154 v.19, Dionex 2003. Nitrate is detected by UV absorbance.

ANIONS-SO4-IC-WR

Water

Sulphate by Ion Chromatography

EPA 300.1

This analysis is carried out using procedures adapted from EPA Method 300.1, "Determination of Inorganic Anions by Ion Chromatography", Revision 1.0, April 1999 and from "Determination of Inorganic Anions in Environmental Waters Using a Hydroxide-Selective Column", Application Note 154 v.19, Dionex 2003.

CARBONS-TIC-VA

Water

Total inorganic carbon by CO2 purge

APHA 5310 TOTAL ORGANIC CARBON (TOC)

This analysis is carried out using procedures adapted from APHA Method 5310 "Total Organic Carbon (TOC)".

**CARBONS-TOC-VA** 

Water

Total organic carbon by combustion

APHA 5310 TOTAL ORGANIC CARBON (TOC)

L1478849 CONTD....

PAGE 18 of 20

11-JUL-14 16:01 (MT)

Version: FINAL

This analysis is carried out using procedures adapted from APHA Method 5310 "Total Organic Carbon (TOC)".

**CN-FREE-CFA-VA** 

Water

Free Cyanide in water by CFA

**ASTM 7237** 

This analysis is carried out using procedures adapted from ASTM Method 7237 "Free Cyanide with Flow Injection Analysis (FIA) Utilizing Gas Diffusion Separation and Amperometric Detection". Free cyanide is determined by in-line gas diffusion at pH 6 with final determination by colourimetric analysis.

**CN-SCN-VA** 

Water

Thiocyanate by Colour

APHA 4500-CN CYANIDE

This analysis is carried out using procedures adapted from APHA Method 4500-CN- M "Thiocyanate" Thiocyanate is determined by the ferric nitrate colourimetric method.

CN-T-CFA-VA

Water

Total Cyanide in water by CFA

ISO 14403:2002

This analysis is carried out using procedures adapted from ISO Method 14403:2002 "Determination of Total Cyanide using Flow Analysis (FIA and CFA)". Total or strong acid dissociable (SAD) cyanide is determined by in-line UV digestion along with sample distillation and final determination by colourimetric analysis. Method Limitation: This method is susceptible to interference from thiocyanate (SCN). If SCN is present in the sample, there could be a positive interference with this method, but it would be less than 1% and could be as low as zero.

**CN-WAD-CFA-VA** 

Water

Weak Acid Diss. Cyanide in water by CFA

APHA 4500-CN CYANIDE

This analysis is carried out using procedures adapted from APHA Method 4500-CN I. "Weak Acid Dissociable Cyanide". Weak Acid Dissociable (WAD) cyanide is determined by in-line sample distillation with final determination by colourimetric analysis.

**EC-PCT-VA** 

Water

Conductivity (Automated)

APHA 2510 Auto. Conduc.

This analysis is carried out using procedures adapted from APHA Method 2510 "Conductivity". Conductivity is determined using a conductivity electrode.

HARDNESS-CALC-VA

Water

Hardness

**APHA 2340B** 

Hardness (also known as Total Hardness) is calculated from the sum of Calcium and Magnesium concentrations, expressed in CaCO3 equivalents. Dissolved Calcium and Magnesium concentrations are preferentially used for the hardness calculation.

HG-DIS-LOW-CVAFS-VA

Water Dissolved Mercury in Water by CVAFS(Low)

EPA SW-846 3005A & EPA 245.7

This analysis is carried out using procedures adapted from "Standard Methods for the Examination of Water and Wastewater" published by the American Public Health Association, and with procedures adapted from "Test Methods for Evaluating Solid Waste" SW-846 published by the United States Environmental Protection Agency (EPA). The procedures may involve preliminary sample treatment by filtration (EPA Method 3005A) and involves a cold-oxidation of the acidified sample using bromine monochloride prior to reduction of the sample with stannous chloride. Instrumental analysis is by cold vapour atomic fluorescence spectrophotometry or atomic absorption spectrophotometry (EPA Method 245.7).

