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Abstract 
 

Gold and tungsten stream sediment geochemical data obtained for a resource assessment of South 
Nahanni River area are used to illustrate maximum likelihood estimators (MLE) when applied to data sets 
with undetected values.  Ideally, the data should be complete and the distribution function should be known 
before statistics are computed.  However, as data are commonly not complete, the maximum likelihood 
estimation method allows statistical analysis of censored data with the inherent assumption that their 
distribution is normal or lognormal.  Although data with a high proportion of undetected values may not be 
reliable, in a mineral resource assessment these may be the only data available.  Comparison of curves 
generated from data with ad-hoc substitutions versus curves generated by maximum likelihood estimation, 
shows that the MLE method provides more realistic generalizations of the sample mean and variance. 
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Introduction 
 
Stream sediments from proposed 

extensions to Nahanni National Park Reserve, 
N.W.T. were analyzed by neutron activation for 
gold, tungsten and other elements as part of a non-
renewable resource inventory study (Jefferson et 
al., 1989).  An initial statistical analysis of the data 
was presented in Spirito et al. (1988).  This paper 
selects the gold and tungsten data to illustrate the 
different results obtained by using conventional 
ad-hoc substitution methods versus the maximum 
likelihood estimator method outlined by Chung 
(1989a, 1989b). 

 
Commonly, geochemical data are 

incomplete because of the difficulty in 
determining rare elements present in extremely 
small amounts (ie below the detection limit).  The 
detection limit is dependent upon the 
characteristics of the specific element, the 
analytical technique and the sample itself 
(quantities of other elements present).  Highly 
variable detection limits for gold and tungsten in 

the Nahanni data can be attributed to interference 
from varying abundances of radioactive elements 
present in the stream sediment samples. 

 
Neither standard computer packages for 

statistical analyses nor statistical techniques in 
textbooks can properly handle censored data.  To 
analyze such incomplete data, ad-hoc "substitution 
methods" are commonly used: observations below 
the detection limit are replaced by a certain 
percentage of that limit (cf. Spirito et al., 1988).  
For example, if a sample contains Au values less 
than 2 ppb, then the Au value of the sample is set 
to 1.2 (= 2 x 0.6) ppb or 1 (= 2 x 0.5) ppb. After 
the substitution, the data are assumed to be 
complete and a statistical analysis is performed. 

 
If a small portion of samples is below the 

detection limit or the   detection limits are 
relatively low, then the results may be reasonable 
and most geological interpretations or 
implications are probably valid.  However, if a 
large part of the data are below the detection limit, 
then, for example, statistics to calculate 
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background values, produce distribution curves 
and detect geochemical anomalies, may be 
meaningless.  In addition, where the detection 
limits are high, methods that automatically 
substitute some arbitrary value (eg. 0.5, 0.6) for 
the elevated "less than" values may create 
artificial geochemical anomalies.  We propose the 
maximum likelihood estimation method (Chung, 
1989a,b) to estimate parameters in the distribution 
functions of Au and W in the South Nahanni 
River area as a means of enhancing assessment of 
the mineral potential of the area. 
 

Geological Background 
 

Nahanni National Park Reserve is located 
east of the Yukon border and north of the British 
Columbia border in the Northwest Territories.  It 
covers an area of approximately 4800 km2 which 
transects the southern Mackenzie Mountains fold 
and thrust belt. Surficial deposits from alpine and 
continental glaciations are found throughout the 
study area.  The data for this project were 
collected from proposed park extension areas at 
the western and eastern ends of the park (Spirito et 
al., 1988). 
 

The western extension area, known as the 
Ragged Ranges is located near Tungsten, NWT.  
It is characterized by Paleozoic shelf margin 
carbonates and basinal shales intruded by 
Cretaceous plutons.  Three main types of mineral 
deposits are known in this study area (Scoates et 
al., 1986): 1. tin-tungsten associated with granitic 
plutons similar to those mined at Tungsten, NWT; 
2. shale-hosted lead-zinc similar to that found at 
MacMillan Pass and Howards Pass; 3. precious 
metal-bearing veins. 
 

