
BORDER PUMP STATION AND RAINY HOLLOW, B.C., CANADA: 1999 ANNUAL MONITORING PROGRAM

Prepared for:
INDIAN AND NORTHERN AFFAIRS, CANADA
WASTE MANAGEMENT PROGRAM
YUKON REGION

Prepared by:

Applied Research Division

March 2000

BORDER PUMP STATION AND RAINY HOLLOW, BRITISH COLUMBIA, CANADA: 1999 ANNUAL MONITORING PROGRAM

Prepared for:

Indian and Northern Affairs Canada
Waste Management Program, Whitehorse, Yukon

By:

Royal Roads University - Applied Research Division

March 2000

EXECUTIVE SUMMARY

Border Station and Rainy Hollow are adjacent sites located in Northern British Columbia. These sites were previously constructed and operated as the first of several 'booster' pumping stations along the Haines-Fairbanks Pipeline (Border Station), or were used for supporting operations in the case of Rainy Hollow. They were operated from the mid-1950s to 1972. Following the discovery of DDT containing canisters buried in a dump at Rainy Hollow, a preliminary site investigation was conducted in 1994. This investigation indicated that hydrocarbons and DDTs (sum of all the isomers p,p'-DDT, o,p'-DDT, p,p'-DDD, o,p'-DDD, p,p'-DDE, and o,p'-DDE) were present in soil and groundwater at Rainy Hollow. In the following summer, hydrocarbon contamination of subsurface soil and groundwater at the Border Station site was also identified in a study, which was part of preliminary environmental assessments along the Haines-Fairbanks Pipeline.

A detailed site investigation (DSI) and a screening-level risk assessment were conducted at both sites in 1996. These confirmed the presence of DDTs and hydrocarbon contamination in subsurface soils and groundwater at the sites. There was some evidence that both DDTs and hydrocarbons were being introduced to the Klehini River through the discharge of contaminated groundwater. Remedial activities were conducted in the summer of 1997, based on the results of detailed site investigation and recommendations derived from an ecological and human health risk assessment. A groundwater model, including a monitoring program, was developed. In order to validate the groundwater model and achieve the objectives outlined in the program, an annual monitoring program was initiated in 1997 and continued through 1999. The water level in one well was measured daily with a continuous recorder. Samples of groundwater and surface water were collected from Rainy Hollow and Border Station and analyzed for DDTs, metals and hydrocarbons. As a result, there is groundwater data for 1996 through 1998, with additional data collected in 1999 as described in this report.

The results of the 1999 monitoring program indicate a remarkable overall consistency in the concentrations of DDTs, hydrocarbons and metals in groundwater and surface water samples collected from Rainy Hollow and Border Station over the four year period (1996 to 1999). There has been no increase in the concentrations of the original contaminants of potential concern at the site since 1996, either in the groundwater entering the Klehini River, or in the river water collected adjacent to the site. This generally reaffirms the validity of the 1996 groundwater model predictions. This, along with the original risk assessment and subsequent risk management activities, leads to the conclusion that there remain no unacceptable risks to wildlife or humans at or near the site.

TABLE OF CONTENTS

1.	INTRODUCTION	1
1.1	Overview	1
1.2	Objectives of the 1999 Monitoring Program	2
2.	METHODS AND FIELD OBSERVATIONS	4
2.1	Field Program	4
2.2	Sampling Locations	4
2.3	Re-Vegetation on Capped Areas	7
2.4	Sampling Protocols	
2.5	Levelogger	8
2.6	Quality Assurance and Quality Control	8
2.7	Laboratory Analysis	9
3.	RESULTS AND DISCUSSION	11
3.1	Re-Vegetation on Capped Areas	11
3.2	Groundwater Conditions	11
3.3	Presentation of Analytical Results	14
3.4	Evaluation of Analytical Results	14
3.5	DDTs	16
3.6	Hydrocarbons	19
3.7	Metals	22
4.	CONCLUSIONS AND RECOMMENDATIONS	25
5.	REFERENCES	27

LIST OF APPENDICES

APPENDIX A: Photographs of Re-vegetation Assessment

APPENDIX B: Groundwater Sampling Sheets

APPENDIX C-1: Axys Data Reports for DDTs

APPENDIX C-2: ASL Chemical Analysis Report for Metals and Hydrocarbons

LIST OF FIGURES

FIGURE 1.1: Border Pump Station and Rainy Hollow General Site Plan3
FIGURE 2.1: Border Station and Rainy Hollow Locations of Monitoring Wells and Mini- Piezometers
FIGURE 2.2: Water Sampling Locations Along the Klehini River6
FIGURE 3.1: Groundwater Level and Hydrometric Pressure from August 1997 to August 1999 Recorded Using Automatic Solinst Leveloggers
FIGURE 3.2: DDTs Concentrations in Groundwater and Surface Water Samples Collected at Rainy Hollow from July 1996 to August 199916
FIGURE 3.3: EPH Concentrations in Groundwater Collected at Border Station and Rainy Hollow from July 1996 to August 1999
FIGURE 3.4: Total and Dissolved Metal Concentration in Water Samples Collected from Rainy Hollow in 199823
LIST OF TABLES
TABLE 2.1: Summary of the Analytical Program10
TABLE 3.1: Groundwater Levels for Monitoring Wells Measured in August 199912
TABLE 3.2: BC CSR Water Standards and CCME (1999) Canadian Environmental Quality Guidelines
TABLE 3.3: DDT Concentration (µg/L) in Water Samples Collected from Border Station and Rainy Hollow in August 1999
TABLE 3.4: Concentration of Volatile and Extractable Hydrocarbons (µg/L) in Water Samples Collected from Border Station and Rainy Hollow In 199921
TABLE 3.5: Concentration of Dissolved Metals (µg/L) in Groundwater Samples
Collected from Rainy Hollow in 199922

1. INTRODUCTION

1.1 Overview

Border Station and Rainy Hollow are adjacent sites located in Northern British Columbia (Figure 1.1). These sites were previously constructed and operated as the first of several 'booster' pumping stations along the Haines Fairbanks Pipeline (Border Station), or were used for supporting operations in the case of Rainy Hollow. Preliminary environmental investigations conducted at these sites indicated that petroleum hydrocarbons and DDTs (sum of all the isomers p,p'-DDT, o,p'-DDT, p,p'-DDD, o,p'-DDD, p,p'-DDE, and o,p'-DDE) were present in soil and groundwater at Rainy Hollow (Golder, 1995; UMA, 1995; and Royal Roads, 1996a,b,c). A detailed site investigation (DSI) and screening-level risk assessment conducted at the sites in 1996 confirmed the presence of DDTs and hydrocarbon contamination in subsurface soils and groundwater at the sites. There was also some evidence of the migration of these contaminants into the adjacent Klehini River. The results of the risk assessment, however, suggested that the concentration of total DDTs and hydrocarbon in groundwater and at the outflow face into the Klehini River did not constitute an elevated risk to aquatic life. A conceptual model of contaminant transport was developed (Royal Roads, 1996), and a groundwater monitoring program established.

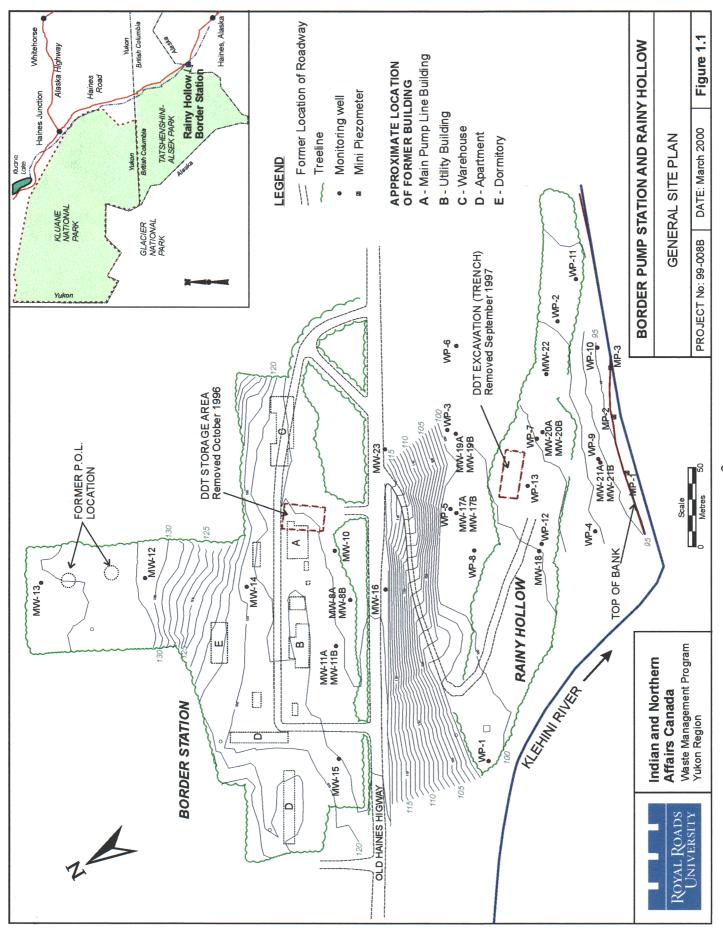
Based on the results and recommendations of the DSI, remedial activities were conducted in 1997 and 1998 (Royal Roads, 1998, 1999). The conceptual model for contaminant transport presented in the DSI report was also evaluated and expanded in 1997 (Woodbury, 1997). This program, which formed the basis of post-remediation monitoring, was generally intended to:

- Confirm the original predictions of the fate and concentrations of DDTs;
- Allow, if necessary, refinements to the model, thus ensuring the long-term validity of contaminant fate predictions;
- Permit further intervention at the site, including a possible re-evaluation of remedial/risk-management strategies, through comparison with pre-defined action triggers; and,
- Provide assurances that contaminants other than DDTs including hydrocarbons and various metals - are not entering the Klehini River at potentially deleterious concentrations.

These objectives would be accomplished through measurement of groundwater levels and determination of the concentrations of DDTs, hydrocarbon and metals in a selected number of existing wells and mini-piezometers.

The program was initiated in 1997 and continued in 1998. Water level in one well was measured daily using a continuous recorder. Samples of groundwater and surface water were collected from Rainy Hollow and Border Station and analyzed for DDTs, metals and

hydrocarbons. As a result, there is good quality groundwater data for 1996 through 1998, with additional data collected in 1999 as described herein. The results of the annual monitoring program, up to the end of 1998, indicated that there had been no increase in the concentrations of the original contaminants of potential concern at the site since 1996. This included groundwater entering the Klehini River, as well as river water collected adjacent to the site (Royal Roads, 1999). A set of response triggers was recommended within the context of the original groundwater model used, as well as risk to the Klehini River ecosystem.


1.2 Objectives of the 1999 Monitoring Program

The main objectives, and associated tasking, of the 1999 Monitoring Program included:

- Assessment of condition and vegetation re-establishment of encapsulated areas.
- Measurement of water levels and downloading of data from the Solinst Levelogger™.
- Determination of the concentrations of DDTs, volatile hydrocarbons, extractable hydrocarbons and dissolved metals in groundwater and surface water samples.
- Evaluation of the data obtained with respect to the validity of the groundwater conceptual model.

In order to achieve these objectives, a field sampling program was conducted on August 6 and 7, 1999. This was followed by laboratory analysis of the water samples collected for DDTs, metals and hydrocarbons.

This report presents the results of the 1999 monitoring program and incorporates the results and recommendations from the 1997 and 1998 monitoring studies.

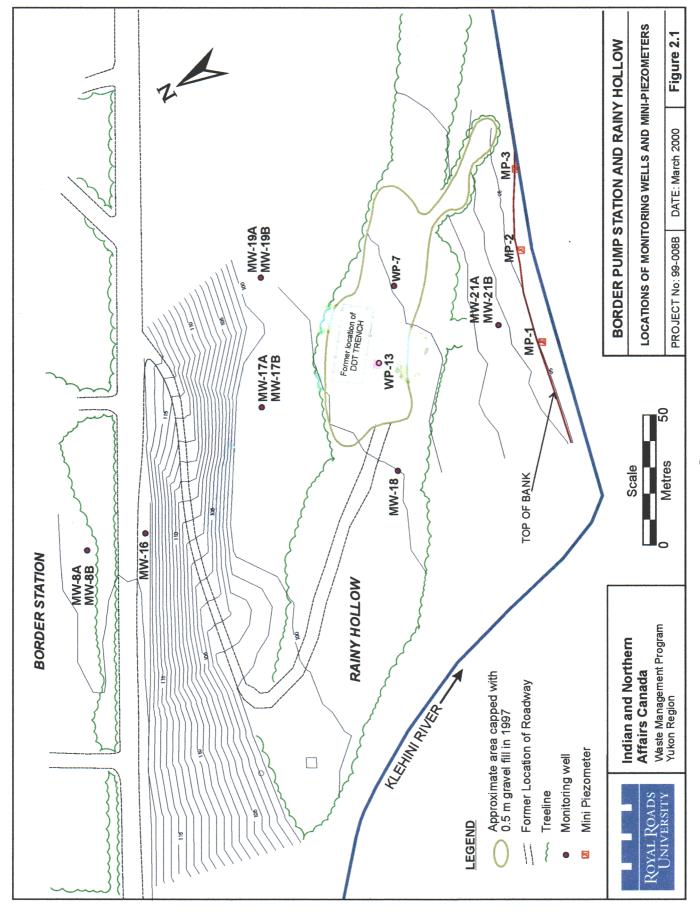
2. METHODS AND FIELD OBSERVATIONS

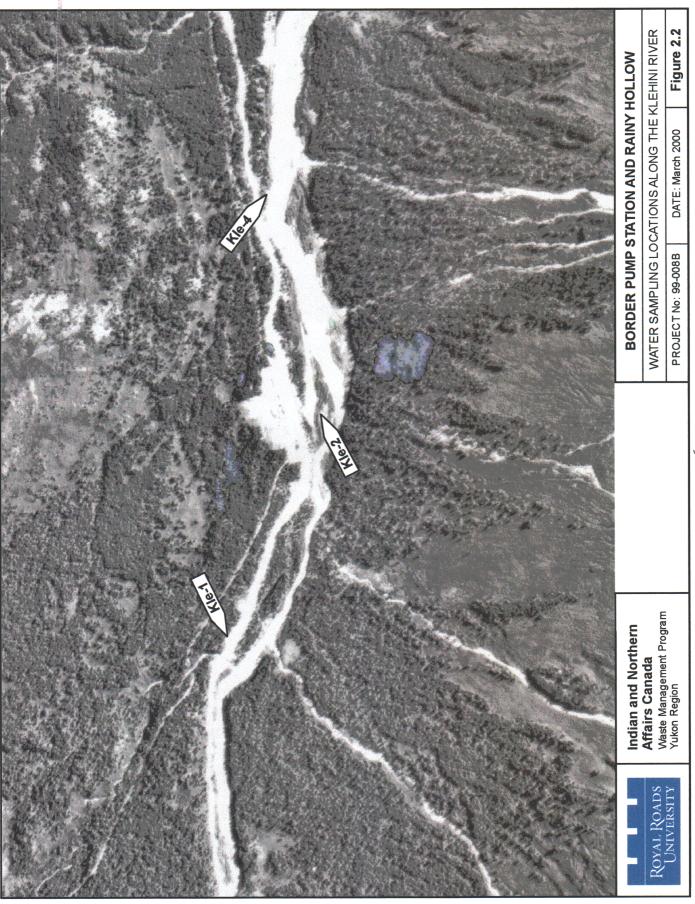
2.1 Field Program

The field sampling program was conducted on August 6 and 7, 1999. The field team comprised representatives from:

- Royal Roads University Matt Dodd, Ph.D.;
- DIAND Waste Management, Whitehorse Susanne Aichele; and,
- UMA Engineering, Winnipeg Tom Wingrove, P.Eng.

Activities conducted by the field team included the collection of groundwater and surface water samples, retrieval of data from the Solinst Leveloggers™ and inspection of the gravel encapsulated areas for vegetation re-establishment.


2.2 Sampling Locations


To achieve the objectives outlined above in Chapter 1, groundwater from monitoring wells and mini-piezometers was collected. The locations of the wells and mini-piezometers are presented in Figure 2.1; brief descriptions are given below:

- MW-8B and MW-16 located on the upper bench, used to ascertain the migration of hydrocarbons towards Rainy Hollow;
- MW-17A&B a set of nested wells situated along the groundwater flow path from the upper bench and up gradient from the DDT Trench at Rainy Hollow;
- WP-7, WP-13 and MW-21, located down gradient from the Trench;
- MW-18 not directly influenced by either the DDT Trench or hydrocarbon contamination from the upper bench and was, therefore, selected to provide data on the lower site background conditions; and,
- MP-1, MP-2 and MP-3, represent the three mini-piezometers situated along the bank of the Klehini River.

Surface water samples were collected from three locations along the Klehini River (Figure 2.2) as follows:

- Kle-1 Downstream of the confluence of Seltat Creek and Klehini River, at approximately 1.1 km north and upstream of Rainy Hollow;
- Kle-2 Inside of gravel bar adjacent to mini-piezometer MP-2; and,
- Kle-4 South of Rainy Hollow, at approximately 1 km downstream of the site.

2.3 Re-Vegetation on Capped Areas

Surface soils contaminated with DDTs at concentrations exceeding 10 mg/kg were excavated from the vicinities of the former Temporary Storage Facility and the trench, and disposed off-site during the 1997 site remediation activities (Royal Roads, 1998). This was to curtail the possible exposure pathways for DDTs in surface soils to wildlife and humans. The remaining contaminated soils with DDTs concentrations in the range of 1 to 10 mg/kg and hydrocarbon-contaminated soils with concentrations exceeding 1000 mg/kg were capped using a minimum of 0.5m of clean granular material. Vegetation reestablishments on these gravel-encapsulated areas were assessed by visual observation during the 1999 monitoring program. Representative photographs of the lower site (Rainy Hollow), the former Temporary Storage Area, and the former POL storage area are given in Appendix A. A map showing the encapsulated area (Figure 2.3) along with orientation of the photographs is included in the appendices.

2.4 Sampling Protocols

Analytical Services Laboratory (ASL) and Axys Analytical Laboratories (Axys) provided appropriate pre-cleaned sampling jars and preservatives.

The tops of the buried wells, which were up to 0.5 m below the surface, were located using a combination of reference maps and a metal detector. The wells were then excavated and opened. To prevent cross-contamination, disposable gloves were worn and changed after every sample.

The static water level in each well was measured using a Solinst™ water level meter equipped with an interface probe (Solinst Model No. 122). Each well was purged and sampled using the dedicated Waterra™ tubing and foot valve installed during the detailed site investigation. At least three well volumes of water were withdrawn from the well and discarded. Following this, an aliquot of the subsequent purge water was placed into a 50 mL disposable Evergreen™ polyethylene vial and the pH, conductivity and temperature of the purge water was measured. Purging was continued until three consecutive measurements of pH, temperature and conductivity were within ten percent. Electrical conductivity measurements were performed with a Cole Palmer conductivity meter (Model No. 1481-60), which was calibrated with a 1413 µS standard solution, while a Barnet pH meter (Model 30), calibrated with pH 7 and pH 4 standard solutions was used for the pH and temperature determinations. The pH, conductivity and thermal probes were rinsed with distilled water and wiped with Kimwipes™ after each determination. Static water levels, volumes of purge water, pH, temperature, conductivity and the samples collected were recorded on Groundwater Sampling Data Sheets, which are attached to this report as Appendix B.