**HG-TOT-LOW-CVAFS-VA** Water

Total Mercury in Water by CVAFS(Low)

EPA 245.7

This analysis is carried out using procedures adapted from "Standard Methods for the Examination of Water and Wastewater" published by the American Public Health Association, and with procedures adapted from "Test Methods for Evaluating Solid Waste" SW-846 published by the United States Environmental Protection Agency (EPA). The procedure involves a cold-oxidation of the acidified sample using bromine monochloride prior to reduction of the sample with stannous chloride. Instrumental analysis is by cold vapour atomic fluorescence spectrophotometry or atomic absorption spectrophotometry (EPA Method 245.7).

IONBALANCE-VA

Water

Ion Balance Calculation

APHA 1030E

Cation Sum, Anion Sum, and Ion Balance (as % difference) are calculated based on guidance from APHA Standard Methods (1030E Checking Correctness of Analysis). Because all aqueous solutions are electrically neutral, the calculated ion balance (% difference of cations minus anions) should be near-zero.

Cation and Anion Sums are the total meq/L concentration of major cations and anions. Dissolved species are used where available. Minor ions are included where data is present. Ion Balance is calculated as:

Ion Balance (%) = [Cation Sum-Anion Sum] / [Cation Sum+Anion Sum]

**MET-D-CCMS-VA** 

Water

Dissolved Metals in Water by CRC ICPMS

APHA 3030 B&E / EPA SW-846 6020A

This analysis is carried out using procedures adapted from "Standard Methods for the Examination of Water and Wastewater" published by the American Public Health Association, and with procedures adapted from "Test Methods for Evaluating Solid Waste" SW-846 published by the United States Environmental Protection Agency (EPA). The procedures may involve preliminary sample treatment by acid digestion, using hotblock, or filtration (APHA 3030B&E). Instrumental analysis is by collision cell inductively coupled plasma - mass spectrometry (modified from EPA Method 6020A).

MET-DIS-LOW-ICP-VA

Water

Dissolved Metals in Water by ICPOES

EPA 3005A/6010B

This analysis is carried out using procedures adapted from "Standard Methods for the Examination of Water and Wastewater" published by the American Public Health Association, and with procedures adapted from "Test Methods for Evaluating Solid Waste" SW-846 published by the United States Environmental Protection Agency (EPA). The procedure involves filtration (EPA Method 3005A) and analysis by inductively coupled plasma optical emission spectrophotometry (EPA Method 6010B).

**MET-T-CCMS-VA** 

Water

Total Metals in Water by CRC ICPMS

APHA 3030 B&E / EPA SW-846 6020A

This analysis is carried out using procedures adapted from "Standard Methods for the Examination of Water and Wastewater" published by the American Public Health Association, and with procedures adapted from "Test Methods for Evaluating Solid Waste" SW-846 published by the United States Environmental Protection Agency (EPA). The procedures may involve preliminary sample treatment by acid digestion, using hotblock, or filtration (APHA 3030B&E). Instrumental analysis is by collision cell inductively coupled plasma - mass spectrometry (modified from EPA Method 6020A).

L1478849 CONTD.... PAGE 19 of 20 11-JUL-14 16:01 (MT) Version: FINΔI

**MET-TOT-LOW-ICP-VA** Water Total Metals in Water by ICPOES EPA 3005A/6010B

This analysis is carried out using procedures adapted from "Standard Methods for the Examination of Water and Wastewater" published by the American Public Health Association, and with procedures adapted from "Test Methods for Evaluating Solid Waste" SW-846 published by the United States Environmental Protection Agency (EPA). The procedures may involve preliminary sample treatment by acid digestion, using either hotblock or microwave oven (EPA Method 3005A). Instrumental analysis is by inductively coupled plasma - optical emission spectrophotometry (EPA Method 6010B).

