Hydraulic Fracturing in Yukon:

An Overview of Public Health Impacts

Dr. Brendan Hanley, CMOH, Yukon

Address to the Select Committee on the Risks and Benefits of Hydraulic Fracturing

May 28, 2014

OUTLINE

- Definition of health + determinants
- Health Impact Assessments
 - Experience + lessons from Keno HIA
 - HIA process
- Health Impacts overview
- Conclusions
 - Broad vision of Health
- Recommendations

What is Health?

- WHO: "A state of complete physical, mental, social well-being and not merely the absence of disease or infirmity"
- Wellness: "Wellness is a positive state of feeling good and functioning well that enables people to achieve their full potential, enjoy quality of life, and contribute positively to their community"

Core Functions of Public Health

Health Determinants

- -Income and Social Status
- -Social environments

- Physical Environments

- Social support networks
- Education and literacy
- Employment/working conditions
- Personal Health practices
- Healthy child development
- Biology and genetic endowment
- Health services
- Gender
- Culture

Health Impact Assessment

CAN WE LEARN FROM KENO?

• NEED FOR HIA PROCESS UP FRONT

• DEPT OF HSS TAKES THE LEAD ON HIA's

- BUT YG AS A WHOLE RESPONDS

Assessing Public Health Impacts: Challenges

• New for Yukon

Need to learn from other jurisdictions

• Data gaps

- Difficult to forecast
- Focus on chemicals
- Methodological obstacles
- Lack of exposure data
- Lack of baseline studies
- Few long-term studies

Socio-Economic Impact

- Direct Economic Benefits:

-Royalties, \uparrow Income

– Boomtown Effect

-Inequitable distribution of risk and reward

DETERMINANTS OF HEALTH

-Income and Social Status

-Social Environments

- Physical Environments

- Social support networks
- Education and literacy
- Employment/working conditions
- Personal Health practices
- Healthy child development
- Biology and genetic endowment
- Health services
- Gender
- Culture

Socio-Economic Impact

- Direct Economic Benefits:
 - Royalties, income

Boomtown Effect

• Inequitable distribution of risk and reward

Greenhouse Gas Emissions

- GHG: Methane + CO2
- \downarrow CO2 emissions compared to diesel oil
- Fugitive methane emissions
- Methane more potent but shorter lived

B. 100-year time horizon

Air Quality

- Emissions through total lifecycle
- NOx, VOC, PM 2.5, Methane, CO2, Diesel PM, (SO2)
- NOx +VOC+Methane+Sunlight = Ozone = Asthma aggravation, Decreased Lung Function
- VOC (Benzene): Known carcinogenic effect (leukemia)
- Caveat: no data on exposure risk related to shale gas exploitation
- Unknown effects when mixed in atmosphere

Source	NOx	voc	PM	Air Toxics	Data Quality
	Well dev	/elopment		,	
Drill Rigs	•	0	•	•	Medium
Frac Pumps	•	0	•	•	Medium
Truck Traffic	•	0	•	•	Medium
Completion Venting				•	Poor
Frac ponds		0		?	Poor
	Gas Pr	oduction			
Compressor Stations	•		0	•	Medium
Wellhead compressors	0	0	0	0	Medium
Heaters and dehydrators		0	0	0	Medium
Blowdown venting		0		0	Poor
Condensate Tanks		•		0	Poor
Fugitives		?		0	Poor
Pneumatics		0		0	Poor
= major source IGURE 5-1 Sources of er	= minor se missions.	ource		Ŀ	•

Health Impact Assessment of Shale Gas extraction: Workshop Summary, Roundtable on Environmental Health Sciences, Research, and Medicine Board on Population Health and Public Health Practice, 2013

Water Impacts

- Consumption
 - 12 to 80 million litres/well
- Contamination
 - Possible mechanism: hydraulic connectivity, well integrity
- Disposal: Ideal solution yet to be found
 Deep-well injection

Chemicals + Frac Sand

- Industrial chemicals
 - Some carcinogenic
 - Real risk due to exposure is unknown
 - Combined versus isolated effects
- Natural waste water chemicals
 - Carcinogenic potential may be higher
 - Heavy metals, radionuclides(radium-226), brine
 - Managing radioactive waste challenging
- Frac sand: water+silica sand+chemicals: silicosis, lung cancer, COPD

Physical Environment

- Noise
 - Air compressors
 - Psychological impact
- Light

- 24hr/24 for exploration, drilling and exploitation

- Traffic \rightarrow Vibration
 - Estimated 2,000 truck trips / well
 - Risk of road crashes
 - Deterioration of roads

Impacts are not equal

- Vulnerable Populations
 - Children
 - Higher rate of metabolism
 - Closer contact with environmental contaminants
 - Prenatal
 - Airborne benzene = NTD, cognitive impairment, childhood leukemia
 - Low-Income households
 - \downarrow financial ability to mitigate exposures

Mitigating Impacts: Evolving Industry Technologies

- Can GHG emissions be reduced?
 - Green technologies
 - EPA estimates \$\sqrt{40\%}\$ of methane emissions with new technologies
 - Carbon capture and sequestration strategy
- Water Disposal
 - On site waste water treatment
 - Deep-well injection of waste water
- Caveat: New tech does not replace risk assessment

Conclusions

- Complex public health considerations
 - Lack of studies
 - Public Health not often at the table
 - Difficult to assess certain risks due to lack of data
 - Rapidly evolving industry technologies
 - Forecasting difficult
- Best considered in context as an alternative fossil fuel industry.