The bedrock geology is grouped into 
eight main units (after Spirito et al., 1988) which 
are simplified from numerous sources cited by 
Scoates et al. (1986): 

1,2) Late Proterozoic: glaciomarine 
conglomerate, iron formation, argillite, shale, 
quartz arenite and carbonate of the Windermere 
Supergroup. 

3,4) Early Paleozoic: platformal and 
carbonate strata (Rock Type 4) on the NE side and 
shales to shaly carbonates (Rock Type 3) on the 
SW side of the facies boundary.  Analyses of 

heavy mineral concentrates taken from stream 
gravel derived from these two rock types were 
selected for discussion in this paper. 

5,6,7) Late Devonian and Younger: 
basinal shale and porcellanite; Carboniferous 
shallow marine carbonates and coal-bearing 
continental sandstones overlain by Permian to 
Triassic basinal cherts and mudstones. 

8) Granitoid Rock Types: mainly Early 
and Mid-Cretaceous quartz monzonites.  

9) Quaternary Deposits: in valleys, 
bedrock is deeply covered by talus, glacial till and 
alluvial deposits.  This "rock type" contributes to 
the geochemical signature of the samples. 
 

Sample Collection and Preparation 
 

In 1985, an orientation survey tested the 
sampling method and  identified potential 
problems.  Known mineralized zones were 
sampled at a 1:50,000 scale at Lened (W-Mo-Cu) 
and Prairie Creek (Ag-Pb-Zn).  The following 
summer a reconnaissance survey at 1:250,000 
covered all large drainage basins in the study 
regions.  During the summer of 1987, more 
detailed sampling investigated geochemical 
anomalies that were detected in the 1986 samples. 
 

The sample sites were chosen on the basis 
of rock type, basin size and in rare cases, 
accessibility.  The density of sampling was limited 
by funding.  Samples representing all rock types 
and 244 drainage basins were taken.  At each site 
a stream silt and gravel were collected.  Data from 
silts are not used in this paper as all of the Au and 
W determinations are below the detection limit. 
 

The gravels were sieved from -841µ to 
+63µ.  In 1985, heavy liquids (SG >3.2) were 
used to separate the heavy minerals.  This method 
was not efficient for the large number and size of 
samples collected in 1986 and 1987.  These 
samples were sieved and the heavy minerals were 
separated using a concentrating table.  The 
magnetic fraction was removed from the heavy 
mineral concentrate and the concentrate was 
analyzed by neutron activation.  Anomalous 
values for W, Au and Zn were published in Spirito 
et al. (1988).  The complete list of W and Au 
values from Rock Types 3 and 4 are found in 
Tables 1A and 1B. 
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Table 1A:  W and Au values for rock type 3 in Ragged Ranges 

 
Sample W (ppm) Au (ppb) Sample W (ppm) Au (ppb) 

6041 35 < 19 6120 15 < 26 
6042 95 < 12 6123 601 1300 
6043 231 < 14 6124 < 8 < 5 
6050 200 < 18 6130 351 81 
6052 < 13 98 6131 52 < 19 
6053 < 20 140 6132 180 < 11 
6057 496 110 6134 < 5 < 5 
6062 9 < 15 6137 < 8 < 17 
6067 < 6 < 13 6142 < 19 < 5 
6069 655 20 6143 < 8 < 19 
6070 < 8 < 20 6144 12 21 
6071 28 < 12 6280 < 37 < 100 
6073 44 < 25 7001 86 < 23 
6074 66 < 37 7003 88 < 18 
6075 86 26 7006 282 < 25 
6076 37 < 36 7008 327 < 15 
6078 < 7 < 11 7016 < 2500* 100 
6089 < 6 < 11 7017 < 3500* < 120 
6090 6 37 7021 130 < 21 
6091 < 2 < 5 7027 257 < 22 
6092 < 4 < 5 7034 39 < 26 
6096 < 2 < 5 7035 < 10 < 5 
6099 < 2 < 5 7036 < 3000* < 180 
6116 255 < 9 7039 < 4900* < 170 
6117 32 < 21 *calculations done with and without these values 

 
 

