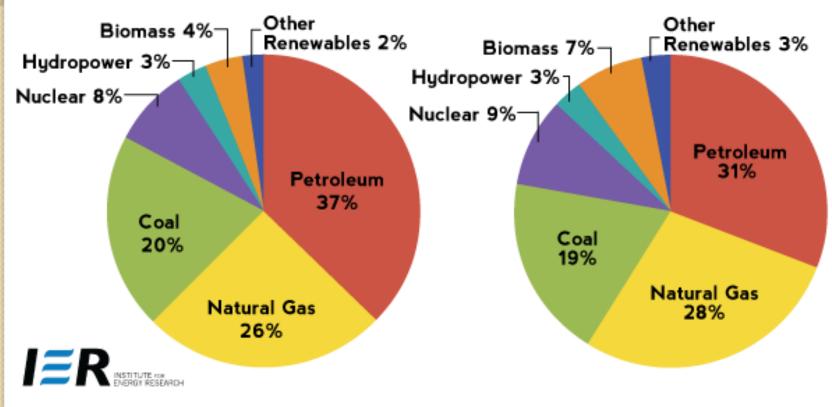
Shale Gas Development in Canada

O

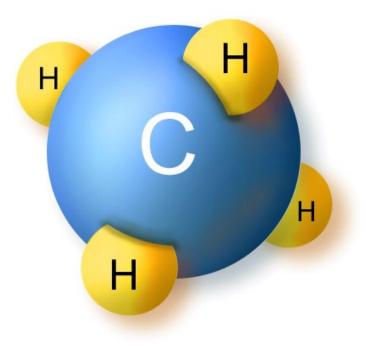
Potential Health Risks

33rd Yukon Legislative Assembly May 27th, 2014

> Lalita Bharadwaj, PhD School of Public Health University of Sas UNIVERSITY OF SASKATCHEWAN


Outline of Presentation

- Brief Overview: Public Understanding
 - What is Natural Gas?
 - Where is it found?
 - Conventional vs Unconventional
 - Shale gas and Hydraulic Fracturing
- Potential Sources of Contamination
- Principles of Toxicology:
 - Understanding Risks to Human Health
- Knowledge Gaps


World: Energy Consumption

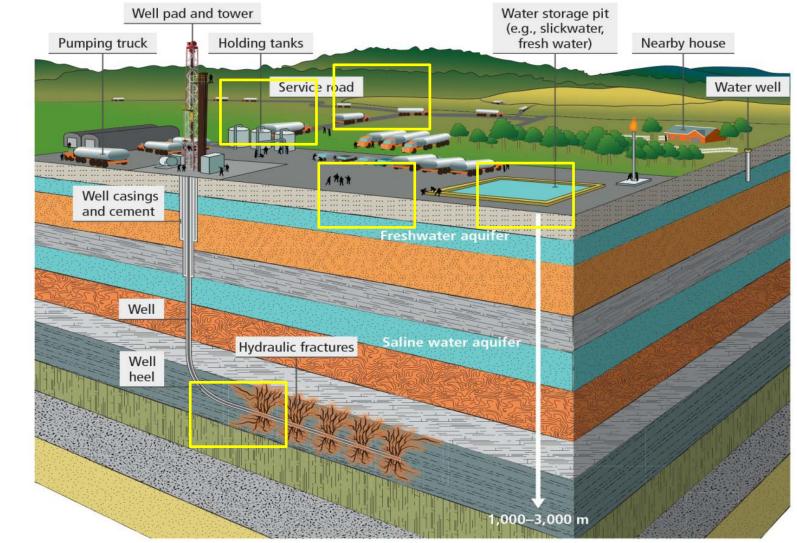
2011

2040


Natural Gas

- Fossil Fuel
- Clean, Safe Energy
- Hydrocarbon (HC)
 - PrimarilyMethane
 - Other HC:
 - Ethane, Propane, Butane
 - Impurities:
 - Water, Oil, Sulphur, CO2, and others.

