

April 06, 2017

EDI Project No: 16Y0089

Assessment and Abandoned Mines Department of Energy, Mines and Resources Government of Yukon Box 2703, K-419 Whitehorse, YT Y1A 2C6

Attention: Emilie Hamm, A/Project Manager

RE: Mount Nansen Water Resources Investigations – Monthly Report: March 2017 & Seasonal Analysis - FINAL

This monthly report provides a summary of site conditions and data collected during EDI's March 2017 trip to Mount Nansen as part of the 2016/17 Water Resources Investigations. The March 2017 trip represents the end of the winter season and thus a more detailed seasonal analysis of hydrology and meteorology data is provided for this period (October 16, 2016 to March 28, 2017). Hydrologic and meteorological details from April 1, 2016 to October 15, 2016 are provided in the October 2016 Monthly Report. In addition to hydrology and meteorology, this report describes site conditions, water quality data, program recommendations, and additional trip information (Table 1). This March 2017 trip represents the fifth and final monitoring event of the winter season.

Trip dates:	March 6 to 8, 2017
EDI field staff:	Scott Dilling, Alexandre Mischler, and Danny Skookum
Weather during trip:	Air temperatures ranged from -38°C to -15°C with clear skies and light winds.

Table 1. Summary of information provided in this monthly report

Report Section	Description
Site Conditions	J Summary of weather and general site conditions
Meteorology	J Statement on meteorological station status and identification of any data gaps or QA/QC issues
	J Seasonal Meteorological Summary (October 2016 to March 2017)
Hydrology	J Discussion of hydrology data for March
) Statement of QA/QC for the data collected this month
	J Seasonal Hydrological Summary (October 2016 to March 2017)

Report Section	Description					
Water Quality	J Summary of water quality results for March					
) Statement on QA/QC sample results for this month					
Program Recommendations) Program recommendations for meteorological, hydrology and water quality programs					
Additional Trip Information) Project safety concerns					
) Wildlife sightings					
) Budget and schedule considerations					
List of Attachments	1. Maps of Hydrometric Stations and Water Quality Sites					
	2. Site and Station Photos					
	 Meteorology Seasonal Data Summary (rainfall and snowfall summary data tables, data plots – October 16, 2016 to March 28, 2017) 					
	4. Hydrology Summary Data Tables (March 2017 trip)					
	 Site Conditions and Tasks Completed & Summary Table of Discharge Measurements 					
	5. Hydrology Seasonal Data Summary (October 16, 2016 to March 28, 2017)					
	 Instantaneous measurements and hydrographs 					
	6. Water Quality Summary Data Tables					
	 Site Conditions and Samples Collected & Summary Table of In Situ Parameters and Lab Results (March 2017) 					
	7. Laboratory Certificates of Analysis (COA) & Yukon Environmental Health Services Bacteriological Results.					

SITE CONDITIONS

The hydrologic and water quality conditions observed during the March 2017 trip were reflective of winter conditions. Air temperatures noted by EDI at the Mount Nansen site ranged from lows of -38°C, to daytime highs of -15°C; with clear skies during the three day sampling event. Seeps and small streams remained frozen, and no samples will be collected at these stations until spring melt. Stations and sites along Pony Creek and Back Creek were frozen to bed. Some sites and stations along Dome Creek (H/WQ-DC-B, H/WQ-DC-R) remain covered with overflow ice with no detectable flow under the ice layers. Snow and ice were present at all locations and water levels were low at sites where flowing water was detected.

METEOROLOGY

Meteorological data was collected at the ATM-ROAD station throughout March 2017; EDI conducted a preliminary QA/QC review of the data and all sensors appear to be functioning properly and there are no gaps in the March data. No unnatural disturbance to the snow below the snow depth sensor was observed at the time of the visit on March 6. There were no tracks inside the fenced area.

Seasonal Meteorological Summary: October 16, 2016 – March 28, 2017

All sensors at the ATM-ROAD meteorological station functioned properly during the winter season, except for the period between December 25, 2016 and January 5, 2017 when a drop in the battery voltage produced missing hourly and daily average data. After January 5, 2017 the voltage increased and no further data collection gaps occurred. As a precautionary measure, YG AAM replaced the battery at the station on January 24, 2017.

Regular seasonal air temperature trends were generally reflected during the October 16, 2016 to March 28, 2017 period. Mean daily air temperatures at the meteorological station began to fall below 0.0°C before October 16, 2015 and consistently remained below 0.0°C for the entire season except for a few hourly measurements slightly above 0.0°C on October 20, November 9 and 10, and February 13, 14 and 15. Mean daily temperatures remained below 0.0°C for the entire winter period. The second half of October 2016 had the highest mean monthly temperature at -6.7°C, and March 2017 had the lowest mean monthly temperature at -16.9°C. The maximum hourly temperature recorded at the meteorological station during the reporting period was 3.0°C on November 9, 2016, while the lowest recorded temperature was -30.5°C on December 10, 2016 (Table 2). Daily air temperature fluctuations throughout the winter season can be seen in more detail in Attachment 3, Figure 3.1.

The ground surface temperature record followed similar seasonal patterns as air temperature. The daily average ground surface temperature was below 0.0°C for the entire winter period. The maximum hourly ground temperature was 0.0°C on November 10, 2016, and the minimum hourly ground temperature was -15.0°C on November 19, 2015 (Attachment 3, Figure 3.1).

Seasonal rainfall and snowfall patterns were characteristic of the region from October 16, 2016 to March 28, 2017. Rainfall events are defined in this report as periods of rainfall greater than or equal to four hours, and/or have greater than or equal to 2.0 mm of rainfall recorded. Four rainfall events occurred during the winter when temperatures rose above 0.0°C; one event in November and three in February (Table 2 and Attachment 3, Figure 3.2). It is possible that the winter rainfall events were the result of sensor error that can occur when the sensor records melt water rather than precipitation.

Snow was present on the ground throughout the entire winter period. The depth of the snowpack at the beginning of the 2016/17 winter period was 0.9 cm on October 16, 2017, and the depth at the end of the winter season was 51.5 cm on March 28, 2017. The snowpack reached its maximum depth of 53.1 cm on March 23, 2017. Snow precipitation events are periods of snowfall greater than or equal to 4 hours and/or greater than or equal to 1 cm. In total, 24 snowfall events occurred during the season (Table 3 and Attachment 3: Table 23.1 & Figure 3.3). December 2016 represented the most intense and highest cumulative total monthly snowfall amount. Total monthly snowfall during the month of December was 35.6 cm and included eight snowfall events. The largest snowfall event resulted in an 18.1 cm increase in snow depth and occurred on December 29 or 30, 2016; the precise start and duration of event is unknown since the weather station was not functioning properly due to low battery voltage conditions.

Snow depths were not manually measured during the 2016/17 winter season as the reliability and accuracy of the snow sensor depth measurements were confirmed during the 2015/16 winter season. The snow sensor quality metric 'Snow_Depth_Qual' indicates that except for brief, infrequent durations, the snow sensor depths measurements were of good quality.

The dominant wind directions during the season were south, south-west and north-east (Attachment 3: Figure 3.4). The maximum mean hourly wind speed recorded during this period was 8.5 m/s (30.6 km/hr) on January 27, 2017. The month with the highest mean wind speed was January 2017 at 2.0 m/s (7.2 km/hr), while December had the lowest mean monthly wind speed at 1.6 m/s (5.8 km/hr) (Attachment 4, Figure 3.5).

Net radiation during the winter season ranged from a mean daily minimum of -49.9 W/m² on November 14, 2016 to a mean daily maximum of 45.6 W/m² on October 25, 2016. December 2016 had the highest mean monthly net radiation at 3.57 W/m^2 , while February 2017 had the lowest mean monthly net radiation at -21.1 W/m² (Attachment 3, Figure 3.6).

Mean daily relative humidity ranged from 29.3% to 95.7% with a mean value of 75.2% for the winter season. The maximum hourly relative humidity of 98.9% occurred on November 5, 2016. The minimum hourly relative humidity was 17.4% on February 4, 2017 (Attachment 3, Figure 3.7).

Mean daily atmospheric pressure ranged from 83.2 kPa to 88.9 kPa with a mean value of 86.3 kPa for the October 16, 2016 to March 28, 2017 period. The maximum hourly atmospheric pressure of 89.1 kPa occurred on February 3, 2017. The minimum hourly atmospheric pressure was 82.8 kPa on January 17, 2017 (Attachment 3, Figure 3.8).

Air Temperature				Snowfall		Rainfall				
Month	Max (°C)	Min (°C)	Mean (°C)	Number of Events	Events Total (cm)	Max Event Total (cm)	Number of Events	Max Intensity (mm/hr)	Max Daily Total (mm)	Total Monthly (mm)
October (16-28)	1.5	-15.5	-6.7	3	9.2	5.4	0	0.9	1.1	1.8
November	3.0	-23.4	-8.8	4	12.1	3.9	1	0.4	1.4	2.3
December	-4.8	-30.5	-15.1	8	35.6	18.1	0	0.0	0.0	0.0
January	-0.8	-28.8	-11.5	2	10.5	8.3	0	0.1	0.1	0.1
February	2.3	-20.5	-10.6	2	2.6	1.4	3	0.9	2.5	6.3
March (1-28)	-0.6	-30.3	-16.9	5	9.6	3.2	0	0.3	0.3	0.5

 Table 2.
 Mount Nansen air temperature and precipitation statistics by month (October 16, 2016 to March 28, 2017)

HYDROLOGY

Three hydrometric stations provided suitable conditions for discharge measurements during the March 6-8, 2017 trip: H-VC-U, H-VC-DBC and H-SEEP. A total of nine discharge measurements were scheduled at the Mount Nansen site for March; however, sites H-DC-DX+105, H-DC-B, H-DC-M WP, H-BC, H-VC-UMN and H-VC-R+290 did not provide suitable conditions for discharge measurements due to ice conditions. Hydrometric stations at H-PC-DSP and H-DC-D1b remain frozen to the substrate. Flow rates at stations on Victoria Creek were very low in March 2017, with an estimated discharge of less than 0.001 m³/s at H-VC-UMN and H-VC-R+290. Continuous water level logger records are available for all Victoria Creek stations. A review of the available continuous hydrometric and barometric data files indicates that all sensors were functioning properly.

Surface water conditions and hydrometric monitoring tasks completed at each station in March 2017 are summarized in Attachment 4. Quality control and quality assurance for the hydrometric data was conducted on both the instantaneous and continuous datasets.

Field Results - March

- Discharge measurements were collected using salt dilution gauging methods at two Victoria Creek stations, H-VC-U and H-VC-DBC, with discharge values of 0.024 m³/s and 0.028 m³/s, respectively. There was ice within the channels during the salt tracer measurements, which adds measurement uncertainty to the discharge value.
-) No flow could be detected at H-VC-R+290. Four holes were chipped through the ice and only stagnant water was detected. Data from the logger indicates that the station froze to bed on February 8, 2017 and remained frozen until the data was downloaded on March 6, 2017.
- Salt dilution gauging methods were attempted at H-VC-UMN, however flows were too low to measure and the measurement was aborted. Discharge was estimated to be below the reportable confidence limit (0.001 m³/s).
- Ice thicknesses at the Victoria Creek stations ranged from 0.05 m to 0.30 m.
- For the first time during the 2016/17 winter season, the channel at H-DC-DX+105 was frozen to bed; no discharge measurement was collected.
- Site conditions were not suitable for a salt tracer measurement at H-DC-M WP with a portion of the water flowing on top of the ice. The discharge was estimated to be less than 0.002 m³/s.
- Sites H-DC-B, and H-BC were frozen to bed with no detectable flow.
- The H-SEEP volumetric discharge measurement of $0.002 \text{ m}^3/\text{s}$ was equal to the flow rate observed at the pump in the seepage pond shack ($0.002 \text{ m}^3/\text{s}$).

Seasonal Hydrological Summary: October 16, 2016 to March 28, 2017

Stage hydrographs were developed for all hydrometric stations where continuous water level logger data was available during the winter season. This included four stations: H-VC-U, H-VC-DBC, H-VC-UMN, and H-VC-R+290. Stage-discharge rating curves are not applicable during the winter period due to the influence of ice on water levels and subsequently the relationship between stage and discharge described by the rating curve. As a result, no continuous discharge hydrographs are produced for the winter season; however, the instantaneous discharge measurements completed at these stations during the winter season are plotted on the hydrographs (Attachment 5). Loggers were winterized during the October field visit (October 3 to 5, 2016) in preparation for the winter period. Loggers at H-DC-B, H-DC-R and H-BC were removed on November 7 and 8, 2016 to prevent damage to the loggers as these sites are known to freeze to bed. Hydrometric stations at H-PC-DSP, H-DC-D1b, H-DC-B, H-DC-R and H-BC were frozen to bed for the entire winter period and therefore no discharge measurements were collected.

Discharge hydrographs were prepared for hydrometric stations where instantaneous discharge measurements were collected (Attachment 5). This includes stations H-DC-DX+105, H-DC-M WP and H-SEEP. The hydrograph for H-SEEP includes the instantaneous flowrate, recorded daily at the seepage pond flow meter by Denison Environmental Services (DES).

Following freeze-up in October 2016, the winter season was characterized by low flows across the Mount Nansen site; in February and March flowrates decreased further. The lowest flowrates at sites along Victoria Creek were measured in March 2017, expect at H-VC-DBC where the minimum occurred in February 2017. Discharges along Victoria Creek in 2016/17 were compared to discharges measured during the 2015/16 winter period. Discharges in November 2016, December 2016 and January 2017 were similar to discharges measured during the 2015/16 winter period (Table 3). However, discharges in February and March 2017 were substantially lower than in 2016. For example, in March 2017 the discharges at H-VC-UMN and H-VC-R+290 were both estimated to be below the reportable confidence limit (0.001 m³/s, Table 3) whereas in 2016 the discharges were 0.012 and 0.023 m³/s, respectively. The cause of these reduced flow rates is suspected to be partially attributable to the prolonged cold temperatures throughout winter 2016/17.

		Measured	l Discharge (m³/s)	
Measurement Date	H-VC-U	H-VC-DBC	H-VC-UMN	H-VC-R+290
November 16-17, 2015	0.148	0.176	0.164	0.158
December 14-15, 2015	0.084	0.100	0.090	0.082
January 12-13, 2016	0.040	0.057	0.033	0.025
February 15, 2016	0.050	0.092	0.024	0.021
March 14, 2016	0.039	0.063	0.012	0.023
November 7-8, 2016	0.160	0.166	0.166	0.235
December 6, 2016	0.069	0.096	0.105	0.078
January 10-12, 2017	0.038	0.045	0.006	0.006
February 7-9, 2017	0.032	0.019	0.013	0.008
March 6-7, 2017	0.028	0.024	0	0

Table 3.	Comparison	of discharge	measurements	along	Victoria	Creek during	2015	/16 and 2016	/17 winter	periods.

The water balance along Victoria Creek was analyzed for the 2016/17 winter period to investigate gaining and losing reaches associated with groundwater-surface water fluxes. A preliminary analysis was completed during the winter 2015/16 period and discussed in the March 2016 monthly report.

A review of the instantaneous discharge measurements indicates that the groundwater patterns were less clearly defined in 2016/17. The discharge values at H-VC-U and H-VC-DBC in November and December 2016 and January 2017 winter period support the pattern of net gain of water between these stations over a very short distance (approximately 250 m). The Back Creek confluence with Victoria Creek between these stations was frozen to bed during the winter period and did not contribute any surface water flow. For example, in December 2016 the discharge measured at H-VC-U (0.069 m³/s) was lower than at the downstream location H-VC-DBC (0.096 m³/s). The Back Creek confluence with Victoria Creek between these stations was frozen to bed during the winter period and did not contribute any surface water flow. Open water leads were also noted between these two stations above the Back Creek confluence indicating the presence of warm groundwater inputs to the channel in this reach during all winter visits, except March 2017. It is suspected that prolonged cold temperatures and low flow conditions allowed a thin layer of ice to form over the previously open areas.

Conversely, discharge values from H-VC-DBC and H-VC-UMN continue to indicate that the reach is losing surface water to the ground. The discharge measured at H-VC-DBC was greater than at the downstream station at H-VC-UMN, except in December 2016. For example, in January 2017 the measured discharge at H-VC-DBC (0.045 m³/s) was greater than downstream at H-VC-UMN (0.006 m³/s) despite the increase in

the contributing watershed area. The Dome Creek confluence with Victoria Creek is located between these stations, however it was frozen to bed and did not contribute surface water during the winter period.

Similar to the findings in 2015/16, the groundwater gain/loss patterns between H-VC-UMN and H-VC-R+290 are less clearly defined. The discharge increased in the downstream direction in November 2016; however a decrease was measured in December 2016, January 2017 and February 2017. No flow was detected at these two sites in March 2017 and therefore any groundwater contribution to the creek in these reaches was minor.

