APPENDIX 7-A

Baseline Hydrogeological Assessment

<u>**GOLDCORP</u>**</u>

Coffee Gold Baseline Hydrogeological Assessment

Project No. A362-5 7 March 2017

2289 Burrard Street Vancouver, BC, V6J 3H9 Canada 1-604-688-7173

Preface

GOLDCORP

Preface

This report constitutes a baseline hydrogeological assessment of the Project that was first published in 2016, prior to the acquisition of Kaminak Gold Corporation by Goldcorp. The results presented herein are current to the end of October 2015, when the previously proposed (Kaminak) mine plan was still in effect. Accordingly, document figures, tables and text reference mine facilities that are consistent with the previous mine plan. Revision of the mine plan under Goldcorp has not undermined the applicability of the monitoring network. The monitoring network remains well-positioned to quantify changes to the groundwater system brought about by the Project.

In 2016, Lorax undertook a drilling program in the area of the proposed heap leach facility in order to establish a monitoring well (Westbay system) and thermistor/vibrating wire piezometer string in close proximity to the facility. The methods and preliminary results of the 2016 field program have been appended to the end of this document as Appendix P-1. Otherwise, results of the 2016 field program have not been incorporated into this document. Other than the addition of Appendix P-1, this document remains identical to the previous version distributed to First Nations at the end of January, 2017.

_GOLDCORP

Executive Summary

The Coffee Gold Project (the Project) is a proposed open-pit heap leach mine development located in west-central Yukon, 130 kilometers (km) south of Dawson City. The Project is subject to an assessment under the Yukon Environmental and Socio-economic Assessment Act (YESAA). Upon completion of the adequacy review, the Project will apply for a Type "A" water license from the Yukon Water Board and a quartz mining license from the Government of Yukon, Department of Energy, Mines and Resources.

This report constitutes a baseline hydrogeological assessment of the Project. It summarizes the findings of multiple hydrogeological field investigations which have been undertaken by Lorax Environmental Services Ltd. (Lorax) and others at the Project between 2013 and 2015. It discusses groundwater quality and groundwater level data collected up to the end of October 2015.

The field programs have established a robust network of hydrogeological monitoring installations in, around and downgradient of major mine facilities. The instrumentation includes eleven conventional monitoring wells, six Westbay monitoring systems, nine combination vibrating wire piezometer (VWP)/thermistor strings, plus five stand-alone thermistors and four stand-alone VWP strings. Groundwater level information is available from selected sites from as early as 2013, with all installations recording high frequency (sub-daily) water level and ground temperature information from mid-2015 onward.

Ground temperature data obtained from thermistors, as well as observations from drilling and monitoring well sampling, indicate that permafrost is extensive across the project area. The temperature monitoring network extends to greatest depths on north-facing ridge areas with the thickest permafrost (~165 metres) encountered near the north end of the proposed Supremo pit. Permafrost appears to decrease in thickness with declining elevation. Permafrost in the project area is relatively warm (between 0 and -2°C) and is coolest (-1.4°C to -1.9°C) on north-facing slopes.

Over forty successful measurements of bedrock hydraulic conductivity (K) have been obtained through a combination of different hydraulic testing methods. Bedrock hydraulic conductivity ranges over several orders of magnitude, from below test resolution (<1E-10 m/s) to over $1E^{-}06 \text{ m/s}$, consistent with a fractured bedrock system. Packer and airlift yield recovery tests targeting geologic structures in proposed pit areas report a narrow range of K values with an arithmetic mean of $7E^{-}07 \text{ m/s}$. Hydraulic tests undertaken in valley locations also report higher K values in the range of 1E-06 m/s.

Groundwater levels generally follow topography, with deepest water levels (ranging from ~130 metres to over 220 metres below ground surface) found in ridge areas, and confined/artesian pressures encountered at lower elevations. Permafrost in combination with higher quality rock is believed to act as a confining unit in some areas. The hydrographs at most of the deep groundwater installations indicate a seasonal response to recharge with groundwater levels starting to rise within one to four weeks of the onset of consistent summer rainfall in late-June 2015. The water level response recorded to the end of October 2015 reflects seasonal hydrograph increases anywhere from one to over 30 metres.

Most of the deep well hydrographs are insensitive to short-term rainfall events and are presumed to reflect confined conditions. Conversely, the shallow bedrock well at Kona pit and VWPs installed adjacent to Halfway Creek and upper Latte Creek do show some responsiveness to short-term rainfall events. Hydrographs measured in active zone/overburden wells mimic the flashiness of short term rainfall events reflected in hydrometric station data. A below-average freshet peak recorded at hydrometric stations starting May 9th, 2015 was not captured in the 2015 monitoring well hydrographs, with the exception of one installation in Halfway Creek.

Vertical hydraulic gradients are highly variable across the site (ranging from negligible to 40% upward or downward) and do not necessarily reflect typical gradient patterns that would be expected in this type of terrain. For example, in a more homogeneous system, downward hydraulic gradients would be expected in groundwater recharge areas in upland regions while upward gradients and artesian conditions would be expected in groundwater discharge areas in valley bottoms. In some cases, the opposite is observed in the Project groundwater data which speaks to the complexity of the groundwater system influenced by permafrost, fractures and large-scale geologic structures.

Groundwater sampling was conducted on five occasions between 2014 and 2015. Sampling was conducted at monitoring wells installed by Lorax in 2014 and 2015 and covers the period from September 2014 to September 2015. Data from these sampling events are included in the evaluation of groundwater quality, although several results were discounted due to potential influences from drilling and well installation artifacts.

Groundwater in the Project area is predominantly circum-neutral (pH 6 to 8), with most groundwater samples between pH 7 and 8. Groundwater quality shows variable influence from weathering of sulphide minerals and/or dissolution of sulphate minerals, either from the deposits or other disseminated mineralization across the Project area. This is evidenced by low to substantial sulphate concentrations and variable salinity (specific conductance between 28 and 2269 μ S/cm). Major ion chemistry in overburden wells is calcium-

bicarbonate-type. The groundwater in gneiss has a wide ranging major ion chemical signature which ranges from calcium-bicarbonate to mixed magnesium-calcium-sodium-sulphate-type water, reflecting variable influence of sulphide weathering. Groundwater in the granite is generally more sodic than other groundwater on site with major ion chemistry ranging from calcium-bicarbonate to sodium-bicarbonate. The groundwater sampled from the hydrothermal breccia and schist tends to be calcium-bicarbonate to magnesium-sulphate.

Baseline groundwater quality in the Project area is characterized the presence of elevated dissolved arsenic and uranium. Dissolved arsenic and uranium concentrations were generally highest in the bedrock groundwater, ranging from 0.27 to 1860 μ g/L and 7.6 to 589 μ g/L, respectively.

Table of Contents

_GOLDCORP

Table of Contents

PF	REFACE		i
Еу	ECUTIVI	E SUMMARY	ii
TA	ABLE OF (CONTENTS	V
G	LOSSARY	AND ABBREVIATIONS	ix
1.	INTROD		
		OJECT OVERVIEW	
2.	BACKGI	ROUND	
	2.1 CL	JMATE	2-1
	2.2 Hy	YDROLOGY	2-1
	2.3 Рн	IYSIOGRAPHY	2-2
	2.4 Ge	EOLOGY	2-2
3.		GEOLOGICAL FIELD INVESTIGATIONS	
	3.1 EE	3A TETRA TECH 2013 PROGRAM	
	3.2 LC	DRAX 2014 DRILLING PROGRAM	
	3.3 KN	NIGHT PIÉSOLD 2014 PROGRAM	
	3.4 LC	PRAX 2015 DRILLING PROGRAMS	
		RK 2015 Program	
	3.6 GF	ROUNDWATER SAMPLING	
4.		AL HYDROGEOLOGY RESULTS	
	4.1 PE	RMAFROST	4-1
	4.2 Hy	VDRAULIC TESTING	
	4.3 W	ATER LEVELS AND GRADIENTS	
	4.3.2	HALFWAY CREEK	
	4.3.3	YT-24 Drainage	
	4.3.4	SOUTH WASTE ROCK STORAGE FACILITY DRAINAGE	
	4.3.5	LATTE CREEK	
	4.4 Su	IMMARY	
5.	GROUN	DWATER QUALITY RESULTS	
	5.1 M	AJOR IONS	5-1
	5.1.1	Overburden	
	5.1.2	GNEISS	
	5.1.3	GRANITE	
	5.1.4	Hydrothermal Breccia	5-4
	5.1.5	Schist	
		KIDATION-REDUCTION GEOCHEMISTRY	
	5.2.1	OVERBURDEN	
	5.2.2	GNEISS.	
	5.2.3	GRANITE	
	5.2.4	Hydrothermal Breccia	
	5.2.4	SCHIST	
		ACE ELEMENTS	
	J.J IK	ACE DEMINIO	,

6. CONCLUSIONS

7. CLOSURE

References	·1
------------	----

APPENDICES

APPENDIX 3-A: BOREHOLE AND INSTRUMENT LOGS APPENDIX 3-B: WESTBAY COMPLETION REPORT APPENDIX 3-C: RST VWP AND THERMISTOR DOCUMENTATION APPENDIX 3-C1: RST VWP CALIBRATION SHEETS APPENDIX 3-C2: RST THERMISTOR WIRING DIAGRAMS APPENDIX 3-D: LORAX HYDROGEOLOGICAL INSTALLATION METHODS APPENDIX 3-E: LORAX HYDRAULIC TESTING METHODS AND RESULTS **APPENDIX 3-F: MONITORING WELL DEVELOPMENT AND SAMPLING METHODS** APPENDIX 3-G: SRK HYDROGEOLOGICAL FIELD INVESTIGATIONS REPORT COFFEE GOLD PROJECT **APPENDIX 4-A: THERMISTOR PROFILES ALL STATIONS** APPENDIX 4-B: SHALLOW THERMISTOR SENSOR 2015 TIME SERIES DATA **APPENDIX 5-A: GROUNDWATER QUALITY DATA APPENDIX 5-B: GROUNDWATER QUALITY SUMMARY STATISTICS** APPENDIX 5-C: LABORATORY CERTIFICATES OF ANALYSIS (ELECTRONIC ONLY) APPENDIX 5-D: GROUNDWATER QUALITY QAQC APPENDIX P-1: 2016 COFFEE GOLD MINE HYDROGEOLOGY FIELD PROGRAM SUMMARY

LIST OF FIGURES

FIGURE 1-1	COFFEE PROJECT LOCATION MAP	1-2
FIGURE 2-1	BEDROCK GEOLOGY OF THE COFFEE GOLD PROJECT.	2-4
FIGURE 3-1	HYDROGEOLOGICAL MONITORING NETWORK AND JUNE 2015 BEDROCK GROUNDWATER HEAD CONTOURS.	3-3
FIGURE 3-2	THERMISTOR INSTALLATION AT MW14-04T (LEFT) AND VWP INSTALLATION AT CFD-0318 (RIGHT).	3-8
FIGURE 3-3	SCHEMATIC OF AN EXAMPLE WESTBAY SYSTEM INSTALLED IN PERMAFROST (DRAWING NOT TO SCALE).	3-10
FIGURE 3-4	WESTBAY INSTALLATION AT MW15-06T (BH5) USING THE BOYLES 37 DIAMOND DRILL RIG. BLUE GLAND IS PACKER ELEMENT WHICH IS INFLATED DOWNHOLE WITH A 3:1 DILUTION OF PROPYLENE GLYCOL. PVC IS 1.5" SCHED 80 WITH ENDS MACHINED TO MATE WITH WESTBAY SYSTEM COUPLINGS INCORPORATING A SHEAR-ROD CONNECTION AND AN O-RING SEAL (NO GLUE).	3-11
FIGURE 4-1	ICE LENS OBSERVED IN EXPLORATION HOLE CFD0376 (KONA NORTH). DEPTH IS ~85 M VERTICAL.	4-3
FIGURE 4-2	ICE "CUTTINGS" INTERCEPTED AT MW15-01T WHILE ADVANCING CASING THROUGH COLLUVIUM.	4-3
FIGURE 4-3	THERMAL PROFILE AT MW14-07T, DOWNGRADIENT OF THE PROPOSED HEAP LEACH FACILITY.	4-5
FIGURE 4-4	MEASURED AND ESTIMATED BASE OF PERMAFROST AT THE COFFEE GOLD SITE	4-7
FIGURE 4-5	BEDROCK HYDRAULIC CONDUCTIVITY VERSUS VERTICAL DEPTH BELOW GROUND SURFACE AT THE COFFEE GOLD PROJECT (ORGANIZED BY AREA)	4-12
FIGURE 4-6	BEDROCK HYDRAULIC CONDUCTIVITY VERSUS VERTICAL DEPTH BELOW GROUND SURFACE AT THE COFFEE GOLD PROJECT (ORGANIZED BY LITHOLOGY).	4-12
FIGURE 4-7	BOX AND WHISKER PLOT OF HYDRAULIC TESTING RESULTS WITH LEGEND IN BOTTOM PANE.	4-13
FIGURE 4-8	2015 VERTICAL GRADIENT TIME SERIES FOR VWPS (UPPER PANE) AND CONVENTIONAL MONITORING WELLS (BOTTOM PANE)	4-18
FIGURE 4-9	GROUNDWATER LEVEL HYDROGRAPHS MEASURED IN HALFWAY CREEK DRAINAGE, SOUTH EXTENT.	4-20
FIGURE 4-10	GROUNDWATER LEVEL HYDROGRAPHS MEASURED IN HALFWAY CREEK DRAINAGE, WEST AND NORTH EXTENT.	4-22
FIGURE 4-11	Artesian flows encountered during advancement of $MW15\text{-}04WB.$	4-23
FIGURE 4-12	GROUNDWATER LEVEL HYDROGRAPHS MEASURED IN YT-24 DRAINAGE	4-25
FIGURE 4-13	GROUNDWATER LEVEL HYDROGRAPHS MEASURED IN SOUTH DUMP DRAINAGE	4-27
FIGURE 4-14	GROUNDWATER LEVEL HYDROGRAPHS MEASURED IN LATTE CREEK.	4-30
FIGURE 5-1	PIPER PLOT OF PROJECT GROUNDWATER QUALITY DATA (2014 AND 2015).	5-5
FIGURE 5-2	FIELD-MEASURED PHYSICAL PARAMETERS IN PROJECT GROUNDWATER (2014 and 2015)).5-6
FIGURE 5-3	MAJOR CATION CONCENTRATIONS IN PROJECT GROUNDWATER (2014 AND 2015)	5-7
FIGURE 5-4	MAJOR ANION CONCENTRATIONS IN PROJECT GROUNDWATER (2014 AND 2015)	5-8

FIGURE 5-5	GROUNDWATER QUALITY DATA FOR REDOX-SENSITIVE PARAMETERS: NITRATE, Ammonia, Dissolved Manganese, Dissolved Iron, Sulphide (2014 and 2015)	5-14
FIGURE 5-6	GROUNDWATER QUALITY DATA FOR DISSOLVED ARSENIC, ANTIMONY, CADMIUM AND COBALT (2014 TO 2015).	5-17
FIGURE 5-7	GROUNDWATER QUALITY DATA FOR DISSOLVED COPPER, LEAD, MERCURY AND NICKEL (2014 TO 2015).	5-18
FIGURE 5-8	GROUNDWATER QUALITY DATA FOR DISSOLVED SELENIUM, URANIUM AND ZINC (2014 TO 2015).	5-19

LIST OF TABLES

TABLE 3-1	SUMMARY OF HYDROGEOLOGICAL DRILLING PROGRAMS UNDERTAKEN AT THE COFFEE GOLD PROJECT
TABLE 3-2	SUMMARY OF CONVENTIONAL MONITORING WELL INSTALLATIONS AT THE PROJECT
TABLE 3-3	SUMMARY OF WESTBAY SYSTEM INSTALLATIONS AT THE PROJECT
TABLE 3-4	THERMISTOR AND VIBRATING WIRE PIEZOMETER INSTALLATIONS AT THE PROJECT
TABLE 3-5	SUMMARY OF 2014 AND 2015 GROUNDWATER SAMPLING PROGRAMS
TABLE 3-6	GROUNDWATER QUALITY PARAMETERS AND DETECTION LIMITS (ALS 2014)
TABLE 3-7	GROUNDWATER QUALITY PARAMETERS AND DETECTION LIMITS (MAXXAM 2015)
TABLE 4-1	OBSERVATIONS OF PERMAFROST DEPTH FROM THERMISTOR INSTALLATIONS, EXPLORATION DRILLING AND MONITORING WELL SAMPLING
TABLE 4-2	2015 Period of Record with above 0°C temperatures at shallow thermistor sensors
TABLE 4-3	HYDRAULIC TESTING RESULTS FOR THE COFFEE GOLD PROJECT
TABLE 4-4	SELECTED WATER LEVEL INFORMATION FOR THE COFFEE GOLD PROJECT
TABLE 4-5	VERTICAL HYDRAULIC GRADIENTS MEASURED AT SELECTED INSTALLATIONS ACROSS THE COFFEE GOLD PROJECT
TABLE 4-6	HORIZONTAL HYDRAULIC GRADIENTS MEASURED IN JUNE 2015 ACROSS THE COFFEE GOLD PROJECT IN JUNE 2015
TABLE 5-1	OXIDATION-REDUCTION REACTIONS. PARAMETERS MEASURED IN GROUNDWATER SAMPLES TO INFER OXIDATION-REDUCTION CONDITIONS ARE HIGHLIGHTED IN RED

_GOLDCORP

Glossary and Abbreviations

Terminology used in this document is defined where it is first used. The following list will assist readers who may choose to review only portions of the document.

μg/L	micrograms per litre, unit of concentration
μS/cm	micro-Siemens per centimeter, unit of specific conductance
As	arsenic
BFS	biotite feldspar schist
BP	bladder pump
BtS	biotite schist
Ca	calcium
carb	carbonate
CB	crackle breccia
Cd	cadmium
CHI	constant head injection test
Cl-LiB	chlorite limonite breccia
Co	cobalt
Cu	copper
D	dacite
D/S	downstream
DC	direct circulation
DDH	diamond drill hole
DO	dissolved oxygen
EBA TT	EBA Tetra Tech
Fe	iron
FH	falling head test
GN	gneiss
GR	granite
HAR	hydrothermally altered rock
HCO ₃ -	bicarbonate
HLF	heap leach facility
HQ	diamond drill tooling producing hole diameter of 96 mm or 3.78 inches
HWT	drill casing of 114.3 mm or 4.5-inch outer diameter
IP	inertial pump
Κ	hydraulic conductivity
Κ	potassium
km	kilometre
KP	Knight Piésold
L/s/km ²	litres per second per square kilometre
m	metre
Μ	metacarbonate
m AH	metres along hole
m asl	metres above sea level
m bgs	metres below ground surface

m/s	metres per second, unit of hydraulic conductivity
MDL	method detection limit
Mg	magnesium
mg/L	milligram per litre, unit of concentration
mm	millimetre
mm/yr	millimetres per year
Mn	manganese
Mt	megatonne
Na	sodium
NH3	ammonia
Ni	nickel
NO ₃ -	nitrate
NTU	Nephelometric Turbidity Unit, unit of turbidity
NQ2	diamond drill tooling producing hole diameter of 75.8 mm or 2.98 inches
O ₂	oxygen
°C	degrees Celsius
ORP	oxidation-reduction potential
Pb	lead
PP	peristaltic pump
PQ	diamond drill tooling producing diameter of 122.6 mm or 4.83 inches
the Project	the Coffee Gold Project
RC	reverse circulation
RQD	rock quality designation
RTK	real time kinematic
S ²⁻	sulphide
Sb	antimony
Se	selenium
SO_4^{2-}	sulphate
SZ	shear zone
TDS	total dissolved solids
TSS	total suspended solids
U	uranium
U/S	upstream
UTM NAD83	Universal Transverse Mercator projection, North American Datum 1983
v m bgs	vertical metres below ground surface
VWP	vibrating wire piezometer
WB	Westbay
WRSF	waste rock storage facility
YESAA	Yukon Environmental and Socio-economic Act
Zn	zinc

_GOLDCORP

1.1 Project overview

The Coffee Gold Project (the Project) is a proposed open pit mine development located in west-central Yukon, within the Whitehorse Mining District, Canada, 130 kilometers (km) south of Dawson City (Figure 1-1). The Project was developed by Kaminak Gold Corporation, which was recently acquired by Goldcorp Inc. in July 2016.

The proposed mine will produce a total of 46.4 Mt of heap leach feed and 265 Mt of waste over a nine-and-a-half-year mine production life (including one year of pre-production). Ore is proposed to be extracted from four pits (Latte, Double Double, Supremo and Kona) by open-pit shovel and truck mining methods. Most waste rock is planned to be deposited in various engineered waste rock storage facilities (WRSF) near to the pits from which the waste is sourced; some waste rock will be backfilled into the mined-out pits. The proposed heap leach facility consists of a conventional, multi-lift, free-draining ridge-top leach pad.

1.2 Scope of this document

The Project is subject to an assessment under the Yukon Environmental and Socioeconomic Assessment Act (YESAA). Upon completion of the adequacy review, the Project will apply for a Type "A" water license from the Yukon Water Board and a quartz mining license from the Government of Yukon, Department of Energy, Mines and Resources. The assessment and regulatory processes require that the proponent provide sufficient information on surface water and groundwater quality, quantity and variability under baseline (pre-project) conditions, such that changes in these components resulting from the Project can be adequately predicted for all project phases.

This report constitutes the assessment of baseline groundwater conditions at the Project. It presents data collected in multiple hydrogeological field investigations advanced between 2013 and 2015. The cut-off date for data presented in the report is October 31st, 2015, coincident with the last site visit where groundwater level data was collected. Collection of baseline groundwater quality and water levels is ongoing and will be continued through the assessment and licensing process. Section 2 of this report provides background information from other disciplines which impact the groundwater system. Section 3 describes field methods employed during the field programs. Section 4 presents the results of physical groundwater data collection while Section 5 presents groundwater quality results.

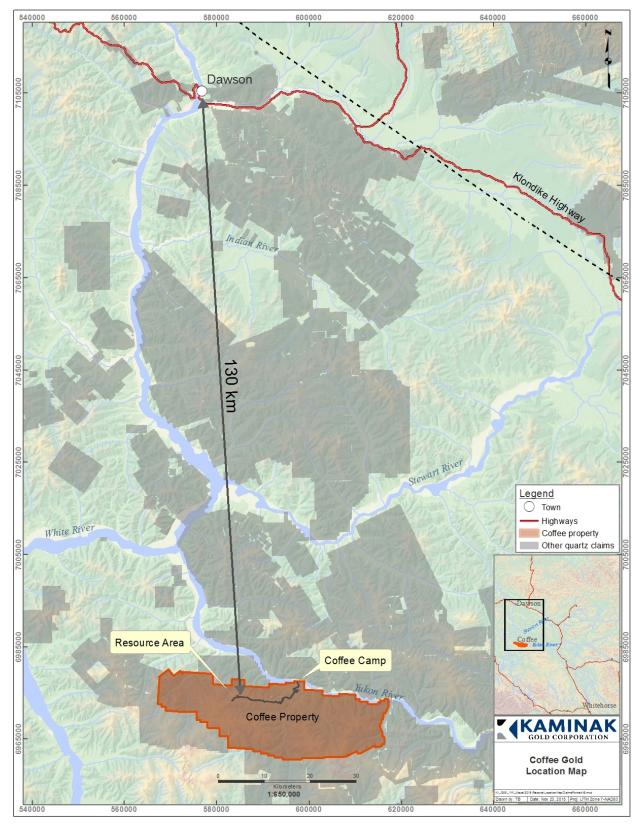


Figure 1-1: Coffee Project Location Map

_GOLDCORP

The following section provides a high-level summary of climatic, hydrologic and geological information relevant to the groundwater system at the Coffee Gold Project. Detailed baseline reports for each discipline below are presented under separate cover.

2.1 Climate

A baseline meteorological program was initiated at the Project in July 2012. Baseline hydrometeorological data are presented in Lorax (2016). The study area is characterized by a cold, continental climate with an average annual temperature of -2.5° C, with monthly average air temperatures ranging from -19° C (December) to $+13^{\circ}$ C (July). Pronounced valley bottom temperature inversions occur during the winter months whereby ridgetop temperatures are up to 10° C higher than measurements recorded at valley bottom locations.

Precipitation and snow course data gathered during the baseline study period indicates that the annual precipitation averages 370 mm/yr (at 975 m elevation), with 32% of this amount falling as snow between October and April, and 68% falling as rain from May to September. Analysis of regional data indicates an annual precipitation gradient of 3% per 100 metres elevation gain. Annual site evapotranspiration is estimated to be 182 mm/yr while annual site potential evaporation is estimated to be 501 mm/yr.

2.2 Hydrology

A baseline surface water hydrology monitoring program was initiated in the autumn of 2010 and augmented with enhanced instrumentation and additional stations in the spring of 2014. The result is an extensive hydrometric network with a high quality and high-resolution streamflow data set.

Local patterns of streamflow are dominated by a snowmelt freshet that typically occurs late-April to mid-June and punctuated by multiple rainfall-induced high flow events that occur throughout the summer and autumn. In general, these high flow events are short-lived, with common durations of 1 to 2 days. Peak flows are driven primarily by the intense convective rainfall events that are common in the summer months, with secondary peaks occurring in late-May as a result of the melting snowpack.

In general, average unit yields across the project site are 9 $L/s/km^2$ for the open water season (May to October), and range from 4.5 to 15 $L/s/km^2$, depending on the drainage. Low flows measured in June 2015 after a prolonged dry period were on the order of 1 $L/s/km^2$. As the summer progresses, baseflows are enhanced by active layer melt and soil moisture recharge.

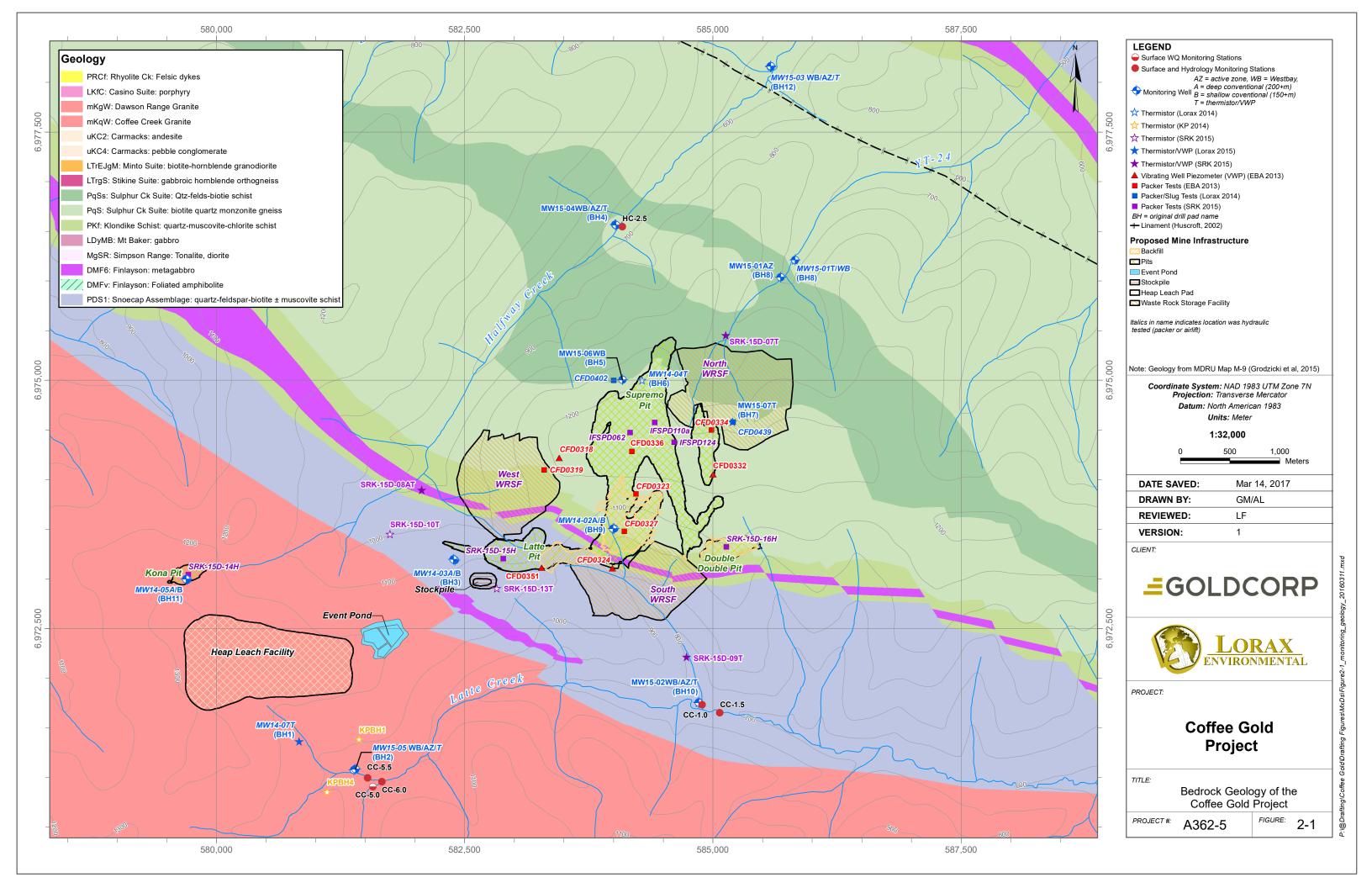
By November, unit yields drop to 0.5 to 1.5 L/s/km² in all project drainages and zero flow conditions are widespread by late January, accompanied by extensive aufeis formation. Aufeis or icing is pervasive in creeks and streams at the Project site. Aufeis forms when shallow groundwater discharge and/or baseflow freezes in the stream channel thereby impeding flow, which is then forced on top of the existing ice sheet where it freezes. Aufeis melts during the freshet, but may persist into the early summer (mid- to late-June). This influences the distribution of annual streamflow, as the baseflow stored in aufeis during the winter months is released during the freshet and early summer periods. This means that proportionately even more of the total annual runoff is expressed during the months of May through October.

2.3 Physiography

The Project is located in the northern Dawson Range of the Yukon-Tanana terrane, forming a moderate plateau that escaped Pleistocene glaciation. The landscape evolved through erosional and periglacial processes. The dominant periglacial processes at Coffee Gold site are cryoturbation, solifluction, slope wash and thermal erosion. The topography generally consists of rounded ridges with incised v-shaped valleys (AECOM, 2012). Elevations across the property range from 400 to 1,500 m above sea level with the majority of the property above the tree line and supporting short shrubby vegetation (JDS, 2016). The property has local mature pine forests with thick moss cover on the ground. Bedrock exposures on the property are rare (<5%).

A surficial geology map of the Coffee Creek area has been compiled by the Geological Survey of Canada (Huscroft, 2002). AECOM (2012) was retained by Kaminak to compile a detailed geomorphological map to aid in the selection of appropriate sampling sites for soil geochemical characterization. Both maps identify colluvium as the most widespread surficial material within the project area. The ridgetops and upper slopes are generally dominated by in-situ residual soils and colluvium derived from weathering of bedrock. The colluvial material is variable and typically contains mixtures of gravels, sands and silts with organic materials in the upper 0.1 to 0.2 m layer. The ridgetop soils are up to approximately 1.8 m deep and generally ice-poor. The thickness of the strongly-weathered bedrock is variable but is generally less than a metre. Colluviation is greatest on lower slopes, which tend to be steeper than upper slopes. Dominant colluvial processes include slope creep, debris slides and minor rock fall.

2.4 Geology


A detailed account of the geologic setting and mineralization of the of the Coffee Gold Project is provided in the 2016 Feasibility Study (JDS, 2016). The Project is underlain by

a package of metamorphosed Paleozoic rocks of the Yukon-Tanana terrane that was intruded by a large granitic body in the Late Cretaceous. The Paleozoic rock package is predominantly a biotite (+ feldspar + quartz + muscovite \pm carbonate) schist that overlies an augen orthogneiss. Both the Paleozoic metamorphic rocks and Cretaceous granite are cut by intermediate to felsic dykes of andesitic to dacitic composition. Grodziki *et. al.* (2015) have compiled the most recent geological map of the Coffee Gold deposit area, informed by a combination of geological traverses, bedrock mapping, borehole data, soil geochemistry, and geophysics. This map has been used as base map for Figure 2-1, which also shows mine facilities and instrument locations for reference.

The main Coffee Gold mineralization is associated with an extensional deformation event that occurred during the Cretaceous. This event resulted in formation of steep-to-vertical brittle fractures and normal faults cross-cutting all lithologies at Coffee (Berman *et al.*, 2007). A CO₂-rich fluid flowed through the region and travelled upwards in the system into the epizonal domain of the Coffee Gold Project, where it was controlled by the structural framework of the Coffee fault system and reacted with favorable host rocks (Buitenhuis *et. al.*, 2015; Buitenhuis, 2014). The fluid travelled along brittle structures and deposited gold-rich arsenian pyrite through sulphidation, and in high-energy pulses, formed gold-rich hydrothermal breccias (Buitenhuis, 2014). The planar gold mineralized zones at the Project exhibit a number of strike orientations, dominated by east-west, north-south, and east-northeast–west-southwest strike directions.

The Supremo zone is housed in several drill-tested T-structure gold corridors which are 5 to 30 m wide. The Latte zone consists of a stacked set of moderately-to-steeply south-southwest dipping, east-southeast striking brittle-ductile structures. The Double Double zone consists of a number of discrete, high-grade strands of mineralization up to several metres wide, trends east-northeast steeply dipping to the north and consists of a number of discrete, high-grade strands of mineralization up to several metres wide. The Kona zone is hosted in equigranular granite and consists of east-northeast trending, steeply south-dipping stacked structures. The gold structures are associated with narrow, less than 5 m wide, sparsely feldspar phenocrystic to aphanitic andesite to dacite dykes.

Kaminak (2015) has prepared a map of all confirmed mineralized structures currently identified on the property. The map identifies structures confirmed by drilling, trenching, or soil sampling and does not include regional-scale inferred faults. Structures identified in this map have been included in hydrogeologic maps provided in subsequent sections of this report due to their relevance as potential groundwater conveyance pathways.

3. Hydrogeological Field Investigations

GOLDCORP

3. Hydrogeological Field Investigations

Multiple hydrogeological field programs have been undertaken at the Project between 2013 and 2015 (Table 3-1). As a result of these field programs, a robust network of hydrogeological installations has been established in, adjacent to and downstream of proposed major mine facilities (Figure 3-1). The groundwater field installations are as summarized as follows:

- Eleven conventional monitoring wells (five wells less than 10 meters deep; six wells between 150 and 220 metres deep);
- Six individual Westbay installations monitoring groundwater 10 to 286 metres deep;
- Five stand-alone thermistor strings ranging from 25 to 300 metres deep;
- Four stand-alone VWP installations ranging from 120 to 185 metres deep; and
- Nine combination VWP/thermistor installations ranging from 52 to 268 metres deep.

Completion details of the conventional monitoring wells, Westbay systems and thermistor/VWP installations are provided in Table 3-2, Table 3-3 and Table 3-4, respectively. Borehole logs and instrumentation documentation are provided in Appendices 3-A through 3-C.

Many of the drilling programs have incorporated hydraulic testing of bedrock, predominantly through a combination of packer testing and airlift testing. Limited slug testing has also been conducted. In conjunction with monitoring well installations, multiple groundwater sampling events have been undertaken to characterize baseline groundwater quality and its range of variability. The discussion below provides a high-level overview of the field programs with emphasis on those conducted by Lorax. Field protocols utilized in the Lorax programs are described in detail in Appendices 3-D through 3-F.

3.1 EBA Tetra Tech 2013 Program

The first hydrogeological field program, supervised by EBA Tetra Tech (EBA TT) in the fall of 2013, collected hydraulic testing data from and installed four single-point vibrating wire piezometers (VWPs) in NQ2-sized boreholes advanced as a part of the exploration program. The program utilized a diamond drill rig owned and operated by Cyr Drilling International Ltd. of Manitoba. The majority of the field work was conducted by Kaminak staff, with training from EBA TT. A total of four VWPs (Table 3-4, Figure 3-1), manufactured by RST Instruments, were installed with readings taken on a monthly basis with a manual readout unit (as these installations were not equipped with dataloggers).

Table 3-1: Summary of hydrogeological drilling programs undertaken at the Coffee Gold Project

Date	Consultant	Study Objective	Installations ¹	Hydraulic Testing	Reference
Fall 2013	EBA Tetra Tech	Preliminary hydrogeological data collection to support a detailed work plan for the hydrogeological baseline assessment.	4 VWP installations in the Supremo and Latte pit footprints	~	2013 Hydrogeological Data Collection, Coffee Gold Project, Yukon.
Summer 2014	Knight Piésold	Geotechnical site investigations and laboratory testing to assess: (1) subsurface conditions within the footprint of the HLF (former valley fill location) and stockpile and (2) the geotechnical engineering material properties of the materials encountered.	Two thermistor strings in previously proposed valley HLF footprint area		Kaminak Gold Corporation Coffee Gold Project: Report on Feasibility Study Level Geotechnical Investigations, March 12, 2015.
Summer/ Fall 2014	Lorax	First phase of a detailed hydrogeological baseline program establishing groundwater sampling locations in and around proposed pits.	Conventional monitoring wells and thermistor in pit area; thermistor/VWP in formerly proposed HLF area.	✓	Coffee Creek Hydrogeological Drilling Program – Program Summary, Memorandum to Kaminak Gold dated October 17 th , 2014.
March 2015	Lorax	Second phase of a detailed hydrogeological baseline program establishing ground conditions, permafrost conditions and groundwater pressures downgradient of waste facilities ahead of a larger, subsequent field program.	Thermistor/VWP installations downgradient of North and South WRSFs		2015 Phase I Baseline Hydrogeology Field Program – Program Summary, Memorandum to Kaminak Gold dated April 7 th , 2015.
May/June 2015	Lorax	Third phase of a detailed hydrogeological field program establishing remaining groundwater quality, groundwater pressure and ground temperature stations downgradient of mine facilities.	Thermistor/VWP; Westbay groundwater monitoring systems (sub-permafrost groundwater); shallow monitoring wells (overburden).	•	This report.
June/July 2015	SRK	Hydrogeological investigation targeting principal geologic structures that will be mined in the open pits, combined with a geotechnical program characterizing permafrost in facility in proposed facility footprint areas	Thermistor/VWP installations in proposed WRSFs and stockpile locations.	4	Hydrogeologic Investigations Report Coffee Project, Yukon, December 18, 2015. 2015 Geotechnical Field Investigation Report Coffee Gold Project, Yukon, Canada, January 4, 2016.

Notes:

VWP - vibrating wire piezometer, HLF - heap leach facility, WRSF - waste rock storage facility.

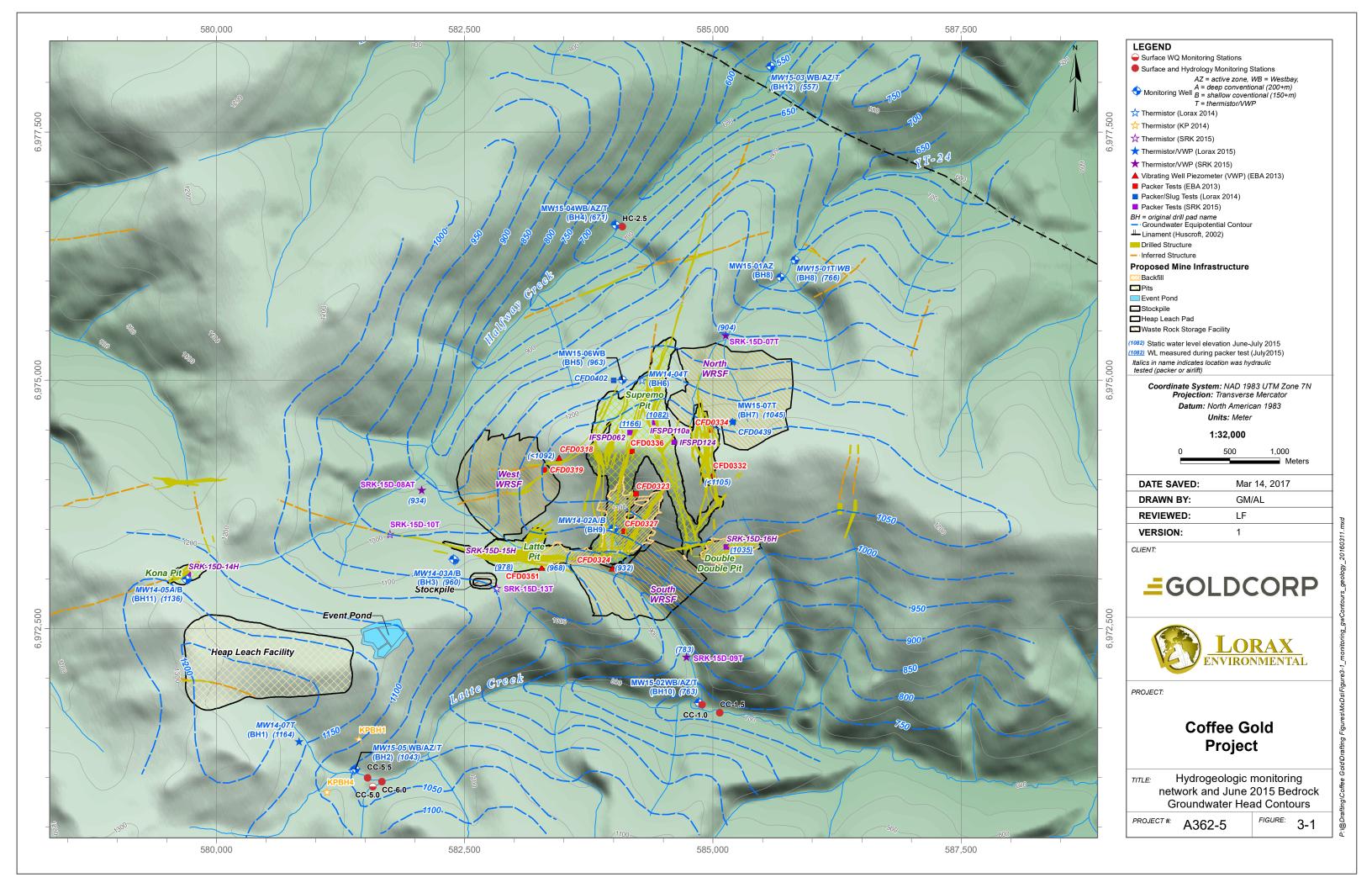


 Table 3-2:

 Summary of conventional monitoring well installations at the Project

Pad ID	Units ⁴	BH5	BH5	BH9	BH9	BH3	BH3	BH11	BH11	BH7	BH7	BH8-AZ	BH10-AZ	BH12-AZ	BH04-AZ	BH02-AZ
Mine ID		CFD-0419	CFD-0434	CFD-0428	CFD-0418	CFD-0432	CFD-0442	CFD-0444	CFD-0455	CFD-0453	CFD-0463	CFR-0982	CFR-0998	CFR-0986	CFR-0992	CFR-0995
Monitoring Well ID		MW14-01A	MW14-01B	MW14-02A	MW14-02B	MW14-03A	MW14-03B	MW14-05A	MW14-05B	MW14-06A	MW14-06B	MW15-01AZ	MW15-02AZ	MW15-03AZ	MW15-04AZ	MW15-05AZ
Mine Area ¹		N. Supremo	N. Supremo	S. Supremo	S. Supremo	Latte	Latte	Kona	Kona	North WRSF	North WRSF	North WRSF D/S	South WRSF D/S	West WRSF D/S	West WRSF D/S	Heap Leach D/S
Installation Status		collapsed	collapsed	open/frozen	open/frozen	open	open	open	open	collapsed	collapsed	Functioning	Functioning	Functioning	Functioning	Functioning
Drilling Start Date		20-Aug	01-Sep	25-Aug	19-Aug	29-Aug	08-Sep	12-Sep-14	17-Sep-14	16-Sep	22-Sep-14	05-May-15	24-May-15	09-May-15	14-May-15	20-May-15
Drilling Completion Date		27-Aug	03-Sep	28-Aug	24-Aug	05-Sep	12-Sep	16-Sep-14	19-Sep-14	21-Sep	24-Sep-14	05-May-15	24-May-15	09-May-15	14-May-15	20-May-15
Easting ²	m	583,995	583,995	583,994	584,008	582,401	582,388	579,708	579,695	585,202	585,195	585,683	584,858	585,583	584,016	581,387
Northing ²	m	6,975,003	6,975,003	6,973,508	6,973,507	6,973,191	6,973,197	6,972,998	6,972,999	6,974,583	6,974,583	6,976,038	6,971,754	6,978,157	6,976,566	6,971,079
Ground Elevation ²	m asl	1177.0	1177.0	1029.5	1030.9	1097.6	1095.2	1268.5	1270.3	1183.0	1183.3	809.8	737.2	557.9	672.5	1068.9
Estimated depth to bedrock	m bgs			5	5							4.7	8.8	not encountered	5.1	4.8
Casing Depth	m bgs	38.6	5.0	6.0	6.5	6.0	5.0	2.0	2.0	9.0	9.0	n/a	n/a	n/a	n/a	n/a
Casing ID/OD	inch											4.5 OD	4.5 OD	4.5 OD	4.5 OD	4.5 OD
Casing Method												ODEX	ODEX	ODEX	ODEX	ODEX
Borehole ID	inch	3.78	3.78	3.78	3.78	3.78	3.78	3.78	3.78	4.83	4.83	4.5	4.5	4.5	4.5	4.5
Borehole Method ²		DDH/HQ	DDH/HQ	DDH/HQ	DDH/HQ	DDH/HQ	DDH/HQ	DDH/HQ	DDH/HQ	DDH/PQ	DDH/PQ	ODEX	ODEX	ODEX	ODEX	ODEX
Borehole Drilled Depth	m bgs											5.9	10.3	5.6	5.7	5.7
Borehole Measured Depth	m bgs	212.0	160.0	197.0	200.0	198.5	152.0	220.5	179.5	215.7	164.4	5.9	10.3	5.5	5.7	5.7
Stickup (Steel Surface Casing)	m ags	0.46				0.37	0.48		-				0.68	0.6		
Installations																
Start Date		27-Aug-14	03-Sep-14	27-Aug-14	23-Aug-14	05-Sep-14	08-Sep	16-Sep-14	17-Sep-14	21-Sep-14	24-Sep-14	05-May-15	24-May-15	09-May-15	14-May-15	20-May-15
Completion Date		27-Aug-14	04-Sep-14	28-Aug-14	24-Aug-14	07-Sep-14	12-Sep	17-Sep-14	20-Sep-14	22-Sep-14	24-Sep-14	05-May-15	24-May-15	09-May-15	14-May-15	20-May-15
2" PVC Install		Sch. 40	Sch. 40	Sch. 40	Sch. 40	Sch. 40	Sch. 80	Sch. 80	Sch. 80	Sch. 80	Sch. 80	Sch. 40	Sch. 40	Sch. 40	Sch. 40	Sch. 80
stickup (PVC)	m	0.5	0.3	1.0	1.3	1.0	0.9	1.1	0.7	0.9	1.0	0.6	0.7	0.7	0.5	0.6
Screened lithology		Gneiss	Gneiss/Schist	Hydrothermall y altered rock/Crackle Breccia	Biotite Feldspar Schist	Biotite Feldspar Schist & Shear Zone	Biotite Feldspar Schist with Weak Zone	Granite	Granite	Mixed Felsic Gneiss	Gneiss with some occasional schist	Colluvium	Colluvium	Colluvuim/All uvium	Colluvium	Colluvium
bottom of screen (installed)	m bgs	210.3	160.0	195.5	150.8	198.5	150.6	220.5	179.2	220.5	164.4	4.9	10.3	5.5	5.7	4.7
top of screen	m bgs	201.1	150.3	186.4	144.7	189.4	144.5	202.2	160.8	202.2	155.3	1.8	2.3	2.5	2.7	1.7
bottom of screen (installed)	m asl	966.7	1017.0	834.0	880.1	899.1	944.6	1048.0	1091.1	962.6	1018.9	804.9	726.9	552.4	666.8	1064.1
top of screen	m asl	975.9	1026.7	843.2	886.2	908.2	950.7	1066.3	1109.5	980.9	1028.1	807.9	735.0	555.4	669.8	1067.2
depth to bottom (measured)	m btoc			196.8	148.4	199.8	154.2	221.6	180.4	217.1	165.5	5.2	10.7	6.2	6.3	5.3
bottom of sand	m bgs	210.3	160.0	196.1	150.8	198.5	151.1	220.5	179.5	215.7	164.4	5.9	10.3	5.6	5.7	5.7
top of sand	m bgs	199.6	149.0	180.4	142.4	184.0	140.2	192.3	162.5	197.1	151.5	0.8	0.8	1.0	1.7	0.6
bottom of sand	m asl	966.7	1017.0	833.5	880.1	899.1	944.1	1048.0	1090.8	967.3	1018.9	803.8	726.9	552.3	666.8	1063.1
top of sand	m asl	977.4	1028.0	849.1	888.5	913.6	955.0	1076.2	1107.8	985.9	1031.8	809.0	736.4	556.9	670.8	1068.2
bottom of bentonite chips/pellets	m bgs	199.6	149.0	180.4	142.4	184.0	140.2	192.3	158.9	197.1	151.5	0.8	0.8		1.7	
top of bentonite chips/pellets	m bgs	193.9	144.9	176.5	140.3	172.0	136.7	190.3	156.1	194.7	149.1	0.0	0.0		0	
bottom of grout	m bgs	41.5	144.9	176.5	140.3	172.0	140.2	190.3	156.1	194.7	149.1			1.0		
top of grout	m bgs	0.0	92.0			0.5	1.2	0.9	3.0	5.4	5.5			0.0		

Notes:

1. D/S = downstream; WRSF = waste rock storage facility, N = north, S = South.

2. Measured by RTK (real time kinematic) (UTM NAD83 Zone 7). All holes drilled vertical.

3. DDH – diamond drill hole, HQ = borehole diameter of 96.0 mm; PQ = borehole diameter of 122.6 mm.

4. m bgs – metres below ground surface, m asl – metres above sea level, m btoc = metres below top of casing.

Pad ID		BH8	BH10	BH12	BH4	BH2	BH5	
Mine ID	Units ⁴	CFR-0977	CFR-0997	CFR-0987	CFR-0993	CFR-0996	CFR-0999	
Westbay ID	-	MW15-01WB	MW15-02WB	MW15-03WB	MW15-04WB	MW15-05WB	MW15-06WB	
Mine Area ¹		North WRSF D/S	South WRSF D/S	West WRSF D/S	West WRSF D/S	Heap Leach Facility D/S	North Supremo	
Consultant		Lorax	Lorax	Lorax	Lorax	Lorax	Lorax	
Easting ²	m	585,829	584,858	585,581	584,024	581,402	584,090	
Northing ²	m	6,976,212	6,971,758	6,978,165	6,976,566	6,971,084	6,975,003	
Ground Elevation ²	m asl	803.6	737.1	557.9	671.5	1067.7	1184.9	
Estimated depth to bedrock	m bgs	not logged	9.0	4.27	2.4	5.49	1.22	
Surface Casing Depth	m bgs	21.3	10.1	10.36	7.0	6.7	162/203.6	
Surface Casing ID/OD	inch	5.07/ 5.5	5.07/ 5.5	5.07/ 5.5	5.07/ 5.5	5.07/ 5.5	4.06/4.63	
Protective Casing Depth ³	m bgs	78	none	33.5	30.4	56.3	203.6	
Protective Casing ID/OD ³	inch	3.06/3.5 (HQ)	(-)	3.06/3.5 (HQ)	3.06/3.5 (HQ)	3.06/3.5 (HQ)	3.06/3.5 (HQ)	
Borehole ID	inch	4.5	4.5	4.5	4.5	4.5	4.5" to 200.3/3.8" to 293	
Borehole Depth	m bgs	116.72	66.2	99.52	61.1		291.8	
Completion Date		05-May-15	24-May-15	05-Dec-15	19-May-15	22-May-15	05-Jun-15	
Westbay Primary Sampling Z	ones					·		
Zone 1	m bgs	109-112	60.8-65.7	93.9-96.7	54.5-56.7	77.9-82.7	280.7-285.9	
Zone 1 Lithology		Felsic Gneiss	Biotite Schist	Gneiss	Felsic Gneiss	Fresh Granite	Mixed Mafic Gneiss	
Zone 2	m bgs	82-87.5	25.7-30.9	81.7-86.9	38.1-40.2	63.6-67.3	247.1-250.8	
Zone 2 Lithology		Mixed Mafic Gneiss	Schist with chlorite alteration	Mixed Felsic Gneiss	Mixed Felsic Gneiss	Oxidized Granite	Mixed Felsic Gneiss	
Zone 3	m bgs	-	-	46.7-50.3	-	-	238.0-243.2	
Zone 3 Lithology		-	-	Mixed Mafic Gneiss	-	-	Mixed Felsic Gneiss	
Zone 4	m bgs	-	-	-	-	-	221.2-226.4	
Zone 4 Lithology		-	-	-	-	-	Mixed Felsic Gneiss	
Zone 5	m bgs	-	-	-	-	-	210.6-220.3	
Zone 5 Lithology		-	-	-	-	-	Mixed Felsic Gneiss	

Table 3-3: Summary of Westbay system installations at the Project

Notes:

1. D/S = downstream; WRSF =waste rock storage facility.

2. Measured by RTK (real time kinematic) (UTM NAD83 Zone 7). All holes drilled vertical.

Protective steel casing (typically HQ rods) left in hole to blind off permafrost zones.
 m bgs – metres below ground surface, m asl – metres above sea level.

Pad ID	Units ¹	BH1	BH2	BH4	BH6	BH7	BH8	BH10	BH12											
Mine ID		CFD-0462	CFR-0994	CFR-0990	CFD-0439	CFD0596	CFR-0941	CFR-0948	CFR-0983	CFD-0600	CFD-0595	CFD-0599	CFD-0593	CFD-0594	CFD-0451	CFD-0454	CFD-0318	CFD-0324	CFD-0332	CFD-0351
Station ID		MW14-07T	MW15- 05T	MW15- 04T	MW14- 04T	MW15- 07T	MW15- 01T	MW15- 02T	MW15- 03T	SRK-15D- 07	SRK-15D- 08	SRK-15D- 09	SRK-15D- 10T	SRK-15D- 13T	KPBH-01	KPBH-04	CFD-0318	CFD-0324	CFD-0332	CFD-0351
Mine Area ²		HLF D/S	HLF D/S	West WRSF D/S	Supremo	Supremo	North WRSF D/S	South WRSF D/S	West WRSF D/S	North WRSF D/S	West WRSF D/S	South WRSF D/S	Halfway Ck U/S	Stockpile	Valley HLF	Valley HLF	Sumatra	Supremo	Supremo	Latte
Consultant		Lorax	Lorax	Lorax	Lorax	Lorax/SRK	Lorax	Lorax	Lorax	SRK	SRK	SRK	SRK	SRK	KP	KP	EBA	EBA	EBA	EBA
Easting ³	m	580,832	581,406	584,027	584,287	585,198	585,826	584,855	585,584	585,124	582,057	584,734	581,752	582,825	581,438	581,115	583,450	583,993	585,000	583,275
Northing ³	m	6,971,365	6,971,083	6,976,568	6,975,001	6,974,583	6,976,210	6,971,756	6,978,168	6,975,415	6,973,891	6,972,215	6,973,455	6,972,904	6,971,384	6,970,857	6,974,220	6,973,100	6,974,050	6,973,115
Ground Elevation ³	m	1,156.3	1,067.1	670.9	1,185.8	1,183.1	803.9	737.1	557.7	948.9	925.1	784.3	1008.2	1136.9	1122.7	1121.3	1233.0	956.0	1246.6	1120.5
Azimuth ⁴	degrees	0	125	40	0	0	0	0	39	0	0	0	0	0	0	0	175	280	275	0
Dip ⁴	degrees	-90	-80	-80	-90	-90	-90	-90	-80	-90	-90	-90	-90	-90	-90	-90	-45	-45	-45	-65
Borehole ID	inch	3.78	4.5	4.5	3.78	3.78	4.5	4.5	4.5	3.78	3.78	3.78	3.78	3.78	3.78	3.78	2.99	2.99	2.99	2.99
Drilling Method ⁵		DDH/HQ	RC	RC	DDH/HQ	DDH/HQ	DC	DC	RC	DDH/HQ	DDH/HQ	DDH/HQ	DDH/HQ	DDH/HQ	DDH/HQ	DDH/HQ	DDH/NQ2	DDH/NQ2	DDH/NQ2	DDH/NQ2
Borehole Depth	m AH		83.8	53.3		268	90.5	34.4	98.14	149	149	101	26	26	50	50	200	200	200	200
Installation Date		24-Sep-14	20-May-15	14-May-14	12-Sep-14	06-Jul-15	24-Mar-15	26-Mar-15	10-May-15	09-Jul-15	03-Jul-15	07-Jul-15	Jun/Jul -15	Jun/Jul-15	Sep-14	Sep-14	Jul-13	Aug-15	Aug-15	Oct-13
Logging Freq.		4 hrs	4 hrs	1 hr	4 hrs	1 hr	4 hrs	4 hrs	4 hrs	12 hrs	12 hrs	12 hrs	12 hrs	12 hrs	12 hrs	12 hrs	1 hr	1 hr	1 hr	4 hrs
Thermistor Sensors			1		1			1		1			1	1				1	1	
Therm 1-1	v. m bgs	0.6	0.75	1.7	3.1	7	0.5	1.2	0.53	0.7	1	1.1	0.5	0.5	-1.5	-1.5	-	-	-	-
Therm 1-2	v. m bgs	1.4	1.5	13.8	26.1	8	1.3	3.2	1.2	2.2	4	2.6	3.0	3.0	0.0	0.0	-	-	-	-
Therm 1-3	v. m bgs	2.1	2.2	26.1	51.1	11	2.0	5.2	1.9	3.7	9	4.1	5.5	5.5	0.8	0.8	-	-	-	-
Therm 1-4	v. m bgs	2.9	3.0	38.1	76.1	26	2.8	10.2	2.6	5.2	16	7.1	8.0	8.0	1.5	1.5	-	-	-	-
Therm 1-5	v. m bgs	3.7	3.7	50.3	101.1	41	3.5	15.2	3.4	6.7	26	10.1	13.0	13.0	2.3	2.3	-	-	-	-
Therm 1-6	v. m bgs	4.4	4.5	-	126.1	56	4.3	24.2	4.1	8.2	41	15.1	15.5	15.5	3.1	3.1	-	-	-	-
Therm 1-7	v. m bgs	5.1	5.2	-	151.1	86	5.0	-	4.9	9.7	61	22.1	18.0	18.0	4.6	4.6	-	-	-	-
Therm 1-8	v. m bgs	17.4	17.2	-	176.1	106	12.3	-	16.9	12.7	81	32.1	20.5	20.5	7.6	7.6	-	-	-	-
Therm 1-9	v. m bgs	29.7	29.5	-	201.1	121	19.8	-	28.9	17.7	101	47.1	23.0	23.0	13.7	13.7	-	-	-	-
Therm 1-10	v. m bgs	42.5	41.8	-	226.1	136	27.3	-	41.0	24.7	121	77.1	25.5	25.5	19.8	19.8	-	-	-	-
Therm 1-11	v. m bgs	54.9	54.0	-	251.1	151	34.8	-	53.1	34.7	-	97.1	-	-	29.0	29.0	-	-	-	-
Therm 1-12	v. m bgs	67.4	66.3	-	276.1	166	42.3	-	65.1	49.7	-	-	-	-	38.1	38.1	-	-	-	-
Therm 1-13	v. m bgs	80.0	78.4	-	301.1	181	49.8	-	77.2	69.7	-	-	-	-	48.8	48.8	-	-	-	-
Therm 1-14	v. m bgs	-	-	-	-	-	-	-	-	89.7	-	-	-	-	-	-	-	-	-	-
Therm 1-15	v. m bgs	-	-	-	-	-	-	-	-	109.7	-	-	-	-	-	-	-	-	-	-
Therm 1-16	v. m bgs	-	-	-	-	-	-	-	-	129.7	-	-	-	-	-	-	-	-	-	-
Therm 2-1	v. m bgs	100.0	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
VWP1	v. m bgs	124.36	55.4	38.8	-	239.0	76.0	33.9	48.8	103.6	103.6	99.7	-	-	-	-	118	178	117	184
VWP2	v. m bgs	-	81.4	51.62	-	267.8	89.1	-	94.7	149.2	149.2	_	-	_	_	_	-	_	-	-

Table 3-4: Thermistor and vibrating wire piezometer installations at the Project

Notes:

m AH – metres along hole, v. m bgs – vertical metres below ground surface
 HLF – heap leach facility, WRSF – waste rock storage facility, D/S – downstream, U/S – upstream
 Measured by RTK (real time kinematic) (UTM NAD83 Zone 7).
 Dip and azimuth are estimated. Hole survey not performed.
 DDH – diamond drill hole, HQ = borehole diameter of 96.0 mm, PQ = borehole diameter of 122.6 mm, NQ2 = borehole diameter of 75.8 mm; RC – reverse circulation open hole; DC- direct circulation open hole.

3.2 Lorax 2014 Drilling Program

The data from the EBA TT 2013 program were used to inform the design of detailed hydrogeological baseline program conducted by Lorax between August 10th and September 25th, 2014. The primary goals of the 2014 program were to collect additional hydraulic testing data downgradient of mine facilities and to establish long-term groundwater monitoring and sampling locations. The program was undertaken using both skid-mounted and heli-portable diamond drill rigs (Boyles 37, Duralite D-10 and Silver Bear A5) owned and operated by Cyr Drilling. Two drill rigs were run concurrently for the majority of the program. Most drillholes were HQ-sized (96 mm) with the exception of two PQ-sized (122.6 mm) holes. The use of drilling additives was initially avoided to minimize potential impacts to groundwater quality following well installation, but drilling additives used included AMC Pure-Vis, AMC Corewell, MATEX Ultra-Vis and Di-Corp G-Stop. All drilling and installations were supervised by Lorax personnel.

Challenging ground conditions, including permafrost, led to early termination of the 2014 field program. As such, the 2014 program was limited to upland areas in and around planned pits and the formerly proposed valley-fill HLF footprint. Three deep (>150 m) 2-inch conventional well pairs were established at Kona (MW14-05A/B), Latte (MW14-03A/B) and in south Supremo (MW14-02A/B). Two additional monitoring well pairs were established north of the Supremo pit (BH5 [MW14-01A/B] and BH7 [MW14-06A/B] locations, Figure 3-1); however, both wells in both pairs later became blocked, presumably due to ice-jacking. Logs for the 2014 monitoring wells are provided in Appendix 3-A.

A 300-metre, grouted-in thermistor string was established in north Supremo (MW14-04T) and a combination thermistor/VWP string was established in the Heap Leach Facility (HLF) footprint (MW14-07T) (Appendix 3-A). Methods for grouting in the thermistor string were similar as those used for the combination thermistor/VWP string; however, a higher proportion of bentonite was used for the latter (Appendix 3-D). Both locations were equipped with a dedicated datalogger housed inside a steel enclosure at surface for acquisition of high resolution (hourly) data (Figure 3-2). Similar dataloggers were also installed at the four VWPs installed by EBA TT in 2013. All instrumentation (except the steel enclosures) were manufactured by RST Instruments.

One hole at each drilling location was packer tested using a single packer setup. All of the packer tests were injection tests (either constant head or step-test). Both a hydraulic packer (Inflatable Packers International) and pneumatic packer (RST Instruments) were utilized

during the 2014 drilling program. Field procedures for packer testing are outlined in Appendix 3-E.

Figure 3-2: Thermistor installation at MW14-04T (left) and VWP installation at CFD-0318 (right).

3.3 Knight Piésold 2014 Program

Between August 28th and September 21st, 2014, Knight Piésold (KP) conducted a geotechnical field program in the formerly proposed valley-fill HLF footprint area. The KP investigation comprised a combination of test pits and boreholes to assess shallow and deeper sub-surface conditions, respectively, within the limits of the valley fill HLF, ore stockpile and event pond. It should be noted that the HLF and associated facilities have been relocated to the presently proposed ridgetop location in 2015. Of particular significance to hydrogeological assessment of the Project, KP established two 50-metre (RST) thermistor strings in the previously proposed HLF footprint area. The thermistors strings are inserted into sealed 1" PVC standpipes that have been cemented in place and are connected to dedicated loggers at surface.

3.4 Lorax 2015 Drilling Programs

The widespread occurrence of permafrost encountered during the 2014 field programs prompted a refinement of the instrumentation required to collect water quality samples from sub-permafrost groundwater. This led to the selection of Westbay technology for this purpose. Illustrated in Figure 3-3, the Westbay system is comprised of a versatile, modular, sealed custom-manufactured PVC pipe with sampling zones located at the discretion of the hydrogeologist in the field. The pipe is lowered down the hole and packer elements bracketing each zone are inflated with a specialized tool. Figure 3-4 shows a photograph of the Westbay pipe and a packer element as it is being lowered into a borehole during installation. Groundwater is monitored/sampled using a specialized tool deployed from surface which docks into valved monitoring ports located within the sampling zone. In permafrost environments, a steel guide tube (typically HQ rods) is left in place which blinds off the frozen ground. A packer element resides inside the HQ rods, near the base, to prevent water ingress (and thus ice formation) in the annular space between the steel casing and Westbay system. The inside of the Westbay pipe and the annulus between the Westbay and steel protective casing is filled with 3:1 dilution of propylene glycol to prevent ice formation inside and outside of the Westbay. Westbay's custom-built sampling tool docks with the sampling ports in the assembly, opening the ports only after a seal has been established to prevent any exchange between the glycol inside the assembly and the groundwater outside.

Given the complexity and costs associated with Westbay system installations, the approach for installations in low-lying valleys was to first establish a thermistor/VWP installation at each drilling location and use the drilling and thermistor data to inform the Westbay installation at a second hole located off the same drill pad. A third, shallow (5 to 10 metres deep), conventional monitoring well was installed from a second, smaller drill pad to screen shallow groundwater in overburden/weathered bedrock.

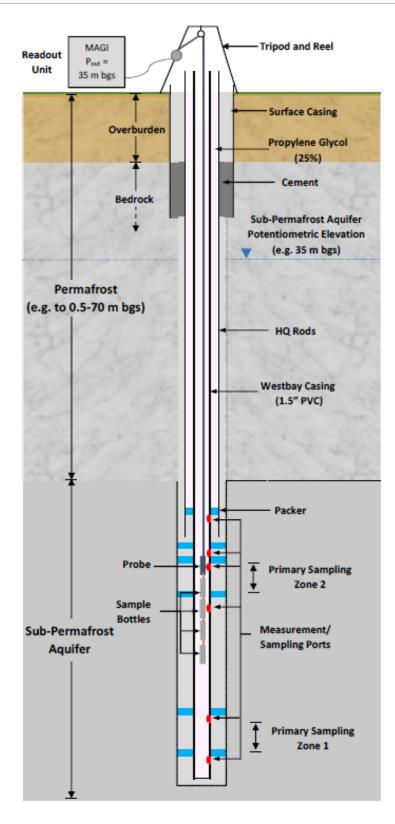


Figure 3-3: Schematic of an example Westbay system installed in permafrost (drawing not to scale).

Figure 3-4: Westbay installation at MW15-06T (BH5) using the Boyles 37 diamond drill rig. Blue gland is packer element which is inflated downhole with a 3:1 dilution of propylene glycol. PVC is 1.5" Sched 80 with ends machined to mate with Westbay System couplings incorporating a shear-rod connection and an o-ring seal (no glue).

The modified baseline hydrogeological program was implemented by Lorax in two separate field programs in 2015. The first program was undertaken between March 18th and March 26th, 2015, and utilized a heli-portable Hornet reverse circulation (RC) rig owned and operated by Northspan Explorations Ltd. Two combination thermistor/VWP strings were installed downgradient of proposed North and South WRSF footprints at

locations MW15-01T and MW15-02T, respectively. The boreholes were drilled vertically; 5-inch casing was keyed into competent bedrock followed by direct circulation open hole drilling using a 4.5-inch bit. The instruments were installed according to the protocols outlined in Appendix 3-D. Borehole and instrument logs are found in Appendix 3-A.

The initial drilling campaign in March provided critical information on permafrost depth for the planning of a subsequent, larger field program undertaken by Lorax between April 30th and June 9th, 2015. All drillholes were advanced using the Hornet RC rig operated by Northspan, with exception to MW15-06WB, which is discussed separately below. No drilling additives were used on the RC holes. Westbay systems were installed in vertical holes at all valley drilling locations. Each Westbay was preceded by thermistor/VWP installations in sub-vertical angled holes (80° dip) advanced from the same pad. The thermistor holes were located on the downgradient edge of the pad and pointed in the downgradient direction to maximize the separation between the grouted VWP/thermistor hole and the Westbay completion. The grout backfill securing each thermistor/VWP install was allowed to cure for 24 hours before drilling of the adjacent Westbay hole was initiated.

During advancement of each Westbay hole, formation water reporting to the cyclone was regularly field-tested for pH and electrical conductivity (EC) to assess whether grout from the adjacent hole had influenced water quality. Where there was suspicion of grout influence (*e.g.*, low pH), the Westbay zones were configured to avoid each potentially impacted area. For the most part, two primary Westbay sampling zones were implemented at each installation. The zones were situated to intercept the first occurrence of substantial water and a second productive zone at depth (Table 3-3). The intention was to have a back-up zone should one zone become compromised or inaccessible. Westbay field technicians installed the Westbay instrumentation with assistance from Lorax and Northspan personnel. The Westbay completion report is provided in Appendix 3-B.

Shallow conventional wells (>4.5 m to 10 m deep) were initiated at valley drilling locations to characterize potential active zone flow in areas of permafrost, or overburden flow where permafrost is absent. Most of the 'active zone' wells were advanced from a separate pad ~25 metres away from the thermistor/VWP and Westbay pad. These holes were advanced using 4.5" ODEX casing which was withdrawn as the installation proceeded.

A combination of drilling methods was used to establish MW15-06WB, a Westbay system north of Supremo pit implemented to replace the 2014 conventional well pair (MW14-01A/B) that ice-jacked at the previous BH5 location. A 4.5" drillhole was first advanced using the Hornet RC rig to 200 metres, the depth limit of the rig, and found to be dry. A Boyles 37 diamond rig operated by Cyr was then mobilized onto the hole and HWT casing (4.5" OD) was reamed down to 162 m bgs. The hole was then deepened to

293 m bgs using HQ coring methods. A heavy mud (using AMC drilling additives Pure-Vis, Corewell and CR-650) was used during reaming and drilling. The hole was flushed for three hours prior to the commencement of Westbay installation. HQ rods were left in the hole to a depth of ~ 204 m to act a protective guard against permafrost.

Hydraulic testing during the Lorax 2015 field program consisted of airlift yield measurements at regular intervals during drilling plus an extended airlift yield test with monitored water level recovery on selected boreholes. A shut-in, constant head test was also conducted on MW15-04T, an artesian hole in Halfway Creek (Figure 3-1). Field protocols for the hydraulic tests are provided in Appendix 3-E.

3.5 SRK 2015 Program

In the summer of 2015, SRK conducted a hydrogeological program targeting geologic structures intersecting the pits and led a site-wide geotechnical program characterizing ground conditions in mine facility footprint areas. Airlift tests and/or packer tests were performed on the structures and thermistor/VWP strings were installed directly beneath or near proposed waste rock and ore stockpile footprint areas. The SRK hydrogeology field investigation report is included as Appendix 3-G of this report.

3.6 Groundwater Sampling

Monitoring wells were developed after installation and prior to groundwater sampling in 2014 and 2015. Well development was conducted using several methods, including purging with a bailer-winch system, inertial pump actuated with a Hydrolift-II, Westbay sampler, and air-lift pumping. The available well development method(s) depended on the type of well installation and depth to groundwater. Monitoring wells were developed between September 24 and October 9, 2014, May 29 and June 21, 2015, and on September 6, 2015. Details regarding the development of MW14-series (completed in 2014) and MW15-series wells (completed in 2015) are presented in Appendix 5-D.

Groundwater monitoring events were conducted in September/October 2014, May/June 2015, July 2015, August 2015 and September 2015. This modified quarterly sampling frequency is often employed in the Yukon to capture the range of seasonal variability accounting for extended winters and compressed spring/summer/fall seasons.

All new monitoring wells installed in 2014 and 2015 were sampled for groundwater quality with the exception of MW14-06A, MW14-06B, MW15-01AZ and MW15-04AZ which could not be sampled due to damage or water limitations (*e.g.*, frozen or dry) (Table 3-5). Table 3-5 presents a summary of the 2014 and 2015 groundwater sampling programs, including sampling methods used at each monitoring well.

Groundwater sampling was conducted in accordance with methods outlined in the BC Field Sampling Manual (Clark, 2002). Sampling was conducted using several different types of pumps. The pump employed at each well depended on the type of well installation, permeability of the geological unit being sampled, and depth to groundwater. Inertial pumps actuated with a Hydrolift-II mechanical actuator and peristaltic pumps were used to sample monitoring wells screened in permeable formations. Bladder pumps were used to collect groundwater samples from deep wells screened in low permeability bedrock which would not permit sampling with conventional methods (e.g., inertial pump). The Westbay sampler was necessarily used to collect groundwater samples from the Westbay installations. Field parameters were continuously monitored with a multi-parameter probe (YSI 556 MPS or YSI Professional Plus) coupled to an in-line flow-through cell during Field parameters were monitored to ensure collection of groundwater purging. representative samples and to provide reliable field-based estimates of temperature, pH, specific conductance, dissolved oxygen (DO), and oxidation-reduction potential (ORP). Low-flow sampling methods were employed, and groundwater samples were collected after water levels in monitoring wells and purge water field parameters had stabilized.

Station	Sept./Oct. 2014	May/Jun. 2015	Jul. 2015	Aug. 2015	Sept. 2015	Sample Count
MW14-02A	IP	IP	IP	IP	IP	5
MW14-02B	IP	IP	IP	IP	IP	5
MW14-03A	BP	BP	BP	BP	BP	5
MW14-03B	BP	BP	BP	BP	BP	5
MW14-05A	BP	BP	BP	BP	BP	5
MW14-05B	BP	BP	BP	BP	BP	5
MW14-06A	frozen ¹	damaged ²	ċ	lecommission	ned ³	0
MW14-06B	frozen ¹	damaged ²	ċ	lecommission	ned ³	0
MW15-01AZ	-	dry	frozen	frozen	frozen	0
MW15-01WB (Port 4)	-	WB	WB	WB	WB	4
MW15-02AZ	-	PP	PP	PP	PP	4
MW15-02WB (Port 3)	-	WB	WB	WB	WB	4
MW15-03AZ	-	PP	PP	PP	PP	4
MW15-03WB (Port 6)	-	WB	WB	WB	WB	4
MW15-04AZ	-	dry	dry	dry	dry	0
MW15-04WB (Port 4)	-	WB	WB	WB	WB	4
MW15-05AZ	-	dry	dry	dry	PP	1
MW15-05WB (Port 3)	-	WB	WB	WB	WB	4
MW15-06WB (Port 6)	-	WB	WB	WB	WB	4

 Table 3-5:

 Summary of 2014 and 2015 Groundwater Sampling Programs

Notes:

BP = bladder pump, *IP* = inertial pump actuated with a Hydrolift-*II*, *PP* = peristaltic pump, *WB* = Westbay sampler

1. Water inside monitoring well had started freezing at the time of sampling.

2. Monitoring well casing collapsed near surface, likely due to freeze/thaw action in the active layer. Consequently, well screen could not be accessed.

3. Monitoring well decommissioned by Kaminak.

De-icing was required at monitoring wells MW14-02A and MW14-02B prior to groundwater sampling. Artesian conditions at both wells resulted in the top of the water column freezing inside the well casing installed through permafrost. De-icing was conducted with a hot water power washer equipped with high-pressure hoses and a drain jetting nozzle. Groundwater sampling was conducted after the volume of injected de-icing water plus a minimum of one well volume had been purged and purge water field parameters had stabilized.

Low water levels and low yields at monitoring well MW14-05B challenged the equipment capabilities and sampling procedures. Consequently, a modified purging/sampling procedure was employed to obtain representative formation groundwater at MW14-05B. The water level was drawn down to the lowest possible level (pump elevation) to maximize the amount of purged groundwater. The well was then allowed to recover for a day prior to sampling, to ensure the greatest displacement and the largest buffer between 'new' formation water and 'old' residual standing water.

Since Westbay sample zones are isolated (*i.e.* not in direct contact) from atmospheric conditions, collecting representative groundwater samples does not require the use of typical sampling methods whereby large volumes of water are purged. Westbay installations MW15-01WB to MW15-06WB were sampled after completion of well development and purging in June 2015. Subsequent groundwater sampling was conducted after purging a minimum of 4 L. Additional detail regarding groundwater sampling methods is included in Appendix 5-D.

Groundwater samples were collected and preserved in the field with the appropriate laboratory supplied bottles and preservatives. Samples analyzed for dissolved parameters were filtered in the field with disposable in-line 0.45 micron filters, with the exception of groundwater samples collected from Westbay installations which were filtered in the lab. Quality control sampling was conducted in the field and included the collection of field blanks, a trip blank, and field replicate samples. After collection, samples were kept cool in the field and during shipping until delivery to the laboratory. Groundwater samples were submitted for chemical analysis to the ALS Environmental (ALS) laboratory in Burnaby, BC in 2014, and to the Maxxam Analytics (Maxxam) laboratory in Burnaby, BC in 2015. Groundwater samples were analyzed for the following parameters:

- Physical parameters
- Anions
- Nutrients
- Organic and inorganic carbon
- Total and dissolved metals

Groundwater quality parameters and the corresponding detection limits for groundwater sampling conducted in 2014 and 2015 are presented in Table 3-6 and Table 3-7, respectively.

Groundwater samples were also collected in 2014 and 2015 for the analysis of stable isotopes of hydrogen (δ^2 H) and oxygen (δ^{18} O), the stable isotope of carbon in dissolved bicarbonate (δ^{13} C), and the radiogenic isotopes tritium (³H) and carbon-14 (¹⁴C). Stable isotopes are used to assess provenance of groundwater samples. Groundwater samples have been submitted for isotope analyses to the Brigham Young University Isotope Laboratory. Analytical results were not ready at the time of reporting and will be reported under separate cover.

Parameter	Symbol	Unit	Detection Limit
Physical Properties			
Conductivity	EC	μS/cm	2
Hardness (as CaCO3)	Н	mg/L	0.5
pН	pH	pH	0.1
Total Suspended Solids	TSS	mg/L	3
Total Dissolved Solids	TDS	mg/L	20
Turbidity	-	NTU	0.1
Anions and Nutrients			
Alkalinity, Total (as CaCO3)	-	mg/L	1
Ammonia, Total (as N)	NH ₃	mg/L	0.005
Chloride	Cl	mg/L	0.5
Fluoride	F	mg/L	0.02
Nitrate	NO ₂	mg/L	0.005
Nitrite	NO ₃	mg/L	0.001
Total Kjeldahl Nitrogen	TKN	mg/L	0.05
Total Nitrogen	N	mg/L	0.05
Phosphorus	Р	mg/L	0.002
Sulfate	SO ₄	mg/L	0.5
Sulphide	S	mg/L	0.002
Organic/Inorganic Carbon			
Dissolved Organic Carbon	DOC	mg/L	0.5
Total Organic Carbon	TOC	mg/L	0.5
Total and Dissolved Metals			
Aluminum	Al	mg/L	0.0030 1 / 0.0010 2
Antimony	Sb	mg/L	0.0001
Arsenic	As	mg/L	0.0001
Barium	Ba	mg/L	0.00005
Beryllium	Be	mg/L	0.0001
Bismuth	Bi	mg/L	0.0005
Boron	В	mg/L	0.01
Cadmium	Cd	mg/L	0.00001
Calcium	Ca	mg/L	0.05
Chromium	Cr	mg/L	0.0001
Cobalt	Со	mg/L	0.0001

Table 3-6:Groundwater Quality Parameters and Detection Limits (ALS 2014)

Hydrogeological Field Investigations Coffee Gold Baseline Hydrogeological Assessment

Parameter	Symbol	Unit	Detection Limit
Copper	Cu	mg/L	0.0005 1 / 0.0002 2
Iron	Fe	mg/L	0.01
Lead	Pb	mg/L	0.00005
Lithium	Li	mg/L	0.0005
Magnesium	Mg	mg/L	0.1
Manganese	Mn	mg/L	0.00005
Mercury	Hg	mg/L	0.0001 1 / 0.0005 2
Molybdenum	Mo	mg/L	0.00005
Nickel	Ni	mg/L	0.0005
Phosphorus	Р	mg/L	0.05
Potassium	K	mg/L	0.1
Selenium	Se	mg/L	0.0001
Silicon	Si	mg/L	0.05
Silver	Ag	mg/L	0.00001
Sodium	Na	mg/L	0.05
Strontium	Sr	mg/L	0.0002
Sulphur	S	mg/L	0.5
Thallium	Tl	mg/L	0.00001
Tin	Sn	mg/L	0.0001
Titanium	Ti	mg/L	0.01
Uranium	U	mg/L	0.00001
Vanadium	V	mg/L	0.001
Zinc	Zn	mg/L	0.0030 1 / 0.0010 2

Notes:

1. Detection Limit for Total Metal

2. Detection Limit for Dissolved Metal

Parameter	Symbol	Unit	Detection Limit
Physical Properties			
Conductivity	EC	μS/cm	1.0
Hardness (CaCO3)	Н	mg/L	0.50
рН	pH	рН	N/A
Total Suspended Solids	TSS	mg/L	1.0
Total Dissolved Solids	TDS	mg/L	10
Turbidity	-	NTU	0.10
Anions and Nutrient			
Alkalinity (Total as CaCO ₃)	-	mg/L	0.50
Alkalinity (PP as CaCO ₃)	-	mg/L	0.50
Ammonia, Total (as N)	NH ₃	mg/L	0.0050
Chloride	Cl	mg/L	0.50
Fluoride	F	mg/L	0.010
Nitrate	NO ₂	mg/L	0.0020
Nitrite	NO ₃	mg/L	0.0020
Nitrate plus Nitrite	-	mg/L	0.0020
Total Nitrogen	N	mg/L	0.020
Total Total Kjeldahl Nitrogen	TKN	mg/L	0.020
Phosphorus	Р	mg/L	0.0020
Dissolved Sulphate	SO ₄	mg/L	0.50
Sulphide	S	mg/L	0.0050
Inorganics			
Bicarbonate	HCO ₃	mg/L	0.50
Carbonate	CO ₃	mg/L	0.50
Hydroxide	OH	mg/L	0.50
Organic/Inorganic Carbon			
Dissolved Organic Carbon	DOC	mg/L	0.50
Total Organic Carbon	TOC	mg/L	0.50
Total and Dissolved Metals			
Aluminum	Al	μg/L	0.50
Antimony	Sb	μg/L	0.020
Arsenic	As	μg/L	0.020
Barium	Ba	μg/L	0.020
Beryllium	Be	μg/L	0.010
Bismuth	Bi	μg/L	0.0050
Boron	В	μg/L	10
Cadmium	Cd	μg/L	0.0050
Calcium	Ca	mg/L	0.050
Chromium	Cr	μg/L	0.10
Cobalt	Co	μg/L	0.0050
Copper	Cu	μg/L	0.050
Iron	Fe	μg/L	1.0

Table 3-7: Groundwater Quality Parameters and Detection Limits (Maxxam 2015)

Parameter	Symbol	Unit	Detection Limit
Lead	Pb	μg/L	0.0050
Lithium	Li	μg/L	0.50
Magnesium	Mg	mg/L	0.050
Manganese	Mn	μg/L	0.050
Mercury	Hg	μg/L	0.0020
Molybdenum	Мо	μg/L	0.050
Nickel	Ni	μg/L	0.020
Phosphorus	Р	µg/L	2.0
Potassium	K	mg/L	0.050
Selenium	Se	μg/L	0.040
Silicon	Si	μg/L	50
Silver	Ag	μg/L	0.0050
Sodium	Na	mg/L	0.050
Strontium	Sr	μg/L	0.050
Sulphur	S	mg/L	3.0
Thallium	Tl	μg/L	0.0020
Tin	Sn	µg/L	0.20
Titanium	Ti	µg/L	0.50
Uranium	U	µg/L	0.0020
Vanadium	V	µg/L	0.20
Zinc	Zn	µg/L	0.10
Zirconium	Zr	μg/L	0.10

_GOLDCORP

4. Physical Hydrogeology Results

This section discusses physical groundwater data collected during the field programs outlined in Section 3. The discussion covers permafrost characterization, hydraulic testing results, water level time series and hydraulic gradients.

Data presented in this section have undergone various forms of quality assurance/quality control. Hydraulic testing data have been vetted to ensure results only from saturated test interval are presented; analyses have also been checked by multiple parties. Unusual hydraulic gradients recorded between vibrating wire piezometers have been field verified to ensure sensors are correctly identified. Some of ground temperature profiles plotted in Appendix 4-A display unusual jogs suggesting thermistor sensor malfunction. These data have been removed when clearly out of range or flagged as 'suspicious' in the plots and not used for subsequent analysis.

4.1 Permafrost

Permafrost is an important consideration in the conceptualization groundwater systems as it imparts controls on groundwater movement. When ground temperatures fall below the freezing point, the hydraulic conductivity sharply decreases as unfrozen water content drops and pores and cracks are increasingly filled with ice (Woo, 2012). Permafrost is considered to behave like an aquiclude or an aquitard and can confine sub-permafrost groundwater such that it exhibits artesian conditions (Woo, 2012). Active groundwater circulation can occur above, within and beneath permafrost (supra, intra and sub-permafrost groundwater).

The Project is located in an area classified as extensive discontinuous permafrost with low to medium ice content (National Resources Canada, 1995). Extensive discontinuous permafrost is defined as 50% to 90% of the land area underlain by permafrost, while low to medium ice content is defined as less than 10% to 20% by volume of visible ice content. Recharge of sub-permafrost groundwater in discontinuous regions can be directly from adjacent non-permafrost uplands or through supra and intra-permafrost connections (Woo, 2012).

Frozen ground has been mapped at the Project using a variety of methods. AECOM (2012) first mapped frozen ground on the property for a geomorphological mapping study supporting strategic soil sampling for exploration purposes. In 2015, SRK undertook sonic drilling and test pitting in footprint areas of mine facilities to characterize geotechnical and permafrost conditions (SRK, 2016). Thermistor strings were installed as a part of this program (see Section 3.5). EBA TT has further investigated permafrost occurrence through

field mapping and air photo interpretation (2016) and a terrain stability/geohazard map has been produced by Palmer (2016).

The permafrost data presented in this section is limited to ground temperatures measured by thermistors installed by Lorax, SRK and KP, and other anecdotal observations of bedrock ice occurrence from the Lorax field programs. Key findings are summarized Table 4-1. While most thermistor installations indicate sub-zero temperatures in bedrock, observations of ice in bedrock are somewhat limited. These observations include visible ice shards in RC chips from shallow, fractured bedrock in Halfway Creek (MW15-03) and small lenses of ice at depth in core holes in Latte (MW14-03B) and Kona North (exploration hole CFD0376) (Figure 4-1). The water column in well MW14-03B has remained unfrozen. While not listed in Table 4-1, ice was more commonly visible in overburden in RC holes. At the extreme end, three large lobes of ice were intercepted between 8 and 13 metres below ground surface at MW15-01T (Figure 4-2). This drill pad is located on a slope classified as poorly drained colluvial veneer modified by solifluction (xszCv-S:p-i) (AECOM, 2012).

Ground temperature profiles for all thermistor locations are provided in Appendix 4-A. Where applicable, readings from VWP temperature sensors are included in the plots; however, the thermistors contained within VWPs are reported by the manufacturer to be less accurate than those used in thermistor strings. A typical ground thermal profile measured at thermistor MW14-07T is shown in Figure 4-3. At MW14-07T, the active layer, defined as the top layer of ground that seasonally freezes and thaws, is less than 0.6 m thick as the uppermost sensor at 0.6 m remains below 0°C throughout the year. The active zone is generally shallow across the site (less than 2 m deep), except in areas where vegetation has been stripped (*i.e.* road cuts) (Table 4-1). This is because the high amount of air in dry moss and lichen is an effective insulator which buffers the ground from summer heat and maintains a thinner active layer than that which would be found beneath bare ground (Woo, 2012).

Figure 4-1: Ice lens observed in exploration hole CFD0376 (Kona North). Depth is ~85 m vertical.

Figure 4-2: Ice "cuttings" intercepted at MW15-01T while advancing casing through colluvium.

Table 4-2 provides the period of record for which shallow temperature sensors record above zero readings, providing insight into when the active layer is 'active'. Time series plots of the shallow temperature data are found in Appendix 4-B. MW15-03T records above zero ground temperatures for all sensors within 5 metres of ground surface for essentially the entire period of record for the instrument (May 10 through October 31st, 2015). MW15-03T is also the lowest elevation thermistor on site, and is at the fringe of permafrost coverage. Farther upstream at MW15-04T, the shallowest thermistor sensor (1.7 m bgs) remains frozen throughout the entire data record. Of the higher elevation sensors, KPBH01 (elevation 1123 m asl) records the earliest shallow thaw (0.76 m bgs) starting May 21st, 2015. Overall, the period of thaw for shallow temperature sensors within 5 metres of ground surface is highly variable across the site in both timing and duration.

The base of permafrost at MW14-07T is estimated to be 62 m bgs, *i.e.* where the thermal profile crosses the 0°C line. This assumes that the freezing point has not been significantly depressed due to the presence of solutes, which is a reasonable assumption given the generally low levels of total dissolved solids in the sub-permafrost groundwater across the site (generally less than 1000 mg/L, see Section 5). The interpreted base of permafrost for other locations is reported in Table 4-1 and plotted in Figure 4-4. In cases where the depth of permafrost extends beyond the depth of the thermistor installation, the base of permafrost was estimated by extrapolating the thermal gradient to the 0°C line.

Overall, permafrost extends to greatest depths in ridge areas and appears to reduce in thickness towards areas of lower elevation; north-facing slopes tend to have thicker permafrost than south-facing slopes. The only drilling locations where permafrost was absent were the two instruments established in the lower reaches of the South WRSF drainage (MW15-02T, SRK-15D-09T). The depth of permafrost at MW15-03T is also highly questionable. The thickest permafrost (~165 metres) is encountered near the north end of the proposed Supremo pit at MW14-04T. Permafrost in the project area is relatively warm (between 0 and -2° C) and at 20 metres depth (*i.e.* beyond the depth of zero annual fluctuation), is coolest (-1.4°C to -1.9° C) on north facing slopes.

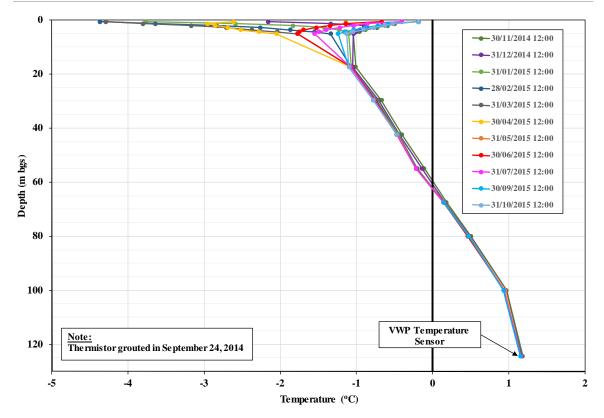


Figure 4-3: Thermal profile at MW14-07T, downgradient of the proposed heap leach facility.

Table 4-1:
Observations of permafrost depth from thermistor installations, exploration drilling and monitoring well sampling.

Monitoring ID	Mine ID	Ground Surface (m asl)	Active Zone Thickness (m)	Base of Permafrost (m bgs)	Temperature at 20 m bgs (°C)	Comment
KPBH-01	CFD0451	1122.7	1.5	>50m, approx. 80m	-0.92	Projected trend as thermistor string terminates at 50 m bgs.
KPBH-04	CFD0454	1121.3	1.5	>50m, approx. 120m	-1.04	Projected trend as thermistor string terminates at 50 m bgs.
MW14-02B	CFD0418	1030.9		34		Base of ice in conventional MW after several months of inactivity.
MW14-03B	CFD0432	1097.6		$61.8 \le x \le 133$		Small ice lens observed in core at 61.8 m, water in well is unfrozen at ~133 m bgs.
MW14-04T	CFD0439	1185.8	>3	168	-1.4	In road cut, vegetation stripped.
MW14-05B	CFD0455	1270.3		<134		Water level in well remains unfrozen to 134 m.
MW14-07T	CFD0462	1156.3	<0.6	62	-1.1	
MW15-01T	CFR0941	803.9	<0.6	70 to 75	-1.4	
MW15-02T	CFR0948	737.1	n/a	0	0.6	Permafrost absent.
MW15-03T ¹	CFR0983	557.7	?	~20	0	Ice shards observed in rock chips 8.8-10.4 m, near zero temperatures observed at 16.7 m.
MW15-03WB ¹	CFR0987	557.9	?	$x \ge 10.4$		Ice shards observed in rock chips 7.7, 8.2 and 8.5-10.4 m.
MW15-04T	CFR0990	670.9	<1.7	30 to 31	-0.4 to -0.35	
MW15-05T	CFR0994	1067.1	1.5	46 to 47	-0.6	
MW15-07T	CFD0596	1183.1	<7	140	-1.3	In road cut, vegetation stripped.
SRK-15D-07T	CFD0600	946.0	<1.5	85	-1.85	
SRK-15D- 08AT	CDF0595	925.0	~1.1	75	-0.9	
SRK-15D-09T	CFD0599	784.0	n/a	0	0.8	Permafrost absent.
SRK-15D-10T	CFD0593	1008.2	~2	40 to 50	-1.85	Projected trend as thermistor string terminates is frozen to depth at 25 m bgs.
SRK-15D-13T	CFD0594	1136.9	~2	41 to 50	-0.2	Projected trend as thermistor string terminates is frozen to depth at 25 m bgs.
	CFD0376	1052.1	n/a	$x \ge 85$	n/a	Exploration hole in Kona North; ice lens observed around 85 m.

Notes:

n/a: not applicable, active zone necessarily requires presence of permafrost.
1. Unable to determine active zone thickness from plot due depth of sensors; base of permafrost is also questionable.

Instrument	Ground Surface Elevation (masl)	Sensor Depth (m bgs)	Start of >0°C Temperatures in 2015	Stop of >0°C Temperatures in 2015	Comments
Halfway Creek					
SRK-15D-10T	1008	0.5	20-Sep-15	19-Oct-15	>0°C intermittently through range
SRK-15D-10T	1008	3.0	Always be	elow zero	
SRK-15D-10T	1008	5.5	Always be		
SRK-15D-08T	925	1.0	9-Jul-15 ¹	22-Sep-15	
SRK-15D-08T	925	4.0	9-Jul-151	29-Jul-15	
MW14-04T	1186	3.1	1-Jul-15	31-Oct-15	In road cut
MW15-04T	671	1.7	Always be	elow zero	
MW15-03T	558	0.5	10-May-15 ¹	27-Oct-15	
MW15-03T	558	1.2	10-May-15 ¹	31-Oct-15 ²	
MW15-03T	558	1.9	10-May-15 ¹	31-Oct-15 ²	
MW15-03T	558	2.6	10-May-15 ¹	31-Oct-15 ²	
MW15-03T	558	3.4	10-May-15 ¹	31-Oct-15 ²	
MW15-03T	558	4.1	10-May-15 ¹	31-Oct-15 ²	
MW15-03T	558	4.9	10-May-15 ¹	31-Oct-15 ²	
YT-24 Drainage				1	1
MW15-07T	1183	7.0	Always be	elow zero	
SRK-15D-07T	949	0.7	Always be	elow zero	Below zero after initial grout curing
SRK-15D-07T	949	2.2	Always be	elow zero	Below zero after initial grout curing
SRK-15D-07T	949	3.7	Always be	elow zero	Below zero after initial grout curing
SRK-15D-07T	949	5.2	Always be	elow zero	Below zero after initial grout curing
MW15-01T	804	0.5	21-May-15	24-Oct-15	
MW15-01T	804	1.3	Always be	elow zero	
Upper Latte Creel	k				
MW14-07T	1156	0.6	Always be	elow zero	
MW14-07T	1156	1.4	Always be	elow zero	
KPBH01	1123	0.8	21-May-15	1-Oct-15	
KPBH01	1123	1.5	8-Aug-15	20-Sep-15	
KPBH04	1121	0.8	17-Jun-15	30-Sep-15	
KPBH04	1121	1.5	20-Aug-15	22-Sep-15	
MW15-05T	1067	0.8	16-Jul-15	11-Oct-15	
MW15-05T	1067	1.5	13-Sep-15	16-Sep-15	
SRK-15D-13T	1137	0.5	10-Sep-15	22-Sep-15	
SRK-15D-13T	1137	3.0	Always be	elow zero	
SRK-15D-13T	1137	5.5	Always be	elow zero	
South WRSF Dra	inage				1
SRK-15D-09T	784	1.1	9-Jul-151	31-Oct-15 ²	
SRK-15D-09T	784	2.6	9-Jul-151	31-Oct-15 ²	
SRK-15D-09T	784	4.1	9-Jul-151	31-Oct-15 ²	
MW15-02T	737	1.2	29-May-15	25-Oct-15	
MW15-02T	737	3.2	13-Apr-15	29-Apr-15	Sensor essentially records 0°C for entire data period.
MW15-02T	737	5.2	13-Apr-15	9-Jul-15	

Notes:

1. Above zero temperatures coincide with start of record.

2. Above zero temperatures until end of record.

4.2 Hydraulic Testing

Over 40 successful measurements of bedrock hydraulic conductivity have been collected throughout the various field programs undertaken at the site. Hydraulic testing results are summarized in Table 4-3 and plotted versus vertical depth below ground surface in Figure 4-5 and Figure 4-6. Values obtained for intervals suspected of being unsaturated have been removed from Table 4-3, but are included the results tabulated in Appendix 4-C. Most measurements were acquired through packer testing (constant head injection and Lugeon tests), but airlift yield recovery tests and slug tests were also performed. In one case, hydraulic conductivity was determined from a water level response due to sampling of a well. Field and analytical methods for hydraulic testing have been provided in Appendix 3-E along with detailed results.

The hydraulic conductivity data range over several orders of magnitude with values exceeding 1E-06 m/s and others below the resolution of the testing method (<1E-10 m/s). A broad range in hydraulic conductivity values is typical of a fractured bedrock system (Golder, 2010). A regression line though the data points (Figure 4-5) indicates a broad trend of decreasing hydraulic conductivity with depth with exception to a cluster of higher hydraulic conductivity values at over 200 metres depth. Most of these elevated values at depth are attributed to SRK's testing program which specifically targeted geologic structures intersecting the proposed pits. They report a narrow range (1E-07 m/s to 3E-06 m/s) of hydraulic conductivity values for the structures with an arithmetic mean value of 7E-07 m/s (Appendix 3-G). An arithmetic mean was presented for the fracture zone tests rather than a geometric mean because the values represent uni-directional flow in planar features rather than radial groundwater flow. The arithmetic mean of tests performed in valley locations (Table 4-3) is 1E-06 m/s, which is consistent with SRK's pit structure results and supports the inference that valley traces represent fault structures. An arithmetic mean of all valley and pit structure hydraulic conductivity results is 9E-07 m/s.

Figure 4-6 plots hydraulic conductivity results versus depth grouped by lithology. Based on the wide spread in values for the major rock units and combinations thereof, rock type does not appear to play a large control on hydraulic properties. Rather, structural features, which cross-cut all lithologies, impart the dominant control on hydraulic conductivity.

Figure 4-7 presents statistics for the hydraulic conductivity data set as box and whisker plots (legend in lower pane). For the upper box, a mean hydraulic conductivity value was computed for each hole where multiple hydraulic tests were performed, and then statistics were computed on the resultant data set of 22 values. Following the protocols above, multiple tests on fractured holes (valley and SRK tests) were computed as an arithmetic average, while multiple tests on other boreholes were averaged geometrically. For the

bottom box, all tests were treated individually (43 values). Predictably, the pre-processed data set in the upper box shows a tighter spread in the values, with 25th to 75th percentile hydraulic conductivity values ranging from 2E-08 to 2E-07 m/s, with a geometric mean of all boreholes of 5E-8 m/s. When all tests are treated individually, the geometric mean of the entire 43-value data set is 2E-08 m/s.

Slug tests were performed on overburden wells MW15-03AZ (lower Halfway Creek) and MW15-02AZ (South WRSF drainage). The formation recovered within a few seconds suggesting extremely high formation permeability. The test data could not be interpreted due to influence from the sand pack but are included in Appendix 3-E for completeness.

Hole ID	Consultant	Azimuth	Dip	Test Interva		Test Method	Test Type ²	Analysis Type ³
			-	From To				
Supremo	T	0	00	155	166		CIII	
MW14-01A	Lorax	0	-90	155	166	Packer	CHI	Thiem
MW14-01A	Lorax	0	-90	179	202	Packer	CHI	Thiem
MW14-04T	Lorax	0	-90	182	202	Packer	CHI	Thiem
MW14-04T	Lorax	0	-90	164	202	Packer	Lugeon	Thiem
MW14-04T	Lorax	0	-90	203	232	Packer	Lugeon	Thiem
MW14-04T	Lorax	0	-90	233	256	Packer	Lugeon	Thiem
MW14-04T	Lorax	0	-90	251	280	Packer	CHI	Thiem
MW14-04T	Lorax	0	-90	281	301	Packer	CHI	Thiem
MW14-06A	Lorax	0	-90	197	216	Slug Test	RH Slug	Hvorslev
MW15-06T	Lorax	0	-90	281	286	Westbay	Pulse Test	Hvorslev
MW15-06T	Lorax	0	-90	238	243	Westbay	Pulse Test	Hvorslev
MW15-06T	Lorax	0	-90	227	237	Westbay	Pulse Test	Hvorslev
CFD-0318	EBA	175	-45	89	91	Packer	Lugeon	Thiem
CFD-0318	EBA	175	-45	105	108	Packer	Lugeon	Thiem
CFD-0318	EBA	175	-45	118	122	Packer	Lugeon	Thiem
CFD-0319	EBA	0	-45	76	83	Packer	Lugeon	Thiem
CFD-0323	EBA	280	-70	93	118	Packer	Lugeon	Thiem
IFSPD124	SRK	270	-50	36	125	Slug Test	FH Slug	Hvorslev
IFSPD110a	SRK	270	-50	220	239	Slug Test	FH Slug	Hvorslev
CFD-0324	EBA	280	-45	54	60	Packer	Lugeon	Thiem
CFD-0324	EBA	280	-45	72	105	Packer	Lugeon	Thiem
CFD-0327	EBA	275	-60	73	86	Packer	Lugeon	Thiem
MW14-02B	Lorax	0	-90	85	104	Packer	CHI	Thiem
MW14-02B	Lorax	0	-90	103	125	Packer	CHI	Thiem
MW14-02B	Lorax	0	-90	130	137	Packer	CHI	Thiem
MW14-02B	Lorax	0	-90	139	152	Packer	CHI	Thiem
MW14-02B	Lorax	0	-90	157	173	Packer	CHI	Thiem
MW14-02B	Lorax	0	-90	181	200	Packer	CHI	Thiem
Latte	Dorum	0	,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	101	200	i ucher	Cin	Thiom
MW14-03A	Lorax	0	-90	157	199	Packer	CHI	Thiem
SRK-15D-15P	SRK	0	-90	200	274	Airlift	Airlift Recovery	Theis Recovery
Kona	SKK	0	-70	200	214	7 tillit	Amint Recovery	Theis Recovery
MW14-05A	Lorax	0	-90	156	179	Packer	CHI	Thiem
MW14-05A MW14-05A	Lorax	0	-90	183	200	Packer	CHI	Thiem
MW14-05A	Lorax	0	-90	201	200	Packer	СШ	Thiem
MW14-05A MW14-05A	Lorax	0	-90	156	221	Packer	СШ	Thiem
MW14-05B			-90	130	118		RH Slug	Hvorslev
SRK-15D-14P	Lorax SRK	0 345	-90	173	212	Slug Test Packer	CHI/FH Slug	Hvorslev
Double Double	SKK	545	-70	175	212	Fackel	CHI/FH Slug	Hvorslev
SRK-15D-16P	SRK	165	70	127	150	Dealtan	CHI/ELI Shua	Cooper-Jacob/Theis
		165	-70	137	150	Packer	CHI/FH Slug	
SRK-15D-16P	SRK	165	-70	167	214	Packer	Airlift Recovery	Theis Recovery
Valley	T	0	00	C 4	00		T	
MW14-07T	Lorax	0	-90	64	89	Packer	Lugeon	Thiem
MW14-07T	Lorax	0	-90	83	125	Packer	Lugeon	Thiem
MW15-05T	Lorax	125	-80	51	83	Airlift	Airlift Recovery	Cooper-Jacob
MW15-03T	Lorax	39	-80	32	97	Airlift	Airlift Recovery	Cooper-Jacob
MW15-04T	Lorax	40	-80	40	53	Packer	Shut-In/CHI	Lugeon

Table 4-3: Hydraulic testing results for the Coffee Gold project.

Notes:

m AH = metres along hole, v mbgs = vertical metres below ground surface, K = hydraulic conductivity

Depth below ground surface for inclined tests has been calculated by Lorax to take surface topography into account.
 CHI = constant head injection, FH = falling head test

2. CH1 = constant nead injection, FH = tailing nead test
 3. Thiem (1906); Cooper-Jacob (1946), Hvorslev (1951), Theis (1935)
 4. *Italicised red* values are an inferred upper value computed based on injection pressures and resolution of flow gauge
 5. Multiple tests at valley drillholes and pit structures (SRK tests) averaged arithmetically; all other holes with multiple tests averaged geometrically
 6. Tests straddling two or more geologic units denoted by a '/ (*e.g.* BFS/CB). Amph = Amphibole rich rock, BtS = Biotite Schist, BFS = Biotite Feldspar Schist, CB = Crackle Breccia, Carb = Carbonates, D = Dacite, GN = Gneiss, GR = Granite, HAR = Hydrothermally Altered Rock, M = Metacarbonate, SZ = Shear Zone, CI-LiB = Chlorite limonite breccia

K ⁴ (m/s)	Geologic Unit ⁵
4E-08	GN
3E-08	GN/BFS/GN
2E-10	BFS
6E-10	GN/BFS
1E-09	BFS/GN
4E-09	GN
3E-10	GN
4E-11	GN
1E-07	GN
1E-09	GN
2E-07	GN
1E-08	GN
5E-07	Dikes/GN
1E-06	Amph
5E-08	GN
7E-08	GN/Dikes
4E-08	GN/BtS
2E-07	GN
2E-07	GN
4E-08	BtS_Carb
1E-07	BtS_Carb
5E-08	GN
5E-09	GN
8E-08	GN
3E-08	SZ/BFS
1E-07	BFS/CB

1E-08	CB/HAR/CB
1E-08	BFS
5E-09	BFS/SZ/BFS
3E-07	GN/BtS/Cl-LiB
4E-11	GR
3E-09	GR
1E-09	GR
1E-09	GR
5E-10	GR
1E-07	GR
2E-07	CB/dyke
1E-07	dyke/GN
3E-08	GR
1E-08	GR
3E-06	GR
3E-07	BN/BtS
4E-06	GN

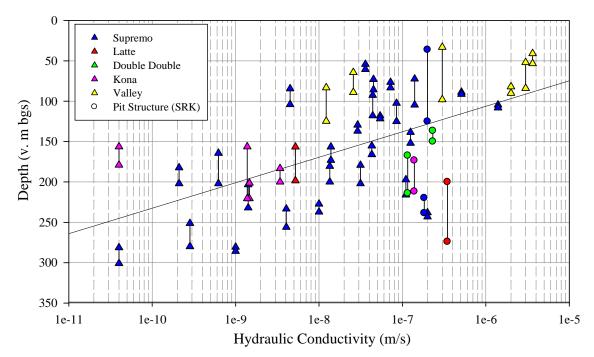


Figure 4-5: Bedrock hydraulic conductivity versus vertical depth below ground surface at the Coffee Gold Project (organized by area).

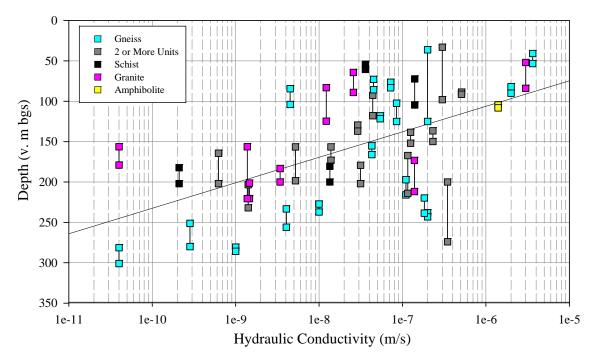


Figure 4-6: Bedrock hydraulic conductivity versus vertical depth below ground surface at the Coffee Gold Project (organized by lithology).

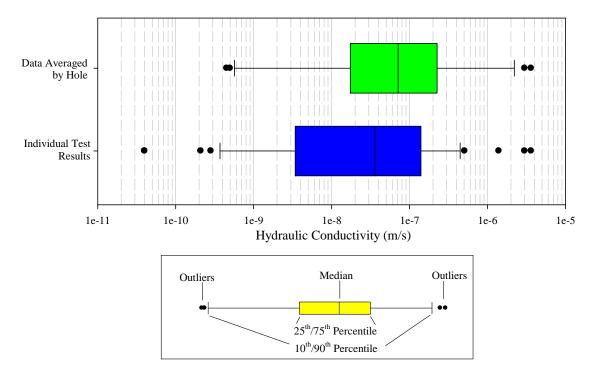


Figure 4-7: Box and whisker plot of hydraulic testing results with legend in bottom pane.

4.3 Water Levels and Gradients

A summary of groundwater level monitoring at the Coffee Gold site is provided in Table 4-4. Groundwater level monitoring started in the fall of 2013 with the inception of the VWPs installed by EBA TT. Readings from these installations were collected sporadically until dedicated, continuously recording dataloggers were connected in the fall of 2014. Conventional monitoring wells installed by Lorax in the summer/fall of 2014 were equipped with Solinst Leveloggers (pressure transducer with onboard datalogger) but the loggers were pulled shortly thereafter (except at MW14-03A/B) over concern of freezing. The loggers were reinstated in June 2015 and remain in place at the time of reporting. Pressure data recorded by Leveloggers (deployed at conventional monitoring wells) have been corrected for barometric pressure while pressure data from VWPs have not as they are not directly exposed to atmospheric pressure. A continuous water level record is available from most instruments on site from June 2015 onwards.

Bedrock water levels measured in June 2015 are presented in Table 4-4 and are contoured in Figure 3-1. Vertical hydraulic gradients measured at conventional wells pairs and nested VWP sensors are summarized in Table 4-5 and plotted in Figure 4-8. Horizontal hydraulic gradients measured between installations in June 2015 are summarized in Table 4-6. Water levels are highly variable across the site with the deepest water levels (from 130 to over

220 metres below ground surface) measured in ridge areas and flowing artesian conditions measured in the drainages. Figure 3-1 shows groundwater levels mimic topography in a subdued fashion, which is typical of hilly/mountainous terrain but not necessarily typical of groundwater systems influenced by permafrost. Permafrost is inferred to confine groundwater levels at some locations.

Water level hydrographs are discussed in more detail below, grouped by drainage area, with focus on 2015 data. As indicated above, several locations (namely CFD0351, CFD0324, CFD0318, MW14-07T) do have continuous data extending back 2014. Differences in annual recharge distribution are manifested in the groundwater hydrographs. An extended dry period persisted well into June 2015 which was followed by regular precipitation amounting to over 240 mm, more than double than what fell in the same period in 2014 (~100 mm). This has resulted in a much larger seasonal fluctuation in VWP hydrographs in 2015 over 2014 although it is hard to accurately constrain this given the gap in some of the data records between May and October of 2014. The short 2014 data record, confounded by drilling artefacts, precludes comparison of 2014 and 2015 hydrographs at conventional monitoring well pairs. 2015 experienced a below average snowpack that resulted in a modest snowmelt freshet which started around May 9th, 2015. The freshet peak is noticeable in some of the hydrographs.

Monitoring ID ¹		<i>c</i> r <i>1</i>		Monitoring	Base of		Water Le	evel ⁵	WL Fluctuation ⁶
Monitoring ID ¹	Pad	Class ²	Period of Record ³	Depth ⁴ (m bgs)	Permafrost (m bgs)	m bgs	m asl	date	(m)
MW14-02A	BH9	MW	sporadic Sep/14, continuous Jun/15 onward	188.2	34	11.9	1017.7	23-Jun-15	13.0
MW14-02B	BH9	MW	sporadic Sep/14, continuous Jun/15 onward	146.6	34	21.4	1009.6	23-Jun-15	12.2*
MW14-03A	BH3	MW	since Oct/14	191.3	62≤ x ≤133	137.8	959.8	23-Jun-15	5.4
MW14-03B	BH3	MW	since Oct/14	145.7	62≤ x ≤133	135.3	959.8	23-Jun-15	5.4
MW14-05A	BH11	MW	sporadic Sep/14, continuous Jun/15 onward	206.4	<134	132.3	1136.2	23-Jun-15	0.5
MW14-05B	BH11	MW	sporadic Sep/14, continuous Jun/15 onward	171.0	<134	134.1	1136.2	23-Jun-15	0.5
MW15-02 AZ	BH10	OW	since May 31/15	5.6	none	6.1	731.2	23-Jun-15	-0.9
MW15-03 AZ	BH12	OW	since Jun 16/15	3.3	$10 \le x \le 20$	1.6	556.3	23-Jun-15	0.0*
MW15-01WB-P1	BH8	WB	4 spot measurements Jun-Sep, 2015	90.5	70	36.2	767.4	07-Jun-15	
MW15-01WB-P6	BH8	WB	4 spot measurements Jun-Sep, 2015	77.8	70	36.1	767.4	07-Jun-15	
MW15-02WB-P1	BH10	WB	4 spot measurements Jun-Sep, 2015	63.3	0	9.2	727.9	07-Jun-15	
MW15-02WB-P4	BH10	WB	4 spot measurements Jun-Sep, 2015	19.2	0	2.5	734.6	07-Jun-15	
MW15-03WB-P1	BH12	WB	4 spot measurements Jun-Sep, 2015	98.7	$10 \le x \le 20$	-2.0	559.9	15-Jun-15	
MW15-03WB-P7	BH12	WB	4 spot measurements Jun-Sep, 2015	40.9	$10 \le x \le 20$	0.4	557.5	15-Jun-15	
MW15-04WB-P1	BH4	WB	4 spot measurements Jun-Sep, 2015	61.7	31	-0.9	672.3	13-Jun-15	
MW15-04WB-P5	BH4	WB	4 spot measurements Jun-Sep, 2015	35.1	31	-1.1	672.5	13-Jun-15	
MW15-05WB-P1	BH2	WB	4 spot measurements Jun-Sep, 2015	80.3	47	23.1	1044.6	17-Jun-15	
MW15-05WB-P4	BH2	WB	4 spot measurements Jun-Sep, 2015	62.7	47	23.0	1044.7	17-Jun-15	
MW15-06WB-P3	BH5	WB	4 spot measurements Jun-Sep, 2015	265.8	168	228.1	956.8	19-Jun-15	
MW15-06WB-P7	BH5	WB	4 spot measurements Jun-Sep, 2015	232.2	168	222.3	962.7	19-Jun-15	
MW14-07T	BH1	T/VWP	since Oct 2014	124.4	62	-8.0	1164.2	23-Jun-15	1.3
MW15-01T	BH8	T/VWP	since May 25/15	76.0	70	37.4	766.6	23-Jun-15	4.8
MW15-01T	BH8	T/VWP	since May 25/15	89.0	70	37.8	766.2	23-Jun-15	4.8
MW15-02T	BH10	T/VWP	since Mar 26/15	33.9	0	10.3	726.8	23-Jun-15	1.3

Table 4-4:Selected water level information for the Coffee Gold project.

Monitoring ID ¹	Pad	Class ²	Period of Record ³	Monitoring Depth ⁴ (m bgs)	Base of Permafrost (m bgs)	Water Level ⁵		WL Fluctuation ⁶	
						m bgs	m asl	date	(m)
MW15-03T	BH12	T/VWP	since Jun 15/15	48.8	$10 \le x \le 20$	0.0	557.0	23-Jun-15	-0.9
MW15-03T	BH12	T/VWP	since Jun 15/15	94.7	$10 \le x \le 20$	-5.1	561.2	23-Jun-15	1.5
MW15-04T	BH4	T/VWP	since May 14/15	51.6	31	-0.6	670.9	23-Jun-15	2.7*
MW15-04T	BH4	T/VWP	since May 14/15	38.8	31	-0.5	670.8	23-Jun-15	2.7*
MW15-05T	BH2	T/VWP	since May 22/15	55.4	47	24.3	1042.7	23-Jun-15	0.8
MW15-05T	BH2	T/VWP	since May 22/15	81.4	47	37.9	1029.1	23-Jun-15	3.6
MW15-07T	BH7	T/VWP	since Jul 10/15	267.8	140	136.8	1046.4	10-Jul-15	10.7
MW15-07T	BH7	T/VWP	since Jul 10/16	239.0	140	138.2	1045.0	10-Jul-15	11.3
SRK-15D-07T		T/VWP	since Sep 8/15	149.2	85	50.5	898.4	08-Sep-15	0.0
SRK-15D-07T		T/VWP	since Sep 8/15	103.6	85	44.7	904.1	08-Sep-15	0.0
SRK-15D-08AT		T/VWP	since Jul 9/15	149.2	75	-2.2	927.3	09-Jul-15	3.9*
SRK-15D-08AT		T/VWP	since Jul 9/15	103.6	75	-9.1	934.2	09-Jul-15	3.7
SRK-15D-09T		T/VWP	since Jul 9/15	99.7	0	1.4	782.9	09-Jul-15	3.3
CFD318		VWP	Sporadic Oct/13, continuous Oct/14 onward	118.0	?	118.0	1092.0	23-Jun-15	28**
CFD324		VWP	Sporadic Oct/13, continuous Oct/14 onward	178.3	?	61.3	931.6	23-Jun-15	5.0
CFD332		VWP	Sporadic Oct/13, continuous Oct/14 onward	116.6	?	(-)	(-)	(-)	dry from start
CFD351		VWP	Sporadic Oct/13, continuous Oct/14 onward	184.4	?	155.9	967.8	23-Jun-15	32*

Notes:

1. MW15-01WB-P1 – P1 indicates the port number in the Westbay system, not all ports are presented

2. MW-conventional monitoring well (deep), OW-conventional overburden monitoring well, WB - Westbay monitoring system, VWP-vibrating wire piezometer, T-thermistor

3. Last download of VWPs and conventional monitoring well loggers occurred late October 2015

4. Monitoring depth equivalent to sand pack midpoint for conventional monitoring wells, zone midpoint in Westbay, vertical depth below ground surface for VWP sensor

5. Water levels used for groundwater model calibration, roughly coincides with low point in the 2015 well hydrograph.

6. Water level fluctuation as measured from June/July 2015 to end of period of record (late October 2015). Computed for continuously logged instruments only (wells with loggers and VWPs). May not capture full magnitude of changes except where indicated by asterisk*. ** indicates 2014 fluctuation.

Gold Project.							
Monitoring Location	Shallow Monitoring Point ¹ (m bgs)	Deep Monitoring Point ¹ (m bgs)	Vertical distance (m)	Approximate Gradient Range ^{2,3} (m/m)			
MW15-01T	76.0	89.1	13.1	0.03 to 0.035			
MW15-02WB	13.7	9.2	4.5	-0.39			
MW15-02WB	32	61	29	0.24			
MW15-03T	49.6	96.2	46.7	-0.08 to -0.11			
MW15-04T	38.8	51.6	12.8	-0.01 to 0.033			
MW15-05T	55.4	81.4	26.0	0.56 to 0.42			
MW15-06WB	241.3	251.9	10.6	0.72			
MW15-06WB	251.9	287	35.1	-0.18			
MW15-07T	239	267.8	28.8	-0.02 to -0.04			
SRK-15D-07T	103.6	149.2	45.6	-0.18 (steady)			
SRK-15D-08AT	103.6	149.2	45.6	0.13 to 0.16			
MW14-02A/B	146.6	188.2	41.6	-0.20 to -0.26			
MW14-03A/B	145.7	191.3	45.6	0.005 to -0.002			
MW14-05A/B	171	206.4	35.4	0.0 to -0.01			

Table 4-5: Vertical hydraulic gradients measured at selected installations across the Coffee Gold Project.

Notes:

1. Monitoring point depths as follows: VWP sensor depth in vertical metres below ground surface; Westbay port depth; conventional monitoring well screen midpoint.

2. Positive values indicate downward gradient, negative values indicate upward gradient.

3. Based on 2015 data only for continuously logged locations ignoring initial readings after installation; gradient at Westbay installations computed for September 2015 readings only.

Table 4-6:

Horizontal hydraulic gradients measured in June 2015 across the Coffee Gold Project in June 2015.

Well Pair	Horizontal Distance	Topographic Gradient	Hydraulic Gradient ^{1,2}
YT-24 Drainage			
MW15-07T - SRK-15D-07T	835	28%	18%
SRK-15D-07T – MW15-01T	1,061	14%	12%
Halfway Creek Drainage			
MW14-03B - SRK-15D-08AT	3,522	4%	1%
MW14-05B - SRK-15D-08AT	5,943	5%	4%
MW15-06WB (P7) – Halfway Ck	1,256	39%	21%
SRK-15D-08AT – MW15-04T	1,592	17%	16%
MW15-04T - MW15-03T	2,233	5%	5%
South WRSF Drainage			
CFD0351 - CFD0324	718	23%	5%
MW14-02B - CFD0324	408	18%	21%
CFD324 - SRK-15D-09T	1,154	15%	13%
SRK-15D-09T – MW15-02T	475	10%	12%
Latte Creek Drainage			
MW14-07T - MW15-05T	639	14%	19%

Notes:

1. Water levels from SRK VWPs are measured in July and September, 2015; all other water levels measured in June, 2015.

2. Where two or more monitoring levels are available at an installation, the measurement from the shallower install is used.

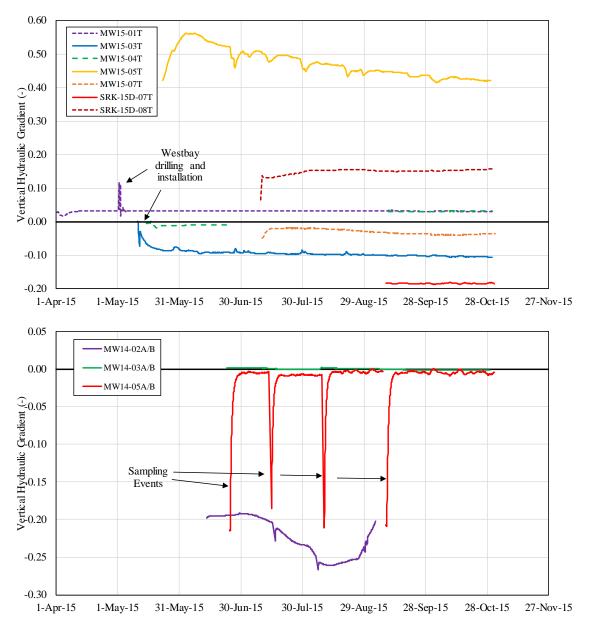
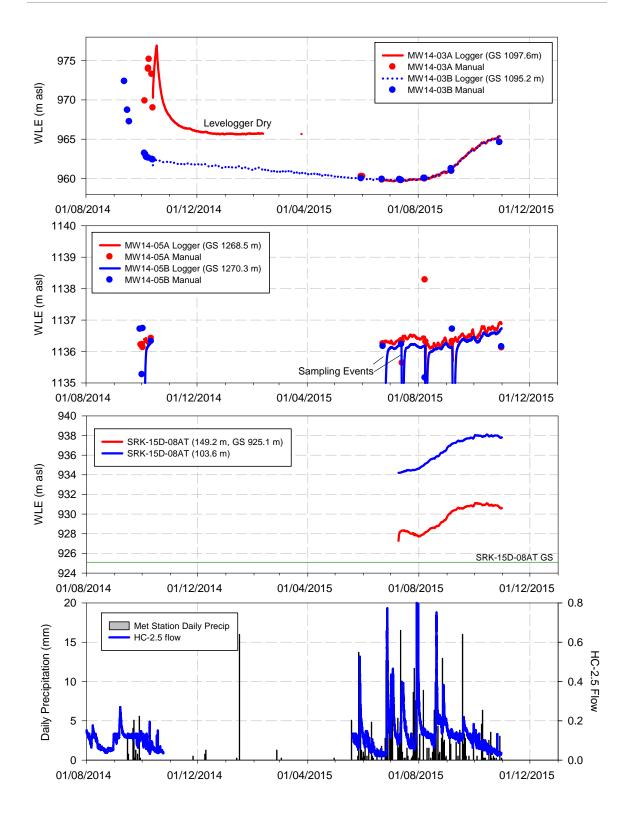


Figure 4-8: 2015 Vertical gradient time series for VWPs (upper pane) and conventional monitoring wells (bottom pane).

4.3.2 Halfway Creek


There are several installations that fall within the Halfway Creek catchment. Monitoring locations MW14-05A/B, MW14-03A/B and SRK-15D-08T fall in the southern extent of the drainage and are grouped together in Figure 4-9. All other installations, including those completed near the proposed Supremo pit and in the lower reaches of the drainage are shown in Figure 4-10.

The 2014 data collected from MW14-03A/B and MW14-05A/B is heavily influenced by drilling artefacts (not all data are shown). From June 2015 onward, the hydrographs for these locations are considered representative of natural conditions, minus the influence of groundwater sampling at MW14-05A/B. Vertical gradients between the shallow and deep wells at both locations are essentially negligible (<1%). The hydrographs at MW14-03A/B start climbing in response to seasonal recharge in mid-July, a few weeks after the onset of summer precipitation and do not respond to individual rainfall events. Water levels have increased by ~5 metres as of the end of October and could increase more. An ice lens observed in core while drilling MW14-03A/B suggests permafrost is present to at least 62 metres depth; however, it does not appear to extend to the saturated zone as the wells remain unfrozen (water levels are ~130 metres below ground surface). Good to excellent quality rock (with RQD exceeding 75%) above the screened interval likely confines groundwater in this area. RQD information is provided in the borehole logs (Appendix 3-A).

The groundwater levels in the footprint area of the proposed Kona Pit (MW14-05A/B) are of similar depth as at the well pair MW14-03A/B; however, there is a much more subdued response to seasonal recharge (<1 metre) from August to October. There is some noise in the record, which appears to be an artefact of barometric compensation of the files. Besides this, there is an increase in the deep well water level that starts in early July and recovers by mid-August, suggesting a short-term response to early summer rainfall.

SRK-15D-08AT is located at the confluence of the east and west forks of Halfway Creek. Groundwater pressures measured at both shallow and deep VWP sensors are strongly artesian (2 to 13 metres above ground surface) although the vertical gradient is markedly downward (~15%). This could suggest that a deep permeable feature is under-draining the area. Permafrost, as measured by the accompanying thermistor string, extends to 75 metres below ground surface at this location and likely contributes as a confining unit. The hydrographs show a seasonal response to rainfall, climbing 3 to 4 metres from the instrument inception in early July through mid-October. Water levels appear to be recovering at the end of October. Water levels appear to be insensitive to individual rainfall events.

Horizontal hydraulic gradients measured between MW14-05B and SRK-15D-08AT in the summer of 2015 are reasonably consistent with the topographic gradient of 5% (Table 4-5). The horizontal hydraulic gradient between MW14-03B and SRK-15D-08AT is more subdued at 1%.

Figure 4-9: Groundwater level hydrographs measured in Halfway Creek drainage, south extent.

MW15-06WB and CFD0318 characterize groundwater draining the northwest and southwest slopes surrounding the proposed Supremo Pit, respectively. As MW15-06WB is a Westbay install, only spot measurements are available (Figure 4-10). The readings taken during the 2015 sampling rounds indicate a very deep water table (>220 metres below ground surface) without a clear response to seasonal recharge. Bedrock ~252 metres below ground surface appears to be draining more readily, as vertical hydraulic gradients are towards this zone (70% downward from an upper port at 241 m, and 18% upward from a lower port at 287 m). The horizontal hydraulic gradient measured between one of the shallower ports at MW15-06WB and Halfway Creek is approximately 21% or half of the topographic gradient.

The water level at CFD0318 has continually declined since September 2014; the sensor apparently became dry in March/April and has not re-wetted. It is unclear if data from this sensor are presently reliable. If it is not malfunctioning, the 2014 groundwater pressures that water levels are much closer to ground surface on this side of the ridge (90 to >120 m bgs) as compared to MW15-06WB (>220 m bgs).

The final two installations, MW15-04T and MW15-03T, are located immediately adjacent to the Halfway Creek channel. MW15-04T is located in close proximity to the hydrometric station HC-2.5. The hydrograph at MW15-04T responds to both short term rainfall events and is overprinted by a longer term seasonal trend. Some of the flashiness recorded at the HC-2.5 station is represented in the MW15-04T hydrograph, although with a time lag and some peaks appear muted compared to others. The early decline in the hydrographs (mid-May through end of June) appears to coincide with recovery from freshet. The long term seasonal increase starting from late-June is synchronous with the onset of consistent rainfall in the area. The hydrographs peak at the end of September, 2.5 metres higher than June. Groundwater levels measured by both VWP sensors have been flowing artesian (~3 m above ground) since inception of the instrument, indicating confined conditions, possibly arising from permafrost. Resting flow rates measured at the Westbay hole advanced from the same pad were on the order of 30-40 US GPM (Figure 4-11). Vertical gradients computed from VWP sensors were essentially negligible in May/June, but have become more strongly downward (3%) through the summer. The active zone well at this location has remained dry since inception. The horizontal hydraulic gradient measured between this VWP and the upgradient installation SRK15D-08AT is 16% which is roughly equivalent to the topographic gradient (Table 4-5).

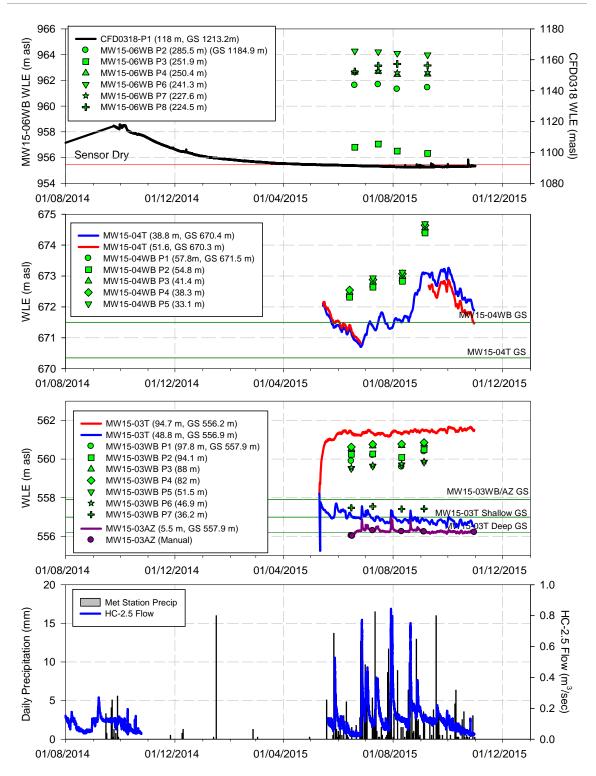


Figure 4-10: Groundwater level hydrographs measured in Halfway Creek drainage, west and north extent.

Figure 4-11: Artesian flows encountered during advancement of MW15-04WB.

MW15-03T and MW15-03WB were installed to characterize groundwater downgradient of a lineament (inferred to be a fault) that crosscuts Halfway Creek and adjacent drainages (Figure 3-1). The VWP sensors reveal an upward hydraulic gradient at this location which has become stronger through September/October (10%). The shallow and deep VWP sensors display opposite trends, with the deeper sensor showing much more muted responses to individual rainfall events. The lower sensor has recorded artesian pressures since inception, while artesian pressures measured at the shallower sensor have receded to just below ground surface. It is unclear if permafrost contributes to groundwater confinement in this area. Ice fragments were encountered in shallow bedrock at this hole, however the thermistor string does not capture frozen ground conditions. The shallow/active zone well has contained water since May and remained unfrozen through October 2015. The water level trend through 2015 is generally flat but reflects some of the flashiness of the HC-2.5 hydrograph. The horizontal hydraulic gradient (5%).

4-23

4.3.3 YT-24 Drainage

Groundwater level data is available for several installations along the YT-24 drainage (Figure 4-12). At the headwaters, both VWPs at MW15-07T have shown a steady increase in pressure (nearly 12 metres) since inception in July 2015. The water levels have now climbed several meters above the inferred base of permafrost (~140 m bgs). The hydrograph is smooth and does not show perturbations caused by individual rainfall events. The gradient thus far has been consistently upward, slightly increasing (to 4%) into the fall/winter of 2015. Water levels measured at this installation fall in line with a stabilized water level at MW14-06A, a 2014 monitoring well established at the same pad which later collapsed. The bedrock is inferred to be confined at this location.

Farther downgradient, the water levels measured at SRK-15D-07T have remained very flat over the short period of record (September 9th to October 31st, 2015). At this location, there is a much stronger upward gradient (~18%) and groundwater pressures are ~35 to 40 m above the base of permafrost. The deeper piezometer (~150 m bgs) shows some small fluctuations (tens of centimetres) that are consistent with barometric pressure changes. The bedrock is inferred to be confined at this location as well. The horizontal hydraulic gradient measured between MW15-07T and SRK-15D-07T is 18%, about two thirds of the topographic gradient.

MW15-01T has the longest water level record in this drainage (Table 4-4). As opposed to installations completed further upgradient, the vertical gradient at this location is downward (~3%). The hydrographs have risen three metres since the end of July, more or less at the same time as MW15-07T. Like MW15-07T, individual rainfall events are not discernible in the hydrograph at MW15-01T. The groundwater pressures at this location are greater than 30 metres above the base of permafrost. The bedrock is inferred to be well confined at this location. The active zone well MW15-01AZ intercepted water at some point in June/July 2015, which froze the logger in place. Free water was not observed in the well in subsequent visits. The horizontal hydraulic gradient measured between MW15-07T and MW15-01T is 12%, nearly equal to the topographic gradient (Table 4-5).

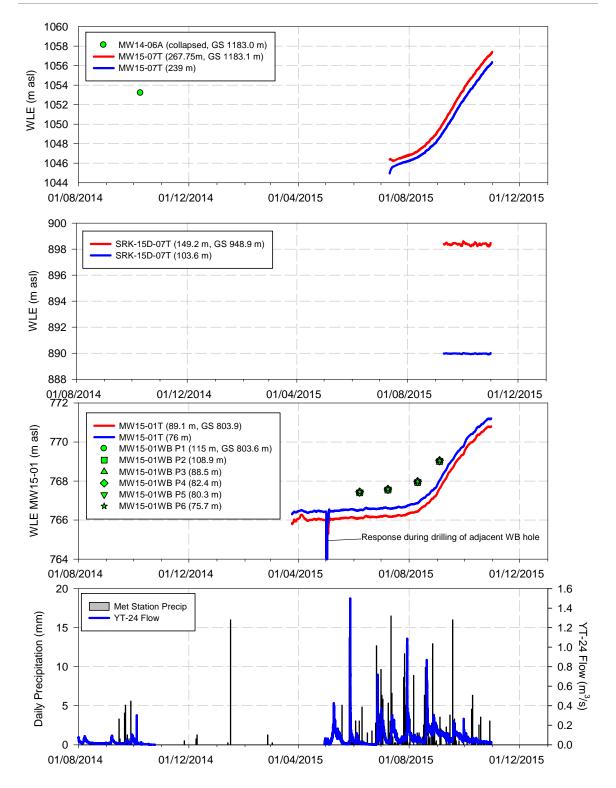


Figure 4-12: Groundwater level hydrographs measured in YT-24 drainage.

The South Waste Rock Storage Facility (WRSF) drainage is instrumented in its upper reaches with a conventional monitoring well pair (MW14-02A/B) on the north fork and VWP CFD0351 on the west fork. Both locations demonstrate a strong response to seasonal recharge; water levels through 2015 have climbed ~13 metres at MW14-02A/B and over 30 metres at CFD0351 (Figure 4-13). The timing of the hydrograph increase is nearly the same at both installs, MW14-02A/B starts to rise at the beginning of July while CFD0351 follows in mid-July. Despite similar hydrograph responses, the water level at CFD0351 is deep (~125 to 155 m bgs) compared to the water levels at MW14-02A/B which are near ground surface. The deep well at MW14-02A ultimately became flowing artesian in September and has remained flowing at surface through October 2015. Once MW14-02A started to flow, the bedrock started to depressurize as evidenced by declining water levels at MW14-02B. Up to this point, vertical gradients at this well pair were ~18% upward. In 2014, water levels remained below ground surface and the water column froze to approximately 34 metres below ground surface over the winter (due to permafrost). Both permafrost and good quality rock may serve as confining units at MW14-02A/B.

Near the confluence of the two forks, the groundwater pressure at VWP CFD0324 responds to seasonal recharge near the end of June, however the increase is much more subdued (~5 m) than at the upgradient locations. While the groundwater pressure at CFD0351 peaked in mid-September, the pressure at CFD324 continued to climb. The pressure at CFD0324 is around 60 m bgs and displays small fluctuations consistent with barometric pressure changes. The horizontal hydraulic gradient between CFD0351 and CFD0324 is 5%, much less than the topographic gradient (23%). The horizontal hydraulic gradient between CFD0324 and MW14-02B is 21% and exceeds the topographic gradient (18%).

Farther down the drainage, the instrumentation suggests that permafrost is absent. The water level at SRK-15D-09T has climbed modestly (~3 m) since inception in early July, following a similar hydrograph shape as CFD0324. The hydraulic gradient between SRK-15D-09T and upgradient install CFD-0324 is 13% and nearly equal to the topographic gradient (15%). Groundwater pressures at SRK-15D-09T became flowing artesian in August and remain two metres above ground surface as of October.

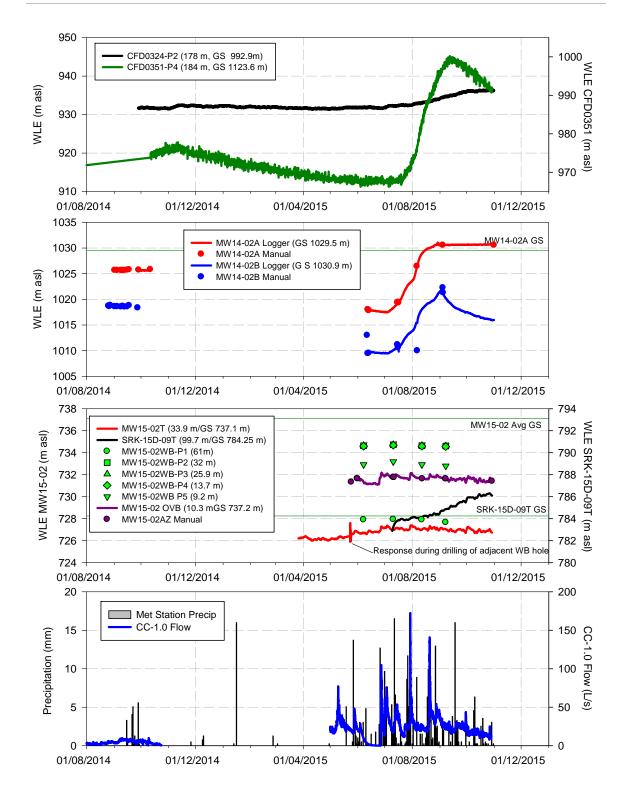


Figure 4-13: Groundwater level hydrographs measured in South Dump drainage.

Farther still down the drainage, near the confluence with Latte Creek, bedrock groundwater pressure at MW15-02T is not flowing artesian, but is greater than that measured in overburden indicating an upward hydraulic gradient. The hydrograph trend at MW15-02T is very subdued, with the seasonal maximum (~1.5 metres) registered in August. The hydrograph is more synchronized to the timing of recharge which suggests a quick connection to surface recharge. This is supported by high airlift yields and fractured ground encountered during RC drilling of this location.

Groundwater pressure measured at the Westbay ports indicate an upward gradient in very shallow bedrock (between 9 and 14 m bgs), while a strong downward gradient (~24%) is measured across deeper bedrock (32 and 61 m bgs). The downward gradient in deeper bedrock may suggest a hydraulically significant feature at depth under-draining the area. The horizontal hydraulic gradient between SRK-15D-09T and MW15-02T is 12% and slightly exceeds the average topographic gradient (10%) (Table 4-5).

The shallow well, MW15-02AZ screens several metres of a cobbly/bouldery package of colluvial sediments classified by AECOM (2012) as a poorly drained apron of colluvial complex (xzsC1a:p). Finer intervals in the upper 4 m appeared frozen in March, when the adjacent VWP hole was advanced. The water level trend through 2015 has remained generally flat at this hole with the exception of short-term responses to discrete rainfall events.

4.3.5 Latte Creek

There are three hydrogeological installations along Latte Creek. The first, MW14-07T, is several hundred metres downgradient of the proposed heap leach facility and was established in September 2014. The thermistor string installed in this hole indicates a permafrost depth of approximately 60 metres. The water level recorded at the single VWP is flowing artesian and consistently several metres above ground (Figure 4-14). Rock quality is generally poor to fair (RQD 20-75%) throughout the entire borehole (see borehole log) and it is inferred that permafrost comprises the confining unit in this area. In 2015, the hydrograph started to rise in late June and appears to have reached a plateau as of mid-October; the total amplitude of the seasonal response is small (~1.5 m). Fluctuations in barometric pressure are reflected in the water level record.

MW15-05T lies ~600 metres downgradient of MW14-07T. The horizontal hydraulic gradient between these two locations is 19%, which exceeds the topographic gradient of 14%. Water levels at this location respond differently than MW14-07T, despite there being a substantial thickness of permafrost at this location (~47 m thick). Groundwater pressures are not flowing artesian, but are 10 to greater than 20 metres above the base of permafrost. Groundwater pressure at the shallow VWP has remained more or less stable since

inception, even declining marginally (<1 metre). The groundwater pressure at the deeper piezometer has increased 2-3 metres over the same period of time. The hydrograph of the deeper sensor is flashier and tracks well with the discharge measured at hydrometric station CC-6.0 (Figure 4-14). There is a strong downward gradient captured by the VWP sensors at this location (40-55%), but this is not reflected in the Westbay pressure readings. While this could potentially reflect a sensor malfunction, a strong downward gradient is also measured several kilometres downstream at MW15-02WB as well as in the headwaters of Halfway Creek (SRK-15D-08AT). This may suggest a permeable structure under-draining bedrock at these locations.

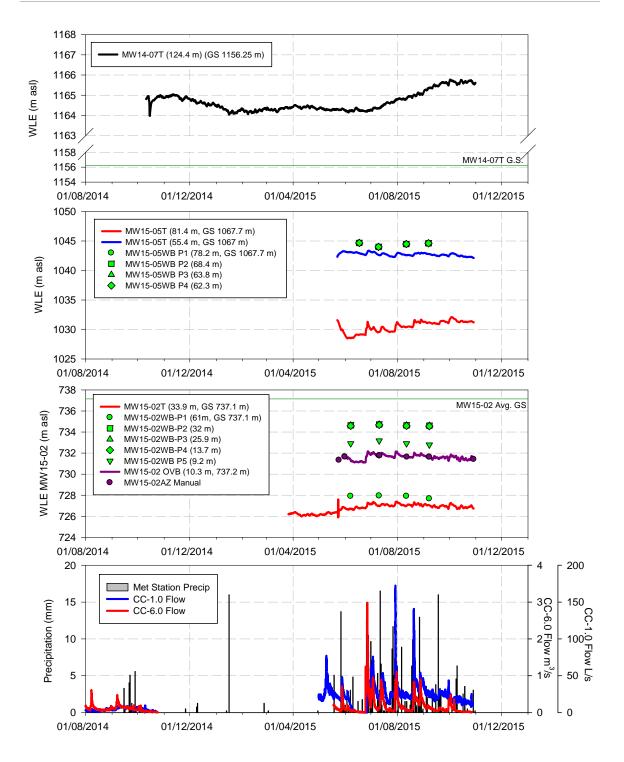


Figure 4-14: Groundwater level hydrographs measured in Latte Creek.

4.4 Summary

The field programs discussed in Section 3 have produced a robust data set of physical groundwater data that reveal a complex hydrogeological system at the Project. Permafrost is relatively warm and extensive across the project area and appears to act as a confining mechanism for the bedrock groundwater system.

Hydraulic conductivity data range over several orders of magnitude and generally decreased with depth which is typical of a fractured bedrock system. Tests that targeted geologic structures within proposed pit areas were found to have tight range in hydruaulic conductivity (mean of 7E-07 m/s) even at depths exceeding 200 m below ground surface. Hydraulic tests in valley areas produced similarly high results, supporting the inference that valley traces follow fault structures. There does not appear to be a correlation between hydraulic conductivity and lithology.

Water levels are relatively deep (from 130 metres to over 220 metres below ground surface) in ridge areas, but flowing artesian conditions are encountered even at moderate to high elevation in the drainages. Water level hydrographs indicate variable response to seasonal recharge patterns, with fluctuations ranging from approximately 2 m to over 30 m. Nested instrumentation reveals both upward and downward vertical hydraulic gradients in both upland and low-lying areas. In some instances, horizontal hydraulic gradients exceed topographic gradients. Overall, the physical hydrogeological data reveal a complex groundwater system influenced by both discontinuous permafrost and a well-developed fracture system.

Groundwater quality in the Project area is discussed in terms of major ion chemistry with reference to physical parameters (pH, specific conductance) followed by oxidation-reduction (redox) conditions and trace element geochemistry. Where analytical results are reported as non-detectable, the method detection limit (MDL) values are conservatively used for graphing purposes. The groundwater quality is discussed in relation to the principal lithology at the screened interval of each monitoring well: overburden, gneiss, granite, breccia and schist (Figure 2-1, Table 3-2, Table 3-3). Borehole and well completion logs can be referenced in Appendix 3-A. Groundwater quality data is tabulated in Appendix 5-A while a statistical summary of the data (count, minimum, mean, median, maximum and the number of analyses below MDL) is provided in Appendix 5-B. The laboratory certificates of analysis for samples collected by Lorax in 2014 and 2015 are included in Appendix 5-C.

A quality assurance/quality control (QA/QC) assessment was performed on the groundwater quality data set and is included in Appendix 5-D. As described, several samples were deemed to have been influenced by artifacts of drilling and monitoring well installation: MW14-03A, MW14-03B, MW14-05A, and MW14-05B in October 2014, and MW15-06WB in June 2015. This is discussed further in Appendix 5-D. These results have been omitted from the discussion below.

5.1 Major lons

The relationship of major ion charge equivalents in the Project groundwater is presented in a tri-linear Piper plot (Figure 5-1) which identifies wells of similar screened lithology by colour. Field-measured physical parameters, grouped by lithology, are presented in Figure 5-2. Absolute concentrations of major ions are similarly plotted in Figure 5-3 and Figure 5-4. Field-measured pH and specific conductance are referenced and discussed with major ion chemistry. Field-measured dissolved oxygen (DO) and oxidation-reduction potential (ORP) are discussed with redox geochemistry in Section 5.2.

Groundwater at the Project is predominantly circum-neutral (pH 6 to 8), with most samples characterized by pH 7 to 8 (Figure 5-2). Two samples were characterized by alkaline groundwater with values up to pH 8.3, and one sample with acidic groundwater with a pH of 5.8. Groundwater wells show variable influence from weathering of sulphide minerals and/or dissolution of sulphate minerals, either from the deposits or other disseminated mineralization across the Project area. This is evidenced by low to substantial sulphate

5.1.1 Overburden

Groundwater encountered in overburden wells (orange symbols in Figure 5-1) is calciumbicarbonate-type (Ca-HCO₃), irrespective of the type of deposit screened (colluvium, colluvium/bedrock interface). MW15-02AZ and MW15-03AZ have similar proportions of dissolved calcium (Ca), magnesium (Mg) and sodium (Na); the spread in the data points largely reflects a variable sulphate (SO₄) content. The groundwater composition at both wells shows decreasing SO₄ content between June and September 2015, while the composition at MW15-03AZ clusters together in June and July, and August and September 2015 on the Piper plot. Calcium is the dominant cation in the overburden groundwater samples, which, along with significantly lower specific conductance at MW15-03AZ (213 to 322 μ S/cm) relative to MW15-02AZ (728 to 874 μ S/cm), suggests that groundwater in the shallow overburden at MW15-03AZ is fresher. Groundwater pH is circum-neutral at MW15-02AZ (pH 7.3 to 7.5) and MW15-03AZ (pH 6.6 to 7.1).

The groundwater at MW15-05AZ is also classified as Ca-HCO₃-type. However, in contrast to groundwater at MW15-02AZ which has significant SO₄ influence (~41 to 49%) and MW15-03AZ with moderate SO₄ influence (~21 to 34%), the groundwater at MW15-05AZ is characterized by very little SO₄ content (~5%). In addition, the chloride content in MW15-05AZ groundwater is elevated (~ 7%) in relation to other Project area groundwater which typically has chloride contents <1%. The field pH at MW15-05AZ is slightly acidic (pH 5.8) and the lowest measured in the Project area. Field measured specific conductance is also low (28 µS/cm) indicating very fresh water.

5.1.2 Gneiss

Monitoring wells screened in gneiss are located on the north side of the Project area (black symbol in Figure 5-1). Groundwater sampled from these wells presents a wide range of hydrogeochemical compositions that range from Ca-HCO₃ to mixed magnesium-calcium-sodium-sulphate-type (Mg-Ca-Na-SO₄).

The groundwater downstream from the proposed Supremo Pit at MW15-06WB and along Halfway Creek at MW15-04WB is predominantly Ca-HCO₃ type with significant Mg influence. Groundwater sampled at MW15-06WB in July 2015 is classified as Ca-Mg-HCO₃-type, however its composition is similar to that sampled in subsequent monitoring events (Ca-HCO₃ with significant Mg influence). The groundwater at both wells has similar major ion proportions and concentrations, in addition to specific conductance which ranges from 601 to 671 μ S/cm at MW15-06WB and 648 to 690 μ S/cm at MW15-04WB.

Field pH at these wells is circum-neutral, ranging from pH 7.7 to 8.0 at MW15-06WB and pH 6.3 to 8.3 at MW15-04WB.

The groundwater downstream from the proposed Supremo Pit at MW15-01WB along YT-24 and at MW15-03WB along Halfway Creek (downstream from MW15-04WB) is characterized by elevated sulphate, suggesting the oxidation of sulphide minerals. Groundwater at MW15-01WB is classified as magnesium-sulphate-type (Mg-SO₄) with significant Ca influence, while groundwater at MW15-03WB is Mg-Ca-Na-SO₄-type. Groundwater sulphate concentrations and proportions at both wells are the greatest in the Project area. In addition, the groundwater at MW15-03WB and MW15-01WB is the most saline in the Project area, with elevated specific conductance values of 1883 to 1978 μ S/cm and 2160 to 2218 μ S/cm, respectively. The field pH is circum-neutral at MW15-03WB (pH 7.4 to 7.7) and MW15-01WB (pH 6.8 to 7.9).

5.1.3 Granite

Monitoring wells screened in granite (pink symbols in Figure 5-1) are located adjacent to Latte Creek downstream from the proposed HLF (MW15-05WB) and in the Kona Pit (MW14-05A and MW14-05B). Groundwater sampled from these wells ranges from Ca-HCO₃-type to sodium-bicarbonate-type (Na-HCO₃).

The groundwater at MW15-05WB is Ca-HCO₃-type and is characterized by a uniform composition. Groundwater at this well is fresh with low specific conductance (291 to 306 μ S/cm) and circum-neutral pH (6.6 to 7.6).

Monitoring wells MW14-05A and MW14-05B present among the most variable groundwater hydrogeochemical compositions in the Project area. Groundwater at MW14-05A and MW14-05B presents variable sodium and sulphate proportions, with higher concentrations observed at MW14-05B. Groundwater at MW14-05A is Ca-HCO₃-type, while that at MW14-05B presents a more intermediate chemistry, classified predominantly as Na-HCO₃-type with significant SO₄ influence in two samples. The decreased sodium concentration/proportion in groundwater collected at MW15-05B in September 2015 results in its classification as mixed-sodium-calcium-magnesium-bicarbonate-type (Na-Ca-Mg-HCO₃). Of note at MW14-05B are elevated chloride concentrations and the greatest chloride proportion relative to other groundwater in the Project area. Groundwater at MW14-05B is more saline than that at MW14-05A with specific conductance values of 569 to 709 μ S/cm and 329 to 379 μ S/cm, respectively. The field pH at both monitoring wells is circum-neutral with groundwater at MW14-05A (pH 6.5 to 7.3) slightly more acidic than MW14-05B (pH 7.2 to 7.7).

5.1.4 Hydrothermal Breccia

Monitoring well MW14-02A screens groundwater in hydrothermal breccia (green diamond symbol in Figure 5-1). It is located on the south side of the Project in Latte Pit. The groundwater at this location is Ca-HCO₃ with significant Mg influence. MW14-02A is characterized by circum-neutral to slightly alkaline (pH 7.3 to 8.2) groundwater with relatively low specific conductance (349 to 400 μ S/cm).

5.1.5 Schist

Monitoring wells screened in schist are distributed on the north and south sides of the Project in the vicinity and downstream from the proposed Latte Pit (dark blue symbols in Figure 5-1). MW14-03A and MW14-03B are upgradient and adjacent to Latte Pit on the north side of the Project, while MW14-02B and MW15-02WB are located upgradient and downgradient of the South WRSF, respectively. Groundwater at these monitoring wells ranges from Ca-HCO₃ to Mg-SO₄-type.

Groundwater collected at MW14-02B is characterized by uniform major ion proportions and concentrations. The groundwater composition at this well ranges from Ca-HCO₃-type with significant Mg influence to mixed calcium-magnesium-bicarbonate-type (Ca-Mg-HCO₃). MW14-02B has circum-neutral field pH (7.5 to 7.6) and relatively low specific conductance which ranges between 481 and 509 μ S/cm. The groundwater at MW14-02B is more saline than groundwater at MW14-02A which has observed specific conductance values ranging between 349 and 400 μ S/cm.

MW15-02WB displays a more intermediate chemistry, classified primarily as calciumsulphate-type (Ca-SO₄) water with significant HCO₃ influence. The groundwater composition is slightly more variable compared with other wells screened in schist. A small shift towards increased HCO₃ influence is observed in September 2015, with groundwater classified as Ca-HCO₃-type with significant SO₄ influence. This shift corresponds with a slight decrease in the sodium proportion and slight increase in the potassium proportion. Groundwater a MW15-02WB has circum-neutral field pH (7.3 to 7.5) and is moderately saline with specific conductance values between 863 and 898 μ S/cm.

Groundwater collected at both MW14-03A and MW14-03B plots as magnesiumbicarbonate-type (Mg-HCO₃) with significant SO₄ influence and Mg-SO₄-type with significant HCO₃ influence. The groundwater compositions plot as two different water types as a result of straddling the divide between water types and slight variations in HCO₃ and SO₄ proportions in individual samples collected from both wells. Despite this, both wells are characterized by uniform major ion proportions and concentrations. The groundwater at MW14-03B (1604 to 1717 μ S/cm) is more saline than groundwater at MW14-03A (1376 to 1620 μ S/cm). Field pH is comparable at both wells with values of pH 7.4 at MW14-03A and pH 7.2 to 7.5 at MW14-03B.

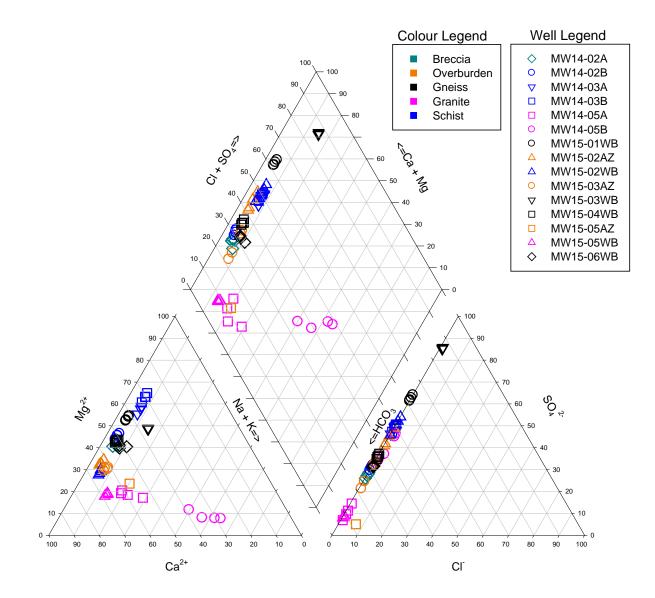


Figure 5-1: Piper Plot of Project Groundwater Quality Data (2014 and 2015).

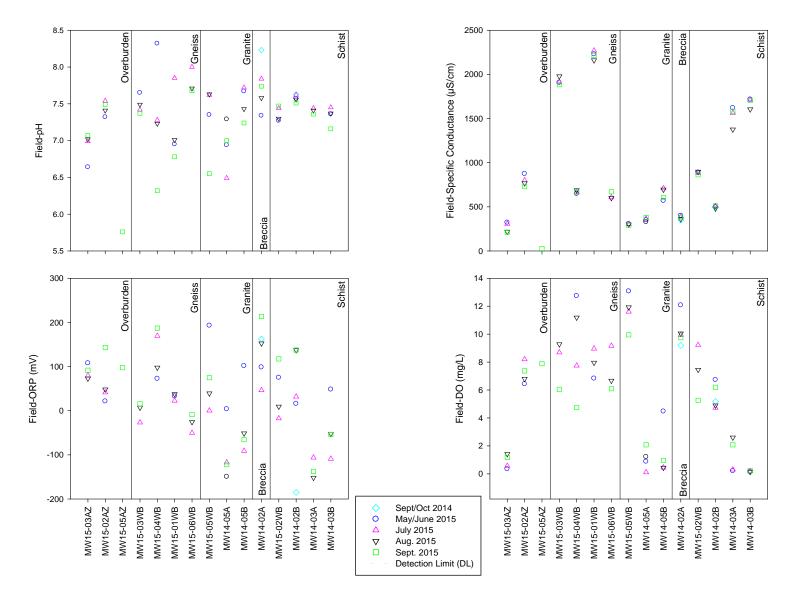


Figure 5-2: Field-Measured Physical Parameters in Project Groundwater (2014 and 2015).

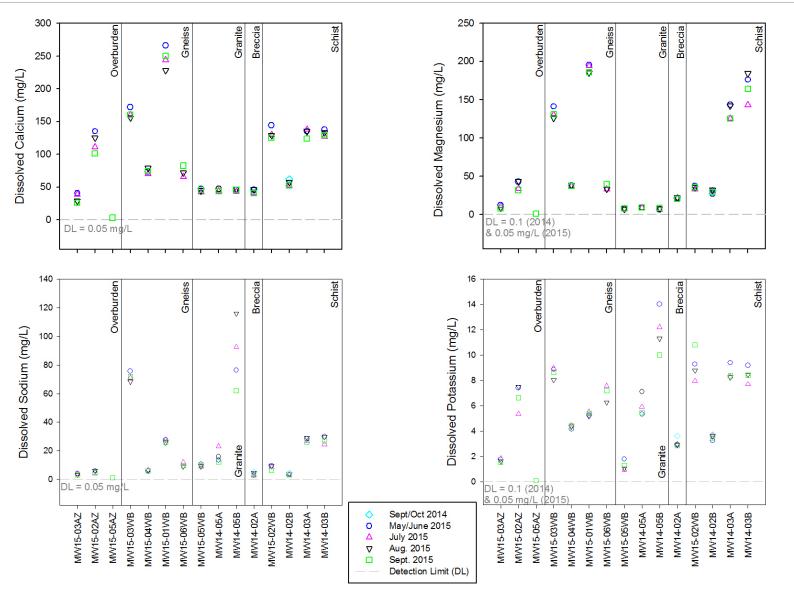


Figure 5-3: Major Cation Concentrations in Project Groundwater (2014 and 2015).

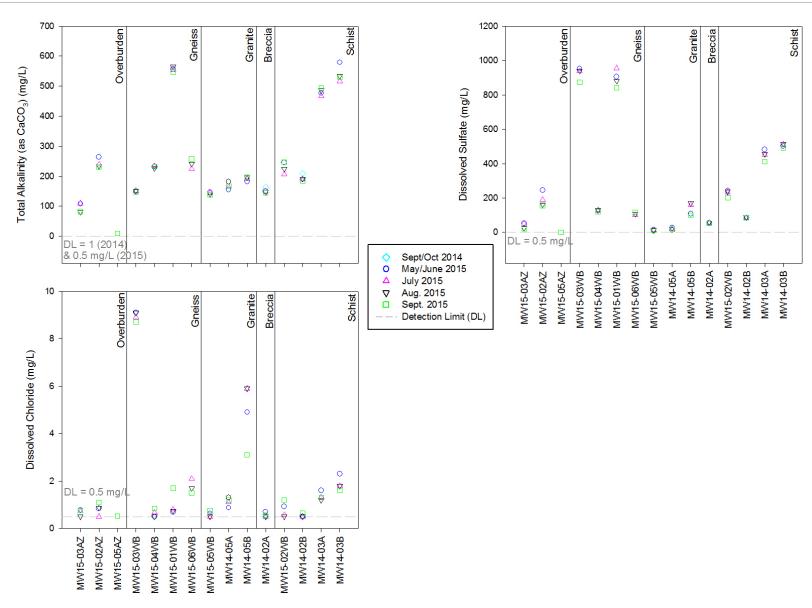
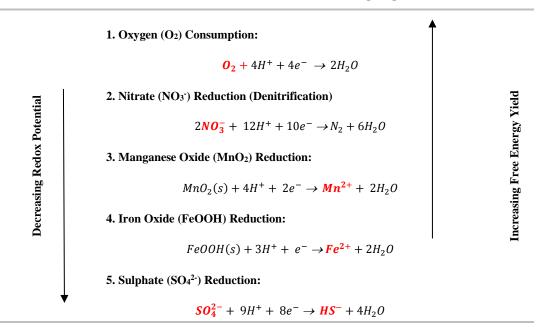



Figure 5-4: Major Anion Concentrations in Project Groundwater (2014 and 2015).

5.2 Oxidation-Reduction Geochemistry

Redox conditions within a groundwater system can be assessed based on the presence and concentration of oxidized and reduced inorganic compounds in groundwater samples. Microbial populations utilize electron acceptors in order of their free energy yield (Table 5-1). To emphasize the exchange of electrons during redox processes, valence charges are expressed on ions in this subsection of the report. In the presence of oxygen (O₂), aerobic bacteria will utilize O₂ as a terminal electron (e⁻) acceptor since this redox reaction affords the greatest energy yield. However, in environments where the rate of DO consumption exceeds the rate of re-supply, DO will become depleted and other secondary oxidants will be utilized. These, in order of their free energy yield, are nitrate (NO₃⁻), manganese (Mn⁴⁺)-oxides, ferric iron (Fe³⁺)-oxides, sulphate SO₄²⁻ and carbon dioxide (CO₂).

Table 5-1: Oxidation-Reduction Reactions. Parameters Measured in Groundwater Samples to Infer Oxidation-Reduction Conditions are Highlighted in Red

The characterization of redox zonation can be achieved through the examination of various redox-sensitive parameters including O₂, NO₃⁻, dissolved Mn²⁺, dissolved Fe²⁺, SO₄²⁻, and dissolved sulphide species (S²⁻, HS⁻ and H₂S), hereafter referred to as S²⁻. Key indicators of suboxia can include:

- absence of O₂;
- removal of NO_3^- and/or nitrite (NO_2^-) (associated with NO_3^- reduction);
- elevated (>0.5 mg/L) concentrations of ammonia (NH₃); NH₃ is unstable in the presence of O₂;

•

- elevated (>1 mg/L) concentrations of dissolved Mn^{2+} and/or Fe^{2+} at circum-neutral pH, which implies the reductive dissolution of Mn^{4+} -oxide and Fe^{3+} -oxide phases, respectively; and
- presence of dissolved S^{2-} , reflecting SO_4^{2-} reduction.

Of these, the presence of elevated dissolved Fe^{2+} and/or the presence of detectable dissolved S²⁻ provide the most robust indicators of suboxia, given that the presence of these parameters is incompatible with that of O₂. ORP (units of millivolts (mV)) is a field measured parameter and provides a qualitative assessment of the general redox conditions only. Strongly negative ORP values are associated with suboxic conditions whereas positive values are associated with oxic conditions. Field-measured DO and ORP are presented in Figure 5-2. Analytical results for NO₃⁻, NH₃, dissolved Mn, dissolved Fe, and S²⁻ are presented in Figure 5-5.

Field DO and ORP readings corresponding with groundwater samples collected from Westbay installations in 2015 are not considered to be necessarily representative of formation conditions since measurements were made in a graduated cylinder (not isolated from atmospheric conditions). Consequently, field DO and ORP measurements are not used for interpretation purposes and the assessment of redox conditions at MW15-01WB to MW15-06WB relies solely on groundwater analytical data.

Total NH₃ and dissolved S²⁻ were detected at concentrations ≤ 2 times the MDLs of 0.005 mg/L in four of five field and trip blank samples collected in 2015 (see Appendix 5-D). Therefore, for the purpose of interpretation and assessing redox conditions, NH₃ and S²⁻ are not considered present in 2015 groundwater samples with concentrations ≤ 3 times the MDLs.

5.2.1 Overburden

Groundwater sampled from overburden wells was oxic to mildly suboxic.

Shallow groundwater at MW15-02AZ was oxic. NO_3^- was measured in every sampling event between 0.23 and 0.54 mg/L, and dissolved Mn and Fe were measured at very low concentrations (<29 and <11 µg/L, respectively). NH₃ was measured in half of the sampling events at low levels. Moderate DO (>6.4 mg/L) readings and positive ORP measurements indicate oxygenated groundwater.

The groundwater at MW15-03AZ was oxic to mildly suboxic. NO_3^- was consistently measurable in groundwater. Samples collected in June and July 2015 had low NO_3^- (0.026 and 0.029 mg/L) concentrations and low DO (0.3 to 0.6 mg/L), while August and September 2015 samples had higher NO_3^- (0.15 and 0.17 mg/L) and DO (1.4 and 1.2 mg/L). ORP measurements were consistently positive, ranging from 73 to 108 mV. The presence

of NO₃⁻, DO and positive ORP indicate oxic conditions. Low levels of dissolved Mn and very low dissolved Fe were measured during every sampling event, in addition to low levels of NH₃ in two samples, which are indicative of slightly reducing conditions.

The single groundwater sample collected at MW15-05AZ in September 2015 was oxic to slightly suboxic. The presence of NO₃⁻, in addition to substantial levels of DO (7.9 mg/L) and positive ORP (98 mV) indicate oxygenated water, while measurable NH₃ (0.6 mg/L), dissolved Mn (617 μ g/L) and Fe (931 μ g/L) suggest mildy to moderately reducing groundwater.

5.2.2 Gneiss

Monitoring wells screened in gneiss are situated on the north side of the Project in the Halfway Creek (MW15-06WB, MW15-04WB and MW15-04WB) and YT-24 (MW15-01WB) drainages. Redox conditions at monitoring wells screened in the gneiss range from oxic to moderately suboxic.

MW15-06WB was mildly to moderately suboxic. NH₃, dissolved Mn and Fe were consistently measured. Groundwater samples indicate decreasing NH₃ and increasing dissolved Mn concentrations between July and September 2015; dissolved Fe concentrations increased significantly between August and September 2015. NO₃⁻ and dissolved S²⁻ (< 3 times MDL) were absent in all samples, indicating that groundwater at this location is mildly to moderately reducing. The observed trends suggest that groundwater chemistry at MW15-06WB has not stabilized, consistent with the QA/QC assessment in Appendix 5-D. Subsequent groundwater sampling at MW15-06WB should inform whether the observed trends are a result of residual influence from drilling and monitoring well installation or natural variability.

Groundwater at MW15-04WB was oxic to mildly suboxic. NO_3^- , NO_2^- , NH_3 and dissolved Mn were consistently measured in groundwater samples. NO_3^- levels were highest ranging from 0.07 to 0.23 mg/L, while NO_2^- , NH_3 and dissolved Mn levels were generally low. Dissolved S²⁻ was absent (< 2 times MDL) from groundwater samples, while dissolved Fe concentrations were very low (<15 µg/L). The presence of NO_3^- indicates oxic conditions, while low levels of NO_2^- and dissolved Mn indicate mildly reducing conditions.

Monitoring well MW15-03WB is classified as suboxic and mildly to moderately reducing. Low levels of dissolved Mn (74 to 84 μ g/L) were consistently measured, along with negligible dissolved S²⁻ (< 3 times MDL). Dissolved Fe concentrations were very low in June to August (5.6 to 11 μ g/L), with a significant increase to 569 μ g/L in September 2015. NH₃ levels were sporadic and variable, with measurable concentrations in July (0.92 mg/L) and September 2015 (0.039 mg/L). Low levels of NO₃⁻ were measured in two

samples, with concentrations just above the MDL of 0.002 mg/L in June (0.0076 mg/L) and September 2015 (0.003 mg/L).

The groundwater redox condition at MW15-01WB was anoxic and mildly to moderately reducing. Dissolved Mn was consistently measured between 357 and 382 μ g/L, along with absence of dissolved S²⁻ (< 2 times MDL). Dissolved Fe concentrations were very low in June to August (2.6 to 25 μ g/L), increasing significantly to 558 μ g/L in September 2015. Low levels of NH₃ and NO₃⁻ were sporadically measurable, with NH₃ present in July 2015 and NO₃⁻ measured close to the MDL in September 2015. The absence of dissolved S²⁻ and presence of dissolved Mn and Fe indicates that groundwater at MW15-01WB is mildly to moderately reducing.

5.2.3 Granite

Groundwater redox conditions at monitoring wells screened in granite were mildly to strongly anoxic. Monitoring wells MW14-05A and MW14-05B had measurable dissolved Mn. Fe and S²⁻ indicating moderately to strongly reducing conditions. NH₃ levels in both wells were generally close to the MDL (0.005 mg/L). Field DO was negligible (<2 mg/L) and ORP readings predominantly negative in both wells. Groundwater was slightly more reducing at MW14-05A which was characterized by greater dissolved Mn, Fe and S²⁻ concentrations in comparison with MW14-05B, despite greater salinity at MW14-05B. Field ORP readings were also consistently more negative at MW14-05A than MW14-05B. The MW14-05B Jun. 2015 sample was oxic to slightly suboxic in contrast with subsequent sampling. This sample had moderate DO (4.5 mg/L) and positive ORP (102 mV), an absence of NO_3^- and dissolved S^{2-} , and low levels of NH_3 and dissolved Mn and Fe. Dissolved Mn and Fe concentrations increased in subsequent samples collected at MW14-05B. The observed trends suggest that groundwater chemistry at MW14-05B has not stabilized, consistent with the QA/QC assessment in Appendix 5-D. Subsequent groundwater sampling at MW14-05B should inform whether the observed trends are a result of residual influence from drilling and monitoring well installation or natural variability.

The groundwater at MW15-05WB is classified as anoxic and mildly to moderately reducing. Very low levels of dissolved Mn (4.6 to 13 μ g/L) and Fe (2.3 to 11 μ g/L) were consistently measured, along with absence of dissolved S²⁻ (<2 times MDL). NH₃ and NO₃⁻ were measured occasionally in groundwater at MW15-05WB. NH₃ concentrations were variable, with 0.016 mg/L in July and 0.14 mg/L in September 2015. Negligible NO₃⁻ (0.0031 mg/L) was measured in September 2015.

5.2.4 Hydrothermal Breccia

Groundwater at monitoring well MW14-02A screened in hydrothermal breccia was oxic. NO_3^- was consistently measured between 0.14 and 0.17 mg/L, with high field DO (>9 mg/L) and positive ORP (47 to 213 mV) indicating oxygenated water. NH₃ was only present in one sample (September 2014) at levels >3 times MDL. Dissolved Mn (<20 µg/L) and Fe (<30 µg/L) were consistently measured at very low levels, along with absence of S²⁻ (<3 times MDL).

5.2.5 Schist

Monitoring wells screened in schist span the entire range of redox conditions from oxic to strongly reducing. Groundwater at MW14-02B was oxic to mildly suboxic, while that at MW14-03A, MW14-03B and MW15-02WB was moderately to strongly suboxic.

Groundwater at MW14-02B consistently had measurable levels of NO_3^- (0.01 to 0.14 mg/L) and dissolved Mn (162 to 710 µg/L) which along with moderate DO (4.7 to 6.7 mg/L) and generally positive ORP suggest oxic to mildly reducing conditions. Dissolved Fe was very low (<10 µg/L) and dissolved S²⁻ was absent in all sampling events. Measurable NH₃ was present in only one sample (September 2015, 0.02 mg/L).

Groundwater at nested monitoring well pair MW14-03A and MW14-03B was anoxic and moderately to strongly reducing. The consistent presence of NH₃, dissolved Mn, Fe and S^{2-} along with negligible NO₃⁻ during all sampling rounds indicate that suboxic conditions predominated at MW14-03A and MW14-03B. The groundwater at MW14-03B was moderately reducing due to higher NH₃ and dissolved Mn concentrations and lower dissolved Fe and S^{2-} relative to MW14-03A which is classified as strongly reducing.

The groundwater redox condition at MW15-02WB was mildly to moderately suboxic from June to August 2015 and oxic to mildly suboxic in September 2015. Dissolved Mn and Fe were consistently measured, while dissolved S²⁻ was consistently absent (<2x MDL). Groundwater sampled between June and August 2015 had measurable dissolved Mn (98 to 111 μ g/L) and Fe (3.9 to 362 μ g/L), and absent or negligible NO₃⁻ and NH₃ indicating mildly to moderately reducing conditions. In September 2015, groundwater had measurable NO₃⁻ (0.14 mg/L) and low levels of NH₃ and dissolved Mn and Fe indicating oxic to mildly reducing conditions. The dissolved Mn concentrations decreased and NO₃⁻ increased between August and September 2015 indicating a shift towards less reducing conditions.

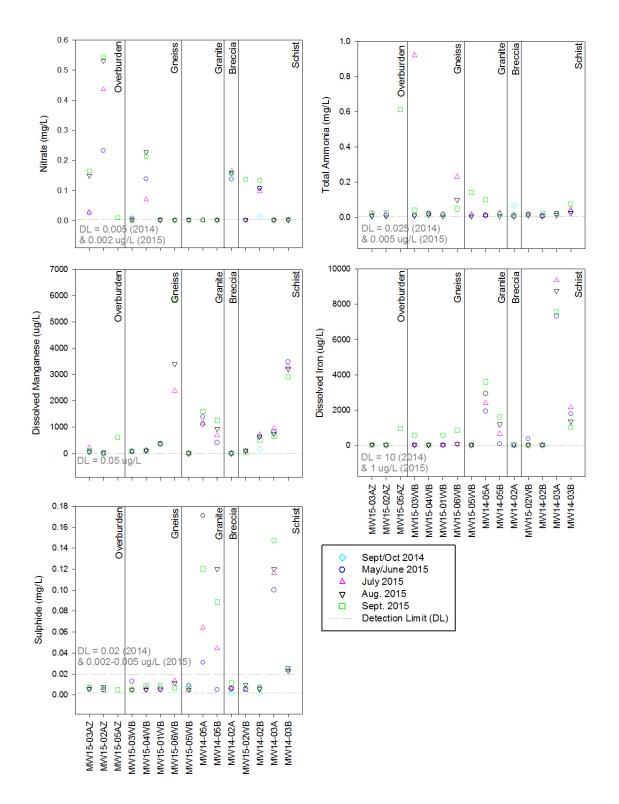


Figure 5-5: Groundwater Quality Data for Redox-sensitive Parameters: Nitrate, Ammonia, Dissolved Manganese, Dissolved Iron, Sulphide (2014 and 2015).

5.3 Trace Elements

This section presents a review of trace element concentrations across the Project area. Groundwater data for all analysed parameters is tabulated and presented in Appendix 5-A. Selected dissolved metal parameters of concern (arsenic (As), antimony (Sb), cadmium (Cd), cobalt (Co), copper (Cu), lead (Pb), mercury (Hg), nickel (Ni), selenium (Se), uranium (U) and zinc (Zn)) are presented in Figure 5-6 to Figure 5-8. These parameters were selected based on geochemical test results and potential for complexation with cyanide. Dissolved metals are presented and discussed since guidelines, standards and regulations generally apply to dissolved substance concentrations for inorganics in groundwater.

Overburden groundwater samples were characterized by low TSS with concentrations close to or below the MDL of 1.0 mg/L at MW15-02AZ, MW15-03AZ and MW15-05AZ. TSS levels in bedrock groundwater samples were generally higher, ranging from below MDL to 64 mg/L. Bedrock groundwater samples collected from Westbay installations had the lowest TSS levels (<1.0 to 4.6 mg/L), while samples collected from conventional monitoring wells had slightly higher levels which were predominantly between 1.8 and 9.8 mg/L. Bedrock groundwater samples collected at conventional wells MW14-03A (23 to 31 mg/L) and MW14-05B (7 to 64 mg/L) were the exception with significantly higher TSS levels.

Dissolved As was measured in all groundwater samples. Concentrations were generally lowest in overburden groundwater (0.43 to 2.3 μ g/L) and higher in bedrock groundwater (0.27 to 1860 μ g/L). Concentrations of dissolved As were below 5 μ g/L at all three overburden wells and bedrock wells MW15-02WB, MW15-03WB, MW15-04WB, and MW15-05WB. The highest concentrations were in granite at MW14-05B (117 to 161 μ g/L) and MW14-05A (1480 to 1860 μ g/L).

Concentrations of dissolved Sb were generally below 1 μ g/L in overburden and bedrock groundwater, except at MW14-02B, MW15-04WB, MW14-05B and MW15-06WB. Dissolved Sb was highest at MW14-02B (3.3 to 6.6 μ g/L), MW15-04WB (2.6 to 3 μ g/L), MW15-06WB (0.7 to 2.8 μ g/L), and MW14-05B (0.6 to 1.2 μ g/L).

Dissolved Cd measured in overburden and bedrock groundwater was predominantly in the 0.006 to 0.06 μ g/L range, except at MW15-02AZ and MW15-04WB. Concentrations at MW15-02AZ were quite variable (<0.005 to 0.125 μ g/L), while concentrations at MW15-04WB were more consistent (0.04 to 0.01 μ g/L).

Dissolved Co concentrations were generally higher in bedrock groundwater than in overburden groundwater. Concentrations of dissolved Co were highest in schist at MW14-03B (6.1 to 7.6 μ g/L), MW14-03A (1.3 to 2.5 μ g/L) and MW14-02B

(0.6 to 2.5 μ g/L). Dissolved Co concentrations in overburden groundwater were generally below 0.25 μ g/L, except at MW15-05AZ which had elevated Co at 2.5 μ g/L.

Concentrations of dissolved Cu was generally highest in overburden groundwater (0.95 to 2.0 μ g/L). Concentrations in bedrock groundwater ranged from below MDL (0.05 μ g/L) to 2.5 μ g/L. Dissolved Cu levels exceeded 2 μ g/L in two samples, both in June 2015: MW14-05B (2.5 μ g/L) and MW15-04WB (2.3 μ g/L).

Dissolved Pb concentrations were low in the overburden and bedrock groundwater. Concentrations were lowest in the overburden (<0.005 to 0.033 μ g/L) and more variable in bedrock, ranging from below MDL (0.005 μ g/L) to 0.34 μ g/L.

Dissolved Hg concentrations were below MDL in the majority of overburden and bedrock groundwater samples. All wells with measurable dissolved Hg were characterized by concentrations <0.01 μ g/L, except MW15-06WB (0.02 to 0.10 μ g/L) where the highest concentrations were detected.

Concentrations of dissolved Ni in groundwater were generally below 5 μ g/L, except at MW14-05B, MW14-02B and MW14-03B. Dissolved Ni concentrations were highest and most variable at MW14-05B (2.9 to 7.2 μ g/L), MW14-02B (2.5 to 15 μ g/L) and MW14-03B (17 to 22 μ g/L).

Dissolved Se was generally low in overburden and bedrock groundwater, with concentrations ranging from below MDL ($0.04 \mu g/L$) to $0.5 \mu g/L$. The May 2015 sample collected at MW15-02AZ had the highest Se concentration of any overburden or bedrock well at 1.1 $\mu g/L$. All other samples collected at MW15-02AZ were consistently between 0.16 and 0.20 $\mu g/L$.

Concentrations of dissolved U were consistently elevated (>15 μ g/L) at most wells, with the exception of MW15-03WB and MW15-05AZ. Dissolved U concentrations were highest in gneiss at MW15-01WB (530 to 589 μ g/L), MW15-04WB (154 to 176 μ g/L) and MW15-06WB (100 to 103 μ g/L). The concentration at MW15-03WB, the only other well screened in gneiss, was significantly lower ranging from 7.6 to 9.1 μ g/L. Dissolved U levels were lowest in the overburden groundwater (0.90 to 35 μ g/L).

Dissolved Zn was consistently measured across the Project area with higher and more variable concentrations measured in Westbay installations screened in the bedrock. Dissolved Zn levels were lowest in the overburden and bedrock groundwater collected from conventional wells, with concentrations ranging between 0.27 and 16.5 μ g/L. In contrast, groundwater concentrations at MW15-01WB to MW15-06WB ranged between 4.9 and 253 μ g/L.

GROUNDWATER QUALITY RESULTS COFFEE GOLD BASELINE HYDROGEOLOGICAL ASSESSMENT

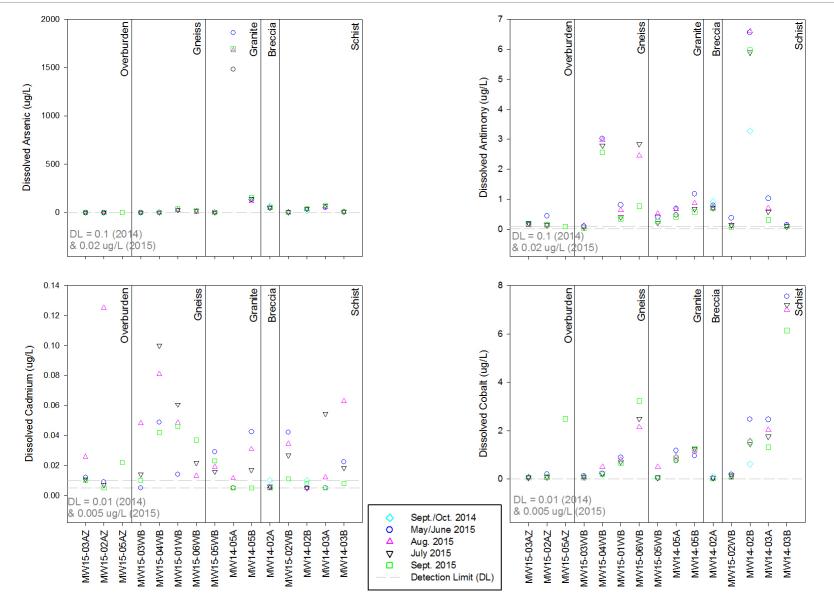


Figure 5-6: Groundwater Quality Data for Dissolved Arsenic, Antimony, Cadmium and Cobalt (2014 to 2015).

