

April 18, 2016

EDI Project No: 15Y0146

Assessment and Abandoned Mines Branch (AAM) K-149 Department of Energy, Mines and Resources, Yukon Government Room 2C Royal Center, 4114-4th Avenue PO 2703, Whitehorse, YT, Y1A 2C6

Attention: Erik Pit, Type II Project Manager

RE: Mount Nansen Water Resources Investigations – Monthly Report: March 2016

Trip dates:	March 14-15, 2016
EDI field staff:	Dawn Hansen, Megan Sandford, and Danny Skookum
Weather during trip:	Conditions for the two days included air temperatures from -11 to -2°C, with clear to overcast skies and calm wind conditions.

The following monthly report includes a summary of site conditions and data collected during EDI's March 2016 trip to Mount Nansen as part of the 2015/16 Water Resources Investigations. The March 2016 trip represents the end of the winter season and thus a more detailed seasonal analysis of hydrology and meteorology data is provided for this period (October 16, 2015 to March 31, 2016). In addition to hydrology and meteorology, this report includes site conditions, water quality, program recommendations and additional trip information (Table 1).

Report Section	Description
Site Conditions	J Summary of weather and general site conditions
Meteorology	 J Statement on station status and identification of any data gaps or QA/QC issues J Snow depth sensor QA/QC J Seasonal Meteorological Summary (October 2015 to March 2016)
Hydrology	 J Discussion of noteworthy hydrology observations for this month J Statement of QA/QC for the data collected this month J Seasonal Hydrological Summary (October 2015 to March 2016)
Water Quality	J Summary of noteworthy water quality observations for this monthJ Statement on QA/QC sample results for this month
Program Recommendations) Program recommendations for meteorological, hydrology and water quality programs

Table 1.Summary of information provided in this monthly report.

Down to Earth Biology

Report Section	Description
Additional Trip Information	 J Project Safety Concerns J Wildlife sightings J Budget and schedule considerations
List of Attachments	 Maps of Hydrometric Stations and Water Quality Sites Site and Station Photos from the trip Data Tables (March 2016 trip) Hydrology – Site Conditions and Tasks Completed & Summary Table of Discharge Measurements. Water Quality – Site Conditions and Samples Collected & Summary Table of In Situ Parameters and Lab Results Seasonal Data Summary: October 16, 2015 – March 31, 2016 Meteorology – rainfall and snowfall summary data tables, data plots Hydrology – instantaneous measurements, and hydrographs Copies of Lab Certificate of Analysis (COA) & Yukon Environmental Health Services Bacteriological Results (March 2016).

SITE CONDITIONS

The March 2016 sampling event represented late-winter conditions at the Mount Nansen Site. Air temperatures were relatively warm, with daytime highs ranging from -11 to -2°C. Weather conditions ranged from clear to overcast skies and calm winds. Ice cover was present across all watercourses and waterbodies, with ice thickness ranging from 2 cm to 70 cm, with the tailings pond having the thickest ice. Water levels were lower than during the previous winter trips at most stations. Stations and sites along Pony Creek, Back Creek and some areas of Dome Creek remain frozen to bed, and various seeps around the site remained frozen and could not be sampled.

METEOROLOGY

Meteorological data was collected at the ATM-ROAD station throughout the month of March 2016. EDI conducted a QA/QC review of the March 2016 data and all sensors appear to be functioning properly with the exception of the radiation sensors, where for short durations, the data values from the shortwave radiation sensor were below 0 W/m^2 and the longwave radiation sensor recorded readings above 0 W/m^2 . These erroneous data were likely associated with the accumulation of snow, frost or detritus blocking the sensor. All erroneous data was removed prior to analysis.

The snow sensor data quality produced a good quality reading at the time of the field visit. On March 15, 2015, the snow depth measured by EDI was 48.0 cm, whereas the snow sensor measurement was 46.6 cm (Table 2). This indicates that to date, the snow sensor appears to be slightly underestimating snow depth, however there is likely enough spatial variability of the snow distribution and ground surface elevation in the vicinity of the meteorological station that would account for the differences. An additional snow sensor data quality metric called 'Snow_Depth_Qual' was added in the daily data recorded at the meteorological station; the data quality metric reflects the quality of the measurement (see Note 1, Table 2).

Measurement Date/Time	Manual Snow Depth Measurement near Station (cm)	Meteorological Station Snow Sensor Measurement (cm)	Snow Sensor Quality ¹	Difference (cm)
October 13, 2015 13:00	0.0	0.6	181 (Good)	0.6
November 16, 2015 14:20	20.0	18.2	185 (Good)	1.8
December 15, 2015 18:05	29.1	27.1	182 (Good)	2.0
January 12, 2016 13:35	32.5	30.0	169 (Good)	2.5
February 16, 2016 09:45	41.6	41.3	177 (Good)	0.3
March 15, 2016 09:05	48.0	46.6	172 (Good)	1.4

Table 2. Comparison of snow depth measured at the site with the snow sensor measurement.

Note:

¹- Quality numbers provide an indication of surface density in snow monitoring applications. Values will increase during snowfall events consisting of low-density snow. Quality Numbers: 0 = Not able to read distance; 152-210 = Good Measurement Quality Numbers; 210-300= Reduced Echo Signal Strength; 300-600 = High measurement uncertainty

Seasonal Meteorological Summary: October 16, 2015 - March 31, 2016

Regular seasonal air temperature trends were generally reflected during the October 16, 2015 and March 31, 2016 period; however, there were also several unseasonal warm periods recorded. Mean daily air temperatures began to fall below 0°C starting on October 16, 2015 and stayed below 0°C starting on October 23, 2015. Unseasonal warm periods (days with a mean temperature above 0°C) were experienced between November 26 – 27, 2015, and January 26 – 28, February 11, and February 24 – 27, 2016. All months in the winter reporting season, except December, had periods above 0°C. In the spring, mean daily temperatures were first above 0°C on March 11, 2016, and remained warmer than 0°C from March 28, 2016 until the end of the month. October 2015 had the highest mean monthly temperature at -0.6°C, and December 2015 had the lowest mean monthly temperature at -11.8°C. The maximum hourly temperature recorded during the reporting period was 12.2°C on March 31, 2016, while the lowest recorded temperature was -27.9°C on November 19, 2015 (Table 2). Daily air temperature fluctuations throughout the winter season can be seen in more detail in Attachment 4A: Figure 1.

The ground surface temperature record followed similar seasonal patterns as air temperature. The daily average ground surface temperature was below 0°C starting on October 19, 2015, and began rising above 0°C on March 30, 2016. Ground surface temperatures did not go above 0°C in between these dates. The maximum ground temperature was 3.3°C on October 18, 2015, and the minimum ground temperature was -10.3°C on November 19, 2015 (Attachment 4A, Figure 1).

Seasonal rainfall and snowfall patterns were characteristic of the region for the October 16, 2015 to March 31, 2016 period, with a few unseasonal rainfall events. Rainfall events are defined as periods of rainfall greater than or equal to four hours, and/or have greater than or equal to 2.0 mm of rainfall recorded. Three rainfall events occurred during the winter when temperatures rose above 0°C; one event occurred in November and three occurred in February. The remaining rainfall events occurred in late fall and early

spring periods (Attachment 4A, Figure 2). Rainfall was recorded in all months during the winter period, except for December. Some of the rainfall records could be a result of sensor error, where the sensor picks up melt water rather than precipitation.

Snow was present on the ground throughout the October 16, 2015 to March 31, 2016 period. The depth of the snowpack at the beginning of the 2015/2016 winter period was 0.5 cm on October 16, 2015, and the depth at the end of the winter season was 26.1 cm on March 31, 2016. The snowpack reached its maximum at 48.1 cm on March 13, 2016. The snowpack began a rapid melt beginning on March 29, 2016 when snow depth decreased 16.8 cm in 52 hours. In total, 78 snowfall events occurred during the season (Attachment 4A: Table 2 and Figure 3). November and December 2015 represented the most intense and highest cumulative total monthly snowfall amounts. Total monthly snowfall during the month of November was the highest of the season (31.1 cm) and included 13 snowfall events. The largest snowfall event occurred on November 12 2015, lasted for nine hours, and produced a total of 10.0 cm of snow.

The dominant wind directions during the season were south-westerly (see Attachment 4a: Figure 4). The maximum mean hourly wind speed recorded during this period was 7.8 m/s (28.1 km/hr) on December 30, 2015. The month with the highest mean wind speed was February 2016 at 2.3 m/s (8.9 km/hr), while December had the lowest mean monthly wind speed at 1.5 m/s (5.4 km/hr) (see Attachment 4A: Figure 5).

Net radiation during the winter season ranged from a minimum of -70.7 W/m² on October 19, 2015 to a maximum recorded net radiation of 330.0 W/m² on March 15, 2016. March 2016 had the highest mean monthly net radiation at -4.2 W/m², while February had the lowest monthly mean net radiation at -18.1 W/m² (see Attachment 4A: Figure 6).

Mean daily relative humidity ranged from 69.8% to 86.7% during the season. The maximum recorded relative humidity occurred 99.5% on March 21, 2016. The minimum recorded relative humidity was 31.1% on March 31, 2016 (Attachment 4A: Figure 7).

		Air Temperat	ure		Snowfall		Rainfall			
Month	Max (°C)	Min (°C)	Mean (°C)	Total Number of Events	Events Total (cm)	Max Event Total (cm)	Max Intensity (mm/hr)	Max Daily Total (mm)	Total Monthly (mm)	
October	7.0	-11.9	-0.6	6	10.7	7.1	1.4	3.1	5.8	
November	1.8	-27.9	-10.2	13	31.1	10.0	0.7	1.9	1.9	
December	-1.5	-22.9	-11.8	17	30.3	5.1	0	0	0	
January	0.1	-17.0	-7.5	13	18.1	4.3	0.1	0.1	0.1	
February	2.6	-22.5	-7.5	15	20.8	4.6	1.2	2.4	7.3	
March	12.2	-11.1	-3.6	14	10.8	2.6	1.9	2.6	5.3	

Table 1.Mount Nansen air temperature and precipitation statistics by month (October 16, 2015 to March 31, 2016).

HYDROLOGY

Discharge measurements were collected at all stations with suitable measurement conditions during the March 2016 trip. Flowrates continued to decline to baseflow conditions and represented the lowest levels to date in the 2015/2016 winter period, except at H-DC-M WP and H-VC-R+290. Hydrometric stations at H-PC-DSP, H-BC, H-DC-B, H-DC-R and H-DC-D1b remain frozen to substrate. H-DC-DX+105 was frozen to bed in March for the first time during the winter period. Continuous water level records are available for five stations for the period up to March 15, 2016: H-VC-U, H-VC-DBC, H-VC-UMN, H-VC-R and H-VC-R+290. Data could not be downloaded successfully from the continuous water level logger at H-DC-M WP in March and the channel was frozen to bed in the vicinity of the logger. Data was successfully downloaded in January 2016 however the download successes have been sporadic over the winter and it is suspected that there is damage to the direct read communication cable, not the logger itself. Regardless, the logger and sensor will be checked for damage after thaw occurs and the direct read cable will be replaced (see Program Recommendations and Additional Trip Information Section for details).

Surface water conditions and hydrometric monitoring tasks completed at each station in March 2016 are summarized in Attachment 3. Quality control and quality assurance was conducted for all hydrometric data.

Site Observations - March

- Discharge measurements were collected with an ADV using the velocity-area method at all Victoria Creek stations, H-VC-U, H-VC-DBC, H-VC-UMN, H-VC-R+290, with discharge values that ranged from 0.012 to 0.063 m³/s.
 - ↓ The measured discharge at H-VC-DBC (0.063 m³/s) is greater than at the downstream station at H-VC-UMN (0.017 m³/s). Typically discharge increases in the downstream direction of a watercourse as the contributing watershed area increases, therefore this decreasing winter flow pattern may indicate that the Victoria Creek reaches are losing surface flow to groundwater pathways. Similar discharge patterns have been previously noted along Victoria Creek in July 2014, May-July 2015, and November 2015-February 2016. A more detailed review of the Victoria Creek water balance is provided in the Seasonal Hydrology Summary section below.
- At H-DC-M WP, overflow ice originating from the seepage discharge site has covered the weir pond with a thick layer of ice and has advanced downstream of the water quality site. No discharge measurement could be collected at this site. Less than half of the water was flowing through the weir at the time of the site visit with the remainder flowing over the right edge of the support wall of the pond. Additionally, water continues to flow between the metal weir plate and wooden support structure (similar to that observed in January and February 2016). No confined channel could be located downstream of the pond and water was suspected to be flowing between layers of ice; conditions were not suitable for discharge measurement.

- H-DC-DX+105 was frozen to bed for the first time during the winter period and therefore no discharge measurement was completed.
- The H-SEEP volumetric discharge measurement $(0.002 \text{ m}^3/\text{s})$ was identical to the flow rate measured at the pump in the seepage pond shack $(0.002 \text{ m}^3/\text{s})$.
- Overflow ice conditions were present along Dome Creek in the vicinity of H-DC-R and H-DC-B. The H-DC-B station was frozen to bed, no measurements could be collected. Denison Environmental Services had recently excavated overflow ice from the diversion channel upstream of the bridge. The H-DC-R and H-DC-D1b stations are considered frozen to substrate for the winter.

Seasonal Hydrological Summary: October 16, 2015 to March 31, 2016

Stage hydrographs were developed for all hydrometric stations where continuous water level logger data was available at the Mount Nansen site during the winter season. These included H-DC-M WP, H-VC-U, H-VC-DBC, H-VC-UMN, H-VC-R, and H-VC-R+290. Stage-discharge rating curves are not updated during the winter period due to the influence of ice on water levels and subsequently the relationship between stage and discharge described by the rating curve. As a result, no continuous discharge hydrographs are produced for the winter season; however, the instantaneous discharge measurements completed at these stations during the winter season are also plotted on the hydrographs (Attachment 4B). Loggers at H-PC-DSP, H-DC-B, H-DC-R and H-BC were removed prior to the winter season. Hydrometric stations at H-DC-D1b and H-BC and H-TP were frozen to bed for the entire winter period and therefore no discharge measurements were collected.

Hydrographs were prepared for hydrometric stations where instantaneous discharge measurements were collected (Attachment 4B). This includes stations H-DC-DX+105, H-DC-B, H-DC-R, H-SEEP and H-PW. The hydrograph for H-SEEP includes the instantaneous flowrate, recorded daily at the seepage pond flow meter by Denison Environmental Services.

The Solinst Edge M1.5 barologger located at ATM-VC5 began malfunctioning during the winter season (November 2015). The barologger is used to compensate all the continuous water level loggers for atmospheric pressure. The barologger at ATM-VC5 was replaced in January 2016 therefore for the majority of winter season the barologger produced unreliable data. A redundant barometric sensor located at the AAM meteorological station (ATM-ROAD) was used for compensation for the entire winter season. The redundant sensor is located at a higher elevation (approximately 1260 m, asl) than ATM-VC5 (1015 m, asl), therefore an elevation-based model correction was required to use the data from ATM-ROAD for compensating the water level loggers between November 1, 2015 and March 15, 2016.

Continuous water level data from the logger at H-DC-M WP is presented up to November 11, 2015. Logger data collected after this date was determined to unreliable because the logger was frozen to the stream bed. No discharge measurement could be collected in March because channel was frozen to bed. The measured flowrates through the weir pond steadily increased over the winter period from a low of

0.003 m³/s in November to a high of 0.005 m³/s in February. Although the magnitude of increase in the flowrates is relatively small (0.002 m³/s or 2 L/s) the increasing trend is not explained by simple water balance calculations of upstream contributions from H-SEEP or H-DC-B. Sources of error in measuring discharges at extremely low flow conditions are suspected, as any errors would have a large influence on the estimated discharge. Additionally, salt tracer methods, which were used in January and February, are recognized to have a greater measurement uncertainty (compared to volumetric or ADV methods) and have greater potential for measurement errors.

The water balance along the Victoria Creek water course was analyzed to investigate gaining and losing reaches associated with groundwater-surface water fluxes. The instantaneous discharge measurements collected along Victoria Creek and suggest possible groundwater-surface water interactions (Attachment 4B). The measured discharges at H-VC-DBC are consistently greater than at all other hydrometric stations along Victoria Creek including at the downstream stations (H-VC-UMN, H-VC-R and H-VC-R+290) where the contributing watershed area is larger and discharges would typically be expected to be greater.

Discharges measured in March 2016 along Victoria Creek were the lowest of the 2015/2016 winter season, with the exception of H-VC-R+290 where the February discharge (0.021 m³/s) was slightly lower than in March (0.023 m³/s), and are considered to represent a close approximation of baseflow conditions (Attachment 4B.)

The discharge values at H-VC-U and H-VC-DBC suggest that there is a substantial net gain of water between these two stations during the winter over a very short distance (approximately 250 m). The Back Creek confluence with Victoria Creek is situated between the stations; however, during the winter, Back Creek was frozen to the channel bed and did not contribute surface flow. An example of the magnitude of the net increase in discharge between these stations occurred in March 2016; the measured discharge at H-VC-U (0.039 m³/s) was less than at H-VC-DBC (0.063 m³/s). Open water leads were also noted between these two stations above the Back Creek confluence throughout the winter supporting the presence of warm groundwater inputs to the channel in this reach (Photos 10 - 12 in Appendix 2). The relationship between these stations was observed for all winter months and the relative magnitude of the increase was more significant as baseflow conditions were approached.

Conversely, data from the Victoria Creek stations H-VC-DBC and H-VC-UMN indicate that the reach is losing water to groundwater (losing reach). The flow rate measured at H-VC-DBC was consistently greater during the winter season than at the downstream station at H-VC-UMN. The Dome Creek confluence with Victoria Creek occurs between these stations but Dome Creek does not contribute surface water to the channel during the winter. For example, during the March visit the discharge at H-VC-DBC (0.063 m³/s) was greater than downstream at H-VC-UMN (0.012 m³/s) despite the increase in contributing watershed area. The relative magnitude of the decline in discharge between H-VC-DBC and H-VC-UMN increased over the winter period.

Between H-VC-UMN and H-VC-R/H-VC-R+290 the local groundwater influences are less clearly defined and require additional data collection to determine groundwater-surface water exchanges. In November

2015, January 2016 and February 2016 the measured discharges at H-VC-UMN were greater than at the downstream stations at H-VC-R/H-VC-R+290. However, an increase in the discharges was observed in January and March 2016.

The continuous stage logger records for multiple stations show infrequent, abrupt increases in the water level during the winter period. For example, at H-VC-U two peaks occurred during February with water levels increasing from approximately 1.96 m to 2.18 m. These elevated water levels are thought to be associated with ice-related processes and not with significant increases in discharge. Similar peaks are observed in the continuous stage data at H-VC-R, H-VC-R+290, H-VC-UMN and H-VC-DBC and are noted on the stage-hydrographs in Appendix 4B.

One set of concurrent measurements was completed along Victoria Creek for ongoing validation of the salt tracer method during the 2015/2016 winter period. Concurrent discharge measurements were completed at H-VC-R+290 using the velocity-area and salt tracer methods yielding similar results (salt tracer = $0.030 \text{ m}^3/\text{s}$; velocity-area = $0.025 \text{ m}^3/\text{s}$). Additional concurrent measurements and validation of the salt tracer method will be completed when site conditions and timing permit.

Following the winter freeze-up, flows declined substantially during December and remained low for the entire winter season as baseflow conditions were approached. The following list summarizes the minimum measured flowrates for stations where discharges were collected for each month during the winter:

- \int H-VC-U: 0.039 m³/s on March 14, 2016
- J H-VC-DBC: 0.057 m³/s on January 13, 2016
- J H-VC-UMN: 0.012 m³/s on March 14, 2016
- \int H-VC-R+290: 0.021 m³/s on February 15, 2016
- J H-SEEP: 0.002 m³/s on March 15, 2016

All stations with continuous loggers experienced a sudden increase in the recorded stages starting on November 18, 2015. The timing of this event corresponds to the first significant cold period on site, reaching a low of -27°C and persisting for several days. EDI hypothesizes that these cold temperatures triggered a large amount of ice formation, and an associated increase in the recorded stage in the channel.

The continuous water level records at all stations exhibited an increase in water levels in mid-February, and is most pronounced at H-VC-DBC where a rapid increase in water levels begins on February 17, 2016. This period is associated with unseasonably warm temperatures on site, including daily air temperatures above 0°C on February 11 and 24, 2015. This is suspected to have caused minor melting and shifting of ice on site, causing elevated water levels in the channels.

WATER QUALITY

Water quality samples and in-situ data were collected at the regularly scheduled sites during the March 2016 trip. A total of eight sites were sampled. Many stations remain frozen to substrate for the winter period (Attachment 3). The regular monthly drinking water sample was collected from the pumphouse well (WQ-PW). All samples were submitted for analysis through ALS Laboratories under chain of custody documentation.

Site conditions were noted and a record of the samples collected were compiled (Attachment 3). In-situ and laboratory results summary tables as well as the lab certificates of analysis are attached (Attachment 3 and Attachment 4). Parameters that exceeded the Canadian Council of Ministers of the Environment Freshwater Aquatic Life (CCME-AL) guidelines and/or the Mount Nansen Effluent Quality Standards (EQS) criteria are highlighted. Many results reflect typical conditions for this time of year at Mount Nansen where water levels are low and watercourses are covered in ice. A summary of the results and comments on the sample QA/QC data are included in the subsections below.

March Water Quality Results Summary

-) The Victoria Creek samples did not exceed any guidelines or standards (this is typical of the winter season).
- The total zinc concentration in the March 2016 WQ-SEEP sample was above the CCME-AL guideline with a concentration of 0.116 mg/L. This is similar to the January 2016 sample result of 0.114 mg/L and the February result of 0.122 mg/L. The sample from this site also had concentrations above guidelines/standards for ammonia, arsenic, cadmium, iron, and manganese, which is a common occurrence at this site. Additionally this month, the nickel concentrations exceeded the CCME guideline.
- The WQ-TP samples exceeded the guidelines and/or standards for total suspended solids (TSS) ammonia, fluoride, arsenic, cadmium, copper, iron, lead, manganese, and zinc. These results are typical of the winter season. Additionally this month, total aluminum, nickel, and silver were also present at concentrations that exceeded CCME guidelines.
-) The WQ-DC-U site downstream of the WQ-DC-B and WQ-SEEP sites exceeded the guidelines and/or standards for ammonia, arsenic, iron, manganese, and zinc. These results are typical of the winter season. Additionally this month, the nickel concentrations exceeded the CCME guideline.
- The LC50 sample collected from the WQ-SEEP had a 96-hour LC50 result of greater than 100%, with 100% trout survival at 96-hours.

QA/QC Samples

Travel Blank Sample – All parameters below detection limits. No contamination from storage or transport is suspected.

Field Blank Sample – All parameters were below detection limits. No contamination from field methodology is suspected.

Replicate Sample(s) – The average relative percent difference (RPD) of the replicate sample set for WQ-VC-UMN-r was 3%, indicating that sample analysis was adequately precise (RPD<20%). The average RPD for total metals in the replicate sample set was 3% and the average RPD for dissolved metals was 2%. All individual parameters had RPD less than 20% or below detection limits.

PROGRAM RECOMMENDATIONS

-) Continue to collect photographs of the meteorological station compound during each summer season trip. Snow depth measurements should continue until all snow has melted adjacent to the station to confirm snow sensor data.
-) Conduct concurrent velocity-area and salt tracer discharge measurements at all hydrometric stations during the open water season, where possible, to continue to validate the salt tracer method.
- The water level logger at H-DC-M WP has frozen to the channel bed and the weir and the weir pond is covered with a thick layer of overflow ice. The logger could not be successfully downloaded during the March field visit and the suspected cause is a damaged direct read cable. The direct read cable will be replaced in the spring when conditions permit. EDI recommends testing for sensor drift once the station thaws to assess if there was damage to the sensor from the ice.
- As first noted in January 2016, water flows between the metal weir plate and the wooden structure at H-DC-M WP. Volumetric discharge measurements cannot be made at the station because all of the water cannot be captured. Once the structure is ice free and flows have receded, the condition of the weir plate should be assessed and repaired as required to facilitate future volumetric discharge measurements.
- Accumulated fine sediment in the weir pond at H-DC-M WP continues to cause concern that channel instability in the diversion channel banks upstream (particularly following rain storms and excavation work) is causing sedimentation in the weir pond, and decreasing the function of the weir. Sedimentation in the pond decreases capacity and causes water to flow over the edges of the wooden support structure. Sediment will be manually removed from the weir pond when necessary and potential effects to resulting data will be noted in field and monthly reports.
-) The hydrometric station at H-VC-R has been collecting concurrent data with H-VC-R+290 since September 2015. The hydrometric station at H-VC-R (stilling well, continuous data logger, staff gauge) are planned to be removed following the spring freshet, provided that the location of H-VC-R+290 is deemed to be acceptable.
- During the 2015 open water season, a large earth dam was constructed upstream of WQ-PC-U as part of placer mining operations. Flows from the ponded area were controlled by a pump that discharged upstream of the WQ-PC-U site. This produced non-representative sampling conditions at WQ-PC-U and WQ-PC-D. Additionally, the accumulation of sediment and the

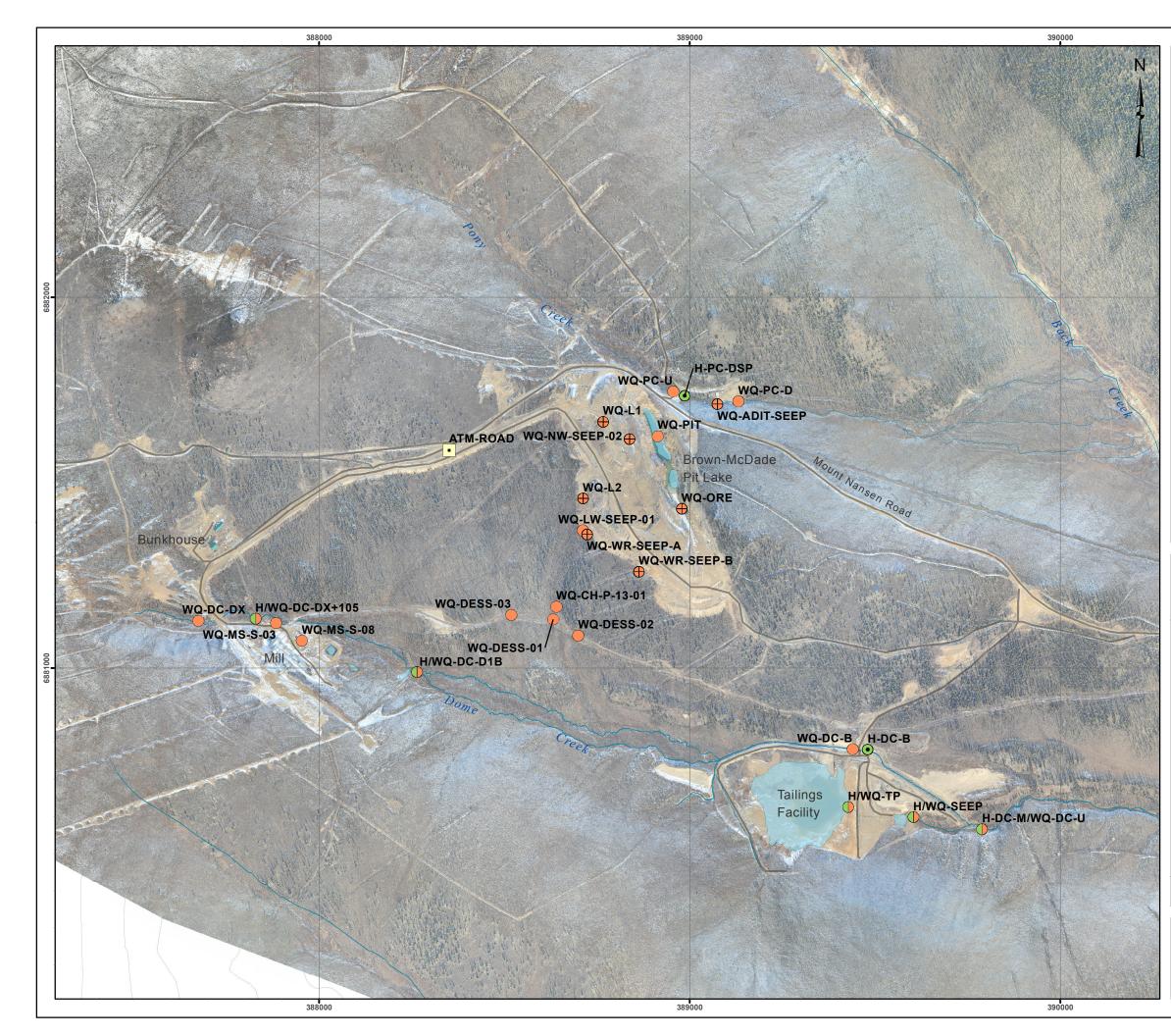
controlling of flows in the channel produced channel instability and non-representative hydrological conditions at H-PC-DSP. Depending on the proposed placer works, the installation of a hydrology station may need to be suspended.