Table 1B:  W and Au values for rock type 4 in Ragged Ranges 
 

Sample W (ppm) Au (ppb) Sample W (ppm) Au (ppb) 
6040 1130 < 18 6109 < 8 < 5 
6044 < 6 < 13 6110 < 8 < 11 
6046 2370 32 6111 < 2 < 5 
6049 < 5 < 5 6112 < 7 < 17 
6051 74 < 46 6113 8 < 11 
6054 < 8 69 6114 9 < 12 
6055 1130 869 6115 < 13 < 23 
6056 1630 160 6126 6 < 5 
5058 < 11 < 22 6138 10 25 
6059 < 6 < 10 6139 25 < 22 
6060 < 2 < 5 6140 < 5 28 
6061 < 5 < 5 6141 10 < 17 
6063 9 < 12 6159 < 69 < 110 
6064 4 < 5 6160 < 20 53 
6065 5 < 5 6162 < 23 < 49 
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6072 < 8 < 16 6163 < 21 60 
6077 214 < 35 6164 < 11 41 
6079 4 < 5 6282 < 12 < 34 
6081 < 2 < 5 6284 29 < 27 
6082 < 2 < 5 7004 < 3600* < 160 
6083 < 2 < 5 7005 < 3400* 448 
6085 1920 44 7018 < 17 31 
6086 140 < 12 7019 < 26 44 
6093 4 9 7020 < 50 410 
6095 9 < 5 7025 13200* 79 
6097 < 2 < 5 7026 < 3600* < 120 
6098 < 8 < 5 7029 < 7 < 5 
6100 < 2 < 5 7032 37 290 
6101 7 19 7033 < 41 180 
6102 < 6 < 5 7037 306 < 49 
6103 < 8 < 10 7038 110 < 11 
6104 < 8 < 11 7042 < 2900* < 180 
6106 < 10 < 17
6108 9 < 5

*calculations done with and without 
these values 

 
 

Multiple Censored Data 
 

Consider n observations X1, X2, ... , Xn 
from a population with the continuous distribution 
function F(x : uk, k=1,...m) = P{Xi < x} where uk 
are the population parameters such as the mean 
(the location parameter) and the variance (the 
scale parameter). Suppose that the first h 
observations are censored, but that    Xi < α for 
i=1, ... , h where α is a known constant. That is, 
instead of X1, ... , Xn, the observations are  <α, <α, 
... , <α, Xh+1, Xh+2, ... , Xn where <α denotes that 
the value is less than α. This is called a single left 
censored data set. A geochemical data set with 
some observations below a single detection limit α 
is a typical example of single left censored data. 
 

For a data set with multiple censoring,  
the observations are <α1, ... , <αh, Xh+1, ... , Xh+k, 
>β1, ... , >βg  instead of X1, ... , Xn, where n = 
h+k+g and >βj indicates that the value of the 
sample is greater than a constant βj. The first h 

samples are called multiple left censored data and 
the last g samples are referred as multiple right 
censored data. The tungsten and gold values in 
Table 1A and B are two examples of multiple left 
censored data.  
 

Maximum likelihood estimation 
 

F(x : uk, k=1,...,m) implies that the 
distribution function F is completely characterized 
by m parameters u1, ..., um. The statistical problem 
consists of how to estimate these m parameters 
from the n observed samples X1, ..., Xn. Let f(x : 
uk, k=1,...,m) be the corresponding density 
distribution function of F. Then the maximum 
likelihood estimators (MLE) of uk, k=1, ... , m 
from n multiple censored observations, <α1, ... , 
<αh, Xh+1, ... , Xh+k, >β1, ... , >βg, where n = h+k+g, 
are obtained by determining uk, k=1, ... , m which 
maximize the log-likelihood function: 

 

 
 

 
                       h 
      (1)    L(uk,k=1,...,m) = ∑ log (F(αj:uk,k=1,...,m)) 
                  j=1 
            k 
       +  ∑  log (f(Xh+i:uk,k=1,...,m)) 
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              i=1 
               g 
        +  ∑  log(1 - F(βv:uk,k=1,...,m)) 
               v=1 
 

 
 
The maximum likelihood (ML) 

estimators are dependent upon not only the 
observations but also the distribution F. Even for 
the most commonly used distribution functions, 
such as normal, log-normal, exponential or 
gamma, the analytical solutions of the ML 
estimators from multiple-censored observations 
cannot be obtained unless an iterative numerical 
procedure is applied. 

