

Phase II Environmental Site Assessment (2018-2019): 5th Avenue (Rogers Street to Jeckell Street)

Whitehorse, Yukon

November 23, 2018

Prepared for:

Government of Yukon Environment Yukon Site Assessment and Remediation Unit

Prepared by:

Stantec Consulting Ltd. 202, 107 Main Street Whitehorse, YT Y1A 2A7

Table of Contents

EXE	CUTIVE SUMMARY	I
ABB	REVIATIONS	III
1.0	INTRODUCTION	1
2.0 2.1	BACKGROUND	
2.2	PREVIOUS ENVIRONMENTAL SITE ASSESSMENTS	2
3.0	REGULATORY CONTEXT	
3.1	SOIL STANDARDS	
3.2	GROUNDWATER STANDARDS	
3.3	SOIL VAPOUR STANDARDS	8
4.0	OBJECTIVES AND SCOPE OF WORK	9
5.0	METHODS	
5.1	SERVICE AND BURIED UTILITY LOCATE	
5.2	SOIL SAMPLING	
5.3	GROUNDWATER MONITORING AND SAMPLING	
	5.3.1 Monitoring Well Installation	
	5.3.2 Monitoring Well Development	
5.4	HYDROGEOLOGICAL TESTING	
J. 4	5.4.1 In Situ Single Well Hydraulic Response Testing	
	5.4.2 Pump Testing	
5.5	VAPOUR PROBE INSTALLATION AND SAMPLING	
5.6	LEVEL AND SPATIAL SURVEY	
5.7	QUALITY ASSURANCE/QUALITY CONTROL (QA/QC)	18
5.8	THREE-DIMENSIONAL CONCEPTUAL SITE MODEL	
6.0	OBSERVATIONS	19
6.1	SOIL STRATIGRAPHY	19
6.2	SOIL FIELD SCREENING	20
6.3	GROUNDWATER MONITORING	20
7.0	RESULTS	
7.1	SOIL ANALYTICAL RESULTS	
7.2	GROUNDWATER ANALYTICAL RESULTS	
	7.2.1 Pump Test Analytical Data	
7.3	HYDROGEOLOGICAL TESTING RESULTS	
	7.3.1 Groundwater Flow Direction	22

	7.3.2	Hydraulic Gradients and Linear Groundwater Flow Velocity	
7 4	7.3.3	Results of the Pumping Test	
7.4		VAPOUR ANALYTICAL RESULTS	
7.5		C SUMMARY	
	7.5.1 7.5.2	Laboratory QA/QCField Duplicates and Relative Percent Difference	
	1.5.2	Theid Duplicates and Relative Fercent Difference	20
8.0	DISC	JSSION	29
8.1	SOIL	CONTAMINATION	29
8.2		JNDWATER CONTAMINATION	
	8.2.1	Petroleum Hydrocarbons	
8.3		VAPOUR	
8.4	HYDR	OGEOLOGY	30
9.0	CONC	CEPTUAL SITE MODEL (CSM)	31
9.1		WIDE GEOLOGICAL SUMMARY	
9.2	_	OGEOLOGICAL SUMMARY	_
9.3		MARY OF DISTRIBUTION OF CONTAMINATION	
9.4		INING DATA GAPS	
10.0	CONC	CLUSIONS	34
11.0	LIMIT	ATIONS	35
12.0	CLOS	URE	36
13.0	REFE	RENCES	37
LIST	OF TAE	BLES	
Table	4-1	Rationale for 2018 Boreholes for 5th Avenue (Rogers Street to Jeckell	
		Street)	11
Table		Summary of PHC Observations During Drilling	20
Table		Hydraulic Conductivity—Single Well Response Tests	22
Table		Summary of Hydrogeological Parameters and Calculations	24
Table Table	_	Summary of Pumping Test Characteristics Delineation of PHC Contamination in Soil	26 29
Table		PHC Delineation in Groundwater	29 30

LIST OF APPENDICES

APPENDIX A		FIGURES	A.1
APPE	ENDIX B	REGULATORY FRAMEWORK	B.1
APPE	ENDIX C	HYDROGEOLOGY	
C.1	Single W	Vell Response Tests	
C.2	Pumping	g Test Results	C.2
APPE	ENDIX D	BOREHOLE LOGS	D.1
APPE	ENDIX E	ANALYTICAL TABLES	E.1
ΔΡΡΙ	NDIX F	LABORATORY CERTIFICATES	F.1

Executive Summary

The Government of Yukon, Department of Environment, Site Assessment and Remediation Unit (SARU) retained Stantec Consulting Ltd. (Stantec) to complete a Phase II Environmental Site Assessment (ESA) for a parcel of land along 5th Avenue, in Whitehorse, Yukon Territory (YT), between Rogers and Jeckell Streets (the Site). Pending the results of the Phase II ESA, Stantec will also prepare a Quantitative Human Health and Environmental Risk Assessment (QHHERA), and/or a Plan of Restoration (POR) for the Site (the Project). The Project is being conducted in two stages: Stage 1 includes the Phase II ESA (herein referred to as Phase II ESA [2018-2019]), while Stage 2 is reliant on the results from Stage 1 and includes the QHHERA and/or POR. This report is to satisfy the requirements of Stage 1; results from the possible QHHERA and/or POR will be reported under separate cover.

The overall objective of this Project is to prepare the Site for future development, which is currently proposed to be a multi-family residential and commercial complex. The objective of the Phase II ESA (2018-2019) was to achieve vertical and horizontal delineation of the contamination previously identified on the Site. The Phase II ESA (2018–2019) included the collection of soil, groundwater, and soil vapor samples (where applicable) to assist with: 1) the delineation of on-site areas of environmental concern (AECs), 2) the development of the Site's conceptual site model (CSM), and 3) provide adequate data for the QHHERA and/or POR.

Based on the results of the Phase II ESA (2018–2019), Stantec offers the following conclusions for the Site:

- It was determined, through interpretation of the Environment Yukon Protocol 6: Application of Water Quality Standards, that the drinking water standards do not apply at the Site
- LEPH contamination in soil has been identified and delineated to exist within the middle of the Site, stretching in a narrow corridor in a north-south direction with borehole data indicating that the geological heterogeneity is the dominant control on its distribution
- Similarly, LEPH contamination in groundwater has been identified and delineated within the middle of the Site, stretching in a narrow corridor in a north-south direction
- Naphthalene contamination in groundwater was identified in monitoring well MW17-17, coinciding with the highest levels of LEPH, and is delineated both horizontally and vertically
- Predicted indoor vapour concentrations were calculated based on the analyzed soil vapour concentrations and vapour attenuation factors and compared to BC CSR Standards. One soil vapour sample, VP18-39, had reported concentrations of volatile petroleum hydrocarbons (VPH) greater than the BC CSR standard for residential land use.
- Reported concentrations of the other PCOCs in soil and groundwater samples were below the applicable standards, or less than laboratory RDLs

While Stantec is confident in the outcomes of the field program and subsequent interpretation, physical drilling constraints such as power lines, the base of the cliffs, and pathways/roadways, have potentially resulted in some minor data gaps that should be acknowledged. However, through the use of the CSM, a good understanding of the depositional environment and the distribution of the physical properties of the sediment, these data gaps are considered minor with multiple lines of evidence indicating delineation has been achieved. These minor data gaps include:

- There is more than a 40 m distance between MW18-33 and MW18-51, down-gradient of the groundwater contamination. However, the soils are of low permeability and coarse-grained channel deposits appear to be oriented north-south, not east-west, and both wells indicated no exceedances of analyzed parameters in groundwater. The powerline precluded optimal well placement in this area for safety reasons though an additional well in this area would reduce any perceived uncertainty.
- Area west of MW18-49 is a potential data gap given the soil and groundwater contamination in this area.
 However, the slope at the base of the cliff makes access difficult for borehole drilling. Further this area is likely not to be disturbed during any development and any soil and/or groundwater contamination would be at significant depth.

Through use of the 3D CSM, however, a good understanding of the depositional environment and the distribution of the physical properties of the soils has been achieved. These data gaps are considered minor with multiple lines of evidence indicating delineation has generally been achieved.

Based on the pumping tests completed after the standard Phase II ESA scope of work, the following additional conclusions can be made:

- Mobility of groundwater hydrocarbon contamination appears to be limited given the coincident location of groundwater and soil contamination with no appreciable down-gradient contamination in the eastern portion of the Site
- Removal or remediation of contaminated soil is likely to further limit groundwater contamination given it is coincident or proximal to soil hydrocarbon contamination
- Distribution of groundwater contamination is limited within the permeable geological bodies identified on-site
- Data gaps have been addressed to the extent possible given drilling and site constraints through the use of pumping testing. Despite some physical data gaps in the monitoring network (i.e., sub-optimal well placement), significant recharge boundaries were not observed from the pumping test data indicating the analytical data collected to delineate the groundwater contamination is sufficient to characterize site conditions.

The statements made in this Executive Summary are subject to the same limitations included in the Statement of Limitations section of this report (Section 11.0) and are to be read in conjunction with the remainder of this report.

Abbreviations

AE Associated Engineering

AEC area of environmental concern

APEC area of potential environmental concern

AST above-ground storage tank

AWF standards to protect freshwater aquatic life

BC British Columbia

BTEX benzene, toluene, ethylbenzene, xylenes

CALA Canadian Association for Laboratory Accreditation

CL Commercial Land Use

COC contaminant of concern

CRM certified reference material

CSM conceptual site model

CSR Contaminated Sites Regulation

DOC dissolved organic carbon

DW standards to protect drinking water

EA Environment Act

EC electroconductivity

EM electromagnetic

EPH extractable petroleum hydrocarbons

ESA Environmental Site Assessment

EY Environment Yukon

GPR Ground penetrating radar

HEPH heavy extractable petroleum hydrocarbons

LEL lower explosive limit

LEPH light extractable petroleum hydrocarbons

LIF laser induced fluorescence

LNAPL light non-aqueous phase liquid

LTDL less than detection limit

mbgs metres below ground surface

MOECCS BC Ministry of Environment and Climate Change Strategy

NAPL non-aqueous phase liquid

PAH polycyclic aromatic hydrocarbon

PCOC potential contaminant of concern

PHC petroleum hydrocarbon

POR Plan of Restoration

ppmv parts per million by volume

QA/QC quality assurance/quality control

QHHERA Quantitative Human Health and Ecological Risk Assessment

RDL reportable detection limit

RL residential land use

ROW right-of-way

RPD relative percent difference

SARU Site Assessment and Remediation Unit

TOC total organic carbon

UST underground storage tanks

VOC volatile organic compounds

VPH volatile petroleum hydrocarbons, excluding BTEX concentrations

YT Yukon Territory

Introduction November 23, 2018

1.0 INTRODUCTION

The Government of Yukon, Department of Environment, Site Assessment and Remediation Unit (SARU) retained Stantec Consulting Ltd. (Stantec) to complete a Phase II Environmental Site Assessment (ESA) for a parcel of land along 5th Avenue, in Whitehorse, Yukon Territory (YT), between Rogers and Jeckell Streets (the Site). Pending the results of the Phase II ESA, Stantec will also prepare a Quantitative Human Health and Environmental Risk Assessment (QHHERA), and/or a Plan of Restoration (POR) for the Site (the Project). The Project is being conducted in two stages: Stage 1 includes the Phase II ESA (herein referred to as Phase II ESA [2018–2019]), while Stage 2 is reliant on the results from Stage 1 and includes the QHHERA and/or POR. This report is to satisfy the requirements of Stage 1 of the work program.

The Site's location is presented in Figure 1 of Appendix A.

2.0 BACKGROUND

The Site is comprised of undeveloped lots that are heavily treed with some clearings connected by a walking/biking trail network. Historically there was no reported activity at the Site until the 1940's, when a rail line, pipeline, and barracks were constructed. The infrastructure was removed following World War II. Fuel handling activities were inferred to have occurred onsite. A Phase I ESA, conducted by Laberge Environmental Services (2014), indicated the past presence of military barracks, a railway wye, and associated fueling facility with two 10,000-gallon above-ground storage tanks (ASTs). However, upon further review of historical aerials and some analysis completed by the Stantec GIS team, it was determined that the ASTs were approximately 16 m in diameter. Although it could not be determined what the height of the ASTs were, it was estimated that for every metre of height, the volume of the tank would increase by approximately 200,000 L. Therefore, a 3 m high AST, would have a volume of approximately 600,000 L. In addition to the ASTs, there may have been buried flowlines between the ASTs, and a fill port. The previous Phase I ESA (Laberge Environmental Services, 2014) identified the ASTs as being operational from approximately 1942 to the 1950s. In 1953, a mudslide reportedly partially covered and damaged the ASTs, potentially resulting in a release of fuel (Laberge Environmental Services, 2014). The volume of fuel released, if any, is unknown.

2.1 SITE SETTING

The Site is approximately 3.2 hectares (ha) in size and is located in the southwest area of downtown Whitehorse. The Site is bounded on the west side by silt cliffs (also known as the "clay cliffs") approximately 40 m high, on top of which is the Whitehorse International Airport. A manmade berm is located at the south end of the Site, immediately adjacent to the west side of the St. Elias Adult Group Home, as a measure to protect against potential mudslides from the cliffs located to the west. The Site is bounded to the north, east, and south by residential neighbourhoods. The Yukon River, flowing from the south, is approximately 300 m to the south of the Site, and 500 m to the east of the Site, as it bends to the east at the south end of downtown Whitehorse.

Background November 23, 2018

The Site is relatively flat with some slope to the west as it approaches the cliffs, and a part of the broad Yukon River Valley. The regional surficial geology of the Valley is glacio-fluvial deposits. The cliffs appear to be eroding, as evident from the outwash of silt down the slope and onto the Site. In general, the soil stratigraphy consists mainly of sandy silt, with the northern area of the Site having some sand and gravel layers. In the middle of the Site, some locations include a gravelly silt layer or layers at depths of approximately 5.5 to 7.3 metres below ground surface (mbgs). The gravelly silt layers encountered within boreholes in the middle and northern portions of the Site were observed to have a petroleum hydrocarbon (PHC) sheen and odour.

Authorization was granted by the owners (the City of Whitehorse) to the west of the Site, in order to complete the investigation on the adjacent property. The City of Whitehorse property to the west is also associated with the former AST locations, and investigation was required to assess the extents of the identified contamination.

2.2 PREVIOUS ENVIRONMENTAL SITE ASSESSMENTS

The Site has been the subject of several environmental investigations to identify areas of potential environmental concern (APECs) and to delineate possible plumes of contaminants. A Phase I ESA, conducted by Laberge Environmental Services (2014), indicated the past presence of military barracks, a railway wye, and associated fueling facility with two 10,000-gallon ASTs, in addition to the underground storage tanks (USTs) currently on-site associated with the residential units. Given past land use, the primary contaminants of concern were identified as PHCs, metals, phenols, and creosote (Laberge 2014). Recent investigations by CH2M Hill (2018) confirmed exceedances of light extractable petroleum hydrocarbons (LEPH) or extractable petroleum hydrocarbons (EPHc10-19) in soil and/or groundwater, relative to standards within YT Contaminated Sites Regulations (CSR) for residential land use (RL); some dissolved metals concentrations in groundwater also exceeded the drinking water standards. Exceedances were generally reported down-gradient of the suspected source areas (i.e., the locations of the two former ASTs). However, given the Site's complex stratigraphy, vertical and/or horizontal delineation of the contaminant plume was not achieved during the supplemental Phase II ESA in 2017-2018 (CH2M Hill, 2018).

2.2.1 Historical Reports

Stantec was provided with, and reviewed, the following historical reports:

- Hoge—Jeckell Street Lots, Whitehorse, Yukon, Phase I Environmental Site Assessment, prepared by Laberge Environmental Services, July 2014
- Geotechnical Evaluation, St. Elias Adult Group Home, Whitehorse, YT, prepared by TetraTech EBA Inc., August 2014
- Terrain Stability Assessment, St. Elias Adult Group Home, Whitehorse, YT, prepared by TetraTech EBA Inc., October 2014
- Desktop Geotechnical Evaluation, Slope Assessment, and Detailed Berm Design, Block 338, fifth and Rogers Street Property, Whitehorse, YT, prepared by TetraTech EBA Inc., May 2016
- Detailed Phase II Environmental Site Assessment on the Jeckell and Hoge Street Lots (Block 338), prepared by Associated Engineering (BC) Ltd., October 2016
- Phase II Environmental Site Assessment (2017-18): 5th Avenue (Rogers to Jeckell Street), prepared by CH2M Hill, March 2018
- Screening Level Risk Assessment, 5th Avenue (Rogers Street to Jeckell Street), Whitehorse, Yukon, prepared by CH2M Hill, March 2018
- Jeckell Hoge 2018-2019 Workplan, prepared by CH2M, March 2018

Background November 23, 2018

A summary of each report is included below.

Hoge—Jeckell Street Lots, Whitehorse, Yukon, Phase I Environmental Site Assessment (Laberge 2014)

The 2014 Phase I ESA completed by Laberge (2014) identified seven APECs:

- APEC 1—UST located at the group home on Block P, Lot 2
- APEC 2—UST located at the group home on Block O, Lot 2
- APEC 3—North AST inundated by a landslide in 1953 (also referred to in this report as "AST1")
- APEC 4—Fill stem where there is anecdotal evidence of possible staining
- APEC 5—South AST inundated by a landslide in 1953 (also referred to in this report as "AST2")
- APEC 6—Railway ROW
- APEC 7—Potential underground fuel piping

A Phase II ESA was recommended.

Geotechnical Evaluation, St. Elias Adult Group Home, Whitehorse, YT (Tetra Tech EBA 2014)

The geotechnical evaluation involved a test-pit program in support of providing recommendations for the design and construction of foundations for a proposed development (now the St. Elias Adult Group Home) located near the southwest portion of the Site, including the collection of soil samples for laboratory analysis. Three test-pits were excavated to approximately 4 mbgs. Observed stratigraphy included topsoil overlying silty sand to approximately 2 mbgs, underlain by sand and gravel to approximately 3 mbgs, which was then underlain by a clayey silt to the maximum investigated depth of approximately 4 mbgs. The clayey silt layer was of "stiff" consistency. No seepage of groundwater was observed, but wet soil was encountered at approximately 2 mbgs near the base of the sand layer. It was suspected that a perched groundwater table was lying above the relatively impermeable clayey silt stratum. Samples collected from the test-pits were submitted for analysis of hydrocarbons (light and heavy extractable petroleum hydrocarbons [LEPH and HEPH], polycyclic aromatic hydrocarbons [PAH], volatile organic compounds [VOC]), metals, and glycol. Metals were detectable, but not in exceedance of any applicable standards. Other analysed parameters reported results less than the laboratory's reportable detection limits (RDL).

Terrain Stability Assessment, St. Elias Adult Group Home, Whitehorse, YT (Tetra Tech EBA 2014)

The terrain stability assessment for the proposed development (St. Elias Group Home) identified the location to be within a zone of moderate hazard and could be impacted from upslope mass movement processes. The report recommended that the construction of a berm would reduce the risk from upslope mass movement processes. Conclusions were that buildings should be located at a 10 m set-back from the berm.

Desktop Geotechnical Evaluation, Slope Assessment, and Detailed Berm Design—Block 338, Fifth and Rogers Street property, Whitehorse, YT (Tetra Tech EBA 2016)

A desktop geotechnical evaluation was performed, and recommendations were given for the design and construction of foundations for the proposed development. The evaluation consisted of a review of borehole and test-pit data from locations close to the Site. Subsurface conditions in the area were observed to generally consist of approximately 2 to 3 metres (m) of sand and gravel overlying silt, and a suspected silt layer of unknown thickness overlying the sand and gravel stratum. Groundwater was indicated to be approximately 4 to 6 mbgs. Permafrost and bedrock was not encountered in any of the test-pit or borehole logs reviewed. The maximum depth of investigation was 5 mbgs.

Background November 23, 2018

Detailed Phase II Environmental Site Assessment on the Jeckell and Hoge Street Lots (Block 338), Whitehorse, YT (Associated Engineering 2016)

In this Phase II ESA program (2016), soil sample results were compared to YT CSR RL standards. Associated Engineering (AE) noted in their report that, given the distance to the nearest surface water body (Yukon River) is about 300 m from the Site, and more than 20 water wells were identified within 1.5 km, the standards for the protection of aquatic life freshwater (AWF) and drinking water (DW) were applied to groundwater.

Potential contaminants of concern (PCOCs) identified at the APECs from the Laberge (2014) Phase I ESA were PHCs and metals (all APECs), and chlorinated and non-chlorinated phenols at APEC 6.

Prior to drilling, an electromagnetic (EM) survey was completed with an EM-31 unit, and leak testing was performed on USTs and flow lines at APECs 1 and 2. Shallow boreholes (0.2 mbgs) were drilled with an electric drill. Deeper boreholes were advanced with a direct-push geoprobe and a rotary auger with both solid and hollow-stem augers. Sixteen boreholes were drilled, 11 of which were completed as groundwater monitoring wells.

Twenty soil samples and ten groundwater samples were collected for laboratory analysis. One well (MW7-1) was found to be dry. A screening-level soil vapour assessment was completed (modelling)—no soil vapour samples were collected.

The EM survey indicated no obvious contamination plumes however the following highly-conductive anomalies were noted:

- Possible UST and piping adjacent to APEC 4
- Possible piping and former 10,000-gallon AST at APEC 3, north of APEC 4
- Metal piping associated with APEC 7
- Possible piping towards the former AST at APEC 5, south of APEC 4
- Rail corridor (APEC 6)

It was reported that the leak testing of the two USTs and associated flowlines at APECs 1 and 2 passed.

Two of the 20 soil samples collected exceeded the YT CSR RL standards: MW4-1 at a depth of 2.25 to 3.75 mbgs (east of APEC 4) exceeded for benzene (0.06 mg/kg, where the soil standard protective of drinking water is 0.04 mg/kg), and MW5-3 at a depth of 2.0 to 2.3 mbgs exceeded for LEPHs (2,560 mg/kg, where the CSR RL standard is 1,000 mg/kg). No other hydrocarbon samples exceeded the applicable standards. The reported metals and phenol concentrations were below the RL standards.

The reported concentrations of LEPH in groundwater were greater than the applicable standard at MW3-1 (1,800 μ g/L northeast of APEC 3), MW7-2 (27,600 μ g/L ENE of APEC 3), and MW7-4A (10,200 μ g/L north-northeast of APEC 3). Iron, magnesium, and manganese concentrations also exceeded the YT CSR DW guidelines in groundwater from several wells.

The AE (2016) report provided the following recommendations:

- No follow up work at APECs 1 and 2, as the leak tests passed
- Complete further assessment to try to confirm the location of rail ties (APEC 6)
- Complete further assessment where soil impacts were identified at the former south AST and fill stem areas (APECs 4 and 5)

Background November 23, 2018

- Complete additional delineation of groundwater in the area of the former north AST and flow lines, where hydrocarbon contamination was identified (APECs 3 and 7). The groundwater plume was believed to originate near MW7-2 and extend north-northwest beyond MW7-4A. Additional delineation was recommended.
- Complete additional assessment of soil vapour at APECs 4 and 7 prior to development
- Perform seasonal groundwater modeling to determine if the flow direction is affected by seasonal changes
- It was suggested that the concentrations of metals in groundwater that exceed the drinking water standards may be due to microbial action and natural attenuation. Note that per the discussion in Section 3.2 of this report, it is expected that the drinking water standards do not currently apply to the Site.

Phase II Environmental Site Assessment (2017–2018): 5th Avenue (Rodgers Street to Jeckell Street) (CH2M Hill 2018)

CH2M Hill (2018) identified more complex site conditions in terms of surficial geology and contaminant distribution than initially anticipated. Therefore, the objective of their assessment was modified from delineation to obtaining a better understanding of the geology by determining depths, distribution, connectivity, and thickness of coarse units.

CH2M Hill (2018) did not assess APECs 1 and 2 (identified during previous work) as the USTs present at the time passed leak tests. Their investigation focused on APEC 3 (AST1—north), APEC 4 (Fill port), APEC 5 (AST2—south), APEC 6 (Railway ROW), and APEC 7 (flowline between AST1 and AST2), which essentially includes the area between the north and south former clay-bottomed ASTs.

CH2M Hill (2018) completed two intrusive assessments: auger drilling to advance boreholes and install monitoring wells, and a direct push program including laser-induced fluorescence (LIF) testing. The monitoring wells installed by AE (2016) were re-named to follow SARU naming conventions.

During LIF, the laser light causes the aromatic fraction of PHC in the subsurface to fluoresce; it only detects non-aqueous phase liquid (i.e., not dissolved). The LIF probe was combined with an electroconductivity (EC) probe to assess conductivity of soils. Due to structural and safety challenges associated with drilling on the berm, the south AST2 was not investigated as part of the LIF survey. Following LIF, some locations were drilled, and soil samples collected, to verify the findings of the LIF survey.

A total of 17 locations were investigated with the LIF and EC probes, using a direct push rig, to a maximum depth of 7.8 mbgs. Site conditions prevented access around the perimeter of AST1 along the western border. Following the survey, nine boreholes were drilled to confirm and quantify LIF measurements. The confirmatory boreholes were advanced to a maximum depth of 7.5 mbgs using the direct push rig.

Fifteen soil samples were analyzed during the November 2017 event, and an additional 12 soil samples were analyzed during the January 2018 assessment. The analytical data collected to date (at that time) did not differentiate between APECs 3 and 5 to 7 (i.e., the northernmost of the two large ASTs, the fill stem, the underground line, and the railway right-of-way [ROW]). As a result, these APECs were combined into a single area of environmental concern (AEC), which was identified as the "North AEC", and includes the APECs of the former AST1, the fill stem, and the flowline. The "South AEC" is the former AST2.

Background November 23, 2018

Stantec completed a review of the 2017-2018 soil analytical data, compared to the LIF data, and concluded that there was little to no correlation between the reported EPH concentrations and the LIF survey results. The heterogeneity of the subsurface and compaction of the soil cores (due to the use of a direct push rig) limited effective correlation of the LIF results to the analytical data.

In 2017-2018, eight samples contained LEPH concentrations that exceeded YT CSR RL standards. Two samples contained exceedances of other YT CSR RL standards, including for ethylbenzene and naphthalene. None of the phenol or metals parameters analyzed exceeded the standards. The PHC impacts were observed in silt at depths ranging from 2.0 to 4.5 mbgs (from BH18-21, BH18-22, BH18-25, BH18-28) and were concluded to be near the PHC source. Impacts within the coarse material were generally located down-gradient from the contaminant source.

CH2M Hill (2018) drilled one borehole in the South AEC (BH18-29). None of the analyzed parameters exceeded the YT CSR RL standards.

In November 2017, the average depth to groundwater was 4.98 mbgs. Near the North AEC, which is located closer to the cliffs, the groundwater flow direction was interpreted to generally be easterly and was reported to mimic surface topography. The South AEC is situated further west and at a distance from the base of the cliff. Groundwater flow in this area was interpreted to generally be towards the north. Overall, the data from CH2M Hill (2018) indicates that groundwater flow is easterly, immediately below the cliffs, and more northerly closer to the Yukon River. CH2M Hill (2018) noted that PHC contamination appears to flow from the North AEC source area to the north-northeast during the summer months, but during the drier winter months, it appears to flow in a more easterly direction.

Groundwater collected from monitoring wells located near the North AEC contained LEPH exceeding YT CSR AWF and DW. The greatest concentrations were observed at MW16-11, which is located just outside the identified area of LEPH contamination in soil. Dissolved phenanthrene was identified at concentrations exceeding the YT CSR AWF standard in two wells (MW16-9 and MW16-11). CH2M Hill (2018) reported that dissolved pyrene was identified at a concentration exceeding YT CSR AWF standard in MW16-9. The PHC contamination in groundwater appeared to be in a very narrow band, trending north of the North AEC, and the concentrations appeared to vary seasonally.

The 2017-2018 groundwater samples from the monitoring wells met YT CSR AWF standards for dissolved metals. Dissolved iron and manganese concentrations in groundwater exceeded the YT CSR DW standards at seven wells. Except MW16-2 and MW16-10, these locations generally coincide with monitoring wells containing PHC concentrations in groundwater above standards. Only groundwater at monitoring well MW16-01 contained dissolved arsenic concentrations exceeding the YT CSR DW standard.

Regulatory Context November 23, 2018

3.0 REGULATORY CONTEXT

Contaminated sites in YT are governed by the *Environment Act* (EA) and regulations thereto, including the CSR (Department of Environment, 2002), as well as protocols, procedures, and guidance documents established by the Government of Yukon, Department of Environment (Environment Yukon or EY).

A detailed discussion of the regulatory framework and YT CSR standards that apply to the Site is provided in Appendix B of this report. The soil, groundwater, and soil vapour standards applicable to the Project are discussed below.

3.1 SOIL STANDARDS

According to the City of Whitehorse Zoning By-Law 2012-20, the Site is zoned as "Mixed Use Commercial (CM1)". Zone CM1 includes both residential and commercial possible use. Further, the reported proposed future land use for the Site will be mixed residential and commercial. Therefore, for this investigation, the Residential Land Use (RL) and Commercial Land Use (CL) standards were applied.

In the YT CSR, generic standards are intended to protect human health at any site without consideration of site-specific factors other than land use, whereas matrix numerical standards, which have been developed for a subset of PCOCs, are applied according to land use and site-specific factors. Per the YT CSR, mandatory factors (i.e., factors applicable to all properties) include ingestion of contaminated soil, and toxicity to soil invertebrates and plants. Additional site-specific factors that apply at the Site are groundwater flow to surface water used by aquatic life (freshwater).

The YT CSR section 6(4) specifies that, regardless of the land use at the surface of a site, soil below a depth of 3 m is considered to be remediated if the commercial land use standards are met. Therefore, soils collected below 3 mbgs were compared solely to the CL standard.

In summary, the soil use standards deemed applicable for the Site are the YT CSR RL and CL standards.

3.2 GROUNDWATER STANDARDS

Previous investigations have applied the protection of drinking water standards to groundwater at the Site; however, after review of the YT CSR, Stantec has determined that DW does not apply. Site-specific factors are used to determine what YT CSR standards protective of groundwater use apply at the Site. Per Environment Yukon *Protocol 6: Application of Water Quality Standards* (p. 3):

If the leading edge of a contaminated groundwater plume is located within a 1.5 km radius (travel time of less than or equal to 100 years) of the closest existing or probable future drinking water source, the Drinking Water use standards are applicable to the site due to the potential for the groundwater to pollute the receiving waters.

Regulatory Context November 23, 2018

Based on the current available Site information available, only three down-gradient registered water wells are located within 1.5 km of the Site on the same side of the Yukon River, none of which are drinking water wells. The three wells are located within the industrial area of Whitehorse, north of downtown, and are likely used for process water in industrial activities. There are multiple wells located within 1.5 km southeast of the Site, on the eastern side of the Yukon River, as well as two located east of the Yukon River and northeast of the Site.

The current hydrogeological assessment of the Site determined that groundwater flow direction is easterly, at a relatively fast flow rate of 105 m/year. Based upon the flow direction, groundwater from the Site would not migrate towards the northern wells. Further, none of the wells on the east side of the Yukon River are considered to be at risk from potential migration of contaminants from the Site as the Yukon River acts as a groundwater flow boundary. Additionally, it has been reported that the City of Whitehorse receives its drinking water from water wells located on the east side of the Yukon River, and south of the city (up-gradient of the Site). As such, it is unlikely that groundwater beneath the Site will be used as a drinking water source nor will it migrate to a drinking water well, and therefore the standards protective of drinking water have not been applied at the Site.

Regional surface drainage (anticipated shallow groundwater flow direction) for the Site appears to be to the east or northeast, towards the Yukon River approximately 520 m east (cross or down-gradient) of the Site. Therefore, the standards to protect freshwater aquatic life (AWF) are deemed applicable to the Site.

Water at the Site, and within 1.5 km of it, is not currently used for irrigation or livestock watering. Therefore, irrigation and livestock watering standards are deemed not applicable to the Site.

In summary, the YT CSR AWF are the water standards deemed applicable for the Site.

3.3 SOIL VAPOUR STANDARDS

The YT CSR does not currently regulate soil vapour contamination. Therefore, soil vapour analytical data collected as part of the Phase II ESA (2018–2019) has been tabulated against the British Columbia (BC) CSR standards for comparison purposes. As with generic soil quality standards, these are determined by land use. Guidance on conducting soil vapour investigations, interpreting soil vapour data, and otherwise applying BC CSR Schedule 3.3 standards is provided in *Technical Guidance 4: Vapour Investigation and Remediation* ("TG4") (MOECCS, 2017).

Although there are no applicable YT CSR standards for soil vapour, Stantec has concluded that the applicable standards for the Site are the RL and CL standards, based on the discussion provided in Section 3.1.

Objectives and Scope of Work November 23, 2018

4.0 OBJECTIVES AND SCOPE OF WORK

The objective of the Phase II ESA (2018–2019) was to achieve vertical and horizontal delineation of the contamination previously identified on the Site. The Phase II ESA (2018–2019) included the collection of soil, groundwater, and soil vapor samples (where applicable) to assist with: 1) the delineation of on-site AECs, 2) the development of the Site's conceptual site model (CSM), and 3) provide adequate data for the QHHERA and/or POR.

The Phase II ESA (2018-2019) carried out by Stantec was conducted in general accordance with the CSA Phase II ESA Standard Z769-00 (R2013), and the previously submitted Detailed Work Plan, and consisted of the following:

Health and Safety:

· Completing a health and safety plan for field work at the Site

Monitoring Well Installation and Soil Sampling:

- Retaining Midnight Sun Drilling Inc. to drill a total of 26 boreholes using solid and/or hollow stem auger and sonic drilling methods, as follows (see Table 4-1 for further rationale for each of the proposed boreholes):
 - Sixteen boreholes to approximately 6.1 mbgs, with 14 completed as monitoring wells, to address data gaps in lateral delineation of soil and groundwater contamination
 - Six boreholes ranging in depth from 7.0 to 9.0 mbgs, completed as monitoring wells, to address data gaps in vertical delineation of soil and groundwater contamination
 - Three boreholes to approximately 15 mbgs, completed as monitoring wells, to address data gaps in vertical delineation of soil and groundwater contamination, and provide data to assess vertical groundwater gradients
 - One borehole had refusal at approximately 2.75 mbgs and was backfilled
 - Five groundwater monitoring wells had an accompanying soil vapor probe installed for assessment of subsurface vapour
- Obtaining soil samples from auger flights, or core barrels, depending on drilling technique
- Logging soils (including grain size, color, moisture content, and headspace vapor concentrations) in general accordance with the modified Unified Soil Classification System
- Submitting select soil samples for laboratory analysis of one or more of the contaminants of concern (COCs) identified in previous investigations, including:
 - Light and heavy extractable petroleum hydrocarbons (LEPH and HEPH)
 - Benzene, toluene, ethylbenzene, xylene(s) (BTEX), and volatile petroleum hydrocarbons (VPH)
 - Polycyclic aromatic hydrocarbons (PAH)
 - Grain size analysis
 - Total organic carbon (TOC) for QHHERA support
- Requesting the driller to collect suspected contaminated drill cuttings into steel drums, and arranging disposal of them at an approved facility
- Collecting surface soil samples for support of a QHHERA, including analysis for metals, and TOC

Objectives and Scope of Work November 23, 2018

Groundwater Sampling:

- Development of the 23 new monitoring wells
- Low-flow groundwater sampling of new and existing monitoring wells with submission of groundwater samples for laboratory analysis of COCs, including:
 - LEPH and HEPH
 - EPH
 - BTEX and VPH
 - PAH
 - Dissolved metals (from select samples/monitoring wells)
 - Dissolved organic carbon (DOC; from select monitoring wells) for QHHERA support
- Temporarily storing suspected contaminated groundwater in steel drums on the Site until receipt of analytical results (which were used to assess the quality of the contained water)
- · Contracting the driller to collect the steel drums, and arrange disposal of them at an approved facility

Soil Vapour Sampling:

- Conducting soil vapour sampling at five monitoring wells with installed soil vapour probes
- Submission of soil vapour samples for diesel-related vapour contaminants and fractionated PHCs for QHHERA support

Hydrogeological Testing:

- Conducting single well response tests in select groundwater monitoring wells to determine hydraulic conductivity
- Deploying Solinst Level Logger pressure transducers in five different groundwater monitoring wells, per pumping well, at varying distances from the pumping well and in different directions (see Section 5.4.2 for the list of wells)
- Conducting sustained groundwater pumping from two select groundwater monitoring wells (MW16-09 and MW18-31)
- Collecting the previously deployed pressure transducers and download the data

Objectives and Scope of Work November 23, 2018

Table 4-1 Rationale for 2018 Boreholes for 5th Avenue (Rogers Street to Jeckell Street)

BH/MW ID	Location	Depth of Borehole (mbgs)	Depth of Monitoring Well (mbgs)	Rationale
				Northwest delineation of the groundwater plume.
MW18-30 VP18-30	North of AST1 West MW17-16	6.10	6.10	Provide water table elevation data up-gradient, given the easterly component of groundwater flow indicated from previous water table contouring.
VF16-30	West MW 17-16			Soil vapour concentration data (VP18-30) for assessment and potential use in a QHHERA
MW18-31	Down-gradient Area	6.10	6.10	Lateral delineation of LEPH in groundwater down-gradient/cross-gradient of previous contamination identified at MW17-16.
MW18-33	East of reported contamination	7.30	6.10	Eastern delineation of dissolved phase petroleum hydrocarbons groundwater plume. Provide water table elevation data transverse to the dominant flow direction (given the easterly component of groundwater flow indicated from previous water table contouring). Allow resolution of the permeable sand and gravel boundaries.
MW18-34 VP18-34	East of reported contamination	6.10	6.10	Wide delineation of dissolved phase petroleum hydrocarbons groundwater plume further upgradient of MW18-33. Provide water table elevation data down-gradient, given the easterly component of groundwater flow indicated from previous water table contouring. Provide resolution of the permeable sand and gravel boundaries Soil vapour concentration data (VP18-34) for assessment and potential use in QHHERA
MW18-35 VP18-35	East of reported contamination	8.85	6.10	Attempted delineation of dissolved phase hydrocarbons groundwater plume. Provide resolution of the permeable sand and gravel boundaries Soil vapour concentrations data (VP18-35) for assessment and potential use in QHHERA within the identified contaminant plume
MW18-36	East of reported contamination	6.10	4.90	Delineation of dissolved phase petroleum hydrocarbons groundwater plume. Provide water table elevation data down-gradient, given the easterly component of groundwater flow indicated from previous water table contouring. Provide resolution of the permeable sand and gravel boundaries

Objectives and Scope of Work November 23, 2018

Table 4-1 Rationale for 2018 Boreholes for 5th Avenue (Rogers Street to Jeckell Street)

BH/MW ID	Location	Depth of Borehole (mbgs)	Depth of Monitoring Well (mbgs)	Rationale
	East of reported			In the same effective position as MW18-36, this location will allow deep soil conditions to be evaluated.
MW18-37	East of reported contamination	15.25	15.25	Provide a deep monitoring well to be installed offset from the dominant groundwater flow direction allowing both better triangulation of potentiometric pressure and determination of a vertical gradient.
MW18-38	Northwest of reported	6.10	6.10	Lateral delineation of soil and groundwater contamination.
10000	contamination	0.10	0.10	Provide resolution of the permeable sand and gravel boundaries.
				Lateral delineation of LEPH in groundwater down-gradient of MW17-16.
MW18-39 VP18-39	Down-gradient Area	Area 9.15	6.10	Leverage the deep installation at MW17-15 with a shallow monitoring well (MW18-39) to use as a nested pair for vertical gradient determination.
VF10-39				Soil vapour concentration data (VP18-39) for assessment and potential use in QHHERA at the northern edge of the identified plume
	AST1/Fill Point Source Area	15.75	15.25	Supplementary soil analytical data in source area.
MW18-40				To install a monitoring well with a screened interval to collect representative water table samples and depth to groundwater measurements.
				To further determine geometry of permeable sand and gravel layer in source area.
MW18-41	AST1/Fill Point Source Area	6.10	6.10	To provide a nested pair with MW18-40 above for vertical gradients/deep groundwater flow direction.
				Evaluate groundwater quality at depth in the source zone (vertical delineation).
MW18-42	AST2 Source Area	6.10	6.10	Water table monitoring well to provide depth to groundwater measurements near AST 2.
B.00.4.0.4.0				To provide a nested pair with MW18-42 for vertical gradients/deep groundwater flow direction.
MW18-43 VP18-43	AST2 Source Area	15.25	15.25	To evaluate groundwater quality at depth in the AST2 source area.
VF 10-43				Soil vapour concentration data (VP18-43) for assessment and potential use in QHHERA at the identified contamination at AST2
	Northwest area of			Down gradient delineation of soil and groundwater contamination.
MW18-44	the Site	7.60	4.60	Provide better triangulation of water table elevation such that site scale groundwater flow patterns outside of the area of contamination can be determined.

Objectives and Scope of Work November 23, 2018

Table 4-1 Rationale for 2018 Boreholes for 5th Avenue (Rogers Street to Jeckell Street)

BH/MW ID	Location	Depth of Borehole (mbgs)	Depth of Monitoring Well (mbgs)	Rationale	
MW18-45	AST2 Source Area	6.10	5.00	Water table monitoring well to provide depth to groundwater measurements near AST2. Provide representative background soil and groundwater conditions.	
BH18-46	AST1/Fill Point Source Area	2.75 (refusal)	N/A	Attempted western delineation of identified soil and groundwater contamination at AST1	
BH18-47	AST1/Fill Point Source Area	6.10	N/A	Attempted western delineation of identified soil and groundwater contamination at AST1	
MW18-48	AST1/Fill Point Source Area	9.15	7.60	Western delineation of identified soil and groundwater contamination at AST1	
MW18-49	Down-gradient Area	6.10	5.80	North of observed suspected contamination at MW18-31	
MW18-50	Down-gradient Area	6.10	5.80	East of observed suspected contamination at MW18-31	
MW18-51	Down-gradient Area	6.10	5.00	East of observed suspected contamination at MW18-39	
MW18-52	Down-gradient Area	6.10	6.10	North of observed suspected contamination at MW18-31 and MW18-49	
MW18-53	Down-gradient Area	6.10	4.60	Northeast of observed suspected contamination at MW18-31 and MW18-49	
MW18-54	Down-gradient Area	6.10	4.90	Northeast of observed suspected contamination at MW18-31 and MW18-49	
MW18-55	Down-gradient Area	6.10	4.90	Northeast of observed suspected contamination at MW18-31 and MW18-49	
MW18-56	Cross Gradient (Northwest)	9.15	9.15	Northwest delineation of the groundwater plume. Provide water table elevation data up-gradient, given the easterly component of groundwater flow indicated from previous water table contouring. Installed after identifying that MW18-30 was dry.	

Methods November 23, 2018

5.0 METHODS

5.1 SERVICE AND BURIED UTILITY LOCATE

The locations of services and utilities were established prior to the drilling investigation. Utility and service records were obtained by means of direct request to local utility providers at least three days prior to the desired date of investigative work involving ground disturbance. The locations of underground utilities were confirmed prior to drilling by a private underground utility locator using ground penetrating radar (GPR) and EM scanning, and proposed drilling locations were confirmed or adjusted according to the locations of buried utilities.

During the field work, Arcrite Northern of Whitehorse, YT, was retained to conduct the buried utility locating work.

5.2 SOIL SAMPLING

Drilling services were provided by Midnight Sun Drilling Inc. of Whitehorse, YT, on July 24 to 28, and August 1, 2018. Solid and hollow-stem augers were used for drilling for July 24 to 26, 2018, and sonic drilling was used for July 27 to 28, and August 1, 2018. Borehole locations are shown on Figure 2 in Appendix A.

Soil samples were obtained directly from the auger flights during auger drilling and from core barrel samples during sonic drilling. Stantec generally collected soil samples at each major change in stratigraphy, and continuously in proximity to the water table for environmental analysis. Each soil sample was split into two portions, with one portion placed into clean, laboratory-supplied glass containers for analysis of COCs, and the remaining portion placed into a re-sealable plastic bag for visual classification and field vapour screening. Samples were field-screened for the presence of volatile vapours using a fixed-volume headspace technique with an RKI Eagle II hydrocarbon vapour analyzer with PID (Eagle II), with no methane response. The Eagle II was calibrated to 40 % lower explosive limit (LEL) of hexane and 100 parts per million by volume (ppmv) isobutylene calibration gas and zeroed using ambient air prior to field use. A sealable polyethylene bag was half-filled with soil and sealed for a minimum of 10 minutes prior to puncturing the bag and analyzing the headspace vapour level. The vapour analyzer provided digital readings for the volatile organic vapours concentrations in ppmv. Stantec recorded sample observations including depth interval, colour, soil type, grain size, and moisture content on Stantec field forms. Based on these observations and field vapour screening results, Stantec selected and submitted soil samples for laboratory chemical analysis using standard chain of custody procedures.

Samples were placed in ice-chilled coolers for delivery to Maxxam Analytics International Corporation (Maxxam) in Whitehorse, YT, for preparation and shipment to the Maxxam lab in Burnaby, BC.

Methods November 23, 2018

5.3 GROUNDWATER MONITORING AND SAMPLING

5.3.1 Monitoring Well Installation

To characterize groundwater quality of the identified AECs, PVC monitoring wells (50 mm 010 slot size) were installed.

During installation, the annular space of each monitoring well was filled with a silica sand pack to a minimum of 0.3 m above the slotted screen section of PVC pipe, followed by a minimum 0.9 m bentonite seal placed above the sand pack. The remainder of the annular space was filled with silica sand and cement to grade. The wells were completed with a J-plug and a stick-up monument, except for MW18-33, MW18-42, and MW18-43, which were completed with flush-mounted well casings. Five monitoring wells had an accompanying vapour probe installed, which are outlined in Table 4-1 and discussed in more detail in Section 5.5.

5.3.2 Monitoring Well Development

The newly-installed monitoring wells were developed prior to sampling to obtain groundwater that is representative of the formation. During development, each well was purged until a minimum of 10 well volumes were removed, or until the purge water was visually free of sediment. Monitoring wells were purged with the use of a dedicated Waterra® foot valve, surge block, and HDPE tubing, and were allowed to stabilize at least one week prior to the collection of a groundwater sample, in most cases.

5.3.3 Groundwater Sampling

Newly-installed and existing groundwater wells were monitored for well vapour levels, depth to groundwater, and presence/absence of non-aqueous phase liquid (NAPL). Well vapour levels were measured using an RKI Eagle II gas detector. Groundwater levels were measured using a Solinst oil/water interface probe and the probe was cleansed with a mixture of Alconox® and water prior to each measurement to prevent cross-contamination from well to well.

Groundwater purging, and sample collection was performed with the use of a low-flow pump. Prior to sampling, the monitoring wells were purged while monitoring the pH, conductivity, dissolved oxygen, and temperature of the groundwater, and were purged until a total of three well casing volumes were removed or until the monitored parameters stabilized, whichever came first. Groundwater samples were then collected using the low-flow pump and dedicated tubing to transfer the groundwater into laboratory-supplied containers. The samples were then stored in ice-chilled coolers prior to delivery to the laboratory.

Groundwater samples were dropped off at Maxxam in Whitehorse, YT, for preparation and shipment to the Maxxam lab in Burnaby, BC.

Methods

November 23, 2018

5.4 HYDROGEOLOGICAL TESTING

5.4.1 In Situ Single Well Hydraulic Response Testing

Single-well response tests were performed by removing a slug of water from each well using a single-use bailer and monitoring water level recovery versus time using a Solinst Levelogger™. Single well response tests were completed on MW16-02, MW16-11, MW17-15, MW18-35, and MW18-44.

The hydraulic conductivity of each screened interval was determined using the Bouwer-Rice method of analysis and verified against field classifications of stratigraphy (Freeze and Cherry 1979). A minimum of three response tests were conducted in each well to confirm accuracy.

In the Bouwer-Rice method, recovery data are plotted as normalized drawdown (H-h/H-Ho) versus time (t). A semi-log plot of the data is then used to determine the base time lag coefficient (T_o). Hydraulic conductivity (K) is then calculated as:

$$K = \frac{r_c^2 \ln(\frac{R_e}{r_w})}{2L_e} \frac{1}{t} ln \frac{h_0}{h}$$

Where:

K = hydraulic conductivity (L/T)

 r_c = radius of the well casing (L)

 r_w = radius of the well (L)

Re = radial distance over which the head dissipated (L)

L_e = length of the screen (L)

t = time since t = 0 (T)

 h_0 = drawdown at time t = 0 (T)

h = drawdown at time t = t (T)

Response tests were performed after the wells were developed. In cases where the water level drops within the screened interval during the test, the plot often has an initial high slope and then a smaller slope at later time (known in the literature as the "double straight-line effect"). In this case, the line was fit to the second straight-line portion of the data, as recommend by Bouwer (1989).

5.4.2 Pump Testing

The objective of the pumping test, or dynamic stress test, was to determine the extent of hydraulic connectivity of the north-south oriented, channelized, sand and gravel deposit that has been identified on the Site. As the hydrocarbon contamination appears to have followed the channelized, higher permeability geo-body, the pumping test will provide further information to determine the appropriate remediation strategy for the hydrocarbon contamination on the Site.

The testing required that appropriate wells be identified with screened intervals set within the permeable channel deposit and a small submersible pump be used to draw down the water level. During the pumping of a well to lower the water table, the water levels are monitored in other nearby wells to assess drawdown at varying distances from the pumping well. In both pumping tests, five automated data logging pressure transducers were deployed in wells

Methods

November 23, 2018

ranging in radial distance from 12.9 m to 72.0 m from the pumping well. A barometric pressure logger was also deployed to compensate the unvented-pressure transducer data for barometric pressure changes during the testing (Appendix C). The pumping wells and adjacent monitored wells were as follows:

1. Pumping Test 1:

a. Pumping well: MW16-09

b. Adjacent monitored wells: MW16-02, MW16-12, MW18-34, MW18-51, and MW18-56

2. Pumping Test 2:

a. Pumping well: MW18-31

b. Adjacent monitored wells: MW16-12, MW18-51, MW18-52, MW18-54, and MW18-55

Depending on the timing and magnitude of the hydraulic response measured in other monitoring wells, this process was repeated in two separate wells (i.e., MW16-09 and MW18-31) located in areas of the Site with pre-established hydrocarbon contamination in soil and with screened intervals located in permeable sand and gravel intervals that extend at least 1 m below the water table to induce significant draw down. This process was intended to determine if there are clear boundaries or well-established hydraulic connection between wells in different areas of the Site. This in turn allows for remedial planning to consider the area of influence of various in-situ or subsurface remediation methods such as chemical oxidation injections, pump and treat systems, and even the need for dewatering should an excavation method be used to remediate soil at or below the water table.

Water samples for LEPH were collected throughout each test to quantify the water quality with respect to the contaminant of concern. A total of four samples were collected at pump start-up (0 mins), and every two hours after that (i.e., 120 mins, 240 mins and at the end of the test) to quantify if the pumped groundwater quality changed over the duration of the test.

5.5 VAPOUR PROBE INSTALLATION AND SAMPLING

In five locations (MW18-30, MW18-34, MW18-35, MW18-39, and MW18-42) vapour probes were installed in the same borehole as the monitoring well to assess soil vapour concentrations. A 15 cm long, stainless-steel vapour probe was strapped to the PVC casing of the well and installed at an approximate depth of 2.1 mbgs. The annulus around the vapour probe was filled with silica sand, and the annulus above and below was filled with bentonite to facilitate a vapour sample collected from a specific depth. The newly installed vapour probes were integrity tested to confirm adequate flow rate by a vacuum test, as well as a leak (or short circuit) test using helium to determine if the probe was adequately sealed off from inadvertently sampling ambient air. Following satisfactory helium shroud testing, a laboratory-supplied Summa Cannister was connected to the sampling port and sampled at a rate of 140 mL/min for ten minutes. Summa cannisters were dropped off at Maxxam in Whitehorse, YT, for preparation and shipment to the Maxxam vapour lab in Mississauga, Ontario, for applicable petroleum hydrocarbon analysis.

Methods

November 23, 2018

Predicted indoor vapour concentrations were calculated based on the soil vapour concentrations and vapour attenuation factors. As per BC Ministry of Environment and Climate Change Strategy (MOECSS) CSR *Technical Guidance 4: Vapour Investigation and Remediation* (TG4) ¹ depth-related attenuation factors were applied to reported soil vapour concentrations to accurately predict potential indoor air concentrations at the Site. Vapour attenuation factors were applied based on vapour probe installation depths below the current ground surface.

5.6 LEVEL AND SPATIAL SURVEY

The newly-installed monitoring wells and borehole locations were vertically and horizontally surveyed relative to a geodetic datum. The geodetic elevation for the top of pipe and grade of each monitoring well was measured.

Level and spatial surveys of the Site and investigation locations were conducted by Stantec.

5.7 QUALITY ASSURANCE/QUALITY CONTROL (QA/QC)

The data quality objective for the investigation were to collect precise, accurate, representative, and reproducible data. This was achieved through the use of standard field practices, analysis of field duplicates, and adherence to the proposed scope of work.

During the Site investigation, sampling work was conducted in accordance with EY regulations, protocols, and procedures, and Stantec's standard field procedures. A new pair of nitrile gloves was used for each sample to reduce the risk of cross-contamination between samples. Samples were collected in laboratory-supplied clean jars/bottles as appropriate for the intended analysis.

Samples were placed into ice-chilled coolers, which were delivered to Maxxam in Whitehorse, YT, within the recommended hold time and temperature limits. Samples were delivered with a chain-of-custody form.

Maxxam is a Canadian Association for Laboratory Accreditation (CALA)-accredited laboratory that uses YT CSR-recognized methods to conduct laboratory analyses. As conveyed by the laboratory, method blanks, control standards samples, certified reference material (CRM) standards, method spikes, replicates, duplicates and instrument blanks are routinely analyzed as part of their QA/QC programs.

Blind field replicate soil samples and blind field duplicate groundwater samples were submitted for lab analysis to measure the precision of the field sampling and laboratory analysis.

5.8 THREE-DIMENSIONAL CONCEPTUAL SITE MODEL

To facilitate the development of the Site's three-dimensional conceptual site model (3D CSM), the previously-collected site characterization data and the recent data collected by Stantec during the Phase II ESA (2018–2019) was compiled and normalized into a unified database. The database incorporates the investigation data into Leapfrog

¹ "MoE Technical Guidance 4 on Contaminated Sites - Vapour Investigation and Remediation", dated September 2010.

18

Observations November 23, 2018

3D Hydro, a three-dimensional geological computer modeling program, to present the previous and recent findings of the site investigation in a clear, highly visual, easy to understand format.

The previous site investigation data incorporated into the 3D CSM was primarily sourced from two final reports provided to SARU by CH2M HILL (CH2M Hill, 2018), and AE (Associated Engineering, 2016). The data from these reports that were used to generate the 3D CSM included:

- Survey data including ground elevations for boreholes, top of casing data from monitoring wells, and site features
- Lithological data collected from completion of boreholes (including monitoring well installation details)
- Monitoring data collected from 2014 through March 2018 including depth to groundwater measurements
- Analytical soil data obtained from sample collection during borehole drilling
- LIF data (CH2M Hill, 2018)
- Chemical groundwater data collected from sample analysis from monitoring wells
- Thematic geospatial data of salient site features in either ArcGIS and/or AutoCAD format
- Any remote sensed data if available (such as site-specific digital elevation model data)
- Summary reports detailing the work completed to obtain the data listed above.

There were three phases of existing site investigation data provided to Stantec at the outset of the project with which a preliminary 3D CSM was generated. This was done to facilitate discussion related to data gaps and associated field planning prior to the Phase II ESA (2018–2019) site investigation that included borehole drilling, monitoring well installation, and submission of analytical soil and groundwater samples to better determine the PHC contamination distribution at the Site.

The model was then updated using the new data from Phase II ESA (2018–2019) such that a final assessment of the contamination using the model could be discussed.

6.0 OBSERVATIONS

The field observations and well monitoring data from the soil and groundwater investigation are presented and discussed in the following sections.

6.1 SOIL STRATIGRAPHY

In general, the soil stratigraphy consisted mainly of sandy silt. Locations at the northern end of the Site were observed to have sand and gravel layers to a maximum observed depth of 6.1 mbgs, underlain by a layer of sandy silt. Locations in the centre and southern portion of the Site did not have the sand and gravel layer; however, in the middle of the Site, some locations were observed to include a gravelly silt layer or layers at depths of approximately 5.5 to 7.3 mbgs. The gravelly silt layers encountered within boreholes in the middle and northern portions of the Site were observed to have a PHC sheen and odour.

Soil stratigraphy is provided in the borehole records located in Appendix D. Further discussion is included in Section 9.1 of this report. Figure 8 in Appendix A presents a cross-section of the soils on the Site.

Observations November 23, 2018

6.2 SOIL FIELD SCREENING

Hydrocarbon combustible vapour level readings ranged from less than detection limit of the instrument (LTDL) in multiple samples to 175 ppmv at MW18-43 SA06, collected from 4.3 to 4.6 mbgs. The headspace measurements for total organic vapour concentration ranged from LTDL in multiple samples to 170 ppmv at MW18-31 SA06, collected from 4.6 to 4.9 mbgs. Combustible vapour level readings are presented on the borehole logs in Appendix C.

Staining and odour were observed at the sample locations and depths listed in Table 6-1.

Table 6-1 Summary of PHC Observations During Drilling

Investigation Location	Depth (mbgs)	Observations
BH18-47	2.5–2.8	Petroleum hydrocarbon (PHC) odour, immediately below concrete pad, soil was dry
MW18-30	2.7–3.0	PHC odour, sandy silt was moist
MW18-31	4.6–4.9	PHC odour within the sand and gravel layer, soils were saturated
MW18-35	5.5–7.6	PHC odour within the silt and gravel layer, soils were saturated
MW18-39	4.6–7.0	Strong PHC odour and sheen within the sand and gravel layer, soils were saturated
MW18-49	4.9–5.8	PHC odour within the sand and gravel layer, soils were saturated
MW18-56	2.7–3.0	PHC odour, sandy silt was moist

6.3 GROUNDWATER MONITORING

The newly-installed wells and accessible existing monitoring wells were monitored for headspace, depth to water, and depth to non-aqueous phase liquids (NAPL) (if present) on July 30, 2018. Headspace vapour level readings were measured from each monitoring well. The values measured ranged from LDTL in multiple wells to 55 ppmv (MW18-41) for hydrocarbon vapours, and from LDTL in multiple wells to 33 ppmv (MW17-20) for total organic vapours. Headspace vapour concentrations are measured to assess for the presence of volatile compounds that may have volatilized from the groundwater and may be used as an indication of the presence of the volatile compounds. Observed depth to groundwater ranged across the Site from approximately 3.33 mbgs in MW18-45 to approximately 6.55 mbgs in MW16-05. No NAPL was detected by the interface probe during the monitoring of the wells.

Wells MW18-30, MW18-38, and MW16-08 were dry. Locations MW16-04 and MW16-05 were damaged, and as such were not monitored or sampled. Well MW16-03 was not located and is suspected to be under the fence line of the new St. Elias Group Home.

Groundwater elevations were calculated using water levels measured on July 30, 2018, from top of casing (TOC) and casing elevations measured during the vertical survey of the monitoring wells. Groundwater elevations ranged from 634.33 m above sea level (masl) at MW18-44 to 637.27 masl at MW17-19. The inferred direction of shallow groundwater flow at the Site is expected to include both horizontal and vertical components.

Groundwater monitoring data are summarized in Table I in Appendix E.

Results November 23, 2018

7.0 RESULTS

7.1 SOIL ANALYTICAL RESULTS

Thirty-nine soil samples, including four field replicates, were submitted for analysis for one or more of the following compounds: BTEX, VPH, MTBE, VOC, LEPH, HEPH, PAH, TOC, and grain size. Reported concentrations of the analyzed PCOCs in the 2018-2019 soil samples were below the applicable YT CSR RL and CL standards, and in many cases were below laboratory RDLs.

A summary of the 2018-2019 soil analytical results is provided in Table II in Appendix E and copies of laboratory certificates of analysis are included in Appendix F. A summary of the soil analytical results, including results from previous investigations, is presented on Figure 3 in Appendix A.

7.2 GROUNDWATER ANALYTICAL RESULTS

Thirty-six groundwater samples, including three field duplicates, were submitted for analysis of one or more of the identified PCOCs. The reported analytical results were below the applicable standards, with the exception of:

- Concentrations of LEPH were greater than the applicable YT CSR AWF standard in groundwater sampled from:
 - MW16-01
 - MW16-09
 - MW16-13
 - MW17-16
 - MW17-17
 - MW17**-**20
 - MW18**-**31
 - MW18-39MW18-49
- Reported concentration of naphthalene was greater than the AWF standard in groundwater sampled from MW17-17

The groundwater analytical results are summarized in Table III in Appendix E and copies of laboratory certificates of analysis are included in Appendix F. A summary of the groundwater analytical results is presented on Figure 4 in Appendix A.

7.2.1 Pump Test Analytical Data

7.2.1.1 Pump Test 1 (MW16-09)

Reported concentrations of LEPH were 4.8 mg/L initially (greater than the applicable standard of 0.5 mg/L) but decreased by an order of magnitude and stabilized at 0.31–0.32 mg/L for the subsequent three samples.

Results

November 23, 2018

7.2.1.2 Pump Test **2** (MW18-31)

Reported concentrations of LEPH were marginally above the standard and were consistent throughout the four sampling times ranging between 0.51 mg/L to 0.56 mg/L.

Analytical results from the pump test water are summarized in Table IIIa in Appendix E.

7.3 HYDROGEOLOGICAL TESTING RESULTS

The calculated hydraulic conductivities are presented in Table 7-1 below. Further details can be found in Appendix C.

Table 7-1 Hydraulic Conductivity—Single Well Response Tests

MW ID Analysis Type		Screened in Material	Hydraulic Conductivity (m/s) ¹
MW16-02	Bouwer-Rice	Silty sand with gravels ²	8.95 x10 ⁻⁶
MW16-11	Bouwer-Rice	Clay, some silt, Gravel, trace sand ²	6.20 x10 ⁻³
MW17-15	Bouwer-Rice	Silt ³	5.87 x10 ⁻⁷
MW18-35	Bouwer-Rice	Sandy silt, some gravel	6.51 x10 ⁻⁵
MW18-44	Bouwer-Rice	Sand, trace silt and gravel	6.87 x10 ⁻⁵

NOTES:

- 1. m/s—metres per second
- Soil description from Detailed Phase II Environmental Site Assessment on the Jeckell and Hoge Street Lots, prepared by Associated Engineering, October 2016
- 3. Soil description from Phase II Environmental Site Assessment (2017–18): 5th Avenue (Rogers to Jeckell Street), prepared by CH2M, March 2018.

7.3.1 Groundwater Flow Direction

The Site is relatively long and narrow and previous boreholes and monitoring wells were focused on determining the north-south extent of the hydrocarbon contamination. The new monitoring wells completed by Stantec, as part of the Phase II ESA (2018–2019), were intentionally offset from the areas with known contamination both to delineate the contamination in an east-west orientation and to provide additional water table elevations off-set from the original wells.

Water level measurements were collected from the on-site monitoring wells between July 30 and August 2, 2018. In total, 26 monitoring wells screened across or near the water table surface were used to map the groundwater elevation contours and flow direction. The groundwater elevation contours indicate the influence of topography with two water table "mounds" (i.e., high-points) on the west side of the Site where two side-slope mounds are present at the base of the cliff. These mounds create convergent, easterly flow at the base of the cliff that transitions to dominantly west to east flow across the flatter portion of the Site. In the north portion of the Site, there is evidence of mounding under the un-vegetated road/driveway where increased recharge or infiltration is likely to occur relative to the treed areas. The water level at MW18-51 is reflective of the topographic depression in which it is installed.

Results

November 23, 2018

Generally, in the northern part of the Site, the groundwater flow is north-easterly, while across the rest of the Site, the groundwater flow is to the east.

7.3.2 Hydraulic Gradients and Linear Groundwater Flow Velocity

7.3.2.1 Horizontal Gradients

Using the groundwater elevations, groundwater elevation contours were plotted as shown on Figure 5 in Appendix A. The lateral hydraulic head gradient varies across the Site with a maximum gradient of 0.06 m/m at the base of the cliff to 0.013 m/m on the eastern portion of the Site in the flat topographic area.

7.3.2.2 Vertical Gradients

Using pairs of adjacent monitoring wells screened across different depths, vertical gradients were calculated with the following equation.

$$G_{vert} = \frac{(H_a - H_b)}{(D_a - D_b)}$$

Where

G_{ver} = vertical gradient (negative value is upwards vertical flow)

Ha = head in monitoring well a

Da = elevation of bottom of screen in monitoring well a

The calculation of vertical hydraulic head gradients based on observed groundwater elevations across the Site indicated that, with the exception of one nested pair located at the base of the cliff (MW18-42 and MW18-43), there are near neutral to negative gradients, indicating no vertical flow to weak recharge (upward flow) conditions (i.e., minor discharge). Negative gradients were observed at MW18-40/MW18-41, MW18-36/MW18-37 and MW17-15/MW18-39 located in the flat, central to northern portion of the Site. The near neutral to recharge (downward flow) conditions, observed at MW18-42/MW18-43, is likely the result of localized groundwater mounding, which is expected given the topographic change created by the cliffs.

7.3.2.3 Estimated Groundwater Flow Direction and Velocity

The average linear velocity for groundwater flowing under a hydraulic gradient in a saturated porous medium was estimated using the following relationship derived from Darcy's Law (Freeze and Cherry, 1979):

$$v_{avg} = \frac{K}{\varphi_{eff}} \left(\frac{\partial h}{\partial l} \right)$$

Where:

K = hydraulic conductivity $\partial h/\partial l = hydraulic gradient$ $\phi_{eff} = effective porosity$

Results

November 23, 2018

The above sections derive the hydraulic conductivities and hydraulic gradients. Effective porosity was estimated conservatively (producing highest estimate of average linear groundwater velocity) of 0.40 for sandy silt (Freeze and Cherry, 1979) and 0.35 for the monitoring well installed in the sand and gravel found in isolated areas of the Site. Average linear groundwater velocity for the Site should consider the geological framework in which the coarse-grained, high-permeability layers are oriented transverse to groundwater flow direction. If the hydraulic conductivity of the coarse-grained intervals was the only input used to calculate the average linear groundwater flow velocity, it would be a gross over-estimation of the site-scale flow velocity. As such, the average hydraulic conductivity from the silt-dominated intervals at or near the water table elevation was used to estimate the site-scale groundwater flow velocity. The results of the five in-situ hydraulic response tests are presented in Table 7-2 below, including an average for the silt-dominated unit types for the site-scale calculation of groundwater flow velocity.

Table 7-2 Summary of Hydrogeological Parameters and Calculations

Circula (AVC	Location of Measurement	Material Type	φeff	К	Average Gradient		Vavq
Single/AVG				(m/s)	Magnitude (m/m)	Direction (° Azimuth)	(m/yr)
-	MW16-11	Clay, some silt, Gravel, trace sand*	0.35	6.20 x10 ⁻³	0.013	90	7,262.3
-	MW18-44	Sand, trace silt and gravel	0.40	6.9 x 10 ⁻⁵	0.013	90	70.7
-	MW18-35	Sandy silt, some gravel	0.40	6.5 x10 ⁻⁵	0.013	90	66.6
-	MW16-02	Silty sand with gravels*	0.40	8.9 x 10 ⁻⁶	0.013	90	9.1
-	MW17-15	Silt**	0.40	5.9 x 10 ⁻⁷	0.013	90	0.6
Avg. excluding MW16-11	N/A	N/A	0.40	3.6 x 10 ⁻⁵	0.013	90	104.6

NOTES:

m = metres

s = seconds

d = day

y = year (calculations assume 365.25 d/y)

*soil description from Detailed Phase II Environmental Site Assessment on the Jeckell and Hoge Street Lots, prepared by Associated Engineering, October 2016

**soil description from Phase II Environmental Site Assessment (2017-18): 5th Avenue (Rogers to Jeckell Street), prepared by CH2M, March 2018.

Results November 23, 2018

The K value from MW16-11 appears to be an outlier from the rest of the data and was excluded from calculating the Site average. The nearest receptor is the Yukon River, 520 m east of the Site. The estimated time to reach the receptor is approximately 5 years based upon the average hydraulic conductivity and lateral hydraulic head gradient and associated groundwater velocity as determined for the dominant silt-based lithology. These findings support the determination that standards protecting drinking water are not applicable at the Site, as any hypothetical contamination migrating off-site (not currently observed), will migrate east towards the Yukon River, and not towards the existing wells (of unknown use) north of the city nor across the Yukon River and south towards the City's drinking water supply wells.

Groundwater flow direction is summarized in Figure 5 in Appendix A.

7.3.3 Results of the Pumping Test

Two separate pumping tests were completed to investigate subsurface hydraulic connections between the former AST2 area, in the central portion of the Site, and outlying areas where groundwater contamination delineation has been achieved. Two specific wells were selected from the desktop study and the 3D CSM described herein to be pumped with the following criteria:

- Wells to be tested are within the centre of a mapped contaminated groundwater zone associated with interpreted source areas
- Well, and specifically the screened interval, is installed in a permeable vertical interval that appears to be connected to permeable material observed in lithological observations from nearby monitoring wells
- Permeable interval is at or near the water table elevation with at least 1 m of screened interval located below the current water table position

Based on these criteria, as well as on-site testing as described above, MW16-09 (a pre-established well) and MW18-31 (a new well installed to investigate the groundwater quality of the northern contaminated area) were chosen as pumping wells for the approximately 6-hour (360 min) tests. The key parameters of each pumping test completed on October 29 and 30, 2018 consecutively on MW16-09 and MW18-31 are summarized below in Table 7-3. Pumping test hydrographs show the logger data (and manual measurements for the pumping well: Appendix C) with logger data corrected to geodetic hydraulic head elevations (Figure 6; Appendix A).

The pumping testing confirmed lithological observations from the borehole drilling program and interpretation from 3D CSM exercise that the high permeability sediments including sand and gravel are discrete, somewhat chaotic small-scale channel deposits. Further the dynamic stress or hydraulic connectivity testing indicate that there is little to no connection between wells at short distances as observed from both pumping tests completed. Both pumping tests completed on MW16-09 and MW18-31 produced over 0.09 L/s (1.5 US gpm) sustainable flow rates for the duration of the test generating 1.01 m and 0.84 m of drawdown respectively. In both cases, only the nearest observation well indicated any drawdown in response to pumping. The test completed on October 29, 2018, pumping MW16-09, indicated the only well to show a drawdown response of 0.009 m was MW16-12, located 12.9 m away from the pumping well. In the second test on October 30, 2018, on MW18-31, only one monitoring well (MW18-52, located approximately 26.5 m north of the pumping well) indicated a pumping response with 0.033 m of drawdown.

Results

November 23, 2018

Given the single response testing results, which indicate some very permeable, high hydraulic conductivity sediments, we would expect to see small magnitude drawdown responses measured at greater distances from the pumping well if the strata were laterally extensive and hydraulically connected. However, even at relatively short radial distances from the pumping well, only small drawdown magnitudes were observed, indicating the presence of permeability boundaries or the presence of fine-grained, low-permeability soils between monitoring wells at a small spatial scale. This indicates that the low-permeability silt-dominated strata are likely rate-limiting for groundwater flow on-site. It also indicates that no significant connected permeable pathways are present in areas of the Site with known soil and groundwater hydrocarbon contamination, as no significant recharge boundaries were observed during the pumping tests.

Table 7-3 Summary of Pumping Test Characteristics

Pumping Test 1								
Test Date:	October 29, 2018							
Pumping Well:	MW16-09							
Pumping Rate:	0.098 L/s (1.59 U	S gpm)						
Test Duration:	6 h (360 mins)							
Volume Pumped:	2.16 m ³							
Drawdown:	1.01 m							
Observation	Wells	Radial Distance (m)	Direction from PW	Max. Drawdown (m)				
Observation Well 1:	MW16-02	35.58	South	0				
Observation Well 2:	MW16-12	12.87	Northeast	0.009				
Observation Well 3:	MW18-34	37.14	East	0				
Observation Well 4:	MW18-51	71.9	North	0				
Observation Well 5:	Mw18-56	50.73	Northwest	0				
Pumping Test 2								
Test Date:	October 30, 2018	}						
Pumping Well:		M	W18-31					
Pumping Rate:		0.105 L/s	(1.67 US gpm)					
Test Duration:		5.5 h	(330 mins)					
Volume Pumped:		2	.08 m ³					
Drawdown:		C).84 m					
Observation	Wells	Radial Distance (m)	Direction from PW	Max. Drawdown (m)				
Observation Well 1:	MW16-12	72.75	South	0				
Observation Well 2:	MW18-51 25.91 Southeast 0							
Observation Well 3:	MW18-52 26.55 Northwest 0.033							
Observation Well 4:	MW18-54	MW18-54 59.40 Northeast 0						
Observation Well 5:	MW18-55	48.94	Northeast	0				

Results

November 23, 2018

7.4 SOIL VAPOUR ANALYTICAL RESULTS

Five soil vapour samples were submitted for analysis of the following parameters associated with vapour contamination at gasoline and diesel sites, as identified in the Soil Vapour Advice and Practice Guidelines Development Panel—Stage 1, developed by the BC Contaminated Sites Approved Professionals Society (CSAP, 2009):1,3-Butadiene

- 1,2,4-Trimethylbenzene
- 1,2-Dichloroethane
- 1,3,5-Trimethylbenzene
- Benzene
- Cumene (Isopropyl benzene)
- n-Decane
- Ethylbenzene
- Ethylene Dibromide
- n-Hexane
- Methyl t-butyl ether (MTBE)
- Methylcyclohexane
- Naphthalene
- Styrene
- Toluene
- Xylenes
- VPH

Predicted indoor vapour concentrations were calculated based on the soil vapour concentrations and vapour attenuation factors, which in turn are based upon the depth of the soil vapour probe. The reported concentration of VPH, after the application of the appropriate attenuation factor, based upon the current grade of the Site, was greater than the BC CSR RL standard, in vapour sampled at VP18-39. However, since there is no YT CSR standard, this was for comparison purposes only.

The soil vapour analytical results are summarized in Table IV in Appendix E and laboratory certificates are included in Appendix F. A summary of the soil vapour analytical results is presented on Figure 7 in Appendix A.

7.5 QA/QC SUMMARY

7.5.1 Laboratory QA/QC

Maxxam is a Canadian Association for Laboratory Accreditation (CALA) accredited laboratory that uses CCME, BC MOECCS, and YT CSR recognized methods to conduct laboratory analyses. As conveyed by the laboratory, method blanks, control standards samples, certified reference material (CRM) standards, method spikes, replicates, duplicates and instrument blanks are routinely analyzed as part of their QA/QC programs.

Results November 23, 2018

Prescribed laboratory methods were used by the laboratory, and the sample holding times were met, with the exception of some soil samples analyzed for BTEX/VPH or EPH. In the instances where the hold time was not met, the reported concentration was less than the laboratory RDL or at least one order of magnitude lower than the applicable standard and is considered to be representative of the soil conditions. Laboratory quality assurance samples such as matrix spikes and matrix spike duplicates were collected and analyzed according to the laboratory method, and the laboratory quality control sample results were within method acceptance limits with the exception of the following:

- Lab certificate B862213: The CRM for tin was outside of the acceptance criteria. The lab allows a failure rate of 10% of analytes in a multielement scan.
- Lab certificate B863863: The percent recovery of the RPD for arsenic, lead, anthracene, and benzo(b&j) fluoranthene were outside the control limits. The laboratory certificate stated that "the overall quality control for this analysis meets acceptability criteria".
- Lab certificate B896179: The lab certificate notes that the water samples were decanted and results of EPH
 and/or PAH may be biased low. As the samples were collected from known areas of contamination, the lab
 analytical data does not change the conclusions of the Phase II ESA.

Stantec has reviewed the quality assurance data for the subject batch and the analytical results and concluded that data quality is sufficient for the purposes of the investigation.

7.5.2 Field Duplicates and Relative Percent Difference

During soil and groundwater sampling activities, field duplicates or replicates were collected and analyzed. The relative percent difference (RPD) between original samples and duplicates or replicates was calculated where the analytical results were at least five times the value of the reportable detection limit. The calculated RPDs were within the acceptance criteria for RPD values. The RPDs are presented in Table V and Table VI in Appendix E.

It is industry best practice that one of every 10 representative samples (10%) be analyzed in duplicate, to conduct a check on the laboratory analysis protocol. For this investigation, four replicates of 33 soil samples (12%) and three of 33 groundwater samples (9%) were analyzed in duplicate. As such, the recommended percentage of replicates/duplicates for Quality Assurance procedures is considered to have been achieved.

Our review of the field and analytical data indicate that the analytical data are representative and meet the data objective for the Phase II ESA (2018–2019) program.

Discussion November 23, 2018

8.0 DISCUSSION

8.1 SOIL CONTAMINATION

Soil contamination has been delineated laterally except west at the north end of the Site. This is summarized in Table 8-1 and in Figure 3 in Appendix A.

Vertical soil delineation was completed in previous investigations and is summarized in Table 8-1.

Table 8-1 Delineation of PHC Contamination in Soil

Investigation Location	Area of the Site
MW18-45, MW18-42, MW18-43	South and east of AST2
MW18-36, MW18-37, MW18-33, MW18-34	East of AST1
MW18-44, MW18-52, MW18-53, MW18-54, MW18-55	North and northeast of AST1
MW18-30, MW18-48, MW18-41, MW18-42	West and southwest of AST1
MW16-05 (2.6–3.0 mbgs), MW17-16 (6.2–6.8 mbgs), MW17-17 (7.6–8.4 mbgs), BH18-21 (6.0–6.5 mbgs), BH18-25 (5.0–5.5 mbgs),	Vertical

8.2 GROUNDWATER CONTAMINATION

8.2.1 Petroleum Hydrocarbons

The groundwater flow direction has little effect on the distribution of residual hydrocarbon contamination to soil and groundwater. The orientation of the observed contamination is transverse to the Site-scale groundwater flow direction and are likely the result of free-phase hydrocarbon migration during the historical release of hydrocarbons and/or the orientation of the rail spur historically present.

Groundwater with LEPH concentrations greater than the AWF standard was identified in the middle of the Site, consistent with previous investigations and with the historical activities on the Site. Naphthalene concentrations above applicable standard was identified in groundwater from one well, MW17-17. The PHC contamination, including naphthalene, has been delineated horizontally and vertically except the northwest, and is summarized in Table 8-2 and Figure 4 in Appendix A. There is still a data gap in the northwest. However, based upon the inferred groundwater flow direction, the northwest would likely be delineated at the base of the cliff as contamination is not anticipated to have migrated directly west, counter to the groundwater flow direction and the regional topography. There is still a potential that some contamination is flowing east through connective gravelly silt layers; however, at this time there are no data to indicate that the gravelly silt layers, where the majority of the contamination has been found, are connected and act as a contiguous aquifer. Nor is it evident that any gravelly silt layers are present east of the identified plume, as none have been observed to date in borehole or monitoring well locations.

Discussion November 23, 2018

Table 8-2 PHC Delineation in Groundwater

Investigation Location	Direction of Delineation
MW18-52, MW18-53, MW18-54, MW18-55, MW18-44	North/northeast
MW16-12, MW18-33, MW18-34, MW18-35, MW18-36, MW18-50, MW18-51	East
MW16-02, MW16-03, MW16-04, MW16-05, MW16-10, MW18-41, MW18-42, MW18-45	South
MW16-11, MW17-19, MW18-48, MW18-56	West
MW17-15, MW18-37, MW18-40, MW18-42	Vertical

8.3 SOIL VAPOUR

The reported concentration of VPH, after the application of the appropriate attenuation factor, based upon the current grade of the Site, was greater than the BC CSR RL standard, in vapour sampled at VP18-39.

8.4 HYDROGEOLOGY

The hydrogeological scope of work completed as part of this Phase II ESA has clarified the hydrogeological conditions present on-site. The additional monitoring well installations have indicated the following:

- Groundwater flow is generally to the east towards the Yukon River
- Vertical Gradients do not suggest contamination significantly below the water table (i.e. weak recharge to weak discharge conditions)
- There are two areas on the Site with mappable accumulations of coarse-grained permeable deposits, including sand at or above the water table near AST1, and sand and gravel at or below the water table in the north portion of the Site

The additional pumping tests completed on October 29 and 30, 2018 indicate the following:

- Highly permeable soils at the Site is effectively encapsulated in low-permeability silt deposits and does not provide a clear preferential hydraulic pathway for contaminated groundwater to migrate off-site
- Highly permeable soil on the Site has a north-south orientation and may have provided a preferential pathway between permeable bodies as described above
- Low-permeability silt deposits govern linear groundwater flow velocities given the lack of indication that the permeable intervals are laterally extensive and oriented perpendicular to prevailing groundwater flow direction
- Groundwater contamination, as observed on the Site during the Phase II ESA, are likely localized in the vicinity of residual soil contamination
- Given the apparent lack of hydraulic connection between the two areas of the Site with known soil and
 groundwater contamination, it is difficult to determine if these areas of contamination are from a common source
 (AST1), or from two separate sources (AST1 and potentially an unknown fueling/transfer area near MW17-16).
 Groundwater impacts at MW17-20 confounds the interpretation of single or multiple sources given its location at
 the approximate mid-point between the two area with known soil contamination.

Conceptual Site Model (CSM) November 23, 2018

The spatial correlation between observed soil hydrocarbon contamination, groundwater contamination, and the lack of apparent permeable pathways indicates that the groundwater contamination is unlikely to migrate off the Site. The field data collected indicates no groundwater exceedances at significant distances downgradient of the source areas. However, there is a possibility of preferential distribution to the north, perpendicular to groundwater flow direction.

9.0 CONCEPTUAL SITE MODEL (CSM)

The 3D CSM was used to synthesize and interpret the Site conditions based on both the relevant historical Site data as well as the data collected for this Phase II ESA (2018–2019) completed by Stantec. The use of the CSM for the Site provided a visual means to evaluate the complex geological setting including features of the geology and hydrogeology and contextualize the analytical results for both soil and groundwater at the Site.

The notable outcomes of interpretation of the field investigation data in the CSM are described below and broken into three categories including: an integrated Site-wide geological summary, a hydrogeological summary, and a summary of the extent of both soil and groundwater hydrocarbon contamination.

9.1 SITE-WIDE GEOLOGICAL SUMMARY

The geology of the Site is now well-characterized given the spatial distribution and number of historical and recent borehole data. Data from AE, CH2M Hill, and Stantec, from 2016 to present, were available for 54 boreholes. The spatial distribution of boreholes now covers a larger area of the Site with new boreholes completed as part of this investigation located east of the previous cluster of boreholes located at or near the base of the slope/cliff to the west and the historical AST locations where the soil contamination was initially discovered. The number of boreholes confirms the initial desktop interpretation that the depositional environment created fluvial-type deposits with a high degree of heterogeneity.

The intent of completing boreholes and associated monitoring wells east of the historical investigation locations were three-fold. The distribution of boreholes was to provide delineation of contaminated soil/groundwater, better spatial coverage to resolve the complex groundwater flow patterns (i.e., not relying on an approximately linear distribution of water level data), and to delineate or resolve the sub-surface geology transverse (i.e., east) of the cluster of pre-existing, sub-surface geology data. At a Site-scale, the following conclusions can be drawn regarding the spatial distribution of the groundwater and soil contamination:

- Dominant geology, or matrix material, is fluvial/overbank deposits of silt with varying proportions of sand and minor gravel. Despite the presence of coarse-grained material in the silty deposits, the mix of fine and coarse-grained sediment result in a low-permeability sediment.
- In the south and central portion of the Site, near the base of the cliffs, where the ASTs were historically located, borehole logs indicate a shallow accumulation of sand-dominated sediment approximately 0.5 to 2.0 mbgs (Figures 8, 9.1 and 9.2 in Appendix A)

Conceptual Site Model (CSM) November 23, 2018

- In the south and central portion of the Site, near the base of the cliffs, where the ASTs were historically located, borehole logs indicate locally mappable sand and gravel channel sediment approximately at or near the water table which, at the time of hydrocarbon release, likely provided a preferential pathway for free-phase hydrocarbons in the sub-surface. While the topography is variable at the base of the cliff, these coarse-grained channel deposits range in depth from approximately 3.5 to 5.5 mbgs (Figure 8 in Appendix A).
- Geological data collected from the wells located to the east of the previous investigations borehole distribution
 indicate that the channel deposits are not laterally extensive to the east. With the exception of some isolated
 sandy lenses at variable depths, the silt-dominated fluvial/overbank deposits are observed from surface to well
 below the water table surface. This is important as the inferred groundwater flow direction is dominantly to the
 east, the preferential pathway created by the channel deposits described in the bullet above are effectively
 encapsulated in a low permeability sediment.
- North of AST1, the channel deposits at or near the water table are either truncated or thin, isolated channels surrounded by silt fluvial/overbank deposits from surface to below the water table surface as indicated by MW18-30 and MW18-33 (which are in and out of the section plane from MW17-20 on Figure 8 in Appendix A). Historical geological data from MW16-11 may indicate there is some connection via a thin channel deposit running north.
- In the northern portion of the Site (i.e., north of MW17-15/MW18-39) there is another locally mappable
 accumulation of sand and gravel that exists at or below the water table. This suggests it may be an isolated
 channel deposit from the channel deposits located below AST1 in the middle portion of the Site (Figure 8
 in Appendix A).

9.2 HYDROGEOLOGICAL SUMMARY

The hydrogeology of the Site is better characterized based on the spatial distribution of new and existing monitoring wells with collected water level data, in-situ hydraulic response testing completed on selected monitoring wells and establishing lateral and vertical hydraulic gradients. Prior to this investigation, the co-linear spatial distribution of the wells, the lack of nested monitoring well pairs, and the lack of hydraulic conductivity analysis meant that there was a high degree of uncertainty as to the hydrogeological setting of the Site.

Conclusions drawn, based on the interpretation of the hydrogeological setting, are:

- Groundwater flow is dominantly to the east towards the Yukon River. This is not consistent with previous
 interpretations of groundwater flow direction; however, the current investigation has had the benefit of a more
 robust data set, involving additional groundwater monitoring wells, to assess flow direction.
- There is substantial local-scale (i.e., 10 to 20 m scale) variability in flow direction, likely driven by heterogeneity in the sub-surface
- There is a large range in hydraulic conductivities in the soils at the Site, ranging from 5.9 x 10⁻⁷ to 6.2 x 10⁻³ m/s. This large range of hydraulic conductivities is reflective of the dominant silt fluvial/overbank deposits and the coarse-grained sand and gravel channel deposits.
- Silt fluvial/overbank deposits are the rate-limiting geology at a Site scale with respect to groundwater flow velocities, given the encapsulation of the coarse-grained deposits
- Vertical gradients indicate a transition from near neutral to minor recharge (downwards flow) conditions at the
 base of the cliff, on the west side of the Site, and minor discharge (upwards flow) conditions over the rest of the
 Site as measured at four separate nested monitoring well pairs

Conceptual Site Model (CSM) November 23, 2018

9.3 SUMMARY OF DISTRIBUTION OF CONTAMINATION

The distribution of contamination, as observed and delineated, can be explained and supported by the interpretations of the geological and hydrogeological setting as outlined in Section 9.1 and Section 9.2 above. The summary points related to the spatial distribution of contamination are presented below:

- Observed spatial distribution of soil and groundwater contamination indicate that the PHCs released from the historical ASTs followed the coarse-grained channel deposits located at or near the current water table
- Groundwater flow direction has little effect on the distribution of residual hydrocarbon contamination in soil and
 groundwater. The orientation of the observed contamination is transverse to the Site-scale groundwater flow
 direction and are likely the result of free-phase hydrocarbon migration during the historical release of
 hydrocarbons and/or the orientation of the rail spur historically present.
- Pumping test data indicates that the hydrocarbon contamination present may be related to discrete areas of soil
 contamination, including the AST1 area as well as an unidentified source area in the north portion of the Site due
 to the lack of apparent hydraulic connection between the two areas
- Mapped extent of groundwater contamination indicates that it is coincident with and slightly beyond (to the north and east) the identified soil contamination and do not appear to be mobile in groundwater at this time
- Vertical gradients confirm the observation that the PHC contamination (an light non-aqueous phase liquid [LNAPL]) did not significantly penetrate below the water table, and dissolved phase contamination shouldn't be present at depth given the upward vertical flow component of groundwater over the majority of the Site.
- Data collected during this Phase II ESA (2018–2019) indicates localized soil and groundwater contamination from PHCs
- Given the location of historical soil contamination, the extents of the current groundwater contamination are localized and appear to be constrained to coarse-grained sediments within the overall fine-grained the geological/hydrogeological framework.

9.4 REMAINING DATA GAPS

While Stantec is confident in the outcomes of the field program and subsequent interpretation, physical drilling constraints such as power lines, the base of the cliff, and pathways/roadways, have potentially resulted in some data gaps that should be acknowledged. These data gaps include:

- There is more than a 40 m distance between MW18-33 and MW18-51, down-gradient of the groundwater
 contamination. However, the soils are of low permeability and coarse-grained channel deposits appear to be
 oriented north-south, not east-west, and both wells indicated no exceedances of analysed parameters in
 groundwater. The powerline precluded optimal well placement in this area for safety reasons though an
 additional well in this area would reduce any potential uncertainty.
- Area west of MW18-31 and MW18-49 is a potential data gap given the identified soil and groundwater
 contamination. However, the slope at the base of the cliff makes access difficult in this area for drilling.
 Further, this area is likely not to be disturbed during any development and any soil and/or groundwater
 contamination if present, would be at significant depth.

Through use of the 3D CSM, however, a good understanding of the depositional environment and the distribution of the physical properties of the soils has been achieved. These data gaps are considered minor with multiple lines of evidence indicating delineation has generally been achieved.

Conclusions
November 23, 2018

10.0 CONCLUSIONS

Based on the results of the Phase II ESA (2018-2019), Stantec offers the following conclusions for the Site:

- It was determined, through interpretation of the Environment Yukon *Protocol 6: Application of Water Quality Standards*, that the drinking water standards do not apply at the Site.
- LEPH contamination in soil has been delineated within the middle of the Site, stretching in a narrow corridor in a
 north-south direction with borehole data indicating that the geological heterogeneity is the dominant control on its
 distribution.
- Similarly, LEPH contamination in groundwater has been delineated within the middle of the Site, stretching in a narrow corridor in a north-south direction.
- Naphthalene contamination in groundwater was identified in monitoring well MW17-17, coinciding with the highest levels of LEPH, and is delineated both horizontally and vertically.
- Predicted indoor vapour concentrations were calculated based on the analyzed soil vapour concentrations and vapour attenuation factors and compared to BC CSR Standards. One soil vapour sample, VP18-39, had reported concentrations of volatile petroleum hydrocarbons (VPH) greater than the BC CSR standard for residential land use.
- Reported concentrations of the other PCOCs in soil and groundwater samples were below the applicable standards, or less than laboratory RDLs.

Based on the pumping tests completed after the standard Phase II ESA scope of work, the following additional conclusions can be made:

- Mobility of groundwater hydrocarbon contamination appears to be limited given the coincident location of groundwater and soil contamination with no appreciable down-gradient contamination in the eastern portion of the Site.
- Removal or remediation of contaminated soil is likely to further limit groundwater contamination given it is coincident or proximal to soil hydrocarbon contamination.
- Distribution of groundwater contamination is limited even within the permeable geological bodies identified op-site.
- Data gaps have been addressed to the extent possible given drilling and site constraints through the use of pumping testing. Despite some physical data gaps in the monitoring network (i.e., sub-optimal well placement), significant recharge boundaries were not observed from the pumping test data indicating the analytical data collected to delineate the groundwater impacts is sufficient to sufficiently characterize and delineate site conditions.

Limitations November 23, 2018

11.0 LIMITATIONS

This report documents work that was performed in accordance with the scope, schedule and limitations set out in the contract between Stantec and its Client. Stantec does not represent, warrant, or guarantee that this work has uncovered all potential liabilities associated with the identified property, other than those liabilities which are reasonably discoverable based on our contractual scope.

This report provides an evaluation of selected environmental conditions associated with the identified portion of the property that was assessed at the time the work was conducted and is based on information obtained by and/or provided to Stantec at that time. There are no assurances regarding the accuracy and completeness of this information. All information received from the client or third parties in the preparation of this report has been assumed by Stantec, acting reasonably, to be correct. Stantec assumes no responsibility for any deficiency or inaccuracy in information received from others.

The opinions in this report can only be relied upon as they relate to the condition of the portion of the identified property that was assessed at the time the work was conducted. Activities at the property subsequent to Stantec's assessment may have significantly altered the property's condition. Stantec cannot comment on other areas of the property that were not assessed. Conclusions made within this report consist of Stantec's professional opinion as of the time of the writing of this report, and are based solely on the scope of work described in the report, the limited data available and the results of the work. They are not a certification of the property's environmental condition. This report should not be construed as legal advice.

This report has been prepared for the use of the client identified herein pursuant to the terms of, and for the purposes reasonably contemplated within, the contract between Stantec and the client. Stantec makes no representations, warranties or guarantees that the report will be suitable for other purposes; any use which a third party makes of the report is at that party's own risk, and Stantec assumes no responsibility for losses, damages, liabilities or claims, howsoever arising, from such third-party use of this report.

This report was prepared by Matthew Deane, P.Ag. and Joseph Riddell, P.Geo., and reviewed by Matthew Redmond, P.Eng. and Tanya Shanoff, P.Geo.

Closure November 23, 2018

12.0 CLOSURE

We trust the information herein is sufficient for your needs at this time. Should you have any questions or concerns, please do not hesitate to contact the undersigned.

Respectfully submitted,

Stantec Consulting Ltd.

Matthew Deane, P.Ag.

Environmental Scientist Phone: (604) 412-3036 Matthew.Deane@stantec.com

Reviewed by:

Matthew Redmond, P.Eng. (BC, YT)

Associate, Environmental Services Phone: (604) 412-2974 Matthew.Redmond@stantec.com Joseph Riddell, P.Geo. (AB)

Hydrogeologist, Environmental Services Phone: (587) 756-6233 Joseph.Riddell@stantec.com

Carey Sibbald, M.Sc., R.P.Bio.
Project Manager, Associate,
Environmental Services
Phone: (867) 633-4200 ext. 130
Carey.Sibbald@stantec.com

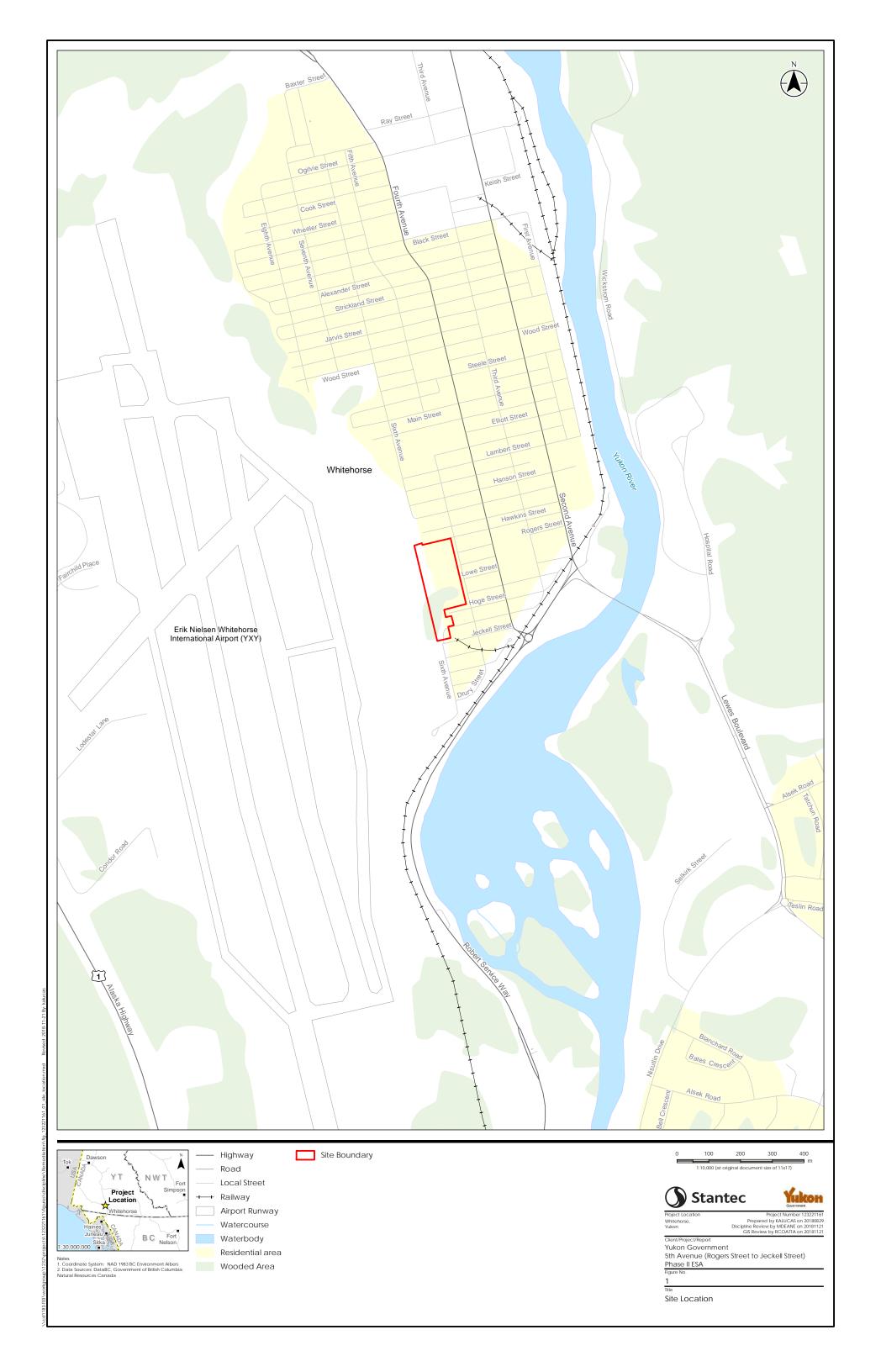
References November 23, 2018

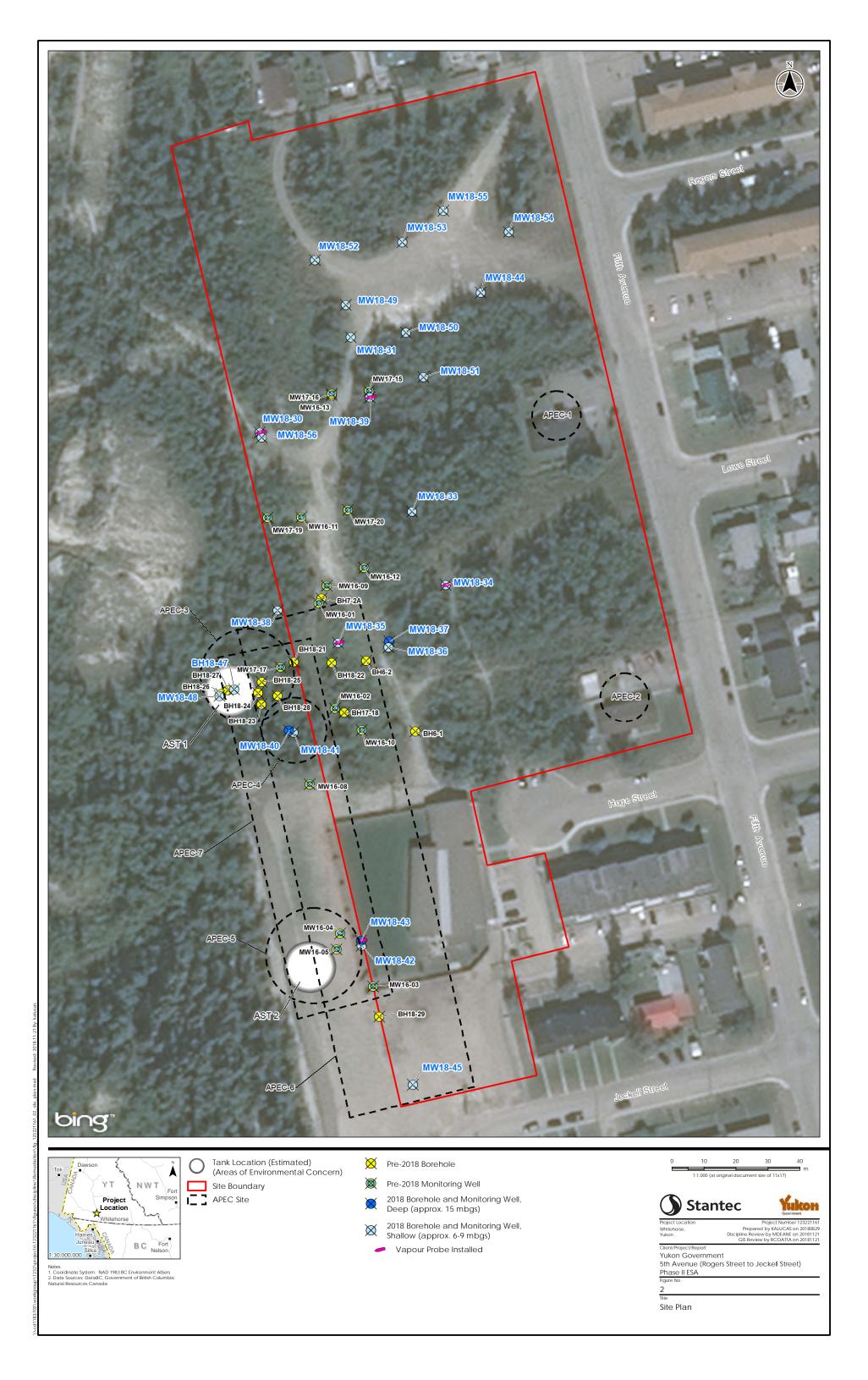
13.0 REFERENCES

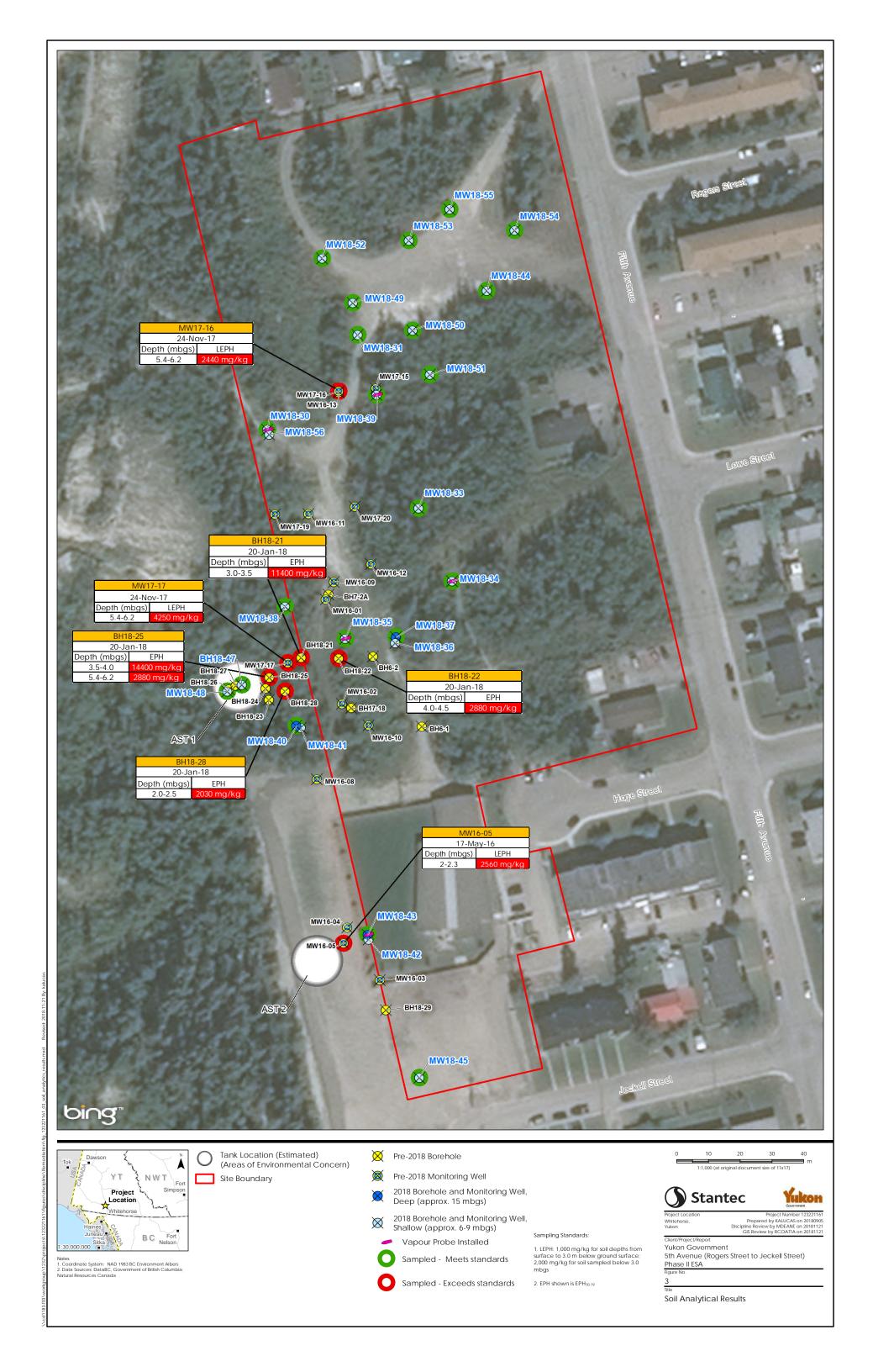
Associated Engineering. 2016. Detailed Phase II Environmental Site Assessment on the Jeckell and Hoge Street Lots (Block 338). Whitehorse: Associated Engineering.

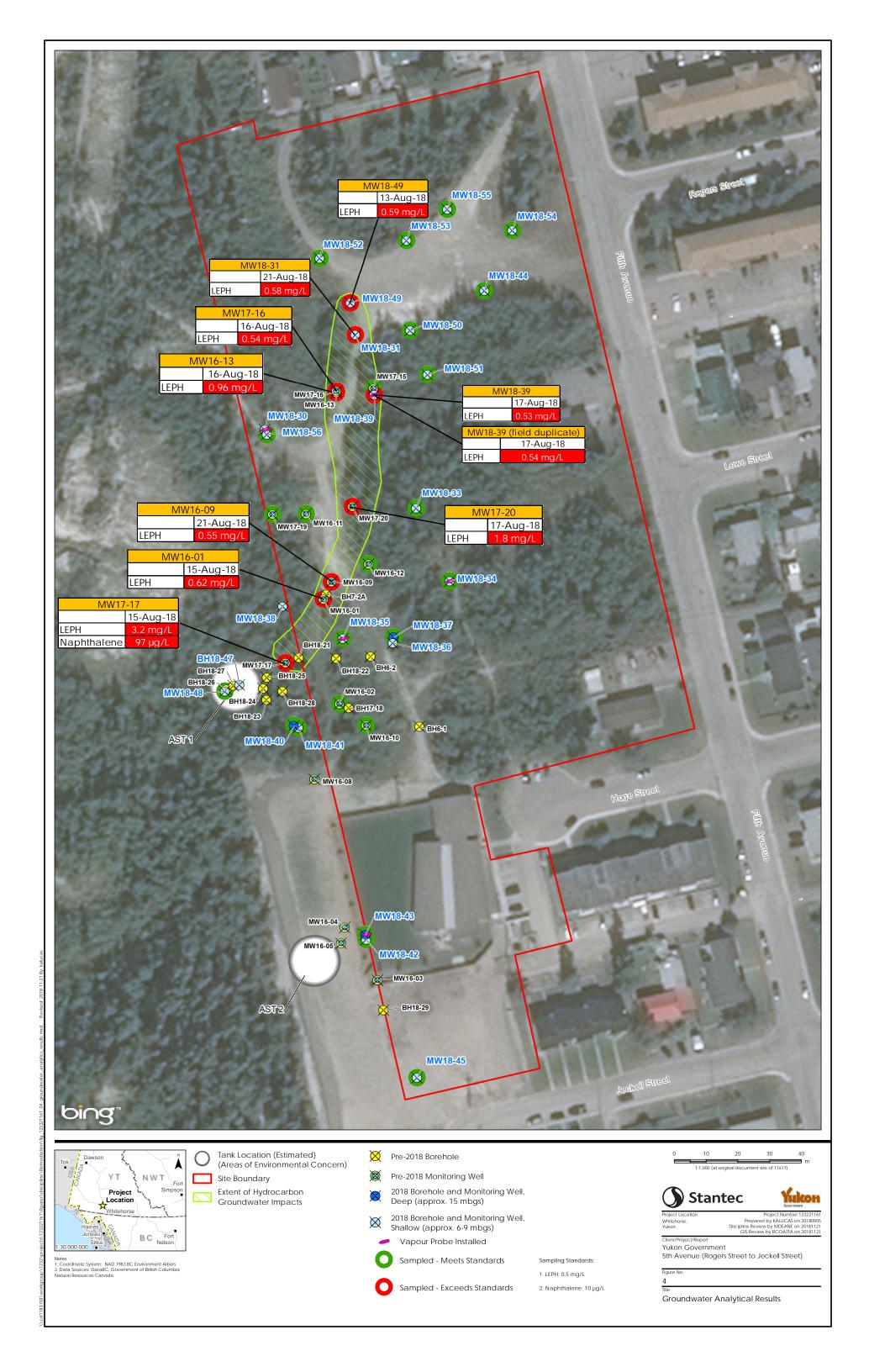
CH2M Hill. 2018. Phase II Environmental Site Assessment (2017-18): 5th Avenue (Rogers to Jeckell Street). Whitehorse: CH2M Hill.

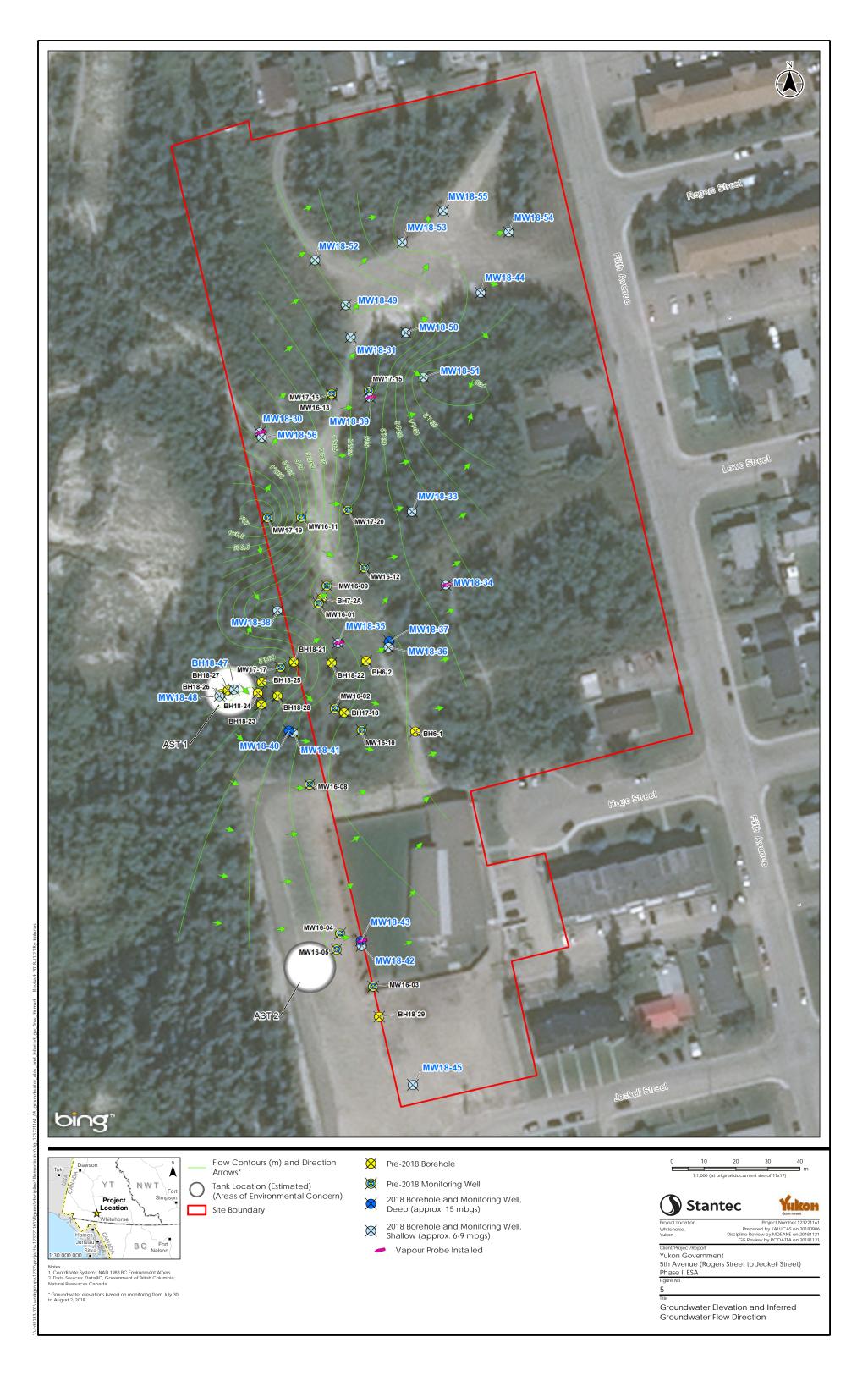
CSAP. 2009. Soil Vapour Advice and Practice Guidelines Development - Stage 1. CSAP.

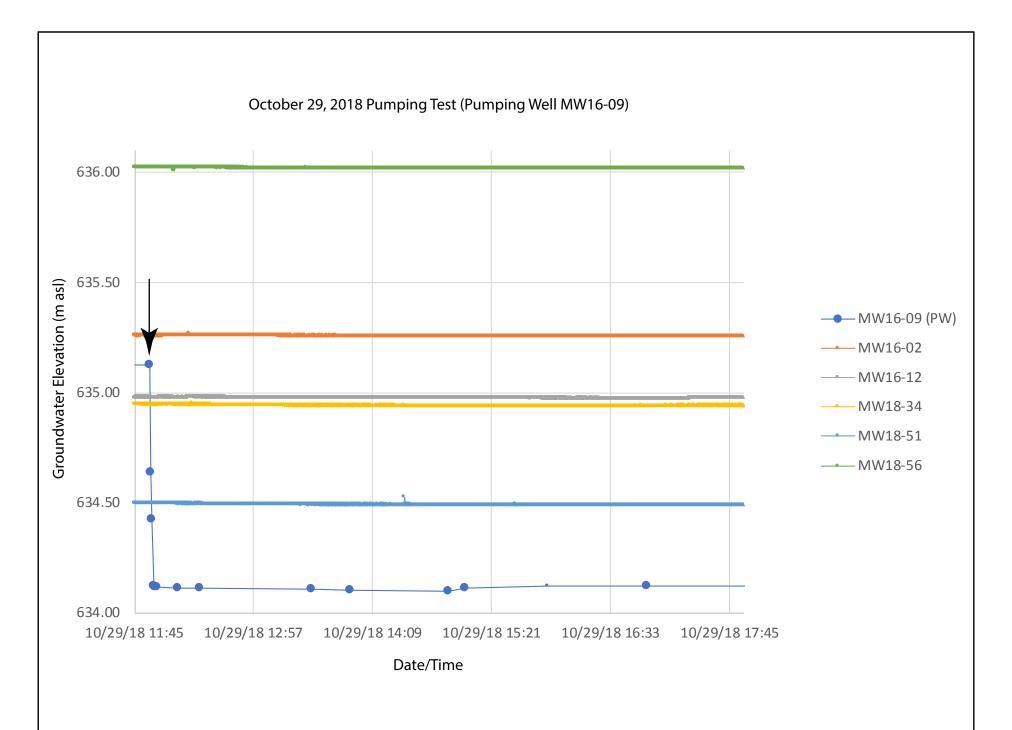

Department of Environment. 2002. Contaminated Sites Regulation. Whitehorse: Government of Yukon.

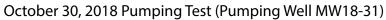

Laberge Environmental Services. 2014. Phase I Environmental Site Assessment. Whitehorse, YK: Laberge Environmental Services.

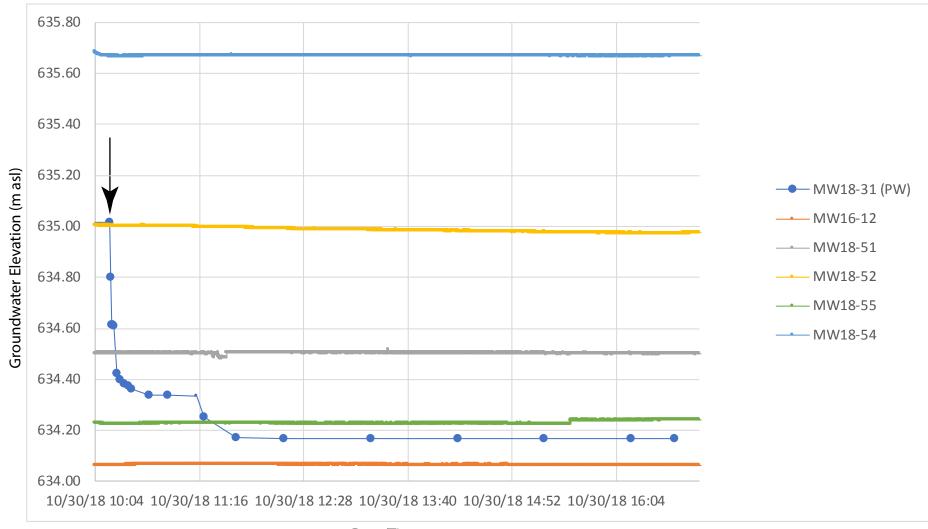

MOECCS (Ministry of Environment and Climate Change Strategy). 2017. Technical Guidance 4: Vapour Investigation and Remediation. Victoria: BC MOECCS.

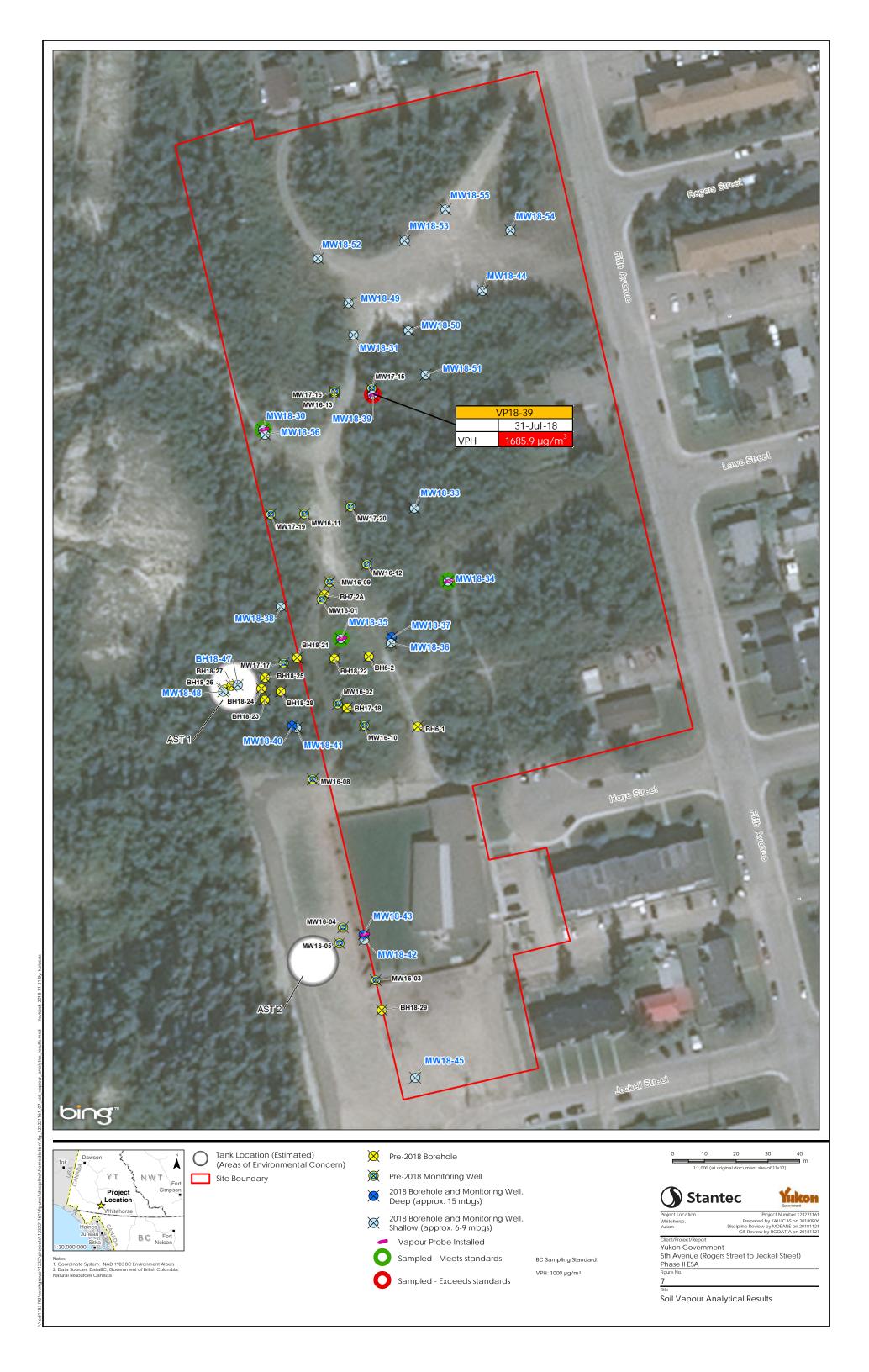


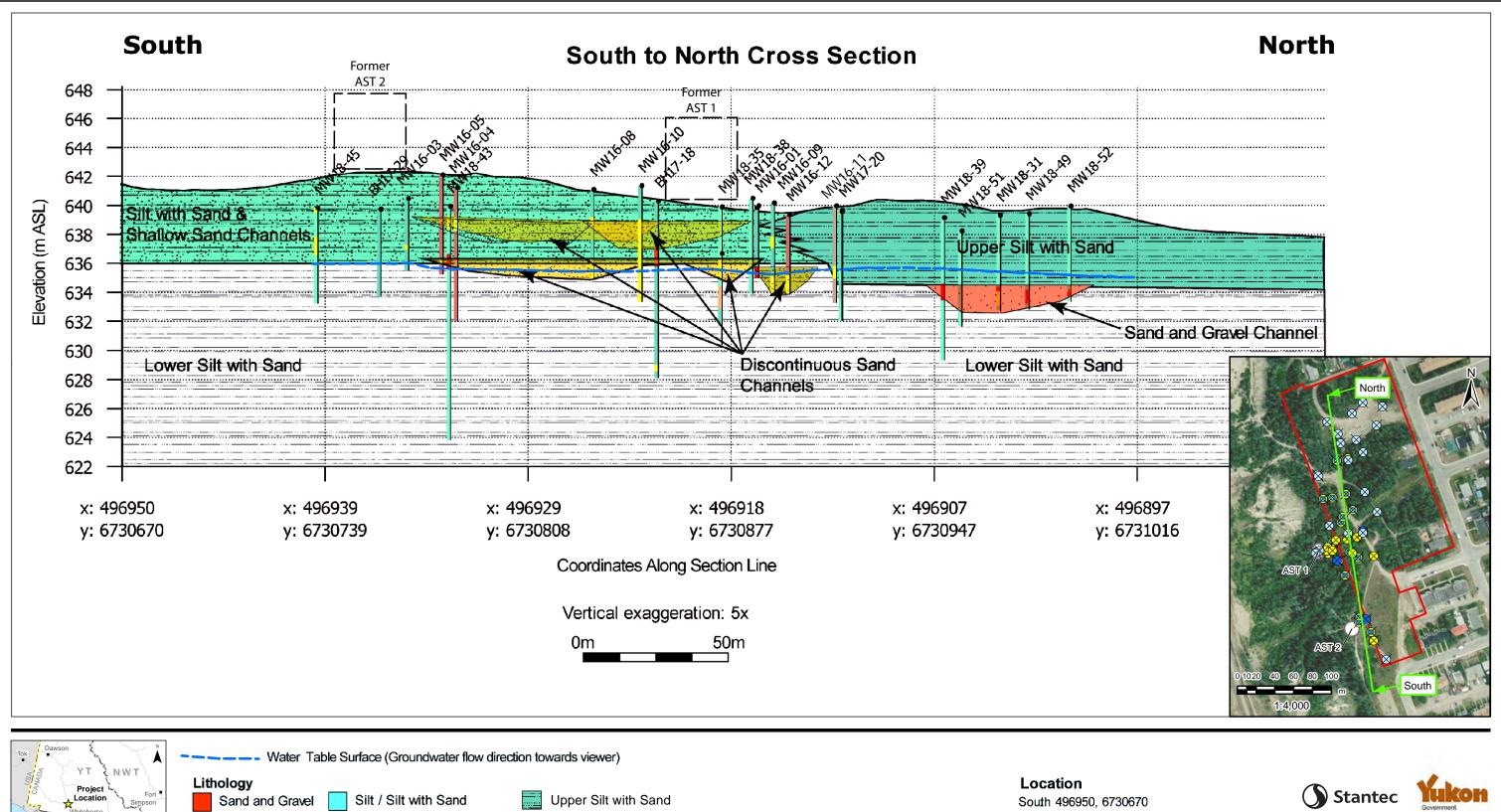

APPENDIX A FIGURES

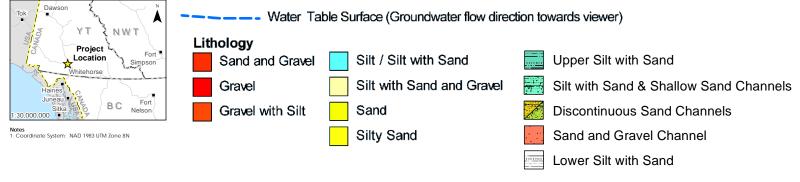







Date/Time




Indicates Start of Pumping Test

Pumping Test Hydrographs

North: 496887, 6731080

Geological and Hydrogeological Cross

APPENDIX B REGULATORY FRAMEWORK

Appendix B Regulatory Framework September 14, 2018

CONTAMINATED SITES REGULATORY STANDARDS IN YUKON TERRITORY

Contaminated sites issues in Yukon Territory are governed by the *Environment Act* (EA) and regulations thereto, including the Contaminated Sites Regulation (CSR), as well as protocols, procedures, and guidance documents established by the Environment Yukon (EY).

CONTAMINATED SITES REGULATION (CSR) STANDARDS

CSR Numerical Soil Standards

CSR numerical soil standards are divided into the categories of generic numerical standards (Schedule 1) and matrix numerical standards (Schedule 2).

Generic standards are intended to protect human and ecological health at any site without consideration of site-specific factors other than land use. The matrix numerical standards are applied according to land use (agricultural, urban park, residential, commercial or industrial), and also according to site-specific factors, which include: (human) intake of contaminated soil; toxicity to soil invertebrates and plants; livestock ingesting soil and fodder; major microbial functional impairment; groundwater used for drinking water; groundwater flow to surface water used by aquatic life (freshwater and marine); groundwater used for livestock watering; and groundwater used for irrigation watering. The site-specific factors of human intake of contaminated soil and toxicity to soil invertebrates and plants are mandatory and must be applied at all sites. Other factors are determined on a site-specific basis.

CSR section 17(3) also specifies that regardless of the land use at the surface of a site, soil below a depth of 3 m is considered to be remediated if the commercial land use standards are met.

CSR Numerical Water Standards

The CSR contains requirements when applying water quality standards to groundwater and surface water to ensure that groundwater at a site is suitable for direct use and has a quality adequate to protect adjacent surface water uses. Generic numerical water standards are presented in Schedule 3 of the CSR, and are determined by four different water uses, aquatic life, drinking water, irrigation, and livestock water use.

PROTOCOL NO. 6: Application of Water Quality Standards states that sites within 1 km of a surface water body should include the application of aquatic life water use standards. Sites within 1.5 km of a drinking water well should include the application of drinking water use standards.

The CSR differentiates between aquatic life water use standards protective of freshwater and of marine/estuarine aquatic life.

Appendix B Regulatory Framework September 14, 2018

CSR Numerical Soil Vapour Standards

The Yukon CSR does not currently regulate soil vapour contamination. Therefore, soil vapour analytical data has been compared to the British Columbia (BC) CSR standards. As with generic soil quality standards, these are determined by land use. Guidance on conducting soil vapour investigations, interpreting soil vapour data, and otherwise applying BC CSR Schedule 3.3 standards is provided in *Technical Guidance 4: Vapour Investigation and Remediation* ("TG4").

REFERENCES

Department of Environment, Yukon Territory. 2002. *Environment Act*, including amendments to SY2016, c.5. http://www.gov.yk.ca/legislation/acts/environment_c.pdf

Department of Environment, Yukon Territory. 2002. Contaminated Sites Regulation. http://www.gov.yk.ca/legislation/regs/oic2002_171.pdf

Ministry of Environment and Climate Change Strategy, BC. 2017a. Technical Guidance 4: Vapour Investigation and Remediation. https://www2.gov.bc.ca/assets/gov/environment/air-land-water/site-remediation/docs/technical-guidance/tg04.pdf

Ministry of Environment and Climate Change Strategy, BC. 2017b. Contaminated Sites Regulation. http://www.bclaws.ca/EPLibraries/bclaws_new/document/ID/freeside/375_96_00

APPENDIX C HYDROGEOLOGY

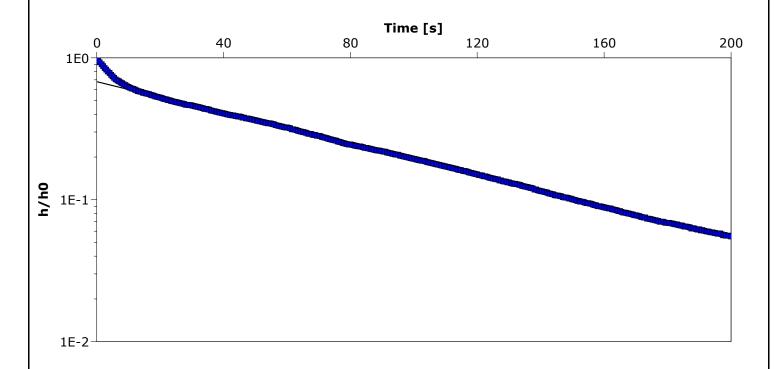
Appendix C Hydrogeology November 23, 2018

Appendix C HYDROGEOLOGY

C.1 SINGLE WELL RESPONSE TESTS

Stantec Consulting Ltd. Stantec Street Stantec Edmonton AB T5K 2L6

Slug Test Analysis Report


Project: 5th Avenue Phase II ESA

Number: 123221121

Client: Yukon Government

Location:	Slug Test: Response Test	Test Well: MW16-02
Test Conducted by: M. Deane		Test Date: 7/27/2018
Analysis Performed by: D. King	Response Test	Analysis Date: 8/23/2018

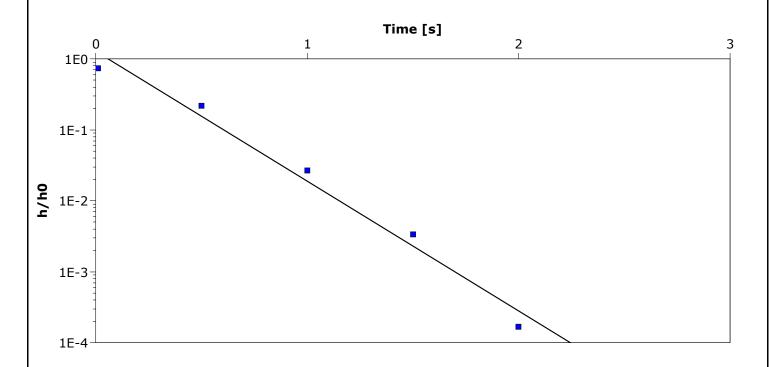
Aquifer Thickness: 2.00 m

Calculation using Bouwer & Rice

Observation Well	Hydraulic Conductivity [m/s]	
MW16-02	8.95 × 10 ⁻⁶	

Stantec Consulting Ltd. 10160-112 Street Edmonton AB T5K 2L6

Slug Test Analysis Report


Project: 5th Avenue Phase II ESA

Number: 123221121

Client: Yukon Government

Location:	Slug Test: Response Test	Test Well: MW16-111
Test Conducted by: M. Deane		Test Date: 7/29/2018
Analysis Performed by: D. King	Response Test	Analysis Date: 8/23/2018

Aquifer Thickness: 0.25 m

Calculation	usina	Rouwer	&	Rice
Calculation	usiiiu	Douwei	CX I	/ICC

Observation Well	Hydraulic Conductivity [m/s]	
MW16-111	6.20 × 10 ⁻³	

Stantec Consulting Ltd. Stantec Sonsulting Ltd. 10160-112 Street Edmonton AB T5K 2L6

Slug Test Analysis Report

Project: 5th Avenue Phase II ESA

Number: 123221121

Client: Yukon Government

Location:	Slug Test: Response Test	Test Well: MW17-15
Test Conducted by: M. Deane		Test Date: 7/31/2018
Analysis Performed by: D. King	Response Test	Analysis Date: 8/23/2018

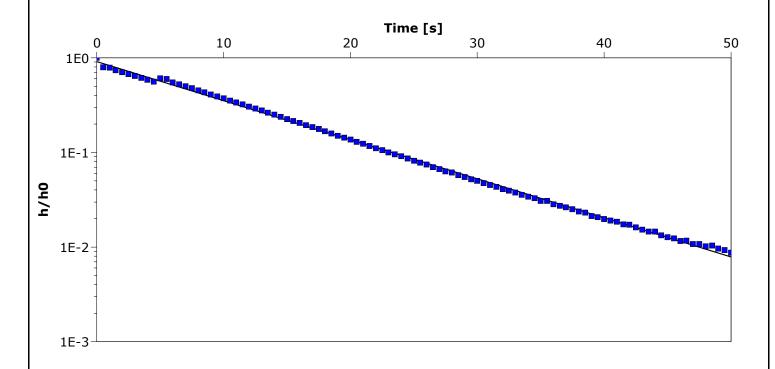
Aquifer Thickness: 10.30 m

Calculation using Bouwer & Rice

Observation Well	Hydraulic Conductivity [m/s]	
MW17-15	5.87 × 10 ⁻⁷	

Stantec Consulting Ltd. Stantec Consulting Ltd. 10160-112 Street Edmonton AB T5K 2L6

Slug Test Analysis Report


Project: 5th Avenue Phase II ESA

Number: 123221121

Client: Yukon Government

Location:	Slug Test: Response Test	Test Well: MW18-35
Test Conducted by: M. Deane		Test Date: 7/29/2018
Analysis Performed by: D. King	Response Test	Analysis Date: 8/23/2018

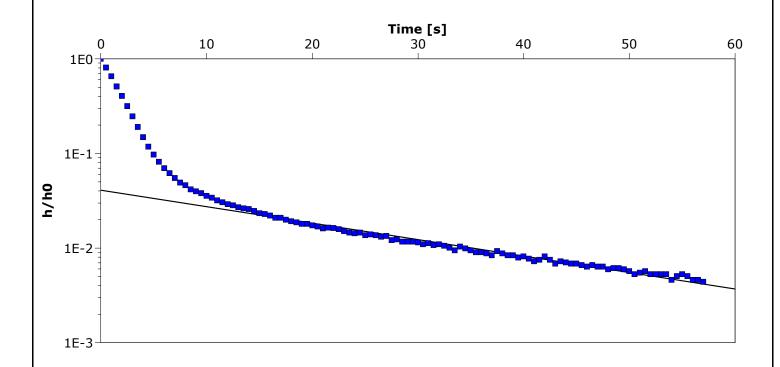
Aquifer Thickness: 1.20 m

Calculation using Bouwer & Rice

Observation Well	Hydraulic Conductivity [m/s]	
MW18-35	6.51 × 10 ⁻⁵	

Stantec Consulting Ltd. 10160-112 Street Edmonton AB T5K 2L6

Slug Test Analysis Report


Project: 5th Avenue Phase II ESA

Number: 123221121

Yukon Government Client:

Location:	Slug Test: Response Test	Test Well: MW18-44
Test Conducted by: M. Deane		Test Date: 7/29/2018
Analysis Performed by: D. King	Response Test	Analysis Date: 8/23/2018

Aquifer Thickness: 0.45 m

Calculation using Hvorslev

Observation Well	Hydraulic Conductivity	
	[m/s]	
MW18-44	6.87 × 10 ⁻⁵	

Appendix C Hydrogeology November 23, 2018

C.2 LEVEL LOGGER DATA (RAW – UNPROCESSED)

C.2.1 October 29, 2018

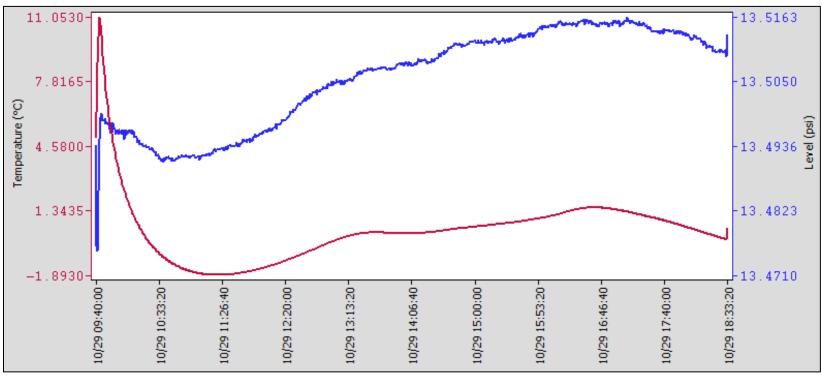


Figure C 1 BaroLogger_MW18-36_Whitehorse Pump Test_2018_10_29

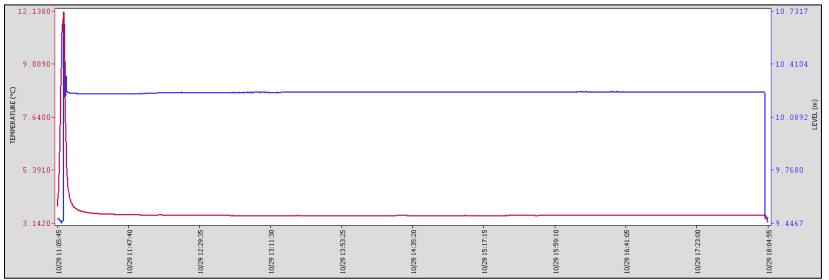


Figure C 2 MW 16-02_Whitehorse Pump Test_2018_10_29

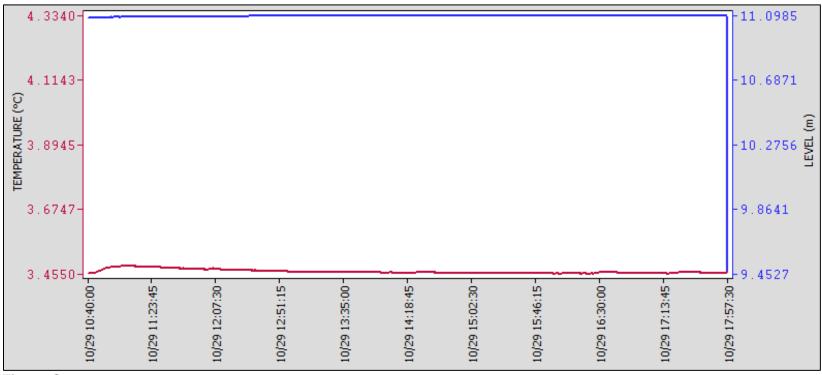


Figure C 3MW16-12_Whitehorse Pump Test_2018_10_29

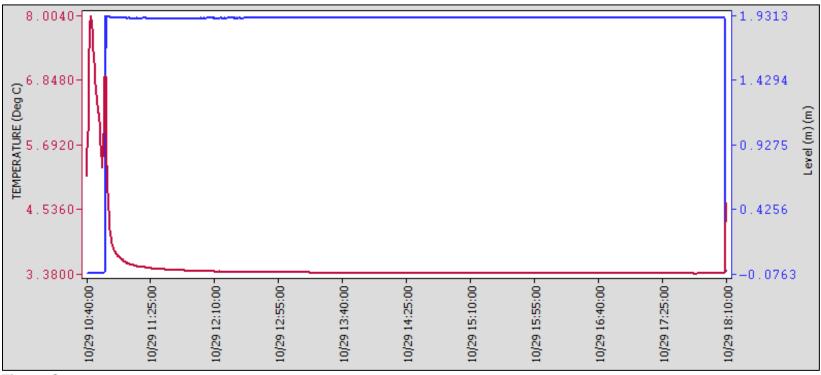


Figure C 4 MW18-34_Whitehorse Pump Test_2018_10_29

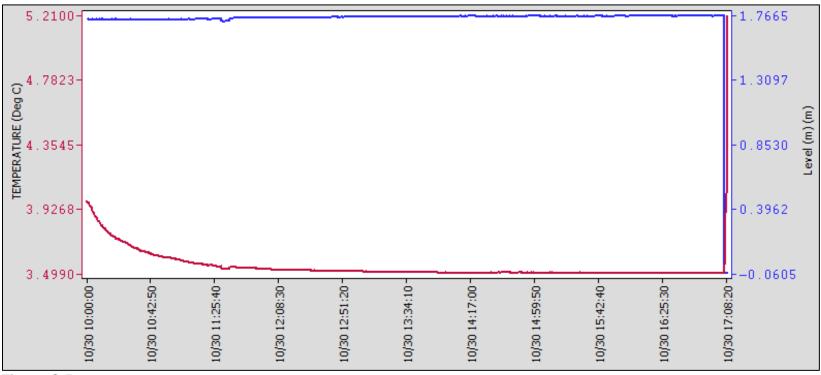


Figure C 5 MW18-51_Whitehorse Pump Test_2018_10_29

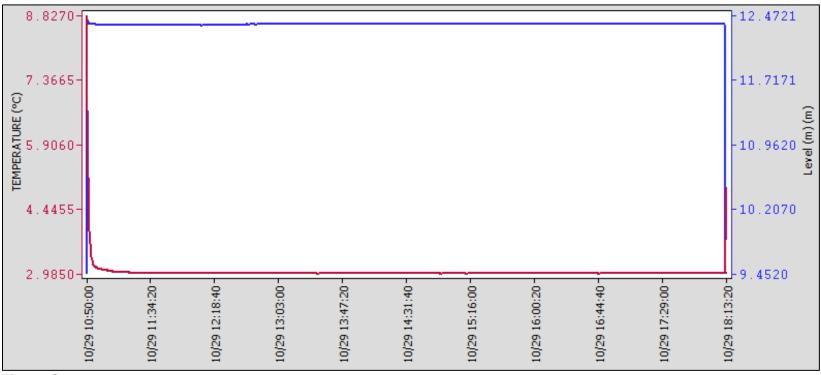


Figure C 6 MW18-56_Whitehorse Pump Test_2018_10_29

Appendix C Hydrogeology November 23, 2018

C.2.2 October 30, 2018

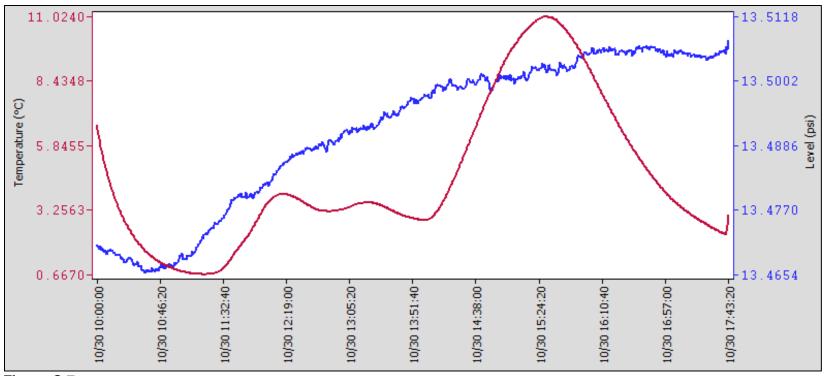


Figure C 7 Baro-MW18-53_Whitehorse Pump Test_2018_10_30

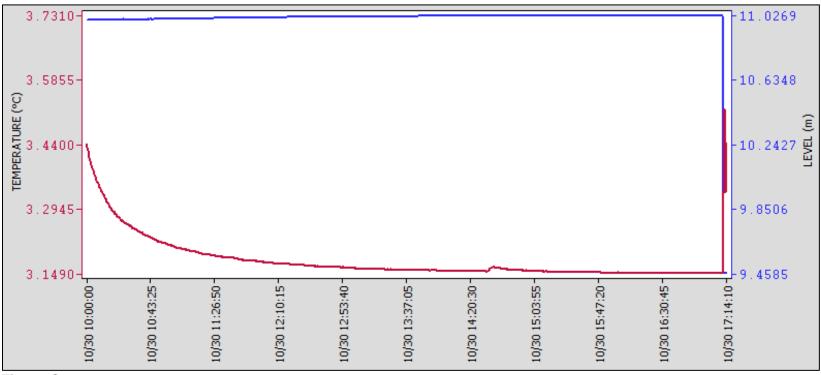


Figure C 8 MW16-12_Whitehorse Pump Test_2018_10_30

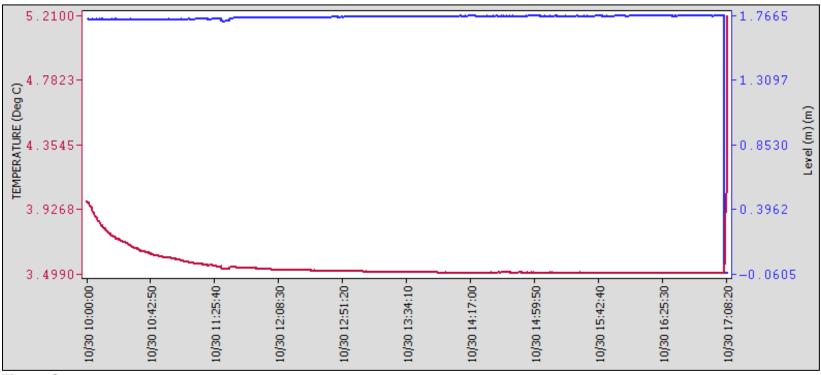


Figure C 9 MW18-51_Whitehorse Pump Test_2018_10_30

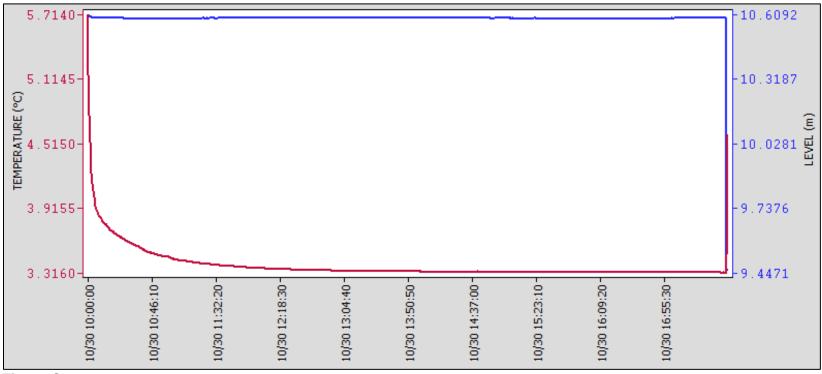


Figure C 10 MW18-52_Whitehorse Pump Test_2018_10_30

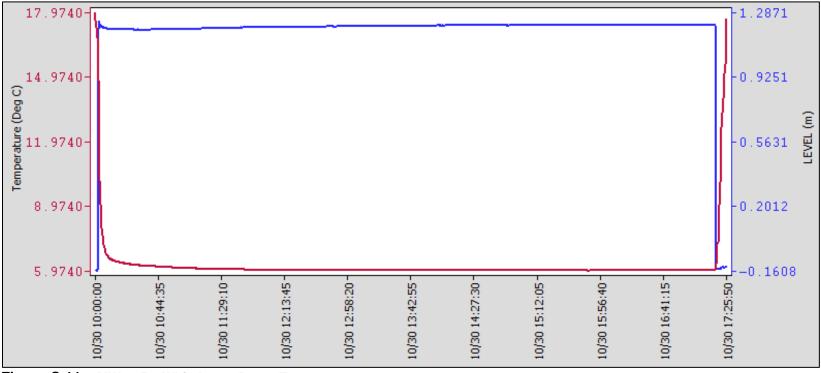


Figure C 11 MW18-54_Whitehorse Pump Test_2018_10_30

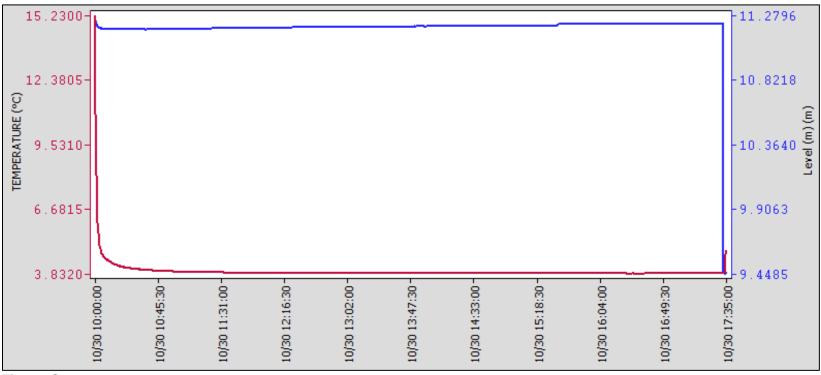


Figure C 12 MW18-55_Whitehorse Pump Test_2018_10_30

* Pump Test Well *

FIELD DATA SHEET

DATE:	Oct	29/	18
DAIL.	CO	011	10

PROJECT:

WELL ID: MW16-09

STATIC WATER LEVEL (m BTOC):

WELL DEPTH (m BTOC):

WATER PURGE METHOD: **VOLUME REMOVED:** FIELD PERSONNEL:

STICK UP (m):

Northing **Easting Gps Location:** Zone:

reading error (± m):

NOTE: Time zero is whne the water level is the lowest as this is a recovery test.