Samples designated for DDT analyses were placed into 1 L amber glass jars while 500 mL amber glass jars were be used for extractable hydrocarbons. These jars were capped with either Teflon or aluminum lined lids. For volatile organic compound analysis, an

aliquot of groundwater was placed into a 40 mL vial containing sulfuric acid as a preservative and sealed with a Teflon-lined septum lid.

Samples earmarked for dissolved metals analyses were field filtered using disposable inline 700 cm 2 x 0.45 μ m membrane filter (Gelman Sciences). The filtered sample was placed directly into a 250 mL plastic container and preserved with nitric acid.

Grab surface water samples from the Klehini River were collected directly into the appropriate sampling containers. The container was held at the base and the neck plunged below the surface (25 - 40 cm) and tilted such that the neck pointed to the water flow during filling.

All the labeled sample containers were placed into coolers and shipped to the analytical laboratory via Canadian Air Cargo. Chain of custody forms accompanied the shipment and these are attached to the laboratory reports in Appendix C.

2.5 Levelogger

Two Solinst M5 Leveloggers™ (Model No. 300, Serial No. 3312 and 3313) were installed in monitoring well MW-19B on 23 August 1997. One Levelogger was set below the water level to measure the depth of water in the well. The second Levelogger was placed in the borehole above the highest expected water level to measure barometric pressure. The two Leveloggers were set to record daily at 1200 hrs. Data from the Leveloggers were retrieved, and the Leveloggers were re-set in MW19B.

A second site visit was conducted on September 28, 1999 during which the Levelogger placed above the water level in MW-19B was retrieved and installed into MW-18.

2.6 Quality Assurance and Quality Control

A field QA/QC program, which incorporates measures to ensure the integrity of the groundwater samples collected, was utilized. The QA/QC program included:

- documentation of date, time, site identification, site conditions, sampling equipment, preservatives, etc.) on sampling sheets which will be attached to the report as an appendix;
- the use of dedicated sampling equipment for each well to avoid cross-contamination;
- thorough cleaning of all field instrumentation (pH meter, conductivity meter and water level meter) prior to sampling at each well and the use of disposable gloves;
- collection of a field duplicate from MP-2;
- chain-of-custody procedures; and,
- transportation under conditions that retain the sample integrity.

2.7 Laboratory Analysis

The samples were analyzed at Analytical Services Laboratory (ASL), Vancouver, BC and Axys Analytical Services (Axys), Sidney, BC. Both ASL and Axys have been evaluated and accredited by the Canadian Association for Environmental Laboratories (CAEL). A summary of the analytical program is given in Table 2.1.

In order to achieve detection limits of less than $0.01~\mu g/L$ in groundwater samples (British Columbia Contaminated Sites Regulation standard for the protection of aquatic life), analysis for DDT and its metabolites (DDD and DDE) were carried out by high-resolution gas chromatography/mass spectrometry at Axys. The targeted detection limit for each of the DDT, DDD and DDE isomers was $0.001\mu g/L$.

ASL conducted the analysis for dissolved metals, volatile petroleum hydrocarbons (VPH) including benzene, toluene, ethylbenzene and xylene (BTEX), and extractable petroleum hydrocarbons (EPH). Under both the Yukon and British Columbia Contaminated Sites Regulations, extractable hydrocarbons are classified into Light Extractable Petroleum Hydrocarbons (LEPH) and Heavy Extractable Petroleum Hydrocarbons (HEPH). The concentrations of LEPHs in a sample are obtained by initially quantifying extractable petroleum hydrocarbons (EPH) in the range C10 to C19. The concentrations of unsubstituted PAHs that fall in this range are then obtained in a separate analysis and subtracted from the total EPH (C10 to C19) to arrive at concentrations for LEPHs. Similarly, HEPHs comprise the EPH fraction from C19 to C31, after subtracting concentrations of un-substituted PAHs that fall in this range. Results obtained to date for Rainy Hollow and Border Station Rainy Hollow indicate that un-substituted PAHs do not constitute a significant part of the EPH fraction (i.e., uniformly less than 1% of the EPH total concentration, or below detection). As such data for EPHs (C10 toC19) and LEPHs have been directly comparable. Corresponding results have also been obtained for EPHs (C19 to C31) and HEPHs. To this end, hydrocarbons in the C10 to C31 range were determined as EPH [(C10 to C19) and (C19 to C31)], rather than LEPH and HEPH during the 1999 monitoring programs.

Table 2.1: Summary of the Analytical Program

Parameter	DDT, DDD & DDE ¹	EPH ²	BTEX/VPH	Dissolved Metals
Monitoring Wells				
MW-16		1	1	
MW-17A	1	1	1	1
MW-17B	1	1	1	
MW-18	1	1	1	1
MW-21A	1	1	1	1
MW-21B	1	1	1	
WP-7	1	1	1	1
WP-13	1	1	1	1
Mini-Piezometers				
MP-1	1	1	1	1
MP-2	1	1	1	1
MP-2 (Field Duplicate)	1	1	1	1
MP-3	1	1	1	1
Klehini River				
Kle-1	1	<u> </u>		1
Kle-2	1			1
Kle-4	1			1
Total	14	12	12	12

-

 $^{^1 \} Includes \ individual \ results \ for \ p,p'-DDT, \ o,p'-DDT, \ p,p'-DDD, \ o,p'-DDD, \ p.p'-DDE, \ o,p'-DDE.$

 $^{^{2}}$ EPH: Extractable Petroleum Hydrocarbons (see text).

3. RESULTS AND DISCUSSION

3.1 Re-Vegetation on Capped Areas

Representative photographs of vegetation re-establishment on gravel-encapsulated areas are given in Appendix A. Small amounts of vegetation including fireweed, horsetail, grasses and sedges are beginning to establish on the gravel cap at Rainy Hollow (Appendix A: Photographs 1 to 5). The regeneration is more pronounced around the edges where less disturbance occurred and more shelter is provided. Some of the young trees which had begun to previously establish themselves at the site, primarily balsam poplar and willow, have become buried up to the crown level by the capping activities, giving them a bush-like appearance. The leaves of the trees were a healthy green (see Photograph 10), indicating they did not appear to be suffering any ill-effects from the capping. Monitoring of these trees should be continued.

Re-vegetation on the cap at the former Temporary Storage Facility on the Border Station site is relatively minimal (Photographs 6 to 8), by comparison. The area that showed the greatest vegetation growth was the access road constructed to the POL storage area on the upper bench. This road was almost covered with clover, chrysanthemum, grasses and sedges (Photograph 9). As with the Temporary Storage Area, re-vegetation at the former POL storage area (Photograph 10) and the local caps (Photographs 11 to 12) was minimal. This may be due to the fact that this upper area is higher, drier and more exposed than the Rainy Hollow site, and natural vegetation re-establishment would be subject to greater wind and dust erosion from the capping there. The lack of any topsoil, providing organic matter, nutrients and other eco-physiological advantages to plants (e.g., myccorhizal associations), in the gravel cap will also probably prolong the period required for complete natural reclamation.

3.2 Groundwater Conditions

Groundwater levels measured in August 1999 are summarized in Table 3.2. Groundwater elevations measured in 1996 and 1998 are included in this table for comparison. Water levels were approximately 20 cm. higher than in 1998, but the slope of the water table, or horizontal gradient, remains relatively constant. Therefore the groundwater flux to the Klehini River is also unchanged.

Table 3.1: Groundwater Levels for Monitoring Wells Measured in August 1999

Well Number	Date/Time	Depth to Water Level from Top of Rim (m)	Depth to Bottom of Well from Top of Rim (m)	1999 Ground- water Elevation (m)	1998 Ground- water Elevation (m)	1996 Ground- water Elevation (m)
WP-7	Aug 6/10:50 PM	1.72	2.63	96.30	96.07	96.11
WP-13	Aug 6/9:00 AM	2.38	3.94	96.40	96.18	96.08
MW-16	Aug 6/4:20 PM	18.80	21.40	99.00	98.80	98.20
MW-17A	Aug 6/3:00 PM	1.63	5.68	97.42	97.28	97.39
MW-18	Aug 6/10:20 AM	1.88	7.39	96.32	96.10	96.30
MW19A	Aug 7/10:00 AM	2.02	-	96.19	95.95	96.22
MW-21A	Aug 6/11:15 AM	0.29	1.63	94.01	93.98	93.85
MW-21B	Aug 6/11:40 AM	0.26	6.87	93.72	93.67	93.87
MW-19A	Sept 28	1.72		96.49		
MW-18	Sept 28	1.857		96.34		

Data from the two Solinst LeveloggersTM, which were retrieved on August 7, 1999, are presented graphically in Figure 3.1. The loggers appeared to be working well. Water levels typically fluctuate within about a 50 cm range, or elevation 95.8 m to 96.3 m seasonal spikes reach 96.8m. The short spikes in water level correlate to spring, where the snow pack melts into the overburden and recharges the water table. There also appeared to be occasional spikes in late fall that likely correlate to significant late season precipitation events.

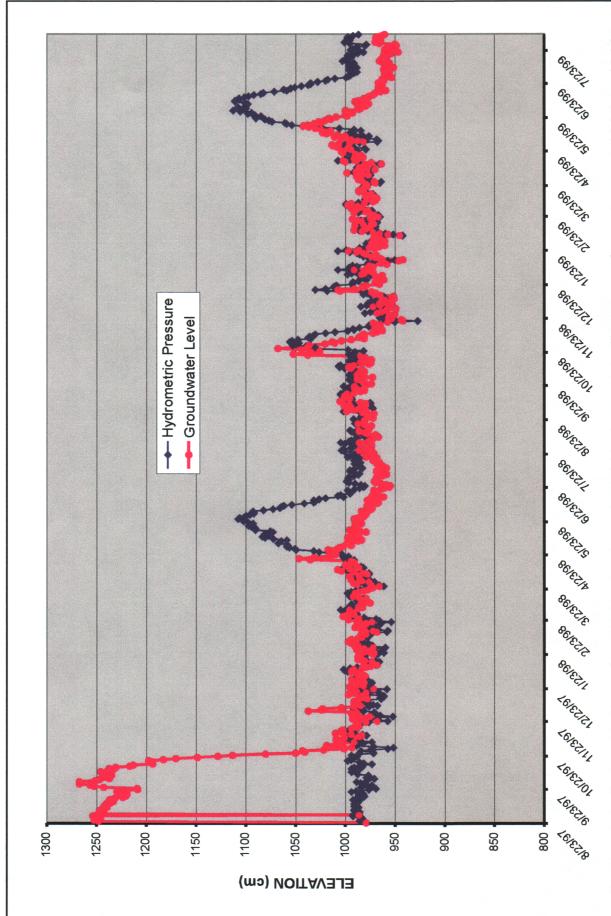


Figure 3.1: Rainy Hollow Groundwater Level and Hydrometric Pressure from August 1997 to 1999

3.3 Presentation of Analytical Results

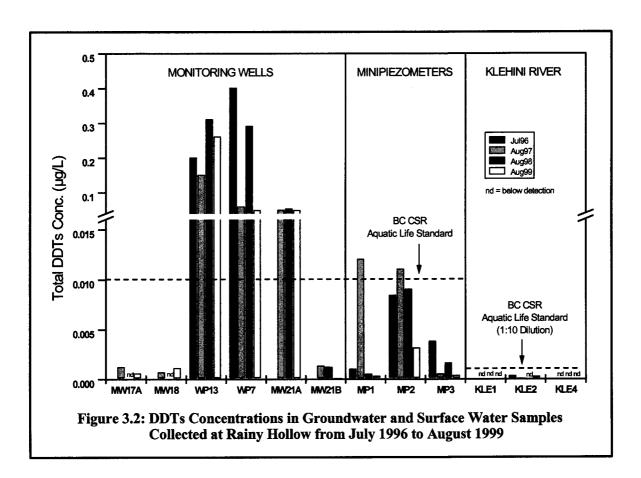
Laboratory analytical results obtained are summarized in tables presented in this chapter. Complete laboratory reports, which contain analytical methods and QA/QC data, are given in Appendix B.

3.4 Evaluation of Analytical Results

Data obtained for groundwater samples were evaluated using generic numerical water standards presented in Schedule 6 of the 1997 BC Contaminated Sites Regulations (BC CSR). The standards for aquatic life (AW) were employed. For surface waters collected from the Klehini River, the CCME (Canadian Council of Ministers of the Environment) Canadian Environmental Quality Guidelines for Freshwater (CCME, 1999) were also used. Summaries of the standards and guidelines used are given in Table 3.2. The data was also evaluated with respect to the groundwater model.

Table 3.2: BC CSR Water Standards and CCME (1999) Canadian Environmental Quality Guidelines (in μ g/L)

Parameter	BC CSR Aquatic Life Standard (AW) ¹	CCME Freshwater Aquatic Life	Parameter	BC CSR Aquatic Life Standard (AW) ¹	CCME Freshwater Aquatic Life
Volatiles			Chlorinated Organic		
Benzene	3000	370	DDTs	0.010	
Ethylbenzene	7000	90	General parameters		
Toluene	3000	2.0	pН		6.5 to 9
Xylenes (total)			Conductivity		
VH (C5-9)	15,000 ²		Metals		
VPH	1,500 ²		aluminum		5 to 100 ³
Extractables			antimony	300	
EPH (C10-19)	5,000 ²		arsenic	500	5
EPH (C19-31)			barium	10,000	
LEPH	500 ²		beryllium	53	
НЕРН			boron		
PAHs			cadmium	2-184	0.017
Acenaphthene	60	5.8	chromium	20	
Acenaphthylene			cobalt	500	
Acridine	0.5	4.4	copper	20 to 0 ⁴	2 to 4 ⁴
Anthracene	1	0.012	iron		300
Benz(a)anthracene	1	0.018	lead	40 to 160 ⁴	1 to 74
Benzo(a)pyrene	0.1	0.015	manganese		
Benzo(b)fluoranthene			mercury	1	0.1
Benzo(g,h,i)perylene			molybdenum	10,000	73
Benzo(k)fluoranthene			nickel	250 to 1,500	25 to 150 ⁴
Chrysene			selenium	10	1
Dibenz(a,h)anthracene			silver	1	0.1
Fluoranthene	2	0.04	thallium	3	0.8
Fluorene	120	3	Uranium	3,000	
Indeno(1,2,3-c,d)pyrene			zinc	300	305
Naphthalene	10	1.1			
Phenanthrene	3	0.4			
Pyrene	0.2	0.025			


Notes:

All values are in μ/L unless otherwise stated.

- 1. Aquatic life standards assume minimum 1:10 dilution
- 2. Values taken from BC CSR Amendments (BC MELP, 1999)
- 3. Guideline or standard varies with pH
- 4. Guideline or standard varies with water hardness
- 5. Tentative guideline because of insufficient evidence

3.5 DDTs

The concentrations of DDTs (sum of all DDT, DDD and DDE isomers analyzed) in the water samples collected in 1999 are given in Table 3.3. These results, along with data from the 1996 to 1998 monitoring program are presented graphically in Figure 3.2.

Detectable levels of DDTs (0.00054 and 0.00025 μ g/L, respectively) were found in MW-17A and MW-17B. These are two nested wells located up gradient of the Trench where the DDT containing canisters were recovered in 1994. DDT concentrations in a sample from MW-18, which is located west of the Trench and is not directly influenced by contamination from either the Trench or the upper bench, was 0.0011 μ g/L. As depicted in Figure 3.2, concentrations in these wells are generally comparable to those obtained over the previous monitoring period.

As in previous years, DDTs at concentrations exceeding the BC CSR aquatic life standard of $0.01~\mu g/L$ BC CSR were found in groundwater samples obtained from the two wells located immediately down gradient of the Trench (WP-7; $0.05~\mu g/L$ and WP-13; 0.26

μg/L). The principal isomer in both of these samples was p,p'-DDD, the initial degradation product of DDT by either hydrolysis or reductive dehalogenation. The levels in WP-13 were relatively uniform over the entire monitoring period whereas there was a slight inter-annual variation in DDT concentrations for WP-7. The 1999 data for WP-7 were, however, comparable to the 1997 result. The year-to-year variation for monitoring wells installed as part of the 1996 DSI (MW series) is generally less than for well points (WP-7 and WP-13) which were installed in test pits as a follow up to the 1995 emergency response.

Detectable concentrations of DDT were also found in the nested wells located along the groundwater migration pathway to the Klehini River. Comparable levels (0.049, 0.053 and 0.049 μ g/L), which exceeded the BC CSR AW standard, were found in the shallow well (MW-21A: screen set at around 0.5 to 2 m below ground surface) in 1997, 1998 and 1999, respectively. The concentrations in the deeper well (MW-21B), with the screen set at approximately 2.5 to 5 m below the ground surface, were an order of magnitude lower (0.0013, 0.0012 and 0.0013 μ g/L in 1997, 1998 and 1999, respectively).

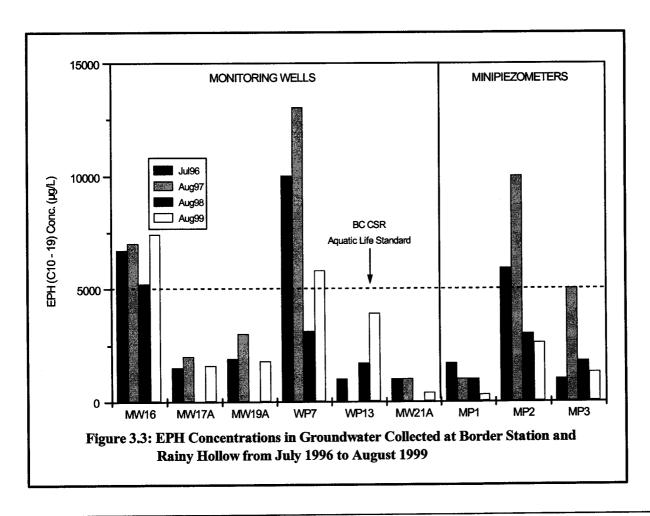
Groundwater samples from the mini-piezometers in 1999 contained DDTs at concentrations that were below BC CSR AW standard of $0.010~\mu g/L$. The highest concentration of $0.0031~\mu g/L$ was found in MP-2, which is directly along the groundwater migration pathway to the Klehini River. This concentration is lower compared to that predicted by the groundwater model ($0.007~\mu g/L$). No significant increase in DDTs concentration was noted in MP-2 over the four-year period, rather, there was a slight decrease in 1999. This is consistent with the groundwater model predictions provided previously: Temporal changes in DDT fluxes at the interface are predicted to occur relatively slowly, and a substantial short-term increase in DDT inputs to the river is not predicted to occur.

