

Bureau Veritas Metals, Minerals & Environmental

Schedule of Services & Fees 2019

Bureau Veritas Global Network

Created in 1828, Bureau Veritas is a global leader in Testing, Inspection and Certification, delivering high quality services to help clients meet the growing challenges of quality, safety, environmental protection and social responsibility. As a trusted partner, Bureau Veritas offers innovative solutions that go beyond simple compliance with regulations and standards, reducing risk, improving performance and promoting sustainable development. Bureau Veritas' core values include integrity and ethics, impartial counsel and validation, customer focus and safety at work. Bureau Veritas is recognized and accredited by major national and international organizations.

75,000 employees


1,430

offices & laboratories

140

countries

Partner to the global mining industry

Bureau Veritas Minerals (BVM) is the leading global provider of geochemistry, geoanalytical, mineral processing and environmental services to the exploration and mining community. We are by your side throughout the mining value chain: exploration, extraction, processing and transportation. Our services are structured to support the life cycle of your assets, from planning and design through procurement of components and equipment to construction and operation:

- Reduce risk in your construction projects through safety assessments, supervision and quality assurance.
- Achieve consistent quality by controlling your supply chain and processes.
- Reassure local stakeholders by demonstrating conformity with regulations and standards.
- Preserve the life of your asset through Asset Integrity Management, inspection and non-destructive testing.
- Optimize the efficiency of your operations and maintenance activities.
- Access expertise throughout the world thanks to our global network of Technical Centers.

Health, Safety & Environmental Statement

Bureau Veritas' services are chosen by thousands of clients over the world to fulfill their needs for testing, inspection and certification services in the fields of Health, Safety, Environment and Social Responsibility. This choice is based on their complete trust in our expertise and our ability to deliver high-quality services. Every delivered service helps to shape this trust. To ensure the sustainability of our business and support the strategic orientation of Bureau Veritas, we are continuously improving employee safety, reducing workplace risks and creating safer working conditions.

HEALTH

Make all workers activities safe Improve processes

ENVIRONMENT

ISO 14001 certification Reduce our carbon footprint Improve financial evaluations score

PRINCIPLES

SAFETY: IT'S MY **RESPONSIBILITY** at Bureau

SAFETY

Reach **ZERO** fatal accidents

ISO 45001 certification

Increase safety culture & behavior

Integrate security in the operational tools

Veritas. Health and Safety at work is our responsibility. Line management demonstrates leadership and is accountable for compliance. Each employee, sub-contractor and visitor must comply and be alert.

MANAGEMENT SYSTEM

Risks and opportunities are identified and managed especially where they have the potential to cause an accident or injury to people, or unacceptable impacts on the environment or the community. Employees and sub-contractors are empowered to address unsafe or hazardous situations.

RESPONSIBILITY

Provide a safe workplace with systems in place to prevent accidents and injuries, prevent pollution, minimize energy consumption and waste generation. Increase safe behavior by providing employees HSE awareness and compliance with relevant HSE legislation.

Quality Assurance Quality Control

At Bureau Veritas Minerals (BVM) our core product is analytical data. Over many years, we have invested heavily in proprietary software and staff development to ensure that you get the highest quality data. BVM has implemented a comprehensive quality management system meeting the requirements of ISO/IEC 17025 and ISO 9001 to ensure the necessary processes and oversight are in place to achieve this goal.

QUALITY ASSURANCE

Through the process of external auditing by recognized organizations, our facilities maintain ISO registrations and accreditations. These registrations and accreditations provide independent verification that the management systems have been implemented and meet the requirements of the ISO standards. All BVM facilities are registered or are pending registration to ISO 9001 under the Bureau Veritas corporate registration. Additionally a number of analytical hubs have received ISO/IEC 17025 accreditation for specific laboratory procedures.

AUDIT PROGRAM

All BVM facilities are also internally audited against the above ISO standards by knowledgeable and trained personnel on a scheduled basis.

PROFICIENCY TESTING PROGRAMS

BVM laboratories routinely participate in national and international inter-laboratory comparison studies in order to independently assess individual laboratory performance for the test method(s) analyzed.

QUALITY CONTROL

Through comprehensive training, BVM ensures that laboratory staff are competent to perform the analysis requested. All labs use validated methods to achieve accurate reproducible results with equipment that is maintained and calibrated to achieve the highest levels of performance. At all steps of sample handling, the laboratory maintains traceability of samples through the use of barcode tracking and maintains detailed audit trails of the people and equipment used to perform analysis.

In sample preparation

As one of the most critical steps in the sample analysis process, BVM continually monitors the efficiency of crushing and pulverizing to ensure that a representative portion of each sample submitted is prepared. Sample duplicates are created and analyzed for all rock and drill core samples submitted.

In analysis

In addition to routine calibration solutions the laboratory inserts reference materials, replicates and blanks into randomly assigned positions within each analytical rack generated by our proprietary LIMS. These QC materials provide a final verification of the entire analytical process.

In data review and evaluation

This is the final layer that is made up of sophisticated proprietary software and professional personnel reviewing the data.

For more information on the BVM Quality program, refer to the guidance document BVM Quality Control: Definitions and Guidelines for the Interpretation of Quality Control

Infrared Spectroscopy

SWIR-LWIR-TIR SPECTRAL ANALYSIS AND ARTIFICIAL INTELLIGENCE

As an exploration project transitions to a mining project, one of the most expensive stages from an analytical perspective is process and mine development and, to a lesser degree, mine production. Many of the geochemical, mineralogical, or physical tests at these stages are costly, thus fewer samples are analyzed. Inferences are commonly made based on that information when they are put into a block model. Bureau Veritas Minerals' spectral service (SWIR to TIR) plus artificial intelligence can significantly reduce the cost of analyses that are commonly very expensive. The analytical technology measures light absorbed by a sample in the infrared (IR) region of the light spectrum [spectral range of SWIR-LWIR-TIR (0.35 to 26.5 μ m)]. As this technology covers a large wavelength range, it has the ability to determine a diverse range of parameters that are based on mineralogy.

Bureau Veritas has successfully completed bauxite, iron ore, and porphyry copper spectral programs. Our service can determine mineralogy, physical properties, ore processing properties, ore classification, geochemistry, and ARD characterization.

CYCLE	SCOPE OF WORK	ANALYSIS TYPE	ANALYSIS COST	ANALYSIS VOLUMES
Exploration	Geo Assay Mineralogy Ore Characterization	Low Detection Levels Pathfinders		Scoping Samples Field Analysis Routine Laboratory
Resource Development	Geo Assay Process Scoping Geomet Studies	Accurate Quantitative Analysis JORC and 43-101 Reporting	I N N	Target Samples Routine Laboratory
Process and Mine Development	Feasibility Studies Pilot Plant Product Testing	Mineralogy Recovery Concentrates	O V A T I	Project Samples Research Analysis Proxies
Production	Process Optimisation Product Quality Grade Control Geomet Programs	Tailored Methods for Operations Metal Accounting Transactions	0 N	On-Site Lab Fast Turnaround High Accuracy (Trade)

Bureau Veritas' spectral analysis plus AI workflow includes:

- Normal sample preparation methods are used to produce a dried pulp.
- Collection of spectra on "representative" samples from a given mineral deposit.
- The FTIR spectra are collected without any additional preparation.
 There are no digests, fusions or other processes required.
- Spectral peaks and peak intensities are compared with laboratory analysis
 using machine learning analytics in order to create a model.
- Following development, the model is tested with spectra from unknown samples from the same deposit.

HYLOGGER (VNIR AND SWIR) SPECTROMETRY

The Hylogger system can be used on core, rock chips, or pulps for the determination of an extensive list of minerals including Fe oxides, AlOH group minerals, sulphates, FeOH group, MgOH group, and carbonates.

Application of VNIR and SWIR Analysis:

- Alteration vectoring
- —○ Lithocap investigations
- Geometallurgy applications

Benefits:

- Cost effective mineralogy
- Little sample
 preparation required
 (analysis can be
 conducted on core,
 chips or pulps)
- Non-destructive
- —○ Easy set-up, on-site application
- Hylogger spectra interpretation service is available

Metals for Batteries

Analytical methods suggested

PF370, MA370

ICPTV-W (Solution)

Metallurgical and mineralogical services

Ore grade lithium is most commonly found in pegmatities, hectorite clays, and lithium brines. Most of the world's lithium production is in South America, where lithium-containing brine is extracted from underground pools and concentrated by solar evaporation.

The anode **GRAPHITE**

Analytical methods suggested

TC005, TC006, TC007

QEMSCAN & XRD

High purity graphite (> 99.95%) is a very important aspect of Li-ion batteries. Currently, approximately 2/3 of all graphite for Li-ion batteries is sourced from natural deposits. The remaining 1/3 is sourced from synthetic processes.

Analytical methods suggested

XF720

PF370, MA370, AQ270-As

Cathode metals **COBALT**

Currently, the largest cobalt deposits are the stratiform copper/cobalt deposits of the Central African Copper Belt within the Democratic Republic of Congo (DRC). Outside of the DRC, cobalt is typically recovered as a co-product from the mining of magmatic Ni/Cu sulphide and Ni-laterite deposits. The element can also be found in cobalt-silver vein deposits, where it commonly forms Co arsenides. While cobalt grades can be very high in these deposits, so too can arsenic content.

Analytical methods suggested

PF370

Manganese ores are generally found in either sedimentary hosted, volcanogenic hosted massive sulphides (VHMS), or karst hosted deposits. Of these 3 types, the sedimentary hosted type is the most common and represents the largest deposits. The majority of Mn ore is mined in South Africa and Australia. Minerals mined are typically braunite, bixbyite, pyrolusite, or hausmannite. Due to the highly refractory nature of these minerals we recommend a very aggressive digestion method.

Analytical methods suggested

XF720

MA370, MA270, AQ270-As

Nickel is generally associated with cobalt. The most common Ni deposits are either magmatic sulphide, or Ni laterites.

Mine Site Laboratory Services

Access expertise

ONSITE LABORATORY SERVICES

- —○ Sample Prep Lab
- Containerized Lab
- Full Service Lab

MINERAL TESTING SERVICES

- Assaying and geochemical analysis
- Metallurgical testing services
- Mineralogical analysis
- Environmental requirements

QUALITY & INTEGRITY

- ISO accredited laboratories
- ─○ Training and onsite laboratory support by qualified BVM Staff
- Latest production scheduling
- Auditing of laboratory procedures and management systems

OUTSOURCING

- Custom designed facilities to improve sample processing efficiency
- Technical diagnosis and service repair of existing equipment to reduce costs
- -O Installation of new equipment and method development
- Implementation of data management control through LIMS and WebAccess

BVM Mine Site Laboratory Services provides high quality **laboratories** customized global supported by our network of professionals. Our goal is to provide you with a solution that meets your project needs, ranging from a remote mobile prep lab to a full service analytical laboratory at the mine. All labs meet the requirements of ISO 9001 Quality Management Systems and use validated methods and processes which comply with global OH&S standards. As we are the global leader in analytical geochemistry, we will provide you with a customized lab that will minimize costs and liability so your focus can be on mining and exploration.

WebAccess

WebAccess is a secure web interface for our customers to obtain direct access to the Bureau Veritas Upstream Minerals laboratory database. It allows real-time access to any of your jobs logged into our LIMS. Track your samples from reception through the lab and see results any time of the day or night. Tests that indicate the need for a major inspection are doublechecked prior to your notification.

Job registering

Sample submission forms, certificates and invoices

Tracking

Project documents such as the pricing quote and template submission form

Assay reports

Analytical methods documents and reference material certificates

QAQC reports

Quality Control documents reviewing analytical performance

CLIENT REAL-TIME ACCESS

SAMPLE TRACKING SYSTEM

BVM uses our secure LIMS (Laboratory Information Management System) to track the flow of every sample through each stage of sample handling and analysis. When received, each sample is barcoded and labelled. This unique barcode is used to build an audit trail that documents the complete history of work performed on each sample. It includes the recording of each person that interacted with the sample and the task that they performed. This tracking feature provides the laboratory with a very high level of control but also provides our clients with an unprecedented level of traceability.

BOX TRACKING SYSTEM

Each barcoded sample is allocated into a barcoded sample box. The barcodes allow BVM to track each box as it moves from one laboratory to another and allows our clients to monitor the progress of their samples from a remote sample preparation facility to the main laboratory. More importantly, this system speeds the flow of the samples through the laboratory to eliminate time consuming manual steps and reduces the risk of human error.

