

GARNER CREEK

YUKON TERRITORY

Scale 1:50 000/Échelle 1/50 000

Projection transverse universelle de Mercator

Système de référence géodésique nord-américain, 1983

© Sa Majesté la Reine du chef du Canada 2005

Universal Transverse Mercator Projection

North American Datum 1983

© Her Majesty the Queen in Right of Canada 2005

LEGEND

Note: Map units listed below occur within one metre of the surface. Where organic or eolian sediments < 1 m thick overlie these, a pattern is overlaid upon the map unit. Along some valleys, colluvial or alluvial sediments > 1 m thick overlie older alluvial gravels that could contain placer gold. In order to accentuate these potentially exploitable deposits, a compound map unit is presented, e.g., Cx/At^T . This means that colluvial complex sediments overlie alluvial terrace sediments thought to be late Tertiary in age. This legend is part of a larger regional study hence coloured boxes indicate units that appear on this map. In addition, not all symbols in the legend are represented on this map.

CENOZOIC HOLOCENE

Made Land: placer mines, roads, and airstrip

ORGANIC DEPOSITS: peat and organic silt formed predominantly by the accumulation of vegetative material in bogs, fens, and swamps situated on valley bottoms; permafrost is commonly encountered within 1 m of the surface. Thermokarst

Organic Blanket: undivided; thickness > 1 m to 5 m

Organic Veneer: blanket bog generally < 1 m thick

ALLUVIAL DEPOSITS: gravel to silt size sediments, well stratified, deposited by

Alluvial Fan Sediments: gravel, sand, silt, and diamicton, massive to well stratified;

Floodplain Sediments: gravel, cobble to pebble; massive to well stratified, capped by sand and silt; flat lying; includes lacustrine and organic deposits in abandoned channels and backswamp areas; subject to periodic inundation and reworking by floods; thickness 1 to 5 m

Af sediments form fan-shaped landforms or complexes of coalesced fan-shape landform at the confluence of tributary streams; may be subject to flooding accompanied by sudden stream migration and inundation; thickness up to 10 m

Alluvial Sediments Complex: sediments forming floodplains, fans, and terraces that cannot be subdivided at this map scale

> HOLOCENE AND PLEISTOCENE (UNDIVIDED) COLLUVIAL DEPOSITS: stony diamicton resulting from the physical and chemical breakdown of bedrock and subsequent reworking and transportation by creep, solifluction, and landsliding; colluvial deposits may contain reworked glaciofluvial and morainal sediments within the limits of pre-Reid ice-cover and reworked eolian sediments; colluvial deposits are products of formation and reworking over a significant part of the Pleistocene and Holocene epochs; surface is commonly hummocky or undulating

Colluvial Blanket and Veneer Sediments: diamicton, stony with a sandy matrix; bedrock and exceed 1 m in thickness; veneers are < 1 m in thickness and are commonly discontinuous over bedrock

Colluvial Apron Sediments: bouldery diamicton and bouldery sandy gravel, poorly sorted; massive; sediments form a wedge-like slope-toe complex of small steep debris flow and solifluction deposits; thickness is < 1 m at the upper and lower slope limit to up to 5 m or more in the thickest part of the apron

Landslide Sediments: silt loam to boulders, poorly sorted to unsorted; massive; clasts are subangular to angular and are locally derived; thickness varies greatly Colluvial Complex Sediments: areas of intergrading colluvial and alluvial sediments

which are too complex to subdivide at the scale of mapping; unit may include colluvial

commonly preserved on north-facing slopes; thickness 1 to 20 m; commonly contains

and alluvial fan, colluvial blanket, landslide sediments and colluviated drift within the limits of glaciation; the unit commonly occurs along the lower slopes of valley margins Colluvial/Eolian Apron (muck): primary deposits of eolian fine sand and silt resedimented and interstratified with organic silt, and detritus, alluvial fan gravel and sand and variable amounts of stony colluvial diamicton; forms aprons along valley bottoms through resedimentation of eolian sediments from valley sides to valley floor,

segregated bodies of ice and buried ice wedges MIDDLE TO LATE PLEISTOCENE (UNDIVIDED) ALLUVIAL DEPOSITS: gravel and sand deposited by streams that were not fed by glacial meltwater; sediments may have experienced several cycles of alluviation and erosion, but are now inactive due to burial or fluvial incision; basal gravels within these

sediments commonly contain placer gold Alluvial Terrace Sediments: gravel, cobble to pebble with a sandy matrix; massive to well stratified; capped by sand and silt; sediments are of flood plain origin now isolated from flooding by stream incision; thickness 1 m to 10 m

