Mount Nansen Water Resources Investigations Quarterly Report (Q1) April - June 2014

Y1A 2C6

Prepared by:

EDI Environmental Dynamics Inc. 2195-2nd Avenue Whitehorse, Yukon Y1A 3T8

EDI Contact:

Meghan Marjanovic, R.P.Bio., P.Biol. Jane Bachman, P. Geo. 867-393-4882

EDI Project No:

14Y0455 September 2014

EXECUTIVE SUMMARY

EDI Environmental Dynamics Inc. (EDI) was retained by Yukon Government, Assessment and Abandoned Mines (AAM) in 2014 to conduct the Water Resource Investigations 2014/15 program at the Mount Nansen Site. This program involves surface water hydrometric and water quality monitoring, and meteorology for four watersheds at the Mount Nansen Site. The data presented in this report comprises the first quarter of the program (Q1), from April 1, 2014 to June 30, 2014. The monitoring objectives during this period were to collect surface water data from early-spring into early-summer and to capture the spring freshet period.

Over the course of the Q1 period, four monitoring events took place:

- April 14-15, 2014
- May 8-9, 2014
- May 20-21, 2014
- June 23-25, 2014

Hydrometric monitoring was completed at up to 14 hydrometric stations. Monitoring at each station included discharge measurements and water level surveys where continuous stage data loggers are installed. The four continuous loggers that remained in place over the winter captured the peak freshet stage that occurred between May 5 and May 9, 2014. The timing of the peak varied between watersheds; where smaller drainages peaked first. Stream gauging methods included the velocity-area method (mid-section method), salt dilution gauging and volumetric method.

Water quality sampling was completed at the 23 regular water quality sites, in addition to five sites during the freshet period (May 2014 trips). Water samples were collected at each site along with *in situ* water quality parameters including water temperature, specific conductivity, pH and turbidity. Water samples were analyzed for total and dissolved metals, anions and nutrients, routine parameters, and cyanides, in addition to a drinking water samples from a drinking water well. An LT50 sample was also collected from one site, every second month.

This report summarizes the site conditions between April 1, 2014 and June 30, 2014 and presents the collected data for the same time period. A description of the methodologies used for each component is also provided. Hydrometric results include stream discharge measurements, updated rating curve expressions for each station (where possible) and hydrographs. Water quality results include a summary of parameters that exceed the Canadian Council of Ministers of Environment Aquatic Life guidelines and/or the Mount Nansen Effluent Quality Standards, as well as a summary of *in situ* water quality parameters. A brief description of the daily and hourly meteorological data for the Q1 period is also presented. A copy of the updated hydrometric, water quality and meteorological databases, containing all raw data, accompanies this report.

AUTHORSHIP

Field work was completed by the following staff:

Joel MacFabe
Danny Skookum
Meghan Marjanovic
Dawn Hansen
Laura Grieve
Caleb Light
Lee Hawkings

TABLE OF CONTENTS

1	INT	RODUCTION	1
	1.1 S	ITE CONDITIONS	2
2	ME	THODOLOGY	3
	2.1 N	MONITORING NETWORK DESCRIPTION	3
	2.2 N	ÆTEOROLOGY	7
	2.3 F	IYDROLOGY	7
	2.3.1	Velocity-Area Mid-Section	9
	2.3.2	Salt Dilution Gauging	10
	2.3.3		
	2.3.4	¹ Ice-cover Hydrometrics	13
	2.3.5		
	2.3.6		
	2.3.7		
	2.3.8		
	2.3.9		
		VATER QUALITY	
	2,4,1		
	2,4,2		
	2.4.3		
	2.4.4		
3		SULTS	
J		METEOROLOGY	
	3.1.1 3.1.2		
	3.1.3		
	3.1.4	Short and Long Wave Radiation	24

3.1.5 Relative Humidity	
3.2 HYDROLOGY	24
3.2.1 Dome Creek	2 ¹
3.2.1.1 H-DC-DX+105	
3.2.1.2 H-DC-D1b	20
3.2.1.3 H-DC-B	20
3.2.1.4 H-TP	27
3.2.1.5 H-SEEP	27
3.2.1.6 H-DC-M	27
3.2.1.7 H-DC-R	29
3.2.2 Back Creek	
3.2.2.1 Back Creek (H-BC)	29
3.2.3 Victoria Creek	
3.2.3.1 Upper Victoria Creek (H-VC-U)	30
3.2.3.2 Victoria Creek, downstream of Back Creek (H-VC-DBC)	31
3.2.3.3 Victoria Creek, upstream of Minnesota Creek (H-VC-UMN)	32
3.2.3.4 Victoria Creek at Road (H-VC-R)	33
3.2.4 Pony Creek	
3.2.4.1 Upper Pony Creek (H-PC-U)	32
3.2.4.2 Pony Creek Downstream of Pit (H-PC-DSP)	34
3.3 WATER QUALITY	
3.3.1 Dome Creek	
3.3.2 Regular Seep Sites	
3.3.3 Brown-McDade Pit Lake	40
3.3.4 Tailings Pond & Seepage Pond Discharge	41
3.3.5 Victoria Creek	42
3.3.6 Back Creek	44
3.3.7 Pony Creek	
3.3.8 Pump House Well	
1	

	3.3.9	Additional Freshet Sites	46
	3.3.10	QA/QC Program	48
4	CON	CLUSIONS & RECOMMENDATIONS	49
5	REFE	ERENCES	50
	5.1 SP.	ATIAL DATA	51

LIST OF APPENDICES

APPENDIX A	Q1 SITE AND STATION PHOTOGRAPHS
APPENDIX B	Q1 MONITORING VISIT RECORD
APPENDIX C	Q1 EDI FIELD DATA SHEETS

APPENDIX D Q1 SURFACE WATER HYDROLOGY DATA

APPENDIX E Q1 SURFACE WATER QUALITY DATA

APPENDIX F Q1 METEOROLOGICAL DATA

LIST OF TABLES

Table 1.	Summary of meteorology, hydrology and water quality data included in this report1
Table 2.	List of hydrometric stations and water quality sites at the Mount Nansen Site as of April 1, 2014 based on 2014/15 Scope of Work as well as additional freshet monitoring sites (denoted by an *)
Table 3.	Summary of weather data parameters collected at Mount Nansen Meteorological Station (ATM-ROAD AAM)
Table 4.	Mount Nansen hydrometric station information, April 1 to June 30, 20149
Table 5.	Mount Nansen water quality site and sampling information
Table 6.	Laboratory analysis parameters included in various 'packages' created for surface water quality sampling at Mount Nansen (continues on next page)
Table 7.	CCME-AL guidelines applicable to Mount Nansen surface water quality sampling program (CCME 2014)
Table 8.	Mount Nansen Effluent Quality Standards outlined in Yukon Water License #QZ94-004 22

Table 9.	Applicable Guidelines for Canadian Drinking Water Quality for WQ-PW (Health Canada 2012)
Table 10.	Middle Dome Creek (H-DC-M) open water rating curve equations
Table 11.	Dome Creek at the Road (H-DC-R) open water rating equations
Table 12.	Back Creek (H-BC) open water rating curve equations
Table 13.	Upper Victoria Creek (H-VC-U) open water rating curve equations
Table 14.	Victoria Creek, downstream of Back Creek (H-VC-DBC) open water rating curve equations.
Table 15.	Victoria Creek, upstream of Minnesota Creek (H-VC-UMN) open water rating curve equations
Table 16.	Victoria Creek at Road (H-VC-R) open water rating curve equations
Table 17.	Summary of parameters that exceeded CCME-AL guidelines and/or Mount Nansen EQS at the upper Dome Creek sites for the Q1 period (April 1 to June 30, 2014). Parameters in bold exceed both standard and guideline values
Table 18.	Summary of parameters that exceeded CCME-AL guidelines and/or Mount Nansen EQS for the lower Dome Creek sites for the Q1 period (April 1 to June 30, 2014). Parameters in bold exceed both standard and guideline values
Table 19.	In-situ water quality data for the Dome Creek sites for the Q1 period (April 1 to June 30, 2014)
Table 20.	Summary of parameters that exceeded CCME-AL guidelines and/or Mount Nansen EQS for the WQ-DESS-01-03 sites for the Q1 period (April 1 to June 30, 2014). Parameters in bold exceed both standard and guideline values
Table 21.	Summary of parameters that exceeded CCME-AL guidelines and/or Mount Nansen EQS for the WQ-CH-P-13-01 and WQ-MS-S-08 sites for the Q1 period (April 1 to June 30, 2014). Parameters in bold exceed both standard and guideline values
Table 22.	In situ water quality data for the WQ-DESS-01-03, WQ-CH-P-13-01 and WQ-MS-S-08 sites for the Q1 period (April 1 to June 30, 2014)
Table 23.	Summary of parameters that exceeded CCME-AL guidelines and/or Mount Nansen EQS for the Brown McDade Pit Lake for the Q1 period (April 1 to June 30, 2014). Parameters in bold exceed both standard and guideline values

Table 24.	In-situ water quality data for the Brown McDade Pit Lake for the Q1 period (April 1 to June 30, 2014)		
Table 25.	Summary of parameters that exceeded CCME-AL guidelines and/or Mount Nansen EQS for WQ-TP and WQ-SEEP for the Q1 period (April 1 to June 30, 2014). Parameters in bold exceed both standard and guideline values		
Table 26.	In situ water quality data for WQ-TP and WQ-SEEP for the Q1 period (April 1 to June 30, 2014)		
Table 27.	Summary of parameters that exceeded CCME-AL guidelines and/or Mount Nansen EQS for sites within the Victoria Creek watershed for the Q1 period (April 1 to June 30, 2014). Parameters in bold exceed both standard and guideline values		
Table 28.	In situ water quality data for sites within Victoria Creek for the Q1 period (April 1 to June 30, 2014)		
Table 29.	Summary of parameters that exceeded CCME-AL guidelines and/or Mount Nansen EQS for WQ-BC for the Q1 period (April 1 to June 30, 2014). Parameters in bold exceed both standard and guideline values.		
Table 30.	In situ water quality data for WQ-BC for the Q1 period (April 1 to June 30, 2014) 44		
Table 31.	Summary of parameters that exceeded CCME-AL guidelines and/or Mount Nansen EQS for the Pony Creek sites for the Q1 period (April 1 to June 30, 2014). Parameters in bold exceed both standard and guideline values.		
Table 32.	In situ water quality data for the Pony Creek sites for the Q1 period (April 1 to June 30, 2014).		
Table 33.	In situ water quality data for WQ-PW for the Q1 period (April 1 to June 30, 2014)		
Table 34.	Summary of parameters that exceeded CCME-AL guidelines and/or Mount Nansen EQS for the additional freshet sites (WQ-ET-1 and WQ-MS-S-03) for the Q1 period (April 1 to June 30, 2014). Parameters in bold exceed both standard and guideline values		
Table 35.	Summary of parameters that exceeded CCME-AL guidelines and/or Mount Nansen EQS for the additional freshet sites (WQ-L2, WQ-NW-SEEP-02, WQ-ORE) for the Q1 period (April 1 to June 30, 2014). Parameters in bold exceed both standard and guideline values		
Table 36.	In situ water quality data for the additional freshet monitoring sites for the Q1 period (April 1 to June 30, 2014)		
Table 37.	Summary of sites randomly selected as replicate samples for each sampling trip over the Q1 period		

TTOT	OE	TIC	URES	
$\Gamma \Gamma O \Gamma$	OF.	$\Gamma I G$	UKES	

Figure 1.	Regional overview map of Mount Nansen Site Area	5
	Mount Nansen Site: Hydrometric Stations and Water Quality Sites.	

I INTRODUCTION

Yukon Government Assessment and Abandoned Mines (AAM) retained the services of EDI Environmental Dynamics Inc. (EDI) in 2014 to conduct the Water Resource Investigations 2014/15 program at the Mount Nansen Site. This program involves three monitoring components: surface water hydrology, surface water quality, and meteorology. This report represents the data report for the first quarter (Q1) of the program, from April 1, 2014 to June 30, 2014.

The Q1 period consisted of a single monthly monitoring event in April 2014 and June 2014, with two trips in May 2014 to capture spring freshet. The dates of each monitoring event were:

- April 14-15, 2014
- May 8-9, 2014
- May 20-21, 2014
- June 23-25, 2014

This report outlines the methodology used for all program components, presents the results for each monitoring event and provides recommendations to implement within the program. The data included in this report for each component is summarized in Table 1, below.

Table 1. Summary of meteorology, hydrology and water quality data included in this report.

Monitoring Component	Data Included	Section		
Meteorology	Summary of daily meteorological dataHourly meteorological plots	3.1Appendix F		
Hydrology	Rating curve data summary tablesDatabase tablesField data sheets	3.2Appendix DAppendix C		
Water Quality	 Guideline/standard exceedance summary tables In situ water quality data summary tables Lab results table and QA/QC analysis Field data sheets 	3.33.3Appendix EAppendix C		

1.1 SITE CONDITIONS

Site conditions during the Q1 period were typical of the spring and early summer period with a gradual warming trend from April to May 2014, increased snow and ice melt, followed by freshet, and then green up of vegetation on site. The following specific observations were made during each trip to the Mount Nansen Site:

- o April 14-15, 2014 Air temperatures varied from 0°C to +8°C during the April 2014 investigation. All streams and waterbodies still had ice cover, with ice thicknesses varying from 5 cm to 1 m. There was between 20 cm and 40 cm of snow on the ground during the site visit. Water levels at most sites/stations were very low, which is common for the early-spring period. Several sites and stations remained frozen to substrate from the winter (*i.e.*, Pony Creek, sections of Dome Creek, and Back Creek). Significant quantities of aufies remain present within the Dome Creek watercourse, on Back Creek, and at the Victoria Creek at Road station/site.
- May 8-9, 2014 Air temperatures during the trip ranged from 5°C to 17°C for the duration of the field sampling, with clear to overcast conditions and occasional light rain. From inspection of the site and channel conditions, discharge conditions in most drainages were descending from peak flows. Water levels at all hydrometric stations and water quality sites were high with turbidity levels elevated above typical background levels. Nearly all sites and stations were ice free, with the exception of two sites on Dome Creek and shore ice along the lower portions of Victoria Creek near the road. The tailings pond was nearly ice free, with a small area of ice cover in the centre of the pond. The ice in the pit lake was in the process of melting, but was not safe for sampling.
- May 20-21, 2014 Air temperatures were unseasonably cold during the trip, ranging from -2°C to +5°C with partly cloudy skies and periods of light snow and light winds. Water levels had dropped slightly from the previous freshet trip, but were still considered high. The pit lake remained partially ice covered and sampling was not possible. The tailings pond was ice free. Some shore ice remained along Victoria Creek near the road as well as at one site on Dome Creek.
- June 23-25, 2014 Air temperatures during the trip ranged from 9°C to 19°C. Weather conditions were sunny to overcast during the monitoring program, with light wind and rain on June 24, 2014. Water levels had dropped considerably from the previous May trips, and were considered low or were dry. The pit lake was ice free.

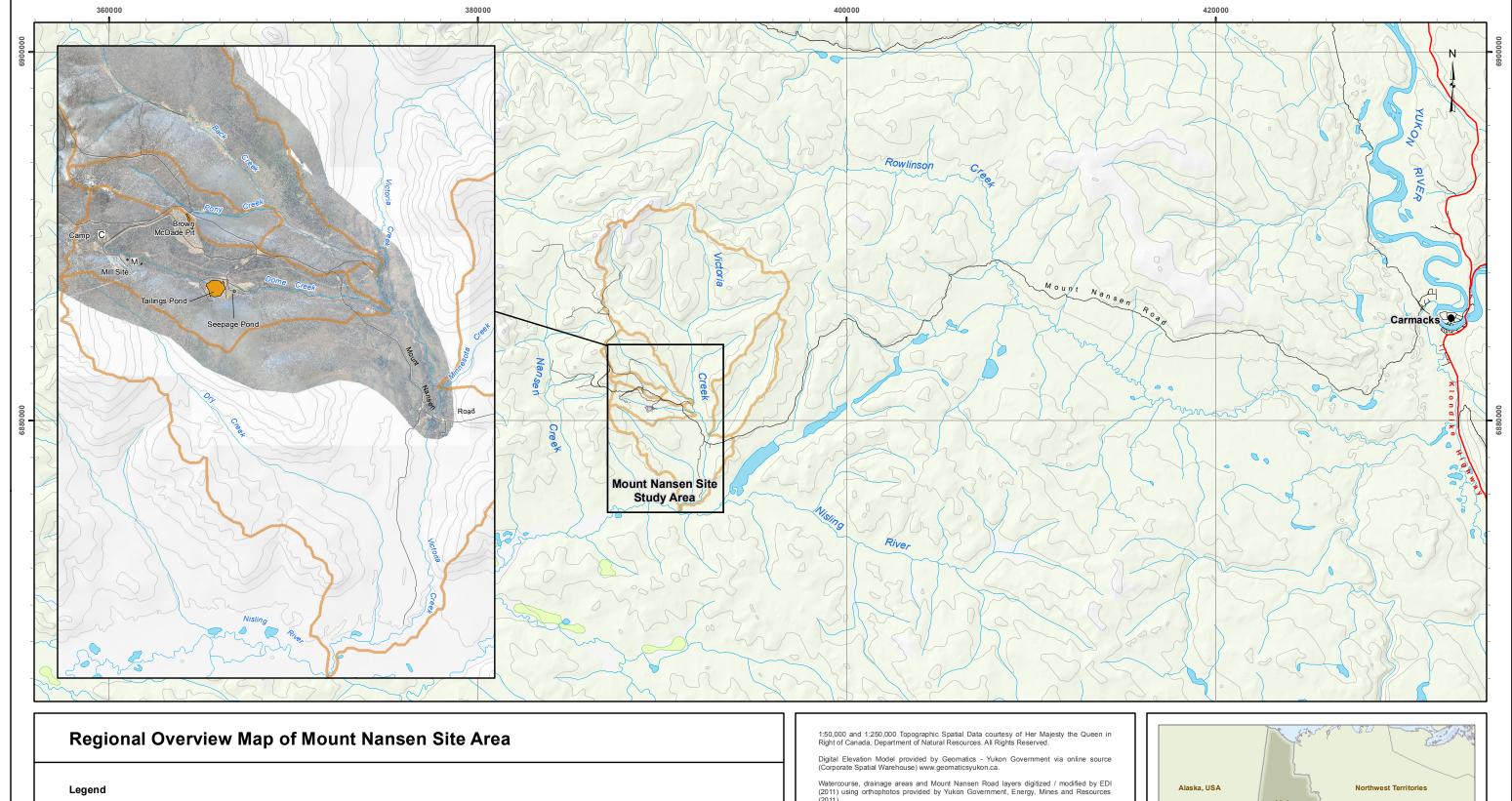
2 METHODOLOGY

The Mount Nansen surface water and meteorological monitoring network consists of several discrete components: meteorology, surface water hydrology, and surface water quality. The following sections describe the monitoring network and the various meteorological, hydrometric, and water quality sampling methods used during the Q1 period (April 1, 2014 to June 30, 2014).

Methods have remained consistent from the previous investigation periods (2013/14), with slight changes to the monitoring network due to program scope changes.

2.1 MONITORING NETWORK DESCRIPTION

The Mount Nansen Site lies within the Victoria Creek drainage which is a tributary to the Nisling River. Several smaller watercourses drain the mine site area, including Dome Creek and Pony Creek. Dome Creek is a tributary to Victoria Creek and originates upstream of the mill, flows through the valley and is diverted around the tailings pond. Pony Creek lies within the northern portion of the mine site area to the north of the Brown-McDade pit lake. Pony Creek is a tributary to Back Creek, which flows into Victoria Creek upstream of the Dome Creek confluence. Minnesota Creek also flows into Victoria Creek downstream of the Dome Creek confluence. See Figure 1 and Figure 2 for a regional overview of the watersheds present within the study area as well as water resources investigation site and station locations.


The 2014/15 project scope has some differences from the previous year's programs (2013/14, 2012/13), particularly the addition of several surface water quality sites, including the Dome Creek east slope seeps (WQ-DESS sites 01, 02, 03), the WQ-CH-P-13-01 seep and WQ-LW-SEEP-01. The list and location of water quality sites and hydrometric stations are presented below (Table 2; Figure 2).

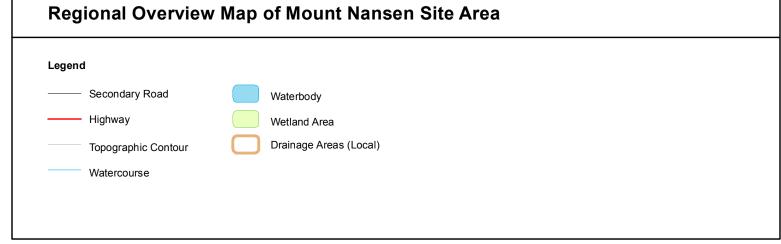

In addition to the regular scope of work, AAM requested that several additional, opportunistic sites be investigated during the freshet trips in May 2014. The additional water quality sites included seeping water from the ore ramp leading down into the pit lake, a seep on the west lower waste rock dump, the lysimeter 2 on the waste rock dump, up to two samples from the various exploration trenches surrounding the mill site, and the mill site seep 03 (which was a regular site during the 2013/14 program). AAM also asked that water levels be measured in two groundwater wells within the pit area (GLL07-03 and CH-P-13-05/50m; Table 2; Figure 2) as well measurement of the water level in the pit lake itself.

Table 2. List of hydrometric stations and water quality sites at the Mount Nansen Site as of April 1, 2014 based on 2014/15 Scope of Work as well as additional freshet monitoring sites (denoted by an *).

Station/Site Name	Hydrology	Water Quality	Station/Site ID
Upper Pony Creek	✓	✓	H/WQ-PC-U
Pony Creek Downstream of Pit	✓	✓	H-PC-DSP/WQ-PC-D
Dome Creek at DX	-	✓	WQ-DC-DX
Dome Creek at DX+105	✓	✓	H/WQ-DC-DX+105
Dome Creek at D1b	✓	✓	H/WQ-DC-D1b
Diversion Channel at Bridge	✓	✓	H/WQ-DC-B
Middle Dome Creek	✓	✓	H-DC-M/WQ-DC-U
Dome Creek at Road	✓	✓	H/WQ-DC-R
Seepage Pond Outflow	✓	✓	H/WQ-SEEP
Tailings Pond	✓	✓	H/WQ-TP
Brown-McDade Pit Lake	-	✓	WQ-PIT-1,2,3
Mill Site Seep 08	-	✓	WQ-MS-S-08
Back Creek	✓	✓	H/WQ-BC
Upper Victoria Creek	✓	✓	H/WQ-VC-U
Victoria Creek Downstream of Back Creek	✓	✓	H/WQ-VC-DBC
Victoria Creek Upstream of Minnesota Creek	✓	✓	H/WQ-VC-UMN
Victoria Creek at Road	✓	✓	H/WQ-VC-R
Pump House Well	-	✓	WQ-PW
Dome East Slope Seep 01	-	✓	WQ-DESS-01
Dome East Slope Seep 02	-	✓	WQ-DESS-02
Dome East Slope Seep 03	-	✓	WQ-DESS-03
CH-P-13-01	-	✓	WQ-CH-P-13-01
Lower West Toe of Waste Rock Dump Seep 01	-	✓	WQ-LW-SEEP-01
Ore Ramp Seep*	-	✓	WQ-ORE
Lysimeter 2*	-	✓	WQ-L2
North West Toe of Waste Rock Dump Seep 01*	-	✓	WQ-NW-SEEP-01
Mill Site Seep 03*	-	✓	WQ-MS-S-03
Exploration Trench 1*	-	✓	WQ-ET-1
Pit Groundwater Well GLL07-03*	✓	-	GLL07-03
Pit Groundwater Well CH-P-13-05/50m*	✓	-	CH-P-13-05/50m

1:50,000 and 1:250,000 Topographic Spatial Data courtesy of Her Majesty the Queen in Right of Canada, Department of Natural Resources. All Rights Reserved.

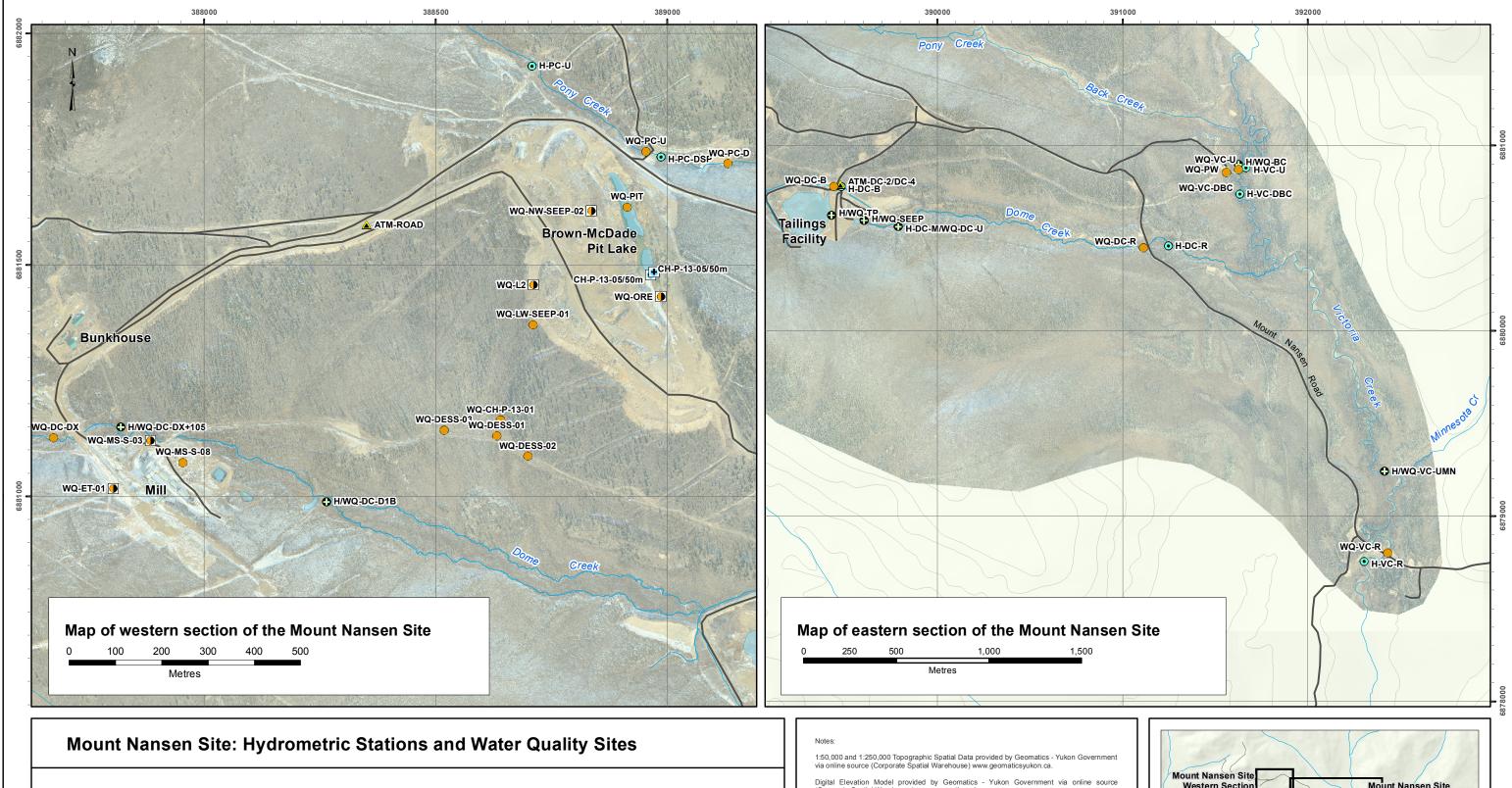
Digital Elevation Model provided by Geomatics - Yukon Government via online source (Corporate Spatial Warehouse) www.geomaticsyukon.ca.

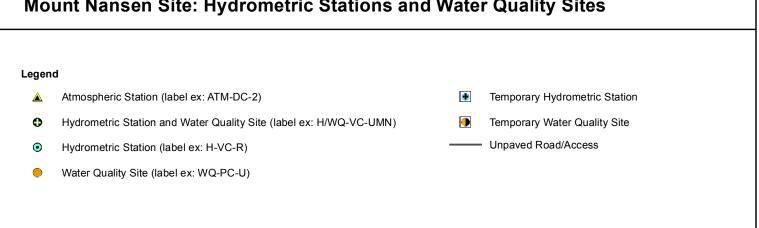
Watercourse, drainage areas and Mount Nansen Road layers digitized / modified by EDI (2011) using orthophotos provided by Yukon Government, Energy, Mines and Resources (2011).

This document is not an official land survey and the spatial data presented is subject to change.

0 2 4 6 8 10

Kilometres

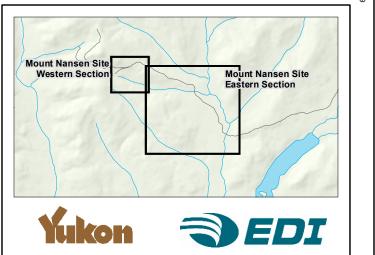

Map Scale = 1:200,000 (printed on 11 x 17)


Map Projection: North American Datum 1983 UTM Zone 8N

Drawn: Checked:

LG MMM FIGURE 1 Date: 20/03/2014

Watercourse, drainage areas and Mount Nansen Road layers digitized / modified by EDI (2011) using orthophotos provided by Yukon Government, Energy, Mines and Resources (2011).


Imagery provided by Yukon Government - Energy, Mines and Resources - Abandoned Mines Branch.

Project data displayed is site specific. Data collected by EDI Environmental Dynamics Inc. (2014) was obtained using Garmin GPS technology.

This document is not an official land survey and the spatial data presented is subject to

Map Projection: North American Datum 1983 UTM Zone 8N

Checked: Drawn FIGURE 2 Date: 28/05/2014

2.2 METEOROLOGY

A Campbell Scientific meteorological station (ATM-ROAD AAM) was established at the Mount Nansen Site in October 2011. The station is located adjacent to the Mount Nansen Road, east of the camp (Figure 2). The ATM-ROAD AAM station is administered by Northern Avcom and data is accessible through an internet download. EDI is responsible for downloading and compiling these raw data into a database. A copy of the updated database is provided with this report. A basic quality control/quality assurance review is completed upon data retrieval; however, EDI is not responsible for meteorological station instrumentation maintenance or sensor calibration. During the Q1 period, the station underwent calibration and maintenance and was re-installed on April 10, 2014.

The ATM-ROAD AAM station records air temperature, ground temperature, humidity, rainfall, snow depth, net shortwave and long-wave radiation, total radiation, wind speed, wind direction and battery voltage (Table 3).

Table 3. Summary of weather data parameters collected at Mount Nansen Meteorological Station (ATM-ROAD AAM)

Meteorological Parameter Daily Collection	Units	Notes
Air Temperature Maximum	°C	Measured every 5 minutes. Daily maximum value is reported.
Air Temperature Minimum	°C	Measured every 5 minutes. Daily minimum value is reported.
Humidity Maximum	%	Measured every 5 minutes. Daily maximum value is reported.
Humidity Minimum	%	Measured every 5 minutes. Daily minimum value is reported.
Snow Depth	cm	Reports the depth of snow at the end of the day.
Battery Voltage	Volts	Measured every 5 minutes. Daily minimum value is reported
Hourly Collection		
Net Shortwave	W/m^2	Measured every 5 minutes. Hourly average is reported.
Net Longwave	W/m^2	Measured every 5 minutes. Hourly average is reported.
Net Total Radiation	W/m^2	Measured every 5 minutes. Hourly average is reported.
Wind Speed	m/s	Measured every 5 minutes. Hourly average is reported.
Wind Direction	degrees	Measured every 5 minutes. Hourly average is reported.
Precipitation	mm	Total precipitation recorded hourly.
Snow Depth	cm	Hourly sample recorded.
Air Temperature	°C	Measured every 5 minutes. Hourly average is reported.
Humidity	%	Measured every 5 minutes. Hourly average is reported.
Ground Temperature Surface	°C	Hourly sample recorded.
Barometric Pressure	mbar	Hourly sample recorded.

2.3 HYDROLOGY

Discharge and/or stage were measured at 14 different hydrometric stations either continuously with water level loggers or instantaneously during each site visit depending on field conditions. There were ten combined continuous/instantaneous hydrometric stations and four instantaneous hydrometric stations

(Table 4). Only four of these stations (H-DC-M, H-VC-U, H-VC-DBC, and H-VC-R) remained active through the previous year's winter period (Q3 and Q4). During each monitoring event, instantaneous discharge measurements were made at all sites (continuous/instantaneous) as long as channel conditions allowed.

A detailed description of each hydrometric station is found in Appendix D. Table 4 summarizes the hydrometric station characteristics that comprise the monitoring network at the Mount Nansen Site.

Methods employed for discharge measurement in 2014 included:

- the velocity-area mid-section method;
- volumetric measurements at perched outlets such as culverts and pipes; and,
- salt dilution gauging (brine salt slug injection) methods.

The velocity-area mid-section method is standardized by British Columbia's Resources Information Standards Committee (RISC 2009), however many of the channels at the Site are inappropriate for using this method (*i.e.*, too shallow, too narrow or low discharge). In such cases, alternative methods including salt-dilution gauging and volumetric measurements are used. When salt dilution or volumetric measurements are made, field crews collect replicate measurements and mean resultant discharge estimates are calculated. An elevation survey is completed during each hydrometric station visit where there are continuous data loggers installed. These surveys were used to monitor shifts in benchmarks, station, and staff gauge elevations. Due to periglacial processes, shifting installations are common and require post-collection data adjustments.

Given the small channel sizes and relatively low discharge at many stations, the minimum reportable discharge is set to 0.001 m³/s or 1 L/s; this value is lower than what is typically reported for other hydrometric programs (e.g., Water Survey of Canada uses +/-0.01 m³/s for open water conditions). Field methods used at Mount Nansen can accommodate this higher resolution of discharge under ideal conditions, however measurement uncertainty for each method should be considered when interpreting results. Measurement uncertainty is partly based on instrument accuracy (Appendix D, Table D-1). Discharges calculated for several stations were less than 0.001 m³/s and reported as 0.000 m³/s, below reportable confidence limits.

All velocity-area measurements of stream discharge used the Sontek Acoustic Doppler Velocimeter (ADV). The ADV is advantageous to the hydrometric program because it has the ability to collect velocity measurements in two dimensions and thus compensate for measurement error associated with velocity angles. The ADV also provides a variety of quality control and assurance assessments in real-time, reducing field measurement error. The absence of moving parts on the acoustic sensor also decreases measurement error during winter conditions when moving parts tend to freeze.

Table 4. Mount Nansen hydrometric station information, April 1 to June 30, 2014.

HID¹	Hydrometric Station Name	Type ²		ntion ³ Northing	Drainage Area (km²)	Elevation ⁴ (m)
ATM-DC2	Barometric at Diversion Channel	ATM	389476	6880792	-	1099
ATM-DC4	Barometric at Diversion Channel	ATM	389476	6880792	-	1100
H-PC-U	Upper Pony Creek	I	388709	6881930	0.8	1227
H-PC-DSP	Pony Creek Downstream of Pit	С	388986	6881734	1.0	1191
H-DC- DX+105	Dome Creek at DX+105	I	387820	6881150	0.9	1204
H-DC-D1b	Dome Creek at D1b	I	388262	6881000	1.4	1156
H-DC-B	Diversion Channel at Bridge	С	389480	6880780	3.0	1095
H-DC-M	Middle Dome Creek	C/CW	389788	6880565	3.3	1065
H-TP	Tailings Pond	I	389427	6880625	-	1093
H-SEEP	Seepage Pond Outflow	I	389604	6880598	-	1072
H-DC-R	Dome Creek at Road	С	392540	6879249	4.5	1020
H-BC	Back Creek	С	391626	6880901	10.4	1021
H-VC-U	Upper Victoria Creek	C/CW	391667	6880882	64.6	1019
H-VC-DBC	Victoria Creek Downstream of Back Creek	C/CW	391627	6880840	75.0	1017
H-VC-UMN	Victoria Creek Upstream of Minnesota Creek	С	392413	6879244	83.4	986
H-VC-R	Victoria Creek at Road	C/CW	392305	6878755	97.7	975
Notes:					•	

Notes:

2.3.1 Velocity-Area Mid-Section

The velocity-area mid-section method was used to determine discharge at hydrometric stations where channel criteria met those outlined in standard guidance documents (RISC 2009; WSC 1999). Cross-section locations were established for each hydrometric station where this method was applied; these cross-sections were located in close proximity to continuous data logger installations.

^{1 -} HID = unique station identifier that corresponds with hydrometric database tables.

^{2 -} Station Type: ATM = atmospheric pressure monitoring; C = continuous water level monitoring with instantaneous discharge rating measurements; I = instantaneous discharge measurement; CW = continuous winter water level monitoring with instantaneous discharge rating measurements.

^{3 -} NAD 83, UTM Zone 8.

^{4 -} Elevations for hydrometric stations are estimates based on field data collected by handheld Garmin GPS units.

Using the continuity relationship for discharge (Q),

$$Q = v \cdot A = bdv$$
 [1]

Depth (d), velocity (v) and width (b) measurements were obtained for at least 20 panels across the metering cross-section. The cross-section panel width and depth were multiplied by the velocity and averaged over 40 seconds (RISC 2009) to obtain an instantaneous discharge measurement (q) for each panel. Panel discharges were subsequently summed to obtain total discharge. The discharge for the first and last panels was calculated using half the distance from the edge to the first and last mid-panel verticals.

The velocity-area discharge calculation is described by the following equations:

$$q_n = v_n d_n \frac{(b_{n+1} - b_{n-1})}{2}$$
 [2]

$$Q = q_1 + q_2 + q_3 + q_4 + q_5 + \dots + q_n$$
 [3]

Where SI units of m³/s, m/s, and m are used for discharge, velocity and depth respectively.

The current meter used to obtain the velocity measurements is a 2-dimension, side looking, FlowTracker Handheld Acoustic Doppler Velocimeter (ADV) (Sontek/YSI Inc. 2009). The FlowTracker is used by both the Water Survey of Canada and the U.S. Geological Survey. The FlowTracker computer calculates discharge using the mid-section method and calculates the statistical discharge uncertainty based on methods developed by the U.S. Geological Survey (Cohn *et al.* 2006). This method of calculating uncertainty accounts for the uncertainty associated with width, depth and accuracy of the FlowTracker calibration and the effects of channel variability on depth and velocity across the cross-section (Sontek/YSI 1999). The statistical discharge uncertainty calculated by the FlowTracker at Mount Nansen was typically less than ±5%. An uncertainty of ±10% is considered by industry as acceptable for the velocity-area mid-section method. The statistical uncertainty was applied for all velocity-area discharge measurements obtained with the ADV.

2.3.2 Salt Dilution Gauging

Salt dilution gauging was used at hydrometric stations where the channel conditions were not suitable for using a current meter. Typically this occurred when water depths were less than 0.05 m, channel widths were less than 3.0 m or during winter months when ice was prohibitively thick for conducting velocity-area measurements beneath the ice.

There are three different methods of salt dilution gauging: constant rate injection (brine); slug injection (brine) and dry salt injection. Method selection depends on the magnitude of discharge to be measured, channel conditions and feasibility for remote sites as the required equipment varies for each method. All methods require the selection of an input (injection) site and a downstream electrical conductivity measurement site. The distance between these sites (mixing length) is optimized for the minimum distance required for complete mixing of the fully dissolved salt tracer.

Specific channel conditions during open water and winter periods are required for successful salt dilution gauging. These criteria ensure that complete lateral and vertical mixing occurs in as short a distance as possible: minimal pools; no backwater areas; no braiding; little to no in-stream vegetation; and no losses or gains of water (Moore 2004a; Moore 2004b; Laberge Environmental Services 1999).

Channel geomorphology and winter temperatures required some adaptations to the methodology presented in Moore (2004; 2005), therefore field protocols and subsequent calculations were modified to incorporate methods presented in Kite (1994) and Laberge Environmental Services (1999). Laberge Environmental Services (1999) describes practical, field tested and validated protocols for winter low flow measurements in the Yukon with a focus on streams with high background conductivities similar to the Mount Nansen region. However, the methods and calculations provided by Moore (2004a; 2004b; 2005) were used as they were thought to be significantly more robust and adaptable to site-specific stream conditions.

The gram conductivity of salt, the conductivity of 1 g NaCl in 1 m³ of solution at 25 °C, is non-linear at higher background conductivities (Laberge Environmental Services 1999). Background specific conductance at the hydrometric stations range widely, from \sim 29 μ S/cm to upwards of 1,500 μ S/cm. The field protocol presented in Moore (2004a; 2004b; 2005) accounts for the non-linearity of the gram conductivity but requires additional field calibration tests for each visit and each gauging location. This method was not practical during extremely cold temperatures but was employed whenever possible in the Q1 period.

The slug injection (brine) method was selected for use at the Mount Nansen Site hydrometric stations because this method was most feasible for the remote sites, channel conditions, discharges and the most efficient method for the field monitoring program. In addition, the use of brine slugs allows for shorter mixing lengths to be used; ideal for channels at Mount Nansen. Measurement reaches were carefully selected to meet the measurement criteria and overlap with the physical location of continuous water level loggers. Salt injection sites were located upstream of constrictions (e.g., culverts) where possible to facilitate full mixing. A conductivity meter records specific conductance approximately 60 m downstream for the smaller creeks and approximately 90 m for Victoria Creek, depending on channel conditions.

The same measurement reach was used for each field visit unless changes to the channel conditions warranted minor adjustments to the measurement locations. The slug injection method requires an electrical conductivity meter (YSI ProPlus Multi-Meters with logging capabilities) to be set up at the downstream end of the measurement reach. Background electrical conductivity was logged for several minutes before the slug injection to allow for the instrument to equilibrate and to measure background variability. Specific electrical conductance¹ (SPC) is measured (logged) because the values are compensated for water temperature. A known mass of salt (NaCl) is dissolved into a graduated bucket of stream water at the injection site. Once fully dissolved, the salt slug is injected at the upstream site and the electrical conductivity of the salt wave is measured at the downstream location at two to five second intervals depending on the stream velocity. Two trials were conducted at each station. When possible, a secondary method of discharge

¹ Specific electrical conductivity measured by the YSI ProPlus and the YSI 556 multi-meters are linearly compensated for temperature. The multi-meters are calibrated daily during each field visit before use.

measurement was used to validate the salt dilution measurement (*i.e.*, volumetric discharge measurement, ADV measurement).

The formula used to calculate discharge for the Mount Nansen salt slug injections is:

$$Q = \frac{V_{SS}}{1000 \cdot CF \cdot T \cdot \tau \cdot \Sigma (SPC_t - SPC_0)}$$
 [4]

Where Q is discharge (m^3/s), V_{ss} is the volume of salt slug injection (L), τ is the time interval in seconds and SPC_t and SPC_o are the measured and background conductivity at time interval t, respectively. The CF.T value is the calibration factor that accounts for the non-linearity of electrical conductance and salt concentration in stream water. The CF.T value is taken as the slope of the line of SPC and relative concentration of the salt slug in an aliquot of sample stream water. The target peak specific conductance for the salt wave was an increase of at least ten-times the resolution of the conductivity meter used. Typically, an increase between 10% and 50% of SPC₀ was achieved, above the required increase of 2 to 5 μ S/cm.

Stream discharge was calculated for each salt slug trial using Equation [4] and averaged to provide a discharge estimate. The average estimated measurement accuracy for the salt dilution gauging method is $\pm 20\%$. However, salt dilution gauging accuracy will vary between each station due to differences in individual channel conditions and stream water velocities.

In some instances where ambient air temperatures were prohibitively cold (*i.e.*, <-30°C), the dry salt slug injection method using a mass-balance approach was used. This was due to limitations that rapidly freezing water placed on equipment, field procedures and safety of field personnel. The formula for calculating discharge using the dry salt slug injection differs slightly from equation [4], and follows the calculations provided by Moore (2004). The discharge calculation formula for the dry salt slug injection is:

$$Q = \frac{m}{\sum (EC - EC_0) \cdot CF \cdot t_{int}}$$
 [5]

Where m is the mass of salt used for the dry slug injection, EC is the electrical conductivity measured at a defined time interval (t_{int}), EC₀ is the background electrical conductivity. CF is a site-specific constant that is determined by measuring changes in specific conductivity with known masses of salt. Stream discharge was calculated using equation 5 for each salt slug trial during the monitoring period. The estimated measurement accuracy for dry salt slug injection is $\pm 30\%$. However, the discharge uncertainty varies considerably between each station due to differences in channel conditions and stream water velocities.

2.3.3 Volumetric

Volumetric discharge measurement is ideal for low flows because all the stream flow is captured in a bucket of a known volume at a confined outlet or constriction in the channel. Channel constrictions created by culverts, pipes and weirs provided an opportunity to measure stream flow by measuring the time to fill a bucket of known volume. The volumetric method for measuring discharge is used periodically at two

stations at Mount Nansen where a culvert or pipe is available (H-PC-U; H-SEEP). During extreme low flows it is also possible to obtain volumetric estimates at H-DC-DX+105.

The volumetric measurement is completed using a graduated 20 L bucket and a timing device. The time required to fill the volume is recorded over five separate volumetric trials. All five volumetric trials are averaged to provide a discharge estimate. The estimated measurement accuracy is \pm 30 %.

The volumetric measurement method employed at H-SEEP (Tailings Dam Seepage Pond pump pipe outlet) is used to validate daily instantaneous measurements read at the flow meter attached to the pump that is used to manage water levels in the Seepage Pond. Daily flow meter readings were collected by the site maintenance crews and data is maintained by AAM. EDI staff collects concurrent flow meter readings when volumetric measurements are made at the pipe outlet.

2.3.4 Ice-cover Hydrometrics

Hydrologic measurements completed during periods when the channel is covered with ice have lower accuracy than open channel measurements because the standard hydrometric methods are based on open channel hydraulic relationships between the impelling and resisting forces of flow. Ice increases the resistance to flow, slowing velocities and increasing the water surface elevation (backwater effect). Frazil ice, anchor ice, slush and ice jams influence the water surface profile and effective depth of flow in the channel. As a result, the relationship between stage and discharge changes during the winter. Cold temperatures frequently cause problems with measurement equipment, including continuous water level loggers. In the Yukon, winter measurement instruments are usually working at or beyond the cold temperature operating limits and resultant data is carefully analyzed and often excluded from analysis. All measurements collected when ice was observed in the channel were flagged in the data record with 'B'; the standard data flag used by the WSC indicating backwater or ice effects. Measurements influenced by ice are not included in the open water stage-discharge rating curve development.

In Victoria Creek, the velocity-area and salt dilution methods were feasible during ice-cover periods when ice thicknesses and ambient air temperatures were not prohibitive. Salt dilution was used on the smaller channels if they were not frozen to the bed. Regardless of the technique used, careful attention was paid to ice and flow conditions. In many of the streams at the Mount Nansen Site, multiple layers of ice are present with flow travelling through complex networks within and on the surface of the ice. In such conditions, discharge measurements become increasingly uncertain and are not performed.

2.3.5 Hydrometric Leveling Surveys

Hydrometric leveling surveys are performed during each visit at stations where continuous data loggers are installed. The purpose of the survey is to tie the data logger water levels to the local station datum. Each station has a local, relative datum defined by benchmarks in close proximity to the data logger and stilling well. Three benchmarks are installed at each continuous station as per RISC (2009) Data Grade A guidelines. Each survey includes a survey with a level and rod for Benchmark 1 (BM1), Benchmark 2 (BM2), Benchmark 3 (BM3), the top of the staff gauge (TOS), the water surface elevation (WATER) and the

elevation of the fixed-length logger apparatus (named LOGGERROD). The elevation of Benchmark 1 at every station defines a local elevation of 3.000 m above datum. The local datum is always located below the elevation of zero flow. The benchmarks and the top of the staff gauge are regularly checked for shifting as a result of periglacial processes and survey error. While there is some apparent movement in the benchmark elevations and occasionally anomalous survey data, the water surface elevation data was carefully reviewed using staff gauge readings and the field records of stilling well maintenance (logger or staff gauge shifts) before applying local datum offsets to the raw data logger record. All suspect data is excluded from the corrected data. All stage data is presented in metres referenced to the local datum (L.D.) unless otherwise noted.

2.3.6 Hydrometric Validation & QA/QC Program

The velocity-area, weir and volumetric hydrometric measurement methods used for the Mount Nansen hydrometric program are standardized by the WSC and the USGS. Several stations do not meet standardized criteria. At these stations, alternative methods (e.g., salt dilution) are used. In some cases, concurrent standardized methods (e.g., velocity-area measurements) allow for the validation and calibration of alternate methods. Concurrent measurements also facilitate uncertainty estimates for stream discharge measurements.

Quality control and quality assurance (QA/QC) checks begin during field visits. The Flow Tracker ADV provides numerous QA/QC checks in real-time during velocity measurements that allow the field crew to increase the precision of the measurements. Upon return from the field, data entry staff performs preliminary checks and reviews of the raw data and discharge calculations prior to the production of trip and quarterly reports. A third round of QA/QC is completed during data entry into the hydrometric database. A final QA/QC is completed during the development of rating curves and hydrographs for each hydrometric station.

2.3.7 Rating Curve Development

Rating curves are based on open channel hydraulic relationships between stage (water level) and discharge. They are based on open-water conditions only and are not representative of ice-cover channel conditions. The y-axis represents the recorded stage level at the gauge and the x-axis the discharge. The rating curve equation represents the hydraulic reaction of flow a smoothly varying channel with increasing stage (or a constant control point at all stages) (Maidment 1993). The rating curve equation [6] has the form:

$$Q = C(h+a)^N$$
 [6]

Where Q is discharge in m^3/s , C is typically proportional to the channel width, (b+a) represents the depth of water above the stage of zero flow (water level where flow becomes zero) and the value of N is a function of the channel geometry (Maidment, 1993). If the pressure transducer is below the point of zero flow, the value of 'a' is negative; conversely a positive 'a' value indicates that it is above. Typically as the stage increases, the hydraulic control shifts from low flow hydraulic control to channel friction control or to ice

related controls. As a result multiple rating curve expressions for a single channel and various stages are often required to accurately represent the full range of flows.

By taking the log of both sides of the rating curve in equation [7], we obtain:

$$\log Q = \log C + N \log(h + a)$$
 [7]

the rating curve equation [8] takes the linear form y=mx+b and can be fit to the discharge rating points as a straight line. Rating curves may be developed using several different methods including fitting the calibration points by eye and the maximum likelihood solution. Given the small size of the channels at the Mount Nansen Site, the narrow range of stage changes, and channel instabilities, each rating curves is developed by fitting by eye within the Aquarius Time-Series Software environment (Aquarius Informatics Inc. 2014).

Rating curves are developed for stations with continuous water level loggers using surveyed water levels (stage) and instantaneous discharge measurements. A rating curve is considered preliminary if the following conditions are met: there are less than 10 reliable rating measurements (RISC 2009), if rating measurements do not capture an acceptable range of flows (*i.e.*, 10 %-200 % of mean discharge (MD)), or, if there is a high rating curve error.

Rating curves are developed with rating measurements obtained when the channel is ice free. Any rating measurement obtained during ice conditions are reported simply as instantaneous measurements. Rating curves are valid only for a defined rating period. A rating period represents a section of time where both the channel and hydrometric installation are stable.

Timely monitoring events during the spring freshet period allow the capture of higher spring flows. A conservative approach was adopted for presenting the continuous hydrometric record in this report. Predicting flood or low flows can introduce error into hydrologic analysis and should be carefully considered in the context of channel hydraulic geometry.

2.3.8 Continuous Stage and Discharge

A combination of HOBO (Model: U20-001-04, Onset Corporation) and Levelogger (Model Gold 3001, Solinst) pressure transducers are used on site. Two barometric and temperature data loggers (ATM-DC2 (HOBO) and ATM-DC4 (Solinst)) were maintained in the middle of the watershed near hydrometric station H-DC-B. All of the data loggers are non-vented pressure transducers that record water or air temperature and pressure.

The hydrostatic pressure data was compensated for atmospheric pressure using data from the barometric pressure logger located at ATM-DC4. Data from the redundant barometric loggers was not required.

Sensor depth below the surface of the water was calculated manually for the HOBO loggers submerged in the streams using the following relationship from the Euler equation [8] where:

$$H = \frac{P}{\gamma} + z$$
 [8]

Hydraulic head (*H*) or water depth above the sensor, hydrostatic pressure (*P*) in Pa, the specific weight of water $\gamma = pg$ where *p* is the density of water at a given temperature (kg m⁻³), *g* is acceleration due to gravity (m·s⁻²) and *z* is elevation above a datum. Density of water varies with temperature and given the wide range in stream temperatures throughout the year, the density was computed using the Thiesen-Scheel–Diesselhorst equation [9] (Maidment 1993):

$$\rho = 1000 \left[1 - \frac{t + 288.94}{508929.2(t + 68.12963)} (t - 3.9863)^2 \right]$$
 [9]

Where t = temperature (°C). The Solinst logger records at stream sites did not require water depth conversions because water depth is automatically calculated as an output from the record.

Continuous stage records are collected at 15 minute intervals and re-sampled to 30 minute intervals. Continuous discharge is calculated using the stage-discharge rating curve developed for the rating period at each respective station. The continuous stage record (rather than discharge record) is presented for stations where developing reliable rating curves is considered unsuitable due to channel conditions and available measurement techniques.

2.3.9 Hydrometric Data Management

Hydrometric data is compiled into a MS Access database after each visit to the Mount Nansen Site (*EDI 14-Y-0455 Hydrology Database.accdb*). The hydrometric database is designed to hold raw field data including hydrometric station metadata, station history, field measurements, survey data and data logger files. The hydrometric database is also used for QA/QC.

2.4 WATER QUALITY

During the Q1 period from April 1, 2014 to June 30, 2014, sampling occurred on a monthly basis except for in May 2014 when two sampling events took place to capture spring freshet. Water samples were collected at each of the 23 water quality sites, if conditions allowed, along with *in situ* data, photo documentation, and general site comments during each field visit. A list of sites, locations and sampling information are provided in Table 5. Note the sampling frequency varies by site, as some sites are sampled monthly, seasonally or only three times per year. AAM also requested that additional seep sites be sampled during the freshet period, including specific sites as well as opportunistic sites encountered by crews, focusing on the toe of the waste rock pile, exploration trenches, mill runoff, and the ore ramp. These additional freshet investigations resulted in an additional five sites being sampled during the May 2014 trips, at the request of AAM (Table 5). Details on the field methodology, laboratory analysis, QA/QC program and data analysis are provided in the following sections.

Table 5. Mount Nansen water quality site and sampling information.

Water Quality Site Name	Site ID	Site Location ¹ Easting Northing		Sampling Frequency	Parameters Included in Lab Analysis ²
Pony Creek upstream	WQ-PC-U	388955	6881745	Monthly	Standard Package
Pony Creek downstream	WQ-PC-D	389131	6881719	Monthly	Standard Package
Pit Lake (3 samples)	WQ-PIT-1,2,3	388913	6881625	Monthly	Pit Lake Package
Dome Creek at DX	WQ-DC-DX	387674	6881127	Monthly	Standard Package
Dome Creek at DX+105	WQ-DC- DX+105	387820	6881150	Monthly	Standard Package
Dome Creek at D1b	WQ-DC-D1b	388264	6880989	Monthly	Standard Package
Diversion Channel at Bridge	WQ-DC-B	389439	6880781	Monthly	Standard Package
Upper Dome Creek	WQ-DC-U	389788	6880565	Monthly	Standard Package
Dome Creek at Road	WQ-DC-R	391111	6880449	Monthly	Standard Package
Tailings Pond	WQ-TP	389427	6880625	Monthly	Standard Package
Seepage Pond Outlet Pipe	WQ-SEEP	389604	6880598	Variable ³	Standard Package, LT50
Mill Site Seep 08	WQ-MS-S-08	387954	6881073	3X Per Year	Standard Package
Back Creek	WQ-BC	391626	6880901	Monthly	Standard Package
Upper Victoria Creek	WQ-VC-U	391626	6880872	Monthly	Standard Package
Victoria Creek downstream Back Creek	WQ-VC-DBC	391633	6880740	Monthly	Standard Package
Victoria upstream of Minnesota	WQ-VC-UMN	392413	6879244	Monthly	Standard Package
Victoria Creek at Road	WQ-VC-R	392431	6878802	Monthly	Standard Package
Pump House Well	WQ-PW	391558	6880856	Monthly	Drinking Water Package
Dome East Slope Seep 01	WQ-DESS-01	388632	6881131	Seasonal ⁴	Standard Package
Dome East Slope Seep 02	WQ-DESS-02	388699	6881087	Seasonal ⁴	Standard Package
Dome East Slope Seep 03	WQ-DESS-03	388518	6881143	Seasonal ⁴	Standard Package
Upwelling near CH-P-13- 01	WQ-CH-P-13- 01	388640	6881165	Monthly	Standard Package

Water Quality Site Name	Site ID	Site Location ¹ Easting Northing		Sampling Frequency	Parameters Included in Lab Analysis ²
Lower West Toe of Waste Rock Pile Seep	WQ-LW-Seep- 01	388711	6881371	Seasonal ⁴	Standard Package
East Toe of NW Waste Rock Pile Seep	WQ-NW-SEEP- 02	388837	6881617	Freshet ⁵	Standard Package
Ore Ramp	WQ-ORE	388986	6881432	Freshet ⁵	Standard Package
Exploration Trench 01	WQ-ET-01	387804	6881017	Freshet ⁵	Standard Package
Lysimeter 2	WQ-L2	388712	6881457	Freshet ⁵	Standard Package
Mill Site Seep 03	WQ-MS-S-03	387884	6881121	Freshet ⁵	Standard Package

^{1 -} NAD 83, UTM Zone 8.

2.4.1 Field Sampling Methods

An Oakton T100 turbidity meter was used to collect *in situ* turbidity (NTU). This meter was calibrated on a monthly basis according to instrument specifications. A YSI ProPlus multi-meter was used to collect *in situ* water temperature (degrees Celsius), pH (pH units), specific conductivity (µS/cm), and in some cases dissolved oxygen (mg/L, for the pit lake). Field crews calibrated the YSI meter on a daily basis prior to each field day. Field data was recorded on standard field datasheets including site name, sample identifier, sample date and time, water temperature, specific conductivity, pH, photo numbers and a record of qualitative site conditions including flow stage (low, moderate, high), turbidity (clear, low, moderate, high), and ice observations (if present).

Laboratory-cleaned bottles were filled using clean techniques (*i.e.*, nitrile gloves, appropriate bottle handling) and samples were filtered and preserved on site, as directed by the lab (ALS Laboratories). Samples from the pit lake were taken from the same general location on the lake at three different depths, from the surface, at mid depth and just off the bottom. There was ice cover during a portion of the Q1 period (April to May), and the surface sample was collected from just below the base of the ice surface through an augered (during the April 2014 sampling event). A Van Dorn sampler was used to collect all samples and is also used to measure the depth. Once the pit lake was ice free (June 2014), a boat was used to access the sampling location, and samples were collected with a Van Dorn.

Samples were kept in coolers immediately following collection, and later transferred to the Mount Nansen Site sample refrigerator until they could be transferred to Whitehorse on the final day of each sampling event. For chemical analysis, Chain of Custody forms, supplied by the lab, were included in each sample

^{2 -} Parameters included in various sampling packages are explained in greater detail in Section 2.4.2, below.

^{3 -} Sampling frequency for this site was variable as the WQ-SEEP site is sampled on a monthly basis for the standard package samples and every second month for the LT50 samples.

^{4 -} Sampling frequency for these sites is seasonal as these seeps are to be sampled during freshet and every three months thereafter.

^{5 -} These sites were only sampled during the freshet period in May 2014, as per special request by AAM.

cooler, and samples were delivered to ALS Laboratories upon arrival back in Whitehorse, YT to ensure lab holding times were met.

2.4.2 Laboratory Analysis

All surface water quality laboratory analysis was conducted by ALS. Several lab analysis packages have been organized for the Mount Nansen Site, including a pit lake package (WQ-PIT), a drinking water package (WQ-PW), an LT50 package (WQ-SEEP), and a standard site package (all other sites). The parameters included in each package are outlined in Table 6.

Table 6. Laboratory analysis parameters included in various 'packages' created for surface water quality sampling at Mount Nansen (continues on next page).

Analysis Package	Parameters Included
Standard Site Package	Cyanides: Cyanate, Total Cyanide (as Strong Acid Dissociable), Weak Acid Dissociable, Thiocyanate
	Physical Tests: Conductivity, Hardness, pH, Total Dissolved Solids, Total Suspended Solids
	Anions and Nutrients: Bicarbonate, Carbonate, Hydroxide, Total Alkalinity, Total Ammonia, Chloride, Fluoride, Nitrate, Nitrite, Sulphate
	Total Metals : Aluminum, Antimony, Arsenic, Barium, Beryllium, Bismuth, Boron, Cadmium, Calcium, Chromium, Cobalt, Copper, Iron, Lead, Lithium, Magnesium, Manganese, Mercury, Molybdenum, Nickel, Phosphorus, Potassium, Selenium, Silicon, Silver, Sodium, Strontium, Sulfur, Thallium, Tin, Titanium, Uranium, Vanadium, Zinc.
	Dissolved Metals: Aluminum, Antimony, Arsenic, Barium, Beryllium, Bismuth, Boron, Cadmium, Calcium, Chromium, Cobalt, Copper, Iron, Lead, Lithium, Magnesium, Manganese, Mercury, Molybdenum, Nickel, Phosphorus, Potassium, Selenium, Silicon, Silver, Sodium, Strontium, Sulfur, Thallium, Tin, Titanium, Uranium, Vanadium, Zinc.
Pit Lake Package	Physical Tests: Conductivity, Hardness, pH, Total Dissolved Solids, Total Suspended Solids
	Anions and Nutrients: Bicarbonate, Carbonate, Hydroxide, Total Alkalinity, Total Ammonia, Chloride, Fluoride, Nitrate, Nitrite, Sulphate
	Total Metals: Aluminum, Antimony, Arsenic, Barium, Beryllium, Bismuth, Boron, Cadmium, Calcium, Chromium, Cobalt, Copper, Iron, Lead, Lithium, Magnesium, Manganese, Mercury, Molybdenum, Nickel, Phosphorus, Potassium, Selenium, Silicon, Silver, Sodium, Strontium, Sulfur, Thallium, Tin, Titanium, Uranium, Vanadium, Zinc.
	Dissolved Metals: Aluminum, Antimony, Arsenic, Barium, Beryllium, Bismuth, Boron, Cadmium, Calcium, Chromium, Cobalt, Copper, Iron, Lead, Lithium, Magnesium, Manganese, Mercury, Molybdenum, Nickel, Phosphorus, Potassium, Selenium, Silicon, Silver, Sodium, Strontium, Sulfur, Thallium, Tin, Titanium, Uranium, Vanadium, Zinc.
Drinking Water Package	Physical Tests: True Colour, Conductivity, Hardness, pH, Total Dissolved Solids, Turbidity
	Anions and Nutrients: Alkalinity, Total, Chloride, Fluoride, Nitrate, Nitrite,

Analysis Package	Parameters Included
	Sulphate
	Total Metals: Aluminum, Antimony, Arsenic, Barium, Boron, Cadmium, Calcium, Chromium, Copper, Iron, Lead, Magnesium, Manganese, Mercury, Potassium, Selenium, Sodium, Uranium, Zinc.
LT50	LT50 test, 96-hr test to be conducted with Rainbow trout.

2.4.3 QA/QC Program

A QA/QC sampling program was conducted as part of the monitoring program, including two to three duplicate samples, a field blank sample and a trip blank sample. These are described in detail below:

- Duplicate samples are essentially sample replicates collected at the same date, time and location as the regular sample. All sampling methodology is the same, as if it is a separate site. Duplicates were collected from two to three sites, randomly selected, during each trip. The number of duplicates collected per trip depended on the total number of sites being sampled, to cover approximately 10% of the total sites sampled. The duplicate samples were conducted to check the accuracy and precision of the laboratory analysis.
- The field blank sample was collected on site as well, where a set of sample bottles was filled with deionized water at some point during the sampling trip. Sampling methodology was the same as if sampling from a stream, with filtering and preserving as required. The purpose of a field blank is to identify any contamination introduced to the sample during the act of field sampling (*i.e.*, sample filling/handling, exposure to questionable air quality) or via the supplies (filter, syringe, bottle, or preservative).
- The travel blank was a sample set provided by the laboratory to be carried by the staff to and from site during the field work. The travel blank was not opened at any time during the trip. The purpose of including a travel blank is to identify any contamination of the sample caused during transportation or storage.

Following receipt of the laboratory analysis results, a review of the QA/QC sample results was completed. This involved comparing the duplicate samples and the regular samples collected at the randomly selected replicate sites to ensure they were within acceptable limits of each other (within +/-10%). Field and travel blank sample data was also reviewed to ensure that concentrations of all potential contaminants were low to below detection limits.

2.4.4 Data Analysis

For the purpose of this data report, the data were reviewed and parameters of concern were graphed and compared with the Canadian Council of Ministers of the Environment (CCME) guidelines for the protection of freshwater aquatic life (CCME-AL; CCME 2014; Table 7), and with the Effluent Quality Standards (EQS) outlined in Yukon Water Board Water license No. QZ94-004, issued to BYG Natural

Resources Inc. on February 13, 1996 (Table 8). Drinking water quality from the WQ-PW site was compared to the applicable Guidelines for Canadian Drinking Water Quality (Health Canada 2012; Table 9).

Table 7. CCME-AL guidelines applicable to Mount Nansen surface water quality sampling program (CCME 2014).

Water Quality Parameter	CCME-AL Guideline	Units	Comments
Aluminum (AI)	0.1	mg/L	CCME is 0.1 at pH > 6.5, if pH is lower than 6.5, guideline is set at 0.005 mg/L
Ammonia (Total N)	0.75	mg/L	Guideline is temperature and pH dependent. This represents a highly conservative guideline calculated for a pH of 8.5 and a water temperature of 0°C. Guideline decreases with increasing pH and temperature.
Arsenic (As)	0.005	mg/L	-
Cadmium (Cd)	0.000033	mg/L	Guideline is hardness dependent; this value is for a hardness of 100 mg/L, conservative for the Mount Nansen Site.
Chloride (CI)	120	mg/L	-
Chromium (Cr)	0.0089	mg/L	-
Copper (Cu)	0.002	mg/L	Guideline is hardness dependent; this value is for a hardness of 100 mg/L, conservative for the Mount Nansen Site.
Total Cyanide	0.005	mg/L	SAD Cyanide is used as a measure of total cyanide
Fluoride (F)	0.120	mg/L	-
Iron (Fe)	0.3	mg/L	-
Lead (Pb)	0.003	mg/L	Guideline is hardness dependent; this value is for a hardness of 100 mg/L, conservative for the Mount Nansen Site.
Mercury (Hg)	0.000026	mg/L	-
Molybdenum (Mo)	0.0073	mg/L	-
Nickel (Ni)	0.1	mg/L	Guideline is hardness dependent; this value is for a hardness of 100 mg/L, conservative for the Mount Nansen Site.
Nitrate (N)	13	mg/L	-
Nitrite (N)	0.06	mg/L	-
рН	6.5 - 9.0	рН	-
Selenium (Se)	0.001	mg/L	-
Silver (Ag)	0.0001	mg/L	-
Thallium (TI)	0.0008	mg/L	-
Uranium (U)	0.015	mg/L	-
Zinc (Zn)	0.03	mg/L	-

Table 8. Mount Nansen Effluent Quality Standards outlined in Yukon Water License #QZ94-004.

Water Quality Parameter	Effluent Discharge Standard
рН	6.0 to 8.5 pH
Total Suspended Solids (TSS)	50 mg/L
Toxicity (LT50 – 96 hr. for rainbow trout, pH non-adjusted)	100%
WAD Cyanide	0.1 mg/L
Total (SAD) Cyanide	0.3 mg/L
Antimony (Total)	0.15 mg/L
Arsenic (Dissolved)	0.15 mg/L
Barium (Total)	1.0 mg/L
Cadmium (Total)	0.02 mg/L
Chromium (Total)	0.04 mg/L
Copper (Total)	0.2 mg/L
Iron (Total)	1.0 mg/L
Lead (Total)	0.1 mg/L
Manganese (Total)	0.5 mg/L
Mercury (Total)	0.005 mg/L
Nickel (Total)	0.3 mg/L
Silver (Total)	0.10 mg/L
Zinc (Total)	0.30 mg/L

Table 9. Applicable Guidelines for Canadian Drinking Water Quality for WQ-PW (Health Canada 2012).

Water Quality Parameter	Health Canada Guideline
Antimony	0.006 mg/L
Arsenic	0.010 mg/L
Barium	1.0 mg/L
Boron	5.0 mg/L
Cadmium	0.005 mg/L
Chromium	0.05 mg/L
Fluoride	1.5 mg/L
Lead	0.010 mg/L
Mercury	0.001 mg/L
Nitrate	45 mg/L
Selenium	0.01 mg/L
Uranium	0.02 mg/L

3 RESULTS

Results are separated into the three program components: meteorology, hydrology, and water quality results. Select field photographs for the Q1 period and for each site and station are provided in Appendix A. A record of which sites were sampled during each field visit during the Q1 period is available in Appendix B. All field datasheets for hydrology and water quality are provided in Appendix C. Hydrometric data is provided in Appendix D and water quality data in Appendix E. Meteorological data is provided in Appendix F. All raw data is provided in the corresponding Microsoft Excel databases.

The description and discussion of the results presented in this document is limited to the data collected in the Q1 period.

3.1 METEOROLOGY

Meteorological data from the ATM-ROAD AAM station is summarized below for the Q1 period. Meteorological data is only available between April 10 to June 30, 2014 as a result of calibration tests and reinstallation of the components on April 10, 2014. All relevant data from ATM-ROAD AAM station is plotted in Appendix F (Figures F-1 to F-8), with selected summary statistics described below for air and ground temperature, precipitation, wind direction and wind speed, radiation and relative humidity. Daily summary statistics for the Q1 period from the meteorological station are provided in Appendix F – Table F-1. All raw data is provided in the meteorological database (EDI 14Y0455 Meteorological Database 2014-2015.accdb).

3.1.1 Air and Ground Temperature

Minimum mean daily air temperature at the ATM-ROAD-AAM station for the Q1 period, was -14.2°C on April 12, 2014 (Appendix F: Figure F-1). Mean daily air temperatures started staying above zero degrees on April 26, 2014. However, there was also a period in late May, when mean daily air temperatures dropped below zero degrees again (-0.9°C on May 21, 2014 and -0.016°C on May 22, 2014). This colder period corresponded with precipitation falling as snow (see Section 3.1.2). Maximum mean daily air temperature during the same period was 19.7°C on June 30, 2014.

Mean daily ground temperatures reached a maximum of 23.6°C on June 29, 2014 (Appendix F: Figure F-1). Minimum mean daily ground temperatures reached -8.7°C on April 12, 2014. Mean daily ground temperatures reached temperatures great than 0°C starting in May 4, 2014.

3.1.2 Precipitation

Precipitation measured as rainfall occurred sporadically between April 8, 2014 and June 30, 2014 (Appendix F: Figure F-2). A total of 53.8 mm of rain fell during the Q1 period, with 4.5 mm of rain in April 2014, 23.5

mm of rain in May 2014, and 25.8 mm of rain in June 2014. The maximum hourly rainfall event recorded at the station occurred during June 15, 2014 at 16:00 hours, when a max of 4 mm/hr fell.

The max snow depth during the Q1 period was measured on April 13, 2014, at 62.83 cm (Appendix F: Figure F-2). Cumulative snow depth at the station gradually declined from 62.83 cm on April 13, 2014 to around zero centimetres by May 4, 2014 (Appendix F: Figure F-3, Table F-1). The highest hourly snowfall event during the Q1 period was 3.2 cm on April 22, 2014. Of note, during the May 20-21, 2014 sampling event precipitation was falling as snow, this corresponded with a slight increase in snow depth at the meteorological station (total snow depth 0.626 cm).

3.1.3 Wind

Wind speeds are generally low, with average wind speeds for the Q1 period 2.5 m/s (9.00 km/hr) (Appendix F: Figure F-4). Average monthly wind speed was highest in June, at 2.97 m/s (10.69 km/hr). The maximum mean daily wind speed recorded for the Q1 period was 9.92 m/s (35.71 km/hr) occurring on June 18, 2014. Dominant wind directions at the Mount Nansen Site are south, southwest and southeast (Appendix F: Figure F-5).

3.1.4 Short and Long Wave Radiation

Net radiation is the balance of solar energy emitted from the sun in the form of short- and long-wave radiation and the surface of the earth. The balance of radiation fluxes exhibits the seasonal pattern typical of northern latitudes with similar vegetation cover. As ground surface attributes change (*i.e.*, the accumulation and disappearance of snow) and solar insolation angles shift in the spring and fall, the net solar radiation swings from ~0 W/m² to over 600 W/m² in the summer months. Net radiation exhibits a diurnal cycle associated with increases and decreases in received solar insolation (Appendix F: Figure F-6). During the Q1 period, net radiation values gradually increased from April to June 2014, with values fluctuating between -100 W/m² and 100 W/m² in early April 2014 and around -100 W/m² to up to 500 W/m² in May and June 2014. Some lower radiative flux values occurred late-May and late-June 2014, likely due to reduced solar insolation.

3.1.5 Relative Humidity

Relative humidity at Mount Nansen generally remains above 30%, and fluctuates up to 100% (Appendix F: Figure F-7, Table F-1). Average relative humidity during the Q1 period was 55.5%. Minimum and maximum relative humidity for the Q1 period were 15.6% (April 16, 2014) and 99.1% (April 19, 2014).

3.2 HYDROLOGY

Up to a total of four discharge measurement events were performed between April 1 and June 30, 2014 and are included in this quarterly report. The peak flow associated with snowmelt occurred between May 5 and May 9, 2014 depending on the watershed. Many of the continuous data loggers were not installed due to ice at the time of the snowmelt peak, but those that remained in place over winter captured the peak stage. At

Middle Dome Creek (H-DC-M) the peak occurred on May 5 while in Victoria Creek (H-VC-U), the peak snowmelt stage occurred on May 9, 2014. A summary of each hydrometric measurement event is presented in Appendix D, in addition to the measured discharge, river stage elevations and hydrographs are presented for each station. All raw data is provided in the hydrology database (EDI 14-Y-0455 Hydrology Database 2014-2015.accdb).

The following sections describe the results from each gauging station. All stations remained frozen to substrate or with ice cover during the first site visit of the Q1 period on April 14-15, 2014. The following visit on May 8-9, 2014 ice was still present on the banks at several hydrometric station, but all channels had open water and high flows. In Victoria Creek and Back Creek, it appeared that the peak water level had occurred prior to the visit, as evidenced by flow markers at or above bankfull, but the high water markers may be a result of meltwater flowing over ice in the channel. Based on continuous logger data, it appears that the peak snowmelt occurred just before the site visit on May 8-9, 2014. At H-DC-D1b, ice was observed in the channel until May 21, 2014.

Some hydrometric stations in the upper reaches of the Dome Creek watershed have higher discharge estimate uncertainty or an absence of measurement because of environmental factors complicating field measurements. These environmental factors included discharge below reportable confidence limits (i.e., <0.001 m³/s), excessive vegetation in the channel, and the presence and accumulation of aufeis into spring. Professional judgement was used to assess the limits of stream gauging instruments and appropriate methods for low-flow and ice-cover conditions.

A full summary of hydrometric monitoring records for the quarterly monitoring period is recorded in Appendix D, Table D-3. Barometric pressure time-series, hydrographs, water surface stage elevations and rating curves are presented in Appendix D for all stations. A copy of the updated hydrometric database containing all raw field data accompanies this report.

Hydrometric gauging and data collection at all stations is designed to meet the Grade A data standard defined by British Columbia's RISC (see RISC, 2009). The Grade A data standard is the highest level of data quality in the hierarchy of provincial standards and is similar to that in the National standards. Grade A criteria are met when instrumentation, stream channel conditions, field procedures, data calculation and assessment meet the requirements specified in RISC (2009). However, due to small channel sizes, discharge rating accuracy and challenging operating conditions at the site, data is considered to be on average Grade B. Uncertainties associated with the instruments used for hydrometric monitoring is presented in Table D-1 in Appendix D.

3.2.1 Dome Creek

3.2.1.1 H-DC-DX+105

Located 105 m downstream of WQ-DC-DX, station H-DC-DX+105 represents a drainage area of 0.52 km². The station receives groundwater contributions associated with the road and mill building pad cut out upstream of the station. The channel is poorly defined with a bed of predominantly sand and silts.

Channel depth averages 0.60 m wide and 0.05 m deep and is generally unsuitable for cross-section area and salt dilution gauging. The station typically has thinner ice or remains ice-free in the winter months, however the station was frozen to bed on April 14, 2014 and zero flow was observed. Three discharge measurements were completed at this station between April 1, 2014 and June 30, 2014. On May 8, 2014 there was moderate flow with a saturated floodplain and a salt tracer measurement was obtained (0.019 m³/s). On May 21, the flow remained moderately high for the station (0.011 m³/s). Flow declined at the end of June; a discharge of 0.001 m³/s was obtained on June 24, 2014. The measurements on May 21 and June 24 are flagged as estimates due to poor channel conditions for a salt tracer measurement. The poor channel conditions were a result of substantial algal growth and pools that have developed in the channel that could attenuate the salt tracer flow. Background specific conductivity measured during the tracer measurements increased through the Q1 monitoring period from 73.1 μS/cm to 1,186 μS/cm.

3.2.1.2 H-DC-D1b

The channel at H-DC-D1b is approximately 0.35 m wide, 0.13 m deep, and is unsuitable for cross-section velocity and often unsuitable for salt dilution gauging. Similar to other stations within the Dome Creek watershed, thick layers of aufeis (commonly referred to as creek 'glaciation') develops through the winter period as a surface expression of groundwater contribution to the channel. Complex, braided channels develop within the ice cover during the spring melt period, making hydrometric gauging nearly impossible. No discharge measurements were obtained during the first three site visits as a result of significant ice accumulation and complex flow networks. One discharge measurement was collected at H-DC-D1b using a salt tracer during the Q1 period, however there is increased uncertainty associated with the measurement due to unstable background conductivity readings. The salt tracer discharge estimate for June 24, 2014 was 0.005 m³/s. Station discharge measurements collected at H-DC-D1b are presented in Appendix D.

3.2.1.3 H-DC-B

The H-DC-B station is a continuous gauging station during the open water season established at the downstream end of the Dome Creek diversion channel, downstream of the bridge. The channel is approximately 1.27 m wide and 0.15 m deep with significant quantities of sediment transport downstream as a result of channel disturbance through the winter period, non-cohesive bank material and erosion of upstream bank material during rain events.

Three salt tracers were used at the station during the Q1 period. Ice was present in the channel on the April 14, 2014 site visit with water flowing through multiple layers of ice (unsuitable for measurement). Salt tracers on May 8, May 20 and June 24, 2014 indicated that the discharge was 0.119 m³/s, 0.040 m³/s and 0.010 m³/s respectively. The continuous gauging station was re-established on June 24, 2014 when the channel was ice-free after removal during the winter due to ongoing channel maintenance work to reduce icing issues at the bridge location. Station discharge measurements collected at H-DC-B are presented in Appendix D.

3.2.1.4 H-TP

The tailings pond station (H-TP) is a water level monitoring station only. There are two staff gauges installed at the tailings pond. Staff gauge readings are collected when the tailings pond is ice free. On April 14, 2014, and May 9, 2014 no staff gauge readings were collected because ice cover was still present. Readings were collected on May 21, 2014 (0.877 m (lower staff gauge) and June 24, 2014 (0.629 m lower staff gauge).

3.2.1.5 H-SEEP

The Seepage Pond Outlet (H-SEEP) is an instantaneous hydrometric monitoring station where a volumetric measurement is collected during each site visit. Volumetric measurements are collected at the pipe outlet that discharges to Dome Creek. In addition, readings are obtained from the flow meter operated by AAM in the Seepage Pond pump house. The pump house flow meter units of measurement are litres per minute (L/min). DES manages pumping rates from the seepage pond on a daily basis by maintaining pond levels at 0.2 m on the staff gauge installed at the pump house (based on communications with R. Wilkinson, DES).

Volumetric measurements at the pipe outlet and readings observed at the flow meter (shown in *italics*) were collected on April 14, 2014 (0.003 m³/s, 147.771 L/min) May 9, 2014 (volumetric not collected, 298.251 L/min), May 21, 2014 (0.001 m³/s, 51.422 L/min) and June 26, 2014 (0.003 m³/s, 34.281L/min to 154.138 L/min - changed while on site). Measurements collected by EDI (Appendix D, Table D-5) are plotted with daily instantaneous measurements observed on the flow meter by DES at the end of each day (Appendix D, and Figure D-5). On May 21, 2014 the measurement obtained by EDI was substantially lower than that report by DES. Communications with DES about this measurement indicated that EDI had collected the measurement during power shut down during the day and the measurements reflects siphon flow that occurs when the pump is shut down. DES's measurement for that same day reflects the flow after power and seepage pond pumping was restored later in the day. Similarly on June 26, 2014 the change of flow meter readings is assumed to be associated with pumping and/or power shut downs.

3.2.1.6 H-DC-M

A continuous monitoring station operates within the middle reaches of Dome Creek at H-DC-M, downstream of the seepage pond outlet. This station is intended to measure the cumulative flow from the seepage pond outlet and the diversion channel (H-SEEP and H-DC-B). The channel is moderately well defined within fine grained substrate. Some cobble to boulder sized material persists upstream in the diversion channel where stream gradients are greater. The channel averages 1.08 m in width and 0.16 m in depth. Salt dilution gauging was the primary discharge method measurement due to channel conditions being unsuitable for the ADV.

EDI identified that the hydrometric measurements obtained at this site could be improved (by reducing discharge measurement uncertainty) with the installation of a v-notch weir at a location approximately 15 m upstream of the existing station. A weir provides an opportunity for volumetric measurements and discharge

measurements based on a rating equation for the weir structure; both methods would reduce uncertainty associated with salt tracers at this station.

Discussions with AAM resulted in a plan to construct the weir and install a new water level logger in the head pond. A v-notch weir was installed on May 20 and completed on June 23, 2014 by EDI. The field crew encountered frozen soils in the banks and high flows in the channel during construction therefore the final sealant around the weir was held off for the next visit in June when flows were expected to be lower.

Continuous stage measurements were collected over Q1 period using the original water level logger. Discharge measurements were obtained using salt tracers. Once the weir and new water level logger were in place, a volumetric measurement and weir head measurement will be obtained instead.

Continuous water stage elevations and discharge measurements are presented in Appendix D which covers the Q1 monitoring period. Discharge measurements during the Q1 period were collected on April 14, 2014 (salt = 0.002 m³/s), May 8, 2014 (salt = 0.154 m³/s), May 20, 2014 (salt = 0.045 m³/s) and June 23, 2014 (volumetric = 0.009 m³/s; salt = 0.012 m³/s). Ice was still present in the channel on April 14, 2014. H-DC-M stage time-series are presented in Appendix D.

A rating curve for H-DC-M was established for the station following the 2012-2013 monitoring year (EDI 2014a). This rating curve was subsequently updated with additional measurements collected during high flows and additional measurements obtained in Q1 through Q3 of 2013-2014. Table 10 summarizes the rating curve expressions presented for the 2012-2013, 2013-2014 rating periods. There were insufficient data points to develop a rating curve for H-DC-M for the open water season of 2014. A rating curve will be produced at the end of the Q2 period.

Table 10. Middle Dome Creek (H-DC-M) open water rating curve equations.

Stage (m)	Discharge (m³/s)	Offset (m)	Slop e	Equation		
Rating Curve, April, 2012 to March, 2	Rating Curve, April, 2012 to March, 2013 (EDI 2013c)					
1.556	0.005	1.5	-	-		
1.701	0.060	1.5	1.98 6	Q = 1.44074 (h- 1.5) ^{1.98631}		
2.003	0.356	1.5	1.95 0	Q = 1.35912 (h- 1.5) ^{1.94996}		
Rating Curve, April, 2013 to March, 2	014 (EDI 2014a)	•				
1.550	0.001	1.52	-	-		
1.891	0.771	1.52	2.55 8	Q=10.60 (h-1.52) ^{2.64}		
Rating Curve, April, 2014 to June, 2014						
Insufficient measurement events to produce a curve for Q1	-		-	-		

3.2.1.7 H-DC-R

The station at H-DC-R was re-established on June 23, 2014. The station was re-established at this time because this section of Dome Creek accumulates significant quantities of ice due to the broad, flat nature of the valley bottom. The station was removed prior to the winter months in October, 2013. As a result of ice accumulation within the Dome Creek valley throughout the winter period, no discharge measurements were collected during the 2013/14 Q4 period at the H-DC-R station and ice still prohibited measurements on April 14, 2014 at the beginning of Q1. During the Q1 period three discharge measurements were obtained; each used the salt tracer method however the May 8, 2014 measurement was still influenced by ice in the channel. The discharges on May 8, May 20 and June 23, 2014 were 0.152 m³/s, 0.056 m³/s and 0.014 m³/s. There were insufficient data points to develop a rating curve for H-DC-R for the open water season of 2014. A rating curve will be produced at the end of the Q2 period. The continuous logger was re-installed after ice melt on June 23, 2014 and a new rating period will be established for the 2014 open water season following Q2. The rating curve equations for H-DC-R are shown in Table 11.

Table 11. Dome Creek at the Road (H-DC-R) open water rating equations.

Stage (m)	Discharge (m³/s)	Offset (m)	Slope	Equation	
Rating Curve, April, 2012 to March, 2013 (EDI 2013c)					
0.2747	0.002	0.16	-	-	
0.6621	0.100	0.16	2.758	Q = 0.666494 (h- 0.16) ^{2.75760}	
1.062	0.477	0.16	2.671	$Q = 0.628053 \text{ (h-} \\ 0.16)^{2.67137}$	
Rating Curve, April, 2013 to March, 2	2014 (EDI 2014a)				
0.274	0.002	0.125	-	-	
1.062	0.477	0.125	2.98	Q = 0.579 (h - 0.125) ^{2.98}	
Rating Curve, April 2014 to June, 2014					
Insufficient measurement events to produce a curve for Q1	-	-	-	-	

3.2.2 Back Creek

3.2.2.1 Back Creek (H-BC)

A continuous station on Back Creek at H-BC was re-installed on May 21, 2014 when the channel was ice-free. The channel is stable and entrenched into alluvial sediments of both the Back Creek and Victoria Creek floodplains. Wetted channel width averages 1.30 m and 0.20 m in depth. Small channel sizes prohibit the use of the ADV as a standard discharge measurement method; therefore, all discharge measurements were made using the salt dilution method. Typically upstream placer activity increases the sediment load observed within the creek, however during the Q1 period the channel was completely dry (zero flow) on one occasion

(June 24, 2014); an unusual observation for this station. EDI suspects that placer operations upstream are now withdrawing from the Back Creek channel resulting in de-watering in the channel.