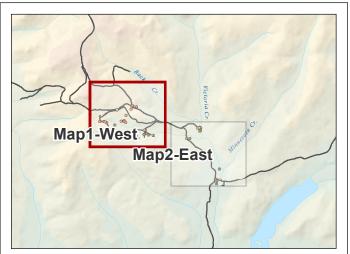
- The benchmarks, stilling well, continuous logger and staff gauge at H-DC-B were removed prior to the winter season to prevent them from being destroyed during excavation activities along the diversion channel. The site will be assessed during the April/May visit and the station re-established when site conditions permit.
- Stilling wells, continuous loggers and staff gauges at H-DC-R and H-BC were removed for the winter period as these stations are known to freeze to bed. These stations will be assessed during the April/May visit and re-established when site conditions permit.
- Many sites that have been frozen to bed for the winter period should be revisited during the April/May visits to determine if water is starting to flow. This likely applies to WQ-DC-DX, H/WQ-DC-D1b, WQ-PC-U, WQ-PC-D, H-PC-DSP, H/WQ-BC, H/WQ-DC-R, H/WQ-DC-B and WQ-CH-P-13-01; as well as the other seeps that were dry most or all of the 2015 open water season WQ-ADIT-SEEP, WQ-LW-SEEP-01, WQ-MS-S-08.

Any changes to project scope (i.e. additional sites sampled):	None. All sampling and monitoring was conducted within scope. The schedule for the next trip is unknown at this time. The next trip will be the first of the 2016/2017 Water Resources Investigation.
Any alterations to sample schedule/budget:	None.
Additional Comments:	Conditions were representative of late-winter, with lower water levels to the last trip and ice and snow was present at all locations. Stations and sites along Pony Creek, Back Creek, and some areas of Dome Creek remain frozen to substrate for the winter period, along with all the seep areas.
	The existing direct read cable installed on the logger at H-DC-M WP was once again not working properly during the March 2016 site visit and since this has been a re-occurring issue, the direct read cable should be replaced following the spring thaw to avoid further issues.
Wildlife Sightings:	None.
Site concerns (safety):	Ice was present at many locations around the Mount Nansen site creating slippery conditions. Overflow ice overtopped the roadway at the Victoria Creek crossing. The road was cleared of ice prior to the arrival of the EDI crew (by DES).

ADDITIONAL TRIP INFORMATION

LIST OF ATTACHMENTS


The following information is attached to this monthly report:


- 1. Maps of Hydrometric Stations and Water Quality Sites
- 2. Site and Station Photos from the trip
- 3. Data Tables (March 2016 trip)
 - a. Hydrology Site Conditions and Tasks Completed & Summary Table of Discharge Measurements.
 - b. Water Quality Site Conditions and Samples Collected & Summary Table of In Situ Parameters and Lab Results
- 4. Seasonal Data Summary: October 16, 2015 March 31, 2016
 - a. Meteorology rainfall and snowfall summary data tables, data plots
 - b. Hydrology instantaneous measurements, and hydrographs
- 5. Copies of Lab Certificate of Analysis (COA) & Yukon Environmental Health Services Bacteriological Results (March 2016).

ATTACHMENT 1: MAPS OF HYDROMETRIC STATIONS AND WATER QUALITY SITES

EDI Project No: 15Y0146

Legend

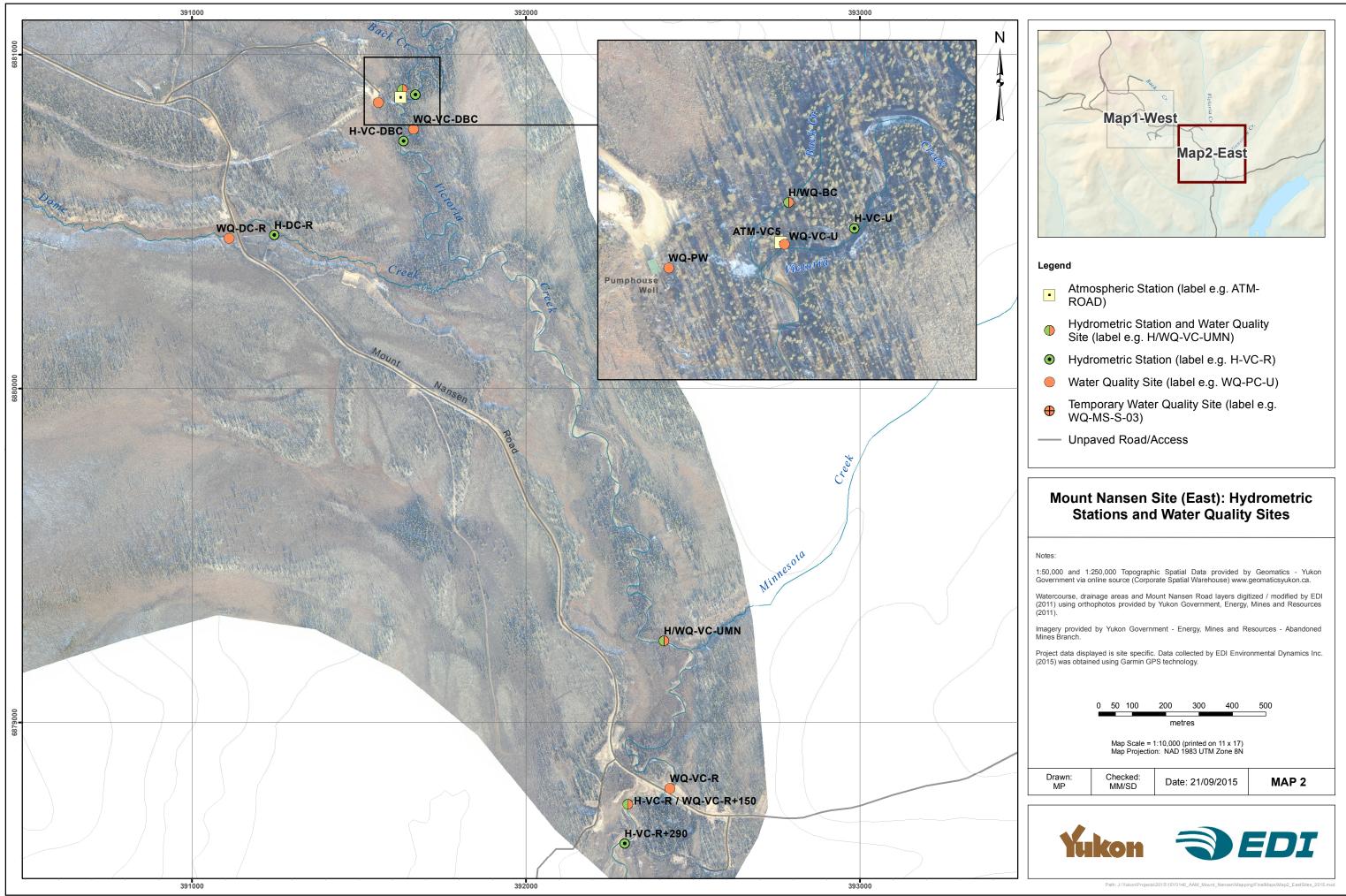
- Atmospheric Station (label e.g. ATM-ROAD)
- Hydrometric Station and Water Quality Site (label e.g. H/WQ-VC-UMN)

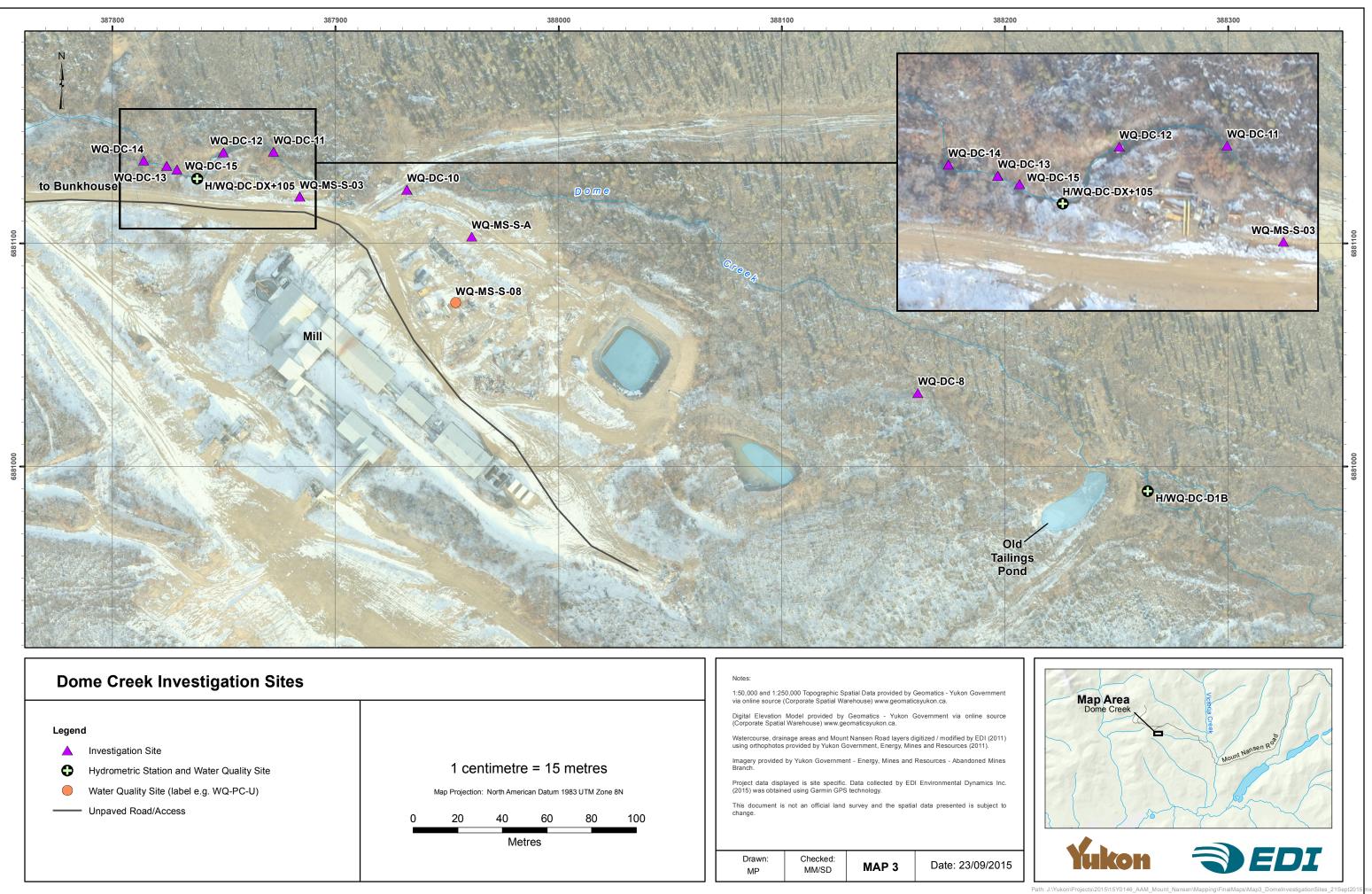
• Hydrometric Station (label e.g. H-VC-R)

- Water Quality Site (label e.g. WQ-PC-U)
- Temporary Water Quality Site (label e.g. WQ-MS-S-03)
 - Unpaved Road/Access

Mount Nansen Site (West): Hydrometric Stations and Water Quality Sites

Notes:


1:50,000 and 1:250,000 Topographic Spatial Data provided by Geomatics - Yukon Government via online source (Corporate Spatial Warehouse) www.geomaticsyukon.ca.


Watercourse, drainage areas and Mount Nansen Road layers digitized / modified by EDI (2011) using orthophotos provided by Yukon Government, Energy, Mines and Resources (2011).

Imagery provided by Yukon Government - Energy, Mines and Resources - Abandoned Mines Branch.

Project data displayed is site specific. Data collected by EDI Environmental Dynamics Inc. (2015) was obtained using Garmin GPS technology.

	0	50 100	200 me	300 tres	400	500
Map Scale = 1:10,000 (printed on 11 x 17) Map Projection: NAD 1983 UTM Zone 8N						
Drawn: MP		Checked: MM/SD	Date	e: 21/09	/2015	MAP 1

Dome Creek Investigation Sites	Notes: 1:50,000 and 1:250,000 Topographic Spatial Data provided by Geomatics - Yukon Government	
Legend Investigation Site Hydrometric Station and Water Quality Site Water Quality Site (label e.g. WQ-PC-U) Unpaved Road/Access 	1 centimetre = 15 metres Map Projection: North American Datum 1983 UTM Zone 8N 0 20 40 60 80 100	via online source (Corporate Spatial Warehouse) www.geomaticsyukon.ca. Digital Elevation Model provided by Geomatics - Yukon Government via online source (Corporate Spatial Warehouse) www.geomaticsyukon.ca. Watercourse, drainage areas and Mount Nansen Road layers digitized / modified by EDI (2011) using orthophotos provided by Yukon Government, Energy, Mines and Resources (2011). Imagery provided by Yukon Government - Energy, Mines and Resources - Abandoned Mines Branch. Project data displayed is site specific. Data collected by EDI Environmental Dynamics Inc. (2015) was obtained using Garmin GPS technology. This document is not an official land survey and the spatial data presented is subject to change.
	Metres	Drawn: Checked: MAP 3 Date: 23/09/201

ATTACHMENT 2:

SITE AND STATION PHOTOS

EDI Project No: 15Y0146

Photo 1. H/WQ-DC-DX+105 – looking upstream. Site frozen to bed.

Photo 2. H/WQ-DC-B – looking upstream. Site frozen to bed.

Photo 3. H/WQ-DC-B – upstream of site looking downstream. Note overflow ice and trenching.

Photo 4. H-DC-M WP – looking upstream at weir pond. Stilling well frozen in ice and soil.

Photo 5. WQ-DC-U looking downstream. Site covered with overflow ice.

Photo 6. H-DC-R –Site frozen to bed. View downstream of road crossing.

Photo 7. H/WQ-SEEP – looking downstream.

Photo 8. WQ-TP - looking upstream. Sample collected through augured hole.

Photo 9. H/WQ-BC – site remains dry.

Photo 10. H-VC-U – looking upstream.

Photo 11. H-VC-U – looking downstream. Note large open lead downstream of station.

Photo 12. WQ-VC-U – looking downstream. Note open leads.

Photo 13. H-VC-DBC – looking upstream.

Photo 14. WQ-VC-DBC – overview of sampling site.

Photo 15. Between H-VC-UMN – downstream left bank.

Photo 17. WQ-VC-R+150 – looking upstream.

Photo 16. WQ-VC-UMN – looking upstream – also location for ADV cross section (H-VC-UMN).

Photo 18. Upstream of road crossing at Victoria Creek (H-VC-R). View of overflow ice and excavation work.

Photo 19. H-VC-R – looking downstream.

Photo 20. H-VC-R+290 – looking downstream.

Photo 21. H/WQ-PW – overview.

Photo 22. H/WQ-PW – overview.

Photo 23. Met station snow depth.

Photo 24. Met station overview.

ATTACHMENT 3A:

MARCH HYDROLOGY DATA TABLES

Measurement ID	Hydrometric Identifier (HID)	Measurement Date	Measurement Time	Discharge Measurement Method	Discharge (m ³ /s)	Discharge Data Flag	Surveyed Water Elevation (m)	Survey Data Flag	Comments
450	ATM-VC5	14/03/2016		N				N	Barlogger sucessfully downloaded.
453	H-DC-DX+105	15/03/2016		N				N	Site frozen to bed.
451	H-DC-B	15/03/2016		N				N	Site frozen to bed for the winter period. Extensive overflow ice upstream of site. Denison recently excavated overflow ice from diversion channel.
452	H-TP	15/03/2016		N				N	Snow at staff gauges with no ice or water.
449	H-SEEP	15/03/2016	11:00	v	0.002			N	Volumetric measurement collected at pipe outlet. Flow rate at pump at 11:00: 124.135 L/min (0.002 m3/s) and total discharge = 406,296 L.
448	H-DC-M WP	15/03/2016		Ν		x		N	Conditions not suitable for discharge measurement. Overflow ice covers weir pond and extends at least 100 m downstream. Water flowing around right wall of pond and between layers of ice.
446	H-BC	14/03/2016		Ν				N	Site dry. No evidence of flow since last site visit.
443	H-VC-U	14/03/2016	19:18	ADV-MID	0.039	В		N	Open lead along centre of channel upstream of stilling well. ADV discharge measurement completed.
447	H-PW	14/03/2016	19:30	v	0.003			N	Ice build up downstream of pipe outlet. Volumetric discharge measurement completed.
441	H-VC-DBC	14/03/2016	18:03	ADV-MID	0.063	В		N	Channel frozen to bed along left bank. ADV completed for discharge measurement. Ice thickness up to 0.15 m.
442	H-VC-UMN	14/03/2016	15:55	ADV-MID	0.012	В		N	Low flow level with left bank frozen to bed. ADV discharge measurement completed.
444	H-VC-R	14/03/2016		Ν				N	Conditions not suitable for discharge measurement due to shallow flow depth. Large amount of overflow ice upstream of road and beyond right bank near gauging station. Denison recently excavted ice to prevent damage to the road embankment.
445	H-VC-R+290	14/03/2016	14:04	ADV-MID	0.023	В		N	ADV completed for discharge measurement. Channel frozen to bed along right bank.

* Pony Creek (H-PC-DSP) and Dome Creek at D1b (H-DC-D1b) remain frozen to bed for winter period.

Discharge Measurement Method Legend

Measurement Method ID	Measurement Method	Measurement Description
ADV-MID	Mid Section Method - Acoustic Doppler Velocimeter	Cross-sectional velocity using an ADV, mid-section method.
SS	Brine Salt Slug Tracer	Salt dilution gauging using a brine salt slug.
V	Volumetric	Volumetric measurement obtained by filling a graduated contained at a culvert, pipe outlet or weir.
W	Weir	Measurement obtained by a rated structure (v-notch weir).
N	N None No measurement could be obtained.	
SD	Dry Salt Slug Tracer	Salt dilution gauging using a dry salt slug.
HWM	High Water Mark - Indirect Method	Indirect method using high water mark in the slope-area calculation for estimating high discharges.
ADCP	Acoustic Doppler Current Profiler	Cross-sectional velocity using an ADCP, mid-section method.
SC	Constant Rate Salt Tracer	Salt dilution gauging using the constant rate method.
CM-MID	Mid Section Method - Current Meter	Cross-sectional velocity using a velocimeter (Swoffer or Pygmy AA)

Hydrometric Stations	
Hydrometric ID	Hydrometric Stations
ATM-VC5	Atmospheric Barologger (5) at Victoria Creek
H-BC	Back Creek
H-DC-B	Diversion Channel at Bridge
H-DC-D1B	Dome Creek at D1b
H-DC-DX	Dome Creek at DX
H-DC-DX+105	Dome Creek at DX+105
H-DC-M-WP	Middle Dome Creek at Weir Pond
H-DC-R	Dome Creek at Road
H-PC-DSP	Pony Creek Downstream of Pit
H-SEEP	Seepage Pond Outflow
H-TP	Tailings Pond
H-VC-DBC	Victoria Creek Downstream of Back Creek
H-VC-R	Victoria Creek at Road
H-VC-U	Upper Victoria Creek
H-VC-UMN	Victoria Creek Upstream of Minnesota Creek

Discharge Data Flag Legend

Discharge Data Flag	Discharge Data Flag Description
E	Estimated value
В	Backwater effects (ice related)
F	Instrument malfunction
м	Manual measurement
A	Automated measurement (logged)
ML	Missing length data
MD	Missing depth data
MW	Missing width data
0	Outside of measurement reporting range
Р	Potential Place Mining Interference with Flow
S	Suspect data
x	Poor channel conditions for discharge measurement
MI	Missing Data
SH-L	Data logger Shift
SH-SG	Staff Gauge Shift
UR	Under review

Survey Data Flag Legend

Survey Flag	Survey Flag Description				
S	Suspect data				
MI	Missing data Under review				
UR					
F	Instrument Malfunction				
0	Outside measurement Accuracy (+/-0.003 m)				
N	No survey conducted				

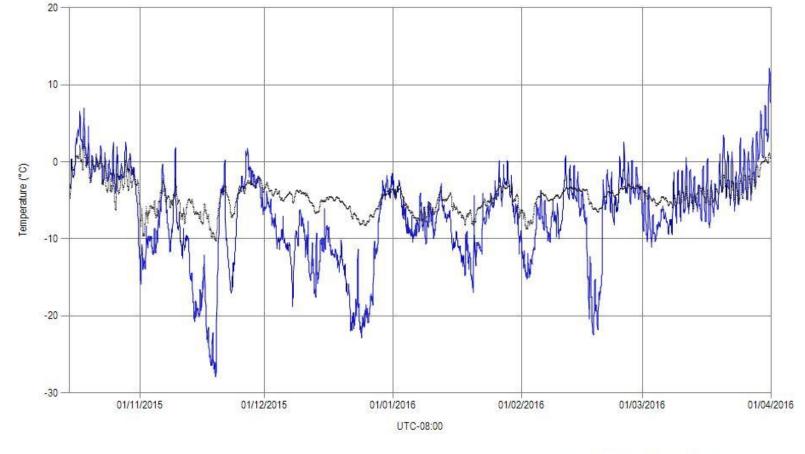
ATTACHMENT 3B:

MARCH WATER QUALITY DATA TABLES

Water Quality Site	Sample Collected? (Y/N)	Measurement Date	Comments			
WQ-BC	N	-	Remains frozen to bed.			
WQ-CH-P-13-01	N	-	Remains frozen to bed.			
WQ-DC-B	Ν	-	Remains frozen to bed.			
WQ-DC-D1b	Ν	-	Remains frozen to bed.			
WQ-DC-DX	Ν	-	Remains frozen to bed.			
WQ-DC-DX+105	Ν	-	Frozen to bed.			
WQ-DC-R	Ν	-	Remains frozen to bed.			
WQ-DC-U	Y	15-Mar-16	Low water levels and very slow flow. No confined channel, water likely flowing through ice layers and slush layers in the vegetation. Ice thickness variable between 0.3 and .05 m.			
WQ-PC-D	Ν	-	Remains frozen to bed.			
WQ-PC-U	Ν	-	Remains frozen to bed.			
WQ-PW	Y	14-Mar-16	Flow normal, ice accumulation at pipe outlet is normal. Regular BacT sample was also collected.			
WQ-SEEP	Y	15-Mar-16	Very low water levels. No ice accumulated in culvert. LC50 was also collected.			
WQ-TP	Y	15-Mar-16	Ice appears to have dropped since last visit. Total ice thickness 0.69 m. 5-10 cm between bed and bottom of ice at sample location.			
WQ-VC-DBC	Y	14-Mar-16	Low water levels (similar to last month), no overflow ice present, two small open water leads upstream of sampling site.			
WQ-VC-R	Ν	-	Frozen to bed - thick overflow ice - sampled from WQ-VC-R+150 downstream.			
WQ-VC-R+150	Y	14-Mar-16	Low water levels, overflow ice accumlating upstream of road. Sampled from open water lead upstream of hydro site.			
WQ-VC-U	Y	14-Mar-16	Low water levels (similar to last month), two small open water leads downstream of sampling location.			
WQ-VC-UMN	Y	14-Mar-16	Low water levels, creek frozen to bed mid channelon left bank. Trail to sampling location covered in overflow ice.			
tA/QC Samples						
Replicate 1	Y	14-Mar-16	Replicate collected at WQ-VC-UMN (sample ID WQ-VC-UMN-r).			
Field Blank	Y	14-Mar-16	Sample bottles filled with deionized water supplied by ALS; samples were filtered and preserved as instructed. Collected at WQ-VC-R+105.			
Travel Blank	Y	-	Samples provided by lab and were transported to and from site.			