NH3-F-VA Water Ammonia in Water by Fluorescence J. ENVIRON. MONIT., 2005, 7, 37-42, RSC

This analysis is carried out, on sulfuric acid preserved samples, using procedures modified from J. Environ. Monit., 2005, 7, 37 - 42, The Royal Society of Chemistry, "Flow-injection analysis with fluorescence detection for the determination of trace levels of ammonium in seawater", Roslyn J. Waston et

PH-PCT-VA Water pH by Meter (Automated) APHA 4500-H "pH Value"

This analysis is carried out using procedures adapted from APHA Method 4500-H "pH Value". The pH is determined in the laboratory using a pH electrode

It is recommended that this analysis be conducted in the field.

PH-PCT-VA Water pH by Meter (Automated) APHA 4500-H pH Value

This analysis is carried out using procedures adapted from APHA Method 4500-H "pH Value". The pH is determined in the laboratory using a pH electrode

It is recommended that this analysis be conducted in the field.

Dissolved Sulfur in Water by ICPOES S-DIS-ICP-VA Water EPA SW-846 3005A/6010B

This analysis is carried out using procedures adapted from "Standard Methods for the Examination of Water and Wastewater" published by the American Public Health Association, and with procedures adapted from "Test Methods for Evaluating Solid Waste" SW-846 published by the United States Environmental Protection Agency (EPA). The procedures may involve preliminary sample treatment by acid digestion, using either hotblock or microwave oven, or filtration (EPA Method 3005A). Instrumental analysis is by inductively coupled plasma - optical emission spectrophotometry (EPA Method 6010B).

Method Limitation: This method will not give total sulfur results for all samples. Sulfide or other volatile forms of sulfur that may be present in submitted samples, is often lost during the sampling, preservation and analysis process. The data reported as total and/or dissolved sulfur represents all non-volatile forms of sulfur present in a particular sample.

S-TOT-ICP-VA EPA SW-846 3005A/6010B Total Sulfur in Water by ICPOES

This analysis is carried out using procedures adapted from "Standard Methods for the Examination of Water and Wastewater" published by the American Public Health Association, and with procedures adapted from "Test Methods for Evaluating Solid Waste" SW-846 published by the United States Environmental Protection Agency (EPA). The procedures may involve preliminary sample treatment by acid digestion, using either hotblock or microwave oven, or filtration (EPA Method 3005A). Instrumental analysis is by inductively coupled plasma - optical emission spectrophotometry (EPA Method 6010B).

Method Limitation: This method will not give total sulfur results for all samples. Sulfide or other volatile forms of sulfur that may be present in submitted samples, is often lost during the sampling, preservation and analysis process. The data reported as total and/or dissolved sulfur represents all non-volatile forms of sulfur present in a particular sample.

S2-T-COL-VA Water Total Sulphide by Colorimetric APHA 4500-S2 Sulphide

This analysis is carried out using procedures adapted from APHA Method 4500-S2 "Sulphide". Sulphide is determined using the methlyene blue colourimetric method.

TKN-F-VA Water TKN in Water by Fluorescence APHA 4500-NORG D.

This analysis is carried out using procedures adapted from APHA Method 4500-Norg D. "Block Digestion and Flow Injection Analysis". Total Kjeldahl Nitrogen is determined using block digestion followed by Flow-injection analysis with fluorescence detection.

** ALS test methods may incorporate modifications from specified reference methods to improve performance.

The last two letters of the above test code(s) indicate the laboratory that performed analytical analysis for that test. Refer to the list below:

<b>Laboratory Definition Code</b>	Laboratory Location
WR	ALS ENVIRONMENTAL - WHITEHORSE, YUKON, CANADA
VA	ALS ENVIRONMENTAL - VANCOUVER, BRITISH COLUMBIA, CANADA

#### **Chain of Custody Numbers:**

2

L1478849 CONTD....
PAGE 20 of 20
11-JUL-14 16:01 (MT)
Version: FINAL

#### **GLOSSARY OF REPORT TERMS**

Surrogate - A compound that is similar in behaviour to target analyte(s), but that does not occur naturally in environmental samples. For applicable tests, surrogates are added to samples prior to analysis as a check on recovery.

mg/kg - milligrams per kilogram based on dry weight of sample.

mg/kg wwt - milligrams per kilogram based on wet weight of sample.

mg/kg lwt - milligrams per kilogram based on lipid-adjusted weight of sample.

mg/L - milligrams per litre.