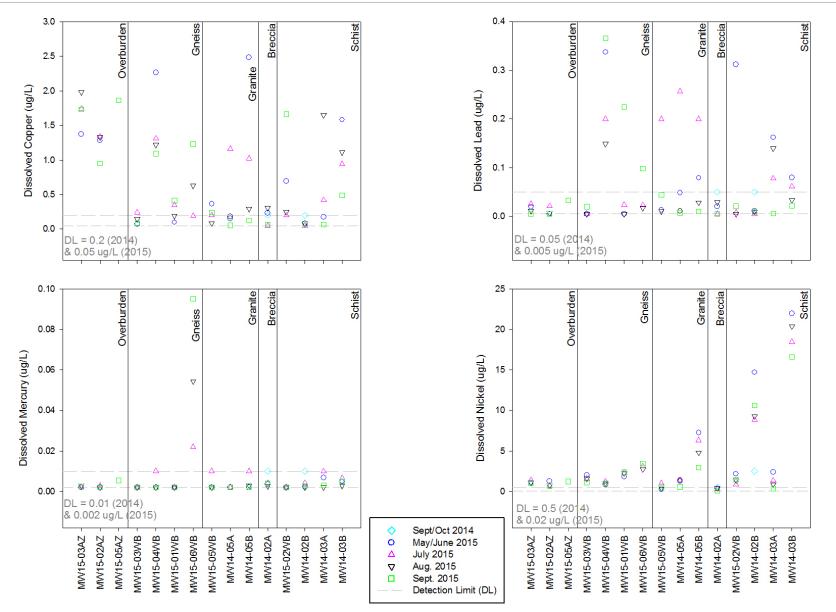


Figure 5-7: Groundwater Quality Data for Dissolved Copper, Lead, Mercury and Nickel (2014 to 2015).

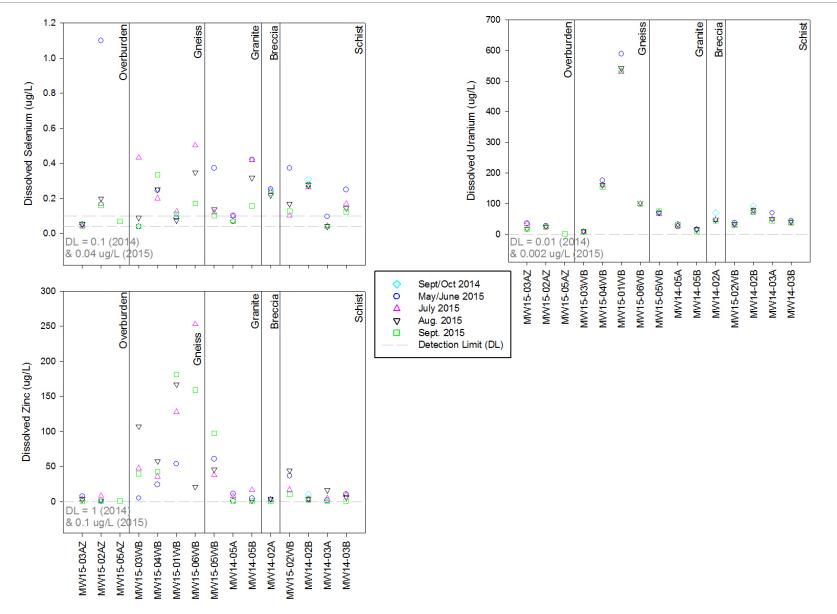


Figure 5-8: Groundwater Quality Data for Dissolved Selenium, Uranium and Zinc (2014 to 2015).

Multiple hydrogeological and geotechnical field investigations have been advanced at the Project between 2013 and 2015. This report constitutes the synthesis of all baseline hydrogeological data up to the end of October 2015. The investigations have revealed a complex groundwater system influenced by permafrost and fractures. The main findings of this baseline study are as follows:

- Overall, permafrost is widespread across the Project. It extends to greatest depths in ridge areas and appears to thin towards areas of lower elevation; north facing slopes tend to have thicker permafrost than south-facing slopes. The thickest permafrost (~165 metres) is encountered near the north end of the proposed Supremo pit. Permafrost in the project area is relatively warm (between 0 and -2°C) and is coolest (-1.4°C to -1.9°C) on north facing slopes.
- Hydraulic conductivity data range over several orders of magnitude and generally decreased with depth which is typical of a fractured bedrock system. Tests that targeted geologic structures within proposed pit areas were found to have tight range in hydruaulic conductivity (mean of 7E-07 m/s) even at depths exceeding 200 m below ground surface. Hydraulic tests in valley areas produced similarly high results, supporting the inference that valley traces follow fault structures. There does not appear to be a correlation between hydraulic conductivity and lithology.
- Groundwater draining the Halfway Creek catchment at higher elevations occurs at significant depth (130 to over 220 metres below ground surface). Along the drainage channel itself, groundwater pressures are flowing artesian and vertical groundwater gradients vary in both magnitude and direction, indicative of the complex hydrogeologic regime at the Project. Most water level hydrographs increased through 2015 on the order of few metres in response to seasonal recharge.
- Groundwater is well-confined along the upper reaches of the YT-24 drainage. The piezometric surface is several to tens of metres above the base of permafrost and vertical hydraulic gradients vary in both magnitude and direction along the drainage, indicative of the complex hydrogeologic regime at the Project. The hydrographs do not appear sensitive to individual rainfall events and demonstrate variable increases (zero to over 10 metres) in response to longer term seasonal rainfall trends through 2015.
- Groundwater levels measured along the South WRSF drainage range from flowing artesian to several tens of metres below ground surface. In the saddle area, groundwater is more than 120 metres deep. Water level hydrographs start to climb

within one to four weeks of the onset of continuous summer rainfall in the final week of June 2015 with the longest time lag associated with the deepest water levels. The magnitude of seasonal water level response ranges from approximately 2 m to over 30 m. Strong upward hydraulic gradients are measured in upper reaches of the drainage, while both upward and downward hydraulic gradients are measured in bedrock at the confluence with Latte Creek, indicative of the complex hydrogeologic regime at the Project.

- Strong artesian groundwater pressures are measured at the headwaters of Latte Creek. Immediately downstream, the piezometric surface is above the base of permafrost, but groundwater pressures are not flowing artesian. Seasonal trends in water pressure are subdued compared to other areas, with water levels rising on the order of a few metres at some locations. Strong downward vertical gradients are observed in both upper and lower reaches of the drainage.
- Groundwater is predominantly circum-neutral (pH 6 to 8), with most groundwater between pH 7 and 8. Groundwater quality shows variable influence from weathering of sulphide minerals and dissolution of sulphate minerals, either from the deposits or other disseminated mineralization across the Project area. Sulphate concentrations range from low to substantial (12 to 954 mg/L) and salinity is variable (field specific conductance readings between 28 and 2269 µS/cm).
- Major ion chemistry of overburden groundwater is calcium-bicarbonate-type. The bedrock groundwater has a wide range of major ion signatures from calcium-bicarbonate to mixed magnesium-calcium-sodium-sulphate-type water, reflecting variable influence of sulphide weathering. The groundwater in granite is generally more sodic than other groundwater on site and ranges from calcium-bicarbonate-type to sodium-bicarbonate-type water.
- Dissolved arsenic and uranium were consistently measured in the overburden and bedrock groundwater during baseline monitoring. Groundwater quality in the Project area is characterized by elevated dissolved arsenic and uranium concentrations which generally were highest in the bedrock, ranging from 0.27 to 1860 µg/L and 7.6 to 589 µg/L, respectively.

7. Closure

We trust that this baseline report on the hydrogeology of the Coffee Creek Project meets your requirements at this time. Please contact us should you have any questions or concerns, or require additional information in support of this work.

Yours sincerely, LORAX ENVIRONMENTAL SERVICES LTD.

Report prepared by:

Signature REDACTED

Laura-Lee Findlater, B.Sc., P.Geo. Project Hydrogeologist Lorax Environmental Services Ltd. Jordi Helsen, M.Sc., P.Geo. Environmental Hydrogeologist Lorax Environmental Services Ltd.

Report reviewed by:

Signature REDACTED

Justin Bourne, M.Eng, P.Eng. Senior Hydrogeological Engineer Lorax Environmental Services Ltd.

References

- AECOM, 2012. Geomorphological mapping and landscape model development for Strategic Soil geochemical sampling at the Coffee Gold Project, Yukon Territory. Report prepared for Kaminak Gold Corporation, March 2012.
- Berman, R.G., Ryan, J.J., Gordey, S.P., and Villeneuve, M., 2007. Permian to Cretaceous polymetamorphic evolution of the Stewart River region, Yukon-Tanana terrane, Yukon, Canada: P-T evolution linked with in situ SHRIMP monazite geochronology. Journal of Metamorphic Geology, Vol. 25, p. 803-827.
- Bliss, J., Rushton, K., 1984. The reliability of packer tests for estimating the hydraulic conductivity of aquifers. Q. J. Eng. Geol. Vol. 17, pp. 81-91.
- Buitenhuis, E., Boyce, L., and Finnigan, C., 2015. Advances in the mineralization styles and petrogenesis of the Coffee gold deposit, Yukon. In: Yukon Exploration and Geology 2014, K.E. MacFarlane, M.G. Nordling and P.J. Sack (eds), Yukon Geological Survey, p. 29-43.
- Buitenhuis, E.N., 2014. The Latte Gold Zone, Kaminak's Coffee Gold Project, Yukon, Canada: Geology, Geochemistry, and Metallogeny. M.Sc. Thesis, Department of Earth Science, The University of Western Ontario, London, ON.
- Clark, M.J.R. (editor). 2002. British Columbia Field Sampling Manual. Water, Air and Climate Change Branch, Ministry of Water, Land and Air Protection, Victoria, BC, Canada. 312 pp.
- Cooper, H.H. and C.E. Jacob, 1946. A generalized graphical method for evaluating formation constants and summarizing well field history, Am. Geophys. Union Trans., vol. 27, pp. 526-534.
- EBA Tetra Tech, 2016. Permafrost and Related Geohazard Mapping within the Coffee Mine Site Area. Technical memorandum to Kaminak Gold Corp. dated February 16, 2016.
- EBA Tetra Tech, 2014. Hydrogeological Data Collection, Coffee Gold Project, Yukon. Report submitted to Kaminak Gold Corp. March 2014.
- Golder, 2010. Report on: Fractured Bedrock Field Methods and Analytical Tools, Report submitted to Ministry of Environment by Science Advisory Board for Contaminated Sites in British Columbia.
- Grodzicki, K. R., Allan, M. M., Hart, C.J.R., and Smith, T. 2015. Geologic Map of the Coffee gold deposit area, western Dawson Range, Yukon (MDRU Map M-9).

- Huscroft, CA. 2002. Surficial Geology, Coffee Creek, Yukon Terrritory (115J/14); Geological Survey of Canada, Open File 4344, scale 1:50 000.
- Hvorslev, M.J. 1951. Time lag and soil permeability in ground-water observations, US Army Corps of Engineers. Waterways Exper. Sta. Bull No. 36, 1951.
- JDS, 2016. Feasibility Study Technical Report for the Coffee Gold Project, Yukon Territory, Canada. Report prepared for Kaminak Gold Corporation dated February 18, 2016.
- Kaminak. 2015. Structure in Coffee Main Resource Area. Technical memorandum to Lorax and SRK, dated October 2, 2015.
- Knight Piésold, 2015. Kaminak Gold Corporation Coffee Gold Project Report on Feasibility Study Level Geotechnical Investigations. Report to Kaminak Gold Corp. dated March 12, 2015.
- Lorax, 2016. Baseline Hydrometeorological Assessment. Draft report prepared for Kaminak Gold Corporation dated February 29, 2016.
- Lorax, 2015. 2015 Phase I Baseline Hydrogeology Field Program Program Summary, Memorandum to Kaminak Gold Corp. dated April 7th, 2015.
- Lorax, 2014. Coffee Creek Hydrogeological Drilling Program Program Summary, Memorandum to Kaminak Gold Corp. dated October 17th, 2014.
- Palmer Environmental Consulting Group, 2016. Terrain Stability and Hazard Mapping for the Coffee Gold Project. Report to Kaminak Gold Corporation dated March 19, 2016.
- Mikkelson, E. 2002. Cement-bentonite grout backfill for borehole instruments. Geotechnical News: December 2002, pp. 38-4
- NRCan, 1995.Canada Permafrost Map MCR-4177. National Atlas of Canada, 5th edition. Available from: <u>http://ftp2.cits.rncan.gc.ca/pub/geott/atlas/archives/english/5thedition/environmen</u> <u>t/land/mcr4177.jpg</u>
- Quiñones-Rozo, C. 2010. Lugeon test interpretation, revisited. In proceedings of the 30th Annual USSD Conference, Sacramento, California, April 12-16, 2010. Available from: ussdams.com/proceedings/2010Proc/405-414.pdf
- SRK Consulting, 2016. 2015 Geotechnical Field Investigation Report Coffee Gold Project, Yukon, Canada. Report to Kaminak Gold Corp. dated January 4, 2016.
- SRK Consulting, 2015. Hydrogeologic Investigations Report Coffee Project, Yukon. Report to Kaminak Gold Corp. dated December 18, 2015.

Theis, C.V. 1935. The relation between the lowering of the piezometric surface and the rate and duration of discharge of a well using groundwater storage. Trans, Amer. Geophys. Union, vol. 16.

Thiem, G. 1906. Hydrologische Methoden. Gebhardt, Leipzig.

Woo, M.K. 2012. Permafrost Hydrology. Springer-Verlag, Berlin: 563 pp.

Appendices

Appendix 3-A: Borehole and Instrument Log

Canal State		LORAX ENVIRONMENTAL		٦	/W1	4-01/	A / Bł	H5 / (CFD-0402	
	G	AMINAK OLD CORPORATION Coffee Creek Gold Project #: A362-4	Drilling Started Install Completed Drilling Method Drilling Company Supervised By	: Aug : Dia	g 11, 201 g 13, 201 mond / H R Drilling MS	I4 HQ		Easti Grou Logg	(F ning Coord. ng Coord. nd Surface ed By ked By	Page 1 of 1) : ~6,975,003 : ~583,990 : ~1175 m amsl : Kaminak : LF
Depth (m)	Elev. (m amsl)1175	DESCRIPTIO	Ν	RQD (%)	Fracture = Fr Fault = Flt	Packer Test Interval (m amsl)	K (m/s)	Depth (m)	Well: Abandon Elev.: N/A	ied
0		GNEISS Weakly oxidised gneiss, biotite s are weakly carbonaceous Biotite schist zones are weakly carbonaceous and stongly chlor 91.6 m		م مهوموم م				0 - - 20 -		
40	- - 1135 	Dark mafic / schistose bands are chloritic with moderate carbonat parallel to schistosity 91.6 to 196	e alteration	Le la				- - 40 -		
60	- - 1115 -	*40 m - loss of half of return			N/A			- - 60 -		
80	1095	*72 m - some loss of return *80 m - lost circulation (G-Stop u	used)	معميمي				80-		
5	- 	*109 m - lost circulation (G-Stop	used)	وهو هوه				- 100— -		
120	- 	*118 m - 121 m inferred fault zou fractured with possible 10" core 121 m, circulation lost @ 118 m	ne, highly loss around	مومركمو				- 120— -		
140 140	- 							- 140 - -		
160	- 			و و و و و		155.3 - 166.0	4E-08	- 160 — -		
180	- 	BIOTITE FELDSPAR SCHIST Strongly chlorite altered biotite s GNEISS Dark mafic / schistose bands are				179.3 -	3E-08	- 180— -		
200	975	chloritic with moderate carbonat parallel to schistosity EOH @ 202 m Hole position not surveyed. Co-	e alteration			202.0		200-		
120 140 160 180 200 220	-	N/A: Borhole not logged for stru *Comment from supervising hyd other descriptons provided by Ka	cture rogeologist, all					220-		

C.		LORAX ENVIRONMENTAL			MW1	4-01	A / Bł	H5 / (CFD-()419 (Page 1 of 2)
	G	AMINAK OLD CORPORATION Coffee Creek Gold Project #: A362-4	Drilling Started Install Completed Drilling Method Drilling Company Supervised By	: Au : Dia : CY	g 20, 20 [,] g 27, 20 [,] amond / I (R Drilling (/LF/JY	14 HQ		Easti Grou Logg	ning Coord ing Coord. Ind Surface led By cked By	: 6,975,002.66 : 583,995.31
Depth (m)	Elev. (m amsl)1177.01	Water Level: 1083.30 m amsl 03-Sep-14 @ 23:19 DESCRIPTIO	5 (still falling)	RQD (%) 0 50100	Eracture = Fr Fault = Flt	Packer Interval (mbgs)	K (m/s)	Depth (m)	Well: C	ollapsed 177.47 m amsl (TOC)
0-	- 1175	OVERBURDEN						0-		Surface Casing
	- 1155 - 1135 - 1115	ANDESITE Dark blackish green,feldspar phy moderate hematite and limonite groundmass GNEISS Zone: Bleached cream-organge gneiss with local ones of biotite s limonite and hematite in groundmass and LIMONITE MATRIX BRECCIA Zone: Bleached orange limonite breccia, moderate clay overprint and strongly oxized rock FELSIC GNEISS Zone: pale pink to orange auger limonitic fractures DIORITE Dark green phyric dyke GNEISS Pink augen gneiss with narrow 3 bands of chloritic biotite schist, v disseminated hematite, minor lim fractures Bleached orange white augen g minor 30 cm bands of biotite sch	after mafic felsic augen schist, d fractures and clay filled on sericitized n gneiss, 30-60 cm veakly nonite on		Fr Fr Fr Fr Fr Fr Fr Fr Fr	N/A	N/A	- 20- - 40- - - - - - - - - - - 		- Cement Grout - Bentonite Pellets assumed thickness - 2" Sched. 40 PVC
	- 1095	limonite and hematite in fracture groundmass, narrow crackle or f 46.4 to 46.5 m Pale pink to grey augen gneiss, moderate hematite dusting throu limonite on fracture faces 54.1 to Pale bleached orange augen gn 82.8 to 84.5 m	ault at weak to ighout, minor o 82.8 m	89999	Fr Fr Fr			- - 80—		— Suspected Void
- 100-	- 1075	Pink to grey felsic gneiss with lo intervals of chloritic biotite schist 118.9 m	cal 60 cm 84.5 to		Fr Fr Fr			- - 100 — -	_	
- 120-		Pink massive with little to no aug minor intervals of banded biotite oxidation at 131 to132 m.		,				- 120—		

	Can and		LORAX ENVIRONMENTAL		٦	/W1	4-01	A / BI	H5 / (CFD-0419 (Page 2 of 2)
		G	AMINAK OLD CORPORATION Coffee Creek Gold Project #: A362-4	Drilling Started Install Completed Drilling Method Drilling Company Supervised By	: Aug : Dia : CY	g 20, 20' g 27, 20' mond / H R Drilling /LF/JY	14 HQ		Easti Grou Logg	hing Coord. : 6,975,002.66 ing Coord. : 583,995.31 ind Surface : 1177.01 m amsl ged By : Kaminak cked By : LF
_	Depth (m)	Elev. (m amsl)1177.01	Water Level: 1083.30 m amsl 03-Sep-14 @ 23:1		RQD (%)	Fracture = Fr Fault = Flt	Packer Interval (mbgs)		Depth (m)	Well: Collapsed Elev.: 1177.47 m amsl (TOC)
		Elev.	DESCRIPTIO	N	0 50100	Fract Fault	Pack (mbg	K (m/s)		
	120— - -	- 1055	Grey green banded biotite schis felsic gneiss, gradational contac	ts, weak		Fr Fr			120— - -	
	140- - - 160-	- 1035	hematite dusting in groundmass 143.5 m	136.0 to	8 8 8 8 8	Flt Fr	N/A	N/A	140-	— Suspected Void
4\MW14-01A (CFD 419).bor	- 180 180	- 1015	Pale pink glassy augen rich gne hematite dusting throughout, mir oxidation zone at 174.5 to 176.4 192.8 to 195.7 m	nor weak	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	Fr Ff Fr			160 — - - 180 —	2" Sched. 40 PVC
03-04-2016 P:\A362-4 (Coffee Gold Project - Hydrogeology)\Data\BH Logs\Quicklog\2014\MW14-01A (CFD 419).bor	- - 200- -	- 995 - 975			0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	Fr			- - 200— -	- Bentonite Pellets - Filter Sand - Screen
> P:\A362-4 (Coffee Gold Project - Hy	- - 220 — - -	- 955	EOH @ 212 m N/A: Hole was not packer tested	I				<u> </u>	 220— 	Slough
03-04-2016	- 240								- 240-	

	En la		LORAX ENVIRONMENTAL		Γ	/W1	4-01	B / Bł	H5 / (CFD-0)434 (Page 1 of 1)
		G	AMINAK OLD CORPORATION Coffee Creek Gold Project #: A362-4	Drilling Started Install Completed Drilling Method Drilling Company Supervised By	: Sep : Dia : CYI	o 1, 2014 o 4, 2014 mond / H R Drilling /JY/LF	1 HQ		Easti Grou Logg	ning Coord. ng Coord. nd Surface ed By ked By	: 6,975,002.66 : 583,995.31
	Depth (m)	Elev. (m amsl)1177.01	Water Level: 1027.75 m amsl 08-Sep-14 @ 12:59 DESCRIPTIO		RQD (%) 0 50100	Fracture = Fr Fault = Flt	Packer Interval (mbgs)	K (m/s)	Depth (m)		ollapsed 177.01 m amsl
	0- - - 20- -	- 1175 - 1155	OVERBURDEN GNEISS Mix felsic gneiss & biotite schist, fine-coarse, moderate-strong ch alteration, variable weak - no oxide See MW14-01A for more details	lorite	م				0— - - 20— -		Surface Casing
	- 40 - -	- 1135			- 0-0-0-0- -0				- 40 — -		— Void
	- 60 - - -	- 1115				N/A	N/A	N/A	- 60 — -		
4\MW14-01B.bor	- 80- -	- 1095			- 8-8 -8-8-8-				- 80 — -		
H Logs/Quicklog/201	- 100- - -	- 1075			9-9-9-9-0-0-				- 100 — -		
drogeology)\Data\BH	- 120- -	- 1055							- 120— -		Cement Grout
ee Gold Project - Hy	- 140- -	- 1035			ر <mark>ھ ھ ھ ھ</mark>				- 140 -		- Bentonite Pellets
03-04-2016 P:\A362-4 (Coffee Gold Project - Hydrogeology)\Data\BH Logs\Quicklog\2014\MW14-	- 160 — - -	- 1015	EOH @ 160 m N/A: Hole not logged for structu tested	re or packer	8-0-0				- 160 — -		Screen
03-04-2(- 180—								- 180—		

	Carle C		LORAX ENVIRONMENTAL		١	/W1	4-02	2A / E	3H9 /	/ CFD-0428 (Page 1 of 2)
		G	AMINAK OLD CORPORATION Coffee Creek Gold Project #: A362-4	Drilling Started Install Completed Drilling Method Drilling Company Supervised By	: Sep : Dia : CYI	25, 201 28, 201 mond / H R Drilling /RC/CB	I4 HQ		Ea Gr Lo	orthing Coord. : 6,973,507.99 asting Coord. : 583,993.73 round Surface : 1029.54 m amsl ogged By : Kaminak necked By : LF
	Depth (m)	Elev. (m amsl)1029.54	Water Level: 1025.81 m amsl 11-Oct-14 @ 13:30 DESCRIPTIO)	RQD (%)	acture = Fr ult = Flt ; Joint = J	Packer Test Interval (mbgs)	K (m/s)	Depth (m)	Well: MW14-02A, partially frozen Elev.: 1030.54 m amsl (TOC)
	0	- 1025 - 1015	OVERBURDEN BIOTITE-FELDSPAR SCHIST Biotite schist, 10% pervasive-fra (surface weathering?), 0.5% frac limotite	actured oxide ctured		J(73) Fr Fr Fr Fr			0	Stick-up Surface Casing
		- 1005 - 995	FELSIC GNEISS Massive pink hard felsic gneiss		6 6 6	J(11)			- - - 30 - - - -	
	40	- 985 - 975	GNEISS Biotite schist, moderate fracturin fractured clay, 10% pervasive-fr oxide (surface weathering?), 0.5 limonite	actured	9 9 9 9 9 9	J(21) Fr	N/A	N/A	40 — - - 50 — - - -	Cement Grout
03-04-2016 P.:M.3624 (LOTTEE GOID Project - Hydrogeology)/Latarbh Logs/Quicklog 2014/MW14-	60	- 965 - 955			8	J((6) Fr			60 — - - 70 — -	
אישהיים ביואמיא	80	- 935 - 945	*85.3 to 85.5 m some circulation	loss		J(18) Fr			- 80— - - - -	
02-04-20 10 L	90- - - - 100-	- 935	BIOTITE-FELDSPAR SCHIST Biotite schist ANDESITE Mafic dykes intruding biotite sch fractured clay, dark orange fract	ist, weak ure staining		J(22)			90— - - 100—	

03-04-2016 P:\A362-4 (Coffee Gold Project - Hydrogeology)\Data\BH Logs\Quicklog\2014\MW14-02A.bor

No.		LORAX ENVIRONMENTAL		1	MW1	4-02	2A / E	3H9 /	CFD-0428 (Page 2 of 2)
	G	AMINAK OLD CORPORATION Coffee Creek Gold Project #: A362-4	Drilling Started Install Completed Drilling Method Drilling Company Supervised By	: Sej : Dia : CY	o 25, 20 o 28, 20 imond / I R Drilling /RC/CB	14 HQ		Eas Gro Log	rthing Coord. : 6,973,507.99 sting Coord. : 583,993.73 bund Surface : 1029.54 m amsl gged By : Kaminak ecked By : LF
Depth (m)	Elev. (m amsl)1029.54	Water Level: 1025.81 m amsl 11-Oct-14 @ 13:30 DESCRIPTIO		RQD (%) 0 50100	Fracture = Fr Fault = Flt ; Joint = J	Packer Test Interval (mbgs)	K (m/s)	Depth (m)	Well: MW14-02A, partially frozen Elev.: 1030.54 m amsl (TOC)
ee Gold Project - Hydrogeology)/Data/BH Logs/Quicktog/2014/MW14-02Abor	- 920 - 910 - 900 - 890 - 880 - 880 - 880 - 880 - 880 - 880 - 880 - 880 - 850	GABBRO Gabbro, coarse, varying orange HYDROTHERMALLY ALTERE Breccia zone overlaps gabbro-b contact around 180.3m. At 184 brecciation with stronger pervas CARBONATE +/- LIMONITE M' Clasts in orange & white carbon (dolomite, ankerite) /HYDROTHERMALLY ALTERE Crackle breccia. At 189.9 m, les yet strong fracturing with carbon *193 m some circulation loss	D ROCK m, increased ive oxide TX BX ate matrix D ROCK as intensely		J(22) Fr Fr J(28) Fr	N/A	N/A	105- - - - - - - - - - - - - - - - - - -	- Cement Grout - 2" Sched. 40 PVC
03-04-2016 P:N362-4 (Coffe 03-04-2016 P:N362-4 (Coffe 	- 830	*193 m some circulation loss EOH @ 197 m N/A: Hole not packer tested *Comment from supervising hyd other descriptons provided by Ka Number of joints reported for even interval	aminak					195— - - 205—	

Contraction of the second		LORAX ENVIRONMENTAL			MW1	4-02	B / Bl	-19 / (CFD-04	1 18 (Page 1 of 2)
		Coffee Creek Gold Project #: A362-4	Drilling Started Install Completed Drilling Method Drilling Company Supervised By	: Se : Dia : CY	p 19, 20' p 24, 20' amond / I 'R Drilling S/RC	14 HQ		Easti Grou Logg	ning Coord. ng Coord. nd Surface ed By sked By	: 6,973,507.27 : 584,008.13 : 1030.93 m amsl : Kaminak : LF
Depth (m)	Elev. (m amsl)1030.93	Water Level: 1018.80 m amsl 17-Sep-14 @ 18:08 DESCRIPTIO	N	RQD (%) 0 50100	Fracture = Fr Fault = Flt	Packer Test Interval (mbgs)	K (m/s)	Depth (m)		14-02B, frozen 1.26 m amsl (TOC)
0	- 1030 - - -	OVERBURDEN Pebbles and boulders of mixed m GNEISS Grey with orange strongly banded feldspar rich gneiss			Fr Fr			0		Stick-up
20	- 1010 - - -	Augen rich chlorite and feldspar r 22.1 to 46.9 m	ich gneiss		Fr Fr Fr			- - 20 - - - - -		
30 40	- 1000				Fr Fr Fr Fr			30 — - - 40 — -		
50	- - - 980 -	Weakly oxidized mixed mafic, au gneiss, weak patchy oxidation 46	.9 to 56.4 m		Fr Fr Fr			- - 50 -		2" Sched. 40 PVC
60	- - 970 -	Mixed biotite schist and augen ric weak patchy oxidation 56.4 to 76		8	Fr			- 60 - -		
70	- 900	Weak Zone: Pale buff and orange foliated chlorite rich an augen gne	e strongly eiss,		Fr Fr Fr			- 70 - - -		
50 60 70 80 90	950 	pervasive limonite and foliation con- hematite 76.5 to 83.8 m Fresh biotite and augen rich gnei hematite dusting 83.8 to 87.5 m Weak Zone: Bleached buff orang foliated mixed gneiss, limonite in hematite in fractures and foliation 87.5 to 96.1 m	ontrolled ss, moderate e well groundmass		Ff Fr	84.5 - 104.0	5E-9	80 — - - 90 — -		
100	-	Pink and green fresh looking biot augen gneiss 96.1 to 108.0 m	ite schist and		FF F			- - 100-		

03-04-2016 P:\A362-4 (Coffee Gold Project - Hydrogeology)\Data\BH Logs\Quicklog\2014\MW14-02B.bor

NºC		ENVIRONMENTAL					_ /		CFD-041	(Page 2 of 2)
		GOLD CORPORATION Coffee Creek Gold	Drilling Started Install Completed Drilling Method Drilling Company	: Sej : Dia : CY	o 19, 20 o 24, 20 mond / I R Drilling	14 HQ		Eastir Grour Logge	•	: 6,973,507.27 : 584,008.13 : 1030.93 m amsl : Kaminak
		Project #: A362-4	Supervised By	: MS	/RC			Chec	ked By	: LF
Depth (m)	Elev. (m amsl)1030.93	Water Level: 1018.80 m amsl 17-Sep-14 @ 18:08 DESCRIPTIO	N	RQD (%) 0 50100	Fracture = Fr Fault = Flt	Packer Test Interval (mbgs)	K (m/s)	Depth (m)		-02B, frozen 26 m amsl (TOC)
105	- 925	Strong Zone: Patchy orange and gneiss, patchy strong to weak oxi 108.0 to 126.6 m	grey mixed dation		Fr Fr	102.5 - 125.0	8E-8	105-		
115— - - -	- 915				Fr Fr Fr			115— - - -		-2" Sched. 40 PVC -Cement Grout
125— - -	- 905	BIOTITE-FELDSPAR SCHIST Green well foliated biotite schist, limonite fractures SHEAR ZONE	common		Fr Fr Fr Fr			125— - -		
135— - -	- 895	Pale green highly deformed and f +- talc schist. Moderate carbonate stringers BIOTITE FELDSPAR SCHIST	e overprint as		Fr Fr Fr	129.5 - 137	3E-8	- 135 — - -		-Bentonite Pellets
- 145— - -	- 885	Zone: Orange strongly oidized bio strong pervasive limonite and her Green-orange feldspar rich biotite moderate limonite on fractures ar	natite e schist, id in		Ff Ff	138.5 - 152.0	bypass	- 145 - -		– Filter Sand – Screen
- 155 — - -	- 875	groundmass with hematite 139.3 CRACKLE BRECCIA Zone: Bright orange crackle breck schist? Strong pervasive hematite	cia to biotite	000	Ff Fr Fr			- 155 — - -		
- 165 — - -	- 865	HYDROTHERMALLY ALTERED Bleached cream-orange qtz-seric altered zone, moderate limonite c throughout. CRACKLE BRECCIA	ite-pyrite			156.5 - 173.0	1E-8	- 165 — - -		-Bentonite Pellets Abandoned Installation
- 175 — -	- 855	Bleached cream-orange qtz-seric altered zone, moderate limonite c throughout BIOTITE-FELDSPAR SCHIST			Fr			- 175 - -		-2" Sched. 40 PVC
- 185 - - -	- 845	Green feldspar rich biotite schist, Pale orange and bleached white Weak patchy oxidation 183.9 to 2		8 8	Fr	180.5 -	1E-8	- 185— - -		
- 195 — - -	- 835			0	Fr Fr Ff	200.0		_ 195— _ _		- Filter Sand - Screen
- - 205—		EOH @ 200 m						- 205 —		

5	2		LORAX		Ν	۸W1	4-03	A / Bł	H3 / C	CFD-	0432
	12		ENVIRONMENTAL								(Page 1 of 2)
		G	AMINAK OLD CORPORATION Coffee Creek Gold Project #: A362-4	Drilling Started Install Completed Drilling Method Drilling Company Supervised By	: Sep : Diar	29, 2014 07, 2014 mond / H R Drilling CB	4 Q		Eastir Grour Logge	ing Coord ng Coord. nd Surfac ed By ked By	: 582,401.16
Depth (m)		Elev. (m amsl)1097.59	Water Level: 997.10 m amsl 04-Oct-14 @ 10:00 DESCRIP	(not stable)		RQD (%)	Fracture = Fr Fault = Flt ; Joint = J	Packer Test Interval (mbgs)	K (m/s)	Depth (m)	Well: MW14-03A Elev.: 1098.59 m amsl (TOC)
	0-	面 1095	OVERBURDEN *Ice crystals observed in silty sa			0 50100		<u>د ج</u>	¥ 5	0-	Stick-up
2		1075	METACARBONATE Massive to weakly foliated carbo minor intervals of biotite schist *Ice lens (<1cm) observed at 10 *23 m loss of circulation (poly ac	.9 m		A A A A A A A A A A A A A A A A A A A	Fr Fr Fr			- - 20-	
			*33m loss of circulation			ø				-	
4	.0	1055	CRACKLE BRECCIA Orange polymictic clast supported carbonate and qtz fragments, m strong oxidation METACARBONATE Massive to weakly foliated carbo above	oderate to		e e				40-	
6	- - - - - -	1035	*51.5 m cave-in observed with lo (rods greased) CARBONATE +/- LIMONITE Orange polymictic cement and c breccia				Fr			- 60 -	Cement Grout
1000-1000-1000-1000-1000-1000-1000-100	- 	1015	METACARBONATE Massive to weakly foliated carbo above CRACKLE BRECCIA Orange crackled breccia of mart schist, and minor dacitic dyke, m strong pervasive oxidation, weak alteration in fractures	ole, minor biotite			Fr	81.5 -	1	- 80— -	
10	-0-0		DACITE Patchy blackish green to light or massive to weakly foliated dyke, fractures with weakly oxidized he BIOTITE FELDSPAR SCHIST Dark green well foliated biotite s intervals of marble	alos		0-0-0-0-0-	Fr Fr Fr	110.0		- 100—	

		LORAX		MW1	4-03	A / Bl	H3 / C	CFD-	0432
10	2	ENVIRONMENTAL							(Page 2 of 2)
		GOLD CORPORATION Coffee Creek Gold Project #: A362-4	Drilling Started Install Completed Drilling Method Drilling Company Supervised By	: Aug 29, 201 : Sep 07, 201 : Diamond / H : CYR Drilling : RC/CB	4 Q		Eastir Grour Logge	ing Coord ng Coord nd Surfac ed By ked By	582,401.16
Depth (m)	Elev. (m amsl)1097.59	Water Level: 997.10 m amsl 04-Oct-14 @ 10:00 DESCRIP		RQD (%) 0 50100	Fracture = Fr Fault = FIt ; Joint = J	Packer Test Interval (mbgs)	K (m/s)	Depth (m)	Well: MW14-03A Elev.: 1098.59 m amsl (TOC)
110- - - 130-	- 985 - 985 - 965	METACARBONATE White marble unit with light grey minor intervals of biotite schist, fractures BIOTITE FELDSPAR SCHIST Dark green well foliated biotite s marble intervals as above, limor fractures and minor oxidation as carbonate stringers	limonite on schist with minor hite along		Fr	111.5 - 140.0	1	110- - - 130-	
- - 150 — -	- 945	CRACKLE BRECCIA Dark green weak crackle brecci and minor marble, moderate fra clay BIOTITE FELDSPAR SCHIST Dark green well foliated biotite s marble intervals as above, limon fractures and minor oxidation as carbonate stringers.	cture controlled		Ff Fr Fr J(7)	132.5 - 155.0 156.5 - 198.5	2 5E-09	- - 150 -	Cement Grout
- 170 – -	- 925							- 170 — -	Bentonite Pelle Quick Grout
- 190 — -	- 905	SHEAR ZONE Pale green sheared biotite schis BIOTITE FELDSPAR SCHIST Pale cream grey biotite schist pr by alteration						- 190 — -	Filter Sand
- - 210—		EOH @ 198.5 m *Comment from supervising hydrophysic descriptons provided by Kamina Number of joints reported for ev 1. Packer test performed in unstanalysis is not valid 2. Packer test performed in unstanalysis is not valid. Interval did bedrock highly permeable)	ak ery 20 m interval aturated zone; test aturated zone; test	r				- - 210—	

-		LORAX		MW	14-03	B/B	H3 / C	CFD-()442
Y L	29	ENVIRONMENTAL							(Page 1 of 2)
	G	AMINAK OLD CORPORATION Coffee Creek Gold Project #: A362-4	Drilling Started Install Completed Drilling Method Drilling Company Supervised By	: Sep 08, 20 : Sep 12 , 2 : Diamond / : CYR Drillin : RC / CB	014 HQ		Eastir Grour Logge	ing Coord ng Coord. nd Surface ed By ked By	: 582,388.30
		Water Level:	Supervised by						
Depth (m)	Elev. (m amsl)1095.16	962.39 m amsl 13-Oct-14 @ 15:41		RQE (%)	acture tult = F	Packer Test Interval (mbgs)	K (m/s)	Depth (m)	Well: MW14-03B Elev.: 1096.13 m amsl (TOC)
		DESCRIP	HON	0 501	⁰⁰ 正ピ	μ μ μ μ μ μ	ΥË	<u> </u>	Stick-up
0-	- 1095	OVERBURDEN *Silty sand, ice lenses observed HYDROTHERMALLY ALTERE		Q					Surface Casing
		Strongly oxidised, massive to lo breccia, clay rich with fault pug f	cal weak fracture	 				-	
		METACARBONATE Alternating white-grey marble with	th weak foliation					-	
20-	- - 1075	FAULT Crumbly, broken up, clay rich fa *Loss of circulation at 17 m METACARBONATE	ult pug					20-	
	_	Alternating white-grey marble wi patches of fracture controlled, w GNEISS	th weak remnant eak limonite					-	
	-	Foliated mafic gneiss, facture co	ontrolled limonite		, N/A	N/A	N/A	-	
-U3B.Dor	-	METACARBONATE White-grey marble with fracture	controlled limonite		e			-	2" Sched. 80 PVC
414	- 1055	*Loss of circulation at 41 m		a	0			40-	- Cement Grout
NData/BH Logs/QU	-	HYDROTHERMALLY ALTERE Hydrothermally altered. Monomi sub-rounded, fine to medium gra supported in a limonite matrix br	ctic, sub-angular to ained quartz clasts		ø			-	
(drogeology)	-	MEATACARBONATE Banded white-grey marble with a limonite bands -*Minor cave-in at bit change at		A A				-	
60 -	- 1035	HYDROTHERMALLY ALTERE Strongly limonite altered, fine gr round marble clasts in a limonite	D ROCK ained monomictic,		9			60-	
(corree Go		METACARBONATE Alternating grey-white and brow marble	n limonite altered						
0 P:\A362-4		HYDROTHERMALLY ALTERE Fine-grained, rounded carbonate limonite altered matrix		a					
-08-102-4-2012 -08-102-4-2012		METACARBONATE Banded white-grey marble with altered bands	strongly limonite					80-	

03-04-2016 P:\A362-4 (Coffee Gold Project - Hydrogeology)\Data\BH Logs\Quicklog\2014\MW14-03B.bor

KGV	ENVIRONMENTAL							(Page 2 of 2)
	COLD CORPORATION Coffee Creek Gold Project #: A362-4	Install Completed : Drilling Method : Drilling Company :	Sep 08, 2014 Sep 12 , 201 Diamond / H CYR Drilling RC / CB	4 Q		Eastir Grour Logge	ing Coord ng Coord. nd Surface ed By ked By	: 582,388.30
Depth (m) Elev. (m amsl)1095.16	Water Level: 962.39 m amsl 13-Oct-14 @ 15:41 DESCRIP	TION	RQD (%) 0 50100	Fracture = Fr Fault = Flt	Packer Test Interval (mbgs)	K (m/s)	Depth (m)	Well: MW14-03B Elev.: 1096.13 m amsl (TOC)
80 - 1015 - 100 - 995 - 120 - 975 - 140 - 955	GNEISS Mafic gneiss with weak patchy of fracture controlled limonite and alteration parallel to foliation ANDESITE Fine grained, dark mafic dyke, for carbonate veinlets with +- limonite and alter GNEISS Mafic gneiss with minor thin barr fracture controlled limonite alter interstitial limonite replacement MEATACARBONATE Alternating bands of mafic gneiss fracture controlled limonite and selective replacement of marble / gneiss BIOTITE FELDSPAR SCHIST Fine grained, with weak patchy alteration, white marble bands a frature controlled limonite Zone strongly oxidised with weat alteration, fracture controlled limonite Zone strongly oxidised with weat alteration, weak fracture control alteration, weak fracture control alteration, weak fracture control alteration, weak fracture control alteration and patchy hematite alteration for and patchy hematite alteration for the security of th	interstitial limonite ractures and eration halo ads of white marble, ation and selective as and marble, e interstitial limonite carbonate ilso present, weak ak, patchy carbonate ionite, local stockwork 0.5 m d oxdation / limonite led clay alteration ' limonite alteration ' 37.5 to 152.0 m		N/A	N/A	N/A	80- - - - 100- - - - - - - - - - - - - -	 Cement Grout 2" Sched. 80 PV Bentonite Pellet Filter Sand Screen

-		LORAX			М	W14-	-04T	/ BH	6 / CFD-0439
YC	20	ENVIRONMENTAL							(Page 1 of 2)
	G	AMINAK OLD CORPORATION Coffee Creek Gold Project #: A362-4	Drilling Starte Install Comple Drilling Metho Drilling Comp Supervised B	eted od any	: Sep 1 : Diamo	97, 2014 2 , 2014 2 d / HQ Drilling Lto 7/MS	d.		Northing Coord.: 6,975,001.35Easting Coord.: 584,286.64Ground Surface: 1185.83 m amslLogged By: KaminakChecked By: LF
Depth (m)	Elev. (m amsl)1185.83	DESCRIPTION		RQD (%)	Fracture = Fr Fault = Flt	Packer Test Interval (mbgs)	K (m/s)	Depth (m)	Well: MW14-04T Elev.: 1185.83 m amsl
0- - - - - - - - - - -	- 1185 - - - 1160	OVERBURDEN GNEISS Mix of felsic gneiss dominant over schist, occasional zone of strong fractures alternating	er biotite jer clay	المراجع				0	Thermistor (3.1 m)
50-	- 1135	OTHER BRECCIA Low angle brecciation of host wi stronger oxide GNEISS Mix of felsic gneiss dominant ov schist, occasional zone of strong fractures alternating, various vu elongate voids subparallel foliati	er biotite ger clay gay	A B B B B B B B B B B B B B B B B B B B				- - 50- - -	Thermistor (51.1 m)
-	- 1110				N/A			- 75— -	HQ rods to 156 m
- 100 -	- 1085							- - 100 -	— Cement Grout
	- 1060	OTHER BRECCIA Brecciated closed fractures *lost circulation at 107.5 m, rega next run GNEISS Mix of felsic gneiss dominant ov schist, occasional zone of strong fractures alternating, various vug elongate voids subparallel foliati Mix of mafic rich zones and felsi gneiss 136.0 to 165.8 m	er biotite jer clay 399 on	pool pool				- - 125— - -	Thermistor (126.1 m)
150-	- 1035	gneiss 136.0 to 165.8 m						- 150— -	Thermistor (151.1 m)
175-		BIOTITE FELDSPAR SCHIST Dark grey-black biotite-amphibo	e schist			164.3 - 202.0	3E-10	- - 175—	

T

٦

03-04-2016 P:\A362-4 (Coffee Gold Project - Hydrogeology)\Data\BH Logs\Quicklog\2014\MW14-04T.bor

Γ

-		LORAX		MW14-04T / BH6 / CFD-0439						
VC.	2	ENVIRONMENTAL							(Page 2 of 2)	
	G	AMINAK GOLD CORPORATION Coffee Creek Gold Project #: A362-4	Drilling Starte Install Comple Drilling Metho Drilling Comp Supervised B	eted d any	: Sep 1 : Diamo	7, 2014 2 , 2014 ond / HQ Drilling Lt /MS	d.		Northing Coord.: 6,975,001.35Easting Coord.: 584,286.64Ground Surface: 1185.83 m amslLogged By: KaminakChecked By: LF	
Depth (m)	Elev. (m amsl)1185.83	DESCRIPTION	I	RQD (%)	Fracture = Fr Fault = Flt	Packer Test Interval (mbgs)	K (m/s)	Depth (m)	Well: MW14-04T Elev.: 1185.83 m amsl	
175-	- 1010			ه ه				175— - -	Thermistor (176.1 m)	
200-	- - - 985					182.3 - 202.0	2E-10	- 200— -	Thermistor (201.1 m)	
- - 225 – -	- 960	GNEISS Mixed felsic gneiss with mafic rid	ch bands	9-9-9-9-9-9-9-9-9-9-9-9-9-9-9-9-9-9-9-		203.3 - 232.0	1E-09	- - 225- -	Thermistor (226.1 m)	
-04T	- 935			10-8-8-8-0-1		233.3 - 256.0	4E-09	- - 250— -	- Cement Grout	
	- 910			66666 66666		251.3 - 280.0	3E-10	- - 275— -	Thermistor (276.1 m)	
- Hydrogeology)\Data\B	- 885	EOH @ 301 m Notes:		-0-0-0-0-0-0-0-0-0-0-0-0-0-0-0-0-0-0-0		281.3 - 301.0	No Flow	- - 300-	Thermistor (301.1 m)	
03-04-2016 P:\A3624 (Coffee Gold Project - Hydrogeology))DataBH Logs(Quicklog/2014)MV14	- 860	 Steel enclosure with data logg scale RST Model 2040 Multichannel logger S/N: 0215 Thermistor string (3 m to 301 TS3795 Solinst Barologger S/N:12036 *Comment from supervising hydrogeologist, all other descrip provided by Kaminak N/A: Hole not logged for structure 	l Data m) S/N: 812 tons					- - 325- - -		
⁷⁻⁴⁰⁻ 350 –	-							- 350—	-	

\$	and the	LORAX ENVIRONMENTAL		MW14-05A / BH11 / CFD-0444								
	10		ENVIRONMENTAL							(Page 1 of 2)		
		G	AMINAK OLD CORPORATION Coffee Creek Gold Project #: A362-4	Drilling Starte Install Comple Drilling Metho Drilling Comp Supervised B	eted od any	: Sep 1 : Diamo	2, 2014 7 , 2014 ond / HQ Drilling Lto	J.		Northing Coord.: 6,972,997.94Easting Coord.: 579,708.14Ground Surface: 1268.50 m amslLogged By: KaminakChecked By: LF		
	Depth (m)	(m amsl)1268.50	Water Level: 1136.42 m amsl 11-Oct-14 @ 15:4		RQD (%)	Fracture = Fr Fault = Flt	Packer Test Interval (mbgs)		Depth (m)	Well: MW14-05A Elev.: 1269.61 m amsl (TOC)		
	Dept	Elev.	DESCRIPTION	l	0 50100	Fract Fault	Pack (mbg	K (m/s)	Dept			
	0	- 1265	OVERBURDEN GRANITE Coarse grained, pink-grey granit patchy, weak limonite staining	ie, local,					0	Stick-up Surface Casing surface monument		
	20-	- 1245							20			
Dor	- 40	- 1225			0 0 0	N/A			- 40 -			
ogs/wurcklog/2014/WW1410-200	60 —	- 1205			8 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0				- 60— -	2" Sched. 80 PVC — Cement Grout		
ест - нуагодеоюду)/⊔ата\ВН L	- 80	- 1185			8 8 8 8				- 80— -			
03-04-2016 P.XA362-4 (Cottee Gold Project - Hydrogeology)/Data/BH Logs/Quicklog/2014/MV14	- 100 — -	- 1165	ANDESITE Fresh andesite intrusion GRANITE Coarse grained, grey-pink granit predominantly fresh and unalter	ie, ed with					- 100— -			
03-04-20	- 120—		patchy fracture controlled limoni alteration limited to small haloes fractures	te					120-			

٦

03-04-2016 P:\A362-4 (Coffee Gold Project - Hydrogeology)\Data\BH Logs\Quicklog\2014\MW14-05A.bor

	1		LORAX			M١	W14-(05A /	BH1	1 / CFD-0444
	15		ENVIRONMENTAL							(Page 2 of 2)
_		G	AMINAK OLD CORPORATION Coffee Creek Gold Project #: A362-4	Drilling Started: Sep 12, 2014Install Completed: Sep 17, 2014Drilling Method: Diamond / HQDrilling Company: CYR Drilling Ltd.Supervised By: CB/RC				d.		Northing Coord.: 6,972,997.94Easting Coord.: 579,708.14Ground Surface: 1268.50 m amslLogged By: KaminakChecked By: LF
	Depth (m)	(m amsl)1268.50	Water Level: 1136.42 m amsl 11-Oct-14 @ 15:45		RQD (%)	Fracture = Fr Fault = Flt	Packer Test Interval (mbgs)		Depth (m)	Well: MW14-05A Elev.: 1269.61 m amsl (TOC)
	Dept	Elev.	DESCRIPTION		0 50100	Fract Fault	Pack (mbg	K (m/s)	Dept	
	120-	- 1145			·OOOOOOOO		111.3 - 140.0	1	120	
	140	- 1125			9 9 9 9 9 9 9 9	N/A			140— - -	
_	- 160	- 1105	Weak zone; weakly oxidised and altered granite 166.6 to 170.7 m	l limonite	0 00000000000000000000000000000000000		156.3 - 179.0	No Flow	- 160— -	2" Sched. 80 PVC — Cement Grout
Juicklog/2014\MW14-05A.bo	- 180—	- 1085	Leucocratic granite with weak pa limonite and clay alteration 170.7 178.1 m Zone, moderately oxidised and li altered, fracture controlled limon clay alteration 178.1 to 182.7 m -Coarse grained grey-pink granit 182.7 to 183.7 m -Weak zone, fracture controlled	7 to imonite ite and te	6000°		156.3 - 220.5	1E-09	- 180— -	
rogeology)/Data/BH Logs/(200-	- 1065	with weak to moderate oxidation to 185.5 m Coarse grained granite with pat replacement of feldspars by clay chlorite 185.5 to 221 m	183.7 chy			183.3 - 200.0	3E-09	- 200— -	Bentonite Pellets
03-04-2016 P:\A3624 (Coffee Gold Project - Hydrogeology)\Data\BH Logs\Quicklog\2014\MW14-05A.bor	- 220-	- 1045	EOH @ 220.5 m				201.3- 220.5	1e-09	- - 220-	Screen
03-04-2016 P:\A362-	- - 240-		N/A: Borehole not logged for str 1. Packer test performed in unsa zone; test analysis is not valid.						- 240—	

T

03-04-2016 P:A362-4 (Coffee Gold Project - Hydrogeology)/Data/BH Logs/Quicklog/2014/MW14-05A.bor

	C.		LORAX			M١	W14-(05B /	BH1	11 / CFD-0455 (Page 1 of 1)
		G	AMINAK OLD CORPORATION Coffee Creek Gold Project #: A362-4	Drilling Started: Sep 17, 2014Install Completed: Sep 20, 2014Drilling Method: Diamond / HQDrilling Company: CYR Drilling Ltd.Supervised By: JH/JB/MS			d.		Northing Coord.: 6,972,998.51Easting Coord.: 579,694.92Ground Surface: 1270.3 m amslLogged By: KarninakChecked By: LF	
	Depth (m)	Elev. (m amsl)1270.3	Water Level: 1136.32 m amsl 11-Oct-14 @ 15:53	3	RQD (%)	Fracture = Fr Fault = Flt	Packer Test Interval (mbgs)	K (m/s)	Depth (m)	Well: MW14-05B Elev.: 1270.9 m amsl (TOC)
		逝 - 1270	DESCRIPTION		0 50100	Fa	ŭ a	чÊ	ے 0 – 0	Surface Monument & Casing
	-	- 1250	GRANITE Fresh coarse grained granite, pa alteration of feldspar, typically as with fractures, weak to moderate controlled limonite. See MW14-05A for details	ssociated					- - - 20- -	E C C C C C C C C C C C C C C C C C C C
	40-	- 1230			8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8				- 40 -	
	60 -	- 1210			0000	N/A	N/A	N/A	- 60— -	
05B.bor	- 80	- 1190							- - 80 -	2" Sched. 80 PVC
	- 	- 1170			6666666666666				- 100— -	
ata\BH Logs\Quich	- -	- 1150							- 120— -	
Hydrogeology)/D	- 140 -	- 1130			00000000000000000000000000000000000000				- 140— -	
tee Gold Project -	- 160— -	- 1110							- 160— -	
03-04-2016 P:\A362-4 (Coffee Gold Project - Hydrogeology)\Data\BH Logs\Quicklog2014\MV14-C	- 180— -	- 1090	EOH @ 179.5 m N/A: Borehole not packer tested	d or					- 180— -	Screen
03-04-201	- 200		logged for structure						200-	

03-04-2016 P:\A362-4 (Coffee Gold Project - Hydrogeology)\Data\BH Logs\Quicklog\2014\MW14-05B.bor

Canal Canal		LORAX ENVIRONMENTAL			Μ	W14-	-06A /	/ BH	7 / CFD-0453
	G	AMINAK OLD CORPORATION Coffee Creek Gold Project #: A362-4	Drilling Starte Install Comp Drilling Metho Drilling Comp Supervised E	leted od oany	: Sep 2 : Diamo	6, 2014 22 , 2014 ond / PQ Drilling Lto W/MS	d.		Northing Coord.: 6,974,582.81Easting Coord.: 585,202.21Ground Surface: 1183.0 m amslLogged By: KaminakChecked By: LF
Depth (m)	Elev. (m amsl)1183.0	Water Level: 1053.18 m amsl 07-Oct-14 @ 9:46 DESCRIPTION		RQD (%) 0 50100	Fracture = Fr Fault = Flt	Packer Test Interval (mbgs)	K (m/s)	Depth (m)	Well: MW14-06A Elev.: 1183.9 m amsl (TOC)
0	- 1180	OVERBURDEN FELSIC GNEISS Felsic gneiss with muscovite ricl bands, fractures with limonite a and interstitial limonite	Iteration					0	Stickup surface Casing Collapsed Abandoned in 2015
- 20— -	- 1160	*Drilling additive (Pure Vis) used onwards Weak zone, weakly oxidised wit controlled limonite, strong fractu controlled clay alteration 21.9 to HYDROTHERMALLY ATERED Zone, Oxidized and brecciated h thermally altered rock	h fracture re 25.3 m ROCK					- 20 - -	
- 40— -	- 1140	FELSIC GNEISS Felsic geiss with weak fracture of limonite and clay alteration	controlled					- 40— -	
- 60 — -	- 1120	GNEISS Felsic gneiss mixed with minor r amphibole rich, bands	nafic,		N/A	N/A	N/A	- 60— -	- 2" Sched. 80 PVC
- 80—	- 1100			0 0 0				- 80—	
- - 100 — -	- 1080	ANDESITE Fine grained mafic dyke GNEISS Felsic gneiss ANDESITE Fine grained, massive, mafic dy	ke					- - 100 -	
- 120—		GNEISS Mixed felsic gneiss with mafic, a rich mafic bands	mphibole	0				- 120—	

03-04-2016 P:\A362-4 (Coffee Gold Project - Hydrogeology)\Data\BH Logs\Quicklog\2014\MW14-06A.bor

Can a		LORAX	MW14-06A / BH7 / CFD-0453						
12	-	ENVIRONMENIAL							(Page 2 of 2)
	G	AMINAK OLD CORPORATION Coffee Creek Gold Project #: A362-4	Drilling Starte Install Compl Drilling Metho Drilling Comp Supervised B	eted od oany	: Sep 2 : Diamo	6, 2014 2 , 2014 ond / PQ Drilling Lte V/MS	d.		Northing Coord.: 6,974,582.81Easting Coord.: 585,202.21Ground Surface: 1183.0 m amslLogged By: KaminakChecked By: LF
Depth (m)	Elev. (m amsl)1183.0	Water Level: 1053.18 m amsl 07-Oct-14 @ 9:46		RQD (%)	Fracture = Fr Fault = Flt	Packer Test Interval (mbgs)		Depth (m)	Well: MW14-06A Elev.: 1183.9 m amsl (TOC)
Dept	Elev.	DESCRIPTION	l	0 50100	Frac	Pack (mbç	K (m/s)	Dept	
120- - - 140- - -	- 1060 - 1040	*Minor circulation loss noted at 7 possibly enteriing formation at ~ *Stronger iron staining at 129.5 suggests presence of water	25 m		N/A	N/A	N/A	120— - - 140— - -	
160-	- 1020	*Minor iron stained fracture zone suggesting presence of water at ~165, 175, 181, and 187 m Strongly foliated mixed felsic gn bleached, weak carbonate altera white clay alteration to feldspars fracture controlled limonite altera 171.6 to 177.42 m	eiss, ation, , weak					160	2" Sched. 80 PVC — Cement Grout
	- 1000	^L Zone, mixed gneiss, possible e dyke with weak alteration 177.4 179.17 m ^L Strongly foliated mixed felsic gr weak carbonate alteration 179.2 m	to neiss, to 183.2	& p e e				- 180	
200 –	- 980	^L Mixed felsic gneiss, 187.3 to 18 and EOH fracture zone with lime alteration	37.8 m, nite	0 0 0 0 0				200-	
180	- 960	EOH @ 216 m *Comment from supervising hydrogeologist, all other descrip provided by Kaminak N/A: Borehole not packer tested logged for structure			I	<u> </u>	<u> </u>	220-	
240-								240-	

-		LORAX			M	W14-	·06B /	/ BH	7 / CFD-0463
Y	29	ENVIRONMENTAL							(Page 1 of 2)
l	G	AMINAK OLD CORPORATION Coffee Creek Gold	Drilling Starte Install Comple Drilling Metho Drilling Comp	eted d any	: Sep 2 : Diamo : CYR [2, 2014 4 , 2014 and / PQ Drilling Lto	d.		Northing Coord.: 6,974,583.17Easting Coord.: 585,195.39Ground Surface: 1183.3 m amslLogged By: Kaminak
		Project #: A362-4 Water Level:	Supervised B	/	: LF/RV	V/GB			Checked By : LF
Depth (m)	Elev. (m amsl)1183.3	1053.32 m amsl 07-Oct-14 @ 11:15 (approximate)		RQD (%)	Fracture = Fr Fault = Flt	Packer Test Interval (mbgs)	(s)	Depth (m)	Well: MW14-06B Elev.: 1184.3 m amsl (TOC)
		DESCRIPTION		0 50100	Fra Fau	Pac (mt	K (m/s)		
0-	- - 1180 - -	OVERBURDEN GNEISS Weak to modedrate fracture con and interstitial limonite alteration alteration to feldspars	and clay					0— - -	Surface Casing Collapsed Abandoned in 2015
10-	- - - 1170 -	HYDROTHERMALLY ALTERE Zone GNEISS Weak to moderate fracture contr interstitial limonite alteration]) Ø Ø				10— - -	
20-	- - 1160 -	HYDROTHERMALLLY ALTERI Zone. Bleached and silicified medium of monomictic clasts supported in a yellow clay 12.8 to 17.5 m ANDESITE	grained,	0 0 0				20	
30-	_ - 1150 -	Zone. Strongly oxidised and lime altered mafic dyke GNEISS Weak fracture controlled limonite		¢ •		N/A	N/A	30— - -	
40-	- - - 1140			9 6 6	Fr			40— -	
50-	- - - 1130			a				- 50— -	Cement Grout
60-	- - - 1120							- 60— -	
70-	- - - 1110			8				- 70— -	
50 - 60 - 70 - 80 -	- - - - 1100							- - 80 -	
90-	-			6				- 90 —	

		LORAX	MW14-06B / BH7 / CFD-0463						
1	20	ENVIRONMENTAL							(Page 2 of 2)
	G	AMINAK OLD CORPORATION Coffee Creek Gold Project #: A362-4	Drilling Started Install Comple Drilling Metho Drilling Compa Supervised By	eted d any	: Sep 2 : Diamo	2, 2014 4 , 2014 ond / PQ Drilling Ltc V/GB	ł.		Northing Coord.: 6,974,583.17Easting Coord.: 585,195.39Ground Surface: 1183.3 m amslLogged By: KaminakChecked By: LF
Depth (m)	. (m amsl)1183.3	Water Level: 1053.32 m amsl 07-Oct-14 @ 11:15 (approximate)		RQD (%)	Fracture = Fr Fault = Flt	Packer Test Interval (mbgs)	÷	Depth (m)	Well: MW14-06B Elev.: 1184.3 m amsl (TOC)
Dept	Elev.	DESCRIPTION		0 50100	Frac	Pach (mbę	K (m/s)	Dept	
90	- - 1090 - -	ANDESITE Sharp fg dark-grey black dykes GNEISS Felsic bands common augens o schist +/- amph, occ band perva	cç bt					90	
110	-	pink = hematite? <1m	sive					- - 110 -	
120	- - - - 1060 -							- 120— - -	2" Sched. 80 PVC — Cement Grout
1300 1300 1300 1300 1300 1300 1300 1300	- - 1050 -	*Iron stained fractures 133.3 to suggesting presence of water	136.0 m			N/A	N/A	130— - - 140—	
	- 1040 -	HYDROTHERMALLY ALTERE Minimal zone mix ox & sulph		- 0 0				-	
	- - - 1030	*Iron stained fractures at ~144 a suggesting presence of water GNEISS Felsic bands common augens o schist +/- amph, occ band perv pink = hematite? <1m	/	6 6 6				150— - -	Bentonite Pellets
160 999 999	 1020	EOH @ 164.4 m						160— - -	Filter Sand
170 170	- - - - 1010	N/A: Borehole not packer tested	I					- 170— -	
180	-							- 180—	

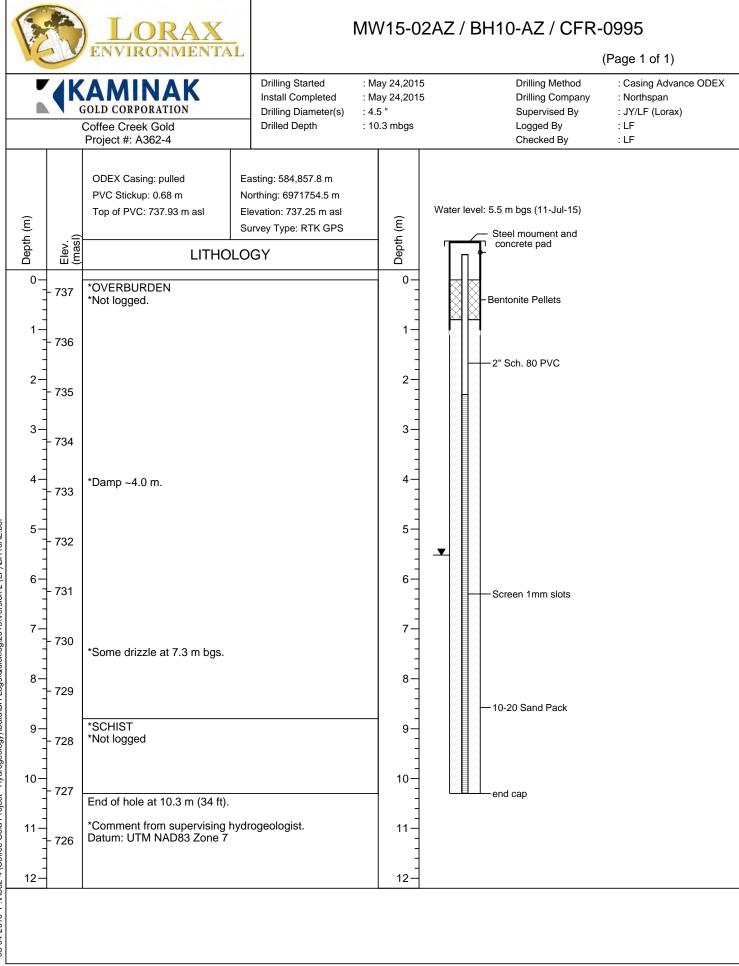
Г

	The second		LORAX ENVIRONMENTAL		٢	/W1	4-07	7T / E	3H1 /	CFD-0462 (Page 1 of 1)
		G	AMINAK OLD CORPORATION Coffee Creek Gold	Drilling Started Install Completed Drilling Method Drilling Company	: Sep : Dia	21, 201 24, 201 mond / H R Drilling	14 HQ		Ea Gr	orthing Coord. : 6,971,364.89 Isting Coord. : 580,832.07 ound Surface : 1156.25 m amsl gged By : Kaminak
_			Project #: A362-4	Supervised By	: JH/	MS		1	Ch	necked By : LF
	Depth (m)	Elev. (m amsl)1156.25	VWP Water Level: 1160.7 m amsl Oct 13, 2014 @ 16:0 DESCRIPTIO		RQD (%) 0 50100	Fracture = Fr Fault = Flt	Packer Test Interval (mbgs)	K (m/s)	Depth (m)	Well: MW14-07T Elev.: 1152 m amsl (collar)
	0- - - 20-	- 1155 - 1135	OVERBURDEN *Cored with rods and shoe to 4.4 Ice observed from 0.6 to 1.3 m GRANITE Coarse grained, massive, variab oxide fracture controlled-pervasi weak- moderate limonite +/- her coating	le orange ve, variable						Steel encl. w/ datalogger Thermistors (0.6, 1.4, 2.1, 2.9, 3.7, 4.4, 5.1 m) Thermistor (17.4 m)
	- - 40 -	- 1115			موجوه				- - 40 -	Thermistor (29.7 m)
I .bor	- 60 — -	- 1095				N/A			- 60— -	Thermistor (54.9 m) — Cement grout — 0.75" Sched. 80 PVC — Thermistor (67.4 m)
licklog 2014 WW 14-07	- 80- -	- 1075			eeeeeeeeeeeeeeeeeeeeeeeee		64.4 - 89.0	3E-08	- 80— -	Thermistor (80.0 m)
оду)/Data/bH Logs/UI	- 100-	- 1055	*Drilling additive (Pure Vis) used	lat			83.2 - 124.7	1E-08	- 100— -	Thermistor (100 m)
Project - Hydrogeok	- 120— -	- 1035	115 m onwards *Hole observed making water at *Hole observed making water at (<1L/min) EOH @ 125 m	113 m	0000				- 120—	VWP (124.4 m)
03-04-2016 ריאאסב4 (כסודפפ סטמ רוסופגו - האמוספסוסטא)ושמומשה בספאגעווגאוסצעוואוואיו ו-1.01 וסטו	- - 140 - -	- 1015	Notes: *Comment from supervising hyd other descriptons provided by K N/A: Borehole not logged for str Steel enclosure with data logger RST Model 2040 Multichannel D 2018 Thermistor string #1 (0.6 to 80.0 TS3796	aminak ucture not to scale Data logger S/N:					- - 140 -	
03-04-2	- 160—		Thermistor string #2 (100.0 m) S VWP S/N: VW30262	S/N: TS3830					- 160 —	

03-04-2016 P:\A362-4 (Coffee Gold Project - Hydrogeology)\Data\BH Logs\Quicklog\2014\MW14-07T.bor

1.		LORAX ENVIRONMENTAL	MW15	5-01AZ	Z / BH08-AZ / CFR-0982 (Page 1 of 1)
		CORPORATION Coffee Creek Gold Project #: A362-4	Drilling Started : May 5,2 Install Completed : May 5,2 Drilling Diameter(s) : 4.5 " Total Depth : 5.94 mb Completion Depth : 5.90 mb	015 ogs	Drilling Method: Casing Advance ODEXDrilling Company: NorthspanSupervised By: JH (Lorax)Logged By: KaminakChecked By: LF
Depth (m)	Elev. (masl)	ODEX Casing: pulled PVC Stickup: 0.55 m ags Top of PVC: 810.30 m asl LITHO	Easting: 585,683.0 m Northing: 6,976,037.9 m Elevation: 809.75 m asl Survey Type: RTK GPS	Lepth (m)	Water Level: frozen @ 3.79 m (8-Jul-15) No free water in well Steel monument and concrete pad
-0	- 809	OVERBURDEN-Colluvium *Organic material. OVERBURDEN *Gravel, boulders.		- 0 / - - -	- Bentonite Pellets
1-	- 808			1	June 1990 June 1990 <td< td=""></td<>
2-	- - - 807	OVERBURDEN *Sand, silt and gravel. Moisture of	observed on fines at 2.3 m.	2	2" Sch. 80 PVC
	- - - - 806	OVERBURDEN *Brown silt, sand, gravel.		3	Screen No.10 Slot
4-	- 805	SCHIST		4	
		*Harder drilling, dusty.		5	end cap e
6-	-	End of hole at 5.94 m (19.5 ft) *Comment from supervising hyd Datum: UTM NAD83 Zone 7	rogeologist.	6	
7-	- 803			7-	

The second second		LORAX ENVIRONMENTAL	MW15-01T / BH	-08T	/ CF	R-0941 (North Dump D/S) (Page 1 of 2)
	G	AMINAK OLD CORPORATION Coffee Creek Gold Project #: A362-4	Drilling Started: March 21, 2015Install Completed: March 24,2015Drilling Diameter(s): 6.0" & 4.5"Total Depth: 90.5 mbgsCompletion Depth: 89.3 mbgs	1		Drilling Method: Casing Advance & Convent.Drilling Company: NorthspanSupervised By: LF/AS (Lorax)Logged By: KaminakChecked By: LF
Depth (m)	Elev. (masl)	Depth to Bedrock: 17.1 mbgs Casing Depth: 25.3 mbgs LITHC	Easting: 585,826 Northing: 6,976,210.3 Elevation: 803.93 Survey Type: RTK GPS	Fracture = Fr Fault = Flt	Airlift Yield** (USGPM)	Well: MW15-01T Installation depths along hole (m)
0-	- 800	Muddy brown organics & Colluvi Colluvium. Ranges from silty fine	e sand to coarse sand with			- Surface monument datalogger enclosure - Thermistors (0.5, 1.3, 2.0, 2.8, 3.5 m 4.3, 5.0 m)
-	- 800	gravel. Clasts of schist and gneis *Ice rich. Massive ice lenses obs 11.9-12.5 m).				
10-						- 6" Welded Surface Casing (0-25.3m) Thermistor (12.3 m)
-	- 790	Overburden				
- 20— -		*bouldery SCHIST/GNEISS *Surface casing breaks at 21.6 n	n. Casing is cemented in.			Thermistor (19.8 m)
-	- 780	NO SAMPLES		-		1" Sch. 80 PVC Tremmie
- 30-		Green-grey mafic schist with pin orange-grey from 107-112 ft (32				Thermistor (27.3 m)
-	- 770					Cement grout
- - 40-						
-	- 760					Thermistor (42.3 m)
-						
50-		Schist & gneiss w/ orange textur milky quartz fragments.	e observed unit with minor]		Thermistor (49.8 m)

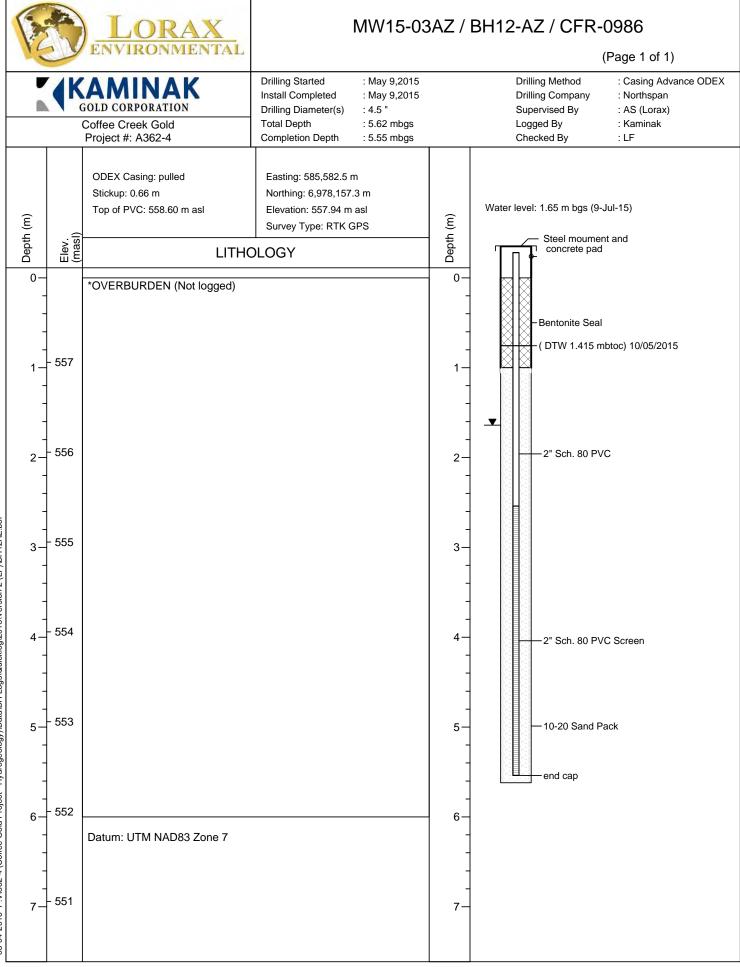

NC.	2	ENVIRONMENTAL				(Page 2 of 2)		
	G	AMINAK OLD CORPORATION Coffee Creek Gold Project #: A362-4	Drilling Started: March 21, 2015Install Completed: March 24,2015Drilling Diameter(s): 6.0" & 4.5"Total Depth: 90.5 mbgsCompletion Depth: 89.3 mbgs			Drilling Method : Casing Advance & Conve Drilling Company : Northspan Supervised By : LF/AS (Lorax) Logged By : Kaminak Checked By : LF		
Depth (m)	Elev. (masl)	Depth to Bedrock: 17.1 mbgs Casing Depth: 25.3 mbgs LITHC	Easting: 585,826 Northing: 6,976,210.3 Elevation: 803.93 Survey Type: RTK GPS	Fracture = Fr Fault = Flt	Airlift Yield** (USGPM)	Well: MW15-01T Installation depths along hole (m)		
50 — - 60 — - -	- 750 - 750 - 740	Grey-pink felsic gneiss with light Both are slightly bleached, incre limonite from 197-202 ft (60-61.0	asing with depth. Minor					
70	- 730	Dark green to green grey mafic	e at 235 ft (71.6 m). oderate limonite and serricite ired. Pick up water. schist with moderately		2-3 4-5	1" Sch. 80 PVC Tremmie		
- 80 — - -	- 720	disseminate hematite. Well folia Grey felsic gneiss with trace pin Trace to moderate quartz vein fi *Pick up minor water 86.0-87.5n	k. Dark grey mafic schist. ragments.		6-7	-Cement grout		
- 90 — - - -	- 710	Dark grey-green mafic schist wit Minor disseminated hematite. EOH 90.5 m Datum: UTM NAD83 Zone 7 RST Model 2040 Multichannel D Thermistor String (0-50 m) S/N: VWP 1 (76 m) S/N: 30462; VWF *Comment from Hydrogeologist, ** Visual estimation of flow	Data Logger S/N: 2017 TS3797 P 2 (89.1 m) S/N: 30463					

	E.		LORAX		MW1	5-0)1WE	3 / BH	18-W	B / CFR-)977 (Page 1 of 2)	
_		G	AMINAK OLD CORPORATION Coffee Creek Gold Project #: A362-4	Drilling Started Install Completed Drilling Diameter(s) Drilled Depth Completion Depth	: April 30 : May 05 : 6.0" & 4 : 118.56 : 116.72	5,201 4.5" m			Drilli Sup Loge	ng Method ng Company ervised By ged By cked By	: Casing Advance & RC : Northspan : JH/AS/CS (Lorax) : Kaminak : LF	;
	Depth (m)	Elev. (masl)	Casing Depth: 21.3 mbgs HQ Depth: 76.12 mbgs Westbay Depth: 117.0 m bgs	Easting: 585,828.6 m Northing: 6,976,211.9 m Elevation: 803.58 m asl Survey Type: RTK GPS		Н	EC (µS/cm)	Airlift Yield (USGPM)	Depth (m)	HQ Stickup: 1	kup: 1.67 m ags 36.0 m bgs	
	 0 	- 803	Not logged to 17.1 m See MW15-01T for details						0-		monum +casing	nent
	- - 10 -	- 793							- 10 - -			
WB_2.bor	- - 20- - -	- 783	FELSIC GNEISS Fresh						- - 20- - -			
log\2015\Version 2 (LF)\BH08	- 30- - -	- 773	Not Logged						- 30— - -	⊥	HQ Roo Westba MP38	
Data\BH Logs\Quick	- 40— -	- 763							- 40— -			
03-04-2016 P:\A362-4 (Coffee Gold Project - Hydrogeology)\Data\BH Logs\Quicklog\2015\Version 2 (LF)\BH08WB_2.bor	- - 50 — - -	- 753	FELSIC GNEISS						- - 50- - -			
03-04-2016 P:\A362-4	- 60-								- 60—			

03-04-2016 P:\A362-4 (Coffee Gold Project - Hydrogeology)\Data\BH Logs\Quicklog\2015\Version 2 (LF)\BH08WB_2.bor

1	Canal Canal		LORAX		MW1	15-0)1WE	3 / Bł	18-W	B / CFR-0977 (Page 2 of 2)
-	Coffee Creek Gold Project #: A362-4			Drilling Started Install Completed Drilling Diameter(s) Drilled Depth Completion Depth	: May (: 6.0" & : 118.5	pril 30,2015 lay 05,2015 .0" & 4.5" 18.56 m 16.72m			Drilli Sup Logo	ing Method : Casing Advance & RC ing Company : Northspan ervised By : JH/AS/CS (Lorax) ged By : Kaminak cked By : LF
	Depth (m)	Elev. (masl)	Casing Depth: 21.3 mbgs HQ Depth: 76.12 mbgs Westbay Depth: 117.0 m bgs LITHOI	Easting: 585,828.6 m Northing: 6,976,211.9 m Elevation: 803.58 m asl Survey Type: RTK GPS		Hd	EC (µS/cm)	Airlift Yield (USGPM)	Depth (m)	Surface Casing Stickup: 1.4 m ags HQ Stickup: 1.56 m ags Westbay Stickup: 1.67 m ags Water Level: 36.0 m bgs (8-Jul-15; Port 4)
	65— - - 75—	- 738 - 728	FELSIC GNEISS bleached, clay-sericite altered FELSIC GNEISS FELSIC GNEISS						65 — - - 75 —	HQ Rods
3_2.bor	- - - 85	- 718	Weakly serricite altered FELSIC GNEISS fresh *77.7 m less dusty drilling FELSIC GNEISS oxidized, silicified, 0.5% disse *82.1 m hit water *82.6 m cuttings show signs o staining			n/a n/a	n/a n/a	4.9 5.4	- - - 85 - -	Bentonite Seal Port 5 Port 4 Primary Zone 2 Packer Port 3
g/z015/Version z (LF)\BHU8WB_z.bor	- 95 — -	- 708	FELSIC GNEISS fresh			n/a n/a	n/a n/a	2	- - 95 — -	Westbay MP38
03-04-2016 P:M362-4 (Lottee Gold Project - Hydrogeology)/Lata/bH Logs/Uuicklog/2015/Version	- - 105 - -	- 698	MIXED MAFIC GNEISS fresh, biotite rich			n/a n/a	n/a n/a	5	- - 105 — - -	Backer Backer
uorree Gold Project - Hydroge	- 115 — - -	- 688	MIXED MAFIC GNEISS bleached MIXED MAFIC GNEISS bleached End of hole 118.6 m (389 ft).						- 115— - -	Primary Zone 1 Backer Port 1
03-04-2016 P:N362-4 (I	- 125—		*Comment from supervising h logged by Kaminak Primary Zone 2 was sampled Datum: UTM NAD83 Zone 7	ydrogeologist; lithology	,				- 125—	

03-04-2016 P:\A362-4 (Coffee Gold Project - Hydrogeology)\Data\BH Logs\Quicklog\2015\Version 2 (LF)\BH08WB_2:bor



03-04-2016 P:\A362-4 (Coffee Gold Project - Hydrogeology)\Data\BH Logs\Quicklog\2015\Version 2 (LF)\BH10AZ.bor

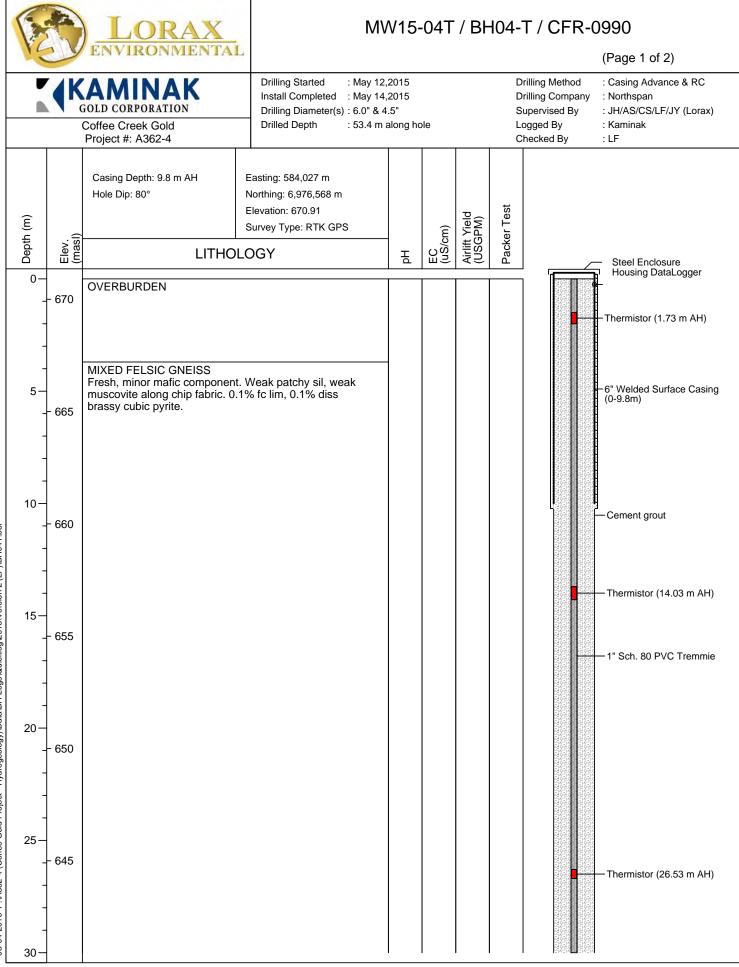
F		LORAX	MW15-02T	/ BH	10-T	/ CFF	R-0948 (Sou	th Dump D/S) (Page 1 of 1)
	G	AMINAK OLD CORPORATION Coffee Creek Gold Project #: A362-4	Drilling Started : March Install Completed : March Drilling Diameter(s) : 6.0" & Total Depth : 34.4 m Completion Depth : 33.7 m	26,2015 4.5" bgs			Drilling Method Drilling Company Supervised By Logged By Checked By	: Casing Advance & Convent. : Northspan : LF/AS/CS (Lorax) : Kaminak : LF
Depth (m)	Elev. (masl)	Depth to Bedrock: 10.7 mbgs Casing Depth: 17.7 mbgs Stick up: 0.38 m LITHO	Easting: 584,854.9 Northing: 6,971,756.0 Elevation 737.1 Survey Type: Handheld +/-8m	Fracture = Fr Fault = Flt	Airlift Yield (GPM)**	Depth (m)		ce monument
0	- 735 - 730	OVERBURDEN Brown to light dirty orange fel schist. *Colluvium ranging from sitly sections. Visibly frozen 0-2.4 *Water present at casing weld orginated between 5.5-7m (flo	sand to bouldery m. d at 7 m, may have		Present	0	Therm Therm Therr	ogger enclosure istor (1.2m) nistor (3.2 m) nistor (5.2 m)
	- 725	SCHIST Light grey to green, well foliat Moderately chlorite altered. *Small fracture at 45 ft (13.8				- 10- - - - 15-	(0-17	elded Surface Casing .7m) nistor (10.2 m) nistor (15.2 m)
-	- 720 - 715	SCHIST Light grey to green, well foliat strained feldspr and pyrite ble altered. *Broken area with iron stained (20.7-21.9m). Interval grabs of	bs. Moderately chlorite		0.25 3 15-20	20-		ent grout
20- - - 25- - - - - - - - - - - - - - - -	- 710	SILTY SAND, *Fractured area but not measurable at cyclone			15-20+	- 25- - - -		nistor (24.2 m) h. 80 PVC Tremmie
30 — - - - - - - - - - - - - - - - - - - -	- 705	SCHIST Dark grey to greenish biotite s pervasive chlorite alteration. (Decrease in feldspar/quartz content.	Common pyrite.			30 — - - -		(33.9m) Ih
35- - - - - - - - - - - - - - - - - - -	- 700	RST Model DT2055-B Multich 3686 Logging Frequency: 4 hrs Thermistor string (0-24 m) S/ VWP (33.9 m) 1MPa, S/N: 30 *Comment from supervising h descriptions provided by Kam **Visual estimations of flow of	N: TS3798 460 hydrogeologist; all other linak			35— - - - - - - - - - - - - - - - - - - -		,

		LORAX	N	/W15-0	2WE	s / BH	10-W	/B / CFR-0997
			Drilling Started	: May 22,20'	15		Drill	(Page 1 of 2)
		AMINAK OLD CORPORATION	Install Completed Drilling Diameter(s)	: May 24,20 : 6.0" & 4.5"			Drill	ing Company : Northspan ervised By : VS/JY/LF (Lorax)
		Coffee Creek Gold Project #: A362-4	Drilled Depth	: 66.4m				ged By : Kaminak cked By : LF
Depth (m)	Elev. (masl)	Westbay Depth: 65.5 m bgs	Easting: 584,857.7 Northing: 6,971,757.8 Elevation: 737.11 Survey Type: RTK GPS	Ha	EC (µS/cm)	Airlift Yield (USGPM)	Depth (m)	Surface Casing Stickup: 0.93 m ags Westbay Stickup: 1.06 m ags Water Level: 2.4 m bgs (10-Jul-15; Port 3)
0	- 737	*OVERBURDEN *Loose sand and gravel with ver- occasional cobble/boulders. M possibly frozen. *Moist 0.9-7.3 m.					0	_▼_
5	- 732	*Moist to wet 7.3-8.5 m. Small	amount of water			moist	5	
-	- 727	returned at cyclone after casin BIOTITE SCHIST Weakly oxidized, weak sericite throughout hole. *Not sampled. BIOTITE SCHIST Weak clay and sericite alteratio	g weld at 8.5 m.				- - 10 - -	Packer Port 5 Westbay MP38 w/ Glycol Packer
	- 722	*Not sampled. BIOTITE SCHIST Patchy blebs of brassy pyrite (chlorite.	0.1%), weak patchy				- 15— -	Port 4
20- 20-	- 717	BIOTITE SCHIST Weak clay alteration, moderate	e chlorite alteration.	9.4	923	5 0 0	- 20- - -	
	- 712	*Intermittent wet and dry patch 23.8-28.3 m.	es encountered			Spotty	- 25— -	Packer Port 3
	- 707	BIOTITE SCHIST Generally fresh, weak patchy of *Two separate fractures noted *Zero water during spot airlift n water appears to be lost to frac *Formation grabby at 32.3 m.	at 29, 29.7 m. neasurement at 29.9 m	8.4 n, 8.4	1007 1006	0 35	- - 30- - -	Primary Zone 2 (Sampled) Packer Port 2
35-				8.4	992	8	- - 35—	

1C	2	ENVIRONMENTAL						(Page 2 of 2)
Coffee Creek Gold Project #: A362-4			Drilling Started: May 22,2015Install Completed: May 24,2015Drilling Diameter(s): 6.0" & 4.5"Drilled Depth: 66.4m				Drilli Drilli Supe Logg Cheo	: Casing Advance & RC : Northspan : VS/JY/LF (Lorax) : Kaminak : LF	
Depth (m)	Elev. (masl)	HQ: not deployed Westbay Depth: 65.5 m bgs	Easting: 584,857.7 Northing: 6,971,757.8 Elevation: 737.11 Survey Type: RTK GPS	H	EC (µS/cm)	Airlift Yield (USGPM)	Depth (m)		ng Stickup: 0.93 m ags xup: 1.06 m ags 2.4 m bgs rt 3)
35 -	- 702				1		35 —		
-		*Not sampled. VEIN Pure milky quartz. *Not sampled.		8.5	997	8	-		
40	- 697	BIOTITE SCHIST Weak patchy chlorite, rare bras	ssy pyrite blebs (0.1%)	8.5	963	4	40		
45	- 692			8.5	873	17	- 45— -		Westbay MP38 w/ Glycol
-	- 687			8.5	955	17			
-	007			8.5	960	12	-		
-		BIOTITE SCHIST Patchy quartz veining.		8.0	960	12	_		
-				8.3	960	10**			
55 —	- 682			8.3	995	9**	55 -		
-				8.4	955	8**			
_				8.3	950				
60-	- 677			8.6	960	25**	60-		Packer
-				8.2	960	20**	-		Port 1
-				8.5	960	11**]		Primary Zone 1
65 -	- 672			8.3	960	20**	65 -		
-				8.3	965	14**	-		Slough
-		End of hole at 66.4 m (218 ft). *Comment from supervising hy logged by Kaminak geologist. **Trapped air visible during airf					-		

03-04-2016 P:\A362-4 (Coffee Gold Project - Hydrogeology)\Data\BH Logs\Quicklog\2015\Version 2 (LF)\BH12AZ.bor

-		LORAX	MV	V15·	-03T	/ B⊦	112-T / CFR-0983
	- P	LIVIKONMENIAL					(Page 1 of 2)
		Coffee Creek Gold	Drilling Started : May 05, Install Completed : May 10, Drilling Diameter(s) : 6.0" & 4 Drilled Depth : 98.14 m	2015 .5"	nole (AH)	Drilling Method : Casing Advance & RC Drilling Company : Northspan Supervised By : JH/AS (Lorax) Logged By : Kaminak
	1	Project #: A362-4			1		Checked By : LF
Depth Along Hole (m)	Elev. (masl)	Hole Dip: 80°	Easting: 585,584.5. m Northing: 6,978,167.8 m Elevation: 557.75 m asl Survey Type: RTK GPS	Ŧ	EC (uS/cm)	Airlift Yield (USGPM)	Installation depths along hole (m AH)
	<u> </u>	LITHOL	UGY	Hq	ШЭ	Ğ	Steel Enclosure
0-	- 557	OVERBURDEN *Fine to coarse colluvium. Satur	rated.				-Bentonite -Thermistors (0.55, 1.25, 1.95, 2.61,
5-	- 552	MIXED MAFIC GNEISS Weak pervasive epidote and sili	ica.				3.44, 4.18, 4.95 m AH)
10-	- 547	MIXED MAFIC GNEISS Weak pervasive silica. *Flat, thin shards of ice observe frozen fractures (8.8-10.4 m)	d in cuttings - possibly				-6" Welded Surface Casing (0-11.9m)
15-	- 542	BIOTITE SCHIST Weak chlorite and sericite. MIXED MAFIC GNEISS Moderate pervasive silica. *Chip samples collected every 1					Thermistor (17.17 m)
20-	- 537						Cement grout
	- 532	*Moisture observed (26.5 m).					
	- 527						Thermistor (29.32 m)
30 - 33 - 35 - 40 - 50 - 50 -	- 522	*Water encountered (36.5 m).				2.4	- 1" Sch. 80 PVC Tremmie
- (6600-6600-6600-6600-6600-6600-6600-66	-					3 10 9.8	
	- 517					11.5	Thermistor (41.59 m)
45-	- 512					10 10	
50-	- 507	*Chip size suggests fractured gi MIXED MAFIC GNEISS Mixed with massive quartz vein.				15	- bentonite - VWP 1 (50.3 m)
55-		QUARTZ VEIN MIXED MAFIC GNEISS Mixed with massive quartz vein.	/			30 30	Thermistor (53.88 m)

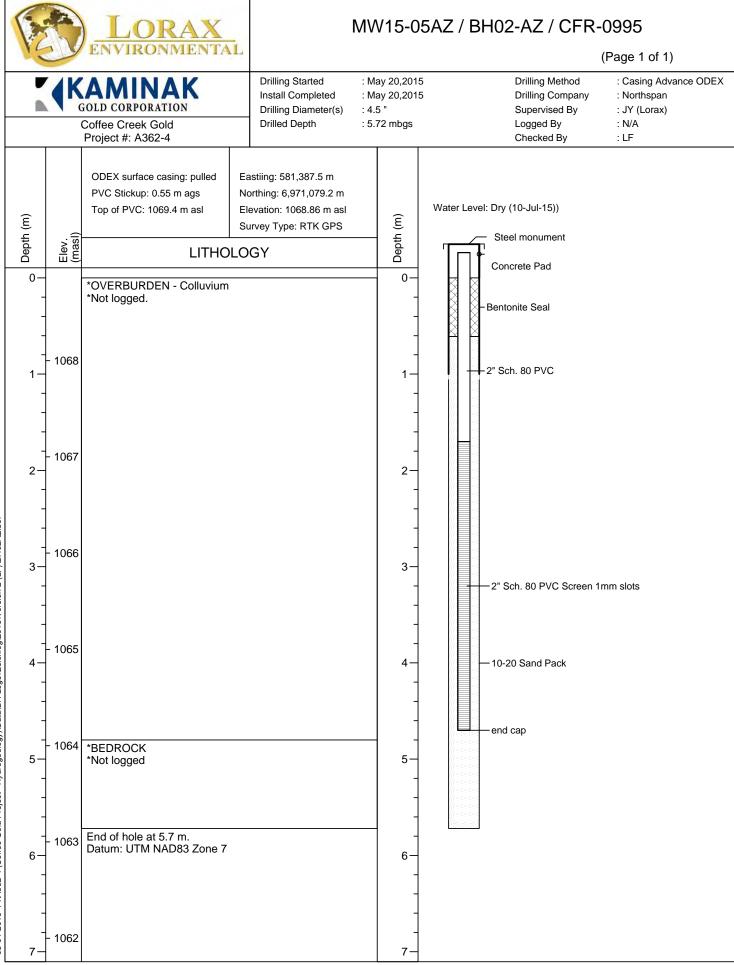

VC	24	ENVIRONMENTAL					(Page 2 of 2)
		GOLD CORPORATION Coffee Creek Gold Project #: A362-4	Drilling Started : May 0 Install Completed : May 1 Drilling Diameter(s) : 6.0" & Drilled Depth : 98.14	0,2015	nole (AH	Drilling Method : Casing Advance & RC Drilling Company : Northspan Supervised By : JH/AS (Lorax) Logged By : Kaminak Checked By : LF	
Depth Along Hole (m)	Elev. (masl)	Casing Depth: 11.9m along hole	Easting: 585,584.5. m Northing: 6,978,167.8 m Elevation: 557.75 m asl Survey Type: RTK GPS	Hd	EC (uS/cm)	Airlift Yield (USGPM)	Installation depths along hole (m AH)
55 -	- 502						
-		QUARTZ VEIN AMPHIBOLE BEARING SCHIST Moderate sericite and weak epid		_		30	
60 - -	- 497	moderate sensite and weak epid				30	
65 –	- 492	AMPHIBOLE BEARING SCHIST Weak patchy sericite and epidote Missing chips; samples collect e	e.			30 30	Thermistor (66.14 m)
-						30	- Cement grout
70- - -	- 487					30	
- - 75-						28	
-	- 482						Thermistor (78.41 m)
- 80-	- 477					30	1" Sch. 80 PVC Tremmie
-						33	
85-	- 472						
- - 90 —						30	
-90	- 467						
- - 95 –						25.3 26.9	
-	- 462						VWP 2 (97.7 m)
- 100 	- 457	End of Hole 98.2 m Datum: UTM NAD83 Zone 7 Geology & Construction based o *Comments from supervising hyd logged by Kaminak	on drill length along hole drogeologist, litholgy				
- - 105 - -	- 452	RST Model DT2040 Multichanne DT2037 Thermistor string S/N: TS3969 VWP 1, 1MPa S/N: 30461; VWP					

A.		LORAX ENVIRONMENTAL	M	W15-0	3WB	/ BH [·]	12-W	/B / CFR	-0987 (Page 1 of 2)
	G	AMINAK OLD CORPORATION Coffee Creek Gold Project #: A362-4	Install Completed Drilling Diameter(s)	: May 10,201 : May 12,201 : 6.0" & 4.5" : 99.52m			Drilli Sup Loge	ing Method ing Company ervised By ged By cked By	: Casing Advance & RC : Northspan : JH/AS (Lorax) : Kaminak : LF
Depth (m)	Elev. (masl)	Casing Depth: 10.4 mbgs HQ Depth: 33.5 mbgs Westbay Depth: 99.3 mbgs LITHO	Easting: 585,581.4 m Northing: 6,978,164.6 m Elevation: 557.92 m asl Survey Type: RTK GPS	н	EC (uS/cm)	Airlift (USGPM)	Depth (m)	HQ Rods Sti Westbay Stie	ing Stickup: 0.42 m ags ickup: 0.57 m abs ckup: 0.78 m ags : 1.8 m above ground ort 6) Surface
0	- 557	OVERBURDEN *Water return at 1.2 m					0		monumen
10-	- 552 - 547	FELSIC GNEISS Weathered. MAFIC MIXED GNEISS Very small black mafic chips w mod silicified felsic chips. Fres *Flat, platey ice fragments obs representing possible frozen fr	h. erved in cuttings	h					
	- 542	\8.5-10.4 m. No samples.					- - 15- -		HQ Rods HQ Rods Westbay MP38
	- 537	MAFIC MIXED GNEISS Moderately silicified. No samples.		/			- 20- - -		w/ Glycol
	- 532	MAFIC MIXED GNEISS Moderately silicified. No samples. BIOTITE SCHIST		9.6		2.1	25-		
	- 527	Fresh with weak muscovite. Not sampled. MAIFC MIXED GNEISS					30		Packer Port 8
	- 522	Weak chlorite after mafics, 0.1 Not sampled. FELSIC MIXED GNEISS bleached from moderate sil-se		9.9		5.3 5.1	35- - - -		Packer Port 7
	- 517	MIXED MAFIC GNEISS Weak patchy chlorite after mat ser. 0.1% diss cubic pyrite. Into m, 60.4-61 m, 61-62.5 m, 62.5	ics and weak patchy sil erval switches: 58.8-60.4	9.5 4 9.2		5.1 5.5	40-		
	- 512			9.3		4.5	45		Packer Port 6 Primary Zone 3 (Sampled)
	- 507			8.8		6.5 6	50		Packer Port 5

	The second		LORAX	М	W15-03	WB /	' BH1	2-W	'B / CFR-0987 (Page 2 of 2)
_		G	AMINAK OLD CORPORATION Coffee Creek Gold Project #: A362-4	Install Completed Drilling Diameter(s)	: May 10,2015 : May 12,2015 : 6.0" & 4.5" : 99.52m			Drillir Supe Logg	ng Method : Casing Advance & RC ng Company : Northspan ervised By : JH/AS (Lorax) led By : Kaminak sked By : LF
	Depth (m)	Elev. (masl)	Casing Depth: 10.4 mbgs HQ Depth: 33.5 mbgs Westbay Depth: 99.3 mbgs LITHOI	Easting: 585,581.4 m Northing: 6,978,164.6 m Elevation: 557.92 m asl Survey Type: RTK GPS	Hď	EC (uS/cm)	Airlift (USGPM)	Depth (m)	Surface Casing Stickup: 0.42 m ags HQ Rods Stickup: 0.57 m abs Westbay Stickup: 0.78 m ags Water Level: 1.8 m above ground (9-Jul-15; Port 6)
	55 —	- 502						55-	
	- - 60-	- 497			8.8		7 7.5	60-	
	- 65— -	- 492	MIXED FELSIC GNEISS Moderate patchy sil bleaching, 0.1% diss cubic pyrite. Interval	weak patchy chlorite switches every 3 ft.	8.1		7.75	- 65- -	Westbay
	- - 70- - -	- 487			8.1 8.7		8	- - 70- - -	Westbay MP38 w/ Glycol
2 (LF)\BH12WB V2.bor	- 75— -	- 482						75	
5\Version 2 (LF)\	- 80— - -	- 477						80	Packer Port 4
ogs\Quicklog\201	- 85— - -	- 472	Not sampled.					- 85 - -	Primary Zone 2 Packer Port 3
03-04-2016 P:\A362-4 (Coffee Gold Project - Hydrogeology)\Data\BH Logs\Quicklog\2015\Version	- 90 — - -	- 467						90 - - - -	Packor
oject - Hydrogeo	- 95 - -	- 462			8.8		12	- 95 - -	Packer Port 2 Primary Zone 1 Packer Packer Port 1
Coffee Gold Pr	- 100- -	- 457	End of hole 100 m (328 ft). Datum: UTM NAD83 Zone 7					100-	
016 P:\A362-4 (- 105— -	- 452	*Comment from supervising hy logged by Kaminak	drogeologist; lithology				105- - -	
03-04-2(- - 110-							- - 110—	

03-04-2016 P:\A362-4 (Coffee Gold Project - Hydrogeology)\Data\BH Logs\Quicklog\2015\Version 2 (LF)\BH12WB V2:bor

	Can a		LORAX		MW15-04	4AZ / BH04-AZ / CFR-0992
	1	-	ENVIRONMENTAL	4		(Page 1 of 1)
		(Coffee Creek Gold Project #: A362-4	Drilling Started Install Completed Drilling Diameter(s) Total Depth Completion Depth	: May 14,2015 : May 14,2015 : 4.5 " : 5.72 mbgs : 5.72 mbgs	5 Drilling Company : Northspan Supervised By : JY (Lorax) Logged By : Kaminak
03-04-2016 P:\A362-4 (Coffee Gold Project - Hydrogeology)\Data\BH Logs\Quicklog\2015\Version 2 (LF)\BH04AZ.bor	(m)	(Coffee Creek Gold Project #: A362-4 ODEX Casing: pulled PVC Stickup: 0.47 m Top of PVC: 672.97 masl	Total Depth Completion Depth Easting: 584,016.4 m Northing: 6,976,566.0 m Elevation: 672.50 m asl Survey Type: RTK GPS OGY		
04-2016 P:\A362-4 (Coffee Gold	- 6 - - -	- 666	End of hole at 5.7 m. *Comment from supervising hy Datum: UTM NAD83 Zone 7	drogeologist.		end cap
03-(7-				7-	



03-04-2016 P:\A362-4 (Coffee Gold Project - Hydrogeology)\Data\BH Logs\Quicklog\2015\Version 2 (LF)\BH04T.bor

C.		LORAX ENVIRONMENTAL	M	W15 [.]	-04T	/ BF	104-	T / CFR-	•0990 (Page 2 of 2)
		CORPORATION Coffee Creek Gold Project #: A362-4	Drilling Started : May 12 Install Completed : May 14 Drilling Diameter(s) : 6.0" & 4 Drilled Depth : 53.4 m	4,2015 4.5"	ble		D S L	Drilling Method Drilling Company Supervised By ogged By Checked By	: Casing Advance & RC
Depth (m)	Elev. (masl)		Easting: 584,027 m Northing: 6,976,568 m Elevation: 670.91 Survey Type: RTK GPS	Hd	EC (uS/cm)	Airlift Yield (USGPM)	Packer Test		
30 — - - 35 —	- 640	*Damp patch at 32 m., damp ag wet at 35.1 m.	ain at 34.3m,						
-	- 635	MIXED FELSIC GNEISS Fresh, with stronger muscovite fc clay,0.1% fc lim. *Soft patch at 39.2 m, 40.8 m.	along chip fabric, weak	n/a	n/a	1-2	130-175' (failed)		Cement grout Thermistor (38.73 m AH)
40	- 630	Son pater at 59.2 m, 40.6 m.		n/a	n/a	9	,		
- - 45 — -	- 625	FELSIC GNEISS Weak zone in felsic gneiss. Stro fc clay. 1% fc lim. *Cuttings size suggests fracturin drilling 45.1-45.7 m.		n/a n/a	n/a n/a	10	140-175' (failed)		- 1" Sch. 80 PVC Tremmie
- - 50-	- 620	*Formation grabby on rods at 4 drilling 47.35-48.2 m, becoming fractured. Driller reports layers of (49.8m). *Return water is very dark orang between dark orange and very l	hard although still of more fractured rock ge 50.1 m and alternates	n/a n/a	n/a n/a	21 27	shut-in		— Thermistor (51.13 m AH)
-		*Hole stability issues (caving an End of hole at 53.3 m (175 ft) al	d redrilling) at 52.7 m. ong hole.	n/a n/a	n/a n/a	30	110-175 \$		
55 — - -	- 615	RST Model DT2040 Multichann Thermistor string S/N: TS3970 VWP 1, 1MPa (39.4m) S/N: 325 S/N: 32596 *Comment from supervising hyd logged by Kaminak geologists	93; VWP 2, 2MPa (52.4m)						
60-		Datum: UTM NAD83 Zone 7 n/a: not available							

and the second		LORAX	MV	V15-04	4WB	/ BH	04-W	/B / CFR-0993
4	2	EN VIRONVIEN IAL						(Page 1 of 1)
	G	AMINAK OLD CORPORATION Coffee Creek Gold Project #: A362-4	Install Completed : I Drilling Diameter(s) : (May 15,201 May 19,201 6.0" & 4.5" 61.1 m			Drill Sup Loge	ing Method : Casing Advance & RC ing Company : Northspan ervised By : JY/LF (Lorax) ged By : Kaminak icked By : LF
Depth (m)	Elev. (masl)	Casing Depth: 6.4 mbgs HQ Depth: 30.4 mbgs Westbay Depth: 60.85 mbgs	Easting: 584,024.0 m Northing: 6,976,565.8 m Elevation: 671.46 m asl Survey Type: RTK GPS OGY	Ha	EC µS/cm	Airlift Yield (USGPM)	Depth (m)	Surface Casing Stickup: 0.383 m ags HQ Rods Stickup: 0.99 m Westbay Stickup: 1.06 m ags Water Level: 1.42 m above ground (9-Jul-15, Port 4)
0		*OVERBURDEN *Mix of organics and gravel.					0	
5	- - - 666	*OVERBURDEN *Ranging from silty sand with g *Damp at 1.5 m, 1.8-2.4 m (ap Not logged (no sample collected	pears frozen).				5	Surface casing
10	- 661 	MIXED FELSIC GNEISS Fresh, minor mafic component muscovite along chip fabric. 0. brassy cubic pyrite.	. Weak patchy sil, weak 1% fc lim, 0.1% diss				- 10 - -	HQ Rods w/ Glycol
15	- - 656 -						15- -	
20	- - 651 -						- 20- - -	Westbay MP38 w/Glycol
	- - 646						25	
	 641					<1	30-	Packer Port 6 Bentonite Seal (Not Tagged) Packer Port 5
alicking/201	- - 636			10.8 9.2 8.3	801 770 717	1 2 1	35-	Poir 5
	- 631			8.9 8.6	696 705	1-2 5 trickle	40-	Port 4 Primary Zone 2 Port 3
40 45 50 60 65	- - - 626			8.5 8.2 8.2 8.2	705 710 782 742	trickle 8 12 12	- 45- -	
50 50	- 621	FELSIC GNEISS	72.488 m moderate	8.4	742 744 760	40 24	- 50- -	
55	- - - 616	Strong red hematite staining 4 patchy sil. 0.1% fc lim.	.∠-40.0 m, modefale	8.2 8	767 775	11.5 12	- - 55	Port 2 Primary Zone 1
60 ¹	 			8.2	774	5	60	Port 1
65	- - -	*Comments from supervising h by Kaminak. Primary Zone 2 w Datum: UTM NAD83 Zone 7	ydrogeologist; lithology as sampled.				- - 65-	

03-04-2016 P:\A362-4 (Coffee Gold Project - Hydrogeology)\Data\BH Logs\Quicklog\2015\Version 2 (LF)\BH04WB V2.bor

-		LORAX	MW	/15-()5T /	/ BH()2-T	「/ CFR-0994
1	-	ENVIRONMENTAL						(Page 1 of 1)
		Corporation Coffee Creek Gold Project #: A362-4	Drilling Started : May 18,2 Install Completed : May 20,2 Drilling Diameter(s) : 6.0" & 4.5 Drilled Depth : 83.8 m Al	015 5"			Dril Suj Loç	illing Method : Casing Advance & RC illing Company : Northspan pervised By : LF/JY (Lorax) gged By : Kaminak cked By : LF
Depth (m)	Elev. (masl)	Casing Depth: 7.9 m AH Hole Dip: 80° LITHOL	Easting: 581,405.8 m Northing: 6,971,082.9 m Elevation: 1067.15 m asl Survey Type: RTK GPS	Hď	EC (uS/cm)	Airlift Yield (USGPM)	Packer Test	Installation depths along drill hole:
0-	- 1067	*OVERBURDEN						Housing Datalogger
5-	- 1062	*Colluvium. Silty sand to boulder	ry sections. No visible ice.					Thermistors (0.76, 1.51, 2.26, 3.01,
-		GRANITE Weak to moderate oxidation thro controlled clay.	bughout, weak fracture					3.81, 4.56, 5.26 m AH) - 6" Welded Surface Casing (0-7.9 m AH)
15-	- 1052	Not sampled. GRANITE						
	- 1032	Weak fracture controlled oxidation controlled clay and silica.	on, weak fracture					Thermistor (17.46 m AH)
25	- 1042							
30-	- 1037							Thermistor (29.96 m AH)
-	- 1032 - 1027							
-	- 1027							Thermistor (42.46 m AH)
		*Less dust at cyclone (45.7 m)						1" Sch. 80 PVC Tremmie
50-	- 1017	*Cuttings damp (48.7 m). *Water at cyclone (51.8 m).				damp		
55	- 1012	GRANITE		8.8 8.8	296 307	3.2 9.9		Thermistor (54.85 m AH)
- 09	- 1007	Moderate silica, sooty sulphides GRANITE		8.8	315	16.7		
	1007	Pervasive clay bleaching, weak to oxidation. Moderate pervasive si	fracture controlled ilica.			30		
65-	- 1002			9.2	323	25-30		Thermister (07.00 -= ALI)
70-	- 997			8.8	312	30		Thermistor (67.33 m AH)
				8.7	320	30		
75-	- 992			8.8	327	30		
80-	- 987			8.8 8.8	327 331	33 33		Thermistor (79.6 m AH)
85-	- 982	End of hole at 83.8 m (274 ft) ald		1	I			
90-	- 977	*Comments from supervising hydroged by Kaminak geologist. RST Model DT2040 Multichanne Thermistor string S/N: TS3971	el Datalogger S/N: 2038					
95 —		VWP 2, 2MPa S/N:30464; VWP Datum: UTM NAD83 Zone 7	1, 2MPa S/N: 32595					

	E.		LORAX		N	1W	15-0)5WE	3 / Bł	102-\	NB / CFR-	
	-				Drilling Started	· Mc		15		Dr	(illing Method	Page 1 of 2) : Casing Advance & RC
			CAMINAK GOLD CORPORATION		Install Completed Drilling Diameter(s)	: Ma : 6.0	ay 20,20 ay 22,20)" & 4.5)15 "		Dr Su	illing Company upervised By	: Casing Advance & RC : Northspan : JY/VS/LF (Lorax) : Kaminak
			Coffee Creek Gold Project #: A362-4		Drilled Depth	. 02	.9 mbgs				ogged By necked By	: LF
	Depth (m)	Elev. (masl)	HQ Depth: 56.38 mbgs I Westbay Depth: 82.7 mbgs I	No Ele Su	sting: 581,402.2 rthing: 6,971,084.0 vation: 1067.69 m asl rvey Type: RTK GPS		Hd	EC EC= µS/cm	Airlift Yield (USGPM)	Depth (m)	HWT Stickup: 0 HQ Stickup: 1.1 Westbay Sticku Water Level: 23 (20-Jul-15; Port	15 m ags ıp: 1.29 m ags
	0	- 1067	*OVERBURDEN *No recovery 0-0.6 m (top soil/r sand, bouldery in sections.	mu	skeg). Silty sand to					0		Surface
	- 5-	- 1062	*Moist patch 3.7-5.2 m.							- - 5-		casing
	- - 10	- 1057	*Weathered bedrock. GRANITE Weak patchy oxidation, and we	eak	patchy clay.					- - - 10		
2 (LF)\BH02WB V2.bor	- - 15- -	- 1052								- - 15— - -		
	20-	- 1047								- 20— -		
Logs/Quicklog/201	- 25— -	- 1042								- 25— -	_	HQ Rods w/ Glycol
Irogeology)\Data\BH	- 30— -	- 1037								- 30— -		
Gold Project - Hyd	- 35— -	- 1032								- 35— -		
03-04-2016 P:\A362-4 (Coffee Gold Project - Hydrogeology)\Data\BH Logs\Quicklog\2015\Version	- - 40 — - -	- 1027	GRANITE Moderate patchy oxidation, wea clay, fracture controlled limonite							- - 40 - - -		
03-04	- 45 —									45-		

03-04-2016 P:\A362-4 (Coffee Gold Project - Hydrogeology)\Data\BH Logs\Quicklog\2015\Version 2 (LF)\BH02WB V2.bor

14	24	ENVIRONMENTA	L					(Page 2 of 2)
h		GOLD CORPORATION Coffee Creek Gold Project #: A362-4	Install Completed : I Drilling Diameter(s) : 6	May 20,20 May 22,20 6.0" & 4.5' 32.9 mbgs)15		Dri Su Lo	illing Method : Casing Advance & RC illing Company : Northspan Ipervised By : JY/VS/LF (Lorax) gged By : Kaminak necked By : LF
Depth (m)	Elev. (masl)	Casing Depth: 6.7 mbgs HQ Depth: 56.38 mbgs Westbay Depth: 82.7 mbgs	Easting: 581,402.2 Northing: 6,971,084.0 Elevation: 1067.69 m asl Survey Type: RTK GPS	Hď	EC EC= µS/cm	Airlift Yield (USGPM)	Depth (m)	HWT Stickup: 0.99 m ags HQ Stickup: 1.15 m ags Westbay Stickup: 1.29 m ags Water Level: 23.7 m bgs (20-Jul-15; Port 3)
45-	- 1022	GRANITE Fresh.					45	
- - - 50 — -	- - - - 1017	GRANITE Moderate oxidation, modera disseminated hematite up to *Slightly damp patch 48.8-49 GRANITE \Fresh.	0.25%.				- - 50— -	HQ Rod: w/ Glyco
- - 55 - -	- 1012	GRANITE Weak oxidation, fracture cor 0.1%. *Not sampled. *Water encountered at 54.9	·				- - 55- -	Packer Port 5 Westbay MP38 w/Glycol
- 60-	- 1007	GRANITE Strong clay alteration, mode dissmeminated limonite/ her GRANITE Strong clay, bleached.	rate oxidation,	12.3 12.2 10.3	1045 1630 358	5 10	- 60- -	Bentonit Seal (Not Tag
- - 65 – -	- - 	GRANITE Moderate oxidation, weak fra alteration, patchy dissemina GRANITE Generally fresh, weak fractu *Driller indicates that water i	ted hematite up to 0.25%. re controlled oxidation. s likely being blown into	9.9	338 296 321	3	- - 65 — - -	Port 4 Packer Port 3 Primary Zone 2
- - 70- -	- 997	formation; hence lower airlift GRANITE Weak-moderate oxidation, p controlled clay. Fracture con 0.1%.	atchy weak fracture	9.3 9.1 9.3	293 302 321	5	- 70- -	Port 2
- 75–	- 992			9 8.8 8.3	301 310 308	4 30 35	- 75— -	
- - 80-	- 987	GRANITE Generally fresh, patchy clay	bleaching.	- 8.8 8.4 8.5	315 303 310	35	- - 80 -	Packer Port 1 Primary Zone 1
- - 85—	-	End of hole 82.9 m (272 ft).		8.5	320	35	- - 85—	
-	- 982	Primary Zone 2 was sample *Comment from supervising descriptions provided by Kar	hydrogeologist; all other				-	

		LORAX ENVIRONMENTA	M۷۸ L	/15-()6WE	3 / Bł	H05-V	WB / CFR-0999 (Page 1 of 3)
		Coffee Creek Gold Project #: A362-4	Install Completed : Ju Drilling Diameter(s) : 6	Install Completed : June 06,2015 Drilling Diameter(s) : 6.0", 4.5", 3.78"			Dri Su Log	illing Method : RC & DDH illing Company : Northspan, CYR pervised By : JY/VS/LF (Lorax) gged By : Kaminak lecked By : LF
Depth (m)	Elev. (masl)	HWT Depth: 162 mbgs HQ Depth: 203.6 mbgs Westbay Depth: #293# m bgs	Easting: 584,089.5 Northing: 6,975,003.3 Elevation: 1184.95 m asl Survey Type: RTK GPS	Hd	EC EC= µS/cm	Airlift Yield (USGPM)	Depth (m)	HWT Stickup: 0.37 m ags HQ Stickup: 0.62 m ags Westbay Stickup: 0.62 m ags RC 6" 0-8.8m, 4.5" 8.8-200.3 m; DDH HQ 200.3-293 m WL: 220.73 m bgs (15-Jul-15; Port 6)
0		FELSIC GNEISS Weak zone. Moderate pervas fracture controlled hematite a	ive clay alteration, nd limonite up ot 0.5%.				0	
15	- 1175 - 1170 - 1165	FELSIC GNEISS		-			10 15 20	
	- 1160 - 1155	Weak zone. Moderate clay al Dissminated hematite and lin *Dark brown, slight damp wit	nonite up to 0.5%.				25 - 30 -	
	- 1150 - 1145	FELSIC GNEISS Weak patchy sericite and silit FELSIC GNEISS Moderate clay alteration, weat limonite up to 0.25%.					35- 40-	
	- 1140 - 1135	controlled clay, trace fracture					45 50	
	- 1130 - 1125						55 - 60 -	Westbay MP38 w/ Glycol below 225m
65-	- 1120 - 1115	Disseminated limonite up to (65 70	HQ rods
80-		FELSIC GNEISS Weak sericite. Pink-Purple he HOST UNIT Zone. Strong clay alteration, to 3%, limonite up to 1.5%.					75 - 80 -	
85-	- 1100 - 1095	MIXED FELSIC GNEISS Weak clay and sericite altera limonite up to 0.1%. BIOTITE SCHIST Coarse biotite. Frcture contro					85 90	
95	- 1090 - 1085	FELSIC GNEISS]			95 100	Port 12

Image: Second	-		LORAX	M	IW15-0	06WE	3 / BI	-105-\	NB / CFR-0999
Nume Num Nume Num Nume Nume N	-		LITY INCIDENTIA						(Page 2 of 3)
Invertex HWT Depth:::162 mbgs Easting 544 00815 Westing 042 mags HWT Depth:::162 mbgs Easting 544 00815 Westing 042 mags HWT Depth:::162 mbgs HWT Depth::162 mbgs HWT Depth::162 mbgs HWT Depth::162 mbgs			GOLD CORPORATION Coffee Creek Gold	Install Completed Drilling Diameter(s)	: June 06,2 : 6.0", 4.5"	2015 , 3.78"		Dr Su Lo	illing Company : Northspan, CYR ipervised By : JY/VS/LF (Lorax) gged By : Kaminak
Implication Implication 105 1080 MMED FELSIC CMEISS Weak patchy solution Patchy fracture controlled weak day. Patchy fracture controlled weak fracture controlled (fracture controlled (fracture))) <td< th=""><th>Depth (m)</th><th>Elev. (masl)</th><th>HQ Depth: 203.6 mbgs Westbay Depth: #293# m bgs</th><th>Northing: 6,975,003.3 Elevation: 1184.95 m asl Survey Type: RTK GPS</th><th>Hd</th><th>EC EC= µS/cm</th><th>Airlift Yield (USGPM)</th><th>Depth (m)</th><th>HQ Stickup: 0.62 m ags Westbay Stickup: 0.62 m ags RC 6" 0-8.8m, 4.5" 8.8-200.3 m; DDH HQ 200.3-293 m</th></td<>	Depth (m)	Elev. (masl)	HQ Depth: 203.6 mbgs Westbay Depth: #293# m bgs	Northing: 6,975,003.3 Elevation: 1184.95 m asl Survey Type: RTK GPS	Hd	EC EC= µS/cm	Airlift Yield (USGPM)	Depth (m)	HQ Stickup: 0.62 m ags Westbay Stickup: 0.62 m ags RC 6" 0-8.8m, 4.5" 8.8-200.3 m; DDH HQ 200.3-293 m
105 1080 MixED FELSIC GNEISS 105 100 1075 1076 110 1077 100 1075 1076 110 1115 1107 115 1070 1075 110 1115 110 1115 115 1070 1115 1107 1115 110 1115 115 1070 1155 120 122 123 120 125 1060 1225 126 122 125 120 130 1055 130 136 130 136 136 140 1045 MIXED FELSIC GNEISS 140 145 140 145 145 1040 Incompositive after rod connected 142.3 m. 140 145 140 145 145 1040 Incompositive after rod connected 142.3 m. 150 155 160 Westnam 160 Westnam Westnam 160 Westnam 160 Westnam 160 Westnam	100-		MIXED MAFIC GNEISS					100 -	
100 1075 110 1075 110 1075 110 1075 110 1075 110 1075 115 1070 116 1070 115 1070 115 1070 115 1070 115 1070 115 1070 115 1070 115 1070 116 120 125 1060 136 1050 136 1050 136 1050 140 1045 Patchy moderate service controlled deplots and sinn. 140 1402.m. Trace moisture after rod connected 142.3 m. 150 1030 155 1030 160 1025 160 1025 160 1025 160 1025 160 1025 160 1025 160 1025 <td>105</td> <td>- 1080</td> <td></td> <td>tion.</td> <td></td> <td></td> <td></td> <td>105</td> <td></td>	105	- 1080		tion.				105	
115 1070 115 1070 120 1065 120 125 130 1055 130 125 130 1055 130 135 140 1045 MIXED FELSIC GNEISS Patchy moderate sercitie, weak fracture controlled clay, patry pink hematite stain. 140 145 1040 MIXED FELSIC GNEISS Patchy moderate sercitie, weak fracture controlled clay, patry pink hematite stain. 145 150 1035 145.3 m. 145.3 m. 160 1025 165 175 1010 Trace moisture after rod connected 142.3 m. 150 160 1025 165 120 175 1010 Trace moisture 174.3 m. 175 180 1005 185 180 185 1000 MIXED FELSIC GNEISS Interbedded gneiss and schiet. Silicified throughout. Patchy bleaching due to albite aith. Patchy chlorite and staining. 185 180 185 190 190 190 190			Weak patchy zone. Weak pat patchy fracture controlled weat controlled hematite and limon	ak clay. Patchy fracture				-	
120 1065 125 1060 130 1055 130 1055 135 1050 140 1045 MIXED FELSIC GNEISS Pathy moderate servitie, weak fracture controlled clay, pathy pick hematite stain. 140 140 1045 150 1030 155 1030 155 1030 165 1020 175 1010 175 1010 175 1010 175 1010 185 1000 MIXED FELSIC GNEISS Pathy moderate service and stain. 165 1020 175 1010 175 1010 176 1015 186 1000 MIXED FELSIC GNEISS Interbedded gneiss and schist. Slicified throughout. Pathy bleaching due to able alm. Patchy choirie and epidote alm. in malto bands. Primary pink hematite staining. 190 995 195 990	115	- 1070	clay bealching.					115-	
130 1055 135 1050 140 1045 MIXED FELSIC GNEISS Patchy moderate servite, weak fracture controlled clay, pathy pink hematite stain. 140 145 146 156 1035 166 1025 166 170 175 1010 *Trace moisture 174.3 m. 180 180 1000 MIXED FELSIC GNEISS Interbedded gneiss and schist. Silicified throughout. 185 1000 MIXED FELSIC GNEISS 185 1000 MIXED FELSIC GNEISS 185 1000 185 1000 185 1000 185 1000 185 1000 185 1000 190 990	-								
135 1050 140 1045 140 1045 Patchy moderate sercitite, weak fracture controlled 145 1040 145 1040 150 1035 150 1035 150 1035 160 1025 160 1025 175 1010 175 1010 • Trace moisture 174.3 m. 180 1005 185 1000 MIXED FELSIC GNEISS interbedded gneiss and schist. Slicified throughout. rebedded ath in mafic bands. Primary pink hematite staining. 190 990	125	- 1060						125-	
140 dast at 1305 m, bow hock. Dast returns at 150 m, 145.3 m, 145.3 m, 145.3 m. 150 - 1035 160 - 1025 160 - 1025 160 - 1025 160 - 1025 160 - 1025 160 - 1025 160 - 1025 170 - 1015 170 - 1015 175 - 1010 *Trace moisture 174.3 m. 180 - 1005 185 - 1000 <	130	- 1055						130	
140 clast at 103.5 m, bown rock. Dosited in state 140 clast at 103.5 m, bown rock. Dosited in state 150 - 1035 155 - 1030 160 - 1025 160 - 1025 160 - 1025 160 - 1025 160 - 1025 170 - 1015 170 - 1015 175 - 1010 *Trace moisture 174.3 m. 180 - 1005 185 - 1000 MIXED FELSIC GNEISS Interbedded gneiss and schist. Silicified throughout. Patchy bleaching due to albite attn. Patchy chlorite and epidote attn in mafic bands. Primary pink hematite staining. 190 - 995 195 - 990	135	- 1050						135-	
140 dast at 1305 m, bow hock. Dast returns at 150 m, 145.3 m, 145.3 m, 145.3 m. 150 - 1035 160 - 1025 160 - 1025 160 - 1025 160 - 1025 160 - 1025 160 - 1025 160 - 1025 170 - 1015 170 - 1015 175 - 1010 *Trace moisture 174.3 m. 180 - 1005 185 - 1000 <		- 1045						140	
150 1035 140210. Frace indicative and not connected 142.5 m, 155 1030 145.3 m. 160 1025 160 1025 160 1025 165 1020 165 1020 165 1020 170 1015 170 1015 175 1010 *Trace moisture 174.3 m. 185 1000 INXED FELSIC GNEISS Interbedded gneiss and schist. Silicified throughout. Patchy bleaching due to albite alth. Patchy chlorite and epidote alth in mafic bands. Primary pink hematite staining. 190 195 195 990		- 1040	clay, pathy pink hematite stai *No dust at 139.9 m, brown ro	n. ock. Dust returns at				145	
155 1030 155 1030 155 160 155 160 Westbay 165 1020 165 165 160 165 160 Westbay 170 1015 177 1010 *Trace moisture 174.3 m. 175 180 175 180 185 180 185 180 185 180 185 180 185 180 185 180 185 180 185 180 185 180 185 180 185 185 185 185 185 185 185 185 185 185 185 185 190 190 195 990 995 990 195 </td <td>150</td> <td>- 1035</td> <td></td> <td>100 connected 142.5 m,</td> <td></td> <td></td> <td></td> <td>150</td> <td></td>	150	- 1035		100 connected 142.5 m,				150	
160 1025 165 1020 165 1020 170 1015 175 1010 *Trace moisture 174.3 m. 180 1005 185 1000 MIXED FELSIC GNEISS Interbedded gneiss and schist. Silicified throughout. Patchy bleaching due to albite altn. Patchy chlorite and epidote altn in mafic bands. Primary pink hematite staining. 185 190 990		- 1030						155	
165 1020 170 1015 170 1015 175 1010 *Trace moisture 174.3 m. 180 1005 185 1000 MIXED FELSIC GNEISS Interbedded gneiss and schist. Silicified throughout. Patchy bleaching due to albite altn. Patchy chlorite and epidote altn in mafic bands. Primary pink hematite staining. 185 190 995		- 1025						160	MP38 w/ Glycol
170 1015 175 1010 *Trace moisture 174.3 m. 180 1005 185 1000 MIXED FELSIC GNEISS Interbedded gneiss and schist. Silicified throughout. Patchy bleaching due to albite altn. Patchy chlorite and epidote altn in mafic bands. Primary pink hematite staining. 185 195 990	165	- 1020						165	225m
175 1010 *Trace moisture 174.3 m. 180 1005 180 1005 185 1000 MIXED FELSIC GNEISS Interbedded gneiss and schist. Silicified throughout. Patchy bleaching due to albite altn. Patchy chlorite and epidote altn in mafic bands. Primary pink hematite staining. 195 990		- 1015						170	
180 1005 185 1000 185 1000 MIXED FELSIC GNEISS Interbedded gneiss and schist. Silicified throughout. Patchy bleaching due to albite altn. Patchy chlorite and epidote altn in mafic bands. Primary pink hematite staining. 180 195 990	175	- 1010	*Trace moisture 174.3 m.					175	
185 1000 MIXED FELSIC GNEISS Interbedded gneiss and schist. Silicified throughout. 185 Patchy bleaching due to albite altn. Patchy chlorite and 190 epidote altn in mafic bands. Primary pink hematite 190 195 990	180							180	
190 + 995 epidote altr in mafic bands. Primary pink hematite staining. 195 - 990	185		Interbedded gneiss and schis Patchy bleaching due to albit	e altn. Patchy chlorite and					Port 11
			epidote altn in mafic bands. F	rimary pink hematite					
3 200 - 985 200 - 2									

The second		LORAX ENVIRONMENTA	MV	V15-0)6WE	3 / Bł	H05-\	WB / CFR-0999 (Page 3 of 3)
		CORPORATION Coffee Creek Gold Project #: A362-4	Install Completed : J Drilling Diameter(s) : 6	May 24,20 June 06,2 5.0", 4.5", 293 mbgs	015 3.78"		Dr Su Lo	illing Method : RC & DDH illing Company : Northspan, CYR upervised By : JY/VS/LF (Lorax) upgged By : Kaminak necked By : LF
Depth (m)	Elev. (masl)	HWT Depth: 162 mbgs HQ Depth: 203.6 mbgs Westbay Depth: #293# m bgs LITHO	Easting: 584,089.5 Northing: 6,975,003.3 Elevation: 1184.95 m asl Survey Type: RTK GPS	Hd	EC EC= µS/cm	Airlift Yield (USGPM)	Depth (m)	HWT Stickup: 0.37 m ags HQ Stickup: 0.62 m ags Westbay Stickup: 0.62 m ags RC 6" 0-8.8m, 4.5" 8.8-200.3 m; DDH HQ 200.3-293 m WL: 220.73 m bgs (15-Jul-15; Port 6)
200-	- 980	*Hole drilled RC to 200.3 m b Hole dry to depth. Resumed 04:00am using diamond rig a followed by HQ drilling.	drilling May 30, 2015				200-	Port 10
210-	- 970	*Formation grabby on rods at redulced by half. Fracture at circulation loss. Partial return 218 m, and then parital returr to end of hole).	~215 m results in full after 215 m, lost again at				210 215 220	Port 9 HQ rods
225	- 960	*Rusty fractures ~230-234.5	m. Friable in places from				225-	Port 8
		233.6-234 m. *Rusty fractures ~238-242 m.					235-	Sampled
							245 250	Port 5 Port 4 Port 3
	- 925	MIXED MAFIC GNEISS Schistose band with minor fe interstitial carbonate and wea					255 260 265	Westbay MP38 w/ Glycol below 225m
250	- 915	*Three clayey seams 270.15- *Rusty fractures ~272-277 m					270-275-	
	- 905	*Rusty fractures ~278-287 m		_			280-	Port 2
290 290 	- 895	Fresh schist. Foliated and str cross cutting carb veinlets. End of hole 292.9 m.	ongly silicifed. Minor				290-	Port 1
295 – 295 – 300 –		*Comments from supervising logged by Kaminak geologist Datum: UTM NAD83 Zone 7	hydrogeologist; lithology				295- 	

A.C.		LORAX ENVIRONMENTAL	MW15-	07T	/ BH-	-07T / CFD-0596 (Page 1 of 1)
	G	AMINAK OLD CORPORATION Coffee Creek Gold Project #: A362-4	Drilling Started: August 10, 2015Install Completed: August 12,2015Drilling Diameter(s): HQ (96 mm)Drilled depth: 268 mbgs			Drilling Method : Diamond Drilling Company : Cyr Drilling Supervised By : C.Bearor (SRK) Logged By : Kaminak Checked By : LF
Depth (m)	Elev. (masl)	Depth to Bedrock: <1.0 mbgs Casing Depth: n/a mbgs LITHC	Easting: 585,198.4 m Northing: 6,974,582.9 m Elevation: 1183.14 m asl Survey Type: RTK GPS	Fracture = Fr Fault = Flt	Airlift Yield (USGPM)	Installation depths along hole (m)
0-	- 1180	OVERBURDEN		, ,		
- 20- -	- 1160	MIXED FELSIC GNEISS Grey moderately altered felsic g schist. Minor patches of bleachir pathes of oxidation.	neiss with minor green mafic ng and clay alteration, weakk			Thermistor (7, 8, 11 m)
40-	- 1140	Orange limonite+-clay altered ce angular monomictic breccia. Mor and bottom 20-30cm.	emented coarse grained re of a crackle breccia in to			Thermistor (41 m)
60-	- 1120	MIXED FELSIC GNEISS 75% grey to dark grey felsic gne 25% green mafic schist, biotite-fr alteration.	iss with immature augens. eldspar, moderate chlorite			Thermistor (56 m)
80-	- 1100					Thermistor (86 m)
100	- 1080					Thermistor (106 m)
120	- 1060			_		Thermistor (121 m)
- 140 -	- 1040	MIXED MAFIC GNEISS Same rocks as above, but 40% f schist. A bit more alteration, a co 166m, mod oxide zone from 158	puple blebs of cpy+pyo at			Thermistor (136 m)
160-	- 1020					Thermistor (166 m)
- 180- -	- 1000	MIXED FELSIC GNEISS 70% drk grey to green-grey felsi	c gneiss, 30% schist. Trace	-		Thermistor (181 m)
200-	- 980	disseminated pyrite.	G,			1.5" Sch. 80 PVC Tremmie
220-	- 960					
240-	- 940					
260-	- 920					VWP 2 (267.8 m)
- 280- - -	- 900	EOH 268 m RST Model 2040 Multichannel D Thermistor String (0-200 m) S/N VWP 1 (239 m) 3MPa, S/N: 333 33364				
300-		Lithology logged by Kaminak ge	ologist			

Appendix 3-B: Westbay Completion Report

_GOLDCORP

September 21, 2015

Completion Report WB950 Kaminak Gold Coffee Creek Project

September 21, 2015

Completion Report WB950

Kaminak Gold Coffee Creek Project

Project Number: WB950

Prepared for: Lorax Environmental Services Ltd.

Prepared by: Westbay Instruments

3480 Gilmore Way Suite110 Burnaby, BC V5G 4Y1

CONTENTS

1		2
2	PRE-INSTALLATION ACTIVITIES	2
3	INSTALLATION 3.1 Preparation of Westbay System Design 3.2 Layout of Westbay System Components 3.3 Lowering of Westbay System Components 3.4 Hydraulic Integrity Testing 3.5 Positioning of Westbay System Completion 3.6 Pre-inflation Profile 3.7 Inflation of Westbay System Packers and Placement of Antifreeze Solution	2 3 3 3 3 4 4 4 4
4	EXCEPTIONS TO STANDARD INSTALLATION PROCEDURES	5 5 6 7
6	OPERATOR TRAINING	7
TABLES		

Table 1: Summary of Westbay System Completions	2
Table 2: Borehole and Westbay Tubing Water Levels	4

FIGURES

Figure 1: MOSDAX Transducer Position Figure 2: Zone Dimensions

APPENDICES

APPENDIX A: Monitoring Well: BH2-WB APPENDIX B: Monitoring Well: BH4-WB APPENDIX C: Monitoring Well: BH5-WB APPENDIX D: Monitoring Well: BH8-WB APPENDIX E: Monitoring Well: BH10-WB APPENDIX F: Monitoring Well: BH12-WB 7

8

1 INTRODUCTION

This report and the attached Appendices document the technical services carried out by Westbay Instruments (Westbay) under Lorax Environmental Services Ltd. P.O. No. A362-4. Westbay System completions were installed in boreholes BH2-WB, BH4-WB, BH5-WB, BH8-WB, BH10-WB and BH12-WB on a site near Coffee Creek, Yukon Territory.

This report documents the installation tasks and related QA checks.

2 PRE-INSTALLATION ACTIVITIES

All boreholes were drilled using air rotatory methods at a nominal 4.5-inch diameter (HQ-size). Permanent surface casings were installed to bedrock in each borehole. The surface casing depths are not included in this report. An exception to the above drilling method used is discussed in section 4.2, where addition drilling was conducted using a coring rig.

3 INSTALLATION

Westbay technical services representatives were on site for installation of the Westbay System completions as follows: Mr. Mark Lessard, April 29 – May 20, 2015. Mr. Andrew Bessant, May 20 – June 7, 2015, and Mr. Dave Larssen was on site June 7th-June 10th. Lorax representatives Ms. Laura Findlater, Mr. Jordi Helsen, Mr. Andrew Solod, and BGC representative Ms. Catherine Schmid were on-site to assist and supervise the work.

(Note: all depths are with respect to ground surface. Monitoring well reference elevations were not available at the time of writing).

	1				
Monitoring Well No.	Installation Dates	Borehole Depth (m)	Depth of HQ rods	MP38 Tubing Length (m)	No. Monitoring Zones
	2015		(m)		
BH2-WB	May 22	82.9	56.5	82.9	2
BH4-WB	May 17-19	61.1	30	60.9	2
BH5-WB	June 6-9	293	200	294	4
BH8-WB	May 4-5	116.7	78	116.7	2
BH10-WB	May 25	65.7	10*	65.6	2
BH12-WB	May 11-14	99.7	34	99.6	3

Table 1, Summary of Westbay System Completions

* HQ rods removed, surface casing only.

The Westbay Systems were installed according to the procedure described below.

3.1 Preparation of Westbay System Design

Packer and zone depths and the projected depth of permafrost for each borehole were provided to Westbay by Mr. Jordi Helsen or Ms. Laura Findlater of Lorax. Well designs were created based on these depths. Each well design was used to prepare a Westbay Completion Log, which specifies the location of components in the well. These logs were reviewed and approved in the field by Mr. Helsen or Ms. Findlater prior to installation of the wells. The Westbay Completion Log as approved was used as an installation guide in the field. Field copies of the logs are in the Appendices.

A measurement port coupling was included in each primary zone to provide the capability to measure fluid pressures and collect fluid samples. Measurement port couplings were also included in QA zones to provide QA testing capabilities. A pumping port was placed above the top packer located directly above the expected base of permafrost in each completion. This pumping port was placed as part of a plan to introduce a 3:1 propylene glycol/water mixture into the steel casing adjacent to the permafrost zone.

Ms. Laura Findlater of Lorax requested that optional synthetic (PET) filters were not to be installed over the measurement port couplings.

3.2 Layout of Westbay System Components

Prior to Westbay System installation, the Westbay System components were set out on a rack near the borehole according to the sequence indicated on the Westbay Completion Log. Each component was numbered beginning with the lowermost as an aid to confirming the proper sequence of components. The appropriate Westbay System couplings were attached to the tubing sections. Magnetic location collars were attached 0.6 meters below the top of the measurement port in each primary zone.

Each component was visually inspected. Serial numbers for each packer, pumping port and measurement port coupling were recorded on the Westbay Completion Log. The well component layout was confirmed with the log before the components were lowered into each borehole.

3.3 Lowering of Westbay System Components

The Westbay System components were lowered into the boreholes by hand or rig assisted as required, through HQ drill rods (nominal 76mm ID) which were used as a temporary guide tube. Each tubing joint was tested with a minimum internal hydraulic pressure of 150 psi for one minute to confirm hydraulic seals. A record of each successful joint test and the placement of each component are noted on the Westbay Completion Log by check marks.

A 3:1 water/propylene glycol mixture supplied by Lorax was added to the Westbay completion when necessary to counter buoyancy effects while components were lowered into each borehole and for testing of joint seals during lowering.

3.4 Hydraulic Integrity Testing

After the Westbay System components were lowered into each borehole, the water inside the tubing was monitored at a depth different from the open borehole water level for a minimum period of thirty minutes to confirm hydraulic integrity of the tubing. The data from the hydraulic integrity tests are shown in Table 2 below.

Well number	Borehole water level Per-Installation (ground surface)	Westbay tubing water level (below top of Westbay)
BH2-WB	24.8 m	65.14 m
BH4-WB	artesian	34.304 m
BH5-WB	215.2 m	282.9 m
BH8-WB	38.41 m	41.32 m
BH10-WB	8.2 m	20.72 m
BH12-WB	~ 1 m	34.304 m

Table 2, Borehole and Westbay Tubing Water Level

3.5 Positioning of Westbay System Completion

After the components were lowered into the borehole, and the guide tube was removed (BH10-WB) or the guide tube was lifted into position just below the, permafrost interface and was hung permanently from the surface casing. (BH2-WB, BH4-WB, BH8-WB, BH5-WB and BH12-WB). The final position of the guide tube is illustrated on each wells Summary Completion Log in the Appendices. The Westbay System tubing was positioned as indicated on the cover page of the Summary Completion Log. Ground surface was used as zero reference for all installations. The Westbay System components were supported in this position while packer inflations were carried out.

The positioning of the Westbay System is based on the "nominal" lengths of Westbay System components. The positioning calculations do not include allowances for borehole temperature or deviation effects.

The attached figure titled "MOSDAX Transducer Position" provides information to correlate the position of MOSDAX Transducer sensors to the reference position at the top of the Measurement Port. The attached figure titled "Dimensions of Packer Seals and Monitoring Zones" outlines the calculations used to determine the packer centerline depths and zone length.

The Summary Completion Log and Table 4, shows the final "as-built" locations of key components in the well, and Table 5 shows the final "as-built" locations of all components in the well, are included in the Appendices.

3.6 Pre-inflation Profile

Prior to inflating the packers, a pre-inflation pressure profile was carried out in the Westbay Systems to confirm the proper operation and position of measurement ports and magnetic collars. The data confirmed proper operation and position of all measurement ports (Figure 3). The data for the pre-inflation profile for each well is located in the Appendices.

3.7 Inflation of Westbay System Packers and Placement of Antifreeze Solution

The Westbay packers were inflated using a 3:1 proplyene glycol/water mixture provided by Lorax. The Westbay Model No. 6055 vented inflation tool was used for packer inflation. All the packers appear to have inflated normally. The data for inflation of each packer are provided on the Westbay Packer Inflation Records included in the Appendices.

The packers were inflated in a specific sequence as part of a plan to introduce and control an antifreeze solution in the well annulus through the permafrost zone, with the exception of BH5-WB where no glycol/water mixture was introducted as there is no fluid in the annulus between the HQ and the Westbay to flush out of the permafrost zone.

The sequence of tasks for introducing 3:1 proplyene glycol/water mixture is illustrated below:

- A set of two packers positioned inside the HQ rods immediately below the expected base of permafrost are inflated.
- The pumping port above the upper inflated packer was opened.
- A 3:1 mixture of water and propylene glycol supplied by Lorax was pumped inside the Westbay tubing, out the pumping port and into the well annulus (HQ rods). Pumping continued until a return flow of the mixture was observed from the well annulus at ground level, thus indicating that the well annulus (HQ rods) was full of the antifreeze mixture.
- The pumping port above the upper inflated packer was closed.
- The remaining Westbay packers were inflated sequentially beginning at the bottom.
- The squeeze relief venting function of the packer inflation tool was disabled to prevent accidental release of tubing fluid to the formations.

4 EXCEPTIONS TO STANDARD INSTALLATION PROCEDURES

4.1 BH8-WB Release of Antifreeze Solution

There was an unintentional release of 3:1 propylene glycol/water mixture into the annulus of the borehole during the installation process.

- 1. Packer inflation was completed on May 5th. It was noted by the field crew on May 6th that about 42 liters of the water-glycol mixture had been released from inside the Westbay tubing during the squeeze relief venting by the packer inflation tool.
- 2. The release was reported on May 6th. After discussions it was decided by Lorax to conduct purging of the individual zones to determine the effect on the native fluid chemistry. This purging was done by the Westbay representative on May 8th to May 10th.
- 3. We understand that chemical analysis of retrieved samples yielded no detectable glycol mixture after field analysis.

Lorax sent other samples for more detailed analysis offsite, and these results are not known.

- 4. The squeeze relief venting capability of the packer inflation tool was mechanically disabled to prevent a similar release in future wells onsite.
- 5. As a preventive measure against future occurrences, Westbay implemented changes to the field crew mobilization procedures to more clearly document any exceptions to the standard procedures.

After preventive measures were implemented, no further occurrences of propylene glycol/water mixture release occurred during the remaining installations.

4.2 BH5-WB Installation

BH5-WB was first drilled using air rotary to a depth of 200m. On completion it was determined that no water was present in the borehole. It was decided by Lorax to continue drilling to a depth 295m using a diamond coring drill rig. HWT casing was installed to 170m. The remaining 95m to TD was cored with HQ-size wireline equipment. On completion of the coring the water level in the borehole was at surface. The water level was monitored by Lorax, and it dropped to below 200m. It was determined at this point that the plan to introduce and control an antifreeze solution in the well annulus through the permafrost zone would not be followed as there was no drilling fluids that needed to be flushed out above the permafrost packers.

The sequence of events below describes the installation process and the unintentional positioning of the Westbay System.

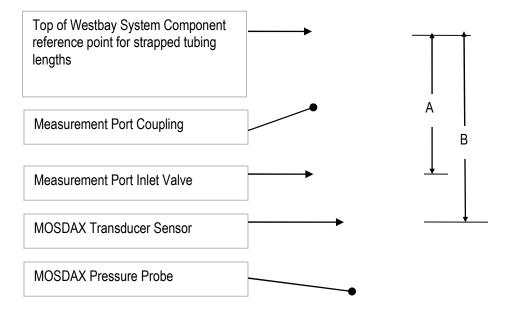
- 1. The HQ rods used as a guide tube in BH5-WB were lifted into position, 200m below ground surface and hung permanently from the HWT surface casing using a casing clamp.
- 2. The borehole was sounded using a tag line supplied and operated by Lorax personnel to confirm total depth (TD) of the borehole (293m). Multiple attempts at sounding where conducted by Lorax and a few different depths were recorded, (291.8m, and 287m) it was uncertain whether the hole was at depth or some material had sluffed in. The unclear readings of TD led to the adjustment of the Westbay System design, removing some tubing components from the bottom to prevent unexpected landing too high in the borehole. The standard installation procedure for landing the Westbay System on bottom were changed to an alternative standard procedure which included suspending the Westbay tubing at ground surface.
- 3. Lorax approved the changes and signed the installation documentation.
- 4. Once all Westbay System components were lowered into the borehole, two packers in the HQ guide tube were inflated to hold the Westbay System in its final designed position. These packers would provide support to Westbay System while mobilization of the drill rig off site took place. The Westbay System top section was below the top of HQ rods at the end of shift, safely protected from possible damage.
- 5. The following morning the Westbay System was found to have had slid down the well 7.55m from top of the HQ rods and was resting on bottom of hole (293m).
- 6. It was speculated onsite that ice may have formed inside the HQ rods, decreasing the capability of the two inflated packers to support the weight of the Westbay completion string.
- 7. An additional 7.5m of Westbay tubing were attached to the downhole tubing and the "as-is" position of the packer seals were reviewed and accepted by Lorax.
- 8. A pre-inflation profile and hydraulic integrity test were carried out, as a QA check to show the Westbay System to be hydraulically sealed and functioning properly.
- 9. Based on the successful outcome of the QA checks, Lorax approved the inflation of the Westbay System packers as positioned in the borehole.
- 10. All packers seemed to have inflated normally and the well is operating to designed specifications.

5 FLUID PRESSURE MEASUREMENTS

After packer inflation was completed, fluid pressures were measured at each measurement port. At that time, the in-situ formation pressures may not have recovered from the pre-installation activities and potential groundwater pressure increases in monitoring zones that may result from packer inflation. This latter effect may be more likely to occur in monitoring zones located in low-permeability geological formations. Longer term monitoring may be required to establish representative fluid pressures.

A plot of the piezometric levels in all zones in each well is shown on Figure 4 in the Appendices. The data were examined to confirm proper operation of the measurement ports and as a check on the presence of annulus seals between monitoring zones. The calculation sheets for the pressure profiles of the Westbay System are also enclosed in the Appendices.

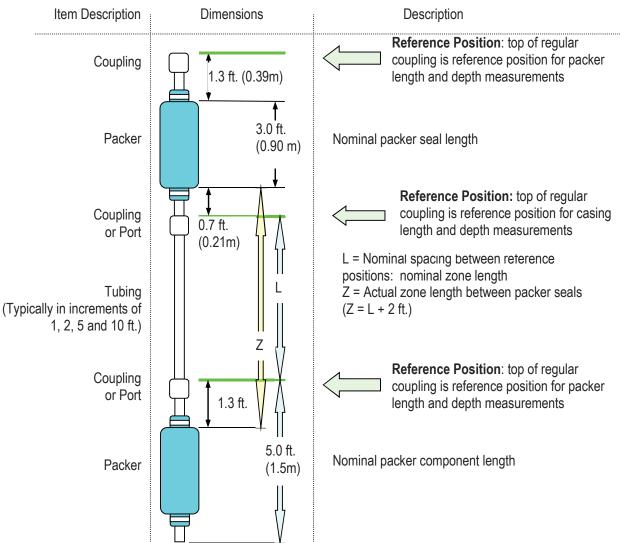
6 OPERATOR TRAINING


Training was provided to Mr. Jordi Helson, Mr. Chris Bourque, and Ms. Laura Findlater of Lorax. The training covered the following areas:

- Operation and maintenance of Model 2531 Sampler Probe and MAGI controller in pressure profiling, sample collection.
- Cable reheading and troubleshooting.

Mr. Jordi Helson, Mr. Chris Bourque, and Ms. Laura Findlater are certified for un-supervised operation and field maintenance of this Westbay equipment.

MOSDAX Transducer Position


In an Westbay System Measurement Port Coupling

System	Measurement Port	А	В
Plastic MP38	0205	4.5" (114.3 mm)	6.5" (165.1 mm)

Figure 1: MOSDAX Transducer Position

Dimensions of Packer Seals and Monitoring Zones. 0238 Packers

Discussion Points:

- The top of a coupling (Regular Coupling, Measurement Port or Pumping Port) is the reference point for describing nominal depths and nominal lengths. Actual positions of packer seals and zone lengths are determined with respect to the appropriate reference positions.
- <u>Packer Position Example</u>: A packer with a nominal depth of 50 ft. (15.2m), will have a nominal packer seal position of 51.3 to 54.3 ft. (15.59 to 16.49m)
- <u>Zone Length Example</u>: A zone whose upper packer is at 50 ft. (15.2m) and bottom packer is at 70 ft. (21.3m) will have a nominal zone length of 15 ft. (4.6m) and an actual zone length (between packer seals) of 15.0+1.3+0.7 = 17.0ft. (4.6 + 0.39 + 0.2 = 5.19m)
- Information on the position of Measurement Port Valve and MOSDAX Transducer sensor, used for detailed calculation of piezometric level measurements, are described separately.

Figure 2: Zone Dimensions

APPENDIX A: MONITORING WELL: BH2-WB

As-Built Key Components Summary (Table 4) As-Built Tubing Summary (Table 5) Summary Completion Log	- 1 page - 1 page - 2 pages
Pre-Inflation Piezometric Pressure/ Levels	
Field Data and Calculation Sheet (May 22)	- 1 page
Figure 3, Pre-Inflation Profile	- 1 page
Post- Inflation Piezometric Pressure/Levels	
Field Data and Calculation Sheet (May 22)	- 1 page
Figure 4, Post-Inflation Profile	- 1 page
Westbay Completion Log (field copy)	- 5 pages
Westbay System Packer Inflation Records	- 5 pages

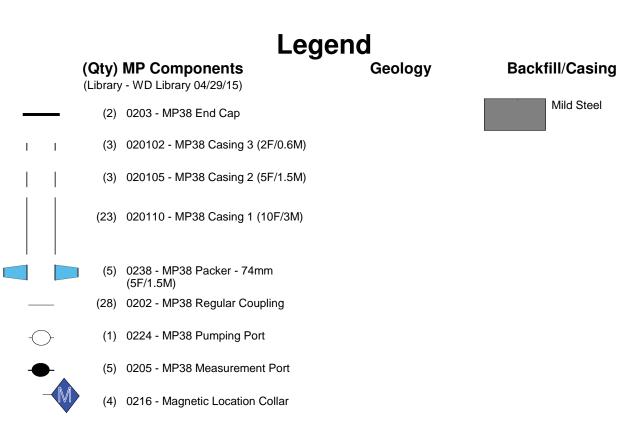
Table 4: BH2-WB As-Built Packer and Port Summary

AB ,01/06/2015

Port No.	Zone	Measurement Port Depth, (m)	Pumping Port Depth, (m)	Depth to top of Packer, (m)	Top of Zone (m)	Bottom of Zone (m)	Comments
1	1	78.1		76.6	77.9	82.7	
2	QA 1	68.4		66.9	68.2	77.0	
3	2	63.8		62.3	63.6	67.3	
4	QA 2	62.3		60.8	62.1	62.7	
5	QA 3	54.7	53.1	53.1	54.4	61.2	
6							
7							
8							
9							
10							
11							
12							
13							
14							
15							

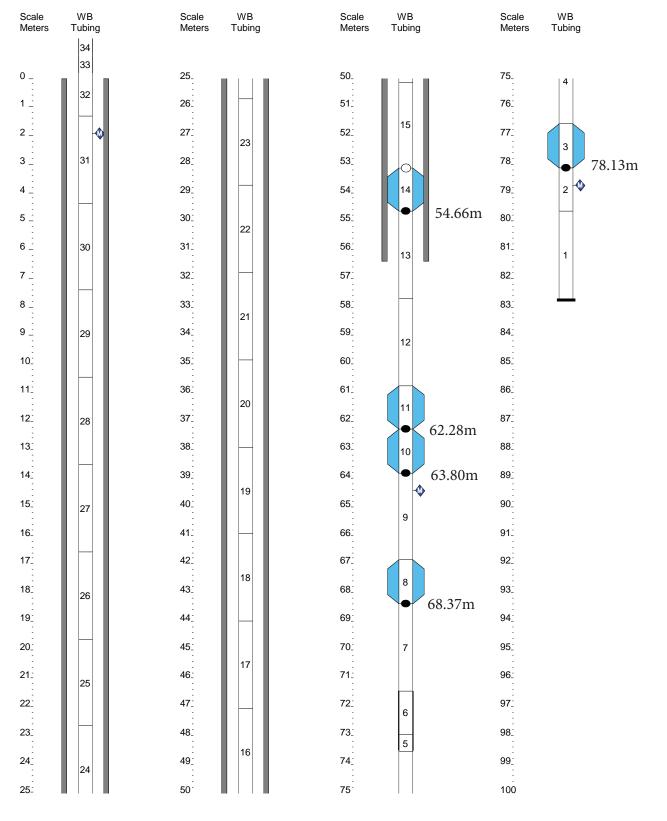
Note 1: All depth measurements in meters below datum (GS).

Note 2: All depth measurements use 'Nominal' tubing lengths.


Note 3: Not corrected for borehole deviation or borehole temperature effects.

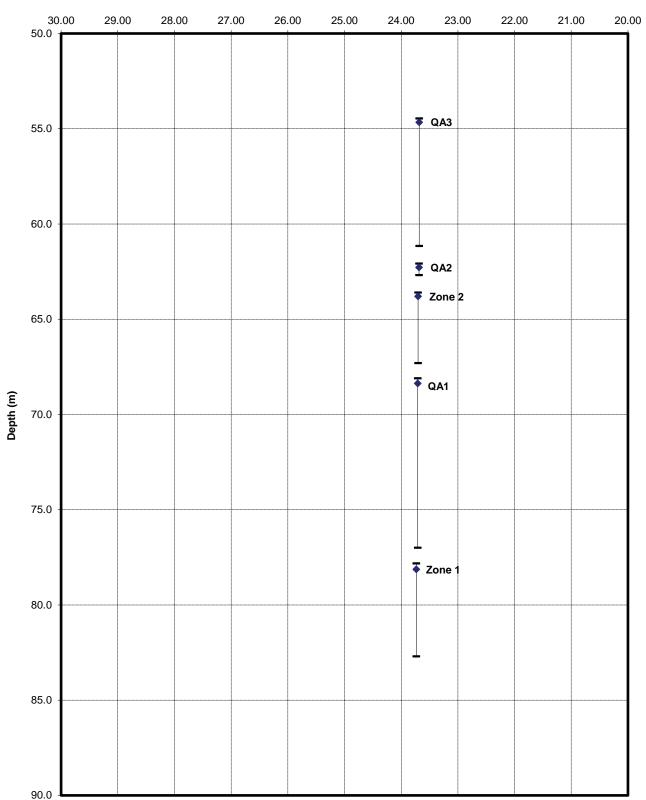
Note 4: All depth measurements to upper edge of Westbay System coupling item.

	Table 5: BH2-WB As-Built Summary											
							🛯 Wes	stbay.				
AB ,01/0	06/2015						Instrume	nts				
Item No.	Component P/N	Component Description	Component S/N	Coupling P/N	Coupling S/N	Accessory P/N	Accessory Depth (m)	Final Position (m)				
34	20102		1 1	203				-1.2896				
33	20102		1	202				-0.81				
32	20105		1	202				-0.20043				
31	20110			202		216	1.9	1.3235				
30	20110			202				4.3713				
29	20110			202				7.4192				
28	20110			202				10.467				
27	20110			202				13.515				
26	20110			202				16.563				
25	20110			202				19.611				
24	20110			202				22.658				
23	20110			202				25.706				
22	20110			202				28.754				
21	20110			202				31.802				
20	20110			202				34.85				
19	20110			202				37.898				
18	20110			202				40.946				
17	20110			202				43.993				
16	20110			202				47.041				
15	20110			202				50.089				
14	238	Packer	19249	224	8716			53.137				
13	20110	Measurement Port		205	8463			54.661				
12	20110			202				57.709				
11		Packer	19210	202				60.757				
10		Packer	19206	205	8461			62.281				
9		Measurement Port		205	8460	216	64.4	63.804				
8		Packer	19207	202				66.852				
7		Measurement Port		205	8462			68.376				
6	20105			202				71.424				
5	20102			202				72.948				
4	20110			202				73.558				
3		Packer	19202	202				76.605				
2		Measurement Port		205	8476	216	78.7	78.129				
1	20110			202				79.653				
0	203							82.701				


Summary Completion Log LORAX

Job No: WB950 Well: BH2-WB

Summary Completion Log LORAX

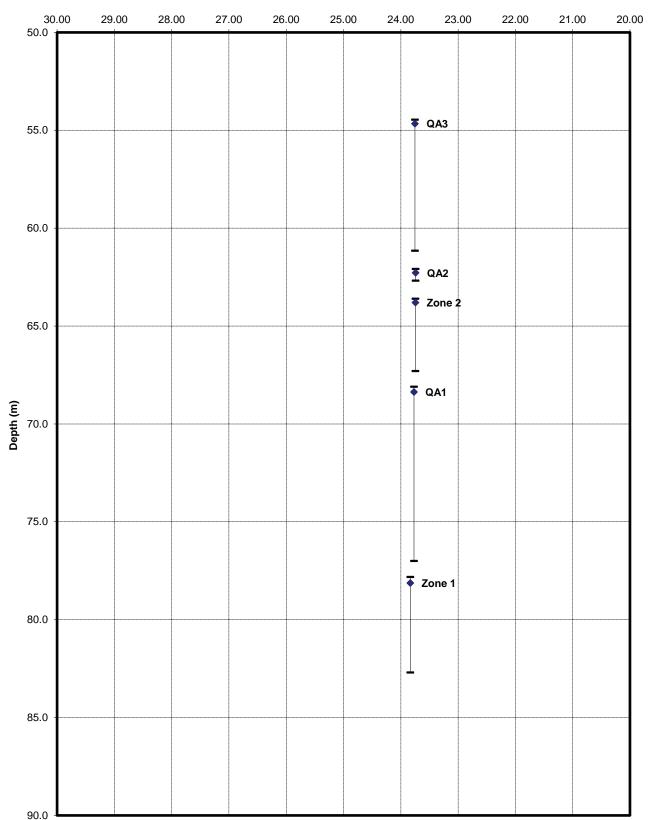

Job No: WB950 Well: BH2-WB

O Westbay		Westbay Piezometric Pressures/Levels
Weil No.: Datum: Elev. G.S.: Height of Westbay above G.S. Elev. top of Westbay Casing: Reference Elevation: Borehole angle:	Probe Type: Serial No.: Probe Range: Probe Range: Westbay Casing Type: Sampler Valve Position:	Date:
Note: "Port position" in angled bomiholes refer to position a	iong drillhole. Trus depth (Dp) needs to be on data to calculate zone piezometric level (Dz) Patm 🚄	Ambient Reading (P _{am}) (pressure, temperature, time) Start: Pressure <u>12.97</u> Finish: <u>13.03</u> Temp <u>12.97</u> psi Time

	Port Position	Port Position	True Port	1	Eluit	d Pressure Read	lings		Pressure Head Outside Part	Piez Lovel Outside Port	
Port No	Fram Log (m)	From Cable (m)	Depth "Dp" (m)	Inside Casing (P1)	Outside Casing (P2)	Time H:M:S	Probe Temp. (*C)	Inside Casing (P1)		(m) Dz = Dp - H	Comments
1	78.1	783	X	34.39	90,32	9:26	6.40	34.39	5439	23.7	
2	68.57	68.6	1	20,21	76.48	9:28	4.32	20.21	44.66	23.7	
3	62.8	63.0	-	13.59	\$9.99	9:29	3,61	13.59	40.10	23,7	
4	6228	62.5	\sim	13.11	67.85	9:32	2.55	13, 11	38.59	23.7	_
S	546	58.8	-	12.11	57.02	9135	2.18	13.11	30.97	23.7	
				1		1.00071	100	1.2.2			
				1- T-			11	1.5			
	1 = 1			1				1			
	i = -i			1	-			-		1	
-	1.2.2										
								11			
								1.1			
1		+ 1						11		1.11.11.4	
					T	17				1	
		1						1			

Piezometric Profile Monitoring Well: BH2-WB

Equivalent Depth to Water (m)


Westbay.	Westbay	Piezometric Pressures/Levels
Well No.: Datum: Elev. G.S. Height of Westbay above G.S.: Elev. top of Westbay Casing: Reference Elevation: Borehole angle:	Probe Type: <u>EmS</u> Serial No: <u>2+39</u> Probe Range: <u>250</u> Westbay Casing Type: <u>19238</u> Sampler Valve Position: <u>C</u>	Date: 22/05/2005 Client Job No: 250 Location: <u>26/20 Cross</u> Weather: <u>522 24</u> Operator: <u>288 215</u>
Note: "Port position" in angled boxeholes refer to position along drillinule, calcutated using borehole angle and deviation data to ca	True depth (Dp) needs to be Start loufate zone piezomietric lavel (Dz).	Amblent Reading (P _{atra}) (pressure, temperature, time) t: Pressure 13.03 Finish: 13.05 Temp

Part No.	Part Position From Log	Port Position From Cable	True Port	1	Flui	d Pressure Read	eprit		Pressure Head Outside Port	Piez Level Outside Port	
- art rea.	(m)	(m)	Depth "Dp" (m)	Inside Casing (P1)	Outside Casing (P2)	Time H:M:S	Probe Temp. (*C)	Inside Casing (P1)	(m) H = (P2-Patro)/w	(m) Dz = Dp - H	Comments
1	78.1	78.6		127.22	90.24	13:31	7.51	127.27	54.28	23.0	
2	68.4	68.9			76 45	15:35	3.48	76.45	44.58	13.0	
3	63.8	KA 63.6		106 58	69.99	13:42	1.25	106.58	40.04	13.7	
4	62,3	68:1		104.37	67.83	13:45	1.05	104 38	38 52	13.8	
5	54.6	543		72,36	56.98	13.48	1.47	93.37	30,89	23.7	
		1.00					1.000				
		1			-				1.00	2011	14
_	-	-		-	-						
_									_		
			T				1				
				1.00	-					-	
						-		(i			
_						_		10.14			
				12							
	-	1					(;)	1.00	27 Car 2	1	

Patm = atmospharic pressure H = pressure head of water in zone Dp = true depth of measurement port

Piezometric Profile Monitoring Well: BH2-WB

Client: LORAX Envivromental Ltd Site: Coffee Creek Datum: Ground Surface Plot By:____Date:____ Checked By:____Date:____ Westbay Project:WB950

Westbay System Completion Log

Compar	V: LORAX	
Well:	H-2	-
Site: C	eller Check	
Project:	00 11	

WB #: (Author:

Well Information

Reference Datum: Elevation of Datum: łt. WB Tubing Top: / M. n WB Tubing Length: 33.0 fπ.

Borehole Depth: 8. Borehole Inclination: Borehole Diameter: 55 in.

Well Description:

Other References:

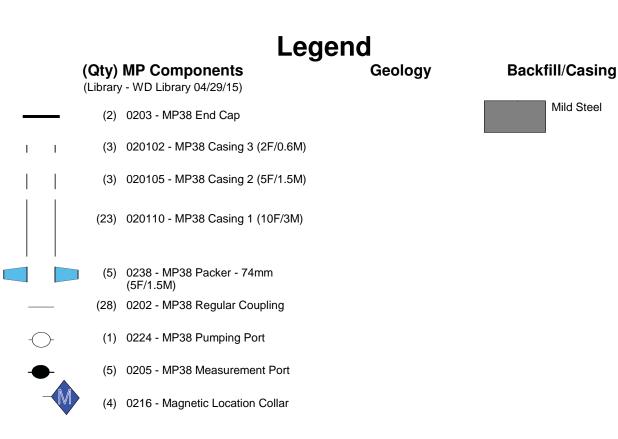
File Information

File Name: Report Date:

File Date:

Comments

2	nstal	lation	sign-off	Information	


Borehole condition confirmed.(Client) WB System design & preparation.(Client / WB) WB System design checked. (Client / WB)

WB System and borehole approved to install. (Client)

0	11
(method) numped	Date: 22/05/15
By:AB	Date: 22/03/0
By: ALS	Date: 2/05/15
By:	Date: 1155/15
Signature BEDACTED	1-1-1-14

Signature REDACTED

Westbay Completion Log LORAX

Project:	th: <u>83,5</u> WB Depth;	Lon	4×		Westbay Sys Completion L She WB#:: C	stem .og «or_ <u>_3_</u> XS_O
Location:	W		Hole No.: 3	4-2	Installed by:	43
Hole Dep	th: <u>83, 5m</u> WB Depth:	83,05m	Hole Diameter:	4.5"	Date Installed;	2/05/15
	ment Datum: GS		Datum Elevation		Date Drawn:22	
Scale,	Component Description	Depth Log	WB Tubing Serie	al No. Final Packer Pressure/Volum	0	Joint Install Test
0-		-1,40 -,80	39		22	
S-			31		10	
ß			30		10	
Ļ			29		10	
12			28		10	
15			27		10	
0			26		10	
. /			25		10	
2¢			24		10	
应应			25		10	
WB T	Tubing WB Packer	Magn Collar Filter	etic Sleeve	Measurement Port Coupling	Pumping Port Coupling	Regular Coupling

WB Depth:_

Westbay System
Completion Log
Sheet Z of 3

21	ieet_		_01
WB#.:_	9	25	0

Installed by:	AB
---------------	----

Hole Depth: ______ Measurement Datum:

Project:_

Location:_

Hole Diameter:

Hole No .: _

Datum Elevation:

12

_ Date Installed:_____ Date Drawn:_____

Scale, (m/ft)	Component Description	Depth Log	WB Tubing Log	Serial No.	Final Packer Pressure/Volume	Comments	Jo Irstall	
_			29			10		
20			2					1
-			21			10		-
24			20					
						10	-	-
1			19			10		-
			$\left - \right $			10	-	/
	-		18			10		
					2 4		-	'
			17			10		
								1
			16			10		
			15				-	
-		53.14		8716 19249		10		/
5			14 14	19249 8463 -		238		/
			13	-		10		_
			$\left - \right $	ł		10	-4	-
54			12	-		10		
WB Tubi	JH. \	Magne Collar O Filter S	etic	Meas	surement Coupling	Pumping Port	egular oupling	

Project:			Но	le No	:BH	1-2	WB#.: 9	12	2		
Hole Depth:	WB Depth:	_			meter:	_	Date Installed:				
Measureme	nt Datum:				levation:	-	Date Drawn:				
Scale, (m/ft)	Component Description	Depth Log	W	B Tubi Log	ng Serial No	Final Packer Pressure/Volume	Comments		Joint tal Tes		
-		62,28		11	19210		238		1		
1		63,80	100	10	8461 19206 8460		238		-/-		
-			2	9	- 10-		10				
1		G8,37	AND NO	8	19207		238	-	1		
-		68,37		7	8462		10				
				8			S	-			
				\$			2	1	1		
				4		1	10				
		78,13	Th	3	19202		238	-	1		
+				2	0170		5	-	1		
-		- Hereit		1			10	-			
		82,70	+	+				1	1		
-											
-		B						-			
-											

Project:	000	her C	ent.	-	Proje	ct No.: 1	1895	0 V	Vell No.:	5H-,	2
Location	-	11		_	Com	pleted by:	AB	C	ate Inflated	: 22	105/2
Packer	No. 192	202	#/	-	Dept	h(ft/m)	-	In	flation Too	No.:	
Packer	Valve Press	sure, Pv:	<u>50</u> ps	i Fina	I Line Pre	ssure, PL	SZS	psi T	ool Pressur	e, P _T : _	100
Borenoi	e Water Lev	/el: 27	(ft/ n								
				Calcul	ated Pack	er Eleme	nt Pressul	e, P _E = P	L+Pw-Pv	- PT=	35
Volu	ime, litres	1	2	2	22	~	0	1	01		
Pre	ssure, psi	Can	550	000	100	Co.	D	1	2,6		
Val	me, litres	045	220	220	550	250	575	/	0		
Free	ssure, psi				1						
	LL.	111		-							
								-			
					-			-			
60	0										
÷	—				1						
Pressure (psi)					-				4		
SC gree	0										
ess											
2											
C	-									+++	
201	-			11							
				1						+++	++
	H			111	$+ \square$		111			111	
	0	1	2		3	4	5		6	7	

Ĉ		estb uments	ak			Wes	tbay I	Packe	er Infla	Sheet	of Record
	o. 2 alve Press				Com Depti Line Pre	oleted by: 1 (ft / m): ssure, P _L	AB SAS	C	flation Too	1: 22	-2 105/2 500 p
Borehole	Water Lev	vel: <u>24</u>	(ft/m				nt Pressu	re, P _E = P	PL + Pw- Py	- P _T =	<u>130</u> p
Volun	ne, litres	1	2	3	4	5	6	1	5.6		
Press	ure, psi	SOR	550	550	550	550	575	1	0	1	
Volum	ie, litres						1				
Press	ure, psi		1								
600											
Pressure (psi)											
500											
			2		3	4	5		6		8
	U				V	olume, I					

	flar (nech						Vell No.:		
cation:	10	1	_							105/20
icker No. 3		206	-	Depth	n(ft/m)		<u> </u>	flation Too	No.:	
cker Valve Pres			si Final	Line Pre	ssure, PL	:575	psi Ti	ool Pressu	re, PT	300 ps
rehole Water Le	vel:	£ (ft/fi								
			Calcula	ated Pack	er Eleme	nt Pressur	e, P _E =P	+ Pw- Pv	- PT=	135 psi
	1			1.1.1	-	1	-		_	
Volume, litres	1	12	3	4	5	5,75	/	5,25		
Pressure, psi	500	560	55Q	550	EGO	575	1	0		
	0.95	0000	00-	0.30	200	275	/	0		
Volume, litres	1			1.11			1.0			
Pressure, psi										
	-	-							-	
	TTT			111	TT		11		11	
H										
An H										
690										
MA.										
220-11				+	++					
			+++							
200-	1						+++			
		+	11							
				3	111	11			11	
0		2				5		6		

Project: Location: Packer No Packer Valve Pres Borehole Water Le	sure, Py:	* (<u>SS</u> ps	S i Final i)=_/C	Com Dept Line Pro 2 psi (1	pleted by h (ft / m essure, P P _W)	r):	2 psi	Inflation T Tool Pres	ted: 2 ool No.: sure, P _T :	105/2
Volume, litres	1	1.5	1.75			1	1		1	1
Pressure, psi	500	550	-	1.000	-					
Volume, litres				(
Pressure, psi										
Coo 550 500 000 000 000 000				3			5			
Comments: <u>Ala</u>	Packin	2			4 Volume	, litres	5	8 Time -	1	2

Project: Ca	the C.	Took	- 1	Proje	ct No.: 1	139	9.0 W	ell No.:	BH-	2
Location:	11				pleted by:		3_Da	ate Inflate	d: 22	105/3
Packer No. <u>4</u> Packer Valve Press		210 140 nei	Final		n (ft/m):				ol No.: Ire, P _T : <u>J</u>	
Borehole Water Lev						0.00	par is			00.
	-		Calcula	ated Pack	er Elemer	nt Pressun	e, P _E = P ₁	+ Pw- P	v-PT=	14 <u>5</u> 1
Volume, litres	1	2	3	4	5	5,25	5.5	/	5.1	
Pressure, psi	500	550	550	550	SSO	550	575	1	Ø	
Volume, litres									_	
Pressure, psi										
						1				
F						III		H	ПП	-
600										
(is							0			
(isd) au S CO										-
500 bressnie										-
500										
							-			
	Ц				ц			6	Щ	
0	1		2	3	4 Volume,		,	0	1	

APPENDIX B: MONITORING WELL: BH4-WB

As-Built Key Components Summary (Table 4) As-Built Tubing Summary (Table 5) Summary Completion Log	- 1 page - 1 page - 2 pages
Pre-Inflation Piezometric Pressure/ Levels	4
Field Data and Calculation Sheet (May 19)	- 1 page
Figure 3, Pre-Inflation Profile	- 1 page
Post- Inflation Piezometric Pressure/Levels	
Field Data and Calculation Sheet (May 19)	- 1 page
Figure 4, Post-Inflation Profile	- 1 page
Westbay Completion Log (field copy)	- 4 pages
Westbay System Packer Inflation Records	- 6 pages

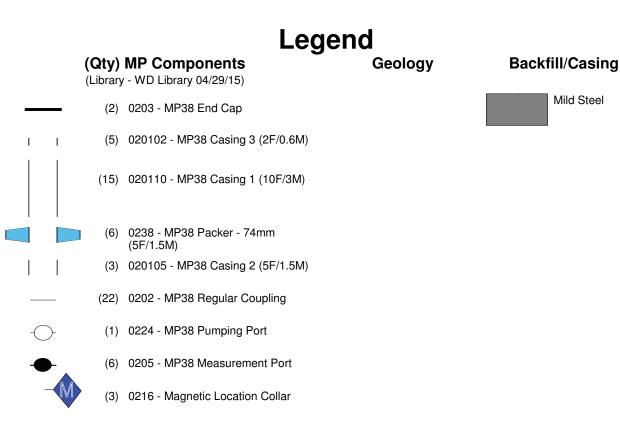
Table 5: BH4-WB As-Built Summary

AB, 01/06/2015

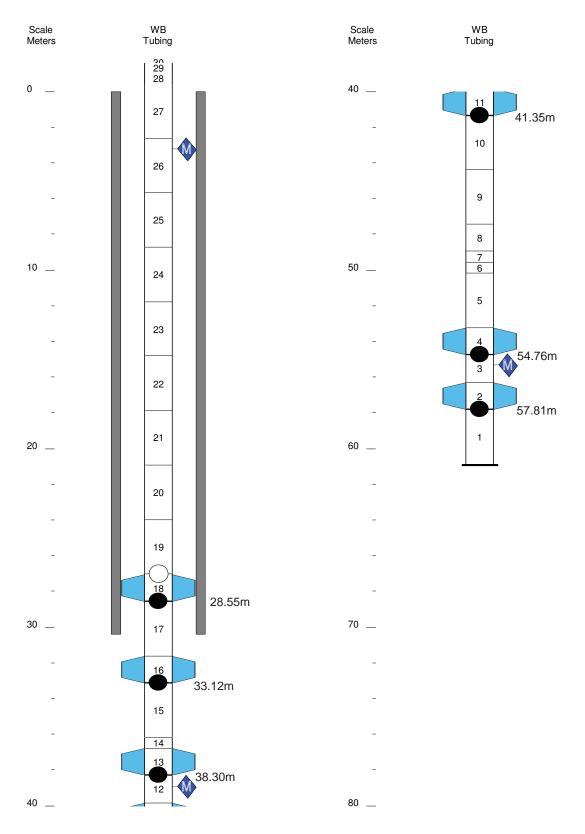
Port	Zone	Measurement	Pumping	Depth to top	Top of Zone	Bottom of Zone	Comments
No.	Zone	Port Depth, (m)	Port Depth, (m)	of Packer, (m)	(m)	(m)	
1		57.809		56.285	57.6	65.7	
2		54.762		53.238	54.5	56.7	
3		41.351		39.827	41.1	53.6	
4		38.303		36.779	38.1	40.2	
5		33.122		31.598	32.9	37.2	
6		28.55	27.026	27.026	28.3	32.0	
7							
8							
9							
10							
11							
12							
13							
14							
15							

Note 1: All depth measurements in meters below datum (GS).

Note 2: All depth measurements use 'Nominal' tubing lengths.

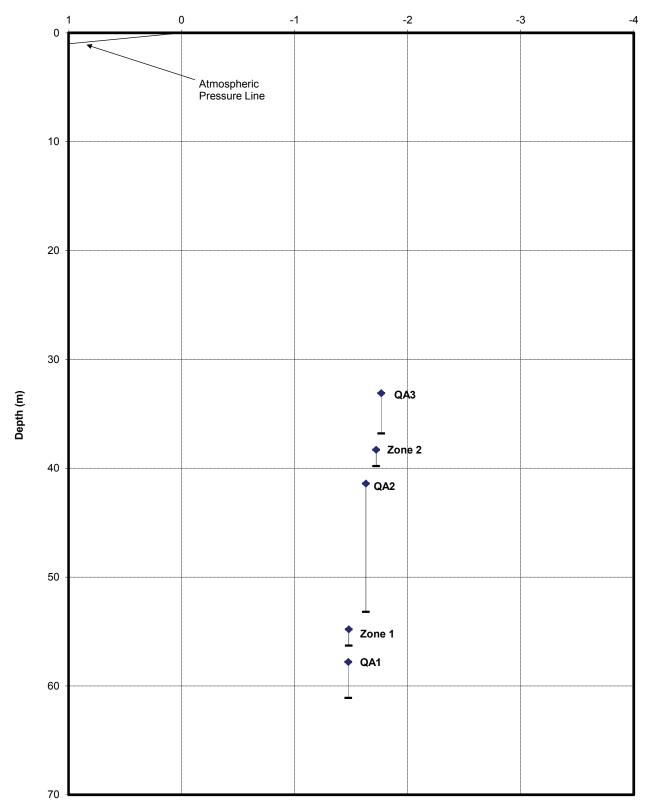

Note 3: Not corrected for borehole deviation or borehole temperature effects.

Note 4: All depth measurements to upper edge of Westbay System coupling item.