ummary of Water Quality Results for the March 14-1 Analyte		CCME-WATER-F-		Sample ID/Site ID	WQ-VC-U L1745321-4	WQ-VC-DBC L1745321-7	WQ-VC-UMN L1745321-1	WQ-VC-UMN-R L1745321-5	QA/QC WQ-DC-DX+105-r	WQ-VC-R+105 L1745321-3	WQ-TP L1745321-8	WQ-SEEP L1745321-10	WQ-DC-U L1745321-9	WQ-PW L1745419-1	FIELD BLANK L1745321-2	TRAVEL BLANK L1745321-6
·		AL	Discharge Standards	Date Sampled Detection Limit	3/14/2016 6:25:00 PM Water	3/14/2016 6:00:00 PM Water	3/14/2016 3:45:00 PM Water	3/14/2016 4:25:00 PM Water	Replicate Analysis	3/14/2016 2:05:00 PM Water	3/15/2016 11:25:00 AM Water	3/15/2016 10:50:00 AM Water	3/15/2016 10:25:00 AM Water	3/14/2016 7:30:00 PM Water	3/14/2016 2:20:00 PM Water	Water
mperature (in-situ) ecific Conductivity (in-situ)	°C μS/cm	-	-	-	-0.3 215.4	-0.3 218.3	-0.3 260.3		-	-0.3 280.5	-0.4 312.4	0.7 1705.0	-0.4 1540.0	0.2		
(in-situ)	pH	6.5 - 9.0	6.0 - 8.5	-	7.1	7.1	7.0	-	-	7.1	7.5	7.1	7.4	7.5	-	-
solved Oxygen (in-situ) rbidity (In-situ)	mg/L NTU	-	-	-	10.3	10.9	9.3	-	-	10.8	1.2 35.5	7.3	8.5	11.0		-
our, True	CU	- 15	-	- 5	-	-	-	-	-	-	-			<5.0		
nductivity	μS/cm	-	-	2	229	228	274	271	0.011009174	295	3270	1680	1610	367	<2.0	<2.0
rdness (as CaCO3)	mg/L pH	- 6.5 - 9.0	- 6.0 - 8.5	0.5	128	129 7.61	151 7.63	7.63	0.00	164 7.82	2080	908	878	199 8.00	<0.50 5.53	<0.50 5.59
tal Suspended Solids	mg/L	-	50	3	<3.0	<3.0	<3.0	<3.0	<dl< td=""><td><3.0</td><td>64.7</td><td>47</td><td>12</td><td>-</td><td><3.0</td><td><3.0</td></dl<>	<3.0	64.7	47	12	-	<3.0	<3.0
tal Dissolved Solids	mg/L	-	-	1	127 94.1	128 94.6	157 104	157 104	0	168 109	3050 315	1290 262	1260 267	208	<1.0 <1.0	<1.0 <1.0
kalinity, Bicarbonate (as CaCO3) kalinity, Carbonate (as CaCO3)	mg/L mg/L	-	-	1	94.1 <1.0	94.6	<1.0	<1.0	0 <dl< td=""><td><1.0</td><td><1.0</td><td><1.0</td><td><1.0</td><td>-</td><td><1.0</td><td><1.0</td></dl<>	<1.0	<1.0	<1.0	<1.0	-	<1.0	<1.0
calinity, Hydroxide (as CaCO3)	mg/L	-	-	1	<1.0	<1.0	<1.0	<1.0	<dl< td=""><td><1.0</td><td><1.0</td><td><1.0</td><td><1.0</td><td></td><td><1.0</td><td><1.0</td></dl<>	<1.0	<1.0	<1.0	<1.0		<1.0	<1.0
calinity, Total (as CaCO3) nmonia, Total (as N)	mg/L mg/L	- 0.75	-	1 0.005	94.1 <0.0050	94.6	104 <0.0050	104 <0.0050	0 <dl< td=""><td>109 <0.0050</td><td>315 2.13</td><td>262</td><td>267 4.06</td><td></td><td><1.0 <0.0050</td><td><1.0 <0.0050</td></dl<>	109 <0.0050	315 2.13	262	267 4.06		<1.0 <0.0050	<1.0 <0.0050
loride (Cl)	mg/L	120	-	0.005	<0.50	<0.50	<0.50	<0.50	<dl <dl< td=""><td><0.0030</td><td>35.5</td><td><2.5</td><td><2.5</td><td>< 0.50</td><td><0.50</td><td><0.50</td></dl<></dl 	<0.0030	35.5	<2.5	<2.5	< 0.50	<0.50	<0.50
uoride (F)	mg/L	0.12	-	0.02	0.05	0.053	0.055	0.055	<2xDL	0.057	0.46	<0.10	<0.10	0.111	<0.020	<0.020
trate (as N) trite (as N)	mg/L mg/L	13 0.06	-	0.005	0.163	0.161 <0.0010	0.0908	0.0893	0.016657413 <dl< td=""><td>0.0682</td><td><0.050 <0.010</td><td>0.5236</td><td>0.3023</td><td>0.111 <0.0010</td><td><0.0050 <0.0010</td><td><0.0050 <0.0010</td></dl<>	0.0682	<0.050 <0.010	0.5236	0.3023	0.111 <0.0010	<0.0050 <0.0010	<0.0050 <0.0010
lfate (SO4)	mg/L	-	-	0.3	22.3	22.4	36.7	36.8	0.002721088	41	1970	737	732	35.7	<0.30	<0.30
anide, Weak Acid Diss	mg/L	-	0.1	0.005	<0.0050	<0.0050	<0.0050	<0.0050	<dl< td=""><td><0.0050</td><td><0.0050</td><td>0.0153</td><td>0.0176</td><td>-</td><td><0.0050</td><td><0.0050</td></dl<>	<0.0050	<0.0050	0.0153	0.0176	-	<0.0050	<0.0050
anide, Total anate	mg/L mg/L	-	0.3	0.005	<0.0050	<0.0050	<0.0050	<0.0050	<dl <dl< td=""><td><0.0050</td><td><0.0050</td><td>0.0796</td><td>0.0426</td><td>-</td><td><0.0050</td><td><0.0050</td></dl<></dl 	<0.0050	<0.0050	0.0796	0.0426	-	<0.0050	<0.0050
iocyanate (SCN)	mg/L	-	-	0.5	<0.50	<0.50	<0.50	<0.50	<dl< td=""><td><0.50</td><td><0.50</td><td>5.11</td><td>2.6</td><td></td><td><0.50</td><td><0.50</td></dl<>	<0.50	<0.50	5.11	2.6		<0.50	<0.50
uminum (Al)-Total	mg/L	0.1	-	0.003	0.0153	0.0228	0.0096	0.0089	<2xDL	0.0072	0.27	0.017	0.0578	<0.010	<0.0030	<0.0030
timony (Sb)-Total senic (As)-Total	mg/L mg/L	- 0.005	0.15	0.0001	<0.00010 0.00025	<0.00010 0.00026	0.00046	0.00051 0.00136	0.103092784 0.014814815	0.00044 0.00126	0.0397	0.00053	0.00043	<0.00050 0.00039	<0.00010 <0.00010	<0.00010 <0.00010
rium (Ba)-Total	mg/L	-	1.0	0.00005	0.0833	0.0821	0.0759	0.0744	0.01996008	0.0812	0.0674	0.063	0.0812	0.087	<0.000050	<0.000050
ryllium (Be)-Total	mg/L	-	-	0.00002 0.00005	<0.000020 <0.000050	<0.000020 <0.000050	<0.000020 <0.000050	0.000026 0.000106	<dl <dl< td=""><td><0.000020 <0.000050</td><td>0.00017 0.00213</td><td>0.000023</td><td><0.000020 <0.000050</td><td>-</td><td><0.000020 <0.000050</td><td><0.000020 <0.000050</td></dl<></dl 	<0.000020 <0.000050	0.00017 0.00213	0.000023	<0.000020 <0.000050	-	<0.000020 <0.000050	<0.000020 <0.000050
muth (Bi)-Total ron (B)-Total	mg/L mg/L	-	-	0.00005	<0.000050 <0.010	<0.000050 <0.010	<0.000050 <0.010	<0.0106	<dl <dl< td=""><td><0.000050 <0.010</td><td>0.00213</td><td><0.000050 0.059</td><td><0.000050</td><td><0.10</td><td><0.000050 <0.010</td><td><0.000050 <0.010</td></dl<></dl 	<0.000050 <0.010	0.00213	<0.000050 0.059	<0.000050	<0.10	<0.000050 <0.010	<0.000050 <0.010
dmium (Cd)-Total (Lab Result)	mg/L	0.00009	0.02	0.000005	0.000024	0.0000307	0.0000214	0.0000203	<2xDL	0.0000219	0.00751	0.000418	0.00018	<0.00020	<0.0000050	<0.0000050
Cadmium (Cd)-Total (Hardness Adjusted Guideline)	mg/L	-	-	- 0.05	0.00019	0.00020	0.00022	0.00022	- 0.002743484	0.00024	0.00037 625	0.00037	0.00037	0.00028	0.00037 <0.050	0.00037
lcium (Ca)-Total romium (Cr)-Total	mg/L mg/L	- 0.0089	- 0.04	0.05	30.5	31 0.00011	36.4 <0.00010	36.5 0.00012	0.002743484 <dl< td=""><td>39 0.00014</td><td>625 0.0013</td><td>269 0.00065</td><td>254</td><td>46.7</td><td><0.050 <0.00010</td><td><0.050</td></dl<>	39 0.00014	625 0.0013	269 0.00065	254	46.7	<0.050 <0.00010	<0.050
balt (Co)-Total	mg/L	-	-	0.0001	<0.00010	<0.00010	<0.00010	<0.00010	<dl< td=""><td><0.00010</td><td>0.00617</td><td>0.00844</td><td>0.00684</td><td>-</td><td><0.00010</td><td><0.00010</td></dl<>	<0.00010	0.00617	0.00844	0.00684	-	<0.00010	<0.00010
pper (Cu)-Total (Lab Result) Copper (Cu)-Total (Hardness Adjusted Guideline)	mg/L	0.002	0.2	0.0005	0.00113 0.00292	0.0011 0.00294	0.00139 0.00336	0.00104 0.00336	<2xDL	0.00103 0.00361	0.0957 0.00400	0.00268	0.00132	<0.0010	<0.00050	<0.00050
n (Fe)-Total	mg/L mg/L	0.3	1.0	0.01	0.00292	0.0294	0.00336	0.00336	- <2xDL	<0.010	4.49	18.9	5.1	<0.030	<0.010	<0.010
d (Pb)-Total (Lab Result)	mg/L	0.001	0.1	0.00005	<0.000050	<0.000050	0.000068	0.000064	<2xDL	<0.000050	0.153	0.000079	0.000153	0.0006	<0.000050	<0.000050
Lead (Pb)-Total (Hardness Adjusted Guideline)		-	-	-	0.00436 <0.0010	0.00440	0.00538	0.00538	-	0.00597	0.00700	0.00700	0.00700	0.00700	0.00700	0.00700
ium (Li)-Total gnesium (Mg)-Total	mg/L mg/L	-	-	0.001	<0.0010 9.89	<0.0010 10.3	<0.0010	<0.0010 11.9	<dl 0.016949153</dl 	0.001 13.3	0.02	<0.0010 59.5	0.001 61.3	- 20	<0.0010 <0.10	<0.0010
nganese (Mn)-Total	mg/L	-	0.5	0.0001	0.108	0.114	0.0115	0.0112	0.026431718	0.00481	20.4	6.35	5.91	<0.0020	<0.00010	<0.00010
rcury (Hg)-Total	mg/L	0.000026	0.005	0.000005	<0.0000050	<0.0000050	<0.0000050	<0.0000050	<dl< td=""><td><0.0000050</td><td><0.000050</td><td><0.0000050</td><td><0.0000050</td><td><0.00020</td><td><0.0000050</td><td><0.0000050</td></dl<>	<0.0000050	<0.000050	<0.0000050	<0.0000050	<0.00020	<0.0000050	<0.0000050
lybdenum (Mo)-Total kel (Ni)-Total (Lab Result)	mg/L mg/L	0.0073 0.025	0.3	0.00005	0.000395	0.000395	0.000331 <0.00050	0.000435	0.27154047 <dl< td=""><td>0.00035</td><td>0.00627 0.0085</td><td>0.00106</td><td>0.00103</td><td>-</td><td><0.000050 <0.00050</td><td><0.000050 <0.00050</td></dl<>	0.00035	0.00627 0.0085	0.00106	0.00103	-	<0.000050 <0.00050	<0.000050 <0.00050
Nickel (Ni)-Total (Hardness Adjusted Guideline)	mg/L	-	-	-	0.11530	0.11598	0.13073	0.13073	0.02500	0.13920	0.15000	0.15000	0.15000	0.15000	0.15000	0.15000
osphorus (P)-Total	mg/L	-	-	0.05	<0.050	<0.050	<0.050	<0.050	<dl< td=""><td><0.050</td><td>0.064</td><td>0.054</td><td>0.063</td><td>-</td><td><0.050</td><td><0.050</td></dl<>	<0.050	0.064	0.054	0.063	-	<0.050	<0.050
tassium (K)-Total enium (Se)-Total	mg/L mg/L	- 0.001	-	0.1	0.75	0.82	0.96	0.000073	0.040816327 <2xDL	1.16	42.3	6.34 0.000264	5.83	0.93	<0.10	<0.10
con (Si)-Total	mg/L	-	-	0.05	6.4	6.54	6.74	6.8	0.008862629	7.43	6.91	7.98	7.28	-	<0.050	<0.050
ver (Ag)-Total	mg/L	0.00025	0.1	0.00001	<0.000010	<0.000010 2.79	<0.000010 3.67	<0.00010	<dl 0.005464481</dl 	<0.000010	0.00367 42.7	0.000039	0.000025	-	<0.00010 <0.050	<0.00010
dium (Na)-Total ontium (Sr)-Total	mg/L mg/L	-	-	0.0002	0.323	0.321	0.338	3.65	0.020926756	3.99	42.7	36.5	33.3	5.2	<0.00020	<0.00020
lfur (S)-Total	mg/L	-	-	0.5	7.77	7.79	12.7	12.6	0.007905138	14	645	242	226		<0.50	<0.50
allium (TI)-Total	mg/L	0.0008	-	0.00001	<0.00010 <0.00010	<0.000010 <0.00010	<0.000010 <0.00010	<0.000010 <0.00010	<dl <dl< td=""><td><0.000010 <0.00010</td><td>0.000493</td><td><0.00010 <0.00010</td><td><0.00010 <0.00010</td><td>-</td><td><0.00010 <0.00010</td><td><0.00010 <0.00010</td></dl<></dl 	<0.000010 <0.00010	0.000493	<0.00010 <0.00010	<0.00010 <0.00010	-	<0.00010 <0.00010	<0.00010 <0.00010
anium (Ti)-Total	mg/L mg/L	-	-	0.0001	0.00037	0.0007	<0.00010	<0.00010	<dl< td=""><td><0.00010</td><td>0.0028</td><td>0.00132</td><td>0.00243</td><td>-</td><td><0.00010</td><td><0.00030</td></dl<>	<0.00010	0.0028	0.00132	0.00243	-	<0.00010	<0.00030
anium (U)-Total	mg/L	0.015	-	0.00001	0.000688	0.000691	0.00052	0.000511	0.017458778	0.000668	0.00404	0.00177	0.00167	0.00181	<0.000010	< 0.000010
nadium (V)-Total	mg/L	-	-	0.0005	<0.00050	<0.00050	<0.00050	<0.00050	<dl< td=""><td><0.00050</td><td><0.0025</td><td>0.00311</td><td>0.00149</td><td>-</td><td><0.00050 <0.0030</td><td><0.00050</td></dl<>	<0.00050	<0.0025	0.00311	0.00149	-	<0.00050 <0.0030	<0.00050
nc (Zn)-Total uminum (Al)-Dissolved	mg/L mg/L	0.03	0.3	0.003	0.0061	<0.0030 0.0059	0.0035	0.0031 0.0044	<2xDL <2xDL	0.0045	0.0061	0.116	0.0057	<0.050	<0.0030	<0.0030
timony (Sb)-Dissolved	mg/L	-	-	0.0001	<0.00010	<0.00010	0.00046	0.00046	<2xDL	0.00044	0.00646	0.0005	0.00033	-	<0.00010	-
senic (As)-Dissolved	mg/L	0.005	0.15	0.0001	0.00022	0.00024	0.00119	0.00131	0.096	0.0013	0.0834	0.0773	0.0403	-	<0.00010	-
ium (Ba)-Dissolved yllium (Be)-Dissolved	mg/L mg/L	-	-	0.00005	0.0841	0.083	0.0753	0.0771 <0.000020	0.023622047 <dl< td=""><td><0.0795</td><td>0.051 <0.00010</td><td>0.0546</td><td>0.0668</td><td>-</td><td><0.000050 <0.000020</td><td></td></dl<>	<0.0795	0.051 <0.00010	0.0546	0.0668	-	<0.000050 <0.000020	
muth (Bi)-Dissolved	mg/L	-	-	0.00005	<0.000050	<0.000050	<0.000050	<0.000050	<dl< td=""><td><0.000050</td><td><0.00025</td><td><0.000050</td><td><0.000050</td><td>-</td><td><0.000050</td><td>-</td></dl<>	<0.000050	<0.00025	<0.000050	<0.000050	-	<0.000050	-
on (B)-Dissolved mium (Cd)-Dissolved (Lab Result)	mg/L	- 0.00009	-	0.01	<0.010 0.000025	<0.010 0.0000229	<0.010 0.000021	<0.010 0.0000155	<dl< td=""><td><0.010 0.0000226</td><td>0.151</td><td>0.05</td><td>0.041</td><td>-</td><td><0.010</td><td>-</td></dl<>	<0.010 0.0000226	0.151	0.05	0.041	-	<0.010	-
Cadmium (Cd)-Dissolved (Lab Result) Cadmium (Cd)-Diss. (Hardness Adjusted Guideline)	mg/L mg/L		-	-	0.000025	0.000229	0.00021	0.0000155	<2xDL	0.0000226	0.00532	0.000277	0.000113	-	<0.000050	
ium (Ca)-Dissolved	mg/L	-	-	0.05	33.7	33.8	39.8	39.4	0.01010101	42.3	637	270	253	-	<0.050	-
omium (Cr)-Dissolved alt (Co)-Dissolved	mg/L	0.0089	-	0.0001	<0.00010 <0.00010	<0.00010 <0.00010	<0.00010 <0.00010	<0.00010 <0.00010	<dl <dl< td=""><td><0.00010 <0.00010</td><td><0.00050 0.00535</td><td>0.00054 0.00802</td><td>0.00027 0.00614</td><td>-</td><td><0.00010 <0.00010</td><td>-</td></dl<></dl 	<0.00010 <0.00010	<0.00050 0.00535	0.00054 0.00802	0.00027 0.00614	-	<0.00010 <0.00010	-
per (Cu)-Dissolved (Lab Result)	mg/L mg/L	0.002	-	0.0001	<0.00010	<0.00010	<0.00010	<0.00010	<dl <2xDL</dl 	<0.00010	0.00535	0.00802	0.00614	-	<0.00010	
Copper (Cu)-Diss. (Hardness Adjusted Guideline)	mg/L	-	-	-	0.00292	0.00294	0.00336	0.00336	-	0.00361	0.00400	0.00400	0.00400	-	0.00400	-
(Fe)-Dissolved	mg/L	0.3	-	0.01	<0.010	<0.010	<0.010	<0.010	<dl< td=""><td><0.010 <0.000050</td><td>0.046</td><td>17.8 <0.000050</td><td>3.17 <0.000050</td><td>-</td><td><0.010 <0.000050</td><td>-</td></dl<>	<0.010 <0.000050	0.046	17.8 <0.000050	3.17 <0.000050	-	<0.010 <0.000050	-
I (Pb)-Dissolved (Lab Result) Lead (Pb)-Diss. (Hardness Adjusted Guideline)	mg/L mg/L	0.001	-	0.00005	<0.000050 0.00436	<0.000050 0.00440	<0.000050 0.00538	<0.000050 0.00538	<dl -<="" td=""><td><0.000050 0.00597</td><td>0.0003</td><td><0.000050</td><td><0.000050</td><td>-</td><td><0.000050</td><td></td></dl>	<0.000050 0.00597	0.0003	<0.000050	<0.000050	-	<0.000050	
um (Li)-Dissolved	mg/L	-	-	0.001	<0.0010	<0.0010	<0.0010	<0.0010	<dl< td=""><td>0.0011</td><td>0.0179</td><td>0.0011</td><td>0.0013</td><td>-</td><td><0.0010</td><td></td></dl<>	0.0011	0.0179	0.0011	0.0013	-	<0.0010	
nesium (Mg)-Dissolved	mg/L	-	-	0.1	10.5	10.9	12.7	12.7	0	14.1	119	56.8	59.9		<0.10	
ganese (Mn)-Dissolved cury (Hg)-Dissolved	mg/L mg/L	- 0.000026	-	0.0001 0.000005	0.105	0.112 <0.000050	0.0107	0.0105	0.018867925 <dl< td=""><td>0.00461</td><td>19.9 <0.0000050</td><td>6.36 <0.000050</td><td>5.57 <0.0000050</td><td>-</td><td><0.00010 <0.000050</td><td></td></dl<>	0.00461	19.9 <0.0000050	6.36 <0.000050	5.57 <0.0000050	-	<0.00010 <0.000050	
bdenum (Mo)-Dissolved	mg/L	0.0073	-	0.00005	0.000322	0.000345	0.000274	0.000278	0.014492754	0.000297	0.00678	0.00115	0.000959	-	<0.000050	-
el (Ni)-Dissolved (Lab Result)	mg/L	0.025	-	0.0005	<0.00050	<0.00050	<0.00050	<0.00050	<dl< td=""><td><0.00050</td><td>0.0076</td><td>0.00338</td><td>0.00252</td><td>-</td><td><0.00050</td><td></td></dl<>	<0.00050	0.0076	0.00338	0.00252	-	<0.00050	
Nickel (Ni)-Diss. (Hardness Adjusted Guideline) sphorus (P)-Dissolved	mg/L mg/L	-	-	- 0.05	0.11530 <0.050	0.11598 <0.050	0.13073 <0.050	0.13073 <0.050	- <dl< td=""><td>0.13920 <0.050</td><td>0.15000 <0.050</td><td>0.15000 <0.050</td><td>0.15000 <0.050</td><td>-</td><td>0.15000 <0.050</td><td>-</td></dl<>	0.13920 <0.050	0.15000 <0.050	0.15000 <0.050	0.15000 <0.050	-	0.15000 <0.050	-
assium (K)-Dissolved	mg/L	-	-	0.05	0.8	0.83	1.02	1.02	0	1.21	37.8	6.17	5.69	-	<0.10	-
nium (Se)-Dissolved	mg/L	0.001	-	0.00005	<0.000050	0.000055	0.000059	0.000067	<2xDL	0.000055	<0.00025	0.000237	0.000183	-	<0.000050	-
n (Si)-Dissolved	mg/L	-	-	0.05	6.53	6.61	6.91	6.85	0.00872093	7.47	6.2	7.69	6.94	-	<0.050	
r (Ag)-Dissolved um (Na)-Dissolved	mg/L mg/L	0.00025	-	0.00001 0.05	<0.000010 2.83	<0.000010 2.88	<0.000010 3.71	<0.000010 3.78	<dl 0.018691589</dl 	<0.000010 4.06	<0.000050 40.8	0.000015 33.9	<0.000010 29.7	-	<0.00010 <0.050	
ntium (Sr)-Dissolved	mg/L	-	-	0.0002	0.311	0.315	0.325	0.325	0	0.342	1.62	0.747	0.715	-	<0.00020	-
Ir (S)-Dissolved	mg/L	-	-	0.5	7.42	7.32	11.8	12.4	0.049586777	13.5	604	231	217	-	<0.50	-
lium (TI)-Dissolved Sn)-Dissolved	mg/L mg/l	0.0008	-	0.00001 0.0001	<0.000010 <0.00010	<0.000010 <0.00010	<0.000010 <0.00010	<0.000010 <0.00010	<dl <dl< td=""><td><0.000010 <0.00010</td><td>0.000435</td><td><0.000010 <0.00010</td><td><0.00010 <0.00010</td><td>-</td><td><0.00010 <0.00010</td><td>-</td></dl<></dl 	<0.000010 <0.00010	0.000435	<0.000010 <0.00010	<0.00010 <0.00010	-	<0.00010 <0.00010	-
	mg/L	-	-	0.0003	<0.00010	<0.00010	<0.00030	<0.00030	<dl< td=""><td><0.00030</td><td><0.0015</td><td>0.00095</td><td>0.00052</td><td>-</td><td><0.00030</td><td></td></dl<>	<0.00030	<0.0015	0.00095	0.00052	-	<0.00030	
inium (Ti)-Dissolved	mg/L															
nium (Ti)-Dissolved nium (U)-Dissolved adium (V)-Dissolved	mg/L mg/L	0.015	-	0.00001 0.0005	0.000556	0.000567	0.000432	0.000437 <0.00050	0.01150748 <dl< td=""><td>0.000562</td><td>0.00401 <0.0025</td><td>0.00199 0.00228</td><td>0.00171 0.00094</td><td>-</td><td><0.00010 <0.00050</td><td>-</td></dl<>	0.000562	0.00401 <0.0025	0.00199 0.00228	0.00171 0.00094	-	<0.00010 <0.00050	-

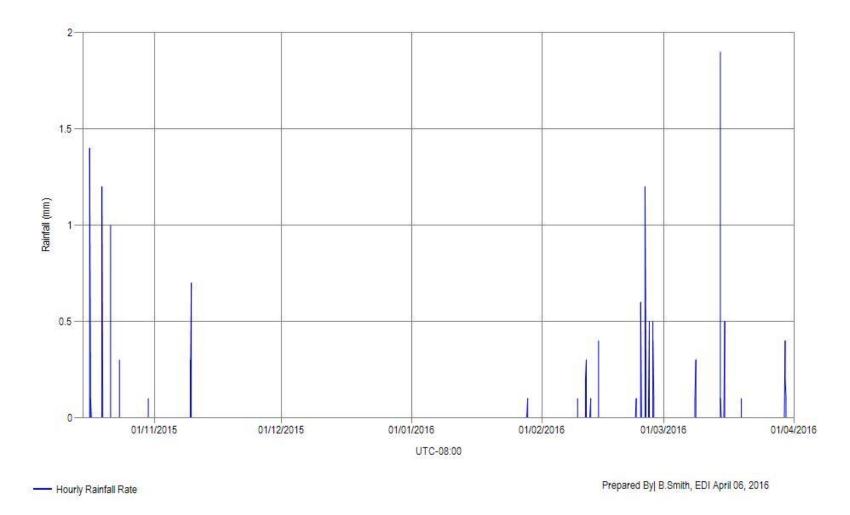
 Applied Guidelines; Yederal CCMC Echandian Environmental Quality Guidelines (Jac 2006), CCME: Provide Prova Provide Provide Provide Provide Provide Provide Pro