Contents

Sample Preparation, Storage & Disposal Charl 70% In Unish and pubmiza 280 g PRP70-250 12 Charl 70% In Unish and pubmiza 280 g PRP70-250 12 Province to 85% passing 200 mesh SS80 12 Precious Metals & Leaches 14 Fire Assay Au, PR, Pd - ICP-ES FA330 15 Fire Assay Au, PR, Pd - ICP-ES FA330 15 Fire Assay Au, PR, Pd - ICP-ES FA330 15 Fire Assay Au, PR, Pd - ICP-ES FA330 15 Fire Assay Au, PR, Pd - ICP-ES FA330 15 Fire Assay Au, BD - Gravimetric FA330-Au 15 Fire Assay Au, BD - Gravimetric FA330-Au, BD - Gravimetric FA3300-Au, BD - Gravimetric		CODE	PAGE
Crush 70% 10 mech and pulserize 280 g	Sample Preparation, Storage & Disposal		11
Standard soil sieve 80 mesh		PRP70-250	12
Precious Metals & Leaches 14 Fire Assay Au, Pt. Pd. ICP ES FA330 15 Fire Assay Au 30 g - Add Finish FA430 15 Fire Assay Au 30 g - Gravimetric FA530-Au 15 Fire Assay Au 30 g - Gravimetric FA530-Au 15 Fire Assay Au and Ag 30 g - Gravimetric FA530 15 Metallic Screen Fire Assay 50 g duplicate minus fraction FS652 16 Ore & High Grade Analysis 18 Aqua regia Ore Grade AAS AR402 19 Multi-acid Ore Grade ICP-ES AQ370 20 Aux aregia Ore Grade ICP-ES AQ370 20 Zn Titration GC816 21 Pe Titration GC817 21 Fa Titration GC818 21 Cu Titration GC820 21 Exploration Geochemistry 22 Aqua regia - ICP-ES MS AQ200 23 Aqua regia - ICP-ES/MS AQ200 23 Aqua regia - ICP-ES/MS AQ200 25 Multi-acid - ICP-ES/MS AQ200 25	Pulverize to 85% passing 200 mesh	PUL85	12
Fire Assay Au, Pt, Pt - ICP - ES	Standard soil sieve 80 mesh	SS80	12
Fire Assay Au, Pt, Pt - ICP - ES	Precious Metals & Leaches		14
Fire Assay Au 30 g - AAS finish	Fire Assay Au, Pt, Pd – ICP-ES	FA330	
Fire Assay Ag 30 g - Grawimetric FA530 - Ag 15		FA430	
Fire Assay Au 30 g − Gravimetric FA530-Au 15 Fire Assay Au and Ag 30 g − Gravimetric FA530 15 Metallic Screen Fire Assay 50 g duplicate minus fraction FS652 16 Ore & High Grade Analysis 18 Aqua regia Ore Grade AAS MA404 19 Multi-acid Ore Grade ICP-ES MA370 20 Multi-acid Ore Grade ICP-ES MA370 20 Multi-acid Ore Grade ICP-ES MA370 20 Pb Tirtation GC816 21 Pb Tirtation GC816 21 Cu Tiretion GC818 21 Cu Tiretion GC820 21 Exploration Geochemistry 22 Aqua regia – ICP-ES/MS AQ300 23 Aqua regia – ICP-ES/MS AQ200 23 Aqua regia – ICP-ES/MS AQ200 25 Multi-acid – ICP-ES/MS MA200 25 Multi-acid – ICP-ES/MS MA200 25 Aqua regia – ICP-ES/MS Hag AQ200-Hg 25 Multi-acid – ICP-ES/MS MA200 25 <td></td> <td>FA530-Ag</td> <td>15</td>		FA530-Ag	15
Metallic Screen Fire Assay 50 g duplicate minus fraction FS652 16 Ore & High Grade Analysis 18 Aqua regia Ore Grade AAS MA404 19 Multi-acid Ore Grade ICP-ES AQ370 20 Multi-acid Ore Grade ICP-ES MA370 20 Multi-scid Ore Grade ICP-ES MA370 20 Zn Titretion GC816 21 Pb Titration GC816 21 Fe Titration GC820 21 Curitation Geochemistry 22 Aqua regia - ICP-ES AQ300 23 Aqua regia - ICP-ES/MS AQ200 23 Aqua regia - Ultra-trace AQ250 24 Multi-acid - ICP-ES/MS MA200 25 Aqua regia - ICP-ES/MS Hg AQ200-Hg 25 Multi-acid - ICP-ES/MS Hg AQ200-Hg 26		FA530-Au	15
Ore & High Grade Analysis AR402 19 Aqua regia Ore Grade AAS MA404 19 Multi-seid Ore Grade ACS MA404 19 Aqua regia Ore Grade ICP-ES AQ370 20 Multi-seid Ore Grade ICP-ES MA370 20 Zn Tiration GC816 21 Pb Titration GC817 21 Fe Titration GC818 21 Cu Tiration GC820 21 Exploration Geochemistry 22 Aqua regia - ICP-ES AQ300 23 Aqua regia - ICP-ES/MS AQ200 23 Aqua regia - ICP-ES/MS AQ200 23 Aqua regia - ICP-ES/MS MA200 25 Multi-acid - ICP-ES/MS Mg MA200 25 Multi-acid - ICP-ES/MS Hg AQ200-Hg 25 Aqua regia - ICP-ES/MS Hg AQ200-Hg 25 Multi-acid - Ultra-trace MA250 26 Plant Material Analysis VG101 28 Generative Exploration Package GENX10 30 Geoc	Fire Assay Au and Ag 30 g – Gravimetric	FA530	15
Aqua regia Che Grade AAS MA404 19 Multi-sed Ore Grade AAS MA404 19 Multi-sed Ore Grade CP-ES AQ370 20 Multi-sed Ore Grade ICP-ES AQ370 20 Multi-sed Ore Grade ICP-ES MA370 20 Zn Titration GC816 21 Pb Titration GC816 21 Fe Titration GC818 21 Fe Titration GC818 21 Cu Titration GC820 21 Exploration Geochemistry 22 Aqua regia - ICP-ES AQ300 23 Aqua regia - ICP-ES MS AQ200 25 Multi-sed - ICP-ES MS AQ200 25 Multi-sed - ICP-ES MS MA200 25 Multi-sed - ICP-ES MS MA200 25 Multi-sed - ICP-ES MS MA200 25 Multi-sed - ICP-ES/MS MA200 25 Aqua regia - ICP-ES/MS MA200 25 Multi-sed - ICP-ES/MS MA200 35 Multi-sed - ICP-ES/MS MB MA200 36 Multi-	Metallic Screen Fire Assay 50 g duplicate minus fraction	FS652	16
Multi-acid Ore Grade ICP-ES AQ370 20 Aqua regia Ore Grade ICP-ES AQ370 20 Multi-acid Ore Grade ICP-ES MA370 20 Zh Titration GC816 21 Pb Titration GC817 21 Fe Titration GC820 21 Cu Titration GC820 21 Exploration Geochemistry 22 Aqua regia - ICP-ES AQ300 23 Aqua regia - ICP-ES/MS AQ200 23 Aqua regia - ICP-ES/MS AQ200 23 Aqua regia - ICP-ES/MS MA200 25 Multi-acid - ICP-ES/MS Hg AQ200-Hg 25 Multi-acid - ICP-ES/MS Hg AQ200-Hg 25 Multi-acid - ICP-ES/MS Hg AQ200-Hg 26 Plant Material Analysis VG101 28 Generative Exploration Package GENX10 30 Geochronology and Stable Isotopes HR901 32 Lithium Borate Fusion – Refractory and RES LF100 34 Total Whole Rock Characterization LF202	Ore & High Grade Analysis		18
Aqua regia Ore Grade ICP-ES AQ370 20 Multi-acid Ore Grade ICP-ES MA370 20 Zn Titration GC816 21 Pb Titration GC817 21 Fe Titration GC818 21 Cu Titration GC820 21 Exploration Geochemistry 22 Aqua regia - ICP-ES AQ300 23 Aqua regia - ICP-ES/MS AQ200 23 Aqua regia - ICP-ES/MS AQ200 23 Aqua regia - ICP-ES/MS MA300 25 Multi-acid - ICP-ES/MS MA200 25 Aqua regia - ICP-ES/MS MA200 25 Aqua regia - ICP-ES/MS MA200 25 Aqua regia - ICP-ES/MS MB MA200 26 Aqua regia - ICP-ES/MS MB MA200 25 Aqua regia - ICP-ES/MS MB MA200 26 Aqua regia - ICP-ES/MS MB MA200 26 Apua regia - ICP-ES/MS MB MA200 28		AR402	19
Multi-acid Ore Grade ICP-ES MA370 20 Zn Titration GC816 21 Pb Titration GC817 21 Fe Titration GC818 21 Cu Titration GC820 21 Exploration Geochemistry 22 Aqua regia - ICP-ES AQ300 23 Aqua regia - ICP-ES/MS AQ200 23 Aqua regia - IUtra- trace AQ250 24 Multi-acid - ICP-ES/MS MA200 25 Aqua regia - ICP-ES/MS Hg AQ200-Hg 25 Aqua regia - ICP-ES/MS Hg AQ200-Hg 26 Multi-acid - Ultra-trace MA250 26 Multi-acid - Ultra-trace MA250 26 Multi-acid - Sultra-frace MA250 26 Plant Material Analysis VG101 28 Generative Exploration Package GENX10 30 Geochronology and Stable Isotopes HR901 32 Lithiogeochemistry 3 3 Lithium Borate Fusion - Refractory and REEs LF100 34	Multi-acid Ore Grade AAS	MA404	19
Zn Titration	Aqua regia Ore Grade ICP-ES	AQ370	20
Pb Titration GC817 21 Fe Titration GC818 21 Cu Titration GC820 21	Multi-acid Ore Grade ICP-ES	MA370	20
Fe Titration GC8188 21 Cu Titration GC820 21 Exploration Geochemistry 22 Aqua regia – ICP-ES AQ300 23 Aqua regia – ICP-ES/MS AQ200 23 Aqua regia – ICP-ES/MS AQ250 24 Multi-acid – ICP-ES/MS MA300 25 Aqua regia – ICP-ES/MS Hg AQ200-Hg 25 Aqua regia – ICP-ES/MS Hg AQ200-Hg 25 Multi-acid – IUltra-trace MA250 26 Plant Material Analysis VG101 28 Generative Exploration Package GENX10 30 Geochronology and Stable Isotopes HR901 32 Lithogeochemistry 33 33 Lithium Borate Fusion – Refractory and REEs LF100 34 Total Whole Rock Lithium Fusion ICP Finish LF300 34 Leco – Total C and S TC000 35 XRF – Fusion – Laterites XF700 35 XRF – Fusion – Inon Ore XF322 36 XRF – Fusion – Interites XF720	Zn Titration	GC816	21
Cu Titration GC8820 21 Exploration Geochemistry 22 Aqua regia – ICP-ES AQ300 23 Aqua regia – IUTra-trace AQ250 24 Multi-acid – ICP-ES MS MA300 25 Multi-acid – ICP-ES/MS Hg MA200 25 Aqua regia – ICP-ES/MS Hg AQ200-Hg 25 Aqua regia – ICP-ES/MS Hg AQ200-Hg 25 Multi-acid – Ultra-trace MA250 26 Plant Material Analysis VG101 28 Generative Exploration Package GENX10 30 Geochronology and Stable Isotopes HR901 32 Lithium Borate Fusion – Refractory and REEs LF100 34 Total Whole Rock Characterization LF202 34 Whole Rock Lithium Fusion ICP Finish LF300 34 Leco – Total C and S TC000 35 XRF – Fusion – Laterites XF700 35 XRF – Fusion – Isotrices XF732 36 REF – Fusion – Laterites XF720 37 Laser Ablation Package	Pb Titration	GC817	21
Exploration Geochemistry 22 Aqua regia – ICP-ES AQ300 23 Aqua regia – ICP-ES/MS AQ200 23 Aqua regia – Ultra-trace AQ250 24 Multi-acid – ICP-ES MA300 25 Multi-acid – ICP-ES/MS MA200 25 Aqua regia – ICP-ES/MS Hg AQ200-Hg 25 Multi-acid – Ultra-trace MA250 26 Plant Material Analysis VG101 28 Generative Exploration Package GENX10 30 Geochronology and Stable Isotopes HR901 32 Lithogeochemistry 33 33 Litholoe Rock Characterization LF202 34 Whole Rock Characterization LF202 34 Whole Rock Lithium Fusion ICP Finish LF300 34 Leco – Total C and S TC000 35 XRF – Fusion – Major Oxides XF700 35 XRF – Fusion – Laterites XF700 35 XRF – Fusion – Laterites XF720 37 Laser Ablation Package LA01-EXT + XRF<	Fe Titration	GC818	21
Aqua regia – ICP-ES AQ300 23 Aqua regia – ICP-ES/MS AQ200 23 Aqua regia – Ultra-trace AQ250 24 Multi-acid – ICP-ES MA300 25 Multi-acid – ICP-ES/MS MA200 25 Aqua regia – ICP-ES/MS Hg AQ200-Hg 25 Aqua regia – ICP-ES/MS Hg AQ200-Hg 25 Multi-acid – Ultra-trace MA250 26 Plant Material Analysis VG101 28 Generative Exploration Package GENX10 30 Geochronology and Stable Isotopes HR901 32 Lithium Borate Fusion – Refractory and REEs LF100 34 Total Whole Rock Characterization LF202 34 Whole Rock Lithium Fusion ICP Finish LF300 34 Leco – Total C and S TC000 35 XRF – Fusion – Major Oxides XF700 35 XRF – Fusion – Inor Ore XF732 36 XRF – Fusion – Laterites XF720 37 Laser Ablation Package LA001-EXT + XRF 38	Cu Titration	GC820	21
Aqua regia – ICP-ES/MS AQ250 24 Aqua regia – Ultra-trace AQ250 24 Multi-acid – ICP-ES MA300 25 Multi-acid – ICP-ES/MS MA200 25 Aqua regia – ICP-ES/MS Hg AQ200-Hg 25 Aqua regia – ICP-ES/MS Hg AQ200-Hg 25 Multi-acid – Ultra-trace MA250 26 Plant Material Analysis VG101 28 Generative Exploration Package GENX10 30 Geochronology and Stable Isotopes HR901 32 Lithogeochemistry 32 33 Lithogeochemistry 33 34 Lithogeochemistry 32 34 Lithogeochemistry 34 34 Lithogeochemistry 34 34 Lithogeochemistry 34 34 Whole Rock Lithium Fusion ICP Finish LF200 34 Mble Rock Lithium Fusion ICP Finish LF300 35 XRF – Fusion – Major Oxides XF700 35 XRF – Fusion – Laterites XF720 37	Exploration Geochemistry		22
Aqua regia – Ultra-trace AQ250 24 Multi-acid – ICP-ES MA300 25 Multi-acid – ICP-ES/MS MA200 25 Aqua regia – ICP-ES/MS Hg AQ200-Hg 25 Multi-acid – Ultra-trace MA250 26 Plant Material Analysis VG101 28 Generative Exploration Package GENX10 30 Geochronology and Stable Isotopes HR901 32 Lithogeochemistry 32 Lithogeochemistry 34 Total Whole Rock Characterization LF202 34 Whole Rock Lithium Fusion ICP Finish LF300 34 Leco – Total C and S TC000 35 XRF – Fusion – Major Oxides XF700 35 XRF – Fusion – Iron Ore XF732 36 XRF – Fusion – Laterites XF720 37 Laser Ablation Package LA001-EXT + XRF 38 Metallurgy & Mineral Processing 40 Hydrometallurgy 41 Mineral Processing 42 Environmental Services 48 Environmental Services 49	Aqua regia – ICP-ES	AQ300	23
Multi-acid – ICP-ES MA300 25 Multi-acid – ICP-ES/MS MA200 25 Aqua regia – ICP-ES/MS Hg AQ200-Hg 25 Multi-acid – Ultra-trace MA250 26 Plant Material Analysis VG101 28 Generative Exploration Package GENX10 30 Geochronology and Stable Isotopes HR901 32 Lithogeochemistry 33 Lithium Borate Fusion – Refractory and REEs LF100 34 Total Whole Rock Characterization LF202 34 Whole Rock Characterization LF300 34 Leco – Total C and S TC000 35 XRF – Fusion – Major Oxides XF700 35 XRF – Fusion – Indigor Oxides XF732 36 XRF – Fusion – Laterites XF720 37 Laser Ablation Package LA001-EXT + XRF 38 Metallurgy & Mineralogy 40 Hydrometallurgy 41 Mineral Processing 40 Hydrometall Chemistry 45 Trace Metals 46	Aqua regia – ICP-ES/MS	AQ200	23
Multi-acid – ICP-ES/MS MA200 25 Aqua regia – ICP-ES/MS Hg AQ200-Hg 25 Multi-acid – Ultra-trace MA250 26 Plant Material Analysis VG101 28 Generative Exploration Package GENX10 30 Geochronology and Stable Isotopes HR901 32 Lithogeochemistry 33 33 Lithium Borate Fusion – Refractory and REEs LF100 34 Total Whole Rock Characterization LF202 34 Whole Rock Lithium Fusion ICP Finish LF300 34 Leco – Total C and S TC000 35 XRF – Fusion – Major Oxides XF700 35 XRF – Fusion – Iron Ore XF732 36 XRF – Fusion – Laterites XF720 37 Laser Ablation Package LA001-EXT + XRF 38 Metallurgy & Mineralogy 40 Hydrometallurgy 41 Mineral Processing 42 Environmental Services 44 Environmental Chemistry 45 Trace Metals	Aqua regia – Ultra-trace	AQ250	24
Aqua regia – ICP-ES/MS Hg AQ200-Hg 25 Multi-acid – Ultra-trace MA250 26 Plant Material Analysis VG101 28 Generative Exploration Package GENX10 30 Geochronology and Stable Isotopes HR901 32 Lithogeochemistry 33 Lithium Borate Fusion – Refractory and REEs LF100 34 Total Whole Rock Characterization LF202 34 Whole Rock Lithium Fusion ICP Finish LF300 34 Leco – Total C and S TC000 35 XRF – Fusion – Major Oxides XF700 35 XRF – Fusion – Iron Ore XF732 36 XRF – Fusion – Laterites XF720 37 Laser Ablation Package LA001-EXT + XRF 38 Metallurgy & Mineralogy 40 Hydrometallurgy 41 Mineral Processing 40 Hydrometall Services 44 Environmental Chemistry 45 Trace Metals 46 Ecotoxicology 47 Acid Rock Drainage 49 Radiochemistry 50	Multi-acid – ICP-ES	MA300	25
Multi-acid – Ultra-trace MA250 26 Plant Material Analysis VG101 28 Generative Exploration Package GENX10 30 Geochronology and Stable Isotopes HR901 32 Lithogeochemistry 33 Lithium Borate Fusion – Refractory and REEs LF100 34 Total Whole Rock Characterization LF202 34 Whole Rock Lithium Fusion ICP Finish LF300 34 Leco – Total C and S TC000 35 XRF – Fusion – Major Oxides XF700 35 XRF – Fusion – Iron Ore XF732 36 XRF – Fusion – Laterites XF720 37 Laser Ablation Package LA001-EXT + XRF 38 Metallurgy & Mineralogy 49 Mineral Processing 40 Hydrometallurgy 41 Mineral Processing 42 Environmental Services 44 Environmental Chemistry 45 Trace Metals 46 Ecotoxicology 47 Acid Rock Drainage 49 </td <td>Multi-acid – ICP-ES/MS</td> <td>MA200</td> <td>25</td>	Multi-acid – ICP-ES/MS	MA200	25
Plant Material Analysis VG101 28 Generative Exploration Package GENX10 30 Geochronology and Stable Isotopes HR901 32 Lithogeochemistry 33 Lithium Borate Fusion – Refractory and REEs LF100 34 Total Whole Rock Characterization LF202 34 Whole Rock Lithium Fusion ICP Finish LF300 35 Leco – Total C and S TC000 35 XRF – Fusion – Major Oxides XF700 35 XRF – Fusion – Iron Ore XF732 36 XRF – Fusion – Laterites XF720 37 Laser Ablation Package LA001-EXT + XRF 38 Metallurgy & Mineralogy 40 Hydrometallurgy 41 Mineral Processing 40 Hydrometall Services 44 Environmental Services 44 Environmental Chemistry 45 Trace Metals 46 Ecotoxicology 47 Acid Rock Drainage 49 Radiochemistry 50	Aqua regia – ICP-ES/MS Hg	AQ200-Hg	25
Generative Exploration Package GENX10 30 Geochronology and Stable Isotopes HR901 32 Lithogeochemistry 33 Lithium Borate Fusion – Refractory and REEs LF100 34 Total Whole Rock Characterization LF202 34 Whole Rock Lithium Fusion ICP Finish LF300 35 LECO – Total C and S TC000 35 XRF – Fusion – Major Oxides XF700 35 XRF – Fusion – Inon Ore XF732 36 XRF – Fusion – Laterites XF720 37 Laser Ablation Package LA001-EXT + XRF 38 Metallurgy & Mineralogy 39 Mineral Processing 40 40 Hydrometallurgy 41 40 Hydrometall Services 42 42 Environmental Services 44 45 Trace Metals 46 45 Ecotoxicology 47 46 Acid Rock Drainage 49 49 Radiochemistry 50 49 Industrial Hygiene<	Multi-acid - Ultra-trace	MA250	26
Geochronology and Stable IsotopesHR90132Lithogeochemistry33Lithium Borate Fusion – Refractory and REEsLF10034Total Whole Rock CharacterizationLF20234Whole Rock Lithium Fusion ICP FinishLF30034Leco – Total C and STC00035XRF – Fusion – Major OxidesXF70035XRF – Fusion – Iron OreXF73236XRF – Fusion – LateritesXF72037Laser Ablation PackageLA001-EXT + XRF38Metallurgy & MineralogyMineral Processing40Hydrometallurgy41Mineralogy & Petrography42Environmental Services44Environmental Chemistry45Trace Metals46Ecotoxicology47Acid Rock Drainage49Radiochemistry50Industrial Hygiene52Ambiant Air Quality54	Plant Material Analysis	VG101	28
Lithogeochemistry33Lithium Borate Fusion – Refractory and REEsLF10034Total Whole Rock CharacterizationLF20234Whole Rock Lithium Fusion ICP FinishLF30034Leco – Total C and STC00035XRF – Fusion – Major OxidesXF70035XRF – Fusion – Iron OreXF73236XRF – Fusion – LateritesXF72037Laser Ablation PackageLA001-EXT + XRF38Metallurgy & Mineralogy39Mineral Processing40Hydrometallurgy41Mineralogy & Petrography42Environmental Services44Environmental Chemistry45Trace Metals46Ecotoxicology47Acid Rock Drainage49Radiochemistry50Industrial Hygiene52Ambiant Air Quality54	Generative Exploration Package	GENX10	30
Lithium Borate Fusion – Refractory and REES Total Whole Rock Characterization LF202 34 Whole Rock Lithium Fusion ICP Finish LF300 34 Leco – Total C and S TC000 35 XRF – Fusion – Major Oxides XF700 35 XRF – Fusion – Iron Ore XF732 36 XRF – Fusion – Laterites XF720 37 Laser Ablation Package LA001-EXT + XRF 38 Metallurgy & Mineralogy 40 Hydrometallurgy Mineralogy & Petrography 41 Mineralogy & Petrography 42 Environmental Chemistry Trace Metals Ecotoxicology Acid Rock Drainage Radiochemistry Industrial Hygiene Ambiant Air Quality 54 Acid Rock Drainage Ambiant Air Quality 54 Acid Rock Drainage Ambiant Air Quality 55	Geochronology and Stable Isotopes	HR901	32
Total Whole Rock Characterization LF202 34 Whole Rock Lithium Fusion ICP Finish LF300 34 Leco - Total C and S TC000 35 XRF - Fusion - Major Oxides XF700 35 XRF - Fusion - Iron Ore XF732 36 XRF - Fusion - Laterites XF720 37 Laser Ablation Package LA001-EXT + XRF 38 Metallurgy & Mineralogy 39 Mineral Processing 40 Hydrometallurgy 41 Mineralogy & Petrography 42 Environmental Services 44 Environmental Chemistry 45 Trace Metals 46 Ecotoxicology 47 Acid Rock Drainage 49 Radiochemistry 50 Industrial Hygiene 52 Ambiant Air Quality 54	Lithogeochemistry		33
Whole Rock Lithium Fusion ICP Finish LF300 34 Leco - Total C and S TC000 35 XRF - Fusion - Major Oxides XF700 35 XRF - Fusion - Iron Ore XF732 36 XRF - Fusion - Laterites XF720 37 Laser Ablation Package LA001-EXT + XRF 38 Metallurgy & Mineralogy 39 Mineral Processing 40 40 Hydrometallurgy 41 41 Mineralogy & Petrography 42 42 Environmental Services 44 Environmental Chemistry 45 45 Trace Metals 46 46 Ecotoxicology 47 47 Acid Rock Drainage 49 49 Radiochemistry 50 10 Industrial Hygiene 52 40 Ambiant Air Quality 54	Lithium Borate Fusion – Refractory and REEs	LF100	34
Leco - Total C and S TC000 35 XRF - Fusion - Major Oxides XF700 35 XRF - Fusion - Iron Ore XF732 36 XRF - Fusion - Laterites XF720 37 Laser Ablation Package LA001-EXT + XRF 38 Metallurgy & Mineralogy 39 Mineral Processing 40 Hydrometallurgy 41 Mineralogy & Petrography 42 Environmental Services 44 Environmental Chemistry 45 Trace Metals 46 Ecotoxicology 47 Acid Rock Drainage 49 Radiochemistry 50 Industrial Hygiene 52 Ambiant Air Quality 54	Total Whole Rock Characterization	LF202	34
XRF - Fusion - Major Oxides XF700 35 XRF - Fusion - Iron Ore XF732 36 XRF - Fusion - Laterites XF720 37 Laser Ablation Package LA001-EXT + XRF 38 Metallurgy & Mineralogy 39 Mineral Processing 40 Hydrometallurgy 41 Mineralogy & Petrography 42 Environmental Services 44 Environmental Chemistry 45 Trace Metals 46 Ecotoxicology 47 Acid Rock Drainage 49 Radiochemistry 50 Industrial Hygiene 52 Ambiant Air Quality 54	Whole Rock Lithium Fusion ICP Finish	LF300	34
XRF - Fusion - Iron Ore XF732 36 XRF - Fusion - Laterites XF720 37 Laser Ablation Package LA001-EXT + XRF 38 Metallurgy & Mineralogy 39 Mineral Processing 40 Hydrometallurgy 41 Mineralogy & Petrography 42 Environmental Services 44 Environmental Chemistry 45 Trace Metals 46 Ecotoxicology 47 Acid Rock Drainage 49 Radiochemistry 50 Industrial Hygiene 52 Ambiant Air Quality 54	Leco – Total C and S	TC000	35
XRF - Fusion - Laterites XF720 37 Laser Ablation Package LA001-EXT + XRF 38 Metallurgy & Mineralogy 39 Mineral Processing 40 Hydrometallurgy 41 Mineralogy & Petrography 42 Environmental Services 44 Environmental Chemistry 45 Trace Metals 46 Ecotoxicology 47 Acid Rock Drainage 49 Radiochemistry 50 Industrial Hygiene 52 Ambiant Air Quality 54	XRF – Fusion – Major Oxides	XF700	35
Laser Ablation PackageLA001-EXT + XRF38Metallurgy & Mineralogy39Mineral Processing40Hydrometallurgy41Mineralogy & Petrography42Environmental Services44Environmental Chemistry45Trace Metals46Ecotoxicology47Acid Rock Drainage49Radiochemistry50Industrial Hygiene52Ambiant Air Quality54	XRF – Fusion – Iron Ore	XF732	36
Metallurgy & Mineralogy39Mineral Processing40Hydrometallurgy41Mineralogy & Petrography42Environmental Services44Environmental Chemistry45Trace Metals46Ecotoxicology47Acid Rock Drainage49Radiochemistry50Industrial Hygiene52Ambiant Air Quality54	XRF - Fusion - Laterites	XF720	37
Mineral Processing 40 Hydrometallurgy 41 Mineralogy & Petrography 42 Environmental Services 44 Environmental Chemistry 45 Trace Metals 46 Ecotoxicology 47 Acid Rock Drainage 49 Radiochemistry 50 Industrial Hygiene 52 Ambiant Air Quality 54	Laser Ablation Package	LA001-EXT + XRF	38
Hydrometallurgy Mineralogy & Petrography Environmental Services Environmental Chemistry Trace Metals Ecotoxicology 47 Acid Rock Drainage Radiochemistry Industrial Hygiene Ambiant Air Quality 41 42 45 45 46 46 46 47 47 48 49 49 49 49 49 49 49 49 49 49 49 49 49	Metallurgy & Mineralogy		39
Mineralogy & Petrography Environmental Services Environmental Chemistry Environmental Chemistry Trace Metals Ecotoxicology Acid Rock Drainage Radiochemistry Industrial Hygiene Ambiant Air Quality 42 45 46 46 47 49 50 10 10 10 10 10 10 10 10 10	Mineral Processing		40
Environmental Services 44 Environmental Chemistry 45 Trace Metals 46 Ecotoxicology 47 Acid Rock Drainage 49 Radiochemistry 50 Industrial Hygiene 52 Ambiant Air Quality 54	Hydrometallurgy		41
Environmental Chemistry 45 Trace Metals 46 Ecotoxicology 47 Acid Rock Drainage 49 Radiochemistry 50 Industrial Hygiene 52 Ambiant Air Quality 54	Mineralogy & Petrography		42
Trace Metals 46 Ecotoxicology 47 Acid Rock Drainage 49 Radiochemistry 50 Industrial Hygiene 52 Ambiant Air Quality 54	Environmental Services		44
Ecotoxicology 47 Acid Rock Drainage 49 Radiochemistry 50 Industrial Hygiene 52 Ambiant Air Quality 54	Environmental Chemistry		45
Acid Rock Drainage 49 Radiochemistry 50 Industrial Hygiene 52 Ambiant Air Quality 54	Trace Metals		46
Radiochemistry 50 Industrial Hygiene 52 Ambiant Air Quality 54	Ecotoxicology		47
Industrial Hygiene 52 Ambiant Air Quality 54	Acid Rock Drainage		49
Ambiant Air Quality 54	Radiochemistry		50
			52
Global Footprint Map 58			54
	Global Footprint Map		58

Sample Preparation, Storage & Disposal

The Bureau Veritas Minerals sample preparation process incorporates several important steps. These steps lay the groundwork for all analyses and is key to the overall high quality of the analytical results. Included in these steps is:

- Sample log-in and reconciliation against the client-supplied list. An electronic reconciliation is sent out for each job, which indicates methods, any potential missing samples, TAT, etc.
- Sample drying.
- Crushing and pulverizing rock, core or other solid media, or sieving soils and sediments. The lab typically crushes the entire sample and the sample mass to be pulverized can be varied based on client preference.
- Most importantly, our labs undertake a rigorous QAQC program to ensure consistent results. A sieve test is used to monitor the process on select and random samples at the primary crushing and pulverizing stage, as well as monitor the wear surfaces of plates, bowls and other equipment problems.

These tests are recorded and produced for your review. If there is a non-conformance in the quality standard, the process is reviewed and corrected. This rigorous policy applies to any material that is reported or used in the analytical process.

Sample Preparation, Storage & Disposal

The packages listed here are the most common methods applied in our industry. If you require custom sample preparation techniques please contact your local account manager or lab nearest to your project to discuss in more detail. You will find our team of professionals and technical group second to none in our ability to provide support.

ROCK AND CORE PREPARATION

CODE	DESCRIPTION	CAD
PRP70-250	Crush 1 kg to ≥70% passing 2mm - Pulverize 250 g ≥85% 75μm	\$7.85
PRP70-500	Crush 1 kg to ≥70% passing 2mm - Pulverize 500 g ≥85% 75μm	\$8.95
PRP70-1Kg	Crush 1 kg to ≥70% passing 2mm - Pulverize 1 kg ≥85% 75μm	\$10.10
PRP80-250	Crush 1 kg to ≥80% passing 2mm - Pulverize 250 g ≥85% 75μm	\$8.85
PRP90-250	Crush 1 kg to ≥90% passing 2mm - Pulverize 250 g ≥85% 75μm	\$9.20
CRU70	Crush to ≥70% passing 2mm per kg, includes first 1 kg	\$3.80
CRU70	Extra crushing over 1 kg, per kg	+ \$0.80
CRUPR	Primary Crushing for large samples, (eg. whole core), per kg	\$1.05
PUL85	Dry and pulverize to ≥85% passing 75 μm	\$4.00
	Extra pulverizing over 250 g, per 250 g	+ \$1.00
DY105	Dry pulp at 105°C, per sample	\$0.65
HOMG	Homogenizing of pulps by light pulverizing	\$2.80
SPTRF	Split by riffle splitter up to 5 kg of –2 mm sample, per sample	\$2.35
WGHT	Weigh sample	\$0.70
CRUBW	Extra wash with barren material – crushing	\$2.75
PULSW	Extra wash – silica – pulverizing	\$3.25
SPTRS	Rotary split up to 5 kg	\$4.80

Other size fractions / preparation requirements available upon request.

For example ceramic bowl pulverizing, different size crushing and bowl sizes, etc.

SOILS

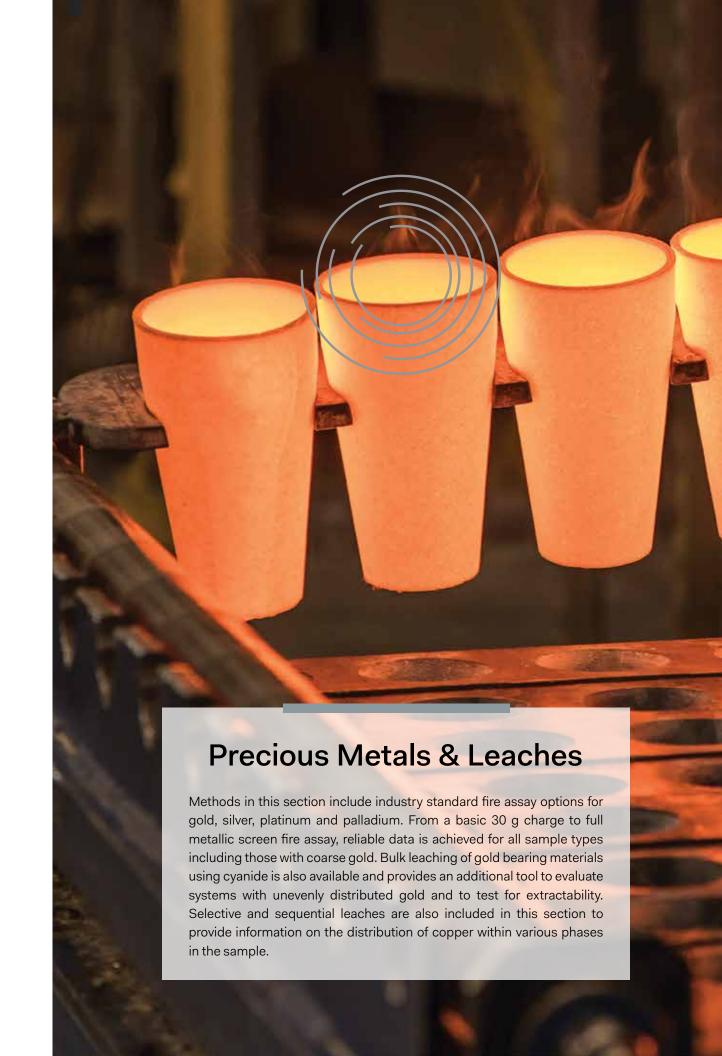
CODE	DESCRIPTION	CAD
	Dry at 60°C, sieve up to 100 g to -180 µm (80 mesh) up to 1 kg sample (discard plus fraction)	\$3.45
SS80	Overweight sieving per 500 g - extra sieving over 1 kg	\$1.15
	Dry at 60°C, sieve 100 g to -63 µm (230 mesh), up to 1 kg sample	\$4.40
SS230	Overweight sieving per 500 g	\$1.70
	Other sieve sizes available upon request	by quote
PULSL	Pulverize soils in mild steel pulverizer, per 100 g	\$3.40
SVRJT	Saving all or part of soil reject	\$1.05
CLYSP	Clay separation up to 500 g (for other weight requirements please contact us)	\$16.20
DISP2	Heat Treatment of soils and sediments, per sample (All international soil shipments to Canada)	\$0.55

Important note regarding soils: Importation regulations may apply; contact lab prior to shipment for details and shipment requirements. For soil shipments to Canada: No soil, till, sediment pulps or rejects can be returned and must be incinerated prior to disposal. A disposal fee (DISP2) is charged for these samples. Soil rejects are discarded

SPECIFIC GRAVITY

CODE	DESCRIPTION	CAD
SDC00	Specific Gravity on core by water displacement	\$14.30
SPG02	Surcharge over 2 kg	\$5.15
SPG03	Specific Gravity on waxed core (wax removal not included)	\$19.30
SPG04	Specific Gravity on pulps or rock chips by gas pycnometer	\$13.75

MISCELLANOUS CHARGES


CODE	DESCRIPTION	CAD
PULHP	Hand pulverize by mortar and pestle	\$9.05
ОССНК	Additional QC checks	\$3.40
HAND	Handling of special projects, per hour	\$72.00
SHP-01	Shipping charge (pulps), per sample - from branch (varies by country)	From \$2.15
SPTPL	Extra splitting of pulp	\$1.05
PULSW	Extra wash with silica-pulverizing	\$3.25
DYAIR	Air Dry samples, (<40°C), per 2 kg	\$2.60
DV0/0	Drying surcharge for excessively wet samples	\$2.00
DYXS	Surcharge over, 1 kg, per kg	+ \$0.50
SLBHP	Sorting, Labeling, Boxing and Handling samples received as Pulps	\$1.05
BAT01	Batch charge for <20 samples	\$55.00
VAC01	Vacuum seal samples, nitrogen purge	\$10.80
CRCUT	Core Cutting	by quote
PICKUP	Shipping charges for samples pick up	by quote
MINE DSI	MineDSi is a core logging software interface that is operated using a PC laptop or windows enabled tablet. It provides a highly flexible and customizable platform from which the user can log core electronically alongside photographic strip logs created by the software.	by quote

WAREHOUSE CHARGES

CODE	DESCRIPTION	CAD
SPRTRN	Cost of shipping returns	at cost
DISRJ	Dispose of reject	\$0.75
DISPL	Dispose of pulps	\$0.20
WHRJT	Monthly storage of reject after 60 days	\$0.70
WHPLP	Monthly storage of pulps after 90 days (up to 250 g sample)	\$0.30
WHS01	Warehouse handling, per hour	\$55.00
WHSRT	Monthly storage of soil rejects after 60 days	\$0.40

Storage information: All samples rejects are stored for 2 months and pulps for 3 months at no charge and will be disposed of without notification unless storage is requested at the time of submission. A minimum charge of \$10/quarter (\$40/yr) will apply to all clients with samples in storage. When storage is requested on receipt, storage will be charged up front to cover the first 6 months. All disposal, handling or shipping charges for concentrates, high norm samples and samples containing hazardous materials will be borne by the client.

AQUA REGIA GOLD

Recommended for soils, sediments, vegetation or reconnaissance rock samples. Samples are digested in 1:1:1 aqua regia then analyzed by ICP-MS. Refractory, massive sulphide and graphitic samples can limit Au solubility.

CODE	ELEM	DETECTION LIMIT	UPPER LIMIT	DESCRIPTION	CAD
AQ115				15 g Aqua regia ICP-MS	\$11.10
AQ130				30 g Aqua regia ICP-MS	\$15.85
AQ115-IGN	Au	0.5 ppb	10 ppm	Ignited 15 g Aqua regia ICP-MS Rock samples are ignited at 550°C before aqua regia digestion	\$12.50
AQ130-IGN				Ignited 30 g Aqua regia ICP-MS Rock samples are ignited at 550°C before aqua regia digestion	\$17.25

Fire Assay

Lead collection fire assay fusion is a classic method for total sample decomposition. Total Au content is determined by digesting an Ag dore bead and then analysing by AAS, ICP-ES, or ICP-MS. The Lab reserves the right to reduce sample weight to 15 g or less for proper fusion.

