

# Coffee Gold Mine YESAB Project Proposal Appendix 31-D Waste Rock and Overburden Management Plan

# **VOLUME V**

Prepared for: **Kaminak Gold Corp.** a subsidiary of **Goldcorp Inc.** Suite 3400-666 Burrard Street Vancouver, BC Canada V6C 2X8

Prepared by: SRK Consulting (U.S.), Inc 125 Seventeenth Street, Suite 600 Denver, CO 80202

File: 1658.001.02

File: 1658-003.01

Ver. 1.0

March 2017

# **TABLE OF CONTENTS**

| NYMS A | ND ABI                                                                        | BREVIATIONS                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | V                                                                              |
|--------|-------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------|
| INTRO  | DUCTIO                                                                        | DN                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | . 1.1                                                                          |
| 1.1    | PROJEC                                                                        | CT SUMMARY                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | . 1.1                                                                          |
| 1.2    | SCOPE                                                                         | AND OBJECTIVES                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | . 1.1                                                                          |
| 1.3    | SYNER                                                                         | GIES WITH OTHER PROJECT DOCUMENTS                                                                                                                                                                                                                                                                                                                                                                                                                                                               | . 1.2                                                                          |
| OVER   | √IEW                                                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | . 2.1                                                                          |
| 2.1    | WASTE                                                                         | ROCK STORAGE FACILITIES                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | . 2.1                                                                          |
|        | 2.1.1                                                                         | Alpha WRSF                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | . 2.1                                                                          |
|        | 2.1.2                                                                         | Beta Waste Rock Storage Facility                                                                                                                                                                                                                                                                                                                                                                                                                                                                | . 2.2                                                                          |
|        | 2.1.3                                                                         | In-pit Backfill                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | . 2.2                                                                          |
| 2.2    | ROM S                                                                         | STOCKPILE                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | . 2.2                                                                          |
| 2.3    | ТЕМРО                                                                         | RARY ORGANICS STOCKPILE                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | . 2.3                                                                          |
| 2.4    | FROZE                                                                         | N SOIL STORAGE AREA                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | . 2.3                                                                          |
| 2.5    | WATER                                                                         | MANAGEMENT INFRASTRUCTURE                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | . 2.3                                                                          |
| DESIG  | N CRITI                                                                       | ERIA                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | . 3.1                                                                          |
| 3.1    | MATER                                                                         | IAL QUANTITIES                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | . 3.1                                                                          |
|        | 3.1.1                                                                         | Waste Rock                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | . 3.1                                                                          |
|        | 3.1.2                                                                         | Overburden                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | . 3.2                                                                          |
|        | 3.1.3                                                                         | ROM Stockpile                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | . 3.2                                                                          |
| 3.2    | MATER                                                                         | IAL PROPERTIES                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | . 3.3                                                                          |
|        | 3.2.1                                                                         | Waste Rock                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | . 3.3                                                                          |
|        | 3.2.2                                                                         | Foundation Soils                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | . 3.3                                                                          |
|        | 3.2.3                                                                         | Bedrock                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | . 3.4                                                                          |
| 3.3    | GEOTE                                                                         | CHNICAL CRITERIA                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | . 3.5                                                                          |
|        | 3.3.1                                                                         | Waste Rock Storage Facilities                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | . 3.5                                                                          |
|        | 3.3.2                                                                         | ROM Stockpile                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | . 3.6                                                                          |
|        | 3.3.3                                                                         | Temporary Organics Stockpile                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | . 3.6                                                                          |
|        | 3.3.4                                                                         | Frozen Soils Storage Area                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | . 3.6                                                                          |
| 3.4    | HYDRO                                                                         | LOGIC CRITERIA                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | . 3.7                                                                          |
| 3.5    | MATER                                                                         | IAL STORAGE CONDITIONS                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | . 3.8                                                                          |
|        | 3.5.1                                                                         | WRSF Rock Drains and Seepage                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | . 3.8                                                                          |
|        | 1.1<br>1.2<br>1.3<br>OVERV<br>2.1<br>2.2<br>2.3<br>2.4<br>2.5<br>DESIG<br>3.1 | INTRODUCTION         1.1       PROJECT         1.2       SCOPET         1.3       SYNER         OVERVIEW         2.1       WASTER         2.1.2       2.1.3         2.2       ROM S         2.3       TEMPO         2.4       FROZER         2.5       WATER         3.1.1       3.1.2         3.1.3       3.1.3         3.2       3.2.1         3.2.2       3.2.3         3.3       GEOTER         3.3.1       3.3.2         3.3.3       3.3.4         3.4       HYDRO         3.5       MATER | 1.2 SCOPE AND OBJECTIVES  1.3 SYNERGIES WITH OTHER PROJECT DOCUMENTS  OVERVIEW |

|     |      | 3.5.2    | Potentially Thaw-unstable Materials          | 3.10 |
|-----|------|----------|----------------------------------------------|------|
|     | 3.6  | WATER    | R QUALITY CRITERIA                           | 3.10 |
| 4.0 | STOR | AGE FA   | ACILITY DESIGN                               | 4.1  |
|     | 4.1  | Found    | DATION CONDITIONS                            | 4.1  |
|     |      | 4.1.1    | Waste Rock Storage Facilities                | 4.1  |
|     |      | 4.1.2    | ROM Stockpile                                | 4.3  |
|     |      | 4.1.3    | Temporary Organics Stockpile                 | 4.3  |
|     |      | 4.1.4    | Frozen Soil Storage Area                     | 4.3  |
|     | 4.2  | DESIG    | N DETAILS                                    | 4.3  |
|     |      | 4.2.1    | Waste Rock Storage Facilities                | 4.3  |
|     |      | 4.2.2    | ROM Stockpile                                | 4.5  |
|     |      | 4.2.3    | Temporary Organics Stockpile                 | 4.5  |
|     |      | 4.2.4    | Frozen Soil Storage Area                     | 4.6  |
|     | 4.3  | CLEAR    | RING, STRIPPING AND GRUBBING                 | 4.6  |
|     |      | 4.3.1    | Waste Rock Storage Facilities                | 4.6  |
|     |      | 4.3.2    | ROM Stockpile                                | 4.7  |
|     |      | 4.3.3    | Temporary Organics Stockpile                 | 4.7  |
|     |      | 4.3.4    | Frozen Soil Storage Area                     | 4.7  |
|     | 4.4  | TRANS    | SPORT AND DISPOSAL                           | 4.8  |
|     | 4.5  | Asses    | SSMENT OF PHYSICAL STABILITY                 | 4.8  |
|     |      | 4.5.1    | Material Properties                          | 4.8  |
|     |      | 4.5.2    | Stability Analyses                           | 4.8  |
|     | 4.6  | Const    | TRUCTION QUALITY ASSURANCE / QUALITY CONTROL | 4.8  |
|     | 4.7  | Surfa    | ACE WATER MANAGEMENT                         | 4.9  |
|     | 4.8  | Rock I   | DRAINS                                       | 4.9  |
| 5.0 | WAST | E GENE   | ERATION AND DISPOSAL OPERATIONS              | 5.1  |
|     | 5.1  | TYPES    | OF WASTE AND VOLUME                          | 5.1  |
|     |      | 5.1.1    | Ore                                          | 5.1  |
|     |      | 5.1.2    | Waste Rock                                   | 5.2  |
|     |      | 5.1.3    | Leach Tailings                               | 5.4  |
|     |      | 5.1.4    | Overburden and Topsoil                       | 5.5  |
|     | 5.2  | \// \ \\ | E CHARACTERIZATION AND MONITORING PROTOCOL   | 5.5  |

|         | 5.3     | WASTE SEGREGATION PROTOCOL           |                                                                       |      |  |  |  |  |  |
|---------|---------|--------------------------------------|-----------------------------------------------------------------------|------|--|--|--|--|--|
|         |         | 5.3.1                                | Waste Rock                                                            | 5.7  |  |  |  |  |  |
|         |         | 5.3.2                                | Overburden and Topsoil                                                | 5.7  |  |  |  |  |  |
|         |         | 5.3.3                                | Ore                                                                   | 5.7  |  |  |  |  |  |
|         |         | 5.3.4                                | Leach Tailings                                                        | 5.8  |  |  |  |  |  |
|         | 5.4     | MONITO                               | DRING PROGRAM                                                         | 5.8  |  |  |  |  |  |
|         |         | 5.4.1                                | Routine inspections                                                   | 5.9  |  |  |  |  |  |
|         |         | 5.4.2                                | Annual inspections                                                    | 5.10 |  |  |  |  |  |
|         |         | 5.4.3                                | Event-driven inspections                                              | 5.10 |  |  |  |  |  |
| 6.0     | ADAPT   | IVE MA                               | NAGEMENT PLANS                                                        | 6.1  |  |  |  |  |  |
| 7.0     | REFER   | ENCES                                |                                                                       | 7.1  |  |  |  |  |  |
| List of | Tables  |                                      |                                                                       |      |  |  |  |  |  |
| Table 3 | 3-1     | Annual                               | Waste Allocations by Destination (Mt)                                 | 3.1  |  |  |  |  |  |
| Table 3 | 3-2     | Summa                                | Summary of Bedrock Geotechnical Data                                  |      |  |  |  |  |  |
| Table 3 | 3-3     | Geotec                               | Geotechnical Design Criteria                                          |      |  |  |  |  |  |
| Table 3 | 3-4     | Field Ic                             | Field Identification and Classification of Frozen Soils               |      |  |  |  |  |  |
| Table 3 | 3-5     | Hydrol                               | Hydrologic Design Criteria for Formulating Peak Flows                 |      |  |  |  |  |  |
| Table 3 | 3-6     | Summa                                | Summary of Waste Rock Seepage Quality Predictions as Compared to MMER |      |  |  |  |  |  |
|         |         | Limits                               | and Receiving Water Quality Objectives                                | 3.12 |  |  |  |  |  |
| Table 5 | 5-1     | Total C                              | re Excavations Over Mine Life                                         | 5.1  |  |  |  |  |  |
| Table 5 | 5-2     | Total W                              | /aste Rock Excavations Over Mine Life                                 | 5.3  |  |  |  |  |  |
| Table 5 | 5-3     | Summa                                | ary of Sampling Frequency and Analytical Parameters Monitored for     |      |  |  |  |  |  |
|         |         | Charac                               | terization of Mine Rock                                               | 5.6  |  |  |  |  |  |
| Table 6 | 6-1     | Adaptiv                              | ve Management Triggers & Actions                                      | 6.1  |  |  |  |  |  |
| List of | Figures |                                      |                                                                       |      |  |  |  |  |  |
| Figure  | 1-1     | Genera                               | al Arrangement – Mine Site                                            | 1.3  |  |  |  |  |  |
| Figure  | 3-1     | Distribu                             | ution of Permafrost (after EBA, 2016)                                 | 3.9  |  |  |  |  |  |
| Figure  | Locatio | n of Water Quality Compliance Points | 3.13                                                                  |      |  |  |  |  |  |

# **List of Appendices**

Appendix I Life of Mine Annual Plots

Appendix II Feasibility Pit Slope Stability Evaluation

Appendix III 2015 Geotechnical Field Investigation

Appendix IV Fall 2016 Geotechnical Site Investigation Data Report

# **ACRONYMS AND ABBREVIATIONS**

| Acronym | Definition                                 |
|---------|--------------------------------------------|
| %       | Percent                                    |
| ABA     | Acid Base Accounting                       |
| ACA     | average continental abundance              |
| Ag      | Silver                                     |
| ASTM    | American Society for Testing and Materials |
| ARD     | Acid rock drainage                         |
| Au      | Gold                                       |
| As      | Arsenic                                    |
| BC      | British Columbia                           |
| Bi      | bismuth                                    |
| BMP     | Best Management Practice                   |
| Cu      | Copper                                     |
| Fi      | Frozen, ice-rich                           |
| Fn      | Frozen, no visible ice                     |
| Fv      | Frozen, visible ice                        |
| FOS     | Factor of safety                           |
| ha      | hectare                                    |
| Hg      | mercury                                    |
| HLF     | Heap Leach Facility                        |
| H:V     | Horizontal to vertical                     |
| Kaminak | Kaminak Gold Corporation                   |
| LOM     | Life of mine                               |
| MPa     | Megapascals                                |
| Mt      | million tonnes                             |
| NP      | neutralization potential                   |
| PAG     | potentially acid generating                |
| ppm     | parts per million                          |
| Project | Coffee Gold Project                        |
| QA/QC   | Quality Assurance / Quality Control        |
| ROM     | Run-of-mine                                |
| S       | sulphur                                    |
| Sb      | Antimony                                   |
| Se      | selenium                                   |
| t       | tonne                                      |
| U       | Uranium                                    |
| USCS    | Unified Soil Classification System         |
| WRSF    | Waste Rock Storage Facility                |
| Zn      | Zinc                                       |

# 1.0 INTRODUCTION

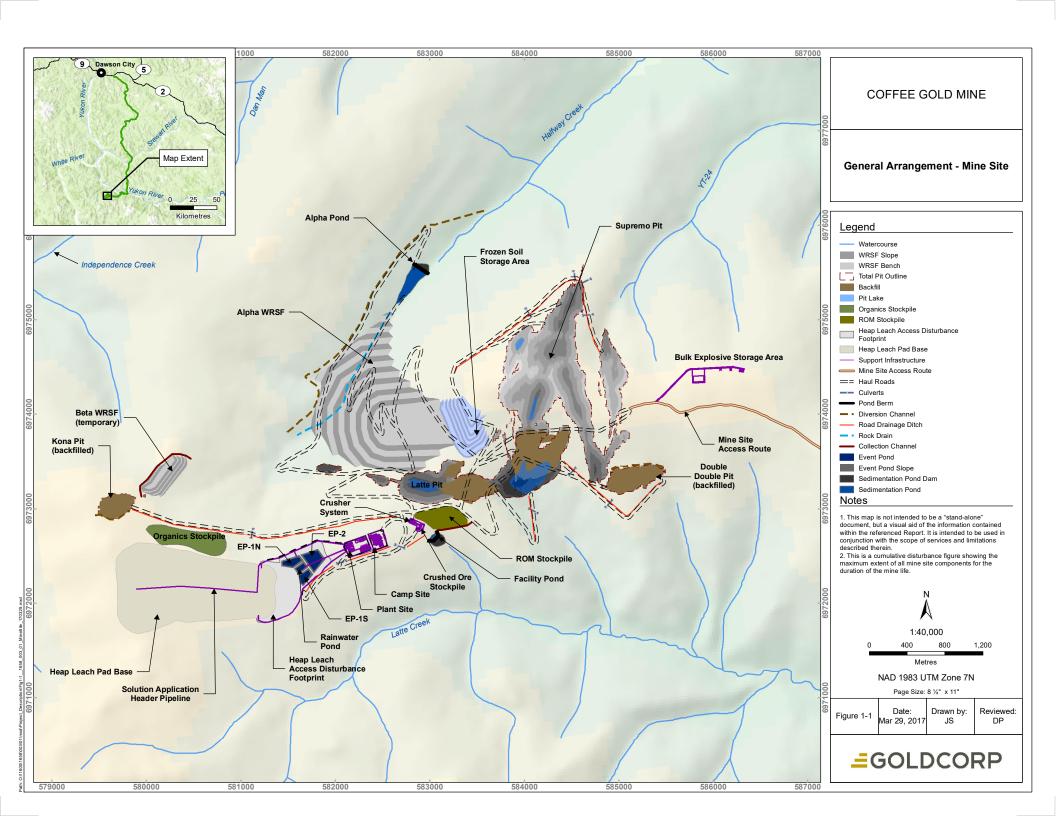
#### 1.1 PROJECT SUMMARY

The proposed Coffee Gold Mine (Project), is an advanced exploration gold project owned by Kaminak Gold Corporation, a wholly owned subsidiary of Goldcorp Inc. (Goldcorp or Proponent), and located in the White Gold District of west-central Yukon, approximately 130 kilometres (km) south of the City of Dawson. The Project contains several gold occurrences within an exploration concession covering an area of more than 600 km<sup>2</sup>.

The Project, comprising four Open Pits called Latte, Double Double, Supremo and Kona, is proposed to be mined at an average rate of 5 million tonnes per annum (Mt/a) of heap leach feed by conventional shovel and truck methods. The ore will be crushed and placed onto a heap leach facility (HLF) by truck for a minimum of nine months of the year. During the coldest period of the year, run-of-mine (ROM) ore will be stockpiled. Gold will be extracted from pregnant leach solution by a 5 tonnes per day (t/d) adsorption, desorption, recovery carbon plant with mercury retorting to produce a final gold doré product. Conceptual design indicates a total of 60.1 Mt of mined ore over the life of the mine, containing 2.5 million ounces of gold.

#### 1.2 SCOPE AND OBJECTIVES

This Waste Rock and Overburden Management Plan describes the types of waste rock, soil overburden and ROM stockpiles that will be constructed and how their materials will be characterized, segregated, and stored to ensure long-term chemical and physical stability.


Mining activities will generate waste rock, which will be placed in engineered waste rock storage facilities (WRSFs), with a portion of waste rock back-filled into the Open Pits. The waste rock is non-potentially acid generating (non-PAG); however, proper handling and storage of the waste rock will be required in order to ensure geotechnical and geochemical stability. Clearing and stripping activities will also produce overburden, which will be stockpiled. For the purpose of this plan, overburden is defined as all soils above bedrock consisting of organic soils and inorganic soils in both frozen and unfrozen states. Organics and ice-poor topsoil will be removed and placed in a temporary stockpile located immediately north of the HLF. This material will be used for progressive reclamation purposes. There will be an additional stockpile of icerich soils; ice-rich soils are considered those with greater than 15 percent (%) visible ice while ice-poor soils are those containing contain less than 15% visible ice.

This plan provides details about the design, construction and operation of each facility. **Figure 1-1** shows the general arrangement of the facilities described in this plan, including the WRSFs, the ROM stockpile, the temporary organics stockpile and the frozen soil storage area.

# 1.3 SYNERGIES WITH OTHER PROJECT DOCUMENTS

This plan should be viewed in concert with the following additional management plans:

- Conceptual Reclamation and Closure Plan (Appendix 31-C)
- Water Management Plan (Appendix 31-E)



# 2.0 OVERVIEW

# 2.1 WASTE ROCK STORAGE FACILITIES

Over the life-of-mine (LOM), a total of 300 Mt of waste rock will be produced. Most waste rock from the Open Pits is planned to be deposited into the engineered WRSFs located in the Halfway Creek valley.

WRSF site was selected to meet geotechnical and mine design criteria and will be engineered to minimize operational and closure costs and reduce long-term environmental effects. The WRSF will provide adequate capacity for waste rock over the planned LOM. The sizing and design of the WRSF has been adjusted to reflect the hydrology of their corresponding drainages and to direct WRSF contact waters to sedimentation ponds. The WRSFs will be constructed with primarily 40 metre (m) high benches or lifts at their natural angle of repose (approximately 1.5H:1V) with a 60 m wide safety berm left on each lift, resulting in final overall slopes angles of 3.0H:1V. Waste rock benches will be designed to slope inwards away from the inter-bench slope. Benches will be crowned along the centerline of the WRSF. Runoff will be and collected in channels along the WRSF perimeter. Interim water management structures will be built, as required.

For the purposes of effective water management, a rock drain will be developed beneath the Alpha WRSF. This drain will convey runoff from the upper portion of the Halfway Creek catchment, meteoric water infiltrating through the WRSF, and groundwater discharge to the Halfway Creek channel covered by the WRSF. Limited amounts of the waste rock will also be backfilled during the Operation Phase into mined out pits at Latte, Supremo and Double Double in order to create causeways and facilitate ore haulage routes to the crusher. Waste rock from the Kona Pit will be stored in a temporary WRSF (Beta WRSF) adjacent to the pit during mining and then backfilled into the mined-out pit at the end of mine life. The location of the WRSFs are shown on **Figure 1-1**. The WRSF development sequence is shown annually in **Appendix I**.

#### 2.1.1 ALPHA WRSF

The Alpha WRSF is located on the southeastern limb of the Halfway Creek drainage basin. It will contain waste from all Open Pits, and will have an estimated minimum capacity of 250 Mt and a total footprint of 210 hectares (ha). Construction of the Alpha WRSF will begin during pre-stripping and will continue until the end of LOM.

The Alpha WRSF will be built in a series of 40 m lifts in a bottom-up approach. An access ramp will be developed along the east side of the WRSF, with the possibility of a second ramp developed from the west to support movement of material from Kona Pit. The toe of each lift is planned to be set back a minimum of 60 m from the crest of the previous bench, resulting in a final overall angle of 3.0 H:1V. The lowest elevation of the dump will be 830 metres above sea level (masl), and the highest point will be 1150 masl for a total maximum vertical stack of waste rock of 320 m.

# 2.1.2 BETA WASTE ROCK STORAGE FACILITY

Although the waste rock from the Kona Pit does not have acid rock drainage (ARD) potential, geochemical characterization indicates that the sulphide ore in the exposed pit walls at the Kona Pit are potentially acid generating (PAG). As such, the Kona waste rock will be stored in a temporary Beta WRSF directly northeast of the pit during mining and then backfilled into the mined out pit. This will ensure that the pit will be backfilled with non-PAG waste rock at closure. The Beta WRSF will have a maximum height of 60 m and have a capacity of approximately 5 Mt, or 1.5% of the total waste rock generated. Construction will occur between the end of Year 1 and early Year 3 of the mining plan.

# 2.1.3 IN-PIT BACKFILL

Approximately 49 Mt, or 16% of the total waste rock will be backfilled into mined out pits at Latte (13 Mt), Supremo (27 Mt) and Double Double (9 Mt) in order to create causeways and facilitate ore haulage routes to the crusher. The location of the pit areas planned to be backfilled are shown on **Figure 1-1**.

The Double Pit will be backfilled completely during portions of Years 10 and 11. In-pit backfilling will occur in the eastern portion of the Latte Pit to construct a causeway during portions of Years 3 and 4. The southern portion of the Supremo Pit will also be backfilled to construct a causeway during Years 6 through 10 of the Project.

# 2.2 ROM STOCKPILE

A ROM stockpile area will allow the storage of ore when the crusher is not running, particularly during the winter months of January through March. The stockpile will be located directly east of the primary crusher as shown on **Figure 1-1**. The stockpile has been designed with a maximum capacity of 1.5 Mt of ROM ore contained within a design footprint of 9.5 ha. To minimize potential effects of ARD associated with the ROM stockpile, the ROM pad will be lined and the drainage will be collected throughout LOM. Collected drainage will be used as process make-up water to minimize contact water that reports to the receiving environment.

The ROM stockpile will be constructed on top of a graded waste rock pad, from an average elevation of 1,125 masl up to 1,150 masl, resulting in an overall height of approximately 25 m for the ROM material. The waste rock and ROM material slopes will be at their natural angle of repose (approximately 1.5H:1V). A 20-m wide safety berm or offset will be left between the crest of the waste rock foundation pad and the toe of the ROM stockpile along the south side where the pad height will reach its maximum of 25 m. This will result in a maximum overall slope angle of approximately 2.0H:1V. The waste rock foundation pad will require approximately 2 Mt of material to construct.

# 2.3 TEMPORARY ORGANICS STOCKPILE

Topsoil will be removed from the Open Pits, heap leach pad and portions of the WRSF footprints and placed in a temporary organics stockpile, located immediately north of the heap leach pad, and topographically above the Alpha WRSF. The in-situ thickness of organic material is estimated to be approximately 0.3 m across the Mine Site.

The temporary organics stockpile has been designed with a footprint of 16.3 ha and a maximum capacity of 2.1 million cubic metres (Mm³). The stockpile has a maximum height of approximately 60 m with side slopes at angle of repose (approximately 1.7H:1V). The current estimated total amount of organics to be stripped from the site is approximately 1.5 Mm³, assuming a 15% bulking factor. This material will be used for progressive mine reclamation purposes. The organic materials are not anticipated to be ice-rich.

Up to approximately 600,000 m<sup>3</sup> of additional, ice-poor frozen soils may also be stored in the temporary organics stockpile also for use for progressive reclamation.

# 2.4 FROZEN SOIL STORAGE AREA

A total of approximately 208,000 m³ (including 15% swell factor) of ice-rich soils are estimated to be hauled and stored within the frozen soil storage area during construction of the mine. Ice-rich soils are considered those with greater than 15% visible ice while ice-poor soils are those containing contain less than 15%. Up to an additional 600,000 m³ of ice-poor frozen soil may also be stored in the frozen soil storage area. Therefore, the total volume of frozen soils anticipated to be stored in the frozen soil storage area is 808,000 m³. The frozen soil storage area will be located immediately adjacent to and/or on top of the Alpha WRSF (**Figure 1-1**). The frozen soils will be segregated by type, defined primarily by ice content, to permit recovery of materials that will be utilized in reclamation. If quantities are in excess of closure requirements, some of the frozen soil may be co-disposed of in the WRSFs in thin horizontal lifts.

Depending on the timing of excavation in comparison with Open Pit development, there may not be a suitable amount of waste rock in the Alpha WRSF to act as an effective filter and containing berm for the earliest frozen soils excavated. If that is the case, a small berm will be constructed on the downslope side of the frozen soil storage area to provide initial containment and filtering. Eventually all soils placed in this storage facility will be contained by the waste rock in the Alpha WRSF.

# 2.5 WATER MANAGEMENT INFRASTRUCTURE

A Water Management Plan (Appendix 31-E) has been developed to proactively manage suspended sediment and contact water throughout the construction and operation phases of the mine, including the development and operation of the WRSF, temporary stockpiles and other storage areas. Key components of the Water Management Plan that will be utilized during the development, operation and closure of WRSF and overburden stockpiles include:

- The Alpha Pond, which will operate as a sedimentation pond collecting runoff and rock drain seepage from the Alpha WRSF;
- The Facility Pond which will operate as a sedimentation pond collecting runoff from the ROM stockpile, camp and process plant areas;
- Best management practices for controlling sediment adjacent to roads
- A series of diversion ditches and berms around the WRSF and overburden stockpile, HLF and mine infrastructure areas.

# 3.0 DESIGN CRITERIA

The following sections outline the design criteria that were used to guide the design for the waste rock and overburden management facilities. The WRSF sites were selected to meet geotechnical and mine design criteria and will be engineered to minimize operational and closure costs and reduce long-term environmental effects.

#### 3.1 MATERIAL QUANTITIES

#### 3.1.1 WASTE ROCK

Over the LOM, a total of 300 Mt of waste rock will be produced. A majority of the waste rock (245.1 Mt) produced from the Open Pits will be deposited in the Alpha WRSF. A portion of the waste rock (48.9 Mt) will also be backfilled into mined out pits at Latte, Supremo and Double Double in order to create causeways and facilitate ore haulage routes to the crusher. Waste rock extracted from the Kona Pit will be stored in the Beta WRSF, adjacent to the pit during mining and then backfilled into the mined out pit. The location of the respective storage facilities is shown on **Figure 1-1**. **Table 3-1** summarizes annual tonnages allocated to the individual WRSFs for each year of the LOM production schedule.

Table 3-1 Annual Waste Allocations by Destination (Mt)

|                 | Year |      |      |      |      |      |      |      |      |      |      |      |       |
|-----------------|------|------|------|------|------|------|------|------|------|------|------|------|-------|
| Destination     | Y- 1 | Y1   | Y2   | Y3   | Y4   | Y5   | Y6   | Y7   | Y8   | Y9   | Y10  | Y11  | Total |
| Alpha<br>WRSF   | 15.7 | 22.1 | 18.9 | 15.5 | 21.8 | 29.5 | 26.4 | 20.5 | 27.4 | 24.8 | 10.4 | 12.1 | 245.1 |
| Beta WRSF       | -    | 0.2  | 3.9  | 1.1  | -    | -    | -    | -    | -    | -    | -    | -    | 5.2   |
| In-pit Backfill | -    | -    | -    | 4.1  | 8.5  | -    | 2.9  | 9.2  | 0.1  | 3.9  | 17.8 | 2.4  | 48.9  |
| TOTAL           | 15.7 | 22.3 | 22.8 | 20.8 | 30.2 | 29.5 | 29.3 | 29.7 | 27.6 | 28.7 | 28.2 | 14.6 | 299.5 |

To calculate tonnages, a waste rock density of 2.0 t/m³ was used in the design which is based on an in-situ density of 2.59 t/m³ and a 30% swell or bulking factor. The average daily deposition rates for the various waste rock and overburden stockpile facilities are estimated as follows:

- 56,000 t/d for the Alpha WRSF
- 6,000 t/day for the Beta WRSF
- 2,500 t/day for the Double Double Pit backfill
- 2,000 t/day for the Latte Pit backfill
- 8,500 t/day for the Supremo Pit backfill.
- Deposition rates for the ROM stockpile will vary with the highest rates occurring in the winter months
  when the HLF is not being loaded and all ore mined is stockpiled. The average deposition rate will
  be 3,500 t/day with a maximum rate of 18,000 t/day; and
- The deposition rate for the organics will also vary as the organics are stripped intermittently during development of the mine; however, a maximum rate of 25,000 t/day has been estimated.

#### 3.1.2 OVERBURDEN

Organics and topsoil will be removed from the Open Pits, heap leach pad and portions of the WRSF footprints and placed in a temporary stockpile located immediately north of the HLF. The thickness of organic material is estimated to be 0.3 m on average based on the geotechnical drilling and test pit data. The organic materials have a very dark color and are easily identifiable compared to the soil and bedrock below. Based on the anticipated average depth of 0.3 m, the estimated total volume of organics to be stripped from the site is approximately 1.5 Mm<sup>3</sup> assuming a 15% bulking factor.

The temporary organics stockpile has been designed with a maximum capacity of 2.1 Mm<sup>3</sup>. The organic materials are not anticipated to be ice-rich. Up to approximately 600,000 m<sup>3</sup> of additional, ice-poor frozen soil may also be stored in the temporary organics stockpile, also for use during progressive reclamation. This material will be used for progressive reclamation purposes during the LOM.

Quantities of frozen materials to be excavated during construction of the Project were estimated based primarily on the **2015 Geotechnical Field Investigation** (**Appendix III**) and the *Permafrost and Related Geohazard Mapping within the Coffee Mine area, Technical memo* (Tetra Tech EBA 2016). To estimate the quantities, materials were separated by grain size and ice content to distinguish between volumes of materials that will require containment when thawed and those that will not require containment. Ice-rich, fine-grained soils will require a containment berm when thawed due to their high moisture contents and tendency to flow. The more granular, unfrozen or ice-poor materials are not expected to require containment and will be separated for use during closure.

A total of approximately 2 Mm³ of frozen soils are estimated to be excavated during construction of the Project. Approximately 1.8 Mm³ of the material is expected to be Type I, low-ice content soil which will be suitable for immediate re-use as construction fill and will not require containment within the frozen soil storage area. A total of approximately 0.2 Mm³ (Types II, III and IV) will likely not be suitable for immediate re-use as fill during construction and will require storage in the frozen soil storage area; however, much of this material is anticipated to be suitable for closure use. Additional details of the four frozen soil types can be found in **Section 3.3 Geotechnical Criteria**.

# 3.1.3 ROM STOCKPILE

A ROM stockpile will allow the storage of ROM ore when the primary crusher is not running, particularly during the winter months of January through March. The ROM stockpile will be located directly east of the primary crusher (**Figure 1-1**) and contain up to approximately 1.5 Mt of ROM ore. The stockpile will be constructed on top of a graded fill pad, comprised of approximately 2 Mt of waste rock.

#### 3.2 MATERIAL PROPERTIES

#### 3.2.1 WASTE ROCK

The Project mineralization is hosted by a package of metamorphosed Paleozoic rocks that was intruded by a large granitic body in the Late Cretaceous time period. The Paleozoic rock package consists of a mafic schistose to gneissic panel with rare lenses of amphibolite. These rocks are in contact to the southwest with the Cretaceous age Coffee Creek granite.

Waste rock generated during mining of the ore will consist primarily of a competent mixture of gneiss, schist and granite with a minor amount of amphibolite. The intact strengths of these rocks have been estimated from laboratory testing of drill core samples, point load testing, and core logging observations. The design uniaxial compressive strength of the gneiss, schist and granite are estimated to be 90 megapascals (MPa), 94 MPa and 130 MPa, respectively. Surficial materials in the waste rock deposits exhibit arsenic concentrations in a similar range to those observed for granitic host rock samples obtained during exploratory drilling (50th percentile arsenic concentration of approximately 120 milligrams per kilogram (mg/kg); 95th percentile concentration of approximately 2,500 mg/kg). Where feasible, waste rock will be managed such that the final 1m of waste rock placed in the WRSF do not exhibit an arsenic concentration that is great than 60 mg/kg, on average. Where this is not practical, Goldcorp will review alternative means of deterring human traffic and prolonged use of facilities in closure (e.g., signage).

Material properties, including densities and material strengths are discussed further in **Section 4.5 Assessment of Physical Stability**. More detailed descriptions of the bedrock geotechnical conditions can be found in **Appendix II Feasibility Pit Slope Stability Evaluation**.

In-situ discontinuity spacings within the rock mass were estimated as part of pit slope geotechnical evaluation (**Appendix II**) and were used to estimate average dimensions of the rock block sizes, prior to blasting. The length of the various discontinuity sets will heavily influence the waste rock block size; however, limited information is available on the discontinuity lengths as the majority of the observations are derived from core, which effectively provides a one-dimensional measurement and can have sampling or orientation bias. Preliminary estimates indicate average in-situ block sizes of about 0.5 m in diameter. Blasting induced fractures during mining operations will also have a substantial effect on waste rock block size. As such, the Kuz-Ram (Cunningham, 2005) blast fragmentation model was used to estimate the average block size after blasting. Using the model, an average particle size of approximately 30 cm derived.

# 3.2.2 FOUNDATION SOILS

Foundation soil conditions have been characterized geotechnically within the rock storage areas using sonic and diamond core drilling, test pit excavation and laboratory testing programs. The results of the characterization program are contained in **Appendix III 2015 Geotechnical Field Investigation Report** 

and **Appendix IV 2016 Geotechnical Site Investigation Report**. Additional information regarding site physiography can be found in AECOM (2014).

The surficial soils at the Project site are dominated by residual soils and colluvium derived from the physical and chemical weathering of bedrock and transported downslope by erosion, creep, or solifluction processes. Soil depths are typically less than 1 m near the ridge tops, with depths increasing up to approximately 2 m on southerly facing slopes and 6 m on north facing slopes. Soil depths of up to 10 m have been measured in drainage bottoms and valley inverts. The composition of the residual soils and colluvial materials is variable and typically contains mixtures of gravels, sands and silts with organic materials in the upper approximately 20 to 30 cm.

Based on natural moisture contents and Tetra Tech EBA (2016) permafrost mapping, the overburden soils on the ridge tops and upper to mid-slopes are typically ice-poor with natural moisture contents typically ranging from 3 to 30%. Ice-rich samples have been encountered typically on north facing slopes and valley bottoms at depths ranging between 0.2 and 1.1 m below ground surface. Ice-rich samples exhibited natural moisture contents between 50 % to over 300%. Most soils exhibited no to low plasticity, with occasional samples indicating high plasticity.

The near surface fine-grained colluvial soils undergo seasonal freezing and thawing and can be saturated during the summer months due to the presence of underlying permafrost that hinders drainage. Coarser grained, silty sand and gravels drain well and are generally ice poor, while more fine-grained silt mixtures can contain excess ice. Fine-grained soils typically drain poorly and are referred to as potentially thaw-unstable materials due to their potential for strength reduction upon thawing if the rate of thawing is higher than the soils ability to expel the pore water.

Additional information regarding foundation soil drainage characteristics, strengths and densities is contained in Section 4.1 Foundation Conditions and Section 4.5 Assessment of Physical Stability. Appendix III 2015 Geotechnical Field Investigation Report and Appendix IV 2016 Geotechnical Site Investigation Report should be referenced for more detailed information.

# 3.2.3 BEDROCK

The Project area is underlain by a package of metamorphosed Paleozoic rocks that was intruded by a large granitic body in the Late Cretaceous time period. The Paleozoic rock package consists of a mafic schistose to gneissic panel with rare lenses of amphibolite. These rocks are in contact to the southwest with the Cretaceous age Coffee Creek granite. Both the Paleozoic metamorphic rocks and Cretaceous granite are cut by intermediate to felsic dykes of andesitic to dacitic composition, although both these lithologies are volumetrically insignificant (JDS 2016).

Bedrock geotechnical characteristics have been evaluated using diamond drill core primarily near the mineralized zones and Open Pit areas. Subsequent to the core drilling and logging programs, laboratory strength testing was conducted on select samples of core. With the exception of the oxide materials associated with the gold mineralized structures which are mined out, the bedrock is generally of good geotechnical quality. **Table 3-2** contains a summary of bedrock geotechnical data derived from the 2015 geotechnical drilling program for each of the three primary lithology types.

Table 3-2 Summary of Bedrock Geotechnical Data

| Lithology | Pit Area                     | Pit Area Average Lab UCS (MPa) <sup>1</sup> Average RMR <sup>2</sup> Rock Mass Quality Class (RMR <sup>2</sup> ) |    | Average<br>RQD (%) <sup>3</sup> | Total Core<br>Length (m) |     |
|-----------|------------------------------|------------------------------------------------------------------------------------------------------------------|----|---------------------------------|--------------------------|-----|
| Gneiss    | Supremo and<br>Double Double | 90                                                                                                               | 64 | Good                            | 81                       | 515 |
| Schist    | Latte                        | 94                                                                                                               | 64 | Good                            | 87                       | 227 |
| Granite   | Kona                         | 130                                                                                                              | 76 | Good                            | 95                       | 96  |

<sup>&</sup>lt;sup>1</sup> UCS - Uniaxial Compressive Strength testing, conducted according to ASTM Method D7012.

The gneiss and schist bedrock have a shallowly-to-moderately southwest dipping pervasive foliation that becomes steeper-dipping to the south. The planar gold mineralized structures exhibit a number of strike orientations, dominated by east-west, north-south, and east-northeast-west-southwest strike directions. Structures are commonly sub-vertical in orientation, with the exception of western Latte which dips steeply at 60° to 70° south. The most dominant rock mass jointing trends typically parallel the primary mineralized structure orientations. Additional information regarding bedrock geotechnical conditions can be found in Appendix III 2015 Geotechnical Field Investigation Report and Appendix IV 2016 Geotechnical Site Investigation Report.

# 3.3 GEOTECHNICAL CRITERIA

#### 3.3.1 WASTE ROCK STORAGE FACILITIES

The Alpha WRSF is planned to be constructed with 40 m high lifts with at least 60 m wide safety berms on each lift, resulting in an average overall slope angle of 3.0H:1V. The smaller, temporary Beta WRSF will be constructed with 15 m high lifts and 17.5 m minimum width safety berms resulting in an average overall slope angle of 2.5H:1V. The face of each lift will be at its natural angle of repose (approximately 1.5H:1V) for both WRSFs. Geotechnical design criteria for the WRSFs are shown in **Table 3-3.** The criteria were selected based on guidelines from the British Columbia Mine Waste Rock Pile Research Committee (1991) and experience of the technical experts responsible for the design.

PAGE | 3.5

<sup>&</sup>lt;sup>2</sup> Rock Mass Rating, according to the Bieniawski 1989 system.

<sup>&</sup>lt;sup>3</sup> RQD - Rock Quality Designation, according to Deere (1963).

Table 3-3 Geotechnical Design Criteria

| Design Criteria                                        | Description         |  |  |
|--------------------------------------------------------|---------------------|--|--|
| Static Factor of Safety – short term (mine operations) | 1.3                 |  |  |
| Static Factor of Safety – long term (post-closure)     | 1.5                 |  |  |
| Pseudostatic Factor of Safety – short and long term    | 1.1                 |  |  |
| Design Earthquake Return Period                        | 1-in-475-year event |  |  |
| Maximum Overall Slope Angle                            | 2.5H:1V             |  |  |

Additional information regarding waste rock drainage characteristics, strengths and densities is contained in **Section 4.5 Assessment of Physical Stability**.

#### 3.3.2 ROM STOCKPILE

At its maximum extent, the ROM stockpile will have an average vertical thickness of approximately 25 m of ROM ore. The slopes of the ROM material and the waste rock foundation pad will be at their natural angle of repose (approximately 1.5H:1V). A 20-m-wide safety berm or offset will exist between the crest of the waste rock foundation pad and the toe of the ROM stockpile on the south side, where the height will be at its maximum, resulting in a maximum overall slope height of approximately 60 m and angle of approximately 1.7H:1V.

# 3.3.3 TEMPORARY ORGANICS STOCKPILE

The temporary organics stockpile will be comprised of mostly topsoil that will be removed from the Open Pits, heap leach pad and portions of the WRSF footprints. The thickness of the organics layer is estimated to be approximately 0.3 m on average across the Mine Site. The stockpile will have a maximum height of approximately 60 m and side slopes at angle of repose (approximately 1.7H:1V).

# 3.3.4 FROZEN SOILS STORAGE AREA

Frozen soils have been separated into four separate types based on grain size and ice content in order to more efficiently distinguish between materials that will require containment when thawed and those that will not require containment. Ice-rich, fine-grained soils will require a containment berm when thawed due to their high moisture contents and tendency to flow. The more granular, unfrozen or ice-poor materials are not expected to require containment and will be separated for use during closure.

The four different types of frozen soils are described in **Table 3-4.** These material classifications will be utilized to determine the potential use and material handling requirements of each of the frozen soils types.

Table 3-4 Field Identification and Classification of Frozen Soils

| Material<br>Classification<br>Type | Soil Type                                                                     | USCS Soil Types                                      | % Visible Ice                                                                     |
|------------------------------------|-------------------------------------------------------------------------------|------------------------------------------------------|-----------------------------------------------------------------------------------|
| I                                  | Fine and/or coarse-grained colluvial soils, or weathered bedrock              | GW, GP, GM, GC, SW, SP,<br>SM, SC, ML, CL, MH and CH | No visible to <5% visible ice content (Fn)                                        |
| II                                 | Coarse-grained sands and gravels (> 50% retained on No. 200 (0.075 mm) sieve) | GW, GP, GM, GC, SW, SP,<br>SM and SC                 | Ice content of 5 to15%,<br>moderate visible ice content<br>(lower ice content Fv) |
| III                                | Fine-grained soils(> 50% silts and clays)                                     | ML, CL, MH and CH                                    | Ice content of 5 to15%,<br>moderate visible ice content<br>(lower ice content Fv) |
| IV (Ice-Rich)                      | Fine or coarse grained soils                                                  | GW, GP, GM, GC, SW, SP,<br>SM, SC, ML, CL, MH and CH | Ice content >15% excess ice (higher ice content Fv & Fi)                          |

Note: organic soils (OH, OL & Pt with or without ice) will be excavated and stockpiled for reclamation purposes.

# 3.4 HYDROLOGIC CRITERIA

The hydrological design criteria for the Project are based on Best Management Practices (BMPs) and engineering and operational judgement. Hydrologic design criteria are presented in **Table 3-5**. These criteria were used to design conveyances and sedimentation ponds.

Table 3-5 Hydrologic Design Criteria for Formulating Peak Flows

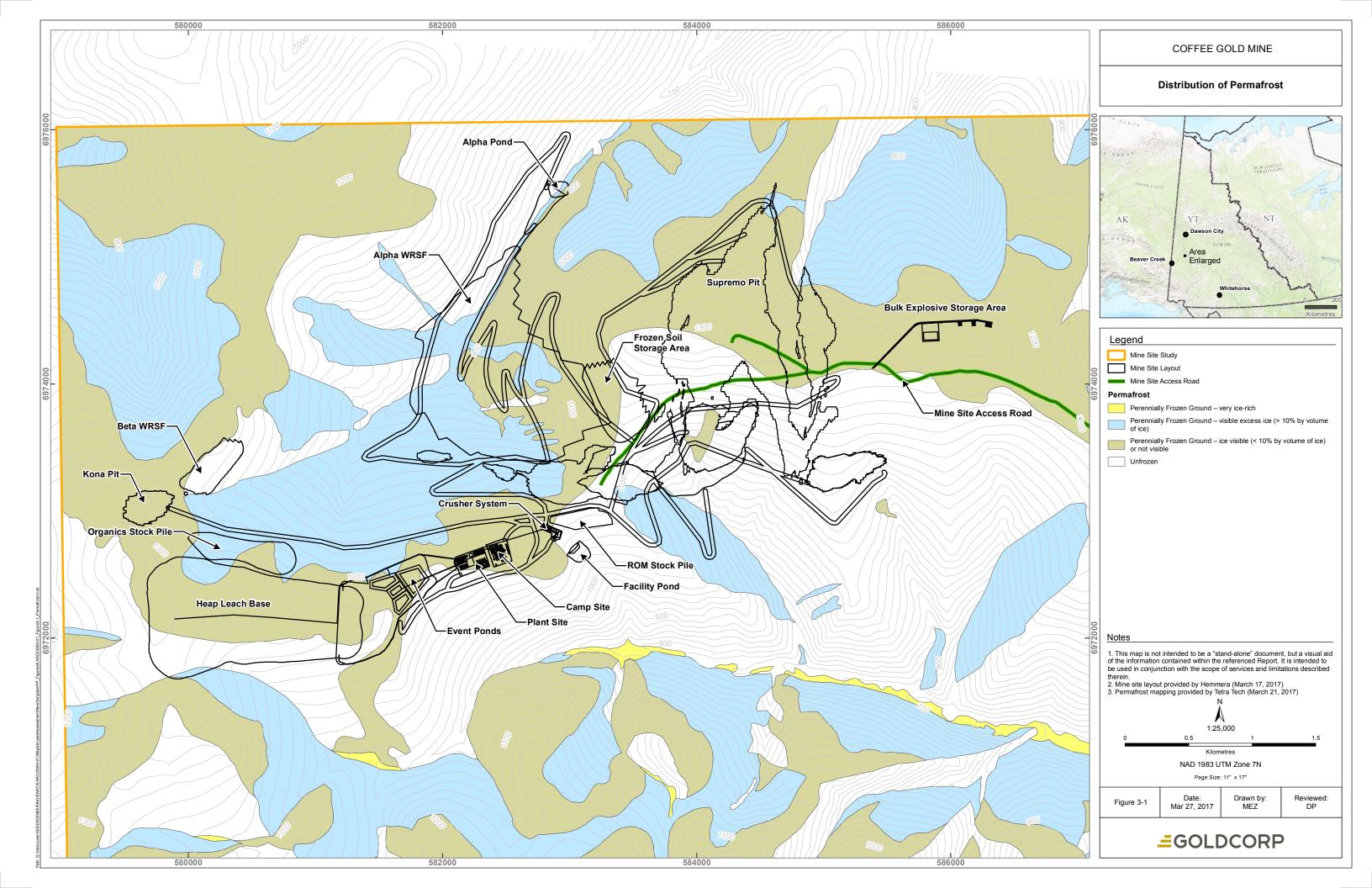
| Item                                | Value      | Unit    | Source                                 |
|-------------------------------------|------------|---------|----------------------------------------|
| Average Maximum Daily Snowmelt Rate | 26         | mm/day  | Water Management Plan (Appendix 31-E)  |
| Rainfall Distribution               | SCS Type I | -       | Natural Resources Conservation Service |
| Minimum Time of Concentration       | 10         | minutes | Engineering Judgement                  |
| Rainfall Depths                     |            |         |                                        |
| 1: 10 Year Return Period            | 55         | mm      | Lorax (2016)                           |
| 1: 100 Year Return Period           | 79         | mm      | Lorax (2016)                           |
| 1: 200 Year Return Period           | 90         | mm      | Lorax (2016)                           |

The design of conveyances and sedimentation ponds is described in the **Water Management Plan** (**Appendix 31-E**) and should be reference for additional details on the design of water management infrastructure.

#### 3.5 MATERIAL STORAGE CONDITIONS

#### 3.5.1 WRSF ROCK DRAINS AND SEEPAGE

A rock drain will be constructed to convey surface water and potential seepage beneath the Alpha WRSF to the downstream Alpha Pond. Where necessary, rock drains will also promote drainage in in-pit backfill.


The Alpha WRSF rock drain will be constructed in areas where permafrost may be present; however, the majority of the area has been mapped as unfrozen based on the Tetra Tech EBA (2016) permafrost mapping. Perennial freezing within the drain is not expected. Localized areas of the drain may freeze during the winter as groundwater seeps into the channel, but this ice will melt during freshet flows. The drains are designed to accommodate up to 2 times the 100-year, 24-hour flow and also, due to the perviousness of the waste rock dump, it is unlikely that ice could form and block flow entirely.

Based on industry standards, the material used to construct the rock drain will have a  $D_{50}$  of 0.3 m. The rock will either be selected and segregated by screening or end-dumping of the waste rock. It has also been assumed that the rock drain will have a porosity of 30%. Based on these assumptions, and applying a factor of safety (FOS) of 2, the cross-sectional area of the Alpha WRSF rock drain will be 615 m<sup>2</sup>. The FOS of 2 is conservative and has been applied to the cross-sectional areas of the rock drain to account for:

- potential migration of fine grained materials into the voids in the drain
- potential freezing of the drain
- decrease in void ratio over time due to compression
- potential degradation of the rock drain material over time.

The FOS and these assumptions will be re-evaluated once the drain rock material has been selected during detailed design and once the site-specific conditions of the rock drains are further evaluated.

Additional details regarding surface water management and the design of the rock drains can be found in the **Water Management Plan (Appendix 31-E**).



#### 3.5.2 POTENTIALLY THAW-UNSTABLE MATERIALS

Frozen ground is discontinuous across the site, with ice-rich materials located primarily on lower elevations of north-facing slopes. This includes portions of the proposed Alpha WRSF footprint and to a lesser extent, portions of the temporary organics stockpile. The estimated distribution of permafrost across the site based is shown on **Figure 3-1**.

The near surface fine-grained colluvial soils undergo seasonal freezing and thawing and can be saturated during the summer months due to the presence of underlying permafrost that hinders drainage. The coarser grained silty sand and gravels are generally ice poor, while the more fine-grained silt mixtures can contain excess ice. The fine-grained soils typically drain poorly and are referred to as potentially thaw-unstable materials due to their potential for strength reduction upon thawing if the rate of thawing is higher than the soils ability to expel the pore water. Ice-rich samples were encountered during the 2016 field investigation (Appendix IV 2016 Geotechnical Site Investigation Report) and permafrost mapping, primarily on north facing slopes and valley bottoms at depths ranging between 0.2 and 1.1 m below ground surface.

Specific information regarding foundation soils at each of the WRSFs is presented in **Section 4.1 Foundation Conditions**. Additional information regarding material drainage characteristics, strengths and densities is contained in **Section 4.5 Assessment of Physical Stability**.

# 3.6 WATER QUALITY CRITERIA

Geochemical testing and characterization of waste rock for the Project has been performed with the ultimate objective of generating predictions of waste rock seepage chemistry throughout the LOM and into the Reclamation and Closure Phase. Waste rock will be permanently stored in the Alpha WRSF. Waste rock will also be stored as backfill in the Kona Pit and Double Double Pit and will also be backfilled in Latte Pit and Supremo Pit to provide an access corridor for ore transport.

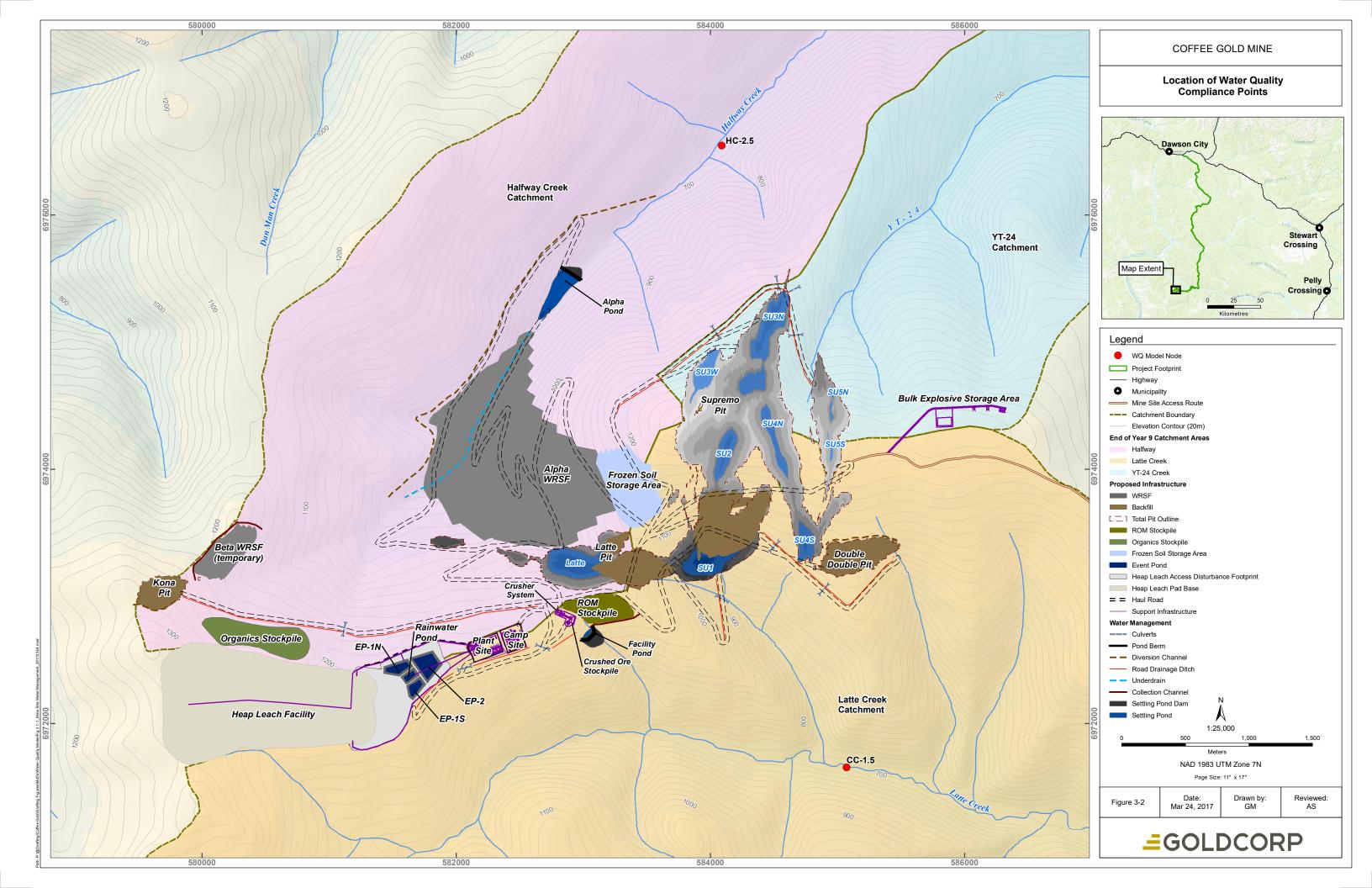
Geochemical source terms have been developed for each of these facilities (**Appendix 12-D Geochemical Characterization Report** of the Project Proposal) as input to a site-wide water balance and water quality model that predicts water quality in water management sedimentation ponds and the receiving environment (see **Appendix 12-C – Water Balance and Water Quality Model Report** of the Project Proposal). Output from this model is then used to determine if treatment is required for discharges or seepages from the mine in order to meet receiving water quality objectives.

**Table 3-6** provides a summary of the predicted geochemical source terms for each of the facilities and compares these concentrations to Metal Mining Effluent Regulations (MMER) concentrations and Project proposed water quality objectives within the receiving environment (**Appendix 12-C Water Balance-Water Quality Model Report**). Based on the comparison, the following parameters are considered parameters of concern: sulphate, arsenic (As), antimony (Sb), uranium (U) and zinc (Zn).

Water balance and water quality modeling (Appendix 12-C Water Balance-Water Quality Model Report of the Project Proposal) of the LOM operations and the Reclamation and Closure Phase has been conducted and incorporates the waste rock source terms as described in Table 3-6 as well as all other sources of mine contact water including the HLF, overburden stockpiles, pit wall runoff and pit lake chemistry. Water quality modeling of waste rock discharges indicates that predicted water quality in the receiving environment meets the proposed water quality objectives, as outlined in Table 3-6, under all flow conditions throughout the LOM. As such, no water treatment of waste rock contact water is proposed other than the management of total suspended solids in the sedimentation ponds. The locations of the water quality compliance points are shown on Figure 3-2.

Table 3-6 Summary of Waste Rock Seepage Quality Predictions as Compared to MMER Limits and Receiving Water Quality Objectives

| Parameters      | Alpha <sup>1</sup> | WRSF <sup>1</sup> | In Pit L  | atte WR  | In Pit Sup | oremo WR | Backfill  | – Kona   | Backfill – Do | ouble Double | MMER<br>Limits <sup>2</sup> | Water Quality<br>Benchmarks – Halfway<br>Creek | Water Quality<br>Benchmarks – Latte<br>Creek |
|-----------------|--------------------|-------------------|-----------|----------|------------|----------|-----------|----------|---------------|--------------|-----------------------------|------------------------------------------------|----------------------------------------------|
|                 | Min                | Max               | Min       | Max      | Min        | Max      | Min       | Max      | Min           | Max          |                             |                                                |                                              |
| TSS             | 1                  | 5                 | 1         | 5        | 1          | 5        | 1         | 5        | 1             | 5            | 15                          | 15                                             | 15                                           |
| SO <sub>4</sub> | 84                 | 461               | 755       | 1100     | 829        | 1210     | 274       | 401      | 793           | 1080         |                             | 218                                            | 309                                          |
| As              | 0.0004             | 0.009             | 0.0072    | 0.031    | 0.007      | 0.031    | 0.011     | 0.595    | 0.007         | 0.031        | 0.5                         | 0.005                                          | 0.005                                        |
| Cd              | 0.000001           | 0.000033          | 0.000012  | 0.000018 | 0.000014   | 0.00002  | 0.000072  | 0.0001   | 0.00001       | 0.000018     |                             | 0.00011                                        | 0.00013                                      |
| Cu              | 0.0005             | 0.0033            | 0.0021    | 0.003    | 0.0023     | 0.0033   | 0.0006    | 0.0008   | 0.002         | 0.003        | 0.3                         | 0.003                                          | 0.003                                        |
| Fe              | 0.19               | 0.72              | 0.02      | 0.032    | 0.02       | 0.03     | 0.013     | 0.02     | 0.02          | 0.03         |                             | 1                                              | 1                                            |
| Hg              | 0.0000079          | 0.000026          | 0.0000062 | 0.000012 | 0.0000062  | 0.000013 | 0.0000029 | 0.000004 | 0.0000062     | 0.000012     |                             | 0.000026                                       | 0.000026                                     |
| Мо              | 0.0025             | 0.055             | 0.079     | 0.115    | 0.086      | 0.127    | 0.0047    | 0.006    | 0.077         | 0.113        |                             | 0.073                                          | 0.073                                        |
| Ni              | 0.0005             | 0.003             | 0.0023    | 0.0034   | 0.0025     | 0.004    | 0.005     | 0.007    | 0.0023        | 0.003        |                             | 0.069                                          | 0.082                                        |
| Pb              | 0.00015            | 0.00043           | 0.00037   | 0.00054  | 0.00041    | 0.0006   | 0.0002    | 0.0003   | 0.0003        | 0.0005       | 0.2                         | 0.0018                                         | 0.0025                                       |
| Sb              | 0.001              | 0.010             | 0.011     | 0.016    | 0.0125     | 0.018    | 0.004     | 0.006    | 0.011         | 0.016        |                             | 0.009                                          | 0.009                                        |
| Se              | 0.0016             | 0.0025            | 0.0009    | 0.0013   | 0.001      | 0.0015   | 0.0001    | 0.0002   | 0.0009        | 0.0013       |                             | 0.002                                          | 0.002                                        |
| U               | 0.022              | 0.125             | 0.376     | 0.86     | 0.376      | 0.86     | 0.132     | 0.254    | 0.376         | 0.86         |                             | 0.086                                          | 0.031                                        |
| Zn              | 0.001              | 0.03              | 0.042     | 0.061    | 0.045      | 0.067    | 0.063     | 0.092    | 0.041         | 0.059        | 0.5                         | 0.013                                          | 0.015                                        |
| Ra-226          | 0.035              | 0.06              | 0.0174    | 0.029    | 0.0167     | 0.028    | 0.063     | 0.092    | 0.017         | 0.03         | 0.37 Bq/L                   |                                                |                                              |


MARCH 2017

All units as mg/L

shaded parameters indicate predicted concentrations exceed 1.5x receiving water objectives

<sup>1:</sup> includes both the Alpha WRSF seepage and rock drain loadings prior to entering Alpha Pond

<sup>2:</sup> maximum authorized monthly mean



# 4.0 STORAGE FACILITY DESIGN

The following sections provide the specific design for each storage facility that will be operated at the Mine Site.

# 4.1 FOUNDATION CONDITIONS

#### 4.1.1 WASTE ROCK STORAGE FACILITIES

Foundation conditions have been characterized within the WRSFs based on the recent geotechnical site investigations using sonic and diamond core drilling, test pit excavation and geotechnical laboratory testing programs in (Appendix III 2015 Geotechnical Field Investigation Report and Appendix IV 2016 Geotechnical Site Investigation Report). Within the proposed WRSF footprint, foundation conditions generally consist of residual soil or colluvium ranging in thickness from less than 1 m within steep slope sections to in excess of 10 m in lower slopes in colluvial/loess/organic aprons underlain by weathered bedrock. A summary of the foundation conditions anticipated at each of the WRSFs follows.

#### 4.1.1.1 Alpha WRSF

The Alpha WRSF footprint is located within the Halfway Creek valley and its tributaries – on the valley slopes of primarily northerly, westerly and easterly aspects with natural slope angles of approximately 3° to 32°. Boreholes have not been drilled and fieldwork has not been completed on the valley slopes with easterly aspect in the Alpha WRSF footprint. Based on Tetra Tech EBA (2016) permafrost mapping and the Fall 2016 Geotechnical Site Investigation Data Report (**Appendix IV**) the north-facing slopes contain perennially frozen ground with visible excess ice. Vegetation consist of low shrubs and sparse stunted black spruce. Northern portions of the Alpha WRSF footprint are on west-facing slopes that contain perennially frozen ground, which is predominantly ice-poor, i.e. with no visible ground ice and on permafrost-free southeast-facing slopes. Western portions of the Alpha WRSF footprint are on east-facing slopes. Here, the vegetation consists of deciduous trees and low shrubs. These east-facing slopes are interpreted to be permafrost-free terrain with the exception of a tributary valley with northeast-facing slopes which were interpreted to be underlain by moderately to ice-rich permafrost with visible excess ice.

Drilling was performed at the headwaters of Halfway Creek on north-facing slopes (previously proposed sedimentation pond site), it may contain similar permafrost features that occur on the north-facing slopes throughout the Alpha WRSF footprint. Thin surficial organic veneer was found at the surface, underlain by 1 m to 10 m thick coarse colluvium. The colluvial deposits consist of mixes of massive sand, gravel, and silt that are dark grey to brown, subangular, and well graded. Trace clay, boulders, and cobbles are also present. Permafrost conditions with excess ice (Vc, Vr, Vs, and Vx) were encountered in all five boreholes drilled at this site. Excess ice content was measured in silty frozen peat and was determined to be as high as 39% at a depth of 2.4 m. The excess ground ice occurs in the frozen overburden in various forms (e.g., ice lenses (Vs, Vr)) ranging in thickness from less than 1 mm to approximately 3 mm, ice inclusions (Vx)

up to 10 mm in diameter or ice coatings (Vc) up to 5 mm thick on gravel and cobbles. Frost-shattered bedrock was present at the basal contact of this unit with bedrock.

Drilling was also performed at the southern upstream portion of the Alpha WRSF footprint on the north-facing slopes of a tributary to Halfway Creek (a previously proposed sedimentation pond site). The slope is vegetated with low shrubs and very sparse black spruce. Wet organic-rich material, locally called black muck (i.e., wind-blown silt intermixed with organic material), forms a veneer underlain by colluvial sand and gravel up to 7.7 m thick. Colluvial deposits at this site are made up of brown, grey, or black sand and subangular gravel, with lesser amounts of silt. Clay, gravel, cobbles, and organics are present locally, but are rare. The colluvium is massive and well graded. The moisture content of the overburden is as low as 7% in sand and gravel at 4.8 m depth, but is as high as 387% in the same material at 2.2 m due to the presence of ice. Permafrost conditions with excess ice (Vc, Vr, Vs, and Vx) were encountered in all boreholes at this site. Excess ice content measured in the ICE and SAND unit was found to be as high as 52% at a depth of 2.2 m. The excess ground ice typically forms ice lenses (Vs, Vr) ranging in thickness from less than 1 mm to approximately 25 mm, ice inclusions (Vx) up to 40 mm in diameter or ice coatings (Vc) up to 6 mm thick on gravel and cobbles.

The extrapolated overburden thickness within the Alpha WRSF footprint ranges from approximately 2.5 m to 3.0 m in the upper slope to approximately 2.0 m in the mid-slope and to approximately 4.0 m to 5.0 m at the toe of the west-facing slope (and at the bottom of the creek valley). It is less than 1 m within the steep lower slope (GT-59). On the north-facing slope, the overburden thickness ranges from <10 m in the mid slope (SRK-15D-10T) to 10 m - 13 m in the lower slope (colluvial/loess/organic apron).

#### 4.1.1.2 Beta Waste Rock Storage Facility

Based on the location near the top of the ridge and existing geotechnical information from the neighboring HLF and infrastructure areas, foundation soils within the footprint of the Beta WRSF are anticipated to consist of a thin veneer of residual soil and colluvium over competent bedrock. These assumptions will be confirmed during the detailed design phase of the Project. Based on the Tetra Tech EBA (2016) permafrost mapping, the Beta WRSF footprint is expected to consist of mostly ice-poor (excess ice not visible) materials with a minor portion being unfrozen.

Based on the site assessment and three boreholes drilled for the **Fall 2016 Geotechnical Site Investigation Data Report** (**Appendix IV**) much of the Beta WRSF footprint is interpreted to be permafrost-free terrain. This area slopes to the southeast and south-southeast, with gentle to moderate slopes of 3° to 20° where overburden is thick, and moderately steep slopes of 25° to 35° in the northeast, where bedrock is close to surface. Vegetation includes sparse but tall white spruce and low shrubs.

Coarse colluvial deposits up to 2 m thick cover the bedrock at the north end of the Beta WRSF footprint. Surficial deposits encountered in the boreholes consisted mainly of layers of sand and gravel, with some cobbles and boulders. Silt containing small amounts of sand, gravel, and organics is found in the uppermost 2 m of all the boreholes. Overburden thickness in the third borehole at the southern edge of the Beta WRSF footprint was 15 m where the overburden material may be partially frozen. A very thin layer of wet, fibrous, woody moss with trace silt was noted at the top of one of the boreholes.

Encountered bedrock was slightly to moderately weathered and very weak to very strong.

#### 4.1.2 ROM STOCKPILE

Bedrock is very shallow beneath the proposed ROM stockpile. The area typically has a thin veneer of organics over approximately 0.5 m of gravelly colluvium. Bedrock is heavily weathered down to approximately 1.2 m. Based on the Tetra Tech EBA (2016) permafrost mapping, the ROM stockpile footprint is in an unfrozen area. No visible ice was observed in the test pit or borehole samples from the immediate area.

#### 4.1.3 TEMPORARY ORGANICS STOCKPILE

Based on the location near the upper slope and existing geotechnical information from the neighboring HLF and infrastructure areas, foundation soils within the footprint of the temporary organics stockpile are anticipated to consist of relatively shallow residual soil and colluvium over competent bedrock. These assumptions will be confirmed during the detailed design phase of the Project. Based on the Tetra Tech EBA (2016) permafrost mapping, the Beta WRSF footprint is expected to consist of a mix of ice-poor (excess ice not visible) and possibly ice-rich (excess ice visible) materials.

#### 4.1.4 FROZEN SOIL STORAGE AREA

Frozen overburden soils will be placed in the frozen soil storage area, which will be founded partially on top of or directly adjacent and uphill of the first lift of the Alpha WRSF. As such, foundation soils will consist of either waste rock from the Alpha WRSF or thin colluvium soils, as discussed in **Section 3.1.2**.

#### 4.2 DESIGN DETAILS

# 4.2.1 WASTE ROCK STORAGE FACILITIES

The sizing and design of WRSFs reflects the hydrology of their corresponding drainages and directs WRSF contact waters to sedimentation ponds. Waste rock benches will be designed to slope inwards from the WRSF crest and runoff will be collected in a ditch and conveyed to ditches along the perimeter of the WRSF. These measures will be conducted over the course of the Construction, Operation, and Reclamation and Closure phases.

In general, the Alpha WRSF is designed in a series of 40 m high wrap-around benches with the toe of each bench designed at a minimum 60 m set back from the crest of the previous bench, resulting in an average overall angle of 3.0H:1V. Where necessary due to existing permafrost conditions, the first 3 to 5 m of waste rock will be placed during the winter months to preserve the foundation permafrost conditions. Foundation soils greater than a distance of approximately 15 m from the toe are anticipated to remain frozen where protected by deep waste rock materials. Any potentially thaw-unstable materials will be removed and replaced with waste rock within 15 m of the toe where seasonal thawing may occur. The removal of icerich materials and replacement with waste rock will also occur during winter months to limit potential thawing of the surrounding frozen soils. The location of potentially thaw-unstable materials will be refined with additional drilling and test pit excavations during the detailed design phase of the Project.

The organics will be left in-place within the WRSF footprints to preserve the permafrost conditions, except where foundation soils will require removal to bedrock, near the toe. The slopes of the WRSF are not planned to be re-shaped at the end of mine life. Additional details regarding each of the WRSFs follows.

# 4.2.1.1 Alpha Waste Rock Storage Facility

The Alpha WRSF is designed with a footprint of approximately 210 ha and an ultimate capacity of approximately 250 Mt. It is anticipated that the Alpha WRSF will be constructed in a bottom-up sequence with a series of 40 m high lifts. An access ramp will be incorporated into the design along the eastern limb of the valley as the WRSF is developed. The slopes are not planned to be re-shaped at the end of mine life.

Construction of the Alpha WRSF will begin during pre-stripping (Year -1) and will be completed at the end of mine life. The lowest topographic point of the dump will be 830 masl, and the highest point will be an elevation of approximately 1,150 masl, although the final configuration will be subject to minor revisions during detailed design. The maximum height of waste will be 320 m. The construction sequence and ultimate configuration of the Alpha WRSF are provided in plan-view in **Appendix I**.

The Alpha WRSF will be located in a primarily north-facing valley with natural slope angles of approximately 12 to 20° on the valley walls.

Due to its coarse particle size, the waste rock material is anticipated to be free draining and will allow water to pass through the waste rock along the native valley invert without buildup of significant pore water pressures. A rock drain has also been designed as added insurance that water will efficiently pass through the base of the WRSF. Additional details regarding the Alpha WRSF rock drain as well as surface water diversion channels can be found in the **Water Management Plan (Appendix 31-E)**.

# 4.2.1.2 Temporary Beta Waste Rock Storage Facility

Although the waste rock from the Kona Pit does not have ARD potential, geochemical characterization indicates that the sulphide ore in the exposed pit walls at the Kona Pit are PAG. As such, the Kona waste rock will be stored in a temporary waste rock facility directly northeast of the pit during mining and then backfilled into the mined out pit. This will ensure that the pit will be backfilled with non-PAG waste rock at closure. The temporary Kona WRSF will have a maximum height of 60 m and have a capacity of approximately 5 Mt or 1.5% of the total waste rock generated. Construction will occur between the end of Year 1 and early Year 3 of the mining plan.

# 4.2.2 ROM STOCKPILE

At its maximum extent, the ROM stockpile will have an average vertical thickness of approximately 25 m of ROM ore up to an approximate elevation of 1,150 masl. The slopes of the ROM material and waste rock foundation pad will be at their natural angle of repose (approximately 1.5H:1V). A 20-m-wide safety berm or offset will exist between the crest of the waste rock foundation pad and toe of the ROM stockpile on its south side, where the pad height will be at its maximum of 40 m. This will result in a maximum overall slope height of approximately 65 m and angle of approximately 1.7H:1V. The ore will be processed during LOM and therefore will not remain at closure.

Runoff collection ditches and sediment basins will be constructed along the down-gradient boundary of the ROM stockpile footprint prior to clearing and grubbing activities. The ROM stockpile will be constructed in an area that is expected to be mostly permafrost free. Clearing and stripping of organics will be undertaken in as short of a time period as practicable in advance of the initial waste rock foundation pad, to limit potential erosion. The ROM stockpile will have a diversion channel downhill to convey water to the Facility Pond. Additional details on sediment and erosion control measures during the Construction Phase are described in **Section 4.7 Surface Water Management** and in the **Water Management Plan (Appendix 31-E)**.

#### 4.2.3 TEMPORARY ORGANICS STOCKPILE

The temporary organics stockpile has been designed with a footprint of 16.3 ha and a maximum capacity of 2.1 Mm³. A total of approximately 1.5 Mm³ of organic materials are anticipated to be stripped during construction and operation. The stockpile has a maximum height of approximately 60 m with side slopes at angle of repose (approximately 1.7H:1V). This material will be used for mine reclamation purposes. The temporary organics stockpile will be located on a mostly north facing slope with natural slope angles of approximately 10° to 12°.

Organic materials will be placed in the stockpile as areas are stripped during the construction and operation of the Project. Similarly, material will be progressively removed from the stockpile for reclamation purposes as certain areas of the Project are ready to be closed. An additional up to 600,000 m<sup>3</sup> of non-frozen inorganic overburden soils may also be stored in the stockpile. The materials placed in the temporary

organics stockpile are not anticipated to be ice-rich. This material will be used for mine reclamation purposes and therefore will be removed during Reclamation and Closure.

Details on sediment and erosion control measures during the Construction and Operation phases are described in the Water Management Plan (Appendix 31-E).

# 4.2.4 FROZEN SOIL STORAGE AREA

A total of approximately 2 Mm³ (including 15% bulking factor) of frozen soils are estimated to be excavated during construction of the Project. Approximately 1.8 Mm³ of the material is expected to be Type I, low-ice content, soil which will be suitable for immediate re-use as construction fill and will not require containment within the frozen soil storage area. A total of approximately 0.2 Mm³ (Types II, III and IV) will likely not be suitable for immediate re-use as fill during construction and will require storage in the frozen soil storage area. The frozen soils will be segregated by type, defined primarily by ice content and grain size, in the frozen soil storage area to permit recovery of materials that can be utilized in reclamation. If excess to closure requirements, some of the frozen soil may be co-disposed of in thin horizontal lifts within the WRSFs, as discussed in **Section 4.3.1**.

For the earliest excavated frozen soils, there may not be a suitable amount of waste rock in the Alpha WRSF to act as an effective filter and containing berm, depending on the timing of excavation in comparison with open pit or waste rock development. If that is the case, a small waste rock berm will be constructed on the downslope side of the frozen soil storage area to provide initial containment and filtering. Eventually all soils placed in this storage facility will be contained by the waste rock in the Alpha WRSF.

The storage area berms are designed to be flow-through structures that will allow for excess pore water resulting from the thaw of ice-rich materials to drain while containing the fine-grained materials that may otherwise be thaw-unstable. Coarse waste rock material will be used to construct the berms. Water released from thawing of the frozen soils in the frozen soil storage area will be filtered through the waste rock and flow down to the sedimentation dam beneath the Alpha WRSF, where further sedimentation will occur before being released to the receiving environment. Additional details regarding the management of surface water and sedimentation can be found in the **Water Management Plan (Appendix 31-E)**.

# 4.3 CLEARING, STRIPPING AND GRUBBING

#### 4.3.1 WASTE ROCK STORAGE FACILITIES

The WRSFs will be constructed in areas of discontinuous permafrost which may contain excess ice in some areas. Foundation soils with excess ice will be excavated and removed down to bedrock within 15 m of interim and final WRSF design toes to increase stability. Prior to construction, additional investigations will be undertaken to further delineate and characterize areas of excess ice. With the exception of potentially ice-rich material within 15 m of the WRSF design toes, the foundation soils and organic veneer will generally

be left in place to preserve the frozen material below. Additional details are in **Section 4.5 Assessment of Physical Stability**.

Non-organic soils excavated from the WRSF foundations will be either stored in the frozen soil storage area or spread in thin lifts in the Alpha WRSF. All organics will be stored in the temporary organics stockpile for use in reclamation.

The clearing and stripping will be undertaken in as short of a time period as practicable in advance of waste rock placement to minimize the exposure period of the de-vegetated ground thus limiting the potential thawing and erosion of the areas. Water management practices including sediment and erosion control measures during the construction of the WRSFs are described in the **Water Management Plan** (**Appendix 31-E**).

Organic soils will be left in place within the footprint of the rock drains to reduce thermal disturbance. Suitable rock will be placed to a minimum height of approximately 3 m, depending on the final design details of the WRSF and rock drain.

#### 4.3.2 ROM STOCKPILE

Runoff collection trenches and sediment ponds will be constructed along the down-gradient boundary of the ROM stockpile footprint prior to clearing and grubbing activities. The ROM stockpile will be constructed in an area that is expected to be mostly permafrost-free. Clearing and stripping of organics will be undertaken in as short of a time period as practicable in advance of the initial waste rock foundation pad to limit potential erosion of exposed areas. Water management practices, including sediment and erosion control measures during the construction of the ROM stockpile, are described in the **Water Management Plan (Appendix 31-E)**.

# 4.3.3 TEMPORARY ORGANICS STOCKPILE

Runoff collection trenches and sediment ponds will be constructed along the down-gradient boundaries of the organics soil stockpiles prior to the placement of any top soil or overburden materials. The temporary organics stockpile foundation will not be cleared and grubbed to avoid disturbing and exposing the permafrost to thawing. Topsoil and overburden material will be end-dumped directly on the existing ground.

# 4.3.4 FROZEN SOIL STORAGE AREA

Limited site preparation is required for the frozen soil storage area, as the frozen overburden soils will be placed primarily on top of or directly adjacent to the Alpha WRSF to allow free draining of any melt water down through the coarse waste rock. For the earliest excavated frozen soils, there may not be a suitable amount of waste rock in the Alpha WRSF to act as an effective filter and containing berm, in which case a small berm will be constructed on the downslope side of the frozen soil storage area to provide initial

containment and filtering. Where feasible, the berm will be keyed into the side slopes to create interlocking of the fill and side slopes. The foundation of the frozen soil storage area is not anticipated to have permafrost and therefore stripping of overburden soils below the upper organics layer will not be required.

# 4.4 TRANSPORT AND DISPOSAL

Waste rock, ROM ore and overburden soils will be transported from the Open Pits to the appropriate facilities, as discussed above, and end or paddock-dumped and may be spread by dozer.

#### 4.5 ASSESSMENT OF PHYSICAL STABILITY

#### 4.5.1 MATERIAL PROPERTIES

Foundation soil conditions have been characterized geotechnically within the footprint of the WRSFs using sonic core drilling, test pit excavation, chilled diamond core drilling and laboratory testing program. The results of the characterization program are contained in **Appendix III 2015 Geotechnical Field Investigation Report** and **Appendix IV 2016 Geotechnical Site Investigation Report**. Additional geotechnical evaluation is required prior to undertaking detailed design and stability analysis, and a program is in development for 2017 to undertake this work using the same chilled drilling methodology used during the 2016 field program.

#### 4.5.2 STABILITY ANALYSES

The WRSFs will be designed to meet or exceed the acceptable design criteria for short-term conditions during operations (FOS 1.3) and long-term closure criteria (FOS 1.5). Stability analyses have not been completed for the conceptual WRSF configurations presented herein. Geotechnical investigation programs are planned for 2017 in order to attain the data necessary to undertake detailed design and complete both 2D and 3D stability analyses for the facilities.

# 4.6 CONSTRUCTION QUALITY ASSURANCE / QUALITY CONTROL

A construction quality assurance (QA) and quality control (QC) plan will be developed for the WRSFs, the frozen soil storage area, temporary organics stockpile and the ROM stockpile prior to the commencement of construction to verify that the parameter assumptions and recommendations developed during the design process are achieved. Elements that will be considered include:

- A qualified environmental professional / technician with appropriate knowledge and training will
  monitor Project construction and closure activities
- Monitoring of cut slopes and fill material
- Salvaging and storing soil material suitable for reclamation
- An evaluation of topsoil volumes and, based on soil stockpile dimensions, a determination of whether there is sufficient material for reclamation

- Foundation preparation as necessary for geotechnical and environmental considerations
- Permafrost (and ice-rich material) identification
- Construction of berms, lifts, interceptor trenches and sediment ponds
- Implementation of construction constraints related to climate conditions
- Photographs of the construction process at each stage of construction
- Preparation of construction record drawings signed and sealed by a Professional Engineer registered in Yukon, where appropriate.

# 4.7 SURFACE WATER MANAGEMENT

Surface water will be controlled by a series of channels and berms to segregate water that has contacted mine waste and mine related infrastructure (contact water) from water which has not (non-contact water). Contact water will be collected and routed to the Alpha and Facility sedimentation ponds to allow suspended sediment to settle out of the water prior to discharging into the environment. Pond effluent will meet the MMER guideline for total suspended solids. Additional details regarding management of surface water can be found in the **Water Management Plan (Appendix 31-E)**.

# 4.8 ROCK DRAINS

The Alpha WRSF drain will be constructed of coarse waste rock that will be selected and stockpiled in advance. Additional coarse rock for the drain will result from the natural segregation of waste rock that occurs during dumping. The larger waste rock particles segregate naturally at the bottom of each lift because their greater mass causes them to roll the furthest under gravitational forces. Geotextile fabric or a filter (sorted rock layer) may be used to prevent migration of fines into the drain rock from above. Additional waste rock characterization is needed before determining the need for a filter layer. Alternatively, a thicker layer of drain rock could be deposited to account for potential fines migration.

The rock drain is to be constructed in an area where permafrost may be present. Perennial freezing of the drains is not expected. Localized portions of the drain where groundwater discharges may freeze during the winter, but this ice will be melted by freshet flows. The rock drain is designed to convey up to 2 times the 100-year, 24-hour flow to minimize the potential effects. It is unlikely that ice could form and block flow entirely because of the perviousness of the WRSF.

Additional details and estimated volumes for construction of the rock drain can be found in the **Water Management Plan** (**Appendix 31-E**).

# 5.0 WASTE GENERATION AND DISPOSAL OPERATIONS

The following sections provide a detailed description of the operational plans for the handling, storage and surveillance of the rock and overburden materials at the Mine Site.

#### 5.1 Types of Waste and Volume

#### 5.1.1 ORE

# 5.1.1.1 Volume

Gold mineralization at the Project is hydrothermal in origin and is structurally controlled, being associated with intrusive dykes and zones of brecciation. The primary host lithologies are augen gneiss, biotite-feldspar schist and granite. Each mine pit excavates primarily a single host lithology, with biotite-feldspar schist (schist) being generated from the Latte Pit, granite ore from the Kona Pit, and augen gneiss (gneiss) from the Supremo and Double Double Pits. Mineralized structures have undergone extensive weathering as a result of meteoric water percolating downwards through permeable corridors associated with gold mineralization, with complete oxidation up to 350 m below the surface. The majority of ore is classified as oxide (49 Mt) with lesser amounts coming from the upper transition (9.8 Mt) and lower transition (0.9 Mt) weathering zones. The volume of ore excavated from each weathering zones and pit is shown in **Table 5-1.** 

Table 5-1 Total Ore Excavations Over Mine Life

| Pit           | Primary   | Units  | Oxide | Upper      | Lower      | Total |  |
|---------------|-----------|--------|-------|------------|------------|-------|--|
| Pit           | Lithology | Offics | Oxide | Transition | Transition | Total |  |
| Double Double | Gneiss    | Mt     | 0.6   | 0.8        | 0.0        | 1.5   |  |
| Supremo       | Gneiss    | Mt     | 38.0  | 3.7        | 0.3        | 42.0  |  |
| Kona          | Granite   | Mt     | 1.4   | 0.2        | 0.0        | 1.6   |  |
| Latte         | Schist    | Mt     | 9.4   | 5.1        | 0.6        | 15.0  |  |
| Total         | Mt        | 49.4   | 9.8   | 1.0        | 60.1       |       |  |

# 5.1.1.2 Acid Rock Drainage Potential

As a result of in-situ weathering, sulphide and carbonate minerals have largely been removed from the ore. There is some variation in residual carbonate and sulphur content between the different lithologies and weathering facies. Transitional ore has somewhat elevated sulphur content and neutralization potential (NP) compared to oxide ore. However, the differences between lithologies are generally more distinguishing than those resulting from the weathering zone. The schist lithology has the highest NP (51 kg calcium carbonate (CaCO<sub>3</sub>)/t), the gneiss has an intermediate NP (2.3 kgCaCO<sub>3</sub>/t) and the granite has the lowest NP (median of 1.5 kgCaCO<sub>3</sub>/t). Despite the highly weathered state of ore, some trace sulphur mineralization

remains with median to 75<sup>th</sup> percentile values in granite, gneiss and schist being 0.01 wt.% to 0.03 wt.%, 0.01 wt.% to 0.04 wt.%, and 0.07 wt.% to 0.49 wt.%, respectively.

Due to the lack of sulphur content, relatively minor quantities of acid-neutralizing minerals can maintain a neutral drainage pH. The schist and gneiss ore are classified as non-PAG and have neutral to alkaline rinse pH (6.7 to 8.7) indicating that oxidation of sulphide minerals during in-situ weathering has produced insufficient acidity to deplete acid-buffering minerals. Conversely, granite ore has a mildly acidic rinse pH (4.4 to 6.8) and acid base accounting (ABA) indicates that 39% of granite ore is classified PAG. While this pH range is only mildly acidic, similar to that of rain water (pH 5.6), kinetic testing on granite ore indicates that these mildly acidic conditions will lead to a significant increase in metal leaching potential. Granite ore is therefore treated as PAG for the purposes of mine waste management.

#### 5.1.1.3 Metal Leaching Potential

Analysis of solid phase metal abundances show that all lithologies of ore are enriched in Sb, As, bismuth (Bi), mercury (Hg), selenium (Se) and silver (Ag) with respect to average continental abundances (ACAs). Median U values in gneiss and granite ore are similar, both being 3x ACA with both lithologies having a median value of 14 parts per million (ppm) in the oxide weathering zone. Conversely, schist ore shows little or no U enrichment, with median values being similar to that of average continental abundance (median value of 2.9 ppm versus ACA of 2.7 ppm).

Within each of the gneiss and schist ore units, the highest Sb, As, and U concentrations are associated with the oxide facies and the lowest degree of enrichment is in the lower transition facies, indicating that weathering facies has an influence on the solid phase element concentrations. There is a significant variation in As enrichment between lithologies, with gneiss having significantly lower concentrations (median of 966 ppm) compared to schist and granite ore types (median values of 2450 ppm and 2040 ppm, respectively).

#### 5.1.2 WASTE ROCK

#### 5.1.2.1 Tonnage

Over the LOM, approximately 300 Mt of waste rock will be excavated from four Open Pits. Each pit excavates primarily a single lithology, with associations between lithologies and pits the same as that of ore described above. Non-mineralized waste rock surrounding the weathered ore bodies exhibits a variable degree of weathering, but as a whole is typically less weathered compared to ore zones. A majority of waste rock is either partially weathered and classified as 'lower transition', or unoxidized and classified as 'fresh'. The total volume of waste rock being excavated from each pit is presented in **Table 5-2** 

Table 5-2 Total Waste Rock Excavations Over Mine Life

| Pit              | Primary<br>Lithology | Units | Oxide | Upper<br>Transition | Lower<br>Transition | Fresh | Total |
|------------------|----------------------|-------|-------|---------------------|---------------------|-------|-------|
| Double<br>Double | gneiss               | Mt    | 1.1   | 1.3                 | 2.7                 | 10.8  | 15.9  |
| Kona             | granite              | Mt    | 1.4   | 1.1                 | 0.5                 | 2.3   | 5.3   |
| Latte            | schist               | Mt    | 12.7  | 5.7                 | 7.3                 | 10.4  | 36.2  |
| Supremo          | gneiss               | Mt    | 34.0  | 34.4                | 105.4               | 67.6  | 241.4 |
| Total Waste Rock |                      | Mt    | 49.2  | 42.6                | 115.9               | 91.2  | 299.0 |

#### 5.1.2.2 Acid Rock Drainage Potential

Geochemical testwork indicates that all lithologies and weathering facies of waste rock have little or no potential for acid generation. The low potential for acid generation is, in part, related to the lack of sulphur mineralization, with median total sulphur (total S) values in gneiss, granite and schist being 0.01 wt.%, <0.01 wt.%, and 0.03 wt.%, respectively. There is some variation in sulphur content between weathering facies within each lithology, with the fresh weathering zone typically showing greater sulphur content then the transition and oxide zones. However, the sulphur content remains relatively low even in unweathered (fresh) waste rock, with median values ranging from <0.01 wt.% to 0.11 wt.%. Due to the low sulphur concentrations and the presence of carbonate minerals, all waste rock is classified as non-PAG.

#### 5.1.2.3 Metal Leaching Potential

Analysis of solid phase metal concentrations show that the granite and gneiss lithologies are enriched in U and all lithologies of waste rock are enriched in Sb, As, Bi, Hg and Se (relative to ACA). The observed metal enrichments for waste rock is consistent with that observed for ore samples, with concentrations in the ore samples generally higher than that measured for waste rock of the same lithology and weathering group. In particular, Sb and As are one to two orders-of-magnitude higher in ore compared to waste rock of the same lithology and weathering. The difference in U concentrations is much less pronounced, with gneiss and granite ore having approximately twice the U content as waste rock (median values of 14 ppm in ore versus median value of 6.0 ppm to 7.0 ppm in oxide waste rock). Uranium shows no enrichment in schist, with concentrations being below the ACA (2.7 ppm) in all weathering facies.

Elemental enrichment is related to both lithology and weathering facies. In general, the highest Sb, As and Hg concentrations were measured in samples from the oxide facies (with granite having the greatest degree of enrichment). The schist lithology has the highest Se as well as other metals generally associated with sulphide mineralization (i.e., chromium (Cr), cobalt (Co), copper (Cu) and Zn).

#### 5.1.3 LEACH TAILINGS

#### 5.1.3.1 Volume

Leach tailings represent ore that has been mixed with lime and leached with a sodium cyanide solution in the HLF. Ore processing will not involve solids separation (e.g., sulphide flotation), hence, the volume and lithologies of leach tailings is the same as that of ore presented in **Table 5-1**Error! Reference source not found..

#### 5.1.3.2 Acid Rock Drainage Potential

Leach tailings have a lower ARD potential compared to ore due additional NP in the form of lime that will be added to maintain cyanide stability. Lime addition will neutralize any water soluble acidity (e.g., iron (Fe) and aluminum (Al) sulphates minerals) that may be present on the ore. Upon mine closure, excess lime will either be rinsed from the HLF or re-precipitate as calcite.

For the purposes of mine waste management, the same classifications developed for ore will be applied to leach tailings (i.e., granite leach tailings will be classified as PAG). While lime addition will reduce the ARD potential, special handling will nonetheless be incorporated into mine waste management in order to ensure that this rock type is encapsulated within the HLF. Note this rock type makes up less than 2% of total ore stored within the HLF. Due to the small quantity of PAG material being stored in the HLF, the facility as a whole has little or no potential for the development of ARD.

#### 5.1.3.3 Metal Leaching Potential

Irrigating ore with sodium cyanide solution will dissolve gold and other trace metals which form soluble cyanide complexes (e.g., Cu, Hg, cadmium (Cd), nickel (Ni), Zn). While this will affect the metal leaching potential of ore during active leaching, it will only have a minor effect on total metal abundance, and solid phase metal enrichment in leach tailings will remain similar to ore.

Metal leaching potential from the HLF will vary widely at different stages of mine life. During the Operation Phase, addition of sodium cyanide will increase the solubility metals which form cyano-metal complexes (e.g., Cu, Hg, Cd, Ni, Zn). Furthermore, the high pH values created by lime addition will increase the solubility of certain anion-forming elements such as Sb, As, molybdenum (Mo) and U. The highest potential for metal leaching from the HLF will occur during the Operation Phase while the HLF is being actively leached.

After mine closure, metal leaching potential from leach tailings will decline as cyanide is detoxified and the pH of the facility declines, from pH values >11 to circumneutral. Cyanide destruction will occur at the end of mine life, removing residual cyanide from HLF pore water and reducing the metal leaching potential of detoxified leach tailings. Lime is unstable in the presence of water and atmospheric carbon dioxide, and

will be either rinsed from the system or re-precipitated as calcite. The metal leaching potential of leach tailings will decline at closure once cyanide detoxification is complete and the pH declines from highly alkaline to circumneutral values.

#### 5.1.4 OVERBURDEN AND TOPSOIL

#### 5.1.4.1 Volume

Topsoil and overburden will be stripped from Project facilities and either stockpiled or used as fill depending on the source, ice content, and organic content. The volumes of topsoil and overburden are outlined in **Section 2.0.** 

#### 5.1.4.2 Acid Rock Drainage Potential

Geochemical test results indicate that the Mine Site overburden has little or no potential for acid generation. This is primarily due to the low sulphur content (median of 0.01%). The static test results demonstrate that the Mine Site overburden is at a highly-weathered state, as indicated by the lack of carbonate or sulphide mineralization and the circumneutral to mildly acidic rinse-pH (5.2 to 8.9; median of 7.2) at a pH similar to that of rain water (~pH 5.6). Due to the lack of acid generating minerals, the Mine Site overburden is classified as non-PAG.