The continuous stage records for multiple stations show abrupt increases in the water level during the winter period. For example, at H-VC-U the compensated stage abruptly rose from approximately 2.13 m to 2.45 m in March 2017. These elevated stages are suspected to be associated with ice-related processes and do not represent significant increases in the discharge during the winter period. Continuous water level data from the logger at H-VC-R+290 is presented up to February 8, 2017. Elevated stages recorded after this date have been removed from the stage hydrograph as the increase in stage was associated with the logger becoming frozen to bed and recording non-representative stage data. No discharge measurement could be collected in March because water was flowing between layers of ice and no flowing water could be detected along the bed.

Extensive overflow ice was present during the 2016/17 winter season at H-BC, H-DC-B, H-DC-M WP, and H-DC-R. Dension Environmental Services (DES) excavated the diversion channel (near H-DC-B) during the winter, whereas no excavation was required during the 2015/16 winter season. Similarly, Back Creek downstream of H-BC was filled with overflow ice above the bankfull elevation whereas this channel was dry during the 2015/16 winter season.

WATER QUALITY

Water quality samples and in-situ data were collected at the scheduled sites with flowing water during the March 2017 trip. A total of eight sites were sampled (Attachment 6). The drinking water sample, including a bacteriological sample, was collected from the pumphouse well (WQ-PW) on March 8, 2017. All samples were submitted for analysis through ALS Laboratories under chain of custody documentation, except for the bacteriological sample which was submitted to Yukon Government – Health and Social Services for analysis.

Site conditions were noted and a record of the samples collected was compiled (Attachment 6). In-situ and laboratory results summary tables as well as the lab certificates of analysis are attached (Attachment 7). Many results reflect typical winter conditions at Mount Nansen when water levels are low and watercourses are covered in ice. Parameters that exceeded the Canadian Council of Ministers of the Environment Freshwater Aquatic Life (CCME-AL) guidelines and/or the Mount Nansen Effluent Quality Standards (EQS) criteria are highlighted in Attachment 6 and discussed below.

Water Quality Results Summary

Analysis of the March 6-8, 2017 samples indicated that the following parameters exceeded applicable guidelines and standards for each site:

- The WQ-SEEP samples exceeded CCME-AL guidelines for total and dissolved arsenic, total cadmium, total and dissolved iron, total and dissolved zinc. Total suspended solids, total iron and manganese exceeded Mount Nansen EQS.
- Tailings Pond (WQ-TP) samples exceeded CCME-AL guidelines for fluoride, total aluminum, total and dissolved arsenic, total and dissolved cadmium, total and dissolved copper, total and dissolved iron, total lead, total silver, total thalium, and total and dissolved zinc. Total suspended solids, total cadmium, total copper, total iron, total lead, total manganese, total zinc and dissolved arsenic exceeded Mount Nansen EQS. Water quality results were affected by the disturbance of fine sediment during prior to sample collection, resulting in elevated total dissolved solids. Although several minutes were allowed for sediment to settle prior to collecting the samples, the fine particle matter remained in suspension and resulted in elevated total metals concentrations.
-) On Lower Dome Creek site WQ-DC-U, the CCME-AL guidelines were exceeded for total and dissolved arsenic, total and dissolved iron. Total iron and total manganese exceeded Mount Nansen EQS.
-) On all Victoria Creek sites (WQ-VC-U, WQ-VC-DBC, WQ-VC-UMN and WQ-VC-R+150), no parameters exceeded CCME-AL guidelines.
-) No sample could be collected at WQ-DC-DSS (on Dome Creek downstream of WQ-SEEP) due to thick overflow ice.
-) The bacteriological sample collected at WQ-PW on March 8, 2017 was absent of total coliforms and E. coli.

QA/QC Samples

Travel Blank Sample – did not have any parameters above detection limit. No contamination from storage or transport is suspected.

Field Blank Sample – did not have any parameters above detection limits. No contamination from field sampling methodology is suspected.

Replicate Sample(s) – the average RPD of the replicate sample WQ-SEEP-r was 4% with an average difference of 2% for total and 7% for dissolved metals. Dissolved chromium had RPD>20%.

PROGRAM RECOMMENDATIONS

- Collect photographs of the meteorological station until all snow inside the compound has melted to support a coarse validation of snow depths recorded by the sensor.
- The continuous water level logger at H-VC-R+290 needs to be tested for damage after the well froze to bed in February 2017 and recorded erroneous stage measurements. If the logger was damaged, a new logger will need to be installed at the site. A temporary logger will be installed at the site to ensure there are no gaps in the data set.
- Where feasible, EDI will collect concurrent discharge measurements whenever salt tracer tests are completed using a secondary method (such as velocity-area or volumetric). The secondary measurement is used to validate the winter measurements if poor hydraulic conditions due to complex ice formations are present. The low flow conditions throughout the Mount Nansen site have prohibited the use of secondary discharge methods during the 2016/17 winter period.

Any changes to project scope (i.e. additional sites sampled):	All sampling and monitoring was conducted within scope. The schedule for the next trip is unknown at this time. The next trip will be the first of the 2017/18 Water Resources Investigation.
Any alterations to sample schedule/budget:	None.
Additional Comments:	Site conditions were reflective of winter: water levels were low and ice and snow was present at all locations. Sites that have been determined to be dry or frozen to bed will not be visited until the beginning of spring melt.
Wildlife Sightings:	On March 6, field crew observed 15 caribou beside the Mount Nansen road approximately 15 km east of the mine site. On March 7, a lynx was observed on the road between the tailings pond and the pit. Pine grosbeaks were observed at H-VC-U. Several snowshoe hares were observed when accessing sites along Victoria Creek.
Site concerns (safety):	None

ADDITIONAL TRIP INFORMATION

ATTACHMENT 1: MAPS OF HYDROMETRIC STATIONS AND WATER QUALITY SITES

Legend

- Atmospheric Station (label e.g. ATM-ROAD)
- Hydrometric Station and Water Quality Site (label e.g. H/WQ-VC-UMN)
- Hydrometric Station (label e.g. H-VC-R)
- Water Quality Site (label e.g. WQ-PC-U)
- Temporary Water Quality Site (label e.g. WQ-MS-S-03)
- Unpaved Road/Access

Mount Nansen Site (West): Hydrometric Stations and Water Quality Sites

Notes:

1:50,000 and 1:250,000 Topographic Spatial Data provided by Geomatics - Yukon Government via online source (Corporate Spatial Warehouse) www.geomaticsyukon.ca.

Watercourse, drainage areas and Mount Nansen Road layers digitized / modified by EDI (2011) using orthophotos provided by Yukon Government, Energy, Mines and Resources (2011).

Imagery provided by Yukon Government - Energy, Mines and Resources - Abandoned Mines Branch.

Project data displayed is site specific. Data collected by EDI Environmental Dynamics Inc. (2015) was obtained using Garmin GPS technology.

	0	50	100	200 me	300 tres	400	500
Map Scale = 1:10,000 (printed on 11 x 17) Map Projection: NAD 1983 UTM Zone 8N							
Drawn: MP		Che MM	cked: /SD	Date	Date: 04/08/2016 FIGURE 2		

ATTACHMENT 2:

SITE AND STATION PHOTOS

EDI Project No: 16Y0089

Photo 1. H/WQ-DC-DX+105 – looking upstream. Channel frozen to bed.

Photo 2. H/WQ-DC-DX+105 – transect chipped across frozen channel.

Photo 3. H/WQ-DC-B – looking upstream. Diversion channel frozen to bed.

Photo 4. H/WQ-DC-B – looking downstream. Diversion channel frozen to bed.

Photo 5. WQ-TP – overview of tailings pond.

Photo 6. H-TP – lower staff gauge encased in ice.

Photo 7. H/WQ-SEEP – looking downstream at discharge site.

Photo 8. H-DC-M WP – looking upstream at v-notch weir and weir pond. Water flowing on top of ice.

Photo 9. H-DC-M WP/WQ-DC-U – looking downstream at water on top of ice.

Photo 10. WQ-DC-DSS – looking upstream at holes augured through thick overflow ice.

Photo 11. H/WQ-BC – overview of site (site dry).

Photo 12. H-VC-U – looking downstream.

Photo 13. H-VC-U – looking upstream.

Photo 14. WQ-VC-U – looking downstream at confluence of Victoria Creek and Back Creek.

Photo 15. H-VC-DBC – looking downstream.

Photo 16. WQ-VC-DBC – overview of sample site.

Photo 17. H-VC-UMN – looking downstream at water flowing on top of ice.

Photo 18. WQ-VC-UMN – looking upstream at sample site.

Photo 19. WQ-VC-R+150 – looking upstream from sample collection location (adjacent to stilling well).

Photo 20. H-VC-R+290 – looking downstream.

Photo 21. H-VC-R+290 – overview of stilling well.

Photo 22. WQ-PW – overview of pipe outlet.

Photo 23. Meteorological Station overview

Photo 24. Meteorological Station overview

ATTACHMENT 3:

METEOROLOGY PLOTS – WINTER PERIOD

Figure 3.1 Mount Nansen mean hourly air and ground temperature, October 16, 2016 to March 28, 2017.

---- Hourly Rainfall Rate

Figure 3. 2 Mount Nansen hourly rainfall rate, October 16, 2016 to March 28, 2017.

—— Snow Depth (Sonic Sensor)

Figure 3. 3 Mount Nansen cumulative daily snow depth, October 16, 2016 to March 28, 2017.

---- Wind Speed

Figure 3. 5 Mount Nansen mean hourly wind speed, October 16, 2016 to March 28, 2017.

Figure 3. 6 Mount Nansen mean hourly net shortwave, longwave and total radiation, October 16, 2016 to March 28, 2017.

----- Relative Humidity

Figure 3. 7 Mount Nansen mean hourly relative humidity, October 16, 2016 to March 28, 2017.

---- Atmospheric Pressure

Figure 3. 8 Mount Nansen mean hourly atmospheric pressure, October 16, 2016 to March 28, 2017.

Start Date and Time	Duration	Precipitation	Total Snow Accumulation	Total Rainfall
	(hours)	Туре	(cm)	(mm)
October 16, 00:00	7	Snow	5.4	-
October 20, 09:00	1	Snow	1.0	-
October 21, 22:00	6	Snow	2.8	-
November 04, 16:00	5	Snow	3.5	-
November 09, 14:00	4	Rain	-	1.5
November 13, 16:00	2	Snow	1.4	-
November 29, 05:00	5	Snow	3.4	-
November 29, 15:00	4	Snow	3.9	-
December 02, 05:00	3	Snow	1.2	-
December 02, 10:00	11	Snow	6.4	-
December 03, 00:00	3	Snow	2.8	-
December 03, 09:00	4	Snow	1.2	-
December 17, 22:00	3	Snow	1.6	-
December 18, 16:00	4	Snow	1.8	-
December 28, 11:00	1	Snow	2.3	-
December 29, 21:00	unknown	Snow	18.1	-
January 18, 16:00	4	Snow	2.1	-
January 29, 02:00	9	Snow	8.3	-

Table 3.1Mount Nansen precipitation events for the winter period, October 16, 2016 to March 28, 2017.

EDI Project No: 16Y0089

Start Date and Time	Duration (hours)	Precipitation Type	Total Snow Accumulation (cm)	Total Rainfall (mm)
February 13, 15:00	7	Rain	-	3.2
February 14, 12:00	6	Rain	-	1.5
February 15, 12:00	6	Rain	-	2.0
February 23, 11:00	4	Snow	1.1	-
February 24, 16:00	6	Snow	1.4	-
March 15, 19:00	2	Snow	1.0	-
March 16, 04:00	8	Snow	3.2	-
March 22, 16:00	4	Snow	1.1	-
March 23, 02:00	5	Snow	3.1	-
March 27, 07:00	3	Snow	1.2	-

Note: Rain precipitation events are periods of rainfall greater than or equal to 4 hours, and/or have greater than or equal to 2.0 mm; snow precipitation events are periods of snowfall greater than or equal to 4 hours and/or greater than or equal to 1 cm (10.0 mm).

ATTACHMENT 4:

HYDROLOGY SUMMARY DATA TABLES

Measurement ID	Hydrometric Identifier (HID)	Measurement Date	Measurement Time	Discharge Measurement Method	Discharge (m ³ /s)	Discharge Data Flag	Surveyed Water Elevation (m)	Survey Data Flag	Comments
1557	ATM-VC5	07/03/2017	14:50	-	-	-	-	-	Barologger downloaded and functioning properly.
1558	H-DC-DX+105	07/03/2017	10:30	Ν	0.000	x	-	-	Channel frozen to bed with 0.15 m thick ice. Three holes chipped through ice to frozen substrate; no water detected at site.
1559	H-DC-B	08/03/2017	08:15	N	0.000	x	-	-	Channel frozen to bed with no detectable flow. Ice approximately 0.2 m thick with evidence of multiple layers of overflow.
1560	H-DC-M WP	08/03/2017	08:30	Ν	0.002	E	-	-	Conditions not suitable for discharge measurement. Water flowing above and below overflow ice downstream of weir pond. Flowrate less than during previous visit; estimated to be less than 0.002 m ³ /s.
1561	H-VC-U	07/03/2017	17:10	SS	0.028	В	-	-	Salt tracer completed for discharge measurement. Low water level in channel. Holes chipped through ice 0.05 m thick for salt tracer injection and measurement locations. Logger downloaded and functioning properly.
1562	H-VC-DBC	07/03/2017	14:05	SS	0.024	В	-	-	Salt tracer completed for discharge measurement. Low water level in channel. Ice approximately 0.1 m thick at salt injection and measurement locations. Logger downloaded and functioning properly.
1563	H-BC	07/03/2017	17:30	Ν	0.000	х	-	-	Creek frozen to bed with no detectable flow; no discharge measurement completed. Overflow ice (0.75 m thick) fills channel to 0.05 m above bankfull elevation. No evidence of fresh overflow ice since previous visit.
1564	H-VC-UMN	07/03/2017	11:50	SS	0.000	x	-	-	Salt tracer atempted for discharge measurement. Tracer aborted due to very low flow. Discgharge estimated to be less than 0.001 m ³ /s. Ice up to 0.3 m thick at centre of channel. Logger downloaded and functioning properly. Water temporarily upwelled onto surface of ice when hole chipped through ice. Logger downloaded and functioning properly.
1565	H-VC-R+290	06/03/2017	14:00	N	0.000	x		-	Water flowing through multiple layers of ice. Four holes chipped through ice up to 0.5 m thick with stagnant water at the bottom of each hole. Discharge visually estimated to be less than 0.001 m ³ /s. Stilling well and logger encased in ice. Logger downloaded and appears to be funcitoning properly.
1566	H-SEEP	07/03/2017	18:45	v	0.002	-	-	-	Volumetric discharge measurement collected. Ice 0.5 m thick inside stilling culvert and thin ice (0.01 m) along downstream channel. Pump house reading 126 L/min (0.002 m ³ /s) at 18:45.
1567	H-TP	06/03/2017	19:30	-	-	-	-	-	Staff gauges encased in ice and snow.

Discharge Measurement Method Legend

Measurement Method ID	Measurement Method	Measurement Description
ADV-MID	Mid Section Method - Acoustic Doppler Velocimeter	Cross-sectional velocity using an ADV, mid-section method.
SS	Brine Salt Slug Tracer	Salt dilution gauging using a brine salt slug.
V	Volumetric	Volumetric measurement obtained by filling a graduated contained at a culvert, pipe outlet or weir.
W	Weir	Measurement obtained by a rated structure (v-notch weir).
Ν	None	No measurement could be obtained.
SD	Dry Salt Slug Tracer	Salt dilution gauging using a dry salt slug.
HWM	High Water Mark - Indirect Method	Indirect method using high water mark in the slope-area calculation for estimating high discharges.
ADCP	Acoustic Doppler Current Profiler	Cross-sectional velocity using an ADCP, mid-section method.
SC	Constant Rate Salt Tracer	Salt dilution gauging using the constant rate method.
CM-MID	Mid Section Method - Current Meter	Cross-sectional velocity using a velocimeter (Swoffer or Pygmy AA)

Hydrometric Stations

Hydrometric ID	Hydrometric Stations
ATM-VC5	Atmospheric Barologger (5) at Victoria Creek
H-BC	Back Creek
H-DC-B	Diversion Channel at Bridge
H-DC-D1B	Dome Creek at D1b
H-DC-DX	Dome Creek at DX
H-DC-DX+105	Dome Creek at DX+105
H-DC-M-WP	Middle Dome Creek at Weir Pond
H-DC-R	Dome Creek at Road
H-PC-DSP	Pony Creek Downstream of Pit
H-SEEP	Seepage Pond Outflow
H-TP	Tailings Pond
H-VC-DBC	Victoria Creek Downstream of Back Creek
H-VC-R	Victoria Creek at Road
H-VC-R+290	Victoria Creek at Road + 290
H-VC-U	Upper Victoria Creek
H-VC-UMN	Victoria Creek Upstream of Minnesota Creek

Discharge Data Flag Legend

Discharge Data Flag	Discharge Data Flag Description							
E	Estimated value							
В	Backwater effects (ice related)							
F	Instrument malfunction							
М	Manual measurement							
A	Automated measurement (logged)							
ML	Missing length data							
MD	Missing depth data							
MW	Missing width data							
0	Outside of measurement reporting range							
S	Suspect data							
х	Poor channel conditions for discharge measurement							
MI	Missing Data							
SH-L	Data logger Shift							
SH-SG	Staff Gauge Shift							
UR	Under review							

Survey Data Flag Legend

Survey Flag	Survey Flag Description
S	Suspect data
MI	Missing data
UR	Under review
F	Instrument Malfunction
0	Outside measurement Accuracy (+/-0.003 m)
N	No survey conducted
В	Backwater effects (ice related)

ATTACHMENT 5: INSTANTANEOUS MEASUREMENTS AND HYDROGRAPHS – WINTER SEASON

Figure 5.1 Hydrographs for upper Dome Creek hydrometric station H-DC-DX+105, October 16, 2016 to March 15, 2017 (no continuous data loggers or stage survey)

Figure 5. 2 Hydrograph for the Seepage Pond Outlet (H-SEEP), October 16, 2016 to March 15, 2017 (no continuous data loggers or stage survey).