No discharge measurements were collected on April 15, 2014 due to overflow ice accumulation or June 24, 2014 due to the absence of flow, therefore two discharge measurements were obtained during the Q1 period on May 9 and May 21, 2014 using salt tracer methods; the discharges were 0.373 m³/s and 0.047m³/s. Observations on May 9, 2014 indicated that overbank flows were present prior to the site visit. The high water levels may have been the result of peak freshet flows or high water flowing over ice during the melt, artificially elevating the stage.

Previously reported open water rating curves in the 2013-2014 reports remain unchanged for the Q1 reporting period. The continuous logger was re-installed after winter on May 21, 2014 and a new rating period will be established for the 2014 open water season, following Q2. Rating curves are presented in Table 12. Time-series water stage and hydrographs for the Q1 monitoring period are presented in Appendix D.

Table 12. Back Creek (H-BC) open water rating curve equations.

Stage (m)	Discharge (m³/s)	Offset (m)	Slope	Equation	
Rating Curve, April, 2012 to March, 2013 (EDI 2013c)					
1.630	0.001	1.62			
1.893	0.063	1.62	1.252	Q = 0.319 (h- 1.62) ^{1.252}	
2.168	0.602	1.62	3.244	Q = 4.239 (h- 1.62) ^{3.244}	
Rating Curve, April, 2013 to March, 20	14 (EDI 2014a)				
1.63	0.001	1.49	-	-	
2.168	0.602	1.49	4.057	Q = 2.91 (h - 1.49) ^{4.06}	
Rating Curve, April, 2014 to June 2014					
Insufficient measurement events to produce a curve for Q1	-	-	-	-	

3.2.3 Victoria Creek

3.2.3.1 Upper Victoria Creek (H-VC-U)

The Upper Victoria Creek gauging station (H-VC-U) continuously monitors Victoria Creek stage elevations downstream of the former H-VC-REF station (decommissioned in January 2014), and approximately 65 metres upstream of the Back Creek confluence. A thin ice cover during the winter months indicates the presence of groundwater contributions to the channel in the vicinity.

Discharge measurements were collected under ice conditions at H-VC-U on April 15, 2014 using the velocity-area mid-section method with a Swoffer current meter (0.033 m³/s) and also using a salt tracer

 $(0.083 \text{ m}^3/\text{s})$. Measurements were obtained on May 9, 2014 (1.929 m³/s), May 21, 2014 (0.556 m³/s) and June 24, 2014 (0.172 m³/s) using the ADV in the Q1 monitoring period.

Rating curves for the 2012-2013 and 2013-2014 rating periods are presented in Table 13. Continuous stage records and time-series hydrographs for April 1, 2014 through June 30, 2014 are presented in Appendix D. Based on the 2014 water level data, the peak stage occurred on May 9, 2014, after the site visit. Winter discharge measurements were not used in rating curve expressions due to the presence of ice in the channel.

Table 13. Upper Victoria Creek (H-VC-U) open water rating curve equations.

Stage (m)	Discharge (m³/s)	Offset (m)	Slope	Equation		
Rating Curve, April, 2012 to March, 2013 (EDI 2013c)						
1.986	0.038	1.85	-	-		
2.385	2.632	1.85	3.098	$Q = 18.2757 (h-1.85)$ $_{3.09810}$		
2.641	8.465	1.85	2.987	Q = 17.0539 (h- 1.85) ^{2.98748}		
Rating Curve, April, 2013 to March, 2014 ((EDI 2014a)					
2.018	0.109	1.86	-	-		
2.516	5.770	1.86	2.789	Q = 18.702 (h - 1.86) ^{2.789}		
Rating Curve, April 2013 to June, 2014						
Insufficient measurement events to produce a curve for Q1	-	-	-	-		

3.2.3.2 Victoria Creek, downstream of Back Creek (H-VC-DBC)

The Victoria Creek gauging station downstream of Back Creek (H-VC-DBC) continuously monitors Victoria Creek stage elevations downstream of the Back Creek confluence. The continuous gauging station H-VC-DBC was visited four times during the Q1 period. The ice cover at this station during the winter is thicker than that observed upstream at H-VC-U (approximately 5 to 6 cm). Ice cover was present on the channel during the April 15, 2014 visit where salt tracer and velocity-area mid-section methods were used to obtain discharge measurements. Three additional station visits occurred in Q1 where discharge measurements were collected using the ADV on May 9, 2014 (2.388 m³/s), May 21, 2014 (0.627 m³/s) and June 24, 2014 (0.177 m³/s). Based on continuous measurements collected from the station, the peak stage occurred on May 9, 2014 after the site visit.

Continuous stage measurements and hydrograph is presented in Appendix D. Rating curve expressions are shown in Table 14 and include previously reported rating curve expressions for the 2012-2013 and 2013-2014 rating periods. Winter discharge measurements were not used in rating curve expressions due to the presence of ice in the channel. There were insufficient rating measurements during Q1 during the new rating curve period and therefore there was insufficient data to produce a new curve; the curve will be developed with subsequent quarterly reports.

Table 14. Victoria Creek, downstream of Back Creek (H-VC-DBC) open water rating curve equations.

Stage (m)	Discharge (m³/s)	Offset (m)	Slope	Equation		
Rating Curve, April, 2012 to March, 20	Rating Curve, April, 2012 to March, 2013 (EDI 2013c)					
1.681	0.178	1.316	-	-		
2.048	2.090	1.316	3.538	Q = 6.30234 (h- 1.316) ^{3.53797}		
2.315	9.631	1.316	4.913	Q = 9.67846 (h- 1.316) ^{4.91302}		
Rating Curve, April, 2013 to March, 20	14 (EDI 2014a)					
1.720	0.109	1.65	-	-		
2.147	5.220	1.65	1.568	Q = 6.189 (h - 1.65) ^{1.568}		
Rating Curve, April, 2013 to June, 2014						
Insufficient measurement events to produce a curve for Q1	-	-	-	-		

3.2.3.3 Victoria Creek, upstream of Minnesota Creek (H-VC-UMN)

Victoria Creek upstream of Minnesota Creek (H-VC-UMN) is located in a straight reach upstream of the Minnesota Creek confluence. The channel averages 5.7 m in width and 0.20 m in depth, with channel conditions suitable for standard discharge measurement methods using the ADV. Four discharge measurements were collected during the Q1 monitoring period. Measured discharge was 0.022 m³/s (Swoffer) on April 15, 2014 under ice conditions. Discharge was measured using the ADV on May 9, 2014 (2.605 m³/s), May 21, 2014 (0.702 m³/s) and on June 24, 2014 (0.188 m³/s).

Originally established as an instantaneous discharge measurement location, a continuous station was deployed in 2012. The logger was removed on October 16, 2013 for the winter period and re-installed on May 21, 2014. There was some ice damage to the station over winter and repairs were required. As a result, a new rating period (new rating curve) was initiated on May 21, 2014.

Rating curve expressions for H-VC-UMN are presented in Table 15 and include previously reported rating curve expressions for the 2012-2013 and 2013-2014 rating periods. Winter discharge measurements were not used in rating curve expressions due to the presence of ice in the channel. There were only two rating measurements during Q1 during the new rating curve period and therefore there was insufficient data to produce a new curve; the curve will be developed with subsequent quarterly reports.

According to continuous logger records over the period of record, peak stage associated spring freshet occurred on May 9, 2014 after the site visit. The continuous stage and hydrograph records for H-VC-UMN are found in Appendix D.

Table 15. Victoria Creek, upstream of Minnesota Creek (H-VC-UMN) open water rating curve equations.

Stage (m)	Discharge (m³/s)	Offset (m)	Slope	Equation
Rating Curve, Apri	l, 2012 to March, 2013	(EDI 2013c)		
1.382	0.019	0.979		
1.780	1.214	0.979	6.037	Q = 4.63406 (h-0.979) ^{6.03671}
1.954	3.684	0.979	5.647	Q = 4.25022 (h-0.979) ^{5.64705}
2.140	9.980	0.979	5.708	Q = 4.25676 (h-0.979) ^{5.70783}
Rating Curve, Apri	l, 2013 to March, 2014	(EDI 2014a)		
1.411	0.049	0.98		
2.066	6.271	0.98	4.250	$Q = 4.066 (h - 0.979)^{5.250}$
Rating Curve, May	, 2014 to June, 2014			
Insufficient measurement events to produce a curve for Q1	-	-	-	-

3.2.3.4 Victoria Creek at Road (H-VC-R)

Victoria Creek at Road (H-VC-R) station was established in 2011 as a continuous gauging station. The station is located 90 metres downstream of the Mount Nansen Road culvert in a low gradient, meandering section of the channel. Channel widths average 6.7 m and 0.25 m in depth at the discharge measurement location. The channel geometry and downstream hydraulic control (riffle) shifted after the 2014 freshet due to a large slug of sediment deposited in the immediate vicinity of the hydrometric station. This change to channel geometry also caused the relationship between stage and discharge to change therefore a new rating period was initiated on May 20, 2014.

Four discharge measurements were collected during the Q1 monitoring period using the ADV and salt slug injection methods. Measured discharge was 0.261 m³/s on April 14, 2014, 3.204 m³/s on May 8, 2014, 0.758 m³/s on May 20, 2014 and 0.179 m³/s on June 23, 2014.

Rating curve expressions for the H-VC-R station are presented in Table 16 in addition to the 2012-2013 monitoring period rating curve expressions. Continuous stage measurements are collected at H-VC-R. There was only one rating measurement during Q1 during the new rating curve period and therefore there was insufficient data to produce a new curve; the curve will be developed with subsequent quarterly reports. Stage time-series and hydrographs are presented in Appendix D.

Table 16. Victoria Creek at Road (H-VC-R) open water rating curve equations.

Stage (m)	Discharge (m³/s)	Offset (m)	Slope	Equation		
Rating Curve, April, 2012 to March, 2013 (EDI 2013c)						
1.849	0.057	1.51	-	-		
2.196	4.015	1.51	6.041	$Q = 39.1267 (h-1.51)^{6.04113}$		
2.307	9.974	1.51	6.067	$Q = 39.5133 (h-1.51)^{6.06722}$		
Rating Curve, April, 2013 to Septemb	er, 2013 (EDI 2014a)					
2.010	0.149	1.90	-	-		
2.541	10.340	1.90	2.406	$Q = 30.139 (h - 1.90)^{2.406}$		
Rating Curve, May 2014 to June 2014						
Insufficient measurement events to produce a curve for Q1	-	-	. 1	-		

3.2.4 Pony Creek

3.2.4.1 Upper Pony Creek (H-PC-U)

The Upper Pony Creek gauging station was established in 2009 to supplement a hydrogeological investigation (AECOM, 2010). Located in the upper reaches of Pony Creek, the station drains an area of 0.84 km² which has been historically disturbed by mineral exploration activities and more recently, by placer mining activities. The channel near the station is approximately 0.1 to 0.3 metres deep and 0.25 to 0.75 metres wide and is dominated by shrubs, mosses and grasses along the banks of the channel. A v-notch weir was installed to measure discharges at the station and used for hydrometric measurements in 2012-2013. Following freshet in 2013, the channel at the H-PC-U gauging station had bifurcated around the weir structure and backwater pond, re-joining its original channel immediately downstream. After discussion with AAM, plans were made to reconstruct a weir and continue measurements at this location in the upper Pony Creek watershed. A v-notch weir was constructed on June 23, 2014 but high flows and frozen banks required the weir to be completed during the next site visit in July.

Due to the absence of flow at the H-PC-U station, no discharge measurements were collected on April 14, 2014. Three discharge measurements were obtained at this station during Q1 using a salt tracer. The discharges measured on May 8, May 20 and June 23, 2014 were 0.24 m³/s, 0.006 m³/s and 0.001 m³/s respectively. The continuous data logger was removed from this site for the 2013-2014 winter period and not replaced due to the poor channel conditions to develop a rating curve. Instantaneous discharge measurements collected at H-PC-U are presented in Appendix D.

3.2.4.2 Pony Creek Downstream of Pit (H-PC-DSP)

A second hydrometric station is located downstream of H-PC-U below the Back Creek access road culvert and is named H-PC-DSP. The station was originally installed to supplement a hydrogeological investigation. Average widths for the channel at the station range from 0.15 to 0.50 m while depths range from 0.05 to 0.20 m. Due to channel morphology and conditions, only salt dilution gauging and volumetric methods are

used to estimate discharge at H-PC-DSP. A small rock weir was installed as a control immediately downstream of the stilling well and appears to be functioning as an effective control. Due to the large uncertainty associated with the collected rating measurements and stage data, no rating curve is applied to water stage recordings at the H-PC-DSP station. On May 8, 2014, a Solinst data logger was re-deployed at the station for the purpose of obtaining stage data only.

Due to the absence of flow along the Pony Creek channel during the April 14, 2014 visit, only three discharge measurements were collected during the Q1 period. These were collected using salt tracer and volumetric methods where appropriate. The discharge was 0.027 m³/s (salt tracer) on May 8, 2014; 0.005 m³/s (volumetric) and 0.006 m³/s (salt tracer) on May 20, 2014 and <0.001 m³/s (volumetric) on June 24, 2014.

Continuous time-series stage elevations and instantaneous discharge measurements are presented in Appendix D.

3.3 WATER QUALITY

Water quality results for sampling within the Q1 period are discussed for each sampling area in the sections below. The results include a summary of samples that exceeded guidelines and/or standards for each site and sampling trip, as well as *in situ* water quality parameters. Detailed lab result data is provided in Appendix E. All raw data is provided in the hydrology database (EDI_14Y0455_Water_Quality_Database_2014-2015.accdb).

3.3.1 Dome Creek

During the first sampling event of the Q1 period (April 14-15, 2014), only two of the six sites on Dome Creek could be sampled (WQ-DC-B and WQ-DC-U), as the remaining sites were frozen to substrate. By the May 8-9, 2014 trip all sites were flowing again.

The samples from the most upstream site, WQ-DC-DX, north of the mill site, consistently exceeded the CCME-AL guideline criteria for aluminum, arsenic and iron, as well as occasionally for cadmium and copper during the Q1 period (Table 17; Appendix E). Iron concentrations also often exceeded the Mount Nansen EQS values (Appendix E). The samples from WQ-DC-DX+105 site, which lies 105 m downstream from WQ-DC-DX, also typically exceeded the CCME-AL guidelines for aluminum, arsenic, cadmium and copper, while also exceeding guidelines and/or standards for iron, lead, silver, manganese and zinc (Table 17; Appendix E). The WQ-DC-D1b site lies down valley from the mill and downstream of an old tailings pond. Samples from this site typically exceeded the CCME-AL guidelines for arsenic, cadmium, copper, iron, lead, and zinc. Iron, zinc and manganese concentrations exceeded the Mount Nansen EQS criteria on a few occasions as well (Table 17; Appendix E).

The WQ-DC-B site within the Dome Creek diversion channel exceeded guidelines and/or standards for total suspended solids, aluminum, arsenic, cadmium, copper, and iron during all Q1 sampling events (Table 18; Appendix E). Samples also exceeded guidelines for lead, silver and zinc during the April 14-15, 2014 and

May 8-9, 2014 sampling event, as well as manganese on the May 8-9, 2014 and June 24-26, 2014 sampling events. The WQ-DC-U site, which lies downstream of the diversion channel and the seepage pond discharge site, typically had samples that exceeded the guideline and/or standards for ammonia, total suspended solids, aluminum, arsenic, cadmium, copper, iron, lead, manganese, silver and zinc (Table 18; Appendix E). The most downstream site on Dome Creek, WQ-DC-R, had samples that exceeded the guidelines and/or standards for aluminum, arsenic, cadmium, copper, iron, and manganese on all trips, with the addition of lead and total suspended solids during the June 2014 trip (Table 18; Appendix E).

Cyanide concentrations did not exceed water quality criteria during the Q1 investigation period. These results are similar to results from previous quarters during the 2013/14 investigations.

Table 17. Summary of parameters that exceeded CCME-AL guidelines and/or Mount Nansen EQS at the upper Dome Creek sites for the Q1 period (April 1 to June 30, 2014). Parameters in <u>bold</u> exceed both standard and guideline values.

Sampling Trip Date	WQ-DC-DX	WQ-DC-DX+105	WQ-DC-D1b
April 14-15, 2014	No sample	No sample	No sample
May 8-9, 2014	TSS, Al, As, Cd, Cu, Fe	Al, As, Cd, Cu, Fe, Pb, Ag, Zn	Al, As, Cd, Cu, Fe , Pb, Ag, Zn
May 20-21, 2014	Al, As, Cu, Fe	Al, As, Cd, Cu, Zn	As, Cd, Cu, Fe, Pb, Mn, Zn
June 24-26, 2014	Al, As, Cd, Fe	As, Cd, Fe, Mn, Zn	As, Cd, Fe, Pb, Mn, Zn

Table 18. Summary of parameters that exceeded CCME-AL guidelines and/or Mount Nansen EQS for the lower Dome Creek sites for the Q1 period (April 1 to June 30, 2014). Parameters in <u>bold</u> exceed both standard and guideline values.

Sampling Trip Date	WQ-DC-B	WQ-DC-U	WQ-DC-R
April 14-15, 2014	TSS, Al, As, Cd, Cu, Fe , Pb, Ag, Zn	NH ₃ , Al, As, Cd, Cu, Fe , Mn	No sample
May 8-9, 2014	TSS, Al, As, Cd, Cu, Fe, Pb, Mn, Ag, Zn	TSS, AI, As, Cd, Cu, Fe , Pb, Mn, Ag, Zn	Al, As, Cd, Cu, Fe , Mn
May 20-21, 2014	TSS, Al, As, Cd, Cu, Fe	TSS, Al, As, Cd, Cu, Fe , Mn	Al, As, Cd, Cu, Fe , Mn
June 24-26, 2014	TSS, Al, As, Cd, Cu, Fe , Mn	NH ₃ , Al, As, Cd, Fe , Mn	TSS, Al, As, Cd, Cu, Fe , Pb, Mn

In situ water quality parameters for the Dome Creek sites for Q1 were summarized (Table 19). In general, water temperatures stayed around zero degrees for most sites from April 2014 to mid-May 2014. The WQ-DC-DX+105 and WQ-DC-U sites had the highest water temperatures during the earlier portion of Q1, around 1.1°C to 1.4°C (Table 19). This is likely due to groundwater influence at WQ-DC-DX+105 and the inputs to WQ-DC-U from the seepage pond upstream. By June 2014, water temperatures lower in the

watershed ranged from 6.6°C to 7.7°C while water temperatures higher in the watershed ranged from 1.1°C to 3.8°C (Table 19). Specific conductivity was lowest during the early May 2014 freshet trip as runoff from snow and ice melt entered the creek, increasing towards late May and June 2014. The pH across Dome Creek was variable during the Q1 period, ranging from pH 6.99 to 8.01. Turbidity was also variable, ranging from 2.20 to 65.6 NTU during the sampling events.

Table 19. In-situ water quality data for the Dome Creek sites for the Q1 period (April 1 to June 30, 2014).

Site ID	Date	Water Temp. (°C)	Specific Conductivity (µS/cm)	рН	Turbidity (NTU)
WQ-DC-DX	14-Apr-14		frozen to su	ıbstrate	
WQ-DC-DX	9-May-14	0.1	25.4	7.23	4.81
WQ-DC-DX	21-May-14	0.3	202.9	7.54	3.32
WQ-DC-DX	24-Jun-14	2.4	556.5	7.28	3.47
WQ-DC-DX+105	14-Apr-14		frozen to su	ıbstrate	
WQ-DC-DX+105	9-May-14	1.4	95.3	7.54	11.33
WQ-DC-DX+105	21-May-14	1.1	377.9	7.34	2.20
WQ-DC-DX+105	24-Jun-14	1.1	1187.0	7.01	2.66
WQ-DC-D1b	14-Apr-14	frozen to substrate			
WQ-DC-D1b	9-May-14	0.0	468.5	7.95	17.21
WQ-DC-D1b	20-May-14	0.0	1166.0	8.01	7.59
WQ-DC-D1b	24-Jun-14	3.8	1307.0	7.76	3.99
WQ-DC-B	14-Apr-14	0.3	2863.0	6.99	36.60
WQ-DC-B	9-May-14	0.2	393.0	7.56	26.70
WQ-DC-B	21-May-14	3.6	580.6	7.54	40.70
WQ-DC-B	24-Jun-14	7.6	1339.0	7.81	12.30
WQ-DC-U	14-Apr-14	1.2	1677.0	7.31	13.17
WQ-DC-U	9-May-14	1.4	433.6	7.82	65.60
WQ-DC-U	21-May-14	4.0	658.9	7.87	35.50
WQ-DC-U	24-Jun-14	6.6	1415.0	7.69	13.80
WQ-DC-R	14-Apr-14		frozen to su	ıbstrate	
WQ-DC-R	9-May-14	0.0	436.0	7.73	11.54
WQ-DC-R	21-May-14	0.3	552.0	7.56	3.96
WQ-DC-R	24-Jun-14	7.7	1200.0	7.60	26.60

3.3.2 Regular Seep Sites

The WQ-LW-SEEP-01 site on the lower west waste rock dump was dry during all visits and no samples were collected during the Q1 period. This site was scheduled to be sampled during freshet trips and every three months thereafter.

The Dome East Slope Seeps (WQ-DESS-01, -02, -03) were sampled starting during the freshet period. Of the three DESS seeps, the WQ-DESS-01 site contributes the most flow. This site consistently exceeded

guidelines and/or standards for pH, aluminum, cadmium and zinc (Table 20). The zinc and pH values exceeded both the CCME-AL guideline and Mount Nansen EQS on all three sampling events (Appendix E). The samples in May 2014 also exceeded the copper and iron CCME-AL guidelines.

The WQ-DESS-02 site was dry during the May 8-9, 2014 sampling event but was flowing during the May 20-21, 2014 and June 24-26, 2014 events. Results varied for these two trips; the May 20-21, 2014 samples exceeded guidelines and/or standards for a large suite of parameters, including TSS, aluminum, arsenic, cadmium, chromium, copper, iron, lead, manganese, mercury, silver and zinc (Table 20; Appendix E). The June 2014 samples only exceeded the Mount Nansen standard for TSS and the CCME-AL guideline for aluminum (Table 20; Appendix E). The TSS concentrations were much higher during the late-May 2014 trip versus the June 2014 trip, which would explain the higher concentrations of total metals in the May 20-21, 2014 samples; a large component of these metals were likely bound to the TSS in the water column rather than dissolved in the water itself (Appendix E). The dissolved metals concentrations for these samples support this assumption, in that concentrations of dissolved metals are similar between the two trips.

The WQ-DESS-03 site samples exceeded guidelines for aluminum, cadmium and copper during both May 2014 trips as well as for the TSS standard criteria in early-May and the iron CCME-AL guideline for late-May. The site was dry during the June 2014 trip. The WQ-CH-P-13-01 site which lies north of WQ-DESS-01 was sampled only during the June 24-26, 2014 trip as the site was dry during the May 2014 visits. The samples from June 2014 exceeded the guidelines and/or standards for pH, aluminum, cadmium, manganese and zinc.

The WQ-MS-S-08 site, located near the mill site was sampled during both May 2014 trips. There was no flow during the June 2014 trip. Both May 2014 samples exceeded the guidelines and/or standards for aluminum, arsenic, cadmium, copper, iron, lead, selenium, silver and zinc (Table 21; Appendix E). The late-May 2014 samples also exceeded guidelines and/or standards for TSS, manganese and mercury. The water was very turbid during both sampling trips, as the water flows across the road from the mill area.

Table 20. Summary of parameters that exceeded CCME-AL guidelines and/or Mount Nansen EQS for the WQ-DESS-01-03 sites for the Q1 period (April 1 to June 30, 2014). Parameters in <u>bold</u> exceed both standard and guideline values.

Sampling Trip Date	WQ-DESS-01	WQ-DESS-02	WQ-DESS-03
May 8-9, 2014	pH, Al, Cd, Cu, Fe, Mn, Zn	No sample	pH , TSS, Al, Cd, Cu
May 20-21, 2014	pH , Al, Cd, Cu, Fe, Zn	TSS, Al, As, Cd, Cr, Cu, Fe , Pb, Mn, Hg, Ag, Zn	pH , Al, Cd, Cu, Fe,
June 24-26, 2014	pH , Al, Cd, Zn	TSS, AI	No sample

Table 21. Summary of parameters that exceeded CCME-AL guidelines and/or Mount Nansen EQS for the WQ-CH-P-13-01 and WQ-MS-S-08 sites for the Q1 period (April 1 to June 30, 2014). Parameters in <u>bold</u> exceed both standard and guideline values.

Sampling Trip Date	WQ-CH-P-13-01	WQ-MS-S-08
May 8-9, 2014	No sample	Al, As, Cd, Cu, Fe , Pb, Se, Ag, Zn
May 20-21, 2014	No sample	TSS, Al, As, Cd, Cu, Fe , Pb, Mn, Hg, Se, Ag, Zn
June 24-26, 2014	pH, Al, Cd, Mn, Zn	No sample

The *in situ* water quality at the three WQ-DESS sites was quite different from site to site (Table 22). The WQ-DESS-01 site was characterized by a low pH and a high conductivity, the WQ-DESS-02 site had high conductivity but a neutral pH, and the WQ-DESS-03 site had low conductivity and a neutral pH (Table 22). The WQ-CH-P-13-01 seep site had a high conductivity and slightly acidic pH, similar to WQ-DESS-01 site (Table 22), which is located downslope. It is also important to note that these two sites also had similar concentrations of aluminum, cadmium and zinc (Appendix E, Table E4) and may be coming from the same seep water source. The WQ-MS-S-08 site had a relatively high conductivity and neutral pH (Table 22). This site had very turbid water (617 NTU) as it was running across the mine access road.

Table 22. In situ water quality data for the WQ-DESS-01-03, WQ-CH-P-13-01 and WQ-MS-S-08 sites for the Q1 period (April 1 to June 30, 2014).

Site ID	Date	Water Temp. (°C)	Specific Conductivity (µS/cm)	рН	Turbidity (NTU)
WQ-DESS-01	9-May-14	1.9	284.0	5.93	n/a¹
WQ-DESS-01	20-May-14	0.3	831.6	5.71	2.59
WQ-DESS-01	24-Jun-14	2.9	1570.0	7.09	0.33
WQ-DESS-02	9-May-14	Dry			
WQ-DESS-02	20-May-14	0.6	1374.0	7.26	86.50
WQ-DESS-02	24-Jun-14	8.7	1450.0	7.98	0.89
WQ-DESS-03	9-May-14	1.9	97.2	6.85	n/a¹
WQ-DESS-03	20-May-14	0.4	74.3	7.88	2.13
WQ-DESS-03	24-Jun-14]	Dry	
WQ-CH-P-13-01	9-May-14		Ī	Dry	
WQ-CH-P-13-01	20-May-14]	Dry	
WQ-CH-P-13-01	24-Jun-14	3.0	1818.0	6.23	0.19
WQ-MS-S-08	9-May-14	1.8	292.6	6.95	n/a¹
WQ-MS-S-08	21-May-14	6.5	1798.0	7.93	617.00
WQ-MS-S-08	24-Jun-14]	Ory	

Notes

1 - insufficient samples available to collect turbidity in situ.

3.3.3 Brown-McDade Pit Lake

The Brown-McDade pit lake was sampled during two events over the Q1 investigation period, the April 2014 trip and the June 2014 trip. Ice conditions were unsafe for sampling in May 2014 during the melt period. Note during the April 2014 trip the surface samples were collected 0.3 m below the base of the ice surface. The mid-depth April sample was collected from 3 m below the ice, and the bottom sample was collected from 5.5 m below the ice. The June 2014 surface sample was taken from 0.3 m below the water surface, the mid-depth sample was taken at 2.5 m and the bottom sample was collected from 5.0 m.

All pit lake samples consistently exceeded the CCME-AL guidelines for arsenic, cadmium, copper, and zinc, which is common for the site (Table 23; Appendix E). The zinc concentrations from all samples also exceeded the Mount Nansen EQS value. The Mount Nansen EQS value for manganese was also exceeded from the WQ-PIT-3 samples (Table 23; Appendix E). Concentrations of fluoride in all pit samples also exceeded the CCME-AL guideline during the April 2014 trip and the June 2014 trip (only for the mid-depth sample WQ-PIT-2) (Table 23; Appendix E). The WQ-PIT-3 sample from April 2014 also exceeded the CCME-AL guideline for iron. In general, the WQ-PIT-3 samples taken from the bottom of the water column typically had the highest metal concentrations as this sample location has the most contact with the bed material of the pit lake (Appendix E).

Table 23. Summary of parameters that exceeded CCME-AL guidelines and/or Mount Nansen EQS for the Brown McDade Pit Lake for the Q1 period (April 1 to June 30, 2014). Parameters in <u>bold</u> exceed both standard and guideline values.

Sampling Trip Date	WQ-PIT-1 (surface)	WQ-PIT-2 (mid-depth)	WQ-PIT-3 (bottom)
April 14-15, 2014	F, As, Cd, Cu, Zn	F, As, Cd, Cu, Zn	F, As , Cd, Cu, Fe , Mn, Zn
May 8-9, 2014	No sample	No sample	No sample
May 20-21, 2014	No sample	No sample	No sample
June 24-26, 2014	As, Cd, Cu, Zn	F, As, Cd, Cu, Zn	As, Cd, Cu, Mn, Zn

Water temperatures from below the ice surface in April 2014 ranged from 0.3°C to 3.8°C (Table 24). Water temperatures of the pit lake sample depths in June 2014 ranged from 8.2°C to 9.5°C. Specific conductivity was highest typically from the bottom sample depth (WQ-PIT-3), where it is associated with higher suspended particulate matter, evidenced by higher turbidity and dissolved oxygen was lowest at the lowermost sample depth, likely due to higher biological demand and less recharge through wave action. The pH varied from pH 6.65 to 7.96 from all sample depths. Turbidity of all samples ranged from 0.82 to 2.88 NTU.

Table 24. In-situ water quality data for the Brown McDade Pit Lake for the Q1 period (April 1 to June 30, 2014).

Site ID	Date	Sample Depth (m)	Water Temp. (°C)	Specific Conductivity (µS/cm)	рН	Turbidity (NTU)	Dissolved Oxygen (mg/L)
WQ-PIT-1	14-Apr-14	0.3	0.3	2150.0	7.30	1.19	4.33
WQ-PIT-2	14-Apr-14	3.0	1.8	2127.0	7.24	0.82	4.04
WQ-PIT-3	14-Apr-14	5.0	8.2	2346.0	6.65	2.88	7.25
WQ-PIT-1	9/21-May-14						
WQ-PIT-2	9/21-May-14			unsafe samp	ling conditio	ns	
WQ-PIT-3	9/21-May-14						
WQ-PIT-1	25-Jun-14	0.3	9.5	1426.0	7.96	1.76	9.72
WQ-PIT-2	25-Jun-14	2.5	9.5	1426.0	7.90	1.23	9.83
WQ-PIT-3	25-Jun-14	5.0	8.2	2346.0	6.65	2.88	7.25

3.3.4 Tailings Pond & Seepage Pond Discharge

The tailings pond (WQ-TP) and seepage pond discharge site (WQ-SEEP) were sampled during every visit of the Q1 period and results remained relatively consistent during the entire quarter. Water quality at the WQ-TP site consistently exceeded the CCME-AL guidelines and/or the Nansen EQS for arsenic, cadmium, copper, lead, silver and zinc, in addition to ammonia, aluminum, iron, fluoride and manganese on a few occasions (Table 25; Appendix E). The WQ-SEEP site consistently exceeded the CCME-AL guidelines and/or the Mount Nansen EQS for ammonia, aluminum, arsenic, cadmium, copper, iron and manganese, as well as for silver and fluoride on some occasions (Table 25; Appendix E). These results are similar to results from the 2013/14 program.

LT50 samples from the WQ-SEEP site are scheduled on a bi-monthly basis, and were collected on April 14, 2014 and May 21, 2014. Both samples passed the tests, with the 96 hour LT50 result being greater than 96 hours, with no fish showing signs of stress or mortality.

Table 25. Summary of parameters that exceeded CCME-AL guidelines and/or Mount Nansen EQS for WQ-TP and WQ-SEEP for the Q1 period (April 1 to June 30, 2014). Parameters in <u>bold</u> exceed both standard and guideline values.

Sampling Trip Date	WQ-TP	WQ-SEEP
April 14-15, 2014	NH ₃ , F, As , Cd, Cu, Fe , Pb, Mn, Ag, Zn	NH ₃ , F, Al, As, Cd, Cu, Fe , Mn
May 8-9, 2014	Al, As, Cd, Cu, Fe , Pb, Mn, Ag, Zn	NH ₃ , Al, As, Cd, Cu, Fe , Mn, Ag
May 20-21, 2014	F, Al, As, Cd, Cu, Fe, Pb, Mn, Ag, Zn	NH ₃ , Al, As, Cd, Cu, Fe , Mn
June 24-26, 2014	Al, As, Cd, Cu, Pb, Ag, Zn	NH ₃ , Al, As, Cd, Cu, Fe , Mn

In situ water quality parameters for the WQ-TP and WQ-SEEP sites for each trip of Q1 are summarized in Table 26. Water temperatures recorded in the tailings pond ranged from 0.3° C to 12.8° C from April to June 2014. Specific conductivity was highest in April 2014 in the tailings pond as water levels were low and concentrated under the ice surface (2,901.0 μ S/cm). During the spring melt, specific conductivity in the tailings pond decreased significantly (166.4 μ S/cm) in early May 2014. By June 2014 conductivity was relatively high again (1,115.0 μ S/cm). The WQ-TP pH for the Q1 period ranged from pH 7.38 to pH 8.30. Turbidity was moderate to high during most events, ranging from 5.68 NTU to 24.80 NTU.

The WQ-SEEP site water temperatures ranged from 1.8° C to 7.5° C from April to June 2014 (Table 26). Specific conductivity ranged from 980 μ S/cm to 1815 μ S/cm during the Q1 period and pH ranged from pH 6.75 to pH 7.12. Turbidity ranged from 11.41 NTU to 64.00 NTU during the Q1 period.

Table 26. In situ water quality data for WQ-TP and WQ-SEEP for the Q1 period (April 1 to June 30, 2014).

Site ID	Date	Water Temp. (°C)	Specific Conductivity (µS/cm)	рН	Turbidity (NTU)
WQ-SEEP	14-Apr-14	1.8	1799.0	6.95	13.37
WQ-SEEP	9-May-14	2.8	980.0	7.12	11.41
WQ-SEEP	21-May-14	3.6	1566.0	6.97	64.00
WQ-SEEP	24-Jun-14	7.5	1815.0	6.75	13.10
WQ-TP	14-Apr-14	0.3	2901.0	7.38	6.31
WQ-TP	9-May-14	2.5	166.4	7.76	14.76
WQ-TP	21-May-14	8.2	805.0	7.79	24.80
WQ-TP	24-Jun-14	12.8	1115.0	8.30	5.68

3.3.5 Victoria Creek

Victoria Creek was sampled at five sites during the Q1 period. Samples and measurements for the WQ-VC-R site were collected at the winter sampling location, WQ-VC-R+150, located 150 m downstream of the culvert, for the April 14-15, 2014 and May 8-9, 2014 trips.

Prior to freshet during the April 2014 trip, samples from sites WQ-VC-U, WQ-VC-DBC, and WQ-VC-UMN exceeded the CCME-AL guidelines for aluminum and cadmium (Table 27; Appendix E). The WQ-VC-R+150 samples in April 2014 only exceeded the cadmium guideline. These results are typical of the winter period in Victoria Creek. During the early May 2014 trip all sites had total suspended solids, aluminum, cadmium, copper and iron concentrations that exceeded the CCME-AL guidelines and/or Mount Nansen EQS (Table 27; Appendix E). The samples from WQ-VC-DBC and WQ-VC-UMN also exceeded the arsenic and lead guidelines during the May 8-9, 2014 sampling event. During the May 20-21, 2014 sampling event, all sites had samples that exceeded the aluminum and copper guidelines, while WQ-VC-DBC and WQ-VC-R samples also exceeded the cadmium and iron guidelines. During the June 2014 sampling event, only aluminum concentrations were above the guideline value at all sites (Table 27; Appendix E).

Table 27. Summary of parameters that exceeded CCME-AL guidelines and/or Mount Nansen EQS for sites within the Victoria Creek watershed for the Q1 period (April 1 to June 30, 2014). Parameters in <u>bold</u> exceed both standard and guideline values.

Sampling Trip Dates	WQ-VC-U	WQ-VC-DBC	WQ-VC-UMN	WQ-VC- R+150 ¹	WQ-VC-R
April 14-15, 2014	Al, Cd	Al, Cd	Al, Cd	Cd	-
May 8-9, 2014	TSS, Al, Cd, Cu, Fe	TSS, Al, As, Cd, Cu, Fe , Pb	TSS, Al, As, Cd, Cu, Fe , Pb	TSS, Al, Cd, Cu, Fe	-
May 20-21, 2014	Al, Cu	Al, Cd, Cu, Fe	Al, Cu	-	Al, Cd, Cu, Fe
June 24-26, 2014	Al	Al	Al	-	Al

Note:

In situ water quality parameters for the Victoria Creek sites during each trip in Q1 are summarized in Table 28. Water temperatures remained near zero degrees at all Victoria Creek sites up until the June 2014 trip, when temperatures had risen up to a high of 7.9°C (Table 28). In general, water temperatures increase from the most upstream site (WQ-VC-U) to the most downstream site (WQ-VC-R). Specific conductivity was lowest in early May 2014 (<100 µS/cm) as snow and ice melted around site. The pH across the Victoria Creek sites ranged from pH 6.70 to pH 7.95. The highest turbidity levels measured *in situ* occurred during the May 8-9, 2014 trip which correspond with freshet timing.

Table 28. In situ water quality data for sites within Victoria Creek for the Q1 period (April 1 to June 30, 2014).

Site ID	Date	Water Temp. (°C)	Specific Conductivity (µS/cm)	рН	Turbidity (NTU)
WQ-VC-U	15-Apr-14	0.1	213.7	7.05	0.02
WQ-VC-U	9-May-14	0.6	51.4	7.34	12.58
WQ-VC-U	21-May-14	1.5	116.1	7.68	1.20
WQ-VC-U	25-Jun-14	5.6	183.7	7.40	0.54
WQ-VC-DBC	15-Apr-14	0.1	245.2	7.11	0.01
WQ-VC-DBC	9-May-14	0.6	55.2	7.37	21.20
WQ-VC-DBC	21-May-14	1.7	125.0	7.68	3.68
WQ-VC-DBC	24-Jun-14	6.9	185.5	7.59	0.27
WQ-VC-UMN	15-Apr-14	0.0	315.3	7.27	0.07
WQ-VC-UMN	9-May-14	0.1	71.4	7.27	20.50
WQ-VC-UMN	21-May-14	0.5	167.9	7.64	2.78
WQ-VC-UMN	24-Jun-14	7.4	257.1	7.73	1.44
WQ-VC-R+150 ¹	14-Apr-14	0.0	298.0	6.70	1.65
WQ-VC-R+150	9-May-14	0.0	67.2	7.07	15.53
WQ-VC-R	21-May-14	0.4	151.5	7.41	3.80
WQ-VC-R	24-Jun-14	7.9	241.4	7.95	1.08

Note: 1 - The WQ-VC-R+150 site is the WQ-VC-R winter sampling location (150 m downstream of the culvert), as the regular WQ-VC-R site freezes to substrate with thick overflow ice.

^{1–} The WQ-VC-R+150 site is the WQ-VC-R winter sampling location (150 m downstream of the culvert), as the regular WQ-VC-R site freezes to substrate with thick overflow ice.

3.3.6 Back Creek

The Back Creek site was frozen to substrate during the April 14-15, 2014 trip. In May 2014, the creek was flowing and samples were collected during both May trips. The samples collected on May 8-9, 2014 exceeded guideline and/or standard criteria for total suspended solids, aluminum, arsenic, cadmium, chromium, copper, iron, lead, manganese, mercury, silver and zinc (Table 29). Two weeks later, the samples collected on May 20-21, 2014 exceeded the guideline and/or standard criteria for aluminum, arsenic, cadmium, copper and iron (Table 29). By the June 24-26, 2014 sampling trip, the creek was dry, which is an unusual occurrence in the summer; however it is likely that placer activities upstream are responsible for the change.

Table 29. Summary of parameters that exceeded CCME-AL guidelines and/or Mount Nansen EQS for WQ-BC for the Q1 period (April 1 to June 30, 2014). Parameters in <u>bold</u> exceed both standard and guideline values.

Sampling Trip Date	WQ-BC
April 14-15, 2014	No sample
May 8-9, 2014	TSS, Al, As, Cd, Cr, Cu, Fe , Pb, Mn, Hg, Ag, Zn
May 20-21, 2014	Al, As, Cd, Cu, Fe
June 24-26, 2014	No sample

In situ water quality data at the Back Creek site for the Q1 period is shown in Table 30, with water temperature ranging from 1.9°C to 4.1°C from May 9 to May 21, 2014, respectively. The lowest conductivity measured for Back Creek during Q1 was 73.9 μS/cm on May 9, 2014, which then rose to 185.0 μS/cm on May 21, 2014. The pH at the site in May 2014 ranged from pH 7.42 to pH 7.86. Turbidity was highest on May 9, 2014 at 498 NTU, which also corresponded with the lab samples having total suspended solids concentrations above the Mount Nansen EQS.

Table 30. In situ water quality data for WQ-BC for the Q1 period (April 1 to June 30, 2014).

Site ID	Date	Water Temp. (°C)	Specific Conductivity (µS/cm)	рН	Turbidity (NTU)
WQ-BC	14-Apr-14		frozen to	substrate	
WQ-BC	9-May-14	1.9	73.9	7.42	498.00
WQ-BC	21-May-14	4.1	185.0	7.86	26.80
WQ-BC	24-Jun-14		dr	У	

3.3.7 Pony Creek

Both Pony Creek sites could not be sampled during the first trip of Q1 as both sites remained frozen to substrate at the time of the trip (April 14-15, 2014). In May 2014 during the two freshet trips, the creek was flowing at both sampling locations, and EDI collected samples from both the upstream and downstream sites.

The WQ-PC-U site sample from early-May 2014 exceeded the CCME-AL guidelines for aluminum, cadmium and copper (Table 31; Appendix E). The May 20-21, 2014 sample exceeded the aluminum guideline criteria, and the June 24-26, 2014 sample exceeded the aluminum and cadmium guidelines. This site was upstream of the impacts of the Mount Nansen Mine; however, it is currently affected by placer mining activities upstream, particularly in the vicinity of the H-PC-U hydrometric station described in Section 3.2.4.1. Recent activity in that area has resulted in a portion of the stream being ploughed over with an excavator (June 2014) and additional activities may affect both the WQ-PC-U and WQ-PC-D sites.

The WQ-PC-D site sample from the early-May 2014 trip exceeded the CCME-AL guidelines for aluminum, arsenic, cadmium, copper, iron, lead, silver and zinc (Table 31; Appendix E). During the late-May trip, aluminum, cadmium and copper concentrations exceeded the CCME-AL guideline. Note the portion of the creek just upstream from the WQ-PC-D sampling location runs through an old waste rock pile which results in higher total metals concentrations than found in samples from the WQ-PC-U samples (which is upstream of the waste rock area). The WQ-PC-D site was dry during the June 24-26, 2014 trip as the creek typically does go to ground during periods with minimal precipitation and/or hot weather.

Table 31. Summary of parameters that exceeded CCME-AL guidelines and/or Mount Nansen EQS for the Pony Creek sites for the Q1 period (April 1 to June 30, 2014). Parameters in <u>bold</u> exceed both standard and guideline values.

Sampling Trip Date	WQ-PC-U	WQ-PC-D
April 14-15, 2014	No sample	No sample
May 8-9, 2014	Al, Cd, Cu	Al, As, Cd, Cu, Fe, Pb, Ag, Zn
May 20-21, 2014	Al	Al, Cd, Cu
June 24-26, 2014	Al, Cd	No sample

In situ water quality data at the Pony Creek sites for the Q1 period is shown in Table 32. Water temperatures at the upstream site ranged from 0.1°C to 5.0°C from May 9 to June 24, 2014, respectively. Water temperature for the downstream site ranged from 0.7°C to 2.2°C from May 9 to May 21, 2014. Specific conductivity for the WQ-PC-U site ranged from 72.0 μS/cm to 453.6 μS/cm. Specific conductivity at the WQ-PC-D site ranged from 76.0 μS/cm to 181.8 μS/cm. The pH at the both sites remained around neutral for the Q1 period. Turbidity ranged from 0.22 NTU to 12.50 NTU, and was highest on the May 9, 2014 trip due to high water levels and runoff associated with freshet.

Table 32. In situ water quality data for the Pony Creek sites for the Q1 period (April 1 to June 30, 2014).

Site ID	Date	Water Temp. (°C)	Specific Conductivity (µS/cm)	рН	Turbidity (NTU)
WQ-PC-U	14-Apr-14	frozen to substrate			
WQ-PC-U	9-May-14	0.1	72.0	7.27	8.23
WQ-PC-U	21-May-14	1.5	179.2	7.37	0.22

Site ID	Date	Water Temp. (°C)	Specific Conductivity (µS/cm)	рН	Turbidity (NTU)
WQ-PC-U	24-Jun-14	5.0	453.6	7.62	0.42
WQ-PC-D	14-Apr-14	frozen to substrate			
WQ-PC-D	9-May-14	0.7	76.0	7.37	12.60
WQ-PC-D	21-May-14	2.2	181.8	7.66	1.08
WQ-PC-D	24-Jun-14	dry			

3.3.8 Pump House Well

The pump house well was sampled during all visits of the Q1 period. Drinking water package samples were collected in addition to bacteriological samples when possible based on samplings schedule. There were no water quality criteria that were exceeded from the Health Canada Guidelines for Canadian Drinking Water, the CCME-AL guidelines or the Mount Nansen EQS. All bacteriological samples collected were absent of E. coli and total coliforms. Water quality parameters collected in the field are presented in Table 33, and remained relatively constant during the Q1 period. Turbidity was high on the May 9, 2014 trip, 6.32 NTU compared to the normal turbidity value range of 0.06 NTU to 0.10 NTU (Table 33).

Table 33. In situ water quality data for WQ-PW for the Q1 period (April 1 to June 30, 2014).

Site ID	Date	Water Temp. (°C)	Specific Conductivity (µS/cm)	рН	Turbidity (NTU)
WQ-PW	15-Apr-14	1.3	382.4	7.58	0.07
WQ-PW	9-May-14	1.1	354.5	7.40	6.32
WQ-PW	21-May-14	1.3	373.1	7.64	0.06
WQ-PW	25-Jun-14	1.3	404.9	6.72	0.10

3.3.9 Additional Freshet Sites

Five additional sites were included in the freshet sampling trips (May 8-9, 2014 and May 20-21, 2014), and involved opportunistic sampling of additional seepage sites and runoff from exploration trenches, the ore ramp, and mill site.

During the May 8-9, 2014 trip, a sample was collected from runoff in one of the exploration trenches (WQ-ET-1) upslope from the mill (Figure 2; Table 5). This site was dry during the later trip, May 20-21, 2014. The results from the early May sample, showed that several parameters exceeded guideline and/or standard criteria, including total suspended solids, aluminum, arsenic, cadmium, copper, iron, lead and silver (Table 34). The *in situ* parameters during the sampling event for WQ-ET-1 showed water temperatures of 0.8°C, specific conductivity of 63.5 µS/cm and pH 6.60 (Table 36).

The WQ-MS-S-03 site was sampled during both freshet trips in May 2014. On both occasions, the sampled exceeded guidelines and/or standards for arsenic, cadmium, iron, manganese and zinc (Table 34). The early May sample also exceeded the CCME-AL guidelines for aluminum, copper, lead and silver. The late-May sample also exceeded the CCME-AL guideline for fluoride. During both trips *in situ* water temperatures were 1.2°C, and specific conductivity ranged from 1,041.0 µS/cm in early May 2014 to 1,188.0 µS/cm in late May 2014 (Table 36). The *in situ* pH was neutral for all trips and turbidity was around 6 NTU.

The lysimeter 2 (WQ-L2) was sampled during the May 20-21, 2014 freshet trip. Note, there are two lysimeters on site, but AAM only requested that lysimeter 2 be sampled - lysimeter 1 is located on another part of the waste rock pile. The samples exceeded the CCME-AL guidelines for fluoride, arsenic and cadmium (Table 35). The site had a water temperature of 2.0°C, a specific conductivity of 548.5 µS/cm, pH 7.62 and turbidity of 3.37 NTU at the time of sampling (Table 36).

The WQ-NW-SEEP-02 site was sampled on May 8-9, 2014 and samples exceeded the guidelines and/or standards for fluoride, aluminum, arsenic, cadmium, copper, iron, lead, silver and zinc (Table 35). During sampling, the site had a water temperature of 1.9°C, a specific conductivity of 591.3 µS/cm, pH 7.55 and a turbidity of 7.63 NTU (Table 36).

The ore ramp down to the pit lake was sampled during the May 20-21, 2014 freshet trip. The samples exceeded the guidelines and/or standards for total suspended solids, fluoride, aluminum, arsenic, cadmium, copper, iron, lead, manganese, mercury, silver and zinc (Table 35). The WQ-ORE site had a water temperature of 4.7°C, a specific conductivity of 817.0 µS/cm, pH 7.22 and 407.00 NTU (Table 36).

Table 34. Summary of parameters that exceeded CCME-AL guidelines and/or Mount Nansen EQS for the additional freshet sites (WQ-ET-1 and WQ-MS-S-03) for the Q1 period (April 1 to June 30, 2014). Parameters in <u>bold</u> exceed both standard and guideline values.

Sampling Trip Date	WQ-ET-1	WQ-MS-S-03
May 8-9, 2014	TSS, Al, As, Cd, Cu, Fe , Pb, Ag	Al, As, Cd, Cu, Fe , Pb, Mn, Ag, Zn
May 20-21, 2014	No sample	F, As, Cd, Fe , Mn, Zn

Table 35. Summary of parameters that exceeded CCME-AL guidelines and/or Mount Nansen EQS for the additional freshet sites (WQ-L2, WQ-NW-SEEP-02, WQ-ORE) for the Q1 period (April 1 to June 30, 2014). Parameters in bold exceed both standard and guideline values.

Sampling Trip Date	WQ-L2	WQ-NW-SEEP-02	WQ-ORE
May 8-9, 2014	No sample	F, Al, As, Cd, Cu, Fe, Pb, Ag, Zn	No sample
May 20-21, 2014	F, As, Cd	No sample	TSS, F, Al, As , Cd, Cu, Fe , Pb, Mn, Hg, Ag, Zn

Table 36. In situ water quality data for the additional freshet monitoring sites for the Q1 period (April 1 to June 30, 2014).

Site ID	Date	Water Temp. (°C)	Specific Conductivity (µS/cm)	рН	Turbidity ¹(NTU)
WQ-ET-1	9-May-14	0.8	63.5	6.60	-
WQ-ET-1	21-May-14		dr	у	
WQ-L2	9-May-14		insufficient wat	ter for sample	
WQ-L2	21-May-14	2.0	548.5	7.62	3.37
WQ-MS-S-03	9-May-14	1.2	1041.0	7.02	6.40
WQ-MS-S-03	21-May-14	1.2	1188.0	7.17	6.31
WQ-NW-SEEP-02	9-May-14	1.9	591.3	7.55	7.63
WQ-NW-SEEP-02	21-May-14		dr	у	
WQ-ORE	9-May-14		dr	у	
WQ-ORE	21-May-14	4.7	817.0	7.22	407.00

Notes: 1 - turbidity was not measured for these sites due to insufficient water available for measurement.

3.3.10 QA/QC Program

Field blank and travel blank samples were included on every trip during the Q1 period, except for during the May 8-9, 2014 trip when the lab did not provide field blank sampling supplies. At least, two duplicate samples were also collected during each sampling event. Table 37 summarizes the sample trip dates and sites were collected during each trip, aside from three duplicate samples during the June 2014 trip. All field blank and travel blank samples showed no contamination through field sampling methodologies, transportation or storage (Appendix E).

Replicate samples were compared for each trip to check the accuracy and precision of the laboratory analysis. Differences were within +/-10% for most parameters; however, some differences of over +/-10% were identified (Appendix E). Average percent differences for QA/QC sample sets ranged from 4% to 31%. The April 2014 QA/QC for the WQ-SEEP and WQ-VC-U samples had some parameters with very high percent differences, mostly for concentrations of total metals (Appendix E). Some of the duplicate sites with larger differences had either relatively high total suspended solids and/or large differences in total suspended solid values within the replicate sample sets. Total suspended solid concentrations are generally associated with total metals concentrations as metals are often bound to the suspended sediments. Some differences may also be attributed to sampling conditions based on ice conditions. See Appendix E - Tables E1-E4 for parameters that were flagged as greater than +/-10%.

Table 37. Summary of sites randomly selected as replicate samples for each sampling trip over the Q1 period.

Sampling Trip Date	Replicate #1	Replicate #2	Replicate #3
April 14-15, 2014	WQ-SEEP-r	WQ-VC-U-r	-
May 8-9, 2014	WQ-DC-R-r	WQ-SEEP-r	-
May 20-21, 2014	WQ-BC-r	WQ-VC-R-r	-
June 23-25, 2014	WQ-DC-B-r	WQ-VC-U-r	WQ-PIT-1-r

4 CONCLUSIONS & RECOMMENDATIONS

Based on results of the Q1 period of the Mount Nansen Water Resources Investigations Program from April 1, 2014 to June 30, 2014, EDI recommends that monitoring should continue as scheduled for 2014/15 investigations with added consideration of several recommendations outlined below. These recommendations attempt to improve the overall program data quality and efficiency.

- Volumetric measurements at H-SEEP are redundant based on available flow meter (totalizer) instrumentation in the pump house. Flow records maintained by on-going care and maintenance staff should be considered sufficient for hydrometric monitoring of the H-SEEP location, which has been confirmed by concurrent measurements over the last 2 years. Confirmation measurements can periodically be taken to confirm flow meter readings.
- Continue to monitor and compare results from **WQ-CH-P-13-01** and **WQ-DESS-01** during Q2, as these two sites appear to have similar water quality and may originate from the same seep water source. If water quality continues to be similar for the two sites, AAM may be able to shift monitoring to one of the sites minimizing costs to the program and improving field efficiency.
- Since the **WQ-LW-SEEP-01** site has been found to be dry during all trips of the Q1 period and is only scheduled to be sampled again three months after freshet (September 2014), it may be warranted to monitor this site on all trips of the open water season and to opportunistically sample the site if and when water is observed.

5 REFERENCES

- AECOM. 2010. Memorandum Re: Mount Nansen Hydrology Program Progress Summary (2009). Prepared for Assessment and Abandoned Mines Branch, Yukon Government. February 4, 2010
- Aquatic Informatics. 2014. Aquarius Time-Series Hydrologic Workstation. Version 3.5.124.
- Canadian Council Ministers of the Environment (CCME). 2014. Canadian Environmental Quality Guidelines Summary Table. http://st-ts.ccme.ca/, accessed April 2014.
- Cohn T., Kiang, J. Mason, R. 2006. U.S. Geological Survey. Personal Communication. June-August 2006.
- EDI 2014a. Mount Nansen Water Resources Investigations 2013 Quarterly Report (Q4): January March, 2014. Prepared for Assessment and Abandoned Mines Branch, Yukon Government. Prepared by C. Light and M. Marjanovic. April, 2014.
- EDI 2014b. Mount Nansen Water Resources Investigations 2013 Quarterly Report: (Q3): October December, 2013. Prepared for Assessment and Abandoned Mines Branch, Yukon Government. Prepared by C. Light and M. Marjanovic. January, 2014.
- EDI 2013a. Mount Nansen Water Resources Investigations 2013 Quarterly Report (Q1): April June 2013. Prepared for Assessment and Abandoned Mines Branch, Yukon Government. Prepared by C. Light and M. Marjanovic. October, 2013.
- EDI 2013b. Mount Nansen Water Resources Investigations 2013 Quarterly Report (Q2): July September 2013. Prepared for Assessment and Abandoned Mines Branch, Yukon Government. Prepared by C. Light and M. Marjanovic. October, 2013.
- Health Canada. 2012. Guidelines for Canadian Drinking Water Quality Summary Table. Prepared by the Federal-Provincial-Territorial Committee on Drinking Water.
- Laberge Environmental Services. 1999. Winter low flow stream discharge measurements using the salt slug injection method: Field trials and method development for use in location mine monitoring applications. Report prepared for the Mining Environment Research Group (MERG).
- LWBC. 2004. Hydrological Guidelines for Water Power Projects. Land and Water British Columbia Inc. Surrey, British Columbia. October 2004.
- Maidment, D.R. (Editor in Chief). 1993. Handbook of Hydrology. McGraw-Hill Inc. 1,424 pages.
- Moore, R.D. 2004a. Introduction to Salt Dilution Gauging for Streamflow Measurement: Part I. *Streamline Watershed Management Bulletin*. 7 (4). 20-25.
- Moore, R.D. 2004b. Introduction to Salt Dilution Gauging for Streamflow Measurement Part 2: Constant-rate Injection. *Streamline Watershed Management Bulletin*. 8 (1). 11-15.

- Moore, R.D. 2005. Slug Injection Using Salt in Solution. Streamline Watershed Management Bulletin. 8 (2). 1-6.
- Hudson, R. and Fraser, J. 2005. Introduction to Salt Dilution Gauging for Streamflow Measurement Part IV: The Mass Balance (or Dry Injection) Method. Streamline Watershed Management Bulletin. 9 (1). 6-12.
- Kite, G. 1994. Measuring glacier outflows using a computerized conductivity system. Journal of Glaciology, 40 (134), 93-96.
- RISC. 2009. Manual of British Columbia Hydrometric Standards. Resources Inventory Standards Committee (RISC), Ministry of Environment, Science and Information Branch, Government of British Columbia.
- Smith, C.A.S., J.C. Meikle, and C.F. Roots (editors). 2004. Ecoregions of the Yukon Territory: Biophysical Properties of Yukon Landscapes. Agriculture and Agri-Food Canada, PARC Technical Bulletin No. 04-01, Summerland, British Columbia. 313 p.
- Sontek/YSI Inc. 2009. FlowTracker Handheld ADV Technical Manual Firmware Version 3.7, Software Version 2.30
- WSC. 1999. Hydrometric Technician Career Development Program. Principles of Discharge Measurement. Volume 2 No. 10.1 Prepared for The Water Survey of Canada (WSC) by R. J. Lane of WSC. Environment Canada.

5.1 SPATIAL DATA

- EDI Environmental Dynamics Inc. (EDI). 2011. Detailed Watercourse, Drainage Areas and Road Layers for the Mount Nansen Area. Digitized / modified by EDI using orthophotos provided by Yukon Government, Energy, Mines and Resources (2011).
- EDI Environmental Dynamics Inc. (EDI). 2012. Mount Nansen Area Sampling Data. Collected by EDI Environmental Dynamics Inc. (2012) and was obtained using Garmin GPS technology.
- Government of Canada. 2012a. 1:50,000 Topographic Spatial Data (CanVec Edition 10.0). Department of Natural Resources Canada (NRCAN), Earth Sciences Sector. Provided by Geomatics Yukon, Corporate Spatial Warehouse, Yukon Government. Accessed in 2012. www.geomaticsyukon.ca.
- Government of Canada. 2012b. 1:250,000 Topographic Spatial Data (National Topographic Data Base [NTDB]). Department of Natural Resources Canada (NRCAN), Earth Sciences Sector, Mapping Services Branch, Centre for Topographic Information, Sherbrooke. Provided by Geomatics Yukon, Corporate Spatial Warehouse, Yukon Government. Accessed in 2012. www.geomaticsyukon.ca.
- Yukon Government, 2011. Mount Nansen Area Orthophoto (10 cm resolution). Department of Energy, Mines and Resources. Provided by Yukon Government, Department of Energy, Mines and Resources (2011).

Yukon Government, 2012. Mount Nansen Area Detailed Contours (1 metre interval). Department of Energy, Mines and Resources. Provided by Yukon Government, Department of Energy, Mines and Resources (2012).

Yukon Government, 2002. Digital Elevation Model (30 m resolution). Yukon Department of Environment, Information Management & Technology Branch. Yukon Department of the Environment. Provided by Geomatics Yukon, Corporate Spatial Warehouse, Yukon Government. Accessed in 2012. www.geomaticsyukon.ca.

Disclaimer:

Maps presented in this document are a geographical representation of known features. Although the data collected and presented herein has been obtained with the utmost attention to quality, this document is not an official land survey and should not be considered for spatial calculation. EDI Environmental Dynamics Inc. does not accept any liability for errors, omissions or inaccuracies in the data.

APPENDIX A Q1 SITE AND STATION PHOTOGRAPHS

Dome Creek Sites/Stations

Photo 1. WQ-DC-DX, looking upstream (May 21, 2014).

Photo 2. H/WQ-DC-DX+105, looking upstream (May 21, 2014).

Photo 3. H/WQ-DC-D1b, looking downstream (May 20, 2014).

Photo 4. WQ-H-DC-B, looking downstream from WQ-DC-B site towards H-DC-B station (May 21, 2014).

Photo 5. H-DC-M/WQ-DC-U, looking towards right downstream bank (May 20, 2014).

Photo 6. New weir construction at H-DC-M, looking upstream (June 24, 2014).

Photo 7. H-DC-R, looking upstream towards road and typical salt slug location (May 8, 2014).

Photo 8. WQ-DC-R looking downstream (June 24, 2014).

Victoria Creek & Back Creek Sites/Stations

Photo 9. H-VC-U, looking downstream (May 21, 2014).

Photo 10. WQ-VC-U, looking downstream (May 21, 2014).

Photo 11. H-VC-DBC, looking upstream (May 21, 2014).

Photo 12. WQ-VC-DBC, looking downstream (May 21, 2014).

Photo 13. H/WQ-VC-UMN, looking upstream (May 21, 2014).

Photo 14. H-VC-R, looking downstream (May 20, 2014).

Photo 15. WQ-VC-R, looking upstream (May 21, 2014).

Photo 16. H/WQ-BC, looking downstream (May 9, 2014).

Pit Lake/Tailings Pond/Seepage Pond Discharge

Photo 17. H/WQ-SEEP (May 21, 2014).

Photo 18. H/WQ-TP (May 21, 2014).

Photo 19. WQ-PIT overview (May 20, 2014).

Photo 20. WQ-PIT (June 25, 2014).

Pony Creek Sites/Stations

Photo 21. H-PC-U, looking downstream (May 20, 2014).

Photo 22. H-PC-U placer activity observed on June 24, 2014.

Photo 23. H-PC-DSP, looking upstream (May 20, 2014).

Photo 24. WQ-PC-D, looking upstream (May 21, 2014).

Photo 25. WQ-PC-U, looking downstream (May 21, 2014).

Regular Seep Sites

Photo 26. WQ-LW-SEEP-01 (May 9, 2014).

Photo 27. WQ-MS-S-08 (May 21, 2014).

Photo 28. WQ-CH-P-13-01, looking upstream (June 24, 2014).

Photo 29. WQ-DESS-01, looking upstream (June 24, 2014).

Photo 30. WQ-DESS-02, looking upstream (June 24, 2014).

Photo 31. WQ-DESS-03, looking upstream (June 24, 2014).

Additional Freshet Seep Sites

(Note: no photo available for NW-SEEP-02)

Photo 32. WQ-MS-S-03, looking upstream (May 21, 2014).

Photo 33. WQ-ET-01, looking upstream (May 9, 2014).

Photo 34. WQ-L2 (May 21, 2014).

Photo 35. WQ-ORE, looking down to pit lake (May 21, 2014).

Pumphouse Well & Atmospheric Station

Photo 36. Overview of WQ-PW (June 25, 2014).

Photo 37. Overview of ATM-DC-2,-4 with H-DC-B station in background (May 20, 2014).

APPENDIX B Q1 MONITORING VISIT RECORD

Table B-1. Record of sites sampled and stations monitored during each site visit during the Q1 period, April 1 to June 30, 2014 (note additional freshet sites are marked with an '*').

Station/Site Name	April 14-15, 2014	May 8-9, 2014	May 20-21, 2014	June 23-25, 2014
H/WQ-PC-U	N	Υ	Υ	Y
H/WQ-PC-D	N	Υ	Υ	Y_h
WQ-PIT-1,2,3	Υ	N	N	Υ
WQ-DC-DX	N	Υ	Υ	Υ
H/WQ-DC-DX+105	N	Υ	Υ	Υ
H/WQ-DC-D1b	N	Y_w	Y_w	Υ
H/WQ-DC-B	Y_w	Υ	Υ	Υ
H-DC-M/WQ-DC-U	Υ	Υ	Υ	Υ
H/WQ-DC-R	N	Υ	Υ	Υ
H/WQ-TP	Y_w	Y_w	Υ	Υ
H/WQ-SEEP	Υ	Υ	Υ	Υ
WQ-MS-S-08	N	Υ	Υ	N
H/WQ-BC	N	Υ	Υ	N
H/WQ-VC-U	Υ	Υ	Υ	Υ
H/WQ-VC-DBC	Υ	Υ	Υ	Υ
H/WQ-VC-UMN	Υ	Υ	Υ	Υ
H/WQ-VC-R	Y_h	Y_h	Υ	Υ
WQ-VC-R+150	Υ	Υ	N	N
WQ-PW	Υ	Υ	Υ	Υ
WQ-DESS-01	N	Υ	Υ	Υ
WQ-DESS-02	N	N	Υ	Υ
WQ-DESS-03	N	Υ	Υ	N
WQ-CH-P-13-01	N	N	N	Υ
WQ-LW-Seep-01	N	N	N	N
WQ-NW-SEEP-02*	n/a	Υ	N	n/a
WQ-ORE*	n/a	N	Υ	n/a
WQ-ET-01*	n/a	Υ	N	n/a
WQ-L2*	n/a	N	Υ	n/a
WQ-MS-S-03*	n/a	Υ	Υ	n/a
Pit Water Levels*	n/a	N	Υ	n/a
CH-P-13-05/50m*	n/a	Υ	Υ	n/a
GLL07-03*	n/a	N	Υ	n/a

Codes

N - site or station not sampled due to no observations of flow or lack of suitable conditions for sampling

Y - water sampling conducted and/or discharge measurement collected

 Y_w – water quality only (if a combined hydrology station and water quality site)

Y_h – hydrology only (if a combined hydrology station and water quality site)

n/a – not applicable as sampling/monitoring not required (removed from scope)

APPENDIX C Q1 EDI FIELD DATA SHEETS

[] National Control of St. 17, 1882, 15, AAM, Million, National Na

Download ALL data loggers present.
 If a measurement is not feasible, fully document why and take photos.

3) Fill in ALL data boxes & Site Comment boxes on field sheets to document site conditions (even if site is unchanged).

General Site Tasks/ Communications

4) During salt slugs, minimum SPC rise is only +10x resolution of conductivity meter. 5) Salt slug calibration tests can be done at the end of the day at the bunkhouse.

6) Attempt to get paired SS and ADV measurements where ice cover is sufficiently thin to measure with the ADV.

														# H > F DE > to give
#	Complete	HID	Station Name	Station Type	Site Tasks	Survey Required	Logger Type Serial #	Q Method	Additional Materials Required	Date	Time	SG	Logger	Sit REP on uc e
	ြပိ					Yes/No			required	yy.mm.dd	HH:MM	(m)	(m)	
1	М	ATM-DC	Atmospheric at Diversion Channel	Continuous Baro Logger	1) HOBO download	NO	ново	None	None	2014-APR-	16:49	n/a		PW every day Starting
2	M	ATM-DC	Atmospheric at Diversion Channel (Back-up)	Continuous Baro Logger	Solinst download Clear Solinst logger data	NO	Solinst Baro- logger	None	None	2014-APR- / Д	16:38	n/a		Sit REP on VC @ PU every day Starting and wk in May fer the Hillow Day Frozen to bad.
3	M	H-PC-U	Upper Pony Creek	Instentaneous	Unsuitable for sampling Dry/Frozen/Overflow	NO	n/a	Salt (0.01 kg) CF.T	None	2014-APR-)4	/	/		Wall-
4	109	H-PC-DS	Pony Creek Downstream of Pit	Instantaneous	Unsuitable for sampling Dry/Frozen/Overflow	NO	n/a	Volumetric Salt (0.01 kg) CF.T	None	2014-APR- 14	19:10		/	Uls 0053 DIS 0054 overviews 6055
[M	H-DC- DX+105	Dome Creek DX+105	Instantaneous	1) Q measurement	n/a	n/a	Salt (0.01 kg) CF.T	None	2014-APR- 14	17:18	n/a	_	Dry/Frozen to bed, Photos 37-39 show 2 sites that are dry Photos 2DB &, RDB 35, D/S 34, U/S 38
6	M	H-DC-D1	b Dome Creek D1b	Instantaneous	Unsuitable for sampling Dry/Frozen/Overflow	n/a	n/e	Salt (0.01 kg) CF.T	None	2014-APR-	/	n/a	/	motos 200 a, RUBSS , 175 ST, Sured due to
7	[N	H-DC-B	Diversion Channel at Bridge	Continuous	Q measurement (if channel conditions permit)	NO	n/a	Salt (0.05 kg) CF,T	None	2014-APR- 14	16:15	/		O.O.S. Not Measured due to O.O.S. What Planing Through layers of Ire G.1 to x 2 1/2004 D/3 co30 LDD wix RDB co3/
E	N	H-DC-W	Middle Dome Creek	Continuous	Q measurement Logger download	YES	Solinst 1050018	Salt (0.1 kg) CF.T	None	2014-APR- /4	14:18	/	/	6.1 ts x2 1/2001 0/3 (630 1 ND 54 DDE 603)
9	N	H-DC-R	Dome Creek at Road	Continuous	Unsuitable for sampling Dry/Frozen/Overflow	n/a	n/a	Volumetric Salt (0.1 kg) CF.T	None	2014-APR-14	13:58	1	/ =	Overflow. Photo 0009.
1	ο [4	H-VC-L	Upper Victoria Creek	Continuous	O measurement (ADV + SS) Logger download	YES	Solinst 1049522	ADV SS (0.2 kg)	None	2014-APR-15	11:12		-0.3544	C, Jkgx)
1	1 [4	H-VC-DE	Victoria Creek D/S of Back Creek		1) Q measurement (ADV + SS) 2) Logger download	YES	Solinst 1049137	ADV SS (0.2 kg)	None	2014-APR- 15	9:43		-0.085	l = /
1	2 K	H-BC	Back Creek	Continuous	Unsuitable for sampling Dry/Frozen/Overflow	NO	n/a	Salt (0.025 kg) CF.T	None	2014-APR- / 5	11:50	/	/	Frozen to bed & k.
1	3 [H-VC-UN	N Victoria Creek U/S of Minnesota Creek	Continuous	1) Q measurement (ADV + SS)	NO	n/a	ADV SS (0.2 kg)	None	2014-APR- \S	8:40	×	/	0.3 kg xg
1	4 1	H-VC-R	Victoria Creek at Road	Continuous	Q measurement (ADV + SS) Logger download.	YES	Solinst 1041103	ADV SS (0.2 kg) CF.T	None	2014-APR- 14	12:50	/	/	Gid kg x2
1	5 [1	H-SEEF	Seepage Pond Outlet	Instantaneous / Water Level	Q measurement at pipe outlet Q measurement at flow meter in pumphouse Staff Gauge Reading in Pond	NO	n/a	Volumetric	None	2014-APR- 14	15:40	/	/	
1	6 14	H-TP	Tailings Pond	Water Level Only	1) Staff Gauge Reading (if possible).	NO	n/a	None	None	2014-APR-		/		

Project #: 14-Y-0352
Project Name: YG AMM Mount Nansen Water Resources Investigation

HID	H-VC-R		Date		14 APRIL-2014		Discharge Measure	ement Instruments +	Methods	
	Victoria Creek	Q Mea	asurement Start Time:		PDT PST		YSI SWOFFER PYGN	·	ECT. POINT	
Station		Q Me	asurement End Time:		PDT PST		SALT TRACER IWE	R VOLUMETRIC FLO	OAT ROD	
Name		Logge	r Download/Inst Time:		PDT PST		Cha	nnel Conditions		
			Logger Reading (m)		[] downloaded	NONE	CE BACKWATER > B	ANKFULL ZERO FLO	W HIGH SUSP. SED.	
Logger:	Serial #		НО	BO (Solin	st/N/A	GPS Wa	ypoint	ZONE	TATTING	NOTITINAS
Photo #	[U/S]	0001	[D/S] C	005	[RDB]	0003	[LDB]	0004	[STAFF/WEIR]	
	Site Com	ments				SLUG CONSTANT RATE	DRY LOGGED	MANUAL (SPC)	EC CFT (ES)	NO
Well side of	hotos: 0008 LDB.	YOUT RDR O	2006 d/s 2005	al-	Trial Time	SPC _B SPC _P	Mix Length	Mass of Salt	Mix Vol.	[Salt Slug]
Well site photos: 0008 LDB, 0007 RDB, 0006 d/s, 0008						EC _o (uS/cm) EC _{pk} (uS/cm)	L _m (m)	Ms _a (kg)	Volume (L)	Css (kg/L)
logger no	+ down loaded i'd	able error	11		1 (/2 53)	257.81305.1	28	0.200	106	O.OZ
					2 (13 11)	260.81	28	0.200	101	0.02
					3 (🙏)					
	Channel Mea	surements		b	V ₁ for Sec. Mix (mL)	50mL		Vol. Added (mL)	SPC (uS/cm)	Temp
	Staff Gauge Height (m):			Salt Tracer	Csec (g/L):	1 g/L		1. 0	295.0	-0.2
	Weir Head (m):			<u>=</u>	Vol. Calib. Tank (L):	1 L	Ì	2 10 -	317.2	0.3
	Water Temperature (°C):	0.0°C		တိ	SPC ₀ Calib, Tank			3. ()	295,4	0.2
	Water Surface Slope (%):	,			CF.T =	IN CHE LIVE	Б.	4 2	299.4	0.2
	Average Width (m):				Qsalt =		CF.T	5 2	302.9	0.3
Average Depth (m): Measurement Summary Primary Secondary			Notes:	4. (()		6 Z	308.0	0.4		
		1	50 ml 5.5 into	26 of CR.		7.				
	Meas, Type:	SAIT	/		ı			8.		
	Measurment ID (MID):		/					9.		
	Average Q (m³/s):				Volume (L) =					
	Q Meas. Accuracy +/- [%]:			Volum.	Time (sec)	[1]	[2]	[3]	[4]	[5]
	Average Velocity (m/s):			Į į	Average Q (L/s) =				d	
	Cross-Sectional Area (m²):		/		Avg. Q _{vol} (L/s) =			Avg Q_{vol} (m ³ /s) =		
					Hydrometric Levels - S	Burvey				
YES NO REASO	N;		Survey Time (HH:MM):	(WATER)	13:20	BM Shift Yes No	Logger Shift: Yes No		Staff Gauge Shifted?	Yes No
Circuit #1	HI	Rod Read	Elevation (m)	± 0.003	Circuit #2	HI	Rod Read	Elevation (m)	Station Measurem	ents
Station	Α	В	С		Station	Α	В	С		
BM1	4209	1,209	3.000		BM1			3.000	Log'r Rod Lengtl	n:
BM2	perifori.	0.778	3431		BM2				Log'r Rod to Botn	n:
ВМ3	- Kalla C	0.778	3170		ВМ3			2015		
TOS	Name (Control of Control of Contr		A-B =		TOS			ART		
WATER	- Antest		AST		WATER			19-84		
LOG'R ROD:	4 DD E	1397	2812		LOG'R ROD:			MB:		
HWM/CON	A-New C	8-1	A-SH		HWM/CON			A-Ba		
BANKFULL	Папар		A-B=		BANKFULL			A-8=		
BM1	1-11-6	1.208	3.001		BS (BM1)			AuBr.		