Time	Reading (minutes)	Water Level (mBTOC)	Drawdown/Recovery		Comment	s
10:06	-	4.194	DTB=5.246	Prior +	to start u	ρ
11:55 >>	Pump	Started		pH	EC	Temp(c)
11:55:30	3050	4.682		8.1	23m5	3.7 au
11:56	Im	4.893		8.3	2-24-5	_
11:57	am	5.198				_
11:58	3m	5.201				_
11:59	4m	5.203				_
12:12	17m	5.205				_
12:25	30m	5.206		8.3	2.24	_
13:33	98m	5.214				-
13:55	laom	5.217		7.5	2.27	3.7
14:55	180m	5.221		9. 7.9	2.26	3.6
15:05	190m -	> Adjusted	Pumplalittle to	ohighto	lropped flow	Stightly)
15:55	240m	5.197		7.6	12.27	3.7
16:55	300m	5.198		8.0	2.26	3.8
17:55	360m	5.196		7.7	2.28	3.8

Time	Reading (minutes)	Water Level (mBTOC)	Drawdown/Recovery	Comments
	1 = -			
1417				
	7			
			1	
		W-100		
	14			

FIELD DATA SHEET

DATE: Oct 29/18		Easting	Northing	
PROJECT:	Gps Location:			
WELL ID: MW 16-12	Zone:			
STATIC WATER LEVEL (m BTOC):	reading error (± m):			

WELL DEPTH (m BTOC):

STICK UP (m):

NOTE: Time zero is whne the water level is the lowest as this is a recovery test.

WATER PURGE METHOD:

VOLUME REMOVED: FIELD PERSONNEL:

Time	Reading (minutes)	Water Level (mBTOC)	Drawdown/Recovery	Comments
10:09	8	3.823	DTB=5.482	Prior to Startup
12:00		3.823		A
12:17		3.823		
13:22		3.823		
14:20		3.823		Ÿ
15:26		3.823		
16:26		3.826		
17:21		3.832		
17:56		3.833		
		,		

Time	Reading (minutes)	Water Level (mBTOC)	Drawdown/Recovery	Comments
			Y	
				•
			A	
		co. sej		
-				
		-		
Swe				
- 100			-	

FIELD DATA SHEET

	Easting	Northing	
Gps Location:			
Zone:		1000	
reading error (± m):			
	Zone:	Gps Location: Zone:	Gps Location: Zone:

WELL DEPTH (m BTOC):

STICK UP (m):

NOTE: Time zero is whne the water level is the lowest as this is a recovery test.

WATER PURGE METHOD: VOLUME REMOVED: FIELD PERSONNEL:

Time	Reading (minutes)	Water Level (mBTOC)	Drawdown/Recovery	Comments
11:06	V	4.683	tro 5.902	prior to setup.
12:03		4.675		
12:19		4.675		
13:23		4.675		
14:22		4.677		
15:28		4.683		
16:28		4.683		
17:23		4.683		
18:02		4.684		
				*
		•		

Time	Reading (minutes)	Water Level (mBTOC)	Drawdown/Recovery	Comments
				•
				1
				147

FIELD DATA SHEET

DATE: Oct 29/18		Easting	Northing	
PROJECT:	Gps Location:			
WELL ID: MW18-34	Zone:			
STATIC WATER LEVEL (m BTOC):	reading error (± m):			

WELL DEPTH (m BTOC):

STICK UP (m):

NOTE: Time zero is whne the water level is the lowest as this is a recovery test.

WATER PURGE METHOD: VOLUME REMOVED: FIELD PERSONNEL:

Time	Reading (minutes)	Water Level (mBTOC)	Drawdown/Recovery	Comments
10:19	08	4.134	DTB=6.101	Prior to Startup
12:05		4.134		
12:20		4.134		
13:25		4.134		
14.24		4.134		
15:31		4.135		
16:30	1	4.133		
17:25		4.134		*
18:07		4.135		man desired
				₹ ×

Time	Reading (minutes)	Water Level (mBTOC)	Drawdown/Recovery	Comments
				*
			170	
				
J., 104 2 104				
1000 - 10				
	-			

FIELD DATA SHEET

DATE: Oct 29/18		Easting	Northing	
PROJECT:	Gps Location:			
WELL ID: MOLLING MUIS-56	Zone:			
STATIC WATER LEVEL (m BTOC):	reading error (± m):			

WELL DEPTH (m BTOC):

STICK UP (m): NOTE: Time zero is whie the water level is the lowest as this is a recovery test.

WATER PURGE METHOD: VOLUME REMOVED:

FIELD PERSONNEL:

Time	Reading (minutes)	Water Level (mBTOC)	Drawdown/Recovery	Comments
was	11	GA	DTB-6.957	
10:32	b	7.092	10.4000042	Prior to Startup
12:10		7.084		
12:22		7.084		
13:27		7.084		
14:27		7.082		
15:34		7.079		
16:33		7.078	115	4
17:27		7.079		
18:191		7.082		
				*
		i i		
		華		
		44		

Time	Reading (minutes)	Water Level (mBTOC)	Drawdown/Recovery	Comments

FIELD DATA SHEET

DATE: Oct 29/18	Ea	asting	Northing	
PROJECT:	Gps Location:			
WELL ID: MW18-51	Zone:			
STATIC WATER LEVEL (m BTOC):	reading error (± m):			

WELL DEPTH (m BTOC):

STICK UP (m):

NOTE: Time zero is whne the water level is the lowest as this is a recovery test.

WATER PURGE METHOD: VOLUME REMOVED: FIELD PERSONNEL:

Time	Reading (minutes)	Water Level (mBTOC)	Drawdown/Recovery	Comments
10:28	Ø	3,676	DTB=5.654	Prior to Startup
12:08	-1	3.674		
12:24		3.673		
13:29		3.673		
14:24		3.671		
15:36		3.671		
16:35		3.672		
17:29		3.671		
18:15		3.672		
				(

Time	Reading (minutes)	Water Level (mBTOC)	Drawdown/Recovery	Comments
-				
		(m)		
		100-2		
200				

FIELD DATA SHEET

A	1 2-/10
DATE : 📿	+ 30/18
PROJECT:	193531161
WELL ID.	MILLI8-51

WELL ID: MWID

STATIC WATER LEVEL (m BTOC):

WELL DEPTH (m BTOC):

STICK UP (m):

WATER PURGE METHOD: Pump

VOLUME REMOVED:

FIELD PERSONNEL: £

	Easting	Northing
Gps Location:		
Zone:		
reading error (± m):		

NOTE: Time zero is whne the water level is the lowest as this is a recovery test.

Time	Reading (minutes)	Water Level (mBTOC)	Drawdown/Recovery		Comments	
8:56	_	4:737	DTB= 5.745	Prior	to Ertup.	
0.7				pH	EC	Temp(°C)
0:15	Ø	Pump Test	Started	-	_	
0:15:30		4.949 -	7 Sampled	7.8	186545	4.3°C
0:16	in	5.135		-	_	
0:17	2m	5.138		-		
0:18	3m	5.142		> Flow	adjusted (Highe	()
0:30	5m	5.326			1 1/11	11.
10:22	7m	5.351		> Flow	adjusted (He	gher)
10:25	IOM	5.368				
10:28	13m	5.376		- 1		
10:30	15m	5.389				
10:42	27m	5.412				1 - /
10:55	40m	5.413		PH	EC	Temple
11:15	60m	5.415 =	Sampled >	7.3	1878 NS	4.2
OXFI	ou Adju	sted (High	est it will go	0)* -		
1248	130m	· · · ·		~		
11:42	87m	5.581		PH	EC	Temple
2:15	120m	5.583	-> Sampled *	7.8	1897mS	4.4
3:15	180m	5.582		7.3	189945	1 4.3

Time	Reading (minutes)	Water Level (mBTOC)	Drawdown/Recovery	PH	Comments Temp (oc)
14:15	240m	5.583 -	> Sampled *	7.7	188245 4.1
15:15	300m	5.582		73	1895 us 3.9
6:15	360m	5.582		7.6	1893ms 3.9
6:45	390m	5.584 3	sampled *	7.2	1906m5 4.0
6:45	> Pur	np Shut	off (pump te	st co	noleta)
			of room in	totes	rif icl
				1010	
-					1111
	1-				

FIELD DATA SHEET

DATE: Oct 30/18		Easting	Northing	
PROJECT: 1232 21161	Gps Location:			
WELL ID: MW 18-51	Zone:	0		
STATIC WATER LEVEL (m BTOC):	reading error $(\pm m)$:			

WELL DEPTH (m BTOC):

STICK UP (m):

NOTE: Time zero is whne the water level is the lowest as this is a recovery test.

WATER PURGE METHOD:

VOLUME REMOVED:

FIELD PERSONNEL:

Time	Reading (minutes)	Water Level (mBTOC)	Drawdown/Recovery	Comments
9:04	_	3.669	DIB= 5.609 st started	Prior to Startup
10:15	Ø	Pump Te	st started	
10:31	16m	3.670		
10:50	35m	3.672		
11:32	77m	3.673		
12:24	134m	3.674		
3:28	193m	3.675		
14:30	255m	3.674		
15:26	311m	3.674		+

Time	Reading (minutes)	Water Level (mBTOC)	Drawdown/Recovery	Comments
			-	
				V ²
-				

FIELD DATA SHEET

DATE: Oct 30/18

PROJECT: 12 32 2116 \ Gps Location:

WELL ID: MW 16-12

Zone:

STATIC WATER LEVEL (m BTOC): reading error (± m):

WELL DEPTH (m BTOC):

STICK UP (m):

NOTE: Time zero is whne the water level is the lowest as this is a recovery test.

WATER PURGE METHOD:

VOLUME REMOVED:

FIELD PERSONNEL: BCS

Time	Reading (minutes)	Water Level (mBTOC)	Drawdown/Recovery	Comments
9:01	_	3.827	DTB=5,478	Prior to Staftup
10:15	6	Pump Tes	DTB=5,478 + Started	
10:33	18m	3.827		
10:52	37m	3.827		
11:34	79m	3.827		
12:30	136m	3.827		
13:30	195m	3.827		
14:32	257m	3,827		
15:29	314m	3.827		
		P		

Time	Reading (minutes)	Water Level (mBTOC)	Drawdown/Recovery	Comments
m:10				
	-			
				<u> </u>

FIELD DATA SHEET

DATE: Oct 30/18 PROJECT: 123221161	Ea	sting	Northing	
PROJECT: 123221161	Gps Location:			
WELL ID: MW18-52	Zone:			
STATIC WATER LEVEL (m BTOC):	reading error (± m):			

WELL DEPTH (m BTOC):

STICK UP (m):

NOTE: Time zero is whne the water level is the lowest as this is a recovery test.

WATER PURGE METHOD: VOLUME REMOVED:

FIELD PERSONNEL:

BUS

Time	Reading (minutes)	Water Level (mBTOC)	Drawdown/Recovery	Comments
9:08)	5.609	OTB=6.828	Prior to Startup
10:15	0	Pump T.	DTB=6.828 est Started	
10:36	álm	5.611		
10:56	41m	5.614		
11:37	82m	5.623		
12:34	139m	5.626		
13:33	198m	5.63\ 5.635		
14:34	259m	5. 635		
15:32	317m	5.639		

Time	Reading (minutes)	Water Level (mBTOC)	Drawdown/Recovery	Comments
			1505.00	
		1800		
		-		

FIELD DATA SHEET

Easting	Northing
Gps Location:	
Zone:	
reading error $(\pm m)$:	
	Gps Location: Zone:

WELL DEPTH (m BTOC):

STICK UP (m):

NOTE: Time zero is whne the water level is the lowest as this is a recovery test.

WATER PURGE METHOD:

VOLUME REMOVED:

FIELD PERSONNEL: BCS

Time	Reading (minutes)	Water Level (mBTOC)	Drawdown/Recovery	Comments
9:11	_	3.978	DTB=5.746	Prior to Startup
10:15	Ø	Pump Te	DTB=5.746 st Started	
10:38	23m	3.976		
10:57	42m	3.980		
11:38	83m	3.981		
12:36	141m	3.980		
13:35	200m	3.980		
14:36	261m	3.980		
15:33	318m	3.980	Tyme	
				~
		<i>y</i>		

Time	Reading (minutes)	Water Level (mBTOC)	Drawdown/Recovery	Comments
		-		
10				*
				*
	1 - 11			and the second s
				,et
				-
				*
	1			
_				
-				

FIELD DATA SHEET

DATE: Oct 30/18	Easting	Northing
PROJECT: 123221611	Gps Location:	
WELL ID: MW18-54	Zone:	
STATIC WATER LEVEL (m BTOC):	reading error (± m):	1

WELL DEPTH (m BTOC):

STICK UP (m):

NOTE: Time zero is whne the water level is the lowest as this is a recovery test.

WATER PURGE METHOD:

VOLUME REMOVED:

FIELD PERSONNEL: US

Time	Reading (minutes)	Water Level (mBTOC)	Drawdown/Recovery	Comments
9:15		3.838	DTB = 5.245	Prior to Startup
10:15	Ø	Pump Te	DTB = 5.245 st started	
10:39	24m	3.836		
10:59	44m	3.839		
11:39	84m	3.838		
12:37	142m	3.838		
13:36		3.834		
14:37	262m	3.839		
15:35	320m	3.839		

Time	Reading (minutes)	Water Level (mBTOC)	Drawdown/Recovery	Comments
		(100)		
				ul

Burnaby: 4606 Canada Way, Burnaby, BC V5G 1K5 Toll Free (800) 665 8566
Victoria: 460 Tennyson Place, Unit 1, Victoria, BC V8Z 6S8 Toll Free (866) 385-6112
maxxam.ca

CHAIN OF CUSTODY RECORD

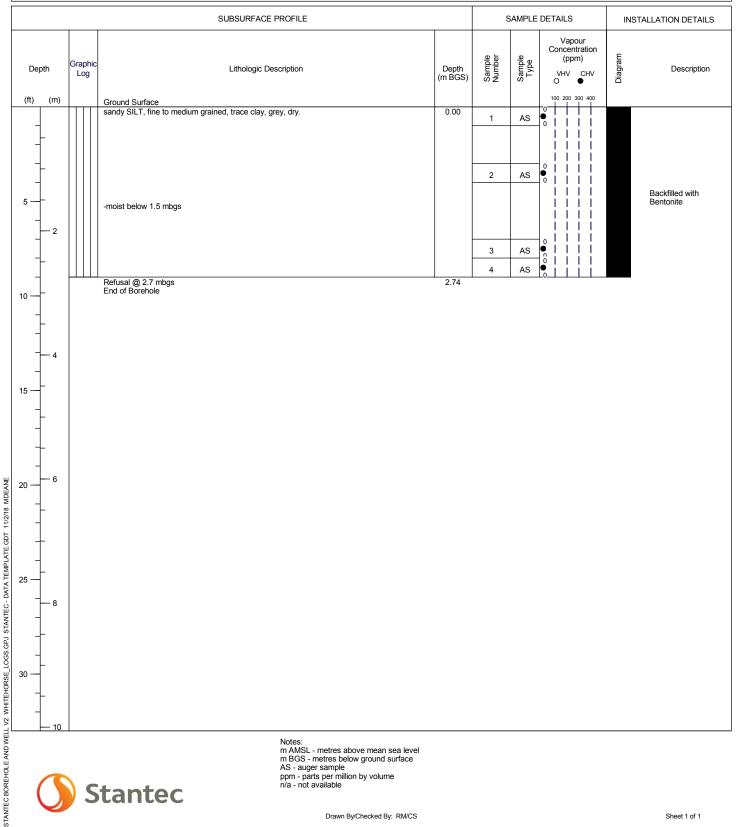
	G134603	
Page	of	

Invoice Information	Report Information (if differs t	from invoice)		Project Information	Turnaround Time (TAT) Required				
company: Stante C	Company:		Quotation	stantec Regular	5 - 7 Days Regular (Most analyses)				
Contact Name: Casey Sibald	Contact Name:		P.O. #/AFE#:	3	PLEASE PROVIDE ADVANCE NOTICE FOR RUSH PROJECTS				
Address: 202-107 Main St.	Address:				Rush TAT (Surcharges will be applied)				
Whitehorse YT PC: 2991		PC:	Project #:	13221161	Same Day 2 Days				
Phone/Fax: 867 446 7644 9714 247	- 120 Tabre 10 Tabre		Site Location:	Whitehorse	☐ 1 Day	3-4 Days			
Email: Careyisibbaldestentecio	Email:		Site #:		Date Required:				
copies: josephiriddellestanter.com	Eoples rad. Suley estar	tec.lom	Sampled By:	365	Rush Confirmation #:				
Laboratory Us				Analysis Requested		Regulatory Criteria			
YES NO Cooler ID	694								
Seal Present	Depot Reception	1.00		ed? ed?		☐ BC CSR			
Seal Intact Temp	1. 1 y . 1 . E Ye.	C	18E - F4	Preserved? Preserved? d? d? Sulphate COD Alkalinity		4			
Cooling Media	The Manual of the	ASSESSED AND ADDRESS.	☐ МТВЕ (/ F1 H / PAH ☐ F2 - F4	Preserved? Preserved? rved? Sulphate CoD Alkalinity Ammonia		YK CSR			
YES NO Cooler ID				0 0		CCME			
Seal Present Seal			C/B	ield Presield Presiel					
Seal Intact Temp Cooling Media			Exs/	ed?		Drinking Water			
YES NO Cooler ID			/OC/BT		100 mm	BC Water Quality			
			OVOC/BTEXS/VPH		IVZE				
Seal Intact Temp				etals A	DO NOT ANALYZE	Other			
Cooling Media		iners	VPH	etals	NOT				
Sample Identification	Date Sampled (yyyy/mm/dd) Time Sampled (hh:mm)	xixteM # of Containers	BTEXS / VPH BTEX F1 PAH PAH	□ Dissolved Metals □ Dissolved Mercury □ Total Metuls □ Total Mercury □ Chloride □ TSS □ □ □ pH □ Nitrite		Special Instructions			
1 MUIA-31@16:45	2018/10/30 16:45	6N 2		The state of the s					
2 MW18-31 @10:15	1 10:15	1		X					
3 MW18-316 12:15	12:15			V		7 -0 09/16			
4 MW 18-31 C 14:15	14:15			2		ayono e one			
5 MW16-40009 17:55	2018/10/29 17:55			X		1			
· MW16-09@ 15:55	15:55		F	X					
1 MW16-09@ 13155	13:55	1		X					
* MW16-09@ 11:55	11:55	AA		X		5 5 5			
9	15,016-1 Apr 3,000								
10		A				€			
Unless otherwise agreed to in writing, work submitted or	this Chain of Custody is subject to Maxxam's standa	ard Terms and Conditions.	s. Signing of this Chain of C	Custody document is acknowledgement and acceptance of	of our terms which are available fo	or viewing at www.maxxam.ca/terms.			
Relinquished by: (Signature/ Print) Date	(yyyy/mm/dd): Time (hh:mm):	Received by: (Sign	nature/ Print)	Date (yyyy/mm/dd): Time (hh:mm):		Maxxam Job #			
BOSEYS Brad Suley 2019	3/10/31 9:16								

APPENDIX D BOREHOLE LOGS

Borehole: BH18-46

Project: 5th Avenue Phase II ESA (2018-2019)


Client: Government of Yukon Whitehorse, Yukon Location:

123221161 Number: Field investigator: MD

Contractor: Midnight Sun Drilling Drilling method: Auger

26-Jul-2018 Date started/completed:

Ground surface elevation: n/a Top of casing elevation: n/a Easting: n/a Northing: n/a

Notes: m AMSL - metres above mean sea level m BGS - metres below ground surface AS - auger sample ppm - parts per million by volume n/a - not available

Borehole: BH18-47

Project: 5th Avenue Phase II ESA (2018-2019)

Client: Government of Yukon Location: Whitehorse, Yukon

123221161 Number: Field investigator: MD

Contractor: Midnight Sun Drilling Drilling method: Sonic Date started/completed: 28-Jul-2018

Ground surface elevation: 642.05 m AMSL

Top of casing elevation: n/a Easting: 496888.334 6730855.876 Northing:

		SUBSURFACE PROF	ILE			SAMPLE DETAILS	S			INS	STALLATION DETAILS
Depth	Graphic Log	Lithologic Descript	Elevation (m AMSL) Depth (m BGS)	Sample Number	Sample Type	Lab Analyses		(pp	our ntration m) CHV	Diagram	Description
(ft) (m)		Ground Surface	642.05				10	0 200 I	300 400 I I		
-		sandy SILT, trace clay, grey, moist.	0.00	1	СС		0				
				2	СС		0				
5 — 2	p 8.4	CONCRETE	639.91 2.13	3	CC		5 0				
		SAND, some silt, grey, noticeable PHC odour sandy SILT, trace clay, grey, moist.	2.13 639.61 2.44 639.30 2.74	4	СС	LEPH, HEPH, EPH, PAH	0				
10 —					СС	EPH	0				Backfilled with Bentonite
- 4				5	CC	EPH	0				
5 —				6	СС		0				
-											
20 — 6		End of Borehole	635.95 6.10						 		
-											
25 —											
8											
+											
<u> </u>			Notes: m AMSL - metres above mean sea m BGS - metres below ground surfa CC - continuous core sample ppm - parts per million by volume	level ice							
		tantec	n/a - not available								

Monitoring Well: MW18-30

Project: 5th Avenue Phase II ESA (2018-2019)

Client: Government of Yukon Location: Whitehorse, Yukon 123221161 Number:

Field investigator: MD

Contractor: Midnight Sun Drilling

Drilling method: Sonic 28-Jul-2018 Date started/completed: Ground surface elevation: 642.47 m AMSL Top of casing elevation: 643.37 m AMSL 496881.3913 Easting:

Northing: 6730942.5

	SUBSURFACE PROFILE			SAMPLE DETAILS					INSTALLATION DETAILS		
Depth (ft) (m)	Graphic Log	Lithologic Description	Elevation (m AMSL Depth (m BGS)	Sample Number	Sample Type	Lab Analyses	Conce (p VHV O	apour entration opm) / CHV 0 300 400	Diagram	Description	
			040.37							stickup 0.9 m abov	
_		Ground Surface	642.47							ground surface	
0 — 0		sandy SILT, trace clay, grey, dry.	0.00								
}				1	СС	Metals, TOC	0		Ш		
4									Ш	Bentonite	
-							0		Ш		
5 —		-moist below 1.5 mbgs		2	CC		1				
- 2										Vapour Probe	
1				3	CC		- ₀				
+											
10 —		-noticeable PHC odour below 2.7 mbgs		4/ QC18- 04 /	СС	BTEX, LEPH, HEPH, EPH, PAH	0			Sand Pack	
		- no PHC odour below 3.0 mbgs		04			lii				
_				5	СС		0 3				
4											
-				6	СС		0				
15 —				0	CC		- 1			51 mm 10 Slot Schedule 40 PVC	
1										Screen Well was dry wher	
1				7	СС		0			measured on Aug 16, 2018	
_											
20 — 6	ШШ	End of Borehole	636.38 6.10	8	CC		0	<u>ii</u>			
-											
+											
25 —											
8											
-											
Ī											
_											
Screen I Sand Pa Well Sea	ck Interval	1.83 - 1.98; 3.05 - 6.10 m BGS 1.68 - 1.98; 2.74 - 6.10 m BGS 0.00 - 1.68; 2.10 - 2.74 m BGS	Notes: m AMSL - metres above mean sea m BGS - metres below ground surfi CC - continuous core sample ppm - parts per million by volume n/a - not available	level ace							
		Tantoc									

Monitoring Well: MW18-31

Project: 5th Avenue Phase II ESA (2018-2019)

Client: Government of Yukon Location: Whitehorse, Yukon 123221161 Number:

Field investigator: MD

Contractor: Midnight Sun Drilling

Drilling method: Sonic Date started/completed: 28-Jul-2018 Ground surface elevation: 638.90 m AMSL Top of casing elevation: 639.75 m AMSL

Easting: 496912.1718 Northing: 6730967.307

Depth	SUBSURFACE PROFILE				SAMPLE DETAILS					INSTALLATION DETAILS		
	Graphic Log m)	Lithologic Description	Elevation (m AMSL) Depth (m BGS) 639.75	Sample Number	Sample Type	Lab Analyses	Conc (I VH' O	apour centration ppm)	< Diagram	Description		
-								 		stickup 0.85 m abo ground surface		
0 — 0	0	Ground Surface sandy SILT, trace clay, brown, moist.	638.90 0.00	1	СС	Metals, TOC	0					
-				2	СС		0	 				
5 — 2	2	-dry below 1.8 mbgs								Bentonite		
		-moist below 2.7 mbgs		3	CC		3 0	 				
10 —				4	CC		0	 	h a 11-			
- -4	4	-wet below 4.3 mbgs					0	i i i I I I		Sand Pack Groundwater eleva 638.34 masl on Au		
15 —		SAND AND GRAVEL grey wet noticeable PHC or	634.33 dour. 4.57 634.03	5 6	CC	BTEX, LEPH, HEPH, PAH, TOC	0 90 • O	 		21, 2018		
-	0) 0	SAND, some gravel, wet, noticeable PHC odour.	4.88	7	СС	EPH, grain size	0 1	70 		51 mm 10 Slot Schedule 40 PVC Screen		
-		sandy SILT, trace clay.	633.11 5.79					 				
20 — 6	6	End of Borehole	632.81 6.10	8	CC	EPH			600	Slough		

Monitoring Well: MW18-33

Project: 5th Avenue Phase II ESA (2018-2019)

Client: Government of Yukon Location: Whitehorse, Yukon 123221161 Number:

Field investigator: MD

Contractor: Midnight Sun Drilling

Drilling method: Auger Date started/completed: 24-Jul-2018 Ground surface elevation: 638.41 m AMSL Top of casing elevation: 638.24 m AMSL

Easting: 496931.482 6730922.915 Northing:

		SUBSURFACE PROF	FILE			SAMPLE DETAILS	3	INST	TALLATION DETAILS
Depth	Graphic Log	Lithologic Descript	Elevat (m AM Dept (m BG	า 🦝 ⋍	Sample Type	Lab Analyses	Vapour Concentration (ppm) VHV CHV O	Diagram	Description
(ft) (m)		Ground Surface sandy SILT, trace clay, brown, moist.	638.4 0.00				100 200 300 400	NER	J-plug
		sality SiL1, trace day, brown, moist.	0.00						Flush mount
				1	AS				
7				2	AS		$\left] egin{smallmatrix} 0 & 1 & 1 & 1 & 1 \\ 0 & 1 & 1 & 1 & 1 \\ 0 & 1 & 1 & 1 & 1 \\ \end{array} ight]$		
5 —									Bentonite
2		-trace gravel, dry below 1.8mbgs		3	AS		0		
			635.9						
		SAND, some gravel, trace silt, medium brown	n, dry. 2.44						
<u> </u>			635.3	6 4	AS		0		Sand Pack
) —		sandy SILT, fine grained, trace clay, trace gra	avel, grey, moist. 3.05]		
}				5	AS	EPH	55 O		Groundwater elevat
- -4				6	AS	TOC, grain size	0		636.32 masl on Aug 25, 2018
; -									51 mm 10 Slot Schedule 40 PVC
									Screen
0 - 6				7	AS				
								$[\circ \bigcirc \circ]$	
-				8	AS				Slough
T			631.0	9				000	
25 —		End of Borehole	7.32		1				
8									
_									
0 —									
+									
Screen II Sand Pa Well Sea	ck Interva I Interval:	3.05 - 6.10 m BGS 2.74 - 6.10 m BGS 0.30 - 2.74 m BGS	Notes: m AMSL - metres above mean s m BGS - metres below ground s AS - auger sample ppm - parts per million by volume n/a - not available	urface					
	_								

Project: 5th Avenue Phase II ESA (2018-2019)

Client: Government of Yukon Location: Whitehorse, Yukon 123221161 Number:

Field investigator: MD

Contractor: Midnight Sun Drilling

Drilling method: Auger 24-Jul-2018 Date started/completed: Ground surface elevation: 638.41 m AMSL 639.08 m AMSL Top of casing elevation:

Easting: 496940.8164 6730896.408 Northing:

		SUBSURFACE PROFILE				SAMPLE DETAILS	3		INS	TALLATION DETAILS
Depth (ft) (m)	Graphic Log	Lithologic Description	Elevation (m AMSL) Depth (m BGS)	Sample Number	Sample Type	Lab Analyses	Conce (F VH\ O	apour entration opm) / CHV	Diagram	Description
-			639.06							stickup 0.68 m abov ground surface
0 0		Ground Surface SAND, some silt, trace gravel, brown, dry.	638.41 0.00	1	AS	Metals, TOC	0 1			ground surface
				2	AS	·			Ш	Bentonite
5 —-				3	AS					
		sandy SILT, trace clay, some gravel, grey/brown, dry, dense.	636.12 2.29	4	AS					Vapour Probe
0 —		-moist below 3.4 mbgs		5	AS	EPH				Sand Pack
4		-wet below 3.8 mbgs		6	AS	EPH				Groundwater eleval 635.47 masl on Aug 25, 2018 51 mm 10 Slot
15 —					40					Schedule 40 PVC Screen
+				7	AS] 0 1 1 1			Sand Pack
20 - 6			632.31	8	AS		0 1 1		609	
25 — 8		End of Borehole	6.10							
Screen II Sand Pa Well Sea	ck Interva I Interval:	2.13 - 2.29; 3.51 - 5.03 m BGS al: 1.98 - 2.29; 3.35 - 5.03 m BGS m AMSL - metres am BGS - metres be AS - auger sample ppm - parts per mil n/a - not available **Tantec**	elow ground surfac							

Project: 5th Avenue Phase II ESA (2018-2019)

Client: Government of Yukon Whitehorse, Yukon Location: 123221161 Number:

Field investigator: MD

Contractor: Midnight Sun Drilling

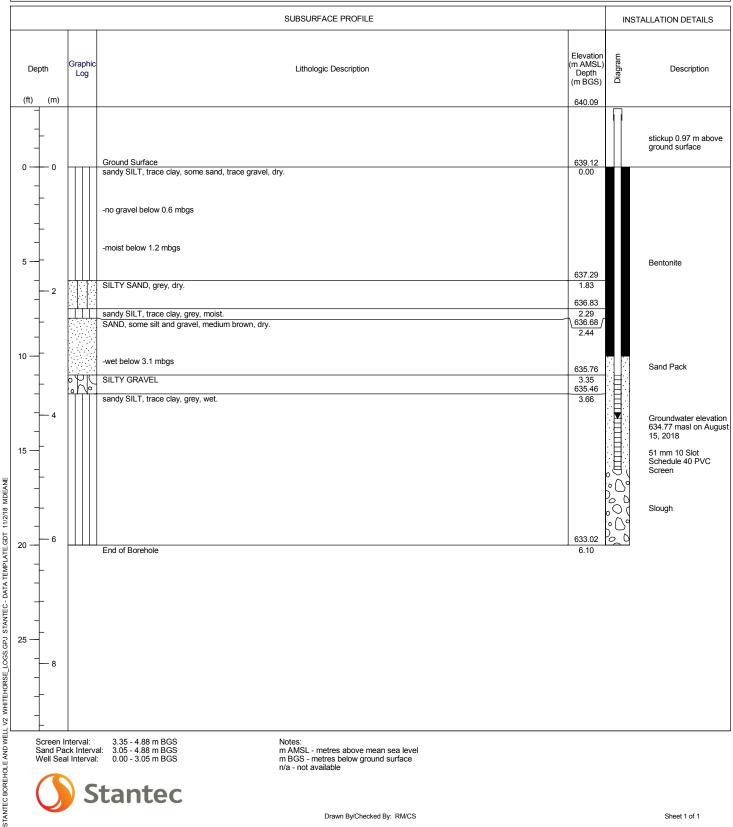
Drilling method: Auger 26-Jul-2018 Date started/completed: Ground surface elevation: 639.62 m AMSL Top of casing elevation: 640.34 m AMSL 496921.2924

Easting: 6730881.872 Northing:

		SUBSURFACE PROFILE				SAMPLE DETAILS		INS	TALLATION DETAILS
Depth (ft) (m)	Graphic Log	Lithologic Description	Elevation (m AMSL) Depth (m BGS)	Sample Number	Sample Type	Lab Analyses	Vapour Concentration (ppm) VHV CHV O 100 200 300 400	Diagram	Description
-									stickup 0.73 m ab ground surface
0 — 0		Ground Surface sandy SILT, fine to medium grained, trace clay, grey, dry.	639.62 0.00						
=				1	AS	Metals, TOC		Ш	Bentonite
5 —				2	AS		0	Ш	Bentonic
2		-some gravel below 1.8 mbgs		3	AS				Vapour Probe
+		-no gravel, brown, moist below 2.4 mbgs		4	AS				
		-trace firm to medium sand, grey, moist below 3.1 mbgs SILTY SAND, trace gravel.	636.27 3.35	_					
		SAND, some gravel, trace silt, medium brown, moist.	635.81 3.81	5 6	AS				
5 —		sandy SILT, trace clay, grey, wet.	635.05 4.57					√	Groundwater eleven 634.65 masl on A 17, 2018
-				7	AS		0		Sand Pack 51 mm 10 Slot
- 6		-some gravel, noticeable PHC odour below 5.5 mbgs -no gravel, no PHC odour below 5.8 mbgs		8	AS	BTEX, LEPH, HEPH, EPH, PAH, TOC	•		Schedule 40 PV0 Screen
		-some sand, grey, wet below 6.1 mbgs						600	
		-some gravel, noticeable PHC odour below 7.0 mbgs		9 10/ QC18- 02 /	AS AS	BTEX, LEPH, HEPH, EPH,			
5		-some fine to medium sand below 7.6 mbgs		02		\PAH, grain size /		000	Slough
-8				11	AS	LEPH, HEPH, EPH, PAH			
		End of Borehole	630.78 8.84	12	AS		0	001	
Screen Ir Sand Par Well Sea	ck Interval	AS - auger sample ppm - parts per milli	ow ground surfa						
	5	tantec							

Project: 5th Avenue Phase II ESA (2018-2019)

Client: Government of Yukon Whitehorse, Yukon Location: 123221161 Number:


Field investigator: MD

Midnight Sun Drilling Contractor:

Drilling method: Sonic Date started/completed: 27-Jul-2018 Ground surface elevation: 639.12 m AMSL 640.09 m AMSL Top of casing elevation: Easting: 496931.9094

Northing:

6730873.749

Screen Interval: Sand Pack Interval: Well Seal Interval: 3.35 - 4.88 m BGS 3.05 - 4.88 m BGS 0.00 - 3.05 m BGS

Notes: m AMSL - metres above mean sea level m BGS - metres below ground surface n/a - not available

Project: 5th Avenue Phase II ESA (2018-2019)

Client: Government of Yukon Whitehorse, Yukon Location: 123221161 Number:

Field investigator: MD

Contractor: Midnight Sun Drilling

Drilling method: Sonic 27-Jul-2018 Date started/completed: Ground surface elevation: 639.04 m AMSL Top of casing elevation: 639.84 m AMSL

Easting: 496930.2706 Northing: 6730870.614

		SUBSURFACE PROFILE				SAMPLE DETAILS	3		11	NSTALLATION DETAILS
Depth (ft) (m)	Graphic Log	Lithologic Description	Elevation (m AMSL) Depth (m BGS) 639.86	Sample Number	Sample Type	Lab Analyses	Conc () VH O	apour centration ppm)	Diagram	Description
										stickup 0.82 m above ground surface
0 0		Ground Surface sandy SILT, trace clay, trace gravel, dry.	639.04 0.00	1	СС		0	 		
- - -		-no gravel below 0.6 mbgs								
5 —		-moist below 1.2 mbgs	637.21	2	СС		0			
2		SILTY SAND, grey, dry. sandy SILT, trace clay, grey, moist.	1.83 636.75 2.29	4	СС		0			
10 —		SAND, some silt and gravel, medium brown, dry. -wet below 3.1 mbgs	636.60 / 2.44	5 6	CC	EPH				
-	000	SILTY GRAVEL sandy SILT, trace clay, grey, wet.	635.69 3.35 635.38 3.66	7/ QC18- 03	СС	EPH	0 • 0		V	Groundwater elevation
-				8	СС		0 0			635.35 masl on Augu 15, 2018
15 —				9	CC		0 0			
1										
20 — 6				10	СС		0 0			
-							0			Bentonite
25 —				12	CC		0 0			
- 8										
-										
Screen II Sand Pa Well Sea	ck Interva I Interval:	0.00 - 13.41 m BGS	etres above mean sea tres below ground surfa ous core sample per million by volume							
U	S	tantec n/a - not avai	ilable Drawn By/Checked By: RN	WCS						Sheet 1 of 2

Project: 5th Avenue Phase II ESA (2018-2019)

Client: Government of Yukon Location: Whitehorse, Yukon 123221161 Number:

Field investigator: MD

Contractor: Midnight Sun Drilling

Drilling method: Sonic 27-Jul-2018 Date started/completed: Ground surface elevation: 639.04 m AMSL Top of casing elevation: 639.84 m AMSL

Easting: 496930.2706 Northing: 6730870.614

		SUBSURFACE PROF	ILE			SAMPLE DETAILS	;	INS	TALLATION DETAIL
Depth	Graphic Log	Lithologic Descripti	Elevation (m AMSL) Depth (m BGS)	Sample Number	Sample Type	Lab Analyses	Vapour Concentration (ppm) VHV CHV O	Diagram	Description
(ft) (m)		sandy SILT trace clay grey wet					100 200 300 400		
		SAND, some silt, grey, wet. SAND SILT, trace clay, grey, wet.	628.07 10.97 627.61 11.43						Sand Pack 51 mm 10 Slot Schedule 40 PVC Screen
_ †			623.80						
50 —		End of Borehole	15.24						
18									
	ck Interval		Notes: m AMSL - metres above mean sea l m BGS - metres below ground surfa CC - continuous core sample ppm - parts per million by volume	evel ce					
	S	tantec	n/a - not available						
			Drawn By/Checked By: RM	100					Sheet 2 of 2

Project: 5th Avenue Phase II ESA (2018-2019)

Client: Government of Yukon Location: Whitehorse, Yukon 123221161 Number:

Field investigator: MD

Contractor: Midnight Sun Drilling

Drilling method: Sonic Date started/completed: 28-Jul-2018 Ground surface elevation: 640.48 m AMSL Top of casing elevation: 641.47 m AMSL Easting: 496893.4321

6730881.373 Northing:

		SUBSURFACE PROFI	LE			SAMPLE DETAILS	S	INST	TALLATION DETAILS
Depth (ft) (m)	Graphic Log	Lithologic Descriptio	(m BGS)	Sample Number	Sample Type	Lab Analyses	Vapour Concentration (ppm) VHV CHV O •	Diagram	Description
0 0		Ground Surface	640.48						stickup 0.99 m abov ground surface
5 — 2		sandy SILT, trace clay, grey, dry. -brown below 1.5 mbgs -grey, moist below 1.8 mbgs	0.00	2 3	cc cc cc				
10				5	CC				Bentonite
15 —		-wet below 4.9 mbgs		7	CC	LEPH, HEPH, EPH, PAH			Sand Pack Groundwater eleva 633.71 masl on Au 15, 2018
20 — 6		End of Borehole	634.38 6.10	8	СС				51 mm 10 Slot Schedule 40 PVC Screen
25 — 8									
Screen I Sand Pa Well Sea	ack Interval	4.57 - 6.10 m BGS 4.27 - 6.10 m BGS 0.00 - 4.27 m BGS	Notes: m AMSL - metres above mean sea I m BGS - metres below ground surfa CC - continuous core sample ppm - parts per million by volume n/a - not available	evel ce					

Project: 5th Avenue Phase II ESA (2018-2019)

Client: Government of Yukon Location: Whitehorse, Yukon 123221161 Number:

Field investigator: MD

Contractor: Midnight Sun Drilling

Drilling method: Sonic 28-Jul-2018 Date started/completed: Ground surface elevation: 638.72 m AMSL Top of casing elevation: 639.51 m AMSL

Easting: 496920.6513 Northing: 6730957.047

		SUBSURFACE PROFILE			1	SAMPLE DETAIL:	S		INS	STALLATION DETAILS
Depth (ft) (m)	Graphic Log	Lithologic Description	Elevation (m AMSL) Depth (m BGS)	Sample Number	Sample Type	Lab Analyses	VH O	/apour centratio (ppm) HV CH'	< Diagram	Description
(ft) (m)			639.51				1 100.			
-		Ground Surface	638.72							stickup 0.79 m abo ground surface
0 0		sandy SILT, trace clay, brown, dry.	0.00					 		
1				1	СС	Metals, TOC	0			
1										Bentonite
7				2	СС		0			bentonite
-							o ¦	iii		
5 —		-moist below 1.5 mbgs		3	CC		-			
- 2					- 00		0	i i i		Vapour Probe
+										
-							0	111		Oard Dade
0				4	CC		0			Sand Pack
_							- i	i i i		
-[5	СС		2			Groundwater eleva
4							j	i i i		635.26 masl on Au 17, 2018
_		SAND AND GRAVEL, brown, moist.	634.45 4.27					1 1 1		, 20.0
5 —	000	-some silt, noticeable PHC odour below 4.6 mbgs	4.27	6	СС		1 1			51 mm 10 Slot
_		-some siit, noticeable FITC ododi below 4.6 mbgs		7	CC	EPH	● ○ 35			Schedule 40 PVC Screen
			000.00							
1		sandy SILT, trace clay, some gravel, grey, noticeable PHC odour.	633.39 5.33				i	iii		
							╛┆			
6				8/ QC18-	СС	BTEX, LEPH, HEPH, EPH, PAH, TOC	0 ●0 35	i i i		
				05		PAH, TOC	1			Sand Pack
7				9	СС	EPH, grain size	0 i	<u> </u>		
7							6			
Ť		-wet, no PHC odour below 7.0 mbgs								
_				10	CC	EPH	0	111		
25 —				11	СС		0 •			Backfilled with
8							d° ¦	<u>i i i</u>		Bentonite
-										
Ŧ							- i	1 1		
Ł				12	СС		0 0			
30 —		End of Borehole	629.58 9.14					Щ		
	ck Interval	CC - continuous core s ppm - parts per million	ground surfa ample							
	y 5	tantec nva - not available								
		Drawn By/O	hecked By: RM	NCS						Sheet 1 of 1

Project: 5th Avenue Phase II ESA (2018-2019)

Client: Government of Yukon Whitehorse, Yukon Location: 123221161 Number:

Field investigator: MD

Contractor: Midnight Sun Drilling **Drilling method:** Sonic Date started/completed: 27-Jul-2018 Ground surface elevation: 641.21 m AMSL 642.09 m AMSL Top of casing elevation: Easting: 496907.1839

6730850.805

Northing:

SAMPLE DETAILS SUBSURFACE PROFILE INSTALLATION DETAILS Vapour Concentration Elevation (ppm) (m AMSL) Depth Graphic Lithologic Description Lab Analyses Description Depth VHV CHV Log (m BGS) 100 200 300 400 (ft) (m) 642.07 stickup 0.86 m above ground surface Ground Surface sandy SILT, trace clay, brown, moist. CC 640.60 SAND, some silt, medium coarse. 0.61 2 CC 640.29 sandy SILT, trace clay, grey, moist. 0.91 BTEX, LEPH, HEPH, EPH, PAH СС 638.47 SAND AND GRAVEL, dry. 2.74 638.16 СС 4 10 SILTY SAND, trace gravel, moist. 3.05 15 Groundwater elevation 634.02 masl on August 15, 2018 WHITEHORSE_LOGS.GPJ STANTEC - DATA TEMPLATE.GDT 11/2/18 MDEANE 635.11 20 GRAVEL, wet, rounded. 6.10 634.81 CC sandy SILT, trace clay, firm to medium, grey, wet. 6.40 6 CC Bentonite 7 CC CC STANTEC BOREHOLE AND WELL V2

Screen Interval: Sand Pack Interval: 13.72 - 15.24 m BGS 13.41 - 15.24 m BGS 0.00 - 13.41 m BGS

Stantec

Project: 5th Avenue Phase II ESA (2018-2019)

Client: Government of Yukon Whitehorse, Yukon Location: 123221161 Number:

Field investigator: MD

Contractor: Midnight Sun Drilling

Drilling method: Sonic 27-Jul-2018 Date started/completed: Ground surface elevation: 641.21 m AMSL Top of casing elevation: 642.09 m AMSL

496907.1839 Easting: Northing: 6730850.805

		SUBSURFACE PR	OFILE			;	SAMPLE DETAILS	3	INST	ALLATION DETAILS
Depth (ft) (m)	Graphic Log	Lithologic Descr	ption E	Elevation n AMSL) Depth m BGS)	Sample Number	Sample Type	Lab Analyses	Vapour Concentration (ppm) VHV CHV O •	Diagram	Description
(ft) (m)	nterval:	SAND, trace silt, wet. SILT, some sand, grey, wet. End of Borehole 13.72 - 15.24 m BGS it: 13.41 - 15.24 m BGS		627.49 13.72 627.19 14.02						Sand Pack 51 mm 10 Slot Schedule 40 PVC Screen
Well Sea	l Interval:		m BGS - metres below gro CC - continuous core samp ppm - parts per million by v n/a - not available	und surfac ble olume	e					Sheet 2 of 2

Project: 5th Avenue Phase II ESA (2018-2019)

Client: Government of Yukon Whitehorse, Yukon Location: 123221161 Number:

Field investigator: MD

Midnight Sun Drilling Contractor:

Drilling method: Sonic Date started/completed: 27-Jul-2018 Ground surface elevation: 641.11 m AMSL 641.99 m AMSL Top of casing elevation: Easting: 496910.3904

Northing:

6730851.375

SUBSURFACE PROFILE INSTALLATION DETAILS Elevation (m AMSL) Depth (m BGS) Graphic Depth Lithologic Description Description Log (ft) (m) 641.99 stickup 0.88 m above ground surface Ground Surface 641.11 0 sandy SILT, trace clay, brown, moist. 640.50 SAND, some silt, medium coarse. 0.61 640.20 sandy SILT, trace clay, grey, moist. Bentonite 638.37 2.74 638.06 SAND AND GRAVEL, dry. SILTY SAND, trace gravel, moist. 3.05 -oxidation @ 4.3 mbgs Sand Pack 15 -wet below 4.9 mbgs STANTEC BOREHOLE AND WELL V2 WHITEHORSE_LOGS.GPJ STANTEC - DATA TEMPLATE.GDT 11/2/18 MDEANE 51 mm 10 Slot Schedule 40 PVC 635.63 COARSE SAND, trace gravel, grey, wet. 5.49 Groundwater elevation 635.02 633.11 masl on August 15, 2018 20 End of Borehole 6.10 25

Screen Interval: Sand Pack Interval: Well Seal Interval: 4.57 - 6.10 m BGS 4.27 - 6.10 m BGS 0.00 - 4.27 m BGS

Notes: m AMSL - metres above mean sea level m BGS - metres below ground surface n/a - not available

Project: 5th Avenue Phase II ESA (2018-2019)

Client: Government of Yukon Whitehorse, Yukon Location: 123221161 Number:

Field investigator: MD

Midnight Sun Drilling Contractor:

Drilling method: Auger Date started/completed: 26-Jul-2018 Ground surface elevation: 639.44 m AMSL 639.37 m AMSL Top of casing elevation: Easting: 496944.7534

Northing:

6730780.993

SUBSURFACE PROFILE INSTALLATION DETAILS Elevation (m AMSL) Depth (m BGS) Graphic Depth Lithologic Description Description Log (ft) (m) Ground Surface
SILT, trace firm to medium sand, grey, moist. 639.44 J-plug 0.00 Flush mount 638.83 SILTY SAND, fine grained, grey, moist. 0.61 637.91 Bentonite SILT, trace firm to medium sand, grey, moist. 1.52 Sand Pack 636.39 10 SAND AND GRAVEL, some silt, grey, moist. 3.05 000 635.47 SILT, some sand and gravel, grey, moist. Groundwater elevation 635.78 masl on July 30, 2018 -wet below 4.3 mbgs 15 51 mm 10 Slot Schedule 40 PVC Screen -no gravel below 5.5 mbgs Bentonite 633.34 STANTEC BOREHOLE AND WELL V2 WHITEHORSE_LOGS.GPJ STANTEC-DATA TEMPLATE.GDT 11/2/18 MDEANE 20 End of Borehole 6.10 30

Screen Interval: Sand Pack Interval: Well Seal Interval: 3.05 - 5.18 m BGS 2.74 - 5.18 m BGS 0.30 - 2.74 m BGS

Notes: m AMSL - metres above mean sea level m BGS - metres below ground surface n/a - not available

Project: 5th Avenue Phase II ESA (2018-2019)

Client: Government of Yukon Whitehorse, Yukon Location: 123221161 Number:

Field investigator: MD

Contractor: Midnight Sun Drilling **Drilling method:** Auger Date started/completed: 25-Jul-2018 Ground surface elevation: 639.57 m AMSL 639.53 m AMSL Top of casing elevation: Easting: 496937.381

6730782.632

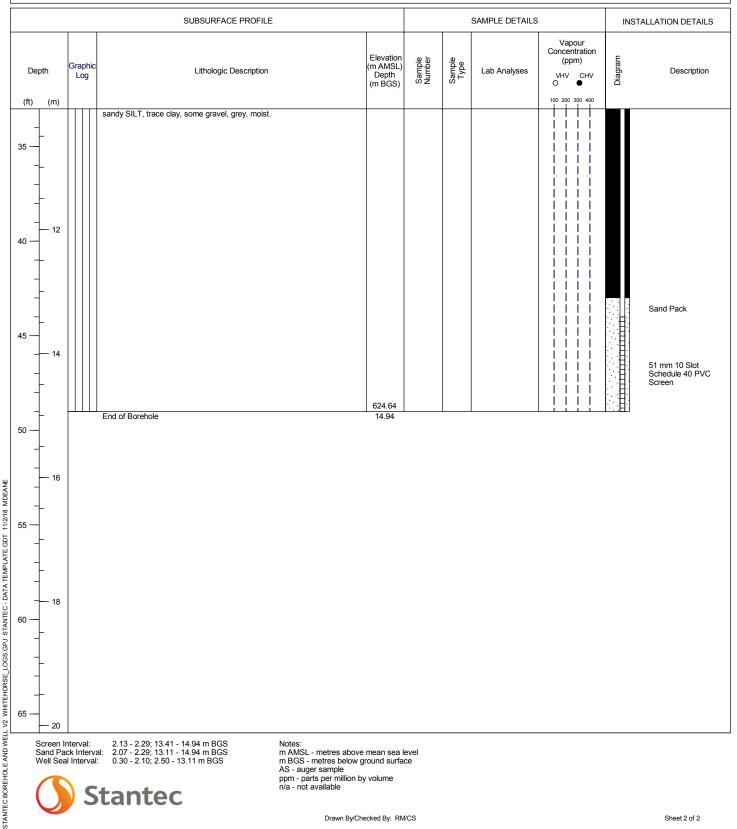
Northing:

SAMPLE DETAILS SUBSURFACE PROFILE INSTALLATION DETAILS Vapour Concentration Elevation (ppm) (m AMSL) Depth Graphic Lithologic Description Lab Analyses Description Depth VHV CHV O ● Log (m BGS) 100 200 300 400 (ft) (m) Ground Surface sandy SILT, trace clay, medium grained, grey, firm, moist. 639.57 0.00 638.96 SILTY SAND, fine grained, grey, moist. 0.61 AS Metals Bentonite AS 2 638.05 sandy SILT, trace clay, medium grained, grey, firm moist. 1.52 Vapour Probe AS 3 AS 636.53 10 SAND AND GRAVEL, some silt, grey, moist. 3.05 000 000 AS 635.61 sandy SILT, trace clay, some gravel, grey, moist. 3.96 -wet below 4.3 mbgs BTEX, EPH 6/ QC18-AS Groundwater elevation 15 635.35 masl on July 30, 2018 AS -no gravel below 5.5 mbgs 8 AS STANTEC BOREHOLE AND WELL V2 WHITEHORSE_LOGS.GPJ STANTEC-DATA TEMPLATE.GDT 11/2/18 MDEANE 20 30

Screen Interval: Sand Pack Interval:

2.13 - 2.29; 13.41 - 14.94 m BGS 2.07 - 2.29; 13.11 - 14.94 m BGS 0.30 - 2.10; 2.50 - 13.11 m BGS

Project: 5th Avenue Phase II ESA (2018-2019)


Client: Government of Yukon Whitehorse, Yukon Location: 123221161 Number:

Field investigator: MD

Midnight Sun Drilling Contractor:

Drilling method: Auger Date started/completed: 25-Jul-2018 Ground surface elevation: 639.57 m AMSL 639.53 m AMSL Top of casing elevation: Easting: 496937.381

Northing: 6730782.632

Screen Interval: Sand Pack Interval: Well Seal Interval: 2.13 - 2.29; 13.41 - 14.94 m BGS 2.07 - 2.29; 13.11 - 14.94 m BGS 0.30 - 2.10; 2.50 - 13.11 m BGS

Project: 5th Avenue Phase II ESA (2018-2019)

Client: Government of Yukon Location: Whitehorse, Yukon 123221161 Number:

Field investigator: MD

Contractor: Midnight Sun Drilling

Auger Drilling method: Date started/completed: 24-Jul-2018 Ground surface elevation: 637.70 m AMSL **Top of casing elevation:** 638.32 m AMSL

496949 Easting: 6730989 Northing:

		SUBSURFACE PROFILE				SAMPLE DETAILS	S		INS	TALLATION DETAILS
Depth (ft) (m)	Graphic Log	Lithologic Description	Elevation (m AMSL) Depth (m BGS)	Sample Number	Sample Type	Lab Analyses	Conce (p VHV O	ppour entration ppm) CHV	Diagram	Description
-			638.32							stickup 0.62 m abor
0 0		Ground Surface SAND, some silt, some gravel, brown, dry.	637.70 0.00	1	AS		0			
5 —		sandy SILT, trace clay, some gravel, brown, dry.	636.17 1.52	2	AS				П	Bentonite
2		SAND and GRAVEL, medium coarse, trace silt, brown, dry.	635.56	3	AS				П	
				4	AS					Sand Pack
10 —		-moist below 2.9 mbgs		5	AS	EPH	0			Groundwater eleva 635.76 masl on Jul
4				6	AS	TOC, grain size	0			30, 2018 51 mm 10 Slot Schedule 40 PVC Screen
15 —	777777	-wet below 4.3 mbgs	632.82							Golden
-		CLAY, grey wet.	4.88				 		000	
20 — 6				7	AS				000	Slough
-									0000	
25 —		End of Borehole	630.08 7.62						000	
8										
-										
30 —										
Sand Pa	Interval: ack Interval al Interval		ow ground surfac	evel ee						
V			By/Checked By: RM	cs						Sheet 1 of 1

Project: 5th Avenue Phase II ESA (2018-2019)

Client: Government of Yukon Location: Whitehorse, Yukon 123221161 Number:

Field investigator: MD

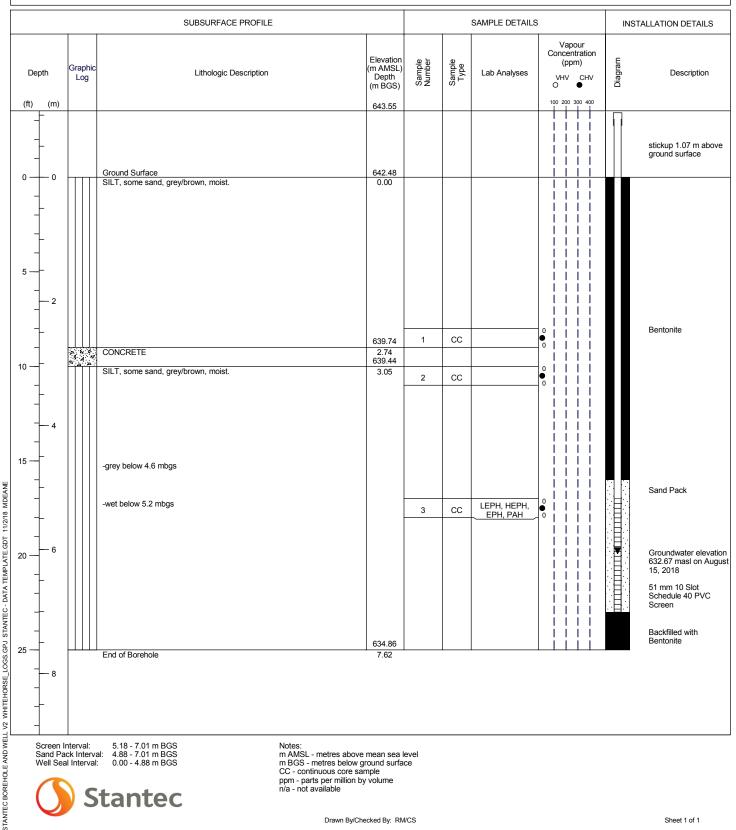
Contractor: Midnight Sun Drilling

Drilling method: Sonic Date started/completed: 25-Jul-2018 Ground surface elevation: 639.19 m AMSL **Top of casing elevation:** 639.82 m AMSL

Easting: 496912.528 6730885.934 Northing:

		SUBSURFACE PROFILE				SAMPLE DETAILS	3	INS	STALLATION DETAILS
Depth (ft) (m)	Graphic Log	Lithologic Description	Elevation (m AMSL) Depth (m BGS)	Sample Number	Sample Type	Lab Analyses	Vapour Concentratio (ppm) VHV CH'	< Diagram	Description
-									stickup 0.63 m abo
0 0		Ground Surface SAND, some silt trace gravel, grey, dry (fill).	639.19 0.00						ground surface
-		sandy SILT, trace clay, fine to medium grained, grey.	638.88 0.30	1	AS	Metals			
}		-trace gravel, brown below 0.9 mbgs		2	AS				
5 —		-some gravel below 1.5 mbgs	637.36						Bentonite
2		SAND, fine to medium, some silt, trace gravel, brown, dry.	1.83						
1				3	AS				
0 —			636.14	4	AS				
		sandy SILT, trace clay, grey, moist.	3.05				 		Sand Pack
+				5	AS	BTEX/EPH	0		Groundwater eleva 635.83 masl on Au 16, 2018
5 —		-increasing moisture below 4.0 mbgs		6	AS				51 mm 10 Slot Schedule 40 PVC Screen
-				7	AS			609	
							_	000	Slough
6		End of Borehole	633.09 6.10	8	AS		<u> </u>	\bigcirc	
25 — 8									
Screen Sand Pa	Interval:	3.35 - 5.03 m BGS Notes: al: 3.05 - 5.03 m BGS m AMSL - metres	s above mean sea k	evel					
	al Interval	tantec 0.00 - 3.05 m BGS m BGS - metres I AS - auger sampl ppm - parts per m n/a - not available	below ground surfact le nillion by volume						
		0011000							

Project: 5th Avenue Phase II ESA (2018-2019)


Client: Government of Yukon Whitehorse, Yukon Location: 123221161 Number:

Field investigator: MD

Contractor: Midnight Sun Drilling

Drilling method: Sonic Date started/completed: 28-Jul-2018 Ground surface elevation: 642.48 m AMSL 643.55 m AMSL Top of casing elevation:

Easting: 496884.123 6730853.228 Northing:

Screen Interval: Sand Pack Interval: Well Seal Interval: 5.18 - 7.01 m BGS 4.88 - 7.01 m BGS 0.00 - 4.88 m BGS

Stantec

Project: 5th Avenue Phase II ESA (2018-2019)

Client: Government of Yukon Location: Whitehorse, Yukon 123221161 Number:

Field investigator: MD

Contractor: Midnight Sun Drilling

Drilling method: Sonic Date started/completed: 01-Aug-2018 Ground surface elevation: 639.07 m AMSL **Top of casing elevation:** 639.83 m AMSL

Easting: 496907.716 Northing: 6730979.923

		SUBSURFACE PROF	ILE				SAMPLE DETAILS		INST	TALLATION DETAILS
Depth (ft) (m)	Graphic Log	Lithologic Descripti	011	Elevation (m AMSL) Depth (m BGS)	Sample Number	Sample Type	Lab Analyses	Vapour Concentration (ppm) VHV CHV O •	Diagram	Description
-		Ground Surface		639.07						stickup 0.75 m abo ground surface
0 0		sandy SILT, trace clay, grey, moist.		0.00						Bentonite
10 —		-brown below 3.1 mbgs								Sand Pack
4					1	CC			₩	Groundwater eleva 634.91 masl on Au
15 —				634.20	2	СС				13, 2018 51 mm 10 Slot Schedule 40 PVC
] - +		SAND AND GRAVEL, noticeable PHC odour.		4.88	3	CC	BTEX, LEPH, HEPH, EPH, PAH			Screen
		sandy SILT, trace clay, some gravel, grey, we	t.	5.79 632.98	4	CC	EPH	0		Sand Pack
20 — 6		End of Borehole		6.10	-		LFII		1.1.1	Curia i don
20 - 6		End of Borehole			4		EPH	<u> </u>	[1.11]	Sanu Pack
Screen I Sand Pa		2.74 - 5.79 m BGS al: 2.44 - 6.10 m BGS 0.00 - 2.44 m BGS	Notes: m AMSL - metres above n m BGS - metres below grc CC - continuous core sam	ound surface						
Well Sea) <	tantec	ppm - parts per million by v n/a - not available							

Project: 5th Avenue Phase II ESA (2018-2019)

Client: Government of Yukon Location: Whitehorse, Yukon 123221161 Number:

Field investigator: MD

Contractor: Midnight Sun Drilling

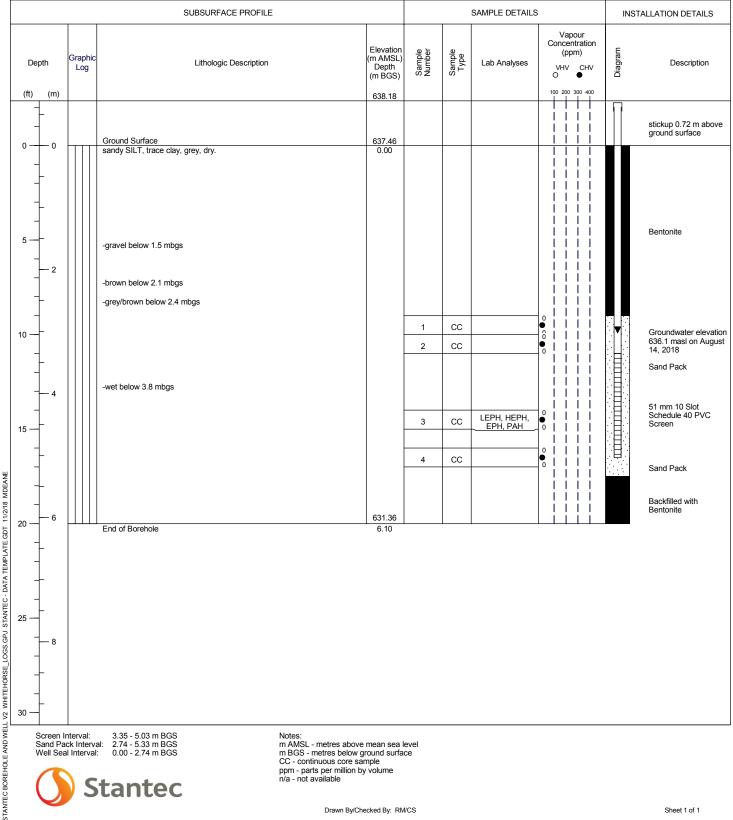
Drilling method: Sonic Date started/completed: 01-Aug-2018 Ground surface elevation: 638.22 m AMSL Top of casing elevation: 638.94 m AMSL

Easting: 496927.377 Northing: 6730973.781

		SUBSURFACE PROFILE				SAMPLE DETAILS	S	INS	TALLATION DETAILS
Depth (ft) (m)	Graphic Log	Lithologic Description	Elevation (m AMSL) Depth (m BGS)	Sample Number	Sample Type	Lab Analyses	Vapour Concentration (ppm) VHV CHV O •	Diagram	Description
-		Ground Surface	638.94						stickup 0.72 m abov ground surface
0 — 0 — 1 — 2 — 2 — 4 — 15 — — 4		Ground Surface sandy SILT, trace clay, some gravel, grey, moist. -fine to medium sand, some gravel, dry below 1.5 mbgs -dark brown below 1.8 mbgs -grey below 2.1 mbgs -light brown below 2.4 mbgs -moist below 3.1 mbgs -some sand below 3.4 mbgs -some gravel, grey, wet below 3.7 mbgs -sand below 3.8 mbgs	638.22	1 2 3	cc cc				Bentonite Sand Pack Groundwater elevat 635.41 masl on Aug 14, 2018 51 mm 10 Slot Schedule 40 PVC Screen
20 — 6		End of Borehole	632.12 6.10	4	СС		0		Sand
25 — 8									
30 — Screen I Sand Pa Well Sea		: 0.00 - 2.44 m BGS	- metres above mean sea l metres below ground surfa tinuous core sample	evel ce					
	S	tantec	rts per million by volume available						

Project: 5th Avenue Phase II ESA (2018-2019)

Client: Government of Yukon Whitehorse, Yukon Location: 123221161 Number:


Field investigator: MD

Contractor: Midnight Sun Drilling

Drilling method: Sonic Date started/completed: 01-Aug-2018 Ground surface elevation: 637.46 m AMSL 638.17 m AMSL Top of casing elevation: Easting: 496934.558

6730960.592

Northing:

Screen Interval: Sand Pack Interval: Well Seal Interval:

Stantec

Project: 5th Avenue Phase II ESA (2018-2019)

Client: Government of Yukon Location: Whitehorse, Yukon 123221161 Number:

Field investigator: MD

Contractor: Midnight Sun Drilling

Drilling method: Sonic Date started/completed: 01-Aug-2018 Ground surface elevation: 639.77 m AMSL 640.61 m AMSL Top of casing elevation:

Easting: 496896.375 6730992.693 Northing:

Lithologic Description rface T, trace clay, fine to medium grained, grey, dry. w 1.2 mbgs	Elevation (m AMSL) Depth (m BGS) 640.62 639.77	Sample	Lab Analyse	Vapour Concentration (ppm) 2S VHV CHV O = 100 200 300 400	Diagram	Description stickup 0.85 m abor ground surface
, trace clay, fine to medium grained, grey, dry.	639.77					stickup 0.85 m abor ground surface
, trace clay, fine to medium grained, grey, dry.						
						Bentonite
						Sand Pack
		1 (cc			51 mm 10 Slot Schedule 40 PVC Screen
		2 (oc .	0		Groundwater eleva 634.12 masl on Au 13, 2018
) GRAVEL, some silt, grev, wet.	634.28 5.49		DTEV I EDI			Sand Pack
	633.97		HEPH, EPH, F			Backfilled with
	633.67	4 (CC			Bentonite
Τ	D GRAVEL, some silt, grey, wet. Γ, trace clay, grey, wet. rehole	D GRAVEL, some silt, grey, wet. 5.49 633.97 I, trace clay, grey, wet. 5.79 633.67	2 0 634.28 D GRAVEL, some silt, grey, wet. 5.49 633.97 3 0 17, trace clay, grey, wet. 5.79 633.67 4 0	2 CC 634.28 D GRAVEL, some silt, grey, wet. 5.49 633.97 3 CC HEPH, EPH, EPH, EPH, EPH, EPH, EPH, EPH,	2 CC 0 0 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	2 CC

Project: 5th Avenue Phase II ESA (2018-2019)

Client: Government of Yukon Location: Whitehorse, Yukon 123221161 Number:

Field investigator: MD

Contractor: Midnight Sun Drilling

Drilling method: Sonic Date started/completed: 01-Aug-2018 Ground surface elevation: 638.14 m AMSL **Top of casing elevation:** 638.77 m AMSL

Easting: 496922.643 6731001.777 Northing:

		SUBSURFACE PROFILI	E			SAMPLE DETAILS	6		INS	STALLATION DETAILS
Depth (ft) (m)	Graphic Log	Lithologic Description	(m BGS)	Sample Number	Sample Type	Lab Analyses	O VH/	apour entratio opm) / CHV	> Diagram	Description
		Ground Surface	638.78					 		stickup 0.64 m abo ground surface
0 0		-gravel below 1.5 mbgs	0.00							Bentonite
10 —			635.09	1	CC		- 0 1			Sand Pack
-		SAND, some gravel, trace silt, grey, moist.	3.05	2	СС		0 1	 		
- 4		-wet below 3.7 mbgs sandy SILT, trace clay,grey, wet.	634.17 3.96	3	СС	LEPH, HEPH, EPH, PAH	0			51 mm 10 Slot Schedule 40 PVC
15 —		, , , , , , , , , , , , , , , , , , ,		4	CC					Screen Groundwater eleva 634.91 masl on Au 13, 2018 Sand Pack
- - - - - 6			632.04							Backfilled with Bentonite
20 —		End of Borehole	6.10							
25 —		End of Borehole	6.10							
Screen Sand Pa Well Sei	ack Interval	3.05 - 4.57 m BGS al: 2.74 - 4.88 m BGS 0.00 - 2.74 m BGS	Notes: m AMSL - metres above mean sea m BGS - metres below ground surfa CC - continuous core sample ppm - parts per million by volume n/a - not available	level ce						

Project: 5th Avenue Phase II ESA (2018-2019)

Client: Government of Yukon Location: Whitehorse, Yukon 123221161 Number:

Field investigator: MD

Contractor: Midnight Sun Drilling

Drilling method: Sonic Date started/completed: 01-Aug-2018 Ground surface elevation: 637.64 m AMSL **Top of casing elevation:** 638.16 m AMSL

496955.17 Easting: 6731009.249 Northing:

Comparison Com			SUBSURFACE PROFILE				;	SAMPLE DETAILS	i		INST	ALLATION DETAILS
SAND AND GRAVEL Sandy SitT, trace clay, some graved. Sand Pack Service Sandy SitT, trace clay, some graved. Sand Pack Service Sandy SitT, trace clay, some graved. Sand Pack Service Sandy SitT, trace clay, some graved. Sand Pack Service Sandy SitT, trace clay, some graved. Sand Pack Service Sandy SitT, trace clay, some graved. Sand Pack Service Sandy SitT, trace clay, some graved. Sand Pack Service Sandy SitT, trace clay, some graved. Sandy SitT, some graved. San			Lithologic Description	(m	Depth n BGS)	Sample Number	Sample Type	Lab Analyses	VHV O	pm) CHV	Diagram	Description
Sand Pack Sand GRAVEL Sand Pack Sa			Ground Surface							 		stickup 0.52 m abov
SAND AND GRAVEL	5 —		sandy SILT, trace clay, some gravel.		0.00							Bentonite
Screen Interval: Sand Pack Screen Interval: Screen Interval	10 —		SAND AND GRAVEL			1	СС					Sand Pack Groundwater elevat
Some Interval: Sand Pack Some Interval: Some Interval: Sand Pack Some Interval: Some Interva	- - - - 4	0000	-wet below 3.4 mbgs			2	СС	LEPH, HEPH, EPH, PAH				635.99 masl on Au 14, 2018 51 mm 10 Slot Schedule 40 PVC
Screen Interval: Sand Pack Interval: Sand Pack Interval: Sand Pack Interval: O	15 —	00										Sand Pack
Screen Interval: 3.05 - 4.57 m BGS Sand Pack Interval: 2.74 - 4.88 m BGS Well Seal Interval: 0.00 - 2.74 m BGS m BGS - metres below ground surface CC - continuous core sample ppm - parts per million by volume	+	10 0		6	32.31				0	 		Backfilled with Bentonite
Screen Interval: 3.05 - 4.57 m BGS Sand Pack Interval: 2.74 - 4.88 m BGS Well Seal Interval: 0.00 - 2.74 m BGS Well Seal Interval: 0.00 - 2.74 m BGS Motes: m AMSL - metres above mean sea level m BGS - metres below ground surface CC - continuous core sample ppm - parts per million by volume	20 — 6	000	End of Borehole							i i ———		
Screen Interval: 3.05 - 4.57 m BGS Notes: Sand Pack Interval: 2.74 - 4.88 m BGS m AMSL - metres above mean sea level Well Seal Interval: 0.00 - 2.74 m BGS m BGS - metres below ground surface CC - continuous core sample ppm - parts per million by volume												
Gentlese	Screen I Sand Pa	ack Interval	il: 2.74 - 4.88 m BGS	m AMSL - metres above mem m BGS - metres below grour CC - continuous core sample ppm - parts per million by vol	nd surfac e	vel e						

Project: 5th Avenue Phase II ESA (2018-2019)

Client: Government of Yukon Location: Whitehorse, Yukon 123221161 Number:

Field investigator: MD

Contractor: Midnight Sun Drilling

Drilling method: Sonic Date started/completed: 01-Aug-2018 Ground surface elevation: 637.50 m AMSL Top of casing elevation: 638.30 m AMSL

Easting: 496934.132 6731013.12 Northing:

		SUBSURFACE PROFILE				SAMPLE DETAILS	3	INS	TALLATION DETAILS
Depth (ft) (m)	Graphic Log	Lithologic Description	Elevation (m AMSL) Depth (m BGS) 638.30	Sample Number	Sample Type	Lab Analyses	Vapour Concentration (ppm) VHV CHV O •	Diagram	Description
-		Ground Surface							stickup 0.8 m above ground surface
5 2		sandy SILT, trace clay, some gravel, grey/brown, dry.	637.50 0.00						Bentonite
10 —		GRAVEL, rounded.	634.45 3.05	1	СС				Sand Pack Groundwater elevati 635.85 masl on Aug
4		SAND, medium to coarse, trace silt and gravel, wet.	633.54 3.96	2	СС	LEPH, HEPH,			14, 2018 51 mm 10 Slot Schedule 40 PVC
15 —		SAND and GRAVEL, trace silt, rounded, wet	633.23 4.27 632.62	3	cc	EPH, PAH	0		Screen
-		sandy SILT, trace clay, grey, wet.	4.88						Sand Pack
20 — 6			631.40	4	CC		0		Backfilled with Bentonite
25 — 8		End of Borehole	6.10						
	ack Interva al Interval:	0.00 - 2.74 m BGS m BGS - metres CC - continuous	million by volume						

5th Avenue Phase II ESA (2018-2019) Project:

Client: Government of Yukon Whitehorse, Yukon Location: 123221161 Number:

Field investigator: MD

Midnight Sun Drilling Contractor:

Drilling method: Sonic Date started/completed: 01-Aug-2018 Ground surface elevation: 642.38 m AMSL Top of casing elevation: 643.11 m AMSL Easting: 496886.992

6730935.32 Northing: SUBSURFACE PROFILE INSTALLATION DETAILS Elevation (m AMSL) Depth (m BGS) Graphic Depth Lithologic Description Description Log (ft) (m) 643.11 stickup 0.73 m above ground surface Ground Surface 642.38 0.00 0 n sandy SILT, trace clay, grey, dry. -moist below 1.5 mbgs -noticeable PHC odour below 2.7 mbgs Bentonite 10 - no PHC odour below 3.0 mbgs 15 STANTEC BOREHOLE AND WELL V2 WHITEHORSE_LOGS.GPJ STANTEC-DATA TEMPLATE.GDT 11/2/18 MDEANE Sand Pack 20 -wet below 6.1 mbgs Groundwater elevation 632.58 masl on August 16, 2018 51 mm 10 Slot Schedule 40 PVC Screen 30 633.09

End of Borehole 6.10 - 9.30 m BGS Screen Interval: Sand Pack Interval: 5.79 - 9.30 m BGS Well Seal Interval: 0.00 - 5.79 m BGS

Notes: m AMSL - metres above mean sea level m BGS - metres below ground surface n/a - not available

APPENDIX E ANALYTICAL TABLES

Table I - Summary of Groundwater Field Observations
5th Avenue (Rogers Street to Jeckell Street), Whitehorse Yukon
Phase II ESA (2018 - 2019)
Yukon Government

Monitoring Well ID	Easting	Northing	Date	HC Wellspace Vapour Level (ppmv)	IBL Wellspace Vapour Level (ppmv)	Top of Screened Interval (mbg)	Bottom of Screened Interval (mbg)	Centre of Screened Interval (mbg)	Screen Length (m)	Elevation ¹ of T.O.P.	Elevation ¹ at Grade (m)	Elevation of Bottom of Screened Interval	Depth to Water from T.O.P. (m)	Apparent NAPL Thickness (mm)	Depth to Water below Grade (m)	Groundwater Elevation (m)
BH18-47	496888.33	6730855.88	N/A	N/A	N/A	N/A	N/A	N/A	N/A	642.013	642.046	N/A	N/A	N/A	N/A	N/A
MW16-01	496908.00	6730899.00	15-Aug-18	LTDL	3	4.20	6.00	5.10	1.80	639.3	639.41	633.41	4.371	nil	4.48	637.64
MW16-02	496921.00	6730854.00	21-Aug-18	LTDL	LTDL	4.60	6.00	5.30	1.40	639.94	640.03	634.03	4.672	nil	4.76	637.34
MW16-03	496942.00	6730764.00	16-Aug-18	n.m.	n.m.	3.30	4.80	4.05	1.50	640.06	640.06	635.26	n.m.	nil	n.m.	n.m.
MW16-04	496932.00	6730784.00	15-Aug-18	n.m.	n.m.	6.20	9.20	7.70	3.00	641.16	641.16	631.96	n.m.	nil	n.m.	n.m.
MW16-05	496930.22	6730778.88	30-Jul-18	LTDL	LTDL	5.20	7.00	6.10	1.80	641.93	641.93	634.93	6.553	nil	6.55	635.46
MW16-05	496930.22	6730778.88	15-Aug-18	n.m.	n.m.	5.20	7.00	6.10	1.80	641.93	641.93	634.93	n.m.	nil	n.m.	n.m.
MW16-08	496915.53	6730829.24	30-Jul-18	LTDL	LTDL	4.20	5.70	4.95	1.50	640.46	641.01	635.31	5.203	nil	5.75	636.81
MW16-08	496915.53	6730829.24	15-Aug-18	LTDL	1	4.20	5.70	4.95	1.50	640.46	641.01	635.31	5.229	nil	5.78	635.23
MW16-09	496912.95	6730891.80	30-Jul-18	LTDL	3	3.80	5.20	4.50	1.40	639.32	639.962	634.76	4.349	nil	4.99	636.11
MW16-09	496912.95	6730891.80	21-Aug-18	n.m.	n.m.	3.80	5.20	4.50	1.40	639.32	639.962	634.76	4.201	nil	4.84	636.26
MW16-10	496931.00	6730844.00	21-Aug-18	n.m.	n.m.	5.00	6.50	5.75	1.50	639.77	639.84	633.34	4.374	nil	4.44	636.09
MW16-11	496902.25	6730912.00	30-Jul-18	LTDL	47	4.50	6.10	5.30	1.60	639.85	640.01	633.91	4.898	nil	5.06	635.56
MW16-11	496902.25	6730912.00	17-Aug-18	LTDL	LTDL	4.50	6.10	5.30	1.60	639.85	640.01	633.91	4.92	nil	5.08	635.54
MW16-12	496923.78	6730898.85	30-Jul-18	LTDL	LTDL	4.00	5.50	4.75	1.50	638.8	638.94	633.44	3.834	nil	3.97	636.02
MW16-12	496923.78	6730898.85	21-Aug-18	LTDL	LTDL	4.00	5.50	4.75	1.50	638.8	638.94	633.44	3.851	nil	3.99	636.00
MW16-13	496909.00	6730952.00	15-Aug-18	LTDL	36	4.80	6.20	5.50	1.40	639.54	639.61	633.41	4.596	nil	4.67	635.25
MW17-15	496918.00	6730954.00	14-Aug-18	LTDL	LTDL	12.20	13.80	13.00	1.60	640.62	639.63	625.83	4.656	nil	3.67	635.19
MW17-15	496918.00	6730954.00	30-Jul-18	LTDL	LTDL	12.20	13.80	13.00	1.60	640.62	639.63	625.83	4.68	nil	3.69	635.17
MW17-16	496907.00	6730952.00	16-Aug-18	LTDL	1	4.00	5.50	4.75	1.50	639.54	639.65	634.15	4.633	nil	4.74	635.22
MW17-17	496901.80	6730864.50	30-Jul-18	LTDL	31	7.90	8.20	8.05	0.30	643.08	641.98	633.78	6.641	nil	5.54	633.21
MW17-17	496901.80	6730864.50	15-Aug-18	LTDL	53	7.90	8.20	8.05	0.30	643.08	641.98	633.78	6.653	nil	5.55	633.20
MW17-19	496891.90	6730910.60	30-Jul-18	LTDL	2	7.90	9.40	8.65	1.50	642.87	641.84	632.44	5.604	nil	4.57	634.25
MW17-19	496891.90	6730910.60	17-Aug-18	LTDL	LTDL	7.90	9.40	8.65	1.50	642.87	641.84	632.44	5.613	nil	4.58	637.47
MW17-20	496916.40	6730916.10	30-Jul-18	LTDL	33	3.30	4.90	4.10	1.60	639.21	639.31	634.41	4.213	nil	4.31	638.87
MW17-20	496916.40	6730916.10	17-Aug-18	LTDL	16	3.30	4.90	4.10	1.60	639.21	639.31	634.41	4.233	nil	4.33	638.85
MW18-30	496886.12	6730936.84	16-Aug-18	LTDL	19	4.60	6.10	5.35	1.50	643.369	642.471	636.37	DRY	nil	DRY	DRY
MW18-31	496910.44	6730970.19	30-Jul-18	35	LTDL	4.60	6.10	5.35	1.50	639.751	638.904	632.80	4.743	nil	3.90	638.34
MW18-31	496910.44	6730970.19	21-Aug-18	LTDL	LTDL	3.05	6.10	4.58	3.05	639.751	638.904	632.80	4.754	nil	3.91	638.33
MW18-33	496936.34	6730918.21	30-Jul-18	LTDL	1	3.05	6.10	4.58	3.05	638.241	638.405	632.31	3.476	nil	3.64	639.60
MW18-33	496936.34	6730918.21	25-Aug-18	LTDL	LTDL	3.05	6.10	4.58	3.05	638.241	638.405	632.31	3.432	nil	3.60	636.32
MW18-34	496949.62	6730896.75	30-Jul-18	LTDL	1	3.50	5.00	4.25	1.50	639.08	638.405	633.41	4.372	nil	3.70	635.38
MW18-34	496949.62	6730896.75	25-Aug-18	LTDL	LTDL	3.50	5.00	4.25	1.50	639.08	638.405	633.41	4.282	nil	3.61	635.47

Table I - Summary of Groundwater Field Observations 5th Avenue (Rogers Street to Jeckell Street), Whitehorse Yukon Phase II ESA (2018 - 2019) Yukon Government

Monitoring Well ID	Easting	Northing	Date	HC Wellspace Vapour Level (ppmv)	IBL Wellspace Vapour Level (ppmv)	Top of Screened Interval (mbg)	Bottom of Screened Interval (mbg)	Centre of Screened Interval (mbg)	Screen Length (m)	Elevation ¹ of T.O.P.	Elevation ¹ at Grade (m)	Elevation of Bottom of Screened Interval	Depth to Water from T.O.P. (m)	Apparent NAPL Thickness (mm)	Depth to Water below Grade (m)	Groundwater Elevation (m)
MW18-35	496918.62	6730874.45	30-Jul-18	LTDL	5	4.60	6.10	5.35	1.50	640.345	639.618	633.52	5.092	nil	4.37	634.66
MW18-35	496918.62	6730874.45	17-Aug-18	LTDL	5	4.60	6.10	5.35	1.50	640.345	639.618	633.52	5.104	nil	4.38	634.65
MW18-36	496934.45	6730875.00	30-Jul-18	LTDL	LTDL	3.35	4.90	4.13	1.55	640.089	639.117	634.22	5.028	nil	4.06	634.72
MW18-36	496934.45	6730875.00	15-Aug-18	LTDL	LTDL	3.35	4.90	4.13	1.55	640.089	639.117	634.22	4.981	nil	4.01	634.77
MW18-37	496934.43	6730876.93	15-Aug-18	LTDL	LTDL	13.70	15.25	14.48	1.55	639.844	639.024	623.77	4.397	nil	3.58	635.35
MW18-38	496893.43	6730881.37	30-Jul-18	LTDL	LTDL	4.60	6.10	5.35	1.50	641.465	640.478	634.38	6.232	nil	5.24	633.52
MW18-38	496893.43	6730881.37	15-Aug-18	LTDL	LTDL	4.60	6.10	5.35	1.50	641.465	640.478	634.38	6.046	nil	5.06	633.71
MW18-39	496920.65	6730957.05	30-Jul-18	LTDL	19	3.05	6.10	4.58	3.05	639.509	638.721	632.62	4.476	nil	3.69	635.28
MW18-39	496920.65	6730957.05	17-Aug-18	LTDL	34	3.05	6.10	4.58	3.05	639.509	638.721	632.62	4.494	nil	3.71	635.26
MW18-40	496906.92	6730845.11	15-Aug-18	LTDL	LTDL	13.70	15.25	14.48	1.55	642.087	641.223	625.97	5.727	nil	4.86	634.02
MW18-41	496910.39	6730851.37	30-Jul-18	55	LTDL	4.60	6.10	5.35	1.50	641.993	641.113	635.01	6.636	nil	5.76	633.12
MW18-41	496910.39	6730851.37	15-Aug-18	LTDL	LTDL	4.60	6.10	5.35	1.50	641.993	641.113	635.01	6.646	nil	5.77	633.11
MW18-42	496944.75	6730780.99	30-Jul-18	LTDL	LTDL	3.50	5.05	4.28	1.55	639.373	639.435	634.39	3.972	nil	4.03	635.78
MW18-43	496937.38	6730782.63	30-Jul-18	LTDL	LTDL	13.40	14.95	14.18	1.55	639.527	639.589	624.64	4.4	nil	4.46	635.35
MW18-44	496949.00	6730989.00	30-Jul-18	LTDL	LTDL	2.90	4.40	3.65	1.50	638.321	637.697	633.30	3.989	nil	3.36	635.76
MW18-44	496949.00	6730989.00	25-Jul-18	LTDL	4	2.90	4.40	3.65	1.50	638.321	637.697	633.30	3.978	nil	3.35	635.77
MW18-45	496912.53	6730885.93	30-Jul-18	LTDL	LTDL	3.50	5.00	4.25	1.50	639.824	639.189	634.19	3.951	nil	3.32	635.80
MW18-45	496912.53	6730885.93	16-Aug-18	LTDL	LTDL	3.50	5.00	4.25	1.50	639.824	639.189	634.19	3.918	nil	3.28	635.83
MW18-48	496884.12	6730853.23	30-Jul-18	LTDL	LTDL	5.20	6.70	5.95	1.50	643.552	642.484	635.78	7.292	nil	6.22	632.46
MW18-48	496884.12	6730853.23	15-Aug-18	LTDL	1	5.20	6.70	5.95	1.50	643.552	642.484	635.78	7.081	nil	6.01	632.67
MW18-49	496907.72	6730979.92	2-Aug-18	550	3	2.75	5.80	4.28	3.05	639.826	639.073	633.27	4.831	nil	4.08	634.92
MW18-49	496907.72	6730979.92	13-Aug-18	LTDL	3	2.75	5.80	4.28	3.05	639.826	639.073	633.27	4.844	nil	4.09	634.91
MW18-50	496927.38	6730973.78	2-Aug-18	LTDL	LTDL	2.75	5.80	4.28	3.05	638.936	638.219	632.42	4.34	nil	3.62	635.41
MW18-50	496927.38	6730973.78	14-Aug-18	LTDL	LTDL	2.75	5.80	4.28	3.05	638.936	638.219	632.42	4.339	nil	3.62	635.41
MW18-51	496934.56	6730960.59	2-Aug-18	LTDL	LTDL	3.50	5.05	4.28	1.55	638.172	637.456	632.41	3.691	nil	2.97	636.06
MW18-51	496934.56	6730960.59	14-Aug-18	LTDL	2	3.50	5.05	4.28	1.55	638.172	637.456	632.41	3.647	nil	2.93	636.10
MW18-52	496896.38	6730992.69	2-Aug-18	25	LTDL	3.50	5.05	4.28	1.55	640.611	639.765	634.72	5.621	nil	4.78	634.13
MW18-52	496896.38	6730992.69	13-Aug-18	25	1	3.50	5.05	4.28	1.55	640.611	639.765	634.72	5.629	nil	4.78	634.12
MW18-53	496922.64	6731001.78	2-Aug-18	65	1	3.05	4.60	3.83	1.55	638.773	638.136	633.54	4.445	nil	3.81	635.31
MW18-53	496922.64	6731001.78	13-Aug-18	LTDL	3	3.05	4.60	3.83	1.55	638.773	638.136	633.54	4.844	nil	4.21	634.91
MW18-54	496955.17	6731009.25	2-Aug-18	LTDL	4	3.05	4.60	3.83	1.55	638.158	637.639	633.04	3.837	nil	3.32	635.91
MW18-54	496955.17	6731009.25	14-Aug-18	LTDL	1	3.05	4.60	3.83	1.55	638.158	637.639	633.04	3.76	nil	3.24	635.99
MW18-55	496934.13	6731013.12	2-Aug-18	10	7	3.05	4.60	3.83	1.55	638.299	637.499	632.90	3.979	nil	3.18	635.77
MW18-55	496934.13	6731013.12	14-Aug-18	LTDL	LTDL	3.05	4.60	3.83	1.55	638.299	637.499	632.90	3.898	nil	3.10	635.85
MW18-56	496886.99	6730935.32	2-Aug-18	120	152	6.10	9.15	7.63	3.05	643.113	642.384	633.23	6.995	nil	6.27	632.76
MW18-56	496886.99	6730935.32	16-Aug-18	LTDL	8	6.10	9.15	7.63	3.05	643.113	642.384	633.23	7.167	nil	6.44	632.58
Notes			-	-			-			-	-			-		

Notes

N/A not applicable n.m. not measured

LTDL less than detectable limits

HC hydrocarbon IBL isobutylene

mbg metres below ground surface ppmv parts per million by volume

T.O.P. top of pipe

geodetic elevation
NAPL non-aqueous phase liquid

Table II - Soil Analytical Results
5th Avenue (Rogers Street to Jeckell Street), Whitehorse Yukon
Phase II ESA (2018 - 2019)
Yukon Government

Sample Location	1 1	1	1	MW18-	.30		MW18-31		MW18-33	l MW1	18-34		MW18-	35		l MW	18-37	MW18-38
Sample Date				28-Jul-18	28-Jul-18	28-Jul-18	28-Jul-18	28-Jul-18	24-Jul-18	25-Jul-18	25-Jul-18	26-Jul-18		 26-Jul-18	26-Jul-18	27-Jul-18	27-Jul-18	28-Jul-18
Sample ID				MW18-30 SA04		MW18-31 SA06	MW18-31 SA07	MW18-31 SA08	MW18-33 SA05	MW18-34 SA05	MW18-34 SA06	MW18-35 SA08			MW18-35 SA11	MW18-37 SA06	MW18-37 SA07	MW18-38 SA07
- · · · · · · · · · · · · · · · · · · ·				2.74 - 3									7.01 - 7.					4.88 - 5.18
Sample Depth						4.27 - 4.57	5.18 - 5.49	5.79 - 6.1	3.35 - 3.66	3.05 - 3.66	3.66 - 4.27	5.49 - 5.79			7.93 - 8.23	2.74 - 3.05	3.35 - 3.81	
Laboratory				MAXX	MAXX	MAXX	MAXX	MAXX	MAXX	MAXX	MAXX	MAXX	MAXX	MAXX	MAXX	MAXX	MAXX	MAXX
Laboratory Work Order				B863863	B863863	B863863	B863863	B863863	B862213	B862213	B862213	B862770	B862770	B862770	B862770	B863859	B863859	B863863
Laboratory Sample ID	l l			TZ2554	TZ2579	TZ2564	TZ2565	TZ2566	TY2774	TY2789	TY2790	TY5396	TY5398	TY5405	TY5399	TZ2465	TZ2466	TZ2549
Sample Type	Units	A B	CDEFGH															
		YUKON-CSR Schedule 1	YUKON-CSR Schedule 2															<u> </u>
General Parameters																		
Moisture Content	%	n/v	n/v	18	18	7.5	20	20	13	15	18	14	19	19	18	2.8	19	18
Soluble (2:1) pH	S.U.	n/v	n/v	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
Petroleum Hydrocarbon																		
EPH C10-C19	mg/kg	n/v	n/v	<100	<100	1,400	<100	<100	<100	<100	<100	<100	<100	<100	<100	<100	<100	<100
LEPH (C10-C19 less PAH)	mg/kg	1,000 _{s8} ^A 2,000 _{s8} ^B	n/v	<100	<100	1400 ^A	-	-	-	-	-	<100	<100	<100	<100	-	-	<100
EPH C19-C32	mg/kg	n/v	n/v	<100	<100	160	<100	<100	<100	<100	<100	<100	<100	<100	<100	<100	<100	<100
HEPH (C19-C32 less PAH)	mg/kg	1,000 _{s9} ^A 5,000 _{s9} ^B	n/v	<100	<100	160	-	-	-	-	-	<100	<100	<100	<100	-	-	<100
VH (C6-C10)	mg/kg	n/v	n/v	<10	<10	82	-	-	-	-	-	<10	<10	<10	-	-	-	-
VPH (C6-C10 Minus BTEX)	mg/kg	200 _{s7} AB	n/v	<10	<10	82	-	-	-	-	-	<10	<10	<10	-	-	-	-
BTEX		<u> </u>														•		
Benzene	mg/kg	n/v	1,000 ^C 70 ^D 10 ^{EH} 4,000 ^F 150 ^G	< 0.0050	< 0.0050	< 0.0050	-	-	-	-	-	< 0.0050	< 0.0050	0.036	-	-	-	-
Ethylbenzene	mg/kg	n/v	3.500 ^C 1 ^D 6.000 ^{EH} 10.000 ^F 20 ^G	0.013	<0.010	< 0.010	-	-	-	-	-	<0.010	< 0.010	0.05	-	-	-	-
Methyl tert-butyl ether (MTBE)	mg/kg	n/v	n/v	<0.10	<0.10	<0.10	-	-	-	-	-	<0.10	<0.10	<0.10	-	-	-	-
Styrene	mg/kg	5 ^A 50 ^B	n/v	< 0.030	< 0.030	< 0.030	-	_	_	-	_	< 0.030	< 0.030	< 0.030	-	-	-	_
Toluene	mg/kg	n/v	40.000 ^C 1.5 ^D 40 ^{EH} 100.000 ^F 25 ^G	<0.020	<0.020	<0.020	_	_	_	_	_	<0.020	<0.020	0.049	_	_	_	_
Xylene, m & p-	mg/kg	n/v	n/v	<0.040	<0.040	< 0.040	_	_	_	_	_	<0.040	<0.040	0.047	_	_	_	_
Xylene, o-	mg/kg	n/v	n/v	<0.040	<0.040	< 0.040	_	_	_	_	_	<0.040	<0.040	0.048	_	_	_	_
Xvlenes. Total	mg/kg	n/v	65,000 ^C 5 ^D 200,000 ^F 50 ^G	<0.040	<0.040	< 0.040	_	_	_	_	_	<0.040	<0.040	0.095	_	_	_	_
Polycyclic Aromatic Hy	0 0	.,,	05,000 5 200,000 30	0.0.0	0.0.0	0.0.0	l l		I.	-1		0.010	0.0.0	0.000		I .	l	<u> </u>
Acenaphthene	mg/kg	n/v	n/v	<0.0050	<0.0050	0.24	-	-	-	-	-	<0.0050	<0.0050	<0.0050	<0.0050	-	-	<0.0050
Acenaphthylene	mg/kg	n/v	n/v	< 0.0050	< 0.0050	< 0.0050	-	-	-	-	-	< 0.0050	< 0.0050	< 0.0050	< 0.0050	-	-	< 0.0050
Acridine	mg/kg	n/v	n/v	< 0.050	< 0.050	< 0.050	-	-	-	-	-	< 0.050	< 0.050	< 0.050	< 0.050	-	-	< 0.050
Anthracene	mg/kg	n/v	n/v	< 0.0040	< 0.0040	0.012	-	-	-	-	-	< 0.0040	< 0.0040	< 0.0040	< 0.0040	-	-	< 0.0040
Benzo(a)anthracene	mg/kg	1 ^A 10 ^B	n/v	<0.020	<0.020	<0.020	-	_	_	-	_	<0.020	<0.020	<0.020	< 0.020	-	-	<0.020
Benzo(a)pyrene	mg/kg	n/v	5 ^C 1 ^D 15 ^F 10 ^G	<0.020	<0.020	<0.020	_	_	_	_	_	<0.020	<0.020	<0.020	<0.020	_	_	<0.020
Benzo(b)fluoranthene	mg/kg	1 ^A 10 ^B	n/v	<0.020	<0.020	<0.020	_	_	_	_	_	<0.020	<0.020	<0.020	<0.020	_	_	<0.020
Benzo(b/j)fluoranthene	mg/kg	n/v	n/v	<0.020	<0.020	<0.020	_	_	_	_	_	<0.020	<0.020	<0.020	<0.020	_	_	<0.020
Benzo(g,h,i)perylene	mg/kg	n/v	n/v	<0.050	<0.050	< 0.050	_	_	_	_	_	< 0.050	< 0.050	<0.050	< 0.050	_	_	<0.050
Benzo(k)fluoranthene	mg/kg	1 ^A 10 ^B	n/v	<0.020	<0.020	<0.020	_	_	_	1 -	<u> </u>	<0.020	<0.020	<0.020	<0.020	_	_	<0.020
Chrysene	mg/kg	n/v	n/v	<0.020	<0.020	<0.020	<u> </u>	_	_	_	_	<0.020	<0.020	<0.020	<0.020	_	_	<0.020
Dibenzo(a,h)anthracene	mg/kg	1 ^A 10 ^B	n/v	<0.020	<0.020	<0.020	[[-	Ī	1 -	[<0.020	<0.020	<0.020	<0.020	1 -		<0.020
Fluoranthene	mg/kg	n/v	n/v	<0.020	<0.020	<0.020	[[-	_			<0.020	<0.020	<0.020	<0.020	_	_	<0.020
Fluoranthene	mg/kg	n/v	n/v	<0.020	<0.020	0.28	[[-	Ī	1		<0.020	<0.020	<0.020	<0.020	1		<0.020
Indeno(1,2,3-cd)pyrene		1 ^A 10 ^B	n/v	<0.020	<0.020	<0.020	-	-	_	1 -	-	<0.020	<0.020	<0.020	<0.020	_	_	<0.020
Methylnaphthalene, 1-	mg/kg	· ·	n/v n/v	<0.020	<0.020	<0.020 <0.050	-	-	-	_	_	<0.020 <0.050	<0.020 <0.050	<0.020	<0.020 <0.050	_	-	<0.020
	mg/kg	n/v					· -	-	-	_	-					_	-	
Methylnaphthalene, 2-	mg/kg	n/v	n/v	<0.020	<0.020	0.041	-	-	-	_	-	<0.020	<0.020	<0.020	<0.020	_	-	<0.020
Naphthalene	mg/kg	5 ^A 50 ^B	n/v	<0.010	<0.010	0.012	-	-	-	-	-	<0.010	<0.010	<0.010	<0.010	-	-	<0.010
Phenanthrene	mg/kg	5 ^A 50 ^B	n/v	<0.010	<0.010	0.29	-	-	-	-	-	<0.010	<0.010	<0.010	<0.010	-	-	<0.010
Pyrene	mg/kg	10 ^A 100 ^B	n/v	<0.020	<0.020	<0.020	-	-	-	-	-	<0.020	<0.020	<0.020	<0.020	-	-	<0.020
High Molecular Weight PAHs	mg/kg	n/v	n/v	<0.050	<0.050	<0.050	-	-	-	-	-	<0.050	<0.050	<0.050	<0.050	-	-	<0.050
Low Molecular Weight PAHs	mg/kg	n/v	n/v	<0.050	<0.050	0.88	-	-	-	-	-	<0.050	<0.050	<0.050	<0.050	-	-	<0.050
Total PAH	mg/kg	n/v	n/v	< 0.050	< 0.050	0.88			-		-	<0.050	< 0.050	< 0.050	< 0.050		-	< 0.050

Table II - Soil Analytical Results
5th Avenue (Rogers Street to Jeckell Street), Whitehorse Yukon
Phase II ESA (2018 - 2019)
Yukon Government

Sample Location						MW18-39			MW18-40		MW18-43	_	MW18-44	MW18-45		8-47	MW18-48
Sample Date				28-Jul-18	28-Jul-18	28-Jul-18	28-Jul-18	28-Jul-18	27-Jul-18	25-Jul-18	25-Jul-18	25-Jul-18	24-Jul-18	25-Jul-18	28-Jul-18	28-Jul-18	28-Jul-18
Sample ID				MW18-39 SA07	MW18-39 SA08	QC18-05	MW18-39 SA09	MW18-39 SA10	MW18-40 SA03	MW18-43 SA05	MW18-43 SA06	QC18-01	MW18-44 SA05	MW18-45 SA05	MW18-47 SA04	MW18-47 SA05	MW18-48 SA03
Sample Depth				4.57 - 4.88	5.79 - 6	5.1	6.4 - 6.71	7.01 - 7.62	1.52 - 1.83	3.66 - 3.96	4.27 - 4	.57	3.05 - 3.35	3.35 - 3.96	2.44 - 2.74	3.35 - 3.66	5.18 - 5.49
Laboratory				MAXX	MAXX	MAXX	MAXX	MAXX	MAXX	MAXX	MAXX	MAXX	MAXX	MAXX	MAXX	MAXX	MAXX
Laboratory Work Order				B863863	B863863	B863863	B863863	B863863	B863859	B862756	B862756	B862756	B862213	B862756	B863863	B863863	B863863
Laboratory Sample ID				TZ2573	TZ2574	TZ2580	TZ2575	TZ2576	TZ2480	TY5296	TY5297	TY5302	TY2768	TY5286	TZ2540	TZ2541	TZ2536
Sample Type	Units	AB	CDEFGH														
		YUKON-CSR Schedule 1	YUKON-CSR Schedule 2														
General Parameters		TORON GOR GORGGUE T	TORON CONCOUNCE					l .		I.							
Moisture Content	%	n/v	n/v	7.6	18	19	20	20	4.1	2.1	15	12	11	19	15	15	20
Soluble (2:1) pH	S.U.	n/v	n/v	7.0	-	-	-	-	-	2.1	-	- 12		-	-	-	-
Petroleum Hydrocarbon		11/ ¥	10 V	I		L .					1			I			
EPH C10-C19	mg/kg	n/v	n/v	960	780	530	170	<100	<100	<100	<100	<100	<100	<100	990	<100	<100
LEPH (C10-C19 less PAH)	mg/kg	1,000 _{s8} ^A 2,000 _{s8} ^B	n/v	-	780	530	-	-	<100	-	- 100	-100	-100	- 100	990	-	<100
EPH C19-C32	mg/kg	1,000 _{s8} 2,000 _{s8} n/v	n/v	110	<100	<100	<100	<100	<100	<100	<100	<100	<100	<100	510	<100	<100
HEPH (C19-C32 less PAH)	mg/kg	1,000 _{s9} ^A 5,000 _{s9} ^B	n/v	110	<100	<100	~100	- 100	<100	~ 100	~100	~100	~ 100	~100	510	~100	<100
VH (C6-C10)		1,000 _{s9} 5,000 _{s9} n/v	n/v	1 -	27	28	-	_	<100 <10	_	<10	<10	-	- <10	510	-	100
VPH (C6-C10) VPH (C6-C10 Minus BTEX)	mg/kg mg/kg		n/v n/v	-	27 27	28	-	_	<10 <10	-	<10	<10	-	<10 <10	-	-	_
BTEX	mg/kg	200 _{s7}	11/V	-	21	20	<u> </u>	-	<10	-	<u> </u>	\10	<u> </u>	<10	<u> </u>	-	
Benzene	mg/kg	n/v	1.000 ^C 70 ^D 10 ^{EH} 4.000 ^F 150 ^G	-	<0.0050	<0.0050		I	<0.0050	ı	<0.0050	<0.0050	-	<0.0050			
Ethylbenzene		n/v	3.500 ^C 1 ^D 6.000 ^{EH} 10.000 ^F 20 ^G	-	<0.010	<0.0030	-	-	<0.0030	-	<0.000	<0.0030	-	<0.0030	-	-	_
Methyl tert-butyl ether (MTBE)	mg/kg	n/v	.,	-	<0.010	<0.010	-	-	<0.010	-	<0.010	<0.010	-	<0.010	-	-	-
, , ,	mg/kg		n/v	-			-	-		-			-		-	-	-
Styrene	mg/kg	5 ^A 50 ^B	n/v	-	<0.030	<0.030	-	-	<0.030	-	<0.030	<0.030	-	<0.030	-	-	-
Toluene	mg/kg	n/v	40,000 ^C 1.5 ^D 40 ^{EH} 100,000 ^F 25 ^G	-	<0.020	<0.020	-	-	<0.020	-	<0.020	<0.020	-	<0.020	-	-	-
Xylene, m & p-	mg/kg	n/v	n/v	-	<0.040	<0.040	-	-	<0.040	-	<0.040	<0.040	-	<0.040	-	-	-
Xylene, o-	mg/kg	n/v	n/v	-	<0.040	<0.040	-	-	<0.040	-	<0.040	<0.040	-	<0.040	-	-	-
Xylenes, Total	mg/kg	n/v	65,000 ^C 5 ^D 200,000 ^F 50 ^G	-	<0.040	<0.040	-	-	<0.040	-	<0.040	<0.040	-	<0.040	-	-	<u> </u>
Polycyclic Aromatic Hyd				1				1		ı							
Acenaphthene	mg/kg	n/v	n/v	-	0.079	0.06	-	-	<0.0050	-	-	-	-	-	0.033	-	<0.0050
Acenaphthylene	mg/kg	n/v	n/v	-	<0.0050	<0.0050	-	-	< 0.0050	-	-	-	-	-	0.0088	-	<0.0050
Acridine	mg/kg	n/v	n/v	-	<0.050	<0.050	-	-	< 0.050	-	-	-	-	-	< 0.050	-	<0.050
Anthracene	mg/kg	n/v	n/v	-	0.0049	<0.0040	-	-	<0.0040	-	-	-	-	-	0.049	-	<0.0040
Benzo(a)anthracene	mg/kg	1 ^A 10 ^B	n/v	-	<0.020	<0.020	-	-	<0.020	-	-	-	-	-	0.038	-	<0.020
Benzo(a)pyrene	mg/kg	n/v	5 ^C 1 ^D 15 ^F 10 ^G	-	<0.020	<0.020	-	-	< 0.020	-	-	-	-	-	0.034	-	<0.020
Benzo(b)fluoranthene	mg/kg	1 ^A 10 ^B	n/v	-	<0.020	<0.020	-	-	< 0.020	-	-	-	-	-	< 0.020	-	<0.020
Benzo(b/j)fluoranthene	mg/kg	n/v	n/v	-	<0.020	<0.020	-	-	< 0.020	-	-	-	-	-	< 0.020	-	<0.020
Benzo(g,h,i)perylene	mg/kg	n/v	n/v	-	< 0.050	< 0.050	-	-	< 0.050	-	-	-	-	-	< 0.050	-	<0.050
Benzo(k)fluoranthene	mg/kg	1 ^A 10 ^B	n/v	-	<0.020	<0.020	-	-	<0.020	-	-	-	_	-	< 0.020	-	<0.020
Chrysene	mg/kg	n/v	n/v	-	<0.020	<0.020	-	_	<0.020	_	_	_	_	_	0.049	-	<0.020
Dibenzo(a,h)anthracene	mg/kg	1 ^A 10 ^B	n/v	_	<0.020	<0.020	-	-	<0.020	-	-	_	_	_	<0.020	-	<0.020
Fluoranthene	mg/kg	n/v	n/v	_	<0.020	<0.020	_	_	<0.020	-	_	_	_	_	0.11	_	<0.020
Fluorene	mg/kg	n/v	n/v	_	0.091	0.076	_	_	<0.020	_	_	_	_	_	0.04	_	<0.020
Indeno(1,2,3-cd)pyrene	mg/kg	1 ^A 10 ^B	n/v	_	<0.020	<0.020	_	_	<0.020	_	_	_	_	_	<0.020	-	<0.020
Methylnaphthalene, 1-	mg/kg	n/v	n/v	1 -	0.087	0.084	_	_	<0.050	_	_	_	_	_	0.42	-	<0.050
Methylnaphthalene, 2-	mg/kg	n/v	n/v	1 -	0.044	0.082	_	_	<0.020	_	_	_	_	_	0.34	_	<0.020
Naphthalene	mg/kg	5 ^A 50 ^B	n/v	_	0.022	0.055	-		<0.020				_	[<u> </u>	0.057	-	<0.010
Phenanthrene	mg/kg	5 50 5 ^A 50 ^B	n/v		0.022	0.033	-	_	<0.010	_			-		0.037	-	<0.010
Pyrene		10 ^A 100 ^B	n/v	1 -	<0.020	<0.028	-	_	<0.010	_	_		-	-	0.14	_	<0.010
•	mg/kg			_		1	-	_		_	_	-	-	_		-	
High Molecular Weight PAHs	mg/kg	n/v	n/v	_	<0.050	<0.050	-	-	<0.050	-	-	-	-	-	0.37	-	<0.050
Low Molecular Weight PAHs	mg/kg	n/v	n/v	-	0.36 0.36	0.38 0.38	-	-	<0.050 <0.050	-	-	-	-	-	1.3	-	<0.050 <0.050
Total PAH	mg/kg	n/v	n/v		0.30	0.38		-	<0.050	-	-	-	-	-	1.6	-	<0.050

Table II - Soil Analytical Results
5th Avenue (Rogers Street to Jeckell Street), Whitehorse Yukon
Phase II ESA (2018 - 2019)
Yukon Government

Sample Location	1 1	I		MAAA	18-49	MW18-50	MW18-51	MW18-52	MW18-53	MW18-54	MW18-55
Sample Date				1-Aug-18	1-Aug-18	1-Aug-18	1-Aug-18	1-Aug-18	1-Aug-18	1-Aug-18	1-Aug-18
Sample ID				MW18-49 SA03			MW18-51 SA03	MW18-52 SA03	MW18-53 SA03	MW18-54 SA02	
Sample Depth				4.88 - 5.18	5.79 - 6.1	3.96 - 4.27	4.27 - 4.57	5.49 - 5.79	3.66 - 3.96	3.35 - 3.66	3.96 - 4.27
Laboratory				MAXX	MAXX	MAXX	MAXX	MAXX	MAXX	MAXX	MAXX
Laboratory Work Order				B865299	B865299	B865299	B865299	B865299	B865299	B865299	B865299
Laboratory Sample ID				UA0241	UA0242	UA0245	UA0222	UA0226	UA0230	UA0250	UA0254
Sample Type	Units	AB	CDEFGH								
		YUKON-CSR Schedule 1	YUKON-CSR Schedule 2								
General Parameters											
Moisture Content	%	n/v	n/v	6.5	15	19	23	11	9.9	6.6	12
Soluble (2:1) pH	S.U.	n/v	n/v	-	-	-	-	-	-	-	-
Petroleum Hydrocarbon	s										
EPH C10-C19	mg/kg	n/v	n/v	1,800	<100	<100	<100	<100	<100	<100	<100
LEPH (C10-C19 less PAH)	mg/kg	1,000 _{s8} A 2,000 _{s8} B	n/v	1,800 ^A	-	<100	<100	<100	<100	<100	<100
EPH C19-C32	mg/kg	n/v	n/v	170	<100	<100	<100	<100	<100	<100	<100
HEPH (C19-C32 less PAH)	mg/kg	1,000 _{s9} ^A 5,000 _{s9} ^B	n/v	170	-	<100	<100	<100	<100	<100	<100
VH (C6-C10)	mg/kg	n/v	n/v	68	-	-	-	<10	-	-	-
VPH (C6-C10 Minus BTEX)	mg/kg	200 _{s7} AB	n/v	68	-	-	-	<10	-	-	-
BTEX											
Benzene	mg/kg	n/v	1,000 ^C 70 ^D 10 ^{EH} 4,000 ^F 150 ^G	<0.0050	-	-	-	<0.0050	-	-	-
Ethylbenzene	mg/kg	n/v	3,500 ^C 1 ^D 6,000 ^{EH} 10,000 ^F 20 ^G	<0.010	-	-	-	<0.010	-	-	-
Methyl tert-butyl ether (MTBE)	mg/kg	n/v	n/v	<0.10	-	-	-	<0.10	-	-	-
Styrene	mg/kg	5 ^A 50 ^B	n/v	< 0.030	-	-	-	< 0.030	-	-	-
Toluene	mg/kg	n/v	40.000 ^C 1.5 ^D 40 ^{EH} 100.000 ^F 25 ^G	<0.020	-	-	-	<0.020	-	-	-
Xylene, m & p-	mg/kg	n/v	n/v	<0.040	_	_	_	< 0.040	-	-	-
Xylene, o-	mg/kg	n/v	n/v	< 0.040	-	-	-	<0.040	-	-	-
Xylenes, Total	mg/kg	n/v	65.000 ^C 5 ^D 200.000 ^F 50 ^G	< 0.040	-	-	-	< 0.040	-	-	-
Polycyclic Aromatic Hyd					•	•			•		
Acenaphthene	mg/kg	n/v	n/v	0.074	-	< 0.0050	< 0.0050	< 0.0050	< 0.0050	<0.0050	< 0.0050
Acenaphthylene	mg/kg	n/v	n/v	0.025	-	< 0.0050	< 0.0050	< 0.0050	< 0.0050	< 0.0050	< 0.0050
Acridine	mg/kg	n/v	n/v	< 0.050	_	<0.050	< 0.050	< 0.050	< 0.050	<0.050	<0.050
Anthracene	mg/kg	n/v	n/v	0.009	_	<0.0040	<0.0040	<0.0040	<0.0040	<0.0040	<0.0040
Benzo(a)anthracene	mg/kg	1 ^A 10 ^B	n/v	<0.020	_	<0.020	<0.020	<0.020	<0.020	<0.020	<0.020
Benzo(a)pyrene	mg/kg	n/v	5 ^C 1 ^D 15 ^F 10 ^G	<0.020	_	<0.020	<0.020	<0.020	<0.020	<0.020	<0.020
Benzo(b)fluoranthene	mg/kg	1 ^A 10 ^B	n/v	<0.020		<0.020	<0.020	<0.020	<0.020	<0.020	<0.020
Benzo(b/j)fluoranthene	mg/kg	n/v	n/v	<0.020	_	<0.020	<0.020	<0.020	<0.020	<0.020	<0.020
Benzo(g,h,i)perylene	mg/kg	n/v	n/v	<0.050		<0.050	<0.050	<0.050	<0.050	<0.050	<0.050
Benzo(k)fluoranthene	mg/kg	1 ^A 10 ^B	n/v	<0.030	_	<0.030	<0.020	<0.020	<0.020	<0.020	<0.020
. ,		n/v	n/v	<0.020	_	<0.020	<0.020	<0.020	<0.020	<0.020	<0.020
Chrysene	mg/kg	1 ^A 10 ^B	n/v	<0.020	-	<0.020	<0.020	<0.020	<0.020	<0.020	<0.020
Dibenzo(a,h)anthracene	mg/kg				-						
Fluoranthene	mg/kg	n/v	n/v	<0.020	-	<0.020	<0.020	<0.020	<0.020	<0.020	<0.020
Fluorene	mg/kg	n/v	n/v	0.27	-	<0.020	<0.020	<0.020	<0.020	<0.020	<0.020
Indeno(1,2,3-cd)pyrene	mg/kg	1 ^A 10 ^B	n/v	<0.020	-	<0.020	<0.020	<0.020	<0.020	<0.020	<0.020
Methylnaphthalene, 1-	mg/kg	n/v	n/v	<0.050	-	<0.050	<0.050	<0.050	<0.050	<0.050	<0.050
Methylnaphthalene, 2-	mg/kg	n/v	n/v	0.037	-	<0.020	<0.020	<0.020	<0.020	<0.020	<0.020
Naphthalene	mg/kg	5 ^A 50 ^B	n/v	0.053	-	<0.010	<0.010	<0.010	<0.010	<0.010	<0.010
Phenanthrene	mg/kg	5 ^A 50 ^B	n/v	0.3	-	<0.010	<0.010	<0.010	<0.010	<0.010	<0.010
Pyrene	mg/kg	10 ^A 100 ^B	n/v	<0.020	-	<0.020	<0.020	<0.020	<0.020	<0.020	<0.020
High Molecular Weight PAHs	mg/kg	n/v	n/v	<0.050	-	< 0.050	<0.050	<0.050	< 0.050	<0.050	<0.050
Low Molecular Weight PAHs	mg/kg	n/v	n/v	0.77	-	< 0.050	<0.050	< 0.050	< 0.050	< 0.050	< 0.050
Total PAH	mg/kg	n/v	n/v	0.77	-	< 0.050	< 0.050	< 0.050	< 0.050	< 0.050	< 0.050

Table II - Soil Analytical Results
5th Avenue (Rogers Street to Jeckell Street), Whitehorse Yukon
Phase II ESA (2018 - 2019)
Yukon Government

Sample Location Sample Date Sample ID Sample Depth (m) Laboratory Laboratory Work Order Laboratory Sample ID Sample Type General Parameters	Units	A B YUKON-CSR Schedule 1	C D E F G H YUKON-CSR Schedule 2	MW18-30 28-Jul-18 MW18-30 SA01 0.30 - 0.60 MAXX B863863 TZ2551	MW18-31 28-Jul-18 MW18-31 SA01 0.00 - 0.30 MAXX B863863 TZ2559	MW18-34 25-Jul-18 MW18-34 SA01 0.30 - 0.60 MAXX B862213 TY2785	MW18-35 26-Jul-18 MW18-35 SA01 0.60 - 0.90 MAXX B862770 TY5389	MW18-39 28-Jul-18 MW18-39 SA01 0.30 - 0.60 MAXX B863863 TZ2567	MW18-43 25-Jul-18 MW18-43 SA01 0.60 - 0.90 MAXX B862756 TY5290	MW18-45 25-Jul-18 MW18-45 SA01 0.30 - 0.60 MAXX B862756 TY5282
	1 0/	1		1	1	T	1	1	1	
Moisture Content	%	n/v	n/v	0.47	0.40	- 0.70	-	0.4	-	-
Soluble (2:1) pH	S.U.	n/v	n/v	8.47	8.43	8.79	8.52	8.1	8.52	8.08
Metals										
Aluminum	mg/kg	n/v	n/v	10,400	15,900	12,600	13,400	15,200	9,890	16,300
Antimony	mg/kg	20 ^A 40 ^B	n/v	0.61	1	1.16	1.11	0.91	0.54	1.15
Arsenic	mg/kg	n/v	100 ^{CG} 50 ^D 20 ^{EH} 300 ^F	7.17	10.9	9.64	9.46	10.3	6.76	11.3
Barium	mg/kg	500 ^A 2,000 ^B	n/v	154	249	167	198	240	138	252
Beryllium	mg/kg	4 ^A 8 ^B	n/v	0.33	0.46	0.38	0.4	0.48	0.3	0.5
Bismuth	mg/kg	n/v	n/v	0.11	0.17	0.14	0.16	0.18	0.11	0.18
Boron	mg/kg	n/v	n/v	2.2	2.5	2.3	2.1	3.9	1.5	2.9
Cadmium	mg/kg	n/v	$3-35_{N6}{}^{C}70^{D}150_{PH2}{}^{EH}100^{F}500^{G}$	0.213	0.343	0.918	0.82	0.324	0.184	0.761
Calcium	mg/kg	n/v	n/v	21,700	31,600	22,200	28,200	44,800	20,900	33,100
Chromium	mg/kg	n/v	$60^{EH} 300_{N2}^{D} 700_{N2}^{G}$	48.2	52.4	40	42.3	49.5	30.9	52.5
Cobalt	mg/kg	50 ^A 300 ^B	n/v	8.11	12.1	9.61	9.93	11.3	7.26	12.3
Copper	mg/kg	n/v	$15,000^{\text{C}}$ 150^{D} $30,000_{\text{PH7}}^{\text{EH}}$ $50,000^{\text{F}}$ 250^{G}	21.7	36.4	29.4	29.9	31.3	20.5	36.9
Iron	mg/kg	n/v	n/v	20,400	29,100	23,800	24,300	26,900	19,300	29,800
Lead	mg/kg	n/v	500 ^C 1,000 ^{DF} 40,000 _{PH12} ^{EH} 2,000 ^G	7.27	10.6	47.5	39.8	9.81	6.22	24.8
Lithium	mg/kg	n/v	n/v	9.1	13	10.2	10.6	12.6	9.2	13.3
Magnesium	mg/kg	n/v	n/v	8,170	10,700	8,600	9,420	11,000	7,050	11,200
Manganese	mg/kg	n/v	n/v	370	529	436	454	512	353	549
Mercury	mg/kg	n/v	15 ^C 100 ^D 40 ^F 150 ^G	< 0.050	<0.050	< 0.050	<0.050	< 0.050	<0.050	0.059
Molybdenum	mg/kg	10 ^A 40 ^B	n/v	0.67	0.75	1.07	0.74	0.84	0.53	0.79
Nickel	mg/kg	100 ^A 500 ^B	n/v	35.7	44.7	33.1	36.1	41	25	45
Phosphorus	mg/kg	n/v	n/v	808	955	830	909	975	650	1030
Potassium	mg/kg	n/v	n/v	1,110	1,770	1,320	1,320	1,610	846	1,710
Selenium	mg/kg	3 ^A 10 ^B	n/v	<0.50	<0.50	<0.50	<0.50	<0.50	<0.50	<0.50
Silver	mg/kg	20 ^A 40 ^B	n/v	0.082	0.137	0.57	0.45	0.152	0.073	0.292
Sodium	mg/kg	n/v	n/v	239	314	314	355	591	227	604
Strontium	mg/kg	n/v	n/v	59.3	83.4	67.7	78.6	145	53.4	92.4
Thallium	mg/kg	n/v	n/v	0.082	0.127	0.104	0.11	0.128	0.073	0.133
Tin	mg/kg	50 ^A 300 ^B	n/v	0.37	0.53	0.63	0.51	0.48	0.32	0.75
Titanium	mg/kg	n/v	n/v	741	1070	839	889	1150	639	1180
Tungsten	mg/kg	n/v	n/v	<0.50	<0.50	<0.50	<0.50	<0.50	<0.50	<0.50
Uranium	mg/kg	n/v	n/v	0.858	1.15	1.25	1.2	1.8	0.878	1.63
Vanadium	mg/kg	200 ^A	n/v	41.8	59.3	49.3	49.6	56.1	38.5	61.1
Zinc	mg/kg	n/v	10,000 ^C 450 ^D 3,000 _{PH21} ^{EH} 30,000 ^F 600 ^G	44.4	65.3	92.4	86.9	56.8	41.9	92.9
Zirconium	mg/kg	n/v	n/v	5.99	8.71	5.52	7.1	8.1	4.85	9.58

Table II - Soil Analytical Results
5th Avenue (Rogers Street to Jeckell Street), Whitehorse Yukon
Phase II ESA (2018 - 2019)
Yukon Government

Sample Location		MW18-30		MW18-31		MW18-33	MW18-34		MW18-35			MW18-39		
Sample Date		28-Jul-18	28-Jul-18	28-Jul-18	28-Jul-18	24-Jul-18	25-Jul-18	26-Jul-18	26-Jul-18	26-Jul-18	28-Jul-18	28-Jul-18	28-Jul-18	24-Jul-18
Sample ID		MW18-30 SA01	MW18-31 SA01	TZ2564-MW18- 31 SA06	MW18-31 SA07	MW18-33 SA06	MW18-34 SA01	MW18-35 SA01	TY5396-MW18- 35 SA08	MW18-35 SA10	MW18-39 SA01	TZ2574-MW18- 39 SA08	MW18-39 SA09	MW18-44 SA06
Sample Depth		0.30 - 0.61	0 - 0.30	4.57 - 4.88	4.88 - 5.18	3.66 - 4.27	0.30 - 0.61	0.61 - 0.91	5.49 - 5.79	7.01 - 7.32	0.3 - 0.61	5.79 - 6.1	6.4 - 6.71	3.66 - 4.27
Laboratory		MAXX	MAXX	MAXX	MAXX	MAXX	MAXX	MAXX	MAXX	MAXX	MAXX	MAXX	MAXX	MAXX
Laboratory Work Order		B8M0232	B8M0232	B8K5403	B863863	B862213	B8M0219	B8M0223	B8K5409	B862770	B8M0232	B8K5403	B863863	B862213
Laboratory Sample ID		HOP857	HOP858	HLM634	TZ2565	TY2775	HOP709	HOP728	HLM657	TY5398	HOP859	HLM635	TZ2575	TY2769
Sample Type	Units													
Total Organic Carbon														
Total Organic Carbon	mg/kg	1,000	4,500	1,500	-	<500	4,800	1,800	<500	_	16,000	<500	-	1,200
Grain Size	-	-	-	-	-	-	-	-	-	-	-		-	
Gravel	%	-	-	-	14	<2.0	-	-	-	27	-	-	9.7	49
Percent Clay	%	-	-	-	2	12	-	-	-	7	-	-	8	2.1
Percent Sand	%	-	-	-	84	36	-	-	-	25	-	-	31	46
Percent Silt	%	-	-	-	<2.0	51	-	-	-	41	-	-	51	3

Table II - Soil Analytical Results 5th Avenue (Rogers Street to Jeckell Street), Whitehorse Yukon Phase II ESA (2018 - 2019)

Yukon Government

Notes:	
NOIES:	
YUKON-CSR Schedule 1 Contaminated Sites Regulation Yukon O.I.C. 2002/171, effective August 5, 2002.	
A Schedule 1 - Generic Numerical Soil Standards - Residential	
B Schedule 1 - Generic Numerical Soil Standards - Commercial	
YUKON-CSR Schedule 2 Contaminated Sites Regulation Yukon O.I.C. 2002/171, effective August 5, 2002.	
C Schedule 2 - Matrix Numerical Soil Standards - Human Health Protection - Residential (RL) - Intake of contaminated soil (applicable to all sites)	
Schedule 2 - Matrix Numerical Soil Standards - Environmental Protection - Residential (RL) - Toxicity to soil invertebrates and plants (applicable to all sites)	
Schedule 2 - Matrix Numerical Soil Standards - Environmental Protection - Residential (RL) - Groundwater flow to surface water used by aquatic life (freshwater)	
Schedule 2 - Matrix Numerical Soil Standards - Human Health Protection - Commercial (CL) - Intake of contaminated soil (applicable to all sites)	
G Schedule 2 - Matrix Numerical Soil Standards - Environmental Protection - Commercial (CL) - Toxicity to soil invertebrates and plants (applicable to all sites)	
Schedule 2 - Matrix Numerical Soil Standards - Environmental Protection - Commercial (CL) - Groundwater flow to surface water used by aquatic life (freshwater)	
6.5 ^A Concentration exceeds the indicated standard.	
6.5 ^A Concentration exceeds the indicated RL standard; however, the sample is below 3.0 mbgs, therefore only the CL standard is applicable.	
15.2 Measured concentration did not exceed the indicated standard.	
< 0.50 Laboratory reporting limit was greater than the applicable standard.	
< 0.03 Analyte was not detected at a concentration greater than the laboratory reporting limit.	
n/v No standard/guideline value.	
- Parameter not analyzed / not available.	
N2 Standard is for chromium (total).	
N6 If land is used to grow produce for human consumption, the standard is 3 ug/g; if not, the standard is 35 ug/g.	
Cadmium standards vary with soil pH from 2-150 ug/g for groundwater flow to surface water used by aquatic life (freshwater) for all land use types. For pH <7.0 standard = 2 ug/g; For pH 7.0-<7.5 standard = 2.5 ug/g;	g; For pH 7.5-<8.0 standard = 25 ug/g; For
Copper standards vary with soil pH from 90-30,000 ug/g for groundwater flow to surface water used by aquatic life (freshwater) for all land use types. For pH < 5.0 standard = 90 ug/g; For pH 5.0-<5.5 standard = 100 ug/g	ug/g; For pH 5.5 -<6.0 standard = 200 u
Lead standards vary with soil pH from 150-40,000 ug/g for groundwater flow to surface water used by aquatic life (freshwater) for all land use types. For pH < 5.5 standard = 150 ug/g; For pH 5.5 -<6.0 standard = 250 Zinc standards vary with soil pH from 150-3,000 ug/g for groundwater flow to surface water used by aquatic life (freshwater) for all land use types. For pH < 6.0 standard = 150 ug/g; For pH 6.0 -<6.5 standard = 300 u VPHs include: Volatile petroleum hydrocarbons with the exception of benzene, toluene, ethylbenzene and xylenes.	
LEPHs include: Light extractable petroleum hydrocarbons with the exception of benz[a]anthracene, benzo[a]pyrene, benzo[b]fluoranthene, benzo[k]fluoranthene, dibenz[a,h]anthracene, indeno [1,2,3-cd] pyrene, naph HEPHs include heavy extractable petroleum hydrocarbons with the exception of: benz[a]anthracene, benzo[a]pyrene, benzo[b]fluoranthene, benzo[k]fluoranthene, dibenz[a,h]anthracene, indeno [1,2,3-cd] pyrene, naph	• • • • • • • • • • • • • • • • • • • •

Sample Location	1 1		MW16-01	l mw	16-02	MW16-09	MW16-10	MW16-11	MW16-12	MW16-13	MW17-15	MW17-16	MW17-17	MW17-19	MW17-20
Sample Date					21-Aug-18	21-Aug-18	21-Aug-18	17-Aug-18	-		16-Aug-18	16-Aug-18			
Sample ID			MW16-01	MW16-02	MW16-02A	MW16-09	MW16-10	MW16-11	MW16-12	MW16-13-RW	MW17-15	MW17-16	MW17-17	MW17-19	MW17-20
Laboratory			MAXX	MAXX	MAXX	MAXX	MAXX	MAXX	MAXX	MAXX	MAXX	MAXX	MAXX	MAXX	MAXX
Laboratory Work Order			B869306	B871282	B871282	B871282	B871282	B870078	B871282	B870078	B869782	B870078	B869782	B870078	B870078
Laboratory Sample ID			UC1862	UD3683	UD3684	UD3685	UD3686	UC6886	UD3681	UC6883	UC4772	UC6884	UC4770	UC6891	UC6887
Sample Type	Units	Α			Field									1 1	
		YUKON-CSR Schedule 3			Duplicate									<u>i </u>	<u> </u>
General Parameters															
Filter and HNO3 Preservation	none	n/v	-	-	-	-	-	-	-	-	-	-	-	- 1	-
Hardness (as CaCO3)	mg/L	n/v	1,030	-	-	-	-	828	-	695	-	784	-	-	-
Petroleum Hydrocarbo	ns														
LEPH (C10-C19 less PAH)	mg/L	0.5 _{N21} ^A	0.62 ^A	<0.20	<0.20	0.55 ^A	<0.20	0.23	<0.20	0.96 ^A	<0.20	0.54 ^A	3.2 ^A	<0.20	1.8 ^A
EPH C10-C19	mg/L	5 _{N23, N24} A	0.62	<0.20	<0.20	0.55	<0.20	0.23	<0.20	0.97	<0.20	0.54	3.3	<0.20	1.9
HEPH (C19-C32 less PAH)	mg/L	n/v	<0.20	<0.20	<0.20	<0.20	<0.20	<0.20	<0.20	<0.20	<0.20	<0.20	<0.20	<0.20	0.3
EPH C19-C32	mg/L	n/v	<0.20	<0.20	<0.20	<0.20	<0.20	<0.20	<0.20	<0.20	<0.20	<0.20	<0.20	<0.20	0.3
VH (C6-C10)	μg/L	15,000 _{N22, N24} ^A	<300	-	-	-	-	<300	-	<300	-	<300	-	-	-
VPH (C6-C10 Minus BTEX)	μg/L	1,500 _{N20} ^A	<300	-	-	-	-	<300	-	<300	-	<300	-	-	-
Dissolved metals															
Aluminum	μg/L	n/v	-	-	-	-	-	-	-	-	-	-	-	-	-
Antimony	μg/L	200 ^A	-	-	-	-	-	-	-	-	-	-	-	-	-
Arsenic	μg/L	50 ^A	29	-	-	-	-	11.8	-	4.76	-	9.72	-	i - I	-
Barium	μg/L	10,000 ^A	-	-	-	-	-	-	-	-	-	-	-	-	-
Beryllium	μg/L	53 ^A	-	-	-	-	-	-	-	-	-	-	-	i - I	-
Bismuth	μg/L	n/v	-	-	-	-	-	-	-	-	-	-	-	-	-
Boron	μg/L	50,000 ^A	-	-	-	-	-	-	-	-	-	-	-	-	-
Cadmium	μg/L	0.1-0.6 _{H1} ^A	-	_	-	-	-	-	-	-	-	-	-	-	1 -
Chromium	μg/L	10 ^A 9 ^A	-	-	-	-	-	-	_	-	-	-	-	-	_
Cobalt Copper	μg/L μg/l	9'` 20-90 _{H4} ^A]	-	-	_		_		[-	-	-	-	-
Iron	μg/L μg/L	20-90 _{H4} n/v	1700	-		_	_	1570] -	2690	-	3970	-	-	1 -
Lead	μg/L μg/L	40-160 _{H6} ^A	-	_	_	_	_	-	_	-	_	-	_	_	-
Lithium	μg/L	n/v	-	-	-	_	-	-	-	-	_	-	_	-	-
Manganese	μg/L	n/v	410	-	-	-	-	90.2	_	385	-	263	-	-	-
Mercury	μg/L	1 ^A	-	-	-	-	-	-	-	-	-	-	-	-	-
Molybdenum	μg/L	10,000 ^A	-	-	-	-	-	-	-	-	-	-	-	-	-
Nickel	μg/L	250-1,500 _{H7} ^A	-	-	-	-	-	-	-	-	-	-	-	j - J	-
Selenium	μg/L	10 ^A	-	-	-	-	-	-	-	-	-	-	-	-	-
Silicon	μg/L	n/v	-	-	-	-	-	-	-	-	-	-	-	i - I	-
Silver	μg/L	0.5-15 _{H2} ^A	-	-	-	-	-	-	-	-	-	-	-	-	-
Strontium	μg/L	n/v	-	-	-	-	-	-	-	-	-	-	-	-	-
Thallium	μg/L	3 ^A	-	-	-	-	-	-	-	-	-	-	-	-	_
Tin Titanium	μg/L μg/L	n/v 1,000 ^A	_	-	-	-	-	-	-	-	-	-	-	[]	-
Uranium	μg/L μg/L	3,000 ^A	_	_	_	_	_	_	_	_	_	_		i []	-
Vanadium	μg/L	3,000 n/v	_	_	_	_	_	_	_	_	_	_	_	i []	l -
Zinc	μg/L	75-2,400 _{H3} ^A	_	-	_	_	_	-	_	_	_	-	_	_	_
Zirconium	μg/L	n/v	-	-	-	-	-	-	-	-	-	-	-	-	-
Calcium	mg/L	n/v	-	-	-	-	-	-	-	-	-	-	-	-	-
Magnesium	mg/L	n/v	140	-	-	-	-	110	-	93	-	103	-	-	-
Potassium	mg/L	n/v	-	-	-	-	-	-	-	-	-	-	-	i - I	-
Sodium	mg/L	n/v	-	-	-	-	-	-	-	-	-	-	-	i - I	-
Sulfur	mg/L	n/v	-	-	-	-	-	-	-	-	-	-	-		_
BTEX															
Benzene	μg/L	4,000 ^A	<0.40	-	-	1	-	<0.40	-	<0.40	-	<0.40	-	- 1	-
Ethylbenzene	μg/L	2,000 ^A	0.44	-	-	-	-	<0.40	-	<0.40	-	<0.40	-	-	-
Methyl tert-butyl ether (MTBE)	μg/L	n/v	<4.0	-	-	-	-	<4.0	-	<4.0	-	<4.0	-	-	-
Styrene	μg/L	720 ^A	<0.40	-	-	-	-	<0.40	-	<0.40	-	<0.40	-	i - I	-
Toluene	μg/L	390 ^A	<0.40	-	-	-	-	<0.40	-	<0.40	-	<0.40	-	-	-
Xylene, m & p-	μg/L	n/v	<0.40	-	-	-	-	<0.40	-	<0.40	-	<0.40	-	-	-
Xylene, o- Xylenes, Total	μg/L μg/L	n/v n/v	<0.40 <0.40	-	-	_	-	<0.40 <0.40	-	<0.40 <0.40	-	<0.40 <0.40	-	-	-
			-U. 1 U	<u> </u>				-0.70	<u> </u>	^∪. ¬ ∪	-	-U. T U			<u> </u>
Polycyclic Aromatic Hy			004	-0.0F0	20.0F0	0.40	ZO 050	0.00	ZO 050	0.00	<0.050	0.40	0.53	ZO 050	0.01
Acenaphthene Acenaphthylene	μg/L μg/L	60 ^A n/v	0.34 0.054	<0.050 <0.050	<0.050 <0.050	0.42 0.33	<0.050 <0.050	0.09 <0.050	<0.050 <0.050	0.92 0.055	<0.050 <0.050	0.42 <0.050	0.57 <0.050	<0.050 <0.050	0.21 <0.050
Acridine	μg/L μg/L	0.5 ^A	<0.054	<0.050	<0.050	<0.050	<0.050	<0.050	<0.050	<0.050	<0.050	<0.050	<0.050	<0.050	<0.050
Anthracene	μg/L μg/L	0.5 1 ^A	0.030	<0.030	<0.050	0.030	<0.050	<0.050	<0.050	0.030	<0.050	0.030	0.050	<0.050	<0.050
Benzo(a)anthracene	μg/L μg/L	1 ^A	<0.02	<0.010	<0.010	<0.010	<0.010	<0.010	<0.010	<0.010	<0.010	<0.010	<0.011	<0.010	<0.010
Benzo(a)pyrene	μg/L	0.1 ^A	<0.0050	<0.0050	<0.0050	<0.0050	<0.0050	<0.0050	<0.0050	<0.0050	< 0.0050	<0.0050	< 0.0050	<0.0050	<0.0050
Benzo(b)pyridine (Quinoline)	μg/L	34 ^A	<0.064	<0.020	<0.020	<0.040	<0.020	<0.062	<0.020	<0.11	<0.020	<0.065	<0.40	<0.020	<0.041
Benzo(b/j)fluoranthene	μg/L	n/v	< 0.030	<0.030	< 0.030	<0.030	<0.030	< 0.030	<0.030	<0.030	< 0.030	<0.030	<0.030	<0.030	< 0.030
Benzo(g,h,i)perylene	μg/L	n/v	<0.050	<0.050	<0.050	<0.050	<0.050	<0.050	<0.050	<0.050	< 0.050	<0.050	<0.050	<0.050	<0.050
Benzo(k)fluoranthene	μg/L	n/v	<0.050	<0.050	<0.050	<0.050	<0.050	<0.050	<0.050	<0.050	<0.050	<0.050	<0.050	<0.050	<0.050
Chrysene	μg/L	1 ^A	<0.020	<0.020	<0.020	<0.020	<0.020	<0.020	<0.020	<0.020	<0.020	<0.020	<0.020	<0.020	<0.020
Dibenzo(a,h)anthracene	μg/L	n/v	<0.0030	<0.0030	<0.0030	<0.0030	<0.0030	<0.0030	<0.0030	<0.0030	<0.0030	<0.0030	<0.0030	<0.0030	<0.0030
Fluoranthene	μg/L	2 ^A	<0.020	<0.020	<0.020	<0.020	<0.020	<0.020	<0.020	<0.020	<0.020	<0.020	<0.020	<0.020	<0.020
Fluorene	μg/L	120 ^A	1.4	<0.050	<0.050	1.3	<0.050	0.41	<0.050	3.3	<0.050	1.5	2	<0.050	0.59
Indeno(1,2,3-cd)pyrene	μg/L	n/v	<0.050	<0.050	<0.050	<0.050	<0.050	<0.050	<0.050	<0.050	<0.050	<0.050	<0.050	<0.050	<0.050
Methylnaphthalene, 1-	μg/L	n/v	- 60	<0.050	<0.050	7.7	<0.050	1.3	<0.050	7.2	<0.050	4.7	83	<0.050	4.3
Methylnaphthalene, 2-	μg/L	n/v 10 ^A	6.8	<0.10	<0.10	5.9	<0.10	<0.10	<0.10	<0.10	<0.10	<0.10	100 97^A	<0.10	2
Naphthalene	μg/L	10 ^A	2.5	<0.10	<0.10	3	<0.10	0.32	<0.10	0.86	<0.10	0.65		<0.10	0.76
Dhononthre	μg/L	3 ^A	0.62	<0.050	<0.050	0.68	<0.050	0.22	<0.050	1.2	<0.050	0.61	0.93	<0.050	0.18 <0.020
		~ ^A	~n non	~n non										~n non	
Phenanthrene Pyrene	μg/L	0.2 ^A	<0.020	<0.020	<0.020	<0.020	<0.020	<0.020	<0.020	<0.020	<0.020	<0.020	<0.020	<0.020	
Pyrene High Molecular Weight PAHs	μg/L μg/L	n/v	<0.050	<0.050	<0.050	<0.050	<0.050	<0.050	<0.050	<0.050	<0.050	<0.050	<0.050	<0.050	<0.050
Pyrene	μg/L														