#### 5.1.4.3 Metal Leaching Potential

Overburden is relatively depleted in a number of metals, with 90<sup>th</sup> percentile values for AI, Cd, Co, Cr, Cu, manganese (Mn), Ni and Zn below ACAs. Some samples are enriched in As, Bi, Hg, Sb and Se with respect to ACAs, consistent with solid phase element results for waste rock and ore. The most frequently elevated elements are Bi and Se; however, metal leaching results show concentrations of these metals are generally below the respective detection limits indicating that these elements are not in a readily water soluble form. Overall, the metal leaching potential from overburden is considered low.

#### 5.2 WASTE CHARACTERIZATION AND MONITORING PROTOCOL

Mine rock will be monitored for ML/ARD potential as part of the ongoing effort to characterize mine waste over the Projects life. This monitoring program will provide continuous characterization of the ML/ARD potential of ore, overburden, waste rock and leach tailings as it is produced. The objectives of further characterization and monitoring are as follows:

- Confirm that mine rock is non-PAG and that metal leaching potential is similar to what is predicted in geochemical characterization work conducted as part of mine permitting
- Provide continuous characterization of geologic material sent to various storage facilities or used in construction; and
- Inform periodic revisions and updates to the Reclamation and Closure Plan.

A summary of sample frequency and characterization methods for different material types is shown in **Table 5-3**. Regular sampling will consist of a limited number of NP and Acid potential measurements to confirm ARD potential, and total metals analysis to monitor metal enrichment. Sample frequency will vary depending on the type of geologic material (*i.e.*, waste rock, ore, leach tailings and overburden) and the material source (*e.g.*, elevated sample frequency in Kona Pit). A more complete set of analysis will be conducted for every tenth sample collected as part of the QA/QC program. Note that the sample frequency prescribed in **Table 5-3** will result in over 3,300 samples being collected for geochemical analysis over Project life. All data produced as part of ongoing monitoring activities will be reported in the Environmental Monitoring, Surveillance and Reporting Plan in support of the Quartz Mining License. More detail of sample collection and standard operating procedures will be included in the ML/ARD Management and Monitoring Plan.

Table 5-3 Summary of Sampling Frequency and Analytical Parameters Monitored for Characterization of Mine Rock

| Monitoring               | Regular Sampling        |                                       |                                      | QAQC         |                         |  |
|--------------------------|-------------------------|---------------------------------------|--------------------------------------|--------------|-------------------------|--|
| Program                  | Sample Type             | Frequency                             | Parameters                           | Frequency    | Parameters <sup>3</sup> |  |
| In-pit mine rock         | assay pulp <sup>1</sup> | 1/100,000<br>tonnes                   | Total S, Total C, aqua regia metals  | 1/10 samples | ABA, aqua regia metals  |  |
| In-pit Kona<br>mine rock | assay pulp <sup>1</sup> | 1/25,000<br>tonnes                    | Total S, Total C,, aqua regia metals | 1/10 samples | ABA, aqua regia metals  |  |
| Inorganic<br>Overburden  | composite               | 1/25,000 m <sup>3</sup>               | Total S, Sobek NP, aqua regia metals | 1/10 samples | ABA, aqua regia metals  |  |
| Leach Tailings           | test pit                | 4/quarter                             | Total S, T-C, aqua regia metals      | 1/10 samples | ABA, aqua regia metals  |  |
| Access Road<br>Borrow    | composite               | 1/large cut<br>or borrow <sup>2</sup> | Total S, Sobek NP, aqua regia metals | 1/10 samples | ABA, aqua regia metals  |  |

#### Notes:

- Collected from blast hole drill cuttings.
- 2. Excavation of bedrock or alluvial material >4,000 m³ (Onsite, 2016).
- 3. Full suite of ABA includes, paste and rinse pH, total S, sulphate-S, sulphide-S, total and inorganic C, and Sobek NP.

#### 5.3 WASTE SEGREGATION PROTOCOL

#### 5.3.1 WASTE ROCK

Geochemical characterization indicates that waste rock is non-PAG, as such, no special handling to mitigate ARD potential will be required. If PAG material is identified as part of regular monitoring activities, contingency measures will be adopted as described in the ML/ARD Management and Monitoring Plan.

#### 5.3.2 OVERBURDEN AND TOPSOIL

Topsoil and overburden will be stripped from the footprint of Project facilities and either stockpiled or used as fill depending on the source, ice content and material type. Organic topsoil will be stripped from the footprints of mine facilities and stored in the soil stockpile for later use as a growing medium for vegetation at the end of mine life. Storage of overburden will vary depending on where it is excavated.

Geochemical characterization of overburden samples collected across the Mine Site show that overburden is non-PAG and has low metal leaching potential. Hence, no segregation or special handling of overburden is required to mitigate ML/ARD potential. If PAG material is identified in overburden during the mine waste monitoring program, contingency measures will be adopted, as will be described in the ML/ARD Management and Monitoring Plan.

#### 5.3.3 ORE

Approximately 60 Mt of ore mined from the Open Pits will either be taken directly to the HLF or temporarily stockpiled on the ROM stockpile. The mass of ore on the ROM pad will fluctuate, with peak volumes occurring during the winter months when ore is still being produced from the pits but no new material is stacked on the HLF. The ROM stockpile will be lined and seepage will be collected and used as makeup water in the HLF process.

A majority of ore is expected to be non-PAG with the exception of granite ore from the Kona Pit, which is classified as PAG for the purposes of mine waste management. While there is no drainage being directly discharged from the ROM stockpile, tracking of granite ore being temporarily placed in the ROM stockpile is required to ensure that it is properly managed when it is placed in the HLF. Granite ore will be tracked on the ROM stockpile as follows:

- The location and volume of ore from Kona Pit will be recorded when it placed on the ROM stockpile;
   and
- A qualified person will confirm lithology and proper placement of all material being moved from ROM stockpile to the HLF during years 1-3 of mine life when the Kona Pit is active.

In order to ensure that granite ore is properly placed on the HLF, a qualified person must confirm the ore lithology on the ROM pad before it is removed so that the location of granite ore on the HLF facility can be tracked.

#### 5.3.4 LEACH TAILINGS

Crushed ore will be stacked in nominal 10-m lifts. The only material being deposited at the HLF with ARD potential is granite ore from the Kona Pit. Kona ore also has the highest potential for U and As leaching compared to other ore lithologies. Special handling and placement of granite ore in the HLF will take place to mitigate the potential for ARD and minimize the metal leaching potential. The general mitigation strategy for granite ore is encapsulation within the interior of the HLF. In order to achieve this, granite ore will be handled as follows:

- Exclude granite ore from bottom 10 m lift; and
- Place granite ore at least 10 m below final elevation of HLF and 10 m away from HLF slopes.

Excluding granite ore from the bottom lift will ensure that excess NP associated with the gneiss and schist ores will neutralize any acidity generated from granite ore within the HLF. Excluding granite ore from the bottom and top lift and keeping it 10 m away from the HLF slopes will ensure that granite ore is encapsulated at the end of mine life. All granite ore (1.6 Mt) is scheduled to be mined during Years 1, 2 and 3 of the Operation Phase. Over this time period, 15 Mt of gneiss and schist ore is scheduled to be mined from the Latte, Double Double and Supremo pits. Considering that granite ore only represents 2.7% of the total ore volume and is mined concurrently with much greater quantities of schist and gneiss ore, encapsulation and neutralization of this material within the interior of the HLF is not expected to present an operational challenge during LOM.

#### 5.4 Monitoring Program

Visual observations of the WRSFs, overburden stockpiles, sedimentation pond dams and pit slopes will be the most frequent and most important method of monitoring their geotechnical performance. The purpose of the inspections is to identify apparent physical changes to the facilities that may indicate future instability and to allow the conditions to be mitigated prior to an instability occurring. The geotechnical performance of the waste rock and overburden stockpiles will be monitored via three types of visual inspections:

- Routine inspections
- Annual inspections
- Event-driven inspections.

#### 5.4.1 ROUTINE INSPECTIONS

Facility operators will complete routine visual inspections at least weekly (unless otherwise noted), and more frequently when operational conditions dictate. Conditions which require more frequent inspections include:

- Significant increase in construction (material placement) or excavation rates
- Unusually high amounts of rainfall or snowmelt
- Deformation (heaving or bulging) of facility toes or slope faces
- Excessive settlement or surface cracking above or on slopes
- Seepage coming from slope faces or toes
- Significant changes in material geotechnical properties
- Any other operational changes which could affect slope stability.

Routine geotechnical inspections will be completed for all relevant components of the facilities, including:

- WRSFs, overburden stockpiles and sedimentation pond dam toes, crests and faces (daily)
- Natural foundation slopes prior to material placement (daily)
- Cut and fill slopes created during construction or as part of the removal of unsuitable foundation materials (daily)
- Water outlet structures, emergency spillways, and upstream reservoir banks for the sedimentation dams (monthly)
- Instrumentation
  - Data will be collected and reviewed at a minimum of once per week from all instrumentation or as otherwise specified by the geotechnical engineer. Increased frequency will be necessary if/when concerns are identified.
  - Equipment will be inspected monthly or as otherwise recommended by the manufacturer or geotechnical engineer to verify functionality.
  - Equipment will be calibrated according to the manufacturer's recommendations.

Engineering, survey, and operational staff that conduct the routine visual inspections will be trained to look for, and be able to recognize, signs of instability as described in Section 8 of the "Mined Rock and Overburden Piles Operating and Monitoring Manual" prepared by the BC Mine Waste Rock Pile Research Committee (1991). Personnel designated as responsible for conducting routine inspections will also be familiar with the triggers for an event-driven inspection. Written records of routine inspections shall be maintained as a permanent record at the Mine Site and stored digitally on an off-site server. Any deviations from normal or expected conditions shall be immediately reported to the geotechnical engineer and operational management.

PAGE | 5.10

#### 5.4.2 ANNUAL INSPECTIONS

Annual inspections will be performed by an independent professional engineer experienced with construction and operation of such facilities in cold climates. Annual inspections are to be at a date providing sufficient time before the end of the open water season to allow any resulting action plans to be implemented in a timely manner. These inspections are to include all of the elements within the routine inspection program, plus the following:

- Review recommendations from the prior annual inspection and verify that they have been implemented
- Review all instrumentation and monitoring systems, and all related data for the prior year
- Review the Routine inspection reports
- Review the information gathered on the geotechnical properties and verify that these are consistent with the current design assumptions. Revise this program as indicated
- Prepare a photographic log of the facilities
- Verify the design basis relative to current regulations, industry and engineering standards, and operating practices
- Verify the adequacy of the inspection programs and this Waste Rock and Overburden Management Plan
- Review the construction plans (as-built and future) and verify that they are consistent with the design
- Perform a dam safety review of the embankments for the sedimentation ponds, according to Canadian Dam Association standards (CDA 2007)
- Comprehensive dam reviews shall be performed as recommended by the CDA, no less frequently than every seven years, in the year prior to decommissioning, and following closure.

The inspecting geotechnical engineer shall prepare a report of annual inspection and this report shall be kept as a permanent record at the Mine Site and stored digitally on an off-site server. Any deviations from normal or expected conditions shall be immediately reported to the geotechnical engineer and operational management.

#### 5.4.3 EVENT-DRIVEN INSPECTIONS

Special inspections shall be carried out by the geotechnical engineer if and when any of the following occurs. Inspections shall be completed as soon as possible after the subject event which could include the following:

- Unusually large precipitation, freshet or seismic events. The following can be used as a guideline when special inspections are required under this criteria:
  - Unusually high amounts of rainfall or snowmelt;

- Precipitation or freshet in excess of the 25-yr/24-hr event;
- Ground acceleration in excess of 0.08 g (as estimated from earthquakes recorded by the regional seismograph network).
- Significant increase in construction (material placement) or excavation rates
- Deformation (heaving or bulging) of facility toes or slope faces
- Excessive settlement or surface cracking above or on slopes
- Seepage coming from slope faces or toes
- Significant changes in material geotechnical material properties;
- Unusual operating conditions including any material damage to the sedimentation dams (i.e., damage that can adversely affect the serviceability of the particular component)
- Any other operational changes which could affect slope stability.

Event-driven inspections, which require follow-up action by the geotechnical, shall include a detailed description of such action with timelines and compliance criteria. Any deviations from normal or expected conditions shall be immediately reported to operational management.

#### 6.0 ADAPTIVE MANAGEMENT PLANS

Each item in the Monitoring section has a corresponding item in the Adaptive Management Plan (**Table 6-1).** The triggers are set to provide reasonable reaction time to possibly adverse changes without being overly sensitive and thus giving false positives. Both the triggers and the actions should be revised as the facility designs are advanced and as operating experience is gained.

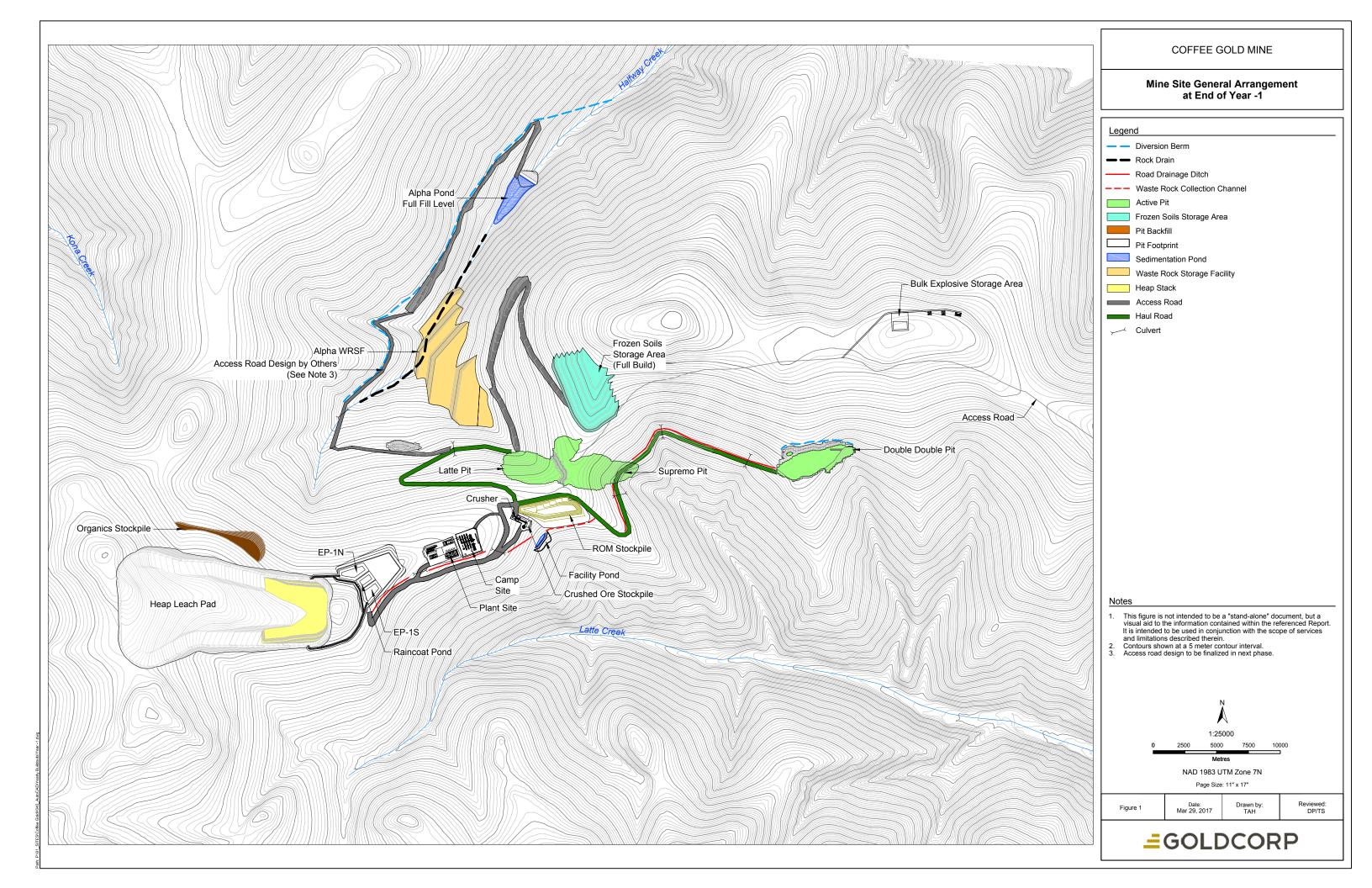
Table 6-1 Adaptive Management Triggers & Actions

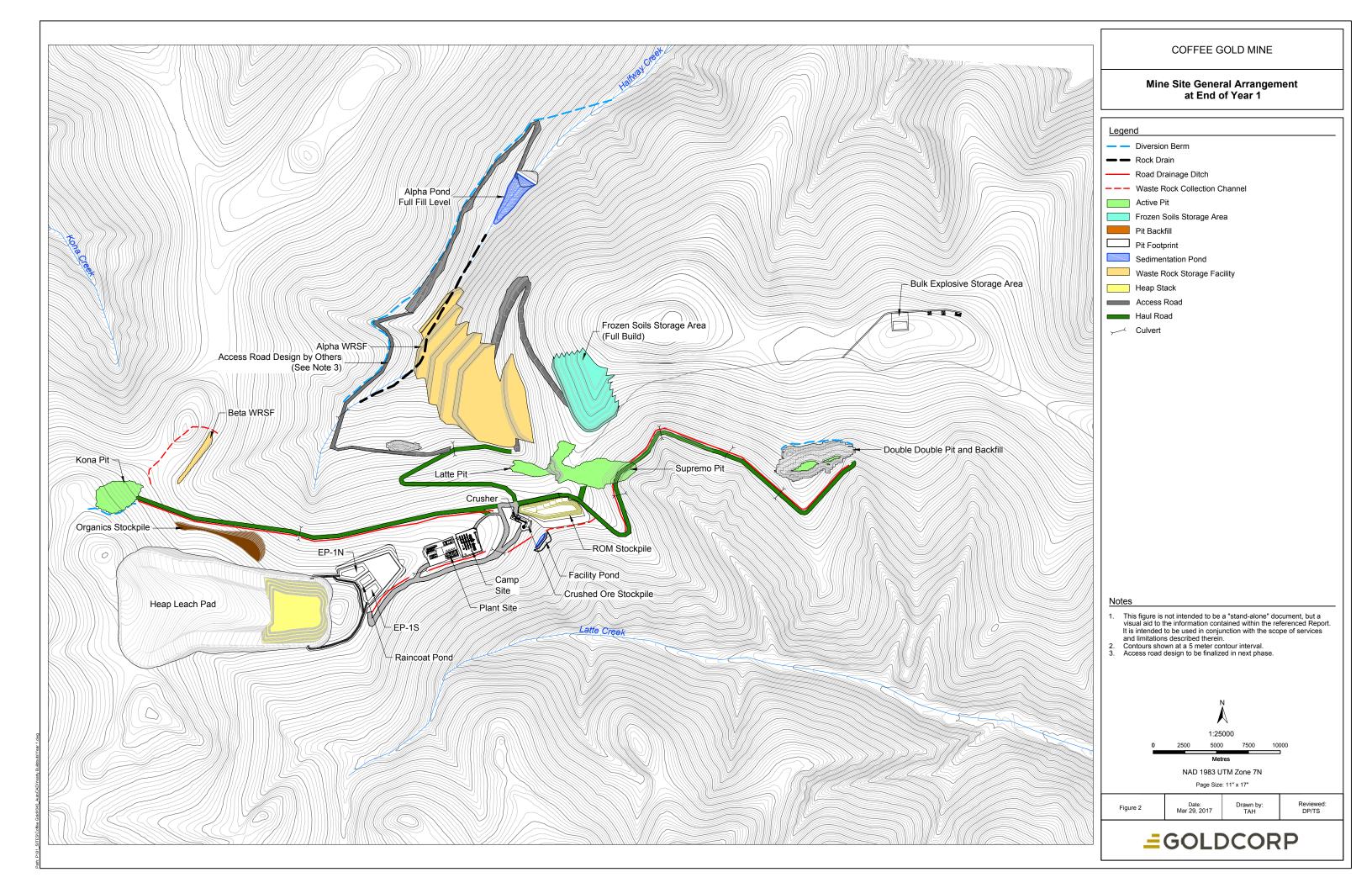
| Location / Item<br>Description |                                                                                                          | Triggers                                                                                                                                                                                                                                                      | Action                                                                                                                                                                                                                                                                                                                                                                       |  |  |
|--------------------------------|----------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|--|
| 1)                             | Toes and faces of<br>WRSFs, Overburden<br>Stockpiles and<br>Sedimentation Pond<br>Embankments            | a) Any bulging or deformation of toes or faces                                                                                                                                                                                                                | a) Develop action plan as needed but could include:  Increase monitoring frequency Detailed review and analysis of performance data Notification of the site engineer, mine manager, and/or Yukon Inspector; Reduction of the rate or ceasing of material placement; Stabilize the area of concern as required prior to failure (e.g. unloading of the dump, or buttressing) |  |  |
|                                |                                                                                                          | b) Material stacked outside of the design limits                                                                                                                                                                                                              | b) Engineer to determine if condition requires action                                                                                                                                                                                                                                                                                                                        |  |  |
| 2)                             | Crests and surfaces of<br>WRSFs, Overburden<br>Stockpiles and<br>Sedimentation Ponds                     | Areas showing excessive slumping or settlement, or     Areas showing tension cracking                                                                                                                                                                         | <ul> <li>a) Engineer to determine if condition requires action (see Action 1a)</li> <li>b) Engineer to determine if condition requires action (see Action 1a)</li> </ul>                                                                                                                                                                                                     |  |  |
| 3)                             | Cut and fill slopes for<br>WRSFs, Overburden<br>Stockpiles and<br>Sedimentation Ponds                    | Areas of instability including tension cracks, deformation of bulging of toes or faces     Surface erosion                                                                                                                                                    | a) Engineer to determine if condition requires action (see Action 1a)     b) Identify source of distress and remediate cause                                                                                                                                                                                                                                                 |  |  |
| 4)                             | Variation in waste rock<br>and/or overburden<br>material geotechnical<br>properties                      | Significant changes in waste rock or overburden material geotechnical properties                                                                                                                                                                              | Engineer to determine if the variation has potentially adverse effects and then develop and implement action plan, if needed                                                                                                                                                                                                                                                 |  |  |
| 5)                             | Seepage at the facility toes                                                                             | Seepage noted at the facility toes                                                                                                                                                                                                                            | Engineer to determine if condition<br>requires action and develop action plan<br>as needed                                                                                                                                                                                                                                                                                   |  |  |
| 6)                             | Data collection                                                                                          | b) Data from instrumentation does<br>not match visual observation<br>within tolerance of both                                                                                                                                                                 | c) Engineer to investigate the discrepancy, and develop corrective action plan                                                                                                                                                                                                                                                                                               |  |  |
| t                              | Instrumentation:  Data to be collected and reviewed Equipment to be inspected Equipment to be calibrated | a) Operating conditions for any instrumented component departs from forecast by more than the specified tolerance, or     b) Equipment that is not operating as specified or within the manufacture's tolerances, or appears to be reporting incorrect values | a) Engineer is to investigate the discrepancy and develop corrective action plan as needed     b) Any equipment that is not operating as specified is to be repaired, replaced or recalibrated as needed                                                                                                                                                                     |  |  |

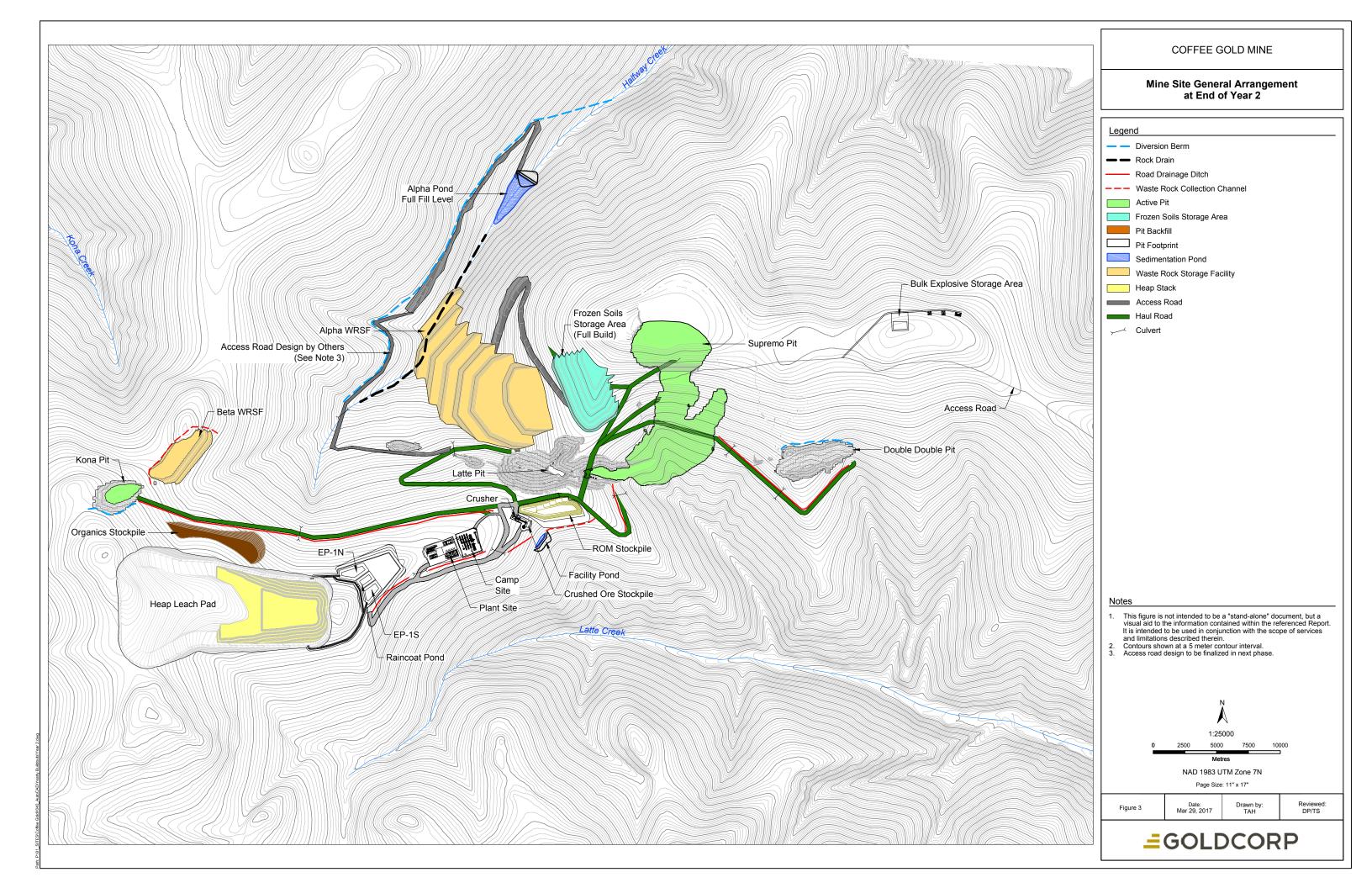
|     | Location / Item<br>Description                                                                                                                                                           | Triggers                                                                                                                                                                                                                                                                                                                                                                                                      | Action                                                                                                      |  |
|-----|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------|--|
| 8)  | Independent<br>inspection of WRSF<br>and overburden<br>stockpiles                                                                                                                        | To be in accordance with Independent Engineer's Report of Annual Inspection  To be in accordance with report of Comprehensive Dam Review. The inspections are to note any signs of instability, seepage, abnormality, or deviation from the facility design. The inspections will follow the procedures outlined in the Canadian Dam Association's Technical Bulletin: Surveillance of Dam Facilities (2007). |                                                                                                             |  |
| 9)  | Comprehensive inspection of sedimentation dams. All areas of each sedimentation dam are to be inspected including outlet structures, spillways, and the upstream banks of the reservoir. |                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                             |  |
| 10) | Event-driven inspection                                                                                                                                                                  | Inspection required as soon as possible after trigger event                                                                                                                                                                                                                                                                                                                                                   | To be in accordance with the Report of Special Inspection as defined in the Event-driven inspection section |  |

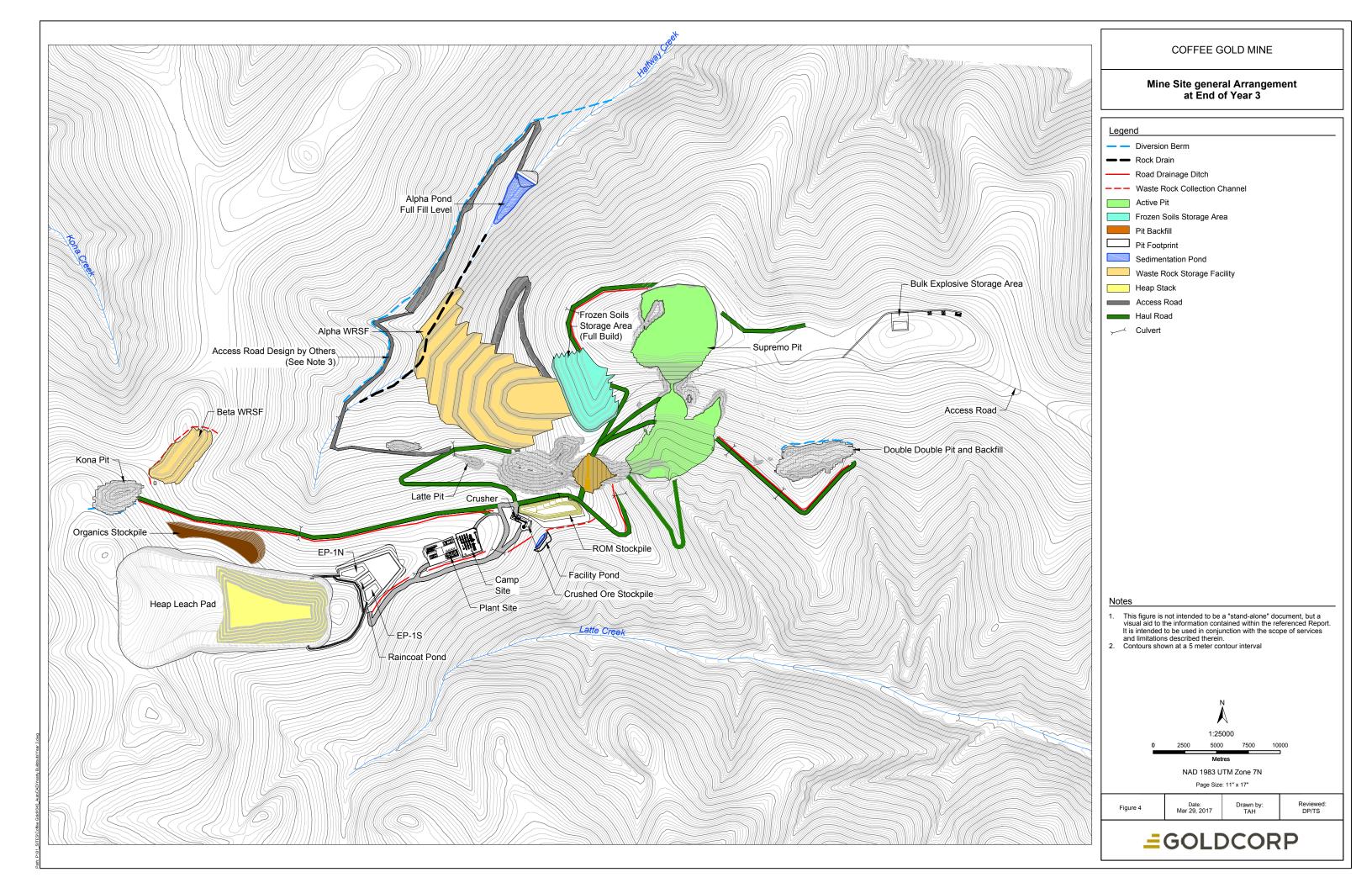
#### 7.0 REFERENCES

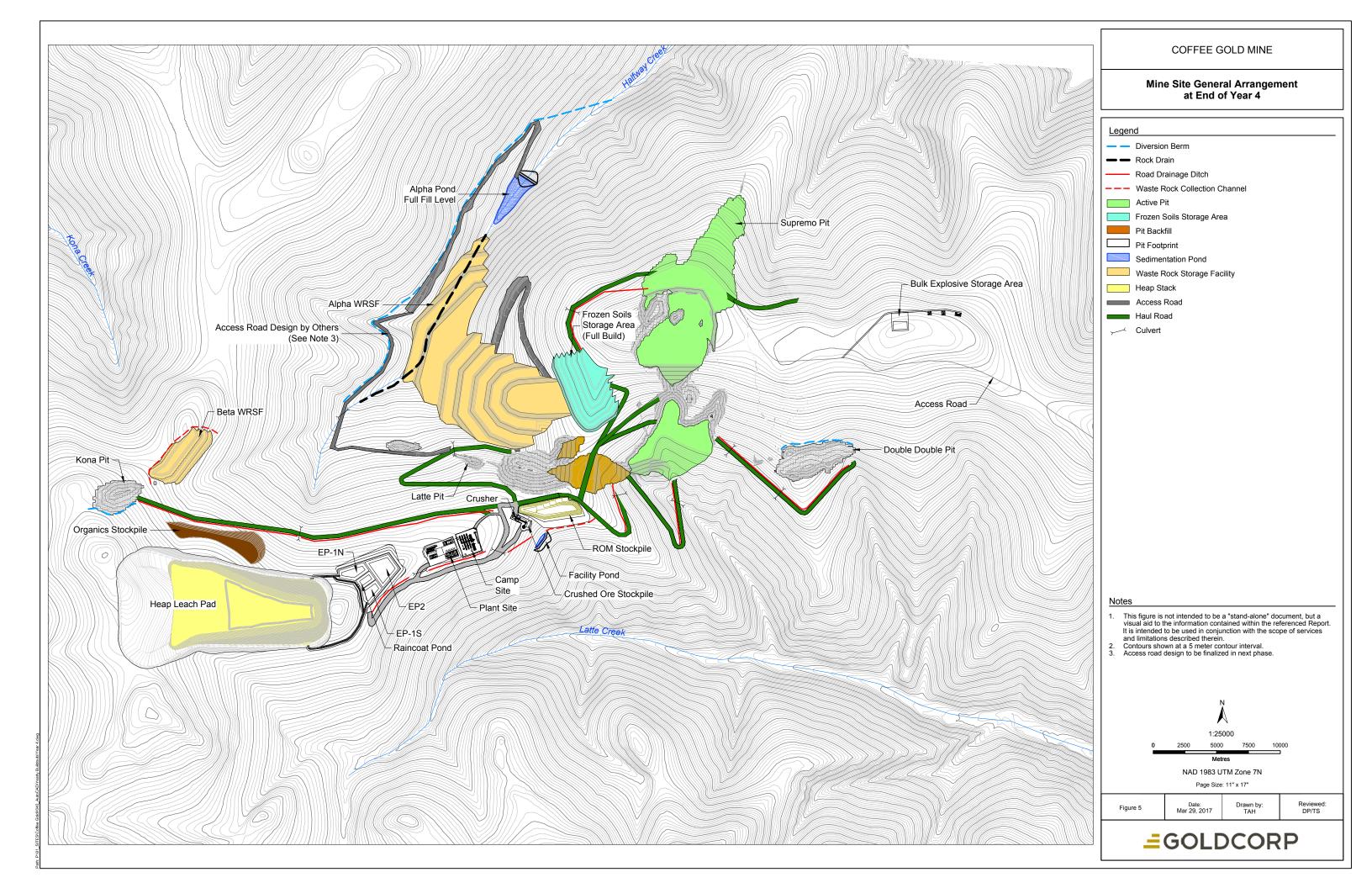
- AECOM, 2012. Geomorphological Mapping and Landscape Model Development for Strategic Soil Geochemical Sampling at the Coffee Gold Project, Yukon Territory, report prepared for Kaminak Gold Corporation dated March, 2012.
- Bieniawski Z.T., Engineering Rock Mass Classifications, John Wiley & Sons, New York, 1989.
- British Columbia Mine Waste Rock Pile Research Committee. 1991. British Columbia Mined Rock and Overburden Piles Investigation and Design Manual, Interim Guidelines. May. ISBN 0-7718-9118-0.
- Canadian Dam Association. 2013. Dam Safety Guidelines, published by CDA in 2007, revised in 2013.
- Cunningham, C.V.B., 2005, The Kuz-Ram fragmentation model 20 years on, Brighton Conference Proceedings 2005, R. Holmberg et al, European Federation of Explosives Engineers, ISBN 0-9550290-0-7
- Hynes-Griffen, M.E. and Franklin, A.G., 1984. Rationalizing the seismic coefficient method. U.S. Army Corps of Engineers, Geotechnical Laboratory, Misc. Paper GL084-13.
- JDS Energy & Mining Inc., 2016, Feasibility Study Report for the Coffee Gold Project, Yukon Territory, Canada, Report prepared for Kaminak Gold Corporation, dated February 18, 2016, effective date January 6, 2016.
- Knight Piésold Consulting, 2015. Coffee Gold Project, Report on Feasibility Study Level Geotechnical Investigations. Prepared for Kaminak Gold Corporation. KP Project No. DV101-00562/03. March 12, 2015.
- Leps, TM. 1970. Review of shearing strength of rockfill. Journal of the Soil Mechanics and Foundations Division, ASCE 96(4): pr. 1159-1170.
- Linero, S., Palma, C., and Apablaza, R. 2007. Geotechnical characterisation of waste material in very high dumps with large scale triaxial testing. In Proceedings of the International Symposium on Rock Slope Stability in Open Pit Mining and Civil Engineering, Perth, Western Australia, 12–14 September 2007. Australian Centre for Geomechanics, Perth, Western Australia; the University of Western Australia, Perth, Western Australia. pp. 59–75.
- Lorax Environmental Ltd., 2016, Coffee Gold Feasibility Study: Appendix J2: Hydrogeology, report prepared for Kaminak Gold Corporation dated February 1, 2016.

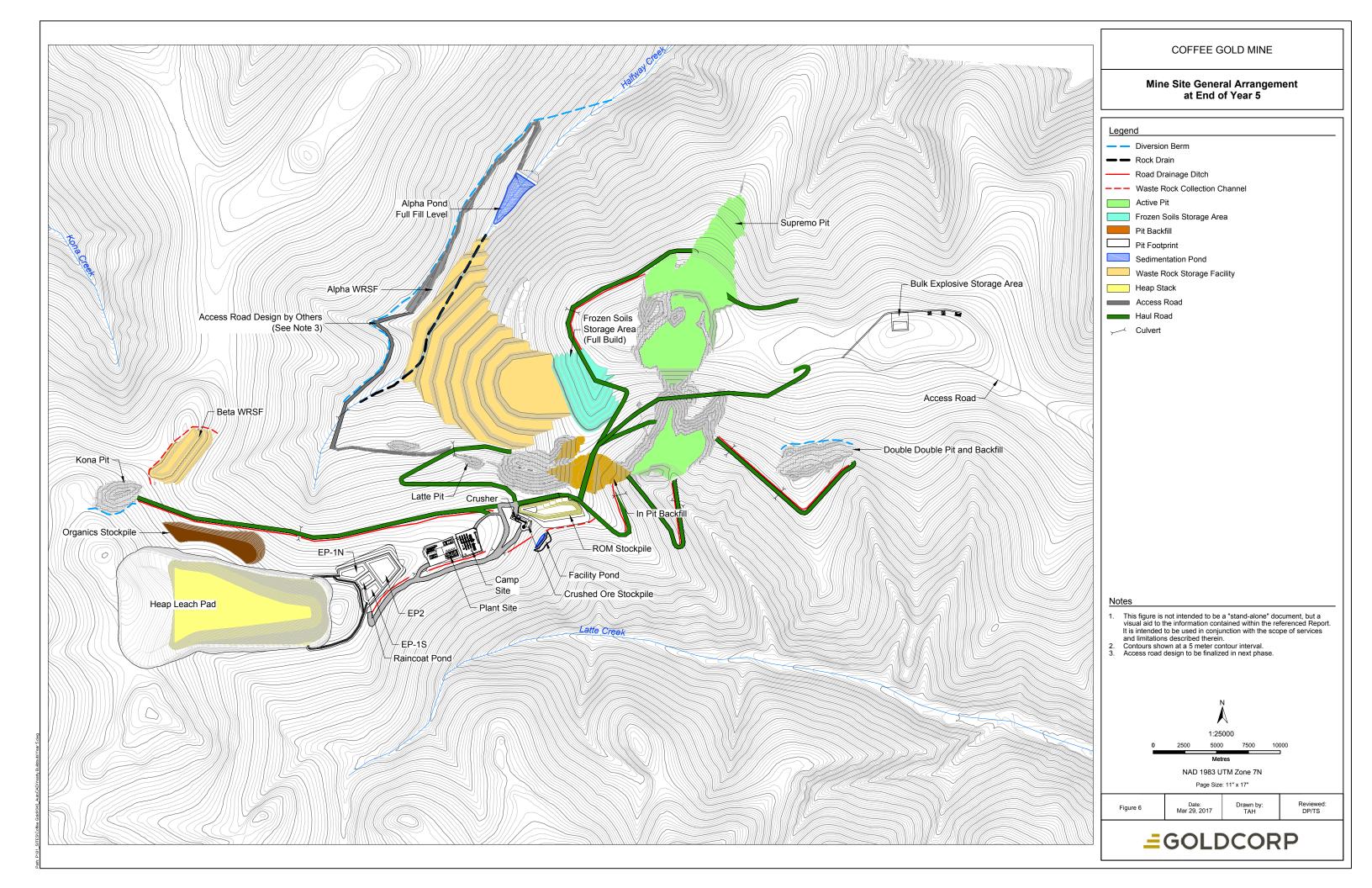

- Marshal, R.J. and Resendiz, D.R. (1975). Presas de Tierra y Enrocamiento. Mexico. Ed Limusa, pp. 237-239.
- The MINES Group, "Coffee Gold Project Seismic Design Report, Report prepared for Kaminak Gold dated August 10, 2015.
- Tetra Tech EBA Inc., 2016, Permafrost and Related Geohazard Mapping within the Coffee Mine area, Technical memo (Memo 2) prepared for Kaminak Gold Corporation dated February 25, 2016.

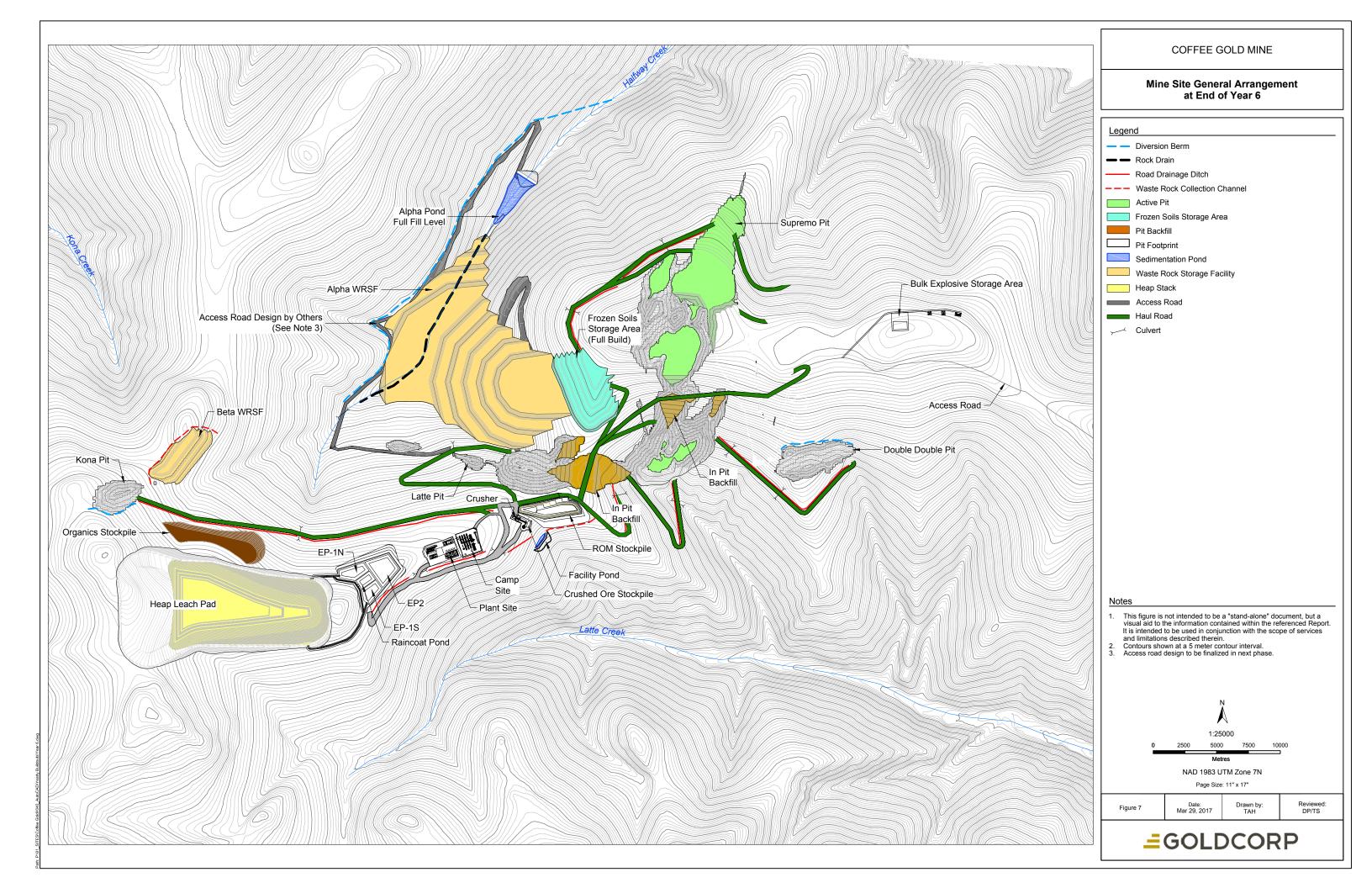

# Appendix 31-D-I Life of Mine Annual Plots

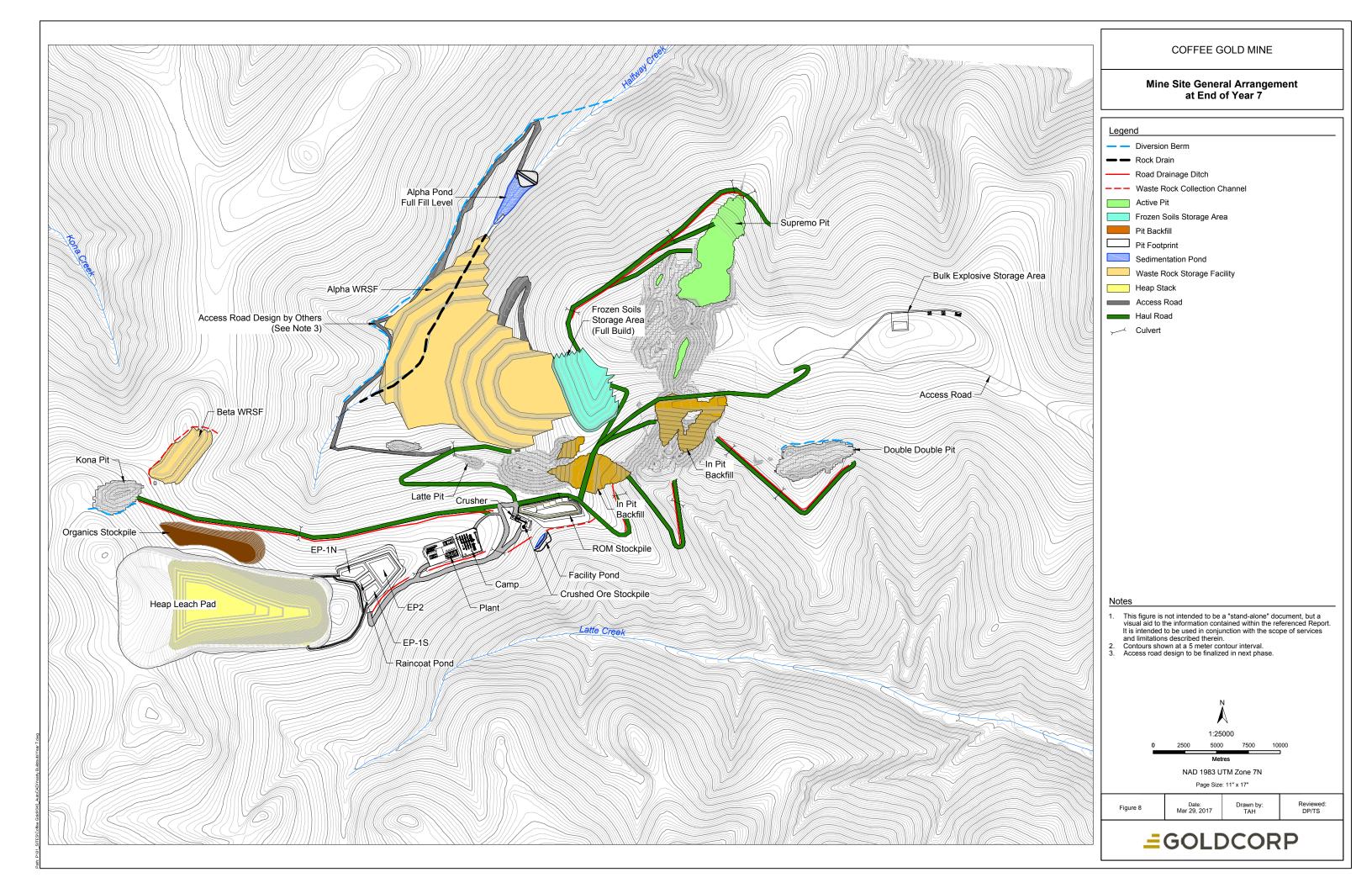

# Appendix 31-D-II Feasibility Pit Slope Stability Evaluation

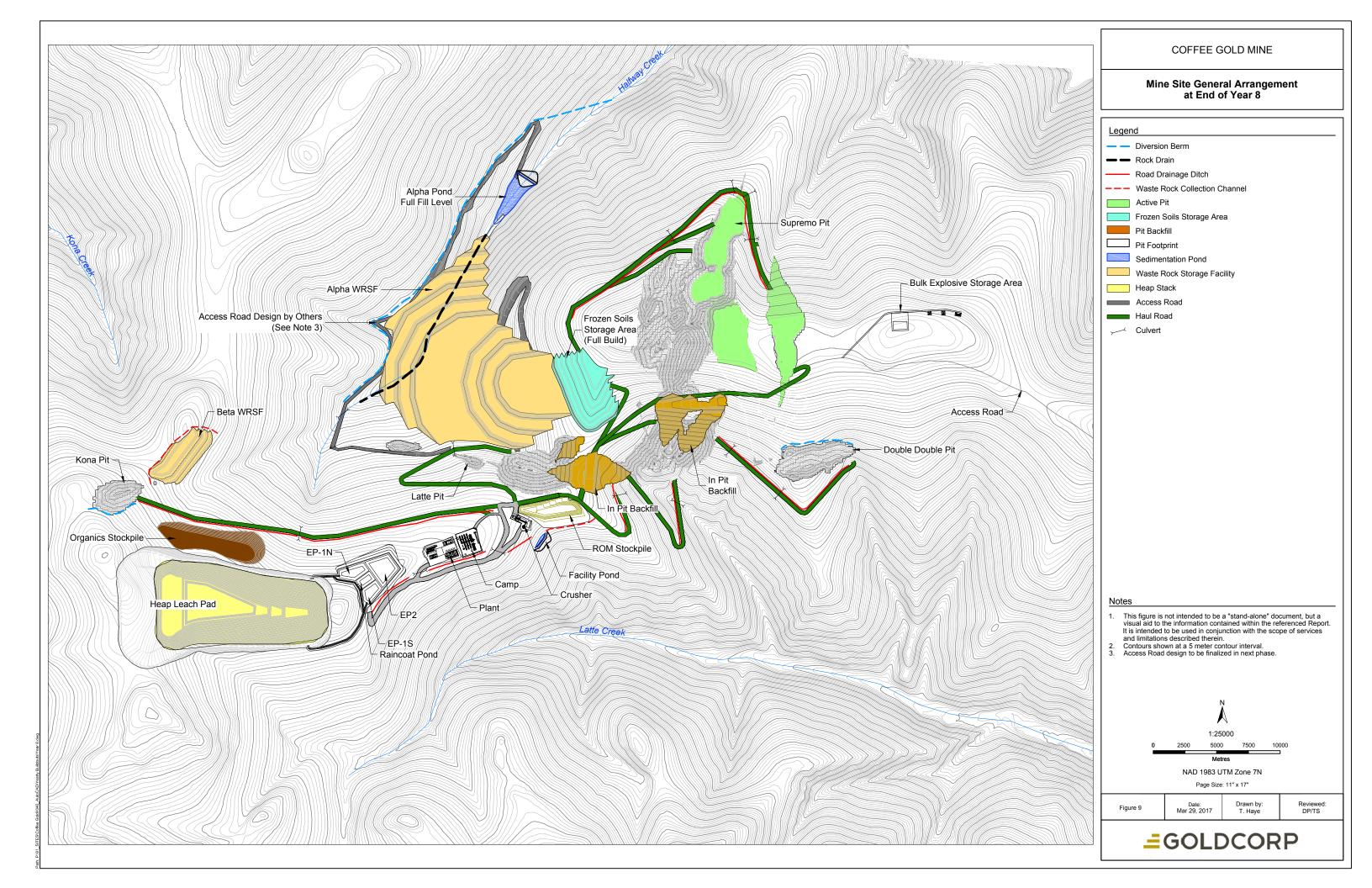

# Appendix 31-D-III 2015 Geotechnical Field Investigation

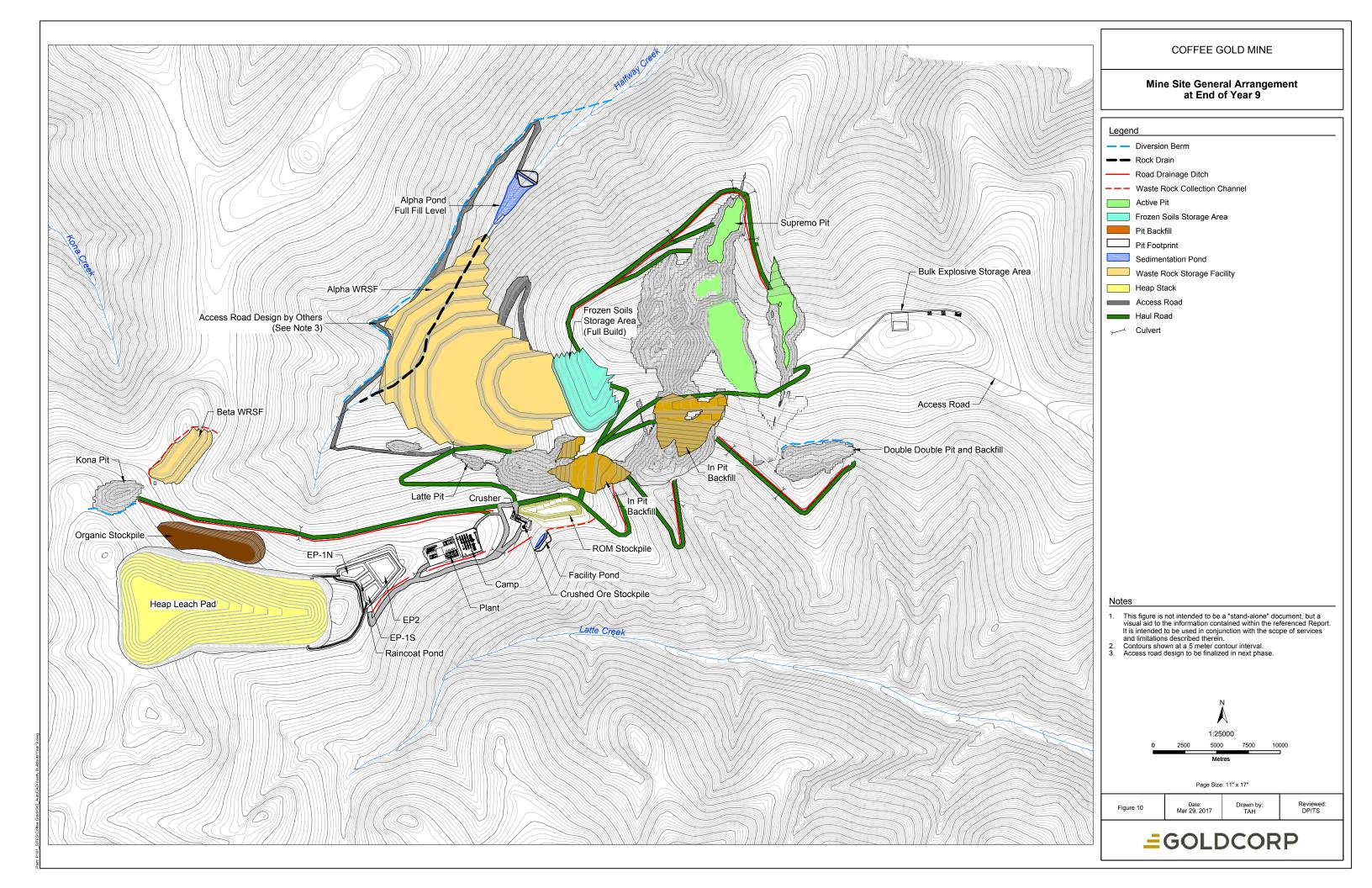

# Appendix 31-D-IV Fall 2016 Geotechnical Site Investigation Data Report



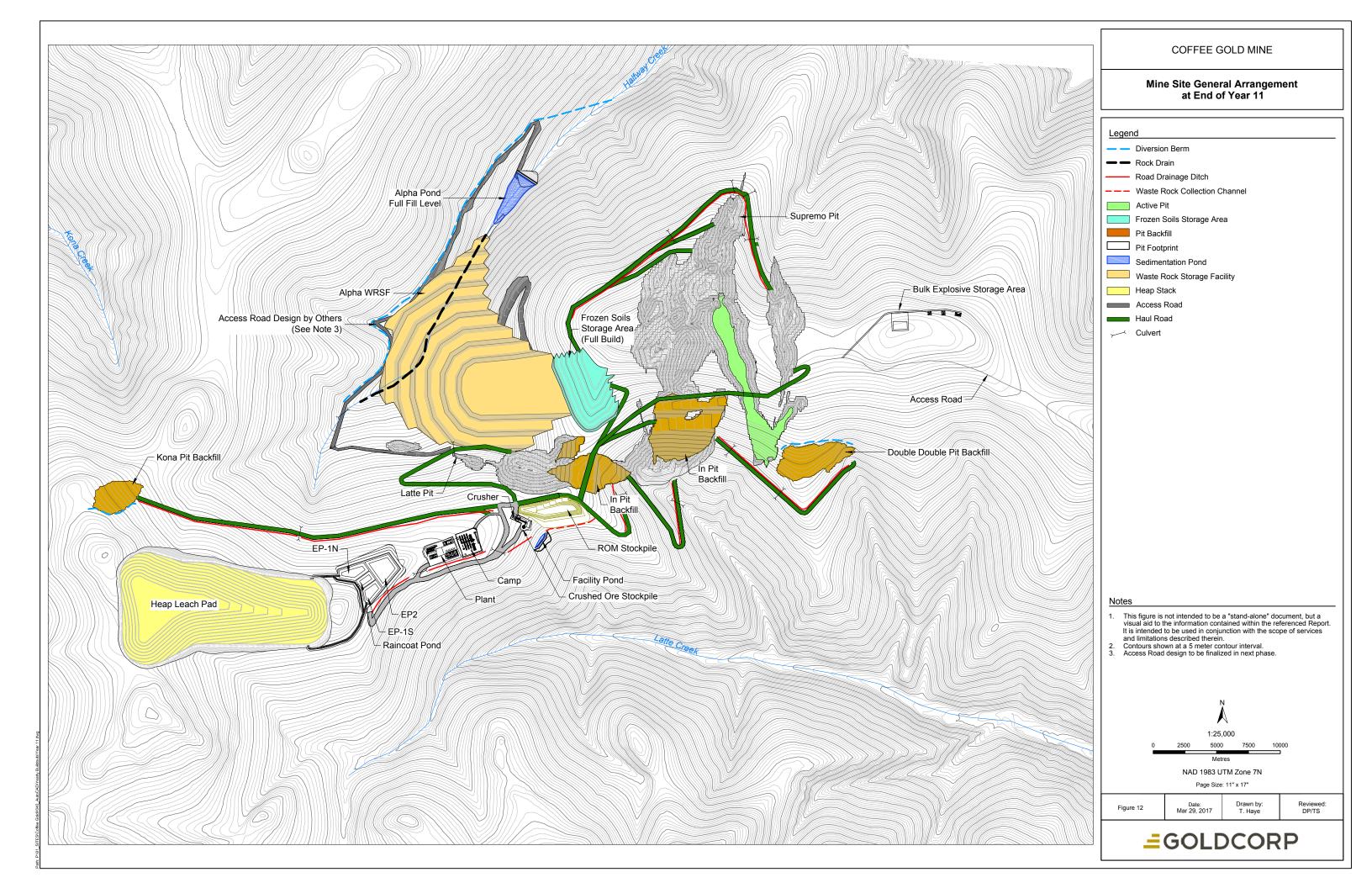



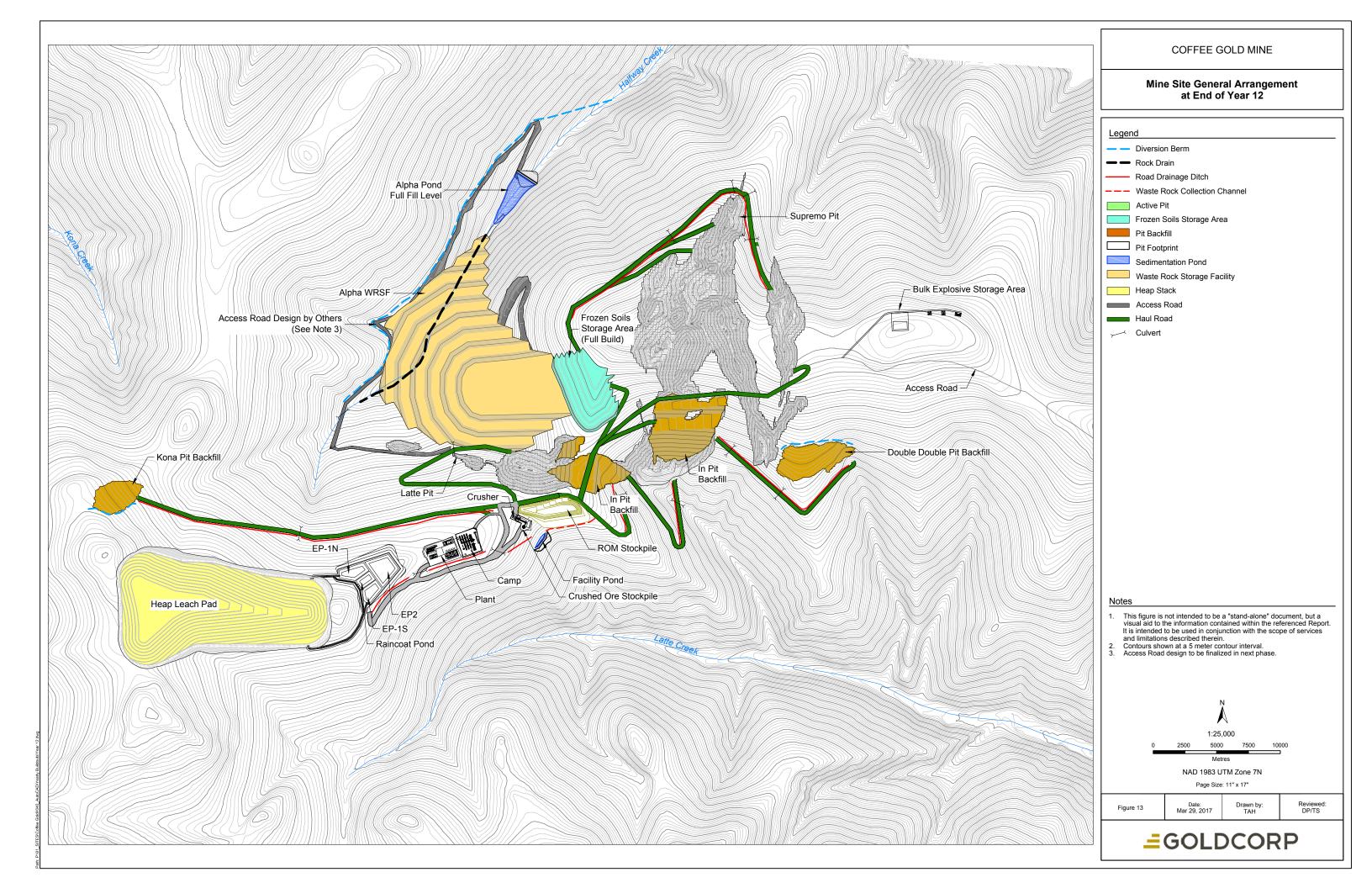




















# Appendix 31-D-II Feasibility Pit Slope Stability Evaluation

## Feasibility Pit Slope Stability Evaluation Coffee Gold Project Yukon Territory, Canada

**Report Prepared for** 

## **Kaminak Gold Corporation**





#### **Report Prepared by**



SRK Consulting (U.S.), Inc. SRK Project Number 338600.020 March 11, 2016

## Feasibility Pit Slope Stability Evaluation Coffee Gold Project Yukon Territory, Canada

## **Kaminak Gold Corporation**

1020 – 800 West Pender Street Vancouver, B.C. V6C 2V6 Canada

#### SRK Consulting (U.S.), Inc.

1125 Seventeenth Street, Suite 600 Denver, CO 80202

e-mail: denver@srk.com website: www.srk.com

Tel: +1.303.985.1333 Fax: +1.303.985.9947

#### SRK Project Number 338600.020

March 11, 2016

#### **Authors:**

Felipe González, Senior Consultant (Rock Mechanics) Michael Levy, P.E., P.G., Principal Consultant (Geotechnical)

#### Reviewed by:

John Tinucci, P.E., Ph.D., Practice Leader, Principal Consultant (Geotechnical)

## **Table of Contents**

| Ex | ecui                               | tive Summary                                           | 2  |
|----|------------------------------------|--------------------------------------------------------|----|
| 1  | Intr                               | oduction and Scope of Work                             | 6  |
|    | 1.1                                | Project Background                                     | 6  |
|    | 1.2                                | Program Objectives                                     | 6  |
|    | 1.3                                | Work Program                                           | 7  |
| 2  | Ged                                | ologic Setting                                         | 8  |
|    | 2.1                                | Property Geology                                       | 8  |
|    | 2.2                                | Site Structural Geology                                | 10 |
| 3  | Fie                                | ld Data Collection Program                             | 12 |
|    | 3.1                                | Geomechanical Core Logging                             | 13 |
|    | 3.2                                | Point Load Testing                                     | 13 |
|    | 3.3                                | Orientation of Discontinuities                         | 14 |
|    | 3.4                                | Data Consistency                                       | 15 |
| 4  | Lab                                | ooratory Testing Program                               | 16 |
|    | 4.1                                | Unconfined Compressive Strength and Elastic Properties | 16 |
|    | 4.2                                | Indirect Tensile Strength Testing                      | 17 |
|    | 4.3                                | Direct Shear Strength Testing                          | 17 |
|    | 4.4                                | Unit Weight                                            | 18 |
| 5  | Roo                                | ck Mass Characterization                               | 19 |
|    | 5.1                                | Rock Mass Classification                               | 19 |
|    | 5.2                                | Intact Rock Strength                                   | 20 |
|    | 5.3                                | Rock Mass Shear Strength                               | 20 |
| 6  | Geomechanical-Structural Domaining |                                                        |    |
|    | 6.1                                | Drillhole Information                                  | 23 |
|    | 6.2                                | Structural Domains                                     | 24 |
| 7  | Bench Design Analyses              |                                                        |    |
|    | 7.1                                | Terminology                                            | 28 |
|    | 7.2                                | Kinematic Assessment                                   | 29 |
|    | 7.3                                | Bench Design Methodology                               | 31 |
|    | 7.4                                | Model Inputs and Assumptions                           | 32 |
|    | 7.5                                | Bench Modeling Results                                 | 33 |
| 8  | Inte                               | erramp/Overall Slope Stability Analyses                | 40 |
|    | 8.1                                | Slope Stability Sections                               | 40 |
|    | 8.2                                | Methodology                                            | 41 |

| 8.3 Geomechanical Parameters                                                   | 41 |
|--------------------------------------------------------------------------------|----|
| 8.4 Results of Interramp/Overall Stability Analysis                            |    |
| 9 Pit Slope Design Recommendations                                             |    |
| 10 Assessment of Future Geomechanical Work                                     |    |
| 11 Closure                                                                     |    |
| 12 References                                                                  |    |
| Disclaimer                                                                     |    |
| Copyright                                                                      |    |
|                                                                                |    |
| List of Tables                                                                 |    |
| Table 1: Summary of Rock Mass Characteristics                                  | 2  |
| Table 2-1: Main Rock Units in the Coffee Gold Project Area                     | 10 |
| Table 2-2: Tectonic Events at Coffee                                           | 10 |
| Table 3-1: Summary of Geomechanical Drillholes                                 | 12 |
| Table 3-2: Summary of Point Load Test Results                                  | 14 |
| Table 3-3: Summary of Discontinuity Orientation                                | 14 |
| Table 4-1: Average Intact Rock Properties Derived from Laboratory Test Results | 17 |
| Table 4-2: Summary of Laboratory Direct Shear Results                          | 18 |
| Table 5-1: Summary of Rock Mass Characteristics                                | 19 |
| Table 5-2: Average Rock Mass Properties by Lithological Units                  | 22 |
| Table 6-1: Total Number of Drillholes used for Structural Domaining            | 23 |
| Table 6-2: Summary of Discontinuity Sets per Domain                            | 26 |
| Table 7-1: Summary of Input Parameters per Geomechanical-Structural Domain     | 33 |
| Table 7-2: SBlock Analysis Result for the Kona and Double Double Pits          | 35 |
| Table 7-3: SBlock Analysis Result for the Latte Pit                            | 36 |
| Table 7-4: SBlock Analysis Result for the Supremo Pit, East Domain             | 37 |
| Table 7-5: SBlock Analysis Result for the Supremo Pit, West Domain             | 38 |
| Table 8-1: Results of Overall/Interramp Slope Stability Modeling               | 42 |
| Table 9-1: Recommended Pit Slope Design Parameters                             | 43 |
| List of Figures                                                                |    |
| Figure 1: Pit Slope Design Recommendations                                     | 4  |
| Figure 2-1: Geology in the Supremo, Latte, Double Double, and Kona Areas       |    |
| Figure 3-1: Location of Geomechanical Drillholes                               |    |
| Figure 3-2: Correlation of RQD and FF/m for all holes combined                 | 15 |

| Figure 5-2: Distribution of Primary Lithology Types                                      | 20 |
|------------------------------------------------------------------------------------------|----|
| Figure 6-1: Distribution of the Oriented Drillholes used for Structural Analysis         | 23 |
| Figure 6-2: Estimated Structural Domains                                                 | 25 |
| Figure 6-3: Example Histograms of Discontinuity Spacing                                  | 27 |
| Figure 7-1: Pit Slope Design Components                                                  | 29 |
| Figure 7-2: Summary of Kinematic Analysis Results for Kona, Latte and Double Double Pits | 30 |
| Figure 7-3: Summary of Kinematic Analysis Results for Supremo Pit                        | 31 |
| Figure 7-4: Explanation of Bench Design Terminology                                      | 34 |
| Figure 8-1: Location of Critical Slope Stability Cross Sections                          | 40 |
| Figure 9-1: Pit Slope Design Recommendations                                             | 43 |

# **Appendices**

Appendix A: Geomechanical Core Logs

Appendix B: Core Fracture Frequency Analysis

Appendix C: Laboratory Test Results

Appendix D: Intact Rock Strength Envelopes

Appendix E: GSI Histograms

Appendix F: Drillhole Stereonets

Appendix G: Structural Domain Analyses

Appendix H: Discontinuity Spacing Histograms

Appendix I: Kinematic Analyses

Appendix J: Interramp/Overall Stability Analyses

# **List of Abbreviations**

The metric system has been used throughout this report. Tonnes are metric of 1,000 kg, or 2,204.6 lb.

| Abbreviation      | Unit or Term                                                 |  |  |  |
|-------------------|--------------------------------------------------------------|--|--|--|
| 2D                | two-dimensional                                              |  |  |  |
| 3D                | three-dimensional                                            |  |  |  |
| 0                 | degree (degrees)                                             |  |  |  |
| ASTM              | American Society for Testing and Materials                   |  |  |  |
| bgs               | below ground surface                                         |  |  |  |
| cm/sec            | centimeter per second                                        |  |  |  |
| cm <sup>3</sup>   | cubic centimeter                                             |  |  |  |
| FOS               | factor of safety                                             |  |  |  |
| FF/m              | fracture frequency per meter                                 |  |  |  |
| GSI               | geologic strength index                                      |  |  |  |
| Jc                | joint condition (according to the Bieniawski 1989 system)    |  |  |  |
| K                 | hydraulic conductivity (cm/sec)                              |  |  |  |
| kg/m <sup>3</sup> | kilogram per cubic meter                                     |  |  |  |
| km                | kilometer                                                    |  |  |  |
| kN/m <sup>3</sup> | kilonewton per cubic meter                                   |  |  |  |
| kPa               | kilopascal                                                   |  |  |  |
| m                 | meter                                                        |  |  |  |
| m <sup>2</sup>    | square meter                                                 |  |  |  |
| m <sup>3</sup>    | cubic meter                                                  |  |  |  |
| Ма                | million years                                                |  |  |  |
| MPa               | megapascal                                                   |  |  |  |
| Mt                | million tonnes                                               |  |  |  |
| OZ                | ounce                                                        |  |  |  |
| PLT               | point load test                                              |  |  |  |
| %                 | percent                                                      |  |  |  |
| RQD               | rock quality designation                                     |  |  |  |
| RMR               | rock mass rating (according to the Bieniawski 1989 criteria) |  |  |  |
| t                 | tonne                                                        |  |  |  |
| t/d               | tonnes per day                                               |  |  |  |
| UCS               | uniaxial compressive strength                                |  |  |  |

# **Executive Summary**

SRK Consulting (U.S.), Inc. (SRK) was retained by Kaminak Gold Corporation (Kaminak) to carry out a feasibility-level Pit Slope Stability Evaluation for Kaminak's wholly owned Coffee Gold Project located in west-central Yukon Territory, Canada. The purpose of the evaluation was to develop recommendations for pit slope design parameters and architecture for the Feasibility Study mine planning. As commissioned, the work was conducted to a feasibility level of accuracy and in accordance with NI43-101 guidelines.

#### **Geomechanical Characterization**

A field data collection program was designed with the primary objective of rock mass characterization and discontinuity orientation to serve as the basis of geomechanical model development. The program was designed to fill characterization gaps that were identified in Kaminak's existing geomechanical database, which consisted of data collected on select resource drillholes. The 2015 field data collection consisted of geomechanical core logging and discontinuity orientation, point load testing and laboratory rock strength testing. A total of six HQ diameter core holes were logged and tested between the four deposits for a total of 833 m in length.

Results of the geomechanical characterization program suggest that, with the exception of the oxide materials which will be mostly mined and processed, the rock mass at Coffee project is generally of good geomechanical quality. Table 1 contains a summary of rock mass characteristics derived from the 2015 geomechanical drilling program for each of the three primary lithology types at Coffee.

**Table 1: Summary of Rock Mass Characteristics** 

| Lithology | Pit                        | Average UCS <sup>1</sup><br>(MPa) | No. Valid<br>UCS <sup>1</sup> Tests | Average RMR <sub>89</sub> <sup>2</sup> | Average RQD <sup>3</sup> (%) | Total Core<br>Length (m) |
|-----------|----------------------------|-----------------------------------|-------------------------------------|----------------------------------------|------------------------------|--------------------------|
| Gneiss    | Supremo &<br>Double Double | 90                                | 9                                   | 64                                     | 81                           | 515                      |
| Schist    | Latte                      | 94                                | 4                                   | 64                                     | 87                           | 227                      |
| Granite   | Kona                       | 130                               | 2                                   | 76                                     | 95                           | 96                       |

<sup>&</sup>lt;sup>1</sup> "UCS" = Uniaxial Compressive Strength

#### **Slope Stability Analyses**

SRK evaluated both global and bench scale stability for the proposed open pits, where global failure is defined as one that occurs relatively deep through the rock mass and is of sufficient scale to impact high interramp and/or overall slopes. Bench scale failures typically involve only one or two bench levels and can be described as block or wedge type failures involving the translation of a block of rock delineated by one or more structural features, such as minor discontinuities or faults.

Given the overall good rock mass quality anticipated to comprise the pit walls at Coffee, the bench configuration was analyzed first to determine the maximum achievable bench face angle based on geologic structure alone. Bench scale and lower interramp slopes are most realistically assessed using stochastic models that evaluate structurally controlled failure mechanisms. This was accomplished using the software program SBlock (Esterhuizen, 2004) as well as SRK statistical programs compiled using functions available in Oracle's Crystal Ball statistical add-on to Microsoft Excel. A maximum probability of failure of 30% was used as the acceptability criteria for SBlock analyses.

<sup>&</sup>lt;sup>2</sup> "RMR" = Rock Mass Rating

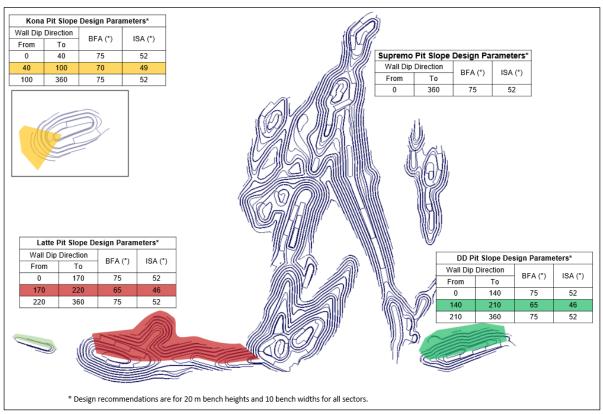
<sup>&</sup>lt;sup>3</sup> "RQD" = Rock Quality Designation

The following was concluded from the analyses:

- Benches at Supremo are not anticipated to be significantly impacted by structurally controlled instabilities due to the north-south orientation of the pit. As such, a maximum achievable bench face of 75° was estimated for Supremo based on operational constraints as discussed below;
- The stability of benches on the north Latte and Double Double pit walls will likely be controlled by the dominant southerly (inward) dipping foliation discontinuities. The analyses indicate a maximum achievable bench face angle of approximately 65° for their north walls. Stability of the south and end pit wall benches are not anticipated to be governed by geologic structure controls and were, therefore, estimated to have a maximum achievable bench face of 75° based on operational considerations; and
- Benches on the west Kona pit wall have a slightly higher probability of structurally controlled instabilities fostered by a moderately east (inward) dipping joint set. The analyses indicate a maximum bench face angle of approximately 70° is achievable for this portion of the pit. The remaining pit areas are not anticipated to be significantly impacted by geologic structure controlled instabilities. A maximum achievable bench face of 75° was estimated for the remainder of the pit based on operational constraints.

It should be noted that the bench stability analyses are based solely on orientations of geologic structure and do not directly consider effects of weathering, alteration, blasting or excavation techniques. Depending on the quality of blasting and excavation techniques, achievable bench face angles might be somewhat reduced from the theoretical angles determined by these analyses due to these effects. When taking these operational effects into consideration, it is rare to achieve bench face angles greater than about 75° unless there are steeper structures controlling the bench geometry. Increasing bench face angles to greater than about 75° may be achievable but usually requires more rigorous drilling and blasting effort and specialized controlled blasting techniques than are commonly practiced.

Bench configurations and the resulting maximum interramp slope design parameters were provided by SRK based on the conclusion of the bench design analyses. These parameters were incorporated into an initial detailed pit design by JDS which incorporated the necessary ramps and infrastructure. Stability of the overall slopes in the detailed design was then confirmed using the limit equilibrium slope stability modeling software package, Slide (Rocscience, 2015b). Rock mass shear strengths were developed for each rock type based on the results of the field and laboratory test work assuming the Hoek-Brown (Hoek, et al., 2002) rock mass shear strength criteria. Several variations of rock mass strengths were evaluated for each cross section to investigate the amount of influence different joint lengths may have on the overall rock mass strength. Results of the overall slope stability analyses for the bench configuration based slope angles indicated safety factors between 1.3 and 2.4 which either meet or exceed the minimum acceptable safety factor of 1.3.


#### Pit Slope Design Recommendations

The resulting geomechanical pit slope design recommendations are shown in Figure 1. The recommendations in Figure 1 are based on dip direction of the pit wall (e.g. for an east-west trending wall, facing south, the slope dip direction would be 180° azimuth).

A 75° bench face angle is recommended for the Latte and Double Double south walls as well as the Supremo pit and a majority of Kona based on the dip and dip directions of the structures relative to the slope orientation. The geomechanical advantage of the 75° bench face angle is improved rockfall

control based on the anticipation that the 75° face angle can be successfully achieved without requiring exceptional care in excavation practices. It is recommended that trials in non-critical areas of the pit be implemented in order to determine the necessary operational requirements to achieve this design.

Double benching is recommended as being more favorable in fresh, competent rock. The double (20 m total height) benching will permit the incorporation of more adequately-sized berms for rockfall control, provided the drilling and, to a greater extent, blasting practices meet best practice standards, thereby reducing the number of crests and toes that are subject to potential damage.



BFA = Bench Face Angle (°), ISA = Interramp slope angle (°)

Figure 1: Pit Slope Design Recommendations

#### **Recommendations for Additional Geomechanical Work**

A thorough geological and geomechanical bench face mapping program should be undertaken beginning in the early stages of development to verify that the geologic structural conditions encountered are consistent with the assumptions and estimates used in the analyses, and to identify local variations in structural conditions that might increase the risk of localized instabilities. The data collection should concentrate on developing geomechnical databases that will facilitate further refinement of the bench design and optimization of interramp and overall slope angles. Particularly important information will include discontinuity persistence, spacing and variations in orientation as well as assessments of blast performance.

As part of the geologic mapping program, any significant structures or fault zones encountered should be mapped and digitized electronically in 3D and incorporated into the 3D fault model. This will allow projection of such structures to future pit slopes, highlighting areas of potentially instability and allow refinements to the slope design, if necessary. The accurate orientation and projection of fault structures is difficult based strictly on core drilling unless the structures cause a significant offset in mineralization or a marker horizon is present. As such, the identification, mapping and analysis of fault structures of identified in pit walls will be a necessary and ongoing process during pit development.

A slope monitoring program should be designed to ensure that the slopes are behaving as anticipated and warn if significant movements occur. The monitoring program should include a network of survey prisms monitored and analyzed regularly.

# 1 Introduction and Scope of Work

SRK Consulting (U.S.), Inc. (SRK) was retained by Kaminak Gold Corporation (Kaminak) to carry out a feasibility-level Pit Slope Stability Evaluation for Kaminak's wholly owned Coffee Gold Project located in west-central Yukon Territory, Canada. The purpose of the evaluation was to develop recommendations for pit slope design parameters and architecture for the Feasibility Study mine planning.

### 1.1 Project Background

The Coffee Gold project is located in the White Gold district, approximately 130 km south of Dawson City and 85 km east of the Alaskan border near the confluence of White and Yukon Rivers. The area consists of low mountainous terrain with steep valleys and rounded ridges, typical of central Yukon. The elevation of the mine site is approximately 1,300 m above sea level.

The project is comprised of four separate open pits, three permanent waste rock storage facilities, a heap leach pad and supporting infrastructure facilities and roadways. The development is primarily located on a central ridge line between Halfway Creek and Latte Creek, with limited impacts beyond the slope of the ridgeline. The footprints of the three proposed waste rocks storage facilities (WRSF) (the North, South and West WRSF) along with the location of the open pits, heap leach pad and mine infrastructure are shown on Figure 1.

The proposed mine will operate over an initial ten year mine-life, including the initial year of preproduction, with average annual gold production in excess of 200,000 oz for the first five years and average annual life-of-mine gold production of 184,000 oz. The Feasibility Study proposes four open pits mined by conventional shovel and truck methods at a nominal ore mining rate of 5 million tonnes per annum for approximately ten years.

A total of 312 Mt of material will be mined to produce 46.4 Mt of ore (5.7:1 strip ratio). Of the approximately 265.6 Mt of waste rock, 216 Mt (82%) will be placed in three engineered WRSFs proximal to the pits from which the waste is sourced. The approximately 3 Mt of waste rock from the Kona pit will be placed in a temporary waste rock facility adjacent to the pit during mining and then backfilled into the mined-out Kona pit due to the geochemical characteristics of the exposed pit walls. The remaining approximately 46.6 Mt of waste rock will be backfilled into mined-out pits at Latte, Supremo and Double Double in order to create causeways and facilitate ore haulage routes to the crusher.

Open pit mining operations will use a fleet comprising industry-standard 16  $\text{m}^3$  hydraulic shovels, 12  $\text{m}^3$  front-end loaders, 4  $\text{m}^3$  excavators, and 144 t haul trucks. This fleet will be supplemented by appropriately sized drills, graders, and dozers. The fleet results in a design ramp width of 27 m.

# 1.2 Program Objectives

The primary objectives of the pit slope stability evaluation for the Coffee project were:

- To collect geomechanical information pertaining to the in-situ materials at a level appropriate for a feasibility-level evaluation;
- To characterize geomechanical conditions in and around the area of the proposed open pits;

- To undertake laboratory testing of material samples to ascertain geomechanical properties of representative samples of the in-situ materials;
- To develop geomechanical models to serve as the basis for slope stability modeling;
- To conduct slope stability analyses for bench and overall/interramp slopes; and
- Based upon the results of those analyses, to formulate recommendations pertaining to geomechanically optimal slope configurations and pit architecture for mine design purposes.

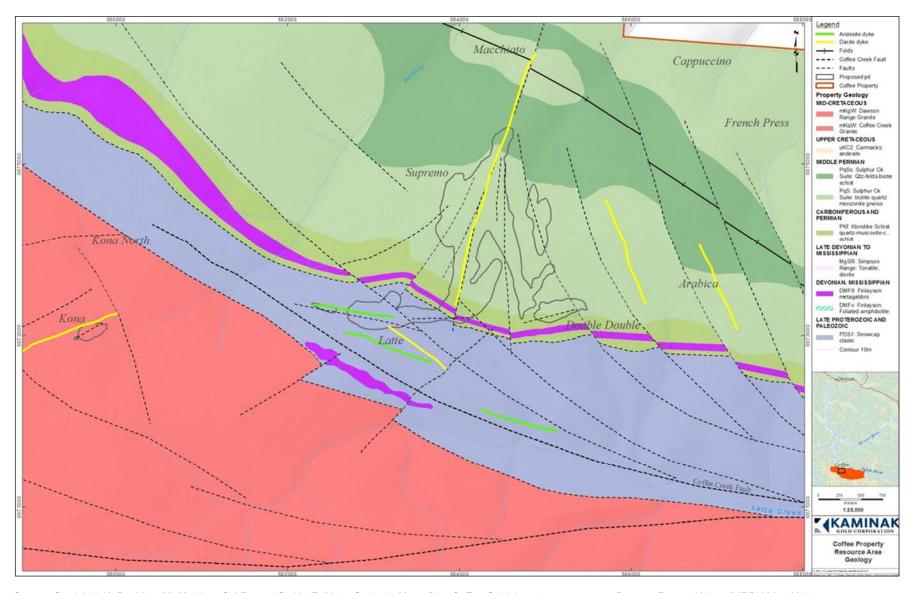
### 1.3 Work Program

The principle stages of the geotechnical work program were:

- Recommendation of the number, location and orientation of core holes believed to be appropriate for a feasibility-level characterization of in-situ materials in the open pit areas;
- Geomechanical core logging, point load testing and orientation of discontinuities intersecting core recovered from the drillholes;
- Selection of representative drill core samples for laboratory geomechanical testing from the lithologic units encountered in the geomechanical drilling;
- Submission of the representative samples to a geomechanical laboratory for testing and management of the laboratory program;
- Analyses and interpretation of the geomechanical data and laboratory test results to produce a comprehensive analytical model of in-situ properties for the area including and adjacent to the four pits;
- Modeling of the anticipated behavior of the geomechanical model relative to expected mininginduced stresses, through the use of appropriate analytical methodologies;
- Formulation of recommendations for pit slope design parameters; and
- Compilation of a feasibility-level Pit Slope Stability Evaluation report incorporating recommendations pertaining to geomechanically optimal pit slope configurations and pit architecture for feasibility mine planning purposes.

# 2 Geologic Setting

The following summary has been reproduced from Section 7 of the JDS (2016) NI 43-101 Feasibility Study Technical Report for the Coffee Gold Project.


## 2.1 Property Geology

The Coffee Project area is underlain by a package of metamorphosed Paleozoic rocks of the YTT that was intruded by a large granitic body in the Late Cretaceous. The Paleozoic rock package consists of a mafic schistose to gneissic panel which overlies the Sulphur Creek orthogneiss. Both packages form the southwestern limb of a northwest-trending antiformal fold with limbs dipping shallowly to the northeast and southwest.

The schistose and gneissic mafic rock package comprises a thick panel of biotite (+ feldspar + quartz + muscovite  $\pm$  carbonate) schist with rare lenses of amphibolite which overlies a panel of amphibolite and metagabbro with arc-derived geochemical signatures. Within the schistose panel, slices of 20 m thick serpentinized ultramafic are in tectonic contact with the surrounding rocks. This rock sequence overlies the augen orthogneiss. These rocks are in contact to the southwest with the 98.2  $\pm$  1.3 Ma Coffee Creek granite. Both the Paleozoic metamorphic rocks and Cretaceous granite are cut by intermediate to felsic dykes of andesitic to dacitic composition.

Due to only rare outcrop exposure on the property (<5%), the geological map (Figure 2-1) has been compiled from a combination of geological traverses, bedrock mapping, borehole data, soil geochemistry, and geophysics (magnetic and radiometric).

The magnesium number from soil samples (Mg# = Mg/Mg+Fe) was used to discern mafic from felsic units with the granite being the most felsic, followed by the felsic gneiss. The mafic schist unit was further subdivided into felsic-intermediate schist, biotite schist, amphibolite, and ultramafic rocks (Table 2-1).



Source: Grodzicki, K. R., Allan, M. M., Hart, C.J.R., and Smith, T. 2015. Geologic Map of the Coffee Gold deposit area, western Dawson Range, Yukon (MDRU Map M-9):

Figure 2-1: Geology in the Supremo, Latte, Double Double, and Kona Areas

Table 2-1: Main Rock Units in the Coffee Gold Project Area

| Rock Unit              | Description                                                                                                                                                                                                                         |
|------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Felsic Gneiss          | Variable quartz + feldspar augen + biotite + muscovite. Typical Mg# 2-28. Low in potassium. Host to gold mineralized zones at Supremo.                                                                                              |
| Biotite Schist         | Biotite+/-feldspar+/-quartz+/-muscovite+/- amphibole. Commonly carbonate-rich. High in potassium. Typical Mg# 20 - 40. Locally mylonitic. Host to gold mineralized zones at Latte.                                                  |
| Muscovite Schist       | Mainly quartz + muscovite. Typical Mg# 10 - 20. Locally mylonitic.                                                                                                                                                                  |
| Biotite Amphibolite    | Amphibole + feldspar + biotite. Typical Mg# 20 -40. Biotite and amphibole both Fe-rich. Contains up to 20% biotite.                                                                                                                 |
| Amphibolite            | Found within the lower mafic footwall. Amphibole + feldspar ± biotite. Typical Mg# 30-50, biotite and amphibole more Mg rich than biotite amphibolite. Contains up to 15% biotite.                                                  |
| Metagabbro/Amphibolite | Interleaved metagabbro with coarse magnesiohornblende + feldspar, and fine-<br>grained, massive amphibolite with >95% magnesiohornblende. Moderate to<br>strong retrogression to actinolite. High Mg content of biotite, amphibole. |
| Ultramafics            | Serpentinite, pyroxenite or listwaenite. Typical Mg# 50 - 73, higher than all amphibolites and metagabbro. Very high in chromium and nickel.                                                                                        |
| Granite                | Coffee Creek granite and Dawson Range batholith. Both are phases of the Whitehorse Plutonic suite and are uranium-rich. Dawson Range batholith higher in Thorium. Both are identifiable using airborne radiometrics.                |
| Dacite Dykes           | Quartz + feldspar phenocryst porphyry. Generally strongly silicified and sericitized. Strong spatial association with mineralized gold zones.                                                                                       |
| Andesite Dykes         | Feldspar phenocrystic. Aphanitic in gold-bearing structures where all original textures are destroyed by intense silicification and sericitization. Strong spatial association with mineralized gold zones                          |

Source: JDS (2016) NI 43-101 Feasibility Study Technical Report for the Coffee Gold Project

## 2.2 Site Structural Geology

Rocks at the Coffee Project were deformed by a series of three YTT-wide tectonic events (Table 2-2). Gold mineralization at Coffee occurred during the Cretaceous event.