Alluvial Fan Sediments: single fans or aprons of coalesced fans formed of gravel and sand, poorly to moderately sorted, now isolated from water and debris floods due to

fluvial incision; sediments disturbed by cryoturbation; thickness up to 10 m Alluvial/Colluvial Complex Sediments: silt, sand and gravel, poorly to moderately sorted; thin to thick bedded, interstratified with colluvial diamicton; sediments underlie the floors and margins of narrow upland valleys and grade laterally up slope into colluvial blankets; sediments may represent several depositional cycles; thickness may exceed 10 m in mid-valley locations EOLIAN DEPOSITS: well sorted medium sand to silt initially transported and deposited

colluvial processes; deposits of very fine sand and coarse silt < 1 m thick are distributed discontinuously throughout low lying areas Eolian Blanket: fine sand and silt, well sorted; massive; may form crescent-shape and Eb^P linear dunes and featureless or gently undulating inter-dune eolian plains; thickness 1

by wind action during glaciations and commonly resedimented through fluvial and

Eolian Veneer: thin deposits of very fine sand and coarse silt distributed discontinuously throughout low lying areas, thickness < 1 m

MIDDLE PLEISTOCENE - REID GLACIATION

ponded by glacial ice

115 N/15 115 N/16 115-0/13 115-0/14 115-0/15 115-0/16

OF4579 OF4580 OF4590 OF4591 OF4592 OF4593

115 N/10 | 115 N/9 | 115-0/12 | 115-0/11 | 115-0/10 | 115-0/9

115 N/7 115 N/8 115-0/5 115-0/6 115-0/7 115-0/8

OF4575 | OF4576 | OF4582 | OF4583 | OF4584 | OF4585

OF4574 OF4573 OF4581 OF4349 OF4348 OF4347

115 K/15 | 115 K/16 | 115 J/13 | 115 J/14 | 115 J/15 | 115 J/16

NATIONAL TOPOGRAPHIC SYSTEM REFERENCE AND INDEX TO ADJOINING GEOLOGICAL SURVEY OF CANADA MAPS

OF4578 OF4577 OF4589 OF4588 OF4587 OF4586

LATE PLEISTOCENE - McCONNELL GLACIATION GLACIOFLUVIAL DEPOSITS: gravel and sand deposited by streams flowing away

Glaciofluvial Terrace Sediments: gravel and sand, unweathered, forming one or more

from glacial ice; deposits display poor soil development with rare cryoturbation

GLACIOFLUVIAL DEPOSITS: gravel and sand deposited by streams flowing away from glacial ice; deposits display moderate soil development with signs of cryoturbation; soil thickness < 0.5 m

LATE PLIOCENE TO MIDDLE PLEISTOCENE - pre-Reid GLACIATIONS (UNDIVIDED)

GLACIOLACUSTRINE DEPOSITS: well stratified sand, silt, clay, deposited in lakes

Glaciofluvial Terrace Sediments: gravel and sand, moderately weathered, forming one or more terraces

Glaciolacustrine Undivided: sand, silt, and clay; undifferentiated at this scale of

GLACIOFLUVIAL DEPOSITS: gravel and sand deposited by streams flowing away from glacial ice in meltwater channels and outwash plains; massive to well stratified. Surface soils may extend to 2 m depth with well developed clay skins on clasts, frequent signs of cryoturbation (ice wedge pseudomorph and sand wedges), and strong chemical weathering

Glaciofluvial Terrace Sediments: gravel and sand, deeply weathered; incised into flights of terraces; thickness 1 to > 5 m

Geology by L.E. Jackson, Jr. (1999 - 2002), S.R. Morison and C. Mougeot (1998)