Conclusions

- Shale Gas development and other Oil and Gas projects deserve Health Impact Assessments (HIA)
- HIA need to be integrated into government approval processes along with implementation plans.
- Shale Gas projects can bring economic benefit if carefully managed and if the Boomtown effects are avoided.
- Greenhouse Gas contributions are significant and must be factored into an energy strategy.
- Other health risks can be managed in a climate of progressive legislation and best industry practices.

RECOMMENDATIONS

- Optimize Socioeconomic effects
- Reduce Greenhouse Gases
- Anticipate and Mitigate Physical effects
- Optimize Mental Health and Wellness
- Formalize HIA and Implementation Processes

Optimize Socioeconomic Effects

- Keep Regional/Community planning ahead of the boom
 - Land use planning should precede development
- Ensure equitable sharing of risks and rewards
 - Community Planning: ensure benefit to all
 - Consider vulnerable populations
 - Royalty and Revenue sharing: Community, First Nation, Yukon

Anticipate and Mitigate Physical Effects

- Air and water quality monitoring
- Dust monitoring and managment
- Improving waste water management
- Full disclosure of chemicals used
- Monitoring and mitigations for noise, vibration, and light
- Traffic management
- Promote and protect workers' health

Optimize Mental Health and Wellness

- Support and encourage community and land use planning
- Maximize transparency and accountability
- Validate and respond to citizen concerns
- Encourage industry to support health and wellness
- Pay attention to inequities and protect the vulnerable
- Include crisis and emergency planning

Formalize HIA and Implementation Processes

- High-level scenario based HIA
- Specific HIA's integrated with YESSA
- Implementation Process
- Public accountability
- Monitor health of persons living, working, attending school in proximity with industry

Reduce Greenhouse Gases

- Set goals for reducing carbon footprint and fossil fuel usage
- Review, monitor and publicize achievement of Energy and Climate Change action goals
 - Adapt and update Yukon Energy Strategy
 - Sustainability, Self-sufficiency
 - Increase renewable energy supply in Yukon by 20% by 2020 and reduce GHG
 - Reduce energy consumption from housing (Green Homes) and transportation (e.g. invest in local agriculture)

References

- 1. Hayes, B.J.R. and Archibald, H.B., 2012. Scoping study of unconventional oil and gas potential, Yukon. Yukon Geological Survey, Miscellaneous Report 7, 100 p. Cover
- 2. <u>http://www.investyukon.com/Invest/Priority-Sectors/OilGas/Iand-claims</u>
- 3. Public Health Considerations in Energy Development, Dr. Eilish Cleary, CMOH, November 2013
- 4. Air polluant emissions from the development, production and processing of the Marcellus shale natural gas, Anirban A. Roy a , Peter J. Adams a & Allen L. Robinson ,06 Aug 2013.
- 5. <u>http://www.psehealthyenergy.org/data/PSE_HealthSummary_26April2013.pdf</u>
- 6. Methane and the greenhouse-gas footprint of natural gas from shale formations, Climatic Change (2011), Robert W. Howarth ·, Renee Santoro , Anthony Ingraffea, 12 p.
- 7. A primer for understanding canadian shale gas, National Energy Board, November 2009
- 8. The effect of shale gas exploration and hydraulic fracturing on the quality of water resources in the United States, Elsevier, Avner Vengosha*, Nathaniel Warnera, Rob Jacksona, Tom Darraha, 2013, p. 863-866
- 9. Natural Gas plays in the Marcellus shale gas: Challenge and Potential Opportunities, Environmental Science and Technology Feature, David M. Kargbo, Ron G. Wilhelm, David J. Campbell, 2010, p. 5679-5684
- 10. Rapport préliminaire, État des connaissances sur les relations entre les activités liées au gas de schiste et la santé publique, INSPQ, November 2010
- 11. <u>http://fracfocus.org/sites/default/files/publications/hydraulic_fracturing_101.pdf</u>
- 12. Energy Strategy for Yukon, Energy, Mines and Resources Yukon Government, January 2009
- 13. Health Impact Assessment of Shale Gas extraction: Workshop Summary, Roundtable on Environmental Health Sciences, Research, and Medicine Board on Population Health and Public Health Practice, 2013