< - Less than.

D.L. - The reported Detection Limit, also known as the Limit of Reporting (LOR).

N/A - Result not available. Refer to qualifier code and definition for explanation.

Test results reported relate only to the samples as received by the laboratory.

UNLESS OTHERWISE STATED, ALL SAMPLES WERE RECEIVED IN ACCEPTABLE CONDITION.

Analytical results in unsigned test reports with the DRAFT watermark are subject to change, pending final QC review.

# ALS Environmental

## Chain of Custody (COC) / Analytical Request Form

Canada Toll Free: 1 800 668 9878

L1478849-COFC

COC Number: 1 -

Page	1 of	2

	www.alsglobal.com																			
Report To		·-		Report Format / Distribution			Select Service Level Below (Rush Tumpround Time (TAT) is not available for all tests)													
Company:	Hemmera Environchem Inc.		Select Report F	Select Report Format:														<u> </u>		
Contact:	Natasha Sandys		Quality Control (QC) Report with Report ☑ Yes ☐ No				O P Priority (2-4 bus, days if received by 3pm) 50% surcharge - contact ALS to confirm TAT													
Address:	230 - 2237 2nd Avenue		Criteria on Report - provide details below if box checked				E Emergency (1-2 bus, days if received by 3pm) 100% surcharge - contact ALS to confirm TAT													
	Whitehorse, YT		Select Distribution:				E2 Same day or weekend emergency - contact ALS to confirm TAT and surcharge													
Phone:	867-456-4865		Email 1 or Fax	nsandys@hemme	era.com, rmartin	ka@hemmera.co														
		·	Email 2	chris@elr.ca								. A	nalysi	is Re	quesí	ŧ			,	
Invoice To	<u>.</u>	No		Invoice Di	istribution			Ind	cate Fil	tered (F	), Preser	ved (P)	or Filte	ered ar	ıd Pres	erved	(F/P) b	elow		
	Copy of Invoice with Report ☐ Yes ☑	No No	Select Invoice C	Distribution: 교	MAIL MAIL	□FAX			L										F/P	
Company:	Hemmera Environchem Inc.		Email 1 or Fax	nsandys@hemme	era.com				-⊋				Balar					Carrbo		
Contact:	Natasha Sandys		Email 2	chris@elr.ca	····	-	ୁ ନ୍ତି		É		1				1.			ပ္ပိ		ýs.
	Project Information			and Gas Require		use)	(50) e		ž				Cation/Anion	'				jan,	E I	ije
ALS Quote #:	Q45291		Approver ID:		Cost Center:		(a)	ł	fgah				ion/		'		1 1	ō	Jier	) uta
Job #:	1343-005.03		GL Account:		Routing Gode:		Hardness	ଛି	Total Kjeldahi N (TKN)				S	gj			1	Total Organic	Ē	of Containers
PO / AFE:			Activity Code:				ម្ចី	ŏ	Ota				Sum,	d Diss.			i			Ser ¢
LSD:			Location:					as (			8		6	Acid			.	e e	Ĕ	Number