			Table 5: BH4-V	VB As-Built Sur	nmary			
							L LL Car	Shoet La
AB ,01/0	06/2015					- 10 M		
ltem No.	Component P/N	Component Description	Component S/N	Coupling P/N	Coupling S/N	Accessory P/N	Accessory Depth (m)	Final Position (m)
29	203							-1.062
28	20102			202				-1.0142
27	20110			202				-0.40459
26	20110		1	202		216	3.2	2.6433
25	20110			202				5.6911
24	20110			202				8.739
23	20110		1	202				11.787
22	20110			202				14.835
21	20110			202				17.883
20	20110			202				20.93
19	20110			202				23.978
18	238	Packer	19204	224	8715			27.026
17	20110	Measurement Port		205	8448			28.55
16	238	Packer	19219	202				31.598
15	20110	Measurement Port		205	8477			33.122
14	20102			202				36.17
13	238	Packer	19217	202				36.779
12	20105	Measurement Port		205	8472	216	38.9	38.303
11	238	Packer	19218	202				39.827
10	20110	Measurement Port		205	8475			41.351
9	20110			202				44.399
8	20105			202				47.447
7	20102			202				48.971
6	20102			202				49.58
5	20110			202				50.19
4		Packer	19203	202				53.238
3		Measurement Port		205	8474	216	55.4	54.762
2		Packer	19220	202				56.285
1		Measurement Port		205	8473			57.809
0	203							60.857

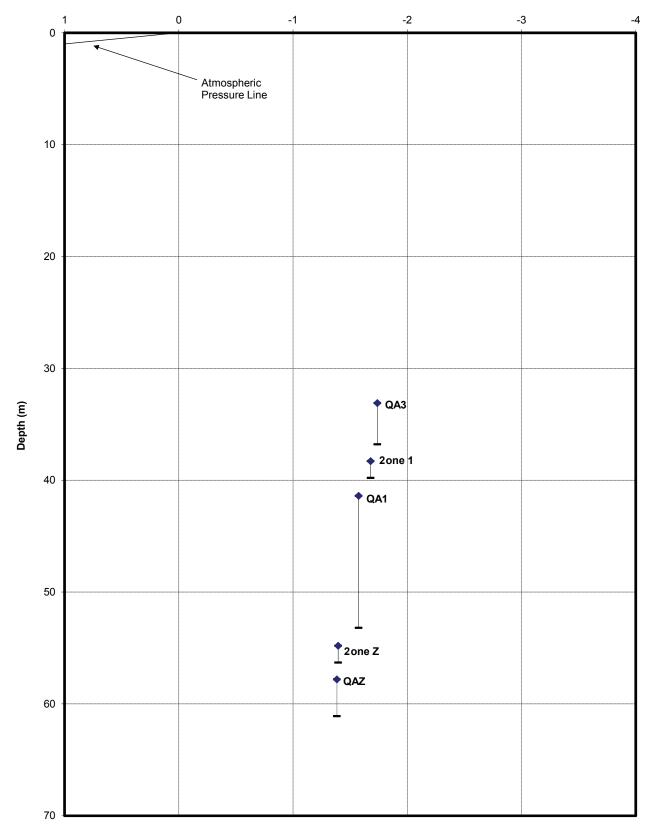
Summary Completion Log LORAX

Job No: WB950 Well: BH4-WB



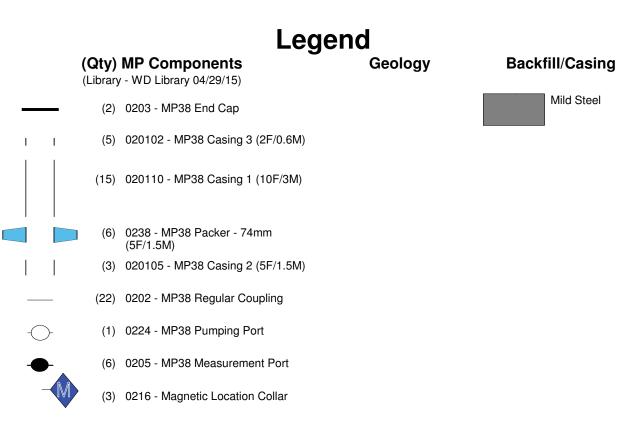
Summary Completion Log LORAX

$\begin{array}{ c c c c c c c c c c c c c c c c c c c$	PRE-INFLATION OF & BOTTOM PACKERS Westbay Piezometric Pressures/Levels Field Data and Calculation Sheet	Date: Mar 19 Client: CORA Job Noc. Coffe Location: Coffe Weather: Ducrcent	Ambient Reading (P.,m) (pressure, temperature, time) Start Pressure 13, 5'9 ps ⁻ Finish: 13, 5 Tamp 10, 35' 9 ps Time 2:5' 9 ps	Plaz. Level Nutatore Print	DE=Do.H ZAVES Contracto	.5 GAI	5	-	1	-		1 100				
Probe Type. Serial No. Probe Range W Casing Type. Valve Position. S 0.46 74 0.57 56. 0.55 63. 0.55 53.	Westb	ampler Em Sayag 250 pri AP38	Pam (3.59 psi	-	(m) (m) H = (P2-Paim)/w	59.5	56.3 -1.	1 43.0	40.0	34	30.3	-				
Net No. BH4-wB Net No. BH4-wB Datum 6-3 Tabue Casho Tabove G.S. 144 Sermite 150 Tabove And the tabove of the tabove of the tabove of the tabove of			121	Readings	-	Lo1)	100	0.86	St'0	0.63	0.59		1			
Vell No. BH4-W Batum Elev G.S. Datum Elev G.S. Lute Above G.S.		(Const advances	ole. Trua dapth (Dp) resets to 1 collate zone preznmente lev		Costing (P2)	88.59	93.62 9	8t. 14	70.50	63.17	56.60					
Vell No. Datum Elev G.S. Tabove Tabove Ta	ypay	BH4-WI 6-3 6-3 1492 C	utific president almost of the ot allab modules but but allab				- 94.3	. 7q.	- 70.4	- 62.9						
r Vestbay Referen Bo Bo Bo Bo Bo Port Plasium From Lua (n) 28.6 28.6 28.6		Well No Datum Elev. G.S. Height of Westbay above G.S. Elav. top of Westbay Casting Reference Elevation Borehole angle:	angled bareholes ref ad using barehole an	-	-	-		-		-	28.6 28.7					



Client: LORAX Site: Coffee Creek Datum: GS

Post INFLATION Westbay Piezometric Pressures/Levels	Date: May 19/15 Client: Loc 44 Jób No: Lug 956 Location: Co 64ec Weather Hot, Clear	Amblent Reading (P _{am}) (pressure, tomperature, time) tre 3.5 9 05; Finish: 13.59 or 20.95 05; Finish: 13.59 or 12:57 pm	Company									
Post IN FLATION (estbay Piezometric P		Start Pressure /3.5	r	Cone)	140	13402	TUN	AND.	QAU			
stbay		Start	Plaz Level Outside Port (m)	Dz=Dp-H	1-1.4	1.1	0.1-	1.12	1.1			
Wes	no area oscon	13.59	Pressnure Head Outside Port (m)	H = (P2-Paunuw	56.2	0 2 0	0.01	34 8	30.3			
	Sam Sam	d little	Inside Caning		20.95	-		59.68	50.83			
	Probe Type: Senal No. Probe Range: Gasing Type: /aive Position;		dina l'emp		CCI	111-	CX.	2.93		1	T	
	Probe Type: Senal No. Probe Range: Westbay Casing Type: Sampler Valve Position:	etno level (Dz)	Fluid Pressure Peatings	60.61	12:44	13:46	12:48	1	15			
		ue deptri (IIp) m alle zone plezon	Fluid	Casing (P2)	9350	otht	70.44	63,13			1	
115	SH4-WB 65 8 8 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	Note: "Part position" in angled toreholes reter to posison along drillingle. The depth (3p) needs to be calculating barefords angle and devision data to calculate zone plecometric level (3z).	duis	-	95.94	66.54		- 1	48.04 56.63			
(bod)		in to postaon al	Troe Port Death "Dp" (m)					4				
Westbo Instruments	Well No. Datum Elev. G.S. Westbay above G.S. P of Westbay Casing Reference Elevation Borehole angle:) boreholes refe or barehole and	Purt Position From Cable (m)	220	55.0	41.5	38.4	23.2	28.7			
ZE	Well No. Datum Elev. G.S. Height of Westbay above G.S. Elev. top of Westbay Casing Reference Elevation Reference Elevation	sition" in angled calculated usin	Port Poston From Log (m)	XCV	-	-	38.3	1	38.6			
	Heightic	ole Partpa	Purt No.	1	-00		4	5	9			


Piezometric Profile Monitoring Well: BH4-WB

Client: LORAX Site: Coffee Datum: GS Plot By:____Date:____ Checked By:____Date:____ Westbay Project: WB950

Westbay Completion Log LORAX

Westbay Completion Log

Company: LORAX Well: BH4-WB Site: Coffee Project: Coffee

Job No: WB950 Author: ML

Well Information

Reference Datum: Elevation of Datum: 0.00 m. MP Casing Top: 0.00 m. MP Casing Length: 60.91 m.

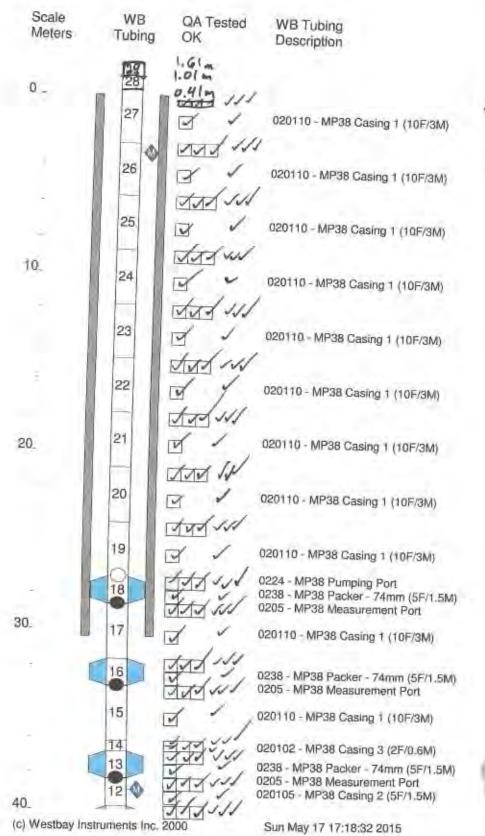
Well Description: Permafrost Other References: Borehole Depth: 61.10 m. Borehole Inclination: Vertical Borehole Diameter: 114.00 mm

File Information

File Name: BH4_WB.WWD Report Date: Sun May 17 17:18:06 2015

File Date: May 17 11:45:14 2015

Comments


Zero reference is ground surface - LF Filter Socks not to be used - LF

Log Information

Borehole condition confirmed. MP well design & preparation. MP well design checked. MP well and borehole approved to install.

(method) By: Name REDACTED	Date: 5/19/15
By: _	Date: 5/17/15
By:	Date: 5/17/15

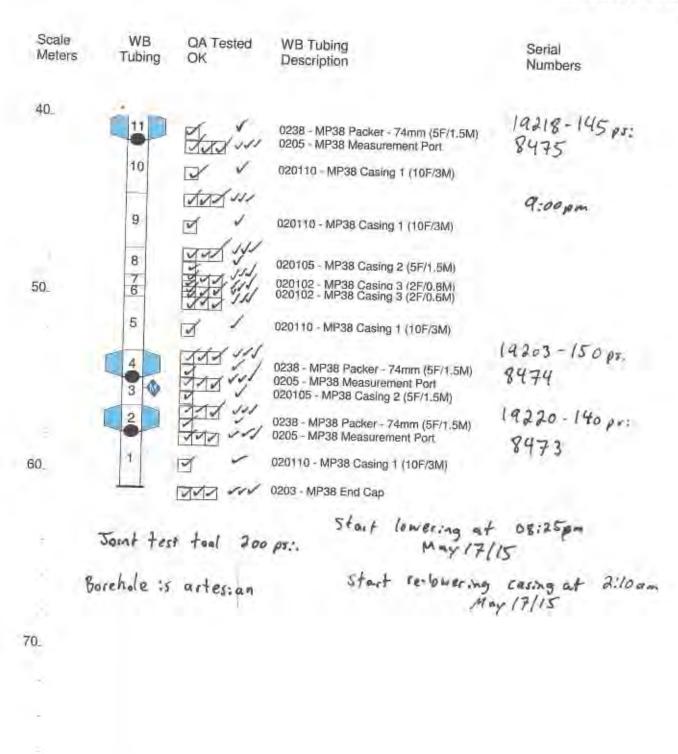
Westbay Completion Log LORAX

Job No: WB950 Well: BH4-WB

Serial Numbers

Finish lowering at 9.57pm May 17/15 Finish re-lowering at 3:20am on May 17/15

8715 19204-15501. 8448


19219-15003; 8477

19717-14505: 8472

Page: 3

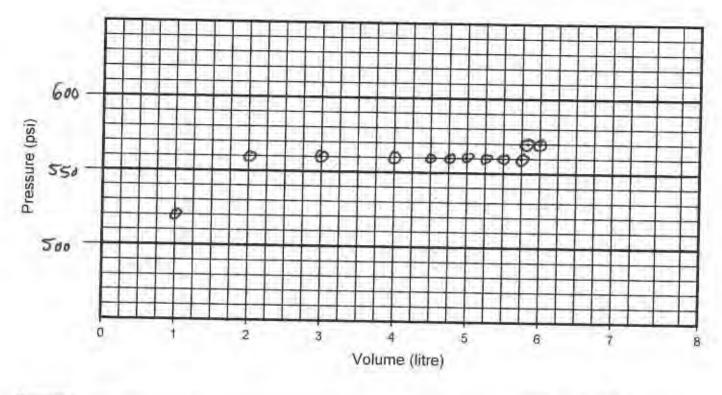
Westbay Completion Log LORAX

Job No: WB950 Well: BH4-WB

80.

Sun May 17 17:18:32 2015

Page: 4


Westbay Packer Inflation Record

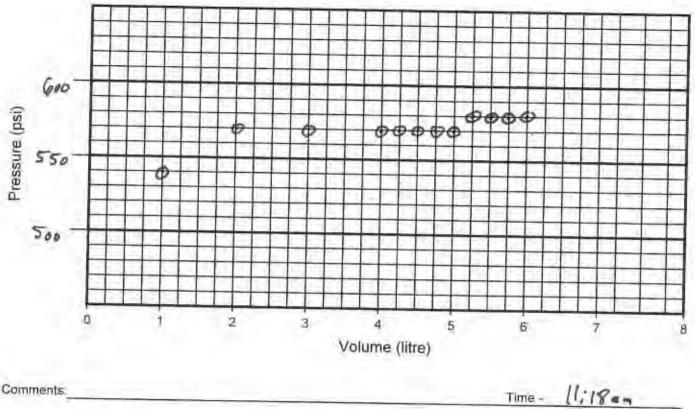
Time - 10:54 4~

Project LORAX Enviro	onmental Services Ltd	Project No.: WB950	Well No .: BH9	-wR
Location: Coffee Creek,	Kaminak Gold Project	I Completed by Name REDAC		
	SN# 19220	Depth (m):	Inflation Tool No	
Packer Valve Pressure, P	140 psi Fin	al Line Pressure. PL: 5 70 psi	Tool Pressure, PT.	
Borehole Water Level:	0 (m)= 0	psi (P _W)		

Calculated Packer Element Pressure, PE = PL + Pw - Pv - Pr = 80 psi

Volume, litres	1.0	2.0	3.0	4.0	4.5	4.75	5.0	5.25	5.5	5.75
Pressure, psi	520	560	560			560			560	560
Volume, litres	5.85	6.0	1	5.6		0				
Pressure, psi	570	570	/	ø						10.00

Comments:


Sheet of Westbay Packer Inflation Record

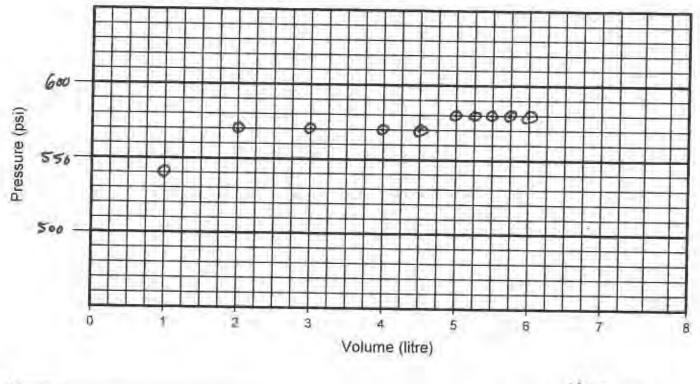
Time -

Project.	LORAX Environ	mental Service	es Ltd.	Project No.: W	B950	Well No ::	BH4-WB	P
Location:	Coffee Creek, K	aminak Gold F	roject	Completed by:	Name REDACTED	Date Inflated	May 19/	15
	2 comp 4	5N# 192	03	Depth (m)		Inflation Tool N		_
	ve Pressure, Pv:_	150 psi	Final L	ine Pressure, PL:	580 psi	Tool Pressure,	Pr 350	psi
Borehole V	Vater Level:	0 (m)=	_0_	psi (P _w)				_

Calculated Packer Element Pressure, $P_E = P_L + P_W - P_V - P_T = - \mathcal{B}S$ psi

Volume, litres	1.0	2.0	3.0	4.0	4.5	4.75	5.0	5.25	5.5	5.75
Pressure, psi	540	570	570	570				580		
Volume, litres	6.0	/	5.6		1					
Pressure, psi	580	/	Ó		1					

Comments.



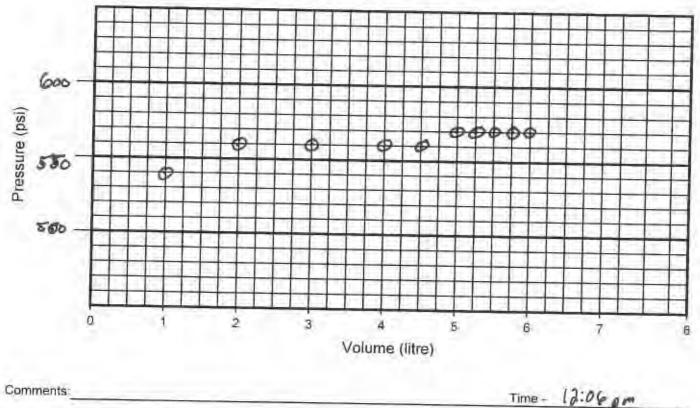
Westbay Packer Inflation Record

Project No.: WB950	Well No. BH	4-WB
Completed by: Name REDACTE	Date Inflated	ay 19/15
Depth (m):		1
Line Pressure, P.: 580 psi		
psi (P _W)		
	Completed by: Name REDACTE Depth (m): Line Pressure, Pt 580 psi	Completed by: Name REDACTED Date Inflated: M Depth (m): Inflation Tool No.: Line Pressure, P _L <u>580</u> psi Tool Pressure, P _T

Calculated Packer Element Pressure, PE = PL + PW - Pv - Pr = 85 psi

Volume, litres	1.0	2.0	3.0	4.0	9.5	4.75	5.0	5.25	5.5	5.75
Pressure, psi	540	570	570	570	1.000	580	1000		580	580
Volume, litres	6.0	1	5.6					Per sa		
Pressure, psi	580	1	ø						1	

11:43 am Comments: Time -


Westbay. Instrume

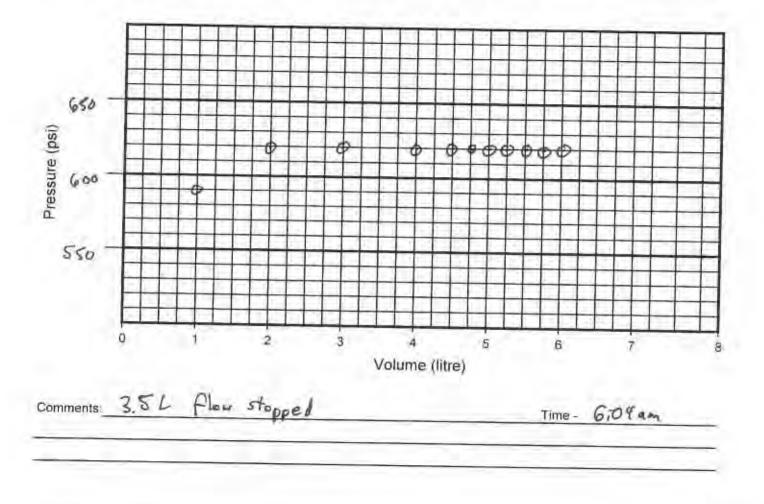
Sheet of Westbay Packer Inflation Record

LORAX Environmental Services Ltd. Project No.: WB950 Project: Well No BAY-WB Location: Coffee Creek, Kaminak Gold Project Completed by Name REDACTED ate Inflated: May 19/15 Packer No. 4, comp 13 SN# [9217 Depth (m); Inflation Tool No .: 3197 Packer Valve Pressure, Pv 145 psi Final Line Pressure, PL 570 psi Tool Pressure, Pt 350 psi Borehole Water Level: 0 (m) = 0 psi (P_W)

Calculated Packer Element Pressure, PE=PL+PW-PV-PT= 75 psi

Volume, litres	1.0	2.0	3.0	4.0	9,5	5.0	5.25	5.5	5.95	6.0
Pressure, psi	540	560	560	560	560	570	570	570	570	570
Volume, litres	1	5.6								
Pressure, psi	/	0						-	-	

Comments:

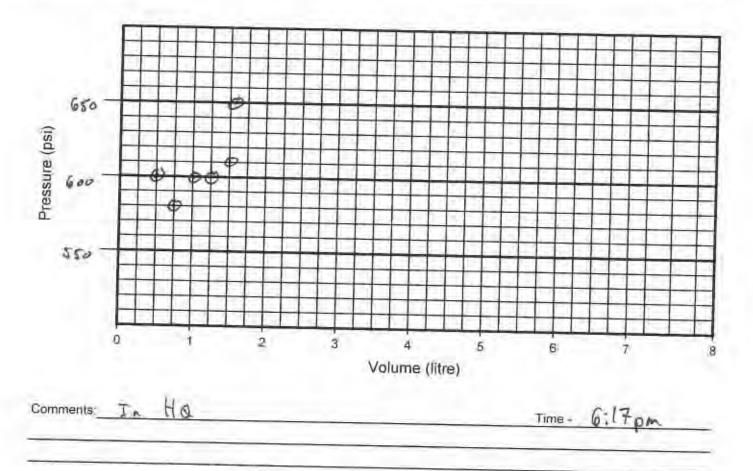


Westbay Packer Inflation Record

Project:	LORAX Environmental Services Ltd.	Project No.: WB950	Well No: May 15/15						
Location:	Coffee Creek, Kaminak Gold Project	Completed by: Name REDACTE	Date Inflated: M	av18/15					
	5, Lomp 16 SAN 19219	Depth (m):	Inflation Tool No.	and the second se					
		ine Pressure, PL 620 psi	Tool Pressure, PT.	400 psi					
Borehole V	Vater Level: 0 (m) = 0	psi (P _w)							

Calculated Packer Element Pressure, Pg = PL + Pw - Pv - PT = 100 psi

Volume, litres	1.0	2.0	3.0	4.0	4.5	4.75	2.0	5.25	5.5	5.75
Pressure, psi	590	620	620	620	620	620	620	620	620	620
Volume, litres	6.0	/	5.6			170.41				
Pressure, psi	620	/	ø				- 1		1.00	



Westbay Packer Inflation Record

Project:	LORAX Environmental Services Ltd.	Project No.: WB950	Well No .: BH 4-	WR
Location:	Coffee Creek, Kaminak Gold Project		Date Inflated.	
	6, comp 18 SN# 19204	Depth (m):	Inflation Tool No .:	/
		ine Pressure, PL 650 psi	Tool Pressure, PT:	400 psi
Borehole V	Vater Level: 0 (m) = 0	_psi (P _W)		

Calculated Packer Element Pressure, $P_E = P_L + P_W - P_V - P_T = -\frac{95}{1000}$ psi

Volume, litres	0.25	0.5	0.75	1.0	1.25	1.5	1.6	1	1.25
Pressure, psi	350	600	580	600	600	610	650	1	ø
Volume, litres				1.2.41					
Pressure, psi			1	1		-	1		

APPENDIX C: MONITORING WELL: BH5-WB

As-Built Key Components Summary (Table 4) As-Built Tubing Summary (Table 5) Summary Completion Log Pre-Inflation Piezometric Pressure/ Levels	- 1 page - 3 pages - 2 pages
Field Data and Calculation Sheet (June 8) Figure 3, Pre-Inflation Profile	- 1 page - 1 page
Post- Inflation Piezometric Pressure/Levels	
Field Data and Calculation Sheet (June 9)	- 2 pages
Figure 4, Post-Inflation Profile	- 1 page
Westbay Completion Log (field copy)	- 5 pages
Westbay System Packer Inflation Records	- 12 pages

Table 4: BH5-WB As-Built Packer and Port Summary

AB, 01/06/2015

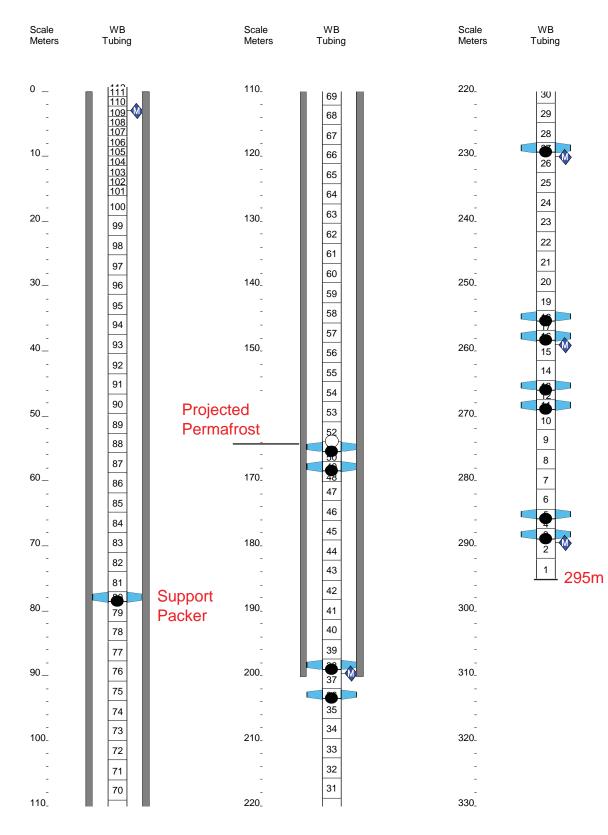
Port	Zone	Measurement	Pumping	Depth to top	Top of Zone	Bottom of Zone	Comments
No.	Zone	Port Depth, (m)	Port Depth, (m)	of Packer, (m)	(m)	(m)	
1		286.99		285.46	286.8	293.0	
2		285.46		279.37	280.7	285.9	
3		251.94		250.41	251.7	279.8	
4		250.41		245.84	247.1	250.8	
5		244.32		242.79	244.1	246.2	
6		241.27		236.7	238.0	243.2	
7		227.55		226.03	227.3	237.1	
8		224.51		219.94	221.2	226.4	
9		216.89		209.27	210.6	220.3	
10		209.27		184.88	186.2	209.7	
11		183.36		181.84	183.1	185.3	
12		96.497	94.973	94.973	96.3	182.2	
13							
14							
15							

Note 1: All depth measurements in meters below datum (GS).

Note 2: All depth measurements use 'Nominal' tubing lengths.

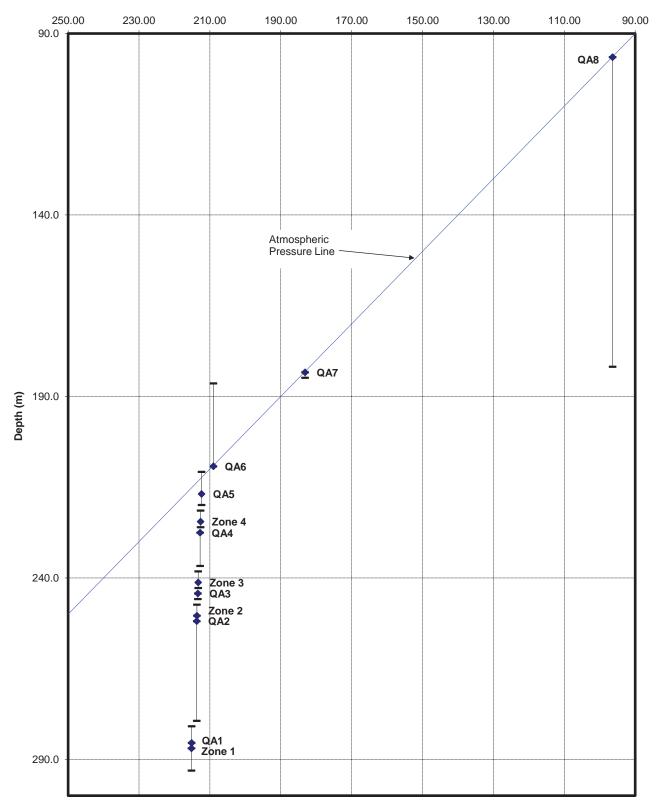
Note 3: Not corrected for borehole deviation or borehole temperature effects.

Note 4: All depth measurements to upper edge of Westbay System coupling item.

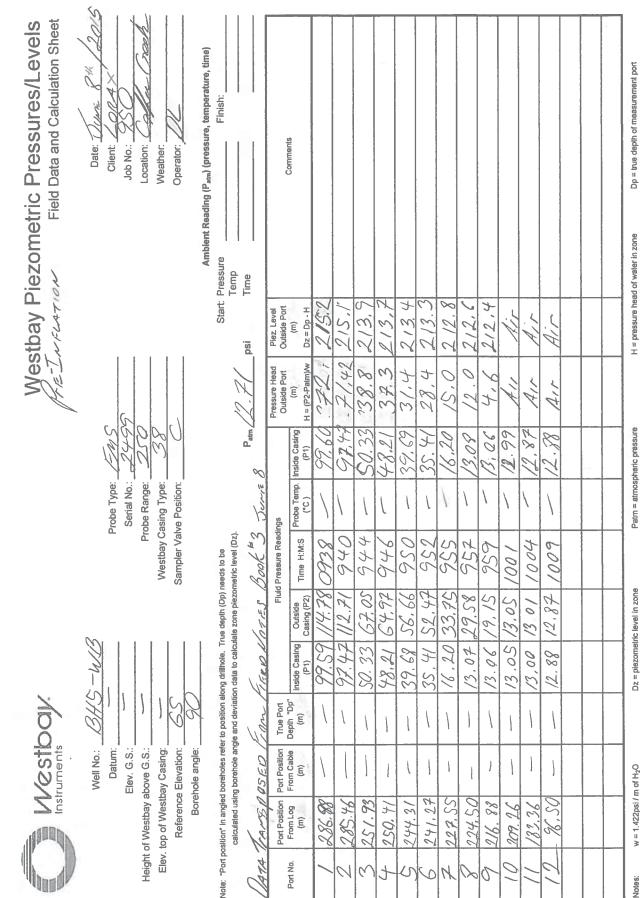

		1	Table 5: BH5-WB A	s-Built Summar	у		100	
							1.1.1.1.1	
AB ,01/0	06/2015						1000	
Item	Component	Component	Component	Coupling	Coupling	Accessory	Accessory	Final
No.	P/N	Description	S/N	P/N	S/N	P/N	Depth	Position
							(m)	(m)
112	203							-0.77705
111	20102			202				-0.7292
110	20105			202				-0.11963
109	20105			202				1.4043
108	20105			202				2.9282
107	20105			202				4.4521
106	20105			202				5.9761
105	20102			202				7.5
104	20105			202				8.1096
103	20110			202				9.6335
102	20110			202				12.681
101	20110			202				15.729
100	20110			202				18.777
99	20110			202				21.825
98	20110			202				24.873
97	20110			202				27.921
96	20110			202				30.968
95	20110			202				34.016
94	20110			202				37.064
93	20110			202				40.112
92	20110			202				43.16
91	20110			202				46.208
90	20110			202				49.256
89	20110			202				52.303
88	20110			202				55.351
87	20110			202				58.399
86	20110			202				61.447
85	20110			202				64.495
84	20110			202				67.543
83	20110			202				70.591
82	20110			202				73.638
81	20110			202				76.686
80	20110			202				79.734
79	20110			202				82.782
78	20110			202				85.83
77	20110			202				88.878
76	20110			202				91.925
75		Packer	19228	202				94.973
74	20110	Measurement Port		205	8482			96.497
73	20110			202				99.545
72	20110			202				102.59
71	20110			202				105.64
70	20110			202				108.69
69	20110			202				111.74

		Tal	ble 5: BH5-WB As	s-Built Summary	Y			
								DECIM
AB ,01/0	06/2015						1000	
Item	Component	Component	Component	Coupling	Coupling	Accessory	Accessory	Final
No.	P/N	Description	S/N	P/N	S/N	P/N	Depth	Position
		1	1 1	<u>[</u>		<u> </u>	(m)	(m)
68	20110			202				114.78
67	20110			202				117.83
66	20110			202				120.88
65	20110			202				123.93
64	20110			202				126.98
63	20110			202				130.02
62	20110			202				133.07
61	20110			202				136.12
60	20110			202				139.17
59	20110			202				142.22
58	20110			202				145.26
57	20110			202				148.31
56	20110			202				151.36
55 54	20110 20110			202 202				154.41 157.45
	20110			202				157.45
53 52	20110			202				163.55
52 51	20110			-				163.55
50	20110			202 202				169.65
49	20110			202				172.69
49	20110			202				175.74
40	20110			202				178.79
46		Packer/Pumping Port	19230	202	8713			181.84
45		Measurement Port	19230	205	8467			183.36
44		Packer	19221	203	0+07			184.88
43	20110		19221	202				186.41
42	20110			202				189.46
41	20110			202				192.5
40	20110			202				195.55
39	20110			202				198.6
38	20110			202				201.65
37	20110			202				204.7
36	20110			202				207.74
35		Packer/Measurement Port	19227	202	8469			209.27
34	20110		10221	202	0.00			210.79
33	20110			202				213.84
32		Measurement Port	1 1	205	8481			216.89
31		Packer	19222	202	0.01			219.94
30	20110			202				221.46
29		Measurement Port		205	8465	216	225.1	224.51
28		Packer	19223	202	2.00			226.03
27		Measurement Port		205	8480			227.55
26	20110		1 1	202				230.6
25	20110			202				233.65
24		Packer	19229	202				236.7

		Tak	ble 5: BH5-WB As	s-Built Summar	<u>y</u>			
							100	TO DO LA
AB ,01/0	06/2015						1000	
ltem No.	Component P/N	Component Description	Component S/N	Coupling P/N	Coupling S/N	Accessory P/N	Accessory Depth (m)	Final Position (m)
23	20110			202				238.22
22		Measurement Port		205	8479	216	241.9	241.27
21	238	Packer	19241	202				242.79
20		Measurement Port		205	8468			244.32
19	238	Packer	19242	202				245.84
18	20110			202		216	248.0	247.37
17		Packer/Measurement Port	19226	205	8464			250.41
16	20110	Measurement Port		205	8470			251.94
15	20110			202				254.99
14	20110			202				258.03
13	20110			202				261.08
12	20110			202				264.13
11	20110			202				267.18
10	20110			202				270.22
9	20110			202				273.27
8	20110			202				276.32
7		Packer	19239	202				279.37
6	20110			202				280.89
5	20105			202				283.94
4		Packer/Measurement Port	19240	205	8466			285.46
3		Measurement Port		205	8471	216	287.6	286.99
2	20105			202				288.51
1	20110			202				290.04
0	203							293.08

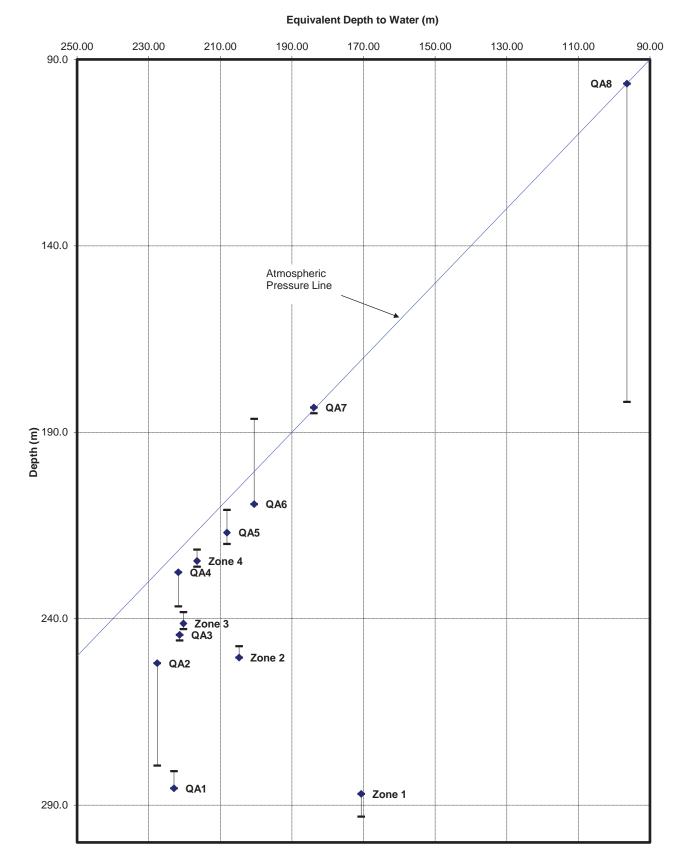

Summary Completion Log

Job No: WB950 Well: BH5



Piezometric Profile Monitoring Well: BH5-WB

Equivalent Depth to Water (m)



Client: Lorax Site: Coffee Creek Datum: Ground Surface Plot By:____Date:____ Checked By:____Date:____ Westbay Project: WB950

Notes:

Piezometric Profile Monitoring Well: BH5-WB

Client: Lorax Site: Coffee Creek Datum: Ground Surface

Plot By:____Date:____ Checked By:____Date:____ Westbay Project:WB950


Westbay Piezometric Pressures/Levels Field Data and Calculation Sheet	Client: US PS Job No.: PS Location: JC AK	Weather: Operator: V / Ambient Reading (P _{atm}) (pressure, temperature, time)	Start: Pressure		Comments			Beep 2824 counter		Possible Saugezer 10?				TIGHT			Beep 248.6		8een 241.6		H = pressure head of water in zone Dp = true depth of measurement port
stbay F			_ Start:	Piez. Level Outside Port	(m) Dz = Dp - H		1705		1.011		223,0		0.122	•		7. 102		221.3		220,3	H = pressure her
Wes	2550	2	12,69	Pressure Head Outside Port	(m) H = (P2-Patm)/w		116.48		11.1		102.52		24.32			45.65		22.95		21,0	
	2-0 2-0	C	P atm		Inside Casing (P1)		103,13		103,16		101.02		53,90			52.46		43,23		38,98	Patm = atmospheric pressure
	Probe Type: Serial No.: Probe Range:	Westbay Casing Type: Sampler Valve Position:	1	lings	Probe Temp. (°C)	5,4	4.8	3,0	2,8	2.6	2,4	1,9	1,6	115	1.4	1,1		1.2	1,2	1.2	Patm = atmosp
	- E (Westbay C Sampler Val	sition" in angled boreholes refer to position along drillhole. True depth (Dp) needs to be calculated using borehole angle and deviation data to calculate zone plezometric level (Dz).	Fluid Pressure Readings	Time H:M:S	1532	1533	1538	1539	1541	1542	1548	1549	1551	55	1553	1558	1600	1602	1603	
	WOOL HA	ل	ue depth (Dp) r ate zone piezor	Fluid	Outside Casing (P2)	178.32	17833	178.01	01.81	101.62	101,60	47,27	47.2.7		77.61	77,60	45.36	415.33	-	42.49	Dz = piezometric level in zone
		TICA	ong drillhoie. Tr in data to calcut		Inside Casing (P1)	07:601		103.15		101.02		53,90	19	52.45			4		38,98		Dz = piezometr
RHS		VERI	ar to position all gie and deviatio	True Port	Depth "Dp" (m)																
Mestbay.	Datum: Elev. G.S.: Ibove G.S.:	o of Westbay Casing: Reference Elevation: Borehole angle:	t boreholes refer to position ng borehole angle and dev	Port Position	From Cable (m)	286,8		286,8		285.3		251.7		250.4			244.1		1'1172		m of H ₂ O
	of Westbay a	Elev. top of Westbay Casing: Reference Elevation: Borehole angle:	osition° In anglec calculated usir		From Log (m)	287.0		287.0		285.5		2519		250.4			2443		241.3		w = 1.422psi / m of H ₂ O
	Datum: Datum: Elev. G.S.: Height of Westbay above G.S.:	-0,56m	Note: "Port position" in angled boreholes refer to position along drillhole. True depth (Dp) needs to be $0.33~\mu$ calculated using borehole angle and deviation data to calculate zone plezometric level $0.33~\mu$		Port No.	-		-		2		M		4			S		9		Notes:
	0-E	40-0,)																		

PAGEZ	Westbay Piezometric Pressures/Levels Field Data and Calculation Sheet アッシーアレント	Date: OP Ju no 2015 Client	Job No.: Location:	Weather:	operator	Start: Pressure Finish:		Comments			Beer 225.0							in Are		IN AIR				H = pressure head of water in zone Dp = true depth of measurement port
	stbay F		·			psi Start: 1	Piez. Level Outside Port	(m) Dz = Dp - H		221,8		216.5		208.1		0.002								H = pressure hea
	Wes	S	~				Pressure Head Outside Port	(m) H = (P2-Patm)/w		5,80		20:8		8.76		8.69			I					
		SMS	222			۲ شته		Probe Temp. Inside Casing (°C) (P1)		19.78		15,49		13.03		13.01		12.97		12,83				Patm = atmospheric pressure
		Probe Type:	Serial No.: Probe Range:	Westbay Casing Type:		ć	lings	Probe Temp. (°C)	1,2	1,1	1,0	1.0	110	1.0	1.0	0.1	1.0	1.0	0,91	00				Patm = atmosp
			Ē	Westbay C	odilipici va	illon" in angled boreholes refer to position along driffhole. True depth (Dp) needs to be calculated using borehole angle and deviation data to calculate zone plezometric level (Dz).	Pressure Readings	Time H:M:S	1007	1600	1611	1612	1616	1617	1621	1622	1625	1626	1630	1631				
						rue depth (Dp) r late zone plezoi	Fluid	Outside Casing (P2)	20.95	20,94	24,09	2409	25.14	25.14	2.5.06	25,25	11,97	11.98	12.79	12.79				Dz = plezometric level in zone
		S				Note: "Port position" in angled boreholes refer to position along drifthole. True depth (Dp) needs to be calculated using borehole angle and deviation data to calculate zone plezometric level.		Inside Casing (P1)	19.78		15,49		13.04		13.01		12.97		12,84		2569			Dz = plezomet
	- OOL	3HS				er to position all	True Port	Depth "Dp" (m)													63	8	5	
	Mestbay. Instruments	Well No.: Datum:	Elev. G.S.: above G.S.:	o of Westbay Casing:	Borehole angle:	d boreholes refi ng borehole any	Port Position	From Cable (m)	227,3		224.3		216.7		209.1		183.2		96.4		12.	7= 2	3 16	m of H ₂ O
			Elev. G.S.: Height of Westbay above G.S.:	Elev. top of Westbay Casing:	Bore	sition" in anglet calculated usi		From Log (m)	2276		224.5		216.9		209,3		183.4		96.5		() C		2	w = 1.422psi / m of H ₂ O
-			Height o	Elev.		Note: "Port po		Port No.	7		a	,	5		10		-		2	e.	2			Notes:

Westbay System Completion Log

÷.

/	
Company: CORAX	1
Well: BHS-WB	
Site: Collee Geek	_
Project: 950	_

Well Information

Borehole Depth: 293 ft.m Borehole Inclination: Borehole Diameter: 4.5 in.

Well Description:

Other References:

File Information

File Name:	
Report Date:	

File Date:

Comments

-			

Installation sign-off Information

Borehole condition confirmed.(Client) WB System design & preparation.(Client / WB) WB System design checked. (Client / WB) WB System and borehole approved to install. (Client)

(method) Sourn	Date: 05/06/15
By: AB LF	Date: 25 26 15
By: AB IF	Date: 05/06/15
By: Dintato	Date: OSIOGIIS
UF	

Westbay Completion Log Lorax

Job No: WB950 Well: BH5-WB

Scale Meters	WB Tubing	QA Tested OK	WB Tubing Description
0	111 110 109 108	TT .	W020105 - MP38 Tubina 2 (5F/1.5M) W020105 - MP38 Tubing 2 (5F/1.5M) W020105 - MP38 Tubing 2 (5F/1.5M)
10.	107 104 104 103		W020105 - MP38 Tubina 2 (5F/1.5M) W020105 - MP38 Tubina 2 (5F/1.5M) W020102 - MP38 Tubina 2 (5F/1.5M) W020105 - MP38 Tubing 2 (5F/1.5M) W020110 - MP38 Tubing 1 (10F/3M)
1	102		W020110 - MP38 Tubing 1 (10F/3M)
	101	1 2 M	W020110 - MP38 Tubing 1 (10F/3M)
20_	100	ETT	W020110 - MP38 Tubing 1 (10F/3M)
-	99		
+	98		W020110 - MP38 Tubing 1 (10F/3M)
30_	97		W020110 - MP38 Tubing 1 (10F/3M)
30_		Arr	W020110 - MP38 Tubing 1 (10F/3M)
	96		W020110 - MP38 Tubing 1 (10F/3M)
-	95	1 Fred	W020110 - MP38 Tubing 1 (10F/3M)
40_	94		W020110 - MP38 Tubing 1 (10F/3M)
1	93		W020110 - MP38 Tubing 1 (10F/3M)
-	92		W020110 - MP38 Tubing 1 (10F/3M)
50_	91		W020110 - MP38 Tubing 1 (10F/3M)
	90		W020110 - MP38 Tubing 1 (10F/3M)
	89		W020110 - MP38 Tubing 1 (10F/3M)
	88		W020110 - MP38 Tubing 1 (10F/3M)
60_	87		W020110 - MP38 Tubing 1 (10F/3M)
	86		W020110 - MP38 Tubing 1 (10F/3M)
	85	A	W020110 - MP38 Tubing 1 (10F/3M)
70_	84		W020110 - MP38 Tubing 1 (10F/3M)
9	83		W020110 - MP38 Tubing 1 (10F/3M)
-	82		W020110 - MP38 Tubing 1 (10F/3M)
00	81		W020110 - MP38 Tubing 1 (10F/3M)
80_	80		W020110 - MP38 Tubing 1 (10F/3M)
	79		W020110 - MP38 Tubing 1 (10F/3M)
-	78		W020110 - MP38 Tubing 1 (10F/3M)
90_	77		W020110 - MP38 Tubing 1 (10F/3M)
-	76	271	
_	75		W020110 - MP38 Tubing 1 (10F/3M) W0205 - MP38 Decksre Arm (5F/1.5
100	74		W0205 - MP38 Measurement Port 110 W020110 - MP38 Tubing 1 (10F/3M)
		2000	Mon. Jun 15 17:00:57 0015
(c) westbay	Instruments Ir	10. 2000	Mon Jun 15 17:36:57 2015

Serial Numbers

Page: 3

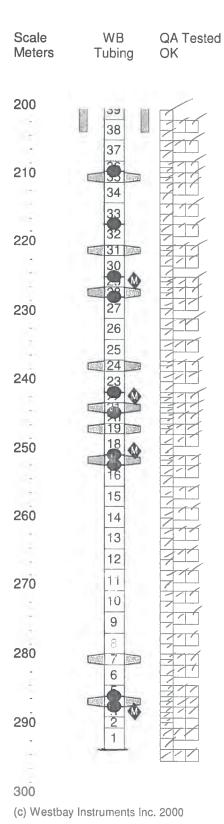
Westbay Completion Log Lorax

Job No: WB950 Well: BH5-WB

Scale Meters	WB Tubing	QA Tested OK
100	1701	
-	73	An
	72	
110	71	771
	70 69	77
-	68	771
120	67	471
120	66	777
-	65	Fan
	64	an
130	63	411
	62	1971
-	61	211
140	60	211
	59	211
~	58	311
150	57	216
-	56	200
	55	3-11
160	54	211
100	53	300
-	52	20
470	51	211
170	50	711
-	49	376
	48	310
180	47	वित्रत
-		372
-	44	
190	43	1
-	42	An
-	41	1 An
200	40	1 Tan
(c) Westbay In	struments In	c. 2000

Description
W020110 - MP38 Tubing 1 (10F/3M)
W020105 - MP38 Tubina 2 (5F/1.5M)
W0238 - MP38 Packer - 74mm (5F/1.5M) W020110 - MP38 Tubing 1 (10F/3M)
W020110 - MP38 Tubing 1 (10F/3M)
W020110 - MP38 Tubing 1 (10F/3M)
W020110 - MP38 Tubing 1 (10F/3M)

WB Tubing


Mon Jun 15 17:36:57 2015

Westbay Completion Log Lorax

Job No: WB950 Well: BH5-WB

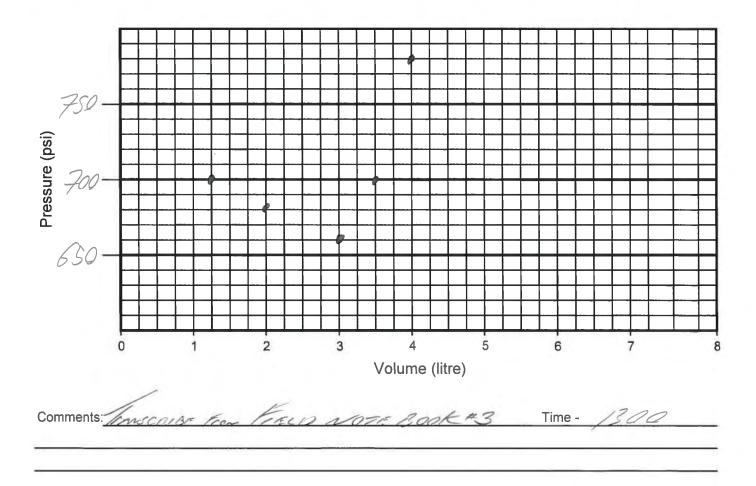
Serial

Numbers

W020110 - MP38 Tubing 1 (10F/3M)
W020110 - MP38 Tubing 1 (10F/3M)
W020110 - MP38 Tubing 1 (10F/3M)
W020105 MD39 Tubias 0 (5E/1 5M) W0238 - MP38 Packer - 74mm (5F/1.5M)
W020110 - MP38 Tubing 1 (10F/3M)
W020110 - MP38 Tubina 1 (10F/3M) W0205 - MP38 Measurement Port W020110 - MP38 Tubing 1 (10F/3M)
W0238 - MP38 Packer - 74mm (5F/1.5M)
W020110 - MP38 Tubing 1 (10F/3M) W020105 - MP38 Tubing 2 (5F/1.5M)
W020105 - MP38 Measurement Port W0205 - MP38 Measurement Port W020110 - MP38 Tubing 1 (10F/3M)
W020110 - MP38 Tubing 1 (10F/3M)
W020110 - MP38 Tubing 1 (10F/3M)
W0238 - MP38 Packer - 74mm (5F/1.5M)
W020110 - MP38 Tubing 1 (10F/3M) W020105 - MP38 Tubing 2 (5F/1 5M)
W020105 - MP38 Tubing 2 (5F/1.5M) W020105 - MP38 Tubing 2 (5F/1.5M) W020105 - MP38 Tubing 2 (5F/1.5M) W0238 - MP38 Packer - 74mm (5F/1.5M)
W020110 - MP38 Tubing 1 (10F/3M)
W0205 - MP38 Measurement Port W0205 - MP38 Measurement Port W020110 - MP38 Tubing 1 (10F/3M)
W020110 - MP38 Tubing 1 (10F/3M)
W020110 - MP38 Tubing 1 (10F/3M)
W020110 - MP38 Tubing 1 (10F/3M)
W020110 - MP38 Tubing 1 (10F/3M)
W020110 - MP38 Tubing 1 (10F/3M)
W020110 - MP38 Tubing 1 (10F/3M)
W020110 - MP38 Tubing 1 (10F/3M)
W020110 - MP38 Tubing 1 (10F/3M)
W0238 - MP38 Packer - 74mm (5F/1.5M) W020110 - MP38 Tubing 1 (10F/3M)
W020110 - M130 Tubing 1 (101/300)
W020105 - MP38 Tubing 2 (5F/1.5M) W020105 - MP38 Tubing 2 (5F/1.5M) W020105 - MP38 Tubing 2 (5F/1.5M)
W020105 - MP38 Tubing 2 (5F/1.5M)
W020110 - MP38 Tubing 1 (10F/3M) W0203 - MP38 End Cap

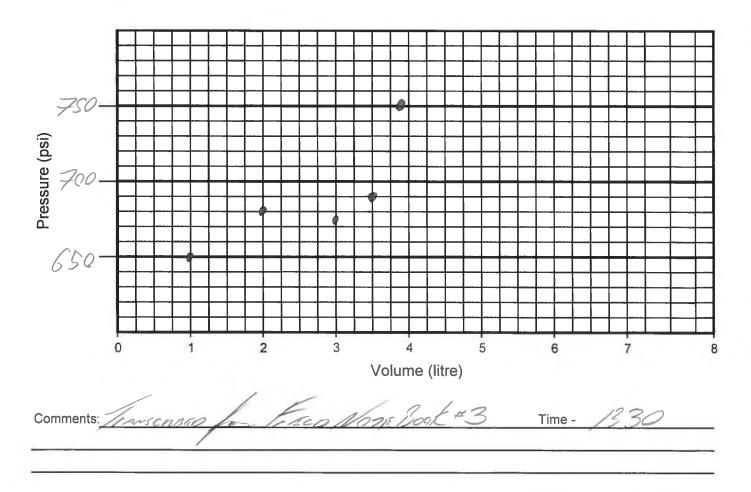
WB Tubing

Description


Mon Jun 15 17:36:57 2015

Sheet____of___ Westbay Packer Inflation Record

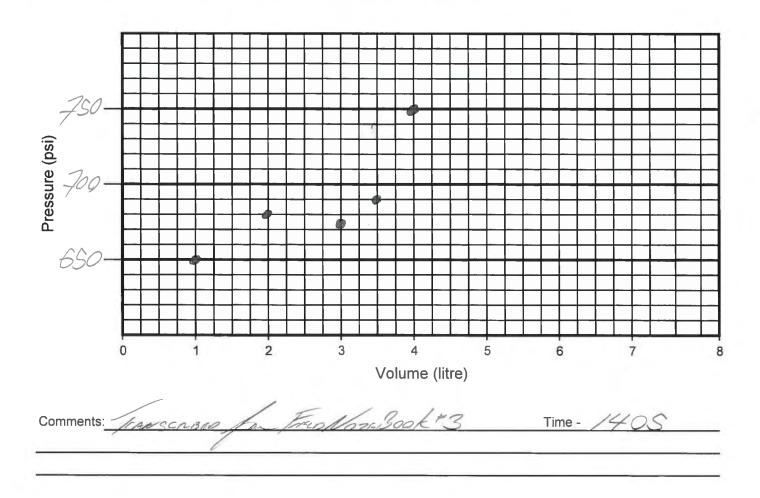
Project:	LORAX Environmental Services Ltd.	Project No.: WB950	Well No.:						
Location:	Coffee Creek, Kaminak Gold Project	_Completed by:	Date Inflated: Jon 8/2015						
Packer No.	<u></u>	_Depth (m):	Inflation Tool No.: 3/98						
Packer Val	ve Pressure, Pv: <u>/SØ</u> psi Final Li	ne Pressure, P _L : <u>780</u> psi	Tool Pressure, P _T : <u>FSO</u> psi						
Borehole V	Vater Level: <u>2/3</u> (m) = <u>303</u>								
	Calculated Packer Element Pressure, $P_E = P_L + P_W - P_V - P_T = /F_3$ psi								


Volume, litres	/	2	3	3.S	4	1	3.5		
Pressure, psi	700	680	680	700	780		Q		
Volume, litres									
Pressure, psi									

Westbay Instruments

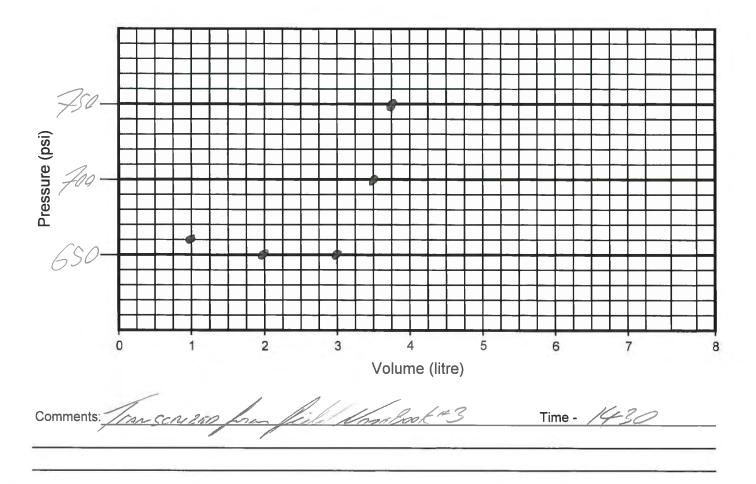
				\sim	1/ 6	~
Project:	LORAX Environmental Services Ltd.	Project No.: WE	3950	Well No.: 3/	45-WI	5
Location:	Coffee Creek, Kaminak Gold Project	Completed by:	DL	Date Inflated:	JUNE 8	2
Packer No.	P2	Depth (m):		Inflation Tool No.	: 3198	2
Packer Val	ve Pressure, Pv: /SO psi Final Lir	e Pressure, P _L :	<i>ZSO</i> psi	Tool Pressure, P _T	RSO	psi
Borehole W	Vater Level: <u>2/3</u> (m) = <u>303</u>	psi (P _w)				
	Calculated	Packer Element	Pressure, P _E =	: P _L + P _W - P _V - P _T :	= <u>[53</u>	psi

Volume, litres	/	2	3	3.5	3,8	/	3.3		
Pressure, psi	650	680	670	690	750	/	Ø		
Volume, litres									
Pressure, psi									

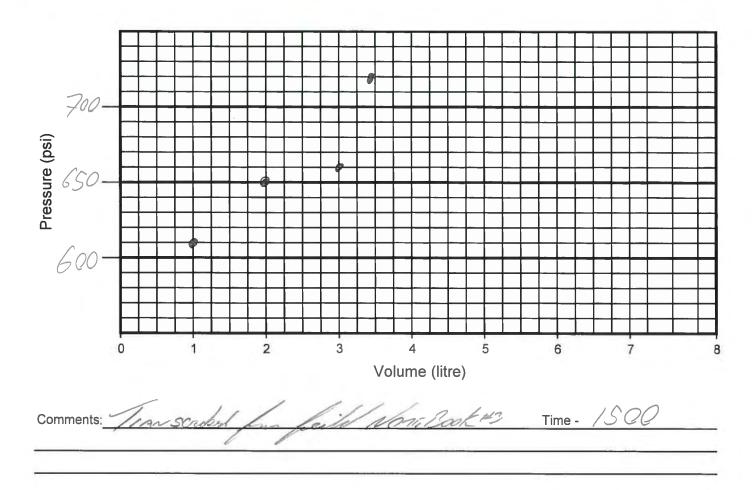


Pressure, psi

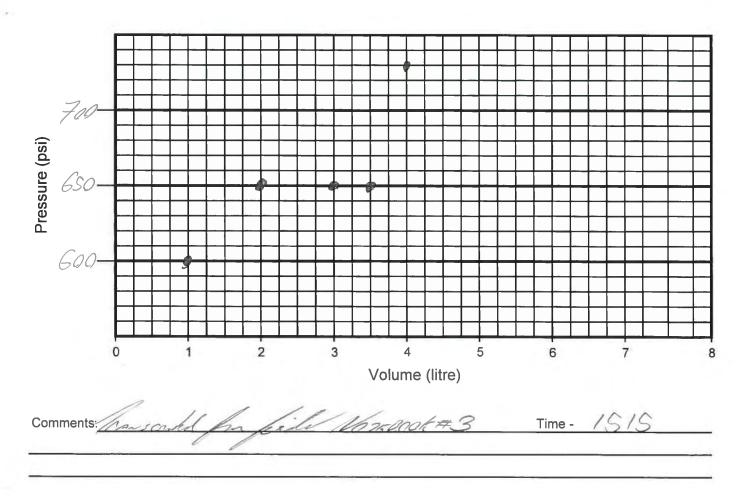
Sheet____of___ Westbay Packer Inflation Record


Project: LORAX I	Environme	ental Serv	rices Ltd.	Projec	ct No.: W	B950	W	ell No.:	BH-U	5-1/13	
Location: Coffee C	Comp	eleted by:	DL	Da	Date Inflated:						
Packer No. <u>P3</u>				Depth	Depth (m): Inflation Tool No.:						
Packer Valve Pressure, P _v : <u>/S</u> psi Final Line Pressure, P _L : <u>ZSO</u> psi Tool Pressure, P _T : <u>ZSO</u> psi											
Borehole Water Level: $2/3$ (m) = 303 psi (P _w)											
			Calcula	ited Packe	er Elemen	t Pressur	e, P _E = P _L	+ P _W - P _V	- P _T =	\$3 psi	
Volume, litres	/	2	3	3.5	3.8		3.3				
Pressure, psi	650	680	670	690	750		Ø				
Volume, litres											

Project:	LORAX Environmental Services Ltd.	Project No.: WB950	Well No.: <u>B/4 -S</u>
Location:	Coffee Creek, Kaminak Gold Project	Completed by:	Date Inflated: June 8
Packer No.	P4	Depth (m):	Inflation Tool No.: 3/98
Packer Val	ve Pressure, P _v : <u>/</u> SO psi Final Lir	ne Pressure, P _L : <u>750</u> ps	i Tool Pressure, P _T : <u>350</u> psi
Borehole V	Vater Level: <u>2/3</u> (m) = <u>303</u>	psi (P _w)	
	Calculated	Packer Element Pressure, F	$P_{E} = P_{L} + P_{W} - P_{V} - P_{T} = \underline{53} \text{ psi}$

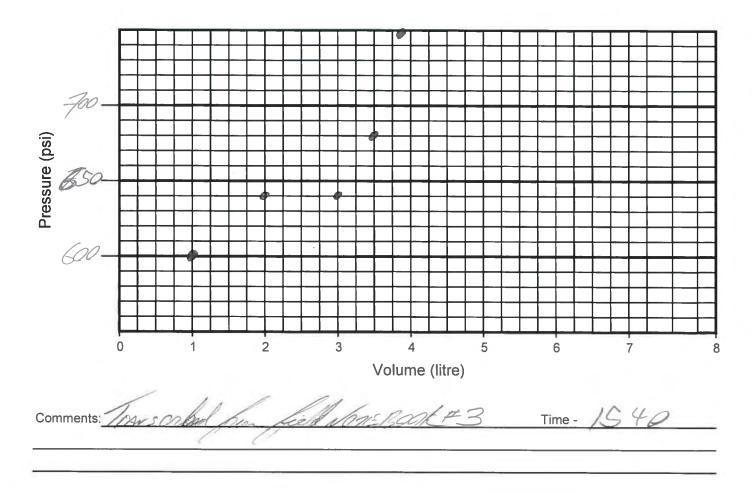

Volume, litres	/	2	3	3.5	3,7	/	3.2		
Pressure, psi	660	BSO	650	700	750	/	Ø		
Volume, litres									
Pressure, psi									

Pressure, psi


Project:	LORAX E	Environmental Services Ltd.				ct No.: W	B950	W	ell No.:	BAS.	WB
Location:	Coffee C	reek, Karr	ninak Golo	d Project	Comp	leted by:	DL	Da	te Inflate	d: <i>Jul</i>	NE 8/15
Packer No.	_PS				Depth	i (m):		Inf	lation Too	ol No.:	3198
Packer Val	ve Pressu	re, P _V :	<u>/S0</u> psi	i Final	Line Pres	ssure, P _L :	720	psi To	ol Pressu	re, P _T :	<i>750</i> psi
Borehole V	Vater Leve	el: <u>21</u>	<u>3</u> (m)	= <u>30</u>	3 psi (P	w)					
				Calcula	ted Packe	er Elemen	t Pressure	e, P _E = P _L	+ P _W - P _\	/-P _T =	23 psi
	1.1	/	0	0	011		00				
Volume	e, litres		2	3	3.4		3,0				
Pressu	ıre, psi	610	650	660	720		\bigcirc				
Volume	e, litres										

Project:	LORAX Environmental Services Ltd.	Project No.: WB950	Well No.: BH - 5 WB
Location:	Coffee Creek, Kaminak Gold Project	Completed by:	Date Inflated: JUNE P/15
Packer No.	PG	Depth (m):	Inflation Tool No.: 3/98
Packer Val	ve Pressure, P _V : <u>/S</u> psi Final Li	ne Pressure, P _L : <u>730</u> psi	Tool Pressure, P _T : <u>750</u> psi
Borehole V	Vater Level: <u>2/3</u> (m) = <u>303</u>	psi (P _w)	
	Calculated	Packer Element Pressure, P _E	= P _L + P _W - P _V - P _T = <u>/33</u> psi

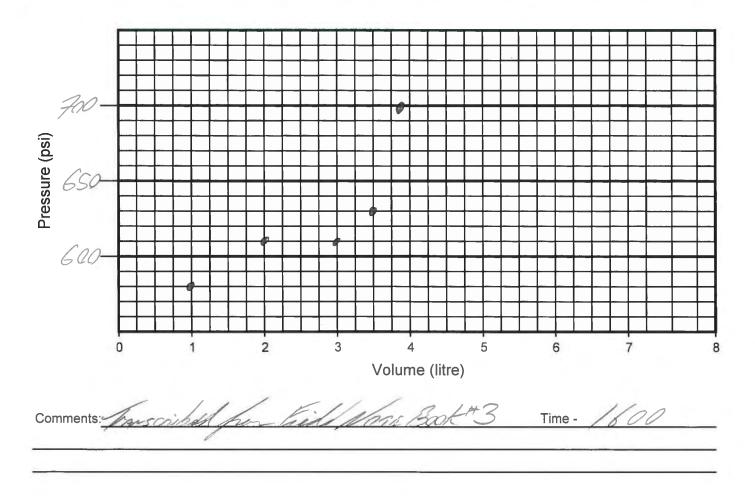
Volume, litres	/	2	3	3,5	4		3.5		
Pressure, psi	600	650	650	650	730	/	Ø		
Volume, litres									
Pressure, psi									



Project:	LORAX Environmental Services Ltd.	Project No.: WB950	Well No.: BHS_W13
Location:	Coffee Creek, Kaminak Gold Project	Completed by:	Date Inflated: <u>Junie 8/15</u>
Packer No.	PZ	Depth (m):	Inflation Tool No.: 3/98
Packer Val	ve Pressure, P _v : <u>/</u> si Final Lir	ne Pressure, P _L : <u>750</u> psi	Tool Pressure, P _T : 750 psi
Borehole V	Vater Level: <u>2/3</u> (m) = <u>303</u>	psi (P _W)	
			1

Calculated Packer Element Pressure, $P_E = P_L + P_W - P_V - P_T = \frac{1}{2}$ psi

Volume, litres	/	2	3	.3.5	3.8	/	3,3		
Pressure, psi	600	640	640	680	750	/	0		
Volume, litres									
Pressure, psi									

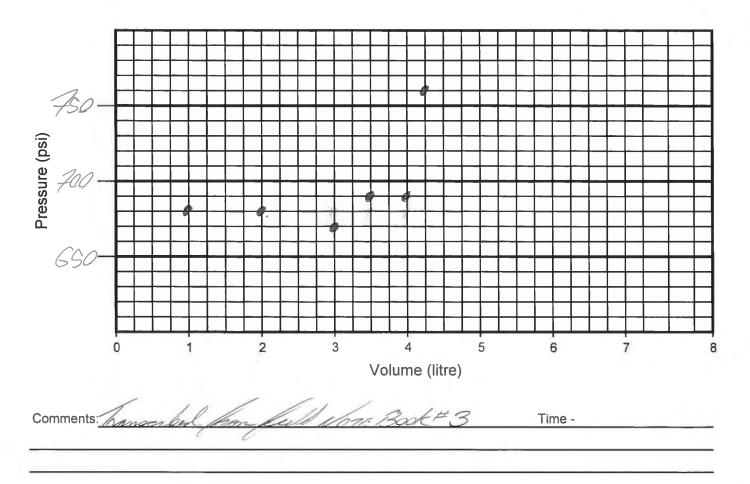

Westbay Instruments

Sheet____of___ Westbay Packer Inflation Record

Project: LORAX Environmental Services	Ltd. Project No.: WB950	Well No.: BAS_WB
Troject. EOTAX Environmental bervices	Tioject No.: VVD350	
Location: Coffee Creek, Kaminak Gold Pr	oject Completed by: DL	Date Inflated: <u>JUNE 8 15</u>
Packer No. <u> </u>	Depth (m):	_Inflation Tool No.: _ <u>3/98</u>
Packer Valve Pressure, P _v : <u>/S</u> psi	Final Line Pressure, PL: 700 psi	Tool Pressure, P _T : <u>700</u> psi
Borehole Water Level: $2/3$ (m) =	<u>303</u> psi (P _w)	
	algulated Dasker Element Dressure D	$-\mathbf{D} + \mathbf{D} - \mathbf{D} = -\sqrt{2}$

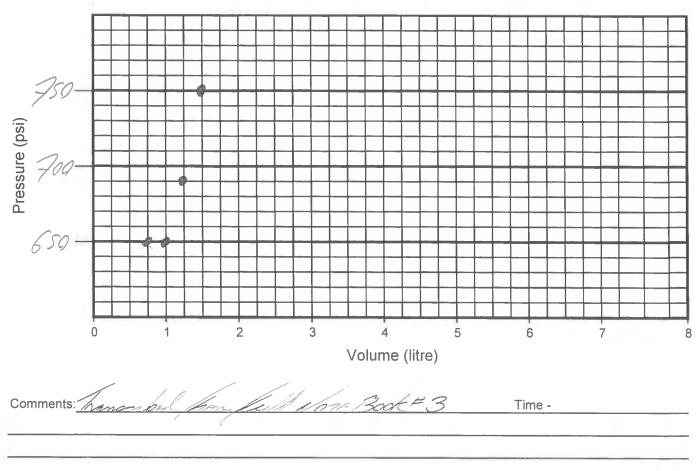
Calculated Packer Element Pressure, $P_E = P_L + P_W - P_V - P_T = 2000$ psi

Volume, litres	/	2	3	3,5	3,8		3.4		
Pressure, psi	570	610	610	630	700	/	Ø		
Volume, litres		_							
Pressure, psi									



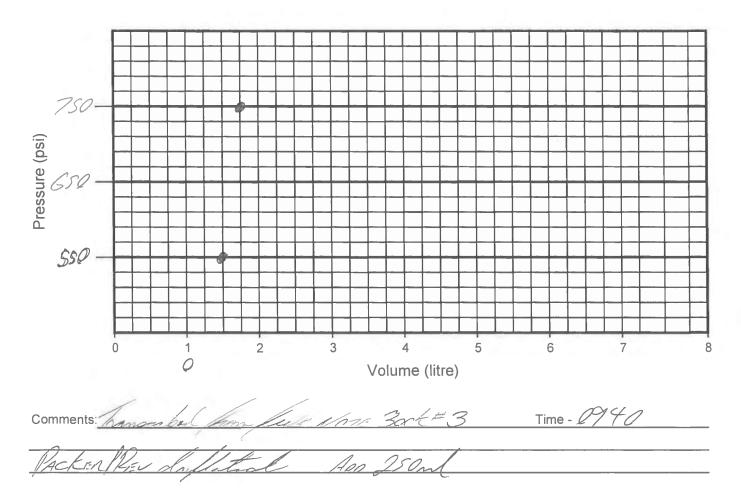
Sheet___of___ Westbay Packer Inflation Record

Designati	LOBAX Environmental Conviene Ltd	Designed Mary M/D050	Mallala RIIN 100
Project:	LORAX Environmental Services Ltd.	Project No.: WB950	Well No.: <u>BA5_WB</u>
Location:	Coffee Creek, Kaminak Gold Project	Completed by: DL	Date Inflated: June 9/15
Packer No.	<u>P9</u>	_Depth (m):	Inflation Tool No.: 3/98
Packer Val	ve Pressure, P _v : <u>/SO</u> psi Final Lir	ne Pressure, P _L : <u>760</u> psi	Tool Pressure, P _T : <u>700</u> psi
Borehole V	Vater Level: <u>209</u> (m) = <u>292</u>	psi (P _W)	

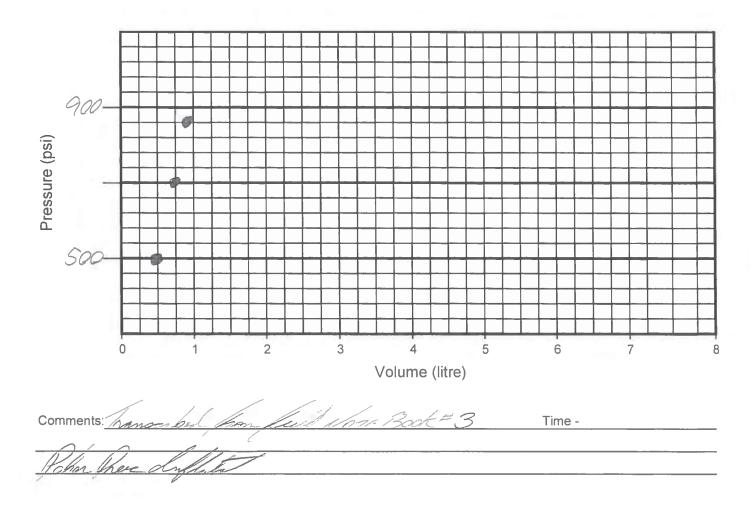

Calculated Packer Element Pressure, $P_E = P_L + P_W - P_V - P_T = 202$ psi

Volume, litres	/	2	3	3.5	4	4.25	3.8	
Pressure, psi	680	680	670	690	690	760	Ø	
Volume, litres								
Pressure, psi								

Project:	LORAX E	Invironme	ental Serv	ices Ltd.	Projec	ct No.: W	B950	V	Vell No.:	BH5.	WB
Location:	Coffee C	reek, Karr	ninak Golo	d Project	Comp	leted by:	DL	C	ate Inflate	ed: <u>Ju</u>	VE 9/15
Packer No.											3198
Packer Val	ve Pressu	re, P _v : /	<i>50</i> psi	i Final	Line Pres	ssure, P _L :					<i>700</i> psi
Borehole V	Vater Leve	el: <u>/</u> 8-	S (m)	= <u>26</u> _	3 psi (P	w)					
							t Pressure	e, P _E = F	P _L + P _W - P	v - P _T =	/63 psi
Volume	e, litres	.75	/	1.25	1.5		1.0				
Pressu	ıre, psi	650	650	690	750		Ø				
Volume	e, litres										
Pressu	ıre, psi										
				_						•	



Sheet____of____ Westbay Packer Inflation Record


Project:	LORAX E	Invironme	ntal Serv	ices Ltd.	Projec	t No.: <u>WE</u>	3950	W	ell No.:	<u> 345_</u>	WB	
Location:	Coffee Cr		inak Golo	d Project	Comp	leted by:	DL	Da	ate Inflated	d: <u>Sun</u>	1E 9/1	Ś
Packer No.					· ·	(m):			lation Too	No.:	3198	
Packer Val	ve Pressu	re, P _v : _/	<u>50</u> psi	Final	Line Pres	sure, P _L :	750	psi To	ol Pressu	re, P _T :	<i>200</i> psi	
Borehole V	Vater Leve	1: <u>181</u>	(m)	= <u>2</u> 5	Zpsi (P	w)	,					
				Calcula	ted Packe	er Elemen	t Pressure	e, P _E = P _L	+ P _w - P _v	- P _T =	<u>157</u> psi	
r												1
Volume	e, litres	1:9	1.5	1,75	/	1.25						
Pressi	ire nsi	\cap	500	700		\square						

Pressure, psi	0	550	750	0			
Volume, litres							
Pressure, psi							

Project:	LORAX E	nvironme	ental Serv	ices Ltd.	Projec	ct No.: <u>Wi</u>	B950	Well No.:	BH5	WB
Location:			ninak Golo	d Project	Comp	leted by:	DL	Date Infla	ted: Ju	NE 9/15
Packer No.	<u>P12</u>	2						Inflation T		
Packer Val	ve Pressu	re, P _v :/	<u>/50</u> psi	i Final	Line Pres	ssure, P _L :	875	osi Tool Press	sure, P _T :	<i>700</i> psi
Borehole W	later Leve	1: .94	۲ (m)	= 13	3 psi (P	w)				
							t Pressure	$P_{E} = P_{L} + P_{W}$	P _V - P _T =	/ <u>58</u> psi
									1	
Volume	e, litres	0	0.5	0.75	0.9	/	0.25			
Pressu	ıre, psi	0	S50	760	875		0			
Volume	e, litres									
Pressu	ıre, psi									

APPENDIX D: MONITORING WELL: BH8-WB

As-Built Key Components Summary (Table 4) As-Built Tubing Summary (Table 5) Summary Completion Log Pre-Inflation Piezometric Pressure/ Levels	- 1 page - 2 pages - 2 pages
Field Data and Calculation Sheet (May 5) Figure 3, Pre-Inflation Profile Post- Inflation Piezometric Pressure/Levels	- 1 page - 1 page
Field Data and Calculation Sheet (May 5) Figure 4, Post-Inflation Profile Westbay Completion Log (field copy) Westbay System Packer Inflation Records	- 1 page - 1 page - 5 pages - 6 pages

Table 4: BH8-WB As-Built Packer and Port Summary

AB, 01/06/2015

Port	Zone	Measurement	Pumping	Depth to top	Top of Zone	Bottom of Zone	Comments
No.	Zone	Port Depth, (m)	Port Depth, (m)	of Packer, (m)	(m)	(m)	
1		115.48		113.96	115.3	65.7	
2		109.39		107.86	109.2	114.4	
3		88.97		87.44	88.7	108.3	
4		82.87		81.35	82.6	87.8	
5		80.74		79.21	80.5	81.7	
6		76.17	74.64	74.64	75.9	79.6	
7							
8							
9							
10							
11							
12							
13							
14							
15	1						

Note 1: All depth measurements in meters below datum (GS).

Note 2: All depth measurements use 'Nominal' tubing lengths.

Note 3: Not corrected for borehole deviation or borehole temperature effects.

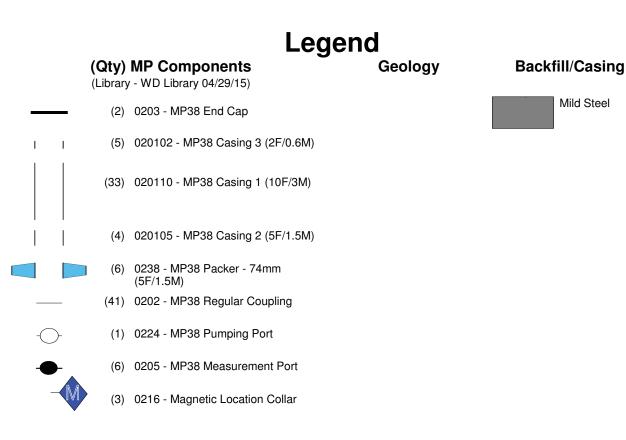
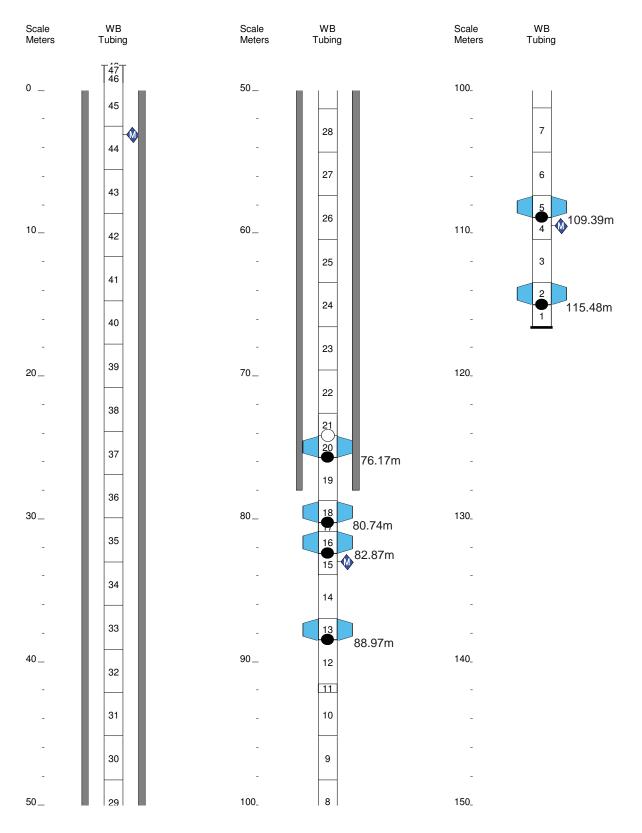
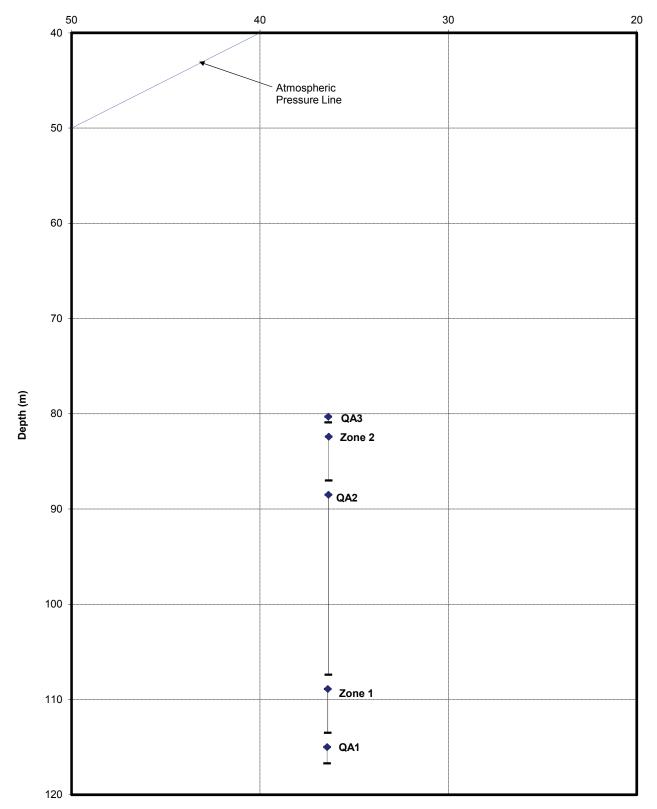

Note 4: All depth measurements to upper edge of Westbay System coupling item.

			Table 5: BH8-W	/B As-Built Sun	nmary			
							L LA CAR	the calk
AB ,01/0	06/2015					- 0.4H		
ltem No.	Component P/N	Component Description	Component S/N	Coupling P/N	Coupling S/N	Accessory P/N	Accessory Depth (m)	Final Position (m)
50	203							-1.91
48	20102			202				-1.86
47	20102			202				-1.25
46	20102			202				-0.64
45	20110			202				-0.03
44	20110			202		216	3.6	3.02
43	20110			202				6.06
42	20110			202				9.11
41	20110			202				12.16
40	20110			202				15.21
39	20110			202				18.26
38	20110			202				21.30
37	20110			202				24.35
36	20110			202				27.40
35	20110			202				30.45
34	20110			202				33.50
33	20110			202				36.54
32	20110			202				39.59
31	20110			202				42.64
30	20110			202				45.69
29	20110			202				48.73
28	20110			202				51.78
27	20110			202				54.83
26	20110			202				57.88
25	20110			202				60.93
24	20110			202				63.97
23	20110			202				67.02
22	20110			202				70.07
21	20105			202				73.12
20		Packer	19216	224				74.64
19		Measurement Port	10010	205	8451			76.17
18		Packer	19212	202	0.450			79.21
17		Measurement Port	40044	205	8452			80.74
16		Packer Massurement Dort	19214	202	0444	040	00.5	81.35
15		Measurement Port	├ ───┤	205	8441	216	83.5	82.87
14	20110		40040	202				84.39
13 12		Packer Moasurement Port	19213	202 205	0110			87.44
		Measurement Port			8449			88.97
11	20102		├	202				92.01
10 9	20110 20110		├	202 202				92.62 95.67
9	20110		┨────┤	202				95.67 98.72
8	20110		┨────┤	202				98.72
/	20110			202				101.77

			Table 5: BH8-V	VB As-Built Sun	nmary			
					-	10	L L L Con	Store La
AB ,01/	06/2015					20 B	P. C. State	
ltem No.	Component P/N	Component Description	Component S/N	Coupling P/N	Coupling S/N	Accessory P/N	Accessory Depth (m)	Final Position (m)
6	20110			202				104.81
5	238	Packer	19215	202				107.86
4	20105	Measurement Port		205	8443	216	110.0	109.39
3	20110			202				110.91
2	238	Packer	19211	202				113.96
1	20105	Measurement Port		205	8442			115.48
0	203							117.01

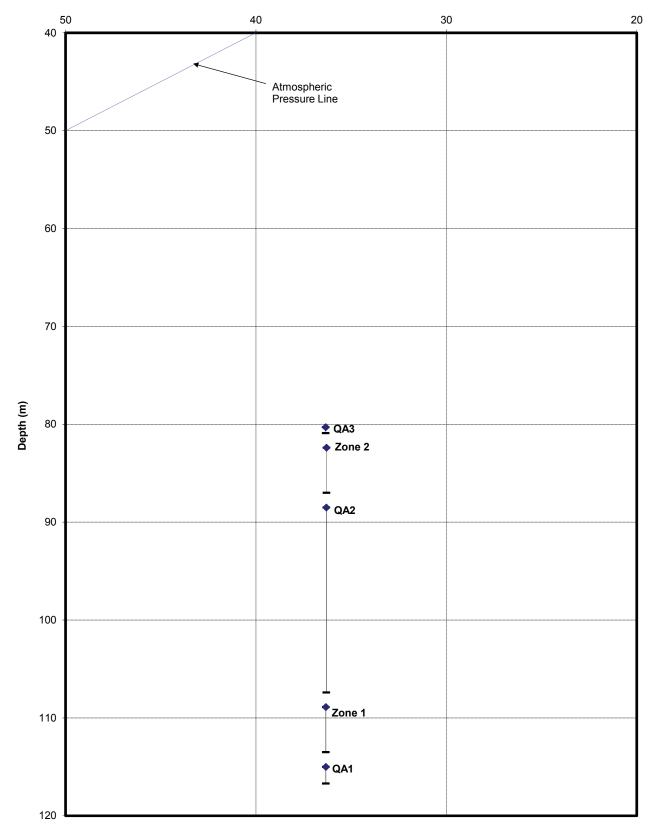

Summary Completion Log LORAX

Job No: WB950 Well: BH8-WB


Summary Completion Log LORAX

Job No: WB950 Well: BH8-WB

PRE-INFLATION OF & BUTTOM PACKERS Westbay Piezometric Pressures/Levels Field Data and Calculation Sheet	SI/S Man Rel SI/S / N Sb gn Sb gn Sb gn Sb gn	Finish 13.37												
F & 8 grr ric Pressi ield Data and	Date Clitent Job No.: Location Weather Operator	Amblent Reading (P _{uul}) (pressur re <u>13.30 Psi</u> <u>10.37 a.m</u>		Commente										
Piezometi		Ambiont Read Start Pressure 13 Temp Time		Zones	1241	1	19 DU	21.10	CONER	GAY				
stbay l			Plez, Level	(m) (m) []== []== []== []	364	21.15	71.4	C 72	20.00	76.4				
Wei	mpler 15 2499 250 ps. MP38	[3.30 psi	Pressure Hadd	(m) H = (P2, Patrixia	28.6	205	101	111	11 7 4	39.7				
	Squarles 2 Ems 2 250 MP3	¢.			181.48	13200	142.05	134.00	131 01	124.36	T		1	1
	Probe Type: Serial No. Probe Range Westbay Casing Type: Sampler Valve Position:		ings.	Probe Timp. Inside Casing (°C) (P1)	1.96	1.68	-	1.121	1000				1	
	P Westbay C Sampler Va	altion" in amplied boretrates refer to position areng drafticle. Thur depth (Dp) mords to be calculated using tonehole angle and deviation date to calculate zone pincometric level (Dd).	Fluid Pressure Readings	Time HIMS	15:01	10.45		10:49	10:52	10:54				
	NB Batton 1.67m	frue depin (Dp) ulate zoné pieżo		Outside Casing (P2)	125.02	116.40	142.95 87.44	PE:85	92.5£					Ī
~	BH 8- WB	stong dnihjdle Non data lo chio	-	(P1)	181.47	172.63	142.95	134.10	131.01	124.36				
pa	111111	er tu position s gio and devict	True Port	E)			X	1	4	x				1
Westbay	Well No. Datum Elev G.S. Westbay above G.S. Vestbay Casing: Reference Elevation: Borehole angle	d boreholes ref 10 borehole an	Port Position Pran Cabo	(m)	115.6	109.5	1.68	83.0	8.08	76.3				
1 Z	Well No Datum Elev G.S. Elev top of Westbay above G.S. Elev top of Westbay Casing. Reference Elevation Borehole angle	Note: "Port position" in anglied bioreholes refer to position stang drafticle. True depth (Dp) needs to be calculated to be calculated to be proported to the calculated to be proported to the proported to be and the station date to calculate zone proported to the	Part Position From Loa		1	108.4	88.5	_	m	75.7				
has	Haight Elev	Note: "Port p	Port No.	-	- 0	8	3	4	5	9				


Equivalent Depth to Water (m)

Client: LORAX Site: Coffee Creek Datum: GS

tric Pressures/Levels Field Data and Calculation Sheet	Name REC 1 Name R	rea temporature, timo) Finish: (3, 32) 3:18p=													
Westbay Piezometric Pressures/Levels	Date Client: Job No- Location Weather: Operator	Start Pressure 13.34 Pressure, temporature, time) Start Pressure 13.34 Pressure, temporature, time) Temp 13.80 Pc Time), 13. Time 3:48 Pc 3:41		Zanes Comments	041	2mal	640	Zowo2	105	a de	1114				
stbay I		-	Plez, Lever Outside Puri	(m) Dz = Du - H	36.3	36.3	36.3	36.7	36 2	36.3					
We	15 2499 15 2499 50 851 1038	3.34 per	Pressure Head Duiside Port	(m) M = (P2-Patrn)/w	F.8 2	72.6	52.2	195	440	39.4					
	Sam	Participant, and a second seco		(P1) (P1)	120.62	111.80	82.16	73.31	70.27	63.55					1
	Probe Type Serial No., Probe Range Westbay Casing Type Sampler Valve Position.			Probe Temp	1.1	298	2.11	1	CE:/	1.00			T		1
	P Westbay C Sampler Va	mettic level (Ctr	Fluid Prossure Readings	The HMS	3:03	Re-to	3:07	3:10	3:12	3:13					
	E.	frue depth (Dp) date zone piezu		Casing (P2)	10.20	116.54	2257	78.90	7576					T	1
~	18-WB	Mole. Port postoon" in angled bureholes rater to position along drillinols. Thus dopth (Dip) weeds to be calculated wind borehole angle and devision data to trainulate zone plezomattic evel (Dip).		(FR)	6.201 00.001	86.11		7331	70.22	63.55					
pa)	60 4	er lo position gla snø devis	True Plant Display 'Op'	(iii)	1	1	1	1	1	1					
Westbay	Well No Datum Elev. G.S Vestbay above G.S o of Westbay Casing Reference Elevation Borehole angle	a buraholaq ref ng barahula an	From Cable	E	14.3	109.4	29.0	82.9	30.8	F6.97					
1	Well No Daturn Elev. G.S Elev. top of Westbay casing Reference Elevation Reference Elevation Borehole angle.	dallon" in angle callollated un	From Log	(ii)	113,0	108.9	88.5	89.4	80.3	t'St					
	Height	lale. Part p	Put Na	-		TOP	7 :	*	5	9					

Equivalent Depth to Water (m)

Plot By:____Date:____ Checked By:____Date:____ Westbay Project: WB950

tric Pressures/Levels Field Data and Calculation Sheet	Date: Nev 9 Client Cord Job No: We 95 Location Coffee Weather Wors	Ambient Reading (P) (pressure, temperature, time) Ite 13.34 (3		Comments										
Westbay Piezometric Pressures/Levels Field Data and Calculation Sheet	, 7 2 Q	Starti Pressure 13.34 Temp 18.42			QAI	Privel	GAD	2	A AD	and				
stbay F		Start	Pieze Level	(E)										
Wes	22.044 22.044 25.04	13.29	Przeswe Head Outside Port	(11) H = (P2-Petm/w										
	Sam Sam Ems	Pattin	-			112.75	83.11	79.25	71.16	64.52	1		Ì	
	Probe Type: Serial No Probe Range: Casing Type: álva Position;		sBu	Probe Terro. Inside Casing (°C) (PC)	8.29	1.1	3.47		2,09	PN.				
	Probe Type: Serial No Probe Range: Westbay Casing Type: Sampler Valve Position:	secon" in sngling boreholes tetler to passion along utilitizitie. True deptili (Dp) needs to be calculated using borehole angle and deviation data (p datediate zone plezometric tevel (D3).	Fluid Pressum Readings	Time H:M:S	4:51	0	6	4	-					1
		ue deple) (Dp) r ele zone plezo	Fluid	Culside Caring (P2)	125.06	116.40	24.58	58.85	bt.st	69.30				-
2.3	- WB	ng dritthele. Tr n data to calou		P1) (P1)	121.56	05. JIL . 40	83.10 87.47	74.25	-	64.52				
oak	8H8 555 555 555 555 555 555	r to position ald	True Purt		i	r		1	ł					
Westbay	Well No.: Datum: Elev. G.S.: Mestbay above G.S.: A of Westbay Casing: Reference Elevation: Borehole angle:	boreholes refe giporenole ang	Port Position From Cable	łmy	14.71	108.6	6.88	82.1	80.0	E'St	T			
	Vell No - Datum Elev. G.S. Height of Westbay above G.S. Elev. top of Westbay Casing: Reference Elevation Reference Elevation	Note. "Plant possion" in anythic boreholes terter to possion along draft-like. The depail (Dp) meets to be celonidated bang borehole angle and deviation data to asculate some plecometer; lavel	Por Fundion From Log		115.0	-	885	-		75.7				-
hard	Height . Elev.	lote. Port po	Par No.		-	7	2	2	5	9				

Westbay Completion Log

Company: LORAX Well: BH8-WB Site: Coffee Project: Coffee

Job No: WB950 Author: ML

mr

Well Information

Reference Datum: Ground Surface Elevation of Datum: 0.00 m. MP Casing Top: 0.00 m. MP Casing Length: 116.59 m. Borehole Depth: 120.00 m. Borehole Inclination: Vertical

Borehole Diameter: 114.00 mm

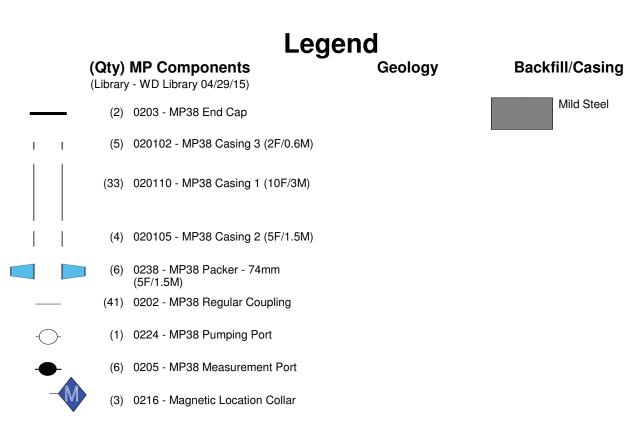
Well Description: Permafrost Other References:

File Information

File Name: BH8-WB2.WWD Report Date: Sun May 03 21:22:20 2015

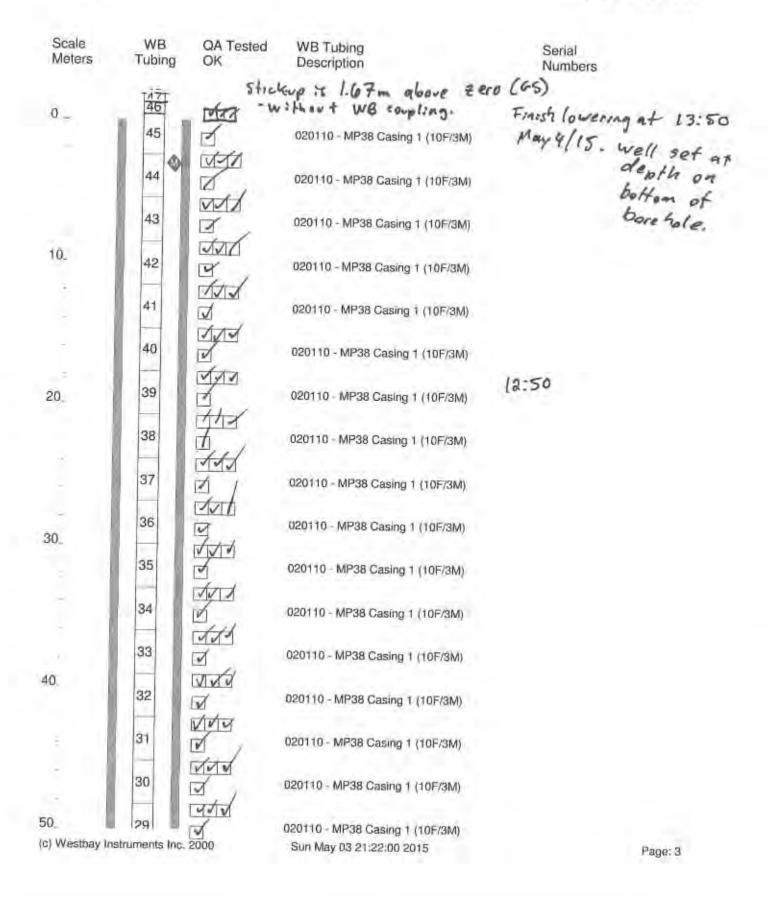
File Date: May 02 20:58:29 2015

Comments

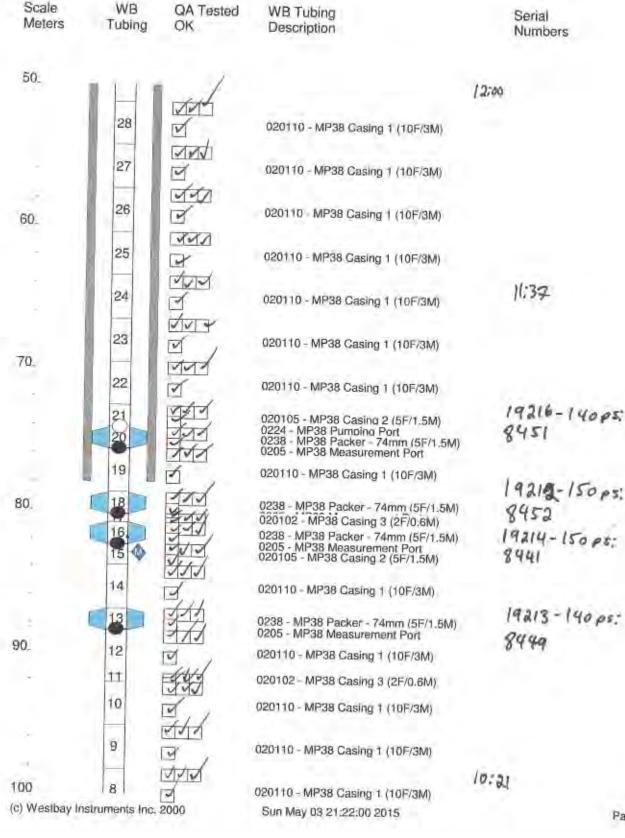

Zero reference is ground surface - & Filter socks not to be used - K

Log Information

Borehole condition confirmed. MP well design & preparation. MP well design checked. MP well and borehole approved to install.

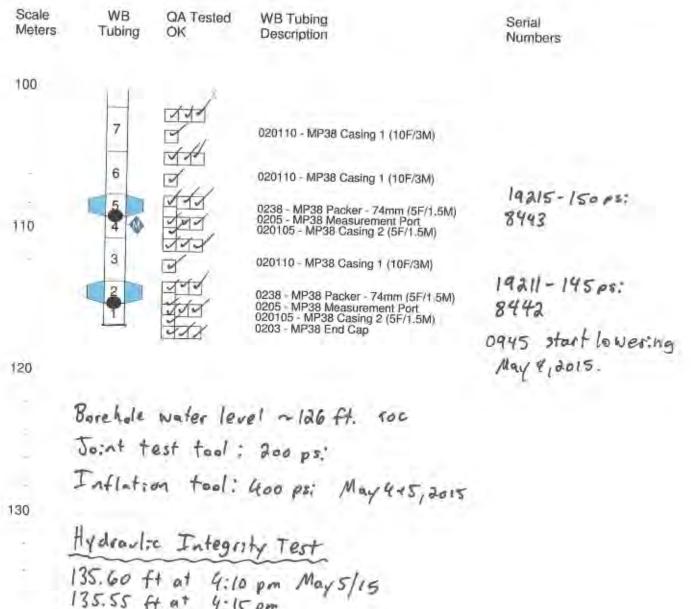

(method) TAC By: Name REDACTED	Date: May 4/15
Ву:	Date: May 9/15 Date: May 9/15
By:	Date: Hay 4, 15

Westbay Completion Log LORAX


Westbay Completion Log LORAX

Job No: WB950 Well: BH8-WB

Westbay Completion Log LORAX


Job No: WB950 Well: BH8-WB

Page: 4

Westbay Completion Log LORAX

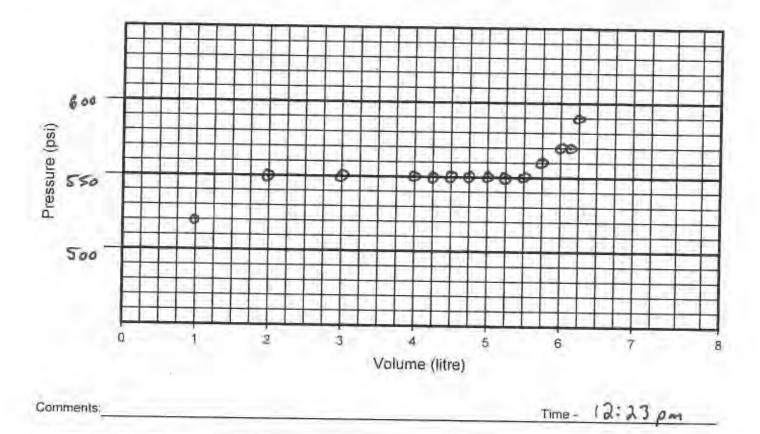
Job No: WB950 Well: BH8-WB

140

150

(c) Westbay Instruments Inc. 2000

Sun May 03 21:22:00 2015

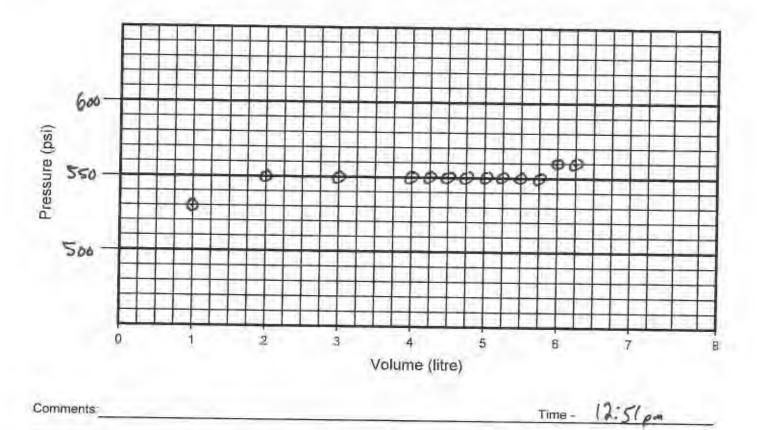

Page: 5

Project:	LORAX Environmental Services Ltd.	Project No., WB950	Well No .: BH8-W8
Location:	Coffee Creek, Kaminak Gold Project	Name REDACT	TED late Inflated: May 5/15
Packer No	1, comp2 SN# 19211	Depth (m)	Allation Tool No. 2100
Packer Va	Ive Pressure; Pv: 145 psi Final L	ine Pressure, PL: 590 psi	Tool Pressure, PT: 400 psi
Borehole V	Vater Level: 38.4 (m) = 55	psi (P _w)	700
	Calculate	A ROOM OF THE STATE OF THE STAT	

Westbay

Calculated Packer Element Pressure, $P_E = P_L + P_W - P_V - P_T = /00$ psi

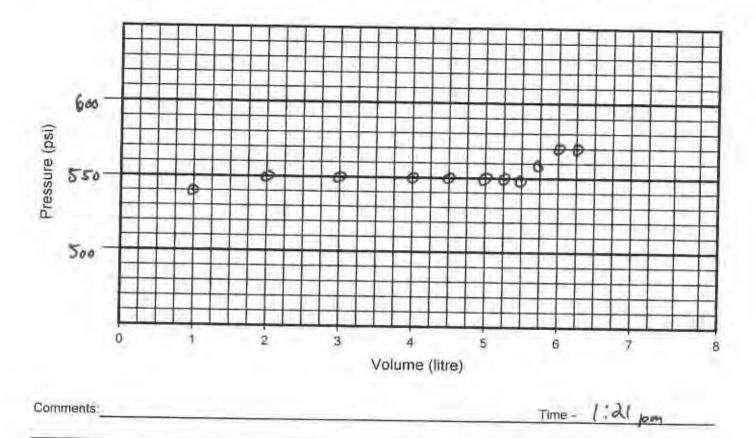
Volume, litres	1.0	2.0	3.0	4.0	4.25	4.5	4.75	5.0	5.25	5.5
Pressure, psi	520	550	550	550	550	550	550	550	550	550
Volume, litres	5.75	6.0	6.1	1	6.25	1	5.8			
Pressure, psi	560	570	570	/	590	1	6			



Project:	LORAX Environmental Services Ltd.	Project No.: WB9		Well No .: BH8-WB				
Location	Coffee Creek, Kaminak Gold Project	Completed by:	ame REDACTE	Date Inflated: _M	av 5/15			
Packer No.	2, comp 5 5N# 19215	Depth (m):	108.9	Inflation Tool No.:	1			
Packer Val	ve Pressure, Pv. 150 psi Final L	ine Pressure, PL: C	560 psi	Tool Pressure, PT				
	Vater Level: 38.4 (m)= 55	psi (P _w)						

Calculated Packer Element Pressure, PE = PL + PW - PV - PT = 65 psi

Volume, litres	1.0	2.0	3.0	4.0	4.25	4.5	4.75	5.0	5.25	5.5
Pressure, psi	230	550	550	550	550	550	550	550	550	550
Volume, litres	5,75	6.0	6.25	/	5.9		1			
Pressure, psi	550	560	560	/	6					

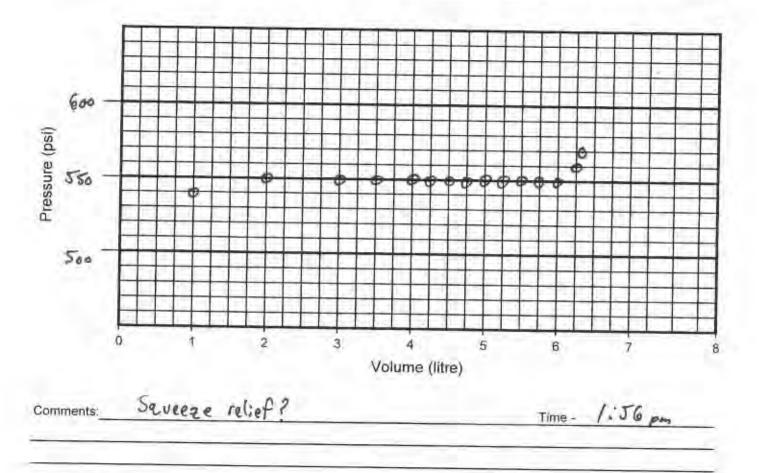


Ô	
---	--

Project	LORAX Environmental Services Ltd.	Project No.: WB950	Well No .: BH8	-WR
Location:	Coffee Creek, Kaminak Gold Project	Name REDACTE Completed by	Date Inflated: _M	and the second se
Packer No	3, comp 13 SN# 19213	Depth (m): & 0 - >	Inflation Tool No -	+ · · ·
Packer Va	ve Pressure, Pv: /YO psi Final L	ine Pressure, Pt: 570 psi	Tool Pressure, PT	400 psi
Borehole V	Vater Level: 38.4 (m) = 55	_psi(P _W)		

Calculated Packer Element Pressure, PE = PL + PW - PV - PT = _______ psi

Volume, litres	1.0	2.0	3,0	4.0	4.5	5.0	5.25	5.5	5.75	6.0
Pressure, psi	540	550	550	550	550	550	550	550	560	570
Volume, litres	6.25	/	5.9							
Pressure, psl	570	1	6							1

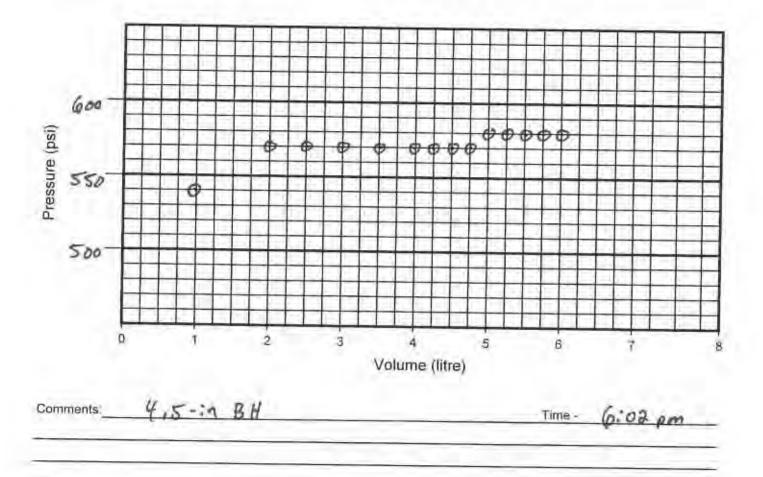

Westbay

Westbay Packer Inflation Record

Project:	LORAX Environmental Services Ltd.	Project No.: WBS	950	Well No : BH	18-WR
Location	Coffee Creek, Kaminak Gold Project	Completed by: Na	DEDAOTED	Date Inflated:	
	4,00mp 10 SN# 19214	Depth (m):	82.4	Inflation Tool No.	10.
Packer Va	Ive Pressure, Pv. 150 psi Final Li	ne Pressure, P _L :	570 psi	Tool Pressure, PT	1 100 psi
Borehole V	Vater Level: 38.4 (m) = 55	ps) (P _W)			

Calculated Packer Element Pressure, $P_E = P_L + P_{W} - P_V - P_T = 75$ psi

Volume, litres	1.0	2.0	3.0	3.5	4.0	4.25	4.5	4.75	5.0	5:25
Pressure, psi	540	550	550	550	550	550	556	550	550	550
Volume, litres	5.5	5.75	6.0	6.25	6.35	1	6.0			
Pressure, psi	550	550	550	560	570	1	6		in the second	1

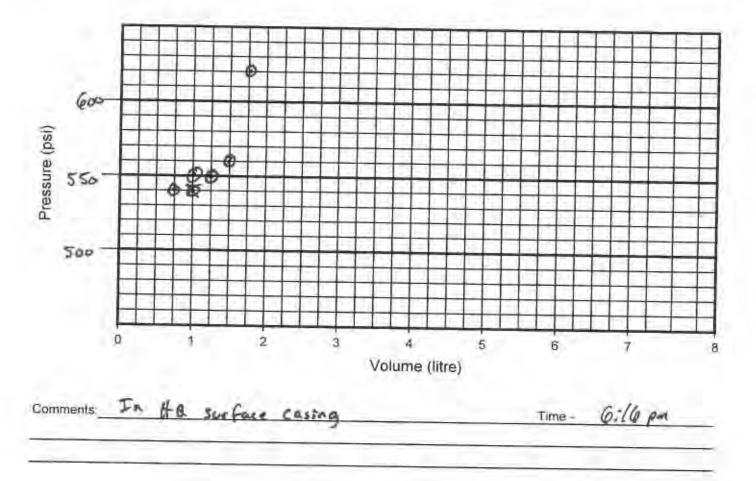

Westbay Packer Inflation Record

Project:	LORAX Environmental Services Ltd.	Project No : WB950	Well No. BHS	WR	
Location:	Coffee Creek, Kaminak Gold Project	Name REDAC	te Inflated: M		5
	5, comp 18 SN# 19212	Depth (m):	ation Tool No .:	1	
Packer Va	Ive Pressure, Pv. 150 psi Final L	ine Pressure, PL: 580 psi	Tool Pressure, Pr.	400	psi
Borehole V	Vater Level: 38.4 (m) = 55	psi (P _W)			

Westbay

Calculated Packer Element Pressure, PE= PL+ PW- Pv- Pr= 85 psi

Volume, litres	1.0	2.0	25	3.0	3.5	4.0	4.25	4.5	4.75	5.0
Pressure, psi	540	570	570	570	570	570	570	570	570	580
Volume, litres	5.25	5,5	5.75	6.0	1	5.7				
Pressure, psi	580	580	580	580	1	ø				


Westbay.

Westbay Packer Inflation Record

Project:	LORAX Environmental Services Ltd.	Project No.: WB950	Well No .: BH	8-WB
Location:	Coffee Creek, Kaminak Gold Project	Name REDACTED	Date Inflated: M	
	6,00mp 20 SN# 19216	Depth (m) _ 70,7	Inflation Tool No.:	3197
	ve Pressure, Pv. 140 psi Final L	ine Pressure, PL: 620 psi	Tool Pressure, PT;	400 psi
Borehole V	Vater Level: 38.4 (m)= 55	_psi (P _W)		

Calculated Packer Element Pressure, PE=PL+PW-PV-PT= 135 psi

Volume, litres	0.75	1.0	1.25	1.5	1.75	1	1.4			
Pressure, psi	540	550	550	540	620	1	ø		-	
Volume, litres			1.47			1		-		
Pressure, psi				1		1		-	-	-

APPENDIX E: MONITORING WELL: BH10-WB

As-Built Key Components Summary (Table 4) As-Built Tubing Summary (Table 5) Summary Completion Log	- 1 page - 1 page - 2 pages
Pre-Inflation Piezometric Pressure/ Levels Field Data and Calculation Sheet (May 24)	- 1 page
Figure 3, Pre-Inflation Profile	- 1 page
Post- Inflation Piezometric Pressure/Levels Field Data and Calculation Sheet (May 24)	1 0000
Figure 4, Post-Inflation Profile	- 1 page - 1 page
Westbay Completion Log (field copy)	- 5 pages
Westbay System Packer Inflation Records	- 5 pages

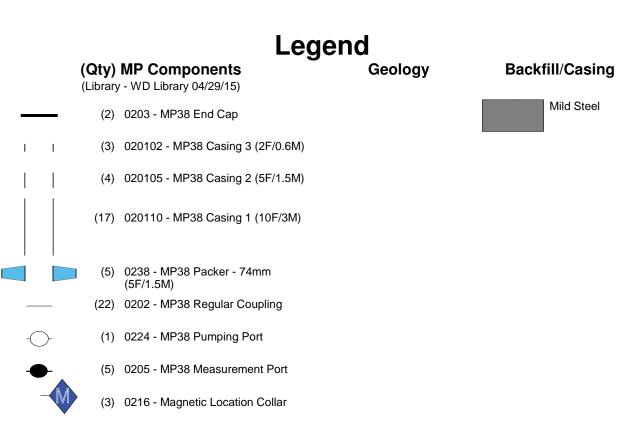
Table 4: BH10-WB As-Built Packer and Port Summary

AB, 01/06/2015

Port No.	Zone	Measurement Port Depth, (m)	Pumping Port Depth, (m)	Depth to top of Packer, (m)	Top of Zone (m)	Bottom of Zone (m)	Comments
		r ort Deptil, (iii)	r ort Beptil, (iii)		(11)	()	
1	1	61.0		59.5	60.8	65.7	
2	QA 1	32.0		30.5	31.8	59.9	
3	2	25.9		24.4	25.7	30.9	
4	QA 2	13.7		12.2	13.5	24.8	
5	QA 3	9.2	7.6	7.6	8.9	12.6	
6							
7							
8							
9							
10							
11							
12							
13							
14							
15							

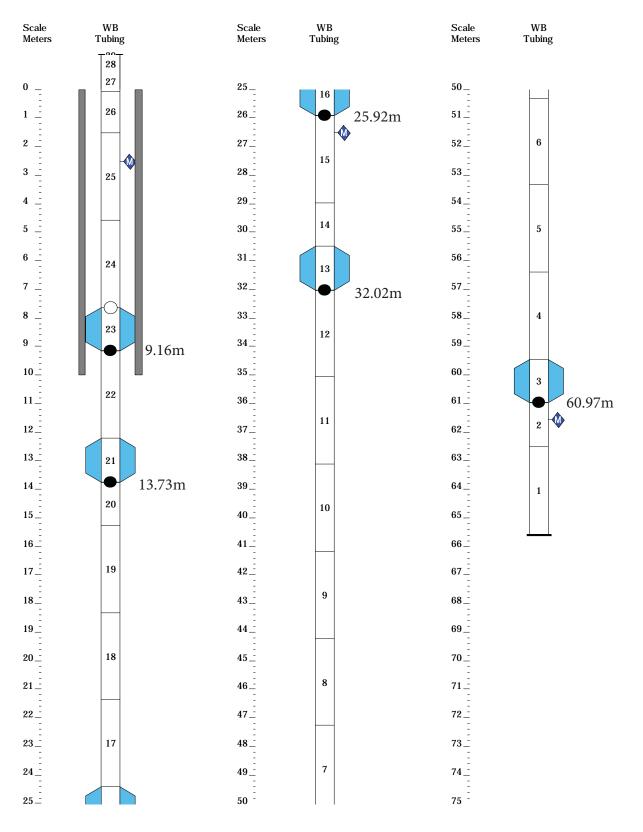
Note 1: All depth measurements in meters below datum (GS).

Note 2: All depth measurements use 'Nominal' tubing lengths.


Note 3: Not corrected for borehole deviation or borehole temperature effects.

Note 4: All depth measurements to upper edge of Westbay System coupling item.

			Table 5: BH10-V	VB As-Built Su	mmary			20.
								tbak
AB ,01/0	06/2015							nts
Item No.	Component P/N	Component Description	Component S/N	Coupling P/N	Coupling S/N	Accessory P/N	Accessory Depth (m)	Final Position (m)
28	20102			203				-1.07
27	20102			202				-0.59043
26	20105			202				0.019141
25	20110			202		216	2.1	1.5431
24	20110			202				4.5909
23		Packer	19225	224	8712			7.6388
22	20110	Measurement Port		205	8456			9.1627
21	238	Packer	19224	202				12.211
20	20105	Measurement Port		205	8458			13.734
19	20110			202				15.258
18	20110			202				18.306
17	20110			202				21.354
16	238	Packer	19201	202				24.402
15		Measurement Port		205	8457	216	26.5	25.926
14	20105			202				28.974
13		Packer	19208	202				30.498
12		Measurement Port		205	8459			32.022
11	20110			202				35.069
10	20110			202				38.117
9	20110			202				41.165
8	20110			202				44.213
7	20110			202				47.261
6	20110			202				50.309
5	20110			202				53.357
4	20110	-		202				56.404
3		Packer	19205	202				59.452
2		Measurement Port		205	8478	216	61.6	60.976
1	20110			202				62.5
0	203			202				65.548
			├ ───┤					


Summary Completion Log LORAX

Job No: WB950 Well: BH10-WB

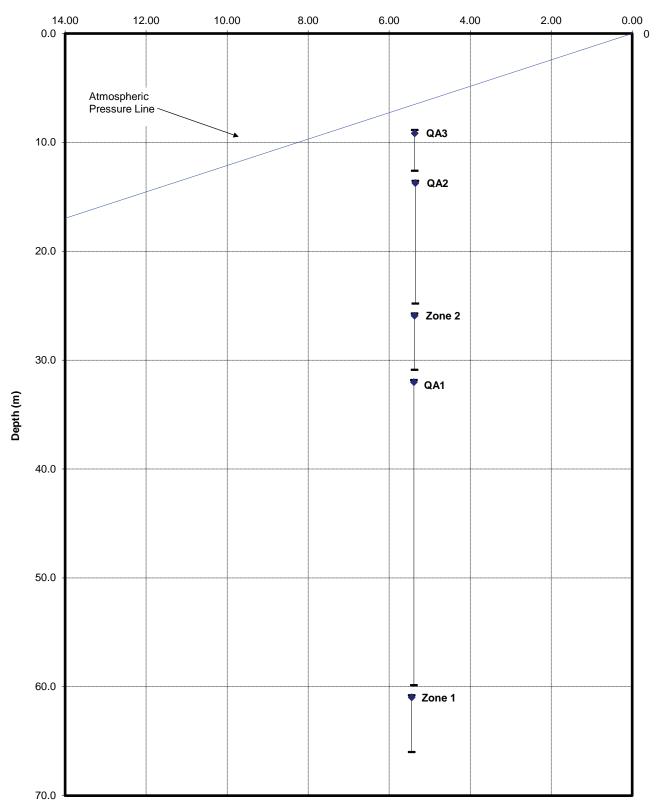
Summary Completion Log LORAX

Job No: WB950 Well: BH10-WB

O Meste	ak.		Piezometric Pressures/Levels
Well No .:	SH-10		Date: May 24, 2015
Datum:	-	Probe Type:	Client: OPAY
Elev. G.S.	-	Serial No: 2499	Job No.: 950
Height of Westbay above G.S.:	\sim	Probe Range: 200	Location:
Elev. top of Westbay Casing:	~	Westbay Casing Type: MISS	Weather, Sugarum Jafu
Reference Elevation:	~	Sampler Valve Position:	- your -
Borehole angle:	-	a main house second	Operator:

Note: "Port position" in angled boreholes refer to position along drillhole: "frue depth (Dp) needs to be calculated using borshole angle and deviation data to calculate zone piezometric level (Dz).

	Ambient Reading	(Pate) (pressure, temperature, time)
Patm 13 46 psi	Start: Pressure Temp Time	Finish:


Port No.	Port Position From Log	From Cable	True Port Depth "Dp"		Flui	d Pressure Rear	tings		Pressure Head Outside Port	Piez, Level Outside Port	
e dat radi.	(m)	(m)	(m)	Inside Casing (P1)	Outside Casing (P2)	Time H:M:S	Probe Temp, (*C)	Inside Casing (P1)	(m) H = (P2-Patm)Av	(m) Dz = Dp - H	Comments
/	61	61.2		7453	92.42	11:38	4.24	74.54	5551	5.4	
2	325	32.3		32 14	\$1.33	11:42	2,24	3242	26.63	5,8	
3	26.5	167		23 54	4208	11:45	1.62	73 14	20.54	5.9	
4	14.5	13.7		13.48	25.3F	11.0	1.33	13.48	8.37	6.12	
5	10.0	9.1	121.00	13.47	18.85	0.53-	1:26	13.48	3,79	6.20	
-	14.7771	urí 🚍 if	1	A					-11-1	2125	
	1	11000	1.00								
	1										
		11					1.1.	0.000			
	1-1	11.001	11111	Provent.							
			1.1.1	11.004		1					
	1										
		1.0.1.	1111	1							
-		1	1. 1. 1.	10.253							
			1								

Notes: w = 0.4335 psi/ft (1.422psi/m) of H₂O Dz = piezometric level in zone

Patm = atmospheric pressure

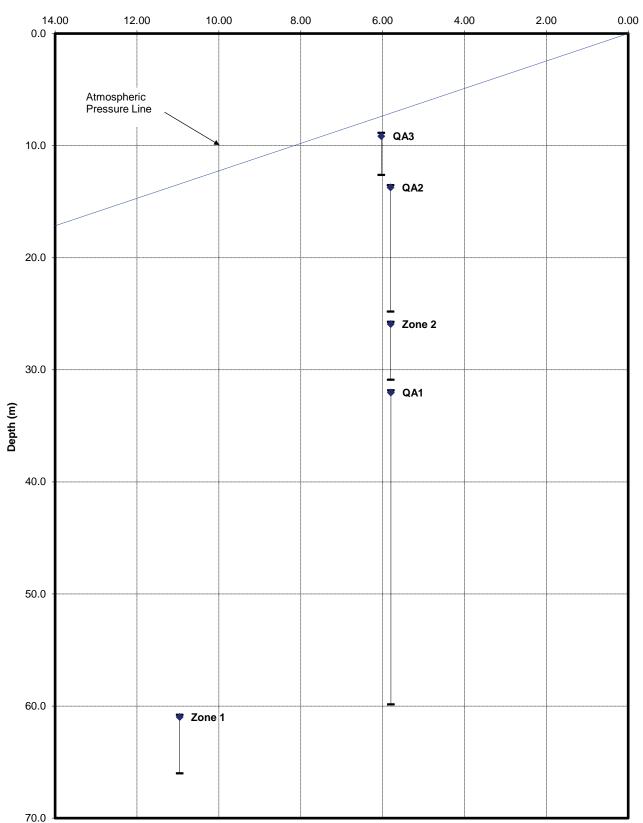
Dp = true depth of measurement port H = pressure head of water in zone

Piezometric Profile Monitoring Well: BH10-WB

Equivalent Depth to Water (m)

	ay.	Westb	ay Piezometric Pressures/Levels
Well No.: Datum: Elev. G.S Height of Westbay above G.S Elev. top of Westbay Casing: Reference Elevation:	BH-10 	Probe Type: <u>15415</u> Serial No.: <u>2499</u> Probe Range: <u>250</u> Westbay Casing Type: <u>4938</u> Sampler Valve Position:	Date: Client: Job No.: Docation: Weather:
Borehole angle: Note: "Port position" in angled boreholes refer to calculated using borehole angle a	position along drillhole. Tr	ue depth (Dp) needs to be	Ambient Reading (Path) (pressure, temperature, time) Start: Pressure Finish:3 = 4 - 6

Note: "Port position" in angled boreholes refer to position along drillhole. True depth (Dp) needs to be calculated using borehole angle and deviation data to calculate zone piezometric level (Dz).


	Ambient Reading (Pam) (pressure, temperature, I
Patra <u>13,46</u> psi	Start: Pressure Temp Time	Finish:

Port No.	From Log	Port Position From Cable	True Port Depth "Dp"		Flui	d Pressure Read	Sings		Pressure Head Outside Port	Piez, Level Outside Port	and the second se
and real	(m)	(m)	(m)	Inside Casing (P1)	Outside Casing (P2)	Time H:M:S	Probe Temp (*C)	Inside Casing (P1)		(m) Dz = Dp - H	Comments
1	60.97	611		75.19	85.74	13:50	5.60	75.10	50.82	10.14	
2	32.0	32-1		33.08	51.91	13:54	2.77	33.09	27.03	4.96	
3	25.92	26.1		24,20	49.23	13:56	237	24.20	20.93	4.99	
4	13.73	13.8		13.46	25.89	15.59	2.26	13.48	8.74	4.98	
S	9.15	92		13.49	17.07	14:01	2.17	13.49	3,94	5.21	
		1			y mu	11.11	1 P	1		The start of the	
	12				1	P		11		1	
1.1				1.1	1.00	all set					
_	-									17 L I M	
	11.771			-		11-0.1	1.	1		1.1.1	
					-		1				
1.1						12.4-41		1		1	
-	11-11						1				
1.1	21-11	1.1.1	(I			3		1.00.21	11	1000	
			1					1	1		
88:	w = 0.4335 psv	n (1.422psi/m)	of H ₂ O	Dz = piezometr	ic level in zone		Patm = atmosp	heric cressure		H = pressure head of wa	aler in zone Dp = true depth of measurement port

Ē

 $H \approx pressure head of water in zone Dp \approx true depth of measurement port$

Piezometric Profile Monitoring Well: BH10-WB

Equivalent Depth to Water (m)

Westbay System Completion Log

Comp	any: LORAX	
Well:	BH-10	-
Site:	Caller Greek	-
Proje	at:	

Well Information

Reference Datum: 65	Ħ.
Elevation of Datum:	fi.
WB Tubing Top:	ft.
WB Tubing Length:	MA

WB #: Author:

Borehole Depth: ft. Borehole Inclination: Borehole Diameter: 35 in.

Well Description:

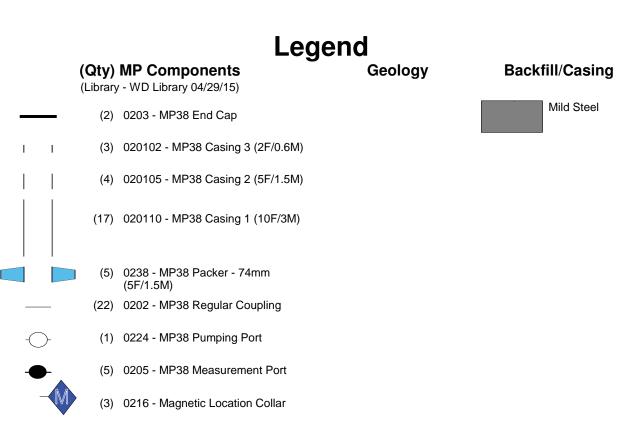
Other References:

File Information

File Name:_____ Report Date:_____

File Date:

Comments



Installation sign-off Information

Borehole condition confirmed.(Client) WB System design & preparation.(Client / WB) WB System design checked. (Client / WB) WB System and borehole approved to install. (Client)

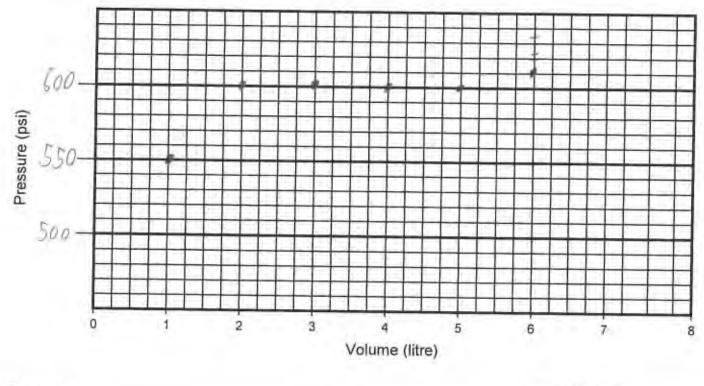
(method) Date By: Date: By: Date B) Date;

Westbay Completion Log LORAX

roject:	Westbay:					Westbay Syst Completion Lo Sheet.	1.3 750
ocation: 🤇	fle Crash	10	Hole No.:_	1000	-10	Installed by:	AB
lole Depth: . Neasuremen	<u>65, R</u> WB Depth: <u>65</u> nt Datum: <u>65</u>	1. Br	Hole Diam		945	Date Installed: 2	+/5/2
Scale, (m(tt)	Component Description	Depth	WB Tubing Log	Serial No.	Final Packer Pressure/Volume	Date Drawn: Comments	Joint
		H		-	rressure/voidme		Install Test
-	2		28				
0	E	and the	D				-22
-	-3		STATE OF				- 11
10	10		25				
-							10
20	10	H	24		-		
-	224		10	87/2			1
30-	238		23	19225 8455	1000		
_	10		20	-			
40-		1			· · · · · · · · · · · · · · · · · · ·		
	238		12/10	19124			
50	5 205		29	8458			
54	10		la				
60			19-				
Ģ.	10			Ī			
20			- 18 -	Ì			
70	14		TT				
	1.4		17	ŧ			
30-	238		The Lating	199.01			-4-
-	C V			19201 8457 -			14

Project: <u>CORAX</u> Location: <u>Correction</u> Hole Depth: <u>65.8</u> WB Depth: <u>65.6</u> Measurement Datum: <u>65</u>				BA eter: vation:	4.5"	Installed by: Date Installed: 2 Date Drawn:	Date Installed: 24/05/2		
Scale, (m//l)	Component Description	Depth Log	WB Tubing Log	Serial No.	Final Packer Pressure/Volume	Comments	Joint Install Trest		
90	10		15						
100	2		11						
	238 205		n n	19208 8459					
110-	10		12	a 1-1					
-			4				_		
120-	10		η						
-	10						-20		
130-	10		10						
	10						-44		
140-			9						
150	10						-11		
150			4	Ī					
160-	10		7						
			41		1		11		
170-	10		6						
-	10						11		
180-			5	F					
-			4	-			11		

	ORAX Coffee Creck 65.8m WB Depth: 65	6m	Hole No.: _ Hole Diame	eter:	84 - 10 4.5 "	Sheet. WB#.: Installed by: Date Installed:	tem 0g <u>3 or 3</u> 750 78 78 74/5/2
icale,	Component Description	Depth Log	Datum Elev WB Tubing Log		Final Packer Pressure/Volume	Date Drawn: Comments	Joint
200	5 238 205 5		4.3	19205 8478			Install Tex
210	1.0		1				
220							
230-							
240							
250				-		ж.	
				-			
_							



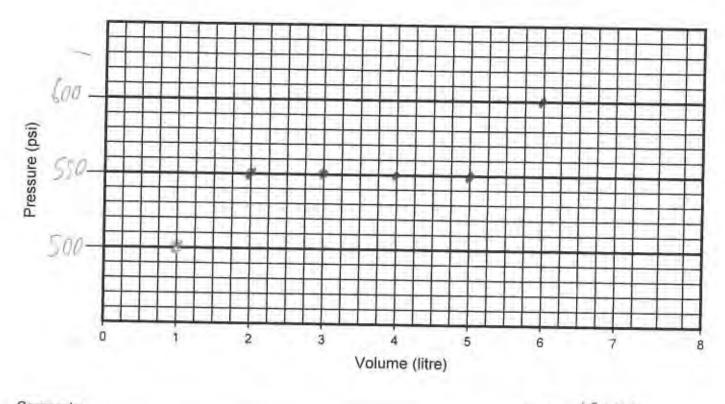
Westbay Packer Inflation Record

Project:	LORAX Environmental Services Ltd.	Project No .: WB950	Well No.: BH-10
Location:	Coffee Creek, Kaminak Gold Project	_Completed by: _AB	Date Inflated: 24/05/2015
Packer No.	1 19205	Depth (m):	Inflation Tool No.:
Packer Val	ve Pressure, Pv: 155 psi Final L	ine Pressure, PL: 525 psi	Tool Pressure, Pr: 3SC psi
Borehole V	Vater Level: (m) =	psi (P _w)	

Calculated Packer Element Pressure, $P_E = P_L + P_W - P_V - P_T = \frac{131}{2}$ psi

Volume, litres	1	2	3	4	5	6	1	5.6	11.11	
Pressure, psi	550	600	600	600	600	625	1	Ø	1.11	
Volume, litres										
Pressure, psi										

Time - 12:15 Comments:

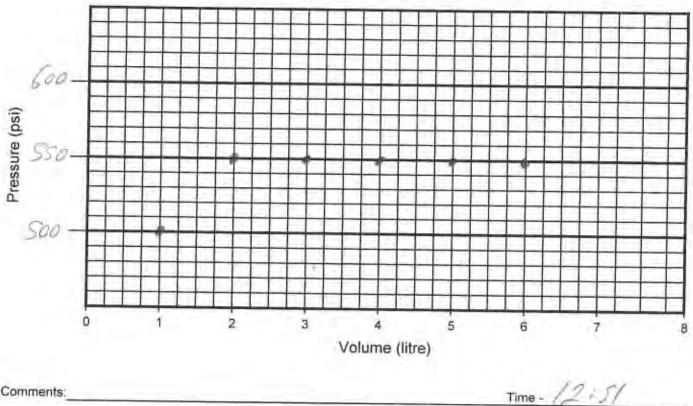


Westbay Packer Inflation Record

Project:	LORAX Environmental Service	es Ltd.	Project No .: WE	3950	Well No .: 134-10
Location:	Coffee Creek, Kaminak Gold F	roject	Completed by:	AB	Date Inflated: 24/05/2015
Packer No	2 19208		Depth (m):	_	Inflation Tool No.
Packer Val	ve Pressure, Pv: 140 psi	Final L	ine Pressure, PL:	600 psi	
Borehole V	Vater Level: <u></u> (m) =	1.2	psi (P _w)		
		Cale date		Sector of the	

Calculated Packer Element Pressure, $P_E = P_L + P_W - P_V - P_T = 121$ psi

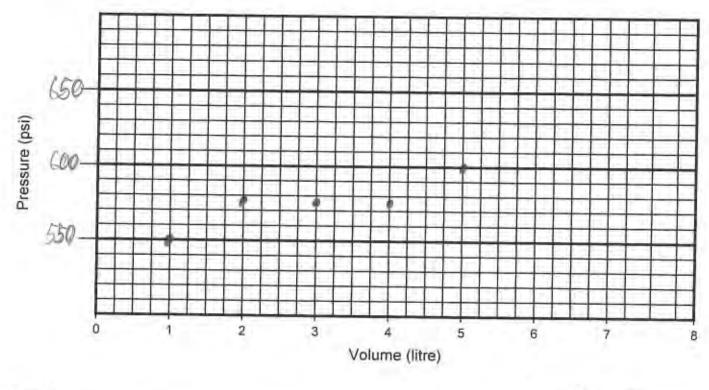
Volume, litres	1	2	3	4	5	6	/	5,6	11.7	
Pressure, psi	500	550	550	550	550	600	/	0		
Volume, litres										
Pressure, psi				1						1


Time - 12:35 Comments:

Sheet___of__ Westbay Packer Inflation Record

Project:	LORAX Environmental Services Ltd.	Project No.: WB950	Well No : BH-10
Location:	Coffee Creek, Kaminak Gold Project	Completed by: AB	Date Inflated: 24 105 12015
Packer No.	3 19201	Depth (m);	Inflation Tool No.:
Packer Val	ve Pressure, Pv: 150 psi Final	Line Pressure, P.: SPS psi	Tool Pressure, Pr: 350 psi
Borehole V	Vater Level: 8 (m) = //	psi (P _W)	
	Calcula	ted Packer Element Pressure, P	$= P_L + P_W - P_V - P_T = \frac{SS}{psi}$ psi

Volume, litres	1	2	3	t	5	6	6.25	/	5,8	
Pressure, psi	500	550	550	550	550	550	575	/	0	
Volume, litres		-								
Pressure, psi	1	-							1 1	-


Comments:

Westbay Packer Inflation Record

Project	LORAX Environmental Services Ltd.	Project No.: WB950	Well No .: 84-10
Location: Packer No.	Coffee Creek, Kaminak Gold Project	_ Completed by:	Date Inflated: 24105/2015
		ine Pressure, PL: 6/0 psi	Tool Pressure, P _T : 350 psi
Borehole V	Vatër Level: (m) =/ Calculate	_ psi (P _w) d Packer Element Pressure, P _r	$P_{L} = P_{L} + P_{W} - P_{V} - P_{T} = //6 psi$

Volume, litres	1	2	3	4	5	5,25	/	4.1		
Pressure, psi	550	575	575	575	600	610	/	Ø		
Volume, litres										
Pressure, psi	1								1.000	

Time - 13:08 Comments:

Project: Location: Packer No. Packer Valve F Borehole Wate	the second se		si Fina	Com Dept	pleted by: h (ft / m): ssure, P _t	A	B Da	ate Inflate	BH - 24 ol No.: ure, P _T :	105
		<u> </u>				nt Pressu	re, P _E = P _l	+ Pw- P	v-P _T =	15
Volume, lite	res /	2	3	4	5	6	6.25	/	5.8	
Pressure, p	osi 525	575	575	575	575	\$75	600	1	Ø	
Volume, litr	105					0-01		1		-
Pressure, p	osi				1					
Coo 550 500				3	4 /olume,	litres		6	7	

APPENDIX F: MONITORING WELL: BH12-WB

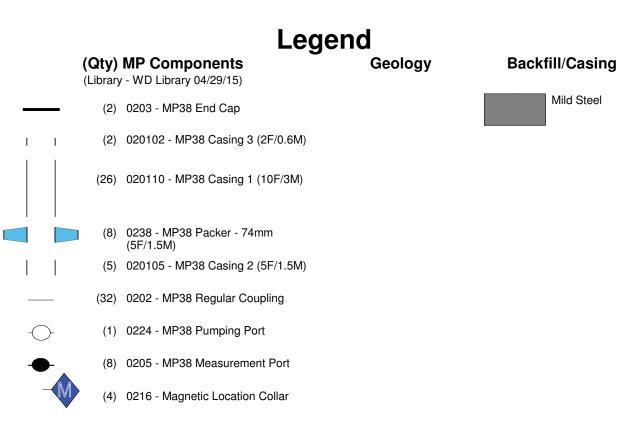
As-Built Key Components Summary (Table 4)	- 1 page
As-Built Tubing Summary (Table 5)	- 1 page
Summary Completion Log	- 2 pages
Pre-Inflation Piezometric Pressure/ Levels Field Data and Calculation Sheet (May 12) Figure 3, Pre-Inflation Profile	- 1 page - 1 page
Post- Inflation Piezometric Pressure/Levels Field Data and Calculation Sheet (May 14)	- 1 page
Figure 4, Post-Inflation Profile	- 1 page
Westbay Completion Log (field copy)	- 4 pages
Westbay System Packer Inflation Records	- 8 pages

Table 4: BH12-WB As-Built Packer and Port Summary

AB, 01/06/2015

Port	7	Measurement	Pumping	Depth to top	Top of Zone	Bottom of Zone	Comments
No.	Zone	Port Depth, (m)	Port Depth, (m)	of Packer, (m)	(m)	(m)	
1		97.799		96.275	97.6	99.7	
2		94.142		92.618	93.9	96.7	
3		88.046		86.522	87.8	93.0	
4		81.95		80.426	81.7	86.9	
5		51.472		49.948	51.2	80.8	
6		46.9		45.376	46.7	50.3	
7		36.233		34.709	36.0	45.8	
8		31.661	30.137	30.137	31.4	35.1	
9							
10							
11							
12							
13							
14							
15							

Note 1: All depth measurements in meters below datum (GS).


Note 2: All depth measurements use 'Nominal' tubing lengths.

Note 3: Not corrected for borehole deviation or borehole temperature effects.

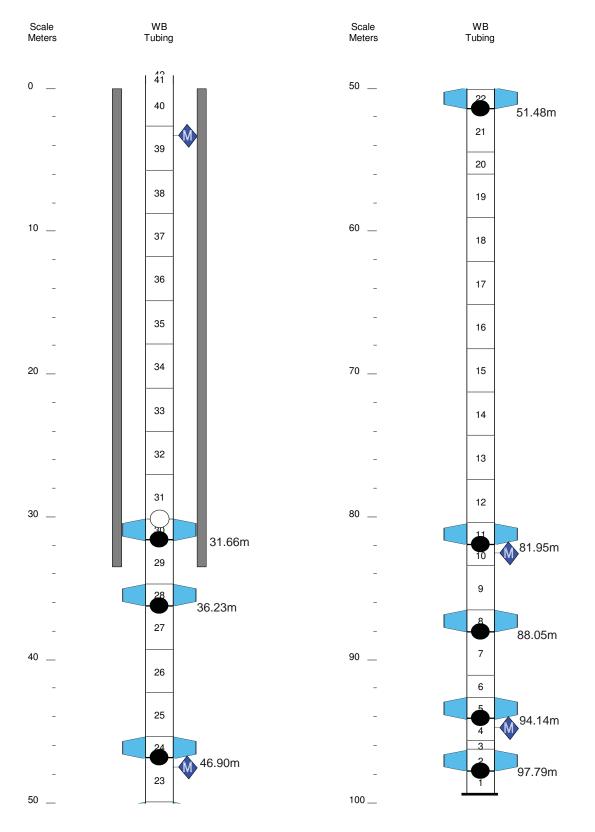
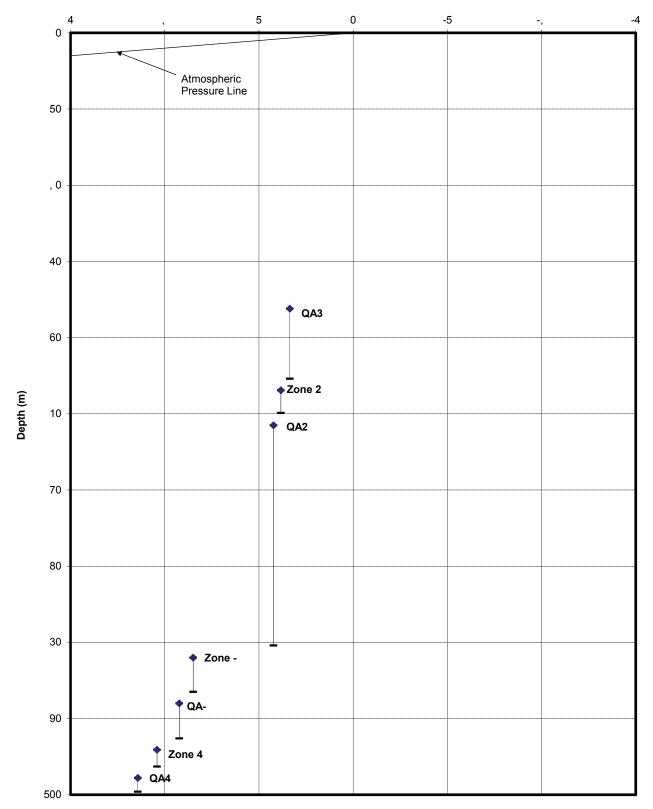

Note 4: All depth measurements to upper edge of Westbay System coupling item.

Table 5: BH12-WB As-Built Summary									
						11		STOLEN IN	
AB ,01/	06/2015						1 1 1 2		
Item	Component	Component	Component	Coupling	Coupling	Accessory	Accessory	Final	
No.	P/N	Description	S/N	P/N	S/N	P/N	Depth	Position	
							(m)	(m)	
42	203							-0.99912	
41	20102			202				-0.95126	
40	20110			202				-0.34169	
39	20110			202		216	3.3	2.7062	
38	20110			202				5.754	
37	20110			202				8.8019	
36	20110			202				11.85	
35	20110			202				14.898	
34	20110			202				17.945	
33	20110			202				20.993	
32	20110			202				24.041	
31	20110			202				27.089	
30		Packer	19237	224	8714			30.137	
29		Measurement Port		205	8450			31.661	
28		Packer	19234	202				34.709	
27		Measurement Port		205	8454			36.233	
26	20110			202				39.28	
25	20110			202				42.328	
24		Packer	19236	202				45.376	
23		Measurement Port		205	8455	216	47.5	46.9	
22		Packer	19233	202				49.948	
21		Measurement Port		205	8453			51.472	
20	20105			202				54.52	
19	20110			202				56.044	
18	20110			202				59.091	
17	20110			202				62.139	
16	20110			202				65.187	
15	20110			202				68.235	
14				202				71.283	
13	20110			202				74.331	
12	20110			202				77.379	
11		Packer	19231	202				80.426	
10		Measurement Port		205	8445	216	82.6	81.95	
9	20110			202				83.474	
8		Packer	19232	202				86.522	
7		Measurement Port		205	8444			88.046	
6	20105			202				91.094	
5		Packer	19238	202				92.618	
4		Measurement Port		205	8447	216	94.7	94.142	
3	20102			202				95.666	
2		Packer	19235	202				96.275	
1		Measurement Port		205	8446			97.799	
0	203							99.323	

Summary Completion Log LORAX

Summary Completion Log LORAX



(c) Westbay Instruments Inc. 2000

Mon May 11 21:15:42 2015

マドビーナルドレ舟Tエッル Westbay Piezometric Pressures/Levels Field Data and Calculation Sheet	ШШ	Ambient Reading (P _{stan}) (pressure, temperature, time) Start: Preasure 15: 73 05. Finish: 13.7 Temp 8: 473 as 17.14 & 0.4 3: 473 as 3: 12.12	e Pie	DE-DD-H Cones		1.6	118 ara	4.7	0.8	0.8	S 0.7 OAF	1.0 0.7 ars			
>	Sampler Emsaygq 250pr: MP38	Pam 13.	Press	H = (P	-	100.98 92.0		83.95 80.3	10.68 50.6		6 35.5	18 88.51			
	44		-	trake	-	2.62 100	2.25 92,37	3.03 83.	1.69 10.	1.46 39.10	1.25 1866	(G 13.	-		
	Probe Type Serial No. Probe Range Westbay Casing Type Sampler Valve Position	cont' in and/ad boreholes refer to position signa strift-de. The depth (Dp) needs to be calculated using borehole angle and deviation data to calculate zone plexometric tevel (D7). We water level ~ 33 m	Fluid Pressure Readings	e HiMill	29			3:03	3:05	3:06	3:07	3:04			
		Note: "Port possion" in angled boreholes refer to position along shillrole. The depth (Dg) needs to be calculated using porehole angle and deviation data to calculate zone piezometric level W & wetter level - 33 m		_		8.S.HN	136.24	127.92	85.76	79.33	64,25	08: 25			
	PS-WB PS-WB PS-WB	stong strillhole, 1 ion data to calco	-	Inside Casing (P1)	105.95	F8.001	92.37	83.85	40.07	34.10	18.66	13.95			
odi	V 6 C	in to position a	True Port		٢	í	ï	1	ĩ	1	4	x			
	Well No.: Datum Elev. G.S.: Vestbay above G.S.: Pof Westbay Cesing: Reference Elevation: Borehole angle	a borefinities refer to position along stratificale ng oprehole angle and deviation data to ca watter level ~ 33 m	Port Position	E E	980	94.3	8.83	82.24	51.6	O.F.h	36.3	31.9			
Z	Well No Datum Elev. G.S.: Elev. top of Westbay above G.S.: Elev. top of Westbay Casing Reference Elevation Borehole angle	calculated units	5		97.8	112	0.88	83.0	21.5	9/6.9	362	A 12			
	Height	d hod, mot	Boo No.	and the s	-	-	m	7	5	و	1+	8			

Client: LORAX Site: Coffee Creek Datum: GS Plot By:____Date:____ Checked By:____Date:____ Westbay Project: WB910

Westbay Piezometric Pressures/Levels	Date: May 14/15 Client: <u>LoRA Y</u> Job No.: <u>WB 950</u> Location: <u>CoFFee</u> Weather: <u>Narw Clear</u> Operator: <u>M.L.</u>	13,66 ps: Finish 13.65 ps 23.36 °C Finish 13.65 ps 1:36 pm 1:53 pm	Commanda	res .		2	62	3	Zonez	54	S				
Piez	*	Start: Pressure Temp Time		Zones	OHL	64 G	Zone2	QA3	ry	944	QUAS				
tbay		1000	Plisz, Level Outside Port	H-40=20	8.1-	-1.9	-1.9	5.1-	5.1-	0.0	1.2				
Wes	seuge seuge so ps: np3 8 clobed	13.66 psi	Pressure Head Outside Port	H = (P2-Patm)/w	97.0	89.9	83.9	52.8	6.87	36.2	30.5				
	Sampler Ensauge a so ps: MP38 Clobed	P.	Inside Casing	(14)	120.04	121.61	113.06	69.76	63/6	47.66	41.02	1			
	Probe Type. Sampler Serial No. Ensaute Probe Range. 250 pr Casing Type. MP38 alve Position. Clobe of		the Terrup		10:01		3.23	2.62 6	2.03 G	1.63 9	1.27 g	1		1	
	A S S	dis lo be tric level (Dz)	8	SMEH BER	1.12	1	84:	1:50	1:21	:53	1:52				
	0	a depth (Dp) nee e zore: plezome	Cutside.	-		-	33.01	88-69	68.e	62-19	57.09			T	
	L-WB	ig dela to calculat	pris	(PI) (121.60 141.53	(13,05 [33.0]	69.74		47.66 6	41.01			1	
, foo	8H 12-WB 65 0. 0. Vertical	up position alo	True Port	_				1							
	Well No Datum: Elev. G.S bay above G.S Vestbay Casing: rence Elevation: Borehole angle	borehole angle	Port Position Fram Cable		5.40	88.3	188	51.6	640	36.3	31.8				
Z#	Well No Datum Elev. G.S. Height of Westbay above G.S. Elev. top of Westbay Casing Reference Elevation Borehole angle.	Note: "Port position" in angled boreholes refer to position alway delition. True depth (Dp) needs to be calculated using borehole angle and devision data to calculate zone plecometric level (Dz).	From Log		1	0	-	51.5	-	10	31.7				
	Height o Elev. J	Vote: "Port pos	Port No.	-	- 66		1	5	او		8		1		

Piezometric Profile Monitoring Well: BH4- FWB

0

5

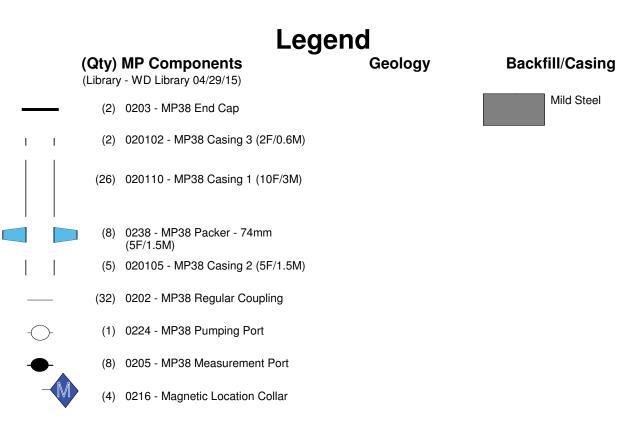
6

16

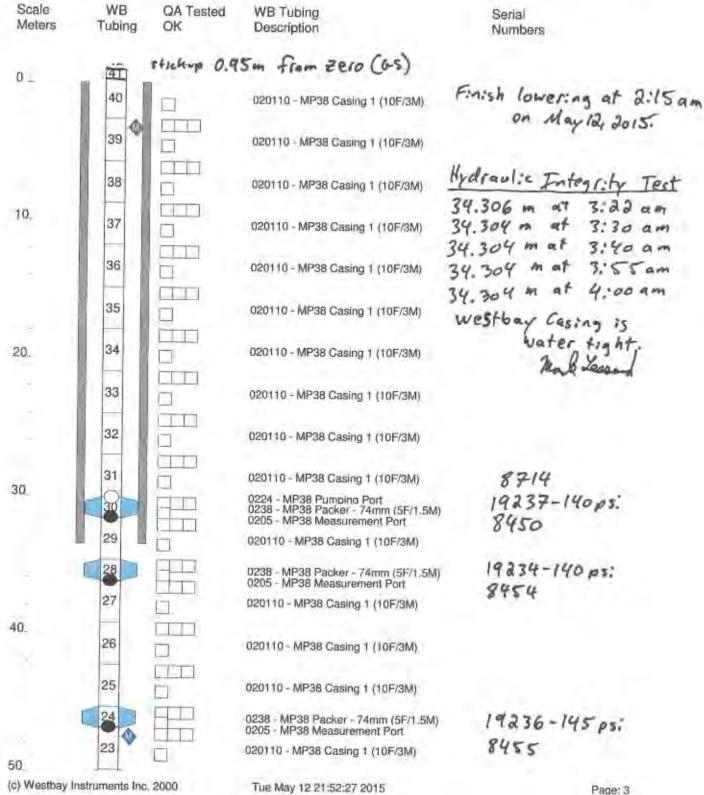
10

1 `Xtn o- pheric Pre- - ure Ose 51 01 61 QA3 , 1 Zone 2 Depth (m) C1 🕈 QA2 71 81 31 Zone -٠ QA-41 **Zone 4 ♦** QA4

Eq1 ivalent Depth to Water (m)


15

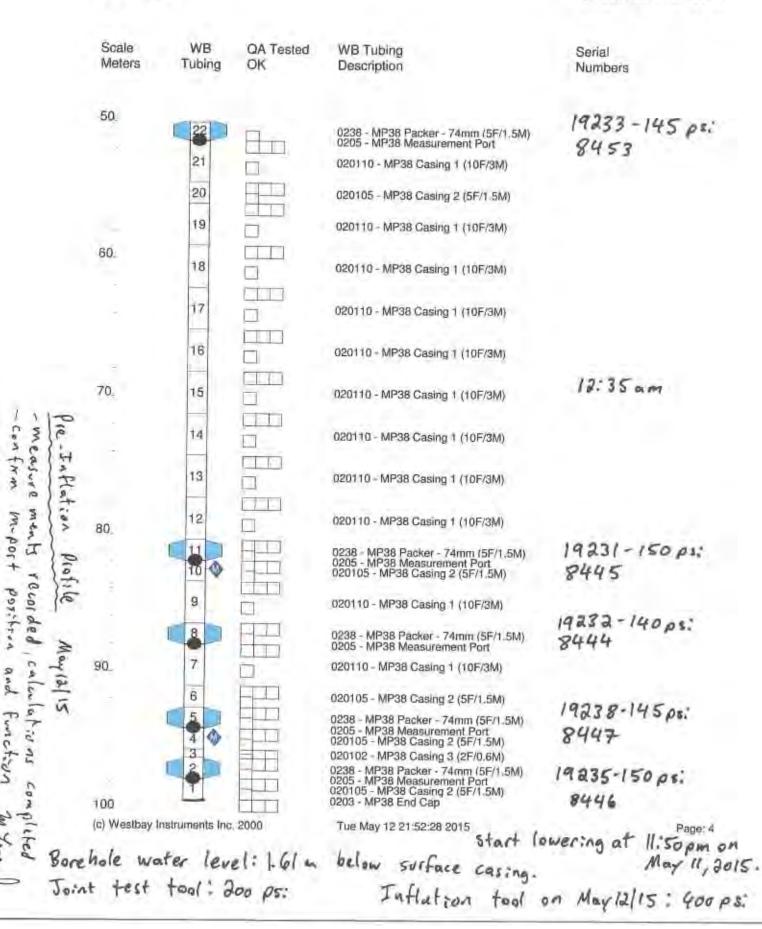
mliest: ORAXS k ite: moffee Datun : Gk


511

Plot By:____Date:____ mhecdeWBy:____Date:____ b e-tj ay Prosect: b B4C1

Westbay Completion Log LORAX

Westbay Completion Log LORAX



Job No: WB950

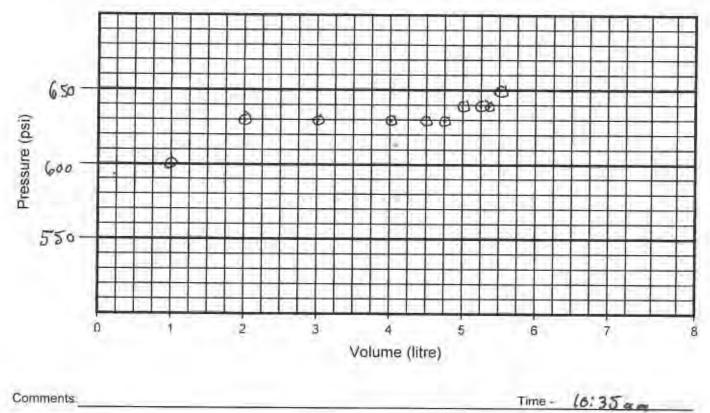
Well: BH12-WB

Page: 3

Westbay Completion Log LORAX

Job No: WB950 Well: BH12-WB

Sheet of Westbay Packer Inflation Record


Project:	LORAX Environmental Services Ltd.	Project No.: WB950 Name REDACT	Well No .: BH 12	-WB
Location	Coffee Creek, Kaminak Gold Project	Completed by	Date Inflated: M	3414/15
	400mp 2 5N# 19235		Inflation Tool No.	3197
Packer Va	Ive Pressure, Pv: 150 psi Final I	Line Pressure, PL: 650 psi	Tool Pressure, P _T .	400 psi
Borehole V	Vater Level: (m) =O	psi (P _w)		

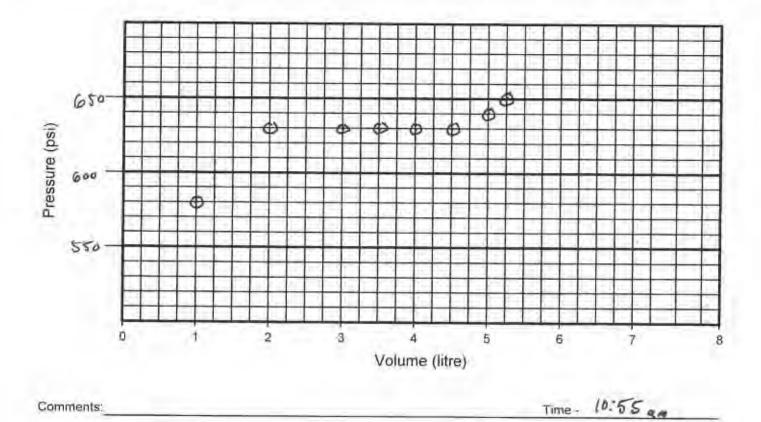
Westbay

Calculated Packer Element Pressure, PE=PL+PW-PV-PT= /00 psi

Time -

Volume, litres	1.0	2.0	3.0	4.0	4.5	4.75	5.0	5.25	5.35	5.5
Pressure, psi	600	630	630	630	630	630	640	640	680	650
Volume, litres	1	5,0			-					
Pressure, psi	/	ø								

Comments.

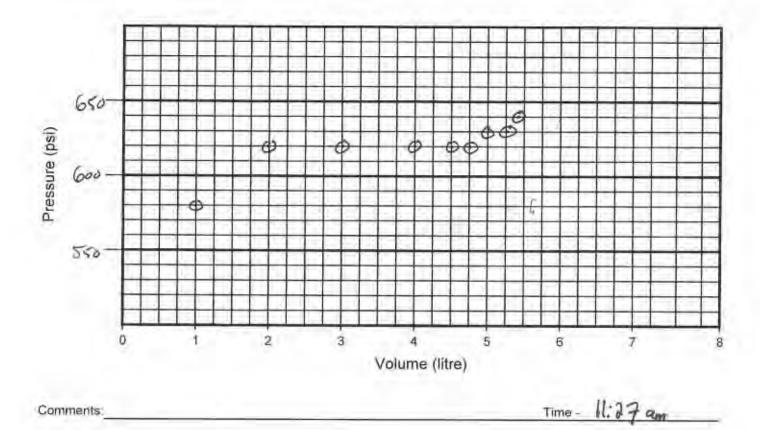


Westbay Packer Inflation Record

Project:	LORAX Environmental Services Ltd.	Project No.: WB950	Well No .: BHI2-WB			
Location	Coffee Creek, Kaminak Gold Project	Name REDACTED	Date Inflated: M	Contraction of the second second		
Packer No.	2, comp 5 SN#19238	Depth (m):	Inflation Tool No .:			
Packer Val	ve Pressure, Pv: 145 psi Final L	ine Pressure, PL: 650 psi	Tool Pressure, PT:	Yoo psi		
Borehole V	Vater Level: (m) =O	_psi (P _W)				

Calculated Packer Element Pressure, $P_E = P_L + P_W - P_V - P_T = 105$ psi

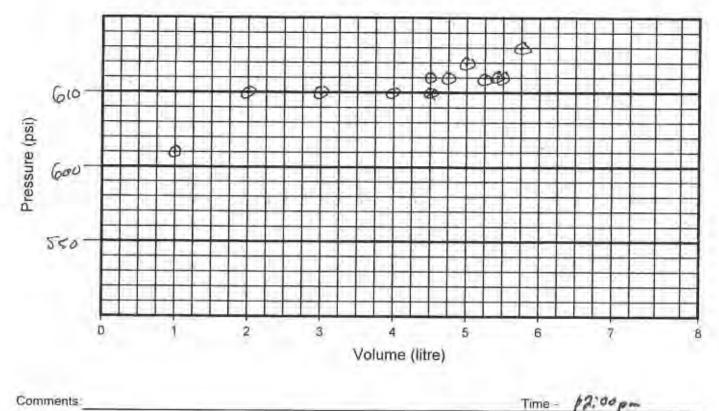
Volume, litres	1.0	2.0	3.0	3.5	4.0	4.5	5.0	5.25	1	4.75
Pressure, psi	580	630	630	630	030	630	640	650	1	ø
Volume, litres		-		1	11	1.3				1
Pressure, psi										


Westbay Packer Inflation Record

Project:	LORAX Environmental Services Ltd.	Project No.: W	/B950	Well No .: BHI	2-WB	
Location:	Coffee Creek, Kaminak Gold Project	Completed by:	Name REDACT	Date Inflated: M	a 19/1	5
Packer No	3, comp 8 SN# 19232	Depth (m):		Inflation Tool No.:	3197	
Packer Va	Ive Pressure, Pv 140 psi Final Li	ne Pressure, PL	640 psi	Tool Pressure, PT	400	psi
Borehole V	Vater Level: (m) =	psi (Pw)				
	A	1 Percent and a second	a standard and	a la	1.000	

Calculated Packer Element Pressure, PE = PL + PW - PV - PT = 100 psi

Volume, litres	1.0	2.0	3.0	4.0	4.5	4.75	5.0	5.25	5.4	/
Pressure, psi	580	620	620	620	620	620	630	630	640	/
Volume, litres	5.0									
Pressure, psi	ø									


Sheet of Westbay Packer Inflation Record

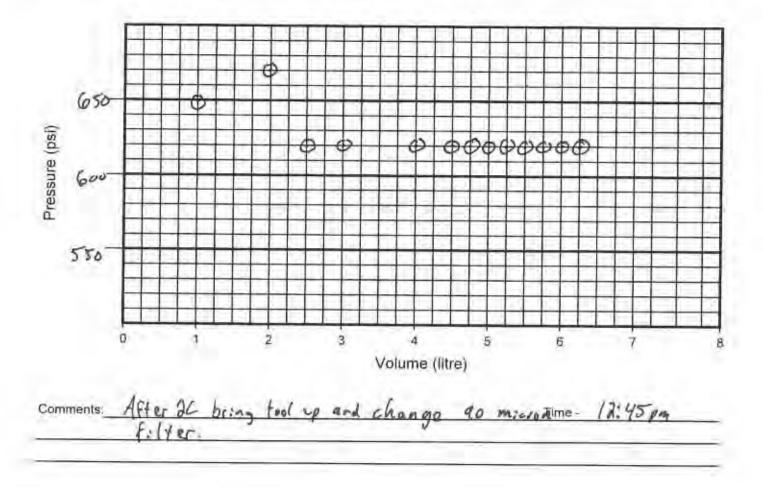
Time -

Project	LORAX Environmental Services Ltd.	Project No. WB950		Well No .: BHIS	-WB	
Location:	Coffee Creek, Kaminak Gold Project	Completed byName F	REDAC	TED _{a Inflated: M}	ay14/1	5
Packer No	4, comp 11 SN# 19231	Depth (m):		Inflation Tool No.:	3197	
Packer Va	Ive Pressure, Pv 150 psi Final L	ine Pressure, PL:	psi	Tool Pressure, Pr.	900	psi
Borehole V	Vater Level. (m)=_0	psi (P _w)				-
	Coleviate	d Bashas Flament Base	1110 m		10	1.77

Calculated Packer Element Pressure, $P_E = P_L + P_W - P_V - P_T = [3d]$ psi

Volume, litres	1.0	2.0	3.0	4.0	4.5	4.75	5.0	5.25	5.4	5.5
Pressure, psi	610	650	650	650	660	660	670	660	660	660
Volume, litres	5.75	1	5.25							
Pressure, psi	680	1	ø							

Comments:

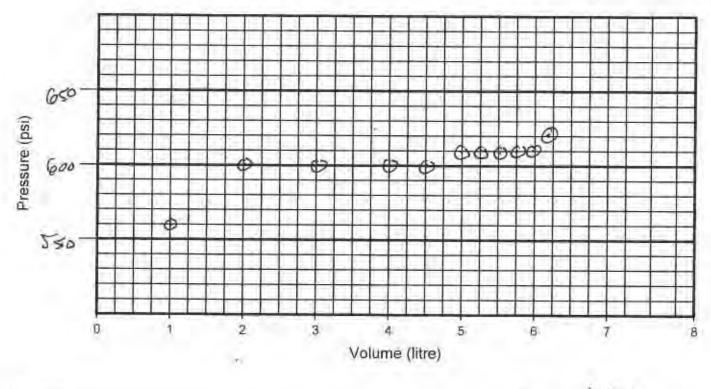

Westbay Packer Inflation Record

Project	LORAX Environmental Services Ltd.	Project No. WB950	Well No BHIZ-WB
Location:	Coffee Creek, Kaminak Gold Project	Completed by	ACTED te Inflated: May 14/15
Packer No	5, comp# 22 Sav# 1923	Depth (m):	mulation Tool No .: 3197
Packer Va	Ive Pressure, Pv. 145 psi Final L	ine Pressure, Pt. 620 p	osi Tool Pressure, Pr. 400 psi
Borehole V	Vater Level (m) =O	psi (P _W)	

Calculated Packer Element Pressure, $P_E = P_L + P_W - P_V - P_T = 75$ psi

Volume, litres	1.0	2.0	1	1.5	1	2.5	3.0	9.0	4.5	8.95
Pressure, psi	650	670	1	ø	1	620	620	620	620	620
Volume, litres	5,0	5.25	5.5	5.75	6.0	6.25	1	5.75		1
Pressure, psi	620	620	620	620	670	620	/	ø		

Sheet___of___



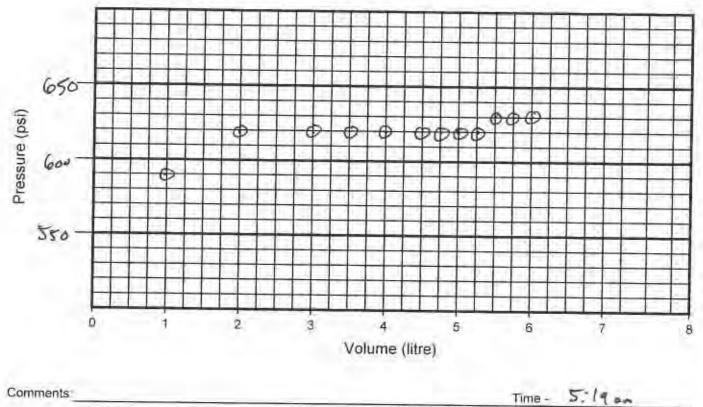
Westbay Packer Inflation Record

Project:	LORAX Environmental Services Ltd.	Project No.: WB950	Well No .: BH 16	2-WB
Location	Coffee Creek, Kaminak Gold Project	Name REDACT	ED ate Inflated: M	lay 14/15
Packer No	6, comp # 24 SN# 19236	Depth (m):	flation Tool No.	1
Packer Va	live Pressure, Pv: 145 psi Final L	ine Pressure, PL 620 psi	Tool Pressure, PT	400 psi
Borehole \	Nater Level:] (m) = 0	psi (P _W)		
	Calculate	d Buder El an B		

Calculated Packer Element Pressure, $P_E = P_L + P_W - P_V - P_T = 75$ psi

Volume, litres	1.0	2.0	30	40	4.5	4.75	5,0	5.25	5.5	5.75
Pressure, psi	560	600	600	600	600	600	610	60	610	610
Volume, litres	6.0	6.2	1	5.75						
Pressure, psi	610	620	/	ø						

1:10 pm Comments: Time -



Sheet___of__ Westbay Packer Inflation Record

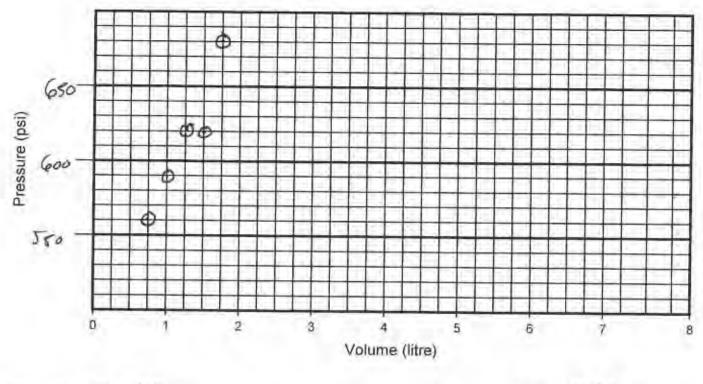
Project:	LORAX Environmental Services Ltd.	Project No. WB950	Well No .: BHA-WB
Location:	Coffee Creek, Kaminak Gold Project	Completed by Name REDACT	ED Date Inflated: May 12/15
	7, comp # 28 SN# 19234	_Depth (m):	Inflation Tool No: 3197
Packer Va	Ive Pressure, Pv. 140 psi Final Li	ine Pressure, PL: 640 psi	Tool Pressure PT. 400 psi
Borehole V	Vater Level (m) =O	_psi (P _w)	

Calculated Packer Element Pressure, PE=PL+PW-PV-PT= 100 psi

Volume, litres	1.0	2.0	3.0	3.5	4.0	4.5	4.75	5.0	5.25	5.5
Pressure, psi	590	620	620	620	620	620	620	620	630	640
Volume, litres	5.95	6.0	/	5.5	-					
Pressure, psi	640	640	/	ø		1	1.0			-

Comments

Sheet of



Westbay Packer Inflation Record

Project:	LORAX Environmental Services Ltd.	Project No.: WB950	Well No .: BH12-WB
Location:	Coffee Creek, Kaminak Gold Project	Completed by	ate Inflated: May 12/15
Packer No.	8, comp#30 SN#19237	Depth (m)	flation Tool No: 3197
	ve Pressure, Pv: 140 psi Final Li		si Tool Pressure, Pr. 400 psi
Borehole V	Vater Level: (m) =	psi (P _w)	

Calculated Packer Element Pressure, PE = PL + Pw - Pv - PT = 140 psi

Volume, litres	0.75	1.0	1.25	1,5	1.75	1	1.3		-	
Pressure, psi	560	590	620	620	690	1	ø	Ť.		
Volume, litres		1								
Pressure, psi				1				-		

Comments: In HQ

5:32 am Time -

Appendices

_GOLDCORP

Appendix 3-D: Lorax Hydrogeological Installation Methods

_GOLDCORP

Appendix 3-D: Hydrogeological Instrument Installation Methods

This appendix outlines the field methods used during the 2014 and 2015 field programs undertaken by Lorax at the Coffee Gold Project.

1. Conventional Monitoring Wells

Two types of conventional monitoring wells have been installed on the Coffee Gold property: (i) deep wells over 150 metres below ground surface, penetrating permafrost; and (ii) shallow wells less than 10 metres deep (typically 5 metres or less) screening overburden and weathered bedrock. The deep wells were installed diamond drillholes in the 2014 campaign; the shallow wells were installed in 2015 RC holes.

The installation methods for the deep conventional monitoring wells evolved throughout the 2014 program as different challenges were encountered. The first monitoring wells were installed with 2" Schedule 40 PVC; however, the program switched to using Schedule 80 PVC after problems with casing collapse were encountered during grouting. The following general procedure was followed during monitoring well installations:

- 1. Once the hole target depth was reached, the drillers tripped out all of the rods to remove the core barrel. The rods were tripped back in to the end of the hole with a the first rod having had its threaded end cut off.
- 2. The hole was flushed for about one half hour with clean water, to remove the bulk of the polymer.
- 3. The rods were raised a few metres above the intended elevation of the bentonite seal. The hole was sounded with a tag line.
- 4. Threaded PVC was lowered down the hole through the rods.
- 5. With the PVC sting at the bottom of the hole, but held under tension, 10/20 filter sand was slowly poured down the annulus between the rods and the PVC. The accumulating sand pack was regularly tagged to ensure sand was not bridging in the rods. In some cases, finer sand (20/40) was emplaced for the last several feet. The sand pack was ultimately built up to be at least 1 metre higher than the top of the slotted PVC.
- 6. Depending on the condition of the hole, coated ¹/4" bentonite pellets were emplaced either open hole or through the rods. If emplaced through the rods, the pellets were added very slowly to the annulus. In some cases, water was flushed down the hole

via a hoseline propped over the annulus, so that the moving water would help flush the pellets through the annulus between the rods and the PVC.

- 7. After one quarter bucket of pellets had been added, the PVC was disconnected from the wireline and cut if required so that the swivel could be reattached to the rod string. The PVC was fitted with a J plug prior to the swivel being reattached. Water was injected at low pressure through the swivel while the rods were turned manually for about 20 minutes. After 20 minutes, the level of the bentonite was tagged, and another ¼ bucket of pellets were added, flushed and tagged in the same manner as above. Problems were encountered emplacing and sounding the depth of the bentonite pellet seal at MW14-03A. Eventually two batches of Quick-Grout were tremied in followed by cement grout.
- 8. Once all pellets were emplaced and had a chance to swell (~1 hour) the rest of the annulus was grouted with a cement bentonite mix. Sometimes the holes were grouted through the rods, with the rods being raised as successive cement batches were emplaced. Other times, the cement was emplaced via a ³/₄" tremie line. Cement was mixed in a hopper according to the following recipe: 10 gallons water, 2-2.5 bags of cement (20 kg each) and 4-5 cups of betta-gel bentonite powder.
- 9. Once the hole had been grouted and rig moved off of the pad, any remaining open annulus was filled with bentonite chips/pellets. The hole was completed with an 8" steel monument cemented in place.

Numerous issues were encountered during the monitoring well installations. As indicated above, some were caused by grouting, but many problems arose from bentonite bridging in the rods since the annular space between the 2" PVC and the HQ rods was limited and ground conditions would not permit open hole completions. For this reason, the last well pair completed with the skid rig (MW14-06A/B) was advanced using PQ tools to allow for more annular space. Unfortunately, this well pair collapsed over the 2014/2015 winter, prior to water quality samples being collected. Another unforeseen incident occurred at MW14-02B. This hole was drilled to ~200 metres and was intended to be installed as a deep well. Unfortunately, the rods string fell down the hole during the (deep) installation, and the PVC string was severed with a portion being left down hole. Once the rods and majority of PVC had been extracted, the bentonite pellets were added to the hole to seal off the lower portion, and the hole was completed as a shallow well.

The shallow conventional monitoring wells were installed in 2015 without incident. 4.5" ODEX casing was advanced to target depth. The hammer was extracted and the 2" PVC string (either Sched. 80 or Sched. 40) was lowered by hand down hole. Filter sand was emplaced as the ODEX casing was withdrawn. Bentonite pellets were emplaced in the

upper portion of the annulus and the well head was completed with an 8" monument and cemented at surface.

2. Thermistors and Vibrating Wire Piezometers

For the most part, holes completed with thermistor strings were also equipped with VWP sensors. VWP installations require a specific grout density/consistency, while this is less important in installations of stand-alone thermistors.

The only stand-alone thermistor installed by Lorax is located in Supremo (MW14-04T). The hole was advanced HQ to 301 metres after which all rods were tripped out. The rods were tripped back in without the core barrel. The 13-point, pre-fabricated thermistor string was taped to a ³/₄" Sched. 80 PVC sacrificial standpipe and lowered down the hole. The hole was grouted through the rods which were progressively removed as the batches were emplaced. The grout recipe was the same as what was used at the conventional monitoring wells (see above). Unfortunately, partway through grouting the rods seized in the hole (end of rods at 167.5 metres) and could not be withdrawn without back reaming. To avoid potential damage to the thermistor string, the hole was not back reamed and the partial rod string was left down hole. It appears that the rods seized in the hole precisely at the permafrost boundary. The thermistor string was wired into a dedicated RST DT2040 datalogger and programmed to log every four hours.

Vibrating wire piezometers were installed in one 2014 diamond drillhole (MW4-07T) and several 2015 RC holes. The 2014 VWP installation occurred in a similar fashion as the thermistor installation described above, however grout was emplaced through a second, ³/₄" Sched. 80 tremie pipe. In addition, a different grout recipe was used, based on the water-cement-bentonite ratio of 2.5:1.0:0.3 suggested by Mikkelson (2002); however, a higher proportion of bentonite was used to create the pancake-batter-like consistency recommended for VWP installations. The grout recipe consisted of 40 kg water mixed with 8 kg bentonite and 16 kg cement. Once grouting was completed, a steel enclosure was mounted on top of the surface casing and the thermistor/VWP strings were wired into a dedicated DT2040 datalogger and programmed to log every four hours.

The 2015 VWP/thermistors were installed in a similar fashion as the 2014 instruments, but with minor modifications to the protocol. The instruments were taped to a 1" Sched. 80 PVC sacrificial riser pipe which also served as the tremie line for the grout. The grout mixture was also slightly modified to suit a different bentonite product and achieve the same desired consistency of pancake batter that forms craters on its surface. The approximate grout recipe was 33 gallons of water, ~25-50 lbs of Quick-Gel bentonite and 110 lbs of cement. A weighing additive, Barite, was added to cement mix to overcome the artesian pressures encountered at MW15-04T. All thermistors/VWPs were wired into dedicated RST dataloggers and programmed to log every one to four hours.

3. Westbay Systems

An introduction to the Westbay system is provided in Section 3 of the main report. Westbay technology was selected as an alternative to conventional monitoring well technology so as to alleviate the installation, sampling and ice-jacking challenges encountered with the 2014 conventional monitoring wells. Westbay field technician were onsite during the May/June 2015 field program to conduct the installations with assistance from Lorax and Northspan personnel. There were concerns about artesian groundwater undermining the surface casing at some of the installations and for this reason, the surface casing was cemented in a several locations prior to advancing the drillhole open hole. The general procedure followed during the Westbay installation was as follows

- 1. Upon reaching the target hole depth, the drill string was tripped out and a combination of 10' and 5' HQ rods were tripped in, either to the end of hole if ground conditions were questionable or, if conditions permitted, to a target depth usually a few metres below the depth of permafrost.
- 2. The Westbay casing and packer system was installed through the HQ rods to target depth. Every joint was pressure tested to ensure leakproofness.
- 3. If HQ rods were installed to the bottom of the hole, they were pulled back to the target depth (below permafrost) with the Westbay installation in place.
- 4. Once their position was finalized, the HQ rods were secured at the surface casing using a specially modified sub with flanges.
- 5. The sealing packers (one in the bottom of the HQ, one a set distance below) were inflated by injecting a 3:1 dilution of propylene glygol through valved ports in the casing, using a Westbay-supplied packer inflation tool.
- 6. The diluted glycol solution was pumped into both the annulus between the HQ rods and the Westbay tubing and inside the tubing via a trash pump.
- 7. Time permitting, the the remaining packers isolating the sampling zones were inflated following the same procedure in (5). In some cases, the rig was first moved off of the drill pad and this step was done at a later date.
- 8. At valley borehole locations, coated ¹/₄" bentonite Pel-Plug pellets were emplaced between the surface casing and the HQ rods, presumably settling on top of the first packer in contact with the borehole wall. This was to prevent potential artesian flow from daylighting between the HQ rods and surface casing. The depth of the bentonite seal was not tagged.
- 9. All the Westbay installations were competed with an 8" well monument cemented in place.

Appendix 3-E: Lorax Hydraulic Testing Methods and Results

_GOLDCORP

1. Overview

Hydraulic testing has been undertaken at the Coffee Gold project in multiple field investigations advanced by multiple consultants. This appendix summarizes the field and analytical methods used to obtain and interpret hydraulic testing information collected during the 2014 and 2014 Lorax field programs. Other consultants have used similar methods for tests they have conducted on the property; the reader is referred to EBA (2013) and SRK (2015) for a description of these tests. The SRK report has been appended to this baseline report as Appendix 3-G. A table summarizing hydraulic testing results from all consultants is provided at the end of this discussion, along with supporting graphs from the Lorax tests. Graphs for hydraulic tests performed by EBA (2013) and SRK (2015) are found within their respective reports.

2. Field Methods

2.1 Packer Tests

Bedrock hydraulic testing occurred primarily during drilling in the form of packer tests (both step tests and constant rate injection tests). Most of the Lorax packer tests were performed during the 2014 field program which utilized diamond drill rigs. One packer test, a shut-in test, was performed on an artesian during the 2015 field program. This test is discussed separately.

2.1.1 Injection Tests

Packer testing was conducted on the deep borehole advanced at each of the drilling locations in 2014. The test equipment utilized a single-packer setup and the testing occurred as the borehole was drilled. The depth of the first test interval was selected based on inferences of groundwater level and, later, permafrost depth, with the intent to only test saturated and non-frozen portions of the borehole.

Two different types of packer testing equipment were utilized during the program: a hydraulic packer manufactured by Inflatable Packers Inc. and a pneumatic packer manufactured by RST Instruments. The different packer setups utilize different mechanisms to seal the rods and inflate the packers, but the testing procedure once the packer system has been deployed is essentially the same. The general packer testing procedure followed during the 2014 hydrogeology field program is summarized as follows:

- 1. Prior to testing, the borehole was flushed with the bit located at the bottom of hole in order to remove the bulk of drilling additives. The flushing time was variable throughout the program. Near the end of the program flushing times were generally limited to one half to one full hour so as to limit potential destabilization of the hole.
- 2. After flushing, a selected number of rods were pulled to expose the target bedrock test interval. The length of the test section was subject to the discretion of the supervising hydrogeologist and ranged anywhere between 5.5 and 60 m. Shorter intervals were attempted in areas where the ground was inferred to be permeable, ground conditions permitting, while longer intervals were selected in tighter ground.
- 3. The packer tool was lowered down the hole and inflated. At surface, hoseline was directed from the pump to the flow skid (an assembly with a pressure guage, flow meter and bypass valve for controlling delivery flow rates) and from the flow skid to the rods. A bypass hose was also connected from the flow skid back to the pump to recirculate water.
- 4. The injection test was initiated by introducing flow to the test interval. This was accomplished by progressively closing the bypass valve on the flow skid until an appropriate, measurable pressure of water was delivered to formation.
- 5. The pressure and flow rate were monitored throughout the test. At the discretion of the supervising hydrogeologist, the injection pressure was either (i) maintained for an extended period, typically 20 minutes or longer (constant head injection test), or, (ii) increased and subsequently decreased through a series of several steps lasting several minutes each (step injection test, also commonly referred to as a lugeon test).