Apart from one anomalous data point of $0.012~\mu g/L$ obtained in 1997, the concentrations in samples from MP-1 (up gradient of MP-2) and MP-3 (down gradient of MP-2) were consistently lower than the standard. As presented in the previous monitoring report (Royal Roads, 1999) the anomalous data was due to o,p'-DDT and p,p'-DDT contamination introduced during the installation of the new mini-piezometer. The dominant isomer was not p,p'-DDD, which is the major species in the groundwater plume. The mini-piezometers are susceptible to removal by water erosion during flood periods, and/or ice scouring during spring break up, since they are set at the edge of the river below the present high water mark. It is expected, therefore, that at least one of the three mini-piezometers may require replacement prior to each sampling event.

DDTs concentration in the water sample obtained from the Klehini River within 2 to 3 m of where contaminated groundwater would enter the river (Kle-2; $0.00025~\mu g/L$) was well below the BC CSR standard of $0.001~\mu g/L$, taking into account a ten-fold dilution of groundwater in the actual aquatic receiving environment. This result was comparable to the previous years' data. The levels in samples collected upstream (Kle-1) and downstream (Kle-4) of the site were below detection and also comparable to the previous results.

Table 3.3: DDT Concentration (µg/L) in Water Samples Collected from Border Station and Rainy Hollow in August 1999.

Sample #			Mo	Monitoring Wells	ells				Minipiezometers	ometers		K	Klehini River	r
	MW-17A	MW-17A MW-17B MW-18 MW-21A	MW-18	MW-21A	MW-21B	WP-7	WP-13	MP-1	MP-2-1 MP-2-2	MP-2-2	MP-3	Kle-1	Kle-2	Kle-4
0,p' DDE <0.00013 <0.00022 <0.00022 <0.00025	<0.00013	<0.00022	<0.00022	<0.00025	<0.00019	<0.00019 <0.00056 <0.00031 <0.00010 <0.00045 <0.00032 <0.00046 <0.00018 <0.00038 <0.00044	<0.00031	<0.00010	<0.00045	<0.00032	<0.00046	<0.00018	<0.00038	<0.00044
p,p' DDE	0.00027	0.00027 0.00025 0.00026 0.0003	0.00026	0.0003	0.0002	0.0017	0.00065	0.00065 0.00028 0.00019 0.00026 nq <0.00040 0.00033 nq 0.00025 <0.00016	0.00019	0.00026 nq	<0.00040	0.00033 пq	0.00025	<0.00016
o,p' DDD	0.00011	0.00011 <0.00015 0.00027	0.00027	0.011	0.00065	0.011	0.061	<0.00010	$<\!\!0.00010\; \left 0.00049^{\;\mathbf{nq}} \right \!\! 0.00052^{\;\mathbf{nq}} \!\! \left <\!\!0.00022 \right <\!\!0.00020 \left <\!\!0.00012 \right <\!\!0.00018$	0.00052 п	<0.00022	<0.00020	<0.00012	<0.00018
p,p' DDD 0.00016 <0.00016 0.0060	0.00016	<0.00016	090000	0.036	0.00064	0.035	0.20	<0.00011	0.0014	0.0015	0.0032 nq	<0.00007	0.0015 0.0032 nq <0.00007 <0.00013 <0.00019	<0.00019
o,p' DDT <0.00014 <0.00020 <0.00013 <0.0021	<0.00014	<0.00020	<0.00013	<0.0021	<0.00038	<0.00038 <0.00054	0.00099	0.00099 <0.00011	0.0015	0.0016	0.00035	<0.00024	0.00035 <0.00024 <0.00016 <0.00022	<0.00022
p,p' DDT	<0.00020	<0.00020 <0.00029 <0.00019 <0.0031	<0.00019	<0.0031	<0.00055	<0.00055 <0.00079	0.0017	<0.00013 <0.00020 <0.00015 <0.00016 <0.00012 <0.00012 <0.00028	<0.00020	<0.00015	<0.00016	<0.00012	<0.00012	<0.00028
Total DDT 0.00054 0.00025 0.0011	0.00054	0.00025	0.0011	0,047	0.0015	0.048	0.26	0.26 0.00028	0.0031	0.0031	0.00035	1	0.00025	ł


Notes:

- 1. A field duplicate sample (MP-2-1 and MP-2-2) was collected at MP-2
- 2. All concentrations are expressed in micrograms per litre (μg/L)
- . <= less than the detection limit indicated
- 1. nq = Peak detected but did not meet quantification criteria
- 5. Shaded area indicate parameters that exceed the BC CSR aquatic life standard of 0.01 µg/L

3.6 Hydrocarbons

The concentration of hydrocarbons in groundwater samples was measured as BETX (benzene, toluene, ethylbenzene and xylenes) VHs (volatile hydrocarbons, C6 to 10), VPH (volatile petroleum hydrocarbons, calculated) and EPH (extractable hydrocarbons). Results obtained from the previous monitoring programs (Royal Roads, 1999) indicated that PAHs do not constitute a significant part of the EPH fraction, and site groundwater data for EPHs (C10 to19) and LEPHs have been directly comparable. Corresponding results have also been obtained for EPHs (C19 to 31) and HEPHs. To this end, extractable hydrocarbons were determined as EPH, rather than LEPH and HEPH during the 1999 monitoring program.

Detectable concentrations of ethylbenzene, toluene, xylenes, VPH and EPH (C10 to 19) were found in groundwater samples obtained from various monitoring wells and mini-piezometers (Table 3.4). Groundwater samples from two of the wells contained EPH (C10 to 19) at concentrations that exceeded the new BC CSR AW standard of 5000 μ g/L. These were MW-16 situated on the upper bench along the groundwater migration flow to Rainy Hollow (7,400 μ g/L) and WP-7 immediately downgradient of the Trench (5,800 μ g/L). VPH (C6 to 10) levels in WP-7 (2,100 μ g/L) also exceeded the BC CSR AW standard. The EPH concentrations in these two wells were slightly higher than those obtained in 1998 as illustrated in Figure 3.3 below.

There were also low levels of ethylbenzene, toluene, and xylenes in samples obtained from MW-16 and WP-7. Generally, the concentrations of ethylbenzene, toluene and xylenes obtained for samples from these and all the other wells at Rainy Hollow and Border Station over the monitoring period (1996 – 1999) have been consistently low and well below the BC CSR AW standard.

Monitoring wells MW-17A and 17B, a set of nested wells situated between the upper bench and the lower bench along the groundwater flowpath also contained detectable concentrations of ethylbenzene, toluene, xylenes, VH, VPH and EPH (C10 – 19). VPH (C6 to 10) concentrations, 1,600 and 1,800 µg/L respectively, exceeded the BC CSR AW standard of 1,500 µg/L.

Volatile petroleum hydrocarbons (200 μ g/L) and EPH (C10 to 19) (3,900 μ g/L) were found in WP-13 at levels which were below the standards. Concentrations in the nested wells located along the groundwater migration pathway to the Klehini River (MW-21A & B) were either below or slightly above detection.

Mini-piezometer MP-2 contained EPH (C10 to 19) at a concentration of 3800 µg/L while the level in MP-3 was 1,300 µg/L. Ethylbenzene and xylenes were also detected at low concentrations in samples from MP-2 and MP-3. None of these concentrations, which are comparable to the 1998 data, exceeded the BC CSR AW standard or the CCME freshwater guidelines. Samples from MP-1 did not contain detectable levels of any of the above parameters.

Table 3.4: Concentration of Volatile and Extractable Hydrocarbons (µg/L) in Water Samples Collected from Border Station and Rainy Hollow in 1999

Sample #				Monitoring Wells	ng Wells					Mini-Piezometers	zometers		BC CSR
	MW-16	MW-16 MW-17A MW-1	MW-17B	MW-18	MW-21A MW-21B	MW-21B	WP-7	WP-13	MP-1	MP-2-1	MP-2-2	MP-3	AW
Volatiles								Ì					
Benzene	<0.5	<0.5	5.0>	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	3000
Ethylbenzene	6.0	19.8	15.1	<0.5	<0.5	<0.5	16.8	<0.5	<0.5	3.1	1.2	2.2	7000
Toluene	<0.5	1.1	1.1	<0.5	<0.5	<0.5	8.0	<0.5	<0.5	<0.5	<0.5	<0.5	3000
meta- & para-Xylene	0.8	21.2	15.9	<0.5	<0.5	<0.5	35.8	<0.5	<0.5	3.7	1.8	2.7	
ortho-Xylene	<0.5	4	2.3	<0.5	<0.5	<0.5	9.6	<0.5	<0.5	1.3	0.5	6.0	
VH C6-10	1,100	1,800	1,900	<100	<100	<100	2,100	200	<100	009	400	009	15,000
VPH C6-10 (calc.)	1,100	1,700	1,800	<100	<100	<100	2,100	200	<100	009	400	009	1,500
Extractables													
EPH (C10-19)	7,400	1,600	1,800	<300	400	<300	5,800	3,900	<300	3,800	1,400	1,300	5,000
EPH (C19-32)	<1,000	<1,000	<1,000	<1,000	<1,000	<1,000	<1,000	<1,000	<1,000	<1,000	<1,000	<1,000	1

Notes:

- 1. A field duplicate sample (MP-2-1 and MP-2-2) was collected at MP-2
- 2. All concentrations are expressed in microgram per litre $(\mu g/L)$
- 3. <= less than the detection limit indicated
- 4. VH = Volatile Hydrocarbons

3.7 Metals

Dissolved metal concentrations in groundwater samples were comparable to data from the previous monitoring programs in that they were either below detection or well below the BC CSR AW standard, with the exception of zinc (Table 3.5).

Table 3.5: Concentration of Dissolved Metals ($\mu g/L$) in Groundwater Samples Collected from Rainy Hollow in 1999

Sample #	MW- 17A	MW-18	MW- 21A	WP-7	WP-13	MP-1	MP-2-1	MP-2-2	MP-3	BC CSR AW
Physical Tests										
Hardness as CaCO3	223	255	285	223	269	236	254	256	237	
pН	6.24	7.05	6.47	6.20	6.20	6.70	6.55	6.55	6.45	
Conductivity (µS)	593	665	672	575	631	554	607	607	582	
Dissolved Metals										
Aluminum	<5	40	10	33	73	13	12	10	15	
Antimony	<200	<200	<200	<200	<200	<200	<200	<200	<200	300
Arsenic	<200	<200	<200	<200	<200	<200	<200	<200	<200	500
Barium	110	50	60	70	70	50	60	60	60	10,000
Beryllium	<5	<5	<5	<5	<5	<5	<5	<5	<5	53
Boron	<100	<100	<100	<100	<100	<100	<100	<100	<100	
Cadmium	<0.2	<0.2	<0.4	<0.2	<0.2	<0.2	<0.2	<0.2	<0.2	180
Calcium	83,000	89,000	103,000	82,000	96,400	85,600	93,600	94,700	88,500	-
Chromium	<10	<10	<10	<10	<10	<10	<10	<10	<10	20
Cobalt	<10	<10	<10	<10	<10	<10	<10	<10	<10	500
Copper	<10	<10	<10	<10	<10	<10	<10	<10	<10	90
Iron	26,800	40	640	15,400	4,870	<30	8,030	8,560	5,720	
Lead	<1	<1	<2	<1	<1	<1	7	5	3	110
Magnesium	3,900	7,400	6,800	4,400	6,900	5,400	4,800	4,800	4,000	
Manganese	2,100	<5	1,500	1,590	888	<5	1,900	1910	1,310	
Mercury	< 0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	1
Molybdenum	<30	<30	<30	<30	<30	<30	<30	<30	<30	10,000
Nickel	<50	<50	<50	<50	<50	<50	<50	<50	<50	1,500
Selenium	<1	<1	<2	<1	<1	<1	<1	<1	<1	10
Silver	<0.1	<0.1	<0.2	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	1
Sodium	3,000	18,000	11,000	3,000	5,000	8,000	3,000	3,000	2,000	
Thallium	<0.1	<0.1	<0.2	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	3
Uranium	0.24	1.86	1.2	0.11	0.76	1.28	0.07	0.07	0.08	3,000
Zinc	<5	<5	<5	<5	<5	<5	3,120	2,620	1,460	300

Notes:

- 1. A field duplicate sample (MP-2-1 and MP-2-2) was collected at MP-2
- 2. All concentrations are expressed in micrograms per litre (µg/L) unless otherwise stated
- 3. <= less than the detection limit indicated

The elevated zinc concentrations however, are attributed to contamination by the galvanized upriser of the mini-piezometer.

Total metal concentrations in the three water samples collected from the Klehini River are given in Table 3.6. A number of parameters occurred at concentrations that exceeded the CCME Environmental Quality Guidelines for Freshwater Aquatic life. Similar results were obtained during the 1998 monitoring program. However, the elevated levels were associated with particulate matter since dissolved metal concentrations of these parameters were mostly below detection. This is illustrated in Figure 3.4 which compares total and dissolved aluminum levels in the 1998 water samples.

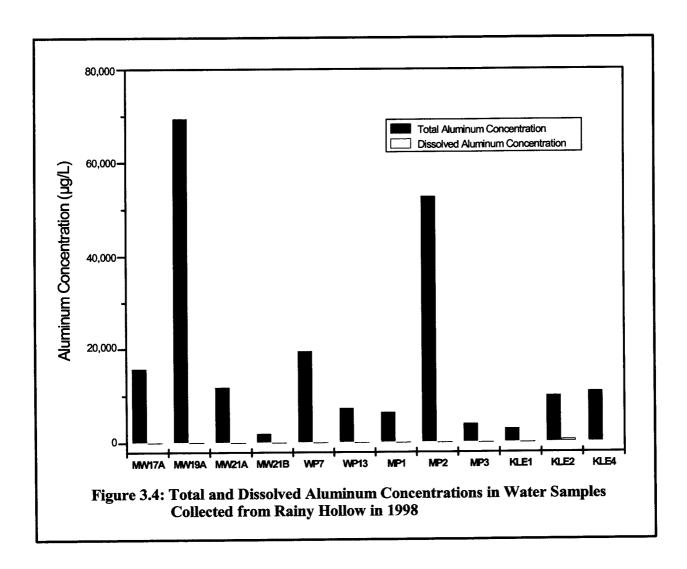


Table 3.6: Concentration of Total Metals ($\mu g/L$) in Surface Water Samples Collected from the Klehini River in 1999

Sample #	KLE-1	KLE-2	KLE-4	CCME Environmental
Physical Tests				Quality Guideline
Hardness as CaCO ₃ (mg/L)	60.7	185	155	3.42
рН	6.74	7.20	6.73	6.5 – 9.0
Conductivity (µS)	85	123	118	
Total Metals				A Walley of British
Aluminum	5,640	23,700	18,300	5 - 100
Antimony	0.4	0.5	0.5	
Arsenic	1.9	5,8	4.9	5
Barium	40	130	110	-4
Beryllium	<0.1	<0.1	<0.1	
Boron	<100	<100	<100	500 - 6000
Cadmium	0.13	0.3	0.26	0.017
Calcium	17,400	46,700	39,700	
Chromium	12.4	65.6	51	# 41
Cobalt	3.6	16.1	12.9	50
Copper	10	40.5	28	2 - 4
Iron	7,460	32,700	26,000	300
Lead	1.69	5.25	5.18	1-7
Magnesium	4,200	16,700	13,600	1.00
Manganese	0.15	0.626	0.504	
Mercury	<0.05	<0.05	< 0.05	2.6
Molybdenum	<30	<30	<30	73
Nickel	6	29	23	25 – 150
Potassium	<2,000	3,000	3,000	
Selenium	<1	<1	<1	1.0
Silver	0.04	0.14	0.14	0.1
Sodium	2,000	3,000	2,000	
Thallium	0.09	0.11	0.08	0.8
Titanium	450	2,230	1,620	39 42 24
Uranium	0.8	1.1	1	
Vanadium	<30	90	70	10 mg/s
Zinc	24	- 86	69	30

Notes:

All concentrations are expressed in micrograms per litre ($\mu g/L$) unless otherwise stated.

Shaded areas indicate parameters that exceed the CCME environmental quality guideline for fresh water.

<= less than the detection limit indicated

4. CONCLUSIONS AND RECOMMENDATIONS

The data presented in Chapter 3 indicates a remarkable overall consistency in the concentrations of DDTs, hydrocarbons and metals in groundwater and surface water samples collected from Rainy Hollow and Border Station over a four-year period. This generally reaffirms the validity of the 1996 groundwater model predictions.

Based on previous investigations, it is estimated that mini-piezometer MP-2 is located in the approximate centre of the DDT-contaminated groundwater plume. The concentration of DDTs in samples collected from MP-2 from 1996 through 1999 were as follows: 1996 – 0.0084 µg/L; 1997 – 0.011 µg/L; 1998 – 0.009 µg/L; and, 1999 – 0.003 µg/L. These indicate a slight decrease in DDT concentration in 1999. The total DDTs concentrations over the four year period in monitoring well MW-21A (between the former Trench location and the river) have been consistently low relative to the groundwater concentrations closer to the original burial trench. The concentrations were also below the BC CSR water quality standards: 1996 – <0.1 µg/L³; 1997 – 0.0049 µg/L; 1998 – 0.0053 µg/L; and, 1999 – 0.0047 µg/L. DDTs concentrations in water samples from the Klehini River within 2 to 3 m of where contaminated groundwater would enter the river (Kle-2) have also been consistently below 0.001 µg/L. Similar results have been obtained for extractable petroleum hydrocarbons (C10 to 19).

The results obtained to date have also been below the recommended response triggers which are for total DDTs concentration $-0.050~\mu g/L$ for MP-2 and $0.001~\mu g/L$ for Kle-2 and with respect to EPH (C10 to 19) $-15,000~\mu g/L$ for MP-2 and 50 $\mu g/L$ for Kle-2.

Natural reclamation (re-vegetation) of the gravel capped areas at the Rainy Hollow and Border Station sites has been slow owing to the general lack of any topsoil in the substrate, and relatively exposed nature of the sites. The most successful groundcover colonization has occurred along the road up to the POL storage area at Border Station due to the presence of topsoils. Young trees (balsam poplar and willow) appear to have faired relatively well from partial burial in the capped areas, but it is recommended that these and ground vegetation establishment continue to be monitored, at least on a qualitative basis, as part of the program. If a more quantitative assessment is desired, then it is recommended that a series of permanent 1 m² ground cover plots be established randomly around the sites to collect and monitor the progress and composition of vegetation re-colonization.

Water levels reflect seasonal and annual variations, however the normal range of fluctuation is in the order of 50 cm. The horizontal gradient, and resultant groundwater flux to the Klehini River over the past three years has been relatively constant. Spikes in water levels are associated with spring recharge and late season precipitation. Any impact on groundwater flux to the river associated with these events is nominal as they are of short duration.