0.025410141 0.020965876

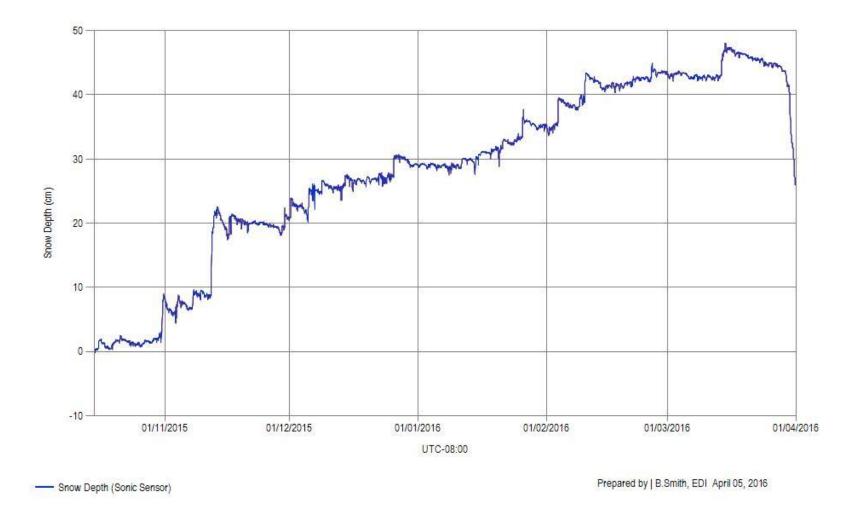
Monthly Report Attachment 3: Data Tables

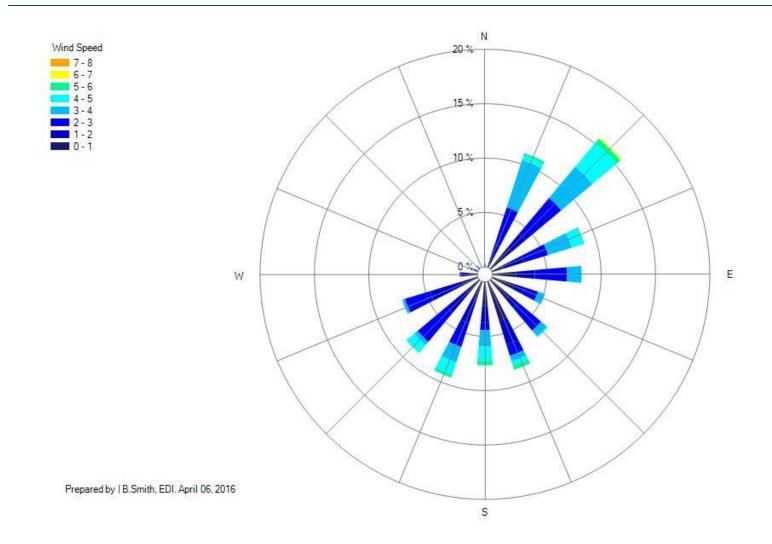
ATTACHMENT 4A:

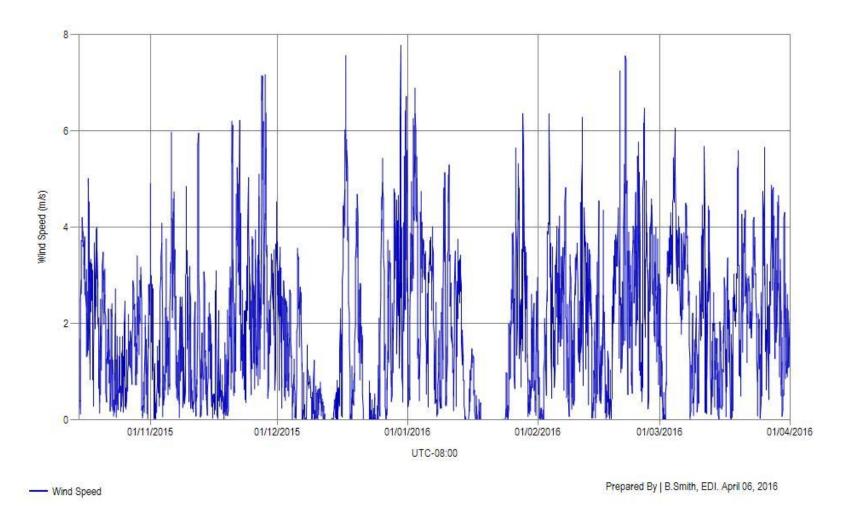
SEASONAL METEOROLOGICAL SUMMARY

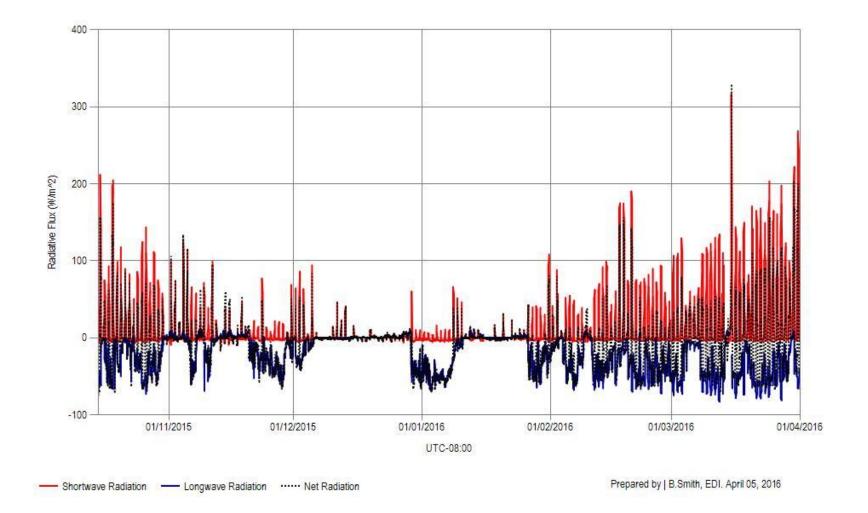


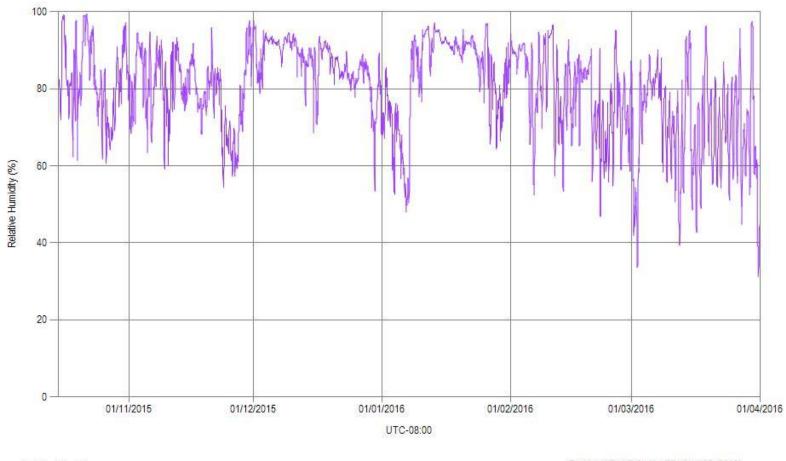
Air Temperature Ground Surface Temperature


Prepared By | B.Smith, EDI April 05, 2016









----- Relative Humidity

Prepared By | B.Smith, EDI April 05, 2016

Start Date	Duration	Precipitation	Total Accumulation (mm)		
Start Date	(hours)	Туре			
October 16, 03:00	4	Snow	12.9		
October 16, 14:00	3	Rain	3.0		
October 17, 01:00	4	Snow	2.1		
October 18, 17:00	4	Snow	1.2		
October 19, 05:00	5	Snow	7.3		
October 21, 05:00	4	Snow	12.3		
October 31, 06:00	13	Snow	70.6		
November 03, 17:00	1	Snow	21.8		
November 03, 21:00	2	Snow	21.6		
November 04, 00:00	7	Snow	18.0		
November 04, 23:00	7	Snow	10.7		
November 07, 18:00	6	Snow	28.6		
November 08, 04:00	4	Snow	4.4		
November 08, 10:00	4	Snow	4.9		
November 09, 12:00	6	Rain	1.9		
November 09, 16:00	3	Snow	15.3		
November 12, 04:00	9	Snow	99.5		
November 12, 16:00	9	Snow	33.8		
November 16, 15:00	3	Snow	29.1		
November 16, 19:00	1	Snow	11.1		
November 21, 02:00	3	Snow	11.8		
December 05, 13:00	12	Snow	51.3		
December 06, 18:00	1	Snow	22.9		
December 06, 21:00	2	Snow	13.8		
December 07, 04:00	1	Snow	36.6		
December 08, 06:00	5	Snow	5.3		
December 08, 22:00	2	Snow	21.2		

Table 4A 1Mount Nansen precipitation events for the open-water season, October 16, 2015 to March 31, 2016.

EDI Project No: 15Y0146

Start Date	Duration	Precipitation	Total Accumulation
Start Date	(hours)	Type	(mm)
December 11, 14:00	5	Snow	8.4
December 12, 06:00	4	Snow	3.3
December 13, 14:00	3	Snow	20.9
December 14, 11:00	4	Snow	15.9
December 15, 14:00	3	Snow	12.8
December 16, 10:00	2	Snow	13.2
December 20, 18:00	4	Snow	5.2
December 22, 14:00	4	Snow	17.9
December 23, 05:00	1	Snow	10.2
December 26, 04:00	4	Snow	33.8
December 27, 16:00	2	Snow	10.0
January 01, 08:00	4	Snow	3.8
January 07, 00:00	6	Snow	1.7
January 09, 03:00	1	Snow	11.4
January 11, 07:00	8	Snow	9.1
January 12, 22:00	4	Snow	7.8
January 14, 21:00	3	Snow	18.4
January 15, 16:00	2	Snow	17.1
January 18, 13:00	6	Snow	16.2
January 20, 14:00	3	Snow	24.0
January 20, 21:00	3	Snow	12.3
January 21, 09:00	6	Snow	13.9
January 26, 03:00	9	Snow	43.4
January 26, 16:00	5	Snow	2.3
February 01, 15:00	2	Snow	11.4
February 03, 16:00	8	Snow	44.2
February 04, 09:00	4	Snow	2.6
February 07, 02:00	4	Snow	3.3
February 08, 02:00	4	Snow	4.7

EDI Project No: 15Y0146

Start Date	Duration	Precipitation	Total Accumulation
Start Date	(hours)	Type	(mm)
February 08, 22:00	4	Snow	12.6
February 09, 04:00	4	Snow	6.7
February 09, 19:00	3	Snow	14.1
February 10, 04:00	10	Snow	46.2
February 11, 13:00	4	Rain	0.7
February 16, 15:00	4	Snow	7.6
February 18, 13:00	6	Snow	10.4
February 19, 11:00	9	Snow	7.7
February 25, 14:00	5	Rain	2.4
February 25, 22:00	6	Snow	6.9
February 26, 06:00	4	Snow	23.7
February 26, 13:00	4	Rain	1.2
February 27, 11:00	5	Rain	1.2
February 27, 14:00	4	Snow	5.6
March 02, 11:00	4	Snow	8.9
March 04, 11:00	5	Snow	4.1
March 07, 16:00	4	Snow	5.7
March 09, 14:00	4	Snow	7.2
March 11, 04:00	4	Snow	2.6
March 12, 13:00	4	Snow	6.4
March 14, 04:00	3	Snow	26.9
March 14, 13:00	3	Rain	2.6
March 14, 22:00	4	Snow	12.9
March 15, 09:00	4	Snow	8.2
March 17, 12:00	4	Snow	5.3
March 17, 23:00	6	Snow	3.1
March 18, 10:00	5	Snow	8.1
March 19, 09:00	5	Snow	1.7
March 26, 12:00	6	Snow	7.1

EDI Project No: 15Y0146

Start Date	Duration	Precipitation	Total Accumulation
	(hours)	Type	(mm)
March 29, 21:00	7	Rain	1.7

Note: Rain precipitation events are periods of rainfall greater than or equal to 4 hours, and/or have greater than or equal to 2.0 mm; snow precipitation events are periods of snowfall greater than or equal to 4 hours and/or greater than or equal to 1 cm (10.0 mm).

ATTACHMENT 4B:

SEASONAL HYDROMETRIC SUMMARY

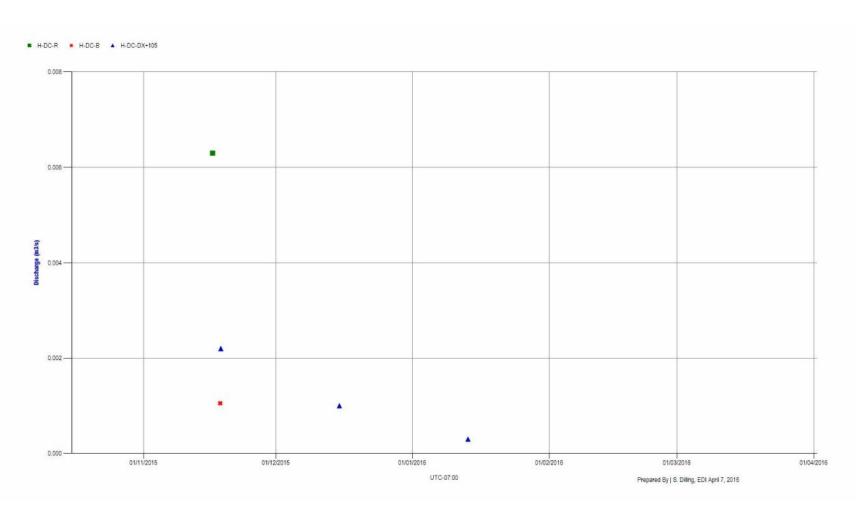


Figure 4B. 1 Hydrograph for Dome Creek stations H-DC-R, H-DC-B and H-DC-DX+105, October 16, 2015 to March 31, 2016 (stations froze to bed during winter period).

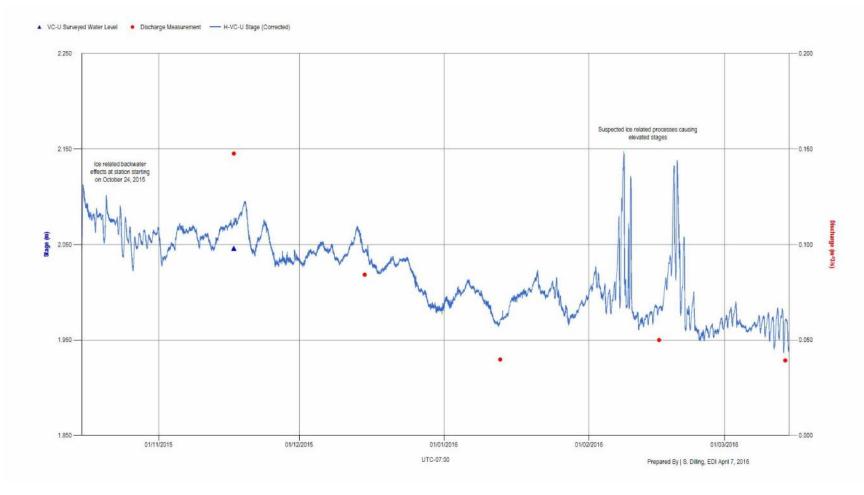


Figure 4B. 2 Hydrograph for Upper Victoria Creek (H-VC-U), October 16, 2015 to March 31, 2016

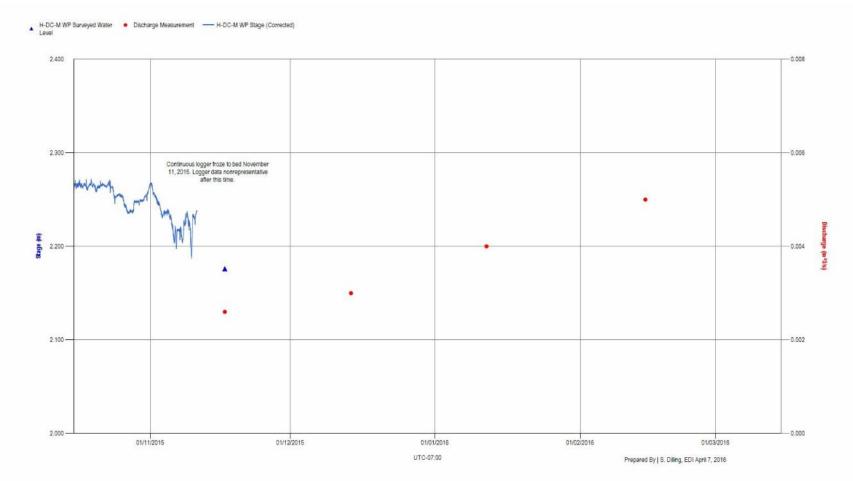


Figure 4B. 3 Hydrograph for Middle Dome Creek at the Weir Pond(H-DC-M WP), October 16, 2015 to March 31, 2016

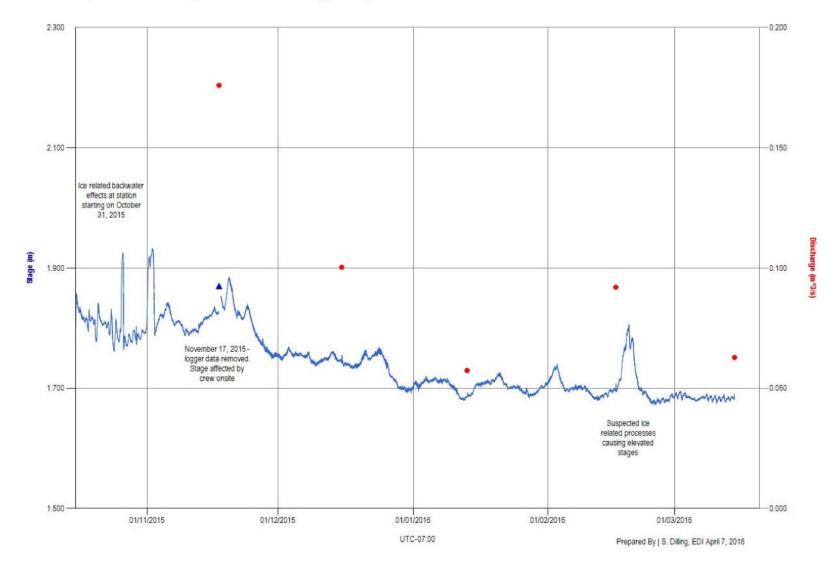
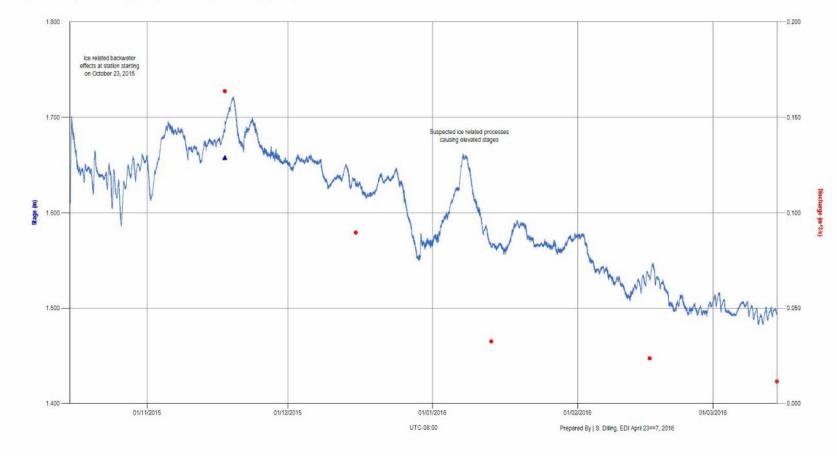
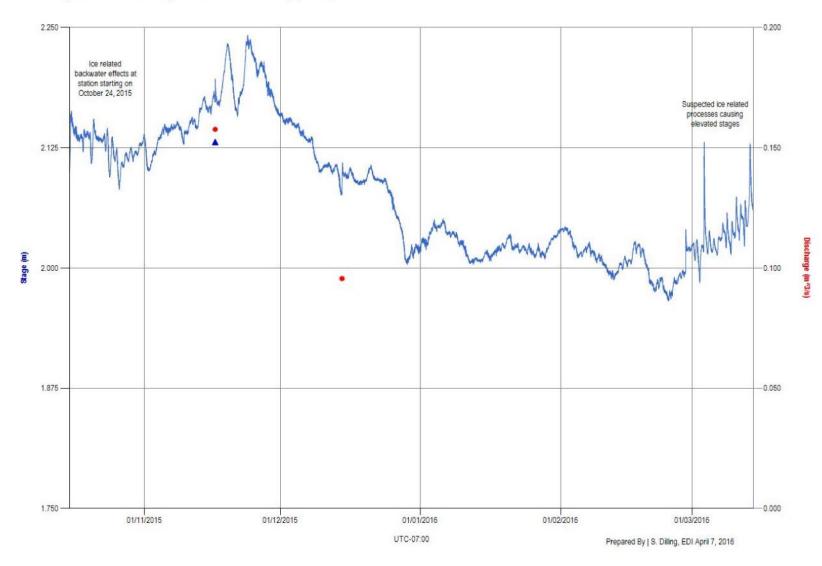



Figure 4B. 4 Hydrograph for Victoria Creek Downstream of Back Creek (H-VC-DBC), October 16, 2015 to March 31, 2016



VC-UMN Surveyed Water Level
 Oischarge Measurement — H-VC-UMN Stage (Corrected)

Figure 4B. 5 Hydrograph for Victoria Creek Upstream if Minnesota Creek (H-VC-UMN), October 16, 2015 to March 31, 2016

VC-R Surveyed Water Level
 Discharge Measurement
 H-VC-R Stage (Corrected)

Figure 4B. 6 Hydrograph for Victoria at Road (H-VC-R), October 16, 2015 to March 31, 2016

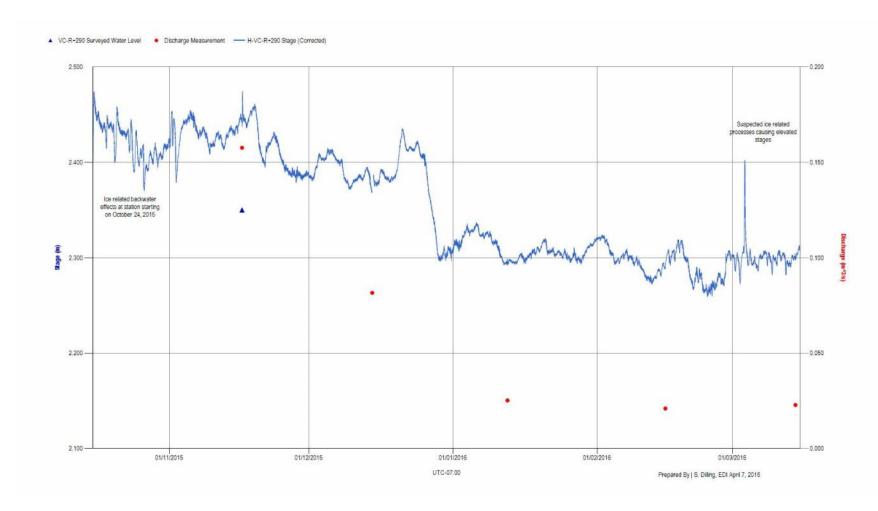


Figure 4B. 7 Hydrograph for Victoria at Road + 290 m Downstream (H-VC-R+290), October 16, 2015 to March 31, 2016

H-VC-U • H-VC-DBC • H-VC-UMN * H-VC-R ▲ H-VC-R+290

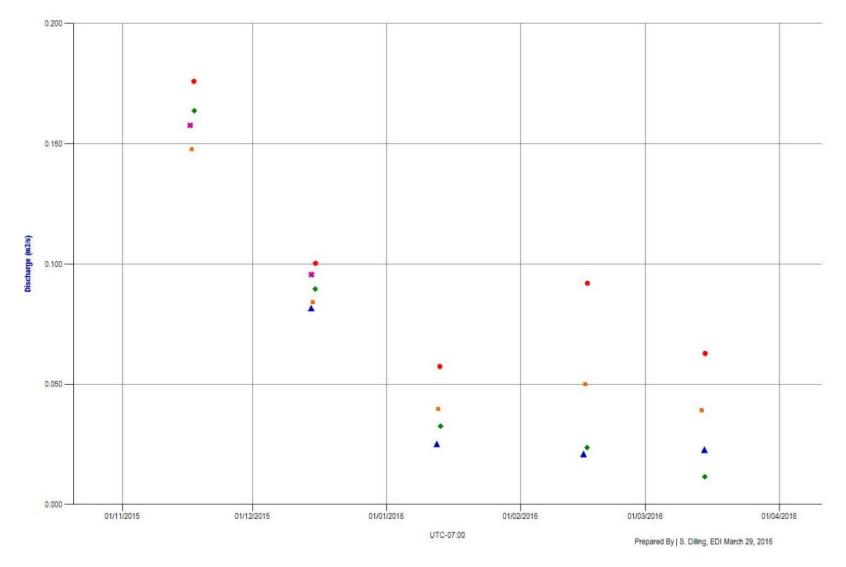


Figure 4B. 8 Instantaneous Discharge Measurements along Victoria Creek, October 16, 2015 to March 31, 2016

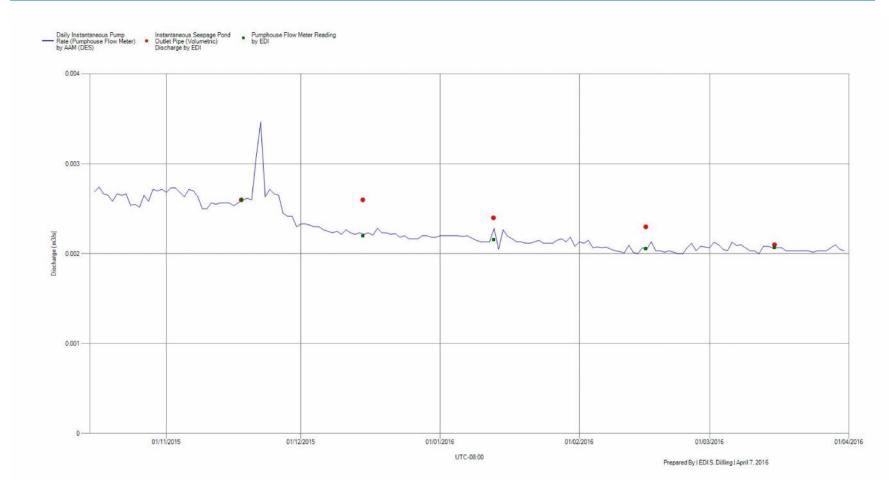


Figure 4B. 9 Hydrograph for the Seepage Pond Outlet (H-SEEP), October 16, 2015 to March 31, 2016

ATTACHMENT 5:

LABORATORY RESULTS

EDI Project No: 15Y0146

EDI ENVIRONMENTAL DYNAMICS INC. ATTN: Meghan Marjanovic 2195 - 2nd Ave Whitehorse YT Y1A 3T8 Date Received: 15-MAR-16 Report Date: 04-APR-16 16:30 (MT) Version: FINAL

Client Phone: 867-393-4882

Certificate of Analysis

Lab Work Order #: L1745414

Project P.O. #: Job Reference: C of C Numbers: Legal Site Desc: NOT SUBMITTED MOUNT NANSEN 15-Y-0146

1

Can Dang Senior Account Manager

[This report shall not be reproduced except in full without the written authority of the Laboratory.]