2.1.2 Shut-In Tests

A shut-in test was performed during the June 2015 field program on MW14-04T, an artesian hole in Halfway Creek. The hole was advanced open hole using an RC rig, and therefore utilized a slightly different pneumatic packer assembly than the 2014 packer tests which utilized a diamond rig. The general procedure followed during the 2015 airlift recovery tests are as follows:

1. The hole was advanced to total depth, at which point the entire drill stem was removed.

- 2. A single pneumatic P-sized packer (RST Instruments) was lowered down the hole to the target depth (~12 metres above the end of hole) on a 1.25" riser pipe. The packer was inflated and a valved T-juntion with an inline pressure gauge was coupled to the top of the riser pipe.
- 3. The valve was closed and pressure was monitored until a stabilized 'shutin'pressure was achieved.
- 4. The valve was opened and the artesian flow rate was measured using a graduated bucket until readings stabilized.
- 5. The valve was closed again and pressure buildup was monitored until pressure stabilized.

2.2 Airlift Recovery Tests

Airlifting recovery tests were performed during the 2015 field program. An airlift recovery test is essentially a constant head pump test followed by a recovery period where the water level is monitored. Typically, one airlift recovery test was performed on one hole per drilling location. The general procedures followed during the airlift recovery tests are as follows:

- 1. Once the borehole was advanced to target depth, the rod string was pulled back approximately 5 feet from the bottom of the hole. The water level was measured prior to onset of airlifting.
- 2. The hole was airlifted for approximately 1 hour using the blowdown method. The blowdown method involves injecting air both reverse circulation and direct circulation, so that all water produced by the hole is forced up the annulus between the rods and borehole wall and educted via the bypass cyclone. Flow was measured at the bypass cyclone using a graduated bucket, typically more frequently at the beginning with longer time steps at the end.
- 3. Upon cessation of airlifting, the time was noted and the drill head was quickly disconnected from the top of the rod string. A pre-programmed levelogger was lowered down the hole and manual water level readings were recorded. The period of water level data collection lasted anywhere from 20 minutes to over two hours, allowing sufficient time for the water level to stabilize or recover within 95% of the initial, pre-test reading.

2.3 Slug Testing

A limited number of slug tests were performed on completed conventional monitoring wells. The most successful test was completed on MW14-06A; two other tests were attempted on shallow overburden/active zone wells however these tests could not be interpreted. The general procedure followed during the slug tests are as follows:

- 1. A static water level was measured in the well prior to slug testing.
- 2. A pre-programmed levelogger was deployed in the well, set to record water level changes on a rapid interval.
- 3. A solid PVC slug was slowly lowered down the hole on a metered tag line. Once the slug approached the water level, it was rapidly introduced to the water column, displacing the water level upward.
- 4. The water level was monitored periodically with a water level tape as it fell back to its original static level prior to slug introduction (*i.e.* hence the name 'falling head test').
- 5. Once the water level recovered to within 95% of the original displacement, the slug was removed quickly from the water column, initiating a 'rising head test'. This caused the water level to be displaced downwards before recovering back to its original static level.
- 6. Once the rising head test had run to completion, the slug and logger were extracted from the well.

2.4 Pulse Testing

Pulse testing is specialized hydraulic test performed on Westbay installations. It is similar to a conventional slug test but the displaced volume of water is generally much smaller. As a result, it is best suited to less permeable formations. Three pulse tests were performed on three zones of MW15-06WB. The following procedure was followed during pulse testing:

- 1. A Westbay sampling bottle was attached to the Westbay probe and a vaccuum was applied to the sampling container using a hand pump.
- 2. The Westbay probe and sampling container were lowered down the Westbay casing and docked in to the port of the zone to be tested.
- 3. The pressure in the sampling zone was measured by the probe via an interface at surface (MAGI). The probe was programmed to log pressure measurements at rapid intervals via a laptop connected to the MAGI.
- 4. The port valve was opened and water from the target zone passively drained into the sample bottle due to pressure differences between the formation and

the (evacuated) sample container. Only a small amount of water was removed from zone so that the resultant pressure drop in the monitoring zone would comprimise the integrity of installation.

5. The valve was closed and the recovery of pressure is the zone was monitored as it recovered back to static, similar to a rising head test. Once this had occurred, logging was stopped and all the instrumentation tripped out.

3. Analytical Methods

Table 1 summarizes the analytical methods utilized for the different test methods. The methods are described in more detail below.

Test Method	Test Type	Analytical Method(s)
Packer Test	Constant Rate Injection Test	Thiem (1906)
Packer Test	Lugeon Test (Step Injection Test)	Thiem (1906)
Packer Test	Shut-in Test	Thiem (1906)
Airlift Test	Recovery Test	Cooper-Jacob (1946)
Slug Test	Rising/Falling Head Tests, Pulse Test	Hvorslev (1951)

 Table -1:

 Coffee Creek hydraulic testing analytical methods

3.1 Theim Method

3.1.1 Constant Head Injection Tests & Step Injection Tests

Both constant head injection and step injection tests involve injecting water under constant pressure into a portion of a borehole that has been isolated by one or more packers. During the execution of each stage, both water pressure (P) and flow rate (Q) values are recorded every minute. Average values for pressure (in metres of water) and flow uptake can be subsequently used to compute zone transmissivity and hence, hydraulic conductivity, according to the Thiem (1906) equation:

$$T = K \cdot b = \frac{Q \ln\left(\frac{R}{r}\right)}{2\pi(P)}$$

Where:

T = transmissivity of the test interval [L²/t]

K = hydraulic conductivity [L/t]

Eq. 1

- b = test interval length [L]
- Q = injection rate [L³/t]
- R =radius of influence [L]
- r = radius of borehole [L]

P = net injection pressure [L] (*i.e.* injection pressure minus head losses due to friction).

For constant rate tests, the average K value is calculated using last few measurements of stabilized pressure (P) and flow readings (Q). For step tests, a plot of stabilized flow rate versus ascending and descending injection pressure can suggest whether the formation is swelling, fracture/fault gouge is flushing out, among other phenomena. Hydraulic conductivity is calculated from the steps which are deemed to be most representative of the formation. Depending on the phenomena observed, this could be anywhere between one and all of the steps (Quiñones-Rozo, 2010).

The radius of influence of a packer test is limited to a small volume of rock around the hole. Bliss and Rushton (1984) estimated the radius of influence for a test interval length of 3 metres to be 9 metres around the hole. For the tests conducted in this study, the radius of influence (R) is assumed to be equal to the test interval length.

3.1.2 Shut-In Test

A shut-in test is a special form of a 'constant head' packer test performed on artesian drill holes. There are two phases of data collection during the test. The first phase measures flow rates through time after the hole is vented after a brief 'shut-in' period. The hole is then 'shut-in' again, and pressure buildup is monitored through time. The data are analysed by Theim method (1906) outlined in Equation 1 with following guidance:

$$P = H_o - H$$
Eq. 2

Where:

 H_o = pressure in the test zone when the drop-pipe valve is first closed

H = height of the drop pipe above datum

Q = stabilized flow rate when the valve is opened.

3.2 Theis Method

3.2.1 Airlift Recovery Test

An airlift recovery test is essentially a pumping test where the head is the hole is kept constant (from airlifting) as opposed to the flow rate being kept constant. Once airlifting has ceased, the recovery of the water level in the hole can be analysed to provide an estimate of hydraulic conductivity using a graphical method developed by Cooper and Jacob (1946).

Residual drawdown (Δs) is plotted versus log-time and a straight-line is plotted through the portion of the data representing radial flow to the borehole. The slope of the straight line, expressed as Δs for one logarithmic cycle of the time is equal to the following:

$$\Delta s = \frac{2.3Q}{4\pi T}$$
 Eq. (3)

Where:

T = transmissivity of the test interval $[L^2/t] =$ Kb

Q = stabilized airlift yield [L³/t]

 Δs = residual drawdown over one log-cycle of time [L], as computed from the following:

$$\Delta s = H_{max} - H_t$$

Where:

 H_{max} = maximum depth to water at the end of pumping [L]

 H_t = depth to water at a given time since cessation of pumping [L].

The equation is re-arranged to solve for transmissivity (T), from which hydraulic conductivity (K) can be computed by dividing by the test interval thickness (b). For the Lorax tests conducted in this study, the test interval thickness is assumed to equal the entire saturated thickness of the hole.

The method outline above is applicable when the following condition has been met:

$$t_p, t' > \frac{25r_c^2}{T}$$
 Eq. (4)

Where:

 $r_c^2 = radius of the borehole$

 $t_p = total pumping time$

t' = total recovery time

Eq. (3)

This condition arises from original simplification of the Cooper-Jacob method from the original Theis curve-matching method (1935). The Cooper-Jacob simplification applies when the Theis 'well function' is sufficiently small, *i.e.* when the radius is sufficiently small and pumping/recovery times are sufficiently large such that well bore storage effects are overcome. Two tests, both performed on MW15-01WB, failed to meet this criterion.

3.3 Hvorslev Method

3.3.1 Slug Test

The rate of water level recovery measured during a slug test is proportional to the hydraulic conductivity of the formation. The displacement in the well is normalized to the initial displacement arising from the slug addition/removal. A log-normal plot of normalized displacement versus time is created and a best-fit line is drawn through the data. The hydraulic conductivity is plotted as follows:

$$K = \frac{r_c^2 \cdot \ln(\frac{R_e}{r_w})}{2 \cdot B \cdot T_0}$$

Eq. (5)

Where:

K = hydraulic conductivity [L/T]

 r_c = effective radius of well casing [L]

 R_e = effective radius of slug test [L]

 r_w = effective radius of well screen, *i.e.* diameter of the drilled hole [L]

B = formation thickness [L]

 T_o = 'basic time lag', *i.e.* time at which normalized head of 0.368 occurs [T]

For the purposes of the analysis, it is assumed that R_e and B are assumed to equal the entire length of the well screen. T_o is estimated derived from the best-fit line applied to the data.

3.3.2 Pulse Tests and Monitoring Well Recovery

The Hvorslev method was applied to a conventional slug test at MW14-06A where a solid PVC slug was introduced/withdrawn from the water column. This method was also applied to pulse tests performed on MW15-06WB and to water level recovery after sampling at MW14-05B. During a pulse test, the water level recovery is not measured in a typical fashion since the water level does not recover inside a riser pipe; however, a value of r_c must be used to solve Equation 5. For pulse tests, a value for r_c is computed that is

equivalent to the radius of an imaginary pipe whose volume equals the extracted volume initiating the head loss and whose length is equivalent to the head drop. The radius of the well is equal to the actual radius of the tested Westbay zone.

4. Results

A complete summary of hydraulic testing results performed by all consultants at the Coffee Gold site is provided in Table 2. This table differs from Table 2 in the main text in that it includes tests unwittingly attempted on unsaturated intervals by Lorax and SRK, which have been deemed not valid for subsequent interpretation.

Table 2Complete hydraulic testing results for the Coffee Gold project

Hole ID	Consultant	Azimuth	Dip	Te Inter (m A	rval	Test Int (v m)		Test Method	Test Type ²	Analysis Type ³	K ⁴ (m/s)	Mean K by hole ⁵	Geologic Unit ⁶	
				From	То	From	То					(m/s)		
Supremo														
CFD-0334	EBA	275	-45	121	138	97	117	Packer	Lugeon	Thiem	5E-09 U		GN	T
MW14-01A	Lorax	0	-90	137	148	137	148	Packer	CRI	Thiem	3E-08 U		GN	T
MW14-01A	Lorax	0	-90	155	166	155	166	Packer	CRI	Thiem	4E-08		GN	
MW14-01A	Lorax	0	-90	179	202	179	202	Packer	CRI	Thiem	3E-08	4E-08	GN/BFS/GN	
MW14-04T	Lorax	0	-90	182	202	182	202	Packer	CRI	Thiem	2E-10		BFS	
MW14-04T	Lorax	0	-90	164	202	164	202	Packer	Lugeon	Thiem	6E-10		GN/BFS	
MW14-04T	Lorax	0	-90	203	232	203	232	Packer	Lugeon	Thiem	1E-09		BFS/GN	
MW14-04T	Lorax	0	-90	233	256	233	256	Packer	Lugeon	Thiem	4E-09		GN	
MW14-04T	Lorax	0	-90	251	280	251	280	Packer	CRI	Thiem	3E-10		GN	
MW14-04T	Lorax	0	-90	281	301	281	301	Packer	CRI	Thiem	4E-11	4.5E-10	GN	N
MW14-06A	Lorax	0	-90	197	216	197	216	Slug Test	Rising head	Hvorslev	1E-07	1.0E-07	GN	H
MW15-06T	Lorax	0	-90	281	286	281	286	Westbay	Pulse Test	Hvorslev	1E-09		GN	S
MW15-06T	Lorax	0	-90	238	243	238	243	Westbay	Pulse Test	Hvorslev	2E-07		GN	S
MW15-06T	Lorax	0	-90	227	237	227	237	Westbay	Pulse Test	Hvorslev	1E-08	1E-08	GN	S
CFD-0318	EBA	175	-45	146	151	89	91	Packer	Lugeon	Thiem	5E-07		Dikes/GN	
CFD-0318	EBA	175	-45	174	180	105	108	Packer	Lugeon	Thiem	1E-06		Amph	
CFD-0318	EBA	175	-45	195	200	118	122	Packer	Lugeon	Thiem	5E-08	3E-07	GN	
CFD-0319	EBA	0	-45	67	74	50	55	Packer	Lugeon	Thiem	2E-08 U		GN	T
CFD-0319	EBA	0	-45	112	125	76	83	Packer	Lugeon	Thiem	7E-08	7E-08	GN/Dikes	
CFD-0336	EBA	275	-50	67	84	59	69	Packer	Lugeon	Thiem	2E-08 U		GN/BtS	Т
CFD-0323	EBA	280	-70	103	139	93	118	Packer	Lugeon	Thiem	4E-08	4E-08	GN/BtS	
IFSPD124	SRK	270	-50	45	152	36	125	Slug Test	Falling Head Slug	Hvorslev	2E-07	2E-07	GN	T sl
IFSPD110a	SRK	270	-50	237	266	200	220						GN/CB	T
IFSPD110a	SRK	270	-50	266	302	220	239	Slug Test	Falling Head Slug	Hvorslev	2E-07	2E-07	GN	Т
IFSPD062	SRK	270	-50	175	221	146	181	Packer	CRI				GN	T q
CFD-0324	EBA	280	-45	68	81	54	60	Packer	Lugeon	Thiem	4E-08		BtS_Carb	
CFD-0324	EBA	280	-45	117	141	72	105	Packer	Lugeon	Thiem	1E-07	7E-08	BtS_Carb	+
CFD-0327	EBA	275	-60	94	119	73	86	Packer	Lugeon	Thiem	5E-08	5E-08	GN	-
MW14-02B	Lorax	0	-90	85	104	85	104	Packer	CRI	Thiem	5E-09		GN	-
MW14-02B	Lorax	0	-90	103	125	103	125	Packer	CRI	Thiem	8E-08		GN	-
MW14-02B	Lorax	0	-90	130	137	130	137	Packer	CRI	Thiem	3E-08		SZ/BFS	R
MW14-02B	Lorax	0	-90	139	152	139	152	Packer	CRI	Thiem	1E-07		BFS/CB	+
MW14-02B	Lorax	0	-90	157	173	157	173	Packer	CRI	Thiem	1E-08		CB/HAR/CB	+
MW14-02B	Lorax	0	-90	181	200	181	200	Packer	CRI	Thiem	1E-08	3E-08	BFS	+

Comments

Test likely in unsaturated zone. Test not valid (unsaturated test interval).

Negligible flow into test interval.

Hvorslev and CBP methods provide similar results

supported by Cooper-Jacob and Papadopulos-Cooper methods supported by Cooper-Jacob and Papadopulos-Cooper methods supported by Cooper-Jacob and Papadopulos-Cooper methods

Test quality poor (EBA, 2013); test likely in unsaturated zone

Test likely in unsaturated zone.

T5 structure; static WL 20.6 (perched); possibly perched, but valid short-term

T3 structure; static WL 167.2 m bgs; near water table - questionable T3 structure; static WL 179.8 m bgs

T1/T2 structure, static WL 123.3 m bgs; very near water table, questionable

Rock type associated with Shear Zone is Chloritic Talc Schist??

Hole ID	Consultant	Azimuth	Dip	Te Inter (m A	val	Test Int (v m)		Test Method	Test Type ²	Analysis Type ³	K ⁴ (m/s)	Mean K by hole ⁵	Geologic Unit ⁶	
				From	То	From	То	-				(m/s)		
Latte														
MW14-03A	Lorax	0	-90	82	110	82	110	Packer	CRI	Thiem	4E-08 U		CB/D/BFS	Г
MW14-03A	Lorax	0	-90	112	140	112	140	Packer	CRI	Thiem	5E-09 U		M/BFS	Т
MW14-03A	Lorax	0	-90	133	155	133	155	Packer	CRI	Thiem			BFS/CB/BFS	T i
MW14-03A	Lorax	0	-90	157	199	157	199	Packer	CRI	Thiem	5E-09	5E-09	BFS/SZ/BFS	F
SRK-15D-15P	SRK	0	-90	200	274	200	274	Airlift	Airlift Recovery	Theis Recovery	3E-07	3E-07	GN/BtS/Cl-LiB	S
Kona														
MW14-05A	Lorax	0	-90	111	140	111	140	Packer	CRI	Thiem	1E-09 U		GR	1
MW14-05A	Lorax	0	-90	156	179	156	179	Packer	CRI	Thiem	4E-11		GR	ſ
MW14-05A	Lorax	0	-90	183	200	183	200	Packer	CRI	Thiem	3E-09		GR	
MW14-05A	Lorax	0	-90	201	221	201	221	Packer	CRI	Thiem	1E-09		GR	
MW14-05A	Lorax	0	-90	156	221	156	221	Packer	CRI	Thiem	1E-09	7E-10	GR	
MW14-05B	Lorax	0	-90	180	159	139	118	Slug Test	Rising Head Test	Hvorslev	5E-10	5E-10	GR	R
SRK-15D-14P	SRK	345	-70	175	216	173	212	Packer	CRI/FH Slug	Hvorslev	1E-07	1E-07	GN	S
Double Double														
SRK-15D-16P	SRK	165	-70	136	148	137	150	Packer	CRI/FH Slug	Cooper- Jacob/Theis	2E-07		CB/dyke	s
SRK-15D-16P	SRK	165	-70	164	212	167	214	Packer	Airlift Recovery	Theis Recovery	1E-07	2E-07	dyke/GN	S
Valley														
MW14-07T	Lorax	0	-90	64	89	64	89	Packer	Lugeon	Thiem	3E-08		GR	Τ
MW14-07T	Lorax	0	-90	83	125	83	125	Packer	Lugeon	Thiem	1E-08	2E-08	GR	
MW15-05T	Lorax	125	-80	52	84	51	83	Airlift	Airlift Recovery	Cooper-Jacob	3E-06	3E-06	GR	
MW15-01WB	Lorax	0	-90	82	90	82	90	Airlift	Airlift Recovery	Cooper-Jacob	(2E-06)		GN	F s
MW15-01WB	Lorax	0	-90	82	102	82	102	Airlift	Airlift Recovery	Cooper-Jacob	'(1E-7 to 6E-8)		GN	F s
MW15-03T	Lorax	39	-80	33	98	32	97	Airlift	Airlift Recovery	Cooper-Jacob	3E-07	3E-07	BN/BtS	
MW15-04T	Lorax	40	-80	41	53	40	53	Packer	Shut-In/ CH	Lugeon	4E-06	4E-06	GN	F

m AH = metres along hole, v mbgs = vertical metres below ground surface, K = hydraulic conductivity

1. Depth below ground surface for inclined tests has been caculated by Lorax to take surface topography into account.

2. CRI = constant rate injection, FH = falling head test

3. Theim (1906); Cooper-Jacob (1946), Hvorslev (1951), Theis (1935)

4. Italicised values are an inferred upper value computed based on injection pressures and resolution of flow gauge

5. Multiple tests at valley drillholes and pit structures (SRK tests) averaged arithmetically; all other holes with multiple tests averaged geometrically

6. Tests straddling two or more geologic units denoted by a '/' (*e.g.* BFS/CB). Amph = Amphibole rich rock, BtS = Biotite Feldspar Schist, CB = Crackle Breccia, Carb = Carbonates, D = Dacite, GN = Gneiss, GR = Granite, HAR = Hydrothermally Altered Rock, M = Metacarbonate, SZ = Shear Zone, Cl-LiB = Chlorite limonite breccia

Comments

Test not valid (unsaturated test interval)

Test not valid (partially unsaturated test interval)

Test abandoned (could not fill rods). Potentially unsaturated test interval.

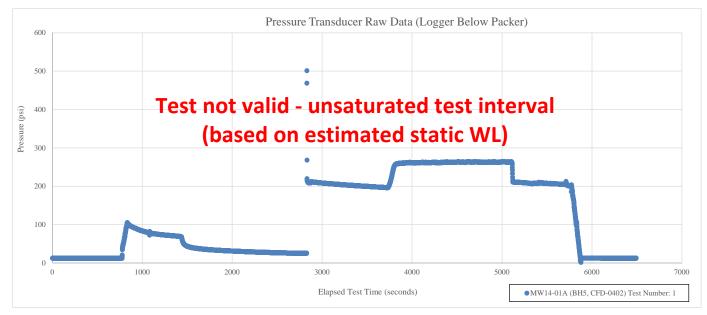
Rock type associated with Shear Zone is Biotite Schist StaticWL 122.3

Test not valid (partially unsaturated test interval) Test abandoned (no flow)

Recovery after GW sampling in August 2015 Static WL 124.7 m bgs; constant-rate injection/ falling-head slug

Static WL 65.8 m bgs Static WL 61.5 m bgs

Pumping was not carried out long enough to overcome well-bore storage effects


Pumping was not carried out long enough to overcome well-bore storage effects

Evaluated as one-step packer test

Borehole: MW14-01A (BH5, CFD-0402)	Test Number: 1	Tester: LF/MS
Date: 12-Aug-14	Start Time: 8:10 PM	Stop Time: 10:15 PM
Test Number: 1	Geology:	Height of P gauge (mags): 1.8
Depth to bit (m AH): 136	Length of Packer (m): 1.25	Pipe Stickup (mags): 3
Interval (Top) (m AH): 137.25	Interval Bottom (m AH): 148	Target Interval description:
Packer type (pneumatic/hydraulic): hydraulic	Hole dip: 90	Hydraulic packer sink time: n/a
Rod Type: HQ	Type of water used: Fresh	
Rod ID (mm): 77.8	Additives used (type): G-Stop in unsat. Zone	
Hole Diamter (mm): 96		
transducer SN: 301401 (Troll 700)	packer inflation pressure (psi): 650	open hole static WL (mbgs): >113
seal test successful: yes	test type: constant rate injection	

Time Elapsed (min)	Flowmeter Reading (L)	Flow Rate (L/min)	Pressure (psi)	Comments
0	536.4			
1	541.8	5.4	50	Pressure oscillatory (30-70 psi)
2	546.4	4.6	50	
4	555.14	4.4	50	
5	559.34	4.2	50	
6	563.44	4.1	50	
7	567.48	4.0	50	
8	571.54	4.1	50	
9	575.58	4.0	50	
10	579.42	3.8	50	
12	587.2	3.9	50	
14	594.86	3.8	50	
16	602.48	3.8	50	
18	610.2	3.9	50	
20	617.6	3.7	50	
	AVERAGE:	3.82	50	

highlighted cells indicate period of test used for stabilized P and Q readings.

Borehole: 1	/W14-01A (BH5, CFD	0-0402)	
Borehole Angle: 9	0 [degrees]	
Test Number:			
Start of Test Interval:	37.25	mbgs]	
End of Test Interval:	48 [mbgs]	
Test Type: o	onstant rate injection		
Packer System: 1	ydraulic		
	2-Aug-14		
Steady State Equation: T =-	$Q * \ln (R_i/R_{ew})$		(Thiem, 1906) ¹
	2*(pi)*H		(111011, 1700)
Flow Rate			
injection flow rate (Q)	3.82 [L/min]	collected in field
injection flow rate (Q)	6.4E-05	m ³ /s]	calculated
Water Level			
[pressure transducer data used to estimate static WL]			
pressure transducer depth ²	138.3	mbgs]	in pressure transducer holder below single packer
pipe stickup	3.00 [collected in field
pressure head		psi]	pressure transducer reading, psi absolute
atmospheric pressure		psi]	assumed
pressure head	129.32 [vertical m H2O]	corrected for atmospheric pressure
Water Level 1 (pressure transducer)	9.02 [vertical mbgs]	calculated
[if pressure transducer data not available]			
pipe stickup	0.33	mags]	collected in field
depth to water	149.26 [mbtp]	Estimated from the closest static WL at MW14-01B on 8-Sept-2014 at 12:55 PM.
Water Level 2 (manual)	148.93	vertical mbgs]	calculated
Excess Pressure Head (based on surface readings) ³			
friction losses (hose to swivel) ⁴	0.03 [m]	computed from http://www.tasonline.co.za/toolbox/pipe/velfirc.htm
friction losses (packer mandrel) ⁵	0.27	ml	IPI hydraulic packer manual or from Darcy-Weisbach equation (pneumatic packer)
most reliable static water level measurement	-	ransducer/manual	transducer (water level 1) or manual (water level 2)
analog pressure gauge height above ground		vertical mags]	collected in field
analog pressure gauge reading	50.0	01	collected in field
Exess Pressure Head (most reliable static WL)	185.6	m]	H, calculated: static WL plus injection pressure, relative to ground surface
Excess Pressure Head Check (based on pressure transducer read	ngs only)		
stabilized pressure ⁶	263.52	psi]	pressure transducer reading, psi absolute
differential pressure ⁷	67 [-	difference between injection pressure and static WL pressure
Excess Pressure Head (transducer readings)	46.9	-	H, calculated - convert differential pressure to m H2O
Other Data	10.7	1	
radius of wellbore (R_w)	0.048 [ml	1/2 of the ID of open HQ borehole
length of test interval	10.8	-	collected in field
skin	0.0	-	assumed
effective wellbore radius (R_{ew})	0.048 [R _w exp(Skin)
radius of influence (R_i)	10.8 [-	assumed (equivalent to length of test interval)
$\ln(R_i/R_{ew})$	5.4		calculated
Is packer test interval in the unsaturated zone	-	-J TRUE/FALSE]	tests in the unsaturated zone are not considered reliable
Flow velocity in open borehole	0.0088 [-	flow rate divided by cross-sectional area
Reynold's number	528.0		flow velocity x borehole diameter / kinematic viscosity of H2O (at approx. 4°C)
Is flow laminar (Reynold's No. <2040) or turbulent (>2040)		TRUE/FALSE]	results based on turbulent flow should be considered very approximate
Calculated Result	Lamina [
			Thiem equation; uses excess pressure head based on most reliable of surface (manual) or
Transmissivity T	3.0E-07 [m ² /s]	transducer readings
Hydraulic Conductivity K	2.7E-08		equivalent to T divided by test interval

mbtp = metres below top of pipe, mags = metres above ground surface, mbgs = metres below ground surface

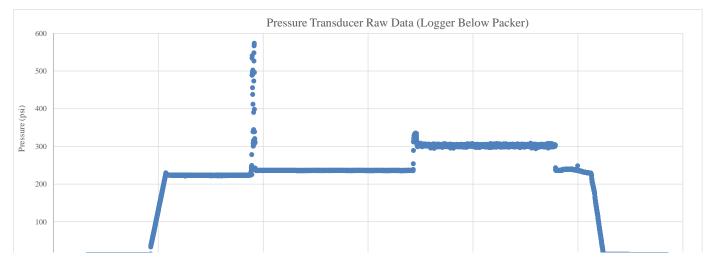
1. Thiem, G., 1906. Hydrologische Methoden; Gebhardt, Leipzig.

2. For hydraulic packer, transducer positioned 43" below bottom of packer in gauge holder; for pneumatic packer it is located just below stuffing box.

3. Data from analog pressure gauge read at surface used to guide test during injection and to confirm pressure transducer data

4. Computed from http://www.tasonline.co.za/toolbox/pipe/velfirc.htm assuming rubber lined pipe, 5 m length, ID 19 mm

5. IPI hydraulic packer manual or Darcy-Weisbach equation as provided in http://www.pipeflow.com/pipe-pressure-drop-calculations/pipe-friction-loss for the pneumatic packer.


6. Estimated stabilized pressure at end of injection period

7. Differential pressure eliminates absolute gauge effect, does not need to be corrected for atmospheric

Borehole: MW14-01A (BH5, CFD-0402)	Test Number: 2	Tester: MS
Date: 13-Aug-14	Start Time: 12:21 AM	Stop Time: 13:57 AM
Test Number: 2	Geology:	Height of P gauge (mags): 1.8
Depth to bit (m AH): 154	Length of Packer (m): 1.25	Pipe Stickup (mags): 3
Interval (Top) (m AH): 155.25	Interval Bottom (m AH): 166	Target Interval description:
Packer type (pneumatic/hydraulic): hydraulic	Hole dip: 90	Hydraulic packer sink time: n/a
Rod Type: HQ	Type of water used: Fresh	
Rod ID (mm): 77.8	Additives used (type): G-Stop in unsat. Zone	
Hole Diamter (mm): 96		
transducer SN: 301401 (Troll 700)	packer inflation pressure (psi):	open hole static WL (mbgs):
seal test successful: yes	test type: constant rate injection	

Time Elapsed (min)	Flowmeter Reading (L)	Flow Rate (L/min)	Pressure (psi)	Comments
0	838.00		50	
1	844.40	6.4	50	
2	850.00	5.6	50	
3	856.10	6.1	50	
4	861.90	5.8	50	
5	867.70	5.8	50	
6	873.50	5.8	50	
7	879.40	5.9	50	
8	885.60	6.2	50	
9	891.20	5.6	50	
10	897.20	6.0	50	
11	903.20	6.0	50	
12	909.40	6.2	50	
13	915.30	5.9	50	
14	921.00	5.7	50	
15	927.10	6.1	50	
16	933.10	6.0	50	
17	939.20	6.1	50	
18	945.30	6.1	50	
19	951.00	5.7	50	
20	957.20	6.2	50	
	AVERAGE:	5.96	50.0	

highlighted cells indicate period of test used for stabilized P and Q readings.

Borehole: MW14-01	A (BH5, CFD-0402)	
Borehole Angle: 90	[degrees]	
Test Number: 2	[]	
Start of Test Interval: 155.25	[mbgs]	
End of Test Interval: 166	[mbgs]	
Test Type: constant ra		
Packer System: hydraulic	3	
Date: 13-Aug-14		
Steady State Equation: T - Q* ln	(R_i/R_{ew})	$(T_{1}; -1, 0, 0)^{1}$
Steady State Equation: $T = -\frac{Q * \ln Q}{2*(q)}$	oi)*H	(Thiem, 1906) ¹
Flow Rate		
injection flow rate (Q)	5.96 [L/min]	collected in field
injection flow rate (Q)	$9.9E-05 [m^3/s]$	calculated
Water Level		
[pressure transducer data used to estimate static WL]		
pressure transducer depth ²	156.3 [mbgs]	in pressure transducer holder below single packer
pipe stickup	3.00 [mags]	collected in field
pressure head	236.44 [psi]	pressure transducer reading, psi absolute
atmospheric pressure	12.81 [psi]	assumed
pressure head	157.24 [vertical m H2O]	corrected for atmospheric pressure
Water Level 1 (pressure transducer)	-0.90 [vertical mbgs]	calculated
[if pressure transducer data not available]		
pipe stickup	0.33 [mags]	collected in field
depth to water	149.26 [mbtp]	Estimated from the closest static WL at MW14-01B on 8-Sept-2014 at 12:55 PM.
Water Level 2 (manual)	148.93 [vertical mbgs]	calculated
Excess Pressure Head (based on surface readings) ³		
friction losses (hose to swivel) ⁴	0.07 [m]	computed from http://www.tasonline.co.za/toolbox/pipe/velfirc.htm
friction losses (packer mandrel) ⁵	0.42 [m]	IPI hydraulic packer manual or from Darcy-Weisbach equation (pneumatic packer)
most reliable static water level measurement	manual transducer/manual	transducer (water level 1) or manual (water level 2)
analog pressure gauge height above ground	1.80 [vertical mags]	collected in field
analog pressure gauge reading	50.0 [psi]	collected in field
Exess Pressure Head (most reliable static WL)	185.4 [m]	H, calculated: static WL plus injection pressure, relative to ground surface
Excess Pressure Head Check (based on pressure transducer readings only)		
stabilized pressure ⁶	302.59 [psi]	pressure transducer reading, psi absolute
differential pressure ⁷	66 [psi]	difference between injection pressure and static WL pressure
Excess Pressure Head (transducer readings)	46.5 [m]	H, calculated - convert differential pressure to m H2O
Other Data		-
radius of wellbore (R _w)	0.048 [m]	1/2 of the ID of open HQ borehole
length of test interval	10.8 [m]	collected in field
skin	0 [-]	assumed
effective wellbore radius (R _{ew})	0.048 [m]	R _w exp(Skin)
radius of influence (R _i)	10.8 [m]	assumed (equivalent to length of test interval)
$\ln(R_i/R_{ew})$	5.4 [-]	calculated
Is packer test interval in the unsaturated zone	FALSE [TRUE/FALSE]	tests in the unsaturated zone are not considered reliable
Flow velocity in open borehole	0.0137 [m/s]	flow rate divided by cross-sectional area
Reynold's number	822.8 [-]	flow velocity x borehole diameter / kinematic viscosity of H2O (at approx. 4°C)
Is flow laminar (Reynold's No. <2040) or turbulent (>2040)	Laminar [TRUE/FALSE]	results based on turbulent flow should be considered very approximate
Calculated Result		
	2.2	Thiem equation; uses excess pressure head based on most reliable of surface (manual) or
Transmissivity T	$4.6E-07 [m^2/s]$	transducer readings
Hydraulic Conductivity K	4.3E-08 [m/s]	equivalent to T divided by test interval

mbtp = metres below top of pipe, mags = metres above ground surface, mbgs = metres below ground surface

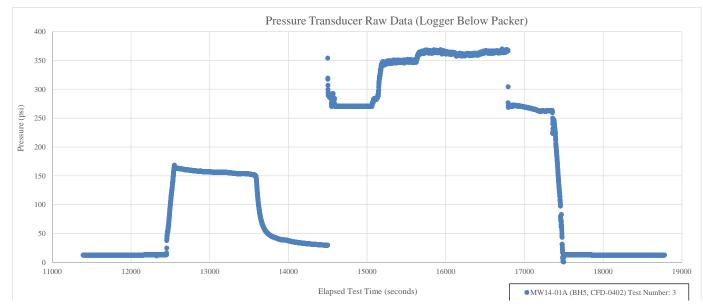
1. Thiem, G., 1906. Hydrologische Methoden; Gebhardt, Leipzig.

2. For hydraulic packer, transducer positioned 43" below bottom of packer in gauge holder; for pneumatic packer it is located just below stuffing box.

3. Data from analog pressure gauge read at surface used to guide test during injection and to confirm pressure transducer data

4. Computed from http://www.tasonline.co.za/toolbox/pipe/velfirc.htm assuming rubber lined pipe, 5 m length, ID 19 mm

5. IPI hydraulic packer manual or Darcy-Weisbach equation as provided in http://www.pipeflow.com/pipe-pressure-drop-calculations/pipe-friction-loss for the pneumatic packer.


6. Estimated stabilized pressure at end of injection period

7. Differential pressure eliminates absolute gauge effect, does not need to be corrected for atmospheric

Borehole: MW14-01A (BH5, CFD-0402)	Test Number: 3	Tester: LF
Date: 13-Aug-14	Start Time: 12:00 PM	Stop Time: 4:00 PM
Test Number: 3	Geology:	Height of P gauge (mags): 1.8
Depth to bit (m AH): 178	Length of Packer (m): 1.25	Pipe Stickup (mags): 3
Interval (Top) (m AH): 179.25	Interval Bottom (m AH): 202	Target Interval description:
Packer type (pneumatic/hydraulic): hydraulic	Hole dip: 90	Hydraulic packer sink time: n/a
Rod Type: HQ	Type of water used: Fresh	
Rod ID (mm): 77.8	Additives used (type): G-Stop in unsat. Zone	
Hole Diamter (mm): 96		
transducer SN: 301401 (Troll 700)	packer inflation pressure (psi): 550	open hole static WL (mbgs):
seal test successful: yes	test type: constant rate injection	

Time Elapsed (min)	Flowmeter Reading (L)	Flow Rate (L/min)	Pressure (psi)	Comments
0	459.0		80	
1	467.0	8.0	80	Pump knocking (large P gauge
2	474.0	7.0	80	oscillating between 70 and 120; small
3	481.1	7.1	80	P gauge oscillating between 30 and
4	488.0	6.9	80	140)
5	494.9	6.9	80	
6	501.8	6.9	80	
8	516.7	7.5	80	
10	533.6	8.4	80	
12	550.6	8.5	80	
14	567.3	8.3	80	
16	584.4	8.6	80	
18	602.2	8.9	80	
20	619.8	8.8	80	
22	637.8	9.0	80	
24	655.7	9.0	80	
26	673.9	9.1	80	
	AVERAGE:	9.0	80	

highlighted cells indicate period of test used for stabilized P and Q readings.

Borehole: MW14-0	1A (BH5, CFD-0402)	
Borehole Angle: 90	[degrees]	
Test Number: 3		
Start of Test Interval: 179.25	[mbgs]	
End of Test Interval: 202	[mbgs]	
Test Type: constant i	rate injection	
Packer System: hydraulic		
Date: 13-Aug-1	4	
Steady State Equation: $T = -\frac{Q*lr}{2*lr}$	$n(R_i/R_{ew})$	(Thiem, 1906) ¹
	(pi)*H	(111011, 1900)
Flow Rate		
injection flow rate (Q)	9.02 [L/min]	collected in field
injection flow rate (Q)	$1.5E-04 [m^3/s]$	calculated
Water Level		
[pressure transducer data used to estimate static WL]		
pressure transducer depth ²	180.3 [mbgs]	in pressure transducer holder below single packer
pipe stickup	3.00 [mags]	collected in field
pressure head	29.96 [psi]	pressure transducer reading, psi absolute
atmospheric pressure	12.78 [psi]	assumed
pressure head	12.08 [vertical m H2O]	corrected for atmospheric pressure
Water Level 1 (pressure transducer)	168.26 [vertical mbgs]	calculated
[if pressure transducer data not available]		
pipe stickup	0.33 [mags]	collected in field
depth to water	149.26 [mbtp]	Estimated from the closest static WL at MW14-01B on 8-Sept-2014 at 12:55 PM.
Water Level 2 (manual)	148.93 [vertical mbgs]	calculated
Excess Pressure Head (based on surface readings) ³		
friction losses (hose to swivel) ⁴	0.16 [m]	computed from http://www.tasonline.co.za/toolbox/pipe/velfirc.htm
friction losses (packer mandrel) ⁵	0.63 [m]	IPI hydraulic packer manual or from Darcy-Weisbach equation (pneumatic packer)
most reliable static water level measurement	manual transducer/manual	transducer (water level 1) or manual (water level 2)
analog pressure gauge height above ground	1.80 [vertical mags]	collected in field
analog pressure gauge reading	80.0 [psi]	collected in field
Exess Pressure Head (most reliable static WL)	206.2 [m]	H, calculated: static WL plus injection pressure, relative to ground surface
Excess Pressure Head Check (based on pressure transducer readings only	<u>)</u>	
stabilized pressure ⁶	365.63 [psi]	pressure transducer reading, psi absolute
differential pressure ⁷	336 [psi]	difference between injection pressure and static WL pressure
Excess Pressure Head (transducer readings)	236.0 [m]	H, calculated - convert differential pressure to m H2O
Other Data		•
radius of wellbore (R _w)	0.048 [m]	1/2 of the ID of open HQ borehole
length of test interval	22.8 [m]	collected in field
skin	0 [-]	assumed
effective wellbore radius (R _{ew})	0.048 [m]	R _w exp(Skin)
radius of influence (R _i)	22.8 [m]	assumed (equivalent to length of test interval)
$\ln(R_i/R_{ew})$	6.2 [-]	calculated
Is packer test interval in the unsaturated zone	FALSE [TRUE/FALSE]	tests in the unsaturated zone are not considered reliable
Flow velocity in open borehole	0.0208 [m/s]	flow rate divided by cross-sectional area
Reynold's number	1245.7 [-]	flow velocity x borehole diameter / kinematic viscosity of H2O (at approx. 4°C)
Is flow laminar (Reynold's No. <2040) or turbulent (>2040)	Laminar [TRUE/FALSE]	results based on turbulent flow should be considered very approximate
Calculated Result		
		Thiem equation; uses excess pressure head based on most reliable of surface (manual) or
Transmissivity T	7.1E-07 [m ² /s]	transducer readings
Hydraulic Conductivity K	3.1E-08 [m/s]	equivalent to T divided by test interval

mbtp = metres below top of pipe, mags = metres above ground surface, mbgs = metres below ground surface

1. Thiem, G., 1906. Hydrologische Methoden; Gebhardt, Leipzig.

2. For hydraulic packer, transducer positioned 43" below bottom of packer in gauge holder; for pneumatic packer it is located just below stuffing box.

3. Data from analog pressure gauge read at surface used to guide test during injection and to confirm pressure transducer data

4. Computed from http://www.tasonline.co.za/toolbox/pipe/velfirc.htm assuming rubber lined pipe, 5 m length, ID 19 mm

5. IPI hydraulic packer manual or Darcy-Weisbach equation as provided in http://www.pipeflow.com/pipe-pressure-drop-calculations/pipe-friction-loss for the pneumatic packer.

6. Estimated stabilized pressure at end of injection period

7. Differential pressure eliminates absolute gauge effect, does not need to be corrected for atmospheric

Borehole: N	AW14-02B (BH-09, CFD-0418)	Test Number:	1	Tester: MS
Date: 2	0-Aug-14	Start Time:		Stop Time:
Test Number: 1		Geology:	gneiss	Height of P gauge (mags): 1.83
Depth to bit (m AH): 8	3	Length of Packer (m):	1.50	Pipe Stickup (mags): 2.93
Interval (Top) (m AH): 8	4.50	Interval Bottom (m AH):	104	Target Interval description:
Packer type (pneumatic/hydraulic): p	neumatic	Hole dip:	90	Hydraulic packer sink time: n/a
Rod Type: H	IQ	Type of water used:	Fresh	
Rod ID (mm): 7	7.8	Additives used (type):	G-Stop in unsat. Zone	
Hole Diamter (mm): 9	6			
transducer SN: n	/a	packer inflation pressure (psi):	375	open hole static WL (mbgs): n/a
seal test successful: y	es	test type:	constant rate injection	

Time Elapsed (min)	Flowmeter Reading (L)	Flow Rate (L/min)	Pressure (psi)	Comments
0	14.0			
				approx. 30 mL/min leakage from
1	14.5	0.50	30	stuffing assembly
2	14.5	0.00	30	
3	15.0	0.50	30	
4	15.0	0.00	30	
5	15.0	0.00	30	
6	15.5	0.50	30	
7	15.5	0.00	30	
8	15.5	0.00	30	
9	15.5	0.00	30	
10	16.0	0.50	30	
11	16.0	0.00	30	
12	16.0	0.00	30	
13	16.5	0.50	30	
14	16.5	0.00	30	
15	17.0	0.50	30	
16	17.0	0.00	30	
17	17.0	0.00	30	
18	17.5	0.50	30	
19	17.5	0.00	30	
20	17.5	0.00	30	
	AVERAGE:	0.19	30	

highlighted cells indicate period of test used for stabilized P and Q readings.

		Pressure Transducer I	Raw Data (Logger Bel	ow Packer)	
Pressure (psi)		Manual ((pressure transo			

Borehole: M	W14-02B (BH-09	, CFD-0418)	
Borehole Angle: 90		[degrees]	
Test Number: 1			
Start of Test Interval: 84	.50	[mbgs]	
End of Test Interval: 10	14	[mbgs]	
Test Type: co	nstant rate injectio		
Packer System: pn			
Date: 20	-Aug-14		
Steady State Equation: T =	$Q * \ln (R_i/R_{ew})$		(Thiem, 1906) ¹
Steady State Equation. 1 =	2*(pi)*H		(Thieni, 1908)
Flow Rate			
injection flow rate (Q)	0.1	9 [L/min]	collected in field
•			
injection flow rate (Q)	3.2E-0	(m^{3}/s)	calculated
Water Level			
[pressure transducer data used to estimate static WL]			
pressure transducer depth ²	-	[mbgs]	in pressure transducer holder below single packer
pipe stickup	2.9	3 [mags]	collected in field
pressure head	-	[psi]	pressure transducer reading, psi absolute
atmospheric pressure	-	[psi]	assumed
pressure head	#VALUE!	[vertical m H2O]	corrected for atmospheric pressure
Water Level 1 (pressure transducer)	#VALUE!	[vertical mbgs]	calculated
[if pressure transducer data not available]			
pipe stickup		27 [mags]	collected in field
depth to water		50 [mbtp]	Static WL in MW14-02B on 26-Aug-2014 at 20:00
Water Level 2 (manual)	12.3	33 [vertical mbgs]	calculated
Excess Pressure Head (based on surface readings) ³			
friction losses (hose to swivel) ⁴	0.0	<mark>)0</mark> [m]	computed from http://www.tasonline.co.za/toolbox/pipe/velfirc.htm
friction losses (packer mandrel) ⁵	0.0	<mark>)0</mark> [m]	IPI hydraulic packer manual or from Darcy-Weisbach equation (pneumatic packer)
most reliable static water level measurement	manu	al transducer/manual	transducer (water level 1) or manual (water level 2)
analog pressure gauge height above ground	1.8	33 [vertical mags]	collected in field
analog pressure gauge reading	30	.0 [psi]	collected in field
Exess Pressure Head (most reliable static WL)	35	.3 [m]	H, calculated: static WL plus injection pressure, relative to ground surface
Excess Pressure Head Check (based on pressure transducer readin	gs only)		
stabilized pressure ⁶	-	[psi]	pressure transducer reading, psi absolute
differential pressure ⁷	#VALUE!	[psi]	difference between injection pressure and static WL pressure
Excess Pressure Head (transducer readings)	#VALUE!	[m]	H, calculated - convert differential pressure to m H2O
Other Data			
radius of wellbore (R _w)	0.04	18 [m]	1/2 of the ID of open HQ borehole
length of test interval	19	.5 [m]	collected in field
skin		0 [-]	assumed
effective wellbore radius (R _{ew})	0.04	48 [m]	R _w exp(Skin)
radius of influence (R _i)	19	.5 [m]	assumed (equivalent to length of test interval)
$\ln(R_i/R_{ew})$	6	.0 [-]	calculated
Is packer test interval in the unsaturated zone	FALS	E [TRUE/FALSE]	tests in the unsaturated zone are not considered reliable
Flow velocity in open borehole	0.000)4 [m/s]	flow rate divided by cross-sectional area
Reynold's number		.9 [-]	flow velocity x borehole diameter / kinematic viscosity of H2O (at approx. 4°C)
Is flow laminar (Reynold's No. <2040) or turbulent (>2040)	Lamin	ar [TRUE/FALSE]	results based on turbulent flow should be considered very approximate
Calculated Result			
		2.2	Thiem equation; uses excess pressure head based on most reliable of surface (manual) or
Transmissivity T)8 [m ² /s]	transducer readings
Hydraulic Conductivity K mbtn metres below top of nine_mags metres above ground surface		9 [m/s]	equivalent to T divided by test interval

mbtp = metres below top of pipe, mags = metres above ground surface, mbgs = metres below ground surface

1. Thiem, G., 1906. Hydrologische Methoden; Gebhardt, Leipzig.

2. For hydraulic packer, transducer positioned 43" below bottom of packer in gauge holder; for pneumatic packer it is located just below stuffing box.

3. Data from analog pressure gauge read at surface used to guide test during injection and to confirm pressure transducer data

4. Computed from http://www.tasonline.co.za/toolbox/pipe/velfirc.htm assuming rubber lined pipe, 5 m length, ID 19 mm

5. IPI hydraulic packer manual or Darcy-Weisbach equation as provided in http://www.pipeflow.com/pipe-pressure-drop-calculations/pipe-friction-loss for the pneumatic packer.

6. Estimated stabilized pressure at end of injection period

7. Differential pressure eliminates absolute gauge effect, does not need to be corrected for atmospheric

Borehole: MW14-02B (BH-09, CFD-0418)	Test Number: 2	Tester: MS/CB
Date: 21-Aug-14	Start Time: 9:40 PM	Stop Time: 10:00 PM
Test Number: 2	Geology: gneiss	Height of P gauge (mags): 1.83
Depth to bit (m AH): 101	Length of Packer (m): 1.50	Pipe Stickup (mags): 2.93
Interval (Top) (m AH): 102.50	Interval Bottom (m AH): 125	Target Interval description: broken rock /
Packer type (pneumatic/hydraulic): pneumatic	Hole dip: 90	rock fragment
Rod Type: HQ	Type of water used: Fresh	Hydraulic packer sink time: n/a
Rod ID (mm): 77.8	Additives used (type): G-Stop in unsat. Zone	
Hole Diamter (mm): 96		
transducer SN: n/a	packer inflation pressure (psi): 425	open hole static WL (mbgs): n/a
seal test successful: yes	test type: constant rate injection	

Time Elapsed (min)	Flowmeter Reading (L)	Flow Rate (L/min)	Pressure (psi)	Comments
0	3095			
1	3099	4.00	30	
2	3105	6.00	30	
3	3108	3.00	30	
4	3112	4.00	30	
5	3116	4.00	30	
6	3120	4.00	30	
7	3124	4.00	30	
8	3129	5.00	30	
9	3133	4.00	30	
10	3137	4.00	30	
11	3141	4.00	30	
12	3145	4.00	30	
13	3149	4.00	30	
14	3153	4.00	30	
15	3157	4.00	30	
16	3162	5.00	30	
17	-	-	30	
18	3170	4.00	30	
19	3174	4.00	30	
20	3178	4.00	30	
	AVERAGE:	4.13	30	

highlighted cells indicate period of test used for stabilized P and Q readings.

		Pressure Transducer	Raw Data (Logger Be	low Packer)	
Pressure (psi)		Manual d (pressure transd			

Borchok Angle: 00 [degress] Test Number: 2 Start of Test Interval: 102.50 [mbgs] Test Type: constant rate injection Packer System: prenumatic Date: 21-Aug.14 Stard of Test Interval: 122 Date: 21-Aug.14 Stard of Start Equation: T = Of th (K/R_m) Collected in field injection flow rate (Q) 6.9E-05 [m ³ /s] calculated Matter Level Jpressure transducer data used to estimate static WLJ pressure transducer data used to estimate static WLIE pressure transducer data used to estimate static WLIE pressure transducer data used to estimate static WLIE pressure transducer data not available] pressur	Borehole	e: MW14-02B (BH-09	, CFD-0418)	
Shart of Test Interval: [25:0] [mbg] Test Type: constant rise injection Test Type: constant rise injection <th>Borehole Angle</th> <th>: 90</th> <th>[degrees]</th> <th></th>	Borehole Angle	: 90	[degrees]	
End of Test Interval: 12.5 [mbgs] Test Type: consumt rue injection Packer System: pneumatic Date: 21-Aug.14 Steady State Equation: $T = \frac{Q * ln (R_i R_{wav})}{2*(pi)*H}$ (Thiem, 1906) ¹ For Rate injection flow rate (Q) 6.59E.05 [m ³ /s] calculated (Thies and used to estimate static WL] presure transducer dua used to estimate static WL] presure transducer dua used to estimate static WL] presure transducer dua used to estimate static WL] presure transducer dua used to estimate static WL] presure transducer dua used to estimate static WL] presure transducer dua used to estimate static WL] presure transducer dua used to estimate static WL] presure transducer dua used to estimate static WL] presure transducer due ph2 - [mbgs] presure transducer reading, psi abolate assumed [psi] presure transducer and used to estimate static WL] presure transducer and used to estimate static WL] presure transducer due not available/ [psi] collected in field assumed 12.07 [mgs]<	Test Number	:: 2	-	
The type: constant rate injection Praces System: prosumatic Date: 21-Aug-14 Thiem, 1906) ¹ Steady State Equation: $T = O^* ln (R_0 R_m) / 2^*(pi)^*H$ (Thiem, 1906) ¹ Flow Rate injection flow rate (Q) injection flow rate (Q) 6.9E.05 [m ³ /s] calculated Water Level / pressure transducer data used to estimate static WL/ pressure transducer data used to estimate static WL/ pressure transducer depth ² - [mbgs] in pressure transducer holder below single packer pipe stickup 2.93 [mags] collected in field pipestruct ransducer depth ² - [mbgs] in pressure transducer holder below single packer pipe stickup 2.93 [mags] collected in field pipestruct head - [psi] pressure transducer reading, psi absolute atmospheric pressure - [psi] assunde pressure transducer data used to estimate static WL/ pressure transducer data na available/ [vertical mAgs] collected in field depth to water 1.27 [mags] collected in field calculated Water Level 1 (pressure transducer data navailable/ pressure transducer data navailable/ most reliable static water level massurement - [psi] calculated Textore 1 (see Sure transducer navailable) 0.01 [m] PIP thydratic packer manal or from Darcy-Weisbach equation (pneumatic packer) <tr< th=""><th>Start of Test Interval</th><th>: 102.50</th><th>[mbgs]</th><th></th></tr<>	Start of Test Interval	: 102.50	[mbgs]	
Packer System: pneumatic Date: 21-Aug: 14 Steady State Equation: $T = \frac{Q^{h} \ln (k/R_{w})}{2^{h} (p)^{1} H}$ (Thiem, 1906) ¹ For Aug For Aug Digetion flow rate (Q) 4.13 [L/min] collected in field injection flow rate (Q) 6.986-05 [m ³ /s] calculated Variance of the distance static WL] pressure transducer data used to estimate static WL] pressure transducer data not available / Pressure transducer endingsoi	End of Test Interva	: 125	[mbgs]	
$\begin{aligned} & \text{Date: } ^{2} 1 + \text{Age: 14} \\ & \text{Steady State Equation: } T = \frac{Q^{2} \ln (R_{i} R_{i} p)}{2^{4} (p)^{3} H} \\ & \text{Thiem, 1906}^{1} \end{aligned}$	Test Type	: constant rate injection	on	
Steady State Equation: $T = \frac{O^2 + \ln (R/R_w)}{2^*(p)^*H}$ (Thiem, 1906) ¹ Flow Rate injection flow rate (Q)6.09E-05 [m ³ /s]calculatedMigro Level (pressure transducer data used to estimate static WL // pressure transducer data not available / // (pressure transducer)(m logs) (pressure transducer adia not available / (pressure transducer data not available / pressure flad Obseed on surface readings) ³ coll (refressure transducer)(Pressure transducer) (Pressure transducer flad not available / (pressure transducer data not available / (pressure transducer data not available / (pressure transducer data not available / (pressure transducer data not available / 	Packer System	: pneumatic		
Elow Bate injection flow rate (Q) 4.13 [L/min] collected in field injection flow rate (Q) 6.9E-05 [m ³ /s] calculated Water Level Ipressure transducer depth ² [mbgs] in pressure transducer holder below single packer pipe stickup 2.93 [mags] collected in field pressure transducer depth ² [pii] pressure transducer reading, psi absolute amospheric pressure [pii] assumed pressure transducer data not available? [pii] corrected for atmospheric pressure if pressure transducer data not available? [pii] corrected for atmospheric pressure pipe stickup 1.27 [mags] collected in field depth to water 13.60 [mbpt] Static WL in MW14-02B on 26-Aug-2014 at 20:00 Water Level 1 (ansual) 12.33 [wertical mbgs] calculated Excess Pressure Head (most on surface readings) ³ friction losses (nacker mandrel) ⁵ 0.01 [m] friction losses (nacker mandrel) ⁵ 0.01 [m] computed from http://www.tasonline.co.za/toolbox/pip/el/elfire.htm friction losses (nacker mandrel) ⁵ 0.01 [m] Collected in field analog pressure gauge reading 30.00 [pii] collected in field analog pres	Date	: 21-Aug-14		
Elow Rate injection flow rate (Q) 4.13 [L/min] collected in field injection flow rate (Q) 6.9E-05 [m ³ /s] calculated Water Level Ipressure transducer deph ³ - [mbgs] in pressure transducer holder below single packer pressure transducer deph ³ - [mbgs] in pressure transducer rading, psi absolute atmospheric pressure - [psi] assumed pressure transducer data not available? #VALUE! (vertical mbgs) calculated yter Level 1 (pressure transducer) #VALUE! (vertical mbgs) calculated // fip ressure transducer data not available? pressure transducer rading, psi absolute calculated // fip ressure transducer massure 1.27 [mags] collected in field collected no second // dept ho water 13.60 [mbtp] Static WL in MW14-02B on 26-Aug-2014 at 20:00 calculated // static water kevel measurement manual transducer/manual calculated The hydraulic packer manual or from Darcy-Weisbach equation (pneumatic packer) most reliable static water kevel measurement nanual transducer/manual transducer readings of collected in field analog pressure gauge frading 0.00 [m] IPI hydrauic packer manual (wat	Stoody State Equation T	$Q * \ln (R_i/R_{ew})$		(Thism 1006) ¹
injection flow rate (Q)4.13 [L/min]collected in fieldinjection flow rate (Q) $6.9E.05 [m^3/s]$ caculatedWater Level[pressure transducer dedpth².pressure transducer dedpth².[mgs]collected in fieldpressure transducer dedpth².[pris]pressure transducer reading, psi absolutepressure head.[psi]asumedpressure head.[psi]asumedpressure transducer data used to extinate static WL/I[vertical m H2O]corrected for atmospheric pressureif pressure transducer data used and available.[psi]asumedpressure head.[psi]calculatedWater Level 1 (pressure transducer data used and available].calculatedIf pressure transducer data not available.[psi]calculatedWater Level 2 (manua)12.33 [vertical mbgs]calculatedExcess Pressure Head (based on surface readings) ³ Friction losses (packer mandrel) ⁵ india pressure gauge neight above ground1.83 (vertical mags]collected in fieldnandog pressure gauge neight above ground1.83 (vertical mags]collected in fieldnandog pressure gauge neight above ground1.83 (vertical mags]collected in fieldnandog pressure gauge neight above ground1.83 (vertical mags]collected in fieldnandog pressure gauge neight above ground1.83 (vertical mags]collected in fieldnandog pressure gauge neight above ground1.83	Steady State Equation: 1	2*(pi)*H		(1mem, 1906)
injection flow rate (Q) 6.9E-05 [m³/s] calculated Water Level [pressure transducer data used to estimate static WLJ pressure transducer deph ² - [mbg] in pressure transducer holder below single packer pipe stickup 2.93 [mags] collected in field pressure head - [psi] pressure transducer reading, psi absolute atmospheric pressure head + [Pis] pressure transducer reading, psi absolute atmospheric pressure transducer adua used to estimate static WLDE! [vertical mH2O] corrected for atmospheric pressure transducer data not available] pipe stickup + [Pic pressure transducer] depth to water cursultater data not available] pipe stickup + [Pic pacer transducer] depth to water - [Pis] - [Pic pacer transducer] depth to water - [Pis] - [Pic pacer transducer] fiction losses (hose to swivel) ⁴ + [Pic Pacer transducer] fiction losses (hose to swivel) ⁴ + [Pic Pacer transducer] fiction losses (packer mandrel) ⁵ + [Pic Pacer transducer] nost reliable static water level measurement manual transducer/manual nalog pressure gauge height above ground 1.83 [vertical mags] - collected in field transducer (mater level 1) or manual (water level 2) ressure flead (hased on surface readings) ¹ fiction losses (packer mandrel) ⁵ + [Pis]	Flow Rate			
Yhere Level [pressure transducer data used to estimate static WL] in pressure transducer holder below single packer pipe stickup 2.93 [mags] collected in field pressure transducer data used to estimate static WL] collected in field pressure transducer data used to estimate static WL] collected in field pressure transducer data used to estimate static WL] pressure transducer reading, psi absolute assumed - [psi] pressure transducer data not available] extended of the psi pipe stickup 1.27 [mags] collected in field depth to water 1.360 [mbp] Static WL in MW14-02B on 26-Aug-2014 at 20:00 Water Level 2 (manual) 1.233 [vertical mbgs] calculated Excess Pressure Head (based on surface readings) ² calculated Friction losses (packer mandrel) ⁸ 0.04 [m] computed from http://www.tasonline.co.za/toolbox/pipe/velfirc.htm friction losses (packer mandrel) ⁸ 0.01 [m] pressure transducer/manual collected in field analog pressure gauge height above ground 1.83 [vertical mags] collected in field texess Pressure Head (Check (based on pressure transducer readings only) static water level 1) or manual (water level 2) analog pressure gauge neight	injection flow rate (Q)	4.1	13 [L/min]	collected in field
Ipressure transducer data used to estimate static WLJpressure transducer data used to estimate static WLJ-[mgs]in pressure hand-[mgs]collected in fieldpressure head-[psi]pressure transducer reading, psi absoluteatmospheric pressureatmospheric pressure-[psi]asumedpressure head#VALUE![vertical mH2O]corrected for atmospheric pressure-[psi]asumedWater Level 1 (pressure transducer)#VALUE![vertical mH2O]corrected for atmospheric pressure#pressure data not available]1.27 [mgs]collected in field#pressure flead (hased on surface readings) ³ #friction losses (hose to swive) ⁴ 0.04 [m]collected in field#friction losses (packer mandre) ⁵ 0.01 [m]PIP hydraulic packer manual of rom Darcy-Weisbach equation (pneumatic packer)malog pressure gauge height above ground1.83 [vertical mags]collected in fieldanalog pressure gauge height above ground1.83 [vertical mags]collected in fieldanalog pressure gauge height above ground1.83 [vertical mags]collected in fieldExcess Pressure Head (hased on stretable static WL)35.2 [m]H calculated: static WL pressure, relative to ground surfaceExcess Pressure gauge reading30.0 [psi]collected in fieldanalog pressure gauge height above ground1.83 [vertical mags]collected in fieldExcess Pressure Head (transducer reading.s)#VALUE!psi <td< td=""><td>injection flow rate (Q)</td><td>6.9E-(</td><td>$05 \ [m^3/s]$</td><td>calculated</td></td<>	injection flow rate (Q)	6.9E-($05 \ [m^3/s]$	calculated
pressure transducer depth2-[mbgs]in pressure transducer holder below single packerpipe stickup2.93 [mags]collected in fieldpressure head-[psi]pressure transducer rading, psi absoluteamospheric pressure-[psi]assumedpressure head#VALUE![vertical mB20]corected for atmospheric pressureWater Level 1 (pressure transducer)#VALUE![vertical mB20]calculated <i>lif pressure transducer data not available]</i> -0calculated <i>pipe stickup</i> 1.27 [mags]collected in fielddepth to water1.360 [mbp]Static WL in MW14-02B on 26-Aug-2014 at 20:00Water Level 2 (manual)12.33 [vertical mbgs]calculatedExcess Pressure Head (based on surface readings) ³ friction losses (hose to swivel) ⁴ 0.04 [m]computed from http://www.tasonline.co.za/toolbox/pipe/velfirc.htmnost reliable static water level measurementmanual transducer/manualtransducer (water level 1) or manual (water level 2)analog pressure gauge height above ground1.83[vertical mags]collected in fieldanalog pressure flad (host chiable static WL)35.2 [m]H; calculated: static WL put lupis njection pressure, relative to ground surfaceExcess Pressure Head (transducer readings)#VALUE![psi]difference between injection pressure and static WL pressuretransducer developer-[psi]difference between injection pressure and static WL pressuretabilized pressure ⁶ -[psi]difference between injecti	Water Level			
pipe stickup2.93[mags]collected in fieldpressure head-[psi]assumedatmospheric pressure-[psi]assumedpressure transducer ransducer attan out available]#VALUE![vertical mB2O]corrected for atmospheric pressureWater Level 1 (pressure transducer)#VALUE![vertical mB2O]calculatedif pressure transducer data not available]1.27[mags]collected in fieldpipe stickup1.26[mags]calculateddepth to water1.360 [mbp]Static WL in MW14-02B on 26-Aug-2014 at 20:00Water Level 2 (manual)1.2.33[vertical mbgs]calculatedExcess Pressure Head (hased on surface readings) ³ fortal mags]calculatedfriction losses (hose to swivel) ⁴ 0.04[m]romputed from http://www.tasonline.co.za/toolbox/pipe/velfirc.htmmost reliable static water level measurementmanual transducer/manualtransducer/manualtransducer (water level 1) or manual (water level 2)analog pressure gauge height above ground1.83[vertical mags]collected in fieldExcess Pressure Head (most reliable static WL)35.2[m]H, calculated: static WL plus injection pressure, relative to ground surfaceExcess Pressure Head (transducer readings)#VALUE![psi]difference between injection pressure and static WL pressureExcess Pressure Head (transducer readings)#VALUE![psi]difference between injection pressure and static WL pressureExcess Pressure Head (transducer readings)#VALUE![psi] <t< td=""><td>[pressure transducer data used to estimate static WL]</td><td></td><td></td><td></td></t<>	[pressure transducer data used to estimate static WL]			
pipe stickup2.93[mags]collected in fieldpressure head-[psi]assumedatmospheric pressure-[psi]assumedpressure head#VALUE![vertical mb20]corrected for atmospheric pressureWater Level 1 (pressure transducer)#VALUE![vertical mb20]if pressure transducer data not available]1.27[mags]collected in fieldpipe stickup1.26[mags]calculateddepth to water1.360[mbp]Static WL in MW14-02B on 26-Aug-2014 at 20:00Water Level 2 (manual)1.2.33[vertical mbgs]calculatedExcess Pressure Head (hose to swivel) ⁴ 0.04[m]computed from http://www.tasonline.co.za/toolbox/pipe/velfirc.htmfriction losses (hose to swivel) ⁴ 0.04[m]PI hydraulic packer manual or from Darcy-Weisbach equation (pneumatic packer)analog pressure gauge height above ground1.83[vertical mags]collected in fieldanalog pressure gauge height above ground1.83[vertical mags]collected in fieldExcess Pressure Head (most reliable static WL)35.2[m]H, calculated: static WL plus injection pressure, relative to ground surfaceExcess Pressure Head (transducer readings)#VALUE![psi]difference between injection pressure and static WL pressuretabilized pressure ⁷ #VALUE![psi]difference between injection pressure and static WL pressureExcess Pressure Head (transducer readings)#VALUE![psi]differential pressure to m H2OOther Data <td< td=""><td>pressure transducer depth²</td><td>_</td><td>[mbgs]</td><td>in pressure transducer holder below single packer</td></td<>	pressure transducer depth ²	_	[mbgs]	in pressure transducer holder below single packer
pressure head-[psi]pressure transducer reading, psi absoluteatmospheric pressure-[psi]assumedpressure head#VALUE![vertical mL2O]corrected for atmospheric pressureWater Level 1 (pressure transducer)#VALUE![vertical mbgs]calculated <i>lif pressure transducer dat anot available]</i> -[stic WL in MW14-02B on 26-Aug-2014 at 20:00Water Level 2 (manual)12.360 [mbtp]Static WL in MW14-02B on 26-Aug-2014 at 20:00Water Level 2 (manual)12.35 [vertical mbgs]calculatedExcess Pressure Head (based on surface readings) ³ 0.01 [m]IP1 hydraulic packer manual or from Darcy-Weisbach equation (pneumatic packer)friction losses (packer mandrel) ⁵ 0.01 [m]IP1 hydraulic packer manual or from Darcy-Weisbach equation (pneumatic packer)analog pressure gauge height above ground18.35 [vertical mags]collected in fieldanalog pressure gauge height above ground18.35 [vertical mags]collected in fieldanalog pressure Head (most reliable static WL)35.2 [m]tealulated: static WL pub isjection pressure, relative to ground surfaceExcess Pressure Head (most reliable static WL)35.2 [m]pressure fransducer reading, psi absolutedifferential pressure ⁶ [psi]gressure ⁶ -[psi]difference between injection pressure and static WL pressureadius of wellbore (R _w)0.048 [m]1/2 of the ID of open HQ boreholeeffective wellbore radius (R _w)0.048 [m]i/2 of the ID of open HQ borehole		2.9		
atmospheric pressure·[psi]assumedpressure head#VALUE![vertical mB20]corrected for atmospheric pressurewater Level (pressure transducer)#VALUE![vertical mBgs]calculatedif pressure transducer data not available]1.27 [mags]collected in fieldpipe stickup1.3.60 [mbtp]Static WL in MW14-02B on 26-Aug-2014 at 20:00Water Level 2 (manual)1.2.33 [vertical mbgs]calculatedExcess Pressure Head (based on surface readings) ⁴ 0.04 [m]computed from http://www.tasonline.co.za/toolbox/pipe/velfirc.htmfriction losses (packer mandrel) ⁵ 0.04 [m]computed from http://www.tasonline.co.za/toolbox/pipe/velfirc.htmfriction losses (packer mandrel) ⁵ 0.04 [m]IPI hydraulic packer manual of from Darcy-Weisbach equation (pneumatic packer)most reliable static water level measurementmanual transducer/manualcollected in fieldanalog pressure gauge height above ground1.83 [vertical mags]collected in fieldExcess Pressure Head (most liable static WL)35.2 [m]H, calculated: static WL plus injection pressure, relative to ground surfaceExcess Pressure Head (transducer readings only)fieldgressure static WL plus injection pressure and static WL pressurefactibilized pressure ⁷ #VALUE![psi]difference between injection pressure and static WL pressureExcess Pressure Head (transducer readings)#VALUE![psi]difference between injection pressure and static WL pressurefactor static WL0.048 [m]1/2 of the ID of open HQ boreholelength of test interval </td <td></td> <td>-</td> <td>-</td> <td></td>		-	-	
pressure head#VALUE![vertical m H2O]corrected for atmospheric pressureWater Level 1 (pressure transducer)#VALUE![vertical mbgs]calculated[if pressure transducer data on available]	*	-		
Water Level 1 (pressure transducer) #VALUE! [vertical mbgs] calculated <i>lif pressure transducer data not available]</i> pipe stickup 0 collected in field opten vater 13.60 [mbrp] Static WL in MW14-02B on 26-Aug-2014 at 20:00 Water Level 2 (manual) 12.33 [vertical mbgs] calculated Excess Pressure Head (hased on surface readings) ³ ondu [m] computed from http://www.tasonline.co.za/toolbox/pipe/velfirc.htm friction losses (hose to swivel) ⁴ 0.04 [m] computed from http://www.tasonline.co.za/toolbox/pipe/velfirc.htm nots reliable static water level measurement manual transducer/manual transducer (water level 1) or manual (water level 2) analog pressure gauge neight above ground 1.83 [vertical mags] collected in field analog pressure flead (host reliable static WL) 35.2 [m] H, calculated: static WL plus injection pressure, relative to ground surface Excess Pressure Head (host reliable static WL) \$5.2 [m] pressure framsducer reading, psi absolute tifficential pressure ⁶ [psi] pressure framsducer reading, psi absolute differential pressure ⁷ #VALUE! [psi] difference between injection pressure and static WL pressure tatilized pressure ⁶ [psi] collect in field </td <td></td> <td>#VALUE!</td> <td>-1 -</td> <td></td>		#VALUE!	-1 -	
lif pressure transducer data not available]pipe stickup1.27 [mags]collected in fielddepth to water13.60 [mbtp]Static WL in MW14-02B on 26-Aug-2014 at 20:00Water Level 2 (manual)12.33 [vertical mbgs]calculatedExcess Pressure Head (based on surface readings) ³ friction losses (hose to swivel) ⁴ 0.04 [m]computed from http://www.tasonline.co.za/toolbox/pipe/velfirc.htmfriction losses (packer mandrel) ⁵ 0.01 [m]IPI hydraulic packer manual or from Darcy-Weisbach equation (pneumatic packer)most reliable static water level measurementmanual transducer/manual analog pressure gauge height above ground1.83 [vertical mags]collected in field30.0 [psi]collected in fieldExcess Pressure Head (most reliable static WL)35.2 [m]H, calculated: static WL plus injection pressure, relative to ground surfaceExcess Pressure Head (transducer readings)#VALUE![psi]pressure reading, psi absolutedifferential pressure ⁷ #VALUE![psi]difference between injection pressure and static WL pressuretabilized pressure Pressure Head (transducer readings)#VALUE![m]H, calculated - convert differential pressure to m H2OOther Data22.5 [m]ifference between injection pressure and static WL pressurestatic with ifieldradius of wellbore radius (R _{ew})0.048 [m]1/2 of the ID of open HQ boreholelength of test intervaleffective wellbore radius (R _{ew})0.048 [m]R _w exp(Skin)	Water Level 1 (pressure transducer)	#VALUE!		
depth to water13.60 [mbtp]Static WL in MW14-02B on 26-Aug-2014 at 20:00Water Level 2 (manual)12.33 [vertical mbgs]calculatedExcess Pressure Head (based on surface readings) ³ friction losses (hose to swivel) ⁴ 0.04 [m]computed from http://www.tasonline.co.za/toolbox/pipe/velfirc.htmfriction losses (packer mandrel) ⁵ 0.01 [m]IPI hydraulic packer manual or from Darcy-Weisbach equation (pneumatic packer)most reliable static water level measurementmanual transducer/manualIraducer (water level 1) or manual (water level 2)analog pressure gauge neading30.0 [psi]collected in fieldExcess Pressure Head (most reliable static WL)35.2 [m]H, calculated: static WL plus injection pressure, relative to ground surfaceExcess Pressure Head (transducer readings only)tstabilized pressure ⁶ - [psi]pressure transducer reading, psi absolutedifferential pressure ⁷ #VALUE![psi]difference between injection pressure and static WL pressureExcess Pressure Head (transducer readings)#VALUE![m]H, calculated - convert differential pressure to m H2OOther Data0.048 [m]1/2 of the ID of open HQ boreholeength of test interval0.1assumedeffective wellbore radius (R _{ew})0.048 [m]R _w exp(Skin)				
Water Level 2 (manual) 12.33 [vertical mbgs] calculated Excress Pressure Head (based on surface readings) ³	pipe stickup	1.2	27 [mags]	collected in field
Excess Pressure Head (based on surface readings) ³ friction losses (hose to swivel) ⁴ 0.04 [m] computed from http://www.tasonline.co.za/toolbox/pipe/velfirc.htm friction losses (packer mandrel) ⁵ 0.01 [m] IPI hydraulic packer manual or from Darcy-Weisbach equation (pneumatic packer) most reliable static water level measurement manual transducer/manual transducer (water level 1) or manual (water level 2) analog pressure gauge height above ground 1.83 [vertical mags] collected in field Excess Pressure Head (most reliable static WL) 35.2 [m] the calculated: static WL plus injection pressure, relative to ground surface Excess Pressure Head Check (based on pressure transducer readings only) stabilized pressure ⁶ [psi] pressure transducer reading, psi absolute differential pressure ⁷ #VALUE! [psi] difference between injection pressure and static WL pressure Excess Pressure Head (transducer readings) #VALUE! [m] H, calculated - convert differential pressure to m H2O Other Data 22.5 [m] collected in field collected in field skin 0 [-] assumed collected in field effective wellbore radius (R _{ew}) 0.048 [m] 1/2 of the ID of open HQ borehole	depth to water	13.6	60 [mbtp]	Static WL in MW14-02B on 26-Aug-2014 at 20:00
friction losses (hose to swivel)40.04 [m]computed from http://www.tasonline.co.za/toolbox/pipe/velfirc.htmfriction losses (packer mandrel)50.01 [m]IPI hydraulic packer manual or from Darcy-Weisbach equation (pneumatic packer)most reliable static water level measurementmanual transducer/manualtransducer (water level 1) or manual (water level 2)analog pressure gauge height above ground1.83 [vertical mags]collected in fieldanalog pressure gauge reading30.0 [psi]collected in fieldExcess Pressure Head (most reliable static WL)35.2 [m]H, calculated: static WL plus injection pressure, relative to ground surfaceExcess Pressure Head (transducer readings only)static WL LUE![psi]difference between injection pressure and static WL pressurestabilized pressure7#VALUE![psi]difference between injection pressure and static WL pressureCher Data0.048[m]1/2 of the ID of open HQ boreholeradius of wellbore (Rw)0.048[m]collected in fieldskin0 [-]assumedeffective wellbore radius (Rew)0.048[m]great in terval0.048[m]great in terval0.048[m]great in terval0.048[m]great in terval0.048great in terval0.	Water Level 2 (manual)	12.3	33 [vertical mbgs]	calculated
friction losses (packer mandrel)50.01 [m]IPI hydraulic packer manual or from Darcy-Weisbach equation (pneumatic packer)most reliable static water level measurementmanual transducer/manualtransducer (water level 1) or manual (water level 2)analog pressure gauge height above ground1.83 [vertical mags]collected in fieldanalog pressure gauge reading30.0 [psi]collected in fieldExcess Pressure Head (most reliable static WL)35.2 [m]H, calculated: static WL plus injection pressure, relative to ground surfaceExcess Pressure Head Check (based on pressure transducer readings only)stabilized pressure ⁵ pressure fransducer reading, psi absolutedifferential pressure ⁷ #VALUE![psi]difference between injection pressure and static WL pressureExcess Pressure Head (transducer readings)#VALUE![m]H, calculated - convert differential pressure to m H2OOther Data0.048 [m]1/2 of the ID of open HQ boreholeradius of wellbore (Rw)0.048 [m]collected in fieldskin0 [-]assumedeffective wellbore radius (Rew)0.048 [m]R_wexp(Skin)	Excess Pressure Head (based on surface readings) ³			
most reliable static water level measurement manual transducer/manual transducer (water level 1) or manual (water level 2) analog pressure gauge height above ground 1.83 [vertical mags] collected in field analog pressure gauge reading 30.0 [psi] collected in field Excess Pressure Head (most reliable static WL) 35.2 [m] H, calculated: static WL plus injection pressure, relative to ground surface Excess Pressure Head Check (based on pressure transducer readings only) statilized pressure ⁶ [psi] stabilized pressure ⁷ #VALUE! [psi] difference between injection pressure and static WL pressure Excess Pressure Head (transducer readings) #VALUE! [m] H, calculated - convert differential pressure to m H2O Other Data - [psi] collected in field radius of wellbore (R _w) 0.048 [m] 1/2 of the ID of open HQ borehole length of test interval 22.5 [m] collected in field skin 0 [-] assumed effective wellbore radius (R _{ew}) 0.048 [m] R _w exp(Skin)	friction losses (hose to swivel) ⁴	0.0	04 [m]	computed from http://www.tasonline.co.za/toolbox/pipe/velfirc.htm
most reliable static water level measurement manual transducer/manual transducer (water level 1) or manual (water level 2) analog pressure gauge height above ground 1.83 [vertical mags] collected in field analog pressure gauge reading 30.0 [psi] collected in field Exess Pressure Head (most reliable static WL) 35.2 [m] H, calculated: static WL plus injection pressure, relative to ground surface Excess Pressure Head Check (based on pressure transducer readings only) stabilized pressure ⁶ [psi] pressure transducer reading, psi absolute differential pressure ⁷ #VALUE! [psi] difference between injection pressure and static WL pressure Excess Pressure Head (transducer readings) #VALUE! [m] H, calculated - convert differential pressure to m H2O Other Data - [psi] collected in field radius of wellbore (R _w) 0.048 [m] 1/2 of the ID of open HQ borehole length of test interval 0 -1 assumed effective wellbore radius (R _{ew}) 0.048 [m] R _w exp(Skin)	friction losses (packer mandrel) ⁵	0.0	01 [m]	IPI hydraulic packer manual or from Darcy-Weisbach equation (pneumatic packer)
analog pressure gauge height above ground1.83 [vertical mags]collected in fieldanalog pressure gauge reading30.0 [psi]collected in fieldExcess Pressure Head (most reliable static WL)35.2 [m]H, calculated: static WL plus injection pressure, relative to ground surfaceExcess Pressure Head Check (based on pressure transducer readings only)static WLyersure transducer reading, psi absolutestabilized pressure ⁶ -[psi]pressure transducer reading, psi absolutedifferential pressure ⁷ #VALUE![psi]difference between injection pressure and static WL pressureExcess Pressure Head (transducer readings)#VALUE![m]H, calculated - convert differential pressure to m H2OOther Dataadius of wellbore (R _w)0.048 [m]1/2 of the ID of open HQ boreholelength of test interval22.5 [m]collected in fieldskin0 [-]assumedeffective wellbore radius (R _{ew})0.048 [m]R _w exp(Skin)	most reliable static water level measurement	manu	al transducer/manual	
Exess Pressure Head (most reliable static WL) 35.2 [m] H, calculated: static WL plus injection pressure, relative to ground surface Excess Pressure Head (most reliable static WL) 35.2 [m] H, calculated: static WL plus injection pressure, relative to ground surface Excess Pressure ⁶ - [psi] pressure transducer reading, psi absolute differential pressure ⁷ #VALUE! [psi] difference between injection pressure and static WL pressure Excess Pressure Head (transducer readings) #VALUE! [m] H, calculated - convert differential pressure to m H2O Other Data 0.048 [m] 1/2 of the ID of open HQ borehole radius of wellbore (R _w) 0.048 [m] collected in field skin 0 [-] assumed effective wellbore radius (R _{ew}) 0.048 [m] R _w exp(Skin)	analog pressure gauge height above ground	1.8	83 [vertical mags]	collected in field
Excess Pressure Head Check (based on pressure transducer readings only) stabilized pressure ⁶ - [psi] pressure transducer reading, psi absolute differential pressure ⁷ #VALUE! [psi] difference between injection pressure and static WL pressure Excess Pressure Head (transducer readings) #VALUE! [m] H, calculated - convert differential pressure to m H2O Other Data radius of wellbore (R _w) 0.048 [m] 1/2 of the ID of open HQ borehole length of test interval 22.5 [m] collected in field skin 0 [-] assumed effective wellbore radius (R _{ew}) 0.048 [m] R _w exp(Skin)	analog pressure gauge reading	30	.0 [psi]	collected in field
stabilized pressure ⁶ - [psi] pressure transducer reading, psi absolute differential pressure ⁷ #VALUE! [psi] difference between injection pressure and static WL pressure Excess Pressure Head (transducer readings) #VALUE! [m] H, calculated - convert differential pressure to m H2O Other Data radius of wellbore (R _w) 0.048 [m] 1/2 of the ID of open HQ borehole length of test interval 22.5 [m] collected in field skin 0 [-] assumed effective wellbore radius (R _{ew}) 0.048 [m] R _w exp(Skin)	Exess Pressure Head (most reliable static WL)	35	i.2 [m]	H, calculated: static WL plus injection pressure, relative to ground surface
differential pressure? #VALUE! [psi] difference between injection pressure and static WL pressure Excess Pressure Head (transducer readings) #VALUE! [m] H, calculated - convert differential pressure to m H2O Other Data radius of wellbore (R _w) 0.048 [m] 1/2 of the ID of open HQ borehole length of test interval 22.5 [m] collected in field skin 0 [-] assumed effective wellbore radius (R _{ew}) 0.048 [m] R_wexp(Skin)	Excess Pressure Head Check (based on pressure transducer re	adings only)		
differential pressure ⁷ #VALUE! [psi] difference between injection pressure and static WL pressure Excess Pressure Head (transducer readings) #VALUE! [m] H, calculated - convert differential pressure to m H2O Other Data radius of wellbore (R _w) 0.048 [m] 1/2 of the ID of open HQ borehole length of test interval 22.5 [m] collected in field skin 0 [-] assumed effective wellbore radius (R _{ew}) 0.048 [m] R _w exp(Skin)	stabilized pressure ⁶	-	[psi]	pressure transducer reading, psi absolute
Excess Pressure Head (transducer readings) #VALUE! [m] H, calculated - convert differential pressure to m H2O Other Data	differential pressure ⁷	#VALUE!	[psi]	difference between injection pressure and static WL pressure
Other Data 0.048 [m] 1/2 of the ID of open HQ borehole radius of wellbore (R _w) 0.048 [m] collected in field length of test interval 22.5 [m] collected in field skin 0 [-] assumed effective wellbore radius (R _{ew}) 0.048 [m] R _w exp(Skin)			-	
radius of wellbore (R_w)0.048 [m]1/2 of the ID of open HQ boreholelength of test interval22.5 [m]collected in fieldskin0 [-]assumedeffective wellbore radius (R _{ew})0.048 [m]R_wexp(Skin)				,
length of test interval 22.5 [m] collected in field skin 0 [-] assumed effective wellbore radius (R _{ew}) 0.048 [m] R _w exp(Skin)		0.04	48 [m]	1/2 of the ID of open HO borehole
skin 0 [-] assumed effective wellbore radius (R _{ew}) 0.048 [m] R _w exp(Skin)				
effective wellbore radius (R _{ew}) 0.048 [m] R _w exp(Skin)	•			
$\ln(R_{rw})$ 6.2 [-] calculated				
Is packer test interval in the unsaturated zone FALSE [TRUE/FALSE] tests in the unsaturated zone are not considered reliable				
Flow velocity in open borehole 0.0095 [m/s] flow rate divided by cross-sectional area				
Reynold's number 569.9 [-] flow velocity x borehole diameter / kinematic viscosity of H2O (at approx. 4°C)				
Is flow laminar (Reynold's No. <2040) or turbulent (>2040) Laminar [TRUE/FALSE] results based on turbulent flow should be considered very approximate	•			
Calculated Result		Latini	[1105/11000]	
				Thiem equation; uses excess pressure head based on most reliable of surface (manual) or
Transmissivity T 1.9E-06 [m ² /s] transducer readings	Transmissivity T	1.9E-($[m^2/s]$	
Hydraulic Conductivity K 8.5E-08 [m/s] equivalent to T divided by test interval				

mbtp = metres below top of pipe, mags = metres above ground surface, mbgs = metres below ground surface

1. Thiem, G., 1906. Hydrologische Methoden; Gebhardt, Leipzig.

2. For hydraulic packer, transducer positioned 43" below bottom of packer in gauge holder; for pneumatic packer it is located just below stuffing box.

3. Data from analog pressure gauge read at surface used to guide test during injection and to confirm pressure transducer data

4. Computed from http://www.tasonline.co.za/toolbox/pipe/velfirc.htm assuming rubber lined pipe, 5 m length, ID 19 mm

5. IPI hydraulic packer manual or Darcy-Weisbach equation as provided in http://www.pipeflow.com/pipe-pressure-drop-calculations/pipe-friction-loss for the pneumatic packer.

6. Estimated stabilized pressure at end of injection period

7. Differential pressure eliminates absolute gauge effect, does not need to be corrected for atmospheric

Borehole: MW1	14-02B (BH-09, CFD-0418)	Test Number:	3	Tester:	MS/CB
Date: 22-Au	ug-14	Start Time:	2:20 AM	Stop Time:	2:45 AM
Test Number: 3		Geology:	shear zone/biotite-	Height of P gauge (mags):	1.83
Depth to bit (m AH): 128			feldspar schist	Pipe Stickup (mags):	2.93
Interval (Top) (m AH): 129.5	50	Length of Packer (m):	1.50	Target Interval description:	broken rock
Packer type (pneumatic/hydraulic): pneum	matic	Interval Bottom (m AH):	137		132 - 134 m
Rod Type: HQ		Hole dip:	90	Hydraulic packer sink time:	n/a
Rod ID (mm): 77.8		Type of water used:	Fresh		
Hole Diamter (mm): 96		Additives used (type):	G-Stop in unsat. Zone		
transducer SN: n/a		packer inflation pressure (psi):	-	open hole static WL (mbgs):	near top of
seal test successful: yes		test type:	constant rate injection		rods

Time Elapsed (min)	Flowmeter Reading (L)	Flow Rate (L/min)	Pressure (psi)	Comments
0	3089.0			
1	3090.0	1.00	40	
2	-	-	40	
3	3092.0	1.00	40	
4	3093.0	1.00	40	
5	3094.0	1.00	40	
6	3095.0	1.00	40	
7	3096.0	1.00	40	
8	3097.0	1.00	40	
9	3098.0	1.00	40	
10	3099.0	1.00	40	
11	3100.0	1.00	40	
12	3101.0	1.00	40	
13	3102.0	1.00	40	
14	3102.5	0.50	40	
15	3103.0	0.50	40	
16	3104.0	1.00	40	
17	3104.5	0.50	40	
18	3105.0	0.50	40	
19	3106.0	1.00	40	
20	3106.5	0.50	40	
	AVERAGE:	0.69	40	

highlighted cells indicate period of test used for stabilized P and Q readings.

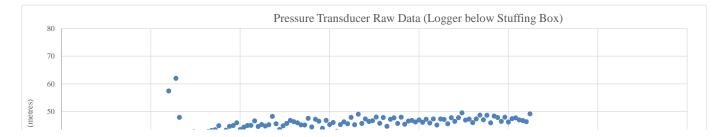
	Pressure Transdu	acer Raw Data (Logger Be	low Packer)	
Pressure (psi)		l data only nsducer data N/A)		

Borehole: MV	W14-02B (BH-09	9, CFD-0418)	
Borehole Angle: 90		[degrees]	
Test Number: 3			
Start of Test Interval: 12	9.50	[mbgs]	
End of Test Interval: 13	7	[mbgs]	
Test Type: con	nstant rate injecti	on	
Packer System: pro	eumatic		
Date: 22-	-Aug-14		
Steady State Equation: T =	$Q * \ln (R_i/R_{ew})$		(Thiem, 1906) ¹
Straty State Equation. 1 =	2*(pi)*H		(Tineni, 1900)
Flow Rate			
injection flow rate (Q)	0.	69 [L/min]	collected in field
injection flow rate (Q)	1.1E-	$05 \ [m^3/s]$	calculated
Water Level			
[pressure transducer data used to estimate static WL]			
pressure transducer depth ²	-	[mbgs]	in pressure transducer holder below single packer
pipe stickup	2.	93 [mags]	collected in field
pressure head	-	[psi]	pressure transducer reading, psi absolute
atmospheric pressure	-	[psi]	assumed
pressure head	#VALUE!	[vertical m H2O]	corrected for atmospheric pressure
Water Level 1 (pressure transducer)	#VALUE!	[vertical mbgs]	calculated
[if pressure transducer data not available]			
pipe stickup	1.	27 [mags]	collected in field
depth to water	13.	60 [mbtp]	Static WL in MW14-02B on 26-Aug-2014 at 20:00
Water Level 2 (manual)	12.	33 [vertical mbgs]	calculated
Excess Pressure Head (based on surface readings) ³			
friction losses (hose to swivel) ⁴	0.	00 [m]	computed from http://www.tasonline.co.za/toolbox/pipe/velfirc.htm
friction losses (packer mandrel) ⁵	0.	00 [m]	IPI hydraulic packer manual or from Darcy-Weisbach equation (pneumatic packer)
most reliable static water level measurement	manu	al transducer/manual	transducer (water level 1) or manual (water level 2)
analog pressure gauge height above ground	1.	83 [vertical mags]	collected in field
analog pressure gauge reading	40).0 [psi]	collected in field
Exess Pressure Head (most reliable static WL)	42	2.3 [m]	H, calculated: static WL plus injection pressure, relative to ground surface
Excess Pressure Head Check (based on pressure transducer reading	<u>zs only)</u>		
stabilized pressure ⁶	-	[psi]	pressure transducer reading, psi absolute
differential pressure ⁷	#VALUE!	[psi]	difference between injection pressure and static WL pressure
Excess Pressure Head (transducer readings)	#VALUE!	[m]	H, calculated - convert differential pressure to m H2O
Other Data			
radius of wellbore (R _w)	0.0	48 [m]	1/2 of the ID of open HQ borehole
length of test interval	7	7.5 [m]	collected in field
skin		0 [-]	assumed
effective wellbore radius (R _{ew})	0.0	48 [m]	R _w exp(Skin)
radius of influence (R _i)	7	7.5 [m]	assumed (equivalent to length of test interval)
$\ln(R_i/R_{ew})$		5.1 [-]	calculated
Is packer test interval in the unsaturated zone	FALS	SE [TRUE/FALSE]	tests in the unsaturated zone are not considered reliable
Flow velocity in open borehole		16 [m/s]	flow rate divided by cross-sectional area
Reynold's number		98 [-]	flow velocity x borehole diameter / kinematic viscosity of H2O (at approx. 4°C)
Is flow laminar (Reynold's No. <2040) or turbulent (>2040)	Lamir	ar [TRUE/FALSE]	results based on turbulent flow should be considered very approximate
Calculated Result			
		212	Thiem equation; uses excess pressure head based on most reliable of surface (manual) or
Transmissivity T		07 [m ² /s]	transducer readings
Hydraulic Conductivity K mbtr = matras below top of pipe, mags = matras above ground surface.		08 [m/s]	equivalent to T divided by test interval

1. Thiem, G., 1906. Hydrologische Methoden; Gebhardt, Leipzig.

2. For hydraulic packer, transducer positioned 43" below bottom of packer in gauge holder; for pneumatic packer it is located just below stuffing box.

3. Data from analog pressure gauge read at surface used to guide test during injection and to confirm pressure transducer data


4. Computed from http://www.tasonline.co.za/toolbox/pipe/velfirc.htm assuming rubber lined pipe, 5 m length, ID 19 mm

5. IPI hydraulic packer manual or Darcy-Weisbach equation as provided in http://www.pipeflow.com/pipe-pressure-drop-calculations/pipe-friction-loss for the pneumatic packer.

6. Estimated stabilized pressure at end of injection period

Borehole: MW14-02B (BH-09, CFD-0418)	Test Number: 4	Tester: RC
Date: 22-Aug-14	Start Time: 10:20 AM	Stop Time: 10:52 AM
Test Number: 4	Geology: biotite-feldspar	Height of P gauge (mags): 1.83
Depth to bit (m AH): 137	schist/crackle breccia	Pipe Stickup (mags): 3.12
Interval (Top) (m AH): 138.50	Length of Packer (m): 1.50	Target Interval description: Low RQD,
Packer type (pneumatic/hydraulic): pneumatic	Interval Bottom (m AH): 152	altered
Rod Type: HQ	Hole dip: 90	Hydraulic packer sink time: n/a
Rod ID (mm): 77.8	Type of water used: Fresh	
Hole Diamter (mm): 96	Additives used (type): G-Stop in unsat. Zone	
transducer SN: 2031684	packer inflation pressure (psi): 525	open hole static WL (mbgs): 0.38
seal test successful: yes	test type: constant rate injection	

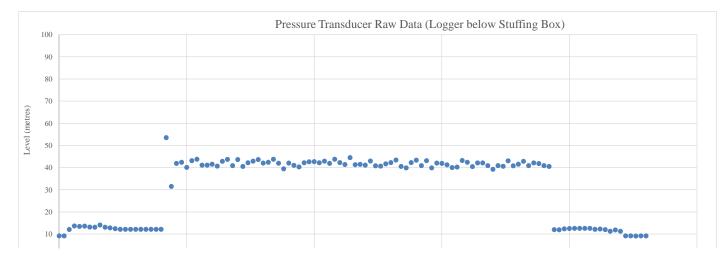
Time Elapsed (min)	Flowmeter Reading (L)	Flow Rate (L/min)	Pressure (psi)	Comments
0	3190.00		42	
1	3196.50	6.50	43	Small leak at top of casing. Constant
2	3203.00	6.50	45	pressure for intervals.
3	3209.50	6.50	45	
4	3216.00	6.50	45	
5	3222.50	6.50	45	
6	3229.00	6.50	46	
7	3235.25	6.25	45	
8	3241.50	6.25	45	
9	3247.25	5.75	45	
10	3253.00	5.75	45	
11	3259.00	6.00	46	
12	3265.00	6.00	45	
13	3270.50	5.50	46	
14	3276.00	5.50	46	
15	3281.50	5.50	47	
16	3287.00	5.50	47	
17	3292.50	5.50	46	
18	3298.00	5.50	47	
19	3303.50	5.50	47	
20	3309.00	5.50	47	
21	3314.50	5.50	46	
22	3320.00	5.50	47	
23	3325.25	5.25	46	
24	3330.50	5.25	47	
25	3335.75	5.25	47	
26	3341.00	5.25	47	
27	3346.50	5.50	47	
28	3352.00	5.50	47	
29	3357.25	5.25	47	
30	3362.50	5.25	47	
	AVERAGE:	5.31	46.9	

Borehole: MV	V14-02B (BH-09	, CFD-0418)	
Borehole Angle: 90		[degrees]	
Test Number: 4			
Start of Test Interval: 138	3.50	[mbgs]	
End of Test Interval: 152	!	[mbgs]	
Test Type: con	stant rate injection		
Packer System: pne			
Date: 22-	Aug-14		
Star la State E and then T	$Q * \ln (R_i/R_{ew})$		(TTI: 100 c)
Steady State Equation: T =	2*(pi)*H	_	(Thiem, 1906) ¹
Flow Rate			
injection flow rate (Q)	5.3	31 [L/min]	collected in field
injection flow rate (Q)	8.9E-0	$5 [m^3/s]$	calculated
Water Level			
[pressure transducer data used to estimate static WL]			
pressure transducer depth ²	-	[mbgs]	in pressure transducer holder below single packer
pipe stickup	3.1	2 [mags]	collected in field
pressure head	-	[psi]	pressure transducer reading, psi absolute
atmospheric pressure	-	[psi]	assumed
pressure head	#VALUE!	[vertical m H2O]	corrected for atmospheric pressure
Water Level 1 (pressure transducer)	#VALUE!	[vertical mbgs]	calculated
[if pressure transducer data not available]			
pipe stickup	1.2	27 [mags]	collected in field
depth to water	13.6	60 [mbtp]	Static WL in MW14-02B on 26-Aug-2014 at 20:00
Water Level 2 (manual)	12.3	33 [vertical mbgs]	calculated
Excess Pressure Head (based on surface readings) ³			
friction losses (hose to swivel)4	0.0	<mark>)6</mark> [m]	computed from http://www.tasonline.co.za/toolbox/pipe/velfirc.htm
friction losses (packer mandrel) ⁵	0.0	2 [m]	IPI hydraulic packer manual or from Darcy-Weisbach equation (pneumatic packer)
most reliable static water level measurement		al transducer/manual	transducer (water level 1) or manual (water level 2)
analog pressure gauge height above ground	1.8	33 [vertical mags]	collected in field
analog pressure gauge reading	46	.9 [psi]	collected in field
Exess Pressure Head (most reliable static WL)	47	.0 [m]	H, calculated: static WL plus injection pressure, relative to ground surface
Excess Pressure Head Check (based on pressure transducer reading	<u>s only)</u>		
stabilized pressure ⁶	-	[psi]	pressure transducer reading, psi absolute
differential pressure ⁷	#VALUE!	[psi]	difference between injection pressure and static WL pressure
Excess Pressure Head (transducer readings)	#VALUE!	[p31]	H, calculated - convert differential pressure to m H2O
Other Data		L]	
radius of wellbore (R_w)	0.04	8 [m]	1/2 of the ID of open HQ borehole
length of test interval		.5 [m]	collected in field
skin	15	0 [-]	assumed
effective wellbore radius (R _{ew})	0.04	8 [m]	R _w exp(Skin)
radius of influence (R_i)		.5 [m]	assumed (equivalent to length of test interval)
$\ln(R_i/R_{ew})$			calculated
		.6 [-] E [TRUE/FALSE]	tests in the unsaturated zone are not considered reliable
Is packer test interval in the unsaturated zone Flow velocity in open borehole			flow rate divided by cross-sectional area
Reynold's number		22 [m/s] .0 [-]	
Is flow laminar (Reynold's No. <2040) or turbulent (>2040)		ar [TRUE/FALSE]	flow velocity x borehole diameter / kinematic viscosity of H2O (at approx. 4°C)
Calculated Result	Lamin	a [IKUE/FALSE]	results based on turbulent flow should be considered very approximate
Curculated Result			Thiem equation; uses excess pressure head based on most reliable of surface (manual) or
Transmissivity T	1 7F-0	$[m^2/s]$	transducer readings
Hydraulic Conductivity K		07 [m/s]	equivalent to T divided by test interval
mbtn - matras balow top of pipa, mags - matras above ground surface		low ground surface	equivalence a made by test interval

1. Thiem, G., 1906. Hydrologische Methoden; Gebhardt, Leipzig.

2. For hydraulic packer, transducer positioned 43" below bottom of packer in gauge holder; for pneumatic packer it is located just below stuffing box.

3. Data from analog pressure gauge read at surface used to guide test during injection and to confirm pressure transducer data


4. Computed from http://www.tasonline.co.za/toolbox/pipe/velfirc.htm assuming rubber lined pipe, 5 m length, ID 19 mm

5. IPI hydraulic packer manual or Darcy-Weisbach equation as provided in http://www.pipeflow.com/pipe-pressure-drop-calculations/pipe-friction-loss for the pneumatic packer.

6. Estimated stabilized pressure at end of injection period

Borehole: MW14-02B (BH-09, CFD-0418)	Test Number: 5	Tester: RC
Date: 22-Aug-14	Start Time: 5:52 PM	Stop Time: 6:14 PM
Test Number: 5	Geology: crackle breccia/hydrothermally	Height of P gauge (mags): 1.83
Depth to bit (m AH): 155	altered/crackle breccia	Pipe Stickup (mags): 2.74
Interval (Top) (m AH): 156.50	Length of Packer (m): 1.50	Target Interval description: Competent
Packer type (pneumatic/hydraulic): pneumatic	Interval Bottom (m AH): 173	Gneiss
Rod Type: HQ	Hole dip: 90	Hydraulic packer sink time: n/a
Rod ID (mm): 77.8	Type of water used: Fresh	
Hole Diamter (mm): 96	Additives used (type): G-Stop in unsat. Zone	
transducer SN: 2031684	packer inflation pressure (psi): 575	open hole static WL (mbgs): 1.36
seal test successful: yes	test type: constant rate injection	

Time Elapsed (min)	Flowmeter Reading (L)	Flow Rate (L/min)	Pressure (psi)	Comments
0	3427.00		40	
1	3427.50	0.50	42	Constant pressure for intervals.
2	3428.00	0.50	41	-
3	3428.75	0.75	42	
4	3429.50	0.75	42	
5	3430.00	0.50	41	
6	3430.50	0.50	42	
7	3431.25	0.75	41	
8	3432.00	0.75	41	
9	3432.50	0.50	42	
10	3433.00	0.50	40	
11	3433.75	0.75	40	
12	3434.50	0.75	42	
13	3435.00	0.50	40	
14	3435.50	0.50	41	
15	3436.25	0.75	40	
16	3437.00	0.75	41	
17	3437.50	0.50	40	
18	3438.00	0.50	40	
19	3438.75	0.75	40	
20	3439.50	0.75	40	
	AVERAGE:	0.63	40.0	

Borebole: N	1W14-02B (BH-09,	CFD-0418)	
Borehole Angle: 9		[degrees]	
Test Number: 5		[deBrees]	
Start of Test Interval: 1		[mbgs]	
End of Test Interval: 1		[mbgs]	
	onstant rate injectio		
Packer System: p			
	2-Aug-14		
Steady State Equation: T =	2*(pi)*H	_	(Thiem, 1906) ¹
Flow Rate			
injection flow rate (Q)	0.6	3 [L/min]	collected in field
injection flow rate (Q)	1.0E-0	$[m^3/s]$	calculated
Water Level			
[pressure transducer data used to estimate static WL]			
pressure transducer depth ²	-	[mbgs]	in pressure transducer holder below single packer
pipe stickup	2.7	4 [mags]	collected in field
pressure head	-	[psi]	pressure transducer reading, psi absolute
atmospheric pressure	-	[psi]	assumed
pressure head	#VALUE!	[vertical m H2O]	corrected for atmospheric pressure
Water Level 1 (pressure transducer)	#VALUE!	[vertical mbgs]	calculated
[if pressure transducer data not available]		-	
pipe stickup	1.2	7 [mags]	collected in field
depth to water	13.6	0 [mbtp]	Static WL in MW14-02B on 26-Aug-2014 at 20:00
Water Level 2 (manual)	12.3	3 [vertical mbgs]	calculated
Excess Pressure Head (based on surface readings) ³			
friction losses (hose to swivel) ⁴	0.0	0 [m]	computed from http://www.tasonline.co.za/toolbox/pipe/velfirc.htm
friction losses (packer mandrel) ⁵	0.0	0 [m]	IPI hydraulic packer manual or from Darcy-Weisbach equation (pneumatic packer)
most reliable static water level measurement	manu	al transducer/manual	transducer (water level 1) or manual (water level 2)
analog pressure gauge height above ground	1.8	3 [vertical mags]	collected in field
analog pressure gauge reading	40.	0 [psi]	collected in field
Exess Pressure Head (most reliable static WL)	42.	3 [m]	H, calculated: static WL plus injection pressure, relative to ground surface
Excess Pressure Head Check (based on pressure transducer readi	ngs only)		
stabilized pressure ⁶	-	[psi]	pressure transducer reading, psi absolute
differential pressure ⁷	#VALUE!	[psi]	difference between injection pressure and static WL pressure
Excess Pressure Head (transducer readings)	#VALUE!	[m]	H, calculated - convert differential pressure to m H2O
Other Data			. <u>.</u>
radius of wellbore (R _w)	0.04	8 [m]	1/2 of the ID of open HQ borehole
length of test interval		5 [m]	collected in field
skin		0 [-]	assumed
effective wellbore radius (R _{ew})		8 [m]	$R_w \exp(Skin)$
radius of influence (R_i)		5 [m]	assumed (equivalent to length of test interval)
$\ln(R_i/R_{rw})$		8 [-]	calculated
Is packer test interval in the unsaturated zone		E [TRUE/FALSE]	tests in the unsaturated zone are not considered reliable
Flow velocity in open borehole		4 [m/s]	flow rate divided by cross-sectional area
Reynold's number		3 [-]	flow velocity x borehole diameter / kinematic viscosity of H2O (at approx. 4°C)
Is flow laminar (Reynold's No. <2040) or turbulent (>2040)		ar [TRUE/FALSE]	results based on turbulent flow should be considered very approximate
Calculated Result	Lamma	. [results subset on tensulting now should be considered very approximate
			Thiem equation; uses excess pressure head based on most reliable of surface (manual) or
Transmissivity T	2.3E-0	$[m^2/s]$	transducer readings
Hydraulic Conductivity K		8 [m/s]	equivalent to T divided by test interval
mbth - matrix halow ton of ning, mags - matrix shove ground surface		low ground surface	To the second seco

1. Thiem, G., 1906. Hydrologische Methoden; Gebhardt, Leipzig.

2. For hydraulic packer, transducer positioned 43" below bottom of packer in gauge holder; for pneumatic packer it is located just below stuffing box.

3. Data from analog pressure gauge read at surface used to guide test during injection and to confirm pressure transducer data

4. Computed from http://www.tasonline.co.za/toolbox/pipe/velfirc.htm assuming rubber lined pipe, 5 m length, ID 19 mm

5. IPI hydraulic packer manual or Darcy-Weisbach equation as provided in http://www.pipeflow.com/pipe-pressure-drop-calculations/pipe-friction-loss for the pneumatic packer.

6. Estimated stabilized pressure at end of injection period

Borehole: MW14-02B (BH-09, Cl	FD-0418) Test Number: 6	Tester: MS/CB
Date: 23-Aug-14	Start Time: 4:40 AM	Stop Time: 5:03 AM
Test Number: 6	Geology: biotite-feldspar schist	Height of P gauge (mags): 1.83
Depth to bit (m AH): 179	Length of Packer (m): 1.50	Pipe Stickup (mags): 2.93
Interval (Top) (m AH): 180.50	Interval Bottom (m AH): 200	Target Interval description:
Packer type (pneumatic/hydraulic): pneumatic	Hole dip: 90	
Rod Type: HQ	Type of water used: Fresh	Hydraulic packer sink time: n/a
Rod ID (mm): 77.8	Additives used (type): G-Stop in unsat. Zone	
Hole Diamter (mm): 96		
transducer SN: n/a	packer inflation pressure (psi): -	open hole static WL (mbgs): n/a
seal test successful: yes	test type: constant rate injection	

Time Elapsed (min)	Flowmeter Reading (L)	Flow Rate (L/min)	Pressure (psi)	Comments
0	3485.0		35	
1	3486.0	1.00	35	
2	3487.0	1.00	35	
3	3488.0	1.00	35	
4	3489.0	1.00	35	
5	3490.0	1.00	35	
6	3491.0	1.00	35	
7	3492.0	1.00	35	
8	3492.5	0.50	35	
9	3493.0	0.50	35	
10	3493.5	0.50	35	
11	3494.0	0.50	35	
12	3494.5	0.50	35	
13	3495.0	0.50	35	
14	3495.5	0.50	35	
15	3496.0	0.50	35	
16	3496.5	0.50	35	
17	3497.0	0.50	35	
18	3497.5	0.50	35	
19	3498.0	0.50	35	
20	3498.5	0.50	35	
	AVERAGE:	0.50	35	

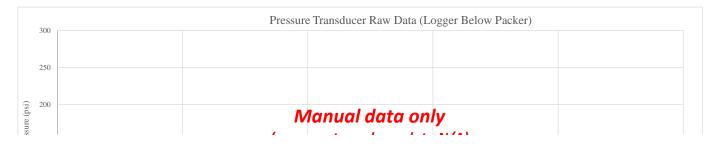
		Pressure Transducer I	Raw Data (Logger Be	low Packer)	
Pressure (psi)		Manual d (pressure transdu			

Borehole: M	W14-02B (BH-09	9, CFD-0418)	
Borehole Angle: 90)	[degrees]	
Test Number: 6			
Start of Test Interval: 18	30.50	[mbgs]	
End of Test Interval: 20	00	[mbgs]	
Test Type: co	onstant rate injecti	ion	
Packer System: pr	neumatic		
Date: 23	3-Aug-14		
Steady State Equation: T =	$Q * \ln (R_i/R_{ew})$		(Thiem, 1906) ¹
Straty Statt Equation: 1 ==	2*(pi)*H		(111611, 1900)
Flow Rate			
injection flow rate (Q)	0.	50 [L/min]	collected in field
injection flow rate (Q)	8.3E-	$(100 \text{ [m}^3/\text{s}))$	calculated
Water Level			
[pressure transducer data used to estimate static WL]			
pressure transducer depth ²	-	[mbgs]	in pressure transducer holder below single packer
pipe stickup	2.	93 [mags]	collected in field
pressure head	-	[psi]	pressure transducer reading, psi absolute
atmospheric pressure	-	[psi]	assumed
pressure head	#VALUE!	[vertical m H2O]	corrected for atmospheric pressure
Water Level 1 (pressure transducer)	#VALUE!	[vertical mbgs]	calculated
[if pressure transducer data not available]			
pipe stickup	1.	.00 [mags]	collected in field
depth to water	4.	.89 [mbtp]	Static WL in MW14-02A on 1-Sept-14 at 15:00
Water Level 2 (manual)	3.	90 [vertical mbgs]	calculated
Excess Pressure Head (based on surface readings) ³			
friction losses (hose to swivel) ⁴	0.	.00 [m]	computed from http://www.tasonline.co.za/toolbox/pipe/velfirc.htm
friction losses (packer mandrel) ⁵	0.	00 [m]	IPI hydraulic packer manual or from Darcy-Weisbach equation (pneumatic packer)
most reliable static water level measurement	man	ual transducer/manual	transducer (water level 1) or manual (water level 2)
analog pressure gauge height above ground	1.	83 [vertical mags]	collected in field
analog pressure gauge reading	3:	5.0 [psi]	collected in field
Exess Pressure Head (most reliable static WL)	3	0.3 [m]	H, calculated: static WL plus injection pressure, relative to ground surface
Excess Pressure Head Check (based on pressure transducer reading	igs only)		
stabilized pressure ⁶	-	[psi]	pressure transducer reading, psi absolute
differential pressure ⁷	#VALUE!	[psi]	difference between injection pressure and static WL pressure
Excess Pressure Head (transducer readings)	#VALUE!	[m]	H, calculated - convert differential pressure to m H2O
Other Data			
radius of wellbore (R _w)	0.0	48 [m]	1/2 of the ID of open HQ borehole
length of test interval	1	9.5 [m]	collected in field
skin		0 [-]	assumed
effective wellbore radius (Rew)	0.0	48 [m]	R _w exp(Skin)
radius of influence (R _i)	19	9.5 [m]	assumed (equivalent to length of test interval)
$\ln(R_i/R_{ew})$		5.0 [-]	calculated
Is packer test interval in the unsaturated zone	FAL	SE [TRUE/FALSE]	tests in the unsaturated zone are not considered reliable
Flow velocity in open borehole		12 [m/s]	flow rate divided by cross-sectional area
Reynold's number		9.1 [-]	flow velocity x borehole diameter / kinematic viscosity of H2O (at approx. 4°C)
Is flow laminar (Reynold's No. <2040) or turbulent (>2040)	Lamii	nar [TRUE/FALSE]	results based on turbulent flow should be considered very approximate
Calculated Result			
		2	Thiem equation; uses excess pressure head based on most reliable of surface (manual) or
Transmissivity T		$07 \ [m^2/s]$	transducer readings
Hydraulic Conductivity K mbta = matras below top of ning, mags = matras above ground surface		08 [m/s]	equivalent to T divided by test interval

1. Thiem, G., 1906. Hydrologische Methoden; Gebhardt, Leipzig.

2. For hydraulic packer, transducer positioned 43" below bottom of packer in gauge holder; for pneumatic packer it is located just below stuffing box.

3. Data from analog pressure gauge read at surface used to guide test during injection and to confirm pressure transducer data


4. Computed from http://www.tasonline.co.za/toolbox/pipe/velfirc.htm assuming rubber lined pipe, 5 m length, ID 19 mm

5. IPI hydraulic packer manual or Darcy-Weisbach equation as provided in http://www.pipeflow.com/pipe-pressure-drop-calculations/pipe-friction-loss for the pneumatic packer.

6. Estimated stabilized pressure at end of injection period

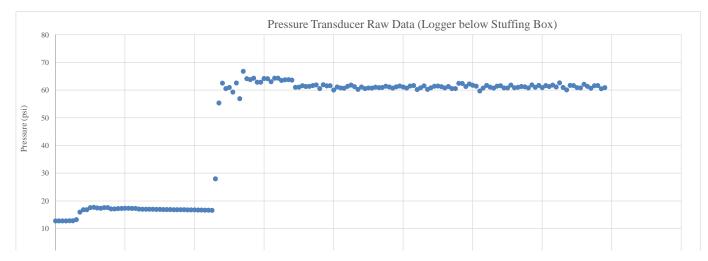
Borehole:	MW14-03A (BH-03, CFD-0432)	Test Number:	1	Tester: CB
Date:	31-Aug-14	Start Time:	5:25 PM	Stop Time: 6:15 PM
Test Number:	1	Geology:	crackle breccia/dacite/biotite-	Height of P gauge (mags): 1.52
Depth to bit (m AH):	80		feldspar schist	Pipe Stickup (mags): 2.41
Interval (Top) (m AH):	81.50	Length of Packer (m):	1.50	Target Interval description:
Packer type (pneumatic/hydraulic):	pneumatic	Interval Bottom (m AH):	110	Hydraulic packer sink time: n/a
Rod Type:	HQ	Hole dip:	90	
Rod ID (mm):	77.8	Type of water used:	Fresh	
Hole Diamter (mm):	96	Additives used (type):		
transducer SN:	n/a	packer inflation pressure (psi):		open hole static WL (mbgs): n/a
seal test successful:	yes	test type:	constant rate injection	
Time Elapsed (min)		Flow Dete (Linia)	D (!)	Commente
	Flowmeter Reading (L)	Flow Rate (L/min)	Pressure (psi)	Comments
0	3520	11.0		Test started at approx. 17:25
1	3531	11.0		
2	3541	10.0		
3	3558	17.0		
4	3573	15.0		
5	3582	9.0		
6	3595	13.0		
7	3605	10.0		
8		-		Test stopped at approx. 17:33
-	2500	-	20	
30	3700	-	30	Test started at approx. 17:45
31	3709	9.0	30	D (1 /) 05 25 1
32	3719	10.0	30	Pressure fluctuating 25-35 psi
33	3727	8.0	30	
34	3738	11.0	30	
35	3747	9.0	30	
36 37	est not 3747 3767 3767	nsaturated te	est interval	
38	3776	90	30	
39	(based on es	timated stat		
40	3795	9.0	30	
41	3805	10.0	30	
42	3815	10.0	30	
43	3815	9.0	30	
43	3834	10.0	30	
45	3844	10.0	30	
45	3854	10.0	30	
40	3863	9.0	30	
47 48	3803	9.0	30	
49	3883	10.0	30	
50	3893	10.0	30	

highlighted cells indicate period of test used for stabilized P and Q readings.

Borehole:	MW14-03A (BH-03	3, CFD-0432)	
Borehole Angle:	90	[degrees]	
Test Number:	1		
Start of Test Interval:	81.50	[mbgs]	
End of Test Interval:	110	[mbgs]	
Test Type:	constant rate injecti		
Packer System:	pneumatic		
Date:	31-Aug-14		
Standar State Earnetians T	$Q * \ln (R_i/R_{ew})$		
Steady State Equation: T =	2*(pi)*H		(Thiem, 1906) ¹
Flow Rate			
injection flow rate (Q)	9.	75 [L/min]	collected in field
injection flow rate (Q)	1.6E-	$04 \ [m^3/s]$	calculated
Water Level			
[pressure transducer data used to estimate static WL]			
pressure transducer depth ²	-	[mbgs]	in pressure transducer holder below single packer
pipe stickup	2.	41 [mags]	collected in field
pressure head	-	[psi]	pressure transducer reading, psi absolute
atmospheric pressure	-	[psi]	assumed
pressure head	#VALUE!	[vertical m H2O]	corrected for atmospheric pressure
Water Level 1 (pressure transducer)	#VALUE!	[vertical mbgs]	calculated
[if pressure transducer data not available]			
pipe stickup	0.	97 [mags]	collected in field
depth to water	133.	.64 [mbtp]	Static WL in MW14-03B on 13-Oct-2014 at 15:41
Water Level 2 (manual)	132.	67 [vertical mbgs]	calculated
Excess Pressure Head (based on surface readings) ³		-	
friction losses (hose to swivel) ⁴	0.	.18 [m]	computed from http://www.tasonline.co.za/toolbox/pipe/velfirc.htm
friction losses (packer mandrel) ⁵	0.	.06 [m]	IPI hydraulic packer manual or from Darcy-Weisbach equation (pneumatic packer)
most reliable static water level measurement	man	ual transducer/manual	transducer (water level 1) or manual (water level 2)
analog pressure gauge height above ground	1.	52 [vertical mags]	collected in field
analog pressure gauge reading	30	0.0 [psi]	collected in field
Exess Pressure Head (most reliable static WL)	15:	5.0 [m]	H, calculated: static WL plus injection pressure, relative to ground surface
Excess Pressure Head Check (based on pressure transducer read	dings only)		
stabilized pressure ⁶	-	[psi]	pressure transducer reading, psi absolute
differential pressure ⁷	#VALUE!	[psi]	difference between injection pressure and static WL pressure
Excess Pressure Head (transducer readings)	#VALUE!	[psi]	H, calculated - convert differential pressure to m H2O
Other Data		[*]	
radius of wellbore (R _w)	0.0	48 [m]	1/2 of the ID of open HQ borehole
length of test interval		8.5 [m]	collected in field
skin	2	0 [-]	assumed
effective wellbore radius (R _{ew})	0.0	48 [m]	R _w exp(Skin)
radius of influence (R_i)		8.5 [m]	assumed (equivalent to length of test interval)
$\ln(R_i/R_{ew})$		5.4 [-]	calculated
		UE [TRUE/FALSE]	tests in the unsaturated zone are not considered reliable
Is packer test interval in the unsaturated zone? Flow velocity in open borehole			flow rate divided by cross-sectional area
Reynold's number		25 [m/s] 7.0 [-]	flow velocity x borehole diameter / kinematic viscosity of H2O (at approx. 4°C)
Is flow laminar (Reynold's No. <2040) or turbulent (>2040)			results based on turbulent flow should be considered very approximate
Calculated Result	Lami	nar [TRUE/FALSE]	results based on turbulent now should be considered very approximate
Survived Result			Thiem equation; uses excess pressure head based on most reliable of surface (manual) or
Transmissivity T	1.1F.	$06 \ [m^2/s]$	transducer readings
Hydraulic Conductivity K		08 [m/s]	equivalent to T divided by test interval
mbtn - metres below ton of nine mags - metres above ground surfs		elow ground surface	

1. Thiem, G., 1906. Hydrologische Methoden; Gebhardt, Leipzig.

2. For hydraulic packer, transducer positioned 43" below bottom of packer in gauge holder; for pneumatic packer it is located just below stuffing box.


3. Data from analog pressure gauge read at surface used to guide test during injection and to confirm pressure transducer data

4. Computed from http://www.tasonline.co.za/toolbox/pipe/velfirc.htm assuming rubber lined pipe, 5 m length, ID 19 mm

5. IPI hydraulic packer manual or Darcy-Weisbach equation as provided in http://www.pipeflow.com/pipe-pressure-drop-calculations/pipe-friction-loss for the pneumatic packer.

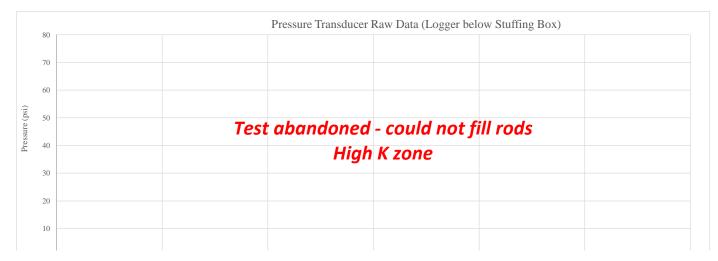
6. Estimated stabilized pressure at end of injection period

	Borehole: MW14-03A (BH-03, CFD-0432)		2	Tester: RC	
	31-Aug-14	Start Time:		Stop Time: 6:00 PM	
Test Number:		Geology:	metacarbonate/biotite-		
Depth to bit (m AH):		<u>.</u>	feldspar schist	Pipe Stickup (mags): 2.44	
Interval (Top) (m AH):		Length of Packer (m):		Target Interval description: Low RQD,	
Packer type (pneumatic/hydraulic):	*	Interval Bottom (m AH):		altered	
Rod Type:		Hole dip:		Hydraulic packer sink time: n/a	
Rod ID (mm):		Type of water used:		_	
Hole Diamter (mm):		Additives used (type):		-	
transducer SN:		packer inflation pressure (psi):		open hole static WL (mbgs): 45.83	
seal test successful:	yes	test type:	constant rate injection	_	
Time Elapsed (min)	Flowmeter Reading (L)	Flow Rate (L/min)	Pressure (psi)	Comments	
0	3909.0		42	Water level taken after a minute of	
1	3910.5	1.50	41	filling the rods. Depth to water table	
2	3912.0	1.50	42	likely greater than 48.27 mbtop.	
3	3913.5	1.50	41		
4	3915.0	1.50	42	Constant pressure for intervals.	
5	3916.5	1.50	42	L	
6	3918.0	1.50	42		
7	3919.5	1.50	42	-	
*Test no	ot valid ^{3919.5} 921.0 922.3	lv unsaturate	ed test in	terval	
10		timat <mark>ed</mark> stati			
11					
12	3926.5	1.50	42		
13	3927.8	1.25	42		
14	3929.0	1.25	43		
15	3930.3	1.25	44		
16	3931.5	1.25	43		
17	3933.0	1.50	43		
18	3934.5	1.50	44		
19	3935.8	1.25	44		
20	3937.0	1.25	44		
	AVERAGE:	1.31	43.6		

Borehole: N	1W14-03A (BH-03	3, CFD-0432)	
Borehole Angle: 9	0	[degrees]	
Test Number: 2			
Start of Test Interval: 1	11.50	[mbgs]	
End of Test Interval: 1	40	[mbgs]	
Test Type: c	onstant rate injecti	on	
Packer System: p			
	1-Aug-14		
Steady State Equation: T = -	$Q * \ln (R_i/R_{ew})$		(Thiem, 1906) ¹
	2*(pi)*H		(, -> ->)
Flow Rate			
injection flow rate (Q)		31 [L/min]	collected in field
injection flow rate (Q)	2.2E-	05 [m ³ /s]	calculated
Water Level			
[pressure transducer data used to estimate static WL]			
pressure transducer depth ²	-	[mbgs]	in pressure transducer holder below single packer
pipe stickup	2.	44 [mags]	collected in field
pressure head	-	[psi]	pressure transducer reading, psi absolute
atmospheric pressure	-	[psi]	assumed
pressure head	#VALUE!	[vertical m H2O]	corrected for atmospheric pressure
Water Level 1 (pressure transducer)	#VALUE!	[vertical mbgs]	calculated
[if pressure transducer data not available]	0	07.0	11 - 11 - 6 - 11
pipe stickup		97 [mags]	collected in field
depth to water Water Level 2 (manual)		64 [mbtp] 67 [vertical mbgs]	Static WL in MW14-02B on 26-Aug-2014 at 20:00 calculated
	132.	67 [vertical mogs]	calculated
Excess Pressure Head (based on surface readings) ³			
friction losses (hose to swivel) ⁴	0.	00 [m]	computed from http://www.tasonline.co.za/toolbox/pipe/velfirc.htm
friction losses (packer mandrel) ⁵		00 [m]	IPI hydraulic packer manual or from Darcy-Weisbach equation (pneumatic packer)
most reliable static water level measurement		al transducer/manual	transducer (water level 1) or manual (water level 2)
analog pressure gauge height above ground		52 [vertical mags]	collected in field
analog pressure gauge reading		3.6 [psi]	collected in field
Exess Pressure Head (most reliable static WL)		4.8 [m]	H, calculated: static WL plus injection pressure, relative to ground surface
Excess Pressure Head Check (based on pressure transducer reading	ngs only)		
stabilized pressure ⁶	-	[psi]	pressure transducer reading, psi absolute
differential pressure ⁷	#VALUE!	[psi]	difference between injection pressure and static WL pressure
Excess Pressure Head (transducer readings)	#VALUE!	[m]	H, calculated - convert differential pressure to m H2O
Other Data			
radius of wellbore (R _w)		48 [m]	1/2 of the ID of open HQ borehole
length of test interval	28	3.5 [m]	collected in field
skin		0 [-]	assumed
effective wellbore radius (R _{ew})		48 [m]	R _w exp(Skin)
radius of influence (R _i)		3.5 [m]	assumed (equivalent to length of test interval)
$\ln(R_i/R_{ew})$		5.4 [-]	calculated
Is packer test interval in the unsaturated zone?		JE [TRUE/FALSE]	tests in the unsaturated zone are not considered reliable
Flow velocity in open borehole		30 [m/s]	flow rate divided by cross-sectional area
Reynold's number		1.3 [-]	flow velocity x borehole diameter / kinematic viscosity of H2O (at approx. 4°C)
Is flow laminar (Reynold's No. <2040) or turbulent (>2040)	Lamir	ar [TRUE/FALSE]	results based on turbulent flow should be considered very approximate
Calculated Result			This acuation was available program had had a most reliable of out of the second bar
Transmissivity T	1.20	$07 \ [m^2/s]$	Thiem equation; uses excess pressure head based on most reliable of surface (manual) or transducer readings
Hydraulic Conductivity K		07 [m/s] 09 [m/s]	equivalent to T divided by test interval
mbth - metres below ton of nine mags - metres above ground surface		elow ground surface	equivalent to 1 urvided by test interval

1. Thiem, G., 1906. Hydrologische Methoden; Gebhardt, Leipzig.

2. For hydraulic packer, transducer positioned 43" below bottom of packer in gauge holder; for pneumatic packer it is located just below stuffing box.


3. Data from analog pressure gauge read at surface used to guide test during injection and to confirm pressure transducer data

4. Computed from http://www.tasonline.co.za/toolbox/pipe/velfirc.htm assuming rubber lined pipe, 5 m length, ID 19 mm

5. IPI hydraulic packer manual or Darcy-Weisbach equation as provided in http://www.pipeflow.com/pipe-pressure-drop-calculations/pipe-friction-loss for the pneumatic packer.

6. Estimated stabilized pressure at end of injection period

Borehole:	MW14-03A (BH-03, CFD-0432)	Test Number:	3	Tester: RC
Date:	1-Sep-14	Start Time:	n/a	Stop Time: n/a
Test Number:	3	Geology: biotite-feldspar schist /crackle		Height of P gauge (mags): 1.52
Depth to bit (m AH):	131		breccia/biotite-feldspar schist	Pipe Stickup (mags): 2.38
Interval (Top) (m AH):	132.50	Length of Packer (m):	1.50	Target Interval description: crackle brecc
Packer type (pneumatic/hydraulic):	pneumatic	Interval Bottom (m AH):	155	143 - 145.1 n
Rod Type:	HQ	Hole dip:	90	Hydraulic packer sink time: n/a
Rod ID (mm):	77.8	Type of water used:	Fresh	
Hole Diamter (mm):	96	Additives used (type):	G-Stop	
transducer SN:	n/a	packer inflation pressure (psi):	550	open hole static WL (mbgs): 131.98
seal test successful:	yes	test type:	constant rate injection	
				-
Time Elapsed (min)	Flowmeter Reading (L)	Flow Rate (L/min)	Pressure (psi)	Comments
1	30.0	30.00	1	estimated
2	60.0	30.00	1	estimated
3	90.0	30.00	1	estimated
4	120.0	30.00	1	estimated
	12010	50100	-	ostillatod
	Test abando	ned - could no	t fill rods	
			-	
		High K zone		
	AVERAGE:	30.00	1.0	

Borehole: N	4W14-03A (BH-03,	CFD-0432)	
Borehole Angle: 9	0	[degrees]	
Test Number: 3		-	
Start of Test Interval: 1	32.50	[mbgs]	
End of Test Interval: 1	55	[mbgs]	
Test Type: c	onstant rate injectio	n	
Packer System: p	neumatic		
Date: 1	-Sep-14		
Stoody State Equation: T -	$Q * \ln (R_i/R_{ew})$		(Thisman 100C) ¹
Steady State Equation: T =-	2*(pi)*H		(Thiem, 1906) ¹
Flow Rate			
injection flow rate (Q)	30.0	0 [L/min]	collected in field
injection flow rate (Q)	5.0E-0	$4 [m^3/s]$	calculated
Water Level			
[pressure transducer data used to estimate static WL]			
pressure transducer depth ²	-	[mbgs]	in pressure transducer holder below single packer
pipe stickup	2.3	8 [mags]	collected in field
pressure head	-	[psi]	pressure transducer reading, psi absolute
atmospheric pressure	-	[psi]	assumed
pressure head	#VALUE!	[vertical m H2O]	corrected for atmospheric pressure
Water Level 1 (pressure transducer)	#VALUE!	[vertical mbgs]	calculated
[if pressure transducer data not available]		-	
pipe stickup	0.9	7 [mags]	collected in field
depth to water	133.6	4 [mbtp]	Static WL in MW14-03B on 13-Oct-2014 at 15:41
Water Level 2 (manual)	132.6	7 [vertical mbgs]	calculated
Excess Pressure Head (based on surface readings) ³			
friction losses (hose to swivel) ⁴	1.4	7 [m]	computed from http://www.tasonline.co.za/toolbox/pipe/velfirc.htm
friction losses (packer mandrel) ⁵	0.4	4 [m]	IPI hydraulic packer manual or from Darcy-Weisbach equation (pneumatic packer)
most reliable static water level measurement	manua	al transducer/manual	transducer (water level 1) or manual (water level 2)
analog pressure gauge height above ground	1.5	2 [vertical mags]	collected in field
analog pressure gauge reading	1.	0 [psi]	collected in field
Exess Pressure Head (most reliable static WL)	133.	0 [m]	H, calculated: static WL plus injection pressure, relative to ground surface
Excess Pressure Head Check (based on pressure transducer readi	ngs only)		
stabilized pressure ⁶	-	[psi]	pressure transducer reading, psi absolute
differential pressure ⁷	#VALUE!	[psi]	difference between injection pressure and static WL pressure
Excess Pressure Head (transducer readings)	#VALUE!	[m]	H, calculated - convert differential pressure to m H2O
Other Data			· •
radius of wellbore (R _w)	0.04	8 [m]	1/2 of the ID of open HQ borehole
length of test interval		5 [m]	collected in field
skin		0 [-]	assumed
effective wellbore radius (Rew)		8 [m]	R _w exp(Skin)
radius of influence (R _i)		5 [m]	assumed (equivalent to length of test interval)
$\ln(R_i/R_{ew})$		2 [-]	calculated
Is packer test interval in the unsaturated zone?		E [TRUE/FALSE]	tests in the unsaturated zone are not considered reliable
Flow velocity in open borehole		1 [m/s]	flow rate divided by cross-sectional area
Reynold's number	4144.		flow velocity x borehole diameter / kinematic viscosity of H2O (at approx. 4°C)
Is flow laminar (Reynold's No. <2040) or turbulent (>2040)		t [TRUE/FALSE]	results based on turbulent flow should be considered very approximate
Calculated Result		4	
			Thiem equation; uses excess pressure head based on most reliable of surface (manual) or
Transmissivity T	3.7E-0	6 [m ² /s]	transducer readings
Hydraulic Conductivity K	1.6E-0	7 [m/s]	equivalent to T divided by test interval

1. Thiem, G., 1906. Hydrologische Methoden; Gebhardt, Leipzig.

2. For hydraulic packer, transducer positioned 43" below bottom of packer in gauge holder; for pneumatic packer it is located just below stuffing box.

3. Data from analog pressure gauge read at surface used to guide test during injection and to confirm pressure transducer data

4. Computed from http://www.tasonline.co.za/toolbox/pipe/velfirc.htm assuming rubber lined pipe, 5 m length, ID 19 mm

5. IPI hydraulic packer manual or Darcy-Weisbach equation as provided in http://www.pipeflow.com/pipe-pressure-drop-calculations/pipe-friction-loss for the pneumatic packer.

6. Estimated stabilized pressure at end of injection period

Borehole: MW14-03A (BH-03, CFD-0432)	Test Number: 4	Tester: CB
Date: 5-Sep-14	Start Time: 10:23 PM	Stop Time: 10:44 PM
Test Number: 4	Geology: biotite-feldspar schist/shear	Height of P gauge (mags): 1.52
Depth to bit (m AH): 155	zone/biotite-feldspar schist	Pipe Stickup (mags): 2.41
Interval (Top) (m AH): 156.50	Length of Packer (m): 1.50	Target Interval description: shear zone
Packer type (pneumatic/hydraulic): pneumatic	Interval Bottom (m AH): 198.5	188.3 - 194.7
Rod Type: HQ	Hole dip: 90	Hydraulic packer sink time: n/a
Rod ID (mm): 77.8	Type of water used: Fresh	
Hole Diamter (mm): 96	Additives used (type):	
transducer SN: n/a	packer inflation pressure (psi): 600	open hole static WL (mbgs): n/a
seal test successful: yes	test type: constant rate injection	

Time Elapsed (min)	Flowmeter Reading (L)	Flow Rate (L/min)	Pressure (psi)	Comments
0	7675		60	
1	7677.5	2.5	60	
2	7680	2.5	60	
3	7682	2.0	60	
4	7684.5	2.5	60	
5	7687	2.5	60	
6	7689.5	2.5	60	
7	7692	2.5	60	Decreased pressure as was a
8	7694	2.0	60	little above 60
9	7696	2.0	60	
10	7697.5	1.5	60	
11	7699.5	2.0	60	
12	7702	2.5	60	
13	7704	2.0	60	
14	7706	2.0	60	
15	7708.5	2.5	60	
16	7710.5	2.0	60	
17	7713	2.5	60	
18	7715	2.0	60	
19	7717	2.0	60	
20	7719	2.0	60	
	AVERAGE:	2.15	60.0	

	Pressure Transducer Raw Data (Logger Below Packer)						
Pressure (psi)			Manual c (pressure transc				

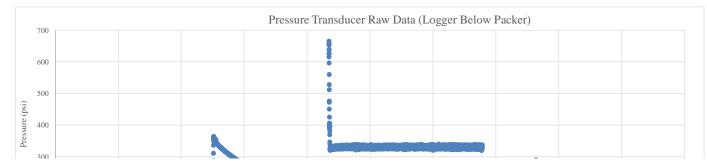
Borehole: M	IW14-03A (BH-03	, CFD-0432)	
Borehole Angle: 9	0	[degrees]	
Test Number: 4			
Start of Test Interval: 1	56.50	[mbgs]	
End of Test Interval: 1	99	[mbgs]	
Test Type: co	onstant rate injectio	on	
Packer System: p	neumatic		
Date: 5	-Sep-14		
Stoody State Equation: T -	$Q * \ln (R_i/R_{ew})$		$(T_{1}; T_{2}; T_{2};$
Steady State Equation: T =	2*(pi)*H		(Thiem, 1906) ¹
Flow Rate			
injection flow rate (Q)	2.1	15 [L/min]	collected in field
injection flow rate (Q)	3.6E-0	(m^3/s)	calculated
Water Level			
[pressure transducer data used to estimate static WL]			
pressure transducer depth ²	-	[mbgs]	in pressure transducer holder below single packer
pipe stickup	2.4	1 [mags]	collected in field
pressure head	-	[psi]	pressure transducer reading, psi absolute
atmospheric pressure	-	[psi]	assumed
pressure head	#VALUE!	[vertical m H2O]	corrected for atmospheric pressure
Water Level 1 (pressure transducer)	#VALUE!	[vertical mbgs]	calculated
[if pressure transducer data not available]			
pipe stickup		97 [mags]	collected in field
depth to water	133.6	54 [mbtp]	Static WL in MW14-03B on 13-Oct-2014 at 15:41
Water Level 2 (manual)	132.6	57 [vertical mbgs]	calculated
Excess Pressure Head (based on surface readings) ³			
friction losses (hose to swivel) ⁴	0.0)1 [m]	computed from http://www.tasonline.co.za/toolbox/pipe/velfirc.htm
friction losses (packer mandrel)5	0.0	<mark>)0</mark> [m]	IPI hydraulic packer manual or from Darcy-Weisbach equation (pneumatic packer)
most reliable static water level measurement	manu	al transducer/manual	transducer (water level 1) or manual (water level 2)
analog pressure gauge height above ground	1.5	52 [vertical mags]	collected in field
analog pressure gauge reading	60	.0 [psi]	collected in field
Exess Pressure Head (most reliable static WL)		.4 [m]	H, calculated: static WL plus injection pressure, relative to ground surface
Excess Pressure Head Check (based on pressure transducer reading	ngs only)		
stabilized pressure ⁶	-	[psi]	pressure transducer reading, psi absolute
differential pressure ⁷	#VALUE!	[psi]	difference between injection pressure and static WL pressure
Excess Pressure Head (transducer readings)	#VALUE!	[m]	H, calculated - convert differential pressure to m H2O
Other Data			
radius of wellbore (R _w)	0.04	48 [m]	1/2 of the ID of open HQ borehole
length of test interval	42	.0 [m]	collected in field
skin		0 [-]	assumed
effective wellbore radius (Rew)	0.04	48 [m]	R _w exp(Skin)
radius of influence (R _i)	42	.0 [m]	assumed (equivalent to length of test interval)
$\ln(R_i/R_{ew})$	6	.8 [-]	calculated
Is packer test interval in the unsaturated zone?	FALS	E [TRUE/FALSE]	tests in the unsaturated zone are not considered reliable
Flow velocity in open borehole	0.00	05 [m/s]	flow rate divided by cross-sectional area
Reynold's number	297	.0 [-]	flow velocity x borehole diameter / kinematic viscosity of H2O (at approx. 4°C)
Is flow laminar (Reynold's No. <2040) or turbulent (>2040)	Lamin	ar [TRUE/FALSE]	results based on turbulent flow should be considered very approximate
Calculated Result			
m title m	0.07	2 ()	Thiem equation; uses excess pressure head based on most reliable of surface (manual) or
Transmissivity T Uudroulia Conductivity K		$7 [m^2/s]$	transducer readings
Hydraulic Conductivity K		9 [m/s]	equivalent to T divided by test interval

1. Thiem, G., 1906. Hydrologische Methoden; Gebhardt, Leipzig.

2. For hydraulic packer, transducer positioned 43" below bottom of packer in gauge holder; for pneumatic packer it is located just below stuffing box.

3. Data from analog pressure gauge read at surface used to guide test during injection and to confirm pressure transducer data

4. Computed from http://www.tasonline.co.za/toolbox/pipe/velfirc.htm assuming rubber lined pipe, 5 m length, ID 19 mm


5. IPI hydraulic packer manual or Darcy-Weisbach equation as provided in http://www.pipeflow.com/pipe-pressure-drop-calculations/pipe-friction-loss for the pneumatic packer.

6. Estimated stabilized pressure at end of injection period

Borehole: MW14-04T (BH-06, CFD-0439)	Test Number: 1	Tester: JY
Date: 9-Sep-14	Start Time: 5:20 PM	Stop Time: 6:49 PM
Test Number: 1	Geology:	Height of P gauge (mags): 2.0
Depth to bit (m AH): 181	Length of Packer (m): 1.25	Pipe Stickup (mags): 2.5
Interval (Top) (m AH): 182.25	Interval Bottom (m AH): 202	Target Interval description:
Packer type (pneumatic/hydraulic): hydraulic	Hole dip: 90	Hydraulic packer sink time: n/a
Rod Type: HQ	Type of water used: Fresh	
Rod ID (mm): 77.8	Additives used (type): G-Stop in unsat. Zone	
Hole Diamter (mm): 96		
transducer SN: 301401 (Troll 700)	packer inflation pressure (psi): 500	open hole static WL (mbgs): n/a
seal test successful: yes	test type: constant rate injection	

Time Elapsed (min)	Flowmeter Reading (L)	Flow Rate (L/min)	Pressure (psi)	Comments
0	929		0	Started test at 17:20
0.5	929	0	0	
2.5	934.6	2.80	50	
3.5	934.775	0.17	50	
5	935.05	0.18		
6	935.175	0.13	50	
7	935.18	0.005		
10	935.55	0.12	50	
15	935.95	0.08	50	
20	936.25	0.06	50	
25	936.57	0.06	50	
30	936.88	0.06	50	17:50 - test stopped (shear pin did not
0				17:54 - shear pin blew
0.5	942.55		50	-
1	943.35	1.60	50	
1.5	943.87	1.04	60	
2	944.32	0.90	60	
3	944.66	0.34	60	
4	944.77	0.11	60	
5	944.88	0.11		
7	945.08	0.10	55	
10	945.39	0.10	60	
16	945.9	0.08	55	
20	946.17	0.07	60	
26	946.71	0.09	60	
30	946.92	0.05	60	
36	947.24	0.05	55	
40	947.44	0.05	55	18:34 - test end
	AVERAGE:	0.05	56.7	

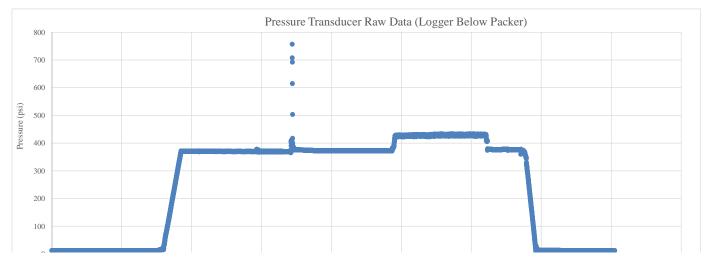
Borehole: 1	MW14-04T (BH-06	, CFD-0439)	
Borehole Angle: 9	90	[degrees]	
Test Number:	l	-	
Start of Test Interval:	82.25	[mbgs]	
End of Test Interval: 2	202	[mbgs]	
Test Type: o	constant rate injection	on	
Packer System: 1	nydraulic		
Date: 9	9-Sep-14		
Standar State Frankling T	$Q * \ln (R_i/R_{ew})$		/m: 100.cl
Steady State Equation: T =-	2*(pi)*H		(Thiem, 1906) ¹
Flow Rate			
injection flow rate (Q)	0.0	05 [L/min]	collected in field
injection flow rate (Q)	8.7E-0	07 [m ³ /s]	calculated
Water Level			
[pressure transducer data used to estimate static WL]			
pressure transducer depth ²	183	.3 [mbgs]	in pressure transducer holder below single packer
pipe stickup		50 [mags]	collected in field
pressure head	-	[psi]	pressure transducer reading, psi absolute
atmospheric pressure	-	[psi]	assumed
pressure head	#VALUE!	[vertical m H2O]	corrected for atmospheric pressure
Water Level 1 (pressure transducer)	#VALUE!	[vertical mbgs]	calculated
[if pressure transducer data not available]			
pipe stickup	0.33	[mags]	collected in field
depth to water	158.08	[mbtp]	Estimated from the closest static WL at MW14-01B (accounts for elevation difference).
Water Level 2 (manual)	157.3	75 [vertical mbgs]	calculated
Excess Pressure Head (based on surface readings) ³			
friction losses (hose to swivel) ⁴	0.0	00 [m]	computed from http://www.tasonline.co.za/toolbox/pipe/velfirc.htm
friction losses (packer mandrel)5	0.0	00 [m]	IPI hydraulic packer manual or from Darcy-Weisbach equation (pneumatic packer)
most reliable static water level measurement	manu	al transducer/manual	transducer (water level 1) or manual (water level 2)
analog pressure gauge height above ground	2.0	00 [vertical mags]	collected in field
analog pressure gauge reading	56	6.7 [psi]	collected in field
Exess Pressure Head (most reliable static WL)	199	<mark>.6</mark> [m]	H, calculated: static WL plus injection pressure, relative to ground surface
Excess Pressure Head Check (based on pressure transducer read	ings only)		
stabilized pressure ⁶	-	[psi]	pressure transducer reading, psi absolute
differential pressure ⁷	#VALUE!	[psi]	difference between injection pressure and static WL pressure
Excess Pressure Head (transducer readings)	#VALUE!	[m]	H, calculated - convert differential pressure to m H2O
Other Data		-	•
radius of wellbore (R _w)	0.04	48 [m]	1/2 of the ID of open HQ borehole
length of test interval	19	9.8 [m]	collected in field
skin		0 [-]	assumed
effective wellbore radius (Rew)	0.04	48 [m]	R _w exp(Skin)
radius of influence (R _i)	19	.8 [m]	assumed (equivalent to length of test interval)
$\ln(R_i/R_{ew})$		i.0 [-]	calculated
Is packer test interval in the unsaturated zone		E [TRUE/FALSE]	tests in the unsaturated zone are not considered reliable
Flow velocity in open borehole		01 [m/s]	flow rate divided by cross-sectional area
Reynold's number		.2 [-]	flow velocity x borehole diameter / kinematic viscosity of H2O (at approx. 4°C)
Is flow laminar (Reynold's No. <2040) or turbulent (>2040)	Lamin	ar [TRUE/FALSE]	results based on turbulent flow should be considered very approximate
Calculated Result			
		2	Thiem equation; uses excess pressure head based on most reliable of surface (manual) or
Transmissivity T		09 [m ² /s]	transducer readings
Hydraulic Conductivity K		10 [m/s]	equivalent to T divided by test interval

1. Thiem, G., 1906. Hydrologische Methoden; Gebhardt, Leipzig.

2. For hydraulic packer, transducer positioned 43" below bottom of packer in gauge holder; for pneumatic packer it is located just below stuffing box.

3. Data from analog pressure gauge read at surface used to guide test during injection and to confirm pressure transducer data

4. Computed from http://www.tasonline.co.za/toolbox/pipe/velfirc.htm assuming rubber lined pipe, 5 m length, ID 19 mm


5. IPI hydraulic packer manual or Darcy-Weisbach equation as provided in http://www.pipeflow.com/pipe-pressure-drop-calculations/pipe-friction-loss for the pneumatic packer.

6. Estimated stabilized pressure at end of injection period

Borehole: MW14-04T (BH-06, CFD-0439)	Test Number: 5	Tester: MS
Date: 10-Sep-14	Start Time: 11:06 PM	Stop Time: 12:00 AM
Test Number: 5	Geology:	Height of P gauge (mags): 2.0
Depth to bit (m AH): 250	Length of Packer (m): 1.25	Pipe Stickup (mags): 2.5
Interval (Top) (m AH): 251.25	Interval Bottom (m AH): 280	Target Interval description:
Packer type (pneumatic/hydraulic): hydraulic	Hole dip: 90	Hydraulic packer sink time: n/a
Rod Type: HQ	Type of water used: Fresh	
Rod ID (mm): 77.8	Additives used (type): G-Stop in unsat. Zone	
Hole Diamter (mm): 96		
transducer SN: 301401 (Troll 700)	packer inflation pressure (psi): 500	open hole static WL (mbgs): n/a
seal test successful: yes	test type: constant rate injection	

Time Elapsed (min)	Flowmeter Reading (L)	Flow Rate (L/min)	Pressure (psi)	Comments
0	519.50		50	11:29
1	519.72	0.22	50	
2	519.90	0.18	50	
3	519.98	0.08	50	
4	520.10	0.12	50	
5	520.20	0.10	50	
6	520.30	0.10	50	
7	520.40	0.10	50	
8	520.50	0.10	50	
9	520.60	0.10	50	
10	520.70	0.10	50	
11	520.80	0.10	50	
12	520.90	0.10	50	
13	520.98	0.08	50	
14	521.06	0.08	50	
15	521.13	0.07	50	
16	521.22	0.09	50	
17	521.30	0.08	50	
18	521.40	0.10	50	
19	521.50	0.10	50	
20	521.60	0.10	50	
	AVERAGE:	0.094	50	

highlighted cells indicate period of test used for stabilized P and Q readings.

Borehole: 1	MW14-04T (BH-06	5, CFD-0439)	
Borehole Angle: 9	90	[degrees]	
Test Number:	5		
Start of Test Interval:	251.25	[mbgs]	
End of Test Interval:	280	[mbgs]	
Test Type: o	constant rate injecti	on	
Packer System: 1	nydraulic		
Date:	10-Sep-14		
Steady State Equation: T =-	$Q * \ln (R_i/R_{ew})$		(Thiem, 1906) ¹
Straty State Equation. 1 =-	2*(pi)*H		(Tineni, 1900)
Flow Rate			
injection flow rate (Q)	0.	09 [L/min]	collected in field
injection flow rate (Q)	1.6E-	$\frac{100}{100}$ [m ³ /s]	calculated
Water Level			
[pressure transducer data used to estimate static WL]			
pressure transducer depth ²	-	[mbgs]	in pressure transducer holder below single packer
pipe stickup	2.	50 [mags]	collected in field
pressure head	-	[psi]	pressure transducer reading, psi absolute
atmospheric pressure	-	[psi]	assumed
pressure head	#VALUE!	[vertical m H2O]	corrected for atmospheric pressure
Water Level 1 (pressure transducer)	#VALUE!	[vertical mbgs]	calculated
[if pressure transducer data not available]			
pipe stickup	0.	33 [mags]	collected in field
depth to water	158.	08 [mbtp]	Estimated from the closest static WL at MW14-01B (accounts for elevation difference).
Water Level 2 (manual)	157.	75 [vertical mbgs]	calculated
Excess Pressure Head (based on surface readings) ³			
friction losses (hose to swivel) ⁴	0.	00 [m]	computed from http://www.tasonline.co.za/toolbox/pipe/velfirc.htm
friction losses (packer mandrel) ⁵	0.	01 [m]	IPI hydraulic packer manual or from Darcy-Weisbach equation (pneumatic packer)
most reliable static water level measurement	man	ual transducer/manual	transducer (water level 1) or manual (water level 2)
analog pressure gauge height above ground	2.	00 [vertical mags]	collected in field
analog pressure gauge reading	50).0 [psi]	collected in field
Exess Pressure Head (most reliable static WL)	194	4.9 [m]	H, calculated: static WL plus injection pressure, relative to ground surface
Excess Pressure Head Check (based on pressure transducer read	ings only)		
stabilized pressure ⁶	-	[psi]	pressure transducer reading, psi absolute
differential pressure ⁷	#VALUE!	[psi]	difference between injection pressure and static WL pressure
Excess Pressure Head (transducer readings)	#VALUE!	[m]	H, calculated - convert differential pressure to m H2O
Other Data			•
radius of wellbore (R _w)	0.0	48 [m]	1/2 of the ID of open HQ borehole
length of test interval		3.8 [m]	collected in field
skin		0 [-]	assumed
effective wellbore radius (R _{ew})	0.0	48 [m]	R _w exp(Skin)
radius of influence (R _i)		3.8 [m]	assumed (equivalent to length of test interval)
$\ln(R_i/R_{ew})$		5.4 [-]	calculated
Is packer test interval in the unsaturated zone		SE [TRUE/FALSE]	tests in the unsaturated zone are not considered reliable
Flow velocity in open borehole		02 [m/s]	flow rate divided by cross-sectional area
Reynold's number		3.0 [-]	flow velocity x borehole diameter / kinematic viscosity of H2O (at approx. 4°C)
Is flow laminar (Reynold's No. <2040) or turbulent (>2040)		ar [TRUE/FALSE]	results based on turbulent flow should be considered very approximate
Calculated Result			
			Thiem equation; uses excess pressure head based on most reliable of surface (manual) or
Transmissivity T		$09 \ [m^2/s]$	transducer readings
Hydraulic Conductivity K	2.8E-	10 [m/s]	equivalent to T divided by test interval

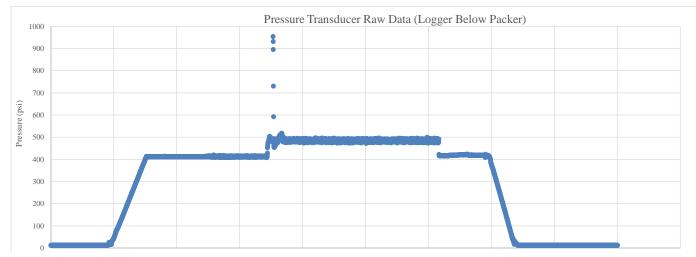
1. Thiem, G., 1906. Hydrologische Methoden; Gebhardt, Leipzig.

2. For hydraulic packer, transducer positioned 43" below bottom of packer in gauge holder; for pneumatic packer it is located just below stuffing box.

3. Data from analog pressure gauge read at surface used to guide test during injection and to confirm pressure transducer data

4. Computed from http://www.tasonline.co.za/toolbox/pipe/velfirc.htm assuming rubber lined pipe, 5 m length, ID 19 mm

5. IPI hydraulic packer manual or Darcy-Weisbach equation as provided in http://www.pipeflow.com/pipe-pressure-drop-calculations/pipe-friction-loss for the pneumatic packer.


6. Estimated stabilized pressure at end of injection period

Borehole: MW14-04T (BH-06, CFD-0439)	Test Number: 6	Tester: MS
Date: 11-Sep-14	Start Time: 5:30 AM	Stop Time: 6:28 AM
Test Number: 6	Geology:	Height of P gauge (mags): 2.0
Depth to bit (m AH): 280	Length of Packer (m): 1.25	Pipe Stickup (mags): 2.5
Interval (Top) (m AH): 281.25	Interval Bottom (m AH): 301	Target Interval description:
Packer type (pneumatic/hydraulic): hydraulic	Hole dip: 90	Hydraulic packer sink time: n/a
Rod Type: HQ	Type of water used: Fresh	
Rod ID (mm): 77.8	Additives used (type): G-Stop in unsat. Zone	
Hole Diamter (mm): 96		
transducer SN: 301401 (Troll 700)	packer inflation pressure (psi): 500	open hole static WL (mbgs): n/a
seal test successful: yes	test type: constant rate injection	

Time Elapsed (min)	Flowmeter Reading (L)	Flow Rate (L/min)	Pressure (psi)	Comments
0	607.30		70	
1	607.51	0.21	70	
2	607.78	0.27	70	
3	607.98	0.20	70	
4	608.16	0.18	70	
5	608.38	0.22	70	
6	608.55	0.17	70	
7	608.71	0.16	70	
8	608.85	0.14	70	
9	609.04	0.19	70	
10	609.20	0.16	70	
11	609.32	0.12	70	
12	609.50	0.18	70	
13	609.61	0.11	70	
14	609.83	0.22	70	
15	609.90	0.07	70	Flow rates during the constant
16	610.10	0.20	70	rate injection test are within the
17	610.15	0.05	70	range measured during leak
18	610.20	0.05	70	testing. Therefore test not
19	610.31	0.11	70	_
20	610.44	0.13	70	analyzed.
	AVERAGE:	0.12	70	

highlighted cells indicate period of test used for stabilized P and Q readings.

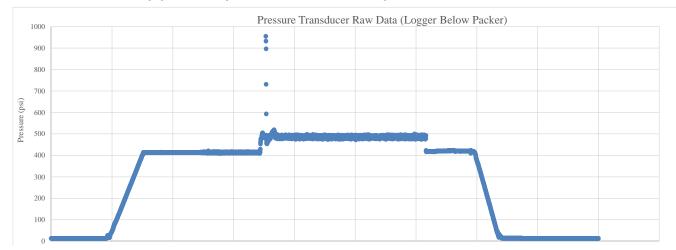
Borehole:	MW14-04T (BH-06	5, CFD-0439)	
0 1		[degrees]	
Test Number: 6			
Start of Test Interval:	281.25	[mbgs]	
End of Test Interval:		[mbgs]	
**	constant rate injecti	on	
Packer System:			
	11-Sep-14		
Steady State Equation: T =	$Q * \ln (R_i/R_{ew})$		(Thiem, 1906) ¹
	2*(pi)*H		
Flow Rate			
injection flow rate (Q)	0.	12 [L/min]	collected in field
injection flow rate (Q)	2.1E-	06 [m ³ /s]	calculated
Water Level			
[pressure transducer data used to estimate static WL]			
pressure transducer depth ²	-	[mbgs]	in pressure transducer holder below single packer
pipe stickup	2.	50 [mags]	collected in field
pressure head	-	[psi]	pressure transducer reading, psi absolute
atmospheric pressure	-	[psi]	assumed
pressure head	#VALUE!	[vertical m H2O]	corrected for atmospheric pressure
Water Level 1 (pressure transducer)	#VALUE!	[vertical mbgs]	calculated
[if pressure transducer data not available]			
pipe stickup	-	[mags]	collected in field
depth to water	-	[mbtp]	Static WL in MW14-02B on 26-Aug-2014 at 20:00
Water Level 2 (manual)	#VALUE!	[vertical mbgs]	calculated
Excess Pressure Head (based on surface readings) ³			
friction losses (hose to swivel) ⁴	0.	00 [m]	computed from http://www.tasonline.co.za/toolbox/pipe/velfirc.htm
friction losses (packer mandrel) ⁵	0.	<mark>01</mark> [m]	IPI hydraulic packer manual or from Darcy-Weisbach equation (pneumatic packer)
most reliable static water level measurement	manu	ual transducer/manual	transducer (water level 1) or manual (water level 2)
analog pressure gauge height above ground	2.	00 [vertical mags]	collected in field
analog pressure gauge reading	70).0 [psi]	collected in field
Exess Pressure Head (most reliable static WL)	#VALUE!	[m]	H, calculated: static WL plus injection pressure, relative to ground surface
Excess Pressure Head Check (based on pressure transducer read	<u>dings only)</u>		
stabilized pressure ⁶	-	[psi]	pressure transducer reading, psi absolute
differential pressure ⁷	#VALUE!	[psi]	difference between injection pressure and static WL pressure
Excess Pressure Head (transducer readings)	#VALUE!	[m]	H, calculated - convert differential pressure to m H2O
Other Data			
radius of wellbore (R _w)	0.0	48 [m]	1/2 of the ID of open HQ borehole
length of test interval		9.8 [m]	collected in field
skin		0 [-]	assumed
effective wellbore radius (Rew)	0.0	48 [m]	R _w exp(Skin)
radius of influence (R _i)	19	9.8 [m]	assumed (equivalent to length of test interval)
$\ln(R_i/R_{ew})$	e	5.0 [-]	calculated
Is packer test interval in the unsaturated zone		E! [TRUE/FALSE]	tests in the unsaturated zone are not considered reliable
Flow velocity in open borehole		03 [m/s]	flow rate divided by cross-sectional area
Reynold's number		7.1 [-]	flow velocity x borehole diameter / kinematic viscosity of H2O (at approx. 4°C)
Is flow laminar (Reynold's No. <2040) or turbulent (>2040)		ar [TRUE/FALSE]	results based on turbulent flow should be considered very approximate
Calculated Result			
		2	Thiem equation; uses excess pressure head based on most reliable of surface (manual) or
Transmissivity T	#VALUE!	[m ² /s]	transducer readings
Hydraulic Conductivity K	#VALUE!	[m/s]	equivalent to T divided by test interval

1. Thiem, G., 1906. Hydrologische Methoden; Gebhardt, Leipzig.

2. For hydraulic packer, transducer positioned 43" below bottom of packer in gauge holder; for pneumatic packer it is located just below stuffing box.

3. Data from analog pressure gauge read at surface used to guide test during injection and to confirm pressure transducer data

4. Computed from http://www.tasonline.co.za/toolbox/pipe/velfirc.htm assuming rubber lined pipe, 5 m length, ID 19 mm


5. IPI hydraulic packer manual or Darcy-Weisbach equation as provided in http://www.pipeflow.com/pipe-pressure-drop-calculations/pipe-friction-loss for the pneumatic packer.

6. Estimated stabilized pressure at end of injection period

Borehole: MW14-04T (BH-06, CFD-0439)	Test Number: 6	Tester: MS
Date: 11-Sep-14	Start Time: 5:30 AM	Stop Time: 6:28 AM
Test Number: 6	Geology:	Height of P gauge (mags): 2.0
Depth to bit (m AH): 280	Length of Packer (m): 1.25	Pipe Stickup (mags): 2.5
Interval (Top) (m AH): 281.25	Interval Bottom (m AH): 301	Target Interval description:
Packer type (pneumatic/hydraulic): hydraulic	Hole dip: 90	Hydraulic packer sink time: n/a
Rod Type: HQ	Type of water used: Fresh	
Rod ID (mm): 77.8	Additives used (type): G-Stop in unsat. Zone	
Hole Diamter (mm): 96		
transducer SN: 301401 (Troll 700)	packer inflation pressure (psi): 500	open hole static WL (mbgs): n/a
seal test successful: yes	test type: constant rate injection	

Time Elapsed (min)	Flowmeter Reading (L)	Flow Rate (L/min)	Pressure (psi)	Comments
0	607.30		70	
1	607.51	0.21	70	
2	607.78	0.27	70	
3	607.98	0.20	70	
4	608.16	0.18	70	
5	608.38	0.22	70	
6	608.55	0.17	70	
7	608.71	0.16	70	
8	608.85	0.14	70	
9	609.04	0.19	70	
10	609.20	0.16	70	
11	609.32	0.12	70	
12	609.50	0.18	70	
13	609.61	0.11	70	
14	609.83	0.22	70	
15	609.90	0.07	70	Flow rates during the constant
16	610.10	0.20	70	rate injection test are within the
17	610.15	0.05	70	range measured during leak
18	610.20	0.05	70	testing. Therefore test not
19	610.31	0.11	70	analyzed.
20	610.44	0.13	70	analyzeu.
	AVERAGE:	0.12	70	

highlighted cells indicate period of test used for stabilized P and Q readings.

	MW14-04T (BH-06		
Borehole Angle:		[degrees]	
Test Number: Start of Test Interval:		[mbgs]	
End of Test Interval:		[mbgs]	
	constant rate injecti		
Packer System:			
Date:	11-Sep-14		
Steady State Equation: T =	$Q * \ln (R_i/R_{ew})$		(Thiem, 1906) ¹
Steauy State Equation. 1 -	2*(pi)*H		(Thieni, 1900)
Flow Rate			
injection flow rate (Q)	0	01 [L/min]	collected in field
•			
injection flow rate (Q) Water Level	1./E-	07 [m ³ /s]	calculated
[pressure transducer data used to estimate static WL]			
		for here 1	in an anna tara a haldan halam sinala an ahar
pressure transducer depth ²	-	[mbgs]	in pressure transducer holder below single packer
pipe stickup pressure head	2.	50 [mags] [psi]	collected in field pressure transducer reading, psi absolute
atmospheric pressure	-	[psi]	assumed
pressure head	#VALUE!	[vertical m H2O]	corrected for atmospheric pressure
Water Level 1 (pressure transducer)	#VALUE!	[vertical mbgs]	calculated
[if pressure transducer data not available]			
pipe stickup	0.	33 [mags]	collected in field
depth to water	159	08 [mbtp]	Estimated from the closest static WL at MW14-01B (accounts for elevation difference).
Water Level 2 (manual)		75 [vertical mbgs]	calculated
Excess Pressure Head (based on surface readings) ³	157.	i [vertieur mogs]	
friction losses (hose to swivel) ⁴	0.	00 [m]	computed from http://www.tasonline.co.za/toolbox/pipe/velfirc.htm
friction losses (packer mandrel) ⁵		00 [m]	IPI hydraulic packer manual or from Darcy-Weisbach equation (pneumatic packer)
most reliable static water level measurement		al transducer/manual	transducer (water level 1) or manual (water level 2)
analog pressure gauge height above ground		00 [vertical mags]	collected in field
analog pressure gauge reading		0.0 [psi]	collected in field
Exess Pressure Head (most reliable static WL)		9.0 [m]	H, calculated: static WL plus injection pressure, relative to ground surface
Excess Pressure Head Check (based on pressure transducer read	dings only)		
stabilized pressure ⁶	-	[psi]	pressure transducer reading, psi absolute
differential pressure ⁷	#VALUE!	[psi]	difference between injection pressure and static WL pressure
Excess Pressure Head (transducer readings)	#VALUE!	[m]	H, calculated - convert differential pressure to m H2O
Other Data			
radius of wellbore (R _w)	0.0	48 [m]	1/2 of the ID of open HQ borehole
length of test interval	19	9.8 [m]	collected in field
skin		0 [-]	assumed
effective wellbore radius (R _{ew})	0.0	48 [m]	R _w exp(Skin)
radius of influence (Ri)	19	9.8 [m]	assumed (equivalent to length of test interval)
$\ln(R_i/R_{ew})$	e	5.0 [-]	calculated
Is packer test interval in the unsaturated zone		SE [TRUE/FALSE]	tests in the unsaturated zone are not considered reliable
Flow velocity in open borehole		00 [m/s]	flow rate divided by cross-sectional area
Reynold's number		I.4 [-]	flow velocity x borehole diameter / kinematic viscosity of H2O (at approx. 4°C)
Is flow laminar (Reynold's No. <2040) or turbulent (>2040)	Lamir	ar [TRUE/FALSE]	results based on turbulent flow should be considered very approximate
Calculated Result			Thiem equation; uses excess pressure head based on most reliable of surface (manual) or
Transmissivity T	7.6E-	$10 \ [m^2/s]$	transducer readings
Hydraulic Conductivity K		11 [m/s]	equivalent to T divided by test interval

Thiem, G., 1906. Hydrologische Methoden; Gebhardt, Leipzig.
 For hydraulic packer, transducer positioned 43" below bottom of packer in gauge holder; for pneumatic packer it is located just below stuffing box.

3. Data from analog pressure gauge read at surface used to guide test during injection and to confirm pressure transducer data

4. Computed from http://www.tasonline.co.za/toolbox/pipe/velfirc.htm assuming rubber lined pipe, 5 m length, ID 19 mm

5. IPI hydraulic packer manual or Darcy-Weisbach equation as provided in http://www.pipeflow.com/pipe-pressure-drop-calculations/pipe-friction-loss for the pneumatic packer.

6. Estimated stabilized pressure at end of injection period

Location: MW14-04T (BH6, CFD-0439)

Lugeon Test

Test Interval:	164.3-202	(m bgs)

Injection Pressure	Net Injection Pressure	Stabilized Flow Rate	Stabilized Flow Rate	MW14-04T (BH6, CFD-0439) 0.30 → Ascending Pressure
(Pi)	(H)	(Q)	(Q)	0.25 Descending Pressure
(psi)	(m)	(m ³ /min)	(L/min)	
60	201.9	0.00012	0.12	
150	265.3	0.00021	0.21	9 0.15
250	335.6	0.00027	0.27	
150	265.3	0.00013	0.13	0.05
60	202.0	0.00007	0.07	0.00 0 50 100 150 200 250 300
-	<u>-</u>	-	-	Injection Pressure (psi)

$T=Qln(R/r_b)/2\Pi H$

Avg(descending)

Average

$T = transmissivity [L^2/t]$

 $Q = flow rate [L^3/t]$

R = radius of influence (assumed to equal packer interval length, b) [L]

r_b = radius of borehole [L]

2.5E-10

2.8E-10

K=T/b

K = hydraulic conductivity [L/t]b = packer interval length [L]

H= net injection pressure [L]

Pressure Interval	Т	K	Flow				
	(m^2/s)	(m/s)	Descriptor				
60 psi	1.0E-08	2.7E-10	Laminar				
150 psi	1.4E-08	3.7E-10	Laminar				
250 psi	1.4E-08	3.7E-10	Laminar				
150 psi	8.7E-09	2.3E-10	Laminar				
60 psi	6.1E-09	1.6E-10	Laminar				
-	-	-	-				
-	-	-	-				
Packer	Packer Test Results						
Pressure Interval	T (m ² /s)	K (m/s)	-				
Avg(ascending)	1.3E-08	3.3E-10	-				

9.6E-09

1.1E-08

	Test Geometry
0.0778	inside diameter of HQ rod
2	height of pressure gauge above ground

2 202 depth to bottom of packer

157.75 depth to pre-test water level

0.048 radius of drillhole (HQ)

Location: MW14-04T (BH6, CFD-0439)

Test Interval: 164.3-182.3 (m bgs)

	Net Injection	Stabilized	Stabilized Flow	MW14-04T (BH6, CFD-0		D-0439)					
Injection Pressure (Pi)	Pressure (H)	Flow Rate (Q)	Rate (Q)	0.30 0.25		→ Asc	cending Pre				
(psi)	(m)	(m ³ /min)	(L/min)	e							
60	201.9	0.00012	0.12	(uiu/1) a							
150	265.3	0.00021	0.21	Flow rate 0.10	-	-					
250	335.6	0.00027	0.27	Ē 0.10							
150	265.3	0.00013	0.13	0.05	-						
60	202.0	0.00007	0.07	0.00							
-	-	-	-		0	50	100	150	200	250	300
-	-	-	_				Injection	Pressure (psi)		

$T=Qln(R/r_b)/2\Pi H$

Avg(descending)

Average

$T = transmissivity [L^2/t]$

Q =flow rate [L³/t] R = radius of influence (assumed to equal packer interval length, b) [L]

4.7E-10

5.2E-10

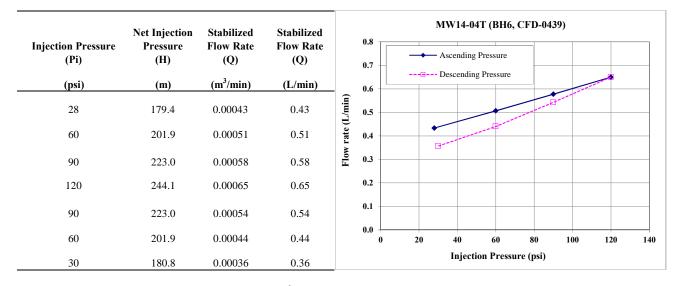
8.5E-09

9.4E-09

K=T/b

r_b = radius of borehole [L] H= net injection pressure [L]

K = hydraulic conductivity [L/t]


b = packer interval length [L]

	Т	17			
Pressure Interval	(m^2/s)	K (m/s)	Flow Descriptor	Test Geometry	
60 psi	9.0E-09	5.0E-10	Laminar	0.0778	inside diameter of HQ rod
150 psi	1.2E-08	6.8E-10	Laminar	2	height of pressure gauge above ground
250 psi	1.2E-08	6.9E-10	Laminar	182.3	depth to bottom of packer
150 psi	7.7E-09	4.3E-10	Laminar	157.75	depth to pre-test water level
60 psi	5.4E-09	3.0E-10	Laminar	0.048	radius of drillhole (HQ)
-	-	-	-		
-	-	-	-		
Packer	r Test Results				
Pressure Interval	$T(m^{2}/s)$	K (m/s)	-		
vg(ascending)	1.1E-08	6.2E-10	-		

Location: MW14-04T (BH6, CFD-0439)

Lugeon Test

Test Interval: 203.3-232 (m bgs)

$T=Qln(R/r_b)/2\Pi H$

 $T = transmissivity [L^2/t]$

 $Q = flow rate [L^3/t]$

R = radius of influence (assumed to equal packer interval length, b) [L]

 $r_b = radius of borehole [L]$

```
K=T/b
```

=T/b

H= net injection pressure [L] K = hydraulic conductivity [L/t] b = packer interval length [L]

December Internel	Т	К	Flow
Pressure Interval	(m ² /s)	(m/s)	Descriptor
28 psi	4.1E-08	1.4E-09	Laminar
60 psi	4.3E-08	1.5E-09	Laminar
90 psi	4.4E-08	1.5E-09	Laminar
120 psi	4.5E-08	1.6E-09	Laminar
90 psi	4.1E-08	1.4E-09	Laminar
60 psi	3.7E-08	1.3E-09	Laminar
30 psi	3.3E-08	1.2E-09	Laminar

Packer Test Results

T (m ² /s)	K (m/s)
4.3E-08	1.5E-09
3.9E-08	1.4E-09
4.1E-08	1.4E-09
	4.3E-08 3.9E-08

Test Geometry					
0.0778	inside diameter of HQ rod				
2	height of pressure gauge above ground				
232	depth to bottom of packer				
157.75	depth to pre-test water level				
0.048	radius of drillhole (HQ)				

Location:

MW14-04T (BH6, CFD-0439)

Lugeon Test

Test Interval: 233.3-256 (m bgs)

	Net Injection	Stabilized	Stabilized	MW14-04T (BH6, CFD-0439)
Injection Pressure (Pi)	Pressure (H)	Flow Rate (Q)	Flow Rate (Q)	1.8 1.6 Ascending Pressure
(psi)	(m)	(m ³ /min)	(L/min)	1.4 Descending Pressure
27	178.7	0.00092	0.92	
57	199.8	0.00108	1.08	
92	224.4	0.00128	1.28	
123	246.2	0.00154	1.54	0.4
93	225.1	0.00132	1.32	0.2
57	199.8	0.00111	1.11	0.0 0 20 40 60 80 100 120 140
27	178.7	0.00098	0.98	Injection Pressure (psi)

$T=Qln(R/r_b)/2\Pi H$

Avg(descending)

Average

$T = transmissivity [L^2/t]$

 $Q = flow rate [L^3/t]$

R = radius of influence (assumed to equal packer interval length, b) [L]

r_b = radius of borehole [L]

K=T/b

H= net injection pressure [L] K = hydraulic conductivity [L/t]

b = packer interval length [L]

Pressure Interval	Т	К	Flow
r ressure interval	(m ² /s)	(m/s)	Descriptor
27 psi	8.4E-08	3.7E-09	Laminar
57 psi	8.8E-08	3.9E-09	Laminar
92 psi	9.3E-08	4.1E-09	Laminar
123 psi	1.0E-07	4.5E-09	Laminar
93 psi	9.6E-08	4.2E-09	Laminar
57 psi	9.1E-08	4.0E-09	Laminar
27 psi	9.0E-08	3.9E-09	Laminar
Packer	Test Results		
Pressure Interval	T (m ² /s)	K (m/s)	_
Avg(ascending)	9.2E-08	4.1E-09	-

9.5E-08

9.2E-08

4.2E-09

4.1E-09

Test G	Geometry
--------	----------

0.0778inside diameter of HQ rod2height of pressure gauge above ground256depth to bottom of packer157.75depth to pre-test water level0.048radius of drillhole (HQ)

A362-4

er: <u>RC/LF</u>			Test Number:	MW14-05A (BH-11A, CFD-0444)	
ne: 5:43 PM		5:10 PM	Start Time:	14-Sep-14	
s): 2.07	Height of P gauge (mags	competent granite	Geology:	1	Test Number:
s): 2.38	Pipe Stickup (mags	1.25	Length of Packer (m):	110.05	Depth to bit (m AH):
	Target Interval description		Interval Bottom (m AH):	Interval (Top) (m AH): 111.30	
ue: 1 min 40 s	Hydraulic packer sink tim		Hole dip:	cker type (pneumatic/hydraulic): hydraulic	
			Type of water used:		Rod Type:
			Additives used (type):		Rod ID (mm):
				96	Hole Diamter (mm):
2.69 (likel	open hole static WL (mbgs	500	packer inflation pressure (psi):	n /a	transducer SN:
s). not static)	open noie static WE (indgs	constant rate injection			seal test successful:
		constant rate injection	test type.	yes	sear test successful
	Comments	Pressure (psi)	Flow Rate (L/min)	Flowmeter Reading (L)	Time Elapsed (min)
		50		615.95	0
		51	0.20	616.15	1
		52	0.22	616.37	2
		55	0.18	616.55	3
		rated test	rtiallyounsatu	st not valid - pa	4 T o
		53	0.19	616.96	5
		53	0.19	terval based o	6
			h estimated s	terval (based o	7
		53	0.17	617.52	
		53	0.14	617.66	9
		52	0.12	617.78	10
		53	0.28	618.06	11
		52	0.32	618.38	12
		51	0.31	618.69	13
		52	0.31	619.00	14
		52	0.28	619.28	15
		53	0.26	619.54	16
		52	0.28	619.82	17
		54	0.27	620.09	18
		53	0.27	620.36	19
		53	0.25	620.61	20
1		52.5	0.28	AVERAGE:	

		Pressure Transducer	Raw Data (Logger Bel	ow Packer)	
Pressure (psi)	(p	Manual ressure Tran			

Borehole:	MW14-05A (BH-11A,	CFD-0444)
Borehole Angle:	90	[degrees]
Test Number:	1	
Start of Test Interval:	111.30	[mbgs]
End of Test Interval:	140.0	[mbgs]
Test Type:	constant rate injection	
Packer System:	hydraulic	
Date:	14-Sep-14	
	$Q * \ln (R_i/R_{ew})$	
Steady State Equation: T =	2*(pi)*H	

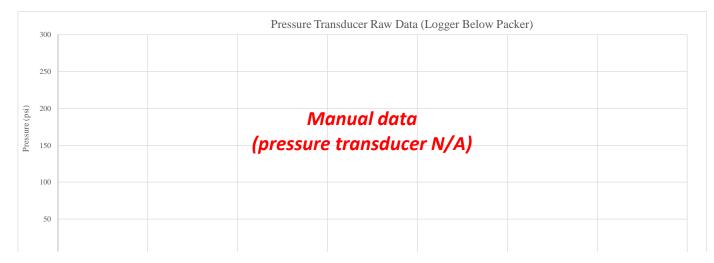
(Thiem, 1906)¹

Flow Rate			
injection flow rate (Q)		28 [L/min]	collected in field
injection flow rate (Q)	4.7E-	06 [m ³ /s]	calculated
Water Level			
[pressure transducer data used to estimate static WL]			
pressure transducer depth ²	-	[mbgs]	in pressure transducer holder below single packer
pipe stickup	2.	38 [mags]	collected in field
pressure head	-	[psi]	pressure transducer reading, psi absolute
atmospheric pressure	-	[psi]	assumed
pressure head	#VALUE!	[vertical m H2O]	corrected for atmospheric pressure
Water Level 1 (pressure transducer)	#VALUE!	[vertical mbgs]	calculated
[if pressure transducer data not available]			
pipe stickup		11 [mags]	collected in field
depth to water		20 [mbtp]	Static WL in MW14-05A on 11-Oct-14 at 15:45
Water Level 2 (manual)	132.	09 [vertical mbgs]	calculated
Excess Pressure Head (based on surface readings) ³			
friction losses (hose to swivel) ⁴	0.	00 [m]	computed from http://www.tasonline.co.za/toolbox/pipe/velfirc.htm
friction losses (packer mandrel) ⁵	0.	02 [m]	IPI hydraulic packer manual or from Darcy-Weisbach equation (pneumatic packer)
most reliable static water level measurement	manu	al transducer/manual	transducer (water level 1) or manual (water level 2)
analog pressure gauge height above ground	2.	07 [vertical mags]	collected in field
analog pressure gauge reading	52	2.5 [psi]	collected in field
Exess Pressure Head (most reliable static WL)	171	.0 [m]	H, calculated: static WL plus injection pressure, relative to ground surface
Excess Pressure Head Check (based on pressure transducer read	ings only)		
stabilized pressure ⁶	-	[psi]	pressure transducer reading, psi absolute
differential pressure ⁷	#VALUE!	[psi]	difference between injection pressure and static WL pressure
Excess Pressure Head (transducer readings)	#VALUE!	[m]	H, calculated - convert differential pressure to m H2O
Other Data			*
radius of wellbore (R _w)	0.0	48 [m]	1/2 of the ID of open HQ borehole
length of test interval	28	8.7 [m]	collected in field
skin		0 [-]	assumed
effective wellbore radius (Rew)	0.0	48 [m]	R _w exp(Skin)
radius of influence (R _i)	28	8.7 [m]	assumed (equivalent to length of test interval)
$\ln(R_i/R_{ew})$	6	5.4 [-]	calculated
Is packer test interval in the unsaturated zone	TRU	JE [TRUE/FALSE]	tests in the unsaturated zone are not considered reliable
Flow velocity in open borehole	0.00	07 [m/s]	flow rate divided by cross-sectional area
Reynold's number	39.	10 [-]	flow velocity x borehole diameter / kinematic viscosity of H2O (at approx. 4°C)
Is flow laminar (Reynold's No. <2040) or turbulent (>2040)	Lamir	ar [TRUE/FALSE]	results based on turbulent flow should be considered very approximate
Calculated Result			
		2	Thiem equation; uses excess pressure head based on most reliable of surface (manual) or
Transmissivity T	2.8E-	$[m^2/s]$	transducer readings

Hydraulic Conductivity -- K 9.8E-10 [m/s] equivalent to T divided by test interval mbtp = metres below top of pipe, mags = metres above ground surface, mbgs = metres below ground surface

Thiem, G., 1906. Hydrologische Methoden; Gebhardt, Leipzig.
 For hydraulic packer, transducer positioned 43" below bottom of packer in gauge holder; for pneumatic packer it is located just below stuffing box.

3. Data from analog pressure gauge read at surface used to guide test during injection and to confirm pressure transducer data


4. Computed from http://www.tasonline.co.za/toolbox/pipe/velfirc.htm assuming rubber lined pipe, 5 m length, ID 19 mm

5. IPI hydraulic packer manual or Darcy-Weisbach equation as provided in http://www.pipeflow.com/pipe-pressure-drop-calculations/pipe-friction-loss for the pneumatic packer.