- CO2- Horn River
- Well Completions/Leakages

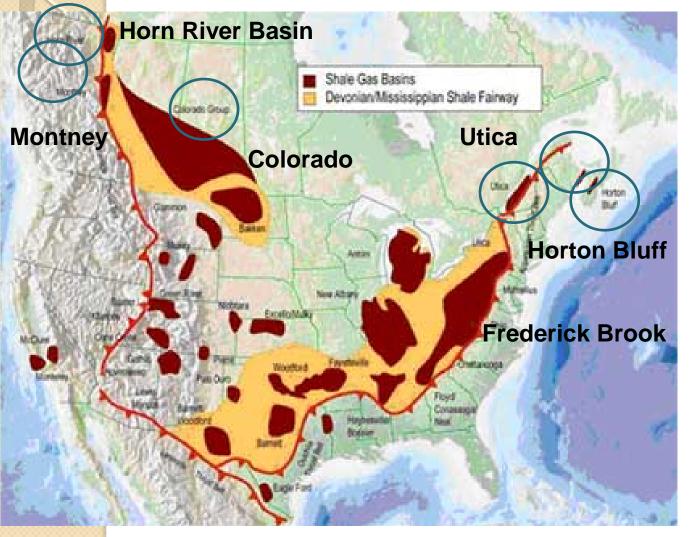

Natural Gas: Geological Formations

Unconventional

Ocean deep lake sediments

Conventional and Unconventional Natural Gas

CCA (2014) Environmental Impacts of Shale Gas Extraction in Canada. Ottawa Ontario (ON): The Expert Panel on Harnessing Science and Technology to Understand the Environmental Impacts of Shale Gas Extraction, Council of Canadian Academies.


24/7

Shale Gas Infrastructure: Northeastern British Columbia

CCA (2014) Environmental Impacts of Shale Gas Extraction in Canada. Ottawa Ontario (ON): The Expert Panel on Harnessing Science and Technology to Understand the Environmental Impacts of Shale Gas Extraction, Council of Canadian Academies.

Shale Gas

- Biogenic (shallow depths)
- Thermogenic
 - Primary Shale Gas
- Sweet
- Dry
- Wet

Shale Gas Development

Seismic Exploration

 Geological Characterization

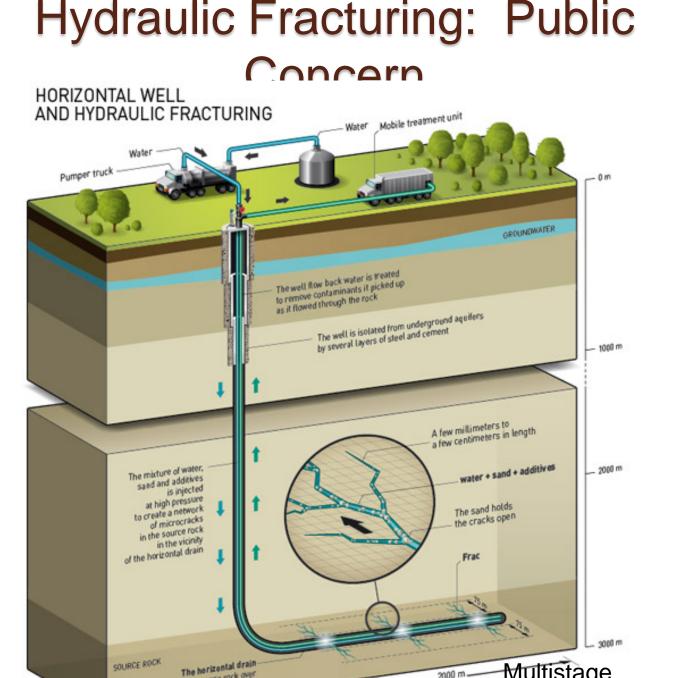
Site Preparation

- Land Clearing (Pad)
 Drilling
- Borehole

Well Completion

- Casing installment
- Cementing

Production


- Hydraulic Fracturing
 Re-Stimulation
- Re-fracturing (40 years)

Abandonment

- Cement Plug
- Restoration of site.

