# OVERVIEW OF GANGUE MINERALOGY ISSUES IN OXIDE COPPER HEAP LEACHING

Ву

# Mal Jansen and Alan Taylor International Project Development Services Pty Limited

Presented by

# Mal Jansen

mjansen@ipds.com.au

# **CONTENTS**

| 1. Introduction                                    | 2  |
|----------------------------------------------------|----|
| Gangue Acid Consumption and Regeneration Reactions | 2  |
| 3. Rock and Alteration Minerals                    | 3  |
| 4. Acid Consumption Factors                        | 7  |
| 5. Copper Recovery Factors                         | 7  |
| 6. Leach Reactions                                 | 8  |
| 7. Gangue Silicate Reaction Products               | 11 |
| 8. Gangue Silicate Mineral Groups                  | 12 |
| 9. Geochemical Leach Cycle                         | 13 |
| 10. Gangue Silicate Reaction Paths                 | 15 |
| 11. Diagnostic or Sequential Leaching              | 16 |
| 12. Mineralogical Study                            | 17 |
| 13. Conclusions                                    | 18 |
| 14. References                                     | 18 |

#### 1. INTRODUCTION

Copper heap leaching projects are sometimes evaluated without adequate attention to mineralogy, despite the fact that ore and gangue mineralogy is probably the single most important parameter affecting operating costs and recoveries and can change significantly from one area of the resource to another. A wide range of mineralogy issues needs to be considered in maximizing the efficiency of copper recovery and minimizing the consumption of acid by gangue.

The following review lists the major gangue and ore minerals that may be present, and highlights some of the more important mineralogy issues involved in leaching oxide copper ores. Special emphasis is given to both acid-consuming and acid-regenerating reactions involving silicate and limonite gangue minerals, which can be potential major sources of acid consumption and can readily be overlooked in comparison to more obvious sources of acid consumption such as carbonates. The review is intended to serve as a refresher on the role of ore and gangue minerals in leaching and to encourage greater attention to mineralogy assessment in future heap leaching projects.

## 2. GANGUE ACID CONSUMPTION AND REGENERATION REACTIONS

Silicate and limonite gangue minerals consume sulphuric acid during initial reaction with acid. However, the reaction by-products can partially regenerate sulphuric acid in subsequent reactions with each other and/or fresh ore. Acid consuming and regeneration reactions within particular gangue mineral groups and reaction product groups include the following:

# Acid consumption:

Limonite minerals consume acid by breakdown to ferric ions in solution (e.g. goethite breakdown)

Silicate mineral consume acid by breakdown to a wide range of soluble solution products (e.g. K feldspar, Na feldspar, Ca plagioclase and biotite breakdown to ortho-silicic acid, H<sub>4</sub>SiO<sub>4</sub>, and various metal cations such as Na<sup>+</sup>, K<sup>+</sup>, Al<sup>+3</sup>, Ca<sup>+2</sup>, Fe<sup>+2</sup>, Fe<sup>+3</sup> and Mg<sup>+2</sup>)

Original silicate minerals can consume acid and other reaction by-products to form alteration silicate minerals (e.g. alteration of plagioclase to gypsum and pyrophyllite, Na Feldspar to magadiite and pyrophyllite, or biotite to vermiculite only (open leach system) or to vermiculite, jarosite and silica (closed leach system))

## Acid regeneration:

Soluble silicate breakdown products regenerate acid by reaction with each other during formation of various precipitates (e.g. formation of jarosite, silica, alunite, gypsum and magadiite from soluble metal cations and/or silicic acid)

Soluble silicate breakdown products also regenerate acid by reaction with each other to form new solid silicate alteration products (e.g. formation of pyrophyllite, kaolinite, vermiculite and chlorite from silicic acid and Al<sup>+3</sup>, Mg<sup>+2</sup> and Fe<sup>+3</sup> cations)

The net acid consumption is a balance of acid consumption and acid regeneration in the heap, supplemented by fresh acid make-up and acid regeneration from SX as each new heap undergoes reaction and reaches equilibrium with the recirculating raffinate and resulting composite pregnant leach solution.

Tables 1 to 3 and Figs 1 to 3 below provide different perspectives on the minerals involved and the reactions that take place between gangue and acid during copper heap leaching.

#### 3. ROCK AND ALTERATION MINERALS

Table 1 shows copper heap leach mineralogy issues for rock and alteration minerals for oxidised copper ores, expressed in terms of the following parameters:

- Oxide/sulphide class e.g. oxide rock, oxide alteration, sulphide rock, precipitates, alteration products and original rock minerals in equilibrium with leach solution
- Mineral type, property and metal elements in precipitates e.g. copper minerals, minerals containing copper, gangue, gangue non-clay, stability to weathering, gangue-clay, gangue-cupriferous clay, degree of alteration, precipitate metal elements, alteration metal elements, original rock mineral metal elements
- Mineral name, e.g. chrysocolla, jarosite, biotite, chlorite etc
- Mineral formulae where available, ranging from chrysocolla to jarosite
- Cu oxidation state, ranging from 0 for metallic copper to +2 for chrysocolla
- Fe oxidation state, +3 for all oxide minerals considered
- The occurrence of the minerals in USA and Chile (where the bulk of the copper heap leach operations are located) is considered. The occurrence of the minerals in each of these countries is ranked, ranging from 1 (highest) to 5 (lowest), where available.
- Theoretical acid consumption, expressed as moles/mole mineral for oxide copper minerals, iron oxides, chlorite and Ca feldspar, or otherwise noted as being "high adsorption" for talc and clay minerals such as montmorillinite, kaolinite and smectite, which readily adsorb acid.
- Acid consumption, kg/t ore typical, where available for minerals in various gangue silicate alteration classes
- Salt products e.g. gypsum or ferric salts
- % Cu extraction in acid without aeration, where available
- Footnotes referring to reference sources<sup>1-3</sup>, copper recovery factors, acid consumption factors and methods for improved copper recoveries