ICP-MS

CODE	ELEM	DETECTION LIMIT	UPPER LIMIT	DESCRIPTION	CAD
	Au	1 ppb	1 ppm		
FA130 FA150	Pt	0.1 ppb	1 ppm	30 g / Fire Assay / ICP-MS50 g / Fire Assay / ICP-MS	\$22.30 \$25.25
	Pd	0.5 ppb	1 ppm		¥ 20.20

ICP-ES

FA330-Au*				30 g / Fire Assay / ICP-ES	\$17.50
FA350-Au*	Au	2 ppb	10 ppm	50 g / Fire Assay / ICP-ES	\$20.70
FA330* FA350*	Au	2 ppb	10 ppm		
	Pt	3 ppb	10 ppm	30 g / Fire Assay / ICP-ES50 g / Fire Assay / ICP-ES	\$18.75 \$21.70
_	Pd	2 ppb	10 ppm	— 50 g / File Assay / ICP-E3	\$21.70

AAS

FA430*	۸.,	0.005 nnm	10 222	30 g / Fire Assay / AAS	\$16.50
FA450*	Au	0.005 ppm	10 ppm	50 g / Fire Assay / AAS	\$19.55

GRAVIMETRIC

FA530-Ag			30 g / Fire Assay / gravimetric	\$20.80
FA550-Ag	Ag	20 ppm -	50 g / Fire Assay / gravimetric	\$23.80
FA530-Au	Au		30 g / Fire Assay / gravimetric	\$20.80
FA550-Au		0.9 ppm	0.9 ppm	50 g / Fire Assay / gravimetric
FA530			30 g / Fire Assay / gravimetric	\$20.80
FA550	Au, Ag	as above	50 g / Fire Assay / gravimetric	\$23.80

Require at least 15 g sample weight.

^{*}Au>10 ppm are automatically analyzed by gravimetric method.

The Lab reserves the right to reduce sample weight to 15 g or smaller for proper fusion.

CODE	ELEM	DETECTION LIMIT	UPPER LIMIT	DESCRIPTION	CAD
FA630	Au	0.005 ppm	10 ppm	20 a / Fire Assay / As growingstrip / Ay AAC finish	¢ac Eo
FA030	Ag	20 ppm	10000 ppm	- 30 g / Fire Assay / Ag gravimetric / Au AAS finish	\$20.50

^{*}Shipment costs may apply to ship to Reno & Hermosillo

METALLIC SCREEN FIRE ASSAY

Metallic screen fire assay prices include screening of sample to 106 µm. Additional preparation charges for crushing and pulverizing may apply. Alternative screen sizes/weights available upon request. Pricing is based on gravimetric analysis of the plus fraction and instrumentation on the minus fraction. Additional charges for gravimetric analysis on the minus fraction may apply. Please contact your local office to develop the right package for your project.

CODE	ELEM	DETECTION LIMIT	DESCRIPTION	CAD
FS631	Au	0.05 ppm	Metallic Fire Assay – single minus fraction analyzed, 30 g - 500 g screen	\$46.65
FS631-1 Kg	Au	0.05 ppm	Metallic Fire Assay – single minus fraction analyzed, 30 g - 1 kg screen	\$58.25
FS632	Au	0.05 ppm	Metallic Fire Assay – duplicate minus fraction analyzed, 30 g – 500 g screen	\$55.15
FS652	Au	0.05 ppm	Metallic Fire assay – duplicate minus fraction analyzed, 50 g – 500 g screen	\$62.60
FS652-1Kg	Au	0.05 ppm	Metallic Fire assay – duplicate minus fraction analyzed, 50 g – 1 kg screen	\$70.95

OTHER CHARGES

СНРОТ	Stipulate new crucible for fire assay fusion	\$1.60
EN002**	Environmental disposal charge - Fire assay lead waste	From \$0.55
EN003	Environmental disposal charge - Cyanide waste	\$0.85
** This fee is automatically applied to all fir	re assay analysis, per fusion.	

WET ASSAY SILVER - ORE GRADE

CODE	ELEM	DETECTION LIMIT	UPPER LIMIT	DESCRIPTION	CAD
AR401-Ag	Ag	1 ppm	800 ppm	Aqua Regia Digestion AAS Finish	\$12.25
MA401-Ag	Ag	1 ppm	800 ppm	Multi-acid Digestion AAS Finish	\$13.65

CARBONS, CONCENTRATES & HIGH GRADE

Reno & Hermosillo only*

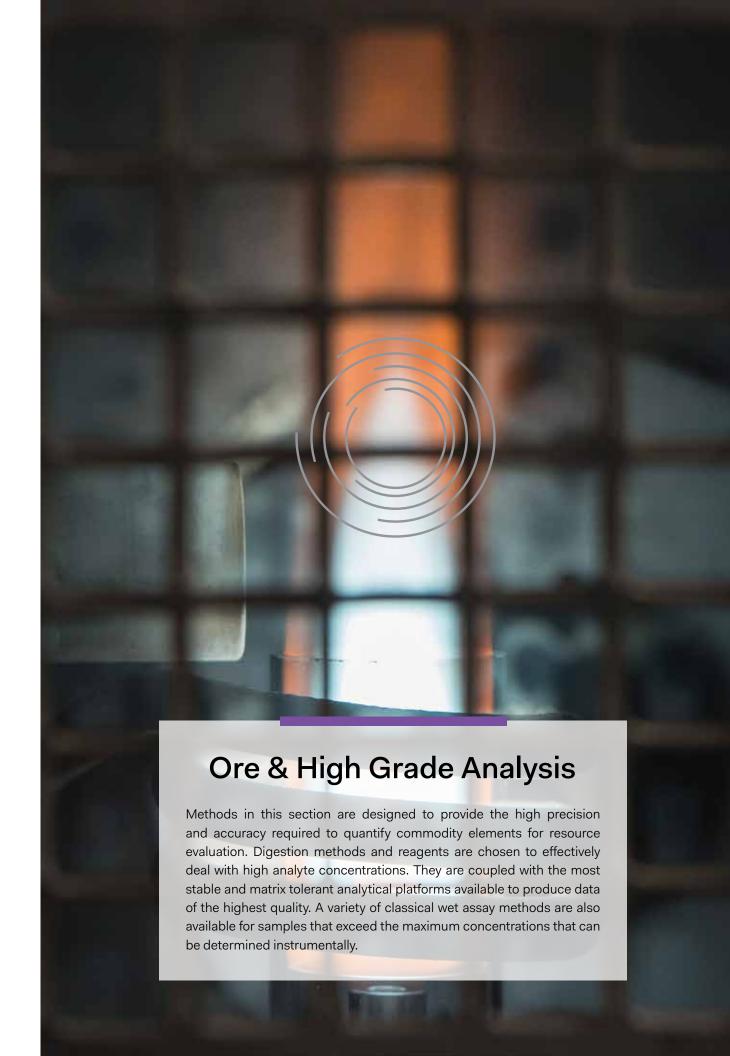
This method is ideal for the determination of Au and Ag when higher levels of precision are required. Our stringent quality control protocols involve the use of replicate assays and reference materials suited to the analysis to confirm accuracy. Results are not for commercial settlement purposes. Contact Bureau Veritas Commodities – Metals & Minerals Trade for commercial sampling and testing services where results are to be used for commercial settlement and/or financial transactions.

CODE	ELEM	DETECTION LIMIT	UPPER LIMIT	DESCRIPTION	CAD
FA501-Au	Au	10 ppm	100000 ppm	2 g sample Fire Assay for concentrates, duplicate analyses	\$84.85
FA501-Ag	Ag	100 ppm	100000 ppm	2 g sample Fire Assay for concentrates, duplicate analyses	\$84.85
FA501	Au, Ag	as above	as above	2 g sample Fire Assay for concentrates, duplicate analyses	\$105.05

Note: Additional base metal elements may be added for an additional analytical charge *Shipment costs may apply to ship to Reno & Hermosillo

GOLD BASE METAL LEACHES

Cyanide leaching can offer an alternative to classic fire assay methods with a comparible low detection limit. However, cyanidation analytical tests provide a more realistic estimation of gold and silver recovery from a rock pulp. Gold recovery can be impacted by organic carbon, graphite, and some sulphide minerals.


ELEM	DETECTION LIMIT	UPPER LIMIT	DESCRIPTION	CAD
Au	0.1 ppb 0.01 ppm	100 ppm 200 ppm	BLEG, cyanide leach (500 g – 1 kg sample f • ICP-MS Finish • AAS Finish	for 12–24 hour \$28.10
Au, Ag, Cu			Cyanide leach (various options)	by quote
Au	0.03 ppm	50 ppm	15 g, 1 hour room temperature cyanide sha AAS finish	ike, \$9.95
Au	0.03 ppm	50 ppm	30 g, 1 hour room temperature cyanide sha AAS finish	ke, \$11.30
Au	0.03 ppm	50 ppm	15 g, 1 hour hot cyanide shake, AAS finish	\$12.40
Au	0.03 ppm	50 ppm	30 g, 1 hour hot cyanide shake, AAS finish	\$13.60
			Extra element	+ \$5.30
Au	0.03 ppm	500 ppm	0 1	ch leach \$12.20 ch leach \$12.70
	0.01 kg H₂S	O ₄ /TON	Sulphuric leach, net acid consumption	
	Au Au, Ag, Cu Au Au Au	Au 0.1 ppb 0.01 ppm Au, Ag, Cu Au Au 0.03 ppm Au 0.03 ppm Au 0.03 ppm Au 0.03 ppm Au 0.03 ppm	Au 0.1 ppb 0.01 ppm 200 ppm Au, Ag, Cu 50 ppm Au 0.03 ppm 50 ppm	Au 0.03 ppm 50 ppm 15 g, 1 hour hot cyanide shake, AAS finish Au 0.03 ppm 50 ppm 30 g, 1 hour hot cyanide shake, AAS finish Au 0.03 ppm 50 ppm 15 g, 1 hour hot cyanide shake, AAS finish Au 0.03 ppm 50 ppm 15 g, 1 hour hot cyanide shake, AAS finish Au 0.03 ppm 50 ppm 15 g, 1 hour hot cyanide shake, AAS finish Au 0.03 ppm 50 ppm 15 g, 1 hour hot cyanide shake, AAS finish Extra element Preg rob leach-2 cyanide leaches with and without Au spiked solution • < 15 g sample each • 30 g sample each

Note: Additional base metal elements (Fe, Zn, Pb) may be added to some leaches for an additional analytical charge. Please contact the laboratory regarding your specific analytical requirements.

COPPER LEACHES

The following methods are used for the determination of Cu leachability, mineralogy and mineral solubility. These methods utilize laboratory standard leach conditions; however client specific conditions can be negotiated upon request.

CODE	ELEM	DETECTION LIMIT	UPPER LIMIT	DESCRIPTION	CAD
LH401	CuS	0.001%	10%	1M Citric acid leach with AAS finish - Cu oxides	\$13.65
LH402	CuSH	0.001%	10%	Sulphuric acid leach with AAS finish - nonsulphide Cu	\$13.65
LH403	CuCN	0.01%	10%	Cyanide leach with AAS finish (1 g)	\$14.60
LH425	CuSAP	0.01%	100%	Quick ferric sulphate leach for 1hr Cu by AAS	\$12.70
LHSEQ	CuSH CuCN CuRes			Sample is sequentially leached in H ₂ SO ₄ (LH402), CN (LH403) then Multi-acid, with Cu from each leach reported. Total Copper can be reported as a sum of the leaches.	\$49.70

AAS Analysis

Aqua regia and multi-acid digestions with AAS analysis are optimized for moderate to high grade ore samples and select target elements. These methods can be set up to be triggered automatically or selected as standalone packages.

AAS ANALYSIS

CODE	ELEM	DETECTIO	N LIMIT	UPPER LI	MIT	CAD
	Ag	1	ppm	800	ppm	
	Cu	0.001	%	10	%	_
MA401	Fe	0.01	%	10	%	_
	Pb	0.01	%	10	%	
	Zn	0.01	%	10	%	\$13.65
MA401-Mo	Мо	0.001	%	10	%	for the first Element
IVIA401-IVIO	Cu	0.001	%	10	%	
	Ag	2	ppm	1500	ppm	\$4.15
	Cu	0.01	%	30	%	- Additional Element
NAA 404	Fe	0.01	%	30	%	
MA404	Ni	0.01	%	30	%	_
	Pb	0.01	%	20	%	_
	Zn	0.01	%	30	%	

CODE	ELEM	DETECTIO	DETECTION LIMIT		LIMIT	CAD	
AD404	Ag	1	ppm	800	ppm		
AR401	Cu	0.001	%	10	%		
AR402	Ag	2	ppm	1000	ppm		
	Cu	0.001	%	10	%	\$12.25	
	Pb	0.01	%	10	%	for the first Element	
	Zn	0.01	%	10	%		
	Ag	2	ppm	1500	ppm	\$4.15 Additional Element	
	Cu	0.001	%	20	%		
AR404	Pb	0.01	%	20	%	_	
	Zn	0.01	%	20	%	_	

ICP Analysis

The following multi-element assays provide optimum precision and accuracy for high grade rock and drill core samples with a selection of digestion methods to best suit the ore type. AQ370, MA370 and PF370 report percent level concentrations as determined by ICP-ES.

AQUA REGIA ICP-ES

Modified Aqua regia digestion for base-metal sulphide and precious metal ores. Aqua regia digestion is considered a partial digestion. Solubility of some elements will be limited by the mineral species present.

CODE	ELEM	DETEC LIM			PER MIT	CAD
AQ370	Aqua R	legia ICF	P-ES,	24 elem	ents	\$16.40
	Ag	2	ppm	1000	ppm	
	Al	0.01	%	40	%	
	As	0.01	%	10	%	
	Bi	0.01	%	1	%	
	Са	0.01	%	40	%	
	Cd	0.001	%	1	%	
	Со	0.001	%	1	%	
	Cr	0.001	%	5	%	
	Cu	0.001	%	10	%	
	Fe	0.01	%	40	%	
	Hg	0.001	%	1	%	
	K	0.01	%	40	%	
	Mg	0.01	%	40	%	
	Mn	0.01	%	20	%	
	Мо	0.001	%	5	%	
	Na	0.01	%	25	%	
	Ni	0.001	%	10	%	
	Р	0.001	%	25	%	
	Pb	0.01	%	4	%	
	S	0.05	%	30	%	
	Sb	0.001	%	5	%	
	Sr	0.001	%	1	%	
	W	0.001	%	1	%	
	Zn	0.01	%	20	%	
AQ370-X	Aqua R	legia ICF	P-ES, a	any 1 el	ement	\$11.85

Requires at least 2 g per sample.

PHOSPHORIC ACID ICP-ES

Phosphoric acid digestion for select elements.

CODE	ELEM	DETECTION LIMIT	UPPER LIMIT	CAD			
KP300	Phospl 5 elem	\$18.75					
	Мо	0.001 %	40 %				
	Nb	0.001 %	40 %				
	Та	0.001 %	60 %				
	U	0.001 %	60 %				
	W	0.005 %	40 %				
KP300-X		Phosphoric Acid, ICP-ES, any 1 element					

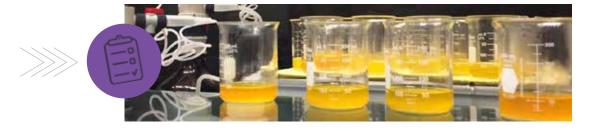
Requires at least 2 g per sample.

MULTI-ACID ICP-ES

Multi-acid digestion for sulphide and silicate ores.

CODE	ELEM	DETECTION LIMIT		UPPER LIMIT		CAD
MA370	Multi -a	cid ICP	-ES, 23	elemer	nts	\$18.75
	Ag	2	ppm	1500	ppm	
	Al	0.01	%	40	%	
	As	0.02	%	10	%	
	Bi	0.01	%	2	%	_
	Ca	0.01	%	50	%	
	Cd	0.001	%	2	%	
	Co	0.001	%	2	%	
	Cr	0.001	%	5	%	
	Cu	0.001	%	10	%	
	Fe	0.01	%	60	%	
	K	0.01	%	40	%	
	Mg	0.01	%	40	%	
	Mn	0.01	%	20	%	
	Мо	0.001	%	5	%	
	Na	0.01	%	25	%	
	Ni	0.001	%	10	%	
	Р	0.01	%	25	%	
	Pb	0.02	%	10	%	
	S	0.05	%	30	%	
	Sb	0.01	%	1	%	
	Sr	0.01	%	1	%	
	W	0.01	%	1	%	_
	Zn	0.01	%	40	%	-
MA370-X	Multi -a	icid ICP	-ES, an	y 1 elen	nent	\$14.05

Requires at least 1 g per sample.


PEROXIDE FUSION ICP-ES

Sodium peroxide fusion for refractory mineral ores.

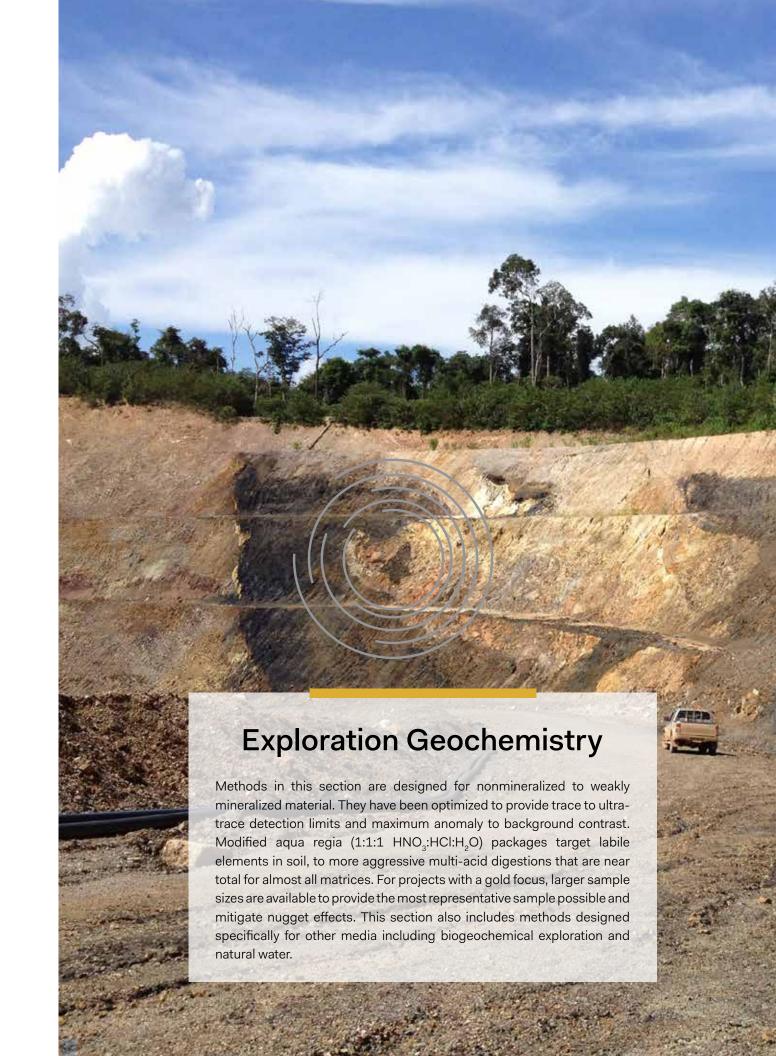
CODE	ELEM	DETEC LIM		UPF LIM		CAD
PF370	Peroxid 17 elem	e Fusion ents	ICP-ES			\$27.75
	Al	0.01	%	50	%	
	As	0.01	%	10	%	
	Ca	0.05	%	50	%	
	Со	0.002	%	30	%	
	Cr	0.01	%	30	%	_
	Cu	0.005	%	30	%	_
	Fe	0.05	%	70	%	_
	K	0.01	%	30	%	
	Li	0.001	%	50	%	_
	Mg	0.01	%	30	30 %	
	Mn	0.01	%	70	%	_
	Ni	0.005	%	30	%	_
	Pb	0.03	%	30	%	_
	S	0.01	%	60	%	_
	Sn	0.005	%	50	%	_
	Ti	0.01	%	30	%	_
	Zn	0.01	%	30	%	_
PF370-X	Peroxid any 1 el	e Fusion ement	ICP-ES	,		\$19.25

MERCURY

CODE	DESCRIPTION	DETECTION LIMIT	UPPER LIMIT	CAD
AQ200-Hg	Hg – ICP-MS	0.01 ppm	50 ppm	\$12.50
CV400	Trace Hg – CVAA	0.01 ppm	100 ppm	\$10.00

WATER AND GENERAL CHEMISTRY

CODE	DESCRIPTION	DETECTION LIMIT	UPPER LIMIT	CAD
GC002	pH and conductivity on solids			\$18.00
GC002-COND	Conductivity of solids	3 μS/cm		\$13.45
GC002-pH	pH of solids	0.1 units		\$10.65
GC901	Moisture (105°C)			\$8.40
GC902	Lattice water			\$28.95
TG001	LOI	0.1 %	100 %	\$9.80


OTHER TRACE AND ORE GRADE ANALYSES

CODE	DESCRIPTION	DETECTIO	N LIMIT UPPE	R LIMIT	CAD
BR405	Sb – high grade assay, AAS	0.01	% 10	Э %	\$14.60
00004	Ge or Ga by ICP-MS	1	ppm 200) ppm	\$22.70
GC204	Second element				+ \$4.15
00204	Ge or Ga by ICP-ES	0.01 (% 10	O %	\$18.65
GC304	Second element				+ \$4.15
GC320	Ba by Na ₂ CO ₃ /K ₂ CO ₃ fusion, ICP-ES	0.01	% 3	O %	\$29.25
GC410	NiS	0.001	% 10	O %	\$28.95
GC519	SiO ₂ gravimetric	0.02	% 10	O %	\$27.85
GC520	Ba by Na ₂ CO ₃ /K ₂ CO ₃ fusion, gravity	0.1	% 10	Э %	\$29.25
GC806	FeO	0.2	% 10	Э %	\$24.65
GC816	Zn Titration	1.00	% 10	Э %	\$33.00
GC817	Pb Titration	2.00	% 10	Э %	\$34.60
GC818	Fe Titration	1.00	% 10	Э %	\$36.20
GC819	Mn Titration	1.00	% 10	Э %	\$33.00
GC820	Cu Titration	1.00	% 10	Э %	\$42.45
GC840	F – Trace Level	10	ppm 1000) ppm	\$18.15
GC841	F – Ore Grade	0.01	% 1	5 %	\$19.20
GC641	Surcharge samples > 15%	10 9	% 5	Э %	\$19.20
GC923	Pb or Zn Oxide	0.01	% 1	Э %	\$26.50
GC923	Extra element				+ \$4.15
PF100	В	3	ppm 200) ppm	\$11.70

Requires at least 5 g per sample.

OTHER CHARGES

EN001-MA	Environmental disposal charge - Multi-acid waste disposal	\$0.25
----------	---	--------

Aqua Regia

Using a modified aqua regia digestion (1:1:1 HNO3:HCl:H2O), a partial digest can provide valuable information regarding mobile and easily soluble species, such as sulphides. Economically priced ICP-ES (AQ300) or ICP-ES/MS (AQ200) analyses are designed to complement your exploration project. Sample splits of 0.5 g, 15 g or 30 g are leached in modified aqua regia. Select a larger split size for more representative Au analysis. Refractory and graphitic samples can limit Au solubility.

CODE	ELEM		MIT	UPP LIM	CAD	
AQ300	Aqua Regi	a ICP-ES	, 33 ele	ements, (0.5 g	\$10.20
	Ag	0.3	ppm	100	ppm	
	Al	0.01	%	10	%	_
	As	2	ppm	10000	ppm	_
	В	20	ppm	2000	ppm	_
	Ва	1	ppm	10000	ppm	_
	Bi	3	ppm	2000	ppm	
	Са	0.01	%	40	%	
	Cd	0.5	ppm	2000	ppm	_
	Co	1	ppm	2000	ppm	
	Cr	1	ppm	10000	ppm	
	Cu	1	ppm	10000	ppm	_
	Fe	0.01	%	40	%	
	Ga	5	ppm	1000	ppm	
	Hg	1	ppm	50	ppm	
	K	0.01	%	10	%	
	La	1	ppm	10000	ppm	-
	Mg	0.01	%	30	%	-
	Mn	2	ppm	10000	ppm	-
	Мо	1	ppm	2000	ppm	-
	Na	0.01	%	5	%	
	Ni	1	ppm	10000	ppm	-
	Р	0.001	%	5	%	
	Pb	3	ppm	10000	ppm	-
	S	0.05	%	10	%	-
	Sb	3	ppm	2000	ppm	-
	Sc	5	ppm	100	ppm	=
	Sr	1	ppm	2000	ppm	-
	Th	2	ppm	2000	ppm	
	Ti	0.001		5	%	-
	TI	5	ppm	1000	ppm	-
	V	1	ppm	10000	ppm	-
	W		ppm	100	ppm	-
	Zn	1	ppm	10000	ppm	-
+ U	Aqua Regi	a ICP-ES	, add-c	on		\$0.60
	U		ppm	2000	ppm	

	W	2 ppm	100	ppm		Te
	Zn	1 ppm	10000	ppm		Th
U	Aqua Regia ICP-	ES, add-or	\$0.60	Ti		
	U	8 ppm	2000	ppm		TI
	gia digestion is con		V**			
Solubility Present.		will be limit	ed by m		species	W
						7

CODE	ELEM	DETE(N UPF LIM		CAD
AQ200	Aqua Re	gia ICP-ES	/MS,	36 element	s, 0.5 g	\$17.00
AQ201	Aqua Reg	gia ICP-ES	/MS,	36 element	s, 15 g	\$21.75
AQ202	Aqua Reg	gia ICP-ES	/MS,	36 element	s, 30 g	\$26.50
	Ag	0.1	ppm	100	ppm	
	Al	0.01	%	10	%	_
	As	0.5	ppm	10000	ppm	_
	Au	0.5	ppb	100000	ppb	_
	В*	20	ppm	2000	ppm	_
	Ва	1	ppm	10000	ppm	_
	Ві	0.1	ppm	2000	ppm	_
	Са	0.01	%	40	%	_
	Cd	0.1	ppm	2000	ppm	_
	Со	0.1	ppm	2000	ppm	_
	Cr	1	ppm	10000	ppm	_
	Cu	0.1	ppm	10000	ppm	_
	Fe	0.01	%	40	%	_
	Ga	1	ppm	1000	ppm	_
	Hg	0.01	ppm	50	ppm	_
	K	0.01	%	10	%	_
	La	1	ppm	10000	ppm	_
	Mg	0.01	%	30	%	_
	Mn	1	ppm	10000	ppm	_
	Мо	0.1	ppm	2000	ppm	
	Na	0.001	%	5	%	_
	Ni	0.1	ppm	10000	ppm	_
	Р	0.001	%	5	%	_
	Pb	0.1	ppm	10000	ppm	_
	S	0.05	%	10	%	_
	Sb	0.1	ppm	2000	ppm	
	Sc	0.1	ppm	100	ppm	
	Se	0.5	ppm	100	ppm	_
	Sr	1	ppm	2000	ppm	_
	Те	0.2	ppm	1000	ppm	_
	Th	0.1	ppm	2000	ppm	-
	Ti	0.001	%	5	%	-
	TI	0.1	ppm	1000	ppm	-
	V**	1	ppm	10000	ppm	
	W	0.1	ppm	100	ppm	-
	Zn	1	ppm	10000	ppm	-
+ U	Aqua Reg	gia ICP-ES	, add	-on		\$0.60
	U	0.1	ppm	2000	ppm	

^{*}Detection limit = 1 ppm for 15/30 g analysis.