Figure 5.3 Hydrograph for the Middle Dome Creek at the Weir Pond, H-DC-M WP, October 16, 2016 to March 15, 2017 (no continuous data loggers or rating curves).

Figure 5. 4 Hydrograph for Upper Victoria Creek (H-VC-U), October 16, 2016 to March 15, 2017.

Figure 5.5 Hydrograph for Victoria Creek downstream of Back Creek (H-VC-DBC), October 16, 2016 to March 15, 2017.

Figure 5. 6 Hydrograph for the Victoria Creek upstream of Minnesota Creek (H-VC-UMN), October 16, 2016 to March 15, 2017.

Figure 5.8 Instantaneous Discharge Measurements along Victoria Creek, October 16, 2016 to March 15, 2017

ATTACHMENT 6:

WATER QUALITY SUMMARY DATA TABLES

Mount Nansen Mine Site Water Resources Investigation Program Water Quality

Water Quality Site	Sample Collected? (Y/N)	Measurement Date	Comments
WQ-SEEP	Y	07/03/2017	Ice build up in the culvert 0.50 m deep. Thin ice cover (0.01 m) downstream of culvert. Flow in pipe outlet low to moderate. Replicate collected at site Site has typical, distinct odour of wet organic material, similar to wet moss.
WQ-DC-DSS	Ν	06/03/2017	Unable to locate water at site and no sample collected. Hole augured down to limit of auger height. Hole deepened with ice chipper but unable to reach bed. Ice thickness greater than 1.5 m.
WQ-TP	Y	06/03/2017	Hole augered through ice. Turbid water in hole. Allowed to settle for five minutes prior to collecting sample.
WQ-DC-DX+105	Ν	07/03/2017	Site frozen to bed. No sample collected. Chipped trough across with of channel to find frozen ground.
WQ-DC-B	Ν	08/03/2017	No sample collected. No detectable flow.
WQ-DC-U	Y	06/03/2017	Sample collected approximately 5 m downstream of weir pond at same location as February. Clear, swift moving water. Approximately 5 cm flow depth. Site covered with overflow ice thickness extending entire visible limits from site. Overflow ice up to 0.75 m thick. Water and general site area has typical organic odour similar to WQ-SEEP site.
WQ-VC-U	Y	08/03/2017	Water is clear, level is low. Samples collected one day after salt tracers trials to avoid interference with water quality parameters.
WQ-BC	Ν	07/03/2017	No sample collected. Creek frozen to bed with no detectable flow.
WQ-VC-DBC	Y	07/03/2017	Water is clear, water level and velocity are low.
WQ-VC-UMN	Y	07/03/2017	Sample collected 4 m upstream of typical sampling location. Fresh overflow ice downstream of sample site suspected to be from upwelling at previous sample hole.
WQ-VC-R+150	Y	06/03/2017	Sample collected beside stilling well. Hole chipped through ice up to 0.5 m thick. Anchor ice along bed. Water flowing between layers of ice and no stagnant water along bed.
WQ-PW	Y	08/03/2017	Sample collected at pipe outlet. Water flowing freely from outlet.

Mount Nansen Mine Site Water Resources Investigation Program Water Quality

Water quality results collected during the monthly surface water monitoring; March 2017

Analyte	Units	CCME-WATER- F-AL	Mount Nansen Effluent Discharge Standards	Sample ID WQ Site ID Date Sampled Detection Limit	U1898852-9 WQ-SEEP 07/03/2017 18:40	L1898852-10 WQ-SEEP-R 07/03/2017 18:45	QA/QC WQ-SEEP Replicate Analysis	U1898852-8 WQ-TP 06/03/2017 19:10	U1898852-7 WQ-DC-U 06/03/2017 17:45	U1898852-1 WQ-VC-U 08/03/2017 08:40	U1898852-2 WQ-VC-DBC 07/03/2017 14:50	U1898852-3 WQ-VC-UMN 07/03/2017 13:00	U1898852-4 WQ-VC-R+150 08/03/2017 14:45	L1898852-11 WQ-PW 08/03/2017 08:55	L1898852-6 FIELD BLANK 08/03/2017 10:35	L1898852-5 TRAVEL BLANK 08/03/2017 00:00
Temperature (in-situ)	°C	-	-	-	0.4	0.4	-	0.0	-0.1	0.0	0.0	0.0	0.4	0.3	-	-
Specific Conductivity (in-situ)	μS/cm	-	-		1,688	1,688		3,710	1,578	214	118	284	291	361	-	-
pH (in-situ)	pH	6.5 - 9.0	6.0 - 8.5	-	6.98	6.98		7.65	7.04	6.52	6.95	6.88	6.85	7.13	-	-
Dissolved Oxygen (in-situ)	mg/L	-	-	-	3.35	3.35	-	1.28	3.74	6.65	7.38	2.09	7.54	6.77	-	-
Turbidity (In-situ)	NTU	-	-	-	25.70	25.80	-	487.00	13.49	0.10	0.30	0.02	0.60	0.16	0.00	-
Conductivity	us/cm	15	-	3	- 1570	1570	- 0%	2290	- 1470	206	212	- 260	205	249	<20	-20
Hardness (as CaCO3)	mg/l	-		0.5	882	887	1%	2380	848	111	109	142	151	186	<0.50	<0.50
pH (lab)	pH	6.5 - 9.0	6.0 - 8.5	0.1	7.7	7.72	0%	7.82	7.95	7.69	7.7	7.64	8.04	8.16	5.39	5.41
Total Suspended Solids	mg/L	-	50	3	51.4	49.9	3%	419	49.5	<3.0	<3.0	<3.0	<3.0	-	<3.0	<3.0
Total Dissolved Solids	mg/L	-	-	1	1260	1250	1%	3470	1150	118	119	159	174	217	<1.0	<1.0
Alkalinity, Bicarbonate (as CaCO3)	mg/L	-	-	1	287	291	1%	404	288	93.7	93.7	105	119	-	<1.0	<1.0
Alkalinity, Carbonate (as CaCO3)	mg/L	-	-	1	<1.0	<1.0	<dl< td=""><td><1.0</td><td><1.0</td><td><1.0</td><td><1.0</td><td><1.0</td><td><1.0</td><td>-</td><td><1.0</td><td><1.0</td></dl<>	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	-	<1.0	<1.0
Alkalinity, Hydroxide (as CaCO3)	mg/L	-	-	1	<1.0	<1.0	<dl 1%</dl 	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	-	<1.0	<1.0
Ammonia Total (as N)	mg/L	-	-	0.005	207	291	1%	404	200	93.7	93.7	105	<0.010	100	<0.010	<0.010
Bromide (Br)	mg/L	- 19.0		0.05	<0.25	<0.25	<di< td=""><td><1.0</td><td><0.25</td><td><0.050</td><td><0.050</td><td><0.050</td><td><0.010</td><td></td><td><0.050</td><td><0.010</td></di<>	<1.0	<0.25	<0.050	<0.050	<0.050	<0.010		<0.050	<0.010
Chloride (CI)	mg/L	120	-	0.5	<2.5	<2.5	<dl< td=""><td><10</td><td><2.5</td><td><0.50</td><td><0.50</td><td><0.50</td><td><0.50</td><td><0.50</td><td><0.50</td><td><0.50</td></dl<>	<10	<2.5	<0.50	<0.50	<0.50	<0.50	<0.50	<0.50	<0.50
Fluoride (F)	mg/L	0.12	-	0.02	<0.10	<0.10	<dl< td=""><td>0.47</td><td>0.1</td><td>0.039</td><td>0.04</td><td>0.042</td><td>0.05</td><td>0.097</td><td><0.020</td><td><0.020</td></dl<>	0.47	0.1	0.039	0.04	0.042	0.05	0.097	<0.020	<0.020
Nitrate (as N)	mg/L	13	-	0.005	0.619	0.607	2%	<0.10	0.287	0.104	0.101	0.0978	0.158	0.122	<0.0050	<0.0050
Nitrite (as N)	mg/L	0.06	-	0.001	0.0238	0.0209	13%	<0.020	0.016	<0.0010	<0.0010	<0.0010	<0.0010	0.0011	<0.0010	<0.0010
Sulfate (SO4)	mg/L	-	-	0.5	694	680	2%	2240	618	19.1	20.2	41.8	44.2	30.6	<0.30	<0.30
Anion Sum	meq/L	-	-	-	20.2	20	<dl< td=""><td>54.7</td><td>18.6</td><td>2.28</td><td>2.3</td><td>2.98</td><td>3.32</td><td>-</td><td><0.10</td><td><0.10</td></dl<>	54.7	18.6	2.28	2.3	2.98	3.32	-	<0.10	<0.10
Cation Sum	meq/L	-	-	-	21.1	21	<dl< td=""><td>52.1</td><td>19.3</td><td>2.37</td><td>2.34</td><td>3.02</td><td>3.23</td><td>-</td><td><0.10</td><td><0.10</td></dl<>	52.1	19.3	2.37	2.34	3.02	3.23	-	<0.10	<0.10
Cation - Anion Balance Cyanide Weak Acid Diss	% mg/l	-	- 01	0.005	2	2.4	<dl <2xDI</dl 	-2.4	1.7	<0.0050	<0.0050	<0.050	-1.3	-	<0.0050	<0.0050
Cvanide, Total	mg/L	-	0.3	0.005	0.0195	0.0227	<2xDL	<0.0050	0.0136	<0.0050	<0.0050	<0.0050	<0.0050		<0.0050	<0.0050
Cyanate	mg/L	-	-	0.2	<0.20	<0.20	<dl< td=""><td><0.20</td><td><0.20</td><td><0.20</td><td><0.20</td><td><0.20</td><td><0.20</td><td></td><td><0.20</td><td><0.20</td></dl<>	<0.20	<0.20	<0.20	<0.20	<0.20	<0.20		<0.20	<0.20
Thiocyanate (SCN)	mg/L	-	-	0.5	5.58	5.59	0%	0.69	3.37	<0.50	<0.50	<0.50	<0.50	-	<0.50	<0.50
Aluminum (AI)-Total	mg/L	0.1	-	0.003	0.0192	0.0188	2%	2.45	0.076	0.0124	0.0102	0.0099	0.017	<0.010	<0.0030	<0.0030
Antimony (Sb)-Total	mg/L	-	0.15	0.0001	0.00056	0.00056	0%	0.187	0.00045	0.00013	0.00011	0.00058	0.00052	<0.00050	<0.00010	<0.00010
Arsenic (As)-Total	mg/L	0.005	-	0.0001	0.10400	0.10700	3%	2.36000	0.07780	0.00031	0.00033	0.00077	0.00154	0.00051	<0.00010	< 0.00010
Barium (Ba)-Total	mg/L	-	1.0	0.00005	0.0696	0.0711	2%	0.1760	0.0941	0.0992	0.0997	0.0926	0.1120	0.0910	<0.000050	<0.000050
Beryllium (Be)-Total	mg/L mg/l	-	-	0.00002	<0.000020	<0.000020	<dl< td=""><td>0.00018</td><td><0.000020</td><td><0.000020</td><td><0.000020</td><td><0.000020</td><td><0.000020</td><td>-</td><td><0.000020</td><td><0.000020</td></dl<>	0.00018	<0.000020	<0.000020	<0.000020	<0.000020	<0.000020	-	<0.000020	<0.000020
Boron (B)-Total	mg/L			0.0005	0.053	0.052	2%	0.174	0.041	<0.000050	<0.000050	<0.000050	<0.000050	<0.10	<0.000050	<0.000050
Cadmium (Cd)-Total (Lab Result)	mg/L	HD	0.02	0.00001	0.000488	0.000492	1%	0.021	0.000194	0.0000486	0.0000585	0.0000206	0.0000229	<0.00020	<0.000050	<0.000050
Cadmium (Cd)-Total (Hardness Adjusted Guideline)	mq/L	-	-	0.00001	0.00037	0.00037	-	0.00037	0.00037	0.00017	0.00017	0.00021	0.00022	0.00027	0.00037	0.00037
Calcium (Ca)-Total	mg/L	-	-	0.05	268	267	0%	770	245	29	29.6	36.7	39.8	42.7	<0.050	<0.050
Chromium (Cr)-Total	mg/L	0.0089	0.04	0.0001	0.00074	0.00073	1%	0.00583	0.00063	0.00014	0.00016	<0.00010	0.00014	<0.0020	<0.00010	<0.00010
Cobalt (Co)-Total	mg/L	-		0.0001	0.00793	0.00803	1%	0.0189	0.00599	<0.00010	<0.00010	<0.00010	< 0.00010	-	<0.00010	<0.00010
Copper (Cu)-Total (Lab Result)	mg/L	HD	0.2	0.0005	0.00332	0.00341	3%	1.18	0.00162	0.00143	0.00141	0.0013	0.00156	<0.0010	<0.00050	<0.00050
Lopper (Cu)-Total (Haraness Adjusted Guideline)	mg/L mg/l	- 0.2	- 1	0.0005	22.1	22.8	- 2%	21	0.0040	0.0026	0.0025	0.0032	0.0034	<0.020	0.0040	0.0040
Load (Rb) Total (Lab Pacult)	mg/L	U.S HD	01	0.0005	0.000168	0.000091	<2xDI	1.09	0.000125	<0.00050	<0.00050	<0.00050	0.025	0.0006	<0.010	<0.010
Lead (Pb)-Total (Hardness Adjusted Guideline)	ma/L	-	-	0.00005	0.00700	0.00700	-	0.00700	0.00700	0.00363	0.00355	0.00497	0.00538	0.00700	0.00700	0.00700
Lithium (Li)-Total	mg/L	-	-	0.0005	<0.0010	<0.0010	<dl< td=""><td>0.0207</td><td>0.0012</td><td><0.0010</td><td><0.0010</td><td>0.0013</td><td>0.0025</td><td>-</td><td><0.0010</td><td><0.0010</td></dl<>	0.0207	0.0012	<0.0010	<0.0010	0.0013	0.0025	-	<0.0010	<0.0010
Magnesium (Mg)-Total	mg/L	-	-	0.1	59.7	61	2%	140	66.1	10.3	10.3	13.7	15	19.3	<0.10	<0.10
Manganese (Mn)-Total	mg/L	-	0.5	0.00005	6.48	6.61	2%	25.8	5.56	0.271	0.283	0.0342	0.0132	<0.0020	<0.00010	<0.00010
Mercury (Hg)-Total	mg/L	0.000026	0.005	0.00001	<0.0000050	<0.0000050	<dl< td=""><td>0.000022</td><td><0.0000050</td><td><0.000050</td><td><0.0000050</td><td><0.0000050</td><td>< 0.0000050</td><td><0.00020</td><td><0.0000050</td><td><0.0000050</td></dl<>	0.000022	<0.0000050	<0.000050	<0.0000050	<0.0000050	< 0.0000050	<0.00020	<0.0000050	<0.0000050
Molybdenum (Mo)-Total	mg/L	0.0073	-	0.00005	0.00108	0.00111	3%	0.00729	0.00107	0.000329	0.000338	0.000267	0.000517	-	<0.000050	<0.000050
Nickel (Ni)-Total (Lab Result)	mg/L	HD	0.3	0.0005	0.00308	0.1500	5%	0.013	0.00252	0.00072	0.00078	0.00062	<0.00050	-	<0.00050	<0.00050
Phosphorus (P)-Total	mg/L	-	-	0.05	0.059	0.052	<2xDI	0.28	0.064	<0.050	<0.050	<0.050	<0.050		<0.050	<0.050
Potassium (K)-Total	mg/L	-	-	0.1	6.59	6.78	3%	47	5.96	0.8	0.78	1.04	1.27	1	<0.10	<0.10
Selenium (Se)-Total	mg/L	0.001	-	0.0001	0.000271	0.00027	<2xDL	0.0003	0.000195	<0.000050	<0.000050	0.000086	0.000068	<0.0010	<0.000050	<0.000050
Silicon (Si)-Total	mg/L	-	-	0.05	8.95	9.13	2%	11.9	8.45	6.53	6.63	6.86	7.95	-	<0.050	<0.050
Silver (Ag)-Total	mg/L	0.00025	0.1	0.00001	0.000036	0.00003	<2xDL	0.0198	0.000017	<0.000010	<0.000010	<0.000010	<0.000010	-	<0.000010	<0.000010
Sodium (Na)-Total	mg/L	-	-	0.05	38.4	39.9	4%	48.7	32.8	3.11	3.11	4.13	4.66	5.1	<0.050	<0.050
Strontium (Sr)-Total	mg/L	-	-	0.0002	0.789	0.784	1%	2.07	0.751	0.296	0.304	0.337	0.375	-	<0.00020	<0.00020
Sultur (5)-10tal	mg/L		-	0.5	276	281	2%	815	257	6.61	6.93	14.7	17.1	-	<0.50	<0.50
Tin (Sn)-Total	mg/L	0.0008		0.00001	<0.000010	<0.000010		<0.000815	<0.000010	<0.00010	<0.00010	<0.000010	<0.000010		<0.000010	<0.00010
Titanium (Ti)-Total	mg/L	-		0.0003	0.00139	0.00161	15%	0.0098	0.00399	<0.00030	<0.00030	<0.00030	0.00048	-	<0.00030	<0.00030
Uranium (U)-Total	mg/L	0.015		0.00001	0.00184	0.00184	0%	0.00529	0.00173	0.000463	0.000504	0.000526	0.000788	0.00167	<0.000010	<0.000010
Vanadium (V)-Total	mg/L	-	-	0.0005	0.00361	0.00363	1%	0.0079	0.00226	<0.00050	<0.00050	<0.00050	<0.00050	-	<0.00050	<0.00050
Zinc (Zn)-Total	mg/L	0.03	0.3	0.003	0.0475	0.0481	1%	1.5500	0.0230	<0.0030	<0.0030	<0.0030	< 0.0030	<0.050	<0.0030	<0.0030
Zirconium (Zr)-Total	mg/L	-		0.0003	0.00083	0.00084	<2xDL	< 0.0015	0.0005	< 0.00030	< 0.00030	< 0.00030	< 0.00030	-	<0.00030	< 0.00030