6. Estimated stabilized pressure at end of injection period

Borehole: MW14-05A (BH-11A, CFD-0444)	Test Number: 2	Tester: CB/MS
Date: 15-Sep-14	Start Time: 6:33 AM	Stop Time: 6:40 AM
Test Number: 2	Geology: granite	Height of P gauge (mags): 2.07
Depth to bit (m AH): 155	Length of Packer (m): 1.25	Pipe Stickup (mags):
Interval (Top) (m AH): 156.25	Interval Bottom (m AH): 179	Target Interval description: altered/broken
Packer type (pneumatic/hydraulic): hydraulic	Hole dip: 90	granite 166.6-174
Rod Type: HQ	Type of water used: Fresh	and 176-179 m
Rod ID (mm): 77.8	Additives used (type):	Hydraulic packer sink time:
Hole Diamter (mm): 96		
transducer SN: n/a	packer inflation pressure (psi): 750	open hole static WL (mbgs):
seal test successful: yes	test type: constant rate injection	

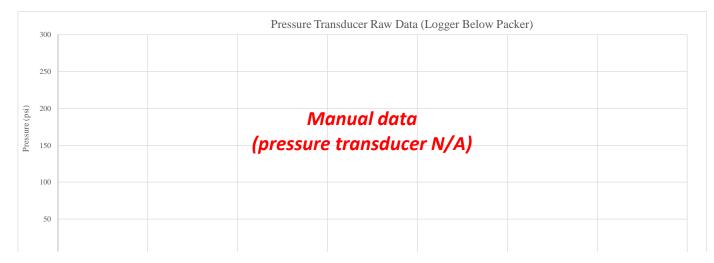
Time Elapsed (min)	Flowmeter Reading (L)	Flow Rate (L/min)	Pressure (psi)	Comments
0	644.925		50	
1	644.925	0.00	50	
2	644.925	0.00	50	
3	644.925	0.00	50	
4	644.925	0.00	50	
5	644.925	0.00	50	
6	644.925	0.00	50	
7	644.925	0.00	50	
				Test terminated - no flow.
	AVEDACE	0.00	50.0	
	AVERAGE:	0.00	50.0	

Borehole:	MW14-05A (BH-11	A, CFD-0444)	
Borehole Angle:		[degrees]	
Test Number:			
Start of Test Interval:		[mbgs]	
End of Test Interval:		[mbgs]	
	constant rate injectio	on	
Packer System:			
Date:	15-Sep-14		
Steady State Equation: T =	$\frac{Q*\ln(R_i/R_{ew})}{2^*(pi)^*H}$	_	(Thiem, 1906) ¹
Flow Rate			
injection flow rate (Q)		0 [L/min]	collected in field
injection flow rate (Q)	0.0E+0	(m^3/s)	calculated
Water Level			
[pressure transducer data used to estimate static WL]			
pressure transducer depth ²	-	[mbgs]	in pressure transducer holder below single packer
pipe stickup	0.0	0 [mags]	collected in field
pressure head	-	[psi]	pressure transducer reading, psi absolute
atmospheric pressure	#VALUE!	[psi]	assumed
pressure head		[vertical m H2O]	corrected for atmospheric pressure
Water Level 1 (pressure transducer)	#VALUE!	[vertical mbgs]	calculated
[if pressure transducer data not available]		[mage]	collected in field
pipe stickup depth to water	-	[mags]	conected in neid
Water Level 2 (manual)	#VALUE!	[mbtp] [vertical mbgs]	calculated
	#VALUE:	[vertical mogs]	calculated
Excess Pressure Head (based on surface readings) ³			
friction losses (hose to swivel) ⁴		00 [m]	computed from http://www.tasonline.co.za/toolbox/pipe/velfirc.htm
friction losses (packer mandrel) ⁵		<mark>)0</mark> [m]	IPI hydraulic packer manual or from Darcy-Weisbach equation (pneumatic packer)
most reliable static water level measurement		al transducer/manual	transducer (water level 1) or manual (water level 2)
analog pressure gauge height above ground		07 [vertical mags]	collected in field
analog pressure gauge reading		.0 [psi]	collected in field
Excess Pressure Head (most reliable static WL) Excess Pressure Head Check (based on pressure transducer rea	#VALUE!	[m]	H, calculated: static WL plus injection pressure, relative to ground surface
	aings only)		
stabilized pressure ⁶	-	[psi]	pressure transducer reading, psi absolute
differential pressure ⁷	#VALUE!	[psi]	difference between injection pressure and static WL pressure
Excess Pressure Head (transducer readings)	#VALUE!	[m]	H, calculated - convert differential pressure to m H2O
Other Data			
radius of wellbore (R _w)		48 [m]	1/2 of the ID of open HQ borehole
length of test interval		.8 [m]	collected in field
skin		0 [-]	assumed
effective wellbore radius (R _{ew})	0.04	48 [m]	R _w exp(Skin)
radius of influence (R _i)	22	.8 [m]	assumed (equivalent to length of test interval)
$\ln(R_i/R_{ew})$	6	.2 [-]	calculated
Is packer test interval in the unsaturated zone		E! [TRUE/FALSE]	tests in the unsaturated zone are not considered reliable
Flow velocity in open borehole		0 [m/s]	flow rate divided by cross-sectional area
Reynold's number)0 [-]	flow velocity x borehole diameter / kinematic viscosity of H2O (at approx. 4°C)
Is flow laminar (Reynold's No. <2040) or turbulent (>2040)	Lamin	ar [TRUE/FALSE]	results based on turbulent flow should be considered very approximate
Calculated Result			
Transmissister T		Free ² /-1	Thiem equation; uses excess pressure head based on most reliable of surface (manual) or
Transmissivity T Urdraulia Conductivity K	#VALUE!	$[m^2/s]$	transducer readings
Hydraulic Conductivity K	#VALUE!	[m/s]	equivalent to T divided by test interval

1. Thiem, G., 1906. Hydrologische Methoden; Gebhardt, Leipzig.

2. For hydraulic packer, transducer positioned 43" below bottom of packer in gauge holder; for pneumatic packer it is located just below stuffing box.

3. Data from analog pressure gauge read at surface used to guide test during injection and to confirm pressure transducer data


4. Computed from http://www.tasonline.co.za/toolbox/pipe/velfirc.htm assuming rubber lined pipe, 5 m length, ID 19 mm

5. IPI hydraulic packer manual or Darcy-Weisbach equation as provided in http://www.pipeflow.com/pipe-pressure-drop-calculations/pipe-friction-loss for the pneumatic packer.

6. Estimated stabilized pressure at end of injection period

Borehole: MW14-05A (BH-11A, CFD-0444)	Test Number: 2	Tester: CB/MS
Date: 15-Sep-14	Start Time: 6:33 AM	Stop Time: 6:40 AM
Test Number: 2	Geology: granite	Height of P gauge (mags): 2.07
Depth to bit (m AH): 155	Length of Packer (m): 1.25	Pipe Stickup (mags):
Interval (Top) (m AH): 156.25	Interval Bottom (m AH): 179	Target Interval description: altered/broken
Packer type (pneumatic/hydraulic): hydraulic	Hole dip: 90	granite 166.6-174
Rod Type: HQ	Type of water used: Fresh	and 176-179 m
Rod ID (mm): 77.8	Additives used (type):	Hydraulic packer sink time:
Hole Diamter (mm): 96		
transducer SN: n/a	packer inflation pressure (psi): 750	open hole static WL (mbgs):
seal test successful: yes	test type: constant rate injection	

Time Elapsed (min)	Flowmeter Reading (L)	Flow Rate (L/min)	Pressure (psi)	Comments
0	644.925		50	
1	644.925	0.00	50	
2	644.925	0.00	50	
3	644.925	0.00	50	
4	644.925	0.00	50	
5	644.925	0.00	50	
6	644.925	0.00	50	
7	644.925	0.00	50	
				Test terminated - no flow.
	AVEDACE	0.00	50.0	
	AVERAGE:	0.00	50.0	

	IW14-05A (BH-11	A, CFD-0444)	
Borehole Angle: 90)	[degrees]	
Test Number: 2			
Start of Test Interval: 1		[mbgs]	
End of Test Interval: 17		[mbgs]	
	onstant rate injectio	on	
Packer System: h			
	5-Sep-14		
Steady State Equation: T =	$Q + \ln (R_i/R_{ew})$	_	(Thiem, 1906) ¹
	2*(pi)*H		
Flow Rate	0.0		11 1 - (* 11
injection flow rate (Q))1 [L/min]	collected in field
injection flow rate (Q)	1.7E-0	$[m^{3}/s]$	calculated
Water Level			
[pressure transducer data used to estimate static WL]			
pressure transducer depth ²	-	[mbgs]	in pressure transducer holder below single packer
pipe stickup	0.0	0 [mags]	collected in field
pressure head	-	[psi]	pressure transducer reading, psi absolute
atmospheric pressure	-	[psi]	assumed
pressure head	#VALUE!	[vertical m H2O]	corrected for atmospheric pressure
Water Level 1 (pressure transducer)	#VALUE!	[vertical mbgs]	calculated
[if pressure transducer data not available]			
pipe stickup		1 [mags]	collected in field
depth to water		20 [mbtp]	
Water Level 2 (manual)	132.0	9 [vertical mbgs]	calculated
Excess Pressure Head (based on surface readings) ³			
friction losses (hose to swivel) ⁴	0.0	<mark>)0</mark> [m]	computed from http://www.tasonline.co.za/toolbox/pipe/velfirc.htm
friction losses (packer mandrel) ⁵	0.0	0 [m]	IPI hydraulic packer manual or from Darcy-Weisbach equation (pneumatic packer)
most reliable static water level measurement	manu	al transducer/manual	transducer (water level 1) or manual (water level 2)
analog pressure gauge height above ground	2.0	7 [vertical mags]	collected in field
analog pressure gauge reading	50	.0 [psi]	collected in field
Exess Pressure Head (most reliable static WL)		.3 [m]	H, calculated: static WL plus injection pressure, relative to ground surface
Excess Pressure Head Check (based on pressure transducer reading	ngs only)		
stabilized pressure ⁶	-	[psi]	pressure transducer reading, psi absolute
differential pressure ⁷	#VALUE!	[psi]	difference between injection pressure and static WL pressure
Excess Pressure Head (transducer readings)	#VALUE!	[m]	H, calculated - convert differential pressure to m H2O
Other Data			
radius of wellbore (R _w)	0.04	48 [m]	1/2 of the ID of open HQ borehole
length of test interval	22	.8 [m]	collected in field
skin		0 [-]	assumed
effective wellbore radius (R _{ew})	0.04	48 [m]	R _w exp(Skin)
radius of influence (R _i)	22	.8 [m]	assumed (equivalent to length of test interval)
$\ln(R_i/R_{ew})$	6	.2 [-]	calculated
Is packer test interval in the unsaturated zone	FALS	E [TRUE/FALSE]	tests in the unsaturated zone are not considered reliable
Flow velocity in open borehole		00 [m/s]	flow rate divided by cross-sectional area
Reynold's number	1.3	38 [-]	flow velocity x borehole diameter / kinematic viscosity of H2O (at approx. 4°C)
Is flow laminar (Reynold's No. <2040) or turbulent (>2040)	Lamin	ar [TRUE/FALSE]	results based on turbulent flow should be considered very approximate
Calculated Result			
		2	Thiem equation; uses excess pressure head based on most reliable of surface (manual) or
Transmissivity T		$[0 \ [m^2/s]]$	transducer readings
Hydraulic Conductivity K		1 [m/s]	equivalent to T divided by test interval

1. Thiem, G., 1906. Hydrologische Methoden; Gebhardt, Leipzig.

2. For hydraulic packer, transducer positioned 43" below bottom of packer in gauge holder; for pneumatic packer it is located just below stuffing box.

3. Data from analog pressure gauge read at surface used to guide test during injection and to confirm pressure transducer data

4. Computed from http://www.tasonline.co.za/toolbox/pipe/velfirc.htm assuming rubber lined pipe, 5 m length, ID 19 mm

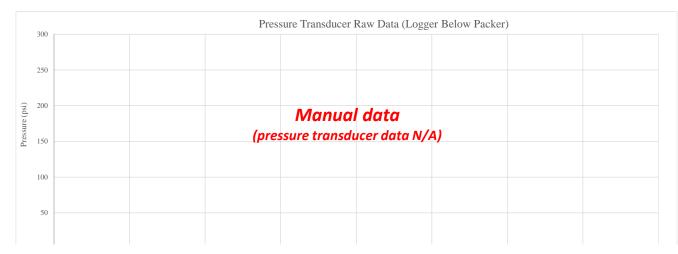
5. IPI hydraulic packer manual or Darcy-Weisbach equation as provided in http://www.pipeflow.com/pipe-pressure-drop-calculations/pipe-friction-loss for the pneumatic packer.

6. Estimated stabilized pressure at end of injection period

Borehole: MW14-05A (BH-11A, CFD-0444)	Test Number: 3	Tester: RC
Date: 15-Sep-14	Start Time: 3:05 PM	Stop Time: 3:33 PM
Test Number: 3	Geology: granite	Height of P gauge (mags): 2.07
Depth to bit (m AH): 182	Length of Packer (m): 1.25	Pipe Stickup (mags): 2.41
Interval (Top) (m AH): 183.25	Interval Bottom (m AH): 200	Target Interval description: low RQD
Packer type (pneumatic/hydraulic): hydraulic	Hole dip: 90	from 183.3 to
Rod Type: HQ	Type of water used: Fresh	Hydraulic packer sink time: 2 min 50 sec
Rod ID (mm): 77.8	Additives used (type):	
Hole Diamter (mm): 96		
		2 28 (likoly

packer inflation pressure (psi): 500

test type: constant rate injection


3.38 (likely open hole static WL (mbgs): not static)

Time Elapsed (min)	Flowmeter Reading (L)	Flow Rate (L/min)	Pressure (psi)	Comments
0	651.50		50	
1	652.31	0.81	48	
2	653.06	0.75	48	
3	653.75	0.69	49	
4	654.43	0.68	47	
5	655.10	0.67	46	
6	655.75	0.65	45	
7	656.45	0.70	46	
8	657.03	0.58	46	
9	657.67	0.64	45	
10	658.24	0.57	47	
11	658.93	0.69	45	
12	659.55	0.62	45	
13	660.18	0.63	46	
14	660.79	0.61	45	
15	661.42	0.63	47	
16	662.03	0.61	48	
17	662.65	0.62	50	
18	663.26	0.61	50	
19	663.87	0.61	50	
20	664.49	0.62	50	
	AVERAGE:	0.62	47.9	

Notes:

transducer SN: n/a seal test successful: yes

highlighted cells indicate period of test used for stabilized P and Q readings.

Borehole:	MW14-05A (BH-11A,	CFD-0444)
Borehole Angle:	90	[degrees]
Test Number:	3	
Start of Test Interval:	183.25	[mbgs]
End of Test Interval:	200.0	[mbgs]
Test Type:	constant rate injection	
Packer System:	hydraulic	
Date:	15-Sep-14	
	$Q * \ln (R_i/R_{ew})$	
Steady State Equation: T =	2*(pi)*H	

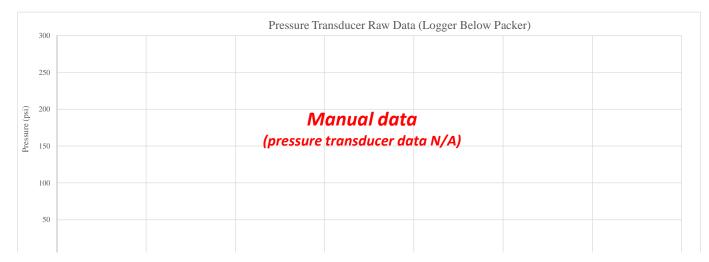
(Thiem, 1906)¹

Flow Rate			
injection flow rate (Q)	0.0	62 [L/min]	collected in field
injection flow rate (Q)	1.0E-0	$05 \ [m^3/s]$	calculated
Water Level			
[pressure transducer data used to estimate static WL]			
pressure transducer depth ²	-	[mbgs]	in pressure transducer holder below single packer
pipe stickup	2.4	41 [mags]	collected in field
pressure head	-	[psi]	pressure transducer reading, psi absolute
atmospheric pressure	-	[psi]	assumed
pressure head	#VALUE!	[vertical m H2O]	corrected for atmospheric pressure
Water Level 1 (pressure transducer)	#VALUE!	[vertical mbgs]	calculated
[if pressure transducer data not available]			
pipe stickup		11 [mags]	collected in field
depth to water		20 [mbtp]	Static WL in MW14-05A on 11-Oct-14 at 15:45
Water Level 2 (manual)	132.	09 [vertical mbgs]	calculated
Excess Pressure Head (based on surface readings) ³			
friction losses (hose to swivel) ⁴	0.0	00 [m]	computed from http://www.tasonline.co.za/toolbox/pipe/velfirc.htm
friction losses (packer mandrel) ⁵	0.0	<mark>04</mark> [m]	IPI hydraulic packer manual or from Darcy-Weisbach equation (pneumatic packer)
most reliable static water level measurement	manu	al transducer/manual	transducer (water level 1) or manual (water level 2)
analog pressure gauge height above ground	2.0	07 [vertical mags]	collected in field
analog pressure gauge reading	47	.9 [psi]	collected in field
Exess Pressure Head (most reliable static WL)	167	.8 [m]	H, calculated: static WL plus injection pressure, relative to ground surface
Excess Pressure Head Check (based on pressure transducer read	dings only)		
stabilized pressure ⁶	-	[psi]	pressure transducer reading, psi absolute
differential pressure ⁷	#VALUE!	[psi]	difference between injection pressure and static WL pressure
Excess Pressure Head (transducer readings)	#VALUE!	[m]	H, calculated - convert differential pressure to m H2O
Other Data			
radius of wellbore (R _w)	0.04	48 [m]	1/2 of the ID of open HQ borehole
length of test interval	16	5.8 [m]	collected in field
skin		0 [-]	assumed
effective wellbore radius (R _{ew})	0.04	48 [m]	R _w exp(Skin)
radius of influence (R _i)	16	i.8 [m]	assumed (equivalent to length of test interval)
$\ln(R_i/R_{ew})$	5	i.9 [-]	calculated
Is packer test interval in the unsaturated zone	FALS	E [TRUE/FALSE]	tests in the unsaturated zone are not considered reliable
Flow velocity in open borehole	0.00	14 [m/s]	flow rate divided by cross-sectional area
Reynold's number	85.3	35 [-]	flow velocity x borehole diameter / kinematic viscosity of H2O (at approx. 4°C)
Is flow laminar (Reynold's No. <2040) or turbulent (>2040)	Lamin	ar [TRUE/FALSE]	results based on turbulent flow should be considered very approximate
Calculated Result			
			Thiem equation; uses excess pressure head based on most reliable of surface (manual) or
Transmissivity T	5.7E-	$[m^2/s]$	transducer readings
		00 F / 1	

Hydraulic Conductivity -- K 3.4E-09 [m/s] equivalent to T divided by test interval mbtp = metres below top of pipe, mags = metres above ground surface, mbgs = metres below ground surface

Thiem, G., 1906. Hydrologische Methoden; Gebhardt, Leipzig.
 For hydraulic packer, transducer positioned 43" below bottom of packer in gauge holder; for pneumatic packer it is located just below stuffing box.

3. Data from analog pressure gauge read at surface used to guide test during injection and to confirm pressure transducer data


4. Computed from http://www.tasonline.co.za/toolbox/pipe/velfirc.htm assuming rubber lined pipe, 5 m length, ID 19 mm

5. IPI hydraulic packer manual or Darcy-Weisbach equation as provided in http://www.pipeflow.com/pipe-pressure-drop-calculations/pipe-friction-loss for the pneumatic packer.

6. Estimated stabilized pressure at end of injection period

Borehole: MW14-05A (BH-11A, CFD-0444)	Test Number: 4	Tester: CB/MS
Date: 16-Sep-14	Start Time: 1:20 AM	Stop Time: 1:40 AM
Test Number: 4	Geology:	Height of P gauge (mags): 2.07
Depth to bit (m AH): 200	Length of Packer (m): 1.25	Pipe Stickup (mags): 2.39
Interval (Top) (m AH): 201.25	Interval Bottom (m AH): 220.5	Target Interval description: altered/broken
Packer type (pneumatic/hydraulic): hydraulic	Hole dip: 90	granite from
Rod Type: HQ	Type of water used: Fresh	~209-212
Rod ID (mm): 77.8	Additives used (type):	and218-220m
Hole Diamter (mm): 96		Hydraulic packer sink time:
transducer SN: n/a	packer inflation pressure (psi): 500	open hole static WL (mbgs):
seal test successful: yes	test type: constant rate injection	

Time Elapsed (min)	Flowmeter Reading (L)	Flow Rate (L/min)	Pressure (psi)	Comments
0	672.50		50	
1	672.87	0.37	50	
2	673.21	0.34	50	
3	673.55	0.34	50	
4	673.89	0.34	50	
5	674.20	0.31	50	
6	674.53	0.33	50	
7	674.85	0.32	50	
8	675.16	0.31	50	
9	675.48	0.32	50	
10	675.78	0.30	50	
11	676.09	0.31	50	
12	676.40	0.31	50	
13	676.70	0.30	50	
14	677.00	0.30	50	
15	677.30	0.30	50	
16	677.60	0.30	50	
17	677.90	0.30	50	
18	678.20	0.30	50	
19	678.50	0.30	50	
20	678.80	0.30	50	
	AVERAGE:	0.30	50.0	

Borehole:	MW14-05A (BH-11	A, CFD-0444)	
Borehole Angle:	90	[degrees]	
Test Number:			
Start of Test Interval:	201.25	[mbgs]	
End of Test Interval:		[mbgs]	
	constant rate injecti	on	
Packer System:	1 C C C C C C C C C C C C C C C C C C C		
	16-Sep-14		
Steady State Equation: T =-	$Q * \ln (R_i/R_{ew})$		(Thiem, 1906) ¹
	2*(p1)*H		
Flow Rate			
injection flow rate (Q)		30 [L/min]	collected in field
injection flow rate (Q)	5.0E-	06 [m ³ /s]	calculated
Water Level			
[pressure transducer data used to estimate static WL]			
pressure transducer depth ²	-	[mbgs]	in pressure transducer holder below single packer
pipe stickup	2.1	39 [mags]	collected in field
pressure head	-	[psi]	pressure transducer reading, psi absolute
atmospheric pressure	-	[psi]	assumed
pressure head	#VALUE!	[vertical m H2O]	corrected for atmospheric pressure
Water Level 1 (pressure transducer)	#VALUE!	[vertical mbgs]	calculated
[if pressure transducer data not available]			
pipe stickup		11 [mags]	collected in field
depth to water		20 [mbtp]	Static WL in MW14-05A on 11-Oct-14 at 15:45
Water Level 2 (manual)	132.	09 [vertical mbgs]	calculated
Excess Pressure Head (based on surface readings) ³			
friction losses (hose to swivel) ⁴	0.0	00 [m]	computed from http://www.tasonline.co.za/toolbox/pipe/velfirc.htm
friction losses (packer mandrel) ⁵	0.0	02 [m]	IPI hydraulic packer manual or from Darcy-Weisbach equation (pneumatic packer)
most reliable static water level measurement	manu	al transducer/manual	transducer (water level 1) or manual (water level 2)
analog pressure gauge height above ground	2.	07 [vertical mags]	collected in field
analog pressure gauge reading	50	.0 [psi]	collected in field
Exess Pressure Head (most reliable static WL)		9.3 [m]	H, calculated: static WL plus injection pressure, relative to ground surface
Excess Pressure Head Check (based on pressure transducer read	<u>ings only)</u>		
stabilized pressure ⁶	-	[psi]	pressure transducer reading, psi absolute
differential pressure ⁷	#VALUE!	[psi]	difference between injection pressure and static WL pressure
Excess Pressure Head (transducer readings)	#VALUE!	[m]	H, calculated - convert differential pressure to m H2O
Other Data		-	*
radius of wellbore (R _w)	0.04	48 [m]	1/2 of the ID of open HQ borehole
length of test interval	19	0.3 [m]	collected in field
skin		0 [-]	assumed
effective wellbore radius (Rew)	0.04	48 [m]	R _w exp(Skin)
radius of influence (R _i)	19	.3 [m]	assumed (equivalent to length of test interval)
$\ln(R_i/R_{ew})$		i.0 [-]	calculated
Is packer test interval in the unsaturated zone		E [TRUE/FALSE]	tests in the unsaturated zone are not considered reliable
Flow velocity in open borehole		07 [m/s]	flow rate divided by cross-sectional area
Reynold's number		45 [-]	flow velocity x borehole diameter / kinematic viscosity of H2O (at approx. 4°C)
Is flow laminar (Reynold's No. <2040) or turbulent (>2040)	Lamin	ar [TRUE/FALSE]	results based on turbulent flow should be considered very approximate
Calculated Result			
		2	Thiem equation; uses excess pressure head based on most reliable of surface (manual) or
Transmissivity T		$08 \ [m^2/s]$	transducer readings
Hydraulic Conductivity K	1.5E-	09 [m/s]	equivalent to T divided by test interval

mbtp = metres below top of pipe, mags = metres above ground surface, mbgs = metres below ground surface

1. Thiem, G., 1906. Hydrologische Methoden; Gebhardt, Leipzig.

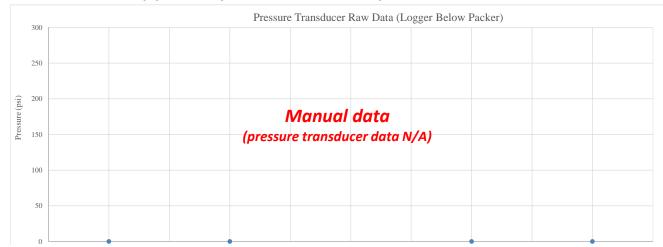
2. For hydraulic packer, transducer positioned 43" below bottom of packer in gauge holder; for pneumatic packer it is located just below stuffing box.

3. Data from analog pressure gauge read at surface used to guide test during injection and to confirm pressure transducer data

4. Computed from http://www.tasonline.co.za/toolbox/pipe/velfirc.htm assuming rubber lined pipe, 5 m length, ID 19 mm

5. IPI hydraulic packer manual or Darcy-Weisbach equation as provided in http://www.pipeflow.com/pipe-pressure-drop-calculations/pipe-friction-loss for the pneumatic packer.

6. Estimated stabilized pressure at end of injection period


7. Differential pressure eliminates absolute gauge effect, does not need to be corrected for atmospheric

Borehole: MW14-05A (BH-11A, CFD-0444)	Test Number: 5	Tester: CB/MS
Date: 16-Sep-14	Start Time: 2:35 AM	Stop Time: 2:56 AM
Test Number: 5	Geology:	Height of P gauge (mags): 2.07
Depth to bit (m AH): 155	Length of Packer (m): 1.25	Pipe Stickup (mags): 2.39
Interval (Top) (m AH): 156.25	Interval Bottom (m AH): 220.5	Target Interval description: see Tests 2, 3
Packer type (pneumatic/hydraulic): hydraulic	Hole dip: 90	& 4
Rod Type: HQ	Type of water used: Fresh	Hydraulic packer sink time:
Rod ID (mm): 77.8	Additives used (type):	
Hole Diamter (mm): 96		
transducer SN: n/a	packer inflation pressure (psi): 500	open hole static WL (mbgs):
seal test successful: yes	test type: constant rate injection	

Time Elapsed (min)	Flowmeter Reading (L)	Flow Rate (L/min)	Pressure (psi)	Comments
0	687.00		50	
1	687.65	0.65	50	
2	688.28	0.63	50	
3	688.95	0.67	50	
4	689.64	0.69	50	
5	690.25	0.61	50	
6	690.89	0.64	50	
7	691.50	0.61	50	
8	692.14	0.64	50	
9	692.74	0.60	50	
				Decreased press. a little as it had risen
10	693.31	0.57	50	a little above 50
11	693.75	0.44	50	
12	694.32	0.57	50	
13	694.90	0.58	50	
14	695.49	0.59	50	
15	696.07	0.58	50	
16	696.65	0.58	50	
17	697.22	0.57	50	
18	697.81	0.59	50	
19	698.37	0.56	50	
20	698.96	0.59	50	
	AVERAGE:	0.58	50.0	

Notes:

highlighted cells indicate period of test used for stabilized P and Q readings.

	MW14-05A (BH-11		
Borehole Angle: Test Number:		[degrees]	
Start of Test Interval:		[mbgs]	
End of Test Interval:		[mbgs]	
	constant rate injection	on	
Packer System:			
	16-Sep-14		
Steady State Equation: T =-	$\frac{Q * \ln (R_i/R_{ew})}{2^{*}(pi)^{*}H}$		(Thiem, 1906) ¹
	- (1)		
Flow Rate			
injection flow rate (Q)	0.:	58 [L/min]	collected in field
injection flow rate (Q)	9.6E-0	(m^3/s)	calculated
Water Level			
[pressure transducer data used to estimate static WL]			
pressure transducer depth ²	-	[mbgs]	in pressure transducer holder below single packer
pipe stickup	2.:	39 [mags]	collected in field
pressure head	-	[psi]	pressure transducer reading, psi absolute
atmospheric pressure	-	[psi]	assumed
pressure head	#VALUE!	[vertical m H2O]	corrected for atmospheric pressure
Water Level 1 (pressure transducer)	#VALUE!	[vertical mbgs]	calculated
[if pressure transducer data not available]			
pipe stickup	1.	11 [mags]	collected in field
depth to water	133.	20 [mbtp]	Static WL in MW14-05A on 11-Oct-14 at 15:45
Water Level 2 (manual)	132.	9 [vertical mbgs]	calculated
Excess Pressure Head (based on surface readings) ³			
friction losses (hose to swivel) ⁴	0.0	<mark>)0</mark> [m]	computed from http://www.tasonline.co.za/toolbox/pipe/velfirc.htm
friction losses (packer mandrel) ⁵	0.0	<mark>)4</mark> [m]	IPI hydraulic packer manual or from Darcy-Weisbach equation (pneumatic packer)
most reliable static water level measurement	manu	al transducer/manual	transducer (water level 1) or manual (water level 2)
analog pressure gauge height above ground	2.0	7 [vertical mags]	collected in field
analog pressure gauge reading	50	.0 [psi]	collected in field
Exess Pressure Head (most reliable static WL)		.3 [m]	H, calculated: static WL plus injection pressure, relative to ground surface
Excess Pressure Head Check (based on pressure transducer read	ings only)		
stabilized pressure ⁶	-	[psi]	pressure transducer reading, psi absolute
differential pressure ⁷	#VALUE!	[psi]	difference between injection pressure and static WL pressure
Excess Pressure Head (transducer readings)	#VALUE!	[m]	H, calculated - convert differential pressure to m H2O
Other Data			
radius of wellbore (R _w)	0.04	48 [m]	1/2 of the ID of open HQ borehole
length of test interval	64	.3 [m]	collected in field
skin		0 [-]	assumed
effective wellbore radius (R _{ew})	0.04	48 [m]	R _w exp(Skin)
radius of influence (R _i)	64	.3 [m]	assumed (equivalent to length of test interval)
$\ln(R_i/R_{ew})$	7	.2 [-]	calculated
Is packer test interval in the unsaturated zone	FALS	E [TRUE/FALSE]	tests in the unsaturated zone are not considered reliable
Flow velocity in open borehole		13 [m/s]	flow rate divided by cross-sectional area
Reynold's number		98 [-]	flow velocity x borehole diameter / kinematic viscosity of H2O (at approx. 4°C)
Is flow laminar (Reynold's No. <2040) or turbulent (>2040)	Lamin	ar [TRUE/FALSE]	results based on turbulent flow should be considered very approximate
Calculated Result			
Transmissivity T	6 5T 1	$[m^2/s]$	Thiem equation; uses excess pressure head based on most reliable of surface (manual) or transducer readings
Hydraulic Conductivity K		98 [m/s]	equivalent to T divided by test interval
mydraulic Conductivity K		5 3	equivalent to a urvideu by test interval

mbtp = metres below top of pipe, mags = metres above ground surface, mbgs = metres below ground surface

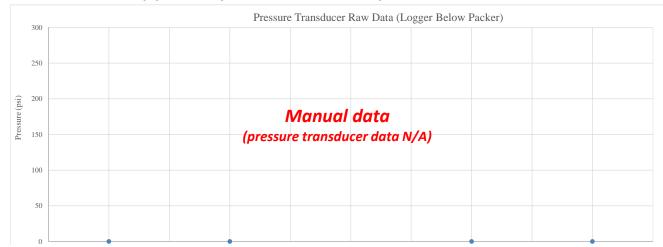
Thiem, G., 1906. Hydrologische Methoden; Gebhardt, Leipzig.
 For hydraulic packer, transducer positioned 43" below bottom of packer in gauge holder; for pneumatic packer it is located just below stuffing box.

3. Data from analog pressure gauge read at surface used to guide test during injection and to confirm pressure transducer data

4. Computed from http://www.tasonline.co.za/toolbox/pipe/velfirc.htm assuming rubber lined pipe, 5 m length, ID 19 mm

5. IPI hydraulic packer manual or Darcy-Weisbach equation as provided in http://www.pipeflow.com/pipe-pressure-drop-calculations/pipe-friction-loss for the pneumatic packer.

6. Estimated stabilized pressure at end of injection period


7. Differential pressure eliminates absolute gauge effect, does not need to be corrected for atmospheric

Borehole: MW14-05A (BH-11A, CFD-0444)	Test Number: 5	Tester: CB/MS
Date: 16-Sep-14	Start Time: 2:35 AM	Stop Time: 2:56 AM
Test Number: 5	Geology:	Height of P gauge (mags): 2.07
Depth to bit (m AH): 155	Length of Packer (m): 1.25	Pipe Stickup (mags): 2.39
Interval (Top) (m AH): 156.25	Interval Bottom (m AH): 220.5	Target Interval description: see Tests 2, 3
Packer type (pneumatic/hydraulic): hydraulic	Hole dip: 90	& 4
Rod Type: HQ	Type of water used: Fresh	Hydraulic packer sink time:
Rod ID (mm): 77.8	Additives used (type):	
Hole Diamter (mm): 96		
transducer SN: n/a	packer inflation pressure (psi): 500	open hole static WL (mbgs):
seal test successful: yes	test type: constant rate injection	

Time Elapsed (min)	Flowmeter Reading (L)	Flow Rate (L/min)	Pressure (psi)	Comments
0	687.00		50	
1	687.65	0.65	50	
2	688.28	0.63	50	
3	688.95	0.67	50	
4	689.64	0.69	50	
5	690.25	0.61	50	
6	690.89	0.64	50	
7	691.50	0.61	50	
8	692.14	0.64	50	
9	692.74	0.60	50	
				Decreased press. a little as it had risen
10	693.31	0.57	50	a little above 50
11	693.75	0.44	50	
12	694.32	0.57	50	
13	694.90	0.58	50	
14	695.49	0.59	50	
15	696.07	0.58	50	
16	696.65	0.58	50	
17	697.22	0.57	50	
18	697.81	0.59	50	
19	698.37	0.56	50	
20	698.96	0.59	50	
	AVERAGE:	0.58	50.0	

Notes:

highlighted cells indicate period of test used for stabilized P and Q readings.

	IW14-05A (BH-1		
Borehole Angle: 90 Test Number: 5		[degrees]	
Start of Test Interval: 1:		[mbgs]	
End of Test Interval: 2		[mbgs]	
	onstant rate injecti		
Packer System: h			
Date: 1	6-Sep-14		
Steady State Equation: T =	$Q * \ln (R_i/R_{ew})$		$(TL;, 100c)^{1}$
Steady State Equation: 1 =-	2*(pi)*H		(Thiem, 1906) ¹
Flow Rate			
injection flow rate (Q)	0.	58 [L/min]	collected in field
injection flow rate (Q)	9.6E-	$\frac{100}{100}$ [m ³ /s]	calculated
Water Level			
[pressure transducer data used to estimate static WL]			
pressure transducer depth ²	_	[mbgs]	in pressure transducer holder below single packer
pipe stickup	2.	39 [mags]	collected in field
pressure head	-	[psi]	pressure transducer reading, psi absolute
atmospheric pressure	-	[psi]	assumed
pressure head	#VALUE!	[vertical m H2O]	corrected for atmospheric pressure
Water Level 1 (pressure transducer)	#VALUE!	[vertical mbgs]	calculated
[if pressure transducer data not available]			
pipe stickup	1.	11 [mags]	collected in field
depth to water	133.	20 [mbtp]	Static WL in MW14-05A on 11-Oct-14 at 15:45
Water Level 2 (manual)	132.	09 [vertical mbgs]	calculated
Excess Pressure Head (based on surface readings) ³			
friction losses (hose to swivel) ⁴	0.	00 [m]	computed from http://www.tasonline.co.za/toolbox/pipe/velfirc.htm
friction losses (packer mandrel) ⁵	0.	04 [m]	IPI hydraulic packer manual or from Darcy-Weisbach equation (pneumatic packer)
most reliable static water level measurement	manu	ual transducer/manual	transducer (water level 1) or manual (water level 2)
analog pressure gauge height above ground	2.	07 [vertical mags]	collected in field
analog pressure gauge reading		0.0 [psi]	collected in field
Exess Pressure Head (most reliable static WL)		9.3 [m]	H, calculated: static WL plus injection pressure, relative to ground surface
Excess Pressure Head Check (based on pressure transducer reading	igs only)		
stabilized pressure ⁶	-	[psi]	pressure transducer reading, psi absolute
differential pressure ⁷	#VALUE!	[psi]	difference between injection pressure and static WL pressure
Excess Pressure Head (transducer readings)	#VALUE!	[m]	H, calculated - convert differential pressure to m H2O
Other Data			
radius of wellbore (R _w)	0.0	48 [m]	1/2 of the ID of open HQ borehole
length of test interval	45	5.0 [m]	adjusted for overlap with Test 4 (ie. subtracted interval portion that overlaps)
skin		0 [-]	assumed
effective wellbore radius (R _{ew})	0.0	48 [m]	R _w exp(Skin)
radius of influence (R _i)	45	5.0 [m]	assumed (equivalent to length of test interval)
$\ln(R_i/R_{ew})$	(<mark>5.8</mark> [-]	calculated
Is packer test interval in the unsaturated zone	FAL	SE [TRUE/FALSE]	tests in the unsaturated zone are not considered reliable
Flow velocity in open borehole		13 [m/s]	flow rate divided by cross-sectional area
Reynold's number		.98 [-]	flow velocity x borehole diameter / kinematic viscosity of H2O (at approx. 4°C)
Is flow laminar (Reynold's No. <2040) or turbulent (>2040)	Lamir	nar [TRUE/FALSE]	results based on turbulent flow should be considered very approximate
Calculated Result			
Transmissivity T	6.00	$08 \ [m^2/s]$	Thiem equation; uses excess pressure head based on most reliable of surface (manual) or transducer readings
Hydraulic Conductivity K		08 [m/s]	equivalent to T divided by test interval
mydraulic Conductivity K mhtn - metres below ton of nine mags - metres above ground surface		velow ground surface	equivalent to 1 divided by test interval

mbtp = metres below top of pipe, mags = metres above ground surface, mbgs = metres below ground surface

Thiem, G., 1906. Hydrologische Methoden; Gebhardt, Leipzig.
 For hydraulic packer, transducer positioned 43" below bottom of packer in gauge holder; for pneumatic packer it is located just below stuffing box.

3. Data from analog pressure gauge read at surface used to guide test during injection and to confirm pressure transducer data

4. Computed from http://www.tasonline.co.za/toolbox/pipe/velfirc.htm assuming rubber lined pipe, 5 m length, ID 19 mm

5. IPI hydraulic packer manual or Darcy-Weisbach equation as provided in http://www.pipeflow.com/pipe-pressure-drop-calculations/pipe-friction-loss for the pneumatic packer.

6. Estimated stabilized pressure at end of injection period

7. Differential pressure eliminates absolute gauge effect, does not need to be corrected for atmospheric

LUGEON TEST

Location: MW14-07T / BH1 / CFD-0462 64.4-89

Test Interval:

(m bgs)

Injection	Net Injection	Stabilized	Stabilized		0			MW	14-07	T			
Pressure (Pi)	Pressure (H)	Flow Rate (Q)	Flow Rate (Q)		9 8	·@]	Ascend	U					
(psi)	(m)	(m ³ /min)	(L/min)	-	7		Descen		essure				
60	43.8	0.0016	1.6	(L/min)	6 5								
150	106.9	0.0045	4.5	rate	4								
250	176.8	0.0085	8.5	Flow	3		/		·				
150	106.9	0.0041	4.1		2	•							
60	43.8	0.0011	1.1										
-	-				0	50		00 ection	150 Pres) 2 sure (p	200 si)	250	3

$T=Qln(R/r_b)/2\pi H$	$T = transmissivity [L^2/t]$
	$Q = flow rate [L^3/t]$
	R = radius of influence (assumed to equal packer interval length, b) [L]
	$r_b = radius of borehole [L]$
	H= net injection pressure [L]
K=T/b	K = hydraulic conductivity [L/t]
	b = packer interval length [L]

Pressure Interval	T (m ² /s)	K (m/s)	Flow Descriptor
60 psi	6.2E-07	2.5E-08	Laminar
150 psi	6.9E-07	2.8E-08	Laminar
250 psi	8.0E-07	3.2E-08	Laminar
150 psi	6.3E-07	2.6E-08	Laminar
60 psi	4.3E-07	1.8E-08	Laminar
-	-	-	-
-	-	-	-

Packer	r Test Results	5
Pressure Interval	T (m ² /s)	K (m/s)
Avg. (ascending)	7.0E-07	2.9E-08
Avg. (descending)	6.2E-07	2.5E-08
Avg. (overall)	6.4E-07	2.6E-08

Test Geometry (m)						
0.0778	inside diameter of HQ rod					
1.7000	height of pressure gauge above ground					
60 psi	depth to bottom of packer					
0.0000	depth to pre-test water level					
0.0480	radius of drillhole (HQ)					

Lugeon Test

Location: MW14-07T / BH1 / CFD-0462

 Test Interval:
 83.2-124.7 (m bgs)

Injection Pressure	Net Injection Pressure		Stabilized Flow Rate	MW14-07T
(Pi)	(H)	(Q)	(Q)	4.5 Ascending Pressure
(psi)	(m)	(m ³ /min)	(L/min)	4.0
62	45.2	0.0013	1.3	(iii) 3.5 3.0 2.5 2.0 2.0
122	87.3	0.0025	2.5	2.5
182.5	129.7	0.0043	4.3	
122	87.3	0.0024	2.4	1.0
60	43.8	0.0010	1.0	0.5
-	-	-	-	0 50 100 150 200 Injection Pressure (psi)

 $T=Qln(R/r_b)/2\Pi H$

 $T = transmissivity [L^2/t]$

 $Q = flow rate [L^3/t]$

R = radius of influence (assumed to equal packer interval length, b) [L]

 $r_b = radius of borehole [L]$

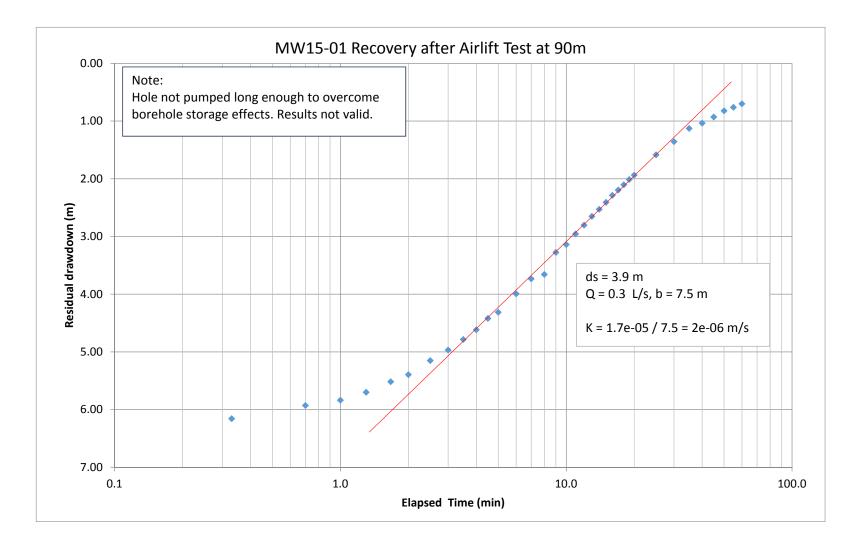
H= net injection pressure [L]

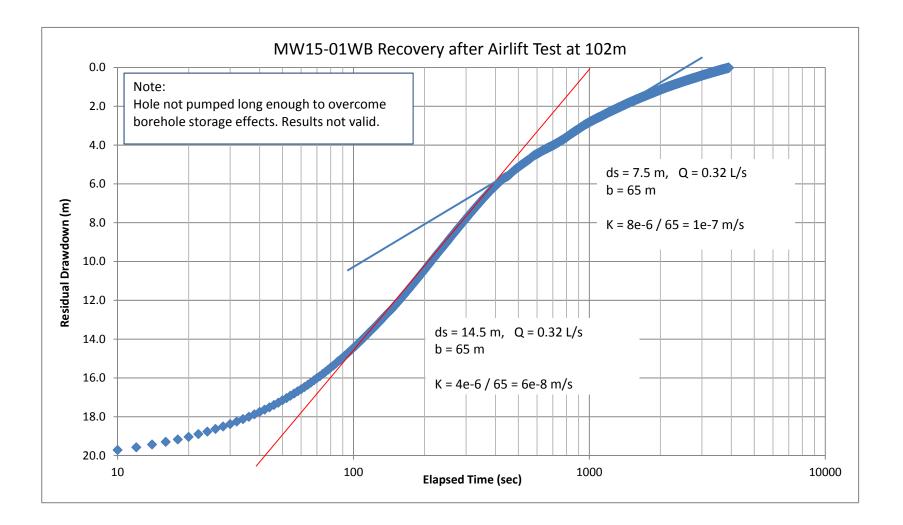
K=T/b

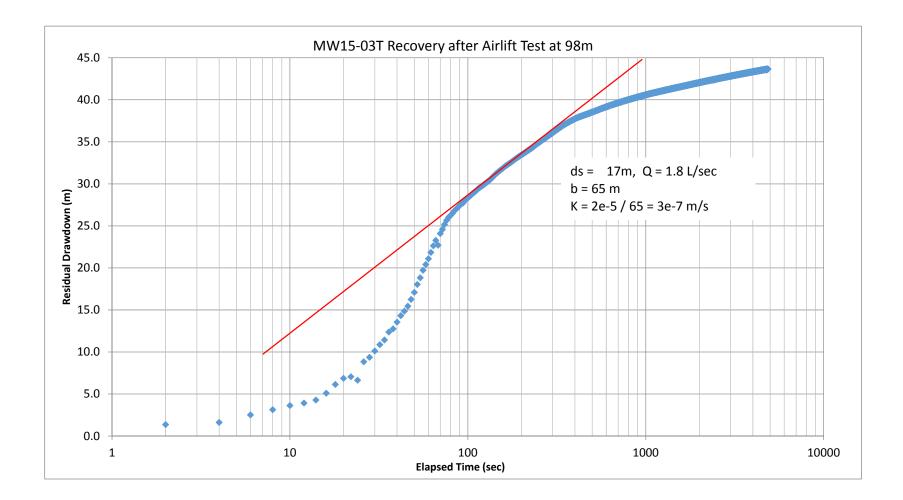
K = hydraulic conductivity [L/t] b = packer interval length [L]

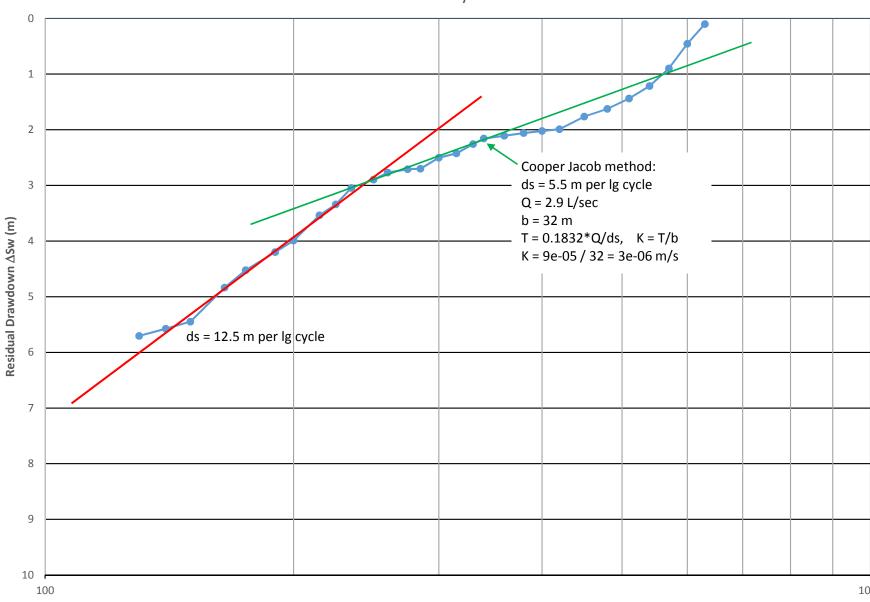
υ	=	раскег	Interval	length	[L]

Pressure Interval	Т	K	Flow
i ressure intervar	(m^2/s)	(m/s)	Descriptor
62 psi	5.0E-07	1.2E-08	Laminar
122 psi	5.2E-07	1.2E-08	Laminar
182.5 psi	6.0E-07	1.4E-08	Laminar
122 psi	5.0E-07	1.2E-08	Laminar
60 psi	4.2E-07	1.0E-08	Laminar
-	-	-	-
-	-	-	-

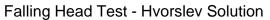

	Test Geometry (m)						
0.0778	inside diameter of HQ rod						
1.7000	height of pressure gauge above ground						
124.6600	depth to bottom of packer						
0.0000	depth to pre-test water level						
0.0480	radius of drillhole (HQ)						

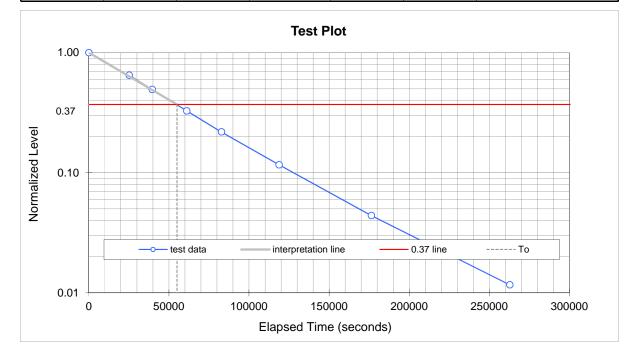

Packer Test Results


Pressure Interval	$T(m^2/s)$	K(m/s)
Avg. (ascending)	5.4E-07	1.3E-08
Avg. (descending)	5.1E-07	1.2E-08
Avg. (overall)	5.1E-07	1.2E-08


PACKER TESTING - CONSTANT HEAD TEST

Date	of Test			13-May-15	Apparent Curr	ent Denth of	Drill Hole (m):		53.34
Date of Test: 13-May-15 Ap Drill Hole No: MW15-04T Te							53.34		
Test N		•		#1	4T Test Section from (m): 34.75 to: Length of Test Section (m):				
	er Type	•		single					
		ssure (kPa):		350 psi Height of Gauge (m above datum):					0.00
	g Detai			n/a	Drill Hole Dip		·		80
	-	Drill Hole (mn	n):	114.3	Vertical Depth		52.53		
		Rods (mm):					ion Centre (m):		43.37
	29		If groundwate	r level is unknowi					
		Injection	<u> </u>	Cummulative					
Sta	age	Duration	Pressure	Consumption	Packer	Hose	Head	Rate	Note
n	0.	min	kPa	liters	m	m	m	L/s	
ze	ero		0	0.0	0	0	0	0.00	
#	±1	10	6.90	227.1	0.00	0.00	0.70	0.38	
#	£2								
#	±3								poor
#	£2								seal
#	ŧ1							rough estim	ate only
				Flov	v vs Excess	Head			
	0.400 -								
								0	
	0.350 -								
	0.300 -								
(s/	0.050								
∧ (L	0.250 -								
Ы Ц	0.200 -								
Average Flow (L/s)	0.200								
era	0.150 -								
Ā									
(0.100 -								
	0.050 -								
	0.000 -								
		.0 0	.1 C).2 0.3	0.4	0.5	0.6	0.7	0.8
				-	Total Excess	Head (m)			
						. ,			
Bul	k K	ща	# 0	Stage no.	#0 h = -!-	#4 bc-1	Average K	Lug	eon
	/s)	#1	#2	#3	#2 back	#1 back	_		
	,	2.7E-05					2.7E-05		
						PROJ. NO.:	A362-4		
			LO	RAX		PROJECT:	Coffee Creek	Gold Proje	ct
		12	ENVIRON	MENTAL		DETAILS:	Shut-in Test	in MW15-04	T (BH-04)
		2289 Rum	ard St Va	ncouver, B.C.		ENG.	LF	Checked:	
						DATE	18-Feb-16	Figure:	

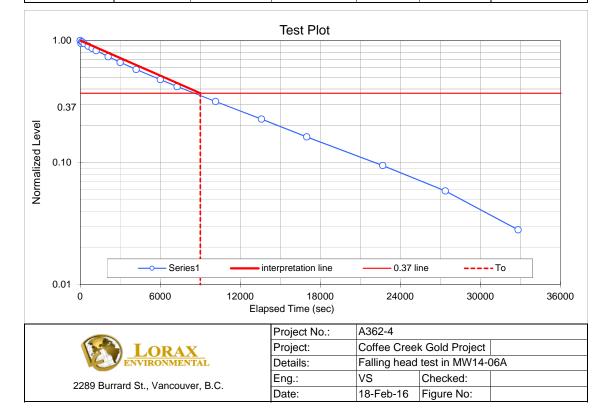


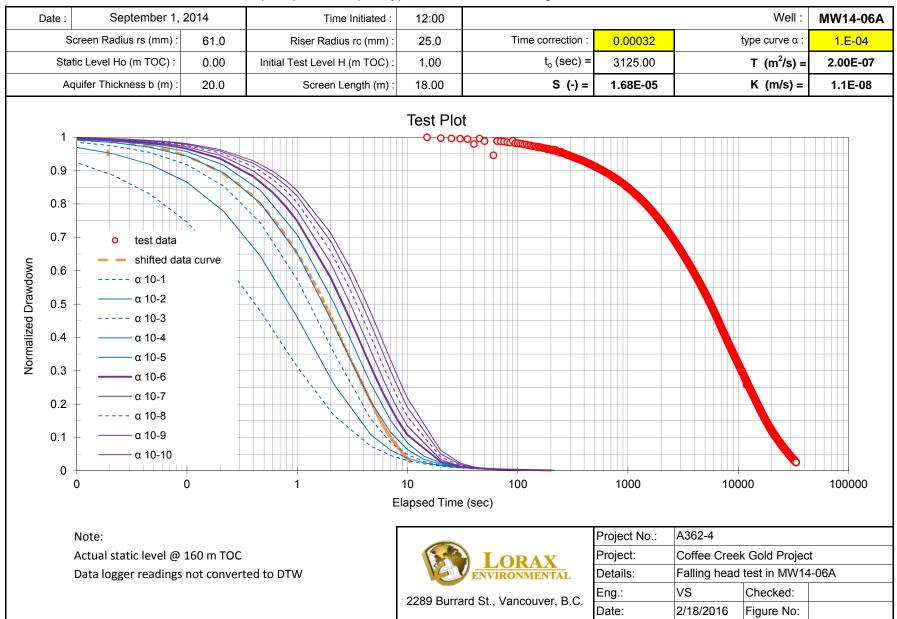

MW15-05T Recovery after Airlift Test

Elapsed time since cessation of pumping (sec)

1000

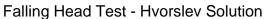
Date: August		9, 2015	Time Initiated:	11:00	Well:	MW14-05B
Borehole Diameter (mm):		96	Riser ID (mm):	50	Screen Length (m):	20.50
Static Level H (mbrp) :		135.00	Initial Level H ₀ (mbrp):	145.00	T _o (sec) =	55000
Screen at impervious boundary: Yes = 1, No=0		0			K (m/s) =	4.7E-10
Clock Time	Elapsed Time (sec)	Elapsed Time (min)	Depth to Water (h) (mbrp)	Drawdown H - h (m)	Normalized Level (H-h)/(H-H ₀)	Comments
11:00	0 25200 39600 61200 82800 118800 176400 262800	0.0 420.0 660.0 1020.0 1380.0 1980.0 2940.0 4380.0	145.000 141.481 139.938 138.269 137.185 136.164 135.440 135.117	10.000 6.481 4.938 3.269 2.185 1.164 0.440 0.117	1.00 0.65 0.49 0.33 0.22 0.12 0.04 0.01	Recovery after purging and sampling DTW recorded with data logger

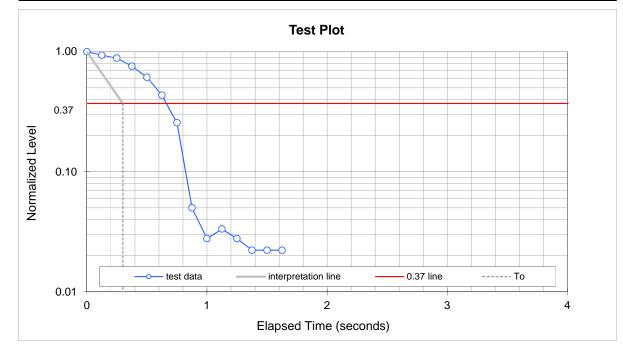




	Project No.:	A362-4		
LORAX	Project:	Coffee Creek Gold Project		
ENVIRONMENTAL	Details:	Recovery after GW Sampling in MW14-05B		
2289 Burrard St., Vancouver, B.C.	Eng.:	VS	Checked:	
2269 Bullard St., Valicouver, B.C.	Date:	18-Feb-16	Figure No:	

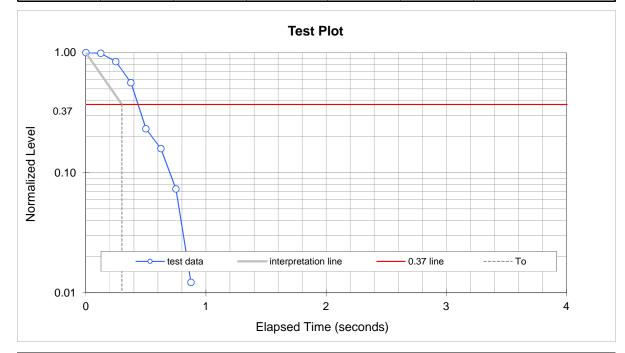
			ethoù - Falling r	icau rest		
Date:	Septemb	er 1, 2014	Time Initiated:	12:00	Well:	MW14-06A
Effective Screen R	adius (mm)	61	Riser Radius (mm):	25	Screen Length (m):	18.00
Static Level H (m	ıbrp) :	0.00	Initial Level H ₀ (mbrp):	1.00	T _o (sec) =	9000
Aquifer Thickness	(m):	20.0			K (m/s) =	1.1E-08
	Elapsed Time	Elapsed Time	Depth to	Drawdown	Normalized	
Clock Time	(sec)	(min)	Water (h)	H - h	Level	Comments
			(mbrp)	(m)	(H-h)/(H-H ₀)	
	0	0.0	1.000	1.00	1.00	
	60	1.00	0.95	0.946	0.946	
	120	2.00	0.98	0.978	0.978	Solid slug
	180	3.00	0.97	0.966	0.966	data logger was
	300	5.00	0.94	0.943	0.943	used to record
	600	10.00	0.90	0.899	0.899	the response
	900	15.00	0.86	0.861	0.861	
	1200	20.00	0.83	0.827	0.827	Actual static level
	2100	35.00	0.74	0.737	0.737	below 150 mTOC
	3000	50.00	0.66	0.661	0.661	
	4200	70.00	0.58	0.579	0.579	
	6000	100.00	0.48	0.478	0.478	
	7260	121.00	0.42	0.419	0.419	
	10140	169.00	0.32	0.316	0.316	
	13590	226.50	0.23	0.227	0.227	
	16980	283.00	0.16	0.162	0.162	
	22680	378.00	0.09	0.094	0.094	
1	27360	456.00	0.06	0.059	0.059	
	32820	547.00	0.03	0.028	0.028	

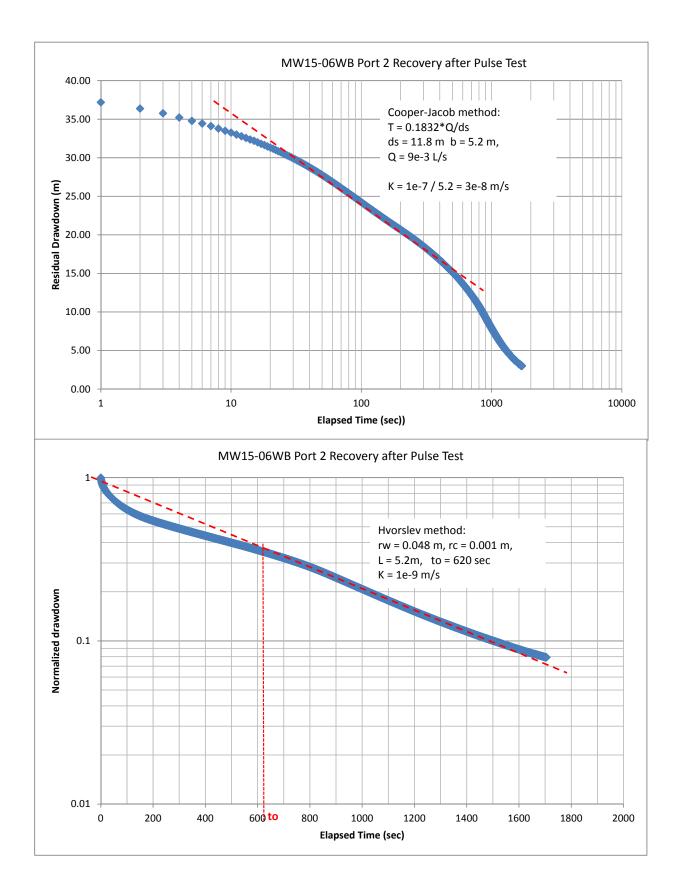

Hvorslev Method - Falling Head Test

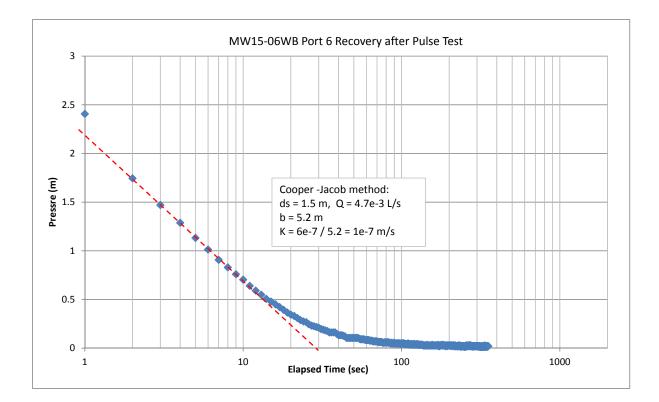


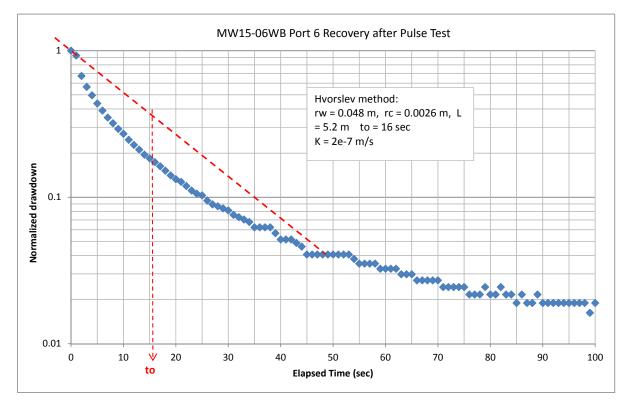
Papadopulos-Cooper Type Curve Method - Slug Test Evaluation

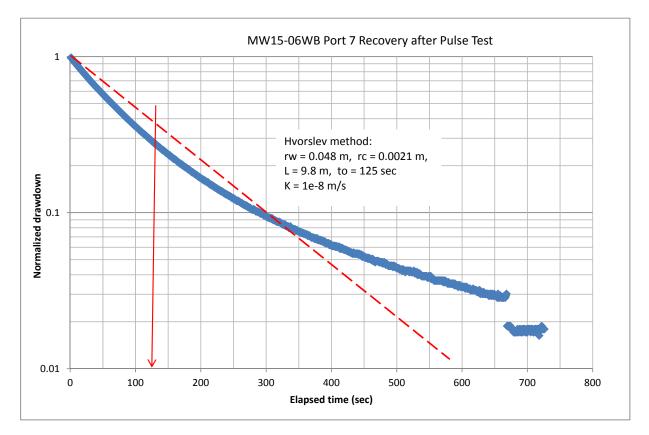
114 0.00 0 me Elapsed Time (min) 0.0 0.0 0.0 0.0	Riser ID (mm): Initial Level H ₀ (mbrp): Depth to Water (h) (mbrp) 0.900 0.840	50 0.90 Drawdown H - h (m) 0.900	Screen Length (m): T _o (sec) = K (m/s) = Normalized Level (H-h)/(H-H ₀) 1.00	13.00 0.3 1.2E-04 Comments
0 ne Elapsed Time (min) 0.0 0.0	(mbrp): Depth to Water (h) (mbrp) 0.900	Drawdown H - h (m) 0.900	K (m/s) = Normalized Level (H-h)/(H-H ₀)	1.2E-04
ne Elapsed Time (min) 0.0 0.0	Water (h) (mbrp) 0.900	H - h (m) 0.900	Normalized Level (H-h)/(H-H ₀)	
(min) 0.0 0.0	Water (h) (mbrp) 0.900	H - h (m) 0.900	Level (H-h)/(H-H ₀)	Comments
0.0	(mbrp) 0.900	(m) 0.900	(H-h)/(H-H ₀)	Comments
0.0			1.00	
0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0	0.795 0.680 0.550 0.230 0.045 0.025 0.030 0.025 0.020 0.020 0.020	0.840 0.795 0.680 0.550 0.390 0.230 0.045 0.025 0.025 0.020 0.020	0.93 0.88 0.76 0.61 0.43 0.26 0.05 0.03 0.03 0.03 0.03 0.02 0.02 0.02	screened across sandpack very fast response due to sandpack high K and storage K value is not valid for the tested formation
	0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0	0.0 0.390 0.0 0.230 0.0 0.045 0.0 0.025 0.0 0.030 0.0 0.025 0.0 0.025 0.0 0.025 0.0 0.020 0.0 0.020	0.0 0.390 0.390 0.0 0.230 0.230 0.0 0.045 0.045 0.0 0.025 0.025 0.0 0.030 0.030 0.0 0.025 0.025 0.0 0.025 0.025 0.0 0.025 0.025 0.0 0.020 0.020 0.0 0.020 0.020	0.0 0.390 0.390 0.43 0.0 0.230 0.230 0.26 0.0 0.045 0.045 0.05 0.0 0.025 0.025 0.03 0.0 0.030 0.030 0.03 0.0 0.025 0.025 0.03 0.0 0.025 0.025 0.03 0.0 0.025 0.025 0.03 0.0 0.020 0.020 0.02 0.0 0.020 0.020 0.02




	Project No.:	A362-4		
LORAX	Project:	Coffee Creek	Coffee Creek Gold	
ENVIRONMENTAL	Details:	Stug Test in MW15-2 AZ		
2289 Burrard St., Vancouver, B.C.	Eng.:	VS	Checked:	
2269 Bullard St., Vancouver, B.C.	Date:	18-Feb-16	Figure No:	


Date: Septembe		er 4, 2015	Time Initiated:	10:30	Well:	MW15-3 AZ
Borehole Diameter (mm):		114	Riser ID (mm):	50	Screen Length (m):	13.00
Static Level H (mbrp) :		0.00	Initial Level H ₀ (mbrp):	0.82	T _o (sec) =	0.3
Screen at impervious boundary: Yes = 1, No=0		0			K (m/s) =	1.2E-04
Clock Time	Elapsed Time (sec)	Elapsed Time (min)	Depth to Water (h) (mbrp)	Drawdown H - h (m)	Normalized Level (H-h)/(H-H ₀)	Comments
10:30	0 0.125 0.25 0.375 0.5 0.625 0.75 0.875	0.0 0.002 0.004 0.006 0.008 0.010 0.013 0.015	0.820 0.810 0.690 0.460 0.190 0.130 0.060 0.010	0.820 0.810 0.690 0.460 0.190 0.130 0.060 0.010	1.00 0.99 0.84 0.56 0.23 0.16 0.07 0.01	screened across sandpack very fast response due to K and storage of sandpack screened across water level Not valid for the tested aquifer


Falling Head Test - Hvorslev Solution


LORAX ENVIRONMENTAL	Project No.:	A362-4			
	Project:	Coffee Creek Gold Project			
	Details:	Stug Test in MW15-3 AZ			
2289 Burrard St., Vancouver, B.C.	Eng.:	VS	Checked:		
	Date:	18-Feb-16 Figure No:			

Appendix 3-F: Monitoring Well Development and Sampling Methods

_GOLDCORP

Appendix 3-F: Well Development and Groundwater Sampling Methods

1. Introduction

Well development and groundwater sampling methods implemented at the Coffee Gold Project are described in the following document.

Nineteen groundwater monitoring wells were installed at the Coffee Gold Project in 2014 and 2015. Monitoring wells installed in 2014 (MW14-02A, MW14-02B, MW14-03A, MW14-03B, MW14-05A, MW14-05B, MW14-06A and MW14-06B) were all completed as conventional installations in boreholes drilled with a hydraulic diamond drill. Monitoring wells installed in 2015 consisted of conventional wells in the shallow groundwater system (MW15-01AZ, MW15-02AZ, MW15-03AZ, MW15-04AZ and MW15-05AZ) and Westbay system installations in the deeper groundwater system (MW15-01WB, MW15-02WB, MW15-03WB, MW15-04WB, MW15-05WB, and MW15-06WB). All monitoring wells installed in 2015 were drilled with a reverse circulation drill with the exception of MW15-06WB which was drilled with a hydraulic diamond drill. Well completion details for the conventional monitoring wells and Westbay installations are presented in Table 3-2 and Table 3-3 in the main report. Borehole and monitoring wells completion logs are provided in Appendix 3-A. Details regarding drilling and installation methods used in 2014 and 2015 are presented in Appendix 3-D.

2. Well Development

The purpose of well development is to remove drilling artifacts to facilitate sampling of representative formation water. Specific well development and groundwater sampling methods were employed depending on the type of well installation and depth to groundwater, and are described below.

2.1. 2014 Well Development Program

Well development was conducted between September 24 and October 9, 2014. Details regarding the development of the MW14-series monitoring wells are presented in Table 1. Water levels at MW14-02A and MW14-02B were shallow and the screened interval sufficiently permeable to support development using conventional equipment (inertial pump actuated with a Hydrolift II). Deep water levels (>100 metres) observed in the remaining monitoring wells required the use of a custom made bailer-winch system shown in Photograph 1.

Monitoring wells MW14-02A and MW14-02B were developed by purging with inertial pumps at flow rates ranging from 1 to 2 L/min. Both wells were developed by pumping until the purge water was clear (sediment free) and a minimum of two well volumes (volume of water in the well casing plus water in the sand pack) had been removed.

Monitoring wells MW14-03A, MW14-03B, MW14-05A, MW14-05B and MW14-06A were developed by purging with the bailer-winch system. Average flow rates ranged from 0.14 to 0.32 L/min. A total of 0.5 to 1.4 well volumes was purged from these wells during development in 2014. The initial purge water at MW14-03A was more viscous than typical and was characterized as having a stringy/goopy consistency due to the presence of drilling additives.

Several monitoring wells were affected by water freezing inside the well casing. Significant ice buildup occurred inside the well casing at shallow depths (<20 m) at MW14-03A, MW14-05A and MW14-06A during purging and development with the bailer-winch system. Ice buildup resulted in difficulty inserting and extracting the bailer from the wells and ultimately led to the suspension of purging and development at MW14-03A, MW14-05A and MW14-06A. Monitoring well MW14-06B could not be developed as a result of the water column freezing after installation.

Photograph 1: Bailer-winch system used to develop monitoring wells MW14-03A, MW14-03B, MW14-05A, MW14-05B and MW14-06A. System setup pictured at MW14-06A.

APPENDIX 3-F: Well Development and Groundwater Sampling Methods
Coffee Gold Baseline Hydrogeological Assessment

Maniforin a Wall ID	Development	Well Volume ¹	Volume Purged	Well Volumes Purged
Monitoring Well ID	Method	L	L	
MW14-02A	IP	428	1040	2.4
MW14-02B	IP	297	638	2.1
MW14-03A	BW	228	328	1.4
MW14-03B	BW	54	77	1.4
MW14-05A	BW	198	104	0.5
MW14-05B	BW	161	153	1.0
MW14-06A	BW	313	195	0.6
MW14-06B ²	-	-	-	-

Table 1:

Notes:

BW = bailer-winch system, IP = inertial pump actuated with a Hydrolift II

1. Volume of water in well casing and sand pack (based on pre-development water levels).

2. MW14-06B started freezing and was blocked by ice before it could be developed.

2.2. 2015 Well Development Program

The 2015 well development program was conducted between May 29 and June 21, 2015, with the exception of shallow groundwater monitoring well MW15-05AZ, which was dry at the time. This well was subsequently developed on September 6, 2015. Several different development methods (i.e., inertial pump, air lift, and Westbay sampler) were used depending on the well type and depth to water. Details regarding the development of the MW14-series and MW15-series monitoring wells conducted in 2015 are presented in Table 2.

Monitoring Well ID	Development Method	Well Volume ¹ L	Volume Purged L	Well Volumes Purged	Comments
MW14-02A	-	-	-	-	Development completed in 2014.
MW14-02B	IP	285	825	2.9	Well development conducted in 2015 due to sediment observed in purge water. Well purged at flow rates of 2.3 4 L/min.
MW14-03A	AL	142	628	4.4	
MW14-03B	AL	50	-	-	Water column air lifted, however no discharge at surface due to low static submergence (\sim 11%).
MW14-05A	AL	213	550	2.6	
MW14-05B	AL	113	44	0.4	Water column air lifted, however very little discharge at surface with decreasing yields due to low static submergence (~24%).
MW14-06A	well damaged ²	-	-	-	
MW14-06B	well damaged ²	-	-	-	
MW15- 01AZ	-	-	-	-	Dry in June 2015. Frozen in July, August and September 2015.
MW15- 02AZ	IP	19.3	250	13	
MW15- 03AZ	IP	16	784	49	
MW15- 04AZ	-	-	-	-	Dry in June, July, August and September 2015.
MW15- 05AZ	IP	1.7	200	118	Dry in June, July and August. Developed September 2015.
MW15- 01WB	WB	44	47	1.1	Sample Zone/Port 4 developed
MW15- 02WB	WB	44	43.8	1.0	Sample Zone/Port 3 developed
MW15- 03WB	WB	31	32.6	1.1	Sample Zone/Port 3 developed
MW15- 04WB	WB	18	22.5	1.3	Sample Zone/Port 4 developed
MW15- 05WB	WB	31	34.5	1.1	Sample Zone/Port 3 developed
MW15- 06WB	WB	28	32.5	1.2	Sample Zone/Port 6 developed

Table 2:2015 Monitoring Well Development

Notes:

IP = inertial pump activated with a Hydrolift II; AL = air-lift pumping

WB = Westbay sampler probe equipped with 4 sample bottles (total volume ~1 L) was used for purging/development

1. Volume of water in well casing and sand pack (based on water levels prior to well development). For Westbay wells the well volume corresponds with the zone volume of the developed sample zone/port.

2. Well casing collapsed near surface, likely due to freeze/thaw action in the active layer. Consequently, the well could not be developed.

Well development of MW14-series monitoring wells (MW14-03A, MW14-03B, MW14-05A and MW14-05B) with deep water levels was resumed in 2015, after difficulties with freezing caused well development to be suspended in 2014. The purge water at these wells

remained slightly cloudy (non-mineral in nature) with a slight yellow colour due to the suspected influence of drilling additives. Well development of the MW14-03A, MW14-03B, MW14-05A and MW14-05B was conducted by air-lift surging up to eight times, followed by air lift pumping. Air lift surging is conducted by repeatedly lifting the water column (without actually discharging water at the surface) and then allowing the water to fall back down to the bottom of the well which causes the water to move in and out of the screen and filter pack. This movement entrains fines into the well and allows subsequent removal of fines by air-lift pumping. Air-lift pumping was conducted until the discharge water became clear and colourless or there was no noticeable improvement in cloudiness (turbidity) and colour, and field chemistry (pH and electrical conductivity) stabilized.

Air lift pumping was not successful at MW14-03B and MW14-05B due to low water levels and low static submergence of the air line. The water column was lifted at MW14-03B, however no discharge was observed at surface, while MW14-05B was characterized by very low discharge at surface with decreasing yields. Consequently, well development at MW14-03B and MW14-05B was suspended until water levels rose sufficiently to permit air lift pumping. Monitoring wells MW14-06A and MW14-06B could not be developed in June 2015 due to damaged well casing. Freeze/thaw action in the active layer was suspected of having collapsed the well casing. Additional well development (by purging with an inertial pump) was conducted at MW14-02B after sediment was observed in purge water. An additional 2.9 well volumes were purged at MW14-02B.

The shallow groundwater monitoring wells (MW15-02AZ, MW15-03AZ and MW15-05AZ) were developed by pumping with an inertial pump equipped with a surge block and actuated by a Hydrolift II. The shallow groundwater wells were pumped until the purge water became clear, or there was no noticeable improvement in turbidity. A total of 13 to 118 well volumes were purged from MW15-02AZ, MW15-03AZ and MW15-05AZ during well development.

The Westbay system installations (MW15-01WB to MW15-06WB) were developed by purging with the Westbay sampler. All Westbay installations consist of several sample zones (and corresponding ports), however only one zone was developed at each installation, as summarized in Table 2. The sample zone that was developed was selected based on consideration of field observations, spot air lift testing during drilling, location of suspected features, zone volumes, and the expected performance and connection of sample zones to the groundwater flow system. The selected sample zones were developed by purging a minimum of one zone volume (water volume in the borehole annulus between the packers that delimit the sample zone) to remove mixed borehole water which remained in the sample zone after installation. Due to tight bedrock at MW15-06WB, three sample zones (Ports 2, 6 and 7) were selected for potential development based on field observations

during drilling and examination of drill core. All three sample zones selected for potential development were pulse tested (Table 4-2 in the report and Appendix 3-E) with the Westbay sampler to identify the zone with the highest yield. MW15-06WB sample zone/port 6 was determined to have the highest yield during pulse testing and was subsequently developed. A total of 1 to 1.3 zone volumes were purged from MW15-01WB, MW15-02WB, MW15-03WB, MW15-04WB, MW15-05WB and MW15-06WB during well development (Table 2).

3. Groundwater Sampling Methods

Monitoring events were conducted in September/October 2014, May/June 2015, July 2015, August 2015 and September 2015. All new monitoring wells installed in 2014 and 2015 were sampled for groundwater quality with the exception of MW14-06A, MW14-06B, MW15-01AZ and MW15-04AZ which could not be sampled due to damage or water limitations (*e.g.*, frozen or dry) (Table 3). Monitoring wells MW14-06A and MW14-06B were not sampled in 2014 or 2015. Both wells were frozen in 2014 and resulted in damaged casing which precluded their sampling in 2015. Freeze/thaw action was suspected of having collapsed the well casing near ground surface at MW14-06A (4.9 metres below top of casing (mbtoc)) and MW14-06B (3 mbtoc). Shallow groundwater monitoring wells MW15-01AZ and MW15-04AZ were not sampled in 2015 as they were dry or frozen. Table 3 presents a summary of the 2014 and 2105 groundwater sampling programs, including sampling methods used at each monitoring well.

Groundwater sampling was conducted in accordance with methods outlined in the BC Field Sampling Manual (BC MWLAP, 2003). Sampling was conducted using several different types of pumps. The pump employed at each well depended on the type of well installation, permeability of the geological unit being sampled, and depth to groundwater. Inertial pumps actuated with a Hydrolift-II and peristaltic pumps were used to sample groundwater wherever possible, primarily at monitoring wells screened in permeable formations. In contrast, bladder pumps were used to collect groundwater samples from deep wells screened in low permeability bedrock which would not permit sampling with conventional methods (*e.g.*, inertial pump). Bladder pumps were dedicated to specific monitoring wells, however pumps were deployed and pulled from the wells during every sampling event to prevent potential damage as a result of freezing inside wells installed through permafrost. The Westbay sampler was used to collect groundwater samples from the Westbay installations.

Station	Sept./Oct. 2014	May/Jun. 2015	Jul. 2015	Aug. 2015	Sept. 2015	Sample Count
MW14-02A	IP	IP	IP	IP	IP	5
MW14-02B	IP	IP	IP	IP	IP	5
MW14-03A	BP	BP	BP	BP	BP	5
MW14-03B	BP	BP	BP	BP	BP	5
MW14-05A	BP	BP	BP	BP	BP	5
MW14-05B	BP	BP	BP	BP	BP	5
MW14-06A	frozen ¹	damaged ²	decommissioned ³			
MW14-06B	frozen ¹	damaged ²	decommissioned ³			
MW15-01AZ	_	dry	frozen	frozen	frozen	0
MW15-01WB (Port 4)	_	WB	WB	WB	WB	4
MW15-02AZ	-	PP	PP	PP	PP	4
MW15-02WB (Port 3)	_	WB	WB	WB	WB	4
MW15-03AZ	_	РР	PP	PP	PP	4
MW15-03WB (Port 6)	-	WB	WB	WB	WB	4
MW15-04AZ	-	dry	dry	dry	dry	0
MW15-04WB (Port 4)	-	WB	WB	WB	WB	4
MW15-05AZ	-	dry	dry	dry	PP	1
MW15-05WB (Port 3)	-	WB	WB	WB	WB	4
MW15-06WB (Port 6)	_	WB	WB	WB	WB	4

 Table 3:

 Summary of 2014 and 2015 Groundwater Sampling Programs

Notes:

BP = bladder pump, IP = inertial pump actuated with a Hydrolift-II, PP = peristaltic pump, WB = Westbay sampler

1. Water inside monitoring well had started freezing at the time of sampling.

 Monitoring well casing collapsed near surface, likely due to freeze/thaw action in the active layer. Consequently, well screen could not be accessed.

3. Monitoring well decommissioned by Kaminak.

During groundwater purging, field parameters were continuously monitored with a multiparameter probe (YSI 556 MPS or YSI Professional Plus) coupled to an in-line flowthrough cell. Field parameters were monitored to ensure sample representativeness and to provide reliable field-based estimates of temperature, pH, specific conductance, dissolved oxygen (DO), and oxidation-reduction potential (ORP) of the groundwater. The multiparameter probes were calibrated (pH 4 and 7, electrical conductivity 1413 μ S/cm, DO water-saturated air, and ORP 240 mV) prior to use in the field on a daily or bi-daily basis as needed. Low-flow sampling methods were employed, and groundwater samples were collected after water levels in monitoring wells and purge water field parameters had stabilized.

Artesian conditions at MW14-02A and MW14-02B resulted in the top of the water column freezing inside the well casing installed through permafrost. Consequently, both wells required de-icing prior to groundwater sampling. MW14-02A and MW14-02B were de-

LORAX

iced down to a depth of approximately 33 to 34 metres below ground surface using a hot water power washer equipped with high-pressure hoses and a drain jetting nozzle. Deicing water was sourced from the camp water supply well and stored in a large 1 m³ plastic container. A sample from the camp water supply well was collected (CAMP15-1) on July 18, 2015 to characterize de-icing water quality (Appendix 5-A). Water discharged from the well casing during de-icing was captured at the surface with a flow manifold and conveyed to a second empty 1 m³ plastic container for storage. De-icing discharge water was captured and recycled to minimize water use and to facilitate accounting of the volume of water injected into the well (upon break through) to ensure adequate purging prior to sampling. To ensure the integrity of the well casing, the temperature of the discharge water was controlled and limited to a maximum of 23°C. Due to long water columns at MW14-02A (~ 183 to 197 m) and MW14-02B (~ 127 to 138 m) and relatively permeable geology at both wells, groundwater sampling was conducted after the injected de-icing water and a minimum of one well volume had been purged and purge water field parameters had stabilized. Following the initial removal of de-icing water and a well volume, MW14-02A and MW14-02B were purged approximately 1 to 21 additional sand pack volumes (volume of water in the sand pack) in 2014 and 2015. The MW14-02B Aug. 2015 groundwater sample was collected after purging the volume of water inside the well casing, in addition to approximately 0.3 sand pack volumes.

Monitoring well MW14-05B was characterized by low yields and low water levels which presented challenges for the equipment capabilities and sampling procedures. A modified purging/sampling procedure was employed at MW14-05B to obtain the most representative groundwater samples. The amount of purged groundwater was maximized by drawing the water level down to the lowest possible level (pump elevation). The well was then allowed to recover for a day. This ensured the greatest displacement and the largest buffer between 'old' residual standing water and 'new' formation water. To ensure the collection of representative groundwater (formation water) a sufficient amount of water was purged from each well to remove residual water inside the bladder pump and tubing prior to sampling.

The Westbay installations (MW15-01WB to MW15-06WB) were sampled in June 2015 after purging 1 to 1.3 sample zone volumes (22.5 - 47 L) during well development. Subsequent groundwater sampling was conducted after purging a minimum of 4 L. Since Westbay samples zones are isolated (i.e. not in direct contact) from atmospheric conditions, collecting representative groundwater samples does not require the use of typical sampling methods whereby large volumes of water are purged. The exterior of the Westbay bottles was rinsed with de-ionized water prior to decanting the sample into the lab supplied bottles. The inside of the Westbay sampler probe and bottles was decontaminated between

monitoring wells by rinsing with dilute nitric acid followed by three rinses with de-ionized water.

The purge water at MW15-06WB remained slightly cloudy, foamy and yellowish in colour after well development and following groundwater sampling in June 2015 due to the suspected presence of drilling additives. Consequently, additional purging/development was conducted at MW15-06WB in July and August 2015. MW15-06WB was purged until there was no noticeable improvement in purge water cloudiness, foaminess and colour prior to groundwater sampling. A total of 2.9 and 2.1 sample zone volumes, representing 81 L and 59 L were purged over the course of almost 2 weeks in July and August 2015, respectively. Prior to sampling in September 2015, a total of 6.5 zone volumes (~180 L) were purged, including well development and sampling.

Groundwater samples were collected and preserved in the field with the appropriate laboratory supplied bottles and preservatives. Samples analyzed for dissolved parameters were filtered in the field with disposable in-line 0.45 micron filters, with the exception of groundwater samples collected from Westbay installations which were filtered in the lab. Quality control sampling was conducted in the field and included the collection of field Field replicates were collected blanks, a trip blank, and field replicate samples. concurrently with groundwater sampling, at the same time and location, using the same sampling procedures and equipment, and by the same person. Field blanks were collected at the monitoring wells or back in camp where water samples were processed using laboratory supplied de-ionized water, bottles, and preservatives. A trip blank supplied by the laboratory was brought out to the field during monitoring activities and subsequently shipped back to the laboratory with groundwater samples collected at the site. After collection, samples were kept cool in the field and during shipping by being stored in a fridge and/or inside coolers with ice packs until delivery to the laboratory. Groundwater samples were submitted for chemical analysis to the ALS Environmental (ALS) laboratory in Burnaby, BC in 2014, and to the Maxxam Analytics (Maxxam) laboratory in Burnaby, BC in 2015. Groundwater samples were analyzed for the following parameters:

- Physical parameters
- Anions
- Nutrients
- Organic and inorganic carbon
- Total metals
- Dissolved metals

Groundwater quality parameters and the corresponding detection limits for the data collected in 2014 and 2015 are presented in Table 4 and Table 5, respectively.

Parameter	Symbol	Unit	Detection Limit
Physical Properties			
Conductivity	EC	uS/cm	2
Hardness (as CaCO3)	Н	mg/L	0.5
pH	pH	pH	0.1
Total Suspended Solids	TSS	mg/L	3
Total Dissolved Solids	TDS	mg/L	20
Turbidity	-	NTU	0.1
Anions and Nutrients			
Alkalinity, Total (as CaCO3)	-	mg/L	1
Ammonia, Total (as N)	NH ₃	mg/L	0.005
Chloride	Cl	mg/L	0.5
Fluoride	F	mg/L	0.02
Nitrate	NO ₂	mg/L	0.005
Nitrite	NO ₃	mg/L	0.001
Total Kjeldahl Nitrogen	TKN	mg/L	0.05
Total Nitrogen	N	mg/L	0.05
Phosphorus	Р	mg/L	0.002
Sulfate	SO_4	mg/L	0.5
Sulphide	S	mg/L	0.002
Organic/Inorganic Carbon			
Dissolved Organic Carbon	DOC	mg/L	0.5
Total Organic Carbon	TOC	mg/L	0.5
Total and Dissolved Metals			
Aluminum	Al	mg/L	0.0030 1 / 0.0010 2
Antimony	Sb	mg/L	0.0001
Arsenic	As	mg/L	0.0001
Barium	Ba	mg/L	0.00005
Beryllium	Be	mg/L	0.0001
Bismuth	Bi	mg/L	0.0005
Boron	В	mg/L	0.01
Cadmium	Cd	mg/L	0.00001
Calcium	Ca	mg/L	0.05
Chromium	Cr	mg/L	0.0001
Cobalt	Co	mg/L	0.0001
Copper	Cu	mg/L	0.0005 1 / 0.0002 2
Iron	Fe	mg/L	0.01
Lead	Pb	mg/L	0.00005
Lithium	Li	mg/L	0.0005
Magnesium	Mg	mg/L	0.1
Manganese	Mn	mg/L	0.00005
Mercury	Hg	mg/L	0.0001 1 / 0.0005 2
Molybdenum	Mo	mg/L	0.00005
Nickel	Ni	mg/L	0.0005
Phosphorus	Р	mg/L	0.05
Potassium	K	mg/L	0.1
Selenium	Se	mg/L	0.0001
Silicon	Si	mg/L	0.05
Silver	Ag	mg/L	0.00001
Sodium	Na	mg/L	0.05
Strontium	Sr	mg/L	0.0002
Sulphur	S	mg/L	0.5
Thallium	Tl	mg/L	0.00001
Tin	Sn	mg/L	0.0001
Titanium	Ti	mg/L	0.01
Uranium	U	mg/L	0.00001
Vanadium	V	mg/L	0.001
Zinc	Zn	mg/L	0.0030 1 / 0.0010 2

Table 4: Groundwater Quality Parameters and Detection Limits (ALS 2014)

Notes:

1. Detection Limit for Total Metal

2. Detection Limit for Dissolved Metal

Parameter	Symbol	Unit	Detection Limit
Physical Properties			
Conductivity	EC	μS/cm	1.0
Hardness (CaCO3)	Н	mg/L	0.50
H	pH	pН	N/A
Fotal Suspended Solids	TSS	mg/L	1.0
Total Dissolved Solids	TDS	mg/L	10
Furbidity	-	NTU	0.10
Anions and Nutrient			
Alkalinity (Total as CaCO ₃)	-	mg/L	0.50
Alkalinity (PP as CaCO ₃)	-	mg/L	0.50
Ammonia, Total (as N)	NH ₃	mg/L	0.0050
Chloride	Cl	mg/L	0.50
Fluoride	F	mg/L	0.010
Nitrate	NO ₂	mg/L	0.0020
Nitrite	NO ₃	mg/L	0.0020
Nitrate plus Nitrite	-	mg/L	0.0020
Fotal Nitrogen	N	mg/L	0.020
Total Total Kjeldahl Nitrogen	TKN	mg/L	0.020
Phosphorus	Р	mg/L	0.0020
Dissolved Sulphate	SO ₄	mg/L	0.50
Sulphide	S	mg/L	0.0050
Inorganics			
Bicarbonate	HCO ₃	mg/L	0.50
Carbonate	CO ₃	mg/L	0.50
Hydroxide	OH	mg/L	0.50
Organic/Inorganic Carbon			
Dissolved Organic Carbon	DOC	mg/L	0.50
Total Organic Carbon	TOC	mg/L	0.50
Total and Dissolved Metals		8	
Aluminum	Al	μg/L	0.50
Antimony	Sb	μg/L	0.020
Arsenic	As	μg/L	0.020
Barium	Ba	μg/L	0.020
Beryllium	Be	μg/L	0.010
Bismuth	Bi	μg/L μg/L	0.0050
Boron	B	μg/L μg/L	10
Cadmium	Cd	μg/L μg/L	0.0050
Calcium	Ca	mg/L	0.050
Chromium	Cr	μg/L	0.10
Cobalt	Co	μg/L μg/L	0.0050
Copper	Cu	μg/L μg/L	0.050
Iron	Fe	μg/L μg/L	1.0
Lead	Pb	μg/L μg/L	0.0050
Lithium	Li	μg/L μg/L	0.50
Magnesium	Mg	mg/L	0.050
Maganese	Mn	μg/L	0.050
Mercury	Hg	μg/L μg/L	0.0020
Molybdenum	Mo	μg/L μg/L	0.050
Nickel	Ni	μg/L μg/L	0.030
Phosphorus	P	μg/L μg/L	2.0
Potassium	K	mg/L	0.050
Selenium	Se	μg/L	0.030
Silicon	Si	μg/L μg/L	50
Silver			0.0050
Sodium	Ag	μg/L mg/I	0.0050
Strontium	Na	mg/L	
	Sr	μg/L ma/I	0.050
Sulphur	S	mg/L	3.0
Thallium	<u> </u>	μg/L	0.0020
Tin	Sn	µg/L	0.20
Titanium	Ti	μg/L	0.50
Uranium	U	μg/L	0.0020
Vanadium	V	μg/L	0.20
Zinc	Zn	μg/L	0.10
Zirconium	Zr	μg/L	0.10

Table 5: Groundwater Quality Parameters and Detection Limits (Maxxam 2015)

Appendix 3-G: SRK Hydrogeological Field Investigations Report Coffee Gold Project

_GOLDCORP

Hydrogeologic Investigations Report Coffee Project Yukon

Report Prepared for

Kaminak Gold Corporation

SRK Consulting (U.S.), Inc. SRK Project Number 338600.020 December 18, 2015

Hydrogeologic Investigations Report Coffee Project Yukon

Kaminak Gold Corporation

1020 – 800 West Pender Street Vancouver, BC V6C 2V6 Canada

SRK Consulting (U.S.), Inc.

1125 Seventeenth Street, Suite 600 Denver, CO 80202

e-mail: denver@srk.com website: www.srk.com

Tel: +1.303.985.1333 Fax: +1.303.985.9947

SRK Project Number 338600.020

December 18, 2015

Authors: Roger Howell, Principal Consultant (Hydrogeology)

Reviewed by: Michael Levy, Principal Consultant (Geotechnics)

Table of Contents

1	Hyd	Iraulic Testing in Core Holes at Coffee Project	1
	1.1	Test Procedures	
	1.2	Specific Tests	2
	1.3	Summary of Hydraulic Conductivity Testing in Fracture Zones	8
2	The	ermistor Installations	10
	2.1	SRK-15D-07T (CFD 0600)	10
	2.2	SRK-15D-08T (CDF 0595)	
	2.3	SRK-15D-09T (CFD 0599)	13
	2.4	SRK-15D-10T (CFD 0593)	14
	2.5	SRK-15D-13T (CFD 0594)	15
	2.6	SRK-15D-14H (MW15-007T; CFD0596)	16
3	Wat	ter levels	18
4	Ref	erences	19
5	Date	e and Signature Page	20
Di	sclai	imer	21
		ght	

List of Tables

Table 1: Summary of 2015 Packer Test Results	9
Table 2: Locations of Hydro/Geotech Thermistor Installations	.10
Table 3. Instrument Locations in SRK-15D-07T	.11
Table 4: Instrument Locations in SRK-15D-08T	.12
Table 5: Instrument Locations in SRK-15D-09T	.13
Table 6: Instrument Locations in SRK-15D-10T	.14
Table 7: Instrument Locations in SRK-15D-13T	.15
Table 8: Instrument Locations in SRK-15D-14H	.17
Table 9: Water Levels from VBW's in 2015 Geotech Holes	.18
Table 10: Water Levels Estimated during 2015 Packer Tests	.18

List of Figures

Figure 1. Locations of 2015 Packer Test Holes and Thermistor-Installation Holes	2
Figure 2: Test Intervals and Fracture-Zones at Double-Double Test Hole	3
Figure 3: Test Intervals and Fracture-Zones at Latte Test Hole	4

Figure 4: Test Intervals and Fracture-Zones at Kona Test Hole	5
Figure 5: Test Intervals and Fracture-Zones at IFSPD062 (Supremo)	6
Figure 6: Test Intervals and Fracture-Zones at IFSPD110a (Supremo)	7
Figure 7: Test Intervals and Fracture-Zones at IFSPD124 (Supremo)	8
Figure 8: Downhole Temperatures in SRK-15D-07 through 9/1/2015	11
Figure 9: Downhole Temperatures in SRK-15D-08T through 9/1/2015	12
Figure 10: Downhole Temperatures in SRK-15D-09T through 9/1/2015	14
Figure 11: Downhole Temperatures in SRK-15D-10T through 10//302015	15
Figure 12: Downhole Temperatures in SRK-15D-13T through 10/29/2015	16
Figure 13: Downhole Temperatures in SRK-15D-14H (MW15-07T) through 8/6/2015	17

Appendices

Appendix A: Packer Test Analyses

1 Hydraulic Testing in Core Holes at Coffee Project

In June and July 2015, SRK conducted a limited hydrogeological investigation at the Coffee project, including 10 tests of mineralized fracture zones in six HQ (96 mm) core holes. The objectives of the fracture-zone hydraulic tests were to provide hydraulic-conductivity and water level data within the principal structures that will be mined in the open pits. The structures were inadequately tested during previous packer testing programs (Lorax, 2014, and Tetra Tech, 2014).

The test data will be incorporated by Lorax into a groundwater-flow model that will be used for an assessment of post-mining conditions.

Other tasks of the hydrogeological investigation included installing thermistors and transducers at six sites in support of geotechnical studies.

1.1 Test Procedures

Testing was done across mineralized fracture zones identified using Kaminak's geological database and 3-D model. Three hydro holes were selected by SRK for testing (SRK-15D-14P, 15P, and 16P) which were drilled across Kona, Double-Double, and Latte, respectively (Figure 1). Tests were also done in three previously planned resource drillholes at Supremo. Most fracture-zone testing was done using a packer to isolate the test interval, however, some tests were configured relative to overlying permafrost so that the packer could be omitted.

Airlift-recovery tests, slug tests, and inflow tests were done in the SRK 2015 program. The hydraulic tests were conducted in the core holes at irregular intervals, as geological targets were recognized in the core. Figures below show the targeted fracture zones that were tested. The specific geological targets consisted of fracture zones cutting schist and gneiss, and generally exhibited hydraulic conductivity values significantly higher than the enclosing rock.

An International Packer, Inc. (IPI) standard wireline packer system (SWPS) was used for all packer testing in the 2015 program. The SWPS device is designed to deploy by dropping the assembly down the drill rod from the surface and allowing it to lock into a standard HQ core barrel. The SWPS system contains a rubber gland that extends through the drill bit into the open borehole, and inflates with water. A transducer is housed in a chamber below the packer gland, within the test interval.

The packer testing was carried out using a "single packer" arrangement: the hole was drilled to the bottom of the test interval, and the rods were removed to the top of the interval. The packer was deployed at the bottom of the rods to isolate the open interval between the bottom of the hole and the packer. A packer was not used in every test; it was sometimes omitted where the bottom of permafrost defined the top of a test interval.

Airlift tests, whether packer-isolated or not, are performed by "pumping" water from the test interval by means of injected air. At Coffee the airlifting was accomplished with a heli-portable air compressor, which, in most cases delivered more air than could be easily applied. Airlift tests are considered to be more accurate in higher transmissivity intervals than slug tests or constant-inflow tests. Airlift tests, however, require a fairly deep submergence of the airline (static water level above the bottom of the airline), and this condition was sometimes not achievable due to deep static levels.

Constant inflow tests were done where low submergence rendered airlifting ineffective. The inflow or "pump-in tests" were done either at a constant rate, allowing the water level in the well casing to vary

with time, or at a constant head (usually the top of casing), allowing the inflow rate to vary with time. In the first case, the pumping data can be analyzed with a Cooper and Jacob (1946) technique and the recovery data with the Hvorslev (1951) method (sometimes). In the second case the pumping data are analyzed using the Jacob-Lohman (1952) method, and the recovery data more effectively with the Hvorslev method.

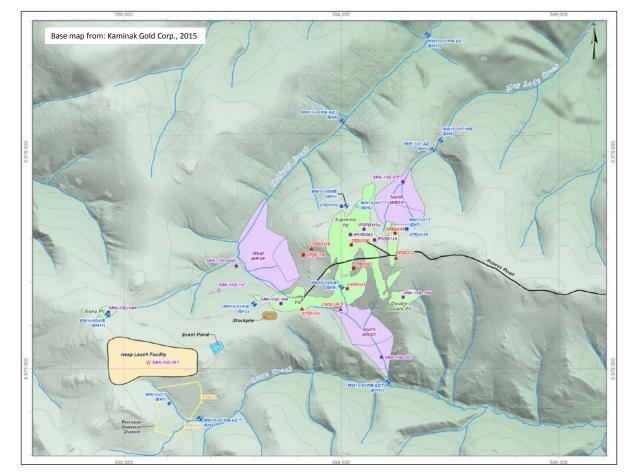


Figure 1. Locations of 2015 Packer Test Holes and Thermistor-Installation Holes

1.2 Specific Tests

The test core hole at Latte was drilled vertically; at Kona and Double-Double holes were drilled at - 70°. At Supremo three exploration holes were each drilled at -45°.

In nearly all cases the testing was complicated by a combination of deep permafrost and deep groundwater levels in the fracture zones. Several tests were found to be invalid because the test interval may have spanned the deep water table. It should also be noted, however, that each of the remaining valid tests could be questioned because of the possible, but undetectable presence of some permafrost across parts of the test zones. If present in the test interval, the permafrost would result in an incorrectly low calculation of hydraulic conductivity.

SRK-15D-16P (Double-Double)

The Double-Double drill site (Figure 1) was fairly low in elevation, so that the upper test (136 to 148 m downhole) was well positioned below the water table. As a result of the southern aspect of the drill

site, the test was also positioned below a fairly shallow permafrost. The hole was drilled in a southerly direction at an inclination of -70°.

The rods were raised to the top of the fracture zone intersection at 136 m (downhole), and the packer was set and inflated below the bit. After water levels equilibrated and with a transducer down hole, a constant-head injection test was conducted by filling the drill rods to the top and maintaining that level while monitoring inflow volumes for a period of 63 minutes. The water level was then allowed to recover for an equal period of time.

Inflow rates were analyzed (Appendix A, Figure A1) by the Jacob-Lohman method, yielding a K value of 3.5E-07 m/s. Water-level recovery was analyzed both by the Theis-recovery method (Theis, 1935) as shown in Figure A2, and as falling-head slug data (the Hvorslev method – Figure A3), which methods returned K values of 2.3E-07 and 2.9E-07 m/s, respectively. The Theis analysis is judged the most reliable of the three.

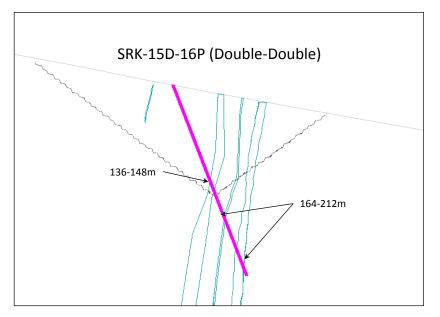


Figure 2: Test Intervals and Fracture-Zones at Double-Double Test Hole

A second, lower-zone test was done across a depth interval of 164 to 212 m, taking in two zones of fracturing. The packer was set at the top of the zone, including a transducer in the housing below the packer element. The interval was airlift-pumped for 93 minutes at a rate which declined to approximately 0.3 L/s at the end of the pumping period. The water levels were allowed to recover for a period of 95 minutes. Theis analysis of the water level recovery (Figure A4 in Appendix A) yields a K value of 1.1E-07 m/s. It is important to note that the test results across the interval 164 to 212 provide an average K value for both fractured and unfractured material.

SRK-15D-15P (Latte)

Latte also lies low on the hill, so that water depths were favorable. The hole was drilled vertically. The drill site has a northern aspect, and as a consequence, the first test interval at Latte (115 to 205 m) responded as though it was entirely in frozen ground. Water remained in the hole nearly at

top of casing after drilling had stopped, and did not recover at all after being blown out with an airlift. Consequently, the data (Figure A5) cannot be analyzed for K value or for static water level.

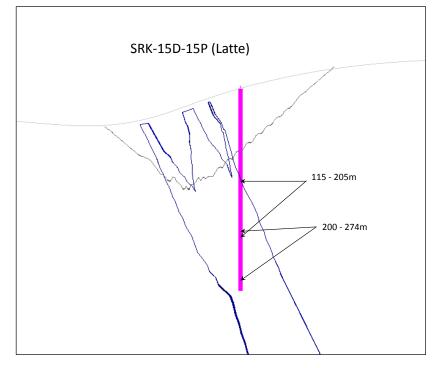


Figure 3: Test Intervals and Fracture-Zones at Latte Test Hole

The second, lower test was done across a depth interval of 200 to 274 m, however, because of the apparent frozen conditions to at least 205 m (see above), the analysis assumes an effective interval from 205 to 274 m. The packer was set at the top of the zone (although probably unnecessarily), and the interval was airlift-pumped for 90 minutes at a rate which declined to 0.32 L/s at the end of the pumping period. The water levels were allowed to recover for several hours. Theis analysis of the water level recovery (Figure A6 in Appendix A) yields a K value of 3.5E-07 m/s.

SRK-15D-14P (Kona)

The hole was drilled to the north at an inclination of -70°. No test was possible in the upper zone at Kona because of a combination of a deep permafrost floor (about 100 m vertically below ground) and a static water level at 124.7 mbgs. A packer was set above a lower zone at 175 to 214 m downhole, which was then tested by holding the water at the top of casing for 30 minutes. The recovery data were then analyzed by the Hvorslev method as a falling-head slug test (Figure A7).

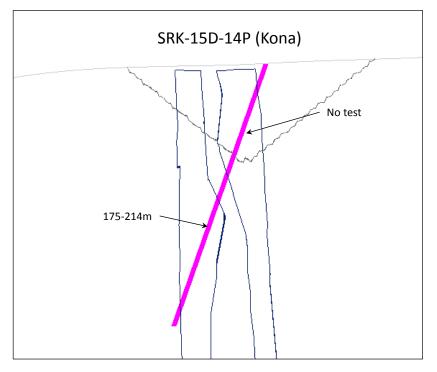


Figure 4: Test Intervals and Fracture-Zones at Kona Test Hole

The lower zone yielded an intermediate K value of 1.4E-07 m/s. It is worth noting that the drillers reported very-rapid draining of fluids from the rods when the bottom of permafrost was breached, indicating a highly transmissive zone higher in the hole.

IFSPD-062 (Supremo, T2)

IFSPD-062 was drilled near the top of Supremo Hill, toward the west at an inclination of -45°. The test interval at 175 to 221 m downhole spanned the T1-T2 vein structure. Calculations showed the packer to be set just one half meter below the static water level, which limits the reliability of the test results. In any case, a constant-rate inflow test was run for 60 minutes at a rate of 1.07 l/s.

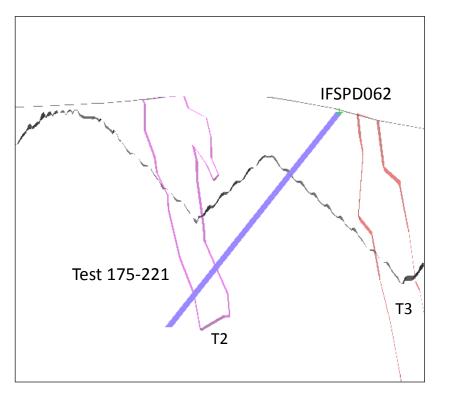


Figure 5: Test Intervals and Fracture-Zones at IFSPD062 (Supremo)

The water level rise during the inflow was analyzed by the Cooper-Jacob method (Figure A8), which indicated a K value of 2.8E-06 m/s. It is important to note that the driller reported short intervals between 180 m and 200 m that "went dry" while drilling, and other intervals in the same span that retained drilling fluids. If the intervals truly did lose water, then it is unlikely that a static water level at 174 m downhole could be real. The validity of the test and the relatively-high K value, therefore, can be questioned.

IFSPD-110a (Supremo, T3-T4)

IFSPD-110a was drilled from the top of Supremo hill, toward the west at an inclination of -45°. Three zones were tested, although the upper zone test, from 80 to 119 m, is judged invalid because it was conducted partly above the water table.

The intermediate test at 237 m to 266 m downhole was conducted very near the water table, as at IFSPD-062, above. With the packer set at 237 m, across the upper part of the T3 vein structure, a constant-rate injection was conducted for 100 minutes at 1.4 L/s. The inflow raised the water level in the rods just 0.25 m. Recovery following the inflow was analyzed as a falling-head slug test (Figure A9), and yielded a K value of 1.6E-06 m/s. As with the test at IFSPD-062, the validity of the test is somewhat questionable because of the uncertain water table during the test.

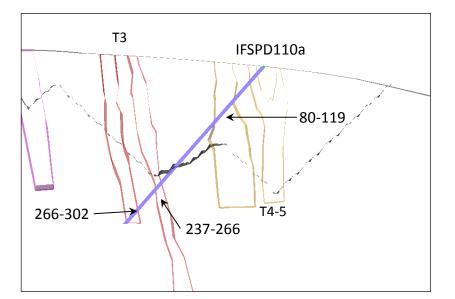


Figure 6: Test Intervals and Fracture-Zones at IFSPD110a (Supremo)

A third packer test was run at the bottom of the hole, from 266 to 302 m downhole. With the packer set at 266 m, across the lower part of the T3 vein structure, the static water level was 10 m above the transducer. A constant-rate injection was conducted for 60 minutes at 0.97 L/s. The inflow raised the water level in the rods about 130 m. Recovery following the inflow was analyzed as a falling-head slug test (Figure A10), and yielded a K value of 1.8E-07 m/s.

IFSPD-124

IFSPD-124 was drilled from the top of the hill, toward the west at an inclination of -45°. The apparent static water level in the core hole at the time of the test was at about 24 meters below ground surface (mbgs), which is higher than expected from nearby holes. It is possible that the water table through this interval represents a perched groundwater, floored by permafrost.

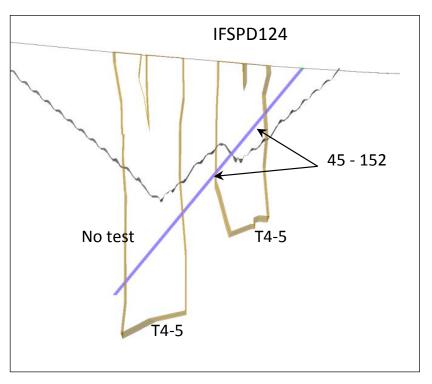


Figure 7: Test Intervals and Fracture-Zones at IFSPD124 (Supremo)

A single test was conducted across the downhole interval 45 to 152 m. A packer was not inflated during the test. A constant-rate injection was conducted for 60 minutes at 0.27 L/s. The inflow raised the water level in the rods about 10 m. Recovery following the inflow was analyzed as a falling-head slug test (Figure A11), and yielded a K value of 2.0E-07 m/s.

The high water table in this test interval might represent perched conditions, which would suggest that the test was conducted in a pocket of fractured rock unconnected to the deeper aquifer. However, the fractured rocks exposed in the test responded to the test in a reasonable way. Because of the very-low stress and short term of the test, the results probably can be used to characterize the fractured-rock pocket, even if it is bounded.

A second test was not conducted at IFSPD-124.

1.3 Summary of Hydraulic Conductivity Testing in Fracture Zones

SRK judges that the results of eight of the packer tests are valid and representative. The other two tests were set up above static water. Hydraulic conductivity values from the valid tests (Table 1.3.1) range narrowly, from 1.2E-07 m/s to 2.8 E-06 m/s, with an arithmetic mean value of 7.0E-07 m/s. (An arithmetic mean rather than a geometric mean is recommended for the fracture zone tests, because the values represent uni-directional flow in planar features rather than radial groundwater flow.)

The mean K value from the fracture zone tests is significantly higher than the geometric mean value obtained by previous programs from packer testing in the wall rocks. The Lorax (2014) packer testing in wall rocks found a geometric mean value of 8.9E-09 m/s for wall rock tested in six core holes. (A total of 19 valid tests were done. Results of multiple tests in individual holes were averaged before a

geometric mean value was calculated between the six holes.) Tetra Tech in 2013 found a geometric mean value of 4.6E-08 m/s, for 11 packer tests in seven core holes in the wall rocks.

Test Hole	Location	Test Interval		Measured K		Notes
restrible	Location	Тор	Bottom	(m/day)	(m/s)	Notes
SRK-15D-14P	Kona	175.4	216	1.2E-02	1.4E-07	constant-rate injection/ falling-head slug
SRK-15D-15P	Latte	115	205			Frozen, no water flow
SRK-15D-15P	Latte	200	274	3.0E-02	3.5E-07	airlift-recovery test
SRK-15D-16P	Double Double	136	148	2.0E-02	2.3E-07	constant-rate injection/ falling-head slug
SRK-15D-16P	Double Double	164	212	1.0E-02	1.2E-07	airlift-recovery test
IFSPD124	Supremo-T5	45	152	1.7E-02	2.0E-07	Possibly perched, but valid short-term
IFSPD110a	Supremo-T3	80	119			Above water table - do not use
IFSPD110a	Supremo-T3	237	266	1.4E-01	1.6E-06	Near water table -
IFSPD110a	Supremo-T3	266	302	1.6E-02	1.8E-07	falling-head slug test
IFSPD062	Supremo-T1, T2	175	221	2.4E-01	2.8E-06	constant-rate injection - very near water table

Table 1: Summary of 2015 Packer Test Results

Note: Test interval depths are down-hole measures

2 Thermistor Installations

Thermistors and vibrating-wire transducers (VBW's) were installed in HQ core holes at the three waste rock dump locations (as proposed at the time of drilling) and at BH-07 to replace a malfunctioning 2014 piezometer. Two 25 m thermistors (SRK-15D-10T and SRK-15D-13T) were also installed to support the site geotechnical evaluation. Locations and general descriptions of the installations are shown in Table 2.

At each location the hole was drilled to depth, and with the core rods left in the ground, a PVC guide pipe was lowered through the rods with instrument cables attached using Zip Ties. The core rods were then removed, and the core hole backfilled from bottom up by pumping through the PVC guide pipe. Grout consisted of a neat cement mixture of 28% portland cement and 5% bentonite by weight.

SRK # Kaminak #	Easting UTM7- NAD83	Northing UTM7- NAD83	Elevation (mamsl)	Borehole Depth (mbgs)	Location	Number of Thermistor Nodes	Number of VBW's
SRK-15D-07T CFD0600	585124.35	6975415.07	948.85	149	North Dump	16	2
SRK-15D-08T CFD0595	582056.87	6973890.98	925.11	149	Original West Dump	16	2
SRK-15D-09T CFD0599	584734.33	6972215.37	784.25	101	South Dump	13	1
SRK-15D-10T CFD0593	581752.35	6973455.02	1008.19	26	Original West Dump	10	0
SRK-15D-13T CFD0594	582825.05	6972903.76	1136.89	26	Infastructure	10	0
SRK-15D-14H CFD0596	585198.39	6974582.93	1183.14	268	Supremo T7	13	2

Table 2: Locations of Hydro/Geotech Thermistor Installations

2.1 SRK-15D-07T (CFD 0600)

SRK-15D-07T was drilled at the North waste rock facility, at an elevation of 949 mamsl. The core hole was drilled vertically to a depth of 149 mbgs. Vibrating wire transducers were installed at two depths as shown in Table 3. A string of thermistors was installed with node locations as shown in Table 3 and on Figure 8.

The temperature curves in Figure 8 shows that permafrost exists beneath the North waste rock facility to a depth of approximately 80 mbgs. Nodes 10 and 11 in the string report anomalously warm temperatures, relative to nodes above and below. It is possible that the two nodes are malfunctioning. However, it is also possible that nodes 10 and 11 are properly recording ground temperatures that have been affected by flow of groundwater along fractures, from either below, or from above (surface water). Additional data collection through four quarters will help to resolve the anomaly.

SRK-15D	Depth (mbgs)	
VBW1	VBW1	
VBW2		103.6
Stickup (m	n ags)	3.00
Node	Location	Depth
Houe	on Cable	(mbgs)
1	1	0.7
2 3 4	2.5	2.2
3	4	3.7
	5.5	5.2 6.7
	5 7	
	6 8.5	
7	10	9.7
8	13	12.7
9	18	17.7
10	25	24.7
11	35	34.7
12	50	49.7
13	70	69.7
14	90	89.7
15	110	109.7
16	130	129.7

Table 3. Instrument Locations in SRK-15D-07T

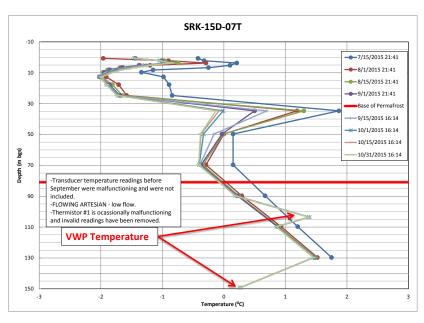


Figure 8: Downhole Temperatures in SRK-15D-07 through 9/1/2015

2.2 SRK-15D-08T (CDF 0595)

SRK-15D-08T was drilled at the originally proposes West waste rock facility location, at an elevation of 925 mamsl. The core hole was also drilled vertically to a depth of 149 mbgs. Vibrating wire transducers were installed at two depths as shown in Table 4. A string of thermistors was installed with node locations as shown in Table 4 and Figure 9. The thermistor string was ordered before

drilling began, and was too long for the core hole drilled. Consequently, the first six nodes of the string were trimmed off, and data collection begins with node 7.

The latest temperature readings in Figure 9 suggest a permafrost depth of about 74 mbgs. Note also that the two sets of temperatures recorded by the vibrating-wire transducers appear not to agree with the trend from the thermistor string. The VBW temperature sensors in all cases are considered to be less-well calibrated than the thermistor sensors.

SRK-15D-08 (CDF 0595)		Depth
	(mbgs)	
VBW1		149.24
VBW2		103.60
Stickup	(m ags)	3.30
Node	Location on	Depth
Noue	Cable	(mbgs)
1	1	-8.0
2 3	2.5	-6.5
	4	-5.0
4	4 5.5	
5		
6	6 8.5	
7	7 10	
8	13	4.0
9	18	9.0
10	25	16.0
11	35	26.0
12	50	41.0
13	70	61.0
14	90	81.0
15	110	101.0
16	130	121.0

Table 4: Instrument Locations in SRK-15D-08T

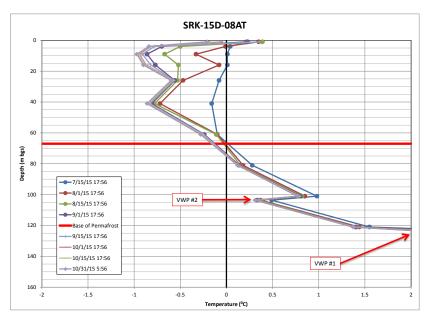


Figure 9: Downhole Temperatures in SRK-15D-08T through 9/1/2015

2.3 SRK-15D-09T (CFD 0599)

SRK-15D-09T was drilled at the South waste rock facility, at an elevation of 784 mamsl. The core hole was drilled vertically to a depth of 101 mbgs. Vibrating wire transducers were installed at just one depth, as shown in Table 5. A string of thermistors was installed with node locations as shown in Table 5 and Figure 10.

The temperature curve in Figure 10 shows that permafrost does not exist at South dump least in the area of SRK-15D-09T. Temperatures remain above zero for the length of the thermistor string. Nodes 10 and 11 in the string report anomalous temperatures relative to nodes above and below. Wide (22°C) swings in temperature from July through October, including temperatures of -10°C, suggest that the two nodes are malfunctioning rather than recording real groundwater temperatures. (These cannot be air temperatures, because the nodes are well below static water levels.)

SRK-15D-09 (CFD 0599)		Depth (mbgs)
VBW1		99.70
VBW2		
Stickup (n	n ags)	2.90
Node	Location on Cable	Depth (mbgs)
1	1	-1.9
2	2.5	-0.4
3	2 2.5 3 4	
4	4 5.5	
5 7		4.1
6	6 10	
7	13	10.1
8	18	15.1
9	25	22.1
10	35	32.1
11	50	47.1
12	80	77.1
13	100	97.1

Table 5: Instrument Locations in SRK-15D-09T

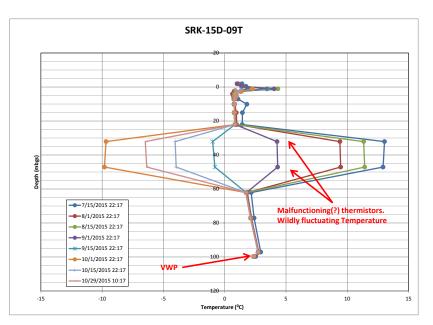


Figure 10: Downhole Temperatures in SRK-15D-09T through 9/1/2015

2.4 SRK-15D-10T (CFD 0593)

SRK-15D-10T was drilled in the vicinity of the originally proposed West waste rock dump, at an elevation of 1,008 mamsl. The core hole was drilled vertically to a depth of just 26 mbgs. Vibrating wire transducers were not installed in the core hole. A string of thermistors was installed with node locations as shown in Table 6 and Figure 11. The temperature curve shown in Figure 11, recorded September 10, 2015, shows permafrost from about 3 mbgs to the end of hole.

SRK-15D-	Depth (mbgs)		
VBW1	VBW1		
VBW2			
Stickup (m	ags)	1.50	
Node	Location		
1	2	0.5	
2 3	4.5	3.0	
3	7	5.5	
4	9.5	8.0	
5	14.5	13.0	
6	17	15.5	
7	19.5	18.0	
8	22	20.5	
9	24.5	23.0	
10	27	25.5	

Table 6: Instrument	Locations in	SRK-15D-10T
----------------------------	--------------	-------------



Figure 11: Downhole Temperatures in SRK-15D-10T through 10//302015

2.5 SRK-15D-13T (CFD 0594)

SRK-15D-13T was drilled in an area of the originally planned infrastructure, at an elevation of 1,137 mamsl. The core hole was drilled vertically to a depth of 26 mbgs. Vibrating wire transducers were not installed in the core hole. A string of thermistors was installed with node locations as shown in Table 7 and Figure 12. The temperature curve shown in Figure 12, recorded October 29, 2015, shows that very slight permafrost conditions may exist from about 3 mbgs to the end of hole.

SRK-15D-	Depth (mbgs)	
VBW1		
VBW2		
Stickup (m	ags)	1.50
Node	Location	Depth
	on Cable	(mbgs)
1	2	0.5
2 3	4.5	3.0
3 7		5.5
4 9.5		8.0
5	14.5	13.0
6	17	15.5
7	19.5	18.0
8	22	20.5
9	24.5	23.0
10	27	25.5

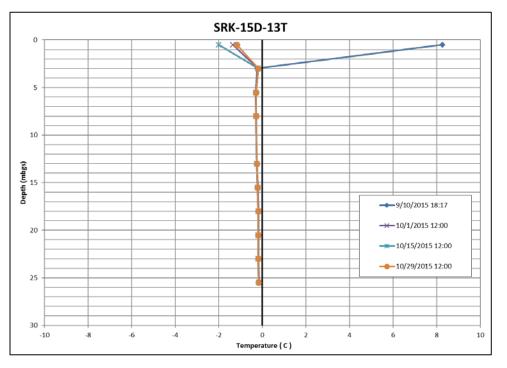
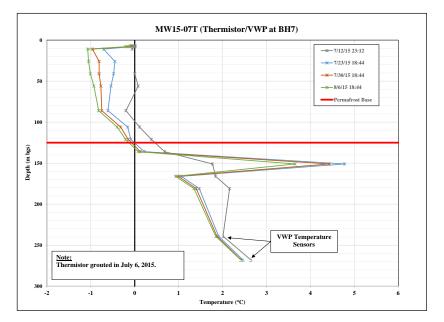


Figure 12: Downhole Temperatures in SRK-15D-13T through 10/29/2015

2.6 SRK-15D-14H (MW15-007T; CFD0596)


SRK-15D-14H was a hydrogeology hole drilled to replace a collapsed 2014 piezometer at BH-07. The piezometer consists of 13 thermistor nodes and 2 vibrating wire piezometers detailing a temperature profile to 267.75 mbgs (Table 8 and Figure 13).

As seen in Figure 13, Thermistor bead #11, at a depth of 151 mbgs, has readings that appear to be about 3°C too high relative to the trend of the other thermistors. The temperature in bead #11 increased from early July to late July, and appears to be declining. As with the other transducers that show anomalous readings, additional data through several seasons will help to determine the cause. The permafrost extends from approximately 0.75 m to about 125 mbgs.

Transducers are functioning properly and indicate a downward vertical pressure gradient at about 145 mbgs.

SRK-15D	-07T (CFD-596)	Depth (mbgs)
VBW1		267.75
VBW2		239.00
Stickup (n	n ags)	3.30
Node	Location on Cable	Depth (mbgs)
1	6	7.0
2	7	8.0
3	10	11.0
4	25	26.0
5	40	41.0
6	55	56.0
7	85	86.0
8	105	106.0
9	120	121.0
10	135	136.0
11	150	151.0
12	165	166.0
13	180	181.0

Table 8: Instrument Locations in SRK-15D-14H

3 Water levels

Transducer pairs installed in piezometer SRK-15D-08T at the originally proposed West waste rock facility and in replacement well MW15-07T both show strong downward vertical gradients (Table 9).

The water levels at MW15-07T, high on the flank of Supremo hill, are at about 145 mbgs. That depth is about 10 m below the floor of permafrost. At SRK-15D-08T, near the valley bottom in upper Halfway Creek, are artesian with as much as 4.5 m of head above ground surface at a transducer depth of 104 mbgs.

No pressure readings are available from the transducers in SRK-15D-07T as of the writing of this report. Flowing artesian conditions (low volume but relatively high pressure) were reported during installation.

Location	VBW Depth	Water level on 8/7 Vertical Gradient		Trend
Location	(mbgs)	(mbgs)	Ventical Gradient	8/7/2015
MW15-07T	239.0	145.3	dowpword	rising
1010015-071	267.75	147.23	downward	rising
SRK-15D-09T	99.7	10.06		rising
SRK-15D-08T	103.6	-4.53	downward	rising
SKK-15D-001	149.24	-0.135	downward	rising

 Table 9: Water Levels from VBW's in 2015 Geotech Holes

Drilling in the fracture zones at Double-Double show an upward gradient, from 65.75 mbgs at a depth of 148 m, to 61.5 mbgs at a depth of 212 m (Table 10).

Water levels in the Supremo holes were generally quite deep, ranging from 123.3 mbgs to 179.8 mbgs, although a perched zone was also encountered at about 24 mbgs. A downward vertical gradient is suggested by the water levels estimated during two tests in IFSPD-110a.

At Latte, a gradient could not be measured because of probable frozen conditions in the upper hole. The deeper zone, from 205 m to 274 m showed a water table (122 mbgs) that rises above the floor of the permafrost by at least 83 m.

The water level in the fracture zone at Kona was estimated to be 124.7 mbgs. The floor of the permafrost was at 99 mbgs, with over 25 m of unsaturated conditions between.

Test Hole	Location	Open Interval		Approx. W.L.	Vertical Gradient
		Тор	Bottom	Vertical mbgs	Vertical Gradient
SRK-15D-14P	Kona	175.4	216	124.7	
SRK-15D-15P	Latte	115	205		
SRK-15D-15P	Latte	200	274	122.3	
SRK-15D-16P	Double Double	136	148	65.8	upward
SRK-15D-16P	Double Double	164	212	61.5	upwaru
IFSPD124	Supremo-T5	45	152	20.6	(perched)
IFSPD110a	Supremo-T3	80	119		
IFSPD110a	Supremo-T3	237	266	167.2	downward
IFSPD110a	Supremo-T3	266	302	179.8	
IFSPD062	Supremo-T1, T2	175	221	123.3	

Table 10: Water Levels Estimated during 2015 Packer Tests

4 References

- Cooper, H.H. and C.E. Jacob, 1946. A generalized graphical method for evaluating formation constants and summarizing well field history, Am. Geophys. Union Trans., vol. 27, pp. 526-534.
- Hvorslev, M.J. (1951) Time lag and soil permeability in groundwater observations. U.S.Army Corps of Engineers Waterways Experimentation Station, Bulletin 36.
- Jacob, C.E., Lohman S.W. (1952) Non-steady flow to a well of constant drawdown in an extensive aquifer. Trans, Amer. Geophys. Union, vol. 33, pp 559-569.
- Lorax Environmental, 2014, Coffee Creek Hydrogeological Drilling Program Program Summary. Technical Memorandum presented to: Kaminak Gold Corp., October.
- Tetra Tech EBA, 2014, 2013 Hydrogeological data collection, Coffee Gold Project, Yukon. Report presented to: Kaminak Gold Corporation, March.
- Theis, C.V., (1935) The relation between the lowering of the piezometric surface and the rate and duration of discharge of a well using groundwater storage. Trans, Amer. Geophys. Union, vol. 16.

5 Date and Signature Page

Signed on this 18 Day of December, 2015.

Roger Howell Principal Consultant (Hydrogeology)

Reviewed by Signature REDACTED use in tl any oth

Michael Levy, P.E., P.G. Principal Consultant (Geotechnics)

All data used as source material plus the text, tables, figures, and attachments of this document have been reviewed and prepared in accordance with generally accepted industry practices.

Disclaimer

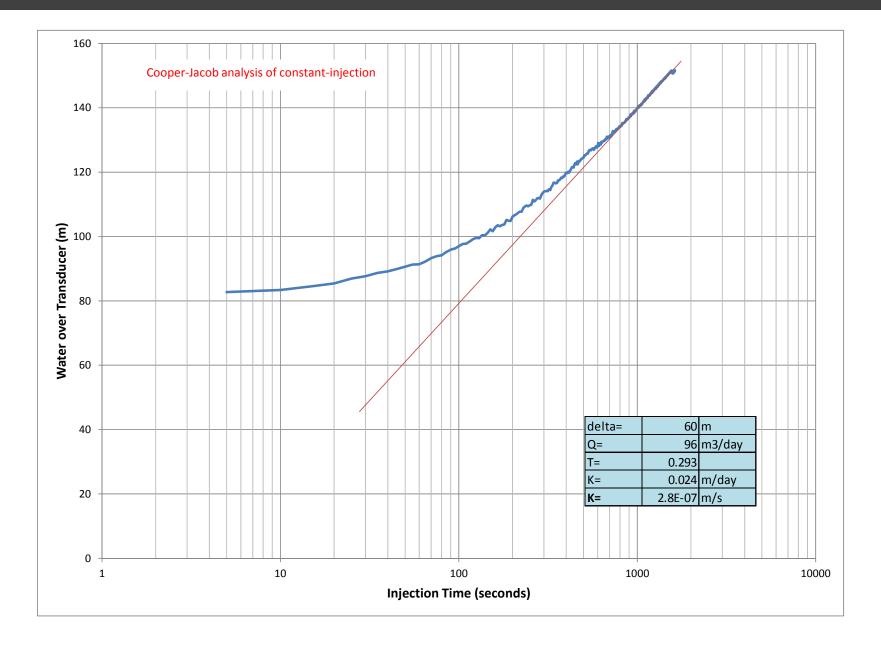
The opinions expressed in this Report have been based on the information supplied to SRK Consulting (U.S.), Inc. (SRK) by Kaminak Gold Corporation (Kaminak). These opinions are provided in response to a specific request from Kaminak to do so, and are subject to the contractual terms between SRK and Kaminak. SRK has exercised all due care in reviewing the supplied information. Whilst SRK has compared key supplied data with expected values, the accuracy of the results and conclusions from the review are entirely reliant on the accuracy and completeness of the supplied data. SRK does not accept responsibility for any errors or omissions in the supplied information and does not accept any consequential liability arising from commercial decisions or actions resulting from them. Opinions presented in this report apply to the site conditions and features as they existed at the time of SRK's investigations, and those reasonably foreseeable. These opinions do not necessarily apply to conditions and features that may arise after the date of this Report.

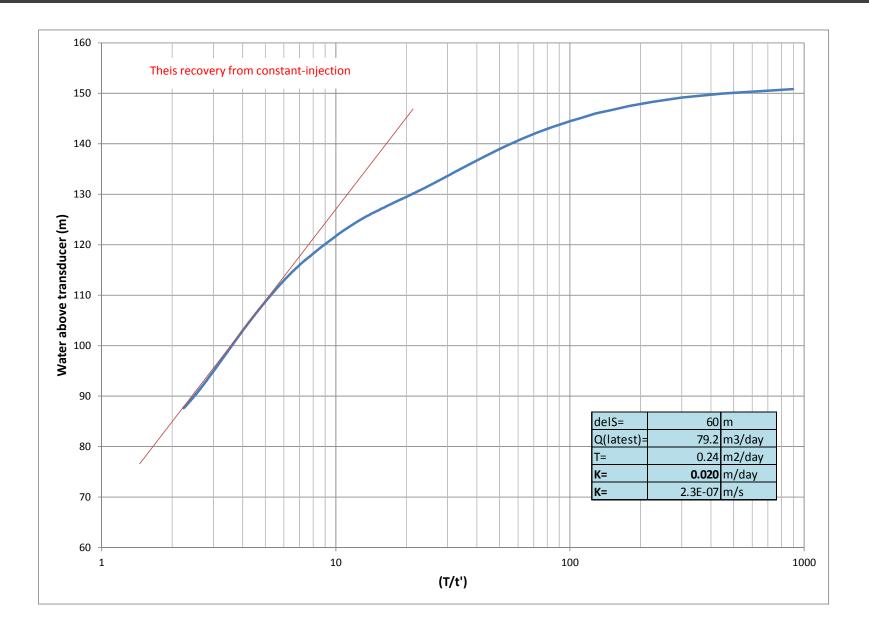
Copyright

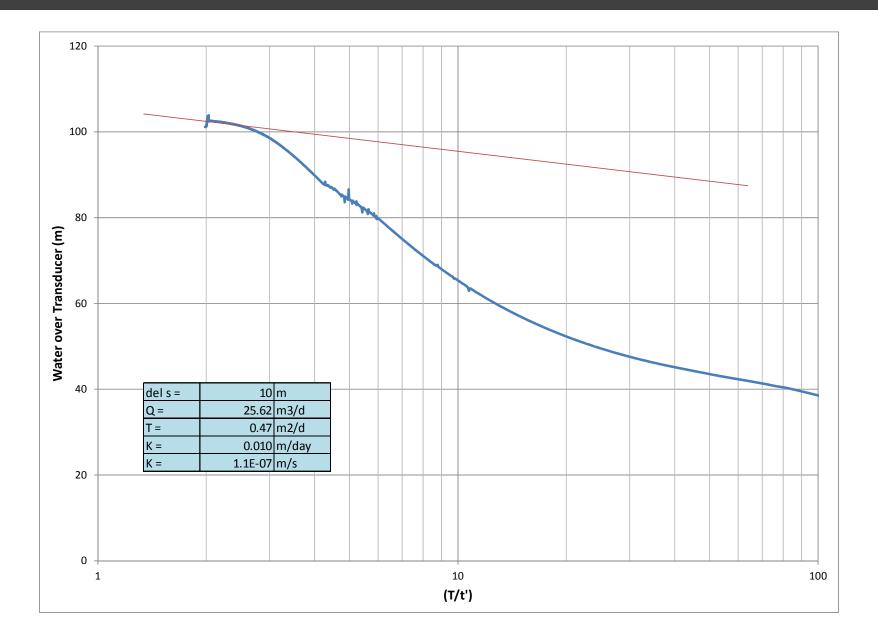
This report is protected by copyright vested in SRK Consulting (U.S.), Inc. It may not be reproduced or transmitted in any form or by any means whatsoever to any person without the written permission of the copyright holder, SRK except for the purpose as set out in this report.

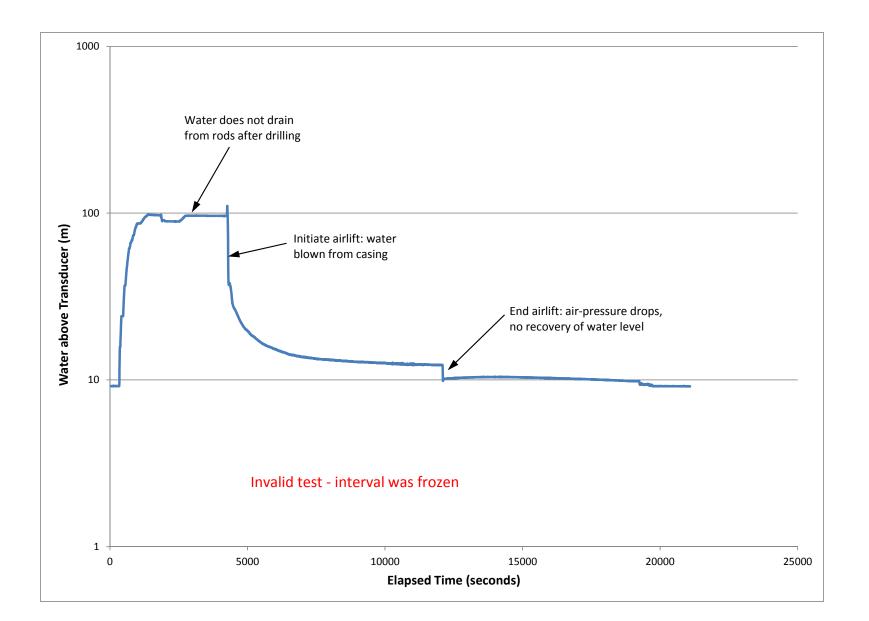
Appendices

Appendix A: Packer Test Analyses

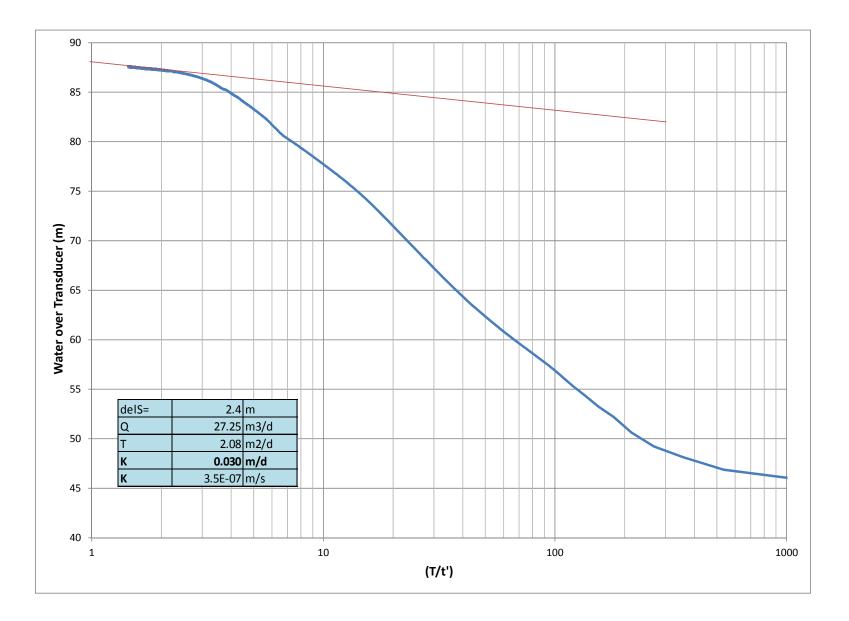

IFSPD-124 (45 – 152 m) Falling-head slug: Hvorslev analysis


SRK15D-16P (136 – 148 m) Constant Injection: Cooper Jacob analysis

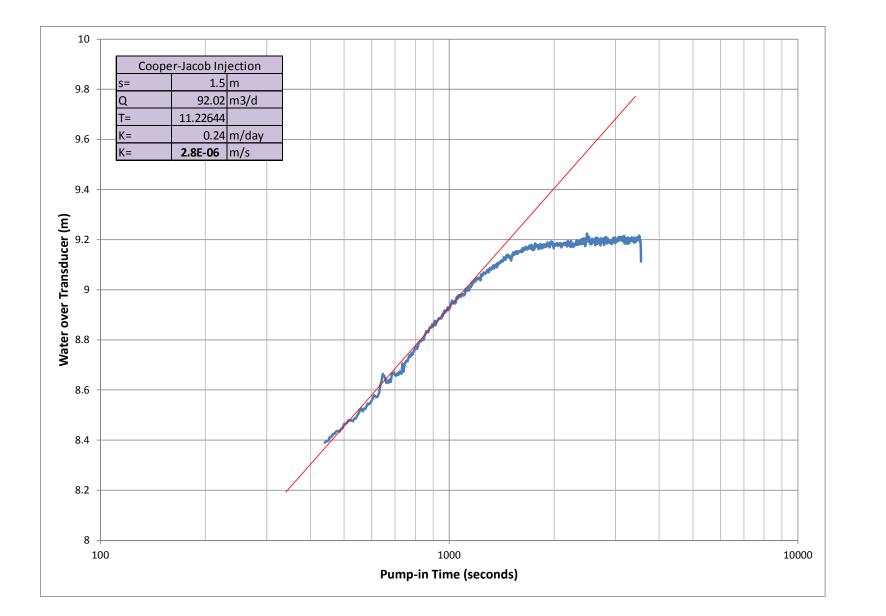

SRK15D-16P (136 – 148 m) Constant Injection: Theis recovery analysis



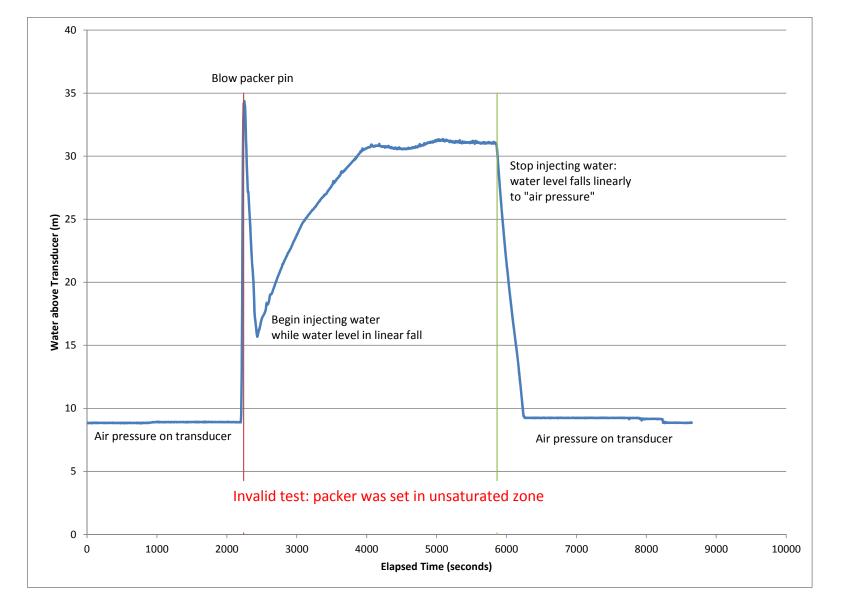
SRK15D-16P (164 – 212 m) Constant-drawdown Airlift: Theis recovery analysis

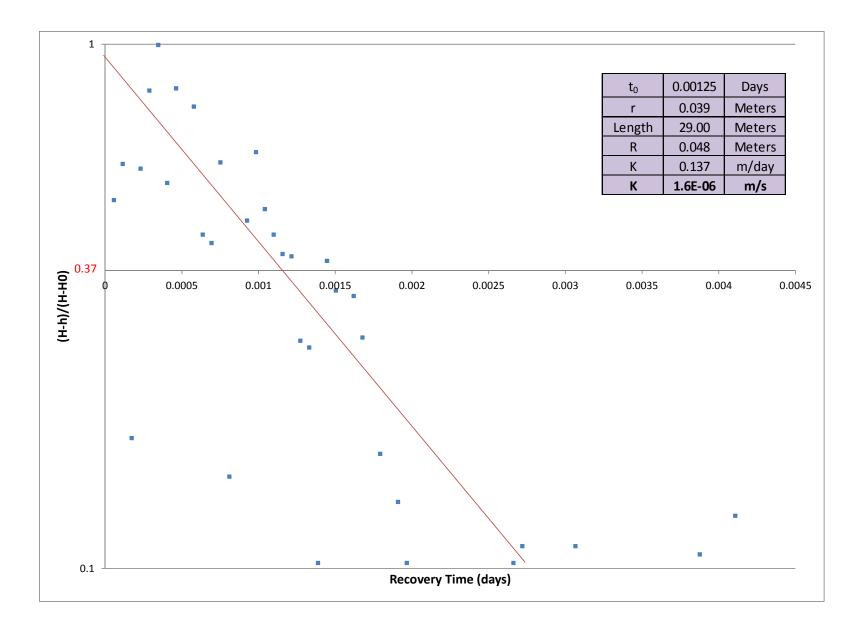


SRK15D-15P (115 – 205 m) Constant-drawdown Airlift: Invalid Test

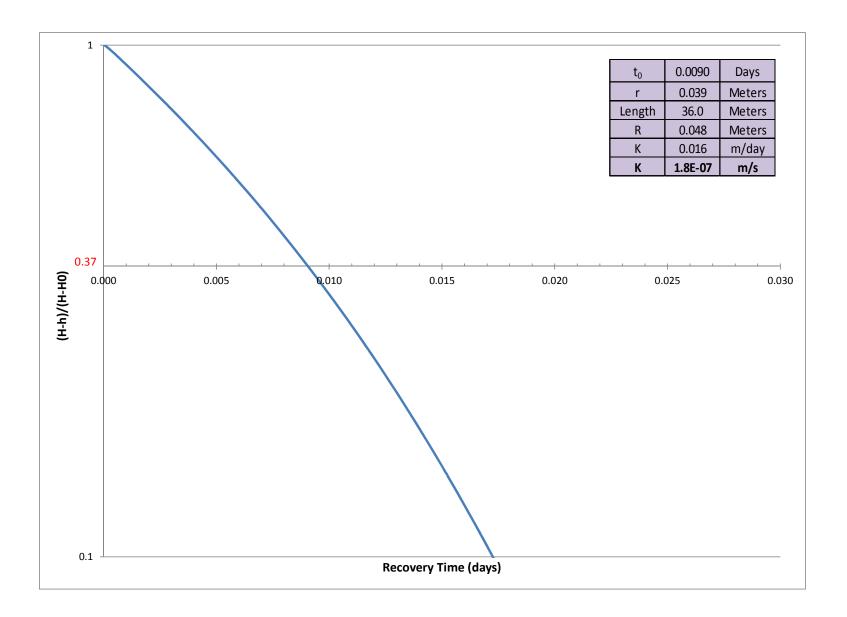


SRK15D-15P (200 – 274 m) Constant-drawdown Airlift: Theis recovery analysis

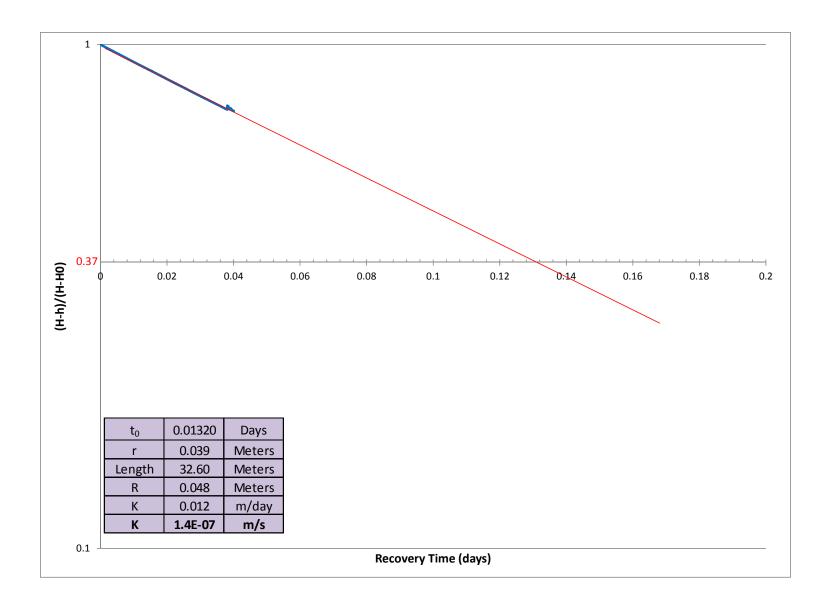



IFSPD-062 (175 – 221 m) Constant- injection: Cooper-Jacob analysis

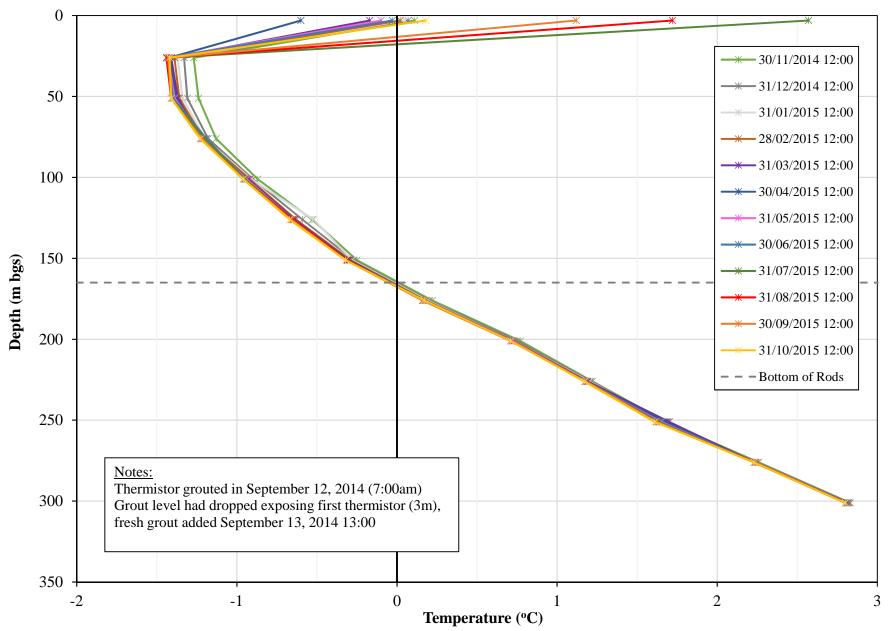
IFSPD-110a (80 – 119 m) Constant-injection: Invalid Test

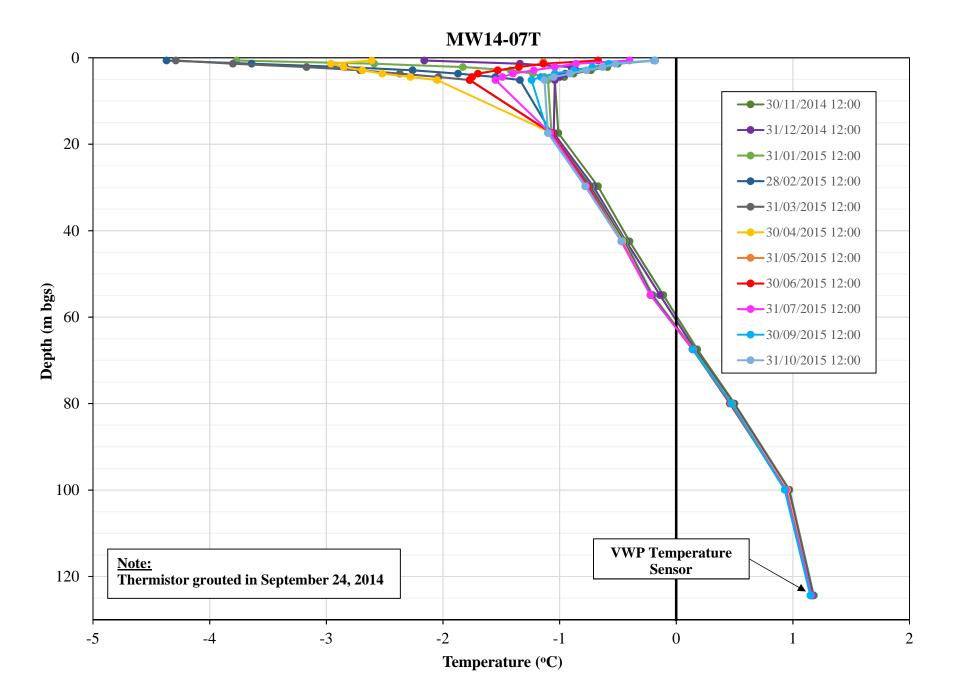


IFSPD-110a (237 – 266 m) Falling-head slug: Hvorslev analysis

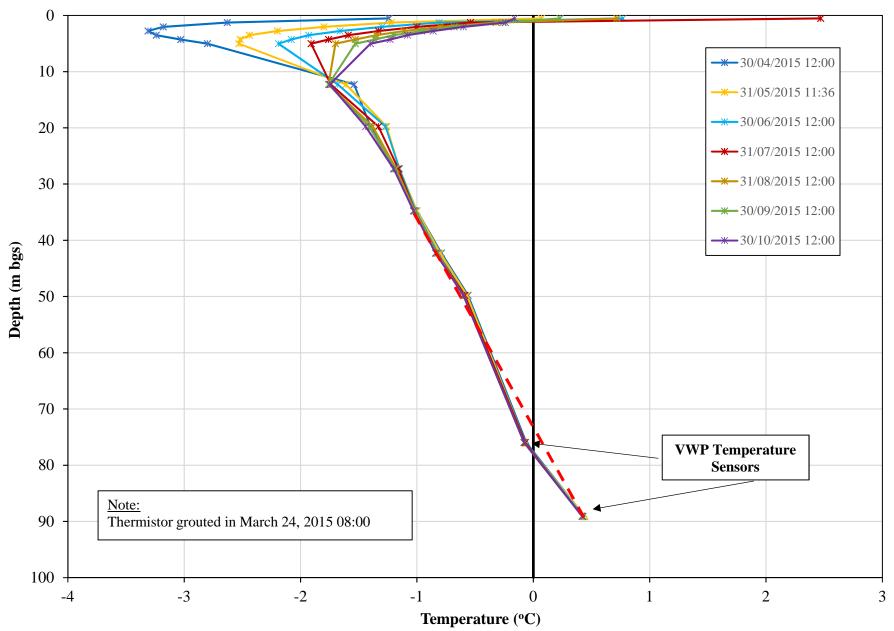

IFSPD-110a (266 – 302 m) Falling-head slug: Hvorslev analysis

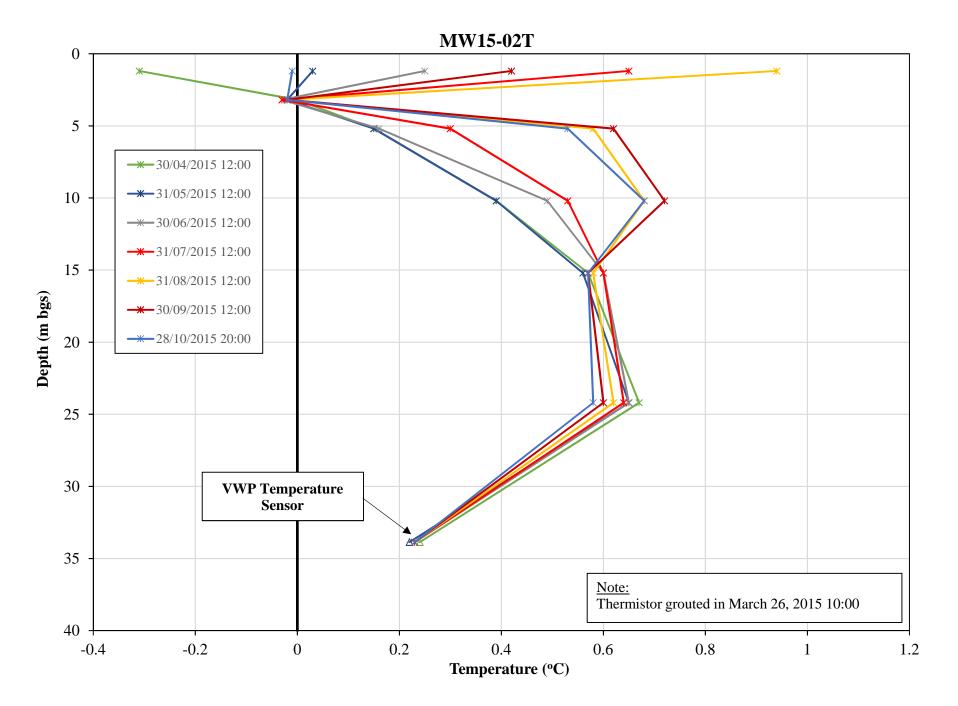
SRK15D-14P (175.5 – 216 m) Falling-head slug: Hvorslev analysis

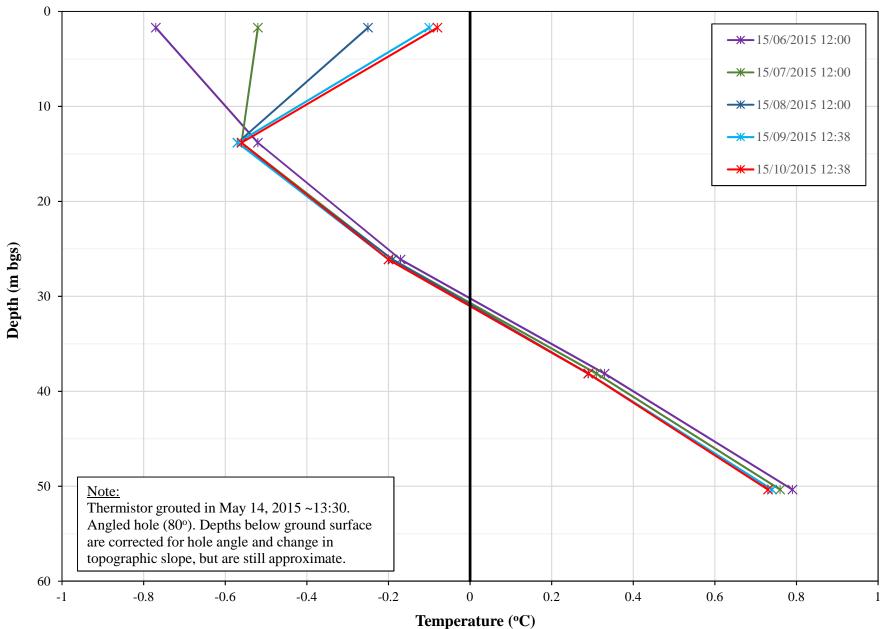


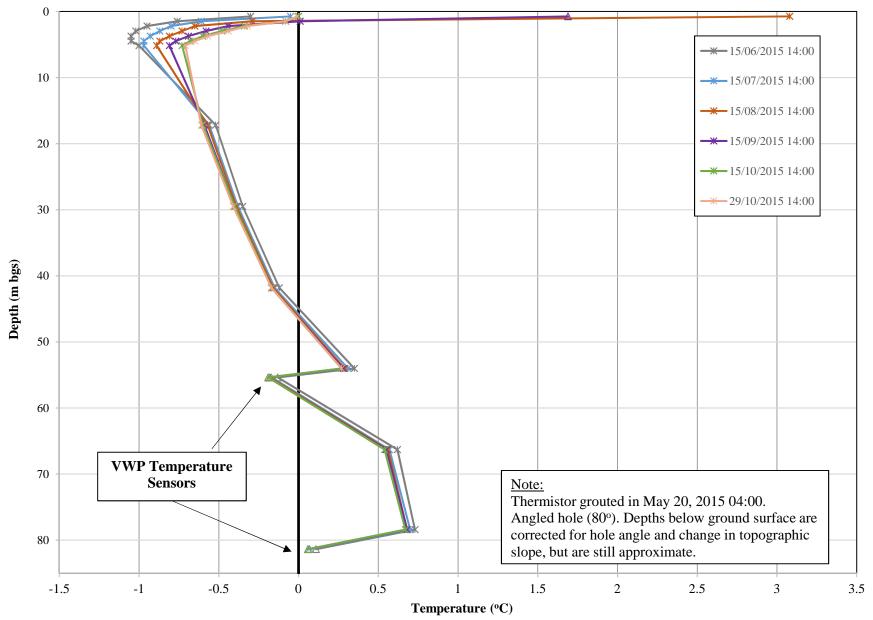


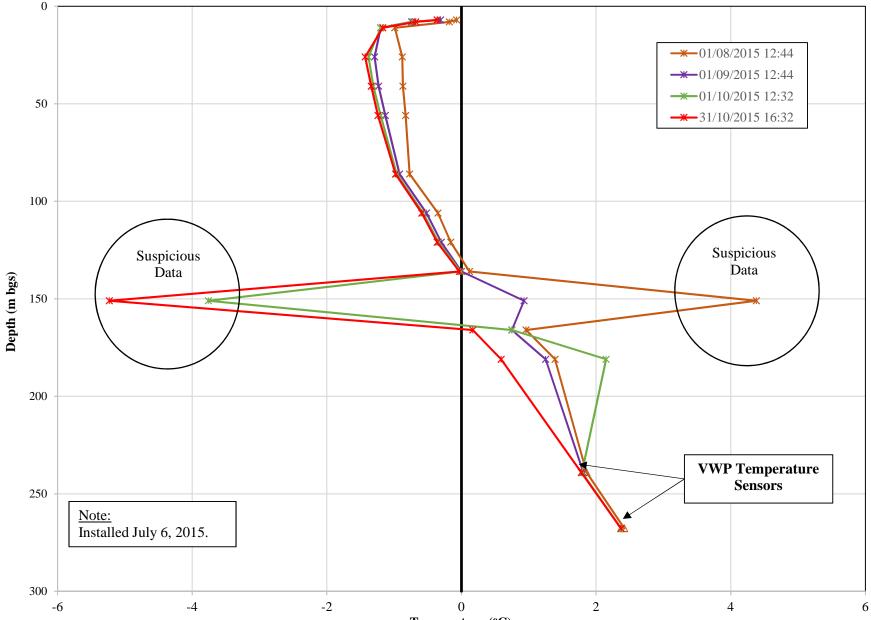
Appendix 4-A: Thermistor Profiles All Stations

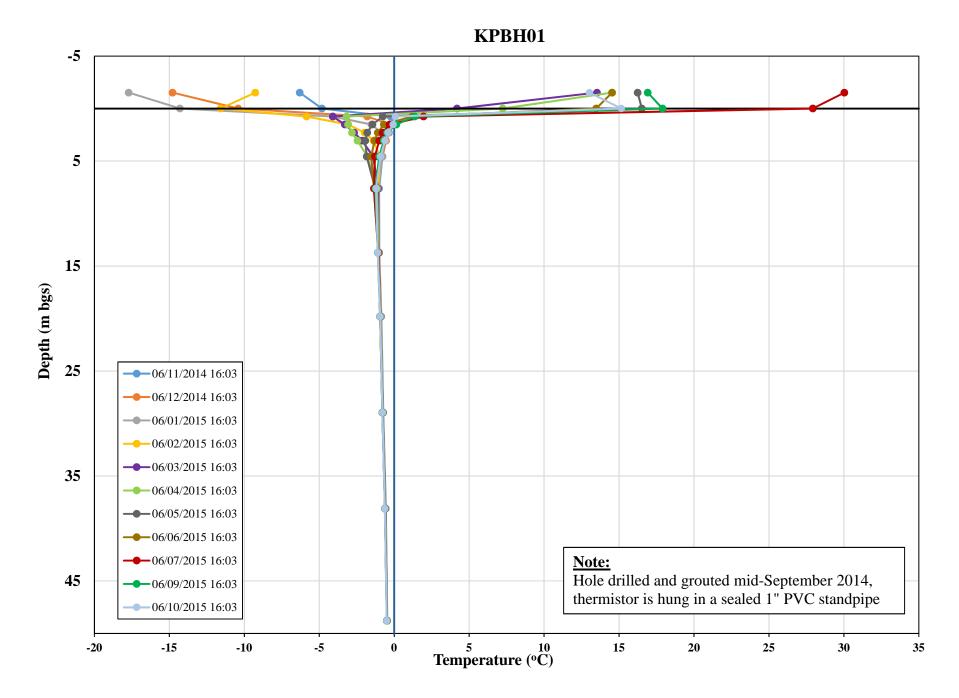

_GOLDCORP

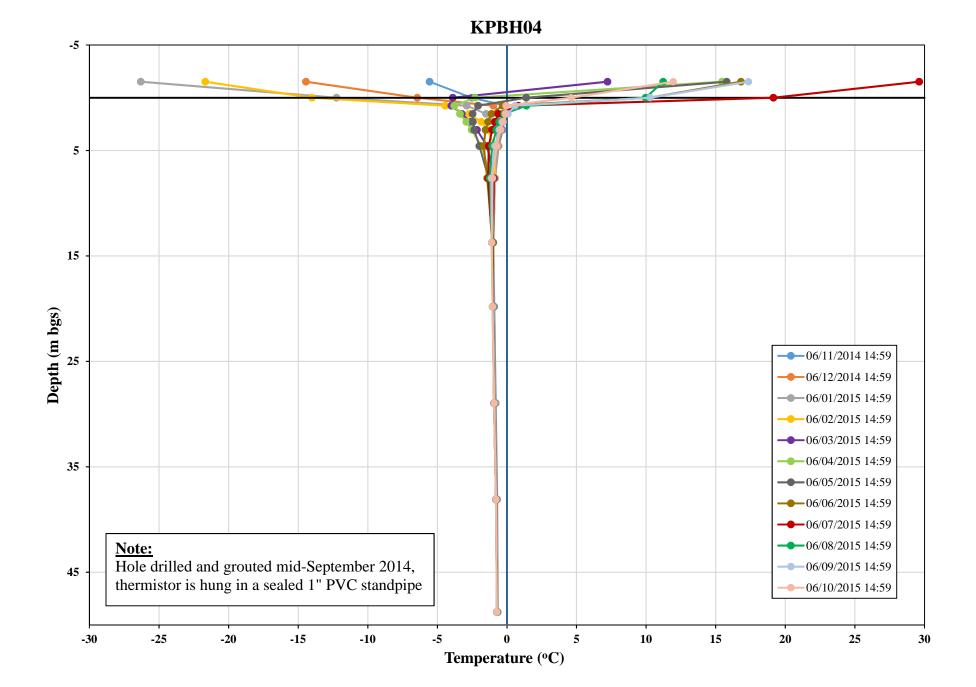

MW14-04T

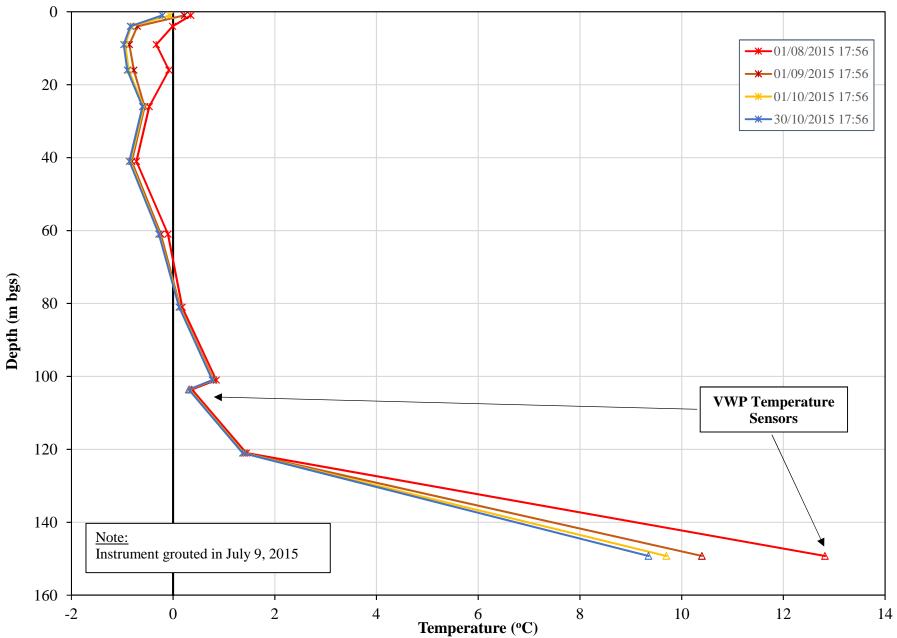

MW15-01T



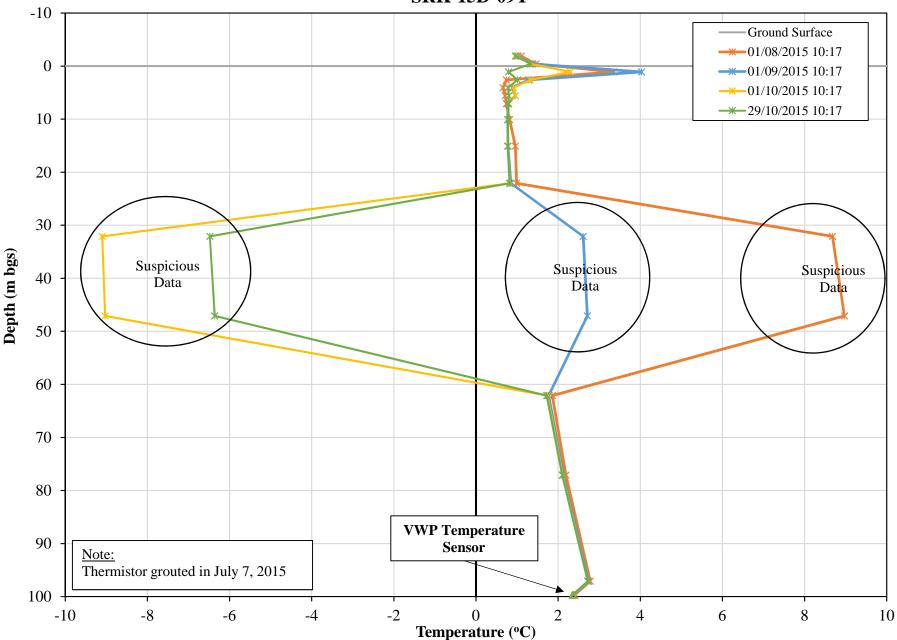

MW15-03T 0 *01/06/2015 16:00 10 *01/07/2015 16:00 20 **────**01/09/2015 16:00 ~~01/10/2015 16:00 30 40 Depth (m bgs) 50 60 **VWP** Temperature Sensors 70 80 Note: Thermistor grouted in May 9, 2015 16:30. Angled hole (80°). Depths below ground surface are 90 corrected for hole angle and change in topographic slope, but are still approximate. 100 0 2 3 4 5 6 7 8 -1 1 **Temperature** (°C)

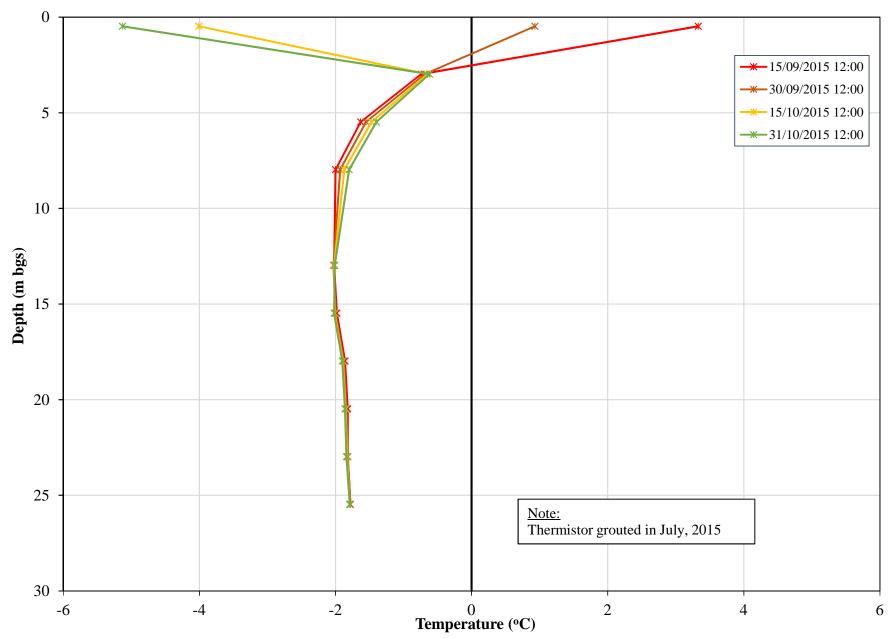

MW15-05T



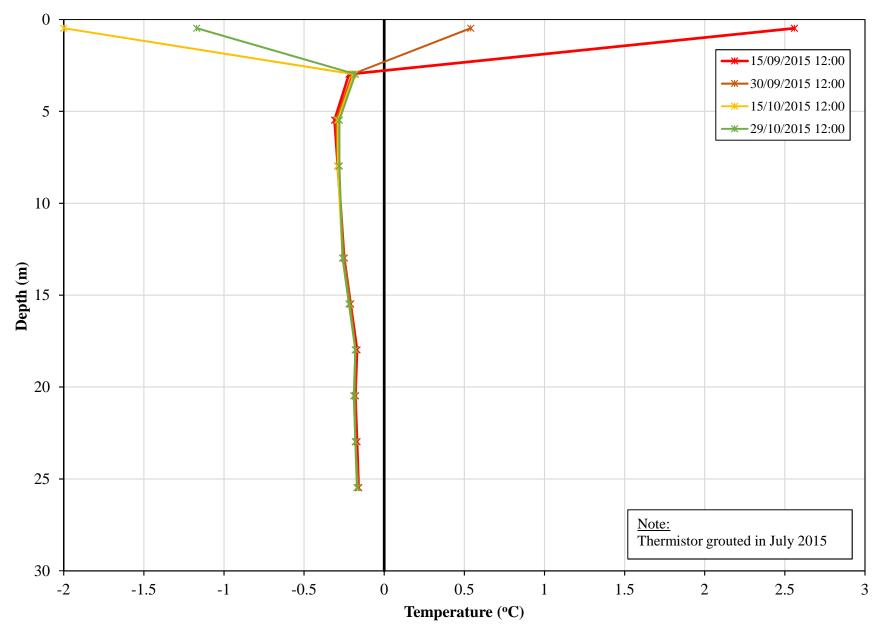

MW15-07T

Temperature (°C)



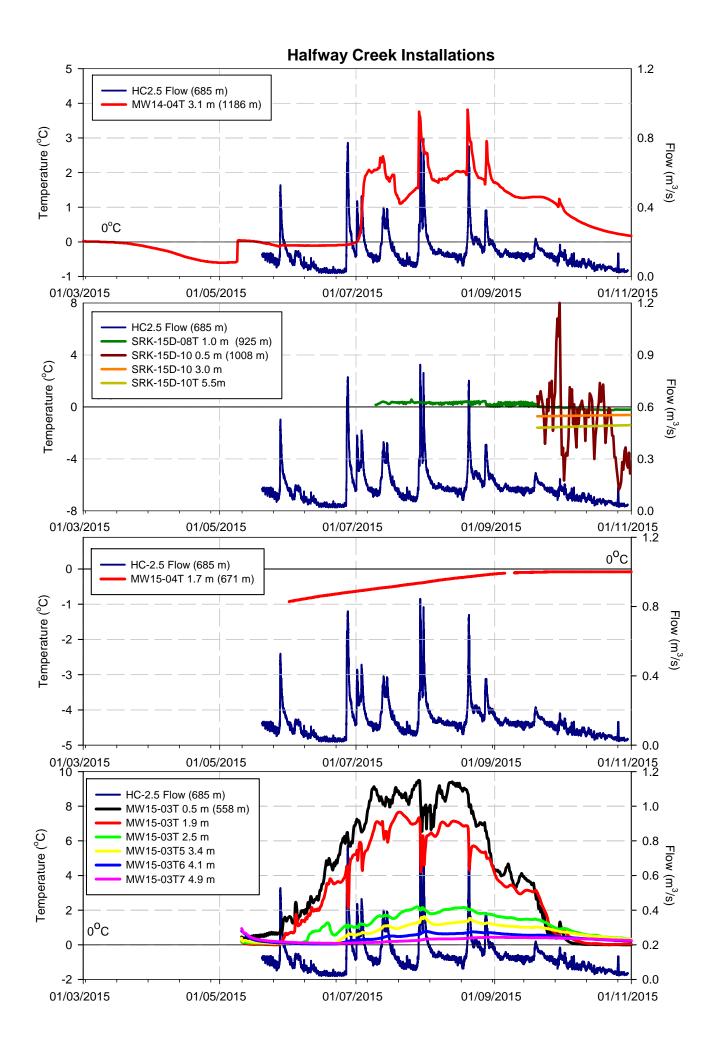


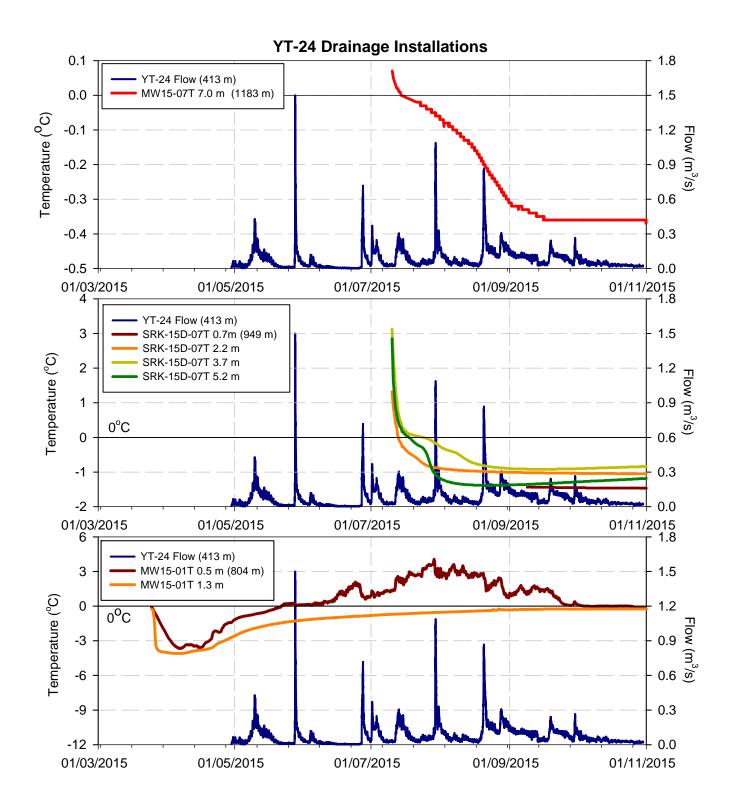
SRK-15D-08AT

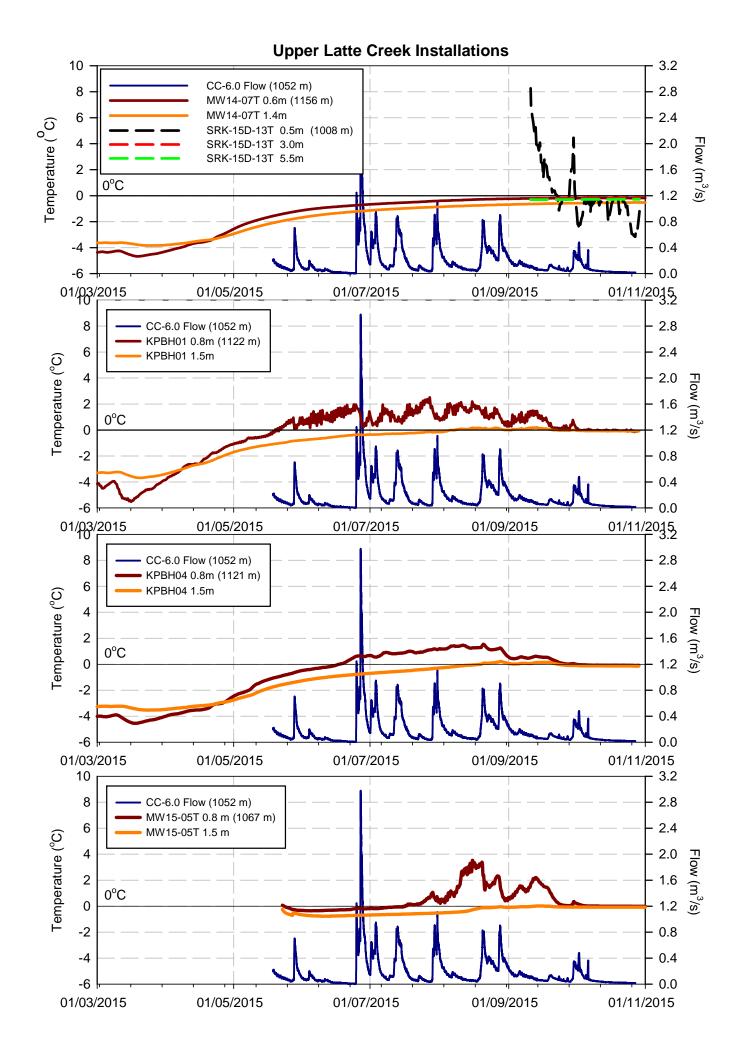


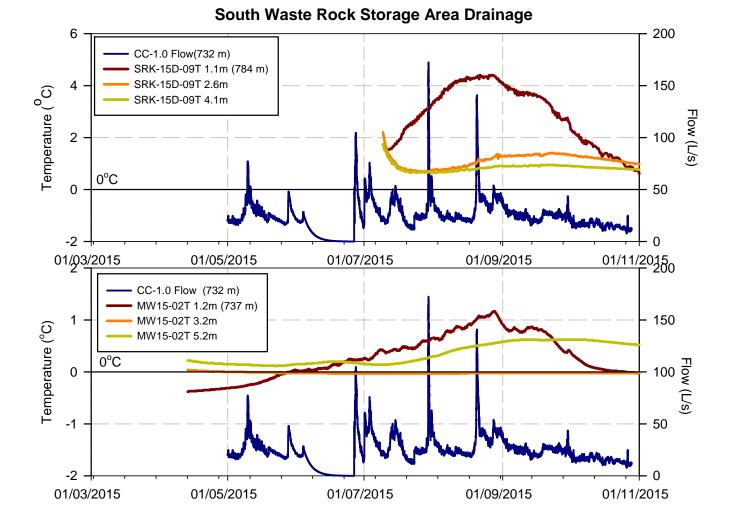
SRK-15D-09T

SRK15D-10T




SRK15D-13T




Appendix 4-B: Shallow Thermistor Sensor 2015 Time Series Data

GOLDCORP

Appendix 5-A: Groundwater Quality Data

_GOLDCORP

Station	Sample ID	Sample Date	Analytical Laboratory	Lab Job ID	Lab Sample ID	Field Paramaters	pH (field)	Specific Conductance (field)	DO (field)	ORP (field)	Temperature (field)	Physical Properties	Conductivity (lab)
			-				pН	uS/cm	mg/L	ORP mV	°C		uS/cm
Camp	FB-2	18/07/15	Maxxam	B562572	MS4334								1.2
Camp	FB-3	12/08/15	Maxxam	B569424	MW5163								1
Camp	TRIP BLANK	11/09/15	Maxxam	B579224	NC4792								<1.0
Camp Water Supply	CAMP15-1	18/07/15	Maxxam	B562572	MS4333								566
MW14-02A	MW14-02A	28/09/14	ALS	L1525019	L1525019-1		8.23	349.3	9.19	162.5	0.5		390
MW14-02A	MW14-02A	12/06/15	Maxxam	B550137	ML4991		7.34	400	12.07	98.5	1.41		392
MW14-02A	MW14-02A	16/07/15	Maxxam	B562572	MS4331		7.84	389	9.94	46.5	1.8		390
MW14-02A	MW14-02A	06/08/15	Maxxam	B569424	MW5112		7.58	361	10.05	152.4	1.33		380
MW14-02A	MW14-02A	04/09/15	Maxxam	B578440	NC0866		7.74	380	9.75	213.3	1.38		385
MW14-02A	MW14-100	04/09/15	Maxxam	B578440	NC0868								389
MW14-02B	F-BLANK-1	28/09/14	ALS	L1525019	L1525019-3								<2
MW14-02B	MW14-02B	28/09/14	ALS	L1525019	L1525019-2		7.63	495.5	5.18	-185.1	0.6		508
MW14-02B	F-DUP-1	28/09/14	ALS	L1525019	L1525019-4								514
MW14-02B	MW14-02B	12/06/15	Maxxam	B550137	ML4992		7.57	497.3	6.73	15.9	1.3		503
MW14-02B	MW14-02B	16/07/15	Maxxam	B562572	MS4332		7.62	508	4.73	31.8	3.15		507
MW14-02B	MW14-02B	06/08/15	Maxxam	B569424	MW5113		7.56	481	4.9	137.3	2		504
MW14-02B	MW14-02B	04/09/15	Maxxam	B578440	NC0867		7.51	509	6.2	137.4	1.6		492
MW14-03A	MW14-03A	12/10/14	ALS	L1533094	L1533094-2		9.27	950	0.21	46.4	0.7		887
MW14-03A	MW14-03A	22/06/15	Maxxam	B553846	MN4268			1620	0.21		1.89		1570
MW14-03A	MW14-03A	12/07/15	Maxxam	B559978	MR0624		7.44	1562	0.31	-106.3	1.1		1580
MW14-03A	MW14-03A	07/08/15	Maxxam	B569424	MW5114		7.41	1376	2.6	-151.9	1.1		1570
MW14-03A	MW14-50	07/08/15	Maxxam	B569424	MW5119								1550
MW14-03A	MW14-03A	06/09/15	Maxxam	B578440	NC0876		7.36	1583	2.08	-137.6	0.9		1540
MW14-03B	MW14-03B	06/10/14	ALS	L1530127	L1530127-1		7.35	1582	0.07	88.7	0.5		1490
MW14-03B	MW14-03B	22/06/15	Maxxam	B553846	MN4269		7.36	1717	0.14	48.1	1.2		1800
MW14-03B	MW14-03B	12/07/15	Maxxam	B559978	MR0625		7.45	1711	0.19	-109	0.99		1700
MW14-03B	MW14-03B	07/08/15	Maxxam	B569424	MW5115		7.37	1604	0.14	-52.3	1.42		1710
MW14-03B	MW14-03B	06/09/15	Maxxam	B578440	NC0877		7.16	1707	0.23	-53.6	1.06		1700
MW14-03B	MW14-200	06/09/15	Maxxam	B578440	NC0878								1730
MW14-05A	MW14-05A	02/10/14	ALS	L1529013	L1529013-1		7.2	286.9	1.82	124.5	-0.1		316
MW14-05A	FB-23/06/15	23/06/15	Maxxam	B553846	MN4273								1.2
MW14-05A	MW14-05A	23/06/15	Maxxam	B553846	MN4272		6.94	349.9	0.88	3.8	1.6		343
MW14-05A	MW14-05A	13/07/15	Maxxam	B559978	MR0626		6.49	365	0.11	-117.3	1.56		358
MW14-05A	MW14-05A	08/08/15	Maxxam	B569424	MW5116		7.29	329	1.22	-149.5	1.9		367
MW14-05A	MW14-05A	07/09/15	Maxxam	B578440	NC0908		7.00	379.4	2.08	-122.1	0.9		357
MW14-05B	MW14-05B	03/10/14	ALS	L1529013	L1529013-2		9.45	488.6	0.73	91.3	0.1		520
MW14-05B	MW14-05B	24/06/15	Maxxam	B554336	MN7151		7.67	569	4.47	101.6	4.6		589