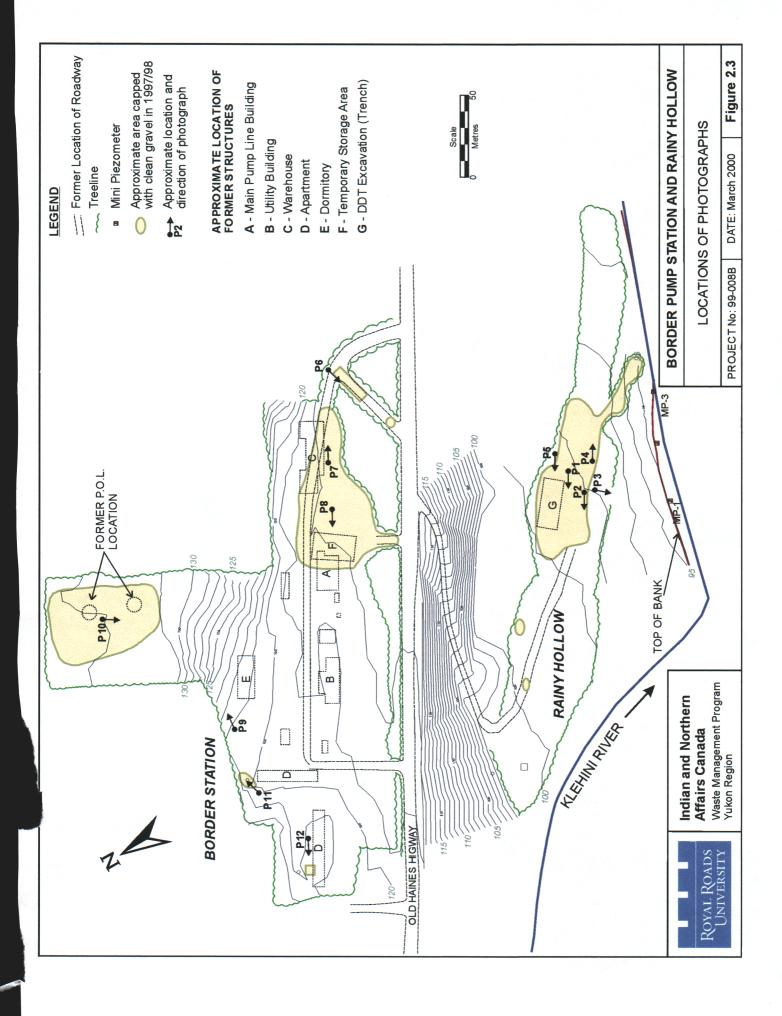
It is concluded that here has been no increase in the concentrations of the original contaminants of potential concern at the site since 1996 – in groundwater entering the Klehini River, or in river

--

 $^{^3}$ A detection limit of 0.1 $\mu\slash\!L$ was used for all individual isomers.

water collected adjacent to the site. This, along with the original risk assessment and subsequent risk management activities, leads to the conclusion that there remain no unacceptable risks to wildlife or humans at or near the site.

Finally, as with the recommendation of the original contaminant transport model (Woodbury, 1997), the monitoring program should be continued for one more year. The frequency of subsequent monitoring programs would be revisited following review of the data.


5. REFERENCES

- BC MELP (British Columbia Ministry of the Environment Lands and Parks), 1999. Contaminated Sites Regulation First Stage Amendments (order Council 843), deposited as B.C. Reg. 244/99. http://www.bc-environment-issues.com/oic_244_99.html Accessed January 24, 2000.
- CCME (Canadian Council of Ministers of the Environment), 1999. Canadian Environmental Quality Guidelines.
- Golder Associates, 1995. Report on 1994 Site Assessment & Remedial Response Program Border Pump Station Rainy Hollow, B.C. Submitted to Environment Canada, Pacific and Yukon Region in March 1995
- Government of British Columbia. Contaminated Sites Regulation. April 1, 1997.
- Royal Roads University Applied Research Division (1996a). Preliminary Environmental Assessment Haines-Fairbanks Pipeline: Delineation and Characterization of Metals, Organochlorines and Hydrocarbons at Million Dollar Falls, Blanchard River and Border Station. Report prepared for Indian and Northern Affairs (DIAND) AES, March 1996.
- Royal Roads University Applied Research Division (1996b). Haines-Fairbanks Pipeline: Environmental Issues at Border Pump Station and Rainy Hollow Sites. Report prepared for Indian and Northern Affairs (DIAND) AES, March 1996.
- Royal Roads University Applied Research Division (1996c). Characterization of Soils at the Temporary Storage Facility, Border Pump Station. Report prepared for Indian and Northern Affairs (DIAND) AES, October, 1996.
- Royal Roads University Applied Research Division (1998). Site Remediation of Border Pump Station and Rainy Hollow, British Columbia Canada. Report prepared for Indian and Northern Affairs (DIAND), Waste Management Program, Whitehorse, Yukon, January 1998.
- Royal Roads University Applied Research Division (1999a). Remediation and Confirmatory Sampling of DDT Contaminated Soils at Border Pump Station and Rainy Hollow, British Columbia Canada. Report prepared for Indian and Northern Affairs (DIAND), Waste Management Program, Whitehorse, Yukon, March 1999.
- Royal Roads University Applied Research Division (1999b). Border Pump Station and Rainy Hollow, BC, Canada: 1997 and 1998 Monitoring Program. Report prepared for Indian and Northern Affairs (DIAND), Waste Management Program, Whitehorse, Yukon, February 1999.
- UMA Engineering Ltd. and AMBIO Research Associates, Inc., 1995. Preliminary Environmental Assessment Haines-Fairbanks Pipeline. Report prepared for AES-Whitehorse (DIAND) in August, 1995.

Woodbury A. D. Rainy Hollow Contaminant Transport Modeling. Report prepared for UMA Engineering Ltd., Winnipeg, Manitoba, August 1997.

Yukon Renewable Resources. 1996/192. Contaminated Sites Regulation. 96 11 18.

APPENDIX A: PHOTOGRAPHS OF RE-VEGETATION ASSESSMENT

Photograph 1: Looking northwest from the central part of the capped area at Rainy Hollow

Photograph 2: Looking north along the western edge of the gravel capped area at Rainy Hollow

Photograph 3: View of the access road to Klehini River towards the locations of the minipiezometers

Photograph 4: Looking south along the western edge of the gravel cap at Rainy Hollow

Photograph 5: Looking north along the eastern edge of the cap, close to where the Trench was formerly located at Rainy Hollow

Photograph 6: Local gravel cap along road leading south of former Temporary Storage Area at Border Station

Photograph 7: Gravel pad over former Temporary Storage Area looking southeast

Photograph 8: Gravel pad over former Temporary Storage Area looking northwest

Photograph 9: Looking east along access road constructed for delivering gravel to the former POL storage area

Photograph 10: Former POL storage area looking southwest

Photograph 11: Local gravel cap over hydrocarbon stained area on the northern side of Border Station looking towards former POL site

Photograph 12: Gravel cap over hydrocarbon stained area northwest of site looking northwest

APPENDIX B: GROUNDWATER SAMPLING SHEETS

Date Tim Sam Dept Dept Diar	e: aples Colle th to water th to botton neter of sta	from top of can of well from indpipe	MONITO sing top of casing	RING	Location Weather Temper M. Dock	r: eature:	TION 18.793 11.4000 meters meters meters bitres litres	
				WEI	I DIDCH	VIC.		
Star Finis	-	4.15 pm			LL PURGII Volu		Method Waterra	3
TIM	E	Volume	TEMP p		Conductivity	Rema	ırks	
4	25	Removed	(°C) 6	09	(μS/cm) 437		MANUEL CONTRACTOR OF THE PROPERTY OF THE PROPE	-
	.30	5 L		18	429	-		
(1.35	5 L	7 2 5	191	430			
					· · · · · · · · · · · · · · · · · · ·			
			SAN	T I I	BOTTLES	THE LITE)	
No	Time	Type of	Volume			ervative		
140	Collected	Container	Volume	μη (μη		ervauve	Remarks	
1	435	Colass	402		- 42	ړيې	BTEX / UPH	
2	4.37	(१९०१	40~4			504	STE>/UPH	
3	4:40	Glass	500 ~	+-	<u> </u>	0	EIH	
5						=		
6								
7				_				
8 9								
10		-						
					•			
				OBS	ERVATIO	NS		
Odour Sheen Other	No 🛮 No	☐ Yes ☐ Yes	If yes If yes					
				EQUI	IPMENT L	IST		
Cond. Water	meter (mo r Level Met	l & serial #) del & serial #) ter:	:				CalibrationCalibration	
Pump Other								

Well No: Date: Time: Samples Colle	MW - 17 Augus 3.00 ected by:	A F 6/99 PM m. Dod	W	ocation: Teather: emperation	ture: _	Rainy Hollow	
MONITORING WELL INFORMATION Depth to water from top of casing Depth to bottom of well from top of casing Diameter of standpipe One well volume (B-A)*2 (for 2 inch i.d. well) (B-A)*1.1(for 1 inch i.d. well) One well volume (B-A)*2 (for 2 inch i.d. well) (B-A)*1.1(for 1 inch i.d. well)							
			WELL PU				
Start Finish	3-20 pm			Volum	e purged	d (well vol x 3) 24 litres Method watera	
TIME	Volume Removed	TEMP pF	H Condu (μS/cn	uctivity	Remar	rks	
3:01	24	- 66	51 62	.5			
3.12	45 L		45 62	12			
3:15	5-		39 61		 		
3.18	51		30 0.	<u> </u>	 		
		SAN	IPLE BOT	TLES F	ILLED		
No Time	Type of	Volume	Filter		rvative	Remarks /Analysis	
Collected	d Container		(µm)	 			
1 3.20	Glass	40ml	NO NO	H25		BTEX/VPH RIEX/VPH	
3 3.25	Glass Glass	500 ml		H25		BIEX/VPH EPH	
4 2.26		16	140	نسل		DDTS (AXYS)	
5 3.28	Glass	l L	CVI	iV	೦	DUTS (AXYS)	
6 3.30		25cm	1 0.45	1+12)-3	Dissolviel metals	
7				+			
9		 		+			
10		 					
**							
			OBSERV.				
Odour 🛮 No	Yes	If yes	Hydn	ابح	>W		
Sheen 🕱 No	Yes	If yes	1 /2				
Other:		lightly_	turbid				
			EQUIPME	ENT LI	ST		
nH Meter (mode	pH Meter (model & serial #)Calibration						
Cond. meter (m):				Calibration	
Water Level Me							
Pump: Other:							
Cinci.							

Well No: 17 B Date: 1Mq 6/99 Weather: 501119 Time: Temperature: 25°C Samples Collected by: 10.000/7.0000000000000000000000000000000										
Star Fini	ish	3.30	-		ELL PU	Volume		ed (well vol x 3) Method		litres
TIM	E	Volume Removed	TEMP (°C)	pН	Condu (µS/cm	ictivity n)	Rema	arks		,
	37	42	8.0	6.38	61	1				
	0 4.0	5	6.6	6-43						
	3.42	5	7.2	6.20						
	3 1			<u> </u>	+ -	<u> </u>	<u> </u>			
	 .		s	AMPL	E BOTT	TLES F	ILLE	D		
No	Time	Type of	Volume		Filter		rvative		-	
	Collected	l Container		((µm)					
$\frac{1}{2}$	3:4 51		40.7		NO	H250) PH	
3	3:46	a lags	500		100	H251		BIEX/VP	<u>'H</u>	
4	3:50	Glass	16		7/2	NUI	NE NE		`A > YS)	
5	3:55	41495	11		700	170		1	A × Y()	
6									<i>11</i>	
7			 			<u> </u>				
9			+	-+						
10						+				······································
<u> </u>	L	I				1	« » , , , , .	<u> </u>		
										
					BSERVA			A .		
Odour	r [] No	Yes	If yes		+ ydroc	<u>carb</u>	w	odour		
Sheen Other	n KNo 	Turk	If yes	227	24 ~	\ To				
Other	•			400	<u>'4</u> ~	Junes				
ъН М	ater (mode	ıl & serial #)		EQ	UIPME	NT LIS	T	Calibration		
Cond.	meter (mo	del & serial #)):							
Water	r Level Met									
Pump Other		-								P
O 01.	•									

MONITORING WELL INFORMATION Depth to water from top of casing Depth to bottom of well from top of casing B	Well Date Time Sam	:	hw- 8 Aug 6	/99 F. wing 1	We: Ter	ation: _ ather: _ nperature: _ www.Dodd	Rainy Hollow Partially coundy	
Start	Depth to water from top of casing Depth to bottom of well from top of casing Diameter of standpipe One well volume (B-A)*2 (for 2 inch i.d. well) A 1.883 meters 7.386 meters 7.503 meters 0.050 meters 1 litres							
No Time Type of Collected Container Collected Collec		-		V			(Well vol ii o)	
No Time	T.	3:27	Removed 5 1	(°C) 10.8 7.0 6.4 7.0 6.4 7.0	(μS/cm) S 8 6 5 3 6 5 1S 7 0	59	ks	
Collected Container Collected Coll				SAMP	LE BOTT	LES FILLED		
1 10 : 25 C 45 40 ml No 11 12 12 12 12 12 12 12	No		1	Volume		Preservative		
3		10.35	Glass			,	BTEX /UPH	
A O P CIMS L NO NO DDTS							EOH	
Odour No Yes If yes Other: Odour No Yes If yes Other: EQUIPMENT LIST Calibration Calibration Calibration Calibration Water Level Meter: Pump:				16			· · · · · · · · · · · · · · · · · · ·	
Odour No Yes If yes Sheen No Yes If yes If yes Other: EQUIPMENT LIST PH Meter (model & serial #) Cond. meter (model & serial #): Water Level Meter: Pump:	5							
Odour No Yes If yes Sheen No Yes If yes If yes Other: EQUIPMENT LIST PH Meter (model & serial #) Cond. meter (model & serial #): Water Level Meter: Pump:		10.50	Plantic	1250 M	0.43mm	Nive and	Olivio Co and a co	
Odour No Yes If yes Sheen No Yes If yes Other: EQUIPMENT LIST PH Meter (model & serial #) Cond. meter (model & serial #): Water Level Meter: Pump:					 			
Odour No Yes If yes Sheen No Yes If yes Other: EQUIPMENT LIST PH Meter (model & serial #): Water Level Meter: Pump:								
Odour No Mes If yes Sheen No Yes If yes Other: EQUIPMENT LIST pH Meter (model & serial #): Cond. meter (model & serial #): Water Level Meter: Pump:								
pH Meter (model & serial #) Cond. meter (model & serial #): Water Level Meter: Pump: Calibration Calibration	Shee	Sheen No Yes If yes Sheet Shee						
	Cond Wate Pum	pH Meter (model & serial #) Cond. meter (model & serial #): Water Level Meter:						

Date Time						~9 m	ture: _	20° Parhad	the MOW
Dept Diam	h to botton neter of sta		asing top of cas	ing	IG WEL	L INFO	ORMAT A B C	0 - 29: 	meters 0.340
One	One well volume (B-A)*2 (for 2 inch i.d. well) (B-A)*1.1(for 1 inch i.d. well) litres								
Start	t sh	11.15 a	-	W	ELL PU			l (well vol x 3 Metho	l) 2 litres
		***		77			В		- 10-51-51-51
TIM	E.	Volume Removed	TEMP (°C)	pН	Conduction (µS/cm		Remar	rks	
11:		ع ا	4.7	6.43	68	Ô			
	25	1.5 F	8.4	654					:
1	:27	1.52	8.6	6-47	67	<u> </u>			
					 -				
							·	•	
					E BOTT	,			
No	Time Collected	Type of Container			Filter (um)		rvative	1	medisis
1	11.30	40 ml	40 00	. +	70	H25		BJEX	/vPH
3	11.32	Glogs Glogs	500~		70 70	H250		RIFY EPH	/O P 1
4	11:40	Glass	11-		73	7		0015 (A×75)
5	11.42	Glass	14		NO	N		DOTS	(カメイン)
6	11.45	RIGHTIC	250	vL	45um	まし	3	Dissolved	metaly
7									
9						-		 	
10								 	
			·			,			
Sheen	OBSERVATIONS Odour No Yes If yes Haracanan Sheen No Yes If yes Sught Other:								
								J	
	EQUIPMENT LIST								
	pH Meter (model & serial #)Calibration								
1	. meter (me r Level Me	odel & serial #						Calibratio	on
Pump									
Other									

Dat Tim		ted by:	<u> </u>	W Te	eation: eather: emperature:	Rainy Hollow Parhally Cloudy			
Dep Dia	MONITORING WELL INFORMATION Depth to water from top of casing Depth to bottom of well from top of casing Diameter of standpipe One well volume (B-A)*2 (for 2 inch i.d. well) (B-A)*1.1(for 1 inch i.d. well) One well volume (B-A)*2 (for 2 inch i.d. well) (B-A)*1.1(for 1 inch i.d. well)								
Star Fini		11:40		WELL PU	JRGING Volume purge	d (well vol x 3) Method			
TIM		Volume Removed	TEMP pH (°C)	Condu (µS/cm	nctivity Remark	rks			
H		58	6.3 6.4	9 4	0 00	6.36			
	736	3 ~		10 / (P	0.10			
				<u> </u>					
			SAMF	LE BOT	LES FILLED				
No	Time Collected	Type of Container	Volume	Filter (µm)	Preservative	Remarks			
1	11:55	Glass	40 m	_	H2504				
3	11.58	G 1005	40 ml		H2504				
4	12.00	alass	16	-	+=-	DDTs			
5	12.002	Glass	14			र्शवल			
6									
7 8					1				
9	<u></u>								
10									
			(OBSERVA	ATIONS				
Odou	<i>Jr</i> -] Yes	If yes						
Sheer Other	-T	Yes sli	If yes	mil	tky =	TIELY LAWR			
Other	· -		90 1 1	- 7 1 3 12 1					
				QUIPME	NT LICT				
TT 7vf	-+ / dol	e	E	WOILME	NI LISI	Calibration			
	eter (model - meter (mod	& serial #) el & serial #):				Calibration			
Water	r Level Mete								
Pump Other									
Cruer									

Dat Tim	ie:	Aug 6	/99 n. Doda	We Te	cation: eather: mperature:	Rainy Hollow See well 13 e	
MONITORING WELL INFORMATION Depth to water from top of casing Depth to bottom of well from top of casing Diameter of standpipe One well volume (B-A)*2 (for 2 inch i.d. well) (B-A)*1.1(for 1 inch i.d. well) MONITORING WELL INFORMATION A 1.716 meters 2.630 meters M							
Star Fini	-	10:50 an	n 1		Volume purged	1 (well vol x 3) 5.49 litres Method water to	
TIM	E 5 4	Volume Removed	TEMP pH (°C) 9.9 6.3			rks	
	1:00	<i>Ž</i> Ž	4.7 6.3		5		
			SAMP	LE BOTT	LES FILLED		
No	Time Collected	Type of Container	Volume	Filter (µm)	Preservative	Remarks/Malyss	
1	41.00	Container	40 m	(μm) ~°	H2504	STEX/UPH	
2	11.01	Gless	40 ml	100	HUSULA	BIEX/UPH EPH	
3	11.05	alsor	500m	100	<i>N</i> 0′	DDTS	
5	11:08	G (ae)	16	No	N0	كرالا لا	
6	11:10	2 721	planti	0.4620	Niticand	Disjoined untal	
8	11.10	250 ml	numni	U VI que	NIWONAN	Distance of the same of the sa	
9							
10							
Sheer	Odour No Yes If yes Sheen No Yes If yes Other: OBSERVATIONS OBSERVATIONS The drocarbon odour The drocarbon odour						
Cond	. meter (mo r Level Met o:	l & serial #) del & serial #) ter:		QUIPME	NT LIST	Calibration _Calibration	