High Pressure Fluid Injection Fluid Design

permits exposure to the source rock over

a distance of several thousand meters

Multistage

Sequential Perforation

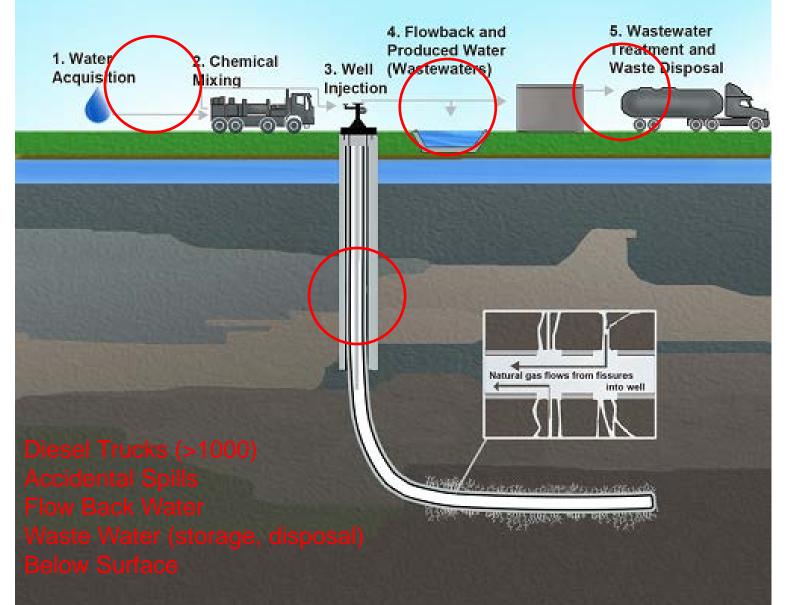
2000 m.

Drilling Rig in Rural Area

CCA (2014) Environmental Impacts of Shale Gas Extraction in Canada. Ottawa Ontario (ON): The Expert Panel on Harnessing Science and Technology to Understand the Environmental Impacts of Shale Gas Extraction, Council of Canadian Academies.

Courtesy of www.marcellus-shale.us/

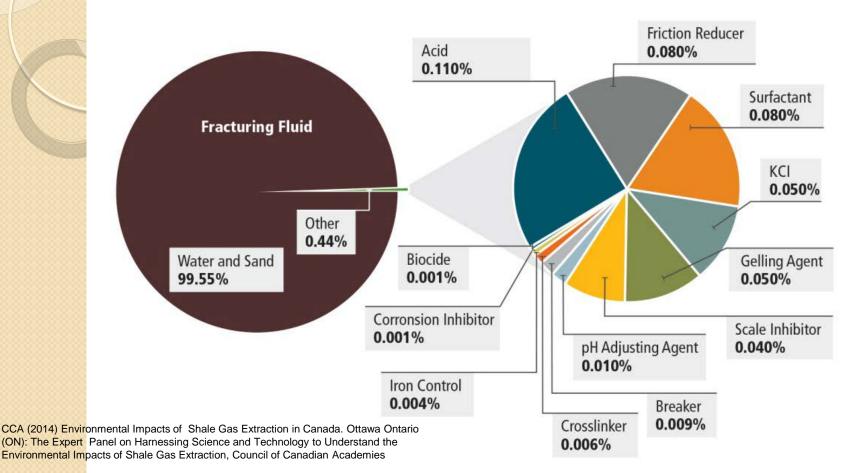
from:www.fractracker.org


Well Pad: Completion and Restoration

CCA (2014) Environmental Impacts of Shale Gas Extraction in Canada. Ottawa Ontario (ON): The Expert Panel on Harnessing Science and Technology to Understand the Environmental Impacts of Shale Gas Extraction, Council of Canadian Academies.

Courtesy of Nexen Energy ULC

Potential Sources of Contamination: Pathways of Development



Potential Sources of Contamination Potential Gas Migration Paths along a Well а. Well Casing Cement Fill Ь. Formation Cement Well Plug Rock C. d. e.