Sample Location	1	l	MW18-31	MW18-33	MW18-34	MW18-35	MW	18-37	MW	18-39	MW18-40	MW18-41	MW18-42	MW18-43	MW18-44	MW18-45
Sample Date				26-Jul-18	26-Jul-18			15-Aug-18		17-Aug-18	15-Aug-18	15-Aug-18				
Sample ID			MW18-31		MW18-34		MW18-37	MW18-37A	MW18-39	MW18-39A	MW18-40	MW18-41	MW18-42			
Laboratory			MAXX													
Laboratory Work Order			B871282	B862272	B862272	B870078	B869306	B869306	B870078	B870078	B869306	B869782	B863767	B863767	B862272	B869782
Laboratory Sample ID			UD3682	TY3072	TY3073	UC6888	UC1860	UC1861	UC6889	UC6890	UC1863	UC4769	TZ1833	TZ1834	TY3071	UC4771
Sample Type	Units	Α						Field		Field						ł
		YUKON-CSR Schedule 3						Duplicate		Duplicate						<u> </u>
General Parameters			-													
Filter and HNO3 Preservation	none	n/v	-	FIELD	FIELD	-	-	-	-	-	-	-	FIELD	FIELD	FIELD	-
Hardness (as CaCO3)	mg/L	n/v	-	575	307	-	89.8	-	763	762	-	-	221	142	776	308
Petroleum Hydrocarbo	ns		•													
LEPH (C10-C19 less PAH)	mg/L	0.5 _{N21} ^A	0.58 ^A	<0.20	<0.20	<0.20	<0.20	<0.20	0.53 ^A	0.54 ^A	<0.20	<0.20	<0.20	<0.20	<0.20	<0.20
EPH C10-C19	mg/L	5 _{N23, N24} A	0.58	<0.20	<0.20	<0.20	<0.20	<0.20	0.53	0.54	<0.20	<0.20	<0.20	<0.20	<0.20	<0.20
HEPH (C19-C32 less PAH)	mg/L	n/v	<0.20	<0.20	<0.20	<0.20	<0.20	<0.20	<0.20	<0.20	<0.20	<0.20	<0.20	<0.20	<0.20	<0.20
EPH C19-C32	mg/L	n/v	<0.20	<0.20	<0.20	<0.20	<0.20	<0.20	<0.20	<0.20	<0.20	<0.20	<0.20	<0.20	<0.20	<0.20
VH (C6-C10)	μg/L	15,000 _{N22, N24} A	-	<300	<300	-	<300	-	-	<300	-	-	<300	<300	<300	<300
VPH (C6-C10 Minus BTEX)	μg/L	1,500 _{N20} ^A	-	<300	<300	-	<300	-	-	<300	-	-	<300	<300	<300	<300
Dissolved metals																
Aluminum	μg/L	n/v	-	5	570	-	-	-	-	-	-	-	3.1	4.1	6.6	-
Antimony	μg/L	200 ^A	-	0.64	<0.50	-	-	-	-	-	-	-	0.88	<0.50	<0.50	-
Arsenic	μg/L	50 ^A	-	3.51	9.08	-	17.5	-	15.7	15.9	-	-	11.2	15.7	2.89	1.09
Barium	μg/L	10,000 ^A	-	33.1	52.2	-	-	-	-	-	-	-	56.6	70.6	98.6	-
Beryllium Bismuth	μg/L	53 ^A n/v	-	<0.10 <1.0	<0.10 <1.0	-	-	-	-	-	-	-	<0.10 <1.0	<0.10 <1.0	<0.10 <1.0	_
Boron	μg/L μg/L	50,000 ^A	_	<1.0 <50	<1.0 <50		_	-	_	_	-	-	51	<1.0 <50	<1.0 <50	_
Cadmium	μg/L μg/L	0.1-0.6 _{H1} ^A	-	0.098	0.054	_	_	_	_	_	_	-	<0.010	<0.010	0.174	_
Chromium	μg/L	10 ^A	_	<1.0	1.1	_	-	_	-	_	-	_	<1.0	<1.0	<1.0	-
Cobalt	μg/L	9 ^A	-	4.2	2.14	-	-	-	-	-	-	-	<0.20	<0.20	7.34	-
Copper	μg/L	20-90 _{H4} ^A	-	1.43	3.21	-	-	-	-	-	-	-	0.55	0.51	3.37	-
Iron	μg/L	n/v	-	8.4	671	-	<5.0	-	1580	1580	-	-	12.1	<5.0	306	<5.0
Lead	μg/L	40-160 _{H6} ^A	-	<0.20	0.62	-	-	-	-	-	-	-	<0.20	<0.20	<0.20	-
Lithium	μg/L	n/v	-	3.6	2.5	-	-	-	-	-	-	-	3	<2.0	2.1	1
Manganese	μg/L	n/v 1 ^A	-	566	322	-	13.6	-	173	170	-	-	72.3	38.1	2050	112
Mercury Molybdenum	μg/L μg/L	10,000 ^A	-	0.0023 4.2	0.0025 4.9	-	-	-	-	-	-	-	<0.0020 6.7	<0.0020 7.9	<0.0020 3.3	i -
Nickel	μg/L μg/L	250-1,500 _{H7} ^A	_	11.2	7.5	_	_	_	_	_	-	_	<1.0	<1.0	12.7	-
Selenium	μg/L	10 ^A	_	0.33	0.24	_	_	_	_	_	_	_	0.69	0.19	0.18	-
Silicon	μg/L	n/v	-	6,430	7,210	_	-	-	_	-	-	_	5,370	4,830	7,870	-
Silver	μg/L	0.5-15 _{H2} ^A	-	<0.020	<0.020	-	-	-	-	-	-	-	<0.020	<0.020	<0.020	-
Strontium	μg/L	n/v	-	638	432	-	-	-	-	-	-	-	424	312	1,090	-
Thallium	μg/L	3 ^A	-	0.032	0.023	-	-	-	-	-	-	-	<0.010	<0.010	0.028	-
Tin	μg/L	n/v	-	<5.0	<5.0	-	-	-	-	-	-	-	<5.0	<5.0	<5.0	-
Titanium	μg/L	1,000 ^A	-	<5.0	23	-	-	-	-	-	-	-	<5.0	<5.0	<5.0	-
Uranium Vanadium	μg/L	3,000 ^A	-	12.4 <5.0	5.72 <5.0	-	-	-	-	-	-	-	5.41 <5.0	3.95 <5.0	15.1 <5.0	i -
Zinc	μg/L μg/L	n/v 75-2,400 _{H3} ^A	-	<5.0 <5.0	<5.0 <5.0	_	-	-	_	-	-	-	<5.0 <5.0	<5.0 <5.0	5.7	i -
Zirconium	μg/L μg/L	n/v	_	0.41	0.66	_	_	_	_	_	-	_	<0.10	<0.10	0.29	l -
Calcium	mg/L	n/v	_	120	65	_	_	_	_	_	_	_	55.6	24.5	164	-
Magnesium	mg/L	n/v	-	66.9	35.1	-	13	-	101	101	-	_	20	19.6	89.2	25
Potassium	mg/L	n/v	-	4.87	3.27	_	-	-	-	-	-	_	2.71	2.41	3.73	-
Sodium	mg/L	n/v	-	20.6	18.3	-	-	-	-	-	-	-	16.9	19.8	26	-
Sulfur	mg/L	n/v	-	106	36.4	-	-	-	-	-	-	-	32.9	15.8	154	-
BTEX																
Benzene	μg/L	4,000 ^A	-	<0.40	<0.40	-	<0.40	-	-	<0.40	-	-	<0.40	<0.40	<0.40	<0.40
Ethylbenzene	μg/L	2,000 ^A	-	<0.40	<0.40	-	<0.40	-	-	<0.40	-	-	<0.40	<0.40	<0.40	<0.40
Methyl tert-butyl ether (MTBE)	μg/L	n/v	-	<4.0	<4.0	-	<4.0	-	-	<4.0	-	-	<4.0	<4.0	<4.0	<4.0
Styrene	μg/L	720 ^A	-	<0.40	<0.40	-	<0.40	-	-	<0.40	-	-	<0.40	<0.40	<0.40	<0.40
Toluene	μg/L	390 ^A	-	<0.40	<0.40	-	<0.40	-	-	<0.40	-	-	<0.40	<0.40	<0.40	<0.40
Xylene, m & p-	μg/L	n/v n/v	-	<0.40 <0.40	<0.40 <0.40	-	<0.40 <0.40	-	-	0.89	-	-	<0.40	0.76 0.41	0.4 <0.40	<0.40 <0.40
Xylene, o- Xylenes, Total	μg/L μg/L	n/v n/v	-	<0.40	<0.40 <0.40] -	<0.40	1 [_	<0.40 0.89		-	<0.40 <0.40	1.2	<0.40 0.4	<0.40 <0.40
Polycyclic Aromatic Hy			_	-0.70	-0.70	ļ	-0.70			0.00	-	-	-5.70	12	U.7	-0.70
Acenaphthene		60 ^A	0.66	<0.050	<0.050	<0.050	<0.050	<0.050	0.35	0.34	<0.050	<0.050	<0.050	<0.050	0.42	<0.050
Acenaphthylene	μg/L μg/L	n/v	< 0.050	<0.050	<0.050	<0.050	<0.050	<0.050	< 0.050	<0.050	<0.050	<0.050	<0.050	<0.050	<0.050	<0.050
Acridine	μg/L	0.5 ^A	<0.050	<0.050	<0.050	<0.050	<0.050	<0.050	<0.050	<0.050	<0.050	<0.050	<0.050	<0.050	<0.050	<0.050
Anthracene	μg/L	1 ^A	0.030	<0.010	<0.010	<0.010	<0.010	<0.010	0.014	0.013	<0.010	<0.030	<0.010	<0.010	<0.030	<0.010
Benzo(a)anthracene	μg/L	1 ^A	<0.010	<0.010	<0.010	<0.010	<0.010	<0.010	<0.010	<0.010	<0.010	<0.010	<0.010	<0.010	<0.010	<0.010
Benzo(a)pyrene	μg/L	0.1 ^A	<0.0050	<0.0050	<0.0050	<0.0050	<0.0050	<0.0050	<0.0050	<0.0050	<0.0050	<0.0050	<0.0050	<0.0050	<0.0050	<0.0050
Benzo(b)pyridine (Quinoline)	μg/L	34 ^A	<0.050	<0.020	<0.020	<0.079	<0.020	<0.020	<0.087	<0.041	<0.020	<0.020	<0.020	<0.020	<0.020	<0.020
Benzo(b/j)fluoranthene	μg/L	n/v	<0.030	<0.030	<0.030	<0.030	<0.030	<0.030	<0.030	<0.030	<0.030	<0.030	<0.030	<0.030	<0.030	<0.030
Benzo(g,h,i)perylene	μg/L	n/v	<0.050	<0.050	<0.050	<0.050	<0.050	<0.050	<0.050	<0.050	<0.050	<0.050	<0.050	<0.050	<0.050	<0.050
Benzo(k)fluoranthene	μg/L	n/v	<0.050	<0.050	<0.050	<0.050	<0.050	<0.050	<0.050	<0.050	<0.050	<0.050	<0.050	<0.050	<0.050	<0.050
Chrysene	μg/L	1 ^A	<0.020	<0.020	<0.020	<0.020 <0.0030	<0.020 <0.0030	<0.020 <0.0030	<0.020 <0.0030	<0.020	<0.020	<0.020 <0.0030	<0.020	<0.020	<0.020	<0.020 <0.0030
Dibenzo(a,h)anthracene Fluoranthene	μg/L μg/L	n/v 2 ^A	<0.0030 <0.020	<0.0030 <0.020	<0.0030 <0.020	<0.0030 <0.020	<0.0030	<0.0030	<0.0030	<0.0030 <0.020						
Fluorene	μg/L μg/L	120 ^A	1.8	<0.020	<0.020	0.020	<0.020	<0.020	1	0.020	<0.020	<0.020	<0.020	<0.020	<0.020	<0.020
Indeno(1,2,3-cd)pyrene	μg/L μg/L	n/v	<0.050	<0.050	<0.050	<0.050	<0.050	<0.050	<0.050	<0.050	<0.050	<0.050	<0.050	<0.050	<0.050	<0.050
Methylnaphthalene, 1-	μg/L μg/L	n/v	<0.050	0.054	<0.050	<0.050	-0.030	-0.030	6.1	5.9	-	<0.050	<0.050	<0.050	0.14	<0.050
Methylnaphthalene, 2-	μg/L	n/v	<0.10	<0.10	<0.10	<0.10	<0.10	<0.10	<0.10	<0.10	<0.10	<0.10	<0.10	<0.10	0.19	<0.10
Naphthalene	μg/L	10 ^A	0.42	<0.10	<0.10	<0.10	<0.10	<0.10	0.45	0.44	<0.10	<0.10	<0.10	<0.10	0.14	<0.10
Phenanthrene	μg/L	3 ^A	0.73	<0.050	<0.050	0.19	<0.050	<0.050	0.25	0.24	<0.050	<0.050	<0.050	<0.050	<0.050	<0.050
Pyrene	μg/L	0.2 ^A	<0.020	<0.020	<0.020	<0.020	<0.020	<0.020	<0.020	<0.020	<0.020	<0.020	<0.020	<0.020	<0.020	<0.020
High Molecular Weight PAHs	μg/L	n/v	<0.050	<0.050	<0.050	<0.050	<0.050	<0.050	<0.050	<0.050	<0.050	<0.050	<0.050	<0.050	<0.050	<0.050
Low Molecular Weight PAHs	μg/L	n/v	3.7	<0.10	<0.10	0.29	<0.10	<0.10	8.1	7.9	<0.10	<0.10	<0.10	<0.10	0.88	<0.10
Total PAH	μg/L μg/L	n/v	3.7	<0.10	<0.10	0.29	<0.10	<0.10	8.1	7.9	<0.10	<0.10	<0.10	<0.10	0.88	<0.10
	, µy,L	111 4	<u> </u>		0.10	J.20			. 0.1		0.10		. 0.10		. 5.50	5.15

Sample Location	I		MW18-48	MW18-49	MW18-50	MW18-51	MW18-52	MW18-53	MW18-54	MW18-55	MW18-56
Sample Location			15-Aug-18	13-Aug-18	14-Aug-18	MW18-51 14-Aug-18	13-Aug-18	14-Aug-18	14-Aug-18	14-Aug-18	16-Aug-18
Sample ID			MW18-48	MW18-49	MW18-50	MW18-51	MW18-52	MW18-53	MW18-54	MW18-55	MW18-56
Laboratory			MAXX	MAXX	MAXX	MAXX	MAXX	MAXX	MAXX	MAXX	MAXX
Laboratory Work Order			B869306	B868151	B869556	B869556	B868151	B869556	B869556	B869556	B870078
Laboratory Sample ID			UC1864	UB6393	UC3162	UC3161	UB6392	UC3158	UC3160	UC3159	UC6885
Sample Type	Units	Α									
		YUKON-CSR Schedule 3									
General Parameters			-								
Filter and HNO3 Preservation	none	n/v	_	-	-	-	-	-	-	-	-
Hardness (as CaCO3)	mg/L	n/v	-	-	-	-	-	-	-	-	804
Petroleum Hydrocarboi	าร		-								
LEPH (C10-C19 less PAH)	mg/L	0.5 _{N21} ^A	<0.20	0.59 ^A	<0.20	<0.20	<0.20	<0.20	<0.20	<0.20	<0.20
EPH C10-C19	mg/L	5 _{N23, N24} ^A	<0.20	0.59	<0.20	<0.20	<0.20	<0.20	<0.20	<0.20	<0.20
HEPH (C19-C32 less PAH)	mg/L	n/v	<0.20	<0.20	<0.20	<0.20	<0.20	<0.20	<0.20	<0.20	<0.20
EPH C19-C32	mg/L	n/v	<0.20	<0.20	<0.20	<0.20	<0.20	<0.20	<0.20	<0.20	<0.20
VH (C6-C10)	μg/L	15,000 _{N22, N24} A	-	<300	-	<300	<300	-	<300	-	<300
VPH (C6-C10 Minus BTEX)	μg/L	1,500 _{N20} ^A	-	<300	-	<300	<300	-	<300	-	<300
Dissolved metals											
Aluminum	μg/L	n/v	-	-	-			-	-	-	-
Antimony	μg/L	200 ^A	-	-	-	-	-	-	-	-	-
Arsenic	μg/L	50 ^A	-	-	-	-	-	-	-	-	1.48
Barium	μg/L	10,000 ^A	-	-	-	-	-	-	-	-	-
Beryllium Bismuth	μg/L	53 ^A n/v	_	-	-	-	-	-	-	-	-
Boron	μg/L μg/L	50.000 ^A		_					_	_	_
Cadmium	μg/L μg/L	0.1-0.6 _{H1} ^A				_	_ [_	_	_	_
Chromium	μg/L	10 ^A	-	-	-	-	-	-	-	-	-
Cobalt	μg/L	9 ^A	-	-	-	-	-	-	-	-	-
Copper	μg/L	20-90 _{H4} ^A	-	-	-	-	-	-	-	-	-
Iron	μg/L	n/v	-	-	-	-	-	-	-	-	<10
Lead	μg/L	40-160 _{H6} ^A	-	-	-	-	-	-	-	-	-
Lithium	μg/L	n/v	-	-	-	-	-	-	-	-	-
Manganese	μg/L	n/v 1 ^A	-	-	-	-	-	-	-	-	180
Mercury Molybdenum	μg/L μg/L	10,000 ^A	_	-	-	-	-	-	-	-	-
Nickel	μg/L μg/L	250-1,500 _{H7} ^A	_	_		-	_	-	-	_	_
Selenium	μg/L	10 ^A	_	_	_	_	_	_	_	_	_
Silicon	μg/L	n/v	_	_	-	_	-	-	_	_	-
Silver	μg/L	0.5-15 _{H2} ^A	-	-	-	-	-	-	-	-	-
Strontium	μg/L	n/v	-	-	-	-	-	-	-	-	-
Thallium	μg/L	3 ^A	-	-	-	-	-	-	-	-	-
Tin	μg/L	n/v	-	-	-	-	-	-	-	-	-
Titanium	μg/L	1,000 ^A	-	-	-	-	-	-	-	-	-
Uranium	μg/L	3,000 ^A	-	-	-	-	-	-	-	-	-
Vanadium	μg/L	n/v	-	-	-	-	-	-	-	-	-
Zinc Zirconium	μg/L μg/L	75-2,400 _{H3} ^A n/v	_	-	-	-	-	-	-	-	-
Calcium	mg/L	n/v	_	_		-	_	-	_	_	_
Magnesium	mg/L	n/v	_	_	_	_	_	_	_	_	100
Potassium	mg/L	n/v	_	_	-	_	_	_	-	-	-
Sodium	mg/L	n/v	-	-	-	-	-	-	-	-	-
Sulfur	mg/L	n/v	-	-	-	-	-	-	-	1	-
BTEX											
Benzene	μg/L	4,000 ^A	-	<0.40	-	<0.40	<0.40	-	<0.40	-	<0.40
Ethylbenzene	μg/L	2,000 ^A	-	<0.40	-	<0.40	<0.40	-	<0.40	-	<0.40
Methyl tert-butyl ether (MTBE)	μg/L	n/v	-	<4.0	-	<4.0	<4.0	-	<4.0	-	<4.0
Styrene	μg/L	720 ^A	-	<0.40	-	<0.40	<0.40	-	<0.40	-	<0.40
Toluene	μg/L	390 ^A	-	1.5	-	<0.40	0.92	-	1.2	-	0.43
Xylene, m & p-	μg/L	n/v	-	1.9	-	<0.40	1	-	1.9	-	<0.40
Xylene, o-	μg/L	n/v	-	0.92	-	<0.40	<0.40	-	0.73	-	<0.40
Xylenes, Total	μg/L	n/v	<u> </u>	2.8	-	<0.40	1	-	2.6	-	<0.40
Polycyclic Aromatic Hy		Δ	40.050	0.50	40.050	40.050	40.0E0	40.050	40.0E0	0.11	-0 0=0
Acenaphthene	μg/L	60 ^A	<0.050	0.58	<0.050	<0.050	<0.050	<0.050	<0.050	0.14	<0.050
Acenaphthylene Acridine	μg/L ug/l	n/v 0.5 ^A	<0.050 <0.050	<0.050 <0.050	<0.050 <0.050	<0.050 <0.050	<0.050 <0.050	<0.050 <0.050	<0.050 <0.050	<0.050 <0.050	<0.050 <0.050
Acridine Anthracene	μg/L μg/L	0.5°	<0.050	0.050	<0.050	<0.050	<0.050	<0.050	<0.050	<0.050	<0.050
Benzo(a)anthracene	μg/L μg/L	1 1 ^A	<0.010	<0.011	<0.010	<0.010	<0.010	<0.010	<0.010	<0.010	<0.010
Benzo(a)pyrene	μg/L	0.1 ^A	<0.0050	<0.0050	<0.0050	<0.0050	<0.0050	<0.0050	<0.0050	< 0.0050	<0.0050
Benzo(b)pyridine (Quinoline)	μg/L	34 ^A	<0.020	<0.085	<0.020	<0.020	<0.020	<0.020	<0.020	<0.020	<0.020
Benzo(b/j)fluoranthene	μg/L	n/v	<0.030	<0.030	<0.030	<0.030	<0.030	<0.030	<0.030	<0.030	<0.030
Benzo(g,h,i)perylene	μg/L	n/v	<0.050	<0.050	<0.050	<0.050	<0.050	<0.050	<0.050	<0.050	<0.050
Benzo(k)fluoranthene	μg/L	n/v	<0.050	<0.050	<0.050	<0.050	<0.050	<0.050	<0.050	<0.050	<0.050
Chrysene	μg/L	1 ^A	<0.020	<0.020	<0.020	<0.020	<0.020	<0.020	<0.020	<0.020	<0.020
Dibenzo(a,h)anthracene	μg/L	n/v	<0.0030	<0.0030	<0.0030	<0.0030	<0.0030	<0.0030	<0.0030	<0.0030	<0.0030
Fluoranthene	μg/L	2 ^A	<0.020	<0.020	<0.020	<0.020	<0.020	<0.020	<0.020	<0.020	<0.020
Fluorene Indeno(1,2,3-cd)pyrene	μg/L	120 ^A n/v	<0.050 <0.050	1.4 <0.050	<0.050 <0.050	<0.050 <0.050	<0.050 <0.050	<0.050 <0.050	<0.050 <0.050	<0.050 <0.050	<0.050 <0.050
Methylnaphthalene, 1-	μg/L μg/L	n/v n/v	<0.050	<0.050 <0.050	<0.050 <0.050	<0.050 <0.050	<0.050 <0.050	<0.050 <0.050	<0.050 <0.050	<0.050 <0.050	<0.050
Methylnaphthalene, 2-	μg/L μg/L	n/v	<0.10	<0.050	<0.050	<0.050	<0.050	<0.050	<0.050	<0.050	<0.050
Naphthalene	μg/L μg/L	10 ^A	<0.10	0.47	<0.10	<0.10	<0.10	<0.10	<0.10	<0.10	<0.10
•	μg/L μg/L	3 ^A	<0.050	0.47	<0.050	<0.050	<0.050	<0.050	<0.050	<0.050	<0.10
Phenanthrene	µg/∟										
Phenanthrene Pvrene	ua/l	∩ 2 ^A	<0.020	<0.020	<0.020	<() ()2()	<() ()2()	<() ()>()	<() ()/()	<(1 (12(1	<(1) (12(1)
Pyrene	μg/L	0.2 ^A	<0.020 <0.050	<0.020 <0.050	<0.020 <0.050	<0.020 <0.050	<0.020 <0.050	<0.020 <0.050	<0.020 <0.050	<0.020 <0.050	<0.020 <0.050
	μg/L μg/L μg/L	0.2 ^A n/v n/v	<0.020 <0.050 <0.10	<0.020 <0.050 2.9	<0.020 <0.050 <0.10	<0.020 <0.050 <0.10	<0.020 <0.050 <0.10	<0.020 <0.050 <0.10	<0.020 <0.050 <0.10	<0.020 <0.050 0.14	<0.020 <0.050 <0.10

Table III - Groundwater Analytical Results
5th Avenue (Rogers Street to Jeckell Street), Whitehorse Yukon
Phase II ESA (2018 - 2019)
Yukon Government

Sample Location Sample Date Sample ID Laboratory Laboratory Work Order Laboratory Sample ID Sample Type	Units	A YUKON-CSR Schedule 3	MW16-01 15-Aug-18 MW16-01 MAXX B869306 UC1862	MW16-11 17-Aug-18 MW16-11 MAXX B870078 UC6886	MW16-13 16-Aug-18 MW16-13-RW MAXX B870078 UC6883		26-Jul-18	MW18-34 26-Jul-18 MW18-34 MAXX B862272 TY3073	15-Aug-18	MW 17-Aug-18 MW18-39 MAXX B870078 UC6889	18-39 17-Aug-18 MW18-39A MAXX B870078 UC6890	MW18-44 26-Jul-18 MW18-44 MAXX B862272 TY3071	16-Aug-18	MW18-56 16-Aug-18 MW18-56 MAXX B870078 UC6885
Physical Parameters											•			
Hardness (as CaCO3)	mg/L	n/v	1,030	828	695	784	575	307	89.8	763	762	776	308	804
Anions														
Nitrate	mg/L	400 ^A	<0.020	<0.020	<0.020	<0.020	<0.020	<0.020	<0.020	<0.020	<0.020	<0.020	0.111	<0.020
Nitrate + Nitrite (as N)	mg/L	400 ^A	<0.020	<0.020	<0.020	< 0.020	<0.020	<0.020	<0.020	< 0.020	<0.020	< 0.020	0.123	<0.020
Nitrite (as N)	mg/L	0.2-2 _{cl1} ^A	< 0.0050	<0.0050	< 0.0050	<0.0050	<0.0050	<0.0050	<0.0050	< 0.0050	<0.0050	<0.0050	0.0115	<0.0050
Total Kjeldahl Nitrogen	mg/L	n/v	0.225	0.107	0.137	0.151	0.362	0.32	0.12	0.149	0.127	0.382	0.265	0.228
Sulfate	mg/L	1,000 ^A	781	579	480	556	315	128	33.8	552	548	431	164	814
Chloride	mg/L	n/v	8.1	6.8	5.1	5.9	7	4.1	<1.0	5.7	5.8	41	3.6	2.2
Fluoride	mg/L	2-3 _{H5} ^A	0.26	0.26	0.25	0.25	0.26	0.3	0.42	0.28	0.27	0.19	0.32	0.29
Nitrogen	mg/L	n/v	0.225	0.107	0.137	0.151	0.362	0.32	0.12	0.149	0.127	0.382	0.388	0.228
Ammonia (as N)	mg/L	n/v	0.17	0.022	<0.020	<0.020	0.14	0.15	<0.020	<0.020	<0.020	0.18	<0.020	0.25
Orthophosphate(as P)	mg/L	n/v	0.0057	<0.0050	<0.0050	<0.0050	0.0123	0.0192	0.024	<0.0050	< 0.0050	<0.0050	0.0167	0.0134
Phosphorus	mg/L	n/v	0.068	0.0247	0.0483	0.0443	0.0446	0.322	0.0457	0.0674	0.0681	0.0242	0.0211	0.0359
Dissolved Organic Carbon (DOC)	mg/L	n/v	3.87	2.54	1.82	2.66	4.9	4.2	0.8	1.99	2.87	5.3	5.41	1.96

123221161
V:\1232\active\123221161\03_data\analytical\tables\T3_20180911-123221161-GWMD.xlsx

Table III - Groundwater Analytical Results 5th Avenue (Rogers Street to Jeckell Street), Whitehorse Yukon Phase II ESA (2018 - 2019)

Yukon Government

Notes:

YUKON-CSR Schedule 3 Contaminated Sites Regulation Yukon O.I.C. 2002/171, effective August 5, 2002.

Α	Schedule 3-Generic Standard-Aquatic (Freshwater)
6.5 ^A	Concentration exceeds the indicated standard.
15.2	Measured concentration did not exceed the indicated standard.
< 0.50	Laboratory reporting limit was greater than the applicable standard.
<0.03	Analyte was not detected at a concentration greater than the laboratory reporting limit.
n/v	No standard/guideline value.
-	Parameter not analyzed / not available.
cl1	Nitrite standard varies with chloride concentration for freshwater aquatic life. For Cl<2 mg/l, standard = 200 ug/l; for Cl=2-<4 mg/l, standard = 400 ug/l; for Cl=4-<6 mg/l, standard = 600 ug/l; for Cl=6-<8, standard = 800 ug/l; for Cl=8-<10, standard = 1000 ug/l; for Cl>10 mg/l, standard = 2000 ug/l. Consult director for further advice.
H1	Cadmium standard varies with hardness for freshwater aquatic life. For H<=30, standard = 0.1; for H=30-<90, standard = 0.3; for H=90-<150, standard = 0.5; for H=150-<210, standard = 0.6 where H means water hardness in mg/L CaCO3.
H2	Silver standard varies with hardness for freshwater aquatic life. For H<= 100, standard = 0.5 ug/l; for H>100, standard = 15 ug/l where H means water hardness in mg/L CaCO3.
НЗ	Zinc standard varies with hardness for freshwater aquatic life. For H<=90, standard = 75 ug/l; for H=90-<100, standard = 150 ug/l; for H=100-<200, standard = 900 ug/l; for H=200-<300, standard = 1650 ug/l; for H=300-<400, standard = 2400 ug/l where H means water hardness in mg/L CaCO3.
H4	Copper standard varies with hardness for freshwater aquatic life. For H <50, standard = 20 ug/l; for H=50-<75, standard = 30 ug/l; for H=75-<100, standard = 40 ug/l; for H=100-<125, standard = 50 ug/l; For H=125-<150, standard = 60 ug/l; for H=150-<175, standard = 70 ug/l; for H=175-<200, standard = 80 ug/l; for H>=200, standard = 90 ug/l where H means water hardness in mg/L CaCO3.
H5	Fluoride standard varies with hardness for freshwater aquatic life. For H<50, standard = 2000 ug/l; for H>=50, standard = 3000 ug/l where H means water hardness in mg/L CaCO3.
H6	Lead standard varies with hardness for freshwater aquatic life. For H<50, standard = 40 ug/l; for H=50-<100, standard = 50 ug/l; for H=100-<200, standard = 60 ug/l; for H=200-<300, standard = 110 ug/l; for H>=300, standard = 160 ug/l. H means water hardness in mg/L CaCO3.
H7	Nickel standard varies with hardness for freshwater aquatic life. For H< 60, standard = 250 ug/l; for H=60-<120, standard = 650 ug/l; for H=120-<180, standard = 1100 ug/l; for H>=180, standard = 1500 where H means water hardness in mg/L CaCO3.
N6	Where nitrate and nitrite are present, total nitrate plus nitrite-nitrogen should not exceed this value.
N20	VPHw includes volatile petroleum hydrocarbons with the exception of benzene, toluene, ethylbenzene and xylenes.
N21	LEPHw includes light extractable petroleum hydrocarbons with the exception of acenaphthene, acridine, anthracene, fluorene, naphthalene and phenanthrene.
AB N22, N24 _	VH6-10 includes volatile petroleum hydrocarbons. Standard is applicable at all sites, irrespective of water use.
AB N23. N24	EH10-19 includes light extractable hydrocarbons. Standard is applicable at all sites, irrespective of water use.

Table Illa - Pump Test Water Analytical Results 5th Avenue (Rogers Street to Jeckell Street), Whitehorse Yukon Phase II ESA (2018 - 2019)

Yukon Government

Sample Location	i 1			MW1	6-09			MW1	18-31	
Sample Date Sample ID Sampling Company Laboratory Laboratory Work Order Laboratory Sample ID Sample Type	Units	A YUKON-CSR Schedule 3	29-Oct-18 MW16-09@11:55 Stantec MAXX B896179 UR6313	29-Oct-18 MW16-09@13:55 Stantec MAXX B896179 UR6312	29-Oct-18 MW16-09@15:55 Stantec MAXX B896179 UR6311	29-Oct-18 MW16-09@17:55 Stantec MAXX B896179 UR6310	30-Oct-18 MW18-31@10:15 Stantec MAXX B896179 UR6307	30-Oct-18 MW18-31@12:15 Stantec MAXX B896179 UR6308	30-Oct-18 MW18-31@14:15 Stantec MAXX B896179 UR6309	30-Oct-18 MW18-31@16:45 Stantec MAXX B896179 UR6306
GENERATED - BCCSR	M4	TORON-OUR CONCUME O								
EPH C10-C19	mg/L	5 _{N23. N24} A	4.8	0.32	0.31	0.31	0.51	0.55	0.56	0.56
EPH C19-C32	mg/L	n/v	0.60	<0.50	<0.50	<0.50	<0.50	<0.50	<0.50	<0.50
GENERATED - CALC										_
LEPH (C10-C19 less PAH)	mg/L	0.5 _{N21} ^A	4.8 ^A	0.32	0.31	0.31	0.51 ^A	0.55 ^A	0.56 ^A	0.56 ^A
GENERATED - SW8270										
Acenaphthene	μg/L	60 ^A	0.27	0.17	0.17	0.23	0.50	0.62	0.62	0.63
Acridine	μg/L	0.5 ^A	<0.10	<0.10	<0.10	<0.10	<0.10	<0.10	<0.10	<0.10
Anthracene	μg/L	1 ^A	0.063	<0.020	< 0.020	<0.020	0.024	0.027	0.024	0.026
Fluorene	μg/L	120 ^A	1.4	0.75	0.71	0.75	1.6	1.9	1.9	2.0
Naphthalene	μg/L	10 ^A	2.0	1.1	0.95	1.1	0.50	0.54	0.54	0.57
Phenanthrene	μg/L	3 ^A	0.90	0.40	0.35	0.36	0.70	0.87	0.84	0.89
Low Molecular Weight PAHs	μg/L	n/v	15	7.8	7.0	7.9	3.3	4.0	3.9	4.2
High Molecular Weight PAHs	μg/L	n/v	<0.10	<0.10	<0.10	<0.10	<0.10	<0.10	<0.10	<0.10
Total PAH	μg/L	n/v	15	7.8	7.0	7.9	3.3	4.0	3.9	4.2

N	~1	۱.	_

Notes:
YUKON-CSR Schedule 3 Contaminated Sites Regulation Yukon O.I.C. 2002/171, effective August 5, 2002. Schedule 3-Generic Standard-Aquatic (FW)

6.5^A Concentration exceeds the indicated standard. 15.2 Measured concentration did not exceed the indicated standard.

<0.50 Laboratory reporting limit was greater than the applicable standard.

< 0.03 Analyte was not detected at a concentration greater than the laboratory reporting limit.

No standard/guideline value. n/v

Parameter not analyzed / not available.

LEPHw includes light extractable petroleum hydrocarbons with the exception of acenaphthene, acridine, anthracene, fluorene, naphthalene and phenanthrene.

EPH10-19 includes light extractable hydrocarbons. Standard is applicable at all sites, irrespective of water use. N23, N24

Table IV - Soil Vapour Analytical Results
5th Avenue (Rogers Street to Jeckell Street), Whitehorse Yukon
Phase II ESA (2018 - 2019)
Yukon Government

Sample Location				VF	18-30	VF	18-34	VI	18-35	VF	P18-39	VP18-43	
Sample Date				7/3	1/2018	7/3	1/2018	7/3	1/2018	7/3	31/2018	7/30/2018	
Sample ID				VP18	-30/1205	VP18	-34/1412	VP18-35/1012		VP18-39/1473		VP18-43/1775	
Sampling Company				ST	ANTEC	STANTEC		ST	ANTEC	ST	ANTEC	ST	ANTEC
Laboratory				N	ИАХХ	N	MAXX		ИАХХ	N	MAXX	N	MAXX
Laboratory Work Order				_	3897		3897		3897		33897	_	33897
Laboratory Sample ID					LC292		LC289		LC290		LC291		LC293
Depth of Vapour Probe					1.60 Predicted Indoor	:	1.98 Predicted Indoor		2.10 Predicted Indoor		1.60 Predicted Indoor		2.10 Predicted Indo
	Units	BC CSR Schedule 3.3	BC CSR Schedule 3.3 B	Lab Reported Concentration	Concentration ¹ (Attenuation Factor 2.3 x 10 ⁻³)	Lab Reported Concentration	Concentration ¹ (Attenuation Factor 2.3 x 10 ⁻³)	Lab Reported Concentration	Concentration ¹ (Attenuation Factor 2.0 x 10 ⁻³)	Lab Reported Concentration	Concentration ¹ (Attenuation Factor 2.3 x 10 ⁻³)	Lab Reported Concentration	Concentration (Attenuation Fac 2.0 x 10 ⁻³)
General Chemistry													
Pressure on Receipt	psi	n/v	n/v	(-2.3)	(-2.5)		-2.9)	((-2.2)	((-2.2)
Volatile Organic Compounds													
1,3-Butadiene	μg/m³	2 ^A	2 ^B	<1.1	<0.00253	<1.1	<0.00253	<1.1	<0.0022	3.9	0.01	<1.1	<0.0022
1,2,4-Trimethylbenzene	μg/m ³	7 ^A	20 ^B	17.4	0.04	247	0.57	12.4	0.02	48.7	0.11	49.2	0.10
1,2-dibromoethane	μg/m³	0.5 ^A	0.5 ^B	<0.38	<0.000874	<0.38	<0.000874	<0.38	<0.00076	<0.38	<0.000874	<0.38	<0.00076
1,2-Dichloroethane	μg/m³	7 ^A	20 ^B	<0.40	<0.00092	<0.40	<0.00092	<0.40	<0.0008	<0.40	<0.00092	<0.40	<0.0008
1,3,5-Trimethylbenzene	μg/m³	3.5 ^A	10 ^B	7.6	0.02	69.5	0.16	5.6	0.01	11.5	0.03	15.9	0.03
Benzene	μg/m³	1.5 ^A	4 ^B	1.03	0.002	4.05	0.01	4.94	0.01	2.54	0.01	1.66	0.003
Cumene (Isopropylbenzene)	μg/m³	400 ^A	1,000 ^B	<2.5	<0.00575	<190	<0.437	<2.5	<0.005	<59	<0.1357	2.5	0.01
Decane	μg/m³	2,500 ^A	8,000 ^B	<29	<0.0667	449	1.03	<220	<0.44	<220	<0.506	82.4	0.16
Ethylbenzene	μg/m³	1,000 ^A	3,000 ^B	6.4	0.01	34	0.08	8.65	0.02	<22	<0.0506	13.6	0.03
Hexane	μg/m³	700 ^A	2,000 ^B	4	0.01	16.6	0.04	5.8	0.01	22.2	0.05	7.7	0.02
Methyl t-butyl ether (MTBE)	μg/m³	3,000 ^A	9,000 ^B	<0.72	<0.001656	<0.72	<0.001656	<0.72	<0.00144	<0.72	<0.001656	<0.72	<0.00144
Methylcyclohexane	μg/m³	1,500 ^A	5,000 ^B	260	0.60	7.9	0.02	<8.0	<0.016	1550	3.57	7.2	0.01
Naphthalene	μg/m³	3 ^A	9 ^B	<2.6	<0.00598	12.4	0.03	<2.6	<0.0052	<2.6	<0.00598	<2.6	<0.0052
Styrene	μg/m³	1,000 ^A	3,000 ^B	<0.85	<0.001955	<3.4	<0.00782	<0.85	<0.0017	<0.85	<0.001955	<1.3	<0.0026
Toluene	μg/m³	5,000 ^A	15,000 ^B	9.65	0.02	65.6	0.15	12.8	0.03	65.1	0.15	15.7	0.03
o-Xylene	μg/m³	n/v	n/v	16.6	0.04	71.9	0.17	13.4	0.03	32.7	0.08	28.7	0.06
p+m-Xylene	μg/m³	n/v	n/v	25.9	0.06	153	0.35	28.3	0.06	65	0.15	66.1	0.13
Total Xylenes	μg/m³	100 ^A	300 ^B	42.5	0.10	225	0.52	41.8	0.08	97.7	0.22	94.8	0.19
VPH	μg/m ³	1,000 ^A	3,000 ^B	12400	28.52	18200	41.86	73300	146.60	733000	1685.9 ^A	2240	4.48

Notes:

CSR-Schedule 3.3 Ministry of Environment British Columbia - Environmental Management Act -Contaminated Sites Regulations B.C. Reg. 375/96 Effective April 1, 1997 [includes amendments up to B.C. Reg. 196/2017, October 31, 2017]

Schedule 3.3 - Generic Numerical Vapour Standards - Residential Land Use Standard

^B Schedule 3.3 - Generic Numerical Vapour Standards - Commercial Land Use Standard

6.5^A Concentration exceeds the indicated standard.

15.2 Concentration was detected but did not exceed applicable standards.

< 0.50 Laboratory estimated quantitation limit exceeded standard.

 $< 0.03 \\ {\ \ } {\ \ \ } {\ \ \ } {\ \ } {\ \ } {\ \ } {\ \ } {\ \ } {\ \ } {\ \ } {\ \ } {\ \ } {\ \ } {\ \ } {\ \ } {\ \ } {\$

n/v No standard/guideline value.

- Parameter not analyzed / not available.

Default vapour attenuation factor for subslab indoor exposure, from Protocol 22: Application of Vapour Attenuation Factors to Characterize Vapour Contamination (BC MOECCS, Nov. 2017).

Table V - Soil QAQC Results
5th Avenue (Rogers Street to Jeckell Street), Whitehorse Yukon
Phase II ESA (2018 - 2019)
Yukon Government

Sample Location				05 1 140		00 1 140			00 1 1 40	00 1 140	1		00 1 140	
Sample Date Sample ID			25-Jul-18 MW18-43 SA06	25-Jul-18 QC18-01		26-Jul-18 MW18-35 SA10	26-Jul-18 QC18-02		28-Jul-18 MW18-30 SA04	28-Jul-18 QC18-04		28-Jul-18 MW18-39 SA08	28-Jul-18 QC18-05	
Sample Depth			4.27 - 4			7.01 - 7.			1.22 - 1.			5.79 - 6		
Laboratory			MAXX	MAXX		MAXX	MAXX		MAXX	MAXX		MAXX I	MAXX	
Laboratory Work Order			B862756	B862756		B862770	B862770		B863863	B863863		B863863	B863863	
Laboratory Sample ID			TY5297	TY5302	RPD	TY5398	TY5405	RPD	TZ2554	TZ2579	RPD	TZ2574	TZ2580	RPD
Sample Type	Units	RDL	113231	113302	%	113330	113403	%	122334	122373	%	122374	122300	%
Campie Type	Oille	I TO L			/*			/*			,,,			/0
GENERATED - CALC					l .	<u>I</u>	I	l		I				
EPH C10-C19	mg/kg	100	<100	<100	nc	<100	<100	nc	<100	<100	nc	780	530	38%
LEPH (C10-C19 less PAH)	mg/kg	100	-	-	nc	<100	<100	nc	<100	<100	nc	780	530	38%
EPH C19-C32	mg/kg	100	<100	<100	nc									
HEPH (C19-C32 less PAH)	mg/kg	100	_	-	nc	<100	<100	nc	<100	<100	nc	<100	<100	nc
VPH (C6-C10 Minus BTEX)	mg/kg	10	<10	<10	nc	<10	<10	nc	<10	<10	nc	27	28	nc
GENERATED - EPA 826						•								
Benzene	mg/kg	0.005	< 0.0050	<0.0050	nc	<0.0050	0.036	nc	<0.0050	<0.0050	nc	<0.0050	<0.0050	nc
Ethylbenzene	mg/kg	0.01	<0.010	<0.010	nc	<0.010	0.05	nc	0.013	<0.010	nc	<0.010	<0.010	nc
Methyl tert-butyl ether (MTBE)	mg/kg	0.1	<0.10	<0.10	nc									
Styrene	mg/kg	0.03	< 0.030	< 0.030	nc									
Toluene	mg/kg	0.02	<0.020	<0.020	nc	<0.020	0.049	nc	<0.020	<0.020	nc	<0.020	< 0.020	nc
VH (C6-C10)	mg/kg	10	<10	<10	nc	<10	<10	nc	<10	<10	nc	27	28	nc
Xylene, m & p-	mg/kg	0.04	<0.040	< 0.040	nc	<0.040	0.047	nc	<0.040	< 0.040	nc	<0.040	< 0.040	nc
Xylene, o-	mg/kg	0.04	<0.040	< 0.040	nc	<0.040	0.048	nc	<0.040	< 0.040	nc	<0.040	< 0.040	nc
Xylenes, Total	mg/kg	0.04	<0.040	< 0.040	nc	<0.040	0.095	nc	<0.040	<0.040	nc	<0.040	<0.040	nc
GENERATED - SW8270														
Acenaphthene	mg/kg	0.005	-	-	nc	<0.0050	<0.0050	nc	<0.0050	< 0.0050	nc	0.079	0.06	27%
Acenaphthylene	mg/kg	0.005	-	-	nc	< 0.0050	<0.0050	nc	<0.0050	< 0.0050	nc	<0.0050	< 0.0050	nc
Acridine	mg/kg	0.05	-	-	nc	< 0.050	< 0.050	nc	<0.050	< 0.050	nc	< 0.050	< 0.050	nc
Anthracene	mg/kg	0.004	-	-	nc	<0.0040	<0.0040	nc	<0.0040	<0.0040	nc	0.0049	< 0.0040	nc
Benzo(a)anthracene	mg/kg	0.02	-	-	nc	<0.020	<0.020	nc	<0.020	<0.020	nc	<0.020	<0.020	nc
Benzo(a)pyrene	mg/kg	0.02	-	-	nc	<0.020	<0.020	nc	<0.020	<0.020	nc	<0.020	<0.020	nc
Benzo(b)fluoranthene	mg/kg	0.02	-	-	nc	<0.020	<0.020	nc	<0.020	<0.020	nc	<0.020	<0.020	nc
Benzo(b/j)fluoranthene	mg/kg	0.02	-	-	nc	<0.020	<0.020	nc	<0.020	<0.020	nc	<0.020	<0.020	nc
Benzo(g,h,i)perylene	mg/kg	0.05	-	-	nc	< 0.050	< 0.050	nc	< 0.050	<0.050	nc	< 0.050	< 0.050	nc
Benzo(k)fluoranthene	mg/kg	0.02	-	-	nc	<0.020	<0.020	nc	<0.020	<0.020	nc	<0.020	<0.020	nc
Chrysene	mg/kg	0.02	-	-	nc	<0.020	<0.020	nc	<0.020	<0.020	nc	<0.020	<0.020	nc
Dibenzo(a,h)anthracene	mg/kg	0.02	-	-	nc	<0.020	<0.020	nc	<0.020	<0.020	nc	<0.020	<0.020	nc
Fluoranthene	mg/kg	0.02	-	-	nc	<0.020	<0.020	nc	<0.020	<0.020	nc	<0.020	<0.020	nc
Fluorene	mg/kg	0.02	-	-	nc	<0.020	<0.020	nc	<0.020	<0.020	nc	0.091	0.076	nc
Indeno(1,2,3-cd)pyrene	mg/kg	0.02	-	-	nc	<0.020	<0.020	nc	<0.020	<0.020	nc	<0.020	<0.020	nc
Methylnaphthalene, 1-	mg/kg	0.05	-	-	nc	< 0.050	<0.050	nc	<0.050	<0.050	nc	0.087	0.084	nc
Methylnaphthalene, 2-	mg/kg	0.02	-	-	nc	<0.020	<0.020	nc	<0.020	<0.020	nc	0.044	0.082	nc
Naphthalene	mg/kg	0.01	-	-	nc	<0.010	<0.010	nc	<0.010	<0.010	nc	0.022	0.055	nc
Phenanthrene	mg/kg	0.01	-	-	nc	<0.010	<0.010	nc	<0.010	<0.010	nc	0.037	0.028	nc
Pyrene	mg/kg	0.02	-	-	nc	<0.020	<0.020	nc	<0.020	<0.020	nc	<0.020	<0.020	nc
High Molecular Weight PAHs	mg/kg	0.05	-	-	nc	<0.050	<0.050	nc	<0.050	<0.050	nc	<0.050	<0.050	nc
Low Molecular Weight PAHs	mg/kg	0.05	-	-	nc	<0.050	<0.050	nc	<0.050	<0.050	nc	0.36	0.38	5%
Total PAH	mg/kg	0.05	-		nc	<0.050	< 0.050	nc	<0.050	< 0.050	nc	0.36	0.38	5%
Notes		·		·			·			·		·	·	

RPD Relative Percent Difference
RDL reportable detection limit

nc Not Calculated - RPD values are not used to evaluate those compounds that are present at concentrations

less than 5 times the reportable detection limit (RDL)

RPD exceeds the recommended acceptance limits

RPD exceeds the recommended acceptance limits, however the concentrations did not exceed 5 times the reported detection limit.

Field Duplicate acceptance limits are typically +/-60% for volatile organics (including BTEX, EPH and VH) in soils.

Field Duplicate acceptance limits are typically +/-75% for PAHs in soils.

V:\1232\active\123221161\03_data\analytical\tables\T5_20180911-123221161-SO_QAQC.xlsx

Table VI - Groundwater QAQC Results 5th Avenue (Rogers Street to Jeckell Street), Whitehorse Yukon Phase II ESA (2018 - 2019)

Yukon Government

Sample Location Sample Date Sample ID Laboratory Laboratory Work Order Laboratory Sample ID Sample Type	Units	RDL	MW ⁻ 21-Aug-18 MW16-02 MAXX B871282 UD3683	16-02 21-Aug-18 MW16-02A MAXX B871282 UD3684 Field Duplicate	RPD %	MW 15-Aug-18 MW18-37 MAXX B869306 UC1860	18-37 15-Aug-18 MW18-37A MAXX B869306 UC1861 Field Duplicate	RPD %	MW 17-Aug-18 MW18-39 MAXX B870078 UC6889	18-39 17-Aug-18 MW18-39A MAXX B870078 UC6890 Field Duplicate	RPD %
Petroleum Hydrocarbon	S										
LEPH (C10-C19 less PAH)	mg/L	0.2	<0.20	<0.20	nc	<0.20	<0.20	nc	0.53	0.54	1%
EPH C10-C19	mg/L	0.2	<0.20	<0.20	nc	<0.20	<0.20	nc	0.53	0.54	1%
HEPH (C19-C32 less PAH)	mg/L	0.2	<0.20	<0.20	nc	<0.20	<0.20	nc	<0.20	<0.20	nc
EPH C19-C32	mg/L	0.2	<0.20	<0.20	nc	<0.20	<0.20	nc	<0.20	<0.20	nc
VH (C6-C10) VPH (C6-C10 Minus BTEX)	μg/L μg/L	300 300	-	-	nc nc	<300 <300	-	nc nc	-	<300 <300	nc nc
Dissolved metals	μg/L	300			IIC	\300		TIC		\300	TIC
Arsenic	ua/l	0.1		l I	nc	17.5	_	nc	15.7	15.9	1%
Iron	μg/L μg/L	5	_	_	nc nc	<5.0	_	nc nc	15.7	15.9	0%
Manganese	μg/L	1	_	_	nc	13.6	_	nc	173	170	1%
Magnesium	mg/L	0.05	_	_	nc	13	_	nc	101	101	0%
BTEX	<u> </u>			<u> </u>		-	<u> </u>		-		
Benzene	μg/L	0.4	-	-	nc	<0.40	-	nc	-	<0.40	nc
Ethylbenzene	μg/L	0.4	-	-	nc	<0.40	-	nc	-	<0.40	nc
Methyl tert-butyl ether (MTBE)	μg/L	4	-	-	nc	<4.0	-	nc	-	<4.0	nc
Styrene	μg/L	0.4	-	-	nc	<0.40	-	nc	-	<0.40	nc
Toluene	μg/L	0.4	-	-	nc	<0.40	-	nc	-	<0.40	nc
Xylene, m & p-	μg/L	0.4	-	-	nc	<0.40	-	nc	-	0.89	nc
Xylene, o- Xylenes, Total	μg/L μg/L	0.4 0.4	-	-	nc nc	<0.40 <0.40	-	nc nc	-	<0.40 0.89	nc nc
Anions	μg/L	0.4			IIC	\0.40		TIC		0.09	TIC
Nitrate	mg/L	0.02	_	_ [nc	_	_	nc	<0.020	<0.020	nc
Nitrate + Nitrite (as N)	mg/L	0.02	_	_	nc	_	_	nc	<0.020	<0.020	nc
Nitrite (as N)	mg/L	0.005	_	_	nc	-	_	nc	< 0.0050	<0.0050	nc
Total Kjeldahl Nitrogen	mg/L	0.2	-	-	nc	-	-	nc	0.149	0.127	8%
Sulfate	mg/L	10	-	-	nc	-	-	nc	552	548	0%
Chloride	mg/L	1	-	-	nc	-	-	nc	5.7	5.8	1%
Fluoride	mg/L	0.02	-	-	nc	-	-	nc	0.28	0.27	2%
Nitrogen	mg/L	0.2	-	-	nc	-	-	nc	0.149	0.127	8%
Ammonia (as N) Orthophosphate(as P)	mg/L mg/L	0.02 0.005	-	-	nc nc	-	-	nc nc	<0.020 <0.0050	<0.020 <0.0050	nc nc
Phosphorus	mg/L	0.68	_	_	nc	_		nc	0.0030	0.0681	nc
Dissolved Organic Carbon (DO		0.5	_	_	nc	_	_	nc	1.99	2.87	18%
Polycyclic Aromatic Hyd				<u> </u>			<u> </u>				
Acenaphthene	μg/L	0.05	<0.050	<0.050	nc	<0.050	<0.050	nc	0.35	0.34	1%
Acenaphthylene	μg/L	0.05	<0.050	<0.050	nc	<0.050	< 0.050	nc	<0.050	<0.050	nc
Acridine	μg/L	0.05	<0.050	<0.050	nc	<0.050	<0.050	nc	<0.050	<0.050	nc
Anthracene	μg/L	0.01	<0.010	<0.010	nc	<0.010	<0.010	nc	0.014	0.013	4%
Benzo(a)anthracene	μg/L	0.01	<0.010	<0.010	nc	<0.010	<0.010	nc	<0.010	<0.010	nc
Benzo(a)pyrene	μg/L	0 0.02	<0.0050 <0.020	<0.0050 <0.020	nc	<0.0050 <0.020	<0.0050 <0.020	nc	<0.0050 <0.087	<0.0050 <0.041	nc
Benzo(b)pyridine (Quinoline) Benzo(b/j)fluoranthene	μg/L μg/L	0.02	<0.020	<0.020	nc nc	<0.020	<0.020	nc nc	<0.087	<0.041	nc nc
Benzo(g,h,i)perylene	μg/L μg/L	0.05	<0.050	<0.050	nc	<0.050	<0.050	nc	<0.050	<0.050	nc
Benzo(k)fluoranthene	μg/L	0.05	<0.050	<0.050	nc	<0.050	< 0.050	nc	<0.050	<0.050	nc
Chrysene	μg/L	0.02	<0.020	<0.020	nc	<0.020	<0.020	nc	<0.020	<0.020	nc
Dibenzo(a,h)anthracene	μg/L	0	<0.0030	<0.0030	nc	<0.0030	<0.0030	nc	<0.0030	<0.0030	nc
Fluoranthene	μg/L	0.02	<0.020	<0.020	nc	<0.020	<0.020	nc	<0.020	<0.020	nc
Fluorene	μg/L	0.05	<0.050	<0.050	nc	<0.050	<0.050	nc	1	0.99	1%
Indeno(1,2,3-cd)pyrene	μg/L	0.05	<0.050	<0.050	nc	<0.050	<0.050	nc	<0.050	<0.050	nc 2%
Methylnaphthalene, 1- Methylnaphthalene, 2-	μg/L	0.05 0.1	<0.050 <0.10	<0.050 <0.10	nc	- <0.10	- <0.10	nc	6.1 <0.10	5.9 <0.10	2% nc
Naphthalene	μg/L μg/L	0.1	<0.10	<0.10	nc nc	<0.10	<0.10 <0.10	nc nc	0.10	0.10	nc 1%
Phenanthrene	μg/L μg/L	0.05	<0.10	<0.10	nc	<0.050	<0.10	nc	0.43	0.44	2%
Pyrene	μg/L	0.02	<0.020	<0.020	nc	<0.020	<0.020	nc	<0.020	<0.020	nc
High Molecular Weight PAHs	μg/L	0.05	<0.050	<0.050	nc	<0.050	< 0.050	nc	<0.050	< 0.050	nc
Low Molecular Weight PAHs	μg/L	0.1	<0.10	<0.10	nc	<0.10	<0.10	nc	8.1	7.9	1%
Total PAH	μg/L	0.1	<0.10	<0.10		<0.10	<0.10		8.1	7.9	1%

Notes:

RPD Relative Percent Difference
RDL reportable detection limit

nc Not Calculated - RPD values are not used to evaluate those compounds that are present at concentrations

less than 5 times the reportable detection limit (RDL)

RPD exceeds the recommended acceptance limits

RPD exceeds the recommended acceptance limits, however the concentrations did not exceed 5 times the reported detection limit.

Field Duplicate acceptance limits are typically +/- 45% for volatile organics (including BTEX and VH) in water

Field Duplicate acceptance limits are typically +/- 30% for metals in water Field Duplicate acceptance limits are typically +/- 45% for organics in water

APPENDIX F LABORATORY CERTIFICATES

Your Project #: 123221161 Your C.O.C. #: 560386-01-01

Attention: Matthew Deane
STANTEC CONSULTING LTD
Metrotower III

Suite 500, 4730 Kingsway BURNABY, BC

V5H 4M1

CANADA

Report Date: 2018/08/02

Report #: R2599016 Version: 3 - Final

CERTIFICATE OF ANALYSIS

MAXXAM JOB #: B862272 Received: 2018/07/26, 14:04

Sample Matrix: Water # Samples Received: 3

		Date	Date		
Analyses	Quantity	Extracted	Analyzed	Laboratory Method	Analytical Method
BTEX/MTBE LH, VH, F1 SIM/MS	3	N/A	2018/07/27	BBY8SOP-00010/11/12	BCMOE BCLM Jul 2017
Chloride by Automated Colourimetry	3	N/A	2018/07/27	BBY6SOP-00011	SM 22 4500-Cl- E m
Carbon (DOC) (1, 2)	3	N/A	2018/07/30	CAL SOP-00077	MMCW 119 1996 m
Fluoride	3	N/A	2018/07/27	BBY6SOP-00048	SM 22 4500-F C m
Hardness (calculated as CaCO3)	3	N/A	2018/07/27	BBY WI-00033	Auto Calc
Mercury (Dissolved) by CVAF	3	N/A	2018/07/27	BBY7SOP-00015	BCMOE BCLM Oct2013 m
EPH in Water when PAH required	3	2018/07/27	2018/07/27	BBY8SOP-00029	BCMOE BCLM Mar 2017
Na, K, Ca, Mg, S by CRC ICPMS (diss.)	3	N/A	2018/07/27	BBY WI-00033	Auto Calc
Elements by CRC ICPMS (dissolved)	3	N/A	2018/07/27	BBY7SOP-00002	EPA 6020b R2 m
Nitrogen (Total)	3	N/A	2018/07/31	BBY6SOP-00016	SM 22 4500-N C m
Ammonia-N (Preserved)	3	N/A	2018/07/27	BBY6SOP-00009	EPA 350.1 m
Nitrate + Nitrite (N)	3	N/A	2018/07/27	BBY6SOP-00010	SM 23 4500-NO3- I m
Nitrite (N) by CFA	3	N/A	2018/07/27	BBY6SOP-00010	SM 22 4500-NO3- I m
Nitrogen - Nitrate (as N)	3	N/A	2018/07/27	BBY WI-00033	Auto Calc
PAH in Water by GC/MS (SIM)	3	2018/07/27	2018/07/27	BBY8SOP-00021	BCMOE BCLM Jul2017m
Total LMW, HMW, Total PAH Calc (3)	3	N/A	2018/07/27	BBY WI-00033	Auto Calc
Filter and HNO3 Preserve for Metals	3	N/A	2018/07/27	BBY7 WI-00004	BCMOE Reqs 08/14
Orthophosphate by Konelab	3	N/A	2018/07/27	BBY6SOP-00013	SM 22 4500-P E m
Sulphate by Automated Colourimetry	3	N/A	2018/07/27	BBY6SOP-00017	SM 22 4500-SO42- E m
EPH less PAH in Water by GC/FID (4)	3	N/A	2018/07/27	BBY WI-00033	Auto Calc
TKN (Calc. TN, N/N) total	2	N/A	2018/07/31	BBY WI-00033	Auto Calc
TKN (Calc. TN, N/N) total	1	N/A	2018/08/02	BBY WI-00033	Auto Calc
Total Phosphorus	3	2018/07/28	2018/07/28	BBY6SOP-00013	SM 22 4500-P E m
Volatile HC-BTEX (5)	3	N/A	2018/07/27	BBY WI-00033	Auto Calc

Remarks:

Maxxam Analytics' laboratories are accredited to ISO/IEC 17025:2005 for specific parameters on scopes of accreditation. Unless otherwise noted, procedures used by Maxxam are based upon recognized Provincial, Federal or US method compendia such as CCME, MDDELCC, EPA, APHA.

All work recorded herein has been done in accordance with procedures and practices ordinarily exercised by professionals in Maxxam's profession using

Your Project #: 123221161 Your C.O.C. #: 560386-01-01

Attention: Matthew Deane

STANTEC CONSULTING LTD Metrotower III Suite 500, 4730 Kingsway BURNABY, BC CANADA V5H 4M1

Report Date: 2018/08/02

Report #: R2599016 Version: 3 - Final

CERTIFICATE OF ANALYSIS

MAXXAM JOB #: B862272 Received: 2018/07/26, 14:04

accepted testing methodologies, quality assurance and quality control procedures (except where otherwise agreed by the client and Maxxam in writing). All data is in statistical control and has met quality control and method performance criteria unless otherwise noted. All method blanks are reported; unless indicated otherwise, associated sample data are not blank corrected.

Maxxam Analytics' liability is limited to the actual cost of the requested analyses, unless otherwise agreed in writing. There is no other warranty expressed or implied. Maxxam has been retained to provide analysis of samples provided by the Client using the testing methodology referenced in this report. Interpretation and use of test results are the sole responsibility of the Client and are not within the scope of services provided by Maxxam, unless otherwise agreed in writing.

Solid sample results, except biota, are based on dry weight unless otherwise indicated. Organic analyses are not recovery corrected except for isotope dilution methods.

Results relate to samples tested.

This Certificate shall not be reproduced except in full, without the written approval of the laboratory.

 $Reference\ Method\ suffix\ "m"\ indicates\ test\ methods\ incorporate\ validated\ modifications\ from\ specific\ reference\ methods\ to\ improve\ performance.$

- * RPDs calculated using raw data. The rounding of final results may result in the apparent difference.
- (1) This test was performed by Maxxam Calgary Environmental
- (2) DOC present in the sample should be considered as non-purgeable DOC. Dissolved > Total Imbalance: Whenever applicable, Dissolved > Total for any parameter that falls within method uncertainty for duplicates is likely equivalent. If RPD is > 20% samples were reanalyzed and confirmed.
- (3) Total PAHs in Water include: Quinoline, Naphthalene, 1-Methylnaphthalene, 2-Methylnaphthalene, Acenaphthylene, Acenaphthene, Fluorene, Phenanthrene, Anthracene, Acridine, Fluoranthene, Pyrene, Benzo(a)anthracene, Chrysene, Benzo(b&j)fluoranthene, Benzo(k)fluoranthene, Benzo(a)pyrene, Indeno(1,2,3-cd)pyrene, Dibenz(a,h)anthracene, and Benzo(g,h,i)perylene.
- (4) LEPH = EPH (C10 to C19) (Acenaphthene + Acridine + Anthracene + Fluorene + Naphthalene + Phenanthrene)
- HEPH = EPH (C19 to C32) (Benzo(a)anthracene + Benzo(a)pyrene + Fluoranthene + Pyrene)
- (5) VPH = VH (Benzene + Toluene + Ethylbenzene + m & p-Xylene + o-Xylene + Styrene)

Encryption Key

Please direct all questions regarding this Certificate of Analysis to your Project Manager. Nahed Amer, Project Manager Email: NAmer@maxxam.ca Phone# (604) 734 7276

Maxxam has procedures in place to guard against improper use of the electronic signature and have the required "signatories", as per section 5.10.2 of ISO/IEC 17025:2005(E), signing the reports. For Service Group specific validation please refer to the Validation Signature Page.

STANTEC CONSULTING LTD Client Project #: 123221161

RESULTS OF CHEMICAL ANALYSES OF WATER

Maxxam ID		TY3071	TY3072			TY3072		
Sampling Date		2018/07/26 11:35	2018/07/26 13:30			2018/07/26 13:30		
COC Number		560386-01-01	560386-01-01			560386-01-01		
	UNITS	MW18-44	MW18-33	RDL	QC Batch	MW18-33 Lab-Dup	RDL	QC Batch
ANIONS								
Nitrite (N)	mg/L	<0.0050	<0.0050	0.0050	9081443			
Calculated Parameters								
Nitrate (N)	mg/L	<0.020	<0.020	0.020	9081019			
Misc. Inorganics								
Fluoride (F)	mg/L	0.190	0.260	0.020	9081524			
Dissolved Organic Carbon (C)	mg/L	5.3	4.9	0.50	9083309			
Anions								
Dissolved Sulphate (SO4)	mg/L	431 (1)	315 (1)	10	9081593			
Dissolved Chloride (CI)	mg/L	41	7.0	1.0	9081562			
Nutrients								_
Orthophosphate (P)	mg/L	<0.0050	0.0123	0.0050	9082528			
Total Ammonia (N)	mg/L	0.18	0.14	0.020	9082265	0.13	0.020	9082265
Total Phosphorus (P)	mg/L	0.0242	0.0446	0.0050	9082549	0.0444	0.0050	9082549

RDL = Reportable Detection Limit

Lab-Dup = Laboratory Initiated Duplicate

⁽¹⁾ Detection limits raised due to dilution to bring analyte within the calibrated range.

STANTEC CONSULTING LTD Client Project #: 123221161

RESULTS OF CHEMICAL ANALYSES OF WATER

Maxxam ID		TY3073			TY3073		
Sampling Date		2018/07/26 13:25			2018/07/26 13:25		
COC Number		560386-01-01			560386-01-01		
	UNITS	MW18-34	RDL	QC Batch	MW18-34 Lab-Dup	RDL	QC Batch
ANIONS							
Nitrite (N)	mg/L	<0.0050	0.0050	9081443	<0.0050	0.0050	9081443
Calculated Parameters							
Nitrate (N)	mg/L	<0.020	0.020	9081019			
Misc. Inorganics	•						
Fluoride (F)	mg/L	0.300	0.020	9081524			
Dissolved Organic Carbon (C)	mg/L	4.2	0.50	9083309	4.7	0.50	9083309
Anions	•						
Dissolved Sulphate (SO4)	mg/L	128	1.0	9081593	129	1.0	9081593
Dissolved Chloride (Cl)	mg/L	4.1	1.0	9081562	4.0	1.0	9081562
Nutrients	•		•			•	
Orthophosphate (P)	mg/L	0.0192	0.0050	9082528	0.0173	0.0050	9082528
Total Ammonia (N)	mg/L	0.15	0.020	9082265			
Total Phosphorus (P)	mg/L	0.322	0.0050	9082549			
RDL = Reportable Detection Li	mit						
 Lab-Dup = Laboratory Initiated	l Duplica	ate					

Lab-Dup = Laboratory Initiated Duplicate

STANTEC CONSULTING LTD Client Project #: 123221161

CSR BTEX/VPH IN WATER (WATER)

Maxxam ID		TY3071	TY3072	TY3073		
Sampling Date		2018/07/26	2018/07/26	2018/07/26		
Sampling Date		11:35	13:30	13:25		
COC Number		560386-01-01	560386-01-01	560386-01-01		
	UNITS	MW18-44	MW18-33	MW18-34	RDL	QC Batch
Calculated Parameters						
VPH (VH6 to 10 - BTEX)	ug/L	<300	<300	<300	300	9081032
Volatiles						
Methyl-tert-butylether (MTBE)	ug/L	<4.0	<4.0	<4.0	4.0	9081436
Benzene	ug/L	<0.40	<0.40	<0.40	0.40	9081436
Toluene	ug/L	<0.40	<0.40	<0.40	0.40	9081436
Ethylbenzene	ug/L	<0.40	<0.40	<0.40	0.40	9081436
m & p-Xylene	ug/L	0.40	<0.40	<0.40	0.40	9081436
o-Xylene	ug/L	<0.40	<0.40	<0.40	0.40	9081436
Styrene	ug/L	<0.40	<0.40	<0.40	0.40	9081436
Xylenes (Total)	ug/L	0.40	<0.40	<0.40	0.40	9081436
VH C6-C10	ug/L	<300	<300	<300	300	9081436
Surrogate Recovery (%)						
1,4-Difluorobenzene (sur.)	%	102	101	102		9081436
4-Bromofluorobenzene (sur.)	%	94	94	94		9081436
D4-1,2-Dichloroethane (sur.)	%	97	103	99		9081436
RDL = Reportable Detection Limi	t					

STANTEC CONSULTING LTD Client Project #: 123221161

LEPH & HEPH WITH CSR/CCME PAH IN WATER (WATER)

Maxxam ID		TY3071	TY3072	TY3073		
Sampling Date		2018/07/26	2018/07/26	2018/07/26		
Jamping Date		11:35	13:30	13:25		
COC Number		560386-01-01	560386-01-01	560386-01-01		
	UNITS	MW18-44	MW18-33	MW18-34	RDL	QC Batch
Calculated Parameters						
Low Molecular Weight PAH`s	ug/L	0.88	<0.10	<0.10	0.10	9081021
High Molecular Weight PAH`s	ug/L	<0.050	<0.050	<0.050	0.050	9081021
Total PAH	ug/L	0.88	<0.10	<0.10	0.10	9081021
Polycyclic Aromatics	•					
Quinoline	ug/L	<0.020	<0.020	<0.020	0.020	9081255
Naphthalene	ug/L	0.14	<0.10	<0.10	0.10	9081255
1-Methylnaphthalene	ug/L	0.14	0.054	<0.050	0.050	9081255
2-Methylnaphthalene	ug/L	0.19	<0.10	<0.10	0.10	9081255
Acenaphthylene	ug/L	<0.050	<0.050	<0.050	0.050	9081255
Acenaphthene	ug/L	0.42	<0.050	<0.050	0.050	9081255
Fluorene	ug/L	<0.050	<0.050	<0.050	0.050	9081255
Phenanthrene	ug/L	<0.050	<0.050	<0.050	0.050	9081255
Anthracene	ug/L	<0.010	<0.010	<0.010	0.010	9081255
Acridine	ug/L	<0.050	<0.050	<0.050	0.050	9081255
Fluoranthene	ug/L	<0.020	<0.020	<0.020	0.020	9081255
Pyrene	ug/L	<0.020	<0.020	<0.020	0.020	9081255
Benzo(a)anthracene	ug/L	<0.010	<0.010	<0.010	0.010	9081255
Chrysene	ug/L	<0.020	<0.020	<0.020	0.020	9081255
Benzo(b&j)fluoranthene	ug/L	<0.030	<0.030	<0.030	0.030	9081255
Benzo(k)fluoranthene	ug/L	<0.050	<0.050	<0.050	0.050	9081255
Benzo(a)pyrene	ug/L	<0.0050	<0.0050	<0.0050	0.0050	9081255
Indeno(1,2,3-cd)pyrene	ug/L	<0.050	<0.050	<0.050	0.050	9081255
Dibenz(a,h)anthracene	ug/L	<0.0030	<0.0030	<0.0030	0.0030	9081255
Benzo(g,h,i)perylene	ug/L	<0.050	<0.050	<0.050	0.050	9081255
Calculated Parameters	•		•	•		
LEPH (C10-C19 less PAH)	mg/L	<0.20	<0.20	<0.20	0.20	9081025
HEPH (C19-C32 less PAH)	mg/L	<0.20	<0.20	<0.20	0.20	9081025
Ext. Pet. Hydrocarbon						
EPH (C10-C19)	mg/L	<0.20	<0.20	<0.20	0.20	9081276
EPH (C19-C32)	mg/L	<0.20	<0.20	<0.20	0.20	9081276
Surrogate Recovery (%)					_	
O-TERPHENYL (sur.)	%	73	93	97		9081276
D10-ANTHRACENE (sur.)	%	76	86	91		9081255
RDL = Reportable Detection Lin	nit	<u> </u>	<u> </u>	<u> </u>		

STANTEC CONSULTING LTD Client Project #: 123221161

LEPH & HEPH WITH CSR/CCME PAH IN WATER (WATER)

Maxxam ID		TY3071	TY3072	TY3073		
Sampling Date		2018/07/26 11:35	2018/07/26 13:30	2018/07/26 13:25		
COC Number		560386-01-01	560386-01-01	560386-01-01		
	UNITS	MW18-44	MW18-33	MW18-34	RDL	QC Batch
D8-ACENAPHTHYLENE (sur.)	%	88	90	95		9081255
D8-NAPHTHALENE (sur.)	%	77	77	78		9081255
TERRUITANIA DA A /	%	68	86	92		9081255
TERPHENYL-D14 (sur.)	70	08	80	32		3001233

STANTEC CONSULTING LTD Client Project #: 123221161

CSR DISSOLVED METALS IN WATER WITH CV HG (WATER)

			1		ı	1			1	
Maxxam ID		TY3071			TY3071			TY3072		
Sampling Date		2018/07/26 11:35			2018/07/26 11:35			2018/07/26 13:30		
COC Number		560386-01-01			560386-01-01			560386-01-01		
COC Number		360386-01-01			MW18-44			560386-01-01		
	UNITS	MW18-44	RDL	QC Batch	Lab-Dup	RDL	QC Batch	MW18-33	RDL	QC Batch
Calculated Parameters										
Filter and HNO3 Preservation	N/A	FIELD		ONSITE				FIELD		ONSITE
Dissolved Hardness (CaCO3)	mg/L	776	0.50	9081011				575	0.50	9081011
Elements				•		•				
Dissolved Mercury (Hg)	ug/L	<0.0020	0.0020	9081162				0.0023	0.0020	9081162
Dissolved Metals by ICPMS				•		•				
Dissolved Aluminum (AI)	ug/L	6.6	3.0	9081279	5.8	3.0	9081279	5.0	3.0	9081279
Dissolved Antimony (Sb)	ug/L	<0.50	0.50	9081279	<0.50	0.50	9081279	0.64	0.50	9081279
Dissolved Arsenic (As)	ug/L	2.89	0.10	9081279	2.86	0.10	9081279	3.51	0.10	9081279
Dissolved Barium (Ba)	ug/L	98.6	1.0	9081279	96.9	1.0	9081279	33.1	1.0	9081279
Dissolved Beryllium (Be)	ug/L	<0.10	0.10	9081279	<0.10	0.10	9081279	<0.10	0.10	9081279
Dissolved Bismuth (Bi)	ug/L	<1.0	1.0	9081279	<1.0	1.0	9081279	<1.0	1.0	9081279
Dissolved Boron (B)	ug/L	<50	50	9081279	<50	50	9081279	<50	50	9081279
Dissolved Cadmium (Cd)	ug/L	0.174	0.010	9081279	0.166	0.010	9081279	0.098	0.010	9081279
Dissolved Chromium (Cr)	ug/L	<1.0	1.0	9081279	<1.0	1.0	9081279	<1.0	1.0	9081279
Dissolved Cobalt (Co)	ug/L	7.34	0.20	9081279	7.20	0.20	9081279	4.20	0.20	9081279
Dissolved Copper (Cu)	ug/L	3.37	0.20	9081279	3.32	0.20	9081279	1.43	0.20	9081279
Dissolved Iron (Fe)	ug/L	306	5.0	9081279	307	5.0	9081279	8.4	5.0	9081279
Dissolved Lead (Pb)	ug/L	<0.20	0.20	9081279	<0.20	0.20	9081279	<0.20	0.20	9081279
Dissolved Lithium (Li)	ug/L	2.1	2.0	9081279	2.1	2.0	9081279	3.6	2.0	9081279
Dissolved Manganese (Mn)	ug/L	2050	1.0	9081279	2010	1.0	9081279	566	1.0	9081279
Dissolved Molybdenum (Mo)	ug/L	3.3	1.0	9081279	3.3	1.0	9081279	4.2	1.0	9081279
Dissolved Nickel (Ni)	ug/L	12.7	1.0	9081279	12.3	1.0	9081279	11.2	1.0	9081279
Dissolved Selenium (Se)	ug/L	0.18	0.10	9081279	0.16	0.10	9081279	0.33	0.10	9081279
Dissolved Silicon (Si)	ug/L	7870	100	9081279	7800	100	9081279	6430	100	9081279
Dissolved Silver (Ag)	ug/L	<0.020	0.020	9081279	<0.020	0.020	9081279	<0.020	0.020	9081279
Dissolved Strontium (Sr)	ug/L	1090	1.0	9081279	1090	1.0	9081279	638	1.0	9081279
Dissolved Thallium (TI)	ug/L	0.028	0.010	9081279	0.026	0.010	9081279	0.032	0.010	9081279
Dissolved Tin (Sn)	ug/L	<5.0	5.0	9081279	<5.0	5.0	9081279	<5.0	5.0	9081279
Dissolved Titanium (Ti)	ug/L	<5.0	5.0	9081279	<5.0	5.0	9081279	<5.0	5.0	9081279
Dissolved Uranium (U)	ug/L	15.1	0.10	9081279	15.1	0.10	9081279	12.4	0.10	9081279
Dissolved Vanadium (V)	ug/L	<5.0	5.0	9081279	<5.0	5.0	9081279	<5.0	5.0	9081279
Dissolved Zinc (Zn)	ug/L	5.7	5.0	9081279	5.4	5.0	9081279	<5.0	5.0	9081279
RDL = Reportable Detection Lir	nit									

Lab-Dup = Laboratory Initiated Duplicate

STANTEC CONSULTING LTD Client Project #: 123221161

CSR DISSOLVED METALS IN WATER WITH CV HG (WATER)

Maxxam ID		TY3071			TY3071			TY3072		
Sampling Date		2018/07/26 11:35			2018/07/26 11:35			2018/07/26 13:30		
COC Number		560386-01-01			560386-01-01			560386-01-01		
	UNITS	MW18-44	RDL	QC Batch	MW18-44 Lab-Dup	RDL	QC Batch	MW18-33	RDL	QC Batch
Dissolved Zirconium (Zr)	ug/L	0.29	0.10	9081279	0.30	0.10	9081279	0.41	0.10	9081279
Dissolved Calcium (Ca)	mg/L	164	0.050	9081013				120	0.050	9081013
Dissolved Magnesium (Mg)	mg/L	89.2	0.050	9081013				66.9	0.050	9081013
Dissolved Potassium (K)	mg/L	3.73	0.050	9081013				4.87	0.050	9081013
Dissolved Sodium (Na)	mg/L	26.0	0.050	9081013				20.6	0.050	9081013
Dissolved Sulphur (S)	mg/L	154	3.0	9081013				106	3.0	9081013

RDL = Reportable Detection Limit

Lab-Dup = Laboratory Initiated Duplicate

STANTEC CONSULTING LTD Client Project #: 123221161

CSR DISSOLVED METALS IN WATER WITH CV HG (WATER)

Maxxam ID		TY3073		
Sampling Date		2018/07/26 13:25		
COC Number		560386-01-01		
	UNITS	MW18-34	RDL	QC Batch
Calculated Parameters				
Filter and HNO3 Preservation	N/A	FIELD		ONSITE
Dissolved Hardness (CaCO3)	mg/L	307	0.50	9081011
Elements			I	
Dissolved Mercury (Hg)	ug/L	0.0025	0.0020	9081162
Dissolved Metals by ICPMS				
Dissolved Aluminum (Al)	ug/L	570	3.0	9081279
Dissolved Antimony (Sb)	ug/L	<0.50	0.50	9081279
Dissolved Arsenic (As)	ug/L	9.08	0.10	9081279
Dissolved Barium (Ba)	ug/L	52.2	1.0	9081279
Dissolved Beryllium (Be)	ug/L	<0.10	0.10	9081279
Dissolved Bismuth (Bi)	ug/L	<1.0	1.0	9081279
Dissolved Boron (B)	ug/L	<50	50	9081279
Dissolved Cadmium (Cd)	ug/L	0.054	0.010	9081279
Dissolved Chromium (Cr)	ug/L	1.1	1.0	9081279
Dissolved Cobalt (Co)	ug/L	2.14	0.20	9081279
Dissolved Copper (Cu)	ug/L	3.21	0.20	9081279
Dissolved Iron (Fe)	ug/L	671	5.0	9081279
Dissolved Lead (Pb)	ug/L	0.62	0.20	9081279
Dissolved Lithium (Li)	ug/L	2.5	2.0	9081279
Dissolved Manganese (Mn)	ug/L	322	1.0	9081279
Dissolved Molybdenum (Mo)	ug/L	4.9	1.0	9081279
Dissolved Nickel (Ni)	ug/L	7.5	1.0	9081279
Dissolved Selenium (Se)	ug/L	0.24	0.10	9081279
Dissolved Silicon (Si)	ug/L	7210	100	9081279
Dissolved Silver (Ag)	ug/L	<0.020	0.020	9081279
Dissolved Strontium (Sr)	ug/L	432	1.0	9081279
Dissolved Thallium (TI)	ug/L	0.023	0.010	9081279
Dissolved Tin (Sn)	ug/L	<5.0	5.0	9081279
Dissolved Titanium (Ti)	ug/L	23.0	5.0	9081279
Dissolved Uranium (U)	ug/L	5.72	0.10	9081279
Dissolved Vanadium (V)	ug/L	<5.0	5.0	9081279
Dissolved Zinc (Zn)	ug/L	<5.0	5.0	9081279
Dissolved Zirconium (Zr)	ug/L	0.66	0.10	9081279
RDL = Reportable Detection Lir	l		1	1

STANTEC CONSULTING LTD Client Project #: 123221161

CSR DISSOLVED METALS IN WATER WITH CV HG (WATER)

Maxxam ID		TY3073		
Sampling Date		2018/07/26 13:25		
COC Number		560386-01-01		
	UNITS	MW18-34	RDL	QC Batch
Dissolved Calcium (Ca)	mg/L	65.0	0.050	9081013
Dissolved Magnesium (Mg)	mg/L	35.1	0.050	9081013
Dissolved Potassium (K)	mg/L	3.27	0.050	9081013
Dissolved Sodium (Na)	mg/L	18.3	0.050	9081013
Dissolved Sulphur (S)	mg/L	36.4	3.0	9081013
RDL = Reportable Detection Li	mit			

STANTEC CONSULTING LTD Client Project #: 123221161

TOTAL TKN IN WATER (WATER)

Maxxam ID		TY3071	TY3072		TY3073			TY3073		
Sampling Date		2018/07/26 11:35	2018/07/26 13:30		2018/07/26 13:25			2018/07/26 13:25		
COC Number		560386-01-01	560386-01-01		560386-01-01			560386-01-01		
	UNITS	MW18-44	MW18-33	RDL	MW18-34	RDL	QC Batch	MW18-34 Lab-Dup	RDL	QC Batch
Calculated Parameters										
Total Total Kjeldahl Nitrogen (Calc)	mg/L	0.382	0.362	0.020	0.32	0.20	9081029			
Nutrients										
Nitrate plus Nitrite (N)	mg/L	<0.020	<0.020	0.020	<0.020	0.020	9081439	<0.020	0.020	9081439
Total Nitrogen (N)	mg/L	0.382	0.362	0.020	0.32 (1)	0.20	9085012			

RDL = Reportable Detection Limit

Lab-Dup = Laboratory Initiated Duplicate

⁽¹⁾ RDL raised due to sample matrix interference.

STANTEC CONSULTING LTD Client Project #: 123221161

GENERAL COMMENTS

Results relate only to the items tested.

QUALITY ASSURANCE REPORT

STANTEC CONSULTING LTD Client Project #: 123221161

			Matrix	Spike	Spiked	Blank	Method E	Blank	RP	D
QC Batch	Parameter	Date	% Recovery	QC Limits	% Recovery	QC Limits	Value	UNITS	Value (%)	QC Limits
9081255	D10-ANTHRACENE (sur.)	2018/07/27	80	50 - 140	85	50 - 140	86	%		
9081255	D8-ACENAPHTHYLENE (sur.)	2018/07/27	89	50 - 140	94	50 - 140	92	%		
9081255	D8-NAPHTHALENE (sur.)	2018/07/27	67	50 - 140	67	50 - 140	63	%		
9081255	TERPHENYL-D14 (sur.)	2018/07/27	87	50 - 140	92	50 - 140	90	%		
9081276	O-TERPHENYL (sur.)	2018/07/27	96	60 - 140	97	60 - 140	96	%		
9081436	1,4-Difluorobenzene (sur.)	2018/07/27	101	70 - 130	104	70 - 130	104	%		
9081436	4-Bromofluorobenzene (sur.)	2018/07/27	93	70 - 130	94	70 - 130	92	%		
9081436	D4-1,2-Dichloroethane (sur.)	2018/07/27	92	70 - 130	93	70 - 130	97	%		
9081162	Dissolved Mercury (Hg)	2018/07/27	95	80 - 120	98	80 - 120	<0.0020	ug/L	NC	20
9081255	1-Methylnaphthalene	2018/07/27	83	50 - 140	80	50 - 140	<0.050	ug/L	2.8	40
9081255	2-Methylnaphthalene	2018/07/27	78	50 - 140	75	50 - 140	<0.10	ug/L	5.4	40
9081255	Acenaphthene	2018/07/27	89	50 - 140	86	50 - 140	<0.050	ug/L	6.1	40
9081255	Acenaphthylene	2018/07/27	89	50 - 140	86	50 - 140	<0.050	ug/L	NC	40
9081255	Acridine	2018/07/27	100	50 - 140	93	50 - 140	<0.050	ug/L	NC	40
9081255	Anthracene	2018/07/27	88	50 - 140	87	50 - 140	<0.010	ug/L	NC	40
9081255	Benzo(a)anthracene	2018/07/27	82	50 - 140	79	50 - 140	<0.010	ug/L	NC	40
9081255	Benzo(a)pyrene	2018/07/27	87	50 - 140	84	50 - 140	<0.0050	ug/L	NC	40
9081255	Benzo(b&j)fluoranthene	2018/07/27	89	50 - 140	88	50 - 140	<0.030	ug/L	NC	40
9081255	Benzo(g,h,i)perylene	2018/07/27	79	50 - 140	79	50 - 140	<0.050	ug/L	NC	40
9081255	Benzo(k)fluoranthene	2018/07/27	88	50 - 140	83	50 - 140	<0.050	ug/L	NC	40
9081255	Chrysene	2018/07/27	87	50 - 140	84	50 - 140	<0.020	ug/L	NC	40
9081255	Dibenz(a,h)anthracene	2018/07/27	83	50 - 140	82	50 - 140	<0.0030	ug/L	NC	40
9081255	Fluoranthene	2018/07/27	81	50 - 140	79	50 - 140	<0.020	ug/L	NC	40
9081255	Fluorene	2018/07/27	82	50 - 140	81	50 - 140	<0.050	ug/L	NC	40
9081255	Indeno(1,2,3-cd)pyrene	2018/07/27	81	50 - 140	81	50 - 140	<0.050	ug/L	NC	40
9081255	Naphthalene	2018/07/27	76	50 - 140	74	50 - 140	<0.10	ug/L	3.8	40
9081255	Phenanthrene	2018/07/27	79	50 - 140	76	50 - 140	<0.050	ug/L	NC	40
9081255	Pyrene	2018/07/27	86	50 - 140	84	50 - 140	<0.020	ug/L	NC	40
9081255	Quinoline	2018/07/27	110	50 - 140	101	50 - 140	<0.020	ug/L	NC	40
9081276	EPH (C10-C19)	2018/07/27	88	60 - 140	85	70 - 130	<0.20	mg/L	NC	30
9081276	EPH (C19-C32)	2018/07/27	90	60 - 140	86	70 - 130	<0.20	mg/L	NC	30
9081279	Dissolved Aluminum (AI)	2018/07/27	103	80 - 120	100	80 - 120	<3.0	ug/L	12	20

QUALITY ASSURANCE REPORT(CONT'D)

STANTEC CONSULTING LTD Client Project #: 123221161

			Matrix	Spike	Spiked	Blank	Method E	Blank	RPD	
QC Batch	Parameter	Date	% Recovery	QC Limits	% Recovery	QC Limits	Value	UNITS	Value (%)	QC Limits
9081279	Dissolved Antimony (Sb)	2018/07/27	102	80 - 120	98	80 - 120	<0.50	ug/L	NC	20
9081279	Dissolved Arsenic (As)	2018/07/27	105	80 - 120	101	80 - 120	<0.10	ug/L	1.1	20
9081279	Dissolved Barium (Ba)	2018/07/27	NC	80 - 120	97	80 - 120	<1.0	ug/L	1.7	20
9081279	Dissolved Beryllium (Be)	2018/07/27	92	80 - 120	99	80 - 120	<0.10	ug/L	NC	20
9081279	Dissolved Bismuth (Bi)	2018/07/27	94	80 - 120	99	80 - 120	<1.0	ug/L	NC	20
9081279	Dissolved Boron (B)	2018/07/27	84	80 - 120	86	80 - 120	<50	ug/L	NC	20
9081279	Dissolved Cadmium (Cd)	2018/07/27	100	80 - 120	100	80 - 120	<0.010	ug/L	5.1	20
9081279	Dissolved Chromium (Cr)	2018/07/27	99	80 - 120	99	80 - 120	<1.0	ug/L	NC	20
9081279	Dissolved Cobalt (Co)	2018/07/27	93	80 - 120	97	80 - 120	<0.20	ug/L	1.9	20
9081279	Dissolved Copper (Cu)	2018/07/27	90	80 - 120	97	80 - 120	<0.20	ug/L	1.5	20
9081279	Dissolved Iron (Fe)	2018/07/27	98	80 - 120	102	80 - 120	<5.0	ug/L	0.33	20
9081279	Dissolved Lead (Pb)	2018/07/27	97	80 - 120	99	80 - 120	<0.20	ug/L	NC	20
9081279	Dissolved Lithium (Li)	2018/07/27	96	80 - 120	94	80 - 120	<2.0	ug/L	0.88	20
9081279	Dissolved Manganese (Mn)	2018/07/27	NC	80 - 120	99	80 - 120	<1.0	ug/L	1.9	20
9081279	Dissolved Molybdenum (Mo)	2018/07/27	109	80 - 120	100	80 - 120	<1.0	ug/L	0.97	20
9081279	Dissolved Nickel (Ni)	2018/07/27	92	80 - 120	98	80 - 120	<1.0	ug/L	2.9	20
9081279	Dissolved Selenium (Se)	2018/07/27	101	80 - 120	98	80 - 120	<0.10	ug/L	9.5	20
9081279	Dissolved Silicon (Si)	2018/07/27	NC	80 - 120	101	80 - 120	<100	ug/L	0.89	20
9081279	Dissolved Silver (Ag)	2018/07/27	98	80 - 120	99	80 - 120	<0.020	ug/L	NC	20
9081279	Dissolved Strontium (Sr)	2018/07/27	NC	80 - 120	98	80 - 120	<1.0	ug/L	0.79	20
9081279	Dissolved Thallium (TI)	2018/07/27	99	80 - 120	100	80 - 120	<0.010	ug/L	8.5	20
9081279	Dissolved Tin (Sn)	2018/07/27	100	80 - 120	99	80 - 120	<5.0	ug/L	NC	20
9081279	Dissolved Titanium (Ti)	2018/07/27	105	80 - 120	101	80 - 120	<5.0	ug/L	NC	20
9081279	Dissolved Uranium (U)	2018/07/27	106	80 - 120	103	80 - 120	<0.10	ug/L	0.29	20
9081279	Dissolved Vanadium (V)	2018/07/27	101	80 - 120	99	80 - 120	<5.0	ug/L	NC	20
9081279	Dissolved Zinc (Zn)	2018/07/27	93	80 - 120	98	80 - 120	<5.0	ug/L	4.0	20
9081279	Dissolved Zirconium (Zr)	2018/07/27	105	80 - 120	95	80 - 120	<0.10	ug/L	5.0	20
9081436	Benzene	2018/07/27	91	70 - 130	91	70 - 130	<0.40	ug/L	NC	30
9081436	Ethylbenzene	2018/07/27	111	70 - 130	107	70 - 130	<0.40	ug/L	NC	30
9081436	m & p-Xylene	2018/07/27	115	70 - 130	111	70 - 130	<0.40	ug/L	NC	30
9081436	Methyl-tert-butylether (MTBE)	2018/07/27	116	70 - 130	115	70 - 130	<4.0	ug/L	NC	30
9081436	o-Xylene	2018/07/27	117	70 - 130	113	70 - 130	<0.40	ug/L	NC	30

QUALITY ASSURANCE REPORT(CONT'D)

STANTEC CONSULTING LTD Client Project #: 123221161

			Matrix Spike		Spiked	Blank	Method E	Blank	RPD	
QC Batch	Parameter	Date	% Recovery	QC Limits	% Recovery	QC Limits	Value	UNITS	Value (%)	QC Limits
9081436	Styrene	2018/07/27	98	70 - 130	95	70 - 130	<0.40	ug/L	NC	30
9081436	Toluene	2018/07/27	105	70 - 130	102	70 - 130	<0.40	ug/L	NC	30
9081436	VH C6-C10	2018/07/27			110	70 - 130	<300	ug/L	NC	30
9081436	Xylenes (Total)	2018/07/27					<0.40	ug/L	NC	30
9081439	Nitrate plus Nitrite (N)	2018/07/27	105	80 - 120	110	80 - 120	<0.020	mg/L	NC	25
9081443	Nitrite (N)	2018/07/27	98	80 - 120	106	80 - 120	<0.0050	mg/L	NC	20
9081524	Fluoride (F)	2018/07/27	92	80 - 120	96	80 - 120	<0.020	mg/L	0	20
9081562	Dissolved Chloride (CI)	2018/07/27	103	80 - 120	103	80 - 120	<1.0	mg/L	1.6	20
9081593	Dissolved Sulphate (SO4)	2018/07/27	NC	80 - 120	104	80 - 120	<1.0	mg/L	1.2	20
9082265	Total Ammonia (N)	2018/07/27	94	80 - 120	95	80 - 120	<0.020	mg/L	7.5	20
9082528	Orthophosphate (P)	2018/07/27	81	80 - 120	96	80 - 120	<0.0050	mg/L	10	20
9082549	Total Phosphorus (P)	2018/07/28	98	80 - 120	101	80 - 120	<0.0050	mg/L	0.46	20
9083309	Dissolved Organic Carbon (C)	2018/07/30	115	80 - 120	101	80 - 120	<0.50	mg/L	9.9	20
9085012	Total Nitrogen (N)	2018/07/31			90	80 - 120	<0.020	mg/L	2.9	20

Duplicate: Paired analysis of a separate portion of the same sample. Used to evaluate the variance in the measurement.

Matrix Spike: A sample to which a known amount of the analyte of interest has been added. Used to evaluate sample matrix interference.

Spiked Blank: A blank matrix sample to which a known amount of the analyte, usually from a second source, has been added. Used to evaluate method accuracy.

Method Blank: A blank matrix containing all reagents used in the analytical procedure. Used to identify laboratory contamination.

Surrogate: A pure or isotopically labeled compound whose behavior mirrors the analytes of interest. Used to evaluate extraction efficiency.

NC (Matrix Spike): The recovery in the matrix spike was not calculated. The relative difference between the concentration in the parent sample and the spike amount was too small to permit a reliable recovery calculation (matrix spike concentration was less than the native sample concentration)

NC (Duplicate RPD): The duplicate RPD was not calculated. The concentration in the sample and/or duplicate was too low to permit a reliable RPD calculation (absolute difference <= 2x RDL).

STANTEC CONSULTING LTD Client Project #: 123221161

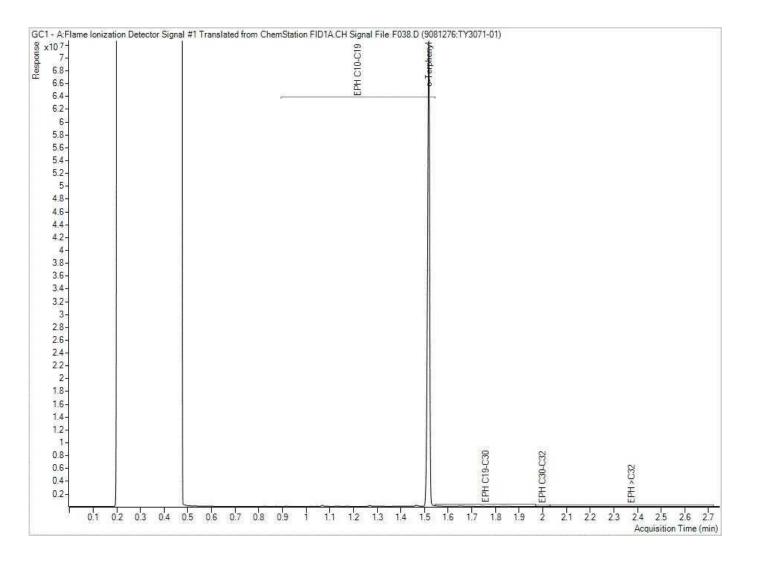
VALIDATION SIGNATURE PAGE

The analytical data and all QC contained in this report were reviewed and validated by the following individual(s).

Andy Lu, Ph.D., P.Chem., Scientific Specialist

Rob Reinert, B.Sc., Scientific Specialist

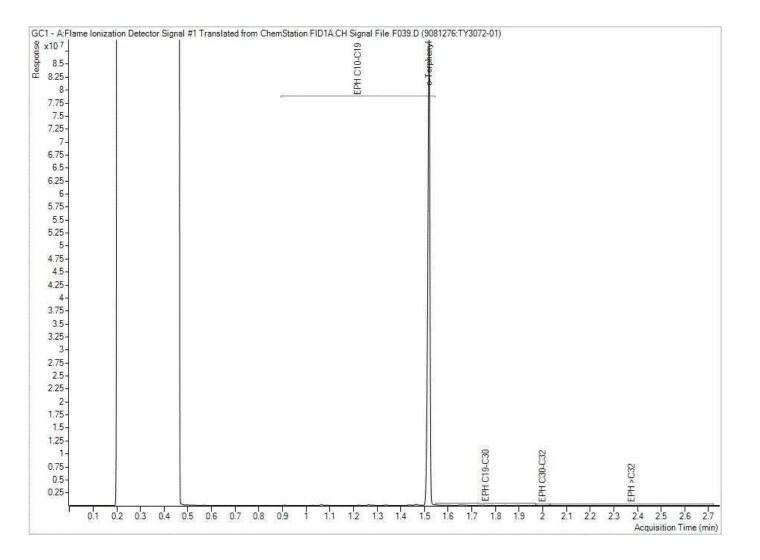
Maxxam has procedures in place to guard against improper use of the electronic signature and have the required "signatories", as per section 5.10.2 of ISO/IEC 17025:2005(E), signing the reports. For Service Group specific validation please refer to the Validation Signature Page.


		INVOICE TO:			Report Int	formation							Project Inf	ormation					
прапу Name	#2792 STAN	TEC CONSULTING LTD	Company Na	mo Stan-	ec Co	ngu	ting	9		Que	tation #		B71770			102		DISSENS MANUAL	Order#:
stact Name	ACCOUNTS F	PAYABLE	Contact Nam	A A - AND PA			0	,		P.0							MERCHANIS	1997 50 000	HIHI
fress		Suite 500, 4730 Kingsway	Address							Proj	ect #	19	12322116	1			III BAS DANGARDO	FEASTS/CH. C. III	386
	BURNABY BO		2	-		-	USec .			11 41816	ect Name	69	_				8862272_COC		Manager
one	(604) 436-301 SAPinvoices@		Phone Email	matthew.de	eane@sta		Fax:			Site	# opled By					-	C#560386-01-01	mamor y	Nahed Amer
evil Regulatory Crit				ial Instructions		I	T				Analysis F	Requeste	1					ne (TAT) Required	
						Drinking Water ? (Y / N)		Diss. Metals (with Hg)	T	s (CI, F, NO2, NO3,		(TP, NH4, TKN)			8	(will be Stand Please days -	er (Standard) TAT a applied if Rush TAT is not speci- sed TAT = 5-7 Working days for in- rote: Standard TAT for certain is contact your Project Manager for ecific Rush TAT (if applies to eggs	nost fests. ests such as BOD and Diox details. (e gybmission)	kins/Furans an
Samolo		d drinking water samples - please use the must be kept cool (< 10°C) from time of san Sample (Location) identification	ON A SPECIAL PROPERTY.	and the latest terms of th	Metrix	Regulated I	工	Diss. Met	втехирн	Major Ions (PO4, SO4)	DOC	Nutrients				Rush Co	onfirmation Number	(cs# let for it) Comments)
Congre	Delitore Ender	MW18-44	July 210/18	Complete and the	GW	1	X	X	X	X	X	X				10	RECEIVED	IN WHITEHOR	SE
		MW18-33	Jul. 26/18	13:30	6W	-	1X	X	X	X	X	X				10	BY: Su	1000 (a)	1400
		MW18-34	Jul. 26/18	13.25	GW		X	X	X	X	X	X				10	20	18 -07- 2 5	3,
		19						77				1					TEMP: 9	11 18	2
		2															coolin	e media p	orese
		8) ,	
		- 1 G - 1																	
	*/	39					1												
	bbald ((YY/MM/DD) Time 07/26 /4:0	- And the second	7E	-	Signature	Print)	0.		to: (YY/MM 2071		D7 Ox	# jars use not subi	mitted -	Senstive	Lab Use Temperature (°C) on Receipt	Custody Segi-Intac	t on Catoler?

0084

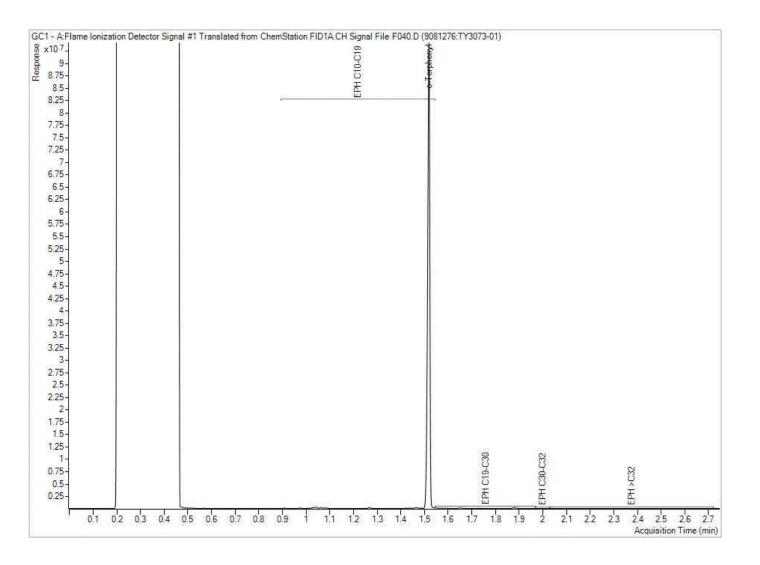
Maxxam Analytics International Corporation o/a Maxxam Analytics

Maxxam Job #: B862272 Report Date: 2018/08/02 Maxxam Sample: TY3071 STANTEC CONSULTING LTD Client Project #: 123221161 Client ID: MW18-44


EPH in Water when PAH required Chromatogram

Note: This information is provided for reference purposes only. Should detailed chemist interpretation or fingerprinting be required, please contact the laboratory.

Maxxam Job #: B862272 Report Date: 2018/08/02 Maxxam Sample: TY3072 STANTEC CONSULTING LTD Client Project #: 123221161 Client ID: MW18-33


EPH in Water when PAH required Chromatogram

Note: This information is provided for reference purposes only. Should detailed chemist interpretation or fingerprinting be required, please contact the laboratory.

Maxxam Job #: B862272 Report Date: 2018/08/02 Maxxam Sample: TY3073 STANTEC CONSULTING LTD Client Project #: 123221161 Client ID: MW18-34

EPH in Water when PAH required Chromatogram

Note: This information is provided for reference purposes only. Should detailed chemist interpretation or fingerprinting be required, please contact the laboratory.

Your Project #: 123221161 Your C.O.C. #: 560386-01-01

Attention: Matthew Deane
STANTEC CONSULTING LTD
Metrotower III
Suite 500, 4730 Kingsway
BURNABY, BC
CANADA V5H 4M1

Report Date: 2018/08/01

Report #: R2598434 Version: 1 - Final

CERTIFICATE OF ANALYSIS

MAXXAM JOB #: B863767 Received: 2018/07/30, 16:05

Sample Matrix: Water # Samples Received: 2

·		Date	Date		
Analyses	Quantity	Extracted	Analyzed	Laboratory Method	Analytical Method
BTEX/MTBE LH, VH, F1 SIM/MS	2	N/A	2018/07/31	BBY8SOP-00010/11/12	BCMOE BCLM Jul 2017
Hardness (calculated as CaCO3)	2	N/A	2018/08/01	BBY WI-00033	Auto Calc
Mercury (Dissolved) by CVAF	2	N/A	2018/08/01	BBY7SOP-00015	BCMOE BCLM Oct2013 m
EPH in Water when PAH required	2	2018/08/01	2018/08/01	BBY8SOP-00029	BCMOE BCLM Mar 2017
Na, K, Ca, Mg, S by CRC ICPMS (diss.)	2	N/A	2018/08/01	BBY WI-00033	Auto Calc
Elements by CRC ICPMS (dissolved)	2	N/A	2018/08/01	BBY7SOP-00002	EPA 6020b R2 m
PAH in Water by GC/MS (SIM)	2	2018/08/01	2018/08/01	BBY8SOP-00021	BCMOE BCLM Jul2017m
Total LMW, HMW, Total PAH Calc (1)	2	N/A	2018/08/01	BBY WI-00033	Auto Calc
Filter and HNO3 Preserve for Metals	2	N/A	2018/07/31	BBY7 WI-00004	BCMOE Reqs 08/14
EPH less PAH in Water by GC/FID (2)	2	N/A	2018/08/01	BBY WI-00033	Auto Calc
Volatile HC-BTEX (3)	2	N/A	2018/08/01	BBY WI-00033	Auto Calc

Remarks:

Maxxam Analytics' laboratories are accredited to ISO/IEC 17025:2005 for specific parameters on scopes of accreditation. Unless otherwise noted, procedures used by Maxxam are based upon recognized Provincial, Federal or US method compendia such as CCME, MDDELCC, EPA, APHA.

All work recorded herein has been done in accordance with procedures and practices ordinarily exercised by professionals in Maxxam's profession using accepted testing methodologies, quality assurance and quality control procedures (except where otherwise agreed by the client and Maxxam in writing). All data is in statistical control and has met quality control and method performance criteria unless otherwise noted. All method blanks are reported; unless indicated otherwise, associated sample data are not blank corrected.

Maxxam Analytics' liability is limited to the actual cost of the requested analyses, unless otherwise agreed in writing. There is no other warranty expressed or implied. Maxxam has been retained to provide analysis of samples provided by the Client using the testing methodology referenced in this report. Interpretation and use of test results are the sole responsibility of the Client and are not within the scope of services provided by Maxxam, unless otherwise agreed in writing.

Solid sample results, except biota, are based on dry weight unless otherwise indicated. Organic analyses are not recovery corrected except for isotope dilution methods.

Results relate to samples tested.

This Certificate shall not be reproduced except in full, without the written approval of the laboratory.

Reference Method suffix "m" indicates test methods incorporate validated modifications from specific reference methods to improve performance.

* RPDs calculated using raw data. The rounding of final results may result in the apparent difference.

Your Project #: 123221161 Your C.O.C. #: 560386-01-01

Attention: Matthew Deane

STANTEC CONSULTING LTD Metrotower III Suite 500, 4730 Kingsway BURNABY, BC CANADA V5H 4M1

Report Date: 2018/08/01

Report #: R2598434 Version: 1 - Final

CERTIFICATE OF ANALYSIS

MAXXAM JOB #: B863767 Received: 2018/07/30, 16:05

(1) Total PAHs in Water include: Quinoline, Naphthalene, 1-Methylnaphthalene, 2-Methylnaphthalene, Acenaphthylene, Acenaphthene, Fluorene, Phenanthrene, Anthracene, Acridine, Fluoranthene, Pyrene, Benzo(a)anthracene, Chrysene, Benzo(b&j)fluoranthene, Benzo(k)fluoranthene, Benzo(a)pyrene, Indeno(1,2,3-cd)pyrene, Dibenz(a,h)anthracene, and Benzo(g,h,i)perylene.

(2) LEPH = EPH (C10 to C19) - (Acenaphthene + Acridine + Anthracene + Fluorene + Naphthalene + Phenanthrene)
HEPH = EPH (C19 to C32) - (Benzo(a)anthracene + Benzo(a)pyrene + Fluoranthene + Pyrene)

(3) VPH = VH - (Benzene + Toluene + Ethylbenzene + m & p-Xylene + o-Xylene + Styrene)

Encryption Key

Please direct all questions regarding this Certificate of Analysis to your Project Manager. Nahed Amer, Project Manager Email: NAmer@maxxam.ca Phone# (604) 734 7276

This report has been generated and distributed using a secure automated process.

Maxxam has procedures in place to guard against improper use of the electronic signature and have the required "signatories", as per section 5.10.2 of ISO/IEC 17025:2005(E), signing the reports. For Service Group specific validation please refer to the Validation Signature Page.

STANTEC CONSULTING LTD Client Project #: 123221161

Sampler Initials: MD

RESULTS OF CHEMICAL ANALYSES OF WATER

Maxxam ID		TZ1833	TZ1834	
Sampling Date		2018/07/30 14:45	2018/07/30 14:30	
COC Number		560386-01-01	560386-01-01	
	UNITS	MW18-42	MW18-43	QC Batch

Calculated Parameters						
Filter and HNO3 Preservation	N/A	FIELD	FIELD	ONSITE		

STANTEC CONSULTING LTD Client Project #: 123221161 Sampler Initials: MD

CSR BTEX/VPH IN WATER (WATER)

Maxxam ID		TZ1833	TZ1834				
Sampling Date		2018/07/30 14:45	2018/07/30 14:30				
COC Number		560386-01-01	560386-01-01				
	UNITS	MW18-42	MW18-43	RDL	QC Batch		
Calculated Parameters							
VPH (VH6 to 10 - BTEX)	ug/L	<300	<300	300	9085681		
Volatiles							
Methyl-tert-butylether (MTBE)	ug/L	<4.0	<4.0	4.0	9085353		
Benzene	ug/L	<0.40	<0.40	0.40	9085353		
Toluene	ug/L	<0.40	<0.40	0.40	9085353		
Ethylbenzene	ug/L	<0.40	<0.40	0.40	9085353		
m & p-Xylene	ug/L	<0.40	0.76	0.40	9085353		
o-Xylene	ug/L	<0.40	0.41	0.40	9085353		
Styrene	ug/L	<0.40	<0.40	0.40	9085353		
Xylenes (Total)	ug/L	<0.40	1.2	0.40	9085353		
VH C6-C10	ug/L	<300	<300	300	9085353		
Surrogate Recovery (%)							
1,4-Difluorobenzene (sur.)	%	96	97		9085353		
4-Bromofluorobenzene (sur.)	%	96	95		9085353		
D4-1,2-Dichloroethane (sur.)	%	103	104		9085353		
RDL = Reportable Detection Limit							

STANTEC CONSULTING LTD Client Project #: 123221161 Sampler Initials: MD

LEPH & HEPH WITH CSR/CCME PAH IN WATER (WATER)

Maxxam ID		TZ1833	TZ1834				
Compline Date		2018/07/30	2018/07/30				
Sampling Date		14:45	14:30				
COC Number		560386-01-01	560386-01-01				
	UNITS	MW18-42	MW18-43	RDL	QC Batch		
Calculated Parameters							
Low Molecular Weight PAH`s	ug/L	<0.10	<0.10	0.10	9085024		
High Molecular Weight PAH's	ug/L	<0.050	<0.050	0.050	9085024		
Total PAH	ug/L	<0.10	<0.10	0.10	9085024		
Polycyclic Aromatics							
Quinoline	ug/L	<0.020	<0.020	0.020	9086704		
Naphthalene	ug/L	<0.10	<0.10	0.10	9086704		
1-Methylnaphthalene	ug/L	<0.050	<0.050	0.050	9086704		
2-Methylnaphthalene	ug/L	<0.10	<0.10	0.10	9086704		
Acenaphthylene	ug/L	<0.050	<0.050	0.050	9086704		
Acenaphthene	ug/L	<0.050	<0.050	0.050	9086704		
Fluorene	ug/L	<0.050	<0.050	0.050	9086704		
Phenanthrene	ug/L	<0.050	<0.050	0.050	9086704		
Anthracene	ug/L	<0.010	<0.010	0.010	9086704		
Acridine	ug/L	<0.050	<0.050	0.050	9086704		
Fluoranthene	ug/L	<0.020	<0.020	0.020	9086704		
Pyrene	ug/L	<0.020	<0.020	0.020	9086704		
Benzo(a)anthracene	ug/L	<0.010	<0.010	0.010	9086704		
Chrysene	ug/L	<0.020	<0.020	0.020	9086704		
Benzo(b&j)fluoranthene	ug/L	<0.030	<0.030	0.030	9086704		
Benzo(k)fluoranthene	ug/L	<0.050	<0.050	0.050	9086704		
Benzo(a)pyrene	ug/L	<0.0050	<0.0050	0.0050	9086704		
Indeno(1,2,3-cd)pyrene	ug/L	<0.050	<0.050	0.050	9086704		
Dibenz(a,h)anthracene	ug/L	< 0.0030	<0.0030	0.0030	9086704		
Benzo(g,h,i)perylene	ug/L	<0.050	<0.050	0.050	9086704		
Calculated Parameters							
LEPH (C10-C19 less PAH)	mg/L	<0.20	<0.20	0.20	9085665		
HEPH (C19-C32 less PAH)	mg/L	<0.20	<0.20	0.20	9085665		
Ext. Pet. Hydrocarbon							
EPH (C10-C19)	mg/L	<0.20	<0.20	0.20	9086767		
EPH (C19-C32)	mg/L	<0.20	<0.20	0.20	9086767		
Surrogate Recovery (%)							
O-TERPHENYL (sur.)	%	97	94		9086767		
RDL = Reportable Detection Lin	nit						

STANTEC CONSULTING LTD Client Project #: 123221161 Sampler Initials: MD

LEPH & HEPH WITH CSR/CCME PAH IN WATER (WATER)

Maxxam ID		TZ1833	TZ1834			
Sampling Date		2018/07/30 14:45	2018/07/30 14:30			
COC Number		560386-01-01	560386-01-01			
	UNITS	MW18-42	MW18-43	RDL	QC Batch	
D10-ANTHRACENE (sur.)	%	91	88		9086704	
D8-ACENAPHTHYLENE (sur.)	%	90	89		9086704	
D8-NAPHTHALENE (sur.)	%	86	86		9086704	
TERPHENYL-D14 (sur.)	%	89	85		9086704	
RDL = Reportable Detection Limit						

STANTEC CONSULTING LTD Client Project #: 123221161 Sampler Initials: MD

CSR DISSOLVED METALS IN WATER WITH CV HG (WATER)

Maxxam ID		TZ1833	TZ1834		
Sampling Date		2018/07/30 14:45	2018/07/30 14:30		
COC Number		560386-01-01	560386-01-01		
	UNITS	MW18-42	MW18-43	RDL	QC Batch
Calculated Parameters					
Dissolved Hardness (CaCO3)	mg/L	221	142	0.50	9086256
Elements	!				
Dissolved Mercury (Hg)	ug/L	<0.0020	<0.0020	0.0020	9086684
Dissolved Metals by ICPMS					
Dissolved Aluminum (Al)	ug/L	3.1	4.1	3.0	9086604
Dissolved Antimony (Sb)	ug/L	0.88	<0.50	0.50	9086604
Dissolved Arsenic (As)	ug/L	11.2	15.7	0.10	9086604
Dissolved Barium (Ba)	ug/L	56.6	70.6	1.0	9086604
Dissolved Beryllium (Be)	ug/L	<0.10	<0.10	0.10	9086604
Dissolved Bismuth (Bi)	ug/L	<1.0	<1.0	1.0	9086604
Dissolved Boron (B)	ug/L	51	<50	50	9086604
Dissolved Cadmium (Cd)	ug/L	<0.010	<0.010	0.010	9086604
Dissolved Chromium (Cr)	ug/L	<1.0	<1.0	1.0	9086604
Dissolved Cobalt (Co)	ug/L	<0.20	<0.20	0.20	9086604
Dissolved Copper (Cu)	ug/L	0.55	0.51	0.20	9086604
Dissolved Iron (Fe)	ug/L	12.1	<5.0	5.0	9086604
Dissolved Lead (Pb)	ug/L	<0.20	<0.20	0.20	9086604
Dissolved Lithium (Li)	ug/L	3.0	<2.0	2.0	9086604
Dissolved Manganese (Mn)	ug/L	72.3	38.1	1.0	9086604
Dissolved Molybdenum (Mo)	ug/L	6.7	7.9	1.0	9086604
Dissolved Nickel (Ni)	ug/L	<1.0	<1.0	1.0	9086604
Dissolved Selenium (Se)	ug/L	0.69	0.19	0.10	9086604
Dissolved Silicon (Si)	ug/L	5370	4830	100	9086604
Dissolved Silver (Ag)	ug/L	<0.020	<0.020	0.020	9086604
Dissolved Strontium (Sr)	ug/L	424	312	1.0	9086604
Dissolved Thallium (TI)	ug/L	<0.010	<0.010	0.010	9086604
Dissolved Tin (Sn)	ug/L	<5.0	<5.0	5.0	9086604
Dissolved Titanium (Ti)	ug/L	<5.0	<5.0	5.0	9086604
Dissolved Uranium (U)	ug/L	5.41	3.95	0.10	9086604
Dissolved Vanadium (V)	ug/L	<5.0	<5.0	5.0	9086604
Dissolved Zinc (Zn)	ug/L	<5.0	<5.0	5.0	9086604
Dissolved Zirconium (Zr)	ug/L	<0.10	<0.10	0.10	9086604

STANTEC CONSULTING LTD Client Project #: 123221161 Sampler Initials: MD

CSR DISSOLVED METALS IN WATER WITH CV HG (WATER)

Maxxam ID		TZ1833	TZ1834			
Sampling Date		2018/07/30 14:45	2018/07/30 14:30			
COC Number		560386-01-01	560386-01-01			
	UNITS	MW18-42	MW18-43	RDL	QC Batch	
Dissolved Calcium (Ca)	mg/L	55.6	24.5	0.050	9085018	
Dissolved Magnesium (Mg)	mg/L	20.0	19.6	0.050	9085018	
Dissolved Potassium (K)	mg/L	2.71	2.41	0.050	9085018	
Dissolved Sodium (Na)	mg/L	16.9	19.8	0.050	9085018	
Dissolved Sulphur (S)	mg/L	32.9	15.8	3.0	9085018	
RDL = Reportable Detection Limit						

STANTEC CONSULTING LTD Client Project #: 123221161 Sampler Initials: MD

GENERAL COMMENTS

Results relate only to the items tested.