| Table 1: Copper Heap Leach Mineralogy Issues -Oxide Cu, Sulphide Cu: Rock and Alteration Minerals | Leach Mineralogy Issu                                       | les -Oxide Cu, Sulph                                          | ide Cu: Rock and Al                                                                      | Iteration N                    | linerals                 |           |                                        |                                                        |                                       |                                                                         |                          |
|---------------------------------------------------------------------------------------------------|-------------------------------------------------------------|---------------------------------------------------------------|------------------------------------------------------------------------------------------|--------------------------------|--------------------------|-----------|----------------------------------------|--------------------------------------------------------|---------------------------------------|-------------------------------------------------------------------------|--------------------------|
| Oxide/ Sulphide Class                                                                             | Mineral Type                                                | Mineral                                                       | Formula                                                                                  | Ovid. C                        | Fe Cou<br>Oxid.<br>State | Country   | Ranking in<br>Country (1 =<br>highest) | Theoretical Acid<br>Consumption,<br>moles/mole mineral | Acid Salt Consumptn products kg/t ore | % Cu Extn. in H <sub>2</sub> SO <sub>4</sub> without aeration (approx.) | Issues<br>(see<br>Notes) |
| Oxide Rock                                                                                        | Copper                                                      | Chrysocolla                                                   | CuSiO <sub>3.</sub> 2H <sub>2</sub> O                                                    | +2                             | ň                        | NSA       | -                                      | -                                                      |                                       | 100                                                                     | 4.4                      |
|                                                                                                   |                                                             | Dioptase                                                      | CuSiO <sub>3</sub> . H <sub>2</sub> O                                                    | +2                             |                          |           |                                        | -                                                      |                                       | 100                                                                     | 4.5                      |
|                                                                                                   |                                                             | Malachite                                                     | CuCO <sub>3</sub> . Cu(OH) <sub>2</sub>                                                  | 7                              | Chile                    | Chile/Dry | 2                                      | 2                                                      |                                       | 100                                                                     | 4.2                      |
|                                                                                                   |                                                             | Azurite                                                       | 2CuCO <sub>3</sub> . Cu(OH) <sub>2</sub>                                                 | +5                             |                          |           |                                        | 3                                                      |                                       | 100                                                                     | 4.2                      |
|                                                                                                   |                                                             | Brochantite                                                   | CuSO <sub>4</sub> .3Cu(OH) <sub>2</sub>                                                  | +2                             | Chile                    | Chile/Dry | 3                                      | 3                                                      |                                       |                                                                         |                          |
|                                                                                                   |                                                             | Antlerite                                                     | CuSO⁴                                                                                    | +2                             | Chile                    | Chile/Dry | 4                                      | 0                                                      |                                       | 100                                                                     | 2.4                      |
|                                                                                                   |                                                             | Chalcanthite                                                  | CuSO₄.5H₂O                                                                               | +5                             |                          |           |                                        | 0                                                      |                                       | 100                                                                     | 2.4                      |
|                                                                                                   |                                                             | Tenorite                                                      | CnO                                                                                      | +2                             | ñ                        | NSA       | 4                                      | -                                                      |                                       | 100                                                                     | 2.4                      |
|                                                                                                   |                                                             | Atacamite                                                     | Cu <sub>2</sub> (OH) <sub>3</sub> Cl                                                     | +5                             | Chile                    | Chile/Dry | -                                      | 2                                                      |                                       | 100                                                                     | 2.4                      |
|                                                                                                   |                                                             | Pseudo-malachite                                              |                                                                                          |                                |                          |           |                                        |                                                        |                                       | 100                                                                     | 2.4                      |
|                                                                                                   |                                                             | Cuprite                                                       | Cu <sub>2</sub> O                                                                        | 7                              | ñ                        | NSA       | 9                                      | 2                                                      |                                       | 20                                                                      | 2.4                      |
|                                                                                                   |                                                             | Delafossite                                                   | Cu <sub>2</sub> O.Fe <sub>2</sub> O <sub>3</sub> ppt.                                    | +                              | 3N E+                    | NSA       | 3                                      | 2                                                      |                                       | 10-20                                                                   | 2.4                      |
|                                                                                                   |                                                             | Native Cu                                                     | cn。                                                                                      | 0                              |                          |           |                                        | -                                                      |                                       | 20                                                                      | 2.4                      |
|                                                                                                   | Containing copper                                           | Impervious silicate                                           |                                                                                          |                                |                          |           |                                        |                                                        |                                       | 2                                                                       | 2.4                      |
|                                                                                                   |                                                             | Cupriferous FeOX                                              | See goethite,<br>limonite                                                                |                                |                          |           |                                        |                                                        |                                       | 2-40                                                                    | 2.4                      |
|                                                                                                   |                                                             | Cu Wad                                                        | H₄MnO₅                                                                                   |                                |                          |           |                                        |                                                        |                                       | 10-80                                                                   | 2.4                      |
|                                                                                                   |                                                             | Cu Pitch                                                      |                                                                                          |                                |                          |           |                                        |                                                        |                                       | 100                                                                     | 2.4                      |
|                                                                                                   |                                                             | Pitch limonite                                                |                                                                                          |                                | ň                        | NSA       | 2                                      |                                                        |                                       |                                                                         |                          |
|                                                                                                   | Gangue                                                      | Calcite                                                       | CaCO <sub>3</sub>                                                                        |                                |                          |           |                                        | -                                                      | CaSO <sub>4</sub> . 2H <sub>2</sub> O | 2H <sub>2</sub> O                                                       |                          |
|                                                                                                   |                                                             | Quartz                                                        | SiO <sub>2</sub>                                                                         |                                |                          |           |                                        |                                                        |                                       |                                                                         |                          |
| Oxide Alteration                                                                                  | Gangue-non clay                                             | Goethite                                                      | FeO(OH)                                                                                  |                                | ဇ္                       |           |                                        | 3 + adsorption                                         | on Fe salt                            |                                                                         | 2.3,                     |
|                                                                                                   |                                                             | Limonite                                                      | 2Fe <sub>2</sub> O <sub>3</sub> .3H <sub>2</sub> O                                       |                                | £                        |           |                                        | 3 + adsorption                                         | on Fe salt                            |                                                                         | 2.3,                     |
|                                                                                                   |                                                             | Hematite                                                      | Fe <sub>2</sub> O <sub>3</sub>                                                           |                                | +3                       |           |                                        |                                                        |                                       | 10                                                                      | !<br>)                   |
|                                                                                                   |                                                             | Neotocite                                                     | MnSiO <sub>3</sub> .nH <sub>2</sub> O                                                    |                                | )<br>O                   | USA       | 2                                      |                                                        |                                       |                                                                         |                          |
|                                                                                                   |                                                             | Jarosite                                                      | KFe <sub>3</sub> (SO4) <sub>2</sub> (OH) <sub>6</sub>                                    |                                |                          |           |                                        |                                                        | Fe salt                               |                                                                         | 2.3,                     |
|                                                                                                   |                                                             | Turquoise                                                     | AIPO <sub>4</sub> .AI(OH) <sub>3</sub> + H <sub>2</sub> O                                | 0                              |                          |           |                                        |                                                        |                                       | 2                                                                       |                          |
|                                                                                                   | Increasing stability to<br>weathering, Olivine to<br>Quartz | Olivine (least stable) (Mg, Fe) <sub>2</sub> SiO <sub>4</sub> | (Mg,Fe) <sub>2</sub> SiO <sub>4</sub>                                                    |                                |                          |           |                                        |                                                        |                                       |                                                                         |                          |
|                                                                                                   |                                                             | Hypersphene                                                   | (Fe, Mg)SiO <sub>3</sub>                                                                 |                                |                          |           |                                        |                                                        |                                       |                                                                         |                          |
|                                                                                                   |                                                             | Augite or Pyroxene                                            | Ca(Mg, Fe)SiO <sub>3</sub>                                                               |                                |                          |           |                                        |                                                        |                                       |                                                                         |                          |
|                                                                                                   |                                                             | Hornblende                                                    | xCa(Mg,Fe)₃(SiO₃)₄ + y(Al, Fe)(F,OH)SiO₃                                                 | + y(AI, Fe)                    | OIS(HO,4)                | 3         |                                        |                                                        |                                       |                                                                         |                          |
|                                                                                                   |                                                             | Biotite                                                       | (H,K) <sub>2</sub> (Mg,Fe) <sub>2</sub> Al <sub>2</sub> (SiO <sub>4</sub> ) <sub>3</sub> | iO <sub>4</sub> ) <sub>3</sub> |                          |           |                                        | 3-5                                                    |                                       |                                                                         | 4. t. t.                 |
|                                                                                                   |                                                             | K-Feldspar                                                    | KAISi <sub>3</sub> O <sub>8</sub>                                                        |                                |                          |           |                                        |                                                        |                                       |                                                                         |                          |
|                                                                                                   |                                                             |                                                               |                                                                                          |                                |                          |           |                                        |                                                        |                                       |                                                                         |                          |

|              |                                                                         | Orthoclase                                     |                                                                         |                 |      |                  |
|--------------|-------------------------------------------------------------------------|------------------------------------------------|-------------------------------------------------------------------------|-----------------|------|------------------|
|              |                                                                         |                                                |                                                                         |                 |      |                  |
|              |                                                                         | Muscovite Mica                                 | H <sub>2</sub> KA <sub>I3</sub> (SiO <sub>4</sub> ) <sub>3</sub><br>SiO |                 |      |                  |
|              |                                                                         | (al                                            | 200                                                                     |                 |      |                  |
|              | Increasing stability to<br>weathering,<br>Plagioclase to K-<br>Feldspar | Ca plagioclase<br>(Anorthite?) least<br>stable | CaAl <sub>2</sub> Si <sub>2</sub> O <sub>8</sub>                        |                 |      |                  |
|              |                                                                         | Na Plagioclase                                 | NaAlSiO <sub>3</sub>                                                    |                 |      |                  |
|              |                                                                         | K-Feldspar<br>Orthoclase                       | KAISisOs                                                                |                 |      |                  |
|              | Other minerals                                                          | Chlorite                                       | H <sub>4</sub> (Mg,Fe) <sub>3</sub> Si <sub>2</sub> O <sub>9</sub> 6    |                 |      | 3.1<br>LT,       |
|              |                                                                         | Epidote                                        | Ca <sub>2</sub> Al(OH)A <sub>2</sub> SiO <sub>4</sub>                   |                 |      | 3.4, 5<br>3.1 LT |
|              |                                                                         | Talc                                           |                                                                         | high adsorption |      |                  |
|              |                                                                         |                                                |                                                                         |                 |      |                  |
|              | Gangue - clay                                                           | ite                                            |                                                                         | high adsorption |      | 4.3              |
|              |                                                                         | Kaolinite                                      | H <sub>4</sub> Al <sub>2</sub> Si <sub>2</sub> O <sub>9</sub> high a    | high adsorption |      | 4.3              |
|              |                                                                         | Smectite                                       | high                                                                    | high adsorption |      | 4.3              |
|              | Gangue-cupriferous<br>clay                                              | Cu bearing clays:                              | high a                                                                  | high adsorption | 2-60 | 4.3              |
|              |                                                                         | Cu bearing montmorillonite                     | 112                                                                     | high adsorption |      | 4.3              |
|              |                                                                         | inite                                          | H₄Al₂Si₂O₃ high a                                                       | high adsorption |      | 4.3              |
|              |                                                                         | Smectite                                       |                                                                         |                 |      | 4.3              |
|              | High-Alteration                                                         | Basalt                                         |                                                                         | 09              |      | 3.5              |
|              |                                                                         | Andesite                                       |                                                                         | 45              |      | 3.5              |
|              |                                                                         | Diabase                                        |                                                                         | 35              |      | 3.5              |
|              |                                                                         | Impetone                                       |                                                                         | 10              |      | 0.0<br>7.0       |
|              | Moderate -Alt.                                                          | Q-Diorite                                      |                                                                         | 09              |      | 3.5              |
|              |                                                                         | Granodiorite                                   |                                                                         | 45              |      | 3.5              |
|              |                                                                         | Q-Monzonite                                    |                                                                         | 35              |      | 3.5              |
|              |                                                                         | Latite                                         |                                                                         | 25              |      | 3.5              |
|              |                                                                         | Dacite                                         |                                                                         | 10              |      | 3.5              |
|              |                                                                         | Hornfels                                       |                                                                         | 0               |      | 3.5              |
|              | Low-Alteration                                                          | Rhyolite                                       |                                                                         | 09              |      | 3.5              |
|              |                                                                         | Granite                                        |                                                                         | 45              |      | 3.5              |
|              |                                                                         | Trachyte                                       |                                                                         | 35              |      | 3.5              |
|              |                                                                         | Syenite                                        |                                                                         | 25              |      | 3.5              |
|              |                                                                         | Sil. Sediments                                 |                                                                         | 10              |      | 3.5              |
|              |                                                                         | Metamorphics                                   |                                                                         | 0               |      | 3.5              |
| :            | 0                                                                       | (                                              |                                                                         |                 |      | 1                |
| Precipitates | Ca,S                                                                    | Gypsum                                         | CaSO <sub>4</sub> .2H <sub>2</sub> O                                    |                 |      | _ 1              |
|              | <u>v</u>                                                                |                                                | SiO <sub>2</sub>                                                        |                 |      | ,                |