Co-ordinated through the auspices of the Ancient Pacific Margin NATMAP

Digital cartography K. Shimamura, Terrain Sciences Division

Any revisions or additional geological information known to the user

would be welcomed by the Geological Survey of Canada

Digital base map from data compiled by Geomatics Canada, modified by Parm Dhesi, Earth Sciences Sector Information Division (ESS Info)

Magnetic declination 2005, 25°42' E, decreasing 19.1' annually Elevations in feet above mean sea level

Contour interval 100 feet

MORAINAL DEPOSITS (TILL): glacial diamicton, mainly till, generally consisting of a matrix ranging from sand to clay that supports clasts ranging from boulders to pebbles in size; deposited either directly from glacial ice or by gravity flow from glacial ice; surface soils may extend to 2 m depth with well developed clay skins on clasts, frequent signs of cryoturbation (ice wedge pseudomorph and sand wedges), and strong chemical weathering

Till Blanket: diamicton, stony, silty-sand matrix; massive; conforms to underlying topography, thickness > 1 m; extensively colluviated on slopes

Till Veneer: diamicton, stony, silty-sand matrix; massive; discontinuous and may

ALLUVIAL DEPOSITS: Gravel and sand deposited by streams that were not fed by glacial meltwater; sediments may have experienced several cycles of alluviation and erosion, but are now inactive due to burial or fluvial incision; basal gravels within these sediments commonly contain placer gold

Alluvial Terrace Sediments: sandy pebble and cobble gravel deposited by streams having a fluvial source but graded to the margins of pre-Reid glaciers or glacial drainage; thickness 1 to 5 m

contain extensive areas of thin (< 1 m) colluvium

UNDIFFERENTIATED DRIFT: diamicton, gravel, sand, silt and clay deposited from glacial ice, glacial streams, and glacially damned lakes; extensive weathering, poor exposure and permafrost make differentiation into component glacial sediments difficult; thicknesses commonly exceed 10 m and mask underlying bedrock topography; commonly colluviated and intergraded with colluvium; surface soils may extend to 2 m depth with well developed clay skins on clasts, frequent signs of cryoturbation (ice wedge pseudomorph and sand wedges), and strong chemical

Drift: flat to gently sloping

Drift Modified by Landsliding: drift translated along failure plains into irregular steps and sub parallel scarps

Fluvially Incised Drift: formerly extensive areas of drift incised by closely spaced stream

Basalt: columnar alkaline olivine basalt and flow breccia; erosional remnants of formerly valley filling flows underlying terraces along lower Rosebud Creek; thickness

PLIOCENE AND LATE MIOCENE

ALLUVIAL DEPOSITS: preglacial gravel and sand; highly dissected and deeply Pediment and Bajada Sediments: inclined fluvial surfaces which are found at a

midslope position in unglaciated drainage systems; usually thinner than 5 m; formed as a result of limited agradation of stream gravel and significant colluviation; composed of thin, poorly sorted gravel that contains both locally derived subangular

High Level Terrace Sediments (includes White Channel Gravel and equivalent sediments): weathered pebble to cobble gravel > 1 m thick; surface soils may extend to 2 m depth with well developed clay skins on clasts, frequent signs of cryoturbation (ice wedge pseudomorph and sand wedges), and strong chemical weathering; within the Yukon River valley, terraces above the 500 m contour may be remnant features from the southward-flowing paleo-Yukon River drainage system PALEOZOIC AND MESOZOIC

Bedrock: schist, gneiss, ultramafics, granodiorite, monzonite, marble, and basalt; includes areas of thin colluvial cover, blockfields, and sorted stone polygons in alpine

SYMBOLS

Geologic contact; defined, approximate, inferred Open system pingo, collapsed open system pingo Thermokarst collapse activity . Landslide movement direction in bedrock and colluvium Scarps created by widespread landslide movement in drift . Terrace scarp (ticks on sloped side) . Degraded Cirque: active during pre-Reid Glaciations . Degraded Arête: active during pre-Reid Glaciations Meltwater channel: flow direction, unknown flow direction Large meltwater channel . All time (pre-Reid) glacial limit; defined, inferred Landform Streamlined by glacial ice Vertebrate fossil locality Lineaments (fault, fracture, joint system) defined by linear drainage courses, aligned gaps in ridges, or aligned breaks in bedrock slopes . Abandoned valley: paleoflow defined . Abandoned valley: paleoflow undefined Paleoflow, suspected buried valley .