Mount Nansen Mine Site Water Resources Investigation Program Water Quality

Water quality results collected during the monthly surface water monitoring; March 2017

			Mount Nancon	Sample ID	L1898852-9	L1898852-10	QA/QC	L1898852-8	L1898852-7	L1898852-1	L1898852-2	L1898852-3	L1898852-4	L1898852-11	L1898852-6	L1898852-5
Analyte	Units	CCME-WATER-	Effluent Dircharge	WQ Site ID	WQ-SEEP	WQ-SEEP-R	WQ-SEEP	WQ-TP	WQ-DC-U	WQ-VC-U	WQ-VC-DBC	WQ-VC-UMN	WQ-VC-R+150	WQ-PW	FIELD BLANK	TRAVEL BLANK
enalite.	onics	F-AL	Standards	Date Sampled	07/03/2017 18:40	07/03/2017 18:45	Replicate Analysis	06/03/2017 19:10	06/03/2017 17:45	08/03/2017 08:40	07/03/2017 14:50	07/03/2017 13:00	08/03/2017 14:45	08/03/2017 08:55	08/03/2017 10:35	08/03/2017 00:00
			Stanuarus	Detection Limit												
Aluminum (Al)-Dissolved	mg/L	0.1	-	0.001	0.0114	0.0107	6%	<0.0050	0.0084	0.0065	0.0065	0.0056	0.0041	-	< 0.0010	-
Antimony (Sb)-Dissolved	mg/L	-	-	0.0001	0.00049	0.00048	<2xDL	0.00719	0.00035	<0.00010	<0.00010	0.00054	0.00048	-	<0.00010	
Arsenic (As)-Dissolved	mg/L	0.005	0.15	0.0001	0.06320	0.05820	8%	0.68700	0.06060	0.00028	0.00025	0.00065	0.00129	-	<0.00010	-
Barium (Ba)-Dissolved	mg/L	-	-	0.00005	0.0678	0.0592	14%	0.101	0.0888	0.097	0.0938	0.0874	0.1	-	<0.000050	-
Beryllium (Be)-Dissolved	mg/L	-	-	0.00002	<0.000020	<0.000020	<dl< td=""><td><0.00010</td><td><0.000020</td><td><0.000020</td><td><0.000020</td><td><0.000020</td><td><0.000020</td><td>-</td><td><0.000020</td><td>-</td></dl<>	<0.00010	<0.000020	<0.000020	<0.000020	<0.000020	<0.000020	-	<0.000020	-
Bismuth (Bi)-Dissolved	mg/L	-	-	0.0005	<0.000050	<0.000050	<dl< td=""><td><0.00025</td><td><0.000050</td><td><0.000050</td><td><0.000050</td><td><0.000050</td><td><0.000050</td><td>-</td><td><0.000050</td><td>-</td></dl<>	<0.00025	<0.000050	<0.000050	<0.000050	<0.000050	<0.000050	-	<0.000050	-
Boron (B)-Dissolved	mg/L	-	-	0.01	0.046	0.046	<2xDL	0.161	0.036	<0.010	<0.010	<0.010	<0.010	-	<0.010	
Cadmium (Cd)-Dissolved (Lab Result)	mg/L	HD	-	0.00001	0.000354	0.000329	7%	0.0014	0.000111	0.00005	0.0000507	0.0000203	0.0000195	-	<0.0000050	-
Cadmium (Cd)-Diss. (Hardness Adjusted Guideline)	mg/L	-	-	0.00001	0.00037	0.00037	-	0.00037	0.00037	0.00017	0.00017	0.00021	0.00022	-	0.00037	-
Calcium (Ca)-Dissolved	mg/L	-	-	0.05	258	262	2%	724	236	28.1	28.5	36.5	38.7	-	< 0.050	-
Chromium (Cr)-Dissolved	mg/L	0.0089	-	0.0001	0.00046	0.00059	25%	<0.00050	0.00041	<0.00010	< 0.00010	<0.00010	< 0.00010	-	<0.00010	-
Cobalt (Co)-Dissolved	mg/L	-	-	0.0001	0.00767	0.00699	9%	0.0151	0.00563	<0.00010	<0.00010	<0.00010	<0.00010	-	<0.00010	-
Copper (Cu)-Dissolved (Lab Result)	mg/L	HD	-	0.0002	0.00183	0.0017	7%	0.0076	0.00081	0.00137	0.00119	0.00119	0.00131	-	<0.00020	-
Copper (Cu)-Diss. (Hardness Adjusted Guideline)	mg/L	-	-	0.002	0.004	0.004	-	0.004	0.004	0.003	0.003	0.003	0.003	-	0.004	-
Iron (Fe)-Dissolved	mg/L	0.3	-	0.01	19.400	18.400	5%	5.500	7.510	<0.010	< 0.010	<0.010	<0.010	-	<0.010	-
Lead (Pb)-Dissolved (Lab Result)	mg/L	HD	-	0.00005	<0.000050	<0.000050	<dl< td=""><td>0.00097</td><td><0.000050</td><td><0.000050</td><td><0.000050</td><td><0.000050</td><td><0.000050</td><td>-</td><td>0.000125</td><td>-</td></dl<>	0.00097	<0.000050	<0.000050	<0.000050	<0.000050	<0.000050	-	0.000125	-
Lead (Pb)-Diss. (Hardness Adjusted Guideline)	mg/L	-	-	0.00005	0.00700	0.00700	-	0.00700	0.00700	0.00363	0.00355	0.00497	0.00538	-	0.00700	-
Lithium (Li)-Dissolved	mg/L	-	-	0.0005	<0.0010	< 0.0010	<dl< td=""><td>0.0186</td><td><0.0010</td><td><0.0010</td><td><0.0010</td><td>0.0013</td><td>0.0022</td><td>-</td><td><0.0010</td><td></td></dl<>	0.0186	<0.0010	<0.0010	<0.0010	0.0013	0.0022	-	<0.0010	
Magnesium (Mg)-Dissolved	mg/L	-	-	0.1	58	56.5	3%	138	62.5	9.87	9.26	12.3	13.2	-	<0.10	-
Manganese (Mn)-Dissolved	mg/L	-	-	0.00005	6.33	6.06	4%	24.3	5.34	0.261	0.254	0.0307	0.0102	-	<0.00010	-
Mercury (Hg)-Dissolved	mg/L	0.000026	-	0.00001	<0.0000050	<0.0000050	<dl< td=""><td><0.0000050</td><td><0.0000050</td><td><0.0000050</td><td><0.0000050</td><td><0.0000050</td><td>< 0.0000050</td><td>-</td><td><0.0000050</td><td>-</td></dl<>	<0.0000050	<0.0000050	<0.0000050	<0.0000050	<0.0000050	< 0.0000050	-	<0.0000050	-
Molybdenum (Mo)-Dissolved	mg/L	0.0073	-	0.00005	0.00102	0.00102	0%	0.00645	0.000982	0.000298	0.000317	0.000247	0.000456	-	<0.000050	-
Nickel (Ni)-Dissolved (Lab Result)	mg/L	HD	-	0.0005	0.0029	0.00277	5%	0.0074	0.00235	0.00077	0.00064	0.00055	<0.00050	-	<0.00050	-
Nickel (Ni)-Diss. (Hardness Adjusted Guideline)	mg/L	-	-	0.0005	0.1500	0.1500	-	0.1500	0.1500	0.1035	0.1020	0.1248	0.1307	-	0.1500	-
Phosphorus (P)-Dissolved	mg/L	-	-	0.05	< 0.050	< 0.050	<dl< td=""><td><0.25</td><td>< 0.050</td><td><0.050</td><td>< 0.050</td><td><0.050</td><td><0.050</td><td>-</td><td><0.050</td><td>-</td></dl<>	<0.25	< 0.050	<0.050	< 0.050	<0.050	<0.050	-	<0.050	-
Potassium (K)-Dissolved	mg/L	-	-	0.1	6.48	6.2	4%	46.3	5.7	0.76	0.71	0.97	1.14	-	<0.10	-
Selenium (Se)-Dissolved	mg/L	0.001	-	0.0001	0.00029	0.000315	<2xDL	<0.00025	0.000238	<0.000050	<0.000050	0.000069	0.000066	-	<0.000050	-
Silicon (Si)-Dissolved	mg/L	-	-	0.05	8.76	8.16	7%	8.81	7.95	6.4	6.21	6.55	7.3	-	<0.050	-
Silver (Ag)-Dissolved	mg/L	0.00025	-	0.00001	<0.000010	0.000013	<dl< td=""><td><0.000050</td><td><0.000010</td><td><0.000010</td><td><0.000010</td><td><0.000010</td><td><0.000010</td><td>-</td><td><0.000010</td><td></td></dl<>	<0.000050	<0.000010	<0.000010	<0.000010	<0.000010	<0.000010	-	<0.000010	
Sodium (Na)-Dissolved	mg/L	-	-	0.05	37.7	36.1	4%	48.4	31.1	2.96	2.81	3.71	4.17	-	< 0.050	-
Strontium (Sr)-Dissolved	mg/L	-	-	0.0002	0.771	0.755	2%	1.91	0.725	0.29	0.295	0.336	0.366	-	<0.00020	-
Sulfur (S)-Dissolved	mg/L	-	-	0.5	268	241	11%	796	241	6.52	6.32	13.5	15.2	-	<0.50	-
Thallium (TI)-Dissolved	mg/L	0.0008	-	0.00001	<0.000010	<0.000010	<dl< td=""><td>0.000077</td><td><0.000010</td><td><0.000010</td><td><0.000010</td><td><0.000010</td><td><0.000010</td><td>-</td><td><0.000010</td><td>-</td></dl<>	0.000077	<0.000010	<0.000010	<0.000010	<0.000010	<0.000010	-	<0.000010	-
Tin (Sn)-Dissolved	mg/L	-	-	0.0001	<0.00010	<0.00010	<dl< td=""><td><0.00050</td><td><0.00010</td><td><0.00010</td><td><0.00010</td><td><0.00010</td><td><0.00010</td><td>-</td><td><0.00010</td><td>-</td></dl<>	<0.00050	<0.00010	<0.00010	<0.00010	<0.00010	<0.00010	-	<0.00010	-
Titanium (Ti)-Dissolved	mg/L	-	-	0.0003	0.00113	0.00103	<2xDL	<0.0015	0.00067	<0.00030	<0.00030	<0.00030	<0.00030	-	<0.00030	-
Uranium (U)-Dissolved	mg/L	0.015	-	0.00001	0.00173	0.00179	3%	0.00458	0.0016	0.000421	0.000463	0.000488	0.000715	-	<0.000010	
Vanadium (V)-Dissolved	mg/L	-	-	0.001	0.00243	0.0023	<2xDL	<0.0025	0.00136	<0.00050	<0.00050	<0.00050	<0.00050	-	<0.00050	-
Zinc (Zn)-Dissolved	mg/L	0.03	-	0.001	0.0473	0.0440	7%	0.4540	0.0227	<0.0010	0.0018	0.0020	0.0017	-	<0.0010	
Zirconium (Zr)-Dissolved	mg/L	-	-	0.0003	0.00077	0.00076	<2xDL	<0.0015	0.00047	< 0.00030	< 0.00030	< 0.00030	<0.00030	-	<0.00030	-

Applied Guidelines: 'Federal CCME Canadian Environmental Quality Guidelines (January 2015), CCME: Freshwater Aquatic Life 'Mount Nansen Effluent Discharge Standards

^A Ammonia guideline is temperature dependent and the March value is based on a water temperature of 0°C and a pH of 7.0

HD - Guideline is hardness dependent, and is individually caculated for each sample based on hardness results

COLOUR KEY:

Exceeds CCME Guideline Exceeds MN Effluent Discharge Standards Exceeds both CCME and MN Standards

QA/QC Comments The Travel Blank sample did not have any parameters above detection limit. No contamination from storage or transport is suspected. The Field Blank did not have any parameters above detection limits. No contamination from field sampling methodology is suspected. Exceeds both CCME and MN Standards

Exceeds both CCME and MN Standards

AQA (CR Repitate Analysis
QA/QC Codes: RPD - Relative Percent Difference, <DL - below detection limit, and <2XDL - less than two times the detection
limit.

Notes:

ATTACHMENT 7:

LABORATORY CERTIFICATES OF ANALYSIS AND YUKON ENVIRONMENTAL HEALTH SERVICES BACTERIOLOGICAL RESULTS

EDI ENVIRONMENTAL DYNAMICS INC. ATTN: Lyndsay Doetzel 2195 - 2nd Ave Whitehorse YT Y1A 3T8 Date Received: 08-MAR-17 Report Date: 16-MAR-17 19:05 (MT) Version: FINAL

Client Phone: 867-393-4882

Certificate of Analysis

Lab Work Order #: L1898852

Project P.O. #: Job Reference: C of C Numbers: Legal Site Desc: NOT SUBMITTED MOUNT NANSEN 16-Y-0089

Can Dang Senior Account Manager

[This report shall not be reproduced except in full without the written authority of the Laboratory.]