 
There are several iterative algorithms to 

obtain the ML estimators maximizing 
L(uk,k=1,...,m).  Three commonly used techniques 
are the scoring method (Rao, 1975), the 
EM-algorithm (Dempster et al., 1977) and the 
conjugate gradients method (Stoer and Bulirsch, 
1980). 
 

Although the ML estimators of the 
parameters can be obtained from any 
distributional assumption on F, only the normal 
and lognormal distributions will be discussed 
here.  The scoring method, assuming that F is a 
normal distribution function with two parameters, 
the mean µ and the variance σ2, is illustrated in 
Appendix A. 
 
Properties of Maximum Likelihood Estimators 
 

In geoscience applications, the sample 
mean and variance (or the sample logarithmic 
mean and variance) are computed.  Where the 
data are complete (no observations below 
detection) and normally distributed, the ML 
estimators of the mean µ and variance σ2 are 
simply the sample mean and variance.  If the data 
contain multiple censored observations, the 
proposed ML estimators are not as easy to obtain.  
However, they are the only proper generalization 
of the sample mean and variance.  If the normality 
assumption is violated (the observations did not 
come from a normal population), then the ML 
estimators have no meaning regardless of whether 
or not the observations are complete. 
 

Suppose that an element has a relatively 
high detection limit and therefore the value cannot 
be determined. For example, W in sample #7039 
is less than a detection limit of 4900 ppm. This 
sample contains almost no information (only that 
the value is between 0 and 4900 ppm) and it 
should be removed from any further analysis.  The 
next question is how high must the detection limit 
be before the sample is disregarded.  This question 
is particularly relevant if the substitution method 
is used.  A value of 2940 ppm (0.6x4900 ppm) 
substituted for <4900 ppm will distort the 
estimators.  However, if the ML estimators are 
used, then it can be shown that this kind of sample 
has almost no effect on the estimators.  The reason 
is that, for example,  log( F(4900:uk,k=1,...,m)) 
will be near 0 regardless of uk, k=1,...,m, and thus, 
in maximizing L(uk,k=1,...,m) in (1), this sample 
(<4900 ppm) will not have any influence on the 
ML estimators. This is illustrated in Table 2 where 
the presence or absence of four samples with high 
detection limits has very little effect on the ML 
estimator while it has a noticeable effect on the 
substitution method means (Table 3A).  It should 
also be noted that the means and standard 
deviations are log values and cannot be applied to 
the data set directly. 
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Table 2:  Maximum likelihood estimates for means and standard deviations for W and Au from rock 

type 3 
 

 µ̂ µ̂ * σ̂ σ̂ * 
W (ppm) 2.89 2.90 2.39 2.41 
Au (ppb) 0.15 3.17  

* estimates with <2500, <3500, <3000, <4900 removed 
 

Table 3A:  Sample means and standard deviations for W from rock type 3 using substitution method 
 

W (ppm) µ̂ µ̂ * σ̂ σ̂ * 
Sub (0.4) 3.09 3.07 1.97 2.05 
Sub (0.5) 3.22 3.15 1.91 1.98 
Sub (0.6) 3.36 3.22 1.88 1.83 
Sub (0.7) 3.49 3.30 3.62 3.37 
Sub (0.8) 3.62 3.37 1.90 1.77 

* estimates with <2500, <3500, <3000, <4900 removed 
 
 

Distribution of Au and W in the Ragged 
Ranges, South Nahanni River area 

 
The most common distribution functions 

in the geosciences are the two parameter 
lognormal distribution functions. The two 
population parameters are the log-mean and the 
log-variance denoted, by µ and σ2, respectively. 
 