| 2                                                                                                                                                                                                      | -11                                                             | WIC/ V CO/ = J/                                                                                                                                                                                    | r |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---|
| N, Te, O                                                                                                                                                                                               | Jarosile                                                        | N = ( \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \                                                                                                                                                          | , |
| Al, S                                                                                                                                                                                                  |                                                                 | AIOHSO4                                                                                                                                                                                            |   |
| K, AI, S                                                                                                                                                                                               | Alunite                                                         | KA <sub>13</sub> (OH) <sub>8</sub> (SO <sub>4</sub> ) <sub>2</sub>                                                                                                                                 | 7 |
| Na, Si                                                                                                                                                                                                 | Magadiite                                                       | NaSi-O <sub>13</sub> (OH) <sub>3</sub> ·3H <sub>2</sub> O                                                                                                                                          |   |
| Ca, S                                                                                                                                                                                                  | Anhydrite                                                       | CaSO <sub>4</sub>                                                                                                                                                                                  |   |
| Mn. P                                                                                                                                                                                                  |                                                                 | MnHPO <sub>4</sub>                                                                                                                                                                                 | 7 |
| Fe, P                                                                                                                                                                                                  | Strengite                                                       | FePO <sub>4.2</sub> H <sub>2</sub> O                                                                                                                                                               |   |
| Alteration Products Mg, Al, Si                                                                                                                                                                         | Vermiculite                                                     | Mg <sub>2</sub> Al <sub>2</sub> Si <sub>3</sub> O <sub>10</sub> (OH) <sub>2</sub>                                                                                                                  | 9 |
| Mg, Fe, Si                                                                                                                                                                                             | Chlorite                                                        | H <sub>4</sub> (Mg,Fe) <sub>3</sub> Sl <sub>2</sub> O <sub>9</sub>                                                                                                                                 |   |
| Al, Si                                                                                                                                                                                                 | Kaolinite                                                       | H4A <sub>2</sub> Si <sub>2</sub> O <sub>9</sub>                                                                                                                                                    |   |
|                                                                                                                                                                                                        | Allophane                                                       |                                                                                                                                                                                                    |   |
|                                                                                                                                                                                                        | Pyrophyllite                                                    | HAI(SiO <sub>3</sub> ) <sub>2</sub>                                                                                                                                                                | 9 |
| Original Rock Si<br>Minerals in<br>Equilibrium with<br>Leach Solution                                                                                                                                  | Quartz                                                          | SiO₂                                                                                                                                                                                               |   |
| Al. Si                                                                                                                                                                                                 | Pyrophyllite                                                    | HAI(SiO <sub>3</sub> ) <sub>2</sub>                                                                                                                                                                |   |
| S                                                                                                                                                                                                      | Silica                                                          | SiO                                                                                                                                                                                                |   |
| K, Fe, S                                                                                                                                                                                               | Jarosite                                                        | KFe <sub>3</sub> (SO <sub>4</sub> ) <sub>2</sub> (OH) <sub>6</sub>                                                                                                                                 |   |
| Fe                                                                                                                                                                                                     | Magnetite                                                       | Fe <sub>3</sub> O <sub>4</sub>                                                                                                                                                                     |   |
| Notes:                                                                                                                                                                                                 |                                                                 |                                                                                                                                                                                                    |   |
| 1 Reference sources include:                                                                                                                                                                           |                                                                 |                                                                                                                                                                                                    |   |
| 1.1 W Baum, Cobre 99, " The use of a                                                                                                                                                                   | mineralogical data base for                                     | 1.1 W Baum, Cobre 99, "The use of a mineralogical data base for production forecasting and troubleshooting in copper leach operations"                                                             |   |
| 1.2 John Dreier, Copper Heap Leach, Feb 1992, "Geochemical Aspects of Copper Heap Leaching"                                                                                                            | Feb 1992, "Geochemical Asp                                      | spects of Copper Heap Leaching"                                                                                                                                                                    |   |
| 2. Copper recovery factors:                                                                                                                                                                            |                                                                 |                                                                                                                                                                                                    |   |
| 2.1 Particle size                                                                                                                                                                                      |                                                                 |                                                                                                                                                                                                    |   |
| 2.2 Liberation/locking of copper minerals                                                                                                                                                              | als                                                             |                                                                                                                                                                                                    |   |
| 2.3 Copper adsorption by Iron oxides 2.4 Copper recoveries per Ref 1.1                                                                                                                                 |                                                                 |                                                                                                                                                                                                    |   |
| 3. Acid consumption factors:                                                                                                                                                                           |                                                                 |                                                                                                                                                                                                    |   |
| 3.1 Short (S) or long term (LT) acid consumer                                                                                                                                                          | nsumer                                                          |                                                                                                                                                                                                    |   |
| 3.2 Acid adsorption e.g. high                                                                                                                                                                          | -                                                               |                                                                                                                                                                                                    |   |
| 3.3 Acid concentration effect on acid consumption e.g. high                                                                                                                                            | onsumption e.g. high                                            |                                                                                                                                                                                                    |   |
| 3.4 Acid consumption directly proportion to acid concentration 3.5 Acid consumption by rock type as per Ref 1.1                                                                                        | on to acid concentration<br>per Ref 1.1                         |                                                                                                                                                                                                    |   |
| 4 Methods for Improved recoveries:                                                                                                                                                                     |                                                                 |                                                                                                                                                                                                    |   |
| 4.2 Ore pretreatment, blending, stockpiling, stronger curing or deep heap ripping                                                                                                                      | iling, stronger curing or deep                                  | p heap ripping if solution penetration of ultra fine mineral blocked by gas evolution                                                                                                              |   |
| 4.3 Ore pretreatment, prending, stockp                                                                                                                                                                 | oming, stronger curing, longer                                  | 4.3. Ore preneament, benching, stronger curing, polymeric binding, ingret acid concernation                                                                                                        |   |
| 4.4 mittal rapid leaching tollowed by slow leaching it coarse mydrous silica gels coat surrace durit 4.5 Frequently misidentified as chrysocolla, coarser dioptase requires longer leach times - Ref 1 | ow leaching it coarse nydrous<br>colla, coarser dioptase requir | 4.4 mittal rapid leachtified by stow leachting it coarse hydrous silica gets coat surface during curing and early teachtified as chryspoolla, coarser dioptase requires longer leach times - Ref 1 |   |
|                                                                                                                                                                                                        |                                                                 |                                                                                                                                                                                                    |   |
| 5. Dreier formula for chlorite from ACS                                                                                                                                                                | Monograph Series No 160 (                                       | 5. Dreier formula for chlorite from ACS Monograph Series No 160 (1964) is Al Mg <sub>2</sub> (OH) <sub>8</sub> . Mg <sub>3</sub> Si <sub>3</sub> AlO <sub>10</sub> (OH) <sub>2</sub>               |   |
| <ol> <li>Pyrophyllite and vermiculite precipitates form in the heap (Dreier)</li> <li>Precipitates common or predicted form from PLS and/or raffinate contact with</li> </ol>                          | ates torm in the heap (Dreier                                   | If)                                                                                                                                                                                                |   |
| 7.1 recipitates, common of predicted,                                                                                                                                                                  |                                                                 | מנס טטוומטן אווו וופמט                                                                                                                                                                             |   |

#### 4. ACID CONSUMPTION FACTORS

Key acid consumption factors for oxide ores include carbonate presence, the presence of short and long-term other acid consumers, and the extent of acid adsorption by different non-carbonate minerals including clays, hydrous iron oxides, highly porous copper minerals and/or slimes forming minerals. The effects of acid concentration on acid consumption can also be significant.

Other issues to consider in estimating potential acid consumption during heap leaching include:

- Actual acid consumption is generally significantly less than theoretical acid consumption for the minerals being leached due to build up of highly soluble reaction products, especially aluminium, magnesium and sulphate, in the recirculating leach solution
- Acid consumption and rate of consumption can increase rapidly with increasing temperature
- Bottle roll tests carried out over similar leach times to those used in commercial heap leach cycles can overestimate actual acid consumption by several orders of magnitude. Reuse of a leach solution representative of equilibrium conditions could partially alleviate this effect
- Other reasons for overestimation of acid consumption by bottle roll tests include several other factors, such as generally finer grind size and the use of higher free acid concentration during the test.
- Another source of error could come from the assay titration method of determining free acid in the final solution e.g. in the oxalate titration method which can yield erroneously low free-acid values due to the removal of all aqueous constituents from solution before titrating for free acid.
- The pH of the solution leaving the heap should be sufficiently low (preferably below pH 2.5 or so) to ensure that there is minimum risk of copper reprecipitation in the heap, possibly as delafossite, Cu<sub>2</sub>O.Fe<sub>2</sub>O<sub>3</sub>. Such copper precipitation may conceivably occur at any local spots where the pH may have increased to around pH 4.5 due to non-uniform wetting or high acid reactivity within the heap.
- The heap discharge pH also needs to be within the acceptable range for the available SX extractants of typically pH 0.8 to 2.0. Most heap leach solutions fall within the range of pH 1.5 to 2.0 with copper tenors of 1-4 gpl. In the special case of sulphide agitation leaches such as at Mt Gordon the pH can be as low as 0.8, due to free acid levels of around 25-30 gpl in a heavily buffered ferric sulphate leach system containing 20-30 gpl Total Fe (up to 50% Fe3+) and 25-30 gpl Cu<sup>4</sup>.

# **5. COPPER RECOVERY FACTORS**

Key oxide copper recovery factors include particle size, liberation/locking of copper minerals, contact of the mineral surfaces with acid, concentration of acid in solution, copper adsorption by iron oxides and/or clays and heap solution permeability.

Methods for improving copper recovery include:

- Ore blending
- Finer crush size
- Longer leach cycle time
- Higher acid concentration in leach solution

- Lower heap height
- Ore pretreatment including conditioning with raffinate or strong acid cure
- Changing cure conditions including increased acid addition and/or longer curing time
- Improving percolation including strong acid agglomeration, polymer agglomeration, method of heap building, ripping of heap surface and as a last resort desliming
- Multiple rest periods if for example hydrous silica gels coat chrysocolla surfaces during curing and leaching
- Adoption of counter current 2- or 3-stage leaching
- Remining and releaching of poorly leached areas

Prediction of long-term laboratory copper recoveries from medium-term laboratory column tests is an area of continual challenge. One researcher<sup>1</sup> has reported that an empirical log-log plot of percent metal remaining in the column leach residue versus cumulative leach time can be used to extrapolate laboratory recoveries, on the basis that such plots are usually found to be made up of one or two linear lines. However there is still the requirement to scale-up commercial heap leach performance from lab column leach tests. Whilst others have different ways of doing this, the authors have used an empirical approach to scale-up recoveries and kinetics from laboratory to commercial leach performance, taking into account plant and heap leach constraints and selected scale-up factors<sup>5</sup>.

# **6. LEACH REACTIONS**

Table 2 shows leach reactions of typical minerals in copper ores, classified by the following mineral groupings:

- Original silicate mineral breakdown
- Limonite minerals breakdown
- Copper oxide minerals breakdown
- Most commonly reported precipitation products
- Most commonly reported alteration products
- Other mineral alteration products

Within each group of minerals, key reactions are shown. Footnotes to the table include additional points. Note that in the case of quartz, K feldspar, sericite, biotite and chlorite, and common rock forming minerals of copper deposits, closed circuit leaching generally consumes a lower amount of acid than open circuit leaching. However for other minerals including carbonates, calcic plagioclase, amphiboles, montmorillinite and pyroxenes, this is generally not the case.