Well Date Time Sam	l No: e: e: ples Colle	₩ l - 13 <u>Aug 6</u> g 40 cted by: <u>Su</u>	1999 cum sanne A	Lo We Te: H'ch e/e	cation: _ eather: _ mperature: _	Rainy Hollow sunny with Clouds			
MONITORING WELL INFORMATION Depth to water from top of casing Depth to bottom of well from top of casing Diameter of standpipe One well volume (B-A)*2 (for 2 inch i.d. well) (B-A)*1.1(for 1 inch i.d. well) The matters are meters are meters are meters are meters are meters are meters are meters. The matter are meters are meters are meters are meters are meters. The meters are meters are meters are meters. The meters are meters are meters. The meters are meters. The meters are met									
			1	WELL PU	RGING				
Star Finis	•	9.00			Volume purged	Method Waterre, litres			
TIM	E	Volume	TEMP pH	Condu		ks			
	0.5	Removed 25 L	(°C) 14.96.3	(μS/cm					
9 (40	301-	12.86.2		3				
- ' -		351	69621						
		40 (6.3 6.5		3	-			
10-0	100 456 6.7			03	/				
			SAMP	LE BOTT	LES FILLED				
No	Time Collected	Type of Container	Volume	Filter (µm)	Preservative	Remarks			
1	16.00	Capores	yon	NO	H2504	ртех			
2	10.2	class	40 ml	100	thesb.	Ø7€ ×			
3	10.05	Giorgs Orlowy	500ml	100	100	EPH 007 (1)			
<u>4</u> 5	10.10	Class	11	100	NO	DDT RI			
6	10015	Plache	256	0.45 un		metals			
7									
8									
9		-							
10									
Sheer	Odour No Ryes If yes Sheen No Ryes If yes Strikt odor, hadrocator. Other:								
pH Meter (model & serial #) Cond. meter (model & serial #): Water Level Meter:									
Pump Other):		3.0						

Well Date Time Sam):	- 6, 199 Noon	_	We Ter	eation: eather: mperat	ure: _	cloudy 20°C	tollow	
Dept Dian	h to botton neter of sta	from top of can of well from ndpipe e (B-A)*2 (for (B-A)*1.1(for (B-A)*1.1(for (B-A)*1.1)	top of cas r 2 inch i	ing .d. well)	L INFO	ORMAT A B C	ION	meters meters meters litres
				W]	ELL PU	RGIN	3		
Star	-	12.00				Volume	purged	(well vol x 3) Method	
TIM		Volume	ТЕМР	pН	Condu	ctivity	Remar		
		Removed	(°C)	-	(µS/cm	.)•	1001111		
12:	05 pm	2L 2L	8·8	6.75	553 568				
	:12 pm	2 L	8.0	6.85			_		
	: 14 pm	2L	ల్ల. ర	6.70	550	†			
<u> </u>				<u> </u>	ł		<u>. </u>		
			8	АМ РІ	r rom	יו דכ ד	ILLED		
No	Time	Type of	Volume		Filter	,	rvative	Remarks	
140	Collected		Volume		(µm)	Trese	Ivative	Analysis	required
1	12.15	Glass	40 m		No	H250		BIEX/	_
3	12:16	Glass	500		NO 04	H250) <u>.</u>	BTEX/	UPH (MIL)
4	12:25	Glass	1 1		NO	N			(کا ×4
5	12:26	9 ags	١∟		20		ی	0075 /	9× 45)
7	12:30	Plants	250	<u>~1</u>	3.45	17112	aud	Dissolveia	metals
8			 			 			
9									
10			<u></u>						
Sheer	OBSERVATIONS Odour XNo [] Yes If yes Sheen X No [] Yes If yes Other:								
Cond	. meter (mo r Level Me o:	el & serial #) odel & serial # ter:	÷):	EQ	UIPME	ENT LI	ST		n
Ctne	1.								

Well Date Time Sam	e: e:		6, 1955 pm	We	cation: eather: mpera ozdd		lainy Hol croudy 20°C		
Dept Dian	h to botton neter of sta	e (B-A)*2 (fo		ell)	L INFO	ORMAT A B C	TION	meters meters meters litres	
Γ				WELL PU	PCIN	<u> </u>			
Star Finis	- ,	12.40 ρ		WELLT		_	(well vol x 3) _ Method _	lit	res
TIM	E	Volume Removed	TEMP pH		ctivity	Remar	ks		
12	40 pm	& ∟		(µS/cm					,
12	·42 pm	ーー	9.6 6.0	19 6	16				
12	44 pm	1 L	9.7 6.	55 <u>č</u>	٥7				
-									
						1			
			SAMI	PLE BOT	PT EC E	תם ו ווי			
<u> </u>	m:	<u> </u>							
No	Time Collected	Type of Container	Volume	Filter (um)	Prese	rvative	Remarks		
1	12.45P		27 40 m	100	425	04		PH	
2	12.400		500 mg	No	10		E&H.		
3	12:50		2411	NO NO	17			× 47)	
5	12.52		2×40~1	70	H23		BTEX/UI	r m	
6	12. 530		2 ×14	No		29	2075		-
7	1.00		2 x 250 m	10.454-	HA	03	Dissolved	metals	
8					<u> </u>				
9				 	<u> </u>				
10		1							
Sheer	OBSERVATIONS Odour No XYes If yes Hydrocarbon Other: Twoid - grey/brown								
	EQUIPMENT LIST								
pH M	pH Meter (model & serial #)Calibration								
Cond. meter (model & serial #):Calibration								_	
	r Level Me	ter:							
Pump		Field	duplic	ate	col	le cte	d labo	elect	_
			MP-21	ano	1 /Y	N -22			-

						<u> </u>			
Well No: MI-3 Date: AGG, 1999 Time: 125 PM Samples Collected by: S. Aichele						cation: eather: mpera m · D	ture: _	Rainy to Partially	tollow cloudy
			MONI'	TORIN	G WEL	LINE	ORMAT	ION	
Deni	h to water	from top of cas		1 01111	G WELL	L 1111 1	A	1014	meters
		n of well from		ing			В		meters
Diar	neter of sta	ındpipe					C		meters
One	well volum	e (B-A)*2 (for	r 2 inch i.	d. well)					litres
		(B-A)*1.1(fd	or 1 inch i	i.d. well)				litres
							-		
				w	ELL PU	RGIN	G.		
Star	+	1. 25 pm)	***				l (well vol x 3)	litres
Fini	•					· Ordin	o pargo	Method _	
TIM	E	Volume	TEMP (°C)	pН	Conduc		Remar	ks	
100	25 pm	Removed	9.3	6.31	(μS/cm)		 		
	28 pm	1.6	9.5	6.47					
	31 pm	. [9.1	6.45	58	2			
<u> </u>					ļ				
<u> </u>		<u> </u>		•	L		<u> </u>		
				A D CDT	E DOME	TECE	TI I ED		
<u> </u>			,		E BOTT	,			
No	Time Collected	Type of Container	Volume	1	Filter µm)	Prese	rvative	Remarks	
1	1 · 3 5	Glass	40		NO NO	H ₂ >	D -4	3 TEX/U	PIT
2		91995	500		NO		0	ED 1+	
3		<u>Glass</u>	1 - 1		1/10	10		DDIS (
4		Plasho	25	اله ه	0.45um	H ~	"3	Dissolved	me1413
5 6		_					-		
7									
8									
9			<u> </u>					ļ	
10			<u>i</u>			<u> </u>		<u> </u>	
				OF	BSERVA	TION	S		
Odou	r [] No	XYes	If yes	, 5	light	lyy	dio c	arbon 5	dour
Sheer	_	∐ Yes	If yes			(
Other	, ,								
				EQ	UIPME	NT LI	ST		
pH Meter (model & serial #)Calibration									
Cond	. meter (m	odel & serial#):					Calibration_	
Wate Pum	r Level Me	ter:		. —					
Othe									
1									

APPENDIX C-1: AXYS DATA REPORTS FOR DDT

PO Box 2219, 2045 Mills Road West Sidney, British Columbia, Canada V8L 3S8

DATE:

21 September 1999

Our File: 9919

TO:

Matt Dodd

Batch ID: CLWG1936

ORGANIZATION:

Royal Roads University

Sample No.: L1912-1 to -7

ADDRESS:

FAX:

391-2560

FROM:

Doug Weir

No. of pages: 12

Attached are the Pesticide analysis results for seven water samples.

Should you have any questions please do not hesitate to contact me.

Regards

TEL: (250) 656-0881

E-MAIL: analytical@axys.com

FAX: (250) 656-4511

toll-free: 1-888-373-0881

BATCH SUMMARY

Batch ID: CLWG1936	Date: 11 September 1999
Analysis Type: DDD, DDE and DDT	Matrix Type: Water
BATC	H MAKEUP
Samples: 9919 L1912 -1 -2 -3 -4 -5 -6 -7	Blank: WG1936-1
	Reference or Spike:
	WG1936-2
	Duplicate:
	WG1936-3 (L1912-3)
Comments -	
1. No analytical difficulties were encounte	ered for this work and all QA/QC requirements were met.

Copyright Axys Analytical Services Ltd. February 1993

QA /06 Rev. 2. July 18/94

9

CL002A

CLIENT SAMPLE I.D: Procedural Blank

AXYS ID:

WG1936-1

CLIENT:

Royal Roads University

CLIENT No:

9919

SAMPLE TYPE:

Blank

DATE:

09-Sep-1999

METHOD NO.:

CL-W-04/Ver.2

SAMPLE SIZE:

1.00 L

INSTRUMENT:

GC-MS

RUNFILE ID:

CL993662.D

Compounds	Concent	tration	(SDL)	
o,p'-DDE	١	ID	0.27	
p,p'-DDE	NDR 0	.23	0.22	
o,p'-DDD	N	1D	0.21	
p,p'-DDD	N	1D	0.23	
o,p'-DDT	N	ND	0.20	
p,p'-DDT	N	ID	0.22	

Surrogate Standards	% Recovery	
13C-Hexachlorobenzene	52	
13C-p,p'-DDE	57	
13C-p,p'-DDT	73	
13C-PCB 101	53	
13C-PCB 180	60	

- 1. SDL = Sample Detection Limit
- 2. ND = Not Detected
- 3. NDR = Peak detected but did not meet quantification criteria
- 4. Data have not been blank corrected
- 5. Concentrations are recovery corrected
- 6. Due to similarities among the various Aroclor formulations and/or compositional changes caused by weathering, it is not always possible to identify unique Aroclor patterns in environmental samples. Where non-patterned PCBs are observed, Aroclors are quantified as a mixture of the 1242/1254/1260 formulations.

CL002A

CLIENT SAMPLE I.D:

Spike Matrix

AXYS ID:

WG1936-2

CLIENT:

Royal Roads University

CLIENT No.:

9919

SAMPLE TYPE:

SAMPLE SIZE:

WATER

1.00 L

DATE:

09-Sep-1999

METHOD NO.:

CL-W-04/Ver.2

INSTRUMENT:

GC-MS

RUNFILE ID:

GC-MS CL993659.D

CONCENTRATION IN: ng/L

Compounds	Determined	Expected	% Recovery
o,p'-DDE	49	55	89
p,p'-DDE	48	51	94
o,p'-DDD	49	52	94
p,p'-DDD	47	48	98
o,p'-DDT	46	49	94
p,p'-DDT	47	46	102

Surrogate Standards	% Recovery	
13C-Hexachlorobenzene	59	
13C-p,p'-DDE	73	
13C-p,p'-DDT	74	
13C-PCB 101	67	
13C-PCB 180	75	

- 1. Concentrations are recovery corrected
- Due to similarities among the various Aroclor formulations and/or compositional changes caused by weathering, it is not always possible to identify unique Aroclor patterns in environmental samples. Where non-patterned PCBs are observed, Aroclors are quantified as a mixture of the 1242/1254/1260 formulations.

Approved

CL002A

CLIENT SAMPLE I.D: KLE-1 Aug 7/99 9:25am

AXYS ID:

L1912-1

CLIENT:

Royal Roads University

CLIENT No.:

9919

DATE:

09-Sep-1999

SAMPLE TYPE:

WATER

METHOD NO.:

CL-W-04/Ver.2

SAMPLE SIZE:

1.00 L

INSTRUMENT:

GC-MS

RUNFILE ID:

CL993663.D

Compounds	Concentration	(SDL)	
o,p'-DDE	ND	0.18	
p,p'-DDE	NDR 0.33	0.13	
o,p'-DDD	ND	0.20	
p,p'-DDD	ND	0.07	
o,p'-DDT	ND	0.24	
p,p'-DDT	ND	0.12	

Surrogate Standards	% Recover	
13C-Hexachlorobenzene	48	
13C-p,p'-DDE	74	
13C-p,p'-DDT	92	
13C-PCB 101	69	
13C-PCB 180	77	

- 1. SDL = Sample Detection Limit
- 2. ND = Not Detected
- 3. NDR = Peak detected but did not meet quantification criteria
- 4. Data have not been blank corrected
- 5. Concentrations are recovery corrected
- 6. Due to similarities among the various Aroclor formulations and/or compositional changes caused by weathering, it is not always possible to identify unique Aroclor patterns in environmental samples. Where non-patterned PCBs are observed, Aroclors are quantified as a mixture of the 1242/1254/1260 formulations.

CL002A

CLIENT SAMPLE I.D: KLE-2 Aug 6/99 1:05 pm

AXYS ID:

L1912-2

CLIENT:

Royal Roads University

CLIENT No.:

9919

DATE:

09-Sep-1999

SAMPLE TYPE:

WATER

METHOD NO .:

CL-W-04/Ver.2

SAMPLE SIZE:

1.00 L

INSTRUMENT:

GC-MS

RUNFILE ID:

CL993664.D

Compounds	Concentration	(SDL)
o,p'-DDE	ND	0.38
p,p'-DDE	0.25	0.12
o,p'-DDD	ND	0.12
p,p'-DDD	ND	0.13
o,p'-DDT	ND	0.16
p,p'-DDT	ND	0.12

Surrogate Standards	% Recovery		
13C-Hexachlorobenzene	68		
13C-p,p'-DDE	91		
13C-p,p'-DDT	100		
13C-PCB 101	86		
13C-PCB 180	88		

- 1. SDL = Sample Detection Limit
- 2. ND = Not Detected
- 3. NDR = Peak detected but did not meet quantification criteria
- 4. Data have not been blank corrected
- 5. Concentrations are recovery corrected
- 6. Due to similarities among the various Aroclor formulations and/or compositional changes caused by weathering, it is not always possible to identify unique Aroclor patterns in environmental samples. Where non-patterned PCBs are observed, Aroclors are quantified as a mixture of the 1242/1254/1260 formulations.

CL002A

CLIENT SAMPLE I.D:

KLE-4 Aug 7/99 8:55am

AXYS ID:

L1912-3

CLIENT:

Royal Roads University

CLIENT No.:

9919

DATE:

09-Sep-1999

SAMPLE TYPE:

WATER

METHOD NO.:

CL-W-04/Ver.2

SAMPLE SIZE:

1.00 L

INSTRUMENT:

GC-MS

RUNFILE ID:

CL993670.D

Compounds	Concentration	(SDL)
o,p'-DDE	ND	0.44
p,p'-DDE	ND	0.16
o,p'-DDD	ND	0.18
p,p'-DDD	ND	0.19
o,p'-DDT	ND	0.22
p,p'-DDT	ND	0.28

Surrogate Standards	% Recover	
13C-Hexachlorobenzene	58	
13C-p,p'-DDE	71	
13C-p,p'-DDT	87	
13C-PCB 101	65	
13C-PCB 180	70	

- 1. SDL = Sample Detection Limit
- 2. ND = Not Detected
- 3. NDR = Peak detected but did not meet quantification criteria
- 4. Data have not been blank corrected
- 5. Concentrations are recovery corrected
- 6. Due to similarities among the various Aroclor formulations and/or compositional changes caused by weathering, it is not always possible to identify unique Aroclor patterns in environmental samples. Where non-patterned PCBs are observed. Aroclors are quantified as a mixture of the 1242/1254/1260 formulations.

CL002A

CLIENT SAMPLE I.D:

KLE-4 Aug 7/99 8:55am

AXYS ID:

WG1936-3

CLIENT:

Royal Roads University

DATE:

Duplicate (L1912-3) 09-Sep-1999

CLIENT No.:

9919

CL-W-04/Ver.2

SAMPLE TYPE:

WATER

METHOD NO.:

SAMPLE SIZE:

0.960 L

INSTRUMENT:

GC-MS

RUNFILE ID:

CL993665.D

Compounds	Concentration	(SDL)
o,p'-DDE	ND	0.30
p,p'-DDE	NDR 0.28	0.09
o,p'-DDD	ND	0.08
p,p'-DDD	ND	0.08
o,p'-DDT	ND	0.15
p,p'-DDT	ND	0.19

Surrogate Standards	% Recovery	
13C-Hexachlorobenzene	50	
13C-p,p'-DDE	86	
13C-p,p'-DDT	110	
13C-PCB 101	78	
13C-PCB 180	96	

- 1. SDL = Sample Detection Limit
- 2. ND = Not Detected
- 3. NDR = Peak detected but did not meet quantification criteria
- 4. Data have not been blank corrected
- 5. Concentrations are recovery corrected
- 6. Due to similarities among the various Aroclor formulations and/or compositional changes caused by weathering, it is not always possible to identify unique Aroclor patterns in environmental samples. Where non-patterned PCBs are observed, Aroclors are quantified as a mixture of the 1242/1254/1260 formulations.

CL002A

CLIENT SAMPLE I.D: MP-1 Aug 6/99 12:15pm.

AXYS ID:

L1912-4

CLIENT:

Royal Roads University

CLIENT NO.:

9919

WATER

DATE:

09-Sep-1999

SAMPLE TYPE:

METHOD NO.:

CL-W-04/Ver.2

SAMPLE SIZE:

1.00 L

INSTRUMENT:

GC-MS

RUNFILE ID:

CL993666.D

Compounds	Concentration	(SDL)
o,p'-DDE	ND	0.10
p,p'-DDE	0.28	0.07
o,p'-DDD	ND	0.10
p,p'-DDD	ND	0.11
o,p'-DDT	ND	0.11
p,p'-DDT	ND	0.13

Surrogate Standards	% Recover		
13C-Hexachlorobenzene	54		
13C-p,p'-DDE	90		
13C-p,p'-DDT	110		
13C-PCB 101	82		
13C-PCB 180	97		

- 1. SDL = Sample Detection Limit
- 2. ND = Not Detected
- 3. NDR = Peak detected but did not meet quantification criteria
- 4. Data have not been blank corrected
- 5. Concentrations are recovery corrected
- 6. Due to similarities among the various Aroclor formulations and/or compositional changes caused by weathering, it is not always possible to identify unique Aroclor patterns in environmental samples. Where non-patterned PCBs are observed, Aroclors are quantified as a mixture of the 1242/1254/1260 formulations.