For the distribution of W and Au in Rock 
Type 3 in the Ragged Ranges area, 49 samples 
were collected.  Among these, 21 samples have W 
values less than detection limits varying from 2 
ppm to 4900 ppm; 39 samples have Au values less 
than detection limits varying from 5 ppb to 180 
ppb as shown in Table 1A.  Because of the multi-
level detection limits, not even simple statistics 
such as the sample mean, median or percentiles 
are easily calculated.  The substitution method 
would not provide any reasonable statistics related 
to the population because there is a large portion 
of data below the detection limit and these limits 
are commonly high (e.g. the detection limit of 
sample #7039 is 4900 pm).  This is illustrated in 
Table 3A where five different values are 
substituted for the observations below  detection 
in the W data of Rock Type 3.  The five estimated 
means  are distinct, and selecting one of them as 
an estimator would be difficult.  Table 3A also 

contains the five substitution method estimates for 
W where four samples with high detection limits  
(#7016, #7017, #7036 and #7039) are deleted.  
The removal of these four samples has a much 
greater effect on the substitution method than the 
ML method, especially where the commonly 
substituted values of 0.5 and 0.6 are used.  From 
Table 2, the MLE means are similar regardless of 
whether or not the four samples are used.  This is 
important because it illustrates that it is not 
necessary to subjectively remove values from the 
data set before proceeding with statistical 
analyses; the ML method objectively recognizes 
that such samples contribute little to the 
knowledge of the distribution of the data.  Table 
3B shows the sample means using the substitution 
method for the Au data of Rock Type 3.  Once 
again, the sample means produced by each 
substitution are unique. 
 

Suppose that W and Au in Rock Type 3 
are distributed as lognormal distributions with 
unknown parameters µw, σw  and µAu, σAu  
respectively.  Using the observations from 49 
samples including values below detection, µw, σw  
and µAu, σAu  are to be estimated.  Estimates by 
MLE with and without the four samples for W 
(samples #7016, #7017, #7036 and #7039) are 
shown in Table 2.  As noted in the previous 
section, the two sets of ML estimates for W - one 
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with and the other without the four samples, are 
virtually identical, since the four samples provide 
little information and do not influence the MLE's.  
However, this is not the case for the substitution 
method as shown in Table 3A where the sample 
means differ. 
 

In particular, the ML estimates of µAu and 
σw in Table 2 are distinctly different from those in 
Table 3B because close to 80% of the 
observations are below the detection limit.  
Although the ML estimators are appropriate, the 
lognormality assumption is very important, and if 
violated, the estimators are meaningless. In Figure 
1, the distribution function generated by the ML 
method is shown for Au in Rock Type 3.  This 
curve is compared to three distribution curves 
generated by the substitution method using 0.4, 
0.6 and 0.8 of the detection limit.  The effect of 
substituting arbitrary values is seen by the shift to 

the right of the substitution-method curves.  In all 
cases, the Au values appear to be higher than they 
probably are. This is an extreme example of the 
misleading effect of the substitution method 
because 41 of 48 samples are below the detection 
limit.  However, it illustrates that the ML method 
can produce more meaningful and realistic results. 
 
Table 3B:  Sample means and standard deviations 
for Au from rock type 3 using substitution method 
 

Au (ppb) µ̂  σ̂
Sub (0.4) 1.84 1.50
Sub (0.5) 2.07 1.42
Sub (0.6) 2.29 1.35
Sub (0.7) 2.52 1.29
Sub (0.8) 2.75 1.24

 
 
 

 

SUBSTITUTION 

0.8
0.6  

 
Figure 1:  Four lognormal distribution functions for Au in rock type 3 estimated by the ML method 
(data from Table 2) and the substitution method (0.4, 0.6, 0.8) (data from Table 3B). 
 