^{**}Soils = 2 ppm.

ULTRA-TRACE BY ICP-MS

ICP-MS analysis of a 0.5, 15 or 30 g sample after modified aqua regia digestion (1:1:1 HNO $_3$:HCl:H $_2$ O) for low to ultra-low determination on soils, sediments and lean rocks. Larger splits (15 or 30 g) give a more representative analysis of elements subject to nugget effect (e.g., Au). Gold solubility can be limited in refractory and graphitic samples. The lead isotope method adds 204 Pb, 206 Pb, 208 Pb. This data is suitable for geochemical exploration of U and other commodities where gross differences in non-radiogenic to radiogenic Pb ratios are of benefit.

	ELEM		CTION MIT	UPPER LIMIT	CAD	CODE	ELEM	DETECTION LIMIT	UPPER LIMIT	CAD
AQ250	Aqua Reg	ia ICP-ES	s/MS, 3	37 elements, 0.5 g	\$21.00	AQ250-EXT	Extend	ed Pkg, 53 elei	ments, 0.5 g	\$24.75
AQ251	Aqua Reg	ia ICP-ES	s/MS, 3	37 elements, 15 g	\$25.75	AQ251-EXT	Extend	ed Pkg, 53 elei	ments, 15 g	\$29.50
AQ252	Aqua Reg	ia ICP-ES	s/MS, 3	37 elements, 30 g	\$30.50	AQ252-EXT	Extend	ed Pkg, 53 elei	nents, 30 g	\$34.25
	Ag	2	ppb	100000 ppb			Ве	0.1 ppm	1000 ppm	
	Al	0.01	%	10 %	_		Се	0.1 ppm	2000 ppm	-
	As	0.1	ppm	10000 ppm	_		Cs	0.02 ppm	2000 ppm	_
	Au	0.2	ppb	100000 ppb			Ge	0.1 ppm	100 ppm	_
	B*	20	ppm	2000 ppm	_		Hf	0.02 ppm	1000 ppm	_
	Ва	0.5	ppm	10000 ppm			In	0.02 ppm	1000 ppm	_
	Bi	0.02	ppm	2000 ppm	_		Li	0.1 ppm	2000 ppm	_
	Са	0.01	%	40 %			Nb	0.02 ppm	2000 ppm	
	Cd	0.01	ppm	2000 ppm			Pd	10 ppb	100000 ppb	
	Со	0.1	ppm	2000 ppm	_		Pt	2 ppb	100000 ppb	
	Cr	0.5	ppm	10000 ppm	_		Rb	0.1 ppm	2000 ppm	
	Cu	0.01	ppm	10000 ppm			Re	1 ppb	10000 ppb	
	Fe	0.01	%	40 %	_		Sn	0.1 ppm	100 ppm	
	Ga	0.1	ppm	1000 ppm	_		Та	0.05 ppm	2000 ppm	_
	Hg	5	ppb	50000 ppb	_		Υ	0.01 ppm	2000 ppm	_
	K	0.01	%	10 %	_		Zr	0.1 ppm	2000 ppm	_
	La	0.5	ppm	10000 ppm						
	Mg	0.01	%	30 %						
	Mg Mn		% ppm	30 % 10000 ppm	_	CODE	ELEM	DETECTION	UPPER	CAD
		1				CODE	ELEM	LIMIT	UPPER LIMIT	CAD
	Mn	1	ppm	10000 ppm		CODE + REE				CAD \$6.95
	Mn Mo	0.01 0.001	ppm	10000 ppm 2000 ppm	- - -			LIMIT		
	Mn Mo Na	0.01 0.001	ppm ppm % ppm	10000 ppm 2000 ppm 5 %	-		Rare Ea	LIMIT orth, add-on 0.02 ppm 0.02 ppm	2000 ppm 2000 ppm	
	Mn Mo Na Ni	0.01 0.001 0.1 0.001	ppm ppm % ppm	10000 ppm 2000 ppm 5 % 10000 ppm	-		Dy Er Eu	LIMIT orth, add-on 0.02 ppm 0.02 ppm 0.02 ppm	2000 ppm 2000 ppm 2000 ppm	
	Mn Mo Na Ni P	0.01 0.001 0.1 0.001	ppm ppm % ppm % ppm	10000 ppm 2000 ppm 5 % 10000 ppm 5 %			Pare Ear Dy Er Eu Gd	0.02 ppm 0.02 ppm 0.02 ppm 0.02 ppm 0.02 ppm	2000 ppm 2000 ppm 2000 ppm 2000 ppm 2000 ppm	
	Mn Mo Na Ni P	1 0.01 0.001 0.1 0.001 0.01	ppm ppm % ppm % ppm %	10000 ppm 2000 ppm 5 % 10000 ppm 5 % 10000 ppm 10 %			Rare Ea Dy Er Eu Gd	0.02 ppm 0.02 ppm 0.02 ppm 0.02 ppm 0.02 ppm 0.02 ppm 0.02 ppm	2000 ppm 2000 ppm 2000 ppm 2000 ppm 2000 ppm 2000 ppm	
	Mn Mo Na Ni P	1 0.01 0.001 0.1 0.001 0.01 0.02	ppm ppm % ppm % ppm	10000 ppm 2000 ppm 5 % 10000 ppm 5 % 10000 ppm			Rare Ea Dy Er Eu Gd Ho Lu	0.02 ppm 0.02 ppm 0.02 ppm 0.02 ppm 0.02 ppm 0.02 ppm 0.02 ppm 0.02 ppm	2000 ppm 2000 ppm 2000 ppm 2000 ppm 2000 ppm 2000 ppm 2000 ppm	
	Mn Mo Na Ni P Pb S Sb	1 0.01 0.001 0.1 0.001 0.01 0.02 0.02	ppm ppm % ppm % ppm %	10000 ppm 2000 ppm 5 % 10000 ppm 5 % 10000 ppm 10 % 2000 ppm			Pare Each Dy Er Eu Gd Ho Lu Nd	0.02 ppm 0.02 ppm 0.02 ppm 0.02 ppm 0.02 ppm 0.02 ppm 0.02 ppm 0.02 ppm 0.02 ppm	2000 ppm	
	Mn Mo Na Ni P Pb S Sb Sc	1 0.01 0.001 0.1 0.001 0.02 0.02 0.1	ppm ppm % ppm % ppm % ppm ppm	10000 ppm 2000 ppm 5 % 10000 ppm 5 % 10000 ppm 10 % 2000 ppm 100 ppm			Pare Each Dy Er Eu Gd Ho Lu Nd Pr	0.02 ppm 0.02 ppm 0.02 ppm 0.02 ppm 0.02 ppm 0.02 ppm 0.02 ppm 0.02 ppm 0.02 ppm 0.02 ppm	2000 ppm	
	Mn Mo Na Ni P Pb S Sb Sc Se	1 0.01 0.001 0.1 0.001 0.01 0.02 0.02 0.	ppm ppm % ppm % ppm % ppm ppm	10000 ppm 2000 ppm 5 % 10000 ppm 5 % 10000 ppm 10 % 2000 ppm 100 ppm 100 ppm 2000 ppm			Rare Ea Dy Er Eu Gd Ho Lu Nd Pr	LIMIT 0.02 ppm	2000 ppm	
	Mn Mo Na Ni P Pb S Sb Sc Sc Se Sr	1 0.01 0.001 0.001 0.001 0.02 0.02 0.1 0.5	ppm ppm % ppm % ppm ppm ppm ppm ppm ppm	10000 ppm 2000 ppm 5 % 10000 ppm 5 % 10000 ppm 10 % 2000 ppm 100 ppm 100 ppm			Pare Each Dy Er Eu Gd Ho Lu Nd Pr Sm Tb	0.02 ppm 0.02 ppm	2000 ppm	
	Mn Mo Na Ni P Pb S Sb Sc Se Sr Te	1 0.01 0.001 0.001 0.001 0.02 0.02 0.1 0.5	ppm ppm % ppm % ppm ppm ppm ppm ppm ppm	10000 ppm 2000 ppm 5 % 10000 ppm 5 % 10000 ppm 10 % 2000 ppm 100 ppm 100 ppm 2000 ppm			Rare Ea Dy Er Eu Gd Ho Lu Nd Pr Sm Tb	0.02 ppm 0.02 ppm	2000 ppm	
	Mn Mo Na Ni P Pb S Sb Sc Se Sr Te Th	1 0.01 0.001 0.01 0.01 0.02 0.02 0.1 0.5 0.02 0.1	ppm ppm % ppm % ppm ppm ppm ppm ppm ppm	10000 ppm 2000 ppm 5 % 10000 ppm 5 % 10000 ppm 10 % 2000 ppm 100 ppm 100 ppm 2000 ppm 1000 ppm		+ REE	Rare Ea Dy Er Eu Gd Ho Lu Nd Pr Sm Tb Tm Yb	UMIT 1rth, add-on 0.02 ppm 0.02 ppm	2000 ppm	\$6.95
	Mn Mo Na Ni P Pb S Sb Sc Se Sr Te Th Ti	1 0.01 0.001 0.001 0.02 0.02 0.1 0.5 0.02 0.1 0.001	ppm ppm % ppm % ppm ppm ppm ppm ppm ppm	10000 ppm 2000 ppm 5 % 10000 ppm 5 % 10000 ppm 10 % 2000 ppm 100 ppm 2000 ppm 1000 ppm 2000 ppm 2000 ppm			Rare Ea Dy Er Eu Gd Ho Lu Nd Pr Sm Tb Tm Yb	0.02 ppm	2000 ppm	\$6.95
	Mn Mo Na Ni P Pb S Sb Sc Se Tr Tr Ti Ti	1 0.01 0.001 0.01 0.02 0.02 0.1 0.5 0.02 0.1 0.001 0.001	ppm ppm % ppm % ppm % ppm ppm ppm ppm pp	10000 ppm 2000 ppm 5 % 10000 ppm 5 % 10000 ppm 10 % 2000 ppm 100 ppm 100 ppm 2000 ppm 2000 ppm 5 % 1000 ppm		+ REE	Rare Ea Dy Er Eu Gd Ho Lu Nd Pr Sm Tb Tm Yb	UMIT 1rth, add-on 0.02 ppm 0.02 ppm	2000 ppm	\$6.95
	Mn Mo Na Ni P Pb S Sb Sc Se Sr Te Th Ti U	1 0.01 0.001 0.001 0.02 0.02 0.1 0.02 0.1 0.001 0.002	ppm ppm % ppm % ppm ppm ppm ppm ppm ppm	10000 ppm 2000 ppm 5 % 10000 ppm 5 % 10000 ppm 10 % 2000 ppm 100 ppm 100 ppm 2000 ppm 2000 ppm 1000 ppm 2000 ppm 2000 ppm 2000 ppm 2000 ppm 2000 ppm		+ REE	Rare Ea Dy Er Eu Gd Ho Lu Nd Pr Sm Tb Tm Yb	UMIT 1rth, add-on 0.02 ppm 0.02 ppm	2000 ppm	
	Mn Mo Na Ni P Pb S Sb Sc Se Te Th Ti U V	1 0.01 0.001 0.001 0.01 0.02 0.02 0.1 0.5 0.02 0.1 0.001 0.002	ppm ppm % ppm % ppm ppm ppm ppm ppm ppm	10000 ppm 2000 ppm 5 % 10000 ppm 5 % 10000 ppm 10 % 2000 ppm 100 ppm 2000 ppm 2000 ppm 2000 ppm 1000 ppm 2000 ppm 2000 ppm 2000 ppm 2000 ppm 2000 ppm		+ REE	Rare Ea Dy Er Eu Gd Ho Lu Nd Pr Sm Tb Tm Yb	UMIT 1rth, add-on 0.02 ppm 0.02 ppm	2000 ppm	\$6.95

^{*}Detection limit = 1 ppm for 15/30 g analysis.

Multi-Acid

Multi-acid digestion packages are capable of dissolving most minerals. We offer a choice of ICP-ES (MA300), ICP-ES/MS (MA200) or Ultra-trace ICP-ES/MS (MA250) analysis to give near total values for most elements. A 0.25 g split is heated in HNO_3 , $HCIO_4$ and HF to fuming and taken to dryness. The residue is dissolved in HCI.

CODE	ELEM		CTION MIT	UPP LIM		CAD	CODE	ELEM		CTION MIT	UPP LIM		CAD
MA300	Multi-A 35 elem					\$14.35	MA200		cid ICP- ents, 0.2				\$20.25
	Ag	0.5	ppm	200	ppm			Ag	0.1	ppm	200	ppm	
	Al	0.01	%	20	%			Al	0.01	%	20	%	
	As	5	ppm	10000	ppm			As	1	ppm	10000	ppm	
	Ва	1	ppm	10000	ppm			Ва	1	ppm	10000	ppm	
	Ве	1	ppm	1000	ppm			Ве	1	ppm	1000	ppm	
	Bi	5	ppm	4000	ppm			Bi	0.1	ppm	4000	ppm	
	Ca	0.01	%	40	%			Ca	0.01	%	40	%	
	Cd	0.4	ppm	4000	ppm			Cd	0.1	ppm	4000	ppm	
	Со	2	ppm	4000	ppm			Се	1	ppm	2000	ppm	
	Cr	2	ppm	10000	ppm			Со	0.2	ppm	4000	ppm	
	Cu		ppm	10000	ppm			Cr	1	ppm	10000	ppm	
	Fe	0.01		60	%			Cu	0.1	ppm	10000	ppm	
	K	0.01	%	10	%			Fe	0.01	%	60	%	
	La		ppm	2000	ppm			Hf	0.1	ppm	1000	ppm	
	Mg	0.01	%	30				<u>In</u>		ppm	1000	ppm	
	Mn	5	ppm	10000	• •			K	0.01	%	10	%	
	Мо		ppm	4000	ppm			La	0.1	ppm	2000	ppm	
	Na	0.01	%	10				Li		ppm	2000		
	Nb		ppm	2000				Mg	0.01	%	30		
	Ni		ppm	10000				Mn		ppm	10000		
	Р	0.002			%			Мо		ppm	4000		
	Pb		ppm	10000				Na	0.001		10		
	S	0.1		10				Nb		ppm	2000		
	Sb		ppm	4000				Ni		ppm	10000	• •	
	Sc		ppm		ppm			P	0.001			%	
	Sn		ppm	2000				Pb		ppm	10000		
	Sr		ppm	10000				Rb		ppm	2000		
	Th		ppm	4000				Re	0.005			ppm	
		0.01		10				S	0.1		10		
	U		ppm	4000				Sb		ppm	4000		
	V		ppm	10000				Sc		ppm		ppm	
	W		ppm		ppm			Se		ppm	1000		
	Y 7-		ppm	2000				Sn		ppm	2000		
	Zn		ppm	10000				Sr		ppm	10000		
	Zr		ppm	2000		•		Ta		ppm	2000		
AQ200-Hg	Aqua R	egia ICF	P-ES/M	S, Add-c	n	\$12.50		Te Th		ppm	1000 4000	• • • • • • • • • • • • • • • • • • • •	
	Hg	0.01	ppm	50	ppm			Ti	0.001		10		
Digestion is	partial for	some C	r and B	a mineral	s and o	xides of		TI		ppm	10000		
Al, Fe, Mn, Si				during fur	ning ma	ay result		U		ppm	4000		
in loss of As,	3, se and	30.						V		ppm	10000		
								W		ppm		ppm	
								Υ		ppm	2000		
								Zn		ppm	10000		
								Zr	0.1	ppm	2000	ppm	