Table 2-2: Tectonic Events at Coffee

| Event                   | Age                  | Structures                 | Mineralization                      |
|-------------------------|----------------------|----------------------------|-------------------------------------|
| Extension               | Cretaceous           | Brittle Fractures          | Main Coffee Gold mineralization     |
| Extension               | Cretaceous           | Dextral normal faults      | Main Conee Gold Milleralization     |
|                         | Jurassic             | East-west shears and       | Quartz voining pariaita             |
| YTT-Laurentia Collision |                      | thrust faults              | Quartz veining, sericite alteration |
|                         |                      | Slices of ultramafic rocks | alleration                          |
| Klondike Orogeny        | Pre- to late-Permian | Metamorphic gneissosity    |                                     |
| Rioridike Orogeriy      | Pre- to late-Permian | and schistosity            |                                     |

Source: JDS (2016) NI 43-101 Feasibility Study Technical Report for the Coffee Gold Project

#### **Metamorphic Foliation**

Gneissose and schistose metasedimentary rocks at Coffee contain a shallowly-to-moderately southwest dipping penetrative cleavage (S2 foliation of Berman et al. (2007). The foliation becomes steeper-dipping to the south. Structural data collected from oriented drill core show the following average orientations:

- Supremo: 20° to 40° dip to the south-southwest (190° to 230°);
- Latte: 35° to 55° dip to the south-southwest (180° to 210°); and
- Double Double: 35° to 65° dip to the south-southwest (170° to 200°).

#### **Jurassic Shearing**

As the YTT-Laurentia collision continued and the Slide Mountain Ocean was completely closed, the rocks in the Coffee area developed roughly east-west brittle-ductile shears and younger rocks were thrust north over older rocks. This deformation corresponds to the D3 deformation of Berman et al., 2007. This deformation is best seen in the more mafic rocks of the southern schistose panel where intervals of mylonitic rocks are traceable between multiple sections.

#### **Brittle Fracturing and Faulting**

Following post-collision uplift and erosion in the YTT, steep-to-vertical brittle fractures and normal faulting affected all lithologies at Coffee. These brittle structures are the hosts to gold mineralization at Coffee. This deformation corresponds to the D5 deformation of Berman et al. (2007). The faults and fractures are splays of the regional Big Creek fault to the southeast of the property. The faults may have locally followed pre-existing Jurassic shear zones. The faults both deflect along the northern edge of the Coffee Creek granite and cut the granite and therefore are syn-to-post granite emplacement (~98 Ma). Younger dacite and andesite dykes intruded into these brittle fractures.

Gold mineralized structures comprise strike-extensive planar zones exhibiting a continuum of deformation intensity from crackle breccia/stockwork fracture systems through to polyphaser high-energy matrix-supported breccias with intensely altered and reworked clasts. Individual mineralized structures exhibit localized flexures, anastomosing patterns and pinch and swell geometries over scales of tens to hundreds of meters. Overall however, gold mineralization, accompanied by elevated arsenic and antimony, wallrock alteration, deformation intensity, the presence of sub-parallel premineralization dykes, and post-mineral oxidation in the upper 0 to 300 m below surface, display continuity over hundreds of meters in strike and dip, and over 2 km along strike at Supremo T3 and Latte.

Structural measurements of vein orientations and deformation fabrics from oriented drill core provide hard evidence on the structural geometries, but are often not available in the mineralized zones due to the disaggregated nature of fractured and often clay-altered core. Where intact core is able to be measured, various structural fabrics from within mineralized zones are used to measure local orientation of mineralization and guide 3D geometric interpretation of mineralization on section and from section to section. Fabrics measured include the dominant fracture orientation, internal fracture or shear fabric, breccia margin, and vein or dyke margin orientation.

The planar gold mineralized zones at Coffee exhibit a number of strike orientations, dominated by east-west, north-south and east-northeast—west-southwest strike directions. Structures typically have sub-vertical dip, with the exception of western Latte which dips 60° to 70° south.

# 3 Field Data Collection Program

A field data collection program was designed with the primary objective of rock mass characterization and discontinuity orientation to serve as the basis of geomechanical model development. The program was designed to fill characterization gaps that were identified in Kaminak's existing geomechanical database which consists of data collected on select resource drillholes. The 2015 field data collection consisted of geomechanical core logging and discontinuity orientation, point load testing and laboratory rock strength testing. A total of 6 HQ diameter core holes were logged and tested between the four deposits for a total of 956 m in length.

Collar locations and drillhole azimuths of the six geomechanical specific drillholes are summarized in Table 3-1 and are presented on Figure 3-1.

**Table 3-1: Summary of Geomechanical Drillholes** 

| Hole ID    | Kaminak<br>Hole ID | Deposit       | East<br>(UTM) | North<br>(UTM) | Elev.<br>(masl) | Depth<br>(m) | Azi. (°) | Inc. (°) |
|------------|--------------------|---------------|---------------|----------------|-----------------|--------------|----------|----------|
| SRK-15D-01 | CFD0538            | Supremo       | 584411.1      | 6974465        | 1256            | 245          | 90       | -51      |
| SRK-15D-02 | CFD0522            | Supremo       | 584167.8      | 6973424        | 1031            | 215          | 137      | -52      |
| SRK-15D-03 | CFD0518            | Latte         | 583421.1      | 6973227        | 1098            | 110          | 359      | -50      |
| SRK-15D-04 | CFD0508            | Latte         | 582880.7      | 6973203        | 1099            | 152          | 264      | -60      |
| SRK-15D-05 | CFD0534            | Double Double | 585127.3      | 6973328        | 1106            | 134          | 340      | -55      |
| SRK-15D-06 | CFD0545            | Kona          | 579715.5      | 6973046        | 1262            | 100          | 165      | -55      |

Source: Kaminak Gold Corporation

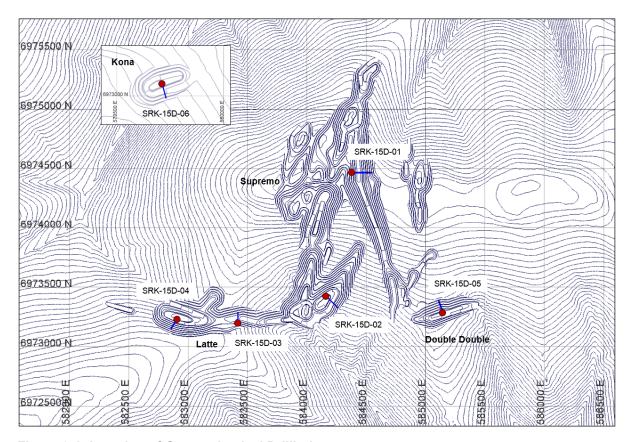



Figure 3-1: Location of Geomechanical Drillholes

## 3.1 Geomechanical Core Logging

Geomechanical logging, field point load testing and orientation of discontinuities intersected by core recovered from a total of six drillholes were conducted to support this investigation. Drilling was carried out using 1.5 m long, HQ3 diameter triple tube core barrels to preserve the in situ condition of the rock to the largest extent possible. To minimize disturbance, core retrieved from the six holes was logged on a 24-hour per day basis, at the rig, in the liners prior to boxing and transporting.

The geomechanical core logging program was designed to provide information pertinent to pit slope stability evaluation, such as geologic contacts, profiles of rock strength, and characterization and frequency of discontinuities. Specific parameters that were logged included:

- General lithology and structures;
- Total core recovery;
- Rock Quality Designation (RQD);
- Rock weathering/alteration and intact strength indices;
- Frequency of discontinuities;
- Discontinuity characteristics (type, roughness, infillings and wall condition);
- Micro-defect intensity and strength; and
- Discontinuity orientation (when possible).

Care was taken to exclude fractures that were caused during drilling and handling as the inclusion of such would unnecessarily lower rock quality classifications. Geomechanical core logs are presented in Appendix A.

During core logging, representative core samples were selected from each drillhole to provide specimens for laboratory strength testing. Samples were collected at approximately 15 m intervals, or when significant rock type or strength changes were apparent. Each sample was sealed and safely stored at the time of collection. Upon completion of the drilling, test samples were shipped to the Agapito Associates Inc. Geomechanical Laboratory in Grand Junction, Colorado and the University of Arizona Rock Mechanics Laboratory in Tucson, Arizona for testing.

Following the completion of geomechanical logging and sampling, each of the six geomechanical drillholes was logged for lithology and alteration by Kaminak geologists to assure the best possible correlation of the geomechanical data with the current Kaminak geologic model.

## 3.2 Point Load Testing

Point load testing provides a quick, inexpensive method of relative strength testing of rock core that can be conducted in the field allowing a large number of tests to be carried out. Although not a precise measurement of rock strength, this method typically provides a more accurate estimation of variability compared to laboratory testing as smaller and weaker samples can be immediately tested at their natural moisture content and without potential disturbance that can occur during shipping.

Point load tests (PLT) were routinely conducted during core logging at a frequency of approximately one test per every 2 to 3 m using a Roctest Pil-7 test machine, thereby providing detailed and nearly continuous profiles of relative rock hardness. In addition to the routine tests, at least one PLT was also conducted on core immediately adjacent above and below each uniaxial compressive strength (UCS) sample obtained for laboratory testing. The pairing of PLT results and UCS samples was undertaken

to permit estimation of a correlation factor for conversion of the field PLT tests to laboratory UCS values. PLTs were conducted according to International Society for Rock Mechanics (ISRM) procedures (ISRM, 1985).

A total of 380 point load tests were conducted on core from the six geomechanical holes; of those, 272 (72%) met test criteria for valid test results. Point load indices ( $Is_{(50)}$ ) were calculated from the field PLT data using the ISRM (1985) suggested method and are summarized for each drillhole and primary rock type in Table 3-2. Only tests considered valid per ISRM standards, i.e., those tests in which the core did not break along pre-existing weakness, were utilized for the analysis.

Table 3-2: Summary of Point Load Test Results

| Hole ID | Primary   | Pit           | No. of Tests |         | PLT Is    | <sub>50)</sub> (MPa) <sup>1</sup> |         |
|---------|-----------|---------------|--------------|---------|-----------|-----------------------------------|---------|
| Hole ID | Lithology | FIL           | NO. OI TESIS | Average | Std. Dev. | Minimum                           | Maximum |
| CFD0538 | Gneiss    | Supremo       | 86           | 5.7     | 2.24      | 0.2                               | 9.2     |
| CFD0522 | Gneiss    | Supremo       | 53           | 4.6     | 2.39      | 0.1                               | 9.1     |
| CFD0518 | Schist    | Latte         | 23           | 1.9     | 1.54      | 0.1                               | 5.3     |
| CFD0508 | Schist    | Latte         | 34           | 2.5     | 1.49      | 0.3                               | 5.7     |
| CFD0534 | Gneiss    | Double Double | 44           | 3.5     | 2.05      | 0.5                               | 8.1     |
| CFD0545 | Granite   | Kona          | 32           | 5.5     | 1.57      | 2.8                               | 8.8     |

<sup>&</sup>lt;sup>1</sup> Excludes breaks where the sample broke along a pre-existing weakness such as healed joints or foliation.

### 3.3 Orientation of Discontinuities

The orientation of discontinuities in each core run was accomplished using the A.C.T. core orientation system manufactured by Reflex Instruments. The depth, alpha angle and beta angle were measured for each discontinuity on all core runs that were successfully oriented. The beta angle, i.e., the angle from the lowest part of the ellipse formed by the intersection of each discontinuity with the core, was measured from the bottom of the core in a clockwise direction when looking down hole. The alpha angle was measured as the maximum angle made by the discontinuity with respect to the core axis.

It was possible to orient a total of 1,581 discontinuities out of the total 2,158 (73%) discontinuities logged for the seven holes, excluding "added" joints where a frequency of 4 joints per 10 cm were added to account for intensely fractured or rubbelized zones where counting of discrete joints was not possible. A summary of discontinuities oriented, by hole, is presented in Table 3-3.

**Table 3-3: Summary of Discontinuity Orientation** 

| Hole ID | Total<br>Length<br>(m) | Total<br>Discontinuities<br>(including added joints) | Total<br>Discontinuities<br>(not including added joints) | Total<br>Discontinuities<br>Oriented | Percentage<br>of Fractures<br>Oriented |
|---------|------------------------|------------------------------------------------------|----------------------------------------------------------|--------------------------------------|----------------------------------------|
| CFD0538 | 245                    | 1,635                                                | 634                                                      | 578                                  | 91%                                    |
| CFD0522 | 215                    | 1,990                                                | 606                                                      | 391                                  | 65%                                    |
| CFD0518 | 110                    | 1,352                                                | 223                                                      | 116                                  | 52%                                    |
| CFD0508 | 152                    | 749                                                  | 268                                                      | 201                                  | 75%                                    |
| CFD0534 | 134                    | 797                                                  | 296                                                      | 188                                  | 64%                                    |
| CFD0545 | 100                    | 274                                                  | 131                                                      | 107                                  | 82%                                    |

In addition to discontinuity orientations obtained from the six geomechanical specific drillholes listed above, Kaminak also oriented a large percentage of the diamond resource drillholes. Additional details regarding the resource drillhole orientation database are contained in SRK, 2013 and Section 6 below.

### 3.4 Data Consistency

The correlation between RQD and FF/m was used as a means of verifying the consistency of the field logging data. The two parameters were plotted against each other for each core run for each of the six geomechanical drillholes. A negative correlation should exist between the two parameters with high RQD values corresponding to low FF/m values and low RQD values corresponding to high FF/m values for a given core run. A plot of FF/m vs. RQD for all six holes combined is contained in Figure 3-2 with plots for each individual hole contained in Appendix B. The theoretical upper and lower-bound limits, as defined by Priest & Hudson (1976), are shown as blue lines in the plots.

As illustrated in Figure 3-2, a majority of the data plots within the theoretical limits and can be considered consistent and reliable. A small percentage of the core runs were logged as having low RQD and low fracture frequencies which are generally inconsistent with each other. These inconsistent values can be verified but, given the small percentage of the overall data that they represent, they are not likely to have a significant impact on the overall analyses.

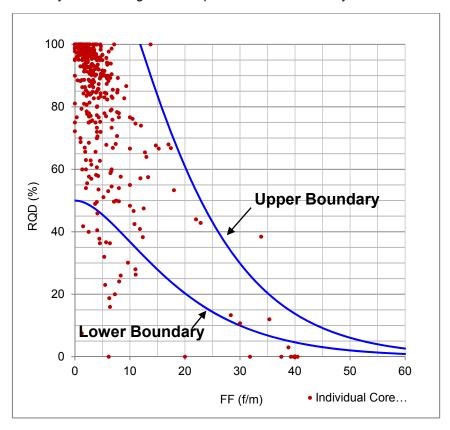



Figure 3-2: Correlation of RQD and FF/m for all holes combined

# 4 Laboratory Testing Program

A total of 73 laboratory tests were performed on core samples selected to represent the range of the rock conditions observed in core from the 2015 geomechanical drillholes. An additional 30 tests were performed on samples obtained in 2013 on resource drill core (SRK, 2013). The overall laboratory program consisted of uniaxial, triaxial and indirect tensile (Brazilian) strength tests, as well as measurements of unit weight and elastic properties carried out by Agapito Associates Inc. located in Grand Junction, Colorado. Direct shear strength testing was carried out on samples with natural joints at the University of Arizona Rock Mechanics Laboratory in Tucson, Arizona. Raw laboratory test data are included in Appendix C.

After completion of the laboratory testing program, before and after photographs of the test samples were forensically reviewed by SRK to confirm validity of test results. The type and quality of break were assessed through the sample photographs taken before and after the individual tests. With the exception of the schist samples, test samples that broke through a pre-existing structure or fabric and not through intact rock were discounted from the analyses. Due to the relatively high number of schist samples that broke along the schistose fabric or foliation, all schist tests were considered in the analysis.

### 4.1 Unconfined Compressive Strength and Elastic Properties

The uniaxial compressive strength (UCS) test is the most commonly used measure of intact rock strength and is one of the primary inputs to basic rock mechanics classifications and strength criteria such as rock mass rating systems and the Hoek-Brown (Hoek, et al., 2002) shear strength criteria, both of which are discussed in detail in Section 5.

UCS testing involves the application of a steadily increasing axial load upon a core sample with a length-to-diameter (L/D) ratio of, ideally, between 2.0 and 2.5. The uniaxial compressive strength of the sample is the applied load that produces failure divided by the cross-sectional area of the core.

For selected UCS tests, strain gauges were applied to the samples to monitor longitudinal and lateral strains produced by the axial loading. The elastic properties are derived from the strain gauge output; specifically, Young's Modulus (E) is the ratio of the vertical stress to the longitudinal strain, while Poisson's Ratio (v) describes the relationship between the lateral strain and the longitudinal strain.

UCS testing was conducted on a total of 30 samples between the 2013 and 2015 drilling programs according to ASTM Method D7012. Elastic properties (Young's Modulus and Poisson's Ratio) were measured for 9 of the 30 UCS samples. The average laboratory UCS test results along with the other laboratory test results are shown by rock type in Table 4-1.

| Lithology | γ<br>(t/m³) | σ <sub>t</sub><br>(MPa) | UCS <sup>1,2</sup><br>(MPa) | E <sub>i</sub> <sup>2</sup><br>(GPa) | ν²       | mi              | σ <sub>ci</sub> <sup>1</sup><br>(MPa) |
|-----------|-------------|-------------------------|-----------------------------|--------------------------------------|----------|-----------------|---------------------------------------|
| Gneiss    | 2.61 (9)    | 11.6 (4)                | 82 (5)                      | 42 (3)                               | 0.25 (3) | 12              | 84                                    |
| Schist    | 2.70 (9)    | 7.9 (7)                 | 47 (3)                      | 27 (2)                               | 0.34(2)  | 12 <sup>4</sup> | 53 <sup>3</sup>                       |
| Granite   | 2.62 (2)    | 9.4 (2)                 | 130 (2)                     | 55 (1)                               | 0.30 (1) | 23              | 130                                   |

Table 4-1: Average Intact Rock Properties Derived from Laboratory Test Results

### 4.2 Indirect Tensile Strength Testing

The indirect tensile strength (Brazilian) test measures the tensile strength of the intact rock by applying pressure to opposite sides of a relatively thin disc sample, similar to a diametral field point load test, but in a controlled laboratory environment. The Brazilian tensile strength (BTS) test results provide some verification of field point load testing values and, in conjunction with UCS data, the determination of the Hoek-Brown (Hoek, et al., 2002) m<sub>i</sub> value as discussed in Sections 5.2 and 5.3.

A total of 19 BTS tests were conducted according to ASTM Method D3967 between the 2013 and 2015 drilling programs. The average laboratory BTS test value are shown by rock type in Table 4-1 along with the other laboratory test results.

### 4.3 Direct Shear Strength Testing

Direct shear testing is commonly used for estimating the expected shear strength along natural rock discontinuities such as joints, bedding or foliation planes and faults. Since the stress levels developed within open pits are usually much lower than the rock substance or intact strength, displacement frequently occurs along pre-existing geologic discontinuities, making the determination of discontinuity shear strength a necessity.

The direct shear test involves the application of a load perpendicular (normal) to a discontinuity separating two intact blocks of rock, with the simultaneous application of a shear load parallel to the discontinuity of sufficient magnitude to induce displacement of the blocks relative to each other. To define the overall shear strength envelope, tests are conducted at three or more normal stresses, with continuous displacement/shear stress data being obtained at each of the normal loads. For each normal load, the peak (maximum) and residual (steady state relative to displacement) shear stresses are recorded, thereby defining the peak and residual shear strengths given a normal stress. The relationship between an applied normal stress and the resulting shear strength defines a point on the shear strength envelope. Peak and residual shear strength envelopes can then be determined from the shear strength/normal stress points using statistical regression methods.

A total of 15 core samples were selected between the 2013 and 2015 drillholes for four-point, small scale direct shear (SSDS) tests in accordance with ASTM Method D5607. Natural fractures preserved in the field were used for all of the direct shear tests. The range of normal stresses applied during testing, approximately 170 to 1,400 kPa, was selected to approximate the in situ stresses that are expected to develop within the slopes.

<sup>1 &</sup>quot;UCS" indicates lab UCS test results while " $\sigma_{ci}$ " represents the intercept of the triaxial strength envelope with the  $\sigma_3$  axis.

<sup>&</sup>lt;sup>2</sup> 82 (5)" indicates an average value of 82 MPa based on a total of 5 valid tests.

<sup>&</sup>lt;sup>3</sup> Value obtained using all Schist laboratory test results including breaks on foliation.

<sup>&</sup>lt;sup>4</sup> Based on published typical values from (Karzulovic 2006).

In order to fit a shear strength envelope to the laboratory data points, a linear or curvilinear regression analysis is typically conducted. For a linear fit, the envelope is presented according to the Mohr-Coulomb, or linear, criterion, i.e., in the form of an angle of internal friction  $(\Phi)$ , which corresponds to the inverse tangent of the slope of the least-squares regression line, and an apparent cohesion (c), which corresponds to the shear strength intercept at zero normal stress. Discontinuity shear strengths derived from the direct shear test program are summarized by rock type and fracture type in Table 4-2. Results of all direct shear tests are summarized in Appendix C on page C-5. Cohesion values listed in Table 4-2 were obtained directly from linear regression analysis of the raw laboratory test data and, in some cases, are considered unrealistically high. Joint strength cohesions were typically reduced to 10 kPa for the subsequent stability analyses as discussed in Section 5.4.

**Table 4-2: Summary of Laboratory Direct Shear Results** 

| Fracture Type    | No. | ф<br>(°) | Cohesion<br>(kPa) |
|------------------|-----|----------|-------------------|
| Schist Foliation | 5   | 32       | 35                |
| Gneiss Foliation | 4   | 31       | 47                |
| Gneiss Joint     | 4   | 32       | 60                |
| Schist Joint     | 1   | 29       | 53                |
| Granite Joint    | 1   | 38       | 53                |

## 4.4 Unit Weight

The unit weight or density of each material type is required for slope stability modeling as both the resisting and driving forces of potential instabilities are functions of weight (or stress). Prior to actual testing of rock core samples, sample dimensions and weights were measured and used to calculate total unit weights for each sample. The combined data set included 30 measurements ranging from 25.0 to 28.3 kN/m³ with a mean value of 26.0 kN/m³, for all samples. The average unit weights for each rock type are summarized in Table 4-1 along with the previously discussed intact rock properties.

## 5 Rock Mass Characterization

Following the completion of the 2015 geomechanical drilling and laboratory testing programs, the data was compiled with the previous geomechanical data to form a complete database for analysis. The geomechanical properties were first analyzed by primary rock types for each drillhole and then similar rock types and areas were combined to form domains or units of similar geomechanical quality.

### 5.1 Rock Mass Classification

Core logging and laboratory test data obtained from the 2015 geomechanical drillholes was used for empirical rock mass characterization according to the Bieniawski (1989) Rock Mass Rating (RMR) system. The RMR system consists of five primary parameters: unconfined compressive strength (UCS), rock quality designation (RQD), discontinuity spacing, joint conditions (Jc) and groundwater. Dry conditions were assumed for the RMR calculations as groundwater pressures are commonly accounted for during slope stability analysis using effective stress type analyses. Similarly, the RMR values were not discounted for adverse joint set orientations joint orientations. The RMR values, with the maximum possible (or most competent rock mass) being 100 for each run, are displayed on the geomechanical core logs presented in Appendix A.

Overall, RMR characterization provides a useful starting point for determining trends in overall rock mass quality and delineating geomechanical domain. However, it is important to note that when combining or averaging the individual RMR parameters over a distance such as a core run interval, important small-scale details such as weak features in the core can become obscured or hidden by the overall RMR value calculated for the interval. For this reason it is important that major structures or weak features observed in the core are logged and analyzed independent of the combined RMR data as was done for the geomechanical drillholes.

Results of the rock mass characterization program suggest that, with the exception of the oxide materials which will be mostly mined and processed, the rock mass at Coffee is generally of good geomechanical quality. Table 5-1 contains a summary of rock mass characteristic data derived from the 2015 geomechanical drilling program for each of the three primary lithology types at Coffee. As shown in Figure 3-1, all five of the 2015 geomechanical drillholes were drilled into the final pit walls. The distribution of the three primary rock types is superimposed on the final pit designs in Figure 5-1.

**Table 5-1: Summary of Rock Mass Characteristics** 

| Lithology | Pit                        | Avg. Laboratory<br>UCS (MPa) | No. Valid<br>UCS Tests | Average RMR <sub>89</sub> | Average RQD (%) | Total Core<br>Length (m) |
|-----------|----------------------------|------------------------------|------------------------|---------------------------|-----------------|--------------------------|
| Gneiss    | Supremo &<br>Double Double | 90                           | 9                      | 64                        | 81              | 515                      |
| Schist    | Latte                      | 94                           | 4                      | 64                        | 87              | 227                      |
| Granite   | Kona                       | 130                          | 2                      | 76                        | 95              | 96                       |

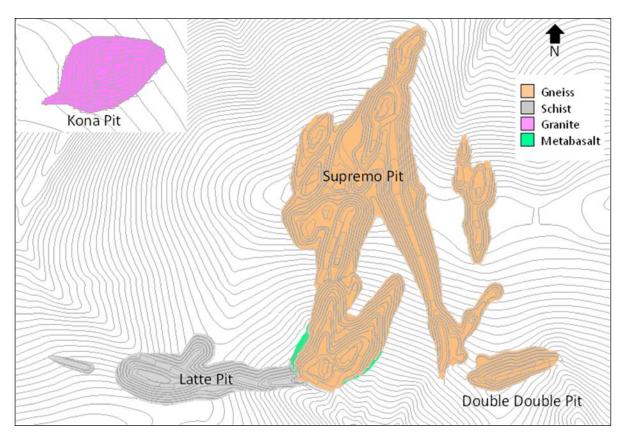



Figure 5-2: Distribution of Primary Lithology Types

## 5.2 Intact Rock Strength

The term "intact rock" or "substance strength" refers to the rock between discontinuities in a rock mass; in contrast, "rock mass" refers to the entire body of rock, including discontinuities. The intact rock strength was evaluated for the different rock types using point load testing during the core logging program (Section 3.2) and with UCS and BTS testing carried out as part of the laboratory test (Sections 4.1 and 4.2).

Intact rock strength envelopes were developed for the primary rock types using the UCS and BTS test results. Triaxial testing was not conducted due to the shallow pit depths and the overall high rock quality anticipated to comprise pit walls. Hoek-Brown (Hoek, et al., 2002) material constants  $m_i$  and  $\sigma_{ci}$  were calculated using the software RocData v 5.0 developed by Rocscience Inc. (2014). Plots of the intact rock strength envelopes are contained in Appendix D.

# 5.3 Rock Mass Shear Strength

The shear strength/normal stress relationship describes the ultimate shear strength available at a given point within a slope as a function of the effective normal stress acting on that point. Based on review of the lithology, RQD, rock mass rating and intact rock strength, three geomechanical units were identified; the Gneiss, Schist and Granite. Rock mass shear strength/normal stress relationships were developed for the using the Generalized Hoek-Brown criterion (Hoek, et al., 2002).

The Generalized Hoek-Brown criterion defines curvilinear shear strength envelopes that are considered effective representations of intact rock and heavily jointed rock mass behavior. As discussed in Hoek, et al (2002), the following equation defines the rock mass shear strength envelope according to the Generalized Hoek-Brown criterion:

$$\sigma_{I}^{'} = \sigma_{3}^{'} + \sigma_{ci} \left( m_{b} \frac{\sigma_{3}^{'}}{\sigma_{ci}} + s \right)^{a} \tag{1}$$

$$m_b = m_i e^{\left(\frac{GSI - 100}{28 - 14D}\right)} \tag{2}$$

$$s = e^{\left(\frac{GSI - 100}{9 - 3D}\right)} \tag{3}$$

$$a = \frac{1}{2} + \frac{1}{6} \left( e^{-GSI/15} - e^{-20/3} \right) \tag{4}$$

Where  $\sigma_1$ ' and  $\sigma_3$ ' are the effective major and minor principal stresses and  $\sigma_{ci}$  is the uniaxial compressive strength of the rock.

The Geologic Strength Index (GSI) was developed as a qualitative assessment of the lithology, structure/blockiness and condition of discontinuity surfaces in a rock mass by Hoek as input into the Generalized Hoek-Brown shear strength criterion in lieu of the RMR due to increasing realization that a system based more heavily on fundamental, largely subjective geological observations than on potentially less reflective, wholly objective, "numbers" was needed (Hoek, 1994). In practice, the GSI ranges from a value of zero for very weak, intensely sheared and fractured rock masses up to a maximum value of 100 for intact or very massive rock with very few, widely spaced discontinuities. GSI was estimated using the relationship proposed by Hoek et al. (1997): GSI ~ RMR89 – 5. Histograms of GSI for each of the three primary lithology types are contained in Appendix E.

The disturbance factor, D, depends on the degree of disturbance that the rock mass is expected to be subject to as a result of blast damage and stress relaxation caused by excavation of the pit. The disturbance factor ranges from zero, for wholly undisturbed, confined rock masses, to 1 for very disturbed rock masses. For surface mining operations, Hoek et al., 2002 recommends a D of 0.7 for carefully controlled blasting and a D of 1 for heavy large-scale production blasting.

As described by Hoek (1983), the Hoek-Brown intact material constant  $m_i$  is very approximately analogous to the angle of friction of the conventional Mohr-Coulomb failure criterion, controlling the curvature of the intact failure envelope and thus, the rate at which the shear strength increases with confinement. Higher  $m_i$  values (in the order of 15 to 32), give steeply inclined strength envelopes and high instantaneous friction angles at low normal stress levels. These high mi values tend to be associated with stronger brittle igneous and metamorphic rocks such as andesites, gneisses and granites. Lower mi values (in the order of 3 to 7), give lower instantaneous friction angles and tend to be associated with more ductile carbonate rocks such as limestone or dolomite. Different samples of the same rock type can also have varying  $m_i$  values depending on the granularity and interlocking of the crystal structure (Marinos and Hoek, 2000).

Rock mass strength parameters developed from the geomechanical logging and laboratory test data are summarized in Table 5-2.

Table 5-2: Average Rock Mass Properties by Lithological Units

| Lithological | Intact                               | Rock | Rock Mass |     |  |
|--------------|--------------------------------------|------|-----------|-----|--|
| Unit         | m <sub>i</sub> σ <sub>ci</sub> (MPa) |      | GSI       | D   |  |
| Gneiss       | 12                                   | 84   | 59        | 0.7 |  |
| Schist       | 12*                                  | 53   | 58        | 0.7 |  |
| Granite      | 23                                   | 130  | 71        | 0.7 |  |

<sup>\*</sup> Based on published values due impacts of schistosity on laboratory test results.

# 6 Geomechanical-Structural Domaining

Geomechanical-structural domains were developed based primarily on the orientations of fracture and joint sets as well as rock mass quality. The domains define reasonably large areas of a rock mass where rock mass quality and discontinuity patterns are sufficiently similar that they can be grouped together for analysis. Rock mass strengths were based on the primary lithology (i.e. schist, gneiss or granite) which was generally uniform across each pit.

### 6.1 Drillhole Information

Drillhole orientation information was analyzed from the six geomechanical drillholes and a total of 143 oriented resource drillholes spaced across the four pits. Table 6-1 contains a summary of the number of holes analyzed for each pit. Figure 6-1 shows the distribution of the holes graphically.

Table 6-1: Total Number of Drillholes used for Structural Domaining

| Pit           | Number of Drillh | Length   |        |  |
|---------------|------------------|----------|--------|--|
|               | Geomechanical    | Resource | (m)    |  |
| Kona          | 1                | 8        | 1,145  |  |
| Latte         | 2                | 19       | 4,004  |  |
| Supremo       | 2                | 100      | 19,938 |  |
| Double Double | 1                | 11       | 2,462  |  |
| Total         | 6                | 138      | 27,549 |  |

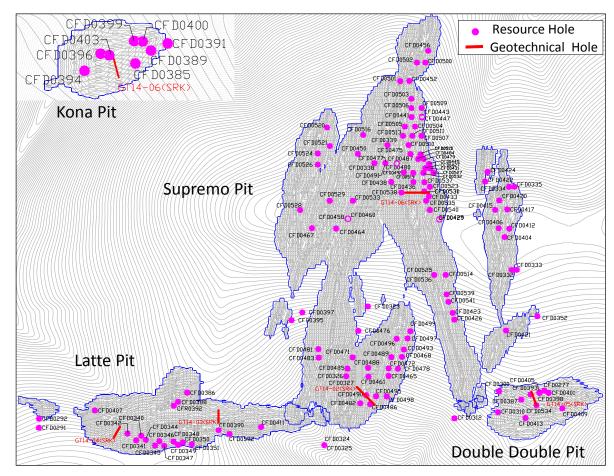



Figure 6-1: Distribution of the Oriented Drillholes used for Structural Analysis

### 6.2 Structural Domains

In order to identify structural domains, pit areas were initially broken down into areas that were bound by potential major faults and/or lithological contacts. Orientation data was then analyzed within each of these smaller areas using Dips v. 6.0 software (Rocscience, 2015a) and, where similar, combined with neighboring areas forming larger structural domains. Stereonets were plotted for each individual area with joint (J), foliation (F), fabric (Fbr) and fault discontinuities represented separately (Appendix F). For the analyses, the term "foliation" indicates natural open foliation fractures and the term "fabric" indicates the orientation of the schistosity or gneissosity fabric, without any natural open breaks.

Five separate geomechanical-structural domains were estimated for the pit slope stability analyses using this methodology. Each of the Kona, Latte and Double Double pits are essentially their own individual domain while the Supremo pit was divided into two separate domains (i.e. the East and West Domains) as shown on Figure 6-2. Each of the five domains are described individually below:

- Kona Domain: A total of eight joint sets were conservatively estimated in the Kona domain.
   The two principal joint sets are sub-vertical striking east-west (SJ\_5) and southwest-northeast;
- Latte Domain: Five joint sets and one foliation sets were identified. The most dominant sets are the shallow, south dipping foliation discontinuity set (SF\_01) and two set sub-vertical joint sets with north-south (SJ\_02) and southwest-northeast (SJ\_3b) trends;
- Double Double Domain: A total of eight joint sets and one foliation discontinuity set were
  conservatively estimated. The principal sets are considered to be the shallow, southward
  dipping foliation set (SF\_01) and two joint set with dips typically between 40° and 70°
  northwest-southeast (SJ 06) and southwest-northeast (SJ 08) trends;
- Supremo East Domain: Five joint sets and one foliation discontinuity set were identified in this domain. The principal sets were identified to be the shallow, southerly dipping foliation set (SF\_01) and one sub-vertical joint set striking north-south (SJ\_02); and
- **Supremo West Domain**: Five joint sets and one foliation discontinuity set were identified in this domain. The principal sets were identified to be the shallow, southerly dipping foliation set (SF\_01) and one north-south striking, sub-vertical joint set.

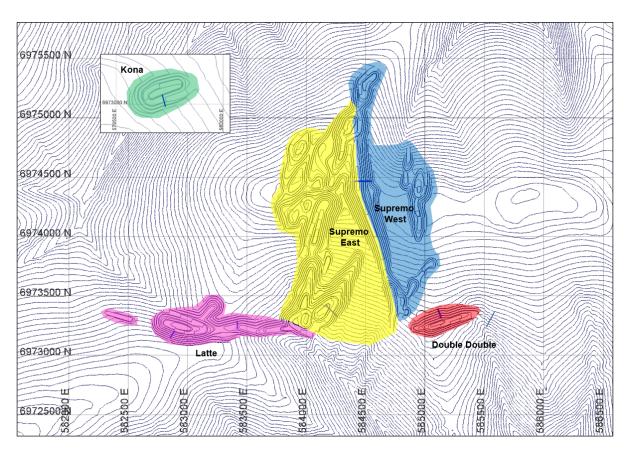



Figure 6-2: Estimated Structural Domains

Structural data for each domain was then analyzed using Dips and applying Terzaghi's weighting to the discontinuities based on potential drillhole bias. The resulting pole plots were used to define the individual joint and foliation discontinuity sets for further analysis. Pole plots for each domain are contained in Appendix G along with information regarding dip, dip direction, range (variability), cluster concentration and percentage of occurrence. Table 6-2 presents a summary of the sets identified within each domain.

Table 6-2: Summary of Discontinuity Sets per Domain

|                  | Pole I                          | Joint Sets per Geomechanical-Structural Domain |         |      |    |       |         |       | nain |       |
|------------------|---------------------------------|------------------------------------------------|---------|------|----|-------|---------|-------|------|-------|
| ld               | loint                           | Cot ID                                         | Dip (°) |      |    | Dip D | irectio | n (°) | No.  |       |
|                  | Joint                           | Foliation                                      | Set ID  | Mean | Ra | nge   | Mean    |       | nge  | Poles |
|                  |                                 |                                                | SJ_01a  | 12   | 23 | 5     | 214     | 160   | 270  |       |
|                  |                                 |                                                | SJ_03   | ,77  | 63 | 90    | 116     | 97    | 131  | 1     |
|                  | SJ_05a                          |                                                | SJ 04   | 82   | 70 | 90    | 56      | 40    | 70   |       |
|                  |                                 |                                                | SJ_05a  | 82   | 70 | 90    | 169     | 150   | 189  |       |
| Kona             | \$J_01a                         |                                                | SJ 05b  | 82   | 74 | 90    | 349     | 330   | 9    | 439   |
|                  | SJ_06 SJ_01b SJ_09              |                                                | SJ_06   | 37   | 20 | 54    | 66      | 40    | 89   | 458   |
|                  | *SJ_10                          |                                                | SJ 09   | 43   | 30 | 56    | 274     | 260   | 290  |       |
|                  | SJ_05b                          |                                                |         |      | _  | 52    |         | 23    | 341  |       |
|                  | 5                               |                                                | SJ_10   | 36   | 23 |       | 1       |       | _    | ,     |
|                  |                                 |                                                | SJ_11   | 11   | 5  | 20    | 17      | 75    | 331  |       |
|                  | SJ_05a                          | *                                              | SJ_01   | 30   | 12 | 50    | 172     | 140   | 210  |       |
|                  |                                 |                                                | SJ_02   | 78   | 63 | 90    | 274     | 260   | 290  |       |
|                  | SJ_03a                          | SF_01                                          | SJ_03a  | 84   | 76 | 90    | 125     | 110   | 140  |       |
| Latte            | w- + - €                        | w +                                            | SJ_03b  | 82   | 70 | 90    | 304     | 290   | 320  | 1161  |
|                  | si_02_                          | <b>1</b>                                       | SJ_04   | 76   | 64 | 90    | 44      | 29    | 58   |       |
|                  | \$J_04 \$J_03b                  |                                                | SJ_05a  | 81   | 70 | 90    | 353     | 7     | 333  |       |
|                  | 51 05h                          |                                                | SJ_05b  | 84   | 75 | 90    | 167     | 153   | 187  |       |
|                  | S                               |                                                | SF_01   | 31   | 10 | 50    | 202     | 160   | 238  | 358   |
| \$J_03a          | SJ_03a SJ_04b                   |                                                | SJ_01   | 24   | 10 | 40    | 179     | 150   | 210  |       |
|                  |                                 |                                                | SJ_02a  | 79   | 60 | 90    | 101     | 80    | 120  |       |
|                  |                                 | SF_01                                          | SJ 02b  | 82   | 70 | 90    | 280     | 260   | 300  |       |
|                  |                                 |                                                | SJ_03a  | 77   | 60 | 90    | 132     | 120   | 155  |       |
|                  | SJ_02a + SJ_01                  |                                                | SJ 03b  | 82   | 70 | 90    | 312     | 300   | 335  | 5891  |
|                  | SJ_02i                          |                                                | SJ 04a  | 75   | 60 | 90    | 48      | 30    | 65   |       |
|                  | SJ_04a SJ_010 <sub>SJ_03b</sub> |                                                | SJ 04b  | 84   | 70 | 90    | 232     | 210   | 245  |       |
|                  |                                 |                                                | SJ_10   | 54   | 40 | 70    | 336     | 320   | 350  |       |
|                  | š                               | 5                                              | SF_01   | 22   | 37 | 7     | 192     | 230   | 155  | 1079  |
|                  |                                 |                                                | SJ_01   | 34   | 20 | 50    | 184     | 160   | 215  | 10/9  |
|                  | ,                               |                                                | SJ 02a  | 78   | 60 | 90    | 99      | 80    | 120  | 5 1   |
|                  |                                 |                                                | SJ_02b  | 83   | 70 | 90    | 279     | 260   |      |       |
|                  | SJ_03a                          |                                                |         |      |    |       |         |       | 300  |       |
| Cuprons 14/      | SJ_01 SJ_04b                    |                                                | SJ_03a  | 77   | 60 | 90    | 132     | 120   | 150  | 4958  |
| Supremo W        | SJ_02h                          | * SF_01                                        | SJ_03b  | 83   | 70 | 90    | 310     | 300   | 330  |       |
| , s              | *SJ_04a                         |                                                | SJ_04a  | 74   | 60 | 90    | 63      | 40    | 80   |       |
|                  | SJ_03b                          |                                                | SJ_04b  | 82   | 70 | 90    | 248     | 220   | 260  |       |
|                  | 31_03                           |                                                | SJ_05   | 76   | 62 | 90    | 347     | 7     | 330  |       |
|                  |                                 |                                                | SF_01   | 29   | 15 | 45    | 190     | 160   | 225  | 3242  |
| Double<br>Double |                                 |                                                | SJ_01   | 29   | 15 | 45    | 194     | 165   | 355  |       |
|                  | \$J_05a                         |                                                | SJ_03   | 71   | 56 | 84    | 100     | 88    | 113  |       |
|                  |                                 |                                                | SJ_04   | 78   | 62 | 90    | 206     | 191   | 221  |       |
|                  | *SJ_01 + *SJ_09 ε               | / ·                                            | SJ_05   | 71   | 55 | 83    | 338     | 325   | 355  | 653   |
|                  |                                 | w   SF_01 +                                    | SJ_06   | 56   | 40 | 70    | 49      | 26    | 72   | 003   |
|                  | \ SJ_07                         | \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \          | SJ_08   | 65   | 50 | 76    | 311     | 298   | 325  |       |
|                  | SJ_06 SJ_08                     |                                                | SJ_09   | 34   | 22 | 46    | 273     | 255   | 295  |       |
|                  |                                 |                                                | SJ_12   | 69   | 54 | 82    | 177     | 161   | 191  | 1     |
|                  | S                               | *                                              | SF_01   | 26   | 12 | 43    | 175     | 135   | 221  | 387   |

After the individual discontinuity sets were defined, the structural database was used to determine the apparent spacing (distance along drillhole) between each of the discontinuities in each set. The calculated mean (apparent) spacing for each set was used as an input to define a negative exponential distribution necessary to represent the variation in discontinuity spacings for each set for the bench

design analyses as discussed in Section 7. Figure 6-3 contains examples of typical discontinuity spacing histograms that were developed from the analysis. Histograms for the individual joint sets and structural domains are contained in Appendix H.

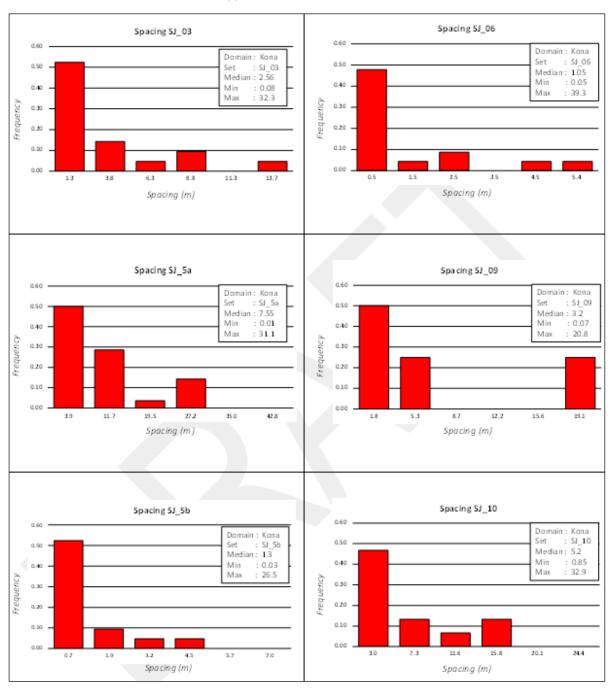
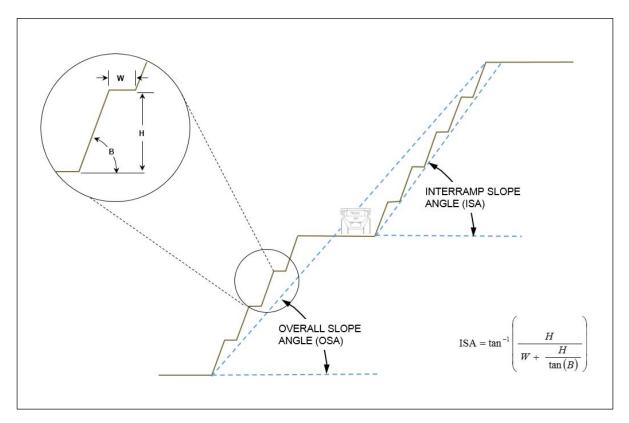



Figure 6-3: Example Histograms of Discontinuity Spacing

# 7 Bench Design Analyses


The consequences of an overall or high interramp slope failure on a final pushback commonly produce significant impact on mine economics, in that a substantial quantity of ore is frequently rendered uneconomic by the additional, unanticipated cost of removing the resulting failed wall material. The evaluation of the anticipated stability of final design slopes is therefore necessary and must be incorporated into final design recommendations. Of similar importance and impact on the project economics, though not nearly as dramatic as large scale slope failures, are the design and excavation of the benches and bench stacks, i.e., those slopes comprised of two to three benches. This is a result of the fact that overall slope designs cannot be successfully realized if benches cannot be safely and effectively established as per their design.

Although the expected performance of the overall and higher interramp slopes comprising the open pit can best be predicted and subsequently examined using rock mass failure models, the anticipated behavior of the bench and lower interramp slopes is most realistically assessed using analytical models that incorporate structurally controlled failure mechanisms. This is because rock structure, i.e., joints and other non-fault discontinuities will most likely facilitate structurally controlled failures, whenever the site materials have relatively high rock mass strengths.

In strong, competent materials such as at Kaminak, the development of rock mass failure in benches and in lower height interramp slopes is essentially precluded. Consequently, the evaluation of structurally controlled or kinematic failure potential of benches and lower height interramp slopes is the dominant consideration in the formulation of bench design recommendations.

# 7.1 Terminology

Slope design involves analysis of the three major components of an open pit slope, i.e., bench configuration, interramp slope angle (ISA) and overall slope angle (OSA) as shown in Figure 7-1. The bench configuration, which is defined by the bench face angle (B), bench height (H) and berm width (W), defines the interramp slope angle. The overall slope angle consists of interramp slope sections separated by wide step-outs for haul roads, mine infrastructure or geomechanical purposes. The overall slope angles at Coffee will be approximately equal to the corresponding interramp angles except in areas where a haul road exists.



Source: SRK, 2015

Figure 7-1: Pit Slope Design Components

### 7.2 Kinematic Assessment

To assess which of the various discontinuity sets identified in each domain have potential to adversely impact bench stability for the various pit slope orientations, an initial kinematic assessment was completed for the project using stereonets created with Dips v6.0 software (Rocscience, 2015a). The orientation and variability of each set was graphically compared to the various pit slope dip directions to assess which sets, or combination of sets, have the potential to combine and form three dimensional blocks that could displace under gravitational forces. Kinematic analyses such as these conservatively do not consider the length or spacing of discontinuities which are more realistically assessed with stochastic type models as discussed in Section 7.3.

The results of the kinematic assessments are summarized in Figures 7-2 and 7-3 with the individual analyses presented in Appendix I. On Figures 7-2 and 7-3, the left hand image shows the specific area of each pit that could be subject to either planar, wedge or toppling type block movements while the histograms on the right hand side of the figures illustrate the involvement or activity of each individual set in forming either single plane (planar) or double plane (wedge) blocks. The results of the kinematic assessments were subsequently used to define which sets were necessary to include in the SBlock analyses as discussed in Section 7.4.

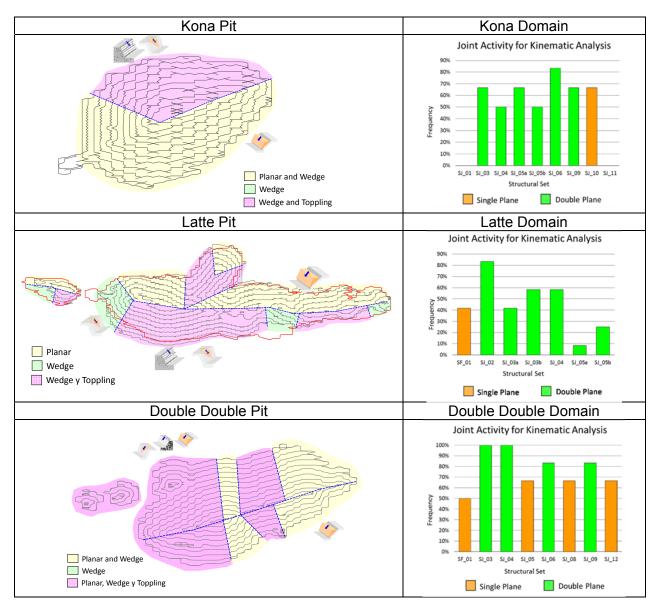



Figure 7-2: Summary of Kinematic Analysis Results for Kona, Latte and Double Double Pits

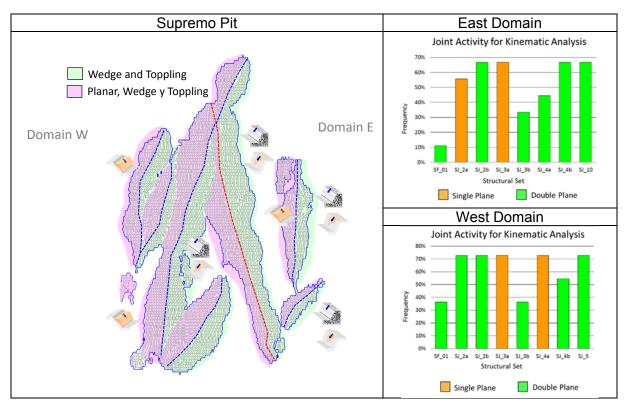



Figure 7-3: Summary of Kinematic Analysis Results for Supremo Pit

# 7.3 Bench Design Methodology

Bench scale and lower interramp slopes were judged to be most realistically assessed using stochastic models that evaluate structurally controlled failure mechanisms. To accomplish this, the software program SBlock (Esterhuizen, 2004) was used. Sblock is based on the key block theory developed by Goodman & Shi (1985) and uses probabilistic distributions of joint set properties (orientation, spacing and length) to simulate a large number of potential 3D blocks and calculates their removability from a given open pit bench face orientation. It is assumed that a block may contain smaller blocks combined to form larger blocks which are limited in size only by the length of the joints.

Once removability has been established, the program uses vector methods to determine the sliding direction, normal and shear forces on the sliding planes and the safety factor of each block. Sliding can occur along a single plane (planar failure) or along two planes (wedge failure) and occasionally along three planes. The user does not have to identify which type of sliding and failure mode to consider, the program identifies blocks and determines whether they can slide out of the face and the sliding mode. The program automatically looks for combinations of different joints and checks for potential sliding failure modes.

The program repeatedly selects joint surfaces from the provided joint statistics and tests whether a block is formed. A block can be any convex shape with up to 8 facets. Multiple block runs, such as those used for the Coffee analyses, are based on a 200 m bench length. Each time joints are selected, they are analyzed to determine if they intersect "scan lines" that are located at mid height of the bench face. The number of joints intersecting the "scan line" is verified against the expected joint frequency

along the scan line. When a sufficient number of joints have been sampled along the scan line, a new bench is started. Statistics are accumulated for each bench for the number of potentially unstable blocks, the volume of failure, safety factors, probability of failure, average bench effective width, which allow users to evaluate the relative stability of different bench face slope angles, orientations and heights. Several applications of SBlock used in operating mines have been presented by Hormazabal (2013).

A SBlock model was constructed for each sector using available joint set information for the respective sectors. The wall dip direction was varied for each model depending on the range of expected wall orientations within each pit sector. Each model and wall orientation was evaluated with a design bench face angle (B) of 65°, 70°, and 75° and bench height (H) of 20 m to determine the probabilities of failure and amount of crest expected for a given geometry.

Double (20 m high) benches were analyzed instead of single (10 m high) benches because properly executed double benches typically result in steeper effective bench face angles due to the confinement on the lower lift(s). For example, the upper bench lift, adjacent to a planned catch bench, is unconfined or free-faced in the upward direction and, consequently, some level of crest loss is unavoidable; however, for the lower lift(s), where there will not be a catch bench left adjacent to the blast, the confinement from the rock above effectively eliminates the potential for crest loss, assuming proper controlled blasting procedures are followed.

In addition, the probability of a discontinuity penetrating through a double bench is lower than that of a single bench, given the increase in bench height and corresponding increase in discontinuity length required to penetrate the bench. The use of double benches also results in wider catchments which are more likely to retain rock fall and provide access to benches for cleaning. Careful cleaning and scaling is required for double benches which, considering the bench height relative to scaling equipment reaching capabilities, must be done after each lift.

# 7.4 Model Inputs and Assumptions

Joint set properties such as orientation, length, spacing and shear strength are input into SBlock using probabilistic distributions. The orientation (dip and dip direction) of joint sets are represented by normal distributions using the average value and an estimate of the range or variability. Joint spacing and length are both assumed to follow truncated negative exponential distributions. The inputs required to define spacing and lengths include the mean, minimum and maximum values. It is assumed by the model that every joint truncates against another joint. Shear strengths of the joints between blocks are modeled using the linear, Mohr-Coulomb criteria with friction angle and cohesion as inputs.

Spacings of discontinuities were calculated based on drillhole data as discussed in Section 6.2 while lengths of discontinuities had to be estimated given the lack of outcrop exposure at the site. Discontinuity sets that are very prominent such as foliation and sets that are parallel to regional fault trends were generally assigned longer mean lengths and tighter (closer) spacings. Less prominent or secondary joint sets were typically modeled with shorter mean lengths and wider spacings. The shear strength assigned to each joint set was selected based on the direct shear test result for the respective lithology and discontinuity types.

Table 7-1 contains a summary of the various model input parameters for each of the geomechanical-structural domains identified as discussed in Section 6.2. Shear strength parameters (φ and c) presented in Table 7-1 were reduced from raw laboratory test results summarized in Table 4-2 to

account for the scaler effects of the large scale in-situ joints compared to the small, core diameter scale laboratory tests.

Table 7-1: Summary of Input Parameters per Geomechanical-Structural Domain

|               | Structural Sets |   |                 |     |       |             |     |     |            |     |     | Stren | gth |
|---------------|-----------------|---|-----------------|-----|-------|-------------|-----|-----|------------|-----|-----|-------|-----|
| Domain        | ld              |   | Orientation (°) |     |       | Spacing (m) |     |     | Length (m) |     |     | С     | ф   |
|               |                 |   | Dip Dip Dir     |     | Range | Avg         | Min | Max | Avg        | Min | Max | (kpa) | (°) |
|               | SJ_03           | Р | 77              | 116 | 30    | 1.3         | 0.5 | 20  | 15         | 12  | 25  | 10    | 30  |
|               | SJ_5a           | Р | 82              | 169 | 30    | 3.5         | 0.5 | 25  | 15         | 12  | 25  | 10    | 30  |
| Kona          | SJ_5b           | Р | 82              | 349 | 30    | 0.6         | 0.4 | 15  | 15         | 12  | 25  | 10    | 30  |
| Kona          | SJ_06           | Р | 37              | 66  | 30    | 0.5         | 0.3 | 15  | 15         | 12  | 25  | 10    | 30  |
|               | SJ_09           | S | 43              | 274 | 30    | 1.8         | 0.5 | 20  | 12         | 8   | 20  | 10    | 30  |
|               | SJ_10           | S | 36              | 1   | 30    | 3           | 1   | 25  | 12         | 8   | 20  | 10    | 30  |
|               | SF_01           | Р | 31              | 202 | 40    | 2           | 0.5 | 18  | 15         | 12  | 25  | 10    | 25  |
|               | SJ_02           | Р | 78              | 274 | 30    | 3           | 1   | 20  | 15         | 12  | 25  | 10    | 30  |
| Latte         | SJ_03a          | Р | 84              | 125 | 30    | 3.5         | 1   | 20  | 15         | 12  | 25  | 10    | 30  |
| Lalle         | SJ_03b          | S | 82              | 304 | 30    | 2           | 0.5 | 18  | 12         | 8   | 20  | 10    | 30  |
|               | SJ_04           | Ρ | 76              | 44  | 30    | 3.3         | 1   | 20  | 15         | 12  | 25  | 10    | 30  |
|               | SJ_05b          | ഗ | 84              | 167 | 30    | 4.2         | 1.5 | 25  | 12         | 8   | 20  | 10    | 30  |
|               | SF_01           | Ρ | 29              | 190 | 40    | 1.5         | 0.5 | 20  | 15         | 12  | 25  | 10    | 30  |
|               | SJ_2a           | Ρ | 78              | 99  | 35    | 0.5         | 0.3 | 10  | 15         | 12  | 25  | 10    | 30  |
| Supremo West  | SJ_2b           | ഗ | 83              | 279 | 25    | 1.4         | 0.7 | 18  | 12         | 8   | 20  | 10    | 30  |
| Supremo West  | SJ_3a           | ഗ | 77              | 132 | 30    | 1.0         | 0.5 | 14  | 12         | 8   | 20  | 10    | 30  |
|               | SJ_4a           | Ρ | 74              | 63  | 35    | 8.0         | 0.4 | 12  | 15         | 12  | 25  | 10    | 30  |
|               | SJ_05           | Р | 76              | 347 | 30    | 1.5         | 0.7 | 16  | 15         | 12  | 25  | 10    | 30  |
|               | SF_01           | Р | 22              | 192 | 40    | 2.4         | 0.5 | 20  | 15         | 12  | 25  | 10    | 30  |
|               | SJ_2a           | Р | 79              | 101 | 30    | 0.5         | 0.3 | 10  | 15         | 12  | 25  | 10    | 30  |
| Supremo East  | SJ_2b           | S | 82              | 280 | 25    | 1.2         | 0.6 | 18  | 12         | 8   | 20  | 10    | 30  |
| Supremo East  | SJ_3a           | S | 77              | 132 | 30    | 1.2         | 0.6 | 18  | 12         | 8   | 20  | 10    | 30  |
|               | SJ_4a           | Р | 75              | 48  | 30    | 1.4         | 0.7 | 18  | 15         | 12  | 25  | 10    | 30  |
|               | SJ_10           | Ρ | 54              | 336 | 30    | 1.6         | 8.0 | 18  | 15         | 12  | 25  | 10    | 30  |
| Double Double | SF_01           | Р | 26              | 175 | 40    | 2           | 0.5 | 18  | 15         | 12  | 25  | 10    | 30  |
|               | SJ_05           | S | 71              | 338 | 30    | 4           | 0.5 | 25  | 12         | 8   | 20  | 10    | 30  |
|               | SJ_06           | Р | 56              | 49  | 30    | 1.3         | 0.5 | 18  | 15         | 12  | 25  | 10    | 30  |
|               | SJ_08           | Р | 65              | 311 | 30    | 1.6         | 0.5 | 18  | 15         | 12  | 25  | 10    | 30  |
|               | SJ_09           | S | 34              | 273 | 30    | 8.5         | 2   | 35  | 12         | 8   | 20  | 10    | 30  |
|               | SJ_12           | Р | 69              | 177 | 30    | 0.5         | 0.3 | 15  | 15         | 12  | 25  | 10    | 30  |

Note: Bold text indicates the principal or most dominant discontinuity sets in each domain based on the set's frequency of occurrence.

As illustrated in Table 7-1, up to six discontinuity sets were included in each model which is generally considered conservative; however, each set was verified at one or more locations within each sector. Given the relatively high dip angle (greater than 70°) of many of sets, the inclusion of the high number of joint sets in the models is may not significantly impact the results.

## 7.5 Bench Modeling Results

For each combination of slope dip and dip direction for each domain, model outputs included the probability of failure, average bench width (after crest loss), average failure volume and a plot of joint activity showing the frequency of how each joint set contributed to single plane (plane shear) or double plane (wedge or step path) failures or as a back release. From the average bench widths calculated by the model, the average effective bench face angle, as defined on Figure 7-4, was calculated. An

acceptability criterion of a probability of failure (POF) of <30% and an 80% reliability was adopted for the project based on recommendations by Stacey & Read (2009).

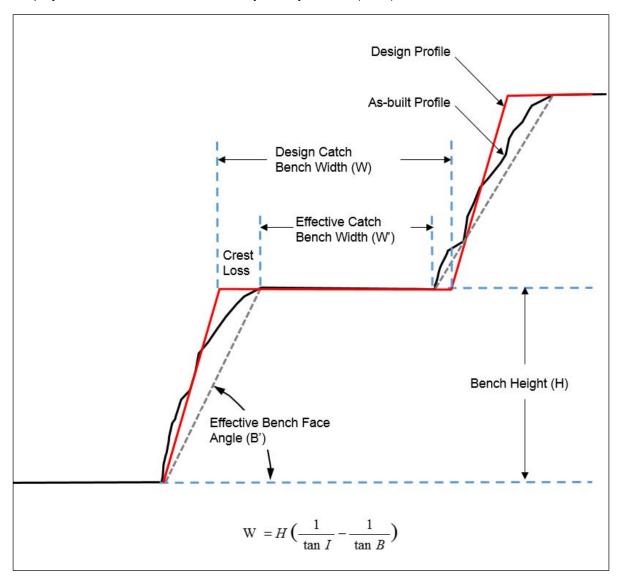



Figure 7-4: Explanation of Bench Design Terminology

The results of the SBlock analyses are summarized in Table 7-2 for Kona and Double Double, Table 7-3 for Latte, and Tables 7-4 and 7-5 for the Supremo East and West Domains, respectively. The probability of failure (POF) for each bench face angle analyzed is summarized for each individual analysis. SRK recommends designing the bench slopes at Coffee based on the average effective bench face angle and a maximum 30% probability of failure. In Tables 7-3, 7-4 and 7-5, the red text indicate cases that exceeded the maximum failure probability criteria of 30% due to the steepness of the bench face angle analyzed for the particular slope orientation. Catch bench widths are designed to meet or exceed those suggested by the Modified Ritchie Criteria as described by Call (1992).

Table 7-2: SBlock Analysis Result for the Kona and Double Double Pits

|               | Slope<br>Dip Dir.<br>(°) | Bench Design Inputs |              |       |         | Berm Width |                          |                                                      |            |  |  |
|---------------|--------------------------|---------------------|--------------|-------|---------|------------|--------------------------|------------------------------------------------------|------------|--|--|
| Domain        |                          | H (m)               | <b>B</b> (°) | W (m) | ISA (°) | W'<br>(m)  | Required<br>Width<br>(m) | Cumulative<br>Distribution<br>of Bench Width<br>>80% | POF<br>(%) |  |  |
|               |                          | 20                  | 65           | 9.5   | 47      | 9.4        | 2.6                      | 8.6                                                  | 5.7        |  |  |
|               | 20                       | 20                  | 70           | 9.5   | 50      | 9.2        | 4.6                      | 8.6                                                  | 15.4       |  |  |
|               |                          | 20                  | 75           | 9.5   | 53      | 8.9        | 6.4                      | 8.5                                                  | 25.9       |  |  |
|               |                          | 20                  | 65           | 9.5   | 47      | 9.3        | 3.3                      | 8.6                                                  | 8.7        |  |  |
|               | 90                       | 20                  | 70           | 9.5   | 50      | 9.0        | 5.4                      | 8.6                                                  | 20.6       |  |  |
|               |                          | 20                  | 75           | 9.5   | 53      | 8.6        | 7.2                      | 7.5                                                  | 31.0       |  |  |
|               |                          | 20                  | 65           | 9.5   | 47      | 9.5        | 0.5                      | 8.6                                                  | 0.3        |  |  |
|               | 145                      | 20                  | 70           | 9.5   | 50      | 9.5        | 0.9                      | 8.6                                                  | 0.7        |  |  |
| Kona          |                          | 20                  | 75           | 9.5   | 53      | 9.5        | 1.6                      | 8.6                                                  | 1.6        |  |  |
| Kona          |                          | 20                  | 65           | 9.5   | 47      | 9.5        | 0.5                      | 8.6                                                  | 0.3        |  |  |
|               | 180                      | 20                  | 70           | 9.5   | 50      | 9.5        | 0.7                      | 8.6                                                  | 0.3        |  |  |
|               |                          | 20                  | 75           | 9.5   | 53      | 9.5        | 0.6                      | 8.6                                                  | 0.3        |  |  |
|               | 330                      | 20                  | 65           | 9.5   | 47      | 9.5        | 0.7                      | 8.6                                                  | 0.5        |  |  |
|               |                          | 20                  | 70           | 9.5   | 50      | 9.5        | 1.2                      | 8.6                                                  | 1.2        |  |  |
|               |                          | 20                  | 75           | 9.5   | 53      | 9.4        | 1.9                      | 8.6                                                  | 3.0        |  |  |
|               | 345                      | 20                  | 65           | 9.5   | 47      | 9.5        | 1.6                      | 8.6                                                  | 2.3        |  |  |
|               |                          | 20                  | 70           | 9.5   | 50      | 9.4        | 2.0                      | 8.6                                                  | 3.1        |  |  |
|               |                          | 20                  | 75           | 9.5   | 53      | 9.4        | 2.4                      | 8.6                                                  | 4.2        |  |  |
|               | 150                      | 20                  | 65           | 9.5   | 47      | 9.5        | 0.4                      | 8.6                                                  | 0.2        |  |  |
|               |                          | 20                  | 70           | 9.5   | 50      | 9.5        | 1                        | 8.6                                                  | 0.6        |  |  |
|               |                          | 20                  | 75           | 9.5   | 53      | 9.5        | 1.3                      | 8.6                                                  | 1.4        |  |  |
|               |                          | 20                  | 65           | 9.5   | 47      | 9.5        | 0.3                      | 8.6                                                  | 0.1        |  |  |
|               | 170                      | 20                  | 70           | 9.5   | 50      | 9.5        | 0.6                      | 8.6                                                  | 0.2        |  |  |
|               |                          | 20                  | 75           | 9.5   | 53      | 9.5        | 0.9                      | 8.6                                                  | 0.7        |  |  |
|               | 190                      | 20                  | 65           | 9.5   | 47      | 9.5        | 0.3                      | 8.6                                                  | 0.1        |  |  |
|               |                          | 20                  | 70           | 9.5   | 50      | 9.5        | 0.9                      | 8.6                                                  | 0.7        |  |  |
| Double Double |                          | 20                  | 75           | 9.5   | 53      | 9.5        | 1.2                      | 8.6                                                  | 1.0        |  |  |
| Boubic Boubic |                          | 20                  | 65           | 9.5   | 47      | 9.5        | 0.3                      | 8.6                                                  | 0.1        |  |  |
|               | 330                      | 20                  | 70           | 9.5   | 50      | 9.5        | 0.8                      | 8.6                                                  | 0.5        |  |  |
|               |                          | 20                  | 75           | 9.5   | 53      | 9.5        | 1.3                      | 8.6                                                  | 1.2        |  |  |
|               |                          | 20                  | 65           | 9.5   | 47      | 9.5        | 0.1                      | 8.6                                                  | 0.1        |  |  |
|               | 345                      | 20                  | 70           | 9.5   | 50      | 9.5        | 0.9                      | 8.6                                                  | 0.6        |  |  |
|               |                          | 20                  | 75           | 9.5   | 53      | 9.5        | 1.6                      | 8.6                                                  | 1.9        |  |  |
|               |                          | 20                  | 65           | 9.5   | 47      | 9.5        | 0.2                      | 8.6                                                  | 0.1        |  |  |
|               | 360                      | 20                  | 70           | 9.5   | 50      | 9.5        | 0.7                      | 8.6                                                  | 0.7        |  |  |
|               |                          | 20                  | 75           | 9.5   | 53      | 9.5        | 1.6                      | 8.6                                                  | 2.0        |  |  |

Notes:

H = Bench height (m) W = Bench or berm width (m)
B = Design bench face angle (°) ISA = Interramp slope angle (°)
W' = Average effective bench width (m) POF = Probability of failure (%)

Table 7-3: SBlock Analysis Result for the Latte Pit

|        | Slope    | Bench Design |              |       |         | Berm Width |                          |                                                   |            |  |
|--------|----------|--------------|--------------|-------|---------|------------|--------------------------|---------------------------------------------------|------------|--|
| Domain | Dip Dir. | H (m)        | <b>B</b> (°) | W (m) | ISA (°) | W'<br>(m)  | Required<br>Width<br>(m) | Cumulative<br>Distribution<br>of Bench Width >80% | POF<br>(%) |  |
|        |          | 20           | 65           | 9.5   | 47      | 9.5        | 0.2                      | 8.6                                               | 0.1        |  |
|        | 0        | 20           | 70           | 9.5   | 50      | 9.5        | 0.1                      | 8.6                                               | 0.1        |  |
|        |          | 20           | 75           | 9.5   | 53      | 9.5        | 0.3                      | 8.6                                               | 0.1        |  |
| Ī      |          | 20           | 65           | 9.5   | 47      | 9.5        | 0.3                      | 8.6                                               | 0.1        |  |
|        | 15       | 20           | 70           | 9.5   | 50      | 9.5        | 0.4                      | 8.6                                               | 0.1        |  |
|        |          | 20           | 75           | 9.5   | 53      | 9.5        | 0.4                      | 8.6                                               | 0.1        |  |
| Ī      |          | 20           | 65           | 9.5   | 47      | 9.5        | 0.3                      | 8.6                                               | 0.1        |  |
|        | 20       | 20           | 70           | 9.5   | 50      | 9.5        | 0.2                      | 8.6                                               | 0.0        |  |
|        |          | 20           | 75           | 9.5   | 53      | 9.5        | 0.6                      | 8.6                                               | 0.3        |  |
| Ī      |          | 20           | 65           | 9.5   | 47      | 9.5        | 0.6                      | 8.6                                               | 0.4        |  |
|        | 40       | 20           | 70           | 9.5   | 50      | 9.5        | 0.8                      | 8.6                                               | 0.5        |  |
|        |          | 20           | 75           | 9.5   | 53      | 9.5        | 0.2                      | 8.6                                               | 0.1        |  |
| [      |          | 20           | 65           | 9.5   | 47      | 9.5        | 0.4                      | 8.6                                               | 0.2        |  |
|        | 100      | 20           | 70           | 9.5   | 50      | 9.5        | 0.7                      | 8.6                                               | 0.4        |  |
|        |          | 20           | 75           | 9.5   | 53      | 9.5        | 0.8                      | 8.6                                               | 0.4        |  |
| Ī      | 130      | 20           | 65           | 9.5   | 47      | 9.5        | 1.0                      | 8.6                                               | 0.7        |  |
|        |          | 20           | 70           | 9.5   | 50      | 9.5        | 1.1                      | 8.6                                               | 1.1        |  |
|        |          | 20           | 75           | 9.5   | 53      | 9.5        | 1.0                      | 8.6                                               | 0.9        |  |
|        | 175      | 20           | 65           | 9.5   | 47      | 9.3        | 3.9                      | 8.6                                               | 7.1        |  |
| Latte  |          | 20           | 70           | 9.5   | 50      | 9.3        | 4.7                      | 8.6                                               | 9.6        |  |
|        |          | 20           | 75           | 9.5   | 53      | 9.0        | 6.5                      | 8.6                                               | 15.0       |  |
| Ī      | 190      | 20           | 65           | 11.0  | 45      | 10.7       | 5.5                      | 10.0                                              | 12.0       |  |
|        |          | 20           | 65           | 9.5   | 47      | 9.2        | 5.3                      | 8.5                                               | 11.6       |  |
|        |          | 20           | 70           | 9.5   | 50      | 9.0        | 6.7                      | 8.5                                               | 16.5       |  |
|        |          | 20           | 75           | 9.5   | 53      | 8.7        | 8.0                      | 8.5                                               | 20.9       |  |
| Ī      | 200      | 20           | 65           | 11.0  | 45      | 10.6       | 6.0                      | 10.0                                              | 14.3       |  |
|        |          | 20           | 65           | 9.5   | 47      | 9.1        | 6.0                      | 8.5                                               | 14.9       |  |
|        | 200      | 20           | 70           | 9.5   | 50      | 8.8        | 7.8                      | 8.5                                               | 21.9       |  |
|        |          | 20           | 75           | 9.5   | 53      | 8.5        | 9.8                      | 8.5                                               | 28.7       |  |
| Ī      |          | 20           | 65           | 11.0  | 45      | 10.6       | 6.5                      | 10.0                                              | 16.8       |  |
|        | 210      | 20           | 65           | 9.5   | 47      | 9.0        | 7.0                      | 8.5                                               | 19.6       |  |
|        | 210      | 20           | 70           | 9.5   | 50      | 8.8        | 8.6                      | 8.5                                               | 26.2       |  |
|        |          | 20           | 75           | 9.5   | 53      | 8.4        | 10.4                     | 8.5                                               | 32.9       |  |
|        | 315      | 20           | 65           | 9.5   | 47      | 9.5        | 0.3                      | 8.6                                               | 0.1        |  |
|        |          | 20           | 70           | 9.5   | 50      | 9.5        | 0.5                      | 8.6                                               | 0.2        |  |
|        |          | 20           | 75           | 9.5   | 53      | 9.5        | 0.4                      | 8.6                                               | 0.2        |  |
|        |          | 20           | 65           | 9.5   | 47      | 9.5        | 0.3                      | 8.6                                               | 0.1        |  |
|        | 325      | 20           | 70           | 9.5   | 50      | 9.5        | 0.5                      | 8.6                                               | 0.3        |  |
|        |          | 20           | 75           | 9.5   | 53      | 9.5        | 0.4                      | 8.6                                               | 0.1        |  |

Notes:

= Bench height (m) = Design bench face angle (°) = Average effective bench width (m) H B W'

W ISA

= Bench or berm width (m) = Interramp slope angle (°) = Probability of failure (%)

POF

Table 7-4: SBlock Analysis Result for the Supremo Pit, East Domain

|         | Slope<br>Dip Dir.<br>(°) | Bench Design |              |       |         | Berm Width |                          |                                                      |            |
|---------|--------------------------|--------------|--------------|-------|---------|------------|--------------------------|------------------------------------------------------|------------|
| Domain  |                          | H (m)        | <b>B</b> (°) | W (m) | ISA (°) | W'<br>(m)  | Required<br>Width<br>(m) | Cumulative<br>Distribution<br>of Bench Width<br>>80% | POF<br>(%) |
|         |                          | 20           | 65           | 9.5   | 47      | 9.5        | 1.8                      | 8.6                                                  | 2.9        |
|         | 80                       | 20           | 70           | 9.5   | 50      | 9.4        | 2.2                      | 8.6                                                  | 4.1        |
|         |                          | 20           | 75           | 9.5   | 53      | 9.5        | 1.7                      | 8.6                                                  | 2.5        |
|         |                          | 20           | 65           | 9.5   | 47      | 9.5        | 1.8                      | 8.6                                                  | 2.9        |
|         | 100                      | 20           | 70           | 9.5   | 50      | 9.4        | 2.4                      | 8.6                                                  | 4.6        |
|         |                          | 20           | 75           | 9.5   | 53      | 9.4        | 2.2                      | 8.6                                                  | 3.4        |
|         |                          | 20           | 65           | 9.5   | 47      | 9.5        | 0.7                      | 8.6                                                  | 0.5        |
|         | 150                      | 20           | 70           | 9.5   | 50      | 9.5        | 0.8                      | 8.6                                                  | 0.5        |
|         |                          | 20           | 75           | 9.5   | 53      | 9.5        | 0.7                      | 8.6                                                  | 0.4        |
|         | 175                      | 20           | 65           | 9.5   | 47      | 9.5        | 0.3                      | 8.6                                                  | 0.1        |
|         |                          | 20           | 70           | 9.5   | 50      | 9.5        | 0.6                      | 8.6                                                  | 0.2        |
|         |                          | 20           | 75           | 9.5   | 53      | 9.5        | 0.5                      | 8.6                                                  | 0.1        |
| Supremo | 240                      | 20           | 65           | 9.5   | 47      | 9.5        | 0.2                      | 8.6                                                  | 0.1        |
| East    |                          | 20           | 70           | 9.5   | 50      | 9.5        | 0.2                      | 8.6                                                  | 0.1        |
|         |                          | 20           | 75           | 9.5   | 53      | 9.5        | 0.1                      | 8.6                                                  | 0.0        |
|         | 260                      | 20           | 65           | 9.5   | 47      | 9.5        | 0.3                      | 8.6                                                  | 0.1        |
|         |                          | 20           | 70           | 9.5   | 50      | 9.5        | 0.3                      | 8.6                                                  | 0.1        |
|         |                          | 20           | 75           | 9.5   | 53      | 9.5        | 0.4                      | 8.6                                                  | 0.1        |
|         | 270                      | 20           | 65           | 9.5   | 47      | 9.5        | 0.6                      | 8.6                                                  | 0.3        |
|         |                          | 20           | 70           | 9.5   | 50      | 9.5        | 0.8                      | 8.6                                                  | 0.4        |
|         |                          | 20           | 75           | 9.5   | 53      | 9.5        | 0.7                      | 8.6                                                  | 0.4        |
|         |                          | 20           | 65           | 9.5   | 47      | 9.5        | 0.6                      | 8.6                                                  | 0.4        |
|         | 290                      | 20           | 70           | 9.5   | 50      | 9.5        | 0.7                      | 8.6                                                  | 0.4        |
|         |                          | 20           | 75           | 9.5   | 53      | 9.5        | 0.2                      | 8.6                                                  | 0.1        |
|         |                          | 20           | 65           | 9.5   | 47      | 9.5        | 1.7                      | 8.6                                                  | 2.4        |
|         | 330                      | 20           | 70           | 9.5   | 50      | 9.4        | 2.6                      | 8.6                                                  | 4.4        |
| Natas   |                          | 20           | 75           | 9.5   | 53      | 9.3        | 3.8                      | 8.6                                                  | 9.1        |

Notes:

H = Bench height (m) W = Bench or berm width (m)
B = Design bench face angle (°) ISA = Interramp slope angle (°)
W' = Average effective bench width (m) POF = Probability of failure (%)

Table 7-5: SBlock Analysis Result for the Supremo Pit, West Domain

|                 | Slope    | Bench Design |          |            |          |            | Berm Width |                                                   |            |  |
|-----------------|----------|--------------|----------|------------|----------|------------|------------|---------------------------------------------------|------------|--|
| Domain          | Dip Dir. | H (m)        | B (°)    | W (m)      | ISA (°)  | W'<br>(m)  | Required   | Cumulative<br>Distribution<br>of Bench Width >80% | POF<br>(%) |  |
|                 |          | 20           | 65       | 9.5        | 47       | 9.5        | 1.7        | 8.6                                               | 2.2        |  |
|                 | 40       | 20           | 70       | 9.5        | 50       | 9.5        | 1.4        | 8.6                                               | 1.3        |  |
|                 |          | 20           | 75       | 9.5        | 53       | 9.4        | 2.4        | 8.6                                               | 4.0        |  |
|                 |          | 20           | 65       | 9.5        | 47       | 9.5        | 1.9        | 8.6                                               | 3.1        |  |
|                 | 65       | 20           | 70       | 9.5        | 50       | 9.4        | 2.2        | 8.6                                               | 3.4        |  |
|                 |          | 20           | 75       | 9.5        | 53       | 9.5        | 1.9        | 8.6                                               | 2.5        |  |
|                 |          | 20           | 65       | 9.5        | 47       | 9.5        | 1.8        | 8.6                                               | 3.7        |  |
|                 | 80       | 20           | 70       | 9.5        | 50       | 9.5        | 2.0        | 8.6                                               | 3.8        |  |
|                 |          | 20           | 75       | 9.5        | 53       | 9.5        | 1.9        | 8.6                                               | 3.1        |  |
|                 |          | 20           | 65       | 9.5        | 47       | 9.4        | 1.9        | 8.6                                               | 3.5        |  |
|                 | 100      | 20           | 70       | 9.5        | 50       | 9.4        | 2.2        | 8.6                                               | 4.3        |  |
|                 |          | 20           | 75       | 9.5        | 53       | 9.4        | 2.7        | 8.6                                               | 5.7        |  |
|                 |          | 20           | 65       | 9.5        | 47       | 9.5        | 1.2        | 8.6                                               | 1.4        |  |
|                 | 125      | 20           | 70       | 9.5        | 50       | 9.5        | 1.4        | 8.6                                               | 1.6        |  |
|                 |          | 20           | 75       | 9.5        | 53       | 9.5        | 1.4        | 8.6                                               | 1.5        |  |
|                 | 140      | 20           | 65       | 9.5        | 47       | 9.5        | 0.9        | 8.6                                               | 8.0        |  |
|                 |          | 20           | 70       | 9.5        | 50       | 9.5        | 1.2        | 8.6                                               | 1.3        |  |
|                 |          | 20           | 75       | 9.5        | 53       | 9.5        | 1.1        | 8.6                                               | 0.9        |  |
|                 | 155      | 20           | 65       | 9.5        | 47       | 9.5        | 0.4        | 8.6                                               | 0.2        |  |
|                 |          | 20           | 70       | 9.5        | 50       | 9.5        | 0.8        | 8.6                                               | 0.5        |  |
| Supremo<br>West |          | 20           | 75       | 9.5        | 53       | 9.5        | 0.7        | 8.6                                               | 0.4        |  |
| west            | 200      | 20           | 65       | 9.5        | 47       | 9.5        | 0.0        | 8.6                                               | 0.0        |  |
|                 |          | 20           | 70       | 9.5<br>9.5 | 50       | 9.5        | 0.2        | 8.6<br>8.6                                        | 0.0        |  |
|                 | 245      | 20<br>20     | 75<br>65 | 9.5        | 53<br>47 | 9.5<br>9.5 | 0.3        | 8.6                                               | 0.1        |  |
|                 |          | 20           | 70       | 9.5        | 50       | 9.5        | 0.3        | 8.6                                               | 0.1        |  |
|                 |          | 20           | 75       | 9.5        | 53       | 9.5        | 0.3        | 8.6                                               | 0.1        |  |
|                 |          | 20           | 65       | 9.5        | 47       | 9.5        | 0.3        | 8.6                                               | 0.1        |  |
|                 |          | 20           | 70       | 9.5        | 50       | 9.5        | 0.3        | 8.6                                               | 0.1        |  |
|                 |          | 20           | 75       | 9.5        | 53       | 9.5        | 0.5        | 8.6                                               | 0.2        |  |
|                 |          | 20           | 65       | 9.5        | 47       | 9.5        | 0.6        | 8.6                                               | 0.4        |  |
|                 | 270      | 20           | 70       | 9.5        | 50       | 9.5        | 0.7        | 8.6                                               | 0.4        |  |
|                 |          | 20           | 75       | 9.5        | 53       | 9.5        | 0.6        | 8.6                                               | 0.3        |  |
|                 |          | 20           | 65       | 9.5        | 47       | 9.5        | 0.6        | 8.6                                               | 0.4        |  |
|                 | 290      | 20           | 70       | 9.5        | 50       | 9.5        | 0.7        | 8.6                                               | 0.3        |  |
|                 |          | 20           | 75       | 9.5        | 53       | 9.5        | 0.7        | 8.6                                               | 0.6        |  |
|                 | 310      | 20           | 65       | 9.5        | 47       | 9.5        | 0.6        | 8.6                                               | 0.3        |  |
|                 |          | 20           | 70       | 9.5        | 50       | 9.5        | 0.6        | 8.6                                               | 0.4        |  |
|                 |          | 20           | 75       | 9.5        | 53       | 9.5        | 0.8        | 8.6                                               | 0.5        |  |
|                 |          | 20           | 65       | 9.5        | 47       | 9.5        | 0.9        | 8.6                                               | 0.7        |  |
|                 | 330      | 20           | 70       | 9.5        | 50       | 9.5        | 1.1        | 8.6                                               | 0.8        |  |
|                 |          | 20           | 75       | 9.5        | 53       | 9.5        | 1.0        | 8.6                                               | 0.8        |  |

Notes:

 $\begin{array}{llll} H & = Bench \ height \ (m) & W & = Bench \ or \ berm \ width \ (m) \\ B & = Design \ bench \ face \ angle \ (^\circ) & ISA & = Interramp \ slope \ angle \ (^\circ) \\ W' & = Average \ effective \ bench \ width \ (m) & POF & = Probability \ of \ failure \ (\%) \end{array}$ 

#### The following was concluded from the analyses:

• Due mostly to the north-south orientation of the pit, benches at Supremo are not anticipated to be significantly impacted by structurally controlled instabilities. As such, a maximum

achievable bench face of 75° was estimated for Supremo based on operational constraints as discussed below;

- The stability of benches on the north Latte and Double Double pit walls will likely be controlled by the dominant southerly (inward) dipping foliation discontinuities. The analyses indicate a maximum achievable bench face angle of approximately 65° for their north walls. Stability of the south and end pit wall benches are not anticipated to be governed by geologic structure controls and were, therefore, estimated to have a maximum achievable bench face of 75° based on operational considerations; and
- Benches on the west Kona pit wall have a slightly higher probability of structurally controlled instabilities fostered by a moderately east (inward) dipping joint set. The analyses indicate a maximum bench face angle of approximately 70° is achievable for this portion of the pit. The remaining pit areas are not anticipated to be significantly impacted by geologic structure controlled instabilities. A maximum achievable bench face of 75° was estimated for the remainder of the pit based on operational constraints.

It should be noted that the bench stability analyses are based solely on orientations of geologic structure and do not directly consider effects of weathering, alteration, blasting or excavation techniques. Depending on the quality of blasting and excavation techniques, achievable bench face angles might be reduced from the theoretical angles determined by these analyses. When taking these operational effects into consideration, it is rare to achieve bench face angles greater than about 75° unless there is a steeper structure controlling the bench geometry. Increasing bench face angles to greater than about 75° may be achievable but usually requires more rigorous drilling and blasting effort and specialized controlled blasting techniques than are commonly practiced.

### 8 Interramp/Overall Slope Stability Analyses

Based on the results of the bench design analyses, recommendations for bench configurations and the resulting maximum interramp slope design were provided to JDS for development of initial detailed pit designs incorporating necessary ramps and infrastructure. The stability of the high interramp and overall slopes of the initial detailed pit designs were then evaluated.

#### 8.1 Slope Stability Sections

Based on the results of the geomechanical characterization program and initial detailed pit design geometries, critical slope stability cross-sections were selected for analysis. A total of seven critical sections were selected to verify stability of the ultimate pit designs; two each at Latte and Double Double and three at Supremo. Critical sections are selected at locations where slope stability conditions are anticipated to be the most adverse such as where the slope height is at its maximum, pit wall materials are low strength and/or pore water pressures may be the highest. Due to the shallow depth (85 m) and relatively high rock mass strength at Kona, an interramp/overall slope stability model was not warranted. The traces of the critical sections are shown on Figure 8-1 with the geometry of each individual section shown in Appendix J.

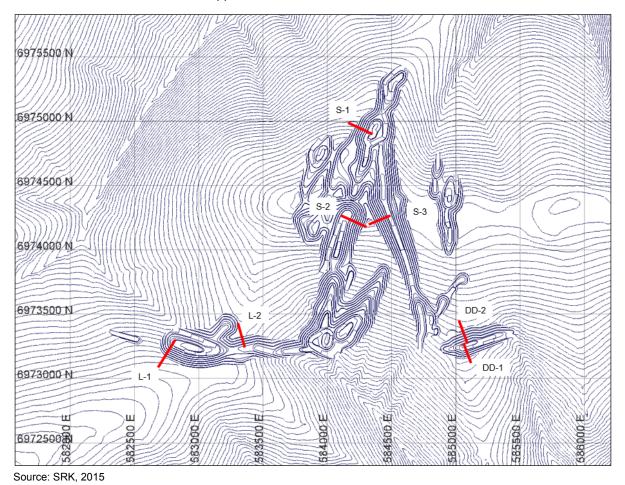



Figure 8-1: Location of Critical Slope Stability Cross Sections

### 8.2 Methodology

The seven critical cross-sections were analyzed using the slope stability modeling software, Slide 6.033 (Rocscience, 2015b), which uses two-dimensional, limited equilibrium methods with output in terms of safety factors. Spencer's method of slices was used for the analyses due its consideration of both force and moment equilibrium. The non-circular, "path" search method was used in all cases.

To construct the model geometries, vertical cross sections were cut through the respective final pit designs and the primary structures using Vulcan mine planning software (Maptek, 2015). Multiple failure modes were analyzed including overall and interramp slopes and localized failures associated with geological contacts and/or faults.

#### 8.3 Geomechanical Parameters

As discussed in Section 5.3, the Hoek-Brown (Hoek, et al., 2002) criteria was used to represent the shear strength–normal stress relationship for the rock masses for slope stability modeling. The respective average properties were used to represent the rock mass and joint strengths for each of the primary rock types. The rock mass and joint strength parameters are summarized in Table 5-2 and 5-3, respectively.

For the analyses, anisotropic shear strengths were developed to evaluate the impacts of discontinuities as planes of weakness within the rock mass. An equivalent strength approach was used based on Jennings' (1972) equations:

$$c_{eq} = (1 - k)c + kc_{j} \tag{5}$$

$$tan(\phi_{eq}) = (1-k)\tan(\phi) + k\tan(\phi_j)$$
 (6)

Where c and  $\phi$  are the cohesion and friction angle, respectively, of the intact rock bridges,  $c_j$  and  $\phi_j$  are the cohesion and friction angle of the discontinuities and k is the coefficient of continuity along the failure plane. Given the lack of discontinuity length information at this stage of the project, sensitivity analyses were conducted varying the continuity coefficient with k = 0.5, k = 0.7 and k = 0.8.

Dry conditions were assumed for the interramp/overall slope stability analyses based on field hydrogeological investigations conducted by SRK (2015) and Lorax (2016).

Based on anecdotal evidence that earthquake ground accelerations are not known to have been the cause of any rock slope failures in mining and that there is little or no experience to suggest that rock slope stability is susceptible to seismic loading, a seismic (or pseudostatic) stability analysis was not performed. This is a common industry assumption for mining rock slope stability.

### 8.4 Results of Interramp/Overall Stability Analysis

Based on accepted engineering experience, interramp/overall slope designs that yield factors of safety (FOS) of 1.3 for slopes with high failure consequences and 1.2 for low failure consequences are appropriate for most open pit mines. Slopes of high failure consequence are generally those slopes that are critical to mine operations, such as those on which major haul roads are established, those providing ingress or egress points to the pit, or those underlying infrastructure such as processing facilities or structures.

The results of the overall and interramp slope stability analysis are summarized in Table 8-1 for each of the seven critical sections analyzed. Graphical output files showing the critical failure and FOS calculated by Slide for each individual analysis are presented in Appendix J.

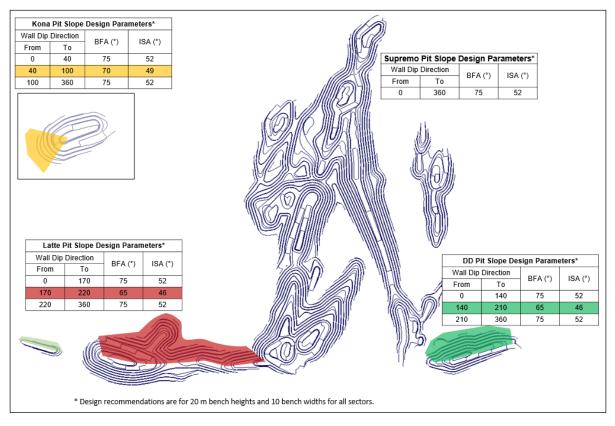
Table 8-1: Results of Overall/Interramp Slope Stability Modeling

|               |         |       | Slope I    | Design |     | Safety Factor                 |             |                 |  |
|---------------|---------|-------|------------|--------|-----|-------------------------------|-------------|-----------------|--|
| Pit           | Section | Slope | Max Height | OSA    | ISA | K (Coefficient of Continuity) |             |                 |  |
|               |         |       | (m)        | (°)    | (°) | 0.5                           | 0.7         | 0.8             |  |
|               | L1      | OSA   | 162 50 53  |        |     |                               | 2.1         | 2.1 (isotropic) |  |
| Latte         | LI      | IRA   | 150        | 1      | 53  |                               | (isotropic) |                 |  |
| Latte         | 1.2     | OSA   |            |        |     |                               |             |                 |  |
|               | L2      | IRA   | 83         | -      | 46  | 1.9                           | 1.5         | 1.3             |  |
|               | DD1     | OSA   |            |        |     |                               |             |                 |  |
| Double Double |         | IRA   | 90         | -      | 52  | 2.3                           | 1.8         | 1.6             |  |
| Double Double | DD2     | OSA   | 133        | 48     | 46  | 2.1                           | 1.6         | 1.4             |  |
|               |         | IRA   | 133        | 40     | 40  | 2.0                           | 1.5         | 1.3             |  |
|               | S1      | OSA   | 169        | 50     | 52  | 2.3                           | 2.0         | 1.9             |  |
|               |         | IRA   | 143        | -      | 52  | 2.2                           | 1.9         | 1.8             |  |
| Cupromo       | S2      | OSA   | 470        | 53     | 52  | 2.4                           | 2.2         | 2.0             |  |
| Supremo       |         | IRA   | 173        | 53     | 52  | 2.3                           | 2.1         | 2.0             |  |
|               | S3      | OSA   | 163        | 54     | 52  | 2.1                           | 1.9         | 1.7             |  |
|               |         | IRA   | 103        | 54     | 52  | 2.1                           | 1.8         | 1.7             |  |

OSA = Overall Slope Angle ISA = Interramp Slope Angle

Results of the overall slope stability analyses demonstrate that the bench configuration based slope angles either meet or exceed the minimum acceptable safety factor of 1.3 for slopes with high failure consequences. Critical failure surfaces were typically non-circular, partially through the intact rock mass and partially along the discontinuities as defined in Section 8.3 and Appendix J.