 
In Table 1B, W and Au values of 66 

samples from Rock Type 4 are listed.  Among 
them, 39 samples for W and 47 samples for Au 
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are below the detection limit.  Similar to Tables 
2A, 2B and 3, Table 4 includes the estimates for 
uw, sw, uAu and sAu of Rock Type 4 using the ML 
and substitution methods. In order to compare 
these two types of estimators, the confidence 
bands for the distribution function of W in Rock 
Type In Table 1B, W and Au values of 66 
samples from Rock Type 4 are listed.  Among 
them, 39 samples for W and 47 samples for Au 
are below the detection limit.  Similar to Tables 
2A, 2B and 3, Table 4 includes the estimates for 
uw, sw, uAu and sAu of Rock Type 4 using the ML 
and substitution methods. In order to compare 
these two types of estimators, the confidence 
bands for the distribution function of W in Rock 
Type 4 are constructed (Chung, 1987; Csorgo & 
Horvath, 1985).  These are compared with two 
lognormal distribution functions for W which 
were estimated by the ML and the substitution 
methods (Fig. 2).  The lognormal distribution 

function for W, estimated by the substitution 
method, falls outside of the confidence band.  
Therefore, the hypothesis that the 66 samples 
came from the lognormal distribution estimated 
by the substitution method is rejected.  However, 
the hypothesis that the samples came from the 
lognormal distribution estimated by the ML 
method may be accepted, because the distribution 
function is constrained by the confidence bands.  
An empirical distribution curve (a modified 
product limit estimator), constructed using the 
observations for W in Rock Type 4 is shown 
between the confidence bands.  This curve 
estimates the distribution of the data without the 
assumption of normality.  Even the ML estimator 
does not fit well with this modified product-limit 
estimator for the distribution (cf. Chung, 1987) 
suggesting that the assumption of lognormality 
may be inaccurate. 

 
 
 

SUBSTITUTION (0.6) 

W (ppm) 

 Figure 2:  Csőrgo-Horváth 95% confidence band and a modified product-limit estimator for the distribution 
of W in rock type 4. Two lognormal distributions estimated by the ML and substitution methods are also 
shown.. 
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Table 4:  Estimators for means and standard deviations for W and Au from rock type 4 using maximum 
likelihood estimation and substitution methods 

 
 
 

W (ppm) µ̂ µ̂ * σ̂ σ̂ * 
MLE 1.13 1.13 3.37 3.39 

Sub (0.4) 2.25 2.19 2.16 2.22 
Sub (0.5) 2.41 2.31 2.13 2.16 
Sub (0.6) 2.57 2.42 2.12 2.10 
Sub (0.7) 2.73 2.54 2.13 2.05 
Sub (0.8) 2.89 2.66 2.15 2.01 

* values with <3600, <3400, <3600, <2900 removed 
Au (ppb) µ̂ σ̂  

MLE 0.82 2.92  
Sub (0.4) 1.96 1.64  
Sub (0.5) 2.14 1.56  
Sub (0.6) 2.32 1.49  
Sub (0.7) 2.51 1.43  
Sub (0.8) 2.69 1.38  

  
 
 
 
 

To compare the distribution functions of 
W in Rock Types 3 and 4, two lognormal 
distribution functions estimated by the ML 
method are illustrated in Figures 3A and B.  
Figure 3A shows the distribution functions of W 
in Rock Types 3 and 4 in probability density 
function form.  The same distribution functions 

are shown in the cumulative distribution function 
form in Figure 3B.  The mean for W in Rock Type 
3 (shales) is greater than the mean for Rock Type 
4 (platformal carbonates).  The variance is much 
greater in Rock Type 4 and 59% of the data (vs 
43% in Rock Type 3) are below the detection 
limit. 
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Figure 3A:  Two lognormal density functions for W in rock types 3 and 4 estimated by the ML method (data 
from Tables 2 and 4), 3B:  Cumulative distribution function form of the distribution functions shown in 
Figure 3A. 
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Au (ppb) 
 
Figure 4:  Two lognormal distribution functions for Au in rock types 3 and 4 estimated by the ML method 
(data from Tables 2 and 4) 
 
Two lognormal distribution functions for Au in 
Rock Types 3 and 4 estimated by the ML method 
are illustrated in Figure 4.  The two distribution 
functions for Au have similar shapes by the 
distribution of Rock Type 4 is shifted to the right 
because the mean is greated than in Rock Type 3.  
The variance of Au in these two rock types is 
similar. 
 