Farlas and co-workers<sup>6</sup> note that copper minerals such as malachite or chrysocolla react with concentrated acid to form solid copper sulphate during an acid cure stage as follows:

$$CuCO_3$$
. $Cu(OH)_{2(s)} + 2H_2SO_4 + 7H_2O = 2CuSO_4.5H_2O_{(s)} + CO_{2(a)}$ 

$$CuSiO_3.2H_2O_{(s)} + H_2SO_4 + 2H_2O = CuSO_4.5H_2O_{(s)} + SiO_{2(s)}$$

However the same minerals, when reacting with raffinate during subsequent leaching, form aqueous copper as shown in Table 2. Reactions with chrysocolla can also form a range of silicic acid compounds,  $SiO_2.nH_2O$ , where n = 1, 2 and 3.

| K feldspar (not in closed circuit):         K feldspar (not in closed circuit):         K feldspar (not in closed circuit):         K feldspar:         K felds | K* + Al***<br>K* + Al***<br>Sa** + 2Al***<br>= Ca**<br>= Ca**<br>+ 2H**<br>+ 2Al***<br>+ 2Al***<br>+ 2Al***<br>+ 2Al***<br>+ 2Al***<br>+ 3H <sub>2</sub> O | + 3H <sub>4</sub> SiO <sub>4</sub><br>+ 3H <sub>4</sub> SiO <sub>4</sub><br>+ 3H <sub>4</sub> SiO <sub>4</sub><br>3 H <sub>4</sub> SiO <sub>4</sub><br>+ 2H <sub>4</sub> SiO <sub>4</sub>  | + 2(Fe,Mg)**<br>+ Mg**                         |          |         |
|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------|----------|---------|
| H 20                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                                                                                                                            | + 3H <sub>4</sub> SiO <sub>4</sub><br>+ 3H <sub>4</sub> SiO <sub>4</sub><br>+ 3H <sub>4</sub> SiO <sub>4</sub><br>+ 2H <sub>4</sub> SiO <sub>4</sub><br>+ 2H <sub>4</sub> SiO <sub>4</sub> | + 2(Fe,Mg) <sup>++</sup><br>+ Mg <sup>++</sup> |          |         |
| H H H H H H H H H H H H H H H H H H H                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                                                                                                                            | + 3H <sub>4</sub> SiO <sub>4</sub><br>+ 3H <sub>4</sub> SiO <sub>4</sub><br>+ 3H <sub>4</sub> SiO <sub>4</sub><br>+ 2H <sub>4</sub> SiO <sub>4</sub><br>+ 2H <sub>4</sub> SiO <sub>4</sub> | + 2(Fe,Mg)**<br>+ Mg**                         |          |         |
| H = H = H = H = H = H = H = H = H = H =                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                                                                                                            | + 3H <sub>4</sub> SiO <sub>4</sub><br>+ 2H <sub>4</sub> SiO <sub>4</sub><br>+ 3H <sub>4</sub> SiO <sub>4</sub><br>+ 2H <sub>4</sub> SiO <sub>4</sub>                                       | + 2(Fe,Mg)**<br>+ Mg**                         |          |         |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                                                                                                            | + 3H <sub>4</sub> SiO <sub>4</sub><br>+ 2H <sub>4</sub> SiO <sub>4</sub><br>+ 2H <sub>4</sub> SiO <sub>4</sub><br>+ 2H <sub>4</sub> SiO <sub>4</sub>                                       | + 2(Fe,Mg)**<br>+ Mg**                         |          |         |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                                                                                                            | + 2H <sub>4</sub> SiO <sub>4</sub><br>+ 3H <sub>4</sub> SiO <sub>4</sub><br>3 H <sub>4</sub> SiO <sub>4</sub><br>+ 2H <sub>4</sub> SiO <sub>4</sub>                                        | + 2(Fe,Mg) <sup>++</sup><br>+ Mg <sup>++</sup> |          |         |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                                                                                                            | + 2H <sub>4</sub> SiO <sub>4</sub><br>+ 3H <sub>4</sub> SiO <sub>4</sub><br>3 H <sub>5</sub> SiO <sub>4</sub><br>+ 2H <sub>4</sub> SiO <sub>4</sub>                                        | + 2(Fe,Mg)**<br>+ Mg**                         |          |         |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                                                                                                            | + 3H <sub>4</sub> SiO <sub>4</sub> 3 H <sub>4</sub> SiO <sub>4</sub> + 2H <sub>4</sub> SiO <sub>4</sub>                                                                                    | + 2(Fe,Mg)**<br>+ Mg**                         |          |         |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                                                                                                            | + 3H <sub>4</sub> SiO <sub>4</sub> 3 H <sub>4</sub> SiO <sub>4</sub> + 2H <sub>4</sub> SiO <sub>4</sub>                                                                                    | + 2(Fe,Mg)**<br>+ Mg**                         |          |         |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                                                                                                            | 3 H <sub>4</sub> SiO <sub>4</sub><br>+ 2H <sub>4</sub> SiO <sub>4</sub>                                                                                                                    | + Mg**                                         |          |         |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                                                                                                            | 3 H <sub>4</sub> SiO <sub>4</sub><br>+ 2H <sub>4</sub> SiO <sub>4</sub>                                                                                                                    | + Mg <sup>++</sup>                             |          |         |
| Q2 = = = = = = = = = = = = = = = = = = =                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                                                                                                                            | + 2H <sub>4</sub> SiO <sub>4</sub>                                                                                                                                                         | + Mg*+                                         |          |         |
| O <sup>Z</sup> T                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                                                                                                                            | + 2H <sub>4</sub> SiO <sub>4</sub>                                                                                                                                                         | * Mg +                                         |          |         |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                                                                                                            |                                                                                                                                                                                            |                                                |          |         |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                                                                                                            |                                                                                                                                                                                            |                                                |          |         |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                                                                                                            |                                                                                                                                                                                            |                                                |          |         |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                                                                                                            |                                                                                                                                                                                            |                                                |          |         |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                                                                                                            |                                                                                                                                                                                            |                                                |          | _       |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                                                                                                            |                                                                                                                                                                                            |                                                |          |         |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                                                                                                            |                                                                                                                                                                                            |                                                |          |         |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                                                                                                            |                                                                                                                                                                                            |                                                |          |         |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                                                                                                            |                                                                                                                                                                                            |                                                |          |         |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                                                                                                            |                                                                                                                                                                                            |                                                |          |         |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | :u++ 8H4SiO4                                                                                                                                               |                                                                                                                                                                                            |                                                |          |         |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                                                                                                            |                                                                                                                                                                                            |                                                |          |         |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | .u <sup>++</sup> + H <sub>2</sub> O                                                                                                                        |                                                                                                                                                                                            |                                                |          |         |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                                                                                                            |                                                                                                                                                                                            |                                                |          |         |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | Cu <sup>++</sup> + 6H <sub>2</sub> O                                                                                                                       |                                                                                                                                                                                            |                                                |          |         |
| - 00                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                                                                                                                            |                                                                                                                                                                                            |                                                |          |         |
| 20.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                                                                                                                            |                                                                                                                                                                                            |                                                |          |         |
| + K <sup>+</sup>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                                                                                                                            |                                                                                                                                                                                            |                                                |          |         |
| 5)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | = 0 <sup>2</sup> H <sup>2</sup> O                                                                                                                          | KFe <sub>3</sub> (SO4) <sub>2</sub> (OH) <sub>6</sub>                                                                                                                                      | + 6H <sup>+</sup>                              | jarosite | site    |
| Silica:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                                                                                                            |                                                                                                                                                                                            |                                                |          |         |
| H <sub>4</sub> SiO <sub>4</sub>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | SiO <sub>4</sub> =                                                                                                                                         | SiO <sub>2</sub>                                                                                                                                                                           | + H <sub>2</sub> O                             | ilis     | silica  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                                                                                                            |                                                                                                                                                                                            |                                                |          |         |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | +++<br> A                                                                                                                                                  | KAI <sub>3</sub> (OH) <sub>6</sub> (SO <sub>4</sub> ) <sub>2</sub>                                                                                                                         | + 6H <sup>+</sup>                              | alu      | alunite |
| H <sub>2</sub> O + SO <sub>4</sub> + AI <sup>+++</sup>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | Al+++                                                                                                                                                      | AIOHSO₄                                                                                                                                                                                    | + H <sub>+</sub>                               |          |         |
| <b>Calcium:</b> 2H <sub>2</sub> O + 2SO <sub>4</sub> + Ca <sup>++</sup>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                                                                                                            | CaSO <sub>4.2</sub> H <sub>2</sub> O                                                                                                                                                       |                                                | MUSQVD   | un:     |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                                                                                                            |                                                                                                                                                                                            |                                                |          |         |