ALS Lab Wo	rk Order# (lab use only)		ALS Contact:		Sampler:	RM, AB, AN, M	ivity, pH,	alimity (	a N (tot	Vitrite	Sulfate (S04)	as S	ım, Cation	- Weak	Total	Free	ate	ganic (	r Ivretais, including	z
ALS Sample # (lab use only)	Sample Identification a (This description will ap			Date (dd-mmm-yy)	Time (hh:mm)	Sample Type	Conductivity,	Total Alkalinity (as CaCO3)	Ammonia N (total),	Nitrate, Nitrite	Ω, FI, Ω	Sulphide	Anion Sum,	Cyanide	Cyanide, Total	Cyanide,	Thiocyanate	Total Inorganic Carbon,	лвясичес	
	MW09-21			28-Jun-14	16:00	Water	R	R	R	R	R	R	R	R	R	R	⊢ R	⊢ R	R	9
	MP09-05			28-Jun-14	17:00	Water	R	R	R	R	R	R	R	R	R	R	R	R	R	9
	CH-P-13-03/50			28-Jun-14	7:30	Water	R	R	R	R	R	R	R	R	R	R	R	R	R	9
	MP09-04			28-Jun-14	11:40	Water	R	R	R	R	R	R	R	R	R	R	R	R	R	9
	MW09-24			28-Jun-14	10:20	Water	R	R	R	R	R	R	R	R	R	R	R	R	R	9
	MW09-23	-		28-Jun-14	7:40	Water	R	R	R	R	R	R	R	R	R	R	R	R	R	9
	MW09-08			28-Jun-14	12:41	Water	R	R	R	R	R	R	R	R	R	R	R	R	R	9
	FB-3			28-Jun-14	11:40	Water	R	R	R	R	R	R	R	R	R	R	R	R	R	9
	Travel Blank					Water	R	R	R	R	R	R	R	R	R	R	R	R	R	9
	DUP-5			28-Jun-14	12:41	Water	R	R	R	R	R	R	R	R	R	R	R	R	R	9
	GSI-DC-09-B			29-Jun-14	12:35	Water	R	R	R	R	R	R	R	R	R	R	R	R	R	9
	GSI-DC-10-B			29-Jun-14	14:38	Water	R	R	R	R	R	R	R	R	R	R	R	R	R	9
Drinking	Water (DW) Samples ¹ (client use)	Special Ins	tructions / Speci	ify Criteria to add o	n report (client U	se)	.		8		E COI			_				only)		
Are samples taken from a Regulated DW System?				<del></del>		<del></del> .	Froze	• •		빔	1. 7			)bserv			Yes	Ц	No	
		See attached paramete	er sheet for requ	ired metals 2) Plea	ase hold sulphid	e analysis until	ice pa		Yes		No	ш	Custo	ody se	al inta	act	Yes		No	
further notified. 3) Please			ite analysis on sam	ple MP09-10, bu	t hold other		ng Initi:		CMBE	ATUÖE	100	'				<del></del>	. ·			
Are samples for numan dranking water use?  □ Yes □ No  analysis until otherwise notified.			omea.				7.8.5.7 3.4						<u>*                                    </u>	F)	INAL C	OULE	KIEM	PERAT	TURES *	C
	SHIPMENT RELEASE (client use)		. / INITIAL CI	HIPMENT RECEP	TION (lab use s	ahA	1.6	,7./	5.4		44									
Released by:	Date: Ti	me: Receive					Rece	ived b	r	FIN	AL SHI	HMEN		CEPT Date:						
<u> </u>	estaction Quesquy 6	9:00 /	<u>/                                    </u>		Date: <b>3</b> 0 - JuJ - 19			arca D						Date.			Time:			
REFER TO BACK	PAGE FOR ALS LOCATIONS AND SAMPLING	INFORMATION /		WHI	TE - LABORATO	Y COPY VEH	OWL-	CLIEN.	r cop	·										