The results indicate that the stability of the Coffee open pit slopes is anticipated to be controlled by achievable bench face angles and not the stability of overall slopes. Calculated safety factors are considered relatively high for typical open pit slope designs; however, steepening of the interramp slope angles would require either steeper bench face angles or reducing the design catch bench width which SRK does not recommend at the feasibility level due to the lack of outcrop to record actual structural information. With detailed geomechanical/geological bench mapping and good quality wall control blasting practices during operation, opportunity may exist to steepen the interramp angles based on the newly acquired and more accurate information.


The use of a disturbance factor "D" equal to 0.7 for the entire rock mass is considered conservative given that blast damage and relaxation for relatively small open pits such as the Coffee pits would typically only extend a maximum distance of up to approximately 50 m. Beyond this disturbed zone, a D factor of zero is typically used which would increase the rock mass strength. However, given that the critical surfaces produced by the models are typically near 50 m from the face (approximate limits of the disturbed zone), more detailed modeling or zoning of the D factor would not significantly impact the results. In addition, the conservatively assumed D of 0.7 results in sufficiently high safety factors.

## 9 Pit Slope Design Recommendations

Pit slope design parameters are summarized in Table 9-1 and shown graphically on Figure 9-1. All recommended parameters are based on a bench height of 20 m.

Table 9-1: Recommended Pit Slope Design Parameters

| Donosit       | Max. Slope Height | Wall Dip D | irection       | Bench Face Angle | Bench Width | Max. ISA |
|---------------|-------------------|------------|----------------|------------------|-------------|----------|
| Deposit       | (m)               | From (°)   | <b>To (</b> °) | (°)              | (m)         | (°)      |
|               |                   | 0          | 170            | 75               | 10          | 52       |
| Latte         | 170               | 170        | 220            | 65               | 10          | 46       |
|               |                   | 220        | 360            | 75               | 10          | 52       |
| Supremo       | 180               | 0          | 360            | 75               | 10          | 52       |
|               |                   | 0          | 140            | 75               | 10          | 52       |
| Double Double | 135               | 140        | 210            | 65               | 10          | 46       |
|               |                   | 210        | 360            | 75               | 10          | 52       |
|               |                   | 0          | 40             | 75               | 10          | 52       |
| Kona          | 100               | 40         | 100            | 70               | 10          | 49       |
|               |                   | 100        | 360            | 75               | 10          | 52       |



Source: SRK, 2016

Figure 9-1: Pit Slope Design Recommendations

It should be noted that bench design analyses, and subsequent recommendations, are based solely on orientations of geologic structure and do not directly consider effects of weathering, alteration, blasting or excavation techniques. Depending on the quality of blasting and excavation techniques,

achievable bench face angles might be greatly reduced from the theoretical angles determined by these analyses. It is recommended that field trials be performed of various controlled basting techniques, carefully documenting the results to confirm that the actual slope designs are being achieved or, if necessary, to serve as the basis of slope angle refinements.

#### 10 Assessment of Future Geomechanical Work

A thorough geological and geomechanical bench face mapping program should be undertaken, on a continuing basis, beginning in the early stages of development to verify structural conditions are consistent with assumptions presented herein and to identify local variations in structural conditions that might increase the risk of localized instabilities. The geomechanical data collection should concentrate on providing important data such as discontinuity persistence, spacing and variations in orientation that will allow further refinement of the bench design. The data collected should be used to confirm parameters used in the geotechnical models contained herein and, if determined to be other than assumed in this study, to further refine the analyses providing more accurate estimates of anticipated slope behavior.

As part of the geologic mapping program, any significant structures or fault zones encountered should be mapped and digitized electronically in 3D and incorporated into the 3D fault model. This will allow projection of such structures to future pit slopes, highlighting areas of potentially instability and allow refinements to the slope design, if necessary. The accurate orientation and projection of fault structures is difficult based strictly on core drilling unless the structures cause a significant offset in mineralization or a marker horizon is present. As such, the identification, mapping and analysis of fault structures of identified in pit walls will be a necessary and ongoing process during pit development.

A slope monitoring program should be designed to ensure that the slopes are behaving as anticipated and warn if significant movements occur. The monitoring program should include a network of survey prisms monitored and analyzed regularly. If significant movements are noted, additional prisms should be installed along with extensometers to monitor any tension cracking.

#### 11 Closure

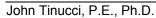
Analyses and recommendations presented herein are based on ultimate pit designs and resource as described in this report, and, as such, any significant changes to mine plans or pit configuration should be reviewed by SRK to verify that recommendations will remain valid for the new plans.

SRK is pleased to have the opportunity to be of service to Kaminak Gold Corporation and trusts that we have addressed the pertinent issues related to the Coffee feasibility pit slopes at this time. Should you, however, have any queries or comments on our visit or on the contents of this report, please do not hesitate to contact us.

Signed on this 11th day of March, 2016.

# Prepared by Signature REDACTED




Felipe González Senior Consultant (Rock Mechanics)

# Signature REDACTED

Michael Levy, P.E., P.G.
Principal Consultant (Geotechnical)

#### Reviewed by

# Signature REDACTED

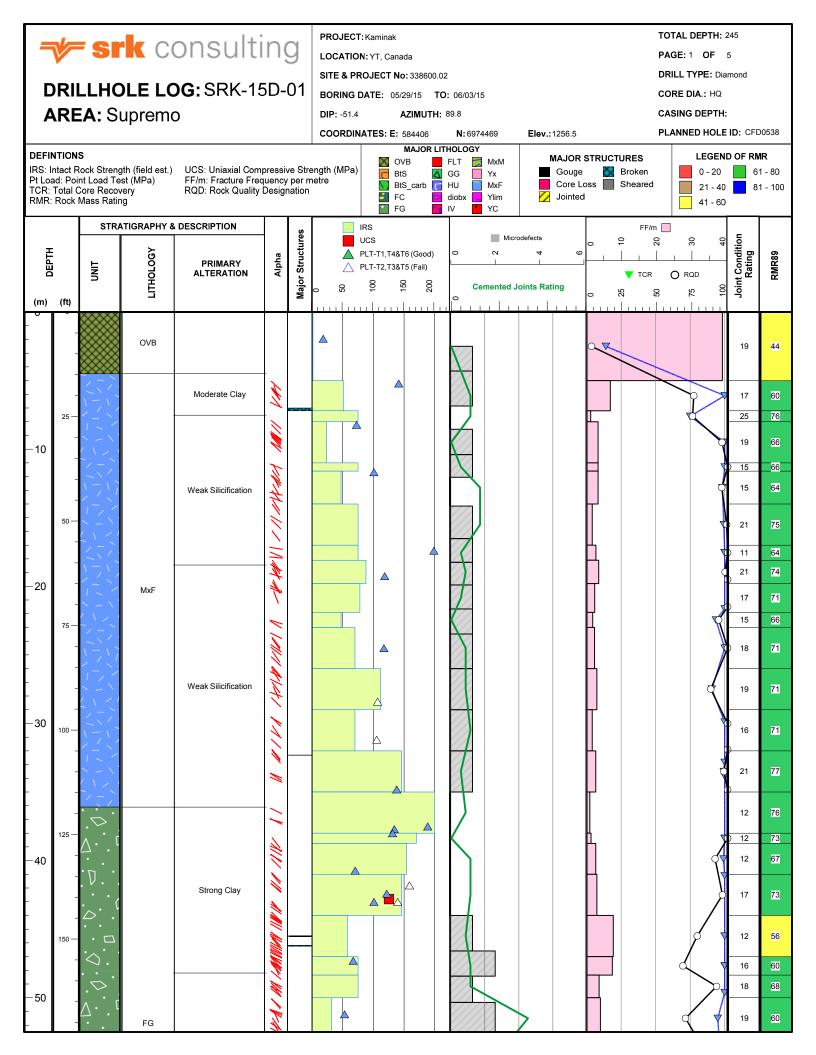


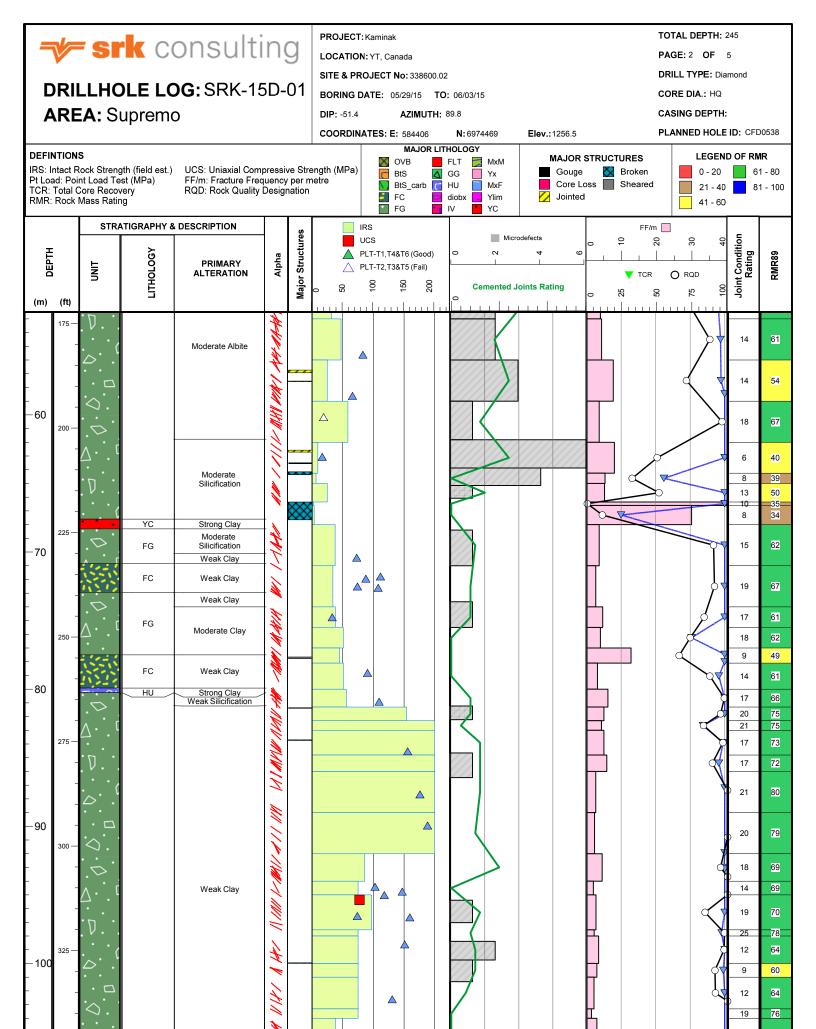
Practice Leader, Principal Consultant (Geotechnical)

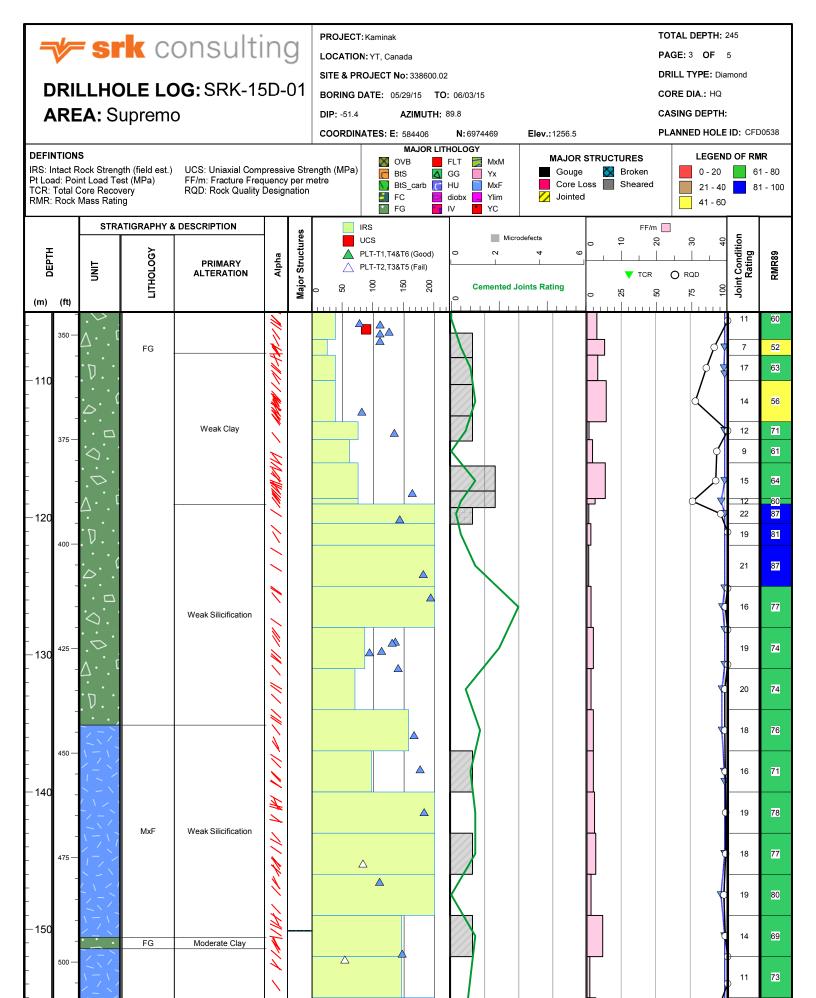
#### 12 References

- Bieniawski Z.T., Engineering Rock Mass Classifications, John Wiley & Sons, New York, 1989.
- Call, R.D., Slope Stability, SME Mining Engineering Handbook, Ch.10.4, 1992.
- Esterhuizen, G. (2004) SBlock User Guide and Reference Manual, V2.01.
- Goodman, R.E., and Shi, G.H. (1985) Block Theory and Its Application to Rock Engineering, Prentice-Hall, Englewood Cliffs, NJ.
- Hoek E., Strength of jointed rock masses. Twenty-third Rankine Lecture, Geotechnique, 1983:23 (3):187-223.
- Hoek E. and Brown E.T., Practical Estimates of Rock Mass Strength. International Journal of Rock Mechanics and Mining Sciences & Geomechanics Abstracts, 1997:34 (8):1165-1186.
- Hoek, E., Carranza-Torres CT, Corkum B., Hoek-Brown Failure Criterion 2002 Edition. In: Proceedings of the Fifth International North American Rock Mechanics Symposium, Toronto, Canada, Vol. 1, 2002. p. 267-273.
- Hormazabal, E., (2013). Bench berm design using probabilistic key block analyses, Proceedings of the 2013 Slope Stability Conference, Brisbane, Australia.
- Karzulovic, A., (2006), Fundamentals of Geomechanics, lecture notes, Universidad de los Andes.
- Lorax Environmental Ltd., 2016a, Coffee Gold Feasibility Study: Appendix J2: Hydrogeology, report prepared for Kaminak Gold Corporation dated February 1, 2016.
- Maptek Pty. Ltd., Lakewood, Colorado, 2015 Vulcan 9.1.
- Marinos, P. Hoek, E., *GSI: Geologically Friendly Tool for Rock Mass Strength Estimation*, Proc. GeoEng2000 Conference, Melbourne. 1422-1442.
- SRK Consulting (U.S.), Inc., Updated Preliminary Geotechnical Assessment for the Coffee Gold Project, draft report dated November 11, 2013.
- SRK Consulting (U.S.), Inc., 2015. Hydrogeologic Investigations Report, prepared for Kaminak Gold Corporation dated December 18, 2015.
- Rocscience, Inc., Toronto, Ontario, 2015a. Dips 6.014, Visualization and Analysis Software for Orientation Based Geologic Data.
- Rocscience, Inc., Toronto, Ontario, 2015b. Slide 6.035, 2-dimensional limit equilibrium slope stability analysis software.
- Rocscience, Inc., Toronto, Ontario, 2014. RocData, 5.0, Rock, soil and discontinuity strength analysis software.

#### **Disclaimer**


The opinions expressed in this Report have been based on the information supplied to SRK Consulting (U.S.), Inc. (SRK) by Kaminak Gold Corporation (Kaminak). These opinions are provided in response to a specific request from Kaminka to do so, and are subject to the contractual terms between SRK and Kaminak. SRK has exercised all due care in reviewing the supplied information. Whilst SRK has compared key supplied data with expected values, the accuracy of the results and conclusions from the review are entirely reliant on the accuracy and completeness of the supplied data. SRK does not accept responsibility for any errors or omissions in the supplied information and does not accept any consequential liability arising from commercial decisions or actions resulting from them. Opinions presented in this report apply to the site conditions and features as they existed at the time of SRK's investigations, and those reasonably foreseeable. These opinions do not necessarily apply to conditions and features that may arise after the date of this Report.


#### Copyright


This report is protected by copyright vested in SRK Consulting (U.S.), Inc. It may not be reproduced or transmitted in any form or by any means whatsoever to any person without the written permission of the copyright holder.

# **Appendices**

**Appendix A: Geomechanical Core Logs** 







Δ



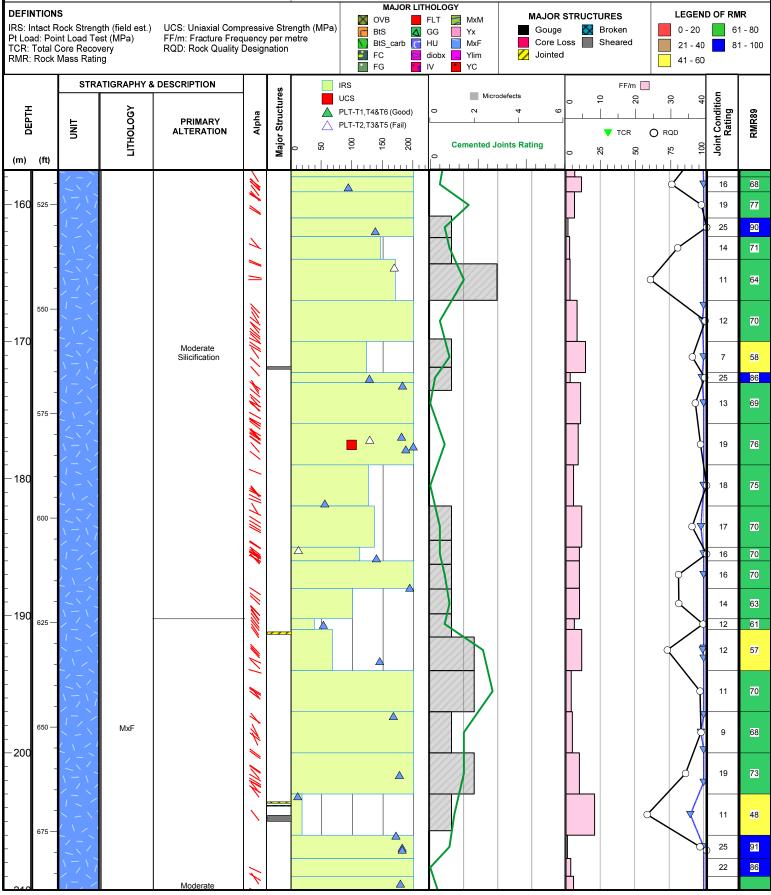
PROJECT: Kaminak

LOCATION: YT, Canada

SITE & PROJECT No: 338600.02

**BORING DATE:** 05/29/15 **TO:** 06/03/15

DIP: -51.4 AZIMUTH: 89.8


Elev.: 1256.5

TOTAL DEPTH: 245 **PAGE:** 4 **OF** 5

DRILL TYPE: Diamond

CORE DIA.: HQ **CASING DEPTH:** 

PLANNED HOLE ID: CFD0538 COORDINATES: E: 584406 **N**: 6974469





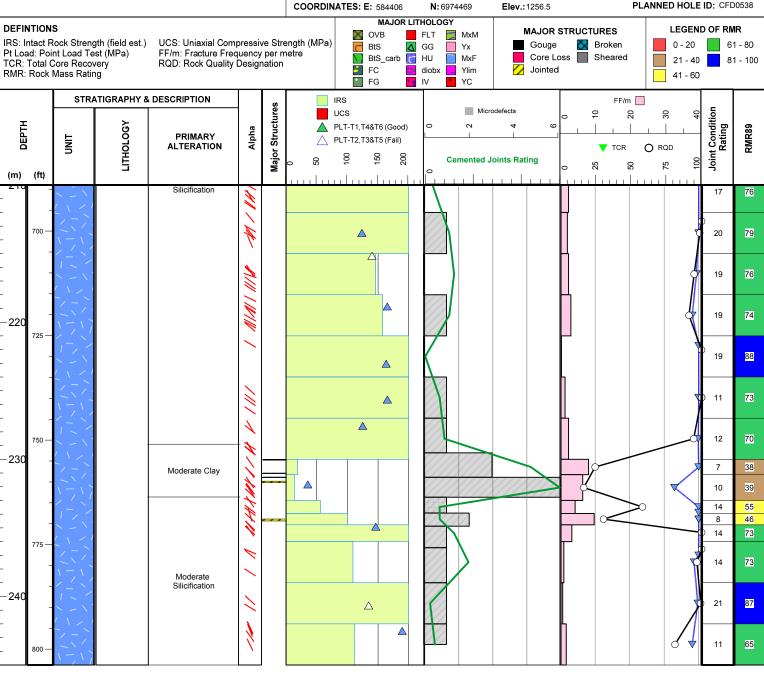
**AREA:** Supremo

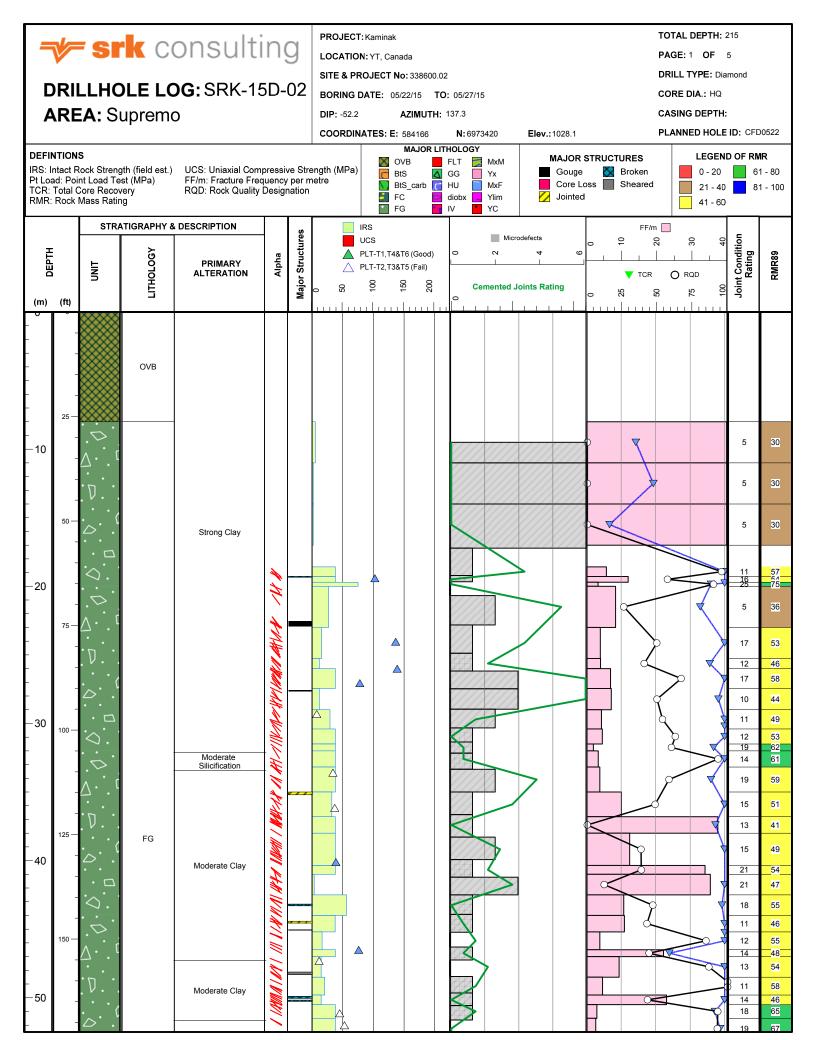
PROJECT: Kaminak

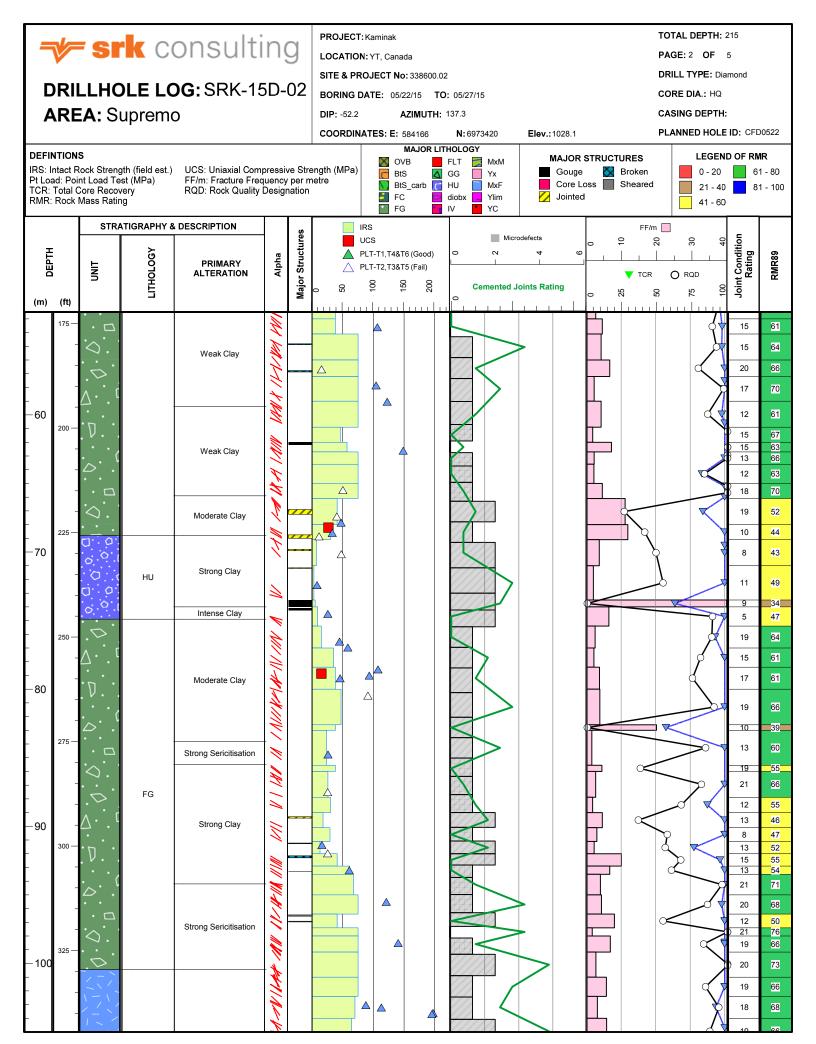
LOCATION: YT, Canada

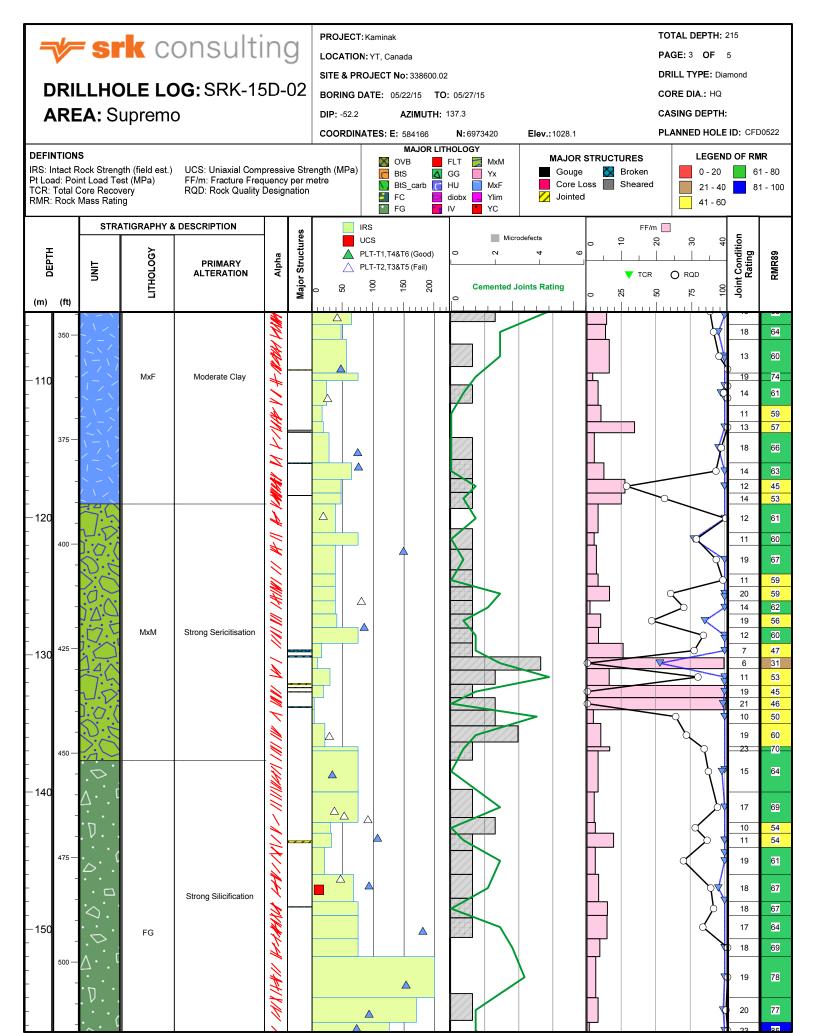
SITE & PROJECT No: 338600.02

**BORING DATE:** 05/29/15 **TO:** 06/03/15


DIP: -51.4 AZIMUTH: 89.8


COORDINATES: E: 584406 **N**: 6974469 TOTAL DEPTH: 245


PAGE: 5 OF 5 DRILL TYPE: Diamond


CORE DIA.: HQ **CASING DEPTH:** 

PLANNED HOLE ID: CFD0538











PROJECT: Kaminak

LOCATION: YT, Canada

SITE & PROJECT No: 338600.02

**BORING DATE**: 05/22/15 **TO**: 05/27/15

TOTAL DEPTH: 215

**PAGE:** 4 **OF** 5

DRILL TYPE: Diamond

CORE DIA.: HQ **AREA:** Supremo **CASING DEPTH:** DIP: -52.2 **AZIMUTH:** 137.3 PLANNED HOLE ID: CFD0522 COORDINATES: E: 584166 N: 6973420 Elev.: 1028.1 MAJOR LITHOLOGY **DEFINTIONS** LEGEND OF RMR **MAJOR STRUCTURES**  $\times$ OVB FLT MxM IRS: Intact Rock Strength (field est.) UCS: Uniaxial Compressive Strength (MPa) 0 - 20 61 - 80 Gouge Broken BtS GG Υx Pt Load: Point Load Test (MPa) FF/m: Fracture Frequency per metre Core Loss Sheared BtS\_carb [ HU MxF 21 - 40 81 - 100 TCR: Total Core Recovery RQD: Rock Quality Designation -FC diobx Jointed RMR: Rock Mass Rating 41 - 60 FG FG IV YC STRATIGRAPHY & DESCRIPTION IRS FF/m Major Structures Joint Condition Rating UCS Microdefects 9 30 20 PLT-T1,T4&T6 (Good) LITHOLOGY Alpha PRIMARY PLT-T2,T3&T5 (Fail) ALTERATION O RQD Cemented Joints Rating 22 20 75 (m) (ft) 88 Δ 160 525 Intense Silicification 84 19  $\triangle$ 78 17 18 73 550 17 73 19 76 - 170 16 18 75 21 80 575 MxF Strong Silicification 21 82 17 80 180 82 600 80 21 21 80 18 21 87 19 84 190 625 17 Δ MxMStrong Silicification 17 76 650 -20 73 200 HU 20 79 73 19 Δ 675 Moderate 84 21 MxM



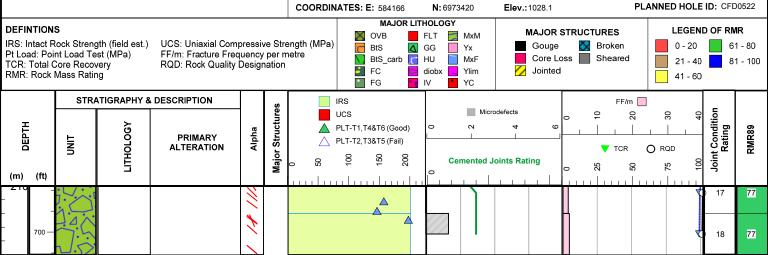
**AREA:** Supremo

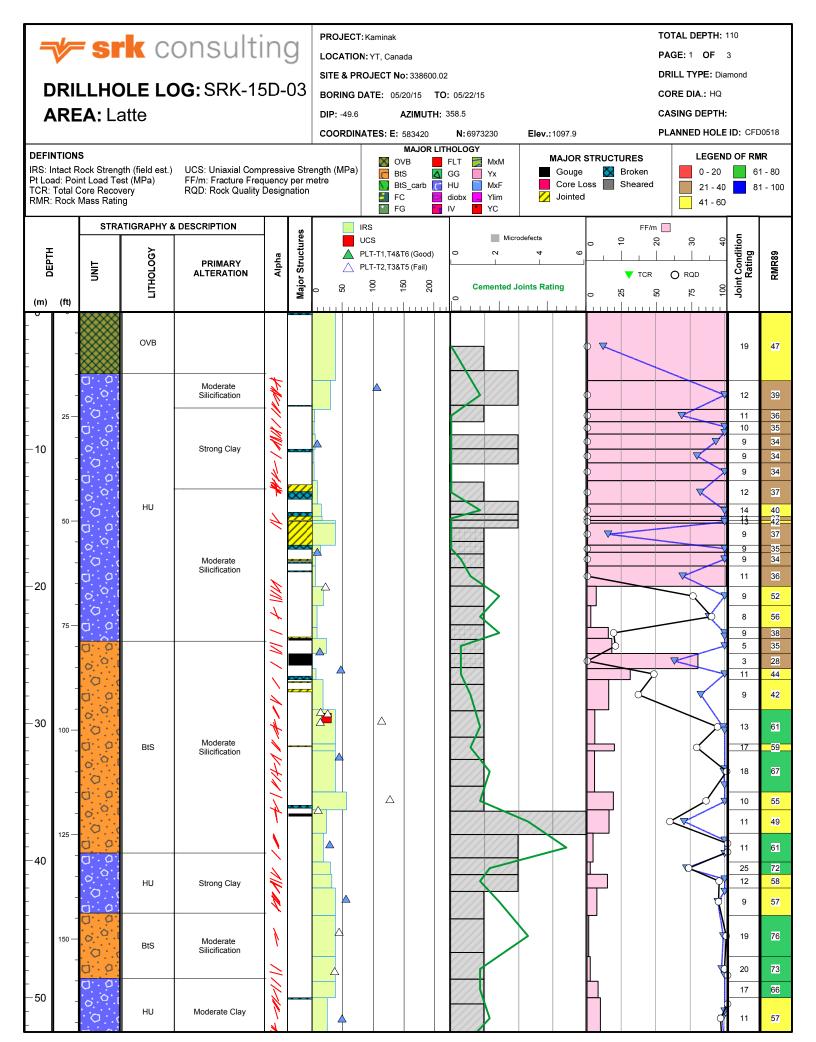
PROJECT: Kaminak

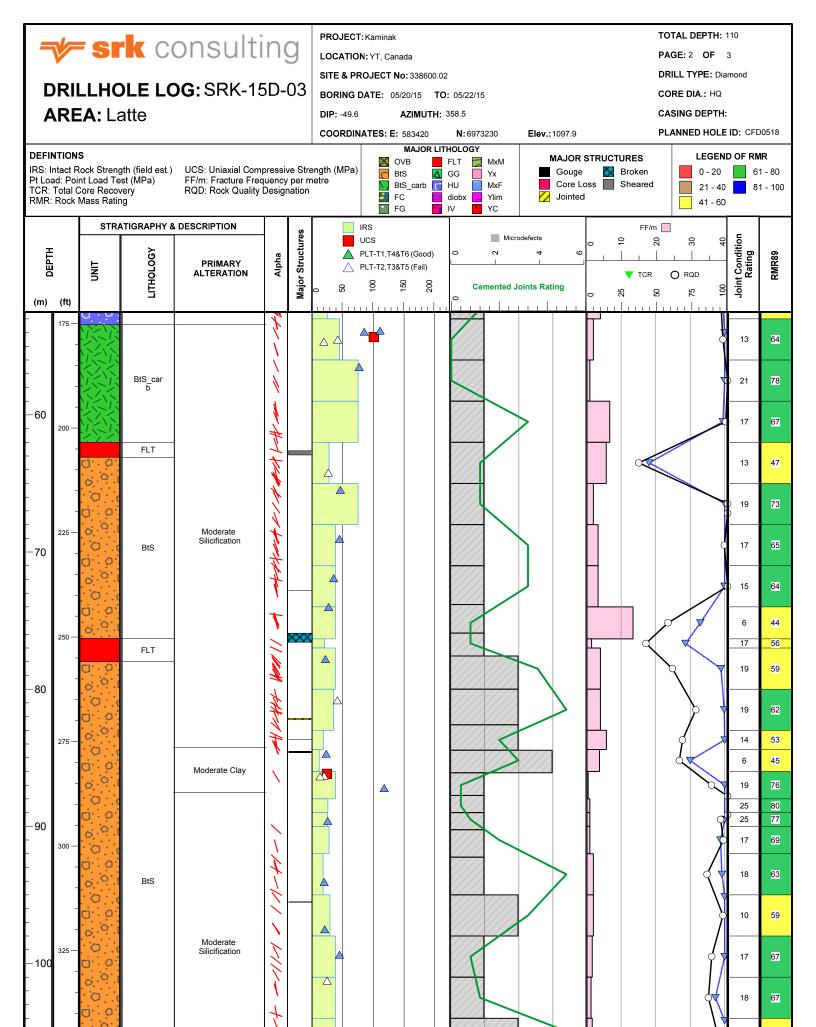
LOCATION: YT, Canada

**SITE & PROJECT No:** 338600.02

**BORING DATE**: 05/22/15 **TO**: 05/27/15


DIP: -52.2 **AZIMUTH:** 137.3


TOTAL DEPTH: 215 PAGE: 5 OF 5


DRILL TYPE: Diamond

CORE DIA.: HQ CASING DEPTH:

PLANNED HOLE ID: CFD0522









**AREA:** Latte

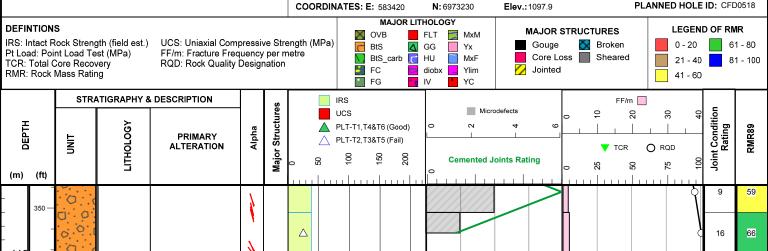
PROJECT: Kaminak

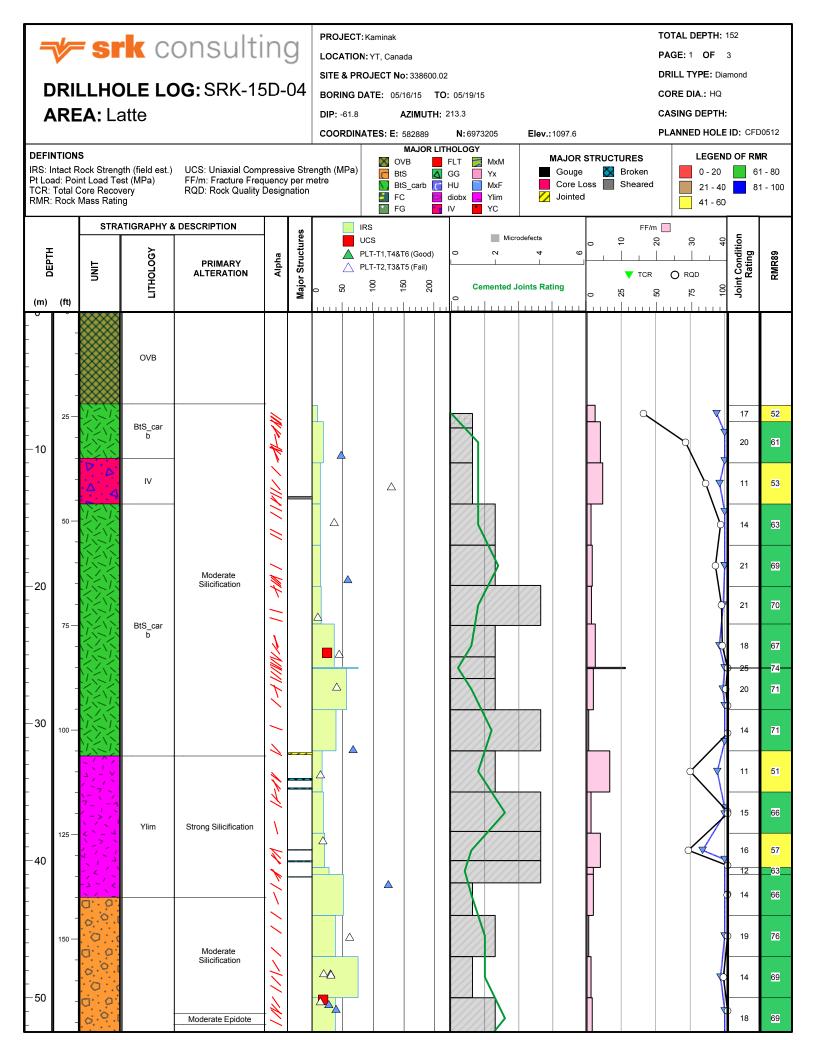
LOCATION: YT, Canada

**SITE & PROJECT No:** 338600.02

**BORING DATE**: 05/20/15 **TO**: 05/22/15

DIP: -49.6 **AZIMUTH:** 358.5


COORDINATES: E: 583420 N: 6973230 TOTAL DEPTH: 110


PAGE: 3 OF 3

DRILL TYPE: Diamond

CORE DIA.: HQ CASING DEPTH:

PLANNED HOLE ID: CFD0518





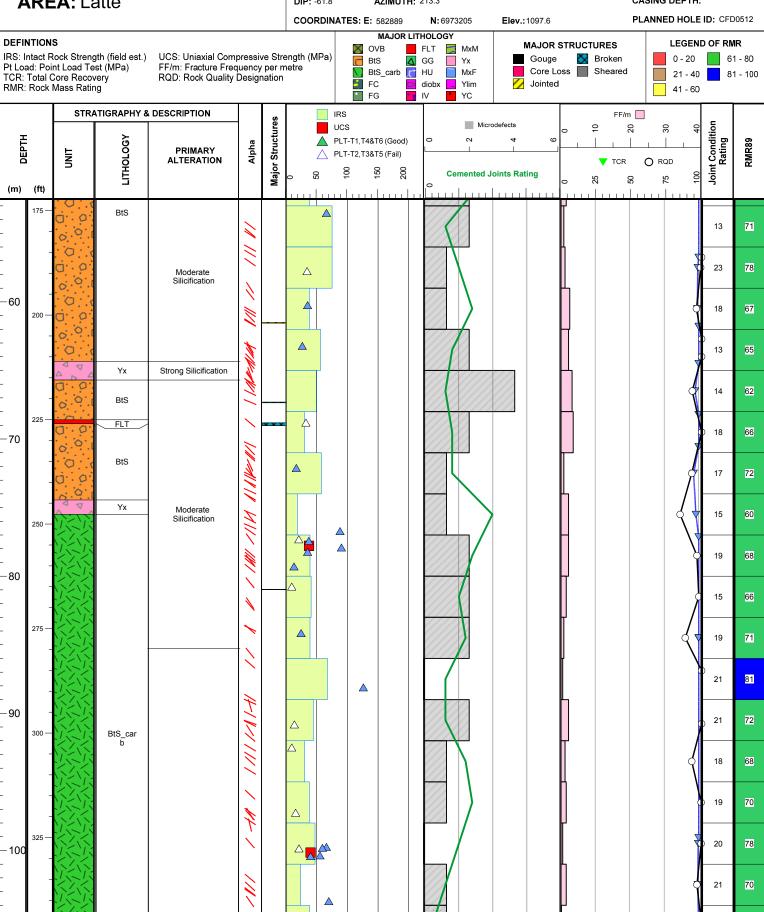


**AREA:** Latte

PROJECT: Kaminak

LOCATION: YT, Canada

SITE & PROJECT No: 338600.02


BORING DATE: 05/16/15 TO: 05/19/15

DIP: -61.8 **AZIMUTH: 213.3**  CORE DIA .: HQ **CASING DEPTH:** 

TOTAL DEPTH: 152

PAGE: 2 OF 3

DRILL TYPE: Diamond





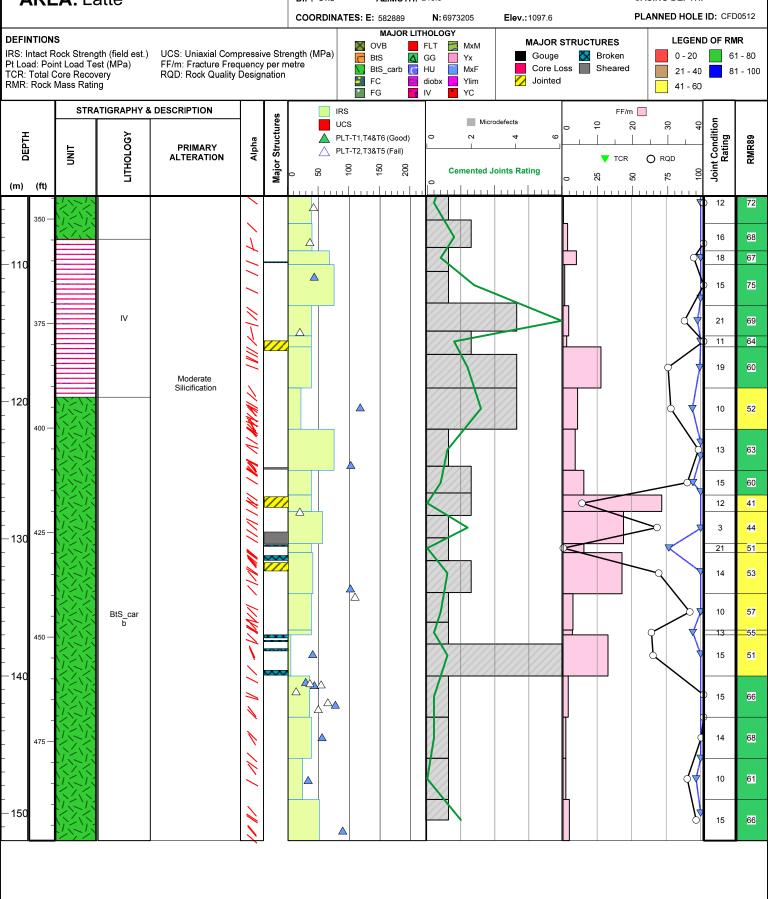
**AREA:** Latte

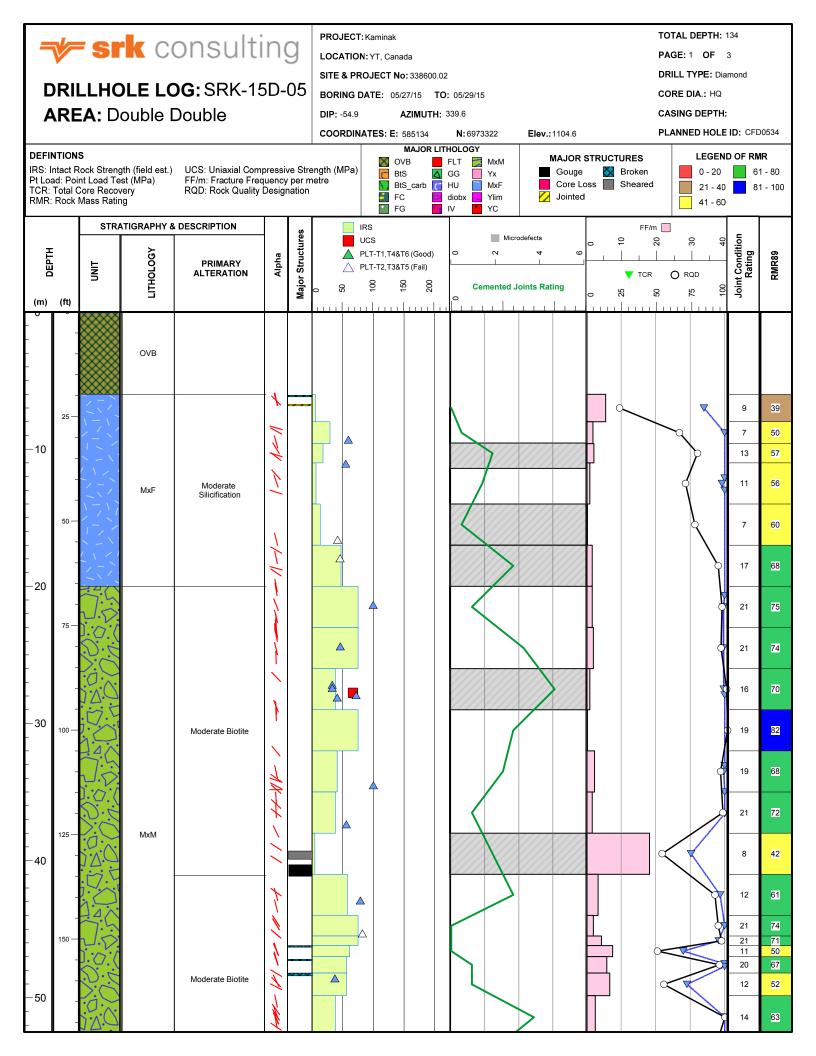
PROJECT: Kaminak

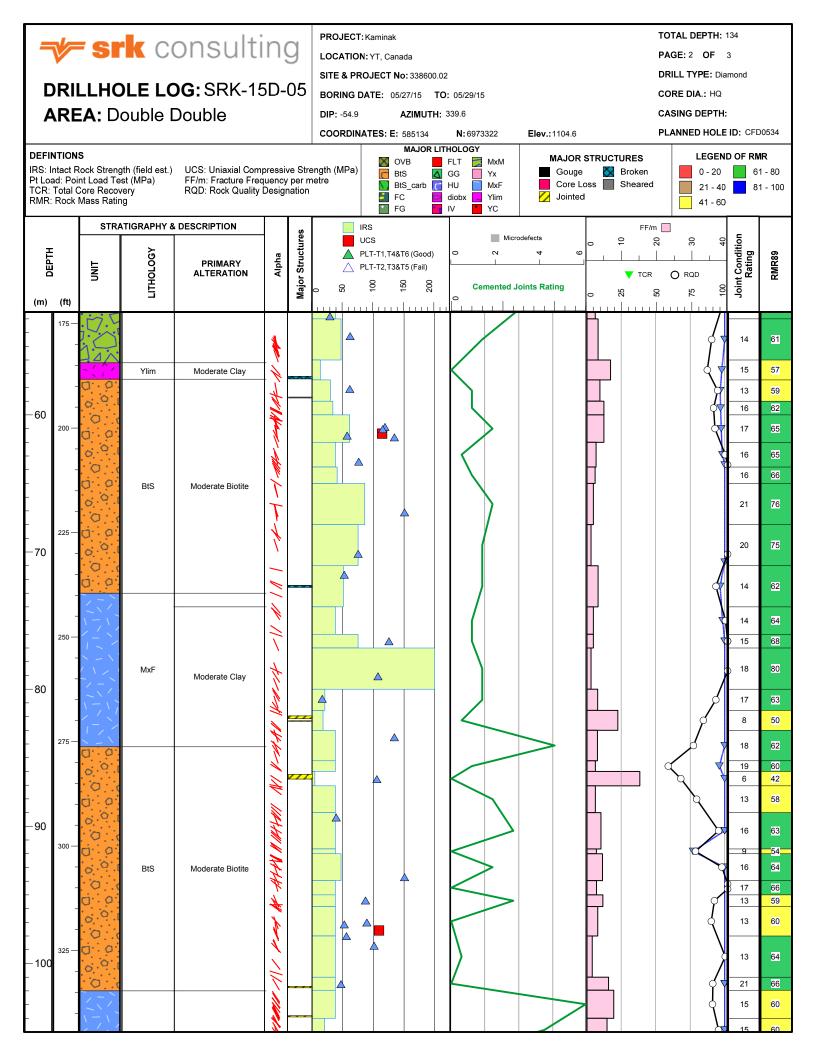
LOCATION: YT, Canada

SITE & PROJECT No: 338600.02

**BORING DATE:** 05/16/15 **TO:** 05/19/15


DIP: -61.8 **AZIMUTH: 213.3**  **CASING DEPTH:** 


TOTAL DEPTH: 152


**PAGE:** 3 **OF** 3

CORE DIA.: HQ

DRILL TYPE: Diamond









**AREA:** Double Double

425

BtS

Strong Calcite

PROJECT: Kaminak

LOCATION: YT, Canada

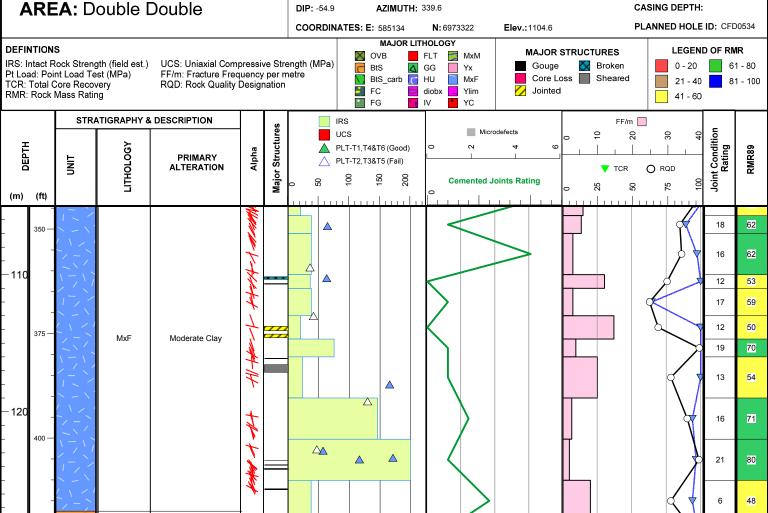
SITE & PROJECT No: 338600.02

**BORING DATE**: 05/27/15 **TO**: 05/29/15

DIP: -54.9 **AZIMUTH:** 339.6

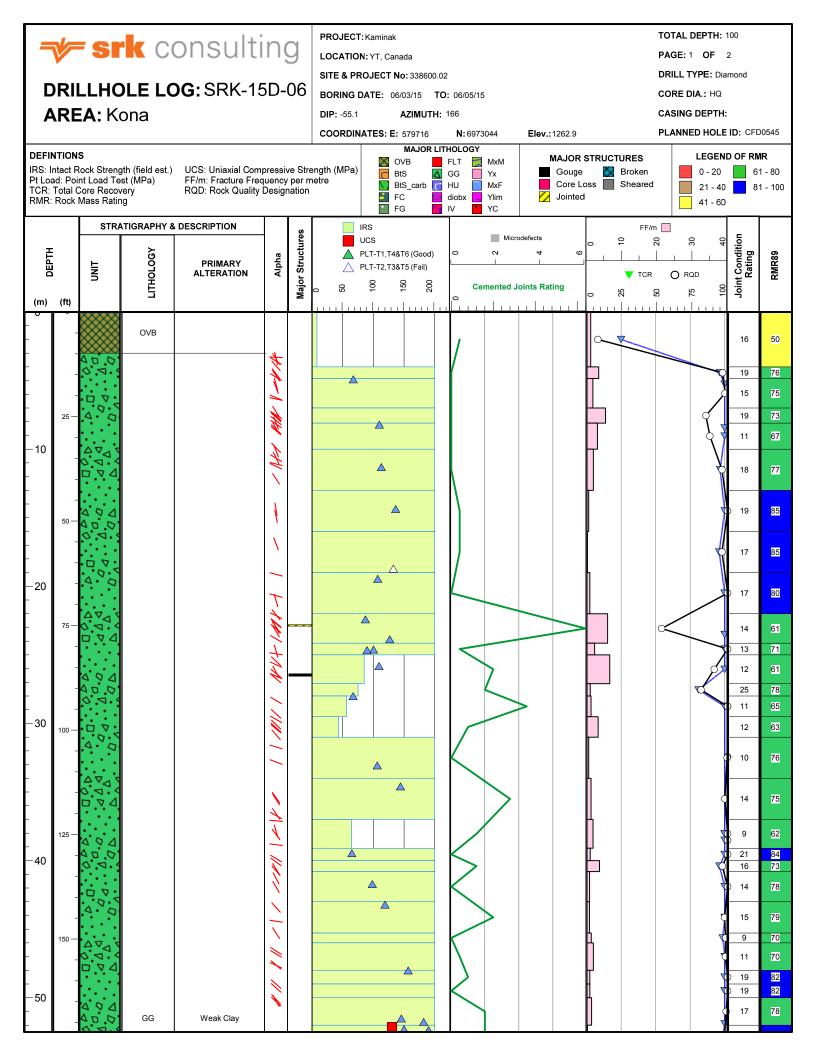
TOTAL DEPTH: 134 PAGE: 3 OF 3

DRILL TYPE: Diamond


25

18

93


71

CORE DIA.: HQ



Δ

 $\triangle$ 





AREA: Kona

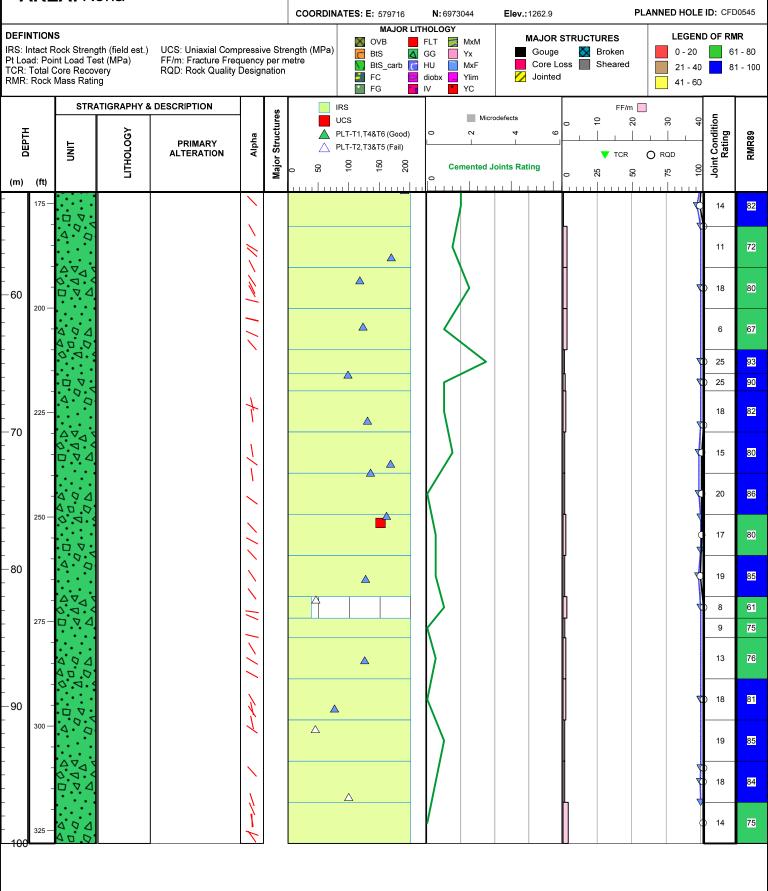
PROJECT: Kaminak

LOCATION: YT, Canada

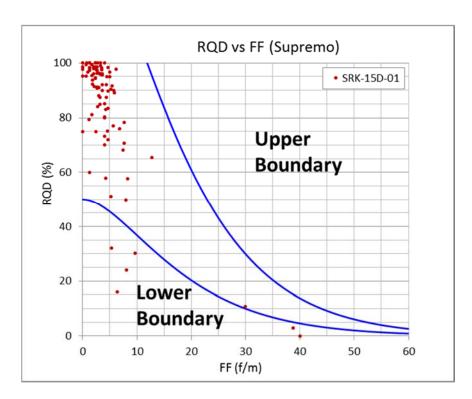
SITE & PROJECT No: 338600.02

**BORING DATE**: 06/03/15 **TO**: 06/05/15

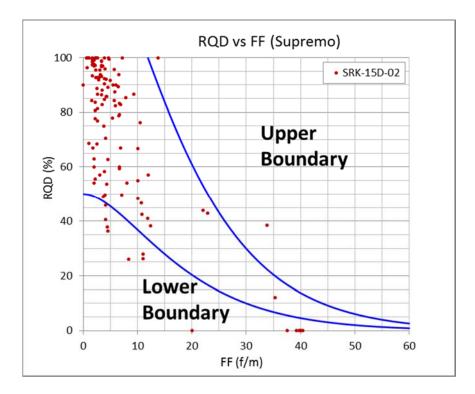
**DIP:** -55.1 **AZIMUTH:** 166


TOTAL DEPTH: 100

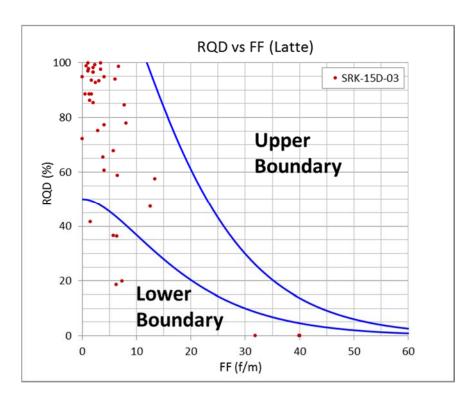
PAGE: 2 OF 2


DRILL TYPE: Diamond

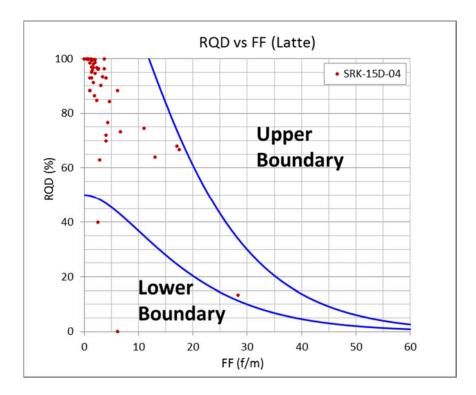
CORE DIA.: HQ


CASING DEPTH:




**Appendix B: Core Fracture Frequency Analysis** 




**Figure B-1:** Correlation and consistency between geotechnical parameters (RQD & FF/m) from geotechnical boreholes from **SRK – 15D-01** (Pit Supremo).



**Figure B-2:** Correlation and consistency between geotechnical parameters (RQD & FF/m) from geotechnical boreholes from **SRK – 15D-02** (Pit Supremo).



**Figure B-3:** Correlation and consistency between geotechnical parameters (RQD & FF/m) from geotechnical boreholes from **SRK – 15D-03** (Pit Latte).



**Figure B-4:** Correlation and consistency between geotechnical parameters (RQD & FF/m) from geotechnical boreholes from **SRK – 15D-04** (Pit Latte).

ML/FG Appendix B March 2016

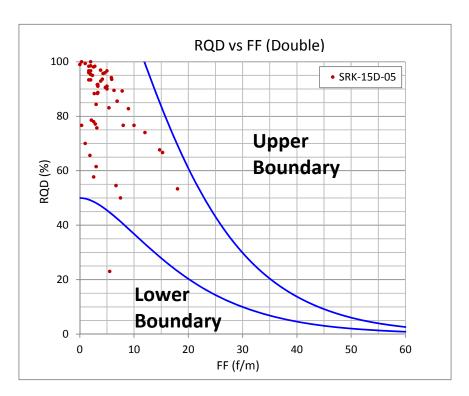
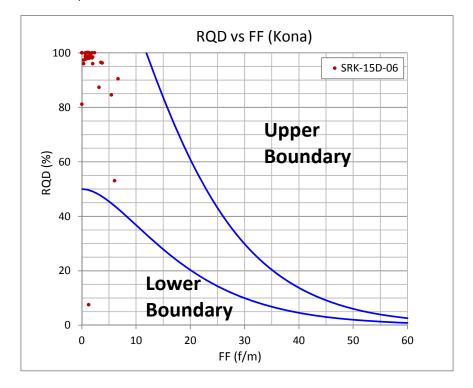




Figure B-5: Correlation and consistency between geotechnical parameters (RQD & FF/m) from geotechnical boreholes from SRK – 15D-05 (Pit Double Double).



**Figure B-6:** Correlation and consistency between geotechnical parameters (RQD & FF/m) from geotechnical boreholes from **SRK – 15D-06** (Pit Kona).

**Appendix C: Laboratory Test Results** 

|                      |                              | GNE        | iss  |       |         |          | Inde        | ex       |                              | N      | Mechanica      | l Propertie    | s       |      | Failure<br>Mode |           |
|----------------------|------------------------------|------------|------|-------|---------|----------|-------------|----------|------------------------------|--------|----------------|----------------|---------|------|-----------------|-----------|
| HOLE ID              | Depth                        | Lithology  | ф    | h     | Weight  | Relation | Prope       | rties    | S <sub>3</sub> <sup>TI</sup> | ucs    | S <sub>3</sub> | S <sub>1</sub> | E (UCS) | ν    | UCS/TX          | Date      |
| HOLE ID              | (m)                          | Littlology | (cm) | (cm)  | (gr)    | L/D      | γ<br>(t/m³) | n<br>(%) | (Mpa)                        | (MPa)  | (MPa)          | (Mpa)          | (GPa)   |      | 003/17          |           |
| SRK-15D-01           | 42.81                        | FG         | 6.1  | 13.20 | 986.00  | 2.16     | 2.56        |          |                              | 115.20 |                |                |         |      | Both            | 8/28/2015 |
| SRK-15D-01           | 95.365                       | FG         | 6.1  | 13.00 | 998.00  | 2.13     | 2.63        |          | 13.00                        | 68.50  |                |                | 36.55   | 0.28 | Both            | 8/28/2015 |
| SRK-15D-01           | 106.26                       | FG         | 6.1  | 13.30 | 1025.00 | 2.18     | 2.63        |          | 9.20                         | 79.10  |                |                | 37.20   | 0.25 | Both            | 8/28/2015 |
| SRK-15D-01           | 177.545                      | MxF        | 6.1  | 13.30 | 1023.00 | 2.17     | 2.61        |          | 15.70                        | 89.50  |                |                | 50.95   | 0.23 | Both            | 8/28/2015 |
| SRK-15D-02           | 68.225                       | FG         | 6.1  | 13.00 | 980.00  | 2.13     | 2.58        |          |                              | 19.20  |                |                |         |      | Fracture        | 8/28/2015 |
| SRK-15D-02           | 147.13                       | FG         | 6.2  | 13.10 | 1034.00 | 2.13     | 2.66        |          | 8.30                         | 4.20   |                |                |         |      | Fracture        | 8/28/2015 |
| SRK-15D-02           | 175.37                       | MxF        | 6.2  | 13.10 | 1028.00 | 2.12     | 2.60        |          | 3.20                         | 28.00  |                |                | 23.31   | 0.19 | Fracture        | 8/28/2015 |
| SRK-15D-02           | 78.875                       | FG         | 6.1  | 13.20 | 987.00  | 2.16     | 2.55        |          |                              | 8.10   |                |                | 4.24    | 0.50 | Fracture        | 8/28/2015 |
| SRK-15D-05           | 27.765                       | MxM        | 6.1  | 13.10 | 1027.00 | 2.14     | 2.68        |          |                              | 58.10  |                |                |         |      | Both            | 8/28/2015 |
| Total Test           |                              |            |      |       |         |          | 9           |          | 5                            | 9      |                |                | 5       | 5    |                 |           |
| Number of results \  | √alid                        |            |      |       |         |          | 9           |          | 4                            | 5      |                |                | 3       | 3    | 1               |           |
| Maximum value, M.    | AX                           |            |      |       |         |          | 2.68        |          | 15.70                        | 115.20 |                |                | 50.95   | 0.28 |                 |           |
| Minimum value, MI    | N                            |            |      |       |         |          | 2.55        |          | 8.30                         | 58.10  |                |                | 36.55   | 0.23 |                 |           |
| Medium, MED          |                              |            |      |       |         |          | 2.61        |          | 11.10                        | 79.10  |                |                | 44.08   | 0.24 | 1               |           |
| Average value, Mi    | Average value, MEAN          |            |      |       |         |          | 2.61        |          | 11.55                        | 82.08  |                |                | 41.57   | 0.25 |                 |           |
| Standard Deviation   | Standard Deviation, SDEV     |            |      |       |         |          |             |          | 3.44                         | 21.91  |                |                | 8.13    | 0.03 |                 |           |
| Coefficient of varia | Coefficient of variation, CV |            |      |       |         |          | 0.02        |          | 0.30                         | 0.27   |                |                | 0.20    | 0.10 |                 |           |

 Table C-1:
 Laboratory Test for Gneiss

|                      |                            | SCH        | IIST |       |         |          | Inde        | ex       |                              | N      | Mechanica      | I Propertie    | s       |      | Failure<br>Mode |           |
|----------------------|----------------------------|------------|------|-------|---------|----------|-------------|----------|------------------------------|--------|----------------|----------------|---------|------|-----------------|-----------|
| HOLE ID              | Depth                      | Lithology  | ф    | h     | Weight  | Relation | Prope       | rties    | S <sub>3</sub> <sup>TI</sup> | ucs    | S <sub>3</sub> | S <sub>1</sub> | E (UCS) | ν    | UCS/TX          | Date      |
| HOLE ID              | (m)                        | Littlology | (cm) | (cm)  | (gr)    | L/D      | γ<br>(t/m³) | n<br>(%) | (Mpa)                        | (MPa)  | (MPa)          | (Mpa)          | (GPa)   |      | 003/17          |           |
| SRK-15D-03           | 29.6                       | BtS        | 6.1  | 13.10 | 986.00  | 2.15     | 2.83        |          |                              | 16.30  |                |                |         |      | Fracture        | 8/28/2015 |
| SRK-15D-03           | 54.3                       | BtS_carb   | 6.1  | 13.00 | 998.00  | 2.13     | 2.73        |          | 16.00                        | 91.10  |                |                |         |      | Both            | 8/28/2015 |
| SRK-15D-03           | 86.2                       | BtS        | 6.1  | 13.30 | 1025.00 | 2.18     | 2.65        |          | 4.00                         | 16.80  |                |                |         |      | Fracture        | 8/28/2015 |
| SRK-15D-04           | 24.9                       | BtS_carb   | 6.1  | 13.30 | 1023.00 | 2.17     | 2.64        |          |                              | 17.00  |                |                |         |      | Fracture        | 8/28/2015 |
| SRK-15D-04           | 50.2                       | BtS        | 6.1  | 13.00 | 980.00  | 2.13     | 2.58        |          | 3.50                         | 10.80  |                |                | 10.30   | 0.50 | Fracture        | 8/28/2015 |
| SRK-15D-04           | 77.8                       | BtS_carb   | 6.2  | 13.10 | 1034.00 | 2.13     | 2.65        |          | 3.50                         | 29.80  |                |                | 27.10   | 0.34 | Fracture        | 8/28/2015 |
| SRK-15D-04           | 100.2                      | BtS_carb   | 6.2  | 13.10 | 1028.00 | 2.12     | 2.66        |          | 4.10                         | 32.30  |                |                |         |      | Fracture        | 8/28/2015 |
| SRK-15D-05           | 61.4                       | BtS        | 6.1  | 13.20 | 987.00  | 2.16     | 2.63        |          | 7.40                         | 104.50 |                |                |         |      | Intack          | 8/28/2015 |
| SRK-15D-05           | 97.6                       | BtS        | 6.1  | 13.10 | 1027.00 | 2.14     | 2.88        |          | 16.70                        | 99.50  |                |                |         |      | Intack          | 8/28/2015 |
| Total Test           |                            |            |      |       |         |          | 9           |          | 7                            | 9      |                |                | 2       | 2    |                 |           |
| Number of results \  | √alid                      |            |      |       |         |          | 9           |          | 7                            | 3      |                |                | 2       | 2    | 1               |           |
| Maximum value, M     | AX                         |            |      |       |         |          | 2.88        |          | 16.70                        | 104.50 |                |                | 27.10   | 0.50 | 1               |           |
| Minimum value, MI    | N                          |            |      |       |         |          | 2.58        |          | 3.50                         | 91.10  |                |                | 10.30   | 0.34 | 1               |           |
| Medium, MED          |                            |            |      |       |         |          | 2.65        |          | 4.10                         | 99.50  |                |                | 18.70   | 0.42 | 1               |           |
| Average value, Mi    | Average value, MEAN        |            |      |       |         |          |             |          | 7.89                         | 98.37  |                |                | 18.70   | 0.42 | 1               |           |
| Standard Deviation   | andard Deviation, SDEV     |            |      |       |         |          |             |          | 5.94                         | 6.77   |                |                | 11.88   | 0.11 | 1               |           |
| Coefficient of varia | efficient of variation, CV |            |      |       |         |          |             |          | 0.75                         | 0.07   |                |                | 0.64    | 0.27 | 1               |           |

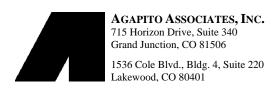
 Table C-2:
 Laboratory Test for Shist

|                        |                          | GRA       | NITE |       |         |          | Inde        |          | Mechanical Properties        |        |       |                |         |      |        |           |
|------------------------|--------------------------|-----------|------|-------|---------|----------|-------------|----------|------------------------------|--------|-------|----------------|---------|------|--------|-----------|
|                        | Depth                    |           | ф    | h     | Weight  | Relation | Prope       | rties    | S <sub>3</sub> <sup>TI</sup> | ucs    | S₃    | S <sub>1</sub> | E (UCS) | ν    |        | Date      |
| HOLE ID                | (m)                      | Lithology | (cm) | (cm)  | (gr)    | L/D      | γ<br>(t/m³) | n<br>(%) | (MPa)                        | (MPa)  | (MPa) | (MPa)          | (GPa)   |      | UCS/TX |           |
| SRK-15D-06             | 52.2                     | GG        | 6.1  | 13.20 | 1001.00 | 2.17     | 2.61        |          | 10.40                        | 120.10 |       |                | 54.72   | 0.30 | Intact | 8/28/2015 |
| SRK-15D-06             | 76.6                     | GG        | 6.1  | 13.20 | 1012.00 | 2.16     | 2.63        |          | 8.40                         | 140.00 |       |                |         |      | Intact | 8/28/2015 |
| Total Test             |                          |           |      |       |         |          | 2           | 0        | 2                            | 2      | 0     | 0              | 1       | 1    |        |           |
| Number of results Va   | alid                     |           |      |       |         |          | 2           | 0        | 2                            | 2      | 0     | 0              | 1       | 1    |        |           |
| Maximum value, MA      | ιX                       |           |      |       |         |          | 2.63        |          | 10.40                        | 140.00 |       |                | 54.72   | 0.30 | 1      |           |
| Minimum value, MIN     | I                        |           |      |       |         |          | 2.61        |          | 8.40                         | 120.10 |       |                | 54.72   | 0.30 | 1      |           |
| Medium, MED            |                          |           |      |       |         |          | 2.62        |          | 9.40                         | 130.05 |       |                | 54.72   | 0.30 |        |           |
| Average value, ME      | Average value, MEAN      |           |      |       |         |          | 2.62        |          | 9.40                         | 130.05 |       |                | 54.72   | 0.30 |        |           |
| Standard deviation,    | Standard deviation, SDEV |           |      |       |         |          |             |          | 1.41                         | 14.07  |       |                |         |      |        |           |
| Coefficient of variati | ion, CV                  |           |      |       |         |          | 0.00        |          | 0.15                         | 0.11   |       |                |         |      |        |           |

 Table C-3:
 Laboratory Test for Granite

|                     |                  | ı      | Direct Shear Test |           |                  | Prope | erties |
|---------------------|------------------|--------|-------------------|-----------|------------------|-------|--------|
| HOLE ID             | from             | to     | Lithology         | Type      | Deposit          | ф     | С      |
| HOLL ID             |                  |        | Littlology        | 1,400     | Бороон           | (°)   | (KPa)  |
| CFD0201             | 18.13            | 18.45  | Bio-fel-schist    | Foliation | Supremo - T3     | 36.5  | 21     |
| CFD0208             | 208.27           | 208.70 | Gneiss            | Foliation | Supremo - T3     | 28.6  | 56     |
| CFD0223             | 163.65           | 164.01 | Gneiss            | Foliation | Supremo - T3     | 24.1  | 55     |
| CFD0235             | 87.36            | 87.80  | Felsic Gneiss     | Foliation | Supremo - T3     | 33.7  | 19     |
| CFD0305             | 175.45           | 175.92 | Bio-feld-schist   | Foliation | E. Latte & SupT3 | 37.3  | 63     |
| SRK-15D-01          | 14.87            | 15.27  | Gneiss            | Joint     | Supremo          | 34.1  | 13     |
| SRK-15D-01          | 198.58           | 199.00 | Gneiss            | Joint     | Supremo          | 29.9  | 78     |
| SRK-15D-02          | 138.87           | 139.40 | Gneiss            | Joint     | Sup & E. Latte   | 33.0  | 124    |
| SRK-15D-02          | 195.65           | 195.05 | Gneiss            | Foliation | Sup & E. Latte   | 36.0  | 59     |
| SRK-15D-03          | 80.26            | 80.59  | Schist            | Foliation | Latte            | 26.1  | 24     |
| SRK-15D-03          | 101.77           | 102.10 | Schist            | Foliation | Latte            | 26.1  | 61     |
| SRK-15D-04          | 71.00            | 71.30  | Schist            | Foliation | Latte            | 32.5  | 7      |
| SRK-15D-04          | 133.52           | 133.87 | Schist            | Joint     | Latte            | 29.0  | 53     |
| SRK-15D-05          | 103.02           | 103.42 | Gneiss            | Joint     | Double Double    | 30.5  | 23     |
| SRK-15D-06          | 45.08            | 45.38  | Granite           | Joint     | Kona             | 38.2  | 53     |
| Total Test          |                  | 15     | 15                |           |                  |       |        |
| Latte- Schist - Fol | iation           |        |                   |           |                  | 40    | 28     |
| Double Double -     | Gneiss – Foliati | ion    |                   |           |                  | 30    | 32     |
| Supremo – Gneis     | 28               | 30     |                   |           |                  |       |        |

Table C-4: Direct Shear Test Result


# DRAFT ROCK MECHANICS TESTING FOR CORE HOLES SRK-15D-01, -02, -03, -04, -05, -06

#### Prepared for

SRK Consulting (U.S.) Inc.

August 28, 2015

#### Prepared by



# DRAFT ROCK MECHANICS TESTING FOR CORE HOLES SRK-15D-01, -02, -03, -04, -05, -06

#### TABLE OF CONTENTS

|                                                                          | <u>Page</u> |
|--------------------------------------------------------------------------|-------------|
| 1.0 Introduction                                                         | 1           |
| 2.0 LABORATORY PROCEDURES                                                | 1           |
| 3.0 TEST RESULTS                                                         | 1           |
| APPENDIX A—UNIAXIAL COMPRESSION TEST DATA SHEET                          | A-1         |
| APPENDIX B—BEFORE AND AFTER PHOTOGRAPHS OF UNIAXIA                       | L           |
| COMPRESSIVE STRENGTH TEST SPECIMENS                                      | B-1         |
| APPENDIX C—STRESS-STRAIN PLOTS FOR UNIAXIAL COMPRES                      | SSIVE       |
| STRENGTH TESTS                                                           |             |
| APPENDIX D—SPLITTING TENSILE STRENGTH (BRAZILIAN) TE                     | ST DATA     |
| SHEET                                                                    | D-1         |
| APPENDIX E—BEFORE AND AFTER PHOTOGRAPHS OF SPLITTIN                      | NG TENSILE  |
| STRENGTH (BRAZILIAN) TEST SPECIMENS                                      | E-1         |
| LIST OF TABLES                                                           |             |
| Table 1. Summary of Uniaxial Compressive Strength Test Results           | 2           |
| Table 2. Summary of Splitting Tensile Strength (Brazilian) Test Results. |             |

**DISCLAIMER OF LIABILITY:** This work was prepared based on the core samples received and by carefully following the standards and procedures listed in this report. Neither Agapito Associates, Inc. (AAI) nor any of its employees make any warranty, expressed or implied, or assumes **any** legal liability or responsibility for its application or usage. The user hereby acknowledges that the provisions of this disclaimer shall apply to all contents of this report.

#### 1.0 Introduction

SRK Consulting (U.S.) Inc. (SRK) commissioned Agapito Associates, Inc. (AAI) to complete a rock mechanics laboratory study to determine the mechanical properties of rock samples from core holes SRK-15D-01, -02, -03, -04, -05, -06 from Kaminak Gold Corporation. A shipment of core was delivered to AAI's Grand Junction, Colorado, laboratory facility on July 22, 2015. This laboratory report provides results of the rock mechanics core testing performed by AAI on behalf of SRK.

#### 2.0 LABORATORY PROCEDURES

Prior to testing, specimens were prepared according to ASTM International (ASTM) standard D4543-08.<sup>1</sup> The following test types were performed by AAI according to ASTM standards where applicable:

- Uniaxial (unconfined) compressive strength (UCS) test: D7012-13<sup>2</sup>
- Splitting tensile strength test (Brazilian): D3967-08<sup>3</sup>

#### 3.0 TEST RESULTS

The laboratory results for the UCS tests are summarized in Table 1. Table 1 contains elastic properties calculated using both the tangent (45–55% of UCS) and secant (0–50% of UCS) methods as outlined in ASTM D7012.

The laboratory results for the Brazilian tests are summarized in Table 2. Data sheets for the UCS tests with failure mode descriptions are presented in Appendix A. Before and after photos of the UCS test specimens are in Appendix B. Stress-strain plots for UCS tests are in Appendix C. Data sheets for the Brazilian tests are presented in Appendix D. Before and after photos of the Brazilian test specimens are in Appendix E.

<sup>1</sup>American Society for Testing and Materials (ASTM), "Standard Practice for Preparing Rock Core as Cylindrical Test Specimens and Verifying Conformance to Dimensional Shape Tolerances," Designation D4543-08.

<sup>&</sup>lt;sup>2</sup>American Society for Testing and Materials (ASTM), "Standard Test Method for Compressive Strength and Elastic Moduli of Intact Rock Core Specimens under Varying States of Stress and Temperature," Designation D7012-13 (Methods C and D).

<sup>&</sup>lt;sup>3</sup>American Society for Testing and Materials (ASTM), "Standard Test Method for Splitting Tensile Strength of Intact Rock Core Specimens," Designation D3967-08.

Page 2

Table 1. Summary of Uniaxial Compressive Strength Test Results

|                        |            | Dej    | oth    |                |        | Average  | Axial  |                      | Failure |       | Young's  | Poisson's | Young's            | Poisson's |
|------------------------|------------|--------|--------|----------------|--------|----------|--------|----------------------|---------|-------|----------|-----------|--------------------|-----------|
| Specimen No.           | Hole ID    | From   | To     | Lithology      | Weight | Diameter | Length | Density              | Load    | UCS   | Modulus† | Ratio†    | $Modulus \ddagger$ | Ratio;    |
|                        |            | (m)    | (m)    |                | (g)    | (cm)     | (cm)   | (kg/m <sup>3</sup> ) | (kN)    | (MPa) | (GPa)    |           | (GPa)              |           |
| SRK-15D-01_UCS_01/U-01 | SRK-15D-01 | 42.63  | 42.99  | Gneiss         | 986    | 6.10     | 13.2   | 2,561                | 336     | 115.2 |          |           |                    |           |
| SRK-15D-01_UCS_06/U-02 | SRK-15D-01 | 177.37 | 177.72 | Gneiss         | 1,023  | 6.12     | 13.3   | 2,608                | 263     | 89.5  | 50.95    | 0.23      | 50.08              | 0.10      |
| SRK-15D-02_UCS_01/U-03 | SRK-15D-02 | 68.00  | 68.45  | Gneiss         | 980    | 6.10     | 13.0   | 2,579                | 56      | 19.2  |          |           |                    |           |
| SRK-15D-02_UCS_04/U-04 | SRK-15D-02 | 146.96 | 147.30 | Gneiss         | 1,034  | 6.15     | 13.1   | 2,660                | 13      | 4.2   | -        | 0.50      | 82.77              | 0.20      |
| SRK-15D-03_UCS_01/U-05 | SRK-15D-03 | 29.44  | 29.78  | Gneiss         | 1,077  | 6.09     | 13.1   | 2,829                | 47      | 16.3  |          |           |                    |           |
| SRK-15D-03_UCS_02/U-06 | SRK-15D-03 | 54.15  | 54.50  | Gneiss         | 1,028  | 6.10     | 12.9   | 2,734                | 266     | 91.1  |          |           |                    |           |
| SRK-15D-03_UCS_03/U-07 | SRK-15D-03 | 86.00  | 86.35  | Gneiss         | 982    | 6.08     | 12.8   | 2,651                | 49      | 16.8  |          |           |                    |           |
| SRK-15D-04_UCS_01/U-08 | SRK-15D-04 | 24.70  | 25.00  | Gneiss         | 998    | 6.08     | 13.0   | 2,635                | 49      | 17.0  |          |           |                    |           |
| SRK-15D-04_UCS_02/U-09 | SRK-15D-04 | 50.00  | 50.30  | Gneiss         | 995    | 6.11     | 13.2   | 2,581                | 32      | 10.8  | 10.30    | 0.50      | 14.33              | 0.29      |
| SRK-15D-04_UCS_04/U-10 | SRK-15D-04 | 99.98  | 100.34 | Gneiss         | 1,023  | 6.10     | 13.1   | 2,663                | 94      | 32.3  |          |           |                    |           |
| SRK-15D-05_UCS_01/U-11 | SRK-15D-05 | 27.60  | 27.93  | No description | 1,027  | 6.11     | 13.1   | 2,679                | 170     | 58.1  |          |           |                    |           |
| SRK-15D-05_UCS_02/U-12 | SRK-15D-05 | 61.21  | 61.53  | No description | 1,003  | 6.11     | 13.0   | 2,630                | 307     | 104.5 |          |           |                    |           |
| SRK-15D-05_UCS_03/U-13 | SRK-15D-05 | 97.44  | 97.75  | Gneiss         | 1,100  | 6.11     | 13.0   | 2,883                | 292     | 99.5  |          |           |                    |           |
| SRK-15D-06_UCS_02/U-14 | SRK-15D-06 | 52.00  | 52.30  | Granite        | 1,001  | 6.09     | 13.2   | 2,609                | 349     | 120.1 | 54.72    | 0.30      | 54.98              | 0.12      |
| SRK-15D-06_UCS_03/U-15 | SRK-15D-06 | 76.41  | 76.86  | Granite        | 1,012  | 6.10     | 13.2   | 2,625                | 409     | 140.0 |          |           |                    |           |
| SRK-15D-02_UCS_05/U-16 | SRK-15D-02 | 175.20 | 175.54 | Gneiss         | 1,028  | 6.19     | 13.1   | 2,598                | 84      | 28.0  | 23.31    | 0.19      | 24.68              | 0.15      |
| SRK-15D-04_UCS_03/U-17 | SRK-15D-04 | 77.62  | 77.92  | Gneiss         | 1,018  | 6.11     | 13.1   | 2,650                | 87      | 29.8  | 27.10    | 0.34      | 42.04              | 0.16      |
| SRK-15D-01_UCS_03/U-18 | SRK-15D-01 | 95.14  | 95.59  | Gneiss         | 998    | 6.09     | 13.0   | 2,625                | 200     | 68.5  | 36.55    | 0.28      | 54.32              | 0.34      |
| SRK-15D-01_UCS_04/U-19 | SRK-15D-01 | 106.10 | 106.42 | Gneiss         | 1,025  | 6.10     | 13.3   | 2,629                | 231     | 79.1  | 37.20    | 0.25      | 35.53              | 0.17      |
| SRK-15D-02_UCS_02/U-20 | SRK-15D-02 | 78.70  | 79.05  | Gneiss         | 987    | 6.12     | 13.2   | 2,546                | 24      | 8.1   | 4.24     | 0.50      | 5.40               | 0.24      |

<sup>†</sup>Tangent calculation method.

<sup>‡</sup>Secant calculation method.