QUALITY ASSURANCE REPORT

STANTEC CONSULTING LTD Client Project #: 123221161

Sampler Initials: MD

QC latch Parameter Date Screenery QC Limits National Parameter South Date Screenery QC Limits Value UNITs Value (%) Q				Matrix	Spike	Spiked	Blank	Method E	Blank	RPD	
9085353 4-Bromofluorobenzene (sur.) 2018/07/31 93 70 - 130 92 70 - 130 92 % 985353 D4-1,2-Dichlorobethane (sur.) 2018/07/31 95 70 - 130 95 70 - 130 100 % 9895074 D10-ANTHRACENE (sur.) 2018/08/01 90 50 - 140 89 50 - 140 89 % 986704 D8-ACENAPHTHYLENE (sur.) 2018/08/01 89 50 - 140 86 50 - 140 87 % 9086704 D8-MCHAPHTHYLENE (sur.) 2018/08/01 89 50 - 140 86 50 - 140 87 % 9086704 D8-MCHAPHTHYLENE (sur.) 2018/08/01 89 50 - 140 86 50 - 140 80 % 9086704 D8-MCHAPHTHYLENE (sur.) 2018/08/01 89 50 - 140 88 50 - 140 80 % 9086704 TERPHENYL-D14 (sur.) 2018/08/01 89 50 - 140 88 50 - 140 80 % 9086707 O-TERPHENYL-D14 (sur.) 2018/08/01 89 50 - 140 88 50 - 140 88 % 9086707 O-TERPHENYL-D14 (sur.) 2018/08/01 89 70 - 130 87 70 - 130 <0.40 ug/L 9085353 Benzene 2018/07/31 88 70 - 130 87 70 - 130 <0.40 ug/L 9085353 Benzene 2018/07/31 103 70 - 130 102 70 - 130 <0.40 ug/L 9085353 Methyl-tert-butylether (MTBE) 2018/07/31 110 70 - 130 102 70 - 130 <0.40 ug/L 9085353 Styrene 2018/07/31 104 70 - 130 107 70 - 130 <0.40 ug/L 9085353 Toluene 2018/07/31 104 70 - 130 107 70 - 130 <0.40 ug/L 9085353 Toluene 2018/07/31 92 70 - 130 90 70 - 130 <0.40 ug/L 9085353 VH (-6-C10 2018/07/31 98 70 - 130 98 70 - 130 <0.40 ug/L 9085353 VH (-6-C10 2018/07/31 98 70 - 130 98 70 - 130 <0.40 ug/L 9085353 VH (-6-C10 2018/07/31 98 70 - 130 98 70 - 130 <0.40 ug/L 9085353 VH (-6-C10 2018/07/31 98 70 - 130 98 70 - 130 <0.40 ug/L NC 9085353 VH (-6-C10 2018/08/01 104 80 - 120 102 80 - 120 <0.50 ug/L NC 9086604 Dissolved Arminum (AI) 2018/08/01 102 80 - 120 100 80 - 120 <0.50 ug/L NC 9086604 Dissolved Arminum (Bi) 2018/08/01 NC 80 - 120 100 80 - 120 <0.10 ug/L NC 9086604 Dissolved Birmum (Be) 2018/08/01 99 80 - 120 100 80 - 120 <0.10 ug/L NC 9086604 Dissolved Birmum (Be) 2018/08/01 99 80 - 120 100 80 - 120 <0.10 ug/L NC 9086604 Dissolved Birmum (Cr) 2018/08/01 99 80 - 120 100 80 - 120 <0.10 ug/L NC 9086604 Dissolved Birmum (Cr) 2018/08/01 99 80 - 120 100 80 - 120 <0.00 ug/L NC 9086604 Dissolved Birmum (Cr) 2018/08/01 99 80 - 120 100 80 - 120 <0.00 ug/L NC 9086604 Dissolved B	QC Batch	Parameter	Date	% Recovery	QC Limits	% Recovery	QC Limits	Value	UNITS	Value (%)	QC Limits
9085733 D4-1,2-Dichloroethane (sur.) 2018/07/31 95 70-130 95 70-130 100 % 986704 D10-ANTHRACENE (sur.) 2018/08/01 90 50-140 89 50-140 89 50-140 87 % 986704 D8-ACENAPHTHALENE (sur.) 2018/08/01 89 50-140 73 50-140 87 % 986704 D8-ACENAPHTHALENE (sur.) 2018/08/01 89 50-140 73 50-140 80 % 986704 D8-NAPHTHALENE (sur.) 2018/08/01 89 50-140 73 50-140 80 % 986704 TERPHENYL-D14 (sur.) 2018/08/01 89 50-140 88 50-140 88 % 9986704 TERPHENYL-D14 (sur.) 2018/08/01 89 50-140 88 50-140 88 % 9986704 TERPHENYL-D14 (sur.) 2018/08/01 89 50-140 88 50-140 88 % 9985333 Benzene 2018/07/31 88 70-130 87 70-130 40.40 ug/L 9985333 Benzene 2018/07/31 103 70-130 102 70-130 40.40 ug/L 9985333 Benzene 2018/07/31 103 70-130 102 70-130 40.40 ug/L 9985333 o-Xylene 2018/07/31 110 70-130 108 70-130 40.40 ug/L 9985333 O-Xylene 2018/07/31 110 70-130 108 70-130 40.40 ug/L 9985333 O-Xylene 2018/07/31 104 70-130 107 70-130 40.40 ug/L 9985333 Toluene 2018/07/31 104 70-130 107 70-130 40.40 ug/L 9985333 Toluene 2018/07/31 92 70-130 40.40 ug/L 9985333 Nylene 2018/07/31 92 70-130 40.40 ug/L 9985333 Vylene 2018/07/31 104 70-130 107 70-130 40.40 ug/L 9985333 Vylene 2018/07/31 92 70-130 90 70-130 40.40 ug/L 9985333 Vylene 2018/07/31 92 70-130 90 70-130 40.40 ug/L 9985333 Vylene 2018/07/31 92 70-130 90 70-130 40.40 ug/L 9985333 Vylene 2018/07/31 92 70-130 90 70-130 40.40 ug/L 9985333 Vylene 2018/07/31 92 70-130 90 70-130 40.40 ug/L 9985333 Vylene 2018/08/01 104 80-120 40.80 40.40 ug/L 9986604 Dissolved Aluminum (AI) 2018/08/01 104 80-120 40.80 40.40 ug/L 9986604 Dissolved Aluminum (AI) 2018/08/01 104 80-120 40.80 40.40 ug/L NC 9986604 Dissolved Aluminum (AI) 2018/08/01 106 80-120 40.00 80-120 40.00 ug/L 0.50 9986604 Dissolved Barium (Ba) 2018/08/01 106 80-120 100 80-120 40.00 ug/L 0.66 9986604 Dissolved Barium (Ba) 2018/08/01 99 80-120 100 80-120 40.00 ug/L 0.66 9986604 Dissolved Barium (Ba) 2018/08/01 99 80-120 100 80-120 40.00 ug/L NC 9986604 Dissolved Barium (Ba) 2018/08/01 99 80-120 100 80-120 40.00 ug/L 0.51 9986604 Dissolved Chomium (Cr) 2018/08/01 99 80-1	9085353	1,4-Difluorobenzene (sur.)	2018/07/31	102	70 - 130	101	70 - 130	100	%		
9086704 D10-ANTHRACENE (sur.) 2018/08/01 90 50 · 140 89 50 · 140 89 % 9086704 D8-ACENAPHTHYLENE (sur.) 2018/08/01 89 50 · 140 86 50 · 140 87 % 9086704 D8-ACENAPHTHYLENE (sur.) 2018/08/01 83 50 · 140 86 50 · 140 80 % 9086704 TERPHENYL-D14 (sur.) 2018/08/01 89 50 · 140 88 50 · 140 88 % 9086707 TERPHENYL (sur.) 2018/08/01 96 60 · 140 97 60 · 140 96 % 9085353 Benzene 2018/07/31 88 70 · 130 102 70 · 130 <0.40 ug/L 9085353 Tethylbenzene 2018/07/31 103 70 · 130 102 70 · 130 <0.40 ug/L 9085353 Methyl-tert-butylether (MTBE) 2018/07/31 110 70 · 130 103 70 · 130 <0.40 ug/L 9085353 Styrene 2018/07/31 110 70 · 130 108 70 · 130 <0.40 ug/L 9085353 Styrene 2018/07/31 110 70 · 130 108 70 · 130 <0.40 ug/L 9085353 Styrene 2018/07/31 110 70 · 130 108 70 · 130 <0.40 ug/L 9085353 Styrene 2018/07/31 92 70 · 130 90 70 · 130 <0.40 ug/L 9085353 Styrene 2018/07/31 92 70 · 130 98 70 · 130 <0.40 ug/L 9085353 Styrene 2018/07/31 92 70 · 130 98 70 · 130 <0.40 ug/L 9085353 Styrene 2018/07/31 92 70 · 130 98 70 · 130 <0.40 ug/L 9085353 Styrene 2018/07/31 98 70 · 130 98 70 · 130 <0.40 ug/L 9085353 Styrene 2018/07/31 98 70 · 130 98 70 · 130 <0.40 ug/L 11 9086604 Dissolved Aluminum (AI) 2018/07/31 98 70 · 130 98 70 · 130 <0.40 ug/L NC 9086604 Dissolved Aluminum (AI) 2018/08/01 104 80 · 120 100 80 · 120 <0.50 ug/L NC 9086604 Dissolved Arsenic (AS) 2018/08/01 NC 80 · 120 100 80 · 120 <0.50 ug/L NC 9086604 Dissolved Barrum (Ba) 2018/08/01 98 80 · 120 100 80 · 120 <0.10 ug/L NC 9086604 Dissolved Boron (B) 2018/08/01 98 80 · 120 100 80 · 120 <0.10 ug/L NC 9086604 Dissolved Boron (B) 2018/08/01 99 80 · 120 100 80 · 120 <0.10 ug/L NC	9085353	4-Bromofluorobenzene (sur.)	2018/07/31	93	70 - 130	92	70 - 130	92	%		
9086704 D8-ACENAPHTHYLENE (sur.) 2018/08/01 89 50-140 86 50-140 87 % 9086704 D8-NAPHTHALENE (sur.) 2018/08/01 83 50-140 73 50-140 80 % 9086704 TERPHENYL-D14 (sur.) 2018/08/01 89 50-140 88 50-140 88 % 9086767 O-TERPHENYL-D14 (sur.) 2018/08/01 96 60-140 97 60-140 96 % 9086767 O-TERPHENYL (sur.) 2018/08/01 96 60-140 97 60-140 96 % 9085353 Benzene 2018/07/31 88 70-130 87 70-130 <0.40 ug/L 9085353 Ethylbenzene 2018/07/31 103 70-130 102 70-130 <0.40 ug/L 9085353 Methyl-tert-butylether (MTBE) 2018/07/31 110 70-130 108 70-130 <0.40 ug/L 9085353 Methyl-tert-butylether (MTBE) 2018/07/31 110 70-130 108 70-130 <0.40 ug/L 9085353 O-Xylene 2018/07/31 104 70-130 107 70-130 <0.40 ug/L 9085353 Styrene 2018/07/31 92 70-130 90 70-130 <0.40 ug/L 9085353 Vylene 2018/07/31 99 70-130 90 70-130 <0.40 ug/L 9085353 Vylene 2018/07/31 99 70-130 90 70-130 <0.40 ug/L 9085353 Vylene 2018/07/31 98 70-130 90 70-130 <0.40 ug/L 9085353 Vylene 2018/07/31 98 70-130 90 70-130 <0.40 ug/L 9085353 Vylene 2018/07/31 98 70-130 90 70-130 <0.40 ug/L 9085353 Vylene 2018/07/31 98 70-130 90 70-130 <0.40 ug/L 9085353 Vylene 2018/07/31 98 70-130 98 70-130 <0.40 ug/L 9085353 Vylene 2018/07/31 98 70-130 98 70-130 <0.40 ug/L 9085353 Vylene 2018/07/31 98 70-130 98 70-130 <0.40 ug/L 9085353 Vylene 2018/08/01 104 80-120 102 80-120 <0.40 ug/L 9085353 Vylene 2018/08/01 104 80-120 102 80-120 <0.40 ug/L 9085040 Vylene 2018/08/01 104 80-120 102 80-120 <0.40 ug/L 9086604 Dissolved Aluminum (Al) 2018/08/01 104 80-120 102 80-120 <0.10 ug/L 9086604 Dissolved Aluminum (B) 2018/08/01 106 80-120 100 80-120 <0.10 ug/L 9086604 Dissolved Birnim (Be) 2018/08/01 99 80-120 100 80-120 <0.10 ug/L 90.50 ug/L 9086604 Dissolved Birnim (Be) 2018/08/01 99 80-120 100 80-120 <0.10 ug/L 90.66 9086604 Dissolved Birnim (Be) 2018/08/01 99 80-120 100 80-120 <0.10 ug/L 90.66 ug/L 9086604 Dissolved Birnim (Be) 2018/08/01 99 80-120 100 80-120 <0.10 ug/L 90.66 ug/L 9086604 Dissolved Birnim (Be) 2018/08/01 99 80-120 98 80-120 <0.00 ug/L 4.3 ug/L 9086604 Dissolved Cobalt (Co) 2018/08/01 99 80-120 99 80-	9085353	D4-1,2-Dichloroethane (sur.)	2018/07/31	95	70 - 130	95	70 - 130	100	%		
9086704 D8-NAPHTHALENE (sur.) 2018/08/01 83 50-140 73 50-140 80 % 9086704 TERPHENYL-D14 (sur.) 2018/08/01 89 50-140 88 50-140 88 % 9086767 O-TERPHENYL (sur.) 2018/08/01 96 60-140 97 60-140 96 % 98 9085353 Benzene 2018/07/31 88 70-130 87 70-130 <0.40 ug/L 9085353 Benzene 2018/07/31 103 70-130 102 70-130 <0.40 ug/L 9085353 Ethylbenzene 2018/07/31 103 70-130 102 70-130 <0.40 ug/L 9085353 Ma.B. p-Xylene 2018/07/31 102 70-130 103 70-130 <0.40 ug/L 9085353 Na.B. p-Xylene 2018/07/31 100 70-130 103 70-130 <0.40 ug/L 9085353 Na.B. p-Xylene 2018/07/31 100 70-130 108 70-130 <0.40 ug/L 9085353 Na.B. p-Xylene 2018/07/31 104 70-130 108 70-130 <0.40 ug/L 9085353 Na.B. p-Xylene 2018/07/31 104 70-130 108 70-130 <0.40 ug/L 9085353 Na.B. p-Xylene 2018/07/31 99 70-130 108 70-130 <0.40 ug/L 9085353 Na.B. p-Xylene 2018/07/31 99 70-130 108 70-130 <0.40 ug/L 9085353 Na.B. p-Xylene 2018/07/31 99 70-130 108 70-130 <0.40 ug/L 9085353 Na.B. p-Xylene 2018/07/31 98 70-130 90 70-130 <0.40 ug/L 9085353 Na.B. p-Xylene 2018/07/31 98 70-130 90 70-130 <0.40 ug/L 9085353 Na.B. p-Xylene 2018/07/31 98 70-130 90 70-130 <0.40 ug/L 9085353 Na.B. p-Xylene 2018/07/31 98 70-130 98 70-130 <0.40 ug/L 9085353 Na.B. p-Xylene 2018/07/31 98 70-130 98 70-130 00-0.40 ug/L 9085353 Na.B. p-Xylene 2018/07/31 98 70-130 98 70-130 00-0.40 ug/L 9085353 Na.B. p-Xylene 2018/07/31 98 70-130 98 70-130 00-0.40 ug/L 9085660 Dissolved Aluminum (Al) 2018/08/01 104 80-120 102 80-120 <0.40 ug/L 11 9086604 Dissolved Aluminum (Al) 2018/08/01 104 80-120 102 80-120 <0.50 ug/L NC 9086604 Dissolved Arsenic (As) 2018/08/01 NC 80-120 100 80-120 <0.50 ug/L NC 9086604 Dissolved Bernum (Be) 2018/08/01 99 80-120 100 80-120 <0.10 ug/L NC 9086604 Dissolved Bernum (Be) 2018/08/01 99 80-120 100 80-120 <0.10 ug/L NC 9086604 Dissolved Bernum (Cd) 2018/08/01 99 80-120 100 80-120 <0.10 ug/L NC 9086604 Dissolved Bernum (Cd) 2018/08/01 99 80-120 100 80-120 <0.010 ug/L A.3 19086604 Dissolved Commitm (Cd) 2018/08/01 99 80-120 100 80-120 <0.010 ug/L A.3 19086604 Dissolved Commitm (Cd) 2018/08/01 99 80-12	9086704	D10-ANTHRACENE (sur.)	2018/08/01	90	50 - 140	89	50 - 140	89	%		
9086704 TERPHENYL-D14 (sur.) 2018/08/01 89 50 - 140 88 50 - 140 96 88 96 9886604 Dissolved Barrium (Bi) 2018/08/01 96 60 - 140 97 60 - 140 96 % 988533 Benzene 2018/07/31 88 70 - 130 87 70 - 130 <0.40 ug/L 988533 Ethylbenzene 2018/07/31 102 70 - 130 102 70 - 130 <0.40 ug/L 988533 Methyl-tert-butylether (MTBE) 2018/07/31 110 70 - 130 103 70 - 130 <0.40 ug/L 988533 O-Xylene 2018/07/31 110 70 - 130 108 70 - 130 <0.40 ug/L 988533 Styrene 2018/07/31 110 70 - 130 108 70 - 130 <0.40 ug/L 988533 Styrene 2018/07/31 104 70 - 130 107 70 - 130 <0.40 ug/L 988533 Toluene 2018/07/31 92 70 - 130 90 70 - 130 <0.40 ug/L 988533 Vylene 2018/07/31 98 70 - 130 98 70 - 130 <0.40 ug/L 9885333 Vylene 2018/07/31 98 70 - 130 98 70 - 130 <0.40 ug/L 10 10 10 10 10 10 10 1	9086704	D8-ACENAPHTHYLENE (sur.)	2018/08/01	89	50 - 140	86	50 - 140	87	%		
9086767 O-TERPHENYL (sur.) 2018/08/01 96 60 - 140 97 60 - 140 96 % 9085353 Benzene 2018/07/31 103 70 - 130 87 70 - 130 <0.40 ug/L 9085353 Ethylbenzene 2018/07/31 103 70 - 130 102 70 - 130 <0.40 ug/L 9085353 m&p-xylene 2018/07/31 110 70 - 130 108 70 - 130 <0.40 ug/L 9085353 Methyl-tert-butylether (MTBE) 2018/07/31 110 70 - 130 108 70 - 130 <0.40 ug/L 9085353 O-xylene 2018/07/31 104 70 - 130 107 70 - 130 <0.40 ug/L 9085353 Styrene 2018/07/31 104 70 - 130 107 70 - 130 <0.40 ug/L 9085353 Toluene 2018/07/31 92 70 - 130 90 70 - 130 <0.40 ug/L 9085353 Vylene 2018/07/31 98 70 - 130 90 70 - 130 <0.40 ug/L 9085353 Vylene 2018/07/31 98 70 - 130 90 70 - 130 <0.40 ug/L 9085353 Vylene 2018/07/31 98 70 - 130 90 70 - 130 <0.40 ug/L 9085353 Vylene 2018/07/31 98 70 - 130 90 70 - 130 <0.40 ug/L 9085353 Vylene 2018/07/31 98 70 - 130 98 70 - 130 <0.40 ug/L 9085353 Vylene 2018/07/31 98 70 - 130 98 70 - 130 <0.40 ug/L 9085604 Dissolved Aluminum (Al) 2018/08/01 104 80 - 120 108 80 - 120 0.40 ug/L 9086604 Dissolved Aluminum (Al) 2018/08/01 102 80 - 120 100 80 - 120 0.50 ug/L 9086604 Dissolved Arsenic (As) 2018/08/01 106 80 - 120 100 80 - 120 0.10 ug/L 9086604 Dissolved Brium (Ba) 2018/08/01 NC 80 - 120 100 80 - 120 0.10 ug/L 9086604 Dissolved Brium (Be) 2018/08/01 99 80 - 120 100 80 - 120 0.10 ug/L 9086604 Dissolved Brium (Be) 2018/08/01 99 80 - 120 100 80 - 120 0.10 ug/L 9086604 Dissolved Brium (Be) 2018/08/01 99 80 - 120 100 80 - 120 0.10 ug/L 9086604 Dissolved Brium (Be) 2018/08/01 99 80 - 120 100 80 - 120 0.010 ug/L NC 9086604 Dissolved Brium (Be) 2018/08/01 99 80 - 120 100 80 - 120 0.010 ug/L NC 9086604 Dissolved Brium (Be) 2018/08/01 99 80 - 120 100 80 - 120 0.010 ug/L NC 9086604 Dissolved Brium (Be) 2018/08/01 99 80 - 120 100 80 - 120 0.010 ug/L NC 9086604 Dissolved Brium (Be) 2018/08/01 99 80 - 120 100 80 - 120 0.010 ug/L NC 9086604 Dissolved Copper (Cu) 2018/08/01 95 80 - 120 97 80 - 120 0.020 ug/L 1.7 9086604 Dissolved Copper (Cu) 2018/08/01 99 80 - 120 97 80 - 120 0.020 ug/L 1.7 9086604 Dissolved Copper (Cu) 20	9086704	D8-NAPHTHALENE (sur.)	2018/08/01	83	50 - 140	73	50 - 140	80	%		
9085353 Benzene 2018/07/31 88 70 - 130 87 70 - 130 <0.40 ug/L 9085353 Ethylbenzene 2018/07/31 103 70 - 130 102 70 - 130 <0.40 ug/L 9085353 m & p. xylene 2018/07/31 102 70 - 130 103 70 - 130 <0.40 ug/L 9085353 m & p. xylene 2018/07/31 110 70 - 130 103 70 - 130 <0.40 ug/L 9085353 Methyl-tert-butylether (MTBE) 2018/07/31 110 70 - 130 108 70 - 130 <0.40 ug/L 9085353 Oxylene 2018/07/31 104 70 - 130 107 70 - 130 <0.40 ug/L 9085353 Styrene 2018/07/31 92 70 - 130 90 70 - 130 <0.40 ug/L 9085353 Toluene 2018/07/31 98 70 - 130 98 70 - 130 <0.40 ug/L 9085353 Toluene 2018/07/31 98 70 - 130 98 70 - 130 <0.40 ug/L 9085353 Xylenes (Total) 2018/07/31 98 70 - 130 98 70 - 130 <0.40 ug/L NC 9085353 Xylenes (Total) 2018/07/31 98 70 - 130 98 70 - 130 <0.40 ug/L NC 9086604 Dissolved Aluminum (Al) 2018/08/01 104 80 - 120 102 80 - 120 <0.40 ug/L NC 9086604 Dissolved Arsenic (As) 2018/08/01 106 80 - 120 100 80 - 120 <0.50 ug/L NC 9086604 Dissolved Arsenic (As) 2018/08/01 106 80 - 120 100 80 - 120 <0.10 ug/L 0.52 9086604 Dissolved Beryllium (Be) 2018/08/01 99 80 - 120 100 80 - 120 <0.10 ug/L NC 9086604 Dissolved Beryllium (Be) 2018/08/01 99 80 - 120 100 80 - 120 <0.10 ug/L NC 9086604 Dissolved Boron (B) 2018/08/01 98 80 - 120 100 80 - 120 <0.10 ug/L NC 9086604 Dissolved Cadmium (Cd) 2018/08/01 98 80 - 120 101 80 - 120 <0.010 ug/L NC 9086604 Dissolved Cadmium (Cd) 2018/08/01 98 80 - 120 101 80 - 120 <0.010 ug/L NC 9086604 Dissolved Cadmium (Cd) 2018/08/01 95 80 - 120 97 80 - 120 <0.020 ug/L NC 9086604 Dissolved Cobalt (Co) 2018/08/01 95 80 - 120 97 80 - 120 <0.020 ug/L NC 9086604 Dissolved Cobalt (Co) 2018/08/01 95 80 - 120 97 80	9086704	TERPHENYL-D14 (sur.)	2018/08/01	89	50 - 140	88	50 - 140	88	%		
9085353 Ethylbenzene 2018/07/31 103 70 - 130 102 70 - 130 <0.40 ug/L 9085353 m & p-xylene 2018/07/31 102 70 - 130 103 70 - 130 <0.40 ug/L 9085353 Methyl-tert-butylether (MTBE) 2018/07/31 110 70 - 130 108 70 - 130 <4.0 ug/L 9085353 O-xylene 2018/07/31 110 70 - 130 107 70 - 130 <0.40 ug/L 9085353 O-xylene 2018/07/31 104 70 - 130 107 70 - 130 <0.40 ug/L 9085353 Styrene 2018/07/31 92 70 - 130 90 70 - 130 <0.40 ug/L 9085353 Toluene 2018/07/31 98 70 - 130 98 70 - 130 <0.40 ug/L 9085353 VH C6-C10 2018/07/31 98 70 - 130 98 70 - 130 <0.40 ug/L 9085353 Xylenes (Total) 2018/07/31 98 70 - 130 40.40 ug/L 9086604 Dissolved Aluminum (Al) 2018/08/01 104 80 - 120 102 80 - 120 3.0 ug/L NC 9086604 Dissolved Aluminum (Al) 2018/08/01 104 80 - 120 100 80 - 120 <0.50 ug/L NC 9086604 Dissolved Arsenic (As) 2018/08/01 106 80 - 120 100 80 - 120 <0.10 ug/L 0.52 9086604 Dissolved Barium (Ba) 2018/08/01 99 80 - 120 100 80 - 120 <0.10 ug/L 0.66 9086604 Dissolved Barium (Ba) 2018/08/01 99 80 - 120 100 80 - 120 <0.10 ug/L NC 9086604 Dissolved Boron (B) 2018/08/01 99 80 - 120 102 80 - 120 <0.10 ug/L NC 9086604 Dissolved Boron (B) 2018/08/01 99 80 - 120 100 80 - 120 <0.10 ug/L NC 9086604 Dissolved Boron (B) 2018/08/01 99 80 - 120 101 80 - 120 <0.010 ug/L NC 9086604 Dissolved Cadmium (Cd) 2018/08/01 99 80 - 120 101 80 - 120 <0.010 ug/L NC 9086604 Dissolved Cobalt (Co) 2018/08/01 99 80 - 120 97 80 - 120 <0.00 ug/L NC 9086604 Dissolved Cobalt (Co) 2018/08/01 99 80 - 120 97 80 - 120 <0.00 ug/L NC 9086604 Dissolved Cobalt (Co) 2018/08/01 99 80 - 120 97 80 - 120 <0.00 ug/L NC 100 ug/L NC 100 100 100 100 100 100 100 100 100 1	9086767	O-TERPHENYL (sur.)	2018/08/01	96	60 - 140	97	60 - 140	96	%		
9085353 m & p-Xylene 2018/07/31 102 70 - 130 103 70 - 130 <0.40 ug/L 9085353 9085353 Methyl-tert-butylether (MTBE) 2018/07/31 110 70 - 130 108 70 - 130 <4.0	9085353	Benzene	2018/07/31	88	70 - 130	87	70 - 130	<0.40	ug/L		
9085353 Methyl-tert-butylether (MTBE) 2018/07/31 110 70 - 130 108 70 - 130 < 4.0 ug/L 9085353 o-Xylene 2018/07/31 104 70 - 130 107 70 - 130 < 0.40 ug/L 9085353 styrene 2018/07/31 92 70 - 130 90 70 - 130 < 0.40 ug/L 9085353 Toluene 2018/07/31 98 70 - 130 98 70 - 130 < 0.40 ug/L 9085353 Toluene 2018/07/31 98 70 - 130 98 70 - 130 < 0.40 ug/L 9085353 VH C6-C10 2018/07/31 98 70 - 130 98 70 - 130 < 0.40 ug/L NC 9085353 Xylenes (Total) 2018/07/31	9085353	Ethylbenzene	2018/07/31	103	70 - 130	102	70 - 130	<0.40	ug/L		
9085353 0-Xylene 2018/07/31 104 70 - 130 107 70 - 130 <0.40	9085353	m & p-Xylene	2018/07/31	102	70 - 130	103	70 - 130	<0.40	ug/L		
9085353 Styrene 2018/07/31 92 70 - 130 90 70 - 130	9085353	Methyl-tert-butylether (MTBE)	2018/07/31	110	70 - 130	108	70 - 130	<4.0	ug/L		
9085353 Toluene 2018/07/31 98 70 - 130 98 70 - 130	9085353	o-Xylene	2018/07/31	104	70 - 130	107	70 - 130	<0.40	ug/L		
9085353 VH C6-C10 2018/07/31 108 70 - 130 <300 ug/L NC 9085353 Xylenes (Total) 2018/07/31	9085353	Styrene	2018/07/31	92	70 - 130	90	70 - 130	<0.40	ug/L		
9085353 Xylenes (Total) 2018/07/31 Image: Control of the control of	9085353	Toluene	2018/07/31	98	70 - 130	98	70 - 130	<0.40	ug/L		
9086604 Dissolved Aluminum (Al) 2018/08/01 104 80 - 120 102 80 - 120 <3.0 ug/L 11 9086604 Dissolved Antimony (Sb) 2018/08/01 102 80 - 120 100 80 - 120 <0.50	9085353	VH C6-C10	2018/07/31			108	70 - 130	<300	ug/L	NC	30
9086604 Dissolved Antimony (Sb) 2018/08/01 102 80 - 120 100 80 - 120 <0.50 ug/L NC 9086604 Dissolved Arsenic (As) 2018/08/01 106 80 - 120 102 80 - 120 <0.10	9085353	Xylenes (Total)	2018/07/31					<0.40	ug/L		
9086604 Dissolved Arsenic (As) 2018/08/01 106 80 - 120 102 80 - 120 <0.10 ug/L 0.52 9086604 Dissolved Barium (Ba) 2018/08/01 NC 80 - 120 100 80 - 120 <1.0	9086604	Dissolved Aluminum (AI)	2018/08/01	104	80 - 120	102	80 - 120	<3.0	ug/L	11	20
9086604 Dissolved Barium (Ba) 2018/08/01 NC 80 - 120 100 80 - 120 <1.0 ug/L 0.66 9086604 Dissolved Beryllium (Be) 2018/08/01 99 80 - 120 100 80 - 120 <0.10	9086604	Dissolved Antimony (Sb)	2018/08/01	102	80 - 120	100	80 - 120	<0.50	ug/L	NC	20
9086604 Dissolved Beryllium (Be) 2018/08/01 99 80 - 120 100 80 - 120 <0.10 ug/L NC 9086604 Dissolved Bismuth (Bi) 2018/08/01 99 80 - 120 102 80 - 120 <1.0	9086604	Dissolved Arsenic (As)	2018/08/01	106	80 - 120	102	80 - 120	<0.10	ug/L	0.52	20
9086604 Dissolved Bismuth (Bi) 2018/08/01 99 80 - 120 102 80 - 120 <1.0 ug/L NC 9086604 Dissolved Boron (B) 2018/08/01 98 80 - 120 98 80 - 120 <50	9086604	Dissolved Barium (Ba)	2018/08/01	NC	80 - 120	100	80 - 120	<1.0	ug/L	0.66	20
9086604 Dissolved Boron (B) 2018/08/01 98 80 - 120 98 80 - 120 <50 ug/L 0.51 9086604 Dissolved Cadmium (Cd) 2018/08/01 102 80 - 120 101 80 - 120 <0.010	9086604	Dissolved Beryllium (Be)	2018/08/01	99	80 - 120	100	80 - 120	<0.10	ug/L	NC	20
9086604 Dissolved Cadmium (Cd) 2018/08/01 102 80 - 120 101 80 - 120 <0.010 ug/L 4.3 9086604 Dissolved Chromium (Cr) 2018/08/01 100 80 - 120 100 80 - 120 <1.0	9086604	Dissolved Bismuth (Bi)	2018/08/01	99	80 - 120	102	80 - 120	<1.0	ug/L	NC	20
9086604 Dissolved Chromium (Cr) 2018/08/01 100 80 - 120 100 80 - 120 <1.0 ug/L NC 9086604 Dissolved Cobalt (Co) 2018/08/01 95 80 - 120 98 80 - 120 <0.20	9086604	Dissolved Boron (B)	2018/08/01	98	80 - 120	98	80 - 120	<50	ug/L	0.51	20
9086604 Dissolved Cobalt (Co) 2018/08/01 95 80 - 120 98 80 - 120 vol.20 ug/L 1.7 9086604 Dissolved Copper (Cu) 2018/08/01 92 80 - 120 97 80 - 120 <0.20	9086604	Dissolved Cadmium (Cd)	2018/08/01	102	80 - 120	101	80 - 120	<0.010	ug/L	4.3	20
9086604 Dissolved Copper (Cu) 2018/08/01 92 80 - 120 97 80 - 120 <0.20 ug/L 3.1 9086604 Dissolved Iron (Fe) 2018/08/01 100 80 - 120 100 80 - 120 <5.0	9086604	Dissolved Chromium (Cr)	2018/08/01	100	80 - 120	100	80 - 120	<1.0	ug/L	NC	20
9086604 Dissolved Iron (Fe) 2018/08/01 100 80 - 120 100 80 - 120 <5.0 ug/L 13	9086604	Dissolved Cobalt (Co)	2018/08/01	95	80 - 120	98	80 - 120	<0.20	ug/L	1.7	20
	9086604	Dissolved Copper (Cu)	2018/08/01	92	80 - 120	97	80 - 120	<0.20	ug/L	3.1	20
9086604 Dissolved Lead (Pb) 2018/08/01 101 80 - 120 101 80 - 120 <0.20 ug/L NC	9086604	Dissolved Iron (Fe)	2018/08/01	100	80 - 120	100	80 - 120	<5.0	ug/L	13	20
	9086604	Dissolved Lead (Pb)	2018/08/01	101	80 - 120	101	80 - 120	<0.20	ug/L	NC	20
9086604 Dissolved Lithium (Li) 2018/08/01 100 80 - 120 104 80 - 120 <2.0 ug/L 0.36	9086604	Dissolved Lithium (Li)	2018/08/01	100	80 - 120	104	80 - 120	<2.0	ug/L	0.36	20

QUALITY ASSURANCE REPORT(CONT'D)

STANTEC CONSULTING LTD Client Project #: 123221161

Sampler Initials: MD

9086604 Diss 9086604 Diss	rameter ssolved Manganese (Mn) ssolved Molybdenum (Mo) ssolved Nickel (Ni) ssolved Selenium (Se) ssolved Silicon (Si) ssolved Silver (Ag) ssolved Strontium (Sr) ssolved Thallium (Tl) ssolved Titanium (Ti) ssolved Uranium (U) ssolved Vanadium (V) ssolved Zinc (Zn)	Date 2018/08/01 2018/08/01 2018/08/01 2018/08/01 2018/08/01 2018/08/01 2018/08/01 2018/08/01 2018/08/01 2018/08/01 2018/08/01 2018/08/01 2018/08/01 2018/08/01	% Recovery NC 107 95 100 NC 100 NC 102 102 105 107 102	80 - 120 80 - 120	% Recovery 100 101 98 98 101 99 103 102 100 99 103	80 - 120 80 - 120	Value <1.0 <1.0 <1.0 <1.0 <0.10 <100 <0.020 <1.0 <0.010 <5.0 <5.0	ug/L ug/L ug/L ug/L ug/L ug/L ug/L ug/L	Value (%) 0.73 0.25 0.70 3.1 2.0 NC 0.99 1.8 NC NC	20 20 20 20 20 20 20 20 20 20 20 20 20 2
9086604 Diss	ssolved Molybdenum (Mo) ssolved Nickel (Ni) ssolved Selenium (Se) ssolved Silicon (Si) ssolved Silver (Ag) ssolved Strontium (Sr) ssolved Thallium (Tl) ssolved Tin (Sn) ssolved Titanium (Ti) ssolved Uranium (U) ssolved Vanadium (V) ssolved Zinc (Zn)	2018/08/01 2018/08/01 2018/08/01 2018/08/01 2018/08/01 2018/08/01 2018/08/01 2018/08/01 2018/08/01 2018/08/01	107 95 100 NC 100 NC 102 102 105 107	80 - 120 80 - 120	101 98 98 101 99 103 102 100 99	80 - 120 80 - 120	<1.0 <1.0 <0.10 <100 <0.020 <1.0 <0.010 <5.0 <5.0	ug/L ug/L ug/L ug/L ug/L ug/L ug/L ug/L	0.25 0.70 3.1 2.0 NC 0.99 1.8 NC	20 20 20 20 20 20 20 20 20 20
9086604 Diss 9086704 Diss	ssolved Nickel (Ni) ssolved Selenium (Se) ssolved Silicon (Si) ssolved Silver (Ag) ssolved Strontium (Sr) ssolved Thallium (Tl) ssolved Tin (Sn) ssolved Titanium (Ti) ssolved Uranium (U) ssolved Vanadium (V) ssolved Zinc (Zn)	2018/08/01 2018/08/01 2018/08/01 2018/08/01 2018/08/01 2018/08/01 2018/08/01 2018/08/01 2018/08/01	95 100 NC 100 NC 102 102 105 107	80 - 120 80 - 120	98 98 101 99 103 102 100 99	80 - 120 80 - 120	<1.0 <0.10 <100 <0.020 <1.0 <0.010 <5.0 <5.0	ug/L ug/L ug/L ug/L ug/L ug/L ug/L ug/L	0.70 3.1 2.0 NC 0.99 1.8 NC	20 20 20 20 20 20 20 20 20
9086604 Diss 9086604 Diss 9086704 Diss	ssolved Selenium (Se) ssolved Silicon (Si) ssolved Silver (Ag) ssolved Strontium (Sr) ssolved Thallium (TI) ssolved Tin (Sn) ssolved Titanium (Ti) ssolved Uranium (U) ssolved Vanadium (V) ssolved Zinc (Zn)	2018/08/01 2018/08/01 2018/08/01 2018/08/01 2018/08/01 2018/08/01 2018/08/01 2018/08/01	100 NC 100 NC 102 102 105 107	80 - 120 80 - 120	98 101 99 103 102 100 99	80 - 120 80 - 120 80 - 120 80 - 120 80 - 120 80 - 120 80 - 120	<0.10 <100 <0.020 <1.0 <0.010 <5.0 <5.0	ug/L ug/L ug/L ug/L ug/L ug/L ug/L	3.1 2.0 NC 0.99 1.8 NC	20 20 20 20 20 20 20
9086604 Diss 9086604 Diss 9086704 Diss	ssolved Silicon (Si) ssolved Silver (Ag) ssolved Strontium (Sr) ssolved Thallium (Tl) ssolved Tin (Sn) ssolved Titanium (Ti) ssolved Uranium (U) ssolved Vanadium (V) ssolved Zinc (Zn)	2018/08/01 2018/08/01 2018/08/01 2018/08/01 2018/08/01 2018/08/01 2018/08/01	NC 100 NC 102 102 105 107	80 - 120 80 - 120 80 - 120 80 - 120 80 - 120 80 - 120 80 - 120	101 99 103 102 100 99	80 - 120 80 - 120 80 - 120 80 - 120 80 - 120 80 - 120	<100 <0.020 <1.0 <0.010 <5.0 <5.0	ug/L ug/L ug/L ug/L ug/L	2.0 NC 0.99 1.8 NC	20 20 20 20 20 20
9086604 Diss 9086604 Diss 9086604 Diss 9086604 Diss 9086604 Diss 9086604 Diss 9086604 Diss 9086604 Diss 9086604 Diss 9086604 Diss 9086704 Diss 9086704 Diss 9086704 Diss 9086704 Diss 9086704 Diss 9086704 Diss 9086704 Acer	ssolved Silver (Ag) ssolved Strontium (Sr) ssolved Thallium (Tl) ssolved Tin (Sn) ssolved Titanium (Ti) ssolved Uranium (U) ssolved Vanadium (V) ssolved Zinc (Zn)	2018/08/01 2018/08/01 2018/08/01 2018/08/01 2018/08/01 2018/08/01	100 NC 102 102 105 107	80 - 120 80 - 120 80 - 120 80 - 120 80 - 120 80 - 120	99 103 102 100 99	80 - 120 80 - 120 80 - 120 80 - 120 80 - 120	<0.020 <1.0 <0.010 <5.0 <5.0	ug/L ug/L ug/L ug/L	NC 0.99 1.8 NC	20 20 20 20
9086604 Diss 9086604 Diss 9086604 Diss 9086604 Diss 9086604 Diss 9086604 Diss 9086604 Diss 9086604 Diss 9086604 Diss 9086604 Diss 9086704 Diss 90	ssolved Strontium (Sr) ssolved Thallium (Tl) ssolved Tin (Sn) ssolved Titanium (Ti) ssolved Uranium (U) ssolved Vanadium (V) ssolved Zinc (Zn)	2018/08/01 2018/08/01 2018/08/01 2018/08/01 2018/08/01 2018/08/01	NC 102 102 105 107	80 - 120 80 - 120 80 - 120 80 - 120 80 - 120	103 102 100 99	80 - 120 80 - 120 80 - 120 80 - 120	<1.0 <0.010 <5.0 <5.0	ug/L ug/L ug/L	0.99 1.8 NC	20 20 20
9086604 Diss 9086604 Diss 9086604 Diss 9086604 Diss 9086604 Diss 9086604 Diss 9086604 Diss 9086604 Diss 9086604 Diss 9086704 1-M 9086704 2-M 9086704 Acer 9086704 Acer	ssolved Thallium (TI) ssolved Tin (Sn) ssolved Titanium (Ti) ssolved Uranium (U) ssolved Vanadium (V) ssolved Zinc (Zn)	2018/08/01 2018/08/01 2018/08/01 2018/08/01 2018/08/01	102 102 105 107	80 - 120 80 - 120 80 - 120 80 - 120	102 100 99	80 - 120 80 - 120 80 - 120	<0.010 <5.0 <5.0	ug/L ug/L	1.8 NC	20
9086604 Diss 9086604 Diss 9086604 Diss 9086604 Diss 9086604 Diss 9086604 Diss 9086604 Diss 9086704 1-M 9086704 2-M 9086704 Acer 9086704 Acer 9086704 Acer	ssolved Tin (Sn) ssolved Titanium (Ti) ssolved Uranium (U) ssolved Vanadium (V) ssolved Zinc (Zn)	2018/08/01 2018/08/01 2018/08/01 2018/08/01	102 105 107	80 - 120 80 - 120 80 - 120	100 99	80 - 120 80 - 120	<5.0 <5.0	ug/L	NC	20
9086604 Diss 9086604 Diss 9086604 Diss 9086604 Diss 9086604 Diss 9086684 Diss 9086704 1-M 9086704 2-M 9086704 Acer 9086704 Acer	ssolved Titanium (Ti) ssolved Uranium (U) ssolved Vanadium (V) ssolved Zinc (Zn)	2018/08/01 2018/08/01 2018/08/01	105 107	80 - 120 80 - 120	99	80 - 120	<5.0	+ -		
9086604 Diss 9086604 Diss 9086604 Diss 9086604 Diss 9086684 Diss 9086704 1-M 9086704 2-M 9086704 Acer 9086704 Acer 9086704 Acer	ssolved Uranium (U) ssolved Vanadium (V) ssolved Zinc (Zn)	2018/08/01 2018/08/01	107	80 - 120				ug/L	NC	20
9086604 Diss 9086604 Diss 9086604 Diss 9086684 Diss 9086704 1-M 9086704 2-M 9086704 Acer 9086704 Acer 9086704 Acer	ssolved Vanadium (V) ssolved Zinc (Zn)	2018/08/01			103	00 420				1
9086604 Diss 9086604 Diss 9086684 Diss 9086704 1-M 9086704 2-M 9086704 Acer 9086704 Acer 9086704 Acer	ssolved Zinc (Zn)		102			80 - 120	< 0.10	ug/L	0.53	20
9086604 Diss 9086684 Diss 9086704 1-M 9086704 2-M 9086704 Acer 9086704 Acer 9086704 Acri		2018/08/01		80 - 120	99	80 - 120	<5.0	ug/L	NC	20
9086684 Diss 9086704 1-M 9086704 2-M 9086704 Acer 9086704 Acer 9086704 Acri		2010/00/01	96	80 - 120	98	80 - 120	<5.0	ug/L	NC	20
9086704 1-M 9086704 2-M 9086704 Acei 9086704 Acei 9086704 Acri	ssolved Zirconium (Zr)	2018/08/01	107	80 - 120	100	80 - 120	<0.10	ug/L	NC	20
9086704 2-M 9086704 Acer 9086704 Acer 9086704 Acri	ssolved Mercury (Hg)	2018/08/01	107	80 - 120	99	80 - 120	<0.0020	ug/L	NC	20
9086704 Acer 9086704 Acer 9086704 Acri	Methylnaphthalene	2018/08/01	95	50 - 140	86	50 - 140	<0.050	ug/L	NC	40
9086704 Acei 9086704 Acrie	Methylnaphthalene	2018/08/01	90	50 - 140	81	50 - 140	<0.10	ug/L	NC	40
9086704 Acri	enaphthene	2018/08/01	91	50 - 140	85	50 - 140	<0.050	ug/L	NC	40
	enaphthylene	2018/08/01	90	50 - 140	82	50 - 140	<0.050	ug/L	NC	40
9086704 Anth	ridine	2018/08/01	101	50 - 140	97	50 - 140	<0.050	ug/L	NC	40
	thracene	2018/08/01	95	50 - 140	86	50 - 140	<0.010	ug/L	NC	40
9086704 Bena	nzo(a)anthracene	2018/08/01	90	50 - 140	84	50 - 140	<0.010	ug/L	NC	40
9086704 Bena	nzo(a)pyrene	2018/08/01	91	50 - 140	85	50 - 140	<0.0050	ug/L	NC	40
9086704 Ben	nzo(b&j)fluoranthene	2018/08/01	94	50 - 140	88	50 - 140	<0.030	ug/L	NC	40
9086704 Bena	nzo(g,h,i)perylene	2018/08/01	85	50 - 140	80	50 - 140	<0.050	ug/L	NC	40
9086704 Bena	nzo(k)fluoranthene	2018/08/01	95	50 - 140	88	50 - 140	<0.050	ug/L	NC	40
9086704 Chry	rysene	2018/08/01	92	50 - 140	86	50 - 140	<0.020	ug/L	NC	40
9086704 Dibe	penz(a,h)anthracene	2018/08/01	89	50 - 140	83	50 - 140	<0.0030	ug/L	NC	40
9086704 Fluo	oranthene	2018/08/01	94	50 - 140	88	50 - 140	<0.020	ug/L	NC	40
9086704 Fluo	iorene	2018/08/01	86	50 - 140	80	50 - 140	<0.050	ug/L	NC	40
9086704 Inde	deno(1,2,3-cd)pyrene	2018/08/01	88	50 - 140	82	50 - 140	<0.050	ug/L	NC	40

QUALITY ASSURANCE REPORT(CONT'D)

STANTEC CONSULTING LTD Client Project #: 123221161

Sampler Initials: MD

			Matrix Spike		Spiked	Blank	Method B	Blank	RPD	
QC Batch	Parameter	Date	% Recovery	QC Limits	% Recovery	QC Limits	Value	UNITS	Value (%)	QC Limits
9086704	Naphthalene	2018/08/01	85	50 - 140	78	50 - 140	<0.10	ug/L	NC	40
9086704	Phenanthrene	2018/08/01	91	50 - 140	88	50 - 140	<0.050	ug/L	NC	40
9086704	Pyrene	2018/08/01	96	50 - 140	90	50 - 140	<0.020	ug/L	NC	40
9086704	Quinoline	2018/08/01	114	50 - 140	108	50 - 140	<0.020	ug/L	NC	40
9086767	EPH (C10-C19)	2018/08/01	89	60 - 140	84	70 - 130	<0.20	mg/L	NC	30
9086767	EPH (C19-C32)	2018/08/01	90	60 - 140	87	70 - 130	<0.20	mg/L	NC	30

Duplicate: Paired analysis of a separate portion of the same sample. Used to evaluate the variance in the measurement.

Matrix Spike: A sample to which a known amount of the analyte of interest has been added. Used to evaluate sample matrix interference.

Spiked Blank: A blank matrix sample to which a known amount of the analyte, usually from a second source, has been added. Used to evaluate method accuracy.

Method Blank: A blank matrix containing all reagents used in the analytical procedure. Used to identify laboratory contamination.

Surrogate: A pure or isotopically labeled compound whose behavior mirrors the analytes of interest. Used to evaluate extraction efficiency.

NC (Matrix Spike): The recovery in the matrix spike was not calculated. The relative difference between the concentration in the parent sample and the spike amount was too small to permit a reliable recovery calculation (matrix spike concentration was less than the native sample concentration)

NC (Duplicate RPD): The duplicate RPD was not calculated. The concentration in the sample and/or duplicate was too low to permit a reliable RPD calculation (absolute difference <= 2x RDL).

STANTEC CONSULTING LTD Client Project #: 123221161 Sampler Initials: MD

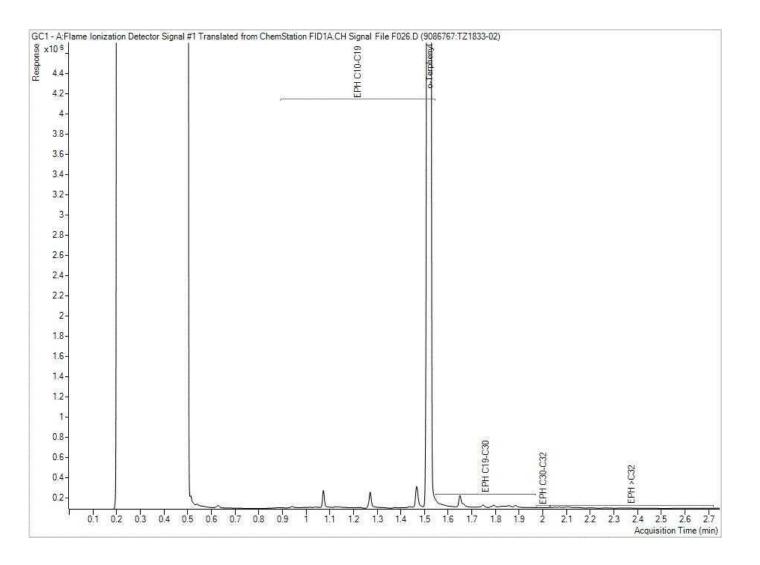
VALIDATION SIGNATURE PAGE

The analytical data and all QC contained in this report were reviewed and validated by the following individual(s).

Andy Lu, Ph.D., P.Chem., Scientific Specialist

Jose Cueva, Supervisor, Organics-VOC & HC

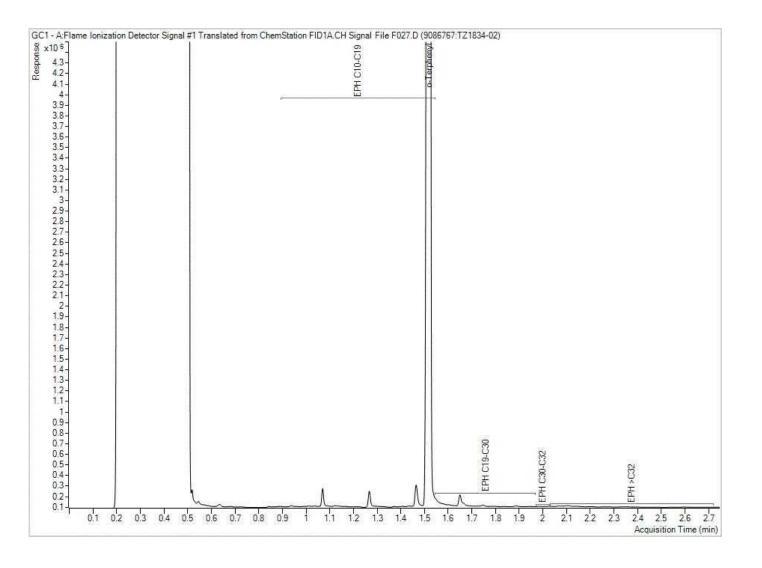
Maxxam has procedures in place to guard against improper use of the electronic signature and have the required "signatories", as per section 5.10.2 of ISO/IEC 17025:2005(E), signing the reports. For Service Group specific validation please refer to the Validation Signature Page.


11.00		INVOICE TO:				Report In	ormation	pi.						Projest Inf	ormation		494	中门的政治的	RECOGNIZATION	Page 1 of p
oany Name	#2792 STAN	ITEC CONSULTING LTD	T _{ell}	Company f	Name						Qu	station#	1	B71770			11/2	V. 1910	736	Bottle Order #:
act Name	ACCOUNTS			Contact No	me Matthew I	eane					P.0	#					286276	7_COC	医 医皮肤 医	
55		Suite 500, 4730 Kingsway		Address							Pro	ect #	1	12322116	1	_ '	00376	/_coc		560386
	BURNABY B		00.0750	-							1 1000	ect Name	-	-		_	-			Project Manager
0	(604) 436-301		36-3752	Phone	Company of the			Fax			Site		- 2	MD			-			Nahed Amer
	SAPINVOICES	Stantec.com	_	Email	mattnew.c	eane@sta	TEC.CO	n			Sar	pled By Analysis R	and the state of			_	_	C#56038	6-01-01 bund Time (TAT) Regu	
gulatory Crit							Drinking Water ? (Y/N) d Filtered ? (Y/N)	불	Metals (with Hg)		s (Cl. F. NO2, NO3,		(TP, NH4, TKN)	8,			(will be ap Standard Please no days - con	Standard) TAT plied if Rush TAT is r TAT = 5-7 Working d te: Standard TAT for- tlact your Project Mai ic Rush TAT (if applie	ays for most tests certain tests such as BOO nager for details s to entire submission)	[
- 4	Market States	ed drinking water samples - please imust be kept cool (< 10°C) from tin					gulated E	PH/HE	Diss. Met	ВТЕХЛРН	Major lons PO4, SO4)	DOC	Nutrients				Rush Contin	mation Number	- Ice	(lab for #)
Sample	Barcode Label	Sample (Location) Identificat	11400	Date Sampled	Time Sampled	Matrix	Ne Re	9	Ö	1 10	24	ă	ž		_		Ø of Bottes	4.5	Comments	
		MW18-42 MW18-43	/	8/07/30	1445	6W	Y	X	X	X							10	HOW	ALL OTHE	e BOTE
		MW18-43	/	8/02/30	1430	600	Y	X	X	X							10	~		~
		*:		*															TO STANLETT	HORSE
						120												REGE	Aucmol	21605
		×	8															D1	2019 02	2.0
		1																	2010 -07-	0
		1																TEMP	: 14/16	1113
		l ti																		
• RELING	CUSHED BY: (Signa		Date: (YY/M				VED BY: (Signature	ingrint)			se: (YY/MM/I		Time	# jars used and not subgritted	The second state of			Lab Use Only	
114	01	4. Dune	18/07/	30 160	5	an	IN	CHO	//	O.	20	870713	1 6	14:35	M	Time Ser	Ten	perature (°C) on Re	celor	est Intact on Cooler?

36/

Maxxam Analytics International Corporation o/a Maxxam Analytics

Maxxam Job #: B863767 Report Date: 2018/08/01 Maxxam Sample: TZ1833 STANTEC CONSULTING LTD Client Project #: 123221161 Client ID: MW18-42


EPH in Water when PAH required Chromatogram

Note: This information is provided for reference purposes only. Should detailed chemist interpretation or fingerprinting be required, please contact the laboratory.

Maxxam Job #: B863767 Report Date: 2018/08/01 Maxxam Sample: TZ1834 STANTEC CONSULTING LTD Client Project #: 123221161 Client ID: MW18-43

EPH in Water when PAH required Chromatogram

Note: This information is provided for reference purposes only. Should detailed chemist interpretation or fingerprinting be required, please contact the laboratory.

Your Project #: 123221161 Site Location: 123221161 Your C.O.C. #: 560391-01-01

Attention: Matthew Deane
STANTEC CONSULTING LTD
Metrotower III
Suite 500, 4730 Kingsway
BURNABY, BC
CANADA V5H 4M1

Report Date: 2018/08/23

Report #: R2608593 Version: 2 - Revision

CERTIFICATE OF ANALYSIS – REVISED REPORT

MAXXAM JOB #: B868151 Received: 2018/08/13, 16:50

Sample Matrix: Water # Samples Received: 2

		Date	Date		
Analyses	Quantity	Extracted	Analyzed	Laboratory Method	Analytical Method
BTEX/MTBE LH, VH, F1 SIM/MS	2	N/A	2018/08/16	BBY8SOP-00010/11/12	BCMOE BCLM Jul 2017
EPH in Water when PAH required	2	2018/08/16	2018/08/16	BBY8SOP-00029	BCMOE BCLM Mar 2017
PAH in Water by GC/MS (SIM)	2	2018/08/16	2018/08/16	BBY8SOP-00021	BCMOE BCLM Jul2017m
Total LMW, HMW, Total PAH Calc (1)	2	N/A	2018/08/17	BBY WI-00033	Auto Calc
EPH less PAH in Water by GC/FID (2)	2	N/A	2018/08/17	BBY WI-00033	Auto Calc
Volatile HC-BTEX (3)	2	N/A	2018/08/17	BBY WI-00033	Auto Calc

Remarks:

Maxxam Analytics' laboratories are accredited to ISO/IEC 17025:2005 for specific parameters on scopes of accreditation. Unless otherwise noted, procedures used by Maxxam are based upon recognized Provincial, Federal or US method compendia such as CCME, MDDELCC, EPA, APHA.

All work recorded herein has been done in accordance with procedures and practices ordinarily exercised by professionals in Maxxam's profession using accepted testing methodologies, quality assurance and quality control procedures (except where otherwise agreed by the client and Maxxam in writing). All data is in statistical control and has met quality control and method performance criteria unless otherwise noted. All method blanks are reported; unless indicated otherwise, associated sample data are not blank corrected. Where applicable, unless otherwise noted, Measurement Uncertainty has not been accounted for when stating conformity to the referenced standard.

Maxxam Analytics' liability is limited to the actual cost of the requested analyses, unless otherwise agreed in writing. There is no other warranty expressed or implied. Maxxam has been retained to provide analysis of samples provided by the Client using the testing methodology referenced in this report. Interpretation and use of test results are the sole responsibility of the Client and are not within the scope of services provided by Maxxam, unless otherwise agreed in writing. Maxxam is not responsible for the accuracy or any data impacts, that result from the information provided by the customer or their agent.

Solid sample results, except biota, are based on dry weight unless otherwise indicated. Organic analyses are not recovery corrected except for isotope dilution methods.

Results relate to samples tested. When sampling is not conducted by Maxxam, results relate to the supplied samples tested.

This Certificate shall not be reproduced except in full, without the written approval of the laboratory.

Reference Method suffix "m" indicates test methods incorporate validated modifications from specific reference methods to improve performance.

* RPDs calculated using raw data. The rounding of final results may result in the apparent difference.

Your Project #: 123221161 Site Location: 123221161 Your C.O.C. #: 560391-01-01

Attention: Matthew Deane
STANTEC CONSULTING LTD
Metrotower III
Suite 500, 4730 Kingsway
BURNABY, BC
CANADA V5H 4M1

Report Date: 2018/08/23

Report #: R2608593 Version: 2 - Revision

CERTIFICATE OF ANALYSIS – REVISED REPORT

MAXXAM JOB #: B868151 Received: 2018/08/13, 16:50

(1) Total PAHs in Water include: Quinoline, Naphthalene, 1-Methylnaphthalene, 2-Methylnaphthalene, Acenaphthylene, Acenaphthene, Fluorene, Phenanthrene, Anthracene, Acridine, Fluoranthene, Pyrene, Benzo(a)anthracene, Chrysene, Benzo(b&j)fluoranthene, Benzo(k)fluoranthene, Benzo(a)pyrene, Indeno(1,2,3-cd)pyrene, Dibenz(a,h)anthracene, and Benzo(g,h,i)perylene.

(2) LEPH = EPH (C10 to C19) - (Acenaphthene + Acridine + Anthracene + Fluorene + Naphthalene + Phenanthrene)
HEPH = EPH (C19 to C32) - (Benzo(a)anthracene + Benzo(a)pyrene + Fluoranthene + Pyrene)
(3) VPH = VH - (Benzene + Toluene + Ethylbenzene + m & p-Xylene + o-Xylene + Styrene)

Encryption Key

Please direct all questions regarding this Certificate of Analysis to your Project Manager.
Nahed Amer, Project Manager
Email: NAmer@maxxam.ca
Phone# (604) 734 7276

Maxxam has procedures in place to guard against improper use of the electronic signature and have the required "signatories", as per section 5.10.2 of ISO/IEC 17025:2005(E), signing the reports. For Service Group specific validation please refer to the Validation Signature Page.

STANTEC CONSULTING LTD Client Project #: 123221161 Site Location: 123221161

Sampler Initials: MV

CSR BTEX/VPH IN WATER (WATER)

Maxxam ID		UB6392	UB6393		
Sampling Date		2018/08/13	2018/08/13		
Sampling Date		15:15	16:15		
COC Number		560391-01-01	560391-01-01		
	UNITS	MW18-52	MW18-49	RDL	QC Batch
Calculated Parameters					
VPH (VH6 to 10 - BTEX)	ug/L	<300	<300	300	9102941
Volatiles					
Methyl-tert-butylether (MTBE)	ug/L	<4.0	<4.0	4.0	9105562
Benzene	ug/L	<0.40	<0.40	0.40	9105562
Toluene	ug/L	0.92	1.5	0.40	9105562
Ethylbenzene	ug/L	<0.40	<0.40	0.40	9105562
m & p-Xylene	ug/L	1.0	1.9	0.40	9105562
o-Xylene	ug/L	<0.40	0.92	0.40	9105562
Styrene	ug/L	<0.40	<0.40	0.40	9105562
Xylenes (Total)	ug/L	1.0	2.8	0.40	9105562
VH C6-C10	ug/L	<300	<300	300	9105562
Surrogate Recovery (%)					
1,4-Difluorobenzene (sur.)	%	101	101		9105562
4-Bromofluorobenzene (sur.)	%	100	100		9105562
D4-1,2-Dichloroethane (sur.)	%	111	111		9105562
RDL = Reportable Detection Limi	t				

STANTEC CONSULTING LTD Client Project #: 123221161 Site Location: 123221161

Sampler Initials: MV

LEPH & HEPH WITH CSR/CCME PAH IN WATER (WATER)

Maxxam ID		UB6392		UB6393		
Sampling Date		2018/08/13		2018/08/13		
		15:15		16:15		
COC Number		560391-01-01		560391-01-01		
	UNITS	MW18-52	RDL	MW18-49	RDL	QC Batch
Calculated Parameters						
Low Molecular Weight PAH`s	ug/L	<0.10	0.10	2.9	0.10	9102938
High Molecular Weight PAH's	ug/L	<0.050	0.050	<0.050	0.050	9102938
Total PAH	ug/L	<0.10	0.10	2.9	0.10	9102938
Polycyclic Aromatics	•		•			
Quinoline	ug/L	<0.020	0.020	<0.085 (1)	0.085	9113185
Naphthalene	ug/L	<0.10	0.10	0.47 (2)	0.10	9104762
1-Methylnaphthalene	ug/L	<0.050	0.050	<0.050	0.050	9104762
2-Methylnaphthalene	ug/L	<0.10	0.10	<0.10	0.10	9104762
Acenaphthylene	ug/L	<0.050	0.050	<0.050	0.050	9104762
Acenaphthene	ug/L	<0.050	0.050	0.58	0.050	9104762
Fluorene	ug/L	<0.050	0.050	1.4	0.050	9104762
Phenanthrene	ug/L	<0.050	0.050	0.47	0.050	9104762
Anthracene	ug/L	<0.010	0.010	0.011 (2)	0.010	9104762
Acridine	ug/L	<0.050	0.050	<0.050	0.050	9113185
Fluoranthene	ug/L	<0.020	0.020	<0.020	0.020	9104762
Pyrene	ug/L	<0.020	0.020	<0.020	0.020	9104762
Benzo(a)anthracene	ug/L	<0.010	0.010	<0.010	0.010	9104762
Chrysene	ug/L	<0.020	0.020	<0.020	0.020	9104762
Benzo(b&j)fluoranthene	ug/L	<0.030	0.030	<0.030	0.030	9104762
Benzo(k)fluoranthene	ug/L	<0.050	0.050	<0.050	0.050	9104762
Benzo(a)pyrene	ug/L	<0.0050	0.0050	<0.0050	0.0050	9104762
Indeno(1,2,3-cd)pyrene	ug/L	<0.050	0.050	<0.050	0.050	9104762
Dibenz(a,h)anthracene	ug/L	<0.0030	0.0030	<0.0030	0.0030	9104762
Benzo(g,h,i)perylene	ug/L	<0.050	0.050	<0.050	0.050	9104762
Calculated Parameters						
LEPH (C10-C19 less PAH)	mg/L	<0.20	0.20	0.59	0.20	9102939
HEPH (C19-C32 less PAH)	mg/L	<0.20	0.20	<0.20	0.20	9102939
Ext. Pet. Hydrocarbon						
EPH (C10-C19)	mg/L	<0.20	0.20	0.59	0.20	9104829
PDI - Papartable Detection Lin	nit					

RDL = Reportable Detection Limit

⁽¹⁾ Detection limits raised due to matrix interference.

⁽²⁾ Tentatively identified result and may be potentially biased high due to matrix interference.

STANTEC CONSULTING LTD Client Project #: 123221161 Site Location: 123221161

Sampler Initials: MV

LEPH & HEPH WITH CSR/CCME PAH IN WATER (WATER)

Maxxam ID		UB6392		UB6393		
Sampling Date		2018/08/13 15:15		2018/08/13 16:15		
COC Number		560391-01-01		560391-01-01		
	UNITS	MW18-52	RDL	MW18-49	RDL	QC Batch
EPH (C19-C32)	mg/L	<0.20	0.20	<0.20	0.20	9104829
Surrogate Recovery (%)						
O-TERPHENYL (sur.)	%	104		104		9104829
D10-ANTHRACENE (sur.)	%	87		84		9104762
D8-ACENAPHTHYLENE (sur.)	%	94		95		9104762
D8-NAPHTHALENE (sur.)	%	94		92		9104762
TERPHENYL-D14 (sur.)	%	94		92		9104762
RDL = Reportable Detection Lir	nit					

STANTEC CONSULTING LTD Client Project #: 123221161 Site Location: 123221161

Sampler Initials: MV

GENERAL COMMENTS

Sample UB6	5392, PAH in V	Vater by GO	C/MS (SIM): Te	est repeated.
Sample UB6	5393, PAH in V	Vater by GO	C/MS (SIM): Te	est repeated.

Results relate only to the items tested.

QUALITY ASSURANCE REPORT

STANTEC CONSULTING LTD Client Project #: 123221161

Site Location: 123221161

Sampler Initials: MV

			Matrix	Spike	Spiked	Blank	Method E	Blank	RP	D
QC Batch	Parameter	Date	% Recovery	QC Limits	% Recovery	QC Limits	Value	UNITS	Value (%)	QC Limits
9104762	D10-ANTHRACENE (sur.)	2018/08/16	85	50 - 140	85	50 - 140	91	%		
9104762	D8-ACENAPHTHYLENE (sur.)	2018/08/16	93	50 - 140	91	50 - 140	98	%		
9104762	D8-NAPHTHALENE (sur.)	2018/08/16	92	50 - 140	83	50 - 140	93	%		
9104762	TERPHENYL-D14 (sur.)	2018/08/16	94	50 - 140	93	50 - 140	101	%		
9104829	O-TERPHENYL (sur.)	2018/08/16	100	60 - 140	103	60 - 140	102	%		
9105562	1,4-Difluorobenzene (sur.)	2018/08/16	99	70 - 130	99	70 - 130	102	%		
9105562	4-Bromofluorobenzene (sur.)	2018/08/16	100	70 - 130	101	70 - 130	99	%		
9105562	D4-1,2-Dichloroethane (sur.)	2018/08/16	103	70 - 130	104	70 - 130	111	%		
9104762	1-Methylnaphthalene	2018/08/16	99	50 - 140	87	50 - 140	<0.050	ug/L	NC	40
9104762	2-Methylnaphthalene	2018/08/16	93	50 - 140	82	50 - 140	<0.10	ug/L	NC	40
9104762	Acenaphthene	2018/08/16	90	50 - 140	82	50 - 140	<0.050	ug/L	NC	40
9104762	Acenaphthylene	2018/08/16	91	50 - 140	84	50 - 140	<0.050	ug/L	NC	40
9104762	Anthracene	2018/08/16	83	50 - 140	78	50 - 140	<0.010	ug/L	NC	40
9104762	Benzo(a)anthracene	2018/08/16	85	50 - 140	81	50 - 140	<0.010	ug/L	NC	40
9104762	Benzo(a)pyrene	2018/08/16	90	50 - 140	84	50 - 140	<0.0050	ug/L	NC	40
9104762	Benzo(b&j)fluoranthene	2018/08/16	94	50 - 140	86	50 - 140	<0.030	ug/L	NC	40
9104762	Benzo(g,h,i)perylene	2018/08/16	81	50 - 140	76	50 - 140	<0.050	ug/L	NC	40
9104762	Benzo(k)fluoranthene	2018/08/16	85	50 - 140	85	50 - 140	<0.050	ug/L	NC	40
9104762	Chrysene	2018/08/16	86	50 - 140	82	50 - 140	<0.020	ug/L	NC	40
9104762	Dibenz(a,h)anthracene	2018/08/16	83	50 - 140	78	50 - 140	<0.0030	ug/L	NC	40
9104762	Fluoranthene	2018/08/16	90	50 - 140	86	50 - 140	<0.020	ug/L	NC	40
9104762	Fluorene	2018/08/16	85	50 - 140	80	50 - 140	<0.050	ug/L	NC	40
9104762	Indeno(1,2,3-cd)pyrene	2018/08/16	83	50 - 140	79	50 - 140	<0.050	ug/L	NC	40
9104762	Naphthalene	2018/08/16	101	50 - 140	91	50 - 140	<0.10	ug/L	NC	40
9104762	Phenanthrene	2018/08/16	88	50 - 140	83	50 - 140	<0.050	ug/L	NC	40
9104762	Pyrene	2018/08/16	93	50 - 140	88	50 - 140	<0.020	ug/L	NC	40
9104829	EPH (C10-C19)	2018/08/16	94	60 - 140	93	70 - 130	<0.20	mg/L	NC	30
9104829	EPH (C19-C32)	2018/08/16	93	60 - 140	98	70 - 130	<0.20	mg/L	NC	30
9105562	Benzene	2018/08/16	102	70 - 130	104	70 - 130	<0.40	ug/L	NC	30
9105562	Ethylbenzene	2018/08/16	109	70 - 130	111	70 - 130	<0.40	ug/L	NC	30
9105562	m & p-Xylene	2018/08/16	106	70 - 130	108	70 - 130	<0.40	ug/L	NC	30

QUALITY ASSURANCE REPORT(CONT'D)

STANTEC CONSULTING LTD Client Project #: 123221161

Site Location: 123221161

Sampler Initials: MV

			Matrix	Spike	Spiked	Blank	Method E	Blank	RPD	
QC Batch	Parameter	Date	% Recovery	QC Limits	% Recovery	QC Limits	Value	UNITS	Value (%)	QC Limits
9105562	Methyl-tert-butylether (MTBE)	2018/08/16	103	70 - 130	104	70 - 130	<4.0	ug/L	NC	30
9105562	o-Xylene	2018/08/16	107	70 - 130	109	70 - 130	<0.40	ug/L	NC	30
9105562	Styrene	2018/08/16	103	70 - 130	105	70 - 130	<0.40	ug/L	NC	30
9105562	Toluene	2018/08/16	100	70 - 130	102	70 - 130	<0.40	ug/L	NC	30
9105562	VH C6-C10	2018/08/16			101	70 - 130	<300	ug/L	NC	30
9105562	Xylenes (Total)	2018/08/16					<0.40	ug/L	NC	30
9113185	Acridine	2018/08/22	96	50 - 140	93	50 - 140	<0.050	ug/L	NC	40
9113185	Quinoline	2018/08/22	108	50 - 140	105	50 - 140	<0.020	ug/L	NC	40

Duplicate: Paired analysis of a separate portion of the same sample. Used to evaluate the variance in the measurement.

Matrix Spike: A sample to which a known amount of the analyte of interest has been added. Used to evaluate sample matrix interference.

Spiked Blank: A blank matrix sample to which a known amount of the analyte, usually from a second source, has been added. Used to evaluate method accuracy.

Method Blank: A blank matrix containing all reagents used in the analytical procedure. Used to identify laboratory contamination.

Surrogate: A pure or isotopically labeled compound whose behavior mirrors the analytes of interest. Used to evaluate extraction efficiency.

NC (Duplicate RPD): The duplicate RPD was not calculated. The concentration in the sample and/or duplicate was too low to permit a reliable RPD calculation (absolute difference <= 2x RDL).

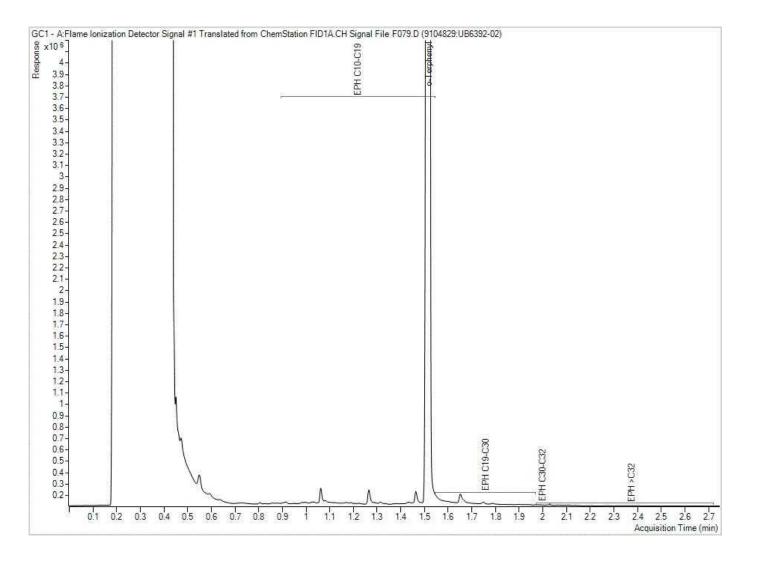
STANTEC CONSULTING LTD Client Project #: 123221161 Site Location: 123221161

Sampler Initials: MV

VALIDATION SIGNATURE PAGE

The analytical data and all QC contained in this report were reviewed and validated by the following individual(s).

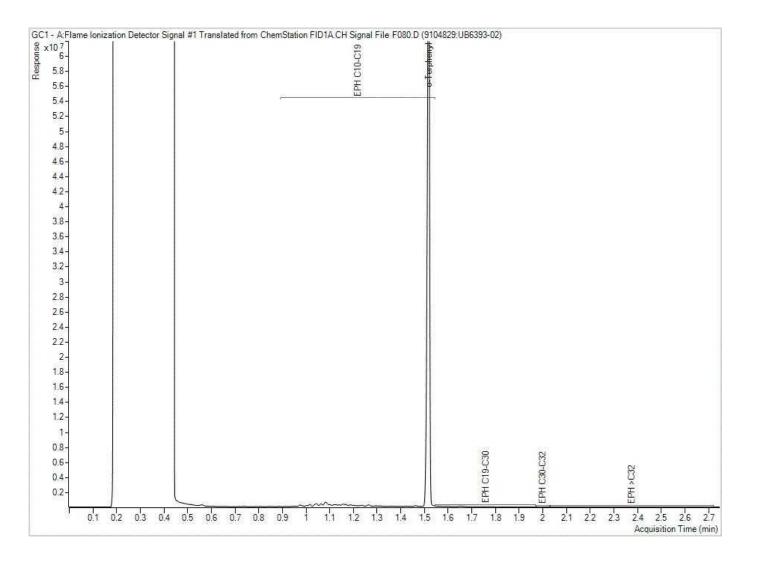
Jas Khatkar, BBY Organics


Rob Reinert, B.Sc., Scientific Specialist

Maxxam has procedures in place to guard against improper use of the electronic signature and have the required "signatories", as per section 5.10.2 of ISO/IEC 17025:2005(E), signing the reports. For Service Group specific validation please refer to the Validation Signature Page.

		INVOICE TO:			Report In	formatio	n		(i)		Project Information	i		go) o
iny Name	#2792 STAN	TEC CONSULTING LTD	Company Na	TWE					Quotation#		B71770			der #
	ACCOUNTS F	PAYABLE	Contact Name	Martinaus C	eane				P.O. #		12322116	1-250	200	
6.		Suite 500, 4730 Kingsway	Address						Project #		123221161	-		B868151_COC "
	BURNABY BO	The second secon						INTER SH	Project Name		12322116			BB00131_COC anage
	(604) 436-301	The same of the sa	2 Phone				Fax:	7.041	Site #					Nahed Amer
	SAPinvoices@	Stantec.com	Email	matthew.d	eane@sta	ntec.co	m		Sampled By		MYICS			C#560391-01-01
tetory Crit	eria		Specia	al Instructions		-			Analysis Re	equeste	d I I		_	Turnaround Time (TAT) Required Please provide advance notice for rush projects
	Notv: For regulate	d drinking water samples - please use the D	Drinking Water Chain of t	Custody Form		dinking W	H HENHINAH	X, F1, NP L+					(will be Standar Please days - c Job Spe Date Rec	r (Standard) TAT applied if Rush TAT is not specified) or TAT = 5.7 Working days for most tests. note: Standard TAT for certain tests such as BOD and Dioxins/Furans ar contact your Project Manager for details. eitlic Rush TAT (if applies to entire submission) puired:
	Samples	must be kept cool (< 10°C) from time of same	pling until delivery to max	am		late.	0	BIE					120,57000	(cell lab for #)
Sample	Barcode Label	Sample (Location) Identification	Date Sampled	Time Sampled	Matrix	Regi	T were	€2			\perp		# of Bottle	es Comments
		MW18-52	13-Aug-18	15:15	GW		X	\times					10	HOLD all other bottles
		MW18-49	13-Ay-18	16:15	GW		X	X					10	HOLD all other bothes
														RECEIVED IN WHITEURSSE
									\rightarrow					BY: 1 May 24 165
_														2019 119 119
						Ш			\rightarrow				_	2010 -00- 13
														TEMP: 8 / 9 / 8
						Ш								
. BELLINO	UISHED BY: (Signat	Date:	YY/MM/DD) Time	1	BEGE		(Signature/Pr		Date: (YY/MM/0	on I	T			
NELING.	Succe.	Care Shau 18 10						विद्यार			15 10 spars	esed and benitted Time	Genstive L	Temperature (*C) on Recept Custody Seal Intact on Cooler?
VIEWING	AT WWW.MAXXAM.O	IN WRITING, WORK SUBMITTED ON THIS CHA CATTERMS. E RELINQUISHER TO ENSURE THE ACCURACY								OCUME	NT IS ACKNOWLEDGME	NT AND ACCEPT	ANCE OF OUR	617 (818)11
THE NEW	- Chablell or III	PELINGUISIAN TO ENJOYE THE RECURSOR	or me disaltor coate	or reconst and	TOTAL TELE	THAIR OF	COSTODY NO	N. PESOLI III ARRELI	THE INT DELATE.		*(CB!	PRB!	SEN	
		141										, , , , ,	5000 10	and Intact
	126	lh												

Maxxam Job #: B868151 Report Date: 2018/08/23 Maxxam Sample: UB6392 STANTEC CONSULTING LTD Client Project #: 123221161 Site Reference: 123221161 Client ID: MW18-52


EPH in Water when PAH required Chromatogram

Note: This information is provided for reference purposes only. Should detailed chemist interpretation or fingerprinting be required, please contact the laboratory.

Maxxam Job #: B868151 Report Date: 2018/08/23 Maxxam Sample: UB6393 STANTEC CONSULTING LTD Client Project #: 123221161 Site Reference: 123221161 Client ID: MW18-49

EPH in Water when PAH required Chromatogram

Note: This information is provided for reference purposes only. Should detailed chemist interpretation or fingerprinting be required, please contact the laboratory.

Your P.O. #: 123221161-250.200 Your Project #: 123221161 Your C.O.C. #: 7960

Attention: Carey Sibbald

STANTEC CONSULTING LTD.
Whitehorse_
107 Main Street
Suite 202
Whitehorse, YT
CANADA Y1A 2A7

Report Date: 2018/09/04

Report #: R2613581 Version: 3 - Revision

CERTIFICATE OF ANALYSIS – REVISED REPORT

MAXXAM JOB #: B869306 Received: 2018/08/15, 17:10

Sample Matrix: GROUND WATER

Samples Received: 5

		Date	Date		
Analyses	Quantity	Extracted	Analyzed	Laboratory Method	Analytical Method
BTEX/MTBE LH, VH, F1 SIM/MS	2	N/A	2018/08/30	BBY8SOP-00010/11/12	BCMOE BCLM Jul 2017
Chloride by Automated Colourimetry	2	N/A	2018/08/30	BBY6SOP-00011	SM 22 4500-Cl- E m
Carbon (DOC) - field filtered/preserved (1)	2	N/A	2018/09/04	BBY6SOP-00003	SM 22 5310 C m
Fluoride	2	N/A	2018/08/30	BBY6SOP-00048	SM 22 4500-F C m
Hardness (calculated as CaCO3)	2	N/A	2018/08/29	BBY WI-00033	Auto Calc
EPH in Water when PAH required	5	2018/08/22	2018/08/22	BBY8SOP-00029	BCMOE BCLM Mar 2017
Elements by CRC ICPMS (dissolved)	2	N/A	2018/08/29	BBY7SOP-00002	EPA 6020b R2 m
Nitrogen (Total)	2	N/A	2018/08/31	BBY6SOP-00016	SM 22 4500-N C m
Ammonia-N (Preserved)	2	N/A	2018/09/04	BBY6SOP-00009	EPA 350.1 m
Nitrate + Nitrite (N)	2	N/A	2018/08/30	BBY6SOP-00010	SM 23 4500-NO3- I m
Nitrite (N) by CFA	2	N/A	2018/08/30	BBY6SOP-00010	SM 22 4500-NO3- I m
Nitrogen - Nitrate (as N)	2	N/A	2018/08/30	BBY WI-00033	Auto Calc
PAH in Water by GC/MS (SIM)	1	2018/08/21	2018/08/22	BBY8SOP-00021	BCMOE BCLM Jul2017m
PAH in Water by GC/MS (SIM)	4	2018/08/22	2018/08/23	BBY8SOP-00021	BCMOE BCLM Jul2017m
Total LMW, HMW, Total PAH Calc (2)	5	N/A	2018/08/23	BBY WI-00033	Auto Calc
Orthophosphate by Konelab	2	N/A	2018/08/29	BBY6SOP-00013	SM 22 4500-P E m
Sulphate by Automated Colourimetry	1	N/A	2018/08/30	BBY6SOP-00017	SM 22 4500-SO42- E m
Sulphate by Automated Colourimetry	1	N/A	2018/08/31	BBY6SOP-00017	SM 22 4500-SO42- E m
EPH less PAH in Water by GC/FID (3)	5	N/A	2018/08/23	BBY WI-00033	Auto Calc
TKN (Calc. TN, N/N) total	2	N/A	2018/08/31	BBY WI-00033	Auto Calc
Total Phosphorus	2	2018/08/30	2018/08/30	BBY6SOP-00013	SM 22 4500-P E m
Volatile HC-BTEX (4)	2	N/A	2018/08/31	BBY WI-00033	Auto Calc

Remarks:

Maxxam Analytics' laboratories are accredited to ISO/IEC 17025:2005 for specific parameters on scopes of accreditation. Unless otherwise noted, procedures used by Maxxam are based upon recognized Provincial, Federal or US method compendia such as CCME, MDDELCC, EPA, APHA.

All work recorded herein has been done in accordance with procedures and practices ordinarily exercised by professionals in Maxxam's profession using accepted testing methodologies, quality assurance and quality control procedures (except where otherwise agreed by the client and Maxxam in writing). All data is in statistical control and has met quality control and method performance criteria unless otherwise noted. All method blanks are reported; unless

Your P.O. #: 123221161-250.200 Your Project #: 123221161 Your C.O.C. #: 7960

Attention: Carey Sibbald

STANTEC CONSULTING LTD.
Whitehorse_
107 Main Street
Suite 202
Whitehorse, YT
CANADA Y1A 2A7

Report Date: 2018/09/04

Report #: R2613581 Version: 3 - Revision

CERTIFICATE OF ANALYSIS – REVISED REPORT

MAXXAM JOB #: B869306 Received: 2018/08/15, 17:10

indicated otherwise, associated sample data are not blank corrected. Where applicable, unless otherwise noted, Measurement Uncertainty has not been accounted for when stating conformity to the referenced standard.

Maxxam Analytics' liability is limited to the actual cost of the requested analyses, unless otherwise agreed in writing. There is no other warranty expressed or implied. Maxxam has been retained to provide analysis of samples provided by the Client using the testing methodology referenced in this report. Interpretation and use of test results are the sole responsibility of the Client and are not within the scope of services provided by Maxxam, unless otherwise agreed in writing. Maxxam is not responsible for the accuracy or any data impacts, that result from the information provided by the customer or their agent.

Solid sample results, except biota, are based on dry weight unless otherwise indicated. Organic analyses are not recovery corrected except for isotope dilution methods.

Results relate to samples tested. When sampling is not conducted by Maxxam, results relate to the supplied samples tested.

This Certificate shall not be reproduced except in full, without the written approval of the laboratory.

Reference Method suffix "m" indicates test methods incorporate validated modifications from specific reference methods to improve performance.

- * RPDs calculated using raw data. The rounding of final results may result in the apparent difference.
- (1) DOC present in the sample should be considered as non-purgeable DOC.
- (2) Total PAHs in Water include: Quinoline, Naphthalene, 1-Methylnaphthalene, 2-Methylnaphthalene, Acenaphthylene, Acenaphthene, Fluorene, Phenanthrene, Anthracene, Acridine, Fluoranthene, Pyrene, Benzo(a)anthracene, Chrysene, Benzo(b&j)fluoranthene, Benzo(k)fluoranthene, Benzo(a)pyrene, Indeno(1,2,3-cd)pyrene, Dibenz(a,h)anthracene, and Benzo(g,h,i)perylene.
- (3) LEPH = EPH (C10 to C19) (Acenaphthene + Acridine + Anthracene + Fluorene + Naphthalene + Phenanthrene)

HEPH = EPH (C19 to C32) - (Benzo(a)anthracene + Benzo(a)pyrene + Fluoranthene + Pyrene)

(4) VPH = VH - (Benzene + Toluene + Ethylbenzene + m & p-Xylene + o-Xylene + Styrene)

Encryption Key

 $\label{thm:please} \textit{Please direct all questions regarding this Certificate of Analysis to your Project Manager.}$

Nahed Amer, Project Manager Email: NAmer@maxxam.ca Phone# (604) 734 7276

Maxxam has procedures in place to guard against improper use of the electronic signature and have the required "signatories", as per section 5.10.2 of ISO/IEC 17025:2005(E), signing the reports. For Service Group specific validation please refer to the Validation Signature Page.

STANTEC CONSULTING LTD. Client Project #: 123221161 Your P.O. #: 123221161-250.200

Sampler Initials: MV

RESULTS OF CHEMICAL ANALYSES OF GROUND WATER

Maxxam ID		UC1860			UC1862		
Sampling Date		2018/08/15 09:15			2018/08/15 12:15		
COC Number		7960			7960		
	UNITS	MW18-37	RDL	QC Batch	MW16-01	RDL	QC Batch
ANIONS							
Nitrite (N)	mg/L	<0.0050	0.0050	9124590	<0.0050	0.0050	9124590
Calculated Parameters							
Nitrate (N)	mg/L	<0.020	0.020	9120246	<0.020	0.020	9120246
Misc. Inorganics							
Fluoride (F)	mg/L	0.420	0.020	9123672	0.260	0.020	9123672
Dissolved Organic Carbon (C)	mg/L	0.80	0.50	9128765	3.87	0.50	9128765
Anions						•	
Dissolved Sulphate (SO4)	mg/L	33.8	1.0	9125787	781 (1)	10	9124731
Dissolved Chloride (CI)	mg/L	<1.0	1.0	9124729	8.1	1.0	9124729
Nutrients							
Orthophosphate (P)	mg/L	0.0240	0.0050	9122939	0.0057	0.0050	9122939
Total Ammonia (N)	mg/L	<0.020	0.020	9128684	0.17	0.020	9128684
Nitrate plus Nitrite (N)	mg/L	<0.020	0.020	9124588	<0.020	0.020	9124588
Total Phosphorus (P)	mg/L	0.0457	0.0050	9124816	0.0680	0.0050	9124816

RDL = Reportable Detection Limit

⁽¹⁾ Detection limits raised due to dilution to bring analyte within the calibrated range.

STANTEC CONSULTING LTD. Client Project #: 123221161 Your P.O. #: 123221161-250.200

Sampler Initials: MV

CSR BTEX/VPH IN WATER (GROUND WATER)

Maxxam ID		UC1860			UC1860			UC1862		
Sampling Data		2018/08/15			2018/08/15			2018/08/15		
Sampling Date		09:15			09:15			12:15		
COC Number		7960			7960			7960		
	UNITS	MW18-37	RDL	QC Batch	MW18-37	RDL	OC Botob	MW16-01	RDL	QC Batch
	UNITS	INIMATO-21	KDL	QC Battii	Lab-Dup	KDL	QC Batch	1010010-01	KDL	QC Batti
Calculated Parameters		<u> </u>	•		·	<u> </u>	·		•	
VPH (VH6 to 10 - BTEX)	ug/L	<300	300	9124041				<300	300	9124041
Volatiles					!		!		!	
Methyl-tert-butylether (MTBE)	ug/L	<4.0	4.0	9124534	<4.0	4.0	9124534	<4.0	4.0	9124534
Benzene	ug/L	<0.40	0.40	9124534	<0.40	0.40	9124534	<0.40	0.40	9124534
Toluene	ug/L	<0.40	0.40	9124534	<0.40	0.40	9124534	<0.40	0.40	9124534
Ethylbenzene	ug/L	<0.40	0.40	9124534	<0.40	0.40	9124534	0.44	0.40	9124534
m & p-Xylene	ug/L	<0.40	0.40	9124534	<0.40	0.40	9124534	<0.40	0.40	9124534
o-Xylene	ug/L	<0.40	0.40	9124534	<0.40	0.40	9124534	<0.40	0.40	9124534
Styrene	ug/L	<0.40	0.40	9124534	<0.40	0.40	9124534	<0.40	0.40	9124534
Xylenes (Total)	ug/L	<0.40	0.40	9124534	<0.40	0.40	9124534	<0.40	0.40	9124534
VH C6-C10	ug/L	<300	300	9124534	<300	300	9124534	<300	300	9124534
Surrogate Recovery (%)	•						•			
1,4-Difluorobenzene (sur.)	%	102		9124534	102		9124534	103		9124534
4-Bromofluorobenzene (sur.)	%	102		9124534	102		9124534	103		9124534
D4-1,2-Dichloroethane (sur.)	%	116		9124534	115		9124534	116		9124534

Lab-Dup = Laboratory Initiated Duplicate

STANTEC CONSULTING LTD. Client Project #: 123221161 Your P.O. #: 123221161-250.200

Sampler Initials: MV

LEPH & HEPH WITH CSR/CCME PAH IN WATER (GROUND WATER)

Maxxam ID		UC1860			UC1860			UC1861		
Sampling Date		2018/08/15 09:15			2018/08/15 09:15			2018/08/15 09:35		
COC Number		7960			7960			7960		
ede Number	UNITS	MW18-37	RDL	QC Batch	MW18-37 Lab-Dup	RDL	QC Batch	MW18-37A	RDL	QC Batch
Calculated Parameters	•		!			•			!	
Low Molecular Weight PAH's	ug/L	<0.10	0.10	9106979				<0.10	0.10	9106979
High Molecular Weight PAH`s	ug/L	<0.050	0.050	9106979				<0.050	0.050	9106979
Total PAH	ug/L	<0.10	0.10	9106979				<0.10	0.10	9106979
Polycyclic Aromatics				I.						I.
Quinoline	ug/L	<0.020	0.020	9113185	<0.020	0.020	9113185	<0.020	0.020	9113185
Naphthalene	ug/L	<0.10	0.10	9113185	<0.10	0.10	9113185	<0.10	0.10	9113185
2-Methylnaphthalene	ug/L	<0.10	0.10	9113185	<0.10	0.10	9113185	<0.10	0.10	9113185
Acenaphthylene	ug/L	<0.050	0.050	9113185	<0.050	0.050	9113185	<0.050	0.050	9113185
Acenaphthene	ug/L	<0.050	0.050	9113185	<0.050	0.050	9113185	<0.050	0.050	9113185
Fluorene	ug/L	<0.050	0.050	9113185	<0.050	0.050	9113185	<0.050	0.050	9113185
Phenanthrene	ug/L	<0.050	0.050	9113185	<0.050	0.050	9113185	<0.050	0.050	9113185
Anthracene	ug/L	<0.010	0.010	9113185	<0.010	0.010	9113185	<0.010	0.010	9113185
Acridine	ug/L	<0.050	0.050	9113185	<0.050	0.050	9113185	<0.050	0.050	9113185
Fluoranthene	ug/L	<0.020	0.020	9113185	<0.020	0.020	9113185	<0.020	0.020	9113185
Pyrene	ug/L	<0.020	0.020	9113185	<0.020	0.020	9113185	<0.020	0.020	9113185
Benzo(a)anthracene	ug/L	<0.010	0.010	9113185	<0.010	0.010	9113185	<0.010	0.010	9113185
Chrysene	ug/L	<0.020	0.020	9113185	<0.020	0.020	9113185	<0.020	0.020	9113185
Benzo(b&j)fluoranthene	ug/L	<0.030	0.030	9113185	<0.030	0.030	9113185	<0.030	0.030	9113185
Benzo(k)fluoranthene	ug/L	<0.050	0.050	9113185	<0.050	0.050	9113185	<0.050	0.050	9113185
Benzo(a)pyrene	ug/L	<0.0050	0.0050	9113185	<0.0050	0.0050	9113185	<0.0050	0.0050	9113185
Indeno(1,2,3-cd)pyrene	ug/L	<0.050	0.050	9113185	<0.050	0.050	9113185	<0.050	0.050	9113185
Dibenz(a,h)anthracene	ug/L	<0.0030	0.0030		<0.0030	0.0030	9113185	<0.0030	0.0030	9113185
Benzo(g,h,i)perylene	ug/L	<0.050	0.050	9113185	<0.050	0.050	9113185	<0.050	0.050	9113185
Calculated Parameters		1	1						1	
LEPH (C10-C19 less PAH)	mg/L	<0.20	0.20	9106986				<0.20	0.20	9106986
HEPH (C19-C32 less PAH)	mg/L	<0.20	0.20	9106986				<0.20	0.20	9106986
Ext. Pet. Hydrocarbon		1	1						1	
EPH (C10-C19)	mg/L	<0.20	0.20	9113190	<0.20	0.20	9113190	<0.20	0.20	9113190
EPH (C19-C32)	mg/L	<0.20	0.20	9113190	<0.20	0.20	9113190	<0.20	0.20	9113190
Surrogate Recovery (%)		L	!						!	
O-TERPHENYL (sur.)	%	96		9113190	96		9113190	96		9113190
RDL = Reportable Detection Lir	nit	L	!	L					!	
Lab-Dup = Laboratory Initiated		te								
· , , , , , , , , , , , , , , , , , , ,										

STANTEC CONSULTING LTD. Client Project #: 123221161 Your P.O. #: 123221161-250.200

Sampler Initials: MV

LEPH & HEPH WITH CSR/CCME PAH IN WATER (GROUND WATER)

Maxxam ID		UC1860			UC1860			UC1861		
Sampling Date		2018/08/15			2018/08/15			2018/08/15		
Sampling Date		09:15			09:15			09:35		
COC Number		7960			7960			7960		
	UNITS	MW18-37	RDL	QC Batch	MW18-37 Lab-Dup	RDL	QC Batch	MW18-37A	RDL	QC Batch
D10-ANTHRACENE (sur.)	%	88		9113185	90		9113185	87		9113185
D8-ACENAPHTHYLENE (sur.)	%	91		9113185	91		9113185	89		9113185
D8-NAPHTHALENE (sur.)	%	88		9113185	89		9113185	87		9113185
TERPHENYL-D14 (sur.)	%	86		9113185	87		9113185	86		9113185

RDL = Reportable Detection Limit

Lab-Dup = Laboratory Initiated Duplicate

STANTEC CONSULTING LTD. Client Project #: 123221161 Your P.O. #: 123221161-250.200

Sampler Initials: MV

LEPH & HEPH WITH CSR/CCME PAH IN WATER (GROUND WATER)

Maxxam ID		UC1862		UC1863	UC1864		
Campling Data		2018/08/15		2018/08/15	2018/08/15		
Sampling Date		12:15		15:10	16:00		
COC Number		7960		7960	7960		
	UNITS	MW16-01	RDL	MW18-40	MW18-48	RDL	QC Batch
Calculated Parameters							
Low Molecular Weight PAH's	ug/L	26	0.25	<0.10	<0.10	0.10	9106979
High Molecular Weight PAH`s	ug/L	<0.050	0.050	<0.050	<0.050	0.050	9106979
Total PAH	ug/L	26	0.25	<0.10	<0.10	0.10	9106979
Polycyclic Aromatics							
Quinoline	ug/L	<0.064 (1)	0.064	<0.020	<0.020	0.020	9113185
Naphthalene	ug/L	2.5	0.10	<0.10	<0.10	0.10	9113185
2-Methylnaphthalene	ug/L	6.8	0.10	<0.10	<0.10	0.10	9113185
Acenaphthylene	ug/L	0.054 (2)	0.050	<0.050	<0.050	0.050	9113185
Acenaphthene	ug/L	0.34 (2)	0.050	<0.050	<0.050	0.050	9113185
Fluorene	ug/L	1.4	0.050	<0.050	<0.050	0.050	9113185
Phenanthrene	ug/L	0.62	0.050	<0.050	<0.050	0.050	9113185
Anthracene	ug/L	0.020 (2)	0.010	<0.010	<0.010	0.010	9113185
Acridine	ug/L	<0.050	0.050	<0.050	<0.050	0.050	9113185
Fluoranthene	ug/L	<0.020	0.020	<0.020	<0.020	0.020	9113185
Pyrene	ug/L	<0.020	0.020	<0.020	<0.020	0.020	9113185
Benzo(a)anthracene	ug/L	<0.010	0.010	<0.010	<0.010	0.010	9113185
Chrysene	ug/L	<0.020	0.020	<0.020	<0.020	0.020	9113185
Benzo(b&j)fluoranthene	ug/L	<0.030	0.030	<0.030	<0.030	0.030	9113185
Benzo(k)fluoranthene	ug/L	<0.050	0.050	<0.050	<0.050	0.050	9113185
Benzo(a)pyrene	ug/L	<0.0050	0.0050	<0.0050	<0.0050	0.0050	9113185
Indeno(1,2,3-cd)pyrene	ug/L	<0.050	0.050	<0.050	<0.050	0.050	9113185
Dibenz(a,h)anthracene	ug/L	<0.0030	0.0030	<0.0030	<0.0030	0.0030	9113185
Benzo(g,h,i)perylene	ug/L	<0.050	0.050	<0.050	<0.050	0.050	9113185
Calculated Parameters							
LEPH (C10-C19 less PAH)	mg/L	0.62	0.20	<0.20	<0.20	0.20	9106986
HEPH (C19-C32 less PAH)	mg/L	<0.20	0.20	<0.20	<0.20	0.20	9106986
Ext. Pet. Hydrocarbon							
EPH (C10-C19)	mg/L	0.62	0.20	<0.20	<0.20	0.20	9113190
EPH (C19-C32)	mg/L	<0.20	0.20	<0.20	<0.20	0.20	9113190

RDL = Reportable Detection Limit

⁽¹⁾ Detection limits raised due to matrix interference.

⁽²⁾ Tentatively identified result and may be potentially biased high due to matrix interference.

STANTEC CONSULTING LTD. Client Project #: 123221161 Your P.O. #: 123221161-250.200

Sampler Initials: MV

LEPH & HEPH WITH CSR/CCME PAH IN WATER (GROUND WATER)

Maxxam ID		UC1862		UC1863	UC1864		
Sampling Date		2018/08/15		2018/08/15	2018/08/15		
Sampling Date		12:15		15:10	16:00		
COC Number		7960		7960	7960		
	UNITS	MW16-01	RDL	MW18-40	MW18-48	RDL	QC Batch
Surrogate Recovery (%)							
O-TERPHENYL (sur.)	%	86		93	80		9113190
D10-ANTHRACENE (sur.)	%	87		86	82		9113185
D8-ACENAPHTHYLENE (sur.)	%	93		87	86		9113185
D8-NAPHTHALENE (sur.)	%	84		87	89		9113185
TERPHENYL-D14 (sur.)	%	75		82	72		9113185
RDL = Reportable Detection Li	mit			•			•

STANTEC CONSULTING LTD. Client Project #: 123221161 Your P.O. #: 123221161-250.200

Sampler Initials: MV

CSR DISSOLVED METALS (NO CV-HG) IN WATER

Maxxam ID		UC1860			UC1860			UC1862				
Campling Data		2018/08/15			2018/08/15			2018/08/15				
Sampling Date		09:15			09:15			12:15				
COC Number		7960			7960 7		7960					
	UNITS	MW18-37	RDL	QC Batch	MW18-37	RDL QC Batch		MW16-01	RDL	QC Batch		
	UNITS	INIAN TO-21	KDL	QC Battii	Lab-Dup	KDL	QC Battii	1010010-01	KDL	QC Battii		
Calculated Parameters												
Dissolved Hardness (CaCO3)	mg/L	89.8	0.50	9119988				1030	0.50	9119988		
Dissolved Metals by ICPMS	•			•		•						
Dissolved Arsenic (As)	ug/L	17.5	0.10	9121570	17.4	0.10	9121570	29.0	0.20	9121570		
Dissolved Iron (Fe)	ug/L	<5.0	5.0	9121570	<5.0	5.0	9121570	1700	10	9121570		
Dissolved Manganese (Mn)	ug/L	13.6	1.0	9121570	13.8	1.0	9121570	410	2.0	9121570		
Dissolved Magnesium (Mg)	ug/L	12500	50	9121570	12600	50	9121570	140000	100	9121570		
RDL = Reportable Detection L	RDL = Reportable Detection Limit											
Lab-Dup = Laboratory Initiate	Lab-Dup = Laboratory Initiated Duplicate											

STANTEC CONSULTING LTD. Client Project #: 123221161 Your P.O. #: 123221161-250.200

Sampler Initials: MV

TOTAL TKN IN WATER (GROUND WATER)

	 				
Maxxam ID		UC1860	UC1862		
Sampling Data		2018/08/15	2018/08/15		
Sampling Date		09:15	12:15		
COC Number		7960	7960		
	UNITS	MW18-37	MW16-01	RDL	QC Batch
Calculated Parameters					
Total Total Kjeldahl Nitrogen (Calc)	mg/L	0.120	0.225	0.020	9120647
Nutrients					
Total Nitrogen (N)	mg/L	0.120	0.225	0.020	9123910
RDL = Reportable Detection Limit					

STANTEC CONSULTING LTD. Client Project #: 123221161 Your P.O. #: 123221161-250.200

Sampler Initials: MV

GENERAL COMMENTS

Version 2: Report reissued to update Client ID of sample MW16-13 to MW16-01 and to include results for BTEX/VPH as per request from Matthew Deane on 2018/08/30

Samples analyzed past hold time for BTEX/VPH. Analysis performed with client's consent.

Sample UC1860 [MW18-37]: Sample was analyzed past method specified hold time for Orthophosphate by Konelab. Exceedance of hold time increases the uncertainty of test results but does not necessarily imply that results are compromised. Sample was analyzed past method specified hold time for Nitrate + Nitrite (N). Sample was analyzed past method specified hold time for BTEX/MTBE LH, VH, F1 SIM/MS. Sample was analyzed past method specified hold time for BTEX/MTBE LH, VH, F1 SIM/MS.

Sample UC1862 [MW16-01]: Sample was analyzed past method specified hold time for Orthophosphate by Konelab. Exceedance of hold time increases the uncertainty of test results but does not necessarily imply that results are compromised. Sample was analyzed past method specified hold time for Nitrate + Nitrite (N). Sample was analyzed past method specified hold time for BTEX/MTBE LH, VH, F1 SIM/MS. Sample was analyzed past method specified hold time for BTEX/MTBE LH, VH, F1 SIM/MS.

CSR DISSOLVED METALS (NO CV-HG) IN WATER Comments

Sample UC1862 [MW16-01] Elements by CRC ICPMS (dissolved): RDL raised due to concentration over linear range, sample dilution required.

Results relate only to the items tested.

QUALITY ASSURANCE REPORT

STANTEC CONSULTING LTD. Client Project #: 123221161

Your P.O. #: 123221161-250.200

Sampler Initials: MV

			Matrix	Spike	Spiked	Blank	Method I	Blank	RPD	
QC Batch	Parameter	Date	% Recovery	QC Limits	% Recovery	QC Limits	Value	UNITS	Value (%)	QC Limits
9113185	D10-ANTHRACENE (sur.)	2018/08/22	80	50 - 140	89	50 - 140	91	%		
9113185	D8-ACENAPHTHYLENE (sur.)	2018/08/22	87	50 - 140	90	50 - 140	94	%		
9113185	D8-NAPHTHALENE (sur.)	2018/08/22	98	50 - 140	84	50 - 140	106	%		
9113185	TERPHENYL-D14 (sur.)	2018/08/22	74	50 - 140	90	50 - 140	88	%		
9113190	O-TERPHENYL (sur.)	2018/08/22	100	60 - 140	99	60 - 140	99	%		
9124534	1,4-Difluorobenzene (sur.)	2018/08/30	98	70 - 130	102	70 - 130	107	%		
9124534	4-Bromofluorobenzene (sur.)	2018/08/30	102	70 - 130	101	70 - 130	101	%		
9124534	D4-1,2-Dichloroethane (sur.)	2018/08/30	109	70 - 130	108	70 - 130	114	%		
9113185	2-Methylnaphthalene	2018/08/22	90	50 - 140	79	50 - 140	<0.10	ug/L	NC	40
9113185	Acenaphthene	2018/08/22	85	50 - 140	85	50 - 140	<0.050	ug/L	NC	40
9113185	Acenaphthylene	2018/08/22	83	50 - 140	83	50 - 140	<0.050	ug/L	NC	40
9113185	Acridine	2018/08/22	96	50 - 140	93	50 - 140	<0.050	ug/L	NC	40
9113185	Anthracene	2018/08/22	82	50 - 140	87	50 - 140	<0.010	ug/L	NC	40
9113185	Benzo(a)anthracene	2018/08/22	77	50 - 140	77	50 - 140	<0.010	ug/L	NC	40
9113185	Benzo(a)pyrene	2018/08/22	78	50 - 140	85	50 - 140	<0.0050	ug/L	NC	40
9113185	Benzo(b&j)fluoranthene	2018/08/22	78	50 - 140	84	50 - 140	<0.030	ug/L	NC	40
9113185	Benzo(g,h,i)perylene	2018/08/22	79	50 - 140	93	50 - 140	<0.050	ug/L	NC	40
9113185	Benzo(k)fluoranthene	2018/08/22	82	50 - 140	90	50 - 140	<0.050	ug/L	NC	40
9113185	Chrysene	2018/08/22	79	50 - 140	79	50 - 140	<0.020	ug/L	NC	40
9113185	Dibenz(a,h)anthracene	2018/08/22	81	50 - 140	97	50 - 140	<0.0030	ug/L	NC	40
9113185	Fluoranthene	2018/08/22	78	50 - 140	84	50 - 140	<0.020	ug/L	NC	40
9113185	Fluorene	2018/08/22	81	50 - 140	81	50 - 140	<0.050	ug/L	NC	40
9113185	Indeno(1,2,3-cd)pyrene	2018/08/22	81	50 - 140	94	50 - 140	<0.050	ug/L	NC	40
9113185	Naphthalene	2018/08/22	91	50 - 140	76	50 - 140	<0.10	ug/L	NC	40
9113185	Phenanthrene	2018/08/22	79	50 - 140	82	50 - 140	<0.050	ug/L	NC	40
9113185	Pyrene	2018/08/22	79	50 - 140	86	50 - 140	<0.020	ug/L	NC	40
9113185	Quinoline	2018/08/22	108	50 - 140	105	50 - 140	<0.020	ug/L	NC	40
9113190	EPH (C10-C19)	2018/08/22	94	60 - 140	92	70 - 130	<0.20	mg/L	NC	30
9113190	EPH (C19-C32)	2018/08/22	95	60 - 140	92	70 - 130	<0.20	mg/L	NC	30
9121570	Dissolved Arsenic (As)	2018/08/29	104	80 - 120	104	80 - 120	<0.10	ug/L	0.55	20

QUALITY ASSURANCE REPORT(CONT'D)

STANTEC CONSULTING LTD. Client Project #: 123221161 Your P.O. #: 123221161-250.200

Sampler Initials: MV

			Matrix	Spike	Spiked	Blank	Method	Blank	RP	D
QC Batch	Parameter	Date	% Recovery	QC Limits	% Recovery	QC Limits	Value	UNITS	Value (%)	QC Limits
9121570	Dissolved Iron (Fe)	2018/08/29	97	80 - 120	93	80 - 120	<5.0	ug/L	NC	20
9121570	Dissolved Magnesium (Mg)	2018/08/29	NC	80 - 120	98	80 - 120	<50	ug/L	0.21	20
9121570	Dissolved Manganese (Mn)	2018/08/29	96	80 - 120	97	80 - 120	<1.0	ug/L	1.7	20
9122939	Orthophosphate (P)	2018/08/29			109	80 - 120	<0.0050	mg/L		
9123672	Fluoride (F)	2018/08/30	104	80 - 120	102	80 - 120	<0.020	mg/L	0	20
9123910	Total Nitrogen (N)	2018/08/31	92	80 - 120	87	80 - 120	<0.020	mg/L	3.5	20
9124534	Benzene	2018/08/30	107	70 - 130	99	70 - 130	<0.40	ug/L	NC	30
9124534	Ethylbenzene	2018/08/30	118	70 - 130	110	70 - 130	<0.40	ug/L	NC	30
9124534	m & p-Xylene	2018/08/30	115	70 - 130	108	70 - 130	<0.40	ug/L	NC	30
9124534	Methyl-tert-butylether (MTBE)	2018/08/30	104	70 - 130	96	70 - 130	<4.0	ug/L	NC	30
9124534	o-Xylene	2018/08/30	115	70 - 130	109	70 - 130	<0.40	ug/L	NC	30
9124534	Styrene	2018/08/30	112	70 - 130	104	70 - 130	<0.40	ug/L	NC	30
9124534	Toluene	2018/08/30	105	70 - 130	98	70 - 130	<0.40	ug/L	NC	30
9124534	VH C6-C10	2018/08/30			105	70 - 130	<300	ug/L	NC	30
9124534	Xylenes (Total)	2018/08/30					<0.40	ug/L	NC	30
9124588	Nitrate plus Nitrite (N)	2018/08/30	NC	80 - 120	107	80 - 120	<0.020	mg/L		
9124590	Nitrite (N)	2018/08/30	NC	80 - 120	103	80 - 120	<0.0050	mg/L		
9124729	Dissolved Chloride (CI)	2018/08/30	98	80 - 120	97	80 - 120	<1.0	mg/L	NC	20
9124731	Dissolved Sulphate (SO4)	2018/08/30	93	80 - 120	92	80 - 120	<1.0	mg/L	NC	20
9124816	Total Phosphorus (P)	2018/08/30			105	80 - 120	<0.0050	mg/L		
9125787	Dissolved Sulphate (SO4)	2018/08/31			96	80 - 120	<1.0	mg/L		
9128684	Total Ammonia (N)	2018/09/04	94	80 - 120	101	80 - 120	<0.020	mg/L	8.3	20

QUALITY ASSURANCE REPORT(CONT'D)

STANTEC CONSULTING LTD. Client Project #: 123221161 Your P.O. #: 123221161-250.200

Sampler Initials: MV

			Matrix Spike		Spiked Blank		Method Blank		RPD	
QC Batch	Parameter	Date	% Recovery	QC Limits	% Recovery	QC Limits	Value	UNITS	Value (%)	QC Limits
9128765	Dissolved Organic Carbon (C)	2018/09/04	102	80 - 120	111	80 - 120	<0.50	mg/L	1.6	20

Duplicate: Paired analysis of a separate portion of the same sample. Used to evaluate the variance in the measurement.

Matrix Spike: A sample to which a known amount of the analyte of interest has been added. Used to evaluate sample matrix interference.

Spiked Blank: A blank matrix sample to which a known amount of the analyte, usually from a second source, has been added. Used to evaluate method accuracy.

Method Blank: A blank matrix containing all reagents used in the analytical procedure. Used to identify laboratory contamination.

Surrogate: A pure or isotopically labeled compound whose behavior mirrors the analytes of interest. Used to evaluate extraction efficiency.

NC (Matrix Spike): The recovery in the matrix spike was not calculated. The relative difference between the concentration in the parent sample and the spike amount was too small to permit a reliable recovery calculation (matrix spike concentration was less than the native sample concentration)

NC (Duplicate RPD): The duplicate RPD was not calculated. The concentration in the sample and/or duplicate was too low to permit a reliable RPD calculation (absolute difference <= 2x RDL).

STANTEC CONSULTING LTD. Client Project #: 123221161 Your P.O. #: 123221161-250.200

Sampler Initials: MV

VALIDATION SIGNATURE PAGE

The analytical data and all QC contained in this report were reviewed and validated by the following individual(s).

Andy Lu, Ph.D., P.Chem., Scientific Specialist

Jas Khatkar, BBY Organics

Rob Reinert, B.Sc., Scientific Specialist

Maxxam has procedures in place to guard against improper use of the electronic signature and have the required "signatories", as per section 5.10.2 of ISO/IEC 17025:2005(E), signing the reports. For Service Group specific validation please refer to the Validation Signature Page.

Custody Tracking Form

Please use this form for custody tracking when submitting the work instructions via eTR (electronic Test Requisition).

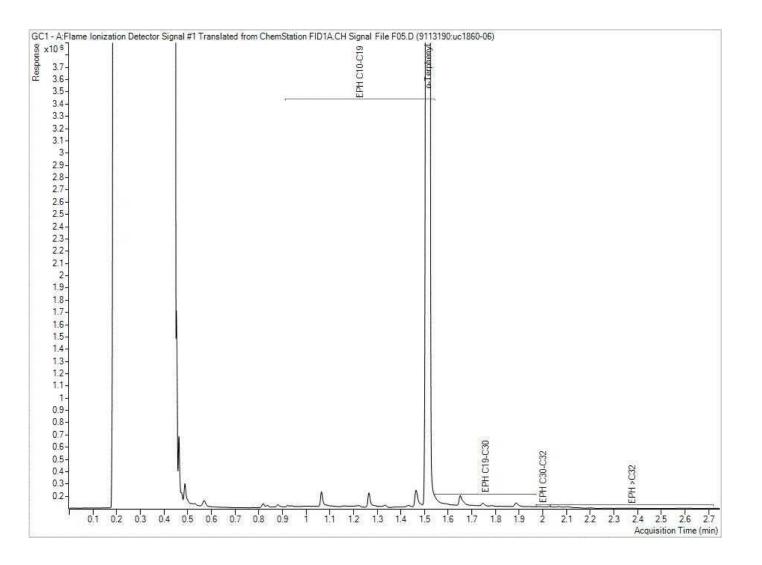
Please ensure your form has a barcode or a Maxxam eTR confirmation number in the top right hand side. This number links your electronic submission to your samples.

First Sample: Last Sample: Sample Count:

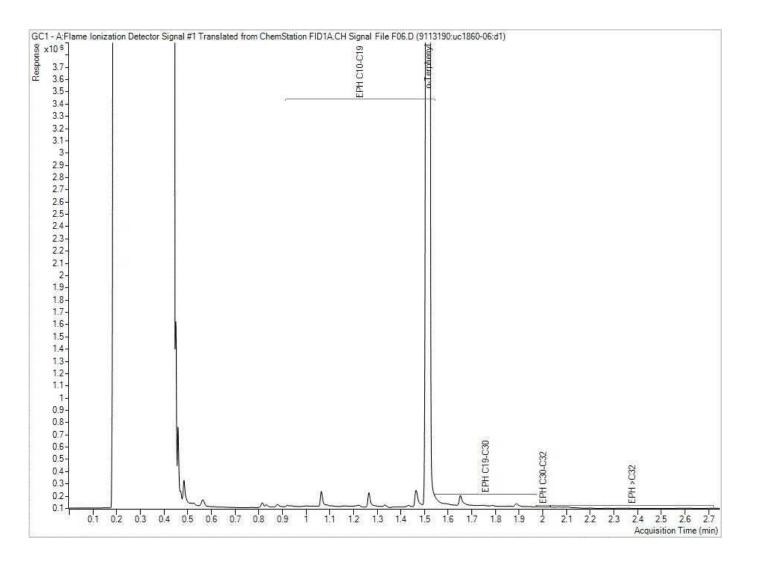
1

	Relinquished By				Received By		
Casa Poul I - I -	0 800	Date	2018/08/14	Print	St. L. Sign .	Date	2018/03/16
Caren Sibbal of	Cerson	Time (24 HR)	17-1010	NIDA ICAZMI	Widakazmi	Time (24 HR)	15:50
Print	Sign	Date	YYYY/MM/DD	Print	Sign	Date	YYYY/MAE/DD
10111111	10.41.	Time (24 HR)	HH:NIM			Time (24 HR)	HERAIN
Peint	Sign	Date	YYYYMMYDD	Print	Sign	Date	YYYY/MM/00
1. See A.	1000	Time (24 HR)	HHMM			Time (24 HR)	HMONN

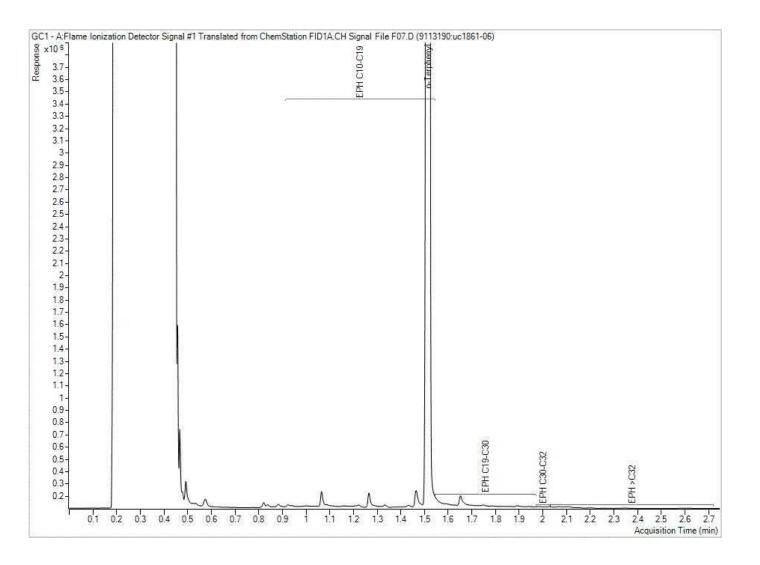
npled By	# of Coolers/Pkgs:	Rush 🗌	Immediate Test		E/	ood Resid	lua T
		Micro 🗆	minediate rest			d Chemis	
eceived At	Comments:	AND DESCRIPTION OF THE PERSON NAMED IN COLUMN TWO IS NOT THE PERSON NAMED IN COLUMN TWO IS NAMED IN COLUMN TWIND TWO IS NAMED IN COLUMN TWO IS NAMED IN COLUMN TWO IS NAMED IN	dy Seal	Cooling	Tei	mperatur	e °C
eceived At		Custo		Cooling Media	Ter 1	mperatur 2	re °C


1465

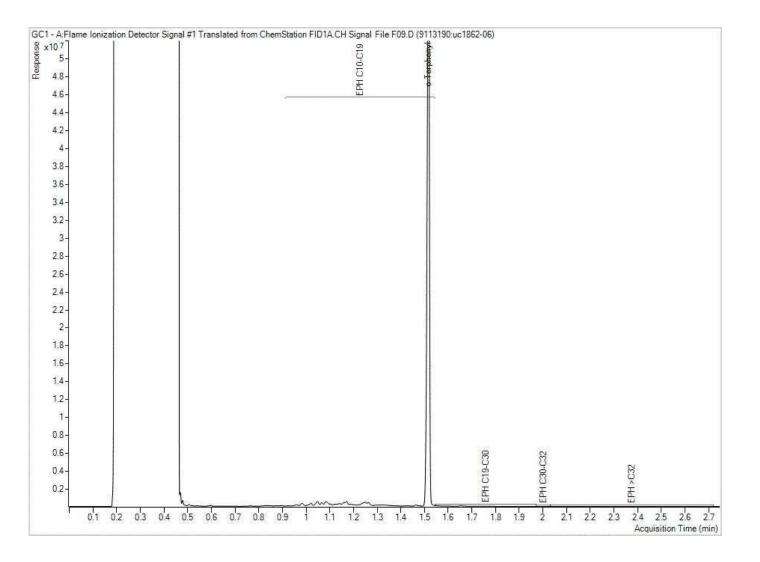
B869306_COC


STANTEC CONSULTING LTD. Client Project #: 123221161 Client ID: MW18-37

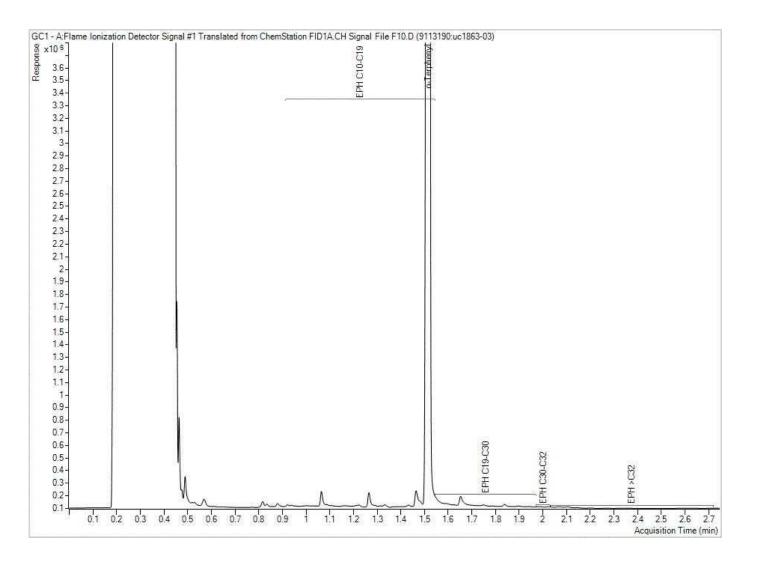
EPH in Water when PAH required Chromatogram


STANTEC CONSULTING LTD. Client Project #: 123221161 Client ID: MW18-37

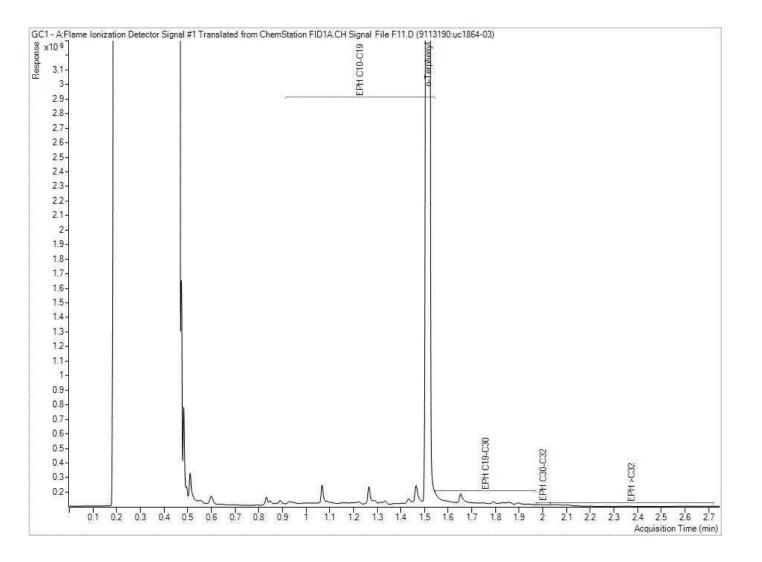
EPH in Water when PAH required Chromatogram


STANTEC CONSULTING LTD. Client Project #: 123221161 Client ID: MW18-37A

EPH in Water when PAH required Chromatogram


STANTEC CONSULTING LTD. Client Project #: 123221161 Client ID: MW16-01

EPH in Water when PAH required Chromatogram


STANTEC CONSULTING LTD. Client Project #: 123221161 Client ID: MW18-40

EPH in Water when PAH required Chromatogram

STANTEC CONSULTING LTD. Client Project #: 123221161 Client ID: MW18-48

EPH in Water when PAH required Chromatogram

Your P.O. #: 123221161-250.200 Your Project #: 123221161 Your C.O.C. #: 7959

Attention: Carey Sibbald

STANTEC CONSULTING LTD.
Whitehorse_
107 Main Street
Suite 202
Whitehorse, YT
CANADA Y1A 2A7

Report Date: 2018/09/04

Report #: R2613582 Version: 4 - Revision

CERTIFICATE OF ANALYSIS – REVISED REPORT

MAXXAM JOB #: B869556 Received: 2018/08/15, 10:00

Sample Matrix: GROUND WATER

Samples Received: 5

		Date	Date		
Analyses	Quantity	Extracted	Analyzed	Laboratory Method	Analytical Method
BTEX/MTBE LH, VH, F1 SIM/MS	2	N/A	2018/08/30	BBY8SOP-00010/11/12	BCMOE BCLM Jul 2017
Chloride by Automated Colourimetry	2	N/A	2018/08/30	BBY6SOP-00011	SM 22 4500-Cl- E m
Carbon (DOC) - field filtered/preserved (1)	2	N/A	2018/09/04	BBY6SOP-00003	SM 22 5310 C m
Fluoride	2	N/A	2018/08/30	BBY6SOP-00048	SM 22 4500-F C m
Hardness (calculated as CaCO3)	2	N/A	2018/08/29	BBY WI-00033	Auto Calc
EPH in Water when PAH required	5	2018/08/22	2018/08/22	BBY8SOP-00029	BCMOE BCLM Mar 2017
Elements by CRC ICPMS (dissolved)	2	N/A	2018/08/29	BBY7SOP-00002	EPA 6020b R2 m
Nitrogen (Total)	2	N/A	2018/08/31	BBY6SOP-00016	SM 22 4500-N C m
Ammonia-N (Preserved)	2	N/A	2018/09/04	BBY6SOP-00009	EPA 350.1 m
Nitrate + Nitrite (N)	2	N/A	2018/08/30	BBY6SOP-00010	SM 23 4500-NO3- I m
Nitrite (N) by CFA	2	N/A	2018/08/30	BBY6SOP-00010	SM 22 4500-NO3- I m
Nitrogen - Nitrate (as N)	2	N/A	2018/08/30	BBY WI-00033	Auto Calc
PAH in Water by GC/MS (SIM)	5	2018/08/22	2018/08/23	BBY8SOP-00021	BCMOE BCLM Jul2017m
Total LMW, HMW, Total PAH Calc (2)	5	N/A	2018/08/23	BBY WI-00033	Auto Calc
Orthophosphate by Konelab	2	N/A	2018/08/29	BBY6SOP-00013	SM 22 4500-P E m
Sulphate by Automated Colourimetry	2	N/A	2018/08/30	BBY6SOP-00017	SM 22 4500-SO42- E m
EPH less PAH in Water by GC/FID (3)	5	N/A	2018/08/23	BBY WI-00033	Auto Calc
TKN (Calc. TN, N/N) total	2	N/A	2018/08/31	BBY WI-00033	Auto Calc
Total Phosphorus	2	2018/08/30	2018/08/30	BBY6SOP-00013	SM 22 4500-P E m
Volatile HC-BTEX (4)	2	N/A	2018/08/31	BBY WI-00033	Auto Calc

Remarks:

Maxxam Analytics' laboratories are accredited to ISO/IEC 17025:2005 for specific parameters on scopes of accreditation. Unless otherwise noted, procedures used by Maxxam are based upon recognized Provincial, Federal or US method compendia such as CCME, MDDELCC, EPA, APHA.

All work recorded herein has been done in accordance with procedures and practices ordinarily exercised by professionals in Maxxam's profession using accepted testing methodologies, quality assurance and quality control procedures (except where otherwise agreed by the client and Maxxam in writing). All data is in statistical control and has met quality control and method performance criteria unless otherwise noted. All method blanks are reported; unless indicated otherwise, associated sample data are not blank corrected. Where applicable, unless otherwise noted, Measurement Uncertainty has not been accounted for when stating conformity to the referenced standard.

Your P.O. #: 123221161-250.200 Your Project #: 123221161 Your C.O.C. #: 7959

Attention: Carey Sibbald
STANTEC CONSULTING LTD.
Whitehorse_
107 Main Street
Suite 202
Whitehorse, YT

Y1A 2A7

CANADA

Report Date: 2018/09/04

Report #: R2613582 Version: 4 - Revision

CERTIFICATE OF ANALYSIS – REVISED REPORT

MAXXAM JOB #: B869556 Received: 2018/08/15, 10:00

Maxxam Analytics' liability is limited to the actual cost of the requested analyses, unless otherwise agreed in writing. There is no other warranty expressed or implied. Maxxam has been retained to provide analysis of samples provided by the Client using the testing methodology referenced in this report. Interpretation and use of test results are the sole responsibility of the Client and are not within the scope of services provided by Maxxam, unless otherwise agreed in writing. Maxxam is not responsible for the accuracy or any data impacts, that result from the information provided by the customer or their agent.

Solid sample results, except biota, are based on dry weight unless otherwise indicated. Organic analyses are not recovery corrected except for isotope dilution methods.

Results relate to samples tested. When sampling is not conducted by Maxxam, results relate to the supplied samples tested.

This Certificate shall not be reproduced except in full, without the written approval of the laboratory.

Reference Method suffix "m" indicates test methods incorporate validated modifications from specific reference methods to improve performance.

- * RPDs calculated using raw data. The rounding of final results may result in the apparent difference.
- (1) DOC present in the sample should be considered as non-purgeable DOC.
- (2) Total PAHs in Water include: Quinoline, Naphthalene, 1-Methylnaphthalene, 2-Methylnaphthalene, Acenaphthylene, Acenaphthene, Fluorene, Phenanthrene, Anthracene, Acridine, Fluoranthene, Pyrene, Benzo(a)anthracene, Chrysene, Benzo(b&j)fluoranthene, Benzo(k)fluoranthene, Benzo(a)pyrene, Indeno(1,2,3-cd)pyrene, Dibenz(a,h)anthracene, and Benzo(g,h,i)perylene.
- (3) LEPH = EPH (C10 to C19) (Acenaphthene + Acridine + Anthracene + Fluorene + Naphthalene + Phenanthrene)

HEPH = EPH (C19 to C32) - (Benzo(a)anthracene + Benzo(a)pyrene + Fluoranthene + Pyrene)

(4) VPH = VH - (Benzene + Toluene + Ethylbenzene + m & p-Xylene + o-Xylene + Styrene)

Encryption Key

Please direct all questions regarding this Certificate of Analysis to your Project Manager. Nahed Amer, Project Manager Email: NAmer@maxxam.ca Phone# (604) 734 7276

Maxxam has procedures in place to guard against improper use of the electronic signature and have the required "signatories", as per section 5.10.2 of ISO/IEC 17025:2005(E), signing the reports. For Service Group specific validation please refer to the Validation Signature Page.

Total Cover Pages : 2 Page 2 of 19

STANTEC CONSULTING LTD. Client Project #: 123221161 Your P.O. #: 123221161-250.200

Sampler Initials: MV

RESULTS OF CHEMICAL ANALYSES OF GROUND WATER

Maxxam ID		UC3160	UC3161		
Sampling Date		2018/08/14	2018/08/14		
Sampling Date		14:35	16:25		
COC Number		7959	7959		
	UNITS	MW18-54	MW18-51	RDL	QC Batch
ANIONS					
Nitrite (N)	mg/L	<0.0050	<0.0050	0.0050	9124590
Calculated Parameters					
Nitrate (N)	mg/L	<0.020	0.056	0.020	9120246
Misc. Inorganics	-				
Fluoride (F)	mg/L	0.210	0.200	0.020	9123672
Dissolved Organic Carbon (C)	mg/L	3.58	3.49	0.50	9128765
Anions					
Dissolved Sulphate (SO4)	mg/L	294 (1)	392 (1)	10	9124731
Dissolved Chloride (Cl)	mg/L	8.1	5.3	1.0	9124729
Nutrients					
Orthophosphate (P)	mg/L	0.0122	0.0082	0.0050	9122939
Total Ammonia (N)	mg/L	<0.020	0.077	0.020	9128687
Nitrate plus Nitrite (N)	mg/L	<0.020	0.056	0.020	9124588
Total Phosphorus (P)	mg/L	0.0080	0.0191	0.0050	9124824
DDI Danastalila Datastian II	**				

RDL = Reportable Detection Limit

⁽¹⁾ Detection limits raised due to dilution to bring analyte within the calibrated range.

STANTEC CONSULTING LTD. Client Project #: 123221161 Your P.O. #: 123221161-250.200

Sampler Initials: MV

CSR BTEX/VPH IN WATER (GROUND WATER)

Maxxam ID		UC3160	UC3161		
Sampling Data		2018/08/14	2018/08/14		
Sampling Date		14:35	16:25		
COC Number		7959	7959		
	UNITS	MW18-54	MW18-51	RDL	QC Batch
Calculated Parameters					
VPH (VH6 to 10 - BTEX)	ug/L	<300	<300	300	9124041
Volatiles					
Methyl-tert-butylether (MTBE)	ug/L	<4.0	<4.0	4.0	9124534
Benzene	ug/L	<0.40	<0.40	0.40	9124534
Toluene	ug/L	1.2	<0.40	0.40	9124534
Ethylbenzene	ug/L	<0.40	<0.40	0.40	9124534
m & p-Xylene	ug/L	1.9	<0.40	0.40	9124534
o-Xylene	ug/L	0.73	<0.40	0.40	9124534
Styrene	ug/L	<0.40	<0.40	0.40	9124534
Xylenes (Total)	ug/L	2.6	<0.40	0.40	9124534
VH C6-C10	ug/L	<300	<300	300	9124534
Surrogate Recovery (%)					
1,4-Difluorobenzene (sur.)	%	102	103		9124534
4-Bromofluorobenzene (sur.)	%	102	103		9124534
D4-1,2-Dichloroethane (sur.)	%	114	117	_	9124534
RDL = Reportable Detection Limi	t				

STANTEC CONSULTING LTD. Client Project #: 123221161 Your P.O. #: 123221161-250.200

Sampler Initials: MV

LEPH & HEPH WITH CSR/CCME PAH IN WATER (GROUND WATER)

Maxxam ID		UC3158	UC3159	UC3160	UC3161	UC3162		
		2018/08/14	2018/08/14	2018/08/14	2018/08/14	2018/08/14		
Sampling Date		10:00	10:40	14:35	16:25	17:10		
COC Number		7959	7959	7959	7959	7959		
	UNITS	MW18-53	MW18-55	MW18-54	MW18-51	MW18-50	RDL	QC Batch
Calculated Parameters								
Low Molecular Weight PAH`s	ug/L	<0.10	0.14	<0.10	<0.10	<0.10	0.10	9109381
High Molecular Weight PAH`s	ug/L	<0.050	<0.050	<0.050	<0.050	<0.050	0.050	9109381
Total PAH	ug/L	<0.10	0.14	<0.10	<0.10	<0.10	0.10	9109381
Polycyclic Aromatics								
Quinoline	ug/L	<0.020	<0.020	<0.020	<0.020	<0.020	0.020	9113185
Naphthalene	ug/L	<0.10	<0.10	<0.10	<0.10	<0.10	0.10	9113185
1-Methylnaphthalene	ug/L	<0.050	<0.050	<0.050	<0.050	<0.050	0.050	9113185
2-Methylnaphthalene	ug/L	<0.10	<0.10	<0.10	<0.10	<0.10	0.10	9113185
Acenaphthylene	ug/L	<0.050	<0.050	<0.050	<0.050	<0.050	0.050	9113185
Acenaphthene	ug/L	<0.050	0.14	<0.050	<0.050	<0.050	0.050	9113185
Fluorene	ug/L	<0.050	<0.050	<0.050	<0.050	<0.050	0.050	9113185
Phenanthrene	ug/L	<0.050	<0.050	<0.050	<0.050	<0.050	0.050	9113185
Anthracene	ug/L	<0.010	<0.010	<0.010	<0.010	<0.010	0.010	9113185
Acridine	ug/L	<0.050	<0.050	<0.050	<0.050	<0.050	0.050	9113185
Fluoranthene	ug/L	<0.020	<0.020	<0.020	<0.020	<0.020	0.020	9113185
Pyrene	ug/L	<0.020	<0.020	<0.020	<0.020	<0.020	0.020	9113185
Benzo(a)anthracene	ug/L	<0.010	<0.010	<0.010	<0.010	<0.010	0.010	9113185
Chrysene	ug/L	<0.020	<0.020	<0.020	<0.020	<0.020	0.020	9113185
Benzo(b&j)fluoranthene	ug/L	<0.030	<0.030	<0.030	<0.030	<0.030	0.030	9113185
Benzo(k)fluoranthene	ug/L	<0.050	<0.050	<0.050	<0.050	<0.050	0.050	9113185
Benzo(a)pyrene	ug/L	<0.0050	<0.0050	<0.0050	<0.0050	<0.0050	0.0050	9113185
Indeno(1,2,3-cd)pyrene	ug/L	<0.050	<0.050	<0.050	<0.050	<0.050	0.050	9113185
Dibenz(a,h)anthracene	ug/L	<0.0030	<0.0030	<0.0030	<0.0030	<0.0030	0.0030	9113185
Benzo(g,h,i)perylene	ug/L	<0.050	<0.050	<0.050	<0.050	<0.050	0.050	9113185
Calculated Parameters								
LEPH (C10-C19 less PAH)	mg/L	<0.20	<0.20	<0.20	<0.20	<0.20	0.20	9109382
HEPH (C19-C32 less PAH)	mg/L	<0.20	<0.20	<0.20	<0.20	<0.20	0.20	9109382
Ext. Pet. Hydrocarbon								
EPH (C10-C19)	mg/L	<0.20	<0.20	<0.20	<0.20	<0.20	0.20	9113190
EPH (C19-C32)	mg/L	<0.20	<0.20	<0.20	<0.20	<0.20	0.20	9113190
Surrogate Recovery (%)								
O-TERPHENYL (sur.)	%	90	92	90	91	98		9113190
RDL = Reportable Detection Lin	nit							

STANTEC CONSULTING LTD. Client Project #: 123221161 Your P.O. #: 123221161-250.200

Sampler Initials: MV

LEPH & HEPH WITH CSR/CCME PAH IN WATER (GROUND WATER)

Maxxam ID		UC3158	UC3159	UC3160	UC3161	UC3162		
Samuling Date		2018/08/14	2018/08/14	2018/08/14	2018/08/14	2018/08/14		
Sampling Date		10:00	10:40	14:35	16:25	17:10		
COC Number		7959	7959	7959	7959	7959		
	UNITS	MW18-53	MW18-55	MW18-54	MW18-51	MW18-50	RDL	QC Batch
D10-ANTHRACENE (sur.)	%	85	86	83	91	85		9113185
D8-ACENAPHTHYLENE (sur.)	%	87	91	90	94	87		9113185
D8-NAPHTHALENE (sur.)	%	87	86	103	93	84		9113185
TERPHENYL-D14 (sur.)	%	80	82	78	85	83		9113185
RDL = Reportable Detection Li	mit							

STANTEC CONSULTING LTD. Client Project #: 123221161 Your P.O. #: 123221161-250.200

Sampler Initials: MV

CSR DISSOLVED METALS (NO CV-HG) IN WATER

Maxxam ID		UC3160		UC3161		
Sampling Date		2018/08/14		2018/08/14		
Sampling Date		14:35		16:25		
COC Number		7959		7959		
	UNITS	MW18-54	RDL	MW18-51	RDL	QC Batch
Calculated Parameters						
Dissolved Hardness (CaCO3)	mg/L	604	0.50	694	0.50	9121143
Dissolved Metals by ICPMS						
Dissolved Arsenic (As)	ug/L	0.70	0.10	3.59	0.20	9121570
Dissolved Iron (Fe)	ug/L	15.4	5.0	101	10	9121570
Dissolved Manganese (Mn)	ug/L	734	1.0	293	2.0	9121570
Dissolved Magnesium (Mg)	ug/L	70400	50	75200	100	9121570
RDL = Reportable Detection L	imit					

STANTEC CONSULTING LTD. Client Project #: 123221161 Your P.O. #: 123221161-250.200

Sampler Initials: MV

TOTAL TKN IN WATER (GROUND WATER)

Maxxam ID		UC3160	UC3161		
Sampling Date		2018/08/14	2018/08/14		
Sampling Date		14:35	16:25		
COC Number		7959	7959		
	UNITS	MW18-54	MW18-51	RDL	QC Batch
Calculated Parameters					
Total Total Kjeldahl Nitrogen (Calc)	mg/L	0.108	0.131	0.020	9120647
Nutrients					
Total Nitrogen (N)	mg/L	0.108	0.187	0.020	9123908
RDL = Reportable Detection Limit					

STANTEC CONSULTING LTD. Client Project #: 123221161 Your P.O. #: 123221161-250.200

Sampler Initials: MV

GENERAL COMMENTS

Version 2: Report reissued to include results for BTEX/VPH on sample MW18-51 and MW18-54 as per request from Matthew Deane on 2018/08/30 Samples analyzed past hold time for BTEX/VPH. Analysis performed with client's consent.

Sample UC3160 [MW18-54]: Sample was analyzed past method specified hold time for Orthophosphate by Konelab. Exceedance of hold time increases the uncertainty of test results but does not necessarily imply that results are compromised. Sample was analyzed past method specified hold time for Nitrate + Nitrite (N). Sample was analyzed past method specified hold time for Nitrite (N) by CFA. Sample was analyzed past method specified hold time for BTEX/MTBE LH, VH, F1 SIM/MS.

Sample UC3161 [MW18-51]: Sample was analyzed past method specified hold time for Orthophosphate by Konelab. Exceedance of hold time increases the uncertainty of test results but does not necessarily imply that results are compromised. Sample was analyzed past method specified hold time for Nitrate + Nitrite (N). Sample was analyzed past method specified hold time for Nitrite (N) by CFA. Sample was analyzed past method specified hold time for BTEX/MTBE LH, VH, F1 SIM/MS.

CSR DISSOLVED METALS (NO CV-HG) IN WATER Comments

Sample UC3161 [MW18-51] Elements by CRC ICPMS (dissolved): RDL raised due to concentration over linear range, sample dilution required.

Results relate only to the items tested.

QUALITY ASSURANCE REPORT

STANTEC CONSULTING LTD. Client Project #: 123221161

Your P.O. #: 123221161-250.200

Sampler Initials: MV

			Matrix	Spike	Spiked	Blank	Method I	Blank	RP	D
QC Batch	Parameter	Date	% Recovery	QC Limits	% Recovery	QC Limits	Value	UNITS	Value (%)	QC Limits
9113185	D10-ANTHRACENE (sur.)	2018/08/22	80	50 - 140	89	50 - 140	91	%		
9113185	D8-ACENAPHTHYLENE (sur.)	2018/08/22	87	50 - 140	90	50 - 140	94	%		
9113185	D8-NAPHTHALENE (sur.)	2018/08/22	98	50 - 140	84	50 - 140	106	%		
9113185	TERPHENYL-D14 (sur.)	2018/08/22	74	50 - 140	90	50 - 140	88	%		
9113190	O-TERPHENYL (sur.)	2018/08/22	100	60 - 140	99	60 - 140	99	%		
9124534	1,4-Difluorobenzene (sur.)	2018/08/30	98	70 - 130	102	70 - 130	107	%		
9124534	4-Bromofluorobenzene (sur.)	2018/08/30	102	70 - 130	101	70 - 130	101	%		
9124534	D4-1,2-Dichloroethane (sur.)	2018/08/30	109	70 - 130	108	70 - 130	114	%		
9113185	1-Methylnaphthalene	2018/08/22	96	50 - 140	86	50 - 140	<0.050	ug/L		
9113185	2-Methylnaphthalene	2018/08/22	90	50 - 140	79	50 - 140	<0.10	ug/L	NC	40
9113185	Acenaphthene	2018/08/22	85	50 - 140	85	50 - 140	<0.050	ug/L	NC	40
9113185	Acenaphthylene	2018/08/22	83	50 - 140	83	50 - 140	<0.050	ug/L	NC	40
9113185	Acridine	2018/08/22	96	50 - 140	93	50 - 140	<0.050	ug/L	NC	40
9113185	Anthracene	2018/08/22	82	50 - 140	87	50 - 140	<0.010	ug/L	NC	40
9113185	Benzo(a)anthracene	2018/08/22	77	50 - 140	77	50 - 140	<0.010	ug/L	NC	40
9113185	Benzo(a)pyrene	2018/08/22	78	50 - 140	85	50 - 140	<0.0050	ug/L	NC	40
9113185	Benzo(b&j)fluoranthene	2018/08/22	78	50 - 140	84	50 - 140	<0.030	ug/L	NC	40
9113185	Benzo(g,h,i)perylene	2018/08/22	79	50 - 140	93	50 - 140	<0.050	ug/L	NC	40
9113185	Benzo(k)fluoranthene	2018/08/22	82	50 - 140	90	50 - 140	<0.050	ug/L	NC	40
9113185	Chrysene	2018/08/22	79	50 - 140	79	50 - 140	<0.020	ug/L	NC	40
9113185	Dibenz(a,h)anthracene	2018/08/22	81	50 - 140	97	50 - 140	<0.0030	ug/L	NC	40
9113185	Fluoranthene	2018/08/22	78	50 - 140	84	50 - 140	<0.020	ug/L	NC	40
9113185	Fluorene	2018/08/22	81	50 - 140	81	50 - 140	<0.050	ug/L	NC	40
9113185	Indeno(1,2,3-cd)pyrene	2018/08/22	81	50 - 140	94	50 - 140	<0.050	ug/L	NC	40
9113185	Naphthalene	2018/08/22	91	50 - 140	76	50 - 140	<0.10	ug/L	NC	40
9113185	Phenanthrene	2018/08/22	79	50 - 140	82	50 - 140	<0.050	ug/L	NC	40
9113185	Pyrene	2018/08/22	79	50 - 140	86	50 - 140	<0.020	ug/L	NC	40
9113185	Quinoline	2018/08/22	108	50 - 140	105	50 - 140	<0.020	ug/L	NC	40
9113190	EPH (C10-C19)	2018/08/22	94	60 - 140	92	70 - 130	<0.20	mg/L	NC	30
9113190	EPH (C19-C32)	2018/08/22	95	60 - 140	92	70 - 130	<0.20	mg/L	NC	30

QUALITY ASSURANCE REPORT(CONT'D)

STANTEC CONSULTING LTD. Client Project #: 123221161 Your P.O. #: 123221161-250.200

Sampler Initials: MV

			Matrix	Spike	Spiked	Blank	Method I	Blank	RP	D
QC Batch	Parameter	Date	% Recovery	QC Limits	% Recovery	QC Limits	Value	UNITS	Value (%)	QC Limits
9121570	Dissolved Arsenic (As)	2018/08/29	104	80 - 120	104	80 - 120	<0.10	ug/L	0.55	20
9121570	Dissolved Iron (Fe)	2018/08/29	97	80 - 120	93	80 - 120	<5.0	ug/L	NC	20
9121570	Dissolved Magnesium (Mg)	2018/08/29	NC	80 - 120	98	80 - 120	<50	ug/L	0.21	20
9121570	Dissolved Manganese (Mn)	2018/08/29	96	80 - 120	97	80 - 120	<1.0	ug/L	1.7	20
9122939	Orthophosphate (P)	2018/08/29			109	80 - 120	<0.0050	mg/L		
9123672	Fluoride (F)	2018/08/30	104	80 - 120	102	80 - 120	<0.020	mg/L	0	20
9123908	Total Nitrogen (N)	2018/08/31	92	80 - 120	90	80 - 120	<0.020	mg/L	NC	20
9124534	Benzene	2018/08/30	107	70 - 130	99	70 - 130	<0.40	ug/L	NC	30
9124534	Ethylbenzene	2018/08/30	118	70 - 130	110	70 - 130	<0.40	ug/L	NC	30
9124534	m & p-Xylene	2018/08/30	115	70 - 130	108	70 - 130	<0.40	ug/L	NC	30
9124534	Methyl-tert-butylether (MTBE)	2018/08/30	104	70 - 130	96	70 - 130	<4.0	ug/L	NC	30
9124534	o-Xylene	2018/08/30	115	70 - 130	109	70 - 130	<0.40	ug/L	NC	30
9124534	Styrene	2018/08/30	112	70 - 130	104	70 - 130	<0.40	ug/L	NC	30
9124534	Toluene	2018/08/30	105	70 - 130	98	70 - 130	<0.40	ug/L	NC	30
9124534	VH C6-C10	2018/08/30			105	70 - 130	<300	ug/L	NC	30
9124534	Xylenes (Total)	2018/08/30					<0.40	ug/L	NC	30
9124588	Nitrate plus Nitrite (N)	2018/08/30	NC	80 - 120	107	80 - 120	<0.020	mg/L		
9124590	Nitrite (N)	2018/08/30	NC	80 - 120	103	80 - 120	<0.0050	mg/L		
9124729	Dissolved Chloride (CI)	2018/08/30	98	80 - 120	97	80 - 120	<1.0	mg/L	NC	20
9124731	Dissolved Sulphate (SO4)	2018/08/30	93	80 - 120	92	80 - 120	<1.0	mg/L	NC	20
9124824	Total Phosphorus (P)	2018/08/30			98	80 - 120	<0.0050	mg/L		
9128687	Total Ammonia (N)	2018/09/04	93	80 - 120	95	80 - 120	<0.020	mg/L	4.9	20

QUALITY ASSURANCE REPORT(CONT'D)

STANTEC CONSULTING LTD. Client Project #: 123221161 Your P.O. #: 123221161-250.200

Sampler Initials: MV

			Matrix	Spike	Spiked	Blank	Method B	Blank	RPI)
QC Batch	Parameter	Date	% Recovery	QC Limits	% Recovery	QC Limits	Value	UNITS	Value (%)	QC Limits
9128765	Dissolved Organic Carbon (C)	2018/09/04	102	80 - 120	111	80 - 120	<0.50	mg/L	1.6	20

Duplicate: Paired analysis of a separate portion of the same sample. Used to evaluate the variance in the measurement.

Matrix Spike: A sample to which a known amount of the analyte of interest has been added. Used to evaluate sample matrix interference.

Spiked Blank: A blank matrix sample to which a known amount of the analyte, usually from a second source, has been added. Used to evaluate method accuracy.

Method Blank: A blank matrix containing all reagents used in the analytical procedure. Used to identify laboratory contamination.

Surrogate: A pure or isotopically labeled compound whose behavior mirrors the analytes of interest. Used to evaluate extraction efficiency.

NC (Matrix Spike): The recovery in the matrix spike was not calculated. The relative difference between the concentration in the parent sample and the spike amount was too small to permit a reliable recovery calculation (matrix spike concentration was less than the native sample concentration)

NC (Duplicate RPD): The duplicate RPD was not calculated. The concentration in the sample and/or duplicate was too low to permit a reliable RPD calculation (absolute difference <= 2x RDL).

STANTEC CONSULTING LTD. Client Project #: 123221161 Your P.O. #: 123221161-250.200

Sampler Initials: MV

VALIDATION SIGNATURE PAGE

The analytical data and all QC contained in this report were reviewed and validated by the following individual(s).

Andy Lu, Ph.D., P.Chem., Scientific Specialist

Jas Khatkar, BBY Organics

Rob Reinert, B.Sc., Scientific Specialist

Maxxam has procedures in place to guard against improper use of the electronic signature and have the required "signatories", as per section 5.10.2 of ISO/IEC 17025:2005(E), signing the reports. For Service Group specific validation please refer to the Validation Signature Page.

Stantec

Custody Tracking Form

Aus. 14

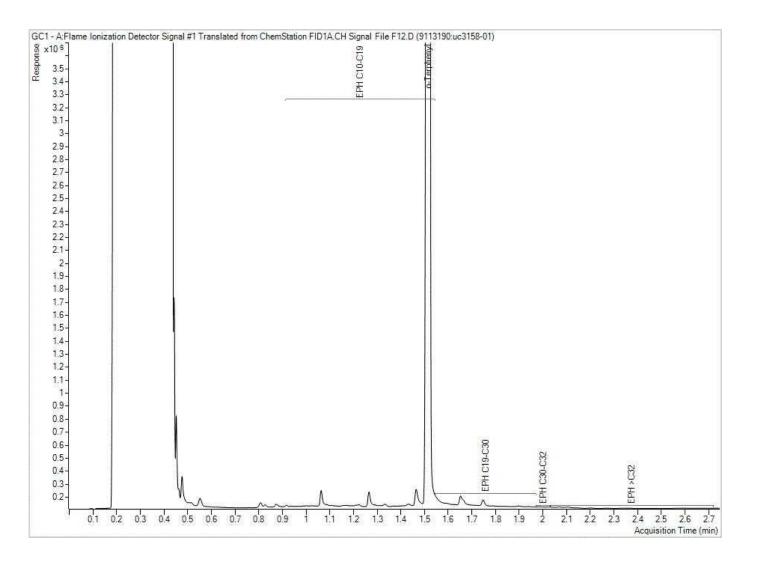
Please use this form for custody tracking when submitting the work instructions via eTR (electronic Test Requisition).

Please ensure your form has a barcode or a Maxxam eTR confirmation number in the top right hand side. This number links your electronic submission to your samples.

First Sample:

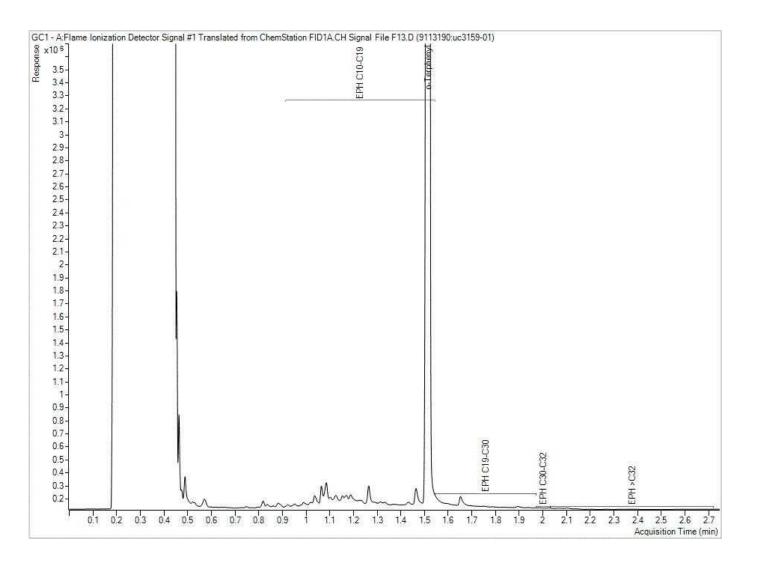
Last Sample:

Sample Count:

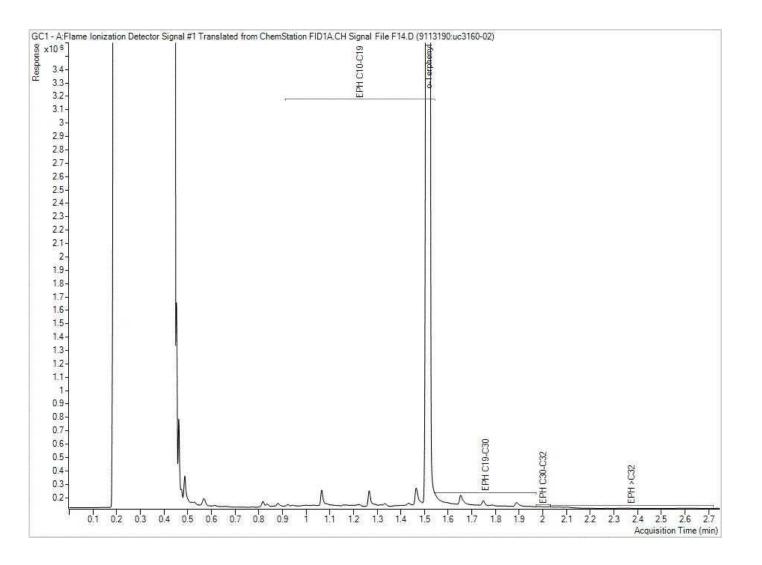

1

arey Sibbald		the same of the last of the la				- 7				
The second of the second	Cerda	Date	2018/08/15	AMPEAWA	N/C		Date		241	8/08/
areasonata	esoce	Time (24 HR)	10000	ANDREA WAY	1001	CA	Time (2	4 HR)	17	0030
Print	Sign	Date	YYYYMM/DD	Print		5lgn	Date		1202	/MM/GD
		Time (24 HR)	HH:MM				Time (2	4 HR)	HI	4:4/5/
Prinz	Sign	Date	YYYY/MM/DD	Print		Sign	Date		YYYY	/MM//DD
9		Time (24 HR)	HH MM				Time (2	4 HR)	HI	H.MM
	141		ers/Pkgs:	Rush Micro		Immediate Test			ood Resid	V-22
		(1) (A) (A) (A)		Micro 🗌		Immediate Test				V
			*** LAB USE	Micro 🗌				Foo	d Chemist	try 🗆
Received At	Comme	ents:		Micro E ONLY ***	Custod	y Seal	Cooling	Foo	d Chemist	e°C
Received At			*** LAB USE	Micro E ONLY ***				Foo	d Chemist	try 🗆
Received At Labeled By			*** LAB USE	Micro E ONLY ***	Custod	y Seal	Cooling	Foo	d Chemist	e°C
ACTION OF THE PROPERTY OF THE				Micro E ONLY ***	Custod	y Seal	Cooling	Foo	mperature	e°C

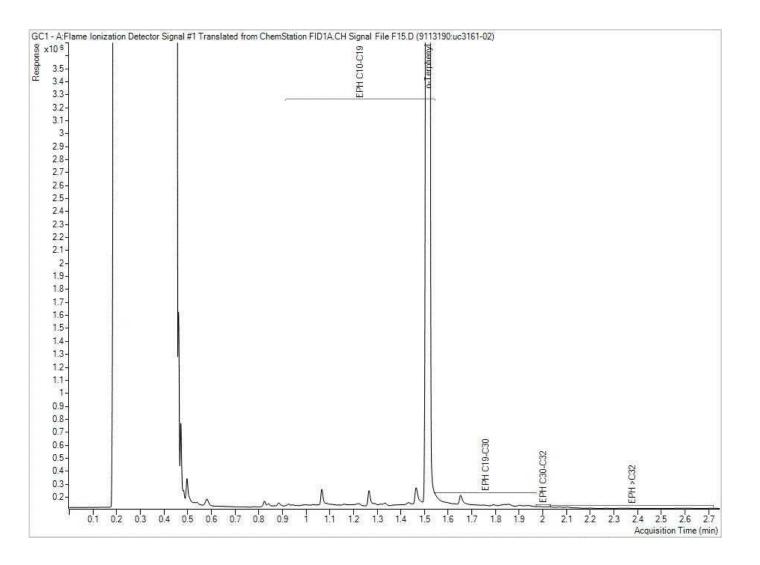
B869556_COC


STANTEC CONSULTING LTD. Client Project #: 123221161 Client ID: MW18-53

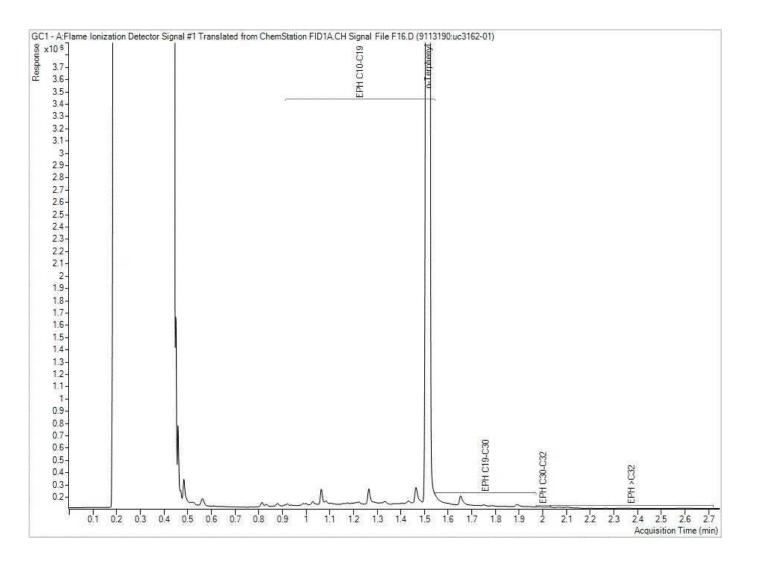
EPH in Water when PAH required Chromatogram


STANTEC CONSULTING LTD. Client Project #: 123221161 Client ID: MW18-55

EPH in Water when PAH required Chromatogram


STANTEC CONSULTING LTD. Client Project #: 123221161 Client ID: MW18-54

EPH in Water when PAH required Chromatogram


STANTEC CONSULTING LTD. Client Project #: 123221161 Client ID: MW18-51

EPH in Water when PAH required Chromatogram

STANTEC CONSULTING LTD. Client Project #: 123221161 Client ID: MW18-50

EPH in Water when PAH required Chromatogram

Your P.O. #: 123221161-250.200 Your Project #: 123221161 Your C.O.C. #: 7961

Attention: Carey Sibbald

STANTEC CONSULTING LTD.
Whitehorse_
107 Main Street
Suite 202
Whitehorse, YT
CANADA Y1A 2A7

Report Date: 2018/09/04

Report #: R2613579 Version: 3 - Revision

CERTIFICATE OF ANALYSIS – REVISED REPORT

MAXXAM JOB #: B869782 Received: 2018/08/16, 16:15

Sample Matrix: Water # Samples Received: 4

		Date	Date		
Analyses	Quantity	Extracted	Analyzed	Laboratory Method	Analytical Method
BTEX/MTBE LH, VH, F1 SIM/MS	1	N/A	2018/08/30	BBY8SOP-00010/11/12	BCMOE BCLM Jul 2017
Chloride by Automated Colourimetry	1	N/A	2018/08/30	BBY6SOP-00011	SM 22 4500-Cl- E m
Carbon (DOC) - field filtered/preserved (1)	1	N/A	2018/09/04	BBY6SOP-00003	SM 22 5310 C m
Fluoride	1	N/A	2018/08/30	BBY6SOP-00048	SM 22 4500-F C m
Hardness (calculated as CaCO3)	1	N/A	2018/08/29	BBY WI-00033	Auto Calc
EPH in Water when PAH required	4	2018/08/22	2018/08/22	BBY8SOP-00029	BCMOE BCLM Mar 2017
Elements by CRC ICPMS (dissolved)	1	N/A	2018/08/29	BBY7SOP-00002	EPA 6020b R2 m
Nitrogen (Total)	1	N/A	2018/08/31	BBY6SOP-00016	SM 22 4500-N C m
Ammonia-N (Preserved)	1	N/A	2018/09/04	BBY6SOP-00009	EPA 350.1 m
Nitrate + Nitrite (N)	1	N/A	2018/08/30	BBY6SOP-00010	SM 23 4500-NO3- I m
Nitrite (N) by CFA	1	N/A	2018/08/30	BBY6SOP-00010	SM 22 4500-NO3- I m
Nitrogen - Nitrate (as N)	1	N/A	2018/08/30	BBY WI-00033	Auto Calc
PAH in Water by GC/MS (SIM)	4	2018/08/22	2018/08/23	BBY8SOP-00021	BCMOE BCLM Jul2017m
Total LMW, HMW, Total PAH Calc (2)	4	N/A	2018/08/23	BBY WI-00033	Auto Calc
Orthophosphate by Konelab	1	N/A	2018/09/04	BBY6SOP-00013	SM 22 4500-P E m
Sulphate by Automated Colourimetry	1	N/A	2018/08/31	BBY6SOP-00017	SM 22 4500-SO42- E m
EPH less PAH in Water by GC/FID (3)	4	N/A	2018/08/23	BBY WI-00033	Auto Calc
TKN (Calc. TN, N/N) total	1	N/A	2018/08/31	BBY WI-00033	Auto Calc
Total Phosphorus	1	2018/08/30	2018/08/30	BBY6SOP-00013	SM 22 4500-P E m
Volatile HC-BTEX (4)	1	N/A	2018/08/31	BBY WI-00033	Auto Calc

Remarks:

Maxxam Analytics' laboratories are accredited to ISO/IEC 17025:2005 for specific parameters on scopes of accreditation. Unless otherwise noted, procedures used by Maxxam are based upon recognized Provincial, Federal or US method compendia such as CCME, MDDELCC, EPA, APHA.