Source: Alberta Energy Utilities Board

Fracturing Fluid Composition

Water

2000m3 – Fracturing Stage

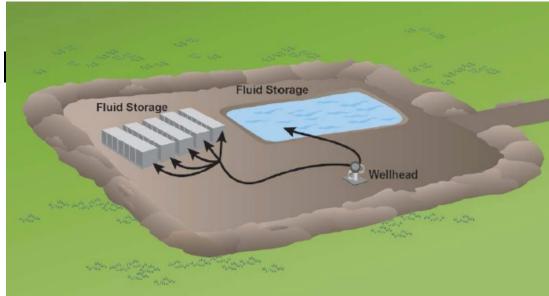
- 20 backyard pools
- 15,000 to 20,000m3 Water/well
- 200 backyard pools

Adapted with permission from Arthur et al., 2008

20,000m3 Total Fracturing Fluid

1 million kg proppant 80m3 acid, 900kg Friction reducer, 700kg disinfectant, 0.2m corrosion inhibitor Water Sand

Purpose: Reduce Friction Lower Viscosity Suspend Sand Disinfection


Typical Chemical Additives Used in Frac Water Slickwater

Compound	Purpose	Common application	
Acids	Helps dissolve minerals and initiate fissure in rock (pre-fracture)	Swimming pool cleaner	
Sodium Chloride	Allows a delayed breakdown of the gel polymer chains	Table salt	
Polyacry lamide	Minimizes the friction between fluid and pipe	Water treatment, soil conditioner	
Ethylene Glycol	Prevents scale deposits in the pipe	Automotive anti-freeze, deicing agent, household cleaners	
Borate Salts	Maintains fluid viscosity as temperature increases	Laundry detergent, hand soap, cosmetics	
Sodium/Potassium Carbonate	Maintains effectiveness of other components, such as crosslinkers	Washing soda, detergent, soap, water softener, glass, ceramics	
Glutaraldehyde	Eliminates bacteria in the water	Disinfectant, sterilization of medical and dental equipment	
Guar Gum	Thickens the water to suspend the sand	Thickener in cosmetics, baked goods, ice cream, toothpaste, sauces	
Citric Acid	Prevents precipitation of metal oxides	Food additive; food and beverages; lemon juice	
Isopropanol Used to increase the viscosity of the fracture fluid		Glass cleaner, antiperspirant, hair coloring	

Source: DOE, GWPC: Modern Gas Shale Development in the United States: A Primer (2009).

Flow Back Water

- Fracturing fluid
- Dissolved solids (TDS)
- Naturally Occurring Radioactive Materials
 - (NORMS)
- Trace metal

Air Emissions

		Substance	Source	Impact			
		NOx, SOx, VOCs	Diesel engines, natural gas compressors, fluid evaporation	Ozone precursors (smog)			
		BTEX (VOC)	Venting, fugitive emissions, flaring, fluid evaporation	Air Quality			
		Particulates (PM 2.5 µM)	Diesel engines, flaring	Air Quality			
		Methane	Venting, fugitive emissions	GHG emissions			
		CO2	Diesel aggregates, flaring, fugitive emissions	GHG emissions			
• • • • • • • • • • • • • • • • • • • •			SO3-volcanoes				
NO, m N2O-laug Forest fire	ghing	02-red/brown haze SO2	flaring, fugitive	GHG emissions			

Canadian Air Quality Management System

- Improving air quality in Canada
- Establish Canadian Ambient Air Quality Standards (CAAQS)
- Address emissions from mobile sources.
 - reduce emissions with technologies, vehicle maintenance, and to reduce emissions from in-use diesel vehicles and engines, by greening fleets
- Base-level Industrial Emissions Requirements (BLIERs)
 - Emissions requirements proposed for new and existing major industrial sectors