0.01 ppm

AQ200-Hg

Hg

50 ppm

\$12.50

ULTRA-TRACE BY ICP-ES/MS

Ag	\$27 200000 ppb
Al	200000 pph
As 0.2 ppm Ba 1 ppm Be 1 ppm Bi 0.04 ppm Ca 0.01 % Cd 0.02 ppm Ce 0.02 ppm Co 0.2 ppm Cr 1 ppm Cs 0.1 ppm Cu 0.1 ppm Er 0.1 ppm Er 0.1 ppm Eu 0.1 ppm Fe 0.01 % Ga 0.02 ppm Hf 0.02 ppm Ho 0.1 ppm In 0.01 ppm K 0.01 % La 0.1 ppm Li 0.1 ppm Mg 0.01 % Mg 0.01 % Mg 0.01 % Mn 1 ppm Mo 0.05 ppm Na 0.001 % Nb 0.04 ppm Ni 0.1 ppm Re 0.002 ppm Sc 0.1 ppm	Zeecee pps
Ba 1 ppm Be 1 ppm Bi 0.04 ppm Ca 0.01 % Cd 0.02 ppm Ce 0.02 ppm Co 0.2 ppm Cr 1 ppm Cs 0.1 ppm Cu 0.1 ppm Er 0.1 ppm Er 0.1 ppm Fe 0.01 % Ga 0.02 ppm Hf 0.02 ppm Ho 0.1 ppm In 0.01 ppm K 0.01 % La 0.1 ppm Li 0.1 ppm Mg 0.01 % Mg 0.01 % Mg 0.01 % Mn 1 ppm Mo 0.05 ppm Na 0.001 % Nb 0.04 ppm Nd 0.1 ppm Nd 0.1 ppm Nd 0.1 ppm Re 0.02 ppm Se 0.04 ppm	20 %
Be 1 ppm Bi 0.04 ppm Ca 0.01 % Cd 0.02 ppm Ce 0.02 ppm Co 0.2 ppm Cr 1 ppm Cs 0.1 ppm Dy 0.1 ppm Er 0.1 ppm Fe 0.01 % Ga 0.02 ppm Gd 0.1 ppm Hf 0.02 ppm K 0.01 ppm K 0.01 ppm K 0.01 ppm K 0.01 ppm Mg 0.01 ppm Mg 0.01 ppm Mg 0.01 ppm Mo 0.05 ppm Na 0.001 % Nb 0.04 ppm Nd 0.1 ppm Nd 0.1 ppm Nd 0.1 ppm Nd 0.1 ppm Nd 0.02 ppm Re 0.002 ppm Se 0.3 ppm Re 0.002 ppm <td>10000 ppm</td>	10000 ppm
Bi	10000 ppm
Ca 0.01 % Cd 0.02 ppm Ce 0.02 ppm Co 0.2 ppm Cr 1 ppm Cs 0.1 ppm Cu 0.1 ppm Dy 0.1 ppm Er 0.1 ppm Eu 0.1 ppm Fe 0.01 % Ga 0.02 ppm Ho 0.1 ppm Ho 0.1 ppm In 0.01 ppm K 0.01 ppm La 0.1 ppm Li 0.1 ppm Mg 0.01 % Mn 1 ppm Mo 0.05 ppm Na 0.001 % Nb 0.04 ppm Nd 0.05 ppm Na 0.001 % Nb 0.04 ppm Ni 0.1 ppm P 0.001 % Pb 0.02 ppm Re 0.002 ppm Sc 0.1 ppm Se 0.3 ppm	1000 ppm
Cd 0.02 ppm Ce 0.02 ppm Co 0.2 ppm Cr 1 ppm Cs 0.1 ppm Cu 0.1 ppm Dy 0.1 ppm Er 0.1 ppm Fe 0.01 % Ga 0.02 ppm Hf 0.02 ppm Ho 0.1 ppm In 0.01 ppm K 0.01 % La 0.1 ppm Li 0.1 ppm Mg 0.01 % Mn 1 ppm Mo 0.05 ppm Na 0.001 % Nb 0.04 ppm Nd 0.1 ppm Ni 0.1 ppm P 0.001 % Re 0.02 ppm Re 0.02 ppm Sc 0.1 ppm Re 0.02 ppm Sc 0.1 ppm Se 0.3 ppm Sm 0.1 ppm Te 0.05 ppm	4000 ppm
Ce 0.02 ppm Co 0.2 ppm Cr 1 ppm Cs 0.1 ppm Cu 0.1 ppm Dy 0.1 ppm Er 0.1 ppm Eu 0.1 ppm Fe 0.01 % Ga 0.02 ppm Hf 0.02 ppm Ho 0.1 ppm In 0.01 ppm K 0.01 % La 0.1 ppm Li 0.1 ppm Mg 0.01 % Mn 1 ppm Mo 0.05 ppm Na 0.001 ppm Nb 0.04 ppm Nd 0.1 ppm Nd 0.1 ppm Nd 0.1 ppm Na 0.001 % Nb 0.04 ppm Nd 0.1 ppm Re 0.02 ppm P 0.001 % Pb 0.02 ppm Sc 0.04 ppm Se 0.3 ppm	40 %
Co 0.2 ppm Cr 1 ppm Cs 0.1 ppm Dy 0.1 ppm Er 0.1 ppm Eu 0.1 ppm Fe 0.01 % Ga 0.02 ppm Hf 0.02 ppm Ho 0.1 ppm In 0.01 ppm K 0.01 ppm La 0.1 ppm Li 0.1 ppm Mg 0.01 % Mn 1 ppm Mo 0.05 ppm Na 0.001 % Nb 0.04 ppm Nd 0.1 ppm Nd 0.1 ppm Nd 0.1 ppm Nd 0.02 ppm Nd 0.03 ppm Na 0.001 % Nb 0.04 ppm Nc 0.02 ppm P 0.001 % Pb 0.02 ppm S 0.04 ppm Re 0.02 ppm Se 0.3 ppm	4000 ppm
Cr 1 ppm Cs 0.1 ppm Cu 0.1 ppm Dy 0.1 ppm Er 0.1 ppm Fe 0.01 % Ga 0.02 ppm Gd 0.1 ppm Hf 0.02 ppm Ho 0.1 ppm In 0.01 ppm K 0.01 % La 0.1 ppm Li 0.1 ppm Mg 0.01 % Mm 1 ppm Mo 0.05 ppm Na 0.001 % Nb 0.04 ppm Nd 0.1 ppm Nd 0.1 ppm Nd 0.1 ppm Nd 0.01 ppm Nd 0.02 ppm Nd 0.01 ppm Nd 0.01 ppm Nd 0.01 ppm Nd 0.02 ppm P 0.001 % Pb 0.02 ppm Re 0.02 ppm Sc 0.04 %	2000 ppm
Cs 0.1 ppm Cu 0.1 ppm Dy 0.1 ppm Er 0.1 ppm Eu 0.1 ppm Fe 0.01 % Ga 0.02 ppm Gd 0.1 ppm Hf 0.02 ppm Ho 0.1 ppm In 0.01 ppm K 0.01 ppm La 0.1 ppm Li 0.1 ppm Mg 0.01 % Mn 1 ppm Mo 0.05 ppm Na 0.001 % Nb 0.04 ppm Nd 0.1 ppm Ni 0.1 ppm Pb 0.02 ppm Re 0.02 ppm Re 0.02 ppm Sc 0.1 ppm Re 0.02 ppm Sc 0.1 ppm Sc 0.1 ppm Sm 0.1 ppm Ta 0.1 ppm Tb 0.1 ppm Ti 0.001 %	4000 ppm
Cu 0.1 ppm Dy 0.1 ppm Er 0.1 ppm Eu 0.1 ppm Fe 0.01 % Ga 0.02 ppm Gd 0.1 ppm Hf 0.02 ppm Ho 0.1 ppm In 0.01 ppm K 0.01 % La 0.1 ppm Li 0.1 ppm Mg 0.01 % Mn 1 ppm Mo 0.05 ppm Na 0.001 % Nb 0.04 ppm Nd 0.1 ppm Ni 0.1 ppm P 0.001 % Nb 0.04 ppm Ni 0.1 ppm P 0.001 % Pb 0.02 ppm Re 0.002 ppm Sc 0.1 ppm Re 0.002 ppm Sc 0.1 ppm Sc 0.1 ppm Sm 0.1 ppm Tb 0.1 ppm	10000 ppm
Dy 0.1 ppm Er 0.1 ppm Eu 0.1 ppm Fe 0.01 % Ga 0.02 ppm Hf 0.02 ppm Ho 0.1 ppm In 0.01 ppm K 0.01 % La 0.1 ppm Li 0.1 ppm Mg 0.01 % Mn 1 ppm Mo 0.05 ppm Na 0.001 % Nb 0.04 ppm Nd 0.1 ppm P 0.001 % Nb 0.02 ppm Pr 0.1 ppm Pb 0.02 ppm Rc 0.002 ppm S 0.04 % Sb 0.02 ppm Sc 0.1 ppm Sc 0.3 ppm Sm 0.1 ppm Sc 0.3 ppm Sm 0.1 ppm Te 0.05 ppm Th 0.1 ppm Ti 0.05 ppm	2000 ppm
Er 0.1 ppm Eu 0.1 ppm Fe 0.01 % Ga 0.02 ppm Hf 0.02 ppm Hh 0.01 ppm In 0.01 ppm K 0.01 ppm Lu 0.1 ppm Lu 0.1 ppm Mg 0.01 % Mn 1 ppm Mo 0.05 ppm Na 0.001 % Nb 0.04 ppm Ni 0.1 ppm Ni 0.1 ppm P 0.001 % Pb 0.02 ppm Pr 0.1 ppm Re 0.02 ppm Re 0.002 ppm Sc 0.1 ppm Re 0.002 ppm Sc 0.1 ppm	10000 ppm
Eu 0.1 ppm Fe 0.01 % Ga 0.02 ppm Gd 0.1 ppm Hf 0.02 ppm Ho 0.1 ppm In 0.01 ppm K 0.01 ppm La 0.1 ppm Li 0.1 ppm Mg 0.01 % Mn 1 ppm Mo 0.05 ppm Na 0.001 % Nb 0.04 ppm Nd 0.1 ppm Ni 0.1 ppm P 0.001 % Pb 0.02 ppm Pr 0.1 ppm Re 0.002 ppm S 0.04 % Sb 0.02 ppm Sc 0.1 ppm Se 0.3 ppm Sm 0.1 ppm Ta 0.1 ppm Ta 0.1 ppm Te 0.05 ppm Th 0.1 ppm Ti 0.05 ppm Tm 0.1 ppm	2000 ppm
Fe 0.01 % Ga 0.02 ppm Gd 0.1 ppm Hf 0.02 ppm Ho 0.1 ppm In 0.01 ppm K 0.01 % La 0.1 ppm Li 0.1 ppm Mg 0.01 % Mn 1 ppm Mo 0.05 ppm Na 0.001 % Nb 0.04 ppm Nd 0.1 ppm Ni 0.1 ppm P 0.001 % Pb 0.02 ppm Re 0.002 ppm S 0.04 % Sb 0.02 ppm Sc 0.1 ppm Sc 0.3 ppm Sm 0.1 ppm Sa 0.1 ppm Ta 0.1 ppm Tb 0.1 ppm Te 0.05 ppm Th 0.1 ppm Ti 0.001 % Tl 0.1 ppm V 2 ppm <td>2000 ppm</td>	2000 ppm
Ga 0.02 ppm Gd 0.1 ppm Hf 0.02 ppm Ho 0.1 ppm In 0.01 ppm K 0.01 % La 0.1 ppm Li 0.1 ppm Mg 0.01 % Mn 1 ppm Mo 0.05 ppm Na 0.001 % Nb 0.04 ppm Nd 0.1 ppm Ni 0.1 ppm P 0.001 % Pb 0.02 ppm Pr 0.1 ppm Re 0.02 ppm S 0.04 % Sb 0.02 ppm Sc 0.1 ppm Se 0.3 ppm Sm 0.1 ppm Sn 0.1 ppm Ta 0.1 ppm Ta 0.1 ppm Ta 0.1 ppm Ta 0.1 ppm Th 0.05 ppm Th 0.05 ppm Th 0.1 ppm	2000 ppm
Gd 0.1 ppm Hf 0.02 ppm Ho 0.1 ppm In 0.01 ppm K 0.01 % La 0.1 ppm Li 0.1 ppm Mg 0.01 % Mn 1 ppm Mo 0.05 ppm Na 0.001 % Nb 0.04 ppm Ni 0.1 ppm P 0.001 % Pb 0.02 ppm Pr 0.1 ppm Re 0.02 ppm S 0.04 % Sb 0.02 ppm Sc 0.1 ppm Se 0.3 ppm Sm 0.1 ppm Sn 0.1 ppm Ta 0.1 ppm Tb 0.1 ppm Te 0.05 ppm Th 0.1 ppm Ti 0.05 ppm Tm 0.1 ppm V 2 ppm W 0.1 ppm Y 0.1 ppm	60 %
Gd 0.1 ppm Hf 0.02 ppm Ho 0.1 ppm In 0.01 ppm K 0.01 % La 0.1 ppm Li 0.1 ppm Mg 0.01 % Mn 1 ppm Mo 0.05 ppm Na 0.001 % Nb 0.04 ppm Nd 0.1 ppm Ni 0.1 ppm P 0.001 % Pb 0.02 ppm Pr 0.1 ppm Re 0.02 ppm S 0.04 % Sb 0.02 ppm Sc 0.1 ppm Se 0.3 ppm Sm 0.1 ppm Sn 0.1 ppm Ta 0.1 ppm Tb 0.1 ppm Tf 0.05 ppm Tm 0.1 ppm V 2 ppm W 0.1 ppm Y 0.1 ppm Y 0.1 ppm	100 ppm
Hf	2000 ppm
In	1000 ppm
In	2000 ppm
K 0.01 % La 0.1 ppm Li 0.1 ppm Mg 0.01 % Mn 1 ppm Mo 0.05 ppm Na 0.001 % Nb 0.04 ppm Nd 0.1 ppm Ni 0.1 ppm P 0.001 % Pb 0.02 ppm Pr 0.1 ppm Re 0.02 ppm S 0.04 % Sb 0.02 ppm Sc 0.1 ppm Se 0.3 ppm Sm 0.1 ppm Ta 0.1 ppm Tb 0.1 ppm Te 0.05 ppm Th 0.1 ppm Ti 0.05 ppm Tm 0.1 ppm V 2 ppm W 0.1 ppm Yb 0.1 ppm Zn 0.2 ppm	1000 ppm
Li 0.1 ppm Mg 0.01 % Mn 1 ppm Mo 0.05 ppm Na 0.001 % Nb 0.04 ppm Nd 0.1 ppm Ni 0.1 ppm P 0.02 ppm Pr 0.1 ppm Re 0.002 ppm S 0.04 % Sb 0.02 ppm Sc 0.1 ppm Se 0.3 ppm Sm 0.1 ppm Sr 1 ppm Ta 0.1 ppm Tb 0.1 ppm Ti 0.05 ppm Tm 0.1 ppm V 2 ppm W 0.1 ppm Yb 0.1 ppm Zn 0.2 ppm	10 %
Li 0.1 ppm Mg 0.01 % Mn 1 ppm Mo 0.05 ppm Na 0.001 % Nb 0.04 ppm Nd 0.1 ppm Ni 0.1 ppm P 0.02 ppm Pr 0.1 ppm Re 0.002 ppm S 0.04 % Sb 0.02 ppm Sc 0.1 ppm Se 0.3 ppm Sm 0.1 ppm Sr 1 ppm Ta 0.1 ppm Tb 0.1 ppm Ti 0.05 ppm Tm 0.1 ppm V 2 ppm W 0.1 ppm Yb 0.1 ppm Zn 0.2 ppm	2000 ppm
Lu 0.1 ppm Mg 0.01 % Mn 1 ppm Mo 0.05 ppm Na 0.001 % Nb 0.04 ppm Nd 0.1 ppm Ni 0.1 ppm P 0.02 ppm Pr 0.1 ppm Re 0.002 ppm S 0.04 % Sb 0.02 ppm Sc 0.1 ppm Se 0.3 ppm Sm 0.1 ppm Ta 0.1 ppm Tb 0.1 ppm Tc 0.05 ppm Th 0.1 ppm Ti 0.05 ppm Tm 0.1 ppm V 2 ppm W 0.1 ppm Yb 0.1 ppm Zn 0.2 ppm	2000 ppm
Mg 0.01 % Mn 1 ppm Mo 0.05 ppm Na 0.001 % Nb 0.04 ppm Nd 0.1 ppm Ni 0.1 ppm Pb 0.002 ppm Pr 0.1 ppm Re 0.002 ppm S 0.04 % Sb 0.02 ppm Sc 0.1 ppm Se 0.3 ppm Sm 0.1 ppm Sr 1 ppm Ta 0.1 ppm Tb 0.1 ppm Ti 0.05 ppm Tm 0.1 ppm V 2 ppm W 0.1 ppm Y 0.1 ppm Yb 0.1 ppm Zn 0.2 ppm	2000 ppm
Mn 1 ppm Mo 0.05 ppm Na 0.001 % Nb 0.04 ppm Nd 0.1 ppm Ni 0.1 ppm P 0.001 % Pb 0.02 ppm Pr 0.1 ppm Re 0.002 ppm S 0.04 % Sb 0.02 ppm Sc 0.1 ppm Se 0.3 ppm Sm 0.1 ppm Sr 1 ppm Ta 0.1 ppm Tb 0.1 ppm Tf 0.05 ppm Th 0.1 ppm Ti 0.05 ppm Tm 0.1 ppm V 2 ppm W 0.1 ppm Yb 0.1 ppm Zn 0.2 ppm	30 %
Mo 0.05 ppm Na 0.001 % Nb 0.04 ppm Nd 0.1 ppm Ni 0.1 ppm P 0.001 % Pb 0.02 ppm Rb 0.1 ppm Re 0.002 ppm Sc 0.04 % Sb 0.02 ppm Sc 0.1 ppm Sm 0.1 ppm Sn 0.1 ppm Ta 0.1 ppm Tb 0.1 ppm Tb 0.1 ppm Ti 0.05 ppm Tm 0.1 ppm V 2 ppm W 0.1 ppm Yb 0.1 ppm Zn 0.2 ppm	10000 ppm
Na 0.001 % Nb 0.04 ppm Nd 0.1 ppm Ni 0.1 ppm P 0.001 % Pb 0.02 ppm Pr 0.1 ppm Re 0.002 ppm Se 0.04 % Sb 0.02 ppm Sc 0.1 ppm Se 0.3 ppm Sm 0.1 ppm Sr 1 ppm Ta 0.1 ppm Tb 0.1 ppm Te 0.05 ppm Th 0.1 ppm Ti 0.05 ppm Tm 0.1 ppm V 2 ppm W 0.1 ppm Yb 0.1 ppm Zn 0.2 ppm	4000 ppm
Nb 0.04 ppm Nd 0.1 ppm Ni 0.1 ppm P 0.001 % Pb 0.02 ppm Pr 0.1 ppm Re 0.002 ppm S 0.04 % Sb 0.02 ppm Sc 0.1 ppm Sm 0.1 ppm Sn 0.1 ppm Ta 0.1 ppm Tb 0.1 ppm Te 0.05 ppm Th 0.1 ppm Ti 0.05 ppm Tm 0.1 ppm V 2 ppm W 0.1 ppm Y 0.1 ppm Zn 0.2 ppm	10 %
Nd 0.1 ppm Ni 0.1 ppm P 0.001 % Pb 0.02 ppm Pr 0.1 ppm Re 0.002 ppm S 0.04 % Sb 0.02 ppm Sc 0.1 ppm Se 0.3 ppm Sm 0.1 ppm Sr 1 ppm Ta 0.1 ppm Tb 0.1 ppm Te 0.05 ppm Th 0.1 ppm Ti 0.05 ppm Tm 0.1 ppm V 2 ppm W 0.1 ppm Y 0.1 ppm Zn 0.2 ppm	2000 ppm
Ni 0.1 ppm Pb 0.001 % Pr 0.1 ppm Rb 0.1 ppm Re 0.002 ppm S 0.04 % Sb 0.02 ppm Sc 0.1 ppm Se 0.3 ppm Sm 0.1 ppm Sr 1 ppm Ta 0.1 ppm Tb 0.1 ppm Tc 0.05 ppm Th 0.1 ppm Ti 0.05 ppm Tm 0.1 ppm V 2 ppm W 0.1 ppm Y 0.1 ppm Yb 0.1 ppm Zn 0.2 ppm	2000 ppm
Pb 0.001 % Pr 0.1 ppm Rb 0.1 ppm Re 0.002 ppm S 0.04 % Sb 0.02 ppm Sc 0.1 ppm Se 0.3 ppm Sm 0.1 ppm Sr 1 ppm Ta 0.1 ppm Te 0.05 ppm Th 0.1 ppm Ti 0.05 ppm Tm 0.1 ppm U 0.1 ppm V 2 ppm W 0.1 ppm Y 0.1 ppm Zn 0.2 ppm	10000 ppm
Pb 0.02 ppm Pr 0.1 ppm Rb 0.1 ppm Re 0.002 ppm S 0.04 % Sb 0.02 ppm Sc 0.1 ppm Se 0.3 ppm Sm 0.1 ppm Sr 1 ppm Ta 0.1 ppm Tb 0.1 ppm Te 0.05 ppm Th 0.1 ppm Ti 0.001 % Tl 0.05 ppm Tm 0.1 ppm V 2 ppm W 0.1 ppm Y 0.1 ppm Yb 0.1 ppm Zn 0.2 ppm	5 %
Pr 0.1 ppm Rb 0.1 ppm Re 0.002 ppm S 0.04 % Sb 0.02 ppm Sc 0.1 ppm Se 0.3 ppm Sm 0.1 ppm Sr 1 ppm Ta 0.1 ppm Tb 0.1 ppm Te 0.05 ppm Th 0.1 ppm Ti 0.001 % TI 0.05 ppm Tm 0.1 ppm V 2 ppm W 0.1 ppm Y 0.1 ppm Yb 0.1 ppm Zn 0.2 ppm	10000 ppm
Rb 0.1 ppm Re 0.002 ppm S 0.04 % Sb 0.02 ppm Sc 0.1 ppm Se 0.3 ppm Sm 0.1 ppm Sr 1 ppm Ta 0.1 ppm Tb 0.1 ppm Te 0.05 ppm Th 0.1 ppm Ti 0.001 % Tl 0.05 ppm Tm 0.1 ppm V 2 ppm W 0.1 ppm Y 0.1 ppm Yb 0.1 ppm Zn 0.2 ppm	2000 ppm
Re 0.002 ppm S 0.04 % Sb 0.02 ppm Sc 0.1 ppm Se 0.3 ppm Sm 0.1 ppm Sr 1 ppm Ta 0.1 ppm Tb 0.1 ppm Te 0.05 ppm Th 0.1 ppm Ti 0.001 % Tl 0.05 ppm Tm 0.1 ppm V 2 ppm W 0.1 ppm Y 0.1 ppm Yb 0.1 ppm Zn 0.2 ppm	2000 ppm
Sb 0.04 % Sc 0.1 ppm Se 0.3 ppm Sm 0.1 ppm Sn 0.1 ppm Ta 0.1 ppm Tb 0.1 ppm Te 0.05 ppm Th 0.1 ppm Ti 0.001 % TI 0.05 ppm Tm 0.1 ppm U 0.1 ppm V 2 ppm W 0.1 ppm Y 0.1 ppm Yb 0.1 ppm Zn 0.2 ppm	100 ppm
Sb 0.02 ppm Sc 0.1 ppm Se 0.3 ppm Sm 0.1 ppm Sn 0.1 ppm Ta 0.1 ppm Tb 0.1 ppm Te 0.05 ppm Th 0.1 ppm Ti 0.001 % Tl 0.05 ppm Tm 0.1 ppm U 0.1 ppm V 2 ppm W 0.1 ppm Y 0.1 ppm Yb 0.1 ppm Zn 0.2 ppm	10 %
Sc 0.1 ppm Se 0.3 ppm Sm 0.1 ppm Sn 0.1 ppm Sr 1 ppm Ta 0.1 ppm Tb 0.1 ppm Te 0.05 ppm Th 0.1 ppm Ti 0.001 % Tl 0.05 ppm Tm 0.1 ppm U 0.1 ppm V 2 ppm W 0.1 ppm Y 0.1 ppm Yb 0.1 ppm Zn 0.2 ppm	4000 ppm
Se 0.3 ppm Sm 0.1 ppm Sn 0.1 ppm Sr 1 ppm Ta 0.1 ppm Tb 0.1 ppm Te 0.05 ppm Th 0.1 ppm Ti 0.001 % TI 0.05 ppm Tm 0.1 ppm U 0.1 ppm V 2 ppm W 0.1 ppm Y 0.1 ppm Yb 0.1 ppm Zn 0.2 ppm	
Sm 0.1 ppm Sn 0.1 ppm Sr 1 ppm Ta 0.1 ppm Tb 0.1 ppm Te 0.05 ppm Th 0.1 ppm Ti 0.001 % Tl 0.05 ppm Tm 0.1 ppm U 0.1 ppm V 2 ppm W 0.1 ppm Y 0.1 ppm Yb 0.1 ppm Zn 0.2 ppm	200 ppm
Sn 0.1 ppm Sr 1 ppm Ta 0.1 ppm Tb 0.1 ppm Te 0.05 ppm Th 0.1 ppm Ti 0.001 % Tl 0.05 ppm Tm 0.1 ppm U 0.1 ppm V 2 ppm W 0.1 ppm Y 0.1 ppm Yb 0.1 ppm Zn 0.2 ppm	1000 ppm
Sr 1 ppm Ta 0.1 ppm Tb 0.1 ppm Te 0.05 ppm Th 0.1 ppm Ti 0.001 % Tl 0.05 ppm Tm 0.1 ppm U 0.1 ppm V 2 ppm W 0.1 ppm Y 0.1 ppm Yb 0.1 ppm Zn 0.2 ppm	2000 ppm
Ta 0.1 ppm Tb 0.1 ppm Te 0.05 ppm Th 0.1 ppm Ti 0.001 % Tl 0.05 ppm Tm 0.1 ppm U 0.1 ppm V 2 ppm W 0.1 ppm Y 0.1 ppm Yb 0.1 ppm Zn 0.2 ppm	2000 ppm
Tb 0.1 ppm Te 0.05 ppm Th 0.1 ppm Ti 0.001 % Tl 0.05 ppm Tm 0.1 ppm V 2 ppm W 0.1 ppm Y 0.1 ppm Yb 0.1 ppm Zn 0.2 ppm	10000 ppm
Te 0.05 ppm Th 0.1 ppm Ti 0.001 % Tl 0.05 ppm Tm 0.1 ppm U 0.1 ppm V 2 ppm W 0.1 ppm Y 0.1 ppm Yb 0.1 ppm Zn 0.2 ppm	2000 ppm
Th 0.1 ppm Ti 0.001 % Tl 0.05 ppm Tm 0.1 ppm U 0.1 ppm V 2 ppm W 0.1 ppm Y 0.1 ppm Yb 0.1 ppm Zn 0.2 ppm	2000 ppm
Ti 0.001 % Tl 0.05 ppm Tm 0.1 ppm U 0.1 ppm V 2 ppm W 0.1 ppm Y 0.1 ppm Yb 0.1 ppm Zn 0.2 ppm	1000 ppm
TI 0.05 ppm Tm 0.1 ppm U 0.1 ppm V 2 ppm W 0.1 ppm Y 0.1 ppm Yb 0.1 ppm Zn 0.2 ppm	4000 ppm
Tm 0.1 ppm U 0.1 ppm V 2 ppm W 0.1 ppm Y 0.1 ppm Yb 0.1 ppm Zn 0.2 ppm	10 %
U 0.1 ppm V 2 ppm W 0.1 ppm Y 0.1 ppm Yb 0.1 ppm Zn 0.2 ppm	10000 ppm
V 2 ppm W 0.1 ppm Y 0.1 ppm Yb 0.1 ppm Zn 0.2 ppm	2000 ppm
W 0.1 ppm Y 0.1 ppm Yb 0.1 ppm Zn 0.2 ppm	4000 ppm
Y 0.1 ppm Yb 0.1 ppm Zn 0.2 ppm	10000 ppm
Yb 0.1 ppm Zn 0.2 ppm	200 ppm
Zn 0.2 ppm	2000 ppm
	2000 ppm
	10000 ppm
Zr 0.2 ppm	2000 ppm
200-Hg Aqua Regia ICP-ES/MS, Add-on	\$12

Digestion is partial for some Cr and Ba minerals and oxides of Al, Fe, Mn, Sn, Ta and Zr. Volatilization during fuming may result in loss of As, S, Se and Sb.

Low Grade Ore Analysis

The following multi-element assays provide an expanded range of analysis by combining the geochemical analysis MA200 and AQ200 with the upper limit precision of the assay packages MA370 and AQ370. AQ270 and MA270 combine both ICP-ES and ICP-MS analysis to extend the upper limits and provide a broader spectrum of elements. Intended use of this package is for exploration not resource calculations.

AQUA REGIA ICP-ES/MS

Same digestion as AQ370 but uses both ICP-ES and ICP-MS to expand the detection limits and increase the number of elements analyzed.

CODE	ELEM		CTION MIT	UPP LIM		CAD
AQ270	Aqua R	egia ICI	P-ES/N	1S, 34 ele	ments	\$23.00
	Ag	0.5	ppm	1000	ppm	
	Al	0.01	%	40	%	
	As	5	ppm	100000	ppm	
	Ва	5	ppm	5000	ppm	
	Bi	0.5	ppm	10000	ppm	
	Ca	0.01	%	40	%	
	Cd	0.5	ppm	10000	ppm	
	Со	0.5	ppm	10000	ppm	
	Cr	0.5	ppm	50000	ppm	
	Cu	0.5	ppm	100000	ppm	
	Fe	0.01	%	40	%	
	Ga	5	ppm	50000	ppm	
	Hg	0.05	ppm	10000	ppm	
	K	0.01	%	40	%	
	La	0.5	ppm	50000	ppm	
	Mg	0.01	%	40	%	
	Mn	5	ppm	200000	ppm	
	Мо	0.5	ppm	50000	ppm	
	Na	0.01	%	25	%	
	Ni	0.5	ppm	100000	ppm	
	Р	0.001	%	25	%	
	Pb	0.5	ppm	40000	ppm	
	S	0.05	%	30	%	
	Sb	0.5	ppm	50000	ppm	
	Sc	0.5	ppm	500	ppm	
	Se	2	ppm	500	ppm	
	Sr	5	ppm	10000	ppm	
	Th	0.5	ppm	10000	ppm	
	Ti	0.001	%	10	%	
	TI	0.5	ppm	5000	ppm	
	U	0.5	ppm	10000	ppm	
	V	10	ppm	50000	ppm	
	W	0.5	ppm	10000	ppm	
	Zn	5	ppm	200000	ppm	

Requires at least 2 g per sample.

MULTI-ACID ICP-ES/MS

Same digestion as MA370 but includes ICP-ES and ICP-MS analysis.

CODE	ELEM		CTION			CAD
OODL	LLLIVI	LIN	ΛIT	LIMI	T	OAD
MA270	Multi-a 41 elen		P-ES/N	IS,		\$28.00
	Ag	0.5	ppm	1500	ppm	
	Al	0.01	%	40	%	
	As	5	ppm	100000	ppm	
	Ва	5	ppm	50000	ppm	
	Ве	5	ppm	5000	ppm	
	Bi	0.5	ppm	20000	ppm	
	Са	0.01	%	50	%	
	Cd	0.5	ppm	20000	ppm	
	Се	5	ppm	10000	ppm	
	Со	1	ppm	20000	ppm	
	Cr	1	ppm	50000	ppm	
	Cu	0.5	ppm	100000	ppm	
	Fe	0.01	%	60	%	
	Hf	0.5	ppm	5000	ppm	
	K	0.01	%	40	%	
	La	0.5	ppm	10000	ppm	
	Li	0.5	ppm	10000	ppm	
	Mg	0.01	%	40	%	
	Mn	5	ppm	200000	ppm	
	Мо	0.5	ppm	50000	ppm	
	Na	0.01	%	25	%	
	Nb	0.5	ppm	10000	ppm	
	Ni	0.5	ppm	100000	ppm	
	Р	0.01	%	25	%	
	Pb	0.5	ppm	100000	ppm	
	Rb	0.5	ppm	10000	ppm	
	S	0.05	%	30	%	
	Sb	0.5	ppm	10000	ppm	
	Sc	1	ppm	1000	ppm	
	Se	5	ppm	5000	ppm	
	Sn	0.5	ppm	10000	ppm	
	Sr	5	ppm	10000	ppm	
	Та	0.5	ppm	2000	ppm	
	Th	0.5	ppm	20000	ppm	
	Ti	0.001	%	10	%	
	U	0.5	ppm	20000	ppm	
	V	10	ppm	50000	ppm	
	W	0.5	ppm	10000	ppm	
	Υ	0.5	ppm	5000	ppm	
	Zn	5	ppm	400000	ppm	
	Zr	0.5	ppm	10000	ppm	

Vegetation Analysis

We offer two types of vegetation preparations depending on the elements of interest and application of the results. The first is an aqua regia digestion on the raw material. This method is best where volatile elements such as As, Se, and Hg are of interest. The second type of preparation involves the ashing of plant material followed by aqua regia digestion. Ashing is effectively a preconcentration step that allows for the detection of low level precious metals that would otherwise be below instrument detection.

PREPARATION

For dry plant material free of any soil. Importation permits may apply; contact the laboratory prior to shipment.

CODE	DESCRIPTION	CAD
DISPL	Dispose of pulps	\$0.20
SVRJT	Saving all or part of reject fraction	\$1.05
VA475	Ashing 50 g dry vegetation at 475°C	\$9.50
VGMAS	Dry and macerate vegetation, per 100 g	\$9.50
VGWSH	Wash plant samples with demineralized water, dry at 60°C, per 100 g	\$3.20
WGHT	Weigh samples	\$0.70

PLANT MATERIAL ANALYSIS

Analysis of vegetation samples using a 1g or 5g split digested in HNO₃ then aqua regia and analyzed by ICP-MS for ultra low detection limits. Washing with demineralized water is recommended if samples are coated with inorganic material. (See VGWSH above).