All work recorded herein has been done in accordance with procedures and practices ordinarily exercised by professionals in Maxxam's profession using accepted testing methodologies, quality assurance and quality control procedures (except where otherwise agreed by the client and Maxxam in writing). All data is in statistical control and has met quality control and method performance criteria unless otherwise noted. All method blanks are reported; unless indicated otherwise, associated sample data are not blank corrected. Where applicable, unless otherwise noted, Measurement Uncertainty has not been accounted for when stating conformity to the referenced standard.

Your P.O. #: 123221161-250.200 Your Project #: 123221161 Your C.O.C. #: 7961

Attention: Carey Sibbald
STANTEC CONSULTING LTD.
Whitehorse

107 Main Street Suite 202 Whitehorse, YT CANADA Y1A 2A7

Report Date: 2018/09/04

Report #: R2613579 Version: 3 - Revision

CERTIFICATE OF ANALYSIS – REVISED REPORT

MAXXAM JOB #: B869782 Received: 2018/08/16, 16:15

Maxxam Analytics' liability is limited to the actual cost of the requested analyses, unless otherwise agreed in writing. There is no other warranty expressed or implied. Maxxam has been retained to provide analysis of samples provided by the Client using the testing methodology referenced in this report. Interpretation and use of test results are the sole responsibility of the Client and are not within the scope of services provided by Maxxam, unless otherwise agreed in writing. Maxxam is not responsible for the accuracy or any data impacts, that result from the information provided by the customer or their agent.

Solid sample results, except biota, are based on dry weight unless otherwise indicated. Organic analyses are not recovery corrected except for isotope dilution methods.

Results relate to samples tested. When sampling is not conducted by Maxxam, results relate to the supplied samples tested.

This Certificate shall not be reproduced except in full, without the written approval of the laboratory.

Reference Method suffix "m" indicates test methods incorporate validated modifications from specific reference methods to improve performance.

- * RPDs calculated using raw data. The rounding of final results may result in the apparent difference.
- (1) DOC present in the sample should be considered as non-purgeable DOC.
- (2) Total PAHs in Water include: Quinoline, Naphthalene, 1-Methylnaphthalene, 2-Methylnaphthalene, Acenaphthylene, Acenaphthene, Fluorene, Phenanthrene, Anthracene, Acridine, Fluoranthene, Pyrene, Benzo(a)anthracene, Chrysene, Benzo(b&j)fluoranthene, Benzo(k)fluoranthene, Benzo(a)pyrene, Indeno(1,2,3-cd)pyrene, Dibenz(a,h)anthracene, and Benzo(g,h,i)perylene.
- (3) LEPH = EPH (C10 to C19) (Acenaphthene + Acridine + Anthracene + Fluorene + Naphthalene + Phenanthrene)

HEPH = EPH (C19 to C32) - (Benzo(a)anthracene + Benzo(a)pyrene + Fluoranthene + Pyrene)

(4) VPH = VH - (Benzene + Toluene + Ethylbenzene + m & p-Xylene + o-Xylene + Styrene)

Encryption Key

Please direct all questions regarding this Certificate of Analysis to your Project Manager. Nahed Amer, Project Manager Email: NAmer@maxxam.ca Phone# (604) 734 7276

Maxxam has procedures in place to guard against improper use of the electronic signature and have the required "signatories", as per section 5.10.2 of ISO/IEC 17025:2005(E), signing the reports. For Service Group specific validation please refer to the Validation Signature Page.

STANTEC CONSULTING LTD. Client Project #: 123221161 Your P.O. #: 123221161-250.200

Sampler Initials: MV

RESULTS OF CHEMICAL ANALYSES OF WATER

Maxxam ID		UC4771			UC4771		
Sampling Date		2018/08/16 12:00			2018/08/16 12:00		
COC Number		7961			7961		
	UNITS	MW18-45	RDL	QC Batch	MW18-45 Lab-Dup	RDL	QC Batch
ANIONS							
Nitrite (N)	mg/L	0.0115	0.0050	9124590			
Calculated Parameters							
Nitrate (N)	mg/L	0.111	0.020	9120246			
Misc. Inorganics							
Fluoride (F)	mg/L	0.320	0.020	9123672			
Dissolved Organic Carbon (C)	mg/L	5.41	0.50	9128765	5.50	0.50	9128765
Anions							
Dissolved Sulphate (SO4)	mg/L	164	1.0	9125787			
Dissolved Chloride (CI)	mg/L	3.6	1.0	9124729			
Nutrients							
Orthophosphate (P)	mg/L	0.0167	0.0050	9129063			
Total Ammonia (N)	mg/L	<0.020	0.020	9128687			
Nitrate plus Nitrite (N)	mg/L	0.123	0.020	9124588			
Total Phosphorus (P)	mg/L	0.0211	0.0050	9124824			
RDL = Reportable Detection Lir	nit						
Lab-Dup = Laboratory Initiated	Duplica	ite					

STANTEC CONSULTING LTD. Client Project #: 123221161 Your P.O. #: 123221161-250.200

Sampler Initials: MV

CSR BTEX/VPH IN WATER (WATER)

Maxxam ID		UC4771		
Sampling Date		2018/08/16		
Sampling Date		12:00		
COC Number		7961		
	UNITS	MW18-45	RDL	QC Batch
Calculated Parameters				
VPH (VH6 to 10 - BTEX)	ug/L	<300	300	9124041
Volatiles				
Methyl-tert-butylether (MTBE)	ug/L	<4.0	4.0	9124534
Benzene	ug/L	<0.40	0.40	9124534
Toluene	ug/L	<0.40	0.40	9124534
Ethylbenzene	ug/L	<0.40	0.40	9124534
m & p-Xylene	ug/L	<0.40	0.40	9124534
o-Xylene	ug/L	<0.40	0.40	9124534
Styrene	ug/L	<0.40	0.40	9124534
Xylenes (Total)	ug/L	<0.40	0.40	9124534
VH C6-C10	ug/L	<300	300	9124534
Surrogate Recovery (%)				
1,4-Difluorobenzene (sur.)	%	102		9124534
4-Bromofluorobenzene (sur.)	%	104		9124534
D4-1,2-Dichloroethane (sur.)	%	115		9124534
RDL = Reportable Detection Limi	it			

STANTEC CONSULTING LTD. Client Project #: 123221161 Your P.O. #: 123221161-250.200

Sampler Initials: MV

LEPH & HEPH WITH CSR/CCME PAH IN WATER (WATER)

Maxxam ID		UC4769		UC4770		UC4771	UC4772		
Sampling Date		2018/08/15		2018/08/15		2018/08/16	2018/08/16		
Sampling Date		18:00		18:45		12:00	15:20		
COC Number		7961		7961		7961	7961		
	UNITS	MW18-41	RDL	MW17-17	RDL	MW18-45	MW17-15	RDL	QC Batch
Calculated Parameters									
Low Molecular Weight PAH's	ug/L	<0.10	0.10	290	0.50	<0.10	<0.10	0.10	9109381
High Molecular Weight PAH's	ug/L	<0.050	0.050	<0.050	0.050	<0.050	<0.050	0.050	9109381
Total PAH	ug/L	<0.10	0.10	290	0.50	<0.10	<0.10	0.10	9109381
Polycyclic Aromatics									
Quinoline	ug/L	<0.020	0.020	<0.40 (1)	0.40	<0.020	<0.020	0.020	9113185
Naphthalene	ug/L	<0.10	0.10	97 (2)	0.50	<0.10	<0.10	0.10	9113185
1-Methylnaphthalene	ug/L	<0.050	0.050	83 (2)	0.25	<0.050	<0.050	0.050	9113185
2-Methylnaphthalene	ug/L	<0.10	0.10	100 (2)	0.50	<0.10	<0.10	0.10	9113185
Acenaphthylene	ug/L	<0.050	0.050	<0.050	0.050	<0.050	<0.050	0.050	9113185
Acenaphthene	ug/L	<0.050	0.050	0.57 (3)	0.050	<0.050	<0.050	0.050	9113185
Fluorene	ug/L	<0.050	0.050	2.0	0.050	<0.050	<0.050	0.050	9113185
Phenanthrene	ug/L	<0.050	0.050	0.93	0.050	<0.050	<0.050	0.050	9113185
Anthracene	ug/L	<0.010	0.010	0.011 (3)	0.010	<0.010	<0.010	0.010	9113185
Acridine	ug/L	<0.050	0.050	<0.050	0.050	<0.050	<0.050	0.050	9113185
Fluoranthene	ug/L	<0.020	0.020	<0.020	0.020	<0.020	<0.020	0.020	9113185
Pyrene	ug/L	<0.020	0.020	<0.020	0.020	<0.020	<0.020	0.020	9113185
Benzo(a)anthracene	ug/L	<0.010	0.010	<0.010	0.010	<0.010	<0.010	0.010	9113185
Chrysene	ug/L	<0.020	0.020	<0.020	0.020	<0.020	<0.020	0.020	9113185
Benzo(b&j)fluoranthene	ug/L	<0.030	0.030	<0.030	0.030	<0.030	<0.030	0.030	9113185
Benzo(k)fluoranthene	ug/L	<0.050	0.050	<0.050	0.050	<0.050	<0.050	0.050	9113185
Benzo(a)pyrene	ug/L	<0.0050	0.0050	<0.0050	0.0050	<0.0050	<0.0050	0.0050	9113185
Indeno(1,2,3-cd)pyrene	ug/L	<0.050	0.050	<0.050	0.050	<0.050	<0.050	0.050	9113185
Dibenz(a,h)anthracene	ug/L	<0.0030	0.0030	<0.0030	0.0030	<0.0030	<0.0030	0.0030	9113185
Benzo(g,h,i)perylene	ug/L	<0.050	0.050	<0.050	0.050	<0.050	<0.050	0.050	9113185
Calculated Parameters			•					•	
LEPH (C10-C19 less PAH)	mg/L	<0.20	0.20	3.2	0.20	<0.20	<0.20	0.20	9109382
HEPH (C19-C32 less PAH)	mg/L	<0.20	0.20	<0.20	0.20	<0.20	<0.20	0.20	9109382
Ext. Pet. Hydrocarbon									
EPH (C10-C19)	mg/L	<0.20	0.20	3.3	0.20	<0.20	<0.20	0.20	9113190

RDL = Reportable Detection Limit

⁽¹⁾ Detection limits raised due to matrix interference.

⁽²⁾ Detection limits raised due to dilution to bring analyte within the calibrated range.

⁽³⁾ Tentatively identified result and may be potentially biased high due to matrix interference.

STANTEC CONSULTING LTD. Client Project #: 123221161 Your P.O. #: 123221161-250.200

Sampler Initials: MV

LEPH & HEPH WITH CSR/CCME PAH IN WATER (WATER)

Maxxam ID		UC4769		UC4770		UC4771	UC4772		
Sampling Date		2018/08/15		2018/08/15		2018/08/16	2018/08/16		
54pg 54.0		18:00		18:45		12:00	15:20		
COC Number		7961		7961		7961	7961		
	UNITS	MW18-41	RDL	MW17-17	RDL	MW18-45	MW17-15	RDL	QC Batch
EPH (C19-C32)	mg/L	<0.20	0.20	<0.20	0.20	<0.20	<0.20	0.20	9113190
Surrogate Recovery (%)									
O-TERPHENYL (sur.)	%	92		73		105	98		9113190
D10-ANTHRACENE (sur.)	%	87		81		97	89		9113185
D8-ACENAPHTHYLENE (sur.)	%	91		121		98	90		9113185
D8-NAPHTHALENE (sur.)	%	89		81		94	88		9113185
TERPHENYL-D14 (sur.)	%	84		66		99	85		9113185
RDL = Reportable Detection Lin	nit								

STANTEC CONSULTING LTD. Client Project #: 123221161 Your P.O. #: 123221161-250.200

Sampler Initials: MV

CSR DISSOLVED METALS (NO CV-HG) IN WATER

Maxxam ID		UC4771						
Campling Data		2018/08/16						
Sampling Date		12:00						
COC Number		7961						
	UNITS	MW18-45	RDL	QC Batch				
Calculated Parameters								
Dissolved Hardness (CaCO3)	mg/L	308	0.50	9121143				
Dissolved Metals by ICPMS								
Dissolved Arsenic (As)	ug/L	1.09	0.10	9121570				
Dissolved Iron (Fe)	ug/L	<5.0	5.0	9121570				
Dissolved Manganese (Mn)	ug/L	112	1.0	9121570				
Dissolved Magnesium (Mg)	ug/L	25100	50	9121570				
RDL = Reportable Detection Limit								

STANTEC CONSULTING LTD. Client Project #: 123221161 Your P.O. #: 123221161-250.200

Sampler Initials: MV

TOTAL TKN IN WATER (WATER)

Maxxam ID		UC4771		
Sampling Date		2018/08/16		
		12:00		
COC Number		7961		
	UNITS	MW18-45	RDL	QC Batch
Calculated Parameters				
Total Total Kjeldahl Nitrogen (Calc)	mg/L	0.265	0.020	9120647
Nutrients				
Total Nitrogen (N)	mg/L	0.388	0.020	9123907
RDL = Reportable Detection Limit			•	

STANTEC CONSULTING LTD. Client Project #: 123221161 Your P.O. #: 123221161-250.200

Sampler Initials: MV

GENERAL COMMENTS

Version 2: Report reissued to include results for BTEX/VPH on sample MW18-45 as per request from Matthew Deane on 2018/08/30

Sample UC4771 [MW18-45]: Sample was analyzed past method specified hold time for Orthophosphate by Konelab. Exceedance of hold time increases the uncertainty of test results but does not necessarily imply that results are compromised. Sample was analyzed past method specified hold time for Nitrate + Nitrite (N). Sample was analyzed past method specified hold time for Nitrite (N) by CFA.

Results relate only to the items tested.

QUALITY ASSURANCE REPORT

STANTEC CONSULTING LTD.

Client Project #: 123221161 Your P.O. #: 123221161-250.200

Sampler Initials: MV

			Matrix	Spike	Spiked Blank		Method Blank		RPD	
QC Batch	Parameter	Date	% Recovery	QC Limits	% Recovery	QC Limits	Value	UNITS	Value (%)	QC Limits
9113185	D10-ANTHRACENE (sur.)	2018/08/22	80	50 - 140	89	50 - 140	91	%		
9113185	D8-ACENAPHTHYLENE (sur.)	2018/08/22	87	50 - 140	90	50 - 140	94	%		
9113185	D8-NAPHTHALENE (sur.)	2018/08/22	98	50 - 140	84	50 - 140	106	%		
9113185	TERPHENYL-D14 (sur.)	2018/08/22	74	50 - 140	90	50 - 140	88	%		
9113190	O-TERPHENYL (sur.)	2018/08/22	100	60 - 140	99	60 - 140	99	%		
9124534	1,4-Difluorobenzene (sur.)	2018/08/30	98	70 - 130	102	70 - 130	107	%		
9124534	4-Bromofluorobenzene (sur.)	2018/08/30	102	70 - 130	101	70 - 130	101	%		
9124534	D4-1,2-Dichloroethane (sur.)	2018/08/30	109	70 - 130	108	70 - 130	114	%		
9113185	1-Methylnaphthalene	2018/08/22	96	50 - 140	86	50 - 140	<0.050	ug/L		
9113185	2-Methylnaphthalene	2018/08/22	90	50 - 140	79	50 - 140	<0.10	ug/L	NC	40
9113185	Acenaphthene	2018/08/22	85	50 - 140	85	50 - 140	<0.050	ug/L	NC	40
9113185	Acenaphthylene	2018/08/22	83	50 - 140	83	50 - 140	<0.050	ug/L	NC	40
9113185	Acridine	2018/08/22	96	50 - 140	93	50 - 140	<0.050	ug/L	NC	40
9113185	Anthracene	2018/08/22	82	50 - 140	87	50 - 140	<0.010	ug/L	NC	40
9113185	Benzo(a)anthracene	2018/08/22	77	50 - 140	77	50 - 140	<0.010	ug/L	NC	40
9113185	Benzo(a)pyrene	2018/08/22	78	50 - 140	85	50 - 140	<0.0050	ug/L	NC	40
9113185	Benzo(b&j)fluoranthene	2018/08/22	78	50 - 140	84	50 - 140	<0.030	ug/L	NC	40
9113185	Benzo(g,h,i)perylene	2018/08/22	79	50 - 140	93	50 - 140	<0.050	ug/L	NC	40
9113185	Benzo(k)fluoranthene	2018/08/22	82	50 - 140	90	50 - 140	<0.050	ug/L	NC	40
9113185	Chrysene	2018/08/22	79	50 - 140	79	50 - 140	<0.020	ug/L	NC	40
9113185	Dibenz(a,h)anthracene	2018/08/22	81	50 - 140	97	50 - 140	<0.0030	ug/L	NC	40
9113185	Fluoranthene	2018/08/22	78	50 - 140	84	50 - 140	<0.020	ug/L	NC	40
9113185	Fluorene	2018/08/22	81	50 - 140	81	50 - 140	<0.050	ug/L	NC	40
9113185	Indeno(1,2,3-cd)pyrene	2018/08/22	81	50 - 140	94	50 - 140	<0.050	ug/L	NC	40
9113185	Naphthalene	2018/08/22	91	50 - 140	76	50 - 140	<0.10	ug/L	NC	40
9113185	Phenanthrene	2018/08/22	79	50 - 140	82	50 - 140	<0.050	ug/L	NC	40
9113185	Pyrene	2018/08/22	79	50 - 140	86	50 - 140	<0.020	ug/L	NC	40
9113185	Quinoline	2018/08/22	108	50 - 140	105	50 - 140	<0.020	ug/L	NC	40
9113190	EPH (C10-C19)	2018/08/22	94	60 - 140	92	70 - 130	<0.20	mg/L	NC	30
9113190	EPH (C19-C32)	2018/08/22	95	60 - 140	92	70 - 130	<0.20	mg/L	NC	30

QUALITY ASSURANCE REPORT(CONT'D)

STANTEC CONSULTING LTD. Client Project #: 123221161 Your P.O. #: 123221161-250.200

Sampler Initials: MV

			Matrix Spike		Spiked Blank		Method Blank		RPD	
QC Batch	Parameter	Date	% Recovery	QC Limits	% Recovery	QC Limits	Value	UNITS	Value (%)	QC Limits
9121570	Dissolved Arsenic (As)	2018/08/29	104	80 - 120	104	80 - 120	<0.10	ug/L	0.55	20
9121570	Dissolved Iron (Fe)	2018/08/29	97	80 - 120	93	80 - 120	<5.0	ug/L	NC	20
9121570	Dissolved Magnesium (Mg)	2018/08/29	NC	80 - 120	98	80 - 120	<50	ug/L	0.21	20
9121570	Dissolved Manganese (Mn)	2018/08/29	96	80 - 120	97	80 - 120	<1.0	ug/L	1.7	20
9123672	Fluoride (F)	2018/08/30	104	80 - 120	102	80 - 120	<0.020	mg/L	0	20
9123907	Total Nitrogen (N)	2018/08/31	93	80 - 120	89	80 - 120	<0.020	mg/L	1.6	20
9124534	Benzene	2018/08/30	107	70 - 130	99	70 - 130	<0.40	ug/L	NC	30
9124534	Ethylbenzene	2018/08/30	118	70 - 130	110	70 - 130	<0.40	ug/L	NC	30
9124534	m & p-Xylene	2018/08/30	115	70 - 130	108	70 - 130	<0.40	ug/L	NC	30
9124534	Methyl-tert-butylether (MTBE)	2018/08/30	104	70 - 130	96	70 - 130	<4.0	ug/L	NC	30
9124534	o-Xylene	2018/08/30	115	70 - 130	109	70 - 130	<0.40	ug/L	NC	30
9124534	Styrene	2018/08/30	112	70 - 130	104	70 - 130	<0.40	ug/L	NC	30
9124534	Toluene	2018/08/30	105	70 - 130	98	70 - 130	<0.40	ug/L	NC	30
9124534	VH C6-C10	2018/08/30			105	70 - 130	<300	ug/L	NC	30
9124534	Xylenes (Total)	2018/08/30					<0.40	ug/L	NC	30
9124588	Nitrate plus Nitrite (N)	2018/08/30	NC	80 - 120	107	80 - 120	<0.020	mg/L		
9124590	Nitrite (N)	2018/08/30	NC	80 - 120	103	80 - 120	<0.0050	mg/L		
9124729	Dissolved Chloride (CI)	2018/08/30	98	80 - 120	97	80 - 120	<1.0	mg/L	NC	20
9124824	Total Phosphorus (P)	2018/08/30			98	80 - 120	<0.0050	mg/L		
9125787	Dissolved Sulphate (SO4)	2018/08/31			96	80 - 120	<1.0	mg/L		
9128687	Total Ammonia (N)	2018/09/04	93	80 - 120	95	80 - 120	<0.020	mg/L	4.9	20
9128765	Dissolved Organic Carbon (C)	2018/09/04	102	80 - 120	111	80 - 120	<0.50	mg/L	1.6	20

QUALITY ASSURANCE REPORT(CONT'D)

STANTEC CONSULTING LTD. Client Project #: 123221161 Your P.O. #: 123221161-250.200

Sampler Initials: MV

		Matrix Spike		Spike	Spiked Blank		Method Blank		RPD	
QC Batch	Parameter	Date	% Recovery	% Recovery QC Limits		QC Limits	Value	UNITS	Value (%)	QC Limits
9129063	Orthophosphate (P)	2018/09/04			100	80 - 120	<0.0050	mg/L		

Duplicate: Paired analysis of a separate portion of the same sample. Used to evaluate the variance in the measurement.

Matrix Spike: A sample to which a known amount of the analyte of interest has been added. Used to evaluate sample matrix interference.

Spiked Blank: A blank matrix sample to which a known amount of the analyte, usually from a second source, has been added. Used to evaluate method accuracy.

Method Blank: A blank matrix containing all reagents used in the analytical procedure. Used to identify laboratory contamination.

Surrogate: A pure or isotopically labeled compound whose behavior mirrors the analytes of interest. Used to evaluate extraction efficiency.

NC (Matrix Spike): The recovery in the matrix spike was not calculated. The relative difference between the concentration in the parent sample and the spike amount was too small to permit a reliable recovery calculation (matrix spike concentration was less than the native sample concentration)

NC (Duplicate RPD): The duplicate RPD was not calculated. The concentration in the sample and/or duplicate was too low to permit a reliable RPD calculation (absolute difference <= 2x RDL).

STANTEC CONSULTING LTD. Client Project #: 123221161 Your P.O. #: 123221161-250.200

Sampler Initials: MV

VALIDATION SIGNATURE PAGE

The analytical data and all QC contained in this report were reviewed and validated by the following individual(s).

Andy Lu, Ph.D., P.Chem., Scientific Specialist

Jas Khatkar, BBY Organics

Rob Reinert, B.Sc., Scientific Specialist

Maxxam has procedures in place to guard against improper use of the electronic signature and have the required "signatories", as per section 5.10.2 of ISO/IEC 17025:2005(E), signing the reports. For Service Group specific validation please refer to the Validation Signature Page.

Stantec

1590

Custody Tracking Form

Please use this form for custody tracking when submitting the work instructions via eTR (electronic Test Requisition).

Please ensure your form has a barcode or a Maxxam eTR confirmation number in the top right hand side. This number links your electronic submission to your samples.

First Sample: Last Sample:

Sample Count:

1

	Relinquished By				Received I	Ву			
arey Sibbaid	0 800	Date	2018/08/16	Print	. Jagn	Date		2013	OBIT
arey sinsky	Cusace	Time (24 HR)	16 1160	HEDRO TACK	1000	Time (2	Time (24 HR)		45
Print	Sign	Date	1910/A0M/DD	Print	Sign	Date		YYYY	THINYDD
		Time (24 HR)	Herhiliki			Time (2	24 HR)	HI	1.5/4/6.5
Print	5/gn	Date	YYYY/AIM/DO	Print	Sign	Date		7577	/WW/DB
		Time (24 HR)	HH MM			Time (2	24 HR)	H	r.MM
npled By		# of Coole	ers/Pkgs:					W2 10	
npled By		# of Coole	ers/Pkgs:	Rush	Immediate Test			ood Residi	
Received At	Comme		*** LAB USE	Micro ONLY ***	Immediate Test	Cooling	Foo		iny 🗆
	Comme		*** LAB USE	Micro ONLY ***	tody Seal		Foo	d Chemist	iry 🗆
			LAB USE HITEHORSE My 2 16 15	Micro ONLY***	tody Seal	Cooling	Foo	d Chemist	ry 🗆

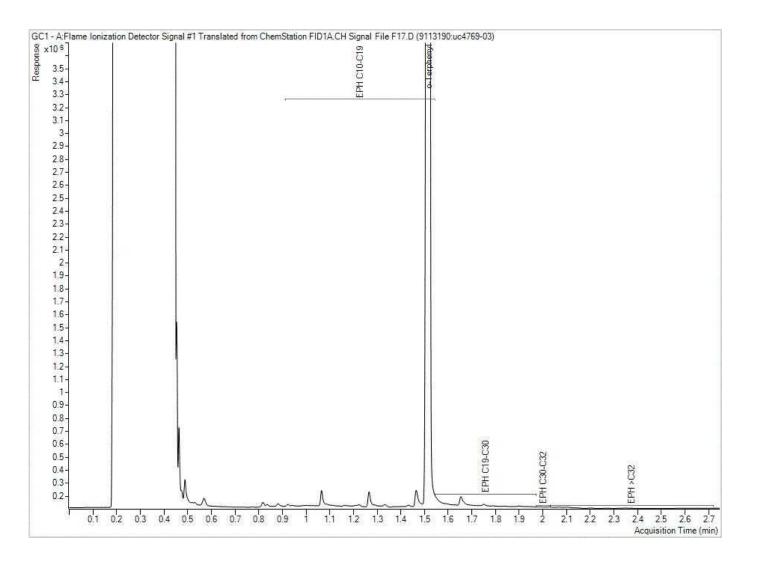
B869782_COC

Stantec

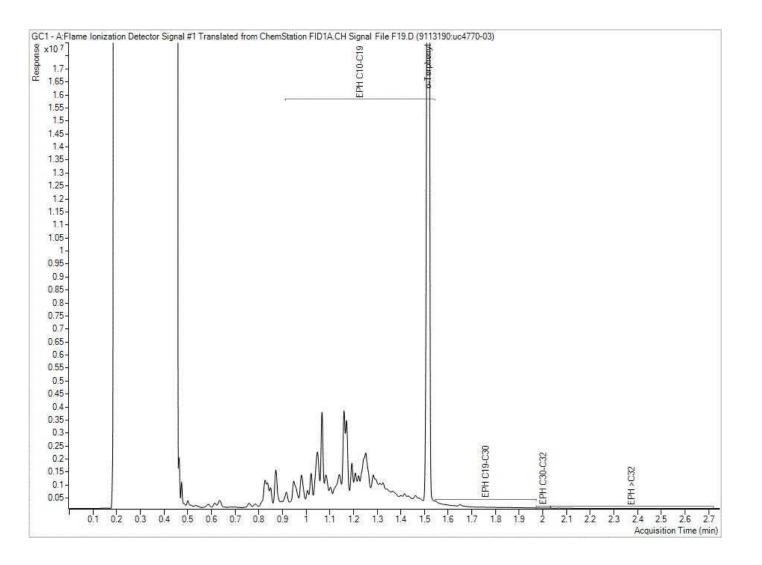
Custody Tracking Form

Please use this form for custody tracking when submitting the work instructions via eTR (electronic Test Requisition). Please ensure your form has a barcode or a Maxxam eTR confirmation number in the top right hand side. This number links First Sample: Last Sample:

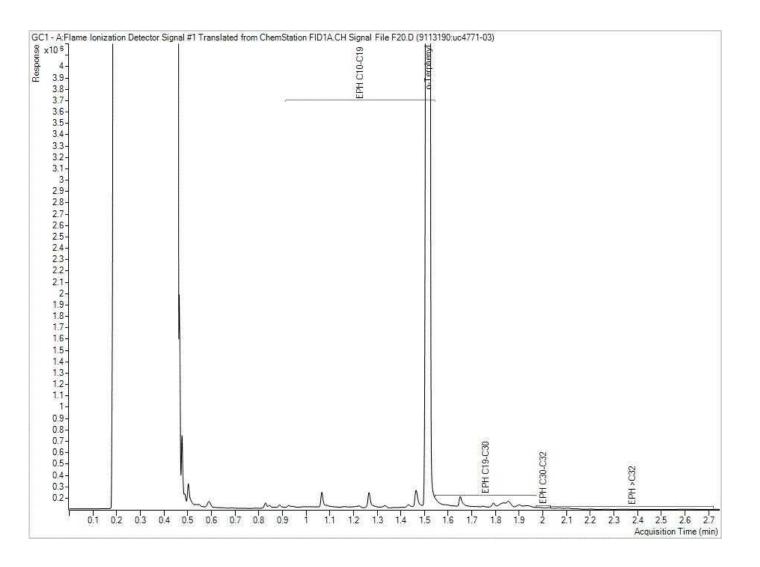
your electronic submissi	on to your samples.			2	Sample	Count:	1		
	Relinquished By	沙斯 计表	建筑建筑		Received	Ву			V PRE
Parey Silboard	O Ren	Date	2018/08/16	Print	Sign	Date		2013	108/1
ace Sibsaca	Choce	Time (24 HR)	16 416	LEDRO TACK	(Marie Sign	Time (2	24 HR)		.45
Print	Sigri	Date	YYYY/M(M(/DD	Print	Sign	Date		17772	/AMA/DD
		Time (24 HR)	HEMM			Time (2	24 HR))H	FIENNIN
Print	Sgra	Date	YYYY/MM/DD	Print	. Sign	Date		YYYY	/WW/BD
		Time (24 HR)	HHAMAT			Time (2	24 HR)	H	Halling
	的 基础设备		*** LAB USE	ONLY ***			794	od Chemist	
Received At	Comme	PUSEIVED IN WH	HITEHORSE	Cus	tody Seal	Cooling	Te	mperatur	e °C
	D)	. 4/Mi	May 1615	Present (Y/N)	Intact (Y/N)	Media	1	2	3
Labeled By	В	2018 -0	My lb 15	45	YES	YES	6	7	8
Verified By		0	616						


1590

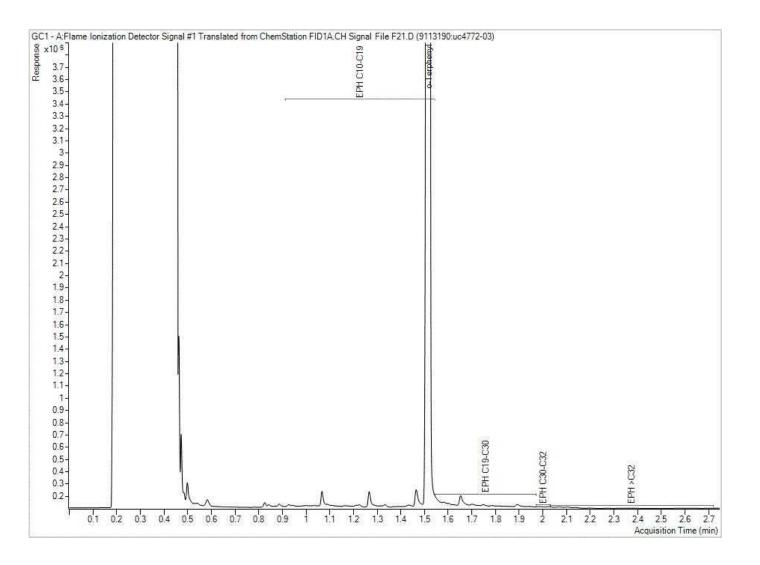
B869782_COC


STANTEC CONSULTING LTD. Client Project #: 123221161 Client ID: MW18-41

EPH in Water when PAH required Chromatogram


STANTEC CONSULTING LTD. Client Project #: 123221161 Client ID: MW17-17

EPH in Water when PAH required Chromatogram


STANTEC CONSULTING LTD. Client Project #: 123221161 Client ID: MW18-45

EPH in Water when PAH required Chromatogram

STANTEC CONSULTING LTD. Client Project #: 123221161 Client ID: MW17-15

EPH in Water when PAH required Chromatogram

Your P.O. #: 123221161-250.200 Your Project #: 123221161 Your C.O.C. #: 7962

Attention: Carey Sibbald

STANTEC CONSULTING LTD.
Whitehorse_
107 Main Street
Suite 202
Whitehorse, YT
CANADA Y1A 2A7

Report Date: 2018/09/04

Report #: R2613580 Version: 3 - Revision

CERTIFICATE OF ANALYSIS – REVISED REPORT

MAXXAM JOB #: B870078 Received: 2018/08/17, 16:35

Sample Matrix: GROUND WATER

Samples Received: 9

·		Date	Date		
Analyses	Quantity	Extracted	Analyzed	Laboratory Method	Analytical Method
BTEX/MTBE LH, VH, F1 SIM/MS	2	N/A	2018/08/30	BBY8SOP-00010/11/12	BCMOE BCLM Jul 2017
BTEX/MTBE LH, VH, F1 SIM/MS	3	N/A	2018/08/31	BBY8SOP-00010/11/12	BCMOE BCLM Jul 2017
Chloride by Automated Colourimetry	6	N/A	2018/08/30	BBY6SOP-00011	SM 22 4500-Cl- E m
Carbon (DOC) - field filtered/preserved (1)	6	N/A	2018/09/04	BBY6SOP-00003	SM 22 5310 C m
Fluoride	4	N/A	2018/08/30	BBY6SOP-00048	SM 22 4500-F C m
Fluoride	2	N/A	2018/08/31	BBY6SOP-00048	SM 22 4500-F C m
Hardness (calculated as CaCO3)	6	N/A	2018/08/29	BBY WI-00033	Auto Calc
EPH in Water when PAH required	9	2018/08/23	2018/08/23	BBY8SOP-00029	BCMOE BCLM Mar 2017
Elements by CRC ICPMS (dissolved)	6	N/A	2018/08/29	BBY7SOP-00002	EPA 6020b R2 m
Nitrogen (Total)	6	N/A	2018/08/31	BBY6SOP-00016	SM 22 4500-N C m
Ammonia-N (Preserved)	6	N/A	2018/09/04	BBY6SOP-00009	EPA 350.1 m
Nitrate + Nitrite (N)	6	N/A	2018/08/30	BBY6SOP-00010	SM 23 4500-NO3- I m
Nitrite (N) by CFA	6	N/A	2018/08/30	BBY6SOP-00010	SM 22 4500-NO3- I m
Nitrogen - Nitrate (as N)	6	N/A	2018/08/31	BBY WI-00033	Auto Calc
PAH in Water by GC/MS (SIM)	9	2018/08/23	2018/08/23	BBY8SOP-00021	BCMOE BCLM Jul2017m
Total LMW, HMW, Total PAH Calc (2)	9	N/A	2018/08/24	BBY WI-00033	Auto Calc
Orthophosphate by Konelab	6	N/A	2018/08/30	BBY6SOP-00013	SM 22 4500-P E m
Sulphate by Automated Colourimetry	6	N/A	2018/08/30	BBY6SOP-00017	SM 22 4500-SO42- E m
EPH less PAH in Water by GC/FID (3)	9	N/A	2018/08/24	BBY WI-00033	Auto Calc
TKN (Calc. TN, N/N) total	6	N/A	2018/08/31	BBY WI-00033	Auto Calc
Total Phosphorus	6	2018/08/30	2018/08/30	BBY6SOP-00013	SM 22 4500-P E m
Volatile HC-BTEX (4)	4	N/A	2018/08/31	BBY WI-00033	Auto Calc
Volatile HC-BTEX (4)	1	N/A	2018/09/01	BBY WI-00033	Auto Calc

Remarks:

Maxxam Analytics' laboratories are accredited to ISO/IEC 17025:2005 for specific parameters on scopes of accreditation. Unless otherwise noted, procedures used by Maxxam are based upon recognized Provincial, Federal or US method compendia such as CCME, MDDELCC, EPA, APHA.

All work recorded herein has been done in accordance with procedures and practices ordinarily exercised by professionals in Maxxam's profession using

Your P.O. #: 123221161-250.200 Your Project #: 123221161 Your C.O.C. #: 7962

Attention: Carey Sibbald

STANTEC CONSULTING LTD.
Whitehorse_
107 Main Street
Suite 202
Whitehorse, YT
CANADA Y1A 2A7

Report Date: 2018/09/04

Report #: R2613580 Version: 3 - Revision

CERTIFICATE OF ANALYSIS – REVISED REPORT

MAXXAM JOB #: B870078 Received: 2018/08/17, 16:35

accepted testing methodologies, quality assurance and quality control procedures (except where otherwise agreed by the client and Maxxam in writing). All data is in statistical control and has met quality control and method performance criteria unless otherwise noted. All method blanks are reported; unless indicated otherwise, associated sample data are not blank corrected. Where applicable, unless otherwise noted, Measurement Uncertainty has not been accounted for when stating conformity to the referenced standard.

Maxxam Analytics' liability is limited to the actual cost of the requested analyses, unless otherwise agreed in writing. There is no other warranty expressed or implied. Maxxam has been retained to provide analysis of samples provided by the Client using the testing methodology referenced in this report. Interpretation and use of test results are the sole responsibility of the Client and are not within the scope of services provided by Maxxam, unless otherwise agreed in writing. Maxxam is not responsible for the accuracy or any data impacts, that result from the information provided by the customer or their agent.

Solid sample results, except biota, are based on dry weight unless otherwise indicated. Organic analyses are not recovery corrected except for isotope dilution methods.

Results relate to samples tested. When sampling is not conducted by Maxxam, results relate to the supplied samples tested.

This Certificate shall not be reproduced except in full, without the written approval of the laboratory.

Reference Method suffix "m" indicates test methods incorporate validated modifications from specific reference methods to improve performance.

- * RPDs calculated using raw data. The rounding of final results may result in the apparent difference.
- (1) DOC present in the sample should be considered as non-purgeable DOC.
- (2) Total PAHs in Water include: Quinoline, Naphthalene, 1-Methylnaphthalene, 2-Methylnaphthalene, Acenaphthylene, Acenaphthene, Fluorene, Phenanthrene, Anthracene, Acridine, Fluoranthene, Pyrene, Benzo(a)anthracene, Chrysene, Benzo(b&j)fluoranthene, Benzo(k)fluoranthene, Benzo(a)pyrene, Indeno(1,2,3-cd)pyrene, Dibenz(a,h)anthracene, and Benzo(g,h,i)perylene.
- (3) LEPH = EPH (C10 to C19) (Acenaphthene + Acridine + Anthracene + Fluorene + Naphthalene + Phenanthrene)

HEPH = EPH (C19 to C32) - (Benzo(a)anthracene + Benzo(a)pyrene + Fluoranthene + Pyrene)

(4) VPH = VH - (Benzene + Toluene + Ethylbenzene + m & p-Xylene + o-Xylene + Styrene)

Encryption Key

Please direct all questions regarding this Certificate of Analysis to your Project Manager. Nahed Amer, Project Manager Email: NAmer@maxxam.ca

Phone# (604) 734 7276

Maxxam has procedures in place to guard against improper use of the electronic signature and have the required "signatories", as per section 5.10.2 of ISO/IEC 17025:2005(E), signing the reports. For Service Group specific validation please refer to the Validation Signature Page.

STANTEC CONSULTING LTD. Client Project #: 123221161 Your P.O. #: 123221161-250.200

Sampler Initials: MV

RESULTS OF CHEMICAL ANALYSES OF GROUND WATER

Manual ID		LICCOOL		LICCOO 4		LICCOOF		
Maxxam ID		UC6883		UC6884		UC6885		
Sampling Date		2018/08/16		2018/08/16		2018/08/16		
Sampling Date		16:30		17:10		19:00		
COC Number		7962		7962		7962		
	UNITS	MW16-13-RW	QC Batch	MW17-16	QC Batch	MW18-56	RDL	QC Batch
ANIONS								
Nitrite (N)	mg/L	<0.0050	9124596	<0.0050	9124596	<0.0050	0.0050	9124596
Calculated Parameters								
Nitrate (N)	mg/L	<0.020	9120246	<0.020	9120246	<0.020	0.020	9120246
Misc. Inorganics								
Fluoride (F)	mg/L	0.250	9123854	0.250	9125731	0.290	0.020	9123854
Dissolved Organic Carbon (C)	mg/L	1.82	9128765	2.66	9128765	1.96	0.50	9128765
Anions								
Dissolved Sulphate (SO4)	mg/L	480 (1)	9124731	556 (1)	9124731	814 (1)	10	9124731
Dissolved Chloride (CI)	mg/L	5.1	9124729	5.9	9124729	2.2	1.0	9124729
Nutrients								
Orthophosphate (P)	mg/L	<0.0050	9124778	<0.0050	9124778	0.0134	0.0050	9124778
Total Ammonia (N)	mg/L	<0.020	9128684	<0.020	9128684	0.25	0.020	9128684
Nitrate plus Nitrite (N)	mg/L	<0.020	9124591	<0.020	9124591	<0.020	0.020	9124591
Total Phosphorus (P)	mg/L	0.0483	9124816	0.0443	9124816	0.0359	0.0050	9124816
RDL = Reportable Detection Li	mit							

⁽¹⁾ Detection limits raised due to dilution to bring analyte within the calibrated range.

STANTEC CONSULTING LTD. Client Project #: 123221161 Your P.O. #: 123221161-250.200

Sampler Initials: MV

RESULTS OF CHEMICAL ANALYSES OF GROUND WATER

Maxxam ID		UC6885			UC6886		UC6889		
Sampling Date		2018/08/16			2018/08/17		2018/08/17		
Sampling Date		19:00			10:30		14:50		
COC Number		7962			7962		7962		
	UNITS	MW18-56 Lab-Dup	RDL	QC Batch	MW16-11	QC Batch	MW18-39	RDL	QC Batch
ANIONS									
Nitrite (N)	mg/L	<0.0050	0.0050	9124596	<0.0050	9124596	<0.0050	0.0050	9124596
Calculated Parameters									
Nitrate (N)	mg/L				<0.020	9120246	<0.020	0.020	9120246
Misc. Inorganics									
Fluoride (F)	mg/L				0.260	9123854	0.280	0.020	9125731
Dissolved Organic Carbon (C)	mg/L				2.54	9128765	1.99	0.50	9128765
Anions									
Dissolved Sulphate (SO4)	mg/L				579 (1)	9124731	552 (1)	10	9124731
Dissolved Chloride (CI)	mg/L				6.8	9124729	5.7	1.0	9124729
Nutrients									
Orthophosphate (P)	mg/L				<0.0050	9124778	<0.0050	0.0050	9124778
Total Ammonia (N)	mg/L				0.022	9128684	<0.020	0.020	9128684
Nitrate plus Nitrite (N)	mg/L	<0.020	0.020	9124591	<0.020	9124591	<0.020	0.020	9124591
Total Phosphorus (P)	mg/L				0.0247	9124816	0.0674	0.0050	9124816

RDL = Reportable Detection Limit

Lab-Dup = Laboratory Initiated Duplicate

(1) Detection limits raised due to dilution to bring analyte within the calibrated range.

STANTEC CONSULTING LTD. Client Project #: 123221161 Your P.O. #: 123221161-250.200

Sampler Initials: MV

RESULTS OF CHEMICAL ANALYSES OF GROUND WATER

Maxxam ID		UC6890		
Sampling Date		2018/08/17		
Sampling Date		15:05		
COC Number		7962		
	UNITS	MW18-39A	RDL	QC Batch
ANIONS				
Nitrite (N)	mg/L	<0.0050	0.0050	9124600
Calculated Parameters				
Nitrate (N)	mg/L	<0.020	0.020	9120246
Misc. Inorganics	•			
Fluoride (F)	mg/L	0.270	0.020	9123854
Dissolved Organic Carbon (C)	mg/L	2.87	0.50	9128765
Anions				
Dissolved Sulphate (SO4)	mg/L	548 (1)	10	9124731
Dissolved Chloride (Cl)	mg/L	5.8	1.0	9124729
Nutrients	•			
Orthophosphate (P)	mg/L	<0.0050	0.0050	9124778
Total Ammonia (N)	mg/L	<0.020	0.020	9128684
Nitrate plus Nitrite (N)	mg/L	<0.020	0.020	9124598
Total Phosphorus (P)	mg/L	0.0681	0.0050	9124816

RDL = Reportable Detection Limit

⁽¹⁾ Detection limits raised due to dilution to bring analyte within the calibrated range.

STANTEC CONSULTING LTD. Client Project #: 123221161 Your P.O. #: 123221161-250.200

Sampler Initials: MV

CSR BTEX/VPH IN WATER (GROUND WATER)

Maxxam ID		UC6883	UC6884	UC6885	UC6886	UC6890		
Sampling Date		2018/08/16	2018/08/16	2018/08/16	2018/08/17	2018/08/17		
Janipinig Date		16:30	17:10	19:00	10:30	15:05		
COC Number		7962	7962	7962	7962	7962		
	UNITS	MW16-13-RW	MW17-16	MW18-56	MW16-11	MW18-39A	RDL	QC Batch
Calculated Parameters								
VPH (VH6 to 10 - BTEX)	ug/L	<300	<300	<300	<300	<300	300	9124041
Volatiles								
Methyl-tert-butylether (MTBE)	ug/L	<4.0	<4.0	<4.0	<4.0	<4.0	4.0	9124534
Benzene	ug/L	<0.40	<0.40	<0.40	<0.40	<0.40	0.40	9124534
Toluene	ug/L	<0.40	<0.40	0.43	<0.40	<0.40	0.40	9124534
Ethylbenzene	ug/L	<0.40	<0.40	<0.40	<0.40	<0.40	0.40	9124534
m & p-Xylene	ug/L	<0.40	<0.40	<0.40	<0.40	0.89	0.40	9124534
o-Xylene	ug/L	<0.40	<0.40	<0.40	<0.40	<0.40	0.40	9124534
Styrene	ug/L	<0.40	<0.40	<0.40	<0.40	<0.40	0.40	9124534
Xylenes (Total)	ug/L	<0.40	<0.40	<0.40	<0.40	0.89	0.40	9124534
VH C6-C10	ug/L	<300	<300	<300	<300	<300	300	9124534
Surrogate Recovery (%)	•							
1,4-Difluorobenzene (sur.)	%	102	101	102	100	101		9124534
4-Bromofluorobenzene (sur.)	%	103	103	103	102	102		9124534
D4-1,2-Dichloroethane (sur.)	%	121	115	117	114	114		9124534
RDL = Reportable Detection Limit	it							

STANTEC CONSULTING LTD. Client Project #: 123221161 Your P.O. #: 123221161-250.200

Sampler Initials: MV

LEPH & HEPH WITH CSR/CCME PAH IN WATER (GROUND WATER)

		a.		_	_	<u>.</u>		_	<u>.</u>
Maxxam ID		UC6883		UC6884			UC6884		
Sampling Date		2018/08/16		2018/08/16			2018/08/16		
Jamping Date		16:30		17:10			17:10		
COC Number		7962		7962			7962		
	UNITS	MW16-13-RW	RDL	MW17-16	RDL	QC Batch	MW17-16 Lab-Dup	RDL	QC Batch
Calculated Parameters									
Low Molecular Weight PAH's	ug/L	14	0.11	7.9	0.10	9109381			
High Molecular Weight PAH`s	ug/L	<0.050	0.050	<0.050	0.050	9109381			
Total PAH	ug/L	14	0.11	7.9	0.10	9109381			
Polycyclic Aromatics	•	•	•						
Quinoline	ug/L	<0.11 (1)	0.11	<0.065 (1)	0.065	9114325	<0.086	0.086	9114325
Naphthalene	ug/L	0.86 (2)	0.10	0.65 (2)	0.10	9114325	0.61	0.10	9114325
1-Methylnaphthalene	ug/L	7.2	0.050	4.7	0.050	9114325	4.4	0.050	9114325
2-Methylnaphthalene	ug/L	<0.10	0.10	<0.10	0.10	9114325	<0.10	0.10	9114325
Acenaphthylene	ug/L	0.055 (2)	0.050	<0.050	0.050	9114325	<0.050	0.050	9114325
Acenaphthene	ug/L	0.92 (2)	0.050	0.42 (2)	0.050	9114325	0.37	0.050	9114325
Fluorene	ug/L	3.3	0.050	1.5	0.050	9114325	1.4	0.050	9114325
Phenanthrene	ug/L	1.2	0.050	0.61	0.050	9114325	0.59	0.050	9114325
Anthracene	ug/L	0.029 (2)	0.010	0.018 (2)	0.010	9114325	0.018	0.010	9114325
Acridine	ug/L	<0.050	0.050	<0.050	0.050	9114325	<0.050	0.050	9114325
Fluoranthene	ug/L	<0.020	0.020	<0.020	0.020	9114325	<0.020	0.020	9114325
Pyrene	ug/L	<0.020	0.020	<0.020	0.020	9114325	<0.020	0.020	9114325
Benzo(a)anthracene	ug/L	<0.010	0.010	<0.010	0.010	9114325	<0.010	0.010	9114325
Chrysene	ug/L	<0.020	0.020	<0.020	0.020	9114325	<0.020	0.020	9114325
Benzo(b&j)fluoranthene	ug/L	<0.030	0.030	<0.030	0.030	9114325	<0.030	0.030	9114325
Benzo(k)fluoranthene	ug/L	<0.050	0.050	<0.050	0.050	9114325	<0.050	0.050	9114325
Benzo(a)pyrene	ug/L	<0.0050	0.0050	<0.0050	0.0050	9114325	<0.0050	0.0050	9114325
Indeno(1,2,3-cd)pyrene	ug/L	<0.050	0.050	<0.050	0.050	9114325	<0.050	0.050	9114325
Dibenz(a,h)anthracene	ug/L	<0.0030	0.0030	<0.0030	0.0030	9114325	<0.0030	0.0030	9114325
Benzo(g,h,i)perylene	ug/L	<0.050	0.050	<0.050	0.050	9114325	<0.050	0.050	9114325
Calculated Parameters									
LEPH (C10-C19 less PAH)	mg/L	0.96	0.20	0.54	0.20	9109382			
HEPH (C19-C32 less PAH)	mg/L	<0.20	0.20	<0.20	0.20	9109382			
Ext. Pet. Hydrocarbon									
EPH (C10-C19)	mg/L	0.97	0.20	0.54	0.20	9114335	0.53	0.20	9114335
				•					

RDL = Reportable Detection Limit

Lab-Dup = Laboratory Initiated Duplicate

(2) Tentatively identified result and may be potentially biased high due to matrix interference.

⁽¹⁾ Detection limits raised due to matrix interference.

STANTEC CONSULTING LTD. Client Project #: 123221161 Your P.O. #: 123221161-250.200

Sampler Initials: MV

LEPH & HEPH WITH CSR/CCME PAH IN WATER (GROUND WATER)

Maxxam ID		UC6883		UC6884			UC6884		
Sampling Date		2018/08/16 16:30		2018/08/16 17:10			2018/08/16 17:10		
COC Number		7962		7962			7962		
	UNITS	MW16-13-RW	RDL	MW17-16	RDL	QC Batch	MW17-16 Lab-Dup	RDL	QC Batch
EPH (C19-C32)	mg/L	<0.20	0.20	<0.20	0.20	9114335	<0.20	0.20	9114335
Surrogate Recovery (%)	•								
O-TERPHENYL (sur.)	%	88		102		9114335	90		9114335
D10-ANTHRACENE (sur.)	%	81		91		9114325	84		9114325
D8-ACENAPHTHYLENE (sur.)	%	88		93		9114325	91		9114325
D8-NAPHTHALENE (sur.)	%	74		77		9114325	75		9114325
TERPHENYL-D14 (sur.)	%	72		88		9114325	75		9114325

RDL = Reportable Detection Limit

Lab-Dup = Laboratory Initiated Duplicate

STANTEC CONSULTING LTD. Client Project #: 123221161 Your P.O. #: 123221161-250.200

Sampler Initials: MV

LEPH & HEPH WITH CSR/CCME PAH IN WATER (GROUND WATER)

Maxxam ID		UC6885		UC6886		UC6887		UC6888		
Canadina Data		2018/08/16		2018/08/17		2018/08/17		2018/08/17		
Sampling Date		19:00		10:30		12:05		15:40		
COC Number		7962		7962		7962		7962		
	UNITS	MW18-56	RDL	MW16-11	RDL	MW17-20	RDL	MW18-35	RDL	QC Batch
Calculated Parameters										
Low Molecular Weight PAH`s	ug/L	<0.10	0.10	2.3	0.10	8.0	0.10	0.29	0.10	9109381
High Molecular Weight PAH's	ug/L	<0.050	0.050	<0.050	0.050	<0.050	0.050	<0.050	0.050	9109381
Total PAH	ug/L	<0.10	0.10	2.3	0.10	8.0	0.10	0.29	0.10	9109381
Polycyclic Aromatics										
Quinoline	ug/L	<0.020	0.020	<0.062 (1)	0.062	<0.041 (1)	0.041	<0.079 (1)	0.079	9114325
Naphthalene	ug/L	<0.10	0.10	0.32 (2)	0.10	0.76	0.10	<0.10	0.10	9114325
1-Methylnaphthalene	ug/L	<0.050	0.050	1.3	0.050	4.3	0.050	<0.050	0.050	9114325
2-Methylnaphthalene	ug/L	<0.10	0.10	<0.10	0.10	2.0	0.10	<0.10	0.10	9114325
Acenaphthylene	ug/L	<0.050	0.050	<0.050	0.050	<0.050	0.050	<0.050	0.050	9114325
Acenaphthene	ug/L	<0.050	0.050	0.090 (2)	0.050	0.21	0.050	<0.050	0.050	9114325
Fluorene	ug/L	<0.050	0.050	0.41	0.050	0.59	0.050	0.11 (2)	0.050	9114325
Phenanthrene	ug/L	<0.050	0.050	0.22	0.050	0.18	0.050	0.19	0.050	9114325
Anthracene	ug/L	<0.010	0.010	<0.010	0.010	<0.010	0.010	<0.010	0.010	9114325
Acridine	ug/L	<0.050	0.050	<0.050	0.050	<0.050	0.050	<0.050	0.050	9114325
Fluoranthene	ug/L	<0.020	0.020	<0.020	0.020	<0.020	0.020	<0.020	0.020	9114325
Pyrene	ug/L	<0.020	0.020	<0.020	0.020	<0.020	0.020	<0.020	0.020	9114325
Benzo(a)anthracene	ug/L	<0.010	0.010	<0.010	0.010	<0.010	0.010	<0.010	0.010	9114325
Chrysene	ug/L	<0.020	0.020	<0.020	0.020	<0.020	0.020	<0.020	0.020	9114325
Benzo(b&j)fluoranthene	ug/L	<0.030	0.030	<0.030	0.030	<0.030	0.030	<0.030	0.030	9114325
Benzo(k)fluoranthene	ug/L	<0.050	0.050	<0.050	0.050	<0.050	0.050	<0.050	0.050	9114325
Benzo(a)pyrene	ug/L	<0.0050	0.0050	<0.0050	0.0050	<0.0050	0.0050	<0.0050	0.0050	9114325
Indeno(1,2,3-cd)pyrene	ug/L	<0.050	0.050	<0.050	0.050	<0.050	0.050	<0.050	0.050	9114325
Dibenz(a,h)anthracene	ug/L	<0.0030	0.0030	<0.0030	0.0030	<0.0030	0.0030	<0.0030	0.0030	9114325
Benzo(g,h,i)perylene	ug/L	<0.050	0.050	<0.050	0.050	<0.050	0.050	<0.050	0.050	9114325
Calculated Parameters										
LEPH (C10-C19 less PAH)	mg/L	<0.20	0.20	0.23	0.20	1.8	0.20	<0.20	0.20	9109382
HEPH (C19-C32 less PAH)	mg/L	<0.20	0.20	<0.20	0.20	0.30	0.20	<0.20	0.20	9109382
Ext. Pet. Hydrocarbon										
EPH (C10-C19)	mg/L	<0.20	0.20	0.23	0.20	1.9	0.20	<0.20	0.20	9114335
EPH (C19-C32)	mg/L	<0.20	0.20	<0.20	0.20	0.30	0.20	<0.20	0.20	9114335
1		·		·		·		·		·

RDL = Reportable Detection Limit

⁽¹⁾ Detection limits raised due to matrix interference.

⁽²⁾ Tentatively identified result and may be potentially biased high due to matrix interference.

STANTEC CONSULTING LTD. Client Project #: 123221161 Your P.O. #: 123221161-250.200

Sampler Initials: MV

LEPH & HEPH WITH CSR/CCME PAH IN WATER (GROUND WATER)

Maxxam ID		UC6885		UC6886		UC6887		UC6888					
Sampling Date		2018/08/16 19:00		2018/08/17 10:30		2018/08/17 12:05		2018/08/17 15:40					
COC Number		7962		7962		7962		7962					
	UNITS	MW18-56	RDL	MW16-11	RDL	MW17-20	RDL	MW18-35	RDL	QC Batch			
Surrogate Recovery (%)	Surrogate Recovery (%)												
O-TERPHENYL (sur.)	%	98		85		89		99		9114335			
D10-ANTHRACENE (sur.)	%	84		81		88		84		9114325			
D8-ACENAPHTHYLENE (sur.)	%	83		92		94		88		9114325			
D8-NAPHTHALENE (sur.)	%	83		85		83		74		9114325			
TERPHENYL-D14 (sur.)	%	81		70		75		77		9114325			
RDL = Reportable Detection Li	mit												

STANTEC CONSULTING LTD. Client Project #: 123221161 Your P.O. #: 123221161-250.200

Sampler Initials: MV

LEPH & HEPH WITH CSR/CCME PAH IN WATER (GROUND WATER)

Maxxam ID		UC6889		UC6890		UC6891		
Sampling Date		2018/08/17		2018/08/17		2018/08/17		
Sampling Date		14:50		15:05		10:05		
COC Number		7962		7962		7962		
	UNITS	MW18-39	RDL	MW18-39A	RDL	MW17-19	RDL	QC Batch
Calculated Parameters								
Low Molecular Weight PAH`s	ug/L	8.1	0.10	7.9	0.10	<0.10	0.10	9109381
High Molecular Weight PAH`s	ug/L	<0.050	0.050	<0.050	0.050	<0.050	0.050	9109381
Total PAH	ug/L	8.1	0.10	7.9	0.10	<0.10	0.10	9109381
Polycyclic Aromatics								
Quinoline	ug/L	<0.087 (1)	0.087	<0.041 (1)	0.041	<0.020	0.020	9114325
Naphthalene	ug/L	0.45 (2)	0.10	0.44 (2)	0.10	<0.10	0.10	9114325
1-Methylnaphthalene	ug/L	6.1	0.050	5.9	0.050	<0.050	0.050	9114325
2-Methylnaphthalene	ug/L	<0.10	0.10	<0.10	0.10	<0.10	0.10	9114325
Acenaphthylene	ug/L	<0.050	0.050	<0.050	0.050	<0.050	0.050	9114325
Acenaphthene	ug/L	0.35 (2)	0.050	0.34 (2)	0.050	<0.050	0.050	9114325
Fluorene	ug/L	1.0	0.050	0.99	0.050	<0.050	0.050	9114325
Phenanthrene	ug/L	0.25	0.050	0.24	0.050	<0.050	0.050	9114325
Anthracene	ug/L	0.014 (2)	0.010	0.013 (2)	0.010	<0.010	0.010	9114325
Acridine	ug/L	<0.050	0.050	<0.050	0.050	<0.050	0.050	9114325
Fluoranthene	ug/L	<0.020	0.020	<0.020	0.020	<0.020	0.020	9114325
Pyrene	ug/L	<0.020	0.020	<0.020	0.020	<0.020	0.020	9114325
Benzo(a)anthracene	ug/L	<0.010	0.010	<0.010	0.010	<0.010	0.010	9114325
Chrysene	ug/L	<0.020	0.020	<0.020	0.020	<0.020	0.020	9114325
Benzo(b&j)fluoranthene	ug/L	<0.030	0.030	<0.030	0.030	<0.030	0.030	9114325
Benzo(k)fluoranthene	ug/L	<0.050	0.050	<0.050	0.050	<0.050	0.050	9114325
Benzo(a)pyrene	ug/L	<0.0050	0.0050	<0.0050	0.0050	<0.0050	0.0050	9114325
Indeno(1,2,3-cd)pyrene	ug/L	<0.050	0.050	<0.050	0.050	<0.050	0.050	9114325
Dibenz(a,h)anthracene	ug/L	<0.0030	0.0030	<0.0030	0.0030	<0.0030	0.0030	9114325
Benzo(g,h,i)perylene	ug/L	<0.050	0.050	<0.050	0.050	<0.050	0.050	9114325
Calculated Parameters								
LEPH (C10-C19 less PAH)	mg/L	0.53	0.20	0.54	0.20	<0.20	0.20	9109382
HEPH (C19-C32 less PAH)	mg/L	<0.20	0.20	<0.20	0.20	<0.20	0.20	9109382
Ext. Pet. Hydrocarbon								
EPH (C10-C19)	mg/L	0.53	0.20	0.54	0.20	<0.20	0.20	9114335
EPH (C19-C32)	mg/L	<0.20	0.20	<0.20	0.20	<0.20	0.20	9114335
DDI Danastalila Datastian Lin								

RDL = Reportable Detection Limit

⁽¹⁾ Detection limits raised due to matrix interference.

⁽²⁾ Tentatively identified result and may be potentially biased high due to matrix interference.

STANTEC CONSULTING LTD. Client Project #: 123221161 Your P.O. #: 123221161-250.200

Sampler Initials: MV

LEPH & HEPH WITH CSR/CCME PAH IN WATER (GROUND WATER)

	UC6889		UC6890		UC6891		
	2018/08/17 14:50		2018/08/17 15:05		2018/08/17 10:05		
	7962		7962		7962		
UNITS	MW18-39	RDL	MW18-39A	RDL	MW17-19	RDL	QC Batch
%	88		80		103		9114335
%	86		79		86		9114325
%	95		91		88		9114325
%	84		83		80		9114325
%	71		63		84		9114325
	% % %	2018/08/17 14:50 7962 UNITS MW18-39 % 88 % 86 % 95 % 84	2018/08/17 14:50 7962 UNITS MW18-39 RDL % 88 % 86 % 95 % 84	2018/08/17 2018/08/17 14:50 15:05 7962 7962 UNITS MW18-39 RDL MW18-39A	2018/08/17	2018/08/17 2018/08/17 2018/08/17 14:50 15:05 10:05 7962 7962 7962 UNITS MW18-39 RDL MW18-39A RDL MW17-19	2018/08/17

STANTEC CONSULTING LTD. Client Project #: 123221161 Your P.O. #: 123221161-250.200

Sampler Initials: MV

CSR DISSOLVED METALS (NO CV-HG) IN WATER

Maxxam ID		UC6883	UC6884		UC6885		UC6886	UC6889	UC6890		
Sampling Date		2018/08/16	2018/08/16		2018/08/16		2018/08/17	2018/08/17	2018/08/17		
Sampling Date		16:30	17:10		19:00		10:30	14:50	15:05		
COC Number		7962	7962		7962		7962	7962	7962		
	UNITS	MW16-13-RW	MW17-16	RDL	MW18-56	RDL	MW16-11	MW18-39	MW18-39A	RDL	QC Batch
Calculated Parameters											
Dissolved Hardness (CaCO3)	mg/L	695	784	0.50	804	0.50	828	763	762	0.50	9119988
Dissolved Metals by ICPMS											
Dissolved Arsenic (As)	ug/L	4.76	9.72	0.10	1.48	0.20	11.8	15.7	15.9	0.10	9121570
Dissolved Iron (Fe)	ug/L	2690	3970	5.0	<10	10	1570	1580	1580	5.0	9121570
Dissolved Manganese (Mn)	ug/L	385	263	1.0	180	2.0	90.2	173	170	1.0	9121570
Dissolved Magnesium (Mg)	ug/L	93000	103000	50	99600	100	110000	101000	101000	50	9121570
RDL = Reportable Detection L	imit										

STANTEC CONSULTING LTD. Client Project #: 123221161 Your P.O. #: 123221161-250.200

Sampler Initials: MV

TOTAL TKN IN WATER (GROUND WATER)

Maxxam ID		UC6883	UC6884	UC6885	UC6886	UC6889	UC6890		
Sampling Date		2018/08/16	2018/08/16	2018/08/16	2018/08/17	2018/08/17	2018/08/17		
Sampling Date		16:30	17:10	19:00	10:30	14:50	15:05		
COC Number		7962	7962	7962	7962	7962	7962		
	UNITS	MW16-13-RW	MW17-16	MW18-56	MW16-11	MW18-39	MW18-39A	RDL	QC Batch
Calculated Parameters									
Total Total Kjeldahl Nitrogen (Calc)	mg/L	0.137	0.151	0.228	0.107	0.149	0.127	0.020	9120647
Nutrients							•		
Total Nitrogen (N)	mg/L	0.137	0.151	0.228	0.107	0.149	0.127	0.020	9123910
RDL = Reportable Detection Limit									

STANTEC CONSULTING LTD. Client Project #: 123221161 Your P.O. #: 123221161-250.200

Sampler Initials: MV

GENERAL COMMENTS

Version 3: Report reissued to include results for BTEX/VPH on select samples as per request from Matthew Deane on 2018/08/30

Sample UC6883 [MW16-13-RW]: Sample was analyzed past method specified hold time for Nitrate + Nitrite (N). Exceedance of hold time increases the uncertainty of test results but does not necessarily imply that results are compromised. Sample was analyzed past method specified hold time for Nitrite (N) by CFA. Sample was analyzed past method specified hold time for Orthophosphate by Konelab. Sample was analyzed past method specified hold time for BTEX/MTBE LH, VH, F1 SIM/MS. Sample was analyzed past method specified hold time for BTEX/MTBE LH, VH, F1 SIM/MS.

Sample UC6884 [MW17-16]: Sample was analyzed past method specified hold time for Nitrate + Nitrite (N). Exceedance of hold time increases the uncertainty of test results but does not necessarily imply that results are compromised. Sample was analyzed past method specified hold time for Nitrite (N) by CFA. Sample was analyzed past method specified hold time for Orthophosphate by Konelab. Sample was analyzed past method specified hold time for Orthophosphate by Konelab.

Sample UC6885 [MW18-56]: Sample was analyzed past method specified hold time for Nitrate + Nitrite (N). Exceedance of hold time increases the uncertainty of test results but does not necessarily imply that results are compromised. Sample was analyzed past method specified hold time for Nitrite (N) by CFA. Sample was analyzed past method specified hold time for Orthophosphate by Konelab. Sample was analyzed past method specified hold time for Orthophosphate by Konelab.

Sample UC6886 [MW16-11]: Sample was analyzed past method specified hold time for Nitrate + Nitrite (N). Exceedance of hold time increases the uncertainty of test results but does not necessarily imply that results are compromised. Sample was analyzed past method specified hold time for Nitrite (N) by CFA. Sample was analyzed past method specified hold time for Orthophosphate by Konelab. Sample was analyzed past method specified hold time for Orthophosphate by Konelab.

Sample UC6889 [MW18-39]: Sample was analyzed past method specified hold time for Nitrate + Nitrite (N). Exceedance of hold time increases the uncertainty of test results but does not necessarily imply that results are compromised. Sample was analyzed past method specified hold time for Nitrite (N) by CFA. Sample was analyzed past method specified hold time for Orthophosphate by Konelab. Sample was analyzed past method specified hold time for Orthophosphate by Konelab.

Sample UC6890 [MW18-39A]: Sample was analyzed past method specified hold time for Nitrate + Nitrite (N). Exceedance of hold time increases the uncertainty of test results but does not necessarily imply that results are compromised. Sample was analyzed past method specified hold time for Nitrite (N) by CFA. Sample was analyzed past method specified hold time for Orthophosphate by Konelab. Sample was analyzed past method specified hold time for Orthophosphate by Konelab.

CSR DISSOLVED METALS (NO CV-HG) IN WATER Comments

Sample UC6885 [MW18-56] Elements by CRC ICPMS (dissolved): RDL raised due to concentration over linear range, sample dilution required.

Results relate only to the items tested.

QUALITY ASSURANCE REPORT

STANTEC CONSULTING LTD. Client Project #: 123221161

Your P.O. #: 123221161-250.200

Sampler Initials: MV

			Matrix	Spike	Spiked	Blank	Method	Blank	RP	D
QC Batch	Parameter	Date	% Recovery	QC Limits	% Recovery	QC Limits	Value	UNITS	Value (%)	QC Limits
9114325	D10-ANTHRACENE (sur.)	2018/08/23	83	50 - 140	102	50 - 140	86	%		
9114325	D8-ACENAPHTHYLENE (sur.)	2018/08/23	89	50 - 140	100	50 - 140	84	%		
9114325	D8-NAPHTHALENE (sur.)	2018/08/23	76	50 - 140	91	50 - 140	73	%		
9114325	TERPHENYL-D14 (sur.)	2018/08/23	76	50 - 140	105	50 - 140	83	%		
9114335	O-TERPHENYL (sur.)	2018/08/23	103	60 - 140	102	60 - 140	98	%		
9124534	1,4-Difluorobenzene (sur.)	2018/08/30	98	70 - 130	102	70 - 130	107	%		
9124534	4-Bromofluorobenzene (sur.)	2018/08/30	102	70 - 130	101	70 - 130	101	%		
9124534	D4-1,2-Dichloroethane (sur.)	2018/08/30	109	70 - 130	108	70 - 130	114	%		
9114325	1-Methylnaphthalene	2018/08/23	NC	50 - 140	91	50 - 140	<0.050	ug/L	7.0	40
9114325	2-Methylnaphthalene	2018/08/23	75	50 - 140	83	50 - 140	<0.10	ug/L	NC	40
9114325	Acenaphthene	2018/08/23	74	50 - 140	90	50 - 140	<0.050	ug/L	11	40
9114325	Acenaphthylene	2018/08/23	87	50 - 140	89	50 - 140	<0.050	ug/L	NC	40
9114325	Acridine	2018/08/23	88	50 - 140	87	50 - 140	<0.050	ug/L	NC	40
9114325	Anthracene	2018/08/23	76	50 - 140	90	50 - 140	<0.010	ug/L	1.7	40
9114325	Benzo(a)anthracene	2018/08/23	69	50 - 140	86	50 - 140	<0.010	ug/L	NC	40
9114325	Benzo(a)pyrene	2018/08/23	69	50 - 140	92	50 - 140	<0.0050	ug/L	NC	40
9114325	Benzo(b&j)fluoranthene	2018/08/23	70	50 - 140	92	50 - 140	<0.030	ug/L	NC	40
9114325	Benzo(g,h,i)perylene	2018/08/23	70	50 - 140	99	50 - 140	<0.050	ug/L	NC	40
9114325	Benzo(k)fluoranthene	2018/08/23	76	50 - 140	102	50 - 140	<0.050	ug/L	NC	40
9114325	Chrysene	2018/08/23	72	50 - 140	88	50 - 140	<0.020	ug/L	NC	40
9114325	Dibenz(a,h)anthracene	2018/08/23	69	50 - 140	100	50 - 140	<0.0030	ug/L	NC	40
9114325	Fluoranthene	2018/08/23	79	50 - 140	96	50 - 140	<0.020	ug/L	NC	40
9114325	Fluorene	2018/08/23	77	50 - 140	86	50 - 140	<0.050	ug/L	6.4	40
9114325	Indeno(1,2,3-cd)pyrene	2018/08/23	71	50 - 140	101	50 - 140	<0.050	ug/L	NC	40
9114325	Naphthalene	2018/08/23	66	50 - 140	80	50 - 140	<0.10	ug/L	6.5	40
9114325	Phenanthrene	2018/08/23	76	50 - 140	91	50 - 140	<0.050	ug/L	4.2	40
9114325	Pyrene	2018/08/23	80	50 - 140	98	50 - 140	<0.020	ug/L	NC	40
9114325	Quinoline	2018/08/23	113	50 - 140	100	50 - 140	<0.020	ug/L	NC	40
9114335	EPH (C10-C19)	2018/08/23	94	60 - 140	88	70 - 130	<0.20	mg/L	1.9	30
9114335	EPH (C19-C32)	2018/08/23	85	60 - 140	85	70 - 130	<0.20	mg/L	NC	30

QUALITY ASSURANCE REPORT(CONT'D)

STANTEC CONSULTING LTD. Client Project #: 123221161 Your P.O. #: 123221161-250.200

Sampler Initials: MV

			Matrix	Spike	Spiked	Blank	Method E	Blank	RP	D
QC Batch	Parameter	Date	% Recovery	QC Limits	% Recovery	QC Limits	Value	UNITS	Value (%)	QC Limits
9121570	Dissolved Arsenic (As)	2018/08/29	104	80 - 120	104	80 - 120	<0.10	ug/L	0.55	20
9121570	Dissolved Iron (Fe)	2018/08/29	97	80 - 120	93	80 - 120	<5.0	ug/L	NC	20
9121570	Dissolved Magnesium (Mg)	2018/08/29	NC	80 - 120	98	80 - 120	<50	ug/L	0.21	20
9121570	Dissolved Manganese (Mn)	2018/08/29	96	80 - 120	97	80 - 120	<1.0	ug/L	1.7	20
9123854	Fluoride (F)	2018/08/30	102	80 - 120	104	80 - 120	<0.020	mg/L	3.2	20
9123910	Total Nitrogen (N)	2018/08/31	92	80 - 120	87	80 - 120	<0.020	mg/L	3.5	20
9124534	Benzene	2018/08/30	107	70 - 130	99	70 - 130	<0.40	ug/L	NC	30
9124534	Ethylbenzene	2018/08/30	118	70 - 130	110	70 - 130	<0.40	ug/L	NC	30
9124534	m & p-Xylene	2018/08/30	115	70 - 130	108	70 - 130	<0.40	ug/L	NC	30
9124534	Methyl-tert-butylether (MTBE)	2018/08/30	104	70 - 130	96	70 - 130	<4.0	ug/L	NC	30
9124534	o-Xylene	2018/08/30	115	70 - 130	109	70 - 130	<0.40	ug/L	NC	30
9124534	Styrene	2018/08/30	112	70 - 130	104	70 - 130	<0.40	ug/L	NC	30
9124534	Toluene	2018/08/30	105	70 - 130	98	70 - 130	<0.40	ug/L	NC	30
9124534	VH C6-C10	2018/08/30			105	70 - 130	<300	ug/L	NC	30
9124534	Xylenes (Total)	2018/08/30					<0.40	ug/L	NC	30
9124591	Nitrate plus Nitrite (N)	2018/08/30	104	80 - 120	108	80 - 120	<0.020	mg/L	NC	25
9124596	Nitrite (N)	2018/08/30	97	80 - 120	103	80 - 120	< 0.0050	mg/L	NC	20
9124598	Nitrate plus Nitrite (N)	2018/08/30	100	80 - 120	108	80 - 120	<0.020	mg/L	3.4	25
9124600	Nitrite (N)	2018/08/30	102	80 - 120	103	80 - 120	<0.0050	mg/L	NC	20
9124729	Dissolved Chloride (CI)	2018/08/30	98	80 - 120	97	80 - 120	<1.0	mg/L	NC	20
9124731	Dissolved Sulphate (SO4)	2018/08/30	93	80 - 120	92	80 - 120	<1.0	mg/L	NC	20
9124778	Orthophosphate (P)	2018/08/30			104	80 - 120	< 0.0050	mg/L		
9124816	Total Phosphorus (P)	2018/08/30			105	80 - 120	<0.0050	mg/L		
9125731	Fluoride (F)	2018/08/31	104	80 - 120	102	80 - 120	<0.020	mg/L	1.6	20
9128684	Total Ammonia (N)	2018/09/04	94	80 - 120	101	80 - 120	<0.020	mg/L	8.3	20

QUALITY ASSURANCE REPORT(CONT'D)

STANTEC CONSULTING LTD. Client Project #: 123221161 Your P.O. #: 123221161-250.200

Sampler Initials: MV

			Matrix	Spike	Spiked	Blank	Method B	lank	RPI	
QC Batch	Parameter	Date	% Recovery	QC Limits	% Recovery	QC Limits	Value	UNITS	Value (%)	QC Limits
9128765	Dissolved Organic Carbon (C)	2018/09/04	102	80 - 120	111	80 - 120	<0.50	mg/L	1.6	20

Duplicate: Paired analysis of a separate portion of the same sample. Used to evaluate the variance in the measurement.

Matrix Spike: A sample to which a known amount of the analyte of interest has been added. Used to evaluate sample matrix interference.

Spiked Blank: A blank matrix sample to which a known amount of the analyte, usually from a second source, has been added. Used to evaluate method accuracy.

Method Blank: A blank matrix containing all reagents used in the analytical procedure. Used to identify laboratory contamination.

Surrogate: A pure or isotopically labeled compound whose behavior mirrors the analytes of interest. Used to evaluate extraction efficiency.

NC (Matrix Spike): The recovery in the matrix spike was not calculated. The relative difference between the concentration in the parent sample and the spike amount was too small to permit a reliable recovery calculation (matrix spike concentration was less than the native sample concentration)

NC (Duplicate RPD): The duplicate RPD was not calculated. The concentration in the sample and/or duplicate was too low to permit a reliable RPD calculation (absolute difference <= 2x RDL).

STANTEC CONSULTING LTD. Client Project #: 123221161 Your P.O. #: 123221161-250.200

Sampler Initials: MV

VALIDATION SIGNATURE PAGE

The analytical data and all QC contained in this report were reviewed and validated by the following individual(s).

Andy Lu, Ph.D., P.Chem., Scientific Specialist

Rob Reinert, B.Sc., Scientific Specialist

Maxxam has procedures in place to guard against improper use of the electronic signature and have the required "signatories", as per section 5.10.2 of ISO/IEC 17025:2005(E), signing the reports. For Service Group specific validation please refer to the Validation Signature Page.

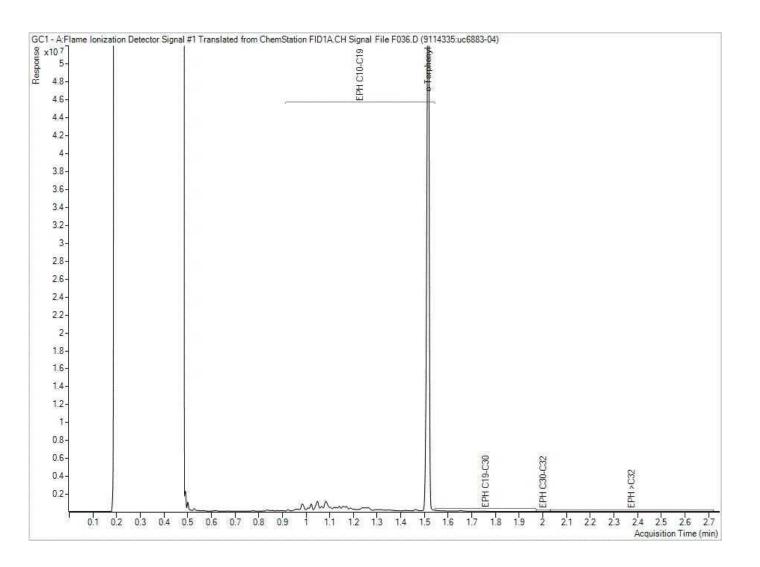
Custody Tracking Form

Please use this form for custody tracking when submitting the work instructions via eTR (electronic Test Requisition).

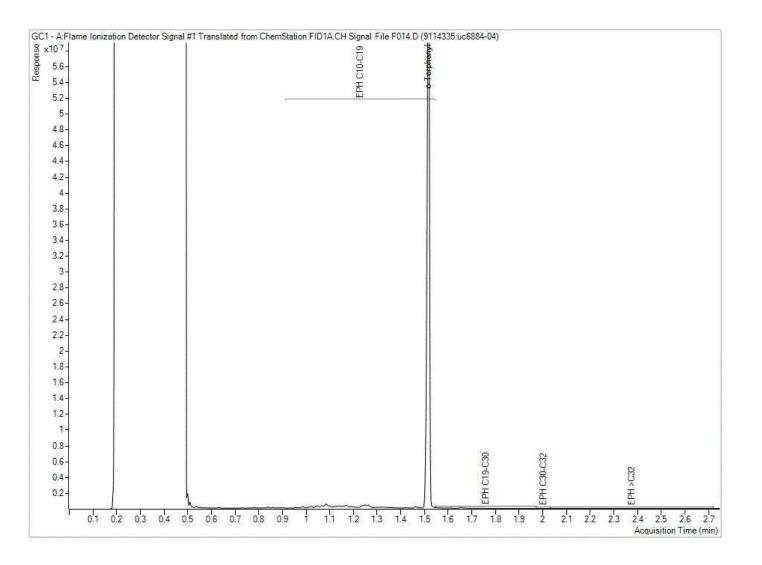
Please ensure your form has a barcode or a Maxxam eTR confirmation number in the top right hand side. This number links your electronic submission to your samples.

First Sample: Last Sample:

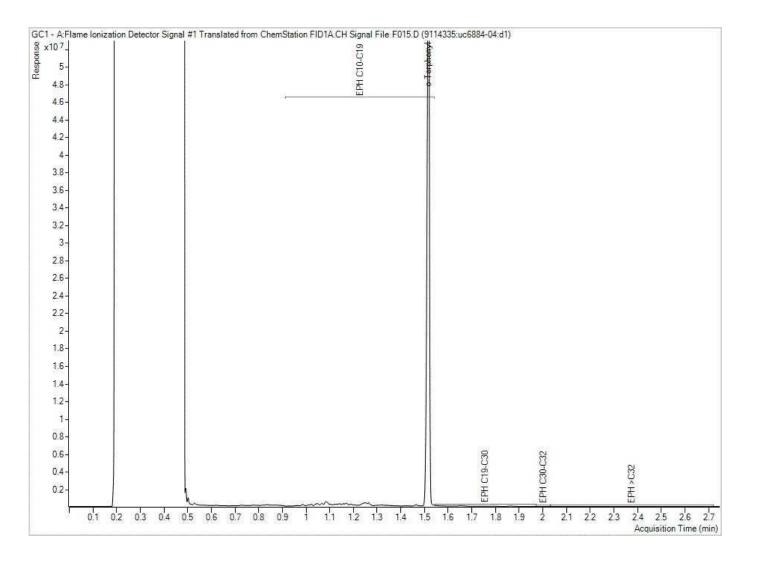
	Relinquished By	/	7.10/20/12			Received I				- O h
lark Verhalle	Made Viels	Date Time (24 HR)	7018/08/17	PEORO TACK	2.	1 Sign	Date Time (24 UD1	2018	IORP
Print	Sign	Date (24 HK)	YYYY/MM/BD	Print		Sign	Date	24 FIN]	_	/MIMI/DD
	Lagr.	Time (24 HR)	HHDMM			July 1		24 HR)	_	E-NIM
Print	Sian	Date	YYXY/MM/DD	Print		Sign	Date		19995	/WW/DD
***		Time (24 HR)	HH:MM				Time (24 HR)	H	4:345A
mpled By		# of Coole	ers/Pkgs:	Rush Micro		Immediate Test			ood Residu d Chemist	
	Comme		ers/Pkgs:	Micro 🗌				Foo	d Chemist	ry 🗆
	Comme	ents:	*** LAB USE	Micro ONLY ***	Custod	ly Seal	Cooling	Foo	d Chemist	e°C
Received At	Comme	ents:	*** LAB USE	Micro ONLY***	Custod t (Y/N)	ly Seal Intact (Y/N)	Cooling Media	Foo	d Chemist	e°C 3
Received At	Comme	ents:	*** LAB USE	ONLY ***	Custod	ly Seal Intact (Y/N)	Cooling Media	Te 1	d Chemist	e°C 3
Received At Labeled By	Comme	ents:	*** LAB USE WHITEHORSE My (2) 1635 8/08/17	Micro ONLY***	Custod	ly Seal Intact (Y/N)	Cooling Media	Foo	mperature 2	e°C 3
Received At	Comme	ents:	*** LAB USE	ONLY ***	Custod	ly Seal Intact (Y/N)	Cooling Media	Te 1	mperature 2	e°C 3



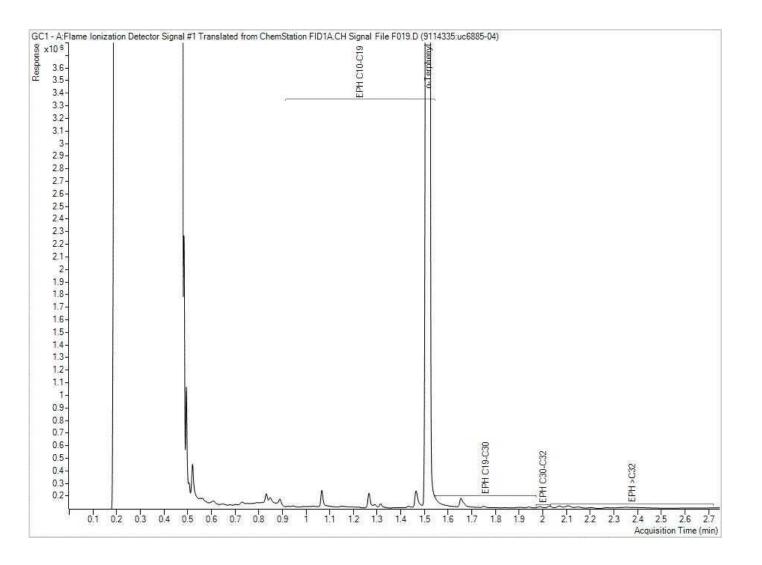
B870078_COC


STANTEC CONSULTING LTD. Client Project #: 123221161 Client ID: MW16-13-RW

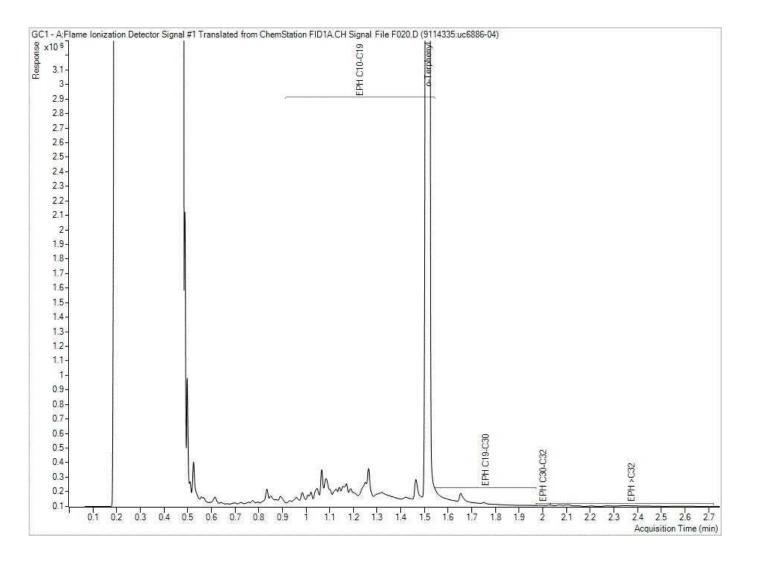
EPH in Water when PAH required Chromatogram


STANTEC CONSULTING LTD. Client Project #: 123221161 Client ID: MW17-16

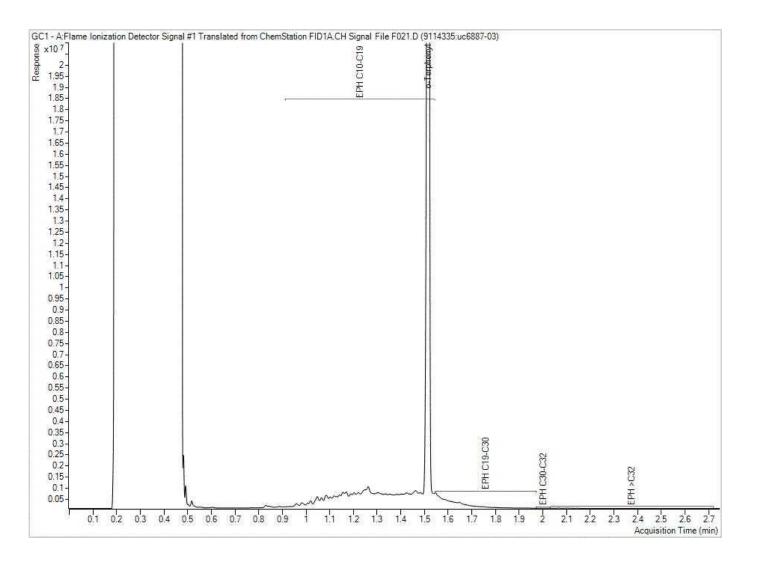
EPH in Water when PAH required Chromatogram


STANTEC CONSULTING LTD. Client Project #: 123221161 Client ID: MW17-16

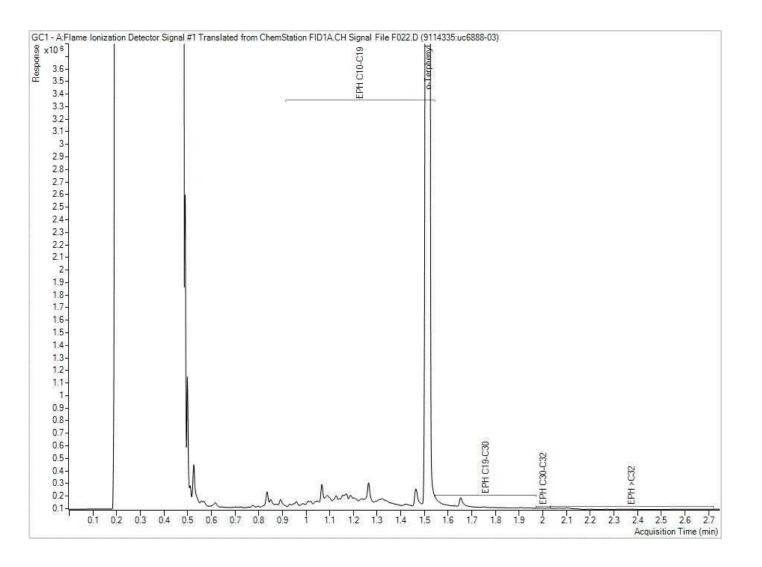
EPH in Water when PAH required Chromatogram


STANTEC CONSULTING LTD. Client Project #: 123221161 Client ID: MW18-56

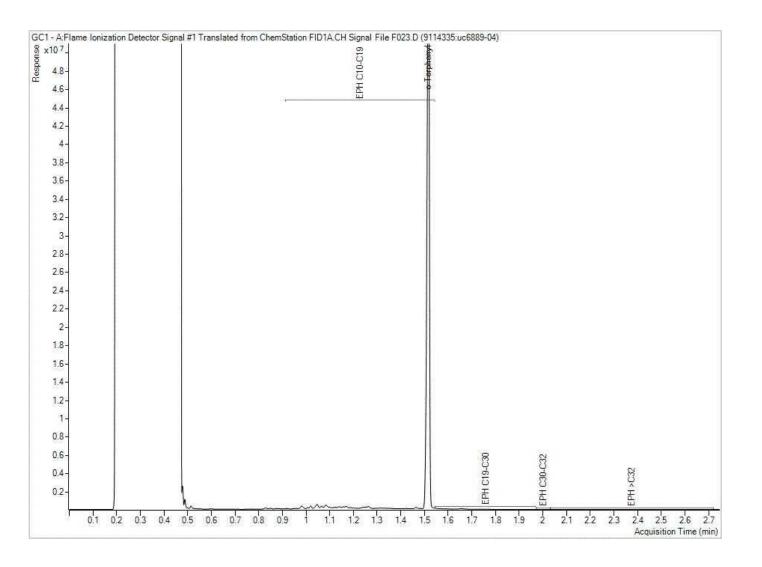
EPH in Water when PAH required Chromatogram


STANTEC CONSULTING LTD. Client Project #: 123221161 Client ID: MW16-11

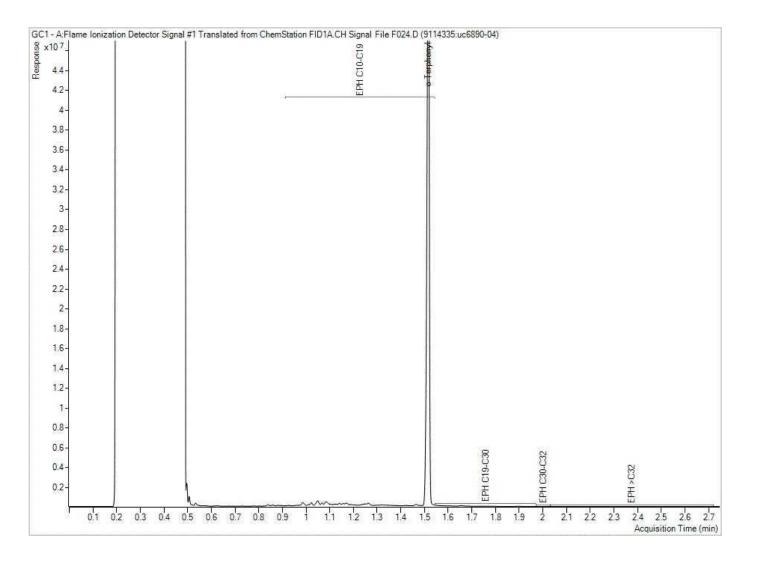
EPH in Water when PAH required Chromatogram


STANTEC CONSULTING LTD. Client Project #: 123221161 Client ID: MW17-20

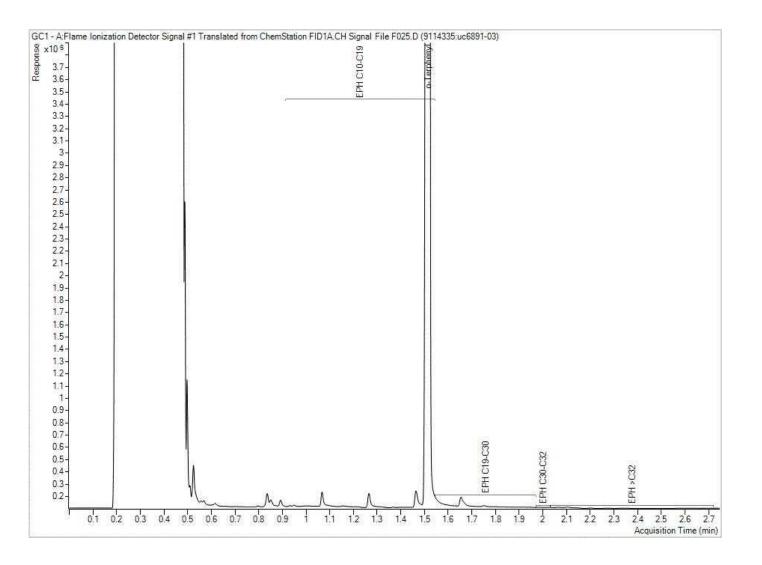
EPH in Water when PAH required Chromatogram


STANTEC CONSULTING LTD. Client Project #: 123221161 Client ID: MW18-35

EPH in Water when PAH required Chromatogram


STANTEC CONSULTING LTD. Client Project #: 123221161 Client ID: MW18-39

EPH in Water when PAH required Chromatogram


Maxxam Job #: B870078 Report Date: 2018/09/04 Maxxam Sample: UC6890 STANTEC CONSULTING LTD. Client Project #: 123221161 Client ID: MW18-39A

EPH in Water when PAH required Chromatogram

Maxxam Job #: B870078 Report Date: 2018/09/04 Maxxam Sample: UC6891 STANTEC CONSULTING LTD. Client Project #: 123221161 Client ID: MW17-19

EPH in Water when PAH required Chromatogram

Your P.O. #: 123221161-250.200 Your Project #: 123221161 Your C.O.C. #: 8122

Attention: Carey Sibbald

STANTEC CONSULTING LTD.
Whitehorse_
107 Main Street
Suite 202
Whitehorse, YT
CANADA Y1A 2A7

Report Date: 2018/08/28

Report #: R2610588 Version: 1 - Final

CERTIFICATE OF ANALYSIS

MAXXAM JOB #: B871282 Received: 2018/08/21, 16:25

Sample Matrix: Water # Samples Received: 6

		Date	Date		
Analyses	Quantity	Extracted	Analyzed	Laboratory Method	Analytical Method
EPH in Water when PAH required	6	2018/08/24	2018/08/25	BBY8SOP-00029	BCMOE BCLM Mar 2017
PAH in Water by GC/MS (SIM)	5	2018/08/24	2018/08/24	BBY8SOP-00021	BCMOE BCLM Jul2017m
PAH in Water by GC/MS (SIM)	1	2018/08/24	2018/08/25	BBY8SOP-00021	BCMOE BCLM Jul2017m
Total LMW, HMW, Total PAH Calc (1)	6	N/A	2018/08/27	BBY WI-00033	Auto Calc
EPH less PAH in Water by GC/FID (2)	6	N/A	2018/08/27	BBY WI-00033	Auto Calc

Remarks:

Maxxam Analytics' laboratories are accredited to ISO/IEC 17025:2005 for specific parameters on scopes of accreditation. Unless otherwise noted, procedures used by Maxxam are based upon recognized Provincial, Federal or US method compendia such as CCME, MDDELCC, EPA, APHA.

All work recorded herein has been done in accordance with procedures and practices ordinarily exercised by professionals in Maxxam's profession using accepted testing methodologies, quality assurance and quality control procedures (except where otherwise agreed by the client and Maxxam in writing). All data is in statistical control and has met quality control and method performance criteria unless otherwise noted. All method blanks are reported; unless indicated otherwise, associated sample data are not blank corrected. Where applicable, unless otherwise noted, Measurement Uncertainty has not been accounted for when stating conformity to the referenced standard.

Maxxam Analytics' liability is limited to the actual cost of the requested analyses, unless otherwise agreed in writing. There is no other warranty expressed or implied. Maxxam has been retained to provide analysis of samples provided by the Client using the testing methodology referenced in this report. Interpretation and use of test results are the sole responsibility of the Client and are not within the scope of services provided by Maxxam, unless otherwise agreed in writing. Maxxam is not responsible for the accuracy or any data impacts, that result from the information provided by the customer or their agent.

Solid sample results, except biota, are based on dry weight unless otherwise indicated. Organic analyses are not recovery corrected except for isotope dilution methods.

Results relate to samples tested. When sampling is not conducted by Maxxam, results relate to the supplied samples tested.

This Certificate shall not be reproduced except in full, without the written approval of the laboratory.

Reference Method suffix "m" indicates test methods incorporate validated modifications from specific reference methods to improve performance.

- * RPDs calculated using raw data. The rounding of final results may result in the apparent difference.
- (1) Total PAHs in Water include: Quinoline, Naphthalene, 1-Methylnaphthalene, 2-Methylnaphthalene, Acenaphthylene, Acenaphthene, Fluorene, Phenanthrene, Anthracene, Acridine, Fluoranthene, Pyrene, Benzo(a)anthracene, Chrysene, Benzo(b&j)fluoranthene, Benzo(k)fluoranthene, Benzo(a)pyrene, Indeno(1,2,3-cd)pyrene, Dibenz(a,h)anthracene, and Benzo(g,h,i)perylene.
- (2) LEPH = EPH (C10 to C19) (Acenaphthene + Acridine + Anthracene + Fluorene + Naphthalene + Phenanthrene) HEPH = EPH (C19 to C32) - (Benzo(a)anthracene + Benzo(a)pyrene + Fluoranthene + Pyrene)

Your P.O. #: 123221161-250.200 Your Project #: 123221161 Your C.O.C. #: 8122

Attention: Carey Sibbald

STANTEC CONSULTING LTD.
Whitehorse_
107 Main Street
Suite 202
Whitehorse, YT
CANADA Y1A 2A7

Report Date: 2018/08/28

Report #: R2610588 Version: 1 - Final

CERTIFICATE OF ANALYSIS

MAXXAM JOB #: B871282 Received: 2018/08/21, 16:25

Encryption Key

Please direct all questions regarding this Certificate of Analysis to your Project Manager.

Nahed Amer, Project Manager Email: NAmer@maxxam.ca Phone# (604) 734 7276

This report has been generated and distributed using a secure automated process.

Maxxam has procedures in place to guard against improper use of the electronic signature and have the required "signatories", as per section 5.10.2 of ISO/IEC 17025:2005(E), signing the reports. For Service Group specific validation please refer to the Validation Signature Page.

STANTEC CONSULTING LTD. Client Project #: 123221161 Your P.O. #: 123221161-250.200

Sampler Initials: MV

LEPH & HEPH WITH CSR/CCME PAH IN WATER (WATER)

Maxxam ID		UD3681		UD3682		UD3683			UD3683		
Sampling Date		2018/08/21		2018/08/21		2018/08/21			2018/08/21		
Sampling Date		10:10		11:20		15:12			15:12		
COC Number		8122		8122		8122			8122		
	UNITS	MW16-12	RDL	MW18-31	RDL	MW16-02	RDL	QC Batch	MW16-02 Lab-Dup	RDL	QC Batch
Calculated Parameters											
Low Molecular Weight PAH's	ug/L	<0.10	0.10	3.7	0.10	<0.10	0.10	9114428			
High Molecular Weight PAH`s	ug/L	<0.050	0.050	<0.050	0.050	<0.050	0.050	9114428			
Total PAH	ug/L	<0.10	0.10	3.7	0.10	<0.10	0.10	9114428			
Polycyclic Aromatics											
Quinoline	ug/L	<0.020	0.020	<0.050 (1)	0.050	<0.020	0.020	9115794	<0.020	0.020	9115794
Naphthalene	ug/L	<0.10	0.10	0.42 (2)	0.10	<0.10	0.10	9115794	<0.10	0.10	9115794
1-Methylnaphthalene	ug/L	<0.050	0.050	<0.050	0.050	<0.050	0.050	9115794	<0.050	0.050	9115794
2-Methylnaphthalene	ug/L	<0.10	0.10	<0.10	0.10	<0.10	0.10	9115794	<0.10	0.10	9115794
Acenaphthylene	ug/L	<0.050	0.050	<0.050	0.050	<0.050	0.050	9115794	<0.050	0.050	9115794
Acenaphthene	ug/L	<0.050	0.050	0.66	0.050	<0.050	0.050	9115794	<0.050	0.050	9115794
Fluorene	ug/L	<0.050	0.050	1.8	0.050	<0.050	0.050	9115794	<0.050	0.050	9115794
Phenanthrene	ug/L	<0.050	0.050	0.73	0.050	<0.050	0.050	9115794	<0.050	0.050	9115794
Anthracene	ug/L	<0.010	0.010	0.018 (2)	0.010	<0.010	0.010	9115794	<0.010	0.010	9115794
Acridine	ug/L	<0.050	0.050	<0.050	0.050	<0.050	0.050	9115794	<0.050	0.050	9115794
Fluoranthene	ug/L	<0.020	0.020	<0.020	0.020	<0.020	0.020	9115794	<0.020	0.020	9115794
Pyrene	ug/L	<0.020	0.020	<0.020	0.020	<0.020	0.020	9115794	<0.020	0.020	9115794
Benzo(a)anthracene	ug/L	<0.010	0.010	<0.010	0.010	<0.010	0.010	9115794	<0.010	0.010	9115794
Chrysene	ug/L	<0.020	0.020	<0.020	0.020	<0.020	0.020	9115794	<0.020	0.020	9115794
Benzo(b&j)fluoranthene	ug/L	<0.030	0.030	<0.030	0.030	<0.030	0.030	9115794	<0.030	0.030	9115794
Benzo(k)fluoranthene	ug/L	<0.050	0.050	<0.050	0.050	<0.050	0.050	9115794	<0.050	0.050	9115794
Benzo(a)pyrene	ug/L	<0.0050	0.0050	<0.0050	0.0050	<0.0050	0.0050	9115794	<0.0050	0.0050	9115794
Indeno(1,2,3-cd)pyrene	ug/L	<0.050	0.050	<0.050	0.050	<0.050	0.050	9115794	<0.050	0.050	9115794
Dibenz(a,h)anthracene	ug/L	<0.0030	0.0030	<0.0030	0.0030	<0.0030	0.0030	9115794	<0.0030	0.0030	9115794
Benzo(g,h,i)perylene	ug/L	<0.050	0.050	<0.050	0.050	<0.050	0.050	9115794	<0.050	0.050	9115794
Calculated Parameters											
LEPH (C10-C19 less PAH)	mg/L	<0.20	0.20	0.58	0.20	<0.20	0.20	9114659			
HEPH (C19-C32 less PAH)	mg/L	<0.20	0.20	<0.20	0.20	<0.20	0.20	9114659			
Ext. Pet. Hydrocarbon											
EPH (C10-C19)	mg/L	<0.20	0.20	0.58	0.20	<0.20	0.20	9115809	<0.20	0.20	9115809
			•				•				

RDL = Reportable Detection Limit

Lab-Dup = Laboratory Initiated Duplicate

- (1) Detection limits raised due to matrix interference.
- (2) Tentatively identified result and may be potentially biased high due to matrix interference.

STANTEC CONSULTING LTD. Client Project #: 123221161 Your P.O. #: 123221161-250.200

Sampler Initials: MV

LEPH & HEPH WITH CSR/CCME PAH IN WATER (WATER)

Maxxam ID		UD3681		UD3682		UD3683			UD3683		
Sampling Date		2018/08/21		2018/08/21		2018/08/21			2018/08/21		
Sampling Date		10:10		11:20		15:12			15:12		
COC Number		8122		8122		8122			8122		
	UNITS	MW16-12	RDL	MW18-31	RDL	MW16-02	RDL	QC Batch	MW16-02 Lab-Dup	RDL	QC Batch
EPH (C19-C32)	mg/L	<0.20	0.20	<0.20	0.20	<0.20	0.20	9115809	<0.20	0.20	9115809
Surrogate Recovery (%)											
O-TERPHENYL (sur.)	%	95		89		87		9115809	86		9115809
D10-ANTHRACENE (sur.)	%	92		93		89		9115794	87		9115794
D8-ACENAPHTHYLENE (sur.)	%	94		98		93		9115794	88		9115794
D8-NAPHTHALENE (sur.)	%	94		93		90		9115794	81		9115794
TERPHENYL-D14 (sur.)	%	99		93		93		9115794	89		9115794

RDL = Reportable Detection Limit

Lab-Dup = Laboratory Initiated Duplicate

STANTEC CONSULTING LTD. Client Project #: 123221161 Your P.O. #: 123221161-250.200

Sampler Initials: MV

LEPH & HEPH WITH CSR/CCME PAH IN WATER (WATER)

Maxxam ID		UD3684		UD3685		UD3686		
Sampling Date		2018/08/21		2018/08/21		2018/08/21		
		15:25		11:45		14:40		
COC Number		8122		8122		8122		
	UNITS	MW16-02A	RDL	MW16-09	RDL	MW16-10	RDL	QC Batch
Calculated Parameters								
Low Molecular Weight PAH`s	ug/L	<0.10	0.10	19	0.10	<0.10	0.10	9114428
High Molecular Weight PAH`s	ug/L	<0.050	0.050	<0.050	0.050	<0.050	0.050	9114428
Total PAH	ug/L	<0.10	0.10	19	0.10	<0.10	0.10	9114428
Polycyclic Aromatics								
Quinoline	ug/L	<0.020	0.020	<0.040 (1)	0.040	<0.020	0.020	9115794
Naphthalene	ug/L	<0.10	0.10	3.0	0.10	<0.10	0.10	9115794
1-Methylnaphthalene	ug/L	<0.050	0.050	7.7	0.050	<0.050	0.050	9115794
2-Methylnaphthalene	ug/L	<0.10	0.10	5.9	0.10	<0.10	0.10	9115794
Acenaphthylene	ug/L	<0.050	0.050	0.33	0.050	<0.050	0.050	9115794
Acenaphthene	ug/L	<0.050	0.050	0.42	0.050	<0.050	0.050	9115794
Fluorene	ug/L	<0.050	0.050	1.3	0.050	<0.050	0.050	9115794
Phenanthrene	ug/L	<0.050	0.050	0.68	0.050	<0.050	0.050	9115794
Anthracene	ug/L	<0.010	0.010	0.018 (2)	0.010	<0.010	0.010	9115794
Acridine	ug/L	<0.050	0.050	<0.050	0.050	<0.050	0.050	9115794
Fluoranthene	ug/L	<0.020	0.020	<0.020	0.020	<0.020	0.020	9115794
Pyrene	ug/L	<0.020	0.020	<0.020	0.020	<0.020	0.020	9115794
Benzo(a)anthracene	ug/L	<0.010	0.010	<0.010	0.010	<0.010	0.010	9115794
Chrysene	ug/L	<0.020	0.020	<0.020	0.020	<0.020	0.020	9115794
Benzo(b&j)fluoranthene	ug/L	<0.030	0.030	<0.030	0.030	<0.030	0.030	9115794
Benzo(k)fluoranthene	ug/L	<0.050	0.050	<0.050	0.050	<0.050	0.050	9115794
Benzo(a)pyrene	ug/L	<0.0050	0.0050	<0.0050	0.0050	<0.0050	0.0050	9115794
Indeno(1,2,3-cd)pyrene	ug/L	<0.050	0.050	<0.050	0.050	<0.050	0.050	9115794
Dibenz(a,h)anthracene	ug/L	<0.0030	0.0030	<0.0030	0.0030	<0.0030	0.0030	9115794
Benzo(g,h,i)perylene	ug/L	<0.050	0.050	<0.050	0.050	<0.050	0.050	9115794
Calculated Parameters								_
LEPH (C10-C19 less PAH)	mg/L	<0.20	0.20	0.55	0.20	<0.20	0.20	9114659
HEPH (C19-C32 less PAH)	mg/L	<0.20	0.20	<0.20	0.20	<0.20	0.20	9114659
Ext. Pet. Hydrocarbon								
EPH (C10-C19)	mg/L	<0.20	0.20	0.55	0.20	<0.20	0.20	9115809
EPH (C19-C32)	mg/L	<0.20	0.20	<0.20	0.20	<0.20	0.20	9115809
551 5 11 5 11 11		·				·		

RDL = Reportable Detection Limit

⁽¹⁾ Detection limits raised due to matrix interference.

⁽²⁾ Tentatively identified result and may be potentially biased high due to matrix interference.

STANTEC CONSULTING LTD. Client Project #: 123221161 Your P.O. #: 123221161-250.200

Sampler Initials: MV

LEPH & HEPH WITH CSR/CCME PAH IN WATER (WATER)

Maxxam ID		UD3684		UD3685		UD3686		
Sampling Date		2018/08/21 15:25		2018/08/21 11:45		2018/08/21 14:40		
COC Number		8122		8122		8122		
	UNITS	MW16-02A	RDL	MW16-09	RDL	MW16-10	RDL	QC Batch
Surrogate Recovery (%)								
O-TERPHENYL (sur.)	%	88		91		87		9115809
D10-ANTHRACENE (sur.)	%	89		92		91		9115794
D8-ACENAPHTHYLENE (sur.)	%	89		94		90		9115794
D8-NAPHTHALENE (sur.)	%	83		86		86		9115794
TERPHENYL-D14 (sur.)	%	91		92		92		9115794
RDL = Reportable Detection Li	mit							•

STANTEC CONSULTING LTD. Client Project #: 123221161 Your P.O. #: 123221161-250.200

Sampler Initials: MV

GENERAL COMMENTS

Results relate only to the items tested.

QUALITY ASSURANCE REPORT

STANTEC CONSULTING LTD. Client Project #: 123221161

Your P.O. #: 123221161-250.200

Sampler Initials: MV

			Matrix	Spike	Spiked	Blank	Method Blank		RPD	
QC Batch	Parameter	Date	% Recovery	QC Limits	% Recovery	QC Limits	Value	UNITS	Value (%)	QC Limits
9115794	D10-ANTHRACENE (sur.)	2018/08/24	89	50 - 140	93	50 - 140	92	%		
9115794	D8-ACENAPHTHYLENE (sur.)	2018/08/24	93	50 - 140	92	50 - 140	92	%		
9115794	D8-NAPHTHALENE (sur.)	2018/08/24	92	50 - 140	87	50 - 140	90	%		
9115794	TERPHENYL-D14 (sur.)	2018/08/24	96	50 - 140	99	50 - 140	99	%		
9115809	O-TERPHENYL (sur.)	2018/08/25	90	60 - 140	92	60 - 140	95	%		
9115794	1-Methylnaphthalene	2018/08/24	97	50 - 140	88	50 - 140	<0.050	ug/L	NC	40
9115794	2-Methylnaphthalene	2018/08/24	92	50 - 140	81	50 - 140	<0.10	ug/L	NC	40
9115794	Acenaphthene	2018/08/24	93	50 - 140	84	50 - 140	<0.050	ug/L	NC	40
9115794	Acenaphthylene	2018/08/24	92	50 - 140	84	50 - 140	<0.050	ug/L	NC	40
9115794	Acridine	2018/08/24	99	50 - 140	92	50 - 140	<0.050	ug/L	NC	40
9115794	Anthracene	2018/08/24	91	50 - 140	84	50 - 140	<0.010	ug/L	NC	40
9115794	Benzo(a)anthracene	2018/08/24	90	50 - 140	83	50 - 140	<0.010	ug/L	NC	40
9115794	Benzo(a)pyrene	2018/08/24	88	50 - 140	82	50 - 140	<0.0050	ug/L	NC	40
9115794	Benzo(b&j)fluoranthene	2018/08/24	89	50 - 140	86	50 - 140	<0.030	ug/L	NC	40
9115794	Benzo(g,h,i)perylene	2018/08/24	80	50 - 140	76	50 - 140	<0.050	ug/L	NC	40
9115794	Benzo(k)fluoranthene	2018/08/24	94	50 - 140	82	50 - 140	<0.050	ug/L	NC	40
9115794	Chrysene	2018/08/24	94	50 - 140	86	50 - 140	<0.020	ug/L	NC	40
9115794	Dibenz(a,h)anthracene	2018/08/24	81	50 - 140	77	50 - 140	<0.0030	ug/L	NC	40
9115794	Fluoranthene	2018/08/24	93	50 - 140	87	50 - 140	<0.020	ug/L	NC	40
9115794	Fluorene	2018/08/24	89	50 - 140	82	50 - 140	<0.050	ug/L	NC	40
9115794	Indeno(1,2,3-cd)pyrene	2018/08/24	80	50 - 140	76	50 - 140	<0.050	ug/L	NC	40
9115794	Naphthalene	2018/08/24	99	50 - 140	90	50 - 140	<0.10	ug/L	NC	40
9115794	Phenanthrene	2018/08/24	91	50 - 140	86	50 - 140	<0.050	ug/L	NC	40
9115794	Pyrene	2018/08/24	96	50 - 140	90	50 - 140	<0.020	ug/L	NC	40
9115794	Quinoline	2018/08/24	113	50 - 140	102	50 - 140	<0.020	ug/L	NC	40
9115809	EPH (C10-C19)	2018/08/25	89	60 - 140	88	70 - 130	<0.20	mg/L	NC	30

QUALITY ASSURANCE REPORT(CONT'D)

STANTEC CONSULTING LTD. Client Project #: 123221161 Your P.O. #: 123221161-250.200

Sampler Initials: MV

			Matrix Spike		Spiked Blank		Method Blank		RPD	
QC Batch	Parameter	Date	% Recovery	QC Limits	% Recovery	QC Limits	Value	UNITS	Value (%)	QC Limits
9115809	EPH (C19-C32)	2018/08/25	83	60 - 140	80	70 - 130	<0.20	mg/L	NC	30

Duplicate: Paired analysis of a separate portion of the same sample. Used to evaluate the variance in the measurement.

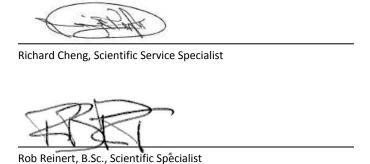
Matrix Spike: A sample to which a known amount of the analyte of interest has been added. Used to evaluate sample matrix interference.

Spiked Blank: A blank matrix sample to which a known amount of the analyte, usually from a second source, has been added. Used to evaluate method accuracy.

Method Blank: A blank matrix containing all reagents used in the analytical procedure. Used to identify laboratory contamination.

Surrogate: A pure or isotopically labeled compound whose behavior mirrors the analytes of interest. Used to evaluate extraction efficiency.

NC (Duplicate RPD): The duplicate RPD was not calculated. The concentration in the sample and/or duplicate was too low to permit a reliable RPD calculation (absolute difference <= 2x RDL).



STANTEC CONSULTING LTD. Client Project #: 123221161 Your P.O. #: 123221161-250.200

Sampler Initials: MV

VALIDATION SIGNATURE PAGE

The analytical data and all QC contained in this report were reviewed and validated by the following individual(s).

Maxxam has procedures in place to guard against improper use of the electronic signature and have the required "signatories", as per section 5.10.2 of ISO/IEC 17025:2005(E), signing the reports. For Service Group specific validation please refer to the Validation Signature Page.

Custody Tracking Form

Please use this form for custody tracking when submitting the work instructions via eTR (electronic Test Requisition).

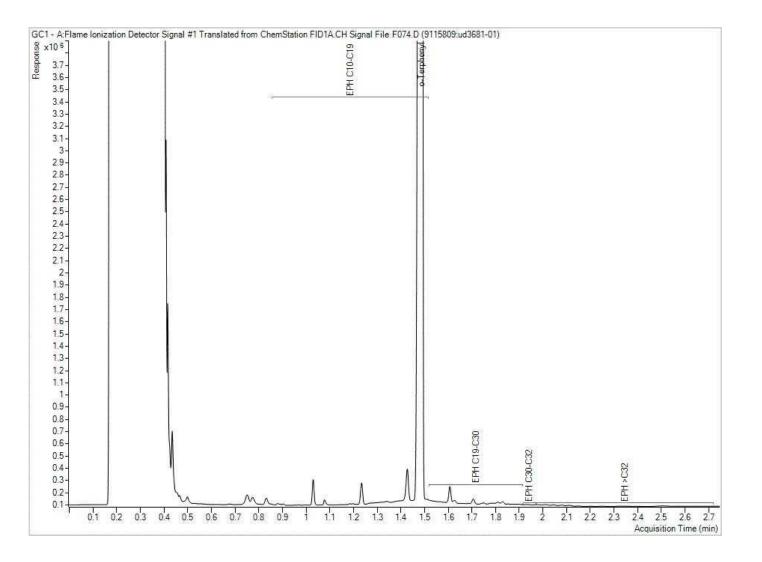
Please ensure your form has a barcode or a Maxxam eTR confirmation number in the top right hand side. This number links your electronic submission to your samples.

First Sample: Last Sample: Sample Count:

	Relinquished By				Received By	No.	
Mark Volhalle	21/1/10	Date	2018/08/21	SWONS	Styons	Date	2018/08/2
ruck Verhalle	Mach Perlot	Time (24 HR)	16:23	3	Degloro	Time (24 HR)	16:05
C 1	91.10	Date	2018/08/21		1	Date	2018/08/22
Syons	degino	Time (24 HR)	17:00	LADRO TAKK		Time (24 HR)	14:40
		Date			,	Date	
		Time (24 HR)				Time (24 HR)	11.0

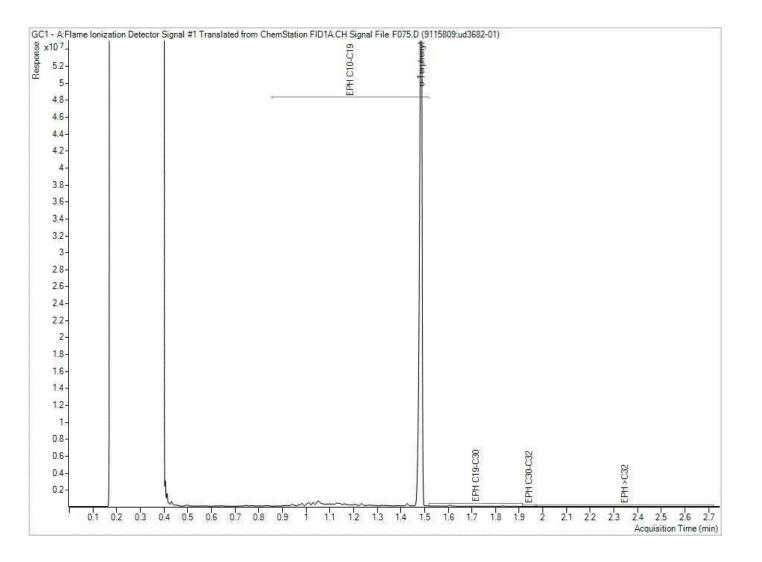
Sampled By		~	# of Coolers/Pkgs:		sh 🗌	Immediate Test			ood Resid	
	All the state of		44 July 2014	LAB USE ONLY ***				STATE OF		
Received At	EWH	Comments:			Custoo	ly Seal	Cooling	Ter	nperatur	e °C
					Present (Y/N)	Intact (Y/N)	Media	1	2	3
									11111111	

1 Lg cooler

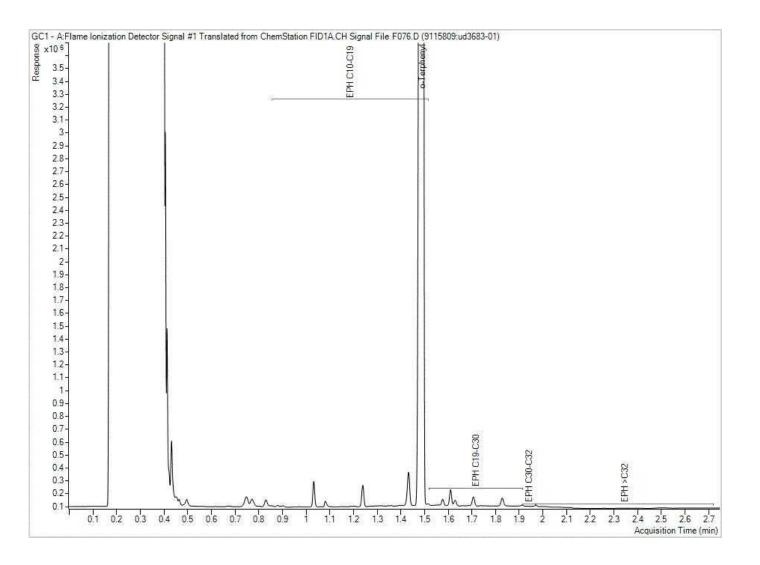

B871282_COC

1908

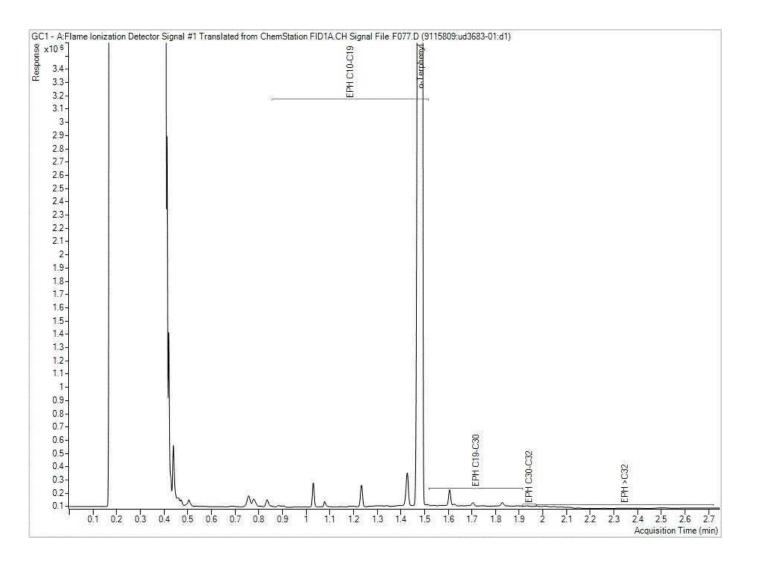
Verified By


STANTEC CONSULTING LTD. Client Project #: 123221161 Client ID: MW16-12

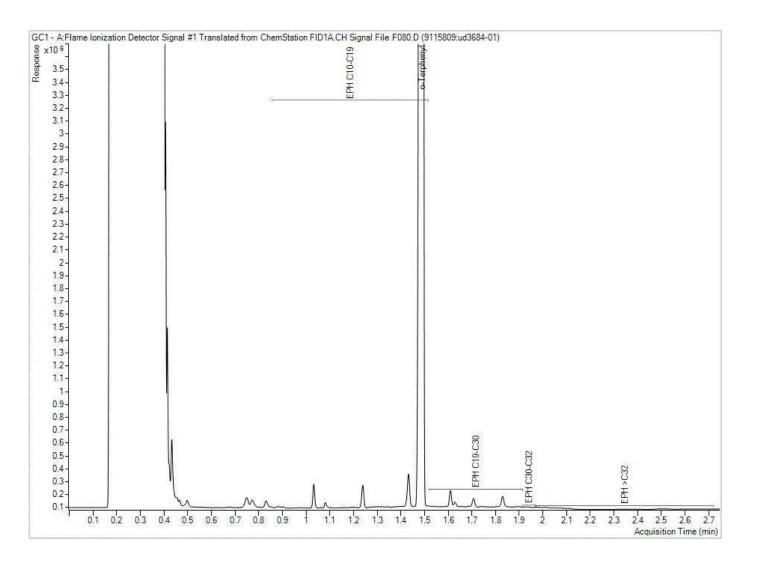
EPH in Water when PAH required Chromatogram


STANTEC CONSULTING LTD. Client Project #: 123221161 Client ID: MW18-31

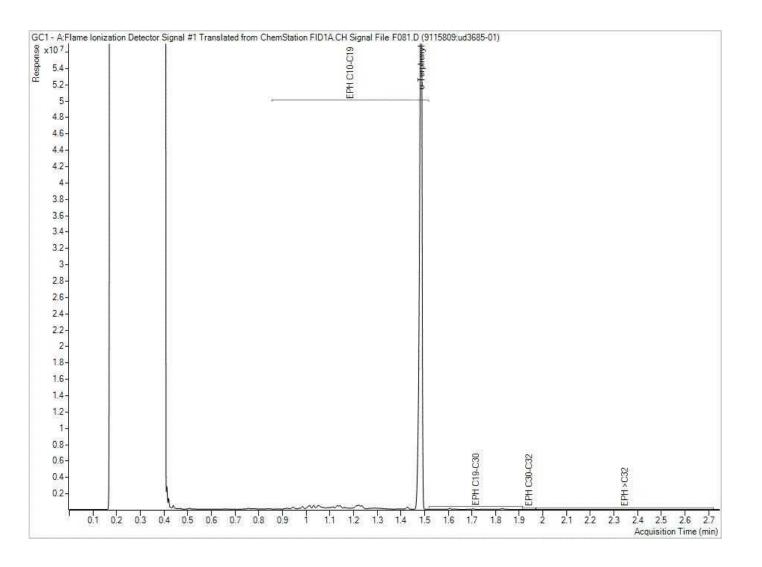
EPH in Water when PAH required Chromatogram


STANTEC CONSULTING LTD. Client Project #: 123221161 Client ID: MW16-02

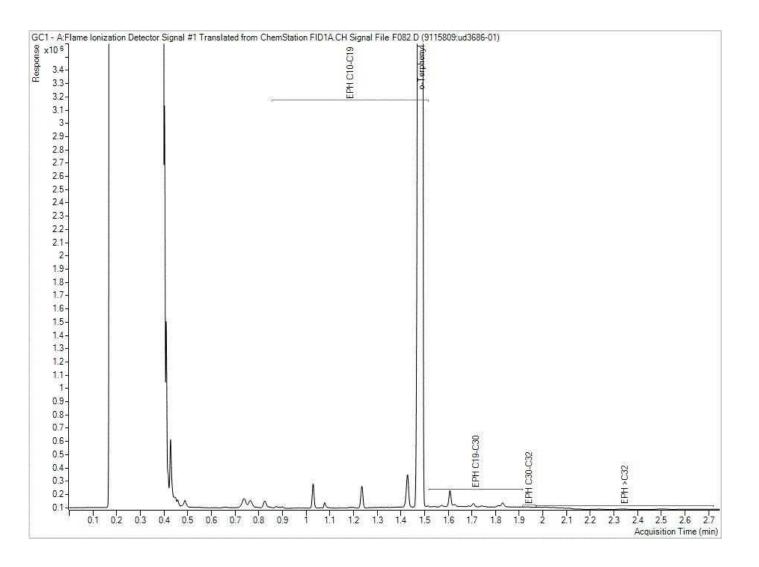
EPH in Water when PAH required Chromatogram


STANTEC CONSULTING LTD. Client Project #: 123221161 Client ID: MW16-02

EPH in Water when PAH required Chromatogram


STANTEC CONSULTING LTD. Client Project #: 123221161 Client ID: MW16-02A

EPH in Water when PAH required Chromatogram


STANTEC CONSULTING LTD. Client Project #: 123221161 Client ID: MW16-09

EPH in Water when PAH required Chromatogram

STANTEC CONSULTING LTD. Client Project #: 123221161 Client ID: MW16-10

EPH in Water when PAH required Chromatogram

Your Project #: 123221161 Site Location: WHITEHORSE Your C.O.C. #: G134603

Attention: Carey Sibbald

STANTEC CONSULTING LTD

Metrotower III

Suite 500, 4730 Kingsway

BURNABY, BC

CANADA V5H 4M1

Report Date: 2018/11/08

Report #: R2647992 Version: 1 - Final

CERTIFICATE OF ANALYSIS

MAXXAM JOB #: B896179 Received: 2018/10/31, 09:16

Sample Matrix: Water # Samples Received: 8

		Date	Date		
Analyses	Quantity	Extracted	Analyzed	Laboratory Method	Analytical Method
PAH in Water by GC/MS (SIM)	8	2018/11/07	2018/11/07	BBY8SOP-00021	BCMOE BCLM Jul2017m
Total LMW, HMW, Total PAH Calc (1)	8	N/A	2018/11/07	BBY WI-00033	Auto Calc
EPH (Low Level) in Water by GC/FID	8	2018/11/07	2018/11/07	BBY8SOP-00029	BCMOE BCLM Mar 2017
EPH less PAH in Water by GC/FID (2)	8	N/A	2018/11/08	BBY WI-00033	Auto Calc

Remarks:

Maxxam Analytics' laboratories are accredited to ISO/IEC 17025:2005 for specific parameters on scopes of accreditation. Unless otherwise noted, procedures used by Maxxam are based upon recognized Provincial, Federal or US method compendia such as CCME, MDDELCC, EPA, APHA.

All work recorded herein has been done in accordance with procedures and practices ordinarily exercised by professionals in Maxxam's profession using accepted testing methodologies, quality assurance and quality control procedures (except where otherwise agreed by the client and Maxxam in writing). All data is in statistical control and has met quality control and method performance criteria unless otherwise noted. All method blanks are reported; unless indicated otherwise, associated sample data are not blank corrected. Where applicable, unless otherwise noted, Measurement Uncertainty has not been accounted for when stating conformity to the referenced standard.

Maxxam Analytics' liability is limited to the actual cost of the requested analyses, unless otherwise agreed in writing. There is no other warranty expressed or implied. Maxxam has been retained to provide analysis of samples provided by the Client using the testing methodology referenced in this report. Interpretation and use of test results are the sole responsibility of the Client and are not within the scope of services provided by Maxxam, unless otherwise agreed in writing. Maxxam is not responsible for the accuracy or any data impacts, that result from the information provided by the customer or their agent.

Solid sample results, except biota, are based on dry weight unless otherwise indicated. Organic analyses are not recovery corrected except for isotope dilution methods.

Results relate to samples tested. When sampling is not conducted by Maxxam, results relate to the supplied samples tested.

This Certificate shall not be reproduced except in full, without the written approval of the laboratory.

Reference Method suffix "m" indicates test methods incorporate validated modifications from specific reference methods to improve performance.

- * RPDs calculated using raw data. The rounding of final results may result in the apparent difference.
- (1) Total PAHs in Water include: Quinoline, Naphthalene, 1-Methylnaphthalene, 2-Methylnaphthalene, Acenaphthylene, Acenaphthene, Fluorene, Phenanthrene, Anthracene, Acridine, Fluoranthene, Pyrene, Benzo(a)anthracene, Chrysene, Benzo(b&j)fluoranthene, Benzo(k)fluoranthene, Benzo(a)pyrene, Indeno(1,2,3-cd)pyrene, Dibenz(a,h)anthracene, and Benzo(g,h,i)perylene.
- (2) LEPH = EPH (C10 to C19) (Acenaphthene + Acridine + Anthracene + Fluorene + Naphthalene + Phenanthrene) HEPH = EPH (C19 to C32) - (Benzo(a)anthracene + Benzo(a)pyrene + Fluoranthene + Pyrene)

Your Project #: 123221161 Site Location: WHITEHORSE Your C.O.C. #: G134603

Attention: Carey Sibbald
STANTEC CONSULTING LTD
Metrotower III
Suite 500, 4730 Kingsway
BURNABY, BC
CANADA V5H 4M1

Report Date: 2018/11/08

Report #: R2647992 Version: 1 - Final

CERTIFICATE OF ANALYSIS

MAXXAM JOB #: B896179 Received: 2018/10/31, 09:16

Encryption Key

Please direct all questions regarding this Certificate of Analysis to your Project Manager.

Nahed Amer, Project Manager Email: NAmer@maxxam.ca Phone# (604) 734 7276

This report has been generated and distributed using a secure automated process.

Maxxam has procedures in place to guard against improper use of the electronic signature and have the required "signatories", as per section 5.10.2 of ISO/IEC 17025:2005(E), signing the reports. For Service Group specific validation please refer to the Validation Signature Page.

STANTEC CONSULTING LTD Client Project #: 123221161 Site Location: WHITEHORSE

Sampler Initials: BCS

LEPH & HEPH WITH LL EPH IN WATER (WATER)

Maxxam ID		UR6306		UR6307		UR6308		
Sampling Date		2018/10/30		2018/10/30		2018/10/30		
Sampling Date		16:45		10:15		12:15		
COC Number		G134603		G134603		G134603		
	UNITS	MW18-31@16:45	RDL	MW18-31@10:15	RDL	MW18-31@12:15	RDL	QC Batch
Calculated Parameters								
Low Molecular Weight PAH`s	ug/L	4.2	0.20	3.3	0.23	4.0	0.20	9212023
High Molecular Weight PAH`s	ug/L	<0.10	0.10	<0.10	0.10	<0.10	0.10	9212023
Total PAH	ug/L	4.2	0.20	3.3	0.23	4.0	0.20	9212023
Polycyclic Aromatics							•	
Naphthalene	ug/L	0.57 (1)	0.20	0.50 (1)	0.20	0.54 (1)	0.20	9218098
Acenaphthene	ug/L	0.63 (1)	0.10	0.50 (1)	0.10	0.62 (1)	0.10	9218098
Fluorene	ug/L	2.0	0.10	1.6	0.10	1.9 (1)	0.10	9218098
Phenanthrene	ug/L	0.89	0.10	0.70	0.10	0.87	0.10	9218098
Anthracene	ug/L	0.026 (1)	0.020	0.024 (1)	0.020	0.027 (1)	0.020	9218098
Acridine	ug/L	<0.10	0.10	<0.10	0.10	<0.10	0.10	9218098
Calculated Parameters			•					
LEPH (C10-C19 less PAH)	mg/L	0.56	0.11	0.51	0.11	0.55	0.11	9213178
Ext. Pet. Hydrocarbon			•					
EPH (C10-C19)	mg/L	0.56 (2)	0.11	0.51 (2)	0.11	0.55 (2)	0.11	9218103
EPH (C19-C32)	mg/L	<0.50 (2)	0.50	<0.50 (2)	0.50	<0.50 (2)	0.50	9218103
Surrogate Recovery (%)	•							
D10-ANTHRACENE (sur.)	%	89		88		88		9218098
D8-ACENAPHTHYLENE (sur.)	%	94		91		92		9218098
D8-NAPHTHALENE (sur.)	%	79		74		74		9218098
TERPHENYL-D14 (sur.)	%	75		76		76		9218098
O-TERPHENYL (sur.)	%	99		101		102		9218103

RDL = Reportable Detection Limit

⁽¹⁾ Tentatively identified result and may be potentially biased high due to matrix interference.

⁽²⁾ Detection limits raised due to insufficient sample volume.

STANTEC CONSULTING LTD Client Project #: 123221161 Site Location: WHITEHORSE

Sampler Initials: BCS

LEPH & HEPH WITH LL EPH IN WATER (WATER)

Maxxam ID		UR6309		UR6310	UR6311	UR6312		
Sampling Date		2018/10/30		2018/10/29	2018/10/29	2018/10/29		
Sampling Date		14:15		17:55	15:55	13:55		
COC Number		G134603		G134603	G134603	G134603		
	UNITS	MW18-31@14:15	RDL	MW16-09@17:55	MW16-09@15:55	MW16-09@13:55	RDL	QC Batch
Calculated Parameters								
Low Molecular Weight PAH`s	ug/L	3.9	0.24	7.9	7.0	7.8	0.20	9212023
High Molecular Weight PAH`s	ug/L	<0.10	0.10	<0.10	<0.10	<0.10	0.10	9212023
Total PAH	ug/L	3.9	0.24	7.9	7.0	7.8	0.20	9212023
Polycyclic Aromatics								
Naphthalene	ug/L	0.54 (1)	0.20	1.1	0.95	1.1	0.20	9218098
Acenaphthene	ug/L	0.62 (1)	0.10	0.23 (1)	0.17 (1)	0.17 (1)	0.10	9218098
Fluorene	ug/L	1.9	0.10	0.75	0.71	0.75	0.10	9218098
Phenanthrene	ug/L	0.84	0.10	0.36	0.35	0.40	0.10	9218098
Anthracene	ug/L	0.024 (1)	0.020	<0.020 (1)	<0.020 (1)	<0.020 (1)	0.020	9218098
Acridine	ug/L	<0.10	0.10	<0.10	<0.10	<0.10	0.10	9218098
Calculated Parameters	•							-
LEPH (C10-C19 less PAH)	mg/L	0.56	0.11	0.31	0.31	0.32	0.11	9213178
Ext. Pet. Hydrocarbon								
EPH (C10-C19)	mg/L	0.56 (2)	0.11	0.31 (2)	0.31 (2)	0.32 (2)	0.11	9218103
EPH (C19-C32)	mg/L	<0.50 (2)	0.50	<0.50 (2)	<0.50 (2)	<0.50 (2)	0.50	9218103
Surrogate Recovery (%)								
D10-ANTHRACENE (sur.)	%	88		88	89	90		9218098
D8-ACENAPHTHYLENE (sur.)	%	91		92	92	94		9218098
D8-NAPHTHALENE (sur.)	%	73		80	77	79		9218098
TERPHENYL-D14 (sur.)	%	75		77	76	77		9218098
O-TERPHENYL (sur.)	%	102		102	103	102		9218103

RDL = Reportable Detection Limit

⁽¹⁾ Tentatively identified result and may be potentially biased high due to matrix interference.

⁽²⁾ Detection limits raised due to insufficient sample volume.

STANTEC CONSULTING LTD Client Project #: 123221161 Site Location: WHITEHORSE

Sampler Initials: BCS

LEPH & HEPH WITH LL EPH IN WATER (WATER)

Maxxam ID		UR6313		
Sampling Date		2018/10/29		
Jamping Date		11:55		
COC Number		G134603		
	UNITS	MW16-09@11:55	RDL	QC Batch
Calculated Parameters				
Low Molecular Weight PAH's	ug/L	15	0.35	9212023
High Molecular Weight PAH's	ug/L	<0.10	0.10	9212023
Total PAH	ug/L	15	0.35	9212023
Polycyclic Aromatics				
Naphthalene	ug/L	2.0	0.20	9218098
Acenaphthene	ug/L	0.27 (1)	0.10	9218098
Fluorene	ug/L	1.4	0.10	9218098
Phenanthrene	ug/L	0.90	0.10	9218098
Anthracene	ug/L	0.063 (1)	0.020	9218098
Acridine	ug/L	<0.10	0.10	9218098
Calculated Parameters				
LEPH (C10-C19 less PAH)	mg/L	4.8	0.11	9213178
Ext. Pet. Hydrocarbon				
EPH (C10-C19)	mg/L	4.8 (2)	0.11	9218103
EPH (C19-C32)	mg/L	0.60 (2)	0.50	9218103
Surrogate Recovery (%)				
D10-ANTHRACENE (sur.)	%	92		9218098
D8-ACENAPHTHYLENE (sur.)	%	98		9218098
D8-NAPHTHALENE (sur.)	%	77		9218098
TERPHENYL-D14 (sur.)	%	82		9218098
O-TERPHENYL (sur.)	%	105		9218103
RDL = Reportable Detection Lin	nit			

RDL = Reportable Detection Limit

⁽¹⁾ Tentatively identified result and may be potentially biased high due to matrix interference.

⁽²⁾ Detection limits raised due to insufficient sample volume.

STANTEC CONSULTING LTD Client Project #: 123221161 Site Location: WHITEHORSE

Sampler Initials: BCS

GENERAL COMMENTS

Sample UR6306 [MW18-31@16:45]: Sample was decanted. Results maybe biased low for EPH/PAH. PAH Detection limits raised due to insufficient sample volume.

Sample UR6307 [MW18-31@10:15]: Sample was decanted. Results maybe biased low for EPH/PAH. PAH Detection limits raised due to insufficient sample volume.

Sample UR6308 [MW18-31@12:15] : Sample was decanted. Results maybe biased low for EPH/PAH. PAH Detection limits raised due to insufficient sample volume.

Sample UR6309 [MW18-31@14:15]: Sample was decanted. Results maybe biased low for EPH/PAH. PAH Detection limits raised due to insufficient sample volume.

Sample UR6310 [MW16-09@17:55]: Sample was decanted. Results maybe biased low for EPH/PAH. PAH Detection limits raised due to insufficient sample volume.

Sample UR6311 [MW16-09@15:55]: Sample was decanted. Results maybe biased low for EPH/PAH. PAH Detection limits raised due to insufficient sample volume.

Sample UR6312 [MW16-09@13:55]: Sample was decanted. Results maybe biased low for EPH/PAH. PAH Detection limits raised due to insufficient sample volume.

Sample UR6313 [MW16-09@11:55]: Sample was decanted. Results maybe biased low for EPH/PAH. PAH Detection limits raised due to insufficient sample volume.

Results relate only to the items tested.