Field Staff: 2 ^	1, DH, D5	
Data Entry By:	Date:	
Reviewed By:	Date:	

HID	H-DC-M		Date)	4 APRIL-2014		Discharge Measur	ement Instruments +	+ Methods			
		Q Me	asurement Start Time:		THE MIM PDT PST YSI SWOFFER PYGMY ADV MID-SECT POINT							
Station	Middle Dome -	Q Me	easurement End Time:	asurement End Time: (HRAMA) PDT		T TRACER WEIR VOLUMETRIC FLOAT ROD						
Name		Logge	r Download/Inst Time:	14:1	8 HOLDEN POT IPST		Cha	nnel Conditions				
		Logger Reading (m)			[V]downloaded	NONE	CE BACKWATER > E	BANKFULL ZERO FLO	W HIGH SUSP. SED.			
Logger:	Logger: Serial # 1050018			BO Solins	st) N/A	GPS Wa	ypoint	ZONE	EASTING-	NORTHING		
	[n/s] 0010		[D/S] 66 []		[RDB] 001Z		[LDB] 0013		[STAFF/WEIR]	014		
	Site Comr	nents				(SLUG) CONSTANT RATE	DRY (LOGGED	MANUAL SPC	EC CF.T YESIN	10		
Directory cable damaged while getting water level, Cuble no longer fractioning-No loss of data, logger reset last trip.					Trial Time	SPC _B SPC _P	Mix Length	Mass of Salt	Mix Vol.	[Salt Slug]		
						EC _o (uS/cm) EC _{pk} (uS/cm)	L _m (m)	Ms _a (kg)	Volume (L)	Css (kg/L)		
cable No	longer tractioning	- No 1055 of	data, logger		1 (14 40)	1676 12148	20m	0.100kg	10L	0.01		
reset la	st trip.				2 (14 53)	1677 1	20 m	0.100 kg	10L	0.01		
					3 ()			0.122	100			
	Channel Meas	urements		<u> </u>	V ₁ for Sec. Mix (mL)	100ml		Vol. Added (mL)	SPC (uS/cm)	Temp		
	Staff Gauge Height (m):	12.8		Salt Tracer	Csec (g/L):	1 g/L		1. OmL	1679	1.6		
	Weir Head (m):			¥	Vol. Calib. Tank (L):	1 L		2 10 mL	1683	1.7		
	Water Temperature (°C):	1.2°C		Sa	SPC₀ Calib. Tank			3. 30 mL	1712	1.7		
	Water Surface Slope (%):	7,72			CF.T =	A SECTION ASSESSMENT	<u></u>	4. 30 mL	1734	1.9		
Average Width (m):				Qsalt =		P. P.	4. 30 mL 5. 60 mL	1793	1.8			
	Average Depth (m):				Notes 50 ml 3	into 500 ml Ck.	1	6 60 mL	1815	2.1		
	Measurement Summary	Primary	Secondary		J	710 3 9 ME Elli		7. 120 mL	1815 1895 1981	2,2		
	Meas, Type:							8 180 mL	1981	2.4		
	Measurment ID (MID):	THE PARTY	A SALES					9. 240 mL	2106	1.9		
	Average Q (m ³ /s):				Volume (L) =			10.270mL	2144	2,4		
	Q Meas, Accuracy +/- [%]:			Volum.	Time (sec)	[1]	[2]	[3]	[4]	[5]		
	Average Velocity (m/s):			lo V	Average Q (L/s) =							
(Cross-Sectional Area (m²):				Avg. Q _{vol} (L/s) =			Avg Q_{vol} (m ³ /s) =				
					Hydrometric Levels - S	Survey						
E NO REASO	N:		Survey Time (HH:MM)	(WATER)	14:32	BM Shift Yes No	Logger Shift Yes No		Staff Gauge Shifted?	Yes No		
Circuit #1	HI	Rod Read	Elevation (m)	± 0.003	Circuit #2	HI	Rod Read	Elevation (m)	Station Measurement	ents		
Station	A	В	С		Station	Α	В	С				
BM1	4.474	1474	3,000		BM1			3,000	Log'r Rod Length	r.		
BM2	AHITE	1.761	2.713		BM2			2-B r	Log'r Rod to Botm	n:		
ВМЗ	A HIPP	20155	2319		ВМ3			Add 1.				
TOS	KHUKO		2.480		TOS			X-8 =				
WATER	4-U+E	2.857	1.617		WATER			一生作				
LOG'R ROD:	AUDINE	1.763	2711		LOG'R ROD:			A.En				
HWM/CON	V 100.112	1.473	3.00 -		HWM/CON			- PA-13=				
BANKFULL	A U-U		.A-U1		BANKFULL			Note:				
BMI	Align to	1.473	3.001		BS (BM1)			A-64				

Field Staff: <u> </u>	1. V5
Data Entry By:	Date:
Reviewed By:	Date:

Project #: 14-Y-0352
Project Name: YG AMM Mount Nansen Water Resources Investigation

Weather: + 1°C Sunny

HID	H-SEEP		Date		니 APRIL-2014	Discharge Measurement Instruments + Methods						
		Q Mea	surement Start Time:		(For Man) PDT PST		YSI SWOFFER PYG		ECT. POINT			
Station	seepage pond	Q Mea	asurement End Time:		PDT PST SALT TRACER WEIR (VOLUMETRIC) FLOAT ROD							
Name	outlet	Logger	Download/Inst Time:		(HH MM) PDT PST		Cha	nnel Conditions				
			Logger Reading (m)	_	[] downloaded	NONE	ICE BACKWATER > E	BANKFULL ZERO FLO	W HIGH SUSP. SED.			
Logger: S	erial#		НО	BO Solin	st N/A	GPS Way	point	20105	galernal.	NORTHING		
Photo # [U	us) 0016		[D/S]		[RDB]		[LDB]		[STAFF/WEIR]			
	Site Com	ments				SLUG CONSTANT RATE	DRY LOGGED	MANUAL SPC	EC CFT YESIN	10		
Water look	4				Trial Time	SPC _B SPC _P	Mix Length	Mass of Salt	Mix Vol.	[Salt Slug]		
ware look	. ,					EC _o (uS/cm) EC _{pk} (uS/cm)	L _m (m)	Ms _a (kg)	Volume (L)	Css (kg/L)		
Flow meter	photo's : 0017 .	+0018, Ir	line Flow		1 ()							
	•				2 (;)	1 						
reading 1	17.771 LPM				3 (;)							
	Channel Mea	surements		5	V ₁ for Sec. Mix (mL)	MITCH		Vol. Added (mL)	SPC (uS/cm)	Temp		
	Staff Gauge Height (m):			Salt Tracer	Csec (g/L):	1 g/L		1.				
	Weir Head (m):			=== ===	Vol. Calib. Tank (L):	1 L		2				
V	Vater Temperature (°C):	1.8°C		v)	SPC ₀ Calib, Tank			3.				
w	/ater Surface Slope (%):				CF.T =		CF.T	4.				
	Average Width (m):				Qsalt =		Ü	5,				
	Average Depth (m):				Notes			6				
	Measurement Summary	Primary	Secondary					7.				
	Meas. Type:							8.				
	Measurment ID (MID):						101	9.	101	101		
	Average Q (m ³ /s):			-	Volume (L) =		152	156	154	15L [5] 5.72		
	Meas, Accuracy +/- [%]:			Volum.		[1] 5.97	[2] 6.19	[3] 6.10	[4] 6.25	1515.72		
	Average Velocity (m/s):			°	Average Q (L/s) =			0 (-3(-)		-		
Cro	oss-Sectional Area (m²):				Avg. Q _{vol} (L/s) =			Avg Q_{vol} (m ³ /s) =				
				444755	Hydrometric Levels - S		Logger Shift Yes No		Staff Gauge Shifted?	Veel Ne		
YES INO REASON	NA	D-d Dand	Survey Time (HH:MM):	(WATER)	Circuit #2	BM Shift: Yes No	Rod Read	Elevation (m)	Station Measurement			
Circuit #1 Station	H I	Rod Read B	Elevation (m)	± 0,003	Station	A	Rod Read B	C C	Station Weasurem	ents		
BM1	A A	В	3.000		BM1			3,000	Log'r Rod Length	11		
BM2			3,000		BM2			A.R.T.	Log'r Rod to Botrr	1		
BM3	Killia		A-6 c		BM3			8.6				
TOS	KIRRI		Alb r		TOS			AP				
WATER	King-or -		A.S-		WATER			2.25				
LOG'R ROD	X I K+C		A-Br		LOG'R ROD:			A-6-				
HWM/CON	A-R-P-P		Air		HWM/CON			4.81				
BANKFULL	A THEFT		2-0.1		BANKFULL			V4.6%				
	ARREA		Adm		BS (BM1)			Kitte				
							h	A	1			

Field Staff: 5M, DH.	DS
Data Entry By:	Date:
Reviewed By:	Date:

Project Name: YG AMM Mount Nansen Water Resources Investigation

HID	H-VC-DBC		Date	Ι .	5 APRIL-2014		Discharge Measure	ement Instruments -	- Methods	
		Q Me	asurement Start Time:		/HPLMM) PDT PST		YS) SWOFFER PYGN	MY ADV MID-S	ECT POINT	
Station	Victoria Cruk	Q Measurement End Time		PDT PST SALT TRACER WEIR VOLUMETRIC FLOAT ROD						
	0/5 Back Creek,	Logge	er Download/Inst Time:	9:43	(HEALA) PDT PST		Cha	nnel Conditions		
	Specie state		Logger Reading (m)	-0.0	856 [Ydownloaded	NONE	CE BACKWATER > B	ANKFULL ZERO FLO	W HIGH SUSP, SED,	
Logger:	Serial # 1049137	Σ.	нс	BO Solir	st) N/A	GPS Wa	ypoint	K0HF	FASTNER	nosting
Photo #	[U/S] 0064		[D/S] 0065		(RDB) 00 66		[LDB] 0667		[STAFF/WEIR]	068
	Site Com	ments				(SLUG) CONSTANT RATE	DRY (LOGGED	MANUAL SPC	EC CF.TYES N	0
Se TM'	s notes for swall	en.		İ	Trial Time	SPC _B SPC _P	Mix Length	Mass of Salt	Mix Vol.	[Salt Slug]
Jee Si I.	y 10 0 10 yo			l		EC _o (uS/cm) EC _{pk} (uS/cm)	L _m (m)	Ms _a (kg)	Volume (L)	Css (kg/L)
				l	1 (09:52)	247.91351.3	25m	0.200Kg	10L	0,02 /4
				l	2 (10:08)	248.5	25 m	0.2002	101	0.02 kg/L
					3 (:)			J	1,00	J
	Channel Mea	surements		h	V ₁ for Sec. Mix (mL)	50 mL		Vol. Added (mL)	SPC (uS/cm)	Temp
	Staff Gauge Height (m):	3483 3	.68	200	Csec (g/L):	1 g/L		1. Onl	251.2	0.0
	Weir Head (m):	-100	0	Salt Tracer	Vol. Calib. Tank (L):	1 L		2 2mL	255.9	0.0
	Water Temperature (°C):	0.000		l s	SPC₀ Calib. Tank			3 8 ml	273.5	0.19
	Water Surface Slope (%):	3.00		CF.T =			i H	4. 10 ml	291.1	0.0°C
	Average Width (m):		7	l	Qsalt =		<u></u> ხ	4. 10 m L 5. 10 m L 6. 10 m L	309.6	0.1%
	Average Depth (m):			Notes 50 mL 5		5. into 16 ck	1	6 10mL	328.5	0.100
	Measurement Summary	Primary	Secondary	i	1			7. 10 mL	346,4	0.100
	Meas, Type:	Swoller	Salt	1				8 10 ml	365,2	0.100
	Measurment ID (MID):							9.		
	Average Q (m³/s):				Volume (L) =					
(Q Meas. Accuracy +/- [%]:			Ę	Time (sec)	[1]	[2]	[3]	[4]	[5]
	Average Velocity (m/s):			Volum.	Average Q (L/s) =					
C	Cross-Sectional Area (m²):				Avg. Q _{vol} (L/s) =			Avg Q_{vol} (m ³ /s) =		
					Hydrometric Levels - 5	Survey				
NO REASON	N:		Survey Time (HH MM):	(WATER)	10:40	BM Shift: Yes No	Logger Shift: Yes No		Staff Gauge Shifted?	Yes No
Circuit #1	HI	Rod Read	Elevation (m)	± 0.003	Circuit #2	ні	Rod Read	Elevation (m)	Station Measureme	ents
Station	Α	В	С		Station	Α	В	С		
BM1	4,433	1433	3.000		BM1			3 000	Log'r Rod Length:	
BM2	ATEXE	1.404	3.029		BM2			A 6	Log'r Rod to Botm:	
BM3	X-9P-E	1.514	2,919		BM3			A-H		
TOS	A 18-5	2.079	2,354		TOS			A-B		
WATER	8368 5	2.709	1.724		WATER			TSelf-		
LOG'R ROD:	A (EXIX	1-86Z	2.571		LOG'R ROD:			A-61		
HWM/CON	T F TEXT		A4		HWM/CON			p. 81		
BANKFULL	4 H- k		-5-		BANKFULL			A fir		
BM1	A-tt-m	1.433	3,06		BS (BM1)			A18-		

Field Staff: JM, DH	05
Data Entry By:	Date:
Reviewed By:	Date:

Project Name: YG AMM Mount Nansen Water Resources Investigation

Weather: + 1 Clear + calm, Sunny

HID	H-VC-UMN		Date	-/	5 APRIL-2014		Discharge Measure	ement Instruments +	Methods	
	Victoria Cruk	Q Mea	asurement Start Time:		PDT PST	(YSI SWOFFER PYGM	NY ADV MID-SI	ECT. POINT	
Station	U/3 of Minnesola	Q Me	asurement End Time:		PDT PST		SALT TRACER WEI	R VOLUMETRIC FLO	AT ROD	
Name		Logge	Download/Inst Time:		PDT PST		Char	nnel Conditions		
	Creek		Logger Reading (m)		[] downloaded	NONE I	ICE BACKWATER > B	ANKFULL ZERO FLO	W HIGH SUSP SED	
Logger:	Serial #		но	BO Solin	st N/A	GPS Wa	GPS Waypoint			वामसामाहरू
Photo #	[U/S] 0059		[D/S] 0060		[RDB] 0061		[LDB] 006Z		[STAFF/WEIR]	
	Site Com	ments				(SLUG) CONSTANT RATE	DRY (LOGGED)	MANUAL SPC	EC CFT (YES)	10
					Trial Time	SPC _B SPC _P	Mix Length	Mass of Salt	Mix Vol.	[Salt Slug]
						EC _o (uS/cm) EC _{pk} (uS/cm)	L _m (m)	Ms _a (kg)	Volume (L)	Css (kg/L)
		×			1 (08 40)	314,01764.2	10 m	0,200kg	10 L	0.02
*Su 5M's	notes for swalle	r into-			2 (08 : 43)	315.1 731	10 m	0.200 ×9	10 L	0.02 Ke/E
					3 ()			, J		,
	Channel Mea			, 5	V ₁ for Sec. Mix (mL)	50 mL		Vol. Added (mL)	SPC (uS/cm)	Temp
	Staff Gauge Height (m):	5.28 m		Salt Tracer	Csec (g/L):	1 g/L		1 Oml	317.0	0,000
	Weir Head (m):			at l	Vol. Calib. Tank (L):	1 L		2 6 mL	330,7	0.02
	Water Temperature (°C):	0.000		υ	SPC ₀ Calib. Tank			3 14 mL	356.5	0.00
·	Water Surface Slope (%):				CF.T =		E	4 30 m L 5 60m L	40821	0.0%
	Average Width (m):				Qsalt =		ច	5 60mL	501.5 501.5 591.8 648.3	0.0%
	Average Depth (m):		,		Voles 50mL S,5 into 1L CK. 660mL 59				591.8	0.0%
	Measurement Summary	Primary	Secondary		3,3			7.60mL	648.3	0.0%
	Meas, Type:	Swoffer	Salt					8 60 ml	674.3	0.00
	Measurment ID (MID):							9 120mL	864.0	0.00
	Average Q (m³/s):				Volume (L) =					
	Meas. Accuracy +/- [%]:			Volum.	Time (sec)	[1]	[2]	[3]	[4]	[5]
	Average Velocity (m/s):			°	Average Q (L/s) =					
C	ross-Sectional Area (m²):				Avg. Q _{vol} (L/s) =			Avg Q _{vol} (m ³ /s) =		
<i></i>					Hydrometric Levels - S					
YES NO REASON	No logger		Survey Time (HH·MM):	(WATER)		BM Shift: Yes No	Logger Shift Yes No	r	Staff Gauge Shifted?	
Circuit #1		Rod Read	Elevation (m)	± 0.003	Circuit #2	HI	Rod Read	Elevation (m)	Station Measureme	ents
Station BM1	Α	В	C		Station	Α	В	C		-
BM2	X Y P U.S.		3,000		BM1			3,000	Log'r Rod Length	
1.000					BM2			A-5 =	Log'r Rod to Botm	
BM3 TOS	638-1		A-8 1		BM3			885 s		
WATER	X-9		/(D		TOS			Towns and		
LOG'R ROD:	E-11-V		A-B=		WATER LOG'R ROD:			AvBri		
HWM/CON	National Control		Alp		HWM/CON			Aven.		
BANKFULL	N I II + II		A Bn		BANKFULL			A.Ba		
DANNEULL	A-0-0		A-B=		Children Children					
	A-1191V		20:15-1		BS (BM1)			Ti-The		

Field Staff: DH 3M, 05	
Data Entry By:	Date:
Reviewed By:	Date:

HID	H-VC-U		Date		5APRIL-2014		Discharge Measure	ement Instruments 4	- Methods			
		Q Mea	surement Start Time:		PDT PST		YSI SWOFFER PYGM	Y ADV MID-S	ECT. POINT			
Station	Upper Victoria	Q Me	asurement End Time:		(AH AM) PDT PST		SALT TRACER WEIR VOLUMETRIC FLOAT ROD					
Name	Creek	Logge	Download/Inst Time:	11:12	PDT PST	Channel Conditions						
			Logger Reading (m)	-0.3	544 [√downloaded	NONE ICE BACKWATER > BANKFULL ZERO FLOW HIGH SUSP, SED.						
Logger:	Serial # 1049527	2	НО	BO (Solin	N/A	GPS Wa	ypoint	RONE:	EASTING	монтина		
Photo #			0F 00 (8/0)		(RDB) 00 7	,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	[LDB] 0072		[STAFF/WEIR]	7077		
	Site Com	ments				(SLUG) CONSTANT RATE	DRY LOGGED	MANUAL SPC	EC CF.T (ES)N	0		
See TM'S D	oteo for swoffer a	lata			Trial Time	SPC _B SPC _P	Mix Length	Mass of Salt	Mix Vol.	[Salt Slug]		
						EC _a (uS/cm) EC _{pk} (uS/cm)	L _m (m)	Ms _e (kg)	Volume (L)	Css (kg/L)		
Well Fro	zen to bed.				1 ()/ :25)	243.61426.2		0.200	IOL	0.02		
					2 (11 : 34)	244.4,421.0		0.200	104	0.02		
					3 (:)							
	Channel Mea	surements		5	V ₁ for Sec. Mix (mL)	50		Vol. Added (mL)	SPC (uS/cm)	Temp		
	Staff Gauge Height (m):	Ta .		Salt Tracer	Csec (g/L):	1 g/L		1. 006	248.1	0,300		
	Weir Head (m):			岩	Vol. Calib. Tank (L):	1 L		2 Inc	253.3	0.3°C		
	Water Temperature (°C):	0,100		νõ	SPC ₀ Calib. Tank			3. 10 m L	271.0	0,300		
'	Water Surface Slope (%): Average Width (m): Average Depth (m):				CF.T =		F	4 10 m L	291.4	0,4°C		
					Qsalt =		ច	5 20mL	327.8	0.4%		
					Notes 50 mc 5,5.	into 14 Ck.		5. 20 mL 6. 20 mL	327.8 363.0 414,4			
	Measurement Summary	Primary	Secondary		111/2 a 100 24	CH 1.		7. 30mL	414,4	0.6°C		
	Meas, Type:	Swoffer	Salt		*11:54, SPC 2:	51.1 Logger nummer beging. See back.	17	8. 10 mL	432.0	0.600		
	Measurment ID (MID):				1011 - 24-opped	loca ing.		9 10 ML	449,9	0.6%		
	Average Q (m ³ /s):				Volume (L) =							
	Q Meas. Accuracy +/- [%]:			Volum,	Time (sec)	[1]	[2]	[3]	[4]	[5]		
	Average Velocity (m/s):			0	Average Q (L/s) =							
C	cross-Sectional Area (m²):				Avg. Q _{vol} (L/s) =			Avg Q_{vol} (m ³ /s) =				
					Hydrometric Levels - S							
NO REASON			Survey Time (HH MM):	(WATER)	NIA	BM Shift: Yes No	Logger Shift: Yes! No		Staff Gauge Shifted?			
Circuit #1	HI	Rod Read	Elevation (m)	± 0.003	Circuit #2	н	Rod Read	Elevation (m)	Station Measureme	ents		
Station	A	В	C		Station	Α	В	C 2 000	Look Dod Loogth			
BM1	4.367	1.367	3,000		BM1			3,000	Log'r Rod Length			
BM2	1 7 7 7	1,008	N/B =		BM2				Log'r Rod to Botm			
BM3	a sthee	1.124	17307		BM3			7.0				
TOS	TATE I	1,463	74-B =		TOS			6.84		-		
WATER	DATE DATE	1 5 15	A-8=		WATER			A 5=				
LOG'R ROD:	A II B = C	1,217	A. B=		LOG'R ROD:			A D-				
HWM/CON	WEB EC		A.B=		HWM/CON							
BANKFULL	W-R ×C	12/7	# B=		BANKFULL BS (BM4)			A-8=				
BM1	No Both	1.367	A, 6=		BS (BM1)			P 84				

Field Staff: DH, SM, DS		
Data Entry By:	Date:	
Reviewed By:	Date:	

Project #: 14-Y-0352
Project Name: YG AMM Mount Nansen Water Resources Investigation

	HID									-			Date (dd.mm.yyy		
Veloc	ity-Area Method	SWOFFER	PYGMY ADV	Salt Tracer Trial 1 LOGGED MANUAL Time::						Salt Tracer Trial 2 LOGGED MANUAL Time::					
ation	Distance (m)	Depth (m)	Velocity (m/s)	Time (sec)	SPC (uS/cm)	Time (sec)	SPC (uS/cm)	Time (sec)	SPC (uS/cm)	Time (sec)	SPC (uS/cm)	Time (sec)	SPC (uS/cm)	Time (sec)	SPC (uS/cm
1				t _o =		260		520		t _o =		260		520	
2				11:39850	246.3	270		530		10		270		530	
3				20	245.8	280		540		20		280		540	
4		V		30	245.1	290		550		30		290		550	
5				40	245.0	300		560		40		300		560	
6				50	244.8	310		570		50		310		570	
7				60		320		580		60		320		580	
8				70		330		590		70		330		590	
9				80		340		600		80		340		600	
10				90		350		610		90		350		610	
11				100		360		620		100		360		620	
12				110		370		630		110		370		630	
13				120		380		640		120		380		640	
14				130		390		650		130		390		650	
15				140		400		660		140		400		660	
16				150		410		670		150		410		670	
17				160		420		680		160		420		680	
18				170		430		690		170		430		690	
19				180		440		700		180		440		700	
20				190		450		710		190		450		710	
21				200		460		720		200		460		720	
22				210		470		730		210		470		730	
23				220		480		740		220		480		740	
24				230		490		750		230		490		750	
25				240		500		760		240		500		760	
25				250		510		770		250		510		770	

Comments:

Field Staff:	
Data Entry By:	Date:
Reviewed By:	Date:

General Site Tasks/ Communications

J\Vukon\Projects\2014\14_Y_0352_TG_AMA_Mount_Namen_Water_Rewow cro_Investigations\Outs\Field Prop Info\Datasheets\May \$-10 2014_Trop\f5_11-04-2014_Namen Hydrology Field Sheet May \$-20 Trip_Cl

1) Download ALL data loggers present.
2) If a measurement is not feasible, fully document why and take photos.
3) Fill in ALL data boxes & Site Comment boxes on field sheets to document site conditions (even if site is unchanged).

1) Divide call close minimum SDC docine activities af conductivity mater.

3) Find the LL data boxes a Site comment boxes on new sneets to document site conductors (even it site it 4) During salt slugs, minimum SPC rise is only +10x resolution of conductivity meter.
5) Attempt to get paired SS and ADV measurements where ice cover is sufficiently thin to measure with the ADV.

#	Complete	HID	Station Name	Station Type	Site Tasks	Survey Required	Logger Type Serial #	Q Method	Additional Materials	Date	Time	SG	Logger	H-UC-	C WO
	1		Atmospher	C Cartin B		Yes/No			Required	yy.mm.dd	нн:мм	(m)	(m)		was in wall
1	[]	ATM-DO	22 at Diversio Channel Atmospheri	Logger	1) HOBO download	NO	НОВО	None	None	2014-MAY-		n/a		11-75-	Was on the wall
	[]		at Diversion Channel (Back-up)	Continuous Barr Logger	Solinst download Clear Solinst logger data	NO	Solinst Baro- logger	None	None	2014-MAY-		n/a		H- Ac.	ra v
3	[4]	H-PC-L	Creek	Instantaneous	7	YES	n/a	Salt (0.01 kg)* CF.T	None	2014-MAY- %	1632	NA	/	-	/ -
4	[J	H-PC-DS	of Pit	Instantaneous	Q measurement (SS) Survey of WSL/stations if no ice/snow.	YES	n/a	Volumetric Salt (0.01 kg)	None	2014-MAY- 8	1536	0.318	1	H-8C	Wa- 06 12
5	[U	H-DC- DX+105		Instantaneous	1, a model of the	n/a	n/a	Salt (0.01 kg)/	None	2014-MAY- 8	137:11	n/a	/		110/H- VC-MM) (
	N	H-DC-D1	b Dome Creel	Instantaneous	Q measurement if clear channel present.	n/a	n/a	Salt (0.01 kg)	None	2014-MAY- S		n/a	_	= no a possible	WI WI IT TO CO
7	М	H-DC-B	Diversion Channel at Bridge	Continuous	O measurement (if channel conditions permit) install data logger/stilling well if possible.	NO	n/a	7./0 Salt (0.05 kg) CF.T	None	2014-MAY-8		np	/	E 110 de possible	MO . 10 BBC
	(Y	H-DC-M	Middle Dome Creek	Continuous	Q measurement Logger download	YES	Solinst 1050018	Salt (0.40kg)	None	2014-MAY- 8	1422	0.322	?	-	Wa-uc=n
	Ü	H-DC-R	Dome Creek at Road	Continuous	Q measurement if clear channel present.	NO	n/a	Volumetric Salt (0.(kg)	None	2014-MAY- B	1347	n/A			H- ye-a
	M	H-VC-U	Upper Victoria Cree	Continuous	Q measurement (ADV + SS) Logger download	YES	Solinst 1049522	ADV SS (0.2 kg)	None	2014-MAY-9	11:43	2,415			H-B (lover)
	w	H-VC-DB0	Victoria Creek D/S of Back Creek	Continuous	Q measurement (ADV + SS) Logger download	YES	Solinst 1049137	ADV SS (0.2 kg)	None	2014-MAY- 9	11:20				WO PH
1	W	H-BC	Back Creek	Continuous	Q measurement (ADV + SS) Logger install (if possible)	YES	n/a	Salt (0.025 kg) CF.T	None	2014-MAY- 4	1170				NO-SEER
0	N	H-VC-UMI	Victoria Creek U/S of Minnesota Creek	Continuous	1) Q measurement (ADV + SS)	YES	n/a	ADV SS (0.2 kg)	None	2014-MAY- 7	9.00				MO DEB
]	14	H-VC-R	Victoria Creek at Road	Continuous	Q measurement (ADV + SS) Logger download and/or direct read replacement.	YES	Solinst 1041103	ADV SS (0.2 kg) CF.T	None	2014-MAY- 6	1251	765	-	rugger out the	16 PC V
[[]	H-SEEP	Seepage Pond Outlet	Instantaneous / Water Level	Q measurement at pipe outlet Q measurement at flow meter in pumphouse Staff Gauge Reading in Pond	NO	n/a	Volumetric	None	2014-MAY-				ar j	11 0 - DC - 916
1	1	H-TP			1) Staff Gauge Reading (if possible)	NO	n/a	None	None	2014-MAY-				Pir	642 07 03 F Mill S
I		GLL07-03	GW Well, Pit	Water level only	1) water level from TOC	YES				2014-MAY-					150 me 150 House
]	1	CH-P-13- 05/50m	GW Well, Pit	Water level only	1) water level from TOC	YES							-		L PITIWL
Ī	I	Pit WL	Pit		1) Survey water level	YES				2014-MAY- 2014-MAY-					Oct comp WQ

HID	11-VC-R		Date		R-MAY-2014							
	NE VETIC	Q Mea	surement Start Time:	11:54	-			ement Instruments				
Station	Vicinia Ch. P		asurement End Time:	17:5			YSI SWOFFER PYGN		T. POINT			
Name	Rope		Download/Inst Time:		PDT PST	SALT TRACER WEIR VOLUMETRIC FLOAT ROD						
	,		Logger Reading (m)	/ 2 3	[] downloaded	Channel Conditions NONE ICE BACKWATER > BANKFULL ZERO FLOW HIGH #USP SED						
Logger:	C							ANKFULL ZERO FLO	W HIGH SUSP SED			
				BO Soffi		GPS Wa	ypoint	508	0392300	6878716		
(LG) Photo #			[D/S] 06 2		[RDB] 000 ^L	1	[LOB] 003		[STAFF/WEIR]	005		
	Site Com					SLUG CONSTANT RATE	DRY LOGGED	MANUAL SPC	EC CFT YES N	0		
Logger	removed @ 12:38	40.0	North		Trial Time	SPC _B SPC _P	Mix Length	Mass of Salt	Mix Vol.	[Salt Slug]		
No ce	d time logger	reading bec	ause de cen			EC _o (uS/cm) EC _{pk} (uS/cm)	L _m (m)	Ms _a (kg)	Volume (L)	Css (kg/L)		
read co	removed @ 12:38 al time logger able broken				1 (;)							
-40666	REPROGRAMED D	D (0665)	Pulto		2 (
AGUD	REPRUGRAMED. D	FROMEDW	J 9 MAY 2014 @	8:00 MM	3 (
	Channel Mea		September 1	Cer	V ₁ for Sec. Mix (mL)	-1 TAN		Vol. Added (mL)	SPC (uS/cm)	Temp		
	Staff Gauge Height (m):	0.7	65.	Salt Tracer	Csec (g/L):	1 g/L		1.				
	Weir Head (m):	2.10		Salt	Vol. Calib. Tank (L):	1 L		2.				
	Water Temperature (°C):	0.10	0	opac S	SPC ₀ Calib. Tank			3.				
Water Surface Slope (%):			C	CF.T =		CF.T	4,					
Average Width (m): 5.3 Average Depth (m): 0.4 (7)			2	Qsalt =		S	5.					
The Estates	Average Depth (m): Measurement Summary	Primary	Secondary	N.	no SS perfor	mid		6.				
	Meas. Type:	ADV	Secondary		No be perto		1					
	Measurment ID (MID):	2014019	and the same of the					9				
	Average Q (m³/s):	3.2042			Volume (L) =			0.				
C	Meas. Accuracy +/- [%]:	2.9		g	Time (sec)	[1]	[2]	[3]	[4]	[5]		
	Average Velocity (m/s):	1.475		Volum.	Average Q (L/s) =			[0]	1.7	[0]		
С	ross-Sectional Area (m²):	2 172			Avg. Q _{voi} (L/s) =			Avg Q_{vol} (m ³ /s) =		4		
- 54 6				t make	Hydrometric Levels - S	urvey			*			
YES NO I REASON	١.		Survey Time (HH:MM):	(WATER)	1220	BM Shift: Yes No	Logger Shift: Yes No		Staff Gauge Shifted?	Yes No		
Circuit #1	HI	Rod Read	Elevation (m)	± 0.003	Circuit #2	BI	Rod Read	Elevation (m)	Station Measureme	ents		
Station	А	В	С		Station	Α	В	С				
BM1	4.022	1.022	3,000		BM1	3,993	0.993	3,000	Log'r Rod Length:			
BM2	4.022	0.591	3 431	0,001	BM2	3.993	0.561	3437	Log'r Rod to Botm:			
ВМ3	4.022	0.851	3.171	0.000	ВМ3	3.993	6.822	3.17[
TOS	4.022	1.449	2,573	0.001	TOS	3.993	1.421	2.572				
WATER	4.022	1.634	2.338	0.003	WATER	3.993	1.648	3.13.45				
LOG'R ROD:	4:022	1.211	2-1811	5.000	LOG'R ROD:	3.993	1.182	24811				
HWM/CON	AN/A	NIA	14/69	NIA	HWM/CON	NIA	WIA	4A4/A	/			
BANKFULL	4.027	1375	2.647	0.001	BANKFULL	3.993	1.347	2.646				
	$f_1 := f_1 + f_2$		A-B#		BS (BM1)	3.093	0.992	2 999				

Shirst logger 10-Jephoge - Loggerto on 9 mAyly <

WAZER 13 m 1

3.987

1 of 2 3.987 WATER

0.987 Field Staff: CL/LG/DS Date: Date: Project #: 13 4 0 352
Project Name: M. Agran

HID	H-DC-R		Date	0	A-MAY-2014	Discharge Measurement Instruments + Methods						
	Dinne Canole	Q Me	asurement Start Time:	13 8	PDT PST	YSI SWOFFER PYGMY ADV MID-SECT POINT						
Station	73.5	Q Me	easurement End Time:	13 4	2 (HHMM) PDT PST							
Name	Road	Logge	r Download/Inst Time:		PDT PST	Channel Conditions						
	11/02/0		Logger Reading (m)	_	[] downloaded							
	Serial #		НО	BO Solir	· · · · · · · · · · · · · · · · · · ·	GPS Wa		28N	888047			
Photo #	[U/S] 006		[D/S] 007		[RDB] 009		[LDB] 008		[STAFF/WEIR]	1/A		
	Site Corr					SLUG CONSTANT RATE	DRY LOGGED	MANUAL SPC				
55 tales	R @ cultrent wh	cen channel	Conso ci		Trial Time	SPC _B SPC _P	Mix Length	Mass of Salt	Mix Vol.	[Salt Slug]		
and and	braded la pr	" for in to	od plain us/os			EC _o (uS/cm) EC _{pk} (uS/cm)	L _m (m)	Ms _a (kg)	Volume (L)	Css (kg/L)		
of PAGE.	Unique to indeall s	Jahm due	to ite		1 (3:24)	408.4 1~450		6.100	10	0,0/		
10.10		-			2 (/3:30)	4084 1460		0.100	10	001		
					3 (;)	I						
	Channel Mea	surements	g eller engl	Je.	V ₁ for Sec. Mix (mL)	100 mL		Vol. Added (mL)	SPC (uS/cm)	Temp		
-	Staff Gauge Height (m):			Salt Tracer	Csec (g/L):	1 g/L		1.	410.1	1-2		
	Weir Head (m):			alt	Vol. Calib. Tank (L);	1 L		2. Zo	445.2	1.3		
Water Temperature (°C): O. / *C			S	SPC ₀ Calib. Tank	408.4		3. / 🗇	461.	1.5			
	Water Surface Slope (%):				CF.T =	5:43×10-5	CF.T	4. 10	479.4	1.6		
Average Negth (m):					Qsalt =	0.1521	2	5 /0	4912	1.8		
Average Depth (m): Measurement Summary Primary Secondary				Notes	straval		6. 10	505.0	2.0			
			Secondary		d .			7.				
	Meas. Type: Measurment ID (MID):	55	The second second					8.				
	Average Q (m³/s):				Values (I)			9_				
	Q Meas. Accuracy +/- [%]:	0.1521		Ė	Volume (L) = Time (sec)	[4]	tot	ro.				
	Average Velocity (m/s):			Volum.	Average Q (L/s) =	L'I	[2]	[3]	[4]	[5]		
~ (Cross-Sectional Area (m ²):			>	Avg. Q _{vol} (Us) =			Avg Q_{vol} (m ³ /s) =		-		
1000	stood occuentary from (iii).		3.0	E-100	Hydrometric Levels - S	Survey		Avg Q _{vol} (III /S) -				
YES IN REASO	N 10 stahen + BMS	Sacr.	Survey Time (HH:MM):	(WATER)		BM Shift: Yes! No	Logger Shift: Yes No		Staff Gauge Shifted?	Yesi No		
Circuit #1	н	Rod Read	Elevation (m)	± 0.003	Circuit #2	ні	Rod Read	Elevation (m)	Station Measureme			
Station	А	В	С		Station	A	В	С				
BM1	AH H HO		3.000		BM1			3.000	Log'r Rod Length:	1:		
BM2	6 FEFF		A-B =		BM2			A-R T	Log'r Rod to Botm	ı:		
ВМЗ	KEELT		A-B F		ВМЗ			V/2 =				
TOS	67889		7-B -		TOS			ABI				
WATER	A - R + D		A-B=		WATER			A-D=				
LOG'R ROD:	Delites.		A-B=		LOG'R ROD:			A-BH				
HWM/CON	- A = R + C		A-B=		HWM/CON			A-B=				
BANKFULL	Z = II (0 A)		M/Hz		BANKFULL			ep.Be				
	V = U + V		A/B=		BS (BM1)			A-R-				

Field Staff:	CL	6.	25	-
Data Entry By:_		-//	Date:	
Reviewed By:_			Date:	

Project #: 12-1-0351

HID	1-1-DC-14		Date	7	3 MAY-2014	Discharge Measurement Instruments + Methods						
	Dome ck.		asurement Start Time:	1022	PDT [PST	SS SWOFFER PYGMY ADV MID-SECT POINT						
Station	midde	Q Me	easurement End Time:	1439	(HIH MM) PDT [PS]			IR VOLUMETRIC FL	OAT ROD			
Name	MODIC	Logge	r Download/Inst Time:	14:03	(HH MM) PDT PST			nnel Conditions				
			Logger Reading (m)	1701-120	gible []downloaded	NONE	ICE BACKWATER > B	ANKEULL ZERO FLO	OW HIGH SUSP, SED.			
Logger:			НС	BO Solin	St N/A	GPS Wa		0.8	38197780	68 80F		
Photo # [[U/S] 17		[D/S] 3		[RDB] 15		[LDB] /4		[STAFF/WEIR]	15		
	Site Con	nments				SLUG CONSTANT RATE	DRY LOGGED	MANUAL SPC	EC CFT YESI	NO		
Coloret	logged cable b	raker ten	ond lover]	Trial Time	SPC _B SPC _P	Mix Length	Mass of Salt	Mix Vol.	[Salt Slug]		
10111151	58	7 -01				EC _o (uS/cm) EC _{pk} (uS/cm)	L _m (m)	Ms, (kg)	Volume (L)	Css (kg/L)		
then	12 -instable)	e 135/			1 (/3:59)	376./	1:	0.100	10	0.01		
* Acarmel	conduct of glacel for	m fores			2 (19:03)	3745 1960						
EVERSKE PROGRAM					3 ()	1						
	Channel Mea			<u> </u>	V ₁ for Sec. Mix (mL)	100ml		Vol. Added (mL)	SPC (uS/cm)	Temp		
	Staff Gauge Height (m):	0.31	12	Salt Tracer	Csec (g/L):	1 g/L		1. 0	367.8	3,2		
	Weir Head (m):		VIA.	불	Vol. Calib. Tank (L):	1 L MESTE		2 10	4070	3.2		
Water Surface Slope (%):		0.1.0		SPC₀ Calib. Tank			3. 10	420.2	3 - 1			
				CF.T =	4.67×10-5	E.	4. 20	454.9	3.3			
Average Width (m):					Qsalt =	0.1535	ZF.T.	5 20	480.0	3.5		
	Average Depth (m):				Notes:			6.				
	Measurement Summary		Secondary					7				
	Meas, Type:	55						8.				
	Measurment ID (MID):							9.				
	Average Q (m³/s):	0.1535			Volume (L) =							
Q	Meas. Accuracy +/- [%]:			Volum.	Time (sec)	[1]	[2]	[3]	[4]	[5]		
	Average Velocity (m/s):			>	Average Q (L/s) =							
Cr	ross-Sectional Area (m²):				Avg. Q _{vol} (L/s) =			Avg Q_{vol} (m ³ /s) =	J II			
0				1178	Hydrometric Levels - :	Survey						
VES NO REASON			Survey Time (HH:MM):	(WATER)	14.10	BM Shift: Yes No	Logger Shift: Yes No		Staff Gauge Shifted?	Yes No		
Circuit #1	HI	Rod Read	Elevation (m)	± 0.003	Circuit #2	HI	Rod Read	Elevation (m)	Station Measureme	ents		
Station	A	В	С		Station	Α	В	С				
BM1	4:441	1,441	3.000	N V	BM1	4,475	1.495	3.000	Log'r Rod Length			
BM2	4.441	2.128	2,313-2:313	0 00\$	BM2	4. 475	2.158	2/317	Log'r Rod to Botm):		
BM3	4:49	1.728	2-7-13	0.001	BM3	4.435	1.763	12.712				
TOS	4:441	1.962	2.479	0.063	TOS	4.475	1.979	2:476				
WATER	14:44	2.648	12798	0.00/	WATER	4.445	2678	1797				
LOG'R ROD:	141441	1.7/4	2.727 1-3-1-4		LOG'R ROD:	4.475	1.765		this one is correct	1		
HWM/CON	NA	NIA	M/1/2		HWM/CON			2-35				
BANKFULL	WIA	NA	Nos		BANKFULL		3	= جيش				
	A 141+ C		A 8=		BS (BM1)	4.474 *		A.20=				

Field Staff:	0	25	115		
Data Entry By:_	UU	9.5	-	Date:	
Reviewed By:_				Date:	

Project #: 15 1-0352 Project Name: 11 / ACVA

HID	H-DC-13		Date	0	& MAY-2014		Discharge Measure	ement Instruments	- Methods		
	1	Q Mea	asurement Start Time:	1437			YSI SWOFFER PYGN		ECT POINT		
Station	H-DC-B	Q Me	asurement End Time:	1507				R VOLUMETRIC FLO			
Name	H- UC-15	Logge	Download/Inst Time:	1-	(HR MA: PDT PST	3 7 3		nnel Conditions	5/// [100		
			Logger Reading (m)	×	[] downloaded	NONE	ICE BACKWATER > B		WI HIGH SIISD SELP		
Logger: Seri	ial#		ног	BO Solin	st M		GPS Waypoint 0%			0389506 6880760	
Photo # [U/S]	1 17		[D/S] / B	-	[RDB] 20)	[LDB] [q		[STAFF/WEIR]		
	Site Com	ments				SLUG CONSTANT RATE		MANUAL SPC		10	
- Need to install	I wier shilling,	well on ne	ct wint		Trial Time	SPC _B SPC _P	Mix Length	Mass of Salt	Mix Vol.	[Salt Slug]	
	in parch in w					EC _o (uS/cm) EC _{pk} (uS/cm)	L _m (m)	Ms, (kg)	Volume (L)	Css (kg/L)	
16 0. 000	Dady to M	ien wowl?			1 (/4 :37)	351.9	4;	0.190	10	0-01	
25		AN AN AN			2 (14 39)	357.91	41	0-1011	10	0.01	
	1000				3 (111			7.0		
	Channel Meas	surements		<u>.</u>	V ₁ for Sec. Mix (mL)	100	1	Vol. Added (mL)	SPC (uS/cm)	Temp	
Sta	aff Gauge Height (m):			Salt Tracer	Csec (g/L):	1 g/L		1. 0	349,5	1.3	
100.073	Weir Head (m):	-		#	Vol. Calib. Tank (L):	1 L		2. 10	362.9	2.0	
	ter Temperature (°C):	0.	φ	o	SPC ₀ Calib, Tank	349.5		3. (0	3710	3.0	
Water Surface Slope (%):					CF.T =	5.34 x10-5	CF.T	4. 10	410.0	2.4	
Average Width (m):				Qsalt =	0.1191	5	5. 20	443.0	2.6		
	Average Depth (m):				Notes			6.			
Me	easurement Summary	Primary	Secondary					7.			
	Meas, Type:	55	CONTRACT CONTRACTOR					8.			
IV	Measurment ID (MID):	2014022			CONTRACTOR OF THE PARTY OF THE			9.			
0.140	Average Q (m³/s):	0.1191	Constitution of the	200	Volume (L) =						
	eas. Accuracy +/- [%]:			Volum.	Time (sec)	[1]	[2]	[3]	[4]	[5]	
	verage Velocity (m/s):	DAGVITI E		_ , S	Average Q (L/s) =	ALCO IN CO.					
Cross	-Sectional Area (m²):		Side of the last		Avg. Q _{vol} (L/s) =			Avg Q_{vol} (m ³ /s) =			
NO REASON			I committee dillano.	(WATER)	Hydrometric Levels - S						
Circuit #1	HI (SEE	Rod Read	Survey Time (HH:MM): Elevation (m)	± 0.003	Circuit #2	BM Shift: Yes No	Logger Shift: Yes No	Flouration (m)	Staff Gauge Shifted? Station Measureme		
Station	Α	В	C C	10.003	Station	A	Rod Read B	Elevation (m)	Station Weasureme	ents	
BM1	4:1235	1,235	3.000		BM1	4.223		3.000	Log'r Rod Length:		
BM2	2F-12-4	0.880	38355	0.000	BM2	4,20	1,220	3.003 5	Log'r Rod to Botm:		
ВМЗ	AFREC.	1.243	2.1992	0 001	BM3		0.8680	313552	Edgy Rod to Bottil.		
TOS	Artice T		A-B		TOS	Total Control	0,008	6.01			
WATER	Anthor	2,427	14808	0.002	WATER		2.413	1.810		-	
LOG'R ROD:	ZEXII+U	011-1	A-B=		LOG'R ROD:		2.113	A.B=			
	7										
HWM/CON	A=R+0		A-B#1		HWM/CON			A-B= 7			
HWM/CON BANKFULL					HWM/CON BANKFULL			A-8= A			
	A×B×Q		A-B=)			STEE SELECTION AS					

Field Staff:	CLIEGIOS	
ata Entry By:	Date:	
Reviewed By:	Date:	

Project #: 14 4-0252
Project Name: Mt Marson

HID	H-PC-DSP		Date	05	MAY-2014		Discharge Measure	ement Instruments	Methods	
		Q Mea	surement Start Time:		9 THE MADE POT PST		YSI SWOFFER PYGN		ECT POINT	
Station	Pory Ck.	Q Me	asurement End Time:		6 INGITALE POT PST				1 .	
Name		Logger	Download/Inst Time:		THE MM: PDT PST	ALT TRACE WEIR VOLUMETRIC FLOAT ROD				
'	PIT		Logger Reading (m)		[] downloaded	Channel Conditions NONE ICE BACKWATER > BANKFULL ZERO FLOW MIGH SUSP. SED				
Logger:	Serial # 0021645	254		BO Sø¶n						
Photo #		,	[D/S] 22	([RDB] 24	3. 0 114		08		
	Site Com	ments	[5/0]		[ROB] 29	SLUG CONSTANT RATE		I BAAANIAA		5 2
() al			1		Trial Time	SPC _B SPC _P		r		
ye proc	yed Solinst ligge Spit on logge	10 15 d	7		That time	EC _o (uS/cm) EC _{pk} (uS/cm)	Mix Length	Mass of Salt	Mix Vol.	[Salt Slug]
* PC D	SPIT on loace	6			1 (/5:33)	69.61/846	L _m (m)	Ms, (kg)	Volume (L)	Css (kg/L)
,,,,	J				2 (;)	09(0)////	26	0.700	10	0.01
_					3 (:)		26	0.100	10	0.01
	Channel Mea	surements		_	V ₁ for Sec. Mix (mL)	4 / 1400		1/al Add-d (1)	000 (01)	
	Staff Gauge Height (m):		3180	Salt Tracer	Csec (g/L):	/ <i>UO</i> 1 g/L		Vol. Added (mL)	SPC (uS/cm)	Temp
	Weir Head (m):	11000	1100	Ē.	Vol. Calib. Tank (L):	1 L		2 10	64.4	1.1
	Water Temperature (°C):	O.	9	Sal	SPC ₀ Calib. Tank	64.4		3. 10	94.5	1.0
	Water Surface Slope (%):	0,			CF.T =	4.81 210-5	_	4 26		
	Average Width (m):			100	Qsalt =	0.0269	CF.T	5. 20	141.8	1.1
	Average Depth (m):		· · · · · · · · · · · · · · · · · · ·		Notes:	U-UANT		6. 20	167.5	
-5.	Measurement Summary	Primary	Secondary					7. 20	206.9	1.0
	Meas. Type:	55	,					8.	1 2 13	
	Measurment ID (MID):	2014023	-/					9.		
7.	Average Q (m³/s):	0.0269			Volume (L) =					
C	Q Meas. Accuracy +/- [%]:			Ę	Time (sec)	[1]	[2]	[3]	[4]	[5]
	Average Velocity (m/s):			Volum.	Average Q (L/s) =					
С	cross-Sectional Area (m²):		/		Avg. Q _{vol} (L/s) =			Avg Q_{vol} (m ³ /s) =	1 100	
				8	Hydrometric Levels - S	urvey				
YES NO REASON	V		Survey Time (HH:MM):	(WATER)		BM Shift: Yes No	Logger Shift: Yes No		Staff Gauge Shifted?	Yes No
Circuit #1	HI	Rod Read	Elevation (m)	± 0.003	Circuit #2	HI	Rod Read	Elevation (m)	Station Measureme	nts
Station	А	В	С		Station	A	В	С		
BM1	4,347	1.344	3.000		BM1	4.335	1.333	3.000	Log'r Rod Length:	1.180
BM2	B SEALS	0.689.133	3659 3173		BM2		1.088	3.297	Log'r Rod to Botm:	
вм3	101 (f + 1)	1.098	3.249		BM3		0,679	43.658		11
TOS	own.	1.173	3,174		TOS		1.164	3.171		
WATER	n e Rein	1.856	2.491		WATER		1.842	2,493		
LOG'R ROD:	AND THE DESIGNATION OF THE PERSON OF THE PER	0.922	3.425		LOG'R ROD:		5.912	3114 23		
HWM/CON	N=B+C		AGE		HWM/CON		-	A.Be		
BANKFULL	excitority i		NAT:		BANKFULL			==IB=		
	Andrian		A, B=		BS (BM1)			3191		

Field Staff:	01	16-29		
Data Entry By:			Date:	
Reviewed By:			Date:	

Weather: Oselcost, Vain

HID	PCU		Date	ď	OS MAY-2014		Discharge Measure	ement Instruments -	+ Methods		
	UPPER	Q Mea	surement Start Time:	16	: /2 H MM PDT PST		YSI SWOFFER PYGM		ECT. POINT		
Station	PONY CREEK	Q Me	asurement End Time:	16	JOHNING POTIPST		SALT TRACER WEI	R VOLUMETRIC FLO			
Name	7 4 7 61 99 1	Logger	Download/Inst Time:	ownload/Inst Time: PDT PST			Channel Conditions				
			Logger Reading (m)		[] downloaded	NONE	ICE BACKWATER > B		W HIGH SUSP. SED.)	
Logger:	Serial #		но	BO Solin	st (N/A)	GPS Wa		08	3887118/	281911	
Photo #	0.0		[D/S] 27		[RDB] Q	9	[LDB] 2;	00	[STAFF/WEIR]	/	
	Site Com					SLUG CONSTANT RATE	DRY LOGGED	MANUAL SPC	EC CFT YESIN	0	
High fl	on but susp. sed.	is low			Trial Time	SPC _B SPC _P	Mix Length	Mass of Salt	Mix Vol.	[Salt Slug]	
20 6 1 1	y will place achors	hanken "	NIDON DE			EC _o (uS/cm) EC _{pk} (uS/cm)	L _m (m)	Ms, (kg)	Volume (L)	Css (kg/L)	
(0000)	in an wier in	102000-10			1 (16 12)	4.845.71 148		0.100			
1 shill.	of well bluces	util -			2 (16:18)	47-0 1-14					
- Hovencing	placed aching	news to-			3 (;)						
	Channel Mea	surements		Salt Tracer	V ₁ for Sec. Mix (mL)	100		Vol. Added (mL)	SPC (uS/cm)	Temp	
	Staff Gauge Height (m): Weir Head (m):			ם	Csec (g/L):	1 g/L		1. 0	48.3	0.9	
A-74	Water Temperature (°C):			Salt	Vol. Calib. Tank (L):	1 L		2 /0	68.0	1.0	
		0.3		0,	SPC ₀ Calib. Tank	C 1 = 10 E		3 /0	89,0	2.7	
·	Water Surface Slope (%):				CF.T=	5.15 x 10-5	CF.T	4 20	121.0	1.2	
	Average Width (m): Average Depth (m):				Qsalt =	0.0237	O	5 . 20	1462	1/3	
RIVERS +	Measurement Summary	Primary	Secondary		110100			6. 23	1 82,3	110	
	Meas: Type:	S S	Secondary		k.			0			
	Measurment ID (MID):	2014 024						a a			
	Average Q (m³/s):	0.0237			Volume (L) =			9			
C	Meas. Accuracy +/- [%]:	0.0071		É	Time (sec)	[1]	[2]	[3]	[4]	[5]	
	Average Velocity (m/s):			Volum.	Average Q (L/s) =		<u></u>			1.0,	
С	ross-Sectional Area (m²):				Avg. Q _{vol} (L/s) =			Avg Q_{vol} (m ³ /s) =			
		1.0		- Priva	Hydrometric Levels - S	Survey	•	7 7 7			
YES (NO) REASON	NO STN INSTAL	1610	Survey Time (HH:MM)	(WATER)		BM Shift: Yes No	Logger Shift: Yes No		Staff Gauge Shifted?	res No	
Circuit #1	HI	Rod Read	Elevation (m)	± 0.003	Circuit #2	HI	Rod Read	Elevation (m)	Station Measureme	nts	
Station	Α	В	C		Station	A	В	С			
BM1	V2F+3		3.000		BM1			3.000	Log'r Rod Length:		
BM2	er tect.		A-6 =	J.	BM2			AleH =	Log'r Rod to Botm:		
ВМ3			A-6 =		BM3			75,41 =			
TOS	SHIRT # 27.		AE		TOS			A 71 =			
WATER	I N + I 1 × E		A-Br		WATER			-7÷8=			
LOG'R ROD:	3-411-12		A-Ba		LOG'R ROD:			A-B=			
HWM/CON	A=#.c.		A-Be-	20 Kg	HWM/CON			A-8= -			
BANKFULL	WATER A		A-B=		BANKFULL			4-8=			
	W-H-5.		A-0=		BS (BM1)			#B=			

Field Staff:	CL 14		
Data Entry By:_		Date:	
Reviewed By:_		Date:	

Project #: /4-4-0351 Project Name: Mt //ansch

HID	H-DC-0X1105	75	Date	C	8 MAY-2014		Discharge Measur	ement Instruments	+ Methods	
	Dome Creek	Q Mea	surement Start Time:	17:11	ARPLANA POT PST		XS) SWOFFER PYGI		ECT POINT	
Station		Q Me	asurement End Time:	12:21	O'S MAD POT PST			IR VOLUMETRIC FLO		
Name	DX 1103	Logger Download/Inst Time: 0/6		2/4	HH MAL POT PST	Channel Conditions				
		4	Logger Reading (m)		[] downloaded	NONE	ICE BACKWATER > E		WI HIGH SUSP SED	
Logger:	Serial #		НО	BO Solin	st MIR	GPS Wa		9N 0387842		Loona
Photo #	[u/s] 33		[D/S] 34		[RDB] 35		[LDB] 36	011	[STAFF/WEIR]	, 000113
	Site Com	ments				SLUG CONSTANT RATE	00	MANUAL SPC		
Moderate 1	Tow Sammated	Mandalain.			Trial Time	SPC _B SPC _P	Mix Length	Mass of Salt	Mix Vol.	[Salt Slug]
Museum The	1000 0000000	1000	to contin			EC _o (uS/cm) EC _{pk} (uS/cm)	L _m (m)	Ms, (kg)	Volume (L)	Css (kg/L)
mixing cen	In shortened to	o according	on visig		1 (17:13)	13.1 1/095	~ 25 ~	0.020	10	0.002
channulgi	2 Flow				2 (/7:/7)	13.1 110.8	25 n	0.020	/0	0002
-Too much flow for solumetric palculations			Iculations		3 (:)				70	
Channel Measurements				ā	V ₁ for Sec. Mix (mL)	500/25		Vol. Added (mL)	SPC (uS/cm)	Temp
	Staff Gauge Height (m):			Salt Tracer	Csec (g/L):	1 g/L		1. 0	75.2	1.8
	Weir Head (m):			alt .	Vol. Calib. Tank (L):	1L 250		2 20	100,4	2.0
Water Temperature (°C): /, 5 °⊂			ű	SPC ₀ Calib. Tank	1L 258 76.2		3. ZO 4. ZO	127.5	2.1	
Water Surface Slope (%):					CF.T =	2.43×10-4	A. F.	4. 20	152.4	2.2
Average Width (m):					Qsalt =	0.0193	5	5.		
Average Depth (m):					Notes			6.		
	Measurement Summary	Primary	Secondary		Temp = 1.5			7.		
	Meas. Type:	55						В		
	Measurment ID (MID):	2014025						9.		
	Average Q (m³/s):	0.0193		c.	Volume (L) =					
(Meas. Accuracy +/- [%]:			Volum.	Time (sec)	[1]	[2]	[3]	[4]	[5]
	Average Velocity (m/s):			Š	Average Q (L/s) =					
С	ross-Sectional Area (m²):			90 Table 20 Table	Avg. Q _{vol} (Us) =			Avg Q_{vol} (m ³ /s) =		
A			Ta = #11100	***********	Hydrometric Levels - S					
YES MO REASON Circuit #1	no stahm in	Rod Read	Survey Time (HH:MM): Elevation (m)	(WATER)	Circuit #2	BM Shift: Yes No	Rod Read	Elevation (m)	Staff Gauge Shifted?	
Station		B Rou Read	C C	10.003	Station	A	B B	C C	Station Weasureme	111.5
BM1	A	В	3.000		BM1		В	3.000	Log'r Rod Length:	
BM2			A-E =		BM2			3.000	Log'r Rod to Botm:	
BM3	8 1 B 1 G		A-B =		BM3			Willia	Log i Rod to Botini.	
TOS	VI HILL		/A-B =		TOS			AB		
WATER	DESTRUCTION OF THE PERSON OF T		A-Be		WATER			A-fin		
LOG'R ROD:	J=0+0		A-B=		LOG'R ROD:			A-Re		
HWM/CON	$\rho = \underline{\rho} \setminus \mathbb{Q}$		A-(5×1		HWM/CON			A-B=		
BANKFULL	A-11-L		4/50 10		BANKFULL			A.E.		
27 1111 022	N-W-D		A-B=		BS (BM1)			#-B=		
			7.0.3		23 (2)				4	

Field Staff:	CUDS	161		
Data Entry By:			_Date:	
Reviewed By:			Date:	

THE RESERVE THE PROJECT OF THE PARTY OF THE

Weather: Slight Due cant

HID	VC UMIV		Date		9 MAY-2014		Discharge Measu	rement Instruments	- Methods			
	Victoria Cr.	Q Mea	surement Start Time:		OB3 OM PDT PST YSI SWOFFER PYGMY (ADV) MID-SECT POINT							
Station		Q Me	asurement End Time:	eg.	SALT TRACER WEIR VOLUMETRIC FLOAT ROD							
Hairio		Logge	Download/Inst Time:		OO (HH MM) POT PST			annel Conditions				
	Minnesote Cr.		Logger Reading (m)	7 -	[] downloaded	NONE	NONE ICE BACKWATER > BANKFULL ZERO FLOW HIGH SUSP, SED					
Logger:	Serial #		НО	BO Solin	st N/A	GPS Wa	ypoint	080	392429	687923		
Photo #	[U/S] 0041		[D/S] 0042		[RDB] 44		[LDB]	13	[STAFF/WEIR] 45			
	Site Com	nments	THE RESERVE			SLUG CONSTANT RATE	DRY LOGGED	MANUAL SPC				
well was	danaged from	ice - survey	ed demaged	1	Trial Time	SPC _B SPC _P	Mix Length	Mass of Salt	Mix Vol.	[Salt Slug]		
	*					EC _o (uS/cm) EC _{pk} (uS/cm)	L _m (m)	Ms, (kg)	Volume (L)	Css (kg/L)		
NEED WEL	L MAITENANE -	WITHUL YOUNG	ED TEROST OF		1 ()					10,		
T	TO PANK-10 MINO	2 20 2//201	00/		2 (;)							
SOM MATE	PINE (ANGLE 1802)) RUMILAULE Y	3116 8		3 ()							
34.15	Channel Mea	surements	de la Camarille		V ₁ for Sec. Mix (mL)	mit hitting		Vol. Added (mL)	SPC (uS/cm)	Temp		
	Staff Gauge Height (m):	0.0		īac	Csec (g/L):	1 g/L		1.				
	Weir Head (m):	/		Salt Tracer	Vol. Calib. Tank (L):	1 L		2.				
Water Temperature (°C):		>	လိ	SPC ₀ Calib. Tank			3.					
Water Surface Slope (%):				CF.T =		н.	4.					
Average Width (m): 6 . 0		O		Qsalt =		CELT	5.					
Average Depth (m): 0.364				Notes			6.					
Measurement Summary Primary Secondary		Secondary	1	no SS taken	~		7,		-			
	Meas. Type:	ADV		1	()			8.				
	Measurment ID (MID):	The state of the s						9,				
	Average Q (m ³ /s):	2.6054			Volume (L) =							
G	Meas, Accuracy +/- [%]:	2.2	/	Volum.	Time (sec)	[1]	[2]	[3]	[4]	[5]		
	Average Velocity (m/s):	1, 193		Je	Average Q (L/s) =							
С	ross-Sectional Area (m²):	2.184			Avg. Q _{vol} (L/s) =			Avg Q_{val} (m ³ /s) =				
21.5				I Manda	Hydrometric Levels - S	Survey						
NO REASON	V:		Survey Time (HH:MM):	(WATER)		BM Shift: Yes No	Logger Shift: Yes No		Staff Gauge Shifted?:	Yes No		
Circuit #1	HT	Rod Read	Elevation (m)	± 0.003	Circuit #2	HI	Rod Read	Elevation (m)	Station Measureme	ents		
Station	Α	В	С		Station	A	В	С				
BM1	44139	1.139	3,000		BM1	4.118	1.118	3.000	Log'r Rod Length	i:		
BM2	N-8+0	1.131	3,000	0	BM2		1.110	3,008	Log'r Rod to Botm	r:		
ВМ3	2 E F 1 E	1,401	2-678	0	BM3		1.440	2.678				
TOS	1 12 16	2.155	12.984	0	TOS		2.134	149 34				
WATER	A = 8 × C	2.220	1.4949	0.001	WATER		2.200	1.948				
LOG'R ROD:	从一起 + 位	1.948	2.41391	0	LOG'R ROD:		1,927	2=191				
HWM/CON	A=84.6	1 415	A-8=1-	l Mile	HWM/CON			A-8=				
BANKFULL	باحداد ۸	_	A-9=		BANKFULL	/		6.6=				
	N = 11 + 5		A-B=		BS (BM1)	4.113		- A19E				

Field Staff:	LG/CL/	D'S	
Data Entry By:_		Date:	
Reviewed By:_		Date:	

Project #: 14 7-0452 Project Name: MF Nansen

Wodj

HID	VA DRA		Date		्र MARCH-2014		Discharge Measur	oment Instruments	Methods	
TIID	VC DBC	O Mer	asurement Start Time:	7.	OQ MARCH-2014 Discharge Measurement Instruments + Methods YSI SWOFFER PYGMY MID-SECT. POINT					
			asurement End Time:		PDT PST			IR VOLUMETRIC FLO		
Station Name			r Download/Inst Time:	11:47	(HALMA) POT [PST				DAT JROD	
Name		Logge				NONE	ICE BACKWATER > I	nnel Conditions	WI FIGURIUS OFF	
			Logger Reading (m)		[] downloaded					
			80 श्क्रीन		GPS Wa	ypoint	୦%	391629	6880784	
Photo #	[U/S] 53		[D/S] 5 4		[RDB] 56		[LDB]	35	[STAFF/WEIR]	57
	Site Com	ments				SLUG CONSTANT RATE	DRY LOGGED	MANUAL SPC	EC CF.T YESIN	10
-la chun,	ts flowlyn down	Channel			Trial Time	SPC _B SPC _P	Mix Length	Mass of Salt	Mix Vol.	[Salt Slug]
- \(\)	ale port gal con	then project	- Shidoff 2x			EC _o (uS/cm) EC _{pk} (uS/cm)	L _m (m)	Ms _a (kg)	Volume (L)	Css (kg/L)
y71 sint	erc may proposed	high high	- Mad [1]		1 ()					
ouring a	ross seenon.		1 - 10 - 10 -		2 (:)					
- high th	ek ADV not woll ross seehen. 16 + DL losser +	removed win	ra garian		3 ()					
S NULL	Channel Mea	surements	eval " in the second	5	V ₁ for Sec. Mix (mL)	=1 / C.ss		Vol. Added (mL)	SPC (uS/cm)	Temp
Staff Gauge Height (m):		738	Salt Tracer	Csec (g/L):	1 g/L		1.:			
Weir Head (m):			벌	Vol. Calib. Tank (L):	1 L		2.			
	Water Temperature (°C):	0.80		တ္တ	SPC ₀ Calib. Tank			3.		
Water Surface Slope (%):				CF.T =		ļ	4.			
Average Width (m): 5.20				Qsalt =		A P	5.			
Average Depth (m): 0.430				Notes:		1	6.			
AB 721 -	Measurement Summary	Primary	Secondary		no ss tak	en.		7.		
	Meas. Type:	ADV	1					8.		
	Measurment ID (MID):	2014027						9,		
	Average Q (m³/s):	2.3879			Volume (L) =			ii		
(Q Meas. Accuracy +/- [%]:	1.7%		Volum.	Time (sec)	[1]	[2]	[3]	[4]	[5]
	Average Velocity (m/s):	1.091		/olt	Average Q (L/s) =					
C	cross-Sectional Area (m²):	2:273			Avg. Q _{vol} (L/s) =			Avg Q_{vol} (m ³ /s) =		
			* * * * * * * * * * * * * * * * * * * *		Hydrometric Levels - S	Survey				
ES NO REASO	N:		Survey Time (HH:MM):	(WATER)	950	BM Shift: Yes No	Logger Shift Yes No		Staff Gauge Shifted?:	Yes No
Circuit #1	н	Rod Read	Elevation (m)	± 0.003	Circuit #2	HI	Rod Read	Elevation (m)	Station Measureme	ents
Station	Α	В	С		Station	Α	В	С		
BM1	4. 471	1,471	3.000		BM1	4. 464	1.464	3.000	Log'r Rod Length	:
BM2	A = B = C	1,448	3:023	0.002	BM2		1439 Latto	3.025	Log'r Rod to Botm	:
ВМ3	A=0 S	1.555	2.916	0.002	ВМ3		1.546	2918		
TOS	A⇒B+C	2.136	2.3354		TOS		2.117	2.347	* this one is	Formed &
WATER	A=E+C	2.388	2,083	0.003	WATER		2.378	2.086		
LOG'R ROD:	A = B + C	1.906	2.565	O	LOG'R ROD:		1, 899	2 ,5065		
HWM/CON	THE WESTER OF		A-B=		HWM/CON			A-Ba		
BANKFULL	A=E+C		A-B=		BANKFULL		_	A-8=		
	A=8-0		A/H=		BS (BM1)			A-B=	A PART OF THE	H TE

6/6/	1 23	_
	Date:	
	Date:	
	C6/ CL)	M000000

Weather: clcar

May

HID	HVCU		Date	04	MARCH-2014		Discharge Measur	ement Instruments +	Methods		
10 7 10 10 20	UPPER VICTOREA	Q Mea	surement Start Time:	10:3	HEMMI POT IPST		YSI SWOFFER PYG	MY (ADV) MID-S	ECT. POINT		
Station	OR	Q Me	asurement End Time:	120	D CHEMIN POT I PST	SALT TRACER WEIR VOLUMETRIC FLOAT ROD					
Name		Logger	Download/Inst Time:		PDT PST	Channel Conditions					
it symbols			Logger Reading (m)		[] downloaded	NONE	ICE BACKWATER > B	ANKFULL ZERO FLO	W (HIGH SUSP. SED.)		
Logger: S	Serial #		НО	BO Solip	st N/A	GPS Wa	ypoint	08	391668	680880	
Photo # [U			[D/S] 67		[RDB]	04	[LDB] 68		[STAFF/WEIR] 7	0	
	Site Com					SLUG CONSTANT RATE	DRY LOGGED	MANUAL SPC	EC CF.T YES! N	io	
- HIGH FIR	Wille CHUNKS	FINATING	power prannel		Trial Time	SPC _B SPC _P	Mix Length	Mass of Salt	Mix Vol.	[Salt Slug]	
- Downloaded	loccer and rem	ore) Wirteria	4,1/h			EC _o (uS/cm) EC _{pk} (uS/cm)	L _m (m)	Ms, (kg)	Volume (L)	Css (kg/L)	
2	ارن)		1 ()						
					2 (
				6	3 ()						
	Channel Meas		11 =	cer	V ₁ for Sec. Mix (mL)	nt / Cas		Vol. Added (mL)	SPC (uS/cm)	Temp	
Staff Gauge Height (m): 0 4/5		Salt Tracer	Csec (g/L):	1 g/L		1.					
10	Weir Head (m):		_	Salt	Vol. Calib. Tank (L):	1 L		2.			
Water Temperature (°C): O, 80		0,	SPC₀ Calib. Tank			3.					
Water Surface Slope (%):				CF.T =		F.T.	4.				
Average Width (m): 5.05 Average Depth (m): 5.439			Qsalt =		٥	5.					
Average Depth (m): 7.439 Measurement Summary Primary Secondary			10 SS take			b. 7					
	Meas. Type:	ADU	Secondary	Š	110 27 1616	in		0			
	Measurment ID (MID):	2014028						0.			
	Average Q (m³/s):	1.929			Volume (L) =			5.			
QI	Meas. Accuracy +/- [%]:	1.9		Ė	Time (sec)	[1]	[2]	[3]	[4]	[5]	
	Average Velocity (m/s):	0.819		Volum.	Average Q (L/s) =		[-1	[[0]	1.1	[0]	
	oss-Sectional Area (m²):	2.195		>	Avg. Q _{vol} (L/s) =			Avg Q _{vol} (m ³ /s) =		5 15	
-		GHIII		196	Hydrometric Levels - S	Survey	P. L.				
NO REASON:			Survey Time (HH:MM):	(WATER)	10 40	BM Shift: Yes No	Logger Shift: Yes No		Staff Gauge Shifted?:	Yes No	
Circuit #1	H1	Rod Read	Elevation (m)	± 0.003	Circuit #2	HI	Rod Read	Elevation (m)	Station Measureme	ents	
Station	Α	В	С		Station	Α	В	С			
BM1	4.325	1.325	3.000		BM1	4.348	1.348	3.000	Log'r Rod Length		
BM2	A = B + C	0.964	39361	D	BM2		0.987	3 361	Log'r Rod to Botm		
ВМ3	0 = H = A = e	186.1	3.244	0.001	ВМ3		1.103	3.245			
TOS	A=B+C	1.423	2.902	0.001	TOS		1.445	2.903			
WATER	E=B+S	2.010	2.315	0.007.	WATER		2.035	2,313	17-148		
LOG'R ROD:	A = E + C	1.176	3-149	D	LOG'R ROD:		1,199	3.147			
HWM/CON	N-B-C	MI-	A/B=		HWM/CON		2 YL - 101	A-Be			
BANKFULL	A=H-C		A-B=		BANKFULL			A-8=			
STEEL STEEL	4-6-0		Alle		BS (BM1)		1.348	A-9==0	(/) (

Field Staff:	L9/66/05	
ata Entry By:	Date:	
Reviewed By:	Date:	

Project #: 14-4-0352 Project Name: Mr. Dansen

	1 22				V(B)						
	H-BC		Date	0	MARCH-2014						
	Back Greek		asurement Start Time:		1/25 PDT PST	YSI SWOFFER PYGMY ADV MID-SECT POINT SALT TRACEP WEIR VOLUMETRIC FLOAT ROD					
Otation	Duck V -9L		asurement End Time:	1140			SALT TRACED WEI	R VOLUMETRIC FLO	DAT ROD		
Name Logger Download/Inst Time:			(HELMIN) POT PST			nnel Conditions					
NITE IN			Logger Reading (m)		[] downloaded	NONE	ICE BACKWATER > B	ANKFULL ZERO FLO	W HIGH SUSP, SED,		
Logger: S	Serial #		НО	BO Solin	st N/A	GPS Wa	ypoint	08	391626	68 80899	
Photo # [u/s] 기\		[D/S] 72		[RDB] 75		[LDB]	73	[STAFF/WEIR] 7	4	
E = E - M. E	Site Com					SUG CONSTANT RATE	DRY LOGGED	MANUAL SPC	EC CF.T YES N	0	
High flow.	Widenu of 150	1 bank water	previous to		Trial Time	SPC _B SPC _P	Mix Length	Mass of Salt	Mix Vol.	[Salt Slug]	
						EC _o (uS/cm) EC _{pk} (uS/cm)	L _m (m)	Ms _a (kg)	Volume (L)	Css (kg/L)	
TAIL.	ry. Nud to de	7 .			1 (// : 3 6)	754 96.1	23	0.05	10	0.005	
-55 + Sm	ry. Need to de	blan lotter	'		2 (11:3/)	75.5 99.0	23	0.05	10	0.005	
	J	- W			3 (
	Channel Mea	surements		ē	V ₁ for Sec. Mix (mL)	200 /100	mL Solatinte	Vol. Added (mL)	SPC (uS/cm)	Temp	
	Staff Gauge Height (m):	0-43	20	Salt Tracer	Csec (g/L):			1. 0	75.5	3.3	
- 475	Weir Head (m):	_		#	Vol. Calib. Tank (L):	重/500,	n'L Stream	2 10	93.6	3.3	
	Water Temperature (°C):	1.	.9	တိ	SPC ₀ Calib. Tank		Welk	3. /)	110.6	3.3	
Water Surface Slope (%):		/			CF.T =	9.78410-5	CF.T	4 10	125.8	35	
Average Width (m):					Qsalt =	0.3779	ង	5, 10	141.2	36	
Average Depth (m):				Notes:	A		6,				
	Measurement Summary	Primary	Secondary					7.			
	Meas, Type:	SS						8.			
	Measurment ID (MID):	7-0140-29	2014032					9.			
	Average Q (m ³ /s):	0.3729			Volume (L) =						
Q	Meas. Accuracy +/- [%]:			Volum.	Time (sec)	[1]	[2]	[3]	[4]	[5]	
	Average Velocity (m/s):			lo V	Average Q (L/s) =						
C	ross-Sectional Area (m²):				Avg. Q _{vol} (L/s) =			Avg Q_{vol} (m ³ /s) =			
		47545			Hydrometric Levels - S	Survey					
NO REASON	l:		Survey Time (HH:MM):	(WATER)		BM Shift: Yes No	Logger Shift: Yes No		Staff Gauge Shifted?:	Yes No	
Circuit #1	HI	Rod Read	Elevation (m)	± 0.003	Circuit #2	HI	Rod Read	Elevation (m)	Station Measureme	ents	
Station	Α	В	С		Station	A	В	С			
.≱BM1	4:366	1.366	3.000		BM1	4.345	1.345	3.000	Log'r Rod Length	m	
→ BM2	A = B + C	1.375	24.991	0	BM2	1	.354	2.99!	Log'r Rod to Botm	:	
BM3	A STATE OF	1.348	3.018	0.001	ВМ3		1.326	3 1019			
TOS	A = B + C	1,726	2-64	0	TOS		1.705	2464			
WATER	A=P+C	2,306	2.060	0	WATER		2.285	2.060			
LOG'R ROD:	A = 15 + C	1,490	2.876	ن	LOG'R ROD:		1.469	2.876			
HWM/CON	America S	-	A-12-		HWM/CON			A-B=	STATIST.		
BANKFULL	A=B+C	_	A-B=	10	BANKFULL	=		A-8=			
	A=8+0		A/B=		BS (BM1)		The state of the	ABH	1200	ED TENED	

CHECK PREV. DATA to CONTACE IF SEARCE OFF (moverant Ban) on RDB, BMZ + 3 on LDB?)

General Site Tasks/ Communications

- 1) Download ALL data loggers present.
 2) If a measurement is not feasible, fully document why and take photos.
 3) Fill in ALL data boxes & Site Comment boxes on field sheets to document site conditions (even if site is unchanged).
 4) During salt slugs, minimum SPC rise is only +10x resolution of conductivity meter.
 5) Attempt to get paired SS and ADV measurements where ice cover is sufficiently thin to measure with the ADV.

	#	Complete	HID	Station Name	Station Type	Site Tasks	Survey Required	Logger Type Serial #	Q Method	Additional Materials	Date	Time	SG	Logger	
	- 1	S		Name			Yes/No			Required	yy.mm.dd	нн:мм	(m)	(m)	
			ATM-DC2	Atmospheric at Diversion Channel	Continuous Baro Logger	1) HOBO download	NO	НОВО	None	None	2014-MAY-20	/	n/a	/	Would not download.
	2	7	ATM-DC4	Atmospheric at Diversion Channel (Back-up)		Solinst download Clear Solinst logger data	NO	Solinst Baro- logger	None	None	2014-MAY-ZO	15:24	n/a	-0.52	18
Ī	3	M	H-PC-U	Upper Pony Creek	Instantaneous	1) Q measurement (SS)	YES	n/a	Salt (0.01 kg) CF.T	None	2014-MAY- 20	16.46			
	4	M	H-PC-DSP	Pony Creek Downstream of Pit	Instantaneous	Q measurement (SS) Survey of WSL/stations if no ice/snow	YES	n/a	Volumetnc Salt (0.01 kg) CF T	None	2014-MAY-ZO	15:56	0.296	-0.62	10
-	5	N	H-DC- DX+105	Dome Creek DX+105	Instantaneous	1) Q measurement	n/a	n/a	Salt (0.01 kg) CF T	None	2014-MAY-2	15:08	n/a	/	W 10 - 12 - 12 - 13 - 13 - 13 - 13 - 13 - 13
t	6	N	H-DC-D1b	Dome Creek D1b	Instantaneous	Q measurement if clear channel present.	n/a	n/a	Salt (0.01 kg) CF.T	None	2014-MAY-20		n/a		Water flowing all thrownice. Not Single channel.
	7	М	H-DC-B	Diversion Channel at Bridge	Continuous	Q measurement (if channel conditions permit) install data logger/stilling well if possible	NO	n/a	Salt (0.05 kg) CF.T	None	2014-MAY-20	15:17	1	/	as 216 toug pro- 21
Ì	8	M	H-DC-M	Middle Dome Creek	Continuous	Q measurement Logger download	YES	Solinst 1050018	Salt (0.1 kg) CF.T	None	2014-MAY- ZO	14:30			
	9	প্রে	H-DC-R	Dome Creek at Road	Continuous	Q measurement if clear channel present.	NO	n/a	Volumetric Salt (0.1 kg) CF.T	None	2014-MAY-10	13:43	1	/	
_	10	M	H-VC-U	Upper Victoria Creek	Continuous	O measurement (ADV + SS) Logger download	YES	Solinst 1049522	ADV SS (0.2 kg)	None	2014-MAY-2	11:24	0.227	-0,25	24
-	11	14	H-VC-DBC	Victoria Creek D/S of Back Creek	Continuous	Q measurement (ADV + SS) Logger download	YES	Solinst 1049137	ADV SS (0.2 kg)	None	2014-MAY- 2	10:25			45 × logger on shore where resid.
_	12	М	H-BC	Back Creek	Continuous	Q measurement (ADV + SS) Logger install (if possible) Deploy solinst data logger & measure logger rod from data logger markings.	YES	Solinst. n/a	Salt (0,05 kg) CF.T	None	2014-MAY-2	12:10	0.20	Deploye	d.
	13	М	H-VC-UMN	Victoria Creek U/S of Minnesota Creek	Continuous	Q measurement (ADV + SS) Repair/support stilling well so it is properly anchored. Place a cap on the solinst logger (or lape)	YES	501:05+ n/a 1049534	ADV SS (0.2 kg)	None	2014-MAY-2\	08:51	8377	- 0.376	
	14	M	H-VC-R	Victoria Creek at Road	Continuous	D measurement (ADV + SS) Logger download and/or direct read replacement.	YES	Solinst 1041103	SS (0.2 kg) CF.T	None	2014-MAY- 2 C	13:05	0.594		
-	15	[3 ^r	H-SEEP	Seepage Pond Outlet	Instantaneous / Water Level	Q measurement at pipe outlet Q measurement at flow meter in pumphouse Staff Gauge Reading in Pond	NO	n/a	Volumetric	None	2014-MAY-2\	13:15	/	/	
-	16	17	н-тр	Tailings Pond	Water Level Only	1) Staff Gauge Reading (if possible)	NO	n/a	None	None	2014-MAY-2\	13:35		/	I to level
_	17	ы	GLL07-03	GW Well, Pit	Water level only	1) water level from TOC	YES				2014-MAY- 21	17:02	8		Water level = 7.527m Water level = 25.180m
	18	13	CH-P-13- 05/50m	GW Well, Pit		1) water level from TOC	YES				2014-MAY- 1	16:57			Water 1011 - 29 191

Project #: 14-Y-0352

Project Name: YG AAM Mount Nansen Water Resourse Investigation

JA/Vulson/Projected/2014/1-10352_16_AAM_Ministry Newtoning Weston Resources | recording threat/play programments | Newtoning |

Fleid Dates:	

	#	mplete	HID	Station Name	Station Type	Site Tasks	Survey Required	Logger Type Serial #	Q Method	Additional Materials	Date	Time	SG	Logger
L		ပိ					Yes/No			Required	yy.mm.dd	HH:MM	(m)	(m)
	19	M	Pit WL	Pit	Water level only	Survey water level	YES				2014-MAY- 7.1			

Weather: +5 C, Outfort + windy

Discharge Measurement Instruments + Methods HID 11-11C-U Date YSLI SWOFFER | PYGMY | ADV MID-SECT, | POINT Q Measurement Start Time: PDT | PST Upper 11:21 Q Measurement End Time: SALT TRACER | WEIR | VOLUMETRIC | FLOAT | ROD PDT I PS Station Victoria Name PDT | PST Logger Download/Inst Time: **Channel Conditions** Creek NONE ICE | BACKWATER | > BANKFULL | ZERO FLOW | HIGH SUSP. SED Logger Reading (m) - 0. 2524 downloaded HOBO (Solinst) N/A Logger: Serial # 1049522 **GPS Waypoint** 8396 LEDBI [STAFF/WEIR] Photo # [U/S] 9394 [D/S] 8795 (RDB) 22016 CF T YES NO Site Comments SLUG CONSTANT RATE | DRY LOGGED I MANUAL SPCB | SPCP Mix Length Mass of Salt Mix Vol. [Salt Slug] Trial Time Water Al moderate Charwater EC_o(uS/cm) | EC_{ok}(uS/cm) | L_m (m) Volume (L) Css (kg/L) Ms_a (kg) No ble + snow is nolonger staking to 312 115.3 1 143. 0.200kg 1 (]] (2) 101 0.02 115.4 1144.2 0.200 Kg 31m 10L 2 ()) (27) 0,02 3 (:) 50 m (. Vol. Added (mL) SPC (uS/cm) **Channel Measurements** V₁ for Sec. Mix (mL) Temp 1.8 OML 115 7 Csec (g/L): 1 g/L Staff Gauge Height (m): 0.227 Vol. Calib. Tank (L): 1. 3 ami 120.0 Weir Head (m): 138 2 SPC_n Calib. Tank 10mL Water Temperature (°C): CF.T = 156.0 Water Surface Slope (%) 10ml Average Width (m): Qsalt = 5.250 Notes: 50ml Sisi into 1000ml Cki Average Depth (m): 0,731 Measurement Summary Primary Secondary 5,5. Meas_Type Measurment ID (MID) Volume (L) = Average Q (m3/s): 0.5535 ma Volum. [4] [5] [2] Q Meas. Accuracy +/- [%]: 2.6% Time (sec) [1] Average Q (L/s) = Average Velocity (m/s): 0.456 Avg Q_{vol} (m³/s) = Avg. Qvol (L/s) = Cross-Sectional Area (m2): 1.212 Hydrometric Levels - Survey 11145 Staff Gauge Shifted? Yes| No Survey Time (HH MM) Logger Shift: Yes| No (WATER) BM Shift Yes| No YES NO | REASON Station Measurements HI Rod Read Elevation (m) Circuit #2 Elevation (m) Circuit #1 HI Rod Read ± 0.003 Α В С Α Station Station Log'r Rod Length: 1166 3.000 BM1 1120 3.000 BM1 4.120 Log'r Rod to Botm 9.761 3:359 BM₂ BM₂ 0.878 3, 242 ВМ3 вм3 TOS 1.216 2.904 TOS 2.133 WATER WATER 1.987 LOG'R ROD: 3,148 LOG'R ROD: 0.972 HWM/CON HWM/CON BANKFULL BANKFULL 1.119 3,001 BS (BM1) BM1

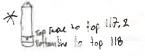
Field Staff: HM Dh	13
Data Entry By:	Date:
Reviewed By:	Date:

Project #: 14-4-0352
Project Name: 14-9-0352

HID	H-DC-B		Date	20	Play 2019		Discharge Measure	ement Instruments -	- Methods			
		Q Me:	asurement Start Time:	15:17			Discharge Measurement Instruments + Methods (YS) SWOFFER PYGMY ADV MID-SECT. POINT					
Station	Diversion Channel		easurement End Time:		(HHEJAM) PDT PST	SALT TRACEP WEIR VOLUMETRIC FLOAT ROD						
Name	at Oreck,		r Download/Inst Time:		PDT I PST		1100.00		1100			
		20990	Logger Reading (m)		[] downloaded	(NONE)	ICE BACKWATER > B	nnel Conditions	WI HIGH SUSP SED			
Logger:	Serial #		_	BO Solin		GPS Wa		ZONE		NORTHING		
DH Photo#			[D/S] 0809				[LDB] 0810	4.4	[STAFF/WEIR]			
OF FIIOLO#	- 000		Ipiol 0.000		(RDB) 08()	(2010)						
	Site Corr					SLUGI CONSTANT RATE				r		
Hich	mater level i	Organic +	sidement		Trial Time	SPC _B SPC _P	Mix Length	Mass of Salt	Mix Vol.	[Salt Slug		
,,,,	0	delain in	water			EC _o (uS/cm) EC _{pk} (uS/cm)	L _m (m)	Ms _e (kg)	Volume (L)	Css (kg/L)		
	High water level. Organic + Ediment debris in water				1 (15:17)	638.3 1695.0	37m 37m	0.05 kg	101	0.005		
1/6 1/2	Noice or snow				2 (15:23)	636.1 693.5	3+m	0.05 kg	101	0.005		
10010					3 (:)							
	Channel Mea			cer	V ₁ for Sec. Mix (mL)	200mL		Vol. Added (mL)	SPC (uS/cm)	Temp		
	Staff Gauge Height (m):			Salt Tracer	Csec (g/L):	1 g/L		1. Oml	628.3	2.20		
	Weir Head (m):			at	Vol. Calib. Tank (L):	1 L	n n	2. 2 mL	640.3	1,900		
Water Temperature (°C): 1, 7 °C			» ا	SPC₀ Calib, Tank			3. 2 mL	643.9	1.900			
Water Surface Slope (%):				CF.T =		붑	4. 10 mL 5. 10 mL	660.3	2.0 %			
Average Width (m):				Qsalt =		ਹ	B 1 2 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	676.9	2.100			
Average Depth (m):					Notes: 100mi S.S.	into 500 mLCk.		6. 10mL	646.3 676.9 691.3	2.100		
	Measurement Summary	Primary	Secondary			is a swiperci		7. 10mL	707.9	2.200		
	Meas. Type:	Salt.						8.				
	Measurment ID (MID):					,		9.		54		
	Average Q (m ³ /s):			1 12	Volume (L) =							
C	Meas. Accuracy +/- [%]:			Volum.	Time (sec)	[1]	[2]	[3]	[4]	[5]		
	Average Velocity (m/s):			👨	Average Q (L/s) =							
C	ross-Sectional Area (m²):				Avg. Q _{vol} (L/s) =			Avg Q_{vol} (m ³ /s) =				
					Hydrometric Levels - S	Survey						
ES INO REASON	L N/A		Survey Time (HH:MM):	(WATER)		BM Shift: Yes No	Logger Shift Yes No		Staff Gauge Shifted?	Yes No		
Circuit #1	Н1	Rod Read	Elevation (m)	± 0.003	Circuit #2	HI	Rod Read	Elevation (m)	Station Measureme	ents		
Station	Α	В	С		Station	Α	В	С				
BM1	WH# 60		3.000		BM1			3.000	Log'r Rod Length	11		
BM2	24 F8 F Q		AiB =		BM2			A-E =	Log'r Rod to Botm	ı:		
вмз	2.00-5		8.8		ВМЗ			740 e		-		
TOS	A+B=C		AB =		TOS			A-B =				
WATER	A = 17 = C		. A(S)=		WATER			LAUGE .				
LOG'R ROD:	A = 8 = C		A-B=		LOG'R ROD:			A-B=				
HWM/CON	N = 8 + 0		- : A/8=		HWM/CON		1117111	6.9=	4			
			A-5=		BANKFULL			A-B=				
BANKFULL	A = B + C		1755220		DAMIN OLL			F.1116				

Field Staff: MM DH DS		
Data Entry By:	Date:	
Reviewed By:	Date:	

Project #: 14-4-0352
Project Name: Nanscn


20 May 2014

HID	H-PC-DSP		Date	20	May 2014		Discharge Measur	ement Instruments	+ Methods		
	Pony Creek Downstrea	Q Mea	asurement Start Time:	15 1	To the MMI PDT I PST		YSI SWOFFER PYGM		ECT POINT		
Station		Q Measurement End Time:		1 / / 4		SALT TRACES WEIR SOLUMETRIC PLOAT ROD					
Name	OF PIL		r Download/Inst Time:	Mario	2 CHEMMI POTIPST				DAT ROD		
			Logger Reading (m)	-0		NONE	ICE BACKWATER > B	nnel Conditions	WILLICH SLISB SED		
Logger	Serial # 10 4 5 3	CII	7	BO /Solin							
		74	-	BO (Soin		GPS Wa	T.	SOME	EASTING	NORTHING	
Photo #	[U/S] 8335		(D/S) 8336		(RDB) 8338		[LDB] 8339		[STAFF/WEIR] 83	337 /834	
	Site Com	ments				CONSTANT RATE	DRY LOGGED	MANUAL SPC	EC CF.T (YES) NO	0	
Int ale	rlevel high,	Saharera A	cola clear water	lah	Trial Time	SPC _B SPC _P	Mix Length	Mass of Salt	Mix Vol.	[Salt Slug]	
VV MIN	11000	SUBMA IGES	100 / (En ma -	4.		EC _o (uS/cm) EC _{pk} (uS/cm)	L _m (m)	Ms _a (kg)	Volume (L)	Css (kg/L)	
~2cm si	now. Water d	ecs-		1	1 (15:5%)	183.8 1204.4	21	0.01 kg	106	0,001	
		2			2 (16:11)	183.5	21	0.012	10L	0.001	
				6	3 (7			
	Channel Mea			Je.	V ₁ for Sec. Mix (mL)	1000mL		Vol. Added (mL)	SPC (uS/cm)	Temp	
	Staff Gauge Height (m):	0.296		Salt Tracer	Csec (g/L):	1 g/L		1. OmL	1875	0,5	
	Weir Head (m):	nla		at 1	Vol. Calib. Tank (L):	1 L		2 5mL	189.5	0.6	
	Water Temperature (°C):	0.60		ű	SPC ₀ Calib. Tank			3 10mL	199,3	0.6	
,	Water Surface Slope (%):	/			CF.T =		5	4. 10mL	209.8	0,6	
	Average Width (m):				Qsalt =		R.	5,			
	Average Depth (m):				Notes: 500 ml 5	,S. into SOOML		6.			
	Measurement Summary	Primary	Secondary			Creek,		7.			
	Meas _a Type:	5 S .	VOL					8.			
	Measurment ID (MID):							9.			
	Average Q (m³/s):				Volume (L) =	15,0	16.5	16.0	16.5	160	
C	Q Meas. Accuracy +/- [%]:			Volum.	Time (sec)	[1] 34 W	[2] 3,50	[3] 3 44	[4] 3,56	[5] 3,56	
	Average Velocity (m/s):			lo V	Average Q (L/s) =						
С	Cross-Sectional Area (m²):				Avg. Q _{vol} (L/s) =			Avg Q _{vol} (m ³ /s) =			
					Hydrometric Levels - S						
ES NO REASON	N:		Survey Time (HH:MM):	(WATER)	16:09	BM Shift: Yes No	Logger Shift: Yes		Staff Gauge Shifted?	Yes No	
Circuit #1	HI	Rod Read	Elevation (m)	± 0.003	Circuit #2	HI	Rod Read	Elevation (m)	Station Measureme	nts	
Station	Α	В	С		Station	Α	В	С			
BM1	4.067	1.067	3.000		BM1			3.000	Log'r Rod Length:	1174 M	
BM2	A=8+5	0.812	3.250		BM2			x'8 =	Log'r Rod to Botm:		
ВМ3	- XER + 0	0.432	3.635		ВМ3			748 =			
TOS	2-18-0	0.898	3.169		TOS			A-6 =			
WATER	WHEN C	1.611	2.456		WATER			114.8= -			
LOG'R ROD:	84 B + C	0.649	3.418		LOG'R ROD:			A-Bit			
HWM/CON	n-8-6		A-B+		HWM/CON			7B=			
BANKFULL	A=8+5		A-B=		BANKFULL	3		A-B=			
BM1	3 A-E-C	1.067	3.000		BS (BM1)			ABa			

Field Staff: MM, DH, I	15
ata Entry By:	Date:
Reviewed By:	Date:

Project #: 14-4-0352
Project Name: M4. Nansen

Weather: - 1°C , Snowing + Windy

May 2014 HID H-VC-R Discharge Measurement Instruments + Methods Q Measurement Start Time: PDTIPS YSI | SWOFFER | PYGMY (ADV) MID-SECT I POINT Victoria Creek Q Measurement End Time: PDT | PS SALT TRACER | WEIR | VOLUMETRIC | FLOAT | ROD at Road. Logger Download/Inst Time: (FIFEMINE) PDT | PS **Channel Conditions** Logger Reading (m) M3 Zong [v] downloaded NONEY ICE | BACKWATER | > BANKFULL | ZERO FLOW | HIGH SUSP, SED Logger: Serial # 1041103 HOBO | Solinst | N/A **GPS Waypoint** MM Photo # [U/S] 3298 [D/S] 8285 8286 [LDB] 82.89 [STAFF/WEIR] 8287 Site Comments SLUG | CONSTANT RATE | DRY LOGGED | MANUAL CF T YES NO Water level still high; but not at bankful, some submerged grassestivillow. SPCB | SPCP Trial Time Mix Length Mass of Salt Mix Vol. [Salt Slug] EC_o(uS/cm) | EC_{pk}(uS/cm) | Volume (L) Well had silt build up - cleaned so that logger land sitting in it. I see still present on LDB, none on creek. L_{m} (m) Ms, (kg) Css (kg/L) 3 (:: Channel Measurements V₁ for Sec. Mix (mL) Vol. Added (mL) SPC (uS/cm) Temp Staff Gauge Height (m): 0.594 Csec (g/L): 1 g/L Weir Head (m): Vol. Calib. Tank (L): 1 L Water Temperature (°C): SPC₀ Calib. Tank 2.0°C Water Surface Slope (%): CF.T = Average Width (m): Qsalt = Notes: Average Depth (m): Measurement Summary Primary Secondary Meas, Type: ADV Measurment ID (MID) 0.7576 Volume (L) = Average Q (m3/s): Volum. Q Meas. Accuracy +/- [%]: Time (sec) [1] Average Velocity (m/s): Average Q (L/s) = Avg Q_{vol} (m³/s) = Cross-Sectional Area (m2): Avg. Qvol (L/s) = Hydrometric Levels - Survey YES I NO I REASON 13:16 BM Shift Yesi No Logger Shift Yes No Staff Gauge Shifted? Yesling Survey Time (HH:MM) (WATER) H1 Rod Read Elevation (m) Station Measurements Circuit #1 Rod Read Circuit #2 Elevation (m) ± 0.003 C Station Α C Station 1.172 1.180m Log'r Rod Length: 1063 3.000 BM1 3.000 BM1 4063 3.426 Log'r Rod to Botm BM2 0.637 BM2 0.891 ВМ3 BM3 3.172 TOS 1.488 2575 TOS WATER 1896 2.167 WATER A-Divis 2.870 1.1193 LOG'R ROD: LOG'R ROD: HWM/CON HWM/CON **BANKFULL** BANKFULL BM1 1.063 3.000 BS (BM1)