CODE	ELEM	DETECTION LIMIT	UPPER LIMIT	ELEM	DETECTION LIMIT	UPPER LIMIT	CAD
VG101	Dry Vege	tation ICP-MS, 37 e	lements, 1 g				\$26.70
VG105	Dry Vege	tation ICP-MS, 37 e	lements, 5 g				\$30.20
	Ag	2 ppb	100000 ppb	Мо	0.01 ppm	2000 ppm	
	Al	0.01 %	10 %	Na	0.01 %	5 %	
	As	0.1 ppm	10000 ppm	Ni	0.1 ppm	10000 ppm	
	Au	0.2 ppb	100000 ppb	Р	0.001 %	5 %	
	В	1 ppm	2000 ppm	Pb	0.01 ppm	10000 ppm	
	Ва	0.1 ppm	10000 ppm	S	0.05 %	10 %	
	Ві	0.02 ppm	2000 ppm	Sb	0.02 ppm	2000 ppm	
	Ca	0.01 %	40 %	Sc	0.1 ppm	100 ppm	
	Cd	0.01 ppm	2000 ppm	Se	0.1 ppm	100 ppm	
	Со	0.01 ppm	2000 ppm	Sr	0.5 ppm	2000 ppm	
	Cr	0.1 ppm	10000 ppm	Те	0.02 ppm	1000 ppm	
	Cu	0.01 ppm	10000 ppm	Th	0.1 ppm	2000 ppm	
	Fe	0.001 %	40 %	Ti	10 ppm	50000 ppm	
	Ga	0.1 ppm	1000 ppm	TI	0.02 ppm	1000 ppm	
	Hg	1 ppb	50000 ppb	U	0.01 ppm	2000 ppm	
	K	0.01 %	10 %	V	2 ppm	10000 ppm	
	La	0.01 ppm	10000 ppm	W	0.1 ppm	100 ppm	
	Mg	0.001 %	30 %	Zn	0.1 ppm	10000 ppm	
	Mn	1 ppm	10000 ppm				
+ REE	Rare Eart	h, add-on					\$6.95
+ PGM	Pt Pd, add	d-on					\$2.35
+ ISO	Lead Isot	ope, add-on					\$14.35
VG104		-trace ICP-MS, 36 e ments & detection	lements, 0.5 g limits as AQ250 excl	uding Hg , <u>p.25</u>)		\$21.00
VG104-EXT	Ash Exter	nded suite, 52 elem	ents, 0.5 g				\$24.75

CODE	ELEM	DETECTION LIMIT	UPPER LIMIT	CAD
VG101-EXT	Dry Extended	l suite, 53 elements, 1 g		\$30.45
VG105-EXT	Dry Extended	l suite, 53 elements, 5 g		\$33.95
	Ве	0.1 ppm	1000 ppm	
	Се	0.1 ppm	2000 ppm	
	Cs	0.02 ppm	2000 ppm	
	Ge	0.01 ppm	100 ppm	
	Hf	0.001 ppm	1000 ppm	
	In	0.02 ppm	1000 ppm	
	Li	0.01 ppm	2000 ppm	
	Nb	0.01 ppm	2000 ppm	
	Pd	2 ppb	100000 ppb	
	Pt	1 ppb	100000 ppb	
	Rb	0.1 ppm	2000 ppm	
	Re	1 ppb	10000 ppb	
	Sn	0.02 ppm	100 ppm	
	Та	0.001 ppm	2000 ppm	
	Υ	0.001 ppm	2000 ppm	
	Zr	0.01 ppm	2000 ppm	
+ ISO	Lead Isotope,	, add-on		\$14.35

CODE	ELEM	DETECTION LIMIT	UPPER LIMIT	CAD
+ REE	Rare Earth elem	ents		\$6.95
	Dy	0.02 ppm	2000 ppm	
	Er	0.02 ppm	2000 ppm	
	Eu	0.02 ppm	2000 ppm	
	Gd	0.02 ppm	2000 ppm	
	Но	0.02 ppm	2000 ppm	
	Lu	0.02 ppm	2000 ppm	
	Nd	0.02 ppm	2000 ppm	
	Pr	0.02 ppm	2000 ppm	
	Sm	0.02 ppm	2000 ppm	
	Tb	0.02 ppm	2000 ppm	
	Tm	0.02 ppm	2000 ppm	
	Yb	0.02 ppm	2000 ppm	

GENERATIVE EXPLORATION PACKAGE

This package has been designed to provide a suite of elements common in rocks associated with hydrothermal systems. It represents excellent value for applications where only ore forming elements are of interest.

CODE	ELEM			DESCRIPTION	CAD
GENX10	Suite of elemen	ts common in rocks associate	hermal systems	\$26.35	
	Au	0.005 – 10	ppm		
	Ag	0.1 – 100	ppm	_	
	As	5 - 10,000	ppm	- Au determined by FA430	
	Ві	2 - 10,000	ppm	(30 g Fire Assay/AAS finish)	
	Cu	1 - 10,000	ppm	Hg determined by	
	Pb	2 - 10,000	ppm	Cold Vapour/AA or ICP-MS	
	Hg	0.01 - 100	ppm	All other elements determined	
	Мо	1 - 10,000	ppm	by AR Digest with ICP analysis	
	Sb	2 - 10,000	ppm	_	
	Zn	2 - 10,000	ppm	_	

This package combines both of our ultra-trace packages.

CODE	DESCRIPTION	CAD
GEO05	MA250 + AQ250 (7 elements: As, Au, Hg, Sb, Se, Te, TI)	\$39.25
+ Au	Fire Assay (FA430: 30 g Fire Assay/AAS finish), add-on	\$14.45

SELECTIVES LEACHES

Selective or sequential extractions can target elements held in a specific soil phase or a range of phases thus allowing better interpretation of ion mobility and geochemical processes. Used sequentially, the leaches can determine whether elements in soils are present as salts, adsorbed to clay minerals, adsorbed/complexed with organics, or associated with amorphous Mn and Fe hydroxides. Used separately, the stronger leaches are less selective.

CODE	DESCRIPTION	CAD
	Separate leach, per leach	\$30.80
	Sequential leach, per leach	\$38.95
	Setup, per leach on submissions of <35 samples	\$325.00
	Report pH	+ \$9.80
LH101	Demineralized water soluble components	
LH102	1 M Ammonium acetate - exchangeable cations adsorbed by clay and elements co-precipitated with carbonate	 ∋s
LH103	0.1 M Sodium pyrophosphate - elements adsorbed by organic matter (humic and fulvic compounds)	
LH104	0.1 M Hydroxylamine - elements adsorbed by amorphous Mn hydroxide, often the most reactive soil phase for s mobile elements	scavanging
LH105	0.25 M Hydroxylamine - elements adsorbed by amorphous Fe hydroxide and more crystaline Mn hydroxide	
LH107	Ammonium nitrate leach estimates metal bioavailability and involves the extraction of weakly bound mobile base alkali, alkaline earth, and Al ions. Can also be used for estimation of cation-exchange capacity (separate leach o	

OTHER CHARGES

EN001-MA	Environmental disposal charge - Multi-acid waste disposal	\$0.25
----------	---	--------

ANALYSIS OF NATURAL WATERS ICP-MS

Surface and groundwater surveys are an effective means for exploration of remote and blind ore deposits. Method SO200 (analysis by ICP-MS) provides the low detection limits needed to define background and anomalous levels of cations in natural water. For this analysis, all water samples must have less than 0.1% total dissolved solids (TDS). This method is not suitable for brines or processed solutions. Water samples with greater than 0.1% total dissolved solids will report a reduced element suite with elevated detection limits.

Analysis of water geochemical parameters, including pH, electrical conductivity, alkalinity, and anions, provides the necessary parameters for complete characterization of water samples. Complete water characterization allows for the determination of not only the type of water (i.e., CaSO, or NaCl), but how the type of water relates to ore deposit pathfinder elements. This package is not suitable for environmental surveys.

ODE	ELEM	DETEC		EL	EM	DETEC LIM		CAD
O200*	Full Su	ite - Ca	tions, !	50 ml				\$32.90
	Ag	0.05	ppb		Na	0.05	ppm	
	Al	1	ppb		Nb	0.01	ppb	
	As	0.5	ppb		Nd	0.01	ppb	
	Au	0.05	ppb		Ni	0.2	ppb	
	В	5	ppb		Р	10	ppb	
	Ва	0.05	ppb		Pb	0.1	ppb	
	Ве	0.05	ppb		Pd	0.2	ppb	
	Ві	0.05	ppb		Pr	0.01	ppb	
	Br	5	ppb		Pt	0.01	ppb	
	Ca	0.05	ppm		Rb	0.01	ppb	
	Cd	0.05	ppb	-	Re	0.01	ppb	
	Се	0.01	ppb	-	Rh	0.01	ppb	
	CI	1	ppm	-	Ru	0.05	ppb	
	Со	0.02	ppb	-	s	1	ppm	
	Cr	0.5	ppb		Sb	0.05	ppb	
	Cs	0.01	ppb		Sc	1	ppb	
	Cu	0.1	ppb	-	Se	0.5	ppb	
	Dy	0.01	ppb	-	Si	40	ppb	
	Er	0.01	ppb		Sm	0.02	ppb	
	Eu	0.01	ppb		Sn	0.05	ppb	
	Fe	10	ppb		Sr	0.01	ppb	
	Ga	0.05	ppb		Та	0.02	ppb	
	Gd	0.01	ppb		Tb	0.01	ppb	
	Ge	0.05	ppb		Те	0.05	ppb	
	Hf	0.02	ppb		Th	0.05	ppb	
	Hg	0.1	ppb		Ti	10	ppb	
	Но	0.01	ppb		TI	0.01	ppb	
	In	0.01	ppb		Tm	0.01	ppb	
	K	0.05	ppm		U	0.02	ppb	
	La	0.01	ppb		V	0.2	ppb	
	Li	0.1	ppb	-	W	0.02	ppb	
	Lu	0.01	ppb		Υ	0.01	ppb	
	Mg	0.05	ppm		Yb	0.01	ppb	
	Mn	0.05	ppb		Zn	0.5	ppb	
	Мо	0.1	ppb		Zr	0.02	ppb	

CODE	ELEM	DETECTION LIMIT
SO001*	Per element , 100 ml	
	CI	0.5 mg/L
	SO ₄	0.5 mg/L
	Br	0.4 mg/L
	NO ₂	0.01 mg/L
	NO ₃	0.01 mg/L
	F	0.01 mg/L
SO002*	pH and EC, 100 ml*	
	pН	0.1 units
	Conductivity	1.0 µS/cm
SO003*	Full Suite CaCO ₃ , HCO ₃ , OH, 100) ml*
	Alkalinity	0.5 mg/L

BRINE ANALYSIS

CODE	
ICPTV-W	ICP-ES/MS analysis for high TDS water samples. Analysis is also applicable for Li-brines.

Isotope Analysis

Age determination is an effective tool in green and brownfields exploration. Information such as ore formation timing, the timing of metamorphic or thermal events, and the depositional ages and origins of sedimentary rocks provides a "4th dimension" that can provide invaluable information.

GEOCHRONOLOGY

CODE	METHOD	DESCRIPTION	CAD
HR901	HR-ICP-MS (Pb/Pb)	High Resolution ICP-MS (HR-ICP-MS) analysis of rock, organic, or water samples for Pb/Pb isotopes, plus high precision multi-element analysis. Price includes prep and digestion of solid material. Analysis of mineral separates will incur additional charges. Please contact us for a quote.	\$336.00
HR902	HR-ICP-MS (U/Pb)	This method is designed for determination of U/Pb isotopes in U-bearing minerals using laser ablation HR-ICP-MS. Typically, minerals such as zircon, baddeleyite, and monazite are analyzed. Analysis of mineral separation and grain mount will incur additional charges.	by quote
MC901	MC-ICP-MS (Pb/Pb or Sr/Sr)	This method determines Pb and/or Sr isotopes using a Neptune Multi Collector ICP-MS on rock, organic, or water samples. Pricing is per element and includes sample prep.	\$288.75

STABLE ISOTOPES

Stable isotopes can be integrated into green and brownfield exploration programs to provide an additional level of confidence where geochemical anomalies may be inconclusive. They are especially useful to detect halos around some hydrothermal deposits, where mineralogical and geochemical vectors are too subtle to be detected.

CODE	METHOD	DESCRIPTION	CAD		
SI901	$\delta^2 \text{H \& } \delta^{18} \text{O in waters}$		\$131.25		
SI902	δ^{13} C & δ^{18} O in calcite/dolomite		\$73.50		
SI903	$\delta^{\scriptscriptstyle 13}\text{C}~\&~\delta^{\scriptscriptstyle 18}\text{O}$ in siderite/magnesite	Hydrogen, oxygen, carbon, sulfur, and nitrogen isotopes in several types of media can be analyzed. The instrumentation varies depending on media and the isotopic analysis requested. Please contact us for more information on methodology.	isotopes in several types of media can be analyzed.	isotopes in several types of media can be analyzed.	\$84.00
SI904	δ ¹⁸ O in silicates				\$178.50
SI905	δ ¹³ C analysis of DIC		\$73.50		
SI906	δ ¹³ C & δ ¹⁵ N		\$84.00 or \$42.00 each		
SI907	δ^{34} S in sulfates		\$84.00 (contact for BaSO ₄)		
SI908	$\delta^{34} S$ in sulfides (mineral separates)		\$84.00		
SI909	$\delta^2 H$ in minerals	-	\$164.85		
MC902	MC-ICP-MS (other isotopes)	This method determines isotopes using a Neptune Multi Collector-ICP-MS on rock, organic, or water samples. The isotopes of Li, B, Mg, Ca, Cu, Zn, Sr, Nd, Mo, Tl, Pb, and U are possible. Pricing is per isotope and includes sample prep.	\$288.75 Add \$157.50 for low level samples requiring column extractions		

Whole Rock Analysis by Lithium Borate Fusion

WHOLE ROCK MAJOR AND MINOR **ELEMENTS BY ICP-ES**

Lithium borate fusion, a highly aggressive dissolution, is effective for most refractory and resistive mineral phases. When coupled with ICP-ES/MS or XRF analysis, the methods provide excellent determination of the total element content.

CODE	ELEM	DETEC LIN			PPER IMIT	CAD
LF300	Standa	rd suite	of majo	r oxides		\$29.7
	SiO ₂	0.01	%	100	%	
	Al_2O_3	0.01	%	100	%	
	Cr ₂ O ₃	0.002	%	10	%	
	CaO	0.01	%	100	%	
	Fe ₂ O ₃	0.04	%	100	%	
	K ₂ O	0.01	%	100	%	
	MgO	0.01	%	100	%	
	MnO	0.01	%	30	%	
	Na ₂ O	0.01	%	100	%	
	P ₂ O ₅	0.01	%	100	%	
	TiO ₂	0.01	%	10	%	
	Ва	5	ppm	5	%	
	Nb	5	ppm	1,000	ppm	
	Ni	20	ppm	10,000	ppm	
	Sc	1	ppm	10,000	ppm	
	Sr	2	ppm	50,000	ppm	
	Υ	3	ppm	50,000	ppm	
	Zr	5	ppm	50,000	ppm	
	LOI	0.1	%	100	%	
	Sum	0.01	%	100	%	
LF300-X	Any 1 el	ement				\$21.2
LF300-EXT	Extende	ed packa	ige			\$39.0
	Се	30	ppm	50 000	ppm	
	Со	20	ppm	10 000	ppm	
	Cu	5	ppm	10 000	ppm	
				10 000		

WHOLE ROCK MAJOR AND MINOR **ELEMENTS WITH C & S**

CODE		CAD
LF302	Major oxides ICP-ES, 20 elements Package including LF300 + TC000 (C & S)	\$34.85
LF302-EXT	Major oxides ICP-ES, Package including LF300-EXT + TC000 (C & S)	\$44.15

TOTAL WHOLE ROCK CHARACTERIZATION

These packages include several methods that have been specifically selected to optimize the recovery of virtually all elements present in a geological sample.

CODE		CAD
LF200	Package including (LF100 + LF302)	\$55.70
LF202	Package including (LF100-EXT + LF302)	\$67.75
LF600*	Package including (LF100-EXT + XF700 + TC000)	\$76.85

Requires at least 5 g per sample.

TRACE ELEMENTS BY ICP-MS

CODE	ELEM		OTION MIT	UPPE LIMIT		CAD
LF100		tory an	d ements	only		\$31.05
	Ba		ppm	50,000	ppm	
	Be	1	ppm	10,000	ppm	
	Ce	0.1		50,000		
	Co	0.2	ppm	10,000	ppm	
	Cs*	0.1		1,000	ppm	
	Dy	0.05		10,000	ppm	
	Er	0.03	• •	10,000	ppm	
	Eu	0.02	• •	10,000	ppm	
	Ga	0.5	ppm	10,000	ppm	
	Gd	0.05	ppm	10,000	ppm	
	Hf	0.1		10,000	ppm	
	Ho	0.02		10,000	ppm	
	La	0.1	• •	50,000	ppm	
	Lu	0.01	• •	10,000	ppm	
	Nb*	0.01	ppm	1,000		
	Nd	0.3		10,000		
	Pr	0.02	ppm	10,000	ppm	
	Rb*	0.02	ppm	1,000		
	Sm	0.05	ppm	10,000		
	Sn	1		10,000	ppm	
	Sr	0.5	ppm	50,000		
	Ta*	0.3		1,000	ppm	
	Tb	0.01	ppm	10,000	ppm	
	Th	0.01	ppm	10,000	ppm	
	Tm	0.01	ppm		ppm	
	U	0.01	ppm	10,000	ppm	
		8	ppm	10,000	ppm	
			ppm	10,000	ppm	
	<u>W</u>	0.5	ppm	10,000	ppm	
		0.1	ppm	50,000	ppm	
	Yb	0.05	ppm	10,000	ppm	
	Zr	0.1	ppm	50,000	ppm	
.F100-X	any 1 e		tusion	ICP-MS,		\$21.20
E400 EVT			s ICP-N	/IS,		A 40 0F
F100-EXT	45 elen Packaç		ding (LF	- - - - - - - - - - - - - - - - - - -	200)	\$42.35
	Ag	0.1	ppm	100	ppm	
	As	0.5	ppm	10,000	ppm	
	Au	0.5	ppb	100,000	ppb	
	Bi	0.1	ppm	2,000	ppm	
	Cd	0.1	ppm	2,000	ppm	
	Cu	0.1	ppm	10,000	ppm	
	Hg	0.01	ppm	50	ppm	
	Мо	0.1	ppm	2,000	ppm	
	Ni	0.1	ppm	10,000	ppm	
	Pb	0.1	ppm	10,000	ppm	
	Sb	0.1	ppm	2,000	ppm	
	Se	0.5	ppm	100	ppm	
	TI	0.1	ppm	1,000	ppm	

by this method.

^{*} Requires at least 20 g per sample.

CARBON & SULPHUR ANALYSIS

DESCRIPTION	DETECTION LIMIT	UPPER LIMIT	CAD
Leco - C	0.02 %	50 %	400.00
Leco - S	0.02 %	20 %	\$20.00
Surcharge samples > 20% (S)	20 %	50 %	+ \$7.30
Leco – Total C	0.02 %	100 %	\$17.00
Graphite C	0.02 %	20 %	\$33.00
Inorganic Carbon, (Direct CO ₂ evolution Leco analysis)	0.08 %	100 %	\$20.00
Organic C (TC000-C, TC005, TC006)	0.02 %	100 %	\$31.75
Leco – Total S	0.02 %	20 %	\$15.00
Surcharge samples > 20% (S)	20 %	50 %	+ \$7.30
Sulphate – Leco after ignition	0.05 %	100 %	\$25.00
Sulphide – (TC000-S, TC008)	0.05 %	100 %	\$26.25
Sulphate – gravimetric	0.05 %	100 %	\$30.00
Elemental S	0.01 %	14%	\$33.00
	Leco - C Leco - S Surcharge samples > 20% (S) Leco - Total C Graphite C Inorganic Carbon, (Direct CO ₂ evolution Leco analysis) Organic C (TC000-C, TC005, TC006) Leco - Total S Surcharge samples > 20% (S) Sulphate - Leco after ignition Sulphide - (TC000-S, TC008) Sulphate - gravimetric	Leco - C 0.02% Leco - S 0.02% Surcharge samples > 20% (S) 20% Leco - Total C 0.02% Graphite C 0.02% Inorganic Carbon, (Direct CO_2 evolution Leco analysis) 0.08% Organic C (TC000-C, TC005, TC006) 0.02% Leco - Total S 0.02% Surcharge samples > 20% (S) 20% Sulphate - Leco after ignition 0.05% Sulphate - gravimetric 0.05%	Leco - C 0.02 % 50 % Leco - S 0.02 % 20 % Surcharge samples > 20% (S) 20 % 50 % Leco - Total C 0.02 % 100 % Graphite C 0.02 % 20 % Inorganic Carbon, (Direct CO2 evolution Leco analysis) 0.08 % 100 % Organic C (TC000-C, TC005, TC006) 0.02 % 100 % Leco - Total S 0.02 % 20 % Surcharge samples > 20% (S) 20 % 50 % Sulphate - Leco after ignition 0.05 % 100 % Sulphate - gravimetric 0.05 % 100 %

Requires at least 5 g per sample.

X-ray fluorescence analysis on fused discs is an excellent method for the determination of whole rock major elements, as well as some minor elements. It is the preferred method for iron ore, bauxite, Nilaterites, and phosphate ores. Bureau Veritas also offers a specific XRF method for the determination of major elements, plus sub-percent to high-grade Cu, Pb, and Zn ore concentrations.

WHOLE ROCK MAJOR OXIDES

CODE	ELEM	DETEC [*] LIMI			PPER MIT	CAD
XF700	Standar	d Package,	15 ele	ements		\$36.75
	SiO ₂	0.01	%	100.0	%	
	Al ₂ O ₃	0.01	%	100.0	%	
	Fe ₂ O ₃	0.01	%	100.0	%	
	CaO	0.01	%	100.0	%	_
	MgO	0.01	%	100.0	%	-
	Na ₂ O	0.01	%	15.0	%	-
	K ₂ O	0.01	%	15.0	%	-
	MnO	0.01	%	50.0	%	
	TiO ₂	0.01	%	20.0	%	-
	P ₂ O ₅	0.01	%	40.0	%	-
	Cr ₂ O ₃	0.01	%	10.0	%	
	Ва	0.01	%	58.8	%	-
	LOI	0.1	%	100.0	%	-
	SO ₃	0.002	%	10.0	%	-
	Sr	0.002	%	1.5	%	
XF702	Standar	d Package i	nclud	ing TC00	0 (C & S)	\$41.85

Requires at least 12 g per sample.

BAUXITE

CODE	ELEM	DETEC LIM		UPPE LIMI		CAD
XF701	Bauxite	Package	e, 17 ele	ments		\$41.50
	SiO ₂	0.01	%	100.0	%	
	Al_2O_3	0.01	%	100.0	%	
	Fe ₂ O ₃	0.01	%	100.0	%	
	CaO	0.01	%	50.0	%	
	MgO	0.01	%	40.0	%	
	Na ₂ O	0.01	%	8.5	%	
	K ₂ O	0.01	%	15.0	%	
	MnO	0.01	%	50.0	%	
	TiO ₂	0.01	%	10.0	%	
	P ₂ O ₅	0.001	%	40.0	%	
	Cr ₂ O ₃	0.004	%	10.0	%	
	BaO	0.01	%	10.0	%	
	ZnO	0.002	%	1.0	%	
	ZrO ₂	0.01	%	1.5	%	
	V ₂ O ₅	0.002	%	10.0	%	
	SO ₃	0.01	%	3.5	%	
	LOI	0.1	%	100.0	%	

IRON ORE ANALYSIS

Fused discs for XRF analysis provide robust and precise data for all iron ore matrices. Loss On Ignition (LOI) is determined separately at 1000°C. Sample is mixed with lithium tetraborate/metaborate flux followed by fusion and casting into glass discs. Fused discs are entirely homogeneous and eliminate matrix and grain size variability thus presenting an ideal sample to an extremely stable analytical platform. The data produced is of the highest assay quality and is verified with a full spectrum of iron ore specific certified reference materials.

CODE	ELEM	DETEC LIM		UPP LIM		CAD
XF732	Iron Ore	Standard s	uite, 1	.1 eleme	ents	\$36.75
	SiO ₂	0.01	%	100.0	%	
	Al_2O_3	0.01	%	100.0	%	
	Fe	0.01	%	75.0	%	
	CaO	0.01	%	50.0	%	
	MgO	0.01	%	50.0	%	
	K ₂ O	0.01	%	15.0	%	
	MnO	0.01	%	50.0	%	
	TiO ₂	0.01	%	20.0	%	
	Р	0.001	%	10.0	%	
	Cr	0.001	%	10.0	%	
	LOI	0.1	%	100.0	%	
XF732-EXT	Iron Ore	Extended s	suite, 2	23 elem	ents	\$41.50
	V	0.002	%	5.0	%	
	Ва	0.005	%	10.0	%	
	Ni	0.001	%	8.0	%	
	Со	0.001	%	5.0	%	
	Cu	0.002	%	5.0	%	
	Pb	0.005	%	8.0	%	
	Zn	0.001	%	1.5	%	
	As	0.002	%	1.5	%	
	Sr	0.001	%	3.0	%	
	Zr	0.001	%	1.0	%	

0.001 %

0.01 %

Requires at least 12 g per sample weight.

5.0 %

8.0 %

PHOSPHATE ROCK

CODE	ELEM	DETEC LIM		UPP LIM		CAD
XF740	Phospha (includes	te Rock Pac LOI)	kage, 1	1 elemen	ts	\$41.50
	SiO ₂	0.01	%	100.0	%	
	Al ₂ O ₃	0.01	%	100.0	%	
	Fe ₂ O ₃	0.01	%	100.0	%	
	CaO	0.01	%	80.0	%	
	MgO	0.01	%	80.0	%	
	Na ₂ O	0.01	%	15.0	%	
	K ₂ O	0.01	%	15.0	%	_
	MnO	0.01	%	50.0	%	
	TiO ₂	0.01	%	40.0	%	_
	P ₂ O ₅	0.01	%	40.0	%	
	LOI	0.1	%	100.0	%	_

XRF FOR BASE METAL BEARING **SAMPLES**

In addition to commonly reported major elements such as oxides, this XRF method also reports Cu, Pb, and Zn concentrations. The benefit of base metal determination by Li-borate fusion/XRF are the dynamic concentration ranges achievable, plus the absence of potential recovery issues that may exist with acid digestions where sulphur contents are high.

CODE	ELEM	DETECTION LIMIT	ON UPP LIM		CAD
LF725		tals bearing Pa nts (includes L			\$38.25
	SiO ₂	0.01 %	100.0	%	
	Al_2O_3	0.01 %	100.0	%	
	Fe ₂ O ₃	0.01 %	100.0	%	
	CaO	0.01 %	100.0	%	
	MgO	0.01 %	100.0	%	
	K ₂ O	0.01 %	15.0	%	
	MnO	0.01 %	50.0	%	
	TiO ₂	0.01 %	50.0	%	
	P ₂ O ₅	0.01 %	40.0	%	
	Cr ₂ O ₃	0.01 %	10.0	%	
	Ва	0.01 %	58.8	%	
	Cu*	0.01 %	8.0	%	
	Pb*	0.01 %	25.0	%	
	Zn*	0.01 %	24.0	%	
	LOI	0.1 %	100.0	%	

^{*}Over limit analysis up to 40% Cu; 75% Pb; 60% Zn.

s

Na_aO

Nickel Laterite Analysis

Exploration and evaluation of nickel laterite requires total determination and mass balance accounting of the major rock-forming elements and the commodity elements Ni, Cu and Co. BVM delivers these requirements by XRF or laser ablation.