ADDRESS: 8081 Lougheed Hwy, Suite 100, Burnaby, BC V5A 1W9 Canada | Phone: +1 604 253 4188 | Fax: +1 604 253 6700 ALS CANADA LTD Part of the ALS Group A Campbell Brothers Limited Company

www.alsglobal.com

RIGHT SOLUTIONS RIGHT PARTNER

Environmental 💭

	Sample II Descriptio Sampled Dat Sampled Tim Client II	n e e		
Grouping	Analyte			

Test Method References:

ALS Test Code	Matrix	Test Description	Method Reference**
** ALS test methods may inc	orporate mod	lifications from specified re	ference methods to improve performance.

The last two letters of the above test code(s) indicate the laboratory that performed analytical analysis for that test. Refer to the list below:

Laboratory Definition Code Laboratory Location

Chain of Custody Numbers:

1

GLOSSARY OF REPORT TERMS

Surrogate - A compound that is similar in behaviour to target analyte(s), but that does not occur naturally in environmental samples. For applicable tests, surrogates are added to samples prior to analysis as a check on recovery.

mg/kg - milligrams per kilogram based on dry weight of sample.

mg/kg wwt - milligrams per kilogram based on dry weight of sample.

mg/kg lwt - milligrams per kilogram based on lipid-adjusted weight of sample.

mg/L - milligrams per litre.

< - Less than.

D.L. - The reported Detection Limit, also known as the Limit of Reporting (LOR).

N/A - Result not available. Refer to qualifier code and definition for explanation.

Test results reported relate only to the samples as received by the laboratory.

UNLESS OTHERWISE STATED, ALL SAMPLES WERE RECEIVED IN ACCEPTABLE CONDITION. Analytical results in unsigned test reports with the DRAFT watermark are subject to change, pending final QC review.

ALS Environmental ATTN: Can Dang Suite 100-8081 Lougheed Hwy. Burnaby, BC V5A 1W9 Report Date:March 29, 2016Work Order:16340

Data Report

Species:Rainbow trout (Oncorhynchus mykiss)Protocol:EPS 1/RM/13 (Second Ed. 2000 with 2007 & 2016 amendments)

Table 1.Results for the 96-h rainbow trout acute toxicity test.

Sample ID	Collection Date and Time	96-h LC50 (%v/v)
L1745414-1 WQ-SEEP LC50	March 15, 2016 @ N/A	>100
N/A = Not Available		

N/A = Not Available.

The test met performance criterion and there were no deviations from the test method. The results relate only to the sample tested.

Yvonne Lam, B.Sc. Laboratory Biologist

Reviewed By: Edmund Canaria, R.P.Bio Senior Reviewer

Rainbow Trout Summary Sheet

Client:	ALS	Start Date/Time: Mar 18/16 @ 1345 h
Work Order No.:	16340	Test Species: Oncorhynchus mykiss
Sample information		Test Validity Criteria: ≥ 90% control survival
Sample ID: Sample Date: Date Received: Sample Volume: Other:	L1745414-1-WQ-SEE Mar15/16 Mar18/16 2×202	WQ Ranges: T (°C) = 15 ± 1; DO (mg/L) = 7.0 to 10.3; pH = 5.5 to 8.5
Dilution Water:		
Type: Hardness (mg/L Ca0 Alkalinity (mg/L Ca0		Tap Water
Test Organism Info	rmation:	
Batch No.: Source: No. Fish/Volume (L) Loading Density (g/L Mean Length ± SD (Mean Weight ± SD (-): 0.36 mm): 28±3	Range: 25-32 Range: 0.21-0.61
Zinc Reference To:	kicant Results:	
Reference Toxicant Stock Solution ID: Date Initiated: 96-h LC50 (95% CL	152n05 Mar18116	1.6) 4 <u>9/L</u> Zn
Reference Toxicant Reference Toxicant	Mean and Historical Range: CV (%):	
Test Results:	The 96 h LCSO is	estimated to be > 100% ($v(v)$).
Reviewed by:	'Ch-	Date reviewed: March 28, 2016
Version 1.4; Issued May 29, 20	015.	Nautilus Environmental Company Inc.

Client/Project Sample I.D. W.O. # RBT Batch #: Date Collected Date Setup/Til Sample Setup D.O. meter: pH meter:	d/Tin me:	/ ne:		16 M M 2 1	340 030 ar 1018 E)) 15	/16	Mii -w		A (8	-	7-d Tota Aera Und Pa T	% Mo al Pre ation luted rame emp pH D. (m	rate a Samp ters °C g/L)	/: Idjus	Time to the formula \sqrt{Q} for the formula \sqrt{Q} form	6.5 :	± 1 m	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$					
Cond. Meter:				2			-					Con	d. (µ	Sicm)		554					/	654		j ·
Concentration			# \$	Surviv	ors				Гетр	eratu	r e (°C	;)	Diss	olved	Oxy	gen (n	mg/L) pH				Conductivity (µS/cm)			
(% v/v)	1	2	4	24	48	72	96	0	24	48	72	96	0	24	48	72	96	0	24	48	72	96	0	96
Ctl				10	10	10	10	14.0	14,0	1413	14.0	14.5	10.0	Giz	9.8	9.7	10.0	6.3	67	69	6.6	6.6	29	35
6.25			-	19	10	10	10	14.0	140	140	14.0	14.5	10.0	9,8	9,7	9.7	9.9	6.6	6.8	30	7.3	7.2	166	171
12.5				19	10	10.	10	14.0	140	140	14.0	14.5	10. j	9.2	9.8	9.8	૧ .૧	6.6	20	71	7.4	7.3	255	263
25				10	10.	10	10	14,2	14.0	INP	14.0	14.5	1.01	9,7	97	9.8	9.9	67	2.1	24	7.6	7.6	540	541
50				12	13	10	10	14,0	141.2	190	14.0	14.5	10.1	96	9,7	2.8	10.0	6.8	24	26	8.0	8.0	919	917
100				10	10	10	10	14,0	140	19,0	14.0	14.5	7.0	92	9.8	9.8	10.0	6.7	26	29	8.1	8.1	1654	1614
												ļ	L									L		1º
Initials				Aro	Arro	EL	EL_	EL	Ass	An	E<	EL	EL	An	A	EL	EC	FL	A 2	m	EC	Ēς	EL	Ec
WQ Ranges: T Sample Descrip	• •				g/L) =	= 7.0 t						<u>e, g</u>	asol	in e	Sint	<u>ell 1</u>	noj	part	icul	ate	5		<u>.</u>	
Fish Description			AII	Fis	ha	pppeo	ih	ealt	thy_		Nu	mber	of St	resse	d Fis	h at 9	6 h		Ø					
Reviewed by:				te	4			N.L. 1					u-id			Date	Revie	wed:		m	m	eh	28,7	oile

96-Hour Rainbow Trout Toxicity Test Data Sheet

Version 2.2; Issued August 13, 2013.

-

Nautilus Environmental

Subcontract Request Form

Subcontract To:

NAUTILUS ENVIRONMENTAL

8664 COMMERCE COURT BURNABY,BC V5A 4N7

	al report and invoice: PO# <u>L1745</u> o be provided with your final results		Handaraan
	WO # 163	40	
Please see enclosed <u>1</u> sa	mple(s) in <u>2</u> Container(s)		
SAMPLE NUMBER ANALYT	ICAL REQUIRED	DATE SAMPLED DUE DATE	Priority Flag
	oassay LC50 (96 Hour) - Nautilus (TROUT HR-NL 1)	3/ 15/ 2016 ^{[-} 3/25/2016	
ubcontract Info Contact: nalysis and reporting info contact:	Walter Lin (604) 253-4188 Can Dang 8081 LOUGHEED HWY SUITE 100 BURNABY,BC V5A 1W9 Phone: (604) 253-4188	Email: can.dang@alsglobal	
lease email confirmation of rece	eipt.to: can.dang@alsglc	ibal.com	
eceived By: NY - Nan Yan	Date Shipped: Date Received: WMOK Date Verified:	Mar 1 8, Mar 18/16 @	10:43
ample Integrity Issues:	Temperature:	10.8°C 2x20L	
Sample Description: Orange, opaqu	e, gasoline smell, no part	iulates	

Chain of Custody (COC) / Analytical Request Form

COC Number: 14 -

Page ____ of

 \mathbf{C}

(ALS)	Environm	encal Canada To	oll Free: 1 800 6	68 9878		L1/45414-(JOF	<i>.</i>						-			
	www.alsglobal.com	<u> </u>	-														
Report To			_	Report Forma			 		-		w (Rush T			-	t available	for all te	:sts)
Company:-	EDI		Select Report F] EDD (DIGITAL)		Regular			•	•					
Contact:	Meghan Marjanovic		- ·	(QC) Report with F		s 🗖 No		Priority (
Address:	2195 - 2nd Avenue			ort - provide details bei		_	E [Emergency (1-2 bus. days If received by 3pm) 100% surcharge - contact ALS to confirm T. E2 Same day or weekend emergency - contact ALS to confirm TAT and surcharge								ifirm TAT		
	Whitehorse, YT Y1A 3T8	_	Select Distribut			☐ FAX	_					ontact Al	.S to conf	irm TAT a	ind surcha	rge	
Phone:	867-393-4882			mmarjanovic@ed			Spec	ify Date Re	quired	for E2,	E or P:						
			Email 2	erlk.pit@gov.yk.ca													
			Email 3	Emilie.Hamm@gc								-	tequest				
Involce To	Same as Report To	Ves Vies		Invoice Di				Indicate	Filtered (F), Prese	rved (P) or	Fittered	and Pres	erved (F/I	') below		
	Copy of Invoice with Report	Ves T No	Select Invoice I	Distribution: 🔃													
Company:	EDI		Email 1 or Fax	sjenner@edynam													
Contact:	S Jenner		Email 2	mmarjanovic@ed													e
	Project Info	rmation	0	il and Gas Require		use)											aine
ALS Quote #:	Q49310		Approver ID:		Cost Center:							ļ					Containers
Job #:	MOUNT NANSEN 15-Y-01	46	GL Account:		Routing Code:												otC
PO / AFE:			Activity Code:		-												<u> </u>
LSD:			Location:														Number
ALS Lab Wo	rk Order # (lab use only)		ALS Contact: Sean Sluggett Sampler: DH, MS-, PS				v Trout										~
ALS Sample #	Sample	Identification and/or Coordinates		Date	Time	Comple Trees	ğ										
(lab use only)	(This d	escription will appear on the report)		(dd-mmm-yy)	(hh:mm)	Sample Type	Rainbo										ĺ
	WQ-SEEP	1050		15 -Mar-16	10:50	Water	R										2
					1												
	· · · · · ·						1								-		
	·····									+		+-	╺╋╍╾┥			┝──┦	·
an an an Arraight Chuirtean an Arraightean an Arraightean an Arraightean an Arraightean an Arraightean Arraightean Arraightean Ar		<u> </u>		· · · · · · · · · · · · · · · · · · ·						<u> </u>		\rightarrow	++		—		
										 					—	\vdash	
ang tentan na sang sang sang sang sang sang sang		<u></u>	. <u>.</u>		<u> </u>												
= = = = = = =																	
				_	-				1								
						1							+-+				
A States.									_	1					+		
				ł		<u> </u>			-	<u>+·</u> −		+-	╶┼──╋		+	┝──┦	
						<u> </u>		i	+	┼───		+	╶┼──┼		+	┝──┤	
									CAND					D (lab.			<u> </u>
Drinking	Water (DW) Samples ¹ (clie	ent use) Special (nstructions / Spec	ify Criteria to add o	n report (client U	66)	Erozy	e n de se				IE Ohar	oniotion	v Ve		Nie	<u> </u>
Are samples tak Γ, Υ	en from a Regulated DW Syst ′es ∏√No	lem?					lce p	acks Ye ng Initiated	s 🖸	No		ustody	seal inti	act Ye	* 🗖	No	
-	human drinking water use?						in INI	TIAL COOLE	RTEMPE	RATURI	ES °C 🔬		FINAL C	OOLER	TEMPERA	TURES	°C
E Y	es 🏹 No						1 dr	$T_{\rm eff}$				0.7	3 ^c				1
	SHIPMENT RELEASE (client use)	INITIAL S	SHIPMENT RECEP	TION (lab use on			1	FIN	AL SH	IPMENT						
Released by:	Da 15	te: Time: Recei	ved by:		Pate: F= TW)6	Time: S:00	Reo	hay!	M			P	1.10	7 1	me: 85	0	
REFER TO BACK		S AND SAMPLING INFORMATION		WH	TE - LABORATOR	RY COPY YEL	LOW	CLIENT OC)PY				NAFMED		January 2014		

EDI ENVIRONMENTAL DYNAMICS INC. ATTN: Meghan Marjanovic 2195 - 2nd Ave Whitehorse YT Y1A 3T8 Date Received: 16-MAR-16 Report Date: 01-APR-16 11:39 (MT) Version: FINAL

Client Phone: 867-393-4882

Certificate of Analysis

Lab Work Order #: L1745321

Project P.O. #: Job Reference: C of C Numbers: Legal Site Desc: NOT SUBMITTED MOUNT NANSEN 15-Y-0146

1, 2

Can Dang Senior Account Manager

[This report shall not be reproduced except in full without the written authority of the Laboratory.]

ADDRESS: 8081 Lougheed Hwy, Suite 100, Burnaby, BC V5A 1W9 Canada | Phone: +1 604 253 4188 | Fax: +1 604 253 6700 ALS CANADA LTD Part of the ALS Group A Campbell Brothers Limited Company

www.alsglobal.com

RIGHT SOLUTIONS RIGHT PARTNER

Environmental 💭

L1745321 CONTD.... PAGE 2 of 11 01-APR-16 11:39 (MT) Version: FINAL

	Sample ID Description Sampled Date Sampled Time Client ID	L1745321-1 WATER 14-MAR-16 15:45 WQ-VC-UMN	L1745321-2 WATER 14-MAR-16 14:20 FIELD BLANK	L1745321-3 WATER 14-MAR-16 14:05 WQ-VC-R+150	L1745321-4 WATER 14-MAR-16 18:25 WQ-VC-U	L1745321-5 WATER 14-MAR-16 16:25 WQ-VC-UMN-R
Grouping	Analyte					
WATER						
Physical Tests	Conductivity (uS/cm)	274	<2.0	295	229	271
	Hardness (as CaCO3) (mg/L)	151	<0.50	164	128	151
	рН (рН)	7.63	5.53	7.82	7.61	7.63
	Total Suspended Solids (mg/L)	<3.0	<3.0	<3.0	<3.0	<3.0
	Total Dissolved Solids (mg/L)	157	<1.0	168	127	157
Anions and Nutrients	Alkalinity, Bicarbonate (as CaCO3) (mg/L)	104	<1.0	109	94.1	104
	Alkalinity, Carbonate (as CaCO3) (mg/L)	<1.0	<1.0	<1.0	<1.0	<1.0
	Alkalinity, Hydroxide (as CaCO3) (mg/L)	<1.0	<1.0	<1.0	<1.0	<1.0
	Alkalinity, Total (as CaCO3) (mg/L)	104	<1.0	109	94.1	104
	Ammonia, Total (as N) (mg/L)	<0.0050	<0.0050	<0.0050	<0.0050	<0.0050
	Chloride (Cl) (mg/L)	<0.50	<0.50	<0.50	<0.50	<0.50
	Fluoride (F) (mg/L)	0.055	<0.020	0.057	0.050	0.055
	Nitrate (as N) (mg/L)	0.0908	<0.0050	0.0682	0.163	0.0893
	Nitrite (as N) (mg/L)	<0.0010	<0.0010	<0.0010	<0.0010	<0.0010
	Sulfate (SO4) (mg/L)	36.7	<0.30	41.0	22.3	36.8
	Anion Sum (meq/L)	2.85	<0.10	3.04	2.36	2.86
	Cation Sum (meq/L)	3.21	<0.10	3.48	2.70	3.20
	Cation - Anion Balance (%)	5.9	0.0	6.8	6.7	5.6
Cyanides	Cyanide, Weak Acid Diss (mg/L)	<0.0050	<0.0050	<0.0050	<0.0050	<0.0050
	Cyanide, Total (mg/L)	<0.0050	<0.0050	<0.0050	<0.0050	<0.0050
	Cyanate (mg/L)	<0.20	<0.20	<0.20	<0.20	<0.20
	Thiocyanate (SCN) (mg/L)	<0.50	<0.50	<0.50	<0.50	<0.50 SP
Total Metals	Aluminum (Al)-Total (mg/L)	0.0096	<0.0030	0.0072	0.0153	0.0089
	Antimony (Sb)-Total (mg/L)	0.00046	<0.00010	0.00044	<0.00010	0.00051
	Arsenic (As)-Total (mg/L)	0.00134	<0.00010	0.00126	0.00025	0.00136
	Barium (Ba)-Total (mg/L)	0.0759	<0.000050	0.0812	0.0833	0.0744
	Beryllium (Be)-Total (mg/L)	<0.000020	<0.000020	<0.000020	<0.000020	0.000026
	Bismuth (Bi)-Total (mg/L)	<0.000050	<0.000050	<0.000050	<0.000050	0.000106
	Boron (B)-Total (mg/L)	<0.010	<0.010	<0.010	<0.010	<0.010
	Cadmium (Cd)-Total (mg/L)	0.0000214	<0.0000050	0.0000219	0.0000240	0.0000203
	Calcium (Ca)-Total (mg/L)	36.4	<0.050	39.0	30.5	36.5
	Chromium (Cr)-Total (mg/L)	<0.00010	<0.00010	0.00014	<0.00010	0.00012
	Cobalt (Co)-Total (mg/L)	<0.00010	<0.00010	<0.00010	<0.00010	<0.00010
	Copper (Cu)-Total (mg/L)	0.00139	<0.00050	0.00103	0.00113	0.00104
	Iron (Fe)-Total (mg/L)	0.016	<0.010	<0.010	0.018	0.018
	Lead (Pb)-Total (mg/L)	0.000068	<0.000050	<0.000050	<0.000050	0.000064
	Lithium (Li)-Total (mg/L)	<0.0010	<0.0010	0.0010	<0.0010	< 0.0010

L1745321 CONTD.... PAGE 3 of 11 01-APR-16 11:39 (MT) Version: FINAL

	Sample ID Description Sampled Date Sampled Time Client ID	L1745321-6 WATER TRAVEL BLANK	L1745321-7 WATER 14-MAR-16 18:00 WQ-VC-DBC	L1745321-8 WATER 15-MAR-16 11:25 WQ-TP	L1745321-9 WATER 15-MAR-16 10:25 WQ-DC-U	L1745321-10 WATER 15-MAR-16 10:50 WQ-SEEP
Grouping	Analyte					
WATER						
Physical Tests	Conductivity (uS/cm)	<2.0	228	3270	1610	1680
	Hardness (as CaCO3) (mg/L)	<0.50	129	2080	878	908
	рН (рН)	5.59	7.61	7.97	7.75	7.15
	Total Suspended Solids (mg/L)	<3.0	<3.0	64.7	12.0	47.0
	Total Dissolved Solids (mg/L)	<1.0	128	3050	1260	1290
Anions and Nutrients	Alkalinity, Bicarbonate (as CaCO3) (mg/L)	<1.0	94.6	315	267	262
	Alkalinity, Carbonate (as CaCO3) (mg/L)	<1.0	<1.0	<1.0	<1.0	<1.0
	Alkalinity, Hydroxide (as CaCO3) (mg/L)	<1.0	<1.0	<1.0	<1.0	<1.0
	Alkalinity, Total (as CaCO3) (mg/L)	<1.0	94.6	315	267	262
	Ammonia, Total (as N) (mg/L)	<0.0050	<0.0050	2.13	4.06	4.27
	Chloride (Cl) (mg/L)	<0.50	<0.50	35.5	<2.5	<2.5
	Fluoride (F) (mg/L)	<0.020	0.053	0.46	<0.10	olla<
	Nitrate (as N) (mg/L)	<0.0050	0.161	DLA <0.050	0.3023	0.5236
	Nitrite (as N) (mg/L)	<0.0010	<0.0010	DLA <0.010	DLA <0.0050	0.0135
	Sulfate (SO4) (mg/L)	<0.30	22.4	1970	732	737
	Anion Sum (meq/L)	<0.10	2.37	48.3	20.6	20.6
	Cation Sum (meq/L)	<0.10	2.73	45.2	19.6	21.3
	Cation - Anion Balance (%)	0.0	7.1	-3.3	-2.4	1.6
Cyanides	Cyanide, Weak Acid Diss (mg/L)	<0.0050	<0.0050	<0.0050	0.0176	0.0153
	Cyanide, Total (mg/L)	<0.0050	<0.0050	<0.0050	0.0426	0.0796
	Cyanate (mg/L)	<0.20	<0.20	<0.20	<0.20	<0.20
	Thiocyanate (SCN) (mg/L)	<0.50	<0.50	<0.50	2.60 SP	5.11 SFP
Total Metals	Aluminum (Al)-Total (mg/L)	<0.0030	0.0228	0.270	0.0578	0.0170
	Antimony (Sb)-Total (mg/L)	<0.00010	<0.00010	0.0397	0.00043	0.00053
	Arsenic (As)-Total (mg/L)	<0.00010	0.00026	0.578	0.0602	0.126
	Barium (Ba)-Total (mg/L)	<0.000050	0.0821	0.0674	0.0812	0.0630
	Beryllium (Be)-Total (mg/L)	<0.000020	<0.000020	0.00017	<0.000020	0.000023
	Bismuth (Bi)-Total (mg/L)	<0.000050	<0.000050	0.00213	<0.000050	<0.000050
	Boron (B)-Total (mg/L)	<0.010	<0.010	0.157	0.050	0.059
	Cadmium (Cd)-Total (mg/L)	<0.0000050	0.0000307	0.00751	0.000180	0.000418
	Calcium (Ca)-Total (mg/L)	<0.050	31.0	625	254	269
	Chromium (Cr)-Total (mg/L)	0.00011	0.00011	0.00130	0.00043	0.00065
	Cobalt (Co)-Total (mg/L)	<0.00010	<0.00010	0.00617	0.00684	0.00844
	Copper (Cu)-Total (mg/L)	<0.00050	0.00110	0.0957	0.00132	0.00268
	Iron (Fe)-Total (mg/L)	<0.010	0.029	4.49	5.10	18.9
	Lead (Pb)-Total (mg/L)	<0.000050	<0.000050	0.153	0.000153	0.000079
	Lithium (Li)-Total (mg/L)	<0.0010	<0.0010	0.0200	0.0010	<0.0010

L1745321 CONTD.... PAGE 4 of 11 01-APR-16 11:39 (MT) Version: FINAL

	Sample ID Description Sampled Date Sampled Time Client ID	L1745321-1 WATER 14-MAR-16 15:45 WQ-VC-UMN	L1745321-2 WATER 14-MAR-16 14:20 FIELD BLANK	L1745321-3 WATER 14-MAR-16 14:05 WQ-VC-R+150	L1745321-4 WATER 14-MAR-16 18:25 WQ-VC-U	L1745321-5 WATER 14-MAR-16 16:25 WQ-VC-UMN-R
Grouping	Analyte					
WATER						
Total Metals	Magnesium (Mg)-Total (mg/L)	11.7	<0.10	13.3	9.89	11.9
	Manganese (Mn)-Total (mg/L)	0.0115	<0.00010	0.00481	0.108	0.0112
	Mercury (Hg)-Total (mg/L)	<0.0000050	<0.0000050	<0.0000050	<0.0000050	<0.0000050
	Molybdenum (Mo)-Total (mg/L)	0.000331	<0.000050	0.000350	0.000395	0.000435
	Nickel (Ni)-Total (mg/L)	<0.00050	<0.00050	<0.00050	<0.00050	<0.00050
	Phosphorus (P)-Total (mg/L)	<0.050	<0.050	<0.050	<0.050	<0.050
	Potassium (K)-Total (mg/L)	0.96	<0.10	1.16	0.75	1.00
	Selenium (Se)-Total (mg/L)	0.000068	<0.000050	0.000064	<0.000050	0.000073
	Silicon (Si)-Total (mg/L)	6.74	<0.050	7.43	6.40	6.80
	Silver (Ag)-Total (mg/L)	<0.000010	<0.000010	<0.000010	<0.000010	<0.000010
	Sodium (Na)-Total (mg/L)	3.67	<0.050	3.99	2.84	3.65
	Strontium (Sr)-Total (mg/L)	0.338	<0.00020	0.350	0.323	0.331
	Sulfur (S)-Total (mg/L)	12.7	<0.50	14.0	7.77	12.6
	Thallium (TI)-Total (mg/L)	<0.000010	<0.000010	<0.000010	<0.000010	<0.000010
	Tin (Sn)-Total (mg/L)	<0.00010	<0.00010	<0.00010	<0.00010	<0.00010
	Titanium (Ti)-Total (mg/L)	<0.00030	<0.00030	<0.00030	0.00037	<0.00030
	Uranium (U)-Total (mg/L)	0.000520	<0.000010	0.000668	0.000688	0.000511
	Vanadium (V)-Total (mg/L)	<0.00050	<0.00050	<0.00050	<0.00050	<0.00050
	Zinc (Zn)-Total (mg/L)	0.0035	< 0.0030	0.0045	<0.0030	0.0031
	Zirconium (Zr)-Total (mg/L)	<0.00030	<0.00030	<0.00030	<0.00030	<0.00030
Dissolved Metals	Dissolved Mercury Filtration Location	FIELD	FIELD	FIELD	FIELD	FIELD
	Dissolved Metals Filtration Location	FIELD	FIELD	FIELD	FIELD	FIELD
	Aluminum (AI)-Dissolved (mg/L)	0.0046	<0.0010	0.0050	0.0061	0.0044
	Antimony (Sb)-Dissolved (mg/L)	0.00046	<0.00010	0.00044	<0.00010	0.00046
	Arsenic (As)-Dissolved (mg/L)	0.00119	<0.00010	0.00130	0.00022	0.00131
	Barium (Ba)-Dissolved (mg/L)	0.0753	<0.000050	0.0795	0.0841	0.0771
	Beryllium (Be)-Dissolved (mg/L)	<0.000020	<0.000020	<0.000020	<0.000020	<0.000020
	Bismuth (Bi)-Dissolved (mg/L)	<0.000050	<0.000050	<0.000050	<0.000050	<0.000050
	Boron (B)-Dissolved (mg/L)	<0.010	<0.010	<0.010	<0.010	<0.010
	Cadmium (Cd)-Dissolved (mg/L)	0.0000210	<0.0000050	0.0000226	0.0000250	0.0000155
	Calcium (Ca)-Dissolved (mg/L)	39.8	< 0.050	42.3	33.7	39.4
	Chromium (Cr)-Dissolved (mg/L)	<0.00010	<0.00010	<0.00010	<0.00010	<0.00010
	Cobalt (Co)-Dissolved (mg/L)	<0.00010	<0.00010	<0.00010	<0.00010	<0.00010
	Copper (Cu)-Dissolved (mg/L)	0.00081	<0.00020	0.00089	0.00096	0.00089
	Iron (Fe)-Dissolved (mg/L)	<0.010	<0.010	<0.010	<0.010	<0.010
	Lead (Pb)-Dissolved (mg/L)	<0.00050	<0.000050	<0.000050	<0.000050	<0.000050
	Lithium (Li)-Dissolved (mg/L)	<0.000000	<0.0010	0.0011	<0.000030	<0.000000