Selection of Anomalously High Samples 
 

The number of samples above a certain 
probability level (i.e. anomalous) is different for 

the ML and substitution methods.  Tables 5A and 
5B show critical values for the 98th, 95th and 90th 
percentiles based on means calculated by MLE 
and by substitution (0.6 of detection).  The 
number of samples above that critical value is also 
listed.  In all cases, the number of samples above a 
certain probability level is less for MLE than 
substitution.  This means that the MLE method is 
more discriminating than the substitution method 
and, depending on other parameters used in the 
resource assessment, requires fewer samples to be 
re-checked in a follow-up survey. 

 
 
Table 5A:  Comparison of the number of samples above critical values for rock type 3 using MLE and 
substitution methods (critical value/# of samples above that value) d.l. = detection limit 
 

 µ̂  98th 95th 90th n # < d.l.
MLE 2.89 2440/0 917/0 383/3 49 21

W 
SUB 3.36 1371/4 634/5 319/10 49 21

MLE 0.15 784/1 214/1 67/7 49 41
Au 

SUB 2.29 158/2 91/8 56/12 49 41
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Table 5B:  Comparison of the number of samples above critical values for rock type 4 using MLE and 
substitution methods (critical value/# of samples above that value) d.l. = detection limit 
 

 µ̂  98th 95th 90th n # < d.l.
MLE 1.13 1736/2 491/5 160/7 66 39

W 
SUB 2.57 1019/11 427/11 197/13 66 39

MLE 0.82 916/0 277/5 95/7 66 47
Au 

SUB 2.32 217/5 118/9 69/12 66 47
 
 

Figure 5 uses data from Table 5B to plot distribution curves based on the MLE and substitution 
methods for Au in Rock Type 4.  In addition, the three probability levels are plotted.  Where these lines 
intersect the distribution curve is the value for each probability level.  For example, the 95th level line 
intersects the ML curve at 277 and intersects the substitution curve at 118.  In all three cases, the value at the 
point of intersection is less for the ML distribution curve. 
 

 
Figure 5: Two lognormal distributions for au in rock type 4 estimated by the ML and substitution methods.  
The three horizontal lines indicated three probability levels as discussed in text and Table 5. 
 
 

Inferred Distribution of Low Values 
 
The line representing 5 ppb (the 

laboratory's detection level for Au) intersects the 
MLE curve at 61% and the substitution curve at 

31%.  For the substitution curve, this means that 
31% or 20 of the 66 Au values are expected to be 
<5.  In the raw data, 19 samples are known to be 
<5 so that only 1 of the remaining 28 undetected 
values is expected to be <5.  The MLE curve 
intersects the 5 ppb line at 61% so that 40 of 66 
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samples are expected to be <5.  Again, because 19 
of the samples are known to be <5, then 21 of the 
remaining undetected samples are expected to be 
<5.  Because the laboratory's detection level is <5, 
and the presence of radioactive elements is 
common for this area, it is reasonable to assume 
that more than just one of the remaining 28 
undetected values is actually <5, suggesting that 
the curve generated by the MLE method more 
accurately reflects the distribution of Au in Rock 
Type 4. 
 

Concluding remarks 
 

Statistical analysis of incomplete 
geochemical data is facilitated by using maximum 
likelihood estimators.  For data sets which are 
distributed normally and are complete, the 
maximum likelihood estimators are simply the 
sample mean and variance.  In the case of 
incomplete censored data, the maximum 
likelihood estimators (MLE) obtained by an 
iterative procedure, are the most appropriate 
estimates of the population mean and variance.   If 
the assumption that the data are normal or 
lognormal is violated, then the estimators are 
meaningless, even when the data set is complete. 

 

The gold and tungsten values of heavy 
mineral concentrates from the Ragged Ranges 
contain a large proportion of undetected values.  If 
the data are to be used in a geological assessment, 
they should ideally be re-analyzed to reduce the 
size and variability of the detection limit.  If this is 
not possible, the data must be used as they are.  
The MLE method can handle such data, provides 
more reasonable results than the substitution 
method, and is more discriminating for the 
comparison of different geologic environments. 
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