Field Staff:	MM.	DH.	D5		
Data Entry By:		7	(B)	Date:	
Reviewed By:				Date:	

Project #: 14-4-0352
Project Name: Nonsen

Hay HID H-BC MAROH-2014 Discharge Measurement Instruments + Methods Q Measurement Start Time: (HH: MMX) PDTIPS YSI SWOFFER | PYGMY | ADV 12:10 MID-SECT. | POINT Back Q Measurement End Time: DHEMMI SALT TRACER WEIR | VOLUMETRIC | FLOAT | ROD PDT | PS Station Name Creek Logger Download/Inst Time: DOM: NIME PDT | PS **Channel Conditions** Logger Reading (m) NONE) ICE | BACKWATER | > BANKFULL | ZERO FLOW | HIGH SUSP. SED. [] downloaded HOBO I Solinst I N/A Logger: |Serial # **GPS Waypoint** ZONE EASTING NORTHING 0832 Photo # [U/S] () 386 [D/S] 0387 0835 0833 [LDB] ISTAFF/WEIR1 Site Comments SLUC | CONSTANT RATE | DRY COGGED | MANUAL CF.T YES NO logger deployed 11:49. logger length 117.6 cm. So linst SIN covered by tape. Get next trib. Trial Time SPCB | SPCP Mix Length Mass of Salt Mix Vol. [Salt Slug] EC_o(uS/cm) | EC_{ok}(uS/cm) | L_m (m) Volume (L) Css (kg/L) Ms, (kg) 184.9 | 220.6 0.005 26 0.05 101 1 (12:10) Water moderately forbid 1849 | 221,2 26 2 (12:13) 0.05 106 0.005 3 () **Channel Measurements** V₁ for Sec. Mix (mL) 200 -4 Vol. Added (mL) SPC (uS/cm) Temp Salt Tracer Staff Gauge Height (m): 0.201 Csec (q/L): 1 g/L 182.8 4300 Oml Weir Head (m) Vol. Calib. Tank (L): 1 L 4.3°C 5mL 194,9 Water Temperature (°C): SPC₀ Calib. Tank 100 203.8 5 mL 4.3°C Water Surface Slope (%) CF.T = 212.6 4.300 5ML 5 5 mL Qsalt = Average Width (m) 220.8 4.3°C Notes: 100ml 5,5 into 500ml CK Average Depth (m) 5mL 4,300 229.7 Measurement Summary Primary Secondary Meas. Type 5.51 Measurment ID (MID) Volume (L) = Average Q (m3/s) Volum. Time (sec) [1] Q Meas. Accuracy +/- [%] [2] [4] [5] Average Velocity (m/s) Average Q (L/s) = Avg. Qvol (L/s) = Avg Q_{vol} (m³/s) = Cross-Sectional Area (m2) Hydrometric Levels - Survey YES NO | REASON Survey Time (HH:MM): (WATER) BM Shift: Yes| No Logger Shift: Yes| No Staff Gauge Shifted?: Yes! No 12:21 Circuit #1 Circuit #2 HI Rod Read Elevation (m) Station Measurements HI Rod Read Elevation (m) ± 0.003 Α С Station • A Station Log'r Rod Length: 117,6 cm BM1 4.23 231 3.000 BM1 3.000 3.009 BM₂ Log'r Rod to Botm: BM2 A=B+C 1.222 3-028 ВМ3 ATE C 1203 ВМ3 2.645 1.586 TOS TOS WATER A-BAC 2.384 WATER LOG'R ROD: A-8= LOG'R ROD: A = H + C1.350 2.881 HWM/CON AURAG HWM/CON **BANKFULL BANKFULL** A = B + C BM1 ARB+E 1.231 BS (BM1) 3.000

Field Staff: MM	2H NZ
Data Entry By:	Date:
Reviewed By:	Date:

Discharge Measurement Instruments + Methods Station Name Outlet. Q Measurement Start Time: HILL WALL PDT | PS YSI | SWOFFER | PYGMY | ADV MID-SECT. I POINT Q Measurement End Time: [HELMad] PDT | PS SALT TRACER | WEIR | VOLUMETRIC | FLOAT | ROD Logger Download/Inst Time: CHIEF MAN PDT | PS **Channel Conditions** Logger Reading (m) NONE ICE | BACKWATER | > BANKFULL | ZERO FLOW | HIGH SUSP. SED. [] downloaded Logger: Serial # HOBO | Solinst INA **GPS Waypoint** ZONE NORTHING Photo # [U/S] [LDB] (STAFF/WEIR) Site Comments SLUG | CONSTANT RATE | DRY LOGGED | MANUAL SPC IEC CF.T YESI NO Flow seems less than usual Trial Time SPC_B | SPC_P Mix Length Mass of Salt Mix Vol. [Salt Slug] ECo(uS/cm) | ECok(uS/cm) | Volume (L) Css (kg/L) Pump meter photos 845-848. Refre to photos $L_{m}(m)$ Ms_a (kg) 300 for flow rate 3 (Channel Measurements V₁ for Sec. Mix (mL) Vol. Added (mL) SPC (uS/cm) Temp Staff Gauge Height (m): Csec (g/L): 1 g/L Weir Head (m): Vol. Calib. Tank (L): 1 L Water Temperature (°C): 3.60€ SPC_o Calib. Tank Water Surface Slope (%): CF.T = CF.T Average Width (m) Qsalt = Notes: Average Depth (m): Measurement Summary Primary Secondary Meas. Type: Measurment ID (MID) 18,0 Average Q (m3/s) Volume (L) = 18.0 18.0 18.0 Volum. Time (sec) [1] 20.72 [2] 20.65 [3] 20,40 [4] 20.75 [5] 20.59 Q Meas. Accuracy +/- [%] Average Velocity (m/s): Average Q (L/s) = Cross-Sectional Area (m2): Avg. Qvol (L/s) = Avg Q_{vol} (m³/s) = Hydrometric Levels - Survey ES NO REASON BM Shift: Yes| No Logger Shift: Yes| No Staff Gauge Shifted? Yesl No Survey Time (HH:MM): (WATER) HI Circuit #1 HI Rod Read ± 0.003 Circuit #2 Rod Read Elevation (m) Station Measurements Elevation (m) С Α C Station Α Station BM1 BM1 3.000 Log'r Rod Length: ASBAC 3.000 BM₂ A=B+C BM₂ A-B= Log'r Rod to Botm: ВМ3 вмз TOS A-B = TOS WATER AUST WATER A.R. A = 27 + C LOG'R ROD: A.B= A=B+C A-B= LOG'R ROD: HWM/CON ARBAG A-5= HWM/CON BANKFULL A=B+C BANKFULL A-B= As Both BS (BM1)

Field Staff: MM, DA	05
Data Entry By:	Date:
Reviewed By:	Date:

d

Weather: - 0 °C overcent &

May 2014 HID H-VC-UMN Discharge Measurement Instruments + Methods Victoria Creek Q Measurement Start Time: 08:51 (HEMM) (YSI) SWOFFER I PYGMY (ADV) PDT | PS MID-SECT I POINT Q Measurement End Time: Station U/S of Minnesona (HH-MM) PDT | PS SALT TRACER WEIR | VOLUMETRIC | FLOAT | ROD 8.36 THURSDA PDTIPS Logger Download/Inst Time: Creek **Channel Conditions** -0,3764 m downloaded Logger Reading (m) NONE ICE | BACKWATER | > BANKFULL | ZERO FLOW | HIGH SUSP. SED. Logger: Serial # 1049534 HOBO | Solinst |)N/A **GPS Waypoint** Photo # [U/S] 87744 [LDB] 8376 8378 8377 [STAFF/WEIR] Flow level medecate. Some submorged most + grano, Stabilized stilling well after davalend SLUG CONSTANT RATE | DRY (LOGGED) MANUAL SPC_B | SPC_P Trial Time Mix Length Mass of Salt Mix Vol. [Salt Slug] EC_o(uS/cm) | EC_{ok}(uS/cm) | $L_m(m)$ Ms, (kg) Volume (L) Css (kg/L) 169.2 190.9 1 (08:51) 42 m 10L 0.02 0,200 Kg 169.3 1 193.3 42 m 2 (08:57) 0.200kg 10L 002 legger. Put lid on logger sensor. 3 (:) Channel Measurements V₁ for Sec. Mix (mL) 50mL Vol. Added (mL) SPC (uS/cm) Temp Staff Gauge Height (m): 0,709 0,99 Csec (g/L): 169.5 1 g/L Onl Weir Head (m): NI Vol. Calib. Tank (L): 1 L 2mc 174.7 2mL Water Temperature (°C): SPC₀ Calib. Tank 177.7 0,900 0,600 186.1 Water Surface Slope (%) CF.T = 4 mc 1-000 Average Width (m): 5,4 Qsalt = 1.0% Notes: 50ml S.S. into 1000ml Ch. Average Depth (m): 0,197 Measurement Summary Primary Secondary Meas. Type: 5.5. ADV Measurment ID (MID) Average Q (m³/s): 0,7015 Volume (L) = Volum. Q Meas. Accuracy +/- [%]: 5,4% Time (sec) [1] [2] [5] Average Velocity (m/s): 0.677 Average Q (L/s) = Cross-Sectional Area (m2): 1.036 Avg. Qvol (L/s) = Avg Q_{vol} (m³/s) = Hydrometric Levels - Survey 9:18 /9:25 BM Shift: Yes| No YES INO I REASON Survey Time (HH:MM): (WATER) Logger Shift: Yesl No Staff Gauge Shifted?: Yesl No. Circuit #1 н Circuit #2 HI Station Measurements Rod Read Elevation (m) Rod Read Elevation (m) ± 0.003 Station Station 4.022 4.050 BM1 W50 3.000 BM1 1022 3.000 Log'r Rod Length: 1.17 m BM2 1.043 3.007 BM₂ 1.015 3.007 Log'r Rod to Botm 2.678 1.343 2.679 ВМ3 1.377 ВМ3 1.994 2.057 TOS TOS 2,028 1.695 2.355 WATER WATER 695 2.327 1.843 2.208 LOG'R ROD: 2.707 LOG'R ROD: 8 14 HWM/CON A-8= HWM/CON BANKFULL **BANKFULL** BMI 1.050 3.000 BS (BM1)

Field Staff:	MM	DH.	DS		
Data Entry By:				Date:	
Reviewed By:				Date:	

Weather: +5°C overeast, windy

May

					May					
HID	H-VC-DBC	2 P-3	Date	21	-14-ROH-2014		Discharge Measur	ement Instruments	+ Methods	-11
	Victoria Creek		easurement Start Time:	10:25	(HH WM) PDT PST		YSI SWOFFER PYGI		ECT. POINT	
Station			easurement End Time:	10:50	0150 (HEIMM) PDT PST SALT TRACER WEI			R VOLUMETRIC FLOAT ROD		
Name	D.15 of Back	Logge	er Download/Inst Time:	10:2	9 (SEMM) PDT PST Channel Conditions					
100	Creek		Logger Reading (m)	-0.4	1145 Mownloaded	NONE DCE BACKWATER > BANKFULL ZERO FLOW HIGH SUSP. SED.				
Logger:	Serial # 10 4 913	57	НО	BO Solin	st) N/A	GPS Wa	ypoint	ZONE	EASTING	NORTHING
Photo #	[u/s] 8389		[D/S] 8390		[RDB] 83	91	[LDB] \$30	73	[STAFF/WEIR]	3 92
TANK E	Site Com					SLUG CONSTANT RATE	DRY LOGGED	MANUAL SPC	EC CFT YES N	0
11-1-	Level mod	lesat	dec		Trial Time	SPC _B SPC _P	Mix Length	Mass of Salt	Mix Vol.	[Salt Slug]
water	level prior		1 da			EC _o (uS/cm) EC _{pk} (uS/cm)	L _m (m)	Ms _a (kg)	Volume (L)	Css (kg/L)
water	No ice o	or snow) 67 31/		1 (r				
		17			2 (1)					
					3 ()					
	Channel Measurements		ē	V ₁ for Sec. Mix (mL)	=17 Cas		Vol. Added (mL)	SPC (uS/cm)	Temp	
	Staff Gauge Height (m):	0.526		Salt Tracer	Csec (g/L):	1 g/L		1.		
	Weir Head (m):			aft .	Vol. Calib. Tank (L):	1 L		.2		
, x	Water Temperature (°C):	1.400		ΰ	SPC ₀ Calib. Tank			3.		
\	Nater Surface Slope (%):				CF.T =		CF.T	4,		
	Average Width (m):	4.8			Qsalt =		5	5.		
	Average Depth (m):	0.249			Notes			6.		
L. S. T. Cont.	Measurement Summary	Primary	Secondary					7.		
	Meas, Type:	ADV						8.		
	Measurment ID (MID):							9.		
	Average Q (m³/s):				Volume (L) =					
C	Meas. Accuracy +/- [%]:	1 1 1 1 1 1		Volum.	Time (sec)	[1]	[2]	[3]	[4]	[5]
	Average Velocity (m/s):	0,525		No V	Average Q (L/s) =					
C	ross-Sectional Area (m²):	1.195			Avg. Q _{vol} (L/s) =			Avg Q_{vol} (m ³ /s) =		
					Hydrometric Levels - S	Survey				
ES I NO REASON	k		Survey Time (HH:MM):	(WATER)	10:37	BM Shift: Yes No	Logger Shift: Yes No		Staff Gauge Shifted?: 1	Yes No
Circuit #1	HI	Rod Read	Elevation (m)	± 0.003	Circuit #2	HI	Rod Read	Elevation (m)	Station Measureme	nts
Station	Α	В	С		Station	Α	В	С		
BM1	4.251	1.251	3.000		BM1			3.000	Log'r Rod Length:	1.167
BM2	A = B + C	1.223	3,028		BM2			A-B =	Log'r Rod to Botm:	
ВМ3	人手おった	1,333	2.918		ВМ3			A-B-S		
TOS	V = R = C	1.896	2.355		TOS			A-B =		
WATER	A T B - C	2.373	1.878		WATER			A-B=	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	
LOG'R ROD:	A = E + C	1.683	2.568		LOG'R ROD:			A-B=		
HWM/CON	A TENE	On DELLE	Ada		HWM/CON			A-B=	F. 1953	
BANKFULL	A=B+C		A-B=		BANKFULL			A-B±		
BM1	N=0+0	1.251	3.000		BS (BM1)			A-Bu	XIII - I	90 april 52

Field Staff:	MM	DH	D5		
Data Entry By:_				Date:	
Reviewed By:				Date:	

Weather: -1°C, Snowing + light

HID	H-06- A		Date	2	∴ MAY-2014		Discharge Measur	ement Instruments +	+ Methods		
	n	Q Me	asurement Start Time:	134	(HEEMINE) PDT PST		YSPI SWOFFER PYGI		ECT. POINT		
Station	Dome Creek at	Q Me	easurement End Time:	nent End Time: PDT [PST SALT TRACER WEIR VOLUMETRIC FLOAT ROD							
Name	Road	Logge	er Download/Inst Time:	1	(HISTARM) PDT PST		Channel Conditions				
			Logger Reading (m)		[] downloaded	NONE	ICE BACKWATER > E	BANKFULL ZERO FLO	W HIGH SUSP. SED.		
Logger: S	erial #		но	BO Solin	st N/A	GPS Wa	ypoint	SONE	DASTING	NORTHING	
Photo # [U	nsi 854/		[D/S] \$29 C)	[RDB] \$293		[LDB] 8 297	ξ.	[STAFF/WEIR] CALVA	rtaria.	
	Site Com					SLUG CONSTANT RATE	DRY LOGGED	MANUAL SPC	EC CFT YESON	0	
Put on	It in above colu	rit t measured	e mys		Trial Time	SPC _B SPC _P	Mix Length	Mass of Salt	Mix Vol.	[Salt Slug]	
	level high					EC _o (uS/cm) EC _{pk} (uS/cm)	L _m (m)	Ms _a (kg)	Volume (L)	Css (kg/L)	
11000	Engl My	1			1 (13 48)	710-11 773,7	18 m	0.100 kg	10 L	0.01	
					2 (13:54)	709.91772.2	18 m	0.100%	IOL	0.01	
					3 (:)						
	Channel Mea	surements		Salt Tracer	V ₁ for Sec. Mix (mL)	10029.2		Vol. Added (mL)	SPC (uS/cm)	Temp	
	Staff Gauge Height (m):	/			Csec (g/L):	1 g/L		1 On L	710.9	0,400	
	Weir Head (m):			\ \frac{1}{2}	Vol. Calib. Tank (L):	1 L		2 2 mL	7/2.4	0,400	
V	Vater Temperature (°C):	0.4°C		Š	SPC₀ Calib. Tank			3 10 mL	734	0,400	
W	ater Surface Slope (%):		3		CF.T =		5	4 10mL 5 10ml	752.1	0.400	
	Average Width (m):	•			Qsalt =		, b	5 10 mL	769.7 788.6	0.5%	
	Average Depth (m):				Notes			6. 10 mL	188.6	0.5%	
	Measurement Summary	Primary	Secondary		50ml 5.5. in	o SOOM CK		7			
	Meas, Type:	Salt						8.			
	Measurment ID (MID):				27		=	9			
	Average Q (m³/s):				Volume (L) =						
QI	Meas, Accuracy +/- [%]:			Volum	Time (sec)	[1]	[2]	[3]	[4]	[5]	
	Average Velocity (m/s):			o	Average Q (L/s) =						
Cro	oss-Sectional Area (m²):				Avg. Q _{vol} (L/s) =			Avg Q _{vol} (m ³ /s) =			
			, 12 m 12	" "EII	Hydrometric Levels - S	Burvey					
ES NO REASON	No longer/ pl	24-	Survey Time (HH:MM):	(WATER)		BM Shift: Yes No	Logger Shift: Yes No		Staff Gauge Shifted?	Yes No	
Circuit #1	HI	Rod Read	Elevation (m)	± 0.003	Circuit #2	HI	Rod Read	Elevation (m)	Station Measureme	ents	
Station	Α	В	С		Station	Α	В	С			
BM1	Vis Biol C		3,000		BM1			3 000	Log'r Rod Length:		
BM2	A-CH E-C		A-E =		BM2			A18 =:	Log'r Rod to Botm:		
ВМ3	K P B A C		A-E		ВМ3			- AB		le le	
TOS	X+U+L	30 ₉	A-B ⊨		TOS			AIR			
WATER	A-B-C		V-D=		WATER			A-B=			
LOG'R ROD:	A (H - E		A-8=		LOG'R ROD:			A.B.			
HWM/CON	A=R+C		A-B=		HWM/CON			A-B=			
BANKFULL	ANBAC		A-8=		BANKFULL			A:6a			
	Amelia C		ABI		BS (BM1)			A-B=			

Field Staff: MM, DH, O.	5
Data Entry By:	Date:
Reviewed By:	Date:

Weather: - 2.°C, Spacing windy

				20	- May 2014				poor	לוויפוניט
HID	H-PC-U		Date	100	DECEMBER 2010		Discharge Measure	ement Instruments +	Methods	
		Q Mea	asurement Start Time:	16:	PDT PST		YSI SWOFFER PYGM		ECT POINT	
Station	Charles Large	Q Me	easurement End Time:		THE MM PDT PST		SALT TRACER WEI	R VOLUMETRIC FLC	AT ROD	
Name	Upper Pary Creek	Logge	r Download/Inst Time:	_	(HHLMM) PDT PST		Char	nnel Conditions		
			Logger Reading (m)		[] downloaded	NONE	ICE BACKWATER > B.		W HIGH SUSP. SED.	
Logger:	Serial #		но	BO Solin	st (N/A)	GPS Wa		ZONE	EASTING	NORTHING
Photo # [u/s) 816		[D/S] 814		(RDB) 815		[LDB] 8/7		[STAFF/WEIR]	
	Site Com	ments			0.0	SLUG CONSTANT RATE		MANUAL SPOJE	EC CF.T (ES)N	10
Water	tend high	Submerged	grasses		Trial Time	SPC _B SPC _P	Mix Length	Mass of Salt	Mix Vol.	[Salt Slug]
t out	land a zom of	reals snow	3			$EC_o(uS/cm) \mid EC_{pk}(uS/cm) \mid$	L _m (m)	Ms _e (kg)	Volume (L)	Css (kg/L)
+ 0011	a libra menind	RD Side . A	1017 at flow		1 (16:46)	132 71500	16.0	0.01	106	0,001
weir	eatherny or man	a aller a	0		2 (17:01)	195 3 1 (52)	16.0	0.01	100	0.001
(80%	lows, a zern f. eaking around) coming don	a brogge c	SECULAR CI		3 ()					
	Channel Mea	surements		ē	V ₁ for Sec. Mix (mL)	1000ml		Vol. Added (mL)	SPC (uS/cm)	Temp
	Staff Gauge Height (m):			Salt Tracer	Csec (g/L):	1 g/L		1. 0 mt	134.0	0.7
	Weir Head (m):			Ħ	Vol. Calib. Tank (L):	1 L		2 6 ml	140.2	0.8
	Water Temperature (°C):	0.700		တိ	SPC ₀ Calib. Tank			3. bml		0.7
	Vater Surface Slope (%):				CF.T =		5	4. 6 ml	146.3	0.8
180	Average Width (m):				Qsalt =		2	5		
	Average Depth (m):				Notes:	into 500mi ch.		6.		
	Measurement Summary		Secondary		100MC 5.3	MO DOWN COL		7.		
	Meas, Type:	9.5						8.		
	Measurment ID (MID):			-				9.		
	Average Q (m ³ /s):				Volume (L) =					
Q	Meas. Accuracy +/- [%]:			Volum.	Time (sec)	[1]	[2]	[3]	[4]	[5]
	Average Velocity (m/s):			lo _N	Average Q (L/s) =					
Cr	ross-Sectional Area (m²):				Avg. Q _{vol} (L/s) =			Avg Q_{vol} (m ³ /s) =		
					Hydrometric Levels - S	urvey				
YES (NO) REASON			Survey Time (HH.MM):	(WATER)		BM Shift, Yes No	Logger Shift Yes No		Staff Gauge Shifted?	Yes No
Circuit #1	HI 79	Rod Read	Elevation (m)	± 0.003	Circuit #2	HI	Rod Read	Elevation (m)	Station Measureme	ents
Station	Α	В	С		Station	А	В	С		
BM1	W-1 St 12		3,000		BM1			3,000	Log'r Rod Length:	:
BM2	A R B + D		4.6 =		BM2			A-B =	Log'r Rod to Botm:	:
ВМ3	_ Anenc		8-B F		BM3			TA-6.*		
TOS	ATE :		A-B =		TOS			A-B TE		
WATER	W A.S 12		Ala-		WATER			F-21-		
LOG'R ROD:	8=18±0:		AB=		LOG'R ROD:			A-B=		
HWM/CON	A = H.+ C		Aißt		HWM/CON			768=		
BANKFULL	A=B=C		A-B=		BANKFULL			A, Bri		
	ARENT		A-E=		BS (BM1)			4.89		

Field Staff:_	MM.	DH	DS.		
ata Entry By:_				Date:	
Reviewed By:_				Date:	

Project #: 14-Y-0352
Project Name: Nansen

HID	H - DC - DX+105		Date	21	MARCH-2014		Discharge Measur	ement Instruments	L Mothodo		
Dome Creek Q Measurement Start Time		asurement Start Time:	15:08			YS) SWOFFER PYGN		ECT POINT			
Station		QM	easurement End Time:	75,00	(HH:MM) PDT PST			•			
Name	DX+105	Logge	er Download/Inst Time:		(HH,MM) PDT PST	Charal Control (FLOAT ROD					
			Logger Reading (m)		[] downloaded	NONE	ICE BACKWATER > B	nnel Conditions	WILLIOH SUSP SED		
Logger:	Serial #			BO Solin		GPS Waypoint ZONE			EASTING	NEITTHING	
Photo #	[U/S] 0866		[D/S] 0867		[RDB] 0868		[LDB]		[STAFF/WEIR]		
NUMBER OF	Site Con	nments			0000	SLUG CONSTANT RATE	DRY (LOGGED	MANUAL SPC		10	
+1.	evel mod	A- >-1.			Trial Time	SPC _B SPC _P	Mix Length	Mass of Salt	Mix Vol.		
+lan	ense ville	- nigh				EC _o (uS/cm) EC _{pk} (uS/cm)	L _m (m)	Ms _a (kg)	Volume (L)	[Salt Slug] Css (kg/L)	
					1 (15:08)	373,6 392,8	22.5	0.01 kg	104	0.001	
					2 (15 : 23)	367-21382.7	22.5	0.01kg			
			· .		3 (:)			U. UTKE	10 L	0.001	
	Channel Mea	asurements		<u>_</u>	V ₁ for Sec. Mix (mL)	1000 mL		Vol. Added (mL)	SPC (uS/cm)	Temp	
	Staff Gauge Height (m):			Salt Tracer	Csec (g/L):	1 g/L		1. Oml	361.6	+2,2	
	Weir Head (m):			Ħ T	Vol. Calib. Tank (L):	1 L		2 2 m	367.0	2.1	
	Water Temperature (°C):	1.7°C		လိ	SPC₀ Calib. Tank			3. 4 m	370.8	2.1	
	Water Surface Slope (%):				CF.T =		F.	4 6 m	376.8	2.2	
	Average Width (m):				Qsalt =		CF.T	5 10 ml	386 4	2.3	
	Average Depth (m):				Notes: 500mL 55	into 500mLCK.		6. 10 m	396 4	2.2 2.3 2.3	
V 20	Measurement Summary		Secondary			1,1,10 000 1.		7.	2 18,5		
	Meas. Type:	5.5.						8.			
	Measurment ID (MID):							9.			
	Average Q (m³/s):				Volume (L) =						
C	Meas. Accuracy +/- [%]			Volum.	Time (sec)	[1]	[2]	[3]	[4]	[5]	
	Average Velocity (m/s):			Vol	Average Q (L/s) =						
С	ross-Sectional Area (m²):				Avg. Q _{vol} (L/s) =			Avg Q _{vol} (m ³ /s) =			
The same of the					Hydrometric Levels - S	Survey					
YES (NO) REASON		age	Survey Time (HH:MM):	(WATER)		BM Shift: Yes No	Logger Shift: Yes No		Staff Gauge Shifted?:	Yes No	
Circuit #1	HI	Rod Read	Elevation (m)	± 0.003	Circuit #2	HI	Rod Read	Elevation (m)	Station Measureme	ents	
Station	Α	В	С		Station	Α	В	С			
BM1	A SEA G		3.000		BM1			3.000	Log'r Rod Length:		
BM2	A = B = C		A-B =		BM2			A-B =	Log'r Rod to Botm:		
BM3	A+B+C		A-B =		ВМ3			A-8 =			
TOS	A=B+C		A-B =		TOS			A-B			
WATER	V=8+0		A-G=		WATER			A-B1			
LOG'R ROD:	A = B + C		A-B=		LOG'R ROD:			A-B=			
HWWCON	IN-B-C	+ - 13-47	Ade		HWM/CON		AL EXHIBITION	AsB#			
BANKFULL	A= H + C		A-B=		BANKFULL			A-B=			
	A-E+C		A-B>		BS (BM1)			A/B=			

Field Staff: MM. DH	.DS.
Data Entry By:	Date:
Reviewed By:	Date:

Weather: 43°C, Overcast 4 wirely

HID	NEW-MATONIL	+(Date	2	/ MAY-2014		Discharge Measur	ement Instruments	+ Methods		
	Pit Water	Q Me	asurement Start Time:		(HH MM) PDT PST		YSI SWOFFER PYG		ECT POINT		
Station	17 N	Q Measurement End Time:			(HHLMM) PDT PST	SALT TRACER WEIR VOLUMETRIC FLOAT ROD					
Name	eve	Logge	r Download/Inst Time:		(HH MA) PDT PST			nnel Conditions			
			Logger Reading (m)		[] downloaded	NONE	LICE BACKWATER > E		W HIGH SUSP. SED.		
Logger:	Serial #		НО	BO Solin	st N/A	GPS Wa		ZONE	EASTING	NURTHING	
Photo #	[U/S]		[D/S]		[RDB]		[LDB]		[STAFF/WEIR]		
	Site Con	nments				SLUG CONSTANT RATE	DRY LOGGED	MANUAL SPC	IEC CF.T YESI I	NO.	
DIA B 19	61 Underhill S	war of	last		Trial Time	SPC _B SPC _P	Mix Length	Mass of Salt	Mix Vol.	[Salt Slug	
	elevation 1					EC _o (uS/cm) EC _{pk} (uS/cm)	L _m (m)	Ms _a (kg)	Volume (t)	Css (kg/L)	
7 10000	elevation 13	course to	pin 7		1 (11)			4 37		1 1	
0000-	o a well.				2 ()						
					3 (;)						
	Channel Mea	surements		<u>a</u>	V ₁ for Sec. Mix (mL)	=1.FGex		Vol. Added (mL)	SPC (uS/cm)	Temp	
	Staff Gauge Height (m):			Jac.	Csec (g/L):	1 g/L		1.	0.0 (20.0)	Tomp	
	Weir Head (m):			Salt Tracer	Vol. Calib, Tank (L):	1 L		2			
	Water Temperature (°C):			S	SPC₀ Calib. Tank			3			
1	Water Surface Slope (%):				CF.T =		⊢	4_			
	Average Width (m):				Qsalt =		CF.T	5			
	Average Depth (m):				Notes:			6			
	Measurement Summary	Primary	Secondary					7			
	Meas, Type:				/			8.		1	
	Measurment ID (MID):							19.			
	Average Q (m ³ /s):				Volume (L) =						
C	Meas, Accuracy +/- [%]:			Volum.	Time (sec)	[1]	[2]	[3]	[4]	[5]	
	Average Velocity (m/s):			/olt	Average Q (L/s) =					1-1	
С	ross-Sectional Area (m²):				Avg. Q _{vol} (L/s) =			Avg Q_{vol} (m ³ /s) =			
					Hydrometric Levels - S	Survey		70		-	
YES NO REASON	l:		Survey Time (HH:MM)	(WATER)	17:15	BM Shift: Yes No	Logger Shift Yes No		Staff Gauge Shifted?	Yes No	
Circuit #1	HI	Rod Read	Elevation (m)	± 0.003	Circuit #2	н	Rod Read	Elevation (m)	Station Measureme	ents	
Station	Α	В	С		Station	A	В	С			
DISP Pin	A2 H+G	1.541	3 000		BM1			3.000	Log'r Rod Length	1:	
BM2	$h=[\underline{H}+\underline{I}]$		= B+A,		BM2			A-6 =	Log'r Rod to Botm	1	
ВМЗ	3-8-5		A-8		ВМ3			7A-B-#			
TOS			A-8 =		TOS			(A-51)			
WATER	ASREC	3.686	A/B=		WATER			V-8#			
LOG'R ROD:	4 4 H + C		A-B=		LOG'R ROD:			A-8=:			
HWM/CON	- 5.4000C		A-8=		HWM/CON			-A-B=			
BANKFULL	A SHEET		A-B+		BANKFULL			A-E=			
100 DE 1301	A-11-2 15050	0.683	A-E=		BS (BM1)			A. 8=			

Down hill side) = lid open. } See drawing on body.

VPut + logger?

Field Staff: MM, DHT DS Data Entry By:_ Date: Reviewed By: Date:

Project #:	
Project Name:	

107			
Weather:			

e i	HIC												Date (dd.mm.yyy	y)	
Veloc	ty-Area Method	SWOFFER	PYGMY ADV		Salt Tracer Tris	I LOGGE	D MANUAL	Time::_			Salt Tracer Tr	ial 2 LOGGE	ED MANUAL	Time;;	
tation	Distance (m)	Depth (m)	Velocity (m/s)	Time (sec)	SPC (uS/cm)	Time (sec)	SPC (uS/cm)	Time (sec)	SPC (uS/cm)	Time (sec)	SPC (uS/cm)	Time (sec)	SPC (uS/cm)	Time (sec)	SPC (uS/cm)
1				t _o =		260		520		t _o =		260		520	
2				10		270		530		10		270		530	
3				20		280		540		20		280		540	
4				30		290		550		30		290		550	
5	1.81			40		300		560		40		300		560	
6				50		310		570		50		310		570	
7				60		320		580		60		320		580	
8				70		330		590		70		330		590	
9				80		340		600		80		340		600	
10				90	1	350		610		90		350		610	
11				100		360		620		100		360		620	1
12				110		370		630		110		370		630	
13				120		380		640		120		380		640	
14				130		390		650		130		390		650	
15				140		400		660		140		400		660	
16				150		410		670		150		410		670	
17				160		420		680		160		420		680	
18				170		430		690		170		430		690	
19				180		440		700		180		440		700	
20				190		450		710		190		450		710	
21				200		460		720		200		460		720	
22				210		470		730		210		470		730	
23				220		480		740		220		480		740	
24				230		490		750		230		490		750	
25				240		500		760		240		500		760	
25				250		510		770		250		510		770	

Comments:					red level so or
				holes	All circles of
1				at	top of well naving
			K.	/	
	,		6.	TH-P-17-04 LOSE"	
	Fry			14-P-17 100 LLOSI	Ro
			Leile,	Com	ORE
		-			
Pit		dry pit	COL	rece le blocks	Field Staff:
			C 11.	ALCOHOL: A CONTRACT OF THE PROPERTY OF THE PRO	Data Enter Day

70 m morte were g for reference f

AD

Date: Data Entry By:_ Reviewed By:_ _Date:_ Project #: 14-4-0352 Project Name: Nanska

May 2014

	II. Ba				May 2014						
HID	H-DC-M		Date	diam'ret	460-2013			rement Instruments			
	Middle Dome		asurement Start Time:	143	g (HIS MIN) PDT PST		YSI) SWOFFER PYG		SECT POINT		
Station	The state of the s		easurement End Time:		PDT PST	SALT TRACER WEIR VOLUMETRIC FLOAT ROD Channel Conditions NONE ICE BACKWATER > BANKFULL ZERO FLOW HIGH SUSP. SED.					
Name	Creek	Logge	r Download/Inst Time:		5 HEMM PDT PST						
			Logger Reading (m)		[v] downloaded	NONE	ICE BACKWATER > I	BANKFULL ZERO FLO	W HIGH SUSP. SED.		
Logger:	Serial # 105061	8	НО	BO Solin	st N/A	GPS Wa	ypoint	ZDNE	EASTING	NURTHING	
Photo #	[U/S] 8295	829b	[D/S] 8297		[RDB] 8298		[LDB] 830	0	[STAFF/WEIR]	299	
	Site Com	ments				SLUG CONSTANT RATE	DRY (LOGGED	MANUAL SPO	EC CF.T YES N	10	
disar	10 to 2 la 101 c	Luceno. 1	arest + willow		Trial Time	SPC _B SPC _P	Mix Length	Mass of Salt	Mix Vol.	[Salt Slug]	
High	moderat torbidi	Sarve Sarve	Limit			EC _o (uS/cm) EC _{pk} (uS/cm)	L _m (m)	Ms _e (kg)	Volume (L)	Css (kg/L)	
Noice	Moderat Troblat	A 30WS SE	WLW/ANE		1 (14 30)	706.3 1 779.8	33	0100 kg	IDL	0,01	
build as	in well, stired u	nt cleaned o	nt. Mutical		2 (14 : 38)	702,1,775,4	33 33	0.100 Kg	104	0.01	
4720000014	The Manual Sections of	A commence of	1 racles		3 ()			J		,	
	Channel Mea			j j	V ₁ for Sec. Mix (mL)	100 mb		Vol. Added (mL)	SPC (uS/cm)	Temp	
	Staff Gauge Height (m):	0,19	나	Salt Tracer	Csec (g/L):	1 g/L		1. OnL	700.3	2.100	
	Weir Head (m):	nla		ᄩ	Vol. Calib. Tank (L):	1 L]	2 ZmL	706.8	2.2%	
	Water Temperature (°C):	retor	2,0.0	ικ	SPC ₀ Calib. Tank			3 10 mc	726,3	2.2%	
	Water Surface Slope (%):	nla			CF.T =		CF.T	4 10 m L	7443	2,200	
	Average Width (m):				Qsalt =		5	5 10ml	762.6	2,200	
	Average Depth (m):				Notes			6 10mL	780.1	2,3°C	
	Measurement Summary	Primary	Secondary		50ml S.S. into 4	500mlCk.		7 10 mi	798.4	2,300	
	Meas, Type:	Salt						8.			
	Measurment ID (MID):							9			
	Average Q (m ³ /s):				Volume (L) =						
(Q Meas. Accuracy +/- [%]:			Volum.	Time (sec)	[1]	[2]	[3]	[4]	[5]	
	Average Velocity (m/s):				Average Q (L/s) =						
C	ross-Sectional Area (m²):				Avg. Q _{vol} (L/s) =			Avg Q_{vol} (m ³ /s) =			
					Hydrometric Levels - S						
YES NO REASON	J.		Survey Time (HH:MM):	(WATER)	14:34	BM Shift Yes No	Logger Shift Yes No		Staff Gauge Shifted?		
Circuit #1	н	Rod Read	Elevation (m)	± 0.003	Circuit #2	H1	Rod Read	Elevation (m)	Station Measureme	ents	
Station	Α	В	C		Station	Α	В	С			
BM1	4.297	1.297	3.000		BM1			3.000	Log'r Rod Length		
BM2	ALERS L	1.982	2.315		BM2			A-5-	Log'r Rod to Botm		
BM3	- Alt-6	1.585	2.712		ВМ3			- BA			
TOS	ps=11+T ₀	1.819	2,478		TOS			あ作用	top line	1.163 m	
WATER	Seffect.	2.630	1.667		WATER		T	A-8=	botton line	1,17ºm	
LOG'R ROD:	E=11+C	1.588	2.709		LOG'R ROD:			A-E=			
HWM/CON	F Artes		A-Ba		HWM/CON			A-B=			
BANKFULL	4.4111.62		A-8:1		BANKFULL			A/B= ."			
BM1	- ABBOK	1.297	3,000		BS (BM1)			- AuB			

4. Q.S	
Date:	
Date:	
, ס	Date:

General Site Tasks/ Communications

Field Dates: JUNE 23-25)

1)Download ALL data loggers present

2) If a measurement is not feasible, fully document why and take photos

3) Fill in ALL data boxes & Site Comment boxes on field sheets to document site conditions (even if site is unchanged).
4) During salt slugs, minimum SPC rise is only +10x resolution of conductivity meter.

5) Attempt to get paired SS and ADV measurements where ice cover is sufficiently thin to measure with the ADV.

#	Complete	HID			Site Tasks	Survey Required	Logger Type Serial #	Q Method	Additional Materials	Date	Time	SG	Logge
	ပိ					Yes/No			Required	yy.mm.dd	HH:MM	(m)	(m)
1	[]	ATM-DC2	Atmospheric at Diversion Channel	Continuous Baro Logger	HOBO download; reprogram (data from last file corrupted)	NO	ново	None	None	2014-MAY-		n/a	7
2	[]	ATM-DC4	Atmospheric at Diversion Channel (Back-up)	Continuous Baro Logger	Solinst download Clear Solinst logger data	NO	Solinst Baro- logger	None	None	2014-MAY-		n/a	
3	[]	H-PC-U	Upper Pony Creek	Instantaneous	Q measurement (SS) 2) Complete Welr (concrete bags/sand bags, welr plate, cut notch)	YES	n/a	Salt (0.01 kg) CF.T	None	2014-MAY-			
4	[]	H-PC-DSP	Pony Creek Downstream of Pit	Instantaneous	Q measurement (SS) Survey of WSL/stations if no ice/snow.	YES	n/a	Volumetric Salt (0.01 kg) CF.T	None	2014-MAY-			
5	[]	H-DC- DX+105	Dome Creek DX+105	Instantaneous	1) Q measurement	n/a	n/a	Salt (0.01 kg) CF_T	None	2014-MAY-		n/a	
6	[]	H-DC-D1b	Dome Creek D1b	Instantaneous	Q measurement if clear channel present.	n/a	n/a	Salt (0.01 kg) CF T	None	2014-MAY-		n/a	
7	[]	H-DC-B	Diversion Channel at Bridge	Continuous	Q measurement (if channel conditions permit) install data logger/stilling well if possible.	NO	n/a	Salt (0.05 kg) CF_T	None	2014-MAY-			
8	[]	H-DC-M	Middle Dome Creek	Continuous	1) Q measurement 2) Logger download: 3) Complete welr (sandbags, welr plate, LB wing wall, change logger location?)	YES	Solinst 1050018	Salt (0.1 kg) CF.T	None	2014-MAY-			
9	[]	H-DC-R	Dome Creek at Road	Continuous	1) Q measurement if clear channel present	NO	n/a	Volumetric Salt (0.1 kg) CF T	None	2014-MAY-			
10	[]	H-VC-U	Upper Victoria Creek	Continuous	1) Q measurement (ADV + SS) 2) Logger download	YES	Solinst 1049522	ADV SS (0.2 kg)	None	2014-MAY-			
11	[]	H-VC-DBC	Victoria Creek D/S of Back Creek	Continuous	Q measurement (ADV + SS) Logger download	YES	Solinst 1049137	ADV SS (0.2 kg)	None	2014-MAY-			
12	[]	H-BC	Back Creek	Continuous	Q measurement (ADV + SS) Logger install (if possible) Deploy solinst data logger & measure logger rod from data logger markings.	YES	n/a	Salt (0.05 kg) CF,,T	None	2014-MAY-			
13	[]	H-VC-UMN	Victoria Creek U/S of Minnesota Creek	Continuous	1) Q measurement (ADV + SS) 2) Repair/support stilling well so it is properly anchored. 3) Place a cap on the solinst logger (or tape)	YES	n/a	ADV SS (0.2 kg)	None	2014-MAY-		ě	
14	[]	H-VC-R	Victoria Creek at Road	Continuous	Q measurement (ADV + SS) Logger download and/or direct read replacement.	YES	Solinst 1041103	ADV SS (0.2 kg) CF.T	None	2014-MAY-			
15	1) Q measurement at pipe outlet		NO	n/a	Volumetric	None	2014-MAY-						

WQ/H DCM	
WG/H SEEP	
we/H TP	
W9/H DCB	
Atmo	
wa New Seeps 3	
SUG /H DIB	
WG MS 08	
9x 0 0 (109)	
4 + 0.05 (500)	
1	
1670	
8+020 (2009)	
4	
Mare loge take Vol of w	ric &
wer reasoned	
1	

Project #: 14-Y-0352
Project Name: YG AMM Mount Nansen Water Resources Investigation

S&C (.k wind Weather: +18°C

Jure

	1/01				Sire							
HID	H PC U		Da		APRIL-2014		Discharge Measu	rement Instruments	+ Methods			
	Pony Crok		asurement Start Tim		PDT PST		YSI SWOFFER PYG		SECT POINT			
Station		Q M	easurement End Tim	e:	HH MMI PDT PST		SALT TRACER WE	IR VOLUMETRIC FL				
Name	Pony Creek	Logge	er Download/Inst Tim	e: /	IHEIMMI PDT PST							
			Logger Reading (n	1)	[] downloaded							
Logger: S			н	OBO Solir	nst (NA)	GPS Wa		ZONE	EASTING	NGRITH		
JM Photo#[L	nsi 000 g		[D/S] COCY		[RDB] O O L O		[LDB] OO]		[STAFF/WEIR]			
	Site Com					SLUG CONSTANT RATE	DRY LOGGET	MANUAL SPC	EC CF.T (ES)	ΝO		
constructed.	weir, rotch plat	e and San	bagged.		Trial Time	SPC _B SPC _P	Mix Length	Mass of Salt	Mix Vol.	[Salt Slu		
Photos 0005-	-coop of weir	construction	0			EC _o (uS/cm) EC _{pk} (uS/cm)	L _m (m)	Ms _a (kg)	Volume (L)	Css (kg/l		
disa Water	rising when we	left Not a	e och		1 (13 125)	226.0 1267.4	10	0.01	10	0.00 (
woman.	1 37 37 47 000	1011 - 100.			2 (13:52)	228.7 1263.1	10	0.01	10	-		
				1:	3 (1)		, ,	0.07	10	0.00		
	Channel Meas	surements] _b	V ₁ for Sec. Mix (mL)	F17 (18)	500 nL of SS	Vol. Added (mL)	SPC (uS/cm)	7		
	Staff Gauge Height (m):			Salt Tracer	Csec (g/L):	1 g/L	1	1. O	229.7	Temp		
	Weir Head (m):] <u>=</u>	Vol. Calib. Tank (L):	1 L	in Social		235.9			
V	/ater Temperature (°C):	5.8		Sa	SPC₀ Calib. Tank	229.1	creck water	3. 10 ML	7 70 1	7.5		
Wa	ater Surface Slope (%):			1	CF.T =		<u></u>		296.3	7.5		
	Average Width (m):			V	Qsalt =		GF.T	5. 1 <i>D</i>	246.3 756.6 269.5	7.5		
	Average Depth (m):			1	Notes Total ca	1 2301 506	Ŭ	5. D	269,5	4.5		
٨	Measurement Summary	Primary	Secondary	j \	Telal 7	Hepped @ 230.1 spc		7				
	Meas, Type:	55	- /		Constructed with a	let oblande by	1	0				
	Measurment ID (MID):			i i	Water rising When w	left place and sanding	yed.	0.				
	Average Q (m ³ /s):			1	Volume (L) =			9.				
QM	/leas. Accuracy +/- [%]:			Volum.	Time (sec)	[1]	[2]	[2]				
/	Average Velocity (m/s):		/	/3	Average Q (L/s) =	1.7	[2]	[3]	[4]	[5]		
Cros	ss-Sectional Area (m²):		/	11-	Avg. Q _{vol} (L/s) =			Aug () (=3(a) =				
					Hydrometric Levels - S	urvey		Avg Q_{vol} (m ³ /s) =				
S NO REASON:	No Station		Survey Time (HH:MM):	(WATER)	1		Logger Shift Yes No		Staff Course Oblines	Z-111		
	HI	Rod Read	Elevation (m)	± 0.003	Circuit #2	н	Rod Read	Elevation (m)	Staff Gauge Shifted?: \Station Measureme			
Circuit #1									POTENTIAL INICASUITED	1110		
Station	Α	В	C		Station	Α	B					
Station BM1	A BOTTO				Station BM1	Α		С				
Station BM1 BM2	A HAC		С			A		C 3.000	Log'r Rod Length:			
Station BM1 BM2 BM3	A HAC ATTAC		C 3.000		BM1	А		C 3.000 A.B				
Station BM1 BM2 BM3 TOS	A RECEIVED A THE CONTRACT OF T		C 3,000 A-B =		BM1 BM2	A		C 3.000 A.B.	Log'r Rod Length:			
Station BM1 BM2 BM3 TOS WATER	A STRACE A S		C 3.000 A-B = A-B =		BM1 BM2 BM3	A		C 3.000 A.B	Log'r Rod Length:			
Station BM1 BM2 BM3 TOS WATER LOG'R ROD:	A STRACE AND THE STREET AND THE STRE		C 3.000 A-B = A-B = A-B =		BM1 BM2 BM3 TOS	A		C 3.000 A.B.	Log'r Rod Length:			
Station BM1 BM2 BM3 TOS WATER LOG'R ROD: HWM/CON	A STRACE A S		C 3.000 A-B = A-B = A-B = A-B =		BM1 BM2 BM3 TOS WATER	A		C 3.000 A.B A.U A.U A.B	Log'r Rod Length:			
Station BM1 BM2 BM3 TOS WATER LOG'R ROD:	A STRACE AND THE STREET AND THE STRE		C 3.000 A-B = A-B = A-B = A-B =		BM1 BM2 BM3 TOS WATER LOG'R ROD:	A		C 3.000 A.B.	Log'r Rod Length:			

Field Staff:_	SM.	US,	Litt.	
Data Entry By:_	10		Date:	
Reviewed By:_			Date:	

Project #: 14 / 0351
Project Name: NANSEN

Weather: Colo + 12"

HIC	HPC DSP		Dat	e	4 MAY-2014	T	D'este at			
	Peng cro-E	Q Me	easurement Start Time	9:	(PH MM) PDT PS	+		rement Instruments		
Station			easurement End Time		PDT I PS		YSI SWOFFER PYO		SECT POINT	
Name	P PA		er Download/Inst Time					EIR VOLUMETRIC FL	OAT ROD	
		- 33	Logger Reading (m	1 - 12			Ch	annel Conditions		
Longer	Serial # a a D I (all)	C 2 C U				Esore	ICE BACKWATER >	BANKFULL ZERO FLO	W HIGH SUSP, SED,	
Photo #	: Serial # 00 2 10 4 3	167		OBO Soli		GPS Wa	aypoint	ZONE	COTINS	NORTHING
1 11010 #	Site Con		[D/S]	63	[RDB]	164	[LDB]	165	[STAFF/WEIR]	166
	Site Coil				- C	SLUG CONSTANT RATE	DRY LOGGE	MANUAL SPC	EC CFT YES	NO
i		P		1	Trial Time	SPC _B SPC _P	Mix Length	Mass of Salt	Mix Vol.	[Salt Slug]
i				1 /		EC _o (uS/cm) EC _{pk} (uS/cm)	L _m (m)	Ms _e (kg)	Volume (L)	Css (kg/L)
				1 /	1 (1 (13.2)
				1 /	2 (
					3 (
	Channel Mea			j j	V ₁ for Sec. Mix (mL)	=1 / Css		Vol. Added (mL)	SPC (uS/cm)	Temp
	Staff Gauge Height (m):	0.171		Tag.	Csec (g/L):	1 g/L		1.	Ci O (do/ciii)	Temp
	Weir Head (m):			Salt Tracer	Vol. Calib. Tank (L):	1 L		2.		
2	Water Temperature (°C):			/SS	SPC _o Calib. Tank			3.		
1.8	Water Surface Slope (%):				CF,T =		_	4		-
	Average Width (m):			1/	Qsalt =		CF.T	5		
	Average Depth (m):			17	Notes		_	6		
	Measurement Summary	Primary	Secondary	1/				7		
	Meas. Type:	Vol.	1	1/				0		
	Measurment ID (MID):			'				0.		
	Average Q (m³/s):	0.00062	/		Volume (L) =	21	20	9.	0.1	
C	Q Meas. Accuracy +/- [%]:		1	É	Time (sec)		[2] 31.88	30	20	£
	Average Velocity (m/s):		/	Volum.	Average Q (L/s) =	0,61	0.63	[3] 31 .95	[4] 31.8"	[5] 32,26
С	ross-Sectional Area (m²):				Avg. Q _{vol} (L/s) =	0.62	0,60	0,63	0.63	0.62
					Hydrometric Levels - S			Avg Q _{vol} (m ³ /s) =	0,00060	
ES NO REASON	V.		Survey Time (HH:MM):	(WATER)	100		La Company			
Circuit #1	HI	Rod Read	Elevation (m)	± 0.003	Circuit #2	HI I	Logger Shift: Yes No		Staff Gauge Shifted?:	
Station	А	В	C		Station		Rod Read		Station Measureme	ents
BM1	4-295	1.295	3.000		BM1	4269	B	С		
BM2	# - N = F	1.052	3 243	1	BM2	1269	1 269	3.000	Log'r Rod Length:	
ВМЗ	- AFRICO .	0,672	3 623		BM3		1027	3,242	Log'r Rod to Botm:	
TOS	5000	1198	3097		TOS		0647	3622		
WATER	An Italia	1.972	2323		WATER		1121	3 622		
LOG'R ROD:	きた出する	0.899	3 396		LOG'R ROD:		1944	2.325		
HWM/CON	4-8-6	The state of the s	A-B-				0872	3397		
BANKFULL	A = H = C	7	A-B-		HWM/CON			Appe .		
BM1	A=8-C	1,294	3 001		BANKFULL		100	A-B=		
		305-09	7001		BS (BM1)		1269	3.000		

Carry 105 1 1154 3,47

 Field Staff:
 JM
 LH
 S

 Data Entry By:
 Date:

 Reviewed By:
 Date:

Weather: light drizzle acrost

HID	H-DC-DX-105				sure				, (
1077	IL FIG PX 107	OM	Da easurement Start Tim		MAY-2014		Discharge Measu	rement Instruments	+ Methods	
Station				10.1	THE THE PARTY OF T		YSI SWOFFER PYO		SECT POINT	
Name			easurement End Tim		7 (HEMM) PDT PS	T	SALT TRACER WI	EIR VOLUMETRIC FI	LOATIROD	
1250105		Logge	er Download/Inst Tim		CHE MINI POT IPS	Channel Conditions				
4			Logger Reading (n	1)	[] downloade	NONE	ICE BACKWATER >	BANKFULL I ZERO FL	OW I HIGH SUSP SED	
Logger: S			Н	OBO Soli	nst N/A	GPS W		ZONE	EASTING:	NORTH
Photo #	U/S]		[D/S]		[RDB]		[LDB]		7	SHOULDE
	Site Com	ments	4 7 3 4 1			SLUG CONSTANT RATE		- 2	[STAFF/WEIR]	
	-			1	Trial Time	SPC _B SPC _P		D MANUAL SPC	120	
				1	77100 711110	EC _o (uS/cm) EC _{pk} (uS/cm)	Mix Length	Mass of Salt	Mix Vol.	[Salt S
				1	1 (15 15)	1186 1257	-m (111)	Ms _e (kg)	Volume (L)	Css (kg
					2 (15 30)	1190 1276	12	0.01	10	0.001
					3 (11-10-116-10	128	0.01	10	0.00
	Channel Meas	surements		1 .	V ₁ for Sec. Mix (mL)					
	Staff Gauge Height (m):			Salt Tracer	Csec (g/L):	=T//Cks	500ml CSS	Vol. Added (mL)	SPC (uS/cm)	Tem
	Weir Head (m):			Į Ĕ		1 g/L	500ml breck	1. 5	128-1189	16
V	Vater Temperature (°C):	1.5		Salt	Vol. Calib. Tank (L):	1 L	Scome Creek Water	1. 5 2. 1 10	1198	1.7
	ater Surface Slope (%):	1.0		- "	SPC₀ Calib, Tank			3. 70		1.7
	Average Width (m):				CF.T =		5	4. 30	1221	1.9
	Average Depth (m):			1	Qsalt = Notes:		ļ	5. 30	1286	2.5
	Measurement Summary	Primary	Secondary	-	wores:			6.		
	Meas, Type:	. milary	Secondary	-				7.		
	Measurment ID (MID):							8.		
	Average Q (m³/s):							9.		
QN	Meas. Accuracy +/- [%]:			نہ	Volume (L) =					
	Average Velocity (m/s):			Volum.	Time (sec)	[1]	[2]	[3]	[4]	[5]
	ss-Sectional Area (m²):			°	Average Q (L/s) =				1.7	[9]
310	os occional Area (III).				Avg. Q _{vol} (L/s) =			Avg Q _{vol} (m ³ /s) =		
NO REASON:				100	Hydrometric Levels - S	Survey		3 400 (, 6)		
Circuit #1	HI	Rod Read	Survey Time (HH:MM):	(WATER)		BM Shift: Yes No	Logger Shift: Yes No		Staff Gauge Shifted? Y	Cool No
Station	A		Elevation (m)	± 0.003	Circuit #2	HI	Rod Read	Elevation (m)	Station Measuremen	
BM1	ALLES TO THE	В	С		Station	A	В	C	- Suon Measuremen	11.5
BM2	ADMIL		3 000		BM1			3 000	Log'r Rod Length:	
ВМЗ	ARRAG		A/8 =		BM2			A-B=	Log'r Rod Length:	
TOS	X + H - L		A-E		BM3			AB=	Log i Rod to Botm:	
VATER	AND I		ASE =		TOS			A:R =		
G'R ROD:	A-11-C		Arter		WATER			A-8=		
VM/CON	LANGE TO SERVICE		A-B=		LOG'R ROD:			A-B=		
NKFULL			70-R≈		HWM/CON					
WINI OLL	5-8-0		A-B=		BANKFULL			A-B-		
	A - H - C		- A-8±					A4Bx	1	

Field Staff: (A, 1) S	22
Data Entry By:	Date:
Reviewed By:	Date:

Project #: 14-Y-0352
Project Name: YG AMM Mount Nansen Water Resources Investigation

Weather: (the Zone wind + 18°C

HID	H DC DIB		Date	24	APRIL-2014		Discharge Measure	ement Instruments	+ Methods	
	Dee (ee	Q Mea	asurement Start Time		3 SHH.MM) PDT PST		YS) SWOFFER PYGM		ECT_ POINT	
	Der one Ber	Q Me	easurement End Time	13	5 STHERMAN POT PST			R VOLUMETRIC FLO		
Name		Logge	r Download/Inst Time		PDT PST			nnel Conditions		
		- K-	Logger Reading (m)		[] downloaded	NONE	ICE BACKWATER > B		W HIGH SUSP SED	
Logger: S	Serial #		нс	BO Solir	nst	GPS Wa		ZONE	EASTING	MORTHING
Photo # [u/sj	13/	[D/S]	132	[RDB]	133	[LDB]	134	[STAFF/WEIR]	_
	Site Com	ments				SLUG CONSTANT RATE	DRY LOGGED	MANUAL BC	EC CFT YESIN	10
Creek nees	works acount Con	and as as di	V TILL C	1	Trial Time	SPC _B SPC _P	Mix Length	Mass of Salt	Mix Vol.	[Salt Slug]
The tole a	uncherground soon	o Nes phrina	- but			EC _o (uS/cm) EC _{pk} (uS/cm)	L _m (m)	Ms _a (kg)	Volume (L)	Css (kg/L)
,,,	2000 Model Lesse	years was	offe.		1 (13:35)	1333 1375	11	0.01	10	0,001
		1.19			2 (13:42)	1333 1 13 93	17	0.01	10	0.001
					3 ()			(F)		
	Channel Mea	surements] _e	V ₁ for Sec. Mix (mL)	1000 F.E.	500me sinh	Vol. Added (mL)	SPC (uS/cm)	Temp
	Staff Gauge Height (m):			Salt Tracer	Csec (g/L):	1 g/L		1. (3	1330	4,5
	Weir Head (m):	/] [Vol. Calib. Tank (L):	1 L	Soone of Cleak water	2. 5 3. 5	1341	4.6
٧	Nater Temperature (°C):	3.4		တိ	SPC₀ Calib. Tank		()-#5	3. 5	1347	4.7
V	Vater Surface Slope (%):	•			CF.T =		F.	4. 10	1358	4.7
	Average Width (m):				Qsalt =		CF.T	5, 10	1369	4.8
	Average Depth (m):			74	Notes Sec. a	10,130		6. 16	1379	41,8
	Measurement Summary	Primary	Secondary		C / Dumph	J CHILDREN		7, 10	1387	4.9
	Meas, Type:	55	/		The second Tries	of of vet go of		8. 10	1400	5.0
	Measurment ID (MID):		/		The my to spe	8		9.		
	Average Q (m³/s):			./	Volume (L) =					
	Meas, Accuracy +/- [%]:			Volum.	Time (sec)	[1]	[2]	[3]	[4]	[5]
	Average Velocity (m/s):			/§	Average Q (L/s) =					
Cro	oss-Sectional Area (m²):			/	Avg. Q _{vol} (L/s) =			Avg Q_{vol} (m ³ /s) =		
					Hydrometric Levels - S	urvey				
YES NO REASON	No Station		Survey Time (HH:MM):	(WATER)		BM Shift: Yes No	Logger Shift Yes No		Staff Gauge Shifted?	Yes No
Circuit #1	HI	Rod Read	Elevation (m)	± 0.003	Circuit #2	HI	Rod Read	Elevation (m)	Station Measureme	ents
Station	A	В	С		Station	Α	В	С		
BM1	W. Est.		3,000		BM1			3.000	Log'r Rod Length:	
BM2	William.		AU	->4	BM2			AB =	Log'r Rod to Botm:	
BM3	20.000.000		- 1,44=		BM3			7.0		
TOS	. X-U-K.		A-B =		TOS			4.B=		
WATER	N+11-5		A-8=		WATER			7404		
LOG'R ROD:	5-8-A		A-B=		LOG'R ROD:			A-8=		
HWM/CON	R-FIE		A-61		HWM/CON			-A-85		
BANKFULL	4-0-5		A»B=		BANKFULL			- Aligii		
	3 - 0 - 1		A-6=		BS (BM1)			A-8-		

Field Staff:DS/	Jn
Data Entry By:/	Date:
Reviewed By:	Date:

Project Name: YG AMM Mount Nansen Water Resources Investigation

Weather: 16" overcost lightwich

HID	H-OC-B		Dat	0 7	June 1000					
		Q Me	asurement Start Time		4 -APRIL-2014 PDT I P			rement Instruments		
Station	Diversion channel		easurement End Time				YSI SWOFFER PYG		SECT. POINT	
Station Name	at bridge		er Download Inst Time	10.5			(SALT TRACER) WE	IR VOLUMETRIC FL	OAT ROD	
		Logge		1. 10			Cha	annel Conditions		
			Logger Reading (m		[] download	ed	ICE BACKWATER >	BANKFULL ZERO FLO	W HIGH SUSP. SED.	
	Serial # 9908 51	1	(HC	OBO Solin	st N/A	GPS W	aypoint	KONE	EARTIM	MORTEN
Photo # [(-([D/S] [1Z		[RDB] 113		[LDB] 114		[STAFF/WEIR]	
	Site Corr					SLUG CONSTANT RATE	DRY LOGGED	MANUAL SPC	EC CF.T YES	NO
Atmo & d.	ownloaded Atmo	2 replaced			Trial Time	SPC _B SPC _P	Mix Length	Mass of Salt	Mix Vol.	[Salt Slu
thus St c	1896522	Hobo inst	alled 10:40			EC _o (uS/cm) EC _{pk} (uS/cm)	L _m (m)	Ms _a (kg)	Volume (L)	Css (kg/l
Atmo H H	0011041027	(1000 43	((0) (0		1 (10:40)	1366 1526		0.050	10	0.005
ttmo proto	117,116,115				2 (10;46)	1362 1521	13	0.050	10	
-					3 (;)			0 - 10	10	0.005
	Channel Mea	surements		1 to	V ₁ for Sec. Mix (mL)	200	toom CSS	Vol. Added (mL)	SPC (uS/cm)	T
	Staff Gauge Height (m):	-/-		Salt Tracer	Csec (g/L):	1 g/L	11 -4-	1 ()		Temp
	Weir Head (m):	/		1 🛓	Vol. Calib. Tank (L):	1 L	100 ml CSS	2. 5 mL	1360	8.3
V	Vater Temperature (°C):	7.6		Sa	SPC _o Calib. Tank	1360	10001 155	2 2 1	1371	8.4
V	Vater Surface Slope (%):			1	CF.T =	. 760	500 ml stream	3. 10 ml 4. 20	1391	8.4
	Average Width (m):			1	Qsalt =		C O MC 3thar F	4. 70	1426	8.4
	Average Depth (m):			i	Notes		٥	5. 70	1961	8.5
	Measurement Summary	Primary	Secondary	1				6. 70	15 18	8.5
	Meas, Type:	55	/	1				7. 70	1558	8.6
	Measurment ID (MID):							8.		
	Average Q (m³/s):				Volume (L) =			9.		
Q	Meas. Accuracy +/- [%]:			<u>e</u>	Time (sec		[0]	to		
	Average Velocity (m/s):			Volum.	Average Q (L/s):	-	[2]	[3]	[4]	[5]
Cro	oss-Sectional Area (m²);			>	Avg. Q _{vol} (L/s) :					
2					Hydrometric Levels -			Avg Q_{vol} (m ³ /s) =		
NO REASON: Circuit #1			Survey Time (HH:MM):	(WATER)	10:50	BM Shift (Yes No	Logger Shift: Yes No		Staff Gauge Shifted?	Yesi No
	НІ	Rod Read	Elevation (m)	± 0.003	Circuit #2	HI	Rod Read	Elevation (m)	Station Measureme	
Station	Α	В	С		Station	A	В	С	CASAGO INICAGO CINA	71113
BM1	4.000	1.000	3.000		BM1	4,000 3 983	0.983	3.000	Log'r Rod Length	
BM2	4 1-6	0.648	3 352		BM2	1	0.633	3.350	Log'r Rod to Botm	
BM3	-A1 1-6 -	1,007	7.993		ВМЗ		0.633	7.997	Log I Rod to Botm	
TOS			-68-		TOS		0.111	A.D.		
WATER	A-A	2.570	1.430		WATER		7.557	1.931		
OG'R ROD:	Arthon	1.224	7.776		LOG'R ROD:					
Control of the contro			3.8-		HWM/CON		1.208	2.775		
HWM/CON	ALC: U							SHIPSH.		
HWM/CON BANKFULL	A-11-12		A/B=		BANKFULL			A/81/		

Field Staff:_ Data Entry By:

Reviewed By:

Date:

Date:

CH

Project Name: YG AMM Mount Nansen Water Resources Investigation

avercast 18°C Weather: light wind

3ut HID H-OC-M APRIL-2014 Discharge Measurement Instruments + Methods Q Measurement Start Time: 18:49 HEEL MANUAL PDT I PS YSI SWOFFER | PYGMY | ADV Middle Done MID-SECT. I POINT Q Measurement End Time: Station PDT | PS SALT TRACER (WEIR | VOLUMETRIC | FLOAT | ROD Name (reck Logger Download/Inst Time: JHR MM PDT | PS Channel Conditions Logger Reading (m) [] downloaded NONE | ICE | BACKWATER | > BANKFULL | ZERO FLOW | HIGH SUSP. SED. Logger: Serial # 007 1050018 HOBO (Solinst) N/A **GPS Waypoint** Photo # [U/S] [D/S] (2085 0086 [LDB] [STAFF/WEIR] 0044 Site Comments SLUG CONSTANT RATE | DRY LOGGED MANUAL CF.T YESINO & Staff game read from welled number line as Trial Time SPC_B | SPC_P Mix Length Mass of Salt Mix Vol. [Salt Slug] creek level drop due to weir construction EC_o(uS/cm) | EC_{ok}(uS/cm) $L_{m}(m)$ Ms_a (kg) Volume (L) Css (kg/L) 1 (18:49) Weir plates 89 095 0.100 10 0.0100 141211578 2 (9:03) 0.100 10 0.0100 3 (Channel Measurements V₁ for Sec. Mix (mL) ino 100 ml (55 Vol. Added (mL) SPC (uS/cm) Temp 0.171m @ 08:55 2934 Staff Gauge Height (m): Csec (g/L): 1 g/L 476 1471 1.4 11 Stream Weir Head (m): Vol. Calib. Tank (L): 5 11.5 1428 Water Temperature (°C) SPC_n Calib. Tank 30 1476 1488 11,5 Water Surface Slope (%) CF.T = 1524 11.5 Average Width (m) Qsalt = 20 1560 Notes First Trial 2 SPC > 1439 Average Depth (m) 1595 11.5 Measurement Summary Primary Secondary 1676 11.4 Meas, Type: 1 Cil Measurment ID (MID) Average Q (m³/s) 24 June Volume (L) = 22 24 Q Meas. Accuracy +/- [%] Time (sec) [1] 2,41 [3] 7.63 [2] 7.49 [4] 2.37 [5] 7.6 Average Velocity (m/s): Average Q (L/s) = 9.54 8.84 8 75 9.23 Cross-Sectional Area (m2) 9.7.1 Avg. Qvoi (L/s) = Avg Q_{vol} (m³/s) = Hydrometric Levels - Survey YES INO I REASON Survey Time (HH_MM): (WATER) 123 BM Shift: Yes| No Logger Shift: Yes| No Staff Gauge Shifted? Yes| No Circuit #1 HI Rod Read Elevation (m) Circuit #2 ± 0.003 HI Rod Read Elevation (m) Station Measurements Station В C Station BM₁ 4362 367 3.000 BM₁ 3.000 Log'r Rod Length: BM₂ 2323 BM₂ 1010 7323 Log'r Rod to Botm: вмз 2718 ВМ3 7716 TOS 2470 TOS WATER WATER LOG'R ROD: LOG'R ROD: HWM/CON

RM

BANKFULL

& WATER-9 surveyed to where water was before weir construction began

0-00

1363

Field Staff: Data Entry By: Date: Reviewed By: Date:

3000

1233

HWM/CON

BANKFULL

BS (BM1)

Project #: 14-Y-0352
Project Name: YG AMM Mount Nansen Water Resources Investigation

Overcast Weather: 180 light wind

June

HID	H-DCR		Date	7-	30re 2 2014		Discharge Measur	ement Instruments	+ Mothodo	
	Done (reck	Q Me	asurement Start Time		(HHUMM) PDT PST		YSI SWOFFER PYG		ECT POINT	
Station		Q Me	easurement End Time		AND MANA POT PST	2		IR VOLUMETRIC FL		
Name	Road	Logge	er Download/Inst Time						UAT [ROD	
			Logger Reading (m)	1 0	[] downloaded	NONE	ICE BACKWATER > E	nnel Conditions	WILLION OUR OFF	
Logger:	Serial # 0908 15	7		BO Solir		GPS Wa				
¬ M Photo #		84	[D/S]	_/_	T			ZONE	EASTING	MORTHING
7/1/1100#	Site Com		[D/S]	-85	[RDB]	86	[LDB]	87	[STAFF/WEIR]	88 (24
_				ł		SLUG CONSTANT RATE	DRY (LOGGED	MANUAL SPC	EC CF.T (YES) N	0
Logger 1	rod to line	on HoBO =	1766 m	l	Trial Time	SPC _B SPC _P	Mix Length	Mass of Salt	Mix Vol.	[Salt Slug]
Well loage	ard Staff i-Stall	ted at sixe		l		EC _o (uS/cm) EC _{pk} (uS/cm)	L _m (m)	Ms _a (kg)	Volume (L)	Css (kg/L)
WAT photo	1 069 095				1 (17:17)	1201 11464	23 12	0.100	10	0.010
•		-			2 (17:22)	1200 11405	23 12	0.100	10	0.01
	Observation 188				3 (:)					l'
	Channel Mea			je je	V ₁ for Sec. Mix (mL)	100	100mi 55	Vol. Added (mL)	SPC (uS/cm)	Temp
	Staff Gauge Height (m):	0.301		ŭ	Csec (g/L):	1 g/L		1. D	1705	7.0
	Weir Head (m):	0.121 n 0	08:55, 24 June	Salt Tracer	Vol. Calib. Tank (L):	1 L	In IL	2. 5	1212	129.0
	Water Temperature (°C):	8.3		S	SPC ₀ Calib. Tank	1205	creek water	3. 10	1210 1213	
2	Water Surface Slope (%):				CF.T =				1272	9.4
	Average Width (m):				Qsalt =		CF.T	5. 30	1326	9.5
	Average Depth (m):				Notes: Salt trial just	tribastronni of		6. 30	1383	9.8
	Measurement Summary	Primary	Secondary		Culvert	cardirani o		7. 30	1435	9.6
	Meas, Type:	\$5	DIFF		CO IVe			B. 3D	1484	9.7
	Measurment ID (MID):							9.	,101	1.7
	Average Q (m³/s):			JY June	Volume (L) =	7.3	-22	23	7.3	
G	Meas_ Accuracy +/- [%]:		8	Volum.	Time (sec)	11 2.41		131 7 63		151 2 6
	Average Velocity (m/s):		. 9	S S	Average Q (L/s) =	954	8.835	8.745	9.705	
Cı	ross-Sectional Area (m ²):				Avg. Q _{vol} (L/s)=	9.21		Avg Q _{vol} (m ³ /s) =	1: 105	9.231
CAC					Hydrometric Levels - S	urvey		Trig Swot (III 73)		
S NO REASON			Survey Time (HH MM):	(WATER)		BM Shift Yes No	Logger Shift: Yes No		Stoff Course Shifterdo N	/ I M
Circuit #1	HI	Rod Read	Elevation (m)	± 0.003	Circuit #2	HI	Rod Read	Elevation (m)	Staff Gauge Shifted? Y	
Station	A	В	C		Station	Α	В	C	otation incasaremen	il S
BM1	3722	0722	3,000		BM1	3712-3762		3.000	Log'r Rod Length:	
BM2		0749	2973		BM2	1.00	0779	£133 793	Log'r Rod to Botm:	
BM3		1409	1313		BM3		1440		Log1 Rod to Botm:	
TOS	A Turney	2590	1132		TOS		7620	727223E +042 1132		
WATER	2.0Mile	3299	423		WATER		3324	388 428		
OG'R ROD:	A 18 1 C	1753	1969		LOG'R ROD:		1784	1478 196		
HWM/CON	Armio		UALB =		HWM/CON		1101	7768 196		
BANKFULL	Adityd		A.B.		BANKFULL	//		TAND-		
DMI	1000	0727	3,00		BS (BM1)	11/	0752	Æ-B≒		

Field Staff: LH. D	5. JM
ata Entry By:	Date:
Reviewed By:	Date:

Jue HID 4-VC-V Date 74 MAY-2014 Discharge Measurement Instruments + Methods Q Measurement Start Time: Victoria Creek 20:05 PDTIPS YSI SWOFFER | PYGMY (ADV) (MID-SECT) | POINT Station Upper Q Measurement End Time: 20:30 PDTIPS SALT TRACER | WEIR | VOLUMETRIC | FLOAT | ROD Name Logger Download/Inst Time: 20:31 PDT | PS Channel Conditions Logger Reading (m) downloaded NONE DICE | BACKWATER | > BANKFULL | ZERO FLOW | HIGH SUSP SED Logger: Serial # 104452Z HOBO (Solinst) N/A **GPS Waypoint** Photo # [U/S] 190 [D/S] 101 (RDB) 192 [LDB] 194 143 [STAFF/WEIR] Site Comments SLUG | CONSTANT RATE | DRY LOGGED | MANUAL CF.T YES NO Trial Time SPC_B | SPC_P Mix Length Mass of Salt Mix Vol. [Sait Slug] ECo(uS/cm) | ECpk(uS/cm) | L_{m} (m) Ms_a (kg) Volume (L) Css (kg/L)) 2 (3 (Channel Measurements V₁ for Sec. Mix (mL) Vol. Added (mL) SPC (uS/cm) Temp Staff Gauge Height (m): 0.138 Csec (g/L): 1 g/L Weir Head (m) Vol. Calib. Tank (L): 1 L Water Temperature (°C) 6.6 SPC₀ Calib. Tank Water Surface Slope (%) CF.T = CF.T 3.9 Average Width (m) Qsalt = Average Depth (m): 0.743 Notes Measurement Summary Primary Secondary Meas. Type: ADV Measurment ID (MID): Average Q (m³/s): 0.1724 Volume (L) = Q Meas. Accuracy +/- [%]: 3.5 Volum. Time (sec) [1] [3] [4] Average Velocity (m/s): 0.182 Average Q (L/s) = Cross-Sectional Area (m2): 0.947 Avg. Qvol (L/s) = Avg Q_{vol} (m³/s) = Hydrometric Levels - Survey VES NO I REASON Survey Time (HH:MM): (WATER) 2034 BM Shift: Yes| No Logger Shift: Yes| No Staff Gauge Shifted? Yesl No. Circuit #1 HI Rod Read Elevation (m) ± 0.003 Circuit #2 HI Rod Read Elevation (m) Station Measurements Station Α C Station Α В C BM₁ 4440 1440 3.000 4423 BM1 1423 3,000 Log'r Rod Length: BM₂ 1083 3357 BM₂ 1068 3355 вмз Log'r Rod to Botm: 1197 3243 ВМ3 1178 3745 TOS 1530 2900 TOS 1513 2910 WATER 2392 2048 WATER 2374 2049 LOG'R ROD: 1284 3156 LOG'R ROD: 17.68 3155 HWM/CON HWM/CON BANKFULL 9 11 BANKFULL BMI 1440 3000 BS (BM1) 1424 2999

Field Staff: CH, D	s Sm
Data Entry By:	Date:
Reviewed By:	Date:

Project #:	
Project Name:	

Weather: Outrost 15°C

HID	H-VC-0BC		Dat	el .	7 4 MAY-2014					
	Victoria Creek	Q M	easurement Start Time		2014		Discharge Meas	urement Instruments	s + Methods	
Station	Downstream of		leasurement End Time	111-0	V	0.0	YSI SWOFFER PY		SECT POINT	
Name	0001-3110-11-04		er Download/Inst Time			the state of the s	SALT TRACER IW	EIR VOLUMETRIC F	OATTROD	
	Buckercek	Logg			, , , , ,			annel Conditions		
. =	W-2017		Logger Reading (m)		NONE	ICE BACKWATER >	BANKELLI I ZERO EL	OWI HIGH SHEE OF	
Logger:	Serial# 104913	7	H	DBO Soli	inst N/A		/aypoint		OW HIGH SUSP SEL	6
Photo #	[U/S] 1 8 0		[D/S] (8)		[RDB] 197	GF3 W	1.0	ZONE	EASTING	HORTHIN
	Site Co	mments	101		[RDB] 187		[LDB] 184		[STAFF/WEIR]	183
				-		SLUG CONSTANT RATE	IDRY LOGGE	D MANUAL SPC	IEC CFT YES	
				1	Trial Time	SPC _B SPC _P	Mix Length	Mass of Salt	Mix Vol.	[Salt Sluc
				1		EC _o (uS/cm) EC _{pk} (uS/cm)	L _m (m)	Ms _a (kg)	Volume (L)	Css (kg/L)
					1 ((1.9)	voidine (E)	CSS (Kg/L)
					2 (
	Channel Me			1	3 (1)					
	Staff Gauge Height (m)			j j	V ₁ for Sec. Mix (mL)	=1703		Vol. Added (mL)	000:5:	
				Salt Tracer	Csec (g/L):	1 g/L		4 Voi. Added (ML)	SPC (uS/cm)	Temp
	Weir Head (m)			≝	Vol. Calib. Tank (L):	1 L		2		
	Water Temperature (°C):			ικ	SPC ₀ Calib. Tank			2		
	Vater Surface Slope (%):				CF.T =			3.		
	Average Width (m):	4.500			Qsalt =		OF.T	4		
	Average Depth (m):	0.128		(Notes		٥	5.		/
	Measurement Summary	Primary	Secondary					6		
	Meas, Type:	ADV						7.		
	Measurment ID (MID):							8.		
	Average Q (m ³ /s):	0.1767			Values (I)			9,		
	Meas. Accuracy +/- [%]:	7.3		e e	Volume (L) =					
	Average Velocity (m/s):	0.308		Volum.	Time (sec)	[1]	[2]	[3]	[4]	[5]
	oss-Sectional Area (m²):	0.574		×	Average Q (L/s) =					
	2:	- 311			Avg. Q _{vol} (L/s) =			Avg Q _{vol} (m ³ /s) =		-
NO REASON			Cuprou Time (Ull see a)		Hydrometric Levels - S					
Circuit #1	н	Rod Read	Survey Time (HH:MM): Elevation (m)	(WATER)		BM Shift, Yes No	Logger Shift Yes No		Staff Gauge Shifted?	Vool No
Station	Α	B	C C	± 0.003	Circuit #2	HI	Rod Read		Station Measureme	
BM1	4500	1500			Station	Α	В	C	otation weasureme	ins
BM2	A 10 4 5	1474	3,000		BM1	3480	1480	3.000	Logis D - dit	
ВМЗ	A PAG		3.026		BM2	1 1	1454	3026	Log'r Rod Length:	
TOS	4 - 2	1590	2910		ВМЗ		1569	2911	Log'r Rod to Botm:	
WATER	1000	210(2348		TOS		7132			
G'R ROD:		215271	210		WATER			2348		
WM/CON	RT 2+6:	1933	2567		LOG'R ROD:		2732	1748		
			A-8=		HWM/CON		1912	2567		
	4-E-L							A-B		
ANKFULL		1500	A-8		BANKFULL			A-E=		

Field Staff:__ Data Entry By:_

Reviewed By:

JM

Date:

Date:

Weather: Rain Overlast 140

3 re

					20cc					
	H-VC-UMN		Date	24	-MAY- 2014		Discharge Measur	ement.Instruments	+ Methods	
	victoria Grek Victoria Grek Victoria Victoria		asurement Start Time:	18:20			YSI SWOFFER PYGI	MY (MID-S	SECT (POINT	
Station	U. In adop		asurement End Time:	18:53	(HR.MM) PDT PST		SALT TRACER WE	R VOLUMETRIC FL	OAT ROD	
Name	1/2 Mirrezor	Logge	Download/Inst Time:	18:43	(HH MM) PDT PST		Cha	nnel Conditions		
	(reek		Logger Reading (m)	, T.	[] downloaded	NONE	ICE BACKWATER > E	ANKFULL ZERO FLO	W HIGH SUSP SED	
Logger: S	erial# 02164	9534	НС	BO Solin	st N/A	GPS Wa	ypoint	- ZONE	EASTING	NORTHIN
Photo # [U	ws] \ \		[D/S] 17-5		[RDB] 176		[LDB]	1	[STAFF/WEIR]	79
13	Site Com	ments				SLUG CONSTANT RATE	DRY LOGGED	MANUAL SPC	EC CFT YESIN	10
1000-01	rod needs	- I I	d as ab		Trial Time	SPC _B SPC _P	Mix Length	Mass of Salt	Mix Vol.	[Salt Slu
27	1,000	1 CW G	JIPANUP			EC _o (uS/cm) EC _{pk} (uS/cm)	L _m (m)	Ms, (kg)	Volume (L)	Css (kg/L
			- 0		1 ()			1		
					2 (;)					
					3 (:)					
	Channel Mea			a	V ₁ for Sec. Mix (mL)	Et / Ost		Vol. Added (mL)	SPC (uS/cm)	Temp
	Staff Gauge Height (m):	0.592		Salt Tracer	Csec (g/L):	1 g/L		1	(/	
	Weir Head (m):			H T	Vol. Calib. Tank (L):	11		2		
V	/ater Temperature (°C):	7.2		s,	SPC ₀ Calib. Tank			3		
W	ater Surface Slope (%):				CF.T =		⊢	4.	-	
	Average Width (m):	5.600			Qsalt =		CF.T	5.		
	Average Depth (m):	0.169			Notes			6		
	Measurement Summary	Primary	Secondary					7		
	Meas, Type:	Apv						8		
	Measurment ID (MID):		The second second second	-				9	3*	
	Average Q (m ³ /s):	0.1879			Volume (L) =					
QI	Meas. Accuracy +/- [%]:	3.4		Ė	Time (sec)	[1]	[2]	[3]	[4]	[5]
	Average Velocity (m/s):	0.199		Volum.	Average Q (L/s) =		[-]	[0]	נייו	[0]
	ss-Sectional Area (m²):	0.944		>	Avg. Q _{vol} (L/s) =			Avg Q _{vol} (m³/s) =		
					Hydrometric Levels - S	Survey	-	Avg Q _{vol} (m /s) =		
S NO REASON			Survey Time (HH:MM):	(WATER)	- 1	BM Shift: Yes No	Logger Shift: Yes! No		Staff Course Chiffe to	Vaal Ma
Circuit #1	н	Rod Read	Elevation (m)	± 0.003	Circuit #2	HI	Rod Read	Elevation (m)	Staff Gauge Shifted? Station Measureme	
Station	Α	В	С		Station	A	Rod Read B	C C	Station Weasureme	ins .
BM1	4163	1163	3.000		BM1	9140	1140	3.000	Log'r Rod Length:	
BM2	A P. T. K.L.	1154	3001		BM2	1 3/10	1130	30-10	Log'r Rod to Botm:	
ВМЗ	V-7-1-1	1486	2677		BM3	/	14/2	2678	Logi Rod to Botm:	
TOS	Albert	2167	1496		TOS		7144	1996		1
WATER	ARDED TO	2576	1587		WATER		2001			
OG'R ROD:	A = 3 + Q	1953	220		LOG'R ROD:		1001	1589		
HWM/CON	AU ALEXA		A-B		HWM/CON		1930.	2210		
BANKFULL	x //		/v.b-		BANKFULL			A-Re		
		1163	3.001)				1140	A-6=		
		1103	1,000		BS (BM1)		1110	5000		

Field Staff:	LH.	PS, JM
Data Entry By:		Date:
Reviewed By:		Date:

Project Name: YG AMM Mount Nansen Water Resources Investigation

Ovo Gst Lite und Weather: + 12°C

HID H-VC-R Date 7 SAPRIL-2014 Discharge Measurement Instruments + Methods Q Measurement Start Time: Vietoria crk 16:03 (ERH MEA) PDTIPS YSI | SWOFFER | PYGMY | AND MID SECT | POINT Q Measurement End Time: Station 16:41 (HE MO) PDTIPS SALT TRACER | WEIR | VOLUMETRIC | FLOAT | ROD Name Rocal Logger Download/Inst Time: 15:48 (E01 MM) POTIPST Channel Conditions Logger Reading (m) 0.0114 / downloaded NONE | ICE | BACKWATER | > BANKFULL | ZERO FLOW | HIGH SUSP. SED. Logger: Serial # 104/103 HOBO Solinst | N/A **GPS Waypoint** [14. Photo # [U/S] 0075 [D/S] 0076 [RDB] 0078 [LDB] 0077 [STAFF/WEIR] 0079 Site Comments SLUG | CONSTANT RATE | DRY LOGGED I MANUAL CF.T YESI NO Bed to T.O.C. inside is = 1.139m Bed to T.O.C. out = 1.175 m Ansing logger 19 mm due to silting in well Trial Time SPCB | SPCP Mix Length Mass of Salt Mix Vol [Salt Slug] EC_o(uS/cm) | EC_{pk}(uS/cm) | $L_{m}(m)$ Ms, (kg) Volume (L) Css (kg/L) 2 (3 (Channel Measurements V₁ for Sec. Mix (mL) Salt Tracer Vol. Added (mL) SPC (uS/cm) Temp Staff Gauge Height (m): 0.487 Csec (g/L): 1 g/L Weir Head (m): Vol. Calib. Tank (L): 1 L Water Temperature (°C): 9.0 SPC_n Calib. Tank Water Surface Slope (%): CF.T = Average Width (m): 3.850 Qsalt = Average Depth (m): 0.279 Notes Measurement Summary Primary Secondary Meas, Type: ADV Measurment ID (MID) Average Q (m3/s): 0.1791 Volume (L) = Q Meas. Accuracy +/- [%]: 2.3% Time (sec) [1] [5] Average Velocity (m/s): 0.203 Average Q (L/s) = 0.881 Cross-Sectional Area (m2): Avg. Qvoi (L/s) = Avg Q_{vol} (m³/s) = Hydrometric Levels - Survey YES INO I REASON Survey Time (HH MM): (WATER) 16:22 BM Shift: Yes No Logger Shift (Yes No Staff Gauge Shifted?: Yest No Circuit #1 HI Rod Read Elevation (m) ± 0.003 Circuit #2 HI Rod Read Elevation (m) Station Measurements Station Α C Station C BM1 1254 3.000 4231 BM₁ 1231 3.000 Log'r Rod Length: BM₂ 0836 3418 BM₂ 0815 3416 Log'r Rod to Botm ВМ3 1088 3166 ВМ3 3168 1063 TOS 7575 TOS 2576 WATER 2196 2058 WATER 2170 206 LOG'R ROD: 1363 2811 LOG'R ROD: L891 HWM/CON) 2345 900 HWWCON BANKFULL BANKEULL BMI 3000 1754 BS (BM1) 1731 3000