QUALITY ASSURANCE REPORT

STANTEC CONSULTING LTD

Client Project #: 123221161
Site Location: WHITEHORSE

Sampler Initials: BCS

			Spiked Blank		Method Blank	
QC Batch	Parameter	Date	% Recovery	QC Limits	Value	UNITS
9218098	D10-ANTHRACENE (sur.)	2018/11/07	85	50 - 140	98	%
9218098	D8-ACENAPHTHYLENE (sur.)	2018/11/07	83	50 - 140	81	%
9218098	D8-NAPHTHALENE (sur.)	2018/11/07	73	50 - 140	74	%
9218098	TERPHENYL-D14 (sur.)	2018/11/07	74	50 - 140	89	%
9218103	O-TERPHENYL (sur.)	2018/11/07	92	50 - 130	94	%
9218098	Acenaphthene	2018/11/07	88	50 - 140	<0.050	ug/L
9218098	Acridine	2018/11/07	98	50 - 140	<0.050	ug/L
9218098	Anthracene	2018/11/07	87	50 - 140	<0.010	ug/L
9218098	Fluorene	2018/11/07	88	50 - 140	<0.050	ug/L
9218098	Naphthalene	2018/11/07	88	50 - 140	<0.10	ug/L
9218098	Phenanthrene	2018/11/07	85	50 - 140	<0.050	ug/L
9218103	EPH (C10-C19)	2018/11/07	114	70 - 130	<0.050	mg/L
9218103	EPH (C19-C32)	2018/11/07	124	70 - 130	<0.20	mg/L

Spiked Blank: A blank matrix sample to which a known amount of the analyte, usually from a second source, has been added. Used to evaluate method accuracy.

Method Blank: A blank matrix containing all reagents used in the analytical procedure. Used to identify laboratory contamination.

Surrogate: A pure or isotopically labeled compound whose behavior mirrors the analytes of interest. Used to evaluate extraction efficiency.

STANTEC CONSULTING LTD Client Project #: 123221161 Site Location: WHITEHORSE

Sampler Initials: BCS

VALIDATION SIGNATURE PAGE

The analytical data and all QC contained in this report were reviewed and validated by the following individual(s).

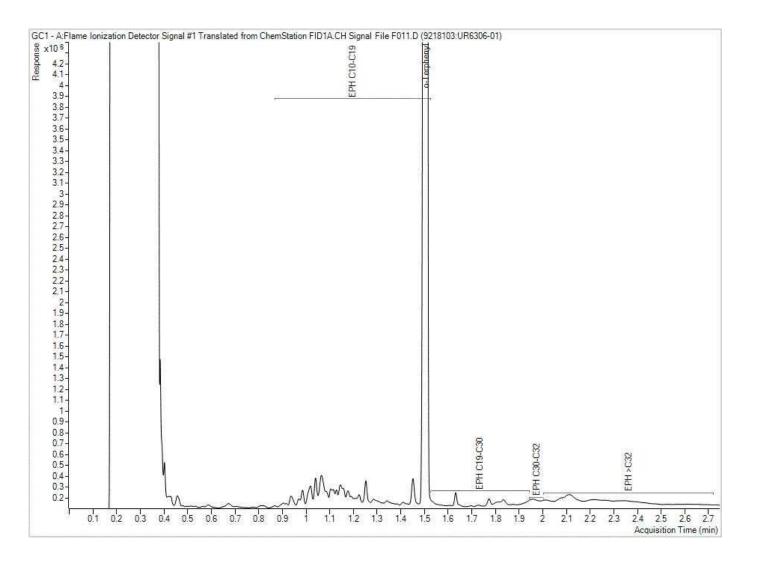
Andy Lu, Ph.D., P.Chem., Scientific Specialist

Jose Cueva, Supervisor, Organics-VOC & HC

Maxxam has procedures in place to guard against improper use of the electronic signature and have the required "signatories", as per section 5.10.2 of ISO/IEC 17025:2005(E), signing the reports. For Service Group specific validation please refer to the Validation Signature Page.

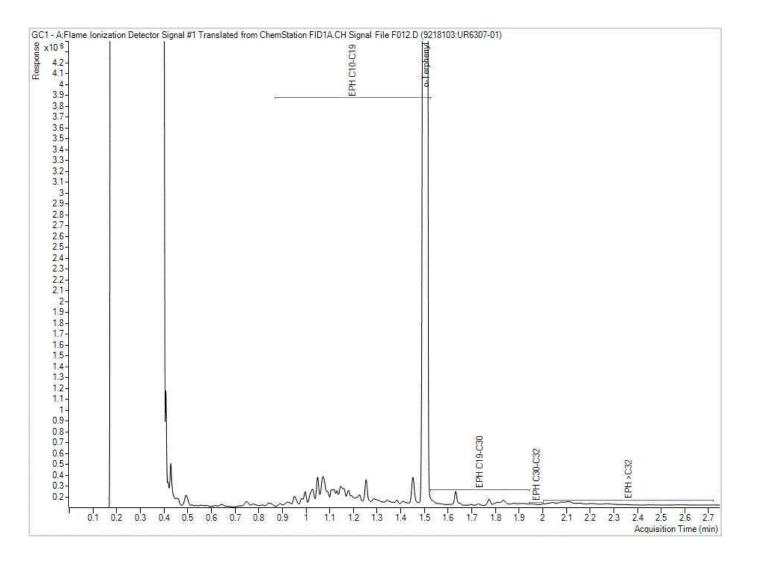
	,	19	
M:	ax	Va	m
AB	ureau Verit	as Group C	Company

Burnaby: 4606 Canada Way, Burnaby, BC V5G 1K5 Toll Free (800) 665 8566 Victoria: 460 Tennyson Place, Unit 1, Victoria, BC V8Z 6S8 Toll Free (866) 385-6112 maxxam.ca

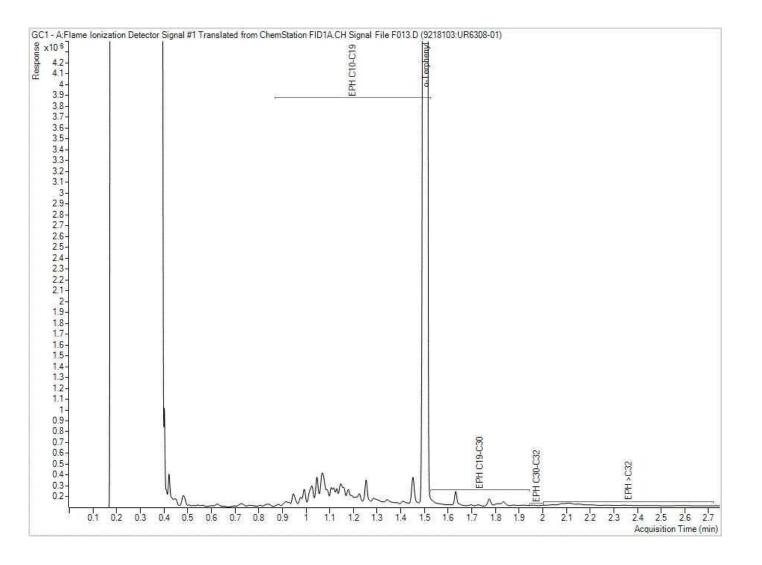

CHAIN OF CUSTODY RECORD

	G13460	13
age	of	

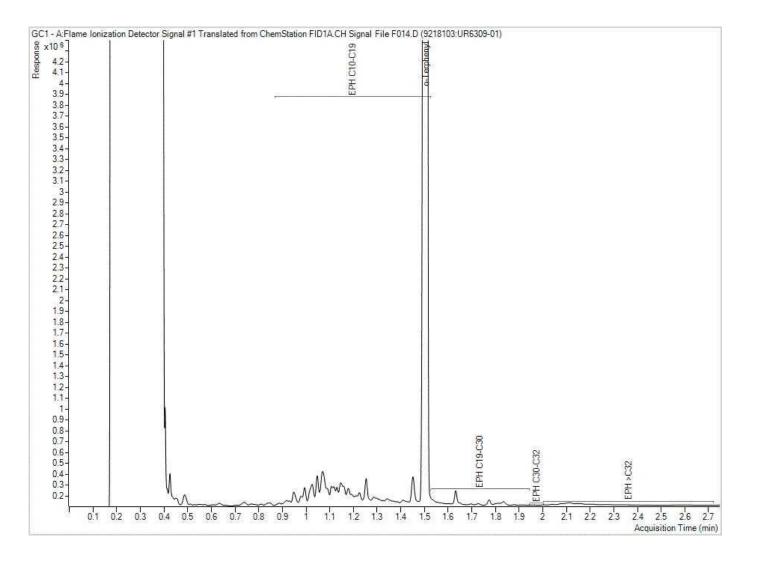
Invoice Information	Report Information (if differs	from invoice)	Project Information Turnaround Time (TAT) Required	
company: Stantec	Company;		Quotation Stanter Regular (Most analyses)	
Contact Name: Consey Sibald	Contact Name:		PLEASE PROVIDE ADVANCE NOTICE FOR RUSH PRO	JECTS
Address: 202-107 Main St.	Address:		Rush TAT (Surcharges will be applied)	
Whitehorse YT pc: 244 Phone/Fax: 867 446 7644 SylA 2A7		PC:	Project #: 12322161	
Phone/Fax: 867 446 7644 9714 247	Phone/Fax:		Site Location: Whitehors 1 Day 3-4 Days	
Email: careyisibbaldestanteria copies: josephiriddellestanterion	CATEMAII:	1	Site #: Date Required:	
copies: 105eph. riddellestanter. 10m	stopperad. Sury esta	ntec.lom	Sampled By: BCS Rush Confirmation #:	_
Laboratory U	ise Only		Analysis Requested Regulatory Criteria	
VES NO Cooler ID	Depot Reception			
Seal Intact V Temp U U U	Separation .	Mark en	/ F1 H / PAH H / PAH C Preserved? Ved? C Sulphate C COD Antalinity A Alkalinity A AK S 252 28	
Cooling Media V			W PAH H PAH F 2 - F4 Preserved COD Armonia RAH RAH RAH RCCSB	
YES NO Cooler ID				
Seal Present			TEXS / VPH MYE VOC / 8TEX / F1 LEPH / HEPH / PAH Pres red	
Seal Intact Temp			N / S / S / S / S / S / S / S / S / S /	
Cooling Media			Conductive Area Conductive Are	
YES NO Cooler ID		1, 18	VOC/BTEXS/VPH VOC/BTEXS/VPH VOC/BTEXS/VPH TEH Filled Pre Fi	
Seal Present			OV O Other	
Seal Intact Temp Cooling Media		ners .	Wort A NOT A	
	Date Sampled Time Sampled	Matrix Containers		
Sample Identification	(yyyy/mm/dd) (hh:mm)	Matrix O	Special Instructions Application of the property of the prope	
1 MW18-31@16:45	2018/10/30 16:45	GN 2		
2 MW18-31@10:15	1 10:15	1 1	X DECEMED IN WHITEHORSE	
3 MW18-31@ 12:15	12:15			16
4 MW 19-31 @ 14:15	V 14:15		X Ey Syono@ 09	
5 MW 16-10 09@ 17:55	2018/10/29 17:55		∑ 2018 -10- 3)	
6 MW16-09@ 15:55	1 15:55			
1 MW16-09@ 13:55	13:55	1	X	
* MW16-09@ 11:55	V 11:55	A	X EMP: 5 15 15	
9				_
10	on this Chain of Custody is exhibited to Mc	and Towns and Car dist		-
	(yyyy/mm/dd): Time (hh:mm):	Received by: (Si	gnature/ Print) Date (yyyy/mm/dd): Time (hh:mm):	. 1001 111
10 40 1014	11 11 11	BRIT		
1000 Brad Suley 201	8/10/31 4:16	le BUR	LONE 2018/11/01 08:05	
			B896179_COC	Sec. 3.45.
coc-1020 354		Max	xam Analytics Success Through Science®	.77/9


STANTEC CONSULTING LTD Client Project #: 123221161 Site Reference: WHITEHORSE Client ID: MW18-31@16:45

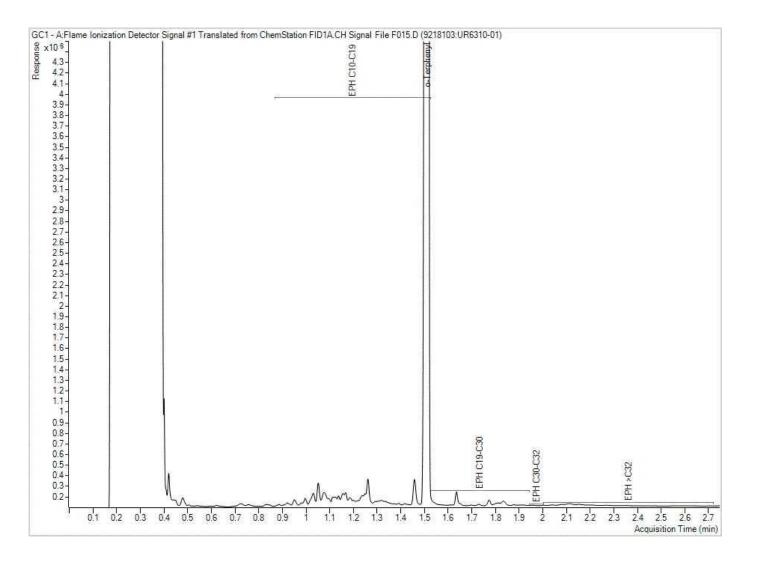
EPH (Low Level) in Water by GC/FID Chromatogram


STANTEC CONSULTING LTD Client Project #: 123221161 Site Reference: WHITEHORSE Client ID: MW18-31@10:15

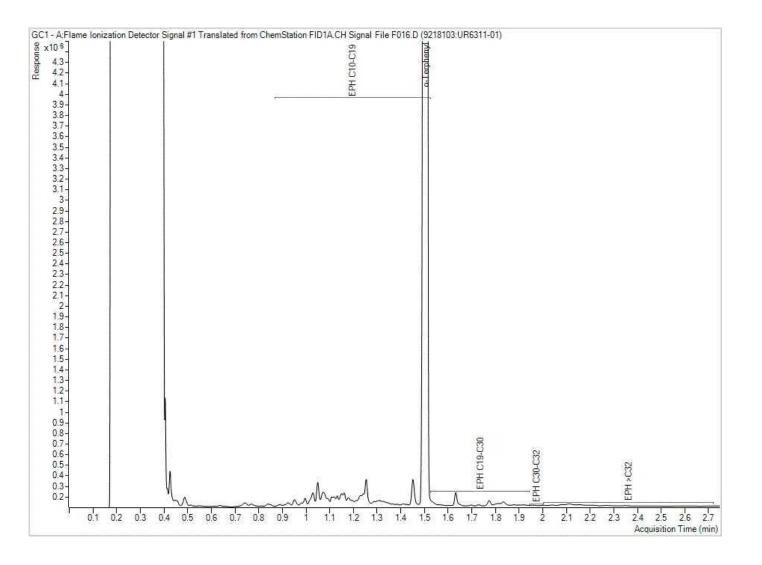
EPH (Low Level) in Water by GC/FID Chromatogram


STANTEC CONSULTING LTD Client Project #: 123221161 Site Reference: WHITEHORSE Client ID: MW18-31@12:15

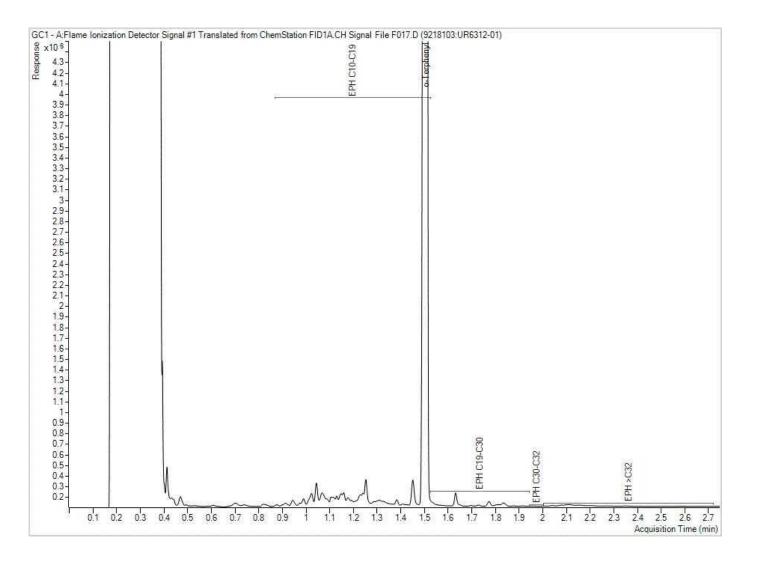
EPH (Low Level) in Water by GC/FID Chromatogram


STANTEC CONSULTING LTD Client Project #: 123221161 Site Reference: WHITEHORSE Client ID: MW18-31@14:15

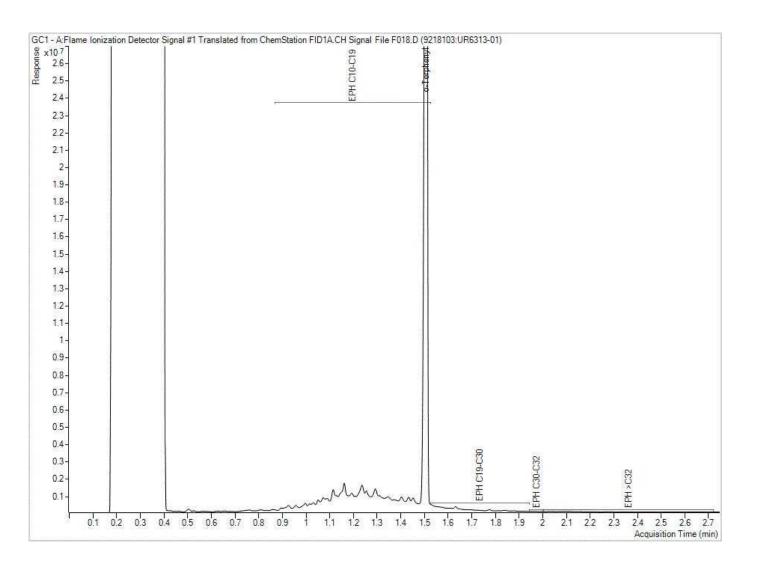
EPH (Low Level) in Water by GC/FID Chromatogram


STANTEC CONSULTING LTD Client Project #: 123221161 Site Reference: WHITEHORSE Client ID: MW16-09@17:55

EPH (Low Level) in Water by GC/FID Chromatogram


STANTEC CONSULTING LTD Client Project #: 123221161 Site Reference: WHITEHORSE Client ID: MW16-09@15:55

EPH (Low Level) in Water by GC/FID Chromatogram


STANTEC CONSULTING LTD Client Project #: 123221161 Site Reference: WHITEHORSE Client ID: MW16-09@13:55

EPH (Low Level) in Water by GC/FID Chromatogram

Maxxam Job #: B896179 Report Date: 2018/11/08 Maxxam Sample: UR6313 STANTEC CONSULTING LTD Client Project #: 123221161 Site Reference: WHITEHORSE Client ID: MW16-09@11:55

EPH (Low Level) in Water by GC/FID Chromatogram

Your Project #: 123221161

Your C.O.C. #: 560386-01-01, 560386-02-01

Attention: Matthew Deane
STANTEC CONSULTING LTD
Metrotower III
Suite 500, 4730 Kingsway
BURNABY, BC

V5H 4M1

Report Date: 2018/08/30

Report #: R2611669 Version: 3 - Revision

CERTIFICATE OF ANALYSIS – REVISED REPORT

MAXXAM JOB #: B862213 Received: 2018/07/25, 09:00

CANADA

Sample Matrix: Soil # Samples Received: 7

		Date	Date		
Analyses	Quantity	Extracted	Analyzed	Laboratory Method	Analytical Method
Elements by ICPMS (total)	1	2018/08/27	2018/08/27	BBY7SOP-00004 /	EPA 6020b R2 m
				BBY7SOP-00001	
Moisture	4	2018/07/27	2018/07/28	BBY8SOP-00017	BCMOE BCLM Dec2000 m
pH (2:1 DI Water Extract)	1	2018/08/27	2018/08/27	BBY6SOP-00028	BCMOE BCLM Mar2005 m
EPH in Soil by GC/FID	4	2018/07/28	2018/07/31	BBY8SOP-00029	BCMOE BCLM Jul 2016
Texture by Hydrometer, incl Gravel (Wet)	2	N/A	2018/08/16	BBY6SOP-00051	Carter 2nd ed 55.3
TOC Soil Subcontract (1)	2	N/A	2018/08/17		
TOC Soil Subcontract (1)	1	N/A	2018/08/29		

Remarks:

Maxxam Analytics' laboratories are accredited to ISO/IEC 17025:2005 for specific parameters on scopes of accreditation. Unless otherwise noted, procedures used by Maxxam are based upon recognized Provincial, Federal or US method compendia such as CCME, MDDELCC, EPA, APHA.

All work recorded herein has been done in accordance with procedures and practices ordinarily exercised by professionals in Maxxam's profession using accepted testing methodologies, quality assurance and quality control procedures (except where otherwise agreed by the client and Maxxam in writing). All data is in statistical control and has met quality control and method performance criteria unless otherwise noted. All method blanks are reported; unless indicated otherwise, associated sample data are not blank corrected. Where applicable, unless otherwise noted, Measurement Uncertainty has not been accounted for when stating conformity to the referenced standard.

Maxxam Analytics' liability is limited to the actual cost of the requested analyses, unless otherwise agreed in writing. There is no other warranty expressed or implied. Maxxam has been retained to provide analysis of samples provided by the Client using the testing methodology referenced in this report. Interpretation and use of test results are the sole responsibility of the Client and are not within the scope of services provided by Maxxam, unless otherwise agreed in writing. Maxxam is not responsible for the accuracy or any data impacts, that result from the information provided by the customer or their agent.

Solid sample results, except biota, are based on dry weight unless otherwise indicated. Organic analyses are not recovery corrected except for isotope dilution methods.

Results relate to samples tested. When sampling is not conducted by Maxxam, results relate to the supplied samples tested.

This Certificate shall not be reproduced except in full, without the written approval of the laboratory.

Reference Method suffix "m" indicates test methods incorporate validated modifications from specific reference methods to improve performance.

- * RPDs calculated using raw data. The rounding of final results may result in the apparent difference.
- (1) This test was performed by Maxxam Ontario (From Burnaby)

Your Project #: 123221161

Your C.O.C. #: 560386-01-01, 560386-02-01

Attention: Matthew Deane

STANTEC CONSULTING LTD Metrotower III Suite 500, 4730 Kingsway BURNABY, BC CANADA V5H 4M1

Report Date: 2018/08/30

Report #: R2611669 Version: 3 - Revision

CERTIFICATE OF ANALYSIS – REVISED REPORT

MAXXAM JOB #: B862213 Received: 2018/07/25, 09:00

Encryption Key

Please direct all questions regarding this Certificate of Analysis to your Project Manager.

Nahed Amer, Project Manager Email: NAmer@maxxam.ca Phone# (604) 734 7276

Maxxam has procedures in place to guard against improper use of the electronic signature and have the required "signatories", as per section 5.10.2 of ISO/IEC 17025:2005(E), signing the reports. For Service Group specific validation please refer to the Validation Signature Page.

STANTEC CONSULTING LTD Client Project #: 123221161

Sampler Initials: MD

RESULTS OF CHEMICAL ANALYSES OF SOIL

Maxxam ID		TY2769	TY2775			TY2785	
Sampling Date		2018/07/24	2018/07/24			2018/07/25	
COC Number		560386-01-01	560386-01-01			560386-02-01	
	UNITS	MW18-44 SA06	MW18-33 SA06	RDL	QC Batch	MW18-34 SA01	QC Batch
Parameter							
Subcontract Parameter	N/A	ATTACHED	ATTACHED	N/A	9107493	ATTACHED	9107493
Physical Properties	•						
% sand by hydrometer	%	46	36	2.0	9103384		
% silt by hydrometer	%	3.0	51	2.0	9103384		
Clay Content	%	2.1	12	2.0	9103384		
	%	49	<2.0	2.0	9103384		

N/A = Not Applicable

RDL = Reportable Detection Limit

Maxxam Job #: B862213 Report Date: 2018/08/30 STANTEC CONSULTING LTD Client Project #: 123221161 Sampler Initials: MD

PHYSICAL TESTING (SOIL)

Maxxam ID		TY2768	TY2774	TY2789	TY2790		
Sampling Date		2018/07/24	2018/07/24	2018/07/25	2018/07/25		
COC Number		560386-01-01	560386-01-01	560386-02-01	560386-02-01		
	UNITS	MW18-44 SA05	MW18-33 SA05	MW18-34 SA05	MW18-34 SA06	RDL	QC Batch
Physical Properties							
,							

STANTEC CONSULTING LTD Client Project #: 123221161 Sampler Initials: MD

TOTAL PETROLEUM HYDROCARBONS (SOIL)

Maxxam ID		TY2768	TY2774	TY2789		TY2790		
Sampling Date		2018/07/24	2018/07/24	2018/07/25		2018/07/25		
COC Number		560386-01-01	560386-01-01	560386-02-01		560386-02-01		
	UNITS	MW18-44 SA05	MW18-33 SA05	MW18-34 SA05	QC Batch	MW18-34 SA06	RDL	QC Batch
Hydrocarbons								
EPH (C10-C19)	mg/kg	<100	<100	<100	9083746	<100	100	9083792
EPH (C19-C32)	mg/kg	<100	<100	<100	9083746	<100	100	9083792
Surrogate Recovery (%)								
O-TERPHENYL (sur.)	%	82	84	81	9083746	84		9083792
RDL = Reportable Detection L	imit							

STANTEC CONSULTING LTD Client Project #: 123221161 Sampler Initials: MD

CSR/CCME METALS IN SOIL WITH HG (SOIL)

Maxxam ID		TY2785		
Sampling Date		2018/07/25		
COC Number		560386-02-01		
	UNITS	MW18-34 SA01	RDL	QC Batch
Physical Properties				
Soluble (2:1) pH	рН	8.79	N/A	9118359
Total Metals by ICPMS	!			
Total Aluminum (Al)	mg/kg	12600	100	9118303
Total Antimony (Sb)	mg/kg	1.16	0.10	9118303
Total Arsenic (As)	mg/kg	9.64	0.50	9118303
Total Barium (Ba)	mg/kg	167	0.10	9118303
Total Beryllium (Be)	mg/kg	0.38	0.20	9118303
Total Bismuth (Bi)	mg/kg	0.14	0.10	9118303
Total Boron (B)	mg/kg	2.3	1.0	9118303
Total Cadmium (Cd)	mg/kg	0.918	0.050	9118303
Total Calcium (Ca)	mg/kg	22200	100	9118303
Total Chromium (Cr)	mg/kg	40.0	1.0	9118303
Total Cobalt (Co)	mg/kg	9.61	0.30	9118303
Total Copper (Cu)	mg/kg	29.4	0.50	9118303
Total Iron (Fe)	mg/kg	23800	100	9118303
Total Lead (Pb)	mg/kg	47.5	0.10	9118303
Total Lithium (Li)	mg/kg	10.2	5.0	9118303
Total Magnesium (Mg)	mg/kg	8600	100	9118303
Total Manganese (Mn)	mg/kg	436	0.20	9118303
Total Mercury (Hg)	mg/kg	<0.050	0.050	9118303
Total Molybdenum (Mo)	mg/kg	1.07	0.10	9118303
Total Nickel (Ni)	mg/kg	33.1	0.80	9118303
Total Phosphorus (P)	mg/kg	830	10	9118303
Total Potassium (K)	mg/kg	1320	100	9118303
Total Selenium (Se)	mg/kg	<0.50	0.50	9118303
Total Silver (Ag)	mg/kg	0.570	0.050	9118303
Total Sodium (Na)	mg/kg	314	100	9118303
Total Strontium (Sr)	mg/kg	67.7	0.10	9118303
Total Thallium (Tl)	mg/kg	0.104	0.050	9118303
Total Tin (Sn)	mg/kg	0.63	0.10	9118303
Total Titanium (Ti)	mg/kg	839	1.0	9118303
Total Tungsten (W)	mg/kg	<0.50	0.50	9118303
RDL = Reportable Detection L	.imit			
N/A = Not Applicable				

STANTEC CONSULTING LTD Client Project #: 123221161 Sampler Initials: MD

CSR/CCME METALS IN SOIL WITH HG (SOIL)

Maxxam ID		TY2785		
Sampling Date		2018/07/25		
COC Number		560386-02-01		
	UNITS	MW18-34 SA01	RDL	QC Batch
Total Uranium (U)	mg/kg	1.25	0.050	9118303
Total Vanadium (V)	mg/kg	49.3	2.0	9118303
Total Zinc (Zn)	mg/kg	92.4	1.0	9118303
Total Zirconium (Zr)	mg/kg	5.52	0.50	9118303
RDL = Reportable Detection L	imit			

STANTEC CONSULTING LTD Client Project #: 123221161 Sampler Initials: MD

GENERAL COMMENTS

Version 2: Revised report reissued to include results for TOC and Grain Size on samples MW18-33 SA06 and MW18-44 SA06 as per request from Matthew Deane on 2018/08/10

Version 3: Report reissued to include results for metals and TOC on sample MW18-34 SA01 as per request from Matthew Deane on 2018/08/23 Sample analyzed past hold time. Analysis performed with client's consent.

Results relate only to the items tested.

QUALITY ASSURANCE REPORT

STANTEC CONSULTING LTD Client Project #: 123221161

Sampler Initials: MD

			Matrix	Spike	Spiked	Blank	Method I	Blank	RP	D	QC Sta	ndard
QC Batch	Parameter	Date	% Recovery	QC Limits	% Recovery	QC Limits	Value	UNITS	Value (%)	QC Limits	% Recovery	QC Limits
9083746	O-TERPHENYL (sur.)	2018/07/31	81	60 - 140	77	60 - 140	84	%				
9083792	O-TERPHENYL (sur.)	2018/07/31	82	60 - 140	82	60 - 140	82	%]
9082290	Moisture	2018/07/28					<0.30	%	11	20		
9083746	EPH (C10-C19)	2018/07/31	81	60 - 140	84	70 - 130	<100	mg/kg	NC	40]
9083746	EPH (C19-C32)	2018/07/31	84	60 - 140	88	70 - 130	<100	mg/kg	NC	40		
9083792	EPH (C10-C19)	2018/07/31	83	60 - 140	84	70 - 130	<100	mg/kg				
9083792	EPH (C19-C32)	2018/07/31	86	60 - 140	87	70 - 130	<100	mg/kg				1
9103384	% sand by hydrometer	2018/08/16							4.4	35	102	90 - 110
9103384	% silt by hydrometer	2018/08/16							1.9	35		
9103384	Clay Content	2018/08/16							2.5	35		
9103384	Gravel	2018/08/16							26	35		1
9118303	Total Aluminum (Al)	2018/08/27					<100	mg/kg			99	70 - 130
9118303	Total Antimony (Sb)	2018/08/27	98	75 - 125	102	75 - 125	<0.10	mg/kg			132 (1)	70 - 130
9118303	Total Arsenic (As)	2018/08/27	100	75 - 125	99	75 - 125	<0.50	mg/kg	5.8	30	100	70 - 130
9118303	Total Barium (Ba)	2018/08/27	106	75 - 125	99	75 - 125	<0.10	mg/kg	0.55	40	110	70 - 130
9118303	Total Beryllium (Be)	2018/08/27	97	75 - 125	94	75 - 125	<0.20	mg/kg			103	70 - 130
9118303	Total Bismuth (Bi)	2018/08/27					<0.10	mg/kg				
9118303	Total Boron (B)	2018/08/27					<1.0	mg/kg				1
9118303	Total Cadmium (Cd)	2018/08/27	98	75 - 125	99	75 - 125	<0.050	mg/kg	NC	30	101	70 - 130
9118303	Total Calcium (Ca)	2018/08/27					<100	mg/kg	3.3	30	107	70 - 130
9118303	Total Chromium (Cr)	2018/08/27	98	75 - 125	102	75 - 125	<1.0	mg/kg	10	30	107	70 - 130
9118303	Total Cobalt (Co)	2018/08/27	97	75 - 125	99	75 - 125	<0.30	mg/kg			104	70 - 130
9118303	Total Copper (Cu)	2018/08/27	96	75 - 125	99	75 - 125	<0.50	mg/kg	7.3	30	110	70 - 130
9118303	Total Iron (Fe)	2018/08/27					<100	mg/kg	9.3	30	110	70 - 130
9118303	Total Lead (Pb)	2018/08/27	101	75 - 125	103	75 - 125	<0.10	mg/kg	25	40	123	70 - 130
9118303	Total Lithium (Li)	2018/08/27	100	75 - 125	96	75 - 125	<5.0	mg/kg			101	70 - 130
9118303	Total Magnesium (Mg)	2018/08/27					<100	mg/kg	1.7	30	109	70 - 130
9118303	Total Manganese (Mn)	2018/08/27	NC	75 - 125	97	75 - 125	<0.20	mg/kg			106	70 - 130
9118303	Total Mercury (Hg)	2018/08/27	101	75 - 125	102	75 - 125	<0.050	mg/kg			100	70 - 130
9118303	Total Molybdenum (Mo)	2018/08/27	101	75 - 125	100	75 - 125	<0.10	mg/kg			112	70 - 130
9118303	Total Nickel (Ni)	2018/08/27	97	75 - 125	98	75 - 125	<0.80	mg/kg			113	70 - 130

QUALITY ASSURANCE REPORT(CONT'D)

STANTEC CONSULTING LTD Client Project #: 123221161

Sampler Initials: MD

			Matrix	Spike	Spiked	Blank	Method I	Blank	RP	D	QC Sta	andard
QC Batch	Parameter	Date	% Recovery	QC Limits	% Recovery	QC Limits	Value	UNITS	Value (%)	QC Limits	% Recovery	QC Limits
9118303	Total Phosphorus (P)	2018/08/27					<10	mg/kg	1.8	30	106	70 - 130
9118303	Total Potassium (K)	2018/08/27					<100	mg/kg			92	70 - 130
9118303	Total Selenium (Se)	2018/08/27	102	75 - 125	103	75 - 125	<0.50	mg/kg				
9118303	Total Silver (Ag)	2018/08/27	101	75 - 125	103	75 - 125	<0.050	mg/kg	NC	40	128	70 - 130
9118303	Total Sodium (Na)	2018/08/27					<100	mg/kg			97	70 - 130
9118303	Total Strontium (Sr)	2018/08/27	105	75 - 125	97	75 - 125	<0.10	mg/kg			113	70 - 130
9118303	Total Thallium (TI)	2018/08/27	99	75 - 125	101	75 - 125	<0.050	mg/kg			88	70 - 130
9118303	Total Tin (Sn)	2018/08/27	103	75 - 125	104	75 - 125	<0.10	mg/kg	10	40	104	70 - 130
9118303	Total Titanium (Ti)	2018/08/27	NC	75 - 125	98	75 - 125	<1.0	mg/kg				
9118303	Total Tungsten (W)	2018/08/27					<0.50	mg/kg				
9118303	Total Uranium (U)	2018/08/27	103	75 - 125	102	75 - 125	<0.050	mg/kg			99	70 - 130
9118303	Total Vanadium (V)	2018/08/27	89	75 - 125	98	75 - 125	<2.0	mg/kg			108	70 - 130
9118303	Total Zinc (Zn)	2018/08/27	90	75 - 125	96	75 - 125	<1.0	mg/kg	6.8	30	106	70 - 130
9118303	Total Zirconium (Zr)	2018/08/27					<0.50	mg/kg				
9118359	Soluble (2:1) pH	2018/08/27			100	97 - 103			1.4	20		

Duplicate: Paired analysis of a separate portion of the same sample. Used to evaluate the variance in the measurement.

Matrix Spike: A sample to which a known amount of the analyte of interest has been added. Used to evaluate sample matrix interference.

QC Standard: A sample of known concentration prepared by an external agency under stringent conditions. Used as an independent check of method accuracy.

Spiked Blank: A blank matrix sample to which a known amount of the analyte, usually from a second source, has been added. Used to evaluate method accuracy.

Method Blank: A blank matrix containing all reagents used in the analytical procedure. Used to identify laboratory contamination.

Surrogate: A pure or isotopically labeled compound whose behavior mirrors the analytes of interest. Used to evaluate extraction efficiency.

NC (Matrix Spike): The recovery in the matrix spike was not calculated. The relative difference between the concentration in the parent sample and the spike amount was too small to permit a reliable recovery calculation (matrix spike concentration was less than the native sample concentration)

NC (Duplicate RPD): The duplicate RPD was not calculated. The concentration in the sample and/or duplicate was too low to permit a reliable RPD calculation (absolute difference <= 2x RDL).

(1) Reference Material exceeds acceptance criteria for Sb. 10% of analytes failure in multielement scan is allowed.

STANTEC CONSULTING LTD Client Project #: 123221161 Sampler Initials: MD

VALIDATION SIGNATURE PAGE

The analytical data and all QC contained in this report were reviewed and validated by the following individual(s).

Andy Lu, Ph.D., P.Chem., Scientific Specialist

Jose Cueva, Supervisor, Organics-VOC & HC

Thomas Pinchin, Junior Project Manager

Maxxam has procedures in place to guard against improper use of the electronic signature and have the required "signatories", as per section 5.10.2 of ISO/IEC 17025:2005(E), signing the reports. For Service Group specific validation please refer to the Validation Signature Page.

		INVOICE TO:				Report in	formatio	1			- 68			Project I	nformation			· 特别的 医多种	Page /cl
pany Name	#2792 STAN	TEC CONSULTING L	.TD	Company N	ame						Ques	iation#		B71770					Bottle Order #:
act Name	ACCOUNTS P			Contact Nar	me Matthew I	Deane					P.O.	#					III H. A.	ansch verwierte stiff (2014年) 第二日日	
98	and the boundary in the facility of the second state of	Suite 500, 4730 Kings	sway	Address	2						Proje	ect#	1	1232211	61		88622	13_COC	560386
	BURNABY BO			_				_			Proje	ect Name	12				1		Project Manager
	(604) 436-301 SAPinvoices@		604) 436-3752	Phone	matthew	deane@sta		Fax:			Site			ND			- 1		Nahed Amer
		gotantec.com		Email	ial Instructions	Jean le Wate	T T	1		_		pled By Analysis R					_	C#560386-01-01 Turnaround Time (TAT) Require	
ulatory Criti	ria				-4		Regulated Drinking Water 2 (Y / N)		Dissolved Metals (with Hg)		P, NH4, TKN)	Major Ions (Chloride, Fluoride, Nitrate, Orthophosphate, Sulphate)	(0		A	(M St P) de	vill be appli tandard 7/ lease note ays - conta b Specific	Please provide advisince notice for rush a nearly TAT and specified) IT = 5-7 Working days for most feets. Standard TAT for certain feats such as BOD a ct your Project Manager for details. Rush TAT (if applies to entire submission)	ngeses Ind Dioxins/Furans av
	Note: For regulate	d drinking water samples -	please use the Drink	ing Water Chain o	f Custody Form		od Drift	EP	D D	H	Nutrients (TP,) suo	Carbon (DOC)	6	U		rte Require ish Confirma	tion Number	ired
	Samples	must be kept cool (< 10°C)	from time of sampling	until delivery to ma	xxam		ufation of	Ŧ	No.	втехлирн	ient	or lo ate, noph	00	K	10				lab for #)
Samole	Barcode Label	Sample (Location) Id		Date Sampled	Time Sampled	Matrix	Regu	E	Diss	BTE	N C	Maj	Carl	W		#0	f Bottles	Comments	
SMILE	OH COOK LINE	MW18-44	SAC5	7/24/18	They daily so	SOIL								X			4	RECEIVED IN WHITEH	ORSE
		MW18-44	SACCO 1	7/24/18		3.			L.						X		4	BY: Sygno G	0000
		MW/8-33	SAOI												X		1	2018 -07- 2	1
			SAOZ						-						X		1	_	
			SA03												X		1	TEMP: 8/7	18
			SAOY						1						X		(
			SA05						-					X			2		
			5,406												X		2		
		1	SAOT												X		4		
	0	V	5A08	V		V									X		2		
REUNIO	UISHED BY: (Signat		Date: (VY/N					Signature/		===		te: (YY/MM		Time	# jars used a	ad I		Lab Use Only	al Intact on Cooler?
are.	MD	CAN CO	(8/07)	124 200	10	5 01	1AH	O JF	1WB	700	121	0 (S) (D	1/26	15:0	þ	Time Sensitive	Temp	erature (°C) on Receipt Custody Se	/
R VIEWING	.MAXXAM.WWW TA	IN WRITING, WORK SUBMIT CATERMS. E RELINQUISHER TO ENSURE											OCUMEN	IT IS ACKNO	OWLEDGMENT AN	D ACCEPTANCE O	OF OUR TE	RMS WHICH ARE AVAILABLE White: Ma	oam Yellow Clie
3 THE RESI	UNDERLIT OF THE	NELTHAUSER TO ENSURE	HOCOPACT OF	THE CHAIR OF CUS	OUT RESURD. AN	- CORPLETE C	, pred UP	-delout I	MI NEOUL	. IN ARMET	- NAL IAI	CELHIO.						MES	

Maxxam Analytics International Corporation o/a Maxxam Analytics

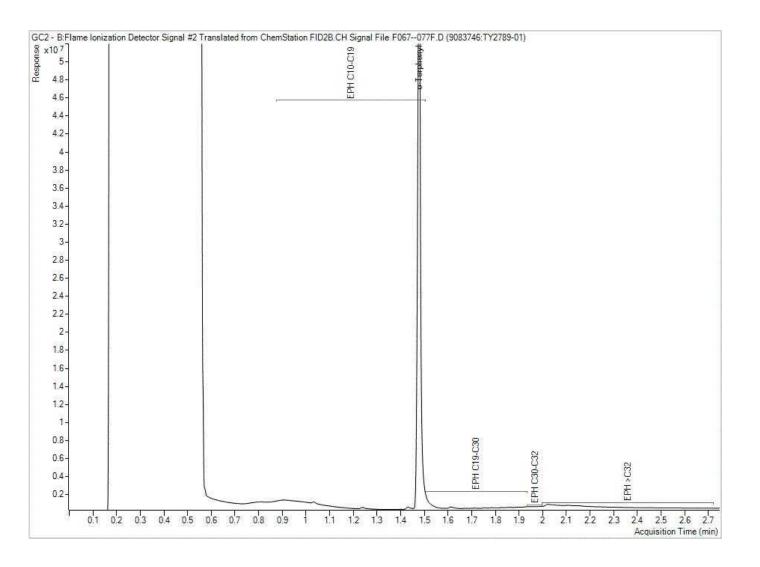
		INVOICE TO:				Report Info	mation							Project In	nformation			BUT DE 1887-A	NUMBER OF THE PART OF THE	ш '
sany Name	#2792 STAN	TEC CONSULTING	LTD	Company Na	ime						Que	otation#		B71770				ME AND	地 观似版图	Bottle Order
act Name	ACCOUNTS		100012000	Contact Nan	Matthew D	eane	-				P.0) #		4000044	04		- 1	17.00	ACCEPTAGE	
988	BURNABY BO	Suite 500, 4730 King	jsway	Address			-					ject #		1232211	01	_	- B8	62213_COC		560386 Project Manac
0	(604) 436-301		(604) 436-3752	Phone				Fax			Pro, Site	ject Neme					-	I continue		
	SAPinvoices@	Stantec.com	Luandamena	Email	matthew.d	eane@stant					100.00	mpled By		N)				560386-02-01	Nahed Amer
gulatory Cr	iteria			Spec	ial Instructions		T					Analysis R	equeste	d					umaround Time (TAT) Re	4.700, 7.70
		ed drinking water samples must be kept cool (< 10°C	THE WARRY				ulated Drinking Water ? (Y / N)	НЕРНИР	Dissolved Metals (with Hg)	втехлрн	Nutrients (TP, NH4, TKN)	Major Ions (Chloride, Fluoride, Nitrate, Orthophosphate, Sulphate)	Carbon (DOC)	m.	Yors		(will Star Plea day Job Date	ular (Standard) TA' be applied if Rush 7 idard TAT = 5-7 Wol ise note: Standard 7 s - contact your Proje	AT is not specified) king days for most tests. AT for certain tests such as Bi cot Manager for details. applies to entire submission) Time I	
Sample	Barcode Label	Sample (Location) I	Private State State	Date Sampled	Time Sampled	Matrix	Regular	LEP	Diss	BT6	ž	N N S	Carl	V	16		# of	Bottles	Comments	
		HW18-44	SACT	18/07/20		Soil									X		1			
		MWK-34	SAST	1											X			RE	CEIVED IN WHIT	EHORSE
			5437												X		1	BY	Sym	@ 0900
			SA03												X				2018 -07-	2.5.
			SANY												X		1	TEI	MP: 8 / 7	. 8
			5405											X			-7)		1
			SAde				T							X			4	/		
			S.A.07	1											X		1			
-			S408	V		V							-		V					
							1										+			
a similar	QUISHED BY: (Signa	Language	Date://Y/	MM/DD) Time	. 1	PECENT	n av.	Signature	Perfect 1	لسا	1.5	ate: (YY/MM/	nnı T	Time	#jara us	I bos bes			Lab Use Only	
126	QUISHED BY: (Signal	ture/Print)	18/67	124 200	100	KECEW				Joy		D18/07		15:0	7.00 0000	C104 C 4 C	ime Sensitive	Temperature (°C)		y Seal Intact on Cooler
Charles M.			13/21/	-	-	21.51		2. 3	- Marie		10	1						7,61		Yes No

0074

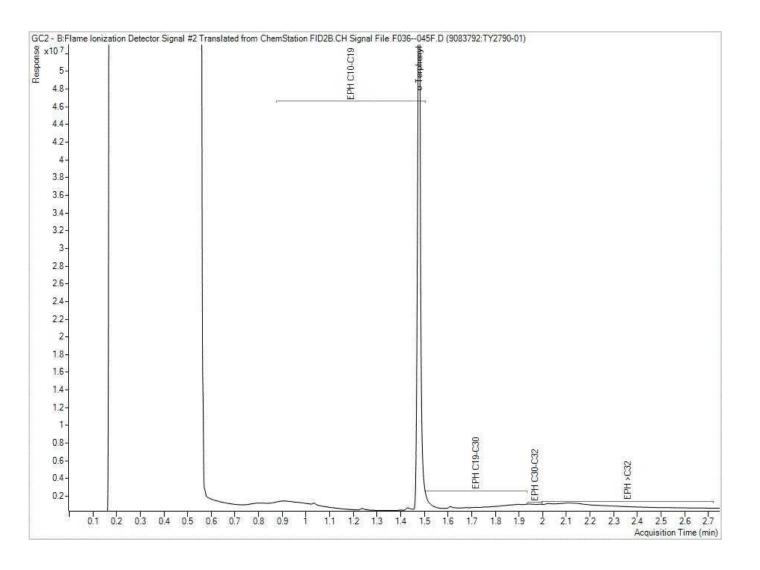
Maxxam Analytics International Corporation o/a Maxxam Analytics

STANTEC CONSULTING LTD Client Project #: 123221161 Client ID: MW18-44 SA05

EPH in Soil by GC/FID Chromatogram


STANTEC CONSULTING LTD Client Project #: 123221161 Client ID: MW18-33 SA05

EPH in Soil by GC/FID Chromatogram


STANTEC CONSULTING LTD Client Project #: 123221161 Client ID: MW18-34 SA05

EPH in Soil by GC/FID Chromatogram

STANTEC CONSULTING LTD Client Project #: 123221161 Client ID: MW18-34 SA06

EPH in Soil by GC/FID Chromatogram

Your P.O. #: 1232

Your Project #: 123221161

Site#: B862213

Your C.O.C. #: B862213-ONTV-01-01

Attention: Stantec Reporting

Maxxam Analytics Burnaby (Stantec) 4606 Canada Way Burnaby, BC CANADA V5G 1K5

Report Date: 2018/08/17

Report #: R5360806 Version: 1 - Final

CERTIFICATE OF ANALYSIS

MAXXAM JOB #: B8K5399 Received: 2018/08/13, 10:28

Sample Matrix: Soil # Samples Received: 2

		Date	Date		
Analyses	Quantity	y Extracted	Analyzed	Laboratory Method	Reference
Total Organic Carbon in Soil	2	N/A	2018/08/1	6 CAM SOP-00468	BCMOE TOC Aug 2014

Remarks:

Maxxam Analytics' laboratories are accredited to ISO/IEC 17025:2005 for specific parameters on scopes of accreditation. Unless otherwise noted, procedures used by Maxxam are based upon recognized Provincial, Federal or US method compendia such as CCME, MDDELCC, EPA, APHA.

All work recorded herein has been done in accordance with procedures and practices ordinarily exercised by professionals in Maxxam's profession using accepted testing methodologies, quality assurance and quality control procedures (except where otherwise agreed by the client and Maxxam in writing). All data is in statistical control and has met quality control and method performance criteria unless otherwise noted. All method blanks are reported; unless indicated otherwise, associated sample data are not blank corrected. Where applicable, unless otherwise noted, Measurement Uncertainty has not been accounted for when stating conformity to the referenced standard.

Maxxam Analytics' liability is limited to the actual cost of the requested analyses, unless otherwise agreed in writing. There is no other warranty expressed or implied. Maxxam has been retained to provide analysis of samples provided by the Client using the testing methodology referenced in this report. Interpretation and use of test results are the sole responsibility of the Client and are not within the scope of services provided by Maxxam, unless otherwise agreed in writing. Maxxam is not responsible for the accuracy or any data impacts, that result from the information provided by the customer or their agent.

Solid sample results, except biota, are based on dry weight unless otherwise indicated. Organic analyses are not recovery corrected except for isotope dilution methods.

Results relate to samples tested. When sampling is not conducted by Maxxam, results relate to the supplied samples tested.

This Certificate shall not be reproduced except in full, without the written approval of the laboratory.

Reference Method suffix "m" indicates test methods incorporate validated modifications from specific reference methods to improve performance.

* RPDs calculated using raw data. The rounding of final results may result in the apparent difference.

Your P.O. #: 1232

Your Project #: 123221161

Site#: B862213

Your C.O.C. #: B862213-ONTV-01-01

Attention: Stantec Reporting

Maxxam Analytics Burnaby (Stantec) 4606 Canada Way Burnaby, BC CANADA V5G 1K5

Report Date: 2018/08/17

Report #: R5360806 Version: 1 - Final

CERTIFICATE OF ANALYSIS

MAXXAM JOB #: B8K5399 Received: 2018/08/13, 10:28

Encryption Key

Maxxam has procedures in place to guard against improper use of the electronic signature and have the required "signatories", as per section 5.10.2 of ISO/IEC 17025:2005(E), signing the reports. For Service Group specific validation please refer to the Validation Signature Page.

Maxxam Analytics Client Project #: 123221161

Your P.O. #: 1232 Sampler Initials: MD

RESULTS OF ANALYSES OF SOIL

Maxxam ID		HLM622	HLM623		
Sampling Date		2018/07/24	2018/07/24		
COC Number		B862213-ONTV-01-01	B862213-ONTV-01-01		
	UNITS	TY2769-MW18-44 SA06	TY2775-MW18-33 SA06	RDL	QC Batch
Total Organic Carbon	mg/kg	1200	<500	500	5680650
RDL = Reportable Detection L	imit	•	•	·	•

Maxxam Analytics Client Project #: 123221161

Your P.O. #: 1232 Sampler Initials: MD

TEST SUMMARY

Maxxam ID: HLM622

Sample ID: TY2769-MW18-44 SA06

Matrix: Soil

Collected: 2018/07/24

Shipped:

Received: 2018/08/13

Test Description Instrumentation Batch Extracted **Date Analyzed** Analyst **Total Organic Carbon in Soil** СОМВ 5680650 N/A 2018/08/16 Charles Opoku-Ware

Maxxam ID: HLM623

Sample ID: TY2775-MW18-33 SA06

Matrix: Soil

Collected: 2018/07/24 Shipped:

Received: 2018/08/13

Test Description Instrumentation Batch **Extracted Date Analyzed** Analyst Total Organic Carbon in Soil 5680650 2018/08/16 COMB N/A Charles Opoku-Ware

Maxxam Analytics Client Project #: 123221161 Your P.O. #: 1232

Sampler Initials: MD

GENERAL COMMENTS

Each to	emperature is the av	erage of up to t	hree cooler temperatures taken at receipt
	Package 1	17.7°C	
Result	s relate only to the i	tems tested.	

QUALITY ASSURANCE REPORT

Maxxam Analytics

Client Project #: 123221161

Your P.O. #: 1232 Sampler Initials: MD

			Method B	lank	RPD)	QC Sta	ındard
QC Batch	Parameter	Date	Value	UNITS	Value (%)	QC Limits	% Recovery	QC Limits
5680650	Total Organic Carbon	2018/08/16	<500	mg/kg	0.33	35	103	75 - 125

Duplicate: Paired analysis of a separate portion of the same sample. Used to evaluate the variance in the measurement.

QC Standard: A sample of known concentration prepared by an external agency under stringent conditions. Used as an independent check of method accuracy.

Method Blank: A blank matrix containing all reagents used in the analytical procedure. Used to identify laboratory contamination.

Maxxam Analytics Client Project #: 123221161 Your P.O. #: 1232

Your P.O. #: 1232 Sampler Initials: MD

VALIDATION SIGNATURE PAGE

The analytical data and all QC contained in this report were reviewed and validated by the following individual(s).

Maxxam has procedures in place to guard against improper use of the electronic signature and have the required "signatories", as per section 5.10.2 of ISO/IEC 17025:2005(E), signing the reports. For Service Group specific validation please refer to the Validation Signature Page.

Your Project #: 123221161

Your C.O.C. #: 560386-04-01, 560386-03-01

Attention: Matthew Deane
STANTEC CONSULTING LTD
Metrotower III

Suite 500, 4730 Kingsway BURNABY, BC CANADA V5H 4M1

Report Date: 2018/08/02

Report #: R2599071 Version: 1 - Final

CERTIFICATE OF ANALYSIS

MAXXAM JOB #: B862756 Received: 2018/07/26, 09:00

Sample Matrix: Soil # Samples Received: 4

		Date	Date		
Analyses	Quantity	Extracted	Analyzed	Laboratory Method	Analytical Method
BTEX/MTBE LH VH F1 in Soil - Field Pres. (1)	3	N/A	2018/07/31	BBY8SOP-00010/11/12	BCMOE BCLM Jul 2017
Moisture	4	2018/07/28	2018/07/28	BBY8SOP-00017	BCMOE BCLM Dec2000 m
EPH in Soil by GC/FID	4	2018/07/28	2018/07/31	BBY8SOP-00029	BCMOE BCLM Jul 2016
Volatile HC-BTEX for Soil (2)	3	N/A	2018/08/02	BBY WI-00033	Auto Calc

Remarks:

Maxxam Analytics' laboratories are accredited to ISO/IEC 17025:2005 for specific parameters on scopes of accreditation. Unless otherwise noted, procedures used by Maxxam are based upon recognized Provincial, Federal or US method compendia such as CCME, MDDELCC, EPA, APHA.

All work recorded herein has been done in accordance with procedures and practices ordinarily exercised by professionals in Maxxam's profession using accepted testing methodologies, quality assurance and quality control procedures (except where otherwise agreed by the client and Maxxam in writing). All data is in statistical control and has met quality control and method performance criteria unless otherwise noted. All method blanks are reported; unless indicated otherwise, associated sample data are not blank corrected.

Maxxam Analytics' liability is limited to the actual cost of the requested analyses, unless otherwise agreed in writing. There is no other warranty expressed or implied. Maxxam has been retained to provide analysis of samples provided by the Client using the testing methodology referenced in this report. Interpretation and use of test results are the sole responsibility of the Client and are not within the scope of services provided by Maxxam, unless otherwise agreed in writing.

Solid sample results, except biota, are based on dry weight unless otherwise indicated. Organic analyses are not recovery corrected except for isotope dilution methods.

Results relate to samples tested.

This Certificate shall not be reproduced except in full, without the written approval of the laboratory.

Reference Method suffix "m" indicates test methods incorporate validated modifications from specific reference methods to improve performance.

- * RPDs calculated using raw data. The rounding of final results may result in the apparent difference.
- (1) The extraction date for VOC, BTEX, VH, or F1 samples that are field preserved with methanol equals the date sampled, unless otherwise stated.
- (2) VPH = VH (Benzene + Toluene + Ethylbenzene + m & p-Xylene + o-Xylene + Styrene)

Your Project #: 123221161

Your C.O.C. #: 560386-04-01, 560386-03-01

Attention: Matthew Deane

STANTEC CONSULTING LTD Metrotower III Suite 500, 4730 Kingsway BURNABY, BC CANADA V5H 4M1

Report Date: 2018/08/02

Report #: R2599071 Version: 1 - Final

CERTIFICATE OF ANALYSIS

MAXXAM JOB #: B862756 Received: 2018/07/26, 09:00

Encryption Key

Please direct all questions regarding this Certificate of Analysis to your Project Manager.

Nahed Amer, Project Manager Email: NAmer@maxxam.ca Phone# (604) 734 7276

This report has been generated and distributed using a secure automated process.

Maxxam has procedures in place to guard against improper use of the electronic signature and have the required "signatories", as per section 5.10.2 of ISO/IEC 17025:2005(E), signing the reports. For Service Group specific validation please refer to the Validation Signature Page.

STANTEC CONSULTING LTD Client Project #: 123221161 Sampler Initials: MD

PHYSICAL TESTING (SOIL)

Maxxam ID		TY5286	TY5296	TY5297	TY5302		
Sampling Date		2018/07/25	2018/07/25	2018/07/25	2018/07/25		
COC Number		560386-04-01	560386-03-01	560386-03-01	560386-03-01		
	UNITS	MW18-45 SA05	MW18-43 SA05	MW18-43 SA06	QC18-01	RDL	QC Batch
Physical Properties							
Moisture	%	19	2.1	15	12	0.30	9082660
RDL = Reportable Detection L	imit						

STANTEC CONSULTING LTD Client Project #: 123221161 Sampler Initials: MD

TOTAL PETROLEUM HYDROCARBONS (SOIL)

Hydrocarbons EPH (C10-C19) mg/kg <100 <100 <100 100 90 EPH (C19-C32) mg/kg <100 <100 <100 100 90 Surrogate Recovery (%)																
COC Number 560386-04-01 560386-03-01 560386-03-01 560386-03-01 560386-03-01 Description UNITS MW18-45 SA05 MW18-43 SA05 MW18-43 SA06 QC18-01 RDL QC Hydrocarbons EPH (C10-C19) mg/kg <100	Maxxam ID	TY5286	6 TY5296	TY5297	TY5302											
Hydrocarbons EPH (C10-C19) mg/kg <100 <100 <100 <100 100 90 EPH (C19-C32) mg/kg <100	Sampling Date															
Hydrocarbons EPH (C10-C19) mg/kg <100	OC Number 560386-04-01 560386-03-01 560386-03-01 560386-03-01															
EPH (C10-C19) mg/kg <100		UNITS MW18-45 S	SA05 MW18-43 SA05	MW18-43 SA06	QC18-01	RDL	QC Batch									
EPH (C19-C32) mg/kg <100 <100 <100 100 90 Surrogate Recovery (%)	Hydrocarbons															
Surrogate Recovery (%)	EPH (C10-C19)	mg/kg <100	<100	<100	<100	100	9083792									
	EPH (C19-C32)	mg/kg <100	<100	<100	<100	100	9083792									
O-TERPHENYL (sur.) % 83 82 83 84 90																
	O-TERPHENYL (sur.)	% 83	82	83	84		9083792									
RDL = Reportable Detection Limit	RDL = Reportable Detection L	mit														

STANTEC CONSULTING LTD Client Project #: 123221161 Sampler Initials: MD

CSR BTEX/VPH IN SOIL - FIELD PRESERVED (SOIL)

Maxxam ID		TY5286	TY5297	TY5302		
Sampling Date		2018/07/25	2018/07/25	2018/07/25		
COC Number		560386-04-01	560386-03-01	560386-03-01		
	UNITS	MW18-45 SA05	MW18-43 SA06	QC18-01	RDL	QC Batch
Calculated Parameters						
VPH (VH6 to 10 - BTEX)	mg/kg	<10	<10	<10	10	9082615
Volatiles	•					
Methyl-tert-butylether (MTBE)	mg/kg	<0.10	<0.10	<0.10	0.10	9084347
Benzene	mg/kg	<0.0050	<0.0050	<0.0050	0.0050	9084347
Toluene	mg/kg	<0.020	<0.020	<0.020	0.020	9084347
Ethylbenzene	mg/kg	<0.010	<0.010	<0.010	0.010	9084347
m & p-Xylene	mg/kg	<0.040	<0.040	<0.040	0.040	9084347
o-Xylene	mg/kg	<0.040	<0.040	<0.040	0.040	9084347
Styrene	mg/kg	<0.030	<0.030	<0.030	0.030	9084347
Xylenes (Total)	mg/kg	<0.040	<0.040	<0.040	0.040	9084347
VH C6-C10	mg/kg	<10	<10	<10	10	9084347
Surrogate Recovery (%)						
1,4-Difluorobenzene (sur.)	%	105	105	105		9084347
4-Bromofluorobenzene (sur.)	%	101	100	100		9084347
D10-ETHYLBENZENE (sur.)	%	101	98	101		9084347
D4-1,2-Dichloroethane (sur.)	%	104	105	104		9084347
RDL = Reportable Detection Limi	t					

STANTEC CONSULTING LTD Client Project #: 123221161 Sampler Initials: MD

GENERAL COMMENTS

Results relate only to the items tested.

QUALITY ASSURANCE REPORT

STANTEC CONSULTING LTD Client Project #: 123221161

Sampler Initials: MD

			Matrix	Spike	Spiked	Blank	Method I	Blank	RP	D
QC Batch	Parameter	Date	% Recovery	QC Limits	% Recovery	QC Limits	Value	UNITS	Value (%)	QC Limits
9083792	O-TERPHENYL (sur.)	2018/07/31	82	60 - 140	82	60 - 140	82	%		
9084347	1,4-Difluorobenzene (sur.)	2018/07/31	103	70 - 130	102	70 - 130	105	%		
9084347	4-Bromofluorobenzene (sur.)	2018/07/31	100	70 - 130	99	70 - 130	100	%		
9084347	D10-ETHYLBENZENE (sur.)	2018/07/31	96	60 - 130	84	60 - 130	91	%		
9084347	D4-1,2-Dichloroethane (sur.)	2018/07/31	92	70 - 130	92	70 - 130	100	%		
9082660	Moisture	2018/07/28					<0.30	%	6.5	20
9083792	EPH (C10-C19)	2018/07/31	83	60 - 140	84	70 - 130	<100	mg/kg		
9083792	EPH (C19-C32)	2018/07/31	86	60 - 140	87	70 - 130	<100	mg/kg		
9084347	Benzene	2018/07/31	88	60 - 140	93	70 - 130	<0.0050	mg/kg	NC	40
9084347	Ethylbenzene	2018/07/31	90	60 - 140	98	70 - 130	<0.010	mg/kg	8.9	40
9084347	m & p-Xylene	2018/07/31	90	60 - 140	98	70 - 130	<0.040	mg/kg	32	40
9084347	Methyl-tert-butylether (MTBE)	2018/07/31					<0.10	mg/kg	NC	40
9084347	o-Xylene	2018/07/31	91	60 - 140	101	70 - 130	<0.040	mg/kg	NC	40
9084347	Styrene	2018/07/31					<0.030	mg/kg	NC	40
9084347	Toluene	2018/07/31	86	60 - 140	92	70 - 130	<0.020	mg/kg	36	40
9084347	VH C6-C10	2018/07/31			71	70 - 130	<10	mg/kg	NC	40
9084347	Xylenes (Total)	2018/07/31					<0.040	mg/kg	32	40

Duplicate: Paired analysis of a separate portion of the same sample. Used to evaluate the variance in the measurement.

Matrix Spike: A sample to which a known amount of the analyte of interest has been added. Used to evaluate sample matrix interference.

Spiked Blank: A blank matrix sample to which a known amount of the analyte, usually from a second source, has been added. Used to evaluate method accuracy.

Method Blank: A blank matrix containing all reagents used in the analytical procedure. Used to identify laboratory contamination.

Surrogate: A pure or isotopically labeled compound whose behavior mirrors the analytes of interest. Used to evaluate extraction efficiency.

NC (Duplicate RPD): The duplicate RPD was not calculated. The concentration in the sample and/or duplicate was too low to permit a reliable RPD calculation (absolute difference <= 2x RDL).

STANTEC CONSULTING LTD Client Project #: 123221161 Sampler Initials: MD

VALIDATION SIGNATURE PAGE

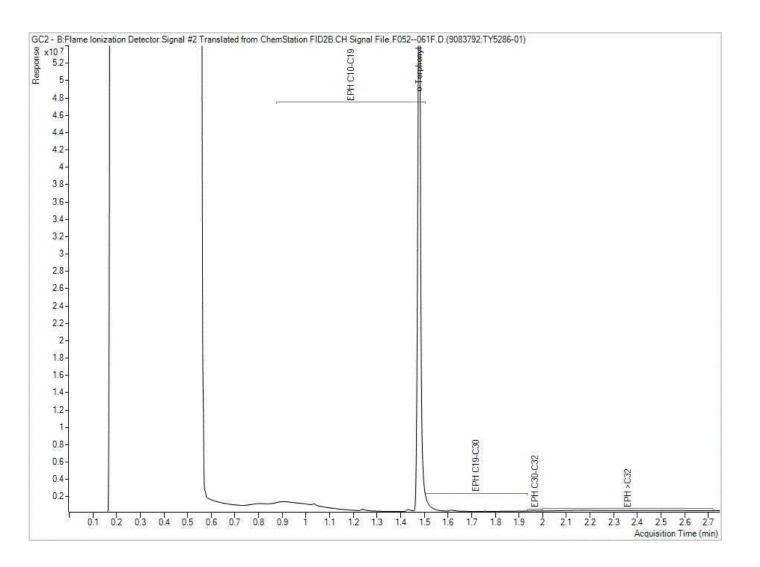
The analytical data and all QC contained in this report were reviewed and validated by the following individual(s).

Jose Cueva, Supervisor, Organics-VOC & HC

Rob Reinert, B.Sc., Scientific Specialist

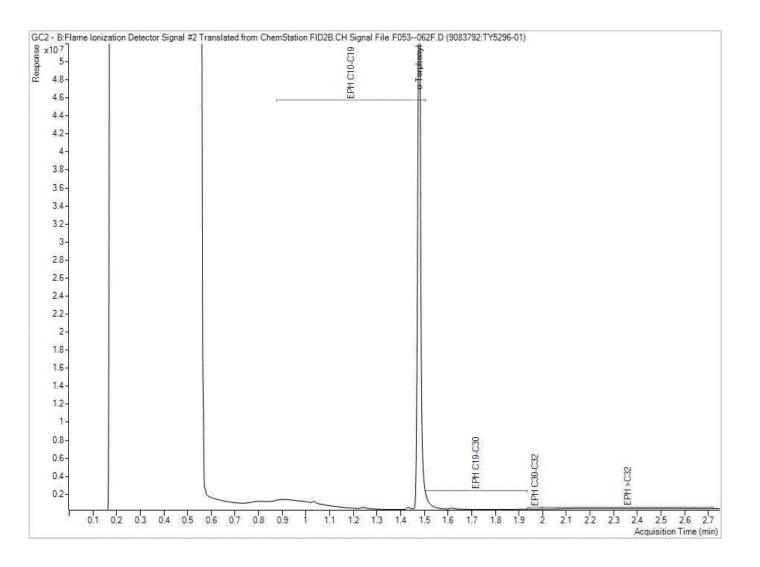
Maxxam has procedures in place to guard against improper use of the electronic signature and have the required "signatories", as per section 5.10.2 of ISO/IEC 17025:2005(E), signing the reports. For Service Group specific validation please refer to the Validation Signature Page.

•		Contraction and Contraction of Contr				Page 1000 Page 1	********	01						421100000000	200 - 10 eap 6 1 1	_		ATT AND TO A SECURITY AND THE ADDRESS	Page of		
10733		INVOICE TO:	NO LTD	V-200000000		Report In	formation	1							formation		-	Laboratory Use (
many reason -	ACCOUNTS F	TEC CONSULT	NGLID	Company N	A MANAGEMENT OF THE RESIDENCE OF THE RES	Donno	_				Quotai		В	71770	00 -		-	Maxxam Job #	Bottle Order #:		
PET 1459 1161		Suite 500, 4730	Kingsway	Contact Na Address	me waterew	Jeane					P.O.#		1	232211	61			B862756	560386		
1775	BURNABY BO			Address	-						Project	Name	_		-			Chain Of Gustody Record	Project Manage		
	(604) 436-301	4 Fa	(604) 436-3752	Phone				Fax:			Site #)							Nahed Amer		
	SAPinvoices@	Stantec.com	1	Email	matthew.	deane@sta	ntec.co	m			Sample	ed By	_	MI)			C#560386-04-01	Naned Amer		
egulatory Crite		ed drinking water san	uples - please use the Dri		cial Instructions		ed Drinking Water?(Y/N)	5	Dissolved Metals (with Hg)	МРН	4, TKN)	Nitrate, Orthophosphate, Sulphate)	Carbon (DOC)	M	9	2	(will be a) Standard Please no days - co. Job Speci Date Requ	muttion Number	h projects (*) (4. D and Diowins/Furans as		
Sample 8	Samples larcode Label	HIND DESIGNATION OF THE PERSON	10°C) from time of sample tion) Identification	Date Sampled	Time Sampled	Matrix	Regulated Drin	LEPH	Dissol	втехлен	Nutrients	Nitrate	Carbo	Q	15		W of Bottles	Comments	all lab for #)		
		MW18-4	15 SAO1	18/07/15		SOIL									X		1	RECEIVED IN WAR	Eliones		
			SAOZ												X		1	BY: Sygno	@ 090C		
			5A63		18										×		1	2019 02	2 5		
			SAOY												X		1	2010 -0/-	2.0		
			SA05							X				X			4	TEMP: 7/7	19		
			SAOG												X		Z				
			SAGI												X	8	1				
		V	SA08												X		1	IIII BUT UK ING AND AN	LEAT THAT BUILDS IN		
		MW8-4.	3 SAO(X		1	ENVEN			
		~	SAOL			V									X		1	B862756_COC	AKTASA BI Z.		
RELINOL	ISHED BY: (Signar	Demc	Date: (Y)	and the second		RECE		Signature/	Print)			8267/2	7 0	Time (C)	# jars u not sul 2# Ø/ 0	mitted		mperature (°C) on Receipt Custody	Seal intact on Cooler?		

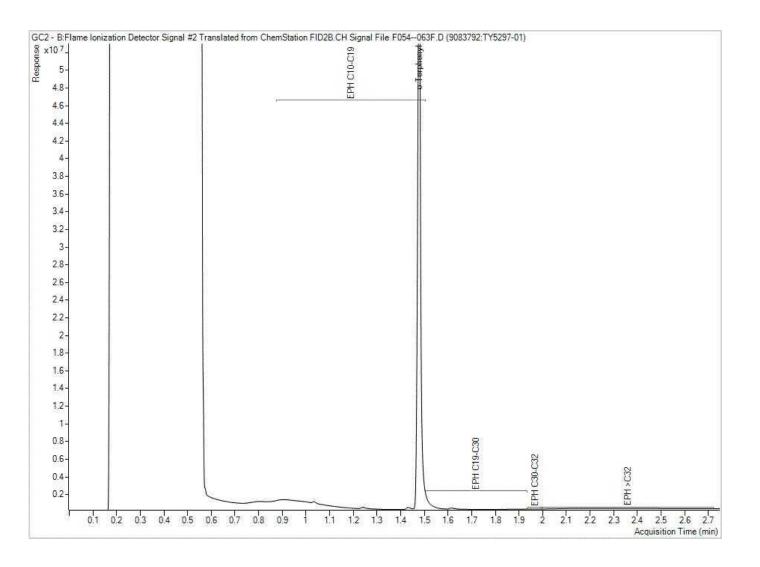

Maxxam Analytics International Corporation o/a Maxxam Analytics

-		INVOICE TO:				Report Int	ormation	řě.						Project In	formation				Laboratory Use	Page of Only
any Nama	#2792 STAN	TEC CONSULTING	SLTD	Company	lama.					_	10	ration #		B71770					Maxxam Job #	Bottle Order #:
med taineres. "	ACCOUNTS F		ZHARA.	Contact N	A R 145	v Deane					P.O.								Dalamel	INDIGINI
15	The state of the s	Suite 500, 4730 Kii	ngsway	Address	-						Proje	ect#	- 2	12322116	51				B862756	560386
	(604) 436-301		(604) 436-3752	-	-			2000			10000	ct Name	-					-	Chain Of Custody Record	Project Manage
	SAPinvoices@		(004) 430-3732	Phone Email	matthey	v.deane@sta		Fax			Site	# pled By		M	_		_	- '	C#550386-03-01	Nahed Amer
gulatory Crite					ecial Instructions		П					Analysis R	equested				I	_	Turnaround Time (TAT) Req	uired
	- Interested	d drinking water sample	AND DESCRIPTION OF THE PARTY OF	and a second control of	1000		Regulated Drinking Water 7 (Y / N)	ГЕРН/НЕРН/РАН	Dissolved Metals (with Hg)	ВТЕХЛРН	ents (TP, NH4, TKN)	Major lons (Chioride, Fluoride, Nitrate, Orthophosphate, Sulphate)	Carbon (DOC)	HJ.	075		d d	will be appointendend Tri Sease note ays - contri b Specific ste Require	ution Number	D and Dioxins/Furans a
Sample E	Barcode Label	must be kept cool (< 10° Sample (Location	SEALURINA MANAGAMENT MANER	Date Sampled	Time Sampled	Matrix	Regul	LEPI	Disso	вте	Nutrients	Majo Nitra Ortho	Carb	B	Fa		z	d Bottles	Comments	
-C246-04-0	0740-24	MW18-43	3 SA63	18/09/25		Sarc									X			1	RECEIVED IN WHITE	EHORSE
			SA04	1											X			1	BY: Styons	@0900
			8405											X				2	2018 -07-	7 n
			SAde							X				×			-	4		
			5407	3											X		T	1	TEMP: 7/7	19
			SAOS												X		1	1		
			SAGA												X		1	1		
			SAIG	V											X		1	1		
		QC18		V		V				X				X		\neg		4		
		400											/ 4				1	1		
+ RELINO	(15)/2D BY: (Signa		Date: (YY	MM/DD) T	THE	RECE		Signeture	(Print)	1	Da	te: (YY/MM/I	DD)	Time	makeut	sed and	_		Lab Use Only	
ald	La A	1. D.44	18/07/	25 180	- 10	WIN	CH	W	W		120	18101	1771	07:60	noteut	omitted Tin	e Sensitiv	1 19019	perature (°C) on Receipt Custody	Sgaf Intact on Cooler?

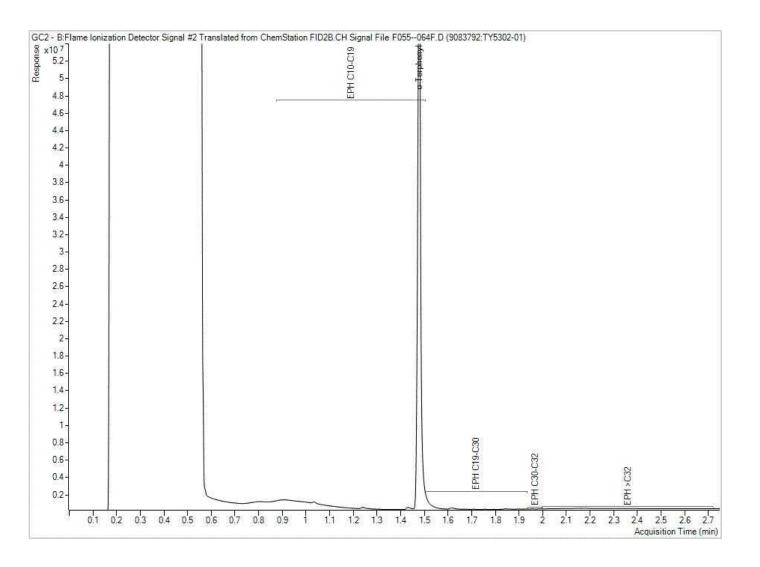
Maxxam Analytics International Corporation o/a Maxxam Analytics


STANTEC CONSULTING LTD Client Project #: 123221161 Client ID: MW18-45 SA05

EPH in Soil by GC/FID Chromatogram


STANTEC CONSULTING LTD Client Project #: 123221161 Client ID: MW18-43 SA05

EPH in Soil by GC/FID Chromatogram


STANTEC CONSULTING LTD Client Project #: 123221161 Client ID: MW18-43 SA06

EPH in Soil by GC/FID Chromatogram

STANTEC CONSULTING LTD Client Project #: 123221161 Client ID: QC18-01

EPH in Soil by GC/FID Chromatogram

Your Project #: 123221161

Your C.O.C. #: 560386-05-01, 560386-06-01

Attention: Matthew Deane
STANTEC CONSULTING LTD
Metrotower III
Suite 500, 4730 Kingsway
BURNABY, BC

V5H 4M1

Report Date: 2018/08/17

Report #: R2605693 Version: 3 - Revision

CERTIFICATE OF ANALYSIS – REVISED REPORT

MAXXAM JOB #: B862770 Received: 2018/07/27, 08:50

CANADA

Sample Matrix: Soil # Samples Received: 4

# Jampies Received. 4					
		Date	Date		
Analyses	Quantity	Extracted	Analyzed	Laboratory Method	Analytical Method
BTEX/MTBE LH VH F1 in Soil - Field Pres. (2)	2	N/A	2018/07/31	BBY8SOP-00010/11/12	BCMOE BCLM Jul 2017
BTEX/MTBE LH VH F1 in Soil - Field Pres. (2)	1	N/A	2018/08/01	BBY8SOP-00010/11/12	BCMOE BCLM Jul 2017
Moisture	3	2018/07/28	2018/07/28	BBY8SOP-00017	BCMOE BCLM Dec2000 m
Moisture	1	2018/07/30	2018/07/31	BBY8SOP-00017	BCMOE BCLM Dec2000 m
PAH in Soil by GC/MS (SIM)	3	2018/07/28	2018/07/31	BBY8SOP-00022	BCMOE BCLM Jul2017m
PAH in Soil by GC/MS (SIM)	1	2018/07/30	2018/07/31	BBY8SOP-00022	BCMOE BCLM Jul2017m
Total PAH and B(a)P Calculation (3)	4	N/A	2018/07/31	BBY WI-00033	Auto Calc
EPH less PAH in Soil By GC/FID (4)	4	N/A	2018/07/31	BBY WI-00033	Auto Calc
EPH in Soil by GC/FID	3	2018/07/28	2018/07/31	BBY8SOP-00029	BCMOE BCLM Jul 2016
EPH in Soil by GC/FID	1	2018/07/30	2018/07/31	BBY8SOP-00029	BCMOE BCLM Jul 2016
Texture by Hydrometer, incl Gravel (Wet)	1	N/A	2018/08/16	BBY6SOP-00051	Carter 2nd ed 55.3
Volatile HC-BTEX for Soil (5)	2	N/A	2018/07/31	BBY WI-00033	Auto Calc
Volatile HC-BTEX for Soil (5)	1	N/A	2018/08/02	BBY WI-00033	Auto Calc
TOC Soil Subcontract (1)	1	N/A	2018/08/17		

Remarks:

Maxxam Analytics' laboratories are accredited to ISO/IEC 17025:2005 for specific parameters on scopes of accreditation. Unless otherwise noted, procedures used by Maxxam are based upon recognized Provincial, Federal or US method compendia such as CCME, MDDELCC, EPA, APHA.

All work recorded herein has been done in accordance with procedures and practices ordinarily exercised by professionals in Maxxam's profession using accepted testing methodologies, quality assurance and quality control procedures (except where otherwise agreed by the client and Maxxam in writing). All data is in statistical control and has met quality control and method performance criteria unless otherwise noted. All method blanks are reported; unless indicated otherwise, associated sample data are not blank corrected. Where applicable, unless otherwise noted, Measurement Uncertainty has not been accounted for when stating conformity to the referenced standard.

Maxxam Analytics' liability is limited to the actual cost of the requested analyses, unless otherwise agreed in writing. There is no other warranty expressed or implied. Maxxam has been retained to provide analysis of samples provided by the Client using the testing methodology referenced in this report. Interpretation and use of test results are the sole responsibility of the Client and are not within the scope of services provided by Maxxam, unless otherwise agreed in writing. Maxxam is not responsible for the accuracy or any data impacts, that result from the information provided by the customer or their agent.

Solid sample results, except biota, are based on dry weight unless otherwise indicated. Organic analyses are not recovery corrected except for isotope

Your Project #: 123221161

Your C.O.C. #: 560386-05-01, 560386-06-01

Attention: Matthew Deane

STANTEC CONSULTING LTD Metrotower III Suite 500, 4730 Kingsway BURNABY, BC CANADA V5H 4M1

Report Date: 2018/08/17

Report #: R2605693 Version: 3 - Revision

CERTIFICATE OF ANALYSIS – REVISED REPORT

MAXXAM JOB #: B862770 Received: 2018/07/27, 08:50

dilution methods.

Results relate to samples tested. When sampling is not conducted by Maxxam, results relate to the supplied samples tested.

This Certificate shall not be reproduced except in full, without the written approval of the laboratory.

Reference Method suffix "m" indicates test methods incorporate validated modifications from specific reference methods to improve performance.

- * RPDs calculated using raw data. The rounding of final results may result in the apparent difference.
- (1) This test was performed by Maxxam Ontario (From Burnaby)
- (2) The extraction date for VOC, BTEX, VH, or F1 samples that are field preserved with methanol equals the date sampled, unless otherwise stated.
- (3) Total PAHs in Soil include: Quinoline, Naphthalene, 1-Methylnaphthalene, 2-Methylnaphthalene, Acenaphthylene, Acenaphthene, Fluorene, Phenanthrene, Anthracene, Acridine, Fluoranthene, Pyrene, Benzo(a)anthracene, Chrysene, Benzo(b&j)fluoranthene, Benzo(k)fluoranthene, Benzo(a)pyrene, Indeno(1,2,3-cd)pyrene, Dibenz(a,h)anthracene, and Benzo(g,h,i)perylene.

Total PAHs in Sediment include: Naphthalene, 2-Methylnaphthalene, Acenaphthylene, Acenaphthene, Fluorene, Phenanthrene, Anthracene, Fluoranthene, Pyrene, Benzo(a)anthracene, Chrysene, Benzo(a)pyrene, and Dibenz(a,h)anthracene.

(4) LEPH = EPH (C10 to C19) - (Naphthalene + Phenanthrene)

HEPH = EPH (C19 to C32) - (Benzo(a)anthracene + Benzo(a)pyrene + Benzo(b)fluoranthene + Benzo(k)fluoranthene + Dibenz(a,h)anthracene + Indeno(1,2,3-cd)pyrene + Pyrene) (5) VPH = VH - (Benzene + Toluene + Ethylbenzene + m & p-Xylene + o-Xylene + Styrene)

Encryption Key

Please direct all questions regarding this Certificate of Analysis to your Project Manager.

Nahed Amer, Project Manager Email: NAmer@maxxam.ca Phone# (604) 734 7276

Maxxam has procedures in place to guard against improper use of the electronic signature and have the required "signatories", as per section 5.10.2 of ISO/IEC 17025:2005(E), signing the reports. For Service Group specific validation please refer to the Validation Signature Page.

STANTEC CONSULTING LTD Client Project #: 123221161 Sampler Initials: MD

RESULTS OF CHEMICAL ANALYSES OF SOIL

Maxxam ID		TY5396		TY5398		
Sampling Date		2018/07/26		2018/07/26		
COC Number		560386-05-01		560386-05-01		
	UNITS	MW18-35 SA08	QC Batch	MW18-35 SA10	RDL	QC Batch
Parameter						
Subcontract Parameter	N/A	ATTACHED	9107498			
Physical Properties						
% sand by hydrometer	%			25	2.0	9103384
% silt by hydrometer	%			41	2.0	9103384
Clay Content	%			7.0	2.0	9103384
Gravel	%			27	2.0	9103384
RDL = Reportable Detection L	imit					

STANTEC CONSULTING LTD Client Project #: 123221161 Sampler Initials: MD

PHYSICAL TESTING (SOIL)

Maxxam ID		TY5396	TY5398		TY5399	TY5399		
Sampling Date		2018/07/26	2018/07/26		2018/07/26	2018/07/26		
COC Number		560386-05-01	560386-05-01		560386-06-01	560386-06-01		
	UNITS	MW18-35 SA08	MW18-35 SA10	QC Batch	MW18-35 SA11	MW18-35 SA11 Lab-Dup	RDL	QC Batch
Physical Properties								
Physical Properties Moisture	%	14	19	9082660	18	18	0.30	9084606

		<u> - </u>		
Maxxam ID		TY5405		
Sampling Date		2018/07/26		
COC Number		560386-06-01		
	UNITS	QC18-02	RDL	QC Batch
Physical Properties				
Moisture	%	19	0.30	9082660
RDL = Reportable Detection L	imit			

STANTEC CONSULTING LTD Client Project #: 123221161 Sampler Initials: MD

CSR BTEX/VPH IN SOIL - FIELD PRESERVED (SOIL)

Maxxam ID		TY5396	TY5398		TY5405		
Sampling Date		2018/07/26	2018/07/26		2018/07/26		
COC Number		560386-05-01	560386-05-01		560386-06-01		
	UNITS	MW18-35 SA08	MW18-35 SA10	QC Batch	QC18-02	RDL	QC Batch
Calculated Parameters							
VPH (VH6 to 10 - BTEX)	mg/kg	<10	<10	9082615	<10	10	9082615
Volatiles							,
Methyl-tert-butylether (MTBE)	mg/kg	<0.10	<0.10	9085249	<0.10	0.10	9087637
Benzene	mg/kg	<0.0050	<0.0050	9085249	0.036	0.0050	9087637
Toluene	mg/kg	<0.020	<0.020	9085249	0.049	0.020	9087637
Ethylbenzene	mg/kg	<0.010	<0.010	9085249	0.050	0.010	9087637
m & p-Xylene	mg/kg	<0.040	<0.040	9085249	0.047	0.040	9087637
o-Xylene	mg/kg	<0.040	<0.040	9085249	0.048	0.040	9087637
Styrene	mg/kg	<0.030	<0.030	9085249	<0.030	0.030	9087637
Xylenes (Total)	mg/kg	<0.040	<0.040	9085249	0.095	0.040	9087637
VH C6-C10	mg/kg	<10	<10	9085249	<10	10	9087637
Surrogate Recovery (%)							
1,4-Difluorobenzene (sur.)	%	106	105	9085249	105		9087637
4-Bromofluorobenzene (sur.)	%	101	101	9085249	102		9087637
D10-ETHYLBENZENE (sur.)	%	98	103	9085249	99		9087637
D4-1,2-Dichloroethane (sur.)	%	105	104	9085249	104		9087637
RDL = Reportable Detection Limi	t						

STANTEC CONSULTING LTD Client Project #: 123221161 Sampler Initials: MD

LEPH & HEPH WITH PAH FOR CSR IN SOIL (SOIL)

Maxxam ID		TY5396	TY5398		TY5399		TY5405		
Sampling Date		2018/07/26	2018/07/26		2018/07/26		2018/07/26		
COC Number		560386-05-01	560386-05-01		560386-06-01		560386-06-01		
	UNITS	MW18-35 SA08	MW18-35 SA10	QC Batch		QC Batch	QC18-02	RDL	QC Batch
Calculated Parameters		•			•			•	
Low Molecular Weight PAH`s	mg/kg	<0.050	<0.050	9082612	<0.050	9083998	<0.050	0.050	9082612
High Molecular Weight PAH's	mg/kg	<0.050	<0.050	9082612	<0.050	9083998	<0.050	0.050	9082612
Total PAH	mg/kg	<0.050	<0.050	9082612	<0.050	9083998	<0.050	0.050	9082612
Polycyclic Aromatics		ı		I.	ı	I.		I.	I.
Naphthalene	mg/kg	<0.010	<0.010	9084780	<0.010	9084780	<0.010	0.010	9084780
1-Methylnaphthalene	mg/kg	<0.050	<0.050	9084780	<0.050	9084780	<0.050	0.050	9084780
2-Methylnaphthalene	mg/kg	<0.020	<0.020	9084780	<0.020	9084780	<0.020	0.020	9084780
Acenaphthylene	mg/kg	<0.0050	<0.0050	9084780	<0.0050	9084780	<0.0050	0.0050	9084780
Acenaphthene	mg/kg	<0.0050	<0.0050	9084780	<0.0050	9084780	<0.0050	0.0050	9084780
Fluorene	mg/kg	<0.020	<0.020	9084780	<0.020	9084780	<0.020	0.020	9084780
Phenanthrene	mg/kg	<0.010	<0.010	9084780	<0.010	9084780	<0.010	0.010	9084780
Anthracene	mg/kg	<0.0040	<0.0040	9084780	<0.0040	9084780	<0.0040	0.0040	9084780
Acridine	mg/kg	<0.050	<0.050	9084780	<0.050	9084780	<0.050	0.050	9084780
Fluoranthene	mg/kg	<0.020	<0.020	9084780	<0.020	9084780	<0.020	0.020	9084780
Pyrene	mg/kg	<0.020	<0.020	9084780	<0.020	9084780	<0.020	0.020	9084780
Benzo(a)anthracene	mg/kg	<0.020	<0.020	9084780	<0.020	9084780	<0.020	0.020	9084780
Chrysene	mg/kg	<0.020	<0.020	9084780	<0.020	9084780	<0.020	0.020	9084780
Benzo(b&j)fluoranthene	mg/kg	<0.020	<0.020	9084780	<0.020	9084780	<0.020	0.020	9084780
Benzo(b)fluoranthene	mg/kg	<0.020	<0.020	9084780	<0.020	9084780	<0.020	0.020	9084780
Benzo(k)fluoranthene	mg/kg	<0.020	<0.020	9084780	<0.020	9084780	<0.020	0.020	9084780
Benzo(a)pyrene	mg/kg	<0.020	<0.020	9084780	<0.020	9084780	<0.020	0.020	9084780
Indeno(1,2,3-cd)pyrene	mg/kg	<0.020	<0.020	9084780	<0.020	9084780	<0.020	0.020	9084780
Dibenz(a,h)anthracene	mg/kg	<0.020	<0.020	9084780	<0.020	9084780	<0.020	0.020	9084780
Benzo(g,h,i)perylene	mg/kg	<0.050	<0.050	9084780	<0.050	9084780	<0.050	0.050	9084780
Calculated Parameters	•	•			•			•	
LEPH (C10-C19 less PAH)	mg/kg	<100	<100	9082613	<100	9084002	<100	100	9082613
HEPH (C19-C32 less PAH)	mg/kg	<100	<100	9082613	<100	9084002	<100	100	9082613
Hydrocarbons									
EPH (C10-C19)	mg/kg	<100	<100	9084776	<100	9084776	<100	100	9084776
EPH (C19-C32)	mg/kg	<100	<100	9084776	<100	9084776	<100	100	9084776
Surrogate Recovery (%)	•			T		T		ı	T
D10-ANTHRACENE (sur.)	%	67	66	9084780	72	9084780	70		9084780
D8-ACENAPHTHYLENE (sur.)	%	72	71	9084780	71	9084780	74		9084780
RDL = Reportable Detection Lin	nit								

STANTEC CONSULTING LTD Client Project #: 123221161 Sampler Initials: MD

LEPH & HEPH WITH PAH FOR CSR IN SOIL (SOIL)

Maxxam ID		TY5396	TY5398		TY5399		TY5405		
Sampling Date		2018/07/26	2018/07/26		2018/07/26		2018/07/26		
COC Number		560386-05-01	560386-05-01		560386-06-01		560386-06-01		
	UNITS	MW18-35 SA08	MW18-35 SA10	QC Batch	MW18-35 SA11	QC Batch	QC18-02	RDL	QC Batch
D8-NAPHTHALENE (sur.)	%	70	69	9084780	70	9084780	70		9084780
TERPHENYL-D14 (sur.)	0/			0004700	7.4	0004700	7-		0004700
TERPHENTL-D14 (Sul.)	%	74	73	9084780	74	9084780	75		9084780
O-TERPHENYL (sur.)	%	87	73 88	9084780	86	9084780	75 84		9084780

STANTEC CONSULTING LTD Client Project #: 123221161 Sampler Initials: MD

GENERAL COMMENTS

Version 3: Report reissued to include results for TOC and Grain Size on samples MW18-35 SA08 and MW18-35 SA10 as per request from Matthew Deane on 2018/08/10

Results relate only to the items tested.

QUALITY ASSURANCE REPORT

STANTEC CONSULTING LTD Client Project #: 123221161

			Matrix	Spike	Spiked	Blank	Method	Blank	RPI	D	QC Sta	ndard
QC Batch	Parameter	Date	% Recovery	QC Limits	% Recovery	QC Limits	Value	UNITS	Value (%)	QC Limits	% Recovery	QC Limits
9084776	O-TERPHENYL (sur.)	2018/07/31	89	60 - 140	86	60 - 140	85	%				
9084780	D10-ANTHRACENE (sur.)	2018/07/31	71	50 - 140	72	50 - 140	76	%				
9084780	D8-ACENAPHTHYLENE (sur.)	2018/07/31	69	50 - 140	69	50 - 140	67	%				
9084780	D8-NAPHTHALENE (sur.)	2018/07/31	70	50 - 140	61	50 - 140	66	%				
9084780	TERPHENYL-D14 (sur.)	2018/07/31	74	50 - 140	72	50 - 140	76	%				
9085249	1,4-Difluorobenzene (sur.)	2018/07/31	101	70 - 130	103	70 - 130	105	%				
9085249	4-Bromofluorobenzene (sur.)	2018/07/31	101	70 - 130	101	70 - 130	100	%				
9085249	D10-ETHYLBENZENE (sur.)	2018/07/31	99	60 - 130	87	60 - 130	94	%				
9085249	D4-1,2-Dichloroethane (sur.)	2018/07/31	95	70 - 130	92	70 - 130	105	%				
9087637	1,4-Difluorobenzene (sur.)	2018/08/01	102	70 - 130	103	70 - 130	105	%				
9087637	4-Bromofluorobenzene (sur.)	2018/08/01	100	70 - 130	102	70 - 130	101	%				
9087637	D10-ETHYLBENZENE (sur.)	2018/08/01	103	60 - 130	84	60 - 130	87	%				
9087637	D4-1,2-Dichloroethane (sur.)	2018/08/01	96	70 - 130	94	70 - 130	105	%				
9082660	Moisture	2018/07/28					<0.30	%	6.5	20		
9084606	Moisture	2018/07/31					<0.30	%	1.7	20		
9084776	EPH (C10-C19)	2018/07/31	87	60 - 140	84	70 - 130	<100	mg/kg	NC	40		
9084776	EPH (C19-C32)	2018/07/31	90	60 - 140	88	70 - 130	<100	mg/kg	NC	40		
9084780	1-Methylnaphthalene	2018/07/31	70	50 - 140	72	50 - 140	<0.050	mg/kg	NC	50		
9084780	2-Methylnaphthalene	2018/07/31	66	50 - 140	68	50 - 140	<0.020	mg/kg	NC	50		
9084780	Acenaphthene	2018/07/31	68	50 - 140	71	50 - 140	<0.0050	mg/kg	NC	50		
9084780	Acenaphthylene	2018/07/31	67	50 - 140	70	50 - 140	<0.0050	mg/kg	NC	50		
9084780	Acridine	2018/07/31	98	50 - 140	100	N/A	<0.050	mg/kg				
9084780	Anthracene	2018/07/31	68	50 - 140	70	50 - 140	<0.0040	mg/kg	NC	50		
9084780	Benzo(a)anthracene	2018/07/31	63	50 - 140	64	50 - 140	<0.020	mg/kg	NC	50		
9084780	Benzo(a)pyrene	2018/07/31	63	50 - 140	65	50 - 140	<0.020	mg/kg	NC	50		
9084780	Benzo(b&j)fluoranthene	2018/07/31	69	50 - 140	65	50 - 140	<0.020	mg/kg	NC	50		
9084780	Benzo(b)fluoranthene	2018/07/31	73	50 - 140	65	50 - 140	<0.020	mg/kg	NC	50		
9084780	Benzo(g,h,i)perylene	2018/07/31	61	50 - 140	63	50 - 140	<0.050	mg/kg	NC	50		
9084780	Benzo(k)fluoranthene	2018/07/31	76	50 - 140	76	50 - 140	<0.020	mg/kg	NC	50		
9084780	Chrysene	2018/07/31	66	50 - 140	66	50 - 140	<0.020	mg/kg	NC	50		
9084780	Dibenz(a,h)anthracene	2018/07/31	62	50 - 140	64	50 - 140	<0.020	mg/kg	NC	50		

QUALITY ASSURANCE REPORT(CONT'D)

STANTEC CONSULTING LTD Client Project #: 123221161

			Matrix	Spike	Spiked	Blank	Method	Blank	RP	D	QC Sta	ındard
QC Batch	Parameter	Date	% Recovery	QC Limits	% Recovery	QC Limits	Value	UNITS	Value (%)	QC Limits	% Recovery	QC Limits
9084780	Fluoranthene	2018/07/31	67	50 - 140	68	50 - 140	<0.020	mg/kg	NC	50		
9084780	Fluorene	2018/07/31	67	50 - 140	70	50 - 140	<0.020	mg/kg	NC	50		
9084780	Indeno(1,2,3-cd)pyrene	2018/07/31	62	50 - 140	64	50 - 140	<0.020	mg/kg	NC	50		
9084780	Naphthalene	2018/07/31	67	50 - 140	68	50 - 140	<0.010	mg/kg	NC	50		
9084780	Phenanthrene	2018/07/31	67	50 - 140	67	50 - 140	<0.010	mg/kg	NC	50		
9084780	Pyrene	2018/07/31	71	50 - 140	71	50 - 140	<0.020	mg/kg	NC	50		
9085249	Benzene	2018/07/31	100	60 - 140	88	70 - 130	<0.0050	mg/kg	NC	40		
9085249	Ethylbenzene	2018/07/31	99	60 - 140	93	70 - 130	<0.010	mg/kg	NC	40		
9085249	m & p-Xylene	2018/07/31	99	60 - 140	93	70 - 130	<0.040	mg/kg	NC	40		
9085249	Methyl-tert-butylether (MTBE)	2018/07/31					<0.10	mg/kg				
9085249	o-Xylene	2018/07/31	101	60 - 140	96	70 - 130	<0.040	mg/kg	NC	40		
9085249	Styrene	2018/07/31					<0.030	mg/kg	NC	40		
9085249	Toluene	2018/07/31	95	60 - 140	87	70 - 130	<0.020	mg/kg	NC	40		
9085249	VH C6-C10	2018/07/31			71	70 - 130	<10	mg/kg	NC	40		
9085249	Xylenes (Total)	2018/07/31					<0.040	mg/kg	NC	40		
9087637	Benzene	2018/08/02	94	60 - 140	82	70 - 130	<0.0050	mg/kg	NC	40		
9087637	Ethylbenzene	2018/08/02	92	60 - 140	87	70 - 130	<0.010	mg/kg	NC	40		
9087637	m & p-Xylene	2018/08/02	92	60 - 140	87	70 - 130	<0.040	mg/kg	NC	40		
9087637	Methyl-tert-butylether (MTBE)	2018/08/01					<0.10	mg/kg				
9087637	o-Xylene	2018/08/02	95	60 - 140	89	70 - 130	<0.040	mg/kg	NC	40		
9087637	Styrene	2018/08/02					<0.030	mg/kg	NC	40		
9087637	Toluene	2018/08/02	89	60 - 140	82	70 - 130	<0.020	mg/kg	0.57	40		
9087637	VH C6-C10	2018/08/02			74	70 - 130	<10	mg/kg	NC	40		
9087637	Xylenes (Total)	2018/08/02					<0.040	mg/kg	NC	40		
9103384	% sand by hydrometer	2018/08/16							4.4	35	102	90 - 110
9103384	% silt by hydrometer	2018/08/16							1.9	35		
9103384	Clay Content	2018/08/16							2.5	35		

QUALITY ASSURANCE REPORT(CONT'D)

STANTEC CONSULTING LTD Client Project #: 123221161 Sampler Initials: MD

Method Blank	RPD	QC Standard

				Matrix	Spike	Spiked	Blank	Method E	lank	RPI	י	QC Sta	ndard
Ī	QC Batch	Parameter	Date	% Recovery	QC Limits	% Recovery	QC Limits	Value	UNITS	Value (%)	QC Limits	% Recovery	QC Limits
	9103384	Gravel	2018/08/16							26	35		

Duplicate: Paired analysis of a separate portion of the same sample. Used to evaluate the variance in the measurement.

Matrix Spike: A sample to which a known amount of the analyte of interest has been added. Used to evaluate sample matrix interference.

QC Standard: A sample of known concentration prepared by an external agency under stringent conditions. Used as an independent check of method accuracy.

Spiked Blank: A blank matrix sample to which a known amount of the analyte, usually from a second source, has been added. Used to evaluate method accuracy.

Method Blank: A blank matrix containing all reagents used in the analytical procedure. Used to identify laboratory contamination.

Surrogate: A pure or isotopically labeled compound whose behavior mirrors the analytes of interest. Used to evaluate extraction efficiency.

NC (Duplicate RPD): The duplicate RPD was not calculated. The concentration in the sample and/or duplicate was too low to permit a reliable RPD calculation (absolute difference <= 2x RDL).

STANTEC CONSULTING LTD Client Project #: 123221161 Sampler Initials: MD

VALIDATION SIGNATURE PAGE

The analytical data and all QC contained in this report were reviewed and validated by the following individual(s).

Rob Reinert, B.Sc., Scientific Specialist

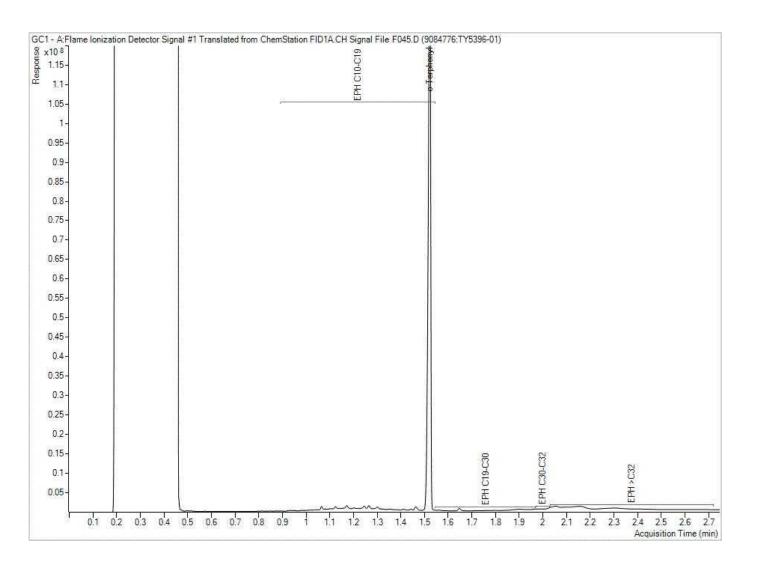
Thomas Pinchin, Junior Project Manager

Maxxam has procedures in place to guard against improper use of the electronic signature and have the required "signatories", as per section 5.10.2 of ISO/IEC 17025:2005(E), signing the reports. For Service Group specific validation please refer to the Validation Signature Page.

		INVOICE TO:				Report In	formation	e e						Project Info	ormation			Laboratory Us	se Only
any Name	#2792 STAN	TEC CONSULTING	LTD	Company I	lame						Quate	ation#	В	371770		T		Maxxam Job #	Bottle Order
ž Name	ACCOUNTS F			Contact No	8.6-446	ew Deane					P.O.				ALL MA	1571		B862770	10000000
6	Metrotower III BURNABY BO	Suite 500, 4730 Kin	igsway	Address	-						Proje		1	2322116	1	-		Chain Of Custody Record	560386 Project Mana
	(604) 436-301		(604) 436-3752	Phone	-		-	Fax			Proje	ct Name	7					Little Hill Hill Hill Hill Hill	
	SAPinvoices@			Email	matth	ew.deane@sta					5.70	pled By	_	MD				C#560386-05-01	Nahed Ame
ulatory Cri	toria			Spe	cial Instructions	iii .	_		_			Analysis Re	quested					Turnaround Time (TAT) F	
Sample	N. State of the last of the la	nd drinkling water sample: must be kept cool (< 10° Sample (Location)	C) from time of sampling	The state of the s			Regulated Drinking Water ? (Y/N) Metals Field Filtered ? (Y/N)	ПЕРН/НЕРН/РАН	Dissolved Metals (with Hg)	ВТЕХ/УРН	Nutrients (TP, NH4, TKN)	Major Ions (Chloride, Fluoride, Nitrate, Orthophosphate, Sulphate)	Carbon (DOC)	& HOW			(will be ap) Standard Please not days - con Job Specifi Date Requir	Standard) TAT pland if Plush TAT is not apecified) TAT = 5-7 Working days for most fests. The Standard TAT for certain fests such an text such an text such an text such Project Manager for details. The TAT (if applies to entire submissioned: The Tatlor Number Comme	n) e Required: (cell lee for #)
Sample	Darcode Laber	100		11/	Time Sampl	SOIL								X			/		**************************************
		MW18-35		18/07/26			+	\vdash	-				- 1	1			- (RECEIVED IN WH	ITEHORSE
			SAOZ					-	-			_		X				St. In	QQ \$85
			SA03											X			1	BY: OUCL	
			SAOY				П							X			1	2018 -0	7-21
			SAOS	_		-	\forall	\vdash	_					./			2	9	10 10/
			THOS				\vdash	-			-	-	-	X			_	TEMP:	1018
			SA06							S:				X			2		
			SAOT											X			1		
			SANS					X		X							3		
			5A09				\Box							X			1		
		1	3A10	V		1	\forall	×				\vdash		400			3		
	QUISHED,BY: (Signa	ture/Print)	Date:(YY/	MM/DO) Tie	ne	RECE	VED BY:	Signature/	Print)	/	Dat	e: (YY/MM/D	0)	Time	# jars used and	1	9	Lab Use Only	
RELING	- 1115	DOANN	18/07/		teli ed	LULIED		TACK				8107		04-05	not submitted	Time Ser	nsitive Ten	nperature (°C) on Receipt Cus	Yes No

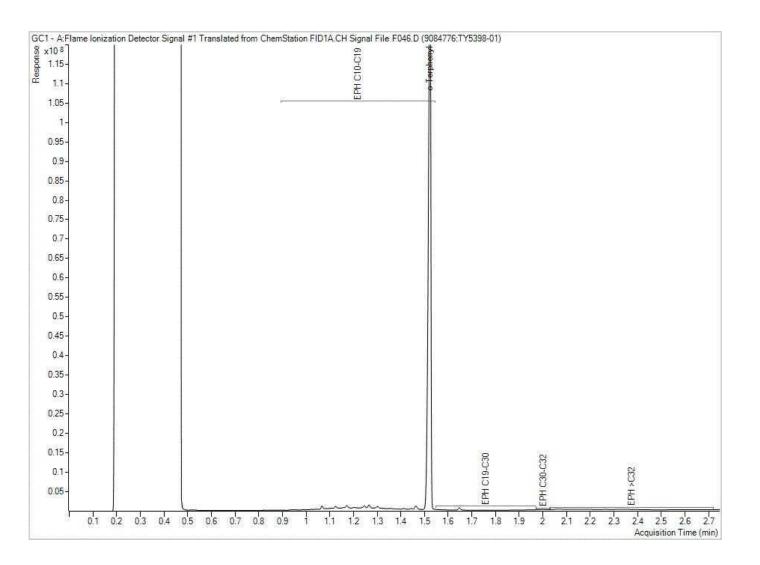
190

Maxxam Analytics International Corporation o/a Maxxam Analytics

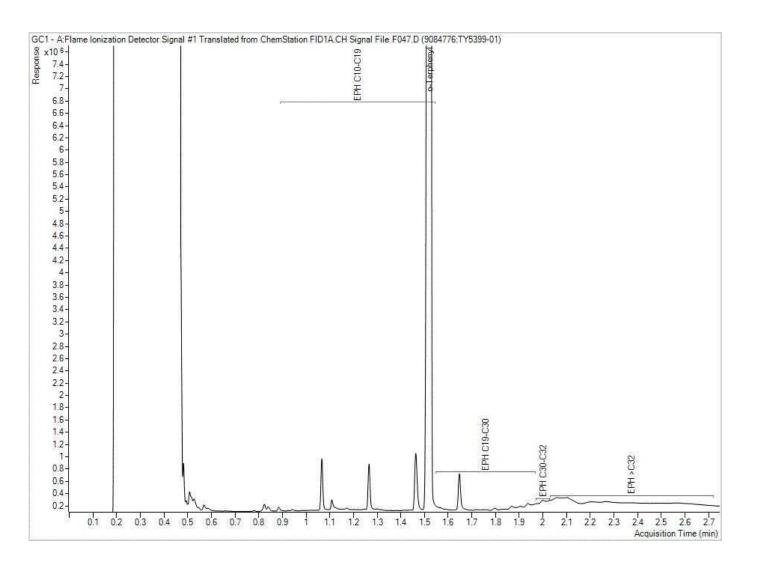

	Xan				100000000000000000000000000000000000000	75 Toll-tree:800-	9.2701174EA	AN ADDRESS OF S	11.				_				_		PageZe	
		INVOICE TO:	_			Report Inf	ormation	is		_	-			Project Int	formation		_	Laboratory U:	Bottle Order #:	
and any and	#2792 STAN ACCOUNTS F	ITEC CONSULTING LT	ID	Company Na	1.5 - 11 h	Doono		_	-	_	1000	otation#	- 3	B71770	_		_	THE STATE OF THE PARTY OF THE P	Bottle Order #:	
DESIGNATION		Suite 500, 4730 Kings	wav	Contact Nam Address	e wattriew	Deane		_		_	P.0		7	12322116	1	_	-			
ani-one	BURNABY BO			Autress							1000	ject # ject Name						Chain Of Custody Record	560386 Project Manage	
	(604) 436-301	4 Fax (6	04) 436-3752	Phone				Fax:			Site								Nahed Amer	
nail	SAPinvoices@	Stantec.com		Email	- Control of the Cont	deane@star	tec.cor	n			San	ripled By		MD				C#560386-06-01	SAME DE SERVICE	
Regulatory Criter	ria			Speci	al Instructions		~	-				Analysis R	lequested	1				Turnaround Time (TAT) I Please provide advance notice for	C. W. T. L. T.	
16	Ŧ				11		ated Drinking Water ? (Y/N)		Metals (with Hg)		Nutrients (TP, NH4, TKN)	Major Ions (Chloride, Fluoride, Nitrate, Orthophosphate, Sulphate)	(၁၀	A			(will be ay Standard Please no days - co	(Standard) TAT pplied if Rush TAT is not specified) If TAT = 5-7 Working days for most trests ote. Standard TAT for certain tests such as intact your Project Manager for details. If to Rush TAT (if applies to entire submission	BOD and Dioxins/Furans an	
	Carrier Control of the Control	id drinking water samples - p	rom time of sampling	until delivery to max	194541112501551111	WALK	3 8	PH/HE	Dissolved Metals	втехлен	utrients (ajor lons itrate, rthophos	Carbon (DOC)	Hoc			Rush Confi	imation Number	(cell leb for #)	
Sample B	Barcode Label	Sample (Location) Idea		Date Sampled/	Time Sampled	Matrix	Regi	13	Δ.	m	z	2ZO	0				# of Bottles	RECEIVED IN WH		
		MW18-35	SALL	8/07/16		Spic								X			(O 085R	
š		MW18-35	SAIZ	1										X			(BY: OUTOTY	0(0000)	
		BH 18-46	SAOI											X			(2018 -0	7- 11	
			SAOZ											X			(TEMP: 9 /	10 18	
			SAO3											X			- (
		QC18-0	SAOH											X			l			
		QC18-0	2	V		V		X		X							3			
	7				46															
BELLIOU	SHED BY: (Signa		Date: PYY/N					Signature/P	rint)			ate: (YY/MM/		Time	# jars used and not submitted		2000	Lab Use Only		
JAK.	M.	DOANE	18/07/	16 180	o ll	u Hebro) U	tor		_	20	1810713	38	09.05	2	Time Ser	Te	imperature (10) on Recept	Yes No	

190

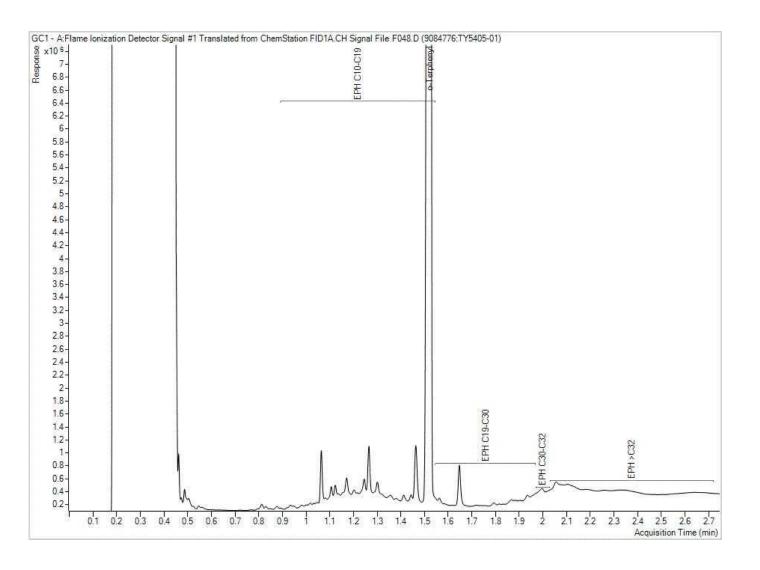
Maxxam Analytics International Corporation o/a Maxxam Analytics


STANTEC CONSULTING LTD Client Project #: 123221161 Client ID: MW18-35 SA08

EPH in Soil by GC/FID Chromatogram


STANTEC CONSULTING LTD Client Project #: 123221161 Client ID: MW18-35 SA10

EPH in Soil by GC/FID Chromatogram


STANTEC CONSULTING LTD Client Project #: 123221161 Client ID: MW18-35 SA11

EPH in Soil by GC/FID Chromatogram

STANTEC CONSULTING LTD Client Project #: 123221161 Client ID: QC18-02

EPH in Soil by GC/FID Chromatogram

Your Project #: 123221161

Your C.O.C. #: 560386-05-01, 560386-06-01

Attention: Matthew Deane

STANTEC CONSULTING LTD Metrotower III Suite 500, 4730 Kingsway BURNABY, BC CANADA V5H 4M1

Report Date: 2018/09/04

Report #: R2613508 Version: 4 - Revision

CERTIFICATE OF ANALYSIS – REVISED REPORT

MAXXAM JOB #: B862770 Received: 2018/07/27, 08:50

Sample Matrix: Soil # Samples Received: 5

		Date	Date		
Analyses	Quantity	Extracted	Analyzed	Laboratory Method	Analytical Method
BTEX/MTBE LH VH F1 in Soil - Field Pres. (2)	2	N/A	2018/07/31	BBY8SOP-00010/11/12	BCMOE BCLM Jul 2017
BTEX/MTBE LH VH F1 in Soil - Field Pres. (2)	1	N/A	2018/08/01	BBY8SOP-00010/11/12	BCMOE BCLM Jul 2017
Elements by ICPMS (total)	1	2018/08/27	2018/08/27	BBY7SOP-00004 / BBY7SOP-00001	EPA 6020b R2 m
Moisture	3	2018/07/28	2018/07/28	BBY8SOP-00017	BCMOE BCLM Dec2000 m
Moisture	1	2018/07/30	2018/07/31	BBY8SOP-00017	BCMOE BCLM Dec2000 m
PAH in Soil by GC/MS (SIM)	3	2018/07/28	2018/07/31	BBY8SOP-00022	BCMOE BCLM Jul2017m
PAH in Soil by GC/MS (SIM)	1	2018/07/30	2018/07/31	BBY8SOP-00022	BCMOE BCLM Jul2017m
Total PAH and B(a)P Calculation (3)	4	N/A	2018/07/31	BBY WI-00033	Auto Calc
pH (2:1 DI Water Extract)	1	2018/08/27	2018/08/27	BBY6SOP-00028	BCMOE BCLM Mar2005 m
EPH less PAH in Soil By GC/FID (4)	4	N/A	2018/07/31	BBY WI-00033	Auto Calc
EPH in Soil by GC/FID	3	2018/07/28	2018/07/31	BBY8SOP-00029	BCMOE BCLM Jul 2016
EPH in Soil by GC/FID	1	2018/07/30	2018/07/31	BBY8SOP-00029	BCMOE BCLM Jul 2016
Texture by Hydrometer, incl Gravel (Wet)	1	N/A	2018/08/16	BBY6SOP-00051	Carter 2nd ed 55.3
Volatile HC-BTEX for Soil (5)	2	N/A	2018/07/31	BBY WI-00033	Auto Calc
Volatile HC-BTEX for Soil (5)	1	N/A	2018/08/02	BBY WI-00033	Auto Calc
TOC Soil Subcontract (1)	1	N/A	2018/08/17		
TOC Soil Subcontract (1)	1	N/A	2018/09/04		

Remarks:

Maxxam Analytics' laboratories are accredited to ISO/IEC 17025:2005 for specific parameters on scopes of accreditation. Unless otherwise noted, procedures used by Maxxam are based upon recognized Provincial, Federal or US method compendia such as CCME, MDDELCC, EPA, APHA.

All work recorded herein has been done in accordance with procedures and practices ordinarily exercised by professionals in Maxxam's profession using accepted testing methodologies, quality assurance and quality control procedures (except where otherwise agreed by the client and Maxxam in writing). All data is in statistical control and has met quality control and method performance criteria unless otherwise noted. All method blanks are reported; unless indicated otherwise, associated sample data are not blank corrected. Where applicable, unless otherwise noted, Measurement Uncertainty has not been accounted for when stating conformity to the referenced standard.

Maxxam Analytics' liability is limited to the actual cost of the requested analyses, unless otherwise agreed in writing. There is no other warranty expressed or implied. Maxxam has been retained to provide analysis of samples provided by the Client using the testing methodology referenced in this report. Interpretation and use of test results are the sole responsibility of the Client and are not within the scope of services provided by Maxxam, unless otherwise

Your Project #: 123221161

Your C.O.C. #: 560386-05-01, 560386-06-01

Attention: Matthew Deane

STANTEC CONSULTING LTD Metrotower III Suite 500, 4730 Kingsway BURNABY, BC CANADA V5H 4M1

Report Date: 2018/09/04

Report #: R2613508 Version: 4 - Revision

CERTIFICATE OF ANALYSIS – REVISED REPORT

MAXXAM JOB #: B862770 Received: 2018/07/27, 08:50

agreed in writing. Maxxam is not responsible for the accuracy or any data impacts, that result from the information provided by the customer or their agent.

Solid sample results, except biota, are based on dry weight unless otherwise indicated. Organic analyses are not recovery corrected except for isotope dilution methods.

Results relate to samples tested. When sampling is not conducted by Maxxam, results relate to the supplied samples tested.

This Certificate shall not be reproduced except in full, without the written approval of the laboratory.

Reference Method suffix "m" indicates test methods incorporate validated modifications from specific reference methods to improve performance.

- * RPDs calculated using raw data. The rounding of final results may result in the apparent difference.
- (1) This test was performed by Maxxam Ontario (From Burnaby)
- (2) The extraction date for VOC, BTEX, VH, or F1 samples that are field preserved with methanol equals the date sampled, unless otherwise stated.
- (3) Total PAHs in Soil include: Quinoline, Naphthalene, 1-Methylnaphthalene, 2-Methylnaphthalene, Acenaphthylene, Acenaphthene, Fluorene, Phenanthrene, Anthracene, Acridine, Fluoranthene, Pyrene, Benzo(a)anthracene, Chrysene, Benzo(b&j)fluoranthene, Benzo(k)fluoranthene, Benzo(a)pyrene, Indeno(1,2,3-cd)pyrene, Dibenz(a,h)anthracene, and Benzo(g,h,i)perylene.

Total PAHs in Sediment include: Naphthalene, 2-Methylnaphthalene, Acenaphthylene, Acenaphthene, Fluorene, Phenanthrene, Anthracene, Fluoranthene, Pyrene, Benzo(a)anthracene, Chrysene, Benzo(a)pyrene, and Dibenz(a,h)anthracene.

(4) LEPH = EPH (C10 to C19) - (Naphthalene + Phenanthrene)

HEPH = EPH (C19 to C32) - (Benzo(a)anthracene + Benzo(a)pyrene + Benzo(b)fluoranthene + Benzo(k)fluoranthene + Dibenz(a,h)anthracene + Indeno(1,2,3-cd)pyrene + Pyrene) (5) VPH = VH - (Benzene + Toluene + Ethylbenzene + m & p-Xylene + o-Xylene + Styrene)

Encryption Key

Please direct all questions regarding this Certificate of Analysis to your Project Manager.

Nahed Amer, Project Manager Email: NAmer@maxxam.ca Phone# (604) 734 7276

Maxxam has procedures in place to guard against improper use of the electronic signature and have the required "signatories", as per section 5.10.2 of ISO/IEC 17025:2005(E), signing the reports. For Service Group specific validation please refer to the Validation Signature Page.

STANTEC CONSULTING LTD Client Project #: 123221161 Sampler Initials: MD

Sampler Initials: MD

RESULTS OF CHEMICAL ANALYSES OF SOIL

Maxxam ID		TY5389	TY5396		TY5398		
Sampling Date		2018/07/26	2018/07/26		2018/07/26		
COC Number		560386-05-01	560386-05-01		560386-05-01		
	UNITS	MW18-35 SA01	MW18-35 SA08	QC Batch	MW18-35 SA10	RDL	QC Batch
Parameter							
Subcontract Parameter	N/A	ATTACHED	ATTACHED	9107498			
Physical Properties							
% sand by hydrometer	%				25	2.0	9103384
% silt by hydrometer	%				41	2.0	9103384
Clay Content	%				7.0	2.0	9103384
Gravel	%				27	2.0	9103384
RDL = Reportable Detection L	imit						

STANTEC CONSULTING LTD Client Project #: 123221161 Sampler Initials: MD

PHYSICAL TESTING (SOIL)

Maxxam ID		TY5396	TY5398		TY5399	TY5399		
Sampling Date		2018/07/26	2018/07/26		2018/07/26	2018/07/26		
COC Number		560386-05-01	560386-05-01		560386-06-01	560386-06-01		
	UNITS	MW18-35 SA08	MW18-35 SA10	QC Batch	MW18-35 SA11	MW18-35 SA11 Lab-Dup	RDL	QC Batch
Physical Properties								
,с.с орос								
Moisture	%	14	19	9082660	18	18	0.30	9084606

Maxxam ID		TY5405		
Sampling Date		2018/07/26		
COC Number		560386-06-01		
	UNITS	QC18-02	RDL	QC Batch
Physical Properties				
Moisture	%	19	0.30	9082660

STANTEC CONSULTING LTD
Client Project #: 123221161
Sampler Initials: MD

Sampler Initials: MD

CSR BTEX/VPH IN SOIL - FIELD PRESERVED (SOIL)

Maxxam ID		TY5396	TY5398		TY5405		
Sampling Date		2018/07/26	2018/07/26		2018/07/26		
COC Number		560386-05-01	560386-05-01		560386-06-01		
	UNITS	MW18-35 SA08	MW18-35 SA10	QC Batch	QC18-02	RDL	QC Batch
Calculated Parameters							
VPH (VH6 to 10 - BTEX)	mg/kg	<10	<10	9082615	<10	10	9082615
Volatiles							
Methyl-tert-butylether (MTBE)	mg/kg	<0.10	<0.10	9085249	<0.10	0.10	9087637
Benzene	mg/kg	<0.0050	<0.0050	9085249	0.036	0.0050	9087637
Toluene	mg/kg	<0.020	<0.020	9085249	0.049	0.020	9087637
Ethylbenzene	mg/kg	<0.010	<0.010	9085249	0.050	0.010	9087637
m & p-Xylene	mg/kg	<0.040	<0.040	9085249	0.047	0.040	9087637
o-Xylene	mg/kg	<0.040	<0.040	9085249	0.048	0.040	9087637
Styrene	mg/kg	<0.030	<0.030	9085249	<0.030	0.030	9087637
Xylenes (Total)	mg/kg	<0.040	<0.040	9085249	0.095	0.040	9087637
VH C6-C10	mg/kg	<10	<10	9085249	<10	10	9087637
Surrogate Recovery (%)							
1,4-Difluorobenzene (sur.)	%	106	105	9085249	105		9087637
4-Bromofluorobenzene (sur.)	%	101	101	9085249	102		9087637
D10-ETHYLBENZENE (sur.)	%	98	103	9085249	99		9087637
D4-1,2-Dichloroethane (sur.)	%	105	104	9085249	104		9087637
RDL = Reportable Detection Limi	t						

STANTEC CONSULTING LTD Client Project #: 123221161 Sampler Initials: MD

LEPH & HEPH WITH PAH FOR CSR IN SOIL (SOIL)

	1	1		1			ı		
Maxxam ID		TY5396	TY5398		TY5399		TY5405		
Sampling Date		2018/07/26	2018/07/26		2018/07/26		2018/07/26		
COC Number		560386-05-01	560386-05-01		560386-06-01		560386-06-01		
	UNITS	MW18-35 SA08	MW18-35 SA10	QC Batch	MW18-35 SA11	QC Batch	QC18-02	RDL	QC Batch
Calculated Parameters									
Low Molecular Weight PAH`s	mg/kg	<0.050	<0.050	9082612	<0.050	9083998	<0.050	0.050	9082612
High Molecular Weight PAH's	mg/kg	<0.050	<0.050	9082612	<0.050	9083998	<0.050	0.050	9082612
Total PAH	mg/kg	<0.050	<0.050	9082612	<0.050	9083998	<0.050	0.050	9082612
Polycyclic Aromatics				•					•
Naphthalene	mg/kg	<0.010	<0.010	9084780	<0.010	9084780	<0.010	0.010	9084780
1-Methylnaphthalene	mg/kg	<0.050	<0.050	9084780	<0.050	9084780	<0.050	0.050	9084780
2-Methylnaphthalene	mg/kg	<0.020	<0.020	9084780	<0.020	9084780	<0.020	0.020	9084780
Acenaphthylene	mg/kg	<0.0050	<0.0050	9084780	<0.0050	9084780	<0.0050	0.0050	9084780
Acenaphthene	mg/kg	<0.0050	<0.0050	9084780	<0.0050	9084780	<0.0050	0.0050	9084780
Fluorene	mg/kg	<0.020	<0.020	9084780	<0.020	9084780	<0.020	0.020	9084780
Phenanthrene	mg/kg	<0.010	<0.010	9084780	<0.010	9084780	<0.010	0.010	9084780
Anthracene	mg/kg	<0.0040	<0.0040	9084780	<0.0040	9084780	<0.0040	0.0040	9084780
Acridine	mg/kg	<0.050	<0.050	9084780	<0.050	9084780	<0.050	0.050	9084780
Fluoranthene	mg/kg	<0.020	<0.020	9084780	<0.020	9084780	<0.020	0.020	9084780
Pyrene	mg/kg	<0.020	<0.020	9084780	<0.020	9084780	<0.020	0.020	9084780
Benzo(a)anthracene	mg/kg	<0.020	<0.020	9084780	<0.020	9084780	<0.020	0.020	9084780
Chrysene	mg/kg	<0.020	<0.020	9084780	<0.020	9084780	<0.020	0.020	9084780
Benzo(b&j)fluoranthene	mg/kg	<0.020	<0.020	9084780	<0.020	9084780	<0.020	0.020	9084780
Benzo(b)fluoranthene	mg/kg	<0.020	<0.020	9084780	<0.020	9084780	<0.020	0.020	9084780
Benzo(k)fluoranthene	mg/kg	<0.020	<0.020	9084780	<0.020	9084780	<0.020	0.020	9084780
Benzo(a)pyrene	mg/kg	<0.020	<0.020	9084780	<0.020	9084780	<0.020	0.020	9084780
Indeno(1,2,3-cd)pyrene	mg/kg	<0.020	<0.020	9084780	<0.020	9084780	<0.020	0.020	9084780
Dibenz(a,h)anthracene	mg/kg	<0.020	<0.020	9084780	<0.020	9084780	<0.020	0.020	9084780
Benzo(g,h,i)perylene	mg/kg	<0.050	<0.050	9084780	<0.050	9084780	<0.050	0.050	9084780
Calculated Parameters									
LEPH (C10-C19 less PAH)	mg/kg	<100	<100	9082613	<100	9084002	<100	100	9082613
HEPH (C19-C32 less PAH)	mg/kg	<100	<100	9082613	<100	9084002	<100	100	9082613
Hydrocarbons									
EPH (C10-C19)	mg/kg	<100	<100	9084776	<100	9084776	<100	100	9084776
EPH (C19-C32)	mg/kg	<100	<100	9084776	<100	9084776	<100	100	9084776
Surrogate Recovery (%)									
D10-ANTHRACENE (sur.)	%	67	66	9084780	72	9084780	70		9084780
D8-ACENAPHTHYLENE (sur.)	%	72	71	9084780	71	9084780	74		9084780
RDL = Reportable Detection Lin	nit								

STANTEC CONSULTING LTD Client Project #: 123221161

Sampler Initials: MD

LEPH & HEPH WITH PAH FOR CSR IN SOIL (SOIL)

Maxxam ID		TY5396	TY5398		TY5399		TY5405		
Sampling Date		2018/07/26	2018/07/26		2018/07/26		2018/07/26		
COC Number		560386-05-01	560386-05-01		560386-06-01		560386-06-01		
	UNITS	MW18-35 SA08	MW18-35 SA10	QC Batch	MW18-35 SA11	QC Batch	QC18-02	RDL	QC Batch
D8-NAPHTHALENE (sur.)	%	70	69	9084780	70	9084780	70		9084780
TERPHENYL-D14 (sur.)	0/			0004700	7.4	0004700	7-		0004700
TERPHENTL-D14 (Sul.)	%	74	73	9084780	74	9084780	75		9084780
O-TERPHENYL (sur.)	%	87	73 88	9084780	86	9084780	75 84		9084780

STANTEC CONSULTING LTD Client Project #: 123221161 Sampler Initials: MD

CSR/CCME METALS IN SOIL WITH HG (SOIL)

Maxxam ID		TY5389		
Sampling Date		2018/07/26		
COC Number		560386-05-01		
	UNITS	MW18-35 SA01	RDL	QC Batch
Physical Properties				
Soluble (2:1) pH	рН	8.52	N/A	9118359
Total Metals by ICPMS				
Total Aluminum (Al)	mg/kg	13400	100	9118303
Total Antimony (Sb)	mg/kg	1.11	0.10	9118303
Total Arsenic (As)	mg/kg	9.46	0.50	9118303
Total Barium (Ba)	mg/kg	198	0.10	9118303
Total Beryllium (Be)	mg/kg	0.40	0.20	9118303
Total Bismuth (Bi)	mg/kg	0.16	0.10	9118303
Total Boron (B)	mg/kg	2.1	1.0	9118303
Total Cadmium (Cd)	mg/kg	0.820	0.050	9118303
Total Calcium (Ca)	mg/kg	28200	100	9118303
Total Chromium (Cr)	mg/kg	42.3	1.0	9118303
Total Cobalt (Co)	mg/kg	9.93	0.30	9118303
Total Copper (Cu)	mg/kg	29.9	0.50	9118303
Total Iron (Fe)	mg/kg	24300	100	9118303
Total Lead (Pb)	mg/kg	39.8	0.10	9118303
Total Lithium (Li)	mg/kg	10.6	5.0	9118303
Total Magnesium (Mg)	mg/kg	9420	100	9118303
Total Manganese (Mn)	mg/kg	454	0.20	9118303
Total Mercury (Hg)	mg/kg	<0.050	0.050	9118303
Total Molybdenum (Mo)	mg/kg	0.74	0.10	9118303
Total Nickel (Ni)	mg/kg	36.1	0.80	9118303
Total Phosphorus (P)	mg/kg	909	10	9118303
Total Potassium (K)	mg/kg	1320	100	9118303
Total Selenium (Se)	mg/kg	<0.50	0.50	9118303
Total Silver (Ag)	mg/kg	0.450	0.050	9118303
Total Sodium (Na)	mg/kg	355	100	9118303
Total Strontium (Sr)	mg/kg	78.6	0.10	9118303
Total Thallium (TI)	mg/kg	0.110	0.050	9118303
Total Tin (Sn)	mg/kg	0.51	0.10	9118303
Total Titanium (Ti)	mg/kg	889	1.0	9118303
Total Tungsten (W)	mg/kg	<0.50	0.50	9118303
RDL = Reportable Detection N/A = Not Applicable	Limit			

STANTEC CONSULTING LTD Client Project #: 123221161 Sampler Initials: MD

CSR/CCME METALS IN SOIL WITH HG (SOIL)

Maxxam ID		TY5389		
Sampling Date		2018/07/26		
COC Number		560386-05-01		
	UNITS	MW18-35 SA01	RDL	QC Batch
Total Uranium (U)	mg/kg	1.20	0.050	9118303
Total Vanadium (V)	mg/kg	49.6	2.0	9118303
Total Zinc (Zn)	mg/kg	86.9	1.0	9118303
Total Zirconium (Zr)	mg/kg	7.10	0.50	9118303
RDL = Reportable Detection	n Limit			

STANTEC CONSULTING LTD Client Project #: 123221161 Sampler Initials: MD

GENERAL COMMENTS

Version 3: Report reissued to include results for TOC and Grain Size on samples MW18-35 SA08 and MW18-35 SA10 as per request from Matthew Deane on 2018/08/10

Version 4: Report reissued to include results for metals and TOC on sample MW18-35 SA01 as per request from Matthew Deane on 2018/08/23 REG TAT

Sample analyzed past hold time. Analysis performed with client's consent.

Results relate only to the items tested.

QUALITY ASSURANCE REPORT

STANTEC CONSULTING LTD Client Project #: 123221161

			Matrix	Spike	Spiked	Blank	Method	Blank	RPD		QC Sta	andard
QC Batch	Parameter	Date	% Recovery	QC Limits	% Recovery	QC Limits	Value	UNITS	Value (%)	QC Limits	% Recovery	QC Limits
9084776	O-TERPHENYL (sur.)	2018/07/31	89	60 - 140	86	60 - 140	85	%				
9084780	D10-ANTHRACENE (sur.)	2018/07/31	71	50 - 140	72	50 - 140	76	%				
9084780	D8-ACENAPHTHYLENE (sur.)	2018/07/31	69	50 - 140	69	50 - 140	67	%				
9084780	D8-NAPHTHALENE (sur.)	2018/07/31	70	50 - 140	61	50 - 140	66	%				
9084780	TERPHENYL-D14 (sur.)	2018/07/31	74	50 - 140	72	50 - 140	76	%				
9085249	1,4-Difluorobenzene (sur.)	2018/07/31	101	70 - 130	103	70 - 130	105	%				
9085249	4-Bromofluorobenzene (sur.)	2018/07/31	101	70 - 130	101	70 - 130	100	%				
9085249	D10-ETHYLBENZENE (sur.)	2018/07/31	99	60 - 130	87	60 - 130	94	%				
9085249	D4-1,2-Dichloroethane (sur.)	2018/07/31	95	70 - 130	92	70 - 130	105	%				
9087637	1,4-Difluorobenzene (sur.)	2018/08/01	102	70 - 130	103	70 - 130	105	%				
9087637	4-Bromofluorobenzene (sur.)	2018/08/01	100	70 - 130	102	70 - 130	101	%				
9087637	D10-ETHYLBENZENE (sur.)	2018/08/01	103	60 - 130	84	60 - 130	87	%				
9087637	D4-1,2-Dichloroethane (sur.)	2018/08/01	96	70 - 130	94	70 - 130	105	%				
9082660	Moisture	2018/07/28					<0.30	%	6.5	20		
9084606	Moisture	2018/07/31					<0.30	%	1.7	20		
9084776	EPH (C10-C19)	2018/07/31	87	60 - 140	84	70 - 130	<100	mg/kg	NC	40		
9084776	EPH (C19-C32)	2018/07/31	90	60 - 140	88	70 - 130	<100	mg/kg	NC	40		
9084780	1-Methylnaphthalene	2018/07/31	70	50 - 140	72	50 - 140	<0.050	mg/kg	NC	50		
9084780	2-Methylnaphthalene	2018/07/31	66	50 - 140	68	50 - 140	<0.020	mg/kg	NC	50		
9084780	Acenaphthene	2018/07/31	68	50 - 140	71	50 - 140	<0.0050	mg/kg	NC	50		
9084780	Acenaphthylene	2018/07/31	67	50 - 140	70	50 - 140	<0.0050	mg/kg	NC	50		
9084780	Acridine	2018/07/31	98	50 - 140	100	N/A	<0.050	mg/kg				
9084780	Anthracene	2018/07/31	68	50 - 140	70	50 - 140	<0.0040	mg/kg	NC	50		
9084780	Benzo(a)anthracene	2018/07/31	63	50 - 140	64	50 - 140	<0.020	mg/kg	NC	50		
9084780	Benzo(a)pyrene	2018/07/31	63	50 - 140	65	50 - 140	<0.020	mg/kg	NC	50		
9084780	Benzo(b&j)fluoranthene	2018/07/31	69	50 - 140	65	50 - 140	<0.020	mg/kg	NC	50		
9084780	Benzo(b)fluoranthene	2018/07/31	73	50 - 140	65	50 - 140	<0.020	mg/kg	NC	50		
9084780	Benzo(g,h,i)perylene	2018/07/31	61	50 - 140	63	50 - 140	<0.050	mg/kg	NC	50		
9084780	Benzo(k)fluoranthene	2018/07/31	76	50 - 140	76	50 - 140	<0.020	mg/kg	NC	50		
9084780	Chrysene	2018/07/31	66	50 - 140	66	50 - 140	<0.020	mg/kg	NC	50		
9084780	Dibenz(a,h)anthracene	2018/07/31	62	50 - 140	64	50 - 140	<0.020	mg/kg	NC	50		

QUALITY ASSURANCE REPORT(CONT'D)

STANTEC CONSULTING LTD Client Project #: 123221161

			Matrix	Spike	Spiked	Blank	Method	Blank	RPI	D	QC Sta	ndard
QC Batch	Parameter	Date	% Recovery	QC Limits	% Recovery	QC Limits	Value	UNITS	Value (%)	QC Limits	% Recovery	QC Limits
9084780	Fluoranthene	2018/07/31	67	50 - 140	68	50 - 140	<0.020	mg/kg	NC	50		
9084780	Fluorene	2018/07/31	67	50 - 140	70	50 - 140	<0.020	mg/kg	NC	50		
9084780	Indeno(1,2,3-cd)pyrene	2018/07/31	62	50 - 140	64	50 - 140	<0.020	mg/kg	NC	50		
9084780	Naphthalene	2018/07/31	67	50 - 140	68	50 - 140	<0.010	mg/kg	NC	50		
9084780	Phenanthrene	2018/07/31	67	50 - 140	67	50 - 140	<0.010	mg/kg	NC	50		
9084780	Pyrene	2018/07/31	71	50 - 140	71	50 - 140	<0.020	mg/kg	NC	50		
9085249	Benzene	2018/07/31	100	60 - 140	88	70 - 130	<0.0050	mg/kg	NC	40		
9085249	Ethylbenzene	2018/07/31	99	60 - 140	93	70 - 130	<0.010	mg/kg	NC	40		
9085249	m & p-Xylene	2018/07/31	99	60 - 140	93	70 - 130	<0.040	mg/kg	NC	40		
9085249	Methyl-tert-butylether (MTBE)	2018/07/31					<0.10	mg/kg				
9085249	o-Xylene	2018/07/31	101	60 - 140	96	70 - 130	<0.040	mg/kg	NC	40		
9085249	Styrene	2018/07/31					<0.030	mg/kg	NC	40		
9085249	Toluene	2018/07/31	95	60 - 140	87	70 - 130	<0.020	mg/kg	NC	40		
9085249	VH C6-C10	2018/07/31			71	70 - 130	<10	mg/kg	NC	40		
9085249	Xylenes (Total)	2018/07/31					<0.040	mg/kg	NC	40		
9087637	Benzene	2018/08/02	94	60 - 140	82	70 - 130	<0.0050	mg/kg	NC	40		
9087637	Ethylbenzene	2018/08/02	92	60 - 140	87	70 - 130	<0.010	mg/kg	NC	40		
9087637	m & p-Xylene	2018/08/02	92	60 - 140	87	70 - 130	<0.040	mg/kg	NC	40		
9087637	Methyl-tert-butylether (MTBE)	2018/08/01					<0.10	mg/kg				
9087637	o-Xylene	2018/08/02	95	60 - 140	89	70 - 130	<0.040	mg/kg	NC	40		
9087637	Styrene	2018/08/02					<0.030	mg/kg	NC	40		
9087637	Toluene	2018/08/02	89	60 - 140	82	70 - 130	<0.020	mg/kg	0.57	40		
9087637	VH C6-C10	2018/08/02			74	70 - 130	<10	mg/kg	NC	40		
9087637	Xylenes (Total)	2018/08/02					<0.040	mg/kg	NC	40		
9103384	% sand by hydrometer	2018/08/16							4.4	35	102	90 - 110
9103384	% silt by hydrometer	2018/08/16							1.9	35		
9103384	Clay Content	2018/08/16							2.5	35		
9103384	Gravel	2018/08/16							26	35		
9118303	Total Aluminum (Al)	2018/08/27					<100	mg/kg	_		99	70 - 130
9118303	Total Antimony (Sb)	2018/08/27	98	75 - 125	102	75 - 125	<0.10	mg/kg			132 (1)	70 - 130
9118303	Total Arsenic (As)	2018/08/27	100	75 - 125	99	75 - 125	<0.50	mg/kg	5.8	30	100	70 - 130

QUALITY ASSURANCE REPORT(CONT'D)

STANTEC CONSULTING LTD Client Project #: 123221161

			Matrix Spike		Spiked Blank		Method Blank		RPD		QC Standard	
QC Batch	Parameter	Date	% Recovery	QC Limits	% Recovery	QC Limits	Value	UNITS	Value (%)	QC Limits	% Recovery	QC Limits
9118303	Total Barium (Ba)	2018/08/27	106	75 - 125	99	75 - 125	<0.10	mg/kg	0.55	40	110	70 - 130
9118303	Total Beryllium (Be)	2018/08/27	97	75 - 125	94	75 - 125	<0.20	mg/kg			103	70 - 130
9118303	Total Bismuth (Bi)	2018/08/27					<0.10	mg/kg				
9118303	Total Boron (B)	2018/08/27					<1.0	mg/kg				
9118303	Total Cadmium (Cd)	2018/08/27	98	75 - 125	99	75 - 125	<0.050	mg/kg	NC	30	101	70 - 130
9118303	Total Calcium (Ca)	2018/08/27					<100	mg/kg	3.3	30	107	70 - 130
9118303	Total Chromium (Cr)	2018/08/27	98	75 - 125	102	75 - 125	<1.0	mg/kg	10	30	107	70 - 130
9118303	Total Cobalt (Co)	2018/08/27	97	75 - 125	99	75 - 125	<0.30	mg/kg			104	70 - 130
9118303	Total Copper (Cu)	2018/08/27	96	75 - 125	99	75 - 125	<0.50	mg/kg	7.3	30	110	70 - 130
9118303	Total Iron (Fe)	2018/08/27					<100	mg/kg	9.3	30	110	70 - 130
9118303	Total Lead (Pb)	2018/08/27	101	75 - 125	103	75 - 125	<0.10	mg/kg	25	40	123	70 - 130
9118303	Total Lithium (Li)	2018/08/27	100	75 - 125	96	75 - 125	<5.0	mg/kg			101	70 - 130
9118303	Total Magnesium (Mg)	2018/08/27					<100	mg/kg	1.7	30	109	70 - 130
9118303	Total Manganese (Mn)	2018/08/27	NC	75 - 125	97	75 - 125	<0.20	mg/kg			106	70 - 130
9118303	Total Mercury (Hg)	2018/08/27	101	75 - 125	102	75 - 125	<0.050	mg/kg			100	70 - 130
9118303	Total Molybdenum (Mo)	2018/08/27	101	75 - 125	100	75 - 125	<0.10	mg/kg			112	70 - 130
9118303	Total Nickel (Ni)	2018/08/27	97	75 - 125	98	75 - 125	<0.80	mg/kg			113	70 - 130
9118303	Total Phosphorus (P)	2018/08/27					<10	mg/kg	1.8	30	106	70 - 130
9118303	Total Potassium (K)	2018/08/27					<100	mg/kg			92	70 - 130
9118303	Total Selenium (Se)	2018/08/27	102	75 - 125	103	75 - 125	<0.50	mg/kg				
9118303	Total Silver (Ag)	2018/08/27	101	75 - 125	103	75 - 125	<0.050	mg/kg	NC	40	128	70 - 130
9118303	Total Sodium (Na)	2018/08/27					<100	mg/kg			97	70 - 130
9118303	Total Strontium (Sr)	2018/08/27	105	75 - 125	97	75 - 125	<0.10	mg/kg			113	70 - 130
9118303	Total Thallium (TI)	2018/08/27	99	75 - 125	101	75 - 125	<0.050	mg/kg			88	70 - 130
9118303	Total Tin (Sn)	2018/08/27	103	75 - 125	104	75 - 125	<0.10	mg/kg	10	40	104	70 - 130
9118303	Total Titanium (Ti)	2018/08/27	NC	75 - 125	98	75 - 125	<1.0	mg/kg				
9118303	Total Tungsten (W)	2018/08/27					<0.50	mg/kg				
9118303	Total Uranium (U)	2018/08/27	103	75 - 125	102	75 - 125	<0.050	mg/kg			99	70 - 130
9118303	Total Vanadium (V)	2018/08/27	89	75 - 125	98	75 - 125	<2.0	mg/kg			108	70 - 130
9118303	Total Zinc (Zn)	2018/08/27	90	75 - 125	96	75 - 125	<1.0	mg/kg	6.8	30	106	70 - 130
9118303	Total Zirconium (Zr)	2018/08/27					<0.50	mg/kg				

QUALITY ASSURANCE REPORT(CONT'D)

STANTEC CONSULTING LTD Client Project #: 123221161

Sampler Initials: MD

			Matrix Spike		Spiked Blank		Method Blank		RPD		QC Standard	
QC Batch	Parameter	Date	% Recovery	QC Limits	% Recovery	QC Limits	Value	UNITS	Value (%)	QC Limits	% Recovery	QC Limits
9118359	Soluble (2:1) pH	2018/08/27			100	97 - 103			1.4	20		

Duplicate: Paired analysis of a separate portion of the same sample. Used to evaluate the variance in the measurement.