DESCRIPTIVE NOTES

The Garner Creek map area lies within the Klondike Plateau, an incised rolling upland predominantly underlain by Natural exposures of surficial deposits are confined to cliffs along Yukon River. Dense vegetation covers much of the area. Permanently frozen ground is often a few tens of centimeters below the surface making digging with hand tools difficult. Consequently, surficial sediments have been largely mapped from the interpretation of air photographs. The Garner Creek map area has never been glaciated. Colluvium covering slopes and ridges is the dominant sediment. It is formed by the breakdown of bedrock into regolith that is transported down-slope by gravitational processes such as seasonal creep, solifluction and landsliding.

Fluvial deposits are confined to terraces and valley bottoms. The oldest (At^T) consist of gravel and sand that cap he highest terraces along Yukon River and high terraces along tributaries such as Indian River, Eisley, Bell and Garner creeks. The highest terraces in these areas approach 100 m above the flood plain of the contemporary Yukon River. These were graded to an ancestral south-flowing Yukon River during the late Tertiary (Duk Rodkin et al. 2001). Reversal of Yukon River to its present flow direction is postulated to have occurred as a result of the first regional glaciation of southern and central Yukon Territory between during the Late Pliocene Epoch ca. 3.1 to 2.6 million years ago (Duk-Rodkin et al. 2001; Froese et al. 2000, 2001). No exposure suitable for gravel clast fabrics measurements vere found in the area. However, terrace gravel at the confluence of Klondike River with Yukon River immediately north of the map area and at the mouth of Sixty Mile River to the south in the Ogilivie map area (115 O/12) do indicate this southward flow (Jackson, Froese and Nelson, 2002). Following the reversal of Yukon River, a succession of terraces were cut and a succession of overlying terrace Strong winds during glacial periods and the Holocene have deposited extensive areas of loess and sand on terraces and in sheltered steep-sided valleys. Within the latter environment, they have been resedimented and mixed with organic sediments to form thick accumulations called muck. They commonly contain extensive bodies of Placer gold has been mined from gravel underlying low terraces and the floodplain of Indian River immediately upstream of the map area. However, the placer resources of most of the map area is presently unproven.

REFERENCES

1942: Garner Creek; Geological Survey of Canada map 711A, 1:253 440.

Froese, D.G., Barendregt, R.W., Enkin, R.J., and Baker, J.

Duk-Rodkin, A. Barendregt, R.W., White, J.M., and Singhroy, V.H. 2001: Geologic evolution of the Yukon River: implications for placer gold; Quaternary International, v. 82, p. 5-31.

2000: Paleomagnetic evidence for multiple late Pliocene-early Pleistocene glaciations in the Klondike area, Yukon Territory; Canadian Journal of Earth Sciences, v. 37, p.863-877. Froese, D.G. Ager, T, Duk-Rodkin, A., Westgate, J. and White, J. and Smith, D.

2001: Drainage reversal and integration of the Pliocene upper Yukon River (3.1-2.6 Ma): key new evidence. Abstracts, Arctic Workshop, Amherst, Massachusetts.

Jackson, L.E. Jr., Froese, D. G., and Nelson, F.E.N. 2002: Surficial geology and suspected placer targets, Stewart River map area, Yukon. Poster presentation, Yukon Geoscience Forum, Whitehorese, Yukon.

> Open files are products OPEN FILE DOSSIER PUBLIC that have not gone through the GSC formal Les dossiers publics sont GEOLOGICAL SURVEY OF CANADA
> OMMISSION GÉOLOGIQUE DU CANADA
> pas été soumis au 2005 publication de la CGC.

Recommended citation: Jackson, L.E., Jr., Morison, S.R., and Mougeot, C. 2005: Surficial Geology, GARNER CREEK, Yukon Territory; Geological Survey of Canada, Open File 4590, scale 1:50 000.

Canada