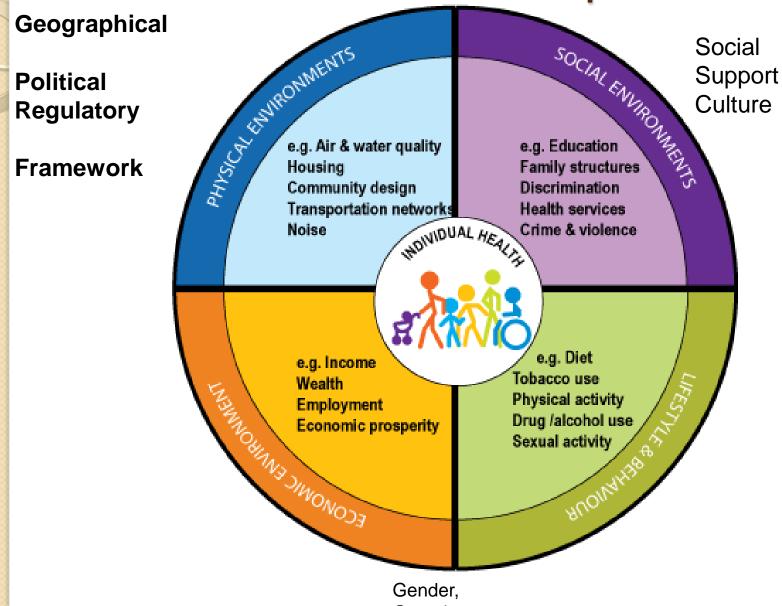
Canadian Ambient Air Quality Standards (CAAQS) Fine Particulate Matter (PM2.5) and Ozone (June 2000)

	Management Actions	Proposed Air Management Threshold Values						
Management Level		Ozone (ppb)		PM _{2.5} Annual (µg/m³)		ΡΜ _{2.5} 24h (μg/m³)		
		2015	2020	2015	2020	2015	2020	
RED	Actions for Achieving Air Zone CAAQS							
Threshold		63 ppb	62 ppb	10.0 µg/m3	8.8 µg/m3	28 µg/m3	27 µg/m3	
ORANGE	Actions for Preventing CAAQS Exceedance							
Threshold		56	opb	6.4 µg	/m3	19	µg/m3	
YELLOW	YELLOW Actions for Preventing AQ Deterioration							
Threshold		50	opb	4.0 µg	/m3	10	µg/m3	
GREEN	Actions for Keeping Clean Areas Clean							

Summary: Chemicals of Concern

- Hydro-fracturing Chemicals
- Air Pollutants
- Hydrocarbons and Gases present in Shale
- Natural constituents of Flow Back Water
- Mixtures of Chemicals
- Chemical Reactions between chemicals:
 - New Chemicals of concern.

- Frequency and Intensity of development
- Ambient environmental conditions
- Geology

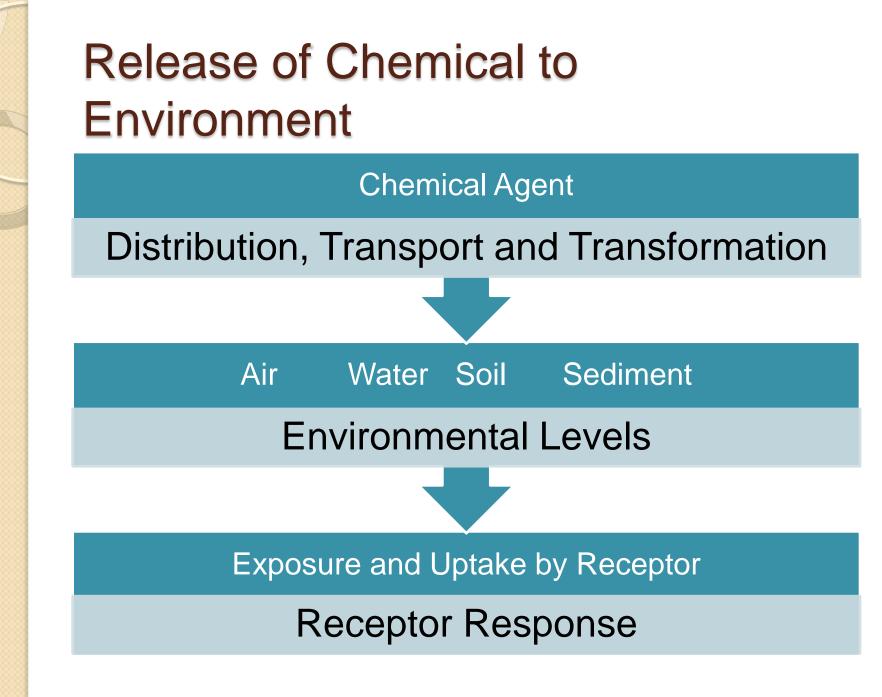

Reasons given by those not in favor of UGD

(Goldstein et al, Env HIth Persp 120:483-486, 2012)