ADDRESS: 8081 Lougheed Hwy, Suite 100, Burnaby, BC V5A 1W9 Canada | Phone: +1 604 253 4188 | Fax: +1 604 253 6700 ALS CANADA LTD Part of the ALS Group An ALS Limited Company

Environmental 🔊

www.alsglobal.com

RIGHT SOLUTIONS RIGHT PARTNER

L1898852 CONTD.... PAGE 2 of 14 16-MAR-17 19:05 (MT) Version: FINAL

	Sample ID Description Sampled Date Sampled Time Client ID	L1898852-1 Water 08-MAR-17 08:40 WQ-VC-U	L1898852-2 Water 07-MAR-17 14:50 WQ-VC-DBC	L1898852-3 Water 07-MAR-17 13:00 WQ-VC-UMN	L1898852-4 Water 08-MAR-17 14:45 WQ-VC-R+150	L1898852-5 Water 08-MAR-17 TRAVEL BLANK
Grouping	Analyte					
WATER						
Physical Tests	Colour, True (CU)					
	Conductivity (uS/cm)	206	212	269	295	<2.0
	Hardness (as CaCO3) (mg/L)	111	109	142	151	нтс <0.50
	рН (рН)	7.69	7.70	7.64	8.04	5.41
	Total Suspended Solids (mg/L)	<3.0	<3.0	<3.0	<3.0	<3.0
	Total Dissolved Solids (mg/L)					
	TDS (Calculated) (mg/L)	118	119	159	174	<1.0
	Turbidity (NTU)					
Anions and Nutrients	Alkalinity, Bicarbonate (as CaCO3) (mg/L)	93.7	93.7	105	119	<1.0
	Alkalinity, Carbonate (as CaCO3) (mg/L)	<1.0	<1.0	<1.0	<1.0	<1.0
	Alkalinity, Hydroxide (as CaCO3) (mg/L)	<1.0	<1.0	<1.0	<1.0	<1.0
	Alkalinity, Total (as CaCO3) (mg/L)	93.7	93.7	105	119	<1.0
	Ammonia, Total (as N) (mg/L)	<0.010	<0.010	<0.010	<0.010	<0.010
	Bromide (Br) (mg/L)	<0.050	<0.050	<0.050	<0.050	<0.050
	Chloride (Cl) (mg/L)	<0.50	<0.50	<0.50	<0.50	<0.50
	Fluoride (F) (mg/L)	0.039	0.040	0.042	0.050	<0.020
	Nitrate (as N) (mg/L)	0.104	0.101	0.0978	0.158	<0.0050
	Nitrite (as N) (mg/L)	<0.0010	<0.0010	<0.0010	<0.0010	<0.0010
	Sulfate (SO4) (mg/L)	19.1	20.2	41.8	44.2	<0.30
	Anion Sum (meq/L)	2.28	2.30	2.98	3.32	<0.10
	Cation Sum (meq/L)	2.37	2.34	3.02	3.23	<0.10
	Cation - Anion Balance (%)	2.0	0.7	0.6	-1.3	0.0
Cyanides	Cyanide, Weak Acid Diss (mg/L)	<0.0050	<0.0050	<0.0050	<0.0050	<0.0050
	Cyanide, Total (mg/L)	<0.0050	<0.0050	<0.0050	<0.0050	<0.0050
	Cyanate (mg/L)	<0.20	<0.20	<0.20	<0.20	<0.20
	Thiocyanate (SCN) (mg/L)	<0.50	<0.50	<0.50	<0.50	<0.50
Total Metals	Aluminum (Al)-Total (mg/L)	0.0124	0.0102	0.0099	0.0170	<0.0030
	Antimony (Sb)-Total (mg/L)	0.00013	0.00011	0.00058	0.00052	<0.00010
	Arsenic (As)-Total (mg/L)	0.00031	0.00033	0.00077	0.00154	<0.00010
	Barium (Ba)-Total (mg/L)	0.0992	0.0997	0.0926	0.112	<0.000050
	Beryllium (Be)-Total (mg/L)	<0.000020	<0.000020	<0.000020	<0.000020	<0.000020
	Bismuth (Bi)-Total (mg/L)	<0.000050	<0.000050	<0.000050	<0.000050	<0.000050
	Boron (B)-Total (mg/L)	<0.010	<0.010	<0.010	<0.010	<0.010
	Cadmium (Cd)-Total (mg/L)	0.0000486	0.0000585	0.0000206	0.0000229	<0.0000050
	Calcium (Ca)-Total (mg/L)	29.0	29.6	36.7	39.8	<0.050
	Chromium (Cr)-Total (mg/L)	0.00014	0.00016	<0.00010	0.00014	<0.00010
	Cobalt (Co)-Total (mg/L)	<0.00010	<0.00010	<0.00010	<0.00010	<0.00010

L1898852 CONTD.... PAGE 3 of 14 16-MAR-17 19:05 (MT) Version: FINAL

	Sample ID Description Sampled Date Sampled Time Client ID	L1898852-6 Water 08-MAR-17 10:35 FIELD BLANK	L1898852-7 Water 06-MAR-17 17:45 WQ-DC-U	L1898852-8 Water 06-MAR-17 19:10 WQ-TP	L1898852-9 Water 07-MAR-17 18:40 WQ-SEEP	L1898852-10 Water 07-MAR-17 18:45 WQ-SEEP-R
Grouping	Analyte	-				
WATER						
Physical Tests	Colour, True (CU)					
	Conductivity (uS/cm)	<2.0	1470	3380	1570	1570
	Hardness (as CaCO3) (mg/L)	<0.50	848	2380	882	887
	рН (рН)	5.39	7.95	7.82	7.70	7.72
	Total Suspended Solids (mg/L)	<3.0	49.5	419	51.4	49.9
	Total Dissolved Solids (mg/L)					
	TDS (Calculated) (mg/L)	<1.0	1150	3470	1260	1250
	Turbidity (NTU)					
Anions and Nutrients	Alkalinity, Bicarbonate (as CaCO3) (mg/L)	<1.0	288	404	287	291
	Alkalinity, Carbonate (as CaCO3) (mg/L)	<1.0	<1.0	<1.0	<1.0	<1.0
	Alkalinity, Hydroxide (as CaCO3) (mg/L)	<1.0	<1.0	<1.0	<1.0	<1.0
	Alkalinity, Total (as CaCO3) (mg/L)	<1.0	288	404	287	291
	Ammonia, Total (as N) (mg/L)	<0.010	3.80	1.58	4.98	5.00
	Bromide (Br) (mg/L)	<0.050	<0.25	<1.0	<0.25	<0.25
	Chloride (Cl) (mg/L)	<0.50	<2.5	<10	<2.5	<2.5
	Fluoride (F) (mg/L)	<0.020	0.10	0.47	<0.10	<0.10
	Nitrate (as N) (mg/L)	<0.0050	0.287	<0.10	0.619	0.607
	Nitrite (as N) (mg/L)	<0.0010	0.0160	<0.020	0.0238	0.0209
	Sulfate (SO4) (mg/L)	<0.30	618	2240	694	680
	Anion Sum (meq/L)	<0.10	18.6	54.7	20.2	20.0
	Cation Sum (meq/L)	<0.10	19.3	52.1	21.1	21.0
	Cation - Anion Balance (%)	0.0	1.7	-2.4	2.0	2.4
Cyanides	Cyanide, Weak Acid Diss (mg/L)	<0.0050	<0.0050	<0.0050	0.0068	0.0073
	Cyanide, Total (mg/L)	<0.0050	0.0136	<0.0050	0.0195	0.0227
	Cyanate (mg/L)	<0.20	<0.20	<0.20	<0.20	<0.20
	Thiocyanate (SCN) (mg/L)	<0.50	3.37	0.69	5.58	5.59
Total Metals	Aluminum (Al)-Total (mg/L)	<0.0030	0.0760	2.45	0.0192	0.0188
	Antimony (Sb)-Total (mg/L)	<0.00010	0.00045	0.187	0.00056	0.00056
	Arsenic (As)-Total (mg/L)	<0.00010	0.0778	2.36	0.104	0.107
	Barium (Ba)-Total (mg/L)	<0.000050	0.0941	0.176	0.0696	0.0711
	Beryllium (Be)-Total (mg/L)	<0.000020	<0.000020	0.00018	<0.000020	<0.000020
	Bismuth (Bi)-Total (mg/L)	<0.000050	<0.000050	0.0201	<0.000050	<0.000050
	Boron (B)-Total (mg/L)	<0.010	0.041	0.174	0.053	0.052
	Cadmium (Cd)-Total (mg/L)	<0.000050	0.000194	0.0210	0.000488	0.000492
	Calcium (Ca)-Total (mg/L)	<0.050	245	770	268	267
	Chromium (Cr)-Total (mg/L)	<0.00010	0.00063	0.00583	0.00074	0.00073
	Cobalt (Co)-Total (mg/L)	<0.00010	0.00599	0.0189	0.00793	0.00803

L1898852 CONTD.... PAGE 4 of 14 16-MAR-17 19:05 (MT) Version: FINAL

	Sample ID Description Sampled Date Sampled Time Client ID	L1898852-11 Water 08-MAR-17 08:55 WQ-PW		
Grouping	Analyte			
WATER				
Physical Tests	Colour, True (CU)	<5.0		
	Conductivity (uS/cm)	348		
	Hardness (as CaCO3) (mg/L)	нтс 186		
	рН (рН)	8.16		
	Total Suspended Solids (mg/L)			
	Total Dissolved Solids (mg/L)	217		
	TDS (Calculated) (mg/L)			
	Turbidity (NTU)	<0.10		
Anions and Nutrients	Alkalinity, Bicarbonate (as CaCO3) (mg/L)			
	Alkalinity, Carbonate (as CaCO3) (mg/L)			
	Alkalinity, Hydroxide (as CaCO3) (mg/L)			
	Alkalinity, Total (as CaCO3) (mg/L)	160		
	Ammonia, Total (as N) (mg/L)			
	Bromide (Br) (mg/L)			
	Chloride (Cl) (mg/L)	<0.50		
	Fluoride (F) (mg/L)	0.097		
	Nitrate (as N) (mg/L)	0.122		
	Nitrite (as N) (mg/L)	0.0011		
	Sulfate (SO4) (mg/L)	30.6		
	Anion Sum (meq/L)			
	Cation Sum (meq/L)			
	Cation - Anion Balance (%)			
Cyanides	Cyanide, Weak Acid Diss (mg/L)			
	Cyanide, Total (mg/L)			
	Cyanate (mg/L)			
	Thiocyanate (SCN) (mg/L)			
Total Metals	Aluminum (Al)-Total (mg/L)	<0.010		
	Antimony (Sb)-Total (mg/L)	<0.00050		
	Arsenic (As)-Total (mg/L)	0.00051		
	Barium (Ba)-Total (mg/L)	0.091		
	Beryllium (Be)-Total (mg/L)			
	Bismuth (Bi)-Total (mg/L)			
	Boron (B)-Total (mg/L)	<0.10		
	Cadmium (Cd)-Total (mg/L)	<0.00020		
	Calcium (Ca)-Total (mg/L)	42 7		
	Chromium (Cr)-Total (mg/L)	<0.0020		
	Cobalt (Co)-Total (mg/L)			

L1898852 CONTD.... PAGE 5 of 14 16-MAR-17 19:05 (MT) Version: FINAL

	Sample ID Description Sampled Date Sampled Time Client ID	L1898852-1 Water 08-MAR-17 08:40 WQ-VC-U	L1898852-2 Water 07-MAR-17 14:50 WQ-VC-DBC	L1898852-3 Water 07-MAR-17 13:00 WQ-VC-UMN	L1898852-4 Water 08-MAR-17 14:45 WQ-VC-R+150	L1898852-5 Water 08-MAR-17 TRAVEL BLANK
Grouping	Analyte					
WATER						
Total Metals	Copper (Cu)-Total (mg/L)	0.00143	0.00141	0.00130	0.00156	<0.00050
	Iron (Fe)-Total (mg/L)	0.014	0.013	0.014	0.023	<0.010
	Lead (Pb)-Total (mg/L)	<0.000050	<0.000050	<0.000050	0.000051	<0.000050
	Lithium (Li)-Total (mg/L)	<0.0010	<0.0010	0.0013	0.0025	<0.0010
	Magnesium (Mg)-Total (mg/L)	10.3	10.3	13.7	15.0	<0.10
	Manganese (Mn)-Total (mg/L)	0.271	0.283	0.0342	0.0132	<0.00010
	Mercury (Hg)-Total (mg/L)	<0.0000050	<0.0000050	<0.0000050	<0.0000050	<0.0000050
	Molybdenum (Mo)-Total (mg/L)	0.000329	0.000338	0.000267	0.000517	<0.000050
	Nickel (Ni)-Total (mg/L)	0.00072	0.00078	0.00062	<0.00050	<0.00050
	Phosphorus (P)-Total (mg/L)	<0.050	<0.050	<0.050	<0.050	<0.050
	Potassium (K)-Total (mg/L)	0.80	0.78	1.04	1.27	<0.10
	Selenium (Se)-Total (mg/L)	<0.000050	<0.000050	0.000086	0.000068	<0.000050
	Silicon (Si)-Total (mg/L)	6.53	6.63	6.86	7.95	<0.050
	Silver (Ag)-Total (mg/L)	<0.000010	<0.000010	<0.000010	<0.000010	<0.000010
	Sodium (Na)-Total (mg/L)	3.11	3.11	4.13	4.66	<0.050
	Strontium (Sr)-Total (mg/L)	0.296	0.304	0.337	0.375	<0.00020
	Sulfur (S)-Total (mg/L)	6.61	6.93	14.7	17.1	<0.50
	Thallium (TI)-Total (mg/L)	<0.000010	<0.000010	<0.000010	<0.000010	<0.000010
	Tin (Sn)-Total (mg/L)	<0.00010	<0.00010	<0.00010	<0.00010	<0.00010
	Titanium (Ti)-Total (mg/L)	<0.00030	<0.00030	<0.00030	0.00048	<0.00030
	Uranium (U)-Total (mg/L)	0.000463	0.000504	0.000526	0.000788	<0.000010
	Vanadium (V)-Total (mg/L)	<0.00050	<0.00050	<0.00050	<0.00050	<0.00050
	Zinc (Zn)-Total (mg/L)	<0.0030	<0.0030	<0.0030	<0.0030	<0.0030
	Zirconium (Zr)-Total (mg/L)	<0.00030	<0.00030	<0.00030	<0.00030	<0.00030
Dissolved Metals	Dissolved Mercury Filtration Location	FIELD	FIELD	FIELD	FIELD	
	Dissolved Metals Filtration Location	FIELD	FIELD	FIELD	FIELD	
	Aluminum (Al)-Dissolved (mg/L)	0.0065	0.0065	0.0056	0.0041	
	Antimony (Sb)-Dissolved (mg/L)	<0.00010	<0.00010	0.00054	0.00048	
	Arsenic (As)-Dissolved (mg/L)	0.00028	0.00025	0.00065	0.00129	
	Barium (Ba)-Dissolved (mg/L)	0.0970	0.0938	0.0874	0.100	
	Beryllium (Be)-Dissolved (mg/L)	<0.000020	<0.000020	<0.000020	<0.000020	
	Bismuth (Bi)-Dissolved (mg/L)	<0.000050	<0.000050	<0.000050	<0.000050	
	Boron (B)-Dissolved (mg/L)	<0.010	<0.010	<0.010	<0.010	
	Cadmium (Cd)-Dissolved (mg/L)	0.0000500	0.0000507	0.0000203	0.0000195	
	Calcium (Ca)-Dissolved (mg/L)	28.1	28.5	36.5	38.7	
	Chromium (Cr)-Dissolved (mg/L)	<0.00010	<0.00010	<0.00010	<0.00010	
	Cobalt (Co)-Dissolved (mg/L)	<0.00010	<0.00010	<0.00010	<0.00010	