LATERITE STANDARD SUITE BY XRF

This package uses a predetermined amount of sample dried at 105°C to remove moisture to ensure that the hygroscopic nature of the material does not add error to the analysis. A test portion of that dried material is then fused in a platinum gold crucible with a lithium tetraborate flux and cast into a disc. Fused discs are analyzed by XRF. Another test portion of dried sample is roasted at 1000°C to determine the loss on ignition.

CODE	ELEM	DETEC LIM		UPF LIM		CAD
XF720	Laterite	Standard su	ite by >	(RF, 15 ele	ements	\$41.50
	SiO ₂	0.01	%	100.0	%	
	Al ₂ O ₃	0.01	%	100.0	%	
	Fe ₂ O ₃	0.01	%	100.0	%	
	CaO	0.01	%	50.0	%	
	MgO	0.01	%	50.0	%	
	K ₂ O	0.005	%	15.0	%	
	MnO	0.002	%	50.0	%	
	TiO ₂	0.01	%	10.0	%	
	P ₂ O ₅	0.001	%	15.0	%	
	Cr ₂ O ₃	0.005	%	6.8	%	
	Ni	0.002	%	7.5	%	
	Со	0.001	%	3.5	%	
	Cu	0.002	%	8.0	%	
	Zn	0.001	%	1.5	%	
	LOI	0.1	%	100.0	%	
XF722	Laterite	Package inc	luding	TC000 (C	& S)	\$47.25

Laterite analytical methods incorporate special handling procedures to minimize moisture accumulation due to the hygroscopic nature of the material. Please contact us if you are interested in using other analytical methods not listed here for laterites.

XRF SPECIFIC ELEMENTS **BY FUSION**

CODE	ELEM	DETECTION LIMIT	UPPER LIMIT	CAD
XF750-X	_	rade Tin and To ge for the first o		\$19.95
	SnO ₂	0.01 %	35.0 %	
	WO ₃	0.01 %	50.0 %	
	Additio	nal element		\$3.95

CODE	ELEM	DETECTION LIMIT	UPPER LIMIT	CAD
LF700-X	High Grade Cesium Package for the first element			\$18.90
	Cs	0.01 %	30.0 %	
	Additional element			by quote

Laser Ablation Packages

This package utilizes state-of-the-art laser ablation and ICP-MS instrumentation to analyze the fused glass disk from a Li-borate fusion digestion. It can be coupled with wavelength dispersive XRF to provide a complete total whole rock analysis.

- XRF and LA-ICP-MS capabilities can be combined to extend the dynamic range, which removes the need for overlimit analyses (i.e., Sn from 0.2 ppm to percent level).
- Simplification of the analytical process (only 1 digestion needed for major and trace whole rock characterization).
- Safety and environmental advantages there are no acids used in digestion.

FUSED BEAD LASER ABLATION ICP-MS

CODE	ELEM	DETECTION LIMIT	CAD
LA001		cage, 34 elements	\$39.45
	Ag	0.01 ppm	
	As*	0.2 ppm	
	Ва	0.5 ppm	
	Be	0.2 ppm	
	Bi	0.2 ppm	
	Cd*	0.1 ppm	_
	Се	0.002 ppm	_
	Со	0.1 ppm	
	Cr	1 ppm	
	Cs	0.01 ppm	
	Cu	2 ppm	_
	Ga	0.1 ppm	_
	Hf	0.01 ppm	
	In	0.05 ppm	
	La	0.01 ppm	_
	Mn	1 ppm	
	Мо	0.2 ppm	
	Nb	0.01 ppm	
	Ni	2 ppm	
	Pb	1 ppm	
	Sb*	0.1 ppm	
	Sc	0.1 ppm	
	Sn	0.2 ppm	
	Sr	0.1 ppm	
	Та	0.01 ppm	
	Те	0.2 ppm	
	Th	0.01 ppm	
	Ti	1 ppm	
	U	0.01 ppm	
	V	0.1 ppm	_
	W	0.05 ppm	
	Υ	0.02 ppm	
	Zn	5 ppm	_
	Zr	0.5 ppm	

Method is performed at BVM's Perth, Australia facility. Shipping and Australian Customs charges may apply. Ask us about documentation and costs. \$300 minimum charge for service.

CODE	ELEM	DETECTION LIMIT	CAD
LA001-EXT	Extended package including LA001, 49 elements		\$51.25
	Rb	0.05 ppm	
	Re	0.01 ppm	
	Se*	5 ppm	
	TI	0.2 ppm	
	Dy	0.01 ppm	
	Er	0.01 ppm	
	Eu	0.01 ppm	
	Gd	0.01 ppm	
	Но	0.01 ppm	
	Lu	0.01 ppm	
	Nd	0.01 ppm	
	Pr	0.01 ppm	
	Sm	0.01 ppm	
	Tm	0.01 ppm	
	Yb	0.01 ppm	
	*Partially volatiliz	red.	

CODE	ELEM	DETECTION	N LIMIT	CAD
+ XRF	Major Oxide	es Package, Ad	ld-on	\$21.55
	Al ₂ O ₃	100	ppm	
	CaO	100	ppm	
	CI	10	ppm	
	Fe ₂ O ₃	100	ppm	
	K ₂ O	100	ppm	
	MgO	100	ppm	
	MnO	10	ppm	
	Na ₂ O**	100	ppm	
	P ₂ O ₅	10	ppm	
	SO ₃	10	ppm	
	SiO ₂	100	ppm	
	TiO ₂	10	ppm	
	LOI	0.01	%	
	Sum	0.01	%	

^{**} May not be available for some sample types.

^{*}Partially volatilized.

Mineral Processing

Our Mineral Processing Laboratories are fully equipped to perform all metallurgical investigations from bench scale to demonstration tests. The focus is on developing a practical and economical flow sheet for plant operation, whether it is by adapting known technologies to new situations or by developing a new process.

COMMINUTION

- -O Crushing
- -O Grinding
- -O Starkey SAG Design Test
- -O Abrasion Index
- -O Bond Rod & Ball Mill Work Index
- Size Classification & Screening
- -O Malvern Laser size analysis

FLOTATION

- Batch flotation
- Locked-cycle flotation
- Special gas media flotation
- Column flotation
- -O Reverse & flash flotation
- -O Agglomeration flotation

GRAVITY CONCENTRATION

- -o Shaking tables
- -O Hand panning
- -O Mozley mineral separator
- -O Elutriation
- -O Spirals
- -O Heavy media cones
- -O Heavy media separation
- -O Centrifugal concentrators (Falcon and Knelson)

MAGNETIC SEPARATION

- -O Davis Tube
- -O Drum separator
- -O Belt separator
- -O High gradient separator

SOLID-LIQUID SEPARATION

- Standard thickening procedures
- Differential settling
- Vacuum & pressure filtration

Hydrometallurgy

Our laboratory facilities are fully equipped to conduct a wide range of hydrometallurgical and biohydrometallurgical studies to recover valuable constituents from concentrates or raw minerals, using methods based on mass chemistry, where one or more of the mineral structures are changed, in an aqueous environment. Previous projects have ranged from the recovery of valuable metals from steel furnace dust, gold and silver extraction from refractory minerals, to heap leaching and solvent extraction of copper. These include the full scale up from individual batch tests through continuous bench tests to commercial sized pilot plant reactors.

Testing capabilities includes:

- Cyanidation studies (Merrill Crowe, CIP and CIL procedures)
- Pressure leaching
- Bottle roll and tank leaching
- Counter current closed circuit tank leaching
- Column leaching up to one meter diameter (8 tonnes)
- Diagnostic / sequential leaching
- Solvent extraction
- Ion exchange
- Electrowinning
- Differential precipitation
- Bio-oxidation of refractory gold ores and concentrates
- Biological leaching of base metal ores and concentrates
- Biological heap leach simulation
- Cyanide and ammonia detoxification
- Galvanox copper recovery process, four-reactor pilot plant with elutriator and thickener

CONTINUOUS GRINDING GRAVITY FLOTATION PILOT PLANT

A complete ore treatment pilot plant, consisting of crushing - continuous grinding gravity concentration - rougher/cleaner flotation - tailing thickening, can be assembled for any circuit combination, with throughput ranging from 1 to 5 tonnes per day, depending on ore hardness.

BANKABLE FEASIBILITY

Bureau Veritas Minerals is well recognized in the mining industry for value-added input and quality work. The Metallurgical Division is fully qualified to complete "bankability" testing and mill design. Over the past 26 years, our group has provided this level of service to many of the major mining engineering firms working within the mining industry. Our independence, reliability and accountability are firmly established.

Mineralogy and Petrography

Mineralogical studies are critical to successful geological exploration and the processing of ores.

BULK MINERAL ANALYSIS (BMA)

This investigation is a one-dimensional linear analysis of point counting that provides a fast, basic study of mineral deportment.

- -O Complete mineral composition and deportment
- Elemental deportment
- -O Mineral association, liberation & grain size

PARTICLE MINERAL ANALYSIS (PMA)

A two-dimensional mapping analysis that provides in-depth data for investigative purposes such as flotation or leaching process.

- Complete mineral composition
- -O Elemental deportment
- -O Mineral liberation and associations by size
- -O Effect of primary grind on mineral liberation
- -O Limiting grade recovery curves for the elements of interest

TRACE MINERAL SEARCH (TMS)

TMS is a refinement of the PMA scan but only measures a sub-population of the particles based on a backscattered electron intensity threshold value.

- -O Target mineral (gold/silver/PGM/Bi/W/Mo) grain size
- -O Target elemental distribution across bearing minerals
- Mineral grain size and size distribution
- Mineral liberation and association
- -O Mineral locking characteristics

DIAGNOSIS OF METALLURGICAL PERFORMANCE

Using the combined methods of QEMSCAN/MLA analysis to determine the sources that caused contamination in the final concentrates and the loss of target metals into the tailings in plant operations or metallurgical tests.

- Efficiency of primary grind and regrinding on the target mineral liberations
- The quality of final concentrates
- -O Status of the target minerals lost into the tailings
- -O Target mineral recovery by process streams, by mineral association class and by particle size
- Evaluation of potential improvement in the concentrate quality and metal recovery of plant operations or metallurgical test work

X-RAY DIFFRACTION

XRD analysis is an effective, non-destructive method for the determination of sample mineralogy. BVM will provide you with a comprehensive report for each sample analyzed.

Excerpts from General Conditions of Service

Full General Conditions of Service can be found at BVM Website (www.bureauveritas.com/um/services/general-conditions-ofservice) and that you acting on behalf of the Client accept the General Conditions of Service.

"The Company" is the legal entity with whom the Client is providing instructions.

1. Technical Services

The Company is an enterprise principally engaged in mineral preparation and laboratory testing services for mining, minerals exploration and research, as such it:

- Carries out laboratory analysis or other testing related to Exploration and Mining;
- b) Supply of technicians or other personnel related to Exploration and Mining.

2. Instructions

The Company will provide services in accordance with the Client's specific instructions as accepted and confirmed by the Company so far as such testing methods as the Company shall deem appropriate in its detection limit and confidence interval.

- a) All enquiries and orders for the supply of services must be accompanied by sufficient information, specifications and instructions to enable the Company to evaluate and/or perform the services required.
- The client to inform the Company in advance of any known hazards or dangers, actual or potential, associated with any order or b) samples or testing including, for example, presence or risk of radiation, toxic or noxious or explosive elements or materials, environmental pollution or poisons. The client will be liable for cost of disposal of samples considered hazardous or dangerous.

3. Reports

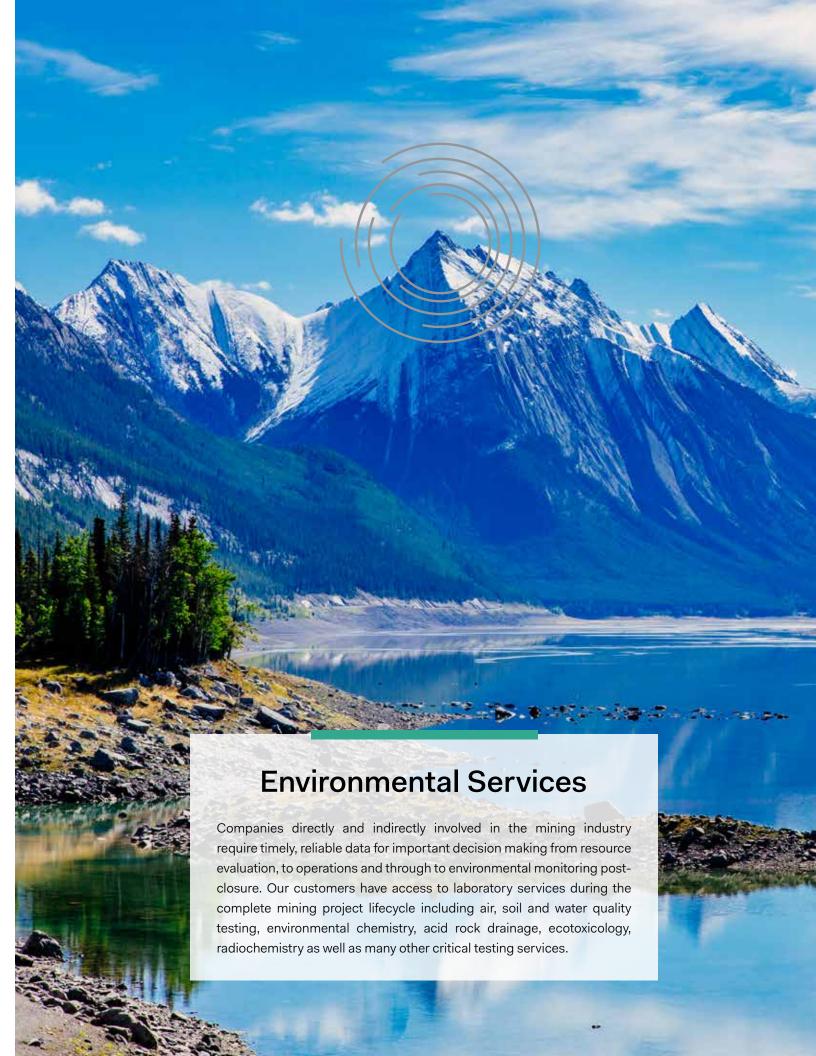
Subject to the Client's instructions as accepted by the Company, the Company will issue reports which reflect statements of opinion made with due care within the limitation of instructions received but the Company is under no obligation to refer to or report upon any facts or circumstances which are outside the specific instructions received.

- a) Reports issued following testing or analysis of such samples as are submitted to the Company for analysis (but not drawn from the bulk by the Company) contain the Company's specific opinion on those samples only but do not express or imply any opinion upon the bulk from which the samples were drawn.
- The Company will not be liable the Client or any third party for any samples so altered, lost, damaged or destroyed. b)

The Company undertakes to exercise due care and skill in the performance of its services and accepts responsibility only where such skill and care is not exercised and negligence against the Company is proven.

The liability of the Company in respect of any claims for loss, damage or expense of whatsoever nature and howsoever arising in respect of any breach of contract and/or any failure to exercise due skill and care by the Company shall in no circumstances exceed a total aggregate sum equal to the amount of the fee in respect of the specific service required under the particular contract with the Company which gives rise to such claims.

5. Payment Terms


The Client will punctually pay not later than 30 (thirty) days after the relevant invoice date (or within such other period as may have been agreed in writing by the Company) all proper charges rendered by the Company failing which, and without prejudice to any other rights or remedies available to the Company, interest will become due at the rate of 15 (fifteen) per cent per annum from the date of invoice until payment.

- All prices quoted and charges due under these General Conditions shall, unless the Company confirms otherwise in writing, be exclusive of any value added or sales tax which shall be charged in addition at the prevailing rate.
- b) In the event of any suspension of payment, arrangement with creditors, bankruptcy, insolvency, receivership or cessation of business by the Client the Company shall be entitled to suspend all further performance of its services forthwith and without liability and all sums payable to the Company shall become immediately due and payable.

6. Confidentiality

A receiving Party which acquires Confidential Information of the disclosing Party must not:

- use any of the Confidential Information except to the extent necessary to exercise its rights and perform its obligations under the (a) General Conditions and with the consent of the other disclosing Party; or
- (b) to the extent possible, notify the disclosing Party immediately it anticipates that it may be required to disclose any of the Confidential Information to a Third party.

Environmental Chemistry

Bureau Veritas Group provides a comprehensive suite of environmental tests for the mining sector. This includes inorganic and organic testing to analyze natural baseline concentrations and levels of contamination in surface and groundwater, soil, air, and animal and plant tissue samples.

Environmental capabilities include:

- Effluent analysis for regulatory compliance
- Routine water quality monitoring including permit stations, wastewater treatment plants (effluent/influent), tailings pond characterization, and monitoring wells
- Soil and water analysis in support of baseline monitoring projects
- Leachate characterization using TCLP/SPLP in sediment and soil samples
- Ultra-trace metals to support aquatic and human health risk assessment
- Ambient air quality and stack testing

WATER TESTING

ANALYSIS	METHOD	CAD
Acidity	Based on SM2310	\$26.25
Alkalinity*	Titration/Electrode	\$26.25
Anions Br, Chloride F, NO3, NO2, PO4, SO4*	Ion Chromatography/ Colourimetry	\$84.00
Ammonia-N*	Colourimetry	\$31.50
BOD5 - Total/Carbonaceous	Based on APHA 5210B	\$63.00
BTEX/F1	HS GC/MS, GC/FID	\$94.50
BTEX/F1-F2	HS GC/MS, GC/FID	\$147.00
BTEX/F1-F4	HS GC/MS, GC/FID	\$189.00
F4 Gravimetric (C50+)	Gravimetry	\$52.50
Carbon, Dissolved Organic (DOC)	Based on SM 5310C	\$42.00
Carbon, Total Organic (TOC)	Based on SM 5310C	\$47.25
Chemical Oxygen Demand (COD)	Titration or Colourimetry	\$42.00
Conductivity	Electrode Meter	\$15.75
Cyanide, Strong Acid Dissociable (SAD)	Distillation, Colourimetry	\$36.75
Cyanide, Weak Acid Dissociable (WAD)	Distillation, Colourimetry	\$36.75
Cyanide, Free	Distillation, Colourimetry	\$58.00
EPH, Total (TEH), C10 - C30	GC/FID	\$94.50
Hardness (Ca/Mg by ICP/OES)	ICP, Calculation	\$63.00
Nitrogen, Total	Colourimetry	\$36.75
рН	Electrode Meter	\$15.75
Phosphorus, Total	Colourimetry	\$36.75
Phosphorus, Dissolved*	Colourimetry	\$36.75
Solids, Total Dissolved*	Gravimetric	\$31.50
Solids, Total Suspended*	Gravimetric	\$31.50
Turbidity	Nephelometry	\$26.25

^{*}Low level analysis is available upon request.

SOIL & SEDIMENT TESTING

ANALYSIS	METHOD	CAD
BTEX/F1	HS GC/MS, GC/FID	\$94.50
BTEX/F1-F4	HS GC/MS, GC/FID	\$189.00
F4 Gravimetric (C50+)	Gravimetry	\$52.50
Carbon, Total Organic (TOC)	Combustion	\$73.50
Cation Exchange Capacity	BaCl ₂ extn, ICP/OES	\$115.50
C:N Ratio	Combustion	\$194.50
Nitrogen, Total	Ion Chromatography (IC)	\$52.50
Nitrogen, Total Kjeldahl	Digestion, Colourimetry	\$47.25
Organic Matter, Loss on Ignition	Burning and Ashing at 550°C	\$47.25
NPKS Package Nitrogen, Phosphorous, Potassium, and Sulphur	IC, ICP/OES	\$131.25
Particle Size by Sieve	Sieves #4, #10, #40, #200	\$84.00
Salinity Package Soluble EC, pH, Na, Ca, Mg, K, S, Chloride, SO4, Sodium Adsorption Ratio (SAR), Saturation %	Conductivity meter, pH Meter, IC, ICP/OES	\$105.00

Trace Metals

Veritas Group Bureau latest employs the technology to provide high quality trace metal analysis for the mining industry. Bureau Veritas ultra-trace metals packages using an ICP/MS Triple Quadrupole (ICP/MS-QQQ), are designed to meet the lowest possible detection limits and most stringent regulatory criteria.

METALS BY CV-AF, ICP/MS, ICP-CRC/MS, **ICP/MS-QQQ WATER TESTING**

ROUTINE METALS			
Aluminum	Nickel		
Antimony	Phosphorus		
Arsenic	Potassium		
Barium	Selenium		
Beryllium	Silica		
Bismuth	Silver		
Boron	Sodium		
Cadmium	Strontium		
Calcium	Sulphur		
Chromium	Tellurium		
Cobalt	Thallium		
Copper	Tin		
Iron	Titanium		
Lead	Tungsten		
Lithium	Uranium		
Magnesium	Vanadium		
Manganese	Zinc		
Mercury	Zirconium		
Molybdenum			

RARE EARTH METALS
Cerium
Cesium
Dysprosium
Erbium
Europium
Gadolinium
Holmium
Lanthanum
Lutetium
Neodymium
Praseodymium
Samarium
Terbium
Thulium
Ytterbium

PRECIOUS METALS		
Gold		
Iridium		
Palladium		
Platinum		
Rhenium		
Rhodium		
Ruthenium		
OTHER METALS		
OTHER METALS		
OTHER METALS Gallium		
Gallium		
Gallium Lanthanum		
Gallium Lanthanum Niobium		

Ecotoxicology

Ecotoxicology is essential for evaluating the effects of industrial processes on the environment. Bureau Veritas operates three Ecotoxicology laboratories located in Canada: Quebec City, Edmonton and Burnaby. Our team of experts has over 100 years of combined experience in aquatic toxicity testing. Bureau Veritas strives to be your first choice for routine and customized toxicity testing. We provide services ranging from routine compliance testing to projects requiring customized experimental design and interpretive reporting.

ACUTE AND SUBLETHAL TOXICITY

Bureau Veritas offers freshwater acute toxicity tests for effluent discharge monitoring in aquatic ecosystems (rainbow trout, Daphnia magna, threespine stickleback, Microtox®). Sublethal and chronic tests are also offered for Environmental Effects Monitoring of freshwaters including: Ceriodaphnia dubia, fathead minnows, algae, Lemna minor, and marine species including: Echinoderm fertilization, topsmelt, and Champia parvula.

FRESHWATER AND MARINE SEDIMENTS

Bureau Veritas provides effective tools for assessing toxicity sources associated with marine and fresh water sediments (i.e. Hyalella azetca, Chironomus sp, marine amphipods, Neanthes sp., bivalves, and echinoderms). We have considerable experience with testing sediments from contaminated sites or dredged sediments for bioaccumulation potential using organisms such as Lumbriculus varegatus, Macoma nasuta or Nereis virens.

WATER TESTING

ANALYSIS	METHOD	CAD
Daphnia magna 48h Single concentration	EPS 1/RM/14	\$262.50
Daphnia magna 48h LC50	EPS 1/RM/14	\$262.50
Rainbow Trout 96h Single concentration	EPS 1/RM/13	\$367.50
Rainbow Trout 96h LC50	EPS 1/RM/13	\$420.00

FRESHWATER SUBLETHAL/CHRONIC TESTING

ANALYSIS	METHOD	CAD
Ceriodaphnia dubia three brood (dilution series)	EPS 1/RM/21	\$1,890.00
Fathead Minnow 7-d growth	EPS 1/RM/22	\$2,016.00
72-h Green Algae growth Inhibition	EPS 1/RM/25	\$1,470.00
Lemna minor 7-d growth Inhibition (IC25)	EPS 1/RM/37	\$1,312.50

Tissue Analysis

Bureau Veritas performs a wide range of assays on various biota (as is, lyophilized or dried at low temperature beforehand) such as fruits, plants, mussels, liver, fish flesh, etc. Understanding exposure of aquatic organisms such as fish to contaminants can be an important aspect of describing natural concentrations and the impacts of industrial activities. Metal concentrations in tissue can now be analyzed at ultra-low detection limits, as a result of advancement in instrumentation. Bureau Veritas now offers some of the lowest detection limits in Canada, particularly in complex sample matrices.

METALS IN TISSUE CV/AF, ICP/MS, ICP-CRC/MS, ICP/MS-QQQ

TOTAL METALS		
Aluminum	Iron	Silver
Antimony	Lead	Sodium
Arsenic	Lithium	Strontium
Barium	Magnesium	Sulphur
Beryllium	Manganese	Tellurium
Bismuth	Mercury (ICP/MS)	Thallium
Boron	Mercury (CV/AF)	Tin
Cadmium	Molybdenum	Titanium
Calcium	Nickel	Tungsten
Cesium	Phosphorus	Uranium
Chromium	Potassium	Vanadium
Cobalt	Rhudium	Zinc
Copper	Selenium	Zirconium

NON-LETHAL FISH TISSUE ANALYSIS

Following simple and well developed field techniques, non-lethal fish tissue sampling permits sampled fish to be released back into the environment soon after capture. The technique involves surgical removal of a tissue plug from the fish while under sedation, followed by sealing of the wound and immediate release. This technique has allowed stakeholders to introduce corporate policies that reduce lethal fish monitoring as a component of routine monitoring programs, while still meeting the reporting objectives for contaminant loads. Biopsy kits are available from Bureau Veritas along with the tissue vials to facilitate the sample collection and ensure consistent methodologies.

Acid Rock Drainage

Bureau Veritas has participated in the development of acid generation potential testing as well as sulphur speciation to support ARD prediction testing for many years. This testing is used to determine appropriate disposal options for waste rock and tailings to minimize environmental impact.