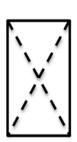
Table 2. Summary of Splitting Tensile Strength Test Results

|                        |            |        |        |                |        |          |        |                      |         | Splitting |
|------------------------|------------|--------|--------|----------------|--------|----------|--------|----------------------|---------|-----------|
|                        |            | De     | pth    |                |        | Average  | Axial  |                      | Failure | Tensile   |
| Specimen No.           | Hole ID    | From   | To     | Lithology      | Weight | Diameter | Length | Density              | Load    | Strength  |
|                        |            | (m)    | (m)    |                | (g)    | (cm)     | (cm)   | (kg/m <sup>3</sup> ) | (kN)    | (MPa)     |
| SRK-15D-01_UCS_06/B-01 | SRK-15D-01 | 177.37 | 177.72 | Gneiss         | 304    | 6.10     | 3.95   | 2,637                | 60      | 15.7      |
| SRK-15D-02_UCS_04/B-02 | SRK-15D-02 | 146.96 | 147.30 | Gneiss         | 290    | 6.15     | 3.70   | 2,648                | 30      | 8.3       |
| SRK-15D-03_UCS_02/B-03 | SRK-15D-03 | 54.15  | 54.50  | Gneiss         | 304    | 6.10     | 3.83   | 2,724                | 59      | 16.0      |
| SRK-15D-04_UCS_03/B-04 | SRK-15D-04 | 86.00  | 86.35  | Gneiss         | 283    | 6.09     | 3.72   | 2,609                | 14      | 4.0       |
| SRK-15D-04_UCS_02/B-05 | SRK-15D-04 | 50.00  | 50.30  | Gneiss         | 277    | 6.10     | 3.67   | 2,579                | 12      | 3.5       |
| SRK-15D-04_UCS_04/B-06 | SRK-15D-04 | 99.98  | 100.34 | Gneiss         | 293    | 6.10     | 3.89   | 2,581                | 15      | 4.1       |
| SRK-15D-05_UCS_02/B-07 | SRK-15D-05 | 61.21  | 61.53  | No description | 305    | 6.11     | 3.97   | 2,616                | 28      | 7.4       |
| SRK-15D-05_UCS_03/B-08 | SRK-15D-05 | 97.44  | 97.75  | Gneiss         | 321    | 6.10     | 3.85   | 2,848                | 62      | 16.7      |
| SRK-15D-06_UCS_02/B-09 | SRK-15D-06 | 52.00  | 52.30  | Granite        | 295    | 6.08     | 3.88   | 2,617                | 38      | 10.4      |
| SRK-15D-06_UCS_03/B-10 | SRK-15D-06 | 76.41  | 76.86  | Granite        | 294    | 6.10     | 3.84   | 2,615                | 31      | 8.4       |
| SRK-15D-02_UCS_05/B-11 | SRK-15D-02 | 175.20 | 175.54 | Gneiss         | 290    | 6.19     | 3.79   | 2,539                | 12      | 3.2       |
| SRK-15D-04_UCS_03/B-12 | SRK-15D-04 | 77.62  | 77.92  | Gneiss         | 287    | 6.11     | 3.73   | 2,630                | 13      | 3.5       |
| SRK-15D-01_UCS_03/B-13 | SRK-15D-01 | 95.14  | 95.59  | Gneiss         | 286    | 6.09     | 3.78   | 2,602                | 47      | 13.0      |
| SRK-15D-01_UCS_04/B-14 | SRK-15D-01 | 106.10 | 106.42 | Gneiss         | 285    | 6.10     | 3.70   | 2,636                | 33      | 9.2       |

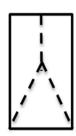
Draft: August 28, 2015 Page A-1

### APPENDIX A

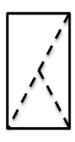
# UNIAXIAL COMPRESSION STRENGTH TEST DATA SHEET


#### Agapito Associates, Inc. **UNCONFINED COMPRESSION TESTS**

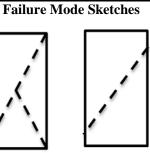
SRK 333-16 CLIENT: JOB NO: DATE: August 3, 2015


SRK-15D-01, -02, -03, -04, -05, -06 HOLE NO: MOISTURE CONDITION: As received TEMPERATURE: 70°

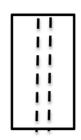
|                        |            | Interval    |           | Length of       |               | Diameter            |                     | Axial          | Length-to-<br>Diameter |               |                                 | Specific |
|------------------------|------------|-------------|-----------|-----------------|---------------|---------------------|---------------------|----------------|------------------------|---------------|---------------------------------|----------|
| Specimen No.           | Hole No.   | From<br>(m) | To<br>(m) | Interval<br>(m) | Weight<br>(g) | D <sub>1</sub> (mm) | D <sub>2</sub> (mm) | Length<br>(mm) | Ratio                  | Area<br>(mm²) | Density<br>(kg/m <sup>3</sup> ) | Gravity  |
| SRK-15D-01_UCS_01/U-01 | SRK-15D-01 | 42.63       | 42.99     | 0.36            | 986           | 60.99               | 60.96               | 131.8          | 2.2                    | 2,920         | 2,561                           | 2.56     |
| SRK-15D-01_UCS_06/U-02 | SRK-15D-01 | 177.37      | 177.72    | 0.35            | 1,023         | 61.18               | 61.17               | 133.5          | 2.2                    | 2,939         | 2,608                           | 2.61     |
| SRK-15D-02_UCS_01/U-03 | SRK-15D-02 | 68.00       | 68.45     | 0.45            | 980           | 61.06               | 61.02               | 129.9          | 2.1                    | 2,926         | 2,579                           | 2.58     |
| SRK-15D-02_UCS_04/U-04 | SRK-15D-02 | 146.96      | 147.30    | 0.34            | 1,034         | 61.47               | 61.50               | 131.0          | 2.1                    | 2,969         | 2,660                           | 2.66     |
| SRK-15D-03_UCS_01/U-05 | SRK-15D-03 | 29.44       | 29.78     | 0.34            | 1,077         | 60.89               | 60.86               | 130.8          | 2.1                    | 2,910         | 2,829                           | 2.83     |
| SRK-15D-03_UCS_02/U-06 | SRK-15D-03 | 54.15       | 54.50     | 0.35            | 1,028         | 60.97               | 60.96               | 128.8          | 2.1                    | 2,919         | 2,734                           | 2.73     |
| SRK-15D-03_UCS_03/U-07 | SRK-15D-03 | 86.00       | 86.35     | 0.35            | 982           | 60.76               | 60.79               | 127.7          | 2.1                    | 2,901         | 2,651                           | 2.65     |
| SRK-15D-04_UCS_01/U-08 | SRK-15D-04 | 24.70       | 25.00     | 0.30            | 998           | 60.85               | 60.76               | 130.4          | 2.1                    | 2,904         | 2,635                           | 2.63     |
| SRK-15D-04_UCS_02/U-09 | SRK-15D-04 | 50.00       | 50.30     | 0.30            | 995           | 61.08               | 61.04               | 131.7          | 2.2                    | 2,928         | 2,581                           | 2.58     |
| SRK-15D-04_UCS_04/U-10 | SRK-15D-04 | 99.98       | 100.34    | 0.36            | 1,023         | 61.04               | 61.04               | 131.3          | 2.2                    | 2,926         | 2,663                           | 2.66     |
| SRK-15D-05_UCS_01/U-11 | SRK-15D-05 | 27.60       | 27.93     | 0.33            | 1,027         | 61.10               | 61.11               | 130.8          | 2.1                    | 2,933         | 2,679                           | 2.68     |
| SRK-15D-05_UCS_02/U-12 | SRK-15D-05 | 61.21       | 61.53     | 0.32            | 1,003         | 61.13               | 61.12               | 129.9          | 2.1                    | 2,934         | 2,630                           | 2.63     |
| SRK-15D-05_UCS_03/U-13 | SRK-15D-05 | 97.44       | 97.75     | 0.31            | 1,100         | 61.10               | 61.09               | 130.2          | 2.1                    | 2,932         | 2,883                           | 2.88     |
| SRK-15D-06_UCS_02/U-14 | SRK-15D-06 | 52.00       | 52.30     | 0.30            | 1,001         | 60.85               | 60.86               | 131.9          | 2.2                    | 2,909         | 2,609                           | 2.61     |
| SRK-15D-06_UCS_03/U-15 | SRK-15D-06 | 76.41       | 76.86     | 0.45            | 1,012         | 61.03               | 61.02               | 131.8          | 2.2                    | 2,925         | 2,625                           | 2.62     |
| SRK-15D-02_UCS_05/U-16 | SRK-15D-02 | 175.20      | 175.54    | 0.34            | 1,028         | 61.9                | 61.9                | 131.4          | 2.1                    | 3,012         | 2,598                           | 2.60     |
| SRK-15D-04_UCS_03/U-17 | SRK-15D-04 | 77.62       | 77.92     | 0.30            | 1,018         | 61.1                | 61.0                | 131.2          | 2.1                    | 2,927         | 2,650                           | 2.65     |
| SRK-15D-01_UCS_03/U-18 | SRK-15D-01 | 95.14       | 95.59     | 0.45            | 998           | 61.0                | 60.9                | 130.4          | 2.1                    | 2,916         | 2,625                           | 2.62     |
| SRK-15D-01_UCS_04/U-19 | SRK-15D-01 | 106.10      | 106.42    | 0.32            | 1,025         | 61.0                | 61.0                | 133.4          | 2.2                    | 2,921         | 2,629                           | 2.63     |
| SRK-15D-02_UCS_02/U-20 | SRK-15D-02 | 78.70       | 79.05     | 0.35            | 987           | 61.2                | 61.2                | 131.9          | 2.2                    | 2,939         | 2,546                           | 2.55     |


| Specimen No.           | Lithological Description  | Failure<br>Load | UCS   | Failure Mode Notes | Comments                          |
|------------------------|---------------------------|-----------------|-------|--------------------|-----------------------------------|
| Specimen 140.          | Entilological Description | (N)             | (MPa) | ranure wode notes  | Comments                          |
| SRK-15D-01_UCS_01/U-01 | Gneiss                    | 336,286         | 115.2 | Shear              |                                   |
| SRK-15D-01_UCS_06/U-02 | Gneiss                    | 262,979         | 89.5  | Shear              |                                   |
| SRK-15D-02_UCS_01/U-03 | Gneiss                    | 56,226          | 19.2  | Shear              |                                   |
| SRK-15D-02_UCS_04/U-04 | Gneiss                    | 12,611          | 4.2   | Shear              | Failed along contact/foliation    |
| SRK-15D-03_UCS_01/U-05 | Gneiss                    | 47,440          | 16.3  | Shear/cone         |                                   |
| SRK-15D-03_UCS_02/U-06 | Gneiss                    | 265,848         | 91.1  | Shear/cone         |                                   |
| SRK-15D-03_UCS_03/U-07 | Gneiss                    | 48,864          | 16.8  | Shear              |                                   |
| SRK-15D-04_UCS_01/U-08 | Gneiss                    | 49,420          | 17.0  | Shear              |                                   |
| SRK-15D-04_UCS_02/U-09 | Gneiss                    | 31,649          | 10.8  | Shear/axial        | Shear fracture near top of sample |
| SRK-15D-04_UCS_04/U-10 | Gneiss                    | 94,436          | 32.3  | Shear              |                                   |
| SRK-15D-05_UCS_01/U-11 | No description            | 170,389         | 58.1  | Axial              |                                   |
| SRK-15D-05_UCS_02/U-12 | No description            | 306,749         | 104.5 | Axial              |                                   |
| SRK-15D-05_UCS_03/U-13 | Gneiss                    | 291,670         | 99.5  | Shear and axial    |                                   |
| SRK-15D-06_UCS_02/U-14 | Granite                   | 349,274         | 120.1 | Axial              |                                   |
| SRK-15D-06_UCS_03/U-15 | Granite                   | 409,348         | 140.0 | Axial              |                                   |
| SRK-15D-02_UCS_05/U-16 | Gneiss                    | 84,472          | 28.05 | Shear              |                                   |
| SRK-15D-04_UCS_03/U-17 | Gneiss                    | 87,141          | 29.77 | Shear/axial        |                                   |
| SRK-15D-01_UCS_03/U-18 | Gneiss                    | 199,836         | 68.54 | Shear              |                                   |
| SRK-15D-01_UCS_04/U-19 | Gneiss                    | 231,085         | 79.11 | Shear/axial        |                                   |
| SRK-15D-02_UCS_02/U-20 | Gneiss                    | 23,731          | 8.07  | Shear              |                                   |
| •                      |                           |                 |       |                    |                                   |

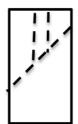



Cone




Cone and Axial Fracture/




Cone and Shear



Shear



Axial Fracture/ Columnar



Shear and Axial Fracture/ Columnar

Draft: August 28, 2015 Page B-1

### APPENDIX B

## BEFORE AND AFTER PHOTOGRAPHS OF UNIAXIAL COMPRESSION STRENGTH TEST SPECIMENS



SRK-15D-01\_UCS\_01/U-01 42.63-42.99 Before



SRK-15D-01\_UCS\_01/U-01 42.63-42.99 After



SRK-15D-01\_UCS\_06/U-02 177.37-177.72 Before



SRK-15D-01\_UCS\_06/U-02 177.37-177.72 After

Figure B-1. Before and After Photographs of Uniaxial Compressive Strength Test Specimens



SRK-15D-02\_UCS\_01/U-03 68.00-68.45 Before



SRK-15D-02\_UCS\_01/U-03 68.00-68.45 After



SRK-15D-02\_UCS\_04/U-04

146.96M-147.30M

SRK-15D-02\_UCS\_04/U-04 146.96-147.30 Before SRK-15D-02-UCS\_04/U-04 146.96-147.30 After

Figure B-1. Before and After Photographs of Uniaxial Compressive Strength Test Specimens (continued)



SRK-15D-03\_UCS\_01/U-05 29.44-29.78 Before



SRK-15D-03\_UCS\_01/U-05 29.44-29.78 After



SRK-15D-03\_UCS\_02/U-06 54.15-54.50 Before



SRK-15D-03\_UCS\_02/U-06 54.15-54.50 After

Figure B-1. Before and After Photographs of Uniaxial Compressive Strength Test Specimens (continued)



SRK-15D-03\_UCS\_03/U-07 86.00-86.35 Before



SRK-15D-03\_UCS\_03/U-07 86.00-86.35 After



SRK-15D-04\_UCS\_01/U-08 24.70-25.00 Before



SRK-15D-04\_UCS\_01/U-08 24.70-25.00 After

Figure B-1. Before and After Photographs of Uniaxial Compressive Strength Test Specimens (continued)



SRK-15D-04\_UCS\_02/U-09 50.00-50.30 Before



SRK-15D-04\_UCS\_02/U-09 50.00-50.30 After



SRK-15D-04\_UCS\_04/U-10 99.98-100.34 Before



SRK-15D-04\_UCS\_04/U-10 99.98-100.34 After

Figure B-1. Before and After Photographs of Uniaxial Compressive Strength Test Specimens (continued)



SRK-15D-05\_UCS\_01/U-11 27.60-27.93 Before





SRK-15D-05\_UCS\_02/U-12 61.21-61.53 Before



SRK-15D-05\_UCS\_02/U-12 61.21-61.53 After

Figure B-1. Before and After Photographs of Uniaxial Compressive Strength Test **Specimens** (continued)



SRK-15D-05\_UCS\_03/U-13 97.44-97.75 Before



SRK-15D-05\_UCS\_03/U-13 97.44-97.75 After



SRK-15D-06\_UCS\_02/U-14 52.00-52.30 Before



SRK-15D-06\_UCS\_02/U-14 52.00-52.30 After

Figure B-1. Before and After Photographs of Uniaxial Compressive Strength Test Specimens (continued)



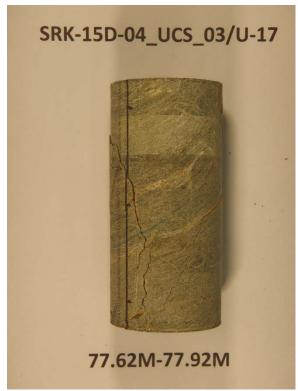
SRK-15D-06\_UCS\_03/U-15 76.41-76.86 Before



SRK-15D-06\_UCS\_03/U-15 76.41-76.86 After



SRK-15D-02-UCS\_05 U-16 175.20-175.56 Before




SRK-15D-02-UCS\_05 U-16 175.20-175.56 After

Figure B-1. Before and After Photographs of Uniaxial Compressive Strength Test Specimens (continued)



SRK-15D-04\_UCS\_03 U-17 77.62-77.92 Before



SRK-15D-04\_UCS\_03 U-17 77.62-77.92 After



SRK-15D-01\_UCS\_03 U-18 95.14-95.59 Before



SRK-15D-01\_UCS\_03 U-18 95.14-95.59 After

Before and After Photographs of Uniaxial Compressive Strength Test Figure B-1. **Specimens** (continued)



SRK-15D-01\_UCS\_04 U-19 106.10-106.42 Before

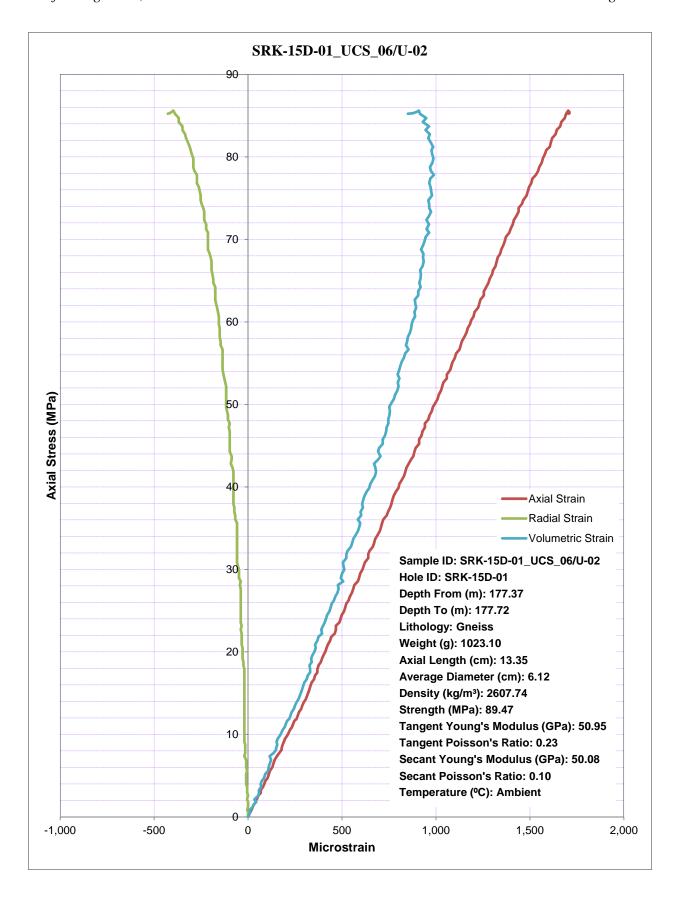


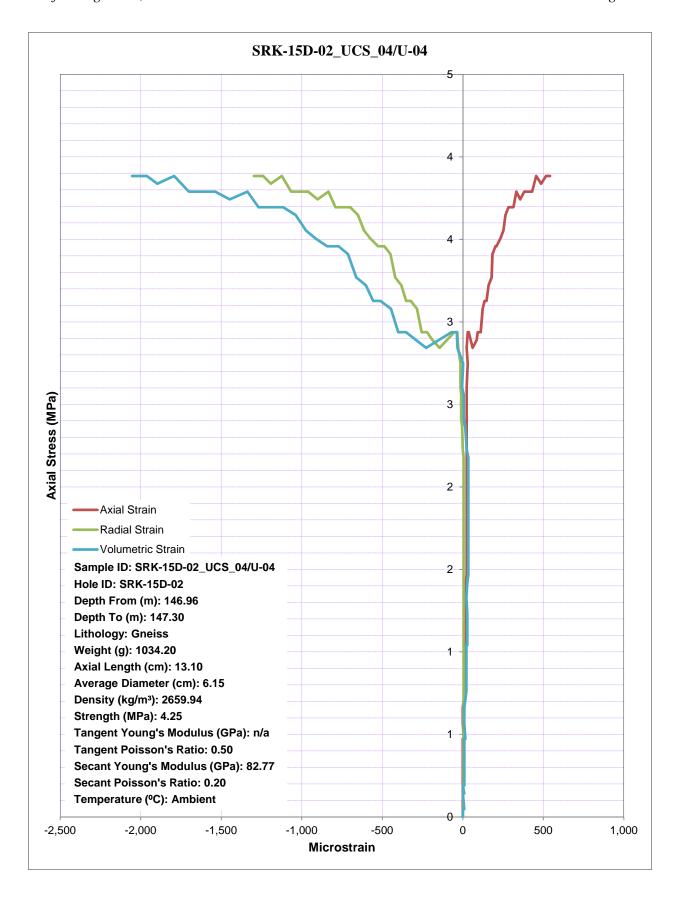
SRK-15D-01\_UCS\_04 U-19 106.10-106.42 After

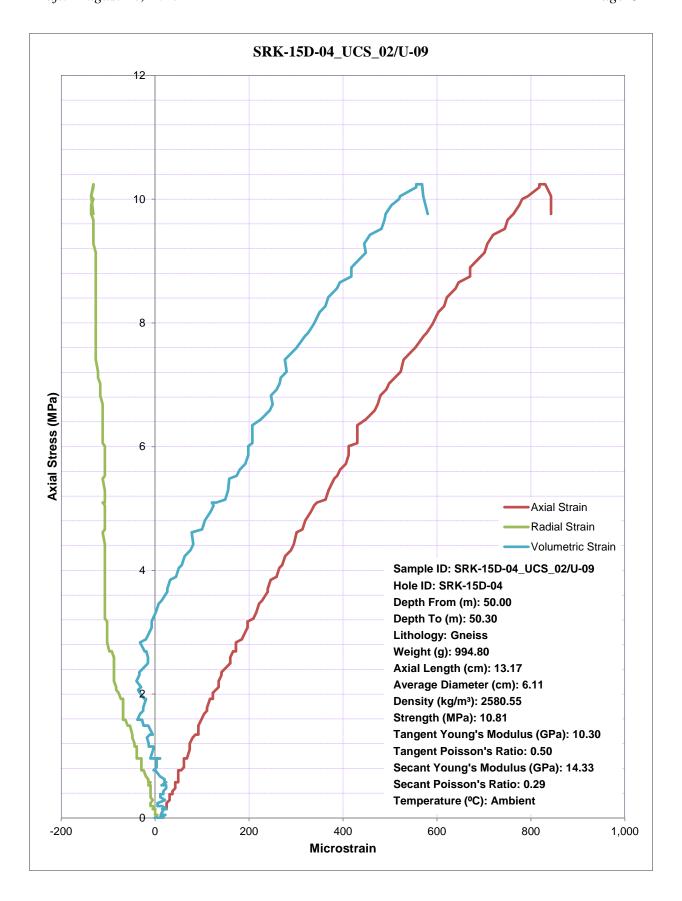


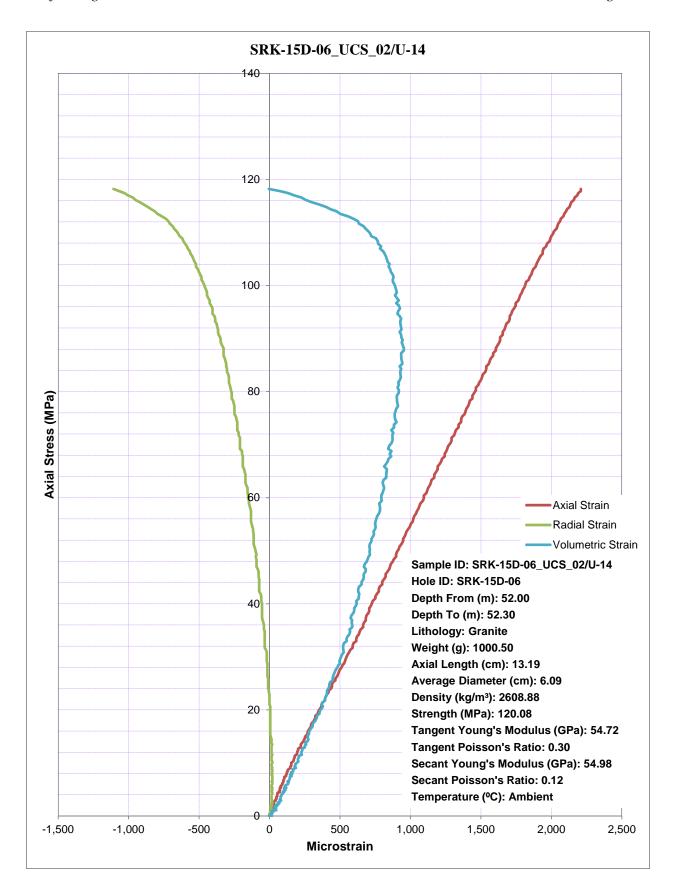
SRK-15D-04\_UCS\_02/U-20 78.70-79.05 Before

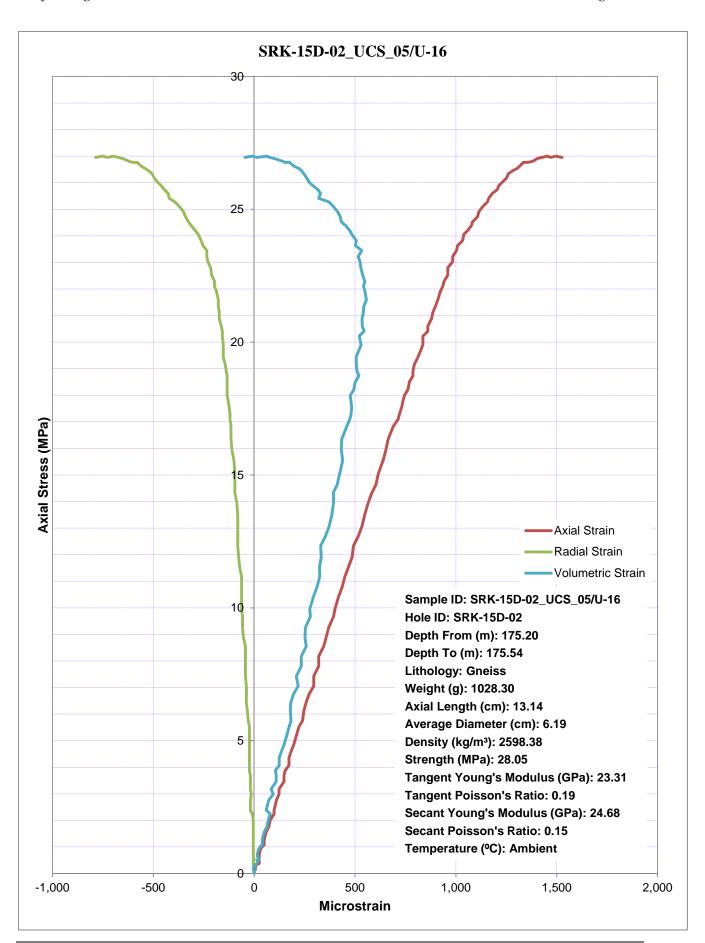


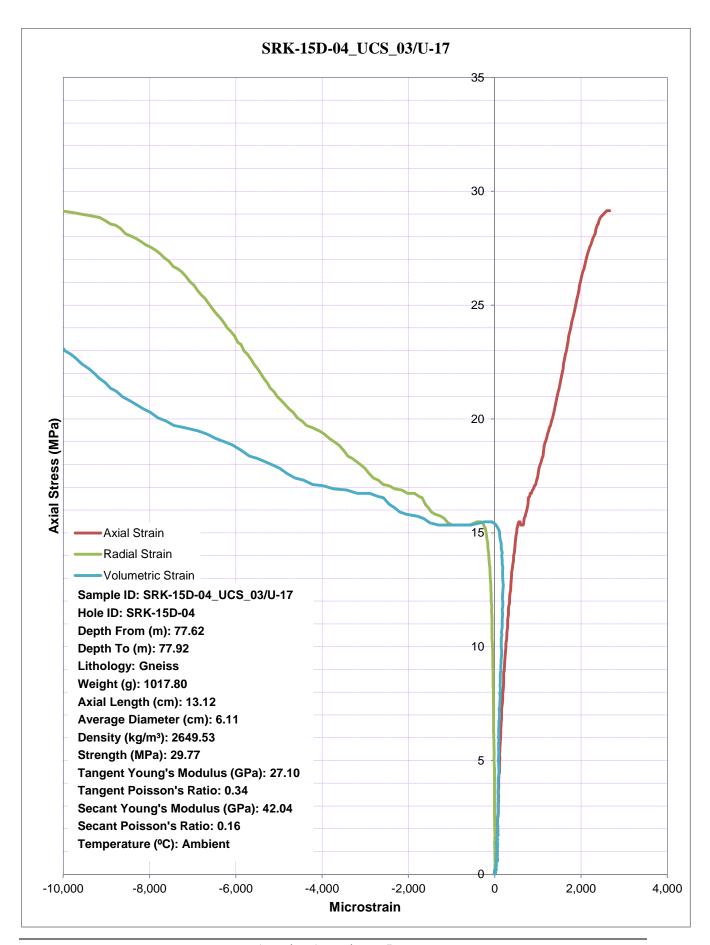

SRK-15D-04\_UCS\_02/U-20 78.70-79.05 After

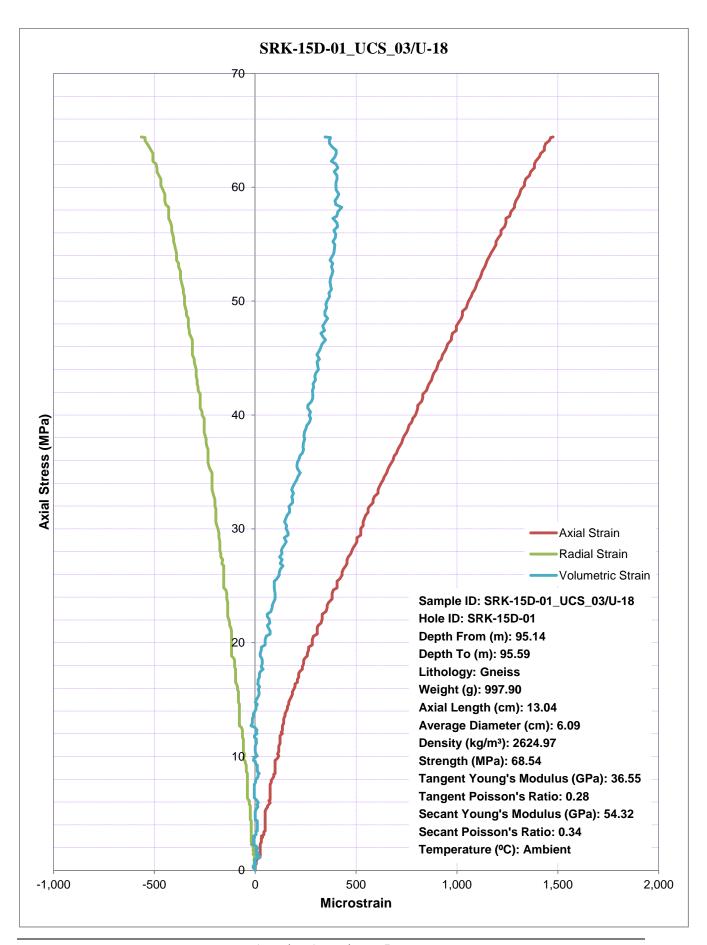

Figure B-1. Before and After Photographs of Uniaxial Compressive Strength Test Specimens (concluded)

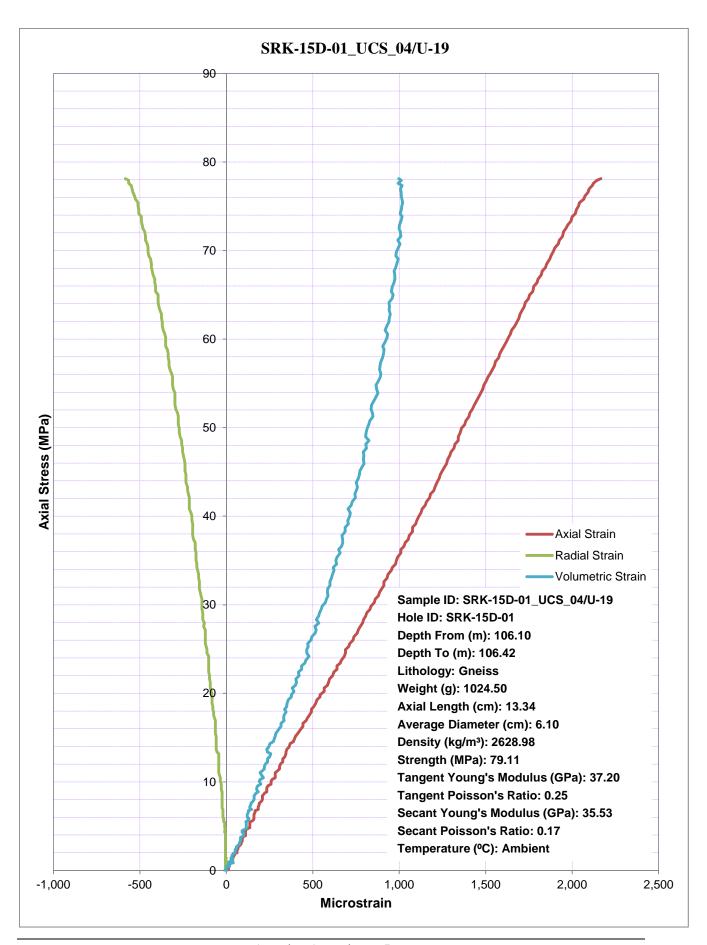

Draft: August 28, 2015 Page C-1

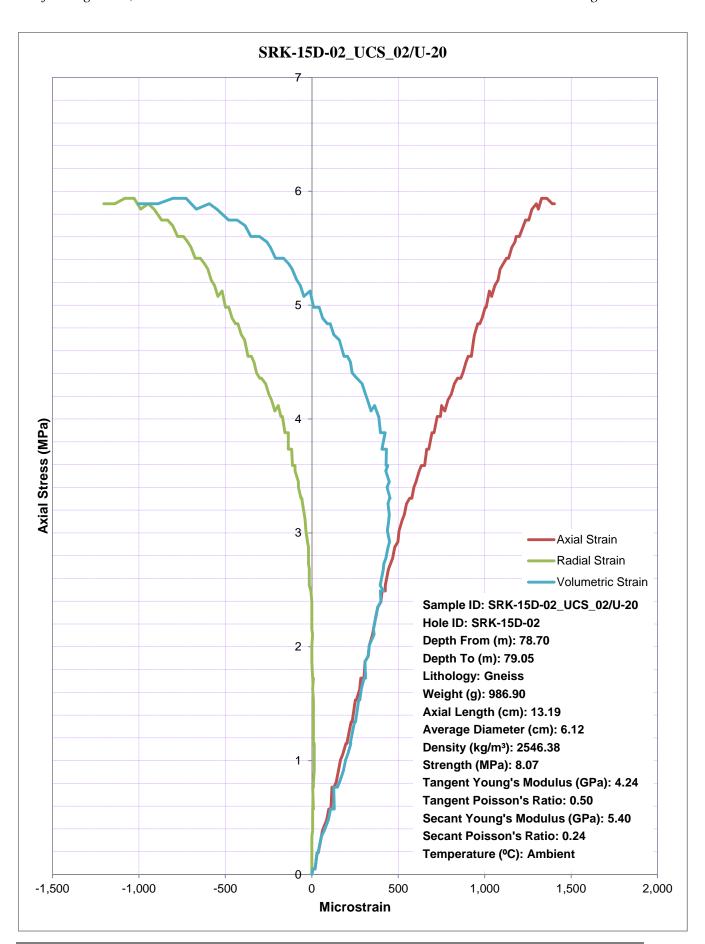

# APPENDIX C


# STRESS-STRAIN PLOTS FOR UNIAXIAL COMPRESSIVE STRENGTH TESTS














| Draft: August 28, 2015 |                 |                  | Page D-1 |
|------------------------|-----------------|------------------|----------|
|                        |                 |                  |          |
|                        | APPENDIX D      |                  |          |
| SPLITTING TENSILE STE  | RENGTH (BRAZIL) | IAN) TEST DATA S | SHEET    |
|                        |                 |                  |          |
|                        |                 |                  |          |
|                        |                 |                  |          |
|                        |                 |                  |          |
|                        |                 |                  |          |
|                        |                 |                  |          |
|                        |                 |                  |          |
|                        |                 |                  |          |

## Agapito Associates, Inc. INDIRECT TENSILE STRENGTH (BRAZILIAN) TESTS

| CLIENT: | SRK            |
|---------|----------------|
| JOB NO: | 333-16         |
| DATE:   | August 3, 2015 |

| HOLE NO:            | SRK-15D-01, -02, -03, -04, -05, -06 |
|---------------------|-------------------------------------|
| MOISTURE CONDITION: | As Received                         |
| TEMPERATURE:        | 70°F                                |

|                        |            | Inte   | rval   | Length of |        | Dian           | neter          | Axial  | Length-to-<br>Diameter |          |                      |
|------------------------|------------|--------|--------|-----------|--------|----------------|----------------|--------|------------------------|----------|----------------------|
| Specimen No.           | Hole No.   | From   | To     | Interval  | Weight | $\mathbf{D}_1$ | $\mathbf{D}_2$ | Length | Ratio                  | Area     | Density              |
|                        |            | (m)    | (m)    | (m)       | (g)    | (mm)           | (mm)           | (mm)   |                        | $(mm^2)$ | (kg/m <sup>3</sup> ) |
| SRK-15D-01_UCS_06/B-01 | SRK-15D-01 | 177.37 | 177.72 | 0.35      | 304    | 61.03          | 61.04          | 39.45  | 0.6                    | 2,926    | 2,637                |
| SRK-15D-02_UCS_04/B-02 | SRK-15D-02 | 146.96 | 147.30 | 0.34      | 290    | 61.45          | 61.46          | 36.97  | 0.6                    | 2,966    | 2,648                |
| SRK-15D-03_UCS_02/B-03 | SRK-15D-03 | 54.15  | 54.50  | 0.35      | 304    | 60.95          | 60.96          | 38.26  | 0.6                    | 2,918    | 2,724                |
| SRK-15D-04_UCS_03/B-04 | SRK-15D-04 | 86.00  | 86.35  | 0.35      | 283    | 60.94          | 60.90          | 37.24  | 0.6                    | 2,915    | 2,609                |
| SRK-15D-04_UCS_02/B-05 | SRK-15D-04 | 50.00  | 50.30  | 0.30      | 277    | 60.99          | 60.97          | 36.73  | 0.6                    | 2,921    | 2,579                |
| SRK-15D-04_UCS_04/B-06 | SRK-15D-04 | 99.98  | 100.34 | 0.36      | 293    | 61.02          | 61.04          | 38.85  | 0.6                    | 2,925    | 2,581                |
| SRK-15D-05_UCS_02/B-07 | SRK-15D-05 | 61.21  | 61.53  | 0.32      | 305    | 61.13          | 61.13          | 39.66  | 0.6                    | 2,935    | 2,616                |
| SRK-15D-05_UCS_03/B-08 | SRK-15D-05 | 97.44  | 97.75  | 0.31      | 321    | 61.04          | 61.03          | 38.47  | 0.6                    | 2,926    | 2,848                |
| SRK-15D-06_UCS_02/B-09 | SRK-15D-06 | 52.00  | 52.30  | 0.30      | 295    | 60.79          | 60.81          | 38.76  | 0.6                    | 2,903    | 2,617                |
| SRK-15D-06_UCS_03/B-10 | SRK-15D-06 | 76.41  | 76.86  | 0.45      | 294    | 61.02          | 61.01          | 38.42  | 0.6                    | 2,924    | 2,615                |
| SRK-15D-02_UCS_05/B-11 | SRK-15D-02 | 175.20 | 175.54 | 0.34      | 290    | 61.93          | 61.93          | 37.92  | 0.6                    | 3,012    | 2,539                |
| SRK-15D-04_UCS_03/B-12 | SRK-15D-04 | 77.62  | 77.92  | 0.30      | 287    | 61.06          | 61.05          | 37.27  | 0.6                    | 2,928    | 2,630                |
| SRK-15D-01_UCS_03/B-13 | SRK-15D-01 | 95.14  | 95.59  | 0.45      | 286    | 60.87          | 60.88          | 37.80  | 0.6                    | 2,910    | 2,602                |
| SRK-15D-01_UCS_04/B-14 | SRK-15D-01 | 106.10 | 106.42 | 0.32      | 285    | 61.02          | 61.01          | 36.96  | 0.6                    | 2,924    | 2,636                |
|                        |            |        |        |           |        |                |                |        |                        |          |                      |

| Specimen No.           | Lithological Description | Failure<br>Load<br>(N) | Splitting<br>Tensile<br>Strength<br>(MPa) | Failure Mode Notes                      |
|------------------------|--------------------------|------------------------|-------------------------------------------|-----------------------------------------|
| SRK-15D-01_UCS_06/B-01 | Gneiss                   | 59,513                 | 15.7                                      | Valid test, platten-to-platten fracture |
| SRK-15D-02_UCS_04/B-02 | Gneiss                   | 29,581                 | 8.3                                       | Valid test, platten-to-platten fracture |
| SRK-15D-03_UCS_02/B-03 | Gneiss                   | 58,728                 | 16.0                                      | Valid test, platten-to-platten fracture |
| SRK-15D-04_UCS_03/B-04 | Gneiss                   | 14,317                 | 4.0                                       | Valid test, platten-to-platten fracture |
| SRK-15D-04_UCS_02/B-05 | Gneiss                   | 12,468                 | 3.5                                       | Valid test, platten-to-platten fracture |
| SRK-15D-04_UCS_04/B-06 | Gneiss                   | 15,115                 | 4.1                                       | Valid test, platten-to-platten fracture |
| SRK-15D-05_UCS_02/B-07 | No description           | 28,086                 | 7.4                                       | Valid test, platten-to-platten fracture |
| SRK-15D-05_UCS_03/B-08 | Gneiss                   | 61,610                 | 16.7                                      | Valid test, platten-to-platten fracture |
| SRK-15D-06_UCS_02/B-09 | Granite                  | 38,361                 | 10.4                                      | Valid test, platten-to-platten fracture |
| SRK-15D-06_UCS_03/B-10 | Granite                  | 30,833                 | 8.4                                       | Valid test, platten-to-platten fracture |
| SRK-15D-02_UCS_05/B-11 | Gneiss                   | 11,981                 | 3.2                                       | Valid test, platten-to-platten fracture |
| SRK-15D-04_UCS_03/B-12 | Gneiss                   | 12,535                 | 3.5                                       | Valid test, platten-to-platten fracture |
| SRK-15D-01_UCS_03/B-13 | Gneiss                   | 46,955                 | 13.0                                      | Valid test, platten-to-platten fracture |
| SRK-15D-01_UCS_04/B-14 | Gneiss                   | 32,734                 | 9.2                                       | Valid test, platten-to-platten fracture |
|                        |                          |                        |                                           |                                         |

Draft: August 28, 2015 Page E-1

## APPENDIX E

## BEFORE AND AFTER PHOTOGRAPHS OF SPLITTING TENSILE STRENGTH (BRAZILIAN) TEST SPECIMENS

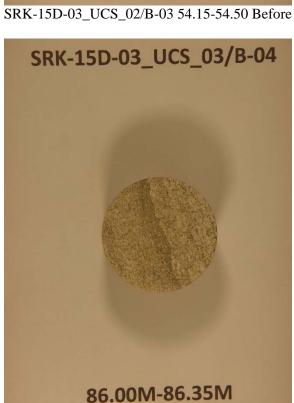


SRK-15D-01\_UCS\_06/B-01 177.37-177.72 Before



SRK-15D-01\_UCS\_06/B-01 177.37-177.72 After




SRK-15D-02\_UCS\_04/B-02 146.96-147.30 Before



SRK-15D-02\_UCS\_04/B-02 146.96-147.30 After

Figure E-1. Before and After Photographs of Splitting Tensile Strength (Brazilian) Test Specimens





SRK-15D-04\_UCS\_03/B-04 86.00-86.35 Before



SRK-15D-03\_UCS\_02/B-03 54.15-54.50 After



SRK-15D-04\_UCS\_03/B-04 86.00-86.35 After

Figure E-1. Before and After Photographs of Splitting Tensile Strength (Brazilian) Test Specimens (continued)



SRK-15D-04\_UCS\_02/B-05 50.00-50.30 Before



SRK-15D-04\_UCS\_02/B-05 50.00-50.30 After



SRK-15D-04\_UCS\_04/B-06 99.98-100.34 Before



SRK-15D-04\_UCS\_04/B-06 99.98-100.34 After

Figure E-1. Before and After Photographs of Splitting Tensile Strength (Brazilian) Test Specimens (continued)



SRK-15D-05\_UCS\_02/B-07 61.21-61.53 Before



SRK-15D-05\_UCS\_02/B-07 61.21-61.53 After



SRK-15D-05\_UCS\_03/B-08 97.44-97.75 Before



SRK-15D-05\_UCS\_03/B-08 97.44-97.75 After

Figure E-1. Before and After Photographs of Splitting Tensile Strength (Brazilian) Test Specimens (continued)



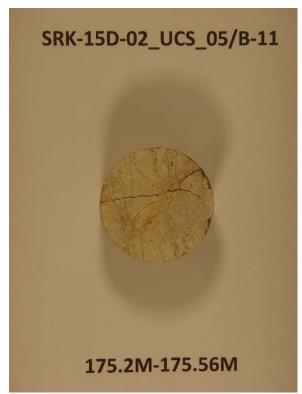
SRK-15D-06\_UCS\_02/B-09 52.00-52.30 Before



SRK-15D-06\_UCS\_02/B-09 52.00-52.30 After



SRK-15D-06\_UCS\_03/B-10 76.41-76.86 Before




SRK-15D-06\_UCS\_03/B-10 76.41-76.86 After

Figure E-1. Before and After Photographs of Splitting Tensile Strength (Brazilian) Test Specimens (continued)



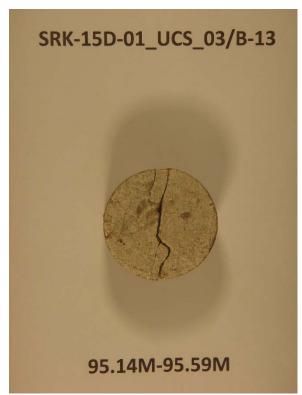
SRK-15D-02\_UCS\_05 B-11 175.20-175.56 Before



SRK-15D-02\_UCS\_05 B-11 175.20-175.56 After



SRK-15D-04\_UCS\_03 B-12 77.62-77.92 Before




SRK-15D-04\_UCS\_03 B-12 77.62-77.92 After

Figure E-1. Before and After Photographs of Splitting Tensile Strength (Brazilian) Test Specimens (continued)



SRK-15D-01\_UCS\_03 B-13 95.14-95.59 Before



SRK-15D-01\_UCS\_03 B-13 95.14-95.59 After



SRK-15D-01\_UCS\_04 B-14 106.1-106.42 Before



SRK-15D-01\_UCS\_04 B-14 106.1-106.42 After

Figure E-1. Before and After Photographs of Splitting Tensile Strength (Brazilian) Test Specimens (concluded)

**Appendix D: Intact Rock Strength Envelopes** 

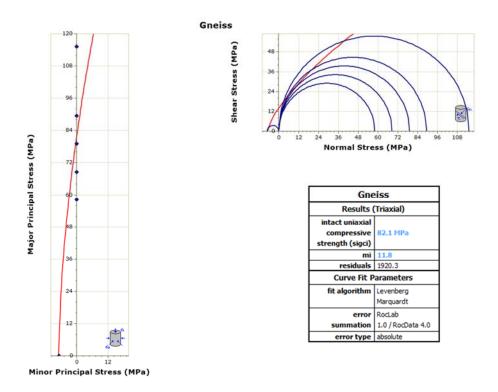



Figure D-1: Envelopes of the intact rock for Gneiss

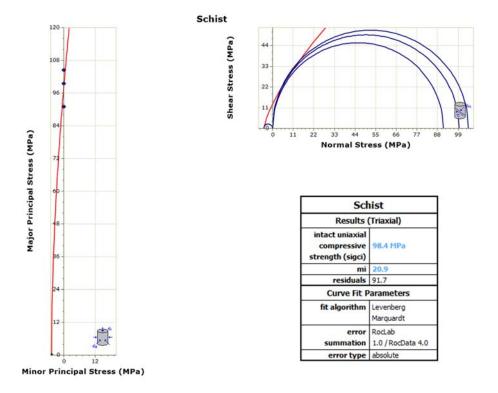



Figure D-2: Envelopes of the intact rock for Schist

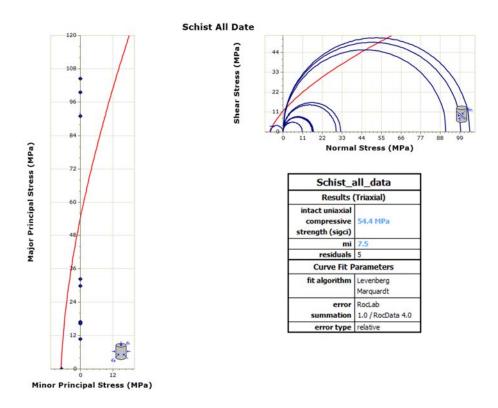



Figure D-3: Envelopes of the intact rock for Schist all data

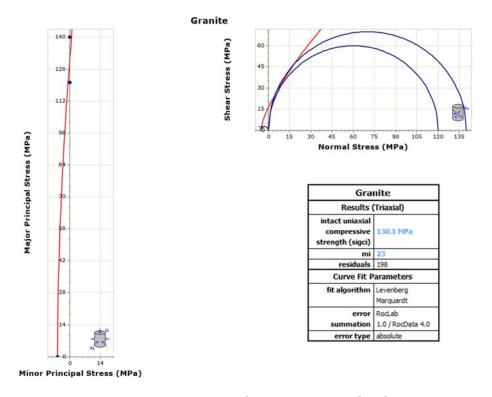



Figure D-4: Envelopes of the intact rock for Granite

**Appendix E: GSI Histograms** 

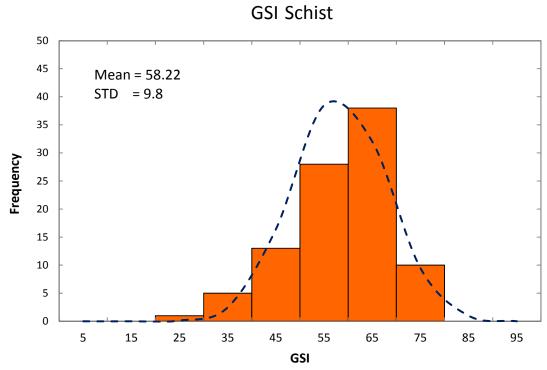



Figure E-1: GSI Histogram for Schist

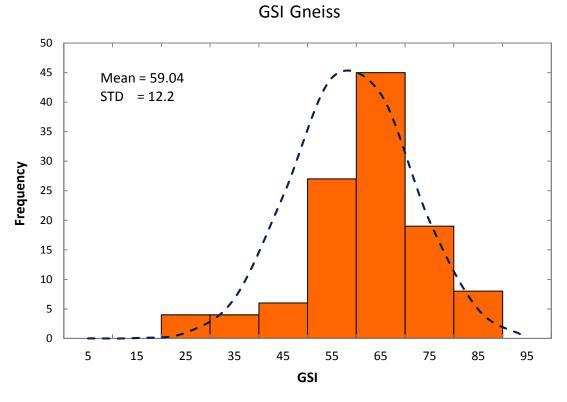



Figure E-2: GSI Histogram for Gneiss

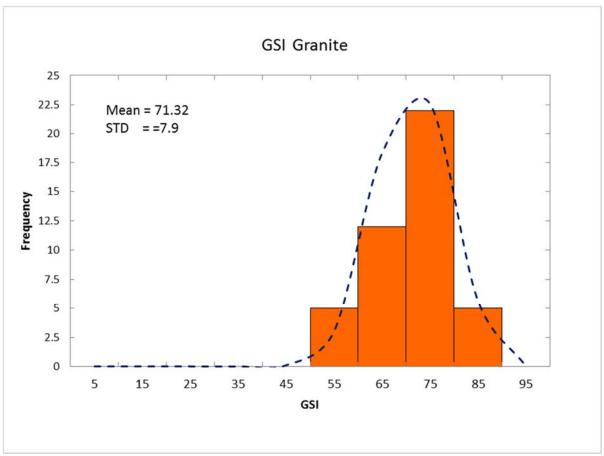



Figure E-3: GSI Histogram for Granite

**Appendix F: Drillhole Stereonets** 

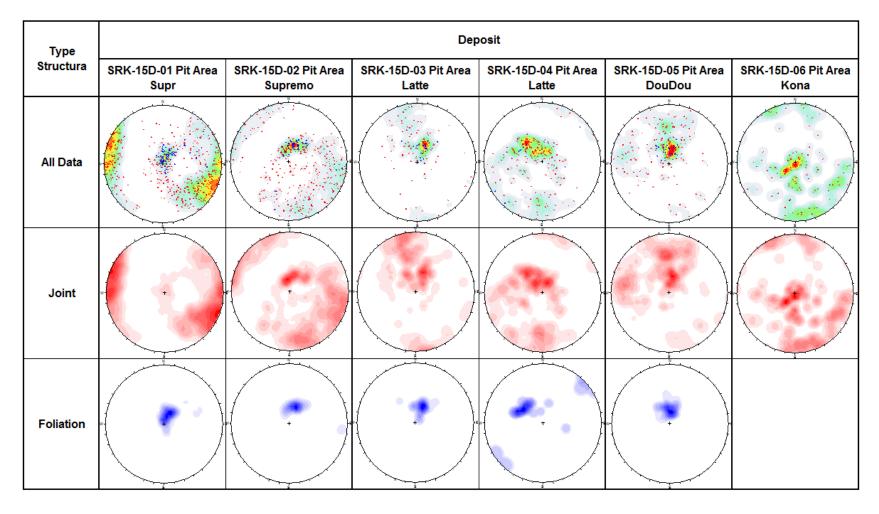



Figure F-1: Structural Domains at the Kaminak Project

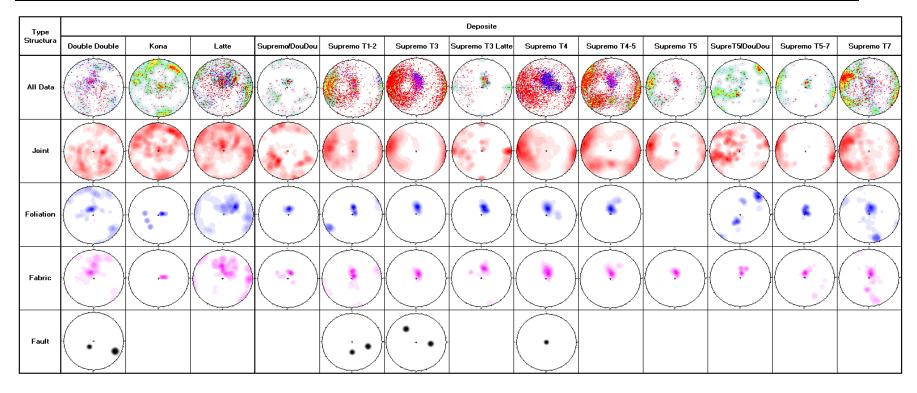



Figure F-2: Structural Domain Kona

**Appendix G: Structural Domain Analyses** 

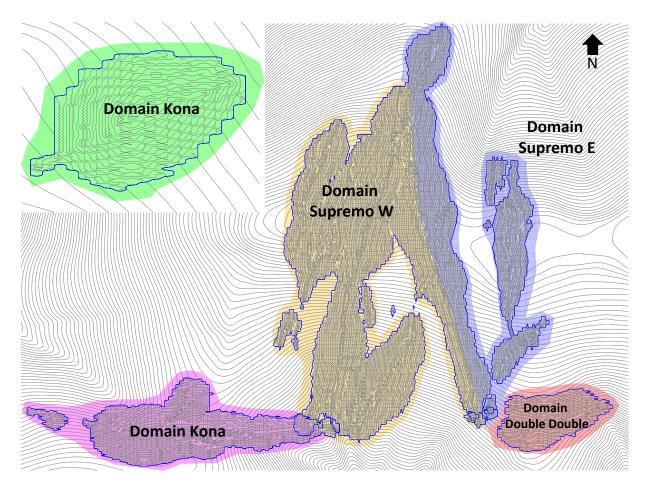



Figure G-1: Structural Domains at the Kaminak Project

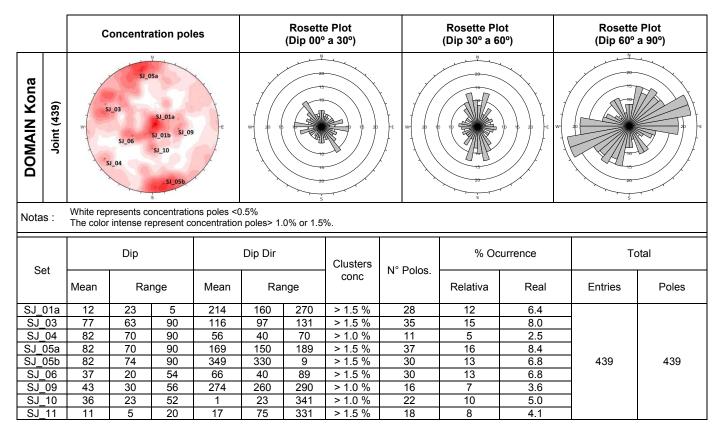



Figure G-2: Structural Domain Kona

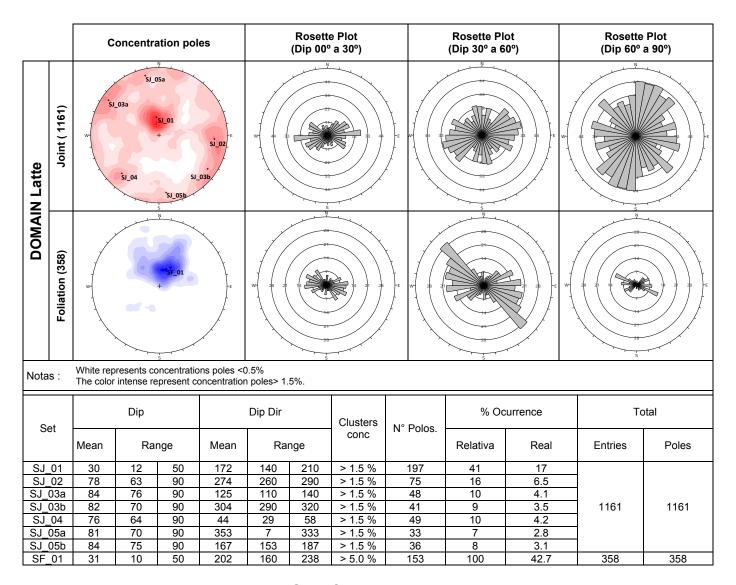
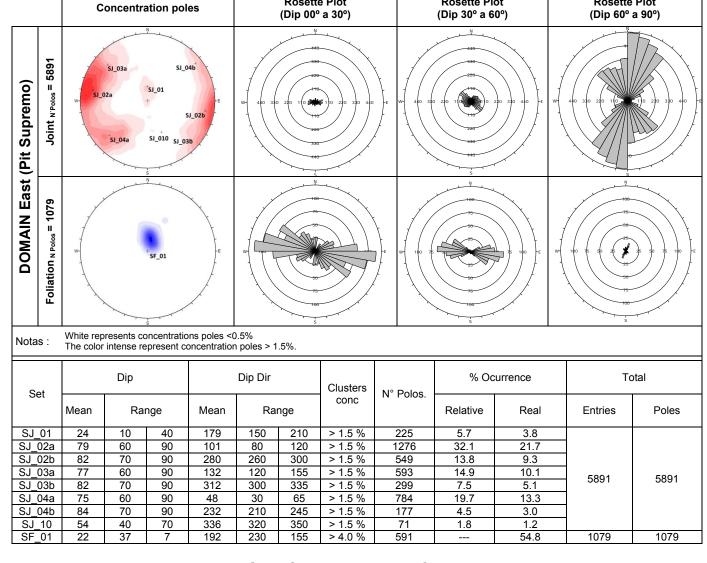




Figure G-3: Structural Domain Latte

**Rosette Plot** 



**Rosette Plot** 

**Rosette Plot** 

Figure G-4: Structural Domain Supremo East

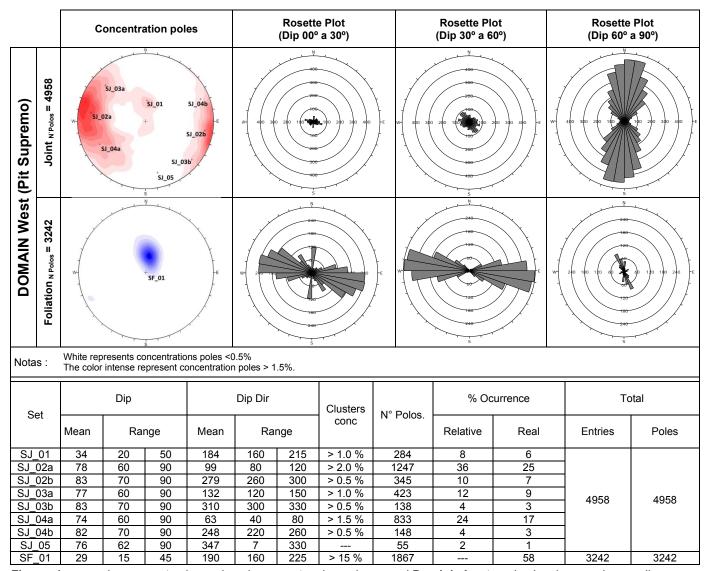



Figura -1: Iso-concentraciones de polos y rosetas de rumbo para el **Dominio I**, categorizadas de acuerdo a su dip.

Figure G-5: Structural Domain Supremo West

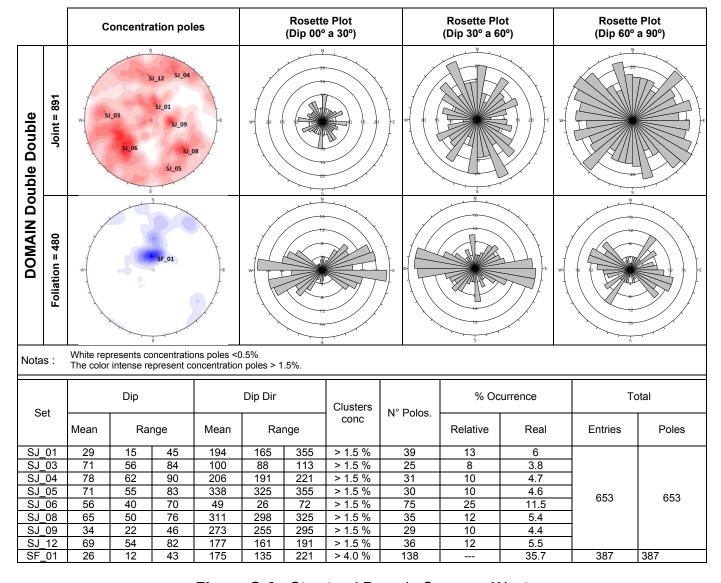



Figure G-6: Structural Domain Supremo West

**Appendix H: Discontinuity Spacing Histograms** 

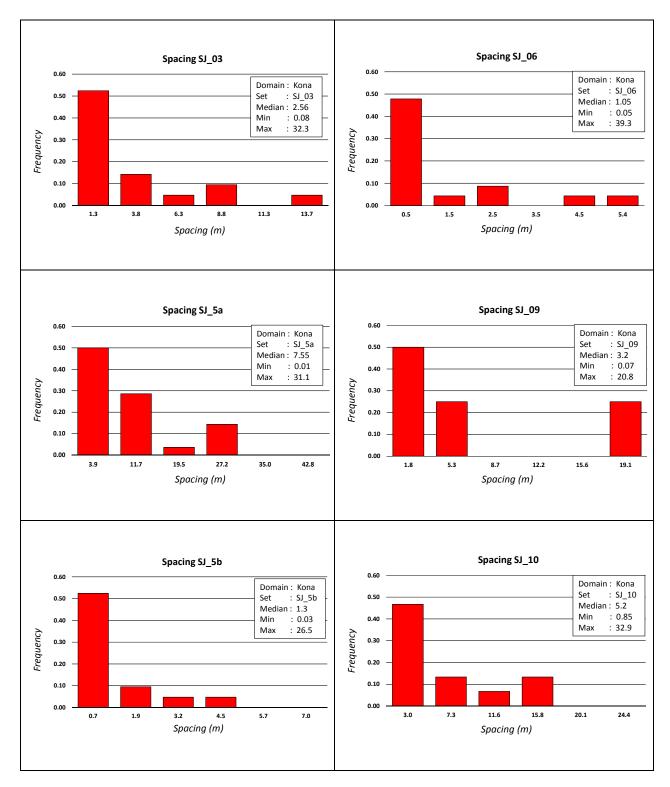



Figure H-1: Spacing Histogram Kona Domain at the Kaminak Project

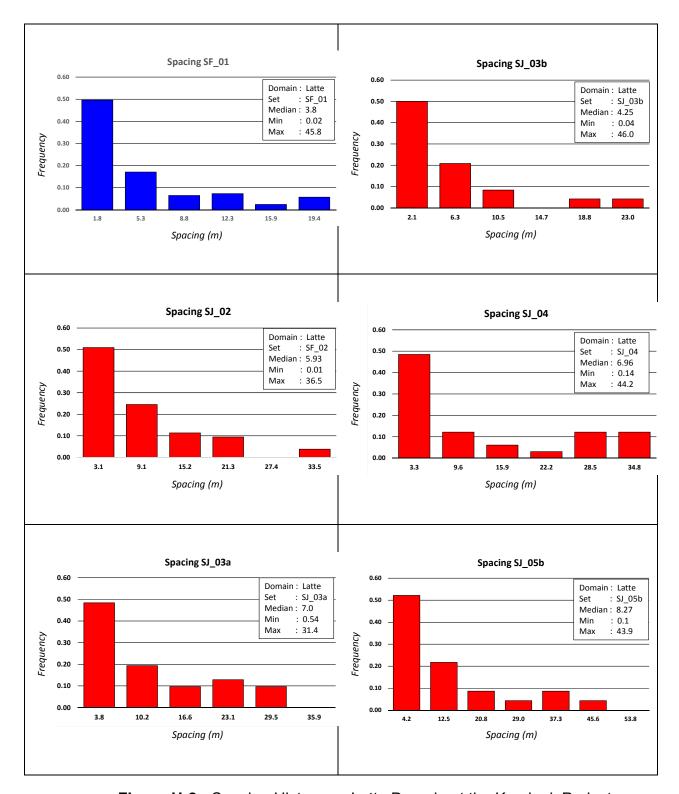



Figure H-2: Spacing Histogram Latte Domain at the Kaminak Project

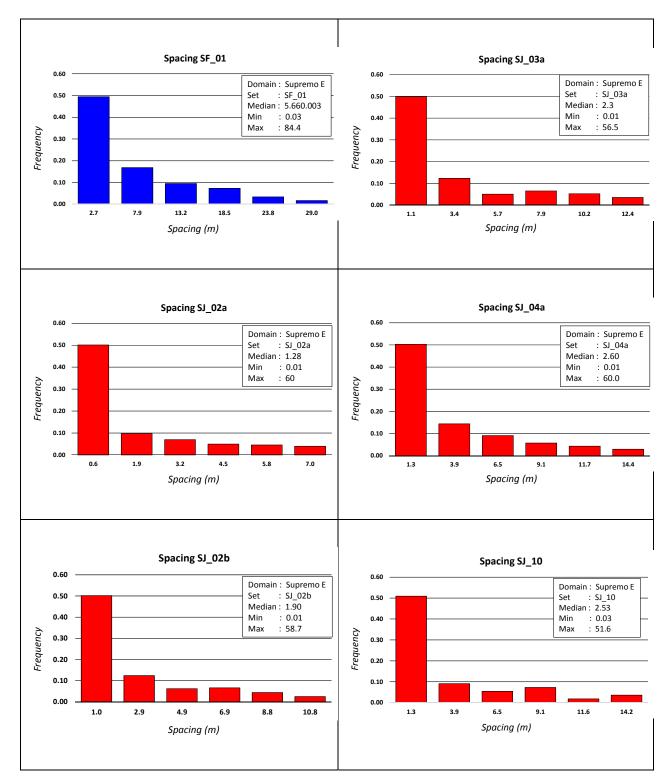



Figure H-3: Spacing Histogram Supremo East Domain at Kaminak Project

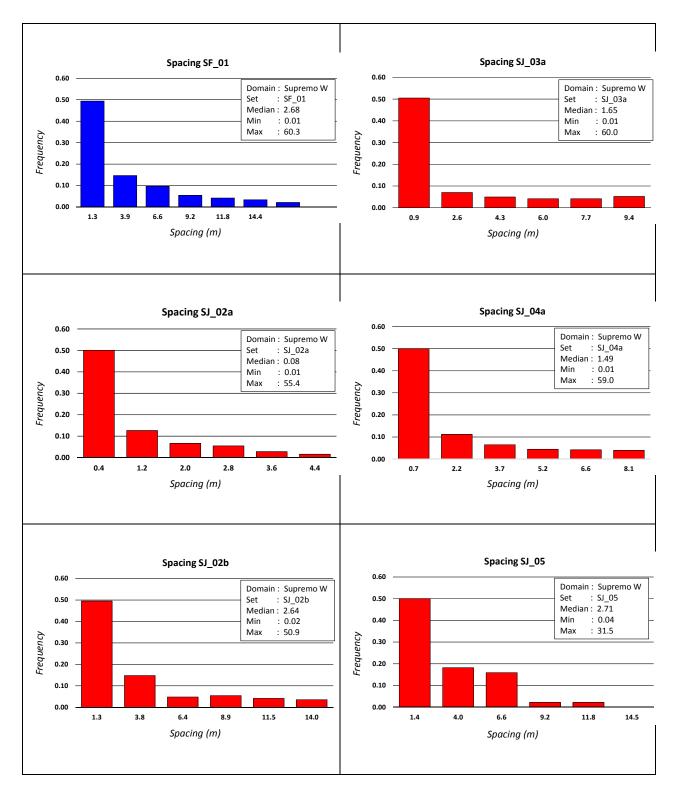



Figure H-4: Spacing Histogram Supremo West Domain at Kaminak Project

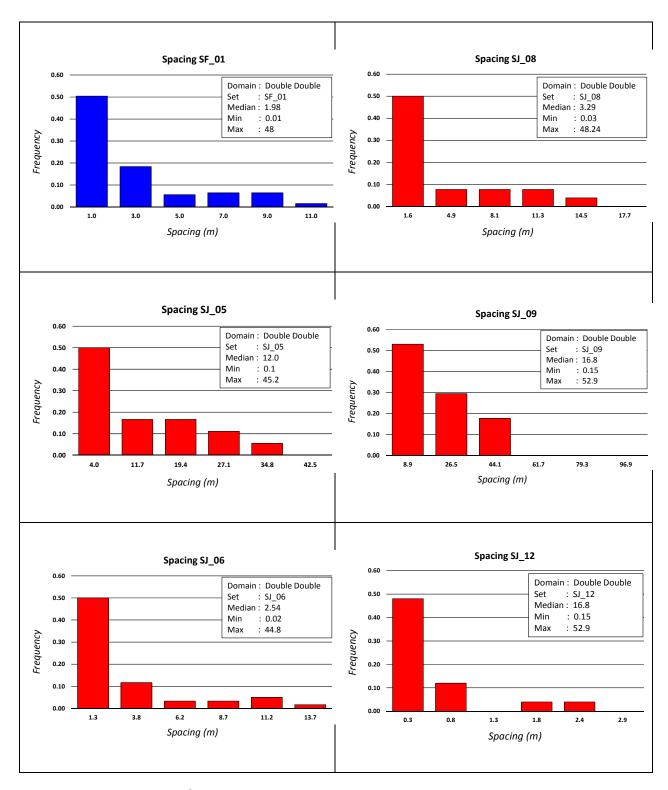



Figure H-5: Spacing Histogram Double Double Domain at Kaminak Project

**Appendix I: Kinematic Analyses** 

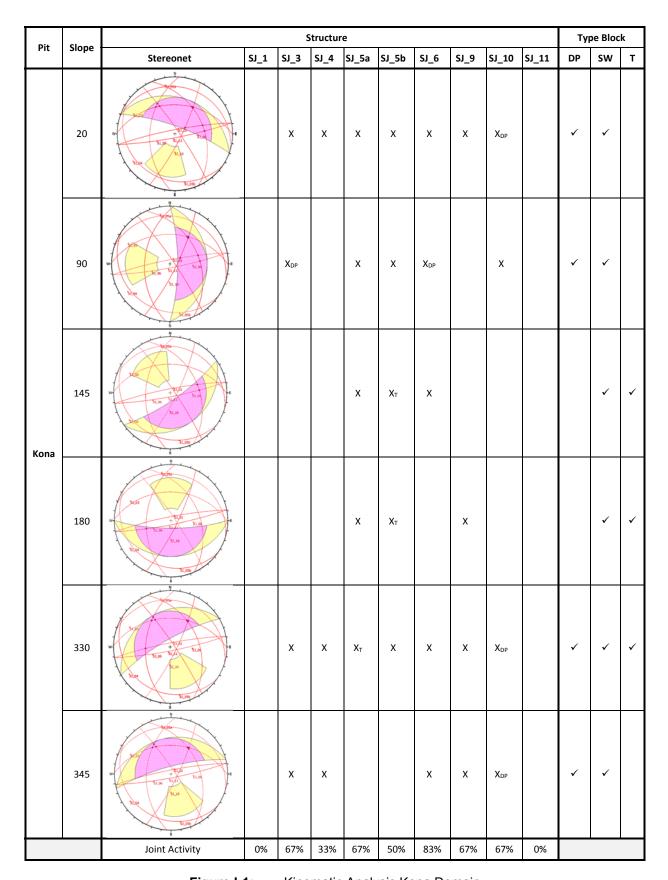



Figure I-1: Kinematic Analysis Kona Domain

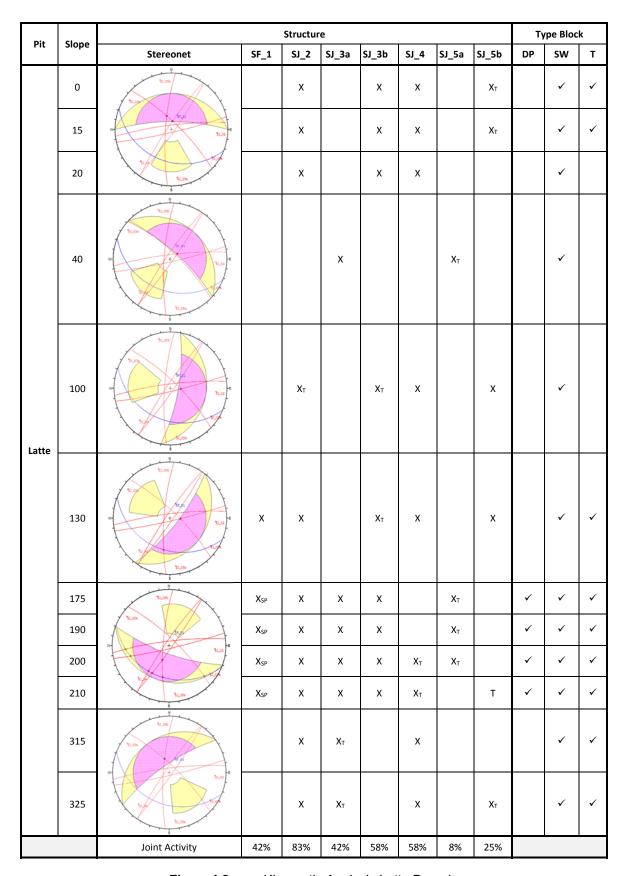



Figure I-2: Kinematic Analysis Latte Domain

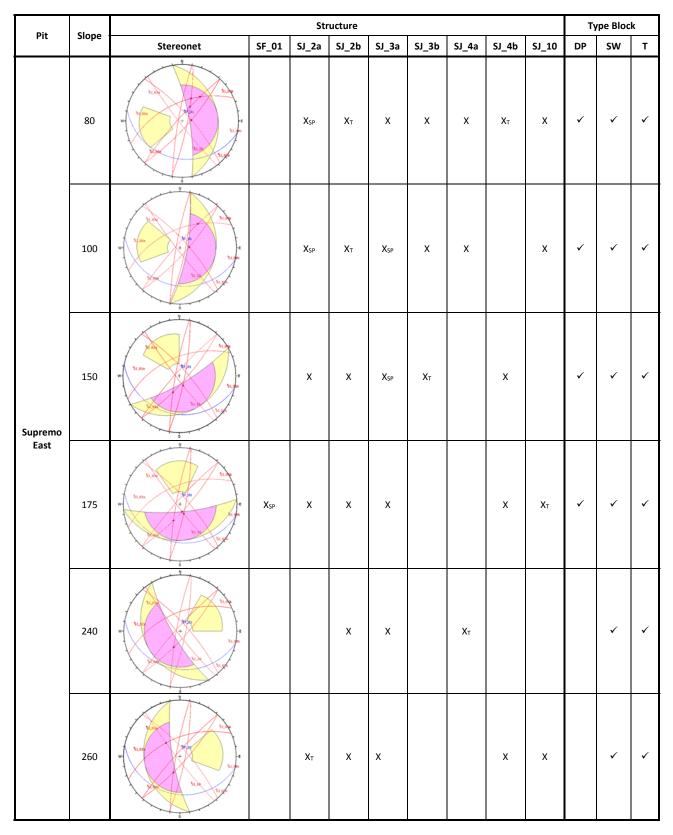



Figure I-3: Kinematic Analysis Supremo East Domain Part A

| Pit             | Claus |                                          |       | St    | ructure |       |       |       |       |                 | Т        | ype Blo  | ck       |
|-----------------|-------|------------------------------------------|-------|-------|---------|-------|-------|-------|-------|-----------------|----------|----------|----------|
| PIT             | Slope | Stereonet                                | SF_01 | SJ_2a | SJ_2b   | SJ_3a | SJ_3b | SJ_4a | SJ_4b |                 | DP       | sw       | Т        |
|                 | 270   |                                          |       | Хт    |         |       |       |       | X     | x               |          | <b>√</b> | <b>✓</b> |
| Supremo<br>East | 290   | 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1    |       | Хт    | х       | Хт    |       | х     | х     | х               |          | <b>√</b> | <b>√</b> |
|                 | 330   | W 13 13 13 13 13 13 13 13 13 13 13 13 13 |       | х     | х       | Хт    | х     | х     | х     | X <sub>SP</sub> | <b>√</b> |          | <b>✓</b> |
|                 |       | Joint Activity                           | 11%   | 56%   | 67%     | 67%   | 33%   | 44%   | 67%   | 67%             |          |          |          |

Figure I-4: Kinematic Analysis Supremo East Domain Part B

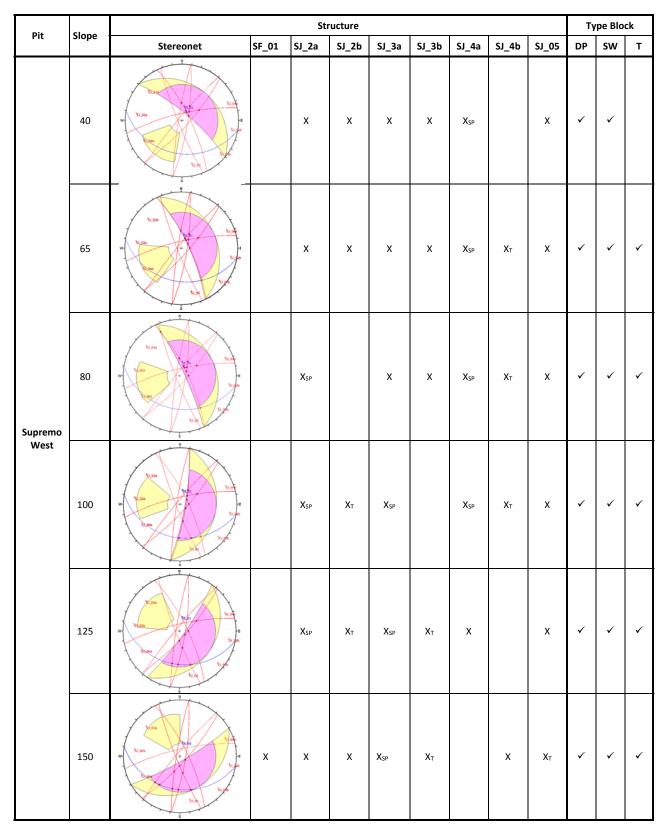



Figure I-5: Kinematic Analysis Supremo West Domain Part A

| a               | Cl    | Structure                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |       |       |       |       |       |       | Ту    | pe Blo          | ck       |          |          |
|-----------------|-------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------|-------|-------|-------|-------|-------|-------|-----------------|----------|----------|----------|
| Pit             | Slope | Stereonet                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | SF_01 | SJ_2a | SJ_2b | SJ_3a | SJ_3b | SJ_4a | SJ_4b | SJ_05           | DP       | sw       | T        |
|                 | 245   | 13 13 14 15 15 15 15 15 15 15 15 15 15 15 15 15                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | x     | х     | х     | х     |       | Хт    | x     |                 |          | <b>√</b> | ✓        |
|                 | 270   | W 12.00 12.00 12.00 12.00 12.00 12.00 12.00 12.00 12.00 12.00 12.00 12.00 12.00 12.00 12.00 12.00 12.00 12.00 12.00 12.00 12.00 12.00 12.00 12.00 12.00 12.00 12.00 12.00 12.00 12.00 12.00 12.00 12.00 12.00 12.00 12.00 12.00 12.00 12.00 12.00 12.00 12.00 12.00 12.00 12.00 12.00 12.00 12.00 12.00 12.00 12.00 12.00 12.00 12.00 12.00 12.00 12.00 12.00 12.00 12.00 12.00 12.00 12.00 12.00 12.00 12.00 12.00 12.00 12.00 12.00 12.00 12.00 12.00 12.00 12.00 12.00 12.00 12.00 12.00 12.00 12.00 12.00 12.00 12.00 12.00 12.00 12.00 12.00 12.00 12.00 12.00 12.00 12.00 12.00 12.00 12.00 12.00 12.00 12.00 12.00 12.00 12.00 12.00 12.00 12.00 12.00 12.00 12.00 12.00 12.00 12.00 12.00 12.00 12.00 12.00 12.00 12.00 12.00 12.00 12.00 12.00 12.00 12.00 12.00 12.00 12.00 12.00 12.00 12.00 12.00 12.00 12.00 12.00 12.00 12.00 12.00 12.00 12.00 12.00 12.00 12.00 12.00 12.00 12.00 12.00 12.00 12.00 12.00 12.00 12.00 12.00 12.00 12.00 12.00 12.00 12.00 12.00 12.00 12.00 12.00 12.00 12.00 12.00 12.00 12.00 12.00 12.00 12.00 12.00 12.00 12.00 12.00 12.00 12.00 12.00 12.00 12.00 12.00 12.00 12.00 12.00 12.00 12.00 12.00 12.00 12.00 12.00 12.00 12.00 12.00 12.00 12.00 12.00 12.00 12.00 12.00 12.00 12.00 12.00 12.00 12.00 12.00 12.00 12.00 12.00 12.00 12.00 12.00 12.00 12.00 12.00 12.00 12.00 12.00 12.00 12.00 12.00 12.00 12.00 12.00 12.00 12.00 12.00 12.00 12.00 12.00 12.00 12.00 12.00 12.00 12.00 12.00 12.00 12.00 12.00 12.00 12.00 12.00 12.00 12.00 12.00 12.00 12.00 12.00 12.00 12.00 12.00 12.00 12.00 12.00 12.00 12.00 12.00 12.00 12.00 12.00 12.00 12.00 12.00 12.00 12.00 12.00 12.00 12.00 12.00 12.00 12.00 12.00 12.00 12.00 12.00 12.00 12.00 12.00 12.00 12.00 12.00 12.00 12.00 12.00 12.00 12.00 12.00 12.00 12.00 12.00 12.00 12.00 12.00 12.00 12.00 12.00 12.00 12.00 12.00 12.00 12.00 12.00 12.00 12.00 12.00 12.00 12.00 12.00 12.00 12.00 12.00 12.00 12.00 12.00 12.00 12.00 12.00 12.00 12.00 12.00 12.00 12.00 12.00 12.00 12.00 12.00 12.00 12.00 12.00 12.00 12.00 12.00 12.00 12.00 12.00 12.00 12.00 12.00 12.00 12.00 12.00 12.00 12.00 12.00 12.0 | X     | Хт    | X     | X     |       | Хт    | X     |                 |          | <b>√</b> | <b>~</b> |
| Supremo<br>West | 290   | 3.1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | X     | Хт    | X     | Хт    |       | X     | X     | X               |          | <b>✓</b> | <b>~</b> |
|                 | 310   | V 12.00 12.00 12.00 12.00 12.00 12.00 12.00 12.00 12.00 12.00 12.00 12.00 12.00 12.00 12.00 12.00 12.00 12.00 12.00 12.00 12.00 12.00 12.00 12.00 12.00 12.00 12.00 12.00 12.00 12.00 12.00 12.00 12.00 12.00 12.00 12.00 12.00 12.00 12.00 12.00 12.00 12.00 12.00 12.00 12.00 12.00 12.00 12.00 12.00 12.00 12.00 12.00 12.00 12.00 12.00 12.00 12.00 12.00 12.00 12.00 12.00 12.00 12.00 12.00 12.00 12.00 12.00 12.00 12.00 12.00 12.00 12.00 12.00 12.00 12.00 12.00 12.00 12.00 12.00 12.00 12.00 12.00 12.00 12.00 12.00 12.00 12.00 12.00 12.00 12.00 12.00 12.00 12.00 12.00 12.00 12.00 12.00 12.00 12.00 12.00 12.00 12.00 12.00 12.00 12.00 12.00 12.00 12.00 12.00 12.00 12.00 12.00 12.00 12.00 12.00 12.00 12.00 12.00 12.00 12.00 12.00 12.00 12.00 12.00 12.00 12.00 12.00 12.00 12.00 12.00 12.00 12.00 12.00 12.00 12.00 12.00 12.00 12.00 12.00 12.00 12.00 12.00 12.00 12.00 12.00 12.00 12.00 12.00 12.00 12.00 12.00 12.00 12.00 12.00 12.00 12.00 12.00 12.00 12.00 12.00 12.00 12.00 12.00 12.00 12.00 12.00 12.00 12.00 12.00 12.00 12.00 12.00 12.00 12.00 12.00 12.00 12.00 12.00 12.00 12.00 12.00 12.00 12.00 12.00 12.00 12.00 12.00 12.00 12.00 12.00 12.00 12.00 12.00 12.00 12.00 12.00 12.00 12.00 12.00 12.00 12.00 12.00 12.00 12.00 12.00 12.00 12.00 12.00 12.00 12.00 12.00 12.00 12.00 12.00 12.00 12.00 12.00 12.00 12.00 12.00 12.00 12.00 12.00 12.00 12.00 12.00 12.00 12.00 12.00 12.00 12.00 12.00 12.00 12.00 12.00 12.00 12.00 12.00 12.00 12.00 12.00 12.00 12.00 12.00 12.00 12.00 12.00 12.00 12.00 12.00 12.00 12.00 12.00 12.00 12.00 12.00 12.00 12.00 12.00 12.00 12.00 12.00 12.00 12.00 12.00 12.00 12.00 12.00 12.00 12.00 12.00 12.00 12.00 12.00 12.00 12.00 12.00 12.00 12.00 12.00 12.00 12.00 12.00 12.00 12.00 12.00 12.00 12.00 12.00 12.00 12.00 12.00 12.00 12.00 12.00 12.00 12.00 12.00 12.00 12.00 12.00 12.00 12.00 12.00 12.00 12.00 12.00 12.00 12.00 12.00 12.00 12.00 12.00 12.00 12.00 12.00 12.00 12.00 12.00 12.00 12.00 12.00 12.00 12.00 12.00 12.00 12.00 12.00 12.00 12.00 12.00 12.00 12.00 12.00 12.00 12.00 12.00 12.00 12.00 12.00 12.0 |       |       | X     | Хт    |       | X     | X     | X               |          | <b>√</b> | <b>√</b> |
|                 | 330   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |       | х     | х     | Хт    | х     | х     | х     | X <sub>SP</sub> | <b>√</b> | <b>√</b> | <b>√</b> |
|                 |       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 36%   | 73%   | 73%   | 73%   | 36%   | 73%   | 55%   | 73%             |          |          |          |

Figure I-6: Kinematic Analysis Supremo West Domain Part B

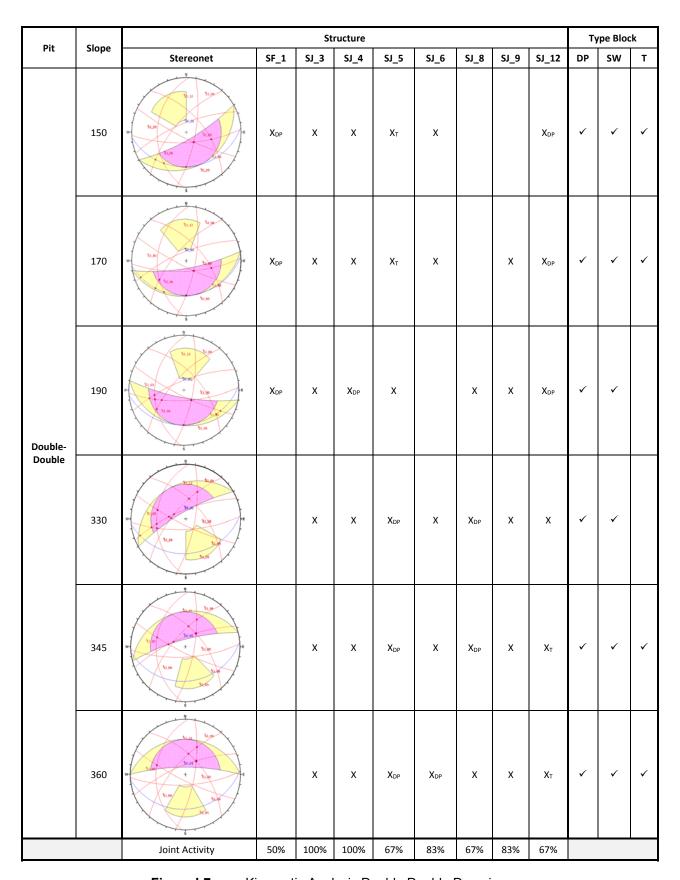



Figure I-7: Kinematic Analysis Double Double Domain

**Appendix J: Interramp/Overall Stability Analyses** 

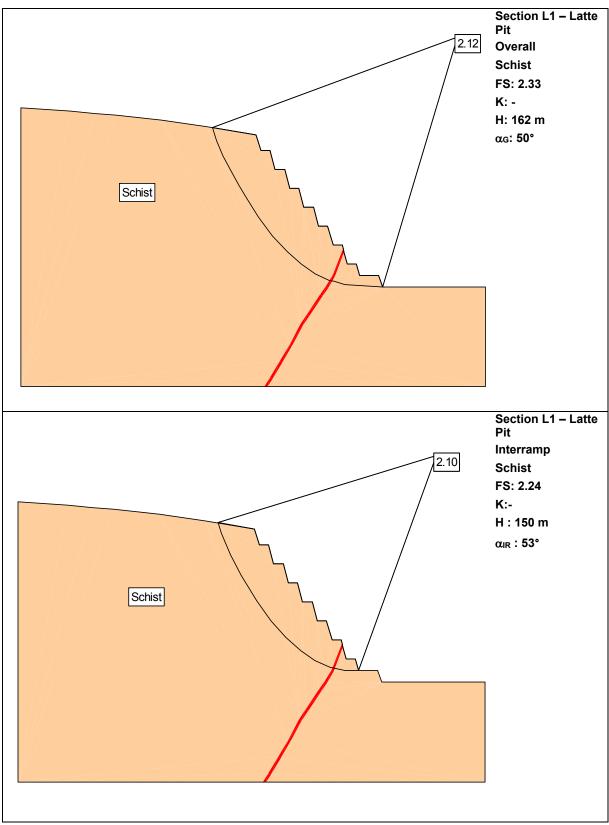



Figure J-1: Results of interramp/overall slope analyses – Section L1 – Latte Pit

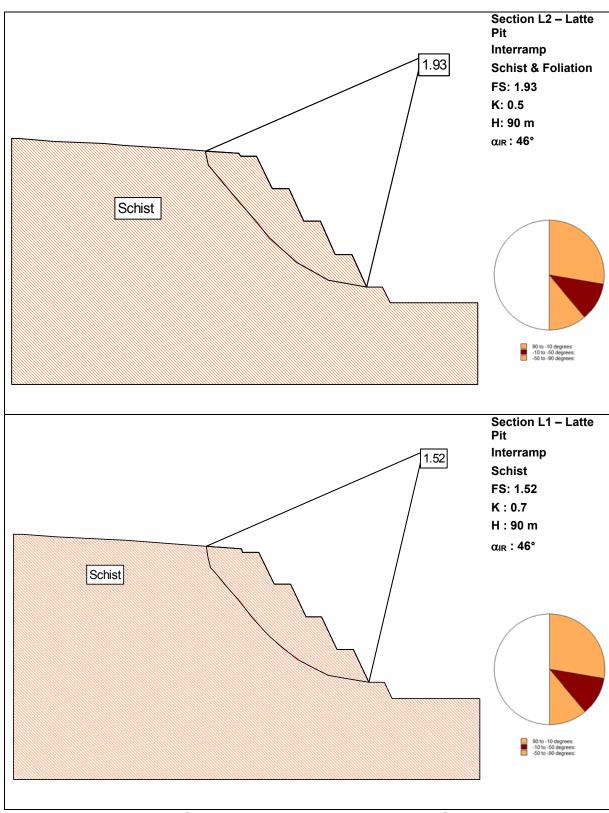



Figure J-2: Results of interramp/overall slope analyses – Section L1 – Latte Pit

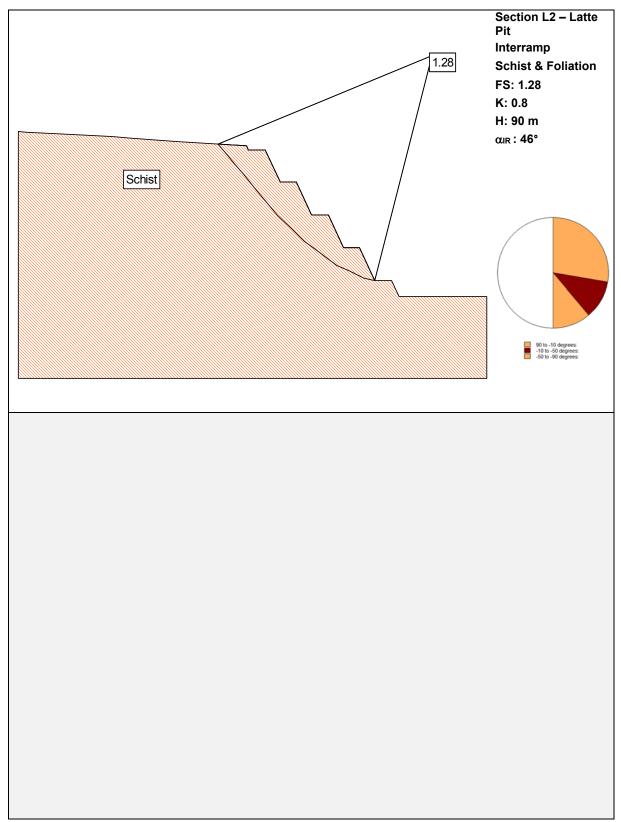



Figure J-3: Results of interramp/overall slope analyses – Section L2 – Latte Pit

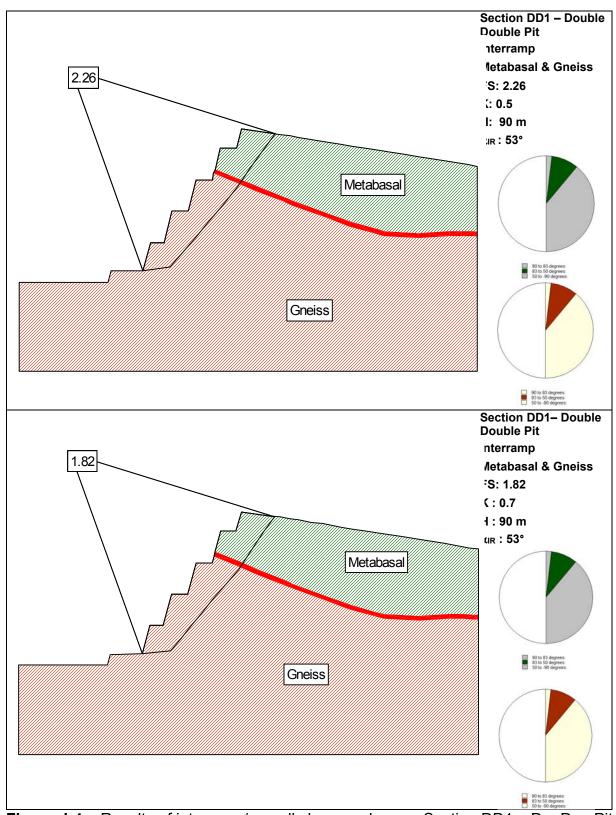



Figure J-4: Results of interramp/overall slope analyses – Section DD1 – DouDou Pit

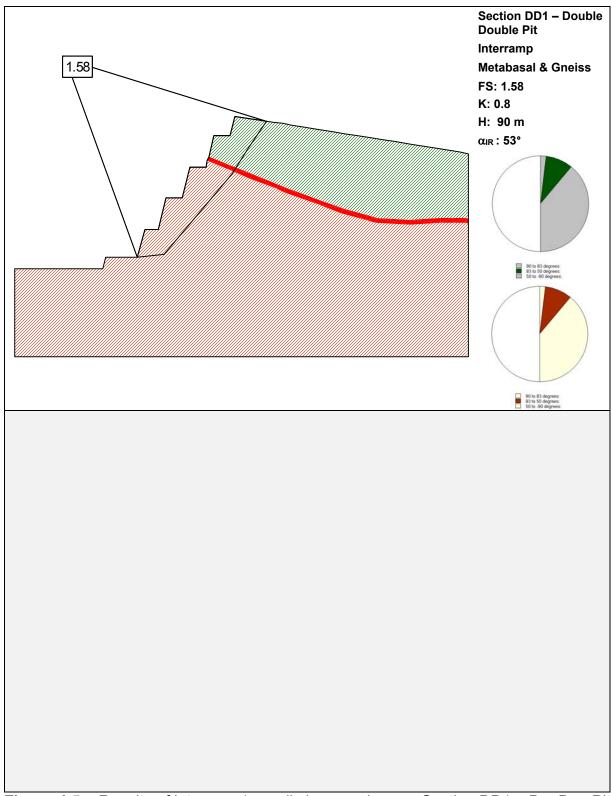



Figure J-5: Results of interramp/overall slope analyses – Section DD1 – DouDou Pit