L1745321 CONTD.... PAGE 5 of 11 01-APR-16 11:39 (MT) Version: FINAL

	Sample ID Description Sampled Date Sampled Time Client ID	L1745321-6 WATER TRAVEL BLANK	L1745321-7 WATER 14-MAR-16 18:00 WQ-VC-DBC	L1745321-8 WATER 15-MAR-16 11:25 WQ-TP	L1745321-9 WATER 15-MAR-16 10:25 WQ-DC-U	L1745321-10 WATER 15-MAR-16 10:50 WQ-SEEP		
Grouping	Analyte							
WATER								
Total Metals	Magnesium (Mg)-Total (mg/L)	<0.10	10.3	124	61.3	59.5		
	Manganese (Mn)-Total (mg/L)	<0.00010	0.114	20.4	5.91	6.35		
	Mercury (Hg)-Total (mg/L)	<0.0000050	<0.0000050	DLM <0.000050	<0.0000050	<0.0000050		
	Molybdenum (Mo)-Total (mg/L)	<0.000050	0.000395	0.00627	0.00103	0.00106		
	Nickel (Ni)-Total (mg/L)	<0.00050	<0.00050	0.0085	0.00290	0.00375		
	Phosphorus (P)-Total (mg/L)	<0.050	<0.050	0.064	0.063	0.054		
	Potassium (K)-Total (mg/L)	<0.10	0.82	42.3	5.83	6.34		
	Selenium (Se)-Total (mg/L)	<0.000050	0.000053	0.00034	0.000173	0.000264		
	Silicon (Si)-Total (mg/L)	<0.050	6.54	6.91	7.28	7.98		
	Silver (Ag)-Total (mg/L)	<0.000010	<0.000010	0.00367	0.000025	0.000039		
	Sodium (Na)-Total (mg/L)	<0.050	2.79	42.7	33.3	36.5		
	Strontium (Sr)-Total (mg/L)	<0.00020	0.321	1.59	0.777	0.750		
	Sulfur (S)-Total (mg/L)	<0.50	7.79	645	226	242		
	Thallium (TI)-Total (mg/L)	<0.00010	<0.000010	0.000493	<0.000010	<0.000010		
	Tin (Sn)-Total (mg/L)	<0.00010	< 0.00010	<0.00050	<0.00010	<0.00010		
	Titanium (Ti)-Total (mg/L)	<0.00030	0.00070	0.0028	0.00243	0.00132		
	Uranium (U)-Total (mg/L)	<0.000010	0.000691	0.00404	0.00167	0.00177		
	Vanadium (V)-Total (mg/L)	< 0.00050	< 0.00050	<0.0025	0.00149	0.00311		
	Zinc (Zn)-Total (mg/L)	<0.0030	<0.0030	0.584	0.0471	0.116		
	Zirconium (Zr)-Total (mg/L)	<0.00030	<0.00030	<0.004 DLA <0.0015	0.00038	0.00070		
Dissolved Metals	Dissolved Mercury Filtration Location	10.00000	FIELD	FIELD	FIELD	FIELD		
	Dissolved Metals Filtration Location		FIELD	FIELD	FIELD	FIELD		
	Aluminum (Al)-Dissolved (mg/L)		0.0059	0.0061	0.0057	0.0095		
	Antimony (Sb)-Dissolved (mg/L)		< 0.00010	0.00646	0.00033	0.00050		
	Arsenic (As)-Dissolved (mg/L)		0.00024	0.0834	0.0403	0.0773		
	Barium (Ba)-Dissolved (mg/L)		0.0830	0.0510	0.0668	0.0546		
	Beryllium (Be)-Dissolved (mg/L)		<0.000020	<0.00010	<0.000020	<0.000020		
	Bismuth (Bi)-Dissolved (mg/L)		<0.000050	<0.00025	<0.000050	<0.000050		
	Boron (B)-Dissolved (mg/L)		<0.010	0.151	0.041	0.050		
	Cadmium (Cd)-Dissolved (mg/L)		0.0000229	0.00532	0.000113	0.000277		
	Calcium (Ca)-Dissolved (mg/L)		33.8	637	253	270		
	Chromium (Cr)-Dissolved (mg/L)		<0.00010	<0.00050	0.00027	0.00054		
	Cobalt (Co)-Dissolved (mg/L)		<0.00010	0.00535	0.00614	0.00802		
	Copper (Cu)-Dissolved (mg/L)		0.00092	0.0300	0.00061			
	Iron (Fe)-Dissolved (mg/L)		<0.00092	0.0300	3.17	0.00152		
	Lead (Pb)-Dissolved (mg/L)					17.8		
	Lithium (Li)-Dissolved (mg/L)		<0.000050	0.00030	< 0.000050	<0.000050		
			<0.0010	0.0179	0.0013	0.0011		

L1745321 CONTD.... PAGE 6 of 11 01-APR-16 11:39 (MT) Version: FINAL

	Sample ID Description Sampled Date Sampled Time Client ID	L1745321-1 WATER 14-MAR-16 15:45 WQ-VC-UMN	L1745321-2 WATER 14-MAR-16 14:20 FIELD BLANK	L1745321-3 WATER 14-MAR-16 14:05 WQ-VC-R+150	L1745321-4 WATER 14-MAR-16 18:25 WQ-VC-U	L1745321-5 WATER 14-MAR-16 16:25 WQ-VC-UMN-R
Grouping	Analyte					
WATER						
Dissolved Metals	Magnesium (Mg)-Dissolved (mg/L)	12.7	<0.10	14.1	10.5	12.7
	Manganese (Mn)-Dissolved (mg/L)	0.0107	<0.00010	0.00461	0.105	0.0105
	Mercury (Hg)-Dissolved (mg/L)	<0.0000050	<0.0000050	<0.0000050	<0.0000050	<0.0000050
	Molybdenum (Mo)-Dissolved (mg/L)	0.000274	<0.000050	0.000297	0.000322	0.000278
	Nickel (Ni)-Dissolved (mg/L)	<0.00050	<0.00050	<0.00050	<0.00050	<0.00050
	Phosphorus (P)-Dissolved (mg/L)	<0.050	<0.050	<0.050	<0.050	<0.050
	Potassium (K)-Dissolved (mg/L)	1.02	<0.10	1.21	0.80	1.02
	Selenium (Se)-Dissolved (mg/L)	0.000059	<0.000050	0.000055	<0.000050	0.000067
	Silicon (Si)-Dissolved (mg/L)	6.91	<0.050	7.47	6.53	6.85
	Silver (Ag)-Dissolved (mg/L)	<0.000010	<0.000010	<0.000010	<0.000010	<0.000010
	Sodium (Na)-Dissolved (mg/L)	3.71	<0.050	4.06	2.83	3.78
	Strontium (Sr)-Dissolved (mg/L)	0.325	<0.00020	0.342	0.311	0.325
	Sulfur (S)-Dissolved (mg/L)	11.8	<0.50	13.5	7.42	12.4
	Thallium (TI)-Dissolved (mg/L)	<0.000010	<0.000010	<0.000010	<0.000010	<0.000010
	Tin (Sn)-Dissolved (mg/L)	<0.00010	<0.00010	<0.00010	<0.00010	<0.00010
	Titanium (Ti)-Dissolved (mg/L)	<0.00030	<0.00030	<0.00030	<0.00030	<0.00030
	Uranium (U)-Dissolved (mg/L)	0.000432	<0.000010	0.000562	0.000556	0.000437
	Vanadium (V)-Dissolved (mg/L)	<0.00050	<0.00050	<0.00050	<0.00050	<0.00050
	Zinc (Zn)-Dissolved (mg/L)	0.0030	<0.0010	0.0044	<0.0010	0.0027
	Zirconium (Zr)-Dissolved (mg/L)	<0.00030	<0.00030	<0.00030	<0.00030	<0.00030

L1745321 CONTD.... PAGE 7 of 11 01-APR-16 11:39 (MT) Version: FINAL

	Sample ID Description Sampled Date Sampled Time Client ID	L1745321-6 WATER TRAVEL BLANK	L1745321-7 WATER 14-MAR-16 18:00 WQ-VC-DBC	L1745321-8 WATER 15-MAR-16 11:25 WQ-TP	L1745321-9 WATER 15-MAR-16 10:25 WQ-DC-U	L1745321-10 WATER 15-MAR-16 10:50 WQ-SEEP
Grouping	Analyte					
WATER	-					
Dissolved Metals	Magnesium (Mg)-Dissolved (mg/L)		10.9	119	59.9	56.8
	Manganese (Mn)-Dissolved (mg/L)		0.112	19.9	5.57	6.36
	Mercury (Hg)-Dissolved (mg/L)		<0.0000050	<0.0000050	<0.0000050	< 0.0000050
	Molybdenum (Mo)-Dissolved (mg/L)		0.000345	0.00678	0.000959	0.00115
	Nickel (Ni)-Dissolved (mg/L)		< 0.00050	0.0076	0.00252	0.00338
	Phosphorus (P)-Dissolved (mg/L)		< 0.050	< 0.050	<0.050	< 0.050
	Potassium (K)-Dissolved (mg/L)		0.83	37.8	5.69	6.17
	Selenium (Se)-Dissolved (mg/L)		0.000055	DLA <0.00025	0.000183	0.000237
	Silicon (Si)-Dissolved (mg/L)		6.61	6.20	6.94	7.69
	Silver (Ag)-Dissolved (mg/L)		<0.000010	DLA <0.000050	<0.000010	0.000015
	Sodium (Na)-Dissolved (mg/L)		2.88	40.8	29.7	33.9
	Strontium (Sr)-Dissolved (mg/L)		0.315	1.62	0.715	0.747
	Sulfur (S)-Dissolved (mg/L)		7.32	604	217	231
	Thallium (TI)-Dissolved (mg/L)		<0.000010	0.000435	<0.000010	<0.000010
	Tin (Sn)-Dissolved (mg/L)		<0.00010	DLA <0.00050	<0.00010	<0.00010
	Titanium (Ti)-Dissolved (mg/L)		<0.00030	DLA <0.0015	0.00052	0.00095
	Uranium (U)-Dissolved (mg/L)		0.000567	0.00401	0.00171	0.00199
	Vanadium (V)-Dissolved (mg/L)		<0.00050	DLA <0.0025	0.00094	0.00228
	Zinc (Zn)-Dissolved (mg/L)		<0.0010	0.406	0.0355	0.0957
	Zirconium (Zr)-Dissolved (mg/L)		<0.00030	<0.0015	0.00040	0.00077

QC Samples with Qualifiers & Comments:

QC Type Description	Parameter	Qualifier	Applies to Sample Number(s)
Duplicate	Antimony (Sb)-Dissolved	DLA	L1745321-1, -10, -2, -3, -4, -5, -7, -8, -9
Duplicate	Bismuth (Bi)-Dissolved	DLA	L1745321-1, -10, -2, -3, -4, -5, -7, -8, -9
Duplicate	Chromium (Cr)-Dissolved	DLA	L1745321-1, -10, -2, -3, -4, -5, -7, -8, -9
Duplicate	Lead (Pb)-Dissolved	DLA	L1745321-1, -10, -2, -3, -4, -5, -7, -8, -9
Duplicate	Thallium (TI)-Dissolved	DLA	L1745321-1, -10, -2, -3, -4, -5, -7, -8, -9
Duplicate	Tin (Sn)-Dissolved	DLA	L1745321-1, -10, -2, -3, -4, -5, -7, -8, -9
Duplicate	Titanium (Ti)-Dissolved	DLA	L1745321-1, -10, -2, -3, -4, -5, -7, -8, -9
Duplicate	Vanadium (V)-Dissolved	DLA	L1745321-1, -10, -2, -3, -4, -5, -7, -8, -9
Matrix Spike	Barium (Ba)-Dissolved	MS-B	L1745321-1, -10, -2, -3, -4, -5, -7, -8, -9
Matrix Spike	Manganese (Mn)-Dissolved	MS-B	L1745321-1, -10, -2, -3, -4, -5, -7, -8, -9
Matrix Spike	Sodium (Na)-Dissolved	MS-B	L1745321-1, -10, -2, -3, -4, -5, -7, -8, -9
Matrix Spike	Strontium (Sr)-Dissolved	MS-B	L1745321-1, -10, -2, -3, -4, -5, -7, -8, -9
Matrix Spike	Barium (Ba)-Dissolved	MS-B	L1745321-1, -10, -2, -3, -4, -5, -7, -8, -9
Matrix Spike	Sodium (Na)-Dissolved	MS-B	L1745321-1, -10, -2, -3, -4, -5, -7, -8, -9
Matrix Spike	Strontium (Sr)-Dissolved	MS-B	L1745321-1, -10, -2, -3, -4, -5, -7, -8, -9
Matrix Spike	Aluminum (Al)-Total	MS-B	L1745321-1, -10, -2, -3, -4, -5, -6, -7, -8, -9
Matrix Spike	Barium (Ba)-Total	MS-B	L1745321-1, -10, -2, -3, -4, -5, -6, -7, -8, -9
Matrix Spike	Manganese (Mn)-Total	MS-B	L1745321-1, -10, -2, -3, -4, -5, -6, -7, -8, -9
Matrix Spike	Sodium (Na)-Total	MS-B	L1745321-1, -10, -2, -3, -4, -5, -6, -7, -8, -9
Matrix Spike	Strontium (Sr)-Total	MS-B	L1745321-1, -10, -2, -3, -4, -5, -6, -7, -8, -9
Matrix Spike	Silicon (Si)-Dissolved	MS-B	L1745321-1, -10, -2, -3, -4, -5, -7, -8, -9
Matrix Spike	Barium (Ba)-Dissolved	MS-B	L1745321-1, -10, -2, -3, -4, -5, -7, -8, -9
Matrix Spike	Manganese (Mn)-Dissolved	MS-B	L1745321-1, -10, -2, -3, -4, -5, -7, -8, -9
Matrix Spike	Sodium (Na)-Dissolved	MS-B	L1745321-1, -10, -2, -3, -4, -5, -7, -8, -9
Matrix Spike	Strontium (Sr)-Dissolved	MS-B	L1745321-1, -10, -2, -3, -4, -5, -7, -8, -9

Qualifiers for Individual Parameters Listed:

Description
Detection Limit adjusted for required dilution
Detection Limit Adjusted due to sample matrix effects.
Matrix Spike recovery could not be accurately calculated due to high analyte background in sample.
Reported Result Verified By Repeat Analysis
Sample was Filtered and Preserved at the laboratory
Sample was Preserved at the laboratory

Test Method References:

ALS Test Code	Matrix	Test Description	Method Reference**
ALK-TITR-VA	Water	Alkalinity Species by Titration	APHA 2320 Alkalinity
		edures adapted from APHA Method 2320 "Alkalinit te and hydroxide alkalinity are calculated from phe	y". Total alkalinity is determined by potentiometric titration to a nolphthalein alkalinity and total alkalinity values.
BE-D-L-CCMS-VA	Water	Diss. Be (low) in Water by CRC ICPMS	APHA 3030B/6020A (mod)
Water samples are filte	ered (0.45 um),	preserved with nitric acid, and analyzed by CRC IC	PMS.
Method Limitation (re:	Sulfur): Sulfide a	and volatile sulfur species may not be recovered by	y this method.
BE-T-L-CCMS-VA	Water	Total Be (Low) in Water by CRC ICPMS	EPA 200.2/6020A (mod)
Water samples are dig	ested with nitric	and hydrochloric acids, and analyzed by CRC ICF	PMS.
Method Limitation (re:	Sulfur): Sulfide a	and volatile sulfur species may not be recovered by	y this method.
CL-IC-N-WR	Water	Chloride in Water by IC	EPA 300.1 (mod)
Inorganic anions are a	nalyzed by Ion C	Chromatography with conductivity and/or UV detect	tion.
CN-CNO-WT	Water	Cyanate	APHA 4500-CN-L
		-	

This analysis is carried out method using an ammonia		ures adapted from APHA method 4500-CN "Cyanide". ctrode	Cyanate is determined by the Cyanate hydrolysis
CN-SCN-VA	Water	Thiocyanate by Colour	APHA 4500-CN CYANIDE
This analysis is carried out colourimetric method.	using proced	ures adapted from APHA Method 4500-CN- M "Thiocy	anate" Thiocyanate is determined by the ferric nitrate
CN-T-CFA-VA	Water	Total Cyanide in water by CFA	ISO 14403:2002
CFA)". Total or strong acid colourimetric analysis. Met	dissociable (hod Limitatior	ures adapted from ISO Method 14403:2002 "Determin SAD) cyanide is determined by in-line UV digestion alon: This method is susceptible to interference from thiod method, but it would be less than 1% and could be as	ng with sample distillation and final determination by cyanate (SCN). If SCN is present in the sample, there
CN-WAD-CFA-VA	Water	Weak Acid Diss. Cyanide in water by CFA	APHA 4500-CN CYANIDE
		ures adapted from APHA Method 4500-CN I. "Weak A sample distillation with final determination by colourime	
EC-PCT-VA	Water	Conductivity (Automated)	APHA 2510 Auto. Conduc.
This analysis is carried out electrode.	using proced	ures adapted from APHA Method 2510 "Conductivity".	Conductivity is determined using a conductivity
F-IC-N-WR	Water	Fluoride in Water by IC	EPA 300.1 (mod)
Inorganic anions are analyz	zed by Ion Ch	romatography with conductivity and/or UV detection.	
HARDNESS-CALC-VA	Water	Hardness	APHA 2340B
		s) is calculated from the sum of Calcium and Magnesic centrations are preferentially used for the hardness calc	
HG-D-CVAA-VA	Water	Diss. Mercury in Water by CVAAS or CVAFS	APHA 3030B/EPA 1631E (mod)
Water samples are filtered with stannous chloride, and		eserved with hydrochloric acid, then undergo a cold-ox CVAAS or CVAFS.	idation using bromine monochloride prior to reduction
HG-T-CVAA-VA	Water	Total Mercury in Water by CVAAS or CVAFS	EPA 1631E (mod)
Water samples undergo a	cold-oxidatior	using bromine monochloride prior to reduction with sta	annous chloride, and analyzed by CVAAS or CVAFS.
IONBALANCE-VA	Water	Ion Balance Calculation	APHA 1030E
		e (as % difference) are calculated based on guidance queous solutions are electrically neutral, the calculated	
Cation and Anion Sums are included where data is pres		q/L concentration of major cations and anions. Dissolvance is calculated as:	ved species are used where available. Minor ions are
Ion Balance (%) = [Cation \$	Sum-Anion S	um] / [Cation Sum+Anion Sum]	
MET-D-CCMS-VA	Water	Dissolved Metals in Water by CRC ICPMS	APHA 3030B/6020A (mod)
Water samples are filtered	(0.45 um), pr	eserved with nitric acid, and analyzed by CRC ICPMS.	
Method Limitation (re: Sulfu	ur): Sulfide ar	d volatile sulfur species may not be recovered by this	method.
MET-DIS-LOW-ICP-VA	Water	Dissolved Metals in Water by ICPOES	EPA 3005A/6010B
American Public Health As	sociation, and ection Agency	ures adapted from "Standard Methods for the Examina d with procedures adapted from "Test Methods for Eval r (EPA). The procedure involves filtration (EPA Method A Method 6010B).	luating Solid Waste" SW-846 published by the United
MET-T-CCMS-VA	Water	Total Metals in Water by CRC ICPMS	EPA 200.2/6020A (mod)
Water samples are digeste	d with nitric a	nd hydrochloric acids, and analyzed by CRC ICPMS.	
Method Limitation (re: Sulfu	ur): Sulfide ar	d volatile sulfur species may not be recovered by this	method.
MET-TOT-LOW-ICP-VA	Water	Total Metals in Water by ICPOES	EPA 3005A/6010B
American Public Health As States Environmental Prote	sociation, and ection Agency	ures adapted from "Standard Methods for the Examina d with procedures adapted from "Test Methods for Eval (EPA). The procedures may involve preliminary sam Instrumental analysis is by inductively coupled plasma	luating Solid Waste" SW-846 published by the United ole treatment by acid digestion, using either hotblock or
NH3-F-VA	Water	Ammonia in Water by Fluorescence	APHA 4500 NH3-NITROGEN (AMMONIA)

			m J. Environ. Monit., 2005, 7, 37 - 42, The Royal Society e levels of ammonium in seawater", Roslyn J. Waston et
NH3-F-VA	Water	Ammonia in Water by Fluorescence	J. ENVIRON. MONIT., 2005, 7, 37-42, RSC
			m J. Environ. Monit., 2005, 7, 37 - 42, The Royal Society e levels of ammonium in seawater", Roslyn J. Waston et
NO2-L-IC-N-WR	Water	Nitrite in Water by IC (Low Level)	EPA 300.1 (mod)
Inorganic anions are analyze	ed by Ion Cl	hromatography with conductivity and/or UV detection.	
NO3-L-IC-N-WR	Water	Nitrate in Water by IC (Low Level)	EPA 300.1 (mod)
Inorganic anions are analyze	ed by Ion Cl	hromatography with conductivity and/or UV detection.	
PH-PCT-VA	Water	pH by Meter (Automated)	APHA 4500-H "pH Value"
This analysis is carried out u electrode	using proce	dures adapted from APHA Method 4500-H "pH Value".	The pH is determined in the laboratory using a pH
It is recommended that this	analysis be	conducted in the field.	
PH-PCT-VA	Water	pH by Meter (Automated)	APHA 4500-H pH Value
This analysis is carried out u electrode	using proce	dures adapted from APHA Method 4500-H "pH Value".	The pH is determined in the laboratory using a pH
It is recommended that this	analysis be	conducted in the field.	
S-DIS-ICP-VA	Water	Dissolved Sulfur in Water by ICPOES	EPA SW-846 3005A/6010B
American Public Health Ass States Environmental Protect microwave oven, or filtration Method 6010B).	ociation, an ction Agenc (EPA Meth	od 3005A). Instrumental analysis is by inductively cour	luating Solid Waste" SW-846 published by the United ple treatment by acid digestion, using either hotblock or pled plasma - optical emission spectrophotometry (EPA
	lost during		or volatile forms of sulfur that may be present in data reported as total and/or dissolved sulfur represents
S-TOT-ICP-VA	Water	Total Sulfur in Water by ICPOES	EPA SW-846 3005A/6010B
American Public Health Ass States Environmental Protect microwave oven, or filtration Method 6010B).	ociation, an ction Agenc (EPA Meth		luating Solid Waste" SW-846 published by the United ple treatment by acid digestion, using either hotblock or pled plasma - optical emission spectrophotometry (EPA
all non-volatile forms of sulfu	ur present i	n a particular sample.	data reported as total and/or dissolved sulfur represents
SO4-IC-N-WR	Water	Sulfate in Water by IC	EPA 300.1 (mod)
Inorganic anions are analyze	ed by Ion Cl	hromatography with conductivity and/or UV detection.	
TDS-CALC-VA	Water	TDS (Calculated)	APHA 1030E (20TH EDITION)
This analysis is carried out u	using proce	dures adapted from APHA 1030E "Checking Correctnes	ss of Analyses".
TSS-MAN-WR	Water	Total Suspended Solids by Gravimetric	APHA 2540 D
		dures adapted from APHA Method 2540 "Solids". Solids	
** ALS test methods may incor	porate mod	ifications from specified reference methods to improve	performance.
The last two letters of the abo	ove test cod	e(s) indicate the laboratory that performed analytical an	alysis for that test. Refer to the list below:
Laboratory Definition Code	Labora	atory Location	
VA	ALS EN	NVIRONMENTAL - VANCOUVER, BRITISH COLUMBI	A, CANADA
Chain of Custody Numbers:			

1

GLOSSARY OF REPORT TERMS

Surrogate - A compound that is similar in behaviour to target analyte(s), but that does not occur naturally in environmental samples. For applicable tests, surrogates are added to samples prior to analysis as a check on recovery. *mg/kg* - *milligrams per kilogram based on dry weight of sample.*

mg/kg wwt - milligrams per kilogram based on wet weight of sample.

mg/kg lwt - milligrams per kilogram based on lipid-adjusted weight of sample.

mg/L - milligrams per litre.

< - Less than.

D.L. - The reported Detection Limit, also known as the Limit of Reporting (LOR).

N/A - Result not available. Refer to qualifier code and definition for explanation.

Test results reported relate only to the samples as received by the laboratory.

UNLESS OTHERWISE STATED, ALL SAMPLES WERE RECEIVED IN ACCEPTABLE CONDITION.

Analytical results in unsigned test reports with the DRAFT watermark are subject to change, pending final QC review.