Sample ID	Sample Date	pH (lab)	Total Hardness (CaCO3)	Dissolved Hardness (CaCO3)	Total Suspended Solids	Total Dissolved Solids	Turbidity	Inorganics	Alkalinity (Total as CaCO3)	Alkalinity (PP as CaCO3)	Bicarbonate (HCO3)	Carbonate (CO3)	Hydroxide (OH)	Bromide (Br)	Fluoride (F)
		pH	mg/L	mg/L	mg/L	mg/L	NTU		mg/L	mg/L	mg/L	mg/L	mg/L	mg/L	mg/L
FB-2	18/07/15	5.75	<0.50	<0.50	<1.0	<10	<0.10		<0.50	<0.50	<0.50	<0.50	<0.50		<0.010
FB-3	12/08/15	5.44	<0.50	<0.50	<1.0	<10	<0.10		<0.50	<0.50	<0.50	<0.50	<0.50		<0.010
TRIP BLANK	11/09/15	5.43	<0.50	<0.50	<1.0	<10	<0.10		<0.50	<0.50	<0.50	<0.50	<0.50		<0.010
CAMP15-1	18/07/15	8.11	293	294	5.1	286	14.7		287	<0.50	350	<0.50	<0.50		0.072
MW14-02A	28/09/14	7.95	203		<3	264	0.3		163						0.093
MW14-02A	12/06/15	8.14	255	200	<1.0	222	0.27		150	<0.50	183	<0.50	<0.50		0.088
MW14-02A	16/07/15	8.16	180	188	<1.0	182	0.28		150	<0.50	183	<0.50	<0.50		0.091
MW14-02A	06/08/15	8.17	211	205	<1.0	257	0.26		147	<0.50	180	<0.50	<0.50		0.089
MW14-02A	04/09/15	8.14	188	185	<1.0	224	<0.10		145	<0.50	177	<0.50	<0.50		0.09
MW14-100	04/09/15	8.21	194	189	<1.0	240	0.49		145	<0.50	177	<0.50	<0.50		0.091
F-BLANK-1	28/09/14	5.57	<0.5		<3	<20	<0.1		<1						<0.02
MW14-02B	28/09/14	8.02	283		<3	348	0.34		209						0.102
F-DUP-1	28/09/14	7.92	282		<3	347	0.43		209						0.102
MW14-02B	12/06/15	8.15	191	242	6.3	282	2.78		189	<0.50	231	<0.50	<0.50		0.1
MW14-02B	16/07/15	8.19	254	256	<1.0	254	0.26		190	<0.50	232	<0.50	<0.50		0.11
MW14-02B	06/08/15	8.12	280	275	1.8	374	0.43		191	<0.50	233	<0.50	<0.50		0.11
MW14-02B	04/09/15	8.19	257	249	7.1	328	2.32		184	<0.50	224	<0.50	<0.50		0.11
MW14-03A	12/10/14	7.84	351		100	1060	76.2		243						0.232
MW14-03A	22/06/15	8.05	897	928	25	1110	21.8		477	<0.50	582	<0.50	<0.50		0.2
MW14-03A	12/07/15	7.65	863	860	31.2	1120	20.3		467	<0.50	570	<0.50	<0.50		0.19
MW14-03A	07/08/15	8.03	893	924	23.2	1180	35.9		486	<0.50	592	<0.50	<0.50		0.2
MW14-50	07/08/15	8.04	890	916	22.7	1170	44.7		483	<0.50	590	<0.50	<0.50		0.2
MW14-03A	06/09/15	8	875	826	22.5	1140	0.35		495	<0.50	604	<0.50	<0.50		0.21
MW14-03B	06/10/14	7.83	801		24	1240	28.3		476						<0.2
MW14-03B	22/06/15	8.12	951	1070	5.2	1330	5.03		579	<0.50	706	<0.50	<0.50		0.3
MW14-03B	12/07/15	7.71	900	907	5.4	1160	6.87		516	<0.50	629	<0.50	<0.50		0.26
MW14-03B	07/08/15	8.09	1030	1090	3.8	1370	4.6		533	<0.50	650	<0.50	<0.50		0.27
MW14-03B	06/09/15	7.95	987	998	3.5	1330	3.06		529	<0.50	646	<0.50	<0.50		0.26
MW14-200	06/09/15	7.98	990	1000	2.8	1330	3.32		538	<0.50	657	<0.50	<0.50		0.26
MW14-05A	02/10/14	7.93	116		58	249	64.7		127						0.163
FB-23/06/15	23/06/15	6.15	<0.50	<0.50	<1.0	<10	<0.10		0.71	<0.50	0.87	<0.50	<0.50		<0.010
MW14-05A	23/06/15	7.85	142	154	5.2	204	5.2		155	<0.50	189	<0.50	<0.50		0.22
MW14-05A	13/07/15	7.43	146	144	7.7	186	13.1		164	<0.50	200	<0.50	<0.50		0.21
MW14-05A	08/08/15	8	162	154	9.8	264	15.3		182	<0.50	222	<0.50	<0.50		0.23
MW14-05A	07/09/15	7.72	153	144	9.6	230	9.7		167	<0.50	204	<0.50	<0.50		0.21
MW14-05B	03/10/14	8.09	152		120	342	139		151						0.157
MW14-05B	24/06/15	7.92	140	140	64.3	420	38		182	<0.50	222	<0.50	<0.50		0.41

Sample ID	Sample Date	Dissolved Chloride (Cl)	Organic / Inorganic Carbon	Dissolved Organic Carbon (C)	Total Organic Carbon (C)	Anions and Nutrients	Total Phosphorus (P)	Dissolved Phosphorus (P)	Total Ammonia (N)	Total Total Kjeldahl Nitrogen (Calc)	Nitrate plus Nitrite (N)	Nitrate (N)	Nitrite (N)	Total Nitrogen (N)	Dissolved Nitrogen (N)
		mg/L	Carbon	mg/L	mg/L		mg/L	mg/L	mg/L	mg/L	mg/L	mg/L	mg/L	mg/L	mg/L
FB-2	18/07/15	<0.50		<0.50	<0.50		<0.0050	<0.0020	0.01	<0.050	<0.0020	<0.0020	<0.0020	<0.050	ļ
FB-3	12/08/15	<0.50		<0.50	<0.50		<0.0050	<0.0050	<0.0050	<0.020	<0.0020	<0.0020	<0.0020	<0.020	L
TRIP BLANK	11/09/15	<0.50		<0.50	<0.50		<0.0020	<0.0020	0.0094	0.033	<0.0020	<0.0020	<0.0020	0.033	L
CAMP15-1	18/07/15	1.5		5.46	7.02		<0.0050	0.0028	0.034	0.48	<0.0020	<0.0020	<0.0020	0.481	L
MW14-02A	28/09/14	<0.5		0.55	0.55		0.005	0.0075	0.0673	0.213		0.155	<0.001	0.379	0.346
MW14-02A	12/06/15	0.7		0.83	1.48		0.0183	0.0138	0.0052	0.06	0.138	0.138	<0.0020	0.198	L
MW14-02A	16/07/15	<0.50		1.28	1.64		0.0184	0.0175	0.011	<0.050	0.166	0.166	<0.0020	0.166	1
MW14-02A	06/08/15	<0.50		<0.50	<0.50		0.0197	0.0187	<0.0050	<0.020	0.16	0.16	<0.0020	0.152	
MW14-02A	04/09/15	0.56		0.63	0.64		0.0192	0.0159	0.015	<0.020	0.16	0.16	<0.0020	0.159	
MW14-100	04/09/15	<0.50		0.59	0.51		0.0157	0.0192	0.021	0.18	0.113	0.161	<0.0020	0.293	
F-BLANK-1	28/09/14	<0.5		<0.5	<0.5		<0.002	<0.002	<0.005	<0.05		<0.005	<0.001	<0.05	<0.05
MW14-02B	28/09/14	<0.5		1.63	1.56		<0.002	0.0033	<0.005	0.142		0.0138	0.0015	0.155	0.163
F-DUP-1	28/09/14	<0.5		1.37	1.48		0.0025	0.0028	<0.005	0.145		0.0164	0.002	0.156	0.155
MW14-02B	12/06/15	<0.50		0.87	0.77		0.0095	0.0092	0.0094	0.053	0.107	0.107	<0.0020	0.16	
MW14-02B	16/07/15	<0.50		0.99	1.76		0.0129	0.0066	0.0067	0.099	0.1	0.0981	0.0022	0.199	
MW14-02B	06/08/15	<0.50		<0.50	0.84		0.0147	0.0112	0.006	0.025	0.109	0.109	<0.0020	0.134	
MW14-02B	04/09/15	0.65		0.62	0.83		0.0136	0.0114	0.02	0.425	0.108	0.135	<0.0020	0.532	
MW14-03A	12/10/14	8.17		79.1	216		0.721	0.437	0.82	37.7		<0.005	0.0053	37.9	6.66
MW14-03A	22/06/15	1.6		4.8	6.08		0.0547	0.0404	0.02	0.75	0.0035	<0.0020	0.0022	0.753	
MW14-03A	12/07/15	1.3		7.48	9.01		0.0887	0.0697	0.021	0.46	0.0031	0.0031	<0.0020	0.46	
MW14-03A	07/08/15	1.2		3.7	4.3		0.0817	0.0714	0.012	0.282	<0.0020	<0.0020	<0.0020	0.282	
MW14-50	07/08/15	1		4.1	3.6		0.0808	0.0714	0.014	0.254	<0.0020	<0.0020	<0.0020	0.254	
MW14-03A	06/09/15	1.3		3.5	3.8		0.0884	0.0772	0.022	0.285	<0.0020	<0.0020	<0.0020	0.285	
MW14-03B	06/10/14	<5		18.8	32.6		0.0119	0.0124	0.255	4.1		<0.05	<0.01	4.46	1.7
MW14-03B	22/06/15	2.3		4.77	4.77		0.0368	0.0271	0.033	0.56	<0.0020	<0.0020	<0.0020	0.556	
MW14-03B	12/07/15	1.8		3.93	5.06		0.045	0.0336	0.043	0.3	0.0045	0.0045	<0.0020	0.303	
MW14-03B	07/08/15	1.8		2.4	1.8		0.0349	0.0297	0.024	0.343	0.0021	0.0021	<0.0020	0.345	
MW14-03B	06/09/15	1.6		2.5	1.9		0.031	0.0282	0.076	0.259	0.0048	0.0048	<0.0020	0.264	
MW14-200	06/09/15	2		2	1.9		0.0316	0.0277	0.051	0.159	0.0021	0.0035	<0.0020	0.161	
MW14-05A	02/10/14	1.2		17	26.5		0.178	0.111	0.0194	2.06		<0.005	<0.001	2.17	0.63
FB-23/06/15	23/06/15	<0.50		<0.50	<0.50		<0.0050	0.0036	0.0092	<0.050	<0.0020	<0.0020	<0.0020	<0.050	
MW14-05A	23/06/15	0.87		4.39	4.34		0.717	0.653	0.013	0.39	0.0025	<0.0020	0.0021	0.397	
MW14-05A	13/07/15	1.1		6.04	6.34		0.697	0.669	0.011	0.44	0.0047	0.0023	0.0024	0.446	
MW14-05A	08/08/15	1.3		5.6	4.9		0.64	0.622	0.0078	0.538	<0.0020	<0.0020	0.0021	0.538	
MW14-05A	07/09/15	1.2		4.5	4.3		0.754	0.738	0.1	0.321	0.0059	<0.0020	0.004	0.327	
MW14-05B	03/10/14	3.35		21.8	34.8		0.125	0.0594	0.0227	2.55		<0.005	<0.001	2.73	0.76
MW14-05B	24/06/15	4.9		23.7	23.2		0.224	0.144	0.017	0.95	0.003	<0.0020	0.003	0.95	

Sample ID	Sample Date	Dissolved Sulphate (SO4)	Sulphide	Total Metals	Total Aluminum (Al)	Total Antimony (Sb)	Total Arsenic (As)	Total Barium (Ba)	Total Beryllium (Be)	Total Bismuth (Bi)	Total Boron (B)	Total Cadmium (Cd)	Total Calcium (Ca)	Total Chromium (Cr)
		mg/L	mg/L		ug/L	ug/L	ug/L	ug/L	ug/L	ug/L	ug/L	ug/L	mg/L	ug/L
FB-2	18/07/15	<0.50	0.0069		8.12	<0.020	0.024	0.033	<0.010	<0.0050	<10	<0.0050	<0.050	<0.10
FB-3	12/08/15	<0.50	0.0089		<0.50	<0.020	<0.020	<0.020	<0.010	<0.0050	<10	<0.0050	<0.050	<0.10
TRIP BLANK	11/09/15	0.78	0.006		<0.50	<0.020	<0.020	<0.020	<0.010	<0.0050	<10	<0.0050	<0.050	<0.10
CAMP15-1	18/07/15	21.3	<0.0050		5.81	0.935	0.995	205	0.011	<0.0050	<10	0.244	64.7	0.11
MW14-02A	28/09/14	55.4	<0.002		7.5	0.85	68.4	13.4	<0.1	<0.5	<10	<0.01	44.6	0.65
MW14-02A	12/06/15	56.5	0.0056		59.9	7.07	38	51.3	0.02	0.0106	<10	<0.0050	49.5	0.22
MW14-02A	16/07/15	54.5	0.0068		12.9	0.748	47.4	13.1	<0.010	<0.0050	<10	<0.0050	39.6	0.4
MW14-02A	06/08/15	57.6	0.0063		16.1	0.734	55.2	13.9	<0.010	<0.0050	<10	<0.0050	46.1	0.58
MW14-02A	04/09/15	52.8	0.0113		3.72	0.745	59	10.3	<0.010	<0.0050	<10	<0.0050	39.4	0.51
MW14-100	04/09/15	55.9	<0.0050		3.79	0.797	59.1	10.5	<0.010	<0.0050	<10	<0.0050	40.7	0.52
F-BLANK-1	28/09/14	<0.5	<0.002		<3	<0.1	<0.1	<0.05	<0.1	<0.5	<10	<0.01	<0.05	<0.1
MW14-02B	28/09/14	85.5	<0.002		6.3	3.25	19.4	54	<0.1	<0.5	<10	<0.01	61.4	0.51
F-DUP-1	28/09/14	85.5	<0.002		4.5	2.87	20	53	<0.1	<0.5	<10	<0.01	60.8	0.5
MW14-02B	12/06/15	84.3	0.0061		13	0.86	54.4	14.6	<0.010	<0.0050	<10	<0.0050	41.9	0.58
MW14-02B	16/07/15	82.3	0.0069		12.5	6.39	37.2	57.9	<0.010	<0.0050	<10	<0.0050	52.3	<0.10
MW14-02B	06/08/15	87.3	0.0053		15.3	5.96	39.2	55.3	<0.010	<0.0050	<10	<0.0050	59.7	0.17
MW14-02B	04/09/15	83.7	0.0076		21.8	6.37	42	44.6	0.013	<0.0050	<10	0.013	52.3	0.37
MW14-03A	12/10/14	269	<0.02		337	0.99	59.8	381	<0.1	<0.5	<10	0.072	72.5	8.36
MW14-03A	22/06/15	482	0.0999		6.05	0.979	46	141	0.013	0.008	<10	0.007	133	<0.10
MW14-03A	12/07/15	450	0.116		24.5	0.754	65	132	0.013	<0.0050	<10	0.0065	140	0.27
MW14-03A	07/08/15	455	0.12		9.08	0.591	68	99.5	0.012	0.0076	<10	<0.0050	130	<0.10
MW14-50	07/08/15	458	0.12		27	0.592	68.7	96.8	0.015	<0.0050	<10	0.0109	131	0.13
MW14-03A	06/09/15	411	0.147		5.29	0.356	75.3	118	0.018	<0.0050	10	<0.0050	126	<0.10
MW14-03B	06/10/14	476	0.0064		665	0.21	3.57	90.5	<0.1	<0.5	16	0.021	118	2.5
MW14-03B	22/06/15	502	0.0252		18.4	0.136	7.68	91.7	<0.010	0.006	<10	0.067	120	0.3
MW14-03B	12/07/15	511	0.0239		26.4	0.129	9.72	87.6	<0.010	<0.0050	<10	0.106	133	0.55
MW14-03B	07/08/15	515	0.0229		15.9	0.111	8.23	70	<0.010	0.0139	<10	0.056	130	0.14
MW14-03B	06/09/15	490	0.0253		4.38	0.1	8.13	68.2	<0.010	<0.0050	<10	0.051	118	<0.10
MW14-200	06/09/15	535	0.0249		4.08	0.101	7.94	69.4	<0.010	<0.0050	<10	0.049	119	<0.10
MW14-05A	02/10/14	31.9	<0.002		1250	0.39	571	95.9	0.14	<0.5	12	0.039	35.8	10.3
FB-23/06/15	23/06/15	<0.50	<0.0050		0.55	<0.020	<0.020	<0.020	<0.010	<0.0050	<10	<0.0050	<0.050	<0.10
MW14-05A	23/06/15	25.5	0.031		89.5	0.789	1910	99.7	0.03	0.008	<10	0.015	42.6	0.22
MW14-05A	13/07/15	20.2	0.0642		116	0.748	1670	95.8	0.027	0.0095	<10	0.0499	46.7	0.43
MW14-05A	08/08/15	13.1	0.171		69.7	0.746	1710	108	0.024	0.0105	<10	0.0705	47.8	0.35
MW14-05A	07/09/15	17.3	0.12		22.8	0.561	1810	123	0.023	<0.0050	<10	0.024	46.6	0.2
MW14-05B	03/10/14	109	<0.002		3840	0.34	145	186	0.15	<0.5	15	0.049	48.1	12.8
MW14-05B	24/06/15	107	<0.0050		945	1.16	148	111	0.067	0.019	11	0.14	43.1	1.85

							Total	Total		Total					
Sample ID	Sample Date	Total Cobalt (Co)	Total Copper (Cu)	Total Iron (Fe)	Total Lead (Pb)	Total Lithium (Li)	Magnesium (Mg)	Manganese (Mn)	Total Mercury (Hg)	Molybdenum (Mo)	Total Nickel (Ni)	Total Phosphorus (P)	Total Potassium (K)	Total Selenium (Se)	Total Silicon (Si)
		ug/L	ug/L	ug/L	ug/L	ug/L	mg/L	ug/L	ug/L	ug/L	ug/L	ug/L	mg/L	ug/L	ug/L
FB-2	18/07/15	<0.0050	<0.050	4.6	<0.0050	<0.50	<0.050	0.057	<0.0020	<0.050	0.11	90.6	<0.050	<0.040	<50
FB-3	12/08/15	<0.0050	<0.050	<1.0	<0.0050	<0.50	<0.050	<0.050	<0.0020	<0.050	<0.020	<2.0	<0.050	<0.040	<50
TRIP BLANK	11/09/15	<0.0050	0.069	<1.0	<0.0050	<0.50	<0.050	<0.050	<0.0020	<0.050	<0.020	<2.0	<0.050	<0.040	<50
CAMP15-1	18/07/15	0.405	<0.050	1420	<0.0050	4.29	31.9	632	<0.0020	1.97	2.86	16.5	2.12	1.18	4580
MW14-02A	28/09/14	0.13	<0.5	<10	<0.05	7.01	21.4	17.5	<0.01	4.56	<0.5	<50	3.61	0.28	6350
MW14-02A	12/06/15	2.81	0.368	42.4	0.159	7.53	31.9	687	0.0038	7.53	16.7	8.1	3.77	0.267	6050
MW14-02A	16/07/15	0.0233	<0.050	14.1	<0.0050	7.73	19.7	7.69	0.0043	3.09	0.278	28	2.67	0.235	6400
MW14-02A	06/08/15	0.0332	0.183	20.7	0.0148	8.79	23.4	7.59	0.0032	3.57	0.354	7.3	3.34	0.251	6760
MW14-02A	04/09/15	0.019	0.075	1.1	<0.0050	7.72	21.7	2.63	0.0041	3.28	0.075	10.6	2.75	0.274	5610
MW14-100	04/09/15	0.017	0.091	1.2	<0.0050	7.96	22.5	2.8	0.0041	3.2	0.067	9.1	2.8	0.298	5720
F-BLANK-1	28/09/14	<0.1	<0.5	<10	<0.05	<0.5	<0.1	<0.05	<0.01	<0.05	<0.5	<50	<0.1	<0.1	<50
MW14-02B	28/09/14	0.62	<0.5	<10	<0.05	7.65	30.5	161	0.017	5.43	2.49	<50	3.73	0.34	6230
F-DUP-1	28/09/14	0.63	<0.5	<10	<0.05	6.87	30.7	156	0.017	4.89	2.47	<50	3.66	0.33	6240
MW14-02B	12/06/15	0.0385	0.538	38	0.0472	7.06	21	10.6	0.0054	3.5	0.24	9.6	3	0.232	5920
MW14-02B	16/07/15	1.57	0.143	20	0.0142	7.72	29.9	714	0.008	6.9	8.77	69	3.63	0.248	6440
MW14-02B	06/08/15	1.45	0.264	24.2	0.0434	8.55	31.7	667	0.0035	6.61	9.22	6.5	3.71	0.271	6270
MW14-02B	04/09/15	1.75	0.981	101	0.113	8.23	30.7	560	0.0036	6.06	12	7.1	3.35	0.296	5790
MW14-03A	12/10/14	0.81	8.91	371	0.184	10.2	46.9	15.5	8.68	12.8	3.41	644	10.4	2.61	6870
MW14-03A	22/06/15	2.42	0.63	7680	0.076	27.4	137	794	0.0254	4.56	2.56	53.9	8.99	0.065	6090
MW14-03A	12/07/15	2.05	0.887	9580	0.128	26.9	125	963	0.0284	5.22	1.5	123	8.58	0.118	6840
MW14-03A	07/08/15	1.73	0.44	8400	0.0491	24.9	138	748	0.0118	2.92	0.616	65.3	8.4	<0.040	7300
MW14-50	07/08/15	1.66	1.06	8610	0.124	29.7	137	742	0.0116	3.1	0.804	157	8.47	<0.040	7310
MW14-03A	06/09/15	1.51	0.726	8370	0.564	29.9	136	795	0.0112	4.11	0.772	74.8	8.82	<0.040	6660
MW14-03B	06/10/14	2.14	1.93	646	0.175	20.9	139	242	0.879	2.76	5.55	<50	7.78	1.07	6650
MW14-03B	22/06/15	6.9	5.38	1670	0.201	22.9	158	3090	0.0309	8.75	20.6	42.9	8.25	0.28	5350
MW14-03B	12/07/15	6.78	4.39	2280	0.297	20.8	138	3240	0.017	8.71	18.3	70.8	7.5	0.2	6460
MW14-03B	07/08/15	6.94	3.47	1320	0.172	22.8	171	3030	0.0304	6.95	19.5	53.5	8.07	0.146	6350
MW14-03B	06/09/15	6.94	2.36	1070	0.164	27	168	3180	0.0201	7.65	18.3	34.6	8.46	0.15	5380
MW14-200	06/09/15	6.93	2.62	1100	0.178	26.4	168	3140	0.0211	7.86	18.7	35.1	8.7	0.153	5470
MW14-05A	02/10/14	0.83	7.85	1360	1.27	28.5	6.12	338	0.01	8.88	2.41	113	12.6	0.6	14500
FB-23/06/15	23/06/15	<0.0050	<0.050	<1.0	<0.0050	<0.50	<0.050	<0.050	<0.0020	<0.050	0.131	<2.0	<0.050	<0.040	<50
MW14-05A	23/06/15	1.13	1.77	2080	0.317	25.9	8.72	1320	0.003	3.65	1.31	84.5	5.14	0.149	13700
MW14-05A	13/07/15	0.89	3.19	2660	0.742	27.4	7.12	1080	0.0024	4.05	1.6	128	5.22	0.147	13700
MW14-05A	08/08/15	0.948	1.86	3080	0.372	35.3	10.3	1160	<0.0020	4.89	1.92	247	8.03	0.108	13900
MW14-05A	07/09/15	1.04	0.467	3790	0.154	28.1	8.95	1620	<0.0020	4.27	0.659	92.1	5.62	0.102	13400
MW14-05B	03/10/14	1.53	12.9	2610	2.36	32.6	8.01	341	0.019	18.2	9.4	112	15.8	0.5	19900
MW14-05B	24/06/15	2.15	13.4	1370	1.94	35.7	7.79	612	0.0054	27.3	10.1	176	14.3	0.403	12300

Sample ID	Sample Date	Total Silver (Ag)	Total Sodium (Na)	Total Strontium (Sr)	Total Sulphur (S)	Total Thallium (TI)	Total Tin (Sn)	Total Titanium (Ti)	Total Uranium (U)	Total Vanadium (V)	Total Zinc (Zn)	Total Zirconium (Zr)	Dissolved	Dissolved Aluminum (Al)
Sample ID	Sample Date	ug/L	mg/L	ug/L	mg/L	ug/L	ug/L	ug/L	ug/L	ug/L	ug/L	ug/L	Metals	ug/L
FB-2	18/07/15	<0.0050	0.146	<0.050	<3.0	<0.0020	<0.20	<0.50	0.0037	<0.20	0.65	<0.10		23.4
FB-3	12/08/15	<0.0050	<0.050	<0.050	<3.0	<0.0020	<0.20	<0.50	<0.0020	<0.20	<0.10	<0.10		<0.50
TRIP BLANK	11/09/15	<0.0050	<0.050	<0.050	<3.0	<0.0020	<0.20	<0.50	<0.0020	<0.20	<0.10	<0.10		<0.50
CAMP15-1	18/07/15	<0.0050	4.39	392	6.9	0.0317	<0.20	<0.50	8.2	0.57	4.39	0.19		8.54
MW14-02A	28/09/14	<0.01	5.28	341	18.7	0.041	<0.1	<10	62.7	<1	<3			5.7
MW14-02A	12/06/15	0.0093	3.68	509	26.6	0.0883	<0.20	1.76	85.8	0.49	2.05	<0.10		14.5
MW14-02A	16/07/15	<0.0050	2.77	325	14.5	0.0223	<0.20	<0.50	47.7	<0.20	2.62	<0.10		8.65
MW14-02A	06/08/15	0.0096	5.01	402	17.9	0.0454	<0.20	0.84	50.6	0.29	1.23	<0.10		17.4
MW14-02A	04/09/15	<0.0050	3.09	381	19.6	0.028	<0.20	<0.50	49.6	0.23	0.33	<0.10		3.96
MW14-100	04/09/15	<0.0050	3.14	391	19.7	0.04	<0.20	<0.50	50.3	<0.20	0.31	<0.10		4.44
F-BLANK-1	28/09/14	<0.01	<0.05	<0.2	<0.5	<0.01	<0.1	<10	<0.01	<1	<3			<1
MW14-02B	28/09/14	0.011	4.42	514	28.7	0.026	<0.1	<10	91.9	<1	11.9			1
F-DUP-1	28/09/14	<0.01	4.37	467	29	0.021	<0.1	<10	81.6	<1	11			<1
MW14-02B	12/06/15	0.0092	3.23	380	17.8	0.0445	<0.20	<0.50	52.7	0.24	4.15	<0.10		3.19
MW14-02B	16/07/15	<0.0050	3.72	463	26	0.0507	<0.20	<0.50	73.3	<0.20	5.49	<0.10		15.1
MW14-02B	06/08/15	0.0054	3.68	474	25.5	0.27	<0.20	1	75.9	0.32	3.4	<0.10		2.16
MW14-02B	04/09/15	<0.0050	3.55	483	28.7	0.288	<0.20	0.62	78.2	0.23	4.06	<0.10		1.57
MW14-03A	12/10/14	0.632	66.9	762	85.6	0.151	0.76	13	13.6	2.1	8			14
MW14-03A	22/06/15	<0.0050	28.2	4490	169	0.033	<0.20	0.68	58.2	0.25	1.69	1.49		5.35
MW14-03A	12/07/15	0.0115	27.1	4490	145	0.0163	<0.20	1.98	50.9	0.51	2.51	2.7		20.2
MW14-03A	07/08/15	0.0058	27.6	4240	166	0.0377	<0.20	0.62	49.4	0.29	2.46	2.58		52.8
MW14-50	07/08/15	0.0063	28.5	4240	167	0.0088	<0.20	<0.50	48.9	0.33	8.34	2.88		43.5
MW14-03A	06/09/15	0.008	28.3	4760	164	0.011	<0.20	<0.50	47	0.42	1.11	3.15		3.44
MW14-03B	06/10/14	0.652	25.3	2530	156	0.058	0.2	23	59.9	1.4	8.4			4.9
MW14-03B	22/06/15	0.063	27.2	2990	170	0.276	<0.20	0.72	35	0.29	2.21	0.35		18.9
MW14-03B	12/07/15	0.0348	23.9	2850	155	0.148	<0.20	0.95	35.2	0.23	10.2	0.41		14.1
MW14-03B	07/08/15	0.0325	27.1	2960	198	0.143	<0.20	<0.50	39	<0.20	11.8	0.33		7.11
MW14-03B	06/09/15	0.034	26.8	3490	193	0.193	<0.20	<0.50	41.3	<0.20	1.07	0.33		2.81
MW14-200	06/09/15	0.033	27.3	3490	194	0.206	<0.20	<0.50	41.7	<0.20	1.01	0.27		2.88
MW14-05A	02/10/14	0.609	15.4	342	10.7	0.045	1.1	33	4.99	<1	99.1			38.8
FB-23/06/15	23/06/15	<0.0050	<0.050	<0.050	<3.0	<0.0020	<0.20	<0.50	<0.0020	<0.20	<0.10	<0.10		0.56
MW14-05A	23/06/15	0.04	12.4	336	8.6	0.01	<0.20	2.76	26.4	0.31	14.8	0.11		7.95
MW14-05A	13/07/15	0.0397	11.7	323	5.6	0.0211	0.2	3.88	26.8	0.33	16.7	0.17		24.2
MW14-05A	08/08/15	0.016	18.4	498	7.5	0.0197	0.47	2.03	24.3	0.25	19.1	0.18		8.88
MW14-05A	07/09/15	0.006	12.4	356	6.5	0.002	0.2	1.09	36.5	<0.20	4.56	0.12		4
MW14-05B	03/10/14	5.55	43.7	621	35.8	0.133	1.65	133	6.91	2.1	40.1			52
MW14-05B	24/06/15	0.302	72.8	701	40.5	0.119	0.92	50.1	16.6	2.56	34.3	0.59		18.5

		Dissolved Antimony	Dissolved Arsenic	Dissolved	Dissolved Beryllium	Dissolved	Dissolved	Dissolved Cadmium	Dissolved Calcium	Dissolved	Dissolved Cobalt	Dissolved Copper	D	P ¹ ((())
Sample ID	Sample Date	(Sb)	(As)	Barium (Ba)	(Be)	Bismuth (Bi)	Boron (B)	(Cd)	(Ca)	Chromium (Cr)	(Co)	(Cu)	Dissolved Iron (Fe)	Dissolved Lead (Pb)
		ug/L	ug/L	ug/L	ug/L	ug/L	ug/L	ug/L	mg/L	ug/L	ug/L	ug/L	ug/L	ug/L
FB-2	18/07/15	<0.020	0.024	0.068	<0.010	<0.0050	<10	<0.0050	<0.050	<0.10	0.0062	1.85	19.9	0.0069
FB-3	12/08/15	<0.020	<0.020	<0.020	<0.010	<0.0050	<10	<0.0050	<0.050	<0.10	<0.0050	<0.050	<1.0	<0.0050
TRIP BLANK	11/09/15	<0.020	<0.020	<0.020	<0.010	<0.0050	<10	<0.0050	<0.050	<0.10	<0.0050	<0.050	<1.0	<0.0050
CAMP15-1	18/07/15	1.01	0.617	202	<0.010	<0.0050	<10	0.211	64.6	0.12	0.446	<0.050	9.2	<0.0050
MW14-02A	28/09/14	0.92	71.1	14.2	<0.1	<0.5	<10	<0.01	45.7	0.49	0.11	<0.2	<10	<0.05
MW14-02A	12/06/15	0.784	53.8	13.4	<0.010	<0.0050	<10	<0.0050	45.8	0.51	0.0356	0.232	14	0.0206
MW14-02A	16/07/15	0.719	52.4	12.9	<0.010	<0.0050	<10	<0.0050	40.7	0.45	0.0194	<0.050	2.9	<0.0050
MW14-02A	06/08/15	0.7	51.9	13.8	<0.010	<0.0050	<10	0.006	46.1	0.6	0.0419	0.305	26.6	0.0291
MW14-02A	04/09/15	0.697	53.8	9.88	<0.010	<0.0050	<10	<0.0050	40.3	0.47	0.014	0.065	<1.0	<0.0050
MW14-100	04/09/15	0.708	54.7	10.1	<0.010	<0.0050	<10	<0.0050	40.5	0.49	0.013	0.056	<1.0	<0.0050
F-BLANK-1	28/09/14	<0.1	<0.1	<0.05	<0.1	<0.5	<10	<0.01	<0.05	<0.1	<0.1	<0.2	<10	<0.05
MW14-02B	28/09/14	3.27	20.4	54.7	<0.1	<0.5	<10	<0.01	61.8	0.41	0.62	<0.2	<10	<0.05
F-DUP-1	28/09/14	2.89	20.5	54.2	<0.1	<0.5	<10	<0.01	61.4	0.42	0.62	<0.2	<10	<0.05
MW14-02B	12/06/15	6.56	34	45	<0.010	<0.0050	<10	<0.0050	52.4	0.12	2.47	0.081	7.3	0.0114
MW14-02B	16/07/15	6.6	37.4	57.7	<0.010	< 0.0050	<10	<0.0050	52.3	<0.10	1.57	<0.050	9.8	<0.0050
MW14-02B	06/08/15	5.89	39.3	52.2	<0.010	< 0.0050	<10	<0.0050	57.5	0.17	1.46	0.082	4.8	0.0098
MW14-02B	04/09/15	5.97	38.8	40.5	<0.010	<0.0050	<10	0.008	52.2	0.24	1.53	0.074	1.5	0.009
MW14-03A	12/10/14	0.99	60	364	<0.1	<0.5	15	0.067	69.3	5.46	0.75	2.82	18	0.09
MW14-03A	22/06/15	1.02	49.4	143	0.012	< 0.0050	12	<0.0050	135	<0.10	2.46	0.175	7330	0.162
MW14-03A	12/07/15	0.698	58.6	128	<0.010	<0.0050	<10	0.0121	138	0.3	2.03	0.417	9370	0.0778
MW14-03A	07/08/15	0.586	68.9	98	0.016	< 0.0050	<10	0.0545	135	0.21	1.75	1.65	8760	0.14
MW14-50	07/08/15	0.595	71.9	103	0.017	0.0111	18	0.014	137	0.22	1.88	1.53	8880	0.205
MW14-03A	06/09/15	0.313	75.7	103	0.013	< 0.0050	<10	<0.0050	124	<0.10	1.32	0.068	7560	0.006
MW14-03B	06/10/14	0.15	1.68	84	<0.1	<0.5	<10	0.012	114	0.12	1.92	0.6	22	<0.05
MW14-03B	22/06/15	0.134	8.7	99	<0.010	< 0.0050	12	0.0223	138	0.14	7.55	1.58	1770	0.0798
MW14-03B	12/07/15	0.103	9.2	87.8	<0.010	< 0.0050	<10	0.0628	127	0.16	7	0.941	2140	0.0615
MW14-03B	07/08/15	0.091	8.21	74.7	<0.010	0.0129	<10	0.0184	133	<0.10	7.2	1.11	1340	0.0338
MW14-03B	06/09/15	0.087	7.63	61.8	<0.010	< 0.0050	<10	0.008	129	<0.10	6.14	0.489	1010	0.022
MW14-200	06/09/15	0.085	7.76	64.1	<0.010	<0.0050	<10	<0.0050	131	<0.10	6.11	0.434	1020	0.015
MW14-05A	02/10/14	0.29	578	63.5	<0.1	<0.5	<10	0.018	36.6	6.25	0.57	3.83	266	0.114
FB-23/06/15	23/06/15	<0.020	0.047	0.127	<0.010	<0.0050	<10	<0.0050	<0.050	<0.10	<0.0050	<0.050	<1.0	<0.0050
MW14-05A	23/06/15	0.688	1860	98.4	0.026	<0.0050	<10	<0.0050	47.1	<0.10	1.17	0.152	1920	0.0483
MW14-05A	13/07/15	0.664	1680	93.4	0.016	<0.0050	<10	0.0115	43.8	0.2	0.933	1.16	2380	0.257
MW14-05A	08/08/15	0.476	1480	109	0.015	0.0089	<10	<0.0050	47.2	0.17	0.742	0.18	2940	0.0112
MW14-05A	07/09/15	0.407	1700	118	0.02	<0.0050	<10	<0.0050	43.2	0.12	0.85	0.053	3590	0.007
MW14-05B	03/10/14	0.22	143	97.2	<0.1	<0.5	10	0.027	48.6	3.19	0.76	5.27	96	0.073
MW14-05B	24/06/15	1.17	135	83.6	<0.010	<0.0050	13	0.0423	45.8	0.17	0.955	2.48	69.2	0.0788

Sample ID	Sample Date	Dissolved Lithium (Li)	Dissolved Magnesium (Mg)	Dissolved Manganese (Mn)	Dissolved Mercury (Hg)	Dissolved Molybdenum (Mo)	Dissolved Nickel (Ni)	Dissolved Phosphorus (P)	Dissolved Potassium (K)	Dissolved Selenium (Se)	Dissolved Silicon (Si)	Dissolved Silver (Ag)	Dissolved Sodium (Na)	Dissolved Strontium (Sr)
		ug/L	mg/L	ug/L	ug/L	ug/L	ug/L	ug/L	mg/L	ug/L	ug/L	ug/L	mg/L	ug/L
FB-2	18/07/15	<0.50	<0.050	0.301	<0.0020	<0.050	1.17	179	<0.050	<0.040	<50	<0.0050	0.382	0.061
FB-3	12/08/15	<0.50	<0.050	<0.050	<0.0020	<0.050	<0.020	<2.0	<0.050	<0.040	<50	<0.0050	<0.050	<0.050
TRIP BLANK	11/09/15	<0.50	<0.050	<0.050	<0.0020	<0.050	<0.020	<2.0	<0.050	<0.040	<50	<0.0050	<0.050	<0.050
CAMP15-1	18/07/15	4.47	32.1	624	<0.0020	2.09	3.02	82.2	2.27	0.724	4700	<0.0050	4.83	400
MW14-02A	28/09/14	7.79	21.6	17	<0.01	4.88	<0.5	<50	3.63	0.25	6410	<0.01	5.18	378
MW14-02A	12/06/15	6.45	20.8	10.7	0.0035	3.19	0.348	53	2.94	0.255	6070	0.0053	3.17	361
MW14-02A	16/07/15	7.74	20.9	7.88	0.0042	3.04	0.327	12.8	2.98	0.241	6580	<0.0050	3.03	372
MW14-02A	06/08/15	8.06	21.8	6.82	0.0025	3.14	0.419	11.1	2.94	0.218	6050	0.0135	4.69	353
MW14-02A	04/09/15	7.42	20.5	2.42	0.004	2.78	0.086	7.4	2.86	0.229	6160	<0.0050	2.87	362
MW14-100	04/09/15	7.66	21.4	2.46	0.0038	2.84	0.082	6.9	2.83	0.237	6350	<0.0050	2.89	352
F-BLANK-1	28/09/14	<0.5	<0.1	<0.05	<0.01	<0.05	<0.5	<50	<0.1	<0.1	<50	<0.01	<0.05	<0.2
MW14-02B	28/09/14	7.59	31.2	162	<0.01	4.96	2.5	<50	3.74	0.31	6270	<0.01	4.53	494
F-DUP-1	28/09/14	7.19	31.1	159	<0.01	4.55	2.4	<50	3.69	0.33	6270	<0.01	4.56	459
MW14-02B	12/06/15	6.75	27.1	621	0.0021	7.45	14.7	6.6	3.25	0.277	6090	<0.0050	3.21	441
MW14-02B	16/07/15	7.08	30.3	710	0.0042	6.84	8.85	117	3.67	0.264	6420	<0.0050	3.73	469
MW14-02B	06/08/15	7.63	31.9	645	<0.0020	6.42	9.29	7.5	3.61	0.274	6130	<0.0050	3.73	462
MW14-02B	04/09/15	7.52	28.8	511	0.0027	5.72	10.6	5.2	3.47	0.278	6430	<0.0050	3.28	454
MW14-03A	12/10/14	10.8	43.2	9.52	0.554	12.9	2.79	440	9.19	2.61	5910	<0.01	69.7	742
MW14-03A	22/06/15	31.3	143	815	0.0068	4.82	2.36	42.7	9.39	0.097	8050	0.0079	28.3	5130
MW14-03A	12/07/15	27.2	125	954	0.0098	5.14	1.35	118	8.31	0.043	7100	0.0082	26.8	4570
MW14-03A	07/08/15	32.3	142	754	0.0021	2.95	0.846	144	8.25	<0.040	7320	0.0135	29	4380
MW14-50	07/08/15	31.4	139	797	0.0039	3.41	0.935	195	8.91	<0.040	7270	0.0077	28	4550
MW14-03A	06/09/15	26.6	125	653	0.003	3.19	0.343	57.2	8.38	<0.040	7080	0.01	26.1	4440
MW14-03B	06/10/14	21	125	233	0.041	2.54	4.46	<50	6.9	1.13	4950	<0.01	25.9	2540
MW14-03B	22/06/15	24.6	176	3490	0.0049	9.53	22	69.9	9.18	0.249	7250	0.0121	30	3620
MW14-03B	12/07/15	21.1	143	3300	0.0066	8.76	18.5	50.2	7.7	0.169	5980	0.0056	24.5	2950
MW14-03B	07/08/15	26.6	184	3210	0.0028	7.38	20.4	38.2	8.46	0.143	6290	0.0138	29.8	3010
MW14-03B	06/09/15	23	164	2920	0.0047	6.77	16.6	29.4	8.42	0.123	6070	0.007	26.8	3380
MW14-200	06/09/15	24.9	163	2890	0.0033	6.86	16.6	27.4	8.51	0.131	6300	0.006	25.6	3400
MW14-05A	02/10/14	27.6	5.97	302	<0.01	8.6	1.39	87	12.3	0.59	12500	<0.01	15	330
FB-23/06/15	23/06/15	0.62	<0.050	<0.050	<0.0020	<0.050	0.068	<2.0	<0.050	<0.040	<50	<0.0050	<0.050	<0.050
MW14-05A	23/06/15	30	8.9	1390	<0.0020	3.8	1.25	89.7	5.34	0.103	14800	0.0054	13.5	375
MW14-05A	13/07/15	27.9	8.42	1170	<0.0020	4.14	1.39	124	5.92	0.1	13400	<0.0050	23.2	353
MW14-05A	08/08/15	34.3	8.87	1100	<0.0020	4.83	1.38	112	7.12	0.071	13700	<0.0050	15.9	437
MW14-05A	07/09/15	28.4	8.86	1600	<0.0020	3.71	0.544	84.2	5.45	0.068	14100	<0.0050	12.2	334
MW14-05B	03/10/14	32.7	7.48	187	<0.01	18.5	4.5	71	14.2	0.57	12000	0.084	44.5	632
MW14-05B	24/06/15	36	6.28	414	<0.0020	28.9	7.23	112	14	0.421	10600	0.0067	76.4	719

Sample ID	Sample Date	Dissolved Sulphur (S)	Dissolved Thallium (TI)	Dissolved Tin (Sn)	Dissolved Titanium (Ti)	Dissolved Uranium (U)	Dissolved Vanadium (V)	Dissolved Zinc (Zn)	Dissolved Zirconium (Zr)	Filter and HNO3 Preservation
		mg/L	ug/L	ug/L	ug/L	ug/L	ug/L	ug/L	ug/L	(Metals)
FB-2	18/07/15	<3.0	<0.0020	<0.20	0.64	0.0066	<0.20	1.26	<0.10	LAB
FB-3	12/08/15	<3.0	<0.0020	<0.20	<0.50	<0.0020	<0.20	<0.10	<0.10	LAB
TRIP BLANK	11/09/15	<3.0	<0.0020	<0.20	<0.50	<0.0020	<0.20	<0.10	<0.10	LAB
CAMP15-1	18/07/15	8.2	0.0332	<0.20	<0.50	8	<0.20	11.5	0.17	LAB
MW14-02A	28/09/14	18.7	0.041	<0.1	<10	70.4	<1	1.6		FIELD
MW14-02A	12/06/15	17.7	0.0555	<0.20	<0.50	46.4	0.25	3.37	<0.10	FIELD
MW14-02A	16/07/15	17.4	0.0217	<0.20	<0.50	48	<0.20	2.26	<0.10	FIELD
MW14-02A	06/08/15	17.6	0.0486	<0.20	0.65	48.1	0.3	3.83	<0.10	FIELD
MW14-02A	04/09/15	18.2	0.024	<0.20	<0.50	44.6	<0.20	0.27	<0.10	FIELD
MW14-100	04/09/15	18.6	0.035	<0.20	<0.50	45.4	<0.20	0.54	<0.10	FIELD
F-BLANK-1	28/09/14	<0.5	<0.01	<0.1	<10	<0.01	<1	<1		
MW14-02B	28/09/14	29	0.025	<0.1	<10	92.5	<1	10.3		FIELD
F-DUP-1	28/09/14	29	0.022	<0.1	<10	83.3	<1	10.3		FIELD
MW14-02B	12/06/15	24.6	0.0784	<0.20	<0.50	72.2	0.36	1.92	<0.10	FIELD
MW14-02B	16/07/15	26.1	0.0536	<0.20	<0.50	76.8	<0.20	3.78	<0.10	FIELD
MW14-02B	06/08/15	26.8	0.267	<0.20	<0.50	79.9	0.31	3.86	<0.10	FIELD
MW14-02B	04/09/15	26.7	0.249	<0.20	<0.50	72.2	<0.20	2.19	<0.10	FIELD
MW14-03A	12/10/14	83.3	0.136	0.59	<10	12.8	1.4	7.9		FIELD
MW14-03A	22/06/15	182	0.0176	<0.20	<0.50	69.3	0.23	1.68	2.39	FIELD
MW14-03A	12/07/15	156	0.0037	<0.20	0.6	49.3	0.48	4.35	3.07	FIELD
MW14-03A	07/08/15	166	0.0263	<0.20	0.69	50.1	0.41	16.2	2.96	FIELD
MW14-50	07/08/15	162	0.01	<0.20	0.86	53.7	0.34	16.2	3.1	FIELD
MW14-03A	06/09/15	153	0.003	<0.20	<0.50	43.6	<0.20	0.29	3.39	FIELD
MW14-03B	06/10/14	139	0.044	<0.1	<10	57.5	<1	5.4		FIELD
MW14-03B	22/06/15	198	0.132	<0.20	<0.50	43.3	0.26	10.1	0.44	FIELD
MW14-03B	12/07/15	164	0.0793	<0.20	<0.50	37.9	0.21	9.45	0.44	FIELD
MW14-03B	07/08/15	200	0.11	<0.20	<0.50	40.5	<0.20	6.03	0.33	FIELD
MW14-03B	06/09/15	193	0.135	<0.20	<0.50	37.5	<0.20	0.75	0.34	FIELD
MW14-200	06/09/15	191	0.14	<0.20	<0.50	38.2	<0.20	0.85	0.3	FIELD
MW14-05A	02/10/14	10.7	0.01	0.57	<10	4.04	<1	42.5		FIELD
FB-23/06/15	23/06/15	<3.0	<0.0020	<0.20	<0.50	<0.0020	<0.20	0.16	<0.10	LAB
MW14-05A	23/06/15	9.4	0.0048	<0.20	<0.50	32.5	<0.20	11.2	<0.10	FIELD
MW14-05A	13/07/15	6.8	0.0085	<0.20	0.88	28.6	0.24	7.63	0.14	FIELD
MW14-05A	08/08/15	5.1	0.0114	<0.20	<0.50	25.4	<0.20	0.92	0.14	FIELD
MW14-05A	07/09/15	6.6	<0.0020	<0.20	<0.50	32.4	<0.20	0.71	0.12	FIELD
MW14-05B	03/10/14	36.1	0.02	0.7	<10	5.95	<1	3.8		FIELD
MW14-05B	24/06/15	39.8	0.0456	0.4	0.87	16.2	1.25	4.31	0.25	FIELD

Station	Sample ID	Sample Date	Analytical Laboratory	Lab Job ID	Lab Sample ID	Field Paramaters	pH (field)	Specific Conductance (field)	DO (field)	ORP (field)	Temperature (field)	Physical Properties	Conductivity (lab)
							pН	uS/cm	mg/L	ORP mV	°C		uS/cm
MW14-05B	MW14-05B	14/07/15	Maxxam	B560161	MR1584		7.72	709	0.45	-91	1.4		736
MW14-05B	MW14-05B	09/08/15	Maxxam	B569424	MW5117		7.43	696	0.44	-51.3	1.48		756
MW14-05B	FB-4	08/09/15	Maxxam	B579224	NC4791								1.1
MW14-05B	MW14-05B	08/09/15	Maxxam	B579224	NC4789		7.24	607	0.96	-65.4	4.37		583
MW15-01WB	MW15-01WB/BH8-WB	07/06/15	Maxxam	B549739	ML2152		6.95	2229	6.83	32.8	3.4		2130
MW15-01WB	MW15-01WB	08/07/15	Maxxam	B558595	MQ2530		7.85	2269	8.96	22.6	4.7		2200
MW15-01WB	MW15-01WB	10/08/15	Maxxam	B569424	MW5120		7.01	2160	7.96	37.5	9.2		2180
MW15-01WB	MW15-01WB	03/09/15	Maxxam	B578440	NC0865		6.78	2215			6.86		2190
MW15-02AZ	MW15-02 AZ/BH10-AZ	31/05/15	Maxxam	B546672	MJ5444		7.32	874.4	6.43	21.3	1.2		926
MW15-02AZ	MW15-02AZ	11/07/15	Maxxam	B559978	MR0622		7.54	800	8.2	41.3	1.95		792
MW15-02AZ	MW15-40AZ	11/07/15	Maxxam	B559978	MR0623								792
MW15-02AZ	MW15-02AZ	12/08/15	Maxxam	B569424	MW5162		7.41	767	6.8	48.1	1.08		738
MW15-02AZ	MW15-02AZ	07/09/15	Maxxam	B578440	NC0910		7.49	728	7.37	143.3	1.76		747
MW15-02WB	MW15-02 WB/BH10-WB	01/06/15	Maxxam	B546672	MJ5445		7.27	889		75	3.2		889
MW15-02WB	MW15-02WB	11/07/15	Maxxam	B559978	MR0621		7.44	884	9.22	-17.4	6.7		816
MW15-02WB	MW15-02WB	12/08/15	Maxxam	B569424	MW5161		7.3	898	7.45	9.3	3.18		866
MW15-02WB	MW15-02WB	07/09/15	Maxxam	B578440	NC0909		7.47	863	5.26	117.4	4.52		865
MW15-03AZ	MW15-03AZ	16/06/15	Maxxam	B551383	MM1021		6.64	322	0.34	107.7	2.79		323
MW15-03AZ	MW15-21	16/06/15	Maxxam	B551383	MM1022								319
MW15-03AZ	MW15-03AZ	09/07/15	Maxxam	B558921	MQ4540		6.99	307.5	0.57	79.9	2.2		308
MW15-03AZ	MW15-03AZ	10/08/15	Maxxam	B569424	MW5157		7.02	217	1.42	73	2.54		212
MW15-03AZ	MW15-03AZ	04/09/15	Maxxam	B578440	NC0874		7.07	213	1.17	91.6	1.65		212
MW15-03WB	MW15-03WB	16/06/15	Maxxam	B551383	MM1020		7.65	1907			7.55		1900
MW15-03WB	MW15-03WB	09/07/15	Maxxam	B558921	MQ4541		7.42	1914	8.69	-26.8	4.2		1870
MW15-03WB	MW15-03WB	10/08/15	Maxxam	B569424	MW5121		7.49	1978	9.28	7.1	4.84		1840
MW15-03WB	MW15-03WB	04/09/15	Maxxam	B578440	NC0873		7.37	1883	6.05	15.5	4.47		1840
MW15-04WB	MW15-04WB	14/06/15	Maxxam	B551383	MM1018		8.32	648.2	12.74	72.6			667
MW15-04WB	MW15-20	14/06/15	Maxxam	B551383	MM1019								670
MW15-04WB	MW15-04WB	10/07/15	Maxxam	B558916	MQ4530		7.28	665	7.75	169.6	7.35		661
MW15-04WB	MW15-30WB	10/07/15	Maxxam	B558916	MQ4532								656
MW15-04WB	MW15-04WB	11/08/15	Maxxam	B569424	MW5158		7.23	688	11.19	97.7	3.15		639
MW15-04WB	MW15-04WB	05/09/15	Maxxam	B578440	NC0875		6.32	665	4.76	187.1	5.84		657
MW15-05AZ	MW15-05AZ	06/09/15	Maxxam	B578440	NC0907		5.76	28	7.89	97.6	1.07		28.2
MW15-05WB	MW15-05WB	18/06/15	Maxxam	B553846	MN4270		7.35	306	13.07	192.9	7.95		298
MW15-05WB	MW15-05WB	10/07/15	Maxxam	B558916	MQ4531		7.62	304	11.61	0.2	4.63		296
MW15-05WB	MW15-05WB	11/08/15	Maxxam	B569424	MW5159		7.63	300	11.92	39.3	3.98		287
MW15-05WB	MW15-60	11/08/15	Maxxam	B569424	MW5160								290
MW15-05WB	MW15-05WB	06/09/15	Maxxam	B578440	NC0906		6.55	291	9.95	74.9	5.3		291
MW15-06WB	MW15-06WB	21/06/15	Maxxam	B553846	MN4271		7.21	456	5.69	17.7	6.56		425
MW15-06WB	MW15-06WB	21/07/15	Maxxam	B562572	MS4335		8	607	9.16	-50.2	4.6		608
MW15-06WB	MW15-06WB	09/08/15	Maxxam	B569424	MW5118		7.71	601	6.67	-25.6	7.66		636
MW15-06WB	MW15-06WB	08/09/15	Maxxam	B509424 B579224	NC4790	+	7.68	671	6.09	-23.0	4.85		662
NIN TO-00MB	1V1VV 13-UOW B	09/09/12	IVIdXXdIII	B5/9224	NC4790		7.00	0/1	0.09	-0.7	4.00		002

Samples and sample data with RED text are not considered to be representative of formation water (See Appendix 5-D for discussion).

Sample ID	Sample Date	pH (lab)	Total Hardness (CaCO3)	Dissolved Hardness (CaCO3)	Total Suspended Solids	Total Dissolved Solids	Turbidity	Inorganics	Alkalinity (Total as CaCO3)	Alkalinity (PP as CaCO3)	Bicarbonate (HCO3)	Carbonate (CO3)	Hydroxide (OH)	Bromide (Br)	Fluoride (F)
		pН	mg/L	mg/L	mg/L	mg/L	NTU		mg/L	mg/L	mg/L	mg/L	mg/L	mg/L	mg/L
MW14-05B	14/07/15	8.04	147	134	14.7	484	14		192	<0.50	234	<0.50	<0.50		0.38
MW14-05B	09/08/15	8.03	154	148	7	579	7.85		196	<0.50	239	<0.50	<0.50		0.36
FB-4	08/09/15	5.08	<0.50	<0.50	<1.0	<10	<0.10		<0.50	<0.50	<0.50	<0.50	<0.50		<0.010
MW14-05B	08/09/15	7.9	148	150	11	402	9.03		197	<0.50	240	<0.50	<0.50		0.28
MW15-01WB/BH8-WB	07/06/15	7.9	1460	1470	2.5	1800	3.52		556	<0.50	678	<0.50	<0.50		0.057
MW15-01WB	08/07/15	7.95	1400	1410	2.5	1690	4.31		554	<0.50	676	<0.50	<0.50		0.044
MW15-01WB	10/08/15	7.75	1450	1330	3	1890	5.93		565	<0.50	689	<0.50	<0.50		0.058
MW15-01WB	03/09/15	7.85	1360	1390	2.7	1940	5.11		547	<0.50	668	<0.50	<0.50		0.06
MW15-02 AZ/BH10-AZ	31/05/15	8.08	493	513	<1.0	640	0.19		264	<0.50	322	<0.50	<0.50		0.1
MW15-02AZ	11/07/15	8.04	410	417	<1.0	484	0.11		239	<0.50	291	<0.50	<0.50		0.088
MW15-40AZ	11/07/15	7.83	411	412	<1.0	500	0.15		242	<0.50	295	<0.50	<0.50		0.087
MW15-02AZ	12/08/15	8.06	408	405	<1.0	500	<0.10		234	<0.50	286	<0.50	<0.50		0.097
MW15-02AZ	07/09/15	8.16	394	383	<1.0	514	0.24		231	<0.50	281	<0.50	<0.50		0.11
MW15-02 WB/BH10-WB	01/06/15	7.99	464	514	<1.0	634	1.33		245	<0.50	299	<0.50	<0.50		0.17
MW15-02WB	11/07/15	7.66	462	458	<1.0	602	1.97		206	<0.50	251	<0.50	<0.50		0.2
MW15-02WB	12/08/15	7.95	486	466	1.1	636	2.24		224	<0.50	274	<0.50	<0.50		0.21
MW15-02WB	07/09/15	8.16	465	456	<1.0	610	0.21		247	<0.50	301	<0.50	<0.50		0.12
MW15-03AZ	16/06/15	7.97	151	151	<1.0	216	0.24		108	<0.50	132	<0.50	<0.50		0.048
MW15-21	16/06/15	7.96	148	158	<1.0	202	0.27		107	<0.50	130	<0.50	<0.50		0.047
MW15-03AZ	09/07/15	7.82	139	141	<1.0	184	<0.10		110	<0.50	134	<0.50	<0.50		0.057
MW15-03AZ	10/08/15	7.71	108	107	<1.0	150	0.51		80.3	<0.50	97.9	<0.50	<0.50		0.059
MW15-03AZ	04/09/15	7.86	99	96.6	<1.0	140	0.29		82.3	<0.50	100	<0.50	<0.50		0.063
MW15-03WB	16/06/15	8.02	1030	1010	3.6	1520	3.81		150	<0.50	183	<0.50	<0.50		0.13
MW15-03WB	09/07/15	7.98	929	935	2.9	1400	4.48		152	<0.50	185	<0.50	<0.50		0.14
MW15-03WB	10/08/15	7.98	937	911	1.8	1550	4.55		151	<0.50	184	<0.50	<0.50		0.15
MW15-03WB	04/09/15	8.03	921	937	1.7	1670	4.91		146	<0.50	178	<0.50	<0.50		0.14
MW15-04WB	14/06/15	8.26	335	338	<1.0	446	0.2		233	<0.50	284	<0.50	<0.50		0.096
MW15-20	14/06/15	8.22	339	346	<1.0	480	0.14		234	<0.50	285	<0.50	<0.50		0.094
MW15-04WB	10/07/15	8.1	329	326	<1.0	396	0.12		234	<0.50	285	<0.50	<0.50		0.1
MW15-30WB	10/07/15	8.15	327	330	<1.0	402	<0.10		234	<0.50	285	<0.50	<0.50		0.11
MW15-04WB	11/08/15	8.07	351	355	<1.0	452	0.24		227	<0.50	277	<0.50	<0.50		0.11
MW15-04WB	05/09/15	8.06	330	339	<1.0	444	0.14		232	<0.50	283	<0.50	<0.50		0.11
MW15-05AZ	06/09/15	6.76	9.97	10.4	1.5	22	11.3		9.09	<0.50	11.1	<0.50	<0.50		0.036
MW15-05WB	18/06/15	8.15	140	151	<1.0	170	1.01		146	<0.50	179	<0.50	<0.50		0.26
MW15-05WB	10/07/15	7.98	132	134	<1.0	162	0.27		145	<0.50	177	<0.50	<0.50		0.28
MW15-05WB	11/08/15	7.98	136	139	<1.0	189	<0.10		140	<0.50	171	<0.50	<0.50		0.3
MW15-60	11/08/15	8	141	140	1.6	184	0.13	1	144	<0.50	175	<0.50	<0.50	1	0.3
MW15-05WB	06/09/15	7.98	133	146	<1.0	186	0.17		138	<0.50	168	<0.50	<0.50		0.3
MW15-06WB	21/06/15	8.03	175	195	15.8	306	25.1		164	<0.50	200	<0.50	<0.50		0.063
MW15-06WB	21/07/15	7.97	288	299	4.6	330	6.95		224	<0.50	273	<0.50	<0.50		0.073
MW15-06WB	09/08/15	8.01	335	317	3.7	416	3.21		241	<0.50	294	<0.50	<0.50		0.082
MW15-06WB	08/09/15	8.15	329	370	2.3	382	3.15		258	<0.50	315	<0.50	<0.50		0.11

Samples and sample data with RED text are not considered to be representative of formation water (See Appendix 5-D for discussion).

Sample ID	Sample Date	Dissolved Chloride (Cl)	Organic / Inorganic	Dissolved Organic Carbon (C)	Total Organic Carbon (C)	Anions and Nutrients	Total Phosphorus (P)	Dissolved Phosphorus (P)	Total Ammonia (N)	Total Total Kjeldahl Nitrogen (Calc)	Nitrate plus Nitrite (N)	Nitrate (N)	Nitrite (N)	Total Nitrogen (N)	Dissolved Nitrogen (N)
		mg/L	Carbon	mg/L	mg/L		mg/L	mg/L	mg/L	mg/L	mg/L	mg/L	mg/L	mg/L	mg/L
MW14-05B	14/07/15	5.9		21.7	24.6		0.208	0.179	0.024	0.44	0.0046	<0.0020	0.0037	0.448	ļ
MW14-05B	09/08/15	5.9		28	30		0.213	0.197	<0.0050	0.316	0.0024	<0.0020	0.0024	0.318	ļ
FB-4	08/09/15	<0.50		<0.50	<0.50		<0.0050	<0.0020	0.0085	0.041	<0.0020	<0.0020	<0.0020	0.041	L
MW14-05B	08/09/15	3.1		14	15		0.246	0.227	0.016	0.289	<0.0020	<0.0020	<0.0020	0.289	ļ
MW15-01WB/BH8-WB	07/06/15	0.69		32.7	36.5		0.0139	0.01	0.015	0.043	<0.0020	<0.0020	<0.0020	0.043	L
MW15-01WB	08/07/15	0.81		38.4	284		0.0517	0.0041	0.016	0.069	<0.0020	<0.0020	<0.0020	0.069	L
MW15-01WB	10/08/15	0.75		120	490		0.111	0.0178	0.0052	0.35	<0.0020	<0.0020	<0.0020	0.35	ļ
MW15-01WB	03/09/15	1.7		35	32		0.0138	0.0159	0.015	0.035	0.0048	0.0048	<0.0020	0.04	L
MW15-02 AZ/BH10-AZ	31/05/15	0.84		3.86	3.77		<0.0050	<0.0050	0.01	0.147	0.232	0.232	<0.0020	0.379	L
MW15-02AZ	11/07/15	0.5		5.62	6.29		<0.0050	<0.0050	0.016	0.22	0.436	0.436	<0.0020	0.654	I
MW15-40AZ	11/07/15	0.58		5.28	6.24		<0.0050	<0.0050	0.01	0.19	0.437	0.437	<0.0020	0.626	
MW15-02AZ	12/08/15	0.87		4.5	4.7		<0.0050	<0.0050	<0.0050	0.109	0.531	0.531	<0.0020	0.641	
MW15-02AZ	07/09/15	1.1		5.5	5.4		<0.0050	<0.0050	0.025	0.153	0.495	0.544	<0.0020	0.694	
MW15-02 WB/BH10-WB	01/06/15	0.93		29.9	42.4		0.0847	0.0042	0.011	0.129	<0.0020	<0.0020	<0.0020	0.129	
MW15-02WB	11/07/15	0.58		14.7	74.2		<0.0050	0.0024	0.018	0.17	<0.0020	<0.0020	<0.0020	0.165	1
MW15-02WB	12/08/15	<0.50		190	230		0.0085	0.0062	0.012	0.37	0.003	0.003	<0.0020	0.37	1
MW15-02WB	07/09/15	1.2		9.4	14		<0.0050	0.0034	0.018	0.103	0.14	0.138	0.0026	0.243	
MW15-03AZ	16/06/15	0.78		7.87	8.32		<0.0050	<0.0050	0.0087	0.227	0.0255	0.0255	<0.0020	0.253	
MW15-21	16/06/15	0.52		7.81	7.39		<0.0050	<0.0050	0.025	0.209	0.0263	0.0263	<0.0020	0.235	
MW15-03AZ	09/07/15	0.72		7.11	7.12		<0.0050	0.0057	0.02	0.18	0.0294	0.0294	<0.0020	0.207	0.236
MW15-03AZ	10/08/15	<0.50		8.8	10		<0.0050	<0.0050	0.0065	0.231	0.15	0.15	<0.0020	0.381	
MW15-03AZ	04/09/15	0.76		10	11		<0.0050	<0.0050	0.025	0.309	0.146	0.166	<0.0020	0.455	
MW15-03WB	16/06/15	9.1		220	12.1		<0.0050	0.0048	0.012	0.036	0.0076	0.0076	<0.0020	0.044	
MW15-03WB	09/07/15	8.9		362	311		0.0897	0.0361	0.92	0.098	<0.0020	<0.0020	<0.0020	0.098	0.23
MW15-03WB	10/08/15	9.1		340	280		0.0323	0.0385	0.0093	0.45	<0.0020	<0.0020	<0.0020	0.45	
MW15-03WB	04/09/15	8.7		8.5	8.3		<0.0050	0.0032	0.039	0.047	0.003	0.003	<0.0020	0.05	
MW15-04WB	14/06/15	<0.50		268	1080		0.105	0.0951	0.022	<0.20	0.156	0.139	0.0167	<0.20	
MW15-20	14/06/15	<0.50		219	1310		0.401	0.022	0.012	<0.20	0.158	0.141	0.017	<0.20	
MW15-04WB	10/07/15	0.68		93.6	8.99		<0.0050	0.0069	0.019	0.15	0.0809	0.0702	0.0107	0.227	
MW15-30WB	10/07/15	0.67		10.3	63.8		<0.0050	0.0043	0.02	0.088	0.0874	0.0777	0.0097	0.175	
MW15-04WB	11/08/15	<0.50		150	120		0.0056	0.0074	0.015	0.061	0.24	0.228	0.0116	0.301	
MW15-04WB	05/09/15	0.84		7	130		<0.0050	0.0043	0.019	0.044	0.222	0.215	0.0065	0.266	
MW15-05AZ	06/09/15	0.52		13	13		0.0245	0.0134	0.61	0.77	0.012	0.01	0.002	0.782	
MW15-05WB	18/06/15	0.64		371	771		0.0761	0.0358	0.0067	0.082	<0.0020	<0.0020	<0.0020	0.082	 I
MW15-05WB	10/07/15	<0.50		138	335		0.0744	0.0143	0.016	0.085	<0.0020	<0.0020	<0.0020	0.085	
MW15-05WB	11/08/15	<0.50		9.5	330		0.0654	0.0125	<0.0050	0.32	<0.0020	<0.0020	<0.0020	0.32	
MW15-60	11/08/15	<0.50		11	410		0.121	0.0112	<0.0050	0.37	<0.0020	<0.0020	<0.0020	0.37	 I
MW15-05WB	06/09/15	0.75		270	24		0.0124	0.0297	0.14	0.027	0.0022	0.0031	<0.0020	0.229	
MW15-06WB	21/06/15	8.8		34.4	48.6		0.0505	0.0317	0.59	6	0.0101	<0.0020	0.0101	6.01	
MW15-06WB	21/07/15	2.1		69.2	15.8		0.0247	0.0308	0.23	2.4	0.0028	<0.0020	0.0024	2.36	
MW15-06WB	09/08/15	1.7		17	33		0.0316	0.027	0.098	1.26	<0.0020	<0.0020	<0.0020	1.26	
MW15-06WB	08/09/15	1.5		39	130		0.0519	0.0463	0.047	0.597	0.002	<0.0020	0.003	0.599	

Samples and sample data with RED text are not considered to be representative of formation water (See Appendix 5-D for discussion).

Sample ID	Sample Date	Dissolved Sulphate (SO4)	Sulphide	Total Metals	Total Aluminum (Al)	Total Antimony (Sb)	Total Arsenic (As)	Total Barium (Ba)	Total Beryllium (Be)	Total Bismuth (Bi)	Total Boron (B)	Total Cadmium (Cd)	Total Calcium (Ca)	Total Chromium (Cr)
		mg/L	mg/L		ug/L	ug/L	ug/L	ug/L	ug/L	ug/L	ug/L	ug/L	mg/L	ug/L
MW14-05B	14/07/15	158	0.0443		334	0.912	129	93.4	0.016	0.0057	18	0.0815	47.4	1.2
MW14-05B	09/08/15	170	0.12		108	0.642	141	83	0.015	<0.0050	26	0.0356	49	0.58
FB-4	08/09/15	<0.50	0.0061		1.29	<0.020	0.022	<0.020	<0.010	<0.0050	<10	<0.0050	<0.050	<0.10
MW14-05B	08/09/15	99.6	0.0887		68.9	0.635	176	81.5	<0.010	0.007	12	0.046	45.5	1.73
MW15-01WB/BH8-WB	07/06/15	906	<0.0050		4.17	0.742	34.5	10.1	0.041	<0.0050	<10	0.0211	283	0.21
MW15-01WB	08/07/15	954	0.0074		11.9	0.585	31	10.7	0.038	<0.0050	<10	0.0476	246	0.23
MW15-01WB	10/08/15	880	0.0057		49	0.376	34.7	11.4	0.04	<0.0050	<10	0.108	251	1.48
MW15-01WB	03/09/15	841	0.0094		5.1	0.321	39.8	8.96	0.045	<0.0050	<10	0.026	222	0.46
MW15-02 AZ/BH10-AZ	31/05/15	245	0.0054		8.38	0.434	1.1	95.8	<0.010	<0.0050	<10	0.0089	130	0.11
MW15-02AZ	11/07/15	190	<0.0050		10.3	0.14	0.948	87.6	<0.010	<0.0050	<10	0.0146	109	0.17
MW15-40AZ	11/07/15	185	0.006		8.17	0.143	0.831	94.4	<0.010	<0.0050	<10	0.0209	114	0.13
MW15-02AZ	12/08/15	163	0.0077		8.95	0.153	1.03	82.8	<0.010	<0.0050	<10	0.0056	106	0.15
MW15-02AZ	07/09/15	154	<0.0050		6.95	0.152	1.04	74.9	<0.010	<0.0050	<10	<0.0050	104	0.12
MW15-02 WB/BH10-WB	01/06/15	242	0.006		6.19	0.343	2.44	26.3	<0.010	<0.0050	<10	0.0478	129	2.1
MW15-02WB	11/07/15	234	0.0051		22.9	0.128	2.68	23	0.013	<0.0050	<10	0.0348	128	0.37
MW15-02WB	12/08/15	236	0.0095		8.86	0.128	2.99	24	0.015	<0.0050	<10	0.0342	134	0.62
MW15-02WB	07/09/15	202	0.0054		1.84	0.082	0.581	38.9	<0.010	<0.0050	<10	0.011	128	0.15
MW15-03AZ	16/06/15	53	<0.0050		47.2	0.15	0.45	38	<0.010	<0.0050	<10	0.0118	41	0.19
MW15-21	16/06/15	57.7	0.0065		34.4	0.141	0.445	38.1	0.011	<0.0050	<10	0.0104	40	0.14
MW15-03AZ	09/07/15	51	0.0065		25.5	0.128	0.409	29.5	<0.010	<0.0050	<10	0.0185	37.7	0.2
MW15-03AZ	10/08/15	25.4	0.0061		32.8	0.203	0.525	30	0.013	<0.0050	<10	0.016	29.3	0.3
MW15-03AZ	04/09/15	21.7	0.0073		19.4	0.188	0.515	25.8	0.016	<0.0050	<10	0.011	26	0.22
MW15-03WB	16/06/15	951	0.0128		54.5	0.076	0.525	17	0.017	<0.0050	18	0.0096	182	1.37
MW15-03WB	09/07/15	938	<0.0050		30	0.091	0.611	13.9	0.01	<0.0050	31	0.0258	155	0.74
MW15-03WB	10/08/15	939	<0.0050		9.55	0.046	0.719	11.4	<0.010	<0.0050	25	0.0186	156	0.48
MW15-03WB	04/09/15	873	0.0052		6.88	0.059	0.447	10.4	0.011	<0.0050	31	0.022	151	0.3
MW15-04WB	14/06/15	125	<0.0050		8.95	2.86	1.65	35.4	<0.010	<0.0050	<10	0.0605	73.2	0.3
MW15-20	14/06/15	130	0.0074		11.8	2.91	1.69	34.8	<0.010	<0.0050	<10	0.0572	75.4	0.28
MW15-04WB	10/07/15	129	0.0072		7.77	2.88	1.39	34.5	<0.010	<0.0050	<10	0.0611	71.2	0.4
MW15-30WB	10/07/15	130	0.0086		7.62	3.37	1.25	38.2	<0.010	<0.0050	<10	0.0353	71.4	0.12
MW15-04WB	11/08/15	130	<0.0050		23.8	2.69	1.65	37.6	<0.010	<0.0050	<10	0.125	75.7	1.02
MW15-04WB	05/09/15	120	0.0088		5.75	2.69	1.2	33.3	0.012	<0.0050	<10	0.042	69.3	0.21
MW15-05AZ	06/09/15	<0.50	<0.0050		201	0.088	3.03	18.5	0.03	<0.0050	<10	0.022	2.73	0.8
MW15-05WB	18/06/15	14	0.0091		7.11	0.371	1.25	3.97	<0.010	<0.0050	<10	0.041	44.3	0.5
MW15-05WB	10/07/15	12.1	0.0051		29.7	0.348	1.25	5.44	<0.010	<0.0050	<10	0.0683	41.1	2.67
MW15-05WB	11/08/15	12.2	<0.0050		2.56	0.202	0.927	1.65	<0.010	<0.0050	<10	0.0135	42.8	0.3
MW15-60	11/08/15	13.1	<0.0050		20.4	0.212	0.957	1.91	<0.010	<0.0050	<10	0.0158	44.5	0.4
MW15-05WB	06/09/15	12	0.0076		1.43	0.186	0.891	1.01	<0.010	<0.0050	<10	<0.0050	42	0.13
MW15-06WB	21/06/15	44.4	0.0054		814	1.25	11.7	44.3	0.031	0.005	<10	0.053	42.6	2.49
MW15-06WB	21/07/15	101	0.0134		275	2.3	12.5	39.2	<0.010	<0.0050	<10	0.0635	65.1	1.86
MW15-06WB	09/08/15	101	0.0134		151	2.63	21.2	41.8	<0.010	<0.0050		0.0407	74.5	1.13
											<10			
MW15-06WB	08/09/15	116	0.0069		58.7	0.673	22.8	52.5	<0.010	<0.0050	<10	0.026	73.4	0.59

Samples and sample data with RED text are not considered to be representative of formation water (See Appendix 5-D for discussion). ¹ Reportable detection limit (RDL) presented are the lowest reported detection limits for a given parameters, although in some cases the detection limit was raised by the analytical laboratory (e.g., due to sample matrix effects).

Sample ID	Sample Date	Total Cobalt (Co)	Total Copper (Cu)	Total Iron (Fe)	Total Lead (Pb)	Total Lithium (Li)	Total Magnesium (Mg)	Total Manganese (Mn)	Total Mercury (Hg)	Total Molybdenum (Mo)	Total Nickel (Ni)	Total Phosphorus (P)	Total Potassium (K)	Total Selenium (Se)	Total Silicon (Si)
		ug/L	ug/L	ug/L	ug/L	ug/L	mg/L	ug/L	ug/L	ug/L	ug/L	ug/L	mg/L	ug/L	ug/L
MW14-05B	14/07/15	1.59	5.86	969	1.23	34.1	6.83	734	0.0062	22	7.87	187	12.3	0.408	11800
MW14-05B	09/08/15	1.4	2.07	1290	0.525	37.9	7.72	935	0.0056	16.1	5.33	161	10.8	0.356	12800
FB-4	08/09/15	<0.0050	<0.050	<1.0	<0.0050	<0.50	<0.050	0.152	<0.0020	<0.050	<0.020	4.3	<0.050	<0.040	<50
MW14-05B	08/09/15	1.51	2.56	1900	0.427	34.9	8.47	1240	0.0039	9.09	4.23	173	9.95	0.17	14200
MW15-01WB/BH8-WB	07/06/15	0.88	0.459	384	0.123	22	184	377	<0.0020	0.788	1.91	4.4	4.96	0.106	8960
MW15-01WB	08/07/15	0.765	0.862	510	4.83	23.4	192	373	<0.0020	0.864	2.03	14.9	5.09	1.65	8170
MW15-01WB	10/08/15	0.77	0.605	620	0.211	26.5	200	382	<0.0020	0.776	2.39	209	5.13	0.07	8530
MW15-01WB	03/09/15	0.701	0.301	520	0.167	25.7	197	368	<0.0020	0.788	1.73	18.1	5.26	0.135	6760
MW15-02 AZ/BH10-AZ	31/05/15	0.186	1.19	6.4	0.0094	4.09	41	19.8	<0.0020	0.436	1.09	39.7	7.14	1.26	5200
MW15-02AZ	11/07/15	0.0261	1.03	8.4	0.0135	3.85	33.2	0.31	0.0028	0.348	0.479	8.2	5.43	0.182	5040
MW15-40AZ	11/07/15	0.0244	1.01	7.1	0.0145	3.73	30.5	0.244	0.0029	0.352	0.539	26.8	5.16	0.185	5530
MW15-02AZ	12/08/15	0.049	1.12	6.8	0.01	4.03	34.8	8.32	0.0023	0.367	0.674	32.1	6.11	0.193	5380
MW15-02AZ	07/09/15	0.1	0.994	12.6	<0.0050	3.77	32.4	28.7	<0.0020	0.418	0.69	5.2	6.87	0.162	5560
MW15-02 WB/BH10-WB	01/06/15	0.154	1.44	324	0.311	3.73	34.6	94.1	<0.0020	1.17	2.54	8.1	8.43	0.344	5090
MW15-02WB	11/07/15	0.106	0.293	397	0.24	3.91	34.5	105	<0.0020	0.69	1.04	46.7	8.5	0.113	4910
MW15-02WB	12/08/15	0.13	0.248	412	0.362	4.57	36.9	110	<0.0020	0.708	1.24	27.9	9.07	0.139	5560
MW15-02WB	07/09/15	0.074	1.81	16.7	0.023	3.85	35.2	37.9	<0.0020	0.56	1.56	6.9	11	0.12	5200
MW15-03AZ	16/06/15	0.0612	1.39	30.1	0.0311	0.7	11.9	55.5	0.0067	0.442	1.05	22	1.82	0.045	5030
MW15-21	16/06/15	0.0589	1.28	23.5	0.0216	<0.50	11.8	56.1	<0.0020	0.444	1.06	4.4	1.84	0.052	5010
MW15-03AZ	09/07/15	0.0709	1.44	17.4	0.0129	0.56	11	214	<0.0020	0.465	1.25	7.9	1.82	<0.040	4670
MW15-03AZ	10/08/15	0.0583	1.94	23.3	0.0136	0.85	8.44	66.4	0.0028	0.497	1.1	40.9	1.59	0.055	4970
MW15-03AZ	04/09/15	0.058	1.99	14	<0.0050	0.8	8.27	105	0.0026	0.528	1.15	7	1.5	0.058	4690
MW15-03WB	16/06/15	0.187	0.232	533	0.0361	12.1	140	89.6	<0.0020	0.848	2.96	83	9.03	<0.040	8600
MW15-03WB	09/07/15	0.102	0.362	586	0.0656	10	132	76.1	<0.0020	0.916	1.64	47.8	8.14	0.108	7530
MW15-03WB	10/08/15	0.068	0.325	553	0.0308	12.1	133	76.5	<0.0020	0.817	1.6	37.3	8.14	0.073	8010
MW15-03WB	04/09/15	0.064	0.238	557	0.036	12	132	75.5	<0.0020	0.962	1.24	12.9	8.59	0.109	7010
MW15-04WB	14/06/15	0.221	2.15	23.1	0.491	6.88	36.9	118	<0.0020	2.58	0.934	49.6	4.65	0.43	5680
MW15-20	14/06/15	0.22	2.11	20.1	0.48	6.47	36.6	119	<0.0020	2.47	0.875	59.9	4.57	0.349	5790
MW15-04WB	10/07/15	0.255	1.18	21.1	0.293	6.04	36.7	121	<0.0020	2.41	1.17	39.6	4.3	0.153	5490
MW15-30WB	10/07/15	0.243	1.08	12.6	0.513	7.19	36.1	119	<0.0020	2.66	0.798	29.5	3.96	0.06	5560
MW15-04WB	11/08/15	0.241	2.85	43.1	0.293	7.01	39.4	110	<0.0020	2.57	1.58	119	4.9	0.477	5930
MW15-04WB	05/09/15	0.218	1.07	17	0.367	7.33	38.2	106	<0.0020	2.59	0.688	16.9	3.98	0.403	5440
MW15-05AZ	06/09/15	2.7	2.03	1360	0.06	<0.50	0.766	620	0.0057	0.276	1.33	21.1	0.123	0.052	6010
MW15-05WB	18/06/15	0.072	0.607	13.7	0.15	12.9	7.06	14.5	<0.0020	0.646	0.235	66.2	1.66	0.374	9670
MW15-05WB	10/07/15	0.125	0.551	47.5	0.104	11.7	7.08	7.43	<0.0020	0.969	2.26	91.6	1.45	0.444	8580
MW15-05WB	11/08/15	0.058	0.116	7.3	0.019	12.5	7.01	4.45	<0.0020	0.564	0.448	21.2	0.792	0.104	8980
MW15-60	11/08/15	0.0656	0.411	14.3	0.0281	12	7.3	4.9	<0.0020	0.631	0.489	59.8	0.857	0.111	9780
MW15-05WB	06/09/15	0.055	0.118	3.2	0.009	12.2	6.97	6.25	<0.0020	0.682	0.247	18.2	0.693	<0.040	9410
MW15-06WB	21/06/15	1.35	2.94	1610	0.663	7.09	16.7	850	1.54	16	6.06	83.9	10.4	0.47	5870
MW15-06WB	21/07/15	2.13	1.38	507	0.263	11.1	30.5	2300	0.091	34.5	4.18	99.8	7.22	0.475	7040
MW15-06WB	09/08/15	2.58	0.952	269	0.124	11.4	36.3	3410	0.281	42.6	3.34	54.1	6.51	0.414	6520
MW15-06WB	08/09/15	2.95	1.09	780	0.063	11.9	35.4	5430	0.0942	80.4	2.7	46.8	6.42	0.147	5550

Notes: Samples and sample data with RED text are not considered to be representative of formation water (See Appendix 5-D for discussion).

Sample ID	Sample Date	Total Silver (Ag)	Total Sodium (Na)	Total Strontium (Sr)	Total Sulphur (S)	Total Thallium (TI)	Total Tin (Sn)	Total Titanium (Ti)	Total Uranium (U)	Total Vanadium (V)	Total Zinc (Zn)	Total Zirconium (Zr)	Dissolved Metals	Dissolved Aluminum (Al)
		ug/L	mg/L	ug/L	mg/L	ug/L	ug/L	ug/L	ug/L	ug/L	ug/L	ug/L		ug/L
MW14-05B	14/07/15	0.111	91.5	722	50.9	0.0486	0.83	13	18.4	1.55	34.5	0.42		28.5
MW14-05B	09/08/15	0.0406	112	693	59.9	0.0201	0.64	3.88	14.8	1.23	6.49	0.3		12.4
FB-4	08/09/15	<0.0050	<0.050	<0.050	<3.0	<0.0020	<0.20	<0.50	<0.0020	0.23	0.14	<0.10		0.67
MW14-05B	08/09/15	0.128	62.3	600	30.7	0.008	0.94	3.96	9.67	0.96	7.84	0.34		6.82
MW15-01WB/BH8-WB	07/06/15	0.01	26.2	3000	294	0.0347	<0.20	<0.50	490	<0.20	58	0.72		<0.50
MW15-01WB	08/07/15	<0.0050	26.8	2700	296	0.0172	<0.20	<0.50	542	<0.20	84.2	0.38		3.92
MW15-01WB	10/08/15	<0.0050	28.8	2700	304	0.0297	<0.20	3.26	548	<0.20	138	0.59		5.67
MW15-01WB	03/09/15	< 0.0050	27.2	3020	316	0.045	<0.20	<0.50	598	<0.20	110	0.42		14.3
MW15-02 AZ/BH10-AZ	31/05/15	<0.0050	5.87	1260	83.1	0.0059	<0.20	<0.50	29.3	<0.20	1.01	0.16		3.65
MW15-02AZ	11/07/15	<0.0050	4.64	1060	55.9	0.0072	<0.20	<0.50	23.5	0.29	1.72	0.17		14.8
MW15-40AZ	11/07/15	<0.0050	4.38	981	50.7	0.0057	<0.20	<0.50	25.2	0.21	1.39	0.16		12.2
MW15-02AZ	12/08/15	<0.0050	5.05	959	56.1	0.0026	<0.20	<0.50	24.7	0.43	1.24	0.16		8.74
MW15-02AZ	07/09/15	<0.0050	4.77	996	58	0.003	<0.20	<0.50	27.7	<0.20	0.2	0.15		3.62
MW15-02 WB/BH10-WB	01/06/15	<0.0050	8.32	954	81.5	0.0071	<0.20	<0.50	36.4	<0.20	35.6	0.91		6.92
MW15-02WB	11/07/15	<0.0050	9.12	949	82.6	0.0164	<0.20	1.16	31.8	0.22	18.2	0.84		4.2
MW15-02WB	12/08/15	<0.0050	10.1	917	83.7	0.0057	<0.20	0.56	31	0.23	28.1	0.67		4.8
MW15-02WB	07/09/15	<0.0050	6.22	916	80.2	0.017	<0.20	<0.50	31.4	<0.20	10.2	0.13		1.92
MW15-03AZ	16/06/15	<0.0050	4	307	17.4	0.0028	<0.20	0.74	35.4	0.2	7.96	0.3		38.1
MW15-21	16/06/15	<0.0050	3.92	301	17.1	0.0029	<0.20	0.57	37	<0.20	0.71	0.28		30.5
MW15-03AZ	09/07/15	<0.0050	3.72	280	14.7	0.0023	<0.20	1.69	36.3	0.2	0.57	0.27		24.6
MW15-03AZ	10/08/15	0.0056	3.38	210	8	0.0052	<0.20	0.72	17.9	0.27	6.03	0.41		26.3
MW15-03AZ	04/09/15	<0.0050	3.29	212	7.6	0.003	<0.20	0.7	18.6	<0.20	0.37	0.4		18.6
MW15-03WB	16/06/15	<0.0050	76.5	9260	341	0.0172	<0.20	1.03	8.56	<0.20	16.5	0.11		35.6
MW15-03WB	09/07/15	0.0074	71	8840	310	0.006	<0.20	0.85	7.39	<0.20	27	0.1		7.69
MW15-03WB	10/08/15	<0.0050	71.9	8040	329	0.0061	<0.20	<0.50	8.51	<0.20	51.2	<0.10		3.72
MW15-03WB	04/09/15	<0.0050	73.9	9280	328	0.008	<0.20	<0.50	8.02	<0.20	46.3	<0.10		3.53
MW15-04WB	14/06/15	<0.0050	5.95	783	40.6	0.0116	<0.20	<0.50	176	0.25	44.6	0.26		44.1
MW15-20	14/06/15	<0.0050	5.98	789	40.9	0.0099	<0.20	0.57	176	0.26	42.5	0.27		44.1
MW15-04WB	10/07/15	0.0051	5.98	792	38.2	0.0093	<0.20	<0.50	170	0.29	17.9	0.27		21
MW15-30WB	10/07/15	0.0076	5.92	764	39.1	0.0105	<0.20	<0.50	192	0.29	3.3	0.24		3.2
MW15-04WB	11/08/15	<0.0050	6.4	788	41.7	0.0109	<0.20	0.82	157	0.33	122	0.24		11.3
MW15-04WB	05/09/15	<0.0050	6.05	846	43.2	0.01	<0.20	<0.50	167	0.21	23	0.24		3.47
MW15-05AZ	06/09/15	0.005	1.16	16.2	<3.0	0.008	<0.20	2.94	0.811	2.97	0.99	1.2		189
MW15-05WB	18/06/15	<0.0050	8.88	138	4	0.007	<0.20	<0.50	71.7	<0.20	64.7	<0.10		4.1
MW15-05WB	10/07/15	0.0078	9.11	140	3.9	0.0031	<0.20	1.24	69.5	0.21	102	<0.10		3.1
MW15-05WB	11/08/15	<0.0050	9.36	138	3.8	<0.0020	<0.20	<0.50	72.9	<0.20	20.3	<0.10		1.7
MW15-60	11/08/15	<0.0050	9.65	137	3.9	<0.0020	<0.20	0.69	73.3	<0.20	26.3	<0.10		23.1
MW15-05WB	06/09/15	<0.0050	9.16	145	4.2	<0.0020	<0.20	<0.50	76.9	<0.20	12.5	<0.10		4.49
MW15-06WB	21/06/15	0.228	21.9	246	15.4	0.061	0.2	41.9	46.1	1.98	269	0.67		888
MW15-06WB	21/07/15	0.0748	10.9	413	30.7	0.024	<0.20	16.1	96.5	0.5	604	0.65		8.4
MW15-06WB	09/08/15	0.0524	9.74	442	32.5	0.053	<0.20	7.78	103	0.49	172	0.81		7.18
MW15-06WB	08/09/15	0.036	8.43	444	33.6	0.033	<0.20	3.17	95	<0.20	85.1	0.62		67.5

1

Notes: Samples and sample data with RED text are not considered to be representative of formation water (See Appendix 5-D for discussion).

Sample ID	Sample Date	Dissolved Antimony (Sb)	Dissolved Arsenic (As)	Dissolved Barium (Ba)	Dissolved Beryllium (Be)	Dissolved Bismuth (Bi)	Dissolved Boron (B)	Dissolved Cadmium (Cd)	Dissolved Calcium (Ca)	Dissolved Chromium (Cr)	Dissolved Cobalt (Co)	Dissolved Copper (Cu)	Dissolved Iron (Fe)	Dissolved Lead (Pb)
		ug/L	ug/L	ug/L	ug/L	ug/L	ug/L	ug/L	mg/L	ug/L	ug/L	ug/L	ug/L	ug/L
MW14-05B	14/07/15	0.86	117	78	<0.10	<1.0	<50	0.031	42.7	<1.0	1.14	1.02	638	<0.20
MW14-05B	09/08/15	0.672	145	84.1	<0.010	<0.0050	25	0.017	46.6	0.31	1.25	0.293	1180	0.0283
FB-4	08/09/15	<0.020	<0.020	<0.020	<0.010	<0.0050	<10	<0.0050	<0.050	<0.10	<0.0050	<0.050	<1.0	<0.0050
MW14-05B	08/09/15	0.572	161	77.2	<0.010	<0.0050	11	<0.0050	46	0.47	1.25	0.122	1610	0.01
MW15-01WB/BH8-WB	07/06/15	0.808	23.9	11.1	0.033	<0.0050	<10	0.0141	266	<0.10	0.888	0.098	2.8	<0.0050
MW15-01WB	08/07/15	0.626	22.2	11.2	<0.010	<0.0050	<10	0.0485	244	<0.10	0.794	0.348	2.6	0.0235
MW15-01WB	10/08/15	0.395	29	9.93	0.022	0.0114	12	0.0607	228	<0.10	0.704	0.191	24.9	<0.0050
MW15-01WB	03/09/15	0.347	42.2	9.23	0.038	<0.0050	<10	0.046	250	0.94	0.664	0.413	558	0.225
MW15-02 AZ/BH10-AZ	31/05/15	0.435	1.1	91.7	<0.010	<0.0050	<10	0.009	135	0.14	0.207	1.28	4.9	<0.0050
MW15-02AZ	11/07/15	0.147	0.917	89.9	<0.010	<0.0050	<10	0.125	111	0.2	0.0388	1.34	10.7	0.021
MW15-40AZ	11/07/15	0.14	0.905	85.5	<0.010	<0.0050	<10	0.0283	110	0.15	0.0294	1.09	11.2	0.0085
MW15-02AZ	12/08/15	0.14	1.12	81.3	<0.010	<0.0050	<10	0.007	125	0.2	0.0699	1.33	9	0.0069
MW15-02AZ	07/09/15	0.145	0.978	71.5	<0.010	<0.0050	<10	<0.0050	101	<0.10	0.088	0.947	5.2	<0.0050
MW15-02 WB/BH10-WB	01/06/15	0.375	2.5	26.6	0.019	<0.0050	<10	0.042	144	1.92	0.184	0.692	362	0.312
MW15-02WB	11/07/15	0.123	1.92	22.7	<0.010	<0.0050	<10	0.0345	130	<0.10	0.0957	0.199	13.7	0.0078
MW15-02WB	12/08/15	0.143	2.48	23.5	<0.010	<0.0050	<10	0.0267	129	<0.10	0.135	0.249	3.9	0.0052
MW15-02WB	07/09/15	0.076	0.498	39.5	<0.010	<0.0050	<10	0.011	125	0.18	0.068	1.66	13.8	0.021
MW15-03AZ	16/06/15	0.153	0.431	37.9	<0.010	<0.0050	<10	0.012	40.6	0.16	0.0611	1.37	12.3	0.0196
MW15-21	16/06/15	0.158	0.411	39.7	<0.010	<0.0050	<10	0.0122	41.4	0.1	0.0597	1.54	11.1	<0.0050
MW15-03AZ	09/07/15	0.137	0.446	30.1	<0.010	<0.0050	<10	0.0258	38.7	0.21	0.0861	1.74	21.3	0.0257
MW15-03AZ	10/08/15	0.197	0.552	29.4	0.013	<0.0050	<10	0.0108	28.4	0.28	0.0601	1.98	19.5	0.0113
MW15-03AZ	04/09/15	0.178	0.477	24.5	0.011	<0.0050	<10	0.01	25.9	0.17	0.05	1.73	9.3	0.005
MW15-03WB	16/06/15	0.096	0.268	17.6	<0.010	<0.0050	42	<0.0050	172	<0.10	0.123	0.074	11.4	<0.0050
MW15-03WB	09/07/15	0.099	0.474	14.4	<0.010	<0.0050	33	0.0481	160	<0.10	0.0867	0.238	5.6	<0.0050
MW15-03WB	10/08/15	0.058	0.485	11.8	<0.010	0.0148	38	0.014	156	<0.10	0.0656	0.145	5.6	<0.0050
MW15-03WB	04/09/15	0.042	0.413	10.4	<0.010	<0.0050	29	0.01	160	0.22	0.055	0.087	569	0.02
MW15-04WB	14/06/15	3.02	1.54	33.3	<0.010	<0.0050	<10	0.0487	73.1	<0.10	0.221	2.26	6.4	0.337
MW15-20	14/06/15	2.87	1.51	32.4	<0.010	<0.0050	<10	0.0539	76.4	<0.10	0.227	2.12	8.9	0.32
MW15-04WB	10/07/15	2.97	1.37	31.9	<0.10	<1.0	<50	0.081	70	<1.0	<0.50	1.31	12.4	<0.20
MW15-30WB	10/07/15	3.05	1.32	32.3	<0.10	<1.0	<50	0.037	71.7	<1.0	<0.50	0.96	5.4	0.31
MW15-04WB	11/08/15	2.79	1.32	33.8	<0.010	<0.0050	<10	0.0999	78.8	<0.10	0.225	1.22	6.7	0.149
MW15-04WB	05/09/15	2.56	1.32	32.7	<0.010	<0.0050	<10	0.042	74.1	0.37	0.202	1.09	13	0.366
MW15-05AZ	06/09/15	0.084	2.28	18.8	0.026	0.005	<10	0.022	2.93	0.7	2.49	1.86	931	0.033
MW15-05WB	18/06/15	0.403	1.27	4	<0.010	<0.0050	<10	0.029	47.4	<0.10	0.037	0.363	2.3	0.013
MW15-05WB	10/07/15	<0.50	0.88	2.1	<0.10	<1.0	<50	0.019	42	<1.0	<0.50	<0.20	<5.0	<0.20
MW15-05WB	11/08/15	0.217	0.971	1.97	<0.010	<0.0050	<10	0.0159	44.5	<0.10	0.0571	0.083	2.7	0.0104
MW15-60	11/08/15	0.222	0.958	1.91	<0.010	<0.0050	<10	0.0159	44.7	<0.10	0.0451	0.102	3.3	0.0122
MW15-05WB	06/09/15	0.252	1.19	2.47	<0.010	<0.0050	<10	0.023	45.5	0.41	0.057	0.243	11.1	0.044
MW15-06WB	21/06/15	1.29	12.9	48	0.037	0.006	<10	0.046	49.1	1.99	1.43	2.89	1640	0.527
MW15-06WB	21/07/15	2.45	10.3	39.1	<0.010	<0.0050	<10	0.0131	65.6	<0.10	2.14	0.193	56.9	0.023
MW15-06WB	09/08/15	2.84	20.2	41.5	<0.010	<0.0050	<10	0.0217	71.8	<0.10	2.49	0.629	73.5	0.0172
MW15-06WB	08/09/15	0.764	25.8	56.1	<0.010	<0.0050	<10	0.037	82.5	0.66	3.22	1.23	849	0.098
	55,05/15	0.704	20.0	55.1	-0.010	-0.0000	-10	5.057	52.5	0.00	J.LL	1.2.3	545	0.000

Notes:

Samples and sample data with RED text are not considered to be representative of formation water (See Appendix 5-D for discussion). ¹ Reportable detection limit (RDL) presented are the lowest reported detection limits for a given parameters, although in some cases the detection limit was raised by the analytical laboratory (e.g., due to sample matrix effects).

Sample ID	Sample Date	Dissolved Lithium (Li)	Dissolved Magnesium (Mg)	Dissolved Manganese (Mn)	Dissolved Mercury (Hg)	Dissolved Molybdenum (Mo)	Dissolved Nickel (Ni)	Dissolved Phosphorus (P)	Dissolved Potassium (K)	Dissolved Selenium (Se)	Dissolved Silicon (Si)	Dissolved Silver (Ag)	Dissolved Sodium (Na)	Dissolved Strontium (Sr)
		ug/L	mg/L	ug/L	ug/L	ug/L	ug/L	ug/L	mg/L	ug/L	ug/L	ug/L	mg/L	ug/L
MW14-05B	14/07/15	32.8	6.6	685	<0.010	20	6.3		12.2	0.42	10200	<0.020	92.5	665
MW14-05B	09/08/15	34.3	7.71	933	0.0029	16.1	4.79	161	11.3	0.318	12700	<0.0050	116	701
FB-4	08/09/15	<0.50	<0.050	0.169	<0.0020	0.052	<0.020	3.2	<0.050	<0.040	<50	<0.0050	<0.050	<0.050
MW14-05B	08/09/15	34.2	8.4	1260	<0.0020	8.31	2.93	160	10	0.157	14400	<0.0050	62.1	596
MW15-01WB/BH8-WB	07/06/15	25.9	195	382	<0.0020	0.843	1.78	<2.0	5.27	0.091	7820	< 0.0050	27.6	2990
MW15-01WB	08/07/15	25.8	194	375	<0.0020	1.04	2.31	6.4	5.53	0.126	7870	<0.0050	27.6	2690
MW15-01WB	10/08/15	25.7	185	372	<0.0020	0.936	2.24	68.3	5.19	0.075	7950	<0.0050	25.9	2660
MW15-01WB	03/09/15	22.8	186	357	<0.0020	1.01	2.38	20	5.43	0.11	8250	0.006	26.1	2770
MW15-02 AZ/BH10-AZ	31/05/15	4.35	42.5	21	<0.0020	0.436	1.26	7.1	7.41	1.1	5740	<0.0050	6.04	1150
MW15-02AZ	11/07/15	3.71	33.8	1	0.0028	0.354	0.682	36.3	5.36	0.169	5180	<0.0050	4.75	1070
MW15-40AZ	11/07/15	3.91	33.3	0.269	0.0029	0.343	0.552	11.2	5.39	0.177	5130	<0.0050	4.66	1070
MW15-02AZ	12/08/15	4.27	43.1	12.9	<0.0020	0.362	0.722	50.7	7.51	0.199	5020	<0.0050	6.09	1170
MW15-02AZ	07/09/15	4.22	31.8	28.5	<0.0020	0.38	0.649	4.1	6.65	0.161	5890	<0.0050	4.67	943
MW15-02 WB/BH10-WB	01/06/15	4.42	37.5	98.2	<0.0020	1.31	2.16	15.6	9.28	0.373	5880	<0.0050	9.45	932
MW15-02WB	11/07/15	3.64	32.7	101	<0.0020	0.68	0.885	17.3	7.96	0.102	5430	< 0.0050	8.69	943
MW15-02WB	12/08/15	4.12	35.2	111	<0.0020	0.851	1.37	30.5	8.8	0.169	5140	< 0.0050	9.4	952
MW15-02WB	07/09/15	4.45	35.2	36.4	<0.0020	0.525	1.46	5	10.8	0.126	5250	<0.0050	6.09	963
MW15-03AZ	16/06/15	1.33	12.1	55.2	<0.0020	0.451	1.08	26.8	1.78	0.052	5300	<0.0050	4.16	303
MW15-21	16/06/15	2.45	13.2	57.6	<0.0020	0.42	1.12	7.2	1.89	0.064	5810	<0.0050	4.37	319
MW15-03AZ	09/07/15	<0.50	10.9	225	<0.0020	0.47	1.4	78.8	1.86	0.041	4810	<0.0050	3.89	290
MW15-03AZ	10/08/15	0.77	8.75	67.7	0.0028	0.502	1.07	26.3	1.65	0.055	5050	<0.0050	3.39	220
MW15-03AZ	04/09/15	1.13	7.73	102	0.0026	0.467	1.02	5.5	1.53	0.044	5250	<0.0050	3.07	198
MW15-03WB	16/06/15	12.2	141	84.2	<0.0020	0.981	2.01	10.1	8.87	<0.040	10300	< 0.0050	75.7	9250
MW15-03WB	09/07/15	10	130	78.9	<0.0020	1.04	1.56	52.8	8.97	0.432	6990	0.0069	71.1	9090
MW15-03WB	10/08/15	12.5	126	78.1	<0.0020	0.976	1.58	13.7	8.04	0.09	8060	0.006	68.4	8190
MW15-03WB	04/09/15	11.2	131	73.5	<0.0020	0.851	1.1	9.6	8.62	<0.040	8230	0.006	71.9	9210
MW15-04WB	14/06/15	7.37	37.7	115	<0.0020	2.55	0.804	23.8	4.16	0.246	6370	<0.0050	6.05	782
MW15-20	14/06/15	6.91	37.7	116	<0.0020	2.4	0.795	30.4	4.55	0.265	6270	<0.0050	5.96	794
MW15-04WB	10/07/15	6.7	36.7	123	<0.010	2.6	1.2		4.47	0.2	5550	<0.020	6.61	777
MW15-30WB	10/07/15	7	36.6	119	<0.010	2.3	<1.0		4.05	0.13	5680	<0.020	5.92	776
MW15-04WB	11/08/15	6.73	38.4	109	<0.0020	2.56	0.99	102	4.38	0.251	5890	<0.0050	6.15	783
MW15-04WB	05/09/15	6.98	37.4	105	<0.0020	2.6	0.986	21.8	4.43	0.335	6320	<0.0050	5.94	804
MW15-05AZ	06/09/15	0.69	0.747	617	0.0054	0.248	1.23	13.3	0.12	0.069	6040	<0.0050	1.14	15.4
MW15-05WB	18/06/15	14.2	8.02	13.4	<0.0020	0.698	0.217	66.7	1.8	0.372	10200	<0.0050	10.4	147
MW15-05WB	10/07/15	11.9	6.99	4.6	<0.010	<1.0	<1.0		0.964	0.12	8720	<0.020	9.06	138
MW15-05WB	11/08/15	13	7	5.36	<0.0020	0.635	0.345	42.4	1.07	0.138	8860	<0.0050	9.22	140
MW15-60	11/08/15	13	6.97	4.02	<0.0020	0.721	0.365	105	1.03	0.128	8910	<0.0050	9.16	140
MW15-05WB	06/09/15	12.1	7.9	7.09	<0.0020	1.85	0.607	44.4	1.33	0.102	9880	<0.0050	9.88	150
MW15-06WB	21/06/15	5.28	17.6	913	0.368	17.7	5.99	50.3	11.2	0.319	6380	0.22	23.3	301
MW15-06WB	21/07/15	8.36	32.9	2390	0.022	37.6	3.1	24.6	7.57	0.502	6540	<0.0050	11.9	417
MW15-06WB	09/08/15	10.7	33.4	3400	0.0544	45.6	2.72	7.1	6.27	0.349	6090	0.0113	9.08	434
MW15-06WB	08/09/15	12.4	39.9	5810	0.0952	87.4	3.44	46.4	7.18	0.172	6030	0.027	9.55	487

Notes:

Samples and sample data with RED text are not considered to be representative of formation water (See Appendix 5-D for discussion).

1

¹ Reportable detection limit (RDL) presented are the lowest reported detection limits for a given parameters, although in some cases the detection limit was raised by the analytical laboratory (e.g., due to sample matrix effects).

Sample ID	Sample Date	Dissolved Sulphur (S)	Dissolved Thallium (TI)	Dissolved Tin (Sn)	Dissolved Titanium (Ti)	Dissolved Uranium (U)	Dissolved Vanadium (V)	Dissolved Zinc (Zn)	Dissolved Zirconium (Zr)	Filter and HNO3 Preservation
		mg/L	ug/L	ug/L	ug/L	ug/L	ug/L	ug/L	ug/L	(Metals)
MW14-05B	14/07/15	51.7	<0.050	<5.0	<5.0	16.2	<5.0	16.5	<0.50	FIELD
MW14-05B	09/08/15	59.1	0.0124	0.34	<0.50	15.1	1.12	1.53	0.32	FIELD
FB-4	08/09/15	<3.0	<0.0020	<0.20	0.6	0.019	<0.20	0.1	<0.10	LAB
MW14-05B	08/09/15	31.7	<0.0020	0.3	<0.50	9.43	0.85	0.89	0.33	FIELD
MW15-01WB/BH8-WB	07/06/15	287	0.038	<0.20	<0.50	589	<0.20	53.9	0.69	LAB
MW15-01WB	08/07/15	294	0.0201	<0.20	<0.50	530	<0.20	128	0.49	LAB
MW15-01WB	10/08/15	295	0.0273	<0.20	<0.50	542	<0.20	167	0.53	LAB
MW15-01WB	03/09/15	310	0.036	<0.20	0.58	535	0.28	181	0.41	LAB
MW15-02 AZ/BH10-AZ	31/05/15	81.7	0.007	<0.20	<0.50	26.4	0.26	0.55	0.19	FIELD
MW15-02AZ	11/07/15	59.8	0.0059	<0.20	<0.50	23.9	0.29	8.64	0.19	FIELD
MW15-40AZ	11/07/15	59	0.0049	<0.20	<0.50	23.6	0.27	1.75	0.17	FIELD
MW15-02AZ	12/08/15	67.6	0.0044	<0.20	0.55	24.4	0.39	1.55	0.2	FIELD
MW15-02AZ	07/09/15	58.4	0.004	<0.20	<0.50	23.9	<0.20	0.8	0.13	FIELD
MW15-02 WB/BH10-WB	01/06/15	76	0.008	<0.20	0.91	37.4	0.31	36.8	0.76	LAB
MW15-02WB	11/07/15	82.3	0.0112	0.73	<0.50	31.9	<0.20	16.9	0.67	LAB
MW15-02WB	12/08/15	78.8	0.0057	<0.20	<0.50	33.2	<0.20	44.5	0.58	LAB
MW15-02WB	07/09/15	80.9	0.015	<0.20	<0.50	28.2	<0.20	10.1	0.13	LAB
MW15-03AZ	16/06/15	18	0.0024	<0.20	<0.50	35.4	<0.20	7.61	0.32	FIELD
MW15-21	16/06/15	18.2	<0.0020	<0.20	<0.50	37.4	<0.20	3.15	0.26	FIELD
MW15-03AZ	09/07/15	15	0.0021	<0.20	0.56	34.3	0.23	3.75	0.31	FIELD
MW15-03AZ	10/08/15	8.4	0.0045	<0.20	0.53	18.2	0.24	3.28	0.44	FIELD
MW15-03AZ	04/09/15	7.6	0.002	<0.20	<0.50	17.2	0.27	0.41	0.34	FIELD
MW15-03WB	16/06/15	348	<0.0020	<0.20	<0.50	8.4	<0.20	4.92	<0.10	LAB
MW15-03WB	09/07/15	294	0.0062	<0.20	<0.50	7.86	<0.20	47.5	<0.10	LAB
MW15-03WB	10/08/15	320	0.0061	<0.20	<0.50	9.09	<0.20	107	<0.10	LAB
MW15-03WB	04/09/15	309	0.007	<0.20	<0.50	7.57	<0.20	39.9	<0.10	LAB
MW15-04WB	14/06/15	45.9	0.0068	<0.20	<0.50	176	0.25	24	0.26	LAB
MW15-20	14/06/15	42.3	0.0078	<0.20	<0.50	176	0.25	29.4	0.26	LAB
MW15-04WB	10/07/15	44.9	<0.050	<5.0	<5.0	161	<5.0	35.9	<0.50	LAB
MW15-30WB	10/07/15	41.6	<0.050	<5.0	<5.0	169	<5.0	9.6	<0.50	LAB
MW15-04WB	11/08/15	41.3	0.0114	<0.20	<0.50	161	0.28	57.6	0.23	LAB
MW15-04WB	05/09/15	44.4	0.008	<0.20	<0.50	154	<0.20	42.7	0.21	LAB
MW15-05AZ	06/09/15	<3.0	0.008	<0.20	1.96	0.899	1.51	1.1	1.18	FIELD
MW15-05WB	18/06/15	4.6	0.009	<0.20	<0.50	70.9	<0.20	60.7	<0.10	LAB
MW15-05WB	10/07/15	4.5	<0.050	<5.0	<5.0	66.3	<5.0	37.8	<0.50	LAB
MW15-05WB	11/08/15	3.5	0.0027	<0.20	<0.50	70	<0.20	45.8	<0.10	LAB
MW15-60	11/08/15	3.6	<0.0020	<0.20	<0.50	71.6	<0.20	40.1	<0.10	LAB
MW15-05WB	06/09/15	4.4	<0.0020	<0.20	<0.50	74.8	<0.20	97	<0.10	LAB
MW15-06WB	21/06/15	16.7	0.0567	<0.20	43.5	54.8	2.07	162	0.69	LAB
MW15-06WB	21/07/15	33.2	0.0261	<0.20	<0.50	100	<0.20	253	0.46	LAB
MW15-06WB	09/08/15	31.1	0.0487	<0.20	<0.50	103	<0.20	20.9	0.62	LAB
MW15-06WB	08/09/15	36.9	0.034	0.24	3.7	100	<0.20	159	0.63	LAB

Notes:

Samples and sample data with RED text are not considered to be representative of formation water (See Appendix 5-D for discussion).

¹ Reportable detection limit (RDL) presented are the lowest reported detection limits for a given parameters, although in some cases the detection limit was raised by the analytical laboratory (e.g., due to sample matrix effects).

Appendix 5-B: Groundwater Quality Summary Statistics

_GOLDCORP

Station				MW14-02	2A		1		MW14-02	В		1		MW14-03	A		T		MW14-03	в		1		MW14-054	A	
Lithology				Gniess					Schist					Schist					Schist					Granite		
Number of Samples				5					5					4					4					4		
Statistic		<dl< th=""><th>Min</th><th>Mean</th><th>Median</th><th>Max</th><th><dl< th=""><th>Min</th><th>Mean</th><th>Median</th><th>Max</th><th><dl< th=""><th>Min</th><th>Mean</th><th>Median</th><th>Max</th><th><dl< th=""><th>Min</th><th>Mean</th><th>Median</th><th>Max</th><th><dl< th=""><th>Min</th><th>Mean</th><th>Median</th><th>Max</th></dl<></th></dl<></th></dl<></th></dl<></th></dl<>	Min	Mean	Median	Max	<dl< th=""><th>Min</th><th>Mean</th><th>Median</th><th>Max</th><th><dl< th=""><th>Min</th><th>Mean</th><th>Median</th><th>Max</th><th><dl< th=""><th>Min</th><th>Mean</th><th>Median</th><th>Max</th><th><dl< th=""><th>Min</th><th>Mean</th><th>Median</th><th>Max</th></dl<></th></dl<></th></dl<></th></dl<>	Min	Mean	Median	Max	<dl< th=""><th>Min</th><th>Mean</th><th>Median</th><th>Max</th><th><dl< th=""><th>Min</th><th>Mean</th><th>Median</th><th>Max</th><th><dl< th=""><th>Min</th><th>Mean</th><th>Median</th><th>Max</th></dl<></th></dl<></th></dl<>	Min	Mean	Median	Max	<dl< th=""><th>Min</th><th>Mean</th><th>Median</th><th>Max</th><th><dl< th=""><th>Min</th><th>Mean</th><th>Median</th><th>Max</th></dl<></th></dl<>	Min	Mean	Median	Max	<dl< th=""><th>Min</th><th>Mean</th><th>Median</th><th>Max</th></dl<>	Min	Mean	Median	Max
Field Parameters			1					1				I		1							1	1 .				
pH (field)	pH	0	7.3	7.7	7.7	8.2	0	7.5	7.6	7.6	7.6	0	7.4	7.4	7.4	7.4	0	7.2	7.3	7.4	7.5	0	6.5	6.9	7.0	7.3
Specific Conductance (field) DO (field)	uS/cm mg/L	0	350 9.2	380 10	380 9.9	400	0	480 4.7	500 5.5	500 5.2	510 6.7	0	1400 0.21	1500	1600	1600 2.6	0	1600 0.14	1700 0.18	1700 0.17	1700 0.23	0	330 0.11	360	360 1.1	380 2.1
ORP (field)	ORP mV	0	47	130	150	210	0	-190	27	32	140	0	-150	-130	-140	-110	0	-110	-42	-53	48	0	-150	-96	-120	3.8
Temperature (field)	°C	0	0.50	1.3	1.4	1.8	0	0.60	1.7	1.6	3.2	0	0.90	1.2	1.1	1.9	0	0.99	1.2	1.1	1.4	0	0.90	1.5	1.6	1.9
Physical Properties	1				1	1									1	1				•	1					1
Conductivity (lab)	uS/cm	0	380	390	390	390	0	490	500	500	510	0	1500	1600	1600	1600	0	1700	1700	1700	1800	0	340	360	360	370
pH (lab)	pH	0	8.0	8.1	8.1	8.2	0	8.0	8.1	8.2	8.2	0	7.7	7.9	8.0	8.1	0	7.7	8.0	8.0	8.1	0	7.4	7.8	7.8	8.0
Total Hardness (CaCO3)	mg/L	0	180	210	200	260	0	190	250	260	280	0	860	880	880	900	0	900	970	970	1000	0	140	150	150	160
Dissolved Hardness (CaCO3)	mg/L	0	190 <1.0	190 1.4	190	210 <3.0	0	240 <1.0	260 3.8	250 3.0	280	0	830 23	880 25	890 24	930 31	0	910 3.5	1000	1000 4.5	1100 5.4	0	140 5.2	150 8.1	150 8.7	150 9.8
Total Suspended Solids Total Dissolved Solids	mg/L mg/L	0	<1.0	230	220	260	0	250	320	330	370	0	1100	1100	1100	1200	0	1200	4.5	4.5	3.4 1400	0	3.2 190	220	220	260
Turbidity	NTU	1	<0.10	0.24	0.27	0.3	0	0.26	1.2	0.43	2.8	0	0.35	20	21	36	0	3.1	4.9	4.8	6.9	0	5.2	11	11	15
Inorganics						1		-							1	1				•	1					1
Alkalinity (Total as CaCO3)	mg/L	0	150	150	150	160	0	180	190	190	210	0	470	480	480	500	0	520	540	530	580	0	160	170	170	180
Alkalinity (PP as CaCO3)	mg/L	4	< 0.50	0.50	0.50	<0.50	4	<0.50	0.50	0.50	< 0.50	4	< 0.50	0.50	0.50	< 0.50	4	< 0.50	0.50	0.50	<0.50	4	<0.50	0.50	0.50	< 0.50
Bicarbonate (HCO3)	mg/L	0	180	180	180	180	0	220	230	230	230	0	570	590	590	600	0	630	660	650	710	0	190	200	200	220
Carbonate (CO3)	mg/L	4	<0.50	0.50	0.50	<0.50	4	<0.50	0.50	0.50	<0.50	4	<0.50	0.50	0.50	<0.50	4	<0.50	0.50	0.50	<0.50	4	<0.50	0.50	0.50	<0.50
Hydroxide (OH) Bromide (Br)	mg/L mg/L	4	<0.50	0.50	0.50	<0.50	4	<0.50	0.50	0.50	<0.50	4	<0.50	0.50	0.50	<0.50	4	<0.50	0.50	0.50	<0.50	4	<0.50	0.50	0.50	<0.50
Fluoride (F)	mg/L mg/L	0	0.088	0.090	0.090	0.093	0	0.10	0.11	0.11	0.11	0	0.19	0.20	0.20	0.21	0	0.26	0.27	0.27	0.30	0	0.21	0.22	0.22	0.23
Dissolved Chloride (Cl)	mg/L mg/L	3	< 0.50	0.55	0.50	0.70	3	<0.50	0.53	0.50	0.65	3	1.2	1.4	1.3	1.6	3	1.6	1.9	1.8	2.3	0	0.87	1.1	1.2	1.3
Organic / Inorganic Carbon		I				•	· ·	1				• •		•	•	•			•	•	•		•			
Dissolved Organic Carbon (C)	mg/L	1	< 0.50	0.76	0.63	1.3	1	< 0.50	0.92	0.87	1.6	1	3.5	4.9	4.3	7.5	1	2.4	3.4	3.2	4.8	0	4.4	5.1	5.1	6.0
Total Organic Carbon (C)	mg/L	1	< 0.50	0.96	0.64	1.6	1	0.77	1.2	0.84	1.8	1	3.8	5.8	5.2	9.0	1	1.8	3.4	3.3	5.1	0	4.3	5.0	4.6	6.3
Anions and Nutrients					1	1	T . T			I		т. т		1		1	T . T			1	1	1				1
Total Phosphorus (P)	mg/L	0	0.0050	0.016	0.018	0.020	0	< 0.0020	0.011	0.013	0.015	0	0.055	0.078	0.085	0.089	0	0.031	0.037	0.036	0.045	0	0.64	0.70	0.71	0.75
Dissolved Phosphorus (P) Total Ammonia (N)	mg/L mg/L	0	0.0075 <0.0050	0.015	0.016	0.019 0.067	0	0.0033	0.0083	0.0092 0.0067	0.011 0.020	0	0.040	0.065	0.071 0.021	0.077	0	0.027	0.030	0.029	0.034	0	0.62 0.0078	0.67	0.66 0.012	0.74 0.10
Total Total Kjeldahl Nitrogen (Calc)	mg/L mg/L	3	<0.0030	0.021	0.011	0.007	3	0.025	0.0094	0.0007	0.020	3	0.012	0.019	0.021	0.022	3	0.024	0.044	0.32	0.070	0	0.0078	0.033	0.012	0.10
Nitrate plus Nitrite (N)	mg/L mg/L	0	0.14	0.16	0.16	0.17	0	0.10	0.11	0.11	0.11	0	<0.0020	0.0027	0.0026	0.0035	0	< 0.0020	0.0034	0.0033	0.0048	1	<0.0020	0.0038	0.0036	0.0059
Nitrate (N)	mg/L	0	0.14	0.16	0.16	0.17	0	0.014	0.093	0.11	0.14	0	< 0.0020	0.0023	0.0020	0.0031	0	< 0.0020	0.0034	0.0033	0.0048	3	< 0.0020	0.0021	0.0020	0.0023
Nitrite (N)	mg/L	5	< 0.0010	0.0018	0.0020	< 0.0020	5	0.0015	0.0019	0.0020	0.0022	5	< 0.0020	0.0021	0.0020	0.0022	5	< 0.0020	0.0020	0.0020	< 0.0020	0	0.0021	0.0027	0.0023	0.0040
Total Nitrogen (N)	mg/L	0	0.15	0.21	0.17	0.38	0	0.13	0.24	0.16	0.53	0	0.28	0.45	0.37	0.75	0	0.26	0.37	0.32	0.56	0	0.33	0.43	0.42	0.54
Dissolved Nitrogen (N)	mg/L	0	0.35	0.35	0.35	0.35	0	0.16	0.16	0.16	0.16	0	-	-	-	-	-	-	-	-	-	-	-	-	-	-
Dissolved Sulphate (SO4) Sulphide	mg/L mg/L	0	53 <0.0020	55 0.0064	55 0.0063	58 0.011	0	82 <0.0020	85 0.0056	84 0.0061	87 0.0076	0	410 0.100	450 0.12	450 0.12	480	0	490 0.023	500 0.024	510 0.025	520 0.025	0	13 0.031	19 0.097	19 0.092	26 0.17
Total Metals	mg/L	1	<0.0020	0.0004	0.0005	0.011	1 1	<0.0020	0.0050	0.0001	0.0070	1 ' 1	0.100	0.12	0.12	0.15	1 1	0.025	0.024	0.025	0.025	0	0.031	0.097	0.092	0.17
Total Aluminum (Al)	ug/L	0	3.7	20	13	60	0	6.3	14	13	22	0	5.3	11	7.6	25	0	4.4	16	17	26	0	23	75	80	120
Total Antimony (Sb)	ug/L	0	0.73	2.0	0.75	7.1	0	0.86	4.6	6.0	6.4	0	0.36	0.67	0.67	0.98	0	0.10	0.12	0.12	0.14	0	0.56	0.71	0.75	0.79
Total Arsenic (As)	ug/L	0	38	54	55	68	0	19	38	39	54	0	46	64	67	75	0	7.7	8.4	8.2	9.7	0	1700	1800	1800	1900
Total Barium (Ba)	ug/L	0	10	20	13	51	0	15	45	54	58	0	100	120	130	140	0	68	79	79	92	0	96	110	100	120
Total Beryllium (Be)	ug/L	4	< 0.010	0.030	0.010	<0.10	4	< 0.010	0.029	0.010	<0.10	4	0.012	0.014	0.013	0.018	4	< 0.010	0.010	0.010	<0.010	0	0.023	0.026	0.026	0.030
Total Bismuth (Bi) Total Boron (B)	ug/L ug/L	4	<0.0050 <10	0.11	0.0050	<0.50 <10	4	<0.0050 <10	0.10	0.0050	<0.50 <10	4	<0.0050 <10	0.0064	0.0063	0.0080 <10	4	<0.0050 <10	0.0075	0.0055	0.014 <10	4	<0.0050 <10	0.0083	0.0088	0.011 <10
Total Cadmium (Cd)	ug/L ug/L	5	<0.0050	0.0060	0.0050	<0.010	5	<0.0050	0.0076	0.0050	0.013	5	<0.0050	0.0059	0.0058	0.0070	5	0.051	0.070	0.062	0.11	4	0.015	0.040	0.037	0.071
Total Calcium (Ca)	mg/L	0	39	44	45	50	0	42	54	52	61	0	130	130	130	140	0	120	130	130	130	0	43	46	47	48
Total Chromium (Cr)	ug/L	0	0.22	0.47	0.51	0.65	0	<0.10	0.35	0.37	0.58	0	< 0.10	0.14	0.10	0.27	0	< 0.10	0.27	0.22	0.55	0	0.20	0.30	0.29	0.43
Total Cobalt (Co)	ug/L	0	0.019	0.60	0.033	2.8	0	0.039	1.1	1.5	1.8	0	1.5	1.9	1.9	2.4	0	6.8	6.9	6.9	6.9	0	0.89	1.0	0.99	1.1
Total Copper (Cu)	ug/L	2	< 0.050	0.24	0.18	< 0.50	2	0.14	0.49	0.50	0.98	2	0.44	0.67	0.68	0.89	2	2.4	3.9	3.9	5.4	0	0.47	1.8	1.8	3.2
Total Iron (Fe)	ug/L	1	1.1	18	14	42	1	<10	39	24	100	1	7700	8500	8400	9600	1	1100	1600	1500	2300	0	2100	2900	2900	3800
Total Lead (Pb) Total Lithium (Li)	ug/L	3	<0.0050 7.0	0.047	0.015	0.16	3	0.014 7.1	0.054 7.8	0.047	0.11 8.6	3	0.049 25	0.20 27	0.10 27	0.56	3	0.16	0.21 23	0.19	0.30	0	0.15 26	0.40 29	0.34 28	0.74
Total Lithium (Li) Total Magnesium (Mg)	ug/L mg/L	0	20	24	22	8.8 32	0	21	29	31	32	0	130	130	140	30 140	0	140	160	23 160	170	0	7.1	8.8	28 8.8	35 10
Total Magaese (Mn)	ug/L	0	2.6	140	7.7	690	0	11	420	560	710	0	750	830	790	960	0	3000	3100	3100	3200	0	1100	1300	1200	1600
Total Mercury (Hg)	ug/L	1	0.0032	0.0051	0.0041	<0.010	1	0.0035	0.0075	0.0054	0.017	1	0.011	0.019	0.019	0.028	1	0.017	0.025	0.025	0.031	2	< 0.0020	0.0024	0.0022	0.0030
Total Molybdenum (Mo)	ug/L	0	3.1	4.4	3.6	7.5	0	3.5	5.7	6.1	6.9	0	2.9	4.2	4.3	5.2	0	7.0	8.0	8.2	8.8	0	3.7	4.2	4.2	4.9
Total Nickel (Ni)	ug/L	1	0.075	3.6	0.35	17	1	0.24	6.5	8.8	12	1	0.62	1.4	1.1	2.6	1	18	19	19	21	0	0.66	1.4	1.5	1.9
Total Phosphorus (P)	ug/L	1	7.3	21	11	<50	1	6.5	28	9.6	69	1	54	79	70	120	1	35	50	48	71	0	85	140	110	250
Total Potassium (K)	mg/L	0	2.7	3.2	3.3	3.8	0	3.0	3.5	3.6	3.7	0	8.4	8.7	8.7	9.0	0	7.5	8.1	8.2	8.5	0	5.1	6.0	5.4	8.0
Total Selenium (Se) Total Silicon (Si)	ug/L ug/L	0	0.24 5600	0.26 6200	0.27 6400	0.28 6800	0	0.23 5800	0.28 6100	0.27 6200	0.34 6400	0	<0.040 6100	0.066 6700	0.053 6800	0.12 7300	0	0.15 5400	0.19 5900	0.18	0.28 6500	0	0.10 13000	0.13 14000	0.13 14000	0.15
Total Silicon (Si) Total Silver (Ag)	ug/L ug/L	3	<0.0050	0.0078	0.0093	<0.010	3	<0.0050	0.0071	0.0054	0.011	3	<0.0050	0.0076	0.0069	0.012	3	0.033	0.041	0.034	0.063	0	0.0060	0.025	0.028	0.040
Total Sodium (Na)	mg/L	0	2.8	4.0	3.7	5.3	0	3.2	3.7	3.7	4.4	0	27	28	28	28	0	24	26	27	27	0	12	14	12	18
Total Strontium (Sr)	ug/L	0	330	390	380	510	0	380	460	470	510	0	4200	4500	4500	4800	0	2900	3100	3000	3500	0	320	380	350	500
Total Sulphur (S)	mg/L	0	15	19	19	27	0	18	25	26	29	0	150	160	170	170	0	160	180	180	200	0	5.6	7.1	7.0	8.6
Total Thallium (Tl)	ug/L	0	0.022	0.045	0.041	0.088	0	0.026	0.14	0.051	0.29	0	0.011	0.025	0.025	0.038	0	0.14	0.19	0.17	0.28	0	0.0020	0.013	0.015	0.021
	÷		< 0.10	0.18		< 0.20		< 0.10	0.18	0.20	< 0.20		< 0.20	0.20	0.20	< 0.20	5	< 0.20	0.20	0.20	< 0.20	-	< 0.20	0.27	0.20	0.47

Station				MW14-02	A				MW14-02	2B		1		MW14-03	3A		1		MW14-03	В		1		MW14-05	A	
Lithology				Gniess					Schist					Schist					Schist					Granite		
Number of Samples				5					5					4					4					4		
Statistic		<dl< th=""><th>Min</th><th>Mean</th><th>Median</th><th>Max</th><th><dl< th=""><th>Min</th><th>Mean</th><th>Median</th><th>Max</th><th><dl< th=""><th>Min</th><th>Mean</th><th>Median</th><th>Max</th><th><dl< th=""><th>Min</th><th>Mean</th><th>Median</th><th>Max</th><th><dl< th=""><th>Min</th><th>Mean</th><th>Median</th><th>Max</th></dl<></th></dl<></th></dl<></th></dl<></th></dl<>	Min	Mean	Median	Max	<dl< th=""><th>Min</th><th>Mean</th><th>Median</th><th>Max</th><th><dl< th=""><th>Min</th><th>Mean</th><th>Median</th><th>Max</th><th><dl< th=""><th>Min</th><th>Mean</th><th>Median</th><th>Max</th><th><dl< th=""><th>Min</th><th>Mean</th><th>Median</th><th>Max</th></dl<></th></dl<></th></dl<></th></dl<>	Min	Mean	Median	Max	<dl< th=""><th>Min</th><th>Mean</th><th>Median</th><th>Max</th><th><dl< th=""><th>Min</th><th>Mean</th><th>Median</th><th>Max</th><th><dl< th=""><th>Min</th><th>Mean</th><th>Median</th><th>Max</th></dl<></th></dl<></th></dl<>	Min	Mean	Median	Max	<dl< th=""><th>Min</th><th>Mean</th><th>Median</th><th>Max</th><th><dl< th=""><th>Min</th><th>Mean</th><th>Median</th><th>Max</th></dl<></th></dl<>	Min	Mean	Median	Max	<dl< th=""><th>Min</th><th>Mean</th><th>Median</th><th>Max</th></dl<>	Min	Mean	Median	Max
Total Titanium (Ti)	ug/L	3	< 0.50	2.7	0.84	<10	3	< 0.50	2.5	0.62	<10	3	< 0.50	0.95	0.65	2.0	3	< 0.50	0.67	0.61	0.95	0	1.1	2.4	2.4	3.9
Total Uranium (U)	ug/L	0	48	59	51	86	0	53	74	76	92	0	47	51	50	58	0	35	38	37	41	0	24	29	27	37
Total Vanadium (V)	ug/L	2	< 0.20	0.44	0.29	<1.0	2	< 0.20	0.40	0.24	<1.0	2	0.25	0.37	0.36	0.51	2	< 0.20	0.23	0.22	0.29	1	< 0.20	0.27	0.28	0.33
Total Zinc (Zn)	ug/L	1	0.33	1.8	2.1	<3.0	1	3.4	5.8	4.2	12	1	1.1	1.9	2.1	2.5	1	1.1	6.3	6.2	12	0	4.6	14	16	19
Total Zirconium (Zr)	ug/L	4	< 0.10	0.10	0.10	< 0.10	4	< 0.10	0.10	0.10	< 0.10	4	1.5	2.5	2.6	3.2	4	0.33	0.36	0.34	0.41	0	0.11	0.15	0.15	0.18
Dissolved Metals			<u> </u>	<u> </u>	<u> </u>														•		.	1	<u> </u>		<u> </u>	
Dissolved Aluminum (Al)	ug/L	0	4	10	8.7	17	0	1.0	4.6	2.2	15	0	3.4	20	13	53	0	2.8	11	11	19	0	4.0	11	8.4	24
Dissolved Antimony (Sb)	ug/L	0	0.7	0.76	0.72	0.92	0	3.3	5.7	6.0	6.6	0	0.31	0.65	0.64	1.0	0	0.087	0.10	0.097	0.13	0	0.41	0.56	0.57	0.69
Dissolved Arsenic (As)	ug/L	0	52	57	54	71	0	20	34	37	39	0	49	63	64	76	0	7.6	8.4	8.5	9.2	0	1500	1700	1700	1900
Dissolved Barium (Ba)	ug/L	0	9.9	13	13	14	0	41	50	52	58	0	98	120	120	140	0	62	81	81	99	0	93	100	100	120
Dissolved Beryllium (Be)	ug/L	5	< 0.010	0.028	0.01	< 0.10	5	< 0.010	0.028	0.010	<0.10	5	< 0.010	0.013	0.013	0.016	5	< 0.010	0.010	0.010	< 0.010	0	0.015	0.019	0.018	0.026
Dissolved Bismuth (Bi)	ug/L	5	< 0.0050	0.1	0.005	< 0.50	5	< 0.0050	0.10	0.0050	< 0.50	5	< 0.0050	0.0050	0.0050	< 0.0050	5	< 0.0050	0.0070	0.0050	0.013	3	< 0.0050	0.0060	0.0050	0.0089
Dissolved Boron (B)	ug/L	5	<10	10	10	<10	5	<10	10	10	<10	5	<10	11	10	12	5	<10	11	10	12	4	<10	10	10	<10
Dissolved Cadmium (Cd)	ug/L	4	< 0.0050	0.0062	0.005	< 0.010	4	< 0.0050	0.0066	0.0050	< 0.010	4	< 0.0050	0.019	0.0086	0.055	4	0.0080	0.028	0.020	0.063	3	< 0.0050	0.0066	0.0050	0.012
Dissolved Calcium (Ca)	mg/L	0	40	44	46	46	0	52	55	52	62	0	120	130	140	140	0	130	130	130	140	0	43	45	45	47
Dissolved Chromium (Cr)	ug/L	0	0.45	0.5	0.49	0.6	0	< 0.10	0.21	0.17	0.41	0	< 0.10	0.18	0.16	0.30	0	< 0.10	0.13	0.12	0.16	1	< 0.10	0.15	0.15	0.20
Dissolved Cobalt (Co)	ug/L	0	0.014	0.044	0.036	0.11	0	0.62	1.5	1.5	2.5	0	1.3	1.9	1.9	2.5	0	6.1	7.0	7.1	7.6	0	0.74	0.92	0.89	1.2
Dissolved Copper (Cu)	ug/L	2	< 0.050	0.17	0.2	0.31	2	< 0.050	0.097	0.081	< 0.20	2	0.068	0.58	0.30	1.7	2	0.49	1.0	1.0	1.6	0	0.053	0.39	0.17	1.2
Dissolved Iron (Fe)	ug/L	2	<1.0	11	10	27	2	1.5	6.7	7.3	<10	2	7300	8300	8200	9400	2	1000	1600	1600	2100	0	1900	2700	2700	3600
Dissolved Lead (Pb)	ug/L	3	< 0.0050	0.022	0.021	< 0.050	3	< 0.0050	0.017	0.0098	< 0.050	3	0.0060	0.096	0.11	0.16	3	0.022	0.049	0.048	0.080	0	0.0070	0.081	0.030	0.26
Dissolved Lithium (Li)	ug/L	0	6.5	7.5	7.7	8.1	0	6.8	7.3	7.5	7.6	0	27	29	29	32	0	21	24	24	27	0	28	30	29	34
Dissolved Magnesium (Mg)	mg/L	0	21	21	21	22	0	27	30	30	32	0	130	130	130	140	0	140	170	170	180	0	8.4	8.8	8.9	8.9
Dissolved Manganese (Mn)	ug/L	0	2.4	9	7.9	17	0	160	530	620	710	0	650	790	780	950	0	2900	3200	3300	3500	0	1100	1300	1300	1600
Dissolved Mercury (Hg)	ug/L	1	0.0025	0.0048	0.004	< 0.010	1	< 0.0020	0.0042	0.0027	< 0.010	1	0.0021	0.0054	0.0049	0.0098	1	0.0028	0.0048	0.0048	0.0066	4	< 0.0020	0.0020	0.0020	< 0.0020
Dissolved Molybdenum (Mo)	ug/L	0	2.8	3.4	3.1	4.9	0	5.0	6.3	6.4	7.5	0	3.0	4.0	4.0	5.1	0	6.8	8.1	8.1	9.5	0	3.7	4.1	4.0	4.8
Dissolved Nickel (Ni)	ug/L	1	0.086	0.34	0.35	< 0.50	1	2.5	9.2	9.3	15	1	0.34	1.2	1.1	2.4	1	17	19	19	22	0	0.54	1.1	1.3	1.4
Dissolved Phosphorus (P)	ug/L	1	7.4	27	13	53	1	5.2	37	7.5	120	1	43	90	88	140	1	29	47	44	70	0	84	100	100	120
Dissolved Potassium (K)	mg/L	0	2.9	3.1	2.9	3.6	0	3.3	3.5	3.6	3.7	0	8.3	8.6	8.3	9.4	0	7.7	8.4	8.4	9.2	0	5.3	6.0	5.7	7.1
Dissolved Selenium (Se)	ug/L	0	0.22	0.24	0.24	0.26	0	0.26	0.28	0.28	0.31	0	< 0.040	0.055	0.042	0.097	0	0.12	0.17	0.16	0.25	0	0.068	0.086	0.086	0.10
Dissolved Silicon (Si)	ug/L	0	6100	6300	6200	6600	0	6100	6300	6300	6400	0	7100	7400	7200	8100	0	6000	6400	6200	7300	0	13000	14000	14000	15000
Dissolved Silver (Ag)	ug/L	3	< 0.0050	0.0078	0.0053	0.014	3	< 0.0050	0.0060	0.0050	< 0.010	3	0.0079	0.0099	0.0091	0.014	3	0.0056	0.0096	0.0096	0.014	3	< 0.0050	0.0051	0.0050	0.0054
Dissolved Sodium (Na)	mg/L	0	2.9	3.8	3.2	5.2	0	3.2	3.7	3.7	4.5	0	26	28	28	29	0	25	28	28	30	0	12	16	15	23
Dissolved Strontium (Sr)	ug/L	0	350	370	360	380	0	440	460	460	490	0	4400	4600	4500	5100	0	3000	3200	3200	3600	0	330	370	360	440
Dissolved Sulphur (S)	mg/L	0	17	18	18	19	0	25	27	27	29	0	150	160	160	180	0	160	190	200	200	0	5.1	7.0	6.7	9.4
Dissolved Thallium (Tl)	ug/L	0	0.022	0.038	0.041	0.056	0	0.025	0.13	0.078	0.27	0	0.0030	0.013	0.011	0.026	0	0.079	0.11	0.12	0.14	1	< 0.0020	0.0067	0.0067	0.011
Dissolved Tin (Sn)	ug/L	5	< 0.10	0.18	0.2	< 0.20	5	< 0.10	0.18	0.20	< 0.20	5	< 0.20	0.20	0.20	< 0.20	5	< 0.20	0.20	0.20	< 0.20	4	< 0.20	0.20	0.20	< 0.20
Dissolved Titanium (Ti)	ug/L	4	< 0.50	2.4	0.5	<10	4	< 0.50	2.4	0.50	<10	4	< 0.50	0.57	0.55	0.69	4	< 0.50	0.50	0.50	< 0.50	3	< 0.50	0.60	0.50	0.88
Dissolved Uranium (U)	ug/L	0	45	52	48	70	0	72	79	77	93	0	44	53	50	69	0	38	40	39	43	0	25	30	31	33
Dissolved Vanadium (V)	ug/L	3	< 0.20	0.39	0.25	<1.0	3	< 0.20	0.41	0.31	<1.0	3	< 0.20	0.33	0.32	0.48	3	< 0.20	0.22	0.21	0.26	3	<0.20	0.21	0.20	0.24
Dissolved Zinc (Zn)	ug/L	0	0.27	2.3	2.3	3.8	0	1.9	4.4	3.8	10	0	0.29	5.6	3.0	16	0	0.75	6.6	7.7	10	0	0.71	5.1	4.3	11
Dissolved Zirconium (Zr)	ug/L	4	< 0.10	0.1	0.1	< 0.10	4	< 0.10	0.10	0.10	< 0.10	4	2.4	3.0	3.0	3.4	4	0.33	0.39	0.39	0.44	1	< 0.10	0.13	0.13	0.14

 Dissolved Zirconium (Zr)
 ug/L
 4
 <0.10</th>
 v.1
 v.1

 Notes:
 Analytical results reported as <DL were set = DL for the calculation of mean and median values. The sample collected at MW14-03A on Oct. 12, 2014 has been excluded from statistical calculations. The sample collected at MW14-03B on Oct. 6, 2014 has been excluded from statistical calculations. The sample collected at MW14-05A on Oct. 2, 2014 has been excluded from statistical calculations. The sample collected at MW14-05B on Oct. 3, 2014 has been excluded from statistical calculations. The sample collected at MW14-05B on Oct. 3, 2014 has been excluded from statistical calculations. The sample collected at MW14-05B on Oct. 3, 2014 has been excluded from statistical calculations. The sample collected at MW14-05B on Oct. 3, 2014 has been excluded from statistical calculations. The sample collected at MW14-05B on Oct. 3, 2014 has been excluded from statistical calculations. DOC and TOC results for all samples collected at Westbay monitoring wells (MW15-01WB to MW15-06WB) have been excluded from statistical calculations. DOC and TOC results for all samples collected at MW14-05B have been excluded from statistical calculations.

Station				MW14-05	5B				MW15-01V	VB				MW15-02A	Z				MW15-02W	VB				MW15-03A	Z	
Lithology				Granite					Gniess					-					Schist					-		
Number of Samples			-	4					4				-	4					4					4		
Statistic		<dl< th=""><th>Min</th><th>Mean</th><th>Median</th><th>Max</th><th><dl< th=""><th>Min</th><th>Mean</th><th>Median</th><th>Max</th><th><dl< th=""><th>Min</th><th>Mean</th><th>Median</th><th>Max</th><th><dl< th=""><th>Min</th><th>Mean</th><th>Median</th><th>Max</th><th><dl< th=""><th>Min</th><th>Mean</th><th>Median</th><th>Max</th></dl<></th></dl<></th></dl<></th></dl<></th></dl<>	Min	Mean	Median	Max	<dl< th=""><th>Min</th><th>Mean</th><th>Median</th><th>Max</th><th><dl< th=""><th>Min</th><th>Mean</th><th>Median</th><th>Max</th><th><dl< th=""><th>Min</th><th>Mean</th><th>Median</th><th>Max</th><th><dl< th=""><th>Min</th><th>Mean</th><th>Median</th><th>Max</th></dl<></th></dl<></th></dl<></th></dl<>	Min	Mean	Median	Max	<dl< th=""><th>Min</th><th>Mean</th><th>Median</th><th>Max</th><th><dl< th=""><th>Min</th><th>Mean</th><th>Median</th><th>Max</th><th><dl< th=""><th>Min</th><th>Mean</th><th>Median</th><th>Max</th></dl<></th></dl<></th></dl<>	Min	Mean	Median	Max	<dl< th=""><th>Min</th><th>Mean</th><th>Median</th><th>Max</th><th><dl< th=""><th>Min</th><th>Mean</th><th>Median</th><th>Max</th></dl<></th></dl<>	Min	Mean	Median	Max	<dl< th=""><th>Min</th><th>Mean</th><th>Median</th><th>Max</th></dl<>	Min	Mean	Median	Max
Field Parameters	-				-							I I I I I I I I I I I I I I I I I I I									-				r r	
pH (field)	pH	0	7.2	7.5	7.6	7.7	0	6.8	7.1	7.0	7.9	0	7.3	7.4	7.5	7.5	0	7.3	7.4	7.4	7.5	0	6.6	6.9	7.0	7.1
Specific Conductance (field)	uS/cm	0	570	650	650	710	0	2200	2200	2200	2300	0	730	790	780	870	0	860	880	890	900	0	210	260	260	320
DO (field)	mg/L ORP mV	0	0.44	1.6	0.71	4.5	0	6.8	7.9	8.0	9.0	0	6.4	7.2	7.1	8.2	0	5.3	7.3	7.5	9.2	0	0.34	0.88	0.87	1.4
ORP (field) Temperature (field)	°C	0	-91 1.4	-27 3.0	-58 2.9	100 4.6	0	23 3.4	6.0	33 5.8	38 9.2	0	21	64 1.5	45	2.0	0	-17 3.2	46 4.4	42 3.9	120 6.7	0	73	88 2.3	86 2.4	110 2.8
Physical Properties		0	1.4	3.0	2.9	4.0		3.4	0.0	5.8	9.2	0	1.1	1.5	1.5	2.0	0	3.2	4.4	3.9	0.7	0	1.7	2.3	2.4	2.0
Conductivity (lab)	uS/cm	0	580	670	660	760	0	2100	2200	2200	2200	0	740	800	770	930	0	820	860	870	890	0	210	260	260	320
pH (lab)	pH	0	7.9	8.0	8.0	8.0	0	7.8	7.9	7.9	8.0	0	8.0	8.1	8.1	8.2	0	7.7	7.9	8.0	8.2	0	7.7	7.8	7.8	8.0
Total Hardness (CaCO3)	mg/L	0	140	150	150	150	0	1400	1400	1400	1500	0	390	430	410	490	0	460	470	460	490	0	99	120	120	150
Dissolved Hardness (CaCO3)	mg/L	0	130	140	140	150	0	1300	1400	1400	1500	0	380	430	410	510	0	460	470	460	510	0	97	120	120	150
Total Suspended Solids	mg/L	0	7.0	24	13	64	0	2.5	2.7	2.6	3.0	4	<1.0	1.0	1.0	<1.0	3	<1.0	1.0	1.0	1.1	4	<1.0	1.0	1.0	<1.0
Total Dissolved Solids	mg/L	0	400	470	450	580	0	1700	1800	1800	1900	0	480	530	510	640	0	600	620	620	640	0	140	170	170	220
Turbidity	NTU	0	7.9	17	12	38	0	3.5	4.7	4.7	5.9	1	< 0.10	0.16	0.15	0.24	0	0.21	1.4	1.7	2.2	1	< 0.10	0.29	0.27	0.51
Inorganics	1 -		100	100	100	200			5.00	5.00	670		222	210	240			210	220		250			05	05	
Alkalinity (Total as CaCO3) Alkalinity (PP as CaCO3)	mg/L	0 4	180 <0.50	190 0.50	190 0.50	200 <0.50	0 4	550 <0.50	560 0.50	560 0.50	570 <0.50	0 4	230 <0.50	240 0.50	240 0.50	260 <0.50	0	210 <0.50	230 0.50	230 0.50	250 <0.50	0 4	80 <0.50	95 0.50	95 0.50	110 <0.50
Alkalinity (PP as CaCO3) Bicarbonate (HCO3)	mg/L mg/L	4	<0.50	230	240	<0.50	4	<0.50 670	680	680	<0.50	4	<0.50 280	0.50 300	290	<0.50	4	<0.50 250	280	290	<0.50	4	<0.50 98	0.50	0.50	<0.50
Carbonate (CO3)	mg/L mg/L	4	<0.50	0.50	0.50	<0.50	4	<0.50	0.50	0.50	<0.50	4	<0.50	0.50	0.50	<0.50	4	<0.50	0.50	0.50	<0.50	4	<0.50	0.50	0.50	<0.50
Hydroxide (OH)	mg/L mg/L	4	<0.50	0.50	0.50	<0.50	4	<0.50	0.50	0.50	<0.50	4	<0.50	0.50	0.50	<0.50	4	<0.50	0.50	0.50	<0.50	4	<0.50	0.50	0.50	<0.50
Bromide (Br)	mg/L	- 1	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
Fluoride (F)	mg/L	0	0.28	0.36	0.37	0.41	0	0.044	0.055	0.058	0.060	0	0.088	0.099	0.099	0.11	0	0.12	0.18	0.19	0.21	0	0.048	0.057	0.058	0.063
Dissolved Chloride (Cl)	mg/L	3	3.1	5.0	5.4	5.9	3	0.69	0.99	0.78	1.7	3	0.50	0.83	0.86	1.1	3	< 0.50	0.80	0.76	1.2	3	<0.50	0.69	0.74	0.78
Organic / Inorganic Carbon																										
Dissolved Organic Carbon (C)	mg/L	-	-	-	-	-	-	-	-	-	-	1	3.9	4.9	5.0	5.6	-	-		-	-	1	7.1	8.4	8.3	10
Total Organic Carbon (C)	mg/L	-	-	-		-	-	-		-	-	1	3.8	5.0	5.1	6.3	-	-		-	-	1	7.1	9.1	9.2	11
Anions and Nutrients Total Phosphorus (P)		0	0.21	0.22	0.22	0.25	0	0.014	0.049	0.022	0.11	0	-0.0050	0.0050	0.0050	-0.0050	0	-0.0050	0.026	0.0068	0.095	0	<0.0050	0.0050	0.0050	< 0.0050
Dissolved Phosphorus (P)	mg/L mg/L	0	0.21 0.14	0.22	0.22 0.19	0.25	0	0.0041	0.048	0.033 0.013	0.11 0.018	0	<0.0050 <0.0050	0.0050	0.0050	<0.0050 <0.0050	0	<0.0050 0.0024	0.026 0.0041	0.0068 0.0038	0.085 0.0062	0	<0.0050 <0.0050	0.0050	0.0050 0.0050	0.0057
Total Ammonia (N)	mg/L mg/L	1	<0.0050	0.016	0.017	0.024	1	0.0052	0.012	0.015	0.016	1	< 0.0050	0.014	0.013	0.025	1	0.0024	0.0041	0.015	0.0002	1	0.0065	0.0052	0.014	0.025
Total Total Kjeldahl Nitrogen (Calc)	mg/L	3	0.29	0.50	0.38	0.95	3	0.035	0.12	0.056	0.35	3	0.11	0.16	0.15	0.22	3	0.10	0.19	0.15	0.37	3	0.18	0.24	0.23	0.31
Nitrate plus Nitrite (N)	mg/L	0	< 0.0020	0.0030	0.0027	0.0046	0	< 0.0020	0.0027	0.0020	0.0048	0	0.23	0.42	0.47	0.53	0	< 0.0020	0.037	0.0025	0.14	0	0.026	0.088	0.088	0.15
Nitrate (N)	mg/L	0	< 0.0020	0.0020	0.0020	< 0.0020	0	< 0.0020	0.0027	0.0020	0.0048	0	0.23	0.44	0.48	0.54	0	< 0.0020	0.036	0.0025	0.14	0	0.026	0.093	0.090	0.17
Nitrite (N)	mg/L	5	< 0.0020	0.0028	0.0027	0.0037	5	< 0.0020	0.0020	0.0020	< 0.0020	5	< 0.0020	0.0020	0.0020	< 0.0020	5	< 0.0020	0.0022	0.0020	0.0026	5	< 0.0020	0.0020	0.0020	< 0.0020
Total Nitrogen (N)	mg/L	0	0.29	0.50	0.38	0.95	0	0.040	0.13	0.056	0.35	0	0.38	0.59	0.65	0.69	0	0.13	0.23	0.20	0.37	0	0.21	0.32	0.32	0.46
Dissolved Nitrogen (N)	mg/L	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	0	0.24	0.24	0.24	0.24
Dissolved Sulphate (SO4) Sulphide	mg/L mg/L	0	100 <0.0050	130 0.065	130 0.067	170 0.12	0	840 <0.0050	900 0.0069	890 0.0066	950 0.0094	0	150 <0.0050	190 0.0058	180 0.0052	250 0.0077	0	200 0.0051	230 0.0065	240 0.0057	240 0.0095	0	22 <0.0050	38 0.0062	38 0.0063	53 0.0073
Total Metals	iiig/L	1	<0.0050	0.005	0.007	0.12	<u> </u>	<0.0050	0.0007	0.0000	0.0094	1	<0.0050	0.0058	0.0052	0.0077	- 1	0.0051	0.0005	0.0057	0.0095		<0.0050	0.0002	0.0005	0.0075
Total Aluminum (Al)	ug/L	0	69	360	220	950	0	4.2	18	8.5	49	0	7.0	8.6	8.7	10	0	1.8	9.9	7.5	23	0	19	31	29	47
Total Antimony (Sb)	ug/L	0	0.64	0.84	0.78	1.2	0	0.32	0.51	0.48	0.74	0	0.14	0.22	0.15	0.43	0	0.082	0.17	0.13	0.34	0	0.13	0.17	0.17	0.20
Total Arsenic (As)	ug/L	0	130	150	140	180	0	31	35	35	40	0	0.95	1.0	1.0	1.1	0	0.58	2.2	2.6	3.0	0	0.41	0.47	0.48	0.53
Total Barium (Ba)	ug/L	0	82	92	88	110	0	9.0	10	10	11	0	75	85	85	96	0	23	28	25	39	0	26	31	30	38
Total Beryllium (Be)	ug/L	4	< 0.010	0.027	0.016	0.067	4	0.038	0.041	0.041	0.045	4	< 0.010	0.010	0.010	< 0.010	4	< 0.010	0.012	0.012	0.015	4	< 0.010	0.012	0.012	0.016
Total Bismuth (Bi)	ug/L	4	< 0.0050	0.0092	0.0064	0.019	4	< 0.0050	0.0050	0.0050	< 0.0050	4	< 0.0050	0.0050	0.0050	< 0.0050	4	< 0.0050	0.0050	0.0050	< 0.0050	4	< 0.0050	0.0050	0.0050	< 0.0050
Total Boron (B)	ug/L	5	11	17	15	26	5	<10	10	10	<10	5	<10	10	10	<10	5	<10	10	10	<10	5	<10	10	10	<10
Total Cadmium (Cd) Total Calcium (Ca)	ug/L mg/L	5	0.036 43	0.076 46	0.064 46	0.14 49	5	0.021 220	0.051 250	0.037	0.11 280	5	<0.0050 100	0.0085	0.0073	0.015	5	0.011 130	0.032	0.035	0.048	5	0.011 26	0.014 34	0.014 34	0.019 41
Total Chromium (Cr)	ug/L	0	0.58	1.3	46	1.9	0	0.21	0.60	0.35	1.5	0	0.11	0.14	0.14		0	0.15	0.81	0.50	2.1	0	0.19	0.23	0.21	0.30
Total Cobalt (Co)	ug/L ug/L	0	1.4	1.5	1.5	2.2	0	0.21	0.00	0.33	0.88	0	0.026	0.14	0.14	0.17	0	0.074	0.81	0.12	0.15	0	0.058	0.23	0.21	0.30
Total Copper (Cu)	ug/L	2	2.1	6.0	4.2	13	2	0.30	0.56	0.53	0.86	2	0.99	1.1	1.1	1.2	2	0.25	0.95	0.87	1.8	2	1.4	1.7	1.7	2.0
Total Iron (Fe)				1.400	1300	1900	1	380	510	520	620	1	6.4	8.6	7.6	13	1	17	290	360	410	1	14	21	20	30
	ug/L	1	970	1400	1500	1700											3	0.023	0.23	0.29		3	< 0.0050	0.016	0.013	0.031
Total Lead (Pb)	-	1 3	970 0.43	1400	0.88	1.9	3	0.12	1.3	0.19	4.8	3	< 0.0050	0.0095	0.0097	0.014	2	0.025	0.25	0.28	0.36	5	10.0050	0.010		
	ug/L	1 3 0	0.43 34	1.0 36	0.88 35	1.9 38		0.12 22	24	25	27	0	3.8	3.9	3.9	4.1	0	3.7	4.0	3.9	4.6	0	0.56	0.73	0.75	0.85
Total Lead (Pb) Total Lithium (Li) Total Magnesium (Mg)	ug/L ug/L ug/L mg/L	0	0.43 34 6.8	1.0 36 7.7	0.88 35 7.8	1.9 38 8.5	3 0 0	0.12 22 180	24 190	25 190	27 200	0	3.8 32	3.9 35	3.9 34	4.1 41	0	3.7 35	4.0 35	3.9 35	4.6 37	0	0.56 8.3	0.73 9.9	9.7	12
Total Lead (Pb) Total Lithium (Li) Total Magnesium (Mg) Total Manganese (Mn)	ug/L ug/L ug/L mg/L ug/L	0	0.43 34 6.8 610	1.0 36 7.7 880	0.88 35 7.8 830	1.9 38 8.5 1200	3 0	0.12 22 180 370	24 190 380	25 190 380	27 200 380	0	3.8 32 0.31	3.9 35 14	3.9 34 14	4.1 41 29	0	3.7 35 38	4.0 35 87	3.9 35 100	4.6 37 110	0 0 0	0.56 8.3 56	0.73 9.9 110	9.7 86	12 210
Total Lead (Pb) Total Lithium (Li) Total Magnesium (Mg) Total Manganese (Mn) Total Mercury (Hg)	ug/L ug/L ug/L mg/L ug/L ug/L	0 0 0 1	0.43 34 6.8 610 0.0039	1.0 36 7.7 880 0.0053	0.88 35 7.8 830 0.0055	1.9 38 8.5 1200 0.0062	3 0 0 0 1	0.12 22 180 370 <0.0020	24 190 380 0.0020	25 190 380 0.0020	27 200 380 <0.0020	0 0 0 1	3.8 32 0.31 <0.0020	3.9 35 14 0.0023	3.9 34 14 0.0022	4.1 41 29 0.0028	0 0 0 1	3.7 35 38 <0.0020	4.0 35 87 0.0020	3.9 35 100 0.0020	4.6 37 110 <0.0020	0 0 0 1	0.56 8.3 56 <0.0020	0.73 9.9 110 0.0035	9.7 86 0.0027	12 210 0.0067
Total Lead (Pb) Total Lithium (Li) Total Magnesium (Mg) Total Manganese (Mn) Total Mercury (Hg) Total Molybdenum (Mo)	ug/L ug/L ug/L mg/L ug/L ug/L ug/L	0	0.43 34 6.8 610 0.0039 9.1	1.0 36 7.7 880 0.0053 19	0.88 35 7.8 830 0.0055 19	1.9 38 8.5 1200 0.0062 27	3 0 0 1 0	0.12 22 180 370 <0.0020 0.78	24 190 380 0.0020 0.80	25 190 380 0.0020 0.79	27 200 380 <0.0020 0.86	0	3.8 32 0.31 <0.0020 0.35	3.9 35 14 0.0023 0.39	3.9 34 14 0.0022 0.39	4.1 41 29 0.0028 0.44	0 0 0 1 0	3.7 35 38 <0.0020 0.56	4.0 35 87 0.0020 0.78	3.9 35 100 0.0020 0.70	4.6 37 110 <0.0020 1.2	0 0 1 0	0.56 8.3 56 <0.0020 0.44	0.73 9.9 110 0.0035 0.48	9.7 86 0.0027 0.48	12 210 0.0067 0.53
Total Lead (Pb) Total Lithium (Li) Total Magnesium (Mg) Total Manganese (Mn) Total Mercury (Hg) Total Molybdenum (Mo) Total Nickel (Ni)	ug/L ug/L ug/L mg/L ug/L ug/L ug/L ug/L ug/L ug/L ug/L	0 0 1 0 1	0.43 34 6.8 610 0.0039 9.1 4.2	1.0 36 7.7 880 0.0053 19 6.9	0.88 35 7.8 830 0.0055 19 6.6	1.9 38 8.5 1200 0.0062 27 10	3 0 0 1 0 1	0.12 22 180 370 <0.0020 0.78 1.7	24 190 380 0.0020 0.80 2.0	25 190 380 0.0020 0.79 2.0	27 200 380 <0.0020 0.86 2.4	0 0 0 1	3.8 32 0.31 <0.0020 0.35 0.48	3.9 35 14 0.0023 0.39 0.73	3.9 34 14 0.0022 0.39 0.68	4.1 41 29 0.0028 0.44 1.1	0 0 0 1	3.7 35 38 <0.0020 0.56 1.0	4.0 35 87 0.0020 0.78 1.6	3.9 35 100 0.0020 0.70 1.4	4.6 37 110 <0.0020 1.2 2.5	0 0 1 0 1	0.56 8.3 56 <0.0020 0.44 1.1	0.73 9.9 110 0.0035 0.48 1.1	9.7 86 0.0027 0.48 1.1	12 210 0.0067 0.53 1.3
Total Lead (Pb) Total Lithium (Li) Total Magnesium (Mg) Total Manganese (Mn) Total Mercury (Hg) Total Molybdenum (Mo)	ug/L ug/L ug/L ug/L ug/L ug/L ug/L ug/L	0 0 0 1	0.43 34 6.8 610 0.0039 9.1	1.0 36 7.7 880 0.0053 19 6.9 170	0.88 35 7.8 830 0.0055 19 6.6 170	1.9 38 8.5 1200 0.0062 27 10 190	3 0 0 1 0	0.12 22 180 370 <0.0020 0.78	24 190 380 0.0020 0.80	25 190 380 0.0020 0.79 2.0 17	27 200 380 <0.0020 0.86 2.4 210	0 0 0 1	3.8 32 0.31 <0.0020 0.35	3.9 35 14 0.0023 0.39	3.9 34 14 0.0022 0.39	4.1 41 29 0.0028 0.44	0 0 0 1 0	3.7 35 38 <0.0020 0.56	4.0 35 87 0.0020 0.78	3.9 35 100 0.0020 0.70	4.6 37 110 <0.0020 1.2 2.5 47	0 0 1 0	0.56 8.3 56 <0.0020 0.44 1.1 7.0	0.73 9.9 110 0.0035 0.48	9.7 86 0.0027 0.48	12 210 0.0067 0.53
Total Lead (Pb) Total Lithium (Li) Total Magnesium (Mg) Total Manganese (Mn) Total Mercury (Hg) Total Molybdenum (Mo) Total Phosphorus (P)	ug/L ug/L ug/L mg/L ug/L ug/L ug/L ug/L ug/L ug/L ug/L	0 0 1 0 1 1	0.43 34 6.8 610 0.0039 9.1 4.2 160	1.0 36 7.7 880 0.0053 19 6.9	0.88 35 7.8 830 0.0055 19 6.6	1.9 38 8.5 1200 0.0062 27 10	3 0 0 1 0 1 1 1	0.12 22 180 370 <0.0020 0.78 1.7 4.4	24 190 380 0.0020 0.80 2.0 62	25 190 380 0.0020 0.79 2.0	27 200 380 <0.0020 0.86 2.4	0 0 1 0 1 1	3.8 32 0.31 <0.0020 0.35 0.48 5.2	3.9 35 14 0.0023 0.39 0.73 21	3.9 34 14 0.0022 0.39 0.68 20	4.1 41 29 0.0028 0.44 1.1 40	0 0 1 0 1 1 1	3.7 35 38 <0.0020 0.56 1.0 6.9	4.0 35 87 0.0020 0.78 1.6 22	3.9 35 100 0.0020 0.70 1.4 18	4.6 37 110 <0.0020 1.2 2.5	0 0 1 0 1 1 1	0.56 8.3 56 <0.0020 0.44 1.1	0.73 9.9 110 0.0035 0.48 1.1 19	9.7 86 0.0027 0.48 1.1 15	12 210 0.0067 0.53 1.3 41
Total Lead (Pb) Total Lithium (Li) Total Magnesium (Mg) Total Manganese (Mn) Total Mercury (Hg) Total Molybdenum (Mo) Total Nickel (Ni) Total Phosphorus (P) Total Potassium (K)	ug/L ug/L ug/L ug/L ug/L ug/L ug/L ug/L	0 0 1 0 1 1 0	0.43 34 6.8 610 0.0039 9.1 4.2 160 10.0	1.0 36 7.7 880 0.0053 19 6.9 170 12	0.88 35 7.8 830 0.0055 19 6.6 170 12	1.9 38 8.5 1200 0.0062 27 10 190 14	3 0 0 1 1 1 1 0	0.12 22 180 370 <0.0020 0.78 1.7 4.4 5.0	24 190 380 0.0020 0.80 2.0 62 5.1	25 190 380 0.0020 0.79 2.0 17 5.1	27 200 380 <0.0020 0.86 2.4 210 5.3	0 0 0 1 0 1 1 0	3.8 32 0.31 <0.0020 0.35 0.48 5.2 5.4	3.9 35 14 0.0023 0.39 0.73 21 6.4	3.9 34 14 0.0022 0.39 0.68 20 6.5	4.1 41 29 0.0028 0.44 1.1 40 7.1	0 0 1 0 1 1 1 1 0	3.7 35 38 <0.0020 0.56 1.0 6.9 8.4	4.0 35 87 0.0020 0.78 1.6 22 9.3	3.9 35 100 0.0020 0.70 1.4 18 8.8	4.6 37 110 <0.0020 1.2 2.5 47 11	0 0 1 0 1 1 0 1 0	0.56 8.3 56 <0.0020 0.44 1.1 7.0 1.5	0.73 9.9 110 0.0035 0.48 1.1 19 1.7	9.7 86 0.0027 0.48 1.1 15 1.7	12 210 0.0067 0.53 1.3 41 1.8
Total Lead (Pb) Total Lithium (Li) Total Magnesium (Mg) Total Manganese (Mn) Total Mercury (Hg) Total Molybdenum (Mo) Total Nickel (Ni) Total Potassium (P) Total Potassium (K) Total Sclenium (Se)	ug/L ug/L ug/L ug/L ug/L ug/L ug/L ug/L	0 0 1 0 1 1 0 0 0	0.43 34 6.8 610 0.0039 9.1 4.2 160 10.0 0.17	1.0 36 7.7 880 0.0053 19 6.9 170 12 0.33	0.88 35 7.8 830 0.0055 19 6.6 170 12 0.38	1.9 38 8.5 1200 0.0062 27 10 190 14 0.41	3 0 0 1 1 1 1 0 0 0	0.12 22 180 370 <0.0020 0.78 1.7 4.4 5.0 0.070	24 190 380 0.0020 0.80 2.0 62 5.1 0.49	25 190 380 0.0020 0.79 2.0 17 5.1 0.12	27 200 380 <0.0020 0.86 2.4 210 5.3 1.7	0 0 1 0 1 1 0 0 0	3.8 32 0.31 <0.0020 0.35 0.48 5.2 5.4 0.16	3.9 35 14 0.0023 0.39 0.73 21 6.4 0.45	3.9 34 14 0.0022 0.39 0.68 20 6.5 0.19	4.1 41 29 0.0028 0.44 1.1 40 7.1 1.3	0 0 1 1 1 1 0 0 0	3.7 35 38 <0.0020 0.56 1.0 6.9 8.4 0.11	4.0 35 87 0.0020 0.78 1.6 22 9.3 0.18	3.9 35 100 0.0020 0.70 1.4 18 8.8 0.13	4.6 37 110 <0.0020 1.2 2.5 47 11 0.34	0 0 1 0 1 1 0 0 0	0.56 8.3 56 <0.0020 0.44 1.1 7.0 1.5 <0.040	0.73 9.9 110 0.0035 0.48 1.1 19 1.7 0.050	9.7 86 0.0027 0.48 1.1 15 1.7 0.050	12 210 0.0067 0.53 1.3 41 1.8 0.058
Total Lead (Pb) Total Lithium (Li) Total Magnesium (Mg) Total Manganese (Mn) Total Mercury (Hg) Total Molybdenum (Mo) Total Nolybdenum (Mo) Total Nickel (Ni) Total Phosphorus (P) Total Selenium (K) Total Selenium (Se) Total Silicon (Si)	ug/L	0 0 1 0 1 1 0 0 0 0	0.43 34 6.8 610 0.0039 9.1 4.2 160 10.0 0.17 12000	1.0 36 7.7 880 0.0053 19 6.9 170 12 0.33 13000	0.88 35 7.8 830 0.0055 19 6.6 170 12 0.38 13000	1.9 38 8.5 1200 0.0062 27 10 190 14 0.41 14000 0.30 110	3 0 0 1 1 1 1 0 0 0 0 0	0.12 22 180 370 <0.0020 0.78 1.7 4.4 5.0 0.070 6800	24 190 380 0.0020 0.80 2.0 62 5.1 0.49 8100	25 190 380 0.0020 0.79 2.0 17 5.1 0.12 8400	27 200 380 <0.0020 0.86 2.4 210 5.3 1.7 9000	0 0 1 0 1 1 0 0 0	3.8 32 0.31 <0.0020 0.35 0.48 5.2 5.4 0.16 5000	3.9 35 14 0.0023 0.39 0.73 21 6.4 0.45 5300	3.9 34 14 0.0022 0.39 0.68 20 6.5 0.19 5300	4.1 41 29 0.0028 0.44 1.1 40 7.1 1.3 5600	0 0 1 1 1 1 0 0 0 0	3.7 35 38 <0.0020 0.56 1.0 6.9 8.4 0.11 4900 <0.0050 6.2	4.0 35 87 0.0020 0.78 1.6 22 9.3 0.18 5200	3.9 35 100 0.0020 0.70 1.4 18 8.8 0.13 5100	4.6 37 110 <0.0020 1.2 2.5 47 11 0.34 5600	0 0 1 0 1 1 0 0 0 0	0.56 8.3 56 <0.0020 0.44 1.1 7.0 1.5 <0.040 4700	0.73 9.9 110 0.0035 0.48 1.1 19 1.7 0.050 4800	9.7 86 0.0027 0.48 1.1 1.5 1.7 0.050 4800 0.0050 3.6	12 210 0.0067 0.53 1.3 41 1.8 0.058 5000 0.0056 4.0
Total Lead (Pb) Total Lithium (Li) Total Magnesium (Mg) Total Manganese (Mn) Total Mercury (Hg) Total Nolybdenum (Mo) Total Solicen (Si) Total Selenium (Se) Total Silicon (Si) Total Sodium (Na) Total Sodium (Na)	ug/L	0 0 1 0 1 1 0 0 0 0 3 0 0 0	0.43 34 6.8 610 0.0039 9.1 4.2 160 10.0 0.17 12000 0.041 62 600	1.0 36 7.7 880 0.0053 19 6.9 170 12 0.33 13000 0.15 85 680	0.88 35 7.8 830 0.0055 19 6.6 170 12 0.38 13000 0.12 82 700	1.9 38 8.5 1200 0.0062 27 10 190 14 0.41 14000 0.30 110 720	3 0 0 0 0 1 0 1 1 0 0 0 3 0 0 0 3 0 0 0	0.12 22 180 370 <0.0020 0.78 1.7 4.4 5.0 0.070 6800 <0.0050 26 2700	24 190 380 0.0020 0.80 2.0 62 5.1 0.49 8100 0.0063 27 2900	25 190 380 0.0020 0.79 2.0 17 5.1 0.12 8400 0.0050 27 2900	27 200 380 <0.0020 0.86 2.4 210 5.3 1.7 9000 0.010 29 3000	0 0 1 1 0 1 0 0 0 3 0 0 0	3.8 32 0.31 <0.0020 0.35 0.48 5.2 5.4 0.16 5000 <0.0050 4.6 960	3.9 35 14 0.0023 0.39 0.73 21 6.4 0.45 5300 0.0050 5.1 1100	3.9 34 14 0.0022 0.39 0.68 20 6.5 0.19 5300 0.0050 4.9 1000	4.1 41 29 0.0028 0.44 1.1 40 7.1 1.3 5600 <0.0050 5.9 1300	0 0 1 1 0 1 0 0 0 3 0 0 0 0	3.7 35 38 <0.0020 0.56 1.0 6.9 8.4 0.11 4900 <0.0050 6.2 920	4.0 35 87 0.0020 0.78 1.6 22 9.3 0.18 5200 0.0050 8.4 930	3.9 35 100 0.0020 0.70 1.4 18 8.8 0.13 5100 0.0050 8.7 930	4.6 37 110 <0.0020 1.2 2.5 47 11 0.34 5600 <0.0050 10 950	0 0 1 1 0 0 0 0 3 0 0 0	0.56 8.3 56 <0.0020 0.44 1.1 7.0 1.5 <0.040 4700 <0.0050 3.3 210	0.73 9.9 110 0.0035 0.48 1.1 19 1.7 0.050 4800 0.0052 3.6 250	9.7 86 0.0027 0.48 1.1 15 1.7 0.050 4800 0.0050 3.6 250	12 210 0.0067 0.53 1.3 41 1.8 0.058 5000 0.0056 4.0 310
Total Lead (Pb) Total Lithium (Li) Total Magnesium (Mg) Total Manganese (Mn) Total Morcury (Hg) Total Molybdenum (Mo) Total Nolybdenum (Mo) Total Nolybdenum (Mo) Total Nickel (Ni) Total Phosphorus (P) Total Selenium (Se) Total Selenium (Se) Total Silicon (Si) Total Silver (Ag) Total Strontium (Na) Total Strontium (Sr)	ug/L ug/L	0 0 1 1 0 1 1 0 0 0 0 3 0 0 0 0 0	0.43 34 6.8 610 0.0039 9.1 4.2 160 10.0 0.17 12000 0.041 62 600 31	1.0 36 7.7 880 0.0053 19 6.9 170 12 0.33 13000 0.15 85 680 46	0.88 35 7.8 830 0.0055 19 6.6 170 12 0.38 13000 0.12 82 700 46	1.9 38 8.5 1200 0.0062 27 10 190 14 0.41 14000 0.30 110 720 60	3 0 0 0 0 1 0 1 1 0 0 0 0 0 3 0 0 0 0 0 0 0 0 0	0.12 22 180 370 <0.0020 0.78 1.7 4.4 5.0 0.070 6800 <0.0050 26 2700 290	24 190 380 0.0020 0.80 2.0 62 5.1 0.49 8100 0.0063 27 2900 300	25 190 380 0.0020 0.79 2.0 17 5.1 0.12 8400 0.0050 27 2900 300	27 200 380 <0.0020 0.86 2.4 210 5.3 1.7 9000 0.010 29 3000 320	0 0 0 1 0 1 1 0 0 0 0 3 0 0 0 0	3.8 32 0.31 <0.0020 0.35 0.48 5.2 5.4 0.16 5000 <0.0050 4.6 960 56	3.9 35 14 0.0023 0.39 0.73 21 6.4 0.45 5300 0.0050 5.1 1100 63	3.9 34 14 0.0022 0.39 0.68 20 6.5 0.19 5300 0.0050 4.9 1000 57	4.1 41 29 0.0028 0.44 1.1 40 7.1 1.3 5600 <0.0050	0 0 1 1 1 0 0 0 3 0 0 0 0 0 0 0 0 0 0 0 0 0	3.7 35 38 <0.0020 0.56 1.0 6.9 8.4 0.11 4900 <0.0050 6.2 920 80	4.0 35 87 0.0020 0.78 1.6 22 9.3 0.18 5200 0.0050 8.4 930 82	3.9 35 100 0.0020 0.70 1.4 18 8.8 0.13 5100 0.0050 8.7 930 82	4.6 37 110 <0.0020 1.2 2.5 47 11 0.34 5600 <0.0050 10 950 84	0 0 1 0 1 1 0 0 0 0 3 0 0 0 0 0	0.56 8.3 56 <0.0020 0.44 1.1 7.0 1.5 <0.040 4700 <0.0050 3.3 210 7.6	0.73 9.9 110 0.0035 0.48 1.1 19 1.7 0.050 4800 0.0052 3.6 250 12	9.7 86 0.0027 0.48 1.1 15 1.7 0.050 4800 0.0050 3.6 250 11	12 210 0.0067 0.53 1.3 41 1.8 0.058 5000 0.0056 4.0 310 17
Total Lead (Pb) Total Lithium (Li) Total Magnesium (Mg) Total Manganese (Mn) Total Mercury (Hg) Total Nickel (Ni) Total Nickel (Ni) Total Phosphorus (P) Total Selenium (Ke) Total Selenium (Ke) Total Silicon (Si) Total Silicor (Ag) Total Strontium (Na) Total Strontium (Sr)	ug/L	0 0 1 0 1 1 0 0 0 0 3 0 0 0	0.43 34 6.8 610 0.0039 9.1 4.2 160 10.0 0.17 12000 0.041 62 600	1.0 36 7.7 880 0.0053 19 6.9 170 12 0.33 13000 0.15 85 680	0.88 35 7.8 830 0.0055 19 6.6 170 12 0.38 13000 0.12 82 700	1.9 38 8.5 1200 0.0062 27 10 190 14 0.41 14000 0.30 110 720	3 0 0 0 0 1 0 1 1 0 0 0 3 0 0 0 3 0 0 0	0.12 22 180 370 <0.0020 0.78 1.7 4.4 5.0 0.070 6800 <0.0050 26 2700	24 190 380 0.0020 0.80 2.0 62 5.1 0.49 8100 0.0063 27 2900	25 190 380 0.0020 0.79 2.0 17 5.1 0.12 8400 0.0050 27 2900	27 200 380 <0.0020 0.86 2.4 210 5.3 1.7 9000 0.010 29 3000	0 0 1 1 0 1 0 0 0 3 0 0 0	3.8 32 0.31 <0.0020 0.35 0.48 5.2 5.4 0.16 5000 <0.0050 4.6 960	3.9 35 14 0.0023 0.39 0.73 21 6.4 0.45 5300 0.0050 5.1 1100	3.9 34 14 0.0022 0.39 0.68 20 6.5 0.19 5300 0.0050 4.9 1000	4.1 41 29 0.0028 0.44 1.1 40 7.1 1.3 5600 <0.0050 5.9 1300	0 0 1 1 0 1 0 0 0 3 0 0 0 0	3.7 35 38 <0.0020 0.56 1.0 6.9 8.4 0.11 4900 <0.0050 6.2 920	4.0 35 87 0.0020 0.78 1.6 22 9.3 0.18 5200 0.0050 8.4 930	3.9 35 100 0.0020 0.70 1.4 18 8.8 0.13 5100 0.0050 8.7 930	4.6 37 110 <0.0020 1.2 2.5 47 11 0.34 5600 <0.0050 10 950	0 0 1 1 0 0 0 0 3 0 0 0	0.56 8.3 56 <0.0020 0.44 1.1 7.0 1.5 <0.040 4700 <0.0050 3.3 210	0.73 9.9 110 0.0035 0.48 1.1 19 1.7 0.050 4800 0.0052 3.6 250	9.7 86 0.0027 0.48 1.1 15 1.7 0.050 4800 0.0050 3.6 250	12 210 0.0067 0.53 1.3 41 1.8 0.058 5000 0.0056 4.0 310

Station				MW14-05	B				MW15-01V	VB				MW15-02	AZ		1		MW15-02V	VB				MW15-03A	Z	
Lithology				Granite					Gniess					-					Schist					-		
Number of Samples				4					4					4					4					4		
Statistic		<dl< th=""><th>Min</th><th>Mean</th><th>Median</th><th>Max</th><th><dl< th=""><th>Min</th><th>Mean</th><th>Median</th><th>Max</th><th><dl< th=""><th>Min</th><th>Mean</th><th>Median</th><th>Max</th><th><dl< th=""><th>Min</th><th>Mean</th><th>Median</th><th>Max</th><th><dl< th=""><th>Min</th><th>Mean</th><th>Median</th><th>Max</th></dl<></th></dl<></th></dl<></th></dl<></th></dl<>	Min	Mean	Median	Max	<dl< th=""><th>Min</th><th>Mean</th><th>Median</th><th>Max</th><th><dl< th=""><th>Min</th><th>Mean</th><th>Median</th><th>Max</th><th><dl< th=""><th>Min</th><th>Mean</th><th>Median</th><th>Max</th><th><dl< th=""><th>Min</th><th>Mean</th><th>Median</th><th>Max</th></dl<></th></dl<></th></dl<></th></dl<>	Min	Mean	Median	Max	<dl< th=""><th>Min</th><th>Mean</th><th>Median</th><th>Max</th><th><dl< th=""><th>Min</th><th>Mean</th><th>Median</th><th>Max</th><th><dl< th=""><th>Min</th><th>Mean</th><th>Median</th><th>Max</th></dl<></th></dl<></th></dl<>	Min	Mean	Median	Max	<dl< th=""><th>Min</th><th>Mean</th><th>Median</th><th>Max</th><th><dl< th=""><th>Min</th><th>Mean</th><th>Median</th><th>Max</th></dl<></th></dl<>	Min	Mean	Median	Max	<dl< th=""><th>Min</th><th>Mean</th><th>Median</th><th>Max</th></dl<>	Min	Mean	Median	Max
Total Titanium (Ti)	ug/L	3	3.9	18	8.5	50	3	< 0.50	1.2	0.50	3.3	3	< 0.50	0.50	0.50	< 0.50	3	< 0.50	0.68	0.53	1.2	3	0.70	0.96	0.73	1.7
Total Uranium (U)	ug/L	0	9.7	15	16	18	0	490	540	550	600	0	24	26	26	29	0	31	33	32	36	0	18	27	27	36
Total Vanadium (V)	ug/L	2	0.96	1.6	1.4	2.6	2	< 0.20	0.20	0.20	< 0.20	2	< 0.20	0.28	0.25	0.43	2	< 0.20	0.21	0.21	0.23	2	0.20	0.22	0.20	0.27
Total Zinc (Zn)	ug/L	1	6.5	21	21	35	1	58	98	97	140	1	0.20	1.0	1.1	1.7	1	10	23	23	36	1	0.37	3.7	3.3	8.0
Total Zirconium (Zr)	ug/L	4	0.30	0.41	0.38	0.59	4	0.38	0.53	0.51	0.72	4	0.15	0.16	0.16	0.17	4	0.13	0.64	0.76	0.91	4	0.27	0.35	0.35	0.41
Dissolved Metals					•	•			•	•	•			•	•	•		•	•		•					
Dissolved Aluminum (Al)	ug/L	0	6.8	17	15	29	0	< 0.50	6.1	4.8	14	0	3.6	7.7	6.2	15	0	1.9	4.5	4.5	6.9	0	19	27	25	38
Dissolved Antimony (Sb)	ug/L	0	0.57	0.82	0.77	1.2	0	0.35	0.54	0.51	0.81	0	0.14	0.22	0.15	0.44	0	0.076	0.18	0.13	0.38	0	0.14	0.17	0.17	0.20
Dissolved Arsenic (As)	ug/L	0	120	140	140	160	0	22	29	26	42	0	0.92	1.0	1.0	1.1	0	0.50	1.8	2.2	2.5	0	0.43	0.48	0.46	0.55
Dissolved Barium (Ba)	ug/L	0	77	81	81	84	0	9.2	10	11	11	0	72	84	86	92	0	23	28	25	40	0	25	30	30	38
Dissolved Beryllium (Be)	ug/L	5	< 0.010	0.033	0.010	< 0.10	5	< 0.010	0.026	0.028	0.038	5	< 0.010	0.010	0.010	< 0.010	5	< 0.010	0.012	0.010	0.019	5	< 0.010	0.011	0.011	0.013
Dissolved Bismuth (Bi)	ug/L	5	< 0.0050	0.25	0.0050	<1.0	5	< 0.0050	0.0066	0.0050	0.011	5	< 0.0050	0.0050	0.0050	< 0.0050	5	< 0.0050	0.0050	0.0050	< 0.0050	5	< 0.0050	0.0050	0.0050	< 0.0050
Dissolved Boron (B)	ug/L	5	11	25	19	<50	5	<10	11	10	12	5	<10	10	10	<10	5	<10	10	10	<10	5	<10	10	10	<10
Dissolved Cadmium (Cd)	ug/L	4	< 0.0050	0.024	0.024	0.042	4	0.014	0.042	0.047	0.061	4	< 0.0050	0.037	0.0080	0.13	4	0.011	0.029	0.031	0.042	4	0.010	0.015	0.011	0.026
Dissolved Calcium (Ca)	mg/L	0	43	45	46	47	0	230	250	250	270	0	100	120	120	140	0	130	130	130	140	0	26	33	34	41
Dissolved Chromium (Cr)	ug/L	0	0.17	0.49	0.39	<1.0	0	< 0.10	0.31	0.10	0.94	0	< 0.10	0.16	0.17	0.20	0	< 0.10	0.58	0.14	1.9	0	0.16	0.21	0.19	0.28
Dissolved Cobalt (Co)	ug/L	0	0.96	1.1	1.2	1.3	0	0.66	0.76	0.75	0.89	0	0.039	0.10	0.079	0.21	0	0.068	0.12	0.12	0.18	0	0.050	0.064	0.061	0.086
Dissolved Copper (Cu)	ug/L	2	0.12	0.98	0.66	2.5	2	0.098	0.26	0.27	0.41	2	0.95	1.2	1.3	1.3	2	0.20	0.70	0.47	1.7	2	1.4	1.7	1.7	2.0
Dissolved Iron (Fe)	ug/L	2	69	870	910	1600	2	2.6	150	14	560	2	4.9	7.5	7.1	11	2	3.9	98	14	360	2	9.3	16	16	21
Dissolved Lead (Pb)	ug/L	3	0.010	0.079	0.054	< 0.20	3	< 0.0050	0.065	0.014	0.23	3	< 0.0050	0.0095	0.0060	0.021	3	0.0052	0.087	0.014	0.31	3	0.0050	0.015	0.015	0.026
Dissolved Lithium (Li)	ug/L	0	33	34	34	36	0	23	25	26	26	0	3.7	4.1	4.2	4.4	0	3.6	4.2	4.3	4.5	0	< 0.50	0.93	0.95	1.3
Dissolved Magnesium (Mg)	mg/L	0	6.3	7.2	7.2	8.4	0	190	190	190	200	0	32	38	38	43	0	33	35	35	38	0	7.7	9.9	9.8	12
Dissolved Manganese (Mn)	ug/L	0	410	820	810	1300	0	360	370	370	380	0	1.0	16	17	29	0	36	87	100	110	0	55	110	85	230
Dissolved Mercury (Hg)	ug/L	1	< 0.0020	0.0042	0.0025	< 0.010	1	< 0.0020	0.0020	0.0020	< 0.0020	1	< 0.0020	0.0022	0.0020	0.0028	1	< 0.0020	0.0020	0.0020	< 0.0020	1	< 0.0020	0.0024	0.0023	0.0028
Dissolved Molybdenum (Mo)	ug/L	0	8.3	18	18	29	0	0.84	0.96	0.97	1.0	0	0.35	0.38	0.37	0.44	0	0.53	0.84	0.77	1.3	0	0.45	0.47	0.47	0.50
Dissolved Nickel (Ni)	ug/L	1	2.9	5.3	5.5	7.2	1	1.8	2.2	2.3	2.4	1	0.65	0.83	0.70	1.3	1	0.89	1.5	1.4	2.2	1	1.0	1.1	1.1	1.4
Dissolved Phosphorus (P)	ug/L	1	110	140	160	160	1	<2.0	24	13	68	1	4.1	25	22	51	1	5.0	17	16	31	1	5.5	34	27	79
Dissolved Potassium (K)	mg/L	0	10	12	12	14	0	5.2	5.4	5.4	5.5	0	5.4	6.7	7.0	7.5	0	8.0	9.2	9.0	11	0	1.5	1.7	1.7	1.9
Dissolved Selenium (Se)	ug/L	0	0.16	0.33	0.37	0.42	0	0.075	0.10	0.10	0.13	0	0.16	0.41	0.18	1.1	0	0.10	0.19	0.15	0.37	0	0.041	0.048	0.048	0.055
Dissolved Silicon (Si)	ug/L	0	10000	12000	12000	14000	0	7800	8000	7900	8300	0	5000	5500	5500	5900	0	5100	5400	5300	5900	0	4800	5100	5200	5300
Dissolved Silver (Ag)	ug/L	3	< 0.0050	0.0092	0.0059	< 0.020	3	< 0.0050	0.0053	0.0050	0.0060	3	< 0.0050	0.0050	0.0050	< 0.0050	3	< 0.0050	0.0050	0.0050	< 0.0050	3	< 0.0050	0.0050	0.0050	< 0.0050
Dissolved Sodium (Na)	mg/L	0	62	87	84	120	0	26	27	27	28	0	4.7	5.4	5.4	6.1	0	6.1	8.4	9.0	9.5	0	3.1	3.6	3.6	4.2
Dissolved Strontium (Sr)	ug/L	0	600	670	680	720	0	2700	2800	2700	3000	0	940	1100	1100	1200	0	930	950	950	960	0	200	250	260	300
Dissolved Sulphur (S)	mg/L	0	32	46	46	59	0	290	300	290	310	0	58	67	64	82	0	76	80	80	82	0	7.6	12	12	18
Dissolved Thallium (Tl)	ug/L	0	< 0.0020	0.028	0.029	< 0.050	0	0.020	0.030	0.032	0.038	0	0.0040	0.0053	0.0052	0.0070	0	0.0057	0.0100	0.0096	0.015	0	0.0020	0.0028	0.0023	0.0045
Dissolved Tin (Sn)	ug/L	5	0.30	1.5	0.37	<5.0	5	< 0.20	0.20	0.20	< 0.20	5	< 0.20	0.20	0.20	< 0.20	5	< 0.20	0.33	0.20	0.73	5	< 0.20	0.20	0.20	< 0.20
Dissolved Titanium (Ti)	ug/L	4	< 0.50	1.7	0.69	<5.0	4	< 0.50	0.52	0.50	0.58	4	< 0.50	0.51	0.50	0.55	4	< 0.50	0.60	0.50	0.91	4	< 0.50	0.52	0.52	0.56
Dissolved Uranium (U)	ug/L	0	9.4	14	16	16	0	530	550	540	590	0	24	25	24	26	0	28	33	33	37	0	17	26	26	35
Dissolved Vanadium (V)	ug/L	3	0.85	2.1	1.2	<5.0	3	< 0.20	0.22	0.20	0.28	3	< 0.20	0.29	0.28	0.39	3	< 0.20	0.23	0.20	0.31	3	< 0.20	0.24	0.24	0.27
Dissolved Zinc (Zn)	ug/L	0	0.89	5.8	2.9	17	0	54	130	150	180	0	0.55	2.9	1.2	8.6	0	10	27	27	45	0	0.41	3.8	3.5	7.6
Dissolved Zirconium (Zr)	ug/L	4	0.25	0.35	0.33	< 0.50	4	0.41	0.53	0.51	0.69	4	0.13	0.18	0.19	0.20	4	0.13	0.54	0.63	0.76	4	0.31	0.35	0.33	0.44

 Dissolved Zirconulin (Zt)
 -e

 Notes:
 Analytical results reported as <DL were set = DL for the calculation of mean and median values.</td>

 The sample collected at MW14-03A on Oct. 12, 2014 has been excluded from statistical calculations.