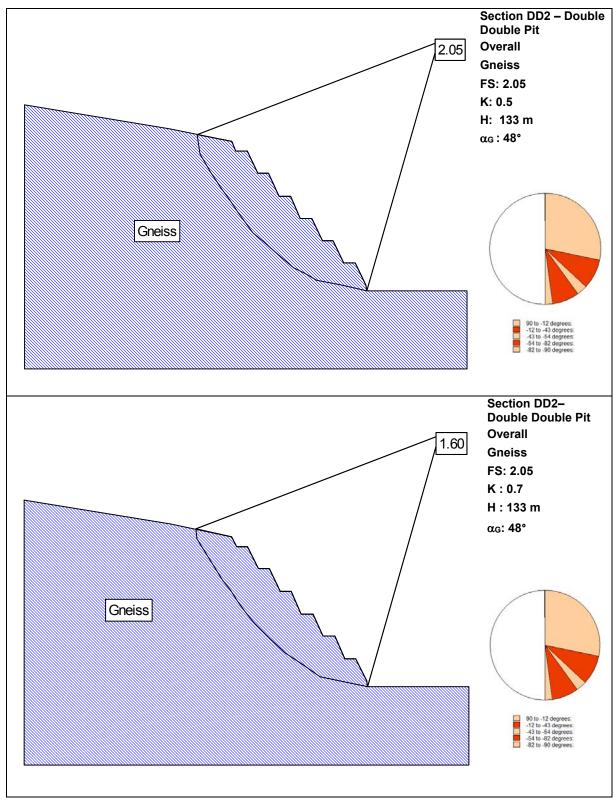



Figure J-6: Results of interramp/overall slope analyses – Section DD2 – DouDou Pit

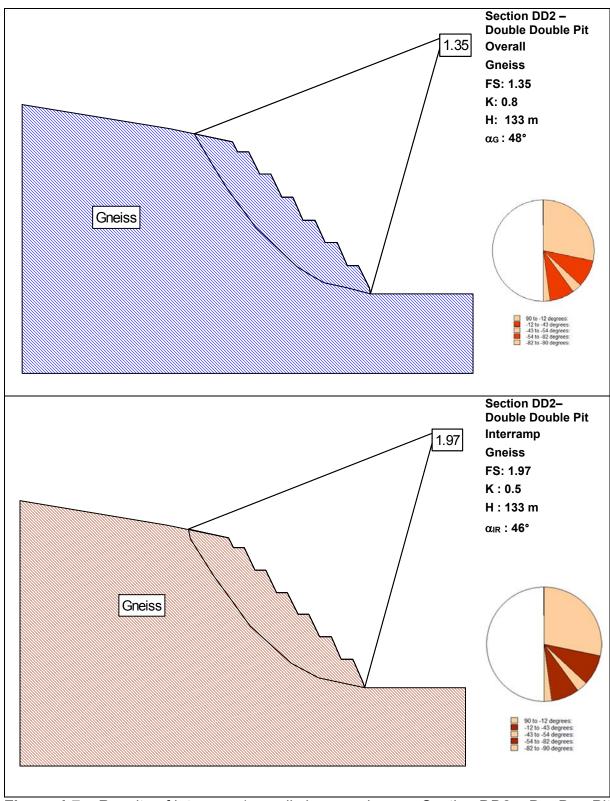



Figure J-7: Results of interramp/overall slope analyses – Section DD2 – DouDou Pit

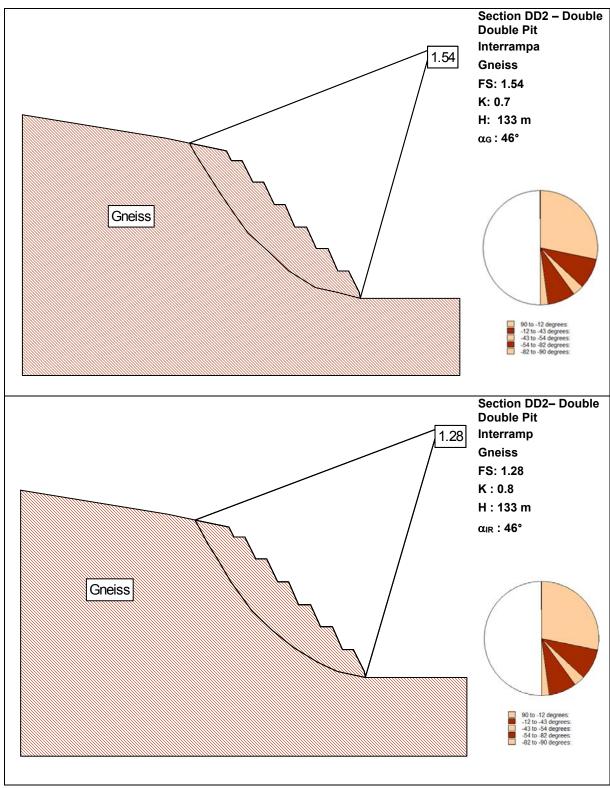
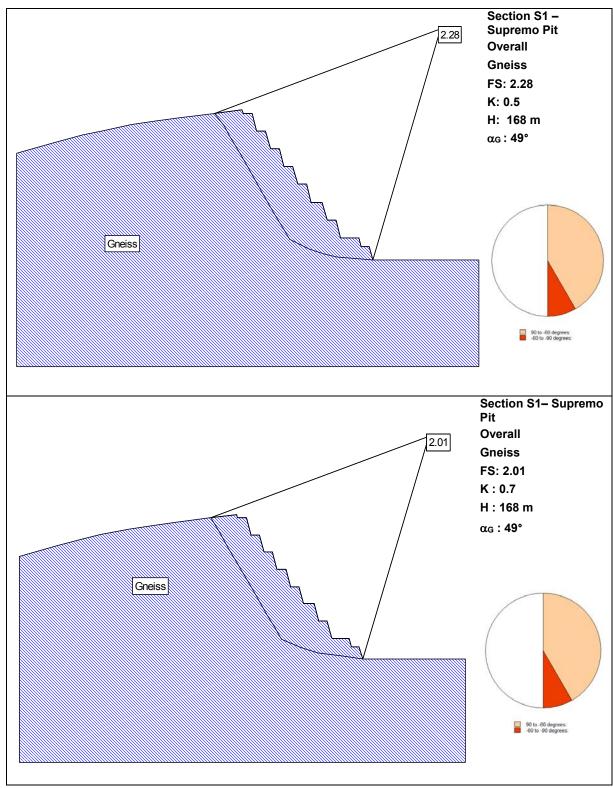
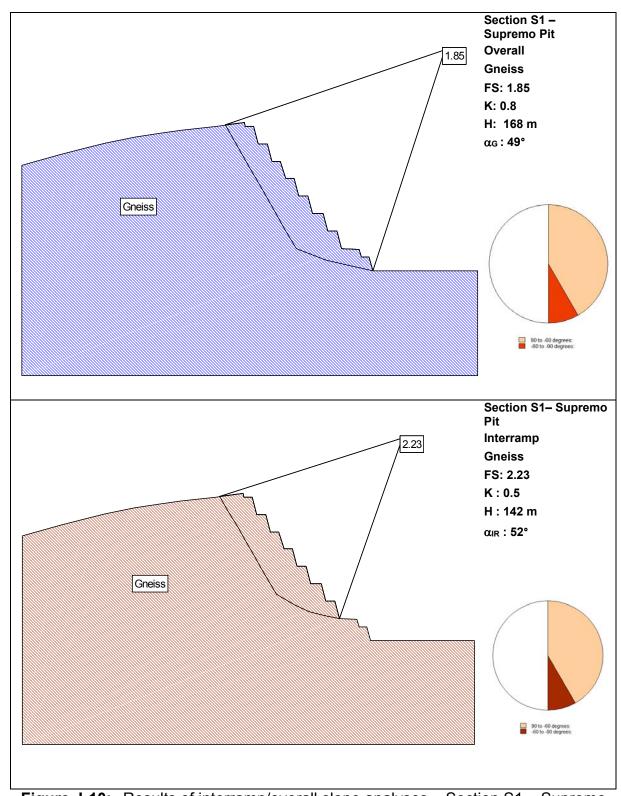
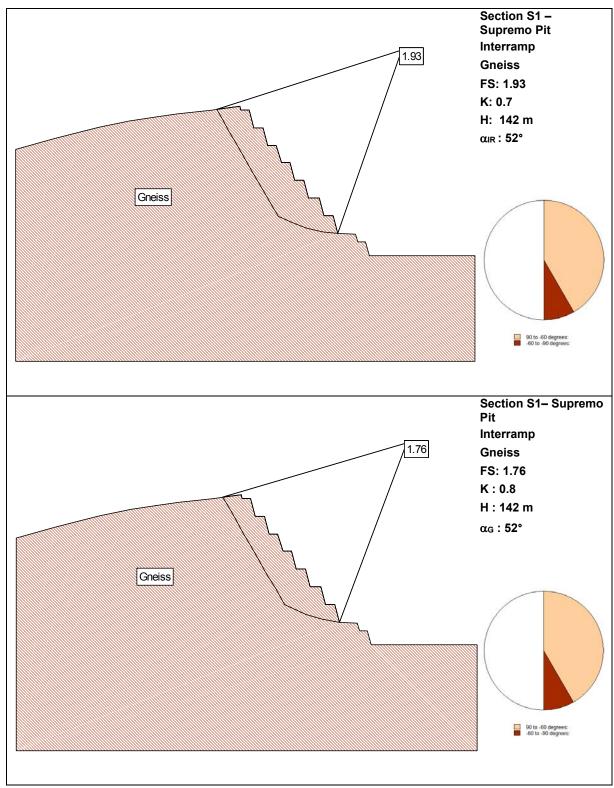
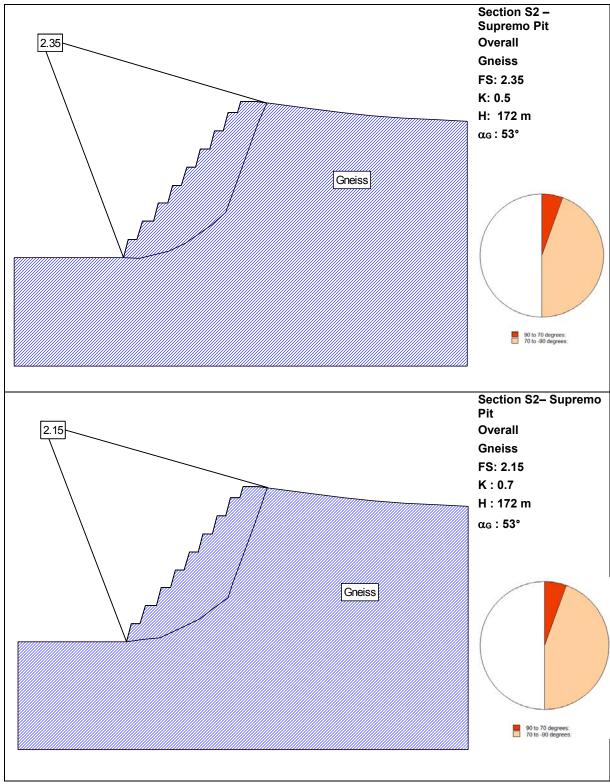
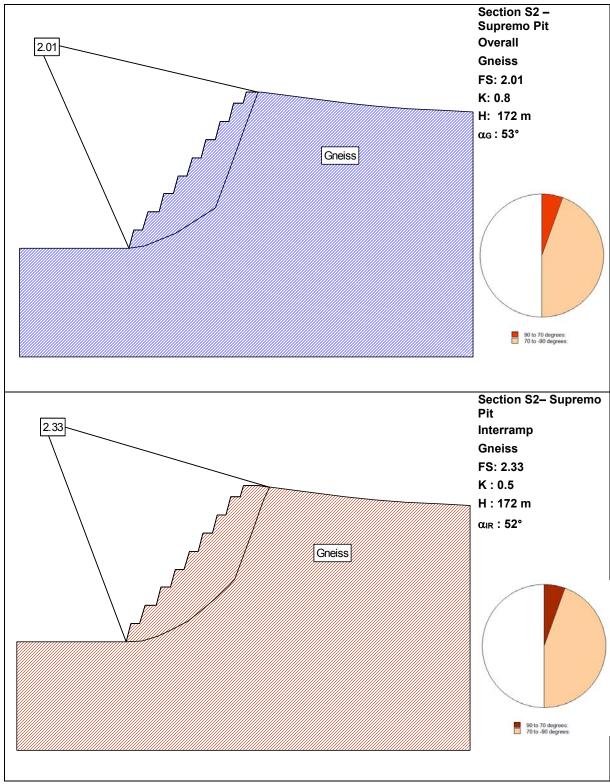



Figure J-8: Results of interramp/overall slope analyses – Section DD2 – DouDou Pit

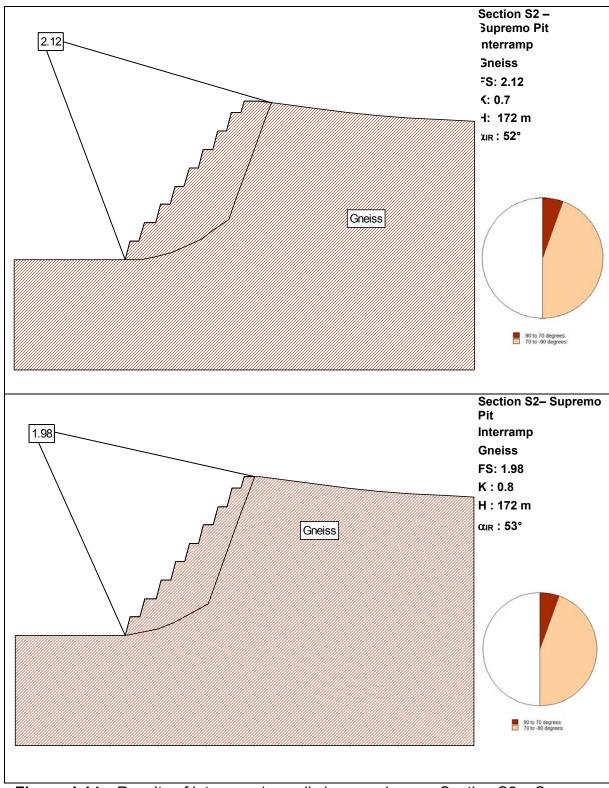






Figure J-9: Results of interramp/overall slope analyses – Section S1 – Supremo Pit

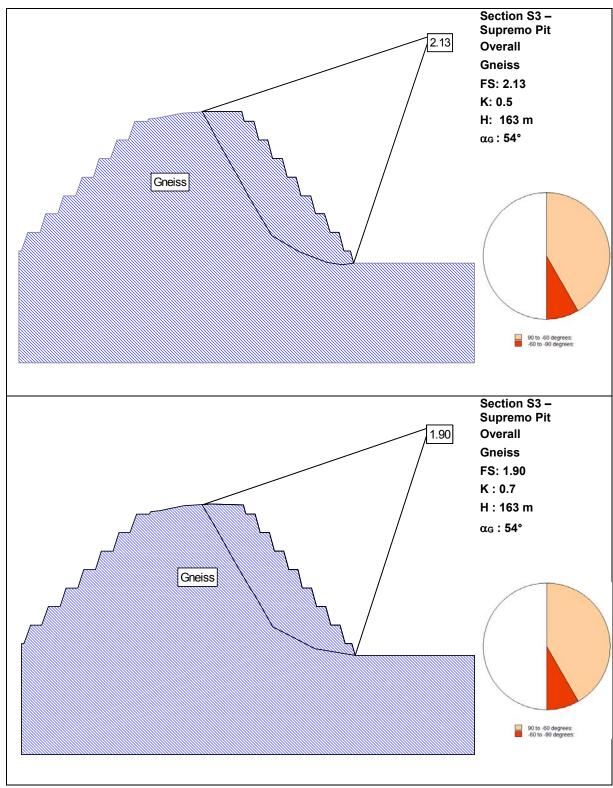



**Figure J-10:** Results of interramp/overall slope analyses – Section S1 – Supremo Pit

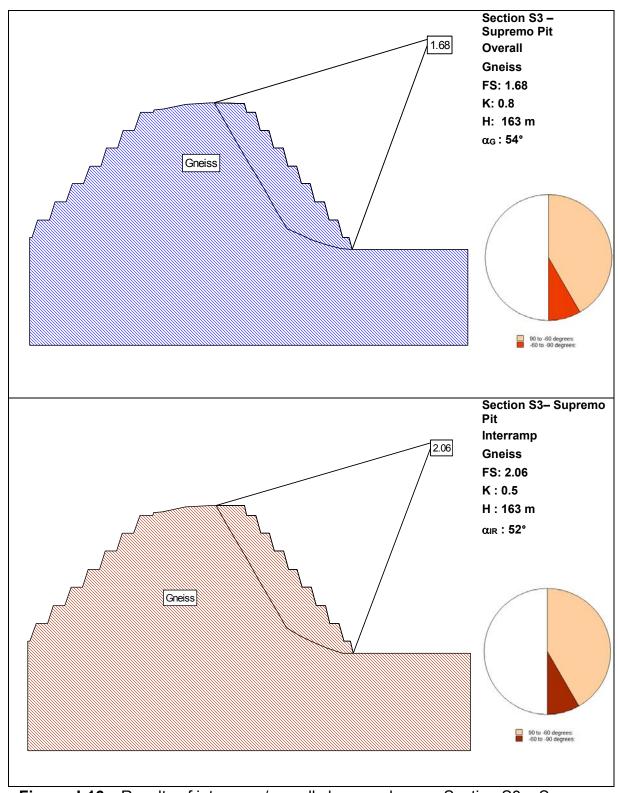



**Figure J-11:** Results of interramp/overall slope analyses – Section S1 – Supremo Pit

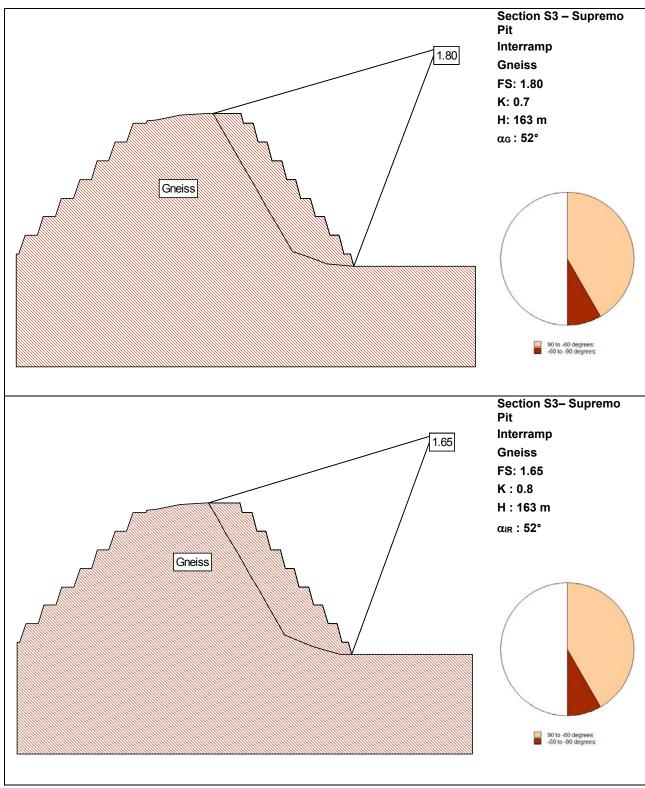



**Figure J-12:** Results of interramp/overall slope analyses – Section S2 – Supremo Pit




**Figure J-13:** Results of interramp/overall slope analyses – Section S2 – Supremo Pit




**Figure J-14:** Results of interramp/overall slope analyses – Section S2 – Supremo Pit



**Figure J-15:** Results of interramp/overall slope analyses – Section S3 – Supremo Pit



**Figure J-16:** Results of interramp/overall slope analyses – Section S3 – Supremo Pit



**Figure J-17:** Results of interramp/overall slope analyses – Section S3 – Supremo Pit

# Appendix 31-D-III 2015 Geotechnical Field Investigation

# 2015 Geotechnical Field Investigation Coffee Gold Project Yukon Territory, Canada

**Report Prepared for** 

# **Kaminak Gold Corporation**





**Report Prepared by** 



SRK Consulting (U.S.), Inc. SRK Project Number 338600.020 January 4, 2016

# **Draft**2015 Geotechnical Field Investigation Report Coffee Gold Project Yukon Territory, Canada

# **Kaminak Gold Corporation**

1020 – 800 West Pender Street Vancouver, B.C. V6C 2V6 Canada

### SRK Consulting (U.S.), Inc.

1125 Seventeenth Street, Suite 600 Denver, CO 80202

e-mail: denver@srk.com website: www.srk.com

Tel: +1.303.985.1333 Fax: +1.303.985.9947

### SRK Project Number 338600.020

**January 4, 2016** 

### **Authors:**

Stuart McPhee, EIT, Consultant (Geotechnical) Peter Mikes, P.Eng., Senior Consultant (Geotechnical)

### Reviewed by:

Michael Levy, P.E., P.G., Principal Consultant (Geotechnical)

# **Table of Contents**

| 1   | Intr   | oduction                                 | 1  |
|-----|--------|------------------------------------------|----|
|     | 1.1    | Scope of Work                            | 1  |
|     | 1.2    | Roles and Responsibilities               | 2  |
| 2   | Fie    | ld Program Methodologies                 | 3  |
|     | 2.1    | Phase 1 Sonic Drilling Program           | 3  |
|     | 2.2    | Phase 2 Test Pit Program                 |    |
|     | 2.3    | Logging Method                           | 4  |
|     | 2.4    | Sampling Method                          | 5  |
|     | 2.5    | Ground Temperature Cable Installations   | 5  |
| 3   | Lak    | ooratory Testing                         | 6  |
|     | 3.1    | Natural Moisture Content                 | 6  |
|     | 3.2    | Particle Size Distribution               | 6  |
|     | 3.3    | Atterberg Limits                         | 8  |
|     | 3.4    | Specific Gravity                         | 8  |
|     | 3.5    | Frozen Density                           | 9  |
|     | 3.6    | Organic Matter                           | 9  |
|     | 3.7    | Proctor Compaction Tests                 | 10 |
|     | 3.8    | Consolidation Tests                      | 10 |
|     | 3.9    | Direct Shear Tests                       | 10 |
| 4   | Ref    | ferences                                 | 12 |
| 5   | Dat    | te and Signature Page                    | 13 |
| Di  |        | imer                                     |    |
|     |        |                                          |    |
| Li  | st d   | of Tables                                |    |
| Tal | ole 1: | Location of thermistor strings installed | 5  |
| Tal | ole 2: | Particle Size Distribution Results       | 6  |
| Tal | ole 3: | Atterberg Limit Results                  | 8  |
| Tal | ole 4: | Specific Gravity Results                 | 8  |
| Tal | ole 5: | Frozen Density Measurements              | 9  |
| Tal | ole 6: | Organic Matter Test Results              | g  |
| Tal | ole 7: | Compaction Test Results                  | 10 |
| Tal | ole 8: | Consolidation Test Samples               | 10 |
| Tal | ole 9: | Direct Shear Test Results                | 11 |

# **List of Figures**

Figure 1: Site Location

Figure 2: General Arrangement

Figure 3: North Waste Dump Area Boreholes and Test Pits

Figure 4: West Waste Dump Area Boreholes and Test Pits

Figure 5: South Waste Dump Area Boreholes and Test Pits

Figure 6: Heap Leach Pad Area Boreholes and Test Pits

Figure 7: Ground Temperature Profile: SRK-15D-10T

Figure 8: Ground Temperature Profile: SRK-15D-13T

Figure 9: Histogram of Natural Moisture Content Measurements

Figure 10: Particle Size Distributions by Original Facility Location

Figure 11: Atterberg Limit Result Summary

# **Appendices**

Appendix A: As-built Locations and Lab Test Program Summary

Appendix B: Borehole and Test Pit Logs

Appendix C: Photograph Logs

Appendix D: Laboratory Test Data

# 1 Introduction

SRK Consulting (U.S.), Inc. (SRK) was retained by Kaminak Gold Corporation (Kaminak) to carry out a feasibility-level geotechnical investigation for Kaminak's wholly owned Coffee Gold Project located in west-central Yukon Territory, Canada (Figure 1). The project is located in the White Gold district of the Yukon and overall encloses several gold occurrences within an exploration concession covering an area of more than 600 square kilometers.

# 1.1 Scope of Work

The scope of the geotechnical investigation included field and laboratory characterization of the proposed footprints for the waste rock dumps, heap leach pad and the plant site. To meet the overall feasibility schedule, borehole and test pit locations were selected based on the facility locations as designed during the previous Preliminary Economic Assessment (JDS, 2014). Based on the initial results of the field program and changes to the PEA mine design made during the early feasibility study works, certain facilities were relocated. Consequently, test pits and borehole locations did not always prove to be optimal relative to the final feasibility mine design. However, given the overall consistency of the site geotechnical characteristics encountered, SRK believes that this factor does not adversely impact the characterization to an appreciable degree and that the data collected is sufficient for the feasibility level of design. Additional field characterization of the final facility footprints will be required at the detailed design level.

The overall investigation was completed in two phases consisting of a sonic drilling program completed between April 3 and 12, 2015, and a supplemental test pitting program completed between June 18 and July 2, 2015. The field programs were specifically designed to achieve the following objectives:

### **Phase 1 Sonic Drilling Program**

- Obtain a broad characterization of geotechnical and permafrost conditions in the areas
  proposed for the subject facilities. This included characterizing the overburden thickness,
  depth to bedrock, the integrity of the bedrock, and identifying the presence of permafrost,
  including the extents and presence of excess ice;
- Obtain both disturbed and frozen relatively undisturbed samples of relevant stratigraphic units
  for laboratory testing and subsequent foundation design and slope stability analyses. Details
  of the subsequent analyses are presented under separate cover; and,
- Installation of two 25 m ground temperature cables to provide estimates of the depth of active layer where the ground seasonally thaws and freezes.

### Phase 2 Supplemental Test Pit Program

- Confirm findings of Phase 1 drilling program and assess the lateral variability, extents and distribution of materials over the proposed facility footprints; and,
- Provide additional bulk samples for laboratory testing and analyses.

This report provides factual data from the combined field programs describing the methodologies used for drilling, test pit excavation, and sampling. Section 2 of this report provides details of the methodologies, sampling, and laboratory test programs. Section 3 describes the results of the laboratory test program. Appendices at the end of the report contain borehole and test pit logs, laboratory results, and additional data summary tables.

Interpretation and analyses of the data collected and the resulting recommendations and conclusions are presented under separate cover for each of the subject facilities. Site permafrost and geomorphology are discussed in a previous reports by AECOM (March, 2012) and Knight Piésold (2015).

This report contains the factual information collected from the overburden soils and very upper weathered bedrock zone. Additional data regarding bedrock conditions is contained within the pit slope evaluation report.

# 1.2 Roles and Responsibilities

The project was executed as a collaborative effort between SRK Consulting's Denver and Vancouver (SRK Consulting (Canada) Inc.) practices, collectively referred to herein as SRK.

The combined field investigation programs involved the following organizations:

- Drilling was conducted by Boart Longyear under contract with Kaminak;
- Field drill supervision and soil core logging was conducted by SRK Consultant, Stuart McPhee. Project management and senior review was provided by Peter Mikes PEng, Michael Levy, PE, PG and Cam Scott PEng.;
- Laboratory testing was completed by Tetra Tech EBA in their Whitehorse, Yukon and Edmonton, Alberta laboratories;
- Thermistor data subsequent to the initial installation was recorded and provided by Lorax Environmental Services Ltd. (Lorax);
- Borehole as-built collar locations were surveyed by Kaminak;
- As-built were surveyed by Kaminak for 23 test pits located within the proposed infrastructure area. As-built locations for the remaining test pits were recorded by SRK using a handheld GPS unit;
- Site logistical support and supplies were provided by Kaminak;
- Minconsult cleared and constructed drill pads under contract with Kaminak;
- Elbow River provided helicopter support, under contract with Kaminak; and
- JDS Energy and Mining operated the excavators under contract with Kaminak.

# 2 Field Program Methodologies

As-built borehole locations are provided on Figures 2 through 6, attached at the end of this report. The figures are organized based on proposed facility: the North, West, and South Waste Rock Dumps, heap leach pad/infrastructure areas. Tables obtained in Appendix A summarize the as-built coordinates for test pit and borehole samples selected for laboratory testing. The remaining as-built coordinates can be found on the individual borehole and test pit logs contained in Appendix B.

The location of test pits and boreholes were based on the facility locations and footprints as proposed at that time. In some instances foundation footprints were adjusted or relocated making the drillhole and test pit locations, relative to the final footprints, non-optimal. However, these differences are not believed to significantly impact the overall characterization of the foundation areas for the feasibility study. Additional field characterization of the final facility footprints will be required at the detailed design level of the project.

# 2.1 Phase 1 Sonic Drilling Program

Phase 1 sonic borehole locations were selected to provide the most effective and economic data coverage within the waste rock dumps, infrastructure, and heap leach pad foundation areas. The sonic drilling program was primarily focused on a broader characterization of the proposed underlying soil geotechnical characteristics and permafrost conditions. Penetration into competent bedrock was limited by drilling equipment and the lack of available water at the site due to weather conditions.

Drilling was completed using a heli-portable sonic drill rig (resonant rotary drill) equipped with 4.5 inch core barrels. Casing was not used due to the shallow drilling depths that typically ranged from 1.5 to 6 meters (m). The drilling method consisted of combining rotation of the drill head with vibrations to advance the core barrel into the soil and weathered rock profile without drilling fluids. Due to frozen ground conditions the core barrel could be extracted without casing, with only minimal slumping noticed. Wooden drill pads were constructed at each borehole location with access to each site provided by helicopter. An SRK representative was present at the drill rig at all times during active drilling to provide core logging and sampling, and observe drilling procedures.

The sonic drill rig was selected because the quality of fine grained frozen soil core is greater compared to a diamond drill rig, and it requires less water. Friction of the drill steel with the in-situ materials generates little heat when advancing through uniform, fine-grained frozen soils, therefore chilled brine was not required to recover intact frozen samples. However, when encountering coarse grained soils (gravel sized and larger), significant heat can be generated. During the drilling of coarse grained zones, extra care was taken to select samples that appeared unaffected by heat generation.

The drill program was completed during day shifts. Temperatures during the program ranged from -20°C to 5°C. Snow thickness at each site varied depending on slope aspect and elevation, and ranged from 0 to 1.5 m in depth. Two snow storms occurred during the field program that resulted in work stoppages for safety concerns which lasted one and three hours. Limited visibility during these events would have prevented a helicopter from accessing the location if a first aid situation was required.

Two major drill breakdowns occurred that required the replacement of the sonic drilling head unit. The first breakdown required eight hours to replace, and the second breakdown required five hours. Spare

drilling heads were located onsite when breakdowns occurred and required minimal downtime to source and repair.

# 2.2 Phase 2 Test Pit Program

The Phase 2 supplemental test pit program was completed between June 18 and July 2, 2015. The majority of days were sunny and clear with mild winds and temperatures ranging between 5°C and 28°C. During the final week, weather was typically cooler with occasional rain.

A majority of the test pits were excavated using a Caterpillar 312 or 320 excavator. Where test pit locations were inaccessible with the track mounted excavators, a small Can-dig<sup>™</sup> excavator was mobilized into locations using a helicopter. Each test pit location was ground-proofed and located by SRK with minor location adjustments made to avoid large boulders or steep surfaces. As-built location coordinates were obtained for most test pits using a handheld Garmin GPSMap 64s GPS device, with the plant and camp site test pits subsequently surveyed by Challenger Geomatics Ltd.

There were no major equipment breakdowns during the test pit program. A boom arm bushing broke on the Can-dig<sup>™</sup> excavator and a spare was sourced from Dawson City, Yukon and shipped to site. The breakdown did not cause lost time due to the availability of other excavators.

All test pits were logged and sampled by SRK personnel. Upon completion of test pit excavation and logging, photographs were taken of the exposed soil and bedrock profile, representative samples were collected and then the test pits were backfilled.

Test pits were advanced to the maximum reach of the excavator, or to "effective refusal". "Effective refusal" was defined as the depth where further excavation was deemed ineffective or unrealistic. This depth was determined as the point where the excavator bucket was scraping and grinding the underlying weathered bedrock or bedrock in most cases and effectively altering the makeup of the materials as opposed to effectively excavating. In some instances the excavator may have also intercepted large localized boulders that could not be removed.

# 2.3 Logging Method

Logging of borehole and test pit materials was completed according to the Unified Soil Classification System (USCS). As such, weathered-in-place bedrock was typically logged in the field as the respective soil type, based on estimates of particle size. Particular attention was also given to logging permafrost features according to the ASTM D4083 procedure. Complete borehole and test pit logs containing sample locations and laboratory test results are presented in Appendix B.

The bedrock contact was difficult to define at some locations due to its weathering characteristics and the subtle transition from colluvial soils, sometimes composed of weathered bedrock, to in-situ bedrock. These weathered/transition zones typically contained coarse grained quartz sands and weathered rock fragments. In other instances during, large competent boulders were encountered at shallow depths preventing further excavation at these locations and an accurate measurement of total soil overburden depth was not possible.

Borehole and test pit termination conditions are noted on each log provided in Appendix B. Boreholes and test pits were typically terminated when competent bedrock was reached or due to excavator "refusal". Refusal was defined for the test pit program as occurring when either competent bedrock or well bonded frozen soils were no longer able to be excavated due to their hardness and cohesion.

"Bedrock was defined in the test pit and borehole logs as competent, in-situ bedrock with minimal signs of weathering. "Weathered Bedrock" was used to describe the zone of heavily fractured, cobble sized bedrock fragments typically surrounded by coarse grained sand sized particles.

# 2.4 Sampling Method

Representative disturbed samples were collected from major soil units during both logging programs. Samples were sealed in plastic bags for moisture preservation and transport to the laboratory. Several larger, bulk samples were also obtained for proctor compaction testing as described in Section 3.7. After the completion of each program, the samples were transported by Kaminak to the Tetra Tech EBA (EBA) laboratory in Whitehorse.

During sonic drilling, a select number of relatively undisturbed frozen samples were also collected where soils of higher ice content were observed. The frozen samples were sealed in plastic wrap and housed in a PVC enclosure to protect against potential deformation or disturbance during storage on-site and transport. The frozen samples placed into insulated coolers with ice packs during storage and transportation to maintain their frozen state.

# 2.5 Ground Temperature Cable Installations

Two ground temperature cables (thermistors) were installed in diamond core holes while the test pit program was being carried out. The as-built collar locations of the two diamond holes used for the thermistor installations are summarized in Table 1.

Table 1: Location of thermistor strings installed

| Hole ID     | Northing | Easting | Instrumentation              |
|-------------|----------|---------|------------------------------|
| SRK-15D-10T | 6973451  | 581749  | 25 m thermistor and PVC pipe |
| SRK-15D-13T | 6972897  | 582826  | 25 m thermistor and PVC pipe |

Thermistor installation required drilling a HQ diameter diamond drillhole supported by PQ drill casing near ground surface. The HQ drill rods were removed from the casing and a 2.5-inch diameter PVC pipe was inserted to a final depth of 15 m from surface. The PQ drill casing was then removed leaving the PVC behind. The thermistor cable was then inserted down the inside of the plastic pipe and grouted in place using a cement-bentonite grout mix. Approximately 1.5 m of PQ casing was permanently left in the hole with 1.5 of stick-up to provide a location where a monument could be later installed to protect the data logger at each location, The monuments were not available at site at the time of thermistor string installation and were subsequently installed by Kaminak after completion of the test pit program.

Initial readings of the thermistors were taken by SRK at the time of installation. The data loggers were downloaded on multiple occasions following their installation by Lorax and the data was provided to SRK for review. Temperature profiles from the two thermistor strings are contained on Figures 7 and 8 through October 2015.

# 3 Laboratory Testing

The lab testing program was developed to define and characterize major soil units in the existing materials beneath the proposed facilities. Both sonic drilling and test pit samples have been presented in summary tables located in Appendix A. Testing was performed by the geotechnical laboratories of TetraTech EBA in Whitehorse, YT and Edmonton, AB. The sample type, location, and descriptions are provided in Appendix A. The complete laboratory results are presented in Appendix D.

### 3.1 Natural Moisture Content

Gravimetric moisture contents were calculated on selected samples from both sonic drilling and test pit programs. A total of 123 samples were selected, 82 from the test pit program and 41 from the sonic drilling program. A complete set of laboratory test certificates are provided in Appendix D-1 along with a summary table. Selected samples represent different materials types from various depths and from various frozen states (i.e., well bonded or poorly bonded). The moisture contents typically ranged from 3 to 30 percent with 13 ice-rich samples having moisture contents between 50 and 100 % and another 13 ice-rich samples having moisture contents between 100 and 300%.

Figure 9 contains a histogram of all natural moisture contents combined. While several samples with high moisture contents are indicated in the histogram, many of these samples were obtained from areas that were initially investigated but are no longer being considered for potential mine design facilities due to the high ice content. Additional details regarding the location of the ice rich materials are presented in the Waste Rock Dump, Heap Leach and Infrastructure design reports.

### 3.2 Particle Size Distribution

Table 2 summarizes the particle size distribution results by test pit/drillhole as well as the original PEA facility location. Figure 10 contains a summary of the grain size distribution curves sorted by the original PEA facility location. Laboratory test certificates are included in Appendix D-2.

**Table 2: Particle Size Distribution Results** 

| Original Facility        | Location ID | Sample | Sample Depth | %    | %    | %    | %      |
|--------------------------|-------------|--------|--------------|------|------|------|--------|
| ,                        |             | Number | (m)          | Clay | Silt | Sand | Gravel |
|                          | SRK-15S-01  | 17727  | 1.1          | 5    | 30   | 43   | 22     |
|                          | SRK-15S-02  | 17730  | 0.6          | 33   | 3    | 37   | 30     |
|                          | SRK-15S-03  | 17728  | 0.6          | 7    | 76   | 17   | 0      |
|                          | SRK-15S-03  | 17729  | 6.7-7        | 9    | 23   | 47   | 20     |
| No who Maste             | SRK-15S-04  | 17725  | 1.1          | 4    | 90   | 6    | 0      |
| North Waste<br>Rock Dump | SRK-15S-04  | 17726  | 3.7          | 14   | 29   | 43   | 15     |
| Nock Dump                | SRK-15TP-29 | 17591  | 0.75         | 3    | 21   | 27   | 50     |
|                          | SRK-15TP-36 | 17586  | 0.6          | 4    | 31   | 47   | 18     |
|                          | SRK-15TP-37 | 17585  | 0.45         | 8    | 67   | 22   | 2      |
|                          | SRK-15TP-39 | 17583  | 0.9          | 5    | 27   | 52   | 16     |
|                          | SRK-15TP-40 | 17582  | 0.65         | 9    | 41   | 43   | 7      |
|                          | SRK-15S-05  | 17702  | 2.7          | 4    | 66   | 26   | 4      |
|                          | SRK-15S-06  | 17704  | 0.8          | 6    | 23   | 36   | 35     |
| 10/+10/+-                | SRK-15S-07  | 17708  | 3.4          | 9    | 19   | 50   | 22     |
| West Waste<br>Rock Dump  | SRK-15S-08  | 17706  | 0.9          | 6    | 26   | 46   | 22     |
| Rock Dullip              | SRK-15S-08  | 17707  | 3.4          | 2    | 33   | 42   | 23     |
|                          | SRK-15TP-51 | 17599  | 0.65         | 3    | 17   | 49   | 31     |
|                          | SRK-15TP-61 | 17633  | 0.4          | 17   | 7    | 38   | 45     |

| Original Facility | Location ID  | Sample              | Sample Depth | %<br>Class | %<br>Silt | %<br>Cond  | %            |
|-------------------|--------------|---------------------|--------------|------------|-----------|------------|--------------|
|                   | SRK-15TP-61A | Number<br>17633-61A | ( <b>m</b> ) | Clay<br>4  | 48        | Sand<br>34 | Gravel<br>14 |
|                   | SRK-15TP-64  | 17598               | 0.0-1.9      | 10         | 65        | 17         | 8            |
|                   | SRK-151F-04  | 17709               | 1.8          | 2          | 80        | 17         | 1            |
|                   | SRK-15S-09   | 17710               | 3.4          | 5          | 91        | 4          | 0            |
| South Waste       | SRK-15S-11   | 17711               | 2.3          | 3          | 19        | 34         | 44           |
| Rock Dump         | SRK-15S-12   | 17712               | 2.4          | 5          | 25        | 42         | 28           |
|                   | SRK-15TP-26  | 17603               | 0.6-1.2      | 2          | 16        | 47         | 35           |
|                   | SRK-15TP-27  | 17604               | 0.1-0.3      | 5          | 15        | 61         | 20           |
|                   | SRK-15S-13A  | 17718               | 0.1-0.9      | 6          | 44        | 35         | 15           |
|                   | SRK-15S-13A  | 17719               | 4.0          | 21         |           | 73         | 6            |
|                   | SRK-15S-16   | 17715               | 0.6          | 14         | 32        | 39         | 15           |
|                   | SRK-15S-17   | 17717               | 1.5-1.8      | 7          | 32        | 32         | 29           |
|                   | SRK-15S-19   | 17713               | 2.7          | 13         | 37        | 43         | 7            |
|                   | SRK-15S-20   | 17722               | 0.9          | 5          | 39        | 38         | 18           |
|                   | SRK-15S-23   | 17721               | 0.6          | 40         |           | 36         | 24           |
|                   | SRK-15S-25   | 17723               | 0.6          | 7          | 27        | 35         | 31           |
|                   | SRK-15S-25   | 17724               | 1.8          | 7          | 18        | 37         | 39           |
|                   | SRK-15TP-03  | 17565               | 0.5-1        | 3          | 14        | 37         | 46           |
|                   | SRK-15TP-04  | 17563               | 0.6          | 4          | 24        | 31         | 40           |
| Heap Leach        | SRK-15TP-06  | 17559               | 0.7          | 3          | 9         | 48         | 40           |
| Pad (HLP)         | SRK-15TP-08  | 17581               | 0.85         | 4          | 13        | 37         | 47           |
|                   | SRK-15TP-09  | 17579               | 0.75         | 4          | 31        | 36         | 29           |
|                   | SRK-15TP-11  | 17575               | 0.7          | 6          | 28        | 40         | 27           |
|                   | SRK-15TP-12  | 17574               | 0.6          | 1          | 23        | 40         | 36           |
|                   | SRK-15TP-13A | 17623               | 0.55         | 6          | 35        | 41         | 19           |
|                   | SRK-15TP-14  | 17572               | 0.85         | 1          | 18        | 42         | 40           |
|                   | SRK-15TP-16  | 17570               | 0.9          | 4          | 22        | 36         | 39           |
|                   | SRK-15TP-17  | 17566               | 0.4          | 3          | 22        | 39         | 36           |
|                   | SRK-15TP-18  | 17576               | 0.3-0.5      | 5          | 36        | 27         | 32           |
|                   | SRK-15TP-20  | 17564               | 0.6          | 4          | 34        | 39         | 24           |
|                   | SRK-15TP-21  | 17562               | 0.5          | 3          | 27        | 48         | 22           |
|                   | SRK-15TP-43  | 17560               | 0.6          | 9          | 26        | 44         | 21           |
|                   | SRK-15S-26   | 17736               | 0.6          | 12         | 44        | 31         | 14           |
|                   | SRK-15S-29   | 17732               | 0.9          | 7          | 18        | 34         | 41           |
|                   | SRK-15S-30   | 17734               | 0.9          | 9          | 51        | 33         | 7            |
|                   | SRK-15S-30   | 17735               | 2.1          | 16         |           | 22         | 62           |
|                   | SRK-15S-32   | 17737               | 0.6          | 33         | 3         | 39         | 28           |
|                   | SRK-15S-33   | 17740               | 0.9          | 34         | 1         | 40         | 26           |
|                   | SRK-15S-34   | 17739               | 1.1          | 8          | 46        | 32         | 14           |
| ROM Stockpile     | SRK-15S-35   | 17741               | 1.2          | 3          | 39        | 43         | 15           |
| & Infrastructure  | SRK-15S-35   | 17743               | 5.2          | 6          | 18        | 31         | 46           |
| Sites             | SRK-15TP-66  | 17620               | 0.85         | 10         | 38        | 31         | 21           |
|                   | SRK-15TP-67  | 17621               | 0.5          | 4          | 22        | 36         | 39           |
|                   | SRK-15TP-69  | 17617               | 0.75         | 0          | 6         | 40         | 54           |
|                   | SRK-15TP-73  | 17615               | 1.75         | 6          | 32        | 32         | 31           |
|                   | SRK-15TP-74  | 17614               | 0.75         | 5          | 33        | 36         | 26           |
|                   | SRK-15TP-78  | 17610               | 1.5          | 4          | 22        | 44         | 31           |
|                   | SRK-15TP-82  | 17606               | 0.8          | 9          | 38        | 33         | 20           |
|                   | SRK-15TP-82A | 17606-82A           | 1.3-3.5      | 16         |           | 38         | 46           |
|                   | SRK-15TP-85  | 17626               | 0.75         | 6          | 27        | 29         | 38           |

# 3.3 Atterberg Limits

All Atterberg Limit test results are summarized in Table 3. Test results are plotted graphically on the Unified Plasticity Chart on Figure 11. Laboratory test certificates are provided in Appendix D-3.

**Table 3: Atterberg Limit Results** 

| Original Facility<br>Location | Hole/Test Pit<br>ID | Sample<br>Number | Sample<br>Depth<br>(m) | Liquid<br>Limit<br>(%) | Plastic<br>Limit<br>(%) | Plasticity<br>Index (%) | Soil<br>Plasticity | Mod.<br>USCS<br>Class | Natural<br>Moisture<br>Content<br>(%) |
|-------------------------------|---------------------|------------------|------------------------|------------------------|-------------------------|-------------------------|--------------------|-----------------------|---------------------------------------|
|                               | SRK-15S-03          | 17728            | 0.6                    | 99                     | 62                      | 37                      | High               | ОН                    | 139.9                                 |
| North Waste                   | SRK-15S-03          | 17729            | 6.7-7                  | 0                      | 0                       | 0                       | NP                 | -                     | 12.9                                  |
| Rock Dump                     | SRK-15S-04          | 17725            | 1.1                    | 129                    | 85                      | 44                      | High               | ОН                    | 317.8                                 |
|                               | SRK-15S-04          | 17726            | 3.7                    | 0                      | 19                      | 0                       | NP                 | -                     | 16.7                                  |
|                               | SRK-15S-05          | 17702            | 2.7                    | 33                     | 27                      | 6                       | Low                | ML                    | 50.3                                  |
|                               | SRK-15S-06          | 17704            | 0.2                    | 0                      | 0                       | 0                       | NP                 | -                     | 6.8                                   |
|                               | SRK-15S-07          | 17708            | 3.4                    | 0                      | 0                       | 0                       | NP                 | -                     | 12.4                                  |
| West Waste                    | SRK-15S-08          | 17706            | 0.9                    | 0                      | 0                       | 0                       | NP                 | -                     | 28.3                                  |
| Rock Dump                     | SRK-15S-08          | 17707            | 3.4                    | 20                     | 17                      | 3                       | Low                | ML                    | 13.8                                  |
|                               | SRK-15TP-50         | 17592            | 0.4                    | 0                      | 0                       | 0                       | NP                 | -                     | 63.0                                  |
|                               | SRK-15TP-55         | 17628            | 0.3                    | 0                      | 0                       | 0                       | NP                 | -                     | 76.5                                  |
|                               | SRK-15TP-56         | 17629            | 0.35                   | 0                      | 0                       | 0                       | NP                 | -                     | 68.4                                  |
| •                             | SRK-15S-09          | 17709            | 1.8                    | 37                     | 30                      | 7                       | Low                | ML                    | 57.2                                  |
| South Waste<br>Rock Dump      | SRK-15S-11          | 17711            | 2.3                    | 0                      | 0                       | 0                       | NP                 | -                     | 8.8                                   |
| Nock Dump                     | SRK-15S-12          | 17712            | 2.4                    | 0                      | 0                       | 0                       | NP                 | -                     | 19.5                                  |
|                               | SRK-15S-13A         | 17718            | 0.9                    | 25                     | 19                      | 6                       | Low                | CL-ML                 | 16.2                                  |
|                               | SRK-15S-20          | 17722            | 0.9                    | 23                     | 17                      | 6                       | Low                | CL-ML                 | 73.1                                  |
| Heap Leach                    | SRK-15S-25          | 17723            | 0.6                    | 25                     | 22                      | 3                       | Low                | ML                    | 12.6                                  |
| Pad (HLP)                     | SRK-15TP-03         | 17565            | 0.5-1                  | 29                     | 23                      | 6                       | Low                | ML                    | 10.5                                  |
|                               | SRK-15TP-20         | 17564            | 0.6                    | 0                      | 29                      | 0                       | NP                 | -                     | 20.7                                  |
|                               | SRK-15TP-43         | 17560            | 0.6                    | 0                      | 21                      | 0                       | NP                 | -                     | 12.6                                  |
| ROM Stockpile                 | SRK-15S-29          | 17732            | 0.9                    | 0                      | 0                       | 0                       | NP                 | -                     | 2.9                                   |
| & Infrastructure              | SRK-15S-34          | 17739            | 1.1                    | 20                     | 16                      | 4                       | Low                | ML                    | 14.9                                  |
| Sites                         | SRK-15S-35          | 17741            | 1.2                    | 0                      | 0                       | 0                       | NP                 | -                     | 44.9                                  |

<sup>\*</sup> NP=Non-plastic.

# 3.4 Specific Gravity

The results of Specific Gravity tests are summarized in Table 4. Laboratory test certificates are provided in Appendix D-4.

**Table 4: Specific Gravity Results** 

| Original Facility<br>Location | Hole ID    | Sample Number,<br>Sample Depth | Sample Description                             | Specific<br>Gravity |
|-------------------------------|------------|--------------------------------|------------------------------------------------|---------------------|
| North Waste<br>Rock Dump      | SRK-15S-03 | 17728, 0.6 m                   | ORGANIC SILT, some sand and clay, brown.       | 2.33                |
| South Waste<br>Rock Dump      | SRK-15S-09 | 17709, 1.8 m                   | SILT, some sand, trace clay and gravel, brown. | 2.64                |
| Heap Leach<br>Pad (HLP)       | SRK-15S-20 | 17722, 0.9 m                   | SILT and SAND, some gravel, trace clay, brown. | 2.63                |

### 3.5 Frozen Density

Six frozen bulk densities were completed on undisturbed samples from the Phase 1 sonic drilling program. The samples were selected to represent the ice-rich materials observed. The density results are summarized in Table 5 and the laboratory test certificates are provided in Appendix D-5.

**Table 5: Frozen Density Measurements** 

| Original<br>Facility     | Hole ID     | Sample Number,<br>Sample Depth | Sample Description                        | Moisture<br>Content<br>(%) | Frozen<br>Density<br>(kg/m³) | Dry<br>Density<br>(kg/m³) |
|--------------------------|-------------|--------------------------------|-------------------------------------------|----------------------------|------------------------------|---------------------------|
| North Waste              | SRK-15S-03  | 17728, 0.6 m                   | ORGANIC SILT, some sand and clay, brown.  | 129                        | 1,096                        | 478                       |
| Rock Dump                | SRK-15S-04  | 17725, 1.0 m                   | ORGANIC SILT, trace sand and clay         | 318                        | 1,034                        | 248                       |
| West Waste<br>Rock Dump  | SRK-15S-05  | 17702, 2.7 m                   | SILT, sandy, trace clay, trace gravel     | 50*                        | 1,683                        | 1,120                     |
| South Waste<br>Rock Dump | SRK-15S-09  | 17709, 1.8 m                   | SILT, some sand, trace clay, trace gravel | 95                         | 1,383                        | 711                       |
| Heap Leach               | SRK-15S-13A | 17718, 0.9 m                   | SILT and SAND, some gravel, trace clay    | 24                         | 1,746                        | 1,411                     |
| Pad (HLP)                | SRK-15S-20  | 17722, 0.9 m                   | SILT and SAND, some gravel, trace clay    | 73*                        | 1,405                        | 812                       |

<sup>\*</sup> Samples obtained from sonic boreholes that are not drilled within the final facility footprints.

The natural moisture and densities in Table 5 indicate that ice-rich material are present in some areas of the site. Additional details regarding the location of the ice rich materials are presented in the Waste Rock Dump, Heap Leach and Infrastructure design reports.

### 3.6 Organic Matter

Two samples of near surface soils were tested to determine the organic content according to ASTM D2974 test method C. The results are summarized in Table 6 and the laboratory test certificates are provided in Appendix D-6.

**Table 6: Organic Matter Test Results** 

| Original<br>Facility | Hole ID    | Sample Number,<br>Sample Depth | Sample Description                       | Organic<br>Matter (%) |
|----------------------|------------|--------------------------------|------------------------------------------|-----------------------|
| North Waste          | SRK-15S-03 | 17728, 0.6 m                   | ORGANIC SILT, some sand and clay, brown. | 5.8                   |
| Rock Dump            | SRK-15S-04 | 17725, 1.0 m                   | ORGANIC SILT, trace sand and clay        | 31.2                  |

### 3.7 Proctor Compaction Tests

Three standard proctor tests were completed on bulk samples collected from the test pit program. The results are summarized in Table 7 and the laboratory test certificates and compaction curves are provided in Appendix D-7.

**Table 7: Compaction Test Results** 

| Original Facility        | Test Pit ID | Sample<br>No. | Sample<br>Depth (m) | Corrected<br>Maximum Dry<br>Density (kg/m3) | Corrected Optimum Moisture Content (%) |
|--------------------------|-------------|---------------|---------------------|---------------------------------------------|----------------------------------------|
| Heap Leach Pad           | SRK-15TP-09 | 17579         | 0.75                | 2,094                                       | 10                                     |
| Heap Leach Pad           | SRK-15TP-04 | 17562         | 0.60                | 2,007                                       | 10                                     |
| North Waste<br>Rock Dump | SRK-15TP-34 | 17558         | 0.60                | 1,885                                       | 11                                     |

#### 3.8 Consolidation Tests

One-dimensional consolidation tests were conducted on two preserved, ice-rich samples according to ASTM D2435. Samples were thawed during the consolidation testing process. The test samples are listed in Table 8 with the test results and certificates provided in Appendix D-8.

**Table 8: Consolidation Test Samples** 

| Original Facility        | Hole ID    | Sample<br>No. | Sample<br>Depth (m) |  |
|--------------------------|------------|---------------|---------------------|--|
| North Waste<br>Rock Dump | SRK-15S-03 | 17728         | 0.7                 |  |
| South Waste<br>Rock Dump | SRK-15S-09 | 17709         | 2.0                 |  |

### 3.9 Direct Shear Tests

Three direct shear tests were completed. Two tests were completed on samples collected and preserved from the sonic drilling program (SRK-15S-05 and SRK-15S-13A). The third test was completed on a remolded sample re-compacted to 95% Standard Proctor based on the compaction result completed on sample 17579 at SRK-15TP-09 in the Heap Leach Pad area. The results are summarized in Table 9 with the laboratory certificates provided in Appendix D-9.

**Table 9: Direct Shear Test Results** 

| Original<br>Facility    | Hole/Test Pit | Sample No.,<br>Sample Depth | Sample Description                       | *Moisture<br>Content<br>(%) | *Wet<br>Density<br>kg/m <sup>3</sup> | Coh.<br>(kPa) | Friction<br>Angle<br>(deg) |
|-------------------------|---------------|-----------------------------|------------------------------------------|-----------------------------|--------------------------------------|---------------|----------------------------|
| West Waste<br>Rock Dump | SRK-15S-05*   | 17702, 2.7 m                | SILT, sandy, trace gravel and clay.      | 17.5                        | 1,378                                | 13            | 36                         |
| Heap Leach<br>Pad       | SRK-15S-13A*  | 17718, 0.9 m                | SILT & SAND, some gravel, trace clay     | 16.2                        | 1,686                                | 12            | 35                         |
| Heap Leach<br>Pad       | SRK-15TP-17   | 17566, 0.4 m                | SAND & GRAVEL, silty, trace clay, brown. | 9.6                         | 2,172                                | 77            | 42                         |

<sup>\*</sup> Moisture content and density data shown represent the average of the three test points for each direct shear test.

## 4 References

- ASTM International. 2007. ASTM D-4083: Standard Practice for Description of Frozen Soils (Visual-Manual Procedure).
- AECOM, Geomorphological Mapping and Landscape Model Development for Strategic Soil Geochemical Sampling at the Coffee Gold Project, Yukon Territory, report prepared for Kaminak Gold Corporation dated March 2012.
- Knight Piésold Consulting, 2015. Coffee Gold Project, Report on Feasibility Study Level Geotechnical Investigations. Prepared for Kaminak Gold Corporation. KP Project No. DV101-00562/03. March 12, 2015.

## 5 Date and Signature Page

Signed on this 4th Day of January, 2016.

### Prepared by

[signature redacted]

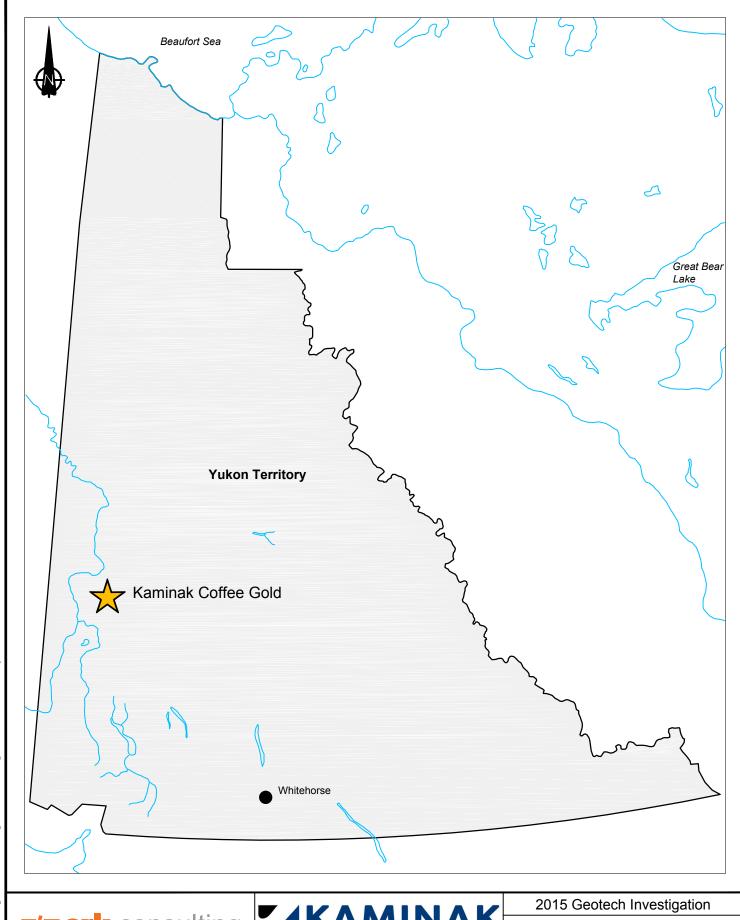
Stuart McPhee, EIT, Consultant (Geotechnical)

# [signature redacted]

Peter Mikes, P.Eng., Senior Consultant (Geotechnical)

[signat|signatureeda|signature

# [signature redacted]


P.E., P.G., Principal Consultant (Geotechnical)

All data used as source material plus the text, tables, figures, and attachments of this document have been reviewed and prepared in accordance with generally accepted industry practices.

### **Disclaimer**

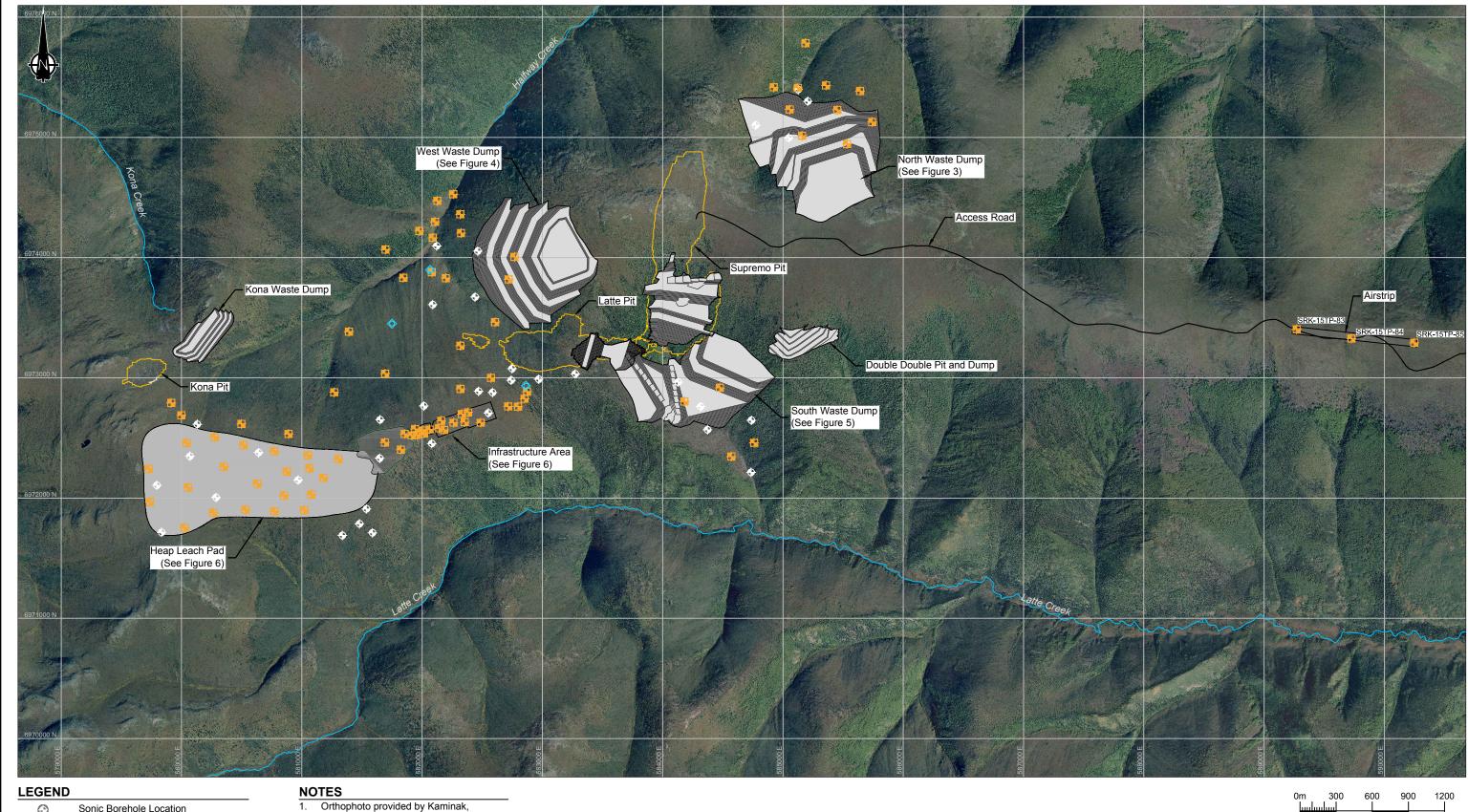
The opinions expressed in this Report have been based on the information supplied to SRK Consulting (U.S.), Inc. (SRK) by Kaminak Gold Corporation (Kaminak). These opinions are provided in response to a specific request from Kaminka to do so, and are subject to the contractual terms between SRK and Kaminak. SRK has exercised all due care in reviewing the supplied information. Whilst SRK has compared key supplied data with expected values, the accuracy of the results and conclusions from the review are entirely reliant on the accuracy and completeness of the supplied data. SRK does not accept responsibility for any errors or omissions in the supplied information and does not accept any consequential liability arising from commercial decisions or actions resulting from them. Opinions presented in this report apply to the site conditions and features as they existed at the time of SRK's investigations, and those reasonably foreseeable. These opinions do not necessarily apply to conditions and features that may arise after the date of this Report.

# **Figures**








Site Location

Coffee Gold 2015/10/26

RK JOB NO.: 338600.020

338600.020 - Location Plan.dwg

SM



Sonic Borehole Location

Test Pit Location

25m Thermister Installation Location

Creek Centerline (approximate)

Plant Infrastructure

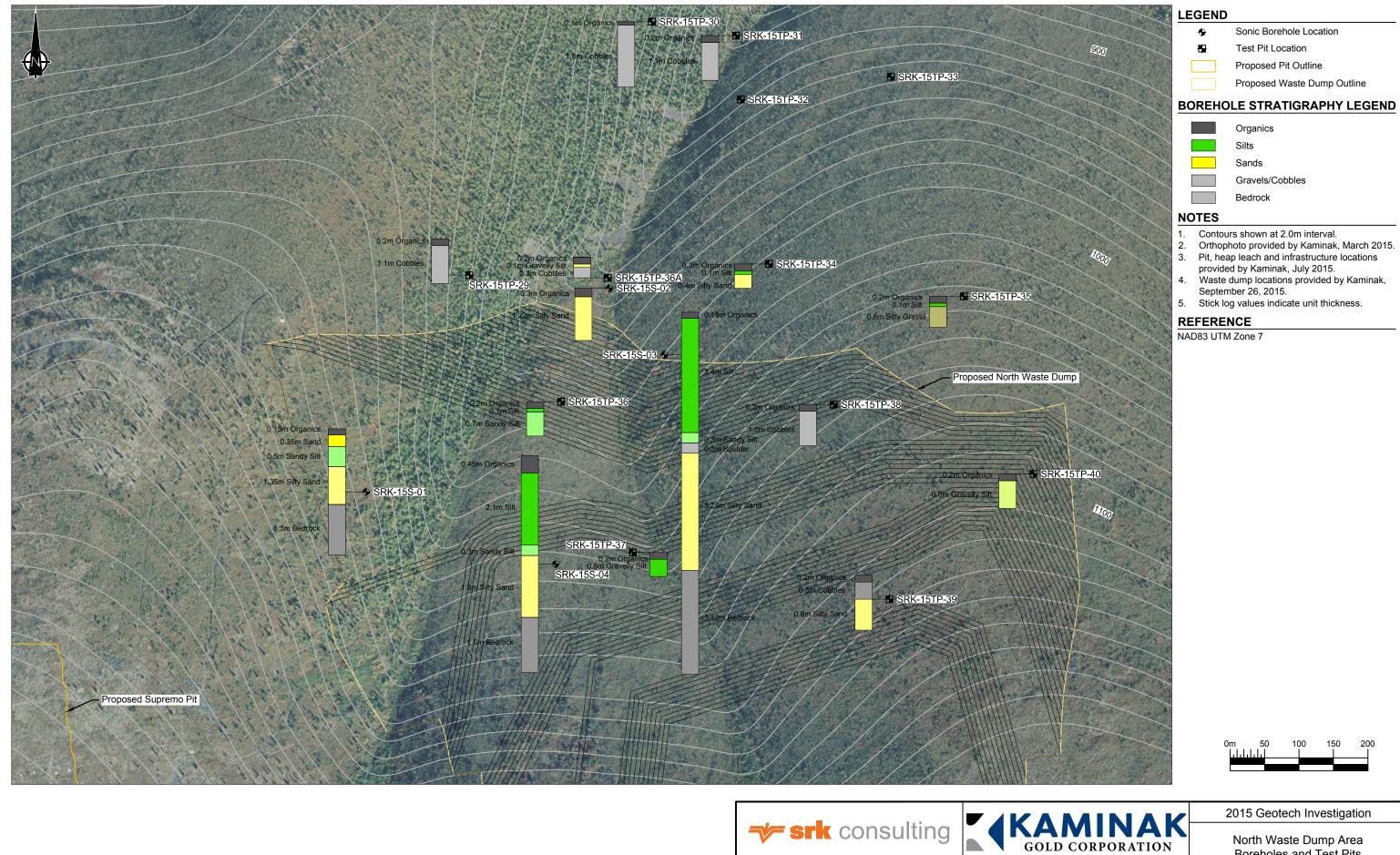
Open Pits

Heap leach and Waste Rock Dumps

- March 2015.
- 2. Pit, heap leach, and infrastructure locations provided by Kaminak, July 2015.

  3. Waste dump locations provided by
- Kaminak on September 26, 2015.

#### REFERENCE


NAD83 UTM Zone 7

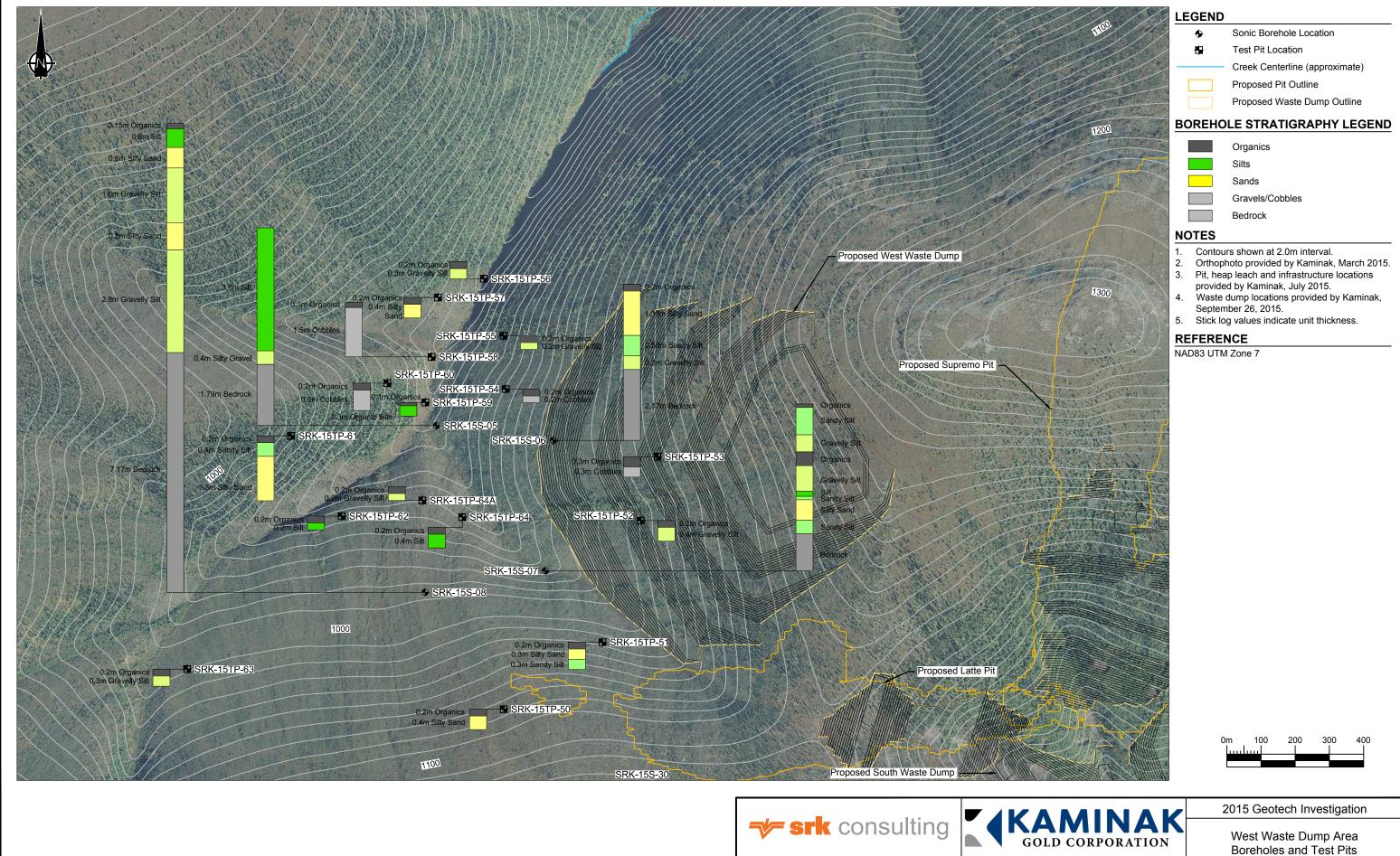


FILE NAME: 338600.020 - GA.dwg

2015 Geotech Inspection General Arrangement

2015/10/26 SM




SRK JOB NO.: 338600.020

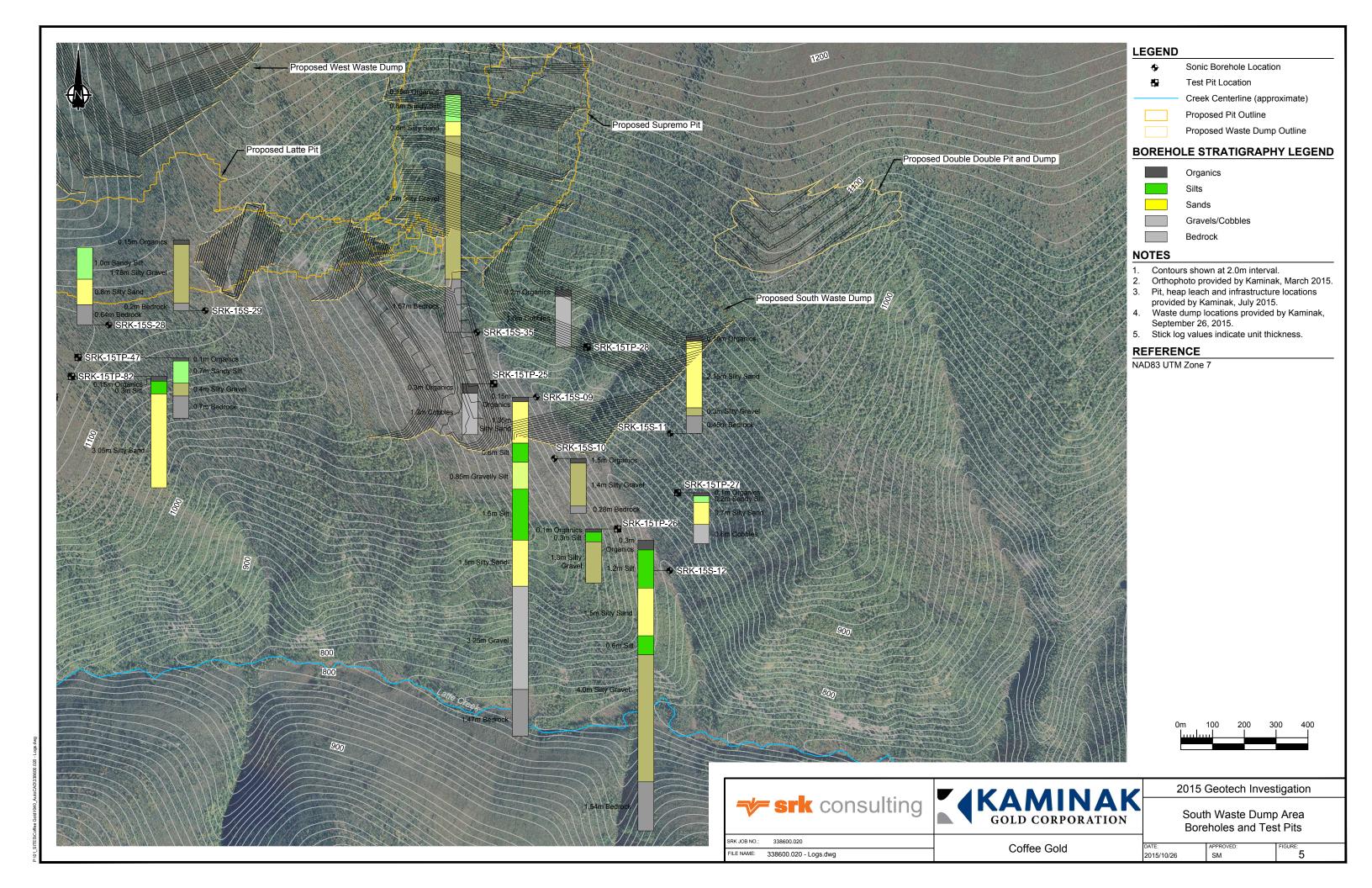
FILE NAME: 338600.020 - Logs.dwg

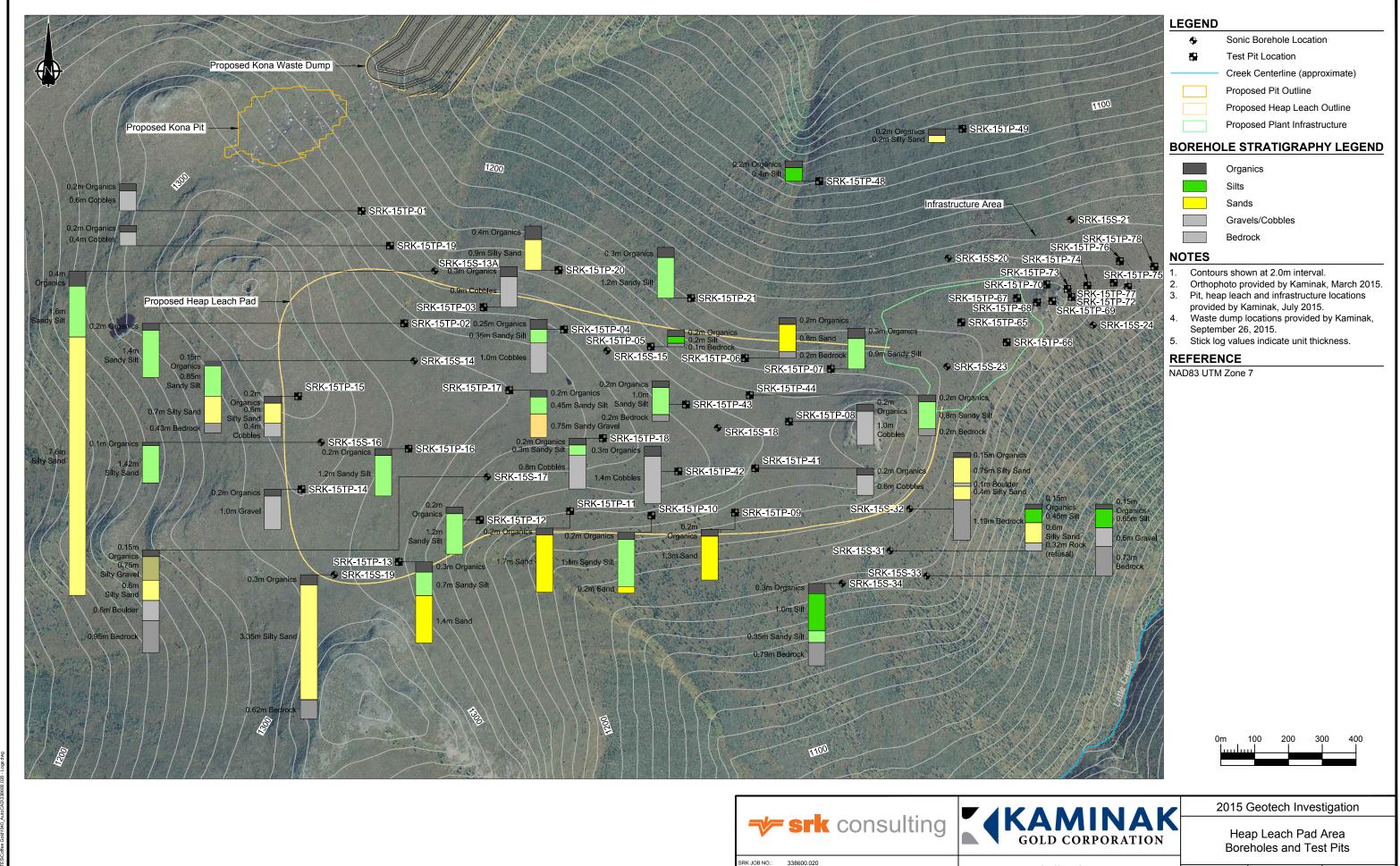
North Waste Dump Area Boreholes and Test Pits

Coffee Gold

2015/10/26 SM




SRK JOB NO.: 338600.020

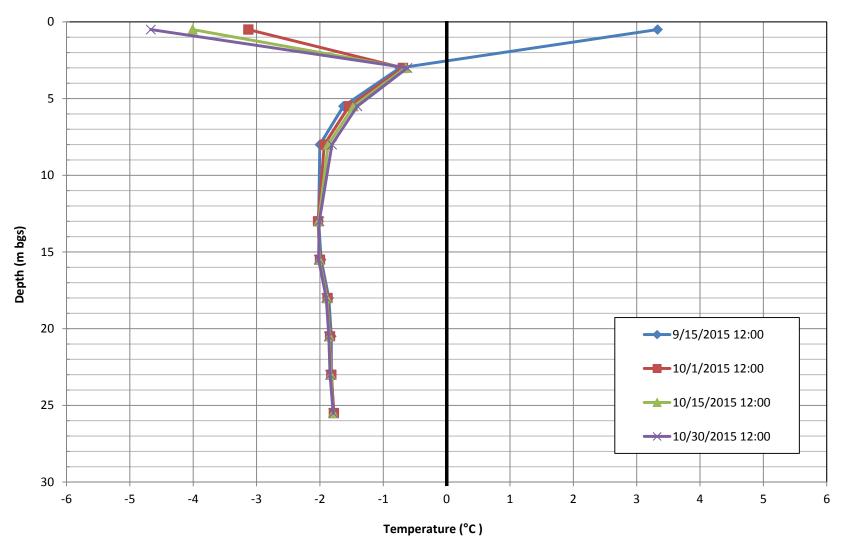

FILE NAME: 338600.020 - Logs.dwg

Coffee Gold

2015/10/26

SM






FILE NAME: 338600.020 - Logs.dwg

Coffee Gold

2015/10/26 SM



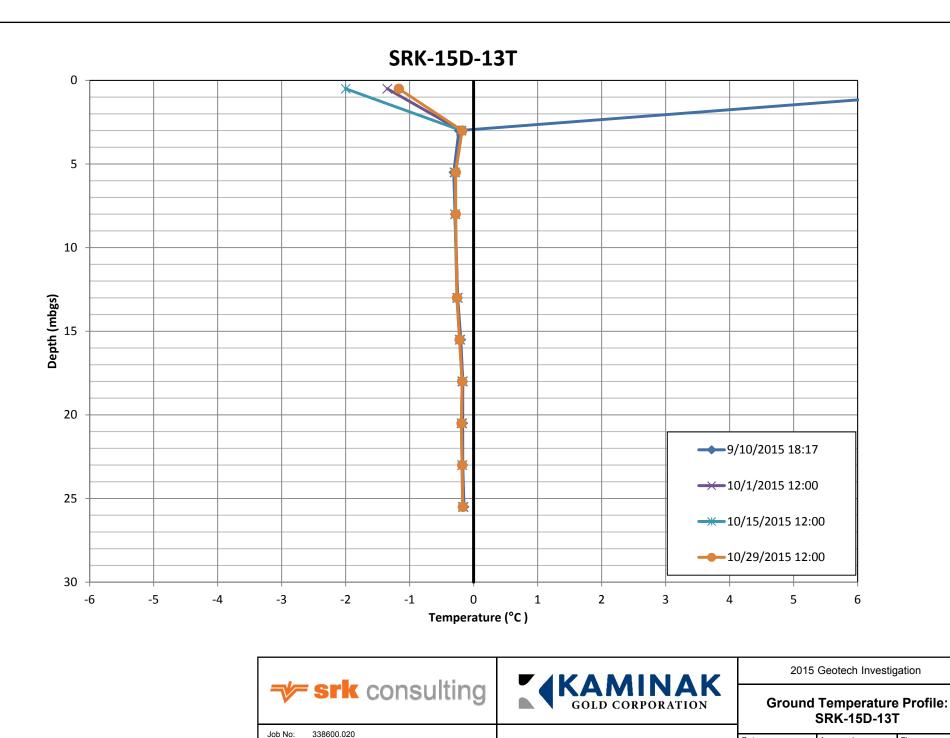






2015 Geotech Investigation

**Ground Temperature Profile:** SRK-15D-10T


338600.020 Job No:

Filename: 7-Thermistor SRK-15D-10T.pptx

Coffee Gold Project

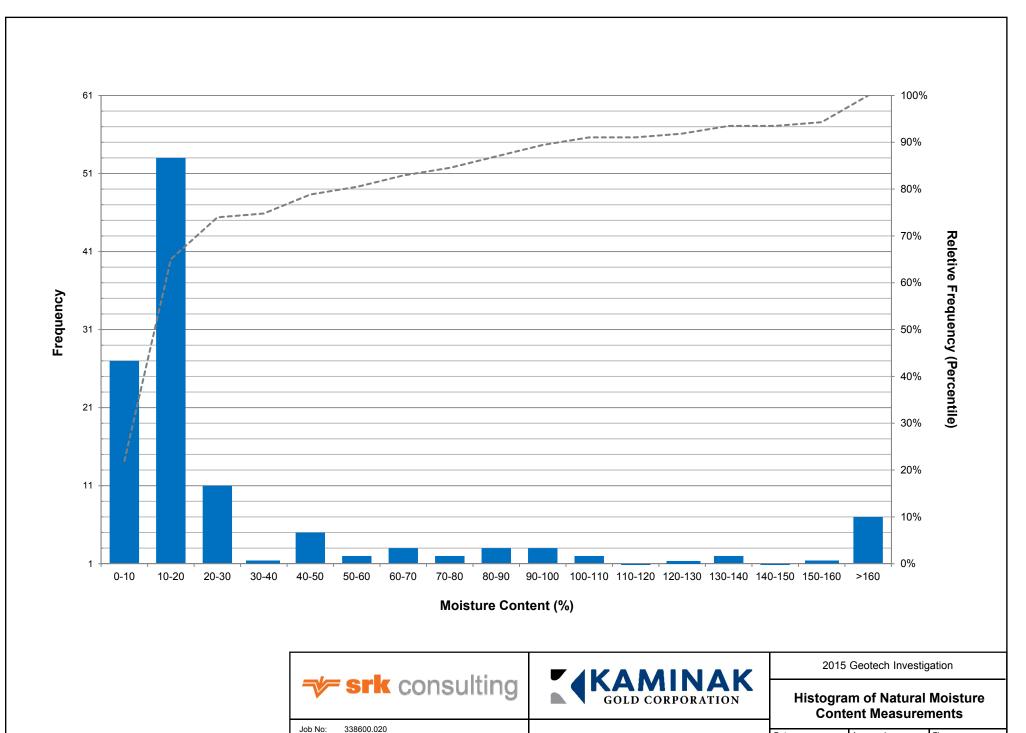
Date: Approved: December 2015

Figure:



Filename: 8-Thermistor SRK-15D-13T.pptx

Date:


December 2015

Coffee Gold Project

Approved:

Figure:

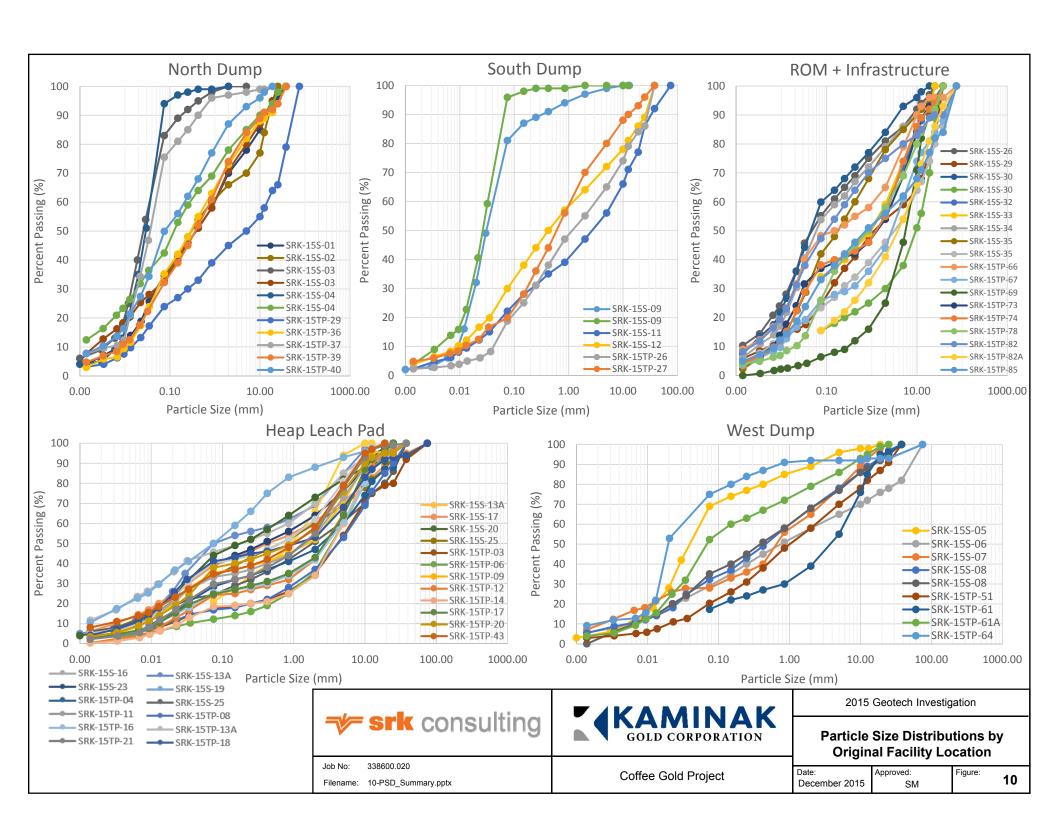
8

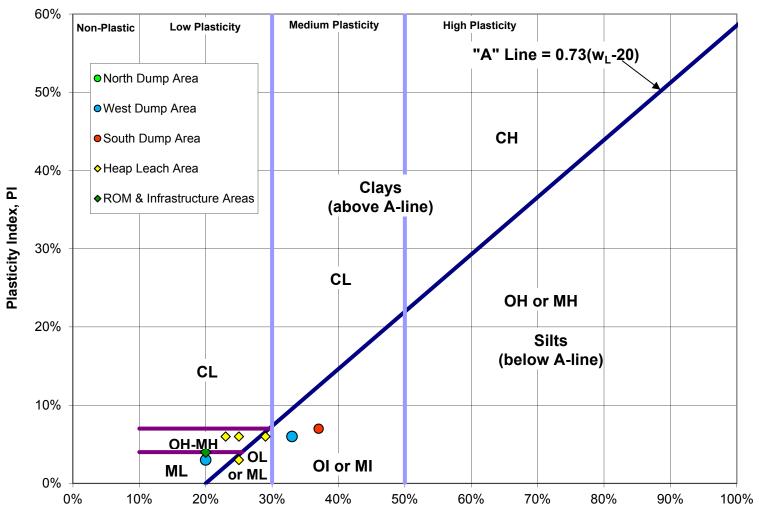


Job No: 338600.020

Filename: 9 - Moisture Contents.pptx

Coffee Gold Project


Date:


December 2015

Approved:

Figure:

9





#### Note:

Two North Dump Area Atterberg test results plotted off the charts:

- Sample 17728 from SRK-15S-03 has a LL of 99% and a PI of 97% (OH);
- Sample 17725 from SRK-15S-04 has a LL of 129% and a PI of 44% (OH).