CL002A

CLIENT SAMPLE I.D:

MP-22 Aug6/99 1:05pm

AXYS ID:

L1912-5

CLIENT:

Royal Roads University

CLIENT No.:

9919

DATE:

09-Sep-1999

SAMPLE TYPE:

WATER

METHOD NO.:

CL-W-04/Ver.2

SAMPLE SIZE:

1.00 L

INSTRUMENT:

GC-MS

RUNFILE ID:

CL993667.D

Compounds	Concentration		(SDL)	
o,p'-DDE		ND	0.32	
p,p'-DDE	NDR	0.26	0.07	
o,p'-DDD	NDR	0.52	0.07	
p,p'-DDD		1.5	0.08	
o,p'-DDT		1.6	0.15	
p,p'-DDT		ND	0.15	

Surrogate Standards	% Recovery
13C-Hexachlorobenzene	73
13C-p,p'-DDE	92
13C-p,p'-DDT	95
13C-PCB 101	88
13C-PCB 180	90

- 1. SDL = Sample Detection Limit
- 2. ND = Not Detected
- 3. NDR = Peak detected but did not meet quantification criteria
- 4. Data have not been blank corrected
- 5. Concentrations are recovery corrected
- 6. Due to similarities among the various Aroclor formulations and/or compositional changes caused by weathering, it is not always possible to identify unique Aroclor patterns in environmental samples. Where non-patterned PCBs are observed, Aroclors are quantified as a mixture of the 1242/1254/1260 formulations.

CL002A

CLIENT SAMPLE I.D:

MP-3 Aug 6/99

AXYS ID:

L1912-6

CLIENT:

Royal Roads University

9919

DATE:

09-Sep-1999

CLIENT No.: SAMPLE TYPE:

WATER

METHOD NO.:

CL-W-04/Ver.2

SAMPLE SIZE:

1.00 L

INSTRUMENT:

GC-MS

RUNFILE ID:

CL993668.D

Compounds	Concentration	(SDL)
o,p'-DDE	ND	0.46
p,p'-DDE	ND	0.40
o,p'-DDD	ND	0.22
p,p'-DDD	NDR 0.32	0.07
o,p'-DDT	0.35	0.19
p,p'-DDT	ND	0.16

Surrogate Standards	% Recovery		
13C-Hexachlorobenzene	74		
13C-p,p'-DDE	92		
13C-p,p'-DDT	96		
13C-PCB 101	87		
13C-PCB 180	97		

- 1. SDL = Sample Detection Limit
- 2. ND = Not Detected
- 3. NDR = Peak detected but did not meet quantification criteria
- 4. Data have not been blank corrected
- 5. Concentrations are recovery corrected
- 6. Due to similarities among the various Aroclor formulations and/or compositional changes caused by weathering, it is not always possible to identify unique Aroclor patterns in environmental samples. Where non-patterned PCBs are observed, Aroclors are quantified as a mixture of the 1242/1254/1260 formulations.

CL002A

CLIENT SAMPLE I.D:

MP-21 Aug 6/99 12:45pm

AXYS ID:

L1912-7

CLIENT:

Royal Roads University

CLIENT No.:

9919

DATE:

09-Sep-1999

SAMPLE TYPE:

WATER

METHOD NO .:

CL-W-04/Ve7.2

SAMPLE SIZE:

1.00 L

INSTRUMENT:

GC-MS

RUNFILE ID:

CL993669.D

Compounds	Concentration	(SDL)
o,p'-DDE	ND	0.45
p,p'-DDE	0.19	0.07
o,p'-DDD	NDR 0.49	0.2
p,p'-DDD	1.4	0.09
o,p'-DDT	1.5	0.15
p,p'-DDT	ND	0.20

Surrogate Standards	% Recovery		
13C-Hexachlorobenzene	70		
13C-p,p'-DDE	92		
13C-p,p'-DDT	96		
13C-PCB 101	84		
13C-PCB 180	84		

- 1. SDL = Sample Detection Limit
- 2. ND = Not Detected
- 3. NDR = Peak detected but did not meet quantification criteria
- 4. Data have not been blank corrected
- 5. Concentrations are recovery corrected
- 6. Due to similarities among the various Aroclor formulations and/or compositional changes caused by weathering, it is not always possible to identify unique Aroclor patterns in environmental samples. Where non-patterned PCBs are observed. Aroclors are quantified as a mixture of the 1242/1254/1260 formulations.

PO Box 2219, 2045 Mills Road West Sidney, British Columbia, Canada V8L 3S8

DATE:

14 October 1999

Our File: 9919

TO:

Matt Dodd

Batch ID: CLWG1936

ORGANIZATION:

Royal Roads University

Sample No.: L1912 -8 to -14

ADDRESS:

FAX:

391-2560

FROM:

Doug Weir

No. of pages: 12

Attached are the Pesticide analysis results for seven water samples.

Should you have any questions please do not hesitate to contact me.

Regards

TEL: (250) 656-0881 FAX: (250) 656-4511 E-MAIL: analytical@axys.com toll-free: 1-888-373-0881

BATCH SUMMARY

Batch ID:	CLWG19	37		Date: 12 October 1	999
Analysis T	y pe: DDD), DDE and	DDT	Matrix Type: Wate	er
			BATCH	MAKEUP	
Samples:	9919	L1912	-8 -9 -10 -11 -12 -13 -14	Blank: Reference or Spik	WG1937-1 ve: WG1937-2
Comments 1. N		al difficultie	es were encountered t	Duplicate: for this work and all 0	WG1937-3 (L1912-10) QA/QC requirements were met.

Copyright Axys Analytical Services Ltd. February 1993

QA /06 Rev. 2. July 18/94

CL002B

CLIENT SAMPLE I.D: Procedural Blank

AXYS ID: WG1937-1

CLIENT:

Royal Roads University

CLIENT NO.:

9919

SAMPLE TYPE:

SAMPLE SIZE:

Blank

1 L

DATE:

14-Oct-1999

METHOD NO.: CL-W-04/Ver.2

INSTRUMENT:

GC-MS

RUNFILE ID: CL993730.D

Compounds	Concentration	(SDL)
o,p'-DDE	ND	0.23
p,p'-DDE	ND	0.20
o,p'-DDD	ND	0.18
p,p'-DDD	ND	0.19
o,p'-DDT	ND	0.15
p,p'-DDT	ND	0.22

Surrogate Standards	% Recovery
13C-p,p'-DDE	84
13C-p,p'-DDT	98
13C-PCB 101	73

^{1.} SDL = Sample Detection Limit

^{2.} ND = Not Detected

^{3.} NDR = Peak detected but did not meet quantification criteria

^{4.} Data have not been blank corrected

CL002B

CLIENT SAMPLE I.D: **Spiked Matrix** **AXYS ID: WG1937-2**

CLIENT:

Royal Roads University

CLIENT NO.:

9919

SAMPLE TYPE:

Water

SAMPLE SIZE:

1 L

DATE:

14-Oct-1999

METHOD NO.: CL-W-04/Ver.2

INSTRUMENT:

GC-MS

RUNFILE ID: CL993728.D

CONCENTRATION IN: ng/L

Compounds	Determined	Expected	% Recovery
o,p'-DDE	51	55	93
p,p'-DDE	49	51	96
o,p'-DDD	52	52	100
p,p'-DDD	50	48	104
o,p'-DDT	48	49	98
p,p'-DDT	50	46	109

Surrogate Standards	% Recovery
13C-p,p'-DDE	89
13C-p,p'-DDT	94
13C-PCB 101	79

Approved

^{1.} Concentrations are recovery corrected

CL002B

CLIENT SAMPLE I.D: WP-7 06-AUG-99

AXYS ID: L1912-8

CLIENT:

Royal Roads University

9919

CLIENT NO.: SAMPLE TYPE: DATE:

14-Oct-1999

SAMPLE SIZE:

Water

1 L

METHOD NO.: CL-W-04/Ver.2

INSTRUMENT:

GC-MS

RUNFILE ID: CL993731.D

Compounds	Concentration	(SDL)
o,p'-DDE	ND	0.56
p,p'-DDE	1.7	0.47
o,p'-DDD	11	0.42
p,p'-DDD	35	0.44
o,p'-DDT	ND	0.54
p,p'-DDT	ND	0.79

Surrogate Standards	% Recovery
13C-p,p'-DDE	83
13C-p,p'-DDT	88
13C-PCB 101	71

^{1.} SDL = Sample Detection Limit

^{2.} ND = Not Detected

^{3.} NDR = Peak detected but did not meet quantification criteria

^{4.} Data have not been blank corrected

^{5.} Concentrations are recovery corrected

CL002B

CLIENT SAMPLE I.D: WP-13 06-AUG-99

AXYS ID: L1912-9

CLIENT:

Royal Roads University

CLIENT NO.:

9919

SAMPLE TYPE:

Water

SAMPLE SIZE:

0.96 L

DATE:

14-Oct-1999

METHOD NO.: CL-W-04/Ver.2

INSTRUMENT:

GC-MS

RUNFILE ID: CL993732.D CONCENTRATION IN: ng/L

Compounds	Concentration	(SDL)
o,p'-DDE	ND	0.31
p,p'-DDE	0.65	0.27
o,p'-DDD	61	0.33
p,p'-DDD	200	0.35
o,p'-DDT	0.99	0.28
p,p'-DDT	1.7	0.40

Surrogate Standards	% Recovery
13C-p,p'-DDE	75
13C-p,p'-DDT	94
13C-PCB 101	62

- 1. SDL = Sample Detection Limit
- 2. ND = Not Detected
- 3. NDR = Peak detected but did not meet quantification criteria
- 4. Data have not been blank corrected
- 5. Concentrations are recovery corrected

CL002B

CLIENT SAMPLE I.D: MW-18 06-AUG-99

AXYS ID: L1912-10

CLIENT:

Royal Roads University

CLIENT NO.:

9919

SAMPLE TYPE:

Water

DATE:

14-Oct-1999

METHOD NO.: CL-W-04/Ver.2

SAMPLE SIZE:

1 L

INSTRUMENT:

GC-MS

RUNFILE ID: CL993733.D CONCENTRATION IN: ng/L

Compounds	Concentration	(SDL)
o,p'-DDE	ND	0.22
p,p'-DDE	0.26	0.19
o,p'-DDD	0.27	0.16
p,p'-DDD	0.60	0.17
o,p'-DDT	ND	0.13
p,p'-DDT	ND	0.19

Surrogate Standards	% Recovery	
13C-p,p'-DDE	84	
13C-p,p'-DDT	110	
13C-PCB 101	72	

- 1. SDL = Sample Detection Limit
- 2. ND = Not Detected
- 3. NDR = Peak detected but did not meet quantification criteria
- 4. Data have not been blank corrected
- 5. Concentrations are recovery corrected

CL002B

CLIENT SAMPLE I.D: MW-18 06-AUG-99

AXYS ID: WG1937-3

Duplicate (L1912-10)

CLIENT:

Royal Roads University

DATE:

14-Oct-1999

CLIENT NO.:

9919

METHOD NO.: CL-W-04/Ver.2

SAMPLE TYPE:

Water

INSTRUMENT:

GC-MS

SAMPLE SIZE:

0.98 L

RUNFILE ID: CL993734.D

CONCENTRATION IN: ng/L

Compounds	Concentration	(SDL)
o,p'-DDE	ND	0.21
p,p'-DDE	0.20	0.18
o,p'-DDD	ND	0.23
p,p'-DDD	NDR 0.3	0.25
o,p'-DDT	ND	0.23
p,p'-DDT	ND	0.33

Surrogate Standards	% Recovery
---------------------	------------

13C-p,p'-DDE	87
13C-p,p'-DDT	110
13C-PCB 101	72

- 1. SDL = Sample Detection Limit
- 2. ND = Not Detected
- 3. NDR = Peak detected but did not meet quantification criteria
- 4. Data have not been blank corrected
- 5. Concentrations are recovery corrected

CL002B

CLIENT SAMPLE I.D: MW-17A 06-AUG-99

AXYS ID: L1912-11

CLIENT:

Royal Roads University

CLIENT NO.:

9919

SAMPLE TYPE:

Water

DATE:

14-Oct-1999

METHOD NO.: CL-W-04/Ver.2

SAMPLE SIZE:

1 L

INSTRUMENT:

GC-MS

RUNFILE ID: CL993735.D

CONCENTRATION IN: ng/L

Compounds	Concentration	(SDL)
o,p'-DDE	ND	0.13
p,p'-DDE	0.27	0.11
o,p'-DDD	0.11	0.10
p,p'-DDD	0.16	0.11
o,p'-DDT	ND	0.14
p,p'-DDT	ND	0.20

Surrogate Standards	% Recovery
13C-p,p'-DDE	94
13C-p,p'-DDT	84
13C-PCB 101	88

- 1. SDL = Sample Detection Limit
- 2. ND = Not Detected
- 3. NDR = Peak detected but did not meet quantification criteria
- 4. Data have not been blank corrected
- 5. Concentrations are recovery corrected

CL002B

CLIENT SAMPLE I.D: MW-17B 06-AUG-99

AXYS ID: L1912-12

CLIENT:

Royal Roads University

DATE:

14-Oct-1999

CLIENT NO.:

9919 Water

METHOD NO.: CL-W-04/Ver.2

SAMPLE TYPE: SAMPLE SIZE:

1 L

INSTRUMENT:

GC-MS

RUNFILE ID: CL993736.D

CONCENTRATION IN: ng/L

Compounds	Concentration	(SDL)
o,p'-DDE	ND	0.22
p,p'-DDE	0.25	0.19
o,p'-DDD	ND	0.15
p,p'-DDD	ND	0.16
o,p'-DDT	ND	0.20
p,p'-DDT	ND	0.29

Surrogate Standards	% Recovery	
13C-p,p'-DDE	87	
13C-p,p'-DDT	81	
13C-PCB 101	82	

- 1. SDL = Sample Detection Limit
- 2. ND = Not Detected
- 3. NDR = Peak detected but did not meet quantification criteria
- 4. Data have not been blank corrected
- 5. Concentrations are recovery corrected

Approved

CL002B

CLIENT SAMPLE I.D: MW-21A 06-AUG-99

AXYS ID: L1912-13

CLIENT:

Royal Roads University

DATE:

14-Oct-1999

CLIENT NO.: SAMPLE TYPE: 9919

METHOD NO.: CL-W-04/Ver.2

SAMPLE SIZE:

Water 1 L

INSTRUMENT:

GC-MS

RUNFILE ID: CL993737.D

CONCENTRATION IN: ng/L

Compounds	Concentration	(SDL)	
o,p'-DDE	ND	0.25	
p,p'-DDE	0.30	0.21	
o,p'-DDD	11	0.12	
p,p'-DDD	36	0.13	
o,p'-DDT	ND	0.21	
p,p'-DDT	NDR 0.31	0.30	

Surrogate Standards	% Recovery	
13C-p,p'-DDE	76	
13C-p,p'-DDT	86	
13C-PCB 101	68	

- 1. SDL = Sample Detection Limit
- 2. ND = Not Detected
- 3. NDR = Peak detected but did not meet quantification criteria
- 4. Data have not been blank corrected
- 5. Concentrations are recovery corrected

CL002B

CLIENT SAMPLE I.D: MW-21B 06-AUG-99

AXYS ID: L1912-14

CLIENT:

Royal Roads University

CLIENT NO.:

9919

DATE:

14-Oct-1999

SAMPLE TYPE:

Water

METHOD NO.: CL-W-04/Ver.2

SAMPLE SIZE:

Compounds

1 L

INSTRUMENT:

GC-MS

RUNFILE ID: CL993738.D CONCENTRATION IN: ng/L

Concentration (SDL) 6

0.19
0.16
0.13
0.13
0.38
0.55

% Recovery Surrogate Standards

76 13C-p,p'-DDE 13C-p,p'-DDT 87 67 13C-PCB 101

Approved

^{1.} SDL = Sample Detection Limit

^{2.} ND = Not Detected

^{3.} NDR = Peak detected but did not meet quantification criteria

^{4.} Data have not been blank corrected

^{5.} Concentrations are recovery corrected

ROYAL ROADS University

CHAIN OF CUSTODY / ANALYTICAL REQUEST FORM

2005 Sooke Road Victoria, BC, V9B 5Y2

Project Name/No: Q AINY HULLEN MUNITERHOG.

LA41416 Phone/Fax #: Lab Contact: Laboratory: 391-2560((ax) Matt. cloud @ regalroads Ca للحامل Phone/Fax #: (250) 371-2583 RRU Contact: ALATI E-mail:

1001: Ax45 ANJALXTICAL

11act: (250) 650 0881

		Remarks/Notes		The second secon								
Analysis Requested	7/G,	· 1	k >	\	×	X		×	×	<u> </u>	K >	
	servative		; Z	,	,	•	١,		/		/	,
		Sample Type	water	Wale €	וחפונג	A 2 1 10 ml		14 CL (C.)	15) 101			Walk
		Time	d. ye	Hude Garb	9.55am	18 187 M	1	Gr.	M124.71		4.01	10.45m
		Date	Aug 7, 94 9. year	My 69: 6 96 9 5-4	Aug 7,99 8.55am	A.196.99	Age, 6,99	A-9 6,99	11 cag 6, 99 12.43	Ac1 6.55	15.9 p. 21	Aug 6, 99
		Sample #	K-1-1	KLE - 2	44 1/1	T - 01W	M. 2 - 22	m -3	16-CIM	1-000	6-764	W W - 18

Relinguished By:	Date: Ailg 7, 77	Received By:	Date:	Special Instructions:
COCH	Time: 5.38Pm		Time:	いいいいいできる
Relinquished By:	Date:	Received By:	Date:)
•	Time:		Time:	

ROYAL ROADS University

Victoria, BC, V9B 5Y2 2005 Sooke Road

CHAIN OF CUSTODY (ANALYTICAL REQUEST FORM $\binom{7/2}{2}$

Project Name/No: 12/11/24 HOLLON HOLVION HOLD

RU Contact: AND ANT	MART DOUD	Laboratory:	AXYS	(
hone/Fax #:	: (250) 301-2583/301.2560 (10x)	Lab Contact:	_4	0
3-mail:	1.2 - Sproupha, (b) PRINCHIA	Phone/Fax #:	(350) (5	99

	Laboratory:	AXYS ANALYTH AL
(*	Lab Contact:	LAURIE PHILLINS
	Phone/Fax #:	1880 9 <u>5</u> 9 (058)

		Remarks/Notes								
ested										
Analysis Requested										
	7/1	Q(1)	X	X	×	×				
	servative	Pre	No ME	1301051	とここと	1701071				
		Sample Type	w Fith	3.50 pm WATER	Amwanta	WATER				
		Time	3.25 pm	3.50 pm	11 40 Am	Burgan WATER	•			
		Date	Aug 6 99 3.25 PM	\	>	\ 				
		Sample #	17 - W/X	811-01W	MIG-DIA	MW-218				

Dolingiiched By:	Date: 4 7 90	Beceived By:	Date.	Special Instructions:
Licenstant Dy.	Date. Tar.	Iterative Dy.	The second secon	openial mondress.
Space	Time: 5.30 pm		Time:	DECANT BEFORE
Relinquished By:	Date:	Received By:	Date:	らいかしていく
	Time:		Time:	

APPENDIX C-2: ASL CHEMICAL ANALYSIS REPORT FOR METALS AND HYDROCARBONS

analytical service laboratories ltd.