|                                                                                                                                                                                                                  | Na+                                                | + 7H <sub>4</sub> SiO <sub>4</sub> | Ш                    | NaSi <sub>7</sub> O <sub>13</sub> (OH) <sub>3</sub> .12H <sub>2</sub> O | ±<br>+                                                                                |                                                        | magadiite                       |
|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------|------------------------------------|----------------------|-------------------------------------------------------------------------|---------------------------------------------------------------------------------------|--------------------------------------------------------|---------------------------------|
|                                                                                                                                                                                                                  |                                                    |                                    |                      |                                                                         |                                                                                       |                                                        |                                 |
| Most commonly reported alteration product formation:                                                                                                                                                             | uct formation:                                     |                                    |                      |                                                                         |                                                                                       |                                                        |                                 |
| - Mobilines                                                                                                                                                                                                      | 2AI+++                                             | + 4H <sub>4</sub> SiO <sub>4</sub> | II                   | 2HAI(SiO <sub>3</sub> ) <sub>2</sub>                                    | + 6H                                                                                  | + 4H <sub>2</sub> O                                    | pyrophillite                    |
| Kaolinite:                                                                                                                                                                                                       |                                                    |                                    |                      |                                                                         |                                                                                       |                                                        |                                 |
| O <sub>2</sub> H                                                                                                                                                                                                 | + 2AI***                                           | + 2H₄SiO₄                          | 11                   | Al <sub>2</sub> O <sub>3</sub> .2SiO <sub>2</sub> .2H <sub>2</sub> O    | + 6H <sup>+</sup>                                                                     |                                                        | kaolinite                       |
| Vermiculite:                                                                                                                                                                                                     | ++1VC                                              | Cio He                             | ı                    | (HO): O IS IN SW                                                        | -<br>10H                                                                              |                                                        | of life                         |
| Sin 2                                                                                                                                                                                                            | 3                                                  | +<br>0042                          | I                    | 2/110\010802iV28ivi                                                     | -<br>-                                                                                |                                                        |                                 |
| Chionte: H <sub>2</sub> O                                                                                                                                                                                        | + 3(Fe,Mg) <sup>++</sup>                           | + 2H <sub>4</sub> SiO <sub>4</sub> | II                   | H₄(Fe, Mg)₃Si₂O₃                                                        | +H9+                                                                                  |                                                        | chlorite                        |
| Other mineral alteration products:                                                                                                                                                                               |                                                    |                                    |                      |                                                                         |                                                                                       |                                                        |                                 |
| Plagiociase (anortnite) aiteration:<br>2H₄SiO₄                                                                                                                                                                   | + CaAl <sub>2</sub> Si <sub>2</sub> O <sub>8</sub> | + H <sub>2</sub> SO <sub>4</sub>   | II                   | CaSO <sub>4</sub> .2H <sub>2</sub> O                                    | + 2HAI(SiO <sub>3</sub> ) <sub>2</sub>                                                | +4H <sub>2</sub> O                                     | gypsum and pyrophyllite*        |
| Na Feldspar alteration:                                                                                                                                                                                          |                                                    |                                    |                      |                                                                         |                                                                                       |                                                        |                                 |
| 4H <sub>4</sub> SiO <sub>4</sub>                                                                                                                                                                                 | + NaAlSi <sub>3</sub> O <sub>8</sub>               | ±<br>+                             | II                   | NaSi <sub>7</sub> O <sub>13</sub> (OH) <sub>3</sub> .12H <sub>2</sub> O | + 0.5 HAI(SiO <sub>3</sub> ) <sub>2</sub>                                             |                                                        | magadiite & pyrophyllite*       |
| Biotite alteration -closed system: (H,K) <sub>2</sub> (Mg,Fe) <sub>2</sub> Al <sub>2</sub> (SiO <sub>4</sub> ) <sub>3</sub> + 3H <sup>+</sup>                                                                    | + 0.5 O <sub>2</sub>                               | + Fe++                             | + 2SO <sub>4</sub> - | п                                                                       | 0.5 Mg <sub>2</sub> Al <sub>2</sub> Si <sub>3</sub> O <sub>10</sub> (OH) <sub>2</sub> | +KFe <sub>3</sub> (SO4) <sub>2</sub> (OH) <sub>6</sub> | + 0.5 SiO <sub>2</sub>          |
|                                                                                                                                                                                                                  |                                                    |                                    |                      |                                                                         |                                                                                       |                                                        | vermiculite, jarosite & silica* |
| Biotite alteration -open                                                                                                                                                                                         |                                                    |                                    |                      |                                                                         |                                                                                       |                                                        |                                 |
| (H,K) <sub>2</sub> (Mg,Fe) <sub>2</sub> Al <sub>2</sub> (SiO <sub>4</sub> ) <sub>3</sub> + 6H <sup>+</sup>                                                                                                       |                                                    |                                    |                      | II                                                                      | 0.5 Mg <sub>2</sub> Al <sub>2</sub> Si <sub>3</sub> O <sub>10</sub> (OH) <sub>2</sub> | + 0.5H <sub>4</sub> SiO <sub>4</sub>                   | + 2Fe <sup>+++</sup>            |
|                                                                                                                                                                                                                  |                                                    |                                    |                      |                                                                         |                                                                                       |                                                        |                                 |
| Notes:                                                                                                                                                                                                           |                                                    |                                    |                      |                                                                         |                                                                                       |                                                        |                                 |
| 1) Theoretical acid consumption by biotite conversion to vermiculite in open circuit leaching is 0.6 kg/kg biotite versus 0.3 kg/kg biotite for aerated closed circuit leaching (Dreier Section V)               | onversion to vermic                                | culite in open circui              | it leaching is 0.    | 6 kg/kg biotite versus 0.3 kg/                                          | kg biotite for aerated closed                                                         |                                                        |                                 |
| 2) Hot acid soluble test - John Dreier -small amount of minus 100 to 200 mesh leached in 20 wt% or conc. H2SO4, heated to 110F for one hour.                                                                     | amount of minus 1                                  | 00 to 200 mesh le                  | ached in 20 wt       | % or conc. H2SO4, heated to                                             | o 110F for one hour.                                                                  |                                                        |                                 |
| Extracts oxide copper, possibly some of the delafossite, cuprite and native copper and very little of the sulphide copper 3 Pottle rall fact. John Project. 100 to 200 g. oz. oz. oz. oz. oz. oz. oz. oz. oz. oz | delafossite, cuprite                               | e and native coppe                 | r and very little    | of the sulphide copper                                                  |                                                                                       |                                                        |                                 |
| Free acid titration measured after addition of Na and K oxalate to pregnant solution to remove all cations                                                                                                       | of Na and K oxalate                                | to pregnant solution               | on to remove al      | l cations                                                               |                                                                                       |                                                        |                                 |
| Extracts all oxide copper and some reduced copper.                                                                                                                                                               | d copper.                                          |                                    |                      |                                                                         |                                                                                       |                                                        |                                 |
| 4) Acid concentrations in bottle roll tests are often several order of magnitude higher than in heap leaching                                                                                                    | often several orde                                 | ır of magnitude hig                | her than in hea      | p leaching                                                              |                                                                                       |                                                        |                                 |
| 5) Quartz, K feldspar, sericite, biotite and chlorite, the most common rock forming minerals of porphyry Cu deposits, do not consume much acid in closed cycle leaching (Dreier Section VI)                      | olorite, the most cor<br>(Drejer Section V         | mmon rock forming<br> )            | g minerals of po     | orphyry Cu deposits, do not                                             |                                                                                       |                                                        |                                 |
| 6) Minerals that might consume acid include carbonates, calcic plagioclase, amphiboles, montmorillinites and pyroxenes                                                                                           | e carbonates, calcic                               | plagioclase, ampl                  | hiboles, montm       | orillinites and pyroxenes                                               |                                                                                       |                                                        |                                 |
| 7) Mineralogy can determine whether acid consuming minerals present, disposition and mineralogy of oxide Cu minerals and mineralogy and abundance of any sulphide Cu minerals                                    | onsuming minerals                                  | present, disposition               | on and mineral       | ogy of oxide Cu minerals and                                            | d mineralogy and abundance                                                            |                                                        |                                 |
| Solumn learned at the depends on particles size, copper mineralogy, grain size                                                                                                                                   | size, copper minera                                | alogy, grain size & o              | disposition in re    | ocks, density of fractures, no                                          | & disposition in rocks, density of fractures, non-fracture rock permeability,         |                                                        |                                 |
| nost rock leadining etc.  9) A log-log plot of incremental column leach recovery versus time can be used for extrapolation of leach recoveries with                                                              | h recovery versus t                                | ime can be used fo                 | or extrapolation     | of leach recoveries with                                                |                                                                                       |                                                        |                                 |
| time 10) Sufficient acid to be available in leach solution to avoid risk of high pH lower in heap and potential for delafossite formation - establish by testwork                                                | olution to avoid risk                              | of high pH lower in                | n heap and pot       | ential for delafossite formation                                        | on - establish by testwork                                                            |                                                        |                                 |
| 11) * Reaction not balanced                                                                                                                                                                                      |                                                    | -                                  |                      |                                                                         |                                                                                       |                                                        |                                 |
|                                                                                                                                                                                                                  |                                                    |                                    |                      |                                                                         |                                                                                       |                                                        |                                 |

#### 7. GANGUE SILICATE REACTION PRODUCTS

Table 2A summarizes heap leach gangue silicate reaction products arranged by reaction type, i.e. according to whether the reaction is silicate breakdown, limonite breakdown, copper oxide breakdown, precipitate product formation, silicate alteration product formation or mineral alteration reaction. Feed and reaction products are shown and reaction products are classified as precipitation product, alteration product or solution product.

As an example, in limonite breakdown hematite reacts with sulphuric acid to form ferric ions in solution. No precipitation or alteration products are formed. In another example, in precipitate product formation  $Ca^{2+}$  and  $SO_4^{2-}$  ions already in solution react with each to form gypsum as a precipitate. In a third example, in silicate breakdown product formation the soluble solution reaction products silicic acid and  $Al^{3+}$  react with each other to form pyrophyllite as a precipitation product and sulphuric acid as a solution product.