L1898852 CONTD.... PAGE 6 of 14 16-MAR-17 19:05 (MT) Version: FINAL

	Sample ID Description Sampled Date Sampled Time Client ID	L1898852-6 Water 08-MAR-17 10:35 FIELD BLANK	L1898852-7 Water 06-MAR-17 17:45 WQ-DC-U	L1898852-8 Water 06-MAR-17 19:10 WQ-TP	L1898852-9 Water 07-MAR-17 18:40 WQ-SEEP	L1898852-10 Water 07-MAR-17 18:45 WQ-SEEP-R
Grouping	Analyte					
WATER						
Total Metals	Copper (Cu)-Total (mg/L)	<0.00050	0.00162	1.18	0.00332	0.00341
	Iron (Fe)-Total (mg/L)	<0.010	9.40	31.0	22.1	22.8
	Lead (Pb)-Total (mg/L)	<0.000050	0.000125	1.09	0.000168	0.000091
	Lithium (Li)-Total (mg/L)	<0.0010	0.0012	0.0207	<0.0010	<0.0010
	Magnesium (Mg)-Total (mg/L)	<0.10	66.1	140	59.7	61.0
	Manganese (Mn)-Total (mg/L)	<0.00010	5.56	25.8	6.48	6.61
	Mercury (Hg)-Total (mg/L)	<0.0000050	<0.0000050	0.0000220	<0.0000050	<0.0000050
	Molybdenum (Mo)-Total (mg/L)	<0.000050	0.00107	0.00729	0.00108	0.00111
	Nickel (Ni)-Total (mg/L)	<0.00050	0.00252	0.0130	0.00308	0.00325
	Phosphorus (P)-Total (mg/L)	<0.050	0.064	0.28	0.059	0.052
	Potassium (K)-Total (mg/L)	<0.10	5.96	47.0	6.59	6.78
	Selenium (Se)-Total (mg/L)	<0.000050	0.000195	0.00030	0.000271	0.000270
	Silicon (Si)-Total (mg/L)	<0.050	8.45	11.9	8.95	9.13
	Silver (Ag)-Total (mg/L)	<0.000010	0.000017	0.0198	0.000036	0.000030
	Sodium (Na)-Total (mg/L)	<0.050	32.8	48.7	38.4	39.9
	Strontium (Sr)-Total (mg/L)	<0.00020	0.751	2.07	0.789	0.784
	Sulfur (S)-Total (mg/L)	<0.50	257	815	276	281
	Thallium (TI)-Total (mg/L)	<0.000010	<0.000010	0.000815	<0.000010	<0.000010
	Tin (Sn)-Total (mg/L)	<0.00010	<0.00010	<0.00050	<0.00010	<0.00010
	Titanium (Ti)-Total (mg/L)	<0.00030	0.00399	0.0098	0.00139	0.00161
	Uranium (U)-Total (mg/L)	<0.000010	0.00173	0.00529	0.00184	0.00184
	Vanadium (V)-Total (mg/L)	<0.00050	0.00226	0.0079	0.00361	0.00363
	Zinc (Zn)-Total (mg/L)	<0.0030	0.0230	1.55	0.0475	0.0481
	Zirconium (Zr)-Total (mg/L)	<0.00030	0.00050	<0.0015	0.00083	0.00084
Dissolved Metals	Dissolved Mercury Filtration Location	FIELD	FIELD	FIELD	FIELD	FIELD
	Dissolved Metals Filtration Location	FIELD	FIELD	FIELD	FIELD	FIELD
	Aluminum (AI)-Dissolved (mg/L)	<0.0010	0.0084	<0.0050	0.0114	0.0107
	Antimony (Sb)-Dissolved (mg/L)	<0.00010	0.00035	0.00719	0.00049	0.00048
	Arsenic (As)-Dissolved (mg/L)	<0.00010	0.0606	0.687	0.0632	0.0582
	Barium (Ba)-Dissolved (mg/L)	<0.000050	0.0888	0.101	0.0678	0.0592
	Beryllium (Be)-Dissolved (mg/L)	<0.000020	<0.000020	<0.00010	<0.000020	<0.000020
	Bismuth (Bi)-Dissolved (mg/L)	<0.000050	<0.000050	<0.00025	<0.000050	<0.000050
	Boron (B)-Dissolved (mg/L)	<0.010	0.036	0.161	0.046	0.046
	Cadmium (Cd)-Dissolved (mg/L)	<0.000050	0.000111	0.00140	0.000354	0.000329
	Calcium (Ca)-Dissolved (mg/L)	<0.050	236	724	258	262
	Chromium (Cr)-Dissolved (mg/L)	<0.00010	0.00041	<0.00050	0.00046	0.00059
	Cobalt (Co)-Dissolved (mg/L)	<0.00010	0.00563	0.0151	0.00767	0.00699

L1898852 CONTD.... PAGE 7 of 14 16-MAR-17 19:05 (MT) Version: FINAL

	Sample ID Description Sampled Date Sampled Time Client ID	L1898852-11 Water 08-MAR-17 08:55 WQ-PW		
Grouping	Analyte			
WATER				
Total Metals	Copper (Cu)-Total (mg/L)	<0.0010		
	Iron (Fe)-Total (mg/L)	<0.030		
	Lead (Pb)-Total (mg/L)	0.00060		
	Lithium (Li)-Total (mg/L)			
	Magnesium (Mg)-Total (mg/L)	19.3		
	Manganese (Mn)-Total (mg/L)	<0.0020		
	Mercury (Hg)-Total (mg/L)	<0.00020		
	Molybdenum (Mo)-Total (mg/L)			
	Nickel (Ni)-Total (mg/L)			
	Phosphorus (P)-Total (mg/L)			
	Potassium (K)-Total (mg/L)	1.00		
	Selenium (Se)-Total (mg/L)	<0.0010		
	Silicon (Si)-Total (mg/L)			
	Silver (Ag)-Total (mg/L)			
	Sodium (Na)-Total (mg/L)	5.1		
	Strontium (Sr)-Total (mg/L)			
	Sulfur (S)-Total (mg/L)			
	Thallium (TI)-Total (mg/L)			
	Tin (Sn)-Total (mg/L)			
	Titanium (Ti)-Total (mg/L)			
	Uranium (U)-Total (mg/L)	0.00167		
	Vanadium (V)-Total (mg/L)			
	Zinc (Zn)-Total (mg/L)	<0.050		
	Zirconium (Zr)-Total (mg/L)			
Dissolved Metals	Dissolved Mercury Filtration Location			
	Dissolved Metals Filtration Location			
	Aluminum (AI)-Dissolved (mg/L)			
	Antimony (Sb)-Dissolved (mg/L)			
	Arsenic (As)-Dissolved (mg/L)			
	Barium (Ba)-Dissolved (mg/L)			
	Beryllium (Be)-Dissolved (mg/L)			
	Bismuth (Bi)-Dissolved (mg/L)			
	Boron (B)-Dissolved (mg/L)			
	Cadmium (Cd)-Dissolved (mg/L)			
	Calcium (Ca)-Dissolved (mg/L)			
	Chromium (Cr)-Dissolved (mg/L)			
	Cobalt (Co)-Dissolved (mg/L)			

L1898852 CONTD.... PAGE 8 of 14 16-MAR-17 19:05 (MT) Version: FINAL

	Sample ID Description Sampled Date Sampled Time Client ID	L1898852-1 Water 08-MAR-17 08:40 WQ-VC-U	L1898852-2 Water 07-MAR-17 14:50 WQ-VC-DBC	L1898852-3 Water 07-MAR-17 13:00 WQ-VC-UMN	L1898852-4 Water 08-MAR-17 14:45 WQ-VC-R+150	L1898852-5 Water 08-MAR-17 TRAVEL BLANK
Grouping	Analyte					
WATER						
Dissolved Metals	Copper (Cu)-Dissolved (mg/L)	0.00137	0.00119	0.00119	0.00131	
	Iron (Fe)-Dissolved (mg/L)	<0.010	<0.010	<0.010	<0.010	
	Lead (Pb)-Dissolved (mg/L)	<0.000050	<0.000050	<0.000050	<0.000050	
	Lithium (Li)-Dissolved (mg/L)	<0.0010	<0.0010	0.0013	0.0022	
	Magnesium (Mg)-Dissolved (mg/L)	9.87	9.26	12.3	13.2	
	Manganese (Mn)-Dissolved (mg/L)	0.261	0.254	0.0307	0.0102	
	Mercury (Hg)-Dissolved (mg/L)	<0.000050	<0.0000050	<0.0000050	<0.0000050	
	Molybdenum (Mo)-Dissolved (mg/L)	0.000298	0.000317	0.000247	0.000456	
	Nickel (Ni)-Dissolved (mg/L)	0.00077	0.00064	0.00055	<0.00050	
	Phosphorus (P)-Dissolved (mg/L)	<0.050	<0.050	<0.050	<0.050	
	Potassium (K)-Dissolved (mg/L)	0.76	0.71	0.97	1.14	
	Selenium (Se)-Dissolved (mg/L)	<0.000050	<0.000050	0.000069	0.000066	
	Silicon (Si)-Dissolved (mg/L)	6.40	6.21	6.55	7.30	
	Silver (Ag)-Dissolved (mg/L)	<0.000010	<0.000010	<0.000010	<0.000010	
	Sodium (Na)-Dissolved (mg/L)	2.96	2.81	3.71	4.17	
	Strontium (Sr)-Dissolved (mg/L)	0.290	0.295	0.336	0.366	
	Sulfur (S)-Dissolved (mg/L)	6.52	6.32	13.5	15.2	
	Thallium (TI)-Dissolved (mg/L)	<0.000010	<0.000010	<0.000010	<0.000010	
	Tin (Sn)-Dissolved (mg/L)	<0.00010	<0.00010	<0.00010	<0.00010	
	Titanium (Ti)-Dissolved (mg/L)	<0.00030	<0.00030	<0.00030	<0.00030	
	Uranium (U)-Dissolved (mg/L)	0.000421	0.000463	0.000488	0.000715	
	Vanadium (V)-Dissolved (mg/L)	<0.00050	<0.00050	<0.00050	<0.00050	
	Zinc (Zn)-Dissolved (mg/L)	<0.0010	0.0018	0.0020	0.0017	
	Zirconium (Zr)-Dissolved (mg/L)	<0.00030	<0.00030	<0.00030	<0.00030	

L1898852 CONTD.... PAGE 9 of 14 16-MAR-17 19:05 (MT) Version: FINAL

	Sample ID Description Sampled Date Sampled Time Client ID	L1898852-6 Water 08-MAR-17 10:35 FIELD BLANK	L1898852-7 Water 06-MAR-17 17:45 WQ-DC-U	L1898852-8 Water 06-MAR-17 19:10 WQ-TP	L1898852-9 Water 07-MAR-17 18:40 WQ-SEEP	L1898852-10 Water 07-MAR-17 18:45 WQ-SEEP-R
Grouping	Analyte					
WATER						
Dissolved Metals	Copper (Cu)-Dissolved (mg/L)	<0.00020	0.00081	0.0076	0.00183	0.00170
	Iron (Fe)-Dissolved (mg/L)	<0.010	7.51	5.50	19.4	18.4
	Lead (Pb)-Dissolved (mg/L)	0.000125	<0.000050	0.00097	<0.000050	<0.000050
	Lithium (Li)-Dissolved (mg/L)	<0.0010	<0.0010	0.0186	<0.0010	<0.0010
	Magnesium (Mg)-Dissolved (mg/L)	<0.10	62.5	138	58.0	56.5
	Manganese (Mn)-Dissolved (mg/L)	<0.00010	5.34	24.3	6.33	6.06
	Mercury (Hg)-Dissolved (mg/L)	<0.0000050	<0.0000050	<0.0000050	<0.0000050	<0.0000050
	Molybdenum (Mo)-Dissolved (mg/L)	<0.000050	0.000982	0.00645	0.00102	0.00102
	Nickel (Ni)-Dissolved (mg/L)	<0.00050	0.00235	0.0074	0.00290	0.00277
	Phosphorus (P)-Dissolved (mg/L)	<0.050	<0.050	<0.25	<0.050	<0.050
	Potassium (K)-Dissolved (mg/L)	<0.10	5.70	46.3	6.48	6.20
	Selenium (Se)-Dissolved (mg/L)	<0.000050	0.000238	<0.00025	0.000290	0.000315
	Silicon (Si)-Dissolved (mg/L)	<0.050	7.95	8.81	8.76	8.16
	Silver (Ag)-Dissolved (mg/L)	<0.000010	<0.000010	<0.000050	<0.000010	0.000013
	Sodium (Na)-Dissolved (mg/L)	<0.050	31.1	48.4	37.7	36.1
	Strontium (Sr)-Dissolved (mg/L)	<0.00020	0.725	1.91	0.771	0.755
	Sulfur (S)-Dissolved (mg/L)	<0.50	241	796	268	241
	Thallium (TI)-Dissolved (mg/L)	<0.000010	<0.000010	0.000077	<0.000010	<0.000010
	Tin (Sn)-Dissolved (mg/L)	<0.00010	<0.00010	<0.00050	<0.00010	<0.00010
	Titanium (Ti)-Dissolved (mg/L)	<0.00030	0.00067	<0.0015	0.00113	0.00103
	Uranium (U)-Dissolved (mg/L)	<0.000010	0.00160	0.00458	0.00173	0.00179
	Vanadium (V)-Dissolved (mg/L)	<0.00050	0.00136	<0.0025	0.00243	0.00230
	Zinc (Zn)-Dissolved (mg/L)	<0.0010	0.0227	0.454	0.0473	0.0440
	Zirconium (Zr)-Dissolved (mg/L)	<0.00030	0.00047	<0.0015	0.00077	0.00076

L1898852 CONTD.... PAGE 10 of 14 16-MAR-17 19:05 (MT) Version: FINAL

	Sample ID Description Sampled Date Sampled Time Client ID	L1898852-11 Water 08-MAR-17 08:55 WQ-PW		
Grouping	Analyte			
WATER				
Dissolved Metals	Copper (Cu)-Dissolved (mg/L)			
	Iron (Fe)-Dissolved (mg/L)			
	Lead (Pb)-Dissolved (mg/L)			
	Lithium (Li)-Dissolved (mg/L)			
	Magnesium (Mg)-Dissolved (mg/L)			
	Manganese (Mn)-Dissolved (mg/L)			
	Mercury (Hg)-Dissolved (mg/L)			
	Molybdenum (Mo)-Dissolved (mg/L)			
	Nickel (Ni)-Dissolved (mg/L)			
	Phosphorus (P)-Dissolved (mg/L)			
	Potassium (K)-Dissolved (mg/L)			
	Selenium (Se)-Dissolved (mg/L)			
	Silicon (Si)-Dissolved (mg/L)			
	Silver (Ag)-Dissolved (mg/L)			
	Sodium (Na)-Dissolved (mg/L)			
	Strontium (Sr)-Dissolved (mg/L)			
	Sulfur (S)-Dissolved (mg/L)			
	Thallium (TI)-Dissolved (mg/L)			
	Tin (Sn)-Dissolved (mg/L)			
	Titanium (Ti)-Dissolved (mg/L)			
	Uranium (U)-Dissolved (mg/L)			
	Vanadium (V)-Dissolved (mg/L)			
	Zinc (Zn)-Dissolved (mg/L)			
	Zirconium (Zr)-Dissolved (mg/L)			

L1898852 CONTD.... PAGE 11 of 14 16-MAR-17 19:05 (MT) Version: FINAL

QC Samples with Qualifiers & Comments:

QC Type Description	Parameter	Qualifier	Applies to Sample Number(s)
Matrix Spike	Barium (Ba)-Dissolved	MS-B	L1898852-1, -10, -2, -3, -4, -6, -7, -8, -9
Matrix Spike	Calcium (Ca)-Dissolved	MS-B	L1898852-1, -10, -2, -3, -4, -6, -7, -8, -9
Matrix Spike	Iron (Fe)-Dissolved	MS-B	L1898852-1, -10, -2, -3, -4, -6, -7, -8, -9
Matrix Spike	Magnesium (Mg)-Dissolved	MS-B	L1898852-1, -10, -2, -3, -4, -6, -7, -8, -9
Matrix Spike	Manganese (Mn)-Dissolved	MS-B	L1898852-1, -10, -2, -3, -4, -6, -7, -8, -9
Matrix Spike	Sodium (Na)-Dissolved	MS-B	L1898852-1, -10, -2, -3, -4, -6, -7, -8, -9
Matrix Spike	Strontium (Sr)-Dissolved	MS-B	L1898852-1, -10, -2, -3, -4, -6, -7, -8, -9
Matrix Spike	Sulfur (S)-Dissolved	MS-B	L1898852-1, -10, -2, -3, -4, -6, -7, -8, -9
Matrix Spike	Barium (Ba)-Total	MS-B	L1898852-1, -2, -3, -4, -6, -7, -8
Matrix Spike	Barium (Ba)-Total	MS-B	L1898852-5
Matrix Spike	Calcium (Ca)-Total	MS-B	L1898852-1, -2, -3, -4, -6, -7, -8
Matrix Spike	Calcium (Ca)-Total	MS-B	L1898852-10, -11, -9
Matrix Spike	Calcium (Ca)-Total	MS-B	L1898852-5
Matrix Spike	Iron (Fe)-Total	MS-B	L1898852-5
Matrix Spike	Magnesium (Mg)-Total	MS-B	L1898852-1, -2, -3, -4, -6, -7, -8
Matrix Spike	Magnesium (Mg)-Total	MS-B	L1898852-10, -11, -9
Matrix Spike	Magnesium (Mg)-Total	MS-B	L1898852-5
Matrix Spike	Manganese (Mn)-Total	MS-B	L1898852-1, -2, -3, -4, -6, -7, -8
Matrix Spike	Manganese (Mn)-Total	MS-B	L1898852-5
Matrix Spike	Potassium (K)-Total	MS-B	L1898852-10, -11, -9
Matrix Spike	Silicon (Si)-Total	MS-B	L1898852-5
Matrix Spike	Sodium (Na)-Total	MS-B	L1898852-1, -2, -3, -4, -6, -7, -8
Matrix Spike	Sodium (Na)-Total	MS-B	L1898852-10, -11, -9
Matrix Spike	Sodium (Na)-Total	MS-B	L1898852-5
Matrix Spike	Strontium (Sr)-Total	MS-B	L1898852-1, -2, -3, -4, -6, -7, -8
Matrix Spike	Strontium (Sr)-Total	MS-B	L1898852-10, -11, -9
Matrix Spike	Strontium (Sr)-Total	MS-B	L1898852-5
Matrix Spike	Sulfur (S)-Total	MS-B	L1898852-5

Qualifiers for Individual Parameters Listed:

Qualifier	Description
DLA	Detection Limit adjusted for required dilution
DLB	Detection Limit Raised. Analyte detected at comparable level in Method Blank.
DLDS	Detection Limit Raised: Dilution required due to high Dissolved Solids / Electrical Conductivity.
HTC	Hardness was calculated from Total Ca and/or Mg concentrations and may be biased high (dissolved Ca/Mg results unavailable).
MS-B	Matrix Spike recovery could not be accurately calculated due to high analyte background in sample.
RRV	Reported Result Verified By Repeat Analysis