Project Name: YG AMM Mount Nansen Water Resources Investigation

Weather: 16°C Overcast

HID	H-SEEP	T	D-4		Jut					
,,,,,	11 3401	OMo	Dat easurement Start Time					rement Instruments	+ Methods	
Ctation	SEEP		easurement Start Time	1 1	28 (HILMM) PDT PST		YSI SWOFFER PYG		SECT. POINT	
Station Name	1			7.0	9 (HH that) PDT PST		SALT TRACER WE	IR (VOLUMETRIC) FI	OAT ROD	
		Logge	er Download/Inst Time		(PDT PST		Cha	nnel Conditions		
			Logger Reading (m		[] downloaded	NONE	ICE BACKWATER > E	BANKFULL ZERO FL	OW HIGH SUSP SED	
	Serial #		Н	OBO Solin	nst IN/A	GPS Wa	aypoint	ZONE	EASTING	NORTHING
Photo #	[U/S]		[D/S] (OO		[RDB]		[LDB]		[STAFF/WEIR]	n1
	Site Cor					SLUG CONSTANT RATE	IDRY LOGGED	MANUAL SPC		
Flanseter	Photo 102,103	low charae h	efore volunctric	1	Trial Time	SPC _B SPC _P	Mix Length	Mass of Salt	Mix Vol	
Flow meter.	photo 104 105	7		1		EC _o (uS/cm) EC _{pk} (uS/cm)		Ms, (kg)	Volume (L)	[Salt Slug]
	7/2			1	1 (;)		-m (m)	Ma _s (kg)	Voidine (L)	Css (kg/L)
				1	2 (;)		8			-
				i	3 (:)					
	Channel Mea			1 4	V ₁ for Sec. Mix (mL)	=1/ACns		Vol. Added (mL)	SPC (uS/cm)	-
	Staff Gauge Height (m):	0.208		Salt Tracer	Csec (g/L):	1 g/L		1	SFC (uS/CIII)	Temp
	Weir Head (m):			¥	Vol. Calib. Tank (L):	11		2	-	
	Water Temperature (°C):			9	SPC ₀ Calib. Tank			3		
	Water Surface Slope (%):			'	CF.T =		-	4		
	Average Width (m):				Qsalt =		CF.T	5		
	Average Depth (m):				Notes			6	ļ	
	Measurement Summary	Primary	Secondary					7		
	Meas. Type:	Vol						8		
	Measurment ID (MID):							9		
	Average Q (m³/s):	0 0029			Volume (L) =	16	17	16	17	16
Q	Meas. Accuracy +/- [%]:			Ė	Time (sec) [[3] 5.34	2.7	
	Average Velocity (m/s):			Volum.	Average Q (L/s) =	7.86	7.93	2.99	2,49	[5] 5 49
Cı	ross-Sectional Area (m²):				Avg. Q _{val} (L/s) =	2.94		Avg Q _{vol} (m ³ /s) =	0.0029	7.91
ES NO REASON					Hydrometric Levels - St	ırvey		7 (19 Cayo) (111 75) -	0.00 2.1	
Circuit #1			Survey Time (HH:MM):	(WATER)	E	BM Shift Yes No	Logger Shift Yes No		Staff Gauge Shifted? Y	(osl No
Station	H I	Rod Read	Elevation (m)	± 0.003	Circuit #2	HI	Rod Read	Elevation (m)	Station Measuremen	
BM1	A HILLS	В	С		Station	Α	В	С		110
BM2	2-6-6		3,000		BM1			3.000	Log'r Rod Length:	
BM3	1,790-C		A-B =		BM2			A-B =	Log'r Rod to Botm:	
TOS	A : H = G		ARE		BM3			Avis =		
WATER	A - H - G		V-8 =		TOS			A+E+=		
LOG'R ROD:	4-B-C		Wille		WATER			AvEs		
HWM/CON	4-8-6		A-B=		LOG'R ROD:	N		A.E.		
BANKFULL	3-1-15		A-8=		HWM/CON			A-Bit		
	Artes		A.H.II		BANKFULL			A-81		
			A/04		BS (BM1)			ACTO:		

Weather: Overcast 150

HID	H-TP		D.:		June					
		O M	Date asurement Start Time		APRIL-2014			rement Instruments	+ Methods	
Station	Tollings Pand		leasurement End Time		PDT PS		YSI SWOFFER PYO	GMY ADV MID-	SECT, POINT	
Name	7				PDT PS		SALT TRACER WE	EIR VOLUMETRIC FL	OAT ROD	
		Loggi	er Download/Inst Time		PDT PS			annel Conditions	67	
	fertility of		Logger Reading (m	1)	[] downloader	NONE	CE BACKWATER >	BANKFULL ZERO FLO	OW HIGH SUSP. SED.	
Logger:	Serial #		H	OBO Solir	nst N/A	GPS Wa	aypoint	ZONE	EASTING	NORTHING
LH Photo#	U/S]		[D/S]		[RDB]		[LDB]		[STAFF/WEIR] O	1
	Site Comr	nents				SLUG CONSTANT RATE	IDRY LOGGER	MANUAL SPC		
Pord photos	107/108			1	Trial Time	SPC _B SPC _P	Mix Length	Mass of Salt	Mix Vol.	
						EC _o (uS/cm) EC _{pk} (uS/cm)			Volume (L)	[Salt Slug]
					1 (:)	1 2	Cm (III)	Ms _a (kg)	Voidine (L)	Css (kg/L)
					2 (:)	1				
					3 (;)	- P				-
	Channel Meas	urements		1 5	V ₁ for Sec. Mix (mL)	=1.16mi		Vol. Added (mL)	CDC (v.C/r-r-)	
	Staff Gauge Height (m):	0.629		Salt Tracer	Csec (g/L):	1 g/L		4 Vol. Added (IIIL)	SPC (uS/cm)	Temp
	Weir Head (m):			1 🛓	Vol. Calib. Tank (L):	1 L		2		
	Nater Temperature (°C):	17.8		ြီး	SPC₀ Calib, Tank			2		
V	Vater Surface Slope (%):				CF.T =		_	4		
	Average Width (m):				Qsalt =		CF.T	5		
	Average Depth (m):				Notes		•	6		
	Measurement Summary	Primary	Secondary	1				7		
	Meas. Type:							8		
	Measurment ID (MID):							9		-
	Average Q (m ³ /s):				Volume (L) =			5,		
	Meas. Accuracy +/- [%]:			Ę	Time (sec)	[1]	[2]	[3]	[42	
	Average Velocity (m/s):			Volum.	Average Q (L/s) =		(2)	[9]	[4]	[5]
Cro	oss-Sectional Area (m²):				Avg. Q _{vol} (L/s) =			Avg Q _{voi} (m ³ /s) =		
					Hydrometric Levels - S	urvey		Avg Q _{voi} (III /s) =		
ES NO REASON:			Survey Time (HH:MM):	(WATER)		BM Shift: Yes No	Logger Shift Yes! No		CI=# O= OI # 10 .	
Circuit #1	HI	Rod Read	Elevation (m)	± 0.003	Circuit #2	н	Rod Read	Elevation (m)	Staff Gauge Shifted?	
Station	Α	В	С		Station	A	В	C C	Station Measureme	nts
BM1	43440		3.000		BM1			3.000	1.10.11	
BM2	2 =B,+%		A-B =		BM2			A.B =	Log'r Rod Length:	
BM3	3-0-5		A.E.		BM3			A-8 =	Log'r Rod to Botm:	
TOS	A TUE		4/B:=		TOS			A-B =		
WATER	ata fila S		A-B=		WATER			AvB=		
LOG'R ROD:	Arthu6		\A\B=		LOG'R ROD:			A:R=		
HWM/CON	n + N + E		/AU2+		HWM/CON			VA-(3:0		
BANKFULL	ALERE		A-Bir		BANKFULL			#-B=		
	Amos G	_	AB		BS (BM1)			Wilso		

General Site Tasks/ Communications

Ĺ							ı
#		Lab Sample Identifier	WQID	Station Name	Site Tasks	Date	ıme
						yy.mm.dd	HH:MM
1	Σ	0352-1404) 4 - 009.	WQ-SEEP	Seepage		14.04. 14	15/30
2	Σ	0352-1404 4 - 0 1	WQ-TP	Tailings Pond		14.04. 14	00:9/
က	X	0352-1404 /-	WQ-DC-DX+105	Dome Creek at DX+105	Dry / Frozen to bed. *Photo 40,00 unt houn	14.04.]4	17:15
4	Σ	0352-1404 /4 - 008	WQ-DC-U	Upper Dome		14.04. 14	14:22
2	Z	0352-1404 14 - 012	WQ-DC-B	Dome Creek at Bridge (Diversion Channel)		14.04, 14	Oh: 91
9	Z,	0352-1404 // -	WQ-DX	Dome Creek at DX	Dry/Frozen to bed. Photos LDB 44, RDB Liz USHI.DS 42,000011100 2045	14.04. /H	17:42
7	Z	0352-1404 /-	WQ-PC-D	Pony Creek Downstraem	Dry I Frain to beco. Some nultwork on sufface office. Photos U/S 48 D/S 49 overview 50	14.04.1 <u>4</u>	19:05
∞	X	0352-1404 /	WQ-PC-U	Pony Creek Upstraem	Dry Frozen Photos UK56 3/5 57 Overium 58	14.04. <u>14</u>	19:12
6	Σ	0352-1404 /-	WQ-BC	Back Creek	Dry/Frozen to bed	14.04.15	11:50
10	Σ	0352-1404 5 - 004	WQ-VC-U	Upper Victoria Creek		14.04.15	10:50
11	Σ	0352-1404 l4 - 007	WQ-VC-R+150	Victoria Creek at Road		14.04. <u>14</u>	04:21
12	Σ	0352-1404 15- 003	WQ-VC-DBC	Victoria Creek D/S Back Creek		14.04. 15	10:30
13	Σ	0352-1404 5- 006	WQ-VC-UMN	Victoria Creek U/S Minnesota Creek		14.04.15	8:25
14	Σ	0352-140414 - 018	WQ-PIT-1	Pit Top	record DO (mg/L), ice thickness, water depth	14.04.14	18:18
15	Σ	6352-1404 년 - 이구	WQ-PIT-2	Pit Middle	record DO (mg/L), ice thickness, water depth	14.04. <u>14</u>	18:24
16	Σ	0352-1404 4 - 016	WQ-PIT-3	Pit Bottom	record DO (mg/L), ice thickness, water depth	14.04.14	18:12

Project Name: Mount Nansen - Water Quality Project #: 14-Y-0352

Field Dates: April 14-15 2014

#		l ab Sample Identifier	OI OW	Station Name	Cito Tacke	Date	Time
					CHC I GORD	yy.mm.dd	HH:MM
17	17 [1]	0352-1404 15 - 019	WQ-PW	Pumphouse Well	Drinking Water Package + BacT	14.04.15	00:El
18 M	Σ	0352-1404 4 - 010	Field Replicate 1	Seepage		14.04.1 <u>14</u>	0h:51
19 [1]	Ξ	0352-1404 5 - 002	Field Replicate 2	Upper Victoria Creek		14.04, 15	11:00
20 [J	Ы	0352-1403/4 - Field Bloom	Field Blank	\		14.04.14	21:20
21 [4]	Σ	TRAVEL BLANK	Travel Blank	1			

	_	BHYSRORMENTAL DYNAMICS INC.	
14-4-03	52		
Project No.: 12-14-9167		ather: +1°C, overcast	Field Samplers: SM, DH, D
Project Name: Mount Nansen	Water Quality		
Page \rightarrow of 4		91 813	
YSI Calibrated? Yes No	Date / Time: 14 A	001 2014 11:30	
	ormation	Site	e Information
Site Name: WG~VC~	R+150		DC- U
Sample Identifier: 0352-40	414 - 007	Sample Identifier: 0352 ~	140414 - 008
Sample Date and Time: 14 April	2014 12:40	Sample Date and Time: April	14/2014 14:22
Replicate ID (if applicable)		Replicate ID (if applicable)	
Field Measure	ed Parameters	Field Me	asured Parameters
Temperature: (), ()		Temperature: 1, 2	°C
Specific Conductivity (SPC): 298 0		Specific Conductivity (SPC): 167	7.
pH: 6.76		pH: 7,3	
Turbidity: 1.65	ntu	Turbidity: /3,	17-
Site Co	nditions		e Conditions
flow level: low		flow level: low	
turbidity (clear) light, mod, high):		turbidity (clear light) mod, high):	
ice thickness (if applicable) ~ 30	layers.	ice thickness (if applicable) 21 cn)"
Notes	Photo Numbers	Notes	Photo Numbers
(if pit incl_DO and ice thickness)	Upstream: OOO	(if pit incl., DO and ice thickness)	Upstream: OO 10
	Downstream: 0002		Downstream: 🚫
	Overview: OO //		Overview: 0015
	Datasheet:		Datasheet:
Site Info			Information
Site Name: \\ Q - SE		Site Name: W (2 -	
Sample Identifier 0352-14-	04-14-009	Sample Identifier: 0352	140414 - 011
Sample Date and Time: Apr. 1 14	12014 15:30	Sample Date and Time: April	14/2014 16:00
Replicate ID (If applicable)	15:40	Replicate ID (if applicable)	
Field Measure	d Parameters	Field Me	asured Parameters
Temperature: 6°C		Temperature: (), 3	,°C
Specific Conductivity (SPC): 1799		Specific Conductivity (SPC): 29 C	
рн: 6.95		рн: 7,3	
Turbidity: 13.37		Turbidity: 6.3	
Site Cor	ditions		e Conditions
flow level:		flow level:	
turbidity (clear light) mod, high):		turbidity (clear, light, mod, high):	sht
ice thickness (if applicable)		les thiskness (16 neulienble) Ct /	
Notes	Photo Numbers	Notes	Photo Numbers
(if pit incl. DO and ice thickness)	Upstream:	(if pit incl. DO and ice thickness)	Upstream: 00 19
	Downstream:		Downstream: 00 20
	Overview: OO V		Overview: OZ

Datasheet:

Field Blank ID			
Trip Blank ID			

Datasheet:

14-4-0352

Weather: + 2 Gla Sun & claud Field Samplers: DH/DS Project No.: 🚘 Project Name: Mount Nansen Water Quality Page 2 of 4 YSI Calibrated ? (e) / No Date/Time: 11:30 140414 Start 18:13 141,1% Stop 18:38 96.6% Site Information Site Information Site Name: /NQ - DC - B Sample Identifier: 0167-1403 14 - 013 Sample Identifier: 0352 - 140414 - 012 Sample Date and Time: April 1972014 7:24 Sample Date and Time: 140414 Replicate ID (If applicable) Replicate 1D (if applicable) **Field Measured Parameters** Field Measured Parameters 0,3% Temperature: 50.50C Temperature: Specific Conductivity (SPC): Specific Conductivity (SPC): 2863 6.99 36.6 Turbidity: Turbidity: **Site Conditions** Site Conditions flow level: |0 W) flow level: (. w turbidity (clear, light, mod) high): turbidity (clear, light, mod high): Grange Colors Snow cavered Coom ice thickness (if applicable) ice thickness (if applicable) **Photo Numbers Photo Numbers** Notes Upstream: (if pit incl. DO and ice thickness) Upstream: if pit incl. DO and ice thickness) Saugh N 5m 45 - F Bridge due to Road Fer off from X RD & Bridge Plc 0028 Downstream: 00 26 Downstream: Overview: Datasheet: - water flow Tranger legus of Ice due to exercise Site Information Site Information WQ-PIT-2 (Middle) Site Name: WQ - PIT - 3 (Bottom) Sample Identifier: 0352-1404/4 - 016 0352-14:0414 - 017 Sample Identifier: Sample Date and Time: | April | 4/2014 | 18:12 Sample Date and Time: April 14/2014 18:24 Replicate ID (if applicable) Replicate ID (if applicable) Field Measured Parameters **Field Measured Parameters** Temperature: 2 8 ° C Temperature:). 800 Specific Conductivity (SPC): 2127 Specific Conductivity (SPC): 7.24 pH: 6.92 Turbidity: 0.82 2.87 Turbidity: **Site Conditions Site Conditions** flow level: flow level: turbidity (clear, light) mod, high): turbidity (clear, light, mod, high): ice thickness (if applicable) ice thickness (if applicable) 11cm Notes **Photo Numbers Photo Numbers** (if pit incl. DO and ice thickness) Upstream: (if pit incl. DO and ice thickness) Upstream: MARIN 4.7 Downstream: Downstream: Overview: 47+46 DO mall ONAMA DIGO Overview: 47+46 Datasheet: Datasheet: Total Death 6.7m depth 5.5 m Field Blank ID

Trip Blank ID

Project No.: 4

Project Name: Mount Nansen Water Quality

Page ____3 of ______

YSI Calibrated?

(Yes)/	No

Weather: +2°C, Calm, Sunny Field Samplers: DA, JM, DS

Date / Time: April 15/2014 7:30

Site Inf	ormation	Site i	Information
Site Name: WQ-PI	T-1 (top)	Site Name: WA ~	VC-UMN
Sample Identifier 0352-140	7414 - 01B	Sample Identifie Q352-1	10415 - 006
Sample Date and Time: A_{Ω} (1)	12014 18:18	Sample Date and Time: April 15	12014 8:25
Replicate ID (If applicable)		Replicate ID (If applicable)	
Field Measur	ed Parameters	Field Meas	sured Parameters
Temperature: () ろの		Temperature: 0, 0°C	
Specific Conductivity (SPC): 2 50		Specific Conductivity (SPC): 3/5,	3
рн: 7.30		pH: 7, 27	2
Turbidity: /./9		Turbidity: (), ()	,
Site Co	nditions	Site	Conditions
flow level:		flow level: /ow	
turbidity (clea , light, mod, high):		turbidity (clear) light, mod, high):	
ice thickness (if applicable)		Ice thickness (if applicable) - 5	cm variable.
Notes	Photo Numbers	Notes	Photo Numbers
if pit incl. DO and ice thickness)	Upstream:	(if pit incl. DO and ice thickness)	Upstream: 0059
D0% BM 30.3	Downstream:		Downstream: 0060
Domg 12 4.33	Overview: 46+47		Overview: 0063
J	Datasheet:		Datasheet:
el de oth 6.7m			ά
Sample death 1.5 m			

Site Information Site Information Wa-VC-U Site Name: WQ - UC- DBC Sample Identifier: 0352-140415 - 004 Sample Identifier: 0352-140415 - 003 April 15/2014 10:50 Sample Date and Time: April 15/2014 10:30 Sample Date and Time: Replicate ID (If applicable) 0352-140414-002 11:00 Replicate ID (If applicable) **Field Measured Parameters Field Measured Parameters** 0.100 Temperature: Temperature: Specific Conductivity (SPC): 245.2 213.7 Specific Conductivity (SPC): pH: 7.11 7.05 Turbidity: (), () \ Turbidity: 0.02 **Site Conditions Site Conditions** flow level: ໄດພ flow level: low turbidity (clear) light, mod, high): turbidity (clear, light, mod, high): ice thickness (if applicable) / - / 0 cm ice thickness (if applicable) 30 cm Notes **Photo Numbers Notes Photo Numbers** (if pit incl. DO and ice thickness) Upstream: 03*8*8 if pit incl. DO and ice thickness) Downstream: 0389 Overview: 0390 Överview: Datasheet:

Field Blank ID	14-Apr-2014	21:20
Trip Blank ID		

14-4-0352

Burlant Na			Waasha			Field Samplers:
Project No.:			Weather:			Field Samplers.
-	Mount Nansen Wat	er Quality	13			
		Date 177				
YSI Calibrated ?	Yes / No	Date / Time:				
	Site Informa	ation Republic		RELIGIO DO MIL	Site Informa	ition
Site Name:	Wa-PW			Site Name:		
Sample Identifier:	0352-140415	5 - 019		Sample Identifier:	0167-1403	MS4.
Sample Date and Time:	April 15 /	2014 12:00		Sample Date and Time:		
Replicate ID (If applicable)				Replicate ID (if applicable)		
	Field Measured P	arameters	1 7		Field Measured P	arameters
Temperature:	1.3°C			Temperature:		
Specific Conductivity (SPC):	382.4			Specific Conductivity (SPC):		
pH:	7.58			pH:		
Turbidity:	0.07			Turbidity:		
	Site Condit	ions		PARTIE NEW YORK	Site Condit	ions
flow level:				flow level:		
turbidity (clear, light, mod, hi	gh):			turbidity (clear, light, mod, hig	;h):	
ice thickness (if applicable)				ice thickness (if applicable)		
Notes		Photo Numbers	- 7	Notes		Photo Numbers
(if pit incl. DO and ice thickness)		Upstream:		(if pit incl. DO and ice thickness)		Upstream:
		Downstream:				Downstream:
		Overview: 0394				Overview:
		Datasheet:				Datasheet:
	Site Informa	ation	. 1.1		Site Informa	ation
Site Name:				Site Name:		
Sample Identifier:	0167-1403	•		Sample Identifier:	0167-1403	•
Sample Date and Time:				Sample Date and Time:		
Replicate ID (If applicable)				Replicate ID (if applicable)		
In 1970 to consent.	Field Measured P	arameters	7		Field Measured P	arameters
Temperature:				Temperature:	-	
Specific Conductivity (SPC):				Specific Conductivity (SPC):		
pH:				pH:		
Turbidity:				Turbidity:	Ch - C - dh	1
flam land.	Site Condit	ions		flow level:	Site Condit	ions
flow level:				turbidity (clear, light, mod, hi	-h.\.	
turbidity (clear, light, mod, hi	gu):				3117:	
ice thickness (if applicable) Notes		Photo Numbers	rail -	ice thickness (if applicable) Notes		Photo Numbers
(if pit incl. DO and ice thickness)		Upstream:		(if pit incl. DO and ice thickness)		Upstream:
p.c. men de dilutilessj		Downstream:		An provide a single single say		Downstream:
		Overview:				Overview:
		Datasheet:				Datasheet:
		2				
Field Blank ID						
Trin Blank ID						

Project #: 14-Y-0352

Project Name: Mount Nansen - Water Quality

General Site Tasks/ Communications

Time	HH:MM	17:50	13:05	11:55	12:30	13:15	9:20	01.51	13:40	13:50	01:10	10:30	000	C2:01	9:00		X	
			(C)	171	7	`-		(S)	<u> </u>	1.2	7 7	2	2)	0				Ì
Date	yy.mm.dd	2014.05.04	2014.05. <u>09</u>	2014.05. e d	2014.05. 04	2014.05 <u>. 0</u> %	2014-05.09	2014.05. 09	2014.05.09	2014.05.09	2014.05. 04	2014.05. 09	2014.05.01	2014.05.09	2014.05. 04	2014.05.	2014,05	
Site Tasks										54						record DO (mg/L), ice thickness, water depth	record DO (mg/L), ice thickness, water depth	
Station Name		Seepage	Tailings Pond	Dome Creek at DX+105	Upper Dome	Dome Creek at Bridge (Diversion Channel)	Dome Creek at Road	Dome Creek at DX	Pony Creek Downstraem	Pony Creek Upstraem	Back Creek	Upper Victoria Creek	Victoria Creek at Road	Victoria Creek D/S Back Creek	Victoria Creek U/S Minnesota Creek	Pit Top	PitcMiddle	
WQID		WQ-SEEP	WQ-TP	WQ-DC-DX+105	WQ-DC-U	WQ-DC-B	WX-DC-R	WQ-DX	WQ-PC-D	WQ-PC-U	WQ-BC	WG-VC-U	WQ-VC-R+150	WQ-VC-DBC	WQ-VC-UMN	WQ-PIT-1	WQ-P47-2	
Lab Sample Identifier		0352-1405 0β- 01 (0352-1405 % - 013	0352-140509 - 621	0352-140509 - Ood	0352-1405 of - CID	0352-1405 ₀₁ - 60 3	0352-140501 - 018	0352-140569 - 099	0352-140509 - 616	0352-1405 <i>0</i> 1 - 66 <i>B</i>	0352-140504 - 607	0352-1405 bg - OO1	, 0352-140509 - G _O ≤	/ 0352-1405 <i>0</i> 9 - 0 <i>0</i> A	0352-1405	0352-7465	
		3	Ž	Z	2	3	Z	À .	<u> </u>	3	7	1	T	3	Σ	[7]	Z	
		н	7	2	4	2	9	7	∞	6	10	11	12	13	14	yg/	16	

J:\Yukon\Projects\2014\14_Y_0352_455_YG_AAM_Mount_Nansen_Water_Resources_Investigations\Data\Field Prep Info\Datasheets\2 - May 8-10, 2014 Trip\WQ_Field Sheet_Mount Nansen_v.2 May 8-10 Trip_cl.xlsx

Field Staff: $\angle 6$, $\angle C$, $\triangle 5$

Project Name: Mount Nansen - Water Quality Project #: 14-Y-0352

Field Dates: $May \ \hat{\mathcal{E}} - \mathcal{I}$, $201 \mathcal{I}$

						i
#	Lab Sample Identifier	WQID	Station Name	Site Tasks	yy.mm.dd	HH:MM
18	0352-1405 <i>0</i> 4- 034	WQ-PW	Pumphouse Well	Drinking Water Package + BacT	2014.05.	1205
61	0352-140504-0623	MS-S-08	Mill Seep 08		2014.05.C. d	01:5)
70 [n/v	0352-140504- DBJ	MS-S-03	Mill Seep 03		2014.05.	15:30
21 [1]	0352-1405 <i>C</i> M- 014	WQ-DC-D1b	Dome Creek at D1b		2014.05. 09	1425
22 [V	0352-140569 - 014	DESS-01	East Dome Seep on Powerline	E388632, N6881131	2014.05.02	1430
23	0352-1405	CH-P-13-01	Flow next to well site.	E0388640, N6881165 flow next to well.	2014.05	NO FLOW
24 KW	0352-1405	DESS-02	Dome East Seep	E388699, M6881087	2014:05	NO 71 (20)
70] sz	0352-1405 <i>04-01</i> 7	DESS-03	Dome East Seep	E388518, N6881143	2014.05.04	2441
7 92	0352-1405	LW-Seep.01	West toe of W and SW piles	E388711, N6881971	2014/05	NOFICES
V) 72	0352-140509 - BZH	NW-Seep-02	East toe of NW pile	E388837, N6881617	2014.05.00	009
À	0352-1405	Oze-Ramp	Оле-Ватр		2004-05	NOFICE
A A	0352-1405	WRD	West Jower waste rock dump.		204402	NO FLAGS
ε Σ	0352-1405cm - 020	ET-1	Exploration trenches		2014.05. <u>6</u> 9	15:15
T A	0352-1405		Exploration trenches		204405	TO THE
A AF	9352-1405	Lysimeter (L2)	Lysimeter	E388712, N6881457	2014:95	SON LON
33	0352-1405 69 - 012-	Field Replicate 1	WO-56EP.		2014.05.07	1250
34 [4	0352-140504 - Oo Y	Field Replicate 2	WQ-DC-R-r		2014.05.07	920
K K	0352-1405 - 1	Field Replicate 3			72044:05	M
W.	F. Field Blank	Field Blank		NO DI WATER PROVIDED	2014.05.	No DI H20
36 []	Travel Blank	Travel Blank			2014.05	

Project No.: 13-Y-0167

Weather: Overcast

Field Samplers:

LG

Project Name: Mount Nansen Water Quality

05

Page 1 of 6

YSI Calibrated ? (Yes) / No

Date / Time:

650am 09 WAY 2014

	Site Information			Site Information	The second second
Site Name:	WA- VCR + 150)	Site Name:	UR.VC UMN	
Sample Identifier:	0167-1408 09 - 00	1	Sample Identifler:	0167-140\$ 09 - 00	12
Sample Date and Time:	09 My 2014	0800	Sample Date and Time:	09 MAY 2014	0900
Replicate ID (If applicable)	NJA		Replicate ID (If applicable)	んりみ	
	Field Measured Parameters			Field Measured Parameters	
Temperature:	0.0	\$0 10 C. 7 70	Temperature:	0.1	- 00%,
Specific Conductivity (SPC):	67.2	"	Specific Conductivity (SPC):	71.4	
рН:	7.07	V	pH:	7.27	
Turbidity:	15.53		Turbidity:	20.5	
	Site Conditions		HER RESTRICTED BY	Site Conditions	
low level:	high		flow level:	high	
urbidity (clear, light, mod, hig	sh): high		turbidity (clear, light, mod, hig	sh): high	
ce thickness (if applicable)			ice thickness (If applicable)	nla	
Notes	التعرفاة الشركاء فراءه	Photo Numbers	Notes	THE RESERVE TO SERVE THE PERSON NAMED IN COLUMN TWO IS NOT THE PERSON NAMED IN COLUMN TWO IS NAMED	Photo Numbers
pit incl. DO and ice thickness)	Upstream:	0037	(if pit incl. DO and Ice thickness)	Upstream:	46
Took sample DI	's of culvert Downstream	: 0038	high flow + suspen	ded sed Downstream:	47
lord. Dalvel we	10 UN SEFE Overview:	0039		Overview:	48
comple taken @ w		0040		Datasheet:	49
ocahian.					
08 6392299 N	68 744 50				

Site Info	ormation		Site Information	Carlotte Company
Site Name: $WQ-\mathcal{I}$)C-R	Site Name:	UD-VC DBC	
Sample Identifler: 0167-1409	09-003			205
Sample Date and Time: 9 MA	1 2014 9:20	Sample Date and Time:	09 MAY 2014	10 20
	# merc dissol not filtered *	Replicate ID (If applicable)	N/A	
	ed Parameters	THE STATE OF THE S	eld Measured Parameters	
Temperature: D. O	DO 70 (4 15)	Temperature:	0.6	DD76-191-2
Specific Conductivity (SPC): 436.0	Pómil 6	Specific Conductivity (SPC):	55.2	And 100/1/ 14 150
pH: 7,73	22 90 90	pH:	7.37	,
Turbidity: //.54		Turbidity:	21.2	
Site Co	nditions	A CONTRACTOR OF THE PARTY OF TH	Site Conditions	
flow level: HISK		flow level:	HIGH	
turbidity (clear, light, noo, high):		turbidity (clear, light, mod, high)		
ce thickness (if applicable) from over	How is still project in the	Ice thickness (If applicable)	NIA	
Notes	Photo Numbers	Notes	Pho	oto Numbers
if pit incl. DO and ice thickness)	Upstream: 50	(If pit incl. DO and ice thickness)	Upstream:	58
Redicate taken at site	Downstream: 51		Downstream:	59
fy and the second	Overview: 52		Overview:	60
	Datasheet:		Datasheet:	61

Field Blank ID KAI BI World DOINGER : No Sample cillected

Trip Blank ID A Sample Cillected

Project No.: 13-Y-0167

Weather: LCC

Project Name: Mount Nansen Water Quality

Page 2 of C

YSI Calibrated? Yes / No Date / Time: 50 9 MAY / 14

Sample Identifier: 0 Sample Date and Time:	NO YC U 167-1403 09 - 007		Jo.BC
Sample Date and Time:	167-140 5 9 - 007	Carrela Idantifica 04C7 444	
		Sample Identifier: 0167-140	05 09 - 008
B 15 15 15 15 15 11 11 11 11 11 11 11 11	9 MAY 2014 1030	Sample Date and Time: 09 1	1AM 2014 11:10
Replicate ID (If applicable)	_	Replicate ID (If applicable)	
	ield Measured Parameters	Field Meas	ured Parameters
Temperature:	0.6	Temperature:	1.9
Specific Conductivity (SPC):	51.4	Specific Conductivity (SPC):	73.9
pH:	7.34	pH:	7.42
Turbidity:	12.58	Turbidity:	498.0
	Site Conditions	Site	Conditions
low level:	nigh	flow level:	high
urbidity (clear, light, mod, high)	hish	turbidity (clear, light, mod, hlgh):	high
ce thickness (if applicable)	_	ice thickness (if applicable) Some	ice on bank
Notes	Photo Numbers	Notes	Photo: Numbers
f plt Incl. DO and ice thickness)	Upstream: 62	(if pit incl. DO and ice thickness)	Upstream: 7/
DO% 100.00	Downstream: 63	020/6 101.3	Downstream: 72
14.37	Overview: 64	METE 14.62	Overview: 73
<i>y</i>	Datasheet: 65		Datasheet: 74

	Site Information			Site Inform	ation	10 XX
Site Name:	WO-PW		Site Name:	Wal	CU	
Sample Identifier:	0167-140 09 - 03	34 1200	Sample Identifier:	0167-140\$	09 - 00°9	1230
Sample Date and Time:	09MAY 2014	12:05	Sample Date and Time:	Q9-MM	1-2014	12:30
Replicate ID (If applicable)			Replicate ID (if applicable)			
	Field Measured Parameters			Field Measured	Parameters	
Temperature:	1.1		Temperature:	14.6		
Specific Conductivity (SPC):	354.5	y	Specific Conductivity (SPC):	433.6		
pH:	7.40		pH:	7.82		
Turbidity:	6.32		Turbidity:	65.6 NT	4	
Site Conditions			Site Conditions			
flow level:		flow level: 1.11/h				
turbidity (clear, light, mod, high):		turbidity (clear, light, mod, ਗ੍ਰਿੰ	turbidity (clear, light, mod, high):			
ce thickness (if applicable)			ice thickness (if applicable)	_		
Notes	The second secon	hoto Numbers	Notes	1 1 PA	Photo	Numbers
if pit incl. DO and Ice thickness)	Upstream:	-	(if plt incl. DO and ice thickness)		Upstream:	79
No -3/2 - 30.3	Downstream:		D6: 100, 1412	m/6 1	Downstream:	80
May (4.43	Overview:	77		/	Overview:	81
U/	Datasheet:	78			Datasheet:	82

Field Blank ID	3	
Trip Blank ID		Π

Weather: Rain Drongar Project No.: 13-Y-0167 Field Samplers: CL. LG Project Name: Mount Nansen Water Quality 125 Page 5 of 6 YSI Calibrated? Date / Time: 9 MM 2014 7 30 Site Information Site Information AND- SEED Site Name: WO-TP Site Name: Sample Identifier: 0167-140\$5 09- 0// Sample Identifier: 0167-1403 09 - 013 Sample Date and Time: be may any Sample Date and Time: OF , MAY: 2014 2/305 0167-140509-017 Replicate ID (if applicable) Replicate ID (If applicable) **Field Measured Parameters Field Measured Parameters** Temperature: 28 Temperature: Specific Conductivity (SPC): 980 Specific Conductivity (SPC): pH: Turbidity: Turbidity: **Site Conditions Site Conditions** flow level: flow level: MODEREATE turbidity (clear, light, mod, high): turbidity (clear, light, mod, high): ice thickness (if applicable) ice thickness (if applicable) **Photo Numbers** Notes **Photo Numbers** (if pit incl. DO and ice thickness) Upstream: if pit incl. DO and ice thickness) Upstream: 433818 m3 Downstream: Downstream: Overview: Overview: Datasheet: Datasheet: Site Information **Site Information** Site Name: W/J D & B Site Name: WQ - PC-9 Sample Identifier: 0167-1403 2569 -Sample Identifier: 0167-14035 09- 99 Sample Date and Time: 1315 Sample Date and Time: Replicate ID (if applicable) Replicate ID (If applicable) **Field Measured Parameters Field Measured Parameters** Temperature: Temperature: Specific Conductivity (SPC): Specific Conductivity (SPC): 7.37 Turbidity: Turbidity: 12.66 **Site Conditions Site Conditions** moderate flow level: flow level: turbidity (clear, light, mod, high): turbidity (clear, light, mod, high): ice thickness (if applicable) ice thickness (if applicable) **Photo Numbers Photo Numbers** (if pit incl. DO and ice thickness) Upstream: if pit incl. DO and ice thickness) Of

Downstream: 🙌

Overview:

Datasheet:

Field Blank ID			
Trip Blank ID			

bondas

Some ice under

Downstream:

Overview:

Datasheet:

650

Date / Time:

Project No.: 13-Y-0167

Weather: Cain Field Samplers: Lipid Samplers: Vain Project Name: Mount Nansen Water Quality
Page 4 of 6

Site Information Site Information DIB Site Name: Site Name: 019 0167-1403 07 - 016 Sample Identifier: Sample Identifier: 0167-1403 OJ O9 -Sample Date and Time: 1350 Sample Date and Time: 001/11/14 2014 1425 Replicate ID (If applicable) Replicate ID (If applicable) **Field Measured Parameters Field Measured Parameters** Temperature: Temperature: Specific Conductivity (SPC): Specific Conductivity (SPC): 468.5 7.95 pH: Turbidity: 7,21 **Turbidity:** 8-23 **Site Conditions Site Conditions** flow level: flow level: moderate turbidity (clear, light, mod, high): turbidity (clear, light, mod, high): ice thickness (if applicable) ice thickness (if applicable) **Photo Numbers** Notes **Photo Numbers** Notes if pit Incl. DO and ice thickness) Upstream: (if pit Incl. DO and Ice thickness) Upstream: 97 Downstream: Downstream: 018 93 Overview:

Datasheet:

99

	Site Information		Site Information				
Site Name:	100 J. DX +105		Site Name:	WQ-PC-DX	,PC		
Sample Identifier:	0167-1407509-	021	Sample Identifier:	0167-14085 09 -	(8		
Sample Date and Time:	091194 2014	1455	Sample Date and Time:	04 MAY 2014	1510		
Replicate ID (if applicable)			Replicate ID (if applicable)				
	Field Measured Parameters		The special property of	Field Measured Parameters			
Temperature:	1.4		Temperature:	0.			
Specific Conductivity (SPC):	95.3		Specific Conductivity (SPC):	75	.4		
рН:	754		pH:	7.	23		
Turbidity:	11-33		Turbidity:	, 4	.81		
Site Conditions			Site Conditions				
flow level:		flow level:	flow level: Mod				
turbidity (clear, light, mod, high):		turbidity (clear, light, mod, hig	turbidity (clear, light, mod, high):				
ce thickness (if applicable)			ice thickness (if applicable)	some ile on	margins, open		
Notes	Photo	Numbers	Notes		Photo Numbers		
f pit incl. DO and ice thickness)	Upstream:	101	(if pit Incl. DO and ice thickness)	Upstrea	m: 105		
-00% 90:	Downstream:	(0)	Do 75 96	Downst	ream: job		
FKH 13	Overview:	/o@	10001114	Overvie	w: (04		
	Datasheet:	113		Datashe	et: 107		

Field Blank ID			
Trip Blank ID			

YSI Calibrated?

Datasheet:

Project No.: 13-Y-0167

Weather: rain, overcast Field Samplers:

Project Name: Mount Nansen Water Quality

Page <u>5</u> of **6**

YSI Calibrated?

Yes / No

Date / Time: 9 MAY 2014 6:50 am

A CONTRACTOR OF THE PARTY OF TH	Site Information	The Year		Site Information		
Site Name:	wa- Ms-	5-03	Site Name:	no- Mm	SEER Z	
Sample Identifier:	0167-1403/5-09 -	022	Sample Identifier:	0167-1403504	7 - 024	
Sample Date and Time:	091-A4701	4 1530	Sample Date and Time:	09 1444	2014 1600	
Replicate ID (if applicable)			Replicate ID (If applicable)		the contract of the contract o	
	Field Measured Parameters	Mary Park Land		Field Measured Pa	rameters	
Temperature:	1.2		Temperature:	1.	9	
Specific Conductivity (SPC):	1041		Specific Conductivity (SPC):	50	11.3	
pH:	7.02		pH:	1.	55	
Turbidity:	6.40		Turbidity:		1.63	
Site Conditions			Site Conditions			
flow level:		flow level:	flow level:			
turbidity (clear, light, mod, hi	gh): igh	4	turbidity (clear, light, mod, hig	turbidity (clear, light, mod, high): ಗುರ		
ice thickness (if applicable)		ice thickness (if applicable)	some H	ice mid deep		
Notes	Ph	oto Numbers	Notes		Photo Numbers	
if pit incl. DO and ice thickness)	Upstream:	108	(if pit incl. DO and ice thickness)		Upstream:	
DO70 37.0	Downstream:	109	DOX 401	1	Downstream:	
mall bill	Overview:	110	~ 12.672		Overview: 0(12	
	Datasheet:	111		ı	Datasheet:	

Site Infor	Site Information				
	LENCH-OI ET-1	Site Name:	DESS-01		
Sample Identifier: 0167-1403 (39 - 20	Sample Identifier:	0167-140 5 0	9-014	
Sample Date and Time: 9 - MAY - 2		Sample Date and Time:			
Replicate ID (If applicable)		Replicate ID (if applicable)			
Field Measured	Parameters		Field Measured F	Parameters	
Temperature: 0.8		Temperature:	1,9	7	
Specific Conductivity (SPC): 63.5		Specific Conductivity (SPC):	284.0		
pH: 6.60		pH:	5.93		
Turbidity: Insul	Richart sample			ssicient sample	
Site Conditions			Site Conditions		
flow level: MUDERATE - N 2-3 1-15		flow level: /oul ~	1 4/5 00 1	e55	
turbidity (clear, light, mod, high):		turbidity (clear, light, mod, hi	Bh): humic	acid proces to DOC from p	
ice thickness (if applicable) $\eta \omega \iota$		ice thickness (if applicable)			
Notes	Photo Numbers	Notes		Photo Numbers	
(if pit incl. DO and ice thickness)	Upstream:	(if pit incl. DO and ice thickness)		Upstream:	
runoff from expl. trench	Downstream: 056	Surface runoff	for met	Downstream:	
03878 UY E	Overview:	blanket peat		Overview: 2	
6801017 N	Datasheet:	out by hydral	ine cut	Datasheet: 20	
%		7 7		(1)	

Field Blank ID	
Trip Blank ID	

Field Samplers: rain, orneast Project No.: 13-Y-0167 Project Name: Mount Nansen Water Quality Page 6 of 6 Date/Time: 9 MAY 2014 6150 am YSI Calibrated ? Yes / No Site Information Site Information Mill Runoff MS-5-08 Site Name: Site Name: 7 655 - 83 Sample Identifier: 0167-1405 09 - 017 Sample Identifier: 9 MAY 2014 1440 Sample Date and Time: Sample Date and Time: Replicate ID (if applicable) Replicate ID (If applicable) **Field Measured Parameters Field Measured Parameters** Temperature: 9°C Temperature: 92.6 Specific Conductivity (SPC): Specific Conductivity (SPC): 97.7 **Turbidity:** insufficient sample **Turbidity:** insufficient sample **Site Conditions Site Conditions** flow level: high low X 0.5 L/s, U. Smell How. turbidity (clear, light, mod, high): turbidity (clear, light, mod, high): ice thickness (if applicable) ice thickness (if applicable) **Photo Numbers Photo Numbers** Notes (if pit incl. DO and ice thickness) (if pit incl. DO and ice thickness) Upstream: Upstream: CONOCE From MILL Downstream: 257 He 6/1 MS-5-67 + MC-5-09 Datasheet: Site Information **Site Information** Site Name: Site Name: Sample Identifier: 0167-1403 Sample Identifier: 0167-1403 Sample Date and Time: Sample Date and Time: Replicate ID (if applicable) Replicate ID (if applicable) **Field Measured Parameters Field Measured Parameters** Temperature: Temperature: Specific Conductivity (SPC): Specific Conductivity (SPC): **Turbidity: Turbidity: Site Conditions Site Conditions** flow level: flow level: turbidity (clear, light, mod, high): turbidity (clear, light, mod, high): ice thickness (if applicable) ice thickness (if applicable) **Photo Numbers Photo Numbers** (if pit incl. DO and ice thickness) Upstream: (if pit incl. DO and ice thickness) Upstream: Downstream: Downstream: Overview: Overview: Datasheet: Datasheet:

Field Blank ID

Trip Blank ID

Field Dates: May 20 - 2

General Site Tasks/ Communications

#		Lab Sample Identifier	WOID	Station Name	Sita Tacke	Date	Time	
	+				מונה ומנוני	yy.mm.dd	HH:MM	
н	Σ	0352-14052/ - 015	WQ-SEEP	Seepage	LTSO	2014.05. 21	13:15	
2	Ē	0352-1405 31 - 000	WQ-TP	Tailings Pond		2014.05. 2	13:35	T
т	Z	0352-1405}\ - 028	WQ-DC-DX+105	Dome Creek at DX+105		2014.05. 21	14:55	+
4	Σ	0352-1405 j_1 - $O14$	WQ-DC-U	Upper Dome		2014.05. 21	13,00	т —
2	Σ	0352-1405?\ - 004	WQ-DC-B	Dome Creek at Bridge (Diversion Channel)		2014.05. 2	13:55	
9	Σ	0352-1405 21 - 009	W@DC-R	Dome Creek at Road		2014,05,2)	10:00	
7	2	0352-14052/ - 0.30	WQ-DX	Dome Creek at DX		2014.05. 21	16:00	-5:
∞	2	0352-1405 1\ - 0\{0	WQ-PC-D	Pony Creek Downstragm		2014.05. 21	01:10	
6	Σ	0352-140521 - OHH	WQ-PC-U	Pony Creek Upstraem		2014.05. 21	14:22	
10	Σ	0352-1405 ⊋\ - Øl Z	WQ-BC	Back Creek		2014.05. 21	12:00	
11	Σ	0352-14052\ - 013	WQ-VC-U	Upper Victoria Creek	IN I	2014.05. 2	00:11	_
12	Σ	0352-14057/ - 042	WQ-VC-R	Victoria Creek at Road		2014.05. 2	08:00	
13	Ž	0352-1405)\ - \ \O1	WQ-VC-DBC	Victoria Creek D/S Back Creek	B A	2014.05. 21	54:01	_
14	Σ	0352-1405 \\ - 040	WQ-VC-UMN	Victoria Creek U/S Minnesota Creek		2014.05.21	08:30	
15	X	0352-1405	WQ-PIT-1	Pit Top	sample only if safe (record DO mg/L)	2014.05.	X	1
16	X	0352-1405	WQ-PIT-2	Pit Middle	sample only if safe (record DO mg/L)	2014.05	\times	
17	\Z	-0352-1405	WQ-PIT-3	Pit Bottom	sample only if safe (record DO mg/L)	2014:05	X	

J:\Vikon\Projects\2014\14_Y_0352_YG_AAM_Mount_Nansen_Water_Resources_Investigations\Data\Field Prep Info\Datasheets\May 20-22, 2014 Trip\WQ_Field Sheet_Mount Nansen_v.2 May 20-22

Field Staff: MM DH, 05

Project #: 14-Y-0352 Project Name: Mount Nansen - Water Quality

ENVIRONMENTAL DYNAMICS INC.

121

Field Dates: May 20

							i
#		Lab Sample Identifier	WQID	Station Name	Site Tasks	Date	Time
	1					yy.mm.dd	HH:MM
18	<u></u> ≥	0352-14052\ - 0099	WQ-PW	Pumphouse Well	Drinking Water Package + BacT /	2014.05.21	12:35
19 [L	2	0352-140521 - 0A7	MS-5-08	Mill Seep 08		2014.05.	14:45
20 [4	7	0352-140521 - 032	MS-S-03	Mill Seep 03		2014.05.31	14:55
21 [4]	4	0352-1405 20 - 003	WQ-DC-D1b	Dome Creek at D1b		2014.05. 2 <i>O</i>	18:00
22 []	>	0352-1405 0- 00 0	DESS-01	East Dome Seep on Powerline	E388632, N6881131	2014.05. 20	18:35
(2)	X-	0352-140501 - Ocy	CH-P-13-01	Flow next to well site.	E0388640, N6881165 flow next to well.	2014.05.9	DR7
24 [2	0352-1405 2c - OO 7	DESS-02	Dome East Seep	E388699, N6881087	2014.05. 3D	19:00
25 [7-	0352-14052& 002	DESS-03	Dome East Seep	E388518, N6881143	2014.05. <u>A</u> D	18:25
792	H	0352-14050 Pry	LW-Seep 01	West toe of W and SW piles	E388711, N6881371 $$	2014.05.3)	X
75/	A	0352-1405 21 - No	NW-Seep-02	East toe of NW pile	E38837, N6881617 No	2014.05. 2)	\langle
28 [7	0352-140521 - 0 \$)	Ore Ramp	Ore Ramp	envance to pit	2014.05.21	5 h:01
À	H	0352-14052/ -	WRD	West lower waste rock dump.	flagged by A MAN low	2014.05.21	DRY
30 08	_	0352-140521 - Dry	ET-1	Exploration trenches		2014.05. <u>리</u>	Dry //
31 [-	0352-140521 - Ory	ETS	Exploration trenches		2014.05. RI	Dry
32 [,	Z	0352-140581 - 1000	Lysimeter (L2)	Lysimeter	E388712, N6881457	2014.05. <u>À1</u>	15.34
33 [Σ	0352-140511 - 041	Field Replicate 1	Victoria Creek of Rad		2014.05.31	08:80
34	Σ	0352-140524 - 008	Field Replicate 2	Back Creek		2014.05.3	12:00
35 7	X	0352-1405	Field Replicate 3	NIA		2014.05	X
35 [-	Field Blank	Field Blank		The state of the s	2014.05.31	
36 [7	Σ	Travel Blank	Travel Blank			2014.05.9	

Field Staff: DM, D.S.

Weather: -/2, over cast + winty

Field Samplers: HM. DK. OS

Project Name: Mount Nansen Water Quality

Page _____ of ____

YSI Calibrated? Yes No

Date / Time: 20 May 2014 12:00

Site Info	rmation	Site I	nformation		
Site Name: WQ - DC	C-D16	Site Name: ₩ 🛱	DESS-03		
Sample Identifier: 0352-1405	20 - 003	Sample Identifier: 0352-14	05 20 - 002		
Sample Date and Time: 20 May 2	1014 18:00	Sample Date and Time: 20 Ha	42014 18:25		
Replicate ID (If applicable)		Replicate ID (If applicable)			
Field Measure	d Parameters	Field Meas	ured Parameters		
Temperature: 0,0°C		Temperature: (), 4°C			
Specific Conductivity (SPC): 1/66		Specific Conductivity (SPC): 74,3	÷		
pH: 8,01	24	pH: 7.88			
Turbidity: 7.59		Turbidity: 2.13			
Site Conditions		Site	Conditions		
flow level: Mederate		flow level:			
urbidity (clear, light) mod, high):		turbidity (clear, light) mod, high):	CONTROL CONTRO		
ce thickness (if applicable) > 50 cm		ice thickness (if applicable) A			
Notes	Photo Numbers	Notes	Photo Numbers		
if pit incl. DO and ice thickness)	Upstream: 8359 + 8360	(if pit incl. DO and ice thickness)	Upstream: 8365-66		
Still significant ice in channel			Downstream:		
Still significant ice in channon when Flowing through.	Overview:	850 ML - 9,90 sec-0.	Overview:		
3 0	Datasheet:	1050 ml - 12.18 sec-) . Datasheet:		
	Taillines Word 8363+61	1000 mL - 12.66 sec-			
	,	AU6- 60			

	Site Informa	ation —		Site Informa	ation
Site Name:	NO DES	2-01	Site Name:	WQ-DES	5 - 07
Sample Identifier:	0352-1405 20	- 006	Sample Identifier:	0352-1405 2 <i>C</i>	007
Sample Date and Time:	May 201	12014 18:35	Sample Date and Time:	20 May	2014 19:00
Replicate ID (if applicable)			Replicate ID (if applicable)		
	Field Measured P	arameters		Field Measured P	arameters
Temperature:	0.30		Temperature:	0.6°C	
Specific Conductivity (SPC):	831.6		Specific Conductivity (SPC):	1374	
pH:	5.71		pH:	7.26	
Turbidity:	2.59		Turbidity:	86,5	
	Site Conditi	ons		Site Condit	ions
flow level: high			flow level: Moderate	->	
turbidity (clear, light, mod, hi	igh):		turbidity (clear, light, mod, hi	gh):	
ice thickness (if applicable)	NIA		ice thickness (if applicable)		
Notes		Photo Numbers	Notes		Photo Numbers
if pit incl. DO and ice thickness)	Flow:	Upstream: 87,67/68	(if pit incl. DO and ice thickness)	4.7	Upstream: 8370 +8371
900ml - 1	. 13 sec = 0.79	Pownstream: 8869	Flow:	70,01	Downstream:
900ml - 1		Overview:	800m L - 20.72	sec of	Overview:
1050mL - 1		Datasheet:		13.0	Datasheet:
	= 0,787L/s		1050mL 26.0	7 sec - 0.04	

Fie	ld	В	a	nk	ID

Trip Blank ID

11 4/3 = 0.91

0.796

0.70

Project Name: Mount Nansen Water Quality

Page 2 of 6

Weather: Occ guercast, light wind

Field Samplers: MM DH DS

YSI Calibrated ? Ges / No Date / Time: 21 May 2014 71 15

Site In	formation		Site Information
Site Name: W 🗘 - V 🕻	R	Site Name:	WQ-VC-UMN
Sample Identifier: 0352-140	5 21 - 042	Sample Identifier:	0352-1405 <i>Z</i> 1 - <i>O</i> 4 <i>O</i>
Sample Date and Time: May 2	12014 8:00 11	Sample Date and Time:	21 May 2014 8:30
Replicate ID (if applicable) 0352-	140521-041	Replicate ID (if applicable)	
Field Measu	red Parameters	Principal and the control of the con	Field Measured Parameters
Temperature: 0,4°C		Temperature:	0.5%
Specific Conductivity (SPC): 151.5		Specific Conductivity (SPC):	167.9
рн: 9, 4)		± pH:	7.64
Turbidity: 3,80	<u></u>	Turbidity:	
Site Conditions			Site Conditions
flow level: moderate_	hish	flow level: Moderate	
turbidity (clear, light) mod, high):	,	turbidity (clear, light, mod, hi	gh):
ice thickness (if applicable) \mathcal{N}/\mathcal{A}	anging ice on edges above witer	ice thickness (if applicable)	NA
Notes	Photo Numbers	Notes	Photo Numbers
(if pit incl. DO and ice thickness)	Upstream: $g > 73$	(if pit incl. DO and ice thickness)	Upstream: <i>837</i> 4
Shore ice on banks	Downstream: 4372		Downstream: 8375
some summered gran	Overview:		Overview:
will on on borts.	Datasheet:		Datasheet:

Site Inf	ormation	Site I	nformation
Site Name: WQ - DC	- R	Site Name: WQ -	VC-DBC
Sample Identifier: 0352-1405		Sample Identifier: 0352-14	05 21 - 011
Sample Date and Time: May 21	12014 10:00	Sample Date and Time: 21 Ma	y 2014 10:45
Replicate ID (if applicable)		Replicate ID (if applicable)	
Field Measur	ed Parameters	Field Meas	sured Parameters
Temperature: 0,3°C		Temperature: 1,7°C	,
Specific Conductivity (SPC): 552.	O	Specific Conductivity (SPC): 125,	0
pH: 7,56		pH: 7.68	3
Turbidity: 3,96		Turbidity: 3,69	3
Site Conditions		Site	Conditions
flow level: High		flow level: H; qh	
turbidity (clear, light) mod, high):		turbidity (clear light, mod, high):	
ice thickness (if applicable) $N/A - o$	n edaco.	ice thickness (if applicable) $$	
Notes	Photo Numbers	Notes	Photo Numbers
(if pit incl. DO and ice thickness)	Upstream:	(if pit incl. DO and ice thickness)	Upstream: 826
	Downstream: 63		Downstream: 827
	Overview: Or 7		Overview: 828
	Datasheet:		Datasheet:

Field Blank ID	Filld	Blank.	
Trip Blank ID	Trip	Blank	

YSI Calibrated?

Weather: Och oversast and windy

Field Samplers: MH, DH, DS

Project Name: Mount Nansen Water Quality

Page 3 of 6

Date / Time: May 21/2014 7:15

Site	Information	Site	Information
Site Name: WQ − 1	/c-u	Site Name: WQ -	BC
Sample Identifier: 0352-14	0521 - 013	Sample Identifier: 0352-14	05 21 - 012
Sample Date and Time: 21 M.	ay 2014 11:00	Sample Date and Time: 21 M	w 2014 12:00
Replicate ID (if applicable)		Replicate ID (if applicable) 0352	-140521-008
Field Mea	sured Parameters	Field Mea	sured Parameters
Temperature: 1,5°C		Temperature: 4,1°C	
Specific Conductivity (SPC): 16.		Specific Conductivity (SPC): / らら、)
pH: 7, 68	1	рн: 7,86	
Turbidity: , Z O nite		Turbidity: 26,9	3
Site Conditions		Site	Conditions
flow level: High		flow level: Moderate	
turbidity (clear, (ight) mod, high):		turbidity (clear, light mod, high):	
ce thickness (if applicable) \mathcal{N}/\mathcal{A}		ice thickness (if applicable) AJ/A	-
Notes	Photo Numbers	Notes	Photo Numbers
if pit incl. DO and ice thickness)	Upstream: 829	(if pit incl. DO and ice thickness)	Upstream: 0386
Y .	Downstream: 830		Downstream: 0387
	Overview: 83		Overview:
	Datasheet:		Datasheet:
		_	

Site In	formation		Site Informa	tion
Site Name: WQ - P	W	Site Name: \	JQ-DC-U	
Sample Identifier: 0352-140	521-019	Sample Identifier: 0	352-1405 21	- 014
Sample Date and Time: 21 Ma	4 2014 12:35	Sample Date and Time:	21 May 20	13:00
Replicate ID (if applicable)		Replicate ID (if applicable)	- Section La	
Field Measu	red Parameters		ield Measured Pa	arameters
Temperature: 1 \ 2		Temperature:	4.0	
Specific Conductivity (SPC): 37	3.1	Specific Conductivity (SPC):	658	. 9
рн: 7. (, :(pH:	7.87	
Turbidity:		Turbidity:	35.5	
Site Conditions			Site Condition	ons
flow level:		flow level:	lecoits.	
turbidity (clear, light, mod, high):		turbidity (clear, light, mod, high): Mode	rate
ice thickness (if applicable)		ice thickness (if applicable)	Ma	
Notes	Photo Numbers	·Notes		Photo Numbers
(if pit incl. DO and ice thickness)	Upstream:	(if pit incl. DO and ice thickness)	1.5	Upstream: 0838
Bact # 57512	Downstream:	took school	ull	Downstream: 0839
	Overview:	of weil being	constructe	Pverview:
	Datasheet:	du 5 m dls at 10		Datasheet:
n.		w diversion obse		

Field Blank ID	Field	Blank	
Trip Blank ID	Trip	Black	

Weather: + 2°G overlas, windy

Field Samplers: MM, DH, DS

Project Name: Mount Nansen Water Quality

Page $\underline{\mathcal{H}}$ of $\underline{\mathbb{Q}}$

YSI Calibrated ? Yes/ No

Date / Time: 21 May 2014 7:15

Site Info	rmation		Site Information		
Site Name: Wa- Se	ep	Site Name:	VQ-TP		
Sample Identifier: 0352-1405	21 - 015	Sample Identifier: 03	52-1405 2) - 001		
Sample Date and Time: 2 Ma	1 2014 13:15	Sample Date and Time: 2	1 May 2014 13:35		
Replicate ID (if applicable)		Replicate ID (if applicable)			
Field Measure	d Parameters	Fiel	d Measured Parameters		
Temperature: 3.6°C		Temperature:	3.2°C		
Specific Conductivity (SPC): 1566		Specific Conductivity (SPC):	05		
pH: 6.97		pH: 7	.79		
Turbidity: 64,0		Turbidity: 2	4,8		
Site Conditions			Site Conditions		
low level: Seems less than usual.		flow level:			
urbidity (clear, light mod) high):		turbidity (clear, light, mod, high):	- 78		
ce thickness (if applicable) ///A	* * X	ice thickness (if applicable)			
Notes	Photo Numbers	Notes	Photo Numbers		
f pit incl. DO and ice thickness)	Upstream:	(if pit incl. DO and ice thickness)	Upstream:		
	Downstream:	Photos 0851+08	Downstream:		
1	Overview: 0844	Lis Stall in TY	Overview: 849 + 850		
	Datasheet:		Datasheet:		

Site Inform	nation	Site I	nformation				
Site Name: WQ.DC	- <u>R</u>	Site Name: WQ - 1	?c-D =				
Sample Identifier: 0352-1405	21 - 004	Sample Identifier: 0352-14	05 ZI - 010				
Sample Date and Time: 21 May 2	2014 13:55	Sample Date and Time: Z Ma	2014 14:10				
Replicate ID (if applicable)		Replicate ID (if applicable)					
Field Measured	Parameters	Field Meas	sured Parameters				
Temperature: 3,6		Temperature: 2,2°	C				
Specific Conductivity (SPC): 580.6		Specific Conductivity (SPC): 181.8					
pH: 7.54		рн: 7,66					
Turbidity: 40.7		Turbidity: 1.08	Turbidity: 1.08				
Site Condi	tions	Site	Site Conditions				
flow level: High		flow level: High					
turbidity (clear, light, mod) high):		turbidity (clear, light, mod, high):					
ice thickness (if applicable) \mathcal{N}/\mathcal{A}		ice thickness (if applicable) N/A					
Notes	Photo Numbers	Notes	Photo Numbers				
if pit incl. DO and ice thickness)	Upstream: 853	(if pit incl. DO and ice thickness)	Upstream: 855				
lots of organic matter	Downstream: 854		Downstream: 856 + 857				
and sill flowing	Overview:		Overview:				
down	Datasheet:		Datasheet:				

Field Blank ID			
Trip Blank ID			

Project Name: Mount Nansen Water Quality

Page 5 of 6 No

YSI Calibrated?

Field Samplers: MM, DH, DS

Date / Time: 21 May 2014 7:15

	Site Information		Site Information				
Site Name:	WO-PC-U	Site Name:	WQ-M5-5-08				
Sample Identifier:	0352-1405 2/ - 044	Sample Identifier: (0352-1405 み - 027				
Sample Date and Time:	21 Mars 2014 14:22	Sample Date and Time:	al-Ma, 2014 14:45				
Replicate ID (if applicable)	7	Replicate ID (if applicable)					
	Field Measured Parameters		Field Measured Parameters				
Temperature:	1.5°C	Temperature:	6.5				
Specific Conductivity (SPC):	179.2	Specific Conductivity (SPC):	1798.0				
pH:		pH:	7.93				
Turbidity:	0.22	Turbidity:	617,0				
	Site Conditions		Site Conditions				
flow level: High		flow level:					
turbidity (clear, light, mod, hig	gh):	turbidity (clear, light, mod, high	h): turbid				
ice thickness (if applicable)	/	ice thickness (if applicable)	ice thickness (if applicable) n la				
Notes	Photo Numbers	Notes	Photo Numbers				
(if pit incl. DO and ice thickness)	Upstream: 0859	(if pit incl, DO and ice thickness)	Upstream: 860				
	Downstream: 0858	TUNNING ACTOST	read Downstream: 861				
	Overview:	from mill	Overview:				
	Datasheet:		Datasheet:				

Site I	nformation	Site I	nformation		
Site Name: M5-5-	03	Site Name: WQ -	DC-DX+105		
Sample Identifier: 0352-140	0521 - 032	Sample Identifier: 0352-14			
Sample Date and Time: 21 M	my 2014 14:55	Sample Date and Time: 21 Ma			
Replicate ID (if applicable)	8:	Replicate ID (If applicable)			
Field Meas	ured Parameters	Field Meas	ured Parameters		
Temperature: 1, 2 °C		Temperature: / / º C			
Specific Conductivity (SPC): 1188		Specific Conductivity (SPC): 377.	9		
pH: 7.17		pH: 7,34			
Turbidity: 6, 3)		Turbidity: 2, 20,	nto		
	Conditions		Conditions		
low level: \hah		flow level: $H_{I_{\mathfrak{q}}I_{1}}$			
turbidity (clear, light, mod, high):		turbidity (clear, light) mod, high):			
ce thickness (if applicable) /\(\frac{\alpha}{\alpha}\)		ice thickness (if applicable) ///			
Notes	Photo Numbers	Notes	Photo Numbers		
f pit incl., DO and ice thickness)	Upstream: 0862	(if pit incl. DO and ice thickness)	Upstream: 0864		
	Downstream: 0863		Downstream: 0865		
	Overview:	4	Overview:		

Field Blank ID				
Trip Blank ID				

YSI Calibrated ?

Weather: +3°C. overCast, windy

Field Samplers: MM, DH, DS

Project Name: Mount Nansen Water Quality

Page <u>6</u> of <u>6</u>

(e) / No

Date / Time: 21 May 2014 7:15

ite Informatio	0		Site Informat	ion			
- D&-	DX.	Site Name:	L2	(lysimita)			
-1405 Z	- 030	Sample Identifier:	0352-1405 2/	(hysimetr) - 029			
May 2	014 16:00	Sample Date and Time:	21 May 20	014 15:39			
		Replicate ID (If applicable)					
Aeasured Para	meters.	اللجلا المساكر المجا	Field Measured Pa	rameters			
.3		Temperature:	2.0				
02.9		Specific Conductivity (SPC):	548,5				
1.54		pH:	7.62				
32.		Turbidity:	3.37				
Site Condition			Site Conditio	ins			
		flow level: n/a					
Clear		turbidity (clear, light, mod, hi	turbidity (clear, light, mod, high):				
	and the second	ice thickness (if applicable)	nla				
	Photo Numbers	Notes		Photo Numbers			
Up	stream: 0871	(if pit incl. DO and ice thickness)	(if pit incl. DO and ice thickness) Upstrea				
d. Do	wnstream: 087Z	sufficient water	in LZ	Downstream No photy			
No ice powers				Overview:			
Dat	asheet:	scristaltic our	12 C	Datasheet:			
Dat	erview: 0870 :asheet:	for sample. peristettic pen	χ.	2.			

Site In	ormation		Site Information		
Site Name: WQ - (re Ramp	Site Name:			
Sample Identifier: 0352-140		Sample Identifier: (0352-1405		
Sample Date and Time: 2) Max	2014 16:45	Sample Date and Time:			
Replicate ID (If applicable)		Replicate ID (if applicable)			
Field Measu	red Parameters		Field Measured Parameters		
Temperature: 4. 7	(taken after)	Temperature:			
Specific Conductivity (SPC): 817	7	Specific Conductivity (SPC):			
рн: 7,22		pH:	9		
Turbidity: 407		Turbidity:			
Site C	onditions		Site Conditions		
flow level: ∧/A		flow level:	A		
turbidity (clear, light, mod, high):		turbidity (clear, light, mod, high):			
ice thickness (if applicable) N/A	A 1	ice thickness (if applicable)			
Notes	Photo Numbers	Notes	Photo Number		
(if pit incl. DO and ice thickness)	Upstream: 0875	(if pit incl. DO and ice thickness)	Upstream:		
& Seep out of Road.	Downstream: 0876		Downstream:		
	Overview: 0874.		Overview:		
			Datasheet:		

Field Blank ID	Field	Blanh-	18:00	sample.
Trip Blank ID				

nh-18:00 samples. Note LW-Sup-01-Dry

mestigations\Data\Field Prep Info\Datasheets\May 20-22, 2014 Trip\WQ_Field Sheet_Mount Nansen_v2 May 20-22

WRD-Dry

Gut of Pipe

Field Dates: June 23 - June 25, 2014

General Site Tasks/ Communications June 24 > 16:40 - Upstream activity or Dory Creek Apps: 153, 154, 155

WINITED THE INTERNAL PRINTED TO SHARE	2014.06. 24		2014.06. 24	7					14:45 14:45 15:00 13:15 09:56 08:52	14:45 14:45 15:00 13:15 09:51	14:45 15:00 13:15 09:56 09:56 08:53 16:45	14:45 16:00 16:45 108:62 108:62 108:62 10:45	14:45 15:00 13:15 09:56 09:56 09:56 16:45 16:45	14:45 15:00 15:00 15:00 15:45 16:45 16:05	14:45 15:00 15:00 18:62 16:05 14:50	14:45 15:00 15:00 18:05 16:05 14:50 14:50 14:50 14:50 14:50 14:50 14:50	14:45 16:00 15:00 18:05 10:45 10:45 10:05
	+									2014.06. 24 2014.06. 24 4 4 4 4 4 4 4	2014.06.24 2014.06.24 2014.06.24 2014.06.24 2014.06.24 2014.06.24 2014.06.24 2014.06.24 2014.06.24	2014.06. 24 1/2 2014.06. 24 1/2 2014.06. 24 2014	2014.06. 24 2014.06. 24 2014.06. 24 2014.06. 24 2014.06. 24 2014.06. 24 2014.06. 24 2014.06. 24 2014.06. 24	2014.06. 24 2014.06. 24 2014.06. 24 2014.06. 24 2014.06. 24 2014.06. 24 2014.06. 24 2014.06. 24 2014.06. 24 2014.06. 24	2014.06. 24 2014.06. 24 2014.06. 24 2014.06. 24 2014.06. 24 2014.06. 24 2014.06. 24 2014.06. 24 2014.06. 24 2014.06. 24 2014.06. 24	2014.06. 24 2014.06. 24 2014.06. 24 2014.06. 24 2014.06. 24 2014.06. 24 2014.06. 24 2014.06. 24 2014.06. 24 2014.06. 24 2014.06. 24 2014.06. 24 2014.06. 24	2014.06.24 2014.06.24 2014.06.24 2014.06.24 2014.06.24 2014.06.24 2014.06.24 2014.06.24 2014.06.24 2014.06.24 2014.06.24 2014.06.24 2014.06.24
2014.06. 24	1 20 110c 1	2014:00. C. I	2014.06. 24		2014.06. 2	2014.06. 2	2014.06. 2 4 2014.06. 24	2014.06. 24 2014.06. 24 2014.06. 24	2014.06. 24 2014.06. 24 2014.06. 24 2014.06. 24	15.8	35.73	588	DS 25	35.73	3 2 2	258	3.88
50						. 1				VS 05/ 156, 157	US DS 156, 157,	US DS 156, 157,	US DS 156, 157	US DS 156, 157	156, 157	156, 157	US DS CV 156, 157, 158
no LT50						-	4			US Wates 156			satal	setati	station in	setat	John Safe (rec
												Photos	Photos 1	Photos 1	Photos	Days I	The state of the s
Seepage	Tailings Dond	ning i cgiiiiigi	Dome Creek at DX	Dome Creek at DX+105	Dome Creek at 01h		Dome Creek at Bridge (Diversion Channel)	Creek at Bridge (Diversion Channel) Upper Dome	Creek at Bridge (Diversion Channel) Upper Dome	ne Creek at Bridge (Diversion Channel) Upper Dome Dome Creek at Road	Creek at Bridge (Diversion Channel) Upper Dome Dome Creek at Road ony Creek Upstraem	e Creek at Bridge (Diversion Channel) Upper Dome Dome Creek at Road ony Creek Downstraem Pony Creek Upstraem	e Creek at Bridge (Diversion Channel) Upper Dome Dome Creek at Road ony Creek Upstraem Pony Creek Upstraem Back Creek	e Creek at Bridge (Diversion Channel) Upper Dome Dome Creek at Road Ony Creek Upstraem Back Creek Upper Victoria Creek	ome Creek at Bridge (Diversion Channel) Upper Dome Dome Creek at Road Pony Creek Upstraem Back Creek Upper Victoria Creek Victoria Creek at Road	ome Creek at Bridge (Diversion Channel) Upper Dome Dome Creek at Road Pony Creek Upstraem Back Creek Upper Victoria Creek Victoria Creek D/S Back Creek Victoria Creek U/S Minnesota Creek	e Creek at Bridge (Diversion Channel) Upper Dome Dome Creek at Road ony Creek Upstraem Back Creek Upper Victoria Creek oria Creek U/S Minnesota Creek Pit Top
WQ-SEEP WQ-TP WQ-DX	_			WQ-DC-DX+105 Dor	WQ-DC-D1b D		WQ-DC-B Dome C										
	WQ	WQ-I		WQ-DC-D	WQ-DC		WQ-D	WQ-D	WQ-Dd WX-Dd	WA-DO WX-DO WX-PO	WQ-DO WX-DO WQ-PO	WQ-DG WX-DG WQ-PG	WQ-DO WX-DO WQ-PO WQ-PO WQ-PO	WQ-Du WQ-PQ WQ-PQ WQ-V	WQ-DG WX-DG WQ-PG WQ-PG WQ-VC	WQ-Du WQ-PQ WQ-PQ WQ-VG-WQ-VC-WQ-VC-WQ-VC-W	WQ-DO WQ-PO WQ-PO WQ-VC- WQ-VC- WQ-VC-
1406 - 24 - 17	1		0352-1406 } ('- 000)	0352-140624- مرح	0352-1406 JY - Oll		0352-1406 24 - 14	1406 24 - 14 1406 - 241 S	J. J.	0352-1406 24 - 14 0352-1406 - 244 S 0352-1406 24 - 00 Z	0352-1406 24 - 14 0352-1406 - 241 S 0352-1406 24 - 60 Z 0352-1406 24 - 664	1406 24 - 14 1406 24 - 002. 1406 24 - 002. 1406 24 - 00 54 1406 24 - 00 54	0352-1406 24 - 14 0352-1406 24 - 002 0352-1406 24 - 002 0352-1406 24 - 00 4 0352-1406 24 - 00 4 0352-1406 24 - 00 4	0352-1406 24 - 14 0352-1406 24 - 002 0352-1406 24 - 002 0352-1406 24 - 00 4 0352-1406 24 - 00 4 0352-1406 24 - 002 0352-1406 24 - 002 0352-1406 24 - 002 0352-1406 24 - 002	0352-1406 24 - 14 0352-1406 24 - 002 0352-1406 24 - 002 0352-1406 24 - 00 4 0352-1406 24 - 00 4 0352-1406 24 - 00 9 0352-1406 24 - 00 9	0352-1406 24 - 14 0352-1406 24 - 002 0352-1406 24 - 002 0352-1406 24 - 00 4 0352-1406 24 - 00 4 0352-1406 24 - 00 9 0352-1406 24 - 00 9 0352-1406 24 - 00 9 0352-1406 24 - 00 9	0352-1406 24 - 14 0352-1406 24 - 002 0352-1406 24 - 002 0352-1406 24 - 00 24 0352-1406 24 - 00 24 0352-1406 24 - 00 24 0352-1406 24 - 00 2 0352-1406 24 - 00 2 0352-1406 24 - 00 2 0352-1406 24 - 00 2 0352-1406 24 - 00 2 0352-1406 24 - 00 2
0352-1406	0352-1		0352-1	0352-1	0352-1		0352-1	0352-1406 7	0352-1	0352-1	0352-1 0352-1 0352-1 0352-1	0352-1406 0352-1406 0352-1406 0352-14067 0352-1406	0352-1 0352-1 0352-1 0352-1 0352-1	0352-1 0352-1 0352-1 0352-1 0352-1 0352-1	0352-1 0352-1 0352-1 0352-1 0352-1 0352-1	0352-1 0352-1 0352-1 0352-1 0352-1 0352-1	0352-1 0352-1 0352-1 0352-1 0352-1 0352-1 0352-1 0352-1
	=	+	=	Ξ		+											
-	_	2	3	4	2	+	9		+					1-1-1-1-1-1-1			*

J:\Yukon\Projects\2014\14_Y_0352_YG_AAM_Mount_Nansen_Water_Resources_Investigations\Data\Field Prep Info\Datasheets\4 - June 23-25 2014 Trip\WQ_Field Sheet_Mount Nansen_v.2 June 16

Field Staff: LH, NS, JM

Field Dates:

#		lah Sample Identifier	OI OW	Station Name	Cito Tacke	Date	Time
=			2		2000	yyyy.mm.dd	HH:MM
18		0352-140615 - 07 b	WQ-PIT-3	Pit Bottom	sample only if safe (record DO mg/L)	2014.06.25	8:40
19	[]	420 -52-140625- 027	WQ-PW	Pumphouse Well	Drinking Water Package + BacT	2014.06.25	11:15
20	[]	0352-1406	MS-S-08	Mill Seep 08	Photos 135-137	2014.06. <i>△</i> ≶	81:18
21	[]	0352-14062y - 007	DESS-01	East Dome Seep on Powerline	E388632, N6881131 (flagged)	2014.06. 3 1	21161
22		0352-1406 <i>)</i> Y - 010	CH-P-13-01	Flow next to well site.	E0388640, N6881165 flow next to well.	2014.06. 2.7	12:35
23		0352-140624- 008	DESS-02	Dome East Seep	E388699, N6881087 (flagged)	2014.06. 교생	95.11
24	Ξ	0352-1406	DESS-03	Dome East Seep	E388518, N6881143 (flagged)	2014.06.	DRY
25		0352-1406 - DAY	LW-Seep 01	West toe of W and SW piles	DM 198, E388711, N6881371	2014.06. 25	0 K
56	Ξ	0352-140624- 16	Field Replicate 1	₽-00-B		2014.06.24	10:15
27		0352-1406/5 - 029	Field Replicate 2	P.t 70P		2014.06.25	1:30
28		0352-1406 25- 028	Field Replicate 3	UCOUNT REPORT		2014.06.25	11:25
53	[]	Field Blank 03	Field Blank			2014.06. J. H	
30	[]	Travel Blank	Travel Blank		STATE OF STA	2014.06.27	

14-4-0352/0451

Project No.: 15-Y-0452

Project Name: Faro Surface Water Quality

96

Overview:

Upstream:

YSI Calibration Performed?

Weather: Party Clary 16°C Field Samplers: CH

Overview:

Site Information Site Information Site Name: Site Name: WQ -FEP **UTM Coordinates UTM Coordinates** Sample Date and Time: 24 3 ure 2014 68: Sample Date and Time: 24 05:00 3 une Replicate ID (if applicable) Replicate ID (If applicable) Fleid Measured Parameters **Field Measured Parameters** Temperature: 6.6 Temperature: Specific Conductivity (SPC): 1415 Specific Conductivity (SPC): 1815 6.75 Turbidity (NTU) **Turbidity (NTU)** 13.1 **Site Conditions Site Conditions** flow level: Nesma (flow level: Norma ice thickness (if applicable) ice thickness (if applicable) Notes Notes Bottle Bottle previous **Photo Numbers Photo Numbers** heet: Downstream: 97 Datasheet: Downstream:

Upstream:

100

	Site Information	9 3 St. 10 - 3 5 S. 1	Site Information
Site Name:	WQ-TP	Site Name:	Wa-DC-B
UTM Coordinates:	1 -018?78	UTM Coordinates:	
Sample Date and Time:	0940 24 June 14	Sample Date and Time:	09:56 24 June 14
Replicate ID (If applicable)		Replicate ID (If applicable)	16 (10'15)
	Field Measured Parameters		Field Measured Parameters
Temperature:	12.8	Temperature:	7.6
Specific Conductivity (SPC):	1115	Specific Conductivity (SPC):	1339
pH:	8.3	pH:	7.81
Turbidity (NTU)	5.68	Turbidity (NTU)	12.3
	Site Conditions		Site Conditions
flow level:		flow level: no(ma)	
ice thickness (if applicable)	/	ice thickness (if applicable)	2.
1		12	/
	Notes	The state of the state of the	Notes
		Bottle Set 14	
MANUAL TRANSPORT	Photo Numbers		Photo Numbers
Datasheet: 109	Downstream: 167/108	Datasheet: ()	Downstream: 117
eam:	Overview: 107/108	Upstream:	Overview:

Field Blank ID	
Trip Blank ID	

14-4-0752/0455

Project No.: 13-7-0452
Project Name: Fare Surface Water Quality
Page 2 of 6

YSI Calibration P

Weather: Overcost 16°

Field Samplers: CH DS

(yes / No	Date / Time:	Ivre 24	8:00	

Site Information		Site Information		
Site Name:	WG-DESS-02	Site Name: WG DESS - 01		
1 -UTM Coordinates:	0353 1406 24 008	157 UTM Coordinates: 6352 140624 007		
Sample Date and Time:	140624 11:40	Sample Date and Time: 140624 12:16		
Replicate ID (If applicable)		Replicate ID (if applicable)		
	Field Measured Parameters	Field Measured Parameters	1.5 110	
Temperature:	8.7	Temperature: 2.9		
Specific Conductivity (SPC):	1450	Specific Conductivity (SPC): 1570		
pH:	7.98	pH: 7.09		
Turbidity (NTU)	0,89	Turbidity (NTU) 0,33		
	Site Conditions	Site Conditions		
flow level: (oU		flow level: Law		
ice thickness (if applicable)		ice thickness (if applicable)		
	Notes	Notes	971	
	8 7 0			
	N. C.			
	Photo Numbers	Photo Numbers	In Land	
Datasheet:	Downstream: 120	Datasheet: Downstream: (23		
Upstream: 19	Overview: (21,118	Upstream: 127 Overview: 124		
	<i>T</i>	1000		

	Site Information		Site Information
Site Name:	CH-P-13-01	Site Name:	WEDESS-03
UTM Coordinates:	0352-140624-010	UTM Coordinates:	
Sample Date and Time:	140624 12:35	Sample Date and Time:	140624 12:51
Replicate ID (If applicable)		Replicate ID (if applicable)	
M. Length of	Field Measured Parameters		Fleid Measured Parameters
Temperature:	3.0	Temperature:	1
Specific Conductivity (SPC):	1818	Specific Conductivity (SPC):	Y
pH:	6,23	pH:	
Turbidity (NTU)	0.19	Turbidity (NTU)	
	Site Conditions		Site Conditions
flow level:	<i>T</i> . 5	flow level:	
ice thickness (if applicable)		ice thickness (if applicable)	
The second second second	Notes		Notes
	***************************************	Dry	
)	*
San telo estation	Photo Numbers		Photo Numbers
Datasheet:	Downstream:) (Datasheet:	Downstream: 130
Upstream:	125 Overview: 127	Upstream: 129	Overview: 128

Field Blank ID	
Trip Blank ID	

14-4-03540435

Project No.: 13 Y 0452

Project Name: Fare Surface Water Quality

Page 3 of 6

YSI Calibration Performed?

Weather: Over Cas/

Tain +18

Field Samplers:

S JA

3		19,7	19,7 + 18		·	
Date / Time:	140624	07:00				

	Site Information	Site Information	
Site Name:	WG DC DIB	Site Name:	WQDX
UTM Coordinates:	0352 140624 01/	UTM Coordinates:	0352 - 140624 - 009
Sample Date and Time:	140624 13:15	Sample Date and Time:	140624 14145
Replicate ID (if applicable)		Replicate ID (If applicable)	
	Field Measured Parameters		Field Measured Parameters
Temperature:	3.8	Temperature:	2, 4
Specific Conductivity (SPC):	1307	Specific Conductivity (SPC):	556.5
pH:	7,76	pH:	7.28
Turbidity (NTU)	3,99	Turbidity (NTU)	3.47
Site Conditions		Site Conditions	
flow level: Not Mail		flow level: (ou /va	rel
ce thickness (if applicable)	Some Ice on Share 7 30 en in Som	ice thickness (if applicable)	
Sections Ice i			4
	Notes	MARKA DE SELE	Notes
	Photo Numbers		Photo Numbers
Datasheet:	Downstream: (3)	Datasheet:	Downstream: 139
Upstream: 13	Overview: 1347	Upstream:	38 Overview: 140- 142

Site Information		Site Information	
Site Name:	W688X-105	Site Name:	WQ-VC-R
UTM Coordinates:	0352 140624 012	UTM Coordinates:	0352 140624 \$8001
Sample Date and Time:	140624 15:00	Sample Date and Time:	24 June 2014 16:05
Replicate ID (if applicable)		Replicate ID (If applicable)	/
	Field Measured Parameters		Field Measured Parameters
Temperature:	tta te	Temperature:	7.9
Specific Conductivity (SPC):	1187	Specific Conductivity (SPC):	241.4
рН:	7.01	pH:	7.15
Turbldity (NTU)	2.66	Turbidity (NTU)	1.03
	Site Conditions		Site Conditions
flow level: Norma	/	flow level: rorma	
ce thickness (if applicable)		ice thickness (if applicable)	
A I STEAL LIVE	Notes		Notes
	Photo Numbers		Photo Numbers
Datasheet:	Downstream: 145	Datasheet:	Downstream: 148
Jpstream: / 🗒 🤊	Overview: 116 - 147	Upstream:	Overview: 149

Field Blank ID		
Trip Blank ID		

Project Name: Eare Surface Water Quality

Field Samplers:

YSI Calibration Performed?	Yes / No Date / Time:		
	Site Information		Site Information
Site Name:	Wa-BC-R	Site Name:	WG-PC-12
UTM Coordinates:	0352-140124-002	UTM Coordinates:	6352-140624-004
Sample Date and Time:	Juc 24, 2014 16:23	Sample Date and Time:	3ve 24,2014 16:45
Replicate ID (if applicable)		Replicate ID (If applicable)	
	Field Measured Parameters		Field Measured Parameters
Temperature:	7.7	Temperature:	5.0
Specific Conductivity (SPC):	1200	Specific Conductivity (SPC):	433.6
pH:	7.60	pH:	7-62
Turbidity (NTU)	76.6	Turbidity (NTU)	0,42
	Site Conditions		Site Conditions
flow level:		flow level:	
ice thickness (if applicable)		ice thickness (if applicable)	
duglare burn	Notes		Notes
Maria Carlo	Photo Numbers		Photo Numbers
heet:	Downstream: 15	Datasheet:	Downstream: 160
Unctroam: 15 D	Overview	Unstream:	Overview: 161

	Site Information		Site Information
Site Name:	Wa-VC-UMN	Site Name:	WO-VC- BBC
UTM Coordinates:	357-146624-005	UTM Coordinates:	352-140624 - 003
Sample Date and Time:	140624 1840	Sample Date and Time:	14/06/14 - 19:50
Replicate ID (If applicable)		Replicate ID (If applicable)	
	Field Measured Parameters	and its first the second state of	eld Measured Parameters
Temperature:	7.4	Temperature:	6.9
Specific Conductivity (SPC):	237.1	Specific Conductivity (SPC):	185.5
pH:	7.73	pH:	7.51
Turbidity (NTU)	1,49	Turbidity (NTU)	0.27
	Site Conditions		Site Conditions
low level:		flow level:	
ce thickness (if applicable)		ice thickness (if applicable)	
H OPE CAME	Notes		Notes
	Photo Numbers		Photo Numbers
Datasheet:	Downstream:	Datasheet:	Downstream: 196
2am: 34	Overview:	Upstream: / 9 <	Overview:

Field Blank ID	5	
Trip Blank ID		

Do col Start 6:91

101010 866

Docol Find 90-3010

)4-Y- 0455 Project No.: 13-Y-0452

Project Name: Faro Surface Water Quality

Weather: Forthy Clarky Field Samplers: CIT SM

Page of Yes / No Date / Time: John 25 7:30 YSI Calibration Performed?