| Table 2A Heap Leach Gangue Sil           | icate Reaction Pro           | duct Summary - By Read                                            | tion Type                             |                       |                                                                                         |               |
|------------------------------------------|------------------------------|-------------------------------------------------------------------|---------------------------------------|-----------------------|-----------------------------------------------------------------------------------------|---------------|
|                                          |                              | ' '                                                               | , , , , , , , , , , , , , , , , , , , |                       |                                                                                         |               |
| Mineral Reaction Type                    | Feed Mineral                 | Feed Solution Reactants                                           | Precipitation<br>Product              | Alteration<br>Product | Solution Products                                                                       | Conditions    |
| Silicate breakdown                       | K Feldspar or<br>Plagioclase | Sulphuric acid                                                    |                                       |                       | Silicic Acid, K <sup>+1</sup> , Al <sup>+3</sup>                                        |               |
|                                          | Na Felspar                   | Sulphuric acid                                                    |                                       |                       | Silicic Acid, Na <sup>+1</sup> , Al <sup>+3</sup>                                       |               |
|                                          | CaPlagioclase                | Sulphuric acid                                                    |                                       |                       | Silicic Acid, Ca <sup>+2</sup> , Al <sup>+3</sup>                                       |               |
|                                          | Biotite                      | Sulphuric acid                                                    |                                       |                       | Silicic Acid, Ca <sup>+2</sup> , Fe <sup>+2</sup> , Mg <sup>+2</sup> , Al <sup>+3</sup> |               |
| Limonite breakdown                       | Hematite                     | Sulphuric acid                                                    |                                       |                       | Fe <sup>+3</sup>                                                                        |               |
|                                          | Goethite                     | Sulphuric acid                                                    |                                       |                       | Fe <sup>+3</sup>                                                                        |               |
| Copper oxide breakdown                   | Chrysocolla                  | Sulphuric acid                                                    |                                       |                       | Silicic Acid, Cu <sup>+2</sup>                                                          |               |
|                                          | Tenantite                    | Sulphuric acid                                                    |                                       |                       | Cu <sup>+2</sup>                                                                        |               |
|                                          | Brochantite                  | Sulphuric acid                                                    |                                       |                       | Cu <sup>+2</sup> , SO <sub>4</sub> -2                                                   |               |
| Precipitation product formation          |                              | Fe <sup>+3</sup> , K <sup>+</sup> , SO <sub>4</sub> <sup>-2</sup> | Jarosite                              |                       | Sulphuric acid                                                                          |               |
|                                          |                              | Silicic acid                                                      | Silica                                |                       |                                                                                         |               |
|                                          |                              | AI <sup>+3</sup> , K <sup>+</sup> , SO <sub>4</sub> <sup>-2</sup> | Alunite                               |                       | Sulphuric acid                                                                          |               |
|                                          |                              | Al <sup>+3</sup> , SO <sub>4</sub> <sup>-2</sup>                  | AIOHSO <sub>4</sub>                   |                       | Sulphuric acid                                                                          |               |
|                                          |                              | Ca <sup>+2</sup> , SO <sub>4</sub> <sup>-2</sup>                  | Gypsum                                |                       |                                                                                         |               |
|                                          |                              | Silicic acid, Na <sup>+</sup>                                     | Magadiite                             |                       | Sulphuric acid                                                                          |               |
| Silicate alteration product formation    |                              | Silicic acid, Al+3                                                | Pyrophyllite                          |                       | Sulphuric acid                                                                          |               |
| •                                        |                              | Silicic acid, Al+3                                                | Kaolinite                             |                       | Sulphuric acid                                                                          |               |
|                                          |                              | Silicic acid, Al+3                                                | Allophane                             |                       |                                                                                         |               |
|                                          |                              | Silicic acid, Mg <sup>+2</sup> , Al <sup>+3</sup>                 | Vermiculite                           |                       | Sulphuric acid                                                                          |               |
|                                          |                              | Silicic acid, Mg <sup>+2</sup> , Fe <sup>+2</sup>                 | Chlorite                              |                       | Sulphuric acid                                                                          |               |
| Mineral alteration reactions             | Plagioclase                  | Sulphuric acid                                                    | Gypsum                                | Pyrophyllite          | Silicic acid                                                                            |               |
|                                          | Nafeldspar                   | Silicic, sulphuric acid                                           | Magadiite                             | Pyrophyllite          |                                                                                         |               |
|                                          | Biotite                      | Sulphuric acid, air, Fe <sup>+3</sup>                             | Jarosite, silica                      | Vermiculite           |                                                                                         | Closed cycle* |
|                                          | Biotite                      | Sulphuric acid                                                    |                                       | Vermiculite           | Silicic acid, Fe <sup>+3</sup>                                                          | Open cycle    |
| Notes:                                   |                              |                                                                   |                                       |                       |                                                                                         |               |
| 1) * Air is required where biotite is al | tered by sulphuric a         | acid and ferric ion to a com                                      | bination of verm                      | niculite, jarosit     | e and silica                                                                            |               |

Table 2B summarizes heap leach gangue silicate reaction options arranged by gangue mineral type i.e. according to whether the mineral being leached is biotite, K feldspar, Na feldspar, or Ca plagioclase. Three leach options are indicated for each mineral being leached including option 1 involving sequential mineral breakdown, subsequent precipitation and/or alteration and options 2 and 3 involving direct mineral alteration.

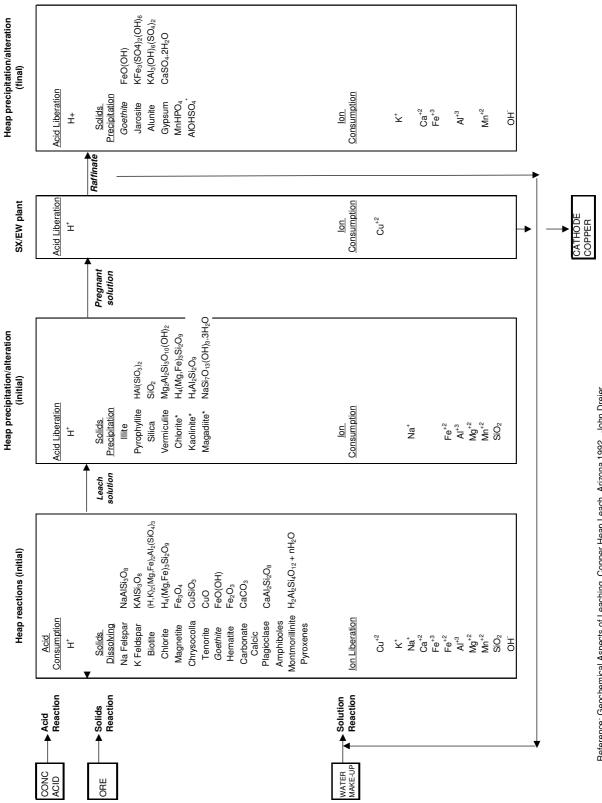
As an example, biotite is converted by option 1 reaction involving a combination of successive mineral breakdown, precipitation and alteration initially to produce soluble reaction products, silicic acid, Ca<sup>2+</sup>, Fe<sup>2+</sup>, Mg<sup>2+</sup>and Al<sup>3+</sup> and subsequently to produce precipitation products, silica and gypsum, as well as alteration solid products, magadiite, pyrophyllite, kaolinite, allophane, vermiculite and chlorite, and an alteration solution product, sulphuric acid. In option 2 reaction, biotite is converted to both precipitation products jarosite and silica and a silicate alteration product vermiculite. No solution products are formed. In option 3 reaction, biotite is converted to a silicate alteration solid product, vermiculite, and silicate alteration solution products, silicic acid and ferric ion.

| T-1- 00 II I 0 0"                         | landa I arash Barasha                                                                      | - O- ti D- O                         | Males and Trees                             |                 |                                          |  |
|-------------------------------------------|--------------------------------------------------------------------------------------------|--------------------------------------|---------------------------------------------|-----------------|------------------------------------------|--|
| Table 2B Heap Leach Gangue Sil            | icate Leach Reactio                                                                        | n Options - By Gangue                | Mineral Type                                |                 |                                          |  |
| Leach Feed Mineral                        | Silicate breakdown products in solution                                                    | Precipitation products*              | Silicate alteration products**              | l<br>on solid   | Silicate alteration solution products*** |  |
| Biotite:                                  |                                                                                            |                                      |                                             |                 |                                          |  |
| Option 1 -<br>breakdown/precip/alteration | Silicic Acid, Ca <sup>+2</sup> ,<br>Fe <sup>+2</sup> , Mg <sup>+2</sup> , Al <sup>+3</sup> | Silica, gypsum                       | Magadiite, p<br>kaolinite, a<br>vermiculite | llophane,       | Sulphuric acid                           |  |
| Option 2 - direct alteration              | None                                                                                       | Jarosite, silica                     | Vermi                                       | culite          | None                                     |  |
| Option 3 - direct alteration              | None                                                                                       | None                                 | Vermi                                       | culite          | Silicic acid, Fe <sup>+3</sup>           |  |
| KFeldspar or plagioclase:                 |                                                                                            |                                      |                                             |                 |                                          |  |
| Option 1 -<br>breakdown/precip/alteration | Silicic Acid, K <sup>+1</sup> ,                                                            | silica, alunite, AIOHSO <sub>4</sub> | Pyrophyllite                                | , kaolinite     | Sulphuric acid                           |  |
| Option 2 - direct alteration              | None                                                                                       | Gypsum                               | Pyroph                                      | nyllite         | Silicic acid                             |  |
| NaFeldspar:                               |                                                                                            | •                                    |                                             | ĺ               |                                          |  |
| Option 1 -<br>breakdown/precip/alteration | Silicic Acid, Na <sup>+1</sup> ,<br>Al <sup>+3</sup>                                       | Magadiite                            |                                             |                 |                                          |  |
| Option 2 - direct alteration              | None                                                                                       | None                                 | Maga                                        | diite           | Sulphuric acid                           |  |
| Ca Plagioclase:                           |                                                                                            |                                      |                                             |                 |                                          |  |
| Option 1 -                                | Silicic Acid, Ca <sup>+2</sup> ,                                                           |                                      |                                             |                 |                                          |  |
| breakdown/precip/alteration               | Al <sup>+3</sup>                                                                           |                                      |                                             |                 |                                          |  |
| Notes:                                    |                                                                                            |                                      |                                             |                 |                                          |  |
| 1) Other combinations of precipitation    | on and alteration pro                                                                      | ducts are possible throug            | h the interaction                           | between the     | ions produced by breakdown of the        |  |
| above gangue and other gangue m           | inerals - see Table 2                                                                      | A for additional precipitation       | on products and/                            | or silicate alt | eration products                         |  |
| derived from breakdown products           |                                                                                            |                                      | Ι.                                          |                 | ·                                        |  |
| 2) * derived from solution breakdow       | n products                                                                                 |                                      |                                             |                 |                                          |  |
| 3) ** derived from solution breakdov      | wn products or from o                                                                      | direct alteration of feed m          | inerals                                     |                 |                                          |  |
| 4) *** silicate alteration solution prod  | ducts accompanying                                                                         | silicate alteration solid pro        | oducts                                      |                 |                                          |  |

## 8. GANGUE SILICATE MINERAL GROUPS

Table 3 presents a summary of the following gangue silicate and iron mineral groups with corresponding formulae, where available:

- Mica (including muscovite, phlogopite, biotite and vermiculite)
- Feldspar (including orthoclase, microcline, soda spar, lime spar, soda lime, felspathoid and felspathoid minerals)
- Clays (kaolinite, beidellite, montmorillinite, halloysite, hydromica, bentonite, china clay and ball clay)
- Iron oxidation (hematite, limonite, goethite)
- Other potential silicate minerals or alteration products (chlorite, chrysolite, chrysotile, cinochlore, epidote, glauconite, glaucophane, grossularite, halloysite, hauynite, heulandite, hornblende, laumontite, leucite, natrolite, nephelite, pyrope, pyrophyllite, staurolite, stilbite, talc, tremolite, wollastonite and zoisite).