CHEMICAL ANALYSIS REPORT

Date:

August 25, 1999

ASL File No.

K8379

Report On:

Rainy Hallow Water Analysis

Report To:

Royal Roads University Applied Research Division

2005 Sooke Road Victoria, BC

V9B 5Y2

Attention:

Dr. Matthew Dodd, Professor

Received:

August 9, 1999

ASL ANALYTICAL SERVICE LABORATORIES LTD.

per:

Katherine Thomas, B.Sc. - Supervisor, Trace Metals Lab

Scott Hannam - Manager, Laboratory Operations

File No. K8379

Sample ID		KLE-1	KLE-2	KLE-4	MP-1	MP-3
Sample Date Sample Time		99 08 07 09:25	99 08 06 13:05	99 08 07 08:55	99 08 06 12:15	99 08 06 13:35
Physical Test Hardness	s CaCO3	60.7	185	155	236	237
Total Metals Aluminum Antimony Arsenic Barium Beryllium	T-Al T-Sb T-As T-Ba T-Be	5.64 0.0004 0.0019 0.04 <0.001	23.7 0.0005 0.0058 0.13 <0.001	18.3 0.0005 0.0049 0.11 <0.001	- - -	- - - -
Boron Cadmium Calcium Chromium Cobalt	T-B T-Cd T-Ca T-Cr T-Co	<0.1 0.00013 17.4 0.0124 0.0036	<0.1 0.00030 46.7 0.0656 0.0161	0.1 0.00026 39.7 0.0510 0.0129	- - - -	: :
Copper Iron Lead Magnesium Manganese	T-Cu T-Fe T-Pb T-Mg T-Mn	0.0100 7.46 0.00169 4.2 0.150	0.0405 32.7 0.00525 16.7 0.626	0.0280 26.0 0.00518 13.6 0.504	- - - -	:
Mercury Molybdenum Nickel Potassium Selenium	T-Hg T-Mo T-Ni T-K T-Se	<0.00005 <0.03 0.006 <2 <0.001	<0.00005 <0.03 0.029 3 <0.001	<0.00005 <0.03 0.023 3 <0.001	- - - -	:
Silver Sodium Thallium Titanium Uranium	T-Ag T-Na T-Tl T-Ti T-U	0.00004 2 0.00009 0.45 0.0008	0.00014 3 0.00011 2.23 0.0011	0.00014 2 0.00008 1.62 0.0010	- - - -	:
Vanadium Zinc	T-V T-Zn	<0.03 0.024	0.09 0.086	0.07 0.069	-	- -

File No. K8379

Sample ID		MP-21	MP-22	MW-17A	MW-18	MW-21A
Sample Date Sample Time		99 08 06 12:45	99 08 06 12:55	99 08 06 15:20	99 08 06 10:35	99 08 06 11:30
<u>Physical Tests</u> Hardness	CaCO3	254	256	223	255	285

File No. K8379

WP-13

269

Sample ID WP-7

Sample Date Sample Time 99 08 06 99 08 06 11:00 10:00

Physical Tests 223 Hardness CaCO3

Results are expressed as milligrams per litre except where noted. <= Less than the detection limit indicated. EPH = Extractable Petroleum Hydrocarbons. VPH = Volatile Petroleum Hydrocarbons.

Page 3

File No. K8379

Sample ID		MP-1	MP-3	MP-21	MP-22	MW-16
Sample Date Sample Time		99 08 06 12:15	99 08 06 13:35	99 08 06 1 2 :45	99 08 06 12:55	99 08 06 16:45
Dissolved Met	als					
Aluminum Antimony Arsenic Barium Beryllium	D-Al D-Sb D-As D-Ba D-Be	0.013 <0.2 <0.2 0.05 <0.005	0.015 <0.2 <0.2 0.06 <0.005	0.012 <0.2 <0.2 0.06 <0.005	0.010 <0.2 <0.2 0.06 <0.005	- - - -
Boron Cadmium Calcium Chromium Cobalt	D-B D-Cd D-Ca D-Cr D-Co	<0.1 <0.0002 85.6 <0.01 <0.01	<0.1 <0.0002 88.5 <0.01 <0.01	<0.1 <0.0002 93.6 <0.01 <0.01	<0.1 <0.0002 94.7 <0.01 <0.01	- - - -
Copper Iron Lead Magnesium Manganese	D-Cu D-Fe D-Pb D-Mg D-Mn	<0.01 <0.03 <0.001 5.4 <0.005	<0.01 5.72 0.003 4.0 1.31	<0.01 8.03 0.007 4.8 1.90	<0.01 8.56 0.005 4.8 1.91	:
Mercury Molybdenum Nickel Selenium Silver	D-Hg D-Mo D-Ni D-Se D-Ag	<0.00005 <0.03 <0.05 <0.001 <0.0001	<0.00005 <0.03 <0.05 <0.001 <0.0001	<0.00005 <0.03 <0.05 <0.001 <0.0001	<0.00005 <0.03 <0.05 <0.001 <0.0001	- - - -
Sodium Thallium Uranium Zinc	D-Na D-Tl D-U D-Zn	8 <0.0001 0.00128 <0.005	2 <0.0001 0.00008 1.46	3 <0.0001 0.00007 3.12	3 <0.0001 0.00007 2.62	
Non-halogena Benzene Ethylbenzene Toluene meta- & para ortho-Xylene	-	<0.0005 <0.0005 <0.0005 <0.0005 <0.0005	<0.0005 0.0022 <0.0005 0.0027 0.0009	<0.0005 0.0031 <0.0005 0.0037 0.0013	<0.0005 0.0012 <0.0005 0.0018 0.0005	<0.0005 0.0009 <0.0005 0.0008 <0.0005
Volatile Hydro VPH C6-10 (c	ocarbons (VH) C6-10 alculated)	<0.1 <0.1	0.6 0.6	0.6 0.6	0.4 0.4	1.1 1.1
Extractables EPH (C10-19) EPH (C19-32)		<0.3 <1	1.3 <1	3.8 <1	1.4 <1	7.4 <1

File No. K8379

Sample ID		MW-17A	MW-17B	MW-18	MW-21A	MW-21B
Sample Date Sample Time		99 08 06 15:20	99 08 06 15:45	99 08 06 10:35	99 08 06 11:30	99 08 06 11:55
Dissolved Met	als .					
Aluminum	D-Al	<0.005	-	0.040	0.01	-
Antimony	D-Sb	<0.2	-	<0.2	<0.2	-
Arsenic	D-As	<0.2 0.11	-	<0.2 0.05	<0.2 0.06	-
Barium Beryllium	D-Ba D-Be	<0.005	_	<0.005	<0.005	-
Derymum	D-De	~0.00 5	_	<0.003	<0.003	_
Boron	D-B	<0.1	-	< 0.1	< 0.1	-
Cadmium	D-Cd	< 0.0002	-	< 0.0002	< 0.0004	-
Calcium	D-Ca	83.0	-	89.9	103	-
Chromium	D-Cr	<0.01	-	<0.01	<0.01	-
Cobalt	D-Co	<0.01	-	<0.01	<0.01	-
Copper	D-Cu	<0.01	_	< 0.01	< 0.01	-
Copper Iron	D-Fe	26.8	-	0.04	0.64	-
Lead	D-Pb	< 0.001	_	< 0.001	<0.002	_
Magnesium	D-Mg	3.9	_	7.4	6.8	-
Manganese	D-Mn	2.10	_	<0.005	1.50	-
•						
Mercury	D-Hg	<0.00005	-	<0.00005	<0.00005	-
Molybdenum		<0.03	-	<0.03	<0.03	-
Nickel	D-Ni	<0.05	-	<0.05	<0.05	-
Selenium	D-Se	<0.001	-	<0.001	<0.002	-
Silver	D-Ag	<0.0001	-	<0.0001	<0.0002	-
Sodium	D-Na	3	-	18	11	-
Thallium	D-Tl	< 0.0001	-	< 0.0001	< 0.0002	-
Uranium	D-U	0.00024	-	0.00186	0.00120	-
Zinc	D-Zn	<0.005	-	<0.005	<0.005	-
Non-halogenat	ted Volatiles	40.0005	۰۵ ۵۵۵۳	۰۵ ۵۵۵۳	40 000E	٠٥ ٥٥٥٣
Benzene Ethylbenzene		<0.0005 0.0198	<0.0005 0.0151	<0.0005 <0.0005	<0.0005 <0.0005	<0.0005 <0.0005
Toluene		0.0011	0.0011	<0.0005	<0.0005	<0.0005
meta- & para	-Xvlene	0.0212	0.0119	<0.0005	<0.0005	<0.0005
ortho-Xylene	21y lefte	0.0040	0.0023	<0.0005	<0.0005	< 0.0005
	ocarbons (VH) C6-10	1.8	1.9	<0.1	<0.1	<0.1
VPH C6-10 (c	alculated)	1.7	1.8	<0.1	<0.1	<0.1
Fwtwo et ables						
Extractables EPH (C10-19)		1.6	1.8	<0.3	0.4	<0.3
EPH (C19-32)		<1.0 <1	<1.6 <1	<1	<1	<1
2111 (010 02)		~-	7-	7-	7-	· -

File No. K8379

Sample ID		WP-7	WP-13	ASL Travel
Sample Date Sample Time		99 08 06 11:00	99 08 06 10:00	Blank
Dissolved Met		• • • •		
Aluminum Antimony	D-Al D-Sb	0.033 <0.2	0.073 <0.2	_
Arsenic	D-As	< 0.2	<0.2	_
Barium	D-Ba	0.07	0.07	-
Beryllium	D-Be	<0.005	<0.005	-
Boron	D-B	<0.1	<0.1	-
Cadmium Calcium	D-Cd D-Ca	<0.0002 82.0	<0.0002 96.4	-
Chromium	D-Ca D-Cr	<0.01	<0.01	- -
Cobalt	D-Co	< 0.01	<0.01	<u></u>
Copper	D-Cu	<0.01	<0.01	-
Iron	D-Fe	15.4	4.87	-
Lead	D-Pb	<0.001	<0.001	-
Magnesium Manganese	D-Mg D-Mn	4.4 1.59	6.9 0.888	-
			0.888	_
Mercury	D-Hg	<0.00005	<0.00005	-
Molybdenum Nickel	D-Mo D-Ni	<0.03 <0.05	<0.03 <0.05	-
Selenium	D-N1 D-Se	<0.001	<0.001	- -
Silver	D-Ag	< 0.0001	<0.0001	-
Sodium	D-Na	3	5	-
Thallium	D-Tl	< 0.0001	< 0.0001	-
Uranium	D-U	0.00011	0.00076	-
Zinc	D-Zn	<0.005	<0.005	-
Non-halogena	<u>ted Volatiles</u>			
Benzene		<0.0005	<0.0005	<0.0005
Ethylbenzene Toluene		0.0168 0.0008	<0.0005 <0.0005	<0.0005 <0.0005
meta- & para	-Xylene	0.0358	<0.0005	<0.0005
ortho-Xylene	•	0.0096	<0.0005	<0.0005
Volatile Hydro	ocarbons (VH) C6-10	2.1	0.2	<0.1
VPH C6-10 (c	alculated)	2.1	0.2	<0.1
Extractables				
EPH (C10-19)		5.8	3.9	-
EPH (C19-32)		<1	<1	-

Appendix 1 - QUALITY CONTROL - Replicates

File No. K8379

Water	MW-21A	MW-21A	
	99 08 06 11:30	QC # 167451	
Non-halogenated Volatiles Benzene Ethylbenzene Toluene meta- & para-Xylene ortho-Xylene	<0.0005 <0.0005 <0.0005 <0.0005 <0.0005	<0.0005 <0.0005 0.0058 <0.0005 <0.0005	
Volatile Hydrocarbons (VH) C6-10 VPH C6-10 (calculated)	<0.1 <0.1	0.1 0.1	

Appendix 2 - METHODOLOGY

File No. K8379

Outlines of the methodologies utilized for the analysis of the samples submitted are as follows:

Conventional Parameters in Water

These analyses are carried out in accordance with procedures described in "Methods for Chemical Analysis of Water and Wastes" (USEPA), "Manual for the Chemical Analysis of Water, Wastewaters, Sediments and Biological Tissues" (BCMOE), and/or "Standard Methods for the Examination of Water and Wastewater" (APHA). Further details are available on request.

Metals in Water

This analysis is carried out using procedures adapted from "Standard Methods for the Examination of Water and Wastewater" 20th Edition 1998 published by the American Public Health Association, and with procedures adapted from "Test Methods for Evaluating Solid Waste" SW-846 published by the United States Environmental Protection Agency (EPA). The procedures may involve preliminary sample treatment by acid digestion, using either hotplate or microwave oven, or filtration (EPA Method 3005A). Instrumental analysis is by atomic absorption/emission spectrophotometry (EPA Method 7000 series), inductively coupled plasma - optical emission spectrophotometry (EPA Method 6010B), and/or inductively coupled plasma - mass spectrometry (EPA Method 6020).

Recommended Holding Time:

Sample: 6 months

Reference: EPA

For more detail see: ASL "Collection & Sampling Guide"

Mercury in Water

This analysis is carried out using procedures adapted from "Standard Methods for the Examination of Water and Wastewater" 20th Edition 1998 published by the American Public Health Association, and with procedures adapted from "Test Methods for Evaluating Solid Waste" SW-846 published by the United States Environmental Protection Agency (EPA). The procedure involves a cold-oxidation of the acidified sample using bromine monochloride prior to reduction of the sample with stannous chloride. Instrumental analysis is by cold vapour atomic absorption spectrophotometry (EPA Method 7470A/7471A).

Recommended Holding Time:

Appendix 2 - METHODOLOGY (cont'd)

File No. K8379

Sample:

28 days

Reference:

EPA

For more detail see: ASL "Collection & Sampling Guide"

Volatile Organic Compounds in Water

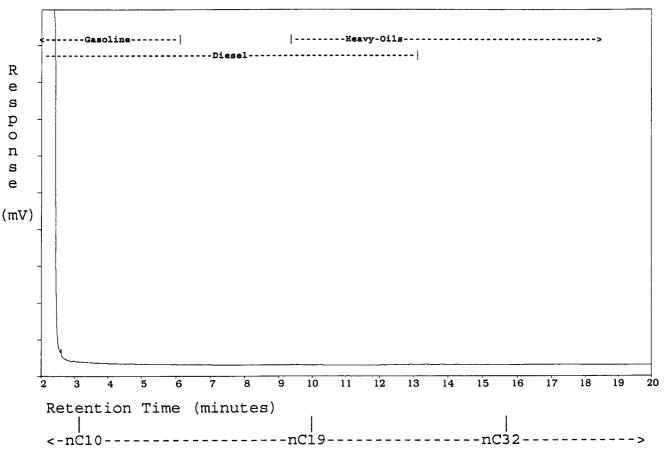
This analysis is based on United States Environmental Protection Agency Methods 624/524 and 5030/8260. These procedures involve purge and trap extraction of the sample and subsequent analysis of the volatile components by capillary column gas chromatography with mass spectrometric detection.

Volatile Petroleum Hydrocarbons (VPH) in Water

Volatile Petroleum Hydrocarbons (VPH) is a calculation defined by British Columbia Ministry of Environment, Lands and Parks (BCMELP) Draft Method "Calculation of Volatile Petroleum Hydrocarbons in Solids or Water", June 1998. The concentrations of specific Monocyclic Aromatic Hydrocarbons (Benzene, Toluene, Ethylbenzene, Xylenes and Styrene) are subtracted from the collective concentration of Volatile Hydrocarbons (VH) that elute between n-hexane (nC6) and n-decane (nC10). Analysis of Volatile Hydrocarbons adheres to all prescribed elements of BCMELP method "Volatile Hydrocarbons in Water", June 1998.

Extractable Hydrocarbons in Water

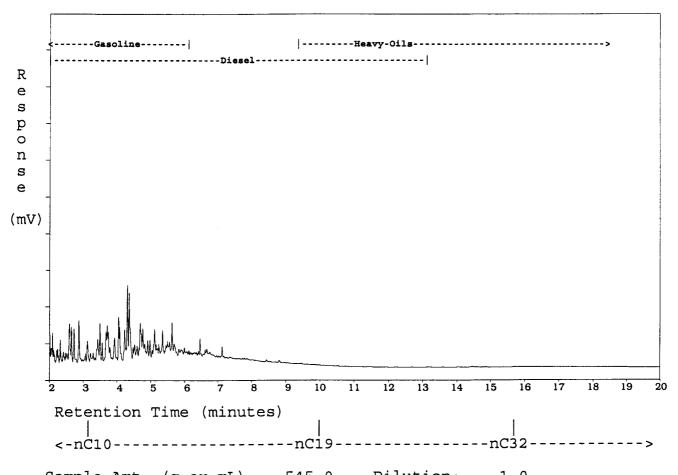
This analysis is carried out using procedures adapted from U.S. EPA Methods 3510/8015 (Publ. #SW-846, 3rd ed., Washington, DC 20460) and British Columbia Ministry of Environment, Lands and Parks Method for "Extractable Petroleum Hydrocarbons in Water by GC/FID" (January 1996). The procedure involves a methylene chloride solvent extraction followed by analysis of the extract by capillary column gas chromatography with flame ionization detection. Results are not corrected for Polycyclic Aromatic Hydrocarbons (PAHs) for Extractable Petroleum Hydrocarbon (LEPH/HEPH) purposes.



APPENDIX 3

FIGURES

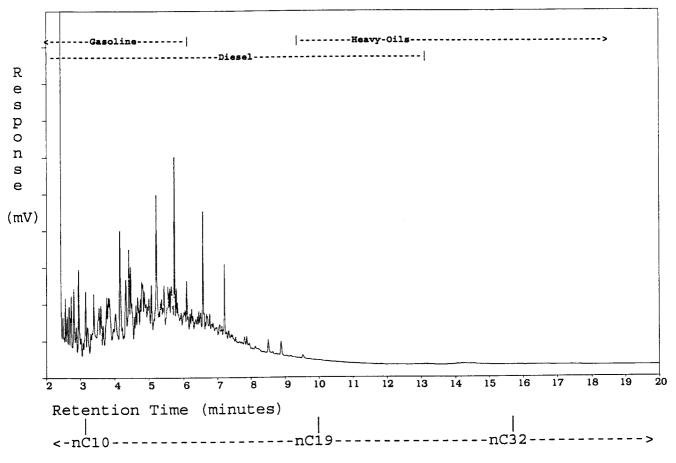
SAMPLE NAME: MP-1 99 08 06 12:15


File Name: C:\TEH2\AU10\EH3AU10.58R ASL Sample ID: K8379-T--4 Sample acquired: AUG 11, 1999 10:10:36 Chromatogram Scale: 50.0 millivolts

Sample Amt. (g or mL): 540.0 Dilution: 1.0

The Hydrocarbon Distribution Report is intended to assist you in characterizing hydrocarbon products that may be present in your sample. The scale at the top of this report represents the approximate hydrocarbon range of common petroleum products. The scale at the bottom of the report shows retention times with the approximate positions of key marker compounds indicated. Comparison of this report with those of reference standards may also assist in characterizing the hydrocarbons present.