	Site Information		Site Information
Site Name	: Wa-PET-Bother (5N) - ?	Site Name:	WQ Pit-2Middle (2.5m)
<u>LUTM Coord</u> inates		UTM Coordinates:	052
Sample Date and Time:	25 Zur 14 8:40	Sample Date and Time: 7	5 July 9:00
Replicate ID (if applicable		Replicate ID (ff applicable)	
	Field Measured Parameters	I I Berlin Franklin auch Fi	ield Measured Parameters
Temperature	8.2	Temperature:	9.5
Specific Conductivity (SPC)	2346	Specific Conductivity (SPC):	147.6
рН	6.65	рН:	7.90
Turbidity (NTU)	2.88	Turbidity (NTU)	1.23
Site Conditions		Site Conditions	
flow level:		flow level:	
ce thickness (if applicable)		ice thickness (if applicable)	
A NAME OF THE OWNER, WHEN	Notes		Notes
total depth	5.5 M	DO 0/0= 86.3	
DO'6 = 62.7		DD ng/L = 919	87
DO MY L= f.	Photo Numbers	Ų.	Photo Numbers
heet:	Downstream:	Datasheet:	Downstream:
Upstream: 145	Overview: 196	Upstream:	Overview:

	Site Information	Site Information	
Site Nam	ne: Wa-Pit-1 Tup	Site Name: WQ - PW	
UTM Coordinate	024	UTM Coordinates: 077	
Sample Date and Time	e: 1425 June 9:25	Sample Date and Time: 75 June 11:15	
Replicate ID (If applicable	(e) 029	Replicate ID (If applicable)	
	Field Measured Parameters	Field Measured Parameters	1- 1,241
Temperatur	113	Temperature: 1.3	
Specific Conductivity (SPC	1926	Specific Conductivity (SPC): 404.9	
pt	H: 7.96	pH: 6.77	
Turbidity (NTL		Turbidity (NTU)	
	Site Conditions	Site Conditions	
flow level:		flow level:	
ice thickness (if applicable)		ice thickness (if applicable)	
	Notes	Notes	1176
0/6 85.3		Sample # Bact = 57527	
rgn 9.77		The state of the s	
Mar borrer on	Photo Numbers	Photo Numbers	TANK!
Datasheet:	Downstream:	Datasheet: Downstream: 203	
am:	Overview:	Upstream: Overview: 704	

Field Blank ID	
Trip Blank ID	

/4- Y-0 455 Project No.: 13-Y-0452

YSI Calibration Performed?

Weather: Party Cloudy Field Samplers: SM OS

Project Name: Faro Surface Water Quality

Page of 0

Yes / No

Date / Time: 3 vrc 25, 7:30

The second second	Site Information	Site	Information
Site Name:	WQ-VC-U	Site Name:	
UTM Coordinates:	1 30	UTM Coordinates:	
Sample Date and Time:	25 Jule 2014 11:25	Sample Date and Time:	
Replicate ID (if applicable)	28 H:30 11:25	Replicate ID (if applicable)	
	Field Measured Parameters	Field Mea	sured Parameters
Temperature:	5.6	Temperature:	
Specific Conductivity (SPC):	183.7	Specific Conductivity (SPC):	
pH:	7.40	pH:	
Turbidity (NTU)	0.54	Turbidity (NTU)	
	Site Conditions	Site	Conditions
low level:		flow level:	
ce thickness (if applicable)		ice thickness (if applicable)	
	Notes	www.laux.cleonledocc	Notes
	Photo Numbers	Pho	to Numbers
Datasheet:	Downstream: 70	Datasheet:	Downstream:
Upstream: 100	Overview: 7.07	Upstream:	Overview:

	Site Information		Site Information
Site Name:		Site Name:	
UTM Coordinates:		UTM Coordinates:	
Sample Date and Time:		Sample Date and Time:	
Replicate ID (if applicable)		Replicate ID (if applicable)	
	Field Measured Parameters		Field Measured Parameters
Temperature:		Temperature:	
Specific Conductivity (SPC):		Specific Conductivity (SPC):	
pH:		pH:	A
Turbidity (NTU)		Turbidity (NTU)	
	Site Conditions		Site Conditions
low level:		flow level:	
ce thickness (if applicable)		ice thickness (if applicable)	
	Notes		Notes
Edit of the Steam	Photo Numbers		Photo Numbers
Datasheet:	Downstream: 701	Datasheet:	Downstream:
Jpstream: 100	Overview: 207	Upstream:	Overview:

Field Blank ID	
Trip Blank ID	

APPENDIX D Q1 SURFACE WATER HYDROLOGY DATA

Table D-1. Hydrometric Instrument Accuracy.

Units	Instrument Accuracy
Acoustic Doppler Velocimeter (ADV)	± 1%
Swoffer Current Meter	± 1%
Staff Gauge	± 1 mm
Survey Rod	± 1 mm
Measuring Tape	± 1 mm
YSI ProPlus Multi-Meter - Temperature	± 0.2 °C
YSI ProPlus Multi-Meter - Specific Conductivity	0.5% of reading or 0.001 µs/cm, whichever is greater
Stop Watch	± 0.01 s
HOBO Pressure Transducer- Pressure	± .03 kPa ; ± 0.003 m
HOBO Pressure Transducer- Temperature	± 0.37 (at 20C) (-20 to -50C Op. Range)
Solinst Barologger	± 0.001 m
Solinst Pressure Transducer - Pressure	± 0.003 m
Solinst Pressure Transducer - Temperature	± 0.05 °C (-10 to +40 C Comp. Range)
Graduated Bucket	± .5 L
Lab Scale	± 0.00005 kg

Table D-2. Hydrometric station monitoring record from Q1 (April 1 through June 30, 2014).

штр	Monitoring	Q1 toring Measurements			Q2 irements		Q3 urements		Q4 urements	Larger Time	Rating Curve	Method
HID	Start	# Q	# Rating	# Q	# Rating	# Q	# Rating	# Q	# Rating	Logger Type	Status ¹	Method
ATM-DC-2	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	НОВО	N/A	N/A
ATM-DC-4	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	Solinst	N/A	N/A
H-PC-U	14-Apr-14	4	N/A	N/A	N/A	N/A	N/A	N/A	N/A	Solinst	N/A	SS,V
H-PC-DSP	14-Apr-14	5	3	N/A	N/A	N/A	N/A	N/A	N/A	НОВО	Р	SS, V
H-DX+105	14-Apr-14	3	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	SS, V
H-DC-D1b	14-Apr-14	1	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	SS
H-TP	14-Apr-14	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	SG
H-SEEP	14-Apr-14		N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	V, Flow Meter
H-DC-B	14-Apr-14	3	1	N/A	N/A	N/A	N/A	N/A	N/A	НОВО	Р	SS
H-DC-M	14-Apr-14	5	4	N/A	N/A	N/A	N/A	N/A	N/A	Solinst+HOBO	Р	SS
H-DC-R	14-Apr-14	3	1	N/A	N/A	N/A	N/A	N/A	N/A	НОВО	Р	ADV, SS, V
H-BC	15-Apr-14	2	2	N/A	N/A	N/A	N/A	N/A	N/A	НОВО	Р	ADV, SS
H-VC-U	15-Apr-14	4	3	N/A	N/A	N/A	N/A	N/A	N/A	Solinst	Р	ADV, SS
H-VC-DBC	15-Apr-14	5	3	N/A	N/A	N/A	N/A	N/A	N/A	Solinst	Р	ADV, SS
H-VC-UMN	15-Apr-14	6	2	N/A	N/A	N/A	N/A	N/A	N/A	Solinst	Р	ADV, SS
H-VC-R	15-Apr-14	4	1	N/A	N/A	N/A	N/A	N/A	N/A	Solinst	Р	ADV, SS

Q - Discharge

P – preliminary

SS – Salt Slug, V – volumetric, ADV – acoustic Doppler velocimeter, Flow Meter – Flow master totalizer.

Table D-3 Hydrometric data summary for station visits between April 1 and June 30, 2014.

-		Measurement						
Mid	HID	Date	Time	Measurement	Staff Gauge	Discharge	Data Flag	Water Surface Elevation
		(DD/MM/YYYY)	(HH:MM)	Туре	(m, ± 2 mm)	(m³/s)	Flag	(m L.D., ± 5 mm)
60	ATM-DC2	4/14/2014	16:49	N			UR	
68	ATM-DC2	5/8/2014		N				
84	ATM-DC2	5/20/2014	15:00	N				
	ATM-DC2	6/23/2014	9:00					
59	ATM-DC4	4/14/2014	16:38	N				
69	ATM-DC4	5/8/2014		N				
85	ATM-DC4	5/20/2014	15:24	N				
	ATM-DC4	6/24/2014	8:56					
66	H-BC	4/15/2014	11:50	N	0	0	X	
79	H-BC	5/9/2014	11:25	SS	0.42	0.3729		2.06
79	H-BC	5/9/2014	11:25	SS	0.42	0.3729		2.06
94	H-BC	5/21/2014	12:10	SS	0.201	0.047		1.847
116	H-BC	6/24/2014	20:38	N	0	0	X	
64	H-DC-B	4/14/2014	16:15	N			X	
74	H-DC-B	5/8/2014	14:37	SS		0.119		1.81
74	H-DC-B	5/8/2014	14:37	SS		0.119		1.808
91	H-DC-B	5/20/2014	15:17	SS		0.04		
112	H-DC-B	6/24/2014	10:40	SS		0.01		1.43
112	H-DC-B	6/24/2014	10:40	SS		0.01		1.431
63	H-DC-D1b	4/14/2014		N		0	X	
73	H-DC-D1b	5/8/2014	15:00	N			X	
90	H-DC-D1b	5/21/2014	18:07	N			X	
106	H-DC-D1b	6/24/2014	13:35	SS		0.005	Е	
62	H-DC-DX+105	4/14/2014	17:18	N		0	X	
72	H-DC-DX+105	5/8/2014	17:11	SS		0.0193		

		Measurement						
Mid	HID	Date	Time	Measurement	Staff Gauge	Discharge	Data Flag	Water Surface Elevation
		(DD/MM/YYYY)	(HH:MM)	Туре	(m, ± 2 mm)	(m³/s)	Flag	(m L.D., ± 5 mm)
89	H-DC-DX+105	5/21/2014	15:08	SS		0.011	E	
105	H-DC-DX+105	6/24/2014	15:15	SS		0.001	E	
55	H-DC-M	4/14/2014	14:40	SS		0.002	В	1.617
75	H-DC-M	5/8/2014	13:59	SS	0.322	0.154		1.798
92	H-DC-M	5/20/2014	14:30	SS	0.194	0.045		1.667
121	H-DC-M	6/23/2014	18:49	V	0.15	0.009		1.621
113	H-DC-M	6/23/2014	18:49	SS	0.15	0.012		1.621
121	H-DC-M	6/23/2014	18:49	V	0.15	0.009		1.619
113	H-DC-M	6/23/2014	18:49	SS	0.15	0.012		1.619
114	H-DC-M WP	6/23/2014	18:49	V		0.009		
65	H-DC-R	4/14/2014	13:58	N			X	
76	H-DC-R	5/8/2014	13:24	SS		0.1521	В	
93	H-DC-R	5/20/2014	13:48	SS		0.056		
115	H-DC-R	6/23/2014	17:17	SS		0.014		0.428
115	H-DC-R	6/23/2014	17:17	SS		0.014		0.423
58	H-PC-DSP	4/14/2014	19:10	N		0	X	
71	H-PC-DSP	5/8/2014	15:29	SS	0.318	0.027		2.493
71	H-PC-DSP	5/8/2014	15:29	SS	0.318	0.027		2.491
87	H-PC-DSP	5/20/2014	15:56	SS	0.296	0.006		2.456
88	H-PC-DSP	5/20/2014	15:56	V	0.296	0.005		2.456
104	H-PC-DSP	6/24/2014	16:54	V	0.171	0.0006		2.323
104	H-PC-DSP	6/24/2014	16:54	V	0.171	0.0006		2.325
61	H-PC-U	4/14/2014		N		0	X	
70	H-PC-U	5/8/2014	16:12	SS		0.0237		
86	H-PC-U	5/20/2014	16:46	SS		0.006		
103	H-PC-U	6/23/2014	13:25	SS		0.001		

		Measurement			_			
Mid	HID	Date	Time	Measurement	Staff Gauge	Discharge	Data Flag	Water Surface Elevation
		(DD/MM/YYYY)	(HH:MM)	Туре	(m, ± 2 mm)	(m³/s)	Flag	(m L.D., ± 5 mm)
57	H-SEEP	4/14/2014	15:40	V		0.0025		
82	H-SEEP	5/9/2014	13:03				UR	
101	H-SEEP	5/21/2014	13:15	V		0.0009		
107	H-SEEP	6/24/2014	9:28	V	0.208	0.003		
67	H-TP	4/14/2014	15:16	N			X	
83	H-TP	5/9/2014	13:25		0.855		UR	
102	H-TP	5/21/2014	13:35	N	0.877			
108	H-TP	6/24/2014	9:45		0.629			
51	H-VC-DBC	4/15/2014	9:50	CM-MID	0.368	0.047	В	1.724
52	H-VC-DBC	4/15/2014	9:50	SS	0.368	0.044	В	1.724
78	H-VC-DBC	5/9/2014	11:40	ADV-MID	0.732	2.388		2.086
78	H-VC-DBC	5/9/2014	11:40	ADV-MID	0.732	2.388		2.083
97	H-VC-DBC	5/21/2014	10:25	ADV-MID	0.526	0.6273		1.878
118	H-VC-DBC	6/24/2014	19:28	ADV-MID	0.406	0.1767		1.748
118	H-VC-DBC	6/24/2014	19:28	ADV-MID	0.406	0.1767		1.751
81	H-VC-R	5/8/2014	11:54	ADV-MID	0.765	3.204		2.338
81	H-VC-R	5/8/2014	11:54	ADV-MID	0.765	3.204		2.345
81	H-VC-R	5/8/2014	11:54	ADV-MID	0.765	3.204		2.337
100	H-VC-R	5/20/2014	13:03	ADV-MID	0.594	0.758		2.167
120	H-VC-R	6/23/2014	16:03	ADV-MID	0.487	0.1791	SH-L	2.058
120	H-VC-R	6/23/2014	16:03	ADV-MID	0.487	0.1791	SH-L	2.061
77	H-VC-U	5/9/2014	11:37	ADV-MID	0.415	1.929		2.313
77	H-VC-U	5/9/2014	11:37	ADV-MID	0.415	1.929		2.315
96	H-VC-U	5/21/2014	11:21	SS	0.227	0.392		2.133
95	H-VC-U	5/21/2014	11:21	ADV-MID	0.227	0.556		2.133
117	H-VC-U	6/24/2014	20:05	ADV-MID	0.138	0.1724		2.048

		Measurement						
Mid	HID	Date	Time	Measurement	Staff Gauge	Discharge	Data Flag	Water Surface Elevation
		(DD/MM/YYYY)	(HH:MM)	Туре	(m, ± 2 mm)	(m³/s)	Flag	(m L.D., ± 5 mm)
117	H-VC-U	6/24/2014	20:05	ADV-MID	0.138	0.1724		2.049
54	H-VC-UMN	4/15/2014	8:40	SS	0.528	0.019	В	
53	H-VC-UMN	4/15/2014	8:40	CM-MID	0.528	0.022	В	
80	H-VC-UMN	5/9/2014	8:30	ADV-MID	0.9	2.605		1.918
80	H-VC-UMN	5/9/2014	8:30	ADV-MID	0.9	2.605		1.919
99	H-VC-UMN	5/21/2014	8:51	SS	0.709	0.741		1.695
98	H-VC-UMN	5/21/2014	8:51	ADV-MID	0.709	0.702	SH-SG	1.695
99	H-VC-UMN	5/21/2014	8:51	SS	0.709	0.741		1.695
98	H-VC-UMN	5/21/2014	8:51	ADV-MID	0.709	0.702	SH-SG	1.695
119	H-VC-UMN	6/24/2014	18:29	ADV-MID	0.592	0.1879		1.587
119	H-VC-UMN	6/24/2014	18:29	ADV-MID	0.592	0.1879		1.589
119	H-VC-UMN	6/24/2014	18:29	ADV-MID	0.592	0.1879		1.589

Notes:

Measurement types: ADV – acoustic Doppler volocimeter; SS – salt dilution, slug injection; V – volumetric; CM – current meter; W – weir; N – no measurement obtained.

Data Flag = B - Ice Present, X - Poor channel conditions not appropriate for discharge measurement, E - Estimated Value

MID = Measurement ID, unique measurement identifier in the hydrometric database.

HID = Hydrometric ID, unique hydrometric station identifier in hydrometric database.

L.D. = Local datum.

Table D-4. Hydrometric survey data summary from April 1 through June 30, 2014.

		MID Date		BM 1	BM 2	вм з	LoggerRod*	TOS	Water Surface
Station	MID	Date	Time	(m L.D.)	(m L.D.)	(m L.D.)	(m L.D.)	(m L.D.)	(m L.D.)
H-BC	86	5/9/2014	11:40	3	2.991	3.018	2.876	2.640	2.060
H-BC	100	5/21/2014	12:21	3	3.009	3.028	2.881	2.645	1.847
H-DC-B	81	5/8/2014		3	3.355	2.997	-	-	1.809
H-DC-B	118	6/24/2014	10:50	3	3.351	2.9925	2.775	-	1.4305
H-DC-M	61	4/14/2014	14:32	3	2.713	2.319	2.711	2.480	1.617
H-DC-M	82	5/8/2014	14:10	3	2.313	2.713	2.727	2.479	1.798
H-DC-M	98	5/20/2014	14:34	3	2.315	2.712	2.709	2.478	1.667
H-DC-M	119	6/23/2014	19:23	3	2.519	2.718	2.702	2.470	1.620
H-DC-R	121	6/23/2014		3	2.973	2.3125	1.968	1.132	0.425
H-PC-DSP	77	5/8/2014	15:56	3	3.658	3.248	3.424	3.1725	2.492
H-PC-DSP	94	5/20/2014	16:09	3	3.250	3.635	3.418	3.169	2.456
H-PC-DSP	110	6/24/2014	17:00	3	3.2425	3.6225	3.3965	3.148	2.324
H-VC-DBC	59	4/15/2014	10:40	3	3.029	2.919	2.571	2.354	1.724
H-VC-DBC	85	5/9/2014	9:50	3	3.024	2.917	2.565	2.341	2.084
H-VC-DBC	102	5/21/2014	10:37	3	3.028	2.918	2.568	2.355	1.878
H-VC-DBC	124	6/24/2014	19:33	3	3.026	2.910	2.567	2.348	1.749
H-VC-R	62	4/14/2014	13:20	3	3.431	3.170	2.812	2.573	-
H-VC-R	88	5/8/2014	12:20	3	3.4315	3.171	2.811	-	2.34
H-VC-R	104	5/20/2014	13:16	3	3.426	3.172	2.870	2.575	2.167
H-VC-R	126	6/23/2014	16:22	3	3.417	3.167	2.891	2.575	2.059
H-VC-U	58	4/15/2014		3	3.359	3.243	3.15	2.904	-
H-VC-U	84	5/9/2014	10:40	3	3.361	3.244	3.149	2.902	2.314
H-VC-U	101	5/21/2014	11:45	3	3.359	3.242	3.148	2.904	2.133
H-VC-U	123	6/24/2014	20:31	3	3.356	3.244	3.1555	2.910	2.048
H-VC-UMN	87	5/9/2014	9:00	3	3.008	2.678	2.191	1.984	1.918

Chatian	MID	Data	Time	BM 1	BM 2	вм з	LoggerRod*	TOS	Water Surface
Station	MID	Date	Time	(m L.D.)	(m L.D.)	(m L.D.)	(m L.D.)	(m L.D.)	(m L.D.)
H-VC-UMN	103	5/21/2014	9:18	3	3.007	2.678	2.207	1.993	1.695
H-VC-UMN	125	6/24/2014	18:27	3	3.009	2.677	2.21	1.996	1.588
H-VC-R	62	4/14/2014	13:20	3	3.431	3.170	2.812	2.573	-
H-VC-R	88	5/8/2014	12:20	3	3.432	3.171	2.811	-	2.34
H-VC-R	104	5/20/2014	13:16	3	3.426	3.172	2.87	2.575	2.167
H-VC-R	126	6/23/2014	16:22	3	3.417	3.167	2.891	2.575	2.059

Notes:

L.D. = Local datum.

LoggerRod = Top of fixed-length data logger installation rod.

TOS = Top of Staff Guage

^{**}Zero flow elevation estimates obtained from the 2012/13 surface water and meteorological monitoring report.

Table D-5. Seepage Pond discharge volumetric measurements, April 1 to June 30, 2014.

	Measurem	ent Date		Discharge		
HID	Date	Time	Method	m³/s	L/s	
H-SEEP	4/14/2014	15:40	V	0.003	3	
H-SEEP	5/9/2014	13:03	-	-	-	
H-SEEP	5/21/2014	13:15	V	0.001	1	
H-SEEP	6/24/2014	9:28	V	0.003	3	

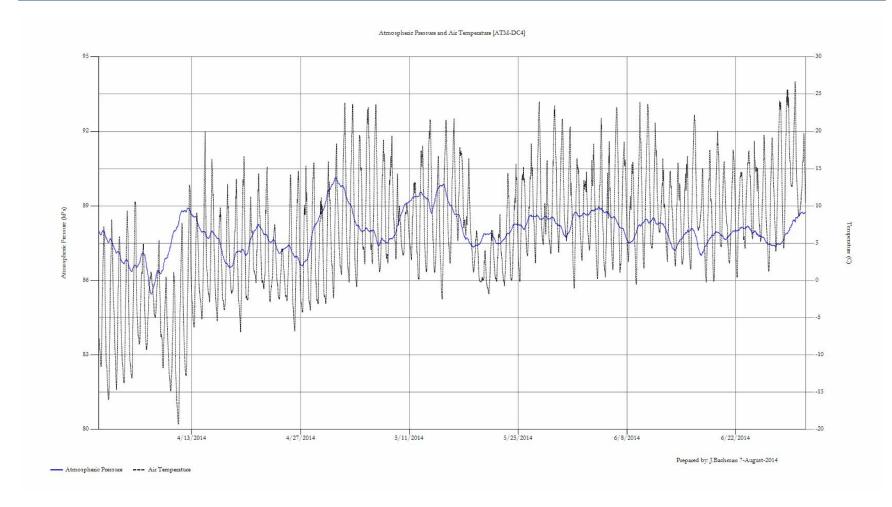


Figure D-1 ATM-DC4 atmospheric pressure and air temperature.

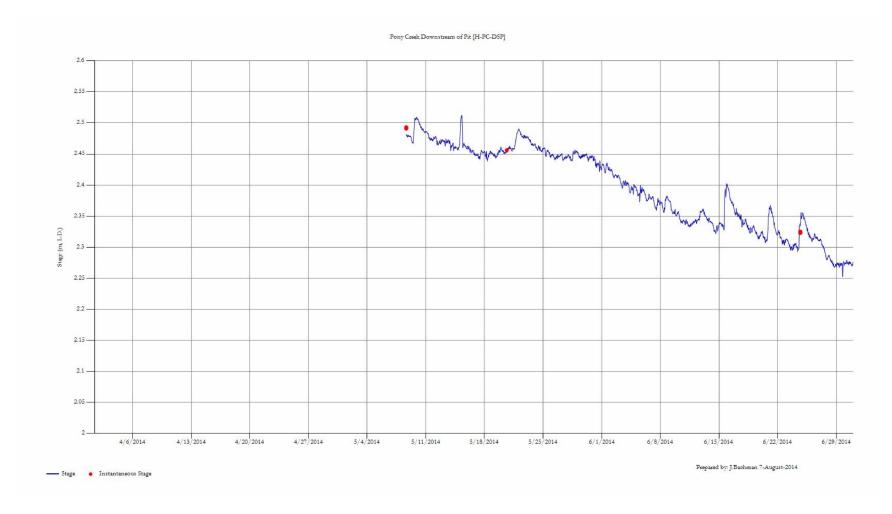


Figure D-2 H-PC-DSP Stage.

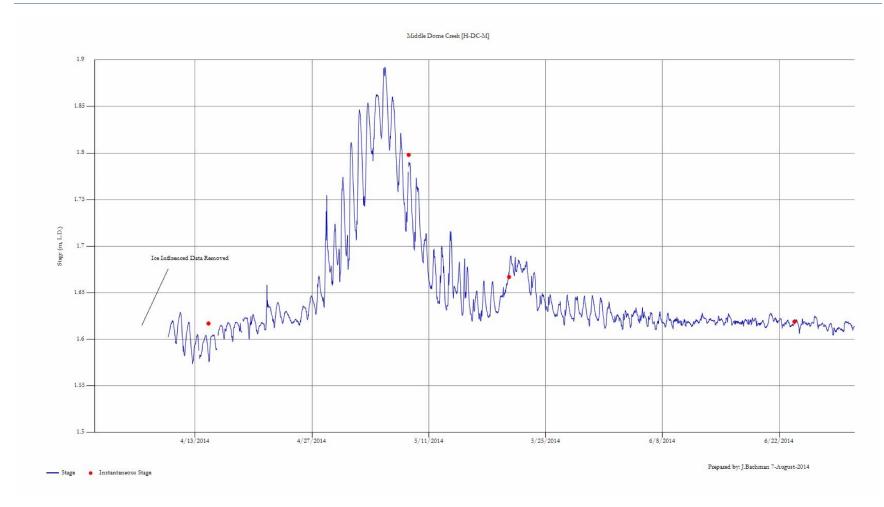


Figure D-3 H-DC-M Stage.

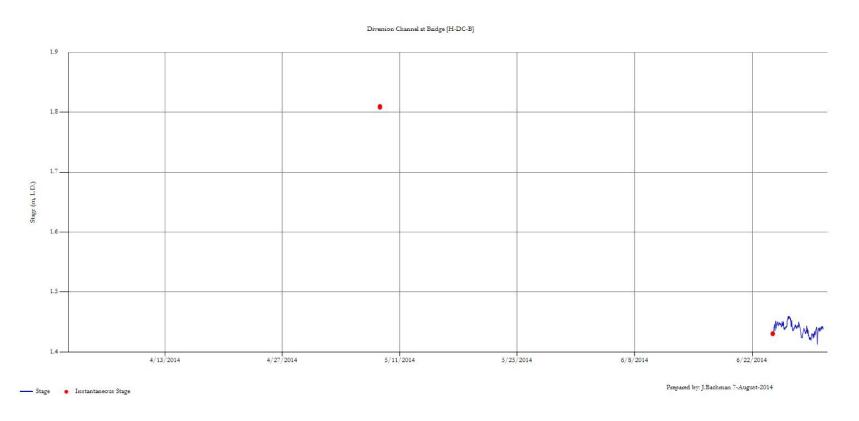


Figure D-4 H-DC-B Stage.

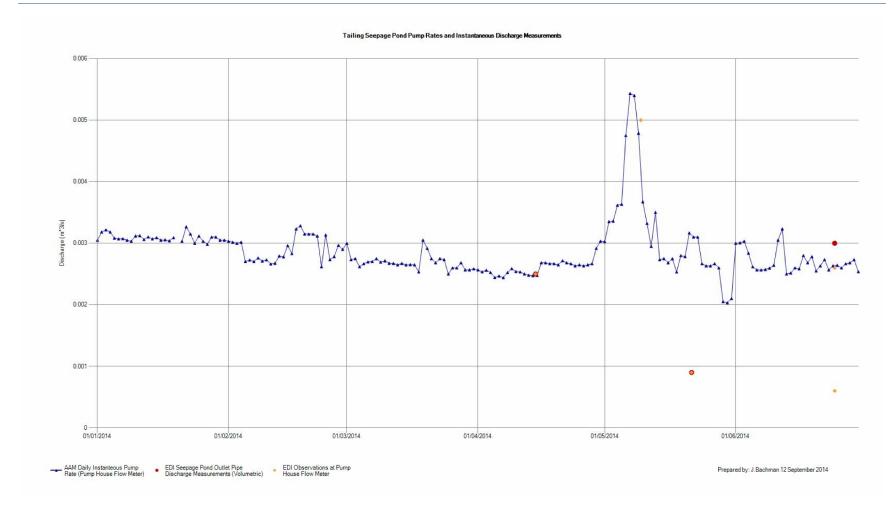


Figure D-5 H-SEEP Discharge and AAM Daily Flow Rates.

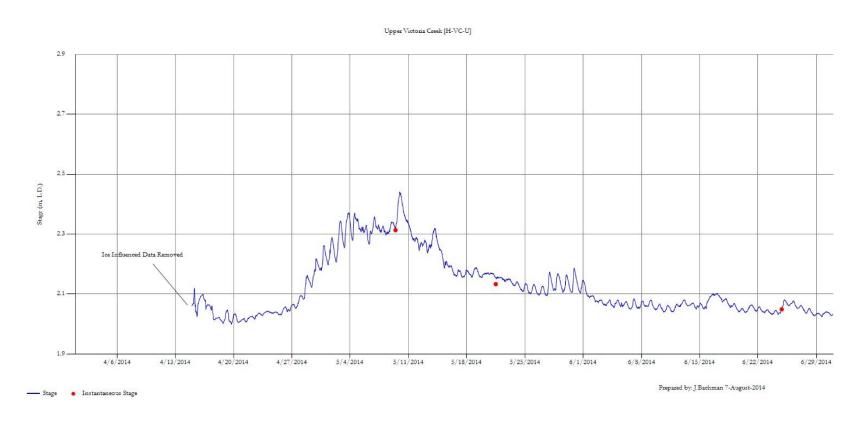


Figure D-6 H-VC-U Stage.

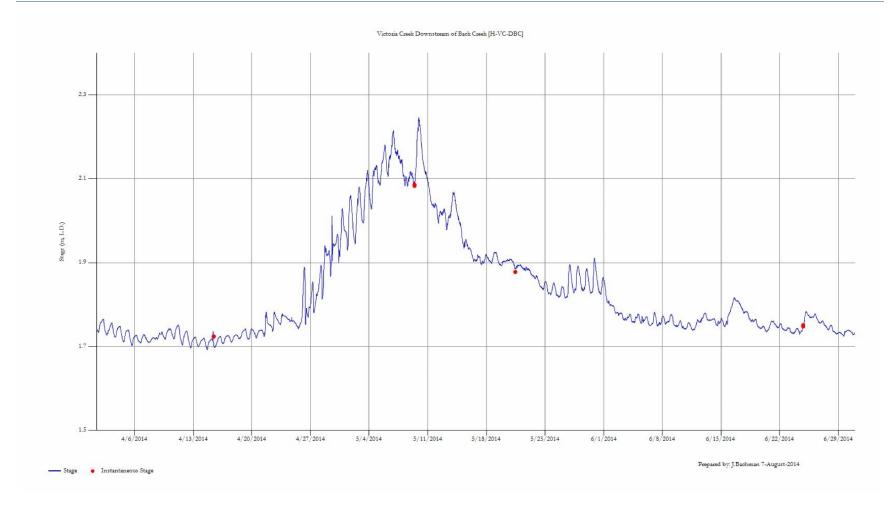


Figure D-7 H-VC-DBC Stage.

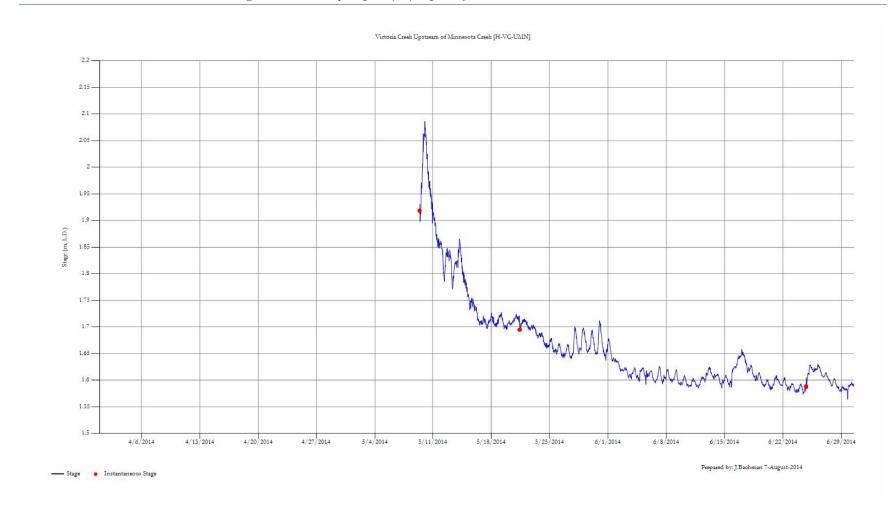


Figure D-8 H-VC-UMN Stage.

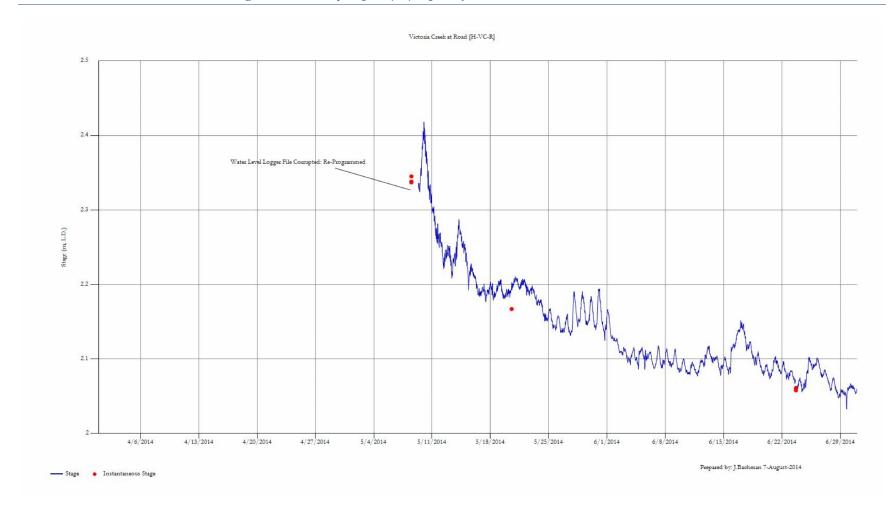


Figure D-9 H-VC-R Stage.

APPENDIX E Q1 SURFACE WATER QUALITY DATA

Table E1. Water Quality Results for the April 14-15, 2014 Trip.

Table E1. Water Quality Results for the A				Sample ID	0352-140414-016	0352-140414-017	0352-140414-018	0352-140414-019	0352-140414-009	0352-140414-010	QA/QC	0352-140414-011
			Mount Nansen	WQ Site ID	WQ-PIT-3	WQ-PIT-2	WQ-PIT-1	WQ-PW	WQ-SEEP	WQ-SEEP-r	WQ-SEEP	WQ-TP
Analyte	Units	CCME-WATER-F-AL	_	Date Sampled	4/14/2014	4/14/2014	4/14/2014	4/14/2014	4/14/2014	4/14/2014		4/14/2014
			Standards	Detection Limit	Depth 5.5 m	Depth 3.0 m	Depth 0.30 m			, ,		
Temperature (in-situ)	°C	-	-	-	3.8	1.8	0.3	1.3	1.8	-	-	0.3
Specific Conductivity (in-situ)	μS/cm	-	-	-	2531	2127	2150	382.4	1799	-	-	2901
pH (in-situ)	-	6.5 - 9.0	6.0 - 8.5	-	6.92	7.24	7.3	7.58	6.95	-	-	7.38
Turbidity (In-situ)	NTU	-	-	-	2.87	0.82	1.19	0.07	13.37	-	-	6.31
Dissolved Oxygen (in-situ)	mg/L	-	-	-	0.6	4.04	4.33	-	-	-	-	-
Colour, True	CU	15	-	5	-	-	-	<5.0	-	-	-	-
Conductivity	μS/cm	-	-	2	2290	2010	2080	370	1700	1680	1%	2750
Hardness (as CaCO3)	mg/L	-	-	0.5	1660	1390	1390	200	966	972	1%	1790
pH (lab)	pH	6.5 - 9.0	6.0 - 8.5	0.1	7.43	7.72	7.7	7.99	7.39	7.4	0%	7.83
Total Suspended Solids	mg/L	-	50	3	14.7	4	<3.0	-	30.7	28	9%	7.3
Total Dissolved Solids	mg/L	-	-	1	2120	1810	1790	229	1340	1340	0%	2580
Alkalinity, Bicarbonate (as CaCO3)	mg/L	-	-	1	207	218	211	-	223	235	5%	253
Alkalinity, Carbonate (as CaCO3)	mg/L	-	-	1	<1.0	<1.0	<1.0	-	<1.0	<1.0	-	<1.0
Alkalinity, Hydroxide (as CaCO3)	mg/L	-	-	1	<1.0	<1.0	<1.0	-	<1.0	<1.0	-	<1.0
Alkalinity, Total (as CaCO3)	mg/L	-	-	1	207	218	211	171	223	235	5%	253
Ammonia, Total (as N)	mg/L	0.75	-	0.005	0.226	0.0077	0.0088	-	4.41	4.84	10%	1.49
Chloride (CI)	mg/L	120	-	0.5	<10	<5.0	<5.0	<0.50	<5.0	<5.0	-	<10
Fluoride (F)	mg/L	0.12	-	0.02	0.54	0.36	0.38	0.1	<0.20	0.22	16%	0.69
Nitrate (as N)	mg/L	13	-	0.005	0.2	0.07	0.07	0.128	0.74	0.836	13%	<0.10
Nitrite (as N)	mg/L	0.06	-	0.001	<0.020	<0.010	<0.010	<0.0010	0.028	0.026	7%	<0.020
Sulfate (SO4)	mg/L	-	-	0.5	1380	1170	1160	33.9	790	782	1%	1710
Cyanide, Weak Acid Diss	mg/L	-	0.1	0.005	-	-	-	-	0.019	0.0123	35%	<0.0050
Cyanide, Total	mg/L	-	0.3	0.005	-	-	-	-	0.107	0.0791	26%	<0.0050
Cyanate	mg/L	-	-	0.2	-	-	-	-	<0.20	3.57	1779%	<0.20
Thiocyanate (SCN)	mg/L	-	-	0.5	-	-	-	-	3.33	3.81	14%	<0.50
Aluminum (Al)-Total	mg/L	0.1	-	0.003	0.012	0.0124	0.0156	<0.010	0.0127	0.0123	3%	0.0137
Antimony (Sb)-Total	mg/L	-	0.15	0.0001	0.00142	0.00322	0.00335	<0.00050	0.00075	0.00077	3%	0.0187
Arsenic (As)-Total	mg/L	0.005	-	0.0001	0.27	0.0115	0.0157	0.00036	0.0591	0.0581	2%	0.387
Barium (Ba)-Total	mg/L	-	1	0.00005	0.0123	0.0125	0.013	0.086	0.0581	0.059	2%	0.0382
Beryllium (Be)-Total	mg/L	-	-	0.0001	<0.00020	<0.00020	<0.00020	-	<0.00010	<0.00010	-	<0.00020
Bismuth (Bi)-Total	mg/L	-	-	0.0005	<0.0010	<0.0010	<0.0010	-	<0.00050	<0.00050	-	<0.0010
Boron (B)-Total	mg/L	-	-	0.01	<0.020	<0.020	<0.020	<0.10	0.08	0.081	1%	0.154
Cadmium (Cd)-Total	mg/L	0.000033	0.02	0.00001	0.00738	0.00426	0.00434	<0.00020	0.000878	0.000886	1%	0.00811
Calcium (Ca)-Total	mg/L	- 0.0000	- 0.04	0.05	447	382	380	45.7	281	293	4%	528
Chromium (Cr)-Total	mg/L	0.0089	0.04	0.0001	<0.00020	<0.00020	<0.00020	<0.0020	0.0005	0.00045	10%	0.00023
Cobalt (Co)-Total	mg/L	- 0.002	- 0.2	0.0001	0.00322	<0.00020	<0.00020		0.0075	0.00748	0%	0.0031
Copper (Cu)-Total	mg/L mg/L	0.002	0.2	0.0005	0.0022 8.09	0.0029 0.084	0.0032 0.121	<0.0010 <0.030	0.00357	0.00366 15	3% 4%	0.0407 1.53
Lead (Pb)-Total	mg/L	0.003	0.1	0.00005	0.00095	0.0031	0.00047	0.00065	0.000064	0.000066	3%	0.00675
Lithium (Li)-Total	mg/L	-	-	0.0005	0.0089	0.00031	0.0089	-	<0.00050	0.00055	12%	0.0105
Magnesium (Mg)-Total	mg/L	-	-	0.1	119	108	106	20.9	62.9	65.2	4%	115
Manganese (Mn)-Total	mg/L	-	0.5	0.00005	4.16	0.138	0.139	<0.0020	6.8	6.84	1%	113
Mercury (Hg)-Total	mg/L	0.000026	0.005	0.00003	<0.000010	<0.000010	<0.00010	<0.0020	<0.00010	<0.00010	-	<0.00010
Molybdenum (Mo)-Total	mg/L	0.00020	-	0.00001	0.00018	<0.00010	<0.00010	-	0.00101	0.00105	4%	0.00513
Nickel (Ni)-Total	mg/L	0.0073	0.3	0.0005	0.0018	<0.0010	<0.0010	-	0.00275	0.00103	1%	0.00515
Phosphorus (P)-Total	mg/L	-	-	0.003	<0.050	<0.050	<0.050	-	<0.050	<0.050	-	<0.050
Potassium (K)-Total	mg/L	-	-	0.03	5.51	4.37	4.23	0.79	6.63	6.9	4%	30.8
Selenium (Se)-Total	mg/L	0.001	-	0.0001	<0.00020	<0.00020	<0.00020	<0.0010	0.00018	0.0002	11%	<0.00020
Silicon (Si)-Total	mg/L	-	-	0.001	4.27	3.99	3.96	-	7.48	7.8	4%	4.24
Silver (Ag)-Total	mg/L	0.0001	0.1	0.00001	<0.000020	<0.000020	<0.000020	-	0.000038	0.000039	3%	0.000179
Sodium (Na)-Total	mg/L	-	-	0.0001	13.7	15.1	15	4.9	38.2	38.2	0%	41.1
Strontium (Sr)-Total	mg/L	-	-	0.0002	1.24	1.22	1.2	4.5	0.818	0.835	2%	1.38
Sulfur (S)-Total	mg/L	-	-	0.5002	471	391	386	-	278	282	1%	550
Thallium (TI)-Total	mg/L	0.0008	-	0.00001	0.000091	0.000077	0.000074	-	<0.000010	<0.00010	-	0.000629
		-	-	0.0001	<0.00091	<0.00020	<0.00074	-	<0.00010	<0.00010	-	<0.000829
Tin (Sn)-Total	mg/L											

Table E1. Water Quality Results for the April 14-15, 2014 Trip.

Table 11. Water Quality results for the A			Mount Nansen	Sample ID WQ Site ID	0352-140414-016 WQ-PIT-3	0352-140414-017 WQ-PIT-2	0352-140414-018 WQ-PIT-1	0352-140414-019 WQ-PW	0352-140414-009 WQ-SEEP	0352-140414-010 WQ-SEEP-r	QA/QC WQ-SEEP	0352-140414-011 WQ-TP
Analyte	Units	CCME-WATER-F-AL	Effluent Discharge	Date Sampled	4/14/2014	4/14/2014	4/14/2014	4/14/2014	4/14/2014	4/14/2014	WQ-SEEF	4/14/2014
			Standards	Detection Limit	Depth 5.5 m	Depth 3.0 m	Depth 0.30 m	,, = ,, = = :	,, = ,, = = :	,, = ,, = 0 = 1		,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,
Uranium (U)-Total	mg/L	0.015	-	0.00001	0.00403	0.00492	0.00493	0.00198	0.00225	0.00228	1%	0.00294
Vanadium (V)-Total	mg/L	-	-	0.001	<0.0020	<0.0020	<0.0020	-	0.0018	0.0019	6%	<0.0020
Zinc (Zn)-Total	mg/L	0.03	0.3	0.003	0.745	0.617	0.623	<0.050	0.0129	0.0135	5%	0.6
Dissolved Metals Filtration Location		-	-	n/a	FIELD	FIELD	FIELD	-	FIELD	FIELD	-	FIELD
Aluminum (Al)-Dissolved	mg/L	0.005	-	0.001	<0.0020	0.004	0.0027	-	0.0086	0.0096	12%	<0.0020
Antimony (Sb)-Dissolved	mg/L	-	-	0.0001	0.00124	0.00336	0.00338	-	0.00069	0.0007	1%	0.0123
Arsenic (As)-Dissolved	mg/L	0.005	0.15	0.0001	0.249	0.00603	0.00582	-	0.0481	0.0487	1%	0.228
Barium (Ba)-Dissolved	mg/L	-	-	0.00005	0.0122	0.0129	0.0129	-	0.0554	0.0561	1%	0.0364
Beryllium (Be)-Dissolved	mg/L	-	-	0.0001	<0.00020	<0.00020	<0.00020	-	<0.00010	<0.00010	-	<0.00020
Bismuth (Bi)-Dissolved	mg/L	-	-	0.0005	<0.0010	<0.0010	<0.0010	-	<0.00050	<0.00050	-	<0.0010
Boron (B)-Dissolved	mg/L	-	-	0.01	<0.020	<0.020	<0.020	-	0.076	0.076	0%	0.157
Cadmium (Cd)-Dissolved	mg/L	0.000033	-	0.00001	0.0072	0.00429	0.00414	-	0.000319	0.000323	1%	0.00735
Calcium (Ca)-Dissolved	mg/L	-	-	0.05	455	380	374	-	282	281	0%	515
Chromium (Cr)-Dissolved	mg/L	0.0089	-	0.0001	<0.00020	<0.00020	<0.00020	-	0.0003	0.00037	23%	<0.00020
Cobalt (Co)-Dissolved	mg/L	-	-	0.0001	0.00324	<0.00020	<0.00020	-	0.00725	0.0074	2%	0.00299
Copper (Cu)-Dissolved	mg/L	0.002	-	0.0002	0.00115	0.00217	0.00212	-	0.00145	0.00148	2%	0.00659
Iron (Fe)-Dissolved	mg/L	0.3	-	0.01	7.85	<0.010	<0.010	-	12.9	13	1%	0.713
Lead (Pb)-Dissolved	mg/L	0.001	-	0.00005	<0.00010	<0.00010	<0.00010	-	<0.000050	<0.000050	-	0.00012
Lithium (Li)-Dissolved	mg/L	-	-	0.0005	0.0073	0.0098	0.0093	-	0.00054	<0.00050	9%	0.0104
Magnesium (Mg)-Dissolved	mg/L	-	-	0.1	127	108	110	-	63.8	65.5	3%	122
Manganese (Mn)-Dissolved	mg/L	-	-	0.00005	4.14	0.103	0.103	-	6.56	6.77	3%	10.8
Mercury (Hg)-Dissolved	mg/L	0.000026	-	0.00001	<0.00010	<0.000010	<0.00010	-	<0.00010	<0.000010	-	<0.00010
Molybdenum (Mo)-Dissolved	mg/L	0.073	-	0.00005	0.00018	<0.00010	<0.00010	-	0.00101	0.00101	0%	0.0053
Nickel (Ni)-Dissolved	mg/L	0.1	-	0.0005	0.0013	<0.0010	<0.0010	-	0.00258	0.00269	4%	0.0065
Phosphorus (P)-Dissolved	mg/L	-	-	0.05	<0.050	<0.050	<0.050	-	<0.050	<0.050	-	<0.050
Potassium (K)-Dissolved	mg/L	-	-	0.1	5.55	4.31	4.27	-	6.62	6.62	0%	29.9
Selenium (Se)-Dissolved	mg/L	0.001	-	0.0001	<0.00020	<0.00020	<0.00020	-	0.00022	0.0002	9%	<0.00020
Silicon (Si)-Dissolved	mg/L	-	-	0.05	4.34	3.97	3.99	-	7.59	7.61	0%	4.1
Silver (Ag)-Dissolved	mg/L	0.0001	-	0.00001	<0.000020	<0.000020	<0.000020	-	0.000011	0.00001	9%	<0.000020
Sodium (Na)-Dissolved	mg/L	-	-	0.05	13.8	14.9	15	-	36.3	37	2%	39.6
Strontium (Sr)-Dissolved	mg/L	-	-	0.0002	1.21	1.26	1.26	-	0.822	0.834	1%	1.42
Sulfur (S)-Dissolved	mg/L	-	-	0.5	473	372	380	-	265	270	2%	550
Thallium (TI)-Dissolved	mg/L	0.0008	-	0.00001	0.000084	0.000074	0.000076	-	<0.00010	<0.000010	-	0.000619
Tin (Sn)-Dissolved	mg/L	-	-	0.0001	<0.00020	<0.00020	<0.00020	-	<0.00010	<0.00010	-	<0.00020
Titanium (Ti)-Dissolved	mg/L	-	-	0.01	<0.020	<0.020	<0.020	-	<0.010	<0.010	-	<0.020
Uranium (U)-Dissolved	mg/L	0.015	-	0.00001	0.00393	0.00491	0.00503	-	0.00226	0.00221	2%	0.00312
Vanadium (V)-Dissolved	mg/L	-	-	0.001	<0.0020	<0.0020	<0.0020	-	0.0014	0.0014	0%	<0.0020
Zinc (Zn)-Dissolved	mg/L	0.03	-	0.001	0.75	0.625	0.621	-	0.0126	0.014	11%	0.564

Applied Guidelines: Federal CCME Canadian Environmental Quality Guidelines (JUL, 2012), CCME: Freshwater Aquatic Life

Mount Nansen Effluent Discharge Standards

Color Key:

Exceeds CCME Guideline Exceeds MN Effluent Discharge Standards Exceeds both CCME and MN Standards

Exceeds 10% difference threshold for QA/QC replicate samples

Note: For those guidelines that are pH (Al) and hardness dependent (Cd, Cu, Pb, Ni), the most conservative guideline has been applied.

Table E1. Water Quality Results for the April 14-15, 2014 Trip.

Table E1. Water Quality Results for the A	vprii 14-15, 2014	irip.		I				I	I			I
Analyte	Units	CCME-WATER-F-AL	Mount Nansen Effluent Discharge Standards	Sample ID WQ Site ID Date Sampled Detection Limit	0352-140414-008 WQ-DC-U 4/14/2014	0352-140414-012 WQ-DC-B 4/14/2014	0352-140414-007 WQ-VC-R+150 4/14/2014	0352-140415-006 WQ-VC-UMN 4/15/2014	0352-140415-004 WQ-VC-U 4/15/2014	0352-140415-002 WQ-VC-U-r 4/15/2014	QA/QC WQ-VC-U	0352-140415-003 WQ-VC-DBC 4/15/2014
Temperature (in-situ)	°C	-	-	Detection Limit	1.2	0.3	0	0	0.1	-	-	0.1
Specific Conductivity (in-situ)	μS/cm	-	-	-	1677	2863	298	315.3	213.7	-	-	245.2
pH (in-situ)	μ3/cm	6.5 - 9.0	6.0 - 8.5	-	7.31	6.99	6.7	7.27	7.05	-	-	7.11
Turbidity (In-situ)	NTU			+								
		-	-	-	13.17	36.6	1.65	0.07	0.02	-	-	0.01
Dissolved Oxygen (in-situ)	mg/L CU	- 15	-	-	-	-	-	-	-	-	-	-
Colour, True		15	-	5	1630	770	- 201	- 210	- 227	- 240	- 10/	
Conductivity	μS/cm	-	-	2	1630 940	779	291	310	237	240	1%	238
Hardness (as CaCO3)	mg/L	-	-	0.5		802	150	157	121		2%	124
pH (lab)	pH	6.5 - 9.0	6.0 - 8.5 50	0.1	7.8	7.79 81.3	7.74	7.74	7.63	7.66	0% 14%	7.68
Total Suspended Solids	mg/L	-		3	19.3		<3.0	<3.0	<3.0			
Total Dissolved Solids	mg/L	-	-	1	1270	670	163	175	130	129	1%	127
Alkalinity, Bicarbonate (as CaCO3)	mg/L	-	-	1	230	83.7	104	109	107	103	4%	101
Alkalinity, Carbonate (as CaCO3)	mg/L	-	-	1	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	-	<1.0
Alkalinity, Hydroxide (as CaCO3)	mg/L	-	-	1	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	-	<1.0
Alkalinity, Total (as CaCO3)	mg/L	-	-	1	230	83.7	104	109	107	103	4%	101
Ammonia, Total (as N)	mg/L	0.75	-	0.005	3.55	0.0798	<0.0050	<0.0050	<0.0050	<0.0050	-	<0.0050
Chloride (Cl)	mg/L	120	-	0.5	<5.0	<0.50	<0.50	<0.50	<0.50	<0.50	-	<0.50
Fluoride (F)	mg/L	0.12	-	0.02	<0.20	0.045	0.056	0.051	0.046	0.046	0%	0.046
Nitrate (as N)	mg/L	13	-	0.005	0.57	0.0293	0.0787	0.032	0.0495	0.0497	0%	0.0503
Nitrite (as N)	mg/L	0.06	-	0.001	0.02	0.0016	<0.0010	<0.0010	<0.0010	<0.0010	-	<0.0010
Sulfate (SO4)	mg/L	-	-	0.5	748	332	44	50.3	20.6	20.7	0%	20.1
Cyanide, Weak Acid Diss	mg/L	-	0.1	0.005	0.0124	<0.0050	<0.0050	<0.0050	<0.0050	<0.0050	-	<0.0050
Cyanide, Total	mg/L	-	0.3	0.005	0.0479	<0.0050	<0.0050	<0.0050	<0.0050	<0.0050	-	<0.0050
Cyanate	mg/L	-	-	0.2	4.62	<0.20	<0.20	<0.20	<0.20	<0.20	-	<0.20
Thiocyanate (SCN)	mg/L	-	-	0.5	1.77	<0.50	<0.50	<0.50	<0.50	<0.50	-	<0.50
Aluminum (Al)-Total	mg/L	0.1	-	0.003	0.0238	2.33	0.0151	0.0064	0.008	0.0395	394%	0.009
Antimony (Sb)-Total	mg/L	-	0.15	0.0001	0.00059	0.00154	0.00045	0.00033	0.00011	0.0001	9%	0.0001
Arsenic (As)-Total	mg/L	0.005	-	0.0001	0.0406	0.0243	0.00119	0.00136	0.00029	0.00032	10%	0.00028
Barium (Ba)-Total	mg/L	-	1	0.00005	0.0633	0.0667	0.0912	0.0878	0.0959	0.0863	10%	0.0894
Beryllium (Be)-Total	mg/L	-	-	0.0001	<0.00010	<0.00010	<0.00010	<0.00010	<0.00010	<0.00010	-	<0.00010
Bismuth (Bi)-Total	mg/L	-	-	0.0005	<0.00050	<0.00050	<0.00050	<0.00050	<0.00050	<0.00050	-	<0.00050
Boron (B)-Total	mg/L	-	-	0.01	0.07	<0.010	<0.010	<0.010	<0.010	<0.010	-	<0.010
Cadmium (Cd)-Total	mg/L	0.000033	0.02	0.00001	0.00045	0.000207	0.000038	0.000085	0.000033	0.000034	3%	0.000036
Calcium (Ca)-Total	mg/L	-	-	0.05	261	93.3	40.1	40.9	32.2	30.9	4%	32.4
Chromium (Cr)-Total	mg/L	0.0089	0.04	0.0001	0.00034	0.00408	0.0001	0.00011	0.00012	0.00014	17%	<0.00010
Cobalt (Co)-Total	mg/L	0.0005		0.0001	0.00588	0.00400	<0.0001	0.00011	<0.00012	<0.00014	-	<0.00010
Copper (Cu)-Total	mg/L	0.002	0.2	0.0001	0.00222	0.00625	0.0010	0.0012	0.00107	0.00122	14%	0.0010
Iron (Fe)-Total		0.002	1	0.003	7.55	6.2	0.00120	0.00124	0.00107	0.00122	470%	0.00113
Lead (Pb)-Total	mg/L mg/L	0.003	0.1	0.00005	0.000053	0.0079	<0.00050	<0.00050	<0.00050	0.00073	49%	<0.00050
Lithium (Li)-Total	mg/L	0.003	-	0.0005	0.0008	0.0079	0.00079	<0.00050	<0.00050	<0.00050	49%	<0.00050
					65.3		<u> </u>					
Magnesium (Mg)-Total	mg/L	-	0.5	0.1	5.86	19.4 0.345	13.5	14.7	11.3	10.7 0.0797	5% 5%	11.4 0.0833
Manganese (Mn)-Total	mg/L	- 0.00036		0.00005			0.01	0.0574	0.0757			
Mercury (Hg)-Total	mg/L	0.000026	0.005	0.00001	<0.000010	<0.00010	<0.000010	<0.00010	<0.00010	<0.00010	- 00/	<0.000010
Molybdenum (Mo)-Total	mg/L	0.0073	-	0.00005	0.000943	0.000509	0.000357	0.000301	0.000309	0.000333	8%	0.000344
Nickel (Ni)-Total	mg/L	0.1	0.3	0.0005	0.00211	0.00378	<0.00050	<0.00050	<0.00050	0.00051	4%	<0.00050
Phosphorus (P)-Total	mg/L	-	-	0.05	<0.050	0.051	<0.050	<0.050	<0.050	<0.050	-	<0.050
Potassium (K)-Total	mg/L	-	-	0.1	5.82	1.5	1.1	1.21	0.86	0.82	5%	0.82
Selenium (Se)-Total	mg/L	0.001	-	0.0001	0.00016	0.00012	<0.00010	<0.00010	<0.00010	<0.00010	-	<0.00010
Silicon (Si)-Total	mg/L	-	-	0.05	6.77	6.45	6.86	7.07	6.64	6.39	4%	6.62
Silver (Ag)-Total	mg/L	0.0001	0.1	0.00001	0.000023	0.000284	<0.00010	<0.000010	<0.00010	0.000019	111%	<0.00010
Sodium (Na)-Total	mg/L	-	-	0.05	32.1	2.45	4.19	4.59	3.08	2.93	5%	3.04
Strontium (Sr)-Total	mg/L	-	-	0.0002	0.853	0.319	0.355	0.343	0.345	0.323	6%	0.338
Sulfur (S)-Total	mg/L	-	-	0.5	255	79.3	15.9	17.9	7.44	7.27	2%	7.4
Thallium (Tl)-Total	mg/L	0.0008	-	0.00001	<0.000010	0.000059	<0.00010	<0.000010	<0.00010	<0.000010	-	<0.00010
Tin (Sn)-Total	mg/L	-	-	0.0001	<0.00010	<0.00010	<0.00010	<0.00010	<0.00010	<0.00010	-	<0.00010
Titanium (Ti)-Total	mg/L	-	-	0.01	<0.010	0.117	<0.010	<0.010	<0.010	<0.010	-	<0.010

Table E1. Water Quality Results for the April 14-15, 2014 Trip.

Table E1. Water Quality Results for the A				Sample ID	0352-140414-008	0352-140414-012	0352-140414-007	0352-140415-006	0352-140415-004	0352-140415-002	QA/QC	0352-140415-003
Analyte	Units	CCME-WATER-F-AL	Mount Nansen Effluent Discharge	WQ Site ID	WQ-DC-U	WQ-DC-B	WQ-VC-R+150	WQ-VC-UMN	WQ-VC-U	WQ-VC-U-r	WQ-VC-U	WQ-VC-DBC
Analyte	Oilles	CCIVIL-WATER-1-AL	Standards	Date Sampled	4/14/2014	4/14/2014	4/14/2014	4/15/2014	4/15/2014	4/15/2014		4/15/2014
				Detection Limit								
Uranium (U)-Total	mg/L	0.015	-	0.00001	0.00207	0.00104	0.000786	0.000669	0.000662	0.000655	1%	0.000706
Vanadium (V)-Total	mg/L	-	-	0.001	0.0011	0.0084	<0.0010	<0.0010	<0.0010	<0.0010	-	<0.0010
Zinc (Zn)-Total	mg/L	0.03	0.3	0.003	0.0075	0.0331	0.0035	0.0064	<0.0030	<0.0030	-	<0.0030
Dissolved Metals Filtration Location		-	-	n/a	FIELD	FIELD	FIELD	FIELD	FIELD	FIELD	-	FIELD
Aluminum (AI)-Dissolved	mg/L	0.005	-	0.001	0.0054	0.0031	0.0045	0.0079	0.0061	0.0067	10%	0.0058
Antimony (Sb)-Dissolved	mg/L	-	-	0.0001	0.00051	0.00041	0.00042	0.00031	<0.00010	<0.00010	-	<0.00010
Arsenic (As)-Dissolved	mg/L	0.005	0.15	0.0001	0.0256	0.00283	0.00112	0.00135	0.00026	0.00026	0%	0.00028
Barium (Ba)-Dissolved	mg/L	-	-	0.00005	0.0568	0.0431	0.0911	0.0864	0.0943	0.0886	6%	0.0896
Beryllium (Be)-Dissolved	mg/L	-	-	0.0001	<0.00010	<0.00010	<0.00010	<0.00010	<0.00010	<0.00010	-	<0.00010
Bismuth (Bi)-Dissolved	mg/L	-	-	0.0005	<0.00050	<0.00050	<0.00050	<0.00050	<0.00050	<0.00050	-	<0.00050
Boron (B)-Dissolved	mg/L	-	-	0.01	0.062	<0.010	<0.010	<0.010	<0.010	<0.010	-	<0.010
Cadmium (Cd)-Dissolved	mg/L	0.000033	-	0.00001	0.000134	0.000033	0.000032	0.000088	0.000034	0.000035	3%	0.000035
Calcium (Ca)-Dissolved	mg/L	-	-	0.05	262	198	37.7	39.8	30.8	31.5	2%	31.5
Chromium (Cr)-Dissolved	mg/L	0.0089	-	0.0001	0.00023	<0.00010	<0.00010	<0.00010	<0.00010	<0.00010	-	<0.00010
Cobalt (Co)-Dissolved	mg/L	-	-	0.0001	0.0058	0.00073	<0.00010	0.00011	<0.00010	<0.00010	-	<0.00010
Copper (Cu)-Dissolved	mg/L	0.002	-	0.0002	0.00114	0.00043	0.00115	0.00117	0.00101	0.00117	16%	0.00106
Iron (Fe)-Dissolved	mg/L	0.3	-	0.01	3.97	2.45	<0.010	<0.010	<0.010	<0.010	-	<0.010
Lead (Pb)-Dissolved	mg/L	0.001	-	0.00005	<0.000050	<0.000050	<0.000050	<0.000050	<0.000050	<0.000050	-	<0.000050
Lithium (Li)-Dissolved	mg/L	-	-	0.0005	0.00051	0.00166	0.00101	<0.00050	<0.00050	0.00058	18%	<0.00050
Magnesium (Mg)-Dissolved	mg/L	-	-	0.1	69.4	74.5	13.5	14	10.8	10.9	1%	11
Manganese (Mn)-Dissolved	mg/L	-	-	0.00005	5.84	1.06	0.00929	0.0556	0.0735	0.0752	2%	0.081
Mercury (Hg)-Dissolved	mg/L	0.000026	-	0.00001	<0.000010	<0.000010	<0.00010	<0.00010	<0.000010	<0.00010	-	<0.000010
Molybdenum (Mo)-Dissolved	mg/L	0.073	-	0.00005	0.000827	0.000289	0.000317	0.000298	0.000283	0.00031	10%	0.000322
Nickel (Ni)-Dissolved	mg/L	0.1	-	0.0005	0.00205	0.00065	<0.00050	<0.00050	<0.00050	<0.00050	-	<0.00050
Phosphorus (P)-Dissolved	mg/L	-	-	0.05	<0.050	<0.050	<0.050	<0.050	<0.050	<0.050	-	<0.050
Potassium (K)-Dissolved	mg/L	-	-	0.1	6.05	2.08	1.1	1.16	0.81	0.82	1%	0.84
Selenium (Se)-Dissolved	mg/L	0.001	-	0.0001	0.00015	<0.00010	<0.00010	<0.00010	<0.00010	<0.00010	-	<0.00010
Silicon (Si)-Dissolved	mg/L	-	-	0.05	6.82	3.74	6.94	6.95	6.54	6.55	0%	6.59
Silver (Ag)-Dissolved	mg/L	0.0001	-	0.00001	<0.000010	<0.00010	<0.000010	<0.00010	<0.00010	<0.00010	-	<0.000010
Sodium (Na)-Dissolved	mg/L	-	-	0.05	32.3	8.86	4.14	4.61	3.02	2.92	3%	2.94
Strontium (Sr)-Dissolved	mg/L	-	-	0.0002	0.793	0.685	0.327	0.346	0.329	0.327	1%	0.325
Sulfur (S)-Dissolved	mg/L	-	-	0.5	255	202	15.5	17.6	7.29	7.47	2%	7.34
hallium (TI)-Dissolved	mg/L	0.0008	-	0.00001	<0.000010	<0.00010	<0.00010	<0.00010	<0.00010	<0.00010	-	<0.00010
Tin (Sn)-Dissolved	mg/L	-	-	0.0001	<0.00010	<0.00010	<0.00010	<0.00010	<0.00010	<0.00010	-	<0.00010
Titanium (Ti)-Dissolved	mg/L	-	-	0.01	<0.010	<0.010	<0.010	<0.010	<0.010	<0.010	-	<0.010
Uranium (U)-Dissolved	mg/L	0.015	-	0.00001	0.0021	0.00271	0.00073	0.000652	0.000629	0.000646	3%	0.000685
Vanadium (V)-Dissolved	mg/L	-	-	0.001	<0.0010	<0.0010	<0.0010	<0.0010	<0.0010	<0.0010	-	<0.0010
Zinc (Zn)-Dissolved	mg/L	0.03	-	0.001	0.007	0.0053	0.0033	0.0076	0.002	0.0016	20%	0.0014

Table E1. Water Quality Results for the April 14-15, 2014 Trip.

				Sample ID	0352-140414-FIELD-BLANK	0352-140415-TRAVEL-BLANK
			Mount Nansen	WQ Site ID	Field Blank	Travel Blank
Analyte	Units	CCME-WATER-F-AL	Effluent Discharge	Date Sampled	4/14/2014	4/15/2014
			Standards	Detection Limit		
Femperature (in-situ)	°C	-	-	-	-	-
Specific Conductivity (in-situ)	μS/cm	-	-	-	-	-
oH (in-situ)	-	6.5 - 9.0	6.0 - 8.5	-	-	-
Furbidity (In-situ)	NTU	-	-	-	-	-
Dissolved Oxygen (in-situ)	mg/L	-	-	-	-	-
Colour, True	CU	15	-	5	-	-
Conductivity	μS/cm	-	-	2	<2.0	<2.0
Hardness (as CaCO3)	mg/L	-	-	0.5	<0.50	-
pH (lab)	рН	6.5 - 9.0	6.0 - 8.5	0.1	5.21	5.31
Total Suspended Solids	mg/L	-	50	3	<3.0	<3.0
Total Dissolved Solids	mg/L	-	-	1	<1.0	<1.0
Alkalinity, Bicarbonate (as CaCO3)	mg/L	-	-	1	<1.0	<1.0
Alkalinity, Carbonate (as CaCO3)	mg/L	-	-	1	<1.0	<1.0
Alkalinity, Hydroxide (as CaCO3)	mg/L	-	-	1	<1.0	<1.0
Alkalinity, Total (as CaCO3)	mg/L	-	-	1	<1.0	<1.0
Ammonia, Total (as N)	mg/L	0.75	-	0.005	<0.0050	<0.0050
Chloride (CI)	mg/L	120	-	0.5	<0.50	<0.50
Fluoride (F)	mg/L	0.12	-	0.02	<0.020	<0.020
Nitrate (as N)	mg/L	13	-	0.005	<0.0050	<0.0050
Nitrite (as N)	mg/L	0.06	-	0.001	<0.0010	<0.0010
Sulfate (SO4)	mg/L	-	-	0.5	<0.50	<0.50
Cyanide, Weak Acid Diss	mg/L	-	0.1	0.005	<0.0050	<0.0050
Cyanide, Total	mg/L	-	0.3	0.005	<0.0050	<0.0050
Cyanate	mg/L	-	-	0.2	<0.20	<0.20
Γhiocyanate (SCN)	mg/L	-	-	0.5	<0.50	<0.50
Aluminum (Al)-Total	mg/L	0.1	-	0.003	<0.0030	<0.0030
Antimony (Sb)-Total	mg/L	-	0.15	0.0001	<0.00010	<0.00010
Arsenic (As)-Total	mg/L	0.005	-	0.0001	<0.00010	<0.00010
Barium (Ba)-Total	mg/L	-	1	0.00005	<0.00050	<0.00050
Beryllium (Be)-Total	mg/L	-	-	0.0001	<0.00010	<0.00010
Bismuth (Bi)-Total	mg/L	-	-	0.0005	<0.00050	<0.00050
Boron (B)-Total	mg/L	-	-	0.01	<0.010	<0.010
Cadmium (Cd)-Total	mg/L	0.000033	0.02	0.00001	<0.00010	<0.00010
Calcium (Ca)-Total	mg/L	-	-	0.05	<0.050	<0.050
Chromium (Cr)-Total	mg/L	0.0089	0.04	0.0001	<0.00010	<0.00010
Cobalt (Co)-Total	mg/L	-	-	0.0001	<0.00010	<0.00010
Copper (Cu)-Total	mg/L	0.002	0.2	0.0005	<0.00050	<0.00050
ron (Fe)-Total	mg/L	0.3	1	0.01	<0.010	<0.010
ead (Pb)-Total	mg/L	0.003	0.1	0.00005	<0.00050	<0.00050
ithium (Li)-Total	mg/L	-	-	0.0005	<0.00050	<0.0050
Magnesium (Mg)-Total	mg/L	-	-	0.1	<0.10	<0.10
Manganese (Mn)-Total	mg/L	-	0.5	0.00005	<0.00050	<0.00050
Mercury (Hg)-Total	mg/L	0.000026	0.005	0.00001	<0.00010	<0.000010
Molybdenum (Mo)-Total	mg/L	0.0073	-	0.00005	<0.000050	<0.000050
Nickel (Ni)-Total	mg/L	0.1	0.3	0.0005	<0.00050	<0.00050
Phosphorus (P)-Total	mg/L	-	-	0.05	<0.050	<0.050
Potassium (K)-Total	mg/L	-	-	0.1	<0.10	<0.10
selenium (Se)-Total	mg/L	0.001	-	0.0001	<0.00010	<0.00010
illicon (Si)-Total	mg/L	-	-	0.05	<0.050	<0.050
Silver (Ag)-Total	mg/L	0.0001	0.1	0.00001	<0.00010	<0.000010
Godium (Na)-Total	mg/L	-	-	0.05	<0.050	<0.050
Strontium (Sr)-Total	mg/L	-	-	0.0002	<0.00020	<0.00020
Sulfur (S)-Total	mg/L	-	-	0.5	<0.50	<0.50
Thallium (TI)-Total	mg/L	0.0008	-	0.00001	<0.00010	<0.00010
Fin (Sn)-Total	mg/L	-	-	0.0001	<0.00010	<0.00010
Fitanium (Ti)-Total	mg/L	-	-	0.01	<0.010	<0.010

Table E1. Water Quality Results for the April 14-15, 2014 Trip.

Table E1. Water Quality Results for the Ap	111 13, 2014			Sample ID	0352-140414-FIELD-BLANK	0352-140415-TRAVEL-BLANK
			Mount Nansen	WQ Site ID	Field Blank	Travel Blank
Analyte	Units	CCME-WATER-F-AL	Effluent Discharge	Date Sampled	4/14/2014	4/15/2014
			Standards	Detection Limit		
Uranium (U)-Total	mg/L	0.015	-	0.00001	<0.00010	<0.000010
Vanadium (V)-Total	mg/L	-	-	0.001	<0.0010	<0.0010
Zinc (Zn)-Total	mg/L	0.03	0.3	0.003	<0.0030	<0.0030
Dissolved Metals Filtration Location		-	-	n/a	FIELD	-
Aluminum (Al)-Dissolved	mg/L	0.005	-	0.001	<0.0010	-
Antimony (Sb)-Dissolved	mg/L	-	-	0.0001	<0.00010	-
Arsenic (As)-Dissolved	mg/L	0.005	0.15	0.0001	<0.00010	-
Barium (Ba)-Dissolved	mg/L	-	-	0.00005	<0.00050	-
Beryllium (Be)-Dissolved	mg/L	-	-	0.0001	<0.00010	-
Bismuth (Bi)-Dissolved	mg/L	-	-	0.0005	<0.00050	-
Boron (B)-Dissolved	mg/L	-	-	0.01	<0.010	-
Cadmium (Cd)-Dissolved	mg/L	0.000033	-	0.00001	<0.00010	-
Calcium (Ca)-Dissolved	mg/L	-	-	0.05	<0.050	-
Chromium (Cr)-Dissolved	mg/L	0.0089	-	0.0001	<0.00010	-
Cobalt (Co)-Dissolved	mg/L	-	-	0.0001	<0.00010	-
Copper (Cu)-Dissolved	mg/L	0.002	-	0.0002	<0.00020	-
Iron (Fe)-Dissolved	mg/L	0.3	-	0.01	<0.010	-
Lead (Pb)-Dissolved	mg/L	0.001	-	0.00005	<0.00050	-
Lithium (Li)-Dissolved	mg/L	-	-	0.0005	<0.00050	-
Magnesium (Mg)-Dissolved	mg/L	-	-	0.1	<0.10	-
Manganese (Mn)-Dissolved	mg/L	-	-	0.00005	<0.00050	-
Mercury (Hg)-Dissolved	mg/L	0.000026	-	0.00001	<0.00010	-
Molybdenum (Mo)-Dissolved	mg/L	0.073	-	0.00005	<0.00050	-
Nickel (Ni)-Dissolved	mg/L	0.1	-	0.0005	<0.00050	-
Phosphorus (P)-Dissolved	mg/L	-	-	0.05	<0.050	-
Potassium (K)-Dissolved	mg/L	-	-	0.1	<0.10	-
Selenium (Se)-Dissolved	mg/L	0.001	-	0.0001	<0.00010	-
Silicon (Si)-Dissolved	mg/L	-	-	0.05	<0.050	-
Silver (Ag)-Dissolved	mg/L	0.0001	-	0.00001	<0.00010	-
Sodium (Na)-Dissolved	mg/L	-	-	0.05	<0.050	-
Strontium (Sr)-Dissolved	mg/L	-	-	0.0002	<0.00020	-
Sulfur (S)-Dissolved	mg/L	-	-	0.5	<0.50	-
Thallium (TI)-Dissolved	mg/L	0.0008	-	0.00001	<0.00010	-
Tin (Sn)-Dissolved	mg/L	-	-	0.0001	<0.00010	-
Titanium (Ti)-Dissolved	mg/L	-	-	0.01	<0.010	-
Uranium (U)-Dissolved	mg/L	0.015	-	0.00001	<0.00010	-
Vanadium (V)-Dissolved	mg/L	-	-	0.001	<0.0010	-
Zinc (Zn)-Dissolved	mg/L	0.03	-	0.001	<0.0010	-

Table E2. Summary of Water Quality Results for the May 8-9, 2014 Trip.

Table E2. Summary of Water Quality Res Analyte	Units	CCME-WATER-F-AL	Mount Nansen Effluent Discharge Standards	Sample ID WQ Site ID Date Sampled Detection Limit	0352-140509-018 WQ-DC-DX 9-May-14	0352-140509-022 WQ-MS-S-03** 9-May-14	0352-140509-023 WQ-MS-S-08 9-May-14	0352-140509-024 WQ-NW-SEEP-02** 9-May-14	0352-140509-021 WQ-DC-DX+105 9-May-14	0352-140509-019 WQ-DC-D1b 9-May-14	0352-140509-017 WQ-DESS-03 9-May-14	0352-140509-008 WQ-BC 9-May-14	0352-140509-003 WQ-DC-R 9-May-14	0352-140509-004 WQ-DC-R-r 9-May-14	QA/QC WQ-DC-R
Temperature (in-situ)	°C	-	-	-	0.1	1.2	1.8	1.9	1.4	0	1.9	1.9	0	-	-
Specific Conductivity (in-situ)	μS/cm	-	-	-	75.4	1041	292.6	591.3	95.3	468.5	97.2	73.9	436	-	-
pH (in-situ)	pH	6.5 - 9.0	6.0 - 8.5	-	7.23	7.02	6.95	7.55	7.54	7.95	6.85	7.42	7.73	-	-
Turbidity (In-situ)	NTU	-	-	-	4.81	6.4	-	7.63	11.33	17.21	n/a**	498	11.54	-	-
Dissolved Oxygen (in-situ)	mg/L	- 45	-	-	-	-	0	-	-	-	-	-	-	-	-
Colour, True Conductivity	CU μS/cm	15	-	5 2	79.8	1060	1760	615	99.6	483	37.5	79.5	459	457	0%
Hardness (as CaCO3)	mg/L	-	-	0.5	38.6	655	1170	322	45.3	255	21.4	42	254	247	3%
pH (lab)	pH	6.5 - 9.0	6.0 - 8.5	0.1	7.42	7.57	8.12	7.42	7.32	7.93	6.17	7.46	7.85	7.85	0%
Total Suspended Solids	mg/L	-	50	3	106	36.1	28.2	9.3	11.8	11.8	<3.0	598	10	16.3	63%
Total Dissolved Solids	mg/L	-	-	1	44.9	793	1470	429	55.5	317	18.2	45.1	306	300	2%
Alkalinity, Bicarbonate (as CaCO3)	mg/L	-	-	1	22.2	242	314	45	17.4	78.6	5.2	24.9	64.8	64.7	0%
Alkalinity, Carbonate (as CaCO3)	mg/L	-	-	1	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	-
Alkalinity, Hydroxide (as CaCO3)	mg/L	-	-	1	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	-
Alkalinity, Total (as CaCO3)	mg/L	-	-	1	22.2	242	314	45	17.4	78.6	5.2	24.9	64.8	64.7	0%
Ammonia, Total (as N)	mg/L	0.75	-	0.005	0.0083	0.0852	0.033	0.0146	0.0054	0.0627	0.008	0.0175	0.343	0.34	1%
Bromide (Br)	mg/L	-	-	0.05	<0.050	<0.50	<1.0	<0.050	<0.050	<0.050	<0.050	<0.050	<0.050	<0.050	-
Chloride (CI)	mg/L	120	-	0.5	<0.50	<5.0	<10	<0.50	<0.50	<0.50	<0.50	<0.50	<0.50	<0.50	-
Fluoride (F)	mg/L	0.12	-	0.02	0.037	<0.20	<0.40	0.186	0.043	0.084	0.027	0.041	0.05	0.05	0%
Nitrate (as N)	mg/L	13	-	0.005	<0.0050	<0.050	0.21	<0.0050	0.0054	0.0123	<0.0050	0.0287	0.0559	0.0551	1%
Nitrite (as N) Sulfate (SO4)	mg/L	0.06	-	0.001	<0.0010 14.7	<0.010 409	<0.020 891	<0.0010 281	<0.0010 25.7	<0.0010 177	<0.0010 4.9	<0.0010 12.5	0.003	0.0025 167	17% 2%
Cyanide, Weak Acid Diss	mg/L mg/L	-	0.1	0.5	<0.0050	<0.0050	0.0062	<0.0050	<0.0050	<0.0050	<0.0050	<0.0050	<0.0050	<0.0050	
Cyanide, Weak Acid Diss Cyanide, Total	mg/L mg/L	-	0.3	0.005	<0.0050	<0.0050	0.0062	<0.0050	<0.0050	<0.0050	<0.0050	<0.0050	<0.0050	<0.0050	-
Cyanate	mg/L	-	- 0.3	0.003	<0.20	<0.20	<0.20	<0.20	<0.20	<0.20	<0.20	<0.20	<0.20	<0.20	-
Thiocyanate (SCN)	mg/L	-	-	0.5	<0.50	<0.50	<0.50	<0.50	<0.50	<0.50	1.27	<0.50	0.54	<0.50	10%
Aluminum (Al)-Total	mg/L	0.1	-	0.003	1.03	0.272	0.349	0.144	0.473	0.235	0.274	9.59	0.217	0.199	8%
Antimony (Sb)-Total	mg/L	-	0.15	0.0001	0.00104	0.0147	0.0487	0.00272	0.00244	0.00789	<0.00010	0.00149	0.00161	0.00154	4%
Arsenic (As)-Total	mg/L	0.005	-	0.0001	0.0155	0.0984	0.111	0.0143	0.0153	0.047	0.00127	0.0514	0.0143	0.0134	6%
Barium (Ba)-Total	mg/L	-	1	0.00005	0.0319	0.0365	0.029	0.0184	0.0243	0.0182	0.0269	0.225	0.0335	0.0328	2%
Beryllium (Be)-Total	mg/L	-	-	0.0001	<0.00010	<0.00010	<0.00010	<0.00010	<0.00010	<0.00010	<0.00010	0.00036	<0.00010	<0.00010	-
Bismuth (Bi)-Total	mg/L	-	-	0.0005	<0.00050	<0.00050	<0.00050	<0.00050	<0.00050	<0.00050	<0.00050	0.00071	<0.00050	<0.00050	-
Boron (B)-Total	mg/L	-	-	0.01	<0.010	<0.010	0.026	<0.010	<0.010	0.013	<0.010	<0.010	0.014	0.012	14%
Cadmium (Cd)-Total	mg/L	0.000033	0.02	0.00001	0.000078	0.00443	0.0156	0.00159	0.00167	0.00183	0.000058	0.00117	0.000172	0.000168	2%
Calcium (Ca)-Total	mg/L	-	-	0.05	11.2	167	235	98.2	13.2	65.4	6.29	16	62.3	61.1	2%
Chromium (Cr)-Total	mg/L	0.0089	0.04	0.0001	0.00134	0.00029	0.00064	0.00018	0.00055	0.00034	0.00028	0.0126	0.00044	0.00038	14%
Copper (Cu) Total	mg/L	0.002	0.2	0.0001 0.0005	0.00076 0.00378	0.00107 0.0131	0.00111 0.0231	0.00028 0.00569	0.00029 0.00692	0.00036 0.00502	<0.00010 0.00321	0.0062 0.0223	0.00097 0.00289	0.00096 0.00278	1% 4%
Copper (Cu)-Total Iron (Fe)-Total	mg/L mg/L	0.002	1	0.0003	1.91	4.11	1.06	0.00369	0.834	1.69	0.00321	15.7	1.71	1.61	6%
Lead (Pb)-Total	mg/L	0.003	0.1	0.00005	0.00221	0.00338	0.0518	0.0069	0.00689	0.0134	<0.000050	0.0443	0.00116	0.0011	5%
Lithium (Li)-Total	mg/L	-	-	0.0005	0.00141	0.00792	0.0106	<0.00050	<0.00050	0.00204	<0.00050	0.00593	0.00110	0.0011	1%
Magnesium (Mg)-Total	mg/L	-	-	0.1	3.14	54.9	131	16.8	3.18	21.6	1.26	6.01	20.4	20	2%
Manganese (Mn)-Total	mg/L	-	0.5	0.00005	0.0734	1.64	0.301	0.255	0.047	0.466	0.00183	0.782	0.753	0.741	2%
Mercury (Hg)-Total	mg/L	0.000026	0.005	0.00001	0.000017	<0.00010	0.000015	0.000013	0.000014	<0.00010	0.000014	0.000038	<0.00010	<0.000010	-
Molybdenum (Mo)-Total	mg/L	0.0073	-	0.00005	0.000071	0.000303	0.000455	0.000094	0.000074	0.000167	<0.000050	0.000981	0.000213	0.000228	7%
Nickel (Ni)-Total	mg/L	0.1	0.3	0.0005	0.00114	0.00193	0.00314	<0.00050	0.00108	0.00103	0.00116	0.00872	0.00119	0.00112	6%
Phosphorus (P)-Total	mg/L	-	-	0.05	0.165	<0.050	<0.050	<0.050	<0.050	<0.050	<0.050	0.537	<0.050	<0.050	-
Potassium (K)-Total	mg/L	-	-	0.1	2.62	3.35	5.67	1.85	2.02	2.24	1.43	2.53	2.18	2.18	0%
Selenium (Se)-Total	mg/L	0.001	-	0.0001	<0.00010	<0.00010	0.00298	0.00015	<0.00010	0.00011	<0.00010	0.00012	0.0001	<0.00010	10%
Silicon (Si)-Total	mg/L	- 0.0001	- 0.1	0.05	3.14	6.79	3.75	2.85	2.67	3.24	1.88	18	2.64	2.6	2%
Silver (Ag)-Total	mg/L	0.0001	0.1	0.00001	0.000048	0.00013	0.00255	0.000167	0.000172	0.000235	<0.000010	0.00042	0.000043	0.000036	16%
Sodium (Na)-Total Strontium (Sr)-Total	mg/L mg/L	-	-	0.05 0.0002	0.654 0.0392	4.79 0.387	6.15 0.604	0.865 0.214	0.583 0.0406	1.73 0.169	0.558 0.0311	1.78 0.115	4.69 0.173	4.3 0.175	8% 1%
Sulfur (S)-Total	mg/L	-	-	0.0002	4.86	129	266	89.8	8.54	57.2	1.83	4.45	56.5	55.4	2%
Thallium (TI)-Total	mg/L	0.0008	-	0.00001	0.00036	0.00009	0.000368	0.000032	0.000031	0.000034	<0.000010	0.000155	<0.000010	<0.00010	Z70 -
Tin (Sn)-Total	mg/L	-	-	0.0001	<0.00010	<0.00010	<0.00010	<0.00010	<0.00010	<0.00010	<0.00010	0.000133	<0.00010	<0.00010	-
Titanium (Ti)-Total	mg/L	-	-	0.01	0.048	0.016	0.016	<0.010	0.016	<0.010	<0.010	0.347	<0.010	<0.010	-
Uranium (U)-Total	mg/L	0.015	-	0.00001	0.000086	0.00326	0.00472	0.000212	0.000091	0.000743	<0.00010	0.00156	0.000557	0.000555	0%
Vanadium (V)-Total	mg/L	-	-	0.001	0.0042	0.0013	0.0016	<0.0010	0.0016	<0.0010	<0.0010	0.0284	0.0012	0.0012	0%
Zinc (Zn)-Total	mg/L	0.03	0.3	0.003	0.0107	0.824	1.48	0.068	0.218	0.344	0.0082	0.0975	0.0269	0.0276	3%
Dissolved Metals Filtration Location		-	-	n/a	FIELD	FIELD	FIELD	FIELD	FIELD	FIELD	FIELD	FIELD	FIELD	LAB	-
Aluminum (Al)-Dissolved	mg/L	0.005	-	0.001	0.0558	0.0023	0.0067	0.0038	0.0883	0.0191	0.28	0.147	0.0821	0.0814	1%
Antimony (Sb)-Dissolved	mg/L	-	-	0.0001	0.00066	0.0153	0.0428	0.00187	0.00123	0.00539	<0.00010	0.00018	0.00143	0.00146	2%
Arsenic (As)-Dissolved	mg/L	0.005	0.15	0.0001	0.00429	0.0367	0.0585	0.006	0.00516	0.0102	0.00132	0.0016	0.00893	0.00886	1%
Barium (Ba)-Dissolved	mg/L	-	-	0.00005	0.0158	0.0272	0.0227	0.0153	0.0188	0.0136	0.028	0.0301	0.0321	0.0318	1%
Beryllium (Be)-Dissolved	mg/L	-	-	0.0001	<0.00010	<0.00010	<0.00010	<0.00010	<0.00010	<0.00010	<0.00010	<0.00010	<0.00010	<0.00010	-
Bismuth (Bi)-Dissolved	mg/L	-	-	0.0005	<0.00050	<0.00050	<0.00050	<0.00050	<0.00050	<0.00050	<0.00050	<0.00050	<0.00050	<0.00050	-
Boron (B)-Dissolved	mg/L	- 0.00033	-	0.01	<0.010	<0.010	0.025	<0.010	<0.010	0.014	<0.010	<0.010	0.012	0.012	0%
Calcium (Ca) Dissolved	mg/L	0.000033	-	0.00001	0.00003	0.000369 169	0.0154	0.00142	0.00165	0.000924 66.4	0.000057 6.43	0.000103	0.000106	0.000102 64	4%
Calcium (Ca)-Dissolved	mg/L	- 0.0000	-	0.05	0.00011		241	101 <0.00010	13.1		0.00019	12.1	65.9	<0.00010	3%
Chromium (Cr)-Dissolved	mg/L	0.0089	-	0.0001	0.00011	<0.00010	0.0001	<0.00010	0.0001	<0.00010	0.00019	0.00017	0.00014	<0.00010	36%

Table E2. Summary of Water Quality Results for the May 8-9, 2014 Trip.