Matrix Spike: A sample to which a known amount of the analyte of interest has been added. Used to evaluate sample matrix interference.

QC Standard: A sample of known concentration prepared by an external agency under stringent conditions. Used as an independent check of method accuracy.

Spiked Blank: A blank matrix sample to which a known amount of the analyte, usually from a second source, has been added. Used to evaluate method accuracy.

Method Blank: A blank matrix containing all reagents used in the analytical procedure. Used to identify laboratory contamination.

Surrogate: A pure or isotopically labeled compound whose behavior mirrors the analytes of interest. Used to evaluate extraction efficiency.

NC (Matrix Spike): The recovery in the matrix spike was not calculated. The relative difference between the concentration in the parent sample and the spike amount was too small to permit a reliable recovery calculation (matrix spike concentration was less than the native sample concentration)

NC (Duplicate RPD): The duplicate RPD was not calculated. The concentration in the sample and/or duplicate was too low to permit a reliable RPD calculation (absolute difference <= 2x RDL).

(1) Reference Material exceeds acceptance criteria for Sb. 10% of analytes failure in multielement scan is allowed.

STANTEC CONSULTING LTD Client Project #: 123221161 Sampler Initials: MD

VALIDATION SIGNATURE PAGE

The analytical data and all QC contained in this report were reviewed and validated by the following individual(s).

Rob Reinert, B.Sc., Scientific Specialist

Thomas Pinchin, Junior Project Manager

Maxxam has procedures in place to guard against improper use of the electronic signature and have the required "signatories", as per section 5.10.2 of ISO/IEC 17025:2005(E), signing the reports. For Service Group specific validation please refer to the Validation Signature Page.

		INVOICE TO:					Report Inf	ormation	i.						Project Informat	ion		Laboratory I	Jse Only
peny Name	#2792 STAN	TEC CONSULTIN	GLTD	Com	any Name						Quat	Quotation#		B71770			Maxxam Job #		
ct Name	ACCOUNTS P			7,72-372		Natthew De	eane					P.O.						B862770	1 11 11 11 11 11 11 11 11 11 11 11 11 1
98	the same of the sa	Suite 500, 4730 K	ingsway	Addre	98 _							Proje	KI#	1	123221161			Chain Of Custody Record	560386 Project Manag
	(604) 436-301-		(604) 436-3752	Phon				-	Fax:	-		357 1385.57	sci Name	-	-			The state of the s	Project Manag
•	SAPinvoices@		(004) 100 0102	Emai		natthew.de	eane@sta					Site i	# pled By	-	MD			C#560386-05-01	Nahed Ame
egulatory Crit	oria				Special Instr	uctions							Analysis R	equested				Turnaround Time (TAT)	Required
į	Samples	must be kept coal (< 10	les - please use the Drin PC) from time of samplin	g until delivery	to mexxam of			Regulated Drinking Water 7 (Y/N) Metals Field Filtered 2 (Y/N)	EP	Dissolved Metals (with Hg)	ВТЕХЛРН	4	Major lons (Chloride, Fluoride, Nitrate, Orthophosphate, Sulphate)	Carbon (DOC)	MHOW		(will be Standar Please I days - o Job Spec Rush Con	firmation Number	ion) ime Required (call lab for #)
Sample	Barcode Label	Sample (Locatio	n) Identification	Date Sampl	d Time	Sampled	Matrix	E 2	2	-	a	Z	≥zo	0		+	# of Bottle	es Comm	ents
		MW18-35	SACI	18/02/	26		SOIL								X				
		1	SAOZ	10											X		/	RECEIVED IN W	HITEHOHSE
				-	_		\vdash	\vdash		1					./		1	BY: SUOT	10000
			SA03	_	_			\vdash	-	<u> </u>					X		- 1	0046	28 77
			SAOY												X		1	7018 -	U/- L I
			SAOS					П							V		2	9	1018
			9105	-	_		+	+				-		-			2	TEMP:	1018
			SAOL					Ш			51				X				
			SAOT												X		1		
					- 7				X		/						3		
			SAOX		_		\vdash	-	1	-	X	-			78 0				
			5A09												X		/		
		V	3A10	V			V		X		X						3		
	UISHED,BY: (Signat	ure/Print)	Date: (YY)	MM/DO)	Time	40.00	RECEI	VED BY: (Signature/	Print)	()	Dat	te: (YY/MM/I	00)	Time #j	ars used and		Lab Use Only	
* RELINO		0- /	18/07/		800	- 11	LHY		ACK			201	8107	123	04-05 "	ot submitted To	ne Sensitive T	emperature (°C) on Receipt C	istody Seal Intact on Coole

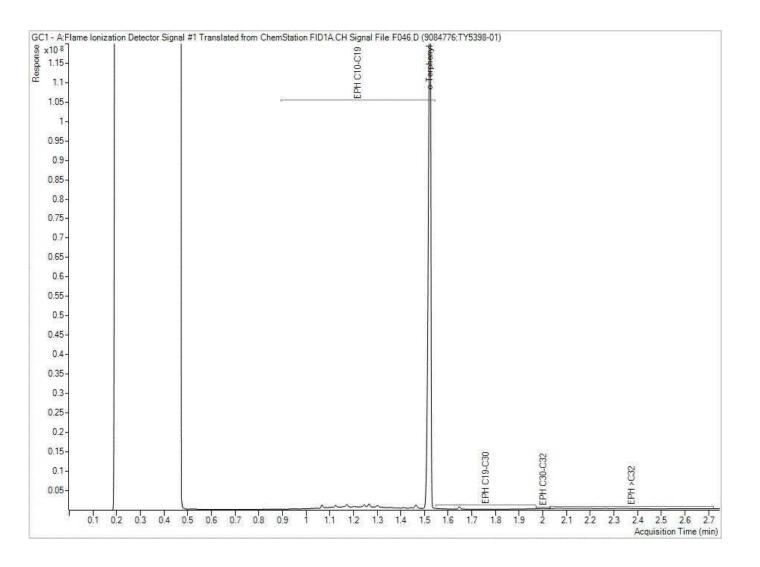
190

Maxxam Analytics International Corporation o/a Maxxam Analytics

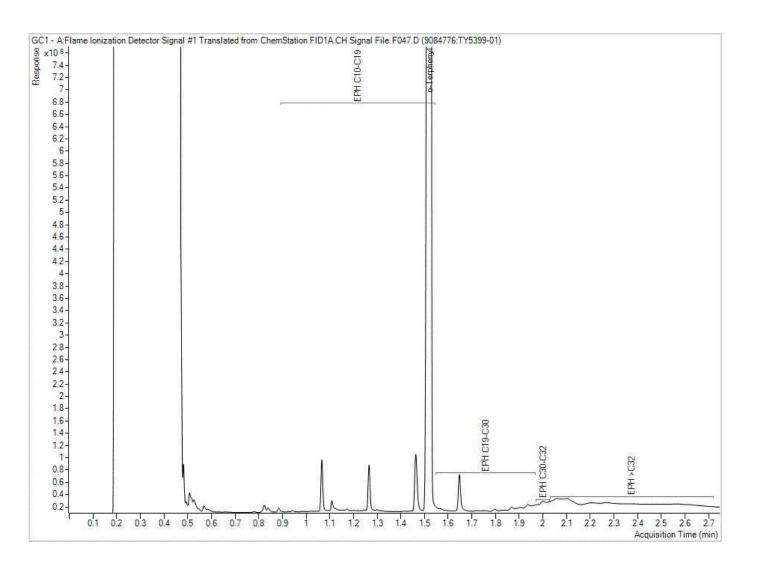

	Xan				100000000000000000000000000000000000000	75 Toll-tree:800-	9.2701174EA	AN ADDRESS OF S	11.				_				_		PageZe
		INVOICE TO:	_			Report Inf	ormation	is		_	-			Project Int	formation		_	Laboratory U:	Bottle Order #:
and and seeme -	#2792 STAN ACCOUNTS F	ITEC CONSULTING LT	ID	Company Na	1.5 - 11 h	Doono		_	-	_	1000	otation#	- 3	B71770	_		_	THE STATE OF THE PARTY OF THE P	And the second state of th
DESIGNATION		Suite 500, 4730 Kings	wav	Contact Nam Address	e wattriew	Deane					P.O. #		123221161			-	B862770	560386	
ani-one	BURNABY BO			Autress							1000	ject # ject Name						Chain Of Custody Record	Project Manage
	(604) 436-301	4 Fax (6	04) 436-3752	Phone				Fax:			Site								Nahed Amer
nail	SAPinvoices@	Stantec.com		Email	- Control of the Cont	deane@star	tec.cor	n			San	ripled By		MD				C#560386-06-01	SAME DE SERVICE
Regulatory Criter	ria			Speci	al Instructions		~	-				Analysis R	lequested	1				Turnaround Time (TAT) I Please provide advance notice for	C. W. T. L. T.
16	Ŧ				11		ated Drinking Water ? (Y/N)		Metals (with Hg)		Nutrients (TP, NH4, TKN)	Major Ions (Chloride, Fluoride, Nitrate, Orthophosphate, Sulphate)	(၁၀	A			(will be ay Standard Please no days - co	(Standard) TAT pplied if Rush TAT is not specified) If TAT = 5-7 Working days for most trests ote. Standard TAT for certain tests such as intact your Project Manager for details. If to Rush TAT (if applies to entire submission	BOD and Dioxins/Furans an
	Commence of the Commence of th	id drinking water samples - p	rom time of sampling	until delivery to max	194541112501551111	WALL	3 8	PH/HE	Dissolved Metals	втехлен	utrients (ajor lons itrate, rthophos	Carbon (DOC)	Hoc			Rush Confi	imation Number	(cell leb for #)
Sample B	Barcode Label	Sample (Location) Idea		Date Sampled/	Time Sampled	Matrix	Regi	13	Δ.	m	z	2ZO	0				# of Bottles	RECEIVED IN WH	
		MW18-35	SALL	8/07/16		Spic								X			(O 085R
š		MW18-35	SAIZ											X			(BY: OUTOTY	0(0000)
		BH 18-46	SAOI											X			(2018 -0	7- 11
			SAOZ											X			(TEMP: 9 /	10 18
			SAO3											X			- (
		QC18-0	SAOY											X			l		
		QC18-0	2	V		V		X		X							3		
	7				46														
BELLIOU	SHED BY: (Signa		Date: PYY/N					Signature/P	rint)			ate: (YY/MM/		Time	# jars used and not submitted		2000	Lab Use Only	
JAK.	M.	DOANE	18/07/	16 180	o ll	u Hebro) U	tor		_	20	1810713	38	09.05	2	Time Ser	Te	imperature (10) on Recept	Yes No

190

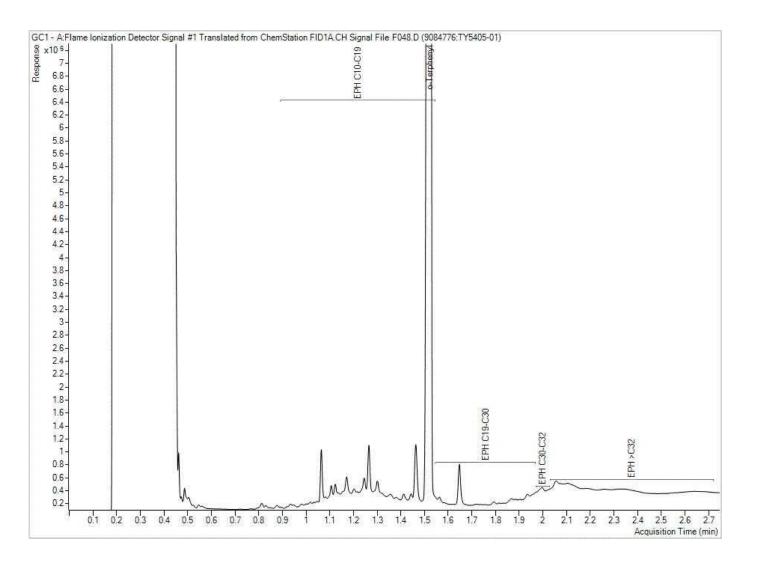
Maxxam Analytics International Corporation o/a Maxxam Analytics


STANTEC CONSULTING LTD Client Project #: 123221161 Client ID: MW18-35 SA08

EPH in Soil by GC/FID Chromatogram


STANTEC CONSULTING LTD Client Project #: 123221161 Client ID: MW18-35 SA10

EPH in Soil by GC/FID Chromatogram


STANTEC CONSULTING LTD Client Project #: 123221161 Client ID: MW18-35 SA11

EPH in Soil by GC/FID Chromatogram

STANTEC CONSULTING LTD Client Project #: 123221161 Client ID: QC18-02

EPH in Soil by GC/FID Chromatogram

Your P.O. #: 1232

Your Project #: 123221161

Site#: B862770

Your C.O.C. #: B862770-ONTV-01-01

Attention: Stantec Reporting

Maxxam Analytics Burnaby (Stantec) 4606 Canada Way Burnaby, BC CANADA V5G 1K5

Report Date: 2018/08/17

Report #: R5360810 Version: 1 - Final

CERTIFICATE OF ANALYSIS

MAXXAM JOB #: B8K5409 Received: 2018/08/13, 10:28

Sample Matrix: Soil # Samples Received: 1

		Date	Date		
Analyses	Quantity	Extracted	Analyzed	Laboratory Method	Reference
Total Organic Carbon in Soil	1	N/A	2018/08/1	6 CAM SOP-00468	BCMOE TOC Aug 2014

Remarks:

Maxxam Analytics' laboratories are accredited to ISO/IEC 17025:2005 for specific parameters on scopes of accreditation. Unless otherwise noted, procedures used by Maxxam are based upon recognized Provincial, Federal or US method compendia such as CCME, MDDELCC, EPA, APHA.

All work recorded herein has been done in accordance with procedures and practices ordinarily exercised by professionals in Maxxam's profession using accepted testing methodologies, quality assurance and quality control procedures (except where otherwise agreed by the client and Maxxam in writing). All data is in statistical control and has met quality control and method performance criteria unless otherwise noted. All method blanks are reported; unless indicated otherwise, associated sample data are not blank corrected. Where applicable, unless otherwise noted, Measurement Uncertainty has not been accounted for when stating conformity to the referenced standard.

Maxxam Analytics' liability is limited to the actual cost of the requested analyses, unless otherwise agreed in writing. There is no other warranty expressed or implied. Maxxam has been retained to provide analysis of samples provided by the Client using the testing methodology referenced in this report. Interpretation and use of test results are the sole responsibility of the Client and are not within the scope of services provided by Maxxam, unless otherwise agreed in writing. Maxxam is not responsible for the accuracy or any data impacts, that result from the information provided by the customer or their agent.

Solid sample results, except biota, are based on dry weight unless otherwise indicated. Organic analyses are not recovery corrected except for isotope dilution methods.

Results relate to samples tested. When sampling is not conducted by Maxxam, results relate to the supplied samples tested.

This Certificate shall not be reproduced except in full, without the written approval of the laboratory.

 $Reference\ Method\ suffix\ "m"\ indicates\ test\ methods\ incorporate\ validated\ modifications\ from\ specific\ reference\ methods\ to\ improve\ performance.$

* RPDs calculated using raw data. The rounding of final results may result in the apparent difference.

Your P.O. #: 1232

Your Project #: 123221161

Site#: B862770

Your C.O.C. #: B862770-ONTV-01-01

Attention: Stantec Reporting

Maxxam Analytics Burnaby (Stantec) 4606 Canada Way Burnaby, BC CANADA V5G 1K5

Report Date: 2018/08/17

Report #: R5360810 Version: 1 - Final

CERTIFICATE OF ANALYSIS

MAXXAM JOB #: B8K5409 Received: 2018/08/13, 10:28

Encryption Key

Maxxam has procedures in place to guard against improper use of the electronic signature and have the required "signatories", as per section 5.10.2 of ISO/IEC 17025:2005(E), signing the reports. For Service Group specific validation please refer to the Validation Signature Page.

Maxxam Analytics Client Project #: 123221161

Your P.O. #: 1232 Sampler Initials: MD

RESULTS OF ANALYSES OF SOIL

Maxxam ID		HLM657											
Sampling Date		2018/07/26											
COC Number		B862770-ONTV-01-01											
	UNITS	TY5396-MW18-35 SA08	RDL	QC Batch									
Total Organic Carbon	mg/kg	<500	500	5680650									
RDL = Reportable Detection Limit													
RDL = Reportable Detection	_imit	RDL = Reportable Detection Limit OC Batch = Quality Control Batch											

Maxxam Analytics Client Project #: 123221161

Your P.O. #: 1232 Sampler Initials: MD

TEST SUMMARY

Maxxam ID: HLM657

Sample ID: TY5396-MW18-35 SA08

Matrix: Soil

Collected: 2018/07/26

Shipped:

Received: 2018/08/13

Test Description	Instrumentation	Batch	Extracted	Date Analyzed	Analyst
Total Organic Carbon in Soil	COMB	5680650	N/A	2018/08/16	Charles Opoku-Ware

Maxxam Analytics Client Project #: 123221161 Your P.O. #: 1232

Sampler Initials: MD

GENERAL COMMENTS

Each te	emperature is the a	verage of up to the	hree cooler temperatures taken at receipt
	Package 1	17.7°C	
			_
Result	s relate only to the	items tested.	

QUALITY ASSURANCE REPORT

Maxxam Analytics

Client Project #: 123221161

Your P.O. #: 1232 Sampler Initials: MD

	Method B	lank	RPD)	QC Standard			
QC Batch	Parameter	Date	Value	UNITS	Value (%)	QC Limits	% Recovery	QC Limits
5680650	Total Organic Carbon	2018/08/16	<500	mg/kg	0.33	35	103	75 - 125

Duplicate: Paired analysis of a separate portion of the same sample. Used to evaluate the variance in the measurement.

QC Standard: A sample of known concentration prepared by an external agency under stringent conditions. Used as an independent check of method accuracy.

Method Blank: A blank matrix containing all reagents used in the analytical procedure. Used to identify laboratory contamination.

Maxxam Analytics Client Project #: 123221161 Your P.O. #: 1232

Your P.O. #: 1232 Sampler Initials: MD

VALIDATION SIGNATURE PAGE

The analytical data and all QC contained in this report were reviewed and validated by the following individual(s).

Maxxam has procedures in place to guard against improper use of the electronic signature and have the required "signatories", as per section 5.10.2 of ISO/IEC 17025:2005(E), signing the reports. For Service Group specific validation please refer to the Validation Signature Page.

Your Project #: 123221161

Site#: B862770 Your C.O.C. #: N/A

Attention: Stantec Reporting

Maxxam Analytics Burnaby (Stantec) 4606 Canada Way Burnaby, BC CANADA V5G 1K5

Report Date: 2018/09/04

Report #: R5385020 Version: 1 - Final

CERTIFICATE OF ANALYSIS

MAXXAM JOB #: B8M0223 Received: 2018/08/25, 14:15

Sample Matrix: Soil # Samples Received: 1

	Date	Date	
Analyses	Quantity Extract	ed Analyzed Laboratory Method	Reference
Total Organic Carbon in Soil	1 N/A	2018/08/31 CAM SOP-00468	BCMOE TOC Aug 2014

Remarks:

Maxxam Analytics' laboratories are accredited to ISO/IEC 17025:2005 for specific parameters on scopes of accreditation. Unless otherwise noted, procedures used by Maxxam are based upon recognized Provincial, Federal or US method compendia such as CCME, MDDELCC, EPA, APHA.

All work recorded herein has been done in accordance with procedures and practices ordinarily exercised by professionals in Maxxam's profession using accepted testing methodologies, quality assurance and quality control procedures (except where otherwise agreed by the client and Maxxam in writing). All data is in statistical control and has met quality control and method performance criteria unless otherwise noted. All method blanks are reported; unless indicated otherwise, associated sample data are not blank corrected. Where applicable, unless otherwise noted, Measurement Uncertainty has not been accounted for when stating conformity to the referenced standard.

Maxxam Analytics' liability is limited to the actual cost of the requested analyses, unless otherwise agreed in writing. There is no other warranty expressed or implied. Maxxam has been retained to provide analysis of samples provided by the Client using the testing methodology referenced in this report. Interpretation and use of test results are the sole responsibility of the Client and are not within the scope of services provided by Maxxam, unless otherwise agreed in writing. Maxxam is not responsible for the accuracy or any data impacts, that result from the information provided by the customer or their agent.

Solid sample results, except biota, are based on dry weight unless otherwise indicated. Organic analyses are not recovery corrected except for isotope dilution methods.

Results relate to samples tested. When sampling is not conducted by Maxxam, results relate to the supplied samples tested.

This Certificate shall not be reproduced except in full, without the written approval of the laboratory.

 $Reference\ Method\ suffix\ "m"\ indicates\ test\ methods\ incorporate\ validated\ modifications\ from\ specific\ reference\ methods\ to\ improve\ performance.$

* RPDs calculated using raw data. The rounding of final results may result in the apparent difference.

Your Project #: 123221161

Site#: B862770 Your C.O.C. #: N/A

Attention: Stantec Reporting

Maxxam Analytics Burnaby (Stantec) 4606 Canada Way Burnaby, BC CANADA V5G 1K5

Report Date: 2018/09/04

Report #: R5385020 Version: 1 - Final

CERTIFICATE OF ANALYSIS

MAXXAM JOB #: B8M0223 Received: 2018/08/25, 14:15

Encryption Key

Maxxam has procedures in place to guard against improper use of the electronic signature and have the required "signatories", as per section 5.10.2 of ISO/IEC 17025:2005(E), signing the reports. For Service Group specific validation please refer to the Validation Signature Page.

Maxxam Analytics Client Project #: 123221161

Sampler Initials: MD

RESULTS OF ANALYSES OF SOIL

Maxxam ID		HOP728							
Sampling Date		2018/07/26							
	UNITS	TY5389-MW18-35-SA01	RDL	QC Batch					
Total Organic Carbon	mg/kg	1800	500	5708076					
RDL = Reportable Detection Limit									
QC Batch = Quality Control (Batch								

Maxxam Analytics Client Project #: 123221161

Sampler Initials: MD

TEST SUMMARY

Maxxam ID: HOP728

Collected: 2018/07/26 Sample ID: TY5389-MW18-35-SA01 Shipped:

Matrix: Soil **Received:** 2018/08/25

Test Description	Instrumentation	Batch	Extracted	Date Analyzed	Analyst
Total Organic Carbon in Soil	СОМВ	5708076	N/A	2018/08/31	Charles Opoku-Ware

Maxxam Analytics Client Project #: 123221161 Sampler Initials: MD

GENERAL COMMENTS

mperature is the average of up to three co
Package 1 9.3°C
<u> </u>
relate only to the items tested.

QUALITY ASSURANCE REPORT

Maxxam Analytics

Client Project #: 123221161

Sampler Initials: MD

			Method B	lank	RPD)	QC Standard	
QC Batch	Parameter	Date	Value	UNITS	Value (%)	QC Limits	% Recovery	QC Limits
5708076	Total Organic Carbon	2018/08/31	<500	mg/kg	7.2	35	100	75 - 125

Duplicate: Paired analysis of a separate portion of the same sample. Used to evaluate the variance in the measurement.

QC Standard: A sample of known concentration prepared by an external agency under stringent conditions. Used as an independent check of method accuracy.

Method Blank: A blank matrix containing all reagents used in the analytical procedure. Used to identify laboratory contamination.

Maxxam Analytics Client Project #: 123221161 Sampler Initials: MD

VALIDATION SIGNATURE PAGE

The analytical data and all QC contained in this report were reviewed and validated by the following individual(s).

Cristina	Cause	
Cristina Carrie	re, Scientific Service Specialist	-

Maxxam has procedures in place to guard against improper use of the electronic signature and have the required "signatories", as per section 5.10.2 of ISO/IEC 17025:2005(E), signing the reports. For Service Group specific validation please refer to the Validation Signature Page.

Sent to: Maxxam Campobello 6740 Campobello Road Mississauga, ON, L5N 2L8 Tel: (905) 817-5700

MAXXAM INTERLAB CHAIN OF CUSTODY RECORD

Page 01 of (

COC # B862770-ONTV-01-01

REP	ORT INFORMATIO	ON .									AN	ALYSIS I	REQUEST	TED				Joh B	arctide Label
Cor	npany:	Maxxam											- 3						I
Add	lress:	4606 Canada Way, Burnaby, British	Columbia	a, V5G 1K5				ò											ug-18 14:15
Cor	tact Namè:	Nahed Amer																Nazeema	
Em	ail:	NAmer@maxxam.ca																TO THE REPORT OF THE PERSON NAMED IN COLUMN 1	
Pho	ine:			:											- 100			B8M0	223
Ma	xxam Project #:	B862770																WWG E	N. W. 0.77
Clie	nt Invoice To:	STANTEC CONSULTING LTD (2792)						ract							100			KVG E	NV-877
Clie	nt Report To:	STANTEC CONSULTING LTD (2792)		-	Incl. on	Report? Yes	/ No	Subcontract											
#	SAMPLE ID		MATRIX	DATE SAMPLED (YYYY/MM/DE	TIME SAMPLED (HH:MM)	SAMPLER INITIALS	# CONT.	TOC Soil Sub										ADDITIONAL S	AMPLE INFORMATION
1	TY5389-MW1	8-35 SA01	SOIL	2018/07/26		MD	1	х			+0							(P: O1)	
2																			
3																			
4																			
5													_						
6	-				_														
7					_										_				
8				24	_					+									
⊢	-		_		_				_	+					1			-	10
9				-	+				_	+		+	-		 		>		
10				loc.	GULATORY C	RITERIA			SPI	ECIAL INS	TRUCT	IONS						REQUIRED EDDs	TURNAROUND TIME
SH	E LOCATION:			NE.	GULATURT C	RITERIA			-	ase infor			nediate	ly if yo	u are no	t accre	dited	National Excel (N001)	
SIT	E #:								••	the requ Please re oceed pa	turn a	copy of t	his forn	with t	he repo	rt.**		BEC Excel Export (A043) Stantec Equis (N047)	Rush Required
PR	DJECT #:									Access he	21.11010	ATT I						Golder (Q001)	2018/08/21
	3221161)(#,1													Date Required
-		R/SERVICE ORDER, LINE ITEM:		-														2 4 7	Please inform us if rush charges will be incurred.
-	232						_				_	[_					
Cu	OLER ID: stody Seal Present stody Seal Intact pling Media Prese	- (°c) 12 8	7	Custody Seal Custody Seal Cooling Med	Intact	YES NO	-	mp: 'C)	1	1	91	Custo	dy Seal F dy Seal I dy Seal I g Media	ntact		NO	Temp:		RECEIVING LAB USE ONLY Maxxam Job #
	LINQUISHED BY: (DATE	: (YYYY/MM/DD	TIME: (I	н:мм)	REC	EIVED B	Y: (SIG	N & PRIN	Γ)				C	ATE: (Y	YYY/MN	(HH:MM)	
1		- PEPEE TOWN	n	18,05-0	4 1211	N	1. 1	.Van	Gun	~~	KAIT	LANV	AWOR	UNSU	EN	2018/0	8/2	5 14:15	Labelled By: By:
2					1		120												500000

Your Project #: 123221161

Attention: Matthew Deane

STANTEC CONSULTING LTD Metrotower III Suite 500, 4730 Kingsway BURNABY, BC CANADA V5H 4M1

Your C.O.C. #: 560386-07-01, 560386-08-01, 560386-09-01

Report Date: 2018/08/08

Report #: R2601289 Version: 1 - Final

CERTIFICATE OF ANALYSIS

MAXXAM JOB #: B863859 Received: 2018/07/30, 08:55

Sample Matrix: Soil # Samples Received: 3

		Date	Date		
Analyses	Quantity	Extracted	Analyzed	Laboratory Method	Analytical Method
BTEX/MTBE LH VH F1 in Soil - Field Pres. (1)	1	N/A	2018/08/02	BBY8SOP-00010/11/12	BCMOE BCLM Jul 2017
Moisture	2	2018/08/04	2018/08/07	BBY8SOP-00017	BCMOE BCLM Dec2000 m
Moisture	1	2018/08/07	2018/08/08	BBY8SOP-00017	BCMOE BCLM Dec2000 m
PAH in Soil by GC/MS (SIM)	1	2018/08/07	2018/08/08	BBY8SOP-00022	BCMOE BCLM Jul2017m
Total PAH and B(a)P Calculation (2)	1	N/A	2018/08/08	BBY WI-00033	Auto Calc
EPH less PAH in Soil By GC/FID (3)	1	N/A	2018/08/08	BBY WI-00033	Auto Calc
EPH in Soil by GC/FID	2	2018/08/04	2018/08/07	BBY8SOP-00029	BCMOE BCLM Jul 2016
EPH in Soil by GC/FID	1	2018/08/07	2018/08/08	BBY8SOP-00029	BCMOE BCLM Jul 2016
Volatile HC-BTEX for Soil (4)	1	N/A	2018/08/08	BBY WI-00033	Auto Calc

Remarks:

Maxxam Analytics' laboratories are accredited to ISO/IEC 17025:2005 for specific parameters on scopes of accreditation. Unless otherwise noted, procedures used by Maxxam are based upon recognized Provincial, Federal or US method compendia such as CCME, MDDELCC, EPA, APHA.

All work recorded herein has been done in accordance with procedures and practices ordinarily exercised by professionals in Maxxam's profession using accepted testing methodologies, quality assurance and quality control procedures (except where otherwise agreed by the client and Maxxam in writing). All data is in statistical control and has met quality control and method performance criteria unless otherwise noted. All method blanks are reported; unless indicated otherwise, associated sample data are not blank corrected. Where applicable, unless otherwise noted, Measurement Uncertainty has not been accounted for when stating conformity to the referenced standard.

Maxxam Analytics' liability is limited to the actual cost of the requested analyses, unless otherwise agreed in writing. There is no other warranty expressed or implied. Maxxam has been retained to provide analysis of samples provided by the Client using the testing methodology referenced in this report. Interpretation and use of test results are the sole responsibility of the Client and are not within the scope of services provided by Maxxam, unless otherwise agreed in writing. Maxxam is not responsible for the accuracy or any data impacts, that result from the information provided by the customer or their agent.

Solid sample results, except biota, are based on dry weight unless otherwise indicated. Organic analyses are not recovery corrected except for isotope dilution methods.

Results relate to samples tested. When sampling is not conducted by Maxxam, results relate to the supplied samples tested.

This Certificate shall not be reproduced except in full, without the written approval of the laboratory.

Your Project #: 123221161

Attention: Matthew Deane

STANTEC CONSULTING LTD Metrotower III Suite 500, 4730 Kingsway BURNABY, BC CANADA V5H 4M1

Your C.O.C. #: 560386-07-01, 560386-08-01, 560386-09-01

Report Date: 2018/08/08 Report #: R2601289 Version: 1 - Final

CERTIFICATE OF ANALYSIS

MAXXAM JOB #: B863859 Received: 2018/07/30, 08:55

Reference Method suffix "m" indicates test methods incorporate validated modifications from specific reference methods to improve performance.

- * RPDs calculated using raw data. The rounding of final results may result in the apparent difference.
- (1) The extraction date for VOC, BTEX, VH, or F1 samples that are field preserved with methanol equals the date sampled, unless otherwise stated.
- (2) Total PAHs in Soil include: Quinoline, Naphthalene, 1-Methylnaphthalene, 2-Methylnaphthalene, Acenaphthylene, Acenaphthene, Fluorene, Phenanthrene, Anthracene, Acridine, Fluoranthene, Pyrene, Benzo(a)anthracene, Chrysene, Benzo(b&j)fluoranthene, Benzo(k)fluoranthene, Benzo(a)pyrene, Indeno(1,2,3-cd)pyrene, Dibenz(a,h)anthracene, and Benzo(g,h,i)perylene.

Total PAHs in Sediment include: Naphthalene, 2-Methylnaphthalene, Acenaphthylene, Acenaphthene, Fluorene, Phenanthrene, Anthracene, Fluoranthene, Pyrene, Benzo(a)pyrene, and Dibenz(a,h)anthracene.

(3) LEPH = EPH (C10 to C19) - (Naphthalene + Phenanthrene)

HEPH = EPH (C19 to C32) - (Benzo(a)anthracene + Benzo(a)pyrene + Benzo(b)fluoranthene + Benzo(k)fluoranthene + Dibenz(a,h)anthracene + Indeno(1,2,3-cd)pyrene + Pyrene)
(4) VPH = VH - (Benzene + Toluene + Ethylbenzene + m & p-Xylene + o-Xylene + Styrene)

Encryption Key

Please direct all questions regarding this Certificate of Analysis to your Project Manager. Nahed Amer, Project Manager Email: NAmer@maxxam.ca

Email: NAmer@maxxam.ca

This report has been generated and distributed using a secure automated process.

Maxxam has procedures in place to guard against improper use of the electronic signature and have the required "signatories", as per section 5.10.2 of ISO/IEC 17025:2005(E), signing the reports. For Service Group specific validation please refer to the Validation Signature Page.

STANTEC CONSULTING LTD Client Project #: 123221161 Sampler Initials: MD

PHYSICAL TESTING (SOIL)

Maxxam ID		TZ2465	TZ2466		TZ2480		
Sampling Date		2018/07/27	2018/07/27		2018/07/27		
COC Number		560386-07-01	560386-07-01		560386-08-01		
	UNITS	MW18-37 SA06	MW18-37 SA07	QC Batch	MW18-40 SA03	RDL	QC Batch
Physical Properties							
Moisture	%	2.8	19	9091575	4.1	0.30	9092915
RDL = Reportable Detection L	imit						

STANTEC CONSULTING LTD Client Project #: 123221161 Sampler Initials: MD

TOTAL PETROLEUM HYDROCARBONS (SOIL)

Maxxam ID		TZ2465	TZ2466		
Sampling Date		2018/07/27	2018/07/27		
COC Number		560386-07-01	560386-07-01		
	UNITS	MW18-37 SA06	MW18-37 SA07	RDL	QC Batch
Hydrocarbons					
EPH (C10-C19)	mg/kg	<100	<100	100	9092936
EPH (C19-C32)	mg/kg	<100	<100	100	9092936
Surrogate Recovery (%)					
O-TERPHENYL (sur.)	%	69	69		9092936
RDL = Reportable Detection L	imit				

STANTEC CONSULTING LTD Client Project #: 123221161 Sampler Initials: MD

Sampler Initials: MD

CSR BTEX/VPH IN SOIL - FIELD PRESERVED (SOIL)

Maxxam ID		TZ2480		
Sampling Date		2018/07/27		
COC Number		560386-08-01		
	UNITS	MW18-40 SA03	RDL	QC Batch
Calculated Parameters				
VPH (VH6 to 10 - BTEX)	mg/kg	<10	10	9087418
Volatiles				
Methyl-tert-butylether (MTBE)	mg/kg	<0.10	0.10	9088932
Benzene	mg/kg	<0.0050	0.0050	9088932
Toluene	mg/kg	<0.020	0.020	9088932
Ethylbenzene	mg/kg	<0.010	0.010	9088932
m & p-Xylene	mg/kg	<0.040	0.040	9088932
o-Xylene	mg/kg	<0.040	0.040	9088932
Styrene	mg/kg	<0.030	0.030	9088932
Xylenes (Total)	mg/kg	<0.040	0.040	9088932
VH C6-C10	mg/kg	<10	10	9088932
Surrogate Recovery (%)				
1,4-Difluorobenzene (sur.)	%	98		9088932
4-Bromofluorobenzene (sur.)	%	105		9088932
D10-ETHYLBENZENE (sur.)	%	106		9088932
D4-1,2-Dichloroethane (sur.)	%	110		9088932
RDL = Reportable Detection Limi	t			

STANTEC CONSULTING LTD Client Project #: 123221161 Sampler Initials: MD

LEPH & HEPH WITH PAH FOR CSR IN SOIL (SOIL)

Maxxam ID		TZ2480		
Sampling Date		2018/07/27		
COC Number		560386-08-01		
	UNITS	MW18-40 SA03	RDL	QC Batch
Calculated Parameters				
Low Molecular Weight PAH's	mg/kg	<0.050	0.050	9087241
High Molecular Weight PAH`s	mg/kg	<0.050	0.050	9087241
Total PAH	mg/kg	<0.050	0.050	9087241
Polycyclic Aromatics			•	
Naphthalene	mg/kg	<0.010	0.010	9094240
1-Methylnaphthalene	mg/kg	<0.050	0.050	9094240
2-Methylnaphthalene	mg/kg	<0.020	0.020	9094240
Acenaphthylene	mg/kg	<0.0050	0.0050	9094240
Acenaphthene	mg/kg	<0.0050	0.0050	9094240
Fluorene	mg/kg	<0.020	0.020	9094240
Phenanthrene	mg/kg	<0.010	0.010	9094240
Anthracene	mg/kg	<0.0040	0.0040	9094240
Acridine	mg/kg	<0.050	0.050	9094240
Fluoranthene	mg/kg	<0.020	0.020	9094240
Pyrene	mg/kg	<0.020	0.020	9094240
Benzo(a)anthracene	mg/kg	<0.020	0.020	9094240
Chrysene	mg/kg	<0.020	0.020	9094240
Benzo(b&j)fluoranthene	mg/kg	<0.020	0.020	9094240
Benzo(b)fluoranthene	mg/kg	<0.020	0.020	9094240
Benzo(k)fluoranthene	mg/kg	<0.020	0.020	9094240
Benzo(a)pyrene	mg/kg	<0.020	0.020	9094240
Indeno(1,2,3-cd)pyrene	mg/kg	<0.020	0.020	9094240
Dibenz(a,h)anthracene	mg/kg	<0.020	0.020	9094240
Benzo(g,h,i)perylene	mg/kg	<0.050	0.050	9094240
Calculated Parameters	•			
LEPH (C10-C19 less PAH)	mg/kg	<100	100	9087254
HEPH (C19-C32 less PAH)	mg/kg	<100	100	9087254
Hydrocarbons				
EPH (C10-C19)	mg/kg	<100	100	9094235
EPH (C19-C32)	mg/kg	<100	100	9094235
Surrogate Recovery (%)				
D10-ANTHRACENE (sur.)	%	82		9094240
D8-ACENAPHTHYLENE (sur.)	%	78		9094240
RDL = Reportable Detection Lir	nit			

STANTEC CONSULTING LTD Client Project #: 123221161

Sampler Initials: MD

LEPH & HEPH WITH PAH FOR CSR IN SOIL (SOIL)

Maxxam ID		TZ2480		
Sampling Date		2018/07/27		
COC Number		560386-08-01		
	UNITS	MW18-40 SA03	RDL	QC Batch
D8-NAPHTHALENE (sur.)	%	85		9094240
DO IV. II III II (Sui.)	/0	0.5		3037270
TERPHENYL-D14 (sur.)	%	87		9094240
. ,				

STANTEC CONSULTING LTD Client Project #: 123221161 Sampler Initials: MD

GENERAL COMMENTS

Results relate only to the items tested.

QUALITY ASSURANCE REPORT

STANTEC CONSULTING LTD Client Project #: 123221161

Sampler Initials: MD

			Matrix	Spike	Spiked	Blank	Method E	Blank	RPI	D
QC Batch	Parameter	Date	% Recovery	QC Limits	% Recovery	QC Limits	Value	UNITS	Value (%)	QC Limits
9088932	1,4-Difluorobenzene (sur.)	2018/08/02	95	70 - 130	94	70 - 130	100	%		
9088932	4-Bromofluorobenzene (sur.)	2018/08/02	105	70 - 130	104	70 - 130	104	%		
9088932	D10-ETHYLBENZENE (sur.)	2018/08/02	110	60 - 130	93	60 - 130	107	%		
9088932	D4-1,2-Dichloroethane (sur.)	2018/08/02	101	70 - 130	101	70 - 130	114	%		
9092936	O-TERPHENYL (sur.)	2018/08/07	81	60 - 140	71	60 - 140	72	%		
9094235	O-TERPHENYL (sur.)	2018/08/08	88	60 - 140	87	60 - 140	91	%		
9094240	D10-ANTHRACENE (sur.)	2018/08/08	85	50 - 140	80	50 - 140	86	%		
9094240	D8-ACENAPHTHYLENE (sur.)	2018/08/08	83	50 - 140	80	50 - 140	82	%		
9094240	D8-NAPHTHALENE (sur.)	2018/08/08	92	50 - 140	82	50 - 140	93	%		
9094240	TERPHENYL-D14 (sur.)	2018/08/08	93	50 - 140	87	50 - 140	93	%		
9088932	Benzene	2018/08/02	98	60 - 140	95	70 - 130	<0.0050	mg/kg	3.8	40
9088932	Ethylbenzene	2018/08/02	96	60 - 140	94	70 - 130	<0.010	mg/kg	12	40
9088932	m & p-Xylene	2018/08/02	96	60 - 140	95	70 - 130	<0.040	mg/kg	12	40
9088932	Methyl-tert-butylether (MTBE)	2018/08/02	103	N/A			<0.10	mg/kg	NC	40
9088932	o-Xylene	2018/08/02	100	60 - 140	99	70 - 130	<0.040	mg/kg	NC	40
9088932	Styrene	2018/08/02	109	N/A			<0.030	mg/kg	NC	40
9088932	Toluene	2018/08/02	93	60 - 140	91	70 - 130	<0.020	mg/kg	2.4	40
9088932	VH C6-C10	2018/08/02			91	70 - 130	<10	mg/kg	NC	40
9088932	Xylenes (Total)	2018/08/02					<0.040	mg/kg	12	40
9091575	Moisture	2018/08/07					<0.30	%	2.7	20
9092915	Moisture	2018/08/08					<0.30	%	5.8	20
9092936	EPH (C10-C19)	2018/08/07	NC	60 - 140	77	70 - 130	<100	mg/kg	2.1	40
9092936	EPH (C19-C32)	2018/08/07	90	60 - 140	81	70 - 130	<100	mg/kg	1.8	40
9094235	EPH (C10-C19)	2018/08/08	101	60 - 140	99	70 - 130	<100	mg/kg	NC	40
9094235	EPH (C19-C32)	2018/08/08	103	60 - 140	102	70 - 130	<100	mg/kg	NC	40
9094240	1-Methylnaphthalene	2018/08/08	101	50 - 140	98	50 - 140	<0.050	mg/kg	NC	50
9094240	2-Methylnaphthalene	2018/08/08	98	50 - 140	95	50 - 140	<0.020	mg/kg	NC	50
9094240	Acenaphthene	2018/08/08	83	50 - 140	81	50 - 140	<0.0050	mg/kg	NC	50
9094240	Acenaphthylene	2018/08/08	81	50 - 140	79	50 - 140	<0.0050	mg/kg	NC	50
9094240	Acridine	2018/08/08	104	50 - 140	101	N/A	<0.050	mg/kg		
9094240	Anthracene	2018/08/08	84	50 - 140	77	50 - 140	<0.0040	mg/kg	NC	50

QUALITY ASSURANCE REPORT(CONT'D)

STANTEC CONSULTING LTD Client Project #: 123221161

Sampler Initials: MD

			Matrix	Spike	Spiked	Blank	Method E	Blank	RPI	ס
QC Batch	Parameter	Date	% Recovery	QC Limits	% Recovery	QC Limits	Value	UNITS	Value (%)	QC Limits
9094240	Benzo(a)anthracene	2018/08/08	78	50 - 140	75	50 - 140	<0.020	mg/kg	NC	50
9094240	Benzo(a)pyrene	2018/08/08	78	50 - 140	80	50 - 140	<0.020	mg/kg	NC	50
9094240	Benzo(b&j)fluoranthene	2018/08/08	79	50 - 140	80	50 - 140	<0.020	mg/kg	NC	50
9094240	Benzo(b)fluoranthene	2018/08/08	76	50 - 140	77	50 - 140	<0.020	mg/kg	NC	50
9094240	Benzo(g,h,i)perylene	2018/08/08	69	50 - 140	70	50 - 140	<0.050	mg/kg	NC	50
9094240	Benzo(k)fluoranthene	2018/08/08	73	50 - 140	91	50 - 140	<0.020	mg/kg	NC	50
9094240	Chrysene	2018/08/08	80	50 - 140	79	50 - 140	<0.020	mg/kg	NC	50
9094240	Dibenz(a,h)anthracene	2018/08/08	73	50 - 140	71	50 - 140	<0.020	mg/kg	NC	50
9094240	Fluoranthene	2018/08/08	87	50 - 140	81	50 - 140	<0.020	mg/kg	NC	50
9094240	Fluorene	2018/08/08	81	50 - 140	78	50 - 140	<0.020	mg/kg	NC	50
9094240	Indeno(1,2,3-cd)pyrene	2018/08/08	71	50 - 140	70	50 - 140	<0.020	mg/kg	NC	50
9094240	Naphthalene	2018/08/08	91	50 - 140	89	50 - 140	<0.010	mg/kg	NC	50
9094240	Phenanthrene	2018/08/08	81	50 - 140	79	50 - 140	<0.010	mg/kg	NC	50
9094240	Pyrene	2018/08/08	90	50 - 140	83	50 - 140	<0.020	mg/kg	NC	50

Duplicate: Paired analysis of a separate portion of the same sample. Used to evaluate the variance in the measurement.

Matrix Spike: A sample to which a known amount of the analyte of interest has been added. Used to evaluate sample matrix interference.

Spiked Blank: A blank matrix sample to which a known amount of the analyte, usually from a second source, has been added. Used to evaluate method accuracy.

Method Blank: A blank matrix containing all reagents used in the analytical procedure. Used to identify laboratory contamination.

Surrogate: A pure or isotopically labeled compound whose behavior mirrors the analytes of interest. Used to evaluate extraction efficiency.

NC (Matrix Spike): The recovery in the matrix spike was not calculated. The relative difference between the concentration in the parent sample and the spike amount was too small to permit a reliable recovery calculation (matrix spike concentration was less than the native sample concentration)

NC (Duplicate RPD): The duplicate RPD was not calculated. The concentration in the sample and/or duplicate was too low to permit a reliable RPD calculation (absolute difference <= 2x RDL).

STANTEC CONSULTING LTD Client Project #: 123221161 Sampler Initials: MD

VALIDATION SIGNATURE PAGE

The analytical data and all QC contained in this report were reviewed and validated by the following individual(s).

Andy Lu, Ph.D., P.Chem., Scientific Specialist

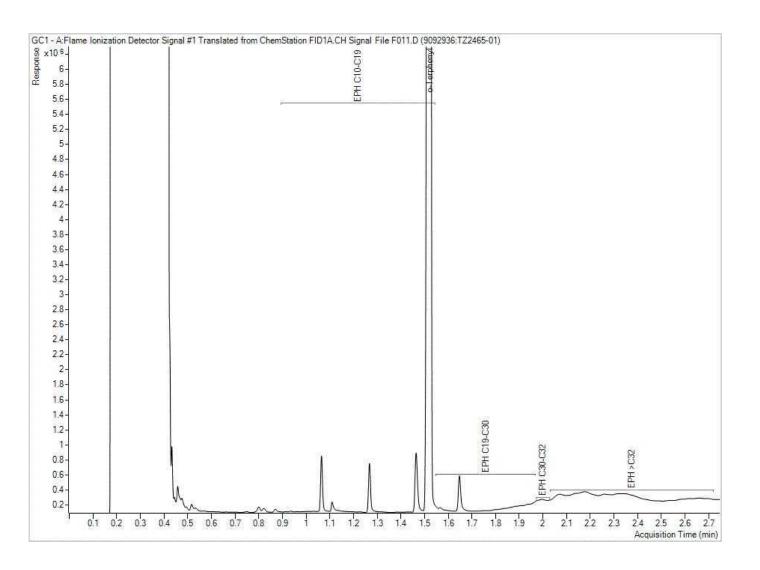
Maxxam has procedures in place to guard against improper use of the electronic signature and have the required "signatories", as per section 5.10.2 of ISO/IEC 17025:2005(E), signing the reports. For Service Group specific validation please refer to the Validation Signature Page.

		INVOICE TO:					Report in	formatio	in							Project in	formation				2-16-20 M. 1944	7.63	
mpany Name		ITEC CONSUL	TING LTD		Company Na	ne							Que	tation#		B71770				Bottle Ord			
ntact Name	ACCOUNTS	the state of the s			Contact Name	Matthew	Deane						P.0	*					— B863859 COC				··· FERRING
iress	BURNABY BO	Suite 500, 47	30 Kingsway	_	Address				-	-	_		Proje			12322116	31	-	Chain Of Custody Record			560386 Project Mar	
ne	(604) 436-301		Fax: (604) 436-3752		Phone									Project Name Site #			_					459,564	
il.	SAPinvoices@		-		Email	matthew.deane@stantec.com					a Chicago	Sampled By		ND					C#560386-07-01	10/11/1/1	Nahed An		
legulatory Cr	iteria				Speci	al Instructions			F				Transit I	Analysis R	-	1					Turnaround Tir		
П								Orinking Water ? (Y/N)	Metals Field Filtered 7 (Y / N)	LЕРН/НЕРН/РАН	Dissolved Metals (with Hg)	I	(TP, NH4, TKN)	Major Ions (Chloride, Fluoride, Nitrate, Orthophosphate, Sulphate)	(200	8			(v Si p di	will be appli tandard TA fease note sys - contac	Please provide advar undard) TAT ad if Rush TAT is not speci. T = 5-7 Working days for in Standard TAT for certain It of your Project Manager for Rush TAT (if applies to entir	fied) rost fests. rosts such as B details. e submission)	DOMESTIC STATE OF THE STATE OF
		ALE CONTROL SECURIOR SEC	samples - please use the Dri (< 10°C) from time of sampli			200724400000000000000000000000000000000		ulated Dri	S TE	불	olved	втехлирн	Nutrients (TP,	opho	Carbon (DOC)	3	10%		Phy	sh Confirmat	tion Number		(coeff lads for #)
Sample	Barcode Label	ANTHEORIE MARKET SA	ocation) Identification		Sampled	Time Sampled	Matrix	Regu	Meta	LEP	Diss	BTE	N Ltr	Majo Ntra Ort-	Cart	7	0		#0	f Battles		Comments	
		MWIS	-37 SAO(18/	27/27		SOIL									X			1	XI	RECEIVED	IN WHI	TEHORSE
		1	SAUZ		1		1									X				. 1	BY:_>C	yon	J@ 080
			SA03					П								X				1	2	018 -07-	- 30
			SACH													X				1	TEMP- C	1	9,10
			SAOS													X				1			
			SACKO									Ī					X			î			
			SAOT														X			1			
			5A08													X				1			
		1/	SAOG													X				1			
		V	SAIO		V		V			2.5						X				t			
RELIN	QUISHED BY: (Signa	ature/Print) M. Dorgo	Date: (Y)	-		1	RECE	C/U		ature/Print	1)		Ro	65747/3	(00)	Time 4'45	# jars not su	used and abspitted	ne Senspié	Temp	Lab Use erature (*C) en Receipt	Custoo	y See Intact on Coo

375

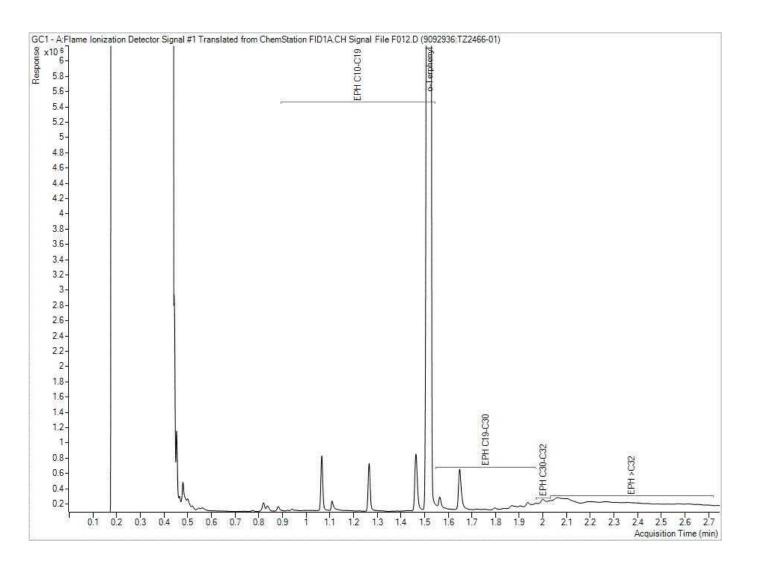
Maxxam Analytics International Corporation o/a Maxxam Analytics

INVOICE TO: Repo						Report in	nformation	Y.				Project Information					Page No. 10 State No. 10 Page 1			
npany Name	#2792 STANTEC CONSULTING LTD			Company Nam	Company Name							Quotation# B71770					Bottle Order			
act Name	ACCOUNTS		Contact Name							P.O.#		-	123221161							
oss	BURNABY BO	Suite 500, 4730 Kings	Address	Address									2322116	1	886:					
16.	(604) 436-301		- Change	Phone			Fax				Project Name					C#560396-08-01		Project Manager Nahed Amer		
	(604) 436-3014 Fax (604) 436-3752 SAPinvoices@Stantec.com			Email	matthew.	matthew.deane@stantec.com			Site # Sampled By		MD.									
Regulatory Criteria Email Mattri					Instructions							Analysis Re	equested				Turnaround Time (TAT) Required			
				計	ф -				Dissolved Metals (with Hg)		Nutrients (TP, NH4, TKN) Major lons (Chloride, Fluoride, Nitrate, Orthorhoenhate Suithhate)	(Critoride, Filoride, Nitrite, phate, Sulphate)	Ormophosphate, Suphate) Carbon (DOC)	600	cos	Please provide advance notice for rush projects Regular (Standard) TAT (will be applied if Rush TAT is not specified) Standard TAT = 5-7 Working days for most lests. Please note: Standard TAT for certain tests such as BCO and Dioxins/Furans a days - contact your Project Manager for details. Job Specific Rush TAT (if applies to entire summission) Date Required: Time Required:				
Note: For regulated drinking water samples - please use the Drinking Water Chain of Custody Form						Field Dr	발	Pax	втехлен	lons s,		20131100				Confirmation Number		((at for #)		
Samples must be kept cool (< 10°C) from time of sampling until delivery to maxi-					m	Regulat	PH	ssol		ajor trate		arbo				100000000		(AAD for W)		
Sample	Barcode Label	Sample (Location) Ide		/ /	Time Sampled	Matrix	8 3	13	ā	in	2 2	220	Ö			# of Bo	RECEIVE	Comments D IN WHITE	HODGE	
		MW18-37		18/07/27		SOIL	+					-		X	_	1	BY:	Lyona	0085	
		MW8-5+	SAIL			++	+	+	-			\rightarrow		X		- 1	(2018 -07- 3	0	
		MW18-40	Francis I			+	+			-		-			-	1	-	a a	-	
			SAOZ			+	\perp	-				_		×		- 1	TEMP:	919	10	
			SA03					X		X				83		-	5			
		1	SAOY											X		1				
			SA05											X		1				
			SAdo											×		1			- 1	
		. /	5A07											X		1			- 4	
		V	SAOS	V		0								X		1				
• RELIN	QUEST SEY: (Signa	ture/Print)	(S/07)	21 20ec	16	RECE	WED BY:	Signature	(Print)			1/67	13.1	79.4t	# jars used and not submitted	Time Sensitive	Lab Temperature (*C) on Receipt	Use Only Custody S	agi fintact on Cooler?	

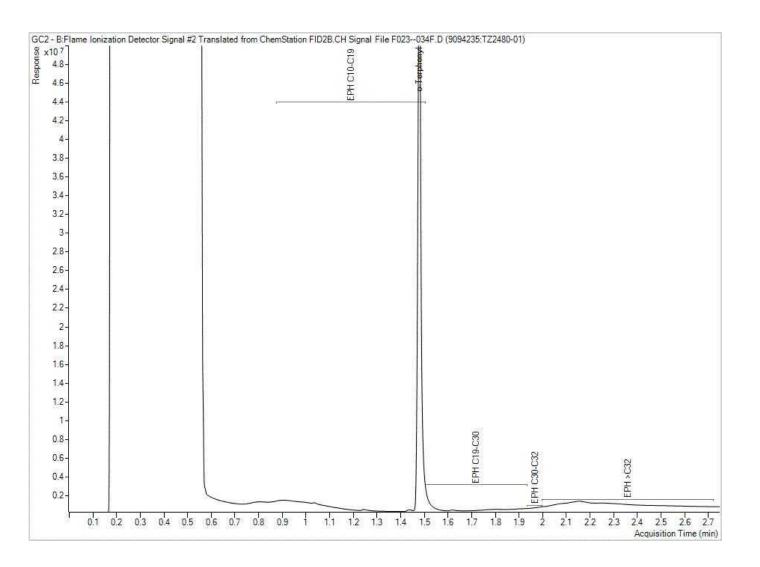

Mexxam Analytics International Corporation o/a Maxxam Analytics

INVOICE TO:				Report Information							Project Information								
ompany Name	The second secon	ITEC CONSULTING LTD	Company N	Company Name							tation#	1	B71770				Bottle Order #:		
ontact Name	ACCOUNTS	Contact Nan	Contact Name Matthew Deane						P.O.	P.O.#	-	123221161				B863859 COC			
idress	BURNABY BO	Suite 500, 4730 Kingsway	Address							100	Project # Project Name Site #		12322116	01	_	,	560386 Project Manage		
	(604) 436-301		Phone	-	Fax					1000					_	Chain or Custody Record		7	
nait	SAPinvoices@		Email	matthew.	matthew.deane@stantec.com				Sampled By		MD				C#560386-09-01		Nahed Amer		
Sec. Julian secu	Regulatory Criteria			Special Instructions							Analysis Requested						Turnaround Time (TAT) Required		
Note: For regulated drinking water samples - please use the Drinking \				Water Chain of Custody Form			ИЕРН/РАН	LEPH/HEPH/PAH Dissolved Metals (with Hg)	Н	Nutrients (TP, NH4, TKN) Major Ions (Chloride, Fluoride, Nitrate, Orthophosphate, Sulphate)	OSphare, Surprister				Regular (Standard) TAT (with projects Regular (Standard) TAT is not specified) Standard TAT = 5-7 Working days for most fests. Please note: Standard TAT for certain tests such as BOD and Dioxins/Furant days - control your Project Manager for cleasis. Job Specific Rush TAT (if applies to entire submission) Date Required: Time Required: Flush Confirmation Number				
Samples must be kept cool (< 10°C) from time of sampling until			-	delivery to maxxam			Regulated Orthking Water 7 (Y / N) Metals Faid Filtered 7 (Y / N) LEPH/HEPH/PAH Dissolved Metals (with Hg) BTEX/VPH				Nutrients (TP, Major Ions (CR Nitrate, Orthophospha		Kac)			(cut lee for it)			
Sample	Barcode Label	Sample (Location) Identification	Date Sampled	Time Sampled	Matrix	8 8	=	ä	<u>m</u>	ž	ΣZÖ	Ö	7			# of Bottles	Comments		
		GC18-03	8/02/27		SOIL								X			1	RECEIVED IN WHITE	HORSE	
		MW18-415A01	18/04/27		1	Ш							X			t	BY: Slycno	@ 0855	
j.		MW18-41 SACT	18/07/27		V			<u> </u>					×			1	2018 -07- 3	H	
			1-1																
																	TEMP: 9 / 9	110	
	744																		
		2															9		
RELING	UISHED BY: (Signat	ture/Print) Date; (Y	Y/MM/DD) Tim	1 6	RECEN	/ED BY: (Signatura	/Print)	1	Da	te: (YY/MM/	(00)	Time	# jars used and			Lab Use Only		
MMO. M. DIAGE 18/07/2			7/29 200	6 N	a law (run						2018707131 14:45 not submitted Tim			Time Sen	itive Ten	gerature (°C) on Receipt Custody	Seal Intact on Cooler?		

Maxxam Analytics International Corporation of Maxxam Analytics


Maxxam Job #: B863859 Report Date: 2018/08/08 Maxxam Sample: TZ2465 STANTEC CONSULTING LTD Client Project #: 123221161 Client ID: MW18-37 SA06

EPH in Soil by GC/FID Chromatogram


STANTEC CONSULTING LTD Client Project #: 123221161 Client ID: MW18-37 SA07

EPH in Soil by GC/FID Chromatogram

STANTEC CONSULTING LTD Client Project #: 123221161 Client ID: MW18-40 SA03

EPH in Soil by GC/FID Chromatogram

Your Project #: 123221161

Attention: Matthew Deane

STANTEC CONSULTING LTD Metrotower III Suite 500, 4730 Kingsway BURNABY, BC CANADA V5H 4M1

Your C.O.C. #: 560386-11-01, 560386-12-01, 560386-13-01, 560386-14-01, 560391-02-01

Report Date: 2018/08/29

Report #: R2611489 Version: 3 - Revision

CERTIFICATE OF ANALYSIS – REVISED REPORT

MAXXAM JOB #: B863863 Received: 2018/07/30, 08:55

Sample Matrix: Soil # Samples Received: 17

		Date	Date		
Analyses	Quantity	Extracted	Analyzed	Laboratory Method	Analytical Method
BTEX/MTBE LH VH F1 in Soil - Field Pres. (2)	5	N/A	2018/08/02	BBY8SOP-00010/11/12	BCMOE BCLM Jul 2017
Elements by ICPMS (total)	3	2018/08/27	2018/08/27	BBY7SOP-00004 / BBY7SOP-00001	EPA 6020b R2 m
Moisture	7	2018/08/04	2018/08/07	BBY8SOP-00017	BCMOE BCLM Dec2000 m
Moisture	1	2018/08/07	2018/08/08	BBY8SOP-00017	BCMOE BCLM Dec2000 m
Moisture	6	2018/08/10	2018/08/11	BBY8SOP-00017	BCMOE BCLM Dec2000 m
PAH in Soil by GC/MS (SIM)	3	2018/08/04	2018/08/07	BBY8SOP-00022	BCMOE BCLM Jul2017m
PAH in Soil by GC/MS (SIM)	5	2018/08/04	2018/08/08	BBY8SOP-00022	BCMOE BCLM Jul2017m
Total PAH and B(a)P Calculation (3)	8	N/A	2018/08/08	BBY WI-00033	Auto Calc
pH (2:1 DI Water Extract)	3	2018/08/27	2018/08/27	BBY6SOP-00028	BCMOE BCLM Mar2005 m
EPH less PAH in Soil By GC/FID (4)	8	N/A	2018/08/08	BBY WI-00033	Auto Calc
EPH in Soil by GC/FID	3	2018/08/04	2018/08/07	BBY8SOP-00029	BCMOE BCLM Jul 2016
EPH in Soil by GC/FID	5	2018/08/04	2018/08/08	BBY8SOP-00029	BCMOE BCLM Jul 2016
EPH in Soil by GC/FID	6	2018/08/11	2018/08/13	BBY8SOP-00029	BCMOE BCLM Jul 2016
Texture by Hydrometer, incl Gravel (Wet)	2	N/A	2018/08/16	BBY6SOP-00051	Carter 2nd ed 55.3
Volatile HC-BTEX for Soil (5)	5	N/A	2018/08/08	BBY WI-00033	Auto Calc
TOC Soil Subcontract (1)	2	N/A	2018/08/17		
TOC Soil Subcontract (1)	3	N/A	2018/08/29		

Remarks:

Maxxam Analytics' laboratories are accredited to ISO/IEC 17025:2005 for specific parameters on scopes of accreditation. Unless otherwise noted, procedures used by Maxxam are based upon recognized Provincial, Federal or US method compendia such as CCME, MDDELCC, EPA, APHA.

All work recorded herein has been done in accordance with procedures and practices ordinarily exercised by professionals in Maxxam's profession using accepted testing methodologies, quality assurance and quality control procedures (except where otherwise agreed by the client and Maxxam in writing). All data is in statistical control and has met quality control and method performance criteria unless otherwise noted. All method blanks are reported; unless indicated otherwise, associated sample data are not blank corrected. Where applicable, unless otherwise noted, Measurement Uncertainty has not been accounted for when stating conformity to the referenced standard.

Your Project #: 123221161

Attention: Matthew Deane

STANTEC CONSULTING LTD Metrotower III Suite 500, 4730 Kingsway BURNABY, BC CANADA V5H 4M1

Your C.O.C. #: 560386-11-01, 560386-12-01, 560386-13-01, 560386-14-01, 560391-02-01

Report Date: 2018/08/29

Report #: R2611489 Version: 3 - Revision

CERTIFICATE OF ANALYSIS – REVISED REPORT

MAXXAM JOB #: B863863 Received: 2018/07/30, 08:55

Maxxam Analytics' liability is limited to the actual cost of the requested analyses, unless otherwise agreed in writing. There is no other warranty expressed or implied. Maxxam has been retained to provide analysis of samples provided by the Client using the testing methodology referenced in this report. Interpretation and use of test results are the sole responsibility of the Client and are not within the scope of services provided by Maxxam, unless otherwise agreed in writing. Maxxam is not responsible for the accuracy or any data impacts, that result from the information provided by the customer or their agent.

Solid sample results, except biota, are based on dry weight unless otherwise indicated. Organic analyses are not recovery corrected except for isotope dilution methods.

Results relate to samples tested. When sampling is not conducted by Maxxam, results relate to the supplied samples tested.

This Certificate shall not be reproduced except in full, without the written approval of the laboratory.

Reference Method suffix "m" indicates test methods incorporate validated modifications from specific reference methods to improve performance.

- * RPDs calculated using raw data. The rounding of final results may result in the apparent difference.
- (1) This test was performed by Maxxam Ontario (From Burnaby)
- (2) The extraction date for VOC, BTEX, VH, or F1 samples that are field preserved with methanol equals the date sampled, unless otherwise stated.
- (3) Total PAHs in Soil include: Quinoline, Naphthalene, 1-Methylnaphthalene, 2-Methylnaphthalene, Acenaphthylene, Acenaphthene, Fluorene, Phenanthrene, Anthracene, Acridine, Fluoranthene, Pyrene, Benzo(a)anthracene, Chrysene, Benzo(b&j)fluoranthene, Benzo(k)fluoranthene, Benzo(a)pyrene, Indeno(1,2,3-cd)pyrene, Dibenz(a,h)anthracene, and Benzo(g,h,i)perylene.

Total PAHs in Sediment include: Naphthalene, 2-Methylnaphthalene, Acenaphthylene, Acenaphthene, Fluorene, Phenanthrene, Anthracene, Fluoranthene, Pyrene, Benzo(a)anthracene, Chrysene, Benzo(a)pyrene, and Dibenz(a,h)anthracene.

(4) LEPH = EPH (C10 to C19) - (Naphthalene + Phenanthrene)

HEPH = EPH (C19 to C32) - (Benzo(a)anthracene + Benzo(a)pyrene + Benzo(b)fluoranthene + Benzo(k)fluoranthene + Dibenz(a,h)anthracene + Indeno(1,2,3-cd)pyrene + Pyrene)
(5) VPH = VH - (Benzene + Toluene + Ethylbenzene + m & p-Xylene + o-Xylene + Styrene)

Encryption Key

Please direct all questions regarding this Certificate of Analysis to your Project Manager. Nahed Amer, Project Manager Email: NAmer@maxxam.ca Phone# (604) 734 7276

Maxxam has procedures in place to guard against improper use of the electronic signature and have the required "signatories", as per section 5.10.2 of ISO/IEC 17025:2005(E), signing the reports. For Service Group specific validation please refer to the Validation Signature Page.

STANTEC CONSULTING LTD Client Project #: 123221161 Sampler Initials: MD

RESULTS OF CHEMICAL ANALYSES OF SOIL

			T			1			
Maxxam ID		TZ2551	TZ2559	TZ256	54		TZ2565		
Sampling Date		2018/07/28	2018/07/28	2018/07	7/28		2018/07/28		
COC Number		560386-12-01	560386-13-01	560386-1	L4-01		560386-14-01		
	UNITS	MW18-30 SA01	MW18-31 SA01	MW18-31	SA06	QC Batch	MW18-31 SA07	RDL	QC Batch
Parameter									
Subcontract Parameter	N/A	ATTACHED	ATTACHED	ATTACH	HED	9107503			
Physical Properties				•					
% sand by hydrometer	%						84	2.0	9103384
% silt by hydrometer	%						<2.0	2.0	9103384
Clay Content	%						2.0	2.0	9103384
Gravel	%						14	2.0	9103384
RDL = Reportable Detection	Limit			•		•			
Maxxam ID		TZ2567	TZ2574		T.	Z2575	TZ2575		
Sampling Date		2018/07/28	2018/07/28		201	8/07/28	2018/07/28		
COC Number		560386-14-01	560391-02-01		5603	91-02-01	560391-02-01		
	UNITS	MW18-39 SA01	MW18-39 SA08	QC Batch	MW1	8-39 SA09	MW18-39 SA09 Lab-Dup	RDL	QC Batch
Parameter									
Subcontract Parameter	N/A	ATTACHED	ATTACHED	9107503					
Physical Properties									
% sand by hydrometer	%					31	33	2.0	9103384
% silt by hydrometer	%					51	52	2.0	9103384
Clay Content	%					8.0	7.8	2.0	9103384
Gravel	%					9.7	7.5	2.0	9103384
RDL = Reportable Detection Lab-Dup = Laboratory Initia		cate							

STANTEC CONSULTING LTD Client Project #: 123221161 Sampler Initials: MD

PHYSICAL TESTING (SOIL)

Maxxam ID		TZ2536		TZ2540		TZ2541			
Sampling Date		2018/07/28		2018/07/28		2018/07/28			
COC Number		560386-11-01		560386-11-01		560386-11-01			
	UNITS	MW18-48 SA03	QC Batch	MW18-47 SA04	QC Batch	MW18-47 SA05	RDL	QC Batch	
Physical Properties									
Moisture	%	20	9091575	15	9092915	15	0.30	9098612	
RDL = Reportable Detection Limit									

Maxxam ID		TZ2549	TZ2549	TZ2554	TZ2564		TZ2565		
Sampling Date		2018/07/28	2018/07/28	2018/07/28	2018/07/28		2018/07/28		
COC Number		560386-12-01	560386-12-01	560386-13-01	560386-14-01		560386-14-01		
	UNITS	MW18-38 SA07	MW18-38 SA07 Lab-Dup	MW18-30 SA04	MW18-31 SA06	QC Batch	MW18-31 SA07	RDL	QC Batch
Physical Properties									
Moisture	%	18	19	18	7.5	9091575	20	0.30	9098612

RDL = Reportable Detection Limit

Lab-Dup = Laboratory Initiated Duplicate

Maxxam ID		TZ2566	TZ2573		TZ2574		TZ2575				
Sampling Date		2018/07/28	2018/07/28		2018/07/28		2018/07/28				
COC Number		560386-14-01	560386-14-01		560391-02-01		560391-02-01				
	UNITS	MW18-31 SA08	MW18-39 SA07	QC Batch	MW18-39 SA08	QC Batch	MW18-39 SA09	RDL	QC Batch		
Physical Properties											
Moisture	%	20	7.6	9098612	18	9091575	20	0.30	9098612		
RDL = Reportable Detection Limit											

Maxxam ID		TZ2576		TZ2579	TZ2580					
Sampling Date		2018/07/28		2018/07/28	2018/07/28					
COC Number		560391-02-01		560391-02-01	560391-02-01					
	UNITS	MW18-39 SA10	QC Batch	QC18-04	QC18-05	RDL	QC Batch			
Physical Properties										
Moisture	%	20	9098612	18	19	0.30	9091575			
RDL = Reportable Detection Limit										

STANTEC CONSULTING LTD Client Project #: 123221161 Sampler Initials: MD

TOTAL PETROLEUM HYDROCARBONS (SOIL)

Maxxam ID		TZ2541	TZ2565	TZ2566	TZ2573	TZ2575		
Sampling Date		2018/07/28	2018/07/28	2018/07/28	2018/07/28	2018/07/28		
COC Number		560386-11-01	560386-14-01	560386-14-01	560386-14-01	560391-02-01		
	UNITS	MW18-47 SA05	MW18-31 SA07	MW18-31 SA08	MW18-39 SA07	MW18-39 SA09	RDL	QC Batch
Hydrocarbons								
EPH (C10-C19)	mg/kg	<100	<100	<100	960	170	100	9099655
EPH (C19-C32)	mg/kg	<100	<100	<100	110	<100	100	9099655
Surrogate Recovery (%)								
O-TERPHENYL (sur.)	%	85	86	86	88	86		9099655
RDL = Reportable Detection	n Limit							

Maxxam ID		TZ2576		
Sampling Date		2018/07/28		
COC Number		560391-02-01		
	UNITS	MW18-39 SA10	RDL	QC Batch
Hydrocarbons				
EPH (C10-C19)	mg/kg	<100	100	9099655
EPH (C19-C32)	mg/kg	<100	100	9099655
Surrogate Recovery (%)				
O-TERPHENYL (sur.)	%	86		9099655
RDL = Reportable Detection L	imit			

STANTEC CONSULTING LTD Client Project #: 123221161 Sampler Initials: MD

CSR BTEX/VPH IN SOIL - FIELD PRESERVED (SOIL)

Maxxam ID		TZ2554	TZ2564	TZ2574	TZ2579	TZ2580		
Sampling Date		2018/07/28	2018/07/28	2018/07/28	2018/07/28	2018/07/28		
COC Number		560386-13-01	560386-14-01	560391-02-01	560391-02-01	560391-02-01		
	UNITS	MW18-30 SA04	MW18-31 SA06	MW18-39 SA08	QC18-04	QC18-05	RDL	QC Batch
Calculated Parameters								
VPH (VH6 to 10 - BTEX)	mg/kg	<10	82	27	<10	28	10	9087418
Volatiles	•						•	
Methyl-tert-butylether (MTBE)	mg/kg	<0.10	<0.10	<0.10	<0.10	<0.10	0.10	9088932
Benzene	mg/kg	<0.0050	<0.0050	<0.0050	<0.0050	<0.0050	0.0050	9088932
Toluene	mg/kg	<0.020	<0.020	<0.020	<0.020	<0.020	0.020	9088932
Ethylbenzene	mg/kg	0.013	<0.010	<0.010	<0.010	<0.010	0.010	9088932
m & p-Xylene	mg/kg	<0.040	<0.040	<0.040	<0.040	<0.040	0.040	9088932
o-Xylene	mg/kg	<0.040	<0.040	<0.040	<0.040	<0.040	0.040	9088932
Styrene	mg/kg	<0.030	<0.030	<0.030	<0.030	<0.030	0.030	9088932
Xylenes (Total)	mg/kg	<0.040	<0.040	<0.040	<0.040	<0.040	0.040	9088932
VH C6-C10	mg/kg	<10	82	27	<10	28	10	9088932
Surrogate Recovery (%)								
1,4-Difluorobenzene (sur.)	%	95	95	96	97	96		9088932
4-Bromofluorobenzene (sur.)	%	105	106	106	106	105		9088932
D10-ETHYLBENZENE (sur.)	%	114	116	118	119	119		9088932
D4-1,2-Dichloroethane (sur.)	%	114	113	114	115	114		9088932
RDL = Reportable Detection Limi	t							

STANTEC CONSULTING LTD Client Project #: 123221161 Sampler Initials: MD

TZ2536 2018/07/28 560386-11-01 MW18-48 SA03 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050	2018/07/28 560386-11-01 MW18-47 SA04 1.3 0.37 1.6	TZ2549 2018/07/28 560386-12-01 MW18-38 SA07 <0.050 <0.050 <0.050 <0.050	9087241 9087241	TZ2554 2018/07/28 560386-13-01 MW18-30 SA04 <0.050 <0.050 <0.050	RDL 0.050 0.050 0.050	9087241 9087241 9087241
<0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.010 <0.050 <0.050 <0.050	1.3 0.37 1.6	<0.050 <0.050 <0.050 <0.050	9087241 9087241 9087241	560386-13-01 MW18-30 SA04 <0.050 <0.050	0.050 0.050	9087241 9087241
<0.050 <0.050 <0.050 <0.050 <0.010 <0.050 <0.020 <0.0050	1.3 0.37 1.6 0.057 0.42	<0.050 <0.050 <0.050 <0.050	9087241 9087241 9087241	<0.050 <0.050	0.050 0.050	9087241 9087241
<0.050 <0.050 <0.010 <0.050 <0.020 <0.0050	0.37 1.6 0.057 0.42	<0.050 <0.050 <0.010	9087241 9087241	<0.050	0.050	9087241
<0.050 <0.050 <0.010 <0.050 <0.020 <0.0050	0.37 1.6 0.057 0.42	<0.050 <0.050 <0.010	9087241 9087241	<0.050	0.050	9087241
<0.050 <0.010 <0.050 <0.020 <0.0050	0.057 0.42	<0.050	9087241			
<0.010 <0.050 <0.020 <0.0050	0.057 0.42	<0.010		<0.050	0.050	00872/11
<0.050 <0.020 <0.0050	0.42		222222			JU0/241
<0.050 <0.020 <0.0050	0.42					
<0.020 <0.0050			9092931	<0.010	0.010	9093468
<0.0050		< 0.050	9092931	<0.050	0.050	9093468
	0.34	<0.020	9092931	<0.020	0.020	9093468
<0.0050	0.0088 (1)	<0.0050	9092931	<0.0050	0.0050	9093468
-0.0000	0.033 (1)	<0.0050	9092931	<0.0050	0.0050	9093468
<0.020	0.040 (1)	<0.020	9092931	<0.020	0.020	9093468
<0.010	0.30	<0.010	9092931	<0.010	0.010	9093468
<0.0040	0.049 (1)	<0.0040	9092931	<0.0040	0.0040	9093468
<0.050	<0.050	<0.050	9092931	<0.050	0.050	9093468
<0.020	0.11	<0.020	9092931	<0.020	0.020	9093468
<0.020	0.14	<0.020	9092931	<0.020	0.020	9093468
<0.020	0.038	<0.020	9092931	<0.020	0.020	9093468
<0.020	0.049	<0.020	9092931	<0.020	0.020	9093468
<0.020	<0.020	<0.020	9092931	<0.020	0.020	9093468
<0.020	<0.020	<0.020	9092931	<0.020	0.020	9093468
<0.020	<0.020	<0.020	9092931	<0.020	0.020	9093468
<0.020	0.034	<0.020	9092931	<0.020	0.020	9093468
<0.020	<0.020	<0.020	9092931	<0.020	0.020	9093468
<0.020	<0.020	<0.020	9092931	<0.020	0.020	9093468
<0.050	<0.050	<0.050	9092931	<0.050	0.050	9093468
<100	990	<100	9087254	<100	100	9087254
<100	510	<100	9087254	<100	100	9087254
<100	990	<100	9092936	<100	100	9093456
_	510	<100	9092936	<100	100	9093456
<100						
<100	97	104	9092931	92		9093468
	<100	<100 510 <100 990 <100 510	<100 510 <100 <100 990 <100 <100 510 <100	<100	<100	<100

⁽¹⁾ Tentatively identified result and may be potentially biased high due to matrix interference.

STANTEC CONSULTING LTD Client Project #: 123221161 Sampler Initials: MD

Maxxam ID		TZ2536	TZ2540	TZ2549		TZ2554		
Sampling Date		2018/07/28	2018/07/28	2018/07/28		2018/07/28		
COC Number		560386-11-01	560386-11-01	560386-12-01		560386-13-01		
	UNITS	MW18-48 SA03	MW18-47 SA04	MW18-38 SA07	QC Batch	MW18-30 SA04	RDL	QC Batch
D8-ACENAPHTHYLENE (sur.)	%	87	85	91	9092931	92		9093468
D8-NAPHTHALENE (sur.)	%	97	85	95	9092931	91		9093468
TERPHENYL-D14 (sur.)	%	89	92	99	9092931	101		9093468
O-TERPHENYL (sur.)	%	70	99	72	9092936	92		9093456
RDL = Reportable Detection Lin	nit							

STANTEC CONSULTING LTD Client Project #: 123221161 Sampler Initials: MD

Maxxam ID		TZ2564	TZ2574	TZ2579	TZ2580		
Sampling Date		2018/07/28	2018/07/28	2018/07/28	2018/07/28		
COC Number		560386-14-01	560391-02-01	560391-02-01	560391-02-01		
	UNITS	MW18-31 SA06	MW18-39 SA08	QC18-04	QC18-05	RDL	QC Batch
Calculated Parameters							
Low Molecular Weight PAH`s	mg/kg	0.88	0.36	<0.050	0.38	0.050	9087241
High Molecular Weight PAH`s	mg/kg	<0.050	<0.050	<0.050	<0.050	0.050	9087241
Total PAH	mg/kg	0.88	0.36	<0.050	0.38	0.050	9087241
Polycyclic Aromatics	•						
Naphthalene	mg/kg	0.012 (1)	0.022 (1)	<0.010	0.055	0.010	9093468
1-Methylnaphthalene	mg/kg	<0.050	0.087	<0.050	0.084	0.050	9093468
2-Methylnaphthalene	mg/kg	0.041 (1)	0.044 (1)	<0.020	0.082	0.020	9093468
Acenaphthylene	mg/kg	<0.0050	<0.0050	<0.0050	<0.0050	0.0050	9093468
Acenaphthene	mg/kg	0.24 (1)	0.079 (1)	<0.0050	0.060 (1)	0.0050	9093468
Fluorene	mg/kg	0.28	0.091	<0.020	0.076	0.020	9093468
Phenanthrene	mg/kg	0.29	0.037	<0.010	0.028	0.010	9093468
Anthracene	mg/kg	0.012 (1)	0.0049 (1)	<0.0040	<0.0040	0.0040	9093468
Acridine	mg/kg	<0.050	<0.050	<0.050	<0.050	0.050	9093468
Fluoranthene	mg/kg	<0.020	<0.020	<0.020	<0.020	0.020	9093468
Pyrene	mg/kg	<0.020	<0.020	<0.020	<0.020	0.020	9093468
Benzo(a)anthracene	mg/kg	<0.020	<0.020	<0.020	<0.020	0.020	9093468
Chrysene	mg/kg	<0.020	<0.020	<0.020	<0.020	0.020	9093468
Benzo(b&j)fluoranthene	mg/kg	<0.020	<0.020	<0.020	<0.020	0.020	9093468
Benzo(b)fluoranthene	mg/kg	<0.020	<0.020	<0.020	<0.020	0.020	9093468
Benzo(k)fluoranthene	mg/kg	<0.020	<0.020	<0.020	<0.020	0.020	9093468
Benzo(a)pyrene	mg/kg	<0.020	<0.020	<0.020	<0.020	0.020	9093468
Indeno(1,2,3-cd)pyrene	mg/kg	<0.020	<0.020	<0.020	<0.020	0.020	9093468
Dibenz(a,h)anthracene	mg/kg	<0.020	<0.020	<0.020	<0.020	0.020	9093468
Benzo(g,h,i)perylene	mg/kg	<0.050	<0.050	<0.050	<0.050	0.050	9093468
Calculated Parameters							
LEPH (C10-C19 less PAH)	mg/kg	1400	780	<100	530	100	9087254
HEPH (C19-C32 less PAH)	mg/kg	160	<100	<100	<100	100	9087254
Hydrocarbons							
EPH (C10-C19)	mg/kg	1400	780	<100	530	100	9093456
EPH (C19-C32)	mg/kg	160	<100	<100	<100	100	9093456
Surrogate Recovery (%)							
D10-ANTHRACENE (sur.)	%	101	91	91	93		9093468

⁽¹⁾ Tentatively identified result and may be potentially biased high due to matrix interference.

STANTEC CONSULTING LTD Client Project #: 123221161 Sampler Initials: MD

Maxxam ID		TZ2564	TZ2574	TZ2579	TZ2580		
Sampling Date		2018/07/28	2018/07/28	2018/07/28	2018/07/28		
COC Number		560386-14-01	560391-02-01	560391-02-01	560391-02-01		
	UNITS	MW18-31 SA06	MW18-39 SA08	QC18-04	QC18-05	RDL	QC Batch
D8-ACENAPHTHYLENE (sur.)	%	85	83	92	88		9093468
D8-NAPHTHALENE (sur.)	%	81	78	89	84		9093468
TERPHENYL-D14 (sur.)	%	110	103	100	108		9093468
O-TERPHENYL (sur.)	%	89	91	90	89		9093456
RDL = Reportable Detection Lin	nit						

STANTEC CONSULTING LTD Client Project #: 123221161 Sampler Initials: MD

Maxxam ID		TZ2580		
Sampling Date		2018/07/28		
COC Number		560391-02-01		
	UNITS	QC18-05 Lab-Dup	RDL	QC Batch
Polycyclic Aromatics				
Naphthalene	mg/kg	0.054	0.010	9093468
1-Methylnaphthalene	mg/kg	0.084	0.050	9093468
2-Methylnaphthalene	mg/kg	0.099	0.020	9093468
Acenaphthylene	mg/kg	<0.0050	0.0050	9093468
Acenaphthene	mg/kg	0.053	0.0050	9093468
Fluorene	mg/kg	0.070	0.020	9093468
Phenanthrene	mg/kg	0.024	0.010	9093468
Anthracene	mg/kg	<0.0040	0.0040	9093468
Acridine	mg/kg	<0.050	0.050	9093468
Fluoranthene	mg/kg	<0.020	0.020	9093468
Pyrene	mg/kg	<0.020	0.020	9093468
Benzo(a)anthracene	mg/kg	<0.020	0.020	9093468
Chrysene	mg/kg	<0.020	0.020	9093468
Benzo(b&j)fluoranthene	mg/kg	<0.020	0.020	9093468
Benzo(b)fluoranthene	mg/kg	<0.020	0.020	9093468
Benzo(k)fluoranthene	mg/kg	<0.020	0.020	9093468
Benzo(a)pyrene	mg/kg	<0.020	0.020	9093468
Indeno(1,2,3-cd)pyrene	mg/kg	<0.020	0.020	9093468
Dibenz(a,h)anthracene	mg/kg	<0.020	0.020	9093468
Benzo(g,h,i)perylene	mg/kg	<0.050	0.050	9093468
Hydrocarbons	•			
EPH (C10-C19)	mg/kg	450	100	9093456
EPH (C19-C32)	mg/kg	<100	100	9093456
Surrogate Recovery (%)				
D10-ANTHRACENE (sur.)	%	86		9093468
D8-ACENAPHTHYLENE (sur.)	%	84		9093468
D8-NAPHTHALENE (sur.)	%	80		9093468
TERPHENYL-D14 (sur.)	%	103		9093468
O-TERPHENYL (sur.)	%	89		9093456
RDL = Reportable Detection Lir Lab-Dup = Laboratory Initiated		te		

STANTEC CONSULTING LTD Client Project #: 123221161 Sampler Initials: MD

CSR/CCME METALS IN SOIL WITH HG (SOIL)

Maxxam ID		TZ2551	TZ2559	TZ2567		
Sampling Date		2018/07/28	2018/07/28	2018/07/28		
COC Number		560386-12-01	560386-13-01	560386-14-01		
	UNITS	MW18-30 SA01	MW18-31 SA01	MW18-39 SA01	RDL	QC Batch
Physical Properties						
Soluble (2:1) pH	рН	8.47	8.43	8.10	N/A	9118424
Total Metals by ICPMS						
Total Aluminum (Al)	mg/kg	10400	15900	15200	100	9118366
Total Antimony (Sb)	mg/kg	0.61	1.00	0.91	0.10	9118366
Total Arsenic (As)	mg/kg	7.17	10.9	10.3	0.50	9118366
Total Barium (Ba)	mg/kg	154	249	240	0.10	9118366
Total Beryllium (Be)	mg/kg	0.33	0.46	0.48	0.20	9118366
Total Bismuth (Bi)	mg/kg	0.11	0.17	0.18	0.10	9118366
Total Boron (B)	mg/kg	2.2	2.5	3.9	1.0	9118366
Total Cadmium (Cd)	mg/kg	0.213	0.343	0.324	0.050	9118366
Total Calcium (Ca)	mg/kg	21700	31600	44800	100	9118366
Total Chromium (Cr)	mg/kg	48.2	52.4	49.5	1.0	9118366
Total Cobalt (Co)	mg/kg	8.11	12.1	11.3	0.30	9118366
Total Copper (Cu)	mg/kg	21.7	36.4	31.3	0.50	9118366
Total Iron (Fe)	mg/kg	20400	29100	26900	100	9118366
Total Lead (Pb)	mg/kg	7.27	10.6	9.81	0.10	9118366
Total Lithium (Li)	mg/kg	9.1	13.0	12.6	5.0	9118366
Total Magnesium (Mg)	mg/kg	8170	10700	11000	100	9118366
Total Manganese (Mn)	mg/kg	370	529	512	0.20	9118366
Total Mercury (Hg)	mg/kg	<0.050	<0.050	<0.050	0.050	9118366
Total Molybdenum (Mo)	mg/kg	0.67	0.75	0.84	0.10	9118366
Total Nickel (Ni)	mg/kg	35.7	44.7	41.0	0.80	9118366
Total Phosphorus (P)	mg/kg	808	955	975	10	9118366
Total Potassium (K)	mg/kg	1110	1770	1610	100	9118366
Total Selenium (Se)	mg/kg	<0.50	<0.50	<0.50	0.50	9118366
Total Silver (Ag)	mg/kg	0.082	0.137	0.152	0.050	9118366
Total Sodium (Na)	mg/kg	239	314	591	100	9118366
Total Strontium (Sr)	mg/kg	59.3	83.4	145	0.10	9118366
Total Thallium (TI)	mg/kg	0.082	0.127	0.128	0.050	9118366
Total Tin (Sn)	mg/kg	0.37	0.53	0.48	0.10	9118366
Total Titanium (Ti)	mg/kg		1070	1150	1.0	9118366
Total Tungsten (W)	mg/kg	<0.50	<0.50	<0.50	0.50	9118366
RDL = Reportable Detection	ı Limit	•	•		•	•

N/A = Not Applicable

STANTEC CONSULTING LTD Client Project #: 123221161 Sampler Initials: MD

CSR/CCME METALS IN SOIL WITH HG (SOIL)

Maxxam ID		TZ2551	TZ2559	TZ2567		
Sampling Date		2018/07/28	2018/07/28	2018/07/28		
COC Number		560386-12-01	560386-13-01	560386-14-01		
	UNITS	MW18-30 SA01	MW18-31 SA01	MW18-39 SA01	RDL	QC Batch
Total Uranium (U)	mg/kg	0.858	1.15	1.80	0.050	9118366
Total Vanadium (V)	mg/kg	41.8	59.3	56.1	2.0	9118366
Total Zinc (Zn)	mg/kg	44.4	65.3	56.8	1.0	9118366
Total Zirconium (Zr)	mg/kg	5.99	8.71	8.10	0.50	9118366
RDL = Reportable Detection	imit					

STANTEC CONSULTING LTD Client Project #: 123221161 Sampler Initials: MD

GENERAL COMMENTS

Version 2: Report reissued to include results for EPH, TOC and Grain size on select samples as per request from Matthew Deane on 2018/08/10 Sample were analyzed past hold time for EPH and moisture. Analysis performed with client's consent.

Version 3: Report reissued to include results for Metals and TOC on sample MW18-31 SA01, MW18-39 SA01 and MW18-30 SA01 as per request from Matthew Deane on 2018/08/23

Results relate only to the items tested.

QUALITY ASSURANCE REPORT

STANTEC CONSULTING LTD Client Project #: 123221161

Sampler Initials: MD

			Matrix	Spike	Spiked	Blank	Method	Blank	RPI	D	QC Sta	ndard
QC Batch	Parameter	Date	% Recovery	QC Limits	% Recovery	QC Limits	Value	UNITS	Value (%)	QC Limits	% Recovery	QC Limits
9088932	1,4-Difluorobenzene (sur.)	2018/08/02	95	70 - 130	94	70 - 130	100	%				
9088932	4-Bromofluorobenzene (sur.)	2018/08/02	105	70 - 130	104	70 - 130	104	%				
9088932	D10-ETHYLBENZENE (sur.)	2018/08/02	110	60 - 130	93	60 - 130	107	%				
9088932	D4-1,2-Dichloroethane (sur.)	2018/08/02	101	70 - 130	101	70 - 130	114	%				
9092931	D10-ANTHRACENE (sur.)	2018/08/07	101	50 - 140	97	50 - 140	97	%				
9092931	D8-ACENAPHTHYLENE (sur.)	2018/08/07	83	50 - 140	87	50 - 140	84	%				
9092931	D8-NAPHTHALENE (sur.)	2018/08/07	83	50 - 140	95	50 - 140	92	%				
9092931	TERPHENYL-D14 (sur.)	2018/08/07	92	50 - 140	86	50 - 140	90	%				
9092936	O-TERPHENYL (sur.)	2018/08/07	81	60 - 140	71	60 - 140	72	%				
9093456	O-TERPHENYL (sur.)	2018/08/08	90	60 - 140	87	60 - 140	85	%				
9093468	D10-ANTHRACENE (sur.)	2018/08/08	89	50 - 140	81	50 - 140	86	%				
9093468	D8-ACENAPHTHYLENE (sur.)	2018/08/08	90	50 - 140	87	50 - 140	88	%				
9093468	D8-NAPHTHALENE (sur.)	2018/08/08	83	50 - 140	87	50 - 140	89	%				
9093468	TERPHENYL-D14 (sur.)	2018/08/08	104	50 - 140	91	50 - 140	96	%				
9099655	O-TERPHENYL (sur.)	2018/08/13	74	60 - 140	77	60 - 140	85	%				
9088932	Benzene	2018/08/02	98	60 - 140	95	70 - 130	<0.0050	mg/kg	3.8	40		
9088932	Ethylbenzene	2018/08/02	96	60 - 140	94	70 - 130	<0.010	mg/kg	12	40		
9088932	m & p-Xylene	2018/08/02	96	60 - 140	95	70 - 130	<0.040	mg/kg	12	40		
9088932	Methyl-tert-butylether (MTBE)	2018/08/02	103	N/A			<0.10	mg/kg	NC	40		
9088932	o-Xylene	2018/08/02	100	60 - 140	99	70 - 130	<0.040	mg/kg	NC	40		
9088932	Styrene	2018/08/02	109	N/A			<0.030	mg/kg	NC	40		
9088932	Toluene	2018/08/02	93	60 - 140	91	70 - 130	<0.020	mg/kg	2.4	40		
9088932	VH C6-C10	2018/08/02			91	70 - 130	<10	mg/kg	NC	40		
9088932	Xylenes (Total)	2018/08/02					<0.040	mg/kg	12	40		
9091575	Moisture	2018/08/07					<0.30	%	2.7	20		
9092915	Moisture	2018/08/08					<0.30	%	5.8	20		
9092931	1-Methylnaphthalene	2018/08/07	69	50 - 140	95	50 - 140	<0.050	mg/kg	11	50		
9092931	2-Methylnaphthalene	2018/08/07	NC	50 - 140	89	50 - 140	<0.020	mg/kg	5.1	50		
9092931	Acenaphthene	2018/08/07	94	50 - 140	90	50 - 140	<0.0050	mg/kg	5.3	50		
9092931	Acenaphthylene	2018/08/07	80	50 - 140	85	50 - 140	<0.0050	mg/kg	9.8	50		
9092931	Acridine	2018/08/07	103	50 - 140			<0.050	mg/kg				

QUALITY ASSURANCE REPORT(CONT'D)

STANTEC CONSULTING LTD Client Project #: 123221161

Sampler Initials: MD

			Matrix	Spike	Spiked	Blank	Method I	Blank	RP	D	QC Sta	andard
QC Batch	Parameter	Date	% Recovery	QC Limits	% Recovery	QC Limits	Value	UNITS	Value (%)	QC Limits	% Recovery	QC Limits
9092931	Anthracene	2018/08/07	99	50 - 140	98	50 - 140	<0.0040	mg/kg	73 (1)	50		
9092931	Benzo(a)anthracene	2018/08/07	81	50 - 140	85	50 - 140	<0.020	mg/kg	NC	50		
9092931	Benzo(a)pyrene	2018/08/07	79	50 - 140	84	50 - 140	<0.020	mg/kg	NC	50		
9092931	Benzo(b&j)fluoranthene	2018/08/07	84	50 - 140	82	50 - 140	<0.020	mg/kg	117 (1)	50		
9092931	Benzo(b)fluoranthene	2018/08/07	81	50 - 140	79	50 - 140	<0.020	mg/kg	NC	50		
9092931	Benzo(g,h,i)perylene	2018/08/07	77	50 - 140	70	50 - 140	<0.050	mg/kg	NC	50		
9092931	Benzo(k)fluoranthene	2018/08/07	79	50 - 140	74	50 - 140	<0.020	mg/kg	36	50		
9092931	Chrysene	2018/08/07	82	50 - 140	92	50 - 140	<0.020	mg/kg	49	50		
9092931	Dibenz(a,h)anthracene	2018/08/07	78	50 - 140	79	50 - 140	<0.020	mg/kg	NC	50		
9092931	Fluoranthene	2018/08/07	79	50 - 140	86	50 - 140	<0.020	mg/kg	18	50		
9092931	Fluorene	2018/08/07	78	50 - 140	77	50 - 140	<0.020	mg/kg	10	50		
9092931	Indeno(1,2,3-cd)pyrene	2018/08/07	78	50 - 140	79	50 - 140	<0.020	mg/kg	28	50		
9092931	Naphthalene	2018/08/07	73	50 - 140	91	50 - 140	<0.010	mg/kg	4.5	50		
9092931	Phenanthrene	2018/08/07	70	50 - 140	83	50 - 140	<0.010	mg/kg	23	50		
9092931	Pyrene	2018/08/07	71	50 - 140	87	50 - 140	<0.020	mg/kg	49	50		
9092936	EPH (C10-C19)	2018/08/07	NC	60 - 140	77	70 - 130	<100	mg/kg	2.1	40		
9092936	EPH (C19-C32)	2018/08/07	90	60 - 140	81	70 - 130	<100	mg/kg	1.8	40		
9093456	EPH (C10-C19)	2018/08/08	97	60 - 140	100	70 - 130	<100	mg/kg	15	40		
9093456	EPH (C19-C32)	2018/08/08	103	60 - 140	103	70 - 130	<100	mg/kg	NC	40		
9093468	1-Methylnaphthalene	2018/08/08	94	50 - 140	89	50 - 140	<0.050	mg/kg	1.0	50		
9093468	2-Methylnaphthalene	2018/08/08	91	50 - 140	86	50 - 140	<0.020	mg/kg	18	50		
9093468	Acenaphthene	2018/08/08	89	50 - 140	86	50 - 140	<0.0050	mg/kg	12	50		
9093468	Acenaphthylene	2018/08/08	89	50 - 140	85	50 - 140	<0.0050	mg/kg	NC	50		
9093468	Acridine	2018/08/08	101	50 - 140			<0.050	mg/kg	NC	50		
9093468	Anthracene	2018/08/08	88	50 - 140	80	50 - 140	<0.0040	mg/kg	NC	50		
9093468	Benzo(a)anthracene	2018/08/08	84	50 - 140	81	50 - 140	<0.020	mg/kg	NC	50		
9093468	Benzo(a)pyrene	2018/08/08	80	50 - 140	85	50 - 140	<0.020	mg/kg	NC	50		
9093468	Benzo(b&j)fluoranthene	2018/08/08	91	50 - 140	89	50 - 140	<0.020	mg/kg	NC	50		
9093468	Benzo(b)fluoranthene	2018/08/08	94	50 - 140	92	50 - 140	<0.020	mg/kg	NC	50		
9093468	Benzo(g,h,i)perylene	2018/08/08	72	50 - 140	74	50 - 140	<0.050	mg/kg	NC	50		
9093468	Benzo(k)fluoranthene	2018/08/08	91	50 - 140	88	50 - 140	<0.020	mg/kg	NC	50		

QUALITY ASSURANCE REPORT(CONT'D)

STANTEC CONSULTING LTD Client Project #: 123221161

Sampler Initials: MD

			Matrix	Spike	Spiked	Blank	Method E	Blank	RP	D	QC Sta	ndard
QC Batch	Parameter	Date	% Recovery	QC Limits	% Recovery	QC Limits	Value	UNITS	Value (%)	QC Limits	% Recovery	QC Limits
9093468	Chrysene	2018/08/08	88	50 - 140	85	50 - 140	<0.020	mg/kg	NC	50		
9093468	Dibenz(a,h)anthracene	2018/08/08	75	50 - 140	76	50 - 140	<0.020	mg/kg	NC	50		
9093468	Fluoranthene	2018/08/08	95	50 - 140	86	50 - 140	<0.020	mg/kg	NC	50		
9093468	Fluorene	2018/08/08	85	50 - 140	79	50 - 140	<0.020	mg/kg	8.4	50		
9093468	Indeno(1,2,3-cd)pyrene	2018/08/08	73	50 - 140	74	50 - 140	<0.020	mg/kg	NC	50		
9093468	Naphthalene	2018/08/08	91	50 - 140	87	50 - 140	<0.010	mg/kg	2.5	50		
9093468	Phenanthrene	2018/08/08	89	50 - 140	85	50 - 140	<0.010	mg/kg	12	50		
9093468	Pyrene	2018/08/08	97	50 - 140	86	50 - 140	<0.020	mg/kg	NC	50		
9098612	Moisture	2018/08/11					<0.30	%	6.7	20		
9099655	EPH (C10-C19)	2018/08/14	96	60 - 140	96	70 - 130	<100	mg/kg	NC	40		
9099655	EPH (C19-C32)	2018/08/14	103	60 - 140	109	70 - 130	<100	mg/kg	3.0	40		
9103384	% sand by hydrometer	2018/08/16							4.4	35	102	90 - 110
9103384	% silt by hydrometer	2018/08/16							1.9	35		
9103384	Clay Content	2018/08/16							2.5	35		
9103384	Gravel	2018/08/16							26	35		
9118366	Total Aluminum (Al)	2018/08/27					<100	mg/kg	3.8	40	97	70 - 130
9118366	Total Antimony (Sb)	2018/08/27	82	75 - 125	97	75 - 125	<0.10	mg/kg	9.6	30	116	70 - 130
9118366	Total Arsenic (As)	2018/08/27	94	75 - 125	97	75 - 125	<0.50	mg/kg	36 (1)	30	92	70 - 130
9118366	Total Barium (Ba)	2018/08/27	NC	75 - 125	97	75 - 125	<0.10	mg/kg	0.82	40	106	70 - 130
9118366	Total Beryllium (Be)	2018/08/27	110	75 - 125	95	75 - 125	<0.20	mg/kg	4.3	30	106	70 - 130
9118366	Total Bismuth (Bi)	2018/08/27					<0.10	mg/kg	17	30		
9118366	Total Boron (B)	2018/08/27					<1.0	mg/kg	0.78	30		
9118366	Total Cadmium (Cd)	2018/08/27	111	75 - 125	99	75 - 125	<0.050	mg/kg	6.9	30	94	70 - 130
9118366	Total Calcium (Ca)	2018/08/27					<100	mg/kg	8.3	30	101	70 - 130
9118366	Total Chromium (Cr)	2018/08/27	NC	75 - 125	100	75 - 125	<1.0	mg/kg	9.6	30	105	70 - 130
9118366	Total Cobalt (Co)	2018/08/27	109	75 - 125	99	75 - 125	<0.30	mg/kg	3.5	30	101	70 - 130
9118366	Total Copper (Cu)	2018/08/27	NC	75 - 125	99	75 - 125	<0.50	mg/kg	15	30	105	70 - 130
9118366	Total Iron (Fe)	2018/08/27					<100	mg/kg	11	30	104	70 - 130
9118366	Total Lead (Pb)	2018/08/27	NC	75 - 125	103	75 - 125	<0.10	mg/kg	45 (1)	40	117	70 - 130
9118366	Total Lithium (Li)	2018/08/27	108	75 - 125	97	75 - 125	<5.0	mg/kg	1.7	30	100	70 - 130
9118366	Total Magnesium (Mg)	2018/08/27					<100	mg/kg	5.2	30	104	70 - 130

QUALITY ASSURANCE REPORT(CONT'D)

STANTEC CONSULTING LTD Client Project #: 123221161

Sampler Initials: MD

			Matrix	Spike	Spiked	Blank	Method I	Blank	RP	D	QC Sta	ındard
QC Batch	Parameter	Date	% Recovery	QC Limits	% Recovery	QC Limits	Value	UNITS	Value (%)	QC Limits	% Recovery	QC Limits
9118366	Total Manganese (Mn)	2018/08/27	NC	75 - 125	96	75 - 125	<0.20	mg/kg	6.7	30	103	70 - 130
9118366	Total Mercury (Hg)	2018/08/27	NC	75 - 125	104	75 - 125	<0.050	mg/kg	9.3	40	116	70 - 130
9118366	Total Molybdenum (Mo)	2018/08/27	NC	75 - 125	101	75 - 125	<0.10	mg/kg	7.4	40	108	70 - 130
9118366	Total Nickel (Ni)	2018/08/27	NC	75 - 125	99	75 - 125	<0.80	mg/kg	4.2	30	108	70 - 130
9118366	Total Phosphorus (P)	2018/08/27					<10	mg/kg	11	30	100	70 - 130
9118366	Total Potassium (K)	2018/08/27					<100	mg/kg	5.1	40	92	70 - 130
9118366	Total Selenium (Se)	2018/08/27	109	75 - 125	98	75 - 125	<0.50	mg/kg	5.4	30		
9118366	Total Silver (Ag)	2018/08/27	114	75 - 125	102	75 - 125	<0.050	mg/kg	8.1	40	114	70 - 130
9118366	Total Sodium (Na)	2018/08/27					<100	mg/kg	7.9	40	97	70 - 130
9118366	Total Strontium (Sr)	2018/08/27	114	75 - 125	96	75 - 125	<0.10	mg/kg	2.9	40	106	70 - 130
9118366	Total Thallium (TI)	2018/08/27	101	75 - 125	98	75 - 125	<0.050	mg/kg	1.4	30	93	70 - 130
9118366	Total Tin (Sn)	2018/08/27	102	75 - 125	101	75 - 125	<0.10	mg/kg	0.085	40	102	70 - 130
9118366	Total Titanium (Ti)	2018/08/27	NC	75 - 125	90	75 - 125	<1.0	mg/kg	5.3	40		
9118366	Total Tungsten (W)	2018/08/27					<0.50	mg/kg	19	30		
9118366	Total Uranium (U)	2018/08/27	112	75 - 125	100	75 - 125	<0.050	mg/kg	12	30	103	70 - 130
9118366	Total Vanadium (V)	2018/08/27	NC	75 - 125	97	75 - 125	<2.0	mg/kg	3.2	30	105	70 - 130
9118366	Total Zinc (Zn)	2018/08/27	NC	75 - 125	97	75 - 125	<1.0	mg/kg	26	30	104	70 - 130
9118366	Total Zirconium (Zr)	2018/08/27					<0.50	mg/kg	7.6	30		
9118424	Soluble (2:1) pH	2018/08/27			100	97 - 103			0.62	20		

Duplicate: Paired analysis of a separate portion of the same sample. Used to evaluate the variance in the measurement.

Matrix Spike: A sample to which a known amount of the analyte of interest has been added. Used to evaluate sample matrix interference.

QC Standard: A sample of known concentration prepared by an external agency under stringent conditions. Used as an independent check of method accuracy.

Spiked Blank: A blank matrix sample to which a known amount of the analyte, usually from a second source, has been added. Used to evaluate method accuracy.

Method Blank: A blank matrix containing all reagents used in the analytical procedure. Used to identify laboratory contamination.

Surrogate: A pure or isotopically labeled compound whose behavior mirrors the analytes of interest. Used to evaluate extraction efficiency.

NC (Matrix Spike): The recovery in the matrix spike was not calculated. The relative difference between the concentration in the parent sample and the spike amount was too small to permit a reliable recovery calculation (matrix spike concentration was less than the native sample concentration)

NC (Duplicate RPD): The duplicate RPD was not calculated. The concentration in the sample and/or duplicate was too low to permit a reliable RPD calculation (absolute difference <= 2x RDL).

(1) Recovery or RPD for this parameter is outside control limits. The overall quality control for this analysis meets acceptability criteria.

STANTEC CONSULTING LTD Client Project #: 123221161 Sampler Initials: MD

VALIDATION SIGNATURE PAGE

The analytical data and all QC contained in this report were reviewed and validated by the following individual(s).

mely to
Andy Lu, Ph.D., P.Chem., Scientific Specialist
Jose Cueva, Supervisor, Organics-VOC & HC
John J.
Jas Khatkar, BBY Organics
THE PARTY OF THE P
Richard Cheng, Scientific Service Specialist
Town

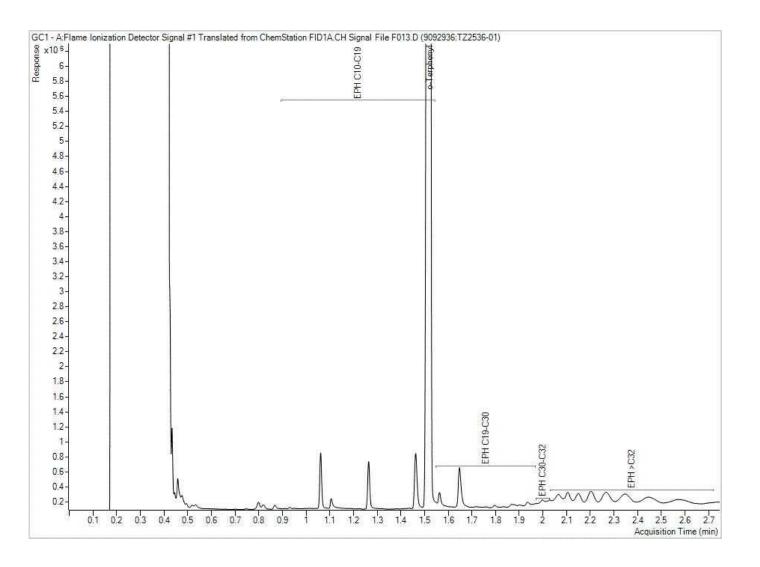
Thomas Pinchin, Junior Project Manager

Maxxam has procedures in place to guard against improper use of the electronic signature and have the required "signatories", as per section 5.10.2 of ISO/IEC 17025:2005(E), signing the reports. For Service Group specific validation please refer to the Validation Signature Page.

		INVOICE TO:				Report Ir	nformatio	n						Project Info	ormation		III	BURE IN LANCASING	ACRES MINES	Page of
npany Name	-	TEC CONSULTING	LTD	Company N	ате						Que	tation#	- 1	B71770	unit illi	C.J.		建筑设置	(1886) Paris 1	tie Order#:
act Name	ACCOUNTS F		U.S. 0.11	Contact Na	me Matthey	v Deane					P.0							Temperature and	1000	THUMBURE
ess		Suite 500, 4730 King	gsway	Address		MELL					Pro	ect#	1	12322116	1		886	3863_COC	A USA UNI A MILI	560386
	BURNABY BO		(004) 400 0750								Proj	ect Name					- 7			ect Manager
ie i	(604) 436-301 SAPinvoices@		(604) 436-3752	Phone	matthe	v.deane@sta	intoc co	Fax:		-	Site			MD			_			Nahed Amer
egulatory Cri	(A. A.	gotaniec.com	- 1	Email	cial Instructions	v.uearie@ste	T T	7111		_	San	npled By Analysis R	en ester		-		_	C#560386-11-01	ime (TAT) Required	
		d drinking water samples			1551140.05 7 0100800		ted Drinking Water ? (Y / N)	Metals rield rillated 7 (T / N) LEPH/HEPH/PAH	Dissolved Metals (with Hg)	МРН	Nutrients (TP, NH4, TKN)	Major Ions (Chloride, Fluoride, Nitrate, Orthophosphate, Sulphate)	Carbon (DOC)	low			(will be appl Standard TA Please note days - conta	andard) TAT lied if Rush TAT is not spec AT = 5-7 Working days for Standard TAT for certain sof your Project Manager it Rush TAT (if applies to ent e	most tests tests such as BOD and or details	Dioxins/Furans ar
Sample	Samules Barcode Label	must be kept cool (< 10°C Sample (Location)		ng until delivery to ma Date Sampled	Time Sampled	Metrix	Regula	LEPH LEPH	Disso	втехли	Nutrie	Major Nitrate Ortho	Carbo	7			of Bottles		Comments	tor #)
		MW8-48	SAOI	18/04/28		SOIL								X			(RECEIVE	D IN WHITE	HORSE
		1	02	, ,										X			1	BY: S	Lyonsa	085
		V	03					X									1		2018 -07- 3	0
		MW18-47	SAOI											X			1	Tritta Am		
			02						10					X			1	I EIVIF:	6/7	10
			03											X			1	42		
			04					X									1			
			05											X			1	7.		
			06	1/		× I								X			1			
		MW18-38	5A01	V	30	V								X			١			
* RELING	QUISHED BY: (Signat	MARK.	Date: (YY			RECE	IVED BY	(Signature	Print)			de: (YYIMM/	DD)	Time	# jars used and not submitted		/ 1	Lab Us		
	g pr.	styre.	18.70	7/29 2000	18	100 cm	un				11	8/0//3	1	13:00	11	Time Sensi	Temp	erature (°C) on Receipt	Custody Sevil	No H

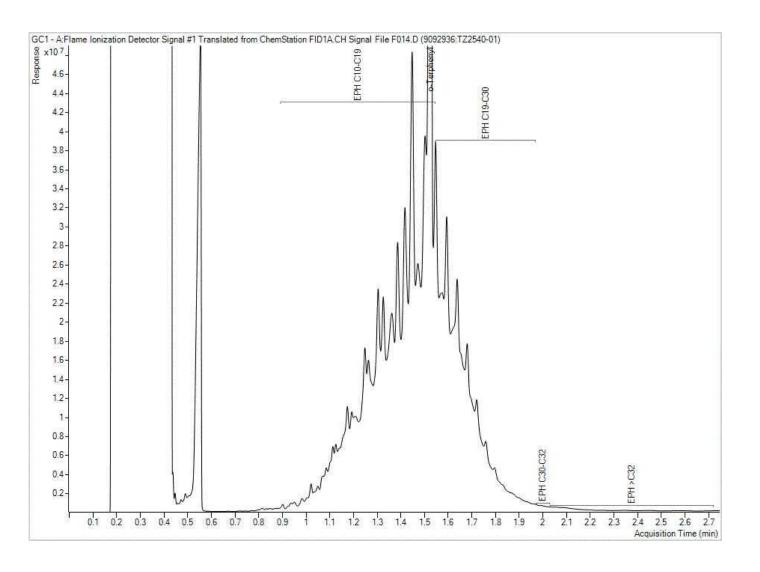
		INVOICE TO:				Report In	formatic	on						Project I	nformation			關係的對於的政治問題	を飲た製金画	II
mpany Name		TEC CONSULTING LT	TD	Company Na								Quotation		B71770				FEST PARTY AND	(DN)	e Order #:
tact Name	ACCOUNTS F	the state of the s	- N	Contact Nam	Matthew	Deane						P.O. #		*0000**	24			H-AST TAKK MEMOKIN	TIP SHIPE	
ress	BURNABY BO	Suite 500, 4730 Kings	way	Address	-		-	-	-	_		Project #		1232211	61	_	886	3863_COC		60386 .ct Manager
	(604) 436-301		04) 436-3752	_	-		-	-	511	_		Project Na	пе		V-LI II		1		one one	.c. mariage
one	SAPinvoices@		04) 400 0102	Phone Email	matthew.	deane@sta	ntec.o	_Fa				Site # Sampled B	Ú.	M	0		۱ ا	C#560386-12-01	1111111	Nahed Amer
Regulatory Cr	-				ial Instructions		TT	T					sis Requ	ested					(TAT) Required	
	-	of drinking water samples - ; must be kept cool (< 10°C) f	NAME OF TAXABLE PARTY.	_	oam		ilated Drinking Water?	Metals Field Filtered ? (Y/N)	LЕРН/НЕРН/РАН	Dissolved Metals (with Hg)	втехлин	Nutrients (TP, NH4, TKN) Major Ions (Chloride, Fluoride, Nitrate.	SEL	Heron (DOC)		A B	will be appli tandard TA flease note ays - conta bb Specific ate Require	117.00	st fests. Its such as BOD and efails: submission) Time Required (cell/leb.)	
Sample	Barcode Label	Sample (Location) Ide	ntification	Date Sampled	Time Sampled	Metrix	Reg	ž	3	۵	æ	Ž ∑Z	0 0	5		#	of Bottles	1 201 2 201	Comments	
		MW18-38	SAGZ	18/07/28		SOLL								X			1	RECEIVE	D IN WHITE	HORSE
)	03	1										X			1	BY:	lyono (085
			04											X			1		2018 -07- 3	0
			05				Ш						4	X			1	TEMP:	6,7	10
			06											X			1			1
			02						X	531.53							1			
		V	08											X			1			
		MW8-30	SAOL											X			1			
			02	7										X			1			
0	- 3	V	03	V		V								\propto	L, I		1			
* RELIN	QUISHED BY: (Signal	ture/Print)	Date:(YY)			RECE	WED BY	(Sig	nature(°r	rint)		Date: (YY	/// ()	Time	# jars used and not submitted	Time Sensitiv		Lab Use (ntact on Cooler?
- 11/1	40	M. JUNE	1/5/01	169 600	0 8	140	/·W	_14	W.			(A 14/1	1101	/) - (4	11/1		Temp	erature (°C) on Receipt -	1 100	No M

		INVOICE TO:				Report Inf	ormation	Ø.					Project to	formation	-	BNA 1545 かめなどできた。北京を8世代上版	
pany Name	-	NTEC CONSULTING	LTD	Company No							Quotatio	n#	B71770			RECYCLOSE A PARONE	le Order#:
tact Name	ACCOUNTS I	PAYABLE Suite 500, 4730 King	nous many	Contact Nan	Matthew I	Deane					P.O.#		1000011			以表現10個以此時間於10個以中的10個以此	Kall minim
ress	BURNABY BO		Jaway	Address	-		-	-	_	_	Project #		1232211	01	- B86	3863_COC	i60386 act Manage
ne	(604) 436-301		(604) 436-3752	Phone	-			Fax			Project !	lame	-		- 1		, our manage
2	SAPinvoices@			Email	matthew.d	deane@star			7.11		Sampled	By	MOD			C#560386-13-01	Nahed Amer
egulatory Cri	teria	40 - 60 - 60		Spec	ial Instructions				_			alysis Reque	sted		 ,	Turnaround Time (TAT) R	equired
Comple	Samples	ed drinking water samples smust be kept cool (< 10°C Sample (Location) k) from time of sampling	THE PRODUCTION OF PERSONS ASSESSED.	xam		Regulated Drinking Water ? (Y/N) Metals Field Filtered ? (Y/N)		Dissolved Metals (with Hg)	втехирн	Nutrients (TP, NH4, TKN) Major Ions (Chloride, Fluoride	Nitrate, Nitrite, Orthophosphate, Sulphate) Carbon (DOC)	How		(will be appi Standard TA Please note days - conta Job Specific Date Require Rush Confirms	don Number	BOD and Dioxins/Furans at a Required.
Sample	Barcode Label	Trans Visionia		11	Time Sampled	Mattrix	æ ≥	1	1 0	-	2 2	20 0			# of Bottles	RECEIVED IN WI	HITEHORSE
		MW18-30	3A04 1	18/04/28		SOIL		X		X					3	By Sylon	060085
		1	05	1		Î							X		1	- gui	0 (00
							\vdash					-				2018 -0	7-30
			06										X		1	- 07	(S.E.
			07										X		1	TEMP: 6 /	7 1 10
		3//							_				1		70		1 10
			08	_				_					1		3		
		MW18-31	SAOL	_		1 1							X		\		
		1 1 - 1 - 1	0						-07				1				
			OL				-	-	_			_	X				
			03					3					\times		1		
			04	10		1/							1		1		
		1	07	- //		- /		1	_				X		1		
		V	05	V		V							X		1		
		ture/Print)	Date: (YY/M	M/DD) Time		RECEN	ED BY: (Signature/P	(int)		20 (8/	ry/MM/DD)	Time	# jars used and		Lab Use Only	
* RELINC	UISHED BY: (Signal	- Indiana de la companya del companya de la companya del companya de la companya															

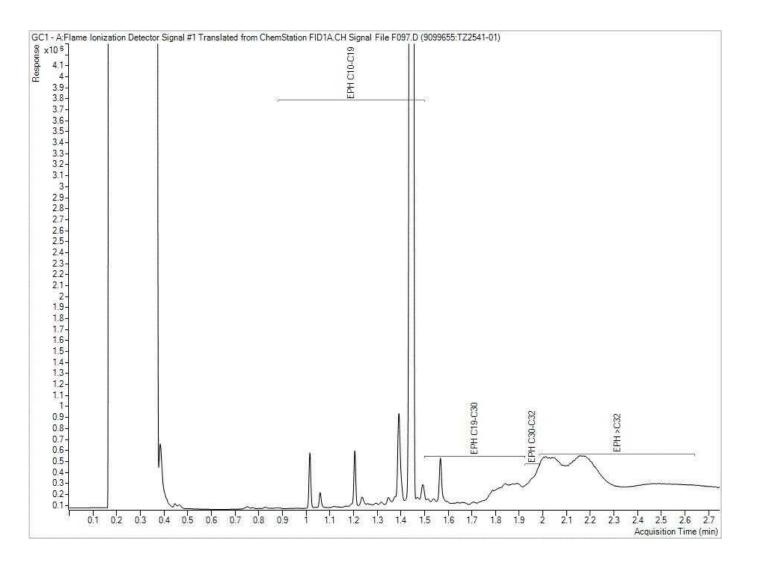

		INVOICE TO:	Report Information							Project Information						BUX DELINESSIDES DE	ACREA MARIE THE	Page /c		
any Name	#2792 STANTEC CONSULTING LTD			Company	Company Name							ation#	1	B71770				THE WORLD		le Order#:
rct Name	ACCOUNTS PAYABLE Metrotower III Suite 500, 4730 Kingsway BURNABY BC V5H 4M1				Contact Name Matthew Deane						P.O.	P.O.#								
ss											Proje	Project #		123221161						
					-							Project Name							1	
	(604) 436-3014 Fax (604) 436-3752				Phone matthew deposit		fax					Site # Sampled By		MD.						Nahed Amer
SAPinvoices@Stantec.com				Email matthew.deane@star				IGG.COM				equested				C#560366-14-01 Turnaround Time (TAT) Required				
	Note; For regulate	d drinking water samples	- please use the Drir	oking Water Chain	of Custody Fe	an.	ted Drinking Water ? (Y/N)	H H	Dissolved Metals (with Hg)	νРн	Nutrients (TP, NH4, TKN)	Major Ions (Chloride, Fluoride, Nitrate, Orthophosphate, Sulphate)	Carbon (DOC)	250			(will be app Standard T Please note days - cont	Harriston, and a second	ed) ost tests. sts such as BOD and I details. submission)Time Required:	Dioxins/Furans a
Sample	Samples Barcode Label	must be kept cool (< 10°C Sample (Location) k	CONTRACTOR DE L'ANGE	Date Sampled	Time Samp	led Matrix	Regular	LEPH	Dissol	втехирн	Nutrie	Major Nitrate Orthop	Carbo	The			of Bottles		Comments	
		MW18-31	SAde	18/01/25		SOL		X		X							3	RECEIVED	IN WHITEH	OHSE O
)	07	((1								X			1	EY:	29012	
		V	08											X			1		2018 -07- 31	U
		MWX-39	3A01											X				TEMP:	617	1 10
		1	02											X			1		Š	
		1	03											×			1			
			04											X			1			
			05											X			(
			06											X			1			
		V	07	A		V								X			(
RELIN	QUIDHNO BY: (Signat	ture/Print)	Date: (YY		me		IVED BY:		/Print)			te: (YY/MM/I		Time	# jars used and not submitted			Lab Use	Service Comments	and the same of th
18/04/20			129 70	50 R	CEIN CRUM						2018/07/5/ 15:00 M TimeSen					Tem	perature (°C) on Receipt	Custody Seal if	No No	

		4606 Canada Way, Burnat		Report Information								Project Inf	ormation		_	III WILL THE TELEVISION SHOTE		Page Sor	
ompany Name	#2792 STAN	TEC CONSULTING LTD	Company Nan	Company Name Contact Name Matthew Deane Address								B71770					19046//9	e Order#;	
ontact Name	ACCOUNTS F	PAYABLE																	
idress.	Metrotower III	Suite 500, 4730 Kingswa	Address									12322116	1		60301				
	BURNABY BO								Projec	a Name					B863863_COC ut Manag				
none	(604) 436-301	I On mondator	Phone Fax Email matthew.deane@stantec.com							Site #						Nahed Ame			
mail	SAPinvoices@	Stantec.com		Email	- Andrewson Company of the Company o	eane@stan	tec.com	1			Samp	175-77	ND			_	C#580391-02-01	Motoropi	material.
Regulatory Cr	iteria			Specia	Il Instructions		_	_	_			Analysis Reque	ested		_		Turnaround Tim Please provide advan	e (TAT) Required	
						7 21 -	Drinking Water ? (Y/N) d Filtered ? (Y/N)	HER MEN	MON	Ř						(will be ap Standard Please no days - con	Standard) TAT splind if Rush TAT is not specific TAT = 5-7 Working days for miles. Standard TAT for certain tentact your Project Manager for other Rush TAT (if applies to entire	ed) ost fests. sts such as 800 and E details.	
	Note: For regulate	d drinking water samples - plea	ase use the Drinki	ng Water Chain of C	I D D D							- 1					mation Number	Time Required:	
	Samples	must be kept cool (< 10°C) from	n time of sampling (until delivery to make	am		Is Fiel	7	2	7					9			(call tab fo	v 20
Samol	Barcode Label	Sample (Location) Identif	-000000-C	PRESIDENCE PORCE	Time Sampled	Matrix	Regu	3	30							# of Sottles		Comments	
Sump		7.1	01001	while				V	1							3			
		MW18-39	240X 1	8/04/28		SOIL	+	^	X				_			2	RECEIVED IN	ARRELIADS	-
		1	SACG	1		1				V						1	RECEIVED IN	WHITEHONE	ACCE
							\neg			1						1	BY: St	CVVDE	082
			SAIO				-	_		_	_					1	2010	- B-A	
			SALL							X						3	2018	-07-30	
		1							- ***							A	7	7	12
8		V	SAIZ				_			X						1	TEMP 6	1 + 11	10
		QC18-0	4			1		X	X							3	1 1001111	7)	
		90100	1	3//		1	\neg	1	1							3			
1		(\$C18-0	5	V			_	X	X		_	_				5			
io												- 1							
0																			
* RELIN	QUISHED BY: (Signa	ture/Print)	Date;/(YY/M)								Date	Date: (YY/MM/DD) Time # jars used:					Lab Use		
THEN	CH	Dogné	18/04/2	29 2000	0	TOTAL	cran	/	_L		201	977/31	15:00	not submitted	Time Sem	Tor	mperature (°C) on Receipt	Custody Sept In	No No

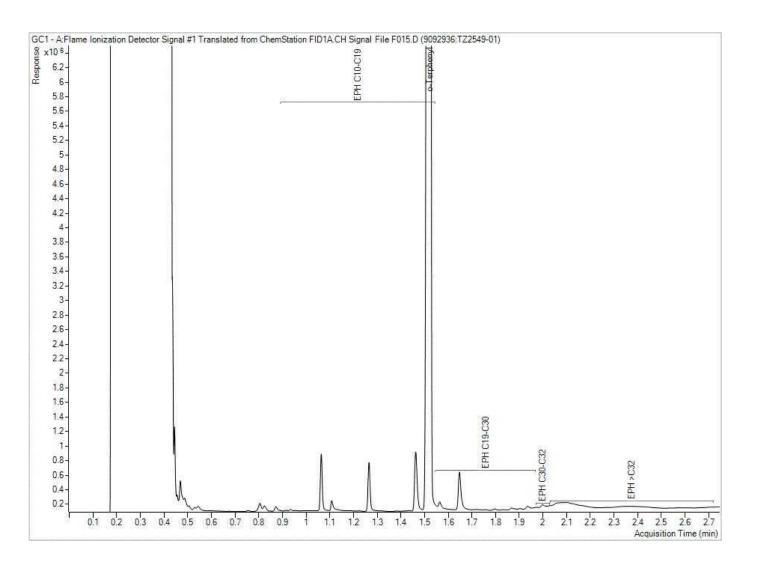
37?


STANTEC CONSULTING LTD Client Project #: 123221161 Client ID: MW18-48 SA03

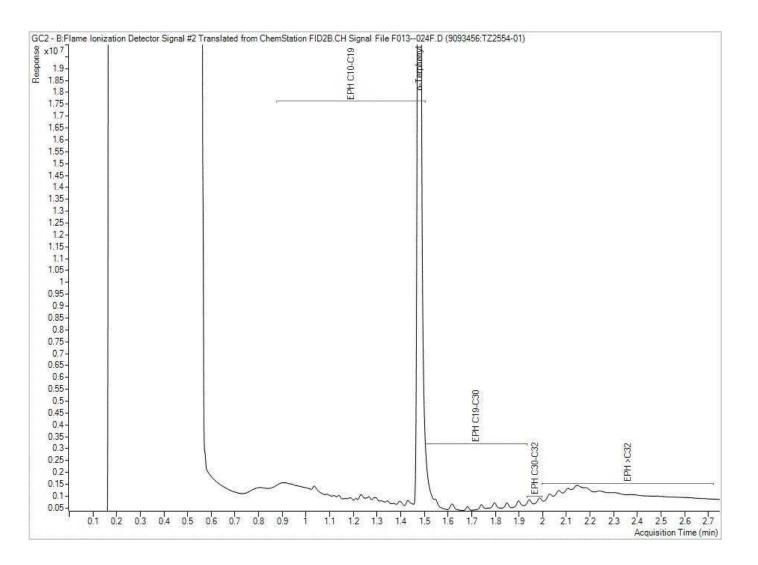
EPH in Soil by GC/FID Chromatogram


STANTEC CONSULTING LTD Client Project #: 123221161 Client ID: MW18-47 SA04

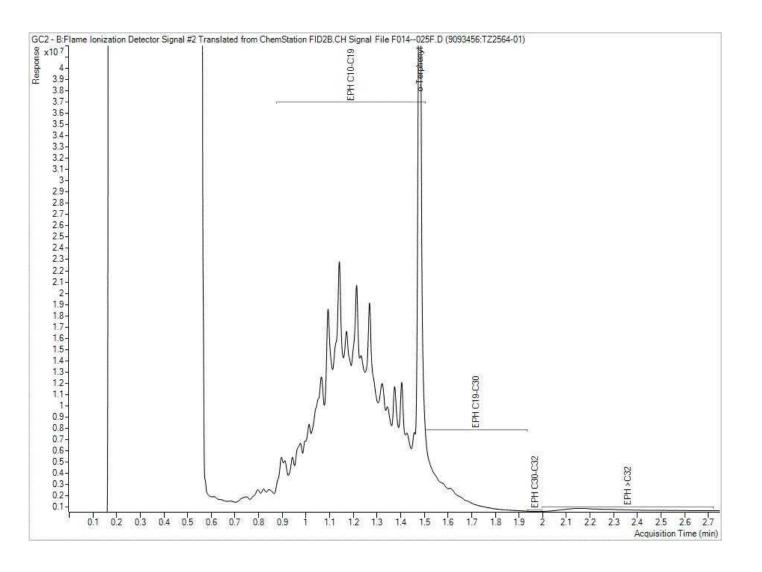
EPH in Soil by GC/FID Chromatogram


STANTEC CONSULTING LTD Client Project #: 123221161 Client ID: MW18-47 SA05

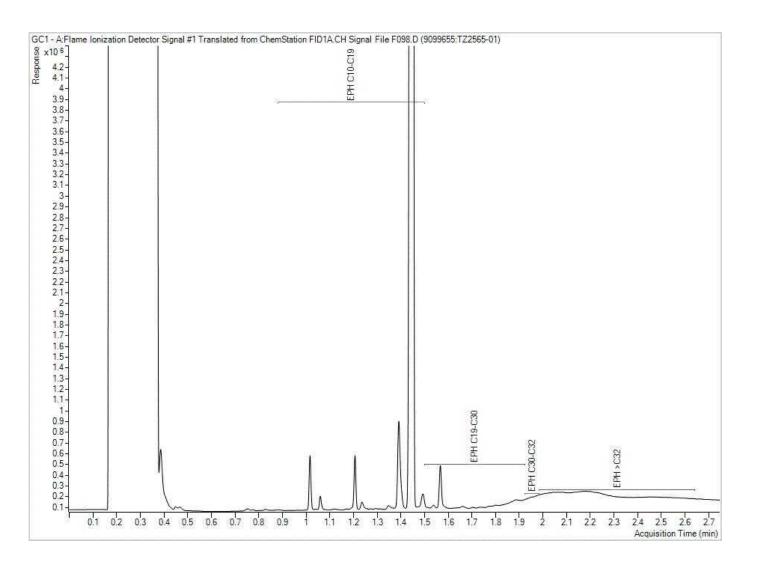
EPH in Soil by GC/FID Chromatogram


STANTEC CONSULTING LTD Client Project #: 123221161 Client ID: MW18-38 SA07

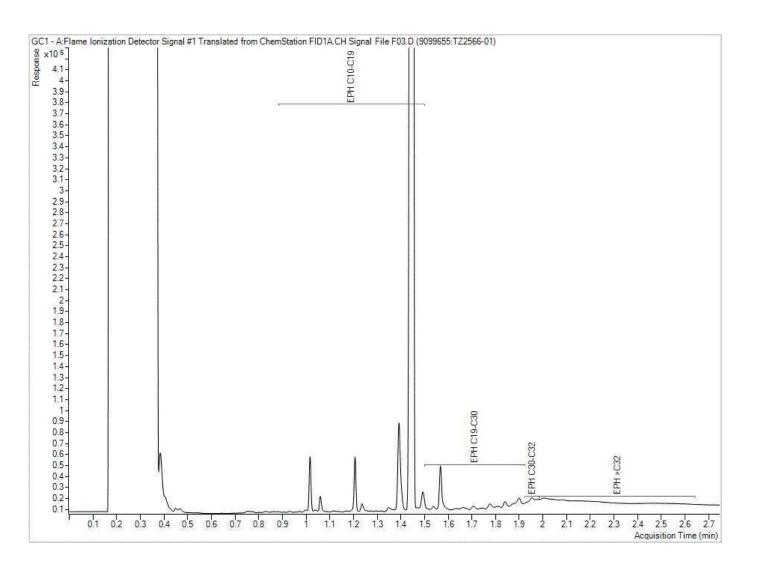
EPH in Soil by GC/FID Chromatogram


STANTEC CONSULTING LTD Client Project #: 123221161 Client ID: MW18-30 SA04

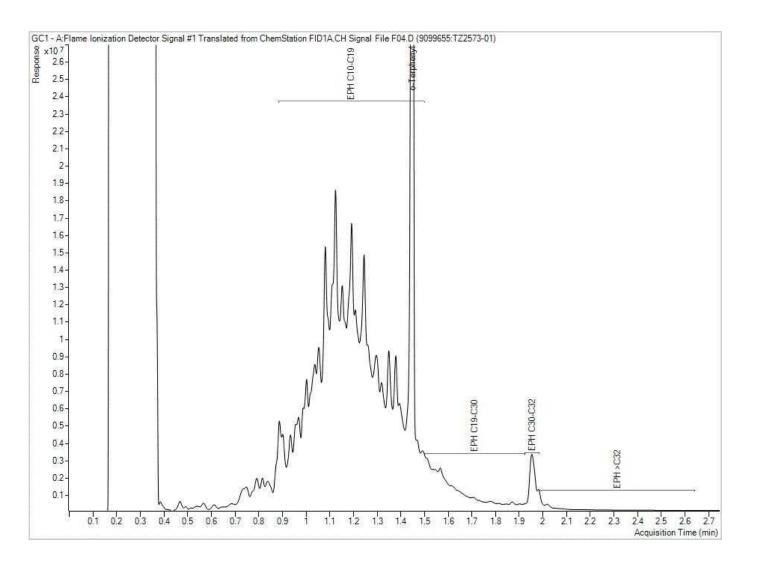
EPH in Soil by GC/FID Chromatogram


STANTEC CONSULTING LTD Client Project #: 123221161 Client ID: MW18-31 SA06

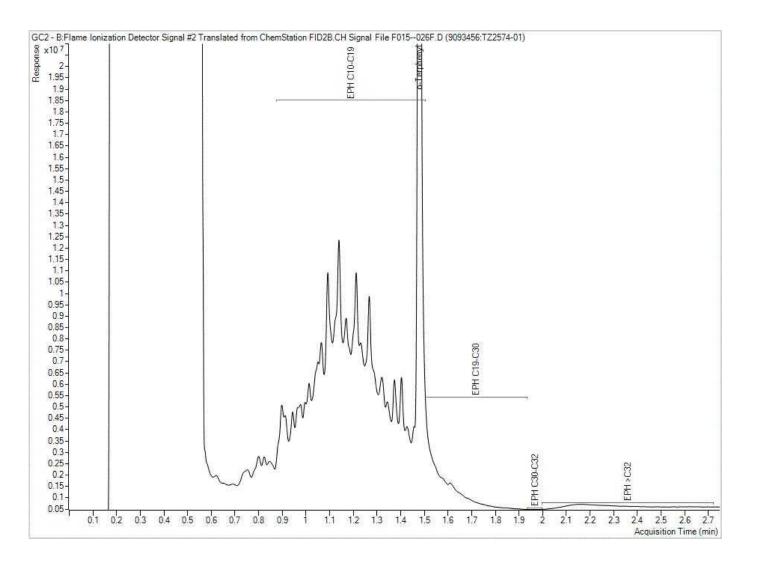
EPH in Soil by GC/FID Chromatogram


STANTEC CONSULTING LTD Client Project #: 123221161 Client ID: MW18-31 SA07

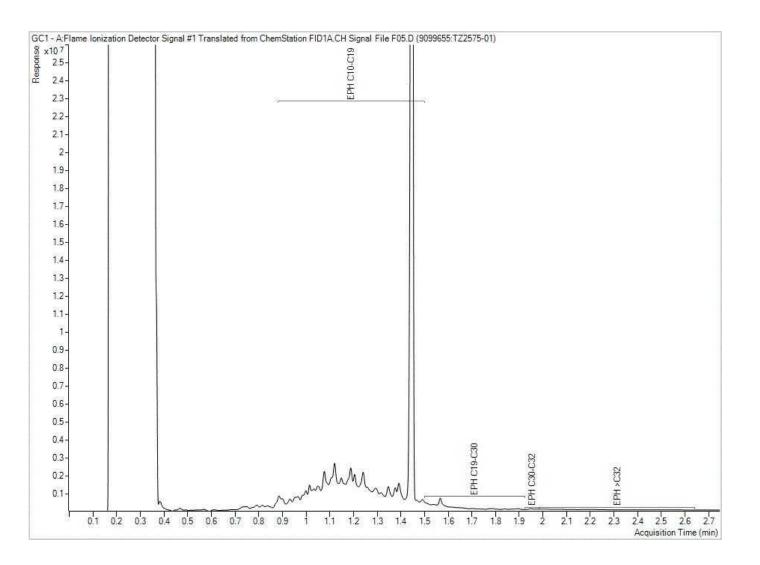
EPH in Soil by GC/FID Chromatogram


STANTEC CONSULTING LTD Client Project #: 123221161 Client ID: MW18-31 SA08

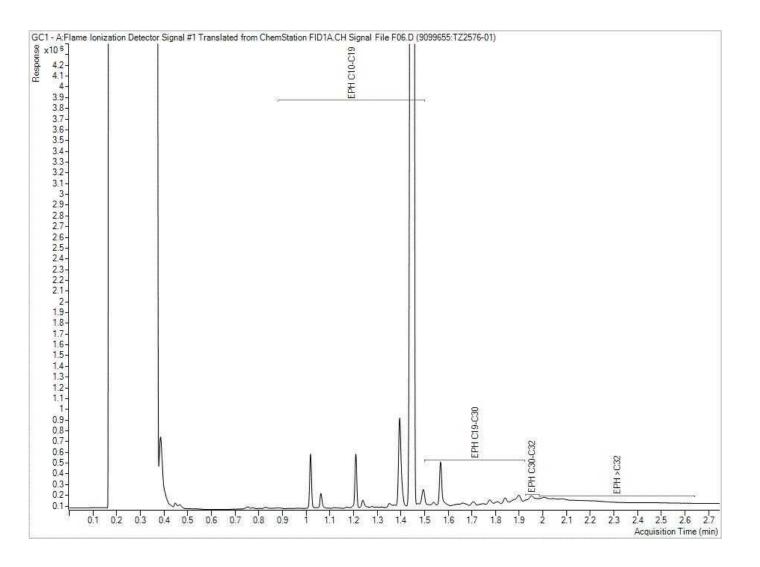
EPH in Soil by GC/FID Chromatogram


STANTEC CONSULTING LTD Client Project #: 123221161 Client ID: MW18-39 SA07

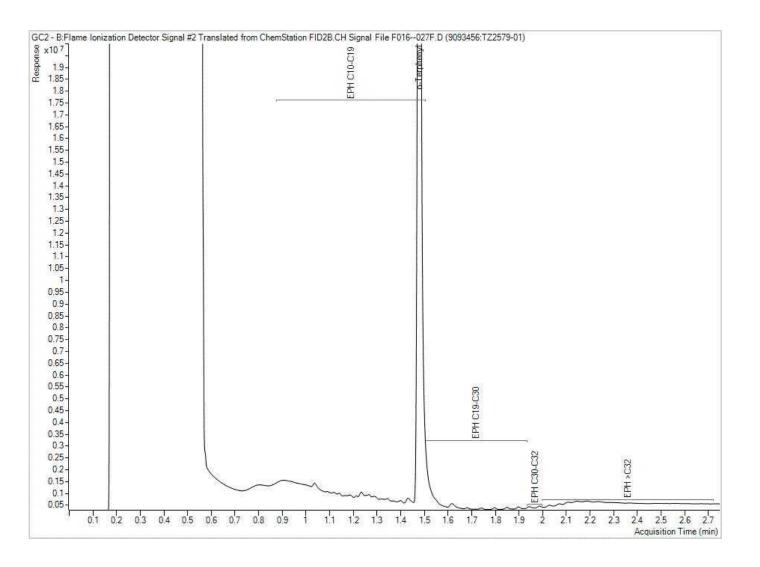
EPH in Soil by GC/FID Chromatogram


STANTEC CONSULTING LTD Client Project #: 123221161 Client ID: MW18-39 SA08

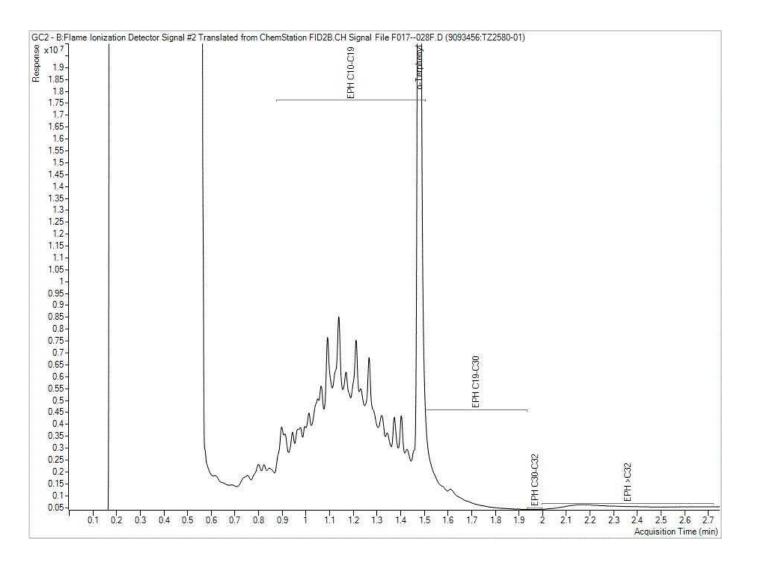
EPH in Soil by GC/FID Chromatogram


STANTEC CONSULTING LTD Client Project #: 123221161 Client ID: MW18-39 SA09

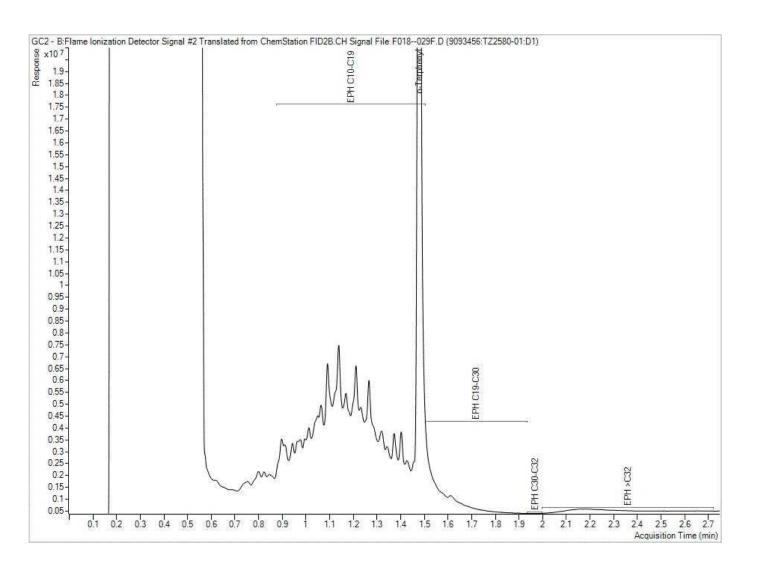
EPH in Soil by GC/FID Chromatogram


STANTEC CONSULTING LTD Client Project #: 123221161 Client ID: MW18-39 SA10

EPH in Soil by GC/FID Chromatogram


STANTEC CONSULTING LTD Client Project #: 123221161 Client ID: QC18-04

EPH in Soil by GC/FID Chromatogram


STANTEC CONSULTING LTD Client Project #: 123221161 Client ID: QC18-05

EPH in Soil by GC/FID Chromatogram

STANTEC CONSULTING LTD Client Project #: 123221161 Client ID: QC18-05

EPH in Soil by GC/FID Chromatogram

Your P.O. #: 1232 Your Project #: 123221161

Site#: B863863

Your C.O.C. #: B863863-ONTV-01-01

Attention: Stantec Reporting

Maxxam Analytics Burnaby (Stantec) 4606 Canada Way Burnaby, BC CANADA V5G 1K5

Report Date: 2018/08/17

Report #: R5360981 Version: 1 - Final

CERTIFICATE OF ANALYSIS

MAXXAM JOB #: B8K5403 Received: 2018/08/13, 10:28

Sample Matrix: Soil # Samples Received: 2

		Date	Date		
Analyses	Quantity	/ Extracted	Analyzed	Laboratory Method	Reference
Total Organic Carbon in Soil	2	N/A	2018/08/1	6 CAM SOP-00468	BCMOE TOC Aug 2014

Remarks:

Maxxam Analytics' laboratories are accredited to ISO/IEC 17025:2005 for specific parameters on scopes of accreditation. Unless otherwise noted, procedures used by Maxxam are based upon recognized Provincial, Federal or US method compendia such as CCME, MDDELCC, EPA, APHA.