Test Method References:

ALS Test Code	Matrix	Test Description	Method Reference**
ALK-TITR-VA	Water	Alkalinity Species by Titration	APHA 2320 Alkalinity
This analysis is carried out pH 4.5 endpoint. Bicarbona	using proced te, carbonate	ures adapted from APHA Method 2320 "Alkalinity". Tota and hydroxide alkalinity are calculated from phenolpht	al alkalinity is determined by potentiometric titration to a halein alkalinity and total alkalinity values.
BE-D-L-CCMS-VA	Water	Diss. Be (low) in Water by CRC ICPMS	APHA 3030B/6020A (mod)
Water samples are filtered	(0.45 um), pre	eserved with nitric acid, and analyzed by CRC ICPMS.	
Method Limitation (re: Sulfu	r): Sulfide an	d volatile sulfur species may not be recovered by this n	nethod.
BE-T-L-CCMS-VA	Water	Total Be (Low) in Water by CRC ICPMS	EPA 200.2/6020A (mod)
Water samples are digested	d with nitric a	nd hydrochloric acids, and analyzed by CRC ICPMS.	
Method Limitation (re: Sulfu	r): Sulfide an	d volatile sulfur species may not be recovered by this n	nethod.
BR-L-IC-N-VA	Water	Bromide in Water by IC (Low Level)	EPA 300.1 (mod)

L1898852 CONTD.... PAGE 12 of 14 16-MAR-17 19:05 (MT) Version: FINAL

Inorganic anions are analy	zed by Ion C	hromatography with conductivity and/or UV detection.	
CL-IC-N-VA	Water	Chloride in Water by IC	EPA 300.1 (mod)
Inorganic anions are analy	zed by Ion C	hromatography with conductivity and/or UV detection.	
CN-CNO-WT	Water	Cyanate	APHA 4500-CN-L
This analysis is carried out method using an ammonia	t using proce selective el	dures adapted from APHA method 4500-CN "Cyanide ectrode	". Cyanate is determined by the Cyanate hydrolysis
CN-SCN-VA	Water	Thiocyanate by Colour	APHA 4500-CN CYANIDE
This analysis is carried out colourimetric method. Water samples containing or positive interferences w	t using proce high levels o ith this metho	dures adapted from APHA Method 4500-CN- M "Thioc of hexavalent chromium, cyanide (together with sulfide) od. Contact ALS for additional information if required.	eyanate" Thiocyanate is determined by the ferric nitrate
CN-T-CFA-VA	Water	Total Cyanide in water by CFA	ISO 14403:2002
This analysis is carried out CFA)". Total or strong acic colourimetric analysis. Met could be a positive interfer	t using proce I dissociable thod Limitation ence with thi	dures adapted from ISO Method 14403:2002 "Determi (SAD) cyanide is determined by in-line UV digestion a on: This method is susceptible to interference from this s method, but it would be less than 1% and could be a	nation of Total Cyanide using Flow Analysis (FIA and long with sample distillation and final determination by ocyanate (SCN). If SCN is present in the sample, there s low as zero.
CN-WAD-CFA-VA	Water	Weak Acid Diss. Cyanide in water by CFA	APHA 4500-CN CYANIDE
This analysis is carried out (WAD) cyanide is determined and the second	t using proce ned by in-line	dures adapted from APHA Method 4500-CN I. "Weak sample distillation with final determination by colouring	Acid Dissociable Cyanide". Weak Acid Dissociable netric analysis.
COLOUR-TRUE-VA	Water	Colour (True) by Spectrometer	BCMOE Colour Single Wavelength
This analysis is carried out is determined by filtering a method. Colour measurements can	using proce sample thro be highly pl	dures adapted from British Columbia Environmental M ugh a 0.45 micron membrane filter followed by analysi I dependent, and apply to the pH of the sample as rec	lanual "Colour- Single Wavelength." Colour (True Colour) s of the filtrate using the platinum-cobalt colourimetric eived (at time of testing), without pH adjustment.
Concurrent measurement	of sample pl	t is recommended.	
EC-PCT-VA This analysis is carried out electrode.	Water using proce	Conductivity (Automated) dures adapted from APHA Method 2510 "Conductivity	APHA 2510 Auto. Conduc. ". Conductivity is determined using a conductivity
EC-SCREEN-VA	Water	Conductivity Screen (Internal Use Only)	APHA 2510
Qualitative analysis of con	ductivity whe	ere required during preparation of other tests - e.g. TDS	S, metals, etc.
F-IC-N-VA	Water	Fluoride in Water by IC	EPA 300.1 (mod)
Inorganic anions are analy	zed by Ion C	hromatography with conductivity and/or UV detection.	
HARDNESS-CALC-VA	Water	Hardness	APHA 2340B
Hardness (also known as ⁻ Dissolved Calcium and Ma	Total Hardne	ss) is calculated from the sum of Calcium and Magnes ncentrations are preferentially used for the hardness ca	sium concentrations, expressed in CaCO3 equivalents. alculation.
HG-D-CVAA-VA	Water	Diss. Mercury in Water by CVAAS or CVAFS	APHA 3030B/EPA 1631E (mod)
Water samples are filtered with stannous chloride, and	(0.45 um), p d analyzed b	preserved with hydrochloric acid, then undergo a cold-c y CVAAS or CVAFS.	exidation using bromine monochloride prior to reduction
HG-T-CVAA-VA	Water	Total Mercury in Water by CVAAS or CVAFS	EPA 1631E (mod)
Water samples undergo a	cold-oxidatio	on using bromine monochloride prior to reduction with s	stannous chloride, and analyzed by CVAAS or CVAFS.
HG-TOT-CVAFS-VA	Water	Total Hg in Water by CVAFS LOR=50ppt	EPA 1631E (mod)
This analysis is carried out American Public Health As States Environmental Prot reduction of the sample wi spectrophotometry (EPA M	t using proce sociation, ar ection Agend th stannous /lethod 245.7	dures adapted from "Standard Methods for the Examin nd with procedures adapted from "Test Methods for Ev cy (EPA). The procedure involves a cold-oxidation of the chloride. Instrumental analysis is by cold vapour atom).	nation of Water and Wastewater" published by the aluating Solid Waste" SW-846 published by the United he acidified sample using bromine monochloride prior to ic fluorescence spectrophotometry or atomic absorption
IONBALANCE-VA	Water	Ion Balance Calculation	APHA 1030E
Cation Sum, Anion Sum, a Correctness of Analysis).	ind Ion Balar Because all	nce (as % difference) are calculated based on guidance aqueous solutions are electrically neutral, the calculate	e from APHA Standard Methods (1030E Checking ed ion balance (% difference of cations minus anions)

Cation and Anion Sums are the total meq/L concentration of major cations and anions. Dissolved species are used where available. Minor ions are included where data is present. Ion Balance is calculated as:

Ion Balance (%) = [Cation S	Sum-Anion S	um] / [Cation Sum+Anion Sum]	
MET-D-CCMS-VA	Water	Dissolved Metals in Water by CRC ICPMS	APHA 3030B/6020A (mod)
Water samples are filtered	(0.45 um), pi	reserved with nitric acid, and analyzed by CRC ICPMS.	
Method Limitation (re: Sulfu	ur): Sulfide ar	nd volatile sulfur species may not be recovered by this n	nethod.
MET-T-CCMS-VA	Water	Total Metals in Water by CRC ICPMS	EPA 200.2/6020A (mod)
Water samples are digeste	d with nitric a	and hydrochloric acids, and analyzed by CRC ICPMS.	
Method Limitation (re: Sulfu	ur): Sulfide ar	nd volatile sulfur species may not be recovered by this n	nethod.
NH3-F-VA	Water	Ammonia in Water by Fluorescence	APHA 4500 NH3-NITROGEN (AMMONIA)
This analysis is carried out, of Chemistry, "Flow-injectic al.	, on sulfuric a on analysis w	acid preserved samples, using procedures modified from ith fluorescence detection for the determination of trace	n J. Environ. Monit., 2005, 7, 37 - 42, The Royal Society levels of ammonium in seawater", Roslyn J. Waston et
NH3-F-VA	Water	Ammonia in Water by Fluorescence	J. ENVIRON. MONIT., 2005, 7, 37-42, RSC
This analysis is carried out, of Chemistry, "Flow-injectic al.	, on sulfuric a on analysis w	acid preserved samples, using procedures modified from ith fluorescence detection for the determination of trace	n J. Environ. Monit., 2005, 7, 37 - 42, The Royal Society levels of ammonium in seawater", Roslyn J. Waston et
NO2-L-IC-N-VA	Water	Nitrite in Water by IC (Low Level)	EPA 300.1 (mod)
Inorganic anions are analyz	zed by Ion Ch	nromatography with conductivity and/or UV detection.	
NO3-L-IC-N-VA	Water	Nitrate in Water by IC (Low Level)	EPA 300.1 (mod)
Inorganic anions are analyz	zed by Ion Cł	nromatography with conductivity and/or UV detection.	
PH-PCT-VA	Water	pH by Meter (Automated)	APHA 4500-H "pH Value"
This analysis is carried out electrode	using proced	dures adapted from APHA Method 4500-H "pH Value". 1	Γhe pH is determined in the laboratory using a pH
It is recommended that this	analysis be	conducted in the field.	
PH-PCT-VA	Water	pH by Meter (Automated)	APHA 4500-H pH Value
This analysis is carried out electrode	using proced	dures adapted from APHA Method 4500-H "pH Value". 1	The pH is determined in the laboratory using a pH
It is recommended that this	analysis be	conducted in the field.	
SO4-IC-N-VA	Water	Sulfate in Water by IC	EPA 300.1 (mod)
Inorganic anions are analyz	zed by Ion Ch	nromatography with conductivity and/or UV detection.	
TDS-CALC-VA	Water	TDS (Calculated)	APHA 1030E (20TH EDITION)
This analysis is carried out The Total Dissolved Solids	using proced result is calc	dures adapted from APHA 1030E "Checking Correctnes culated from measured concentrations of anions and cat	s of Analyses". iions in the sample.
TDS-VA	Water	Total Dissolved Solids by Gravimetric	APHA 2540 C - GRAVIMETRIC
This analysis is carried out (TDS) are determined by fil	using proced tering a sam	dures adapted from APHA Method 2540 "Solids". Solids ple through a glass fibre filter, TDS is determined by eva	are determined gravimetrically. Total Dissolved Solids aporating the filtrate to dryness at 180 degrees celsius.
TSS-VA	Water	Total Suspended Solids by Gravimetric	APHA 2540 D - GRAVIMETRIC
This analysis is carried out Solids (TSS) are determine Samples containing very hi methods are available for th	using proced d by filtering gh dissolved hese types of	dures adapted from APHA Method 2540 "Solids". Solids a sample through a glass fibre filter, TSS is determined solid content (i.e. seawaters, brackish waters) may pro- f samples.	are determined gravimetrically. Total Suspended I by drying the filter at 104 degrees celsius. duce a positive bias by this method. Alternate analysis
TURBIDITY-VA	Water	Turbidity by Meter	APHA 2130 Turbidity
This analysis is carried out	using proced	dures adapted from APHA Method 2130 "Turbidity". Turl	bidity is determined by the nephelometric method.
** ALS test methods may inco	orporate mod	ifications from specified reference methods to improve p	performance.
The last two letters of the ab	ove test code	e(s) indicate the laboratory that performed analytical and	alysis for that test. Refer to the list below:
Laboratory Definition Code	e Labora	tory Location	

ALS ENVIRONMENTAL - VANCOUVER, BRITISH COLUMBIA, CANADA

Chain of Custody Numbers:

GLOSSARY OF REPORT TERMS

Surrogate - A compound that is similar in behaviour to target analyte(s), but that does not occur naturally in environmental samples. For applicable tests, surrogates are added to samples prior to analysis as a check on recovery. mg/kg - milligrams per kilogram based on dry weight of sample. mg/kg wwt - milligrams per kilogram based on wet weight of sample. mg/kg lwt - milligrams per kilogram based on lipid-adjusted weight of sample. mg/L - milligrams per litre. < - Less than.

D.L. - The reported Detection Limit, also known as the Limit of Reporting (LOR).

N/A - Result not available. Refer to qualifier code and definition for explanation.

Test results reported relate only to the samples as received by the laboratory. UNLESS OTHERWISE STATED, ALL SAMPLES WERE RECEIVED IN ACCEPTABLE CONDITION. Analytical results in unsigned test reports with the DRAFT watermark are subject to change, pending final QC review.

VA

COC Nur	nber:		
	Page	of	3

Number of Containers

ス

(ALS)	Environmentat Canada To	oll Free: 1 800 66	8 9878	L18	98852-CO	-C				- i								
	www.alsglobal.com					•				i WL	(Rush	Tumar	ound T	ime (TA) is not av	ailable fo	or all tests	5
Report To			Report Forma					ilar (St	andard T	AT if rec	elved b	у 3 рп	n - busir	ness days)			
Company:	EDI	Select Report F	ormat: 🔽 PDF			ות		ity (2-4	Unus, da	vs if rec	eived by	, 3pm)	50% si	urcharge	- contact A	LS to co	nfirm TAT	
Contact:	Lyndsay Doetzel	Quality Control	(QC) Report with R	eport i res	, NU		 Eme	rgency	(1-2 bus	. days if	receive	ed by 3	pm) 10	0% surci	arge - con	tact ALS	to confirm	n TAT
Address:	2195 - 2nd Avenue	Criteria on Repo	ort - provide details belo	wifboxchecked	IFAX	E2 (⊡isam	e dav r	x weeke	nd emer	aencv -	contac	t ALS t	o confirm	TAT and s	surcharg	e	
	Whitehorse, YT Y1A 3T8	Select Distributi				Specif	v Date	e Rea	uired fo	FE2,E	or P:							
Phone:	867-393-4882	Email 1 or Fax	Idoetzei@edynami	unik og	<u></u>	0,000	,	1										
		Email 2	Emilie.Hammoudo	7.ук.са							Ar	alysi	s Req	uest				
		Email 3	enk.pit@gov.yk.ca	tribution			Indic	ate Fill	ered (F)	Preserv	ed (P)	or Filte	ared and	d Preser	ed (F/P) b	elow		
Invoice To	Same as Report To Ves V No							Р	P	Р	Р	Р	F/P					
	Copy of Invoice with Report Ves V No	Select Invoice	Distribution:						<u> </u>									
Company:	EDI	Email 1 or Fax	sjenner@edynami	cs.com														y.
Contact:	S Jenner	Email 2	Idoetzel@edynami	<u>cs.com</u> 4 Elalda (alleata		S	r r											iner I
	Project Information		and Gas Require	O Fleids (Client 1		5	N-	¥				1		≶				at ut
ALS Quote #:	Q55559	Approver ID:		Cost Center:		훈	MAN	Å						j j				Ğ
Job #:	MOUNT NANSEN 16-Y-0089	GL Account:		Routing Code:		Ś	rss.	U L					1	ş			1	C L
PO/AFE:		Activity Code:			······································	5	Π,	Ϋ́,				1	₹	Ĕ	1		1	, the second sec
LSD:		Location:				ដ		≶				5	6	\$			1	10
ALS Lab We	ork Order # (jab use only)	ALS Contact:	V, Dykshoorn	Sampler: AN	150 25	CT-VA,	IS-ALL-	4D-CFA	10-WT	AV-N	AV-	L-BCMD	D-BCMI	ALANC				
ALS Sample #	Sample Identification and/or Coordinates		Date (dd.ggmm.ig)	Time (bb:mm)	Sample Type	ALK-P	NON	M-NO	CN-C	CN-SC	NH3-F	MET-	MET-I	IONB				
(lab use only)	(This description will appear on the r		-Ω MAR.17	- 9 11	Water	R	R	R	R	R	R	R	R	R				Ş
	WQ-VC-U	$\mathbb{Q}^{\mathbb{Q}}$	08-WAR-17	0840	Mater		- P	R	R	R	R	R	R	R				
2	WA-VC-DBC	š L	07-MAR-1/	1450	vva(ei	<u> </u>		+ <u></u>				0		R		1	├──†	
2	LWA-VC-UMN		07-MAR-17	13 00	Water	R	Г к	<u> ĸ</u>	R	ĸ	<u> </u>			+		+	┢──╂┉	
	10 NC R 1 150	- P	06 -MAR-17	14 45	Water	R	R	R	R	R		R	R			ļ	┼╌╁	
T	W1X = V1 = N + 155	- 12 - 12	MAR-17		Water	- -R-	-17-	R	- R_		R	R-	R-					
(4)		65	MAR-17		Water	R	R.	R	Rem		R							-
			MAR 17-		Weter	s.R-		R	Re	B.	R-	R-		Russ				
		S			10/0107			R	R	R	R.		R	R		10110000		
	NO Q		- MAR-1/~	**************************************			****		* Anne bas	- 2520-1423 -	N 215.C.4.					1	<u>†</u> †	
	- Part - Part		-08-MAR-1	<u>1 0855</u>	MATER	+	<u>+</u>										 	
	PANEL BLANK		08 -MAR - F	7 /	WATER	IR	R	R	\mathbb{R}	K	LR.	ĽΚ	1	K			╇	ہ۔ تیر
	THINKL DLAND OF BE	y																
		7																
								12.54	SAME	LE CO	ONDIT	ION /	AS RE	CEIVE	D (lab u	se oni	<u>y)</u>	
Drinki	ng Water (DW) Samples ¹ (client use)	al instructions / Spe	ecify Criteria to add	on report (client U	lse)	Froz	en	() - ⁽ -				SIF	Obse	ervation	is Yei	· 🗆	No	
	Live from a Degulated DW System?					lce	packs	Ye	s 🔲	No] Cu	stody	seal in	act Ye	s 🛄	No	
Are samples						Coo	ling in	itiated	I 🗌						<u> </u>			
l'.						IN	IITIAL C	COOLE	RTEMP	ERATU	RES °C	_		FINAL	COOLER T	EMPER	ATURES	<u>~</u>
Are samples i	Yes IV No						5.3										<u> </u>	
		INITIAL	SHIPMENT RECE	PTION (lab use o	only)			1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1	F	NAL S	HIPM	ENT	RECE	PTION	(lab use	only)		
Balancad h	Date: Time: Re	ceived by: 1	145	Date:	Time:	Re	ceiveo	t by:		S			De	ite:		18:		
Released D	1	· · · · · · · · · · · · · · · · · · ·	MD	11/10/1011=	1115:43	2 I 2 2	et	• j ?		the second	18.28						<u></u>	

A- MISCHCERC CONTINUE 15-25 L REFER TO BACK PAGE FOR ALS LOCATIONS AND SAMPLING INFORMATION Failure to complete all portions of this form may delay analysis. Please fill in this form LEGIBLY. By the use of this form the user acknowledges and agrees with the Terms and Conditions as specified on the back page of the white - report copy.