Analyte	Units	CCME-WATER-F-AL	Mount Nansen Effluent Discharge Standards	Sample ID WQ Site ID Date Sampled Detection Limit	0352-140509-018 WQ-DC-DX 9-May-14	0352-140509-022 WQ-MS-S-03** 9-May-14	0352-140509-023 WQ-MS-S-08 9-May-14	0352-140509-024 WQ-NW-SEEP-02** 9-May-14	0352-140509-021 WQ-DC-DX+105 9-May-14	0352-140509-019 WQ-DC-D1b 9-May-14	0352-140509-017 WQ-DESS-03 9-May-14	0352-140509-008 WQ-BC 9-May-14	0352-140509-003 WQ-DC-R 9-May-14	0352-140509-004 WQ-DC-R-r 9-May-14	QA/QC WQ-DC-R
Cobalt (Co)-Dissolved	mg/L	-	-	0.0001	0.00011	0.00078	0.00091	0.00019	<0.00010	0.00022	<0.00010	0.00019	0.00091	0.00091	0%
Copper (Cu)-Dissolved	mg/L	0.002	-	0.0002	0.00176	0.00026	0.0148	0.00356	0.00561	0.00285	0.00323	0.00373	0.00206	0.00207	0%
ron (Fe)-Dissolved	mg/L	0.3	-	0.01	0.082	2.92	0.012	0.013	0.1	0.214	0.1	0.211	1.02	0.991	3%
ead (Pb)-Dissolved	mg/L	0.001	-	0.00005	0.000071	<0.000050	0.00252	0.000076	0.000351	0.000261	<0.000050	0.000612	0.000206	0.00021	2%
ithium (Li)-Dissolved	mg/L	-	-	0.0005	0.00065	0.00857	0.0105	<0.00050	<0.00050	0.00259	<0.00050	0.0005	0.0012	0.00131	9%
Magnesium (Mg)-Dissolved	mg/L	-	-	0.1	2.86	56.8	138	17.1	3.07	21.7	1.3	2.87	21.7	21.1	3%
Manganese (Mn)-Dissolved	mg/L	-	-	0.00005	0.0259	1.48	0.293	0.211	0.0293	0.412	0.0017	0.0805	0.757	0.76	0%
1ercury (Hg)-Dissolved	mg/L	0.000026	-	0.00001	<0.000010	<0.00010	<0.000010	<0.00010	<0.000010	<0.00010	0.000015	<0.00010	<0.000010	<0.000010	-
lolybdenum (Mo)-Dissolved	mg/L	0.073	-	0.00005	0.000052	0.000312	0.00042	0.000075	0.000052	0.000119	<0.000050	0.000277	0.000214	0.000207	3%
ckel (Ni)-Dissolved	mg/L	0.1	-	0.0005	<0.00050	0.00161	0.00288	<0.00050	0.00098	0.0008	0.00127	0.00087	0.00104	0.00096	8%
nosphorus (P)-Dissolved	mg/L	-	-	0.05	<0.050	<0.050	<0.050	<0.050	<0.050	<0.050	<0.050	<0.050	<0.050	<0.050	-
otassium (K)-Dissolved	mg/L	-	-	0.1	2.54	3.34	5.77	1.8	1.93	2.24	1.46	0.99	2.29	2.3	0%
elenium (Se)-Dissolved	mg/L	0.001	-	0.0001	<0.00010	<0.00010	0.00259	0.00013	<0.00010	0.00013	<0.00010	<0.00010	<0.00010	0.0001	11%
licon (Si)-Dissolved	mg/L	-	-	0.05	1.84	6.4	3.26	2.64	1.98	2.85	1.95	2.56	2.51	2.49	1%
ver (Ag)-Dissolved	mg/L	0.0001	-	0.00001	0.000024	<0.000010	0.00102	0.000018	0.000026	0.000014	<0.000010	0.000013	<0.000010	<0.000010	-
dium (Na)-Dissolved	mg/L	-	-	0.05	0.602	4.37	6.24	0.852	0.635	1.69	0.57	1.03	4.62	4.61	0%
rontium (Sr)-Dissolved	mg/L	-	-	0.0002	0.0364	0.412	0.613	0.213	0.0376	0.156	0.0312	0.0736	0.181	0.179	1%
Ilfur (S)-Dissolved	mg/L	-	-	0.5	5.01	128	267	89.7	8.39	57.4	1.99	4.53	59.2	58	2%
allium (TI)-Dissolved	mg/L	0.0008	-	0.00001	0.000012	0.000079	0.000335	0.000012	<0.00010	0.000019	<0.00010	<0.000010	<0.00010	<0.000010	-
(Sn)-Dissolved	mg/L	-	-	0.0001	<0.00010	<0.00010	<0.00010	<0.00010	<0.00010	<0.00010	<0.00010	<0.00010	<0.00010	<0.00010	-
anium (Ti)-Dissolved	mg/L	-	-	0.01	<0.010	<0.010	<0.010	<0.010	<0.010	<0.010	<0.010	<0.010	<0.010	<0.010	-
anium (U)-Dissolved	mg/L	0.015	-	0.00001	0.00003	0.00358	0.00463	0.00021	0.000069	0.000695	<0.000010	0.000296	0.000558	0.000548	2%
anadium (V)-Dissolved	mg/L	-	-	0.001	<0.0010	<0.0010	<0.0010	<0.0010	<0.0010	<0.0010	<0.0010	<0.0010	<0.0010	<0.0010	-
nc (Zn)-Dissolved	mg/L	0.03	-	0.001	0.0039	0.722	1.51	0.0551	0.242	0.283	0.0083	0.0026	0.0244	0.0236	3%

Color Key:

Exceeds CCME Guideline Exceeds MN Effluent Discharge Standards Exceeds both CCME and MN Standards

Exceeds 10% difference threshold for QA/QC replicate samples

Note:

No

* Field turbidity was not collected due to insufficient sample

** Freshet visit samples only

Table E2. Summary of Water Quality Results for the May 8-9, 2014 Trip.

Table E2. Summary of Water Quality Res	ults for the Ma	y 8-9, 2014 Trip.		Sample ID	0352-140509-005	0352-140509-007	0352-140509-002	0352-140509-001	0352-140509-034	0352-140509-014	0352-140509-010	0352-140509-009	0352-140509-016	0352-140509-099	0352-140509-013
Analyte	Units	CCME-WATER-F-AL	Mount Nansen Effluent Discharge Standards	WQ Site ID Date Sampled Detection Limit	WQ-VC-DBC 9-May-14	WQ-VC-U 9-May-14	WQ-VC-UMN 9-May-14	WQ-VC-R+150 9-May-14	WQ-PW 9-May-14	WQ-DESS-01 9-May-14	WQ-DC-B 9-May-14	WQ-DC-U 9-May-14	WQ-PC-U 9-May-14	WQ-PC-D 9-May-14	WQ-TP 9-May-14
Temperature (in-situ)	°C	-	-	-	0.6	0.6	0.1	0	1.1	1.9	0.2	1.4	0.12	0.7	2.5
Specific Conductivity (in-situ)	μS/cm	-	-	-	55.2	51.4	71.4	67.2	354.5	284	393	433.6	72	76	166.4
pH (in-situ)	pH	6.5 - 9.0	6.0 - 8.5	-	7.37	7.34	7.27	7.07	7.4	5.93	7.56	7.82	7.27	7.37	7.76
Turbidity (In-situ)	NTU	-	-	-	21.2	12.58	20.5	15.53	6.32	n/a**	26.7	65.6	8.23	12.66	14.76
Dissolved Oxygen (in-situ) Colour, True	mg/L CU	15	-	5	-	-	-	-	<5.0	-	-	-	-	-	-
Conductivity	μS/cm	-	-	2	57.1	54.1	74.8	69.8	361	581	429	462	75.6	80.8	173
Hardness (as CaCO3)	mg/L	-	-	0.5	32.3	30.5	39.5	36.7	199	286	222	236	36.8	39.4	74.1
pH (lab)	pH	6.5 - 9.0	6.0 - 8.5	0.1	7.37	7.38	7.47	7.45	8.11	5.5	7.8	7.89	7.26	7.32	7.18
Total Suspended Solids	mg/L	-	50	3	81.4	51.8	67.2	62.9	- 247	26.2	901 274	739	3.7	11.1 44.3	16.1
Total Dissolved Solids Alkalinity, Bicarbonate (as CaCO3)	mg/L mg/L	-	-	1 1	32 22.5	29.8 22.2	42.1 24.9	39.3 23.9	217	395 1.4	65.1	300 68.8	40.9 15.2	15.1	9.8
Alkalinity, Carbonate (as CaCO3)	mg/L	-	-	1	<1.0	<1.0	<1.0	<1.0	-	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0
Alkalinity, Hydroxide (as CaCO3)	mg/L	-	-	1	<1.0	<1.0	<1.0	<1.0	-	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0
Alkalinity, Total (as CaCO3)	mg/L	-	-	1	22.5	22.2	24.9	23.9	168	1.4	65.1	68.8	15.2	15.1	9.8
Ammonia, Total (as N)	mg/L	0.75	-	0.005	0.006	0.0058	0.0125	0.012	-	0.0146	0.0739	0.202	0.008	0.0054	0.0775
Bromide (Br) Chloride (Cl)	mg/L	120	-	0.05	<0.050 <0.50	<0.050 <0.50	<0.050 <0.50	<0.050 <0.50	<0.50	<0.050 <0.50	<0.050 <0.50	<0.050 <0.50	<0.050 <0.50	<0.050 <0.50	<0.050 <0.50
Fluoride (F)	mg/L mg/L	0.12	-	0.02	0.03	0.031	0.032	0.032	0.112	0.032	0.051	0.055	0.029	0.032	0.051
Nitrate (as N)	mg/L	13	-	0.005	0.0311	0.0266	0.0293	0.029	0.132	0.0496	0.0156	0.0428	<0.0050	0.0051	0.0253
Nitrite (as N)	mg/L	0.06	-	0.001	<0.0010	<0.0010	<0.0010	<0.0010	<0.0010	<0.0010	<0.0010	0.0022	<0.0010	<0.0010	<0.0010
Sulfate (SO4)	mg/L	-	-	0.5	4.82	3.54	10.8	9.56	34.8	289	154	171	16.1	18.7	65.2
Cyanide, Weak Acid Diss	mg/L	-	0.1	0.005	<0.0050	<0.0050	<0.0050	<0.0050	-	<0.0050	<0.0050	<0.0050	<0.0050	<0.0050	<0.0050
Cyanide, Total Cyanate	mg/L mg/L	-	0.3	0.005	<0.0050 <0.20	<0.0050 <0.20	<0.0050 <0.20	<0.0050 <0.20	-	<0.0050 <0.20	<0.0050 <0.20	<0.0050 <0.20	<0.0050 <0.20	<0.0050 <0.20	<0.0050 <0.20
Thiocyanate (SCN)	mg/L	-	-	0.5	<0.50	<0.50	<0.50	<0.50	-	<0.50	<0.50	<0.50	<0.50	<0.50	<0.50
Aluminum (Al)-Total	mg/L	0.1	-	0.003	1.33	0.761	1.05	0.865	<0.010	0.531	6.05	5.38	0.22	0.346	0.254
Antimony (Sb)-Total	mg/L	-	0.15	0.0001	0.00027	0.00012	0.00031	0.00027	<0.00050	0.00014	0.00252	0.00261	0.00041	0.00145	0.0143
Arsenic (As)-Total	mg/L	0.005	-	0.0001	0.00534	0.00159	0.00514	0.00436	0.00035	0.00266	0.0345	0.0456	0.00461	0.0121	0.0804
Barium (Ba)-Total	mg/L	-	1	0.00005	0.0544	0.0428	0.0505	0.0476	0.087	0.0302	0.121	0.123	0.0241	0.024	0.00939
Beryllium (Be)-Total Bismuth (Bi)-Total	mg/L mg/L	-	-	0.0001 0.0005	<0.00010 <0.00050	<0.00010 <0.00050	<0.00010 <0.00050	<0.00010 <0.00050	-	<0.00010 <0.00050	0.00019 <0.00050	0.00017 <0.00050	<0.00010 <0.00050	<0.00010 <0.00050	<0.00010 0.00073
Boron (B)-Total	mg/L	-	-	0.0003	<0.010	<0.010	<0.010	<0.010	<0.10	<0.010	0.012	0.013	<0.010	<0.010	<0.010
Cadmium (Cd)-Total	mg/L	0.000033	0.02	0.00001	0.000142	0.000076	0.000142	0.000132	<0.00020	0.00582	0.000485	0.000578	0.00006	0.000533	0.00239
Calcium (Ca)-Total	mg/L	-	-	0.05	9.05	8.12	11	9.73	45.7	71	68.2	68.4	10.3	11.1	24.2
Chromium (Cr)-Total	mg/L	0.0089	0.04	0.0001	0.00166	0.00101	0.00137	0.00123	<0.0020	0.00063	0.00849	0.00808	0.00026	0.00039	0.00029
Cobalt (Co)-Total	mg/L	-	-	0.0001	0.00091	0.00058	0.0008	0.00075	-	0.00061	0.004	0.00398	0.00017	0.00022	0.0004
Copper (Cu)-Total Iron (Fe)-Total	mg/L mg/L	0.002	0.2	0.0005	0.00586 2.12	0.00486	0.00549	0.00511 1.56	<0.0010 <0.030	0.00327 0.731	0.0109	0.0131 13.5	0.00235 0.439	0.0103 0.658	0.0388
Lead (Pb)-Total	mg/L	0.003	0.1	0.00005	0.00401	0.00122	0.00354	0.00299	0.00057	0.000513	0.00896	0.011	0.00124	0.00674	0.0596
Lithium (Li)-Total	mg/L	-	-	0.0005	0.00118	0.00063	0.00069	0.00069	-	0.00124	0.00481	0.0044	<0.00050	<0.00050	<0.00050
Magnesium (Mg)-Total	mg/L	-	-	0.1	2.76	2.51	3.42	2.98	20.6	25.3	23.3	22.4	2.3	2.52	2.75
Manganese (Mn)-Total	mg/L	-	0.5	0.00005	0.0997	0.0533	0.117	0.11	<0.0020	0.581	0.674	0.88	0.0436	0.0385	0.548
Mercury (Hg)-Total	mg/L	0.000026	0.005	0.00001	0.000015 0.000266	0.000013 0.000204	0.000013 0.000266	0.000013 0.000256	<0.00020	0.00001	0.000014 0.000286	0.000019 0.000338	0.00001	0.000012 0.000064	0.000018 0.000328
Molybdenum (Mo)-Total Nickel (Ni)-Total	mg/L mg/L	0.0073	0.3	0.00005	0.00168	0.000204	0.000266	0.000256	-	<0.00050 0.00386	0.000286	0.000338	<0.000050 0.00077	0.00083	0.000328
Phosphorus (P)-Total	mg/L	-	-	0.05	0.099	0.07	0.079	0.073	-	<0.050	0.622	0.563	<0.050	<0.050	<0.050
Potassium (K)-Total	mg/L	-	-	0.1	1.11	0.97	1.15	1.05	0.85	1.68	2.69	2.5	1	1.04	1.18
Selenium (Se)-Total	mg/L	0.001	-	0.0001	<0.00010	<0.00010	<0.00010	<0.00010	<0.0010	<0.00010	0.0002	0.00023	<0.00010	<0.00010	<0.00010
Silicon (Si)-Total	mg/L	0.0001	- 0.1	0.05	4.12 0.000052	3.07 0.00002	3.81	3.26 0.000044	-	2.84	11.3 0.000149	10.2 0.000152	2.46 0.000029	2.72 0.000113	0.922
Silver (Ag)-Total Sodium (Na)-Total	mg/L mg/L	0.0001	0.1	0.00001	0.000052	0.00002	0.000055 0.999	0.00044	5	0.000028	2.42	3.29	0.000029	0.000113	0.00122 0.805
Strontium (Sr)-Total	mg/L	-	-	0.0002	0.0852	0.0827	0.0912	0.938	-	0.185	0.208	0.211	0.0682	0.0719	0.0562
Sulfur (S)-Total	mg/L	-	-	0.5	1.91	1.41	3.72	3.2	-	91.5	51.5	55.1	5.14	5.96	21.4
Thallium (Tl)-Total	mg/L	0.0008	-	0.00001	0.000021	0.00001	0.000017	0.000017	-	0.000014	0.000068	0.000078	<0.00010	0.000017	0.000065
Tin (Sn)-Total	mg/L	-	-	0.0001	<0.00010	<0.00010	<0.00010	<0.00010	-	<0.00010	0.00011	<0.00010	<0.00010	<0.00010	<0.00010
Titanium (Ti)-Total Uranium (U)-Total	mg/L	0.015	-	0.01	0.051 0.000392	0.027 0.00032	0.04	0.034 0.000335	0.00183	0.011 0.000037	0.279 0.000925	0.245 0.00102	<0.010 0.0001	<0.010 0.00009	<0.010 0.000074
Vanadium (V)-Total	mg/L mg/L	0.015	-	0.0001	0.00392	0.0032	0.00384	0.000335	0.00183	0.00037	0.000925	0.0102	<0.001	<0.0009	<0.0010
Zinc (Zn)-Total	mg/L	0.03	0.3	0.003	0.0138	0.0022	0.0125	0.0109	<0.050	1.86	0.0182	0.0988	0.0065	0.0502	0.257
Dissolved Metals Filtration Location		-	-	n/a	FIELD	FIELD	FIELD	FIELD	-	FIELD	FIELD	FIELD	FIELD	FIELD	FIELD
Aluminum (Al)-Dissolved	mg/L	0.005	-	0.001	0.145	0.138	0.124	0.131	-	0.169	0.0474	0.047	0.141	0.127	0.0452
Antimony (Sb)-Dissolved	mg/L	-	-	0.0001	<0.00010	<0.00010	0.00013	0.00012	-	<0.00010	0.0017	0.00156	0.00031	0.00058	0.00633
Arsenic (As)-Dissolved	mg/L	0.005	0.15	0.0001	0.0006	0.00037	0.00084	0.00084	-	0.0012	0.00474	0.00527	0.00186	0.00271	0.0156
Barium (Ba)-Dissolved Beryllium (Be)-Dissolved	mg/L mg/L	-	-	0.00005 0.0001	0.0312 <0.00010	0.0318 <0.00010	0.0313 <0.00010	0.0309 <0.00010	-	0.0255 <0.00010	0.0226 <0.00010	0.0249 <0.00010	0.0236 <0.00010	0.0208 <0.00010	0.00453 <0.00010
Bismuth (Bi)-Dissolved	mg/L	-	-	0.0001	<0.00010	<0.00010	<0.00010	<0.00010	-	<0.00010	<0.00010	<0.00010	<0.00010	<0.00010	<0.00010
Boron (B)-Dissolved	mg/L	-	-	0.01	<0.010	<0.010	<0.010	<0.010	-	<0.010	0.014	0.013	<0.010	<0.010	<0.010
Cadmium (Cd)-Dissolved	mg/L	0.000033	-	0.00001	0.000044	0.000034	0.000047	0.000048	-	0.00613	0.000105	0.000104	0.000038	0.000411	0.00178
Calcium (Ca)-Dissolved	mg/L	-	-	0.05	8.81	8.21	10.7	9.92	-	72.7	55.7	60.3	10.8	11.5	25
Chromium (Cr)-Dissolved	mg/L	0.0089	-	0.0001	0.0001	0.00016	0.00013	0.00012	-	<0.00010	<0.00010	<0.00010	0.00017	0.00012	<0.00010

Table E2. Summary of Water Quality Results for the May 8-9. 2014 Trip.

Table E2. Summary of Water Quality R	esults for the May	/ 8-9, 2014 Trip.	I				ı	I	I	ı	ı				
			Mount Nansen	Sample ID	0352-140509-005	0352-140509-007	0352-140509-002	0352-140509-001	0352-140509-034	0352-140509-014	0352-140509-010	0352-140509-009	0352-140509-016	0352-140509-099	0352-140509-013
Analyte	Units	CCME-WATER-F-AL		WQ Site ID	WQ-VC-DBC	WQ-VC-U	WQ-VC-UMN	WQ-VC-R+150	WQ-PW	WQ-DESS-01	WQ-DC-B	WQ-DC-U	WQ-PC-U	WQ-PC-D	WQ-TP
,			Standards	Date Sampled	9-May-14										
				Detection Limit											
Cobalt (Co)-Dissolved	mg/L	-	-	0.0001	0.00017	0.00016	0.00018	0.0002	-	0.00051	0.00036	0.00055	0.00011	<0.00010	0.00031
Copper (Cu)-Dissolved	mg/L	0.002	-	0.0002	0.00338	0.00327	0.00321	0.00321	-	0.00191	0.00134	0.00161	0.00219	0.00887	0.0241
Iron (Fe)-Dissolved	mg/L	0.3	-	0.01	0.234	0.234	0.265	0.286	-	0.228	0.58	0.661	0.189	0.179	0.121
Lead (Pb)-Dissolved	mg/L	0.001	-	0.00005	0.00007	<0.000050	0.0001	0.000091	-	0.000075	0.000176	0.00016	0.000097	0.000546	0.00233
Lithium (Li)-Dissolved	mg/L	-	-	0.0005	0.00056	<0.00050	<0.00050	<0.00050	-	0.00134	0.00156	0.00145	<0.00050	<0.00050	0.00053
Magnesium (Mg)-Dissolved	mg/L	-	-	0.1	2.5	2.42	3.13	2.89	-	25.3	20.2	20.7	2.39	2.58	2.82
Manganese (Mn)-Dissolved	mg/L	-	-	0.00005	0.0323	0.0218	0.0432	0.0469	-	0.615	0.442	0.574	0.0364	0.0174	0.497
Mercury (Hg)-Dissolved	mg/L	0.000026	-	0.00001	<0.000010	<0.000010	<0.000010	<0.000010	-	<0.000010	<0.000010	<0.000010	<0.000010	<0.000010	<0.000010
Molybdenum (Mo)-Dissolved	mg/L	0.073	-	0.00005	0.000128	0.000128	0.000165	0.000139	-	<0.000050	0.000134	0.000167	<0.000050	<0.000050	0.000326
Nickel (Ni)-Dissolved	mg/L	0.1	-	0.0005	0.0007	0.00069	0.00068	0.00078	-	0.0036	0.00064	0.00073	0.00073	0.0007	0.00084
Phosphorus (P)-Dissolved	mg/L	-	-	0.05	<0.050	<0.050	<0.050	<0.050	-	<0.050	<0.050	<0.050	<0.050	<0.050	<0.050
Potassium (K)-Dissolved	mg/L	-	-	0.1	0.97	0.93	1.05	0.95	-	1.59	1.79	1.81	1.02	1.05	1.03
Selenium (Se)-Dissolved	mg/L	0.001	-	0.0001	<0.00010	<0.00010	<0.00010	<0.00010	-	<0.00010	<0.00010	<0.00010	<0.00010	<0.00010	<0.00010
Silicon (Si)-Dissolved	mg/L	-	-	0.05	2.32	2.27	2.32	2.27	-	2.4	2.11	2.23	2.4	2.48	0.516
Silver (Ag)-Dissolved	mg/L	0.0001	-	0.00001	<0.000010	<0.000010	<0.000010	<0.000010	-	<0.000010	<0.00010	<0.00010	0.000014	0.000018	0.000103
Sodium (Na)-Dissolved	mg/L	-	-	0.05	0.856	0.762	0.946	0.935	-	1.57	1.88	2.76	1.04	1.03	0.831
Strontium (Sr)-Dissolved	mg/L	-	-	0.0002	0.0691	0.0808	0.0869	0.0736	-	0.2	0.158	0.178	0.071	0.0692	0.0592
Sulfur (S)-Dissolved	mg/L	-	-	0.5	1.93	1.49	3.85	3.43	-	97.8	52.4	57.4	5.44	6.16	22.2
Thallium (TI)-Dissolved	mg/L	0.0008	-	0.00001	<0.000010	<0.000010	<0.000010	<0.000010	-	<0.000010	<0.00010	<0.00010	<0.00010	<0.000010	0.000033
Tin (Sn)-Dissolved	mg/L	-	-	0.0001	<0.00010	<0.00010	<0.00010	<0.00010	-	<0.00010	<0.00010	<0.00010	<0.00010	<0.00010	<0.00010
Titanium (Ti)-Dissolved	mg/L	-	-	0.01	<0.010	<0.010	<0.010	<0.010	-	<0.010	<0.010	<0.010	<0.010	<0.010	<0.010
Uranium (U)-Dissolved	mg/L	0.015	-	0.00001	0.000178	0.000184	0.000218	0.000187	-	<0.000010	0.000572	0.000637	0.000096	0.000078	0.000057
Vanadium (V)-Dissolved	mg/L	-	-	0.001	<0.0010	<0.0010	<0.0010	<0.0010	-	<0.0010	<0.0010	<0.0010	<0.0010	<0.0010	<0.0010
Zinc (Zn)-Dissolved	mg/L	0.03	-	0.001	0.0038	0.0026	0.003	0.003	-	1.98	0.0283	0.0212	0.0056	0.0403	0.221

Table E2. Summary of Water Quality Results for the May 8-9, 2014 Trip.

Analyte	Units	CCME-WATER-F-AL	Mount Nansen Effluent Discharge	Sample ID WQ Site ID Date Sampled	0352-140509-011 WQ-SEEP 9-May-14	0352-140509-012 WQ-SEEP-r 9-May-14	QA/QC WQ-SEEP	0352-140509-020 WQ-ET-01** 9-May-14	0352-140509-TRAVEL-BLANK TRAVEL BLANK 9-May-14
			Standards	Detection Limit					
emperature (in-situ)	°C	-	-	-	2.8	-	-	0.8	-
pecific Conductivity (in-situ)	μS/cm	-	-	-	980	-	-	63.5	-
H (in-situ)	pH	6.5 - 9.0	6.0 - 8.5	-	7.12	-	-	6.6	-
urbidity (In-situ)	NTU	-	-	-	11.41	-	-	n/a**	-
issolved Oxygen (in-situ)	mg/L	-	-	-	-	-	-	-	-
olour, True	CU	15	-	5	-	-	-	-	-
onductivity	μS/cm	-	-	2	1010	1000	1%	67.7	<2.0
ardness (as CaCO3)	mg/L	-	-	0.5	502	513	2%	32.4	-
H (lab)	pH	6.5 - 9.0	6.0 - 8.5	0.1	7.54	7.52	0%	7.68	5.64
otal Suspended Solids	mg/L	-	50	3	20.6	21.9	6%	85.4	<3.0
otal Dissolved Solids	mg/L	-	-	1	722	786	9%	36.2	<1.0
Alkalinity, Bicarbonate (as CaCO3)	mg/L	-	-	1	131	131	0%	30.2	<1.0
Alkalinity, Carbonate (as CaCO3)	mg/L	-	-	1	<1.0	<1.0	-	<1.0	<1.0
Alkalinity, Hydroxide (as CaCO3)	mg/L	_		1	<1.0	<1.0	_	<1.0	<1.0
Alkalinity, Total (as CaCO3)	mg/L	_	-	1	131	131	0%	30.2	<1.0
mmonia, Total (as N)	mg/L	0.75	-	0.005	2.9	3.02	4%	0.0116	0.0241
romide (Br)	mg/L	-		0.05	<0.050	<0.50	-	<0.050	<0.050
hloride (CI)	mg/L	120	-	0.03	0.87	<5.0	360%	<0.50	<0.50
luoride (F)	mg/L	0.12	-	0.02	0.085	<0.20	124%	0.054	<0.020
itrate (as N)	mg/L	13	-	0.02	0.372	0.442	19%	0.034	<0.020
litrite (as N)		0.06	-	0.003	0.372	0.442	64%	0.0116	<0.0030
ulfate (SO4)	mg/L mg/L	0.06	-	0.001	0.0146 419	0.024 479	14%	4.45	<0.0010
Cyanide, Weak Acid Diss		-	0.1	0.005	<0.0050	<0.0050	- 14%	<0.0050	<0.50
· ·	mg/L								
Cyanide, Total	mg/L	-	0.3	0.005	0.0435	0.0604	39%	<0.0050	<0.0050
yanate hiosyanato (SCN)	mg/L	-	-	0.2	<0.20 1.98	0.39	105%	0.3	<0.20 <0.50
hiocyanate (SCN)	mg/L	-	-	0.5			2%		
luminum (Al)-Total	mg/L	0.1	- 0.45	0.003	0.151	0.142	6%	2.24	<0.0030
antimony (Sb)-Total	mg/L	-	0.15	0.0001	0.00077	0.00073	5%	0.00176	<0.00010
rsenic (As)-Total	mg/L	0.005	-	0.0001	0.0391	0.0379	3%	0.0306	<0.00010
arium (Ba)-Total	mg/L	-	1	0.00005	0.0493	0.048	3%	0.044	<0.00050
eryllium (Be)-Total	mg/L	-	-	0.0001	<0.00010	<0.00010	-	<0.00010	<0.00010
ismuth (Bi)-Total	mg/L	-	-	0.0005	<0.00050	<0.00050	-	<0.00050	<0.00050
Joron (B)-Total	mg/L	-	-	0.01	0.04	0.04	0%	<0.010	<0.010
admium (Cd)-Total	mg/L	0.000033	0.02	0.00001	0.000618	0.000628	2%	0.000072	<0.000010
Calcium (Ca)-Total	mg/L	-	-	0.05	152	154	1%	9.41	<0.050
Chromium (Cr)-Total	mg/L	0.0089	0.04	0.0001	0.00046	0.00046	0%	0.00249	<0.00010
Cobalt (Co)-Total	mg/L	-	-	0.0001	0.00479	0.00481	0%	0.00134	<0.00010
Copper (Cu)-Total	mg/L	0.002	0.2	0.0005	0.00989	0.0096	3%	0.00639	<0.00050
ron (Fe)-Total	mg/L	0.3	1	0.01	9.45	9.47	0%	4.17	<0.010
ead (Pb)-Total	mg/L	0.003	0.1	0.00005	0.00151	0.00133	12%	0.0041	<0.000050
ithium (Li)-Total	mg/L	-	-	0.0005	0.00056	0.00052	7%	0.00121	<0.00050
/lagnesium (Mg)-Total	mg/L	-	-	0.1	28.9	30.1	4%	3.34	<0.10
Nanganese (Mn)-Total	mg/L	-	0.5	0.00005	3.6	3.58	1%	0.129	<0.000050
Легсигу (Hg)-Total	mg/L	0.000026	0.005	0.00001	<0.000010	<0.000010	-	0.000022	<0.000010
Nolybdenum (Mo)-Total	mg/L	0.0073	-	0.00005	0.000831	0.000782	6%	0.000146	<0.000050
lickel (Ni)-Total	mg/L	0.1	0.3	0.0005	0.00225	0.00217	4%	0.00167	<0.00050
hosphorus (P)-Total	mg/L	-	-	0.05	<0.050	<0.050	-	0.109	<0.050
otassium (K)-Total	mg/L	-	-	0.1	4.12	4.12	0%	1.71	<0.10
elenium (Se)-Total	mg/L	0.001	-	0.0001	0.00017	0.00014	18%	<0.00010	<0.00010
ilicon (Si)-Total	mg/L	-	-	0.05	4.53	4.54	0%	5.42	<0.050
ilver (Ag)-Total	mg/L	0.0001	0.1	0.00001	0.000122	0.000083	32%	0.000108	<0.00010
odium (Na)-Total	mg/L	-	-	0.05	20.8	20.7	0%	0.911	<0.050
trontium (Sr)-Total	mg/L	-	-	0.0002	0.448	0.445	1%	0.0352	<0.00020
ulfur (S)-Total	mg/L	-	-	0.5	138	142	3%	1.71	<0.50
hallium (TI)-Total	mg/L	0.0008	-	0.00001	0.000015	0.000016	7%	0.000118	<0.000010
in (Sn)-Total	mg/L	-	-	0.0001	<0.00010	<0.00010	-	<0.00010	<0.00010
itanium (Ti)-Total	mg/L	-	-	0.01	<0.010	<0.010	-	0.093	<0.010
Iranium (U)-Total	mg/L	0.015	-	0.00001	0.00117	0.00118	1%	0.000129	<0.00010
anadium (V)-Total	mg/L	-	-	0.001	0.0017	0.00115	0%	0.0085	<0.0010
inc (Zn)-Total	mg/L	0.03	0.3	0.001	0.018	0.0169	6%	0.0131	<0.0010
vissolved Metals Filtration Location	6/ =	-	-	n/a	FIELD	FIELD	-	FIELD	-
luminum (AI)-Dissolved	mg/L	0.005	-	0.001	0.0671	0.0558	17%	0.056	-
ntimony (Sb)-Dissolved	mg/L	- 0.003	-	0.001	0.00058	0.00058	0%	0.00048	
rsenic (As)-Dissolved		0.005	0.15	0.0001	0.003	0.0038 0.0296	1%	0.00048	-
	mg/L	0.005	0.15	0.0001	0.03	0.0296		0.00311	<u> </u>
arium (Ba)-Dissolved	mg/L	-	-	0.0001	<0.0010	<0.0461	3%	<0.00129	-
eryllium (Be)-Dissolved	mg/L								
ismuth (Bi)-Dissolved	mg/L	-	-	0.0005	<0.00050	<0.00050	- 00/	<0.00050	-
oron (B)-Dissolved	mg/L	- 0.000033	-	0.01	0.039	0.039	0%	<0.010	-
admium (Cd)-Dissolved	mg/L	0.000033	-	0.00001	0.000547	0.000532	3%	0.000021	-
alcium (Ca)-Dissolved	mg/L	-	-	0.05	152	156	3%	8.73	-

Table E2. Summary of Water Quality Results for the May 8-9, 2014 Trip.

Table E2. Summary of Water Quality Resul	ts for the May	8-9, 2014 Trip.							
Analyte	Units	CCME-WATER-F-AL	Mount Nansen Effluent Discharge Standards	Sample ID WQ Site ID Date Sampled	0352-140509-011 WQ-SEEP 9-May-14	0352-140509-012 WQ-SEEP-r 9-May-14	QA/QC WQ-SEEP	0352-140509-020 WQ-ET-01** 9-May-14	0352-140509-TRAVEL-BLANK TRAVEL BLANK 9-May-14
				Detection Limit					
Cobalt (Co)-Dissolved	mg/L	-	-	0.0001	0.00479	0.00469	2%	0.00013	-
Copper (Cu)-Dissolved	mg/L	0.002	-	0.0002	0.00593	0.0061	3%	0.00185	-
Iron (Fe)-Dissolved	mg/L	0.3	-	0.01	8.17	8.33	2%	0.109	-
Lead (Pb)-Dissolved	mg/L	0.001	-	0.00005	0.000215	0.000206	4%	0.000502	-
Lithium (Li)-Dissolved	mg/L	-	-	0.0005	<0.00050	<0.00050	-	<0.00050	-
Magnesium (Mg)-Dissolved	mg/L	-	-	0.1	29.5	30.1	2%	2.59	-
Manganese (Mn)-Dissolved	mg/L	-	-	0.00005	3.59	3.52	2%	0.0398	-
Mercury (Hg)-Dissolved	mg/L	0.000026	-	0.00001	<0.00010	<0.00010	-	<0.000010	-
Molybdenum (Mo)-Dissolved	mg/L	0.073	-	0.00005	0.000728	0.000721	1%	0.000081	-
Nickel (Ni)-Dissolved	mg/L	0.1	-	0.0005	0.00206	0.00197	4%	<0.00050	-
Phosphorus (P)-Dissolved	mg/L	-	-	0.05	<0.050	<0.050	-	<0.050	-
Potassium (K)-Dissolved	mg/L	-	-	0.1	4.24	4.2	1%	1.1	-
Selenium (Se)-Dissolved	mg/L	0.001	-	0.0001	0.00014	0.00015	7%	<0.00010	-
Silicon (Si)-Dissolved	mg/L	-	-	0.05	4.38	4.42	1%	1.56	-
Silver (Ag)-Dissolved	mg/L	0.0001	-	0.00001	0.000018	0.000029	61%	0.000012	-
Sodium (Na)-Dissolved	mg/L	-	-	0.05	20.3	20.2	0%	0.841	-
Strontium (Sr)-Dissolved	mg/L	-	-	0.0002	0.447	0.435	3%	0.031	-
Sulfur (S)-Dissolved	mg/L	-	-	0.5	139	140	1%	1.68	-
Thallium (TI)-Dissolved	mg/L	0.0008	-	0.00001	<0.000010	0.000013	44%	0.000012	-
Tin (Sn)-Dissolved	mg/L	-	-	0.0001	<0.00010	<0.00010	-	<0.00010	-
Titanium (Ti)-Dissolved	mg/L	-	-	0.01	<0.010	<0.010	-	<0.010	-
Uranium (U)-Dissolved	mg/L	0.015	-	0.00001	0.00114	0.00114	0%	0.000058	-
Vanadium (V)-Dissolved	mg/L	-	-	0.001	0.0011	0.001	9%	<0.0010	-
Zinc (Zn)-Dissolved	mg/L	0.03	-	0.001	0.0184	0.0156	15%	0.0043	-

Table E3. Summary of Water Quality Res	sults for the May	20-21, 2014 Trip.														
				Sample ID	0352140521-028	0352-140521-015	0352-140521-030	0352-140521-032	0352-140521-029	0352-140521-031	0352-140521-027	0352-140521-001	0352-140521-004	0352-140521-011	0352-140521-013	0352-140521-040
Amalista	l luita	CCNAF WATER F AL	Mount Nansen	WQ Site ID	WQ-DC-DX+105	WQ-SEEP	WQ-DX	WQ-MS-S-03 *	L2 (lysimeter) *	Ore Ramp *	WQ-MS-S-08	WQ-TP	WQ-DC-B	WQ-VC-DBC	WQ-VC-U	WQ-VC-UMN
Analyte	Units	CCME-WATER-F-AL	Effluent Discharge Standards	Date Sampled	21-May-14	21-May-14	21-May-14	21-May-14	21-May-14	21-May-14	21-May-14	21-May-14	21-May-14	21-May-14	21-May-14	21-May-14
			Standards	Detection Limit												
Temperature (in-situ)	°C	_	-	-	1.1	3.6	0.3	1.2	2	4.7	6.5	8.2	3.6	1.7	1.5	0.5
pecific Conductivity (in-situ)	μS/cm	_	-	-	377.9	1566	202.9	1188	548.5	817	1798	805	580.6	125	116.1	167.9
H (in-situ)	pH	6.5 - 9.0	6.0 - 8.5	-	7.34	6.97	7.54	7.17	7.62	7.22	7.93	7.79	7.54	7.68	7.68	7.64
urbidity (In-situ)	NTU	-	-	-	2.2	64	3.32	6.31	3.37	407	617	24.8	40.7	3.68	1.2	2.78
Dissolved Oxygen (in-situ)	mg/L	_	-	-	-	-	-	-	-	-	-	-	-	-		-
Colour, True	CU	15	_	5				_					_	_	_	
Conductivity	μS/cm	-	-	2	358	1480	205	1110	583	785	1710	817	585	129	116	171
Hardness (as CaCO3)	mg/L	_	_	0.5	189	847	91.9	694	348	446	1160	435	320	62.1	58	82.1
pH (lab)	pH	6.5 - 9.0	6.0 - 8.5	0.1	7.38	6.98	7.4	7.54	7.81	7.23	8.06	7.69	7.51	7.59	7.57	7.61
Total Suspended Solids	mg/L	0.5 - 5.0	50	3	<3.0	35.3	8.7	7.54	<3.0	130	349	14	168	9.3	7.3	12.7
Total Dissolved Solids	mg/L	-	-	1	226	1210	114	834	400	571	1440	605	393	65.5	61.3	92.6
Alkalinity, Bicarbonate (as CaCO3)			-	1	73.6	205	41.7	255	70.1	47.7	315	51.5	78.9	49.8	50.2	54.6
Alkalinity, Carbonate (as CaCO3)	mg/L mg/L	-	-	1	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0
Alkalinity, Hydroxide (as CaCO3)		-	-	1	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0
Alkalinity, Total (as CaCO3)	mg/L	-	-	1	73.6	205	41.7	255	70.1	47.7	315	51.5	78.9	49.8	50.2	54.6
	mg/L	0.75		0.005	0.007		<0.0050	0.0468	<0.0050	<0.0050	0.0858			<0.0050	<0.0050	0.0153
Ammonia, Total (as N)	mg/L		-			4.04						0.343	0.0581			
Chloride (CI)	mg/L	120	-	0.5	<0.50	<5.0	<0.50	<5.0	0.82	<0.50	<5.0	<2.5	<0.50	<0.50	<0.50	<0.50
Fluoride (F)	mg/L	0.12	-	0.02	0.07	<0.20	0.055	0.23	0.525	0.38	<0.20	0.16	0.056	0.036	0.035	0.048
Nitrate (as N)	mg/L	13	-	0.005	<0.0050	0.414	<0.0050	<0.050	0.128	1.07	0.152	0.087	0.0419	0.0803	0.0741	0.078
Nitrite (as N)	mg/L	0.06	-	0.001	<0.0010	0.017	<0.0010	<0.010	0.0048	<0.0010	<0.010	0.0058	0.0014	<0.0010	<0.0010	<0.0010
Sulfate (SO4)	mg/L	-	-	0.5	111	721	52	429	234	373	848	400	232	11.4	8.68	28.1
Cyanide, Weak Acid Diss	mg/L	-	0.1	0.005	<0.0050	0.0093	<0.0050	<0.0050	<0.0050	<0.0050	<0.0050	<0.0050	<0.0050	<0.0050	<0.0050	<0.0050
Cyanide, Total	mg/L	-	0.3	0.005	<0.0050	0.0533	<0.0050	<0.0050	<0.0050	<0.0050	<0.0050	<0.0050	<0.0050	<0.0050	<0.0050	<0.0050
Cyanate	mg/L	-	-	0.2	<0.20	6.57	<0.20	<0.20	<0.20	<0.20	<0.20	0.54	<0.20	<0.20	<0.20	<0.20
Thiocyanate (SCN)	mg/L	-	-	0.5	<0.50	3.26	<0.50	<0.50	<0.50	<0.50	<0.50	<0.50	<0.50	<0.50	<0.50	<0.50
Aluminum (Al)-Total	mg/L	0.1		0.003	0.0428	0.0187	0.24	0.0312	0.0243	3.22	4.16	0.128	2.56	0.198	0.138	0.119
Antimony (Sb)-Total	mg/L	-	0.15	0.0001	0.0032	0.00047	0.00113	0.0179	0.00098	0.0515	0.123	0.0296	0.00171	0.00014	0.00011	0.00023
Arsenic (As)-Total	mg/L	0.005	-	0.0001	0.00861	0.0563	0.00544	0.0636	0.00585	2.68	0.687	0.112	0.0162	0.00121	0.00054	0.00131
Barium (Ba)-Total	mg/L	-	1	0.00005	0.0225	0.0592	0.0269	0.0182	0.00399	0.0782	0.105	0.0111	0.0756	0.0456	0.0448	0.0437
Beryllium (Be)-Total	mg/L	-	-	0.0001	<0.00010	<0.00010	<0.00010	<0.00010	<0.00010	0.00019	0.0002	<0.00010	<0.00010	<0.00010	<0.00010	<0.00010
Bismuth (Bi)-Total	mg/L	-	-	0.0005	<0.00050	<0.00050	<0.00050	<0.00050	<0.00050	0.00714	0.00234	0.00051	<0.00050	<0.00050	<0.00050	<0.00050
Boron (B)-Total	mg/L	-	-	0.01	<0.010	0.065	<0.010	<0.010	<0.010	<0.010	0.035	0.043	0.011	<0.010	<0.010	<0.010
Cadmium (Cd)-Total	mg/L	0.000033	0.02	0.00001	0.00107	0.00046	0.000023	0.00382	0.000612	0.00879	0.03	0.00325	0.000162	0.000036	0.000026	0.000027
Calcium (Ca)-Total	mg/L	-	-	0.05	48.9	245	25.5	185	81.9	126	244	119	76.8	16.6	14.9	21.3
Chromium (Cr)-Total	mg/L	0.0089	0.04	0.0001	0.00015	0.00046	0.00038	<0.00010	<0.00010	0.00153	0.00687	0.00021	0.00419	0.0004	0.00035	0.00029
Cobalt (Co)-Total	mg/L	-	-	0.0001	0.00014	0.00722	0.0002	0.00098	<0.00010	0.00141	0.00488	0.001	0.00175	0.00015	0.00011	0.00014
Copper (Cu)-Total	mg/L	0.002	0.2	0.0005	0.00336	0.00304	0.00217	0.00133	0.00109	0.0604	0.102	0.0367	0.00684	0.00235	0.00216	0.00215
Iron (Fe)-Total	mg/L	0.3	1	0.01	0.155	12	0.438	1.98	0.033	17.5	12.7	0.926	5.48	0.363	0.292	0.286
Lead (Pb)-Total	mg/L	0.003	0.1	0.00005	0.000513	0.000121	0.000406	0.0012	0.000875	0.661	0.57	0.0424	0.00262	0.000523	0.00047	0.000318
Lithium (Li)-Total	mg/L	-	-	0.0005	0.00171	0.00102	<0.00050	0.00959	0.00255	0.00623	0.0123	0.00414	0.0032	<0.00050	<0.00050	<0.00050
Magnesium (Mg)-Total	mg/L	-	-	0.1	14.6	51.5	7.01	59.1	27.7	26.5	119	27.3	30.1	5.3	5.03	6.99
Manganese (Mn)-Total	mg/L	-	0.5	0.00005	0.197	6.38	0.0144	1.28	0.00595	0.613	2.13	1.5	0.332	0.0394	0.0211	0.0332
Mercury (Hg)-Total	mg/L	0.000026	0.005	0.00001	<0.000010	<0.000010	<0.00010	<0.00010	<0.000010	0.000085	0.000073	0.00002	0.000015	<0.000010	<0.000010	<0.000010
Molybdenum (Mo)-Total	mg/L	0.0073	-	0.00005	0.000114	0.000944	0.00009	0.000358	0.000065	0.000321	0.000989	0.000984	0.0003	0.00032	0.0003	0.000321
Nickel (Ni)-Total	mg/L	0.1	0.3	0.0005	0.00079	0.00246	0.00061	0.00202	<0.00050	0.00117	0.00845	0.00216	0.0036	0.00065	0.0006	0.00057
Phosphorus (P)-Total	mg/L	-	-	0.05	<0.050	<0.050	<0.050	<0.050	<0.050	0.18	0.185	<0.050	0.142	<0.050	<0.050	<0.050
Potassium (K)-Total	mg/L	-	-	0.1	2.68	5.96	3.4	3.45	2.17	4.77	6.65	6.47	2.02	0.6	0.55	0.7
Selenium (Se)-Total	mg/L	0.001	-	0.0001	<0.00010	0.00017	<0.00010	<0.00010	<0.00010	0.00026	0.00109	<0.00010	0.00018	<0.00010	<0.00010	<0.00010
Silicon (Si)-Total	mg/L	-	-	0.05	4.09	6.72	3.73	6.46	1.2	12	12.6	1.36	6.96	4.36	4.08	4.24
Silver (Ag)-Total	mg/L	0.0001	0.1	0.00001	0.00002	0.000032	0.000011	0.000034	0.000019	0.00698	0.0142	0.000899	0.000054	<0.000010	0.000026	0.00001
Sodium (Na)-Total	mg/L	-	-	0.05	2	35.5	1.61	4.93	0.436	1.79	7.96	8.54	3.42	1.6	1.54	2.04
Strontium (Sr)-Total	mg/L	-	-	0.0002	0.137	0.817	0.0863	0.476	0.267	0.105	0.619	0.333	0.265	0.185	0.179	0.192
Sulfur (S)-Total	mg/L	-	-	0.5	36.3	238	17.4	149	74.1	122	265	124	74.4	4.05	3.11	9.5
Thallium (TI)-Total	mg/L	0.0008	-	0.00001	0.000021	<0.000010	0.000012	0.000107	0.00001	0.000534	0.000498	0.00017	0.000035	<0.00010	<0.000010	<0.00010
Tin (Sn)-Total	mg/L	-	-	0.0001	<0.00010	<0.00010	<0.00010	<0.00010	0.0001	0.00015	0.00057	<0.00010	<0.00010	<0.00010	<0.00010	<0.00010
Titanium (Ti)-Total	mg/L	-	-	0.01	<0.010	<0.010	0.013	<0.010	<0.010	0.018	0.157	<0.010	0.132	0.011	<0.010	<0.010
Uranium (U)-Total	mg/L	0.015	-	0.00001	0.000746	0.00174	0.000047	0.00397	0.00051	0.000276	0.00503	0.000523	0.00121	0.000356	0.000305	0.000375
Vanadium (V)-Total	mg/L	-	-	0.001	<0.0010	0.0018	0.0013	<0.0010	<0.0010	0.0076	0.017	<0.0010	0.0102	0.001	<0.0010	<0.0010
Zinc (Zn)-Total	mg/L	0.03	0.3	0.003	0.185	0.0082	0.0034	0.943	0.023	0.663	2.21	0.302	0.0292	0.0033	<0.0030	<0.0030
Dissolved Metals Filtration Location	6/ -	-	-	n/a	FIELD	FIELD	FIELD	FIELD	FIELD	FIELD	FIELD	FIELD	FIELD	FIELD	FIELD	FIELD
Aluminum (Al)-Dissolved	mg/L	0.005	-	0.001	0.0285	0.0095	0.0184	0.0018	0.0013	0.007	0.0122	0.0165	0.112	0.045	0.0452	0.0412
Antimony (Sb)-Dissolved	mg/L	-	-	0.0001	0.00321	0.00045	0.00098	0.0172	0.00089	0.00928	0.048	0.0248	0.00126	0.00011	<0.00010	0.00021
Arsenic (As)-Dissolved	mg/L	0.005	0.15	0.0001	0.0046	0.0427	0.00098	0.0326	0.00533	0.366	0.0888	0.0467	0.00120	0.00011	0.00035	0.00021
Barium (Ba)-Dissolved	mg/L	0.003	0.13	0.0001	0.023	0.0581	0.024	0.0179	0.00402	0.00239	0.02	0.00975	0.0359	0.0434	0.0425	0.0424
Beryllium (Be)-Dissolved	mg/L	-	-	0.0003	<0.00010	<0.00010	<0.0010	<0.00010	<0.00402	<0.00239	<0.00010	<0.00973	<0.00010	<0.0010	<0.0010	<0.0010
Sismuth (Bi)-Dissolved	mg/L	-	-	0.0001	<0.00010	<0.00010	<0.00010	<0.00010	<0.00010	<0.00010	<0.00010	<0.00010	<0.00010	<0.00010	<0.00010	<0.00010
Boron (B)-Dissolved	mg/L	-	-	0.003	<0.010	0.063	<0.010	<0.010	<0.010	<0.010	0.029	0.044	<0.010	<0.010	<0.010	<0.010
Cadmium (Cd)-Dissolved		0.000033	-	0.0001	0.00076	0.0032	0.00013	0.00111	0.000624	0.00293	0.029 0.0181	0.00293	0.00018	0.00024	0.00016	0.00026
Calcium (Ca)-Dissolved	mg/L mg/L	0.000033	-	0.0001	50.8	253	25.5	181	89.5	132	259	126	76.7	16.2	14.9	21.3
						-				-						
Chromium (Cr)-Dissolved	mg/L	0.0089	-	0.0001	0.0001	0.00019	0.0001	<0.00010	<0.00010	<0.00010	<0.00010	<0.00010	0.00014	0.00014	0.00014	0.00014
Cobalt (Co)-Dissolved	mg/L	- 0.000	-	0.0001	0.00012	0.00722	<0.00010	0.00087	<0.00010	<0.00010	0.00201	0.00098	0.00048	<0.00010	<0.00010	<0.00010
Copper (Cu)-Dissolved	mg/L	0.002	-	0.0002	0.00319	0.00128	0.00166	<0.00020	0.00065	0.00145	0.00939	0.024	0.00162	0.00191	0.00178	0.00189
ron (Fe)-Dissolved	mg/L	0.3	-	0.01	0.082	7.63	0.03	1.74	<0.010	0.02	0.084	0.094	0.855	0.129	0.132	0.146
Lead (Pb)-Dissolved	mg/L	0.001	-	0.00005	0.000107	<0.000050	<0.000050	0.000113	<0.000050	0.000661	0.00229	0.00181	0.000073	<0.000050	<0.000050	<0.000050
Lithium (Li)-Dissolved	mg/L	-	-	0.0005	0.0018	0.00104	<0.00050	0.00944	0.00279	0.00559	0.0101	0.0045	0.00161	<0.00050	<0.00050	<0.00050
Magnesium (Mg)-Dissolved	mg/L	-	-	0.1	15	52.2	6.89	58.8	30.3	28.2	124	29	31.2	5.24	5.06	7
Manganese (Mn)-Dissolved	mg/L	-	-	0.00005	0.201	6.38	0.00424	1.21	0.003	0.0893	1.76	1.59	0.274	0.0269	0.0127	0.0258
Mercury (Hg)-Dissolved	mg/L	0.000026	-	0.00001	<0.00010	<0.00010	<0.000010	<0.000010	<0.000010	<0.000010	<0.000010	<0.00010	<0.00010	<0.000010	<0.000010	<0.00010

Table E3. Summary of Water Quality Results for the May 20-21, 2014 Trip.

Analyte	Units	CCME-WATER-F-AL	Mount Nansen Effluent Discharge Standards	Sample ID WQ Site ID Date Sampled Detection Limit	0352140521-028 WQ-DC-DX+105 21-May-14	0352-140521-015 WQ-SEEP 21-May-14	0352-140521-030 WQ-DX 21-May-14	0352-140521-032 WQ-MS-S-03 * 21-May-14	0352-140521-029 L2 (lysimeter) * 21-May-14	0352-140521-031 Ore Ramp * 21-May-14	0352-140521-027 WQ-MS-S-08 21-May-14	0352-140521-001 WQ-TP 21-May-14	0352-140521-004 WQ-DC-B 21-May-14	0352-140521-011 WQ-VC-DBC 21-May-14	0352-140521-013 WQ-VC-U 21-May-14	0352-140521-040 WQ-VC-UMN 21-May-14
Molybdenum (Mo)-Dissolved	mg/L	0.073	-	0.00005	0.000116	0.000917	<0.000050	0.000332	0.000054	<0.000050	0.000452	0.000987	0.000175	0.000276	0.000247	0.000292
lickel (Ni)-Dissolved	mg/L	0.1	-	0.0005	0.00075	0.0023	<0.00050	0.00214	<0.00050	<0.00050	0.0035	0.00226	0.00092	0.00059	<0.00050	0.00053
hosphorus (P)-Dissolved	mg/L	-	-	0.05	<0.050	<0.050	<0.050	<0.050	<0.050	<0.050	<0.050	<0.050	<0.050	<0.050	<0.050	<0.050
otassium (K)-Dissolved	mg/L	-	-	0.1	2.73	6.09	3.35	3.45	2.35	2.18	5.65	6.74	1.82	0.55	0.53	0.69
elenium (Se)-Dissolved	mg/L	0.001	-	0.0001	<0.00010	0.00015	<0.00010	<0.00010	<0.00010	0.00015	0.00108	<0.00010	<0.00010	<0.00010	<0.00010	<0.00010
ilicon (Si)-Dissolved	mg/L	-	-	0.05	4.2	6.64	3.39	6.25	1.29	6.12	4.85	1.21	3.34	4.1	3.99	4.19
Silver (Ag)-Dissolved	mg/L	0.0001	-	0.00001	<0.00010	<0.00010	<0.000010	<0.00010	<0.000010	0.000015	0.000085	0.000081	<0.000010	<0.000010	<0.000010	<0.000010
Sodium (Na)-Dissolved	mg/L	-	-	0.05	2.04	35.9	1.6	4.69	0.466	1.87	7.89	9.31	3.34	1.59	1.49	2.07
Strontium (Sr)-Dissolved	mg/L	-	-	0.0002	0.139	0.811	0.0831	0.447	0.284	0.0834	0.612	0.342	0.255	0.177	0.179	0.186
Sulfur (S)-Dissolved	mg/L	-	-	0.5	36.9	232	17.4	141	80.5	125	269	128	77.2	3.99	3.09	9.23
hallium (TI)-Dissolved	mg/L	0.0008	-	0.00001	0.00002	<0.00010	<0.000010	0.000089	<0.000010	<0.00010	0.000212	0.000159	<0.000010	<0.000010	<0.000010	<0.000010
in (Sn)-Dissolved	mg/L	-	-	0.0001	<0.00010	<0.00010	<0.00010	<0.00010	<0.00010	<0.00010	<0.00010	<0.00010	<0.00010	<0.00010	<0.00010	<0.00010
itanium (Ti)-Dissolved	mg/L	-	-	0.01	<0.010	<0.010	<0.010	<0.010	<0.010	<0.010	<0.010	<0.010	<0.010	<0.010	<0.010	<0.010
Jranium (U)-Dissolved	mg/L	0.015	-	0.00001	0.000761	0.00174	0.000034	0.00369	0.000551	0.000068	0.00496	0.000508	0.000956	0.000321	0.000284	0.000348
/anadium (V)-Dissolved	mg/L	-	-	0.001	<0.0010	0.0012	<0.0010	<0.0010	<0.0010	<0.0010	<0.0010	<0.0010	<0.0010	<0.0010	<0.0010	<0.0010
Zinc (Zn)-Dissolved	mg/L	0.03	-	0.001	0.196	0.007	<0.0010	0.895	0.0241	0.29	1.34	0.284	0.0058	0.0012	<0.0010	0.0013

Colour Key:

Exceeds CCME Guideline

Exceeds MN Effluent Discharge Standards

Exceeds both CCME and MN Standards

For those guidelines that are hardness dependent (Cd, Cu, Pb, Ni), the most conservative guideline has been applied. Same for guidelines that are pH and temperature dependent (Ammonia and Aluminum), unless otherwise noted.

* Freshet visit samples only

Table E3. Summary of Water Quality Res	sults for the May	20-21, 2014 Trip.														
				Sample ID	0352-140521-012	0352-140521-008	QA/QC	0352-140521-009	0352-140521-014	0352-140521-010	0352-140521-044	0352-140520-003	0352-140520-006	0352-140521-007	0352-140520-002	0352-140521-019
			Mount Nansen	WQ Site ID	WQ-BC	WQ-BC-r	WQ-BC	WQ-DC-R	WQ-DC-U	WQ-PC-D	WQ-PC-U	WQ-DC-D1b	WQ-DESS-01	WQ-DESS-02	WQ-DESS-03	WQ-PW
Analyte	Units	CCME-WATER-F-AL	_	Date Sampled	21-May-14	21-May-14		21-May-14	21-May-14	21-May-14	21-May-14	20-May-14	20-May-14	20-May-14	20-May-14	21-May-14
			Standards	Detection Limit												
Femperature (in-situ)	°C	-	-	-	4.1	-	-	0.3	4	2.2	1.5	0	0.3	0.6	0.4	1.3
Specific Conductivity (in-situ)	μS/cm	_	_	-	185	_	_	552	658.9	181.8	179.2	1166	831.6	1374	74.3	373.1
pH (in-situ)	рН	6.5 - 9.0	6.0 - 8.5	-	7.86	-	-	7.56	7.87	7.66	7.37	8.01	5.71	7.26	7.88	7.64
Turbidity (In-situ)	NTU	0.5 5.0	0.0 0.5	-	26.8		-	3.96	35.5	1.08	0.22	7.59	2.59	86.5	2.13	0.06
Dissolved Oxygen (in-situ)	mg/L	_	-	_	-	_	-	3.30	-	-	0.22	-	-	-	-	0.00
Colour, True	CU	15	_	5	-	-	-	-		-	-	-			-	<5.0
Conductivity	μS/cm	-	-	2	187	189	1%	532	607	184	181	1100	809	1340	60.2	372
Hardness (as CaCO3)		-	-	0.5	90.1	90.3	0%	278	338	84.5	83.6	682	445	810	27.2	197
pH (lab)	mg/L	6.5 - 9.0	6.0 - 8.5	0.1	7.56	7.65	1%	7.49	7.53	7.38	7.43	7.98	5.78	7.75	6.08	7.89
Total Suspended Solids	pH	6.5 - 9.0	50	3	7.50	7.65	14%	4.7	7.53 101	<3.0	<3.0	7.98 A	7.3	315	14	7.89
Total Dissolved Solids	mg/L mg/L	-	-	1	102	101	14%	350	414	106	103	844	580	1090	27.7	210
Alkalinity, Bicarbonate (as CaCO3)				1					80.8	29.6	27.7			86.8	4	
. , , ,	mg/L	-	-	1	55.1	53.3	3%	69				178	2.2		<1.0	-
Alkalinity, Carbonate (as CaCO3)	mg/L	-	-	-	<1.0	<1.0	-	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0		-
Alkalinity, Hydroxide (as CaCO3)	mg/L	-	-	1	<1.0	<1.0	- 20/	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	- 472
Alkalinity, Total (as CaCO3)	mg/L	-	-	1	55.1	53.3	3%	69	80.8	29.6	27.7	178	2.2	86.8	4	172
Ammonia, Total (as N)	mg/L	0.75	-	0.005	<0.0050	<0.0050	-	0.246	0.235	<0.0050	<0.0050	0.191	0.016	0.0115	0.006	
Chloride (CI)	mg/L	120	-	0.5	<0.50	<0.50	-	<0.50	<0.50	<0.50	<0.50	<5.0	<0.50	<5.0	<0.50	<0.50
Fluoride (F)	mg/L	0.12	-	0.02	0.052	0.051	2%	0.062	0.06	0.039	0.04	<0.20	0.035	<0.20	0.023	0.092
Nitrate (as N)	mg/L	13	-	0.005	0.0529	0.0529	0%	0.0734	0.0601	0.0073	<0.0050	0.053	0.133	4.82	0.0061	0.133
Nitrite (as N)	mg/L	0.06	-	0.001	<0.0010	<0.0010	-	0.0044	0.0022	<0.0010	<0.0010	<0.010	<0.0010	<0.010	<0.0010	<0.0010
Sulfate (SO4)	mg/L	-	-	0.5	33.8	33.7	0%	203	242	54.4	52.7	498	420	706	12.9	34.2
Cyanide, Weak Acid Diss	mg/L	-	0.1	0.005	<0.0050	<0.0050	-	<0.0050	<0.0050	<0.0050	<0.0050	<0.0050	<0.0050	<0.0050	<0.0050	-
Cyanide, Total	mg/L	-	0.3	0.005	<0.0050	<0.0050	-	<0.0050	<0.0050	<0.0050	<0.0050	<0.0050	<0.0050	<0.0050	<0.0050	-
Cyanate	mg/L	-	-	0.2	<0.20	<0.20	-	<0.20	<0.20	<0.20	<0.20	<0.20	<0.20	<0.20	<0.20	-
Thiocyanate (SCN)	mg/L	-	-	0.5	<0.50	<0.50	-	<0.50	<0.50	<0.50	<0.50	<0.50	<0.50	<0.50	0.72	-
Aluminum (AI)-Total	mg/L	0.1	-	0.003	0.745	0.689	8%	0.12	1.66	0.0538	0.0298	0.0515	0.299	7.84	0.602	<0.010
Antimony (Sb)-Total	mg/L	-	0.15	0.0001	0.00039	0.00046	18%	0.00151	0.00146	0.00137	0.0004	0.00749	0.00013	0.0026	0.00021	<0.00050
Arsenic (As)-Total	mg/L	0.005	-	0.0001	0.00578	0.00569	2%	0.0119	0.0144	0.00455	0.00137	0.0205	0.00161	0.129	0.002	0.0004
Barium (Ba)-Total	mg/L	-	1	0.00005	0.0529	0.0516	2%	0.0367	0.0645	0.0236	0.0288	0.0206	0.0318	0.108	0.0381	0.085
Beryllium (Be)-Total	mg/L	-	-	0.0001	<0.00010	<0.00010	-	<0.00010	<0.00010	<0.00010	<0.00010	<0.00010	<0.00010	0.00032	<0.00010	-
Bismuth (Bi)-Total	mg/L	-	-	0.0005	<0.00050	<0.00050	-	<0.00050	<0.00050	<0.00050	<0.00050	<0.00050	<0.00050	<0.00050	<0.00050	-
Boron (B)-Total	mg/L	-	-	0.01	<0.010	<0.010	-	0.013	0.012	<0.010	<0.010	0.029	<0.010	<0.010	<0.010	<0.10
Cadmium (Cd)-Total	mg/L	0.000033	0.02	0.00001	0.000161	0.00017	6%	0.000085	0.000158	0.000215	0.000015	0.000884	0.00684	0.00122	0.000069	<0.00020
Calcium (Ca)-Total	mg/L	-	-	0.05	24.5	24.9	2%	72.8	79.9	24.2	24.1	158	103	245	7.76	45.4
Chromium (Cr)-Total	mg/L	0.0089	0.04	0.0001	0.00109	0.00104	5%	0.00029	0.00289	0.00019	0.00015	0.00018	0.00031	0.00932	0.00059	<0.0020
Cobalt (Co)-Total	mg/L	-	-	0.0001	0.00048	0.00046	4%	0.0009	0.0016	<0.00010	<0.00010	0.00026	0.0003	0.0038	0.00028	-
Copper (Cu)-Total	mg/L	0.002	0.2	0.0005	0.00442	0.00415	6%	0.00234	0.00612	0.00626	0.00138	0.00215	0.00229	0.0193	0.00355	<0.0010
Iron (Fe)-Total	mg/L	0.3	1	0.01	1.16	1.09	6%	1.35	4.37	0.066	0.053	0.9	0.351	11.2	0.518	<0.030
Lead (Pb)-Total	mg/L	0.003	0.1	0.00005	0.00255	0.00273	7%	0.00098	0.00188	0.000698	<0.000050	0.00427	0.000156	0.0365	0.00016	0.00061
Lithium (Li)-Total	mg/L	-	-	0.0005	0.00066	0.00064	3%	0.00081	0.00236	<0.00050	<0.00050	0.00598	0.00144	0.00498	<0.00050	-
Magnesium (Mg)-Total	mg/L	-	-	0.1	6.24	6.3	1%	25	30.1	5.55	5.51	65.6	40.1	43	1.7	20.4
Manganese (Mn)-Total	mg/L	-	0.5	0.00005	0.182	0.181	1%	0.561	0.541	0.00298	0.00236	0.671	0.398	0.612	0.0339	<0.0020
Mercury (Hg)-Total	mg/L	0.000026	0.005	0.00001	<0.000010	<0.00010	-	<0.000010	0.000013	<0.00010	<0.00010	<0.00010	<0.000010	0.000098	0.000012	<0.00020
Molybdenum (Mo)-Total	mg/L	0.0073	-	0.00005	0.000574	0.000646	13%	0.000295	0.000305	0.000069	0.00006	0.000184	<0.000050	0.000318	<0.000050	-
Nickel (Ni)-Total	mg/L	0.1	0.3	0.0005	0.00124	0.00131	6%	0.00114	0.00289	<0.00050	<0.00050	0.00081	0.00552	0.00702	0.00146	-
Phosphorus (P)-Total	mg/L	-	-	0.05	<0.050	<0.050	-	<0.050	0.091	<0.050	<0.050	<0.050	<0.050	0.741	<0.050	-
Potassium (K)-Total	mg/L	-	-	0.1	0.88	0.88	0%	1.96	2.07	0.68	0.65	3.68	1.26	3.56	1.11	0.89
Selenium (Se)-Total	mg/L	0.001	-	0.0001	<0.00010	<0.00010	-	<0.00010	0.00016	<0.00010	<0.00010	0.00013	<0.00010	0.00029	<0.00010	<0.0010
Silicon (Si)-Total	mg/L	-	-	0.05	5.68	5.69	0%	3.3	5.52	4.5	4.79	4.85	3.81	18	3.57	-
Silver (Ag)-Total	mg/L	0.0001	0.1	0.00001	0.000038	0.000042	11%	0.000022	0.000068	0.00002	<0.00010	0.000073	0.000011	0.000706	0.000029	-
Sodium (Na)-Total	mg/L	-	-	0.05	2.19	2.2	0%	5.69	4.59	2.54	2.56	5	2.63	7.28	0.987	5
Strontium (Sr)-Total	mg/L	-	-	0.0002	0.158	0.174	10%	0.249	0.276	0.171	0.174	0.433	0.284	0.564	0.0393	-
Sulfur (S)-Total	mg/L	-	-	0.5	10.9	11	1%	70.4	78.8	17.4	17.3	159	135	221	4.16	-
Thallium (TI)-Total	mg/L	0.0008	-	0.00001	0.000016	0.000014	13%	<0.00010	0.000024	<0.000010	<0.00010	0.000035	<0.00010	0.000197	0.000012	-
Tin (Sn)-Total	mg/L	-	-	0.0001	<0.00010	<0.00010	-	<0.00010	<0.00010	<0.00010	<0.00010	<0.00010	<0.00010	<0.00010	<0.00010	-
Titanium (Ti)-Total	mg/L	-	-	0.01	0.029	0.026	10%	<0.010	0.086	<0.010	<0.010	<0.010	<0.010	0.247	0.011	-
Uranium (U)-Total	mg/L	0.015	-	0.00001	0.000594	0.000649	9%	0.000753	0.00113	0.000055	0.000078	0.00206	0.000021	0.00083	0.00004	0.00193
Vanadium (V)-Total	mg/L	-	-	0.001	0.0023	0.0023	0%	0.0011	0.0072	<0.0010	<0.0010	<0.0010	<0.0010	0.0221	0.0012	-
Zinc (Zn)-Total	mg/L	0.03	0.3	0.003	0.009	0.0088	2%	0.0124	0.0239	0.0191	<0.0030	0.258	2.54	0.113	0.0094	<0.050
Dissolved Metals Filtration Location	8/ -	-	-	n/a	FIELD	FIELD	-	FIELD	FIELD	FIELD	FIELD	FIELD	FIELD	FIELD	FIELD	-
Aluminum (Al)-Dissolved	mg/L	0.005	-	0.001	0.0452	0.0479	6%	0.074	0.118	0.0253	0.0274	0.0041	0.18	0.008	0.273	-
Antimony (Sb)-Dissolved	mg/L	-	-	0.0001	0.0003	0.0003	0%	0.00139	0.00116	0.00136	0.00043	0.00673	0.0001	0.00013	0.00014	-
Arsenic (As)-Dissolved	mg/L	0.005	0.15	0.0001	0.00183	0.00192	5%	0.00133	0.00472	0.00130	0.00043	0.00987	0.0001	0.00013	0.00014	-
Barium (Ba)-Dissolved	mg/L		0.15	0.0001	0.0408	0.0414	1%	0.0344	0.0364	0.00334	0.0294	0.0195	0.0304	0.0245	0.0335	-
Beryllium (Be)-Dissolved	mg/L	-	-	0.0003	<0.00010	<0.00010	-	<0.0010	<0.00010	<0.00010	<0.00010	<0.0010	<0.00010	<0.0010	<0.00010	-
Bismuth (Bi)-Dissolved	mg/L	-	-	0.0001	<0.00010	<0.00010	-	<0.00010	<0.00010	<0.00010	<0.00010	<0.00010	<0.00010	<0.00010	<0.00010	-
Boron (B)-Dissolved	mg/L	-	-	0.003	<0.010	<0.010	-	0.012	0.011	<0.010	<0.010	0.028	<0.010	<0.010	<0.010	-
Cadmium (Cd)-Dissolved		0.000033	-	0.0001	0.00079	0.000085	8%	0.00055	0.00024	0.000214	0.00011	0.028	0.00707	0.00014	0.00048	-
Calcium (Ca)-Dissolved	mg/L mg/L	0.000033	-	0.0001	25.6	25.7	0%	71.6	83.4	24.6	24.3	160	109	253	0.00048 8	-
						-			-	-				<0.00010	-	
Chromium (Cr)-Dissolved	mg/L	0.0089	-	0.0001	0.00015	0.00014	7%	0.00018	0.00015	0.00011	0.00012	<0.00010	0.00012		0.00021	-
Cobalt (Co)-Dissolved	mg/L	- 0.002	-	0.0001	0.00015	0.00014	7%	0.00084	0.00068	<0.00010	<0.00010	0.00024	0.00025	<0.00010	<0.00010	-
Copper (Cu)-Dissolved	mg/L	0.002	-	0.0002	0.00272	0.00274	1%	0.0018	0.00175	0.00603	0.00128	0.00121	0.00185	0.00036	0.00295	-
ron (Fe)-Dissolved	mg/L	0.3	-	0.01	0.121	0.119	2%	0.953	0.968	0.025	0.04	0.185	0.131	<0.010	0.102	-
Lead (Pb)-Dissolved	mg/L	0.001	-	0.00005	0.000094	0.000096	2%	0.000355	0.000061	0.000213	<0.000050	<0.000050	<0.000050	<0.000050	<0.000050	-
Lithium (Li)-Dissolved	mg/L	-	-	0.0005	0.00055	<0.00050	11%	0.00095	0.00153	<0.00050	<0.00050	0.00618	0.00148	0.00121	<0.00050	-
Magnesium (Mg)-Dissolved	mg/L	-	-	0.1	6.37	6.35	0%	24	31.4	5.62	5.54	68.3	42.2	43.4	1.74	-
Manganese (Mn)-Dissolved	mg/L	-	-	0.00005	0.146	0.146	0%	0.529	0.458	0.0017	0.00113	0.642	0.401	0.00151	0.00167	-
Mercury (Hg)-Dissolved	mg/L	0.000026	-	0.00001	<0.000010	<0.000010	-	<0.00010	<0.00010	<0.000010	<0.000010	<0.00010	<0.00010	<0.000010	<0.000010	-

Table E3. Summary of Water Quality Results for the May 20-21, 2014 Trip.

Analyte	Units	CCME-WATER-F-AL	Mount Nansen Effluent Discharge Standards	Sample ID WQ Site ID Date Sampled Detection Limit	0352-140521-012 WQ-BC 21-May-14	0352-140521-008 WQ-BC-r 21-May-14	QA/QC WQ-BC	0352-140521-009 WQ-DC-R 21-May-14	0352-140521-014 WQ-DC-U 21-May-14	0352-140521-010 WQ-PC-D 21-May-14	0352-140521-044 WQ-PC-U 21-May-14	0352-140520-003 WQ-DC-D1b 20-May-14	0352-140520-006 WQ-DESS-01 20-May-14	0352-140521-007 WQ-DESS-02 20-May-14	0352-140520-002 WQ-DESS-03 20-May-14	0352-140521-019 WQ-PW 21-May-14
Molybdenum (Mo)-Dissolved	mg/L	0.073	-	0.00005	0.000551	0.000567	3%	0.000237	0.0002	<0.000050	<0.000050	0.00017	<0.000050	0.000069	<0.000050	-
Nickel (Ni)-Dissolved	mg/L	0.1	-	0.0005	0.00064	0.00063	2%	0.00105	0.00104	<0.00050	<0.00050	0.0007	0.00552	<0.00050	0.00116	-
Phosphorus (P)-Dissolved	mg/L	-	-	0.05	<0.050	<0.050	-	<0.050	<0.050	<0.050	<0.050	<0.050	<0.050	<0.050	<0.050	-
Potassium (K)-Dissolved	mg/L	-	-	0.1	0.76	0.76	0%	1.84	1.99	0.7	0.62	3.85	1.3	2.77	1.16	-
Selenium (Se)-Dissolved	mg/L	0.001	-	0.0001	<0.00010	<0.00010	-	<0.00010	<0.00010	<0.00010	<0.00010	0.00015	<0.00010	<0.00010	<0.00010	-
Silicon (Si)-Dissolved	mg/L	-	-	0.05	4.79	4.81	0%	3.15	3.44	4.54	4.79	4.8	3.81	7.3	3.38	-
Silver (Ag)-Dissolved	mg/L	0.0001	-	0.00001	<0.000010	<0.000010	-	<0.000010	<0.00010	<0.000010	<0.000010	<0.000010	<0.000010	<0.000010	<0.000010	-
Sodium (Na)-Dissolved	mg/L	-	-	0.05	2.21	2.21	0%	5.47	4.49	2.53	2.6	5.08	2.69	7.1	1.01	-
Strontium (Sr)-Dissolved	mg/L	-	-	0.0002	0.171	0.174	2%	0.236	0.272	0.166	0.168	0.421	0.286	0.516	0.0379	-
Sulfur (S)-Dissolved	mg/L	-	-	0.5	11.2	11.2	0%	67	80.7	17.8	17.4	158	138	226	4.29	-
Thallium (TI)-Dissolved	mg/L	0.0008	-	0.00001	<0.000010	<0.00010	-	<0.00010	<0.00010	<0.000010	<0.00010	0.00003	<0.000010	<0.00010	<0.000010	-
Fin (Sn)-Dissolved	mg/L	-	-	0.0001	<0.00010	<0.00010	-	<0.00010	<0.00010	<0.00010	<0.00010	<0.00010	<0.00010	<0.00010	<0.00010	-
Fitanium (Ti)-Dissolved	mg/L	-	-	0.01	<0.010	<0.010	-	<0.010	<0.010	<0.010	<0.010	<0.010	<0.010	<0.010	<0.010	-
Jranium (U)-Dissolved	mg/L	0.015	-	0.00001	0.00057	0.000586	3%	0.000708	0.000974	0.000048	0.000073	0.00201	<0.000010	0.000428	0.000011	-
Vanadium (V)-Dissolved	mg/L	-	-	0.001	<0.0010	<0.0010	-	<0.0010	<0.0010	<0.0010	<0.0010	<0.0010	<0.0010	<0.0010	<0.0010	-
Zinc (Zn)-Dissolved	mg/L	0.03	-	0.001	0.0015	0.0015	0%	0.0096	0.0048	0.0196	0.0014	0.235	2.71	0.0028	0.0081	-

Colour Key:

Exceeds CCME Guideline

Exceeds MN Effluent Discharge Standards

Exceeds both CCME and MN Standards

For those guidelines that are hardness dependent (Cd, Cu, Pb, Ni), the most conservative guideline has been applied. Same for guidelines that are pH and temperature dependent (Ammonia and Aluminum), unless otherwise noted.

3

Table E3. Summary of Water Quality Results for the May 20-21, 2014 Trip.

Table E3. Summary of Water Quality Re	suits for the ivia	y 20-21, 2014 Trip.		Sample ID	0352-140521-042	0352-140521-041	04/00	0352-140522-TRAVEL-BLANK	0352-140521-FIELD-BLANK
Analyte	Units	CCME-WATER-F-AL	Mount Nansen Effluent Discharge Standards	WQ Site ID Date Sampled Detection Limit	WQ-VC-R 21-May-14	WQ-VC-R-r 21-May-14	QA/QC WQ-VC-R	TRAVEL BLANK 22-May-14	FIELD BLANK 21-May-14
Towns and the site of	**				0.4				
Temperature (in-situ) Specific Conductivity (in-situ)	°C μS/cm	-	-	-	0.4 151.5	-	-	-	-
pH (in-situ)	рН	6.5 - 9.0	6.0 - 8.5	-	7.41	_	_	-	-
Turbidity (In-situ)	NTU	0.5 - 5.0	-	-	3.8	_	_	-	
Dissolved Oxygen (in-situ)	mg/L	-	-	-	-	_	_	-	-
Colour, True	CU	15		5					
Conductivity	μS/cm	-	-	2	150	154	3%	<2.0	<2.0
Hardness (as CaCO3)	mg/L	-	-	0.5	73.3	73.4	0%	-	<0.50
pH (lab)	pH	6.5 - 9.0	6.0 - 8.5	0.1	7.42	7.57	2%	5.67	5.7
		0.5 - 9.0	50	3	3.3	3.3	0%	<3.0	<3.0
Total Suspended Solids Total Dissolved Solids	mg/L	-	-	1	82.3	81.6	1%	<1.0	<1.0
	mg/L								
Alkalinity, Bicarbonate (as CaCO3)	mg/L	-	-	1	49.3	47.9	3%	<1.0	<1.0
Alkalinity, Carbonate (as CaCO3)	mg/L	-	-	1	<1.0	<1.0	-	<1.0	<1.0
Alkalinity, Hydroxide (as CaCO3)	mg/L			1	<1.0	<1.0	- 20/	<1.0	<1.0
Alkalinity, Total (as CaCO3)	mg/L	-	-	1	49.3	47.9	3%	<1.0	<1.0
Ammonia, Total (as N)	mg/L	0.75	-	0.005	0.0111	0.0096	14%	<0.0050	<0.0050
Chloride (CI)	mg/L	120	-	0.5	<0.50	<0.50	-	<0.50	<0.50
Fluoride (F)	mg/L	0.12	-	0.02	0.042	0.043	2%	<0.020	<0.020
Nitrate (as N)	mg/L	13	-	0.005	0.0688	0.0696	1%	<0.0050	<0.0050
Nitrite (as N)	mg/L	0.06	-	0.001	<0.0010	<0.0010	-	<0.0010	<0.0010
Sulfate (SO4)	mg/L	-	-	0.5	24.1	24.1	0%	<0.50	<0.50
Cyanide, Weak Acid Diss	mg/L	-	0.1	0.005	<0.0050	<0.0050	-	<0.0050	<0.0050
Cyanide, Total	mg/L	-	0.3	0.005	<0.0050	<0.0050	-	<0.0050	<0.0050
Cyanate	mg/L	-	-	0.2	<0.20	<0.20	-	<0.20	<0.20
Thiocyanate (SCN)	mg/L	-	-	0.5	<0.50	<0.50	-	<0.50	<0.50
Aluminum (AI)-Total	mg/L	0.1	-	0.003	0.13	0.156	20%	<0.0030	<0.0030
Antimony (Sb)-Total	mg/L	-	0.15	0.0001	0.00022	0.00023	5%	<0.00010	<0.00010
Arsenic (As)-Total	mg/L	0.005	-	0.0001	0.00142	0.00151	6%	<0.00010	<0.00010
Barium (Ba)-Total	mg/L	-	1	0.00005	0.0428	0.045	5%	<0.00050	<0.00050
Beryllium (Be)-Total	mg/L	-	-	0.0001	<0.00010	<0.00010	-	<0.00010	<0.00010
Bismuth (Bi)-Total	mg/L	-	-	0.0005	<0.00050	<0.00050	-	<0.00050	<0.00050
Boron (B)-Total	mg/L	-	-	0.01	<0.010	<0.010	-	<0.010	<0.010
Cadmium (Cd)-Total	mg/L	0.000033	0.02	0.00001	0.000026	0.000033	27%	<0.00010	<0.00010
Calcium (Ca)-Total	mg/L	-	-	0.05	19.3	19.7	2%	<0.050	<0.050
Chromium (Cr)-Total	mg/L	0.0089	0.04	0.0001	0.00034	0.00034	0%	<0.00010	<0.00010
Cobalt (Co)-Total	mg/L	-	-	0.0001	0.00017	0.00018	6%	<0.00010	<0.00010
Copper (Cu)-Total	mg/L	0.002	0.2	0.0005	0.00236	0.0024	2%	<0.00050	<0.00050
Iron (Fe)-Total	mg/L	0.3	1	0.01	0.543	0.578	6%	<0.010	<0.010
Lead (Pb)-Total	mg/L	0.003	0.1	0.00005	0.000292	0.000309	6%	<0.00050	<0.000050
Lithium (Li)-Total	mg/L	-	-	0.0005	<0.00050	<0.00050	-	<0.00050	<0.00050
Magnesium (Mg)-Total	mg/L	-	-	0.1	6.22	6.41	3%	<0.10	<0.10
Manganese (Mn)-Total	mg/L	-	0.5	0.00005	0.0403	0.0423	5%	<0.00050	<0.000050
Mercury (Hg)-Total	mg/L	0.000026	0.005	0.00001	<0.00010	<0.000010	-	<0.00010	<0.000010
Molybdenum (Mo)-Total	mg/L	0.0073	-	0.00005	0.000286	0.000293	2%	<0.00050	<0.000050
Nickel (Ni)-Total	mg/L	0.1	0.3	0.0005	0.00082	0.00088	7%	<0.00050	<0.00050
Phosphorus (P)-Total	mg/L	-	-	0.05	<0.050	<0.050	-	<0.050	<0.050
Potassium (K)-Total	mg/L	-	-	0.1	0.73	0.73	0%	<0.10	<0.10
Selenium (Se)-Total	mg/L	0.001	-	0.0001	<0.00010	<0.00010	-	<0.00010	<0.00010
Silicon (Si)-Total	mg/L	-	-	0.05	4.22	4.37	4%	<0.050	<0.050
Silver (Ag)-Total	mg/L	0.0001	0.1	0.00001	<0.00010	<0.00010	-	<0.00010	<0.000010
Sodium (Na)-Total	mg/L	-	-	0.05	1.93	1.99	3%	<0.050	<0.050
Strontium (Sr)-Total	mg/L	-	-	0.0002	0.17	0.177	4%	<0.00020	<0.00020
Sulfur (S)-Total	mg/L	-	-	0.5	8.07	8.29	3%	<0.50	<0.50
Thallium (TI)-Total	mg/L	0.0008	-	0.00001	<0.000010	<0.00010	-	<0.000010	<0.000010
Tin (Sn)-Total	mg/L	-	-	0.0001	<0.00010	<0.00010	-	<0.00010	<0.00010
Titanium (Ti)-Total	mg/L	-	-	0.01	<0.010	<0.010	-	<0.010	<0.010
Uranium (U)-Total	mg/L	0.015	-	0.00001	0.000334	0.000353	6%	<0.00010	<0.000010
Vanadium (V)-Total	mg/L	-	-	0.001	<0.0010	0.001	11%	<0.0010	<0.0010
Zinc (Zn)-Total	mg/L	0.03	0.3	0.003	0.0035	<0.0030	17%	<0.0030	<0.0030
Dissolved Metals Filtration Location	- J.	-	-	n/a	FIELD	FIELD	-	-	FIELD
Aluminum (Al)-Dissolved	mg/L	0.005	-	0.001	0.0531	0.0547	3%	-	<0.0010
Antimony (Sb)-Dissolved	mg/L	-	-	0.0001	0.00024	0.00019	21%	-	<0.00010
Arsenic (As)-Dissolved	mg/L	0.005	0.15	0.0001	0.00105	0.00097	8%	-	<0.00010
Barium (Ba)-Dissolved	mg/L	-	-	0.00005	0.0412	0.0424	3%	-	<0.00010
Beryllium (Be)-Dissolved	mg/L	-	-	0.0001	<0.00010	<0.00010	-	-	<0.00010
Bismuth (Bi)-Dissolved	mg/L	-	_	0.0005	<0.00050	<0.00010	-	-	<0.00050
Boron (B)-Dissolved	mg/L	-	-	0.003	<0.010	<0.010	_	-	<0.010
Cadmium (Cd)-Dissolved	mg/L	0.000033	-	0.00001	0.000037	0.000026	30%	-	<0.00010
Calcium (Ca)-Dissolved	mg/L	0.000033	-	0.0001	19.1	19.2	1%	-	<0.00010
Chromium (Cr)-Dissolved	mg/L	0.0089	-	0.0001	0.00017	0.0002	18%	-	<0.00010
Cobalt (Co)-Dissolved		0.0089	-	0.0001	0.00017	0.0002	8%	-	<0.00010
Copper (Cu)-Dissolved	mg/L	0.002	-	0.0001	0.00012	0.00013 0.00205	1%	-	<0.00010
	mg/L	0.002	-	0.002	0.00208	0.00205	2%	-	<0.00020
ron (Fe)-Dissolved	mg/L								
Lead (Pb)-Dissolved	mg/L	0.001	-	0.00005	<0.000050	<0.000050	-	-	<0.000050
Lithium (Li)-Dissolved	mg/L	-	-	0.0005	<0.00050	<0.00050	- 00/	-	<0.00050
Magnesium (Mg)-Dissolved	mg/L	-	-	0.1	6.2	6.17	0%	-	<0.10
Manganese (Mn)-Dissolved Mercury (Hg)-Dissolved	mg/L	-	-	0.00005	0.0308	0.0297	4%	-	<0.000050
	mg/L	0.000026	-	0.00001	<0.00010	<0.00010	-	-	<0.00010

Table E3. Summary of Water Quality Results for the May 20-21, 2014 Trip.