# ALS Environmental

REFER TO BACK PAGE FOR ALS LOCATIONS AND SAMPLING INFORMATION

## Chain of Custody (COC) / Analytical Request Form

L1478849-COFC

COC Number: 1 -

Page 2 of 2

NA-FM-03264 v09 Front/34 January 2014

Canada Toll Free: 1 800 668 9878 www.alsglobal.com Report Format / Distribution Select Service Level Below (Rush Turnaround Time (TAT) is not available for all tests) Report To Hemmera Environchem Inc. Select Report Format: **VPDF ▼EXCEL** □EDD (DIGITAL) R Regular (Standard TAT if received by 3 pm - business days) Company: Natasha Sandys Quality Control (QC) Report with Report ✓ Yes I No Priority (2-4 bus, days if received by 3pm) 50% surcharge - contact ALS to confirm TAT Contact: Emergency (1-2 bus, days if received by 3pm) 100% surcharge - contact ALS to confirm TAT Address: 230 - 2237 2nd Avenue Criteria on Report - provide details below if box checked Whitehorse, YT Select Distribution: **▼EMAIL** MAIL □FAX Same day or weekend emergency - contact ALS to confirm TAT and surcharge Email 1 or Fax nsandys@hemmera.com, rmartinka@hemmera.com Phone: 867-456-4865 Specify Date Required for E2.E or P: chris@elr.ca **Analysis Request** Email 2 □ No Invoice Distribution Indicate Filtered (F), Preserved (P) or Filtered and Preserved (F/P) below ₩. Yes Invoice To Same as Report To Copy of Invoice with Report ☐ Yes ▼ No Select Invoice Distribution: ✓EMAIL **™AIL** FAX F/P Company: Hemmera Environchem Inc. Email 1 or Fax nsandys@hemmera.com Cart Balai N (TKN) chris@elr.ca Contact: Natasha Sandys Email 2 CaC03) Organic Cation/Anion Oll and Gas Required Fields (client use) **Project Information** Kjeldahill ALS Quote #: 045291 Approver ID: Cost Center: SE) Total 1343-005.03 GL Account: Routing Code: Job #: (as CaCO3) Öiss ₽ Ammonia N (total), Total Cation Sum, Carbon, PO / AFE: Activity Code: Number Acid (504) SD: Location: Conductivity, pH, otal Alkalinity Total Inorganic Nitrite Sulfate ( Cyanide, Free ALS Lab Work Order # (lab use only) ALS Contact: Sampler: RM, AB, AN, M Sulphide as Thiocyanate Anion Sum, Cyanide - \ Cyanide, ' Nitrate, Sample Identification and/or Coordinates Date Time ALS Sample # ᇁ Sample Type (lab use only) (This description will appear on the report) (hh:mm) ਹ (dd-mmm-yy) MW09-07 R 29-Jun-14 7:40 Water R R R R R R R R R R R 9 MP09-12 29-Jun-14 13:18 Water R R R R R R R R R R R R R 9 GSI-DC-07-B 29-Jun-14 16:15 R R R R R R R R R R R Water R R 9 GSI-DC-06-B 29-Jun-14 14:40 Water R R R R R R R R R R R R R 9 MP09-09 29-Jun-14 12:25 Water R R R R R R R R R R R R R 9 MP09-11 29-Jun-14 13:39 Water R R R R R R R R R R R R 9 R MW09-17 29-Jun-14 11:07 R R R R R R R R R R R R R Water 9 FB-4 29-Jun-14 16:15 R R R R R R R R R R Water R R R 9 MP09-10 17:30 R R R R R R R R 29-Jun-14 Water R R R R R 9 Water R R R R R R R R R R R Water R R R R R R R R R R R R R R R R R R R R R R R R Water SAMPLE CONDITION AS RECEIVED (lab use only) Drinking Water (DW) Samples¹ (client use) Special Instructions / Specify Criteria to add on report (client Use) SIF Observations Yes Frozen No Are samples taken from a Regulated DW System? ice packs Yes No Custody seal intact Yes See attached parameter sheet for required metals 2) Please hold sulphide analysis until ☐ Yes No Cooling Initiated further notified. 3) Please run nitrate, nitrite analysis on sample MP09-10, but hold other INITIAL COOLER TEMPERATURES °C FINAL COOLER TEMPERATURES °C. Are samples for human drinking water use? analysis until otherwise notified. ☐ Yes √ No SHIPMENT RELEASE (client use) INITIAL SHIPMENT RECEPTION (lab use only) FINAL SHIPMENT RECEPTION (lab use only) Released by: Received by: Time: Date: Time: Received by: Date: Time: C. Tastrebshi プレップロ//ソ 09:00

WHITE - LABORATORY COPY