# Acid reactivity issues include:

- Some minerals are close to equilibrium with the leach solution and will therefore have limited reactivity.
- Acid consumption in high biotite and high chlorite ores is proportional to wt% acid
- Iron minerals, especially those producing ferric iron, have a major impact on acid consumption
- Chlorites are powerful long term acid consumers
- Epidote alteration can drastically increase acid consumption when long leach times are involved

| Table 3: Gang  | gue Silicate and           | Oxide Iron Mineral Groups:                                                                                                                         |                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|----------------|----------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------|--------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|                |                            |                                                                                                                                                    | D. /               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | A                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
| Mineral Group  | 2                          |                                                                                                                                                    | Ref.               | Mineral Source                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | Acid reactivity_                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| Mica:(H, Mg o  | r Fe substituting          | K-alumino silicates)                                                                                                                               |                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| White mica     | Muscovite                  | H <sub>2</sub> KAl <sub>3</sub> (SiO <sub>4</sub> ) <sub>3</sub>                                                                                   | Taggart            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| Amber mica     | Phlogopite                 | (H,K, MgF)Mg <sub>3</sub> Al(SiO <sub>4</sub> ) <sub>3</sub>                                                                                       | Taggart            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|                |                            | KMg <sub>3</sub> AlSi <sub>3</sub> O <sub>10</sub> (OH) <sub>2</sub>                                                                               | Dreier             | Product of biotite alteration in acid leaching by insitu alteration                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | Close to equilibrium with leach solution                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
| Black mica     | Biotite                    | (H,K) <sub>2</sub> (Mg,Fe) <sub>2</sub> Al <sub>2</sub> (SiO <sub>4</sub> ) <sub>3</sub>                                                           | Taggart            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Acid consumption proportional to wt%                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
|                |                            | KFe <sub>3</sub> AlSi <sub>3</sub> O <sub>10</sub> (OH) <sub>2</sub>                                                                               | Dreier             | Original rock species present before leaching                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | Close to equilibrium with leach solution                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
| Altered mica   | Vermiculite                | No formula given by Taggart                                                                                                                        | Taggart            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|                |                            | $Mg_2Al_2Si_3O_{10}(OH)_2$                                                                                                                         | Dreier             | Product of phlogopite alteration in acid leaching                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| Feldspar: (Na  | l<br>, K, or Ca alumi      | l<br>no silicates)                                                                                                                                 |                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| Potash spars   |                            | KAISi <sub>3</sub> O <sub>8</sub>                                                                                                                  | Taggart            | Original rock species present before leaching                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | Close to equilibrium with leach solution                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
|                | Microcline                 | KAlSi₃O <sub>8</sub>                                                                                                                               | Taggart            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| Soda spars     | Albite                     | NaAlSi <sub>3</sub> O <sub>8</sub>                                                                                                                 | Taggart            | Original rock species present before leaching                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | Close to equilibrium with leach solution                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
|                | Anorthite                  | CaAl <sub>2</sub> Si <sub>2</sub> O <sub>8</sub>                                                                                                   | Taggart            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|                | dspars (plagiocla          |                                                                                                                                                    | 55                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|                | Albite                     | NaAlSi <sub>3</sub> O <sub>8</sub> - no Ca                                                                                                         | Taggart            | Original rock species present before leaching                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | Close to equilibrium with leach solution                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
|                | Oligoclase                 | Intermediate - high Na, low Ca                                                                                                                     |                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|                | Andesine<br>Labradorite    | Intermediate Intermediate                                                                                                                          | Taggart            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|                | Bytownite                  | Intermediate - low Na, high Na                                                                                                                     | Taggart<br>Taggart |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|                | Anorthite                  | CaAl <sub>2</sub> Si <sub>2</sub> O <sub>8</sub> - no Na                                                                                           | Taggart            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| Felspathoid    | Nepheline                  | K <sub>2</sub> Na <sub>6</sub> Al <sub>8</sub> Si <sub>9</sub> O <sub>34</sub>                                                                     | Taggart            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| Felspathoid    | Nepheline                  |                                                                                                                                                    | - 00               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| minerals       | syenite                    |                                                                                                                                                    | Taggart            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|                | Albita avanita             |                                                                                                                                                    | Taggart            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|                | Albite syenite<br>Rhyolite |                                                                                                                                                    | Taggart<br>Taggart |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|                | Volcanic ash               |                                                                                                                                                    | Taggart            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|                |                            |                                                                                                                                                    | - 00               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| Clays:(H addit | tion to alumino s          | ilicates)                                                                                                                                          |                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|                | Kaolinite                  | Al <sub>2</sub> O <sub>3</sub> .2SiO <sub>2</sub> .2H <sub>2</sub> O                                                                               | Taggart            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|                | Dickite Nacrite            | 2-32 2-                                                                                                                                            |                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|                | Beidellite                 |                                                                                                                                                    |                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|                |                            | $H_2AI_2Si_4O_{12} + nH_2O$                                                                                                                        | Taggart            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|                | Halloysite                 | H <sub>4</sub> Al <sub>2</sub> O <sub>3</sub> .2SiO <sub>2</sub> + H <sub>2</sub> O                                                                | Taggart            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|                | Hydromica<br>(Sericite)    |                                                                                                                                                    |                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|                | Bleaching clay             |                                                                                                                                                    |                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|                | Bentonite                  | SiO <sub>2</sub> , Al <sub>2</sub> O <sub>3</sub> , Fe <sub>2</sub> O <sub>3</sub> , CaO, MgO                                                      | Taggart            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|                | China clay                 | 0.02, 1.0203, 1.0203, 0.00, 1.030                                                                                                                  |                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|                | Ball clay                  |                                                                                                                                                    |                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| Iron Oxidation | n:                         |                                                                                                                                                    | Baum               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Presence and abundance of iron minerals has<br>major impact on acid consumption especially by<br>gangue minerals if ferric present                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
|                | Hematite                   | Fe <sub>2</sub> O <sub>3</sub>                                                                                                                     | Taggart            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | P                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
|                | Limonite                   | 2Fe <sub>2</sub> O <sub>3</sub> . 3H <sub>2</sub> O                                                                                                | Taggart            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|                | Goethite                   | FeO(OH)                                                                                                                                            | Taggart            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| Other Det      | al Cilianta Mi             | mala au Oilianta Altanati - D                                                                                                                      |                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| Other Potenti  | ai Silicate Mine           | erals or Silicate Alteration Proc                                                                                                                  | Jucts:             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|                | Chlorite                   | H <sub>4</sub> (Mg,Fe) <sub>3</sub> Si <sub>2</sub> O <sub>9</sub>                                                                                 | Taggart            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Fe chlorites more soluble and acid consuming than Mg chlorites. Chlorites powerful long term                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
|                | - Grillorite               |                                                                                                                                                    | Baum               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | acid consumers. Acid consumption in high chlorite and biotite ores proportional to wt% acid                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
|                | Chrysolite                 | (Mg,Fe) <sub>2</sub> SiO <sub>4</sub>                                                                                                              | Taggart            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | and the second s |
|                | Chrysotile                 | H <sub>4</sub> Mg <sub>3</sub> Si <sub>2</sub> O <sub>9</sub>                                                                                      | Taggart            | Similar to chlorite, but without any Fe present                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|                | Cinoclore                  | 4H <sub>2</sub> O.5MgO.Al <sub>2</sub> O <sub>3</sub> .3SiO <sub>2</sub>                                                                           | Taggart            | and the second s |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|                | Epidote                    | Ca <sub>2</sub> Al(OH)Al <sub>2</sub> SiO <sub>4</sub>                                                                                             | Taggart<br>Baum    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Epidote alteration can drastically increase acid consumption when leach times longer than 100                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
|                | Glauconite                 | (K <sub>2</sub> O) <sub>x</sub> .(Fe <sub>2</sub> O <sub>3</sub> ) <sub>y</sub> .(H <sub>2</sub> O) <sub>x</sub> .(SiO <sub>2</sub> ) <sub>w</sub> | Taggart            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | days                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
|                | Glaucophane                | NaAl(SiO <sub>3</sub> ) <sub>2</sub> .(Fe,Mg)SiO <sub>3</sub>                                                                                      | Taggart            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|                | Grossuralite               | Ca <sub>3</sub> Al <sub>2</sub> (SiO <sub>4</sub> ) <sub>3</sub>                                                                                   | Taggart            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|                |                            | •                                                                                                                                                  |                    | •                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | •                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |

# 9. GEOCHEMICAL LEACH CYCLE

Fig 1 is a simplified schematic of the geochemical cycle for a typical oxide copper ore heap leach process. Acid consumption and liberation reactions are shown in separate stages. Acid consumption occurs in the initial heap leach reactions. Acid liberation occurs in both the initial and final heap precipitation and alteration stages as well as in the solvent extraction stage. Examples of the types of minerals that dissolve in the initial heap reaction stage and precipitate or alter in the initial or final heap reaction stages are shown. The liberation and/or consumption of different metal ions in the different reaction stages are also shown. The main point the figure is to show that a broad range of different solid products and solution products either form or are removed from solution as the reactions proceed.



Reference: Geochemical Aspects of Leaching, Copper Heap Leach, Arizona 1992, John Dreier \* indicates IPDS addition of alteration products based on text of Dreier reference

## 10. GANGUE SILICATE REACTION PATHS

Fig 2 shows idealized mineral reaction paths for the acid leaching of oxide and gangue silicate minerals during heap leaching. The original silicate feed minerals are assumed to be K feldspar, Na feldspar, Ca plagioclase and biotite. The other minerals present are assumed to be limonite and oxide copper minerals. As in Fig 1, the figure shows that a wide variety of different solid products (in this case 11) can form from the breakdown and /or alteration of just four original silicate minerals during acid leaching. The figure also shows that the pregnant leach solution to SX would be expected to contain silicic acid, sulphuric acid and a wide variety of metal ions from silicate and limonite mineral breakdown during leaching. It would appear that aeration would be necessary to ensure jarosite formation during alteration of iron rich biotite during oxide copper leaching.