ł

1. If any water samples are taken from a Regulated Drinking Water (DW) System, please submit using an Authorized DW COC form.

COC Number:

Page 2 of 3

 \sim

-

Canada Toll Free: 1 800 668 9878

	www.alsglobal.com		Report Format / USUIDUIDD				Select Service Level Below (Rush Turnaround Time (TAT) is not available for all tests)													
eport To								R Regular (Standard TAT if received by 3 pm - business days)												
company:	EDI	Select Report F	Select Report Format. Type Clother Constrained					P Priority (2-4 bus, days if received by 3pm) 50% surcharge - contact ALS to confirm TAT												
Contact:	Lyndsay Doetzel	Quality Control	Quality Control (QC) Report with Report 1 1 es 9 100					E Emergency (1-2 bus, days if received by 3pm) 100% surcharge - contact ALS to confirm TAT												
ddress:	2195 - 2nd Avenue	Oriteria on Rep	Oriteria on Report - provide details below if Dox checked				E2 Same day or weekend emergency - contact ALS to confirm TAT and surcharge													
	Whitehorse, YT Y1A 3T8	Select Distribut	Select Distribution:					Specify Date Required for E2,E or P:												
hone:	867-393-4882	Email 1 or Fax	Idoetzel@edynamic	cs.com	<u> </u>															
		Email 2	Emilie.Hamm@gov	/.yk.ca		Analysis Request														
		Email 3	erik.pit@gov.vk.ca			Indigits Reserved (F) Broserved (P) or Filtered and Preserved (F/P) below														
nvoice To	Same as Report To IV Yes IV No		Involce Dis	stribution							0	D	E/P	<u> </u>		1				
	Copy of Invoice with Report IF Yes F No	Select Invoice	Distribution: 🖸 E		FAX	<u> </u>		۲	-	۳	1.	ļ		·	-+-	-				
	EDI	Email 1 or Fax	sjenner@edynami	cs.com	<u> </u>	-														
Sompany.	S.Jenner	Email 2	Idoetzel@edynami	cs.com		_ ≶_												nen		
Jontaca.	Project Information	01	I and Gas Require	d Fields (client)	use)	5	N.	₹.]			1	<	1			utai		
11.0 Ounte #	055559	Approver ID:		Cost Center:		1÷	AN	7-						3			1	8		
ALS QUOLE #:	MOUNT NANSEN 16-Y-0089	GL Account:		Routing Code:		Š	N-S	ଧ				1		18				ت م		
Job #:	MOUNT NANSEN IS-1-0000	Activity Code:				E -	L IS	1-N					-	8		Ì		월		
PO/AFE:		Location:				J Š	N.	VA,C				1	13	↓				Nur		
LSD:					(] ĕ	19	FA-	F	4	1	Į Š	ğ	3						
ALS Lab Wo	rk Order # (lab use only)	ALS Contact:	V. Dykshoorn	Sampler: AV	20 22	1 P	-AL	U D	≯ 	≩	≶	12	- R	NA I						
		i de délec	Date	Time		13	Ĭ	MM	Ž	SC		12	12	l ∯						
ALS Sample #	Sample Identification and/or Goord	nates	(dd-mmm-vv)	(hh:mm)	Sample Type	17	Ž	Ż	Ż	Ż	Ξ	١	ME	ē			<u> </u>	<u> </u>		
(lab use only)	(This description will appear on the re	porty		1025	Water	R	R	R	R	R	R	R	R	R				9		
6	FIELD BLANK		00 - MIAR 17	1715	Water	R	R	R	R	R	R	R	R	R			T	9		
1	WQ-DC-V		06 -WAR-11	(+ 42	Water	+		R	R		R	R	R				T	9		
9	WA TP		06 -MAR-17	1910	vvater	- 			<u> </u>	$+\frac{\alpha}{2}$		1-					1-	9		
- a	LUC SEED		07-MAR-17	1840	Water	R	R	R	R		<u></u>	<u></u>	<u>+ </u>							
	WG-SCEP		07-MAR-17	18 45	Water	R	R	R	R	R	R	R		R						
10	WOR-SEEF-T		MAR-17		Water	R		R	R.	R	- R-		R-	-R-						
					Water				R	-R.	R.	R	-1 R.		****			~ ~~~~g*		
	s. 9					-+	-			B	- R	as as R	zun R	Re						
			MAR-17										+	+	r		+-	┨┉───		
													—		┢╍╍┯╋					
<u> </u>					-												_			
									1			- I .								
· · · · · · · · · · · · · · · · · · ·					+		-		1-											
				<u> </u>		_			SAM	PLE C	ONDI"	TION	AS R	ECEIVI	ED (lat) USE OI	ily)	9 N.H.		
		Special Instructions / Sp	ecify Criteria to add	on report (client l	(eel		700		37.0			SIF	Obs	ervatio	ns	/es	No			
Drinkin	ng Water (DW) Samples' (client use)				·		2011	Va	, F	1 No	, r	1 0	stody	seal in	itact	Yes 🗍	No			
Are samples ta	aken from a Regulated DW System?					Co	pauna nino in	litiated		, 1	· -				1.4	·				
۳ (Yes i∜ No						UNDE U	CODIE	L R TEM	PERATU	RES °C			FINAL	COOLE	R TEMPE	RATURE	ES ⁰C		
Are samples for	or human drinking water use?					3 2														
Г	Yes IV No						se only)													
	SHIPMENT RELEASE (client use)	INITIA	L SHIPMENT RECE	PTION (lab use	only)	FINAL SHIPMENT RECEPTION (IBD USE ONLY)														
Released by	Date: Time:	Received by:	VO:	Date: all	1 Time:	~ Re	ceiveo	a DY:					. 1 "				· •			
	08 MAR 17 15:25) - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 -	· / ·	I navoji	1 100								<u></u>	NA EL	0126a x(1) Fr	wither lansary 2	014			

REFER TO BACK PAGE FOR ALS LOCATIONS AND SAMPLING INFORMATION Failure to complete all portions of this form may delay analysis. Please fill in this form LEGIBLY. By the use of this form the user acknowledges and agrees with the Terms and Conditions as specified on the back page of the white - report copy. 1. If any water samples are taken from a Regulated Drinking Water (DW) System, please submit using an Authorized DW COC form.

COC Number:

Page <u>3</u> of <u>3</u>

Canada Toll Free: 1 800 668 9878

	www.alsglobal.com	<u> </u>	Report Format / Distribution					Select Service Level Selow (Rush Turnaround Time (TAT) is not available for all tests)												
Report To		Rolpet Banet F	Solact Report Format: Close CEXCEL EDD (DIGITAL) R CRegular (Standard TAT if received by 3 pm - business days)																	
Company:	EDI	Select Report	-onnau. [⊻]PDF (OC) Benettyitte 5		s ^{[77} No	Yo P Priority (2-4 bus, days if received by 3pm) 50% surcharge - contact ALS to confirm TAT Ensember (1-2 bus, days if received by 3om) 100% surcharge - contact ALS to confirm TAT														
Contact:	Lyndsay Doetzel	Quality Control	(QC) Report with P	epuit i i c.		E Emergency (1-2 bus, days if received by 3pm) 100% surcharge - co								contact	ALS to (confirm '	TAT			
Address:	2195 - 2nd Avenue	Criteria on Re	cont - provide details bei		⊡ FAX	F2	□Sam	ne dav o	r weeke	and emer	rgency -	contact	t ALS to	o confirm	TAT	and surch	arge			
	Whitehorse, YT Y1A 3T8	Select Distribu			Level	Speci	ify Date	Requ	ired fo	r E2,E	or P:	T								
Phone:	867-393-4882	Email 1 or Fax				<u> </u>	,									<u></u>				
		Email 2	Emile, Hammilago	v.yk.ca		Analysis Request														
		Email 3	enk.pit@gov.yk.ca	atribution		Indicate Filtered (F), Preserved (P) or Filtered and Preserved (F/P) below														
Invoice To	Same as Report To Ves T No		Invoice Di	stribution	[]cay		T	T	1	- 1			T		Т		T	-		
	Copy of Invoice with Report Ves Vo	Select Invoice	Distribution:	EMAIL MAIL			╞───┤								┿		-	4		
Company:	EDI	Email 1 or Fax	sjenner@edynam	ics.com		-		1									1		s	
Contact:	S Jenner	Email 2	Idoetzel@edynam	ics.com		4													цец	
	Project Information	O	I and Gas Require	d Fields (client	use)	-													ntai	
ALS Quote #:	Q55556	Approver ID:		Cost Center:		-	1			1		1						ļ	ပိ	
Job #:	MOUNT NANSEN 16-Y-0089	GL Account:	·	Routing Code:		-													<u>ت</u> ا ۲	
PO/AFE:		Activity Code:					1	1		1		1							đ	
		Location:				١ş.						Ì						1	Ž	
roo. Televisione			V Dukeboore	Sampler A.	את ערצו	Å			1			1				1				
ALS Lab Wo	ork Order # (lab use only)	ALS Contact	v. Dyksnoom	Campien III		b b												1		
	Sample Identification and/or Coordinate)8	Date	Time	Sample Type	E I														
ALS Sample #	(This description will appear on the report)	(dd-mmm-yy)	(hh:mm)	Campie Type	15											┿			
(1	WQ-PW		08 -MAR-17	08 55	Water	R									\square		4		3	
													T							
						-	1				[1						
							+									 	+	<u> </u>		
ald Salar						-								<u> </u>		-+-			·	
and the second											ļ									
						1		L												
		<u> </u>						1												
				-	+					1	1									
								+							-+		+-			
										╂───										
			Į.					<u> </u>		ļ	ļ	<u> </u>		-	_		-+-			
		· · · · · · · · · · · · · · · · · · ·				1														
	<u> </u>	<u></u>			(0.0)			e la s	SAMP	LE CO	NDITI	ON A	S REO	CEIVE) (lal	b use o	nly)		مرجع المح	
Drinki	ng Water (DW) Samples ¹ (client use) Spe	cial Instructions / Sp	ecify Criteria to add	on report (client l	1991	Fro	zen				1	SIF	Obser	vations	51	res [י ב	NO		
Are samples t	tro samples taken from a Begulated DW System?					lce	packs	Yes		No	D	Cust	lody s	eal inta	ct	Yes	ц I	NO	Ľ	
I I	Yes 🕅 No					Coc	oling Ini	tlated								0.75-46-	DATI			
Are samples f	or human drinking water US8?					Ĩ.	NITIAL C	OOLER	TEMP	ERATUR	IES °C	10.14	<u> </u>	FINAL CO	JOLE	RIEMPI		IKES "C		
Are samples T	Yes T No					_ <u></u> 2	<u>5</u> .													
		INITIA	INITIAL SHIPMENT RECEPTION (lab use only)					FINAL SHIPMENT RECEPTION (lab use only)												
SHIPMENT RELEASE (client use)			Received by: Date: Date:																	
A M	SCHLER 08 MAR 17 15:25	Ma/8/17 15-245																		
	THE REPORT OF THE OWNER		W	HITE - LABORATO	DRY COPY Y	LLOW	- GLIEN		-1						• •					

REFER TO BACK PAGE FOR ALS LOCATIONS AND SAMPLING INFORMATION Failure to complete all portions of this form may delay analysis. Please fill in this form LEGIBLY. By the use of this form the user acknowledges and agrees with the Terms and Conditions as specified on the back page of the while - report copy.

1. If any water samples are taken from a Regulated Drinking Water (DW) System, please submit using an Authorized DW COC form.

F		
5		
ב		
d S		7
8	\sim	
<u>ຶ</u>	U	
B Z	_	
SBS		
	Π.	

ACTERIOLOGICAL ANALYSIS OF DRINKING WATER ANALYSE BACTÉRIOLOGIQUE DE L'EAU POTABLE

Santé et Affaires sociales Environmental Health Services Service d'hygiène du millieu

#2 Hospital Road, Whitehorse, Yukon Y1A 3H8 phone : (867) 667-8391 fax : (867) 667-8322 Toll free: 1-800-661-0408 ext.8391

2 Hospital Road, Whitehorse (Yukon) Y1A 3H8 Tél. : 867-667-8391 Téléc. : 867-667-8322 Sans frais au Yukon : 1-800-661-0408, poste 83 poste 8391

Comments / Commentaires	Total Coliforms/Coliformes totaux	Results (See Reverse Side for Résultats (Voir au verso l'Inte	Analysis Completed Date 170309 Analysis Completed Date 170309 Analyse terminée Date YY/MM/DD - AA/M////	Por Laboratory Use Unity / A run Receipt of Sample Date Provide Conduction Réception de l'échantillon Date Provide Conduction Condition of Sample Satisfactory Unsatisfactory État de l'échantillon Satisfactory Non satisfaisont	Is the Water Chlorinated? Ves L'eau contient-elle du chlore? U Oui Vin C Other Treatment Systems (e.g., UV, softener, filter) Autre dispositif de traitement (ax. : désinitection aux rayons UV, adoucisse	Dug Well Puits creuse Water Holding Tank Réservoir d'eau Water Treatment / 7	Sample Supply / Source d'a Public Supply Municipal – par canalisation Municipal – par camion Sample Source / Prove	Sample Collection / Prélé Sample Collected By Da Échantillon prélevé par Da Sampling Site (e.g., kitchen tap) Pump H(Point d'schantillonnage (ex. :robinet de cuisine) Pump H(Is this a Resample from a Previous Test? Yes Est-ce un deuxième échantillon d'un test antérieur? Oui	Municipal Address MOUNT MAUSE Adresse municipale MOUNT MUSE Legal Description Lot Quad Désignation officielle Lot Quadrilatère Other Information (e.g., Location, Business / Building Name) Autres renseignements (ex. : emplacement, nom de l'entreprise, nom	First Nation, Municipal or Business Name Nom de la Première nation, de la municipalité ou de l'entreprise <u>2</u> Agent Agent	Contact Person Personne ressource LYMDSAY DOETC Mailing address 219522VD AUE
	E. coli/E. coli Present / Présence Absent / Absence	Interpretation) per 100 ml erprétation des résultats)	Heure 1:00 am Par Incubator Heure 4:00 am By Par S	Time <u>3.00</u> am By <u>A</u> Heure <u>3.00</u> am By <u>A</u> ant Précisez <u>5, 2</u>	ree Available Chlorine ppm Shore libre disponiblemg/L sur d'eau, filtre)	Drilled Well Depth of Well Puits foré à la sondeuse Profondeur du puits	approvisionnement en eau Business Private Residence Privé – entreprise Privé – résidence Privé – de l'échantillon Privé – résidence	Are 11/02/08 ate 11/02/08 Time <u>98</u> 55. pm 100 100 100 100 100 100 100 10	Subdivision Lotissement Plan no. Plan n°	Fax Télécopieur	tées de la personne ressource 2 EC Phone 7 Éléphone Fax Fax Postal code Code postal