Washington, PA public meeting with Natural Gas Subcommittee of the Secretary of Energy Advisory Board. N=59

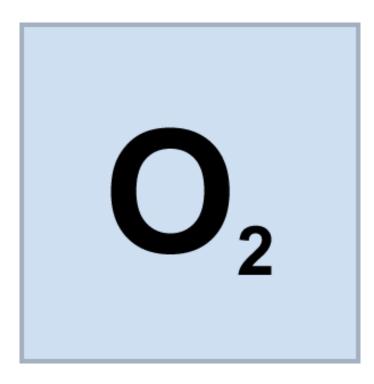
Reason	Percent (%)		
Environmental Concerns	76.3		
Negative Effects on Water	66.1		
Negative Effects on Air	42.4		
Chemicals in Water	30.5		
General Health Concerns	61.0		
Health Problem in Family member attributed to drilling	20.3		
Personal legal rights have been infringed upon by companies	11.9		
Concerns about safety of drilling operations	33.9		
Concerns about lack of regulation of industry	42.4		
Bias, conflict of interest, or lack of expertise in desired subject area by members of the committee	18.6		
Export of domestic natural gas resources	10.2		
Depreciation in property values	3 4		

Human Health: Shale Gas Development


What are Potential Health Risks?

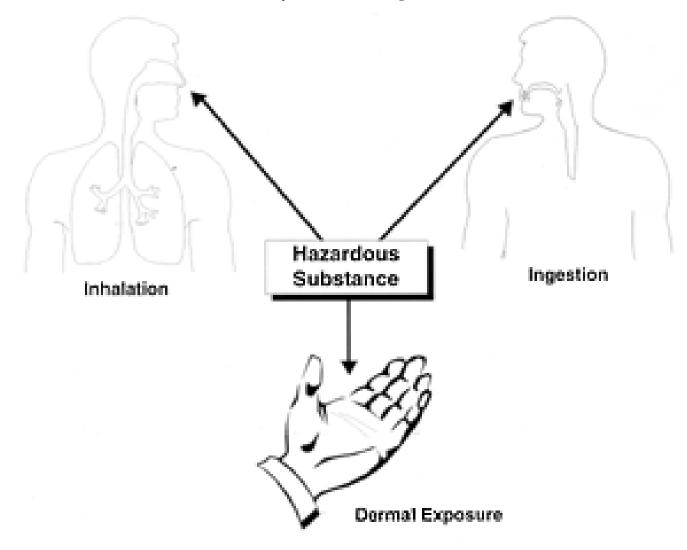
- Direct
 - Physical
- Indirect
 - Well-being
 - Cultural
 - Social
 - Psychological
 - Economic
 - Equity

Nature Magnitude, Frequency and Intensity of Development



Chemical and Physical Properties

Oxygen



Human Exposure Pathways

Exposure Pathways

Evidence of Exposure

2009

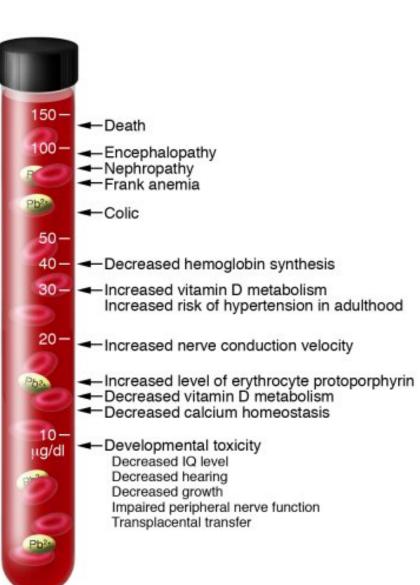
Fourth National Report on Human Exposure to Environmental Chemicals