All work recorded herein has been done in accordance with procedures and practices ordinarily exercised by professionals in Maxxam's profession using accepted testing methodologies, quality assurance and quality control procedures (except where otherwise agreed by the client and Maxxam in writing). All data is in statistical control and has met quality control and method performance criteria unless otherwise noted. All method blanks are reported; unless indicated otherwise, associated sample data are not blank corrected. Where applicable, unless otherwise noted, Measurement Uncertainty has not been accounted for when stating conformity to the referenced standard.

Maxxam Analytics' liability is limited to the actual cost of the requested analyses, unless otherwise agreed in writing. There is no other warranty expressed or implied. Maxxam has been retained to provide analysis of samples provided by the Client using the testing methodology referenced in this report. Interpretation and use of test results are the sole responsibility of the Client and are not within the scope of services provided by Maxxam, unless otherwise agreed in writing. Maxxam is not responsible for the accuracy or any data impacts, that result from the information provided by the customer or their agent.

Solid sample results, except biota, are based on dry weight unless otherwise indicated. Organic analyses are not recovery corrected except for isotope dilution methods.

Results relate to samples tested. When sampling is not conducted by Maxxam, results relate to the supplied samples tested.

This Certificate shall not be reproduced except in full, without the written approval of the laboratory.

 $Reference\ Method\ suffix\ "m"\ indicates\ test\ methods\ incorporate\ validated\ modifications\ from\ specific\ reference\ methods\ to\ improve\ performance.$

* RPDs calculated using raw data. The rounding of final results may result in the apparent difference.

Your P.O. #: 1232

Your Project #: 123221161

Site#: B863863

Your C.O.C. #: B863863-ONTV-01-01

Attention: Stantec Reporting

Maxxam Analytics Burnaby (Stantec) 4606 Canada Way Burnaby, BC CANADA V5G 1K5

Report Date: 2018/08/17

Report #: R5360981 Version: 1 - Final

CERTIFICATE OF ANALYSIS

MAXXAM JOB #: B8K5403 Received: 2018/08/13, 10:28

Encryption Key

Please direct all questions regarding this Certificate of Analysis to your Project Manager.
Augustyna Dobosz, Project Manager
Email: ADobosz@maxxam.ca
Phone# (905)817-5700 Ext:5798

Maxxam has procedures in place to guard against improper use of the electronic signature and have the required "signatories", as per section 5.10.2 of ISO/IEC 17025:2005(E), signing the reports. For Service Group specific validation please refer to the Validation Signature Page.

Maxxam Analytics Client Project #: 123221161

Your P.O. #: 1232 Sampler Initials: MD

RESULTS OF ANALYSES OF SOIL

Maxxam ID		HLM634	HLM635		
Sampling Date		2018/07/28	2018/07/28		
COC Number		B863863-ONTV-01-01	B863863-ONTV-01-01		
	UNITS	TZ2564-MW18-31 SA06	TZ2574-MW18-39 SA08	RDL	QC Batch
Total Organic Carbon	mg/kg	1500	<500	500	5680650

RDL = Reportable Detection Limit QC Batch = Quality Control Batch

Maxxam Analytics Client Project #: 123221161

Your P.O. #: 1232 Sampler Initials: MD

TEST SUMMARY

Maxxam ID: HLM634

Sample ID: TZ2564-MW18-31 SA06

Matrix: Soil

Collected: 2018/07/28

Shipped:

Received: 2018/08/13

Test Description Instrumentation Batch **Extracted Date Analyzed** Analyst Total Organic Carbon in Soil 2018/08/16 COMB 5680650 N/A Charles Opoku-Ware

Maxxam ID: HLM635

Sample ID: TZ2574-MW18-39 SA08 Matrix: Soil

Shipped:

Collected: 2018/07/28

Received: 2018/08/13

Test Description	Instrumentation	Batch	Extracted	Date Analyzed	Analyst
Total Organic Carbon in Soil	СОМВ	5680650	N/A	2018/08/16	Charles Opoku-Ware

Maxxam Analytics Client Project #: 123221161 Your P.O. #: 1232

Sampler Initials: MD

GENERAL COMMENTS

Each te	emperature is the a	verage of up to the	hree cooler temperatures taken at receipt
	Package 1	17.7°C	
			_
Result	s relate only to the	items tested.	

QUALITY ASSURANCE REPORT

Maxxam Analytics

Client Project #: 123221161

Your P.O. #: 1232 Sampler Initials: MD

			Method B	lank	RPD)	QC Sta	ındard
QC Batch	Parameter	Date	Value	UNITS	Value (%)	QC Limits	% Recovery	QC Limits
5680650	Total Organic Carbon	2018/08/16	<500	mg/kg	0.33	35	103	75 - 125

Duplicate: Paired analysis of a separate portion of the same sample. Used to evaluate the variance in the measurement.

QC Standard: A sample of known concentration prepared by an external agency under stringent conditions. Used as an independent check of method accuracy.

Method Blank: A blank matrix containing all reagents used in the analytical procedure. Used to identify laboratory contamination.

Maxxam Analytics Client Project #: 123221161

Your P.O. #: 1232 Sampler Initials: MD

VALIDATION SIGNATURE PAGE

The analytical data and all QC contained in this report were reviewed and validated by the following individual(s).

Maxxam has procedures in place to guard against improper use of the electronic signature and have the required "signatories", as per section 5.10.2 of ISO/IEC 17025:2005(E), signing the reports. For Service Group specific validation please refer to the Validation Signature Page.

Sent to: Maxxam Campobello 6740 Campobello Road Mississauga, ON, L5N 2L8 Tel: (905) 817-5700

MAXXAM INTERLAB CHAIN OF CUSTODY RECORD

Page 01 of 01

COC # B863863-ONTV-01-01

REP	ORT INFORMATION	ON									AN	ALYSIS	REQUES	TED					71:00	1000 (11 1:25)	
Con	ipany:	Maxxam																			
Add	ress:	4606 Canada Way, Burnaby, British	Columbia	, V5G 1K5														o	13-Aug	-18 10:28	
Con	tact Name:	Nahed Amer																Nazee	ma Ral	iaman	
Ema	iit:	NAmer@maxxam.ca															11.1				
Pho	ne:												1					B8	K540.	3	
Max	xam Project #:	B863863															Ť	Ť	CNII	1001	
Clie	nt Invoice To:	STANTEC CONSULTING LTD (2792)						190									J	L	ENV-	1081	
Clie	nt Report To:	STANTEC CONSULTING LTD (2792)		11-	Incl. on	Report? Yes	/ No	cont													
#	SAMPLE ID	,1	MATRIX	DATE SAMPLED (YYYY/MM/DE	TIME SAMPLED	SAMPLER INITIALS	# CONT.	TOC Soil Sub										А	DDITIONAL	SAMPLE INFOR	IMATION
1	TZ2564-MW1	3-31 SA06	SOIL	2018/07/28	3	MD	i.	X										(P: 01)	t:		
2	TZ2574 MW1	8-39 SA08	SOIL	2018/07/28	3	MD	1	X										(P: 01)			
3																					
4																					
5		*																			
Б	,																				
2											(4)										
8																				_	
g												â				,					
10																					
SITE	LOCATION:			RE	GULATORY C	RITERIA				PECIAL INS	1000000				1			REQUIRE	EDDs	TURNA	ROUND TIME
SITE	#: JECT #:								to	ease infor in the requ Please re	ested t	est(s).			4		ed	BEC Excel (A043) Stantec Ec	uis (NO47)	Rus	sh Required
-	221161																	Golder (Q	301)	2-10-2-2	Required
PO/	AFE, TASK ORDER	R/SERVICE ORDER, LINE ITEM:																			us if rush charges
, -12	32																			will b	e incurred
COC	ILER ID:	melfed lee		COOLER ID:		Lune L was						COOLE	R ID:		Luce	Lacon I				RECEIVING	LAB USE ONLY
Cust	ody Seal Present ody Seal Intact ing Media Presei	Temp: (1°C) (7 9	18	Custody Seal Custody Seal Cooling Med	Intact	YES NO	Ten (°(Custoo	ly Seal F ly Seal II g Media	itact			emp: °C)			Max	xam Job#
-	NQUISHED BY: (5	IGN & PRINT) PENGIE TOMO	DATE	5-08-11) /5 4		RECE 1	IVED B	Y: (SI	SN & PRIN		2117	-2,	~		ATE: (VYV)	-		1E: (HH MM (0. 28	Inhalled Bu	Labels Verified By:

Your Project #: 123221161

Attention: Matthew Deane

STANTEC CONSULTING LTD Metrotower III Suite 500, 4730 Kingsway BURNABY, BC CANADA V5H 4M1

Your C.O.C. #: 561112-02-01, 561112-01-01, 561112-03-01

Report Date: 2018/08/22

Report #: R2607953 Version: 2 - Revision

CERTIFICATE OF ANALYSIS – REVISED REPORT

MAXXAM JOB #: B865299 Received: 2018/08/02, 09:00

Sample Matrix: Soil # Samples Received: 8

		Date	Date		
Analyses	Quantity	Extracted	Analyzed	Laboratory Method	Analytical Method
BTEX/MTBE LH VH F1 in Soil - Field Pres. (1)	2	N/A	2018/08/09	BBY8SOP-00010/11/12	BCMOE BCLM Jul 2017
Moisture	4	2018/08/03	2018/08/07	BBY8SOP-00017	BCMOE BCLM Dec2000 m
Moisture	3	2018/08/04	2018/08/07	BBY8SOP-00017	BCMOE BCLM Dec2000 m
Moisture	1	2018/08/21	2018/08/22	BBY8SOP-00017	BCMOE BCLM Dec2000 m
PAH in Soil by GC/MS (SIM)	3	2018/08/04	2018/08/08	BBY8SOP-00022	BCMOE BCLM Jul2017m
PAH in Soil by GC/MS (SIM)	4	2018/08/04	2018/08/11	BBY8SOP-00022	BCMOE BCLM Jul2017m
Total PAH and B(a)P Calculation (2)	3	N/A	2018/08/09	BBY WI-00033	Auto Calc
Total PAH and B(a)P Calculation (2)	4	N/A	2018/08/11	BBY WI-00033	Auto Calc
EPH less PAH in Soil By GC/FID (3)	3	N/A	2018/08/09	BBY WI-00033	Auto Calc
EPH less PAH in Soil By GC/FID (3)	4	N/A	2018/08/13	BBY WI-00033	Auto Calc
EPH in Soil by GC/FID	3	2018/08/04	2018/08/08	BBY8SOP-00029	BCMOE BCLM Jul 2016
EPH in Soil by GC/FID	4	2018/08/04	2018/08/10	BBY8SOP-00029	BCMOE BCLM Jul 2016
EPH in Soil by GC/FID	1	2018/08/21	2018/08/22	BBY8SOP-00029	BCMOE BCLM Jul 2016
Volatile HC-BTEX for Soil (4)	2	N/A	2018/08/10	BBY WI-00033	Auto Calc

Remarks:

Maxxam Analytics' laboratories are accredited to ISO/IEC 17025:2005 for specific parameters on scopes of accreditation. Unless otherwise noted, procedures used by Maxxam are based upon recognized Provincial, Federal or US method compendia such as CCME, MDDELCC, EPA, APHA.

All work recorded herein has been done in accordance with procedures and practices ordinarily exercised by professionals in Maxxam's profession using accepted testing methodologies, quality assurance and quality control procedures (except where otherwise agreed by the client and Maxxam in writing). All data is in statistical control and has met quality control and method performance criteria unless otherwise noted. All method blanks are reported; unless indicated otherwise, associated sample data are not blank corrected. Where applicable, unless otherwise noted, Measurement Uncertainty has not been accounted for when stating conformity to the referenced standard.

Maxxam Analytics' liability is limited to the actual cost of the requested analyses, unless otherwise agreed in writing. There is no other warranty expressed or implied. Maxxam has been retained to provide analysis of samples provided by the Client using the testing methodology referenced in this report. Interpretation and use of test results are the sole responsibility of the Client and are not within the scope of services provided by Maxxam, unless otherwise agreed in writing. Maxxam is not responsible for the accuracy or any data impacts, that result from the information provided by the customer or their

Your Project #: 123221161

Attention: Matthew Deane

STANTEC CONSULTING LTD Metrotower III Suite 500, 4730 Kingsway BURNABY, BC CANADA V5H 4M1

Your C.O.C. #: 561112-02-01, 561112-01-01, 561112-03-01

Report Date: 2018/08/22

Report #: R2607953 Version: 2 - Revision

CERTIFICATE OF ANALYSIS – REVISED REPORT

MAXXAM JOB #: B865299 Received: 2018/08/02, 09:00

agent.

Solid sample results, except biota, are based on dry weight unless otherwise indicated. Organic analyses are not recovery corrected except for isotope dilution methods.

Results relate to samples tested. When sampling is not conducted by Maxxam, results relate to the supplied samples tested.

This Certificate shall not be reproduced except in full, without the written approval of the laboratory.

 $Reference\ Method\ suffix\ "m"\ indicates\ test\ methods\ incorporate\ validated\ modifications\ from\ specific\ reference\ methods\ to\ improve\ performance.$

- * RPDs calculated using raw data. The rounding of final results may result in the apparent difference.
- (1) The extraction date for VOC, BTEX, VH, or F1 samples that are field preserved with methanol equals the date sampled, unless otherwise stated.
- (2) Total PAHs in Soil include: Quinoline, Naphthalene, 1-Methylnaphthalene, 2-Methylnaphthalene, Acenaphthylene, Acenaphthene, Fluorene, Phenanthrene, Anthracene, Acridine, Fluoranthene, Pyrene, Benzo(a)anthracene, Chrysene, Benzo(b&j)fluoranthene, Benzo(k)fluoranthene, Benzo(a)pyrene, Indeno(1,2,3-cd)pyrene, Dibenz(a,h)anthracene, and Benzo(g,h,i)perylene.

Total PAHs in Sediment include: Naphthalene, 2-Methylnaphthalene, Acenaphthylene, Acenaphthene, Fluorene, Phenanthrene, Anthracene, Fluoranthene, Pyrene, Benzo(a)anthracene, Chrysene, Benzo(a)pyrene, and Dibenz(a,h)anthracene.

(3) LEPH = EPH (C10 to C19) - (Naphthalene + Phenanthrene)

HEPH = EPH (C19 to C32) - (Benzo(a)anthracene + Benzo(a)pyrene + Benzo(b)fluoranthene + Benzo(k)fluoranthene + Dibenz(a,h)anthracene + Indeno(1,2,3-cd)pyrene + Pyrene)
(4) VPH = VH - (Benzene + Toluene + Ethylbenzene + m & p-Xylene + o-Xylene + Styrene)

Encryption Key

Please direct all questions regarding this Certificate of Analysis to your Project Manager.

Nahed Amer, Project Manager Email: NAmer@maxxam.ca Phone# (604) 734 7276

Maxxam has procedures in place to guard against improper use of the electronic signature and have the required "signatories", as per section 5.10.2 of ISO/IEC 17025:2005(E), signing the reports. For Service Group specific validation please refer to the Validation Signature Page.

STANTEC CONSULTING LTD Client Project #: 123221161 Sampler Initials: MD

PHYSICAL TESTING (SOIL)

Maxxam ID		UA0222		UA0226		UA0230		
Sampling Date		2018/08/01 13:00						
COC Number		561112-02-01		561112-02-01		561112-02-01		
	LINUTC	NAVA40 E4 CA02	OC Datab	NAVA/10 F2 CAO2	OC Datab	NAVA/40 E2 CAO2	DD.	OC Botch
	UNITS	MW18-51 SA03	QC Battin	IVIW 18-52 SAUS	QC Battin	MW18-53 SA03	KDL	QC Batch
Physical Properties	UNITS	WW18-51 SAU3	QC Batch	WW18-52 5A03	QC Batch	WW18-53 5AU3	KUL	QC Batch
Physical Properties Moisture	%	23	9091447	11	9088124	9.9	0.30	

Maxxam ID		UA0241		UA0242	UA0242		UA0245		
Sampling Date		2018/08/01 11:00		2018/08/01 11:00	2018/08/01 11:00		2018/08/01 14:00		
COC Number		561112-01-01		561112-01-01	561112-01-01		561112-01-01		
	UNITS	MW18-49 SA03	QC Batch	MW18-49 SA04	MW18-49 SA04 Lab-Dup	QC Batch	MW18-50 SA03	RDL	QC Batch
Physical Properties									
Moisture	%	6.5	9088124	15	15	9111912	19	0.30	9088124
RDL = Reportable Detection Limit Lab-Dup = Laboratory Initiated Duplicate									

Maxxam ID		UA0250		UA0254		
Sampling Date		2018/08/01 17:00		2018/08/01 16:30		
COC Number		561112-03-01		561112-03-01		
	UNITS	MW18-54 SA02	QC Batch	MW18-55 SA02	RDL	QC Batch
Physical Properties						
Moisture	%	6.6	9091447	12	0.30	9088124

STANTEC CONSULTING LTD Client Project #: 123221161 Sampler Initials: MD

TOTAL PETROLEUM HYDROCARBONS (SOIL)

Maxxam ID		UA0242		
Sampling Date		2018/08/01 11:00		
COC Number		561112-01-01		
	UNITS	MW18-49 SA04	RDL	QC Batch
Hydrocarbons				
EPH (C10-C19)	mg/kg	<100	100	9112238
EPH (C19-C32)	mg/kg	<100	100	9112238
Surrogate Recovery (%)				
O-TERPHENYL (sur.)	%	84		9112238
RDL = Reportable Detection L				

STANTEC CONSULTING LTD Client Project #: 123221161

Sampler Initials: MD

CSR BTEX/VPH IN SOIL - FIELD PRESERVED (SOIL)

Maxxam ID		UA0226	UA0241		
Sampling Date		2018/08/01 09:00	2018/08/01 11:00		
COC Number		561112-02-01	561112-01-01		
	UNITS	MW18-52 SA03	MW18-49 SA03	RDL	QC Batch
Calculated Parameters					
VPH (VH6 to 10 - BTEX)	mg/kg	<10	68	10	9090507
Volatiles	•			•	
Methyl-tert-butylether (MTBE)	mg/kg	<0.10	<0.10	0.10	9096200
Benzene	mg/kg	<0.0050	<0.0050	0.0050	9096200
Toluene	mg/kg	<0.020	<0.020	0.020	9096200
Ethylbenzene	mg/kg	<0.010	<0.010	0.010	9096200
m & p-Xylene	mg/kg	<0.040	<0.040	0.040	9096200
o-Xylene	mg/kg	<0.040	<0.040	0.040	9096200
Styrene	mg/kg	<0.030	<0.030	0.030	9096200
Xylenes (Total)	mg/kg	<0.040	<0.040	0.040	9096200
VH C6-C10	mg/kg	<10	68	10	9096200
Surrogate Recovery (%)					
1,4-Difluorobenzene (sur.)	%	102	98		9096200
4-Bromofluorobenzene (sur.)	%	92	100		9096200
D10-ETHYLBENZENE (sur.)	%	102	103		9096200
D4-1,2-Dichloroethane (sur.)	%	103	100		9096200
RDL = Reportable Detection Limi	t				

STANTEC CONSULTING LTD Client Project #: 123221161 Sampler Initials: MD

LEPH & HEPH WITH PAH FOR CSR IN SOIL (SOIL)

Maxxam ID		UA0222		UA0226		UA0230		
o !! D .		2018/08/01		2018/08/01		2018/08/01		
Sampling Date		13:00		09:00		10:00		
COC Number		561112-02-01		561112-02-01		561112-02-01		
	UNITS	MW18-51 SA03	QC Batch	MW18-52 SA03	QC Batch	MW18-53 SA03	RDL	QC Batch
Calculated Parameters								
Low Molecular Weight PAH`s	mg/kg	<0.050	9091242	<0.050	9091242	<0.050	0.050	9091242
High Molecular Weight PAH`s	mg/kg	<0.050	9091242	<0.050	9091242	<0.050	0.050	9091242
Total PAH	mg/kg	<0.050	9091242	<0.050	9091242	<0.050	0.050	9091242
Polycyclic Aromatics			I.					
Naphthalene	mg/kg	<0.010	9096057	<0.010	9094591	<0.010	0.010	9096057
1-Methylnaphthalene	mg/kg	<0.050	9096057	<0.050	9094591	<0.050	0.050	9096057
2-Methylnaphthalene	mg/kg	<0.020	9096057	<0.020	9094591	<0.020	0.020	9096057
Acenaphthylene	mg/kg	<0.0050	9096057	<0.0050	9094591	<0.0050	0.0050	9096057
Acenaphthene	mg/kg	<0.0050	9096057	<0.0050	9094591	<0.0050	0.0050	9096057
Fluorene	mg/kg	<0.020	9096057	<0.020	9094591	<0.020	0.020	9096057
Phenanthrene	mg/kg	<0.010	9096057	<0.010	9094591	<0.010	0.010	9096057
Anthracene	mg/kg	<0.0040	9096057	<0.0040	9094591	<0.0040	0.0040	9096057
Acridine	mg/kg	<0.050	9096057	<0.050	9094591	<0.050	0.050	9096057
Fluoranthene	mg/kg	<0.020	9096057	<0.020	9094591	<0.020	0.020	9096057
Pyrene	mg/kg	<0.020	9096057	<0.020	9094591	<0.020	0.020	9096057
Benzo(a)anthracene	mg/kg	<0.020	9096057	<0.020	9094591	<0.020	0.020	9096057
Chrysene	mg/kg	<0.020	9096057	<0.020	9094591	<0.020	0.020	9096057
Benzo(b&j)fluoranthene	mg/kg	<0.020	9096057	<0.020	9094591	<0.020	0.020	9096057
Benzo(b)fluoranthene	mg/kg	<0.020	9096057	<0.020	9094591	<0.020	0.020	9096057
Benzo(k)fluoranthene	mg/kg	<0.020	9096057	<0.020	9094591	<0.020	0.020	9096057
Benzo(a)pyrene	mg/kg	<0.020	9096057	<0.020	9094591	<0.020	0.020	9096057
Indeno(1,2,3-cd)pyrene	mg/kg	<0.020	9096057	<0.020	9094591	<0.020	0.020	9096057
Dibenz(a,h)anthracene	mg/kg	<0.020	9096057	<0.020	9094591	<0.020	0.020	9096057
Benzo(g,h,i)perylene	mg/kg	<0.050	9096057	<0.050	9094591	<0.050	0.050	9096057
Calculated Parameters								
LEPH (C10-C19 less PAH)	mg/kg	<100	9091248	<100	9091248	<100	100	9091248
HEPH (C19-C32 less PAH)	mg/kg	<100	9091248	<100	9091248	<100	100	9091248
Hydrocarbons								
EPH (C10-C19)	mg/kg	<100	9096047	<100	9094587	<100	100	9096047
EPH (C19-C32)	mg/kg	<100	9096047	<100	9094587	<100	100	9096047
Surrogate Recovery (%)								
D10-ANTHRACENE (sur.)	%	72	9096057	86	9094591	87		9096057
RDL = Reportable Detection Lin	nit							

STANTEC CONSULTING LTD Client Project #: 123221161

Sampler Initials: MD

LEPH & HEPH WITH PAH FOR CSR IN SOIL (SOIL)

Maxxam ID		UA0222		UA0226		UA0230		
Sampling Date		2018/08/01 13:00		2018/08/01 09:00		2018/08/01 10:00		
COC Number		561112-02-01		561112-02-01		561112-02-01		
	UNITS	MW18-51 SA03	QC Batch	MW18-52 SA03	QC Batch	MW18-53 SA03	RDL	QC Batch
D8-ACENAPHTHYLENE (sur.)	%	79	9096057	82	9094591	84		9096057
D8-NAPHTHALENE (sur.)	%	93	9096057	86	9094591	96		9096057
TERPHENYL-D14 (sur.)	%	88	9096057	87	9094591	91		9096057
O-TERPHENYL (sur.)	%	89	9096047	88	9094587	87		9096047
RDL = Reportable Detection Lir	nit							

STANTEC CONSULTING LTD Client Project #: 123221161 Sampler Initials: MD

LEPH & HEPH WITH PAH FOR CSR IN SOIL (SOIL)

Maxxam ID		UA0241		UA0245	UA0250		UA0254		
Sampling Date		2018/08/01		2018/08/01	2018/08/01		2018/08/01		
, ,		11:00		14:00	17:00		16:30		
COC Number		561112-01-01	_	561112-01-01	561112-03-01		561112-03-01		
	UNITS	MW18-49 SA03	QC Batch	MW18-50 SA03	MW18-54 SA02	QC Batch	MW18-55 SA02	RDL	QC Batch
Calculated Parameters									
Low Molecular Weight PAH`s	mg/kg	0.77	9091242	<0.050	<0.050	9091242	<0.050	0.050	9091242
High Molecular Weight PAH`s	mg/kg	<0.050	9091242	<0.050	<0.050	9091242	<0.050	0.050	9091242
Total PAH	mg/kg	0.77	9091242	<0.050	<0.050	9091242	<0.050	0.050	9091242
Polycyclic Aromatics									
Naphthalene	mg/kg	0.053 (1)	9094591	<0.010	<0.010	9096057	<0.010	0.010	9094591
1-Methylnaphthalene	mg/kg	<0.050	9094591	<0.050	<0.050	9096057	<0.050	0.050	9094591
2-Methylnaphthalene	mg/kg	0.037 (1)	9094591	<0.020	<0.020	9096057	<0.020	0.020	9094591
Acenaphthylene	mg/kg	0.025 (1)	9094591	<0.0050	<0.0050	9096057	<0.0050	0.0050	9094591
Acenaphthene	mg/kg	0.074 (1)	9094591	<0.0050	<0.0050	9096057	<0.0050	0.0050	9094591
Fluorene	mg/kg	0.27	9094591	<0.020	<0.020	9096057	<0.020	0.020	9094591
Phenanthrene	mg/kg	0.30	9094591	<0.010	<0.010	9096057	<0.010	0.010	9094591
Anthracene	mg/kg	0.0090 (1)	9094591	<0.0040	<0.0040	9096057	<0.0040	0.0040	9094591
Acridine	mg/kg	<0.050	9094591	<0.050	<0.050	9096057	<0.050	0.050	9094591
Fluoranthene	mg/kg	<0.020	9094591	<0.020	<0.020	9096057	<0.020	0.020	9094591
Pyrene	mg/kg	<0.020	9094591	<0.020	<0.020	9096057	<0.020	0.020	9094591
Benzo(a)anthracene	mg/kg	<0.020	9094591	<0.020	<0.020	9096057	<0.020	0.020	9094591
Chrysene	mg/kg	<0.020	9094591	<0.020	<0.020	9096057	<0.020	0.020	9094591
Benzo(b&j)fluoranthene	mg/kg	<0.020	9094591	<0.020	<0.020	9096057	<0.020	0.020	9094591
Benzo(b)fluoranthene	mg/kg	<0.020	9094591	<0.020	<0.020	9096057	<0.020	0.020	9094591
Benzo(k)fluoranthene	mg/kg	<0.020	9094591	<0.020	<0.020	9096057	<0.020	0.020	9094591
Benzo(a)pyrene	mg/kg	<0.020	9094591	<0.020	<0.020	9096057	<0.020	0.020	9094591
Indeno(1,2,3-cd)pyrene	mg/kg	<0.020	9094591	<0.020	<0.020	9096057	<0.020	0.020	9094591
Dibenz(a,h)anthracene	mg/kg	<0.020	9094591	<0.020	<0.020	9096057	<0.020	0.020	9094591
Benzo(g,h,i)perylene	mg/kg	<0.050	9094591	<0.050	<0.050	9096057	<0.050	0.050	9094591
Calculated Parameters									
LEPH (C10-C19 less PAH)	mg/kg	1800	9091248	<100	<100	9091248	<100	100	9091248
HEPH (C19-C32 less PAH)	mg/kg	170	9091248	<100	<100	9091248	<100	100	9091248
Hydrocarbons									
EPH (C10-C19)	mg/kg	1800	9094587	<100	<100	9096047	<100	100	9094587
	1116/116								
EPH (C19-C32)	mg/kg	170	9094587	<100	<100	9096047	<100	100	9094587

(1) Tentatively identified result and may be potentially biased high due to matrix interference.

STANTEC CONSULTING LTD Client Project #: 123221161

Sampler Initials: MD

LEPH & HEPH WITH PAH FOR CSR IN SOIL (SOIL)

Maxxam ID		UA0241		UA0245	UA0250		UA0254		
Sampling Date		2018/08/01 11:00		2018/08/01 14:00	2018/08/01 17:00		2018/08/01 16:30		
COC Number		561112-01-01		561112-01-01	561112-03-01		561112-03-01		
	UNITS	MW18-49 SA03	QC Batch	MW18-50 SA03	MW18-54 SA02	QC Batch	MW18-55 SA02	RDL	QC Batch
Surrogate Recovery (%)									
D10-ANTHRACENE (sur.)	%	91	9094591	78	87	9096057	85		9094591
D8-ACENAPHTHYLENE (sur.)	%	83	9094591	82	84	9096057	83		9094591
D8-NAPHTHALENE (sur.)	%	81	9094591	96	97	9096057	86		9094591
TERPHENYL-D14 (sur.)	%	91	9094591	92	92	9096057	85		9094591
O-TERPHENYL (sur.)	%	88	9094587	89	89	9096047	88		9094587
RDL = Reportable Detection Lir	nit								

STANTEC CONSULTING LTD Client Project #: 123221161 Sampler Initials: MD

GENERAL COMMENTS

Version 2: Report reissued to include results for EPH on sample MW18-49 SA04 as per request from Matthew Deane on 2018/08/21 Sample analyzed past hold time. Analysis performed with client's consent.

Sample UA0242 [MW18-49 SA04]: Sample analyzed past method specified hold time for Moisture. Sample analyzed past method specified hold time for EPH in Soil by GC/FID.

Results relate only to the items tested.

QUALITY ASSURANCE REPORT

STANTEC CONSULTING LTD Client Project #: 123221161

Sampler Initials: MD

			Matrix	Spike	Spiked	Blank	Method I	Blank	RP	D
QC Batch	Parameter	Date	% Recovery	QC Limits	% Recovery	QC Limits	Value	UNITS	Value (%)	QC Limits
9094587	O-TERPHENYL (sur.)	2018/08/08	86	60 - 140	87	60 - 140	87	%		
9094591	D10-ANTHRACENE (sur.)	2018/08/08	83	50 - 140	85	50 - 140	86	%		
9094591	D8-ACENAPHTHYLENE (sur.)	2018/08/08	80	50 - 140	82	50 - 140	85	%		
9094591	D8-NAPHTHALENE (sur.)	2018/08/08	85	50 - 140	85	50 - 140	88	%		
9094591	TERPHENYL-D14 (sur.)	2018/08/08	83	50 - 140	85	50 - 140	90	%		
9096047	O-TERPHENYL (sur.)	2018/08/10	87	60 - 140	86	60 - 140	88	%		
9096057	D10-ANTHRACENE (sur.)	2018/08/10	84	50 - 140	82	50 - 140	83	%		
9096057	D8-ACENAPHTHYLENE (sur.)	2018/08/10	80	50 - 140	79	50 - 140	80	%		
9096057	D8-NAPHTHALENE (sur.)	2018/08/10	92	50 - 140	89	50 - 140	93	%		
9096057	TERPHENYL-D14 (sur.)	2018/08/10	90	50 - 140	88	50 - 140	89	%		
9096200	1,4-Difluorobenzene (sur.)	2018/08/09	101	70 - 130	102	70 - 130	106	%		
9096200	4-Bromofluorobenzene (sur.)	2018/08/09	93	70 - 130	92	70 - 130	92	%		
9096200	D10-ETHYLBENZENE (sur.)	2018/08/09	102	60 - 130	98	60 - 130	118	%		
9096200	D4-1,2-Dichloroethane (sur.)	2018/08/09	98	70 - 130	91	70 - 130	107	%		
9112238	O-TERPHENYL (sur.)	2018/08/22	77	60 - 140	74	60 - 140	86	%		
9088124	Moisture	2018/08/07					<0.30	%	5.5	20
9091447	Moisture	2018/08/07					<0.30	%	7.3	20
9094587	EPH (C10-C19)	2018/08/08	98	60 - 140	99	70 - 130	<100	mg/kg	NC	40
9094587	EPH (C19-C32)	2018/08/08	100	60 - 140	101	70 - 130	<100	mg/kg	NC	40
9094591	1-Methylnaphthalene	2018/08/08	83	50 - 140	85	50 - 140	<0.050	mg/kg	NC	50
9094591	2-Methylnaphthalene	2018/08/08	81	50 - 140	81	50 - 140	<0.020	mg/kg	NC	50
9094591	Acenaphthene	2018/08/08	78	50 - 140	82	50 - 140	<0.0050	mg/kg	NC	50
9094591	Acenaphthylene	2018/08/08	79	50 - 140	81	50 - 140	<0.0050	mg/kg	NC	50
9094591	Acridine	2018/08/08	98	50 - 140			<0.050	mg/kg		
9094591	Anthracene	2018/08/08	80	50 - 140	83	50 - 140	<0.0040	mg/kg	NC	50
9094591	Benzo(a)anthracene	2018/08/08	88	50 - 140	80	50 - 140	<0.020	mg/kg	NC	50
9094591	Benzo(a)pyrene	2018/08/08	77	50 - 140	82	50 - 140	<0.020	mg/kg	NC	50
9094591	Benzo(b&j)fluoranthene	2018/08/08	82	50 - 140	81	50 - 140	<0.020	mg/kg	NC	50
9094591	Benzo(b)fluoranthene	2018/08/08	84	50 - 140	78	50 - 140	<0.020	mg/kg	NC	50
9094591	Benzo(g,h,i)perylene	2018/08/08	82	50 - 140	67	50 - 140	<0.050	mg/kg	NC	50
						l l		J. J.		

QUALITY ASSURANCE REPORT(CONT'D)

STANTEC CONSULTING LTD Client Project #: 123221161

Sampler Initials: MD

Description Parameter Date % Recovery Oct Umits Value UNITS Value (\$)\$ Oct Units O				Matrix	Spike	Spiked	Blank	Method E	Blank	RPI	D
9094591 Dibenz(a,h)anthracene 2018/08/08 83 \$0.140 76 \$0.140 \$0.020 mg/kg NC \$0.9094591 Fluoranthene 2018/08/08 80 \$0.140 81 \$0.140 \$0.020 mg/kg NC \$0.9094591 Fluorene 2018/08/08 87 \$0.140 81 \$0.140 \$0.020 mg/kg NC \$0.9094591 Fluorene 2018/08/08 82 \$0.140 76 \$0.140 \$0.020 mg/kg NC \$0.9094591 Indeno(1,2,3-cd)pyrene 2018/08/08 81 \$0.140 76 \$0.140 \$0.020 mg/kg NC \$0.9094591 Naphthalene 2018/08/08 81 \$0.140 \$1.000 mg/kg NC \$0.9094591 Naphthalene 2018/08/08 82 \$0.140 \$1.000 mg/kg NC \$0.9094591 Naphthalene 2018/08/10 \$9.900077 \$0.140 \$0.010 mg/kg NC \$0.9094591 Naphthalene 2018/08/10 \$9.900077 \$0.140 \$1.000 mg/kg NC \$0.9094597 Naphthalene 2018/08/10 \$9.900077 Naphthalene 2018/08/10 \$9.900077 Naphthalene 2018/08/10 \$9.900077 Naphthalene 2018/08/10 \$9.900077 Naphthalene 2018/08/10 \$7.900077 Naphthalene 2018/08/10 \$7.90	QC Batch	Parameter	Date	% Recovery	QC Limits	% Recovery	QC Limits	Value	UNITS	Value (%)	QC Limits
9994591 Fluoranthene 2018/08/08 80 50-140 81 50-140 <0.020 mg/kg NC 50 9094591 Fluorene 2018/08/08 82 50-140 76 50-140 <0.020 mg/kg NC 50 9094591 fluorene 2018/08/08 82 50-140 76 50-140 <0.020 mg/kg NC 50 9094591 fluorene 2018/08/08 81 50-140 81 50-140 <0.020 mg/kg NC 50 9094591 fluorene 2018/08/08 81 50-140 81 50-140 <0.010 mg/kg NC 50 9094591 fluorene 2018/08/08 80 50-140 79 50-140 <0.010 mg/kg NC 50 9094591 fluorene 2018/08/08 82 50-140 79 50-140 <0.010 mg/kg NC 50 9094591 fluorene 2018/08/08 82 50-140 78 50-140 <0.010 mg/kg NC 50 9094591 fluorene 2018/08/10 99 60-140 98 70-130 <1.00 mg/kg NC 50 9094591 fluorene 2018/08/10 99 60-140 98 70-130 <1.00 mg/kg NC 50 9094607 fluorene 2018/08/10 99 60-140 98 70-130 <1.00 mg/kg NC 40 9096072 fluorene 2018/08/10 98 50-140 96 50-140 <0.050 mg/kg NC 50 9096057 fluorene 2018/08/10 95 50-140 93 50-140 <0.050 mg/kg NC 50 9096057 Acenaphthylene 2018/08/10 77 50-140 78 50-140 <0.0050 mg/kg NC 50 9096057 Acenaphthylene 2018/08/10 77 50-140 76 50-140 <0.0050 mg/kg NC 50 9096057 Acenaphthylene 2018/08/10 77 50-140 76 50-140 <0.0050 mg/kg NC 50 9096057 Acenaphthylene 2018/08/10 77 50-140 76 50-140 <0.0050 mg/kg NC 50 9096057 Benzo(a)phrhacene 2018/08/10 77 50-140 76 50-140 <0.0000 mg/kg NC 50 9096057 Benzo(a)phrhacene 2018/08/10 77 50-140 76 50-140 <0.0000 mg/kg NC 50 9096057 Benzo(a)phrhacene 2018/08/10 75 50-140 76 50-140 <0.0000 mg/kg NC 50 9096057 Benzo(a)phrhacene 2018/08/10 77 50-140 76 50-140 <0.0000 mg/kg NC 50 9096057 Benzo(a)phrhacene 2018/08/10 77 50-140 76 50-140 <0.0000 mg/kg NC 50 9096057	9094591	Chrysene	2018/08/08	93	50 - 140	83	50 - 140	<0.020	mg/kg	NC	50
9094591 Fluorene 2018/08/08 77 50 - 140 78 50 - 140 <0.020 mg/kg NC 50 <0.0934591 Indeno(1,2,3-cd)pyrene 2018/08/08 82 50 - 140 76 50 - 140 <0.020 mg/kg NC 50 <0.0934591 Naphthalene 2018/08/08 81 50 - 140 81 50 - 140 <0.010 mg/kg NC 50 <0.0934591 Naphthalene 2018/08/08 80 50 - 140 79 50 - 140 <0.010 mg/kg NC 50 <0.0934591 Phenanthrene 2018/08/08 82 50 - 140 79 50 - 140 <0.010 mg/kg NC 50 <0.0934591 Pyrene 2018/08/08 82 50 - 140 85 50 - 140 <0.020 mg/kg NC 50 <0.0934591 Pyrene 2018/08/10 99 60 - 140 85 50 - 140 <0.020 mg/kg NC 50 <0.0934591 Pyrene 2018/08/10 99 60 - 140 85 50 - 140 <0.020 mg/kg NC 40 <0.0934591 Pyrene 2018/08/10 99 80 - 140 85 50 - 140 <0.020 mg/kg NC 40 <0.0934591 Pyrene 2018/08/10 99 80 - 140 96 50 - 140 <0.000 mg/kg NC 40 <0.0950 mg/kg NC 50 <0.0950	9094591	Dibenz(a,h)anthracene	2018/08/08	83	50 - 140	76	50 - 140	<0.020	mg/kg	NC	50
9094591 Indeno(1,2,3-cd)pyrene 2018/08/08 82 50-140 76 50-140 <0.020 mg/kg NC 50 9094591 Naphthalene 2018/08/08 81 50-140 81 50-140 <0.010 mg/kg NC 50 9094591 Pyrene 2018/08/08 82 50-140 85 50-140 <0.020 mg/kg NC 50 9094591 Pyrene 2018/08/08 82 50-140 85 50-140 <0.020 mg/kg NC 50 9094591 Pyrene 2018/08/08 82 50-140 85 50-140 <0.020 mg/kg NC 50 9094591 Pyrene 2018/08/10 99 60-140 98 70-130 <100 mg/kg NC 40 9066047 EPH (C10-C19) 2018/08/10 99 60-140 98 70-130 <100 mg/kg NC 40 90960547 EPH (C19-C32) 2018/08/10 99 50-140 96 50-140 <0.020 mg/kg NC 50 9096057 2-Methylnaphthalene 2018/08/10 95 50-140 96 50-140 <0.050 mg/kg NC 50 9096057 2-Methylnaphthalene 2018/08/10 95 50-140 78 50-140 <0.020 mg/kg NC 50 9096057 Acenaphthylene 2018/08/10 77 50-140 78 50-140 <0.0050 mg/kg NC 50 9096057 Acenaphthylene 2018/08/10 77 50-140 78 50-140 <0.0050 mg/kg NC 50 9096057 Acenaphthylene 2018/08/10 77 50-140 78 50-140 <0.0050 mg/kg NC 50 9096057 Actridine 2018/08/10 77 50-140 78 50-140 <0.0050 mg/kg NC 50 9096057 Actridine 2018/08/10 75 50-140 75 50-140 <0.0050 mg/kg NC 50 9096057 Benzo(a)pyrene 2018/08/10 75 50-140 76 50-140 <0.0020 mg/kg NC 50 9096057 Benzo(a)pyrene 2018/08/10 75 50-140 75 50-140 <0.0020 mg/kg NC 50 9096057 Benzo(a)pyrene 2018/08/10 75 50-140 76 50-140 <0.0020 mg/kg NC 50 9096057 Benzo(a)pyrene 2018/08/10 75 50-140 76 50-140 <0.0020 mg/kg NC 50 9096057 Benzo(a)pyrene 2018/08/10 75 50-140 76 50-140 <0.0020 mg/kg NC 50 9096057 Benzo(a)pyrene 2018/08/10 77 50-140 78 50-140 <0.0020 mg/kg NC 50 9096057 Benzo(a)pyrene 2018/08/10 77 50-140 76 50-140 <0	9094591	Fluoranthene	2018/08/08	80	50 - 140	81	50 - 140	<0.020	mg/kg	NC	50
9094591 Naphthalene 2018/08/08 81 50 - 140 81 50 - 140 < 0.010 mg/kg NC 50 9094591 Phenathrene 2018/08/08 80 50 - 140 79 50 - 140 < 0.010 mg/kg NC 50 9096047 PPH (C10-C19) 2018/08/10 99 60 - 140 98 70 - 130 < 1.00 mg/kg NC 40 9096047 EPH (C19-C32) 2018/08/10 101 60 - 140 101 70 - 130 < 1.00 mg/kg NC 40 9096057 1-Methylnaphthalene 2018/08/10 98 50 - 140 96 50 - 140 < 0.050 mg/kg NC 50 9096057 2-Methylnaphthalene 2018/08/10 95 50 - 140 93 50 - 140 < 0.050 mg/kg NC 50 9096057 2-Methylnaphthalene 2018/08/10 79 50 - 140 78 50 - 140 < 0.0050 mg/kg NC 50 9096057 Acenaphthylene 2018/08/10 79 50 - 140 76 50 - 140 < 0.0050 mg/kg NC 50 9096057 Acenaphthylene 2018/08/10 77 50 - 140 76 50 - 140 < 0.0050 mg/kg NC 50 9096057 Acenaphthylene 2018/08/10 77 50 - 140 76 50 - 140 < 0.0050 mg/kg NC 50 9096057 Anthracene 2018/08/10 100 50 - 140 80 50 - 140 < 0.0050 mg/kg NC 50 9096057 Benzo(a)pyrene 2018/08/10 75 50 - 140 76 50 - 140 < 0.0020 mg/kg NC 50 9096057 Benzo(a)pyrene 2018/08/10 76 50 - 140 76 50 - 140 < 0.0020 mg/kg NC 50 9096057 Benzo(a)pyrene 2018/08/10 74 50 - 140 75 50 - 140 < 0.0020 mg/kg NC 50 9096057 Benzo(a)pyrene 2018/08/10 75 50 - 140 75 50 - 140 < 0.0020 mg/kg NC 50 9096057 Benzo(a)pyrene 2018/08/10 75 50 - 140 76 50 - 140 < 0.0020 mg/kg NC 50 9096057 Benzo(b)fluoranthene 2018/08/10 75 50 - 140 76 50 - 140 < 0.0020 mg/kg NC 50 9096057 Benzo(b)fluoranthene 2018/08/10 75 50 - 140 76 50 - 140 < 0.0020 mg/kg NC 50 9096057 Benzo(b)fluoranthene 2018/08/10 75 50 - 140 76 50 - 140 < 0.0020 mg/kg NC 50 <	9094591	Fluorene	2018/08/08	77	50 - 140	78	50 - 140	<0.020	mg/kg	NC	50
9094591 Phenanthrene 2018/08/08 80 50 - 140 79 50 - 140 < 0.010 mg/kg NC 50 S0 S0 S0 S0 S0 S0 S0	9094591	Indeno(1,2,3-cd)pyrene	2018/08/08	82	50 - 140	76	50 - 140	<0.020	mg/kg	NC	50
Pyrene 2018/08/08 82 50 - 140 85 50 - 140 < 0.020 mg/kg NC 50	9094591	Naphthalene	2018/08/08	81	50 - 140	81	50 - 140	<0.010	mg/kg	NC	50
9996047 EPH (C10-C19) 2018/08/10 99 60 - 140 98 70 - 130 <100 mg/kg NC 40 9996057 EPH (C19-C32) 2018/08/10 101 60 - 140 101 70 - 130 <100 mg/kg NC 40 40 9996057 1-Methylnaphthalene 2018/08/10 98 50 - 140 96 50 - 140 <0.050 mg/kg NC 50 50 50 50 50 50 50 5	9094591	Phenanthrene	2018/08/08	80	50 - 140	79	50 - 140	<0.010	mg/kg	NC	50
Pose	9094591	Pyrene	2018/08/08	82	50 - 140	85	50 - 140	<0.020	mg/kg	NC	50
9096057 1-Methylnaphthalene 2018/08/10 98 50 - 140 96 50 - 140 <0.050 mg/kg NC 50 9096057 2-Methylnaphthalene 2018/08/10 95 50 - 140 93 50 - 140 <0.020 mg/kg NC 50 9096057 Acenaphthene 2018/08/10 79 50 - 140 78 50 - 140 <0.0050 mg/kg NC 50 9096057 Acenaphthylene 2018/08/10 77 50 - 140 76 50 - 140 <0.0050 mg/kg NC 50 9096057 Acridine 2018/08/10 100 50 - 140 9096057 Acridine 2018/08/10 81 50 - 140 80 50 - 140 <0.0050 mg/kg NC 50 9096057 Anthracene 2018/08/10 75 50 - 140 75 50 - 140 <0.020 mg/kg NC 50 9096057 Benzo(a)anthracene 2018/08/10 75 50 - 140 75 50 - 140 <0.020 mg/kg NC 50 9096057 Benzo(a)pyrene 2018/08/10 74 50 - 140 75 50 - 140 <0.020 mg/kg NC 50 9096057 Benzo(b)fluoranthene 2018/08/10 74 50 - 140 75 50 - 140 <0.020 mg/kg NC 50 9096057 Benzo(b)fluoranthene 2018/08/10 74 50 - 140 75 50 - 140 <0.020 mg/kg NC 50 9096057 Benzo(b)fluoranthene 2018/08/10 75 50 - 140 74 50 - 140 <0.020 mg/kg NC 50 9096057 Benzo(b)fluoranthene 2018/08/10 75 50 - 140 74 50 - 140 <0.020 mg/kg NC 50 9096057 Benzo(b)fluoranthene 2018/08/10 75 50 - 140 74 50 - 140 <0.020 mg/kg NC 50 9096057 Benzo(b)fluoranthene 2018/08/10 75 50 - 140 76 50 - 140 <0.020 mg/kg NC 50 9096057 Dienz(a,h)anthracene 2018/08/10 77 50 - 140 76 50 - 140 <0.020 mg/kg NC 50 9096057 Fluoranthene 2018/08/10 76 50 - 140 76 50 - 140 <0.020 mg/kg NC 50 9096057 Fluoranthene 2018/08/10 76 50 - 140 75 50 - 140 <0.020 mg/kg NC 50 9096057 Fluoranthene 2018/08/10 76 50 - 140 75 50 - 140 <0.020 mg/kg NC 50 9096057 Fluoranthene 2018/08/10 77 50 - 140 75	9096047	EPH (C10-C19)	2018/08/10	99	60 - 140	98	70 - 130	<100	mg/kg	NC	40
9096057 2-Methylnaphthalene 2018/08/10 95 50 - 140 93 50 - 140 <0.020 mg/kg NC 50	9096047	EPH (C19-C32)	2018/08/10	101	60 - 140	101	70 - 130	<100	mg/kg	NC	40
9096057 Acenaphthene 2018/08/10 79 50 - 140 78 50 - 140 <0.0050 mg/kg NC 50	9096057	1-Methylnaphthalene	2018/08/10	98	50 - 140	96	50 - 140	<0.050	mg/kg	NC	50
9096057 Acenaphthylene 2018/08/10 77 50 - 140 76 50 - 140 <0.0050 mg/kg NC 50 9096057 Acridine 2018/08/10 100 50 - 140 <0.050	9096057	2-Methylnaphthalene	2018/08/10	95	50 - 140	93	50 - 140	<0.020	mg/kg	NC	50
9096057 Acridine 2018/08/10 100 50 - 140 < 0.050 mg/kg 9096057 Anthracene 2018/08/10 81 50 - 140 80 50 - 140 < 0.0040	9096057	Acenaphthene	2018/08/10	79	50 - 140	78	50 - 140	<0.0050	mg/kg	NC	50
9096057 Anthracene 2018/08/10 81 50 - 140 80 50 - 140 <0.0040 mg/kg NC 50 9096057 Benzo(a)anthracene 2018/08/10 75 50 - 140 75 50 - 140 <0.020	9096057	Acenaphthylene	2018/08/10	77	50 - 140	76	50 - 140	<0.0050	mg/kg	NC	50
9096057 Benzo(a)anthracene 2018/08/10 75 50 - 140 75 50 - 140 <0.020 mg/kg NC 50 9096057 Benzo(a)pyrene 2018/08/10 76 50 - 140 76 50 - 140 <0.020	9096057	Acridine	2018/08/10	100	50 - 140			<0.050	mg/kg		
9096057 Benzo(a)pyrene 2018/08/10 76 50 - 140 76 50 - 140 <0.020 mg/kg NC 50 9096057 Benzo(b&j)fluoranthene 2018/08/10 74 50 - 140 75 50 - 140 <0.020	9096057	Anthracene	2018/08/10	81	50 - 140	80	50 - 140	<0.0040	mg/kg	NC	50
9096057 Benzo(b&j)fluoranthene 2018/08/10 74 50 - 140 75 50 - 140 <0.020 mg/kg NC 50 9096057 Benzo(b)fluoranthene 2018/08/10 69 50 - 140 71 50 - 140 <0.020	9096057	Benzo(a)anthracene	2018/08/10	75	50 - 140	75	50 - 140	<0.020	mg/kg	NC	50
9096057 Benzo(b)fluoranthene 2018/08/10 69 50 - 140 71 50 - 140 <0.020 mg/kg NC 50 9096057 Benzo(g,h,i)perylene 2018/08/10 75 50 - 140 74 50 - 140 <0.050	9096057	Benzo(a)pyrene	2018/08/10	76	50 - 140	76	50 - 140	<0.020	mg/kg	NC	50
9096057 Benzo(g,h,i)perylene 2018/08/10 75 50 - 140 74 50 - 140 <0.050 mg/kg NC 50 9096057 Benzo(k)fluoranthene 2018/08/10 86 50 - 140 88 50 - 140 <0.020	9096057	Benzo(b&j)fluoranthene	2018/08/10	74	50 - 140	75	50 - 140	<0.020	mg/kg	NC	50
9096057 Benzo(k)fluoranthene 2018/08/10 86 50 - 140 88 50 - 140 <0.020 mg/kg NC 50 9096057 Chrysene 2018/08/10 79 50 - 140 78 50 - 140 <0.020	9096057	Benzo(b)fluoranthene	2018/08/10	69	50 - 140	71	50 - 140	<0.020	mg/kg	NC	50
9096057 Chrysene 2018/08/10 79 50 - 140 78 50 - 140 <0.020 mg/kg NC 50 9096057 Dibenz(a,h)anthracene 2018/08/10 77 50 - 140 76 50 - 140 <0.020	9096057	Benzo(g,h,i)perylene	2018/08/10	75	50 - 140	74	50 - 140	<0.050	mg/kg	NC	50
9096057 Dibenz(a,h)anthracene 2018/08/10 77 50 - 140 76 50 - 140 <0.020 mg/kg NC 50 9096057 Fluoranthene 2018/08/10 84 50 - 140 82 50 - 140 <0.020	9096057	Benzo(k)fluoranthene	2018/08/10	86	50 - 140	88	50 - 140	<0.020	mg/kg	NC	50
9096057 Fluoranthene 2018/08/10 84 50 - 140 82 50 - 140 <0.020 mg/kg NC 50 9096057 Fluorene 2018/08/10 76 50 - 140 75 50 - 140 <0.020	9096057	Chrysene	2018/08/10	79	50 - 140	78	50 - 140	<0.020	mg/kg	NC	50
9096057 Fluorene 2018/08/10 76 50 - 140 75 50 - 140 <0.020 mg/kg NC 50 9096057 Indeno(1,2,3-cd)pyrene 2018/08/10 76 50 - 140 74 50 - 140 <0.020	9096057	Dibenz(a,h)anthracene	2018/08/10	77	50 - 140	76	50 - 140	<0.020	mg/kg	NC	50
9096057 Indeno(1,2,3-cd)pyrene 2018/08/10 76 50 - 140 74 50 - 140 <0.020 mg/kg NC 50 9096057 Naphthalene 2018/08/10 90 50 - 140 87 50 - 140 <0.010	9096057	Fluoranthene	2018/08/10	84	50 - 140	82	50 - 140	<0.020	mg/kg	NC	50
9096057 Naphthalene 2018/08/10 90 50 - 140 87 50 - 140 <0.010 mg/kg NC 50 9096057 Phenanthrene 2018/08/10 77 50 - 140 76 50 - 140 <0.010	9096057	Fluorene	2018/08/10	76	50 - 140	75	50 - 140	<0.020	mg/kg	NC	50
9096057 Phenanthrene 2018/08/10 77 50 - 140 76 50 - 140 <0.010 mg/kg NC 50 9096057 Pyrene 2018/08/10 87 50 - 140 84 50 - 140 <0.020	9096057	Indeno(1,2,3-cd)pyrene	2018/08/10	76	50 - 140	74	50 - 140	<0.020	mg/kg	NC	50
9096057 Pyrene 2018/08/10 87 50 - 140 84 50 - 140 <0.020 mg/kg NC 50	9096057	Naphthalene	2018/08/10	90	50 - 140	87	50 - 140	<0.010	mg/kg	NC	50
	9096057	Phenanthrene	2018/08/10	77	50 - 140	76	50 - 140	<0.010	mg/kg	NC	50
9096200 Benzene 2018/08/09 90 60 - 140 107 70 - 130 < 0.0050 mg/kg 3.7 40	9096057	Pyrene	2018/08/10	87	50 - 140	84	50 - 140	<0.020	mg/kg	NC	50
	9096200	Benzene	2018/08/09	90	60 - 140	107	70 - 130	<0.0050	mg/kg	3.7	40

QUALITY ASSURANCE REPORT(CONT'D)

STANTEC CONSULTING LTD Client Project #: 123221161

Sampler Initials: MD

			Matrix	Spike	Spiked	Blank	Method E	Blank	RPI)
QC Batch	Parameter	Date	% Recovery	QC Limits	% Recovery	QC Limits	Value	UNITS	Value (%)	QC Limits
9096200	Ethylbenzene	2018/08/09	91	60 - 140	108	70 - 130	<0.010	mg/kg	1.3	40
9096200	m & p-Xylene	2018/08/09	87	60 - 140	103	70 - 130	<0.040	mg/kg	1.9	40
9096200	Methyl-tert-butylether (MTBE)	2018/08/09					<0.10	mg/kg	NC	40
9096200	o-Xylene	2018/08/09	89	60 - 140	105	70 - 130	<0.040	mg/kg	NC	40
9096200	Styrene	2018/08/09					<0.030	mg/kg	NC	40
9096200	Toluene	2018/08/09	82	60 - 140	98	70 - 130	<0.020	mg/kg	4.3	40
9096200	VH C6-C10	2018/08/09			106	70 - 130	<10	mg/kg	NC	40
9096200	Xylenes (Total)	2018/08/09					<0.040	mg/kg	1.9	40
9111912	Moisture	2018/08/22					<0.30	%	1.3	20
9112238	EPH (C10-C19)	2018/08/22	81	60 - 140	77	70 - 130	<100	mg/kg	NC	40
9112238	EPH (C19-C32)	2018/08/22	83	60 - 140	78	70 - 130	<100	mg/kg	NC	40

Duplicate: Paired analysis of a separate portion of the same sample. Used to evaluate the variance in the measurement.

Matrix Spike: A sample to which a known amount of the analyte of interest has been added. Used to evaluate sample matrix interference.

Spiked Blank: A blank matrix sample to which a known amount of the analyte, usually from a second source, has been added. Used to evaluate method accuracy.

Method Blank: A blank matrix containing all reagents used in the analytical procedure. Used to identify laboratory contamination.

Surrogate: A pure or isotopically labeled compound whose behavior mirrors the analytes of interest. Used to evaluate extraction efficiency.

NC (Duplicate RPD): The duplicate RPD was not calculated. The concentration in the sample and/or duplicate was too low to permit a reliable RPD calculation (absolute difference <= 2x RDL).

STANTEC CONSULTING LTD Client Project #: 123221161 Sampler Initials: MD

VALIDATION SIGNATURE PAGE

The analytical data and all QC contained in this report were reviewed and validated by the following individual(s).

Jose Cueva, Supervisor, Organics-VOC & HC

Rob Reinert, B.Sc., Scientific Specialist

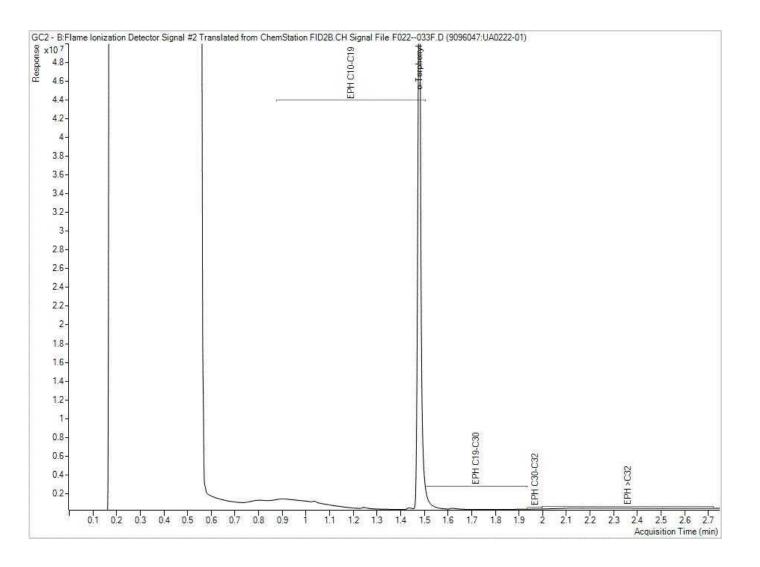
Maxxam has procedures in place to guard against improper use of the electronic signature and have the required "signatories", as per section 5.10.2 of ISO/IEC 17025:2005(E), signing the reports. For Service Group specific validation please refer to the Validation Signature Page.

		INVOICE TO:				Report Info	rmation				1		Project Inf	ormation			ASSESSED FOR FOR	Page/
mpany Name		TEC CONSULTING L	TD	Company Na							Quotation#		B71770			N. Y	STEP AND DESKINATION OF	Bottle Order
stact Name	ACCOUNTS F			Contact Nam	Matthew D	Deane					P.O. W		770000000000000000000000000000000000000			BOOKEN	THE THE STATE OF THE STATE OF THE	
fress		Suite 500, 4730 Kings	sway	Address							Project #		12322116	1		88652	199_COC	561112
	BURNABY BO										Project Nam	9				-	Cham or custouy record	Project Manag
ne	(604) 436-301		604) 436-3752	Phone	Time			ax:			_ Site W				_	_		Nahed Ame
aif.	SAPinvoices@	Stantec.com		Email	-	deane@stant	tec.con	n			Sampled By		-MD			_	CN561112-02-01	Civicios (State of State of St
legulatory Cr	iteria			Speci	al Instructions		î	<u> </u>			Analys	is Requests	ed		_		Turnaround Time (TAT) Re Please provide advance notice for r	7
							iking Water?(Y/	PAH	Juny.	0						(will be app Standard 1 Please not days - con Job Specific	Standard) TAT piled if Rush TAT is not specified) TAT = 5-7 Working days for most tests. It is Standard TAT for certain tests such as 8 toct your Project Manager for details. Ic Rush TAT (if applies to entire submission)	
	Note: For regulate	d drinking water samples -	please use the Drink	king Water Chain of	Custady Form		d Drir	1	2	30						Date Requir Rush Centre	nation Number	Required:
	Samples	must be kept cool (< 10°C)	from time of sampling	until delivery to max	kam		Regulated Drir Metals Field Fi	1/4	-00	7								(call lab for #)
Sample	e Barcode Label	Sample (Location) Id	entification	Date Sampled	Time Sampled	Matrix	Reg Met	7				-	1			# of Bottles	Comment	MASE
		MW18-51	SAO3	18/08/e1	1300	SOIL		X		- 1			1 1			1	TOTALED IN WHITE	000
		11/	64	1	V	1				X		10				1	ayoro(
		MW18.52	SAOL		900					X						1	2018 -08-	0.7
		1	02		1					X						1		19
			03					X	×							3	TEMP: 8 /	0
		V	04		V					×	14					1		
		MW18-53	SAO(1000					X						1		
			02		1					X						1		
			03					X								1		
		V	04	(A)	V					X						1		
• RELIN	QUISHED BY: (Signa	ture/Print)	18/08/	-			HOV	Signature/Pr	int)		201874S/		74.50	# jars used and not submitted	Time Ser	gaire Ten	Lab Use Only noverabure (*C) on Receipt Custon	y Serial Intact on Cooler Yes No

672

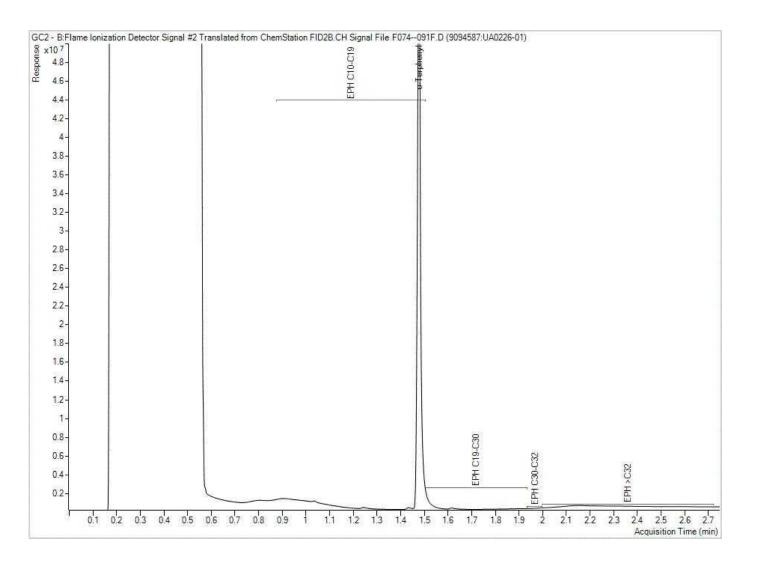
Maxxam Analytics International Corporation o/a Maxxam Analytics

		INVOICE TO:				Report Info	rmation					Р	Project Info	ormation			医医学性沙氏管 断绝	你是 關於 圖	Page2
pany Name	#2792 STAN	ITEC CONSULTIN	IG LTD	Company Na	me						Quotation #	B7	1770					83.78	Bottle Order
act Name	ACCOUNTS F	PAYABLE		Contact Nam	e Matthew	Deane					P.O.#					WIII 8:7.	TAX TAX TURN I TA	KREED AT THE	
ess	The second secon	Suite 500, 4730 K	lingsway	Address							Project #	12	322116	1		B8652	.99_COC		561112
	BURNABY BO		(0.0.1) 10.0 0.000				_				Project Name	_	_			-		and the second	Project Manag
ne	(604) 436-301		(604) 436-3752	Phone	m atthews	denne Outon		Fax:			Site #	_	w			_ 1			Nahed Ame
NE .	SAPINVOICES	Stantec.com		Email		.deane@stan	(ec.co	in T	_		Sampled By Analysis Re	-	000				C#561112-01-01		9
egulatory Cri	teria			Speci	al Instructions		-	-		т т	Attarysis Re	quested	- 1				Please provide adva	me (TAT) Require	
							Drinking Water ? (Y/N)	10,	A	duru.						(will be appli Standard TA Please note days - conta Job Specific	andard) TAT ied if Rush TAT is not spec it = 5-7 Working days for i : Standard TAT for certain i cd your Project Manager fo Rush TAT (if applies to enti-	nost tests. lests such as BOD ar r details. ire submission)	
	Note: For regulate	ed drinking water samp	les - please use the Drin	king Water Chain of	Custody Form		HO P	11	J	1						Date Required Rush Confirma		Time Requi	ed
-	Samples	must be kept cool (< 1	0°C) from time of sampling	g until delivery to max	xam		lated is Fiel	14	10	1							-	fcell A	ab for #)
Samole	Barcode Label		on) Identification	Date Sámpled/	Time Sampled	Matrix	Regulated Drir Metals Field F	7	16	8			- 1			Fof Bottes		Comments	
		MW18-49		18/08/ex	1100	SOIL			X							1	RECEIVED	IN WHITEH	ORSE
		1	.02	1 1/	1	1			X							1	BY: Ste	jonosa	0900
			03					X		X						3	7	n18 -08- 0	2
		V	04		V				X							1			
		MW18-50	SACI		1400				X							1	TEMP:	8/10	19
			13		i				X							1			
-			00					V				-				1			
			03					~								1			
		V	04		V				X							1			
		MW18-5	1 SAO1		1300				X							1			
			SACZ		V				V							1			
	OURSHED BY: (Signa	ture/Print)	Date: (YY/	MM/DO) Time		RECEIV	ED BY: (Signature/P	ript)		Date: (YY/MM/D	0)_	Time	# jars used and	I	, 1	Lab Us	e Only	
* RELING						-		MOU	2		2018/08/1	7	7 - 17 1	not submitted	TimeSen				I Intact on Cooler

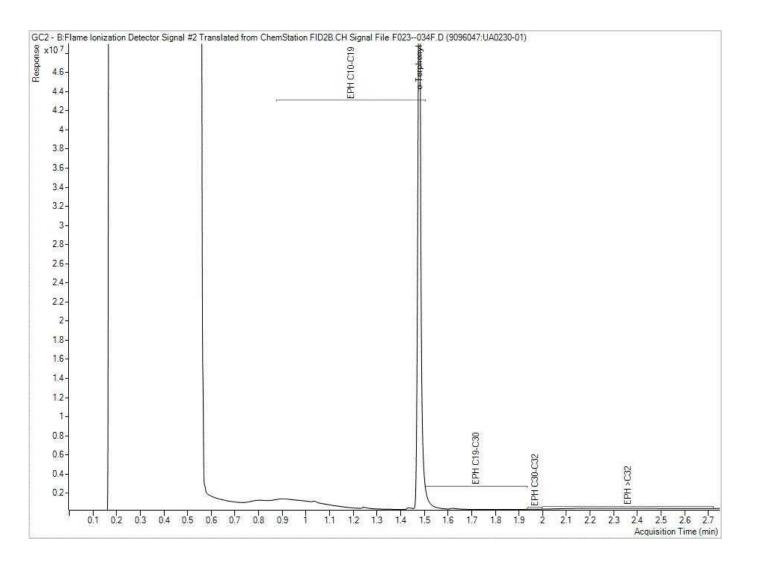

Maxxam Analytics International Corporation o/a Maxxam Analytics

		INVOICE TO:			Report Info	rmation					Pro	oject Informa	ntion		IIIII 8/43.	として名のを 地名は多数の間	Pag3 of
pany Name	#2792 STAN	TEC CONSULTING LTD	Company Na	me						Quotation #	B71	770			100	MARKA BEST TO STORE	Bottle Order #:
act Name	ACCOUNTS F	PAYABLE	Contact Nam	A facility and C	eane					P.O.#				- 2		经存权税 网络拉拉拉拉斯斯美国	
ess	Metrotower III	Suite 500, 4730 Kingsway	Address							Project #	123	221161			886529	9_COC	561112
	BURNABY BO	V5H 4M1						F		Project Name					50052	,5_000	Project Manage
10	(604) 436-301	4 Fax: (604) 436-3752	Phone			F	ax:			Site #							Nahed Amer
a.	SAPinvoices@	Stantec.com	Email	matthew.d	eane@stan	tec.com	1			Sampled By	~	D			110	C#561112-03-01	10,000000000000000000000000000000000000
egulatory Cr	teria		Speci	el Instructions				- 10		Analysis Req	uested	-	_			Turnaround Time (TAT) Requir	ed
						Regulated Drinking Water ? (Y / N) Metals Fleid Filtered ? (Y / N)	100	ha	0.						(will be appli Standard TA Please note: days - conta	Please provide advance notice for rush andard/TAT is not specified) T = 5-7 Working days for most tests. Standard TAT for certain tests such as BOD of tyour Project Manager for details.	
						rinkir Filter	10%	13	(3)						Job Specific Date Required	Rush TAT (if applies to entire submission) i: Time Reg.	ired:
	Note: For regulate	d drinking water samples - please use the Drini	ing Water Chain of	Custody Form		D Pel	1	at	18						Rush Confirma	tion Number	2.200
	Samples	must be kept cool (< 10°C) from time of sampling	until delivery to max	xam		Regulated Drir Metals Field F	1	20	F						-	(cal	lab for #)
Sample	Barcode Label	Sample (Location) Identification	Data Sambigs	Time Sampled	Matrix	Reg Met	7	40			_				# of Battes	Convinents	
		MN1854 SAOI	1980	1700	SOIL				X						(OCC
		1 02	18/08/01	1			X								1	RECEIVED IN WHITE	0900
		03	111						X						1	BY: C300	
		04		1					V						1	2018 -08- Ū	2
		MW18-55 SAOI		1630									1		1	TEMP 8 , 10	, 9
				1000			V		X						1	TEMP: 8 / 10	
		02	-	-			X	_	1		-				,		
		03	1/					-	X		-	_	-		(
		04	V	V	V	- 19		_	X		_				(
																3*	
	QUISHED BY: (Signal			-			ignature/Pri	nt)		Date: (YY/MM/DD			jars used and not submitted	Time Co.	anthon I	Lab Use Only	od between the Courses
1200	c H	DADE 18/081	0/ 200	0	U	VVV	man			22 (8705/0	11 1	9:30	11/1	Time Ser	Temp	grature (°C) on Receipt Custody S	ral Intact on Cooler?

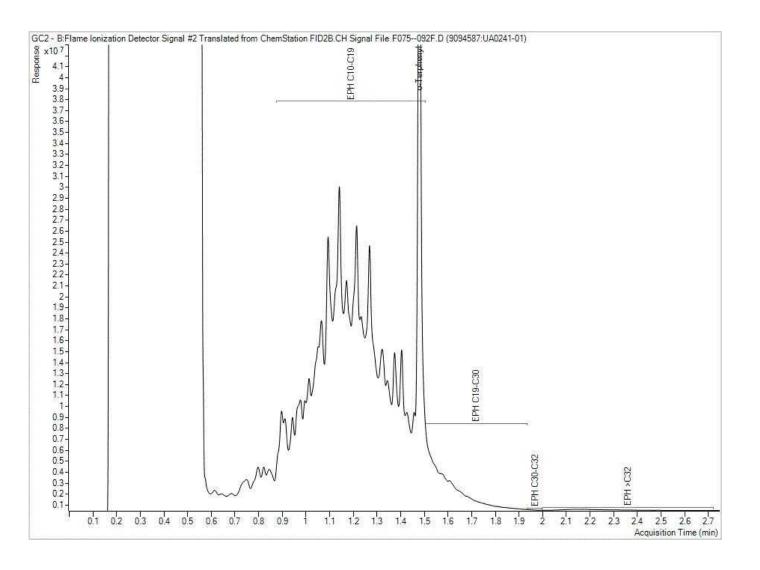
Maxxam Analytics International Corporation of Maxxam Analytics


STANTEC CONSULTING LTD Client Project #: 123221161 Client ID: MW18-51 SA03

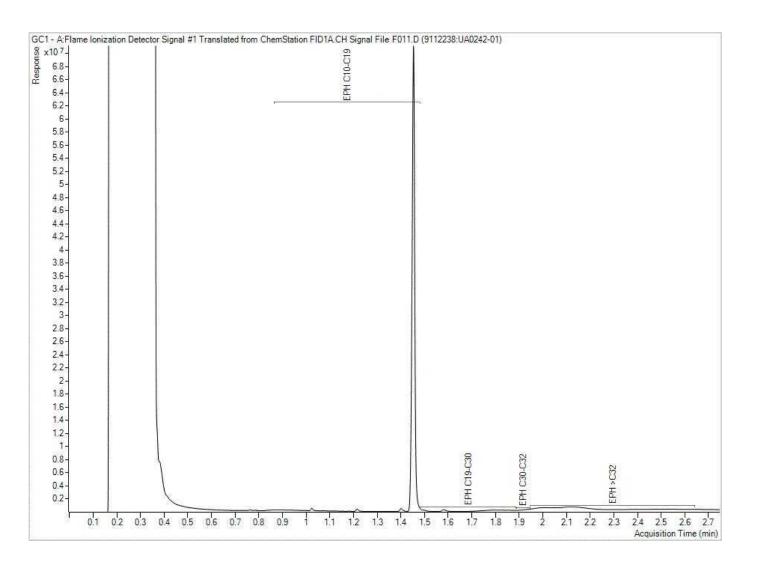
EPH in Soil by GC/FID Chromatogram


STANTEC CONSULTING LTD Client Project #: 123221161 Client ID: MW18-52 SA03

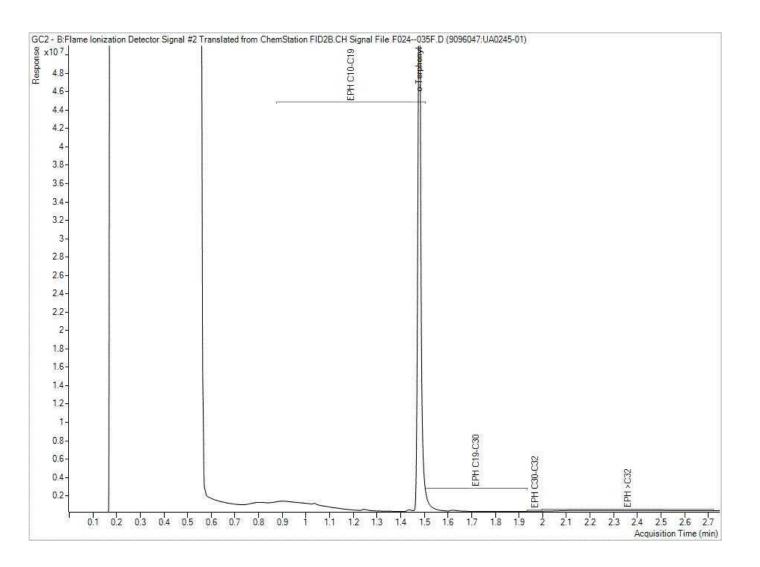
EPH in Soil by GC/FID Chromatogram


STANTEC CONSULTING LTD Client Project #: 123221161 Client ID: MW18-53 SA03

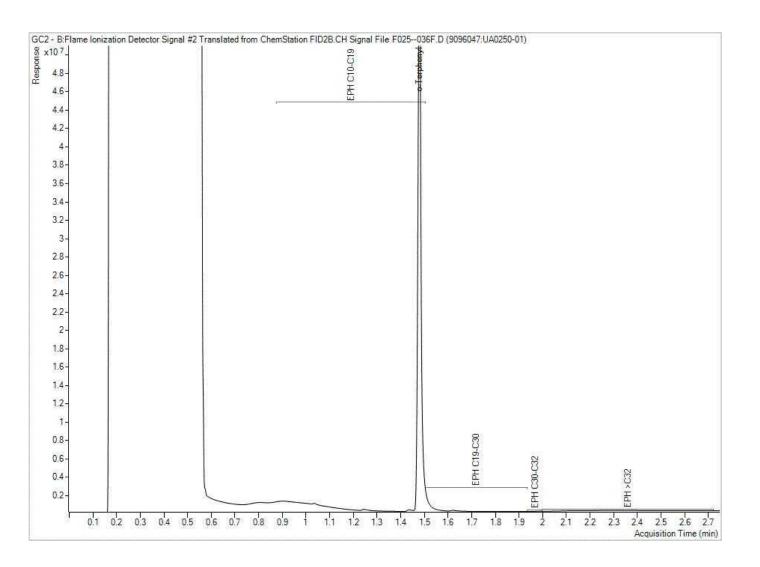
EPH in Soil by GC/FID Chromatogram


STANTEC CONSULTING LTD Client Project #: 123221161 Client ID: MW18-49 SA03

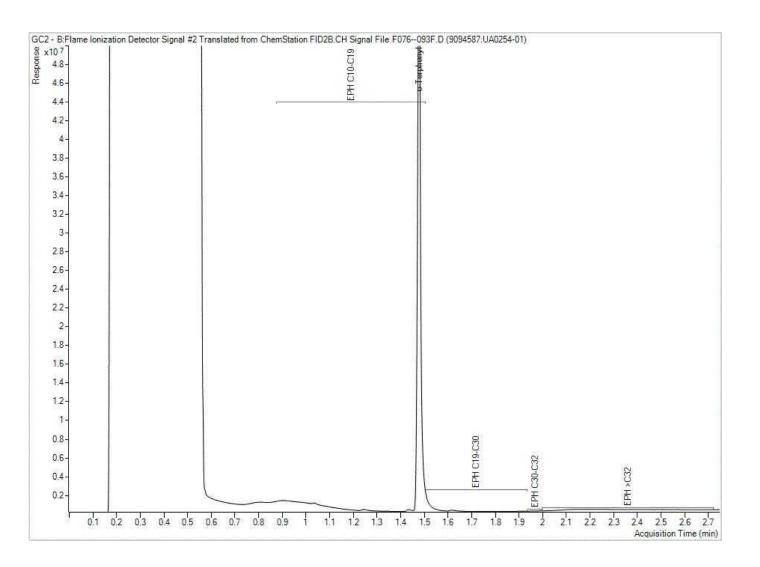
EPH in Soil by GC/FID Chromatogram


STANTEC CONSULTING LTD Client Project #: 123221161 Client ID: MW18-49 SA04

EPH in Soil by GC/FID Chromatogram


STANTEC CONSULTING LTD Client Project #: 123221161 Client ID: MW18-50 SA03

EPH in Soil by GC/FID Chromatogram


Maxxam Job #: B865299 Report Date: 2018/08/22 Maxxam Sample: UA0250 STANTEC CONSULTING LTD Client Project #: 123221161 Client ID: MW18-54 SA02

EPH in Soil by GC/FID Chromatogram

Maxxam Job #: B865299 Report Date: 2018/08/22 Maxxam Sample: UA0254 STANTEC CONSULTING LTD Client Project #: 123221161 Client ID: MW18-55 SA02

EPH in Soil by GC/FID Chromatogram

Your Project #: 123221161 Your C.O.C. #: 33897

Attention: Matthew Deane

Stantec Consulting Ltd Burnaby - Air 500 - 4730 Kingsway Burnaby, BC CANADA V5H 0C6

Report Date: 2018/08/24

Report #: R5371935 Version: 1 - Final

CERTIFICATE OF ANALYSIS

MAXXAM JOB #: B8K3578 Received: 2018/08/10, 10:40

Sample Matrix: AIR # Samples Received: 5

		Date	Date		
Analyses	Quantity	Extracted	Analyzed	Laboratory Method	Reference
BTEX Fractionation in Air (TO-15mod)	5	N/A	2018/08/16	BRL SOP-00304	EPA TO-15 m
Canister Pressure (TO-15)	5	N/A	2018/08/16	BRL SOP-00304	EPA TO-15 m
Volatile Organics in Air (ug/m3)	5	N/A	2018/08/20	BRL SOP-00304	EPA TO-15 m
Volatile Compounds in Air (SUMMA) (1)	5	N/A	2018/08/16	BRL SOP-00304	EPA TO-15 m
VPH analysis in Air (2)	2	N/A	2018/08/16	BRL SOP-00304	EPA TO-15 m
VPH analysis in Air (2)	2	N/A	2018/08/17	BRL SOP-00304	EPA TO-15 m
VPH analysis in Air (2)	1	N/A	2018/08/20	BRL SOP-00304	EPA TO-15 m

Remarks:

Maxxam Analytics' laboratories are accredited to ISO/IEC 17025:2005 for specific parameters on scopes of accreditation. Unless otherwise noted, procedures used by Maxxam are based upon recognized Provincial, Federal or US method compendia such as CCME, MDDELCC, EPA, APHA.

All work recorded herein has been done in accordance with procedures and practices ordinarily exercised by professionals in Maxxam's profession using accepted testing methodologies, quality assurance and quality control procedures (except where otherwise agreed by the client and Maxxam in writing). All data is in statistical control and has met quality control and method performance criteria unless otherwise noted. All method blanks are reported; unless indicated otherwise, associated sample data are not blank corrected. Where applicable, unless otherwise noted, Measurement Uncertainty has not been accounted for when stating conformity to the referenced standard.

Maxxam Analytics' liability is limited to the actual cost of the requested analyses, unless otherwise agreed in writing. There is no other warranty expressed or implied. Maxxam has been retained to provide analysis of samples provided by the Client using the testing methodology referenced in this report. Interpretation and use of test results are the sole responsibility of the Client and are not within the scope of services provided by Maxxam, unless otherwise agreed in writing. Maxxam is not responsible for the accuracy or any data impacts, that result from the information provided by the customer or their agent.

Solid sample results, except biota, are based on dry weight unless otherwise indicated. Organic analyses are not recovery corrected except for isotope dilution methods.

Results relate to samples tested. When sampling is not conducted by Maxxam, results relate to the supplied samples tested.

This Certificate shall not be reproduced except in full, without the written approval of the laboratory.

Reference Method suffix "m" indicates test methods incorporate validated modifications from specific reference methods to improve performance.

* RPDs calculated using raw data. The rounding of final results may result in the apparent difference.

Your Project #: 123221161 Your C.O.C. #: 33897

Attention: Matthew Deane

Stantec Consulting Ltd Burnaby - Air 500 - 4730 Kingsway Burnaby, BC CANADA V5H 0C6

Report Date: 2018/08/24

Report #: R5371935 Version: 1 - Final

CERTIFICATE OF ANALYSIS

MAXXAM JOB #: B8K3578 Received: 2018/08/10, 10:40

(1) Air sampling canisters have been cleaned in accordance with U.S. EPA Method TO14A. At the end of the cleaning, evacuation, and pressurization cycles, one canister was selected and was pressurized with Zero Air. This canister was then analyzed via TO14A on a GC/MS. The canister must have been found to contain <0.2 ppbv concentration of all target analytes in order for the batch to have been considered clean. Each canister also underwent a leak check prior to shipment.

Please Note: SUMMA® canister samples will be retained by Maxxam for a period of 5 calendar days or as contractually agreed from the date of this report, after which time they will be cleaned for reuse. If you require a longer sample storage period, please contact your service representative.

(2) Total VPHs as toluene and dodecane. VPH excludes benzene, ethylbenzene, n-hexane, n-decane, styrene, toluene, and xylenes (m, p,o).

Encryption Key

Please direct all questions regarding this Certificate of Analysis to your Project Manager. Cristina (Maria) Bacchus, Project Manager Email: CBacchus@maxxam.ca
Phone# (905)817-5763

Maxxam has procedures in place to guard against improper use of the electronic signature and have the required "signatories", as per section 5.10.2 of ISO/IEC 17025:2005(E), signing the reports. For Service Group specific validation please refer to the Validation Signature Page.

Stantec Consulting Ltd Client Project #: 123221161 Sampler Initials: MD

RESULTS OF ANALYSES OF AIR

Maxxam ID		HLC289	HLC290	HLC291	HLC292	HLC293	
Sampling Date		2018/07/31	2018/07/31	2018/07/31	2018/07/31	2018/07/30	
COC Number		33897	33897	33897	33897	33897	
	UNITS	VP18-34/1412	VP18-35/1012	VP18-39/1473	VP18-30/1205	VP18-43/1775	QC Batch
Volatile Organics							
Pressure on Receipt	ncia	(-2.5)	(-2.9)	(-2.2)	(-2.3)	(-2.2)	5685177
Pressure on Receipt	psig	(2.5)	(2.5)	(=:=/	(= /	(/	

Stantec Consulting Ltd Client Project #: 123221161 Sampler Initials: MD

VOLATILE ORGANICS BY GC/MS (AIR)

Maxxam ID		HLC289		HLC290		HLC291		HLC292		
Sampling Date		2018/07/31		2018/07/31		2018/07/31		2018/07/31		
COC Number		33897		33897		33897		33897		
	UNITS	VP18-34/1412	RDL	VP18-35/1012	RDL	VP18-39/1473	RDL	VP18-30/1205	RDL	QC Batch
Volatile Organics										
1,3-Butadiene	ppbv	<0.50	0.50	<0.50	0.50	1.78	0.50	<0.50	0.50	5688307
Methyl t-butyl ether (MTBE)	ppbv	<0.20	0.20	<0.20	0.20	<0.20	0.20	<0.20	0.20	5688307
1,2-Dichloroethane	ppbv	<0.10	0.10	<0.10	0.10	<0.10	0.10	<0.10	0.10	5688307
Ethylene Dibromide	ppbv	<0.050	0.050	<0.050	0.050	<0.050	0.050	<0.050	0.050	5688307
Benzene	ppbv	1.27	0.18	1.55	0.18	0.79	0.18	0.32	0.18	5688307
Toluene	ppbv	17.4	0.20	3.40	0.20	17.3	0.20	2.56	0.20	5688307
Ethylbenzene	ppbv	7.83	0.20	1.99	0.20	<5.1 (1)	5.1	1.47	0.20	5688307
Methylcyclohexane	ppbv	1.97	0.50	<2.0 (1)	2.0	387	0.50	64.8	0.50	5688307
p+m-Xylene	ppbv	35.2	0.37	6.53	0.37	15.0	0.37	5.96	0.37	5688307
o-Xylene	ppbv	16.6	0.20	3.09	0.20	7.54	0.20	3.82	0.20	5688307
Styrene	ppbv	<0.80 (2)	0.80	<0.20	0.20	<0.20	0.20	<0.20	0.20	5688307
1,3,5-Trimethylbenzene	ppbv	14.2	0.50	1.14	0.50	2.34	0.50	1.55	0.50	5688307
1,2,4-Trimethylbenzene	ppbv	50.2	0.50	2.53	0.50	9.93	0.50	3.55	0.50	5688307
Cumene (Isopropylbenzene)	ppbv	<39 (1)	39	<0.50	0.50	<12 (1)	12	<0.50	0.50	5688307
Hexane	ppbv	4.71	0.30	1.65	0.30	6.30	0.30	1.13	0.30	5688307
Decane	ppbv	77.2	0.50	<38 (1)	38	<37 (1)	37	<5.0 (1)	5.0	5688307
Naphthalene	ppbv	2.37	0.50	<0.50	0.50	<0.50	0.50	<0.50	0.50	5688307
Total Xylenes	ppbv	51.8	0.60	9.62	0.60	22.5	0.60	9.79	0.60	5688307
Surrogate Recovery (%)										
Bromochloromethane	%	102		98		97		92		5688307
D5-Chlorobenzene	%	102		89		79		90		5688307
Difluorobenzene	%	103		98		90		93		5688307

RDL = Reportable Detection Limit

QC Batch = Quality Control Batch

⁽¹⁾ Increased DL due to interference from hydrocarbons.

⁽²⁾ Increased DL due to interference from o-xylene.

Stantec Consulting Ltd Client Project #: 123221161 Sampler Initials: MD

VOLATILE ORGANICS BY GC/MS (AIR)

Maxxam ID		HLC293		
Sampling Date		2018/07/30		
COC Number		33897		
	UNITS	VP18-43/1775	RDL	QC Batch
Volatile Organics				
1,3-Butadiene	ppbv	<0.50	0.50	5688307
Methyl t-butyl ether (MTBE)	ppbv	<0.20	0.20	5688307
1,2-Dichloroethane	ppbv	<0.10	0.10	5688307
Ethylene Dibromide	ppbv	<0.050	0.050	5688307
Benzene	ppbv	0.52	0.18	5688307
Toluene	ppbv	4.17	0.20	5688307
Ethylbenzene	ppbv	3.13	0.20	5688307
Methylcyclohexane	ppbv	1.80	0.50	5688307
p+m-Xylene	ppbv	15.2	0.37	5688307
o-Xylene	ppbv	6.62	0.20	5688307
Styrene	ppbv	<0.30 (1)	0.30	5688307
1,3,5-Trimethylbenzene	ppbv	3.24	0.50	5688307
1,2,4-Trimethylbenzene	ppbv	10.0	0.50	5688307
Cumene (Isopropylbenzene)	ppbv	0.51	0.50	5688307
Hexane	ppbv	2.18	0.30	5688307
Decane	ppbv	14.2	0.50	5688307
Naphthalene	ppbv	<0.50	0.50	5688307
Total Xylenes	ppbv	21.8	0.60	5688307
Surrogate Recovery (%)			•	
Bromochloromethane	%	93		5688307
D5-Chlorobenzene	%	95		5688307
Difluorobenzene	%	97		5688307
RDL = Reportable Detection L	imit			
QC Batch = Quality Control Ba	itch			

⁽¹⁾ Increased DL due to interference from o-xylene.

Stantec Consulting Ltd Client Project #: 123221161 Sampler Initials: MD

CALCULATED VOLATILE ORGANICS (AIR)

Maxxam ID		HLC289		HLC290		HLC291		HLC292		
Sampling Date		2018/07/31		2018/07/31		2018/07/31		2018/07/31		
COC Number		33897		33897		33897		33897		
	UNITS	VP18-34/1412	RDL	VP18-35/1012	RDL	VP18-39/1473	RDL	VP18-30/1205	RDL	QC Batch
Calculated Parameters										
1,3-Butadiene	ug/m3	<1.1	1.1	<1.1	1.1	3.9	1.1	<1.1	1.1	5673111
Methyl t-butyl ether (MTBE)	ug/m3	<0.72	0.72	<0.72	0.72	<0.72	0.72	<0.72	0.72	5673111
1,2-Dichloroethane	ug/m3	<0.40	0.40	<0.40	0.40	<0.40	0.40	<0.40	0.40	5673111
Ethylene Dibromide	ug/m3	<0.38	0.38	<0.38	0.38	<0.38	0.38	<0.38	0.38	5673111
Benzene	ug/m3	4.05	0.57	4.94	0.57	2.54	0.57	1.03	0.57	5673111
Toluene	ug/m3	65.6	0.75	12.8	0.75	65.1	0.75	9.65	0.75	5673111
Ethylbenzene	ug/m3	34.0	0.87	8.65	0.87	<22	22	6.40	0.87	5673111
Methylcyclohexane	ug/m3	7.9	2.0	<8.0	8.0	1550	2.0	260	2.0	5673111
p+m-Xylene	ug/m3	153	1.6	28.3	1.6	65.0	1.6	25.9	1.6	5673111
o-Xylene	ug/m3	71.9	0.87	13.4	0.87	32.7	0.87	16.6	0.87	5673111
Styrene	ug/m3	<3.4	3.4	<0.85	0.85	<0.85	0.85	<0.85	0.85	5673111
1,3,5-Trimethylbenzene	ug/m3	69.5	2.5	5.6	2.5	11.5	2.5	7.6	2.5	5673111
1,2,4-Trimethylbenzene	ug/m3	247	2.5	12.4	2.5	48.7	2.5	17.4	2.5	5673111
Cumene (Isopropylbenzene)	ug/m3	<190	190	<2.5	2.5	<59	59	<2.5	2.5	5673111
Hexane	ug/m3	16.6	1.1	5.8	1.1	22.2	1.1	4.0	1.1	5673111
Decane	ug/m3	449	2.9	<220	220	<220	220	<29	29	5673111
Naphthalene	ug/m3	12.4	2.6	<2.6	2.6	<2.6	2.6	<2.6	2.6	5673111
Total Xylenes	ug/m3	225	2.6	41.8	2.6	97.7	2.6	42.5	2.6	5673111

RDL = Reportable Detection Limit

QC Batch = Quality Control Batch

Stantec Consulting Ltd Client Project #: 123221161 Sampler Initials: MD

CALCULATED VOLATILE ORGANICS (AIR)

Maxxam ID		HLC293		
Sampling Date		2018/07/30		
COC Number		33897		
	UNITS	VP18-43/1775	RDL	QC Batch
Calculated Parameters				
1,3-Butadiene	ug/m3	<1.1	1.1	5673111
Methyl t-butyl ether (MTBE)	ug/m3	<0.72	0.72	5673111
1,2-Dichloroethane	ug/m3	<0.40	0.40	5673111
Ethylene Dibromide	ug/m3	<0.38	0.38	5673111
Benzene	ug/m3	1.66	0.57	5673111
Toluene	ug/m3	15.7	0.75	5673111
Ethylbenzene	ug/m3	13.6	0.87	5673111
Methylcyclohexane	ug/m3	7.2	2.0	5673111
p+m-Xylene	ug/m3	66.1	1.6	5673111
o-Xylene	ug/m3	28.7	0.87	5673111
Styrene	ug/m3	<1.3	1.3	5673111
1,3,5-Trimethylbenzene	ug/m3	15.9	2.5	5673111
1,2,4-Trimethylbenzene	ug/m3	49.2	2.5	5673111
Cumene (Isopropylbenzene)	ug/m3	2.5	2.5	5673111
Hexane	ug/m3	7.7	1.1	5673111
Decane	ug/m3	82.4	2.9	5673111
Naphthalene	ug/m3	<2.6	2.6	5673111
Total Xylenes	ug/m3	94.8	2.6	5673111
RDL = Reportable Detection L QC Batch = Quality Control Ba				

Stantec Consulting Ltd Client Project #: 123221161 Sampler Initials: MD

VOLATILE ORGANIC HYDROCARBONS BY GC/MS (AIR)

Maxxam ID		HLC289		HLC290			HLC291			
Sampling Date		2018/07/31		2018/07/31			2018/07/31			
COC Number		33897		33897			33897			
	UNITS	VP18-34/1412	RDL	VP18-35/1012	RDL	QC Batch	VP18-39/1473	RDL	QC Batch	
Volatile Organics										
Aliphatic >C5-C6	ug/m3	38.2	5.0	7.6	5.0	5688325	49.8	5.0	5688325	
Aliphatic >C6-C8	ug/m3	81.5	5.0	1240	5.0	5688325	4950	5.0	5688325	
Aliphatic >C8-C10	ug/m3	1300	5.0	6650	5.0	5688325	117000	120	5688325	
Aliphatic >C10-C12	ug/m3	2770	5.0	4470	5.0	5688325	16100	5.0	5688325	
Aliphatic >C12-C16	ug/m3	197	5.0	1640	5.0	5688325	2580	5.0	5688325	
Aromatic >C7-C8 (TEX Excluded)	ug/m3	<5.0	5.0	<5.0	5.0	5688325	<5.0	5.0	5688325	
Aromatic >C8-C10	ug/m3	1370	5.0	110	5.0	5688325	584	5.0	5688325	
Aromatic >C10-C12	ug/m3	1240	5.0	462	5.0	5688325	1550	5.0	5688325	
Aromatic >C12-C16	ug/m3	238	5.0	309	5.0	5688325	745	5.0	5688325	
VPHv (C6-C13)	ug/m3	18200	50	73300	30	5691600	733000	200	5694782	
RDL = Reportable Detection Limit										
QC Batch = Quality Control Batch										

Maxxam ID		HLC292	HLC293		
Sampling Date		2018/07/31	2018/07/30		
COC Number		33897	33897		
	UNITS	VP18-30/1205	VP18-43/1775	RDL	QC Batch
Volatile Organics					
Aliphatic >C5-C6	ug/m3	<5.0	10.4	5.0	5688325
Aliphatic >C6-C8	ug/m3	430	50.1	5.0	5688325
Aliphatic >C8-C10	ug/m3	1840	346	5.0	5688325
Aliphatic >C10-C12	ug/m3	469	392	5.0	5688325
Aliphatic >C12-C16	ug/m3	355	32.7	5.0	5688325
Aromatic >C7-C8 (TEX Excluded)	ug/m3	<5.0	<5.0	5.0	5688325
Aromatic >C8-C10	ug/m3	48.3	82.8	5.0	5688325
Aromatic >C10-C12	ug/m3	95.4	166	5.0	5688325
Aromatic >C12-C16	ug/m3	10.2	11.8	5.0	5688325
VPHv (C6-C13)	ug/m3	12400	2240	10	5688334
RDL = Reportable Detection Limit					
QC Batch = Quality Control Batch					

Stantec Consulting Ltd Client Project #: 123221161 Sampler Initials: MD

GENERAL COMMENTS

Sample HLC289 [VP18-34/1412]: VPH was analyzed at a 5X dilution. The DL was adjusted accordingly.

Sample HLC290 [VP18-35/1012]: VPH was analyzed at a 2.5X dilution. The DL was adjusted accordingly.

Sample HLC291 [VP18-39/1473]: VPH and Aliphatic C8-C10 was analyzed at a 23.5X dilution. The DL was adjusted accordingly.

Results relate only to the items tested.

Stantec Consulting Ltd Client Project #: 123221161 Sampler Initials: MD

QUALITY ASSURANCE REPORT

QA/QC								
Batch	Init	QC Type	Parameter	Date Analyzed	Value	Recovery	UNITS	QC Limits
5688307	NS2	Spiked Blank	Bromochloromethane	2018/08/16		79	%	60 - 140
			D5-Chlorobenzene	2018/08/16		97	%	60 - 140
			Difluorobenzene	2018/08/16		82	%	60 - 140
			1,3-Butadiene	2018/08/16		109	%	70 - 130
			Methyl t-butyl ether (MTBE)	2018/08/16		101	%	70 - 130
			1,2-Dichloroethane	2018/08/16		116	%	70 - 130
			Ethylene Dibromide	2018/08/16		122	%	70 - 130
			Benzene	2018/08/16		112	%	70 - 130
			Toluene	2018/08/16		122	%	70 - 130
			Ethylbenzene	2018/08/16		100	%	70 - 130
			p+m-Xylene	2018/08/16		100	%	70 - 130
			o-Xylene	2018/08/16		100	%	70 - 130
			Styrene	2018/08/16		108	%	70 - 130
			1,3,5-Trimethylbenzene	2018/08/16		100	%	70 - 130
			1,2,4-Trimethylbenzene	2018/08/16		96	%	70 - 130
			Hexane	2018/08/16		93	%	70 - 130
			Naphthalene	2018/08/16		95	%	70 - 130
			Total Xylenes	2018/08/16		100	%	70 - 130
5688307	NS2	Method Blank	Bromochloromethane	2018/08/16		106	%	60 - 140
			D5-Chlorobenzene	2018/08/16		106	%	60 - 140
			Difluorobenzene	2018/08/16		111	%	60 - 140
			1,3-Butadiene	2018/08/16	<0.50		ppbv	
			Methyl t-butyl ether (MTBE)	2018/08/16	<0.20		ppbv	
			1,2-Dichloroethane	2018/08/16	<0.10		ppbv	
			Ethylene Dibromide	2018/08/16	< 0.050		ppbv	
			Benzene	2018/08/16	<0.18		ppbv	
			Toluene	2018/08/16	<0.20		ppbv	
			Ethylbenzene	2018/08/16	<0.20		ppbv	
			Methylcyclohexane	2018/08/16	<0.50		ppbv	
			p+m-Xylene	2018/08/16	< 0.37		ppbv	
			o-Xylene	2018/08/16	<0.20		ppbv	
			Styrene	2018/08/16	<0.20		ppbv	
			1,3,5-Trimethylbenzene	2018/08/16	<0.50		ppbv	
			1,2,4-Trimethylbenzene	2018/08/16	<0.50		ppbv	
			Cumene (Isopropylbenzene)	2018/08/16	<0.50		ppbv	
			Hexane	2018/08/16	< 0.30		ppbv	
			Decane	2018/08/16	<0.50		ppbv	
			Naphthalene	2018/08/16	<0.50		ppbv	
			Total Xylenes	2018/08/16	<0.60		ppbv	
5688307	NS2	RPD	1,3-Butadiene	2018/08/16	NC		%	25
			Methyl t-butyl ether (MTBE)	2018/08/16	NC		%	25
			1,2-Dichloroethane	2018/08/16	NC		%	25
			Ethylene Dibromide	2018/08/16	NC		%	25
			Benzene	2018/08/16	0.41		%	25
			Toluene	2018/08/16	0.36		%	25
			Ethylbenzene	2018/08/16	0.053		%	25
			p+m-Xylene	2018/08/16	0.70		%	25
			o-Xylene	2018/08/16	0.47		%	25
			Styrene	2018/08/16	NC		%	25
			1,3,5-Trimethylbenzene	2018/08/16	0.32		%	25
			1,2,4-Trimethylbenzene	2018/08/16	0.61		%	25
			Cumene (Isopropylbenzene)	2018/08/16	0.95		%	25
			Decane	2018/08/16	NC		%	25
			Naphthalene	2018/08/16	NC		%	25

Stantec Consulting Ltd Client Project #: 123221161 Sampler Initials: MD

QUALITY ASSURANCE REPORT(CONT'D)

QA/QC								
Batch	Init	QC Type	Parameter	Date Analyzed	Value	Recovery	UNITS	QC Limits
			Total Xylenes	2018/08/16	0.64		%	25
5688325	NS2	Method Blank	Aliphatic >C5-C6	2018/08/16	<5.0		ug/m3	
			Aliphatic >C6-C8	2018/08/16	<5.0		ug/m3	
			Aliphatic >C8-C10	2018/08/16	<5.0		ug/m3	
			Aliphatic >C10-C12	2018/08/16	<5.0		ug/m3	
			Aliphatic >C12-C16	2018/08/16	<5.0		ug/m3	
			Aromatic >C7-C8 (TEX Excluded)	2018/08/16	<5.0		ug/m3	
			Aromatic >C8-C10	2018/08/16	<5.0		ug/m3	
			Aromatic >C10-C12	2018/08/16	<5.0		ug/m3	
			Aromatic >C12-C16	2018/08/16	<5.0		ug/m3	
5688325	NS2	RPD	Aliphatic >C5-C6	2018/08/16	NC		%	25
			Aliphatic >C6-C8	2018/08/16	0.19		%	25
			Aliphatic >C8-C10	2018/08/16	0.93		%	25
			Aliphatic >C10-C12	2018/08/16	0.63		%	25
			Aliphatic >C12-C16	2018/08/16	0.27		%	25
			Aromatic >C7-C8 (TEX Excluded)	2018/08/16	NC		%	25
			Aromatic >C8-C10	2018/08/16	0.55		%	25
			Aromatic >C10-C12	2018/08/16	0.57		%	25
			Aromatic >C12-C16	2018/08/16	8.1		%	25
5688334	NS2	Method Blank	VPHv (C6-C13)	2018/08/16	<10		ug/m3	
5688334	NS2	RPD	VPHv (C6-C13)	2018/08/16	3.1		%	25
5691600	NS2	Method Blank	VPHv (C6-C13)	2018/08/17	<10		ug/m3	
5694782	NS2	Method Blank	VPHv (C6-C13)	2018/08/20	<10		ug/m3	

Duplicate: Paired analysis of a separate portion of the same sample. Used to evaluate the variance in the measurement.

Spiked Blank: A blank matrix sample to which a known amount of the analyte, usually from a second source, has been added. Used to evaluate method accuracy.

Method Blank: A blank matrix containing all reagents used in the analytical procedure. Used to identify laboratory contamination.

Surrogate: A pure or isotopically labeled compound whose behavior mirrors the analytes of interest. Used to evaluate extraction efficiency.

NC (Duplicate RPD): The duplicate RPD was not calculated. The concentration in the sample and/or duplicate was too low to permit a reliable RPD calculation (absolute difference <= 2x RDL).

Stantec Consulting Ltd Client Project #: 123221161 Sampler Initials: MD

VALIDATION SIGNATURE PAGE

The analytical data and all QC contained in this report were reviewed and validated by the following individual(s).

Maureen Smith, Supervisor, Volatiles

Maxxam has procedures in place to guard against improper use of the electronic signature and have the required "signatories", as per section 5.10.2 of ISO/IEC 17025:2005(E), signing the reports. For Service Group specific validation please refer to the Validation Signature Page.

Your Project #: 123221161 Site Location: WHITEHORSE Your C.O.C. #: G134603

Attention: Carey Sibbald

STANTEC CONSULTING LTD

Metrotower III

Suite 500, 4730 Kingsway

BURNABY, BC

CANADA V5H 4M1

Report Date: 2018/11/08

Report #: R2647992 Version: 1 - Final

CERTIFICATE OF ANALYSIS

MAXXAM JOB #: B896179 Received: 2018/10/31, 09:16

Sample Matrix: Water # Samples Received: 8

		Date	Date		
Analyses	Quantity	Extracted	Analyzed	Laboratory Method	Analytical Method
PAH in Water by GC/MS (SIM)	8	2018/11/07	2018/11/07	BBY8SOP-00021	BCMOE BCLM Jul2017m
Total LMW, HMW, Total PAH Calc (1)	8	N/A	2018/11/07	BBY WI-00033	Auto Calc
EPH (Low Level) in Water by GC/FID	8	2018/11/07	2018/11/07	BBY8SOP-00029	BCMOE BCLM Mar 2017
EPH less PAH in Water by GC/FID (2)	8	N/A	2018/11/08	BBY WI-00033	Auto Calc

Remarks:

Maxxam Analytics' laboratories are accredited to ISO/IEC 17025:2005 for specific parameters on scopes of accreditation. Unless otherwise noted, procedures used by Maxxam are based upon recognized Provincial, Federal or US method compendia such as CCME, MDDELCC, EPA, APHA.

All work recorded herein has been done in accordance with procedures and practices ordinarily exercised by professionals in Maxxam's profession using accepted testing methodologies, quality assurance and quality control procedures (except where otherwise agreed by the client and Maxxam in writing). All data is in statistical control and has met quality control and method performance criteria unless otherwise noted. All method blanks are reported; unless indicated otherwise, associated sample data are not blank corrected. Where applicable, unless otherwise noted, Measurement Uncertainty has not been accounted for when stating conformity to the referenced standard.

Maxxam Analytics' liability is limited to the actual cost of the requested analyses, unless otherwise agreed in writing. There is no other warranty expressed or implied. Maxxam has been retained to provide analysis of samples provided by the Client using the testing methodology referenced in this report. Interpretation and use of test results are the sole responsibility of the Client and are not within the scope of services provided by Maxxam, unless otherwise agreed in writing. Maxxam is not responsible for the accuracy or any data impacts, that result from the information provided by the customer or their agent.

Solid sample results, except biota, are based on dry weight unless otherwise indicated. Organic analyses are not recovery corrected except for isotope dilution methods.

Results relate to samples tested. When sampling is not conducted by Maxxam, results relate to the supplied samples tested.

This Certificate shall not be reproduced except in full, without the written approval of the laboratory.

Reference Method suffix "m" indicates test methods incorporate validated modifications from specific reference methods to improve performance.

- * RPDs calculated using raw data. The rounding of final results may result in the apparent difference.
- (1) Total PAHs in Water include: Quinoline, Naphthalene, 1-Methylnaphthalene, 2-Methylnaphthalene, Acenaphthylene, Acenaphthene, Fluorene, Phenanthrene, Anthracene, Acridine, Fluoranthene, Pyrene, Benzo(a)anthracene, Chrysene, Benzo(b&j)fluoranthene, Benzo(k)fluoranthene, Benzo(a)pyrene, Indeno(1,2,3-cd)pyrene, Dibenz(a,h)anthracene, and Benzo(g,h,i)perylene.
- (2) LEPH = EPH (C10 to C19) (Acenaphthene + Acridine + Anthracene + Fluorene + Naphthalene + Phenanthrene) HEPH = EPH (C19 to C32) - (Benzo(a)anthracene + Benzo(a)pyrene + Fluoranthene + Pyrene)

Your Project #: 123221161 Site Location: WHITEHORSE Your C.O.C. #: G134603

Attention: Carey Sibbald
STANTEC CONSULTING LTD
Metrotower III
Suite 500, 4730 Kingsway
BURNABY, BC
CANADA V5H 4M1

Report Date: 2018/11/08

Report #: R2647992 Version: 1 - Final

CERTIFICATE OF ANALYSIS

MAXXAM JOB #: B896179 Received: 2018/10/31, 09:16

Encryption Key

Please direct all questions regarding this Certificate of Analysis to your Project Manager.

Nahed Amer, Project Manager Email: NAmer@maxxam.ca Phone# (604) 734 7276

This report has been generated and distributed using a secure automated process.

Maxxam has procedures in place to guard against improper use of the electronic signature and have the required "signatories", as per section 5.10.2 of ISO/IEC 17025:2005(E), signing the reports. For Service Group specific validation please refer to the Validation Signature Page.

STANTEC CONSULTING LTD Client Project #: 123221161 Site Location: WHITEHORSE

Sampler Initials: BCS

LEPH & HEPH WITH LL EPH IN WATER (WATER)

Maxxam ID		UR6306		UR6307		UR6308		
Sampling Date		2018/10/30		2018/10/30		2018/10/30		
Sampling Date		16:45		10:15		12:15		
COC Number		G134603		G134603		G134603		
	UNITS	MW18-31@16:45	RDL	MW18-31@10:15	RDL	MW18-31@12:15	RDL	QC Batch
Calculated Parameters								
Low Molecular Weight PAH`s	ug/L	4.2	0.20	3.3	0.23	4.0	0.20	9212023
High Molecular Weight PAH`s	ug/L	<0.10	0.10	<0.10	0.10	<0.10	0.10	9212023
Total PAH	ug/L	4.2	0.20	3.3	0.23	4.0	0.20	9212023
Polycyclic Aromatics							•	
Naphthalene	ug/L	0.57 (1)	0.20	0.50 (1)	0.20	0.54 (1)	0.20	9218098
Acenaphthene	ug/L	0.63 (1)	0.10	0.50 (1)	0.10	0.62 (1)	0.10	9218098
Fluorene	ug/L	2.0	0.10	1.6	0.10	1.9 (1)	0.10	9218098
Phenanthrene	ug/L	0.89	0.10	0.70	0.10	0.87	0.10	9218098
Anthracene	ug/L	0.026 (1)	0.020	0.024 (1)	0.020	0.027 (1)	0.020	9218098
Acridine	ug/L	<0.10	0.10	<0.10	0.10	<0.10	0.10	9218098
Calculated Parameters			•					
LEPH (C10-C19 less PAH)	mg/L	0.56	0.11	0.51	0.11	0.55	0.11	9213178
Ext. Pet. Hydrocarbon			•					
EPH (C10-C19)	mg/L	0.56 (2)	0.11	0.51 (2)	0.11	0.55 (2)	0.11	9218103
EPH (C19-C32)	mg/L	<0.50 (2)	0.50	<0.50 (2)	0.50	<0.50 (2)	0.50	9218103
Surrogate Recovery (%)	•							
D10-ANTHRACENE (sur.)	%	89		88		88		9218098
D8-ACENAPHTHYLENE (sur.)	%	94		91		92		9218098
D8-NAPHTHALENE (sur.)	%	79		74		74		9218098
TERPHENYL-D14 (sur.)	%	75		76		76		9218098
O-TERPHENYL (sur.)	%	99		101		102		9218103

RDL = Reportable Detection Limit

⁽¹⁾ Tentatively identified result and may be potentially biased high due to matrix interference.

⁽²⁾ Detection limits raised due to insufficient sample volume.

STANTEC CONSULTING LTD Client Project #: 123221161 Site Location: WHITEHORSE

Sampler Initials: BCS

LEPH & HEPH WITH LL EPH IN WATER (WATER)

Maxxam ID		UR6309		UR6310	UR6311	UR6312		
Sampling Date		2018/10/30		2018/10/29	2018/10/29	2018/10/29		
Sampling Date		14:15		17:55	15:55	13:55		
COC Number		G134603		G134603	G134603	G134603		
	UNITS	MW18-31@14:15	RDL	MW16-09@17:55	MW16-09@15:55	MW16-09@13:55	RDL	QC Batch
Calculated Parameters								
Low Molecular Weight PAH`s	ug/L	3.9	0.24	7.9	7.0	7.8	0.20	9212023
High Molecular Weight PAH`s	ug/L	<0.10	0.10	<0.10	<0.10	<0.10	0.10	9212023
Total PAH	ug/L	3.9	0.24	7.9	7.0	7.8	0.20	9212023
Polycyclic Aromatics								
Naphthalene	ug/L	0.54 (1)	0.20	1.1	0.95	1.1	0.20	9218098
Acenaphthene	ug/L	0.62 (1)	0.10	0.23 (1)	0.17 (1)	0.17 (1)	0.10	9218098
Fluorene	ug/L	1.9	0.10	0.75	0.71	0.75	0.10	9218098
Phenanthrene	ug/L	0.84	0.10	0.36	0.35	0.40	0.10	9218098
Anthracene	ug/L	0.024 (1)	0.020	<0.020 (1)	<0.020 (1)	<0.020 (1)	0.020	9218098
Acridine	ug/L	<0.10	0.10	<0.10	<0.10	<0.10	0.10	9218098
Calculated Parameters	•							-
LEPH (C10-C19 less PAH)	mg/L	0.56	0.11	0.31	0.31	0.32	0.11	9213178
Ext. Pet. Hydrocarbon								
EPH (C10-C19)	mg/L	0.56 (2)	0.11	0.31 (2)	0.31 (2)	0.32 (2)	0.11	9218103
EPH (C19-C32)	mg/L	<0.50 (2)	0.50	<0.50 (2)	<0.50 (2)	<0.50 (2)	0.50	9218103
Surrogate Recovery (%)								
D10-ANTHRACENE (sur.)	%	88		88	89	90		9218098
D8-ACENAPHTHYLENE (sur.)	%	91		92	92	94		9218098
D8-NAPHTHALENE (sur.)	%	73		80	77	79		9218098
TERPHENYL-D14 (sur.)	%	75		77	76	77		9218098
O-TERPHENYL (sur.)	%	102		102	103	102		9218103

RDL = Reportable Detection Limit

⁽¹⁾ Tentatively identified result and may be potentially biased high due to matrix interference.

⁽²⁾ Detection limits raised due to insufficient sample volume.

STANTEC CONSULTING LTD Client Project #: 123221161 Site Location: WHITEHORSE

Sampler Initials: BCS

LEPH & HEPH WITH LL EPH IN WATER (WATER)

Maxxam ID		UR6313			
Sampling Date		2018/10/29			
Jamping Date		11:55			
COC Number		G134603			
	UNITS	MW16-09@11:55	RDL	QC Batch	
Calculated Parameters					
Low Molecular Weight PAH's	ug/L	15	0.35	9212023	
High Molecular Weight PAH's	ug/L	<0.10	0.10	9212023	
Total PAH	ug/L	15	0.35	9212023	
Polycyclic Aromatics					
Naphthalene	ug/L	2.0	0.20	9218098	
Acenaphthene	ug/L	0.27 (1)	0.10	9218098	
Fluorene	ug/L	1.4	0.10	9218098	
Phenanthrene	ug/L	0.90	0.10	9218098	
Anthracene	ug/L	0.063 (1)	0.020	9218098	
Acridine	ug/L	<0.10	0.10	9218098	
Calculated Parameters					
LEPH (C10-C19 less PAH)	mg/L	4.8	0.11	9213178	
Ext. Pet. Hydrocarbon					
EPH (C10-C19)	mg/L	4.8 (2)	0.11	9218103	
EPH (C19-C32)	mg/L	0.60 (2)	0.50	9218103	
Surrogate Recovery (%)					
D10-ANTHRACENE (sur.)	%	92		9218098	
D8-ACENAPHTHYLENE (sur.)	%	98		9218098	
D8-NAPHTHALENE (sur.)	%	77		9218098	
TERPHENYL-D14 (sur.)	%	82		9218098	
O-TERPHENYL (sur.)	%	105		9218103	
RDI - Reportable Detection Limit					

RDL = Reportable Detection Limit

⁽¹⁾ Tentatively identified result and may be potentially biased high due to matrix interference.

⁽²⁾ Detection limits raised due to insufficient sample volume.

STANTEC CONSULTING LTD Client Project #: 123221161 Site Location: WHITEHORSE

Sampler Initials: BCS

GENERAL COMMENTS

Sample UR6306 [MW18-31@16:45]: Sample was decanted. Results maybe biased low for EPH/PAH. PAH Detection limits raised due to insufficient sample volume.

Sample UR6307 [MW18-31@10:15]: Sample was decanted. Results maybe biased low for EPH/PAH. PAH Detection limits raised due to insufficient sample volume.

Sample UR6308 [MW18-31@12:15] : Sample was decanted. Results maybe biased low for EPH/PAH. PAH Detection limits raised due to insufficient sample volume.

Sample UR6309 [MW18-31@14:15]: Sample was decanted. Results maybe biased low for EPH/PAH. PAH Detection limits raised due to insufficient sample volume.

Sample UR6310 [MW16-09@17:55]: Sample was decanted. Results maybe biased low for EPH/PAH. PAH Detection limits raised due to insufficient sample volume.

Sample UR6311 [MW16-09@15:55]: Sample was decanted. Results maybe biased low for EPH/PAH. PAH Detection limits raised due to insufficient sample volume.

Sample UR6312 [MW16-09@13:55]: Sample was decanted. Results maybe biased low for EPH/PAH. PAH Detection limits raised due to insufficient sample volume.

Sample UR6313 [MW16-09@11:55]: Sample was decanted. Results maybe biased low for EPH/PAH. PAH Detection limits raised due to insufficient sample volume.

Results relate only to the items tested.

QUALITY ASSURANCE REPORT

STANTEC CONSULTING LTD

Client Project #: 123221161
Site Location: WHITEHORSE

Sampler Initials: BCS

			Spiked Blank		Method Blank	
QC Batch	Parameter	Date	% Recovery	QC Limits	Value	UNITS
9218098	D10-ANTHRACENE (sur.)	2018/11/07	85	50 - 140	98	%
9218098	D8-ACENAPHTHYLENE (sur.)	2018/11/07	83	50 - 140	81	%
9218098	D8-NAPHTHALENE (sur.)	2018/11/07	73	50 - 140	74	%
9218098	TERPHENYL-D14 (sur.)	2018/11/07	74	50 - 140	89	%
9218103	O-TERPHENYL (sur.)	2018/11/07	92	50 - 130	94	%
9218098	Acenaphthene	2018/11/07	88	50 - 140	<0.050	ug/L
9218098	Acridine	2018/11/07	98	50 - 140	<0.050	ug/L
9218098	Anthracene	2018/11/07	87	50 - 140	<0.010	ug/L
9218098	Fluorene	2018/11/07	88	50 - 140	<0.050	ug/L
9218098	Naphthalene	2018/11/07	88	50 - 140	<0.10	ug/L
9218098	Phenanthrene	2018/11/07	85	50 - 140	<0.050	ug/L
9218103	EPH (C10-C19)	2018/11/07	114	70 - 130	<0.050	mg/L
9218103	EPH (C19-C32)	2018/11/07	124	70 - 130	<0.20	mg/L

Spiked Blank: A blank matrix sample to which a known amount of the analyte, usually from a second source, has been added. Used to evaluate method accuracy.

Method Blank: A blank matrix containing all reagents used in the analytical procedure. Used to identify laboratory contamination.

Surrogate: A pure or isotopically labeled compound whose behavior mirrors the analytes of interest. Used to evaluate extraction efficiency.

STANTEC CONSULTING LTD Client Project #: 123221161 Site Location: WHITEHORSE

Sampler Initials: BCS

VALIDATION SIGNATURE PAGE

The analytical data and all QC contained in this report were reviewed and validated by the following individual(s).

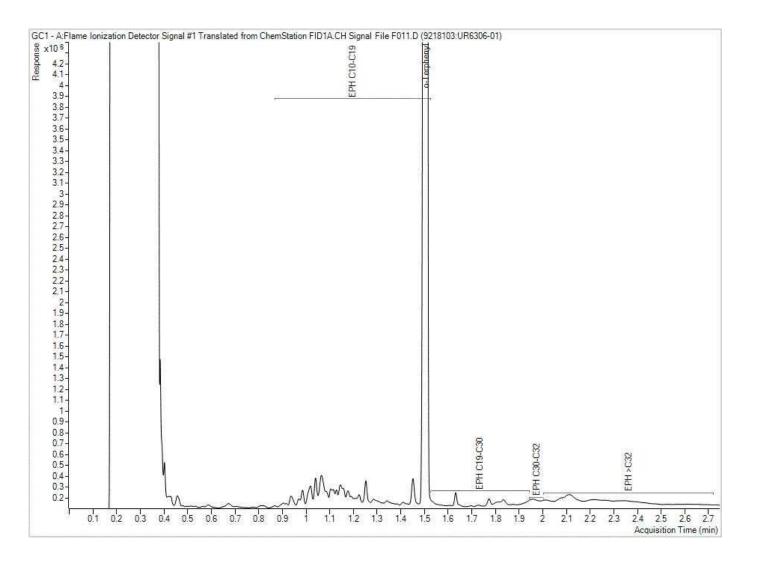
Andy Lu, Ph.D., P.Chem., Scientific Specialist

Jose Cueva, Supervisor, Organics-VOC & HC

Maxxam has procedures in place to guard against improper use of the electronic signature and have the required "signatories", as per section 5.10.2 of ISO/IEC 17025:2005(E), signing the reports. For Service Group specific validation please refer to the Validation Signature Page.

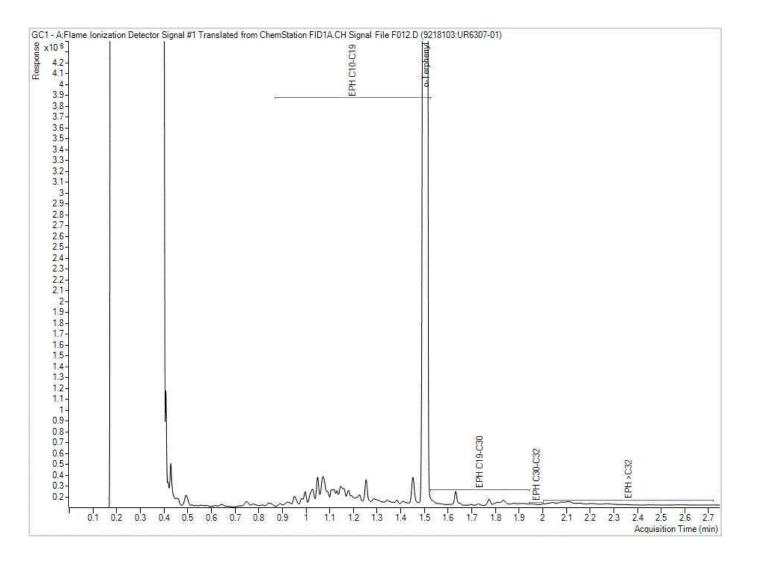
	,	19	
M:	ax	Va.	m
AB	ureau Verit	as Group C	Company

Burnaby: 4606 Canada Way, Burnaby, BC V5G 1K5 Toll Free (800) 665 8566 Victoria: 460 Tennyson Place, Unit 1, Victoria, BC V8Z 6S8 Toll Free (866) 385-6112 maxxam.ca

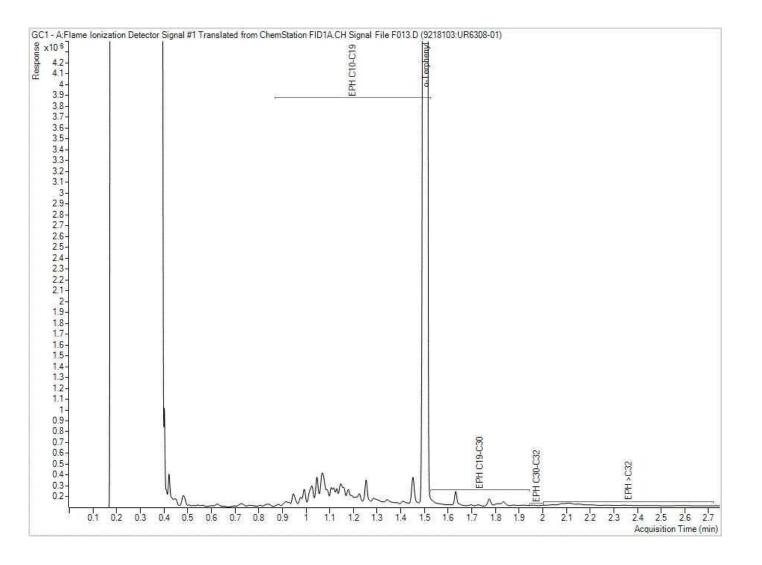

CHAIN OF CUSTODY RECORD

	G13460	13
age	of	

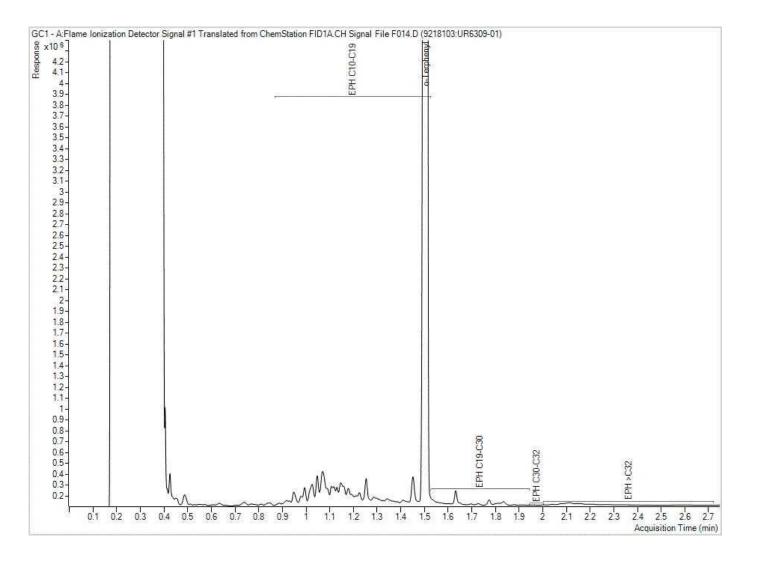
Invoice Information	Report Information (if differs	from invoice)	Project Information	Turnaround Time (TAT) Required		
Company: Stante C Company:			Quotation Stanter Regular	5 - 7 Days Regular (Most analyses)		
Contact Name: Consey Sibald	Contact Name:		P.O. #/AFE#:	PLEASE PROVIDE ADVANCE NOTICE FOR RUSH PROJECTS		
Address: 202-107 Main St.	Address:			Rush TAT (Surcharges will be applied)		
Whitehorse YT pc: 244 Phone/Fax: 867 446 7644 SylA 2A7		PC:	Project #: 12322161 Site Location: Whitehors R	Same Day 2 Days		
Phone/Fax: 867 446 7644 9714 247	Phone/Fax:		Site Location: Whitehors &	1 Day 3-4 Days		
Email: careyisibbaldestanteria copies: josephiriddellestanterion	A Email:	1	Site #:	Date Required:		
copies: 105eph. riddellestanter. 10m	Morphisad. Sulcy estar	ntec, lom	Sampled By: 3CS	Rush Confirmation #:		
Laboratory U	se Only		Analysis Requested	Regulatory Criteria		
VES NO Cooler ID	Depot Reception					
Seal Intact V Temp U U U	orper measures.	NATH ST	/ F1 H / PAH H / PAH D P.2 - F4 D Preserved? ved? Sulphate C COD Alkalinity Antmonia	☐ BC CSR		
Cooling Media			/ F1 H / 9AH H / 9AH D F2 - F4 D Preserved Preserved? rved? COD Ammonia	¥ YK CSR		
YES NO Cooler ID			7 × 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0			
Seal Present			NTEXS / VPH	CCME		
Seal Intact Temp			SS / V VOC LEPH Fleld Fleld Be e e e e e e e e e e e e e e e e e e	☐ Drinking Water		
Cooling Media		5 5	C/BTEXS/ VC VC LE TEH Filtered? Filtered. Filtered.			
YES NO Cooler ID		The Party	VOC/BTEXS/VPH VOC/BTEXS/VPH TEH Filtered? Filtered? Filtered? Filtered? Filtered? Teld Pre Filtered? Teld Pre Teld Pre			
Seal Present		5 1.22	trais recurry	Other		
Seal Intact Temp Cooling Media		lers .	Mer Met	\		
	Date Sampled Time Sampled	of Containers	BTEX 5 / VPH	8		
Sample Identification	(yyyy/mm/dd) (hh:mm)	Matrix 0	BTEX F. BTEX F. BTEX F. BAH BPH BPH BPH BPH BPH BPH BPH	Special Instructions		
1 MW18-31@16:45	2018/10/30 16:45	GN 2				
2 MW18-31@10:15	1 10:15	, 1		GEGENEO IN WHITEHORSE		
3 MW18-31@ 12:15	12:15		X			
4 MW 19-31 @ 14:15	14:15		X X	84 Syono@ 0916		
5 MW16-10 09@ 17:55	2018/10/29 17:55			2018 -10- 3)		
6 MW16-09@ 15:55	15:55					
1 MW16-09@ 13:55	13:55	1/	/ X			
* MW16-09@ 11:55	V 11:55	A	×	(EMP: 5 15 15		
9						
10 Unless otherwise agreed to in writing, work submitted of	n this Chain of Costody is exhibit to Mayore to the	and Torms and Condition	s. Signing of this Chain of Custody document is acknowledgement and acceptance	The transfer of the second		
		Received by: (Sig				
10 40 1014	11 11 11	BRITT	200			
1000 Brad Suley 201	8/10/31 9:16	10 BUR	LONE 2018/11/01 08:05			
				B896179_COC		
coc-1020 354		Max	xam Analytics Success Through Science®	.77/9		


STANTEC CONSULTING LTD Client Project #: 123221161 Site Reference: WHITEHORSE Client ID: MW18-31@16:45

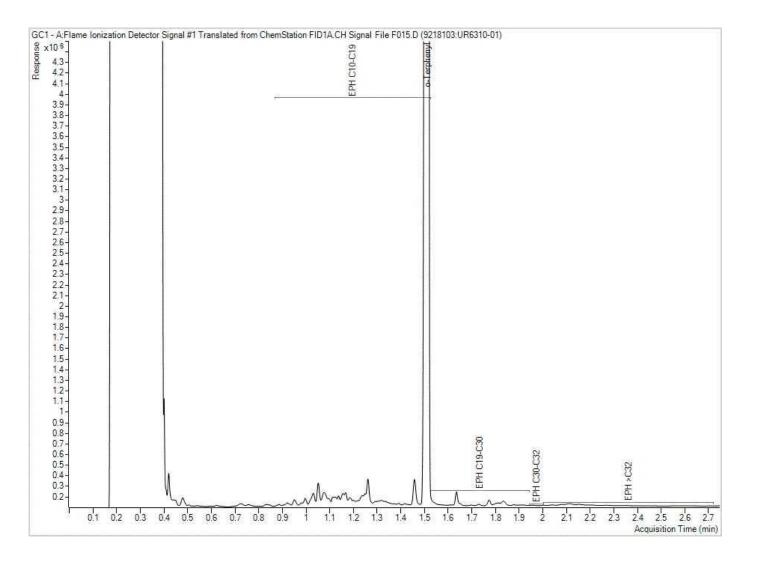
EPH (Low Level) in Water by GC/FID Chromatogram


STANTEC CONSULTING LTD Client Project #: 123221161 Site Reference: WHITEHORSE Client ID: MW18-31@10:15

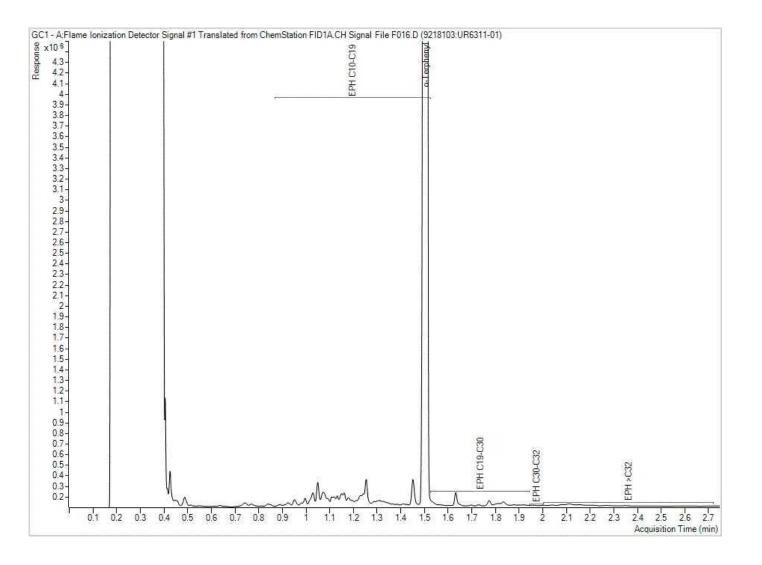
EPH (Low Level) in Water by GC/FID Chromatogram


STANTEC CONSULTING LTD Client Project #: 123221161 Site Reference: WHITEHORSE Client ID: MW18-31@12:15

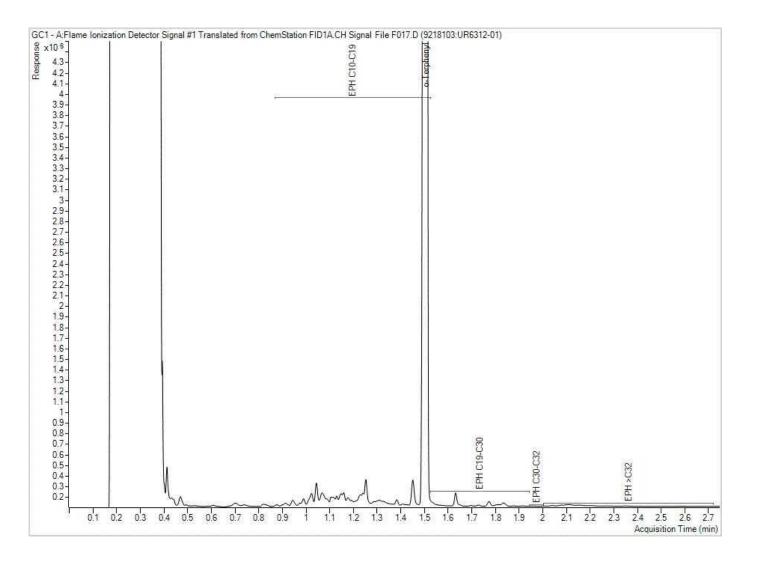
EPH (Low Level) in Water by GC/FID Chromatogram


STANTEC CONSULTING LTD Client Project #: 123221161 Site Reference: WHITEHORSE Client ID: MW18-31@14:15

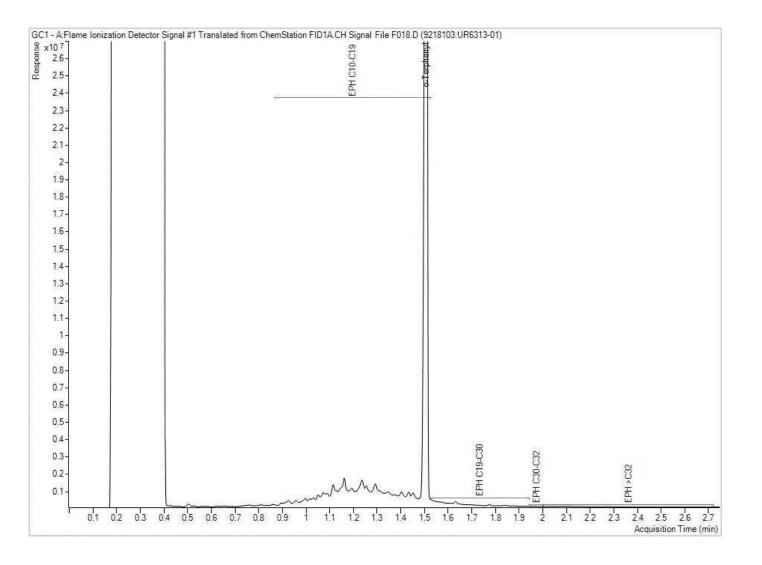
EPH (Low Level) in Water by GC/FID Chromatogram


STANTEC CONSULTING LTD Client Project #: 123221161 Site Reference: WHITEHORSE Client ID: MW16-09@17:55

EPH (Low Level) in Water by GC/FID Chromatogram


STANTEC CONSULTING LTD Client Project #: 123221161 Site Reference: WHITEHORSE Client ID: MW16-09@15:55

EPH (Low Level) in Water by GC/FID Chromatogram


STANTEC CONSULTING LTD Client Project #: 123221161 Site Reference: WHITEHORSE Client ID: MW16-09@13:55

EPH (Low Level) in Water by GC/FID Chromatogram

STANTEC CONSULTING LTD Client Project #: 123221161 Site Reference: WHITEHORSE Client ID: MW16-09@11:55

EPH (Low Level) in Water by GC/FID Chromatogram