Liquid Limit, LL





2015 Geotech Investigation

**Atterberg Limit Result Summary** 

Job No: 338600.020

Filename: 11 – Atterberg Limit Summary.pptx

Coffee Gold Project

Date: Approved: December 2015 SM

Figure: 11

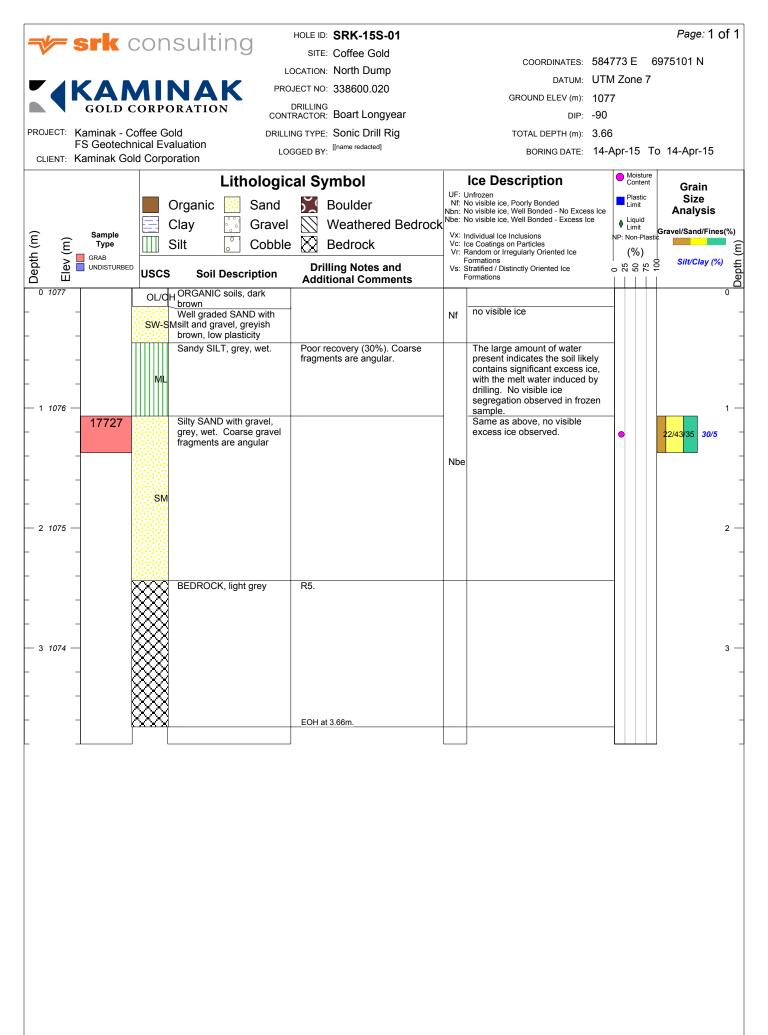
# **Appendices**

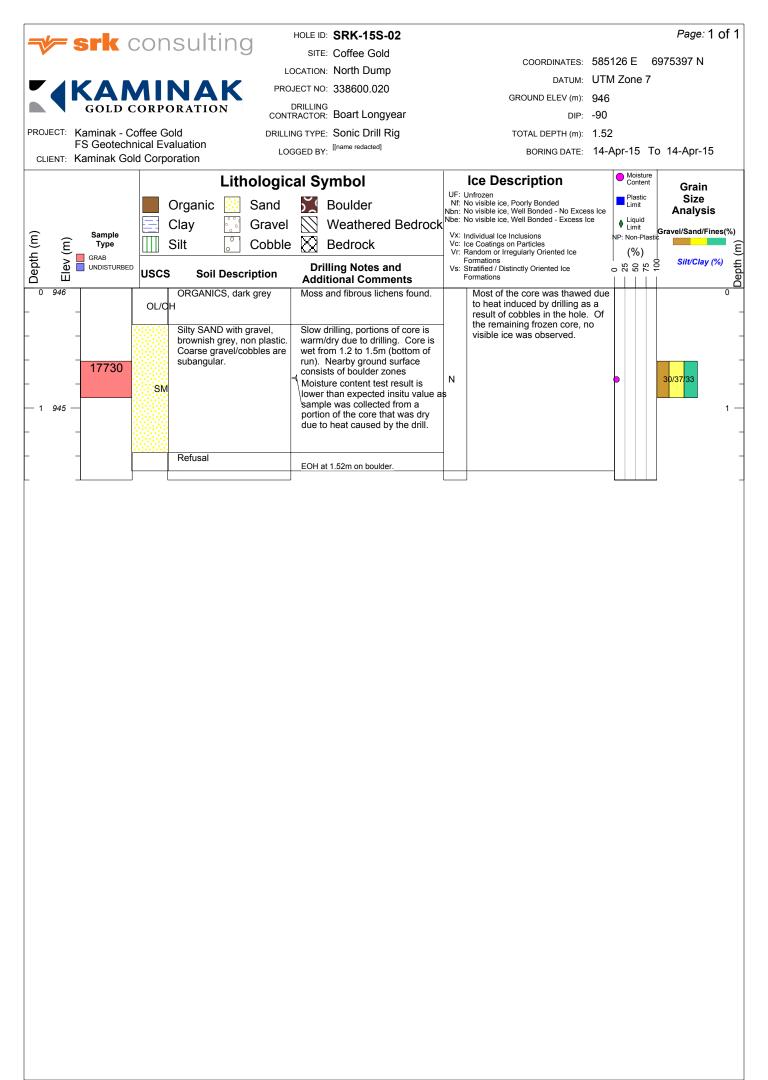
# Appendix A: As-built Locations and Lab Test Program Summary

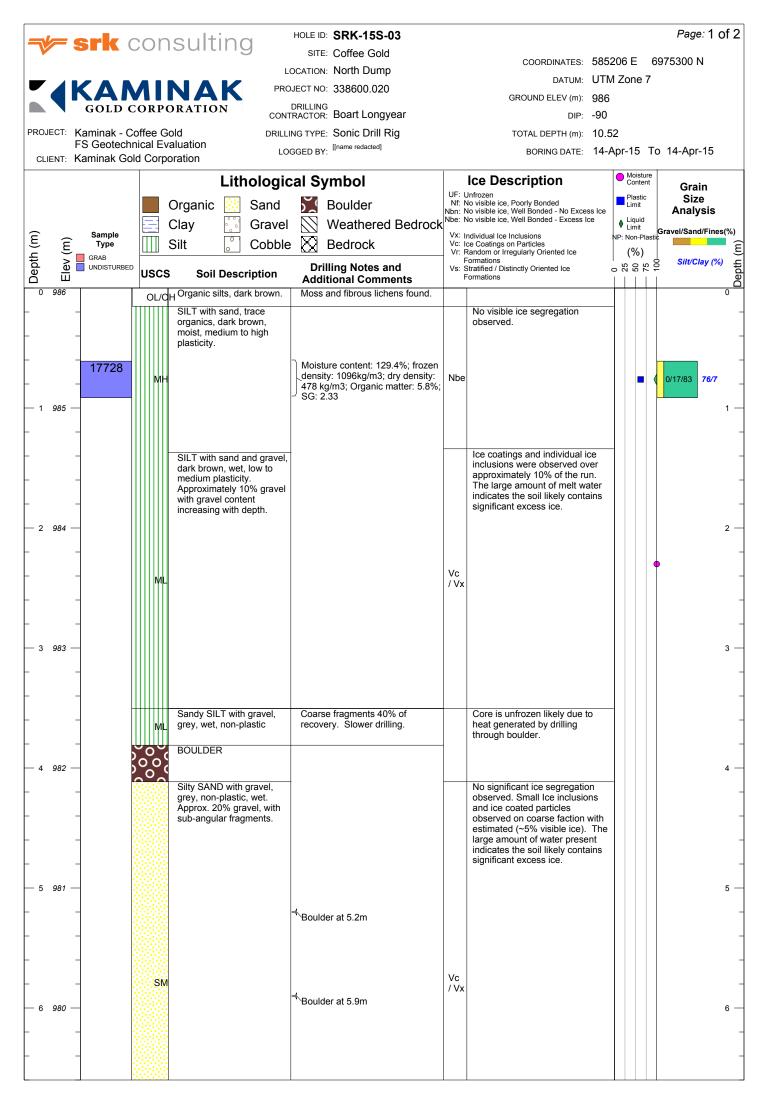
TABLE A-1: PHASE 1 SONIC DRILLING PROGRAM LABORATORY TEST PROGRAM

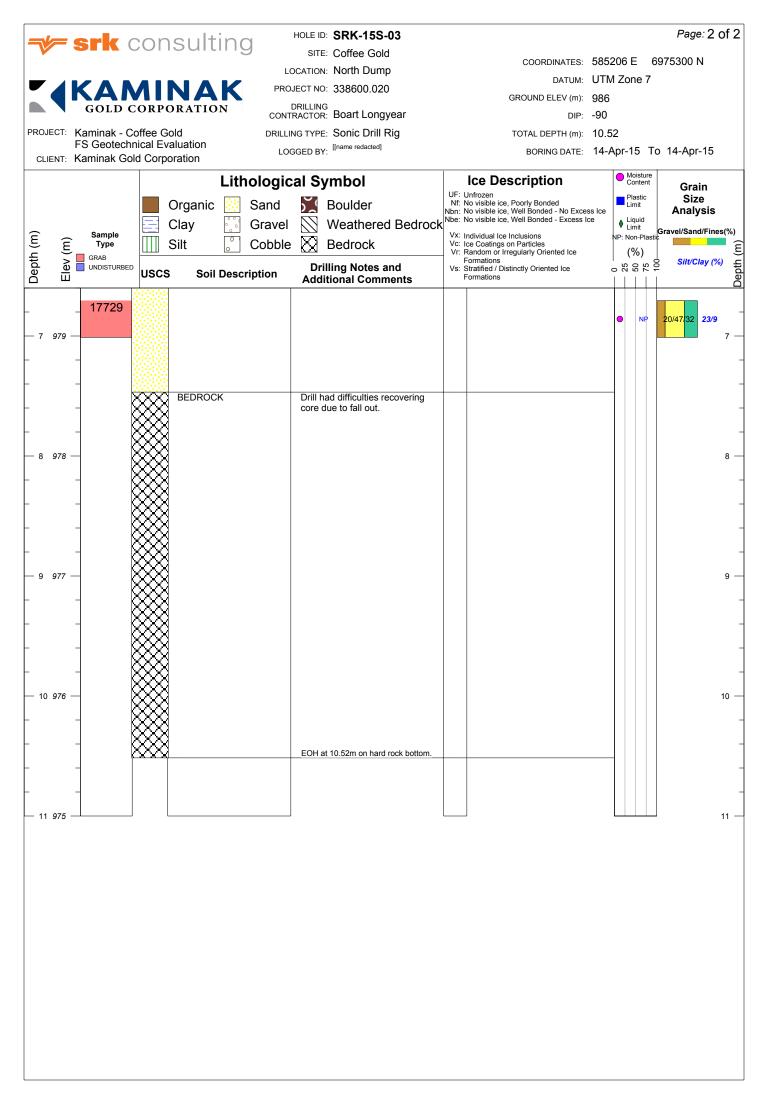
|                          |                  | As-built Location   |                    |                  |               |                |                     |                     | m -                           | Ę              | ē              |                     | ۶             |                                                  |
|--------------------------|------------------|---------------------|--------------------|------------------|---------------|----------------|---------------------|---------------------|-------------------------------|----------------|----------------|---------------------|---------------|--------------------------------------------------|
| Borehole ID              | Sample<br>Number | Sample<br>Depth (m) | Northing<br>(m)    | Easting<br>(m)   | Elevation (m) | Area           | Moisture<br>Content | Atterberg<br>Limits | Particle Size<br>Distribution | Frozen Density | Organic Matter | Specific<br>Gravity | Consolidation | Direct Shear                                     |
| SRK-15S-01               | 17727            | 1.1                 | 6975101            | 584773           | 1077          |                | ✓                   |                     | ✓                             |                |                |                     |               |                                                  |
| SRK-15S-02               | 17730            | 0.6                 | 6975397            | 585126           | 946           |                | ✓                   |                     | ✓                             |                |                |                     |               |                                                  |
| SRK-15S-03               | 17728            | 0.6                 | 6975300            | 585206           | 986           | North WRD      |                     | ✓                   | ✓                             | ✓              | ✓              | ✓                   | ✓             |                                                  |
| SRK-15S-03               | 17729            | 6.7                 | 6975300            | 585206           | 986           | North WKD      | ✓                   | ✓                   | ✓                             |                |                |                     |               |                                                  |
| SRK-15S-04               | 17725            | 1.1                 | 6974996            | 585048           | 1045          |                |                     | ✓                   | ✓                             | ✓              | ✓              |                     |               |                                                  |
| SRK-15S-04               | 17726            | 3.7                 | 6974996            | 585048           | 1045          |                | ✓                   | ✓                   | ✓                             |                |                |                     |               |                                                  |
| SRK-15S-05               | 17701            | 1.1                 | 6974097            | 582121           | 880           |                | ✓                   |                     |                               |                |                |                     |               |                                                  |
| SRK-15S-05               | 17702            | 2.7                 | 6974097            | 582121           | 880           |                |                     | ✓                   |                               | ✓              |                |                     |               |                                                  |
| SRK-15S-05               | 17703            | 3.8                 | 6974097            | 582121           | 880           |                | ✓                   |                     |                               |                |                |                     |               |                                                  |
| SRK-15S-06               | 17704            | 0.2                 | 6974054            | 582463           | 997           | 1M1 1MDD       | ✓                   | ✓                   | ✓                             |                |                |                     |               |                                                  |
| SRK-15S-06               | 17705            | 1.2                 | 6974054            | 582463           | 997           | West WRD       | ✓                   |                     |                               |                |                |                     |               |                                                  |
| SRK-15S-07               | 17708            | 3.4                 | 6973672            | 582440           | 956           | 1              | ✓                   | ✓                   | ✓                             |                |                |                     |               |                                                  |
| SRK-15S-08               | 17706            | 0.9                 | 6973609            | 582088           | 986           |                | <b>✓</b>            | ✓                   | ✓                             |                |                |                     |               |                                                  |
| SRK-15S-08               | 17707            | 3.4                 | 6973609            | 582088           | 986           |                | <b>✓</b>            | ✓                   | ✓                             |                |                |                     |               |                                                  |
| SRK-15S-09               | 17709            | 1.8                 | 6972761            | 584315           | 855           |                |                     | ✓                   | ✓                             | ✓              |                | ✓                   | ✓             |                                                  |
| SRK-15S-09               | 17710            | 3.4                 | 6972761            | 584315           | 855           |                | <b>✓</b>            |                     | ✓                             |                |                |                     |               |                                                  |
| SRK-15S-10               | -                | -                   | 6972568            | 584372           | 870           | South WRD      |                     |                     |                               |                |                |                     |               |                                                  |
| SRK-15S-11               | 17711            | 2.3                 | 6972647            | 584737           | 915           |                | <b>✓</b>            | <b>√</b>            | <b>√</b>                      |                |                |                     |               | <u> </u>                                         |
| SRK-15S-12               | 17712            | 2.4                 | 6972215            | 584735           | 788           |                | <b>✓</b>            | <b>√</b>            | <b>√</b>                      |                |                |                     |               |                                                  |
| SRK-15S-13A              | 17718            | 0.9                 | 6972614            | 580131           | 1259          |                |                     | <b>✓</b>            | <b>✓</b>                      | <b>√</b>       |                |                     |               | <b>✓</b>                                         |
| SRK-15S-13A              | 17719            | 4.0                 | 6972614            | 580131           | 1259          |                | <b>✓</b>            |                     | <b>✓</b>                      |                |                |                     |               |                                                  |
| SRK-15S-14               | 17714            | 1.2                 | 6972348            | 580070           | 1305          |                | <b>✓</b>            |                     |                               |                |                |                     |               |                                                  |
| SRK-15S-15               | -                | -                   | 6972378            | 580641           | 1250          |                |                     |                     |                               |                |                |                     |               |                                                  |
| SRK-15S-16               | 17715            | 0.6                 | 6972107            | 579795           | 1313          |                | <b>✓</b>            |                     | <b>√</b>                      |                |                |                     |               |                                                  |
| SRK-15S-17               | 17717            | 0.9                 | 6972005            | 580287           | 1276          |                | · ✓                 |                     | ·                             |                |                |                     |               | <del>                                     </del> |
| SRK-15S-18               | 17720            | 1.2                 | 6972150            | 580969           | 1264          |                | · /                 |                     |                               |                |                |                     |               | <del>                                     </del> |
| SRK-15S-19               | 17713            | 2.7                 | 6971715            | 579834           | 1311          | HLP            | <b>✓</b>            |                     | <b>√</b>                      |                |                |                     |               | <del>                                     </del> |
| SRK-15S-20               | 17722            | 0.9                 | 6972652            | 581651           | 1171          |                |                     | <b>✓</b>            | <b>√</b>                      | <b>✓</b>       |                | <b>✓</b>            |               |                                                  |
| SRK-15S-21               | -                | -                   | 6972766            | 582014           | 1143          |                |                     | ,                   |                               | ·              |                | -                   |               |                                                  |
| SRK-15S-22               | -                | _                   | 6972888            | 582469           | 1154          |                |                     |                     |                               |                |                |                     |               |                                                  |
| SRK-15S-22<br>SRK-15S-23 | 17721            | 0.6                 | 6972331            | 581647           | 1199          |                | <b>✓</b>            |                     | <b>✓</b>                      |                |                |                     |               |                                                  |
| SRK-15S-24               | 17721            | -                   | 6972454            | 582080           | 1170          | -              | -                   |                     | · '                           |                |                |                     |               |                                                  |
| SRK-15S-24<br>SRK-15S-25 | 17700            | 0.6                 | 6972708            | 582551           | 1170          |                | <b>✓</b>            | <b>√</b>            | <b>✓</b>                      |                |                |                     |               |                                                  |
|                          | 17723            | 1                   |                    |                  |               | -              | <b>→</b>            | •                   | · ·                           |                |                |                     |               |                                                  |
| SRK-15S-25<br>SRK-15S-26 | 17724<br>17736   | 1.8<br>0.6          | 6972708<br>6972878 | 582551<br>582585 | 1154<br>1143  |                | <b>√</b>            |                     | <b>✓</b>                      |                |                |                     |               | <del>                                     </del> |
| SRK-15S-26<br>SRK-15S-27 | 17736            | -                   | 6972980            | 582585           | 1143          | 1              | <b>—</b>            |                     | -                             |                |                |                     |               | <del>                                     </del> |
| SRK-15S-27<br>SRK-15S-28 | -                | -                   |                    |                  |               | -              |                     |                     | -                             |                |                |                     |               |                                                  |
|                          | 47700            | -                   | 6972988            | 582969           | 1119          |                | <b>✓</b>            | <b>/</b>            | <b>✓</b>                      |                |                |                     |               |                                                  |
| SRK-15S-29               | 17732            | 0.9                 | 6973033            | 583273           | 1111          | -              | <b>✓</b>            | · ·                 | ✓<br>✓                        |                |                |                     |               | -                                                |
| SRK-15S-30               | 17734            | 0.9                 | 6973076            | 582748           | 1126          |                |                     |                     |                               |                |                |                     |               |                                                  |
| SRK-15S-30               | 17735            | 2.1                 | 6973076            | 582748           | 1126          | ROM +          | ✓                   |                     | ✓                             |                |                |                     |               | -                                                |
| SRK-15S-31               | -                | -                   | 6971786            | 581479           | 1205          | Infrastructure |                     |                     | ,                             |                |                |                     |               | 1                                                |
| SRK-15S-32               | 17737            | 0.6                 | 6971910            | 581537           | 1202          |                | <b>√</b>            |                     | <b>√</b>                      |                |                | -                   |               |                                                  |
| SRK-15S-33               | 17740            | 0.9                 | 6971711            | 581587           | 1195          |                | <b>√</b>            |                     | <b>√</b>                      |                |                | -                   |               |                                                  |
| SRK-15S-34               | 17739            | 1.1                 | 6971689            | 581337           | 1181          |                | <b>√</b>            | ✓                   | <b>√</b>                      |                |                |                     |               |                                                  |
| SRK-15S-35               | 17741            | 1.2                 | 6972965            | 584128           | 868           |                | ✓                   | ✓                   | ✓                             |                |                |                     |               |                                                  |
| SRK-15S-35               | 17742            | 2.4                 | 6972965            | 584128           | 868           |                | ✓                   |                     |                               |                |                |                     |               |                                                  |
| SRK-15S-35               | 17743            | 5.2                 | 6972965            | 584128           | 868           |                | ✓                   |                     | ✓                             |                |                | l                   | l             |                                                  |

SRK-15S-35 | 17743 | 5.2 | 6972965 | 584128 | 868 | V | VAN-SVRO\Projects\01\_SITES\Coffee Gold\338600-020\_Geotechnical Evaluation\Task202\_Lab Testing\[!Sonic Summary Table\_TS.xlsx]Sonic Summary


TABLE A-2: PHASE 2 TEST PIT PROGRAM LABORATORY TEST PROGRAM


|                  |               | As-built Location   |                 |                |                  |           |                     |                     | ø c                           | _                  | ä            |
|------------------|---------------|---------------------|-----------------|----------------|------------------|-----------|---------------------|---------------------|-------------------------------|--------------------|--------------|
| Test Pit Hole ID | Sample Number | Sample Depth<br>(m) | Northing<br>(m) | Easting<br>(m) | Elevation<br>(m) | Area      | Moisture<br>Content | Atterberg<br>Limits | Particle Size<br>Distribution | Compaction<br>Test | Direct Shear |
| SRK-15TP-01      | •             | -                   | 6,972,792       | 579,915        | 1,257            |           |                     |                     |                               |                    |              |
| SRK-15TP-02      | •             | -                   | 6,972,459       | 580,041        | 1,291            |           |                     |                     |                               |                    |              |
| SRK-15TP-03      | 17565         | 0.3                 | 6,972,507       | 580,276        | 1,260            |           | <b>✓</b>            | ✓                   | ✓                             |                    |              |
| SRK-15TP-04      | 17563         | 0.6                 | 6,972,441       | 580,514        | 1,249            |           | ✓                   |                     | ✓                             | ✓                  |              |
| SRK-15TP-05      | 17561         | 0.75                | 6,972,390       | 580,771        | 1,245            |           | ✓                   |                     |                               |                    |              |
| SRK-15TP-06      | 17559         | 0.7                 | 6,972,356       | 581,050        | 1,218            |           | ✓                   |                     | ✓                             |                    |              |
| SRK-15TP-07      | 17557         | 0.85                | 6,972,324       | 581,304        | 1,233            |           |                     |                     |                               |                    |              |
| SRK-15TP-08      | 17581         | 0.85                | 6,972,168       | 581,180        | 1,246            |           | ✓                   |                     | ✓                             |                    |              |
| SRK-15TP-09      | 17579         | 0.75                | 6,971,899       | 581,020        | 1,238            |           | ✓                   |                     | ✓                             | ✓                  |              |
| SRK-15TP-10      | 17578         | 0.75                | 6,971,890       | 580,773        | 1,250            |           | ✓                   |                     |                               |                    |              |
| SRK-15TP-11      | 17575         | 0.7                 | 6,971,903       | 580,532        | 1,254            |           | ✓                   |                     | ✓                             |                    |              |
| SRK-15TP-12      | 17574         | 0.6                 | 6,971,877       | 580,265        | 1,274            |           | ✓                   |                     | ✓                             |                    |              |
| SRK-15TP-13      | 17573         | 0.65                | 6,971,753       | 580,025        | 1,295            | LILD      | ✓                   |                     |                               |                    |              |
| SRK-15TP-13A     | 17623         | 0.55                | 6,972,614       | 580,131        | 1,259            | HLP       | ✓                   |                     | ✓                             |                    |              |
| SRK-15TP-14      | 17572         | 0.85                | 6,971,968       | 579,737        | 1,324            |           | ✓                   |                     | ✓                             |                    |              |
| SRK-15TP-15      | 17571         | 0.45                | 6,972,243       | 579,727        | 1,343            |           | ✓                   |                     |                               |                    |              |
| SRK-15TP-16      | 17570         | 0.9                 | 6,972,088       | 580,054        | 1,304            |           | ✓                   |                     | ✓                             |                    |              |
| SRK-15TP-17      | 17566         | 0.4                 | 6,972,261       | 580,352        | 1,295            |           | ✓                   |                     | ✓                             |                    | ✓            |
| SRK-15TP-18      | 17576         | 0.4                 | 6,972,119       | 580,629        | 1,275            |           | ✓                   |                     | ✓                             |                    |              |
| SRK-15TP-19      | -             | -                   | 6,972,689       | 579,999        | 1,264            |           |                     |                     |                               |                    |              |
| SRK-15TP-20      | 17564         | 0.6                 | 6,972,617       | 580,498        | 1,239            |           | ✓                   | ✓                   | ✓                             |                    |              |
| SRK-15TP-21      | 17562         | 0.5                 | 6,972,534       | 580,890        | 1,207            |           | ✓                   |                     | ✓                             |                    |              |
| SRK-15TP-41      | 17580         | 0.45                | 6,972,030       | 581,080        | 1,245            |           | ✓                   |                     |                               |                    |              |
| SRK-15TP-42      | 17577         | 0.85                | 6,972,021       | 580,852        | 1,278            |           | ✓                   |                     |                               |                    |              |
| SRK-15TP-43      | 17560         | 0.6                 | 6,972,219       | 580,875        | 1,237            |           | ✓                   | ✓                   | ✓                             |                    |              |
| SRK-15TP-44      | 17558         | 0.6                 | 6,972,247       | 581,064        | 1,236            |           | ✓                   |                     |                               |                    |              |
| SRK-15TP-25      | 17602         | 0.9                 | 6,972,803       | 584,181        | 901              |           | ✓                   |                     |                               |                    |              |
| SRK-15TP-26      | 17603         | 0.75                | 6,972,346       | 584,571        | 836              |           | ✓                   |                     | ✓                             |                    |              |
| SRK-15TP-27      | 17604         | 1                   | 6,972,460       | 584,760        | 876              | South WRD | ✓                   |                     | ✓                             |                    |              |
| SRK-15TP-28      | 17601         | 0.75                | 6,972,918       | 584,475        | 912              |           | ✓                   |                     |                               |                    |              |
| SRK-15TP-29      | 17591         | 0.75                | 6,975,416       | 584,923        | 1,021            |           | ✓                   |                     | ✓                             |                    |              |
| SRK-15TP-30      | 17590         | 1                   | 6,975,784       | 585,188        | 953              |           | ✓                   |                     |                               |                    |              |
| SRK-15TP-31      | 31A           | 0.2                 | 6,975,921       | 585,311        | 902              |           | ✓                   |                     |                               |                    |              |
| SRK-15TP-32      | 32A           | 0.1                 | 6,975,651       | 585,328        | 937              |           | ✓                   |                     |                               |                    |              |
| SRK-15TP-32      | 32B           | 0.3                 | 6,975,651       | 585,328        | 937              |           | ✓                   |                     |                               |                    |              |
| SRK-15TP-33      | 33A           | 0.1                 | 6,975,114       | 585,537        | 946              |           | ✓                   |                     |                               |                    |              |
| SRK-15TP-33      | 33B           | 0.3                 | 6,975,114       | 585,537        | 946              | North WRD | ✓                   |                     |                               |                    |              |
| SRK-15TP-34      | 17588         | 0.45                | 6,975,432       |                | 988              |           | ✓                   |                     |                               | ✓                  |              |
| SRK-15TP-35      | 17589         | 0.5                 | 6,975,385       |                | 1,024            |           | ✓                   |                     |                               |                    |              |
| SRK-15TP-36      | 17586         | 0.6                 | 6,975,232       | 585,056        | 1,007            |           | ✓                   |                     | <b>√</b>                      |                    |              |
| SRK-15TP-36A     | 17587         | 0.45                | 6,975,412       | 585,124        | 939              |           | ✓                   |                     |                               |                    |              |
| SRK-15TP-37      | 17585         | 0.45                | 6,975,013       | 585,160        | 1,046            |           | <b>√</b>            |                     | <b>√</b>                      |                    |              |
| SRK-15TP-38      | 17584         | 0.6                 | 6,975,228       | 585,452        | 1,063            |           | <b>√</b>            |                     |                               |                    |              |
| SRK-15TP-39      | 17583         | 0.9                 | 6,974,945       | 585,533        | 1,124            |           | · ·                 |                     | <b>√</b>                      |                    |              |
|                  |               | 0.0                 | ,,              | 555,555        | .,               |           |                     |                     |                               | ī                  | 1            |


| SRK-15TP-46 17594 0.4 6,972,880 831,289 1.090 SRK-15TP-50 17592 0.4 6,973,267 852,318 1.080 SRK-15TP-50 17592 0.4 6,973,267 852,318 1.080 SRK-15TP-51 17599 0.66 6,973,267 852,318 1.080 SRK-15TP-52 17600 0.4 6,973,267 852,719 1.022 SRK-15TP-52 17600 0.4 6,973,819 852,719 1.028 SRK-15TP-53 17605 0.45 6,374,000 852,779 1.022 SRK-15TP-54 17629 0.3 6,974,204 852,234 927 SRK-15TP-55 17628 0.3 6,974,204 852,234 927 SRK-15TP-57 17630 0.4 6,974,472 852,036 863 SRK-15TP-57 17630 0.4 6,974,472 852,036 863 SRK-15TP-59 17634 0.3 6,974,204 852,039 876 SRK-15TP-50 17634 0.3 6,974,204 852,039 876 SRK-15TP-61 17633 0.4 6,974,207 852,098 876 SRK-15TP-61 17633 0.4 6,974,207 851,606 974 SRK-15TP-61 17633 0.4 6,974,207 851,606 974 SRK-15TP-61 17630 0.6-1.9 6,973,823 851,006 SRK-15TP-62 17596 0.3 6,973,823 851,006 SRK-15TP-64 17639 0.4 6,973,323 851,006 SRK-15TP-64 17639 0.4 6,973,323 851,006 SRK-15TP-64 17639 0.4 6,973,323 851,007 932 SRK-15TP-64 17639 0.4 6,973,323 851,007 932 SRK-15TP-64 17639 0.4 6,973,323 852,107 932 SRK-15TP-64 17636 0.5 0.5 0.9 8,072,070 852,387 1.170 SRK-15TP-64 17656 0.5 0.9 9,072,007 852,387 1.170 SRK-15TP-64 17656 0.5 0.9 0.9 0.9 0.9 0.9 0.9 0.9 0.9 0.9 0.9                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |              |           |         |           |         |       |                |          |   |          |  |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------|-----------|---------|-----------|---------|-------|----------------|----------|---|----------|--|
| SRK-15TP-60 17592 0.4 6,873,267 882,318 1,068 SRK-15TP-51 17599 0.65 6,973,463 822,719 1,022 SRK-15TP-51 17599 0.65 6,973,463 822,719 1,022 SRK-15TP-53 17506 0.4 6,974,006 82,788 1,066 SRK-15TP-53 17506 0.4 6,974,204 82,234 927 SRK-15TP-55 17502 0.3 6,974,204 82,234 927 SRK-15TP-56 17502 0.3 6,974,204 82,234 927 SRK-15TP-56 17502 0.3 6,974,207 82,234 927 SRK-15TP-57 17503 0.4 6,974,207 82,234 927 SRK-15TP-57 17503 0.4 6,974,207 82,226 863 SRK-15TP-57 17503 0.6 6,974,207 82,226 863 SRK-15TP-61 17503 0.4 6,974,207 82,208 853 SRK-15TP-61 17503 0.4 6,974,207 831,908 970 SRK-15TP-61 17503 0.4 6,974,207 831,908 970 SRK-15TP-61 17503 0.4 6,974,207 831,908 974 SRK-15TP-61 17503 0.4 6,974,207 831,908 974 SRK-15TP-61 17503 0.4 6,973,307 831,908 974 SRK-15TP-61 17505 0.5 0,974,207 831,908 974 SRK-15TP-62 17596-62A 0.2 6,973,307 851,904 920 SRK-15TP-64 17509 0.3 6,973,307 851,904 920 SRK-15TP-64 17509 0.3 6,973,307 851,909 928 SRK-15TP-64 17509 0.3 6,973,307 82,209 1,170 SRK-15TP-64 17505 0.5 0,5-0.9 6,972,207 82,236 1,170 SRK-15TP-65 17505 0.5 0,5-0.9 6,972,207 82,236 1,170 SRK-15TP-67 17619 0.75 6,972,207 82,236 1,170 SRK-15TP-67 17619 0.75 6,972,207 82,326 1,170 SRK-15TP-67 17619 0.75 6,972,207 82,326 1,190 SRK-15TP-67 17619 0.75 6,972,207 82,328 1,170 SRK-15TP-67 17619 0.75 6,972,207 82,328 1,170 SRK-15TP-67 17619 0.75 6,972,207 82,328 1,170 SRK-15TP-7 1761 | SRK-15TP-48  | 17594     | 0.4     | 6,972,880 | 581,269 | 1,099 |                | ✓        |   |          |  |
| SRK-15TP-61 17599 0.66 6,873,463 882,007 1,022 SRK-15TP-62 17600 0.4 6,973,819 802,719 1,028 SRK-15TP-63 17600 0.4 6,974,006 826,768 1,066 SRK-15TP-64 17627 0.3 6,974,006 826,788 1,066 SRK-15TP-64 17627 0.3 6,974,206 882,324 927 SRK-15TP-65 17603 0.3 6,974,206 882,324 927 SRK-15TP-68 17603 0.3 6,974,207 822,20 863 SRK-15TP-68 17603 0.6 6,974,229 821,207 898 SRK-15TP-69 17603 0.6 6,974,229 821,207 898 SRK-15TP-69 17603 0.45 6,974,221 881,978 910 SRK-15TP-61 17603 0.45 6,974,007 581,696 974 SRK-15TP-61 17603 0.46 6,974,007 581,696 974 SRK-15TP-61 17603 0.3 6,973,302 881,944 920 SRK-15TP-62 17596 0.3 6,973,303 881,984 920 SRK-15TP-64 17509 0.4 6,973,303 821,005 SRK-15TP-64 17509 0.3 6,973,304 881,302 1,005 SRK-15TP-64 17509 0.4 6,973,309 822,107 SRK-15TP-64 17509 0.5 0,572,307 882,300 1,170 SRK-15TP-64 17505 0.5-0.9 6,972,207 882,300 1,170 SRK-15TP-64 17505 0.3-0.9 6,972,207 882,300 1,204 SRK-15TP-64 17505 0.3-0.6 6,972,207 882,300 1,204 SRK-15TP-67 17601 0.5 6,972,265 881,988 1,189 SRK-15TP-69 17610 0.75 6,972,265 881,988 1,199 SRK-15TP-67 17601 0.5 6,972,265 882,001 1,189 SRK-15TP-78 17610 0.75 6,972,265 882,001 1,189 SRK-15TP-78 17610 0.5 6,972,265 882,001 1,189 SRK-15TP-78 17610 0.5 6,972,265 882,001 1,170 SRK-15TP-78 17600 0.75 6,972,26 | SRK-15TP-49  | 17593     | 0.3     | 6,973,035 | 581,693 | 1,084 |                | ✓        |   |          |  |
| SRK-15TP-52 17600 0.4 6.973.819 882.719 1.028 SRK-15TP-53 17600 0.45 6.974.006 582.768 1.068 SRK-15TP-55 17628 0.3 6.974.006 582.768 1.068 SRK-15TP-56 17628 0.3 6.974.006 582.768 1.068 SRK-15TP-56 17628 0.3 6.974.206 582.304 9.27 SRK-15TP-57 17630 0.4 6.974.207 882.200 883 SRK-15TP-57 17630 0.4 6.974.207 882.200 883 SRK-15TP-59 17630 0.4 6.974.207 882.200 883 SRK-15TP-59 17630 0.4 6.974.207 882.200 883 SRK-15TP-60 17630 0.3 6.974.207 882.209 876 SRK-15TP-60 17632 0.45 6.974.207 881.969 970 SRK-15TP-61 17632 0.45 6.974.207 881.969 974 SRK-15TP-61 17632 0.45 6.974.007 881.969 974 SRK-15TP-62 17596 0.3 6.973.807 881.844 920 SRK-15TP-64 17696-62A 0.2 6.973.807 881.844 920 SRK-15TP-64 17696-62A 0.2 6.973.807 881.844 920 SRK-15TP-64 17659 0.3 6.973.807 882.809 1.005 SRK-15TP-64 17659 0.3 6.973.807 882.807 1.170 SRK-15TP-64 17659 0.3 6.973.807 882.807 1.170 SRK-15TP-64 17659 0.3 6.973.807 882.807 1.170 SRK-15TP-64 17659 0.5-12 6.972.907 882.307 1.170 SRK-15TP-64 17659 0.5-12 6.972.907 882.307 1.170 SRK-15TP-65 17620 0.85 6.972.208 882.717 1.148 SRK-15TP-67 17621 0.5 6.972.208 882.717 1.148 SRK-15TP-68 17620 0.85 6.972.208 882.718 1.159 SRK-15TP-69 17620 0.85 6.972.208 882.719 1.188 SRK-15TP-70 17619 0.75 6.972.208 882.710 1.188 SRK-15TP-80 17617 0.75 6.972.208 882.108 1.199 SRK-15TP-70 17619 0.75 6.972.208 882.007 1.188 SRK-15TP-70 17619 0.75 6.972.208 882.008 1.199 SRK-15TP-70 17619  | SRK-15TP-50  | 17592     | 0.4     | 6,973,267 | 582,318 | 1,068 |                | ✓        | ✓ |          |  |
| SRK-15TP-53 177605 0.45 6,972,006 582,768 1,066 SRK-15TP-64 177627 0.3 6,972,006 582,768 12,068 SRK-15TP-65 177628 0.3 6,972,930 582,768 SRK-15TP-66 177629 0.35 6,972,927 582,260 883 SRK-15TP-66 177629 0.35 6,974,727 582,260 883 SRK-15TP-88 17631 0.6 6,974,228 582,107 898 SRK-15TP-88 17631 0.6 6,974,228 582,107 898 SRK-15TP-89 177634 0.3 6,974,221 581,978 910 SRK-15TP-60 177632 0.45 6,974,221 581,978 910 SRK-15TP-60 177632 0.44 6,974,027 581,969 974 SRK-15TP-61 177633 0.4 6,974,027 581,969 974 974 974 974 974 974 974 974 974 97                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | SRK-15TP-51  | 17599     | 0.65    | 6,973,463 | 582,607 | 1,022 |                | ✓        |   | ✓        |  |
| SRK-15TP-64 17627 0.3 6,374,204 582,324 927 SRK-15TP-65 17628 0.3 6,374,205 582,324 927 SRK-15TP-66 17629 0.35 6,374,527 582,200 836 SRK-15TP-67 17630 0.4 6,374,372 582,126 888 SRK-15TP-67 17630 0.4 6,374,125 582,008 836 SRK-15TP-89 17634 0.3 6,374,165 582,008 876 SRK-15TP-89 17634 0.3 6,374,165 582,008 876 SRK-15TP-69 17632 0.46 6,374,221 581,978 910 SRK-15TP-61 17633 0.4 6,374,067 581,896 974 SRK-15TP-61 17633 0.4 6,374,067 581,896 974 SRK-15TP-61 17633 0.4 6,374,067 581,896 974 SRK-15TP-62 17596-62A 0.2 6,373,832 581,844 920 SRK-15TP-62 17596-62A 0.2 6,373,832 581,844 920 SRK-15TP-62 17596-62A 0.3 6,373,839 581,844 920 SRK-15TP-64 17598 0.4 6,373,829 581,979 932 SRK-15TP-64 17598 0.4 6,373,839 582,197 932 SRK-15TP-64 17596 0.5 1.2 6,372,395 582,256 11,170 SRK-15TP-64 17596 0.5 1.2 6,372,395 582,256 11,165 SRK-15TP-64 17596 0.5 1.2 6,372,395 582,256 11,165 SRK-15TP-64 17596 0.5 1.2 6,372,395 582,326 11,150 SRK-15TP-68 17613 0.75 6,372,531 581,984 11,199 SRK-15TP-68 17618 0.75 6,372,535 581,984 11,199 SRK-15TP-68 17618 0.75 6,372,535 581,984 11,199 SRK-15TP-70 17619 0.75 6,372,535 581,984 11,181 SRK-15TP-70 17619 0.75 6,372,535 581,984 11,181 SRK-15TP-74 17614 0.75 6,372,536 582,061 11,181 SRK-15TP-75 17613 0.75 6,372,536 582,061 11,181 SRK-15TP-76 17613 0.75 6,372,536 582,061 11,181 SRK-15TP-76 17613 0.75 6,372,536 582,061 11,181 SRK-15TP-76 17613 0.75 6,372,536 582,061 11,181 SRK-15TP-77 17610 0.75 6,372,536 582,061 11,181 SRK-15TP-78 17610 1.5 6,372,636 582,359 11,171 SRK-15TP-78 17610 0.75 6,372,537 582,359 11,171 SRK-15TP-78 17610 0.75 6,372,536 582,359 11,171 SRK-15TP-78 17610 0.75 6,372,536 582,359 11,171 SRK-15TP-78 17600 0.75 6,372,536 582,359 11,171 SRK-15TP-84 17603 0.75 6,372,536 582,359 11,171 SRK-15TP-84 17603 0.75 6,372,536 582,359 11,171 SRK-15TP-84 17603 0.7 | SRK-15TP-52  | 17600     | 0.4     | 6,973,819 | 582,719 | 1,028 |                | ✓        |   |          |  |
| SRK-15TP-56 17628 0.3 6.974,300 582,317 923 SRK-15TP-66 17629 0.36 6.974,372 582,260 863 SRK-15TP-67 17630 0.4 6.974,727 582,260 863 SRK-15TP-88 17631 0.6 6.974,221 581,978 910 SRK-15TP-89 17634 0.3 6.974,122 581,978 910 SRK-15TP-61 17633 0.4 6.974,07 581,666 974 SRK-15TP-61 17633 0.4 6.974,07 581,666 974 SRK-15TP-62 17596 6.3 6.974,627 581,866 974 SRK-15TP-63 17633 0.4 6.974,07 581,866 974 SRK-15TP-63 17633 0.4 6.974,07 581,866 974 SRK-15TP-63 17633 0.4 6.974,07 581,866 974 SRK-15TP-64 17636 0.3 6.973,832 581,844 920 SRK-15TP-63 17596 0.3 6.973,832 581,844 920 SRK-15TP-64 17596 0.4 6.973,878 582,197 932 SRK-15TP-64 17596 0.5 6.972,871 582,280 928 SRK-15TP-64 17596 0.5 6.972,871 582,280 11,100 SRK-15TP-64 17596 0.5 6.972,871 582,286 11,100 SRK-15TP-64 17596 0.5 6.972,871 582,281 11,100 SRK-15TP-67 17620 0.68 6.972,881 582,710 11,100 SRK-15TP-68 17620 0.68 6.972,881 582,710 11,100 SRK-15TP-69 17617 0.75 6.972,585 581,916 1,200 SRK-15TP-69 17617 0.75 6.972,585 582,081 11,100 SRK-15TP-74 17614 0.75 6.972,585 582,081 11,100 SRK-15TP-74 17614 0.75 6.972,585 582,081 11,100 SRK-15TP-77 17619 0.75 6.972,585 582,081 11,100 SRK-15TP-78 17610 1.5 6.972,684 582,081 11,100 SRK-15TP-78 17610 1.5 6.972,685 582,081 11,100 SRK-15TP-78 17610 1.5 6.972,685 582,081 11,100 SRK-15TP-78 17610 1.5 6.972,685 582,081 11,100 SRK-15TP-78 17610 0.75 6.972,585 582,081 11,100 SRK-15TP-78  | SRK-15TP-53  | 17605     | 0.45    | 6,974,006 | 582,768 | 1,066 |                | ✓        |   |          |  |
| SRK-15TP-66                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | SRK-15TP-54  | 17627     | 0.3     | 6,974,204 | 582,324 | 927   |                | ✓        |   |          |  |
| SRK-15TP-67   17630                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | SRK-15TP-55  | 17628     | 0.3     | 6,974,360 | 582,317 | 923   |                | ✓        | ✓ |          |  |
| SRK-15TP-68 17631 0.6 6.974,286 582,077 888 SRK-15TP-69 17634 0.3 6.974,165 582,089 876 SRK-15TP-60 17632 0.45 6.974,267 581,989 910 SRK-15TP-61 17633 0.4 6.974,067 581,989 974 SRK-15TP-61 17633 0.4 6.974,067 581,689 974 SRK-15TP-62 17596 0.3 6.973,832 581,844 920 SRK-15TP-62 17596-62A 0.2 6.973,832 581,844 920 SRK-15TP-64 17633 0.4 6.974,067 581,696 974 SRK-15TP-64 17598 0.3 6.973,832 581,844 920 SRK-15TP-64 17598 0.3 6.973,832 581,844 920 SRK-15TP-64 17598 0.4 6.973,820 582,197 932 SRK-15TP-64 17598 0.4 6.973,820 582,197 932 SRK-15TP-64 17597 0.3 6.972,878 582,080 928 SRK-15TP-22 17554 0.5-0.6 6.972,871 582,287 1.170 SRK-15TP-22 17555 0.5-0.9 6.972,907 582,326 1.150 SRK-15TP-24 175556 0.5-1.9 6.972,907 582,326 1.150 SRK-15TP-42 175556 0.5-1.9 6.972,907 582,326 1.150 SRK-15TP-44 17553 0.3-0.7 6.972,631 582,492 1.165 SRK-15TP-47 17551 0.3-0.6 6.972,815 582,871 1.133 SRK-15TP-47 17551 0.3-0.6 6.972,815 582,871 1.133 SRK-15TP-66 17620 0.85 6.972,461 581,896 1.205 SRK-15TP-66 17620 0.85 6.972,261 581,830 1.204 SRK-15TP-69 17617 0.75 6.972,526 581,981 1.198 SRK-15TP-89 17617 0.75 6.972,526 581,981 1.198 SRK-15TP-73 17616 0.75 6.972,570 581,983 1.188 SRK-15TP-74 17616 0.75 6.972,570 582,081 1.189 SRK-15TP-77 17616 0.75 6.972,570 582,086 1.182 SRK-15TP-77 17616 0.75 6.972,570 582,086 1.182 SRK-15TP-77 17616 0.75 6.972,570 582,086 1.182 SRK-15TP-77 17610 0.5 6.972,570 582,086 1.182 SRK-15TP-79 17610 0.75 6.972,570 582,086 1.182 SRK-15TP-79 17610 0.5 6.972,570 582,086 1.182 SRK-15TP-79 17600 0.75 6.972,766 582,080 1.183 SR | SRK-15TP-56  | 17629     | 0.35    | 6,974,527 | 582,260 | 853   |                | ✓        | ✓ |          |  |
| SRK-15TP-68                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | SRK-15TP-57  | 17630     | 0.4     | 6,974,472 | 582,126 | 868   | Woot WDD       | ✓        |   |          |  |
| SRK-15TP-60 17632 0.48 6.974,221 581,978 910  SRK-15TP-61 17633 0.4 6.974,067 581,996 974  SRK-15TP-61 17633 0.4 6.974,067 581,996 974  SRK-15TP-62 17596-62A 0.5 6.973,332 581,844 920  SRK-15TP-62 17596-62A 0.2 6.973,332 581,844 920  SRK-15TP-63 17598 0.35 6.973,382 581,844 920  SRK-15TP-64 17639 0.4 6.973,323 581,844 920  SRK-15TP-64 17598 0.4 6.973,323 581,844 920  SRK-15TP-64 17598 0.4 6.973,323 582,890 928  SRK-15TP-64 17595 0.5 6.972,375 582,890 928  SRK-15TP-22 17555 0.5 6.972,907 582,326 1,170  SRK-15TP-23 17555 0.5 0.5 1.2 6.972,907 582,326 1,150  SRK-15TP-45 17553 0.3-0.6 6.972,765 582,761 1,143  SRK-15TP-46 17552 0.3-0.6 6.972,766 582,716 1,146  SRK-15TP-66 17620 0.85 6.972,240 581,830 1,205  SRK-15TP-66 17621 0.5 6.972,240 581,831 1,198  SRK-15TP-68 17618 0.75 6.972,526 581,861 1,198  SRK-15TP-69 17621 0.5 6.972,526 581,963 1,199  SRK-15TP-70 17616 0.75 6.972,526 581,963 1,199  SRK-15TP-71 17616 0.75 6.972,526 582,161 1,186  SRK-15TP-72 17616 0.75 6.972,526 582,161 1,186  SRK-15TP-73 17616 0.75 6.972,526 582,161 1,186  SRK-15TP-75 17611 0.6 6.972,526 582,161 1,181  SRK-15TP-75 17613 0.75 6.972,526 582,161 1,182  SRK-15TP-75 17610 0.75 6.972,527 582,143 1,181  SRK-15TP-76 17611 0.5 6.972,526 582,161 1,182  SRK-15TP-77 17619 0.75 6.972,572 582,143 1,181  SRK-15TP-78 17610 0.76 6.972,572 582,143 1,181  SRK-15TP-79 17610 0.5 6.972,572 582,143 1,181  SRK-15TP-79 17609 0.75 6.972,573 582,289 1,172  SRK-15TP-79 17609 0.75 6.972,573 582,289 1,172  SRK-15TP-82 17606 0.8 6.972,262 582,389 1,171  SRK-15TP-82 17606 0.8 6.972,262 582,389 1,171  SRK-15TP-84 17608 0.75 6.972,265 582,389 1,171  SRK-15TP-84 17608 0.75 6.972,265 582,389 1,171  SRK-15TP-84 17608 0.75 6.972,265 582,289 1,133  SRK-15TP-84 17609 0.75 6.972,265 582,289 1,131                                                                                                | SRK-15TP-58  | 17631     | 0.6     | 6,974,298 | 582,107 | 898   | WestWRD        | ✓        |   |          |  |
| SRK-15TP-61 17633 0.4 6.974.067 581.696 974  SRK-15TP-61 17633-61A 0.6-1.9 6.974.067 581.696 974  SRK-15TP-62 17596 0.3 6.973.832 581.844 920  SRK-15TP-62 17596 0.35 6.973.832 581.844 920  SRK-15TP-63 17595 0.35 6.973.832 581.844 920  SRK-15TP-64 17598 0.4 6.973.832 581.844 920  SRK-15TP-64 17598 0.4 6.973.832 581.844 920  SRK-15TP-64 17598 0.3 6.973.89 582.090 928  SRK-15TP-64 17595 0.3 6.972.978 582.090 928  SRK-15TP-64 17595 0.3 6.972.978 582.080 928  SRK-15TP-22 17554 0.3-0.6 6.972.714 582.387 1.170  SRK-15TP-24 17556 0.5-1.2 6.972.995 582.577 1.143  SRK-15TP-24 17556 0.5-1.2 6.972.995 582.577 1.143  SRK-15TP-45 17553 0.3-0.6 6.972.681 582.716 1.146  SRK-15TP-46 17552 0.3-0.6 6.972.881 582.871 1.133  SRK-15TP-46 17552 0.3-0.6 6.972.881 582.871 1.133  SRK-15TP-65 6.972.400 581.830 1.204  SRK-15TP-66 17620 0.85 6.972.503 581.830 1.204  SRK-15TP-69 17617 0.75 6.972.596 581.981 1.199  SRK-15TP-69 17617 0.75 6.972.596 581.981 1.199  SRK-15TP-70 17619 0.75 6.972.596 581.981 1.188  SRK-15TP-72 17616 0.75 6.972.596 582.017 1.188  SRK-15TP-73 17615 1.75 6.972.576 582.068 1.182  SRK-15TP-75 17611 0.6 6.972.582 582.011 1.188  SRK-15TP-75 17611 0.5 6.972.576 582.068 1.182  SRK-15TP-76 17611 0.5 6.972.576 582.068 1.182  SRK-15TP-78 17610 1.5 6.972.576 582.068 1.182  SRK-15TP-79 17610 0.75 6.972.576 582.068 1.182  SRK-15TP-79 17610 0.5 6.972.576 582.068 1.182  SRK-15TP-79 17610 0.5 6.972.576 582.068 1.182  SRK-15TP-79 17609 0.75 6.972.576 582.081 1.171  SRK-15TP-79 17609 0.75 6.972.576 582.265 1.172  SRK-15TP-80 17608 0.75 6.972.580 582.89 1.171  SRK-15TP-80 17608 0.75 6.972.582 582.896 1.172  SRK-15TP-80 17608 0.75 6.972.582 582.896 1.173  SRK-15TP-80 17608 0.75 6.972.582 582.896 1.173  SRK-15TP-80 17608 0.75 6.972.582 582.896 1.173  SRK-15TP-80 17608 0.75 6.972.582 582.896 1.172      | SRK-15TP-59  | 17634     | 0.3     | 6,974,165 | 582,089 | 876   |                | ✓        |   |          |  |
| SRK-15TP-61                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | SRK-15TP-60  | 17632     | 0.45    | 6,974,221 | 581,978 | 910   |                | ✓        |   |          |  |
| SRK-15TP-62 17596 0.3 6,973,832 581,844 920 SRK-15TP-62 17596-62A 0.2 6,973,832 581,844 920 SRK-15TP-63 17595 0.35 6,973,834 581,392 1,005 SRK-15TP-64 17598 0.4 6,973,829 582,197 932 SRK-15TP-64A 17597 0.3 6,973,878 582,080 928 SRK-15TP-23 17555 0.5-0.9 6,972,907 582,326 1,150 SRK-15TP-24 17556 0.5-0.9 6,972,907 582,326 1,150 SRK-15TP-24 17556 0.5-1.2 6,972,907 582,326 1,150 SRK-15TP-46 17552 0.3-0.6 6,972,631 582,877 1,143 SRK-15TP-46 17552 0.3-0.6 6,972,766 582,776 1,146 SRK-15TP-46 17551 0.3-0.6 6,972,766 582,776 1,146 SRK-15TP-66 17620 0.85 6,972,400 581,830 1,204 SRK-15TP-66 17620 0.85 6,972,400 581,830 1,204 SRK-15TP-69 17617 0.75 6,972,526 581,968 1,199 SRK-15TP-69 17617 0.75 6,972,526 581,968 1,199 SRK-15TP-70 17619 0.75 6,972,526 581,968 1,199 SRK-15TP-71 17616 0.75 6,972,526 581,968 1,199 SRK-15TP-73 17615 1.75 6,972,502 582,017 1,188 SRK-15TP-74 17614 0.75 6,972,502 582,017 1,188 SRK-15TP-75 17619 0.75 6,972,502 582,017 1,188 SRK-15TP-75 17619 0.75 6,972,502 582,017 1,189 SRK-15TP-75 17619 0.75 6,972,502 582,018 1,182 SRK-15TP-75 17610 0.5 6,972,502 582,018 1,182 SRK-15TP-75 17611 0.6 6,972,502 582,018 1,182 SRK-15TP-76 17611 0.6 6,972,644 582,165 1,179 SRK-15TP-78 17610 0.75 6,972,502 582,143 1,181 SRK-15TP-79 17610 0.75 6,972,502 582,143 1,181 SRK-15TP-79 17610 0.75 6,972,502 582,141 1,181 SRK-15TP-79 17610 0.75 6,972,502 582,141 1,181 SRK-15TP-79 17610 0.75 6,972,502 582,017 1,189 SRK-15TP-79 17610 0.75 6,972,503 582,141 1,179 SRK-15TP-79 17610 0.75 6,972,503 582,141 1,179 SRK-15TP-79 17610 0.75 6,972,503 582,141 1,171 SRK-15TP-79 17610 0.75 6,972,503 582,141 1,171 SRK-15TP-79 17609 0.75 6,972,503 582,141 1,171 SRK-15TP-79 17609 0.75 6,972,503 582,141 1,171 SRK-15TP-80 17609 0.75 6,972,503 582,141 1,171 SRK-15TP-80 17609 0.75 6,972,603 582,141 1,171 SRK-15TP-80 17609 0.75 6,972,603 582,141 1,171 SRK-15TP-80 17609 0.75 6,972,603 582,241 1,131 SRK-15TP-80 17609 0.75 6,972,603 582,205 1,133 SRK-15TP-80 17609 0.75 6,973,303 589,270 1,171                                                                  | SRK-15TP-61  | 17633     | 0.4     | 6,974,067 | 581,696 | 974   |                | ✓        |   | ✓        |  |
| SRK-15TP-62 17596-62A 0.2 6.973,822 S81,844 920  SRK-15TP-63 17595 0.35 6.973,823 S81,844 920  SRK-15TP-64A 17598 0.4 6.973,823 S82,197 932  SRK-15TP-64A 17597 0.3 6.973,828 S82,197 932  SRK-15TP-64A 17597 0.3 6.973,828 S82,197 932  SRK-15TP-22 17554 0.3-0.6 6.972,714 582,387 1,170  SRK-15TP-22 17555 0.5-0.9 6.972,995 S82,577 1,143  SRK-15TP-24 17556 0.5-1.2 6.972,995 S82,577 1,143  SRK-15TP-45 17553 0.3-0.7 6.972,631 582,492 1,165  SRK-15TP-46 17552 0.3-0.6 6.972,766 S82,716 1,146  SRK-15TP-68 17650 0.8-0 6.972,766 S82,716 1,146  SRK-15TP-65 6.972,461 581,698 1,205  SRK-15TP-68 17618 0.75 6.972,526 S81,830 1,204  SRK-15TP-69 17617 0.75 6.972,526 S81,981 1,198  SRK-15TP-69 17616 0.75 6.972,526 S81,981 1,198  SRK-15TP-72 17616 0.75 6.972,526 S81,981 1,198  SRK-15TP-73 17615 1.75 6.972,526 S82,088 1,199  SRK-15TP-74 17614 0.75 6.972,527 S82,143 1,181  SRK-15TP-75 17615 0.75 6.972,527 S82,143 1,181  SRK-15TP-76 17616 0.75 6.972,527 S82,143 1,181  SRK-15TP-78 17616 0.75 6.972,528 S82,088 1,192  SRK-15TP-78 17616 0.75 6.972,528 S82,088 1,193  SRK-15TP-78 17611 0.6 6.972,680 S82,165 1,176  SRK-15TP-78 17610 1.5 6.972,620 S82,165 1,176  SRK-15TP-78 17610 1.5 6.972,620 S82,181 1,181  SRK-15TP-79 17609 0.75 6.972,620 S82,238 1,171  SRK-15TP-79 17609 0.75 6.972,620 S82,238 1,171  SRK-15TP-81 17607 0.75 6.972,626 S82,389 1,171  SRK-15TP-82 17606 0.8 6.972,824 S82,825 1,133  SRK-15TP-83 17608 0.8 6.972,824 S82,825 1,133  SRK-15TP-84 17608 0.8 6.972,824 S82,825 1,133  SRK-15TP-84 17608 0.8 6.972,824 S82,825 1,133  SRK-15TP-84 17608 0.75 6.972,765 S82,809 1,131  SRK-15TP-84 17608 0.8 6.972,824 S82,825 1,133  SRK-15TP-84 17608 0.75 6.972,765 S82,809 1,131  SRK-15TP-84 17608 0.75 6.972,803 S82,825 1,133  SRK-15TP-84 17608 0.75 6.972,803 S82,825 1,133  SRK-15TP-84 17608 0.75 6.973,327 S89,726 1,1182                                                                                                                                                                                                                                          | SRK-15TP-61A | 17633-61A | 0.6-1.9 | 6,974,067 | 581,696 | 974   |                | ✓        |   | ✓        |  |
| SRK-15TP-63                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | SRK-15TP-62  | 17596     | 0.3     | 6,973,832 | 581,844 | 920   |                | ✓        |   |          |  |
| SRK-15TP-64         17598         0.4         6,973,829         582,197         932           SRK-15TP-64A         17597         0.3         6,973,878         582,080         928           SRK-15TP-23         17555         0.5-0.9         6,972,971         582,387         1,170           SRK-15TP-24         17555         0.5-0.9         6,972,997         582,387         1,150           SRK-15TP-24         17556         0.5-1.2         6,972,995         582,577         1,143           SRK-15TP-46         17552         0.3-0.6         6,972,676         582,716         1,146           SRK-15TP-47         17551         0.3-0.6         6,972,766         582,716         1,146           SRK-15TP-65         -         -         6,972,881         582,871         1,133           SRK-15TP-65         -         -         6,972,461         581,698         1,205           SRK-15TP-67         17621         0.5         6,972,533         581,830         1,198           SRK-15TP-68         17618         0.75         6,972,579         581,948         1,198           SRK-15TP-70         17619         0.75         6,972,545         582,011         1,188           SRK-15TP-73<                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | SRK-15TP-62  | 17596-62A | 0.2     | 6,973,832 | 581,844 | 920   |                | ✓        |   |          |  |
| SRK-15TP-64A 17597 0.3 6.973.878 582.000 928  SRK-15TP-22 17554 0.3-0.6 6.972.714 582.387 1.170  SRK-15TP-22 17555 0.5-0.9 6.972.907 582.326 1.150  SRK-15TP-24 17555 0.5-1.9 6.972.995 582.777 1.143  SRK-15TP-24 17555 0.5-1.2 6.972.995 582.777 1.143  SRK-15TP-45 17553 0.3-0.7 6.972.631 582.492 1.165  SRK-15TP-46 17552 0.3-0.6 6.972.681 582.776 1.146  SRK-15TP-47 17551 0.3-0.6 6.972.681 582.871 1.133  SRK-15TP-65 6.972.461 581.698 1.205  SRK-15TP-66 17620 0.85 6.972.400 581.830 1.204  SRK-15TP-67 17621 0.5 6.972.538 581.881 1.198  SRK-15TP-69 17617 0.75 6.972.526 581.968 1.199  SRK-15TP-69 17617 0.75 6.972.526 581.968 1.199  SRK-15TP-70 17619 0.75 6.972.526 581.988 1.199  SRK-15TP-71 17614 0.75 6.972.578 582.017 1.189  SRK-15TP-72 17614 0.75 6.972.578 582.017 1.189  SRK-15TP-73 17613 0.75 6.972.576 582.088 1.182  SRK-15TP-75 17613 0.75 6.972.576 582.088 1.182  SRK-15TP-76 17611 0.6 6.972.578 582.181 1.181  SRK-15TP-77 17612 0.75 6.972.578 582.181 1.179  SRK-15TP-78 17610 1.5 6.972.578 582.088 1.172  SRK-15TP-77 17612 0.75 6.972.578 582.181 1.179  SRK-15TP-78 17610 1.5 6.972.578 582.18 1.179  SRK-15TP-79 17608 0.75 6.972.593 582.178 1.181  SRK-15TP-79 17608 0.75 6.972.262 582.389 1.172  SRK-15TP-81 17607 0.75 6.972.262 582.389 1.172  SRK-15TP-82 17606 0.8 6.972.2624 582.896 1.133  SRK-15TP-83 17604 0.75 6.972.262 582.399 1.171  SRK-15TP-83 17604 0.75 6.972.262 582.399 1.171  SRK-15TP-84 17604 0.75 6.972.262 582.399 1.171  SRK-15TP-83 17606 0.8 6.972.262 582.399 1.171  SRK-15TP-84 17604 0.75 6.973.202 582.389 1.172  SRK-15TP-83 17604 0.75 6.973.202 582.806 1.135  SRK-15TP-84 17604 0.75 6.973.303 589.270 1.183  SRK-15TP-84 17624 0.75 6.973.307 589.726 1.1172                                                                                                                                                                                                                                                                                                                                                                              | SRK-15TP-63  | 17595     | 0.35    | 6,973,384 | 581,392 | 1,005 |                | ✓        |   |          |  |
| SRK-15TP-22         17554         0.3-0.6         6,972,714         582,387         1,170           SRK-15TP-23         17555         0.5-0.9         6,972,997         582,326         1,150           SRK-15TP-24         17556         0.5-1.2         6,972,995         582,327         1,143           SRK-15TP-45         17553         0.3-0.7         6,972,631         582,492         1,165           SRK-15TP-46         17552         0.3-0.6         6,972,766         582,716         1,146           SRK-15TP-47         17551         0.3-0.6         6,972,881         582,821         1,133           SRK-15TP-66         17620         0.85         6,972,401         581,898         1,204           SRK-15TP-67         17621         0.5         6,972,538         581,891         1,198           SRK-15TP-69         17617         0.75         6,972,538         581,996         1,198           SRK-15TP-70         17619         0.75         6,972,579         581,943         1,188           SRK-15TP-72         17616         0.75         6,972,575         581,943         1,188           SRK-15TP-74         17614         0.75         6,972,562         582,016         1,182                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | SRK-15TP-64  | 17598     | 0.4     | 6,973,829 | 582,197 | 932   |                | ✓        |   | ✓        |  |
| SRK-15TP-23       17555       0.5-0.9       6,972,907       582,326       1,150         SRK-15TP-24       17556       0.5-1.2       6,972,995       582,577       1,143         SRK-15TP-45       17553       0.3-0.7       6,972,631       582,716       1,146         SRK-15TP-46       17552       0.3-0.6       6,972,766       582,716       1,146         SRK-15TP-47       17551       0.3-0.6       6,972,881       582,871       1,133         SRK-15TP-65       -       6,972,401       581,698       1,205         SRK-15TP-67       17620       0.85       6,972,516       581,916       1,203         SRK-15TP-68       17618       0.75       6,972,526       581,968       1,199         SRK-15TP-69       17617       0.75       6,972,526       581,968       1,199         SRK-15TP-70       17616       0.75       6,972,552       582,017       1,188         SRK-15TP-73       17615       1.75       6,972,562       582,011       1,188         SRK-15TP-74       17614       0.75       6,972,572       582,088       1,182         SRK-15TP-75       17613       0.75       6,972,580       582,165       1,179                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | SRK-15TP-64A | 17597     | 0.3     | 6,973,878 | 582,080 | 928   |                | ✓        |   |          |  |
| SRK-15TP-24         17556         0.5-1.2         6.972,995         582,577         1,143           SRK-15TP-46         17553         0.3-0.7         6.972,681         582,492         1,165           SRK-15TP-46         17552         0.3-0.6         6.972,766         582,716         1,146           SRK-15TP-47         17551         0.3-0.6         6.972,861         582,871         1,133           SRK-15TP-65         -         -         6.972,461         581,698         1,205           SRK-15TP-66         17620         0.85         6.972,538         581,851         1,198           SRK-15TP-68         17618         0.75         6.972,538         581,916         1,203           SRK-15TP-69         17617         0.75         6.972,526         581,968         1,199           SRK-15TP-70         17619         0.75         6.972,579         581,943         1,188           SRK-15TP-73         17616         0.75         6.972,554         582,011         1,188           SRK-15TP-74         17614         0.75         6.972,576         582,068         1,182           SRK-15TP-75         17613         0.75         6.972,570         582,143         1,181           SR                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | SRK-15TP-22  | 17554     | 0.3-0.6 | 6,972,714 | 582,387 | 1,170 |                |          |   |          |  |
| SRK-15TP-45         17553         0.3-0.7         6.972,631         582,492         1,165           SRK-15TP-46         17552         0.3-0.6         6.972,766         582,716         1,146           SRK-15TP-47         17551         0.3-0.6         6.972,881         582,871         1,133           SRK-15TP-66         -         -         6.972,481         581,830         1,204           SRK-15TP-67         17621         0.5         6.972,538         581,830         1,204           SRK-15TP-67         17621         0.5         6.972,516         581,916         1,203           SRK-15TP-68         17618         0.75         6.972,526         581,968         1,199           SRK-15TP-70         17619         0.75         6.972,579         581,943         1,188           SRK-15TP-70         17616         0.75         6.972,576         582,017         1,189           SRK-15TP-73         17615         1.75         6.972,576         582,017         1,189           SRK-15TP-73         17613         0.75         6.972,572         582,014         1,181           SRK-15TP-75         17613         0.75         6.972,572         582,141         1,179           SRK-15T                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | SRK-15TP-23  | 17555     | 0.5-0.9 | 6,972,907 | 582,326 | 1,150 |                |          |   |          |  |
| SRK-15TP-46         17552         0.3-0.6         6,972,766         582,716         1,146           SRK-15TP-47         17551         0.3-0.6         6,972,881         582,871         1,133           SRK-15TP-66         -         -         6,972,4801         581,998         1,205           SRK-15TP-66         17620         0.85         6,972,400         581,830         1,204           SRK-15TP-67         17621         0.5         6,972,536         581,851         1,198           SRK-15TP-68         17618         0.75         6,972,526         581,968         1,199           SRK-15TP-69         17617         0.75         6,972,526         581,968         1,199           SRK-15TP-70         17619         0.75         6,972,526         581,943         1,188           SRK-15TP-73         17615         1.75         6,972,545         582,017         1,188           SRK-15TP-73         17615         1.75         6,972,562         582,011         1,188           SRK-15TP-74         17614         0.75         6,972,572         582,143         1,181           SRK-15TP-75         17613         0.75         6,972,573         582,143         1,181           SRK-15TP                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | SRK-15TP-24  | 17556     | 0.5-1.2 | 6,972,995 | 582,577 | 1,143 |                |          |   |          |  |
| SRK-15TP-47         17551         0.3-0.6         6,972,881         582,871         1,133           SRK-15TP-65         -         -         6,972,461         581,698         1,205           SRK-15TP-66         17620         0.85         6,972,400         581,830         1,204           SRK-15TP-67         17621         0.5         6,972,538         581,851         1,198           SRK-15TP-68         17618         0.75         6,972,516         581,916         1,203           SRK-15TP-69         17617         0.75         6,972,572         581,948         1,199           SRK-15TP-70         17619         0.75         6,972,575         582,017         1,189           SRK-15TP-73         17615         1.75         6,972,562         582,011         1,189           SRK-15TP-73         17613         0.75         6,972,572         582,143         1,181           SRK-15TP-74         17614         0.75         6,972,572         582,143         1,181           SRK-15TP-75         17613         0.75         6,972,572         582,143         1,181           SRK-15TP-76         17611         0.6         6,972,694         582,165         1,179           SRK-15TP-78 </td <td>SRK-15TP-45</td> <td>17553</td> <td>0.3-0.7</td> <td>6,972,631</td> <td>582,492</td> <td>1,165</td> <td></td> <td></td> <td></td> <td></td> <td></td>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | SRK-15TP-45  | 17553     | 0.3-0.7 | 6,972,631 | 582,492 | 1,165 |                |          |   |          |  |
| SRK-15TP-65         -         -         6,972,461         581,698         1,205           SRK-15TP-66         17620         0.85         6,972,400         581,830         1,204           SRK-15TP-67         17621         0.5         6,972,538         581,851         1,198           SRK-15TP-68         17618         0.75         6,972,516         581,916         1,203           SRK-15TP-79         17617         0.75         6,972,579         581,943         1,189           SRK-15TP-70         17619         0.75         6,972,579         581,943         1,189           SRK-15TP-72         17616         0.75         6,972,545         582,017         1,189           SRK-15TP-73         17615         1.75         6,972,562         582,011         1,188           SRK-15TP-74         17614         0.75         6,972,575         582,068         1,182           SRK-15TP-75         17613         0.75         6,972,572         582,143         1,181           SRK-15TP-75         17611         0.6         6,972,573         582,141         1,179           SRK-15TP-78         17610         1.5         6,972,624         582,265         1,176           SRK-15TP-80                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | SRK-15TP-46  | 17552     | 0.3-0.6 | 6,972,766 | 582,716 | 1,146 |                |          |   |          |  |
| SRK-15TP-66         17620         0.85         6,972,400         581,830         1,204           SRK-15TP-67         17621         0.5         6,972,538         581,851         1,198           SRK-15TP-68         17618         0.75         6,972,516         581,916         1,203           SRK-15TP-69         17617         0.75         6,972,526         581,968         1,199           SRK-15TP-70         17619         0.75         6,972,526         581,943         1,189           SRK-15TP-72         17616         0.75         6,972,545         582,017         1,189           SRK-15TP-73         17615         1.75         6,972,562         582,011         1,189           SRK-15TP-74         17614         0.75         6,972,576         582,068         1,182           SRK-15TP-75         17613         0.75         6,972,572         582,143         1,181           SRK-15TP-75         17611         0.6         6,972,644         582,165         1,179           SRK-15TP-76         17611         0.6         6,972,644         582,165         1,176           SRK-15TP-79         17609         0.75         6,972,629         582,326         1,176           SRK-15TP-                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | SRK-15TP-47  | 17551     | 0.3-0.6 | 6,972,881 | 582,871 | 1,133 |                |          |   |          |  |
| SRK-15TP-67         17621         0.5         6,972,538         581,851         1,198           SRK-15TP-68         17618         0.75         6,972,536         581,851         1,198           SRK-15TP-69         17617         0.75         6,972,526         581,968         1,199           SRK-15TP-70         17619         0.75         6,972,579         581,943         1,188           SRK-15TP-72         17616         0.75         6,972,576         582,017         1,189           SRK-15TP-73         17615         1.75         6,972,576         582,011         1,188           SRK-15TP-74         17614         0.75         6,972,576         582,068         1,182           SRK-15TP-75         17613         0.75         6,972,572         582,143         1,181           SRK-15TP-75         17611         0.6         6,972,572         582,141         1,179           SRK-15TP-76         17611         0.6         6,972,624         582,265         1,176           SRK-15TP-78         17610         1.5         6,972,624         582,265         1,176           SRK-15TP-79         17609         0.75         6,972,625         582,389         1,172           SRK-15TP-81                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | SRK-15TP-65  | =         | -       | 6,972,461 | 581,698 | 1,205 |                |          |   |          |  |
| SRK-15TP-68         17618         0.75         6,972,516         581,916         1,203           SRK-15TP-69         17617         0.75         6,972,516         581,916         1,203           SRK-15TP-70         17619         0.75         6,972,526         581,943         1,188           SRK-15TP-72         17616         0.75         6,972,545         582,017         1,189           SRK-15TP-73         17615         1.75         6,972,562         582,011         1,188           SRK-15TP-74         17614         0.75         6,972,576         582,068         1,182           SRK-15TP-75         17613         0.75         6,972,572         582,068         1,181           SRK-15TP-75A         17613-75A         0.5-1.0         6,972,580         582,141         1,179           SRK-15TP-76         17611         0.6         6,972,624         582,165         1,179           SRK-15TP-77         17612         0.75         6,972,624         582,265         1,176           SRK-15TP-79         17609         0.75         6,972,629         582,328         1,172           SRK-15TP-80         17608         0.75         6,972,629         582,359         1,171                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | SRK-15TP-66  | 17620     | 0.85    | 6,972,400 | 581,830 | 1,204 |                | ✓        |   | ✓        |  |
| SRK-15TP-69         17617         0.75         6,972,526         581,968         1,199           SRK-15TP-70         17619         0.75         6,972,579         581,943         1,188           SRK-15TP-72         17616         0.75         6,972,545         582,017         1,189           SRK-15TP-73         17615         1.75         6,972,576         582,068         1,182           SRK-15TP-74         17614         0.75         6,972,576         582,068         1,182           SRK-15TP-75         17613         0.75         6,972,572         582,143         1,181           SRK-15TP-75         17613         0.75         6,972,580         582,141         1,179           SRK-15TP-76         17611         0.6         6,972,680         582,141         1,179           SRK-15TP-77         17612         0.75         6,972,624         582,265         1,176           SRK-15TP-78         17610         1.5         6,972,692         582,328         1,172           SRK-15TP-80         17609         0.75         6,972,692         582,389         1,171           SRK-15TP-82         17606         0.8         6,972,824         582,869         1,133           SRK-15TP-8                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | SRK-15TP-67  | 17621     | 0.5     | 6,972,538 | 581,851 | 1,198 |                | ✓        |   | ✓        |  |
| SRK-15TP-70         17619         0.75         6,972,579         581,943         1,188           SRK-15TP-72         17616         0.75         6,972,545         582,017         1,189           SRK-15TP-73         17615         1.75         6,972,562         582,011         1,188           SRK-15TP-74         17614         0.75         6,972,576         582,068         1,182           SRK-15TP-75         17613         0.75         6,972,572         582,143         1,181           SRK-15TP-75A         17613-75A         0.5-1.0         6,972,580         582,141         1,179           SRK-15TP-76         17611         0.6         6,972,644         582,165         1,179           SRK-15TP-77         17612         0.75         6,972,624         582,265         1,176           SRK-15TP-78         17610         1.5         6,972,624         582,265         1,176           SRK-15TP-80         17609         0.75         6,972,692         582,328         1,172           SRK-15TP-81         17607         0.75         6,972,765         582,806         1,135           SRK-15TP-82         17606         0.8         6,972,826         582,852         1,133           SR                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | SRK-15TP-68  | 17618     | 0.75    | 6,972,516 | 581,916 | 1,203 |                | ✓        |   |          |  |
| SRK-15TP-72         17616         0.75         6,972,545         582,017         1,189           SRK-15TP-73         17615         1.75         6,972,545         582,011         1,188           SRK-15TP-74         17614         0.75         6,972,576         582,068         1,182           SRK-15TP-75         17613         0.75         6,972,572         582,143         1,181           SRK-15TP-75A         17613-75A         0.5-1.0         6,972,580         582,141         1,179           SRK-15TP-76         17611         0.6         6,972,644         582,165         1,179           SRK-15TP-77         17612         0.75         6,972,624         582,265         1,176           SRK-15TP-78         17610         1.5         6,972,624         582,265         1,176           SRK-15TP-80         17609         0.75         6,972,629         582,328         1,172           SRK-15TP-81         17607         0.75         6,972,629         582,359         1,171           SRK-15TP-82         17606         0.8         6,972,826         582,866         1,135           SRK-15TP-83         17624         0.75         6,973,403         589,270         1,183           SR                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | SRK-15TP-69  | 17617     | 0.75    | 6,972,526 | 581,968 | 1,199 |                | ✓        |   | ✓        |  |
| SRK-15TP-73         17615         1.75         6,972,562         582,011         1,188         ROM and Infrastructure           SRK-15TP-74         17614         0.75         6,972,576         582,068         1,182           SRK-15TP-75         17613         0.75         6,972,572         582,143         1,181           SRK-15TP-75A         17613-75A         0.5-1.0         6,972,580         582,141         1,179           SRK-15TP-76         17611         0.6         6,972,644         582,165         1,179           SRK-15TP-77         17612         0.75         6,972,573         582,178         1,181           SRK-15TP-78         17610         1.5         6,972,624         582,265         1,176           SRK-15TP-80         17609         0.75         6,972,692         582,328         1,172           SRK-15TP-81         17607         0.75         6,972,765         582,806         1,135           SRK-15TP-82         17606         0.8         6,972,824         582,852         1,133           SRK-15TP-83         17624         0.75         6,973,403         589,270         1,183           SRK-15TP-84         17625         0.75         6,973,327         589,726         1,1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | SRK-15TP-70  | 17619     | 0.75    | 6,972,579 | 581,943 | 1,188 |                | ✓        |   |          |  |
| SRK-15TP-74         17614         0.75         6,972,576         582,068         1,182           SRK-15TP-75         17613         0.75         6,972,572         582,068         1,182           SRK-15TP-75         17613         0.75         6,972,572         582,143         1,181           SRK-15TP-75A         17613-75A         0.5-1.0         6,972,580         582,141         1,179           SRK-15TP-76         17611         0.6         6,972,644         582,165         1,179           SRK-15TP-77         17612         0.75         6,972,573         582,178         1,181           SRK-15TP-78         17610         1.5         6,972,624         582,265         1,176           SRK-15TP-79         17609         0.75         6,972,629         582,328         1,172           SRK-15TP-80         17608         0.75         6,972,629         582,359         1,171           SRK-15TP-82         17606         0.8         6,972,824         582,849         1,131           SRK-15TP-83         17624         0.75         6,973,403         589,270         1,183           SRK-15TP-84         17625         0.75         6,973,327         589,726         1,172                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | SRK-15TP-72  | 17616     | 0.75    | 6,972,545 | 582,017 | 1,189 |                | ✓        |   |          |  |
| SRK-15TP-75         17613         0.75         6,972,572         582,143         1,181           SRK-15TP-75A         17613-75A         0.5-1.0         6,972,580         582,141         1,179           SRK-15TP-75A         17613-75A         0.5-1.0         6,972,580         582,141         1,179           SRK-15TP-76         17611         0.6         6,972,644         582,165         1,179           SRK-15TP-77         17612         0.75         6,972,573         582,178         1,181           SRK-15TP-78         17610         1.5         6,972,624         582,265         1,176           SRK-15TP-79         17609         0.75         6,972,692         582,328         1,172           SRK-15TP-80         17608         0.75         6,972,629         582,359         1,171           SRK-15TP-81         17607         0.75         6,972,824         582,806         1,135           SRK-15TP-82         17606         0.8         6,972,826         582,852         1,133           SRK-15TP-83         17624         0.75         6,973,403         589,270         1,183           SRK-15TP-84         17625         0.75         6,973,327         589,726         1,172                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | SRK-15TP-73  | 17615     | 1.75    | 6,972,562 | 582,011 | 1,188 | ROM and        | ✓        |   | ✓        |  |
| SRK-15TP-75A       17613-75A       0.5-1.0       6,972,580       582,141       1,179         SRK-15TP-76       17611       0.6       6,972,644       582,165       1,179         SRK-15TP-77       17612       0.75       6,972,573       582,178       1,181         SRK-15TP-78       17610       1.5       6,972,624       582,265       1,176         SRK-15TP-79       17609       0.75       6,972,692       582,328       1,172         SRK-15TP-80       17608       0.75       6,972,629       582,359       1,171         SRK-15TP-81       17607       0.75       6,972,765       582,806       1,135         SRK-15TP-82       17606       0.8       6,972,824       582,849       1,131         SRK-15TP-83       17604       0.75       6,973,403       589,270       1,183         SRK-15TP-84       17625       0.75       6,973,327       589,726       1,172                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | SRK-15TP-74  | 17614     | 0.75    | 6,972,576 | 582,068 | 1,182 | Infrastructure | <b>✓</b> |   | <b>√</b> |  |
| SRK-15TP-76       17611       0.6       6,972,644       582,165       1,179         SRK-15TP-77       17612       0.75       6,972,573       582,178       1,181         SRK-15TP-78       17610       1.5       6,972,624       582,265       1,176         SRK-15TP-79       17609       0.75       6,972,624       582,328       1,172         SRK-15TP-80       17608       0.75       6,972,629       582,359       1,171         SRK-15TP-81       17607       0.75       6,972,765       582,806       1,135         SRK-15TP-82       17606       0.8       6,972,824       582,849       1,131         SRK-15TP-82A       17606-82A       1.3-3.5       6,972,826       582,852       1,133         SRK-15TP-83       17624       0.75       6,973,403       589,270       1,183         SRK-15TP-84       17625       0.75       6,973,327       589,726       1,172                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | SRK-15TP-75  | 17613     | 0.75    | 6,972,572 | 582,143 | 1,181 |                | ✓        |   |          |  |
| SRK-15TP-77       17612       0.75       6,972,573       582,178       1,181         SRK-15TP-78       17610       1.5       6,972,624       582,265       1,176         SRK-15TP-79       17609       0.75       6,972,624       582,328       1,172         SRK-15TP-80       17608       0.75       6,972,629       582,359       1,171         SRK-15TP-81       17607       0.75       6,972,765       582,806       1,135         SRK-15TP-82       17606       0.8       6,972,824       582,849       1,131         SRK-15TP-82A       17606-82A       1.3-3.5       6,972,826       582,852       1,133         SRK-15TP-83       17624       0.75       6,973,403       589,270       1,183         SRK-15TP-84       17625       0.75       6,973,327       589,726       1,172                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | SRK-15TP-75A | 17613-75A | 0.5-1.0 | 6,972,580 | 582,141 | 1,179 |                | ✓        |   |          |  |
| SRK-15TP-78     17610     1.5     6,972,624     582,265     1,176       SRK-15TP-79     17609     0.75     6,972,692     582,328     1,172       SRK-15TP-80     17608     0.75     6,972,629     582,359     1,171       SRK-15TP-81     17607     0.75     6,972,765     582,806     1,135       SRK-15TP-82     17606     0.8     6,972,824     582,849     1,131       SRK-15TP-82A     17606-82A     1.3-3.5     6,972,826     582,852     1,133       SRK-15TP-83     17624     0.75     6,973,403     589,270     1,183       SRK-15TP-84     17625     0.75     6,973,327     589,726     1,172                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | SRK-15TP-76  | 17611     | 0.6     | 6,972,644 | 582,165 | 1,179 |                | ✓        |   |          |  |
| SRK-15TP-79       17609       0.75       6,972,692       582,328       1,172         SRK-15TP-80       17608       0.75       6,972,629       582,359       1,171         SRK-15TP-81       17607       0.75       6,972,765       582,806       1,135         SRK-15TP-82       17606       0.8       6,972,824       582,849       1,131         SRK-15TP-82A       17606-82A       1.3-3.5       6,972,826       582,852       1,133         SRK-15TP-83       17624       0.75       6,973,403       589,270       1,183         SRK-15TP-84       17625       0.75       6,973,327       589,726       1,172                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | SRK-15TP-77  | 17612     | 0.75    | 6,972,573 | 582,178 | 1,181 |                | ✓        |   |          |  |
| SRK-15TP-80     17608     0.75     6,972,629     582,359     1,171       SRK-15TP-81     17607     0.75     6,972,765     582,806     1,135       SRK-15TP-82     17606     0.8     6,972,824     582,849     1,131       SRK-15TP-82A     17606-82A     1.3-3.5     6,972,826     582,852     1,133       SRK-15TP-83     17624     0.75     6,973,403     589,270     1,183       SRK-15TP-84     17625     0.75     6,973,327     589,726     1,172                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | SRK-15TP-78  | 17610     | 1.5     | 6,972,624 | 582,265 | 1,176 |                | ✓        |   | ✓        |  |
| SRK-15TP-81     17607     0.75     6,972,765     582,806     1,135       SRK-15TP-82     17606     0.8     6,972,824     582,849     1,131       SRK-15TP-82A     17606-82A     1.3-3.5     6,972,826     582,852     1,133       SRK-15TP-83     17624     0.75     6,973,403     589,270     1,183       SRK-15TP-84     17625     0.75     6,973,327     589,726     1,172                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | SRK-15TP-79  | 17609     | 0.75    | 6,972,692 | 582,328 | 1,172 |                | ✓        |   |          |  |
| SRK-15TP-82     17606     0.8     6,972,824     582,849     1,131       SRK-15TP-82A     17606-82A     1.3-3.5     6,972,826     582,852     1,133       SRK-15TP-83     17624     0.75     6,973,403     589,270     1,183       SRK-15TP-84     17625     0.75     6,973,327     589,726     1,172                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | SRK-15TP-80  | 17608     | 0.75    | 6,972,629 | 582,359 | 1,171 |                | ✓        |   |          |  |
| SRK-15TP-82A     17606-82A     1.3-3.5     6,972,826     582,852     1,133       SRK-15TP-83     17624     0.75     6,973,403     589,270     1,183       SRK-15TP-84     17625     0.75     6,973,327     589,726     1,172                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | SRK-15TP-81  | 17607     | 0.75    | 6,972,765 | 582,806 | 1,135 |                | ✓        |   |          |  |
| SRK-15TP-84 17625 0.75 6,973,327 589,726 1,172   ✓  SRK-15TP-84 17625 0.75 6,973,327 589,726 1,172                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | SRK-15TP-82  | 17606     | 0.8     | 6,972,824 | 582,849 | 1,131 |                | ✓        |   | ✓        |  |
| SRK-15TP-84 17625 0.75 6,973,327 589,726 1,172 ✓                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | SRK-15TP-82A | 17606-82A | 1.3-3.5 | 6,972,826 | 582,852 | 1,133 |                | ✓        |   | ✓        |  |
| State 1011 51 11 020 5.70 5,512,521 555,725 1,172                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | SRK-15TP-83  | 17624     | 0.75    | 6,973,403 | 589,270 | 1,183 |                | ✓        |   |          |  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | SRK-15TP-84  | 17625     | 0.75    | 6,973,327 | 589,726 | 1,172 |                | ✓        |   |          |  |
| SRK-15TP-85   17626   0.75   6,973,291   590,248   1,165   ✓   ✓   ✓                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | SRK-15TP-85  | 17626     | 0.75    | 6,973,291 | 590,248 | 1,165 |                | ✓        |   | ✓        |  |