 The sample collected at MW14-03B on Oct. 6, 2014 has been excluded from statistical calculations.

 The sample collected at MW14-03B on Oct. 3, 2014 has been excluded from statistical calculations.

 The sample collected at MW14-05B on Oct. 3, 2014 has been excluded from statistical calculations.

 The sample collected at MW14-05B on Oct. 3, 2014 has been excluded from statistical calculations.

 The sample collected at MW14-05B have been excluded from statistical calculations.

 The sample collected at MW15-06WB on Jun. 21, 2015 has been excluded from statistical calculations.

 DOC and TOC results for all samples collected at W814-05B have been excluded from statistical calculations.

Station		1		MW15-03V	WB		1		MW15-04V	WB			MW15-054	AZ				MW15-05V	VB				MW15-06V	VB	
Lithology				Gniess					Gniess									Granite					Gniess		
Number of Samples				4					5				1					4					3		
Statistic		<dl< th=""><th>Min</th><th>Mean</th><th>Median</th><th>Max</th><th><dl< th=""><th>Min</th><th>Mean</th><th>Median</th><th>Max <dl< th=""><th>Min</th><th>Mean</th><th>Median</th><th>Max</th><th><dl< th=""><th>Min</th><th>Mean</th><th>Median</th><th>Max</th><th><dl< th=""><th>Min</th><th>Mean</th><th>Median</th><th>Max</th></dl<></th></dl<></th></dl<></th></dl<></th></dl<>	Min	Mean	Median	Max	<dl< th=""><th>Min</th><th>Mean</th><th>Median</th><th>Max <dl< th=""><th>Min</th><th>Mean</th><th>Median</th><th>Max</th><th><dl< th=""><th>Min</th><th>Mean</th><th>Median</th><th>Max</th><th><dl< th=""><th>Min</th><th>Mean</th><th>Median</th><th>Max</th></dl<></th></dl<></th></dl<></th></dl<>	Min	Mean	Median	Max <dl< th=""><th>Min</th><th>Mean</th><th>Median</th><th>Max</th><th><dl< th=""><th>Min</th><th>Mean</th><th>Median</th><th>Max</th><th><dl< th=""><th>Min</th><th>Mean</th><th>Median</th><th>Max</th></dl<></th></dl<></th></dl<>	Min	Mean	Median	Max	<dl< th=""><th>Min</th><th>Mean</th><th>Median</th><th>Max</th><th><dl< th=""><th>Min</th><th>Mean</th><th>Median</th><th>Max</th></dl<></th></dl<>	Min	Mean	Median	Max	<dl< th=""><th>Min</th><th>Mean</th><th>Median</th><th>Max</th></dl<>	Min	Mean	Median	Max
Field Parameters	-			1		1			-		. .	-		-										•	
pH (field)	pH	0	7.4	7.5	7.5	7.7	0	6.3	7.3	7.3	8.3 0	5.8	5.8	5.8	5.8	0	6.6	7.3	7.5	7.6	0	7.7	7.8	7.7	8.0
Specific Conductance (field)	uS/cm	0	1900	1900	1900	2000	0	650	670 9.1	670	690 0 13 0	28	28	28	28	0	290 10.0	300	300	310	0	600 6.1	630 7.3	610 6.7	670
DO (field) ORP (field)	mg/L ORP mV	0	6.1 -27	8.0	8.7	9.3 16	0	4.8 73	9.1	9.5 130	13 0 190 0	98	98	98	98	0	0.20	12 77	12 57	13 190	0	-50	-28	-26	9.2 -8.7
Temperature (field)	°C	0	4.2	5.3	4.7	7.6	0	3.2	5.4	5.8	7.4 0	1.1	1.1	1.1	1.1	0	4.0	5.5	5.0	8.0	0	4.6	5.7	4.9	7.7
Physical Properties				515		7.0	Ŭ	012	511	5.0							110	515	510	0.0		110	517		
Conductivity (lab)	uS/cm	0	1800	1900	1900	1900	0	640	660	660	670 0	28	28	28	28	0	290	290	290	300	0	610	640	640	660
pH (lab)	pH	0	8.0	8.0	8.0	8.0	0	8.1	8.1	8.1	8.3 0	6.8	6.8	6.8	6.8	0	8.0	8.0	8.0	8.2	0	8.0	8.0	8.0	8.2
Total Hardness (CaCO3)	mg/L	0	920	950	930	1000	0	330	330	330	350 0	10.0	10.0	10.0	10.0	0	130	140	130	140	0	290	320	330	340
Dissolved Hardness (CaCO3)	mg/L	0	910	950	940	1000	0	330	340	340	360 0	10	10	10	10	0	130	140	140	150	0	300	330	320	370
Total Suspended Solids	mg/L	0	1.7	2.5	2.4	3.6	5	<1.0	1.0	1.0	<1.0 0	1.5	1.5	1.5	1.5	4	<1.0	1.0	1.0	<1.0	0	2.3	3.5	3.7	4.6
Total Dissolved Solids Turbidity	mg/L NTU	0	1400 3.8	1500 4.4	1500 4.5	1700 4.9	0	400 <0.10	430 0.16	440 0.14	450 0 0.24 0	22	22	22	22	0	160 <0.10	180 0.39	180 0.22	190 1.0	0	330 3.2	380 4.4	380 3.2	420 7.0
Inorganics	NIU	0	5.8	4.4	4.5	4.7	1	<0.10	0.10	0.14	0.24 0	11				1 1	<0.10	0.39	0.22	1.0		3.2	4.4	3.2	7.0
Alkalinity (Total as CaCO3)	mg/L	0	150	150	150	150	0	230	230	230	230 0	9.1	9.1	9.1	9.1	0	140	140	140	150	0	220	240	240	260
Alkalinity (PP as CaCO3)	mg/L	4	< 0.50	0.50	0.50	< 0.50	4	< 0.50	0.50	0.50	<0.50 4	< 0.50	0.50	0.50	< 0.50	4	< 0.50	0.50	0.50	< 0.50	4	< 0.50	0.50	0.50	< 0.50
Bicarbonate (HCO3)	mg/L	0	180	180	180	190	0	280	280	280	290 0	11	11	11	11	0	170	170	170	180	0	270	290	290	320
Carbonate (CO3)	mg/L	4	<0.50	0.50	0.50	<0.50	4	< 0.50	0.50	0.50	<0.50 4	< 0.50	0.50	0.50	< 0.50	4	< 0.50	0.50	0.50	<0.50	4	< 0.50	0.50	0.50	< 0.50
Hydroxide (OH)	mg/L	4	< 0.50	0.50	0.50	< 0.50	4	< 0.50	0.50	0.50	<0.50 4	< 0.50	0.50	0.50	< 0.50	4	< 0.50	0.50	0.50	< 0.50	4	< 0.50	0.50	0.50	< 0.50
Bromide (Br)	mg/L	-	-	-	-	-	-	-	-	-		-	-	-	-	-	-	-	-	-	-	-	-	-	-
Fluoride (F) Dissolved Chloride (Cl)	mg/L mg/L	0	0.13	0.14 9.0	0.14 9.0	0.15 9.1	0	0.096 <0.50	0.11 0.64	0.11 0.67	0.11 0 0.84 3	0.036	0.036	0.036	0.036	0	0.26 <0.50	0.29 0.60	0.29	0.30	0	0.073	0.088	0.082	0.11 2.1
Organic / Inorganic Carbon	nig/L	3	0./	9.0	9.0	9.1	1 3	<0.00	0.04	0.07	0.04 3	0.32	0.32	0.32	0.32	3	<0.50	0.00	0.37	0.75	3	1.3	1.8	1./	2.1
Dissolved Organic Carbon (C)	mg/L	-	-	-	-	-	-	-	- I	-	- 1	13	13	13	13	- 1	-	-	-	-	- [-		-	-
Total Organic Carbon (C)	mg/L	-	-	-	-	-	-	-	-	-	- 1	13	13	13	13	-	-	-	-	-	-	-	-	-	-
Anions and Nutrients			•		•		• •			•	• •	•	•	•	•			•	•					•	• • • •
Total Phosphorus (P)	mg/L	0	< 0.0050	0.033	0.019	0.090	0	< 0.0050	0.025	0.0050	0.11 0	0.025	0.025	0.025	0.025	0	0.012	0.057	0.070	0.076	0	0.025	0.036	0.032	0.052
Dissolved Phosphorus (P)	mg/L	0	0.0032	0.021	0.020	0.039	0	0.0043	0.024	0.0069	0.095 0	0.013	0.013	0.013	0.013	0	0.013	0.023	0.022	0.036	0	0.027	0.035	0.031	0.046
Total Ammonia (N)	mg/L	1	0.0093	0.25	0.026	0.92	1	0.015	0.019	0.019	0.022 1	0.61	0.61	0.61	0.61	1	< 0.0050	0.042	0.011	0.14	1	0.047	0.13	0.098	0.23
Total Total Kjeldahl Nitrogen (Calc)	mg/L	3	0.036	0.16	0.073	0.45	3	0.044	0.11	0.088	<0.20 3	0.77	0.77	0.77	0.77	3	0.027	0.13	0.084	0.32	3	0.60	1.4	1.3	2.4
Nitrate plus Nitrite (N)	mg/L	0	<0.0020	0.0037	0.0025	0.0076	0	0.081 0.070	0.16 0.15	0.16	0.24 0	0.012	0.012	0.012	0.012	0	<0.0020 <0.0020	0.0021	0.0020	0.0022	0	<0.0020 <0.0020	0.0023	0.0020	0.0028 <0.0020
Nitrate (N) Nitrite (N)	mg/L mg/L	5	<0.0020 <0.0020	0.0037	0.0023	0.0076	5	0.0065	0.15	0.14 0.011	0.23 0 0.017 5	0.0020	0.0020	0.0020	0.0020	5	<0.0020	0.0023	0.0020	0.0031 <0.0020	0	<0.0020	0.0020	0.0020 0.0024	<0.0020
Total Nitrogen (N)	mg/L mg/L	0	0.044	0.16	0.074	0.45	0	0.18	0.23	0.23	0.30 0	0.78	0.0020	0.78	0.78	0	0.082	0.18	0.16	0.32	0	0.60	1.4	1.3	2.4
Dissolved Nitrogen (N)	mg/L	0	0.23	0.23	0.23	0.23	-	-	-	-		-	-	-	-	-	-	-	-	-	-	-	-	-	-
Dissolved Sulphate (SO4)	mg/L	0	870	930	940	950	0	120	130	130	130 0	< 0.50	0.50	0.50	< 0.50	0	12	13	12	14	0	100	110	110	120
Sulphide	mg/L	1	< 0.0050	0.0070	0.0051	0.013	1	< 0.0050	0.0069	0.0072	0.0088 1	< 0.0050	0.0050	0.0050	< 0.0050	1	< 0.0050	0.0067	0.0064	0.0091	1	0.0069	0.011	0.011	0.013
Total Metals				T	1	1	-		r		1 1	1	-	-					1						
Total Aluminum (Al)	ug/L	0	6.9	25	20	55	0	5.8	11	7.8	24 0	200	200	200	200	0	1.4	10	4.8	30	0	59	160	150	280
Total Antimony (Sb)	ug/L	0	0.046	0.068	0.068	0.091	0	2.7	2.9	2.9	3.4 0 1.7 0	0.088	0.088	0.088	0.088	0	0.19	0.28	0.28	0.37	0	0.67	1.9	2.3	2.6
Total Arsenic (As) Total Barium (Ba)	ug/L ug/L	0	10	0.58	13	0.72	0	1.2	36	1.4	1.7 0 38 0	19	19	19	19	0	1.0	1.1 3.0	2.8	1.3 5.4	0	13 39	45	21 42	23 53
Total Beryllium (Be)	ug/L	4	0.010	0.012	0.011	0.017	4	< 0.010	0.010	0.010	0.012 4	0.030	0.030	0.030	0.030	4	<0.010	0.010	0.010	<0.010	4	<0.010	0.010	0.010	<0.010
Total Bismuth (Bi)	ug/L	4	< 0.0050	0.0050	0.0050	< 0.0050	4	< 0.0050	0.0050	0.0050	<0.0050 4	< 0.0050	0.0050	0.0050	< 0.0050	4	< 0.0050	0.0050	0.0050	< 0.0050	4	< 0.0050	0.0050	0.0050	< 0.0050
Total Boron (B)	ug/L	5	18	26	28	31	5	<10	10	10	<10 5	<10	10	10	<10	5	<10	10	10	<10	5	<10	10	10	<10
Total Cadmium (Cd)	ug/L	5	0.0096	0.019	0.020	0.026	5	0.035	0.065	0.061	0.13 5	0.022	0.022	0.022	0.022	5	< 0.0050	0.032	0.027	0.068	5	0.026	0.043	0.041	0.064
Total Calcium (Ca)	mg/L	0	150	160	160	180	0	69	72	71	76 0	2.7	2.7	2.7	2.7	0	41	43	42	44	0	65	71	73	75
Total Chromium (Cr)	ug/L	0	0.30	0.72	0.61	1.4	0	0.12	0.41	0.30	1.0 0	0.80	0.80	0.80	0.80	0	0.13	0.90	0.40	2.7	0	0.59	1.2	1.1	1.9
Total Cobalt (Co)	ug/L	0	0.064	0.11	0.085	0.19	0	0.22	0.24	0.24	0.26 0	2.7	2.7	2.7	2.7	0	0.055	0.078	0.065	0.13	0	2.1	2.6	2.6	3.0
Total Copper (Cu) Total Iron (Fe)	ug/L ug/L	2	0.23	0.29	0.28	0.36	2	1.1	1.7	1.2	2.9 2 43 1	2.0	2.0	2.0 1400	2.0 1400	2	0.12	0.35	0.33	0.61 48	2	0.95 270	1.1 520	1.1 510	1.4 780
Total Lead (Pb)	ug/L ug/L	3	0.031	0.042	0.036	0.066	3	0.29	0.39	0.37	0.51 3	0.060	0.060	0.060	0.060	3	0.0090	0.071	0.062	48 0.15	3	0.063	0.15	0.12	0.26
Total Lithium (Li)	ug/L	0	10	12	12	12	0	6.0	6.9	7.0	7.3 0	< 0.50	0.50	0.50	< 0.50	0	12	12	12	13	0	11	11	11	12
Total Magnesium (Mg)	mg/L	0	130	130	130	140	0	36	37	37	39 0	0.77	0.77	0.77	0.77	0	7.0	7.0	7.0	7.1	0	31	34	35	36
Total Manganese (Mn)	ug/L	0	76	79	76	90	0	110	110	120	120 0	620	620	620	620	0	4.5	8.2	6.8	15	0	2300	3700	3400	5400
Total Mercury (Hg)	ug/L	1	< 0.0020	0.0020	0.0020	< 0.0020	1	< 0.0020	0.0020	0.0020	<0.0020 1	0.0057	0.0057	0.0057	0.0057	1	< 0.0020	0.0020	0.0020	< 0.0020	1	0.091	0.16	0.094	0.28
Total Molybdenum (Mo)	ug/L	0	0.82	0.89	0.88	0.96	0	2.4	2.6	2.6	2.7 0	0.28	0.28	0.28	0.28	0	0.56	0.72	0.66	0.97	0	35	53	43	80
Total Nickel (Ni)	ug/L	1	1.2	1.9	1.6	3.0	1	0.69	1.0	0.93	1.6 1	1.3	1.3	1.3	1.3	1	0.24	0.80	0.35	2.3	1	2.7	3.4	3.3	4.2
Total Phosphorus (P)	ug/L	1	13	45	43	83	1	17	51	40	120 1	21	21	21	21	1	18	49	44	92	1	47	67	54	100
Total Potassium (K) Total Selenium (Se)	mg/L ug/L	0	8.1 <0.040	8.5 0.083	8.4 0.091	9.0 0.11	0	4.0 0.060	4.4	4.3 0.40	4.9 0 0.48 0	0.12	0.12 0.052	0.12 0.052	0.12 0.052	0	0.69 <0.040	1.1 0.24	1.1 0.24	1.7 0.44	0	6.4 0.15	6.7 0.35	6.5 0.41	7.2 0.48
Total Silicon (Si)	ug/L ug/L	0	<0.040 7000	7800	7800	8600	0	5400	5600	5600	5900 0	6000	6000	6000	6000	0	<0.040	9200	9200	9700	0	5600	6400	6500	7000
Total Silver (Ag)	ug/L ug/L	3	< 0.0050	0.0056	0.0050	0.0074	3	<0.0050	0.0055	0.0050	0.0076 3	0.0050	0.0050	0.0050	0.0050	3	<0.0050	0.0057	0.0050	0.0078	3	0.036	0.054	0.052	0.075
Total Sodium (Na)	mg/L	0	71	73	73	77	0	5.9	6.1	6.0	6.4 0	1.2	1.2	1.2	1.2	0	8.9	9.1	9.1	9.4	0	8.4	9.7	9.7	11
Total Strontium (Sr)	ug/L	0	8000	8900	9100	9300	0	760	790	790	850 0	16	16	16	16	0	140	140	140	150	0	410	430	440	440
Total Sulphur (S)	mg/L	0	310	330	330	340	0	38	41	41	43 0	<3.0	3.0	3.0	<3.0	0	3.8	4.0	4.0	4.2	0	31	32	33	34
Total Thallium (Tl)	ug/L	0	0.0060	0.0093	0.0071	0.017	0	0.0093	0.010	0.011	0.012 0	0.0080	0.0080	0.0080	0.0080	0	< 0.0020	0.0035	0.0026	0.0070	0	0.024	0.037	0.033	0.053
Total Tin (Sn)	ug/L	5	<0.20	0.20	0.20	< 0.20	5	< 0.20	0.20	0.20	<0.20 5	< 0.20	0.20	0.20	<0.20	5	< 0.20	0.20	0.20	<0.20	5	<0.20	0.20	0.20	< 0.20

Station				MW15-03V	VB				MW15-04V	WB		1		MW15-05	AZ		1		MW15-05V	VB				MW15-06V	VB	
Lithology				Gniess					Gniess			1		-			1		Granite			1		Gniess		
Number of Samples				4					5					1					4					3		
Statistic		<dl< th=""><th>Min</th><th>Mean</th><th>Median</th><th>Max</th><th><dl< th=""><th>Min</th><th>Mean</th><th>Median</th><th>Max</th><th><dl< th=""><th>Min</th><th>Mean</th><th>Median</th><th>Max</th><th><dl< th=""><th>Min</th><th>Mean</th><th>Median</th><th>Max</th><th><dl< th=""><th>Min</th><th>Mean</th><th>Median</th><th>Max</th></dl<></th></dl<></th></dl<></th></dl<></th></dl<>	Min	Mean	Median	Max	<dl< th=""><th>Min</th><th>Mean</th><th>Median</th><th>Max</th><th><dl< th=""><th>Min</th><th>Mean</th><th>Median</th><th>Max</th><th><dl< th=""><th>Min</th><th>Mean</th><th>Median</th><th>Max</th><th><dl< th=""><th>Min</th><th>Mean</th><th>Median</th><th>Max</th></dl<></th></dl<></th></dl<></th></dl<>	Min	Mean	Median	Max	<dl< th=""><th>Min</th><th>Mean</th><th>Median</th><th>Max</th><th><dl< th=""><th>Min</th><th>Mean</th><th>Median</th><th>Max</th><th><dl< th=""><th>Min</th><th>Mean</th><th>Median</th><th>Max</th></dl<></th></dl<></th></dl<>	Min	Mean	Median	Max	<dl< th=""><th>Min</th><th>Mean</th><th>Median</th><th>Max</th><th><dl< th=""><th>Min</th><th>Mean</th><th>Median</th><th>Max</th></dl<></th></dl<>	Min	Mean	Median	Max	<dl< th=""><th>Min</th><th>Mean</th><th>Median</th><th>Max</th></dl<>	Min	Mean	Median	Max
Total Titanium (Ti)	ug/L	3	< 0.50	0.72	0.68	1.0	3	< 0.50	0.56	0.50	0.82	3	2.9	2.9	2.9	2.9	3	< 0.50	0.69	0.50	1.2	3	3.2	9.0	7.8	16
Total Uranium (U)	ug/L	0	7.4	8.1	8.3	8.6	0	160	170	170	190	0	0.81	0.81	0.81	0.81	0	70	73	72	77	0	95	98	97	100
Total Vanadium (V)	ug/L	2	< 0.20	0.20	0.20	< 0.20	2	0.21	0.27	0.29	0.33	2	3.0	3.0	3.0	3.0	2	< 0.20	0.20	0.20	0.21	2	< 0.20	0.40	0.49	0.50
Total Zinc (Zn)	ug/L	1	17	35	37	51	1	3.3	42	23	120	1	0.99	0.99	0.99	0.99	1	13	50	43	100	1	85	290	170	600
Total Zirconium (Zr)	ug/L	4	0.10	0.10	0.10	0.11	4	0.24	0.25	0.24	0.27	4	1.2	1.2	1.2	1.2	4	< 0.10	0.10	0.10	< 0.10	4	0.62	0.69	0.65	0.81
Dissolved Metals			•	•	•	•																	•		•	
Dissolved Aluminum (Al)	ug/L	0	3.5	13	5.7	36	0	3.2	17	11	44	0	190	190	190	190	0	1.7	3.3	3.6	4.5	0	7.2	28	8.4	68
Dissolved Antimony (Sb)	ug/L	0	0.042	0.074	0.077	0.099	0	2.6	2.9	3.0	3.1	0	0.084	0.084	0.084	0.084	0	0.22	0.34	0.33	< 0.50	0	0.76	2.0	2.5	2.8
Dissolved Arsenic (As)	ug/L	0	0.27	0.41	0.44	0.49	0	1.3	1.4	1.3	1.5	0	2.3	2.3	2.3	2.3	0	0.88	1.1	1.1	1.3	0	10	19	20	26
Dissolved Barium (Ba)	ug/L	0	10	14	13	18	0	32	33	33	34	0	19	19	19	19	0	2.0	2.6	2.3	4.0	0	39	46	42	56
Dissolved Beryllium (Be)	ug/L	5	< 0.010	0.010	0.010	< 0.010	5	< 0.010	0.046	0.010	< 0.10	5	0.026	0.026	0.026	0.026	5	< 0.010	0.033	0.010	< 0.10	5	< 0.010	0.010	0.010	< 0.010
Dissolved Bismuth (Bi)	ug/L	5	< 0.0050	0.0075	0.0050	0.015	5	< 0.0050	0.40	0.0050	<1.0	5	0.0050	0.0050	0.0050	0.0050	5	< 0.0050	0.25	0.0050	<1.0	5	< 0.0050	0.0050	0.0050	< 0.0050
Dissolved Boron (B)	ug/L	5	29	36	36	42	5	<10	26	10	<50	5	<10	10	10	<10	5	<10	20	10	<50	5	<10	10	10	<10
Dissolved Cadmium (Cd)	ug/L	4	< 0.0050	0.019	0.012	0.048	4	0.037	0.062	0.049	0.100	4	0.022	0.022	0.022	0.022	4	0.016	0.022	0.021	0.029	4	0.013	0.024	0.022	0.037
Dissolved Calcium (Ca)	mg/L	0	160	160	160	170	0	70	74	73	79	0	2.9	2.9	2.9	2.9	0	42	45	45	47	0	66	73	72	83
Dissolved Chromium (Cr)	ug/L	0	< 0.10	0.13	0.10	0.22	0	< 0.10	0.51	0.37	<1.0	0	0.70	0.70	0.70	0.70	0	< 0.10	0.40	0.26	<1.0	0	< 0.10	0.29	0.10	0.66
Dissolved Cobalt (Co)	ug/L	0	0.055	0.083	0.076	0.12	0	0.20	0.33	0.23	< 0.50	0	2.5	2.5	2.5	2.5	0	0.037	0.16	0.057	< 0.50	0	2.1	2.6	2.5	3.2
Dissolved Copper (Cu)	ug/L	2	0.074	0.14	0.12	0.24	2	0.96	1.4	1.2	2.3	2	1.9	1.9	1.9	1.9	2	0.083	0.22	0.22	0.36	2	0.19	0.68	0.63	1.2
Dissolved Iron (Fe)	ug/L	2	5.6	150	8.5	570	2	5.4	8.8	6.7	13	2	930	930	930	930	2	2.3	5.3	3.9	11	2	57	330	74	850
Dissolved Lead (Pb)	ug/L	3	< 0.0050	0.0088	0.0050	0.020	3	0.15	0.27	0.31	0.37	3	0.033	0.033	0.033	0.033	3	0.010	0.067	0.029	< 0.20	3	0.017	0.046	0.023	0.098
Dissolved Lithium (Li)	ug/L	0	10	11	12	13	0	6.7	7.0	7.0	7.4	0	0.69	0.69	0.69	0.69	0	12	13	13	14	0	8.4	10	11	12
Dissolved Magnesium (Mg)	mg/L	0	130	130	130	140	0	37	37	37	38	0	0.75	0.75	0.75	0.75	0	7.0	7.5	7.5	8.0	0	33	35	33	40
Dissolved Manganese (Mn)	ug/L	0	74	79	79	84	0	110	110	120	120	0	620	620	620	620	0	4.6	7.6	6.2	13	0	2400	3900	3400	5800
Dissolved Mercury (Hg)	ug/L	1	< 0.0020	0.0020	0.0020	< 0.0020	1	< 0.0020	0.0052	0.0020	< 0.010	1	0.0054	0.0054	0.0054	0.0054	1	< 0.0020	0.0040	0.0020	< 0.010	1	0.022	0.057	0.054	0.095
Dissolved Molybdenum (Mo)	ug/L	0	0.85	0.96	0.98	1.0	0	2.3	2.5	2.6	2.6	0	0.25	0.25	0.25	0.25	0	0.64	1.0	0.85	1.9	0	38	57	46	87
Dissolved Nickel (Ni)	ug/L	1	1.1	1.6	1.6	2.0	1	0.80	1.00	0.99	1.2	1	1.2	1.2	1.2	1.2	1	0.22	0.54	0.48	<1.0	1	2.7	3.1	3.1	3.4
Dissolved Phosphorus (P)	ug/L	1	9.6	22	12	53	1	22	49	24	100	1	13	13	13	13	1	42	51	44	67	1	7.1	26	25	46
Dissolved Potassium (K)	mg/L	0	8.0	8.6	8.7	9.0	0	4.1	4.3	4.4	4.5	0	0.12	0.12	0.12	0.12	0	0.96	1.3	1.2	1.8	0	6.3	7.0	7.2	7.6
Dissolved Selenium (Se)	ug/L	0	< 0.040	0.15	0.065	0.43	0	0.13	0.23	0.25	0.34	0	0.069	0.069	0.069	0.069	0	0.10	0.18	0.13	0.37	0	0.17	0.34	0.35	0.50
Dissolved Silicon (Si)	ug/L	0	7000	8400	8100	10000	0	5600	6000	5900	6400	0	6000	6000	6000	6000	0	8700	9400	9400	10000	0	6000	6200	6100	6500
Dissolved Silver (Ag)	ug/L	3	< 0.0050	0.0060	0.0060	0.0069	3	< 0.0050	0.011	0.0050	< 0.020	3	< 0.0050	0.0050	0.0050	< 0.0050	3	< 0.0050	0.0088	0.0050	< 0.020	3	< 0.0050	0.014	0.011	0.027
Dissolved Sodium (Na)	mg/L	0	68	72	72	76	0	5.9	6.1	6.1	6.6	0	1.1	1.1	1.1	1.1	0	9.1	9.6	9.6	10	0	9.1	10	9.6	12
Dissolved Strontium (Sr)	ug/L	0	8200	8900	9200	9300	0	780	780	780	800	0	15	15	15	15	0	140	140	140	150	0	420	450	430	490
Dissolved Sulphur (S)	mg/L	0	290	320	310	350	0	41	44	44	46	0	<3.0	3.0	3.0	<3.0	0	3.5	4.3	4.5	4.6	0	31	34	33	37
Dissolved Thallium (Tl)	ug/L	0	< 0.0020	0.0053	0.0062	0.0070	0	0.0068	0.025	0.011	< 0.050	0	0.0080	0.0080	0.0080	0.0080	0	< 0.0020	0.016	0.0059	< 0.050	0	0.026	0.036	0.034	0.049
Dissolved Tin (Sn)	ug/L	5	< 0.20	0.20	0.20	< 0.20	5	< 0.20	2.1	0.20	<5.0	5	< 0.20	0.20	0.20	< 0.20	5	< 0.20	1.4	0.20	<5.0	5	< 0.20	0.21	0.20	0.24
Dissolved Titanium (Ti)	ug/L	4	< 0.50	0.50	0.50	< 0.50	4	< 0.50	2.3	0.50	<5.0	4	2.0	2.0	2.0	2.0	4	< 0.50	1.6	0.50	<5.0	4	< 0.50	1.6	0.50	3.7
Dissolved Uranium (U)	ug/L	0	7.6	8.2	8.1	9.1	0	150	160	160	180	0	0.90	0.90	0.90	0.90	0	66	71	70	75	0	100	100	100	100
Dissolved Vanadium (V)	ug/L	3	< 0.20	0.20	0.20	< 0.20	3	< 0.20	2.1	0.28	<5.0	3	1.5	1.5	1.5	1.5	3	< 0.20	1.4	0.20	<5.0	3	< 0.20	0.20	0.20	< 0.20
Dissolved Zinc (Zn)	ug/L	0	4.9	50	44	110	0	9.6	34	36	58	0	1.1	1.1	1.1	1.1	0	38	60	53	97	0	21	140	160	250
Dissolved Zirconium (Zr)	ug/L	4	< 0.10	0.10	0.10	< 0.10	4	0.21	0.34	0.26	< 0.50	4	1.2	1.2	1.2	1.2	4	< 0.10	0.20	0.10	< 0.50	4	0.46	0.57	0.62	0.63

 Dissolved Zirconium (Zr)
 ug/L
 4
 <0.10</th>
 0.10
 <0.10</th>
 <0.10</

Appendix 5-C: Laboratory Certificates of Analysis (Electronic Only)

_GOLDCORP

Appendix 5-D: Groundwater Quality QAQC

_GOLDCORP

Appendix 5-D: Groundwater Quality Assurance/Quality Control

An extensive quality assurance program was implemented for the groundwater quality monitoring program. Samples were collected, preserved, stored, transported, and tested in accordance with the requirements set forth in the British Columbia Environmental Laboratory Manual (BC MOE, 2009) and the British Columbia Field Sampling Manual (BC MWLAP, 2003). Laboratory quality control included the preparation and analysis of blanks, sample duplicates, and reference samples. These processes monitor the internal testing processes at the laboratory. The test results are only reported if internal quality control criteria are met. ALS Environmental in Burnaby, British Columbia (B.C.) completed the laboratory analysis for the samples collected at the site in 2014, while Maxxam Analytics (MAXXAM) in Burnaby, B.C. completed the laboratory analysis for samples collected in 2015. Laboratory quality control data indicate good precision, accuracy and contamination control in the laboratory test procedures.

Groundwater samples exceeded recommended holding times of 0.25 days for pH, 3 days for several physical, anion and nutrient parameters (turbidity, nitrate plus nitrite, nitrate, nitrite, and unpreserved dissolved phosphorus and dissolved organic carbon (DOC)). Several samples exceeded the recommended holding time of 7 days for total dissolved solids (TDS), total suspended solids (TSS) and total sulphide. Holding times were exceeded due to the remoteness of the site and time required to deliver samples to the laboratory. This was mitigated by keeping the samples cold during storage and transit prior to analysis.

Field quality control included monitoring indicator parameters during purging/sampling (see Appendix 3-F for groundwater sampling methods) and the preparation of field and trip blanks and field replicates. The purpose of field quality control is to evaluate the potential for contamination of the samples as a result of the sampling process, including sample collection, sample containers, preservatives, shipping, and sample processing at the lab. Field blank and trip blank analytical data are presented in Table 5D-1. Field replicate analytical data are presented in Table 5D-2.

The field blank and trip blank data (Table 5D -1) indicate good overall contamination control with the majority of values below the laboratory method detection limits (MDLs). Several physical, inorganic and nutrient parameters were measured at concentrations above the MDLs: conductivity, total alkalinity, bicarbonate, dissolved phosphorus and total ammonia in field blank FB-23/06/15 (Jun. 2015), conductivity, total ammonia and

sulphide in FB-2 (Jul. 2015), conductivity and sulphide in FB-3 (Aug. 2015), conductivity, total ammonia and sulphide in FB-4 (Sept. 2015), and total ammonia, dissolved sulphate and sulphide in TRIP BLANK (Sept. 2015). These parameters (conductivity, total alkalinity, bicarbonate, dissolved phosphorus, dissolved sulphate, total ammonia and sulphide) are characterized by significant uncertainty as they were all detected within laboratory accuracy precision at concentrations $\leq 2x$ MDLs. The conductivity, total alkalinity, bicarbonate, and dissolved sulphate are not considered to impact the Project groundwater quality results which were characterized by concentrations greater than those detected in the field and trip blanks. However,

concentrations greater than those detected in the field and trip blanks. dissolved phosphorus, total ammonia and sulphide levels detected in the field/trip blanks were within the low range of observed groundwater concentrations. Dissolved phosphorus in not considered to be of concern since it was detected in one field blank (FB-23/06/15) and four groundwater samples at concentrations <2x MDL of 0.002 mg/L, representing only 7% of groundwater samples with detectable levels. In contrast, total ammonia was detected in four field/trip blanks (FB-23/06/16, FB-2, FB-4, TRIP BLANK) and 11 groundwater samples at concentrations $\leq 2x$ MDL of 0.005 mg/L (e.g., 0.010 mg/L, representing approximately 20% of groundwater samples with detectable levels. Sulphide was detected in four field/trip blanks (FB-2, FB-3, FB-4, TRIP BLANK) and 28 groundwater samples at concentrations <2x MDL of 0.005 mg/L (e.g., 0.010 mg/L, representing approximately 60% of groundwater samples with detectable levels. Sulphide and total ammonia detected in several field/trip blanks have a notable impact on groundwater quality results and the interpretation of presence or absence for both of these parameters.

Several total and dissolved metals were detected at concentrations above the MDLs in field and trip blanks FB-23/06/15, FB-2, FB-4 and TRIP BLANK. Total and dissolved aluminum and nickel, in addition to dissolved arsenic, barium, lithium and zinc were detected at concentrations above the MDLs in FB-23/06/15. Total and dissolved aluminum, manganese, phosphorus and zinc, in addition to total arsenic and vanadium and dissolved molybdenum, titanium, and uranium were measured at concentrations above the MDLs in FB-23/06/15. Total and total and dissolved molybdenum, titanium, and uranium were measured at concentrations above the MDLs in FB-4. Total copper was detected above the MDL in TRIP BLANK. The total and dissolved metal parameters detected in FB-23/06/15, FB-4 and TRIP BLANK were below Project groundwater concentrations, except total nickel in FB-23/06/15, and total vanadium and dissolved titanium in FB-4. However, dissolved nickel detected in FB-23/06/15 was below Project groundwater levels; further, vanadium and titanium levels in Project groundwater are low and neither is considered a primary or secondary parameter of concern nor known to complex with cyanide. Therefore, total and dissolved metal parameters detected in FB-23/06/15, FB-4 and TRIP BLANK are not

considered to impact the interpretation of Project groundwater quality results. Field blank FB-2 was characterized by 10 total metal and 15 dissolved metal parameters with concentrations above MDLs. Parameters which had detectable levels in FB-2 include total and dissolved aluminum, arsenic, barium, iron, manganese, nickel, phosphorus, sodium, uranium and zinc, in addition to dissolved cobalt, copper, lead, strontium, and titanium. However, in contrast to the other field and trip blanks, FB-2 was characterized by a greater number of detected metal parameters with many at elevated concentrations ranging from 1.1 to 89.5 times their respective MDLs. Additionally, the majority of these parameters were characterized by dissolved metals greater than total metals. MAXXAM subsequently conducted an investigation to determine the origin of the metals contamination in FB-2 upon request by Lorax. Re-analysis of FB-2 for total and dissolved metals from the original sample bottles (falcon tubes) confirmed the original results. Another approach was used taking a portion of the sample from another bottle (unpreserved 250 mL plastic bottle) and analyzed for total and dissolved metals. The results all came back at *ADL*. This suggests that the falcon tubes submitted for the total and dissolved metals were contaminated, however the lab cannot conclusively determine where the contamination occurred. The total and dissolved metal parameters detected in FB-2 are not considered to impact the Project groundwater quality results.

The precision of the field replicates is evaluated using relative percent difference (RPD). The following formula is used to calculate the RPD:

$$RPD = 100 * \frac{|Result 1 - Result 2|}{Average (Result 1, Result 2)}$$

RPD values were determined for all water quality parameters with detectable concentrations, including those close to the MDLs. Several field replicate pairs are characterized by one or more parameters with RPD values greater than 50% (Table 5D -2). However, RPD values calculated for replicate samples with one or both parameter concentrations within five times the MDLs are not considered to be representative of actual sample variability (or consistency) due to elevated analytical imprecision close to the MDLs. Consequently, water quality parameters characterized by RPD values exceeding 50% and at least one concentration within five times the MDLs are not included in the following discussion.

Nine replicate pairs were characterized by one to six water quality parameters with concentrations above five times the MDLs and RPD values greater than 50% (Table 5D -2); these include total phosphorus in MW15-04WB Jun. 2015, total zinc and dissolved zinc in MW15-03AZ Jun. 2015, dissolved cadmium, dissolved manganese, dissolved potassium and dissolved zinc in MW15-02AZ Jul. 2015, total organic carbon (TOC), DOC, total iron, total cadmium, total lead, and total zinc in MW15-04WB Jul.

2015, total aluminum, total copper, total lead, total phosphorus, total thallium and total zinc in MW14-03A Aug. 2015, total aluminum, total iron, total phosphorus and dissolved phosphorus in MW15-05WB Aug. 2015, and total nitrogen in MW14-02A Sept. 2015. All other parameters were characterized by RPD values less than 50% and/or concentrations below five times the MDLs. Overall, the field replicates indicate good precision and sample homogeneity.

A comparison of the analytical results for total and dissolved metals was completed as a QA/QC check and is presented in Table 5D-3. There is a 20% allowable limit for dissolved values greater than total values for sample results > 5x MDLs, based on the typical laboratory QA/QC criteria. Table 5D-3 highlights parameters where the detected concentrations are > 5x the MDL and the dissolved fraction was 20% greater than the total fraction. These parameters include aluminum (10 samples), antimony (2 samples), arsenic (2 samples), barium (2 samples), cadmium (7 samples), calcium (1 sample), chromium (2 samples), cobalt (6 samples), copper (7 samples), iron (6 samples), lead (8 samples), lithium (1 sample), magnesium (2 samples), manganese (4 samples), molybdenum (6 samples), nickel (7 samples), phosphorus (15 samples), potassium (4 samples), selenium (1 sample), silicon (3 samples), sodium (2 samples), strontium (2 samples), sulphur (2 samples), thallium (1 sample), uranium (4 samples), zinc (26 samples) and zirconium (1 sample). Typically, samples either have no parameters or only one parameter with a dissolved result elevated above the total; however, there are samples with 11 parameters (MW14-02B Jun. 2015, MW15-05WB Sept. 2015), 10 parameters (MW15-02AZ Aug. 2015), nine parameters (MW15-02AZ Jul. 2015, MW15-01WB Sept. 2015), seven parameters (MW15-03AZ Jul. 2015, MW14-03A Aug. 2015), six parameters (MW14-02A Aug. 2015), five parameters (MW14-03B Jun. 2015, duplicate at MW15-02AZ Jul. 2015, duplicate at MW14-03A Aug. 2015), four parameters (MW14-02A Jun. 2015, MW15-05WB Aug. 2015, MW15-06WB Sept. 2015), three parameters (MW14-03A Jun. 2015, MW15-03WB Jul. 2015, MW15-04WB Jul. 2015, duplicate at MW15-05WB Aug. 2015, MW15-04WB Sept. 2015), and two parameters (duplicate of MW15-03AZ Jun. 2015, MW14-02B Jul. 2015, MW15-01WB Jul. 2015, MW15-01WB Aug. 2015, MW15-02WB Aug. 2015,) in this category. MAXXAM subsequently investigated the laboratory data associated with the parameters and samples where the dissolved fraction was 20% greater than the total fraction to determine potential biases or causes. The lab investigation was inconclusive and did not determine contributing factors or causes.

Four or more groundwater samples were collected from all sampled monitoring wells, with the exception of MW15-05AZ where only one sample was collected (see Table 3-5 in the main report and Appendix 3-F). Five samples appear to have been impacted by

artifacts of drilling and well installation, specifically MW14-03A Oct. 2014, MW14-03B Oct. 2014, MW14-05A Oct. 2014, MW14-05B Oct.2014, and MW15-06WB Jun. 2015. Details are provided below.

Groundwater collected at MW14-03A in October 2014 had a distinct hydrochemical composition compared to subsequent samples collected in 2015. Groundwater collected in 2014 was mixed magnesium-calcium-sodium-potassium-sulphate type water, while the samples collected in 2015 were magnesium-sulphate and magnesium-bicarbonate type water. Groundwater sampled in October 2014 was characterized by the presence of drilling additives, based on field observations (*i.e.*, sample water was more viscous than typical and stringy/goopy in consistency). The October 2014 sample was characterized by low field specific conductance and total alkalinity, in addition to elevated field pH, TSS, total aluminum (T-Al), dissolved sodium (D-Na), DOC, TOC, total nitrogen (T-N), total phosphorus, and dissolved chloride (Cl) compared to subsequent samples. The field observations, depressed and elevated parameter concentrations, and distinct major ion chemistry relative to other MW14-03A samples suggest that the October 2014 sample was influenced by drilling and well installation. As a result, water quality data for the MW14-03A Oct. 2014 sample is not considered to be representative of formation water and is excluded from the groundwater quality baseline data set.

Groundwater collected at MW14-03B and MW14-05A in October 2014 was characterized by elevated TSS, T-Al, DOC, TOC, and T-N relative to subsequent groundwater samples. The elevated parameter concentrations relative to other MW14-03B and MW14-05A samples suggest that the October 2014 samples were influenced by drilling and well installation. For this reason, water quality data for the MW14-03B Oct. 2014 and MW14-05A Oct. 2014 samples is not considered to be representative of formation water and is excluded from the baseline groundwater quality characterization.

Groundwater collected at MW14-05B in October 2014 was characterized by elevated field pH, TSS, T-Al, and T-N relative to subsequent groundwater samples. Subsequent samples collected in 2015 suggest that groundwater chemistry had not stabilized, with decreasing field pH, TSS, T-Al and T-N, and increasing D-Na in 2015. A slight reversal in the TSS and D-Na trends was observed in September 2015. Additionally, all 2014 and 2015 groundwater samples were characterized by elevated TOC and DOC. Field observations during purging/sampling in June 2015 were indicative of drilling additive influence due to slightly turbid, greyish-brown water with effervescence and suspended sediments (which did not appear to be mineral in nature). Field observations in September 2015 indicated that the sampled groundwater remained effervescent. The field observations and elevated parameter concentrations relative to other MW14-05B samples suggest that the October 2014 sample was influenced by drilling and well

installation. Water quality data for the MW14-05B Oct. 2014 sample is therefore not considered to be representative of formation water and is excluded from the baseline groundwater quality characterization. TOC and DOC data from samples collected at MW14-05B in 2015 are not considered to be representative of formation water and have been excluded from the baseline groundwater quality characterization. Subsequent groundwater sampling will inform whether observed trends at MW14-05B are a result of residual drilling influence or natural variability.

Groundwater collected at MW15-06WB in June 2015 had a distinct hydrochemical composition relative to subsequent samples collected in 2015. Groundwater collected in June 2015 was mixed calcium-magnesium-sodium-bicarbonate type water, while that sampled subsequently was mixed calcium-magnesium-bicarbonate to calciumbicarbonate type water. Groundwater sampled in June 2015 was characterized by low field specific conductance and elevated TSS, T-Al, and Cl compared to subsequent samples. Subsequent sampling in 2015 suggests that groundwater chemistry had not stabilized, with increasing field specific conductance, total alkalinity, bicarbonate and sulfate, and decreasing TSS, Cl, T-Al and T-N. Groundwater sampled in June and initial purge water in July and August 2015 was slightly cloudy, slightly foamy, with a slight yellow colour due to suspected influence of drilling additives. Field observations during the July and August 2015 sampling events indicated a noticeable improvement after purging (minimal if any cloudiness and colour). The distinct major ion chemistry and depressed and elevated parameter concentrations relative to other MW15-06WB samples suggest that the June 2015 sample was influenced by drilling and well installation. As a result, water quality data for the MW15-06WB Jun. 2015 sample is not considered to be representative of formation water and is excluded from the baseline groundwater quality characterization. The observed trends in July, August and September samples suggest that groundwater chemistry at MW15-06WB has not stabilized. Subsequent groundwater sampling will inform whether observed trends at MW15-06WB are a result of residual drilling influence or natural variability.

Groundwater samples collected from the Westbay installations (MW15-01WB to MW15-06WB) were characterized by highly variable DOC and TOC, with concentrations ranging from 7 to 1080 mg/L. In contrast, DOC and TOC concentrations in groundwater collected from conventional wells were typically less than 10 mg/L. It is suspected that DOC and TOC in groundwater collected from Westbay installations may be influenced by propylene glycol contamination. A 3:1 mixture of water:propylene glycol was used inside the Westbay casing to prevent freezing and associated damage caused by freezing and to ensure proper functioning of the Westbay installations completed in permafrost. A small amount of glycol may be captured by the Westbay sampler probe (between the face

seal and valve) during the sample collection process. As a result, TOC and DOC data associated with Westbay installations is not considered to be representative of formation water and has been excluded from the baseline groundwater quality characterization.

Table 1: Field Blank and Trip Blank Analytical Data

Sample ID	Units	RDL (ALS)	RDL (Maxxam)	F-BLANK-1	FB-23/06/15	FB-2	FB-3	FB-4	TRIP BLANK
Analytical Lab				ALS	Maxxam	Maxxam	Maxxam	Maxxam	Maxxam
Lab Job ID	_			L1525019	B553846	B562572	B569424	B579224	B579224
Lab Sample ID	-			L1525019-3 Water Field	MN4273 Water Field	MS4334 Water Field	MW5163 Water Field	NC4791 Water Field	NC4792
Sample Type				Blank	Blank	Blank	Blank	Blank	Trip Blank
Sample Date/Time				28-Sep-2014	23-Jun-2015	18-Jul-2015	12-Aug-2015		11-Sep-2015
Filter and HNO3 Preservation					LAB	LAB	LAB	LAB	LAB
Physical Properties									
Conductivity	uS/cm	2	1	<2	1.2	1.2	1	1.1	<1
pH	pH	0.1	-	5.57	6.15	5.75	5.44	5.08	5.43
Total Hardness (CaCO3)	mg/L	0.5	0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5
Dissolved Hardness (CaCO3) Total Suspended Solids	mg/L mg/L	- 3	0.5	<3	<0.5 <1	<0.5 <1	<0.5 <1	<0.5 <1	<0.5 <1
Total Dissolved Solids	mg/L mg/L	20	10	<20	<10	<10	<10	<10	<10
Turbidity	NTU	0.1	0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1
Inorganics	mg/L	-	-						
Alkalinity (Total as CaCO3)	mg/L	1	0.5	<1	0.71	< 0.5	< 0.5	< 0.5	<0.5
Alkalinity (PP as CaCO3)	mg/L	-	0.5		<0.5	< 0.5	< 0.5	< 0.5	<0.5
Bicarbonate (HCO3)	mg/L	-	0.5		0.87	< 0.5	< 0.5	< 0.5	<0.5
Carbonate (CO3)	mg/L	-	0.5		<0.5	< 0.5	< 0.5	< 0.5	<0.5
Hydroxide (OH)	mg/L	-	0.5		< 0.5	<0.5	<0.5	< 0.5	<0.5
Bromide (Br)	mg/L	1	-						
Fluoride (F)	mg/L	0.02	0.01	< 0.02	< 0.01	< 0.01	< 0.01	< 0.01	<0.01
Dissolved Chloride (Cl)	mg/L	0.5	0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5
Organic / Inorganic Carbon	~	-	-						
Dissolved Organic Carbon (C)	mg/L	0.5	0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5
Total Organic Carbon (C) Anions and Nutrients	mg/L mg/L	- 0.5	0.5	<0.5	<0.5	<0.5	< 0.5	<0.5	<0.5
Total Phosphorus (P)	mg/L mg/L	0.002	0.005	< 0.002	< 0.005	< 0.005	< 0.005	< 0.005	< 0.002
Dissolved Phosphorus (P)	mg/L mg/L	0.002	0.002-0.005	<0.002	0.0036	< 0.002	<0.005	<0.003	<0.002
Total Ammonia (N)	mg/L	0.025	0.005	< 0.005	0.0092	0.01	< 0.005	0.0085	0.0094
Total Total Kjeldahl Nitrogen (Calc)	mg/L	0.5	0.05	< 0.05	< 0.05	< 0.05	< 0.02	0.041	0.033
Nitrate plus Nitrite (N)	mg/L	-	0.002		< 0.002	< 0.002	< 0.002	< 0.002	< 0.002
Nitrate (N)	mg/L	0.005	0.002	< 0.005	< 0.002	< 0.002	< 0.002	< 0.002	< 0.002
Nitrite (N)	mg/L	0.001	0.002	< 0.001	< 0.002	< 0.002	< 0.002	< 0.002	< 0.002
Total Nitrogen (N)	mg/L	2	0.05	< 0.05	< 0.05	< 0.05	< 0.02	0.041	0.033
Dissolved Nitrogen (N)	mg/L)	0.5	-	<0.05	0.5	0.5	.0.5	0.5	0.70
Dissolved Sulphate (SO4)	mg/L	0.5	0.5	<0.5 <0.002	<0.5 <0.005	<0.5 0.0069	<0.5 0.0089	<0.5 0.0061	0.78 0.006
Sulphide Total Metals	mg/L	-	0.003	<0.002	<0.003	0.0009	0.0089	0.0001	0.000
Total Aluminum (Al)	ug/L	3	0.5	<3	0.55	8.12	<0.5	1.29	<0.5
Total Antimony (Sb)	ug/L ug/L	0.1	0.02	<0.1	< 0.02	<0.02	<0.02	<0.02	<0.02
Total Arsenic (As)	ug/L	0.1	0.02	<0.1	<0.02	0.024	<0.02	0.022	<0.02
Total Barium (Ba)	ug/L	0.05	0.02	< 0.05	< 0.02	0.033	< 0.02	< 0.02	< 0.02
Total Beryllium (Be)	ug/L	0.1	0.01	<0.1	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01
Total Bismuth (Bi)	ug/L	0.5	0.005	<0.5	< 0.005	< 0.005	< 0.005	< 0.005	< 0.005
Total Boron (B) Total Cadmium (Cd)	ug/L ug/L	10	10 0.005	<10 <0.01	<10 <0.005	<10 <0.005	<10 <0.005	<10 <0.005	<10 <0.005
Total Calcium (Ca)	mg/L	0.01	0.005	<0.01	< 0.005	< 0.003	<0.005	<0.005	<0.05
Total Chromium (Cr)	ug/L	0.1	0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1
Total Cobalt (Co)	ug/L	0.1	0.005	< 0.1	< 0.005	< 0.005	< 0.005	< 0.005	< 0.005
Total Copper (Cu)	ug/L	0.5	0.05	< 0.5	< 0.05	< 0.05	< 0.05	< 0.05	0.069
Total Iron (Fe)	ug/L	10	1	<10	<1	4.6	<1	<1	<1
Total Lead (Pb) Total Lithium (Li)	ug/L ug/L	0.05	0.005	<0.05 <0.5	<0.005 <0.5	<0.005 <0.5	<0.005 <0.5	<0.005 <0.5	<0.005 <0.5
Total Magnesium (Mg)	mg/L	0.3	0.05	<0.3	<0.05	<0.05	<0.05	<0.05	<0.05
Total Manganese (Mn)	ug/L	0.05	0.05	<0.05	<0.05	0.057	<0.05	0.152	<0.05
Total Mercury (Hg)	ug/L	0.5	0.002	< 0.01	< 0.002	< 0.002	< 0.002	< 0.002	< 0.002
Total Molybdenum (Mo)	ug/L	0.05	0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05
Total Nickel (Ni)	ug/L	0.5	0.02	<0.5	0.131	0.11	< 0.02	< 0.02	< 0.02
Total Phosphorus (P) Total Potassium (K)	ug/L mg/L	50 0.1	2 0.05	<50 <0.1	<2 <0.05	90.6 <0.05	<2 <0.05	4.3 <0.05	<2 <0.05
Total Selenium (Se)	ug/L	0.1	0.03	<0.1	<0.05	<0.05	<0.03	<0.03	<0.03
Total Silicon (Si)	ug/L ug/L	50	50	<50	<50	<50	<50	<50	<50
Total Silver (Ag)	ug/L	0.01	0.005	< 0.01	< 0.005	< 0.005	< 0.005	< 0.005	< 0.005
Total Sodium (Na)	mg/L	0.05	0.05	< 0.05	< 0.05	0.146	< 0.05	< 0.05	<0.05
Total Strontium (Sr)	ug/L	0.2	0.05	<0.2	<0.05	< 0.05	<0.05	<0.05	<0.05
Total Sulphur (S) Total Thallium (Tl)	mg/L	0.5	3 0.002	<0.5 <0.01	<3 <0.002	<3 <0.002	<3 <0.002	<3 <0.002	<3 <0.002
Total Tin (Sn)	ug/L ug/L	0.01	0.002	<0.01	<0.002	<0.002	<0.002	<0.002	<0.002
Total Titanium (Ti)	ug/L ug/L	10	0.2	<10	<0.2	<0.2	<0.2	<0.2	<0.2
Total Uranium (U)	ug/L	0.01	0.002	<0.01	<0.002	0.0037	<0.002	<0.002	<0.002
Total Vanadium (V)	ug/L	1	0.2	<1	< 0.2	< 0.2	< 0.2	0.23	< 0.2
Total Zinc (Zn)	ug/L	3	0.1	<3	<0.1	0.65	<0.1	0.14	<0.1
Total Zirconium (Zr)	ug/L	-	0.1		< 0.1	< 0.1	< 0.1	< 0.1	< 0.1

Table 1: Field Blank and Trip Blank Analytical Data

Sample ID	Units	RDL (ALS)	RDL (Maxxam)	F-BLANK-1	FB-23/06/15	FB-2	FB-3	FB-4	TRIP BLANK
Analytical Lab		(1120)	(internation)	ALS	Maxxam	Maxxam	Maxxam	Maxxam	Maxxam
Lab Job ID				L1525019	B553846	B562572	B569424	B579224	B579224
Lab Sample ID				L1525019-3	MN4273	MS4334	MW5163	NC4791	NC4792
Sample Type				Water Field					
Sample Type				Blank	Blank	Blank	Blank	Blank	Trip Blank
Sample Date/Time				28-Sep-2014	23-Jun-2015	18-Jul-2015	12-Aug-2015	08-Sep-2015	11-Sep-2015
Filter and HNO3 Preservation					LAB	LAB	LAB	LAB	LAB
Dissolved Metals		-	-						
Dissolved Aluminum (Al)	ug/L	1	0.5	<1	0.56	23.4	< 0.5	0.67	< 0.5
Dissolved Antimony (Sb)	ug/L	0.1	0.02	< 0.1	< 0.02	< 0.02	< 0.02	< 0.02	< 0.02
Dissolved Arsenic (As)	ug/L	0.1	0.02	< 0.1	0.047	0.024	< 0.02	< 0.02	< 0.02
Dissolved Barium (Ba)	ug/L	0.05	0.02	< 0.05	0.127	0.068	< 0.02	< 0.02	< 0.02
Dissolved Beryllium (Be)	ug/L	0.1	0.01	< 0.1	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01
Dissolved Bismuth (Bi)	ug/L	0.5	0.005	< 0.5	< 0.005	< 0.005	< 0.005	< 0.005	< 0.005
Dissolved Boron (B)	ug/L	10	10	<10	<10	<10	<10	<10	<10
Dissolved Cadmium (Cd)	ug/L	0.01	0.005	< 0.01	< 0.005	< 0.005	< 0.005	< 0.005	< 0.005
Dissolved Calcium (Ca)	mg/L	0.05	0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05
Dissolved Chromium (Cr)	ug/L	0.1	0.1	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1
Dissolved Cobalt (Co)	ug/L	0.1	0.005	< 0.1	< 0.005	0.0062	< 0.005	< 0.005	< 0.005
Dissolved Copper (Cu)	ug/L	0.2	0.05	< 0.2	< 0.05	1.85	< 0.05	< 0.05	< 0.05
Dissolved Iron (Fe)	ug/L	10	1	<10	<1	19.9	<1	<1	<1
Dissolved Lead (Pb)	ug/L	0.05	0.005	< 0.05	< 0.005	0.0069	< 0.005	< 0.005	< 0.005
Dissolved Lithium (Li)	ug/L	0.5	0.5	< 0.5	0.62	< 0.5	< 0.5	< 0.5	< 0.5
Dissolved Magnesium (Mg)	mg/L	0.1	0.05	< 0.1	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05
Dissolved Manganese (Mn)	ug/L	0.05	0.05	< 0.05	< 0.05	0.301	< 0.05	0.169	< 0.05
Dissolved Mercury (Hg)	ug/L	0.01	0.002	< 0.01	< 0.002	< 0.002	< 0.002	< 0.002	< 0.002
Dissolved Molybdenum (Mo)	ug/L	0.05	0.05	< 0.05	< 0.05	< 0.05	< 0.05	0.052	< 0.05
Dissolved Nickel (Ni)	ug/L	0.5	0.02	< 0.5	0.068	1.17	< 0.02	< 0.02	< 0.02
Dissolved Phosphorus (P)	ug/L	50	2	<50	<2	179	<2	3.2	<2
Dissolved Potassium (K)	mg/L	0.1	0.05	< 0.1	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05
Dissolved Selenium (Se)	ug/L	0.1	0.04	< 0.1	< 0.04	< 0.04	< 0.04	< 0.04	< 0.04
Dissolved Silicon (Si)	ug/L	50	50	<50	<50	<50	<50	<50	<50
Dissolved Silver (Ag)	ug/L	0.01	0.005	< 0.01	< 0.005	< 0.005	< 0.005	< 0.005	< 0.005
Dissolved Sodium (Na)	mg/L	0.05	0.05	< 0.05	< 0.05	0.382	< 0.05	< 0.05	< 0.05
Dissolved Strontium (Sr)	ug/L	0.2	0.05	< 0.2	< 0.05	0.061	< 0.05	< 0.05	< 0.05
Dissolved Sulphur (S)	mg/L	0.5	3	< 0.5	<3	<3	<3	<3	<3
Dissolved Thallium (Tl)	ug/L	0.01	0.002	< 0.01	< 0.002	< 0.002	< 0.002	< 0.002	< 0.002
Dissolved Tin (Sn)	ug/L	0.1	0.2	< 0.1	<0.2	< 0.2	< 0.2	< 0.2	< 0.2
Dissolved Titanium (Ti)	ug/L	10	0.5	<10	< 0.5	0.64	< 0.5	0.6	<0.5
Dissolved Uranium (U)	ug/L	0.01	0.002	< 0.01	< 0.002	0.0066	< 0.002	0.019	< 0.002
Dissolved Vanadium (V)	ug/L	1	0.2	<1	< 0.2	< 0.2	< 0.2	< 0.2	< 0.2
Dissolved Zinc (Zn)	ug/L	1	0.1	<1	0.16	1.26	< 0.1	0.1	< 0.1
Dissolved Zirconium (Zr)	ug/L	-	0.1		< 0.1	< 0.1	< 0.1	< 0.1	< 0.1

Notes: RDL = Reported Detection Limit RPD = Relative Percent Difference Red shading indicates detectable values

Sample ID	Units	MW14-02B	F-DUP-1	RDL	RPD (%)	MW15-04WB	MW15-20	RDL	RPD (%)	MW15-03AZ	MW15-21	RDL	RPD (%)	MW15-02AZ	MW15-40AZ	RDL	RPD (%)	MW15-04WB	MW15-30WB	RDL	RPD (%)
Analytical Lab		ALS	ALS			Maxxam	Maxxam			Maxxam	Maxxam			Maxxam	Maxxam			Maxxam	Maxxam		
Lab Job ID		L1525019	L1525019			B551383	B551383			B551383	B551383			B559978	B559978			B558916	B558916		
Lab Sample ID		L1525019-2	L1525019-4			MM1018	MM1019			MM1021	MM1022			MR0622	MR0623			MQ4530	MQ4532		
Sample Type						GW Sample	GW Duplicate			GW Sample	GW Duplicate			GW Sample	GW Duplicate			GW Sample	GW Duplicate		
Sample Date/Time		28-Sep-2014	28-Sep-2014			14-Jun-2015	14-Jun-2015			16-Jun-2015	16-Jun-2015			11-Jul-2015 FIELD	11-Jul-2015			10-Jul-2015	10-Jul-2015		
Filter and HNO3 Preservation <i>Physical Properties</i>		FIELD	FIELD			LAB	LAB			FIELD	FIELD			FIELD	FIELD			LAB	LAB		
Conductivity	uS/cm	508	514	2	1%	667	670	1	0%	323	319	1	1%	792	792	1	+	661	656	1	1%
nH	pH	8.02	7.92	0.1	1%	8.26	8.22	N/A	0%	7.97	7.96	N/A	0%	8.04	7.83	N/A	3%	8.1	8.15	N/A	1%
Total Hardness (CaCO3)	mg/L	283	282	0.5	0%	335	339	0.5	1%	151	148	0.5	2%	410	411	0.5	0%	329	327	0.5	1%
Dissolved Hardness (CaCO3)	mg/L	-	-	-	-	338	346	0.5	2%	151	158	0.5	5%	417	412	0.5	1%	326	330	0.5	1%
Total Suspended Solids	mg/L	<3	<3	3	-	<1	<1	1	-	<1	<1	1	-	<1	<1	1	-	<1	<1	1	-
Total Dissolved Solids	mg/L	348	347	20	0%	446	480	10	7%	216	202	10	7%	484	500	10	3%	396	402	10	2%
Turbidity	NTU	0.34	0.43	0.1	23%	0.2	0.14	0.1	35%	0.24	0.27	0.1	12%	0.11	0.15	0.1	31%	0.12	<0.1	0.1	18%
Inorganics	mg/L																				
Alkalinity (Total as CaCO3)	mg/L	209	209	1	0%	233	234	0.5	0%	108	107	0.5	1%	239	242	0.5	1%	234	234	0.5	-
Alkalinity (PP as CaCO3)	mg/L	-	-	-	-	<0.5	<0.5	0.5	-	<0.5	<0.5	0.5	-	<0.5	<0.5	0.5	-	<0.5	<0.5	0.5	-
Bicarbonate (HCO3)	mg/L mg/I	-	-	-	-	284	285	0.5	0%	132	130 <0.5	0.5	2%	291	295 <0.5	0.5	1%	285 <0.5	285 <0.5	0.5	-
Carbonate (CO3) Hydroxide (OH)	mg/L mg/L	-	-	-	-	<0.5 <0.5	<0.5 <0.5	0.5	-	<0.5 <0.5	<0.5 <0.5	0.5	-	<0.5 <0.5	<0.5	0.5	-	<0.5	<0.5	0.5	-
Bromide (Br)	mg/L mg/L	-	-	-	-	<u>\0.5</u>	<u>\0.5</u>	0.5	-	\U.J	<u>\0.5</u>	0.5	-		~0.3	0.5	+ -	<u></u>	~0.5	0.5	-
Fluoride (F)	mg/L	0.102	0.102	0.02	0%	0.096	0.094	0.01	2%	0.048	0.047	0.01	2%	0.088	0.087	0.01	1%	0.1	0.11	0.01	10%
Dissolved Chloride (Cl)	mg/L mg/L	<0.5	<0.5	0.02		<0.5	<0.5	0.01	2%	0.048	0.52	0.01	40%	0.088	0.58	0.01	1%	0.68	0.67	0.01	10%
Organic / Inorganic Carbon	ing/L	<0.5	<0.5	0.0		<0.5	<0.5	0.5	_	0.76	0.52	0.5	4070	0.5	0.50	0.5	1570	0.00	0.07	0.5	1 /0
Dissolved Organic Carbon (C)	mg/L	1.63	1.37	0.5	17%	268	219	0.5	20%	7.87	7.81	0.5	1%	5.62	5.28	0.5	6%	93.6	10.3	0.5	160%
Total Organic Carbon (C)	mg/L	1.56	1.48	0.5	5%	1080	1310	0.5	19%	8.32	7.39	0.5	12%	6.29	6.24	0.5	1%	8.99	63.8	0.5	151%
Anions and Nutrients	mg/L																				
Total Phosphorus (P)	mg/L	< 0.002	0.0025	0.002	-	0.105	0.401	0.005	117%	< 0.005	< 0.005	0.005	-	< 0.005	< 0.005	0.005	-	< 0.005	< 0.005	0.005	-
Dissolved Phosphorus (P)	mg/L	0.0033	0.0028	0.002	16%	0.0951	0.022	0.005	125%*	< 0.005	< 0.005	0.005	-	< 0.005	< 0.005	0.005	-	0.0069	0.0043	0.005	46%
Total Ammonia (N)	mg/L	< 0.005	< 0.005	0.025	-	0.022	0.012	0.005	59%*	0.0087	0.025	0.005	97%*	0.016	0.01	0.005	46%	0.019	0.02	0.005	5%
Total Total Kjeldahl Nitrogen (Calc)	mg/L	0.142	0.145	0.5	2%	<0.2	<0.2	0.02	- 10/	0.227	0.209	0.02	8%	0.22	0.19	0.02	15%	0.15	0.088	0.02	52%*
Nitrate plus Nitrite (N) Nitrate (N)	mg/L mg/L	0.0138	- 0.0164	- 0.005	- 17%	0.156 0.139	0.158 0.141	0.002	1% 1%	0.0255	0.0263 0.0263	0.002	3% 3%	0.436	0.437	0.002	0%	0.0809 0.0702	0.0874 0.0777	0.002	8% 10%
Nitrate (N) Nitrite (N)	mg/L mg/L	0.0138	0.0164	0.005	29%	0.139	0.141	0.002	2%	<0.0255	<0.0263	0.002	- 5%	<0.002	<0.437	0.002	- 0%	0.0702	0.0097	0.002	10%
Total Nitrogen (N)	mg/L mg/L	0.155	0.156	2	1%	<0.2	<0.2	0.002	-	0.253	0.235	0.002	7%	0.654	0.626	0.002	4%	0.227	0.175	0.002	26%
Dissolved Nitrogen (N)	mg/L)	0.163	0.155	0.5	5%	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
Dissolved Sulphate (SO4)	mg/L	85.5	85.5	0.5	0%	125	130	5	4%	53	57.7	5	8%	190	185	5	3%	129	130	5	1%
Sulphide	mg/L	< 0.002	< 0.002	0.02	-	< 0.005	0.0074	0.005	39%	< 0.005	0.0065	0.005	26%	< 0.005	0.006	0.005	18%	0.0072	0.0086	0.005	18%
Total Metals															-		L		_		
Total Aluminum (Al)	ug/L	6.3	4.5	3	33%	8.95	11.8	0.5	27%	47.2	34.4	0.5	31%	10.3	8.17	0.5	23%	7.77	7.62	0.5	2%
Total Antimony (Sb)	ug/L	3.25	2.87	0.1	12%	2.86	2.91	0.02	2%	0.15	0.141	0.02	6%	0.14	0.143	0.02	2%	2.88	3.37	0.02	16%
Total Arsenic (As) Total Barium (Ba)	ug/L ug/L	19.4 54	20 53	0.1 0.05	3% 2%	1.65 35.4	1.69 34.8	0.02	2% 2%	0.45	0.445 38.1	0.02	1% 0%	0.948 87.6	0.831 94.4	0.02	13% 7%	1.39 34.5	1.25 38.2	0.02 0.02	11% 10%
Total Bervllium (Be)	ug/L ug/L	<0.1	<0.1	0.03	2%	<0.01	<0.01	0.02	2%	<0.01	0.011	0.02	10%	<0.01	<0.01	0.02	- 1%	<0.01	<0.01	0.02	
Total Bismuth (Bi)	ug/L ug/L	<0.1	<0.1	0.1	-	<0.01	<0.005	0.001	-	<0.005	< 0.005	0.005	- 1070	<0.005	<0.005	0.005	-	<0.005	<0.005	0.005	-
Total Boron (B)	ug/L ug/L	<10	<10	10	-	<10	<10	10	-	<10	<10	10	-	<10	<10	10	-	<10	<10	10	-
Total Cadmium (Cd)	ug/L	< 0.01	< 0.01	0.01	-	0.0605	0.0572	0.005	6%	0.0118	0.0104	0.005	13%	0.0146	0.0209	0.005	35%	0.0611	0.0353	0.005	54%
Total Calcium (Ca)	mg/L	61.4	60.8	0.05	1%	73.2	75.4	0.05	3%	41	40	0.05	2%	109	114	0.05	4%	71.2	71.4	0.05	0%
Total Chromium (Cr)	ug/L	0.51	0.5	0.1	2%	0.3	0.28	0.1	7%	0.19	0.14	0.1	30%	0.17	0.13	0.1	27%	0.4	0.12	0.1	108%*
Total Cobalt (Co)	ug/L	0.62	0.63	0.1	2%	0.221	0.22	0.005	0%	0.0612	0.0589	0.005	4%	0.0261	0.0244	0.005	7%	0.255	0.243	0.005	5%
Total Copper (Cu)	ug/L	<0.5	<0.5	0.5	-	2.15	2.11	0.05	2%	1.39	1.28	0.05	8%	1.03	1.01	0.05	2%	1.18	1.08	0.05	9% 50%
Total Iron (Fe) Total Lead (Pb)	ug/L ug/L	<10 <0.05	<10 <0.05	10 0.05	-	23.1 0.491	20.1	0.005	14% 2%	30.1 0.0311	23.5 0.0216	0.005	25% 36%	8.4 0.0135	7.1 0.0145	0.005	17% 7%	21.1 0.293	12.6 0.513	0.005	50% 55%
Total Lead (PD)	ug/L ug/L	<0.03 7.65	<0.03	0.05	11%	6.88	6.47	0.005	2% 6%	0.0311	<0.5	0.005	33%	3.85	3.73	0.005	3%	6.04	7.19	0.005	55% 17%
Total Magnesium (Mg)	mg/L	30.5	30.7	0.5	11%	36.9	36.6	0.05	1%	11.9	11.8	0.05	1%	33.2	30.5	0.05	8%	36.7	36.1	0.05	2%
Total Manganese (Mn)	ug/L	161	156	0.05	3%	118	119	0.05	1%	55.5	56.1	0.05	1%	0.31	0.244	0.05	24%	121	119	0.05	2%
Total Mercury (Hg)	ug/L	0.017	0.017	0.5	0%	< 0.002	< 0.002	0.002	-	0.0067	< 0.002	0.002	108%*	0.0028	0.0029	0.002	4%	< 0.002	<0.002	0.002	-
Total Molybdenum (Mo)	ug/L	5.43	4.89	0.05	10%	2.58	2.47	0.05	4%	0.442	0.444	0.05	0%	0.348	0.352	0.05	1%	2.41	2.66	0.05	10%
Total Nickel (Ni)	ug/L	2.49	2.47	0.5	1%	0.934	0.875	0.02	7%	1.05	1.06	0.02	1%	0.479	0.539	0.02	12%	1.17	0.798	0.02	38%
Total Phosphorus (P)	ug/L	<50	<50	50	-	49.6	59.9	2	19%	22	4.4	2	133%*	8.2	26.8	2	106%*	39.6	29.5	2	29%
Total Potassium (K)	mg/L	3.73	3.66	0.1	2%	4.65	4.57	0.05	2%	1.82	1.84	0.05	1%	5.43	5.16	0.05	5%	4.3	3.96	0.05	8%
Total Selenium (Se)	ug/L	0.34	0.33	0.1	3%	0.43	0.349	0.04	21%	0.045	0.052	0.04	14%	0.182	0.185	0.04	2%	0.153	0.06	0.04	87%*
Total Silicon (Si)	ug/L	6230 0.011	6240 <0.01	50 0.01	0%	5680 <0.005	5790 <0.005	50 0.005	2%	5030 <0.005	5010 <0.005	50 0.005	0%	5040 <0.005	5530 <0.005	50 0.005	9%	5490 0.0051	5560 0.0076	50 0.005	1%
Total Silver (Ag) Total Sodium (Na)	ug/L mg/L	4.42	4.37	0.01	- 1%	<0.005	<0.005	0.005	- 1%	<0.005	<0.005	0.005	- 2%	<0.005 4.64	<0.005 4.38	0.005	- 6%	5.98	5.92	0.005	39% 1%
Total Strontium (Sr)	ug/L	514	4.57	0.03	1%	783	789	0.05	1%	307	301	0.05	2%	4.04	981	0.05	8%	792	764	0.05	4%
Total Sulphur (S)	mg/L	28.7	29	0.2	10%	40.6	40.9	3	1%	17.4	17.1	3	2%	55.9	50.7	3	10%	38.2	39.1	3	2%
Total Thallium (TI)	ug/L	0.026	0.021	0.01	21%	0.0116	0.0099	0.002	16%	0.0028	0.0029	0.002	4%	0.0072	0.0057	0.002	23%	0.0093	0.0105	0.002	12%
Total Tin (Sn)	ug/L	<0.1	<0.1	0.1	-	<0.2	<0.2	0.2	-	<0.2	<0.2	0.2	-	<0.2	<0.2	0.2	-	<0.2	<0.2	0.2	-
				•		-		•		-	-				-						

Sample ID	Units	MW14-03A	MW14-50	RDL	RPD (%)	MW15-05WB	MW15-60	RDL	RPD (%)	MW14-02A	MW14-100	RDL	RPD (%)	MW14-03B	MW14-200	RDL	RPD (%)
Analytical Lab	Cinto	Maxxam	Maxxam	1.02	10 D (70)	Maxxam	Maxxam	1.02	10 D (70)	Maxxam	Maxxam	102	14 D (70)	Maxxam	Maxxam	102	
Lab Job ID		B569424	B569424			B569424	B569424			B578440	B578440			B578440	B578440		
Lab Sample ID		MW5114	MW5119			MW5159	MW5160			NC0866	NC0868			NC0877	NC0878		
Sample Type		GW Sample	GW Duplicate			GW Sample	GW Duplicate			GW Sample	GW Duplicate			GW Sample	GW Duplicate		╡────┤
Sample Date/Time Filter and HNO3 Preservation		07-Aug-2015 FIELD	07-Aug-2015 FIELD			11-Aug-2015 LAB	11-Aug-2015 LAB			04-Sep-2015 FIELD	04-Sep-2015 FIELD			06-Sep-2015 FIELD	06-Sep-2015 FIELD		+
Physical Properties		TILLD	TIELD			LAD	LAD			FIELD	FIELD			TIELD	TIELD		+
Conductivity	uS/cm	1570	1550	1	1%	287	290	1	1%	385	389	1	1%	1700	1730	1	2%
pH	pH	8.03	8.04	N/A	0%	7.98	8	N/A	0%	8.14	8.21	N/A	1%	7.95	7.98	N/A	0%
Total Hardness (CaCO3)	mg/L	893	890	0.5	0%	136	141	0.5	4%	188	194	0.5	3%	987	990	0.5	0%
Dissolved Hardness (CaCO3)	mg/L	924	916	0.5	1%	139	140	0.5	1%	185	189	0.5	2%	998	1000	0.5	0%
Total Suspended Solids	mg/L	23.2	22.7	1	2%	<1	1.6	1	46%	<1	<1	1	-	3.5	2.8	1	22%
Total Dissolved Solids	mg/L	1180	1170	10	1%	189	184	10	3%	224	240	10	7%	1330	1330	10	-
Turbidity	NTU	35.9	44.7	0.1	22%	<0.1	0.13	0.1	26%	<0.1	0.49	0.1	132%*	3.06	3.32	0.1	8%
Inorganics Alkalinity (Total as CaCO3)	mg/L mg/L	486	483	0.5	1%	140	144	0.5	3%	145	145	0.5	-	529	538	0.5	2%
Alkalinity (PP as CaCO3)	mg/L mg/L	<0.5	<0.5	0.5	- 170	<0.5	<0.5	0.5		<0.5	<0.5	0.5	-	<0.5	<0.5	0.5	-
Bicarbonate (HCO3)	mg/L mg/L	592	590	0.5	0%	171	175	0.5	2%	177	177	0.5	-	646	657	0.5	2%
Carbonate (CO3)	mg/L	<0.5	<0.5	0.5	-	< 0.5	<0.5	0.5	-	< 0.5	< 0.5	0.5	-	< 0.5	<0.5	0.5	-
Hydroxide (OH)	mg/L	<0.5	<0.5	0.5	-	<0.5	<0.5	0.5	-	< 0.5	<0.5	0.5	-	< 0.5	<0.5	0.5	-
Bromide (Br)	mg/L												<u> </u>				<u> </u>
Fluoride (F)	mg/L	0.2	0.2	0.01	-	0.3	0.3	0.01	-	0.09	0.091	0.01	1%	0.26	0.26	0.01	-
Dissolved Chloride (Cl)	mg/L	1.2	1	0.5	18%	<0.5	<0.5	0.5	-	0.56	<0.5	0.5	11%	1.6	2	0.5	22%
Organic / Inorganic Carbon		2.5								0.12	0.75				<u> </u>		
Dissolved Organic Carbon (C)	mg/L	3.7	4.1	0.5	10%	9.5	11	0.5	15%	0.63	0.59	0.5	7%	2.5	2	0.5	22%
Total Organic Carbon (C) Anions and Nutrients	mg/L mg/L	4.3	3.6	0.5	18%	330	410	0.5	22%	0.64	0.51	0.5	23%	1.9	1.9	0.5	-
Total Phosphorus (P)	mg/L mg/L	0.0817	0.0808	0.005	1%	0.0654	0.121	0.005	60%	0.0192	0.0157	0.005	20%	0.031	0.0316	0.005	2%
Dissolved Phosphorus (P)	mg/L	0.0714	0.0714	0.005	-	0.0125	0.0112	0.005	11%	0.0159	0.0192	0.005	19%	0.0282	0.0277	0.005	2%
Total Ammonia (N)	mg/L	0.012	0.014	0.005	15%	< 0.005	< 0.005	0.005	-	0.015	0.021	0.005	33%	0.076	0.051	0.005	39%
Total Total Kjeldahl Nitrogen (Calc)	mg/L	0.282	0.254	0.02	10%	0.32	0.37	0.02	14%	< 0.02	0.18	0.02	160%*	0.259	0.159	0.02	48%
Nitrate plus Nitrite (N)	mg/L	< 0.002	< 0.002	0.002	-	< 0.002	< 0.002	0.002	-	0.16	0.113	0.002	34%	0.0048	0.0021	0.002	78%*
Nitrate (N)	mg/L	< 0.002	<0.002	0.002	-	<0.002	<0.002	0.002	-	0.16	0.161	0.002	1%	0.0048	0.0035	0.002	31%
Nitrite (N) Total Nitrogen (N)	mg/L mg/L	<0.002 0.282	<0.002 0.254	0.002	- 10%	<0.002 0.32	<0.002 0.37	0.002	- 14%	<0.002 0.159	<0.002 0.293	0.002	- 59%	<0.002 0.264	<0.002 0.161	0.002	- 48%
Dissolved Nitrogen (N)	mg/L)	0.282		0.02	- 10%	0.32	0.57	0.02	-	0.139	0.295	0.02		0.264	0.101		48%
Dissolved Sulphate (SO4)	mg/L)	455	458	5	1%	12.2	13.1	5	7%	52.8	55.9	5	6%	490	535	5	9%
Sulphide	mg/L	0.12	0.12	0.005	-	< 0.005	< 0.005	0.005	-	0.0113	< 0.005	0.005	77%*	0.0253	0.0249	0.005	2%
Total Metals																	
Total Aluminum (Al)	ug/L	9.08	27	0.5	99%	2.56	20.4	0.5	155%	3.72	3.79	0.5	2%	4.38	4.08	0.5	7%
Total Antimony (Sb)	ug/L	0.591	0.592	0.02	0%	0.202	0.212	0.02	5%	0.745	0.797	0.02	7%	0.1	0.101	0.02	1%
Total Arsenic (As)	ug/L	68	68.7	0.02	1%	0.927	0.957	0.02	3%	59	59.1	0.02	0%	8.13	7.94	0.02	2%
Total Barium (Ba) Total Beryllium (Be)	ug/L ug/L	99.5 0.012	96.8 0.015	0.02	3% 22%	1.65	1.91 <0.01	0.02	15%	10.3 <0.01	10.5	0.02	2%	68.2 <0.01	69.4 <0.01	0.02	- 2%
Total Bismuth (Bi)	ug/L ug/L	0.0076	< 0.015	0.005	41%	<0.005	<0.005	0.005		<0.005	<0.005	0.005	-	<0.005	<0.005	0.005	-
Total Boron (B)	ug/L	<10	<10	10	-	<10	<10	10	-	<10	<10	10	-	<10	<10	10	-
Total Cadmium (Cd)	ug/L	< 0.005	0.0109	0.005	74%*	0.0135	0.0158	0.005	16%	< 0.005	< 0.005	0.005	-	0.051	0.049	0.005	4%
Total Calcium (Ca)	mg/L	130	131	0.05	1%	42.8	44.5	0.05	4%	39.4	40.7	0.05	3%	118	119	0.05	1%
Total Chromium (Cr)	ug/L	<0.1	0.13	0.1	26%	0.3	0.4	0.1	29%	0.51	0.52	0.1	2%	<0.1	<0.1	0.1	-
Total Cobalt (Co)	ug/L	1.73	1.66	0.005	4%	0.058	0.0656	0.005	12%	0.019	0.017	0.005	11%	6.94	6.93	0.005	0%
Total Copper (Cu) Total Iron (Fe)	ug/L ug/L	0.44 8400	1.06 8610	0.05	83% 2%	0.116	0.411 14.3	0.05	112%* 65%	0.075	0.091	0.05	19% 9%	2.36	2.62	0.05	10% 3%
Total Lead (Pb)	ug/L ug/L	0.0491	0.124	0.005	2% 87%	0.019	0.0281	0.005	39%	<0.005	<0.005	0.005	- 9%	0.164	0.178	0.005	3% 8%
Total Lithium (Li)	ug/L ug/L	24.9	29.7	0.005	18%	12.5	12	0.005	4%	7.72	7.96	0.005	3%	27	26.4	0.005	2%
Total Magnesium (Mg)	mg/L	138	137	0.05	1%	7.01	7.3	0.05	4%	21.7	22.5	0.05	4%	168	168	0.05	-
Total Manganese (Mn)	ug/L	748	742	0.05	1%	4.45	4.9	0.05	10%	2.63	2.8	0.05	6%	3180	3140	0.05	1%
Total Mercury (Hg)	ug/L	0.0118	0.0116	0.002	2%	< 0.002	< 0.002	0.002	-	0.0041	0.0041	0.002	-	0.0201	0.0211	0.002	5%
Total Molybdenum (Mo)	ug/L	2.92	3.1	0.05	6%	0.564	0.631	0.05	11%	3.28	3.2	0.05	2%	7.65	7.86	0.05	3%
Total Nickel (Ni)	ug/L	0.616	0.804	0.02	26%	0.448	0.489	0.02	9%	0.075	0.067	0.02	11%	18.3	18.7	0.02	2%
Total Phosphorus (P) Total Potassium (K)	ug/L mg/L	65.3 8.4	157 8.47	2 0.05	83% 1%	21.2 0.792	59.8 0.857	2 0.05	95% 8%	10.6 2.75	9.1 2.8	2 0.05	15% 2%	34.6 8.46	35.1 8.7	2 0.05	1% 3%
Total Selenium (Se)	ug/L	<0.04	<0.04	0.03	1%	0.104	0.837	0.03	8% 7%	0.274	0.298	0.03	2% 8%	0.15	0.153	0.03	2%
Total Silicon (Si)	ug/L ug/L	7300	7310	50	0%	8980	9780	50	9%	5610	5720	50	2%	5380	5470	50	2%
Total Silver (Ag)	ug/L ug/L	0.0058	0.0063	0.005	8%	< 0.005	< 0.005	0.005	-	<0.005	< 0.005	0.005	-	0.034	0.033	0.005	3%
Total Sodium (Na)	mg/L	27.6	28.5	0.05	3%	9.36	9.65	0.05	3%	3.09	3.14	0.05	2%	26.8	27.3	0.05	2%
Total Strontium (Sr)	ug/L	4240	4240	0.05	-	138	137	0.05	1%	381	391	0.05	3%	3490	3490	0.05	-
Total Sulphur (S)	mg/L	166	167	3	1%	3.8	3.9	3	3%	19.6	19.7	3	1%	193	194	3	1%
Total Thallium (Tl)	ug/L	0.0377	0.0088	0.002	124%*	<0.002	<0.002	0.002	-	0.028	0.04	0.002	35%	0.193	0.206	0.002	7%
Total Tin (Sn)	ug/L	< 0.2	<0.2	0.2	-	< 0.2	<0.2	0.2	-	<0.2	<0.2	0.2	-	< 0.2	<0.2	0.2	-

Sample ID	Units	MW14-02B	F-DUP-1	RDL	RPD (%)	MW15-04WB	MW15-20	RDL	RPD (%)	MW15-03AZ	MW15-21	RDL	RPD (%)	MW15-02AZ	MW15-40AZ	RDL	RPD (%)	MW15-04WB	MW15-30WB	RDL	RPD (%)
Analytical Lab		ALS	ALS			Maxxam	Maxxam			Maxxam	Maxxam			Maxxam	Maxxam			Maxxam	Maxxam		
Lab Job ID		L1525019	L1525019	1	1	B551383	B551383		1	B551383	B551383			B559978	B559978			B558916	B558916		1
Lab Sample ID		L1525019-2	L1525019-4			MM1018	MM1019		1	MM1021	MM1022			MR0622	MR0623			MQ4530	MQ4532		1
Sample Type				1	1	GW Sample	GW Duplicate		1	GW Sample	GW Duplicate			GW Sample	GW Duplicate			GW Sample	GW Duplicate		1
Sample Date/Time		28-Sep-2014	28-Sep-2014			14-Jun-2015	14-Jun-2015			16-Jun-2015	16-Jun-2015			11-Jul-2015	11-Jul-2015			10-Jul-2015	10-Jul-2015		
Filter and HNO3 Preservation		FIELD	FIELD			LAB	LAB			FIELD	FIELD			FIELD	FIELD			LAB	LAB		
Total Titanium (Ti)	ug/L	<10	<10	10	-	< 0.5	0.57	0.5	13%	0.74	0.57	0.5	26%	< 0.5	< 0.5	0.5	-	< 0.5	< 0.5	0.5	-
Total Uranium (U)	ug/L	91.9	81.6	0.01	12%	176	176	0.002	-	35.4	37	0.002	4%	23.5	25.2	0.002	7%	170	192	0.002	12%
Total Vanadium (V)	ug/L	<1	<1	1	-	0.25	0.26	0.2	4%	0.2	< 0.2	0.2	-	0.29	0.21	0.2	32%	0.29	0.29	0.2	-
Total Zinc (Zn)	ug/L	11.9	11	3	8%	44.6	42.5	0.1	5%	7.96	0.71	0.1	167%	1.72	1.39	0.1	21%	17.9	3.3	0.1	138%
Total Zirconium (Zr)	ug/L	-	-	-	-	0.26	0.27	0.1	4%	0.3	0.28	0.1	7%	0.17	0.16	0.1	6%	0.27	0.24	0.1	12%
Dissolved Metals	Ŭ			1	1				1												1
Dissolved Aluminum (Al)	ug/L	1	<1	1	-	44.1	44.1	0.5	-	38.1	30.5	0.5	22%	14.8	12.2	0.5	19%	21	3.2	0.5	147%
Dissolved Antimony (Sb)	ug/L	3.27	2.89	0.1	12%	3.02	2.87	0.02	5%	0.153	0.158	0.02	3%	0.147	0.14	0.02	5%	2.97	3.05	0.02	3%
Dissolved Arsenic (As)	ug/L	20.4	20.5	0.1	0%	1.54	1.51	0.02	2%	0.431	0.411	0.02	5%	0.917	0.905	0.02	1%	1.37	1.32	0.02	4%
Dissolved Barium (Ba)	ug/L	54.7	54.2	0.05	1%	33.3	32.4	0.02	3%	37.9	39.7	0.02	5%	89.9	85.5	0.02	5%	31.9	32.3	0.02	1%
Dissolved Beryllium (Be)	ug/L	<0.1	<0.1	0.1	-	< 0.01	< 0.01	0.01	-	<0.01	< 0.01	0.01	-	< 0.01	<0.01	0.01	-	<0.1	<0.1	0.01	-
Dissolved Bismuth (Bi)	ug/L	< 0.5	< 0.5	0.5	-	< 0.005	< 0.005	0.005	-	< 0.005	< 0.005	0.005	-	< 0.005	< 0.005	0.005	-	<1	<1	0.005	-
Dissolved Boron (B)	ug/L	<10	<10	10	-	<10	<10	10	-	<10	<10	10	-	<10	<10	10	-	<50	<50	10	-
Dissolved Cadmium (Cd)	ug/L	< 0.01	< 0.01	0.01	-	0.0487	0.0539	0.005	10%	0.012	0.0122	0.005	2%	0.125	0.0283	0.005	126%	0.081	0.037	0.005	75%
Dissolved Calcium (Ca)	mg/L	61.8	61.4	0.05	1%	73.1	76.4	0.05	4%	40.6	41.4	0.05	2%	111	110	0.05	1%	70	71.7	0.05	2%
Dissolved Chromium (Cr)	ug/L	0.41	0.42	0.1	2%	<0.1	<0.1	0.1	-	0.16	0.1	0.1	46%	0.2	0.15	0.1	29%	<1	<1	0.1	-
Dissolved Cobalt (Co)	ug/L	0.62	0.62	0.1	0%	0.221	0.227	0.005	3%	0.0611	0.0597	0.005	2%	0.0388	0.0294	0.005	28%	< 0.5	< 0.5	0.005	-
Dissolved Copper (Cu)	ug/L	< 0.2	< 0.2	0.2	-	2.26	2.12	0.05	6%	1.37	1.54	0.05	12%	1.34	1.09	0.05	21%	1.31	0.96	0.05	31%
Dissolved Iron (Fe)	ug/L	<10	<10	10	-	6.4	8.9	1	33%	12.3	11.1	1	10%	10.7	11.2	1	5%	12.4	5.4	1	79%
Dissolved Lead (Pb)	ug/L	< 0.05	< 0.05	0.05	-	0.337	0.32	0.005	5%	0.0196	< 0.005	0.005	119%*	0.021	0.0085	0.005	85%*	< 0.2	0.31	0.005	43%
Dissolved Lithium (Li)	ug/L	7.59	7.19	0.5	5%	7.37	6.91	0.5	6%	1.33	2.45	0.5	59%*	3.71	3.91	0.5	5%	6.7	7	0.5	4%
Dissolved Magnesium (Mg)	mg/L	31.2	31.1	0.1	0%	37.7	37.7	0.05	-	12.1	13.2	0.05	9%	33.8	33.3	0.05	1%	36.7	36.6	0.05	0%
Dissolved Manganese (Mn)	ug/L	162	159	0.05	2%	115	116	0.05	1%	55.2	57.6	0.05	4%	1	0.269	0.05	115%	123	119	0.05	3%
Dissolved Mercury (Hg)	ug/L	< 0.01	< 0.01	0.01	-	< 0.002	< 0.002	0.002	-	< 0.002	< 0.002	0.002	-	0.0028	0.0029	0.002	4%	< 0.01	< 0.01	0.002	-
Dissolved Molybdenum (Mo)	ug/L	4.96	4.55	0.05	9%	2.55	2.4	0.05	6%	0.451	0.42	0.05	7%	0.354	0.343	0.05	3%	2.6	2.3	0.05	12%
Dissolved Nickel (Ni)	ug/L	2.5	2.4	0.5	4%	0.804	0.795	0.02	1%	1.08	1.12	0.02	4%	0.682	0.552	0.02	21%	1.2	<1	0.02	18%
Dissolved Phosphorus (P)	ug/L	<50	<50	50	-	23.8	30.4	2	24%	26.8	7.2	2	115%*	5.36	5.39	2	1%	4.47	4.05	2	10%
Dissolved Potassium (K)	mg/L	3.74	3.69	0.1	1%	4.16	4.55	0.05	9%	1.78	1.89	0.05	6%	36.3	11.2	0.05	106%			0.05	
Dissolved Selenium (Se)	ug/L	0.31	0.33	0.1	6%	0.246	0.265	0.04	7%	0.052	0.064	0.04	21%	0.169	0.177	0.04	5%	0.2	0.13	0.04	42%
Dissolved Silicon (Si)	ug/L	6270	6270	50	0%	6370	6270	50	2%	5300	5810	50	9%	5180	5130	50	1%	5550	5680	50	2%
Dissolved Silver (Ag)	ug/L	< 0.01	< 0.01	0.01	-	< 0.005	< 0.005	0.005	-	< 0.005	< 0.005	0.005	-	< 0.005	< 0.005	0.005	-	< 0.02	< 0.02	0.005	-
Dissolved Sodium (Na)	mg/L	4.53	4.56	0.05	1%	6.05	5.96	0.05	1%	4.16	4.37	0.05	5%	4.75	4.66	0.05	2%	6.61	5.92	0.05	11%
Dissolved Strontium (Sr)	ug/L	494	459	0.2	7%	782	794	0.05	2%	303	319	0.05	5%	1070	1070	0.05	-	777	776	0.05	0%
Dissolved Sulphur (S)	mg/L	29	29	0.5	0%	45.9	42.3	3	8%	18	18.2	3	1%	59.8	59	3	1%	44.9	41.6	3	8%
Dissolved Thallium (Tl)	ug/L	0.025	0.022	0.01	13%	0.0068	0.0078	0.002	14%	0.0024	< 0.002	0.002	18%	0.0059	0.0049	0.002	19%	< 0.05	< 0.05	0.002	-
Dissolved Tin (Sn)	ug/L	< 0.1	< 0.1	0.1	-	<0.2	< 0.2	0.2	-	<0.2	< 0.2	0.2	-	< 0.2	< 0.2	0.2	-	<5	<5	0.2	-
Dissolved Titanium (Ti)	ug/L	<10	<10	10	-	< 0.5	<0.5	0.5	-	< 0.5	< 0.5	0.5	-	< 0.5	< 0.5	0.5	-	<5	<5	0.5	-
Dissolved Uranium (U)	ug/L	92.5	83.3	0.01	10%	176	176	0.002	-	35.4	37.4	0.002	5%	23.9	23.6	0.002	1%	161	169	0.002	5%
Dissolved Vanadium (V)	ug/L	<1	<1	1	-	0.25	0.25	0.2	-	< 0.2	< 0.2	0.2	-	0.29	0.27	0.2	7%	<5	<5	0.2	-
Dissolved Zinc (Zn)	ug/L	10.3	10.3	1	0%	24	29.4	0.1	20%	7.61	3.15	0.1	83%	8.64	1.75	0.1	133%	35.9	9.6	0.1	116%
Dissolved Zirconium (Zr)	ug/L	-	-	-	-	0.26	0.26	0.1	-	0.32	0.26	0.1	21%	0.19	0.17	0.1	11%	<0.5	< 0.5	0.1	-

Notes:
1. RDL = Reported Detection Limit
2. RPD = Relative Percent Difference
3. "" indicates that analyses were not performed, or RPD was not calculated for parameters where one or both of the concentrations were below the RDL.
4. "" indicates that one or both of the measured concentrations is < 5x the RDL. The RPD is not considered to be representative of the actual sample variability due to elevated analytical imprecision close to the RDL.
Red shading indicates duplicate sample values which have an RPD greater than 50%.

Sample ID	Units	MW14-03A	MW14-50	RDL	RPD (%)	MW15-05WB	MW15-60	RDL	RPD (%)	MW14-02A	MW14-100	RDL	RPD (%)	MW14-03B	MW14-200	RDL	RPD (%)
Analytical Lab		Maxxam	Maxxam			Maxxam	Maxxam			Maxxam	Maxxam			Maxxam	Maxxam		
Lab Job ID		B569424	B569424			B569424	B569424			B578440	B578440			B578440	B578440		
Lab Sample ID		MW5114	MW5119			MW5159	MW5160			NC0866	NC0868			NC0877	NC0878		
Sample Type		GW Sample	GW Duplicate			GW Sample	GW Duplicate			GW Sample	GW Duplicate			GW Sample	GW Duplicate		
Sample Date/Time		07-Aug-2015	07-Aug-2015			11-Aug-2015	11-Aug-2015			04-Sep-2015	04-Sep-2015			06-Sep-2015	06-Sep-2015		
Filter and HNO3 Preservation		FIELD	FIELD			LAB	LAB			FIELD	FIELD			FIELD	FIELD		
Total Titanium (Ti)	ug/L	0.62	< 0.5	0.5	21%	< 0.5	0.69	0.5	32%	< 0.5	< 0.5	0.5	-	< 0.5	< 0.5	0.5	-
Total Uranium (U)	ug/L	49.4	48.9	0.002	1%	72.9	73.3	0.002	1%	49.6	50.3	0.002	1%	41.3	41.7	0.002	1%
Total Vanadium (V)	ug/L	0.29	0.33	0.2	13%	< 0.2	< 0.2	0.2	-	0.23	< 0.2	0.2	14%	< 0.2	< 0.2	0.2	-
Total Zinc (Zn)	ug/L	2.46	8.34	0.1	109%	20.3	26.3	0.1	26%	0.33	0.31	0.1	6%	1.07	1.01	0.1	6%
Total Zirconium (Zr)	ug/L	2.58	2.88	0.1	11%	< 0.1	<0.1	0.1	-	<0.1	< 0.1	0.1	-	0.33	0.27	0.1	20%
Dissolved Metals																	
Dissolved Aluminum (Al)	ug/L	52.8	43.5	0.5	19%	1.7	23.1	0.5	173%*	3.96	4.44	0.5	11%	2.81	2.88	0.5	2%
Dissolved Antimony (Sb)	ug/L	0.586	0.595	0.02	2%	0.217	0.222	0.02	2%	0.697	0.708	0.02	2%	0.087	0.085	0.02	2%
Dissolved Arsenic (As)	ug/L	68.9	71.9	0.02	4%	0.971	0.958	0.02	1%	53.8	54.7	0.02	2%	7.63	7.76	0.02	2%
Dissolved Barium (Ba)	ug/L	98	103	0.02	5%	1.97	1.91	0.02	3%	9.88	10.1	0.02	2%	61.8	64.1	0.02	4%
Dissolved Bervllium (Be)	ug/L	0.016	0.017	0.01	6%	< 0.01	< 0.01	0.01	-	< 0.01	< 0.01	0.01	-	< 0.01	< 0.01	0.01	-
Dissolved Bismuth (Bi)	ug/L	< 0.005	0.0111	0.005	76%*	< 0.005	< 0.005	0.005	-	< 0.005	< 0.005	0.005	-	< 0.005	< 0.005	0.005	-
Dissolved Boron (B)	ug/L	<10	18	10	57%*	<10	<10	10	-	<10	<10	10	-	<10	<10	10	-
Dissolved Cadmium (Cd)	ug/L	0.0545	0.014	0.005	118%*	0.0159	0.0159	0.005	-	< 0.005	< 0.005	0.005	-	0.008	< 0.005	0.005	46%
Dissolved Calcium (Ca)	mg/L	135	137	0.05	1%	44.5	44.7	0.05	0%	40.3	40.5	0.05	0%	129	131	0.05	2%
Dissolved Chromium (Cr)	ug/L	0.21	0.22	0.1	5%	<0.1	<0.1	0.1	-	0.47	0.49	0.1	4%	<0.1	<0.1	0.1	-
Dissolved Cobalt (Co)	ug/L	1.75	1.88	0.005	7%	0.0571	0.0451	0.005	23%	0.014	0.013	0.005	7%	6.14	6.11	0.005	0%
Dissolved Copper (Cu)	ug/L	1.65	1.53	0.05	8%	0.083	0.102	0.05	21%	0.065	0.056	0.05	15%	0.489	0.434	0.05	12%
Dissolved Iron (Fe)	ug/L	8760	8880	1	1%	2.7	3.3	1	20%	<1	<1	1	-	1010	1020	1	1%
Dissolved Lead (Pb)	ug/L	0.14	0.205	0.005	38%	0.0104	0.0122	0.005	16%	< 0.005	< 0.005	0.005	-	0.022	0.015	0.005	38%
Dissolved Lithium (Li)	ug/L	32.3	31.4	0.5	3%	13	13	0.5	-	7.42	7.66	0.5	3%	23	24.9	0.5	8%
Dissolved Magnesium (Mg)	mg/L	142	139	0.05	2%	7	6.97	0.05	0%	20.5	21.4	0.05	4%	164	163	0.05	1%
Dissolved Manganese (Mn)	ug/L	754	797	0.05	6%	5.36	4.02	0.05	29%	2.42	2.46	0.05	2%	2920	2890	0.05	1%
Dissolved Mercury (Hg)	ug/L	0.0021	0.0039	0.002	60%*	< 0.002	< 0.002	0.002	-	0.004	0.0038	0.002	5%	0.0047	0.0033	0.002	35%
Dissolved Molybdenum (Mo)	ug/L	2.95	3.41	0.05	14%	0.635	0.721	0.05	13%	2.78	2.84	0.05	2%	6.77	6.86	0.05	1%
Dissolved Nickel (Ni)	ug/L	0.846	0.935	0.02	10%	0.345	0.365	0.02	6%	0.086	0.082	0.02	5%	16.6	16.6	0.02	-
Dissolved Phosphorus (P)	ug/L	144	195	2	30%	42.4	105	2	85%	7.4	6.9	2	7%	29.4	27.4	2	7%
Dissolved Potassium (K)	mg/L	8.25	8.91	0.05	8%	1.07	1.03	0.05	4%	2.86	2.83	0.05	1%	8.42	8.51	0.05	1%
Dissolved Selenium (Se)	ug/L	< 0.04	< 0.04	0.04	-	0.138	0.128	0.04	8%	0.229	0.237	0.04	3%	0.123	0.131	0.04	6%
Dissolved Silicon (Si)	ug/L	7320	7270	50	1%	8860	8910	50	1%	6160	6350	50	3%	6070	6300	50	4%
Dissolved Silver (Ag)	ug/L	0.0135	0.0077	0.005	55%*	< 0.005	< 0.005	0.005	-	< 0.005	< 0.005	0.005	-	0.007	0.006	0.005	15%
Dissolved Sodium (Na)	mg/L	29	28	0.05	4%	9.22	9.16	0.05	1%	2.87	2.89	0.05	1%	26.8	25.6	0.05	5%
Dissolved Strontium (Sr)	ug/L	4380	4550	0.05	4%	140	140	0.05	-	362	352	0.05	3%	3380	3400	0.05	1%
Dissolved Sulphur (S)	mg/L	166	162	3	2%	3.5	3.6	3	3%	18.2	18.6	3	2%	193	191	3	1%
Dissolved Thallium (Tl)	ug/L	0.0263	0.01	0.002	90%	0.0027	< 0.002	0.002	30%	0.024	0.035	0.002	37%	0.135	0.14	0.002	4%
Dissolved Tin (Sn)	ug/L	< 0.2	< 0.2	0.2	-	< 0.2	< 0.2	0.2	-	< 0.2	< 0.2	0.2	-	< 0.2	<0.2	0.2	-
Dissolved Titanium (Ti)	ug/L	0.69	0.86	0.5	22%	< 0.5	< 0.5	0.5	-	< 0.5	< 0.5	0.5	-	< 0.5	< 0.5	0.5	-
Dissolved Uranium (U)	ug/L	50.1	53.7	0.002	7%	70	71.6	0.002	2%	44.6	45.4	0.002	2%	37.5	38.2	0.002	2%
Dissolved Vanadium (V)	ug/L	0.41	0.34	0.2	19%	< 0.2	< 0.2	0.2	-	< 0.2	< 0.2	0.2	-	< 0.2	< 0.2	0.2	-
Dissolved Zinc (Zn)	ug/L	16.2	16.2	0.1	-	45.8	40.1	0.1	13%	0.27	0.54	0.1	67%*	0.75	0.85	0.1	13%
Dissolved Zirconium (Zr)	ug/L	2.96	3.1	0.1	5%	<0.1	<0.1	0.1	-	<0.1	<0.1	0.1	-	0.34	0.3	0.1	13%

Notes: 1. RDL = Reported Detection Limit 2. RPD = Relative Percent Difference 3. "." indicates that analyses were not performed, or RPD was not calculated for parameters where one or both of the concentrations were below the RDL. 4. "*" indicates that analyses were not performed, or RPD was not calculated for parameters where one or both of the concentrations were below the RDL. 4. "*" indicates that one or both of the measured concentrations is < 5x the RDL. The RPD is not considered to be representative of the actual sample variability due to elevated analytical imprecision close to the RDL. Red shading indicates duplicate sample values which have an RPD greater than 50%.

Table 3: Comparison of Total and Dissolved Metals Analytical Results

			Analytical		Total	Total Antimony	Total Arsenic	Total Barium	Total	Total Bismuth	Total Boron (B)	Total Cadmium	Total Calcium	Total	Total Cobalt	Total Copper	Total Iron (Fe)	Total Lead (Pb)	Total Lithium	0
Sample ID	Station	Sample Date	Laboratory	Lab Job ID	Aluminum (Al)	(Sb) ug/L	(As)	(Ba) ug/L	Beryllium (Be)	(Bi) 11g/L		(Cd) ug/L	``´	Chromium (Cr)		(Cu) ug/L			(Li) ug/L	(Mg) mg/L
Maxxam RDL:					0.5	0.02	ug/L 0.02	0.02	0.01	0.005	ug/L 10	0.005	mg/L 0.05	ug/L 0.1	ug/L 0.005	0.05	1 ug/L	ug/L 0.005	0.5	0.05
ALS RDL:					3	0.1	0.1	0.05	0.1	0.5	10	0.01	0.05	0.1	0.1	0.5	10	0.05	0.5	0.1
MW14-02A	MW14-02A	28/09/14	ALS	L1525019	7.5	0.85	68.4	13.4	<0.1	<0.5	<10	< 0.01	44.6	0.65	0.13	<0.5	<10	< 0.05	7.01	21.4
MW14-02A	MW14-02A	12/06/15	Maxxam	B550137	59.9	7.07	38	51.3	0.02	0.0106	<10	<0.0050	49.5	0.22	2.81	0.368	42.4	0.159	7.53	31.9
MW14-02A MW14-02A	MW14-02A MW14-02A	16/07/15 06/08/15	Maxxam Maxxam	B562572 B569424	12.9	0.748	47.4 55.2	13.1 13.9	<0.010 <0.010	<0.0050 <0.0050	<10 <10	<0.0050 <0.0050	39.6 46.1	0.4	0.0233	<0.050 0.183	14.1 20.7	<0.0050 0.0148	7.73 8.79	19.7 23.4
MW14-02A MW14-02A	MW14-02A MW14-02A	04/09/15	Maxxam	B578440	3.72	0.745	59	10.3	<0.010	<0.0050	<10	<0.0050	39.4	0.58	0.0332	0.075	1.1	<0.0050	7.72	23.4
MW14-100	MW14-02A	04/09/15	Maxxam	B578440	3.79	0.797	59.1	10.5	< 0.010	< 0.0050	<10	< 0.0050	40.7	0.52	0.017	0.091	1.2	< 0.0050	7.96	22.5
F-DUP-1	MW14-02B	28/09/14	ALS	L1525019	4.5	2.87	20	53	<0.1	< 0.5	<10	< 0.01	60.8	0.5	0.63	< 0.5	<10	< 0.05	6.87	30.7
MW14-02B	MW14-02B	28/09/14	ALS	L1525019	6.3	3.25	19.4	54	< 0.1	< 0.5	<10	< 0.01	61.4	0.51	0.62	< 0.5	<10	< 0.05	7.65	30.5
MW14-02B	MW14-02B	12/06/15	Maxxam	B550137	13	0.86	54.4	14.6	<0.010	<0.0050	<10	<0.0050	41.9	0.58	0.0385	0.538	38	0.0472	7.06	21
MW14-02B MW14-02B	MW14-02B MW14-02B	16/07/15 06/08/15	Maxxam Maxxam	B562572 B569424	12.5 15.3	6.39 5.96	37.2 39.2	57.9 55.3	<0.010 <0.010	<0.0050 <0.0050	<10 <10	<0.0050 <0.0050	52.3 59.7	<0.10 0.17	1.57 1.45	0.143 0.264	20 24.2	0.0142 0.0434	7.72 8.55	29.9 31.7
MW14-02B	MW14-02B	04/09/15	Maxxam	B578440	21.8	6.37	42	44.6	0.013	<0.0050	<10	0.013	52.3	0.37	1.45	0.204	101	0.113	8.23	30.7
MW14-03A	MW14-03A	22/06/15	Maxxam	B553846	6.05	0.979	46	141	0.013	0.008	<10	0.007	133	<0.10	2.42	0.63	7680	0.076	27.4	137
MW14-03A	MW14-03A	12/07/15	Maxxam	B559978	24.5	0.754	65	132	0.013	< 0.0050	<10	0.0065	140	0.27	2.05	0.887	9580	0.128	26.9	125
MW14-03A	MW14-03A	07/08/15	Maxxam	B569424	9.08	0.591	68	99.5	0.012	0.0076	<10	< 0.0050	130	< 0.10	1.73	0.44	8400	0.0491	24.9	138
MW14-03A	MW14-03A	06/09/15	Maxxam	B578440	5.29	0.356	75.3	118	0.018	<0.0050	10	<0.0050	126	<0.10	1.51	0.726	8370	0.564	29.9	136
MW14-50 MW14-03B	MW14-03A MW14-03B	07/08/15 22/06/15	Maxxam Maxxam	B569424 B553846	27	0.592 0.136	68.7 7.68	96.8 91.7	0.015 <0.010	<0.0050 0.006	<10 <10	0.0109 0.067	131 120	0.13	1.66 6.9	1.06 5.38	8610 1670	0.124 0.201	29.7 22.9	137 158
MW14-03B MW14-03B	MW14-03B	12/07/15	Maxxam	B559978	26.4	0.130	9.72	87.6	<0.010	< 0.0050	<10	0.106	120	0.55	6.78	4.39	2280	0.201	20.8	138
MW14-03B	MW14-03B	07/08/15	Maxxam	B569424	15.9	0.111	8.23	70	<0.010	0.0139	<10	0.056	130	0.14	6.94	3.47	1320	0.172	22.8	171
MW14-03B	MW14-03B	06/09/15	Maxxam	B578440	4.38	0.1	8.13	68.2	< 0.010	< 0.0050	<10	0.051	118	<0.10	6.94	2.36	1070	0.164	27	168
MW14-200	MW14-03B	06/09/15	Maxxam	B578440	4.08	0.101	7.94	69.4	<0.010	< 0.0050	<10	0.049	119	<0.10	6.93	2.62	1100	0.178	26.4	168
MW14-05A	MW14-05A	23/06/15	Maxxam	B553846	89.5	0.789 0.748	1910	99.7	0.03 0.027	0.008 0.0095	<10	0.015	42.6	0.22	1.13	1.77	2080 2660	0.317 0.742	25.9 27.4	8.72
MW14-05A MW14-05A	MW14-05A MW14-05A	13/07/15 08/08/15	Maxxam Maxxam	B559978 B569424	<u> </u>	0.748	1670 1710	95.8 108	0.027	0.0093	<10 <10	0.0499	46.7 47.8	0.43	0.89 0.948	3.19 1.86	3080	0.372	35.3	7.12
MW14-05A MW14-05A	MW14-05A	07/09/15	Maxxam	B578440	22.8	0.561	1810	123	0.024	<0.0050	<10	0.0705	46.6	0.2	1.04	0.467	3790	0.154	28.1	8.95
MW14-05B	MW14-05B	24/06/15	Maxxam	B554336	945	1.16	148	111	0.067	0.019	11	0.14	43.1	1.85	2.15	13.4	1370	1.94	35.7	7.79
MW14-05B	MW14-05B	14/07/15	Maxxam	B560161	334	0.912	129	93.4	0.016	0.0057	18	0.0815	47.4	1.2	1.59	5.86	969	1.23	34.1	6.83
MW14-05B	MW14-05B	09/08/15	Maxxam	B569424	108	0.642	141	83	0.015	<0.0050	26	0.0356	49	0.58	1.4	2.07	1290	0.525	37.9	7.72
MW14-05B MW15-01WB	MW14-05B MW15-01WB	08/09/15 08/07/15	Maxxam Maxxam	B579224 B558595	<u>68.9</u> 11.9	0.635	176	81.5 10.7	<0.010 0.038	0.007	12 <10	0.046	45.5 246	1.73 0.23	1.51 0.765	2.56 0.862	<u>1900</u> 510	0.427 4.83	34.9 23.4	8.47 192
MW15-01WB	MW15-01WB	10/08/15	Maxxam	B569424	49	0.376	34.7	11.4	0.038	<0.0050	<10	0.108	240	1.48	0.77	0.605	620	0.211	26.5	200
MW15-01WB	MW15-01WB	03/09/15	Maxxam	B578440	5.1	0.321	39.8	8.96	0.045	< 0.0050	<10	0.026	222	0.46	0.701	0.301	520	0.167	25.7	197
MW15-01WB/BH8-WB	MW15-01WB	07/06/15	Maxxam	B549739	4.17	0.742	34.5	10.1	0.041	< 0.0050	<10	0.0211	283	0.21	0.88	0.459	384	0.123	22	184
MW15-02 AZ/BH10-AZ	MW15-02AZ	31/05/15	Maxxam	B546672	8.38	0.434	1.1	95.8	<0.010	<0.0050	<10	0.0089	130	0.11	0.186	1.19	6.4	0.0094	4.09	41
MW15-02AZ MW15-02AZ	MW15-02AZ MW15-02AZ	<u>11/07/15</u> 12/08/15	Maxxam Maxxam	B559978 B569424	10.3 8.95	0.14	0.948	87.6 82.8	<0.010 <0.010	<0.0050 <0.0050	<10 <10	0.0146	109 106	0.17 0.15	0.0261	1.03 1.12	8.4 6.8	0.0135	3.85 4.03	33.2 34.8
MW15-02AZ MW15-02AZ	MW15-02AZ MW15-02AZ	07/09/15	Maxxam	B578440	6.95	0.153	1.04	74.9	<0.010	<0.0050	<10	<0.0050	100	0.13	0.049	0.994	12.6	<0.0050	3.77	32.4
MW15-40AZ	MW15-02AZ	11/07/15	Maxxam	B559978	8.17	0.143	0.831	94.4	<0.010	<0.0050	<10	0.0209	114	0.12	0.0244	1.01	7.1	0.0145	3.73	30.5
MW15-02 WB/BH10-WB	MW15-02WB	01/06/15	Maxxam	B546672	6.19	0.343	2.44	26.3	< 0.010	< 0.0050	<10	0.0478	129	2.1	0.154	1.44	324	0.311	3.73	34.6
MW15-02WB	MW15-02WB	11/07/15	Maxxam	B559978	22.9	0.128	2.68	23	0.013	< 0.0050	<10	0.0348	128	0.37	0.106	0.293	397	0.24	3.91	34.5
MW15-02WB	MW15-02WB	12/08/15	Maxxam	B569424	8.86	0.128	2.99	24	0.015	<0.0050	<10	0.0342	134	0.62	0.13	0.248	412	0.362	4.57	36.9
MW15-02WB MW15-03AZ	MW15-02WB MW15-03AZ	07/09/15	Maxxam Maxxam	B578440 B551383	1.84	0.082	0.581	<u>38.9</u> 38	<0.010 <0.010	<0.0050	<10 <10	0.011	128 41	0.15	0.074	1.81	16.7 30.1	0.023	3.85	35.2 11.9
MW15-03AZ	MW15-03AZ MW15-03AZ	09/07/15	Maxxam	B558921	25.5	0.13	0.409	29.5	<0.010	<0.0050	<10	0.0118	37.7	0.19	0.0709	1.39	17.4	0.0129	0.56	11.9
MW15-03AZ	MW15-03AZ	10/08/15	Maxxam	B569424	32.8	0.203	0.525	30	0.013	< 0.0050	<10	0.016	29.3	0.3	0.0583	1.94	23.3	0.0136	0.85	8.44
MW15-03AZ	MW15-03AZ	04/09/15	Maxxam	B578440	19.4	0.188	0.515	25.8	0.016	< 0.0050	<10	0.011	26	0.22	0.058	1.99	14	< 0.0050	0.8	8.27
MW15-21	MW15-03AZ	16/06/15	Maxxam	B551383	34.4	0.141	0.445	38.1	0.011	< 0.0050	<10	0.0104	40	0.14	0.0589	1.28	23.5	0.0216	<0.50	11.8
MW15-03WB	MW15-03WB	16/06/15	Maxxam	B551383	54.5	0.076	0.525	17	0.017	<0.0050	18	0.0096	182	1.37	0.187	0.232	533	0.0361	12.1	140
MW15-03WB MW15-03WB	MW15-03WB MW15-03WB	09/07/15 10/08/15	Maxxam Maxxam	B558921 B569424	<u> </u>	0.091 0.046	0.611 0.719	13.9 11.4	0.01 <0.010	<0.0050 <0.0050	25	0.0258	155 156	0.74 0.48	0.102 0.068	0.362 0.325	586 553	0.0656	10 12.1	132 133
MW15-03WB	MW15-03WB	04/09/15	Maxxam	B578440	6.88	0.059	0.447	10.4	0.011	<0.0050	31	0.0180	150	0.3	0.064	0.238	557	0.036	12.1	135
MW15-04WB	MW15-04WB	14/06/15	Maxxam	B551383	8.95	2.86	1.65	35.4	< 0.010	< 0.0050	<10	0.0605	73.2	0.3	0.221	2.15	23.1	0.491	6.88	36.9
MW15-04WB	MW15-04WB	10/07/15	Maxxam	B558916	7.77	2.88	1.39	34.5	< 0.010	< 0.0050	<10	0.0611	71.2	0.4	0.255	1.18	21.1	0.293	6.04	36.7
MW15-04WB	MW15-04WB	11/08/15	Maxxam	B569424	23.8	2.69	1.65	37.6	< 0.010	< 0.0050	<10	0.125	75.7	1.02	0.241	2.85	43.1	0.293	7.01	39.4
MW15-04WB	MW15-04WB	05/09/15	Maxxam	B578440	5.75	2.69	1.2	33.3	0.012	<0.0050	<10	0.042	69.3 75.4	0.21	0.218	1.07	17	0.367	7.33	38.2
MW15-20 MW15-30WB	MW15-04WB MW15-04WB	14/06/15 10/07/15	Maxxam Maxxam	B551383 B558916	11.8	2.91	1.69	34.8	<0.010 <0.010	<0.0050	<10 <10	0.0572	75.4	0.28 0.12	0.22	2.11	20.1 12.6	0.48	6.47 7.19	36.6 36.1
MW15-05AZ	MW15-05AZ	06/09/15	Maxxam	B578440	201	0.088	3.03	18.5	0.03	<0.0050	<10	0.0333	2.73	0.12	2.7	2.03	1360	0.06	<0.50	0.766
MW15-05WB	MW15-05WB	18/06/15	Maxxam	B553846	7.11	0.371	1.25	3.97	<0.010	< 0.0050	<10	0.041	44.3	0.5	0.072	0.607	13.7	0.15	12.9	7.06
MW15-05WB	MW15-05WB	10/07/15	Maxxam	B558916	29.7	0.348	1.25	5.44	< 0.010	< 0.0050	<10	0.0683	41.1	2.67	0.125	0.551	47.5	0.104	11.7	7.08
MW15-05WB	MW15-05WB	11/08/15	Maxxam	B569424	2.56	0.202	0.927	1.65	<0.010	<0.0050	<10	0.0135	42.8	0.3	0.058	0.116	7.3	0.019	12.5	7.01
MW15-05WB	MW15-05WB	06/09/15	Maxxam	B578440	1.43	0.186	0.891	1.01	<0.010	<0.0050	<10	<0.0050	42	0.13	0.055	0.118	3.2	0.009	12.2	6.97
MW15-60 MW15-06WB	MW15-05WB MW15-06WB	11/08/15 21/07/15	Maxxam Maxxam	B569424 B562572	20.4	0.212	0.957 12.5	1.91 39.2	<0.010 <0.010	<0.0050 <0.0050	<10 <10	0.0158 0.0635	44.5 65.1	0.4	0.0656	0.411 1.38	14.3 507	0.0281 0.263	112	7.3 30.5
	MW15-06WB	09/08/15	Maxxam	B569424	151	2.63	21.2	41.8	<0.010	<0.0050	<u> </u>	0.0033	74.5	1.13	2.58	0.952	269	0.203	11.1	36.3
MW15-06WB				· - ·																

and Dissolved Metals Analytical Results

and Dissolved Metal																				
		Total Manganese	Total Mercury	Total Molybdenum	Total Nickel (Ni)	Total Phosphorus	Total Potassium	Total Selenium	Total Silicon (Si)	Total Silver (Ag)	Total Sodium		Total Sulphur (S)	Total Thallium	Total Tin (Sn)	Total Titanium	Total Uranium	Total Vanadium	Total Zinc	Total Zirconium
Station	Sample Date	(Mn)	(Hg)	(Mo)		(P)	(K)	(Se)	1 otal Shicon (SI)	Total Sliver (Ag)	(Na)	Strontium (Sr)		(Tl)		(Ti)	(U)	(V)	(Zn)	(Zr)
		ug/L	ug/L	ug/L	ug/L	ug/L	mg/L	ug/L	ug/L	ug/L	mg/L	ug/L	mg/L	ug/L	ug/L	ug/L	ug/L	ug/L	ug/L	ug/L
		0.05	0.002	0.05	0.02	2	0.05	0.04	50	0.005	0.05	0.05	3	0.002	0.2	0.5	0.002	0.2	0.1	0.1
		0.05	0.5	0.05	0.5	50	0.1	0.1	50	0.01	0.05	0.2	0.5	0.01	0.1	10	0.01	1	3	-
MW14-02A	28/09/14	17.5	< 0.01	4.56	<0.5	<50	3.61	0.28	6350	< 0.01	5.28	341	18.7	0.041	< 0.1	<10	62.7	<1	<3	
MW14-02A	12/06/15	687	0.0038	7.53	16.7	8.1	3.77	0.267	6050	0.0093	3.68	509	26.6	0.0883	<0.20	1.76	85.8	0.49	2.05	<0.10
MW14-02A	16/07/15	7.69	0.0043	3.09	0.278	28	2.67	0.235	6400	<0.0050	2.77	325	14.5	0.0223	<0.20	<0.50	47.7	<0.20	2.62	<0.10
MW14-02A MW14-02A	06/08/15 04/09/15	7.59 2.63	0.0032 0.0041	3.57 3.28	0.354 0.075	7.3	3.34 2.75	0.251 0.274	6760 5610	0.0096	5.01 3.09	402 381	17.9 19.6	0.0454 0.028	<0.20 <0.20	0.84	50.6 49.6	0.29 0.23	1.23 0.33	<0.10 <0.10
MW14-02A MW14-02A	04/09/15	2.05	0.0041	3.2	0.073	9.1	2.73	0.274	5720	<0.0050	3.14	391	19.0	0.028	<0.20	<0.50	50.3	<0.20	0.33	<0.10
MW14-02R MW14-02B	28/09/14	156	0.0041	4.89	2.47	<50	3.66	0.33	6240	<0.01	4.37	467	29	0.04	<0.20	<10	81.6	<0.20	11	<0.10
MW14-02B	28/09/14	161	0.017	5.43	2.49	<50	3.73	0.34	6230	0.011	4.42	514	28.7	0.026	<0.1	<10	91.9	<1	11.9	
MW14-02B	12/06/15	10.6	0.0054	3.5	0.24	9.6	3	0.232	5920	0.0092	3.23	380	17.8	0.0445	< 0.20	< 0.50	52.7	0.24	4.15	< 0.10
MW14-02B	16/07/15	714	0.008	6.9	8.77	69	3.63	0.248	6440	< 0.0050	3.72	463	26	0.0507	< 0.20	< 0.50	73.3	< 0.20	5.49	< 0.10
MW14-02B	06/08/15	667	0.0035	6.61	9.22	6.5	3.71	0.271	6270	0.0054	3.68	474	25.5	0.27	< 0.20	1	75.9	0.32	3.4	<0.10
MW14-02B	04/09/15	560	0.0036	6.06	12	7.1	3.35	0.296	5790	< 0.0050	3.55	483	28.7	0.288	< 0.20	0.62	78.2	0.23	4.06	<0.10
MW14-03A	22/06/15	794	0.0254	4.56	2.56	53.9	8.99	0.065	6090	<0.0050	28.2	4490	169	0.033	<0.20	0.68	58.2	0.25	1.69	1.49
MW14-03A	12/07/15	963	0.0284	5.22	1.5	123	8.58	0.118	6840	0.0115	27.1	4490	145	0.0163	<0.20	1.98	50.9	0.51	2.51	2.7
MW14-03A MW14-03A	07/08/15 06/09/15	748 795	0.0118 0.0112	2.92 4.11	0.616	65.3 74.8	<u>8.4</u> 8.82	<0.040	7300	0.0058	27.6 28.3	4240 4760	166	0.0377 0.011	<0.20 <0.20	0.62	49.4 47	0.29 0.42	2.46	2.58 3.15
MW14-03A MW14-03A	07/08/15	795	0.0112	3.1	0.772	157	8.82	<0.040	7310	0.008	28.3	4760	164 167	0.011	<0.20	<0.50	47	0.42	1.11 8.34	2.88
MW14-03A MW14-03B	22/06/15	3090	0.0309	8.75	20.6	42.9	8.25	0.28	5350	0.063	28.5	2990	170	0.276	<0.20	0.72	35	0.33	2.21	0.35
MW14-03B MW14-03B	12/07/15	3240	0.017	8.71	18.3	70.8	7.5	0.2	6460	0.0348	23.9	2850	155	0.148	<0.20	0.95	35.2	0.23	10.2	0.41
MW14-03B	07/08/15	3030	0.0304	6.95	19.5	53.5	8.07	0.146	6350	0.0325	27.1	2960	198	0.143	<0.20	<0.50	39	<0.20	11.8	0.33
MW14-03B	06/09/15	3180	0.0201	7.65	18.3	34.6	8.46	0.15	5380	0.034	26.8	3490	193	0.193	< 0.20	< 0.50	41.3	< 0.20	1.07	0.33
MW14-03B	06/09/15	3140	0.0211	7.86	18.7	35.1	8.7	0.153	5470	0.033	27.3	3490	194	0.206	< 0.20	< 0.50	41.7	< 0.20	1.01	0.27
MW14-05A	23/06/15	1320	0.003	3.65	1.31	84.5	5.14	0.149	13700	0.04	12.4	336	8.6	0.01	< 0.20	2.76	26.4	0.31	14.8	0.11
MW14-05A	13/07/15	1080	0.0024	4.05	1.6	128	5.22	0.147	13700	0.0397	11.7	323	5.6	0.0211	0.2	3.88	26.8	0.33	16.7	0.17
MW14-05A	08/08/15	1160	<0.0020	4.89	1.92	247	8.03	0.108	13900	0.016	18.4	498	7.5	0.0197	0.47	2.03	24.3	0.25	19.1	0.18
MW14-05A MW14-05B	07/09/15 24/06/15	<u> </u>	<0.0020 0.0054	4.27 27.3	0.659 10.1	92.1 176	5.62 14.3	0.102 0.403	13400 12300	0.006 0.302	12.4 72.8	356	6.5 40.5	0.002 0.119	0.2 0.92	1.09 50.1	36.5 16.6	<0.20 2.56	4.56 34.3	0.12 0.59
MW14-05B MW14-05B	14/07/15	734	0.0054	27.3	7.87	187	12.3	0.403	11800	0.111	91.5	701	50.9	0.0486	0.92	13	18.4	1.55	34.5	0.42
MW14-05B	09/08/15	935	0.0056	16.1	5.33	161	10.8	0.356	12800	0.0406	112	693	59.9	0.0201	0.64	3.88	14.8	1.23	6.49	0.3
MW14-05B	08/09/15	1240	0.0039	9.09	4.23	173	9.95	0.17	14200	0.128	62.3	600	30.7	0.008	0.94	3.96	9.67	0.96	7.84	0.34
MW15-01WB	08/07/15	373	< 0.0020	0.864	2.03	14.9	5.09	1.65	8170	< 0.0050	26.8	2700	296	0.0172	< 0.20	< 0.50	542	< 0.20	84.2	0.38
MW15-01WB	10/08/15	382	< 0.0020	0.776	2.39	209	5.13	0.07	8530	< 0.0050	28.8	2700	304	0.0297	< 0.20	3.26	548	< 0.20	138	0.59
MW15-01WB	03/09/15	368	< 0.0020	0.788	1.73	18.1	5.26	0.135	6760	< 0.0050	27.2	3020	316	0.045	< 0.20	< 0.50	598	< 0.20	110	0.42
MW15-01WB	07/06/15	377	<0.0020	0.788	1.91	4.4	4.96	0.106	8960	0.01	26.2	3000	294	0.0347	<0.20	< 0.50	490	< 0.20	58	0.72
MW15-02AZ	31/05/15	19.8	<0.0020	0.436	1.09	39.7	7.14	1.26	5200	<0.0050	5.87	1260	83.1	0.0059	<0.20	<0.50	29.3	<0.20	1.01	0.16
MW15-02AZ MW15-02AZ	<u>11/07/15</u> 12/08/15	0.31 8.32	0.0028	0.348 0.367	0.479 0.674	8.2	5.43 6.11	0.182	5040	<0.0050 <0.0050	4.64	<u> </u>	55.9 56.1	0.0072 0.0026	<0.20 <0.20	<0.50 <0.50	23.5 24.7	0.29 0.43	1.72 1.24	0.17 0.16
MW15-02AZ MW15-02AZ	07/09/15	28.7	<0.0023	0.307	0.69	32.1	6.87	0.193	5560	<0.0050	4.77	939	58	0.0020	<0.20	<0.50	24.7	<0.20	0.2	0.15
MW15-02AZ	11/07/15	0.244	0.0020	0.352	0.539	26.8	5.16	0.185	5530	<0.0050	4.38	981	50.7	0.0057	<0.20	<0.50	25.2	0.21	1.39	0.16
MW15-02WB	01/06/15	94.1	< 0.0020	1.17	2.54	8.1	8.43	0.344	5090	<0.0050	8.32	954	81.5	0.0071	<0.20	< 0.50	36.4	<0.20	35.6	0.91
MW15-02WB	11/07/15	105	< 0.0020	0.69	1.04	46.7	8.5	0.113	4910	< 0.0050	9.12	949	82.6	0.0164	< 0.20	1.16	31.8	0.22	18.2	0.84
MW15-02WB	12/08/15	110	< 0.0020	0.708	1.24	27.9	9.07	0.139	5560	< 0.0050	10.1	917	83.7	0.0057	< 0.20	0.56	31	0.23	28.1	0.67
MW15-02WB	07/09/15	37.9	< 0.0020	0.56	1.56	6.9	11	0.12	5200	< 0.0050	6.22	916	80.2	0.017	< 0.20	< 0.50	31.4	< 0.20	10.2	0.13
MW15-03AZ	16/06/15	55.5	0.0067	0.442	1.05	22	1.82	0.045	5030	<0.0050	4	307	17.4	0.0028	<0.20	0.74	35.4	0.2	7.96	0.3
MW15-03AZ	09/07/15	214	<0.0020	0.465	1.25	7.9	1.82	<0.040	4670	<0.0050	3.72	280	14.7	0.0023	<0.20	1.69	36.3	0.2	0.57	0.27
MW15-03AZ	10/08/15	66.4	0.0028	0.497	1.1	40.9	1.59	0.055	4970	0.0056	3.38	210	8	0.0052	<0.20	0.72	17.9	0.27	6.03	0.41
MW15-03AZ MW15-03AZ	04/09/15 16/06/15	105	0.0026	0.528	1.15	4.4	1.5	0.058	4690	<0.0050 <0.0050	3.29 3.92	212	7.6	0.003	<0.20 <0.20	0.7	18.6 37	<0.20 <0.20	0.37	0.4
MW15-03WB	16/06/15	89.6	<0.0020	0.848	2.96	4.4	9.03	<0.040	8600	<0.0050	<u> </u>	9260	341	0.0029	<0.20	1.03	8.56	<0.20	16.5	0.28
MW15-03WB	09/07/15	76.1	<0.0020	0.916	1.64	47.8	8.14	0.108	7530	0.0074	70.5	8840	310	0.006	<0.20	0.85	7.39	<0.20	27	0.1
MW15-03WB	10/08/15	76.5	<0.0020	0.817	1.6	37.3	8.14	0.073	8010	<0.0050	71.9	8040	329	0.0061	<0.20	<0.50	8.51	<0.20	51.2	<0.10
MW15-03WB	04/09/15	75.5	< 0.0020	0.962	1.24	12.9	8.59	0.109	7010	< 0.0050	73.9	9280	328	0.008	< 0.20	< 0.50	8.02	< 0.20	46.3	<0.10
MW15-04WB	14/06/15	118	< 0.0020	2.58	0.934	49.6	4.65	0.43	5680	< 0.0050	5.95	783	40.6	0.0116	< 0.20	< 0.50	176	0.25	44.6	0.26
MW15-04WB	10/07/15	121	< 0.0020	2.41	1.17	39.6	4.3	0.153	5490	0.0051	5.98	792	38.2	0.0093	<0.20	< 0.50	170	0.29	17.9	0.27
MW15-04WB	11/08/15	110	<0.0020	2.57	1.58	119	4.9	0.477	5930	<0.0050	6.4	788	41.7	0.0109	<0.20	0.82	157	0.33	122	0.24
MW15-04WB	05/09/15	106	<0.0020	2.59	0.688	16.9	3.98	0.403	5440	<0.0050	6.05	846	43.2	0.01	<0.20	<0.50	167	0.21	23	0.24
MW15-04WB MW15-04WB	14/06/15 10/07/15	119 119	<0.0020	2.47	0.875	59.9 29.5	4.57	0.349	5790	<0.0050 0.0076	5.98 5.92	789	40.9 39.1	0.0099	<0.20	0.57	176 192	0.26	42.5	0.27
MW15-05AZ	06/09/15	620	<0.0020	0.276	1.33	29.5	0.123	0.06	6010	0.0078	1.16	16.2	<3.0	0.0105	<0.20	2.94	0.811	2.97	0.99	1.2
MW15-05WB	18/06/15	14.5	<0.0037	0.646	0.235	66.2	1.66	0.374	9670	<0.005	8.88	138	4	0.008	<0.20	<0.50	71.7	<0.20	64.7	<0.10
MW15-05WB	10/07/15	7.43	<0.0020	0.969	2.26	91.6	1.45	0.444	8580	0.0078	9.11	138	3.9	0.007	<0.20	1.24	69.5	0.21	102	<0.10
MW15-05WB	11/08/15	4.45	<0.0020	0.564	0.448	21.2	0.792	0.104	8980	< 0.0050	9.36	138	3.8	<0.0020	<0.20	<0.50	72.9	<0.20	20.3	<0.10
MW15-05WB	06/09/15	6.25	< 0.0020	0.682	0.247	18.2	0.693	< 0.040	9410	< 0.0050	9.16	145	4.2	< 0.0020	< 0.20	< 0.50	76.9	< 0.20	12.5	<0.10
MW15-05WB	11/08/15	4.9	< 0.0020	0.631	0.489	59.8	0.857	0.111	9780	< 0.0050	9.65	137	3.9	< 0.0020	< 0.20	0.69	73.3	< 0.20	26.3	<0.10
MW15-06WB	21/07/15	2300	0.091	34.5	4.18	99.8	7.22	0.475	7040	0.0748	10.9	413	30.7	0.024	< 0.20	16.1	96.5	0.5	604	0.65
MW15-06WB	09/08/15	3410	0.281	42.6	3.34	54.1	6.51	0.414	6520	0.0524	9.74	442	32.5	0.053	<0.20	7.78	103	0.49	172	0.81
MW15-06WB	08/09/15	5430	0.0942	80.4	2.7	46.8	6.42	0.147	5550	0.036	8.43	444	33.6	0.033	< 0.20	3.17	95	< 0.20	85.1	0.62

Sample ID	Station	Sample Date	Analytical Laboratory	Lab Job ID	Dissolved Aluminum (Al)	Dissolved Antimony (Sb)	Dissolved Arsenic (As)	Dissolved Barium (Ba)	Dissolved Beryllium (Be)	Dissolved Bismuth (Bi)	Dissolved Boron (B)	Dissolved Cadmium (Cd)	Dissolved Calcium (Ca)	Dissolved Chromium (Cr)	Dissolved Cobalt (Co)	Dissolved Copper (Cu)	Dissolved Iron (Fe)	Dissolved Lead (Pb)	Dissolved Lithium (Li)	Dissolved Magnesium (Mg)
					ug/L	ug/L	ug/L	ug/L	ug/L	ug/L	ug/L	ug/L	mg/L	ug/L	ug/L	ug/L	ug/L	ug/L	ug/L	mg/L
Maxxam RDL:					0.5	0.02	0.02	0.02	0.01	0.005	10	0.005	0.05	0.1	0.005	0.05	1	0.005	0.5	0.05
ALS RDL: MW14-02A	MW14-02A	28/09/14	ALS	L1525019	5.7	0.1	0.1 71.1	0.05	0.1	0.5 <0.5	10 <10	0.01 <0.01	0.05 45.7	0.1 0.49	0.1	0.2 <0.2	10 <10	0.05 <0.05	0.5 7.79	0.1 21.6
MW14-02A MW14-02A	MW14-02A MW14-02A	12/06/15	Maxxam	B550137	14.5	0.784	53.8	13.4	<0.010	<0.0050	<10	<0.0050	45.8	0.51	0.0356	0.232	14	0.0206	6.45	20.8
MW14-02A	MW14-02A	16/07/15	Maxxam	B562572	8.65	0.719	52.4	12.9	< 0.010	< 0.0050	<10	< 0.0050	40.7	0.45	0.0194	< 0.050	2.9	<0.0050	7.74	20.9
MW14-02A	MW14-02A	06/08/15	Maxxam	B569424	17.4	0.7	51.9	13.8	< 0.010	< 0.0050	<10	0.006	46.1	0.6	0.0419	0.305	26.6	0.0291	8.06	21.8
MW14-02A	MW14-02A	04/09/15	Maxxam	B578440	3.96	0.697	53.8	9.88	< 0.010	< 0.0050	<10	<0.0050	40.3	0.47	0.014	0.065	<1.0	<0.0050	7.42	20.5
MW14-100 F-DUP-1	MW14-02A MW14-02B	04/09/15	Maxxam	B578440 L1525019	4.44	0.708	54.7	10.1 54.2	<0.010	<0.0050 <0.5	<10	<0.0050	40.5 61.4	0.49	0.013	0.056	<1.0	<0.0050 <0.05	7.66 7.19	21.4
MW14-02B	MW14-02B MW14-02B	28/09/14 28/09/14	ALS ALS	L1525019 L1525019	<1	2.89 3.27	20.5 20.4	54.2	<0.1	<0.5	<10 <10	<0.01 <0.01	61.4 61.8	0.42 0.41	0.62	<0.2	<10 <10	<0.05	7.19	31.1 31.2
MW14-02B	MW14-02B	12/06/15	Maxxam	B550137	3.19	6.56	34	45	<0.010	<0.0050	<10	<0.0050	52.4	0.12	2.47	0.081	7.3	0.0114	6.75	27.1
MW14-02B	MW14-02B	16/07/15	Maxxam	B562572	15.1	6.6	37.4	57.7	< 0.010	< 0.0050	<10	< 0.0050	52.3	< 0.10	1.57	< 0.050	9.8	< 0.0050	7.08	30.3
MW14-02B	MW14-02B	06/08/15	Maxxam	B569424	2.16	5.89	39.3	52.2	< 0.010	< 0.0050	<10	< 0.0050	57.5	0.17	1.46	0.082	4.8	0.0098	7.63	31.9
MW14-02B	MW14-02B	04/09/15	Maxxam	B578440	1.57	5.97	38.8	40.5	< 0.010	< 0.0050	<10	0.008	52.2	0.24	1.53	0.074	1.5	0.009	7.52	28.8
MW14-03A	MW14-03A	22/06/15	Maxxam	B553846	5.35	1.02	49.4	143	0.012	<0.0050	12	<0.0050	135	<0.10	2.46	0.175	7330	0.162	31.3	143
MW14-03A MW14-03A	MW14-03A MW14-03A	<u>12/07/15</u> 07/08/15	Maxxam Maxxam	B559978 B569424	20.2 52.8	0.698 0.586	58.6 68.9	128 98	<0.010 0.016	<0.0050 <0.0050	<10 <10	0.0121	138 135	0.3 0.21	2.03 1.75	0.417	9370 8760	0.0778	27.2 32.3	125 142
MW14-03A MW14-03A	MW14-03A MW14-03A	06/09/15	Maxxam Maxxam	B569424 B578440	3.44	0.313	75.7	103	0.018	<0.0050	<10	<0.0545	135	<0.21	1.75	0.068	7560	0.14	26.6	142
MW14-50	MW14-03A MW14-03A	07/08/15	Maxxam	B569424	43.5	0.595	71.9	103	0.013	0.0111	18	0.014	137	0.22	1.88	1.53	8880	0.205	31.4	139
MW14-03B	MW14-03B	22/06/15	Maxxam	B553846	18.9	0.134	8.7	99	< 0.010	< 0.0050	12	0.0223	138	0.14	7.55	1.58	1770	0.0798	24.6	176
MW14-03B	MW14-03B	12/07/15	Maxxam	B559978	14.1	0.103	9.2	87.8	< 0.010	< 0.0050	<10	0.0628	127	0.16	7	0.941	2140	0.0615	21.1	143
MW14-03B	MW14-03B	07/08/15	Maxxam	B569424	7.11	0.091	8.21	74.7	< 0.010	0.0129	<10	0.0184	133	< 0.10	7.2	1.11	1340	0.0338	26.6	184
MW14-03B	MW14-03B	06/09/15	Maxxam	B578440	2.81 2.88	0.087	7.63	61.8	<0.010	<0.0050 <0.0050	<10	0.008	129	<0.10 <0.10	6.14	0.489	1010	0.022	23 24.9	164
MW14-200 MW14-05A	MW14-03B MW14-05A	06/09/15 23/06/15	Maxxam Maxxam	B578440 B553846	2.88	0.085	7.76 1860	64.1 98.4	<0.010 0.026	<0.0050	<10 <10	<0.0050	131 47.1	<0.10	6.11 1.17	0.434	1020 1920	0.015	30	163 8.9
MW14-05A MW14-05A	MW14-05A MW14-05A	13/07/15	Maxxam	B559978	24.2	0.664	1680	93.4	0.016	<0.0050	<10	0.0115	43.8	0.2	0.933	1.16	2380	0.257	27.9	8.42
MW14-05A	MW14-05A	08/08/15	Maxxam	B569424	8.88	0.476	1480	109	0.015	0.0089	<10	< 0.0050	47.2	0.17	0.742	0.18	2940	0.0112	34.3	8.87
MW14-05A	MW14-05A	07/09/15	Maxxam	B578440	4	0.407	1700	118	0.02	< 0.0050	<10	< 0.0050	43.2	0.12	0.85	0.053	3590	0.007	28.4	8.86
MW14-05B	MW14-05B	24/06/15	Maxxam	B554336	18.5	1.17	135	83.6	< 0.010	< 0.0050	13	0.0423	45.8	0.17	0.955	2.48	69.2	0.0788	36	6.28
MW14-05B	MW14-05B	14/07/15	Maxxam	B560161	28.5	0.86	117	78	<0.10	<1.0	<50	0.031	42.7	<1.0	1.14	1.02	638	<0.20	32.8	6.6
MW14-05B MW14-05B	MW14-05B MW14-05B	09/08/15	Maxxam Maxxam	B569424 B579224	12.4 6.82	0.672	145 161	84.1 77.2	<0.010 <0.010	<0.0050 <0.0050	25 11	0.017	46.6 46	0.31	1.25	0.293 0.122	1180 1610	0.0283	34.3 34.2	7.71
MW14-03B MW15-01WB	MW15-01WB	08/07/15	Maxxam	B558595	3.92	0.626	22.2	11.2	<0.010	<0.0050	<10	0.0485	244	<0.10	0.794	0.122	2.6	0.0235	25.8	194
MW15-01WB	MW15-01WB	10/08/15	Maxxam	B569424	5.67	0.395	29	9.93	0.022	0.0114	12	0.0607	228	< 0.10	0.704	0.191	24.9	< 0.0050	25.7	185
MW15-01WB	MW15-01WB	03/09/15	Maxxam	B578440	14.3	0.347	42.2	9.23	0.038	< 0.0050	<10	0.046	250	0.94	0.664	0.413	558	0.225	22.8	186
MW15-01WB/BH8-WB	MW15-01WB	07/06/15	Maxxam	B549739	< 0.50	0.808	23.9	11.1	0.033	< 0.0050	<10	0.0141	266	< 0.10	0.888	0.098	2.8	< 0.0050	25.9	195
MW15-02 AZ/BH10-AZ	MW15-02AZ	31/05/15	Maxxam	B546672	3.65	0.435	1.1	91.7	<0.010	<0.0050	<10	0.009	135	0.14	0.207	1.28	4.9	<0.0050	4.35	42.5
MW15-02AZ MW15-02AZ	MW15-02AZ MW15-02AZ	<u>11/07/15</u> 12/08/15	Maxxam Maxxam	B559978 B569424	14.8 8.74	0.147 0.14	0.917	89.9 81.3	<0.010 <0.010	<0.0050 <0.0050	<10 <10	0.125	111 125	0.2	0.0388	1.34 1.33	10.7	0.021	3.71 4.27	33.8 43.1
MW15-02AZ	MW15-02AZ	07/09/15	Maxxam	B578440	3.62	0.14	0.978	71.5	<0.010	<0.0050	<10	< 0.0050	125	<0.10	0.088	0.947	5.2	<0.0050	4.27	31.8
MW15-40AZ	MW15-02AZ	11/07/15	Maxxam	B559978	12.2	0.14	0.905	85.5	< 0.010	< 0.0050	<10	0.0283	110	0.15	0.0294	1.09	11.2	0.0085	3.91	33.3
MW15-02 WB/BH10-WB	MW15-02WB	01/06/15	Maxxam	B546672	6.92	0.375	2.5	26.6	0.019	< 0.0050	<10	0.042	144	1.92	0.184	0.692	362	0.312	4.42	37.5
MW15-02WB	MW15-02WB	11/07/15	Maxxam	B559978	4.2	0.123	1.92	22.7	< 0.010	< 0.0050	<10	0.0345	130	< 0.10	0.0957	0.199	13.7	0.0078	3.64	32.7
MW15-02WB	MW15-02WB	12/08/15	Maxxam	B569424	4.8	0.143	2.48	23.5	<0.010	<0.0050	<10	0.0267	129	<0.10	0.135	0.249	3.9	0.0052	4.12	35.2
MW15-02WB MW15-03AZ	MW15-02WB MW15-03AZ	07/09/15 16/06/15	Maxxam Maxxam	B578440 B551383	1.92 38.1	0.076	0.498	<u>39.5</u> 37.9	<0.010 <0.010	<0.0050	<10 <10	0.011 0.012	125 40.6	0.18	0.068	1.66	13.8 12.3	0.021	4.45	35.2 12.1
MW15-03AZ	MW15-03AZ MW15-03AZ	09/07/15	Maxxam	B558921	24.6	0.133	0.431	30.1	<0.010	<0.0050	<10	0.0258	38.7	0.10	0.0861	1.37	21.3	0.0257	<0.50	12.1
MW15-03AZ	MW15-03AZ	10/08/15	Maxxam	B569424	26.3	0.197	0.552	29.4	0.013	< 0.0050	<10	0.0108	28.4	0.28	0.0601	1.98	19.5	0.0113	0.77	8.75
MW15-03AZ	MW15-03AZ	04/09/15	Maxxam	B578440	18.6	0.178	0.477	24.5	0.011	< 0.0050	<10	0.01	25.9	0.17	0.05	1.73	9.3	0.005	1.13	7.73
MW15-21	MW15-03AZ	16/06/15	Maxxam	B551383	30.5	0.158	0.411	39.7	< 0.010	< 0.0050	<10	0.0122	41.4	0.1	0.0597	1.54	11.1	< 0.0050	2.45	13.2
MW15-03WB	MW15-03WB	16/06/15	Maxxam	B551383	35.6	0.096	0.268	17.6	< 0.010	<0.0050	42	< 0.0050	172	<0.10	0.123	0.074	11.4	<0.0050	12.2	141
MW15-03WB MW15-03WB	MW15-03WB MW15-03WB	09/07/15 10/08/15	Maxxam Maxxam	B558921 B569424	7.69 3.72	0.099	0.474 0.485	14.4 11.8	<0.010 <0.010	<0.0050 0.0148	33 38	0.0481	160 156	<0.10 <0.10	0.0867	0.238	5.6 5.6	<0.0050 <0.0050	10 12.5	130 126
MW15-03WB	MW15-03WB	04/09/15	Maxxam	B578440	3.53	0.038	0.483	10.4	<0.010	<0.00148	29	0.014	150	0.22	0.0050	0.087	569	0.02	11.2	120
MW15-04WB	MW15-04WB	14/06/15	Maxxam	B551383	44.1	3.02	1.54	33.3	<0.010	<0.0050	<10	0.0487	73.1	<0.10	0.221	2.26	6.4	0.337	7.37	37.7
MW15-04WB	MW15-04WB	10/07/15	Maxxam	B558916	21	2.97	1.37	31.9	< 0.10	<1.0	<50	0.081	70	<1.0	<0.50	1.31	12.4	<0.20	6.7	36.7
MW15-04WB	MW15-04WB	11/08/15	Maxxam	B569424	11.3	2.79	1.32	33.8	< 0.010	< 0.0050	<10	0.0999	78.8	< 0.10	0.225	1.22	6.7	0.149	6.73	38.4
MW15-04WB	MW15-04WB	05/09/15	Maxxam	B578440	3.47	2.56	1.32	32.7	< 0.010	<0.0050	<10	0.042	74.1	0.37	0.202	1.09	13	0.366	6.98	37.4
MW15-20	MW15-04WB	14/06/15	Maxxam	B551383	44.1	2.87	1.51	32.4	<0.010	<0.0050	<10	0.0539	76.4	<0.10	0.227	2.12	8.9	0.32	6.91	37.7
MW15-30WB MW15-05AZ	MW15-04WB MW15-05AZ	<u>10/07/15</u> 06/09/15	Maxxam Maxxam	B558916 B578440	3.2 189	3.05 0.084	1.32 2.28	32.3 18.8	<0.10 0.026	<1.0	<50 <10	0.037 0.022	71.7 2.93	<1.0	<0.50 2.49	0.96	5.4 931	0.31	0.69	36.6 0.747
MW15-05WB	MW15-05WB	18/06/15	Maxxam	B578440 B553846	4.1	0.084	1.27	4	<0.028	<0.005	<10	0.022	47.4	<0.10	0.037	0.363	2.3	0.033	14.2	8.02
MW15-05WB	MW15-05WB	10/07/15	Maxxam	B558916	3.1	<0.50	0.88	2.1	<0.10	<1.0	<50	0.019	42	<1.0	<0.50	<0.20	<5.0	<0.20	11.9	6.99
MW15-05WB	MW15-05WB	11/08/15	Maxxam	B569424	1.7	0.217	0.971	1.97	<0.010	<0.0050	<10	0.0159	44.5	<0.10	0.0571	0.083	2.7	0.0104	13	7
MW15-05WB	MW15-05WB	06/09/15	Maxxam	B578440	4.49	0.252	1.19	2.47	< 0.010	< 0.0050	<10	0.023	45.5	0.41	0.057	0.243	11.1	0.044	12.1	7.9
MW15-60	MW15-05WB	11/08/15	Maxxam	B569424	23.1	0.222	0.958	1.91	< 0.010	< 0.0050	<10	0.0159	44.7	< 0.10	0.0451	0.102	3.3	0.0122	13	6.97
MW15-06WB	MW15-06WB	21/07/15	Maxxam	B562572	8.4	2.45	10.3	39.1	<0.010	<0.0050	<10	0.0131	65.6	<0.10	2.14	0.193	56.9	0.023	8.36	32.9
MW15-06WB MW15-06WB	MW15-06WB MW15-06WB	09/08/15	Maxxam	B569424 B579224	7.18 67.5	2.84 0.764	20.2 25.8	41.5 56.1	<0.010 <0.010	<0.0050 <0.0050	<10	0.0217	71.8 82.5	<0.10 0.66	2.49	0.629	73.5 849	0.0172	10.7	33.4 39.9
	IVI VV 1 J-UO W B	00/09/10	Maxxam	DJ19224	07.5	0.704	∠۵.۵	30.1	<0.010	<0.0050	<10	0.037	02.3	0.00	3.22	1.23	049	0.098	12.4	39.9

 Black Text
 [Dissolved Metals] 20% > [Total Metals] and >5x RDL (values with "<" not used for calculation)</td>

 • Samples MW14-03A Oct. 2014, MW14-03B Oct. 2014, MW14-05A Oct. 2014, MW14-05B Oct. 2014, MW15-06WB Jun. 2015 not considered to be representative of formation water are excluded from the comparison of total and dissolved metals. See Appendix 5-D for the discussion regarding these samples.

LORAX

and Dissolved Metals Analytical Results

		Dissolved	Dissolved	Dissolved	Dissolved Nickel	Dissolved	Dissolved	Dissolved	Dissolved Silicon	Dissolved Silver	Dissolved Sodium	Dissolved	Dissolved	Dissolved	Dissolved Tin	Dissolved	Dissolved	Dissolved	Dissolved Zinc	Dissolved
Station	Sample Date	Manganese (Mn)	Mercury (Hg)	Molybdenum (Mo)	(Ni)	Phosphorus (P)	Potassium (K)	Selenium (Se)	(Si)	(Ag)	(Na)	Strontium (Sr)	Sulphur (S)	Thallium (TI)	(Sn)	Titanium (Ti)	Uranium (U)	Vanadium (V)	(Zn)	Zirconium (Zr)
		ug/L	ug/L	ug/L	ug/L	ug/L	mg/L	ug/L	ug/L	ug/L	mg/L	ug/L	mg/L	ug/L	ug/L	ug/L	ug/L	ug/L	ug/L	ug/L
		0.05	0.002	0.05	0.02	2	0.05	0.04	50	0.005	0.05	0.05	3	0.002	0.2	0.5	0.002	0.2	0.1	0.1
MW14-02A	28/09/14	0.05	0.01 <0.01	0.05 4.88	0.5 <0.5	50 <50	0.1 3.63	0.1 0.25	50 6410	0.01 <0.01	0.05 5.18	0.2 378	0.5 18.7	0.01 0.041	0.1 <0.1	10 <10	0.01 70.4	<1	1.6	-
MW14-02A	12/06/15	10.7	0.0035	3.19	0.348	53	2.94	0.255	6070	0.0053	3.17	361	17.7	0.0555	<0.20	<0.50	46.4	0.25	3.37	<0.10
MW14-02A MW14-02A	<u>16/07/15</u> 06/08/15	7.88	0.0042 0.0025	3.04 3.14	0.327 0.419	12.8 11.1	2.98 2.94	0.241 0.218	6580 6050	<0.0050 0.0135	3.03 4.69	372 353	17.4 17.6	0.0217 0.0486	<0.20 <0.20	<0.50 0.65	48 48.1	<0.20 0.3	2.26 3.83	<0.10 <0.10
MW14-02A	04/09/15	2.42	0.004	2.78	0.086	7.4	2.86	0.229	6160	< 0.0050	2.87	362	18.2	0.024	<0.20	< 0.50	44.6	<0.20	0.27	<0.10
MW14-02A MW14-02B	04/09/15 28/09/14	2.46	0.0038 <0.01	2.84 4.55	0.082	6.9 <50	2.83 3.69	0.237	6350 6270	<0.0050 <0.01	2.89 4.56	352 459	18.6 29	0.035	<0.20 <0.1	<0.50 <10	45.4 83.3	<0.20	0.54	<0.10
MW14-02B	28/09/14	162	< 0.01	4.96	2.5	<50	3.74	0.31	6270	< 0.01	4.53	494	29	0.025	<0.1	<10	92.5	<1	10.3	
MW14-02B MW14-02B	<u>12/06/15</u> 16/07/15	<u>621</u> 710	0.0021 0.0042	7.45 6.84	14.7 8.85	6.6 117	3.25 3.67	0.277 0.264	6090 6420	<0.0050	3.21 3.73	441 469	24.6 26.1	0.0784	<0.20 <0.20	<0.50 <0.50	72.2 76.8	0.36 <0.20	1.92 3.78	<0.10 <0.10
MW14-02B	06/08/15	645	< 0.0020	6.42	9.29	7.5	3.61	0.274	6130	<0.0050	3.73	462	26.8	0.267	< 0.20	<0.50	79.9	0.31	3.86	< 0.10
MW14-02B MW14-03A	04/09/15 22/06/15	511 815	0.0027 0.0068	5.72 4.82	10.6 2.36	5.2 42.7	3.47 9.39	0.278	6430 8050	<0.0050	3.28 28.3	454 5130	26.7 182	0.249 0.0176	<0.20 <0.20	<0.50 <0.50	72.2	<0.20 0.23	2.19 1.68	<0.10 2.39
MW14-03A	12/07/15	954	0.0098	5.14	1.35	118	8.31	0.043	7100	0.0082	26.8	4570	156	0.0037	<0.20	0.6	49.3	0.48	4.35	3.07
MW14-03A MW14-03A	07/08/15 06/09/15	754 653	0.0021	2.95 3.19	0.846	144 57.2	8.25 8.38	<0.040 <0.040	7320 7080	0.0135	29 26.1	4380 4440	166 153	0.0263	<0.20 <0.20	0.69	50.1 43.6	0.41 <0.20	16.2 0.29	2.96 3.39
MW14-03A MW14-03A	07/08/15	797	0.0039	3.41	0.935	195	8.91	<0.040	7270	0.007	28	4550	162	0.003	<0.20	0.86	53.7	0.34	16.2	3.1
MW14-03B MW14-03B	22/06/15 12/07/15	3490 3300	0.0049	9.53 8.76	22 18.5	69.9 50.2	9.18 7.7	0.249	7250 5980	0.0121 0.0056	30 24.5	3620 2950	198 164	0.132 0.0793	<0.20 <0.20	<0.50 <0.50	43.3 37.9	0.26 0.21	10.1 9.45	0.44
MW14-03B	07/08/15	3210	0.0028	7.38	20.4	38.2	8.46	0.143	6290	0.0138	24.3	3010	200	0.11	<0.20	<0.50	40.5	<0.20	6.03	0.33
MW14-03B	06/09/15	2920	0.0047	6.77	16.6	29.4	8.42	0.123	6070	0.007	26.8	3380 3400	193	0.135	<0.20	<0.50	37.5	<0.20	0.75	0.34
MW14-03B MW14-05A	06/09/15 23/06/15	2890 1390	0.0033 <0.0020	6.86 3.8	16.6 1.25	27.4 89.7	8.51 5.34	0.131 0.103	6300 14800	0.006 0.0054	25.6 13.5	3400	191 9.4	0.14 0.0048	<0.20 <0.20	<0.50 <0.50	38.2 32.5	<0.20 <0.20	0.85	0.3 <0.10
MW14-05A	13/07/15	1170	<0.0020	4.14	1.39	124	5.92	0.1	13400	< 0.0050	23.2	353	6.8	0.0085	<0.20	0.88	28.6	0.24	7.63	0.14
MW14-05A MW14-05A	08/08/15 07/09/15	1100	<0.0020 <0.0020	4.83	1.38 0.544	112 84.2	7.12 5.45	0.071	13700 14100	<0.0050 <0.0050	15.9 12.2	437 334	5.1 6.6	0.0114 <0.0020	<0.20 <0.20	<0.50 <0.50	25.4	<0.20 <0.20	0.92	0.14 0.12
MW14-05B	24/06/15	414	<0.0020	28.9	7.23	112	14	0.421	10600	0.0067	76.4	719	39.8	0.0456	0.4	0.87	16.2	1.25	4.31	0.25
MW14-05B MW14-05B	<u>14/07/15</u> 09/08/15	<u>685</u> 933	<0.010 0.0029	20 16.1	6.3 4.79	161	12.2	0.42	10200 12700	<0.020 <0.0050	92.5 116	665 701	<u>51.7</u> 59.1	<0.050 0.0124	<5.0 0.34	<5.0 <0.50	<u>16.2</u> 15.1	<5.0 1.12	16.5	<0.50 0.32
MW14-05B	08/09/15	1260	< 0.0020	8.31	2.93	160	10	0.157	14400	< 0.0050	62.1	596	31.7	<0.0020	0.3	<0.50	9.43	0.85	0.89	0.33
MW15-01WB MW15-01WB	08/07/15 10/08/15	375	<0.0020 <0.0020	1.04 0.936	2.31 2.24	<u>6.4</u> 68.3	5.53 5.19	0.126	7870 7950	<0.0050 <0.0050	27.6 25.9	2690 2660	294 295	0.0201	<0.20 <0.20	<0.50 <0.50	530 542	<0.20 <0.20	128 167	0.49
MW15-01WB	03/09/15	357	<0.0020	1.01	2.38	20	5.43	0.11	8250	0.006	26.1	2770	310	0.0215	<0.20	0.58	535	0.28	181	0.33
MW15-01WB MW15-02AZ	07/06/15	382	<0.0020 <0.0020	0.843	1.78 1.26	<2.0	5.27	0.091	7820 5740	<0.0050 <0.0050	27.6 6.04	2990 1150	287 81.7	0.038	<0.20 <0.20	<0.50 <0.50	589 26.4	<0.20 0.26	53.9 0.55	0.69
MW15-02AZ MW15-02AZ	11/07/15	1	0.0020	0.354	0.682	36.3	5.36	0.169	5180	<0.0050	4.75	1070	59.8	0.0059	<0.20	<0.50	23.9	0.20	8.64	0.19
MW15-02AZ MW15-02AZ	<u>12/08/15</u> 07/09/15	12.9 28.5	<0.0020 <0.0020	0.362	0.722	50.7 4.1	7.51	0.199 0.161	5020 5890	<0.0050 <0.0050	6.09 4.67	1170 943	67.6 58.4	0.0044	<0.20 <0.20	0.55 <0.50	24.4 23.9	0.39 <0.20	1.55 0.8	0.2 0.13
MW15-02AZ MW15-02AZ	11/07/15	0.269	0.0020	0.343	0.552	4.1	5.39	0.177	5130	<0.0050	4.66	1070	59	0.004	<0.20	<0.50	23.9	0.20	1.75	0.13
MW15-02WB	01/06/15	98.2	<0.0020	1.31	2.16	15.6	9.28	0.373	5880	<0.0050	9.45	932	76	0.008	<0.20	0.91	37.4	0.31	36.8	0.76
MW15-02WB MW15-02WB	<u>11/07/15</u> 12/08/15	101	<0.0020 <0.0020	0.68	0.885	17.3 30.5	7.96 8.8	0.102 0.169	5430 5140	<0.0050 <0.0050	8.69 9.4	943 952	82.3 78.8	0.0112 0.0057	0.73 <0.20	<0.50 <0.50	<u>31.9</u> 33.2	<0.20 <0.20	16.9 44.5	0.67 0.58
MW15-02WB	07/09/15	36.4	<0.0020	0.525	1.46	5	10.8	0.126	5250	< 0.0050	6.09	963	80.9	0.015	<0.20	<0.50	28.2	<0.20	10.1	0.13
MW15-03AZ MW15-03AZ	<u>16/06/15</u> 09/07/15	55.2 225	<0.0020 <0.0020	0.451 0.47	1.08 1.4	26.8 78.8	1.78 1.86	0.052 0.041	5300 4810	<0.0050 <0.0050	4.16 3.89	303 290	18 15	0.0024 0.0021	<0.20 <0.20	<0.50 0.56	<u>35.4</u> 34.3	<0.20 0.23	7.61 3.75	0.32 0.31
MW15-03AZ	10/08/15	67.7	0.0028	0.502	1.07	26.3	1.65	0.055	5050	<0.0050	3.39	220	8.4	0.0045	<0.20	0.53	18.2	0.24	3.28	0.44
MW15-03AZ MW15-03AZ	04/09/15 16/06/15	<u> </u>	0.0026 <0.0020	0.467 0.42	1.02 1.12	5.5	1.53 1.89	0.044 0.064	5250 5810	<0.0050 <0.0050	3.07 4.37	198 319	7.6 18.2	0.002 <0.0020	<0.20 <0.20	<0.50 <0.50	<u>17.2</u> 37.4	0.27 <0.20	0.41 3.15	0.34 0.26
MW15-03WB	16/06/15	84.2	<0.0020	0.981	2.01	10.1	8.87	<0.040	10300	< 0.0050	75.7	9250	348	<0.0020	<0.20	<0.50	8.4	<0.20	4.92	<0.10
MW15-03WB MW15-03WB	09/07/15	78.9	<0.0020 <0.0020	1.04 0.976	1.56	52.8	8.97 8.04	0.432	6990 8060	0.0069	71.1 68.4	9090 8190	<u>294</u> 320	0.0062	<0.20 <0.20	<0.50 <0.50	7.86	<0.20 <0.20	47.5	<0.10 <0.10
MW15-03WB	04/09/15	73.5	<0.0020	0.851	1.1	9.6	8.62	< 0.040	8230	0.006	71.9	9210	309	0.007	<0.20	<0.50	7.57	<0.20	39.9	<0.10
MW15-04WB MW15-04WB	14/06/15 10/07/15	115 123	<0.0020 <0.010	2.55 2.6	0.804	23.8	4.16	0.246	6370 5550	<0.0050 <0.020	6.05 6.61	782 777	45.9 44.9	0.0068	<0.20 <5.0	<0.50 <5.0	176 161	0.25 <5.0	24	0.26 <0.50
MW15-04WB MW15-04WB	11/08/15	123	<0.010	2.6	0.99	102	4.47	0.251	5550	<0.020	6.15	783	44.9	<0.050 0.0114	<0.20	< <u>></u> .0 <0.50	161	< <u><</u> 0.28	57.6	0.23
MW15-04WB	05/09/15 14/06/15	105	<0.0020 <0.0020	2.6	0.986	21.8 30.4	4.43 4.55	0.335 0.265	6320 6270	<0.0050 <0.0050	5.94 5.96	804 794	44.4 42.3	0.008	<0.20 <0.20	<0.50 <0.50	154 176	<0.20	42.7	0.21
MW15-04WB MW15-04WB	14/06/15	116 119	<0.0020	2.4 2.3	<1.0	50.4	4.55	0.265	6270 5680	<0.0050	5.96	794 776	42.3	<0.050	<0.20 <5.0	<0.50 <5.0	176	0.25 <5.0	29.4 9.6	0.26 <0.50
MW15-05AZ	06/09/15	617	0.0054	0.248	1.23	13.3	0.12	0.069	6040	<0.0050	1.14	15.4	<3.0	0.008	<0.20	1.96	0.899	1.51	1.1	1.18
MW15-05WB MW15-05WB	<u>18/06/15</u> 10/07/15	<u> </u>	<0.0020 <0.010	0.698 <1.0	0.217 <1.0	66.7	1.8 0.964	0.372	10200 8720	<0.0050 <0.020	10.4 9.06	147 138	4.6	0.009 <0.050	<0.20 <5.0	<0.50 <5.0	70.9	<0.20 <5.0	60.7 37.8	<0.10 <0.50
MW15-05WB	11/08/15	5.36	< 0.0020	0.635	0.345	42.4	1.07	0.138	8860	<0.0050	9.22	140	3.5	0.0027	<0.20	<0.50	70	<0.20	45.8	<0.10
MW15-05WB MW15-05WB	06/09/15 11/08/15	7.09 4.02	<0.0020 <0.0020	1.85 0.721	0.607	<u>44.4</u> 105	1.33	0.102 0.128	9880 8910	<0.0050 <0.0050	9.88 9.16	150 140	4.4 3.6	<0.0020 <0.0020	<0.20 <0.20	<0.50 <0.50	74.8 71.6	<0.20 <0.20	97 40.1	<0.10 <0.10
MW15-06WB	21/07/15	2390	0.020	37.6	3.1	24.6	7.57	0.502	6540	<0.0050	9.16	417	33.2	0.0261	<0.20	<0.50	100	<0.20	253	<0.10 0.46
MW15-06WB	09/08/15	3400	0.0544	45.6	2.72	7.1	6.27	0.349	6090 6030	0.0113	9.08	434	31.1	0.0487	<0.20	<0.50	103	<0.20	20.9	0.62
MW15-06WB	08/09/15	5810	0.0952	87.4	3.44	46.4	7.18	0.172	6030	0.027	9.55	487	36.9	0.034	0.24	3.7	100	< 0.20	159	0.63

 Black Text
 [Dissolved Metals] 20% > [Total Metals] and >5x RDL (values with "<" not used for calculation)</td>

 • Samples MW14-03A Oct. 2014, MW14-03B Oct. 2014, MW14-05A Oct. 2014, MW14-05B Oct. 2014, MW15-06WB Jun. 2015 not considered to be representative of formation water are excluded from the comparison of total and dissolved metals. See Appendix 5-D for the discussion regarding these samples.

Appendices

_GOLDCORP

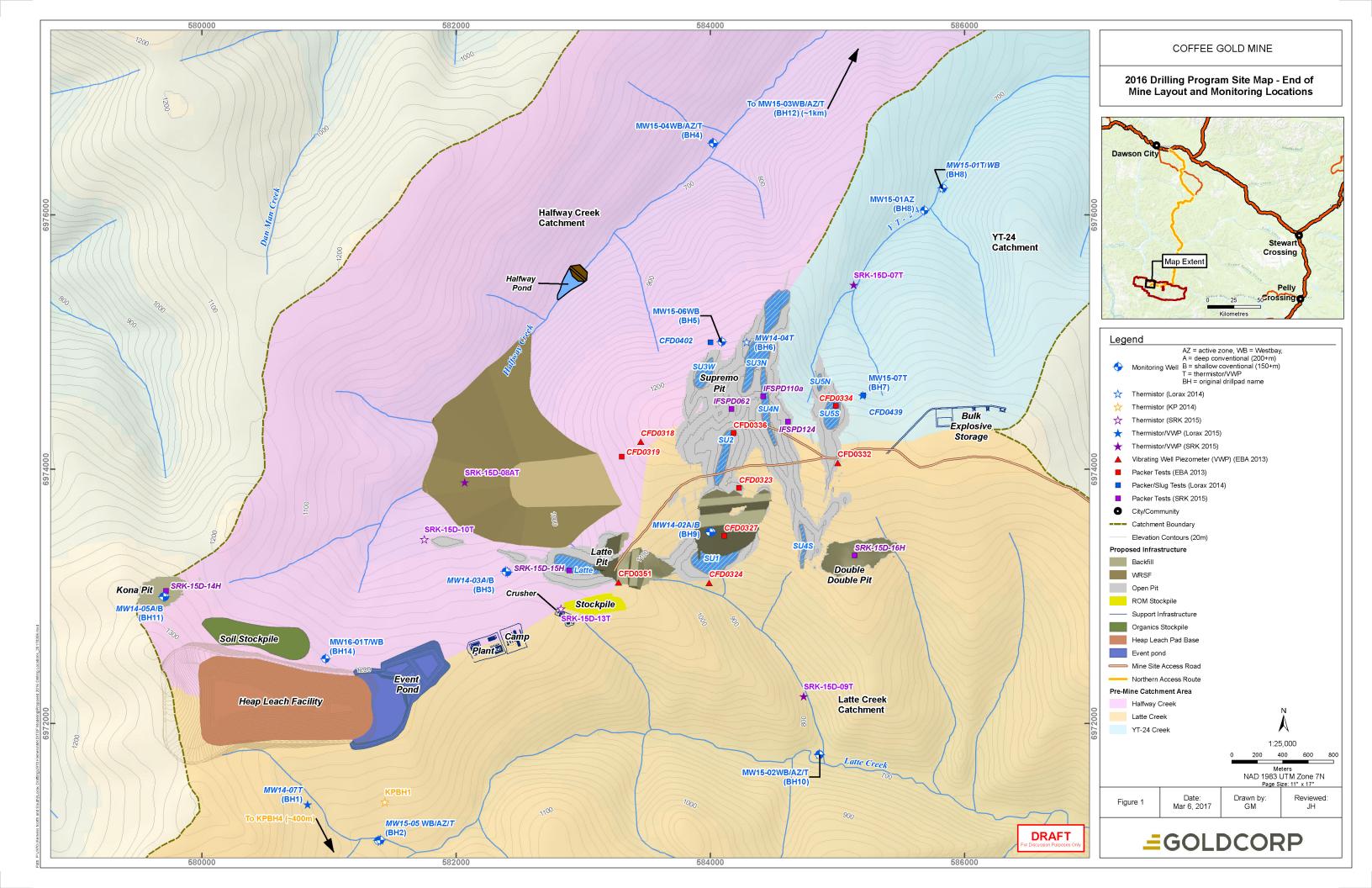
Appendix P-1: 2016 Coffee Gold Mine Hydrogeology Drilling Program Summary

_GOLDCORP

F	LORAX INVIRONMENTAL
----------	------------------------

To:	Jennie Gjertsen, Goldcorp	Date: March 13 th , 2017
	James Scott, Goldcorp	
Cc:	Jasmin Dobson, Goldcorp	
From:	Andrew Solod and Laura-Lee Findlater, Lorax	Project #: A362-5
Subject:	2016 Coffee Gold Mine Hydrogeology Drilling Pro	ogram Summary

1. Introduction


TECHNICAL MEMORANDUM

This memorandum provides a summary of field activities undertaken by Lorax Environmental Service Ltd (Lorax) at the Coffee Gold Project between August 17th to August 27th, 2016, and September 28th to October 4th 2016. Field activities conducted in August, September, and October are part of the larger baseline groundwater monitoring program at the Coffee Gold Project. As part of the 2016 Coffee Gold Hydrogeology Field Program, Lorax personnel were on site to supervise the drilling and installation of one (1) combination Vibrating Wire Piezometers (VWP)/ thermistor string borehole, and one (1) Westbay multilevel groundwater monitoring well downgradient of the Heap Leach Facility (HLF) proposed for construction at the Coffee Gold Mine (Figure 1). This memorandum briefly summarizes methods and findings of the program. The information is organized into the following sections:

- 2. Staffing and Timeline
- 3. Methods
- 4. Results
- 5. Closure

2. Staffing and Timeline

The Lorax team consisted of Andrew Solod for the installation of the VWP/thermistor in August and Andrew Solod and Chris Bourque for the installation of the Westbay well in September/October, with additional oversight provided by Mark Lessard of Westbay Instruments (Westbay). Drilling was conducted on a single shift basis during the daytime by Northspan Explorations Ltd (Northspan). Logistical support for material and equipment transport to the drill pad was handled by the drilling contractor, and Goldcorp staff. A timeline of program activities is outlined in Table 1.