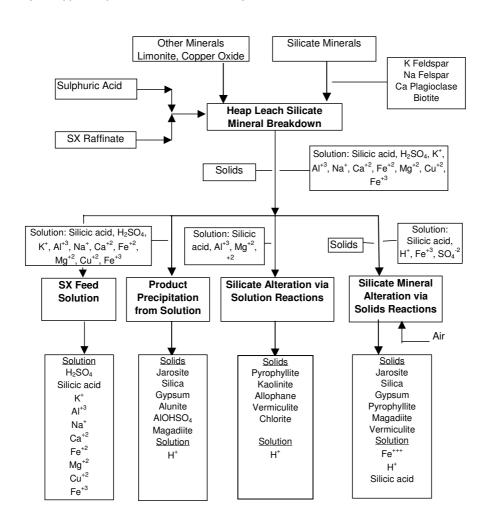



Fig 2: Copper Heap Leach Oxide Ore and Gangue Silicate Mineral Reaction Paths

#### Notes:

- 1) Fig 2 shows conversion of gangue silicate (K Feldspar, Na Feldspar, Ca Plagioclase & Biotite) to other solid and solution products
- 2) Reaction details shown on Reaction Worksheet, Table 2
- 3) Solid and solution species assumed at equilibrium conditions
- 4) Ion generation and consumption shown in Geochemical Cycle Fig 1  $\,$
- 5) Reactions from John Dreier, Copper Heap Leach, Arizona, Feb 1992, "Geochemical Aspects of Copper Heap Leaching"
- 6) Silicic acid is H<sub>4</sub>SiO<sub>4</sub>

Farlas and co-workers<sup>6</sup> point out that acid curing can avoid the problems of silica dissolution and control that can otherwise often occur in heap leaching. The mechanism proposed for acid cure is that it dehydrates the surface of aluminium silicate minerals in the ore, by partial removal of a monolayer of hydroxide groups that cover the surface of silica and silicates, rendering the surface hydrophobic and virtually insoluble in aqueous solutions. It can also encourage chemical cementation of neighbouring interlayers of sheet and chain silicates.

Data presented for industrial vat leaching shows that acid cure not only assures an even distribution of the leaching agent with a strong sulphation effect but also improves the mechanical characteristics of the ore, the overall hydraulic behaviour, copper recovery and leads to reduced acid consumption.

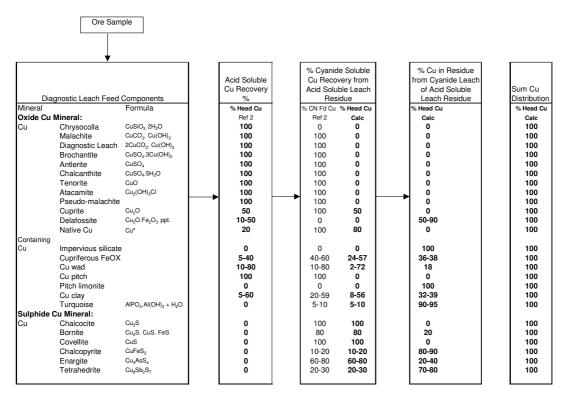
#### 11. DIAGNOSTIC OR SEQUENTIAL LEACHING

Diagnostic leaches are empirical relatively low cost methods that are used to estimate the type of copper species present in leach feed and leach residue materials. The diagnostic leaches determine firstly the acid-soluble copper content, secondly the cyanide soluble copper content in residue from the preceding acid soluble determination and thirdly the non-acid soluble and non-cyanide soluble copper content remaining in the cyanide soluble determination residue. The results are then analyzed to infer the extent of acid-soluble copper and slow-leaching oxide or potentially sulphide copper. Fig 3 shows a schematic of a typical diagnostic leaching assay method. (In a number of cases it has been found that a hot acid procedure at 50C is more reliable, and that a cold acid technique may understate the acid soluble copper content.)

The acid-soluble copper assay is normally expected to leach 100% of the copper present in the following minerals: chrysocolla, malachite/azurite, brochantite, chalcanthite, atacamite, antlerite, tenorite, pseudomalachite, copper pitch and neotosite. It is also meant to leach the order of 20% native copper, 50% cuprite, 5-40% cupriferous iron oxide, 5-60% of cupriferous clay, 10-50% of delafossite and 10-80% of copper wad. In some instances it can also leach a minor portion of the more soluble sulphides, for example up to approximately 20% of the chalcocite.

The subsequent cyanide-soluble copper assay is usually expected to leach 100% of the copper present in chalcocite, covellite, native copper, brochantite, antlerite, atacamite, pseudomalachite, cuprite, tenorite and malachite/azurite. It is also expected to leach in the order of 40-60% cupriferous iron oxide, 20-60% cupriferous clay, 10-12% hematite, 10-80% copper wad, 5-10% turquoise, and for sulphides present 100% chalcocite and covellite, 80% bornite, 60-80% energite, 20-30% tetrahedrite and 10-20% chalcopyrite.

The cyanide leach residue is expected to indicate the extent of the residual copper still present in clays, feldspars, iron oxides, turquoise, sulphosalts, oxide copper in silicates and partially soluble sulphides.


There can be variations from the above figures due to complex mineral intergrowth.

One benefit of the above sequential procedure is that chrysocolla is accounted for in the initial acid-soluble step. If a cyanide-soluble assay is undertaken without a preceding acid-soluble step, the soluble copper present as chrysocolla will be underestimated, as chrysocolla is only partly soluble in cyanide.

Without a through understanding of the ore mineralogy, it can be seen that diagnostic leaches can readily lead to misinterpretation of leach data in terms of copper mineralogy. Further limitations include the possibilities of complex locking and occurrence of copper, readsorption of copper from solution after leaching and changes in extraction efficiencies of a given mineral with changes in mineralogical composition of the ore. It would seem that

diagnostic leaching should preferably be used where the ore mineralogy is generally known.

Fig 3: Typical Diagnostic Copper Leach Assay Method



#### Notes:

- 1) Summation of Cu recoveries based on sum of lowest recoveries in final residue and cyanide leach extraction with highest recovery from acid leach
- 2) Lowest CN leach Cu recoveries relative to head grade are based on product of lowest residual copper from acid leach with lowest recovery frrom CN leach 3) Highest CN leach Cu recoveries relative to head grade are based on product of highest residual Cu from acid leach with highest recovery from CN leach
- 4) Lowest residual copper in CN leach residue given by 100 less highest Cu recovery in acid leach and lowest Cu recovery in CN leach 5) Highest residual Cu in CN leach residue given by 100 less lowest Cu recovery in acid leach and highest recovery from CN leach

The data from the mineralogy and diagnostic leaching methods can be usefully used to specify the soluble copper assay methods to be applied to the drilling program and the subsequent metallurgical test program. A much clearer picture of the orebody can be obtained by utilizing the soluble copper assay rather than the total copper assay in orebody modeling. In addition the assessment of leaching performance is more meaningful when expressed in terms of soluble copper rather than total copper.

# 12. MINERALOGICAL STUDY

A relatively inexpensive polished section study, supplemented as appropriate by XRD analyses, can provide valuable information on the extent of potential acid-consuming gangue silicate, iron or calcite minerals present and the relative amounts of different oxide copper minerals and slower leaching sulphide minerals. In some case, microprobe work may be needed to resolve specific issues. Ideally such a study is carried out on representative ore type samples, well before commencement of the metallurgical test program.

The results of the initial mineralogy study are a key to understanding future potential leach performance and in building up a reliable database for future development work including planning of testwork. Without suitable initial mineralogy work, leach results are potentially subject to misinterpretation.

For example, a new resource could conceivably be prematurely rejected from further evaluation due to inadequate understanding of mineralogical reasons for low recoveries in early exploratory leach tests. Conversely a new resource might be prematurely adopted for a major development program based on unduly optimistic leach test results on ore samples that are only partially representative of the resource. Only after further more extensive testwork has been carried out might any problems of major mineralogical variability and related recovery variability recoveries become better defined.

Careful mineralogy studies, on samples of established representivity, at the outset should help avoid misclassification of prospective heap leach projects.

# 13. CONCLUSIONS

Acid consumption in oxide copper heap leaching is due to the presence of silicate and limonite gangue as well as more obvious acid consuming carbonate minerals. Acid consumption in closed circuits can be significantly lower than in open circuits because of equilibrium effects. Also, the acid solubility of copper minerals varies widely. Thus, greater attention to relatively low cost mineralogy work, on carefully selected samples, early in the project development program can be expected to provide significant cost and planning benefits in later testwork, plant design and operations of new leach projects. Particular benefits are likely to include improved definition and characterization of ore types, better understanding of potential variability in copper recovery and acid consumption within the resource, a probable reduction in the number and cost of leach tests needed for project feasibility assessment, more reliable plant design criteria and more predictable commercial heap performance. Insufficient attention to mineralogy can lead to inadequate understanding of the reasons for variable ore performance and to much higher risks in plant design and commercial heap performance.

## 14. REFERENCES

- 1. John Dreier, Geochemical Aspects of Copper Heap Leaching, Copper Heap Leach, Phoenix, Arizona, Feb 21-23, 1992
- 2. W. Baum, The use of a mineralogical data base for production forecasting and troubleshooting in copper leach operations, Cobre 99, Volume IV, page 394
- 3. Taggart, Handbook of Mineral Dressing, Ores and Minerals, Wiley 1945
- 4. T. Moore, B. Townson, C. Maes & O.Tinker, Solvent Extraction of Copper From Concentrated Feed Solutions, Alta 1999 Copper, Gold Coast, Queensland, Australia, September 6-8 1999
- 5. Mal Jansen and Alan Taylor, A New Approach to Heap Leach Modeling and Scale-Up, Alta 2002 Copper, Perth, Western Australia, May 2002
- Luis Farlas L., Andres Reghezza I., Alberto Cruz R., Jorge Menacho LI., and Yadranka Zivkovic D., Acid Leaching of Copper Ores, Copper 95, Santiago, Chile, November 23-23, 1995