Executive Summary

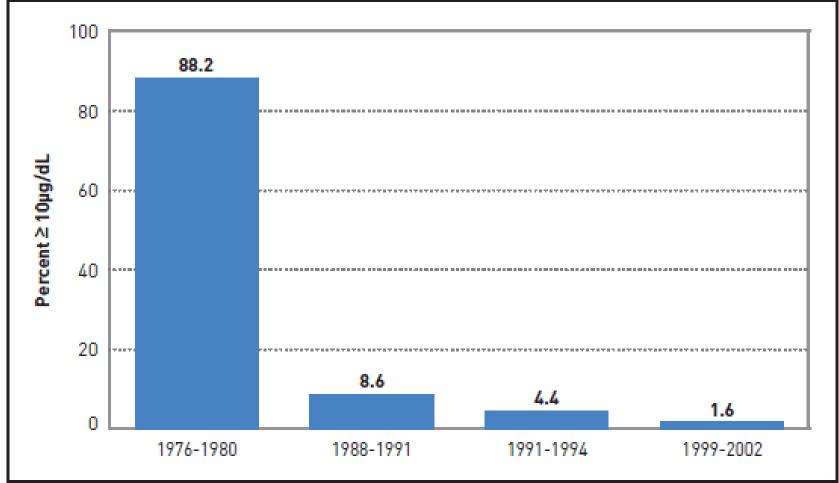
Department of Health and Human Services Centers for Disease Control and Prevention National Center for Environmental Health

What is a toxic agent?

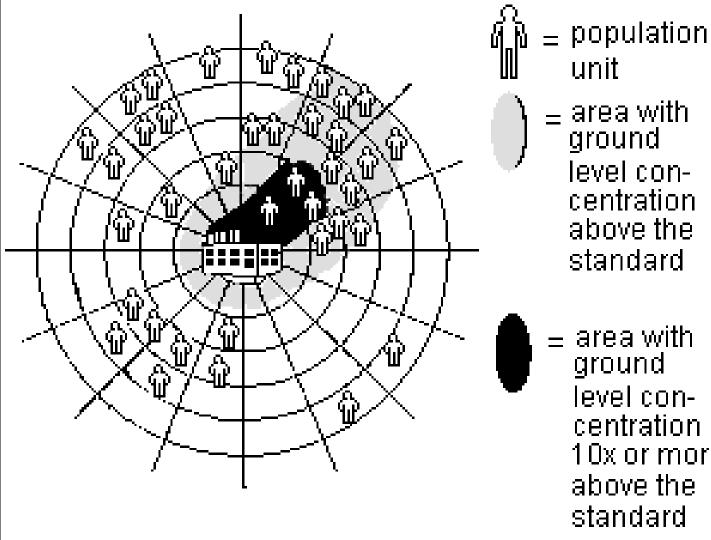
- Paracelsus (1493-1541)
- "All substances are poisons; there is none which is not a poison. The right dose differentiates a poison and a remedy"
- The dose makes the poise


Lead: Dose Related Health Effects

And Your Kids


WHAT BLACK CONSERVATIVES WANT Clarence Thomas and the Court

Disturbing New Evidence About the Threat to Their Health


How to Protect Them

Children with Elevated Blood Lead

Duration and Frequency of Exposure

unit = area with ground level concentration above the

= area with ground level concentration 10x or more above the standard

Water drinking contest blamed in death of California woman

Sunday, January 14, 2007 CBC News

What are the Knowledge Gaps?

- Baseline information
- Chemical Mixtures
 - Additive Risks
- Unanticipated Chemical Constituents
- Fate and Transport
- Magnitude, Frequency and Durations of Exposure
- Dose Response Assessments

Significance of Human Health Impacts

- Population density and proximity
- Demographic Characteristics
- Baseline Health Status
- Ambient Environmental Conditions
- Geology
- Legal/Regulatory Framework
- Frequency and Intensity of Development

Challenges to Risk Assessment

- Limited evidence, limited access to it, and uncertainty about it
- Evolving research and conflicting literature
- Rapidly evolving technology but minimal independent assessments of performance to reduce impacts
- Regional variation
- Some impacts may take decades to become evident