Table 1:
Timeline of 2016 Coffee Gold Mine Hydrogeology Field Program.

Date	<u># Shifts</u>	Pad/Hole/Well ID	Activities
			• AS, travel to site
August 17th	1	n/a	• Wire up VWP/Thermistor and test instrumentation operation
1701			• Rig mobilized to BH14/MW16-01T drill pad
			• Bedrock encountered at ~3.5 meters below ground surface (m bgs)
August 18th	1	BH14 / CFR1137 / MW16-01T	• Casing advanced to ~5m bgs
Tour			• 4.5" open hole advanced to ~5-12.5m bgs
			• 4.5" open hole advanced to 12.5-183m bgs
			• Conduct short term airlift tests during hole advancement
August	5	BH14 / CFR1137 /	• 3.5" open hole advanced to 183-188m bgs
19th-23nd	5	MW16-01T	• Terminate hole at ~188m bgs
			• Conduct 30 & 60 min airlift tests at 106 & 188 m bgs, yield of 15 US gallons per minute, (US GPM)
August	1	BH14 / CFR1137 /	• Conduct pumping and recover test (16.5 min pumping / 30 min recovery)
24th	1	MW16-01T	• Conduct 2 Packer Tests (1) 116-188 m bgs (2) 146.5-188 m bgs
			• Install 13-point Thermistor string from .5-180 m bgs
			• Install (2) VWP's at 98 and 132m bgs
August	3	BH14 / CFR1137 /	• Instrumentation installed and grouted in (~1.5 days)
25th-27th	5	MW16-01T	• 19.5 batches grout batches emplaced via (2) 1" Tremmie lines
			• Instrumentation hookup to datalogger & initial readings recorded
			• Lorax crew demobilized
			• Fly materials and equipment to drill pad
September	1	BH14/ CFR1206 /	• Drill 6.125" hole and advance 5.07" ID surface casing to ~4.8m bgs
28th	1	MW16-01WB	• Bedrock encountered ~2.4m bgs
			• Advance open hole RC from 4.8-24m bgs
September	2	BH14/ CFR1206 /	• Open hole drilling 24-120.9 m bgs
29th-30th	2	MW16-01WB	• Sustained measured flow during drilling at 21
			• Install HQ drill rod (casing) to 68.4 m bgs
			• MP38 Westbay casing emplaced to depth of ~118 m bgs;
			• Dilute glycol solution injected into WB casing to counteract buoyancy
October	4	BH14/ CFR1206 /	• Inflated Packers within the HQ drill rods
1st - 4th	4	MW16-01WB	• Pump glycol into the HQ casing
			• Seal annulus between HQ and surface & Weld on surface monument.
			• Conducted Pressure profile of sampling ports
			• Develop sampling zone (3) 71.6-73.1 m bgs

3. Field Methods

3.1 Drilling

The drilling program focused on providing information on groundwater characteristics below the bottom of permafrost downgradient of the proposed Heap Leach Facility. The purpose for drilling the combination VWP/thermistor hole first was to gain insight on depth of permafrost, depth of overburden, ground conditions and groundwater pressures ahead of the drilling and installation of the Westbay well approximately one month later. Previous site experience had demonstrated that a duration of at least four weeks between installations would provide enough opportunity for the thermistor string to equilibrate with ground conditions and provide permafrost thickness and vertical hydraulic gradients. Drilling depths, airlift yield values (visual estimate) and instrument installation depths are summarized in Table 2 and Appendix A.

The two vertical boreholes were advanced using a Hornet RC drill operated by Northspan. Fiveinch inner diameter casing was advanced into competent bedrock using a double-sided casing advancer system with joints welded every five feet. Once the casing was keyed into bedrock (6.5 m bgs for MW16-01T and 4.6 m bgs for MW16-01WB), the casing advance system was exchanged for a COP44 hammer with 4.5-inch bit. Open hole drilling ensued using reverse circulation. In both MW16-01T and MW16-01WB the volume of formation water encountered during drilling overwhelmed the capacity of air circulation system (compressor units & booster) to properly lift and circulate cuttings and water out of the hole, impeding the drill bit from advancing deeper. In MW16-01T this occurred at 183 m bgs and MW16-01WB at 120 m bgs. In both cases, it was elected to trip out the 4.5-inch hammer and advance the hole with a 3.5-inch hammer. MW16-01T was advanced from 183-189 m bgs, and terminated at 189.3 m bgs having attained sufficient depth to accommodate the full length of the 13-point thermistor string. At MW16-01WB the volume of water prevented even the smaller 3.5-inch diameter hammer from properly firing. The hole was terminated at 120 m bgs which was deemed sufficient for targeting the critical water bearing intervals.

3.2 Hydraulic Testing

Lorax field personnel collected data about groundwater occurrence during the drilling to support VWP and Westbay installation design. Both drill holes encountered significant formation water and hydraulic testing was focused on delineating the water bearing zones.

Table 2:
Summary of MW16-01T & MW-16WB installations

Monitoring Well ID	Units	CFR1137 / BH14 / MW16-01T	Monitoring Well ID	Units	CFR1206 / BH14 / MW16-01WB
Mine Area		Heap Leach D/S	Mine Area		Heap Leach D/S
Drilling Start Date		8/18/2016	Drilling Start Date		9/28/2016
Drilling Completion Date		8/23/2016	Drilling Completion Date		9/30/2016
Easting (UTM NAD83 Zone 7)	М	580,987.7	Easting (UTM NAD83 Zone 7)	m	580,971.3
Northing (UTM NAD83 Zone 7)	М	6,972,502.9	Northing (UTM NAD83 Zone 7)	m	6,972,510.5
Ground Elevation (UTM NAD83 Zone 7)	М	1203.67	Ground Elevation (UTM NAD83 Zone 7)	m	1203.91
Survey type		RTK GPS	Survey type		RTK GPS
Azimuth (estimated)	Degrees	0	Azimuth (estimated)	degrees	0
Dip (not measured)	Degrees	-90	Dip (not measured)	degrees	-90
Estimated depth to bedrock	m bgs	5	Estimated depth to bedrock	m bgs	3.5
Surface Casing Depth	m bgs	7.0	Surface Casing Depth	m bgs	4.8
Surface Casing Method		Casing Advance/ Welded Joints	Surface Casing Method		Casing Advance/ Welded Joints
Surface Casing ID/OD	Inch	5.07/ 5.5	Surface Casing ID/OD	inch	5.07/ 5.5
Borehole ID	Inch	4.5 / 3.5	Borehole ID	inch	4.5
Borehole Method		RC open hole	Borehole Method	1	RC open hole
Borehole Drilled Depth	m bgs	189.3	Borehole Drilled Depth	m bgs	120.1
Borehole Measured Depth	m bgs	188	Borehole Measured Depth	m bgs	120.1
Stickup (Steel Surface Casing)	m ags	1.2	Stickup (Steel Surface Casing)	m ags	1.44
Installations	in ugo		Installations	in ugo	
Start Date		24-Aug-16	Start Date		1-Oct-16
Completion Date		27-Aug-16	Completion Date		3-Oct-16
Sch 80 PVC Install Nom. Dia.	Inch	1" Sch. 80	Sch 80 PVC Install Nom. Dia.	inch	MP38 Westbay
Other Instrumentation	men	T/VWP	stickup (PVC)	m	1.4
bottom of bentonite chips	m bgs	0	stickup (Elevation)	- 111	1205.31
top of bentonite chips	m bgs	1	Protective Casing Depth	m has	68.4
* *		188	Protective Casing Depth Protective Casing ID/OD	m bgs	3.06/3.5 (HQ)
bottom of grout	m bgs	188	0	inch	5.00/5.5 (HQ)
top of grout VWP/Thermistor Instrumentation	m bgs	1	Westbay Primary Sampling Zones Bottom of Westbay zone 1	mhaa	113.8
	Corrich #	02120	-	m bgs	
RST Datalogger	Serial #	02139	Top of Westbay zone 1	m bgs	110.1
Datalogger Model		DT2041	Bottom of Westbay zone 2	m bgs	89.4
Logging Frequency	Hours	12	Top of Westbay zone 2	m bgs	85.7
Thermistor String 1	Serial #	TS4132	Bottom of Westbay zone 3	m bgs	73.5
Thermistor 1-1	vertical m bgs	0.3	Top of Westbay zone 3	m bgs	71.4
Thermistor 1-2	vertical m bgs	0.9	Bottom of Westbay zone 4	m bgs	70.5
Thermistor 1-3	vertical m bgs	1.8	Top of Westbay zone 4	m bgs	66.8
Thermistor 1-4	vertical m bgs	3.8	Bottom of Westbay zone 1	m asl	1090.1
Thermistor 1-5	vertical m bgs	7.8	Top of Westbay zone 1	m asl	1093.8
Thermistor 1-6	vertical m bgs	12.8	Bottom of Westbay zone 2	m asl	1114.5
Thermistor 1-7	vertical m bgs	20.0	Top of Westbay zone 2	m asl	1118.2
Thermistor 1-8	vertical m bgs	29.7	Bottom of Westbay zone 3	m asl	1130.4
Thermistor 1-9	vertical m bgs	56.6	Top of Westbay zone 3	m asl	1132.5
Thermistor 1-10	vertical m bgs	89.5	Bottom of Westbay zone 4	m asl	1133.4
Thermistor 1-11	vertical m bgs	119.5	Top of Westbay zone 4	m asl	1137.1
Thermistor 1-12	vertical m bgs	149.5	Westbay port 1	m bgs	114.9
Thermistor 1-13	vertical m bgs	179.5	Westbay port 2	m bgs	110.3
Thermistor String 2	Serial #	NA	Westbay port 3	m bgs	90.5
Thermistor 2-1	vertical m bgs	-1.20	Westbay port 4	m bgs	85.9
VWP 1	Serial #/ Rating	VW37992/3 MPa	Westbay port 5	m bgs	74.6
Thermistor 1-9	vertical m bgs	97.5	Westbay port 6	m bgs	71.6
VWP 2	Serial #/ Rating	VW37991/3 MPa	Westbay port 7	m bgs	67
Thermistor 1-11	vertical m bgs	131.5	Westbay port 8	m bgs	64

<u>Notes:</u> m bgs = meters below ground surface; m ags = meters above ground surface; MPa = Mega pascal

3.2.1 Borehole Yield Testing

Hydraulic testing was conducted on both holes as they were advanced to determine instrumentation placement. The primary method, airlift yield tests, comprised of retaining formation water discharged from the cyclone in a 30-US gallon drum for a timed duration. Repeated several times at a given depth interval, the rates were averaged. By placing the drill string below a fracture zone and circulating the air, water from the zone could be expelled out of the hole and the yield measured. Increases in yield over the borehole length indicate the location and productivity of transmissive zones. Testing was often conducted at the end of the shift while removing the drill string to maximise time. The depth and duration of airlift tests are outlined in Table 3 and Appendix A. MW16-01T was more thoroughly airlift tested with the results used to inform the design of MW16-01WB.

Borehole	Date	Test Depth (m)	Elapsed Time (min)	Yield (US GPM)	Rational			
			Initial	10				
		94	5	14	Water production from borehole sufficient to conduct initial			
		94	10	8	airlift test			
	8/19/2016		15	10				
			Initial	6				
		100	5	7.5	Second zone of interest, determine if yield is increasing with depth			
			10	7.5	depui			
			Initial	14				
		97	5	10	Total depth, conduct test to determine if yield increased from previous day			
			10	10	nom previous day			
		103	Initial	10	Testing during active drilling			
		105	5	8	Testing during active drining			
	8/20/2016	113	Initial	6.5	Testing during active drilling			
	8/20/2010	115	5	6.5	Testing during active drining			
		134	Initial	6				
			5	6	Total drilled depth on 8/20			
			10	6				
		105	Initial	8.5				
			15	7				
CFR1137 / BH14			30	7	Below the major fracture zone producing water, isolate via			
/ MW16-01T			45	7	airlifting.			
			60	7				
			75	7				
			Initial	8.5				
		124	15	6.5	Approximately the maximum drilled depth on the 20th.			
	8/21/2016	134	30	6.5	Determine if any of the fractures from 105-134 m bgs were contributing water			
			45	6.5	- contributing water			
			Initial	7.5				
		150	15	6.5	Targeting sequence of hard competent granite, very hard			
			30	6.5	and unfractured.			
			Initial	8.5				
		165	15	7.5	Bottom of hole for 21 st . Thick sequence of competent			
			30	7.5	unfractured granite.			
			Initial	8.5	Upper fracture zone, thought to be producing all the water			
		107	15	7.75	from the borehole, determine if yield is consistent from			
		107	30	7.75	previous testing			
	8/22/2016		Initial	13				
		116	15	8	Entire upper fracture zone, determine if yield is different			
			30	8	between the upper portion and its entirety.			

 Table 3:

 Airlift tests conducted at MW16-01T & MW16-01WB

Borehole	Date	Test Depth (m)	Elapsed Time (min)	Yield (US GPM)	Rational			
			45	7.75				
			60	7.75				
			75	7.75				
			Initial	10				
		184	15	7.75	Bottom of Drill hole on 8/22			
			30	7.75	-			
			Initial	15				
		106	15	15	Below the major fracture zone producing water, isolating			
			30	15	via airlifting and producing water only from it.			
			Initial	15				
	0.000.001.6		15	15				
	8/23/2016		30	15				
		188	10	30	Total Drill Depth			
			20	30				
			30	31	-			
			40	31	-			
	9/29/2016		Initial	20				
		77	5	18	Hydraulic profiling of borehole to delineate water bearing			
			10	18	intervals upon removal of drill string			
		86 97	Initial	17				
			5	15	As Above			
			10	15				
			Initial	13	As above			
			5	14.5				
			10	14.5				
			Initial	14.5				
		105	5	14.5	As Above			
		105	10	14.5				
CFR1206 / BH14			Initial	24	Hydraulic profile conducted during emplacement of the dril			
/ MW16-01WB		68	5	24	string in the borehole to determine if yield had increased			
/ 1010010-01000		00	10	24	from previous day			
			Initial	16	nom provious duy			
		78	5	16	As above			
		70	10	16				
			Initial	21				
	9/30/2016	115	5	23	As above			
		115	10	23				
			Initial	31				
			10	30	Airlift testing conducted in conjunction with the VWP's o			
		120	20	30	MW16-01T. Ahead of airlifting the data logger at MW16			
		120	30		01T was set to record at 30 second intervals. Logging			
				31	continued overnight to measure recovery			
			40	31				

3.2.2 Packer Testing

Two (2) constant rate injection packer tests characterizing 71.7 metres of bedrock were conducted in MW16-01T. In a constant rate injection test, the injection water pressure is maintained at a constant value for the entire test. The test was initiated by introducing flow to the test interval with the injection pressure controlled by the supervising hydrogeologist. The tests employed a single packer system and were conducted once the borehole had reached maximum depth. The key objective of the packer testing was to determine if the lower portion of the borehole comprised of fresh granite intercepted water bearing fractures. Packer test intervals are summarized in Table 4.

The first packer test was evaluated based on the constant head method. The test was conducted in accordance with Lugeon test methodology. A single packer assembly was placed at a depth of

147.8 m bgs in the borehole, isolating a test zone between the packer gland and the bottom of the drill hole at 189 m bgs. The packer was inflated to a pressure of 4150 kPa, sufficient to overcome the downhole pressures. The test was terminated after 20 minutes, during the first pressure step of the test, due to exhaustion of the water supply at the drill rig. The second packer test, attempted at a depth of 117.3 m bgs, was aborted due to suspected bypass of water around the packer.

Tests	Test Interval (m bgs)	Test Method
Test # 2	117.3-189	Aborted (possible packer bypass) test
Test # 1	147.8-189	Constant head

Table 4:
Summary of packer tests conducted on MW16-01T

Notes:

m bgs = meters below ground surface

3.2.3 Pumping and Recovery Tests

Artesian conditions during the drilling of MW16-01T presented the opportunity to conduct a pumping and recovery test using the drill rig water pump and the flow skid totalizing meter from the packer testing equipment. The intake line of the pump was lowered to its maximum depth in the drill hole and connected at the surface to the flow skid. Discharged water passed through the flow skid and the total pumped volume tabulated. The discharged water was captured in the onsite water storage reducing the need for water to be flown in. The test was run until the drawdown in the borehole exceeded the intake depth of the pump.

A second pumping test, on September 30, 2016, consisted of airlifting MW16-01WB for 40 minutes and recording the recovery by changing the sampling frequency of the two VWP sensors in the adjacent MW16-01T borehole. The data are interpreted in Section 4.3.3.

3.3 VWP/Thermistor

Vibrating wire piezometers (VWPs) were prepared according to manufacturer directions and both VWPs and thermistor string were taped to the outside of a 1-inch schedule 80 PVC riser pipe at predetermined intervals as the PVC was lowered down the open hole. The VWPs were installed at 97.5 m bgs and 131.5 m bgs respectively as detailed in the borehole provided in Appendix A. The shallow VWP targets the main fracture zone encountered in the borehole and below the permafrost interface. The deeper one targets the lowest encountered fractured zone above the fresh granite sequence that dominates the lower portion of the borehole.

Two thermistor strings were installed at MW16-01T. One string, 185 meters long, consisted of 13 individual sensors spaced at increasing intervals along the string and permanently installed (*i.e.*

grouted-in). The second thermistor, an individual sensor, was deployed into the top of the surface casing of MW16-01T above the grout to measure ambient temperature. The installation details are summarized in Table 2.

Grout was prepared according to the methods outlined by Mikkelson (2002) with adjustment to the prescribed bentonite proportion to arrive at the desired consistency and density. Nineteen and half batches of grout were prepared in a grout plant using a mix of 50 kg general use cement (2.5 bags) in 33 gallons of water to which 34-40 kg bentonite (1.5-1.75 bags) was added. Eleven batches of grout were emplaced in one shift through the 1" PVC riser pipe to which instruments were attached, which was suspended approximately 8 meters off the bottom of the hole. The remaining 8.5 batches were pumped the following day via a second 1" PVC tremie line which was lowered to the top of the grout column (Figure 2). Once grouting was completed, a steel enclosure was mounted on top of the surface casing and the instrument wires were connected to a datalogger housed inside the enclosure (Figure 3). The enclosure was tack-welded to the steel surface casing. The datalogger was programed to record every twelve (12) hours.

Figure 2: Grouting of MW16-01T Through 1" PVC Tremie. Both Tremie lines visible, with active pumping into the second line

3.4 Westbay Installation

MW16-01WB was completed approximately one month after MW16-01T following a formula adapted in 2015 for Westbay/thermistor installations. Unlike previous Westbay/thermistor installations, MW16-01WB was positioned on topographic contour with MW16-01T and on a separate and purposely built drill pad 10 meters away, and not up gradient on the same pad. MW16-01WB was constructed over the course of three shifts. The drilling and installation schedule for MW16-01WB is summarized in Table 1.

The weather for the installation was favourable and limited the extra steps necessary to protect sensitive sampling equipment and construction material from the cold. A draft construction plan was developed based on the results of the installation of MW16-01T, with the final position of the sampling zones determined by the field hydrogeologist based on airlift testing and downhole geology. To protect the Westbay PVC casing from ice damage, a string of HQ drill rods was hung from the surface casing to a depth 68.4 m bgs, spanning the permafrost. The installation of the Westbay casing was directed by Westbay personnel, including the pressure testing of each section of PVC casing during emplacement, and inflation of the various packer systems. Figure 4 shows the Westbay casing and a packer element being lowered into the borehole. Diluted propylene glycol (1 part glycol to 3 parts water) was used to inflate the sampling zone and stabilizing packers, and to fill inside of the Westbay PVC casing and the annulus between the Westbay casing and HQ

rods. Diluted propylene glycol was used to prevent ice formation inside and outside of the Westbay casing. A surface monument was welded on top of the surface casing and 50 kg of sand added to the annular space. Finally, the annulus between the HQ drill rods and the surface casing was filled with 3 meters of bentonite chips sealing the annular space from the surface. Westbay has provided a completion report detailing the installation procedure and as-built schematic (Appendix B).

The primary objective for the installation of MW16-01WB is the collection of sub-permafrost groundwater samples. For the final construction, four (4) sampling zones were selected, targeting both intervals producing water below the permafrost and deeper intervals in tighter rock. Water was first encountered during drilling at a depth of 70 m bgs, roughly corresponding to the bottom of the permafrost based on thermistor data. Airlift testing revealed prolific water production with yields of 18 US GPM. An interval from 66.8-70.5 m bgs was selected as the fourth sampling zone (zones number from bottom upwards) along the margin of the permafrost. The third sampling zone was placed between 71.4-73.5 m bgs and is the primary sampling zone targeting groundwater close to the margin of the permafrost. The second sampling zone targets a lower weak fractured section between 85.7-89.4 m bgs. The first sampling zone, 110.1-113.8m bgs targets the fresh granite encountered near the well bottom and provides a location should deeper sampling be required. Sampling zones are labeled in the borehole log (Appendix A).

Figure 4: Emplacement of Westbay Casing (MW16-01WB) with packer element

4. Results

4.1 Geology

The geology differs slightly between MW16-01T and MW16-01WB despite their proximity (~18 meters separation). Borehole logs detailing geology and well completion schematics are found in Appendix A. MW16-01T was advanced through approximately six meters of overburden before encountering a series of weak zones defined by fractures, with visible oxidation, weathering, and clay alteration in a regional granite complex as described by Goldcorp field geologists. The bottom portion of the hole (from 135 m bgs to the 189 m bgs) is characterized by fresh granite, with small fractures. MW16-01WB was advanced through a similar thickness of overburden. Weak zones with oxidation and clay alteration are less prevalent and the hole generally exhibits a geology of fresh granite. It is inferred that this borehole is outside of the fault complex that dominates the geology of MW16-01T.

Goldcorp geologists have indicated that there is a prominent NNW-SSE trending linear magnetic break apparent in the tilt-derivative magnetic survey of the HLF area and that these types of breaks are occasionally indicative of faults or mineralized structures in the Coffee area (E. Buitenhuis, pers. communication). As shown in Figure 5, the magnetic break skirts the location of the MW16-01T/WB drill holes. The findings of 2016 drilling program suggest that this feature could likely represent a fault.

4.2 Groundwater Pressures

During drilling, both MW16-01T and MW16-01WB exhibited artesian flow with yields measured at approximately 0.95 L/s and 2 L/s respectively. Both the shallow and deep sensors (VWP 2 and VWP 1, respectively) exhibit artesian conditions and a downward hydraulic gradient of ~5% (Table 5). Both VWP sensors displayed increasing water level trends from installation until the drilling of MW16-01WB (Figure 6). This trend may reflect a seasonal trend in water levels; future monitoring will be used to confirm the trend. The data in Figure 6 are truncated to September 29th, when drilling at MW16-01WB initiated. The sensors both responded to drilling/airlifting of the nearby hole, as discussed in Section 4.3.3.

Pressure profiling of the Westbay sampling ports was conducted on October 3rd, 2016 prior to collecting groundwater samples. Water level readings are provided in Table 5 and presented in Figure 7. All water levels have been barometrically compensated. The artesian head at each of the Westbay ports is comparable to the artesian head displayed by the shallow VWP installed at MW16-01T. A very slight downward hydraulic gradient (0.4%) is measured between Ports 1 and 5.

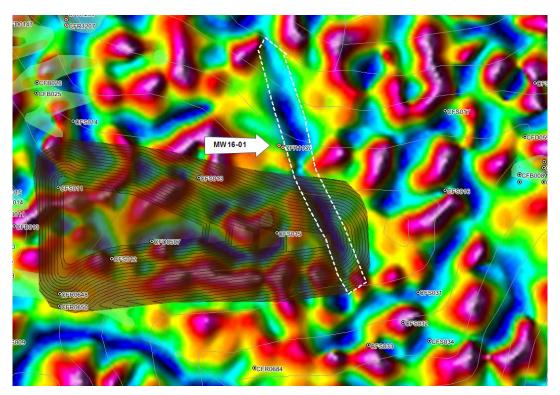


Figure 5: Tilt-derivative magnetic survey of proposed HLF area. White outline highlights a prominent magnetic break in the area.

Installation	Sensor	Surface Elevation (m asl)	Installed Depth (m bgs)	Date	Water Level (m asl)	Depth to Water ¹ (m bgs)	Hydraulic Gradient ^{2,3}	
MW16-01T	VWP 1	1203.67	131.5	29-Sep-2016	1204.47	-0.80	0.045	
IVI VV 10-011	VWP 2	1203.07	97.5	- 29-Sep-2010	1205.94	-2.28	0.045	
	Port 1		114.9		1205.44	-1.53	0.004	
	Port 2		110.3		1205.49	-1.58		
	Port 3		90.5		1205.50	-1.59		
MW16-01WB	Port 4	1203.91	85.9	03-Oct-2016	1205.53	-1.62		
	Port 5	-	74.6		1205.59	-1.68		
	Port 6		71.6		1205.54	-1.63		
	Port 7		67.0		1205.55	-1.64		

Table 5:Pressure head readings from VWP sensors installed at MW16-01T.

Note:

m asl - metres above sea level, m bgs - metres below ground surface

1. Negative depth to water indicates water level above surface

2. Positive hydraulic gradient is downward

3. MW16-01WB hydraulic gradient measured between port 1 and port 5.

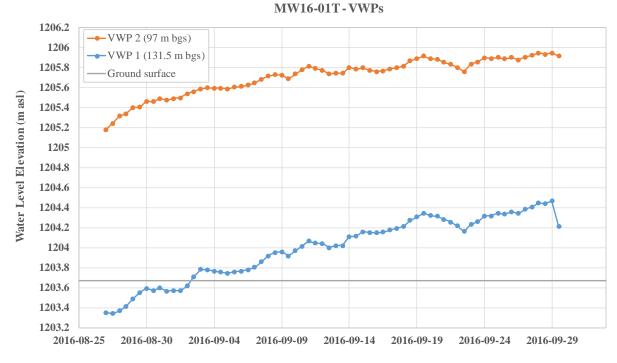


Figure 6: Groundwater elevation trends at MW16-01T.

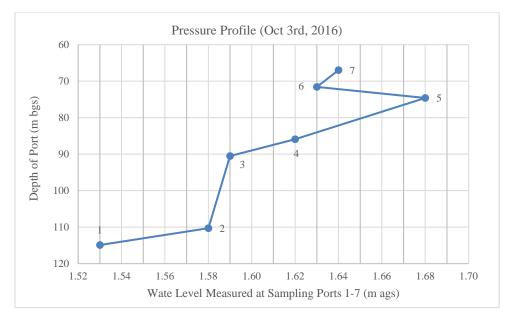


Figure 7: Groundwater pressure profile at MW16-01WB.

4.3 Hydraulic Testing

4.3.1 Borehole Yield Testing

Groundwater was first observed in MW16-01T at a depth of approximately 89 m bgs and in MW16-01WB at a depth of approximately 76 m bgs. At both locations, yields increased over the course of drilling and airlifting. In both instances, the increased yield was unrelated to the intersection of additional fractures as drilling progressed, and instead related to the fractures becoming more productive through the process of being developed by air and water. In MW16-01T, the yield increased from 6 to 15 US GPM and in MW16-01WB the yield increased from 14.5 to 31 US GPM.

4.3.2 Packer Test Interpretation

The successful packer test at MW16-01T involved injecting water a constant pressure of 200 kPa at flow rates of 0.6 to 0.3 L/s. The data was analyzed using the Hvorslev method (Hvorslev, 1951) with supporting calculations provided in Appendix C. A hydraulic conductivity (K) of 6E-07 m/s has been calculated for the interval of 147.8-189 m, which is in good agreement with the transmissivity (T) value calculated from the mini-pumping test performed in the same hole (Table 6).

4.3.3 Pumping Airlift Test Interpretation

MW16-01T was pumped for 16.5 minutes at ~0.32 L/s (~5.1 US GPM). Water level recovery in MW16-01T was manually measured for 30 minutes after cessation of pumping, with a water level recovery to 91% of the pre-pumping level. The recovery was evaluated by the Cooper-Jacob graphical method (Cooper and Jacob, 1946), yielding a formation transmissivity of 1E-05 m²/s. Supporting calculations are provided in Appendix C.

Airlift testing of MW16-01WB was supported by high-resolution monitoring of groundwater pressures at MW16-01T. MW16-01WB was airlifted at 115 L/s (30.5 US GPM) for 40 minutes with the hammer positioned at the bottom of the open hole (~120 m bgs). The datalogger at MW16-01T, was set to record at 30 second intervals. Water level changes were documented in both the shallow and deep VWP sensors (Figure 8). The shallow VWP recorded a slight increase in water level, followed by a relatively quick return to pre-airlifting levels. The deep VWP displayed a drop-in water level of 7.15 meters from pre-drilling levels, and a drop of 6.45 meters during the airlifting testing. The recovery test was evaluated by the Cooper-Jacob graphical method as illustrated in Figure 9 (Cooper and Jacob, 1946). The test provided transmissivity of 1E-04 m²/s and a confined storativity value of 9E-05. Both values are reasonable for a bedrock aquifer. The transmissivity value is consistent with that measured at MW16-01T (Table 6).

Hole ID	Test Type	Analytical Method	Interval (m)	Transmissivity (m²/s)	Hydraulic Conductivity (m/s)
MW16-01T	Packer Constant Head Test	Hvorslev (1951)	147.8-189		6E-07
MW16-01T	Pumping Test Recovery	Cooper and Jacob (1946)	0-189	1E-05	6E-07 ²
MW16-01WB	Airlift Test Recovery	Cooper and Jacob (1946)	0-120 ¹	1E-04	

Table 6: Summary of hydraulic testing results at MW16-01T/WB

Notes ¹Airlifting conducted in MW16-01WB, measurements recorded at 97 and 131.5 m bgs in MW16-01T

² Bulk measurement based on 20m fracture zone

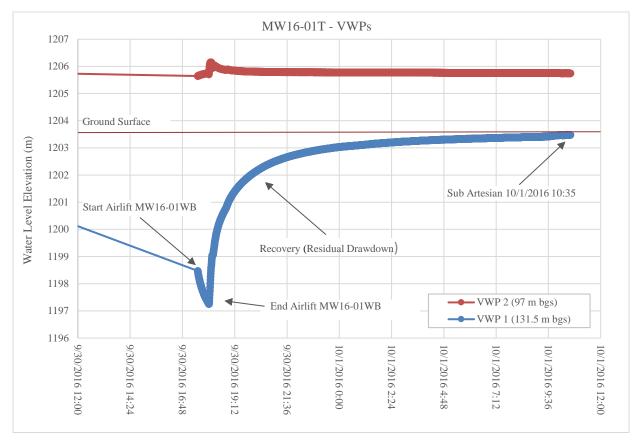


Figure 8: Water level changes at MW16-01T in respone to airlift testing in MW16-01WB

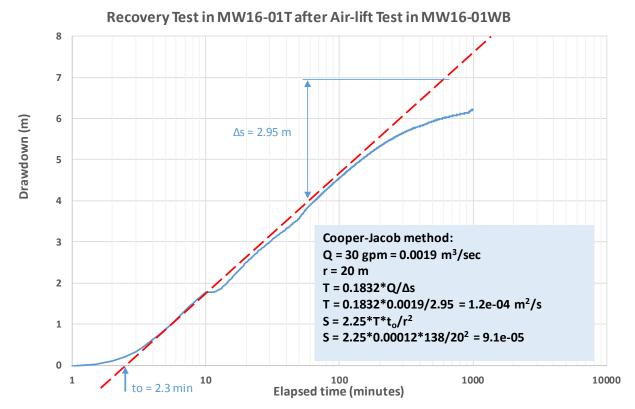


Figure 9: Recovery test in MW16-01T in response to airlift testing in MW16-01WB

4.4 Ground Temperature

The thermistor string was downloaded approximately five (5) weeks after installation which provided sufficient time for the cement to set and cool, and the sensors to equilibrate to ground conditions. The thermistor data displayed temperature stabilization useful for determining permafrost thickness for the final planning of the MW16-01WB installation. Permafrost thickness is on the order of 67 metres, with temperatures below 0°C between 0.5 and 67 metres below ground surface. Figure 10 demonstrates sensor temperature stabilization over the course of several weeks after installation.

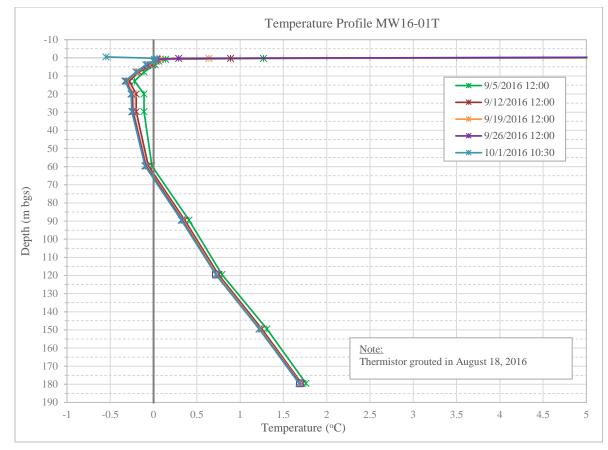


Figure 10: Temperature profile at MW16-01T.

4.5 Groundwater Quality

Between October 3rd and 4th MW16-01WB sampling zone 3 was manually developed using the Westbay sampling probe. Approximately 30 L was removed from the zone prior to sampling. The formation water was clear, odorless, and did not exhibit a change in clarity over the course of development. Upon completion of development, groundwater samples were collected.

5. Closure

The data presented within this report is considered preliminary in nature. Additional monitoring of the instruments will be required to understand longer term water level and ground temperature trends. Lorax appreciates the support from Goldcorp and Northspan crews in the planning and successful execution for this latest phase of the Baseline Hydrogeology Program. Please contact the undersigned with any questions or comments regarding the contents of this memo.

Sincerely,

LORAX ENVIRONMENTAL SERVICES LTD.

Prepared by: Signature REDACTED

Reviewed by: Signature REDACTED

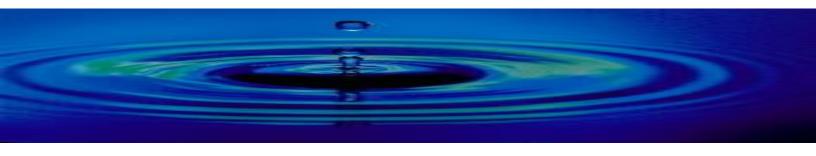
Andrew Solod, B.Sc. Project Hydrogeologist **Laura-Lee Findlater, P.Geo.** Project Hydrogeologist

References

- Cooper, H.H. and C.E. Jacob, 1946. A generalized graphical method for evaluating formation constants and summarizing well field history, Am. Geophys. Union Trans., vol. 27, pp. 526-534.
- Hvorslev M.J. (1951) Time Lag and Soil Permeability in Ground-Water Observations. Bull. No.36, Waterways Experiment Station, Corps. Of Engineers, U.S. Army, pp. 50.
- Mikkelson, E. 2002. Cement-bentonite grout backfill for borehole instruments. Geotechnical News: December 2002, pp. 38-4

Appendix A Borehole Logs MW16-01T & MW16-01WB

			MW1	6-01	Г/ВI	H-14	/ CFR-11	-
	C	Coffee Creek Gold Project #: A362-4	Drilling Started : August 18, 2016 Install Completed : August 27,2016 Drilling Diameter(s) : 6" / 4.5" / 3.5" Drilled depth : 189.28 mbgs		Ŭ			(Page 1 of 1) : Casing Advance / RC : Northspan : A. Solod : Goldcorp : A. Solod
Depth (m)	Elev. (masl)	Depth to Bedrock: 5 mbgs Casing Depth: 7 mbgs LITHC	Easting: 580,978.69 m Northing: 6,972,502.92 m Elevation: 1203.67 m asl Survey Type: RTK GPS	Fracture = Fr Fault = Flt	Airlift Yield 8/22/2016 (USGPM)	Airlift Yield 8/23/2016 (USGPM)	Installation	depths along hole (m) - Steel enclosure w/ dataloggel
0-	- 1203	OVERBURDEN						→ Surface casing → Thermistor (.33, .85, 1.83,
- - 20—	- 1183	6.1-25.9 Oxidized granite grading to Patchy fracture controlled weak clay silver-brassy pyrite up to 0.25%. Wea along fracture surfaces).	alteration. Blebs of	6-25				- Thermistor (12.8 m) - Thermistor (12.8 m)
-		25.9 -32 Weak zone. Weak to mode alteration with weak patchy sericite. I 1%, with fracture controlled limonite	Disseminated hematite up to	25-32				— Thermistor (29.7 m)
40-	- 1163	32-39.6 Weak zone. Moderate perva pervasive sericite. Disseminated soo patchy disseminated hematite up to	ty sulphides up to 2.5%, 1.5%. (distinct sulphur smell)	39-54				
- 60 — -	- 1143	39.6-54.9 Weak zone. Moderate per- patchy sericite. Strongly oxidized thro hematite up to 1.5%, with disseminat (No significant As-by-XRF results) 54.9-73.2 Fresh granite, weak patchy oxidation.	oughout. Disseminated ed limonite up to 1%.					– Thermistor (56.6 m)
- 80— -	- 1123	73.2-83.8 Moderate pervasive clay a pervasive sericite alteration. Dissemi with patchy limonite up to 0.75%. 83.8-86.9 Moderate pervasive clay a	nated hematite up to 1.5%,	73-86				– 1.0" Sch. 80 PVC Tremmie
- - 100 —	- 1103	sericite. 86.9-114.3 Weak zone. Moderate pe weak patchy sericite alteration. Disse	ervasive clay alteration, with minated hematite up to 1%,				-	— Thermistor (89.5 m) — VWP 2 (97.5 m)
-	- 1103	fracture controlled limonite up to 0.75	%.	86-114	7.75	15	-	- Cement grout
- 120 —	- 1083	114.3-125.0 Fresh granite with weak bleaching.	clay alteration/trace		7.75			– Thermistor (119.5 m)
-		125.0-135.6 Weak zone. Weak to mo alteration, fracture controlled hematit limonite up to 0.25%.		124-135				– VWP 1 (131.5 m)
140— - -	- 1063	135.6-189.0 Fresh Granite						— Thermistor (149.5 m)
- 160 — - -	- 1043							
180—					7.75	15		— Thermistor (179.5 m)


			MV	V16-0´	IWB	/ BH1	4-W	B / CFR-1206
								(Page 1 of 2)
	C	Coffee Creek Gold Project #: A362-4	Install Completed : Oc Drilling Diameter(s) : 6.0	eptember 28 ctober 03,2)" & 4.5" 0.09m			Drillii Supe Logg	ng Method : Casing Advance & RC ing Company : Northspan ervised By : AS (Lorax) ged By : AS cked By : LF
Depth (m)	Elev. (masl)	Casing Depth: 4.8 mbgs HQ Depth: 68.4 mbgs Westbay Depth: 117.97 mbgs LITHC	Easting: 580,971.33 m Northing: 6,972,510.54 m Elevation: 1203.91 m asl Survey Type: RTK GPS	PH	Airlift 9/29/2016 (USGPM)	Airlift 9/30/2016 (USGPM)	Depth (m)	Surface Casing Stickup: 1.30 m ags HQ Rods Stickup: 1.44 m abs Westbay Stickup: 1.82 m ags Water Level: 1.6 m above ground (3-Oct-16; Port 6)
0-	- 1203	OVERBURDEN					0-	Bentonite
-	- 1203	Oxidized granite in overburden w material. Oxidized granite grading to weakly Patchy fracture controlled weak cl	/ bleached down-hole.				-	Seal Surface monument casing
10	- 1193						10— - -	
20	- 1183						20	
30-	- 1173	Moderate por opius algue Maratio					30	MP38 w/ Glycol Packer HQ Rods
40	- 1163	Moderate pervasive clay alteration					40-	
	- 1153						- 50	
60-							- 60—	

			N	1W16-0 ⁻	1WB	/ BH′	4-W	B / CFR-1206
								(Page 2 of 2)
	C	Coffee Creek Gold Project #: A362-4	Install Completed : Drilling Diameter(s) :	September 2 October 03,2 6.0" & 4.5" 120.09m			Drillir Supe Logg	ng Method : Casing Advance & RC ng Company : Northspan ervised By : AS (Lorax) led By : AS cked By : LF
Depth (m)	Elev. (masl)	Casing Depth: 4.8 mbgs HQ Depth: 68.4 mbgs Westbay Depth: 117.97 mbgs LITHC	Easting: 580,971.33 m Northing: 6,972,510.54 m Elevation: 1203.91 m asl Survey Type: RTK GPS	ъ	Airlift 9/29/2016 (USGPM)	Airlift 9/30/2016 (USGPM)	Depth (m)	Surface Casing Stickup: 1.30 m ags HQ Rods Stickup: 1.44 m abs Westbay Stickup: 1.82 m ags Water Level: 1.6 m above ground (3-Oct-16; Port 6)
60-							60-	
	- 1143 - 1133	Fresh granite			18	24	- - 70 — -	HQ Rods Packer Port 8 Packer Port 7 Port 7 Zone 4 Packer Port 6 Port 6 Port 6 Port 5
- 80	- 1123				15.5	16	- 80	Westbay MP38 w/ Glycol Packer
- 90 	- 1113				14.5		- 90 — - -	Packer Port 4 Zone 2 Packer Port 3
100	- 1103						100	
110	- 1093					23	110— - - 120—	Packer Port 2 Zone 1 Packer Port 1

Appendix B Westbay Completion Report

November 2, 2016

Completion Report WB950 Kaminak Gold Coffee Creek Project MW-16-01WB

November 2, 2016

Completion Report WB950

Kaminak Gold Coffee Creek Project MW-16-01WB

Project Number: WB950

Prepared for:

Lorax Environmental Services Ltd.

Prepared by:

Westbay Instruments

8610 Glenlyon Parkway Suite134 Burnaby, BC V5J 0B6

CONTENTS

1		1
2	PRE-INSTALLATION ACTIVITIES	1
3	INSTALLATION	1
	3.1 Preparation of Westbay System Design	1
	3.2 Layout of Westbay System Components	2
	3.3 Lowering of Westbay System Components	2 2 2 2 3
	3.4 Hydraulic Integrity Testing	2
	3.5 Positioning of Westbay System Completion	2
	3.6 Pre-inflation Profile	3
	3.7 Inflation of Westbay System Packers and Placement of Antifreeze Solution	3
4	FLUID PRESSURE MEASUREMENTS	4
TABLES		
	Table 1: Summary of Westbay System CompletionTable 2: Borehole and Westbay Tubing Water Level	1 2
FIGURES		
	Figure 1: MOSDAX Transducer Position	5
	Figure 2: Zone Dimensions	6

APPENDICES

APPENDIX: Monitoring Well: MW-16-01WB

1 INTRODUCTION

This report and the attached Appendix document the technical services carried out by Westbay Instruments (Westbay) under Lorax Environmental Services Ltd. P.O. No. A362-4. A Westbay System completion was installed in borehole MW-16-01WB at the Kaminak Gold site near Coffee Creek, Yukon Territory.

This report documents the installation tasks and related QA checks.

2 PRE-INSTALLATION ACTIVITIES

Borehole MW-16-01WB was drilled using an air rotatory method at a nominal 4.5-inch diameter to a depth of 120.1m. Permanent surface casing was installed to bedrock in the borehole. A string of HQ-size drill rods (nominal 76mm ID) was permanently installed to 68 meters depth before installation of the Westbay System.

3 INSTALLATION

Westbay technical services representative Mr. Mark Lessard was on site for the installation from September 30 to October 5, 2016. Lorax representatives Mr. Andrew Solod and Mr. Chris Bourque were on-site to assist and supervise the work.

Monitoring Well No.	Installation Dates 2016	Borehole Depth (m)	Depth of HQ rods (m)	MP38 Tubing Length (m)	No. Monitoring Zones
MW-16-01WB	Oct 1 - 3	120.1	68	118.0	4

Table 1, Summary of Westbay System Completion

(Note: all depths are with respect to ground surface. Monitoring well reference elevations were not available at the time of writing).

The Westbay System was installed according to the procedure described below.

3.1 Preparation of Westbay System Design

Packer locations and the projected depth of permafrost (about 60m) for the borehole were provided to Westbay by Mr. Andrew Solod of Lorax. A well design was created based on these depths. The well design was used to prepare a Westbay Completion Log, which specifies the location of components in the well. The log was reviewed and approved in the field by Mr. Solod prior to installation of the well. The Westbay Completion Log as approved was used as an installation guide in the field. A field copy of the log is in the Appendix.

A measurement port coupling was included in each primary zone to provide the capability to measure fluid pressures and to collect fluid samples. Measurement port couplings were also included in QA zones to provide QA testing capabilities. A pumping port was placed above the top packer located directly above the expected base of permafrost in the completion. This pumping port was placed as part of a plan to introduce a 3:1 propylene glycol/water mixture into the steel casing adjacent to the permafrost zone.

Mr. Andrew Solod of Lorax requested that optional synthetic (PET) filters were not to be installed over the measurement port couplings.

3.2 Layout of Westbay System Components

Prior to Westbay System installation, the Westbay System components were set out on a rack near the borehole according to the sequence indicated on the Westbay Completion Log. Each component was numbered beginning with the lowermost as an aid to confirming the proper sequence of components. The appropriate Westbay System couplings were attached to the tubing sections. Magnetic location collars were attached 0.6 meters below the top of the measurement port in each primary zone.

Each component was visually inspected. Serial numbers for each packer, pumping port and measurement port coupling were recorded on the Westbay Completion Log. The well component layout was confirmed with the log before the components were lowered into the borehole.

3.3 Lowering of Westbay System Components

The Westbay System components were lowered into the borehole by hand, through permanent HQ drill rods (nominal 76mm ID) to 68 meters and open borehole to total depth. Each tubing joint was tested with a minimum internal hydraulic pressure of 150 psi for one minute to confirm hydraulic seals. A record of each successful joint test and the placement of each component are noted on the Westbay Completion Log by check marks.

A 3:1 water/propylene glycol mixture supplied by Lorax was added to the Westbay completion when necessary to counter buoyancy effects while components were lowered into the borehole and for testing of joint seals during lowering.

3.4 Hydraulic Integrity Testing

After the Westbay System components were lowered into the borehole, the water inside the tubing was monitored at a depth different from the open borehole water level for a minimum period of thirty minutes to confirm hydraulic integrity of the tubing. The data from the hydraulic integrity test is shown in Table 2 below.

Well number	Borehole water level (ground surface)	Westbay tubing water level (below top of Westbay)
MW-16-01WB	ground level (artesian)	37.310 m

Table 2, Borehole and Westbay Tubing Water Level

3.5 Positioning of Westbay System Completion

The final position of the guide tube is illustrated on the Summary Completion Log in the Appendix. The Westbay System tubing was positioned as indicated on the cover page of the Summary Completion Log. Ground surface was used as zero reference for the installation. The Westbay System components were supported in this position while packer inflations were carried out.

The positioning of the Westbay System is based on the "nominal" lengths of Westbay System components. The positioning calculations do not include allowances for borehole temperature or deviation effects.

The attached figure titled "MOSDAX Transducer Position" provides information to correlate the position of MOSDAX Transducer sensors to the reference position at the top of the Measurement Port. The attached figure titled "Dimensions of Packer Seals and Monitoring Zones" outlines the calculations used to determine the packer centerline depths and zone length.

The Summary Completion Log and Table 4, shows the final "as-built" locations of key components in the well, and Table 5 shows the final "as-built" locations of all components in the well, are included in the Appendix.

3.6 Pre-inflation Profile

Prior to inflating the packers, a pre-inflation pressure profile was carried out in the Westbay System to confirm the proper operation and position of measurement ports and magnetic collars. The data confirmed proper operation and position of all measurement ports (Figure 3). The data for the pre-inflation profile for the well is located in the Appendix.

3.7 Inflation of Westbay System Packers and Placement of Antifreeze Solution

The Westbay packers were inflated using a 3:1 proplyene glycol/water mixture provided by Lorax. The Westbay Model No. 6055 vented inflation tool was used for packer inflation. All the packers appear to have inflated normally. The data for inflation of each packer are provided on the Westbay Packer Inflation Records included in the Appendix.

The packers were inflated in a specific sequence as part of a plan to introduce and control an antifreeze solution in the well annulus through the permafrost zone.

The sequence of tasks for introducing 3:1 proplyene glycol/water mixture is illustrated below:

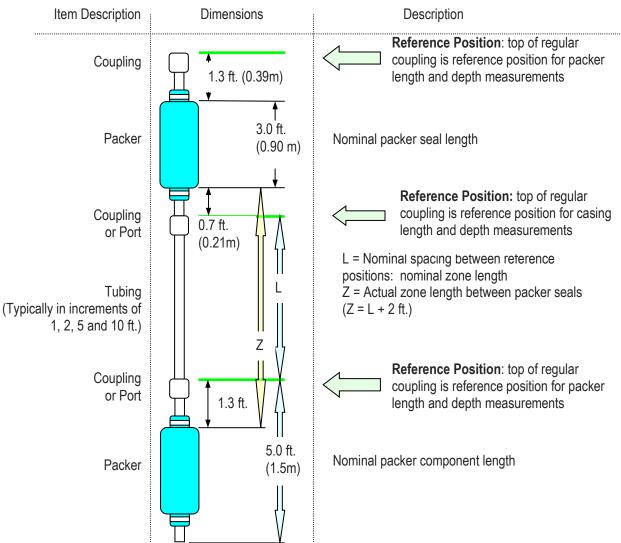
- A set of two packers positioned inside the HQ rods immediately below the expected base of permafrost are inflated.
- The pumping port above the upper inflated packer was opened.
- A 3:1 mixture of water and propylene glycol supplied by Lorax was pumped inside the Westbay tubing, out the pumping port and into the well annulus (HQ rods). Pumping continued until a return flow of the mixture was observed from the well annulus at ground level, thus indicating that the well annulus (HQ rods) was full of the antifreeze mixture.
- The pumping port above the upper inflated packer was closed.
- The remaining Westbay packers were inflated sequentially beginning at the bottom.
- The squeeze relief venting function of the packer inflation tool was disabled to prevent accidental release of tubing fluid to the formations.


4 FLUID PRESSURE MEASUREMENTS

After packer inflation was completed, fluid pressures were measured at each measurement port. At that time, the in-situ formation pressures may not have recovered from the pre-installation activities and potential groundwater pressure increases in monitoring zones that may result from packer inflation. This latter effect may be more likely to occur in monitoring zones located in low-permeability geological formations. Longer term monitoring may be required to establish representative fluid pressures.

A plot of the piezometric levels in all zones in the well is shown on Figure 4 in the Appendix. The data were examined to confirm proper operation of the measurement ports and as a check on the presence of annulus seals between monitoring zones. The calculation sheet for the pressure profile is also enclosed in the Appendix.

MOSDAX Transducer Position


In an Westbay System Measurement Port Coupling

System	Measurement Port	А	В
Plastic MP38	0205	4.5" (114.3 mm)	6.5" (165.1 mm)

Figure 1: MOSDAX Transducer Position

Dimensions of Packer Seals and Monitoring Zones. 0238 Packers

Discussion Points:

- The top of a coupling (Regular Coupling, Measurement Port or Pumping Port) is the reference point for describing nominal depths and nominal lengths. Actual positions of packer seals and zone lengths are determined with respect to the appropriate reference positions.
- <u>Packer Position Example</u>: A packer with a nominal depth of 50 ft. (15.2m), will have a nominal packer seal position of 51.3 to 54.3 ft. (15.59 to 16.49m)
- <u>Zone Length Example</u>: A zone whose upper packer is at 50 ft. (15.2m) and bottom packer is at 70 ft. (21.3m) will have a nominal zone length of 15 ft. (4.6m) and an actual zone length (between packer seals) of 15.0+1.3+0.7 = 17.0ft. (4.6 + 0.39 + 0.2 = 5.19m)
- Information on the position of Measurement Port Valve and MOSDAX Transducer sensor, used for detailed calculation of piezometric level measurements, are described separately.

APPENDIX: MONITORING WELL: MW-16-01WB

As-Built Key Components Summary (Table 4) As-Built Tubing Summary (Table 5) Summary Completion Log	- 1 page - 2 pages - 3 pages
Pre-Inflation Piezometric Pressure/ Levels	
Field Data and Calculation Sheet (Oct 1)	- 1 page
Figure 3, Pre-Inflation Profile	- 1 page
Post- Inflation Piezometric Pressure/Levels	
Field Data and Calculation Sheet (Oct 3)	- 1 page
Figure 4, Post-Inflation Profile	- 1 page
Westbay Completion Log (field copy)	- 5 pages
Westbay System Packer Inflation Records	- 9 pages

TABLE 4 MW-16-01WB As-Built Packer and Port Summary

Port No.	Zone No.	Measurement Port Depth	Pumping Port Depth	Magnetic Collar Depth	Depth to top of Packer	Top of Zone	
1. 1. 1.		(m)	(m)	(m)	(m)	(m)	(m)
1	QA1	114.9	1		113.4	114.7	120.1
2	Zone 1	110.3		110.9	108.8	110.1	113.8
3	QA2	90.5			89.0	90.3	109.2
4	Zone 2	85.9		86.5	84.4	85.7	89.4
5	QA3	74.6			73.1	74.4	84.8
6	Zone 3	71.6		72.2	70.1	71.4	73.5
7	Zone 4	67.0		67.6	65.5	66.8	70.5
8	QA4	64.0			62.5	63.8	65.9
	Riser		62.5	61.3	30.5	31.8	62.9

Note 1: All depth measurements in meters below ground surface.

Note 2: All depth measurements use 'Nominal' casing lengths.

Note 3: Not corrected for borehole angle, deviation or borehole temperature effects.

Note 4: All Westbay Port depth measurements to upper edge of coupling item.

Note 5: Depths for top and bottom of zone based on packer seal position.

Item No.	Component	Component	Component	Coupling	Coupling	Coupling	Accessory	Accessory	Depth
	Part Number	Description	S/N	P/N	Description	S/N	P/N	Depth (m)	(m) *
49	W0203								-1.91
48	W020105			W0202					-1.86
47	W020101			W0202					-0.33
46	W020105			W0202					-0.03
45	W020110			W0202			W0216	2.1	1.50
44	W020105			W0202					4.54
43	W020110			W0202					6.07
42	W020110			W0202					9.11
41	W020110			W0202					12.16
40	W020110			W0202					15.21
39	W020110			W0202					18.26
38	W020110			W0202					21.31
37	W020110			W0202				· · · · · · · · · · · · · · · · · · ·	24.35
36	W020110			W0202					27.40
35	W0238	Pagker	19330	W0202					30.45
34	W020110			W0202					31.97
33	W020110			W0202					35.02
32	W020110			W0202					38.07
31	W020110			W0202					41.12
30	W020110			W0202			1		44.17
29	W020110		1	W0202					47.21
28	W020110			W0202					50.26
27	W020110			W0202					53.31
26	W020110			W0202					56.36
25	W020110			W0202			W0216	60.0	59.40
24	W0238	Packer	19325	W0224	Pumping Port	8821		and a second of	62.45
23	W020105			W0205	Measurement Port	8908			63.98
22	W0238	Packer	19388	W0202					65.50
21	W020110			W0205	Measurement Port	8906	W0216	67.6	67.02
20	W0238	Packer	19387	W0202	100 - 10 - 10 - 10 - 10 - 10 - 10 - 10		Section of the		70.07
19	W020105			W0205	Measurement Port	8907	W0216	72.2	71.60
18	W0238	Packer	19404	W0202					75.12
17	W020110			W0205	Measurement Port	8914			74.64
16	W020110			W0202			1		77.69
15	W020102		1	W0202		1	1	[80.74
14	W020110		1	W0202					81.35
13	W0238	Packer	19403	W0202					84.40
12	W020110			W0205	Measurement Port	8912	W0216	86.5	85.92
11	W0238	Packer	19402	W0202					88.97
10	W020110		T W II	W0205	Measurement Port	8915			90.49
9	W020110		1	W0202					93.54
8	W020110			W0202				1	96.59
7	W020110		1	W0202					99.64
6	W020110	 		W0202		<u> </u>		1	102.68
0	1 44020110	L	<u> </u>	1 10202	I				102.00

Item No.	Component	Component	Component	Coupling	Coupling	Coupling	Accessory	Accessory	Depth
	Part Number	Description	S/N	P/N	Description	S/N	P/N	Depth (m)	(m) *
5	W020110			W0202					105.73
4	W0238	Packer	19401	W0202					108.78
3	W020110			W0205	Measurement Port	8916	W0216	110.9	110.30
2	W0238	Packer	19334	W0202	Packer				113.35
1	W020110			W0205	Measurement Port	8911			114.88
0	W0203								117.92

Depths are with respect to ground surface.

* Component positions are referenced to the top of the subject Westbay System coupling.

* Packer positions are referenced to the top Westbay System coupling on the packer.

Monitoring zone dimensions are determined as described on the attached "Dimensions of Packer Seals and Monitoring Zones".

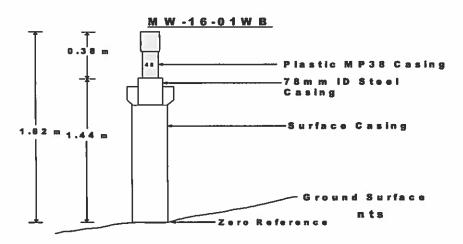
The position of a MOSDAX Transducer in a Measurement Port is illustrated in the attached "MOSDAX Transducer Position".

This information may be used in calculating piezometric levels.

Summary Completion Log

Company: LORAX Well: MW-16-01WB Site: Coffee Creek Project: Kaminak Job No: WB950 Author: ML

Well Information

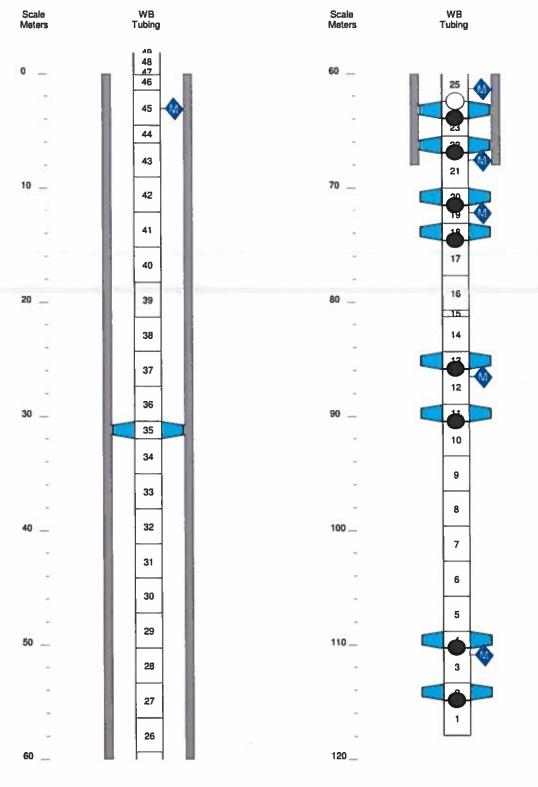

Reference Datum: Ground Surface Elevation of Datum: 0.00 m. MP Casing Top: 0.00 m. MP Casing Length: 117.97 m. Borehole Depth: 120.09 m. Borehole Inclination: Vertical Borehole Diameter: 114.00 mm

Well Description: Permafrost Other References:

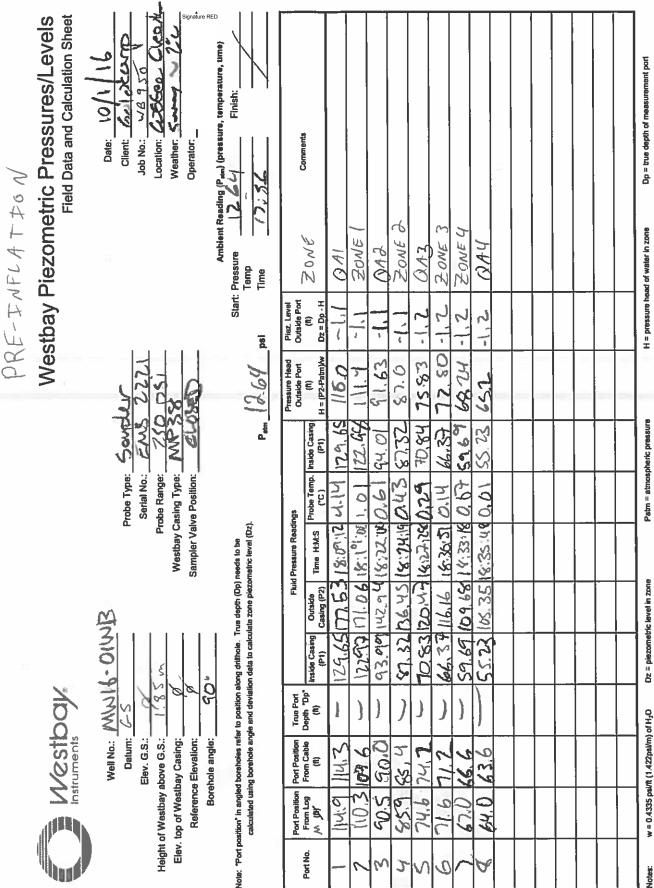
File Information

File Name: MW-16-~1.WWD Report Date: Tue Oct 11 10:38:09 2016 File Date: Oct 01 17:57:08 2016

Sketch of Wellhead Completion

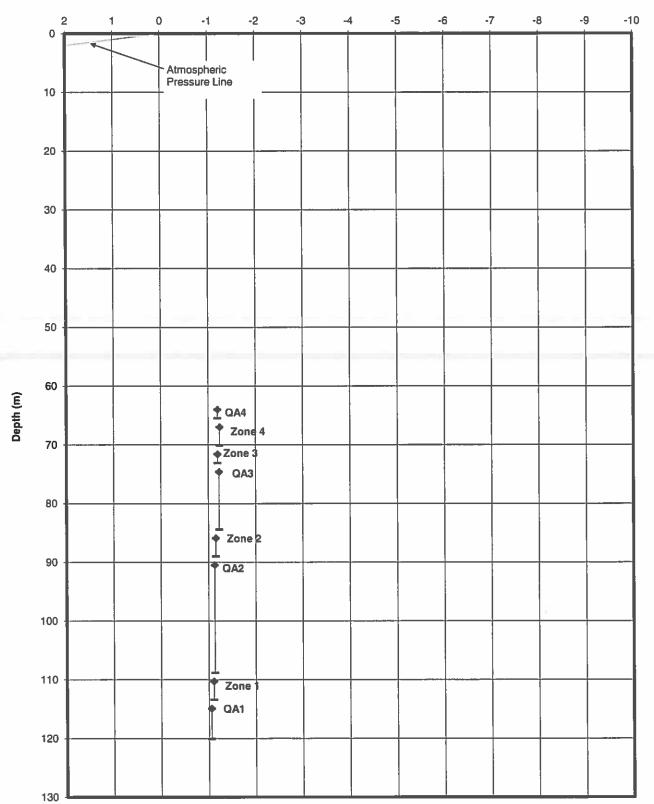


Summary Completion Log LORAX

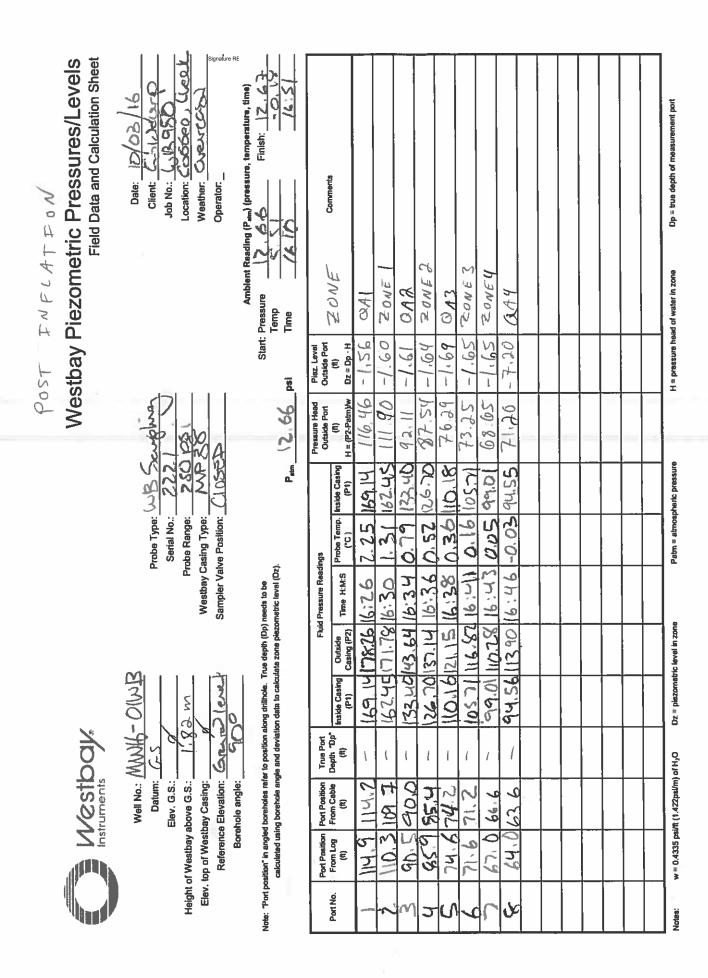

				Legend	1	
			MP Components - WD Library 01/23/14)		Geology	Backfill/Casing
		(2)	W0203 - MP38 End Cap			Mild Steel
İ	I	(5)	W020105 - MP38 Tubing 2 (5F/1.5M)			
	, ,	(1)	W020101 - MP38 Tubing 4 (1F/0.3M)			
		(32)	W020110 - MP38 Tubing 1 (10F/3M)			
		(9)	W0238 - MP38 Packer - 74mm (5F/1.5M)			
T	1	(1)	W020102 - MP38Tubing 3 (2F/0.6M)			
27		(39)	W0202 - MP38 Regular Coup	oling		
-	\geq	(1)	W0224 - MP38 Pumping Por	t		
-		(8)	W0205 - MP38 Measuremen	t Port		
	-14	(6)	W0216 - Magnetic Location (Collar		

Summary Completion Log LORAX

Job No: WB950 Well: MW-16-01WB



Tue Oct 11 10:17:25 2016



Oz = piezometric level in zone w = 0.4335 pai/ft (1.422pai/m) of H₂O

Piezometric Profile Monitoring Well: MW-16-01-WB

Equivalent Depth to Water (m)

Piezometric Profile Monitoring Well: MW-16-01WB

-10 2 0 -1 -2 -3 -4 -5 -6 -7 -8 -9 1 0 Atmospheric Pressure Line 10 20 30 40 50 60 Depth (m) Zone 4 70 ¢ QA3 80 • Zone 2 90 QA2 100 110 Zone 1 **♦ QA**1 120

Equivalent Depth to Water (m)

130

Westbay Completion Log

Company: LORAX Well: MW-16-01WB Site: Coffee Creek Project: Coffee Creek Job No: WB950 Author: ML

Well Information

Reference Datum: Ground Surface Elevation of Datum: 0.00 m. MP Casing Top: 0.00 m. MP Casing Length: 117.97 m. Borehole Depth: 120,30 m. Borehole Inclination: Vertical Borehole Diameter: 114.00 mm

Well Description: Permafrost Other References:

File Information

File Name: MW-16V2.WWD Report Date: Sat Oct 01 09:07:42 2016 File Date: Oct 01 09:04:01 2016

Comments

Zero reference is ground surface Filter Socks not to be used - (

Log Information

Borehole condition confirmed. MP well design & preparation. MP well design checked. MP well and borehole approved to install.

(method) / As we By Signature REDACTED Date: Date: 0 By Date: 10 By : Date:

Westbay Completion Log LORAX

				Legend	i			
			MP Components - WD Library 01/23/14)	•	Geology	Bacl	kfill/Casing	
	_	(2)	W0203 - MP38 End Cap				Mild Steel	
Ι	I	(5)	W020105 - MP38 Tubing 2 (5F/1.5M)					
r I	ı I	(1)	W020101 - MP38 Tubing 4 (1F/0.3M)					
		(32)	W020110 - MP38 Tubing 1 (10F/3M)					
		(9)	W0238 - MP38 Packer - 74mm (5F/1.5M)					
ł	T	(1)	W020102 - MP38Tubing 3 (2F/0.6M)					
_	_	(39)	W0202 - MP38 Regular Cou	pling				
\subset	>	(1)	W0224 - MP38 Pumping Por	t				
-	-	(8)	W0205 - MP38 Measuremen	t Port				
		(6)	W0216 - Magnetic Location (Collar				

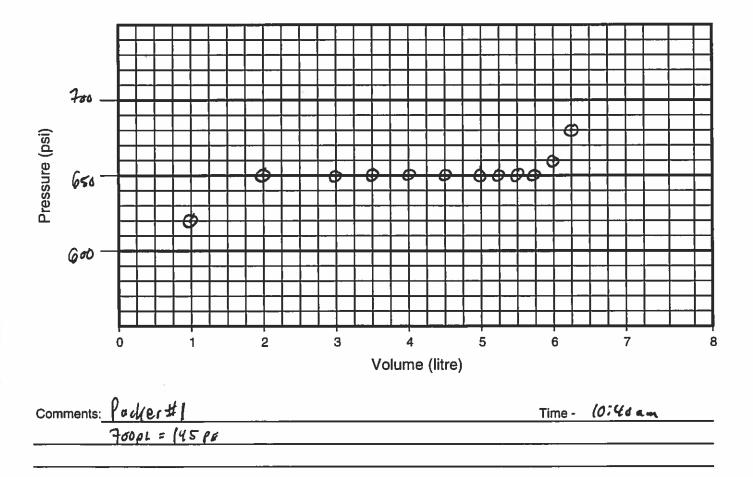
Westbay Completion Log LORAX

Westbay Completion Log LORAX

Westbay Completion Log LORAX

2:31

WB **QA** Tested Scale WB Tubing Serial Numbers Meters Tubing OK Description 100 7 W020110 - MP38 Tubing 1 (10F/3M) 7 বিবন্দ 6 W020110 - MP38 Tubing 1 (10F/3M) দেশব 5 W020110 - MP38 Tubing 1 (10F/3M) 19401 - 160 W0238 - MP38 Packer - 74mm (5F/1.5M) W0205 - MP38 Measurement Port 4 110 8916 3 W020110 - MP38 Tubing 1 (10F/3M) 2 19334-145 W0238 - MP38 Packer - 74mm (5F/1.5M) W0205 - MP38 Measurement Port 8911 1 W020110 - MP38 Tubing 1 (10F/3M) W0203 - MP38 End Cap চিবন 120 Start lowering at 2:21 pm on Oct 1, 2016. Joint test tool - 300 ps: -Hydraulic Integrity Test Bonchole water dopth - artessan. 37.310 m at 1850 on Octi/16 Inflation tool - 400-410 pr:. 37.310 m at 1905 on Oct 1/16 Pre-Inflation Protele 130 37-310m at 1915 on Oct 1/16 37.310m at 1930 on Oct 1/16 -measurements recorded, calculations completed. 37.310 m at 1415 on Oct 2/16 - confirm m-port position Westbay thing is Wafer tight. Function. and 140 150 (c) Westbay Instruments Inc. 2000 Sat Oct 01 09:08:20 2016 Page: 5

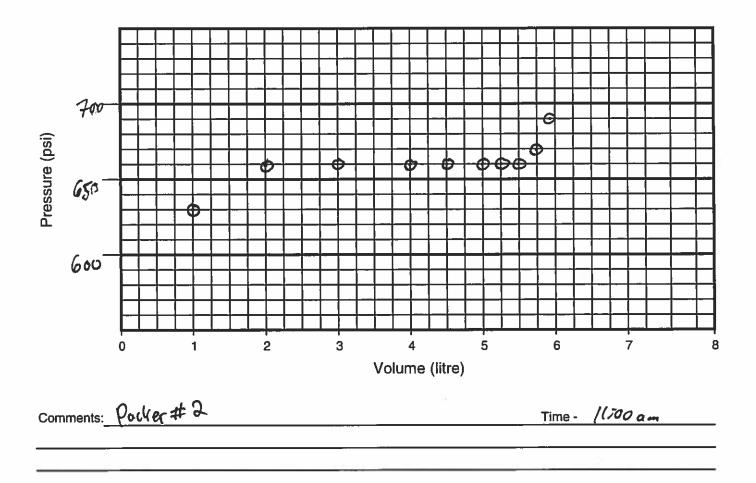

Sheet <u>| of 9</u> Westbay Packer Inflation Record

Project: LORAX	Project No.: W/ A a 5n Signature REDACTE	Well No.: <u>MW.16-01WB</u>
Location: <u>Coffee</u> Creek	Completed t	Date Inflated: 0 cf 3/16
Packer No. 1, Comp 2 54 # 19334	Depth (#/m): 113, 4	Inflation Tool No.: 3/97-
	ne Pressure, P _L : <u>680</u> psi	Tool Pressure, P _T : <u>4/0</u> psi
Borehole Water Level: $O(H/m) = O$	psi (P _w)	

Instruments

Calculated Packer Element Pressure, $P_E = P_L + P_W - P_V - P_T = 125$ psi

Volume, litres	1.0	2.0	3.0	3.5	4.0	4.5	5.0	5.25	5.5	5.75
Pressure, psi	620	650	650	650	650	650	650	650	650	650
Volume, litres	6.0	6.25	/	6.0						
Pressure, psi	660	680	/	ø						

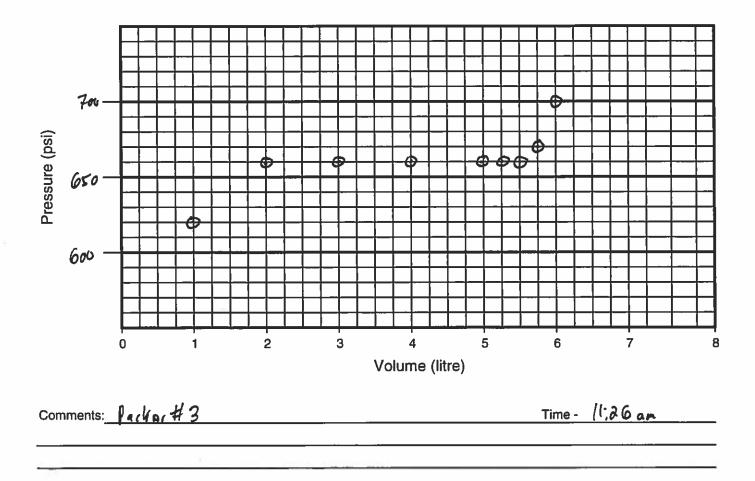

Sheet 2 of 9 Westbay Packer Inflation Record

Project: LIRAX	Project No.: WB950	Well No.: <u>MW-16-01 WB</u>
Location: Coffee Creek	Completed by:	Date Inflated: 0 of 3/16
Packer No. 2, 10mp 4 5N# 19401	Depth (<i>¥</i> //m): /0 8.%	Inflation Tool No.: 3/97
Packer Valve Pressure, Pv: /60 psi Final	Line Pressure, P _L : <u>690</u> psi	Tool Pressure, P _T : <u>910</u> psi
Borehole Water Level: 0 (#7 m) = 0	psi (P _w)	
· · · · ·		

Westbay.

Calculated Packer Element Pressure, $P_E = P_L + P_W - P_V - P_T = (20)$ psi

Volume, litres	1.0	2.0	3.0	4.0	4.5	5.0	5.25	<u>5</u> 5	5.75	5.9
Pressure, psi	630	660	660	660	660	660	660	660	670	690
Volume, litres	/	5.6	-							
Pressure, psi	/	ø								

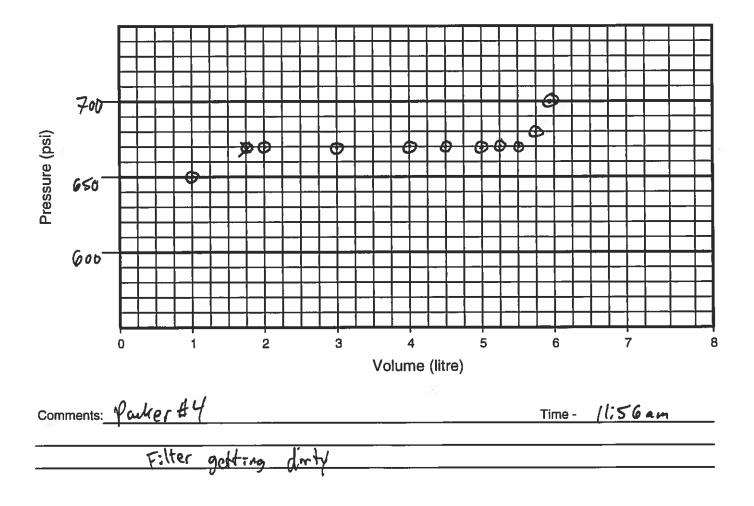

Sheet 3 of 9 Westbay Packer Inflation Record

Project: LORAY	Project No.: Wgq50	Well No.: MW-	6-01WB
Location: <u>Coffee Creek</u>	Signature REDACTED	_Date Inflated:	Oct 3/16
Packer No. 3. compil SNH 19402	_Depth (#1/m): 89.0	_Inflation Tool No.:	3197
Packer Valve Pressure, Pv: //60 psi Final Li	ine Pressure, P _L : <u>700</u> psi	Tool Pressure, P _T :	<u>910</u> psi
Borehole Water Level: $0 (\mathcal{K} / m) = 0$	_psi (P _w)		

Westbay.

Calculated Packer Element Pressure, $P_E = P_L + P_W - P_V - P_T = \cancel{30}$ psi

Volume, litres	1.0	2.0	3.0	4.0	5.0	5.25	5.5	5.75	6.0	
Pressure, psi	620	660	660	660	660	660	660	670	700	
Volume, litres	5.75		·						2	
Pressure, psi	ø									

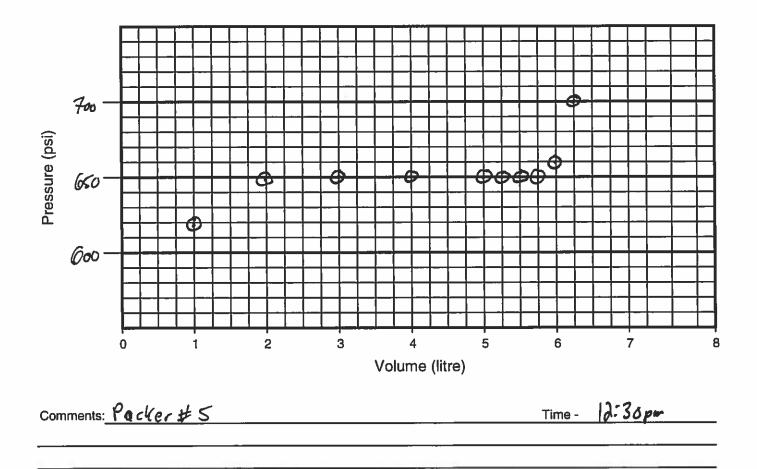

$\frac{Sheet}{Sheet} \frac{4}{of} \frac{q}{q}$ Westbay Packer Inflation Record

Project: LORAX	Project No.: WB150	Well No.: <u>MW-16-01 WB</u>
Location: <u>Coffee Creek</u>	Signature REDACTED	Date Inflated: Oct 3/16
Packer No. 4, 10mp 13 5N# 19403	_Depth (<i>X</i> t/ m): <u>84, 4</u>	Inflation Tool No.: 3197
Packer Valve Pressure, Pv: 150 psi Final Li	ine Pressure, P _L : <u>700</u> psi	Tool Pressure, P _T : <u>4/0</u> psi
Borehole Water Level: $d (\#7 \text{ m}) = d$	_psi (P _w)	
Calculate	d Backer Element Breesure . P.	-P + P - P - 140 noi

Westbay.

Calculated Packer Element Pressure, $P_E = P_L + P_W - P_V - P_T = //20$ psi

Volume, litres	1.0	2.0	3.0	4.0	4.5	5.0	5.25	5.5	5.75	5.9
Pressure, psi	850	670	670	670	670	670	670	670	680	700
Volume, litres	/	5.7								
Pressure, psi		ø								

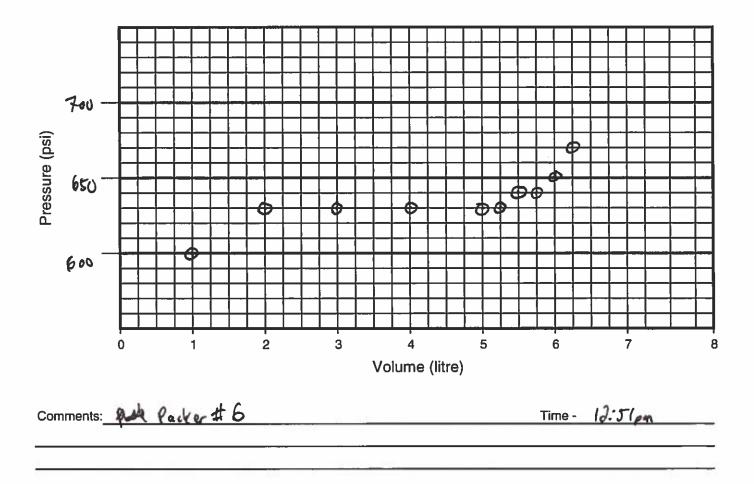


Sheet S of <u>9</u> Westbay Packer Inflation Record

Project: LORAX	Project No.: WB 9 50	Well No .: MW . 16.01 WB
Location: Coffee Creek	Signature REDACTED,	Date Inflated: <u>Oct 2/16</u>
	/9404 Depth (#/m): 73.(Inflation Tool No.: 3197
Packer Valve Pressure, Pv: /50 p	i Final Line Pressure, P _L : <u>700</u> psi	Tool Pressure, P _T : <u>400</u> psi
Borehole Water Level:	n) =psi (P _w)	150
-	Calculated Packer Element Pressure, PE	$= P_L + P_W - P_V - P_T = + e_psi$

Instruments

Volume, litres	1.0	2.0	3.0	4.0	5.0	5.25	5.5	5.75	6.0	6.25
Pressure, psi	620	650	650	650	650	650	650	650	660	700
Volume, litres	/	6.0								anadala er der 🔷 –
Pressure, psi		Ø			1					

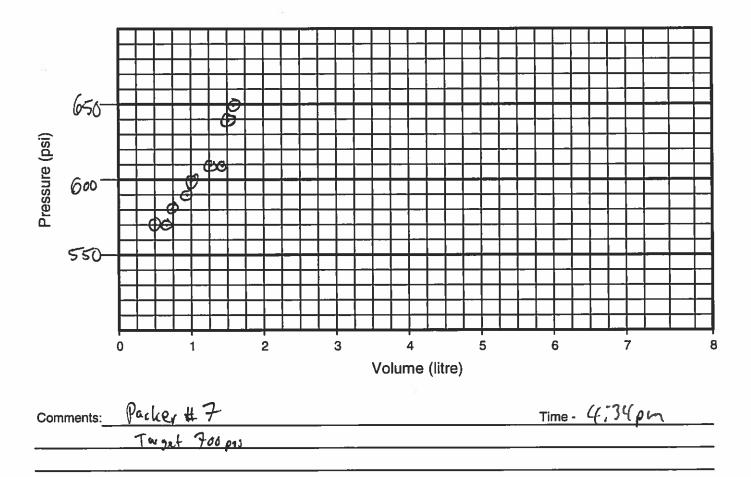

Sheet 6 of 9 Westbay Packer Inflation Record

Project: LORAL	Project No.:	Well No.: <u>MW-/6-01 wB</u>
Location: Coffee Creek	0	Date Inflated: Oct 3/16
Packer No. 6, como 20 5N# 19387	Depth (<i>ft</i> / m): 70.(Inflation Tool No.: 3197
Packer Valve Pressure, Pv: 155 psi Final Li	ne Pressure, P _L : <u>670</u> psi	Tool Pressure, P _T : <u>400</u> psi
Borehole Water Level: (#7 m) =	_psi (P _w)	

Westbay.

Calculated Packer Element Pressure, $P_E = P_L + P_W - P_V - P_T = //5$ psi

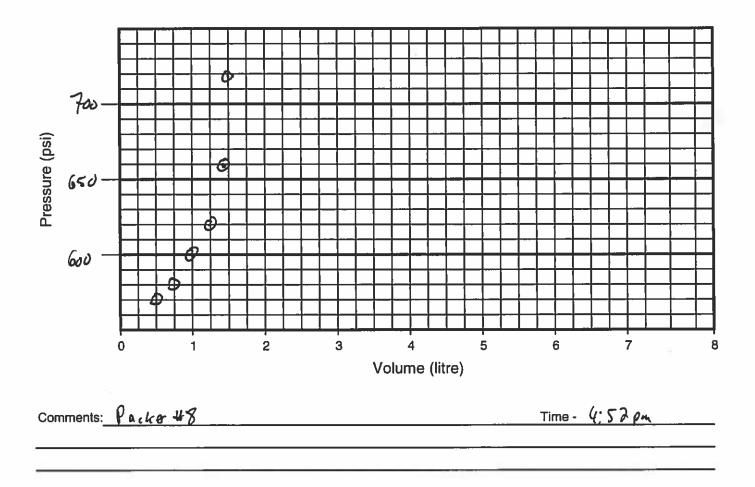
Volume, litres	1.0	2.0	3.0	4.0	5.0	5.25	5.5	5.75	6.0	6.25
Pressure, psi	600	630			630				650	670
Volume, litres		6.0								
Pressure, psi		ø								


Sheet 7 of 9 Westbay Packer Inflation Record

Project: LORAX	Project No.: 8950	Well No.: <u>Mw-16-01 WB</u>
Location: Coffee Creek	Completed by	Date Inflated: 0 d 2/16
Packer No. 7, comp 22	_Depth (.#7 m): 65.5	Inflation Tool No.: 3197
	ine Pressure, P _L : <u>650</u> psi	Tool Pressure, P _T : <u>410</u> psi
Borehole Water Level: $\mathcal{O}(\mathfrak{K}^{7} m) = \mathcal{O}$	_psi (P _w)	

Calculated Packer Element Pressure, $P_E = P_L + P_W - P_V - P_T =$

Volume, litres	0.25	0.5	0.7	0.75	0.9	1.0	1.25	1-3	1.4	1.5
Pressure, psi	280	570	570	580	590	600	610	620	620	640
Volume, litres	1.6	/	1.3							
Pressure, psi	650		4							

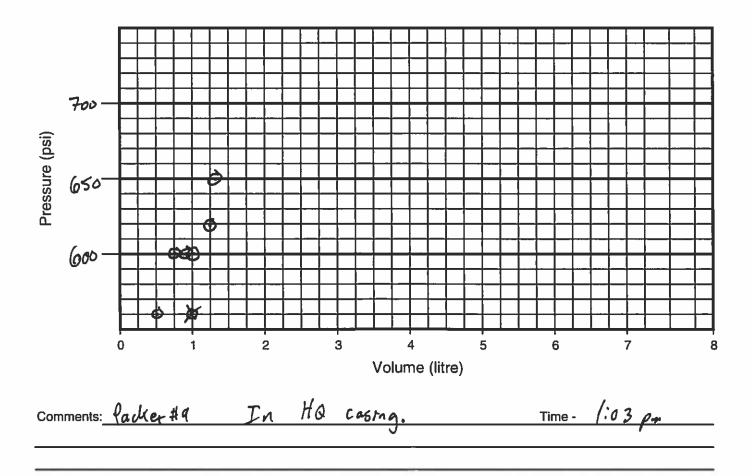

$\frac{Sheet \ got \ q}{Westbay Packer Inflation Record}$

Project: LORAX		Well No.: <u>Mby-!6-01W8</u>
Location: <u>Coffee Creek</u>	Completed by:	Date Inflated: _Oct 2//6
Packer No. 8, comp 24 Swst 19325	_Depth (ft / m): 62.5	Inflation Tool No.: 3197
Packer Valve Pressure, Pv: 150 psi Final Li	ne Pressure, P _L : <u>720</u> psi	Tool Pressure, P _T : <u>410</u> psi
Borehole Water Level: $0 (H/m) = 0$	-	te -

Instruments

Calculated Packer Element Pressure, $P_E = P_L + P_W - P_V - P_T = 160$ psi

Volume, litres	0.25	5.0	7.5	1.0	1.25	1.4	1.5	/	1,25	
Pressure, psi	340	570	580	600	620	660	720	/	Ø	
Volume, litres										
Pressure, psi										



Sheet <u>9 of 9</u> Westbay Packer Inflation Record

Project: LORAX	Project No.:Signature REDACTED	Well No .: MW-16-014B
Location: <u>Coffee Cree4</u>	_Completed by:	Date Inflated: Oct 3/16
Packer No. 9 Comp 35 5N# 19330	_Depth (ft / m):	Inflation Tool No.: 2/9 7
Packer Valve Pressure, Pv: 155 psi Final Li	ine Pressure, P _L : <u>650</u> psi	Tool Pressure, P _T : <u>900</u> psi
Borehole Water Level:(/(t/m) =	_psi (P _w)	
Calculate	d Packer Element Pressure, P _E	$= P_L + P_W - P_V - P_T = \underline{95}$ psi

Westbay.

Volume, litres	0.5	0.75	0.9	1-0	1.25	1.35		1.1	
Pressure, psi	560	600	600	600	620	650	$\langle \cdot \rangle$	ø	
Volume, litres									
Pressure, psi								5	

Appendix C Hydraulic Testing Results MW16-01T

	PA	CKER TE	STING - CO	NSTANT H	EAD TES	T (Hvorslev, 19	951)	
Date of Test			21-Aug-16	Apparent Curi	ent Depth of	Drill Hole (m):		189.00
Drill Hole No	D:	************************	MW16-01T	Test Section f	rom (m):	147.83	to:	189.00
Test No:		******	#1	Length of Tes	t Section (m):		*****	41.17
Packer Type	:		Single		·····	ertical m below	datum):	0.47
***************************************	ssure (kPa):		4143.8	Height of Gau	*****			1.40
Casing Deta			8 m	Drill Hole Dip				90
	Drill Hole (m	m).	114.3	Vertical Depth				189.00
	Rods (mm):		n/a	Vertical Depth				168.41
						st center section		100.11
	Injection		Cummulative	Friction H	1	Total Excess	Injection	
Stage	Duration	Pressure	Consumption	Drop pipe	Hose	Head	Rate	Note
no.	min	kPa	m3	m	m	m	L/s	
zero		0	7.920	0	0	0	0.00	
#1	5	200	8.098	3.55	0.00	18.74	0.593	
#2	5	200	8.225	1.97	0.00	20.33	0.423	
#3	7	200	8.394	1.80	0.00	20.49	0.402	
#2	3	170	8.450	1.15	0.00	18.05	0.311	
#1								
0.500 0.400 0.300 0.200 0.100 0.000 1 0.000	7.5	18.0	18.5	19.0 Total Excess	19.5 Head (m)	20.0	20.5	
		1	Stage no.		<u>.</u>	Average K	Lug	200
Bulk K (m/s)	#1	#2	#3	#2 back	#1 back	-	-	
. ,	8.1E-07	5.3E-07	5.0E-07	4.4E-07		5.7E-07	3.:	52
					PROJ. NO.:	A362-4	<u> </u>	
	R. L		KAX		PROJECT:	Coffee Creek		
		ENVIRON	MENTAL		DETAILS:	MW16-01 Pa	cker Testing	g 148-189m
	2289 Bur	rard St Var	ncouver, B.C.		ENG.	VS	Checked:	
			,		DATE	30-Aug-16	Figure:	1

Packer Test Analysis MW16-01T

RECOVE	ERY TEST E	VALUA	TION					Cooper -	Jacob Graph	ical Metho	d
Well:	MW16-0)1T	Date:	August	24, 2016					T = 0.1832.	.Q/s
Location:	Coffee Ck	, HLF	Discharge Q:	0.323	(l/s)		Interpretat	ion section :		S = 2.246.	
Type of Test	Recovery after	16.5min c	of drawdown fro	om pumpin			point 1:	3		s (m) =	4.20
Radial Dista	ancer(m):	0.063	Static level:	0	(m)		point 2:	13		t _o (min) =	
Well Diame	ter (mm):	125	Max. level:	6.79	(m)			-		,	
clock	elapsed time t	-	water level	d down	normalized						
time	(min)	point	h (m)	s (m)	drawdown		Г (m²/s) =	1.41E-05		S' =	1.26E+01
8:05	0	0	0	0	0.00			Boond	nna Taat D	lot	
8:06	1.00	1	5.00	5.00	0.74	0.0		Respt	onse Test P	101	
8:07	2.00	2	4.39	4.39	0.65	0.0					
8:08	3.00	3	3.92	3.92	0.58	1.0				00 00	<u> </u>
8:09	4.00	4	3.42	3.42	0.50					100 C	
8:10	5.30	5	2.92	2.92	0.43	2.0 -				x	
8:11	6.00	6	2.74	2.74	0.40				Å		
8:12	7.00	7	2.48	2.48	0.37	3.0 +			<u> </u>		
8:13	8.00	8	2.19	2.19	0.32	~			<i>°</i>		
8:14	9.00	9	1.99	1.99	0.29	4.0 drawdown (m)			5		
8:15	10.00	10	1.73	1.73	0.25	۲ ۲			7		
8:17	12.00	11	1.41	1.41	0.21	ୁ ର ₂ .0 _					
8:19	14.00	12	1.13	1.13	0.17	N A A					
8:21	16.00	13	0.89	0.89	0.13	dia					
8:23	18.00	14	0.78	0.78	0.11	7.0					
8:25	20.00	15	0.67	0.67	0.10						
8:27	25.00	16	0.62	0.62	0.09	8.0					
8:32	30.00	17	0.59	0.59	0.09	-					
						9.0					
						- /					
						10.0 + 0.10		1.00	10).00	100.00
						0.10	t _o	1.00	time (min) ¹⁰		100.00
						-			Project no:	A362-4	
						6.2			Project:	Coffee Ck Go	ld
						MG1	ENVIRON	MENTAL	Details:	Recovery tes	t in MW16-01T
						2200 B.	ord St. Vana		Eng.: VS	Checked	AS
						2289 BUII8	ard St., Vanc	ouver, B.C.	Date:	Fig. no.	: 1

Pumping Test MW16-01T

Appendices

_GOLDCORP

Appendix 3-C: RST VWP Calibration Sheets

_GOLDCORP

Appendix 3-C1: RST VWP Calibration Sheets

Calibration Record

RST Instruments Ltd., 11545 Kingston St., Maple Ridge, British Columbia, Canada V2X 0Z5 Tel: 604 540 1100 • Fax: 604 540 1005 • Toll Free: 1 800 665 5599 (North America only) e-mail: info@rstinstruments.com • Website: www.rstinstruments.com

Vibrating Wire Piezometer

CFD0318-P1

Customer:	EBA Eng. Consultants-Yukon	
Model:	VW2100-5.0-HD	
Serial Number:	VW25899	
Mfg Number:	1313002	
Range:	5.0	MPa
Temperature:	24.8	•C
Barometric Pressure:	988.9	millibars
Work Order Number:	201464	
Cable Length:	230	meters
Cable Markings:	181880 m - 182108 m	
Cable Colour Code:	Red / Black (Coil) Green / White	(Thermistor)
Cable Type:	EL380004	
Thermistor Type:	3	kΩ

Applied Pressure	First Reading	Second Reading	Average Reading	Calculated Linear (MPa)	Linearity Error (% FS)	Polynomial Error (%FS)
(MPa)	(Bunits)	(B units)	(Bunits)			-0.02
0.0	8765	8765	8765	0.010	0.20	
1.0	7990	7990	7990	1.000	-0.01	0.04
2.0	7213	7214	7214	1.991	-0.17	0.00
3.0	6431	6432	6432	2.990	-0.19	-0.02
4.0	5644	5643	5644	3.997	-0.06	-0.02
5.0	4848	4850	4849	5.012	0.23	0.01
			Max. E	rror (%):	0.23	0.04
inear Calibrat egression Zei emperature C			C.F.= At Calibration = Tk =	8772.7	MPa/B unit B unit MPa/°C rise	

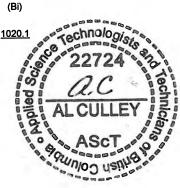
Polynomial Gage Factors (MPa)

-5.3394E-09 A:

B: -0.0012046

C: 10.967

Pressure is calculated with the following equations: P(MPa) = C.F. (Li-Lc) - [Tk(Ti-Tc)] + [0.00010(Bi-Bc)] Linear:


 $P(MPa) = A(Lc)^{2} + BLc + C + Tk(Tc-Ti) - [0.00010(Bc-Bi)]$ Polynomial:

	Date (dd/mm/yy)	VW Readout Pos. B (Li)	Temp °C (Ti)	Baro (Bi)
Shipped Zero Readings:	<u>17-Jul-13</u>	<u>8772</u>	<u>22.4</u>	<u>1020.1</u>
Li, Lc = initial (at installation) and cur Ti, Tc = initial (at installation) and cur Bi, Bc = initial (at installation) and cur	rent temperature, in °C	e readings, in mil	libars	

B units = B scale output of VW 2102, VW 2104, VW 2106 and DT 2011 readouts

This instrument has been calibrated using standards traceable to the NIST in compliance with ANSI Z540-1

ie: 1700Hz = 2890 B units B units = $Hz^2 / 1000$ Signature REDACTED Date: 17-Jul-13 Technician

Customer:

Model:

Calibration Record

EBA Eng. Consultants-Yukon

VW2100-5.0-HD

RST Instruments Ltd., 11545 Kingston St., Maple Ridge, British Columbia, Canada V2X 025 Tel: 604 540 1100 • Fax: 604 540 1005 • Toll Free: 1 800 665 5599 (North America only) e-mail: info@rstinstruments.com • Website: www.rstinstruments.com

Vibrating Wire Piezometer

CFD0324-P2

lodei:			WZ 100-0.0-11D				
Serial Number: Mfg Number: Range: Temperature:				VW25900			
				1313003			
		5.0 MPa					
				24.8			
	Pressure:				millibars		
Work Order Number: Cable Length:				201464			
					meters		
able Marki	-			9 m - 182338 m			
able Colou		Red / Black (C	oil)	Green / White	(Inermistor)		
ble Type:				EL380004			
ermistor	Туре:			3	kΩ		
	Annillard	First	Second	Average	Calculated	Linearity	Polynomia
	Applied Pressure	Reading	Reading	Reading	Linear	Error	Error
		(B units)	(B units)	(B units)	(MPa)	(% FS)	(% FS)
	(MPa) 0.0	8696	8697	8697	0.010	0.21	-0.02
	1.0	7936	7935	7936	1.000	0.01	0.06
	2.0	7930	7176	7176	1.989	-0.21	-0.03
	3.0	6407	6406	6407	2.990	-0.20	-0.02
	4.0	5632	5631	5632	3.998	-0.04	0.01
	5.0	4852	4853	4853	5.012	0.23	0.00
					Fror (%):	0.23	0.06
	Linear Calibra			C.F.=		MPa/B unit	
	Regression Z			At Calibration =			
	Temperature	Correction Fact	or:	Tk =	0.0009280	MPa/°C rise	
lvnomial	Gage Factors (MPa)	A:	-5.8977E-09	В:	-0.0012211	C
ynonnai	Cage i actore (•		
		Iculated with the			(D' D-)]		
	Linear:			Ti-Tc)] + [0.00010			
	Polynomial:	P(MPa) = A(L	.c) ⁻ + BLc + C	+ Tk(Tc-Ti) - [0.0	0010(BC-BI)]		
				Date	VW Readout	Temp ^o C	Baro
				(dd/mm/yy)	Pos. B (Li)	(Ti)	
				(dd/ninsyy)	1 03. 0 (LI)	(1)	(=)
	Shipped Zero	Readings:		<u> 17-Jul-13</u>	8694	<u>22.5</u>	(Bi) <u>1020.1</u>
		U U					
	Li, Lc = initial	(at installation) a	ind current rea	adings			
	Ti, Tc = initial	(at installation) a	and current ter	mperature, in °C			ő

Bi, Bc = initial (at installation) and current barometric pressure readings, in millibars B units = B scale output of VW 2102, VW 2104, VW 2106 and DT 2011 readouts

ie: 1700Hz = 2890 B units B units = $Hz^2 / 1000$ Signature REDACTED

Technician: B

This instrument has been calibrated using standards traceable to the NIST in compliance with ANSI Z540-1

Document Number: ELL0143H

Unio

Date: 17-Jul-13

RST Instruments Ltd., 11545 Kingston St., Maple Ridge, British Columbia, Canada V2X 0Z5 Tel: 604 540 1100 • Fax: 604 540 1005 • Toll Free: 1 800 665 5599 (North America only) e-mail: info@rstinstruments.com • Website: www.rstinstruments.com

Vibrating Wire Piezometer

CFD0332-P3

Customer:	EBA Eng. Consultants-Yukon	
Model:	VW2100-5.0-HD	
Serial Number:	VW25901	
Mfg Number:	1316118	
Range:	5.0	MPa
Temperature:	23.3	°C
Barometric Pressure:	996.2	millibars
Work Order Number:	201464	
Cable Length:	230	meters
Cable Markings:	181650 m - 181878 m	
Cable Colour Code:	Red / Black (Coil) Green / White	(Thermistor)
Cable Type:	EL380004	
Thermistor Type:	3	kΩ

Applied Pressure (MPa)	First Reading (B units)	Second Reading (B units)	Average Reading (B units)	Calculated Linear (MPa)	Linearity Error (% FS)	Polynomia Error (% FS)
0.0	8981	8982	8982	0.014	0.27	-0.02
1.0	8204	8203	8204	0.999	-0.02	0.03
2.0	7422	7422	7422	1.988	-0.23	0.00
3.0	6634	6633	6634	2.987	-0.26	-0.02
4.0	5837	5836	5837	3.996	-0.07	-0.01
5.0	5032	5032	5032	5.015	0.30	0.01
			Max. E	Error (%):	0.30	0.03

Linear Calibration Factor:	C.F.=	0.0012664 MPa/B unit
Regression Zero:	At Calibration =	8992.2 B unit
Temperature Correction Factor:	Tk =	0.0009979 MPa/°C rise

Polynomial Gage Factors (MPa)

-7.0535E-09 A:

C: <u>11.054</u>

ADDIA

Pressure is calculated with the following equations:

Linear: P(MPa) = C.F.(Li-Lc) - [Tk(Ti-Tc)] + [0.00010(Bi-Bc)]Polynomial: $P(MPa) = A(Lc)^2 + BLc + C + Tk(Tc-Ti) - [0.00010(Bc-Bi)]$

	Date	VW Readout	Temp °C	Baro
	(dd/mm/yy)	Pos. B (Li)	(Ti)	(Bi)
Shipped Zero Readings:	<u>17-Jul-13</u>	<u>8991</u>	<u>22.3</u>	<u>1020.1</u>

Li, Lc = initial (at installation) and current readings

Ti, Tc = initial (at installation) and current temperature, in °C

Bi, Bc = initial (at installation) and current barometric pressure readings, in millibars

B units = B scale output of VW 2102, VW 2104, VW 2106 and DT 2011 readouts

B units = $Hz^2 / 1000$ ie: 1700Hz = 2890 B units Signature REDA Technician:

Date: <u>17-Jul-13</u>

B: -0.0011675

This instrument has been calibrated using standards traceable to the NIST in compliance with ANSI Z540-1

Calibration Record

RST Instruments Ltd., 11545 Kingston St., Maple Ridge, British Columbia, Canada V2X 0Z5 Tel: 604 540 1100 • Fax: 604 540 1005 • Toll Free: 1 800 665 5599 (North America only) e-mail: info@rstinstruments.com • Website: www.rstinstruments.com

CFD0351-P4

Polynomial

Vibrating Wire Piezometer

Customer:	EBA Eng. Consultants-Yukor	
Model:	VW2100-5.0-HD	
Serial Number:	VW25902	
Mfg Number:	1316119	I
Range:	5.0	MPa
Temperature:	23.3	°C
Barometric Pressure:	996.2	millibars
Work Order Number:	201464	ļ
Cable Length:	230	meters
Cable Markings:	181420 m - 181649 m	l
Cable Colour Code:	Red / Black (Coil) Green / White	(Thermistor)
Cable Type:	EL380004	ļ
Thermistor Type:	:	βkΩ

	Applied	First	Second	Average	Calculated	Linearity	Polynomial
	Pressure	Reading	Reading	Reading	Linear	Error	Error
	(MPa)	(B units)	(B units)	(B units)	(MPa)	(% FS)	(% FS)
	0.0	8899	8900	8900	0.011	0.23	-0.03
	1.0	8113	8113	8113	1.000	0.00	0.05
	2.0	7325	7325	7325	1.991	-0.19	0.02
	3.0	6532	6531	6532	2.988	-0.24	-0.03
	4.0	5731	5729	5730	3.995	-0.09	-0.03
	5.0	4919	4920	4920	5.014	0.29	0.03
				Max. E	rror (%):	0.29	0.05
	Linear Calibration Factor: Regression Zero: Temperature Correction Factor:			C.F.= At Calibration = Tk =	8908.5	MPa/B unit B unit MPa/°C rise	
Polynomial Gage Factors (MPa)			A :	<u>-6.1713E-09</u>	B:	<u>-0.0011717</u>	C:

Pressure is calculated with the following equations:

P(MPa) = C.F.(Li-Lc) - [Tk(Ti-Tc)] + [0.00010(Bi-Bc)] Linear:

	Date	VW Readout	Temp °C	Baro
	(dd/mm/yy)	Pos. B (Li)	(Ti)	(Bi)
Shipped Zero Readings:	<u>17-Jul-13</u>	<u>8922</u>	<u>22.3</u>	<u>1020.1</u>

Li, Lc = initial (at installation) and current readings Ti, Tc = initial (at installation) and current temperature, in °C Bi, Bc = initial (at installation) and current barometric pressure readings, in millibars B units = B scale output of VW 2102, VW 2104, VW 2106 and DT 2011 readouts Signature REDACTED B units = $Hz^2 / 1000$ Date: 17-Jul-13 Technician

This instrument has been calibrated using standards traceable to the NIST in compliance with ANSI Z540-1

<u>20.1</u>

BHIVWP

RST instruments Ltd., 11545 Kingston St., Maple Ridge, British Columbia, Canada V2X 0Z5 Tel: 604 540 1100 • Fax: 604 540 1005 • Toll Free: 1 800 665 5599 (North America only) e-mail: info@rstinstruments.com • Website: www.rstinstruments.com

Vibrating Wire Piezometer

MW14-07T (124m)

Customer: Model: Serial Number: Mig Number: Range: Temperature: Barometric Pressure: Work Order Number: Cable Length: Cable Length: Cable Markings: Cable Colour Code: Cable Type: Thermistor Type:		Red / Black (C	58432	22.6 985.7 205069 130 20 m - 584449 m Green / White EL380004	mitlibars meters			
Г	Applied	First	Second	Average	Calculated	Linearity	Polynomial	
	Pressure	Reading	Reading	Reading	Unear	Error	Error	
	(MPa)	(Bunits)	(Bunits)	(Bunits)	(MPa)	(%FS)	(%F <u>S)</u>	
	0.0	9004	9004	9004	0.004	0.21	-0.01	
	0.4	8294	8294	8294	0.399	-0.03	0.01	
	0.8	7580	7581	7581	0.796	-0.18	0,00	
ļ	1.2	6862	6862	6852	1,196	-0.18	0.00	
	1.6	6138	6139	6139	1.599	-0.05	0.00	
L	2.0	5410	5410	5410	2.004	0.22	0.00	
		·		Max. E	rror (%):	0.22	0.01	
R	inear Calibrat legression Ze remperature C			C.F.= At Calibration = Tk =	9011.6	MPa/B unit B unit MPa/°C rise		
Polynomial Ga	ge Factors (N	IPa)	A:	<u>-2.5492E-09</u>	8:	<u>-0.00061979</u>	C: <u>4</u>	4,8867
L	ressure is cak inear: Polynomial:		.(Li-Lc) - [Tk(ations: Ti-Tc)] + [0.00010 + Tk(Tc-Ti) - [0.0				
				Date (dd/mm/yy)	VW Readout Pos. B (Li)	Temp °C (Ti)	Baro (Bi)	
s	hipped Zero	Readings:		<u>19-Sep-14</u>	<u>9004</u>	<u>21.6</u>	<u>1017.1</u>	
T E E E	D, Tc ≠ initial (Bi, Bc = initial (B units = 8 sca B units = Hz ² / Technicial	at installation) i le output of VW 1000 ie: 1 Signa n:	and current ter and current ba 2102, VW 21 700Hz = 2890 Iture R	mperature, in °C arometric pressur 04, VW 2106 and 0 B units EDACT	d DT 2011 reado ED	. <u>19-Sep-14</u>	o hoplied Science	AL CUI

Document Number: ELL0143H

⁰⁰/00 11511

BHIVWP

RST instruments Ltd., 11545 Kingston St., Maple Ridge, British Columbia, Canada V2X 0Z5 Tel: 604 540 1100 • Fax: 604 540 1005 • Toll Free: 1 800 665 5599 (North America only) e-mail: info@rstinstruments.com • Website: www.rstinstruments.com

MW15-01T (76m)

Vibrating Wire Piezometer

Customer:		Lorax Environmental	
Model:		VW2100-2.0	
Serial Number:		VW30262	
Mig Number:		1425034	
Range:		2.0	MPa
Temperature:		22.6	•C
Barometric Pressure:		985.7	millibars
Work Order Number:		205069	
Cable Length:		130	meters
Cable Markings:		584320 m - 584449 m	
Cable Colour Code:	Red / Black (Coil)	Green / White	(Thermistor)
Cable Type:		EL380004	
Thermistor Type:		з	kΩ

	Applied Pressure (MPa)	First Reading (8 units)	Second Reading (B units)	Average Reading (B units)	Calculated Linear (MPa)	Linearity Error (%FS)	Polynomial Error (%FS)	
	0.0	9004	9004	9004	0.004	0.21	-0.01	1
	0.4	8294	8294	8294	0.399	-0.03	0.01	
	0,8	7580	7581	7581	0.796	-0.18	0.00	
	1.2	6862	6862	6652	1,196	-0.18	0.00	
	1.6	6138	6139	6139	1.599	-0.05	0.00	
	2.0	5410	5410	5410	2.004	0.22	0.00	l I
			·	Max. E	rror (%):	0.22	0.01	ļ
Regression Zero: Temperature Correction Factor: Polynomial Gage Factors (MPa)			or: A:	Tk = <u>-2.5492E-09</u>	_	MPa/°C rise -0.00051979	C:	4,886
	Pressure is calc Linear: Polynomial;	P(MPa) = C.F	² .(Li-Lc) - [Tk(1	ations: Fi+Tc)] + [0.00010 + Tk(Tc-Ti) - [0.0				
				Date (dd/mm/yy)	VW Readout Pos. B (Li)	Temp °C (Ti)	Baro (Bi)	
	Shipped Zero (Readings:		<u>19-Sep-14</u>	<u>9004</u>	<u>21.6</u>	<u>1017.1</u>	
	li le ≕initial (:	at installation) :	and current rea	rdinas				e Tec

Li, Lc = initial (at installation) and current readings Ti, Tc = initial (at installation) and current temperature. in °C Bi, Bc = initial (at installation) and current barometric pressure readings, in millibars B units = 8 scale output of VW 2102, VW 2104, VW 2106 and DT 2011 readouts B units = Hz² / 1000 ie: 1700Hz = 2890 B units Signature REDACTED Technician: Date: <u>19-Sep-14</u>

This instrument has been calibrated using standards traceable to the NIST in compliance with ANSI 2540-1

RST Instruments Ltd., 11545 Kingston St., Maple Ridge, British Columbia, Canada V2X 0Z5 Tel: 604 540 1100 • Fax: 604 540 1005 • Toll Free: 1 800 665 5599 (North America only) e-mail: info@rstinstruments.com · Website: www.rstinstruments.com

Vibrating Wire Piezometer

MW15-01T (89.1m)

Customer: Model: Serial Number Range: Temperature Barometric F Work Order I Cable Lengti Cable Markir Cable Colouu Cable Type: Thermistor T	: Pressure: Number: h: ngs: r Code:	Red / Black (C	59294	22.6 985.7 205089 155 42 m - 593099 m Green / White EL380004	MPa *C millibars meters			
	Applied	First	Second	Average	Calculated	Linearity	Polynomial	
	Pressure	Reading	Reading	Reading	Linear	Error	Error	
	(MPa)	(Bunits)	(Bunits)	(Bunits)	(MPa)	(% FS)	(% FS)	
	0.0	8908	8909	8909	0.004	0.18	-0.01	
	0.4	8196	8196	8196	0.400	-0.01	0.03	
	0.8	7482	7482	7482	0.797	-0.17	-0.01	
	1.2	6762	6763	6763	1.197	-0.17	-0.01	
	1.6	6038	6039	6039	1.599	-0.04	0.00	
	2.0	5310	5311	5311	2.004	0.20	0.00	
				Max. E	Error (%):	0.20	0.03	
Polynomial (Linear Calibra Regression Ze Temperature C Gage Factors (N	ro: Correction Fact		C.F.= At Calibration = Tk = <u>-2.2532E-09</u>	8915.0 0.0004177		C:	<u>4.8458</u>
	Pressure is calo Linear: Polynomial:		.(Li-Lc) - [Tk(1	ations: [i-Tc)] + [0.00010 + Tk(Tc-Ti) - [0.0				
				Date (dd/mm/yy)	VW Readout Pos. B (Li)	Temp °C (Ti)	Baro (Bi)	
	Shipped Zero I	Readings:		<u>26-Sep-14</u>	<u>8910</u>	<u>21.0</u>	<u>1015.5</u>	Technologis
	Ti, Tc = initial (Bi, Bc = initial (B units = B scal B units = $Hz^2 /$	le output of VW 1000 ie: 13 Signature	ind current ten and current ba 2102, VW 210	nperature, in °C rometric pressure 04, VW 2106 and	I DT 2011 readou	uts	Applied Solo	22724 22724 ALCULLE
	Techniciar	ι: _.			Date:	26-Sep-14	- *(e ASCI
This instrume	ent has been cali	brated using sta	ndards tracea	ble to the NIST i	n compliance wit	h A N SI Z540-1	م ە	QUINOO HENV

Document Number: ELL0143H

RST Instruments Ltd., 11545 Kingston St., Maple Ridge, British Columbia, Canada V2X 0Z5 Tel: 604 540 1100 • Fax: 604 540 1005 • Toll Free: 1 800 665 5599 (North America only) e-mail: info@rstinstruments.com • Website: www.rstinstruments.com

MW15-02T (33.9m)

Vibrating Wire Piezometer

Customer: Model: Serial Number Mfg Number: Range: Temperature Barometric F Work Order I Cable Length Cable Markin Cable Markin Cable Colour Cable Type: Thermistor T	: Pressure: Number: h: ngs: r Code:	Red / Black (C	58605	22.6 993.2 205089 80 52 m - 586131 m Green / White EL380004	MPa °C millibars meters			
	Applied	First	Second	Average	Calculated	Linearity	Polynomial	
	Pressure	Reading	Reading	Reading	Linear	Error	Error	
	(MPa)	(B units)	(B units)	(B units)	(MPa)	(% FS)	(% FS)	
	0.0	8982	8982	8982	0.002	0.17	0,00	
	0.2	8228	8228	8228	0.200	-0.04	0.00	
	0.4	7470	7470	7470	0.399	-0.13	0.00	
	0.6	6708	6708	6708	0.599	-0.13	0.01	
	0.8	5943	5943	5 94 3	0.800	-0.04	-0.01	
	1.0	5173	5173	5173	1.002	0.17	0.00	
				Max. E	rror (%):	0.17	0.01	
	Linear Calibrat Regression Zei Temperature C	ro:	-	C.F.= At Calibration = ⊺k ≃	8988.4	MPa/B unit B unit MPa/ ^o C rìse		
Polynomial G	Gage Factors (M	Pa)	Α:	<u>-8.7254E-10</u>	8:	-0.00025019	C:	<u>2.3176</u>
	Pressure is calc Linear: Polynomial:	P(MPa) = C.F	.(Li-Lc) - [Tk(T	itions: 'i-Tc)] + [0.00010 + Tk(Tc-Ti) - [0.0	· · · ·			
				Date (dd/mm/yy)	VW Readout Pos. B (Li)	Temp °C (Ti)	Baro (Bi)	
	Shipped Zero F	Readings:		26-Sep-14	<u>8978</u>	<u>20.9</u>	<u>1015.5</u>	Technolog
		at installation) a at installation) a e output of VW 000 ie: 17 Signature	nd current tem nd current bar 2102, VW 210 00Hz = 2890	perature, in °C cometric pressure 04, VW 2106 and B units	-	uts	Pplied Sol	ALCULL

This instrument has been calibrated using standards traceable to the NIST in compliance with ANSI Z540-1

Document Number: ELL0143H

Wnion

RST Instruments Ltd., 11545 Kingston St., Maple Ridge, British Columbia, Canada V2X 0Z5 Tel: 604 540 1100 • Fax: 604 540 1005 • Toll Free: 1 800 665 5599 (North America only) e-mail: info@rstinstruments.com • Website: www.rstinstruments.com

MW15-03T (48.8m)

Vibrating Wire Piezometer

_ .			Kaminak C	old Corporation				
Customer:			Naliminak C	VW2100-1.0				
Model:				VW30461				
Serial Numbe								
Mfg Number:				1427123	MD-			
Range:				1.0				
Temperature	:			22.6	-			
Barometric P	ressure:				millibars			
Work Order N	Number:			205089				
Cable Length	1:			105	meters			
Cable Markin	igs:		58574	1 m - 585845 m				
Cable Colour	Code:	Red / Black (C	oil)	Green / White	(Thermistor)			
Cable Type:				EL380004				
Thermistor T	ype:			3	kΩ			
								1
	Applied	First	Second	Average	Calculated	Linearity	Polynomial	
	Pressure	Reading	Reading	Reading	Linear	Error	Error	
	(MPa)	(Bunits)	(Bunits)	(B units)	(MPa)	(% FS)	(% FS)	
	0.0	8788	8788	8788	0.001	0.14	0.01	
	0.2	8081	8081	8081	0,199	-0.05	-0.02	
	0.2	7368	7368	7368	0.399	-0.07	0.03	
		6656	6656	6656	0.599	-0.12	-0.01	
	0.6	1	5939	5939	0.800	-0.03	-0.01	
	0.8	5939	5939 5219	5219	1.001	0.14	0.00	
	1.0	5219	5219	A second s	rror (%):	0.14	0.03	
	L							
	Line of Calibra	tion Fostor		C.F.=	0 00028019	MPa/B unit		
	Linear Calibra			At Calibration =		B unit		
	Regression Ze			Tk =		MPa/°C rise		
	l'emperature (Correction Fact	or:	IK	0.0001214			
		-	A:	-7.9534E-10	B.	-0.00026905	C:	<u>2.4259</u>
Polynomial	Gage Factors (N	vipa)	A.	-7.55542-10	р.	-0.00020000		
	B	- John d with the	fellowing ogu	ations				
		iculated with the			(Bi Bell			
	Linear:	P(MPa) = C.F	-,(LI-LC) - [TK(Ti-Tc)] + [0.00010 : + Tk(Tc-Ti) - [0.0				
	Polynomial:	P(MPa) = A(L	.c)= + BLC + C	+ 1K(10-11) - [0.0	0010(80-80)]			
				Date	VW Readout	Temp °C	Baro	
				(dd/mm/yy)	Pos. B (Li)	(Tī)	(Bi)	
				(aaminyy)	F03. D (C)	(1)	(=:)	
				00 Con 14	9796	<u>21.1</u>	1015.5	<u>ب</u> به ده مد نو بو بو
	Shipped Zero	Readings:		26-Sep-14	8786	<u>21.1</u>		- Technolog
							3	22724
								55 22724
	Li, Lc = initial ((at installation) a	and current re	adings			10	1 20
	Ti, Tc = initial	(at installation) a	and current te	mperature, in °C			300	
	Bi, Bc = initial	(at installation)	and current b	arometric pressur	e readings, in m	nillibars	S D	
	B units = B sc	ale output of VM	/ 2102, VW 21	104, VW 2106 and	DT 2011 read	outs	J.	AL CULLE
	B units = Hz ² /	/ 1000 ie: 1	700Hz = 289	0 B units			19	X 92
		Signature	REDACTI	ED			<u>م</u> ر	TO2A NO
	Technicia	an: {			Date	: _ 26-Sep-14	_ ``	
		-		able to the NIST i			•	"Sunno uen
				able to the NIST i	n compliance w	in ANSI Z540-	1	

This instrument has been calibrated using standards traceable to the NIST in compliance with ANSI Z540-1

innovation in geotechnical instrumentation

Calibration Record

RST Instruments Ltd., 11545 Kingston St., Maple Ridge, British Columbia, Canada V2X 0Z5 Tel: 604 540 1100 • Fax: 604 540 1005 • Toll Free: 1 800 665 5599 (North America only) e-mail: info@rstinstruments.com • Website: www.rstinstruments.com

Vibrating Wire Piezometer

MW15-03T (94.7m)

Customer:		Kaminak G	old Corporation					
Model:				VW2100-1.0				
Serial Numb	er:			VW32594				
Mfg Number: Range: Temperature:				1504836				
				1.0	MPa			
				22.4	°C			
Barometric F		1000.4 millibars Male M12 Connector						
Work Order				206796		Wiring Diagram		
Cable Length:			105 meters 2 - 1					
Cable Markin		814838 m - 814942 m						
Cable Colou		Coil: Red 1, Blk 2 Thermistor: Grn 3, Wht 4						
Cable Type:		EL380004 3 4						
Thermistor 1				3	kΩ	5	-	
	Applied Pressure (MPa)	First Reading (B units)	Second Reading (B units)	Average Reading (B units)	Calculated Linear (MPa)	Linearity Error (% FS)	Polynomial Error (%FS)	
	0.0	8901	8901	8901	0.002	0.19	0.00	
	0.2	8176	8176	8176	0.200	-0.04	0.00	
	0.2	0110						

		Max. Err	ror (%):	0.19	
Linear Calibration F	actor:	C.F.=	0.00027270	MPa/B unit	
Regression Zero:		At Calibration =		B unit	
Temperature Corre	ction Factor:	Tk =	0.0001547	MPa/°C rise	

7447

6713

5976

5234

Polynomial Gage Factors (MPa)

1.000

0.4

0.6

0.8

1.0

7447

6713

5976

5234

-1.0592E-09 A:

7447

6713

5976

5234

B: -0.00025772

0.398

0.599

0.800

1.002

-0.16

-0.14

-0.05

0.19

-0.01

0.01

0.00

0.00

0.01

C: 2.3779

Pressure is calculated with the following equations: P(MPa) = C.F.(Li-Lc) - [Tk(Ti-Tc)] + [0.00010(Bi-Bc)] Linear: $P(MPa) = A(Lc)^{2} + BLc + C + Tk(Tc-Ti) - [0.00010(Bc-Bi)]$ Polynomial:

	Date (dd/mm/yy)	VW Readout Pos. B (Li)	Temp °C (Ti)	Baro (Bi)
Shipped Zero Readings:	<u>30-Apr-15</u>	8902	21.4	1025.9
Li, Lc = initial (at installation) and c Ti, Tc = initial (at installation) and c				
Bi, Bc = initial (at installation) and B units = B scale output of VW 210	current barometric pressur	re readings, in mil d DT 2011 readou	libars uts	9 5 7 7 7

SK Technician: S. Kim

Date: 30-Apr-15 This instrument has been calibrated using standards traceable to the NIST in compliance with ANSI Z540-1

Document Number: ELL0143H

10 Jay

innovation in geotechnical instrumentation

Calibration Record

RST Instruments Ltd., 11545 Kingston St., Maple Ridge, British Columbia, Canada V2X 0Z5 Tel: 604 540 1100 • Fax: 604 540 1005 • Toll Free: 1 800 665 5599 (North America only) e-mail: info@rstinstruments.com • Website: www.rstinstruments.com

MW15-04T (38.8m)

Vibrating Wire Piezometer

Customer:	Kami	nak Gold Corporation	
Model:		VW2100-1.0	
Serial Number:		VW32593	
Mfg Number:		1504835	
Range:		1.0 MPa	
Temperature:		22.4 °C	
Barometric Pressure:		1000.4 millibars	Male M12 Connector
Work Order Number:		206796	Wiring Diagram
Cable Length:		105 meters	2 - 1
Cable Markings:		814733 m - 814837 m	
Cable Colour Code:	Coil: Red 1, Blk 2	Thermistor: Grn 3, Wht 4	
Cable Type:		EL380004	3 4
Thermistor Type:		3 kΩ	5 4

Applied Pressure (MPa)	First Reading (B units)	Second Reading (B units)	Average Reading (B units)	Calculated Linear (MPa)	Linearity Error (%FS)	Polynomia Error (%FS)
0.0	8883	8883	8883	0.002	0.18	0.01
0.2	8175	8176	8176	0.199	-0.05	-0.02
0.4	7463	7463	7463	0.399	-0.15	-0.01
0.6	6746	6747	6747	0.599	-0.13	0.01
0.8	6026	6027	6027	0.800	-0.01	0.02
1.0	5305	5304	5305	1.002	0.16	-0.01
			Max	Error (%):	0.18	0.02

Linear Calibration Factor:	C.F.=	0.00027937	MPa/B unit
Regression Zero:	At Calibration =	8889.5	B unit
Temperature Correction Factor:	Tk =	0.0001763	MPa/°C rise

Polynomial Gage Factors (MPa)

A:

-9.9777E-10

C: 2.4348

B: -0.00026521

Pressure is calculated with the following equations: P(MPa) = C.F.(Li-Lc) - [Tk(Ti-Tc)] + [0.00010(Bi-Bc)] Linear: $P(MPa) = A(Lc)^{2} + BLc + C + Tk(Tc-Ti) - [0.00010(Bc-Bi)]$ Polynomial:

	Date (dd/mm/yy)	VW Readout Pos. B (Li)	Temp °C (Ti)	Baro (Bi)	
Shipped Zero Readings:	<u>30-Apr-15</u>	8881	21.5	<u>1025.9</u>	Technolog
Li, Lc = initial (at installation) and cur				Scie	2272
Ti, Tc = initial (at installation) and cur Bi, Bc = initial (at installation) and cur B units = B scale output of VW 2102,	rrent barometric pressur	re readings, in mil d DT 2011 readou	libars uts	plied	AL CULL
	= 2890 B units			de la	ASci
Technicia		Date:	30-Apr-15		191, "

This instrument has been calibrated using standards traceable to the NIST in compliance with ANSI Z540-1

10

innovation in geotechnical instrumentation

Calibration Record

RST Instruments Ltd., 11545 Kingston St., Maple Ridge, British Columbia, Canada V2X 0Z5 Tel: 604 540 1100 • Fax: 604 540 1005 • Toll Free: 1 800 665 5599 (North America only) e-mail: info@rstinstruments.com • Website: www.rstinstruments.com

MW15-04T (51.6m)

Vibrating Wire Piezometer

Customer:		Kaminak G	old Corporation			
Model:			VW2100-2.0			
Serial Number:			VW32596			
Mfg Number:			1504858			
Range:			2.0	MPa		
Temperature:			22.5	°C		
Barometric Pressure:			1003.1	millibars	Male M12	Connector
Work Order Number:			206796		Wiring	Diagram
Cable Length:			105	meters	2	1
Cable Markings:		81452	2 m - 814626 m		-/-	
Cable Colour Code:	Coil: Red 1, Bl	k 2	Thermistor: Grn	3, Wht 4	(-	
Cable Type:			EL380004		3	A
Thermistor Type:			3	kΩ	5	-
Applied	First	Second	Average	Calculated	Linearity	Polynomial

Applied Pressure (MPa)	First Reading (B units)	Second Reading (B units)	Average Reading (B units)	Linear (MPa)	Error (% FS)	Error (% FS)
0.0	9047	9048	9048	0.005	0.23	-0.01
0.4	8311	8311	8311	0.399	-0.04	0.01
0.8	7570	7570	7570	0.796	-0.18	0.00
1.2	6824	6824	6824	1.196	-0.19	0.00
1.6	6072	6073	6073	1.599	-0.06	-0.01
2.0	5315	5315	5315	2.005	0.24	0.01
			Max. B	Error (%):	0.24	0.01

-2.5250E-09

Linear Calibration Factor:	C.F.=	0.00053589 MPa/B unit	
Regression Zero:	At Calibration =	9056.0 B unit	
Temperature Correction Factor:	Tk =	0.0004083 MPa/°C rise	

Polynomial	Gage Factors (MF	Pa) A:
Folynomial	Gaye Factors (IMF	a)

 Pressure is calculated with the following equations:

 Linear:
 P(MPa) = C.F.(Li-Lc) - [Tk(Ti-Tc)] + [0.00010(Bi-Bc)]

 Polynomial:
 $P(MPa) = A(Lc)^2 + BLc + C + Tk(Tc-Ti) - [0.00010(Bc-Bi)]$

	Date	VW Readout	Temp °C	
(do	d/mm/yy)	Pos. B (Li)	(Ti)	
Shipped Zero Readings: <u>30</u>)-Apr-15	9048	<u>21.4</u>	
Li, Lc = initial (at installation) and current readings				
Ti, Tc = initial (at installation) and current temperat	ure, in °C			
Bi, Bc = initial (at installation) and current baromet	ric pressur	e readings, in mil	libars	
B units = B scale output of VW 2102, VW 2104, VV	V 2106 and	d DT 2011 readou	its	
B units = $Hz^2 / 1000$ ie: 1700 $Hz = 2890$ B unit	ts			

Technician: S. Kim SK

This instrument has been calibrated using standards traceable to the NIST in compliance with ANSI Z540-1

C: 4.7269

Baro

B: -0.00049963

Date: 30-Apr-15

Calibration Record

RST Instruments Ltd., 11545 Kingston St., Maple Ridge, British Columbia, Canada V2X 0Z5 Tel: 604 540 1100 • Fax: 604 540 1005 • Toll Free: 1 800 665 5599 (North America only) e-mail: info@rstinstruments.com • Website: www.rstinstruments.com

MW15-05T (55.4m)

Vibrating Wire Piezometer

Customer: Kaminak Gold Corporation Model: VW2100-2.0 Serial Number: VW30464 Mfg Number: 1425037 Range: 2.0 MPa Temperature: 22.6 °C **Barometric Pressure:** 985.7 millibars Work Order Number: 205089 Cable Length: 205 meters Cable Markings: 585846 m - 586051 m Cable Colour Code: Red / Black (Coil) Green / White (Thermistor) Cable Type: EL380004 Thermistor Type: 3 kΩ Applied First Second Average Calculated Linearity Polynomial Pressure Reading Reading Reading Linear Error Error (MPa) B units) B units) (B units) (MPa) % FS) % FS) 0,0 8911 8911 8911 0.004 0.22 -0.01 0.4 8173 8173 8173 0.399 -0.03 0.01 7432 0.8 7431 7432 0.796 -0.18 0.00 12 6685 6685 6685 1.196 -0.20 -0.01 1.6 5932 5932 5932 1.599 -0.04 0.01 2.0 5175 5175 5175 2.004 0.22 0.00 Max. Error (%): 0.22 0.01 Linear Calibration Factor: C.F.= 0.00053537 MPa/B unit **Regression Zero:** At Calibration = 8919.1 B unit **Temperature Correction Factor:** Tk = 0.0003744 MPa/°C rise Polynomial Gage Factors (MPa) -2.4148E-09 B: -0.00050135 C: 4.6592 A: Pressure is calculated with the following equations: P(MPa) = C.F.(Li-Lc) - [Tk(Ti-Tc)] + [0.00010(Bi-Bc)]Linear: $P(MPa) = A(Lc)^{2} + BLc + C + Tk(Tc-Ti) - [0.00010(Bc-Bi)]$ Polynomial: Date VW Readout Temp °C Baro (dd/mm/yy) Pos. B (Li) (Ti) (Bi) Shipped Zero Readings: 26-Sep-14 8911 <u>20.7</u> 1015.5 echnologist, Li, Lc = initial (at installation) and current readings Ti, Tc = initial (at installation) and current temperature, in °C Bi, Bc = initial (at installation) and current barometric pressure readings, in millibars Applied. B units = B scale output of VW 2102, VW 2104, VW 2106 and DT 2011 readouts B units = Hz² / 1000 ie: 1700Hz = 2890 B units Signature REDACTED

Technicia

Date: 26-Sep-14

This instrument has been calibrated using standards traceable to the NIST in compliance with ANSI Z540-1

WINOD USIN

innovation in geotechnical instrumentation

Calibration Record

RST Instruments Ltd., 11545 Kingston St., Maple Ridge, British Columbia, Canada V2X 0Z5 Tel: 604 540 1100 • Fax: 604 540 1005 • Toll Free: 1 800 665 5599 (North America only) e-mail: info@rstinstruments.com • Website: www.rstinstruments.com

MW15-05T (81.4m)

No. Post I

Vibrating Wire Piezometer

Customer:	Kamir	nak Gold Corporation	
Model:		VW2100-2.0	
Serial Number:		VW32595	
Mfg Number:		1504857	
Range:		2.0 MPa	
Temperature:		22.5 °C	
Barometric Pressure:		Male M12 Connector	
Work Order Number:		206796	Wiring Diagram
Cable Length:		105 meters	2 - 1
Cable Markings:	8	314627 m - 814732 m	
Cable Colour Code:	Coil: Red 1, Blk 2	Thermistor: Grn 3, Wht 4	
Cable Type:		EL380004	3 4
Thermistor Type:		3 kΩ	5 4
Thermistor Type:	Eiret Saco		Linearity Polyno

Applied Pressure (MPa)	First Reading (B units)	Second Reading (B units)	Average Reading (B units)	Calculated Linear (MPa)	Linearity Error (%FS)	Polynomia Error (%FS)
0.0	9003	9003	9003	0.005	0.23	0.00
0.4	8295	8295	8295	0.399	-0.04	0.01
0.8	7583	7583	7583	0.796	-0.20	-0.01
1.2	6865	6865	6865	1.196	-0.19	0.00
1.6	6142	6142	6142	1.599	-0.05	0.00
2.0	5414	5414	5414	2.005	0.24	0.00
			Max. I	Error (%):	0.24	0.01

Linear Calibration Factor:	C.F.=	0.00055727 MPa/B unit
Regression Zero:	At Calibration =	9011.4 B unit
Temperature Correction Factor:	Tk =	0.0004612 MPa/°C rise

A:

Polynomial Gage Factors (MPa)

-2.7813E-09

C: 4.8814

Pressure is calculated with the following equations:

P(MPa) = C.F.(Li-Lc) - [Tk(Ti-Tc)] + [0.00010(Bi-Bc)] Linear: $P(MPa) = A(Lc)^{2} + BLc + C + Tk(Tc-Ti) - [0.00010(Bc-Bi)]$

Polynomial:

	Date	VW Readout	Temp °C	Baro
	(dd/mm/yy)	Pos. B (Li)	(Ti)	(Bi)
Shipped Zero Readings:	30-Apr-15	9009	21.2	1025.9

Li, Lc = initial (at installation) and current readings

Ti, Tc = initial (at installation) and current temperature, in °C

Bi, Bc = initial (at installation) and current barometric pressure readings, in millibars B units = B scale output of VW 2102, VW 2104, VW 2106 and DT 2011 readouts B units = $Hz^2 / 1000$ ie: 1700Hz = 2890 B units

SK Technician: S. Kim

Date: 30-Apr-15

B: -0.00051717

This instrument has been calibrated using standards traceable to the NIST in compliance with ANSI Z540-1

1025.9 rechnolog/st Ú, Column

innovation in geotechnical instrumentation

Calibration Record

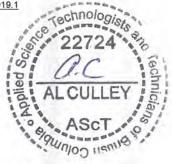
RST Instruments Ltd., 11545 Kingston St., Maple Ridge, British Columbia, Canada V2X 0Z5 Tel: 604 540 1100 • Fax: 604 540 1005 • Toll Free: 1 800 665 5599 (North America only) e-mail: info@rstinstruments.com • Website: www.rstinstruments.com

Vibrating Wire Piezometer

MW15-07T (239m)

Customer:		Kaminak G	old Corporation			
Model:		internitian C	VW2100-3.0			
erial Number: VW33363						
Afg Number:						
ange:						
Range: 3.0 MPa Femperature: 23.3 °C						
arometric Pressure:				millibars		
ork Order Number:			207453	minudars		
able Length:				meters		
able Markings:		996595	∠ou 3 m - 886868 m	meters		
able Colour Code:	Red / Black ((Thormistor)		
able Type:	Red / black (3011)	Green / White EL380004	(mermistor)		
nermistor Type:				1.0		
iermistor Type:			3	kΩ		
Applie	d First	Second	Average	Calculated	Linearity	Polynomial
Pressu	re Reading	Reading	Reading	Linear	Error	Error
(MPa	(B units)	(B units)	(B units)	(MPa)	(% FS)	(% FS)
0.0	8767	8768	8768	0.006	0.21	0.00
0.6	8066	8067	8067	0.599	-0.04	0.00
1.2	7361	7361	7361	1.195	-0.16	0.00
1.8	6651	6652	6652	1.795	-0.17	0.00
2.4	5937	5937	5937	2.399	-0.04	0.00
3.0	5218	5219	5219	3.006	0.20	0.00
			Max. E	rror (%):	0.21	0.00
Regressio	ibration Factor: n Zero: ire Correction Fact		C.F.= At Calibration = Tk =	8774.8	MPa/B unit B unit MPa/°C rise	
olynomial Gage Factor	rs (MPa)	A:	<u>-3.7001E-09</u>	В:	-0.00079354	C: <u>7.24</u>
Pressure is Linear: Polynomial	calculated with the P(MPa) = C.F : P(MPa) = A(L	.(Li-Lc) - [Tk(Ti	tions: -Tc)] + [0.00010 · Tk(Tc-Ti) - [0.00	(Bi-Bc)] 0010(Bc-Bi)]		
			Date	VW Readout	Temp °C	Baro
			(dd/mm/yy)	Pos. B (Li)	(Ti)	(Bi)
Shipped Zo	ero Readings:		<u>30-Jun-15</u>	<u>8775</u>	22.9	<u>1019.1</u>
	al (at installation) a ial (at installation) a					Science

B units = B scale output of VW 2102, VW 2104, VW 2106 and DT 2011 readouts


This instrument has been calibrated using standards traceable to the NIST in compliance with ANSI Z540-1

B units = $Hz^2 / 1000$ ie: 1700Hz = 2890 B units

В

Technician: I. Barua

Date: 30-Jun-15

Document Number: ELL0143H

MIG0106E

innovation in geotechnical instrumentation

Calibration Record

RST Instruments Ltd., 11545 Kingston St., Maple Ridge, British Columbia, Canada V2X 0Z5 Tel: 604 540 1100 • Fax: 604 540 1005 • Toll Free: 1 800 665 5599 (North America only) e-mail: info@rstinstruments.com • Website: www.rstinstruments.com

Vibrating Wire Piezometer

MW15-07T (267.8m)

plied ssure Pa) 0.0 0.6 .2 .8 .4 .0	Red / Black (0 First Reading (B units) 8761 8081 7398 6709 6016 5318	88687 [.]	23.3 990.0 207453 300 1 m - 887172 m Green / White EL380004	MPa °C millibars meters (Thermistor) kΩ Calculated Linear (MPa) 0.007 0.599 1.194 1.795	Linearity Error (% FS) 0.22 -0.03 -0.19 -0.18	Polynomial Error (% FS) 0.00 0.01 -0.01
plied ssure Pa) .0 .6 .2 .8 .4	First Reading (Bunits) 8761 8081 7398 6709 6016	Second Reading (Bunits) 8761 8081 7398 6709	VW33364 1515556 3.0 23.3 990.0 207453 300 1 m - 887172 m Green / White EL380004 3 Average Reading (B units) 8761 8081 7398 6709	MPa °C millibars meters (Thermistor) kΩ Calculated Linear (MPa) 0.007 0.599 1.194 1.795	Error (% FS) 0.22 -0.03 -0.19	Error (% FS) 0.00 0.01 -0.01
plied ssure Pa) .0 .6 .2 .8 .4	First Reading (Bunits) 8761 8081 7398 6709 6016	Second Reading (Bunits) 8761 8081 7398 6709	1515556 3.0 23.3 990.0 207453 300 1 m - 887172 m Green / White EL380004 3 Average Reading (B units) 8761 8081 7398 6709	MPa °C millibars meters (Thermistor) kΩ Calculated Linear (MPa) 0.007 0.599 1.194 1.795	Error (% FS) 0.22 -0.03 -0.19	Error (% FS) 0.00 0.01 -0.01
plied ssure Pa) .0 .6 .2 .8 .4	First Reading (Bunits) 8761 8081 7398 6709 6016	Second Reading (Bunits) 8761 8081 7398 6709	3.0 23.3 990.0 207453 300 1 m - 887172 m Green / White EL380004 3 Average Reading (B units) 8761 8081 7398 6709	MPa °C millibars meters (Thermistor) kΩ Calculated Linear (MPa) 0.007 0.599 1.194 1.795	Error (% FS) 0.22 -0.03 -0.19	Error (% FS) 0.00 0.01 -0.01
plied ssure Pa) .0 .6 .2 .8 .4	First Reading (Bunits) 8761 8081 7398 6709 6016	Second Reading (Bunits) 8761 8081 7398 6709	23.3 990.0 207453 300 1 m - 887172 m Green / White EL380004 3 Average Reading (B units) 8761 8081 7398 6709	°C millibars meters (Thermistor) kΩ Calculated Linear (MPa) 0.007 0.599 1.194 1.795	Error (% FS) 0.22 -0.03 -0.19	Error (% FS) 0.00 0.01 -0.01
plied ssure Pa) .0 .6 .2 .8 .4	First Reading (Bunits) 8761 8081 7398 6709 6016	Second Reading (Bunits) 8761 8081 7398 6709	990.0 207453 300 1 m - 887172 m Green / White EL380004 3 Average Reading (B units) 8761 8081 7398 6709	millibars meters (Thermistor) kΩ Calculated Linear (MPa) 0.007 0.599 1.194 1.795	Error (% FS) 0.22 -0.03 -0.19	Error (% FS) 0.00 0.01 -0.01
plied ssure Pa) .0 .6 .2 .8 .4	First Reading (B units) 8761 8081 7398 6709 6016	Second Reading (Bunits) 8761 8081 7398 6709	207453 300 1 m - 887172 m Green / White EL380004 3 Average Reading (B units) 8761 8081 7398 6709	meters (Thermistor) kΩ Calculated Linear (MPa) 0.007 0.599 1.194 1.795	Error (% FS) 0.22 -0.03 -0.19	Error (% FS) 0.00 0.01 -0.01
plied ssure Pa) .0 .6 .2 .8 .4	First Reading (B units) 8761 8081 7398 6709 6016	Second Reading (Bunits) 8761 8081 7398 6709	300 1 m - 887172 m Green / White EL380004 3 Average Reading (B units) 8761 8081 7398 6709	meters (Thermistor) kΩ Calculated Linear (MPa) 0.007 0.599 1.194 1.795	Error (% FS) 0.22 -0.03 -0.19	Error (% FS) 0.00 0.01 -0.01
Pa) 1.0 1.6 .2 .8 .4	First Reading (B units) 8761 8081 7398 6709 6016	Second Reading (Bunits) 8761 8081 7398 6709	1 m - 887172 m Green / White EL380004 3 Average Reading (B units) 8761 8081 7398 6709	(Thermistor) kΩ Calculated Linear (MPa) 0.007 0.599 1.194 1.795	Error (% FS) 0.22 -0.03 -0.19	Error (% FS) 0.00 0.01 -0.01
Pa) 1.0 1.6 .2 .8 .4	First Reading (B units) 8761 8081 7398 6709 6016	Second Reading (Bunits) 8761 8081 7398 6709	Green / White EL380004 3 Average Reading (B units) 8761 8081 7398 6709	kΩ Calculated Linear (MPa) 0.007 0.599 1.194 1.795	Error (% FS) 0.22 -0.03 -0.19	Error (% FS) 0.00 0.01 -0.01
Pa) 1.0 1.6 .2 .8 .4	First Reading (B units) 8761 8081 7398 6709 6016	Second Reading (B units) 8761 8081 7398 6709	EL380004 3 Average Reading (Bunits) 8761 8081 7398 6709	kΩ Calculated Linear (MPa) 0.007 0.599 1.194 1.795	Error (% FS) 0.22 -0.03 -0.19	Error (% FS) 0.00 0.01 -0.01
Pa) 1.0 1.6 .2 .8 .4	Reading (B units) 8761 8081 7398 6709 6016	Reading (Bunits) 8761 8081 7398 6709	3 Average Reading (Bunits) 8761 8081 7398 6709	Calculated Linear (MPa) 0.007 0.599 1.194 1.795	Error (% FS) 0.22 -0.03 -0.19	Error (% FS) 0.00 0.01 -0.01
Pa) 1.0 1.6 .2 .8 .4	Reading (B units) 8761 8081 7398 6709 6016	Reading (Bunits) 8761 8081 7398 6709	Average Reading (B units) 8761 8081 7398 6709	Calculated Linear (MPa) 0.007 0.599 1.194 1.795	Error (% FS) 0.22 -0.03 -0.19	Error (% FS) 0.00 0.01 -0.01
Pa) 1.0 1.6 .2 .8 .4	Reading (B units) 8761 8081 7398 6709 6016	Reading (Bunits) 8761 8081 7398 6709	Reading (Bunits) 8761 8081 7398 6709	Linear (MPa) 0.007 0.599 1.194 1.795	Error (% FS) 0.22 -0.03 -0.19	Error (% FS) 0.00 0.01 -0.01
Pa) 0.0 0.6 .2 .8 2.4	(Bunits) 8761 8081 7398 6709 6016	(Bunits) 8761 8081 7398 6709	(B units) 8761 8081 7398 6709	(MPa) 0.007 0.599 1.194 1.795	Error (% FS) 0.22 -0.03 -0.19	Error (% FS) 0.00 0.01 -0.01
Pa) 0.0 0.6 .2 .8 2.4	(Bunits) 8761 8081 7398 6709 6016	(Bunits) 8761 8081 7398 6709	(B units) 8761 8081 7398 6709	(MPa) 0.007 0.599 1.194 1.795	(% FS) 0.22 -0.03 -0.19	(% FS) 0.00 0.01 -0.01
.6 .2 .8	8081 7398 6709 6016	8081 7398 6709	8761 8081 7398 6709	0.007 0.599 1.194 1.795	0.22 -0.03 -0.19	0.00 0.01 -0.01
.2 .8 .4	7398 6709 6016	7398 6709	7398 6709	1.194 1.795	-0.03 -0.19	0.01 -0.01
.8 .4	6709 6016	6709	6709	1.194 1.795	-0.19	-0.01
.8 .4	6709 6016	6709	6709	1.795		
	6016	21.321	76.77			0.00
			6016	2.399	-0.05	0.00
		5318	5318	3.007	0.22	0.00
				rror (%):	0.22	0.01
sion Ze	tion Factor: ro: Correction Factor		C.F.= At Calibration = Tk =	0.00087138 8768.5 0.001181		
tors (N	IPa)	A:	-4.2667E-09	В:	0.00081131	C:
e is calc	ulated with the	following equa	tions			
in and				(Bi-Bc)]		
nial:						
			Date	VW Readout	Temp °C	Baro
			(dd/mm/yy)	Pos. B (Li)	(Ti)	(Bi)
d Zero I	Readings:		<u>30-Jun-15</u>	8766	22.7	1019.1
ni	al: Zero I	P(MPa) = C.F al: P(MPa) = A(L Zero Readings:	P(MPa) = C.F.(Li-Lc) - [Tk(T al: P(MPa) = A(Lc) ² + BLc + C + Zero Readings:	al: P(MPa) = A(Lc) ² + BLc + C + Tk(Tc-Ti) - [0.0 Date (dd/mm/yy) Zero Readings: <u>30-Jun-15</u> nitial (at installation) and current readings	P(MPa) = C.F.(Li-Lc) - [Tk(Ti-Tc)] + [0.00010(Bi-Bc)] al: P(MPa) = A(Lc) ² + BLc + C + Tk(Tc-Ti) - [0.00010(Bc-Bi)] Date VW Readout (dd/mm/yy) Pos. B (Li) Zero Readings: <u>30-Jun-15</u> <u>8766</u>	P(MPa) = C.F.(Li-Lc) - [Tk(Ti-Tc)] + [0.00010(Bi-Bc)] al: P(MPa) = A(Lc) ² + BLc + C + Tk(Tc-Ti) - [0.00010(Bc-Bi)] Date VW Readout Temp ^o C (dd/mm/yy) Pos. B (Li) (Ti) Zero Readings: <u>30-Jun-15</u> <u>8766</u> <u>22.7</u> nitial (at installation) and current readings

Bi, Bc = initial (at installation) and current barometric pressure readings, in millibars

B units = B scale output of VW 2102, VW 2104, VW 2106 and DT 2011 readouts

This instrument has been calibrated using standards traceable to the NIST in compliance with ANSI Z540-1

B units = $Hz^2 / 1000$ ie: 1700Hz = 2890 B units

Technician: I. Barua

Date: 30-Jun-15

innovation in geotechnical instrumentation

Calibration Record

RST Instruments Ltd., 11545 Kingston St., Maple Ridge, British Columbia, Canada V2X 0Z5 Tel: 604 540 1100 • Fax: 604 540 1005 • Toll Free: 1 800 665 5599 (North America only) e-mail: info@rstinstruments.com • Website: www.rstinstruments.com

SRK-15D-07 (103.6m)

Vibrating Wire Piezometer

ustomer:			Kaminak Go	old Corporation			
lodel:				VW2100-1.0			
erial Numbe	er:			VW32653			
Afg Number:				1504837			
Range:				1.0	MPa		
emperature	:			22.4	°C		
Barometric P				1000.4	millibars		
Vork Order N	Number:			206893			
Cable Length				110	meters		
Cable Markin			82812	1 m - 828230 m			
Cable Colour	Contraction of the second seco	Red / Black (C	(lio	Green / White	(Thermistor)		
cable Type:	0000.	1100 / Dictori (0		EL380004	100000000000		
Thermistor T	uno:			3	kΩ		
nermistor i	ype.						A Contraction of the
	Applied	First	Second	Average	Calculated	Linearity	Polynomial
	Pressure	Reading	Reading	Reading	Linear	Error	Error
	(MPa)	(B units)	(Bunits)	(Bunits)	(MPa)	(% FS)	(%FS)
	0.0	8893	8893	8893	0.002	0.21	0.00
	0.2	8189	8189	8189	0.200	-0.05	-0.01
	0.2	7480	7480	7480	0.398	-0.16	0.00
	0.4	6767	6767	6767	0.598	-0.16	0.00
		6049	6050	6050	0.800	-0.04	0.01
	0.8	5328	5328	5328	1.002	0.20	0.00
	1.0	0020	0020		rror (%):	0.21	0.01
			_	Mux. L	nor (m).		
1.1	Linear Calibra	tion Footor		C.F.=	0.00028048	MPa/B unit	
				At Calibration =		B unit	
	Regression Z			Tk =		MPa/°C rise	
	Temperature	Correction Fact	OF:	IK-	0.0001100	in a criss	
	Gane Factors (MPa)	A:	-1.1969E-09	B:	-0.00026346	C: 2.4
Polynomial (init u)					
Polynomial	Gage ractors (
Polynomial (Gage Factors (
Polynomial	5 W 1960	Iculated with the	following equa	ations:			
Polynomial (Pressure is ca	Iculated with the P(MPa) = C.F	following equa	ations: Fi-Tc)] + [0.00010	(Bi-Bc)]		
Polynomial (Pressure is ca Linear:	P(MPa) = C.F	F.(Li-Lc) - [Tk(T	ations: [i-Tc)] + [0.00010 + Tk(Tc-Ti) - [0.0)(Bi-Bc)] 10010(Bc-Bi)]		
Polynomial (Pressure is ca	P(MPa) = C.F	F.(Li-Lc) - [Tk(T	Гі-Тс)] + [0.00010 + Tk(Tc-Ti) - [0.0	0010(Bc-Bi)]	20	2
Polynomial /	Pressure is ca Linear:	P(MPa) = C.F	F.(Li-Lc) - [Tk(T	Fi-Tc)] + [0.00010	i(Bi-Bc)] 10010(Bc-Bi)] VW Readout Pos, B (Li)	Temp °C (Ti)	Baro (Bi)

Shipped Zero Readings: <u>6-May-15</u> 8897 22.1 10

Li, Lc = initial (at installation) and current readings

Ti, Tc = initial (at installation) and current temperature, in °C

Bi, Bc = initial (at installation) and current barometric pressure readings, in millibars B units = B scale output of VW 2102, VW 2104, VW 2106 and DT 2011 readouts

This instrument has been calibrated using standards traceable to the NIST in compliance with ANSI Z540-1

B units = $Hz^2 / 1000$ ie: 1700Hz = 2890 B units

Technician: J. Somphanthabansouk

Date: 6-May-15

Calibration Record

RST Instruments Ltd., 11545 Kingston St., Maple Ridge, British Columbia, Canada V2X 0Z5 Tel: 604 540 1100 • Fax: 604 540 1005 • Toll Free: 1 800 665 5599 (North America only) e-mail: info@rstinstruments.com • Website: www.rstinstruments.com

Vibrating Wire Piezometer

SRK-15D-07 (149.2m)

Customer:	Kaminak Gold Corporation
Model:	VW2100-2.0
Serial Number:	VW32655
Mfg Number:	1505025
Range:	2.0 MPa
Temperature:	21.6 °C
Barometric Pressure:	1004.0 millibars
Work Order Number:	206893
Cable Length:	160 meters
Cable Markings:	828393 m - 828552 m
Cable Colour Code:	Red / Black (Coil) Green / White (Thermistor)
Cable Type:	EL380004
Thermistor Type:	3 kΩ

Applied Pressure (MPa)	First Reading (B units)	Second Reading (B units)	Average Reading (B units)	Calculated Linear (MPa)	Linearity Error (% FS)	Polynomia Error (%FS)
0.0	8987	8988	8988	0.004	0.20	-0.01
0.4	8284	8284	8284	0.400	-0.02	0.02
0.8	7578	7578	7578	0.797	-0.17	0.00
1.2	6867	6867	6867	1.196	-0.18	-0.01
1.6	6151	6151	6151	1.599	-0.05	-0.01
2.0	5430	5430	5430	2.004	0.22	0.01
			Max. E	rror (%):	0.22	0.02

Tk =

-2.5298E-09

0.0005237 MPa/°C rise

B: -0.00052582

C: 4.9299

Polynomial Gage Factors (MPa)

Temperature Correction Factor:

Pressure is calculated with the following equations: P(MPa) = C.F.(Li-Lc) - [Tk(Ti-Tc)] + [0.00010(Bi-Bc)] Linear: Polynomial: $P(MPa) = A(Lc)^{2} + BLc + C + Tk(Tc-Ti) - [0.00010(Bc-Bi)]$

A:

	Date (dd/mm/yy)	VW Readout Pos. B (Li)	Temp °C (Ti)	Baro (Bi)	
Shipped Zero Readings:	<u>6-Μaγ-15</u>	<u>8996</u>	<u>21.7</u>	<u>1018.6</u>	Technologis
Li, Lc = initial (at installation) and current r Ti, Tc = initial (at installation) and current t Bi, Bc = initial (at installation) and current t B units = B scale output of VW 2102, VW 2 B units = H z^2 / 1000 ie: 1700Hz = 285	emperature, in °C parometric pressure 104, VW 2106 and	e readings, în mill I DT 2011 readou	ibars ts	pplied Science	ALCULLEY
Technician: <u>J. Somphanthabansouk</u>	TA eable to the NIST in	Date: _	6-May-15	100	ASCT

This instrument has been calibrated using standards traceable to the NIST in compliance with ANSI Z540-1

innovation in geotechnical instrumentation

Calibration Record

RST Instruments Ltd., 11545 Kingston St., Maple Ridge, British Columbia, Canada V2X 0Z5 Tel: 604 540 1100 • Fax: 604 540 1005 • Toll Free: 1 800 665 5599 (North America only) e-mail: info@rstinstruments.com • Website: www.rstinstruments.com

Vibrating Wire Piezometer

SRK-15D-08 (103.6m)

Customer:			Kaminak (Gold Corporation			
Model:			Raminak	VW2100-1.0			
Serial Number:				VW33361			
Mfg Number:				1514089			
Range:					MPa		
Temperature:				23.0	C		
Barometric Pre	SSUIP			1 (P. 19)	millibars		
Nork Order Nu				207453	Thinbars		
Cable Length:	iniber.			1000	meters		
able Markings			88717	3 m - 887278 m	meters		
able Colour C		Red / Black (0		Green / White	(Thormistor)		
able Type:	oue.	Hour Didok (t	3011)	EL380004	(mennistor)		
hermistor Type.					kΩ		
				5	1/22		
	Applied	First	Second	Average	Calculated	Linearity	Polynomial
	Pressure	Reading	Reading	Reading	Línear	Error	Error
	(MPa)	(B units)	(B units)	(Bunits)	(MPa)	(% FS)	(% FS)
100	0.0	8957	8958	8958	0.002	0.22	0.01
	0.2	8227	8228	8228	0.199	-0.05	-0.01
	0.4	7491	7492	7492	0.398	-0.17	0.01
	0.6	6751	6752	6752	0.598	-0.17	0.01
	0.8	6007	6007	6007	0.799	-0.05	0.00
1.12	1.0	5257	5257	5257	1.002	0.22	0.00
				Max. E	rror (%):	0.22	0.01
Li	near Calibra	tion Factor:		C.F.=	0.00027022	MPa/B unit	
R	egression Ze	ero:	1	At Calibration =	8965.6	B unit	
Te	emperature (Correction Facto	or:	Tk =	0.0001134	MPa/°C rise	
olynomial Gag	ge Factors (M	/Pa)	A:	-1.1804E-09	B:	-0.00025344	C: 2.365
		culated with the					
	near:			i-Tc)] + [0.00010			
Po	olynomial:	P(MPa) = A(Le)	$c)^2 + BLc + C +$	+ Tk(Tc-Ti) - [0.00	0010(Bc-Bi)]		

	Date	VW Readout	Temp °C	Baro
	(dd/mm/yy)	Pos. B (Li)	(Ti)	(Bi)
Shipped Zero Readings:	<u>30-Jun-15</u>	8958	22.9	<u>1019.1</u>

Li, Lc = initial (at installation) and current readings

Ti, Tc = initial (at installation) and current temperature, in °C

Bi, Bc = initial (at installation) and current barometric pressure readings, in millibars

B units = B scale output of VW 2102, VW 2104, VW 2106 and DT 2011 readouts

B units = $Hz^2 / 1000$ ie: 1700Hz = 2890 B units

Technician: I. Barua

Date: 30-Jun-15

This instrument has been calibrated using standards traceable to the NIST in compliance with ANSI Z540-1

9.1 chnolog 5 poplied . gran Columb

Calibration Record

RST Instruments Ltd., 11545 Kingston St., Maple Ridge, British Columbia, Canada V2X 0Z5 Tel: 604 540 1100 • Fax: 604 540 1005 • Toll Free: 1 800 665 5599 (North America only) e-mail: info@rstinstruments.com • Website: www.rstinstruments.com

Vibrating Wire Piezometer

SRK-15-08D (149.2m)

Customer:	Ka	minak Gold Corporation	
Model:		VW2100-2.0	
Serial Number:		VW32654	
Mfg Number:		1505023	
Range:		2.0	MPa
Temperature:		21.6	°C
Barometric Pressure:		1004.0	millibars
Work Order Number:		206893	
Cable Length:		160	meters
Cable Markings:		828232 m - 828391 m	
Cable Colour Code:	Red / Black (Coil)	Green / White	(Thermistor)
Cable Type:		EL380004	
Thermistor Type:		3	kΩ

Applied Pressure (MPa)	First Reading (B units)	Second Reading (B units)	Average Reading (B units)	Calculated Linear (MPa)	Linearity Error (% FS)	Polynomia Error (%FS)
0.0	9038	9039	9039	0.004	0.22	0.00
0.4	8309	8310	8310	0.399	-0.04	0.00
0.8	7576	7576	7576	0.796	-0.18	0.00
1.2	6838	6838	6838	1,196	-0.19	-0.01
1.6	6094	6094	6094	1.599	-0.04	0.00
2.0	5345	5346	5346	2.004	0.22	0.00
			Max. E	rror (%):	0.22	0.01

Linear Calibration Factor:	C.F.=	0.00054158 MPa/B unit	
Regression Zero:	At Calibration =	9046.6 B unit	
Temperature Correction Factor:	Tk =	0.0003615 MPa/°C rise	

```
Polynomial Gage Factors (MPa)
```

```
-2.4733E-09
A:
```

C: 4.7755

Baro

Pressure is calculated with the following equations: Linear: P(MPa) = C.F.(Li-Lc) - [Tk(Ti-Tc)] + [0.00010(Bi-Bc)] $P(MPa) = A(Lc)^2 + BLc + C + Tk(Tc-Ti) - [0.00010(Bc-Bi)]$ Polynomial:

	Date	VW Readout	Temp °C

	(dd/mm/yy)	Pos. B (Li)	(Ti)	(Bi)	
Shipped Zero Readings:	6-May-15	9046	21.7	<u>1018.6</u>	Technolog
Li, Lc = initial (at installation) and curr	ent readings			1.5	2272
Ti, Tc = initial (at installation) and curr	ent temperature, in °C			10	na
Bi, Bc = initial (at installation) and cur	rent barometric pressure	e readings, in milli	bars	101	U.C
B units = B scale output of VW 2102, V	W 2104, VW 2106 and	DT 2011 readout	ts	101.	AL OLULI

B units = $Hz^2 / 1000$ ie: 1700Hz = 2890 B units

Technician: J. Somphanthabansouk

Date: 6-May-15

B: -0.00050601

This instrument has been calibrated using standards traceable to the NIST in compliance with ANSI Z540-1

ç Olining ichild

innovation in geotechnical instrumentation

Calibration Record

RST Instruments Ltd., 11545 Kingston St., Maple Ridge, British Columbia, Canada V2X 0Z5 Tel: 604 540 1100 • Fax: 604 540 1005 • Toll Free: 1 800 665 5599 (North America only) e-mail: info@rstinstruments.com · Website: www.rstinstruments.com

Vibrating Wire Piezometer

SRK-15D-09 (99.7m)

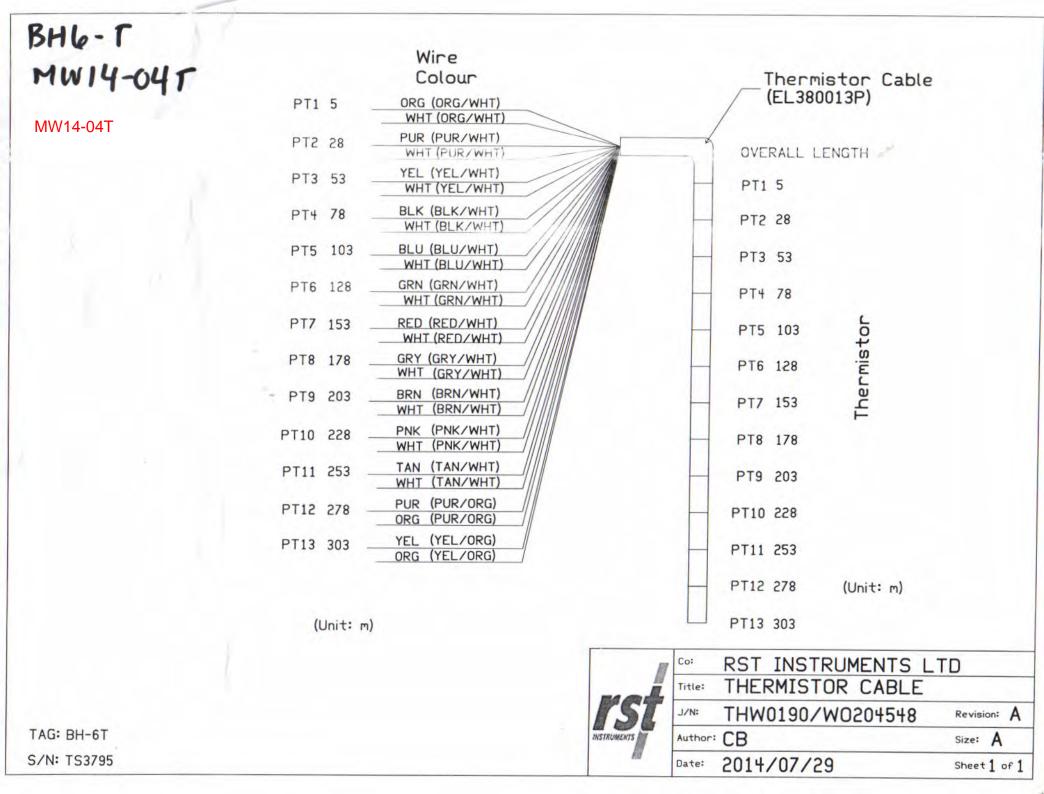
-			along the second				
Customer:			Kaminak C	Gold Corporation			
Nodel:				VW2100-1.0			
Serial Numbe	er:			VW33362			
Mfg Number:				1514140			
Range:				1.0	MPa		
Temperature:				22.2	°C		
Barometric P	and the second se	998.5 millibars 207453 105 meters 887279 m - 887384 m					
Nork Order N							
Cable Length	:						
Cable Marking	•						
Cable Colour	Code:	Red / Black (0	Coil)	Green / White	(Thermistor)		
Cable Type:				EL380004			
hermistor Ty	/pe:			3	kΩ		
11	Applied	First	Second	Average	Calculated	Linearity	Polynomial
	Pressure	Reading	Reading	Reading	Linear	Error	Error
-	(MPa)	(B units)	(Bunits)	(Bunits)	(MPa)	(%FS)	(% FS)
	0.0	8709	8710	8710	0.002	0.21	-0.01
	0.2	7975	7976	7976	0.200	-0.03	0.02
	0.4	7238	7238	7238	0.398	-0.17	0.01
	0.6	6496	6496	6496	0.598	-0.19	-0.01
	0.8	5748	5749	5749	0.799	-0.06	-0.01
	1.0	4995	4995	4995	1.002	0.23	0.01
1				Max. E	rror (%):	0.23	0.02
							Second Second
Linear Calibra Regression Z				C.F.=		MPa/B unit	
				At Calibration =			
	Temperature C	Correction Fact	or:	Tk =	0.0001677	MPa/°C rise	
Polynomial G	age Factors (M			4 40055 00			11111
olynolliar Ge	age racions (in	ira)	A:	<u>-1.1985E-09</u>	в:	-0.00025285	C: <u>2.2930</u>
F	Pressure is calc	ulated with the	following equat	tions:			
L	Linear:			-Tc)] + [0.00010			
F	Polynomial:	P(MPa) = A(L	$(c)^{2} + BLc + C + C$	- Tk(Tc-Ti) - [0.0	0010(Bc-Bi)]		
				Date	VW Readout	Temp °C	Baro
				(dd/mm/yy)	Pos. B (Li)	(Ti)	(Bi)
	Shipped Zero F	Readings:		<u>30-Jun-15</u>	8707	23.0	<u>1019.1</u>
5							
L		at installation) ar					C. and
L	ri, Tc = initial (a	at installation) an	nd current temp	perature, in °C	readings, in mill		100 000 000 000 000 000 000 000 000 000

B units = B scale output of VW 2102, VW 2104, VW 2106 and DT 2011 readouts

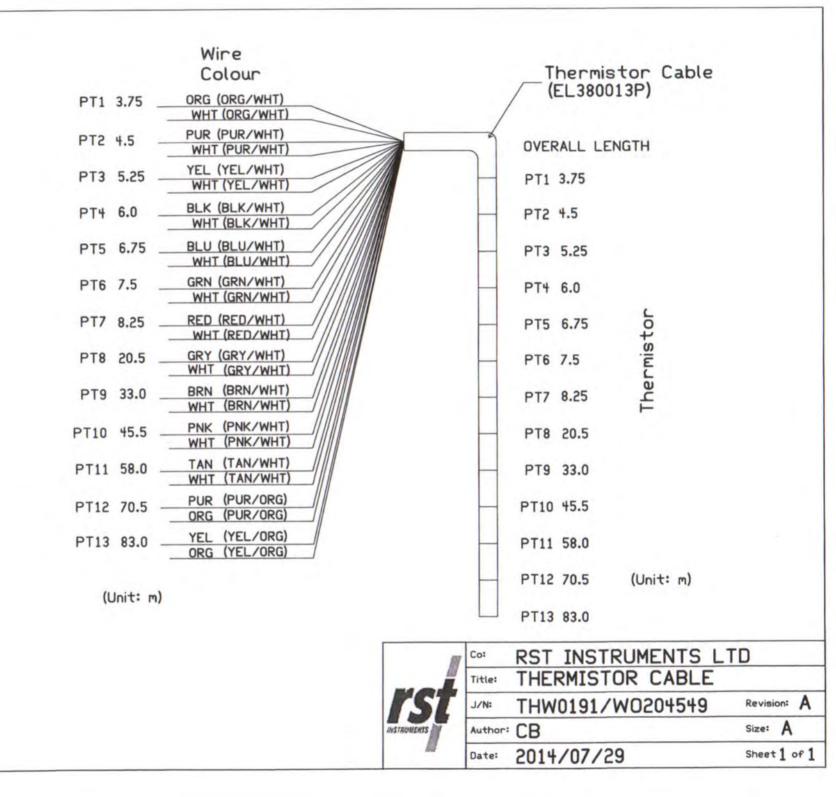
В

B units = $Hz^2 / 1000$ ie: 1700Hz = 2890 B units

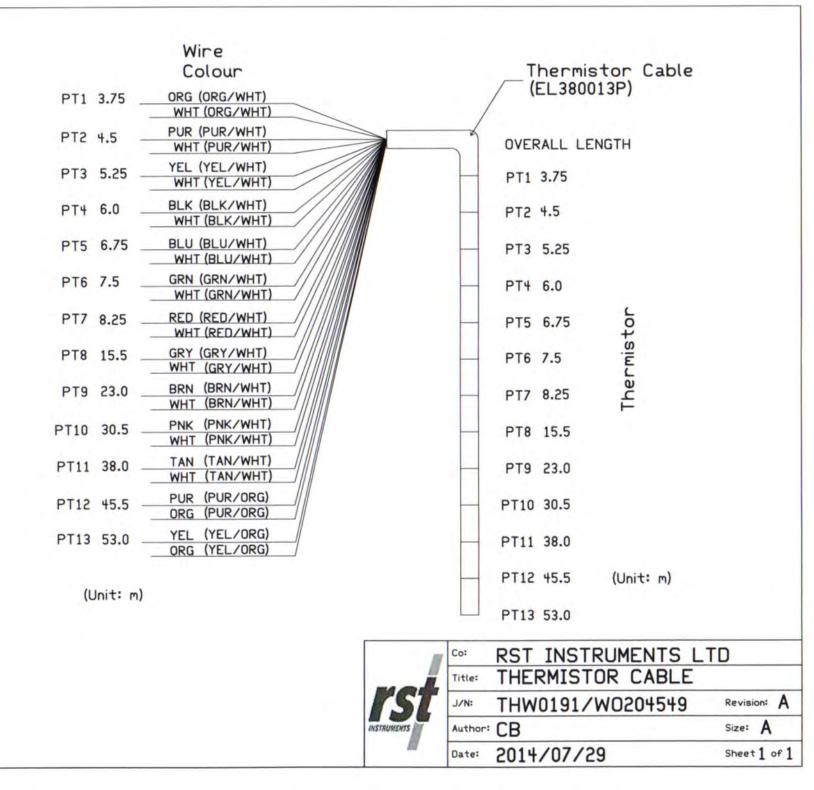
Technician: I. Barua

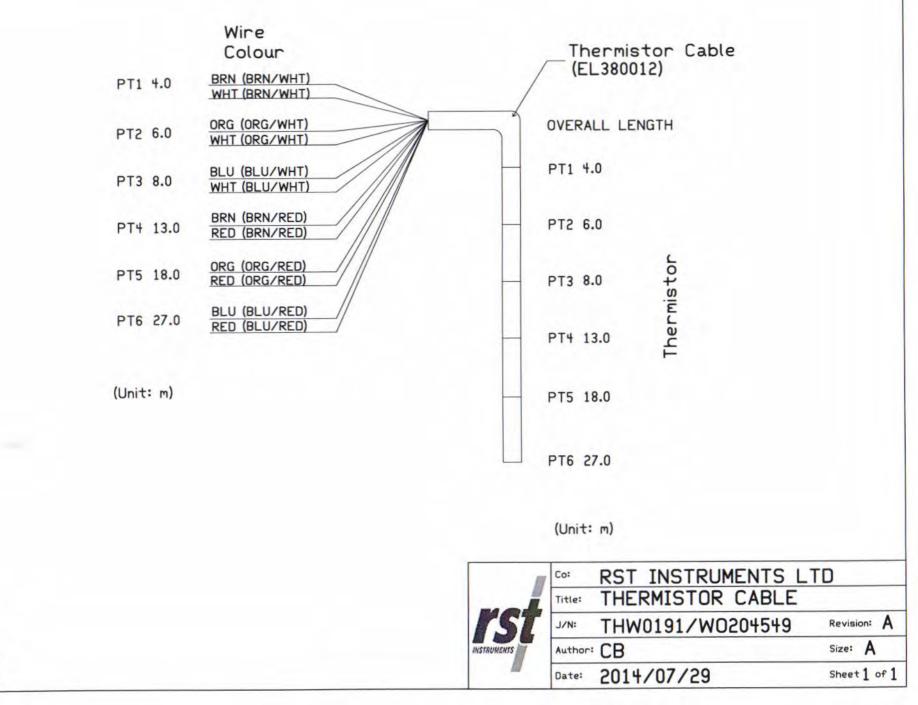

Date: 30-Jun-15

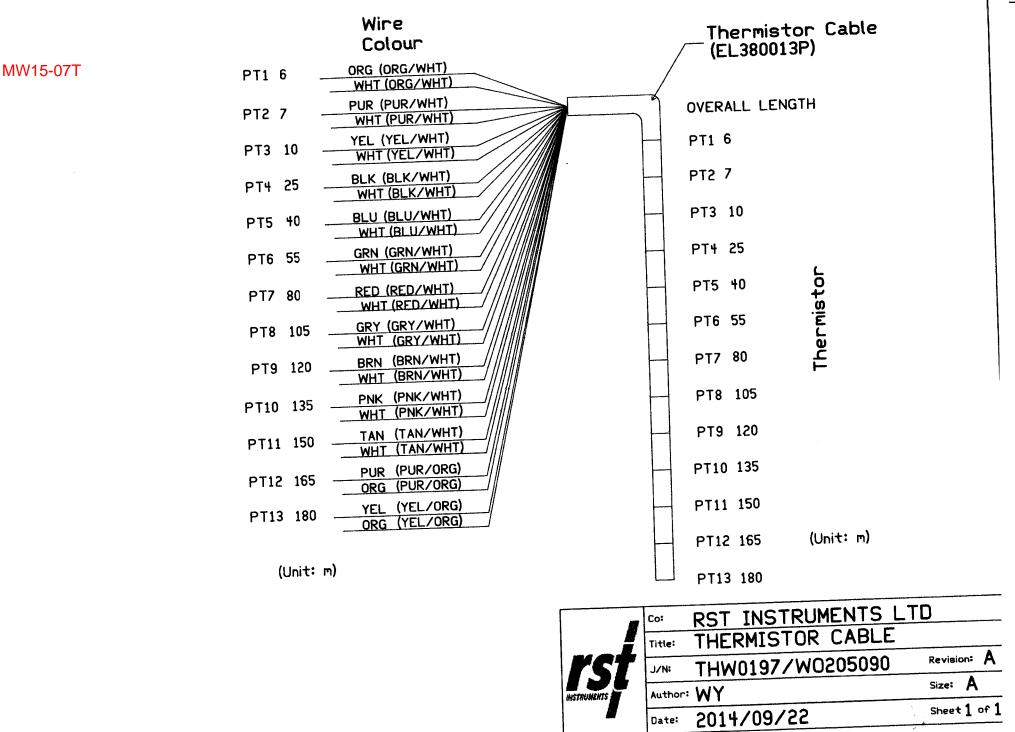
This instrument has been calibrated using standards traceable to the NIST in compliance with ANSI Z540-1

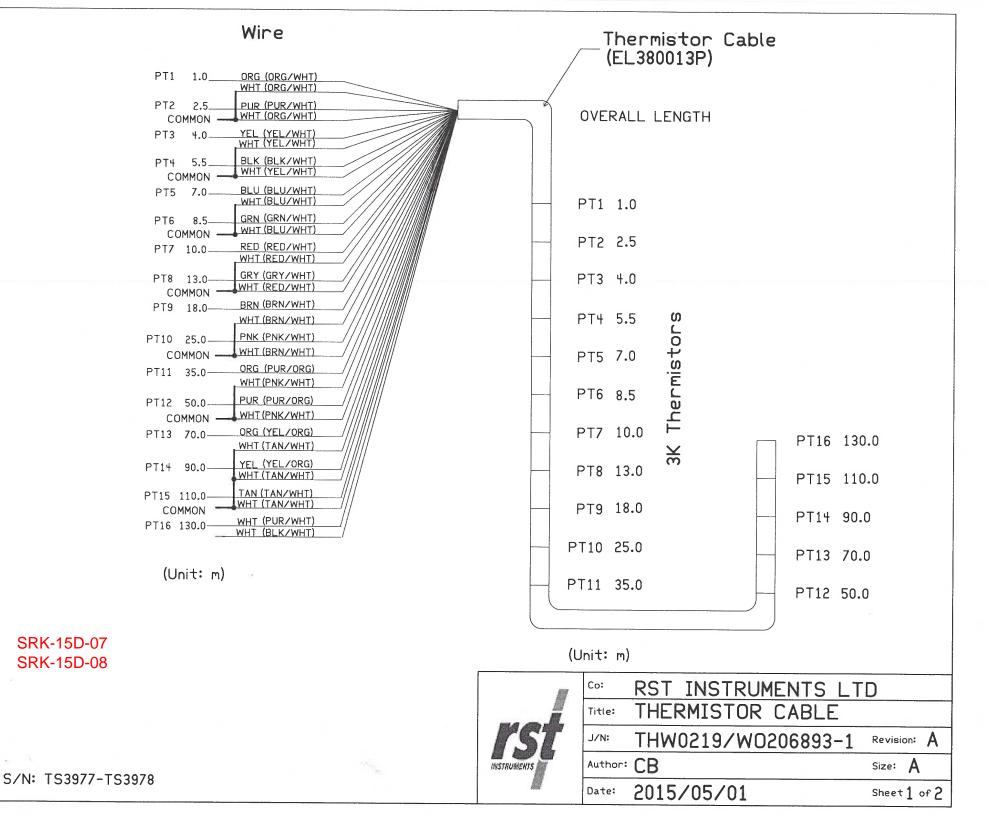

nolog pplied O union usit

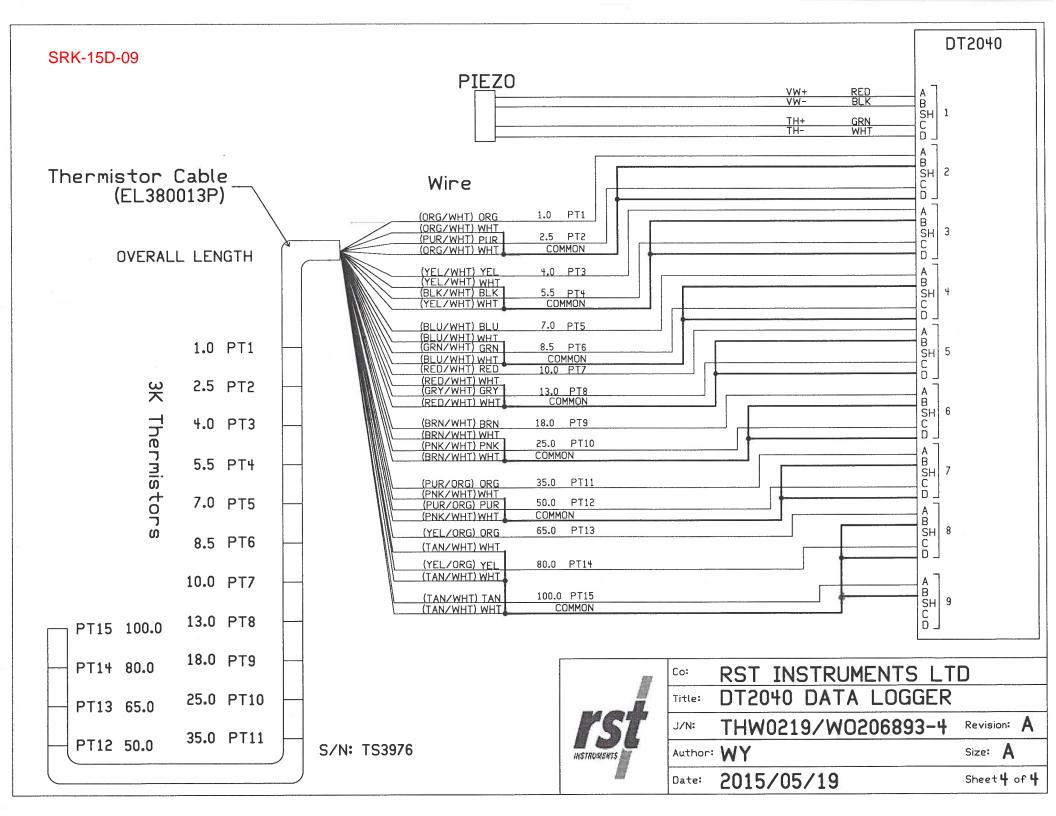
Appendix 3-C2: RST Thermistor Wiring Diagrams










TAG: BH-8T S/N: TS3797 MW15-02T

TAG: BH-10T S/N: TS3798