GENERAL ARD, GEOCHEMICAL & STATIC TESTING

ANALYSIS	METHOD Contact us for quote	
Sample Preparation (charge per kg)		
ABA Package (Modified NP or Standard Sobek NP) includes paste pH, fizz rating, total sulphur (by Leco), NP, MPA, NNP and NPR)	MEND/EPA	
Paste pH or Paste EC (Near Saturation)	MEND	
Rinse pH or Rinse EC (Surface Rinse pH on -2mm fraction)	MEND	
Sulphate Sulphur (S) by HCl (Sulphide S by difference)	ASTM 2492	
Sulphate Sulphur by sodium carbonate extraction	MEND	
Sulphur Speciation - sulphate S and sulphide S (includes insoluble S by difference)	ASTM 2492	
Sulphate Sulphur by pyrolysis (for insoluble sulphate minerals)	MEND	
Inorganic Carbon (CO ₂)	LECO	
Total Carbon	LECO	
NP (Siderite Correction)	Skoussen	
WRA majors using Lithium Borate Fusion	ICP/OES	
WRA majors	XRF	
Trace Metals	Aqua Regia digestion, ICP/MS 4 Acid Digestion, ICP/MS	
Ultratrace Metals	Aqua Regia Digestion and ICP/MS	
Single Addition NAG	AMIRA	
NAG Extract with pH, EC, SO ₄ and ICP/MS scan (includes Hg)	AMIRA	
Sequential NAG (per cycle)	AMIRA	
MEND SFE / SPLP with pH, EC, SO ₄ ,and ICP/MS scan (includes Hg)	MEND	
MWMP with pH, EC, SO ₄ and ICP/MS scan (includes Hg)	ASTM E2242	
Rietveld XRD	Rietveld	
Optical Microscopy on Polished Thin Sections	Optical Microscopy	
QEMSCAN (based on one sample; discounts apply for multiple samples; chemical assays extra)	QEMSCAN/SEM	

WASTE CHARACTERIZATION

Waste characterization and static tests to determine ARD potential include:

- -O Sample preparation
- O Geochemical analysis (sulphur speciation, carbon speciation, WRA, trace metals)
- -O Petrographic examination (Rietveld XRD, optical microscopy on polished thin sections, SEM, QEMSCAN)
- -O Sequential leach extractions and batch extractions
- Acid base accounting (ABA) by any method
- O Pyrolysis methods for sulphur speciation
- -O Single Addition NAG, sequential NAG and NAG Extract
- -O Static water extractions (SPLP, MEND shakeflask extraction, MWMP, TCLP)

KINETIC TESTING

Kinetic tests used to evaluate disposal options and/or confirm acid generation potential and metal leaching using standard or custom test methods include:

- -O MEND humidity cell
- -O ASTM humidity cell
- -O Small and large custom leach columns (lysimeters)
- -O Custom aerobic or anoxic subaqueous disposal columns

Water analysis include:

- —O pH, oxidation/reduction, electrical conductance, total alkalinity, hydroxide alkalinity, carbonate alkalinity, bicarbonate alkalinity, acidity, DOC, TDS, TSS, hardness
- -O Anion analyses such as F, Cl, Br, SO₄, NO₃-, NO₂-, total P, ortho-P, TKN, ammonia-N
- -O Dissolved and total metals analyses by ICP/OES and ICP/MS, Hg by CV/AF

Radiochemistry

Mining and processing of metal ores can generate large quantities of Naturally Occurring Radioactive Materials waste (NORM) located in ore tailings and smelter slag or in concentrates. Rare Earth Elements (REE) are often found in conjunction with uranium and thorium. The production of REEs usually generates large volumes of thorium hydroxide and residues that contain Lead-210 and Radium. Titanium ores often have elevated Thorium and Uranium that are concentrated during the processing. Tantalum usually occurs with Niobium and concentration by gravity methods retains radioisotope contaminants in the concentrate.

Zirconium processing retains contaminating radionuclides which are also frequently found with the concentrate.

Bureau Veritas provides analytical solutions to ensure compliance with Federal and Provincial regulations and Guidelines for the Management of NORM (Health Canada) including:

- -O Analysis for NORM in geological, metallurgical and environmental samples
- -O Waste characterization
- -O Comprehensive MMER compliance including analysis of Radium-226

WATER TESTING

ANALYSIS	LEAD TIME (DAYS)	DETECTION LIMIT	CAD
Cesium-137 and lodine-131	10	1 Bq/L	\$125.00
Gamma Spectroscopy (Th-234, Th-230, Pb-212, Ra-228, Ra-226, Pb-210, U-235)	10	various Bq/L	\$160.00
Lead-210	20	0.01 Bq/L	\$190.00
Polonium-210	10	0.01 Bq/L	\$150.00
Radium-226	10	0.1 Bq/L	\$135.00
Radium-228	12	10 Bq/L	\$235.00
Radon-222	10	10 mg/L	\$90.00
Solids, Total Dissolved (TDS)	10	0.01 Bq/L	\$31.50
Strontium-90	10	0.01 Bq/L	\$300.00
Th-232 in Bq/L by ICP/OES	10	0.01 Bq/L	\$42.00
Thorium Isotopes (Th-228, Th-230, and Th-232)	10	0.01 Bq/L	\$180.00
Thorium-230	10	0.01 Bq/L	\$180.00

Neutron Activation Analysis (NAA)

NAA is a highly sensitive, accurate technique used for quantitative analysis of major, minor, and trace elements. This multi-element method requires no or minimal sample preparation and is suitable for solids, liquids, gases, mixtures, and suspensions. Neutron activation analysis has applications in geological samples (coal, ore, rock, sediment, vegetation).

Advantages of trace elements by NAA include:

- Acknowledged "referee method" generally free of matrix effects or contamination from laboratory chemicals
- No or minimal sample preparation making it amenable for analysis of complicated or difficult matrices
- -O Multi-element analysis one method can analyze 30+ elements
- —O Analyzes total element content (vs. digestion procedures)

- -O Sensitivity to parts-per-billion for specific elements
- -O Milligram-small sample size (mg); where samples are precious or limited
- -O Customizable analysis to meet customer's precise needs

Applications of trace element by neutron activation analysis include:

- -o Geological surveys
- Platinum group elements
- -O Halogen analysis (Cl, Br, I)
- -O Coal testing
- -O Analysis of difficult or complicated matrices

INSTRUMENTAL NEUTRON ACTIVATION ANALYSIS (INAA)

INAA is an excellent alternative for matrices that don't work with other methods and also for a secondary verification of results generated by other techniques.

CODE	ELEM	DETECTION LIMIT	ELEM	DETECTION LIMIT	CAD
NA-LLE-S	Total determ	ination of Au by gamma ray analysis	s after nuclear irradiation	ı, 35 elements, 10–30 g	\$50.00
	Ag	5 ppm	Мо	1 ppm	
	As	0.5 ppm	Na	0.01 %	
	Au	2 ppb	Nd	5 ppm	
	Ва	50 ppm	Ni	100 ppm	
	Br	0.5 ppm	Rb	15 ppm	
	Ca	1 %	Sb	0.1 ppm	
	Се	3 ppm	Sc	0.1 ppm	
	Со	1 ppm	Se	3 ppm	
	Cr	5 ppm	Sm	0.1 ppm	
	Cs	1 ppm	Sn	0.01 %	
	Eu	0.2 ppm	Sr	0.05 %	
	Fe	0.01 %	Та	0.5 ppm	
	Hf	1 ppm	Tb	0.5 ppm	
	Hg	1 ppm	Th	0.2 ppm	
	Ir	5 ppb	U	0.5 ppm	
	La	0.5 ppm	W	1 ppm	
	Lu	0.05 ppm	Yb	0.2 ppm	
			Zn	50 ppm	

CAD		ELEM	CODE
\$43.00	Shipping charges may apply	Cl	NA-CL

NEUTRON ACTIVATION-PLATINUM GROUP ELEMENTS-SOLID (NA-PGE-S)

Samples are subjected to a nickel-sulphide fire assay pre-concentration followed by irradiation and analysis on the sulphide precipitate.

	ELEM	DETECTION LIMIT	UPPER LIMIT	CAD
Full Package				\$178.50
	Au	1 ppb	1 ppm	
	Pt	20 ppb	10 ppm	
	Pd	20 ppb	10 ppm	
	Partial Package			\$157.50
	Rh	5 ppb	1 ppm	
	Ru	50 ppb	20 ppm	
	lr	1 ppb	1 ppm	
	Os	10 ppb	1 ppm	

Industrial Hygiene

Our most popular tests for the mining industry include:

- Particulate (total and respirable)
- Respirable crystalline silica
- Diesel particulate (elemental and organic carbon)
- Mercury
- Metals
- Acids, especially sulphuric acid
- Other sulphur compounds (hydrogen sulphide, sulphur dioxide, carbon disulphide)

Bureau Veritas has been providing analytical support to the industrial hygiene sector, including mining clients, for more than 55 years. We are accredited by the American Industrial Association Hygiene Laboratory Accreditation Program (AIHA-LAP,LLC) for a wide range of tests in the industrial hygiene and environmental lead programs. Bureau Veritas offers analysis for the majority of methods published by OSHA and NIOSH. We also perform methods promulgated by the Environmental Protection Agency (EPA), ASTM, ISO, and published journal methods.

AIR TESTING

ANALYSIS	METHOD	CAD
Ammonia	NIOSH 6016	\$79.46
Diesel particulate matter (DPM)	NIOSH 5040	\$79.46
Jewel Impactor for DPM (if required)	NIOSH 5040	\$61.65
Hydrogen Cyanide	NIOSH 6010	\$116.45
Isocyanates scan (2,4-TDI, 2,6-TDI, MDI, HDI, IPDI)	OSHA 42/47 /PV2034	\$267.15
Mercury (vapour)	NIOSH 6009	\$75.35
Mercury (particulate)	OSHA ID-145	\$75.35
Oils/Lubricants/Metal-working fluids	NIOSH 5524	\$93.20
Quartz, crystalline silica	NIOSH 7500	\$89.05
Respirable Dust	NIOSH 0600	\$27.40
Single metal (Lead, Manganese)	NIOSH 7303 or OSHA ID-125G	\$43.84
Styrene	NIOSH 1501 or OSHA 89	\$65.76
Welding fume scan (13 metals)	OSHA ID-125G	\$198.65

Our laboratory can offer additional price options for collecting vapours on badges or combining multiple analyses on a single sample. Contact us for a personalized price quotation. We analyze over 1,300 industrial hygiene contaminants, in addition to those listed above. Check our sampling guide at www.maxxamlabs.com/sampling-guide or contact us at +1 800 806 5887.

MICROSCOPY

Bureau Veritas' microscopy laboratory has more than 30 years of experience supporting site investigations, remedial investigations, and other mining industry testing needs. Our microscopy group takes pride in providing unique solutions to challenging problems through materials characterization and mineral identification. We can determine sample composition, fiber and particle size, foreign substances or physical defects, material origination, and various other properties.

Our laboratory offers a range of applications for the mining industry:

- -O Worker exposure testing
- -O Minerals identification
- -O Regulated asbestos in air, bulk and dust samples
- Non-regulated amphiboles
- Talc, erionite, and other minerals

AIR TESTING

ANALYSIS	MATRIX	METHOD	CAD
Asbestos Fibers	Air	NIOSH 7402	\$192.00
Asbestos and Other Fibers	Air	NIOSH 7400A	\$23.00

INORGANIC MATERIALS CHARACTERIZATION

ANALYSIS	MATRIX	METHOD	CAD
PLM Materials Characterization	Bulk	EPA-600/R-93/116	\$274.00
TEM Materials Characterization	Air & Bulk	EPA-600/R-93/116	\$480.00
SEM Materials Characterization	Air & Bulk	SEM MC	\$548.00

MINERALS CHARACTERIZATION

ANALYSIS	MATRIX	METHOD	CAD
Erionite	Air & Bulk	TEM Semi-quantitative	\$274.00
Talc	Air & Bulk	Contact us for details	by quote
Other minerals	Air & Bulk	Contact us for details	by quote

Ambient Air Quality

Particulates and metals

AMBIENT AIR MONITORING

Bureau Veritas offers the sampling media and analyses for particulates as TSP or PM10 collected on pre-weighed quartz hi-vol filters (8" x 10") or PM2.5 on 47 mm Teflon filters. A series of metals can be tested subsequently from the same filter either by ICP/Axial or ICP/MS. The reference methods are US EPA IO-2 and IO-3. We also offer dustfall measurement using methods based on ASTM 1739 (as deposited particulate and metals content).

AIR TESTING

ANALYSIS	METHOD	CAD
Metals scan by ICP/Axial or ICP/MS	US EPA IO-3	\$95.00
PM2.5 on 47 mm Teflon filter (includes filter)	US EPA IO-2	\$50.00
TSP or PM10 on hi-vol quartz filter (includes filter)	US EPA IO-2	\$55.00

Organics

AMBIENT AIR MEASUREMENT

From preparation of field sampling media to the collection of air and the subsequent analysis, Bureau Veritas has extensive experience in all phases of testing of ambient air sources. For over 25 years, we has been active in the measurement of a large number of compounds in ambient air including Dioxins and Furans (EPA TO9), PCBs (TO4), semi-volatiles (TO13) and emerging Persistent Organic Pollutants (POPs). We offer methods TO14, TO15 and TO17 for volatile organics using Tedlar bags, thermal desorption tubes and low-level VOCs using SUMMA® canisters.

AIR TESTING

ANALYSIS	METHOD	CAD
Dioxins and Furans on PUF (included)	US EPA TO9	\$950.00
PAHs - selected list on PUF (included)	US EPA TO13	\$350.00
PCBs as congeners on PUF (included)	US EPA TO4	\$675.00
VOCs by SUMMA canister (rental included; selected list of VOCs)	US EPA TO14 or TO15	\$465.00
VOCs by TD Tube (selected list)	US EPA TO17	\$375.00

Mobile Trailers

On-Site Ambient Air Monitoring

Bureau Veritas provides -site measurement of ambient air pollutants for industry. government agencies regional airshed monitoring programs. extensive fleet of air monitoring trailers measurement provides fixed gases, meteorological parameters, combustion gases, volatile organics, particulates and hydrocarbons.

AIR TESTING REQUIREMENTS

- License requirement monitoring
- Detailed trace level pollutant studies
- Odour monitoring
- Particulate studies
- -O Long or short term projects in urban or remote locations
- Equipment rental and repair, calibration, maintenance or audit services

COMPRESSED BREATHING GAS

Mine sites can have multiple activities that require compressed breathing gas including firefighting, confined or hazardous spaces entry and medical applications. Compressed air used for human consumption must meet stringent quality testing requirements (in accordance with CSA standard Z180 among others). Bureau Veritas has decades of experience with the analysis of compressed breathing gas and is ready to support our customers with the sample collection equipment, scheduling and the analyses required to maintain their On-Site supply.

ANALYSIS	MATRIX	METHOD	CAD
Complies with CSA Standard Z180.1 list of parameters and includes sampling cylinder	Air	CSA Z180.1	\$325.00

Excerpts from General Conditions of Service

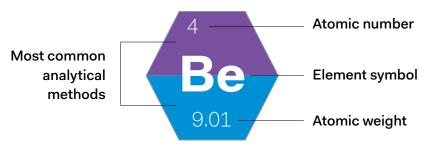
The following are some of the key terms and conditions that apply to the services to be provided by Bureau Veritas. Please refer to the Maxxam Analytics Website for full set of Terms and Conditions (www.maxxam.ca/terms/)

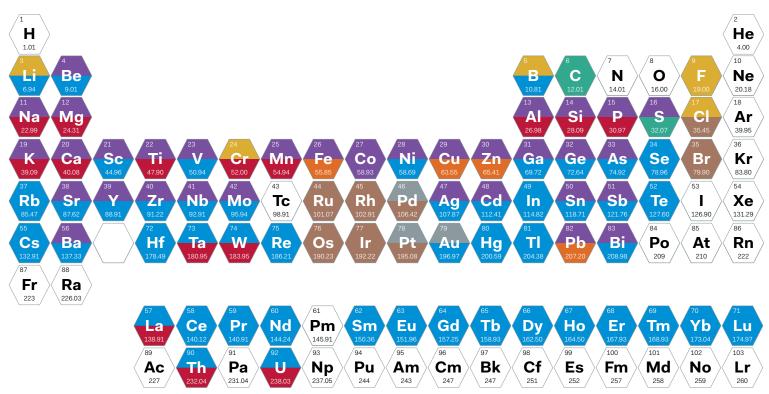
1. Fees and Payment

- Prices quoted are based on standard TAT unless otherwise specified. Applicable taxes, sample container and disposal fees will be added to services costs. A minimum per Job charge may be applied to cover courier, containers, shipping, project set-up, quality control samples and project administration expenses.
- 1.2 A charge may apply for containers ordered but not returned to Bureau Veritas.
- 1.3 Rental Sampling Equipment Sampling supplies including summa canisters, compressed breathing air cylinders, air media, glassware and pumps are provided to the Client for a rental fee or as part of an analytical package. The Client assumes full responsibility for replacement costs.
- 1.4 Bureau Veritas requires a credit application to be completed to set up an account, and updated credit information provided on an annual or as requested basis. Based on the result of the credit application an appropriate credit limit will be established. Bureau Veritas reserves the right to withhold data or refuse samples once Client's credit limit has been reached or payment terms exceeded.
- 1.5 Payment terms are net 30 days, 1.5% service charge per month on overdue accounts. Accounts overdue by 90 days or more may be referred to a collection agency.
- 1.6 Published prices for analytical services may be subject to change without prior notice.

2. Change Orders, Termination

- 2.1 Changes to scope of work, including but not limited to increasing or decreasing the work, changing test and analysis specification, turnaround time schedule, or pricing can be made following Sample Acceptance upon agreement between Bureau Veritas and Client in writing. Additional charges may apply.
- 2.2 Termination of the work may be ordered by Client at any time. Bureau Veritas will complete all work in progress and Client will compensate Bureau Veritas for all work performed, plus expenses incurred for portion of the work terminated by Client.


3. Warranties and Liability


- 3.1 Accreditation. Bureau Veritas laboratories are recognized as Accredited Laboratories for specific tests by the Standards Council of Canada (SCC), the Canadian Analytical Laboratories Association (CALA) and/or the Ministry of Sustainable Development, Environment and Climate Change (MDDELCC).
- 3.2 Indemnification. Bureau Veritas's sole responsibility is to perform its Services in accordance with commonly accepted professional standards using accepted, and where applicable, accredited testing methodologies and procedures, unless lesser standards or methods are prescribed by the client or deemed scientifically appropriate in Bureau Veritas's judgement. Bureau Veritas's liability in connection with the performance or non-performance of Services is to the Client only, and does not extend to the Client's or Bureau Veritas's successors, assigns, associates, affiliates, officers, employees, directors, contractors, customers or to any other thirdparty, and is limited to the actual cost of the specific analysis included in the Services. Bureau Veritas has no liability whatsoever for indirect, consequential, exemplary, incidental, special or punitive damages including lost profits, even if Bureau Veritas has been advised of the possibility of such damages. Except as aforesaid, Bureau Veritas disclaims all warranties, express or implied, including without limitation any warranties of merchantability or fitness for a particular purpose. The client agrees to indemnify and hold Bureau Veritas harmless from all claims, damages and losses including the cost of defence in connection with or arising out of performance of the Services, except only as aforesaid. In the event that Bureau Veritas is required to respond to legal process related to Services provided to Client, Client agrees to reimburse Bureau Veritas for expenses incurred in preparation for and defense of Bureau Veritas's work.

4. Confidential Information

4.1 All results and information obtained by Bureau Veritas will be held in strict confidence unless (i) the Client directs otherwise in writing, (ii) any disclosed information is at the time of its disclosure or subsequently become generally available to the public without breach of any confidentiality agreement by Bureau Veritas, or (iii) disclosure is compelled by law.

Periodic Table of Elements

Common Analytical Methods

Lead Collection Fire Assay ICP Atomic Emission Spectroscopy Atomic Absorption Spectroscopy ICP Mass Spectroscopy Fusion / Wet Assay Procedures Leco Analysis Lithium Borate Fusion / X-Ray Fluorescence **Instrumental Neutron Activation Analysis**

PERITO MORENOTel: +54 11 663 26402

• CARDIFF Tel: +61 2 4902 4858

• KALGOORLIE
Tel: +61 8 9021 7155

PERTH
Tel: +61 8 6218 5700

WHYALLATel: +61 8 8647 6500

■ BURNABY, BC
Tel: +1 604 734 7276
Toll free: +1 800 665 8566
■ CALGARY, AB
Tel: +1 403 291 3077
Toll free: +1 800 386 7247

COURTENAY, BC
Tel: +1 250 338 7786
Toll free: +1 877 533 3313

EDMONTON, ABTel: +1 780 577 7100
Toll free: +1 800 386 7247

■ **GRANDE PRAIRIE, AB** Tel: +1 780 532 0227

LONDON, ON Tel: +1 519 652 9444 Toll free: +1 800 268 7396

MISSISSAUGA, ON
Environmental Services, Main Office
Tel: +1 905 817 5700
Toll free: +1 800 563 6266
mining@maxxam.ca

MONTREAL, QC
Tel: +1 514 448 9001
Toll free: +1 877 462 9926

OTTAWA, ON
Tel: +1 613 274 0573
Toll free: +1 877 480 7272

PORT HOPE, ON
Tel: +1 905 885 8080

QUEBEC CITY, QC Tel: +1 418 658 5784

REGINA, SK
Tel: +1 306 565 1008
Toll free: +1 800 386 7247

RICHMOND, BC
 Metallurgical & Mineralogical Services
 Tel: +1 604 272 8110
 metallurgy@ca.bureauveritas.com

SAGUENAY, QC Tel: +1 418 543 3788

■ SASKATOON, SK Tel: +1 306 249 1014 Toll free: +1 800 386 7247

ST. JOHN'S, NL Tel: +1 709 754 0203 Toll free: +1 888 492 7227

SUDBURY, ON Tel: +1 705 674 5700

SYDNEY, NS Tel: +1 902 567 1255

TIMMINS, ON Tel: +1 705 360 5232

THUNDER BAY, ON Tel: +1 807 356 5148

VANCOUVER, BC Geoanalytical Services, Main Office Tel: +1 604 253 3158 Toll free: +1 800 990 2263 bvmininfo@ca.bureauveritas.com

VICTORIA, BC Tel: +1 250 385 6112 Toll free: +1 866 385 6112

WINNIPEG, MB Tel: +1 204 772 7276 Toll free: +1 866 800 6208

WHITEHORSE, YK Tel: +1 867 393 4725 ■ Tel: +1 867 393 2466 YELLOWKNIFE, NWT Tel: +1 867 445 2448

CHILE SANTIAGO Tel: +56 2 3502100

> COQUIMBO Tel: +52 2 23502100

DOMINICAN REPUBLIC MAIMON

Tel: +809 551 2011

ECUADOR QUITO Tel: +593 2 282 9407

GUATEMALA GUATEMALA CITY Tel: +502 24774 795

> **GUYANA** GEORGETOWN Tel: +592 270 4393

IVORY COAST ABIDJAN Tel: +22 52 35 35 323

MALI BAMAKO Tel: +22 37 64 29 914

MEXICO CABORCA Tel: +52 637 372 6521

> DURANGO Tel: +52 618 810 3974

HERMOSILLO Tel: +52 662 260 3057

NICARAGUA MANAGUA CITY Tel: +505 22522 135

PERU LIMA & AREQUIPA Tel: +51 1 613 8080

POLAND KRAKOW Tel: +48 601 306 201

SOUTH AFRICA PRETORIA Tel: +27 12 94 00 911

TURKEY \dot{c} ANKARA Tel: +90 312 866 3466/3539

USA CHICAGO +1847726-3320 Toll free: +1 888 576 7522

> DETROIT +1 248 344-2652 Toll free: +1 800 806 5887

ELKO Tel: +1 775 777 1438

FAIRBANKS Tel: +1 775 303 8896

JUNEAU

Tel: +1 907 750 1734 RENO (Sparks)

Tel: +1 775 359 6311

KENNESAW +1 770 499 7701 Toll free: +1 800 252 9919

Find your local lab offices www.bureauveritas.com/um www.maxxam.ca

Oxides Conversion Factors			
ELEMENT	CONVERSION FACTOR	OXIDE	
Al	1.889	Al ₂ O ₃	
Ва	1.669	BaSO ₄	
	1.116	BaO	
Ве	2.775	BeO	
С	3.666	CO ₂	
Ca	1.399	CaO	
Ca	2.497	CaCO ₃	
Cr	1.461	Cr ₂ O ₃	
F	2.055	CaF ₂	
	1.286	FeO	
Fe	1.430	Fe ₂ O ₃	
K	1.205	K ₂ O	
	1.658	MgO	
Mg	3.468	MgCO ₃	
Mn	1.291	MnO	
Na	1.348	Na ₂ O	
Nb	1.431	Nb ₂ O ₅	
Ni	1.273	NiO	
P	2.291	P ₂ O ₅	
Pb	1.077	PbO	
Rb	1.094	Rb ₂ O	
S	2.497	SO ₃	
3	2.996	SO ₄	
Si	2.139	SiO ₂	
Sn	1.270	SnO ₂	
Sr	1.185	SrO	
Та	1.221	Ta ₂ O ₅	
Th	1.138	ThO ₂	
Ti	1.668	TiO ₂	
U	1.179	U ₃ O ₈	
V	1.785	V ₂ O ₅	
W	1.261	WO ₃	
Y	1.270	Y ₂ O ₃	
Zn	1.244	ZnO	
Zr	1.351	ZrO ₂	
1 -364	The state of the s	- 1	

Oxides Conversion Factors Mesh to Micron Conversion Chart

OPENING	US STANDARD	TYLER
2.00mm	10	9
1.70mm	12	10
1.40mm	14	12
1.18mm	16	14
1.00mm	18	16
850µm	20	20
710µm	25	24
600µm	30	28
500μm	35	32
425µm	40	35
355µm	45	42
300µm	50	48
250µm	60	60
212µm	70	65
180µm	80	80
150µm	100	100
125µm	120	115
106µm	140	150
90µm	170	170
75µm	200	200
63µm	230	250
53µm	270	270
45µm	325	325
38µm	400	400

Assay valuations

VALUE	PARTS PER MILLION (ppm)	METRIC TONNE	SHORT TON	LONG TON
1 Gram / MT	1	0.03215	0.02917	0.03266
1 Troy oz / MT	31.104	1	0.9072	1.106
1 Troy oz / ST	34.286	1.1023	1	1.120
1 Troy oz / LT	30.612	0.9842	0.8929	1

CONVERSION FOR WEIGHTS	TROY OZ.	AVOIRDUPOIS OZ.	GRAMS
1 Troy oz.	1	1.0971	31.104
1 Avoirdupois oz.	0.91146	1	28.35
1 Gram	0.03215	0.03527	1

1 Metric Tonne (MT) = 1000 kilograms = 2204.6 pounds

1 Short Ton (ST) = 907.2 kilograms = 2000 pounds

1 Long Ton (LT) = 1016 kilograms = 2240 pounds