Chain of Custody (COC) / Analytical Request Form

Canada Toll Free: 1 800 668 9878

COC Number: 14 -

Page ____ of

	www.alsglobal.com			A							. J .	ļ							
Report To			Report Format	/ Distribution		L.	Sel	ect Ser	vice Le	Vei metó	ŵ (Rus	h Tum	around	Time (TAT) is	not avai	ilable for a	all tests)	<i>i</i>)
Company:	EDI	Select Report I	Format: 🕢 PDF	EXCEL	EDD (DIGITAL)	R	Re	gular (Sl	tandard	TAT if r	eceived	by 3 p	m - bu	siness (days)				
Contact:	Meghan Marjanovic	Quality Control	(QC) Report with R	eport 🔽 Yes	s 🗖 No	Р	🗌 Pric	ority (2-	4 ibus. c	days if re	xetved	by Зрп	n) 50%	surcha	irge - cc	untact Al	S to conf	Îm TAT	г
Address:	2195 - 2nd Avenue	Criteria on Rep	ort - provide details bek	ow if box checked		Е	Em	ergency	(1-2 bi	us. days	if recei	ved by	3pm) 1	100% s	urcharg	e - conta	ect ALS to) confirm	n TAT
	Whitehorse, YT Y1A 3T8	Select Distribution: Image: EMAIL Image: FAX E2 Same day or weekend emergency - contact ALS to confirm TAT and surcharge Email 1 or Fax mmarijanovic@edynamics.com Specify Date Required for E2.E or P: Specify Date Required for E2.E or P:												ircharge					
Phone:	867-393-4882	Email 1 or Fax	mmarjanovic@edy	namics.com		Spec	ify Dat	e Req	uired f	or E2, I	E or P								
		Email 2	Emilie.Hamm@go	v.yk.ca									-						
		Email 3	erik.pit@gov.yk.ca								A	nalys	ls Re	quest	t				
Invoice To	Same as Report To 🕅 Yes 🕅 No		Invoice Di	stribution			Ind	cate Filt	ered (F), Prese	rved (P) or Filt	ered ar	nd Pres	served ((F/P) bel	wc		
	Copy of Invoice with Report Ves C No	Select Invoice	Distribution: 🗹 🗄		FAX			Р	Ρ	Р	P	Ρ	F/P		\square				
Company:	EDI	Email 1 or Fax	sjenner@edynami	cs.com															
Contact:	S Jenner	Email 2	mmarjanovic@edy	marnics.com		1∢						1							μħ
	Project Information	0	il and Gas Require	d Fields (client L	ise)	PH-PCT-VA	¥	-											iner
ALS Quote #:	Q49310	Approver ID: Cost Center:]¥	1-2	A						 ₹					onta
Job #:	MOUNT NANSEN 15-Y-0146	GL Account: Routing Code:						CFA						CALC-VA					Number of Containers
PQ / AFE:		Activity Code:				12	I SE	Г Н Z						0					je L
LSD;		Location:			USE) USE)							≸	1	, TDS-					Ĕ
·					MC DC	μĂ	9	A-V				MET-T-BCMDG-VA	MET-D-BCMDG-VA	IONBALANC-VA					Ż
ALS Lab Wo	rk Order # (lab use only)	ALS Contact:	Sean Slugget	Sampler: TDH	, MISA, USI	Į₹.	₹	۲, I	5	₹ I	₹	N	N N	NA I					
ALS Sample #	Sample Identification and/or Coordinates		Date	Time		ALK-PCT-VA	SNC	WAE	CN-CNO-WI	CN-SCN-VA	NH3-F-VA	Ē	ļ	BAL					
(lab use only)	(This description will appear on the report)		(dd-mmm-yy)	(hh:mm)	Sample Type	Ŧ	ANK	Ś	ż	ž.	Ξ	ΙΨ	μ	<mark>N</mark>				ŀ	
	WQ-VC-UMN		<i>L</i> - Mar-16	15:45	Water	R	R	R	R	R	R	R	R	R					9
	FIELD BLANK		 4 - Mar - 16	14:20	Water	R	R	R	R	R	R	R	R	R					9
1	WQ- VC- R+ 150		14 - Mar - 16	14:05	Water	R	R	R	R	R	R	R	R	R					9
	WQ-VC-U)4 - Mar-16	18:25	Water	R	R	R	R	R	R	R	R	R					9
	WQ-VC-UMN-		14 • Mar - 16	16:25	Water	R	R	R	R	R	R	R	R	R					9
		·	- Mar - 16	10.25	Water	R	R	R	R	R	R	R	R	R					49
	TRAVEL BLANK				Truici		<u> </u>			<u> </u>	<u> ~</u>	· ·	.	<u> </u>	┝──┤	_ _	-+-	+	
				·						-				<u> </u> '	┠──┼		\rightarrow	+	——
				-				ļ		· -	<u> </u>	 		<u> </u>	\vdash	 +	\rightarrow	-	
				ļ								<u> </u>		<u> </u>	\square	_ _			
						ł													
		• •								1	<u> </u>							Т	
			<u> </u>		•		•	an a	SAMP	LECO	DITI	ION A	SRE	CEIV	ËD (la	ib use	only)		
Drinking	Water (DW) Samples ¹ (client use) Special I	nstructions / Spe	cify Criteria to add o	n report (client Us	ie}	Froze	ກຸ່.	La la constante da la constante		- 200	-	SIF	Obser	rvatior	ns	Yes		io 🛛	
Are samples tak	en from a Regulated DW System?					ice p	acks	Yes	. 🗖	No	: 🗆	Cus	ody s	eal in	tact	Yes Yes	N I	lo	
IC Y	ies IV No					Cooli	ng Init	ated				1.5			1.1			1	
Are samples for	human drinking water use?									RATUR	ES℃				COOLE	RTEM	PERATUR	RES ℃	. :
E Y	es I√No					0,	6	1.	Z			$ \cdot $.8	C					
	SHIPMENT RELEASE (client use)	INITIAL SHIPMENT RECEPTION (lab use only)				FINAL SHIPMENT RECEPTION (lab use only)													
Released by:	Date: Time: Received 12:42	ed by		Date: IS-Mw)[Time:	Rece	lived L	iy: M					Date	е: Дл .1	L T	Time:	83	_	
																		~	

Chain of Custody (COC) / Analytical Request Form

COC Number:	14 -
-------------	------

Page ____ of _____

(ALS)	Canada Toll Free: 1 800 668 9878							0											_	
	www.alsglobal.com	···•			<u> </u>		_					L								
Report To				Report Format			 				_					TAT} is no	t availabl	e for all t	ests)	
Company:	EDI		Select Report F	—		EDD (DIGITAL)		_	•	tandard										
Contact:	Meghan Marjanovic		Quality Control	(QC) Report with R	leport 🗖 Ye	s ENo								-		rge - conta				
Address:	2195 - 2nd Avenue		—	ort - provide details bek		_	I -												TAT miller	
	Whitehorse, YT Y1A 3T8		Select Distribut			☐ FAX				or weekend emergency - contact ALS to confirm TAT and surcharge										
Phone:	867-393-4882		Email 1 or Fax	mmarjanovic@edv	namics.com		Spec	ify Dat	te Req	uired f	or E2,8	E or P:								
			Email 2	Emilie Hamm@go	v.yk.ca															
			Email 3	erik.pit@gov.yk.ca	1							A	nalys	is Re	quest					
Invoice To	Same as Report To 🛛 🖓 Yes	No No		Invoice Di	stribution			Indi	cate Fil	tered (F)), Prese	rved (P	or Filt	ered a	nd Pres	erved (F/F	') below			
	Copy of Invoice with Report Ves	I No	Select Invoice	Distribution: 🛛 🖸	EMAIL 🗌 MAIL	FAX			Р	P	Р	Р	Ρ	F/P						
Company:	EDI		Email 1 or Fax	sjenner@edynami	cs.com										\square				1	
Contact:	S Jenner		Email 2	mmarjanovic@edy	namics.com] ≼				Ì								μ	
	Project Information		0	I and Gas Require	d Fleids (client (use)	1£.	Ľ₩											je l	
ALS Quote #:	Q49310		Approver ID:		Cost Center:		EC-PCT-VA,PH-PCT-VA	3	۲-۲					ł	\$			1	Number of Containers	
Job #:	MOUNT NANSEN 15-Y-0146		GL Account:		Routing Code:		Ā	N.	Υ.	i					CALC-VA				ŭ	
PO/AFE:			Activity Code:				1≩.	Ĕ	ļ Ļ						ပီ				erc	
LSD:			Location:				١X.	l ¥	Ŭ				¥	¥	105				l f	
	rk Order # (lab use only)		ALS Contact:	Sean Slugget	Sampler: DH	M5~, D5	ALK-PCT-VA,EC	ANIONS-ALL-IC-WR,TSS-MAN-WR	CN-WAD-CFA-VA,CN-T-CFA	CN-CNO-WT	CN-SCN-VA	4	MET-T-BCMDG-VA	MET-D-BCMDG-VA	ONBALANC-VA.				Ž	
ALS Sample #	Sample Identification	and/or Coordinates		Date	Time		E.	SN SN	ĮĂ	N X	NO	NH3-F-VA	Ë	Ğ	ا ۲۲					
(lab use only)	(This description will a	ppear on the report)		(dd-mmm-yy)	(hh:mm)	Sample Type	Ť	ANIC	- Z	l Z	ż	E E	Ē	E E	NO]	
	WQ-VC-DBC)4 - Mar - 16	18:00	Water	R	R	R	R	R	R	R	R	R			1	9	
· · · · · · · · · · · · · · · · · · ·	WQ-TP	· · ·		15 - Mar - 16	11:25	Water	R	R	R	R	R	R	R	R	R		+-	+	9	
				15 • Mar - 16	10:25	Water	R	R	R	R	R	R	R	R	R	+	<u> </u>	+	9	
	Wa- DC- U		····					<u> </u>	F						+		—	+		
	WA-SEEP			15 - Mar - 16	10:50	Water	R	R	R	R	R	R	R	R	R	\rightarrow	\perp		8	
$= \frac{1}{2} \sum_{i=1}^{n-1} \frac{1}{i} \left(\frac{1}{1 + 1} + \frac{1}{1 + 1} \right)$						Water	<u> </u> -R-	-R-	-R-	R	- R -	- R -	-R-	-R-	R				<u> </u>	
1996 - 4 99 - 4 9 - 4 99 - 4 9 -		بد وی این می می برد این این این می برد. رب این این این می برد این این این این می برد این		16		Water	- R -		<u></u>		- R-	- R			┟╼╗┥				L_a_	
		<u> </u>		E)	†- 	1	1					1					1		
	· · · · · · · · · · · · · · · · · · ·			<u> </u>		<u>+</u>				<u> </u>			<u> </u>		\vdash	-+		+	<u> </u>	
															┝╌┥	<u> </u>		+	I——	
								<u> </u>	ļ	<u> </u>	-		Ļ	 	\vdash		_	<u> </u>		
<i>.1</i>								ļ					<u> </u>	L.				\perp		
							1	1												
																		T		
	·			· · · · · · · ·	· · · · · · · · · · · · · · · · · · ·		1			SAMP	LE CO	NDITI	ON A	S RE	CEIVE	ED (lab i	use on	y)	L	
Drinking	Water (DW) Samples ¹ (client use)	Special in	istructions / Spec	ify Criteria to add o	n report (client U	sej	Froze	en								ış Ye				
Are samples tak	en from a Regulated DW System?						Ice p	acks	Yes		No		Cust	ody s	eal int	act Ye	38 🗖	No		
EY	es 17 ⁴ No						· ·	ing Initi						-					_	
Are samples for	human drinking water use?						INI	TIAL CO	OLER	TEMPE	RATURI	ES °C		<u>_</u>	FINAL (COOLER 1	TEMPER	ATURES	•C	
E Ye	, i i						1.80													
	SHIPMENT RELEASE (client use)	<u> </u>	INITIAL S	HIPMENT RECEP	TION (lab use on	ly)		<u>)</u>	L	FIN	AL SH	IPME				(lab use	only)			
Released by:	Date:	Time: Receiv	ed by		Date:	Time:		eived t									ne:	2.	- · · · · ·	
Parada	15/03/20%	12:47					\Box		ÓN (_	\square	: 04.1	7	18	50		
OFFER TO BAGE	(PACE FOR ALS LOCATIONS AND SAMPLIN	O HICODIATION		1601	TE - LABORATOR	WAARY VE	1 OW	CLIEN	TOO	N		_	_			28a v08 Franktok				

REFER TO BACK PAGE FOR ALS LOCATIONS AND SAMPLING INFORMATIO

YELLOW - CLIENTICOT

EDI ENVIRONMENTAL DYNAMICS INC. ATTN: Meghan Marjanovic 2195 - 2nd Ave Whitehorse YT Y1A 3T8 Date Received: 15-MAR-16 Report Date: 29-MAR-16 12:32 (MT) Version: FINAL

Client Phone: 867-393-4882

Certificate of Analysis

Lab Work Order #: L1745419

Project P.O. #: Job Reference: C of C Numbers: Legal Site Desc: NOT SUBMITTED MOUNT NANSEN 15-Y-0146

1

Can Dang Senior Account Manager

[This report shall not be reproduced except in full without the written authority of the Laboratory.]

ADDRESS: 8081 Lougheed Hwy, Suite 100, Burnaby, BC V5A 1W9 Canada | Phone: +1 604 253 4188 | Fax: +1 604 253 6700 ALS CANADA LTD Part of the ALS Group A Campbell Brothers Limited Company

www.alsglobal.com

RIGHT SOLUTIONS RIGHT PARTNER

Environmental 💭

L1745419 CONTD.... PAGE 2 of 4 29-MAR-16 12:32 (MT) Version: FINAL

	Sample ID Description Sampled Date Sampled Time Client ID	L1745419-1 WATER 14-MAR-16 19:30 WQ-PW		
Grouping	Analyte			
WATER				
Physical Tests	Colour, True (CU)	<5.0		
	Conductivity (uS/cm)	367		
	Hardness (as CaCO3) (mg/L)	199		
	рН (рН)	8.00		
	Total Dissolved Solids (mg/L)	208		
	Turbidity (NTU)	0.17		
Anions and Nutrients	Alkalinity, Total (as CaCO3) (mg/L)	165		
	Chloride (Cl) (mg/L)	<0.50		
	Fluoride (F) (mg/L)	0.111		
	Nitrate (as N) (mg/L)	0.111		
	Nitrite (as N) (mg/L)	<0.0010		
	Sulfate (SO4) (mg/L)	35.7		
	Anion Sum (meq/L)	4.06		
	Cation Sum (meq/L)	4.23		
	Cation - Anion Balance (%)	2.0		
Total Metals	Aluminum (Al)-Total (mg/L)	<0.010		
	Antimony (Sb)-Total (mg/L)	<0.00050		
	Arsenic (As)-Total (mg/L)	0.00039		
	Barium (Ba)-Total (mg/L)	0.087		
	Boron (B)-Total (mg/L)	<0.10		
	Cadmium (Cd)-Total (mg/L)	<0.00020		
	Calcium (Ca)-Total (mg/L)	46.7		
	Chromium (Cr)-Total (mg/L)	<0.0020		
	Copper (Cu)-Total (mg/L)	<0.0010		
	Iron (Fe)-Total (mg/L)	<0.030		
	Lead (Pb)-Total (mg/L)	0.00060		
	Magnesium (Mg)-Total (mg/L)	20.0		
	Manganese (Mn)-Total (mg/L)	<0.0020		
	Mercury (Hg)-Total (mg/L)	<0.00020		
	Potassium (K)-Total (mg/L)	0.93		
	Selenium (Se)-Total (mg/L)	<0.0010		
	Sodium (Na)-Total (mg/L)	5.2		
	Uranium (U)-Total (mg/L)	0.00181		
	Zinc (Zn)-Total (mg/L)	<0.050		

QC Samples with Qualifiers & Comments:

MS-B Matrix Spike recovery composition Test Method References: ALS Test Code Matrix ALK-COL-VA Water This analysis is carried out using procedute colourimetric method. Water CL-IC-N-WR Water Inorganic anions are analyzed by Ion Chr COLOUR-TRUE-VA Water This analysis is carried out using procedute is determined by filtering a sample through method. Colour measurements can be highly pH or Concurrent measurement of sample pH is EC-PCT-VA Water This analysis is carried out using procedute electrode. Water F-IC-N-WR Water Inorganic anions are analyzed by Ion Chr HARDNESS-CALC-VA Water Hardness (also known as Total Hardness Dissolved Calcium and Magnesium conception of the analysis is carried out using procedute American Public Health Association, and States Environmental Protection Agency	for required dilution ALS DQO. Limits of Reporting have be build not be accurately calculated due to Test Description Alkalinity by Colourimetric (Automated ures adapted from EPA Method 310.2 ¹ Chloride in Water by IC omatography with conductivity and/or 1 Colour (True) by Spectrometer ures adapted from British Columbia En th a 0.45 micron membrane filter follow dependent, and apply to the pH of the s s recommended. Conductivity (Automated) ures adapted from APHA Method 2510	to high analyte to d) "Alkalinity". Tot UV detection. Invironmental Ma wed by analysis sample as rece	Method Reference** EPA 310.2 cal Alkalinity is determined using the methyl orange EPA 300.1 (mod) BCMOE Colour Single Wavelength anual "Colour- Single Wavelength." Colour (True Colour co f the filtrate using the platinum-cobalt colourimetric eived (at time of testing), without pH adjustment. APHA 2510 Auto. Conduc.	
Duplicate Method Blank Matrix Spike Matrix Spike Qualifiers for Individual Parameters Lite Qualifier Description DLA Detection Limit adjusted MB-LOR Method Blank exceeds A MS-B Matrix Spike recovery complexity ALS Test Code Matrix ALS Test Code Matrix ALK-COL-VA Water This analysis is carried out using procedution Colourimetric method. CL-IC-N-WR Water Inorganic anions are analyzed by Ion Christ Colour measurements can be highly pH or concurrent measurement of sample pH in the conconcurrent measurement of sample pH in the c	Copper (Cu)-Total Copper (Cu)-Total Aluminum (Al)-Total Calcium (Ca)-Total sted: for required dilution ALS DQO. Limits of Reporting have be puld not be accurately calculated due to Test Description Alkalinity by Colourimetric (Automated ures adapted from EPA Method 310.2 ^{cl} Chloride in Water by IC omatography with conductivity and/or l Colour (True) by Spectrometer ures adapted from British Columbia En th a 0.45 micron membrane filter follow dependent, and apply to the pH of the s s recommended. Conductivity (Automated) ures adapted from APHA Method 2510	DLA MB-LOR MS-B MS-B	L1745419-1 L1745419-1 L1745419-1 L1745419-1 samples with positive hits below 5x blank level. background in sample. Method Reference** EPA 310.2 al Alkalinity is determined using the methyl orange EPA 300.1 (mod) BCMOE Colour Single Wavelength anual "Colour- Single Wavelength anual "Colour- Single Wavelength." Colour (True Colour of the filtrate using the platinum-cobalt colourimetric eived (at time of testing), without pH adjustment. APHA 2510 Auto. Conduc.	
Method Blank Matrix Spike Matrix Spike Qualifiers for Individual Parameters Lii Qualifier Description DLA Detection Limit adjusted MB-LOR Method Blank exceeds // MS-B Matrix Spike recovery co Fest Method References: ALS Test Code Matrix ALK-COL-VA Water This analysis is carried out using proceduc colourimetric method. CL-IC-N-WR Water Inorganic anions are analyzed by lon Chr COLOUR-TRUE-VA Water This analysis is carried out using proceduc is determined by filtering a sample throug method. Colour measurements can be highly pH or Concurrent measurement of sample pH is EC-PCT-VA Water This analysis is carried out using proceduc is determined by filtering a sample throug method. Colour measurements can be highly pH or Concurrent measurement of sample pH is EC-PCT-VA Water This analysis is carried out using proceduc is determined by filtering a sample throug method. Colour measurements can be highly pH or Concurrent measurement of sample pH is EC-PCT-VA Water This analysis is carried out using proceduc is determined by fi	Copper (Cu)-Total Aluminum (Al)-Total Calcium (Ca)-Total sted: for required dilution ALS DQO. Limits of Reporting have be build not be accurately calculated due to Test Description Alkalinity by Colourimetric (Automated irres adapted from EPA Method 310.2 ° Chloride in Water by IC omatography with conductivity and/or 1 Colour (True) by Spectrometer irres adapted from British Columbia En th a 0.45 micron membrane filter follow dependent, and apply to the pH of the st s recommended. Conductivity (Automated) irres adapted from APHA Method 2510	MB-LOR MS-B MS-B een adjusted for to high analyte h d) "Alkalinity". Tot UV detection. uvironmental Ma wed by analysis sample as rece	L1745419-1 L1745419-1 L1745419-1 r samples with positive hits below 5x blank level. background in sample. Method Reference** EPA 310.2 al Alkalinity is determined using the methyl orange EPA 300.1 (mod) BCMOE Colour Single Wavelength anual "Colour- Single Wavelength." Colour (True Colour of the filtrate using the platinum-cobalt colourimetric sived (at time of testing), without pH adjustment. APHA 2510 Auto. Conduc.	
Matrix Spike Matrix Spike Qualifiers for Individual Parameters Lie Qualifier Description DLA Detection Limit adjusted MB-LOR Method Blank exceeds A MS-B Matrix Spike recovery co Fest Method References: ALS Test Code Matrix ALK-COL-VA Water This analysis is carried out using proceduce colourimetric method. CL-IC-N-WR Water Inorganic anions are analyzed by lon Chr COLOUR-TRUE-VA Vater Water This analysis is carried out using proceduce is determined by filtering a sample througe method. Colour measurements can be highly pH or Concurrent measurement of sample pH is EC-PCT-VA EC-PCT-VA Water This analysis is carried out using proceduce electrode. F-IC-N-WR Water Inorganic anions are analyzed by lon Chr Hardness (also known as Total Hardness Dissolved Calcium and Magnesium concurrent Hardness (also known as Total Hardness Dissolved Calcium and Magnesium concurrent Hardness Dissolved Calcium and Magnesium concurrent Hardness (also known as Total Hardness Dissolved Calcium and Magnesium concurrent Mater	Aluminum (Al)-Total Calcium (Ca)-Total sted: for required dilution ALS DQO. Limits of Reporting have be build not be accurately calculated due to Test Description Alkalinity by Colourimetric (Automated ures adapted from EPA Method 310.2 ° Chloride in Water by IC omatography with conductivity and/or 1 Colour (True) by Spectrometer ures adapted from British Columbia En th a 0.45 micron membrane filter follow dependent, and apply to the pH of the s s recommended. Conductivity (Automated) ures adapted from APHA Method 2510	MS-B MS-B MS-B een adjusted for to high analyte b d) "Alkalinity". Tot UV detection. uvironmental Ma wed by analysis sample as rece	L1745419-1 L1745419-1 r samples with positive hits below 5x blank level. background in sample. Method Reference** EPA 310.2 cal Alkalinity is determined using the methyl orange EPA 300.1 (mod) BCMOE Colour Single Wavelength anual "Colour- Single Wavelength." Colour (True Colour of the filtrate using the platinum-cobalt colourimetric eived (at time of testing), without pH adjustment. APHA 2510 Auto. Conduc.	
Matrix Spike Qualifiers for Individual Parameters Li Qualifier Description DLA Detection Limit adjusted MB-LOR Method Blank exceeds A MS-B Matrix Spike recovery co Fest Method References: ALS Test Code Matrix ALK-COL-VA Water This analysis is carried out using proceducolourimetric method. Water CL-IC-N-WR Water Inorganic anions are analyzed by lon Chr COLOUR-TRUE-VA Water This analysis is carried out using proceduis determined by filtering a sample throug method. Colour measurements can be highly pH or Concurrent measurement of sample pH is EC-PCT-VA Water This analysis is carried out using proceducis determined by filtering a sample throug method. Water FIC-N-WR Water This analysis is carried out using proceducis electrode. FIC-N-WR F-IC-N-WR Water Inorganic anions are analyzed by lon Chr HARDNESS-CALC-VA Hardness (also known as Total Hardness Dissolved Calcium and Magnesium concurrent measurement of sample pH is Dissolved Calcium and Magnesium concurrent measure protection Agency reduction of the sample with stannous ch spectrophotometry	Calcium (Ca)-Total sted: for required dilution ALS DQO. Limits of Reporting have be build not be accurately calculated due to Test Description Alkalinity by Colourimetric (Automated ures adapted from EPA Method 310.2 Chloride in Water by IC omatography with conductivity and/or I Colour (True) by Spectrometer ures adapted from British Columbia En Ih a 0.45 micron membrane filter follow dependent, and apply to the pH of the s s recommended. Conductivity (Automated) ures adapted from APHA Method 2510	MS-B een adjusted for to high analyte b d) "Alkalinity". Tot UV detection. wironmental Ma wed by analysis sample as rece	L1745419-1 r samples with positive hits below 5x blank level. background in sample. Method Reference** EPA 310.2 tal Alkalinity is determined using the methyl orange EPA 300.1 (mod) BCMOE Colour Single Wavelength anual "Colour- Single Wavelength." Colour (True Colour of the filtrate using the platinum-cobalt colourimetric eived (at time of testing), without pH adjustment. APHA 2510 Auto. Conduc.	
Qualifiers for Individual Parameters LiQualifierDescriptionDLADetection Limit adjustedMB-LORMethod Blank exceeds AMS-BMatrix Spike recovery colspan="2">Matrix Spike recovery colspan="2">Set Method References:ALS Test CodeMatrixALK-COL-VAWaterThis analysis is carried out using procedu colourimetric method.WaterCL-IC-N-WRWaterInorganic anions are analyzed by Ion ChrCOLOUR-TRUE-VAWaterThis analysis is carried out using procedu is determined by filtering a sample throug method.Colour measurements can be highly pH of Concurrent measurement of sample pH isEC-PCT-VAWaterThis analysis is carried out using procedu is determined by filtering a sample throug method.Colour measurements can be highly pH of Concurrent measurement of sample pH isEC-PCT-VAWaterThis analysis is carried out using procedu electrode.F-IC-N-WRWaterInorganic anions are analyzed by Ion ChrHARDNESS-CALC-VAWaterHardness (also known as Total Hardness Dissolved Calcium and Magnesium concHG-TOT-CVAFS-VAWaterThis analysis is carried out using procedu American Public Health Association, and States Environmental Protection Agency reduction of the sample with stannous ch spectrophotometry (EPA Method 245.7).	sted: for required dilution ALS DQO. Limits of Reporting have be puld not be accurately calculated due to Test Description Alkalinity by Colourimetric (Automated ures adapted from EPA Method 310.2 ° Chloride in Water by IC omatography with conductivity and/or ° Colour (True) by Spectrometer ures adapted from British Columbia En th a 0.45 micron membrane filter follow dependent, and apply to the pH of the s s recommended. Conductivity (Automated) ures adapted from APHA Method 2510	een adjusted for to high analyte h d) "Alkalinity". Tot UV detection. wironmental Ma wed by analysis sample as rece	r samples with positive hits below 5x blank level. background in sample. Method Reference** EPA 310.2 al Alkalinity is determined using the methyl orange EPA 300.1 (mod) BCMOE Colour Single Wavelength anual "Colour- Single Wavelength." Colour (True Colour of the filtrate using the platinum-cobalt colourimetric eived (at time of testing), without pH adjustment. APHA 2510 Auto. Conduc.	
Qualifier Description DLA Detection Limit adjusted MB-LOR Method Blank exceeds A MS-B Matrix Spike recovery co Fest Method References: ALS Test Code Matrix ALK-COL-VA Water This analysis is carried out using proceducolourimetric method. CL-IC-N-WR Water Inorganic anions are analyzed by Ion Chr COLOUR-TRUE-VA Water This analysis is carried out using proceducis determined by filtering a sample throug method. Colour measurements can be highly pH or Concurrent measurement of sample pH is EC-PCT-VA Water This analysis is carried out using proceducie Vater This analysis is carried out using proceducies determined by filtering a sample throug method. Vater Colour measurements can be highly pH or Concurrent measurement of sample pH is EC-PCT-VA Water This analysis is carried out using proceducies Eric-N-WR FIC-N-WR Water Inorganic anions are analyzed by Ion Chr HARDNESS-CALC-VA Water Hardness (also known as Total Hardness Dissolved Calcium and Magnesium concurrent Hardness (also known as Total Hardness Dissolved Calcium and Magnesium concurent Amer	for required dilution ALS DQO. Limits of Reporting have be build not be accurately calculated due to Test Description Alkalinity by Colourimetric (Automated ures adapted from EPA Method 310.2 ¹ Chloride in Water by IC omatography with conductivity and/or 1 Colour (True) by Spectrometer ures adapted from British Columbia En th a 0.45 micron membrane filter follow dependent, and apply to the pH of the s s recommended. Conductivity (Automated) ures adapted from APHA Method 2510	to high analyte to d) "Alkalinity". Tot UV detection. Invironmental Ma wed by analysis sample as rece	Method Reference** EPA 310.2 al Alkalinity is determined using the methyl orange EPA 300.1 (mod) BCMOE Colour Single Wavelength anual "Colour- Single Wavelength." Colour (True Colour of the filtrate using the platinum-cobalt colourimetric eived (at time of testing), without pH adjustment. APHA 2510 Auto. Conduc.	
DLA Detection Limit adjusted MB-LOR Method Blank exceeds A MS-B Matrix Spike recovery co Fest Method References: ALS Test Code Matrix ALK-COL-VA Water This analysis is carried out using proceducolourimetric method. Water CL-IC-N-WR Water Inorganic anions are analyzed by Ion Chr COLOUR-TRUE-VA Water Water This analysis is carried out using proceducis determined by filtering a sample throug method. Water Colour measurements can be highly pH of Concurrent measurement of sample pH is EC-PCT-VA Water This analysis is carried out using proceducie Water This analysis is carried out using proceducie Water This analysis is carried out using proceducie FIC-N-WR Water Water This analysis is carried out using proceducie Hardness (also known as Total Hardness Dissolved Calcium and Magnesium concol HG-TOT-CVAFS-VA Hardness (also known as Total Hardness Dissolved Calcium and Magnesium concol American Public Health Association, and States Environmental Protection Agency reduction of the sample with stannous ch spectrophotometry (EPA Method 245.7). <td>ALS DQO. Limits of Reporting have be build not be accurately calculated due to Test Description Alkalinity by Colourimetric (Automatec ures adapted from EPA Method 310.2 ° Chloride in Water by IC omatography with conductivity and/or 1 Colour (True) by Spectrometer ures adapted from British Columbia En th a 0.45 micron membrane filter follow dependent, and apply to the pH of the s s recommended. Conductivity (Automated) ures adapted from APHA Method 2510</td> <td>to high analyte to d) "Alkalinity". Tot UV detection. Invironmental Ma wed by analysis sample as rece</td> <td>Method Reference** EPA 310.2 al Alkalinity is determined using the methyl orange EPA 300.1 (mod) BCMOE Colour Single Wavelength anual "Colour- Single Wavelength." Colour (True Colour) of the filtrate using the platinum-cobalt colourimetric eived (at time of testing), without pH adjustment. APHA 2510 Auto. Conduc.</td>	ALS DQO. Limits of Reporting have be build not be accurately calculated due to Test Description Alkalinity by Colourimetric (Automatec ures adapted from EPA Method 310.2 ° Chloride in Water by IC omatography with conductivity and/or 1 Colour (True) by Spectrometer ures adapted from British Columbia En th a 0.45 micron membrane filter follow dependent, and apply to the pH of the s s recommended. Conductivity (Automated) ures adapted from APHA Method 2510	to high analyte to d) "Alkalinity". Tot UV detection. Invironmental Ma wed by analysis sample as rece	Method Reference** EPA 310.2 al Alkalinity is determined using the methyl orange EPA 300.1 (mod) BCMOE Colour Single Wavelength anual "Colour- Single Wavelength." Colour (True Colour) of the filtrate using the platinum-cobalt colourimetric eived (at time of testing), without pH adjustment. APHA 2510 Auto. Conduc.	
MB-LOR Method Blank exceeds / MS-B Matrix Spike recovery co Fest Method References: ALS Test Code Matrix ALK-COL-VA Water Matrix spike recovery co ALK-COL-VA Water Matrix ALK-COL-VA Water Matrix spike recovery co CL-IC-N-WR Water Matrix Inorganic anions is carried out using procedure of colour method. Water This analysis is carried out using procedure is determined by filtering a sample througe method. Water Colour measurements can be highly pH of Concurrent measurement of sample pH is EC-PCT-VA EC-PCT-VA Water Mater This analysis is carried out using procedure electrode. Electrode. F-IC-N-WR Water Mater Inorganic anions are analyzed by lon Chr Hardness (also known as Total Hardness Dissolved Calcium and Magnesium concurrent measurement of sample with standus on the spectrophotometry (EPA Method 245.7).	ALS DQO. Limits of Reporting have be build not be accurately calculated due to Test Description Alkalinity by Colourimetric (Automatec ures adapted from EPA Method 310.2 ° Chloride in Water by IC omatography with conductivity and/or 1 Colour (True) by Spectrometer ures adapted from British Columbia En th a 0.45 micron membrane filter follow dependent, and apply to the pH of the s s recommended. Conductivity (Automated) ures adapted from APHA Method 2510	to high analyte to d) "Alkalinity". Tot UV detection. Invironmental Ma wed by analysis sample as rece	Method Reference** EPA 310.2 al Alkalinity is determined using the methyl orange EPA 300.1 (mod) BCMOE Colour Single Wavelength anual "Colour- Single Wavelength." Colour (True Colour of the filtrate using the platinum-cobalt colourimetric eived (at time of testing), without pH adjustment. APHA 2510 Auto. Conduc.	
MS-B Matrix Spike recovery constraints of the second secon	Test Description Alkalinity by Colourimetric (Automated ures adapted from EPA Method 310.2 ¹ Chloride in Water by IC omatography with conductivity and/or 1 Colour (True) by Spectrometer ures adapted from British Columbia En th a 0.45 micron membrane filter follow dependent, and apply to the pH of the s s recommended. Conductivity (Automated) ures adapted from APHA Method 2510	to high analyte to d) "Alkalinity". Tot UV detection. Invironmental Ma wed by analysis sample as rece	Method Reference** EPA 310.2 al Alkalinity is determined using the methyl orange EPA 300.1 (mod) BCMOE Colour Single Wavelength anual "Colour- Single Wavelength." Colour (True Colour) of the filtrate using the platinum-cobalt colourimetric eived (at time of testing), without pH adjustment. APHA 2510 Auto. Conduc.	
Test Method References: ALS Test Code Matrix ALK-COL-VA Water This analysis is carried out using proceducolourimetric method. Water CL-IC-N-WR Water Inorganic anions are analyzed by Ion Chr COLOUR-TRUE-VA COLOUR-TRUE-VA Water This analysis is carried out using proceducies determined by filtering a sample througe method. Colour measurements can be highly pH or Concurrent measurement of sample pH istercode. EC-PCT-VA Water This analysis is carried out using proceduciectrode. Water F-IC-N-WR Water Inorganic anions are analyzed by Ion Chr Mater Hardness (also known as Total Hardness Dissolved Calcium and Magnesium concellectrode. Mater Hardness (also known as Total Hardness Dissolved Calcium and Magnesium concellectrode. Mater Hardness (also known as Total Hardness Dissolved Calcium and Magnesium concellectrode. Mater Hardness (also known as Total Hardness Dissolved Calcium and Magnesium concellectrode. Mater Hardness (also known as Total Hardness Dissolved Calcium and Magnesium concellectrode. Mater Hardness (also known as Total Hardness Dissolved Calcium and Magnesium concellectrode. Mater Hardness (also known as Total H	Test Description Alkalinity by Colourimetric (Automated irres adapted from EPA Method 310.2 ° Chloride in Water by IC omatography with conductivity and/or f Colour (True) by Spectrometer irres adapted from British Columbia En ih a 0.45 micron membrane filter follow dependent, and apply to the pH of the s s recommended. Conductivity (Automated) irres adapted from APHA Method 2510	d) "Alkalinity". Tot UV detection. avironmental Ma wed by analysis sample as rece	Method Reference** EPA 310.2 cal Alkalinity is determined using the methyl orange EPA 300.1 (mod) BCMOE Colour Single Wavelength anual "Colour- Single Wavelength." Colour (True Colour co f the filtrate using the platinum-cobalt colourimetric eived (at time of testing), without pH adjustment. APHA 2510 Auto. Conduc.	
ALS Test CodeMatrixALK-COL-VAWaterThis analysis is carried out using procedu colourimetric method.WaterCL-IC-N-WRWaterInorganic anions are analyzed by Ion ChrCOLOUR-TRUE-VAWaterThis analysis is carried out using procedu is determined by filtering a sample throug method.WaterColour measurements can be highly pH or Concurrent measurement of sample pH isEC-PCT-VAWaterThis analysis is carried out using procedu electrode.F-IC-N-WRWaterInorganic anions are analyzed by Ion ChrHARDNESS-CALC-VAWaterHardness (also known as Total Hardness Dissolved Calcium and Magnesium concHG-TOT-CVAFS-VAWaterThis analysis is carried out using procedu American Public Health Association, and States Environmental Protection Agency reduction of the sample with stannous ch spectrophotometry (EPA Method 245.7).	Alkalinity by Colourimetric (Automated ures adapted from EPA Method 310.2 ¹ Chloride in Water by IC omatography with conductivity and/or 1 Colour (True) by Spectrometer ures adapted from British Columbia En th a 0.45 micron membrane filter follow dependent, and apply to the pH of the s s recommended. Conductivity (Automated) ures adapted from APHA Method 2510	"Alkalinity". Tot UV detection. wironmental Ma wed by analysis sample as rece	EPA 310.2 cal Alkalinity is determined using the methyl orange EPA 300.1 (mod) BCMOE Colour Single Wavelength anual "Colour- Single Wavelength." Colour (True Colour of the filtrate using the platinum-cobalt colourimetric eived (at time of testing), without pH adjustment. APHA 2510 Auto. Conduc.	
ALK-COL-VA Water This analysis is carried out using proceduclourimetric method. CL-IC-N-WR Water Inorganic anions are analyzed by Ion Chr COLOUR-TRUE-VA Water This analysis is carried out using proceducies determined by filtering a sample througe method. Water Colour measurements can be highly pH of Concurrent measurement of sample pH is EC-PCT-VA Water This analysis is carried out using proceducies concurrent measurement of sample pH is EC-PCT-VA Water Flic-N-WR Water Water This analysis is carried out using proceducies concurrent measurement of sample pH is FIC-N-WR Water Water This analysis is carried out using proceducies concurrent measurement of sample pH is FIC-N-WR Water Water Inorganic anions are analyzed by Ion Chr HARDNESS-CALC-VA Water Hardness (also known as Total Hardness Dissolved Calcium and Magnesium concurrent Hardness (also known as Total Hardness Dissolved Calcium and Magnesium concurrent Hardness (also known as Total Hardness Dissolved Calcium and Magnesium concurrent Hardness Environmental Protection Agency reduction of the sample with stannous ch spectrophotometry (EPA Method 245.7). Mater	Alkalinity by Colourimetric (Automated ures adapted from EPA Method 310.2 ¹ Chloride in Water by IC omatography with conductivity and/or 1 Colour (True) by Spectrometer ures adapted from British Columbia En th a 0.45 micron membrane filter follow dependent, and apply to the pH of the s s recommended. Conductivity (Automated) ures adapted from APHA Method 2510	"Alkalinity". Tot UV detection. wironmental Ma wed by analysis sample as rece	EPA 310.2 cal Alkalinity is determined using the methyl orange EPA 300.1 (mod) BCMOE Colour Single Wavelength anual "Colour- Single Wavelength." Colour (True Colour of the filtrate using the platinum-cobalt colourimetric eived (at time of testing), without pH adjustment. APHA 2510 Auto. Conduc.	
This analysis is carried out using procedu colourimetric method. CL-IC-N-WR Water Inorganic anions are analyzed by Ion Chr COLOUR-TRUE-VA Water This analysis is carried out using procedu is determined by filtering a sample throug method. Colour measurements can be highly pH of Concurrent measurement of sample pH is EC-PCT-VA Water This analysis is carried out using procedu electrode. F-IC-N-WR Water Inorganic anions are analyzed by Ion Chr HARDNESS-CALC-VA Water Hardness (also known as Total Hardness Dissolved Calcium and Magnesium conce HG-TOT-CVAFS-VA Water This analysis is carried out using procedu American Public Health Association, and States Environmental Protection Agency reduction of the sample with stannous ch spectrophotometry (EPA Method 245.7).	ures adapted from EPA Method 310.2 ⁴ Chloride in Water by IC omatography with conductivity and/or ¹ Colour (True) by Spectrometer ures adapted from British Columbia En th a 0.45 micron membrane filter follow dependent, and apply to the pH of the s s recommended. Conductivity (Automated) ures adapted from APHA Method 2510	"Alkalinity". Tot UV detection. wironmental Ma wed by analysis sample as rece	al Alkalinity is determined using the methyl orange EPA 300.1 (mod) BCMOE Colour Single Wavelength anual "Colour- Single Wavelength." Colour (True Colour of the filtrate using the platinum-cobalt colourimetric eived (at time of testing), without pH adjustment. APHA 2510 Auto. Conduc.	
colourimetric method.CL-IC-N-WRWaterInorganic anions are analyzed by Ion ChrCOLOUR-TRUE-VAWaterThis analysis is carried out using procedulis determined by filtering a sample througe method.WaterColour measurements can be highly pH of Concurrent measurement of sample pH isEC-PCT-VAWaterThis analysis is carried out using procedulie electrode.FIC-N-WRWaterInorganic anions are analyzed by Ion ChrHARDNESS-CALC-VAWaterHardness (also known as Total Hardness Dissolved Calcium and Magnesium concel American Public Health Association, and States Environmental Protection Agency reduction of the sample with stannous ch spectrophotometry (EPA Method 245.7).	Chloride in Water by IC omatography with conductivity and/or Colour (True) by Spectrometer irres adapted from British Columbia En th a 0.45 micron membrane filter follow dependent, and apply to the pH of the s s recommended. Conductivity (Automated) irres adapted from APHA Method 2510	UV detection. avironmental Ma wed by analysis sample as rece	EPA 300.1 (mod) BCMOE Colour Single Wavelength anual "Colour- Single Wavelength." Colour (True Colour of the filtrate using the platinum-cobalt colourimetric eived (at time of testing), without pH adjustment. APHA 2510 Auto. Conduc.	
Inorganic anions are analyzed by Ion Chr COLOUR-TRUE-VA Water This analysis is carried out using procedu is determined by filtering a sample throug method. Colour measurements can be highly pH of Concurrent measurement of sample pH is EC-PCT-VA Water This analysis is carried out using procedu electrode. F-IC-N-WR Water Inorganic anions are analyzed by Ion Chr HARDNESS-CALC-VA Water Hardness (also known as Total Hardness Dissolved Calcium and Magnesium conce HG-TOT-CVAFS-VA Water This analysis is carried out using procedu American Public Health Association, and States Environmental Protection Agency reduction of the sample with stannous ch spectrophotometry (EPA Method 245.7).	omatography with conductivity and/or l Colour (True) by Spectrometer Irres adapted from British Columbia En th a 0.45 micron membrane filter follow dependent, and apply to the pH of the s s recommended. Conductivity (Automated) Irres adapted from APHA Method 2510	nvironmental Ma wed by analysis sample as rece	BCMOE Colour Single Wavelength anual "Colour- Single Wavelength." Colour (True Colour of the filtrate using the platinum-cobalt colourimetric eived (at time of testing), without pH adjustment. APHA 2510 Auto. Conduc.	
COLOUR-TRUE-VAWaterThis analysis is carried out using procedu is determined by filtering a sample throug method.Colour measurements can be highly pH of Concurrent measurement of sample pH isEC-PCT-VAWaterThis analysis is carried out using procedu electrode.WaterF-IC-N-WRWaterInorganic anions are analyzed by lon ChrHARDNESS-CALC-VAWaterHardness (also known as Total Hardness Dissolved Calcium and Magnesium conceHG-TOT-CVAFS-VAWaterThis analysis is carried out using procedu American Public Health Association, and States Environmental Protection Agency reduction of the sample with stannous ch spectrophotometry (EPA Method 245.7).	Colour (True) by Spectrometer ures adapted from British Columbia En h a 0.45 micron membrane filter follow dependent, and apply to the pH of the s s recommended. Conductivity (Automated) ures adapted from APHA Method 2510	nvironmental Ma wed by analysis sample as rece	anual "Colour- Single Wavelength." Colour (True Colour of the filtrate using the platinum-cobalt colourimetric eived (at time of testing), without pH adjustment. APHA 2510 Auto. Conduc.	
This analysis is carried out using procedulis determined by filtering a sample through method. Colour measurements can be highly pH of Concurrent measurement of sample pH is EC-PCT-VA Water This analysis is carried out using procedule electrode. F-IC-N-WR Water Inorganic anions are analyzed by Ion Chr HARDNESS-CALC-VA Water Hardness (also known as Total Hardness Dissolved Calcium and Magnesium conce HG-TOT-CVAFS-VA Water This analysis is carried out using procedul American Public Health Association, and States Environmental Protection Agency reduction of the sample with stannous ch spectrophotometry (EPA Method 245.7).	ures adapted from British Columbia En h a 0.45 micron membrane filter follow dependent, and apply to the pH of the s s recommended. Conductivity (Automated) ures adapted from APHA Method 2510	wed by analysis sample as rece	anual "Colour- Single Wavelength." Colour (True Colour of the filtrate using the platinum-cobalt colourimetric eived (at time of testing), without pH adjustment. APHA 2510 Auto. Conduc.	
is determined by filtering a sample throug method. Colour measurements can be highly pH of Concurrent measurement of sample pH is EC-PCT-VA Water This analysis is carried out using procedu- electrode. F-IC-N-WR Water Inorganic anions are analyzed by Ion Chr HARDNESS-CALC-VA Water Hardness (also known as Total Hardness Dissolved Calcium and Magnesium conce HG-TOT-CVAFS-VA Water This analysis is carried out using procedu American Public Health Association, and States Environmental Protection Agency reduction of the sample with stannous ch spectrophotometry (EPA Method 245.7).	Ih a 0.45 micron membrane filter follow dependent, and apply to the pH of the s s recommended. Conductivity (Automated) ires adapted from APHA Method 2510	wed by analysis sample as rece	s of the filtrate using the platinum-cobalt colourimetric sived (at time of testing), without pH adjustment. APHA 2510 Auto. Conduc.	
EC-PCT-VA Water This analysis is carried out using procedule Water This analysis is carried out using procedule Water F-IC-N-WR Water Inorganic anions are analyzed by Ion Chr HARDNESS-CALC-VA Water Hardness (also known as Total Hardness Dissolved Calcium and Magnesium concel HG-TOT-CVAFS-VA Water This analysis is carried out using procedul American Public Health Association, and States Environmental Protection Agency reduction of the sample with stannous ch spectrophotometry (EPA Method 245.7).	Conductivity (Automated) ires adapted from APHA Method 2510) "Conductivity".		
This analysis is carried out using procedule electrode. F-IC-N-WR Water Inorganic anions are analyzed by Ion Chr HARDNESS-CALC-VA Water Hardness (also known as Total Hardness Dissolved Calcium and Magnesium conce HG-TOT-CVAFS-VA Water This analysis is carried out using procedul American Public Health Association, and States Environmental Protection Agency reduction of the sample with stannous ch spectrophotometry (EPA Method 245.7).	ires adapted from APHA Method 2510) "Conductivity".		
electrode. F-IC-N-WR Water Inorganic anions are analyzed by Ion Chr HARDNESS-CALC-VA Water Hardness (also known as Total Hardness Dissolved Calcium and Magnesium conce HG-TOT-CVAFS-VA Water This analysis is carried out using procedu American Public Health Association, and States Environmental Protection Agency reduction of the sample with stannous ch spectrophotometry (EPA Method 245.7).		o o o na ao any s		
Inorganic anions are analyzed by Ion Chr HARDNESS-CALC-VA Water Hardness (also known as Total Hardness Dissolved Calcium and Magnesium conc HG-TOT-CVAFS-VA Water This analysis is carried out using procedu American Public Health Association, and States Environmental Protection Agency reduction of the sample with stannous ch spectrophotometry (EPA Method 245.7).	Eluorida in Water by IC			
HARDNESS-CALC-VA Water Hardness (also known as Total Hardness Dissolved Calcium and Magnesium conce HG-TOT-CVAFS-VA Water This analysis is carried out using procedu American Public Health Association, and States Environmental Protection Agency reduction of the sample with stannous ch spectrophotometry (EPA Method 245.7).	Fluoride in Water by IC		EPA 300.1 (mod)	
Hardness (also known as Total Hardness Dissolved Calcium and Magnesium concerner HG-TOT-CVAFS-VA Water This analysis is carried out using procedu American Public Health Association, and States Environmental Protection Agency reduction of the sample with stannous ch spectrophotometry (EPA Method 245.7).	omatography with conductivity and/or	UV detection.		
Dissolved Calcium and Magnesium conce HG-TOT-CVAFS-VA Water This analysis is carried out using procedu American Public Health Association, and States Environmental Protection Agency reduction of the sample with stannous ch spectrophotometry (EPA Method 245.7).	Hardness		APHA 2340B	
This analysis is carried out using procedu American Public Health Association, and States Environmental Protection Agency reduction of the sample with stannous ch spectrophotometry (EPA Method 245.7).			um concentrations, expressed in CaCO3 equivalents. Iculation.	
American Public Health Association, and States Environmental Protection Agency reduction of the sample with stannous ch spectrophotometry (EPA Method 245.7).	Total Hg in Water by CVAFS LOR=50)ppt	EPA 1631E (mod)	
IONBALANCE-VA Water	with procedures adapted from "Test M (EPA). The procedure involves a cold	lethods for Eva l-oxidation of th	ation of Water and Wastewater" published by the aluating Solid Waste" SW-846 published by the United e acidified sample using bromine monochloride prior to c fluorescence spectrophotometry or atomic absorption	
	Ion Balance Calculation		APHA 1030E	
			from APHA Standard Methods (1030E Checking d ion balance (% difference of cations minus anions)	
Cation and Anion Sums are the total med included where data is present. Ion Bala	· · · · · · · · · · · · · · · · · · ·	anions. Dissol	ved species are used where available. Minor ions are	
Ion Balance (%) = [Cation Sum-Anion Su	m] / [Cation Sum+Anion Sum]			
MET-T-CCMS-VA Water	Total Metals in Water by CRC ICPMS	5	EPA 200.2/6020A (mod)	
Water samples are digested with nitric ar	nd hydrochloric acids, and analyzed by	CRC ICPMS.		
Method Limitation (re: Sulfur): Sulfide and		covered by this		
× /	d volatile sulfur species may not be rec		method.	
MET-TOT-ICP-VA Water	d volatile sulfur species may not be rec Total Metals in Water by ICPOES		method. EPA SW-846 3005A/6010B	

This analysis is carried out using procedures adapted from "Standard Methods for the Examination of Water and Wastewater" published by the

States Environmental Pro	tection Age	ncy (EPA). The procedures may involve prelim	ds for Evaluating Solid Waste" SW-846 published by the United inary sample treatment by acid digestion, using either hotblock or ed plasma - optical emission spectrophotometry (EPA Method			
NO2-L-IC-N-WR	Water	Nitrite in Water by IC (Low Level)	EPA 300.1 (mod)			
Inorganic anions are analy	zed by lon	Chromatography with conductivity and/or UV de	etection.			
NO3-L-IC-N-WR	Water	Nitrate in Water by IC (Low Level)	EPA 300.1 (mod)			
Inorganic anions are analy	zed by lon	Chromatography with conductivity and/or UV de	etection.			
PH-PCT-VA	Water	pH by Meter (Automated)	APHA 4500-H "pH Value"			
This analysis is carried ou electrode	t using proc	edures adapted from APHA Method 4500-H "p	H Value". The pH is determined in the laboratory using a pH			
It is recommended that the	is analysis ł	be conducted in the field.				
PH-PCT-VA	Water	pH by Meter (Automated)	APHA 4500-H pH Value			
This analysis is carried ou electrode	it using proc	cedures adapted from APHA Method 4500-H "p	H Value". The pH is determined in the laboratory using a pH			
It is recommended that the	is analysis t	be conducted in the field.				
SO4-IC-N-WR	Water	Sulfate in Water by IC	EPA 300.1 (mod)			
Inorganic anions are analy	zed by lon	Chromatography with conductivity and/or UV de	etection.			
TDS-CALC-VA	Water	TDS (Calculated)	APHA 1030E (20TH EDITION)			
This analysis is carried ou	t using proc	edures adapted from APHA 1030E "Checking	Correctness of Analyses".			
TURBIDITY-VA	Water	Turbidity by Meter	APHA 2130 "Turbidity"			
This analysis is carried ou	t using proc	edures adapted from APHA Method 2130 "Tur	bidity". Turbidity is determined by the nephelometric method.			
TURBIDITY-VA	Water	Turbidity by Meter	APHA 2130 Turbidity			
This analysis is carried ou	it using proc	cedures adapted from APHA Method 2130 "Turl	bidity". Turbidity is determined by the nephelometric method.			
** ALS test methods may inc	orporate m	odifications from specified reference methods to	o improve performance.			
The last two letters of the a	bove test c	ode(s) indicate the laboratory that performed an	alytical analysis for that test. Refer to the list below:			
Laboratory Definition Cod	le Labo	pratory Location				
VA		ALS ENVIRONMENTAL - VANCOUVER, BRITISH COLUMBIA, CANADA				
Chain of Custody Numbers	5:					

Chain of Custody Numbers:

1

GLOSSARY OF REPORT TERMS

Surrogate - A compound that is similar in behaviour to target analyte(s), but that does not occur naturally in environmental samples. For applicable tests, surrogates are added to samples prior to analysis as a check on recovery. *mg/kg* - *milligrams per kilogram based on dry weight of sample.*

mg/kg wwt - milligrams per kilogram based on wet weight of sample.

mg/kg lwt - milligrams per kilogram based on lipid-adjusted weight of sample.

mg/L - milligrams per litre.

< - Less than.

D.L. - The reported Detection Limit, also known as the Limit of Reporting (LOR).

N/A - Result not available. Refer to qualifier code and definition for explanation.

Test results reported relate only to the samples as received by the laboratory. UNLESS OTHERWISE STATED, ALL SAMPLES WERE RECEIVED IN ACCEPTABLE CONDITION.

Analytical results in unsigned test reports with the DRAFT watermark are subject to change, pending final QC review.