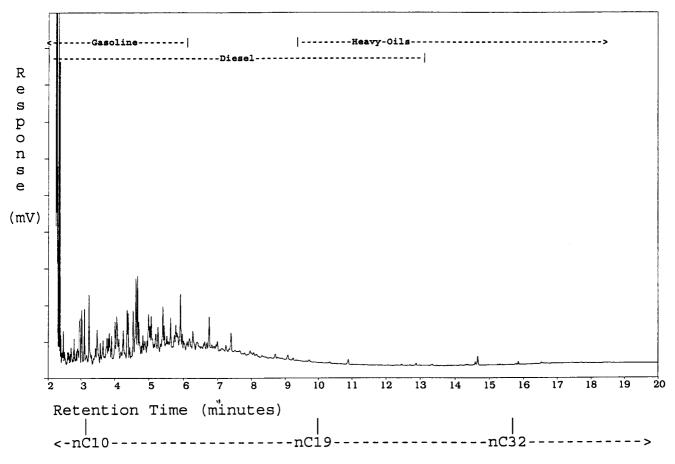
SAMPLE NAME: MP-3 99 08 06 13:35



Sample Amt. (g or mL): 545.0 Dilution: 1.0

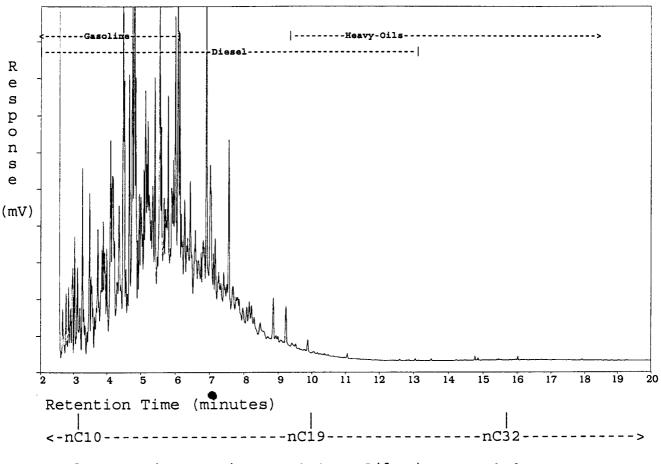
The Hydrocarbon Distribution Report is intended to assist you in characterizing hydrocarbon products that may be present in your sample. The scale at the top of this report represents the approximate hydrocarbon range of common petroleum products. The scale at the bottom of the report shows retention times with the approximate positions of key marker compounds indicated. Comparison of this report with those of reference standards may also assist in characterizing the hydrocarbons present.

SAMPLE NAME: MP-21 99 08 06 12:45


File Name: C:\TEH2\AU10\EH3AU10.60R ASL Sample ID: K8379-T--6 Sample acquired: AUG 11, 1999 10:46:12 Chromatogram Scale: 50.0 millivolts

Sample Amt. (g or mL): 545.0 Dilution: 1.0

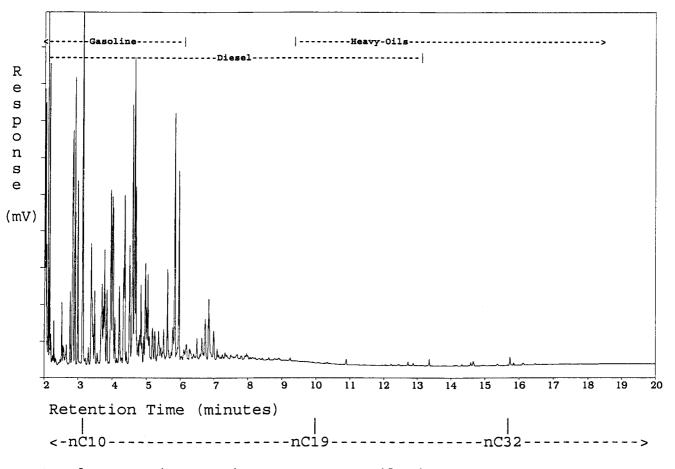
The Hydrocarbon Distribution Report is intended to assist you in characterizing hydrocarbon products that may be present in your sample. The scale at the top of this report represents the approximate hydrocarbon range of common petroleum products. The scale at the bottom of the report shows retention times with the approximate positions of key marker compounds indicated. Comparison of this report with those of reference standards may also assist in characterizing the hydrocarbons present.


SAMPLE NAME: MP-22 99 08 06 12:55

Sample Amt. (q or mL): 540.0 Dilution: 1.0

The Hydrocarbon Distribution Report is intended to assist you in characterizing hydrocarbon products that may be present in your sample. The scale at the top of this report represents the approximate hydrocarbon range of common petroleum products. The scale at the bottom of the report shows retention times with the approximate positions of key marker compounds indicated. Comparison of this report with those of reference standards may also assist in characterizing the hydrocarbons present.

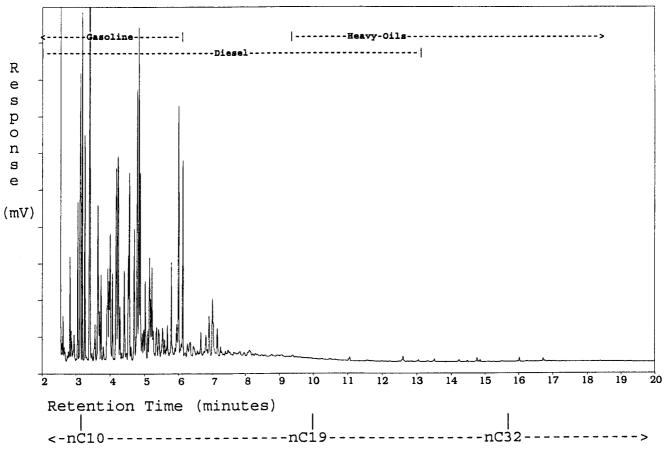
SAMPLE NAME: MW-16 99 08 06 16:45



Sample Amt. (g or mL): 540.0 Dilution: 1.0

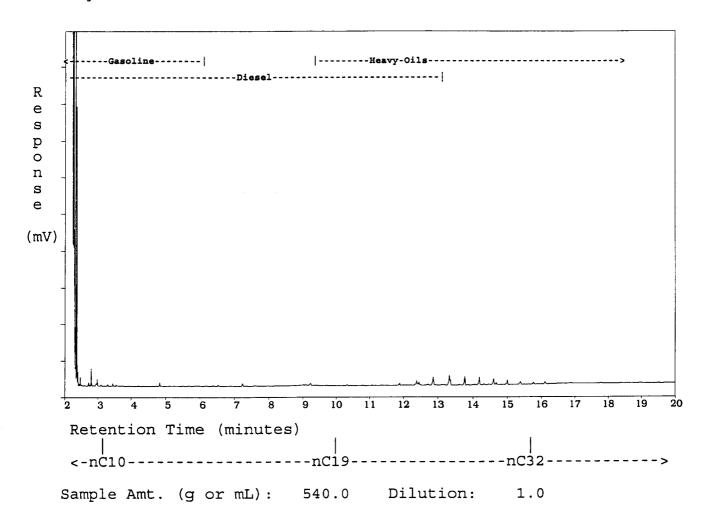
The Hydrocarbon Distribution Report is intended to assist you in characterizing hydrocarbon products that may be present in your sample. The scale at the top of this report represents the approximate hydrocarbon range of common petroleum products. The scale at the bottom of the report shows retention times with the approximate positions of key marker compounds indicated. Comparison of this report with those of reference standards may also assist in characterizing the hydrocarbons present.

SAMPLE NAME: MW-17A 99 08 06 15:20


File Name: C:\TEH2\AU11\EH3AU11.15R ASL Sample ID: K8379-T--9 Sample acquired: AUG 11, 1999 19:36:40 Chromatogram Scale: 50.0 millivolts

Sample Amt. (g or mL): 540.0 Dilution: 1.0

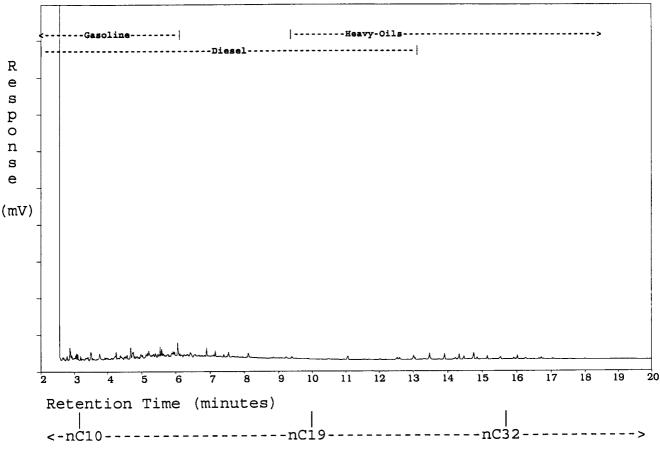
The Hydrocarbon Distribution Report is intended to assist you in characterizing hydrocarbon products that may be present in your sample. The scale at the top of this report represents the approximate hydrocarbon range of common petroleum products. The scale at the bottom of the report shows retention times with the approximate positions of key marker compounds indicated. Comparison of this report with those of reference standards may also assist in characterizing the hydrocarbons present.


SAMPLE NAME: MW-17B 99 08 06 15:45

Sample Amt. (g or mL): 540.0 Dilution: 1.0

The Hydrocarbon Distribution Report is intended to assist you in characterizing hydrocarbon products that may be present in your sample. The scale at the top of this report represents the approximate hydrocarbon range of common petroleum products. The scale at the bottom of the report shows retention times with the approximate positions of key marker compounds indicated. Comparison of this report with those of reference standards may also assist in characterizing the hydrocarbons present.

SAMPLE NAME: MW-18 99 08 06 10:35

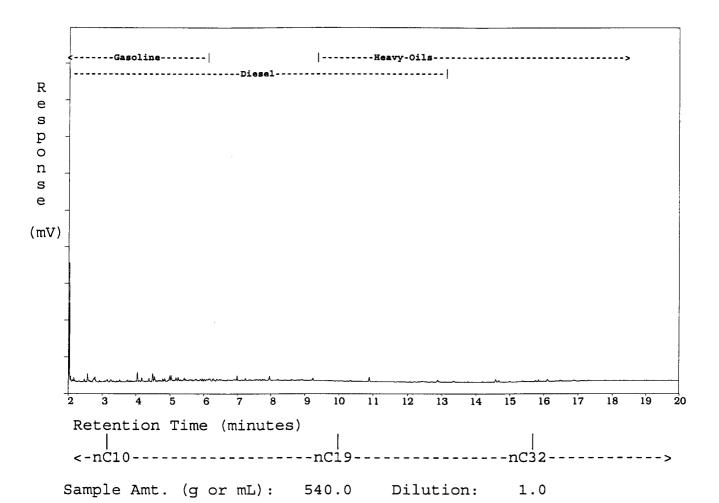

The Hydrocarbon Distribution Report is intended to assist you in characterizing hydrocarbon products that may be present in your sample. The scale at the top of this report represents the approximate hydrocarbon range of common petroleum products. The scale at the bottom of the report shows retention times with the approximate positions of key marker compounds indicated.

Comparison of this report with those of reference standards may

also assist in characterizing the hydrocarbons present.

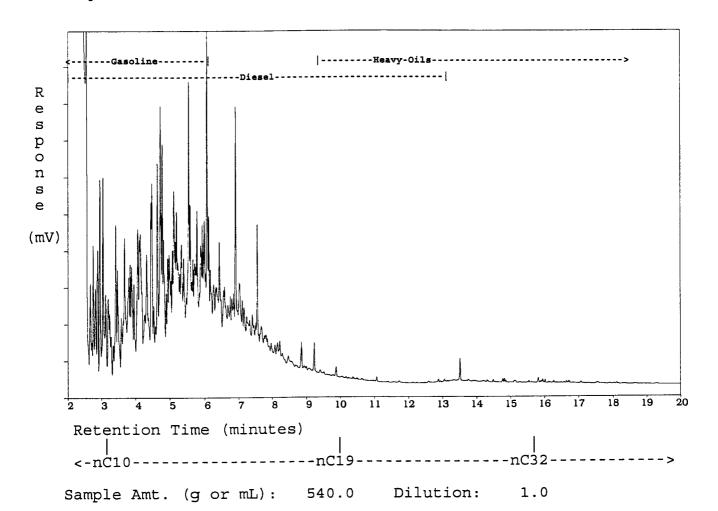
SAMPLE NAME: MW-21A 99 08 06 11:30

File Name: C:\TEH2\AU11\EH3AU11.16R ASL Sample ID: K8379-T--12 Sample acquired: AUG 11, 1999 19:36:40 Chromatogram Scale: 50.0 millivolts



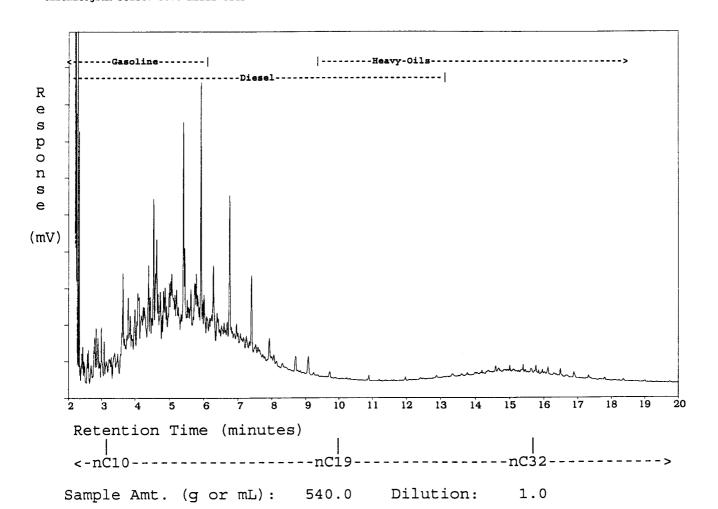
Sample Amt. (g or mL): 540.0 Dilution: 1.0

The Hydrocarbon Distribution Report is intended to assist you in characterizing hydrocarbon products that may be present in your sample. The scale at the top of this report represents the approximate hydrocarbon range of common petroleum products. The scale at the bottom of the report shows retention times with the approximate positions of key marker compounds indicated. Comparison of this report with those of reference standards may also assist in characterizing the hydrocarbons present.


SAMPLE NAME: MW-21B 99 08 06 11:55

File Name: C:\TEH2\AU11\EH3AU11.19R ASL Sample ID: K8379-T--13 Sample acquired: AUG 11, 1999 20:47:42 Chromatogram Scale: 50.0 millivolts

The Hydrocarbon Distribution Report is intended to assist you in characterizing hydrocarbon products that may be present in your sample. The scale at the top of this report represents the approximate hydrocarbon range of common petroleum products. The scale at the bottom of the report shows retention times with the approximate positions of key marker compounds indicated. Comparison of this report with those of reference standards may also assist in characterizing the hydrocarbons present.


SAMPLE NAME: WP-7 99 08 06 11:00

The Hydrocarbon Distribution Report is intended to assist you in characterizing hydrocarbon products that may be present in your sample. The scale at the top of this report represents the approximate hydrocarbon range of common petroleum products. The scale at the bottom of the report shows retention times with the approximate positions of key marker compounds indicated. Comparison of this report with those of reference standards may also assist in characterizing the hydrocarbons present.

SAMPLE NAME: WP-13 99 08 06 10:00

File Name: C:\TEH2\AU11\EH3AU11.21R ASL Sample ID: K8379-T--15 Sample acquired: AUG 11, 1999 21:23:15 Chromatogram Scale: 50.0 millivolts

The Hydrocarbon Distribution Report is intended to assist you in characterizing hydrocarbon products that may be present in your sample. The scale at the top of this report represents the approximate hydrocarbon range of common petroleum products. The scale at the bottom of the report shows retention times with the approximate positions of key marker compounds indicated. Comparison of this report with those of reference standards may also assist in characterizing the hydrocarbons present.

inalytical service Specialists in Environmental Chemistry 1988 Tales Vancou Canada TEL: (6 TOLL F CHAIN OF CUSTODY / ANALYTICAL REQUEST FORM ROADS UNIVERSITY (AIR) FAX: (250) 341-2560 SUBMITTED: AUG 9, 49 CONTACT FRED CHEN VICTURIA QUOTE/PO NO: 27770 (CIRDEIR NO) HOLLOW Sooke 21) DODD TELEPHONE: (250) 391-2583 PHOJECT NAMENO: AHINY CLIENT ROYAL MATT ADDRESS: 2005 CONTACT

Street		(604) 253-4188	FREE: (800) 665-0243	(604) 253-6700	
Triumph Street	ouver, BC to VSI =	04) 25	EE: (8	504) 23	

LYSIS REQUESTED

ERESTE

PAGE.

SMORE

MORE LEPH/HEPH

HA9

НЬЭ

LAB USE ONLY K8376

НdΛ VOC laboratories itd.

K8379	SAMPLE IDENTIFICATION	DATE/TI	DATE / TIME COLLECTED	MATRIX		w s	NOTES	
	, , , , , , , , , , , , , , , , , , ,	to 80 ph	1 9 : 25 W	WATER		×		
2	K-12-37	90 80 PP	30: T	>		×		
3	KLE-4	90 PP	8 :55	>		×		
h	1-012	90 80 W	12:15	×	×	×		
\ \	W6-3	75 08 DE	4:35	×	×	×		
e	M0-21	90 80 bb	12 : 45 M	×	×	×		
7	WP-DA	99 06.	12:55	×	×	×		
50	91-MW	79 80 PF	4:45	<i>></i>	×			
0	MW-17A	PP 08 06	3:20	> ×	×	×		
<i>a)</i>	8L1 - MW	90 30 bb	3	×	×			
	81-0W	29 08 PR	10 : 35	<i>></i>	×	X		
71	Mw-21A	90 BO 56	=	×	×	×		
[3	918-MW	30 80 PP	11 : 55	X	×			
61	L-dM	90 80 St	Ma 00: 11	×	×	×		
15	WP-13	90 B0 Lb	જા : હા	X	×	×		
			AM PM					
URN AROUND REQUIRED:	D REQUIRED:	SAW	SAMPLE CONDITION	RELINDLUSHED BY:	DATE A : 77	99 RECEIVED BY:	DATE	ŀ
POLITINE (7	BOLITINE (7 - 10 WORKING DAYS)		OFON RECEIPT:	をなってラー	TIME C 10 01	-	TIME	

CUSTOMIZED - BRITISH COLUMBIA, CSR

DATE

TIME S 30 PM

DATE TIME

RELINQUISHED BY:

☐ FROZEN OCOLD

☐ ROUTINE (7 - 10 WORKING DAYS)

RUSH (SPECIFY DATE):_ SPECIAL INSTRUCTIONS:

AMBIENT

REPORT COPY

Anomal/grps/qc/DOCS/*/FORMS/ChnCstdy_i