Analyte	Units	CCME-WATER-F-AL	Mount Nansen Effluent Discharge Standards	Sample ID WQ Site ID Date Sampled Detection Limit	0352-140521-042 WQ-VC-R 21-May-14	0352-140521-041 WQ-VC-R-r 21-May-14	QA/QC WQ-VC-R	0352-140522-TRAVEL-BLANK TRAVEL BLANK 22-May-14	0352-140521-FIELD-BLANK FIELD BLANK 21-May-14
Molybdenum (Mo)-Dissolved	mg/L	0.073	-	0.00005	0.000267	0.000252	6%	-	<0.00050
Nickel (Ni)-Dissolved	mg/L	0.1	-	0.0005	0.00072	0.00073	1%	-	<0.00050
Phosphorus (P)-Dissolved	mg/L	-	-	0.05	<0.050	<0.050	-	-	<0.050
Potassium (K)-Dissolved	mg/L	-	-	0.1	0.7	0.69	1%	-	<0.10
Selenium (Se)-Dissolved	mg/L	0.001	-	0.0001	<0.00010	<0.00010	-	-	<0.00010
Silicon (Si)-Dissolved	mg/L	-	-	0.05	4.12	4.16	1%	-	<0.050
Silver (Ag)-Dissolved	mg/L	0.0001	-	0.00001	<0.000010	<0.000010	-	-	<0.00010
Sodium (Na)-Dissolved	mg/L	-	-	0.05	1.87	1.93	3%	-	<0.050
Strontium (Sr)-Dissolved	mg/L	-	-	0.0002	0.161	0.168	4%	-	<0.00020
Sulfur (S)-Dissolved	mg/L	-	-	0.5	7.93	8.03	1%	-	<0.50
Thallium (TI)-Dissolved	mg/L	0.0008	-	0.00001	<0.000010	<0.000010	-	-	<0.00010
Tin (Sn)-Dissolved	mg/L	-	-	0.0001	<0.00010	<0.00010	-	-	<0.00010
Titanium (Ti)-Dissolved	mg/L	-	-	0.01	<0.010	<0.010	-	-	<0.010
Uranium (U)-Dissolved	mg/L	0.015	-	0.00001	0.000315	0.000304	3%	-	<0.00010
Vanadium (V)-Dissolved	mg/L	-	-	0.001	<0.0010	<0.0010	-	-	<0.0010
Zinc (Zn)-Dissolved	mg/L	0.03	-	0.001	0.0041	0.0019	54%	-	<0.0010

Colour Key:

Exceeds CCME Guideline

Exceeds MN Effluent Discharge Standards

Exceeds both CCME and MN Standards

For those guidelines that are hardness dependent (Cd, Cu, Pb, Ni), the most conservative guideline has been applied. Same for guidelines that are pH and temperature dependent (Ammonia and Aluminum), unless otherwise noted.

	Suits for the sui	ne 24-25, 2014 Trip.		Sample ID	0352-140624-004	0352-140624-002	0352-140624-007	0352-140624-008	0352-140624-001	0352-140624-011	0352-140624-017	0352-140624-014	0352-140624-016	QA/QC	0352-140624-010	0352-140624-009
			Mount Nansen	WQ Site ID	WQ-PC-U	WQ-DC-R	WQ-DESS-01	WQ-DESS-02	WQ-VC-R	WQ-DC-D1b	WQ-SEEP	WQ-DC-B	WQ-DC-B-r	WQ-DC-B	CH-P-13-01	WQ-DX
Analyte	Units	CCME-WATER-F-AL	_	Date Sampled	24-Jun-14	24-Jun-14	24-Jun-14	24-Jun-14	24-Jun-14	24-Jun-14	24-Jun-14	24-Jun-14	24-Jun-14	,	24-Jun-14	24-Jun-14
			Standards	Detection Limit												
mperature (in-situ)	°C	-	_		5.0	7.7	2.9	8.7	7.9	3.8	7.5	7.6	_	_	3	2.4
pecific Conductivity (in-situ)	μS/cm	-	-	-	453.6	1200	1570	1450	241.4	1307	1815	1339	-	-	1818	556.5
H (in-situ)	pH	6.5 - 9.0	6.0 - 8.5	-	7.62	7.6	7.09	7.98	7.95	7.76	6.75	7.81	-	-	6.23	7.28
urbidity (In-situ)	NTU	-	-	-	0.42	26.6	0.33	0.89	1.08	3.99	13.1	12.3	-	-	0.19	3.47
issolved Oxygen (in-situ)	mg/L	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
olour, True	CU	15	-	5	-	-	-	-	-	-	-	-	-	-	-	-
Conductivity	μS/cm	-	-	2	432	1140	1480	1380	238	1250	1750	1290	1310	2%	1620	514
lardness (as CaCO3)	mg/L	-	-	0.5	237	704	984	891	125	833	1010	860	853	1%	1140	290
oH (lab)	pH	6.5 - 9.0	6.0 - 8.5	0.1	7.68	7.78	5.67	7.89	7.86	8.05	7.18	8.06	8.05	0%	5.76	7.47
otal Suspended Solids	mg/L	-	50	3	<3.0	147	7.3	82.7	4	6.7	38.7	68	64	6%	19.3	22.7
otal Dissolved Solids	mg/L	-	-	1	295	916	1300	1180	142	1020	1460	1070	1070	0%	1480	368
Alkalinity, Bicarbonate (as CaCO3)	mg/L	-	-	1	81	173	1.6	110	85.3	238	242	211	212	0%	2.5	89.5
Ikalinity, Carbonate (as CaCO3)	mg/L	-	-	1	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	-	<1.0	<1.0
Ikalinity, Hydroxide (as CaCO3)	mg/L	-	-	1	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	-	<1.0	<1.0
Ikalinity, Total (as CaCO3)	mg/L	-	-	1	81	173	1.6	110	85.3	238	242	211	212	0%	2.5	89.5
mmonia, Total (as N)	mg/L	0.75	-	0.005	<0.0050	0.671	0.007	0.0058	0.0126	0.239	5.29	0.106	0.12	13%	<0.0050	<0.0050
hloride (CI)	mg/L	120	-	0.5	<0.50	<5.0	<5.0	<5.0	<0.50	<5.0	<5.0	<5.0	<5.0	-	<5.0	<0.50
luoride (F)	mg/L	0.12	-	0.02	0.041	<0.20	<0.20	<0.20	0.052	<0.20	<0.20	<0.20	<0.20 0.166	- 20/	<0.20 0.307	0.052
litrate (as N)	mg/L	13	-	0.005	<0.0050	0.517	0.132	1.33	0.0853	0.162	0.337	0.169		2%		<0.0050
litrite (as N) ulfate (SO4)	mg/L mg/L	0.06	-	0.001	<0.0010 156	0.019 546	<0.010 956	<0.010 773	<0.0010 43	<0.010 586	0.013 867	<0.010 646	<0.010 643	0%	<0.010 1080	<0.0010 202
vanide. Weak Acid Diss	mg/L	-	0.1	0.005	<0.0050	<0.0050	<0.0050	<0.0050	<0.0050	<0.0050	0.0104	<0.0050	<0.0050	-	<0.0050	<0.0050
Cyanide, Total	mg/L	-	0.3	0.005	<0.0050	<0.0050	<0.0050	<0.0050	<0.0050	<0.0050	0.0104	<0.0050	<0.0050	-	<0.0050	<0.0050
Cyanate Cyanate	mg/L	-	-	0.2	<0.20	<0.20	<0.20	<0.20	<0.20	<0.20	<0.20	<0.20	<0.20	-	<0.20	<0.20
Thiocyanate (SCN)	mg/L	-	-	0.5	<0.50	<0.50	<0.50	<0.50	<0.50	<0.50	5.28	<0.50	<0.50	-	<0.50	<0.50
luminum (Al)-Total	mg/L	0.1	-	0.003	0.0165	0.246	0.156	0.02	0.024	0.0486	0.0152	0.75	0.809	8%	0.265	0.236
Intimony (Sb)-Total	mg/L	-	0.15	0.0001	0.00047	0.00219	0.00014	0.00024	0.00032	0.00863	0.00051	0.00205	0.00195	5%	0.00018	0.00101
rsenic (As)-Total	mg/L	0.005	-	0.0001	0.0015	0.0289	0.00052	0.00287	0.00168	0.038	0.0853	0.0109	0.0107	2%	0.00108	0.0121
arium (Ba)-Total	mg/L	-	1	0.00005	0.0778	0.0693	0.0363	0.0231	0.0637	0.0251	0.0652	0.0716	0.0705	2%	0.0167	0.0473
Beryllium (Be)-Total	mg/L	-	-	0.0001	<0.00010	<0.00010	<0.00010	<0.00010	<0.00010	<0.00010	<0.00010	<0.00010	<0.00010	-	<0.00010	<0.00010
sismuth (Bi)-Total	mg/L	-	-	0.0005	<0.00050	<0.00050	<0.00050	<0.00050	<0.00050	<0.00050	<0.00050	<0.00050	<0.00050	-	<0.00050	<0.00050
oron (B)-Total	mg/L	-	-	0.01	<0.010	0.027	<0.010	<0.010	<0.010	0.04	0.075	0.022	0.022	0%	<0.010	<0.010
Cadmium (Cd)-Total	mg/L	0.000033	0.02	0.00001	0.000035	0.00012	0.012	0.00002	0.000017	0.000513	0.000327	0.000123	0.000142	15%	0.015	0.000041
Calcium (Ca)-Total	mg/L	-	-	0.05	69.1	170	233	273	30.4	187	299	186	182	2%	250	80.1
Chromium (Cr)-Total	mg/L	0.0089	0.04	0.0001	0.00024	0.00075	0.00021	<0.00010	0.00031	0.00017	0.0006	0.0016	0.00167	4%	0.00033	0.00043
Cobalt (Co)-Total	mg/L	-	-	0.0001	<0.00010	0.00219	<0.00010	<0.00010	0.00012	0.00028	0.0089	0.0008	0.00078	3%	0.00046	0.00046
Copper (Cu)-Total	mg/L	0.002	0.2	0.0005	0.00081	0.00204	0.00142	<0.00050	0.00123	0.00134	0.00219	0.00335	0.00324	3%	0.00166	0.00151
ron (Fe)-Total	mg/L	0.3	1	0.01	0.052	4.22	0.055	0.014	0.22	0.775	13.6	2.55	2.55	0%	0.209	1.71
ead (Pb)-Total	mg/L	0.003	0.1	0.00005	<0.000050	0.0032	<0.000050	0.000063	0.000058	0.00535	0.000066	0.000997	0.000992	1%	0.00015	0.00139
ithium (Li)-Total	mg/L	-	-	0.0005	0.00084 16.1	0.00207 58.6	0.00221	<0.00050 45.7	0.0007	0.00566 85	0.00141 58.4	0.00394 85.5	0.00442	12% 5%	0.00187 92.3	<0.00050
Magnesium (Mg)-Total	mg/L	-	0.5	0.00005	0.0144	1.69	91.3 0.347	0.00192	0.0423	0.845	7.16	0.888	81.2 0.85	4%	92.3 0.872	20.5
Manganese (Mn)-Total Mercury (Hg)-Total	mg/L mg/L	0.000026	0.005	0.00003	<0.00010	0.000013	<0.00010	<0.000192	<0.00010	<0.00010	<0.00010	<0.000010	<0.000010	470	<0.00010	<0.00010
Molybdenum (Mo)-Total	mg/L	0.00026	-	0.00001	0.000010	0.00013	<0.000010	0.000164	0.000393	0.00025	0.00105	0.000554	0.000499	10%	0.000010	0.000010
lickel (Ni)-Total	mg/L	0.1	0.3	0.0005	<0.00050	0.00141	0.0113	<0.00050	<0.00050	0.00025	0.00253	0.00175	0.00177	1%	0.01	0.00061
hosphorus (P)-Total	mg/L	-	-	0.05	<0.050	<0.050	<0.050	<0.050	<0.050	<0.050	<0.050	<0.050	<0.050	-	<0.050	<0.050
otassium (K)-Total	mg/L	-	-	0.1	0.47	3.47	0.8	0.61	0.81	4.02	7.68	3.29	3.06	7%	0.96	4.54
elenium (Se)-Total	mg/L	0.001	-	0.0001	<0.00010	<0.00010	<0.00010	<0.00010	<0.00010	<0.00010	0.00017	0.00012	0.00012	0%	<0.00010	<0.00010
ilicon (Si)-Total	mg/L	-	-	0.05	5.51	5.37	6.85	6.09	5.27	5.08	7.58	6.34	6.22	2%	6.04	4.55
ilver (Ag)-Total	mg/L	0.0001	0.1	0.00001	<0.000010	0.000048	<0.000010	<0.000010	<0.000010	0.000048	0.000033	0.000023	0.000047	104%	0.000012	0.000024
odium (Na)-Total	mg/L	-	-	0.05	5.34	15.2	5.81	7.8	3.26	6.31	42.4	9.21	8.59	7%	6.09	4.18
trontium (Sr)-Total	mg/L	-	-	0.0002	0.482	0.575	0.575	0.562	0.253	0.464	0.868	0.741	0.66	11%	0.671	0.252
ulfur (S)-Total	mg/L	-	-	0.5	53.6	172	313	250	13.7	192	288	205	198	3%	355	67.9
hallium (TI)-Total	mg/L	0.0008	-	0.00001	<0.000010	<0.00010	<0.000010	<0.000010	<0.000010	0.000025	<0.000010	0.000015	0.000022	47%	<0.000010	0.000013
in (Sn)-Total	mg/L	-	-	0.0001	<0.00010	<0.00010	<0.00010	<0.00010	<0.00010	<0.00010	<0.00010	<0.00010	<0.00010	-	<0.00010	<0.00010
itanium (Ti)-Total	mg/L	-	-	0.01	<0.010	0.012	<0.010	<0.010	<0.010	<0.010	<0.010	0.033	0.037	12%	<0.010	0.011
Jranium (U)-Total	mg/L	0.015	-	0.00001	0.000407	0.00207	<0.000010	0.000793	0.000511	0.00268	0.00173	0.00376	0.0034	10%	0.000024	0.000181
anadium (V)-Total	mg/L	-	-	0.001	<0.0010	0.0022	<0.0010	<0.0010	<0.0010	<0.0010	0.0023	0.0048	0.0055	15%	<0.0010	0.0015
inc (Zn)-Total	mg/L	0.03	0.3	0.003	0.004	0.0106	4.45	0.0039	<0.0030	0.15	0.0064	0.0113	0.012	6%	4.89	0.009
Dissolved Metals Filtration Location			-	n/a	FIELD	FIELD	FIELD	FIELD	FIELD	FIELD	FIELD	FIELD	FIELD	-	FIELD	FIELD
Aluminum (Al)-Dissolved	mg/L	0.005	-	0.001	0.0087	0.0106	0.137	0.012	0.0133	0.0025	0.0122	0.0092	0.0088	4%	0.268	0.004
Antimony (Sb)-Dissolved	mg/L	- 0.005	- 0.15	0.0001	0.00042	0.00185	0.00015	0.00024	0.00033	0.00795	0.00048	0.00191	0.00182	5%	0.00017	0.00073
Arsenic (As)-Dissolved	mg/L	0.005	0.15	0.0001	0.00119	0.00918	0.00046	0.00257	0.0015	0.0221	0.0685	0.00431	0.00443	3%	0.00057	0.00405
Sarium (Ba)-Dissolved	mg/L	-	-	0.00005	0.0665	0.0631	0.0374	0.0223	0.0686	0.0231	0.0608	0.0489	0.0486	1%	0.0178	0.0418
Seryllium (Be)-Dissolved	mg/L	-	-	0.0001 0.0005	<0.00010 <0.00050	<0.00010 <0.00050	<0.00010 <0.00050	<0.00010 <0.00050	<0.00010 <0.00050	<0.00010 <0.00050	<0.00010 <0.00050	<0.00010 <0.00050	<0.00010 <0.00050	-	<0.00010 <0.00050	<0.00010 <0.00050
sismuth (Bi)-Dissolved	mg/L	-	-	0.0005	<0.00050	<0.00050 0.025	<0.00050	<0.00050	<0.00050	<0.00050 0.037	<0.00050 0.072	<0.00050 0.018	<0.00050 0.018	- 0%	<0.00050	<0.00050
Soron (B)-Dissolved Cadmium (Cd)-Dissolved	mg/L mg/L	0.000033	-	0.001	0.00026	0.025 0.000041	<0.010 0.0117	<0.010 0.000026	<0.010 0.000015	0.037 0.000263	0.072 0.000229	0.018	0.018	24%	<0.010 0.0223	0.00012
Calcium (Ca)-Dissolved	mg/L	0.000033	-	0.0001	69	179	240	279	32.4	191	307	195	197	1%	268	82
Chromium (Cr)-Dissolved	mg/L	0.0089	-	0.0001	<0.00010	0.00012	0.00012	<0.00010	0.00011	<0.00010	0.00041	<0.00010	<0.00010	170	0.00014	<0.00010
Cobalt (Co)-Dissolved	mg/L	0.0089	-	0.0001	<0.00010	0.00012	<0.00012	<0.00010	0.00011	0.00010	0.00901	0.00010	0.00010	0%	0.00014	0.00010
Copper (Cu)-Dissolved	mg/L	0.002	-	0.0001	0.00010	0.00203	0.0010	0.00010	0.0012	0.00023	0.00301	0.00045	0.00049	9%	0.00148	0.00066
ron (Fe)-Dissolved	mg/L	0.002	-	0.002	0.00	0.804	0.00130	<0.010	0.127	0.149	12.1	0.249	0.242	3%	0.104	0.463
(. c) Dissolved	mg/L	0.001	-	0.00005	<0.000050	<0.00050	<0.00050	<0.00050	<0.000050	0.0009	<0.000050	<0.000050	<0.000050	-	0.00071	<0.00050
ead (Pb)-Dissolved														1		1.1.10000
ead (Pb)-Dissolved ithium (Li)-Dissolved	mg/L	-	-	0.0005	0.00077	0.00199	0.00227	< 0.00050	0.00073	0.00589	0.00109	0.00338	0.0037	9%	0.00206	< 0.00050

Table E4. Summary of Water Quality Results for the June 24-25, 2014 Trip.

			Mount Nansen	Sample ID WQ Site ID	0352-140624-004 WQ-PC-U	0352-140624-002 WQ-DC-R	0352-140624-007 WQ-DESS-01	0352-140624-008 WQ-DESS-02	0352-140624-001 WQ-VC-R	0352-140624-011 WQ-DC-D1b	0352-140624-017 WQ-SEEP	0352-140624-014 WQ-DC-B	0352-140624-016 WQ-DC-B-r	QA/QC WQ-DC-B	0352-140624-010 CH-P-13-01	0352-140624-009 WQ-DX
Analyte	Units	CCME-WATER-F-AL	Effluent Discharge Standards	Date Sampled Detection Limit	24-Jun-14	24-Jun-14	24-Jun-14	24-Jun-14	24-Jun-14	24-Jun-14	24-Jun-14	24-Jun-14	24-Jun-14		24-Jun-14	24-Jun-14
anganese (Mn)-Dissolved	mg/L	-	-	0.00005	0.008	1.62	0.306	0.00163	0.0389	0.834	7.19	0.837	0.88	5%	1.54	0.377
lercury (Hg)-Dissolved	mg/L	0.000026	-	0.00001	<0.000010	<0.000010	<0.000010	<0.000010	<0.000010	<0.000010	<0.000010	<0.000010	<0.000010	-	<0.000010	<0.000010
10lybdenum (Mo)-Dissolved	mg/L	0.073	-	0.00005	0.000057	0.000524	<0.000050	0.000159	0.0004	0.000234	0.001	0.000472	0.000409	13%	<0.000050	0.000054
ickel (Ni)-Dissolved	mg/L	0.1	-	0.0005	<0.00050	0.00115	0.0108	<0.00050	<0.00050	0.00059	0.00259	0.00087	0.00091	5%	0.0139	<0.00050
hosphorus (P)-Dissolved	mg/L	-	-	0.05	<0.050	<0.050	<0.050	<0.050	<0.050	<0.050	<0.050	<0.050	<0.050	-	<0.050	<0.050
otassium (K)-Dissolved	mg/L	-	-	0.1	0.48	3.44	0.81	0.61	0.85	4.07	8.05	3.37	3.26	3%	0.9	4.57
elenium (Se)-Dissolved	mg/L	0.001	-	0.0001	<0.00010	<0.00010	<0.00010	<0.00010	<0.00010	<0.00010	0.00017	<0.00010	<0.00010	-	<0.00010	<0.00010
ilicon (Si)-Dissolved	mg/L	-	-	0.05	5.47	4.98	7	6.14	5.61	5.03	7.59	5.38	5.35	1%	6.09	4.25
ilver (Ag)-Dissolved	mg/L	0.0001	-	0.00001	<0.000010	<0.000010	<0.000010	<0.000010	<0.00010	<0.000010	<0.00010	<0.000010	<0.000010	-	<0.000010	<0.00010
odium (Na)-Dissolved	mg/L	-	-	0.05	4.78	15.4	5.78	7.52	3.44	6.22	42.6	8.76	9.19	5%	6.07	4.17
trontium (Sr)-Dissolved	mg/L	-	-	0.0002	0.468	0.606	0.607	0.577	0.259	0.475	0.864	0.743	0.665	10%	0.719	0.235
ulfur (S)-Dissolved	mg/L	-	-	0.5	51.4	175	311	247	14.2	187	283	207	205	1%	388	67.4
hallium (TI)-Dissolved	mg/L	0.0008	-	0.00001	<0.000010	<0.00010	<0.000010	<0.000010	<0.00010	0.000023	<0.00010	<0.00010	<0.00010	-	<0.000010	<0.000010
in (Sn)-Dissolved	mg/L	-	-	0.0001	<0.00010	<0.00010	<0.00010	<0.00010	<0.00010	<0.00010	<0.00010	<0.00010	<0.00010	-	<0.00010	<0.00010
itanium (Ti)-Dissolved	mg/L	-	-	0.01	<0.010	<0.010	<0.010	<0.010	<0.010	<0.010	<0.010	<0.010	<0.010	-	<0.010	<0.010
ranium (U)-Dissolved	mg/L	0.015	-	0.00001	0.00038	0.00225	<0.000010	0.000887	0.000556	0.00256	0.00172	0.00363	0.0034	6%	<0.000010	0.000162
anadium (V)-Dissolved	mg/L	-	-	0.001	<0.0010	<0.0010	<0.0010	<0.0010	<0.0010	<0.0010	0.002	<0.0010	<0.0010	-	<0.0010	<0.0010
Zinc (Zn)-Dissolved	mg/L	0.03	-	0.001	0.0024	0.0037	4.5	0.0051	<0.0010	0.137	0.0066	0.0027	0.0027	0%	7.12	0.0015

Colour Key:

Exceeds CCME Guideline
Exceeds MN Effluent Discharge Standards

Exceeds both CCME and MN Standards
Exceeds 10% difference threshold for QA/QC replicate samples

For those guidelines that are hardness dependent (Cd, Cu, Pb, Ni), the most conservative guideline has been applied. Same for guidelines that are pH and temperature dependent (Ammonia and Aluminum), unless otherwise noted.

Table E4. Summary of Water Quality Res	sults for the Ju	ne 24-25, 2014 Trip.		Sample ID	0352-140624-018	0352-140624-005	0352-140624-003	0352-140624-015	0352-140624-012	0352-140625-030	0352-140625-028	QA/QC	0352-140625-024	0352-140625-029	QA/QC	0352-140625-025
			Mount Nansen	WQ Site ID	0352-140624-018 WQ-TP	WQ-VC-UMN	WQ-VC-DBC	WQ-DC-U	WQ-DC-DX+105	WQ-VC-U	WQ-VC-U-r	WQ-VC-U	WQ-PIT-1	WQ-PIT-1-r	WQ-PIT-1	WQ-PIT-2
Analyte	Units	CCME-WATER-F-AL	_	Date Sampled	24-Jun-14	24-Jun-14	24-Jun-14	24-Jun-14	24-Jun-14	25-Jun-14	25-Jun-14		25-Jun-14	25-Jun-14	WQ111-1	25-Jun-14
			Standards	Detection Limit												
mperature (in-situ)	°C	-	-	-	12.8	7.4	6.9	6.6	1.1	5.6	-	-	9.5	-	-	9.5
ecific Conductivity (in-situ)	μS/cm	-	-	-	1115	257.1	185.5	1415	1187	183.7	-	-	1426	-	-	1426
H (in-situ)	pH	6.5 - 9.0	6.0 - 8.5	-	8.3	7.73	7.59	7.69	7.01	7.4	-	-	7.96	-	-	7.9
urbidity (In-situ)	NTU	-	-	-	5.68	1.44	0.27	13.8	2.66	0.54	-	-	1.76	-	-	1.23
issolved Oxygen (in-situ)	mg/L	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
blour, True	CU	15	-	5	-	-	-	-	-	-	-	-	-	-	-	-
onductivity	μS/cm	-	-	2	1060	252	180	1340	1110	187	179	4%	1370	1360	1%	1390
ardness (as CaCO3)	mg/L	6.5 - 9.0	6.0 - 8.5	0.5	621 7.83	131 7.87	93.9 7.93	873 8.05	730 7.48	92.6 7.93	92.8 7.82	0% 1%	851 8.04	872 8.04	2%	845 8
H (lab) Otal Suspended Solids	pH mg/L	6.5 - 9.0	50	0.1	7.83	7.87 <3.0	7.93 <3.0	8.05	7.48 <3.0	19.3	10	48%	×3.0	<3.0	0%	3.3
otal Dissolved Solids	mg/L	-	-	1	866	151	102	1120	873	101	101	48% 0%	1140	1160	2%	1140
Ikalinity, Bicarbonate (as CaCO3)	mg/L	-	_	1	71	89.2	85	213	276	82	81.9	0%	139	139	0%	139
Ikalinity, Carbonate (as CaCO3)	mg/L	-	-	1	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	-	<1.0	<1.0	-	<1.0
Ikalinity, Hydroxide (as CaCO3)	mg/L	-	-	1	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	-	<1.0	<1.0	-	<1.0
Ikalinity, Total (as CaCO3)	mg/L	-	-	1	71	89.2	85	213	276	82	81.9	0%	139	139	0%	139
mmonia, Total (as N)	mg/L	0.75	-	0.005	0.0106	0.0103	<0.0050	1.14	0.0147	<0.0050	<0.0050	-	<0.0050	<0.0050	-	<0.0050
hloride (CI)	mg/L	120	-	0.5	<5.0	<0.50	<0.50	<5.0	<5.0	<0.50	<0.50	-	<5.0	<5.0	-	<5.0
luoride (F)	mg/L	0.12	-	0.02	<0.20	0.049	0.047	<0.20	<0.20	0.048	0.045	6%	<0.20	<0.20	-	0.24
litrate (as N)	mg/L	13	-	0.005	0.065	0.0892	0.0691	0.32	<0.050	0.0884	0.0881	0%	<0.050	<0.050	-	<0.050
litrite (as N)	mg/L	0.06	-	0.001	<0.010	0.0013	<0.0010	<0.010	<0.010	<0.0010	<0.0010	-	<0.010	<0.010	-	<0.010
ulfate (SO4)	mg/L	-	-	0.5	577	47.2	15.6	667	446	15.9	16	1%	746	752	1%	746
Cyanide, Weak Acid Diss	mg/L	-	0.1	0.005	<0.0050	<0.0050	<0.0050	<0.0050	<0.0050	<0.0050	<0.0050	-	-	-	-	-
Cyanide, Total	mg/L	-	0.3	0.005	<0.0050	<0.0050	<0.0050	0.0088	<0.0050	<0.0050	<0.0050	-	-	-	-	-
Cyanate Chiocyanate (SCN)	mg/L	-	-	0.2	<0.20 <0.50	<0.20 <0.50	<0.20 <0.50	<0.20 <0.50	<0.20 <0.50	<0.20 <0.50	<0.20 <0.50	-	-	-	-	-
Thiocyanate (SCN) Aluminum (Al)-Total	mg/L mg/L	0.1	-	0.5	<0.50 0.0234	<0.50 0.0139	<0.50 0.0182	<0.50 0.207	<0.50 0.0295	<0.50 0.0496	<0.50 0.0211	- 57%	0.0136	0.013	4%	0.0142
Antimony (Sb)-Total	mg/L	0.1	0.15	0.0001	0.0362	0.0039	0.00013	0.00125	0.0124	0.00012	0.00011	8%	0.00313	0.00299	4%	0.00314
Arsenic (As)-Total	mg/L	0.005	- 0.13	0.0001	0.0867	0.00172	0.00038	0.0231	0.0336	0.00012	0.00039	5%	0.00572	0.00528	8%	0.00573
Barium (Ba)-Total	mg/L	-	1	0.00005	0.00674	0.0646	0.0657	0.0662	0.013	0.0603	0.0613	2%	0.0271	0.0252	7%	0.0259
Beryllium (Be)-Total	mg/L	-	-	0.0001	<0.00010	<0.00010	<0.00010	<0.00010	<0.00010	<0.00010	<0.00010	-	<0.00010	<0.00010	-	<0.00010
sismuth (Bi)-Total	mg/L	-	-	0.0005	<0.00050	<0.00050	<0.00050	<0.00050	<0.00050	<0.00050	<0.00050	-	<0.00050	<0.00050	-	<0.00050
Soron (B)-Total	mg/L	-	-	0.01	0.071	<0.010	<0.010	0.034	<0.010	<0.010	<0.010	-	<0.010	<0.010	-	<0.010
admium (Cd)-Total	mg/L	0.000033	0.02	0.00001	0.00059	0.000015	0.000013	0.00012	0.00348	0.000017	0.000013	24%	0.00308	0.00282	8%	0.00289
Calcium (Ca)-Total	mg/L	-	-	0.05	171	33.8	23.6	225	184	22.9	23.4	2%	249	239	4%	243
Chromium (Cr)-Total	mg/L	0.0089	0.04	0.0001	0.00013	0.00013	0.00015	0.00061	0.00015	0.00047	0.00019	60%	<0.00010	<0.00010	-	<0.00010
Cobalt (Co)-Total	mg/L	-	-	0.0001	0.00049	0.0001	<0.00010	0.00234	0.00047	<0.00010	<0.00010	-	<0.00010	<0.00010	-	<0.00010
Copper (Cu)-Total	mg/L	0.002	0.2	0.0005	0.0182	0.00116	0.0011	0.00188	0.00071	0.00124	0.00112	10%	0.00337	0.00306	9%	0.00366
ron (Fe)-Total	mg/L	0.3	1	0.01	0.266	0.079	0.046	3	0.464	0.106	0.068	36%	0.027	0.023	15%	0.039
ead (Pb)-Total	mg/L	0.003	0.1	0.00005	0.00675	0.000051	<0.000050	0.000378	0.000482	0.000089	<0.000050	45%	0.000334	0.000293	12%	0.000455
ithium (Li)-Total	mg/L	-	-	0.0005	0.00591 39.5	0.00058	<0.00050 7.99	0.00235 80.1	0.0089 61.8	<0.00050 7.66	0.00053	0% 1%	0.00698 64.1	0.00653 62.9	6%	0.00672 61.6
Magnesium (Mg)-Total Manganese (Mn)-Total	mg/L	-	0.5	0.00005	0.084	0.0433	0.0258	2.19	1.03	0.025	7.72 0.0227	9%	0.0235	0.0214	2% 9%	0.0234
Mercury (Hg)-Total	mg/L mg/L	0.000026	0.005	0.00003	<0.00010	<0.00010	<0.00010	<0.000010	<0.00010	<0.00010	<0.00010	-	<0.00010	<0.00010	3/0	<0.00010
Molybdenum (Mo)-Total	mg/L	0.0073	-	0.00005	0.00137	0.00042	0.000428	0.000536	0.000375	0.000458	0.000452	1%	0.00016	0.000135	8%	0.000135
Nickel (Ni)-Total	mg/L	0.1	0.3	0.0005	0.00072	<0.00050	<0.00050	0.00151	0.00153	<0.00050	<0.00050	-	0.00057	0.00053	7%	0.00073
Phosphorus (P)-Total	mg/L	-	-	0.05	<0.050	<0.050	<0.050	<0.050	<0.050	<0.050	<0.050	-	<0.050	<0.050	-	<0.050
Potassium (K)-Total	mg/L	-	-	0.1	10	0.83	0.67	4.28	3.61	0.64	0.63	2%	2.85	2.9	2%	2.83
Selenium (Se)-Total	mg/L	0.001	-	0.0001	<0.00010	<0.00010	<0.00010	0.00013	<0.00010	<0.00010	<0.00010	-	<0.00010	<0.00010	-	<0.00010
Silicon (Si)-Total	mg/L	-	-	0.05	0.345	5.39	5.38	6.14	6.44	5.28	5.33	1%	2.59	2.44	6%	2.52
Silver (Ag)-Total	mg/L	0.0001	0.1	0.00001	0.00014	<0.00010	<0.000010	0.000011	<0.000010	<0.000010	<0.00010	-	<0.000010	<0.00010	-	<0.00010
Sodium (Na)-Total	mg/L	-	-	0.05	14.3	3.59	2.48	18.5	5.14	2.41	2.43	1%	9.34	8.55	8%	8.9
Strontium (Sr)-Total	mg/L	-	-	0.0002	0.473	0.31	0.28	0.713	0.44	0.286	0.29	1%	0.832	0.788	5%	0.803
Sulfur (S)-Total	mg/L	- 0.0000	-	0.5	184	15.7	5.65	227	144	5.78	5.84	1%	245	242	1%	236
hallium (TI)-Total	mg/L	0.0008	-	0.00001	0.000182	<0.00010	<0.00010	<0.00010	0.000094	<0.00010	<0.00010	-	0.000054	0.000053	2%	0.000056
in (Sn)-Total	mg/L	-	-	0.0001	<0.00010 <0.010	<0.00010 <0.010	<0.00010 <0.010	<0.00010	<0.00010 <0.010	<0.00010 <0.010	<0.00010 <0.010	-	<0.00010 <0.010	<0.00010 <0.010	-	<0.00010 <0.010
itanium (Ti)-Total Jranium (U)-Total	mg/L	0.015	-	0.001	<0.010 0.000834	<0.010 0.000589	<0.010 0.000517	0.011 0.00255	<0.010 0.00465	<0.010 0.000553	<0.010 0.000558	1%	<0.010 0.00316	<0.010 0.00295	7%	<0.010 0.00311
/anadium (V)-Total	mg/L mg/L	0.015	-	0.0001	<0.0010	<0.0010	<0.0010	0.00255	<0.00465	<0.0010	<0.0010	1%	<0.0010	<0.00295		<0.0011
Zinc (Zn)-Total	mg/L	0.03	0.3	0.001	0.0411	<0.0010	<0.0010	0.002	0.631	0.0010	<0.0010	19%	0.347	0.316	9%	0.337
Dissolved Metals Filtration Location	1118/ -	-	-	n/a	FIELD	FIELD	FIELD	FIELD	FIELD	FIELD	FIELD	-	FIELD	FIELD	-	FIELD
Aluminum (Al)-Dissolved	mg/L	0.005	-	0.001	0.0057	0.0078	0.0097	0.0115	<0.0010	0.0115	0.0111	3%	0.0016	0.0026	63%	0.0018
antimony (Sb)-Dissolved	mg/L	-	-	0.0001	0.0357	0.00035	<0.00010	0.00124	0.0119	0.0001	0.0001	0%	0.00297	0.00296	0%	0.00296
rsenic (As)-Dissolved	mg/L	0.005	0.15	0.0001	0.0574	0.00137	0.00033	0.0127	0.00643	0.00032	0.00034	6%	0.00494	0.00494	0%	0.00504
arium (Ba)-Dissolved	mg/L	-	-	0.00005	0.00666	0.0651	0.0669	0.056	0.0121	0.0612	0.0613	0%	0.0253	0.0255	1%	0.0254
Beryllium (Be)-Dissolved	mg/L	-	-	0.0001	<0.00010	<0.00010	<0.00010	<0.00010	<0.00010	<0.00010	<0.00010	-	<0.00010	<0.00010	-	<0.00010
ismuth (Bi)-Dissolved	mg/L	-	-	0.0005	<0.00050	<0.00050	<0.00050	<0.00050	<0.00050	<0.00050	<0.00050	-	<0.00050	<0.00050	-	<0.00050
oron (B)-Dissolved	mg/L		-	0.01	0.07	<0.010	<0.010	0.032	<0.010	<0.010	<0.010	-	<0.010	<0.010		<0.010
admium (Cd)-Dissolved	mg/L	0.000033	-	0.00001	0.000346	0.000012	0.000012	0.00005	0.00141	0.000012	0.000011	8%	0.00295	0.00292	1%	0.00282
Calcium (Ca)-Dissolved	mg/L		-	0.05	180	34.1	24.2	219	188	24.1	24.1	0%	241	243	1%	239
thromium (Cr)-Dissolved	mg/L	0.0089	-	0.0001	<0.00010	0.00011	<0.00010	<0.00010	<0.00010	<0.00010	<0.00010	-	<0.00010	<0.00010	-	<0.00010
Cobalt (Co)-Dissolved	mg/L	- 0.002	-	0.0001	0.0005	<0.00010	<0.00010	0.00204	0.00043	<0.00010	<0.00010	-	<0.00010	<0.00010	-	<0.00010
Copper (Cu)-Dissolved	mg/L	0.002	-	0.0002	0.0131	0.00107	0.00101	0.00077	<0.00020	0.00108	0.00107	1%	0.00256	0.0025	2%	0.00258
on (Fe)-Dissolved	mg/L	0.3	-	0.01 0.00005	0.024 0.000479	0.02 <0.000050	0.029 <0.00050	0.552 <0.00050	0.111 <0.00050	0.04 <0.000050	0.042 <0.000050	5%	<0.010 <0.00050	<0.010 <0.000050	-	<0.010 <0.000050
ead (Pb)-Dissolved ithium (Li)-Dissolved	mg/L mg/L	0.001	-	0.0005	0.000479	0.00069	0.00056	0.0025	0.00851	0.00061	0.00061	- 0%	0.00050	0.00668	1%	0.00683
	mg/L mg/L	-	-	0.0005	41.6	11.2	8.12	79	63.1	7.88	7.89	0%	60.6	64.4	6%	60.5
lagnesium (Mg)-Dissolved	IIIg/L	-	_	0.1	41.0	11.2	0.12	/9	03.1	7.00	7.03	U%	0.00	04.4	0%	00.5

Table E4. Summary of Water Quality Results for the June 24-25, 2014 Trip.

			Mount Nansen	Sample ID WQ Site ID	0352-140624-018 WQ-TP	0352-140624-005 WQ-VC-UMN	0352-140624-003 WQ-VC-DBC	0352-140624-015 WQ-DC-U	0352-140624-012 WQ-DC-DX+105	0352-140625-030 WQ-VC-U	0352-140625-028 WQ-VC-U-r	QA/QC WQ-VC-U	0352-140625-024 WQ-PIT-1	0352-140625-029 WQ-PIT-1-r	QA/QC WQ-PIT-1	0352-140625-025 WQ-PIT-2
Analyte	Units	CCME-WATER-F-AL	Effluent Discharge Standards	Date Sampled Detection Limit	24-Jun-14	24-Jun-14	24-Jun-14	24-Jun-14	24-Jun-14	25-Jun-14	25-Jun-14	wq-vc-u	25-Jun-14	25-Jun-14	WQ-PII-1	25-Jun-14
Manganese (Mn)-Dissolved	mg/L	-	-	0.00005	0.0562	0.0398	0.0233	1.99	1.04	0.0191	0.0199	4%	0.0212	0.0207	2%	0.0215
Mercury (Hg)-Dissolved	mg/L	0.000026	-	0.00001	<0.000010	<0.000010	<0.000010	<0.000010	<0.000010	<0.000010	<0.000010	-	<0.00010	<0.000010	-	<0.000010
Molybdenum (Mo)-Dissolved	mg/L	0.073	-	0.00005	0.0014	0.000391	0.000374	0.00053	0.000336	0.00043	0.000434	1%	0.000135	0.000125	7%	0.000129
Nickel (Ni)-Dissolved	mg/L	0.1	-	0.0005	0.00069	<0.00050	<0.00050	0.00105	0.00142	<0.00050	<0.00050	-	0.00053	<0.00050	8%	0.00053
Phosphorus (P)-Dissolved	mg/L	-	-	0.05	<0.050	<0.050	<0.050	<0.050	<0.050	<0.050	<0.050	-	<0.050	<0.050	-	<0.050
Potassium (K)-Dissolved	mg/L	-	-	0.1	10.3	0.83	0.67	4.22	3.67	0.64	0.64	0%	2.77	2.81	1%	2.67
Selenium (Se)-Dissolved	mg/L	0.001	-	0.0001	<0.00010	<0.00010	<0.00010	<0.00010	<0.00010	<0.00010	<0.00010	-	<0.00010	<0.00010	-	<0.00010
Silicon (Si)-Dissolved	mg/L	-	-	0.05	0.319	5.46	5.43	5.54	6.43	5.4	5.37	1%	2.48	2.51	1%	2.46
Silver (Ag)-Dissolved	mg/L	0.0001	-	0.00001	0.000027	<0.000010	<0.000010	<0.000010	<0.000010	<0.000010	<0.000010	-	<0.000010	<0.000010	-	<0.000010
Sodium (Na)-Dissolved	mg/L	-	-	0.05	14.8	3.49	2.53	17	5.14	2.35	2.43	3%	8.78	8.9	1%	8.64
Strontium (Sr)-Dissolved	mg/L	-	-	0.0002	0.494	0.292	0.264	0.743	0.431	0.275	0.272	1%	0.787	0.793	1%	0.797
Sulfur (S)-Dissolved	mg/L	-	-	0.5	186	15.5	5.56	213	140	5.8	5.81	0%	233	244	5%	231
Thallium (TI)-Dissolved	mg/L	0.0008	-	0.00001	0.000183	<0.000010	<0.000010	<0.00010	0.000082	<0.000010	<0.000010	-	0.000055	0.000052	5%	0.000052
Tin (Sn)-Dissolved	mg/L	-	-	0.0001	<0.00010	<0.00010	<0.00010	<0.00010	<0.00010	<0.00010	<0.00010	-	<0.00010	<0.00010	-	<0.00010
Fitanium (Ti)-Dissolved	mg/L	-	-	0.01	<0.010	<0.010	<0.010	<0.010	<0.010	<0.010	<0.010	-	<0.010	<0.010	-	<0.010
Jranium (U)-Dissolved	mg/L	0.015	-	0.00001	0.000811	0.000567	0.000494	0.00264	0.00415	0.000537	0.000536	0%	0.00299	0.00297	1%	0.00298
/anadium (V)-Dissolved	mg/L	-	-	0.001	<0.0010	<0.0010	<0.0010	<0.0010	<0.0010	<0.0010	<0.0010	-	<0.0010	<0.0010	-	<0.0010
Zinc (Zn)-Dissolved	mg/L	0.03	-	0.001	0.0191	<0.0010	<0.0010	0.002	0.587	<0.0010	<0.0010	-	0.331	0.324	2%	0.334

Applied Guidelines: 'Federal CCME Canadian Environmental Quality Guidelines (May 2014), CCME: Freshwater Aquatic Life 'Mount Nansen Effluent Discharge Standards

Colour Key:

Exceeds CCME Guideline
Exceeds MN Effluent Discharge Standards

Exceeds both CCME and MN Standards
Exceeds 10% difference threshold for QA/QC replicate samples

For those guidelines that are hardness dependent (Cd, Cu, Pb, Ni), the most conservative guideline has been applied. Same for guidelines that are pH and temperature dependent (Ammonia and Aluminum), unless otherwise noted.

Table E4. Summary of Water Quality Results for the June 24-25, 2014 Trip.

Analyte	Units	e 24-25, 2014 Trip. CCME-WATER-F-AL	Mount Nansen Effluent Discharge Standards	Sample ID WQ Site ID Date Sampled	0352-140625-027 WQ-PW 25-Jun-14	0352-140625-026 WQ-PIT-3 25-Jun-14	0352-140624-FIELD-BLANK FIELD BLANK 24-Jun-14	0352-140624-TRAVEL-BLANK TRAVEL BLANK 24-Jun-14
			Standards	Detection Limit				
emperature (in-situ)	°C	-	-	-	1.3	8.2	-	-
pecific Conductivity (in-situ)	μS/cm	-	-	-	404.9	2346	-	-
H (in-situ)	pH	6.5 - 9.0	6.0 - 8.5	-	6.72	6.65	-	-
urbidity (In-situ)	NTU	-	-	-	0.1	2.88	-	-
Dissolved Oxygen (in-situ)	mg/L	-	-	-	-	-	-	-
Colour, True	CU	15	-	5	<5.0	-	-	-
Conductivity	μS/cm	-	-	2	366	2200	<2.0	<2.0
Hardness (as CaCO3) OH (lab)	mg/L pH	6.5 - 9.0	6.0 - 8.5	0.5 0.1	190 7.63	1530 7.46	<0.50 5.52	<0.50 5.56
otal Suspended Solids	mg/L	-	50	3	7.03	10.7	<3.0	<3.0
otal Suspended Solids	mg/L	-	-	1	206	2090	<1.0	<1.0
Alkalinity, Bicarbonate (as CaCO3)	mg/L	-	-	1	-	214	<1.0	<1.0
Alkalinity, Carbonate (as CaCO3)	mg/L	-	-	1		<1.0	<1.0	<1.0
Alkalinity, Hydroxide (as CaCO3)	mg/L	-	-	1	_	<1.0	<1.0	<1.0
Alkalinity, Total (as CaCO3)	mg/L	-	-	1	172	214	<1.0	<1.0
Ammonia, Total (as N)	mg/L	0.75	-	0.005	-	<0.0050	<0.0050	<0.0050
Chloride (CI)	mg/L	120	-	0.5	<0.50	<10	<0.50	<0.50
luoride (F)	mg/L	0.12	-	0.02	0.095	<0.40	<0.020	<0.020
litrate (as N)	mg/L	13	-	0.005	0.136	<0.10	<0.0050	<0.0050
Nitrite (as N)	mg/L	0.06	-	0.001	<0.0010	<0.020	<0.0010	<0.0010
ulfate (SO4)	mg/L	-	-	0.5	33.1	1400	<0.50	<0.50
Cyanide, Weak Acid Diss	mg/L	-	0.1	0.005	-	-	<0.0050	<0.0050
Cyanide, Total	mg/L	-	0.3	0.005	-	-	<0.0050	<0.0050
Cyanate	mg/L	-	-	0.2	-	-	<0.20	<0.20
Thiocyanate (SCN)	mg/L	-	-	0.5	-	-	<0.50	<0.50
Aluminum (AI)-Total	mg/L	0.1	-	0.003	<0.010	0.0182	<0.0030	<0.0030
Antimony (Sb)-Total	mg/L	-	0.15	0.0001	<0.00050	0.00105	<0.00010	<0.00010
Arsenic (As)-Total	mg/L	0.005	-	0.0001	0.00039	0.0271	<0.00010	<0.00010
Barium (Ba)-Total	mg/L	-	1	0.00005	0.082	0.0118	<0.000050	<0.000050
seryllium (Be)-Total	mg/L	-	-	0.0001	-	<0.00020	<0.00010	<0.00010
sismuth (Bi)-Total	mg/L	-	-	0.0005	-	<0.0010	<0.00050	<0.00050
soron (B)-Total	mg/L	-	-	0.01	<0.10	<0.020	<0.010	<0.010
admium (Cd)-Total	mg/L	0.000033	0.02	0.00001	<0.00020	0.00503	<0.00010	<0.000010
Calcium (Ca)-Total	mg/L	-	-	0.05	43.7	429	<0.050	<0.050
hromium (Cr)-Total	mg/L	0.0089	0.04	0.0001	<0.0020	<0.00020	<0.00010	<0.00010
Cobalt (Co)-Total	mg/L	-	-	0.0001	-	0.00032	<0.00010	<0.00010
Copper (Cu)-Total	mg/L	0.002	0.2	0.0005	<0.0010	0.0039	<0.00050	<0.00050
ron (Fe)-Total	mg/L	0.3	1	0.01	<0.030	0.198	<0.010	<0.010
ead (Pb)-Total	mg/L	0.003	0.1	0.00005	0.00056	0.00096	<0.00050	<0.000050
ithium (Li)-Total	mg/L	-	-	0.0005	-	0.0101	<0.00050	<0.00050
Magnesium (Mg)-Total	mg/L	-	-	0.1	19.7	110	<0.10	<0.10
Manganese (Mn)-Total	mg/L	-	0.5	0.00005	<0.0020	0.552	<0.000050	<0.000050
Mercury (Hg)-Total	mg/L	0.000026	0.005	0.00001	<0.00020	<0.00010	<0.00010	<0.000010
Molybdenum (Mo)-Total	mg/L	0.0073	-	0.00005	-	<0.00010	<0.000050	<0.00050
Nickel (Ni)-Total	mg/L	0.1	0.3	0.0005	-	0.0014	<0.00050	<0.00050
Phosphorus (P)-Total	mg/L	-	-	0.05	-	<0.050	<0.050	<0.050
Potassium (K)-Total	mg/L	-	-	0.1	0.82	4.65	<0.10	<0.10
elenium (Se)-Total	mg/L	0.001	-	0.0001	<0.0010	<0.00020	<0.00010	<0.00010
illicon (Si)-Total	mg/L	-	-	0.05	-	3.2	<0.050	<0.050
ilver (Ag)-Total	mg/L	0.0001	0.1	0.00001	-	<0.000020	<0.000010	<0.000010
Sodium (Na)-Total	mg/L	-	-	0.05	4.7	14.5	<0.050	<0.050
trontium (Sr)-Total	mg/L	-	-	0.0002	-	1.27	<0.00020	<0.00020
ulfur (S)-Total	mg/L	- 0.0000	-	0.5	-	447	<0.50	<0.50
hallium (TI)-Total	mg/L	0.0008	-	0.00001	-	0.000091	<0.00010	<0.000010
in (Sn)-Total	mg/L	-	-	0.0001	-	<0.00020	<0.00010	<0.00010
itanium (Ti)-Total	mg/L	- 0.015	-	0.01	- 0.00177	<0.020	<0.010	<0.010
Jranium (U)-Total	mg/L	0.015	-	0.00001	0.00177	0.00436	<0.00010	<0.00010
/anadium (V)-Total	mg/L	- 0.03	- 0.2	0.001	- 0.050	<0.0020	<0.0010	<0.0010
linc (Zn)-Total	mg/L	0.03	0.3	0.003	<0.050	0.576	<0.0030	<0.0030
Dissolved Metals Filtration Location	pa = /1	0.005	-	n/a	-	FIELD	FIELD	
Aluminum (Al)-Dissolved	mg/L	0.005	-	0.001		<0.0020	<0.0010	-
ntimony (Sb)-Dissolved	mg/L	0.005	0.15	0.0001 0.0001	-	0.001 0.0133	<0.00010 <0.00010	· ·
Arsenic (As)-Dissolved Barium (Ba)-Dissolved	mg/L	0.005	0.15	0.0001	-	0.0133	<0.00010	<u> </u>
eryllium (Be)-Dissolved	mg/L	-	-	0.0005	-	<0.0014	<0.00010	
ismuth (Bi)-Dissolved	mg/L	-	-	0.0001	-	<0.0020	<0.00010	<u> </u>
	mg/L	-	-	0.0005	-	<0.0010	<0.0050	<u> </u>
oron (B)-Dissolved	mg/L	0.000033	-	0.0001	-	0.00485	<0.010	<u> </u>
admium (Cd)-Dissolved	mg/L	0.000033	-	0.0001	-	0.00485 429	<0.00010	
alcium (Ca)-Dissolved hromium (Cr)-Dissolved	mg/L	0.0089	-	0.0001	-	<0.00020	<0.0010	
obalt (Co)-Dissolved	mg/L	0.0089	-	0.0001	-	0.00020	<0.00010	<u> </u>
	mg/L		-		-	0.00029 0.00235		<u> </u>
opper (Cu)-Dissolved	mg/L	0.002	-	0.0002 0.01	-	<0.010	<0.00020 <0.010	
on (Fe)-Dissolved ead (Pb)-Dissolved	mg/L	0.3	-	0.0005	-	<0.010 <0.00010	<0.010	
ead (PD)-Dissolved ithium (Li)-Dissolved	mg/L	0.001		0.0005			<0.00050	
	mg/L	-	-	0.0005	-	0.01	<v.uuu5u< td=""><td></td></v.uuu5u<>	

Table E4. Summary of Water Quality Results for the June 24-25, 2014 Trip.

Table E4. Summary of Water Quality Resu	its for the June	24-25, 2014 Inp.						
			Mount Nansen	Sample ID	0352-140625-027	0352-140625-026	0352-140624-FIELD-BLANK	0352-140624-TRAVEL-BLANK
Analyte	Units	CCME-WATER-F-AL	Effluent Discharge	WQ Site ID	WQ-PW	WQ-PIT-3	FIELD BLANK	TRAVEL BLANK
Analyte	Units	CCIVIE-WATER-F-AL	Standards	Date Sampled	25-Jun-14	25-Jun-14	24-Jun-14	24-Jun-14
			Standards	Detection Limit				
Manganese (Mn)-Dissolved	mg/L	-	-	0.00005	-	0.513	<0.000050	-
Mercury (Hg)-Dissolved	mg/L	0.000026	-	0.00001	-	<0.000010	<0.00010	-
Molybdenum (Mo)-Dissolved	mg/L	0.073	-	0.00005	-	<0.00010	<0.000050	-
Nickel (Ni)-Dissolved	mg/L	0.1	-	0.0005	-	<0.0010	<0.00050	-
Phosphorus (P)-Dissolved	mg/L	-	-	0.05	-	<0.050	<0.050	-
Potassium (K)-Dissolved	mg/L	-	-	0.1	-	4.78	<0.10	-
Selenium (Se)-Dissolved	mg/L	0.001	-	0.0001	-	<0.00020	<0.00010	-
Silicon (Si)-Dissolved	mg/L	-	-	0.05	-	3.22	<0.050	-
Silver (Ag)-Dissolved	mg/L	0.0001	-	0.00001	-	<0.000020	<0.00010	-
Sodium (Na)-Dissolved	mg/L	-	-	0.05	-	14.4	<0.050	-
Strontium (Sr)-Dissolved	mg/L	-	-	0.0002	-	1.29	<0.00020	-
Sulfur (S)-Dissolved	mg/L	-	-	0.5	-	439	<0.50	-
Thallium (TI)-Dissolved	mg/L	0.0008	-	0.00001	-	0.000091	<0.00010	-
Tin (Sn)-Dissolved	mg/L	-	-	0.0001	-	<0.00020	<0.00010	-
Titanium (Ti)-Dissolved	mg/L	-	-	0.01	-	<0.020	<0.010	-
Uranium (U)-Dissolved	mg/L	0.015	-	0.00001	-	0.0044	<0.00010	-
Vanadium (V)-Dissolved	mg/L	-	-	0.001	-	<0.0020	<0.0010	-
Zinc (Zn)-Dissolved	mg/L	0.03	-	0.001	-	0.581	<0.0010	-

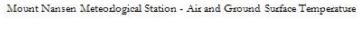
Colour Key:

Exceeds CCME Guideline
Exceeds MN Effluent Discharge Standards

Exceeds both CCME and MN Standards
Exceeds 10% difference threshold for QA/QC replicate samples

For those guidelines that are hardness dependent (Cd, Cu, Pb, Ni), the most conservative guideline has been applied. Same for guidelines that are pH and temperature dependent (Ammonia and Aluminum), unless otherwise noted.

APPENDIX F Q1 METEOROLOGICAL DATA


Table F-1. Mount Nansen Daily Meteorological Data (April 11 to June 30, 2014).

Date/Time	Air Temperature		Relative Humidity		
	Max	Min	Max	Min	Snow Depth
	(°C)	(°C)	(%)	(%)	(cm)
11/04/2014 0:00	-7.10	-12.6	57.68	41.04	61.730
12/04/2014 0:00	0.73	-14.6	66.41	15.87	61.49
13/04/2014 0:00	4.30	-7.4	39.52	21.36	61.450
14/04/2014 0:00	3.76	-4.2	54.96	28.20	61.12
15/04/2014 0:00	6.05	-3.2	68.01	34.49	60.360
16/04/2014 0:00	5.97	-0.2	70.33	33.46	57.71
17/04/2014 0:00	3.82	-3.2	93.60	53.51	57.660
18/04/2014 0:00	3.77	-2.9	94.70	44.56	58.43
19/04/2014 0:00	6.03	-2.1	99.40	39.49	54.970
20/04/2014 0:00	4.42	-4.6	70.44	30.07	53.55
21/04/2014 0:00	5.84	-1.0	63.18	38.29	50.680
22/04/2014 0:00	6.74	-0.2	85.80	43.19	48.32
23/04/2014 0:00	3.45	-1.6	95.80	56.60	46.060
24/04/2014 0:00	2.12	-1.8	96.20	69.01	45.79
25/04/2014 0:00	1.63	-3.8	96.70	61.51	45.090
26/04/2014 0:00	4.84	-3.9	92.70	27.02	44.69
27/04/2014 0:00	6.05	-3.3	63.63	29.42	42.170
28/04/2014 0:00	7.25	-1.1	59.41	33.90	40.03
29/04/2014 0:00	7.88	-1.6	67.83	31.66	35.660
30/04/2014 0:00	6.83	-1.1	81.90	38.39	33.03
01/05/2014 0:00	8.50	-2.8	95.30	38.82	27.810
02/05/2014 0:00	9.34	0.1	66.29	43.73	23.1
03/05/2014 0:00	9.52	1.4	66.93	36.17	15.380
04/05/2014 0:00	11.06	2.9	61.38	32.36	7.837
05/05/2014 0:00	13.46	2.7	51.20	33.07	-0.063
06/05/2014 0:00	15.48	5.9	57.33	25.64	-0.277
07/05/2014 0:00	14.33	3.1	59.68	26.93	-0.127
08/05/2014 0:00	13.03	1.8	60.65	33.14	-0.242
09/05/2014 0:00	11.93	5.1	68.20	36.34	-0.239
10/05/2014 0:00	10.00	3.8	90.30	48.70	-0.051
11/05/2014 0:00	7.77	2.2	86.80	47.47	-0.054
12/05/2014 0:00	8.55	3.2	63.94	30.41	-0.143
13/05/2014 0:00	12.52	3.4	72.07	31.75	-0.504
14/05/2014 0:00	15.36	6.1	74.33	32.11	-0.204
15/05/2014 0:00	8.22	0.0	96.60	25.02	-0.466
16/05/2014 0:00	14.37	2.1	42.30	14.06	0.023
17/05/2014 0:00	14.81	6.6	45.37	19.41	-0.149
18/05/2014 0:00	13.22	4.4	58.38	28.97	-0.392
19/05/2014 0:00	9.99	3.4	95.70	40.56	-0.100
20/05/2014 0:00	4.04	-0.3	99.50	73.80	0.626
21/05/2014 0:00	0.26	-2.1	99.30	84.60	0.261
22/05/2014 0:00	3.48	-3.2	97.20	62.96	0.112
23/05/2014 0:00	6.57	-0.9	96.40	45.81	0.125
24/05/2014 0:00	7.52	-1.7	97.20	33.16	-0.268
25/05/2014 0:00	11.04	1.7	68.89	31.25	-0.328
26/05/2014 0:00	11.12	1.7	69.56	27.25	0.027
27/05/2014 0:00	12.45	4.0	71.89	40.40	0.133
28/05/2014 0:00	15.15	5.2	60.27	21.47	0.117
29/05/2014 0:00	11.02	3.3	95.90	54.09	0.250
30/05/2014 0:00	16.27	5.2	81.70	26.32	0.108
31/05/2014 0:00	15.36	4.5	68.28	35.60	0.264
01/06/2014 0:00	13.96	3.8	76.79	25.97	0.117
02/06/2014 0:00	11.03	1.5	50.55	24.60	0.359
03/06/2014 0:00	8.91	2.8	50.35	29.93	0.115

Date/Time	Air Ten	Air Temperature		Humidity	6 5
	Max	Min (°C)	Max (%)	Min (%)	Snow Depth (cm)
	(°C)				
04/06/2014 0:00	11.60	3.0	61.60	28.37	0.235
05/06/2014 0:00	13.46	2.9	85.50	24.91	0.092
06/06/2014 0:00	13.18	3.9	89.60	36.76	-0.049
07/06/2014 0:00	16.13	4.1	77.18	14.02	-0.177
08/06/2014 0:00	13.68	3.9	64.84	29.98	0.053
09/06/2014 0:00	11.41	4.6	88.10	33.52	0.018
10/06/2014 0:00	14.45	1.4	74.79	24.53	0.009
11/06/2014 0:00	16.56	3.4	61.82	17.03	0.08
12/06/2014 0:00	14.26	5.2	68.22	34.05	0.280
13/06/2014 0:00	11.02	5.2	88.60	61.12	0.24
14/06/2014 0:00	11.62	3.9	93.10	43.32	0.237
15/06/2014 0:00	11.72	1.7	85.90	38.66	0.247
16/06/2014 0:00	12.70	3.8	89.20	39.72	0.386
17/06/2014 0:00	16.59	5.1	82.40	15.95	-0.269
18/06/2014 0:00	11.47	3.1	73.96	39.76	0.165
19/06/2014 0:00	12.44	0.2	79.80	26.74	0.262
20/06/2014 0:00	13.38	1.3	68.22	20.90	-0.091
21/06/2014 0:00	13.33	3.6	97.20	31.29	-0.078
22/06/2014 0:00	12.35	0.6	96.50	26.29	-0.371
23/06/2014 0:00	12.15	3.7	80.30	50.03	-0.16
24/06/2014 0:00	15.22	4.3	86.50	44.63	-0.330
25/06/2014 0:00	12.76	7.9	92.60	64.33	0.561
26/06/2014 0:00	12.99	4.5	81.20	35.01	-0.100
27/06/2014 0:00	14.05	0.0	98.70	29.34	-0.109
28/06/2014 0:00	17.57	5.2	75.17	16.42	-0.562
29/06/2014 0:00	20.03	8.2	62.12	24.69	-0.159
30/06/2014 0:00	21.26	9.9	87.40	26.82	0.094

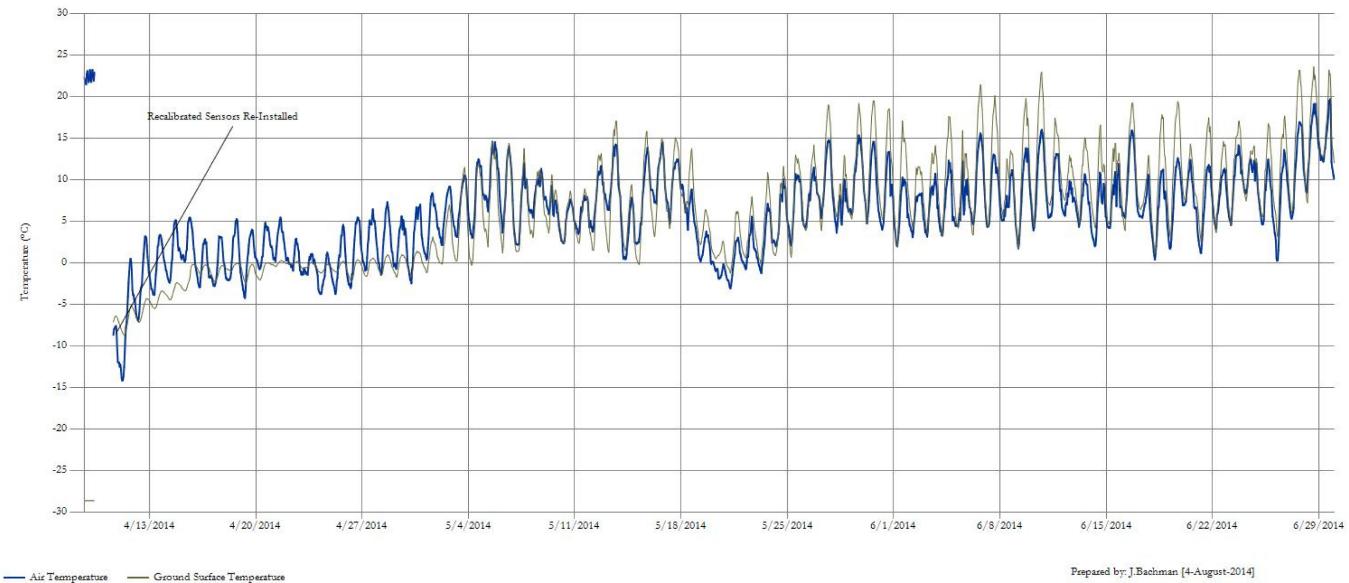
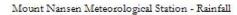
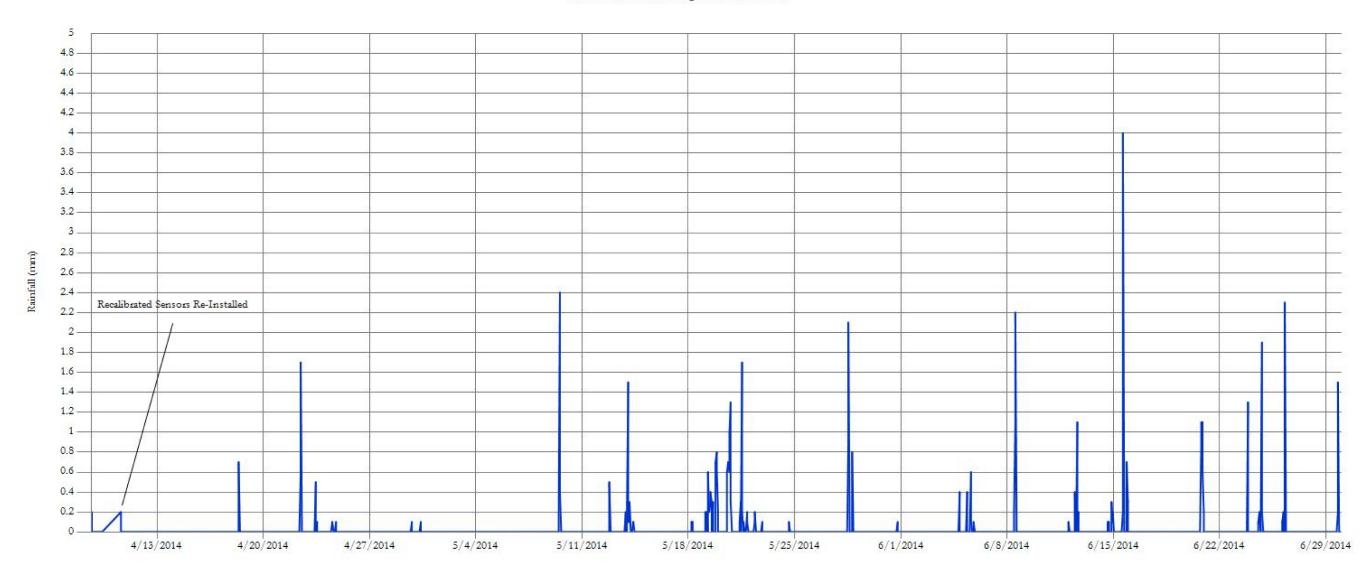




Figure F-1 Mount Nansen mean hourly air and ground temperature, April 10 to June 30, 2014.

— Hously Rainfall
Prepared by: J.Bachman 4-August-2014

Figure F-2 Mount Nansen cumulative hourly precipitation as rainfall, April 10 to June 30, 2014.

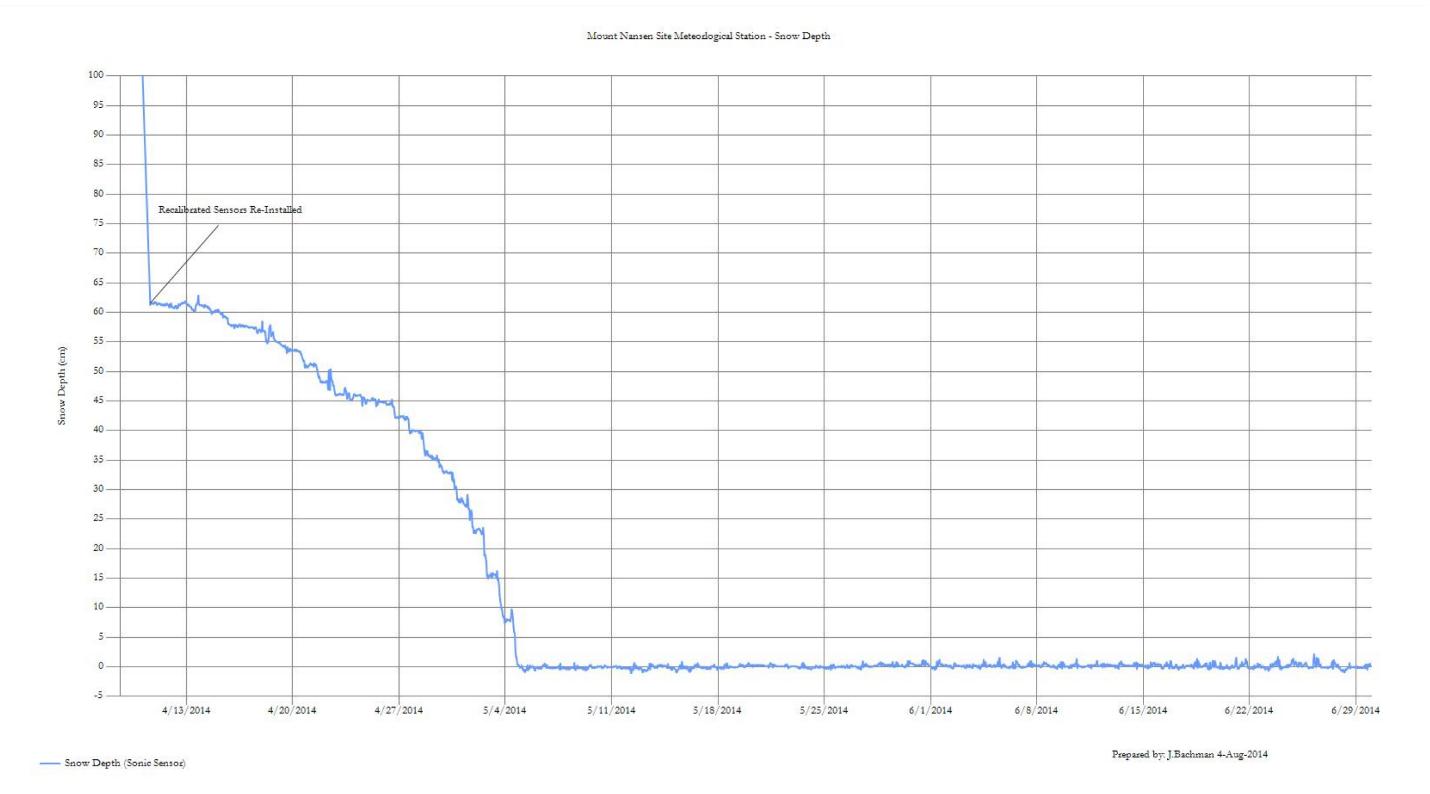
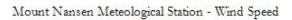
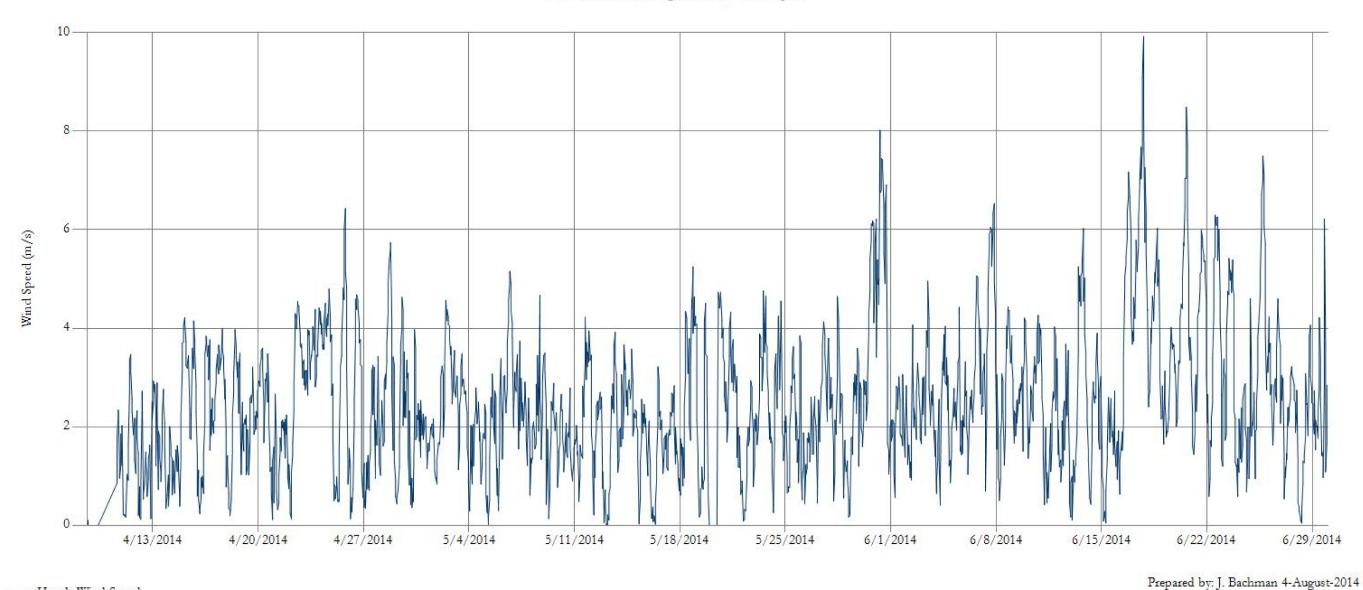




Figure F-3 Mount Nansen cumulative daily snow depth, April 10 to June 30, 2014.

— Hourly Wind Speed

Figure F-4 Mount Nansen mean hourly wind speed, April 10 to June 30, 2014.

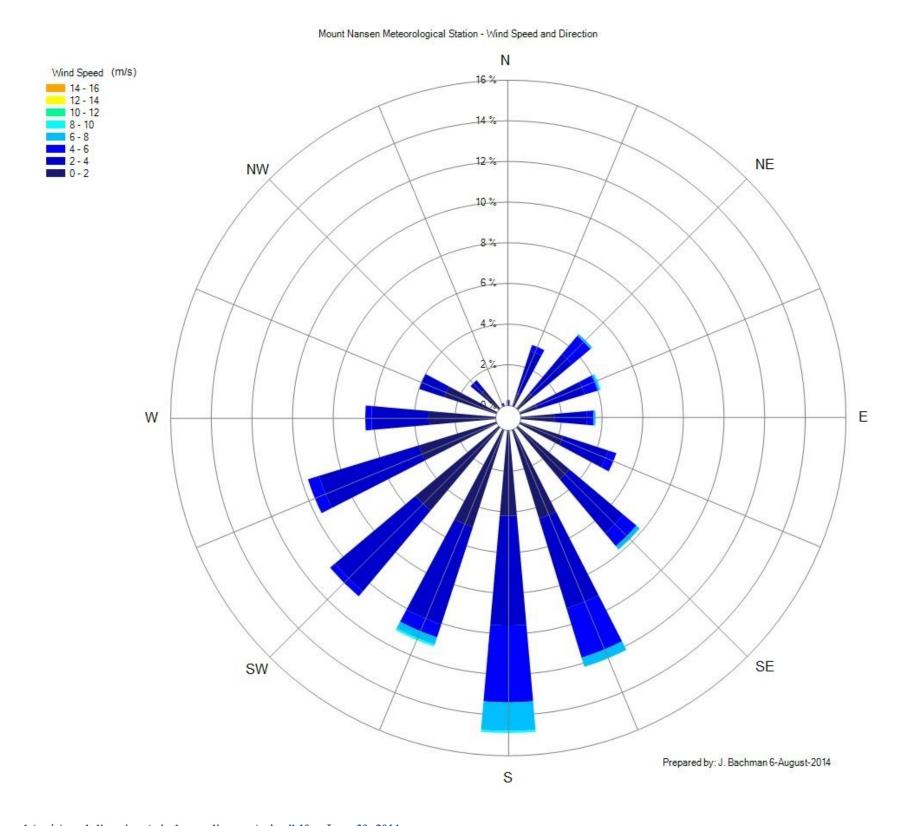
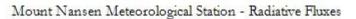



Figure F-5 Mount Nansen mean hourly wind speed (m/s) and direction (wind rose diagram), April 10 to June 30, 2014.

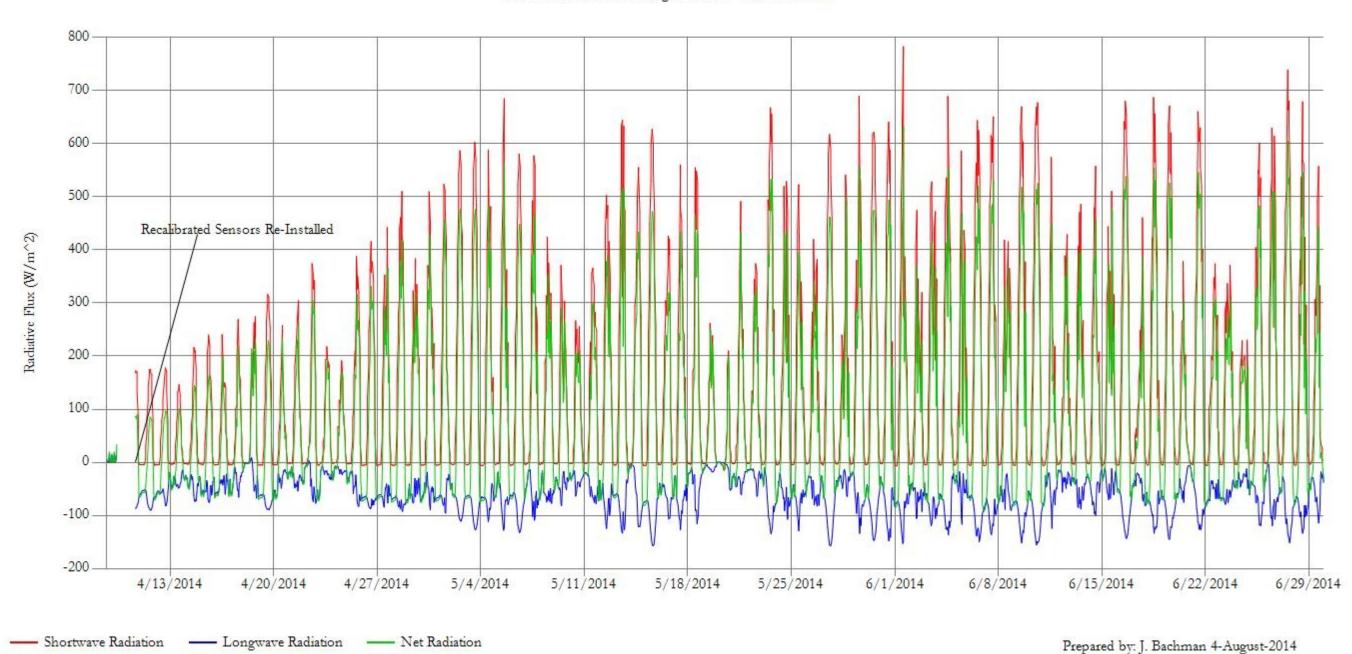
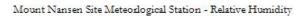



Figure F-6. Mount Nansen mean hourly net shortwave, long wave and total radiation, April 10 to June 30, 2014.

- Relative Humidity

Figure F-7 Mount Nansen mean hourly relative humidity, April 10 to June 30, 2014.

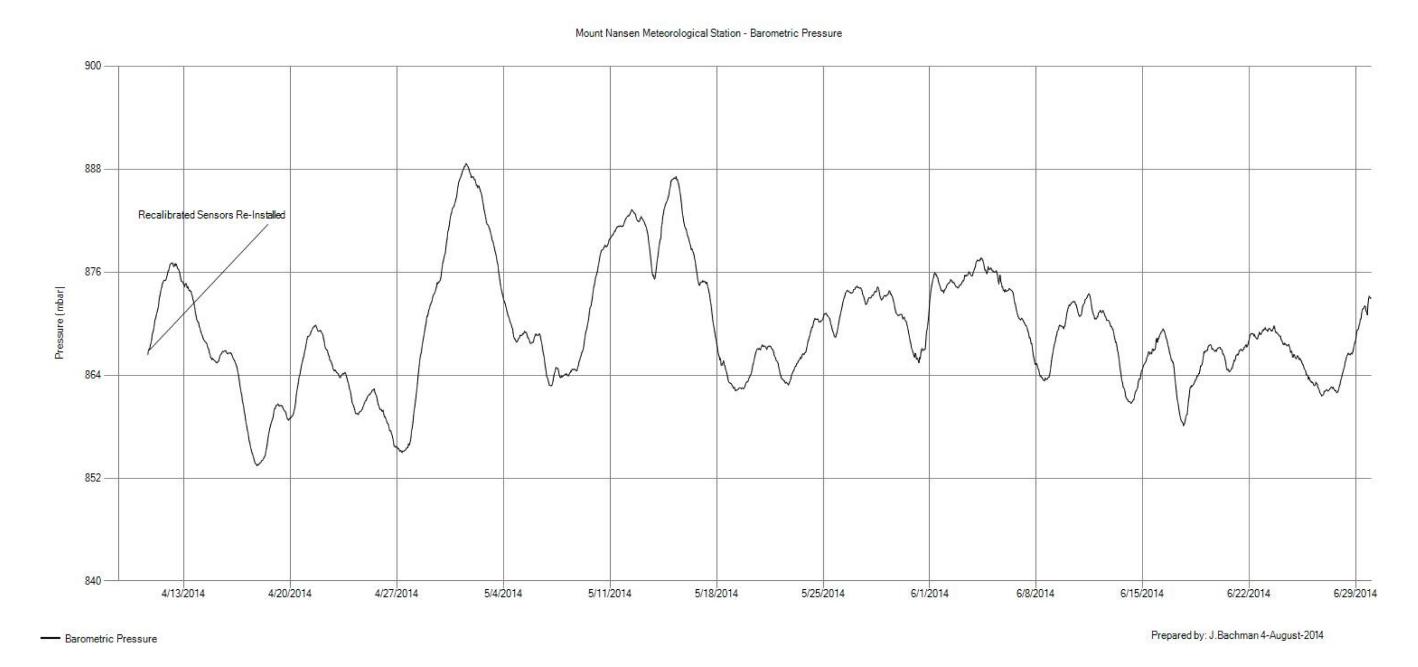


Figure F-8 Mount Nansen mean hourly barometric pressure, April 10 to June 30, 2014.