**Appendix B: Borehole and Test Pit Logs** 

**Appendix B-1: Borehole Logs** 









585048 E

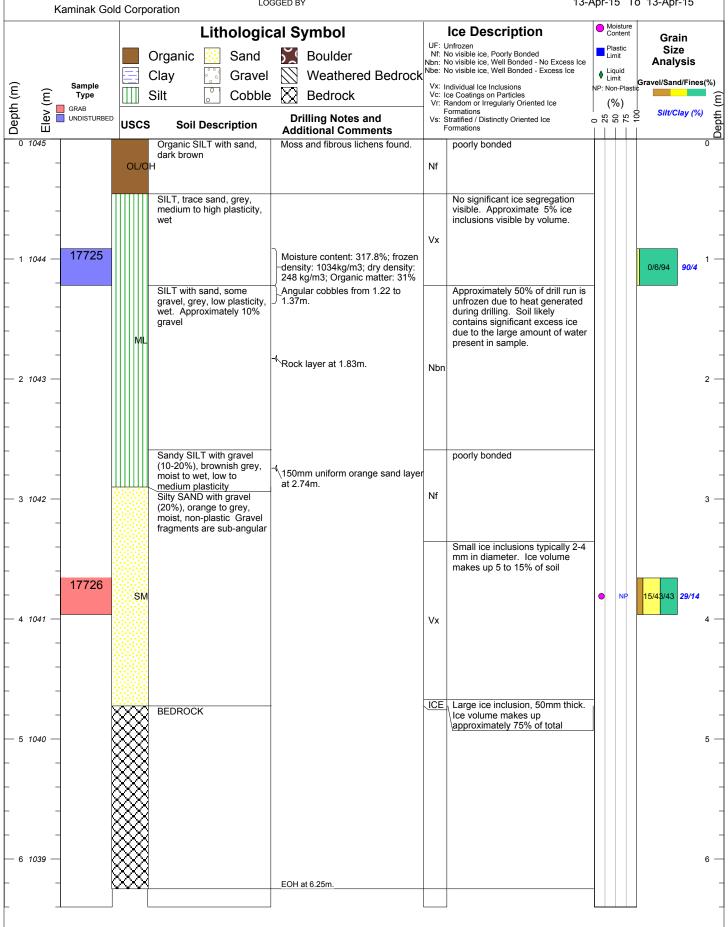
UTM Zone 7

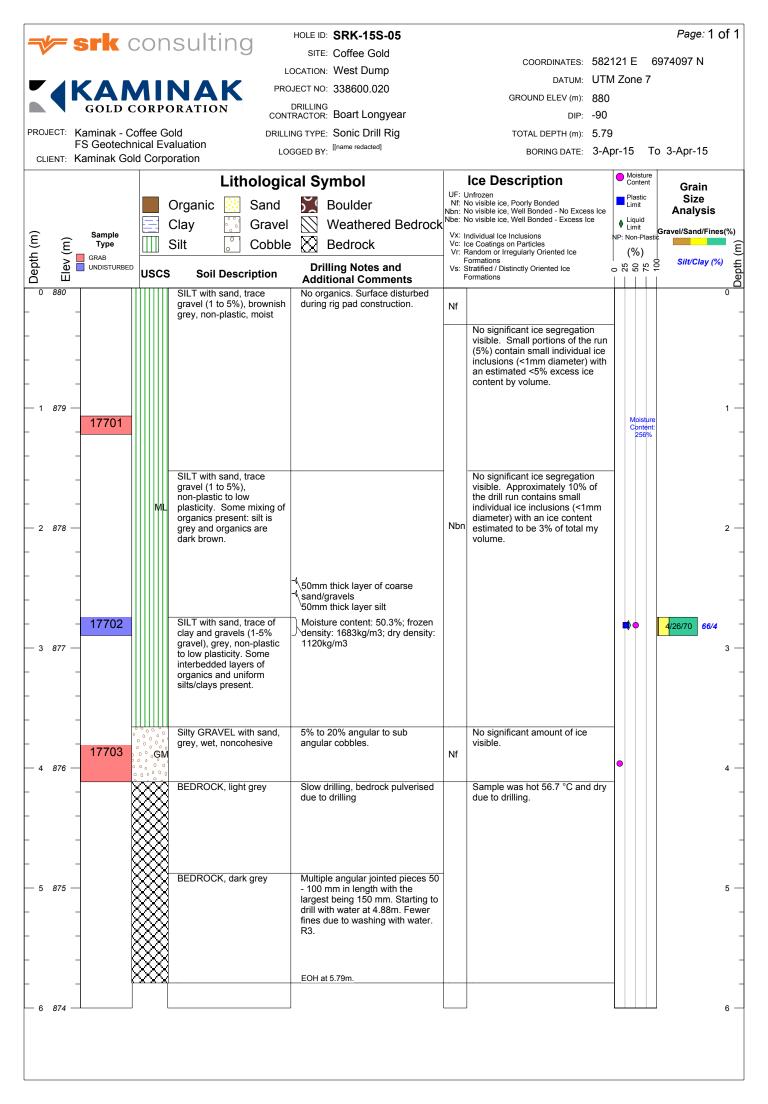


KAMINAK GOLD CORPORATION

> Kaminak - Coffee Gold FS Geotechnical Evaluation

HOLE ID: SRK-15S-04


SITE: Coffee Gold


LOCATION: North Dump

PROJECT NO: 338600.020

DRILLING CONTRACTOR: Boart Longyear -90 DRILLING TYPE: Sonic Drill Rig 6.25

13-Apr-15 To 13-Apr-15 LOGGED BY





582463 E

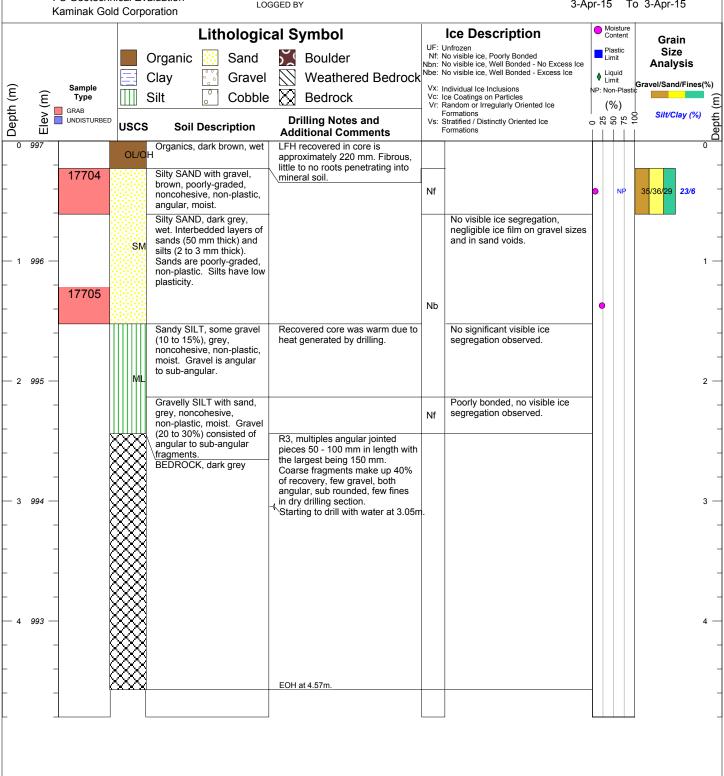
-90

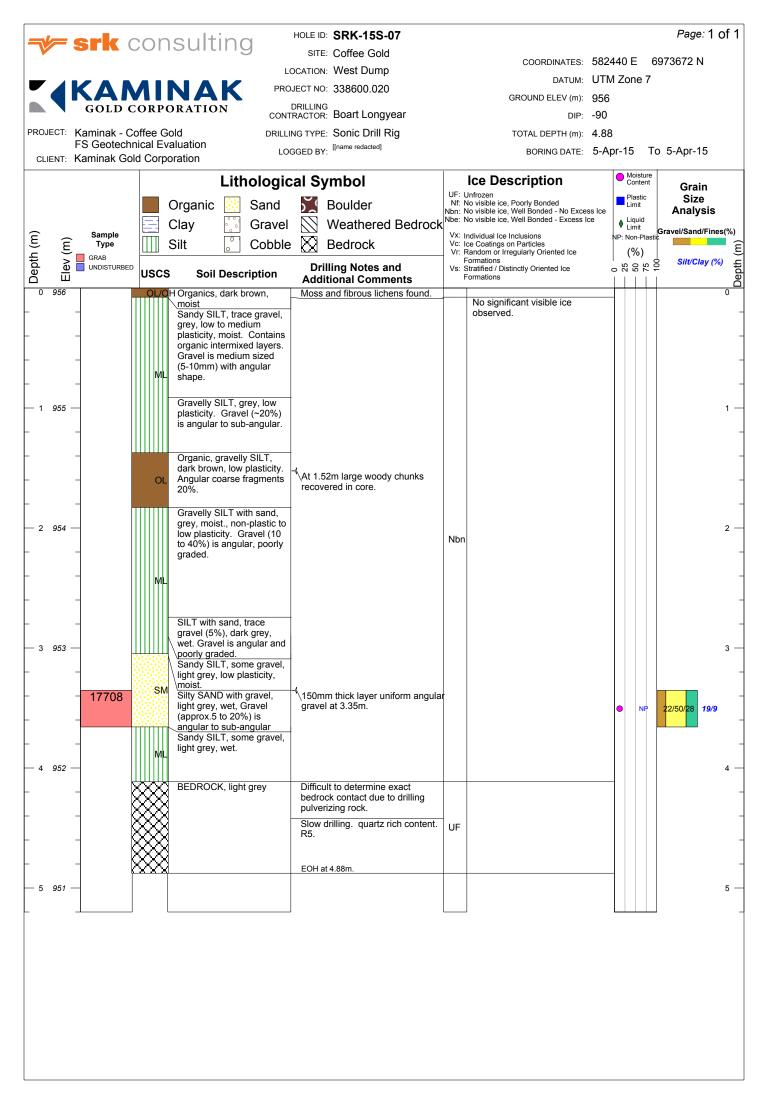
4.57

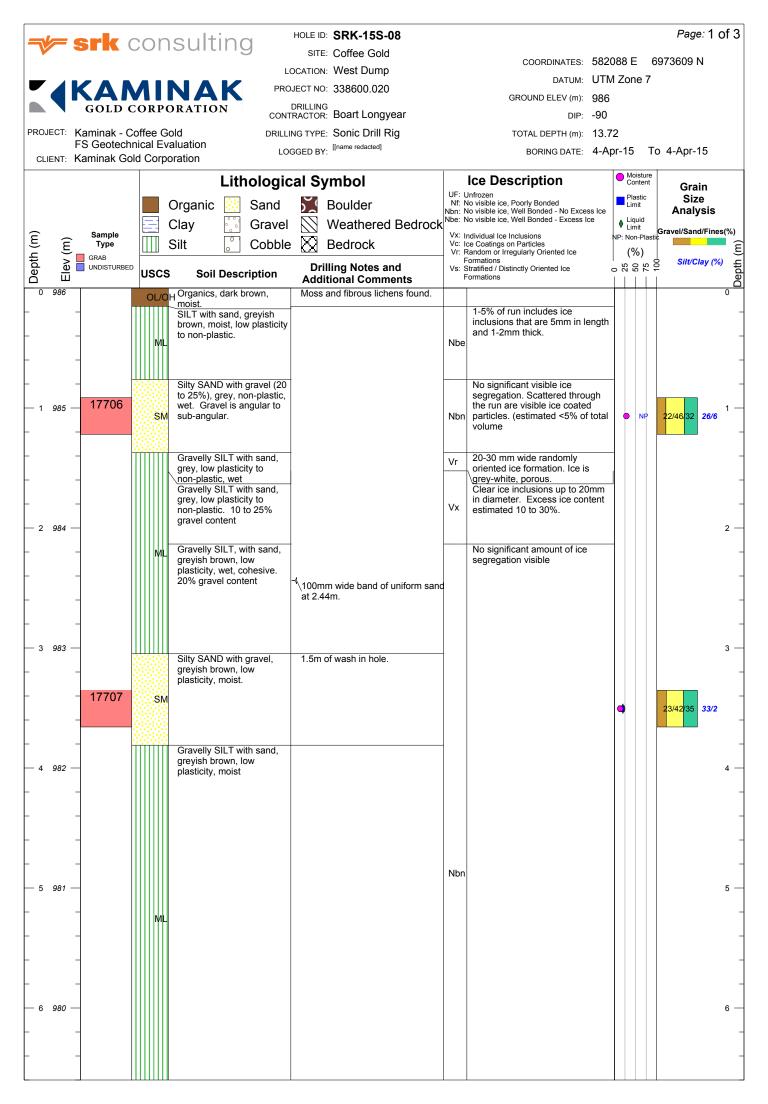
UTM Zone 7

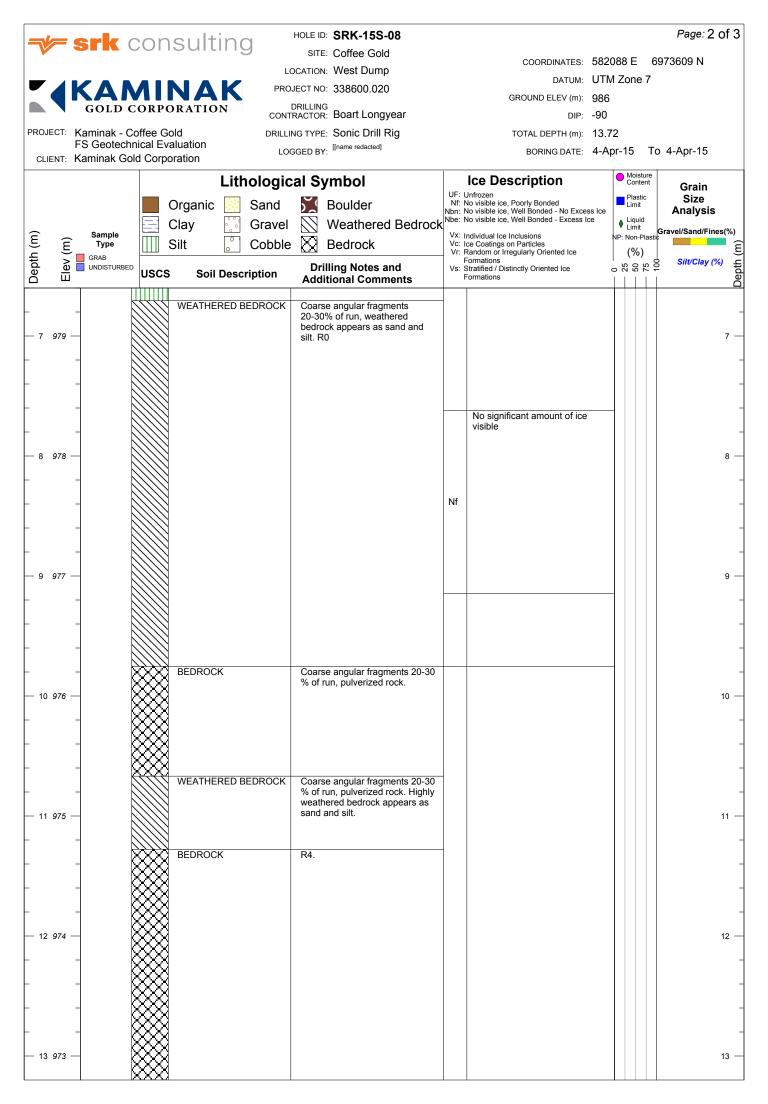


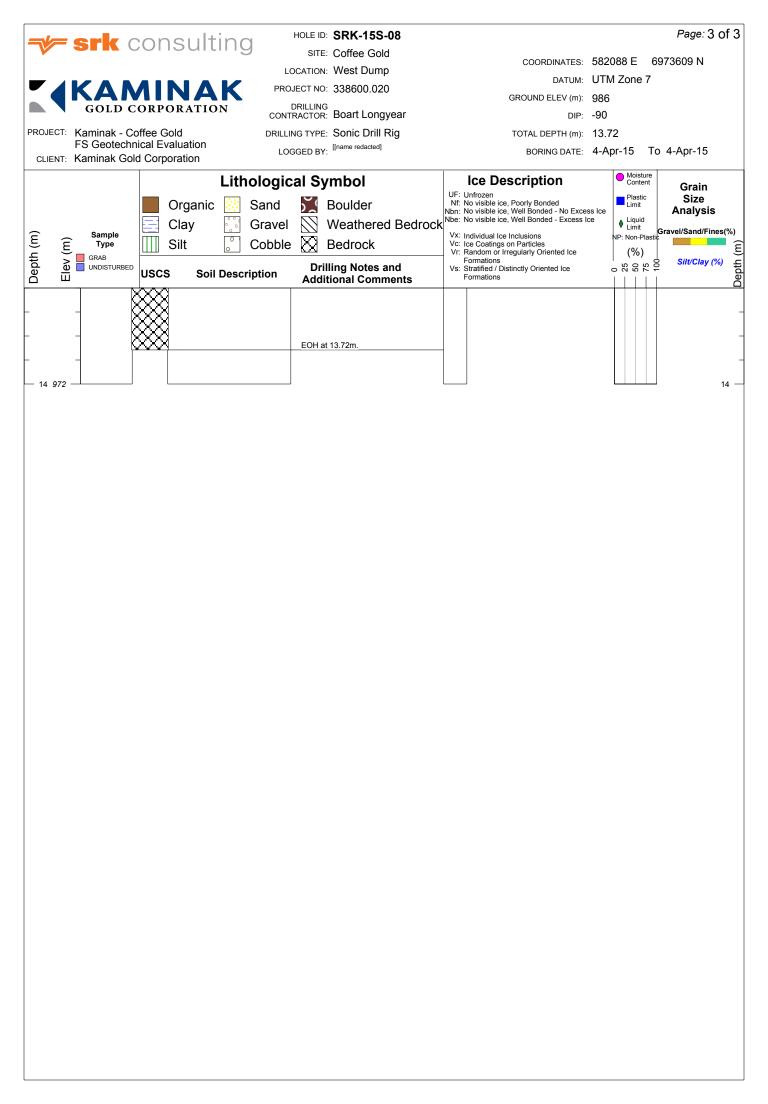
srk consulting

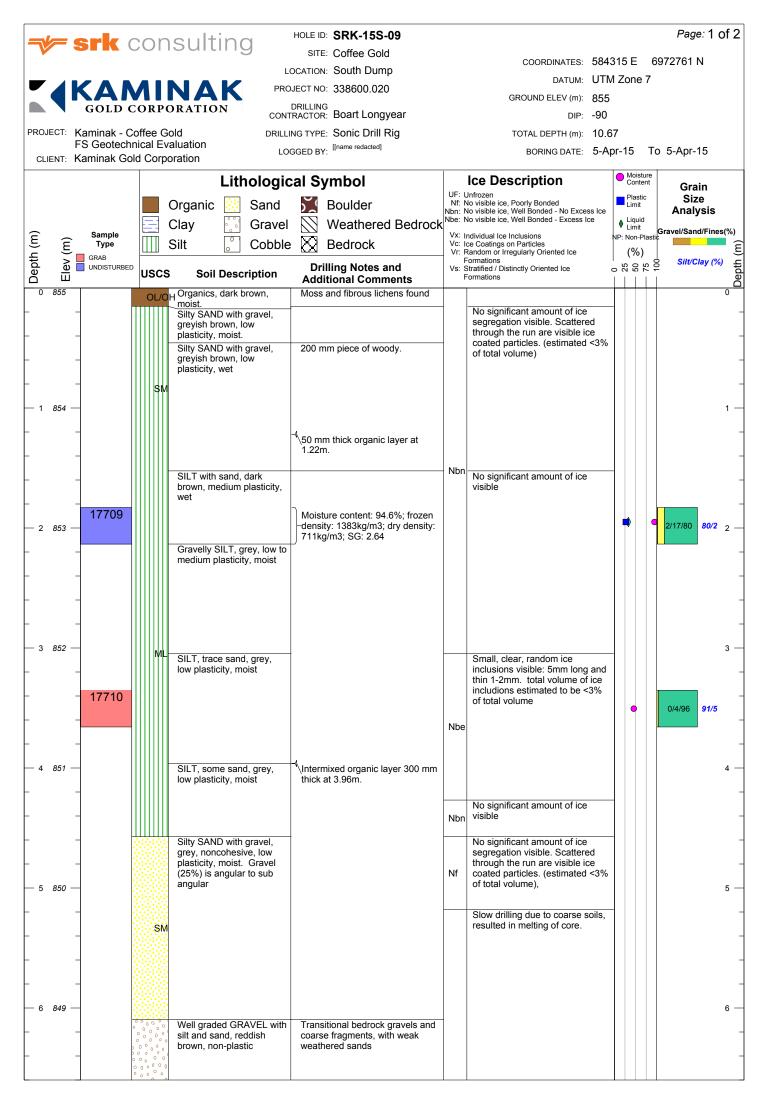

Kaminak - Coffee Gold FS Geotechnical Evaluation

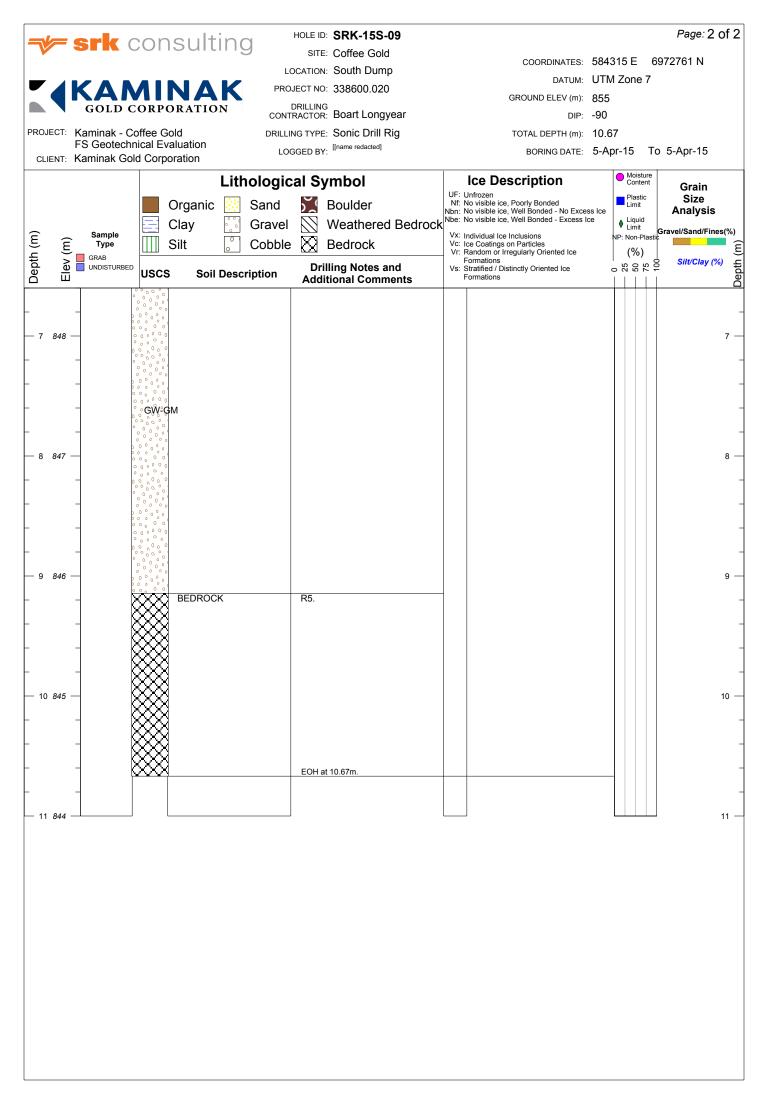

SITE: Coffee Gold LOCATION: West Dump

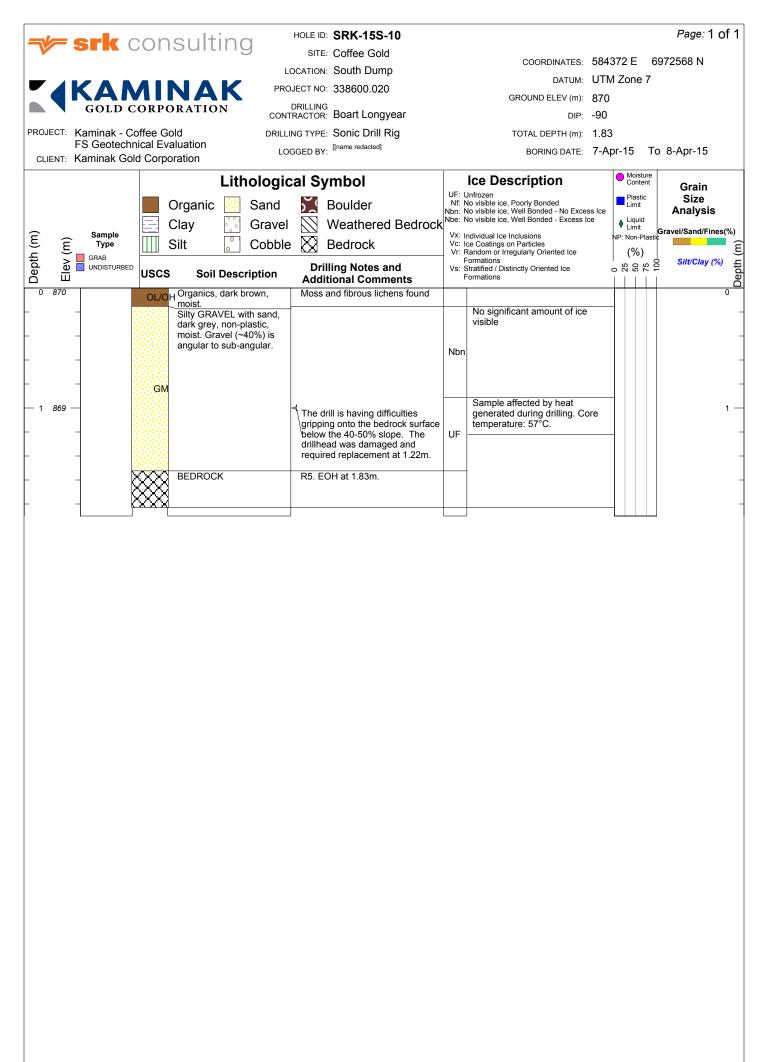

PROJECT NO: 338600.020

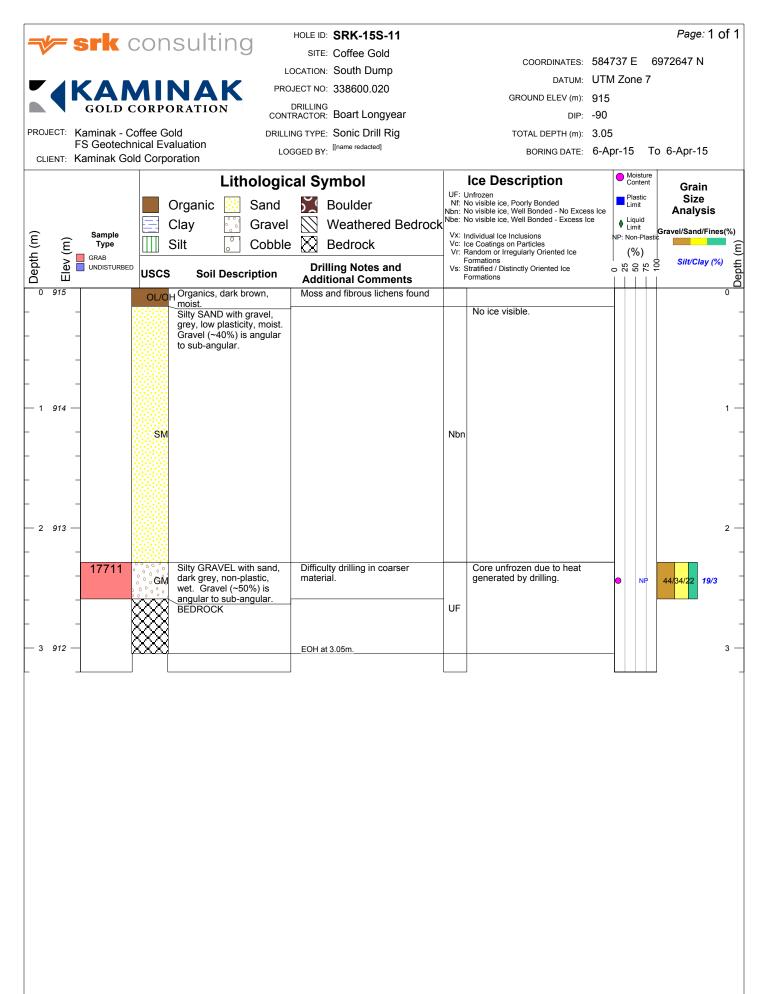

DRILLING CONTRACTOR: Boart Longyear DRILLING TYPE: Sonic Drill Rig

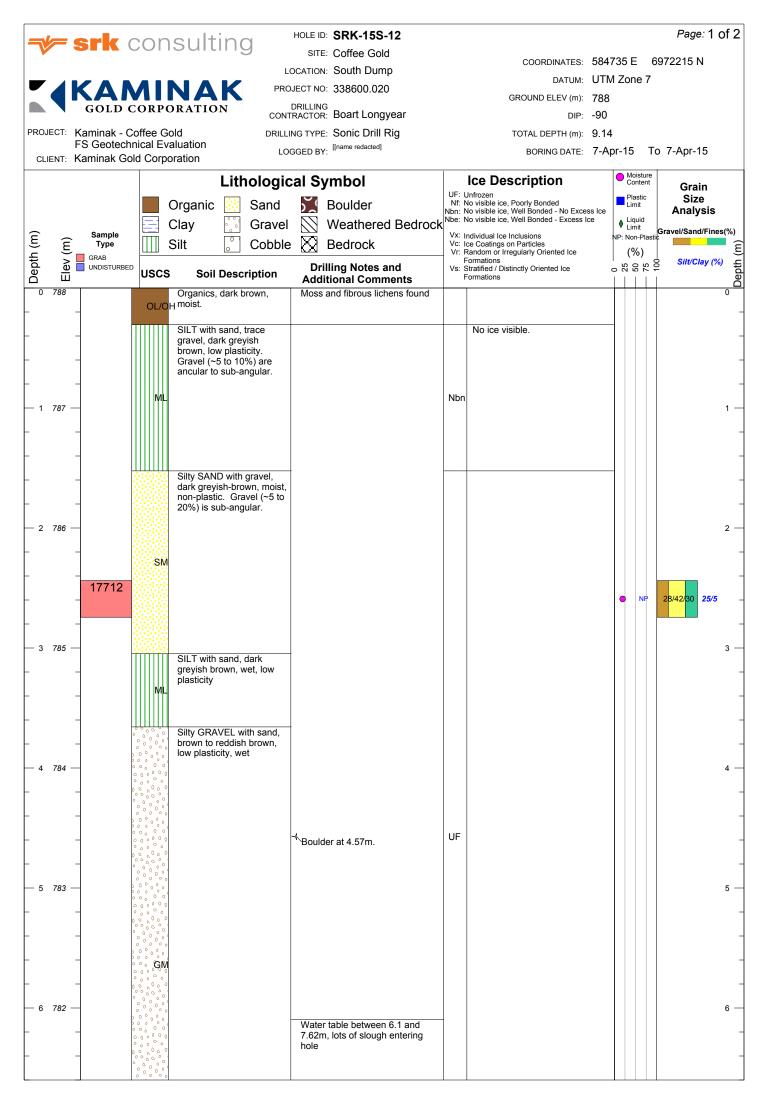

3-Apr-15 To 3-Apr-15 LOGGED BY

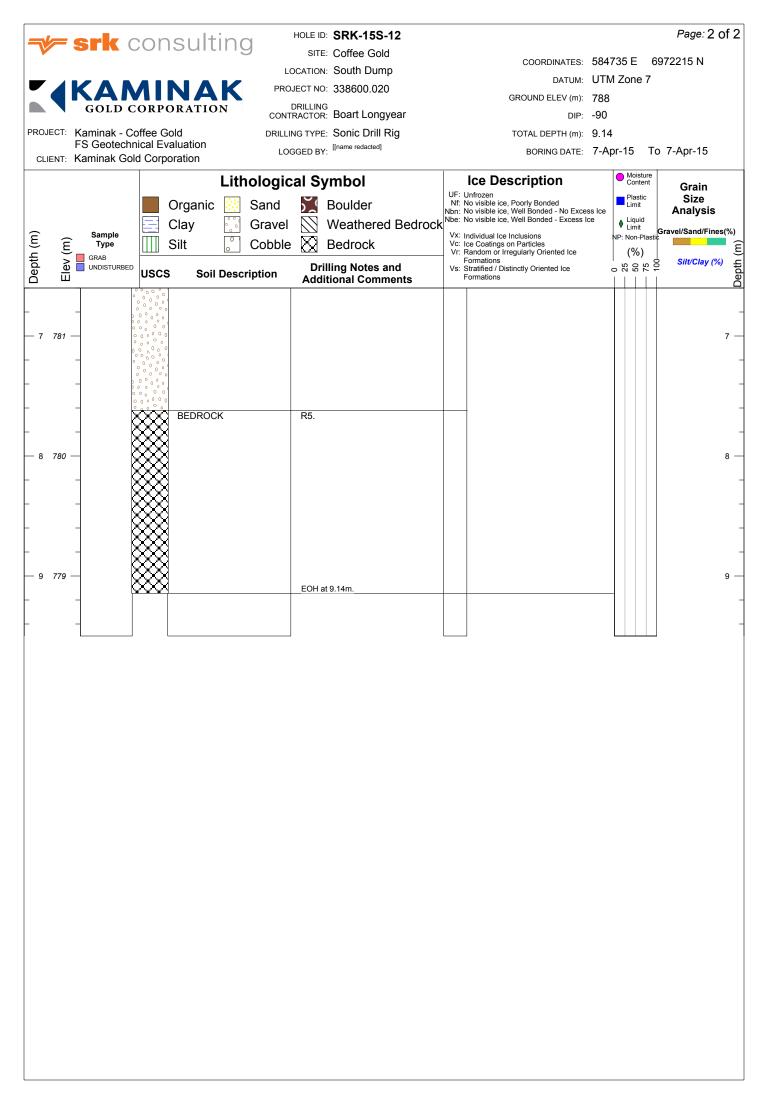


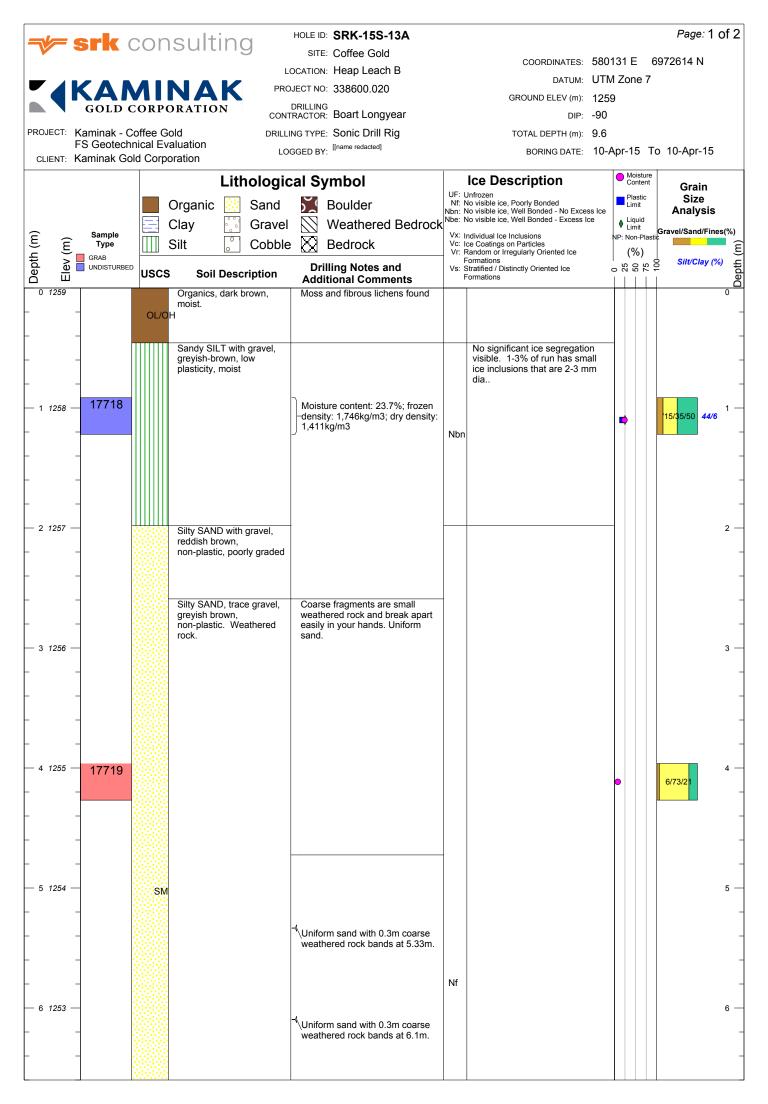



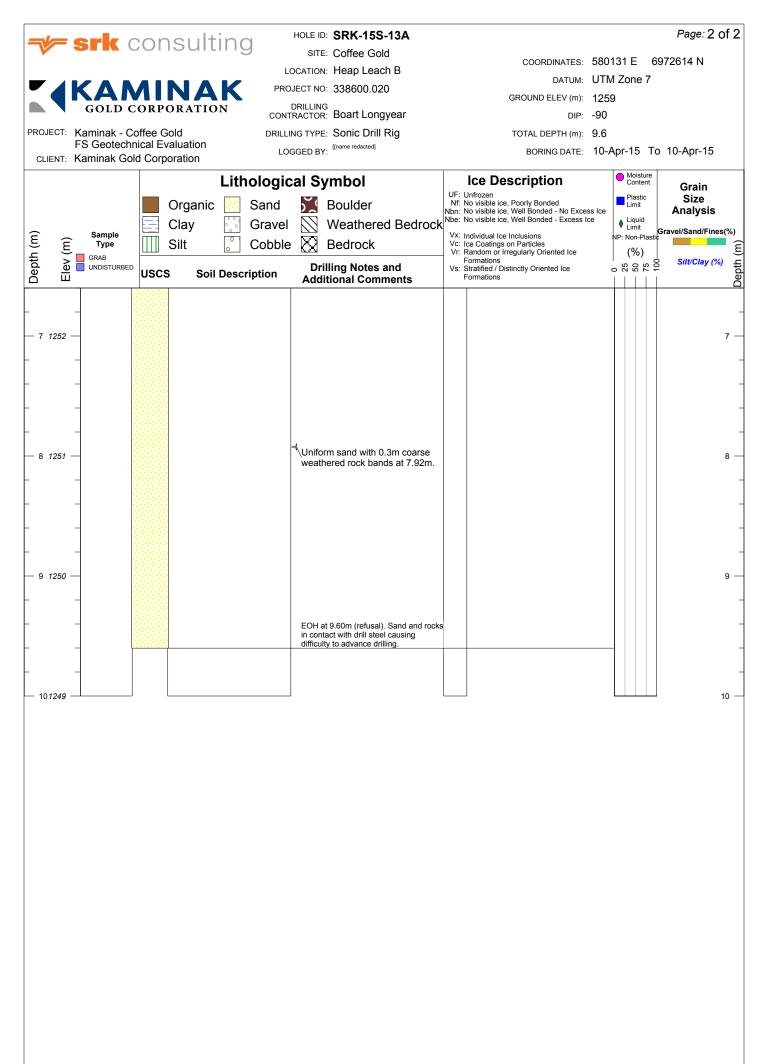
















HOLE ID: SRK-15S-14

SITE: Coffee Gold

LOCATION: Heap Leach B

PROJECT NO: 338600.020

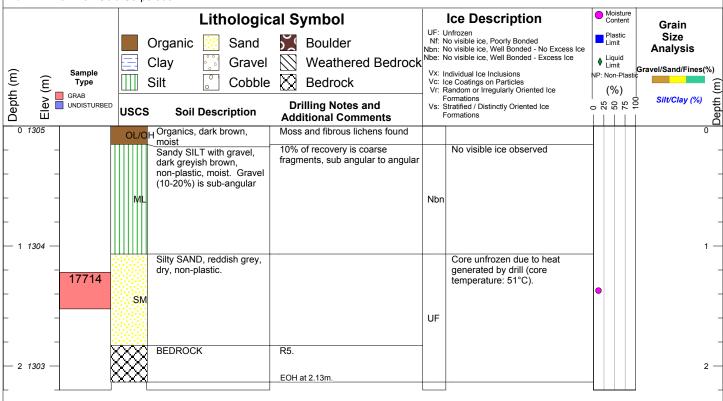
DRILLING CONTRACTOR: Boart Longyear

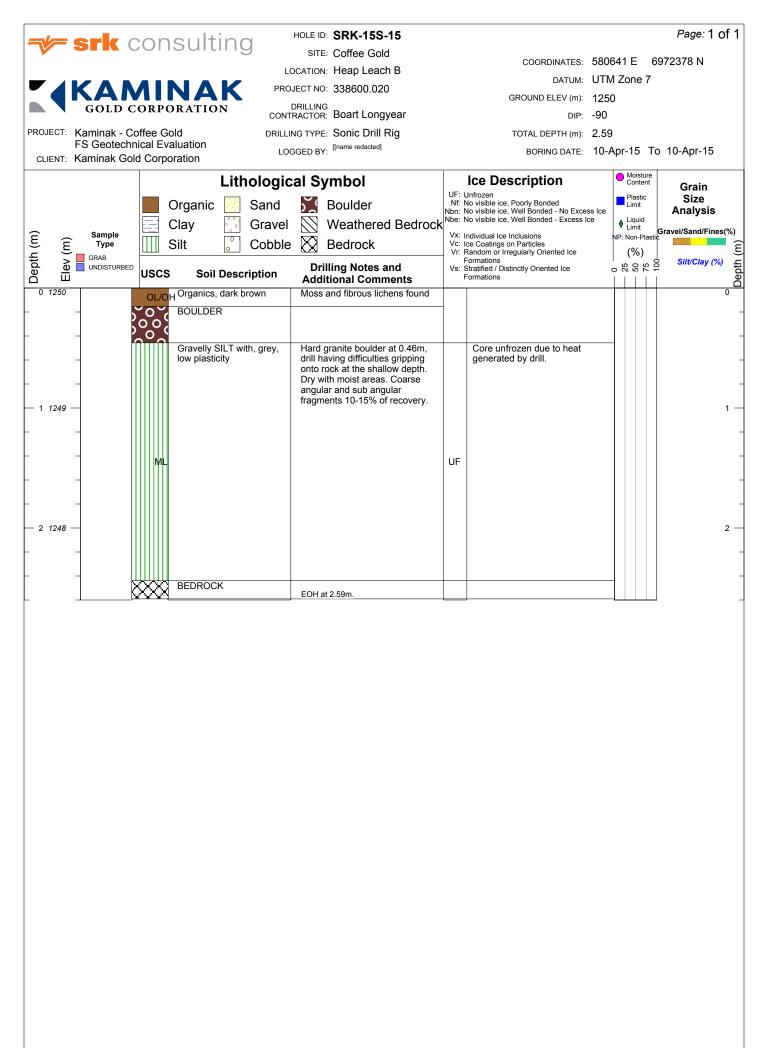
DRILLING TYPE: Sonic Drill Rig

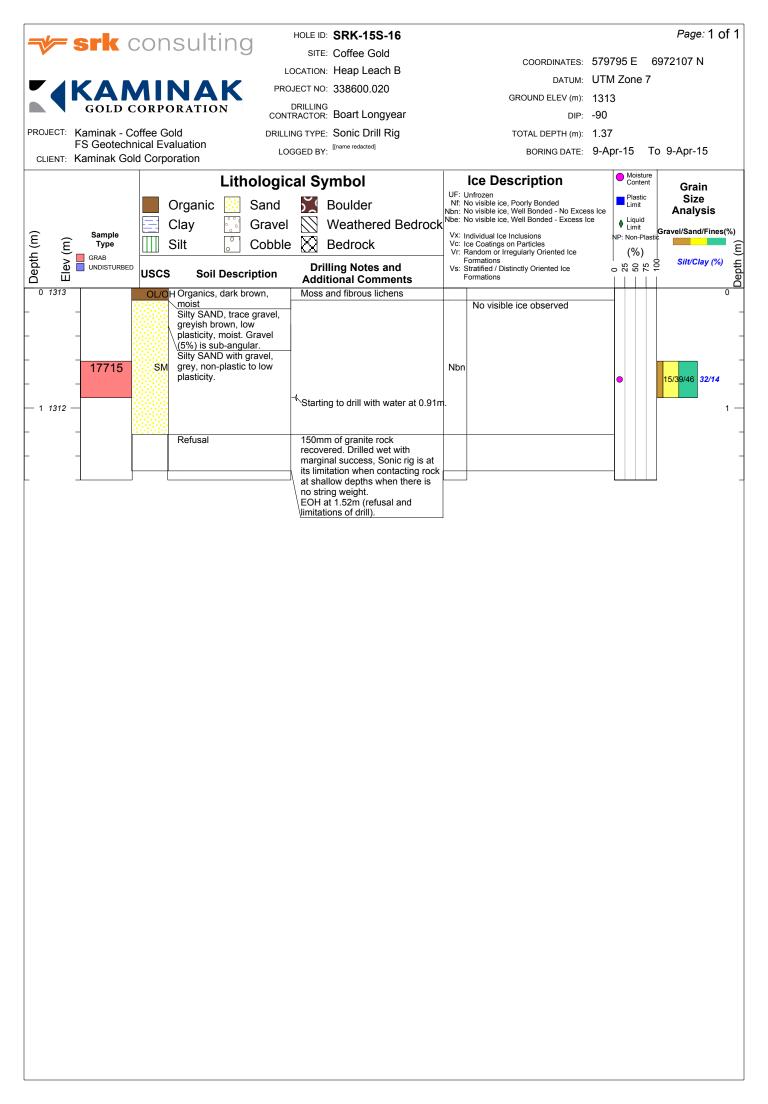
LOGGED BY: [[name redacted]

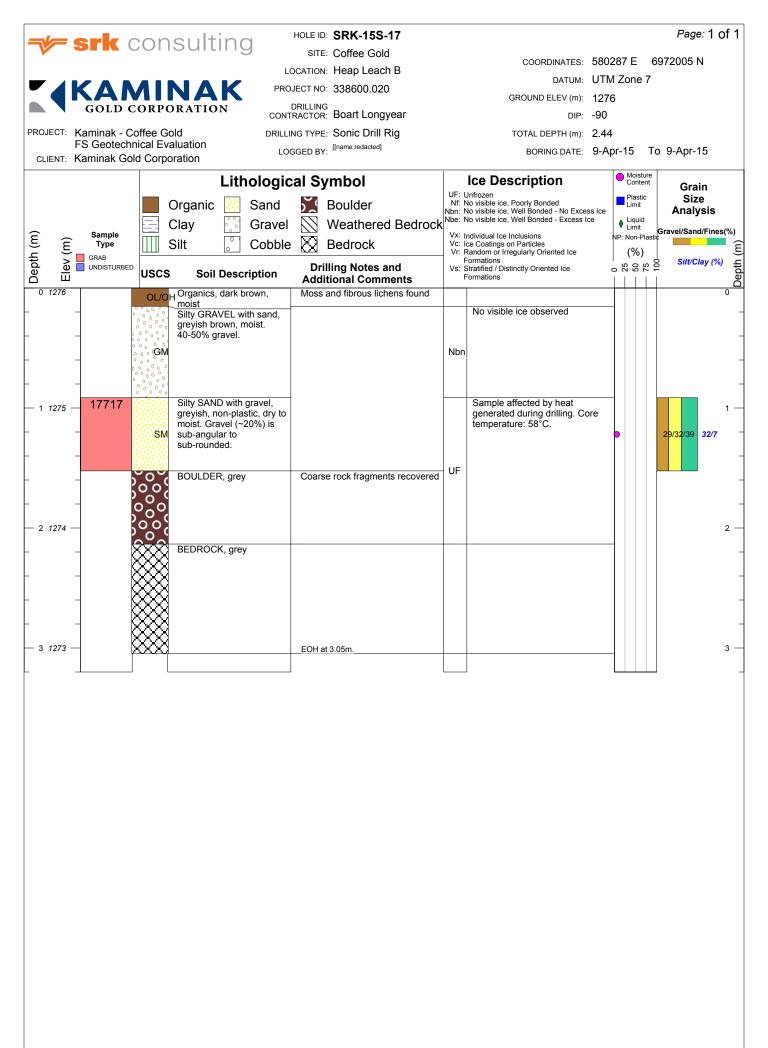
Page: 1 of 1

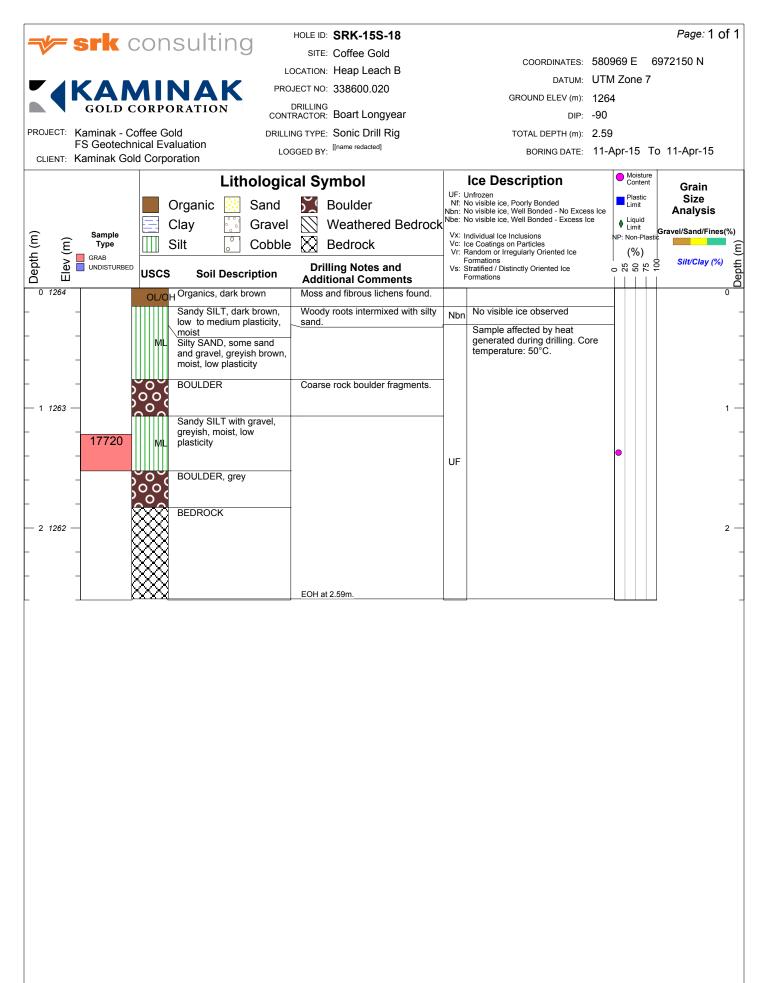
COORDINATES: 580070 E 6972348 N

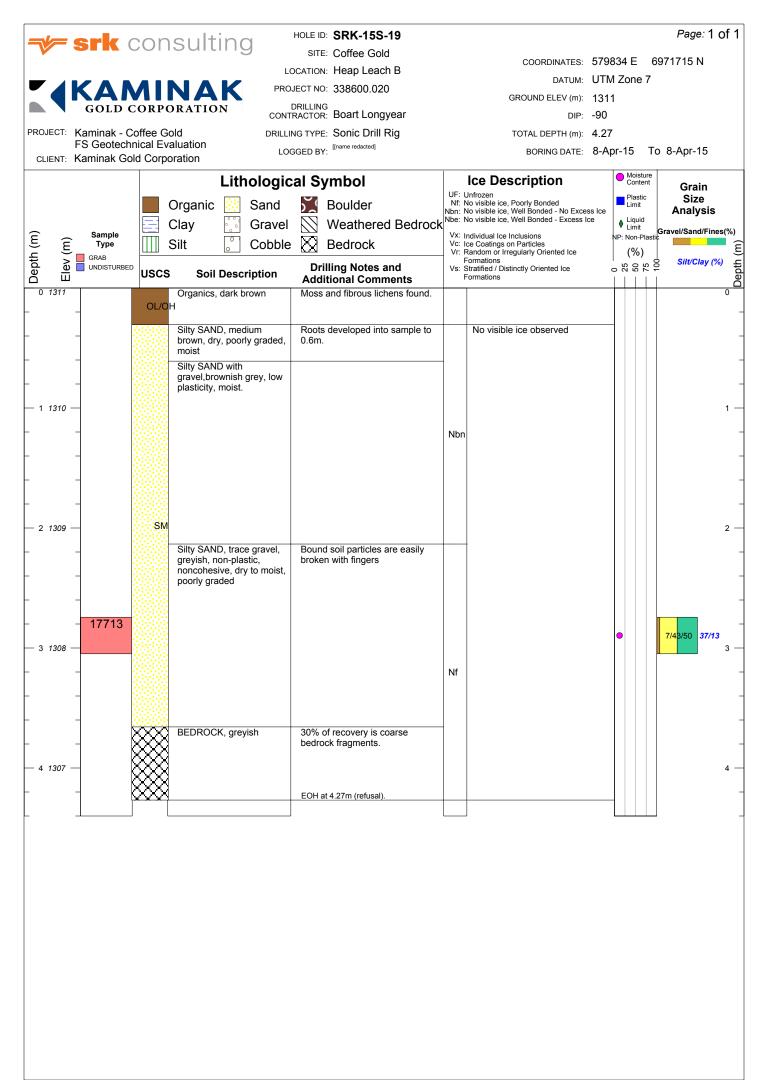

DATUM: UTM Zone 7

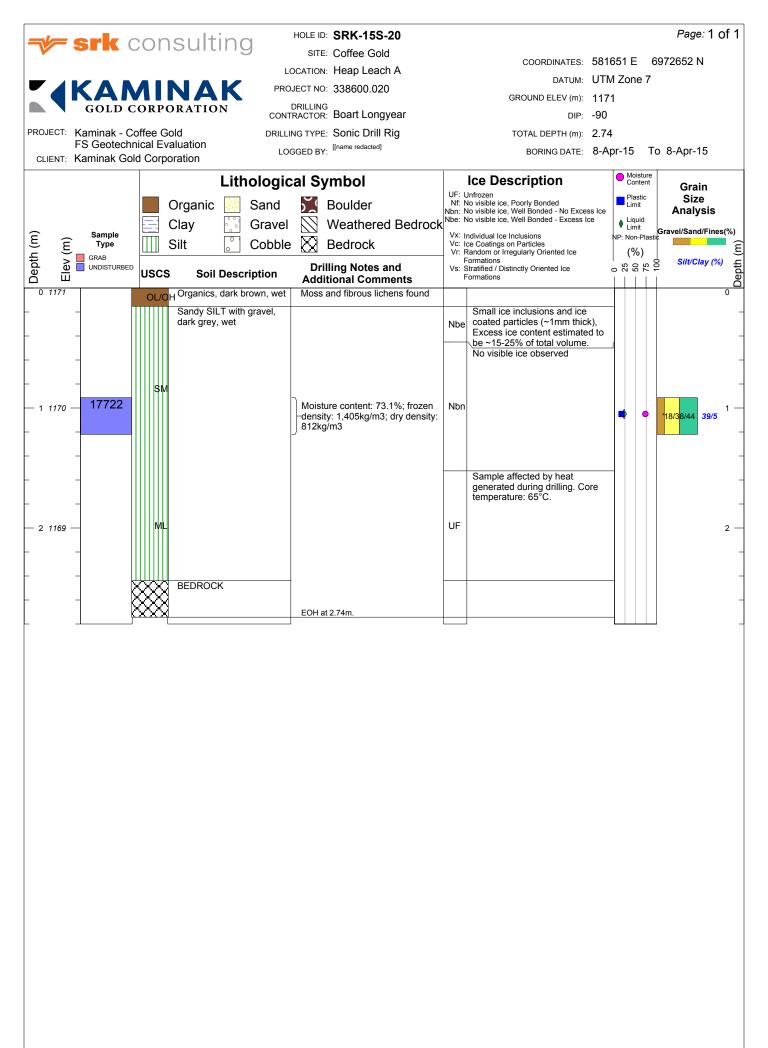

GROUND ELEV (m): 1305

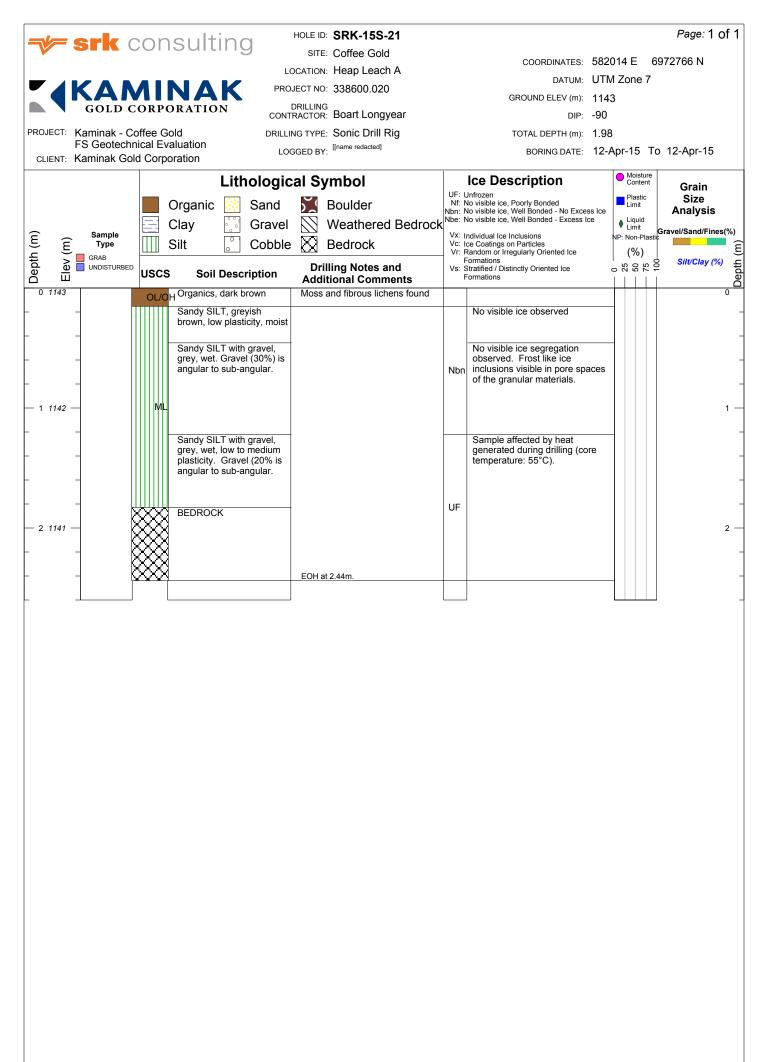

TOTAL DEPTH (m): 2.13

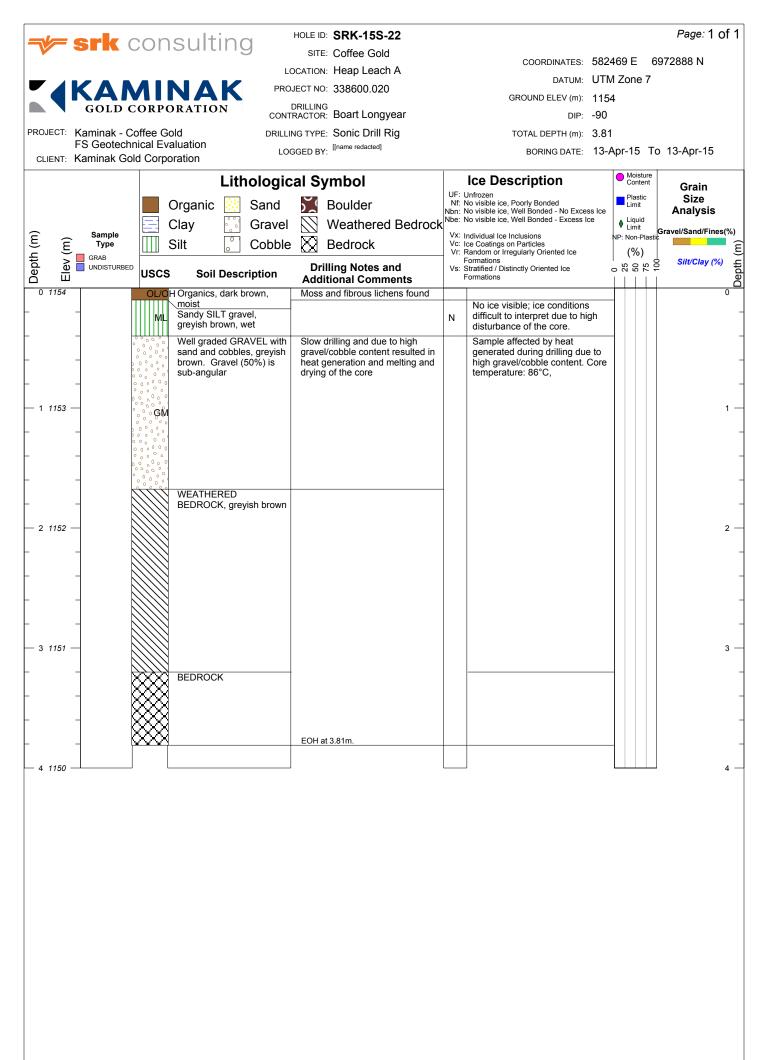

DIP: **-90** 

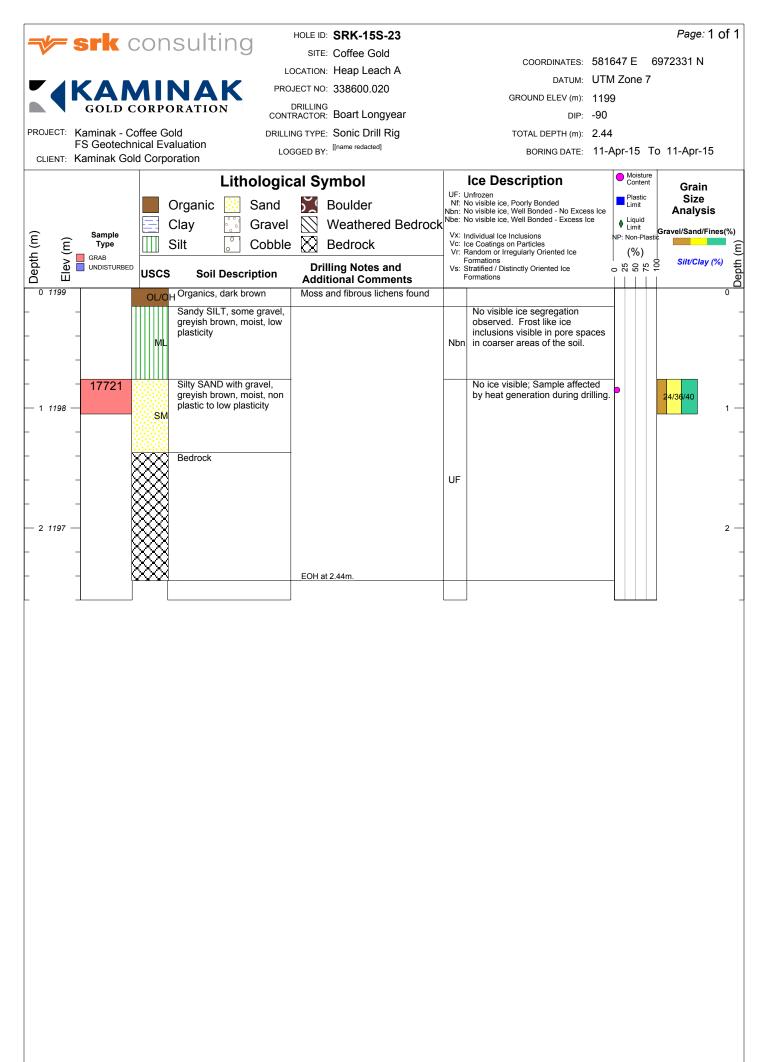

BORING DATE: 9-Apr-15 To 9-Apr-15

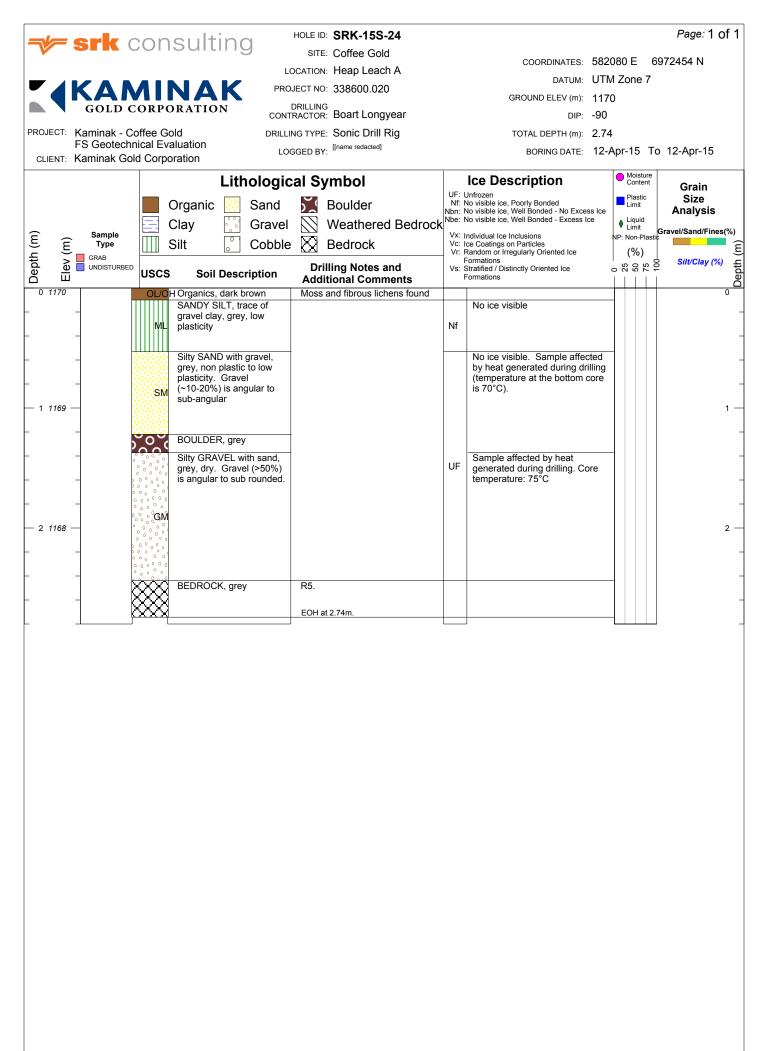


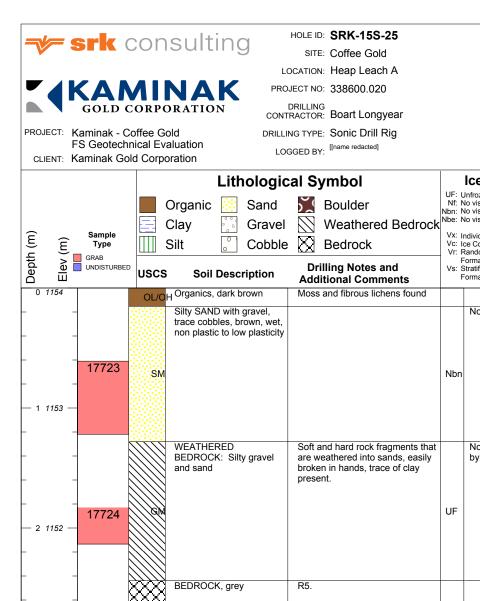



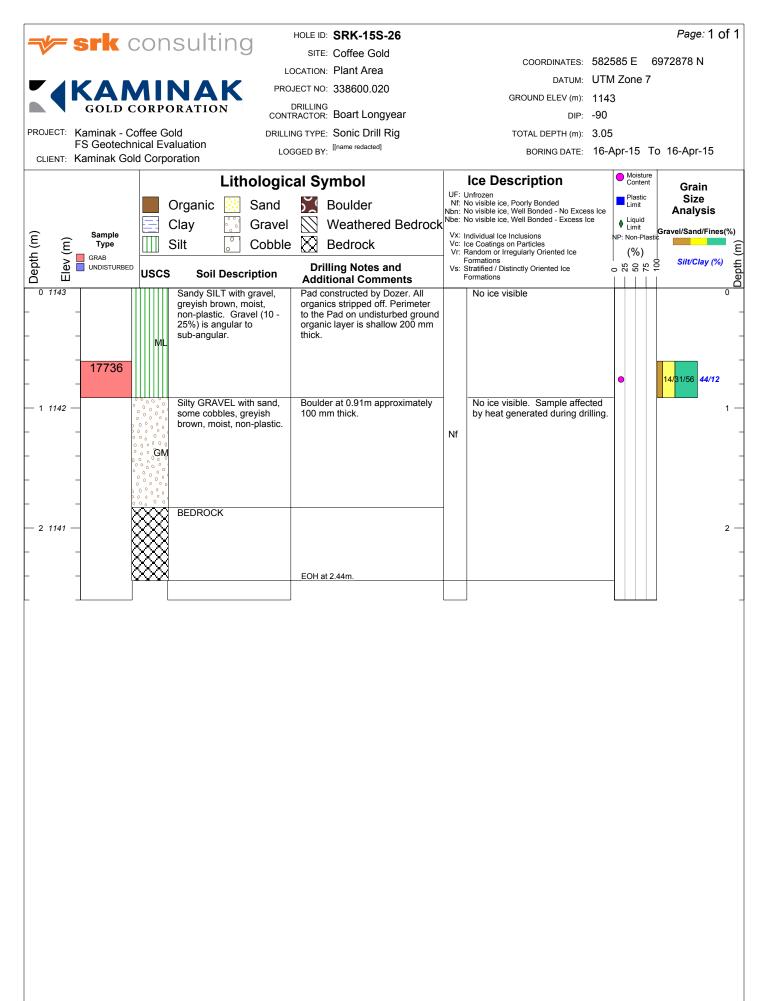



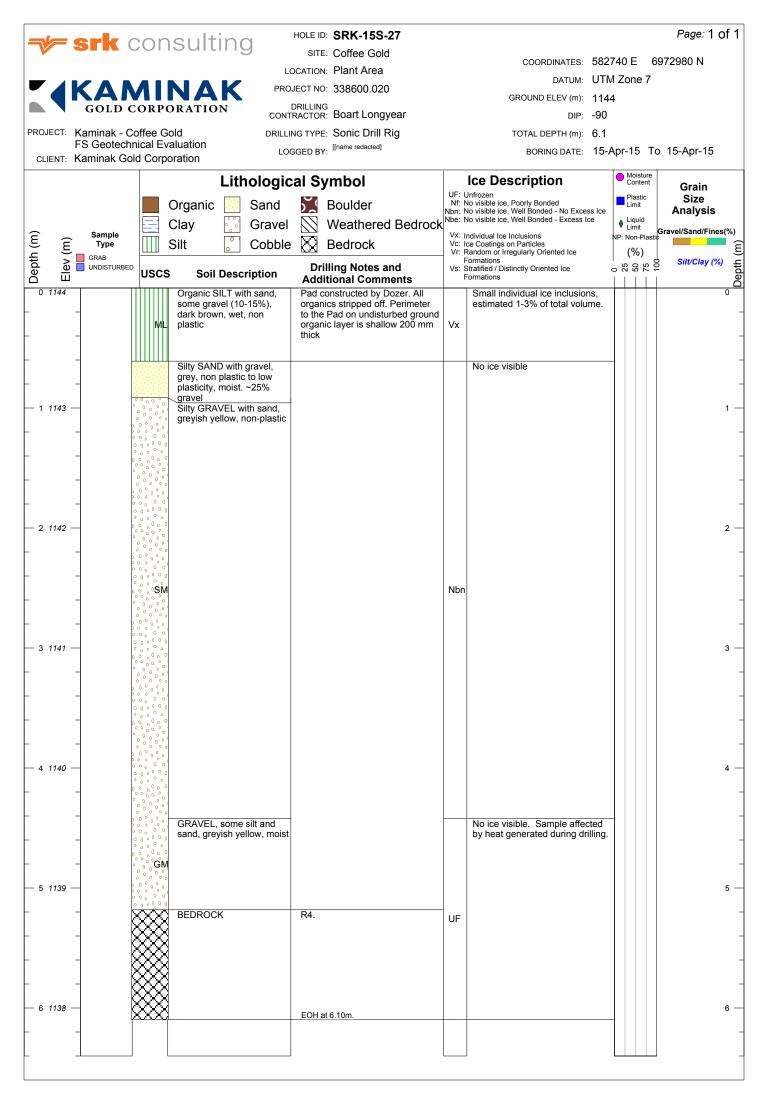


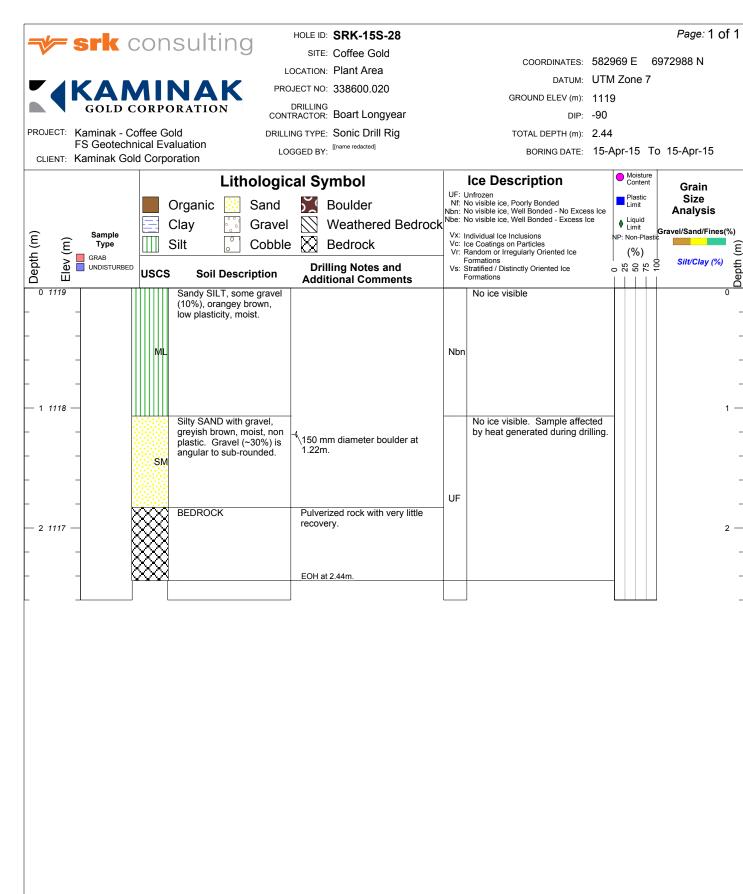


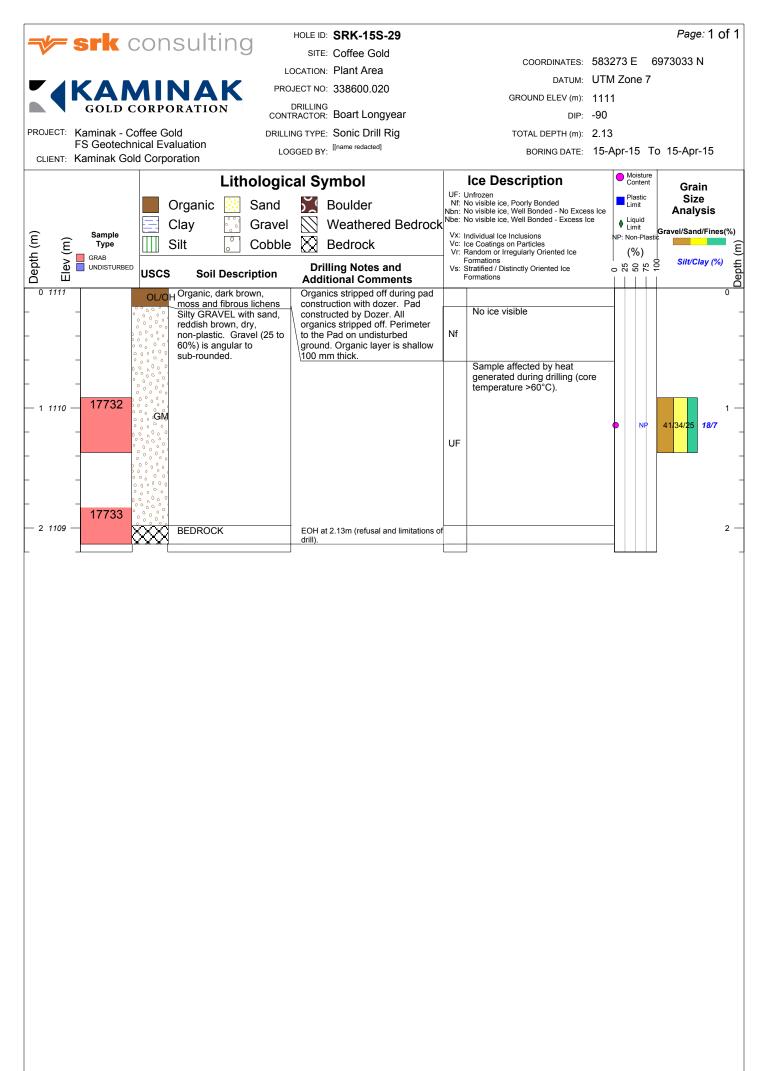


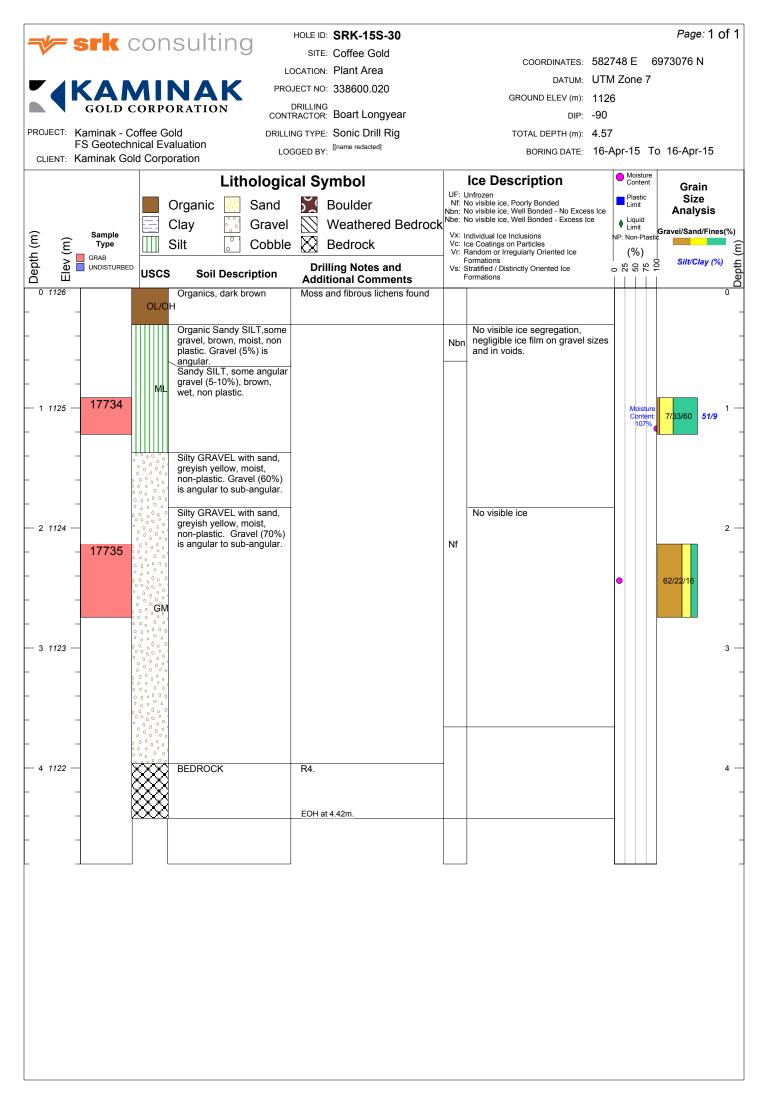


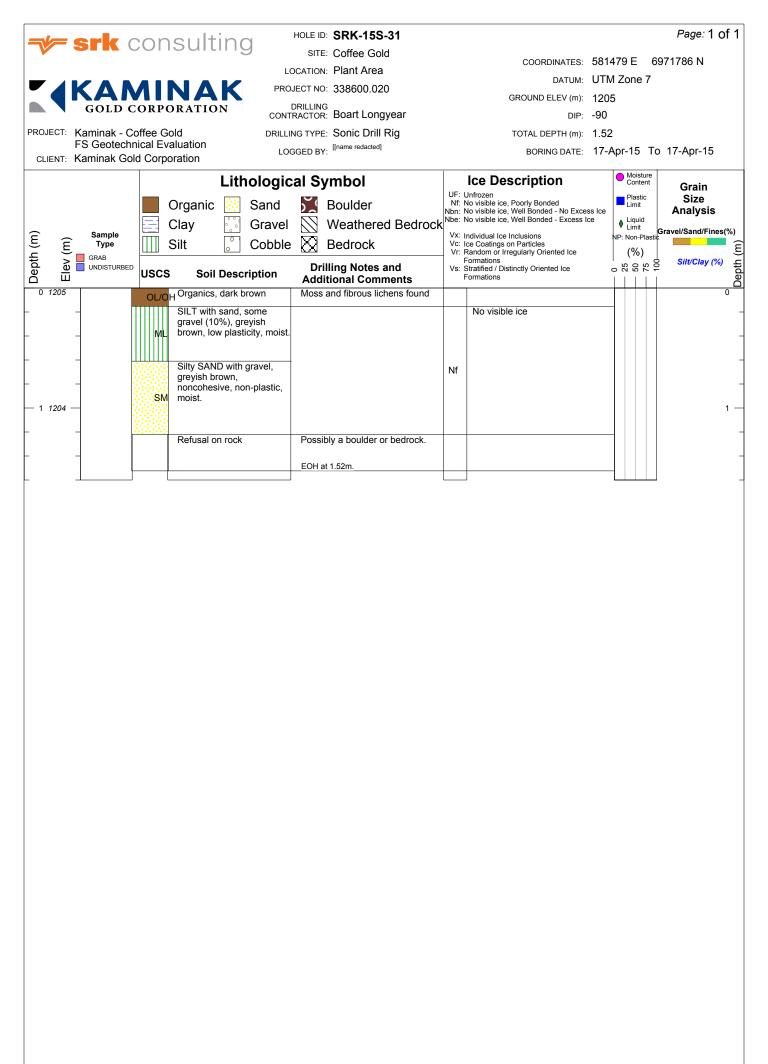





GROUND ELEV (m): 1154 -90 DIP: TOTAL DEPTH (m): 3.2 BORING DATE: 12-Apr-15 To 12-Apr-15 Moisture Content **Ice Description** Grain UF: Unfrozen Nf: No visible ice, Poorly Bonded Nbn: No visible ice, Well Bonded - No Excess Ice Nbe: No visible ice, Well Bonded - Excess Ice Plastic Limit Size **Analysis** ♦ Liquid Limit vel/Sand/Fines(%) Vx: Individual Ice Inclusions
Vc: Ice Coatings on Particles
Vr: Random or Irregularly Oriented Ice NP: Non-Plasti  $\widehat{\Xi}$ (%) Silt/Clay (%) 0 25 50 75 100 Vs: Stratified / Distinctly Oriented Ice Formations No ice visible No ice visible. Sample affected by heat generated during drilling. 3 1151 EOH at 3.20m.


Page: 1 of 1


COORDINATES: 582551 E 6972708 N


DATUM: UTM Zone 7
















HOLE ID: SRK-15S-32

SITE: Coffee Gold

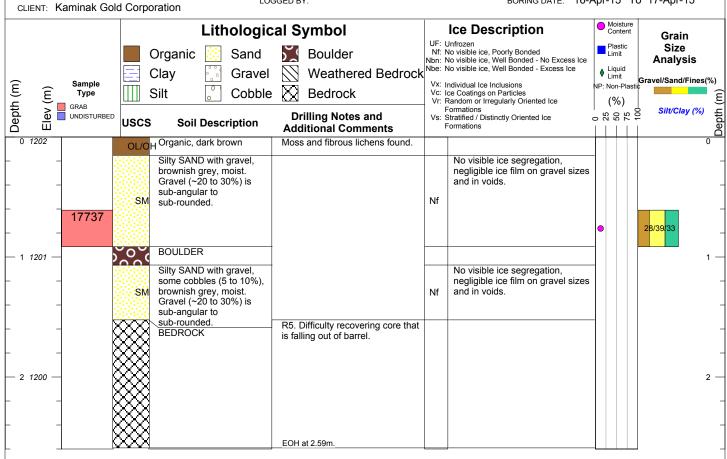
LOCATION: Plant Area

PROJECT NO: 338600.020

DRILLING CONTRACTOR: Boart Longyear DRILLING TYPE: Sonic Drill Rig

LOGGED BY: [[name redacted]

Page: 1 of 1


COORDINATES: 581537 E 6971910 N

DATUM: UTM Zone 7

GROUND ELEV (m): 1202

-90 DIP: TOTAL DEPTH (m): 2.59

BORING DATE: 16-Apr-15 To 17-Apr-15







Kaminak - Coffee Gold FS Geotechnical Evaluation Kaminak Gold Corporation

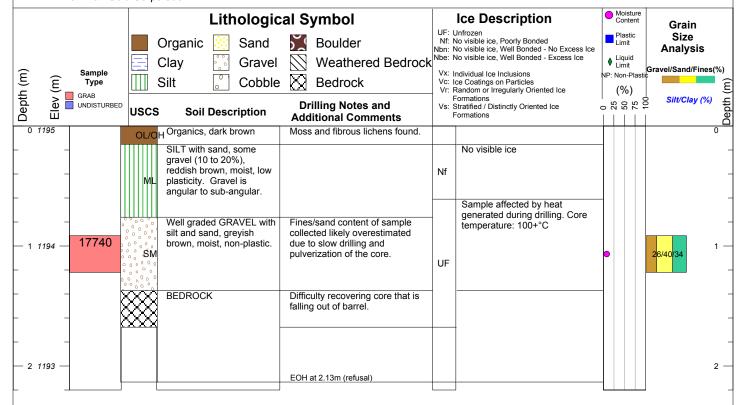
HOLE ID: SRK-15S-33

SITE: Coffee Gold

LOCATION: Plant Area

PROJECT NO: 338600.020

DRILLING CONTRACTOR: Boart Longyear DRILLING TYPE: Sonic Drill Rig


LOGGED BY [[name redacted]

581587 E

UTM Zone 7

-90 2.13

18-Apr-15 To 18-Apr-15





Kaminak - Coffee Gold

FS Geotechnical Evaluation

HOLE ID: SRK-15S-34

SITE: Coffee Gold

LOCATION: Plant Area

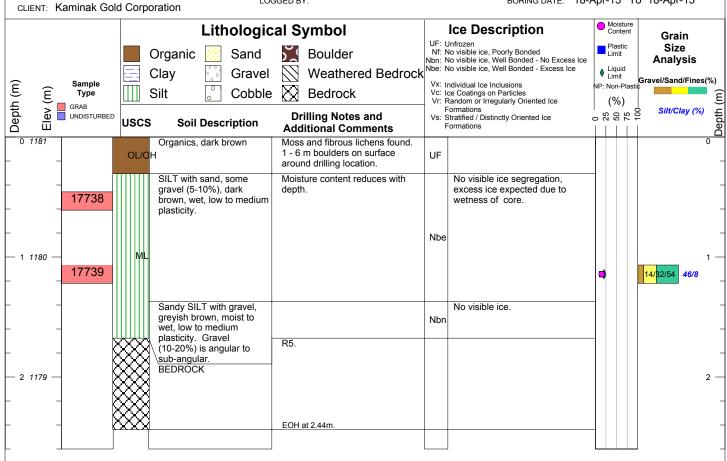
PROJECT NO: 338600.020

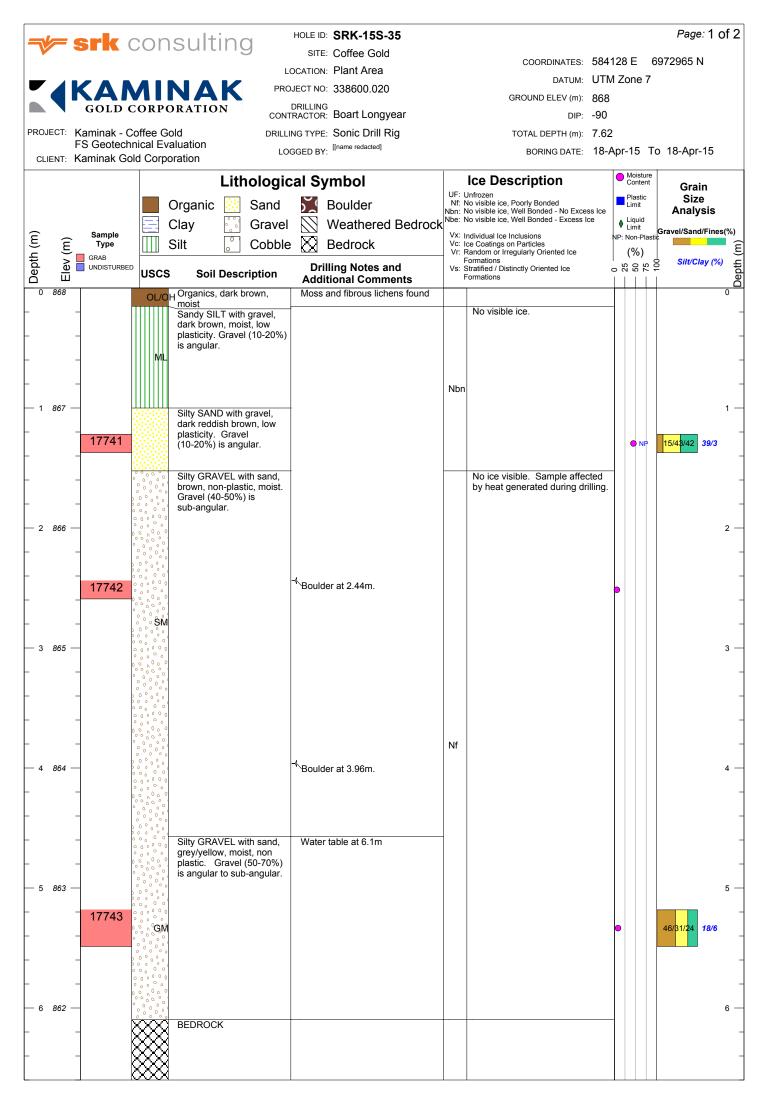
DRILLING CONTRACTOR: Boart Longyear

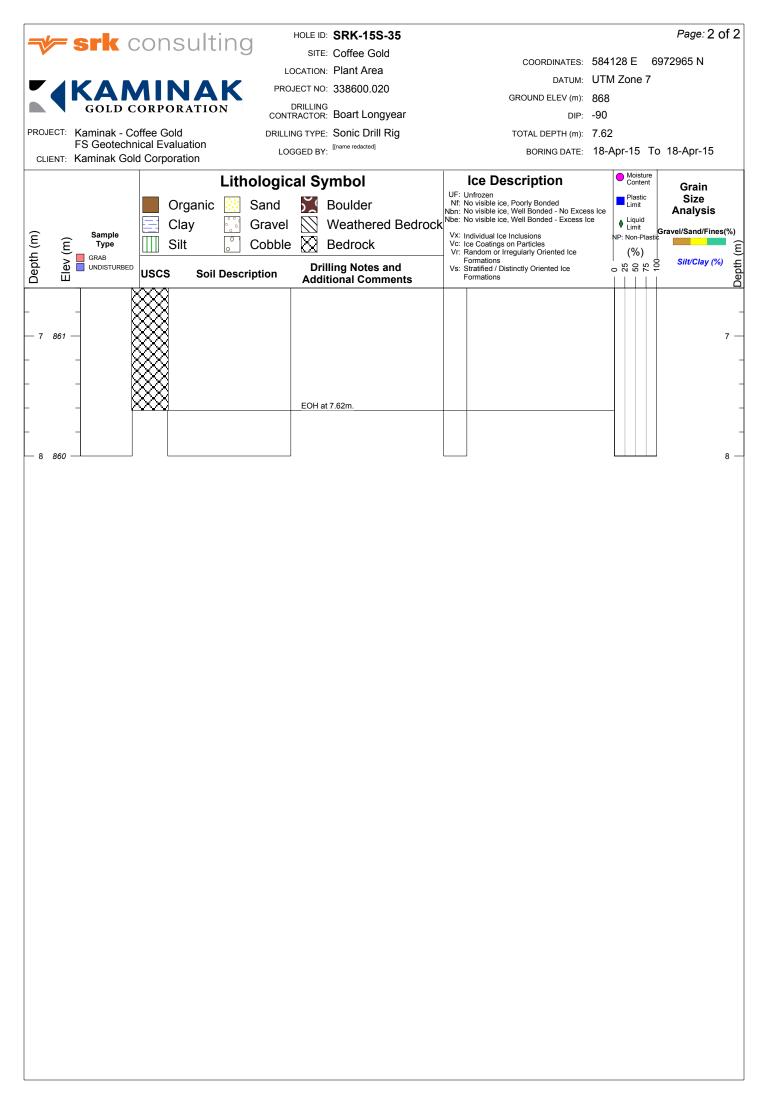
DRILLING TYPE: Sonic Drill Rig LOGGED BY: [[name redacted]

Page: 1 of 1

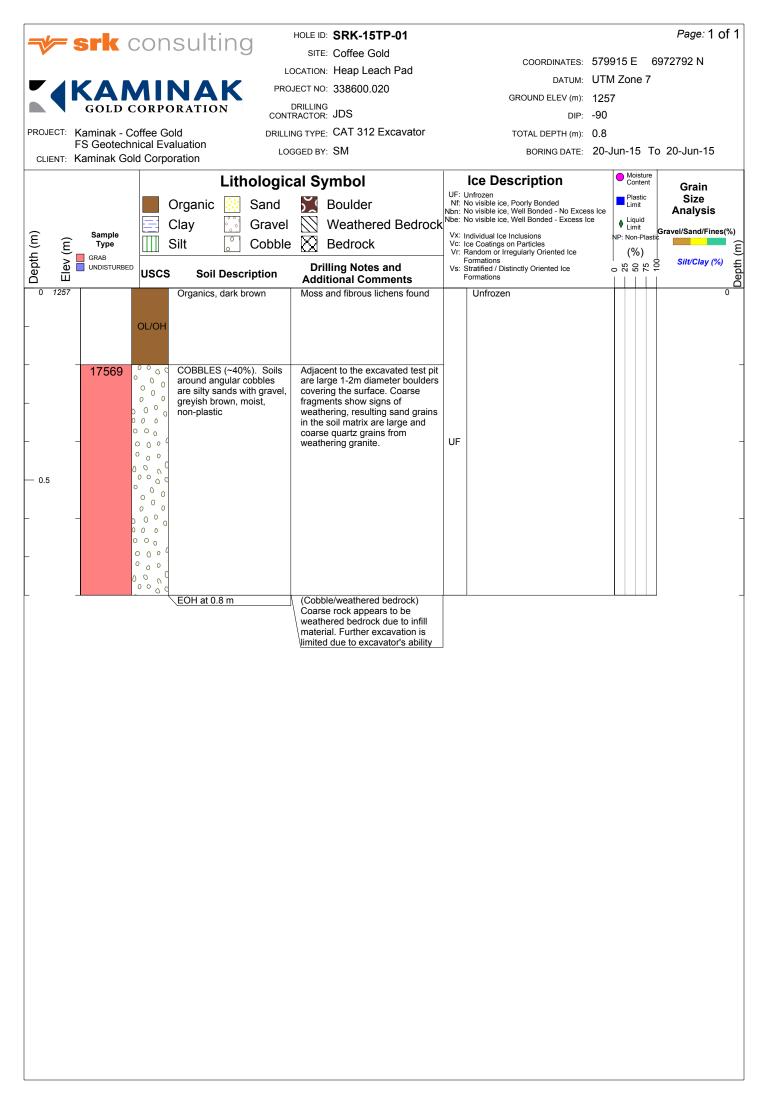
COORDINATES: 581337 E 6971689 N

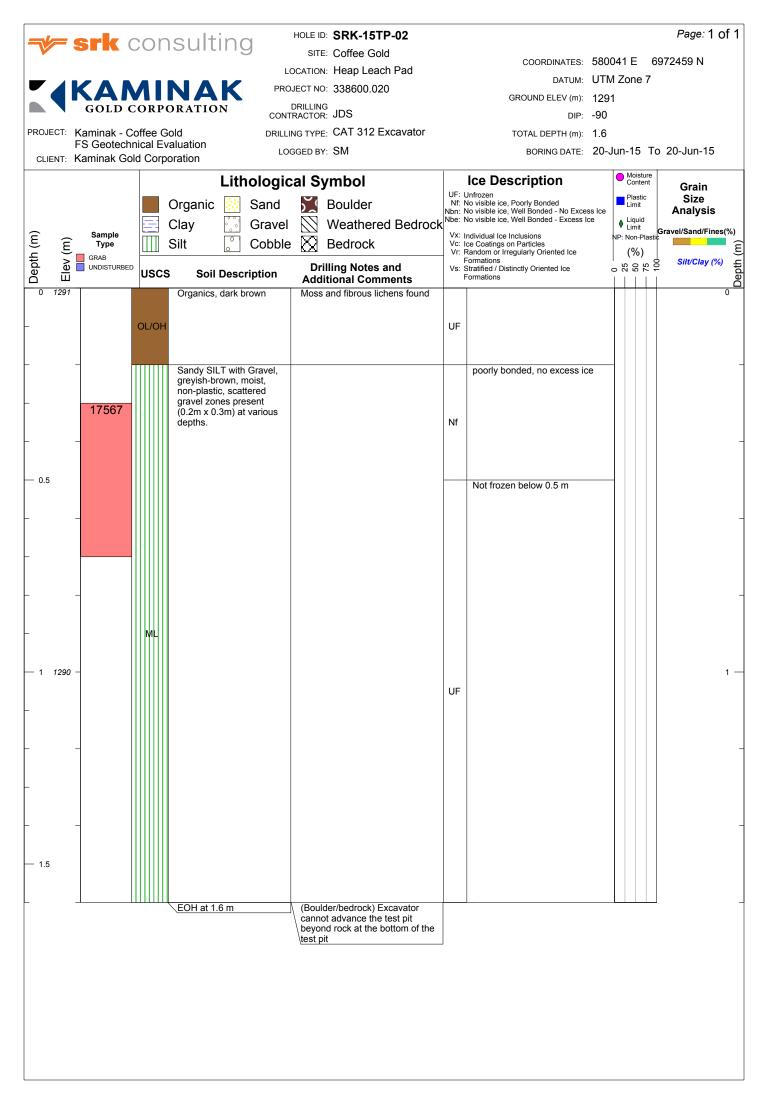

DATUM: UTM Zone 7

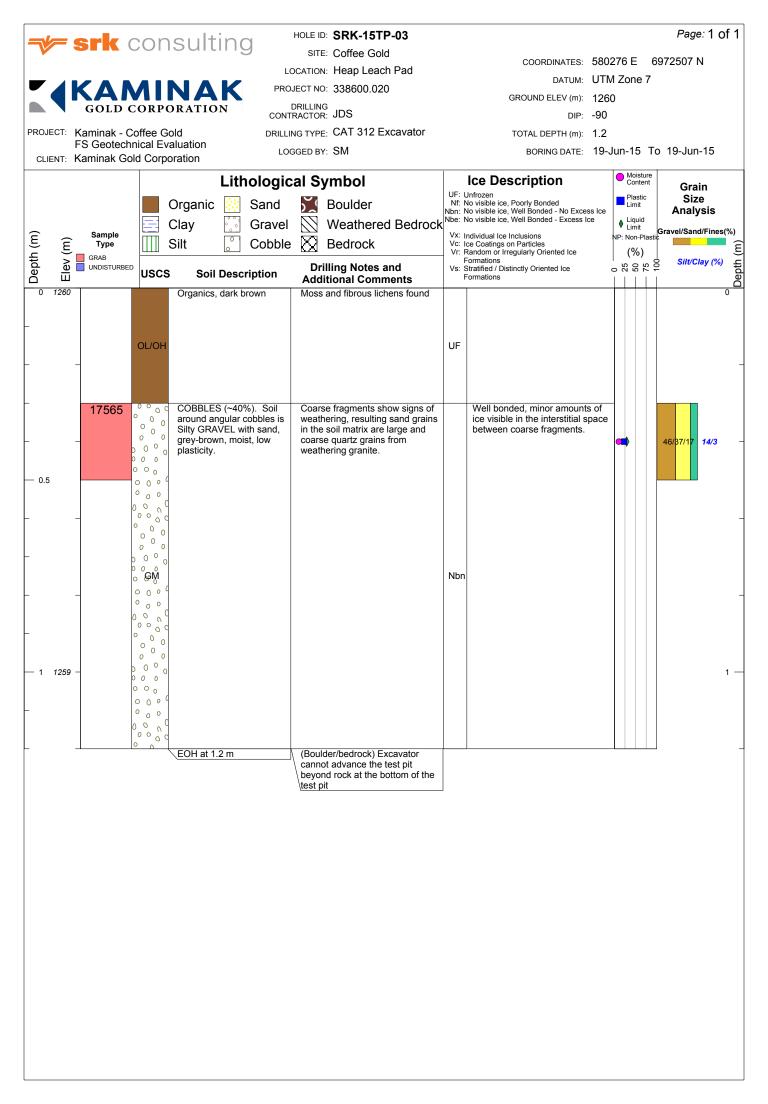

GROUND ELEV (m): 1181

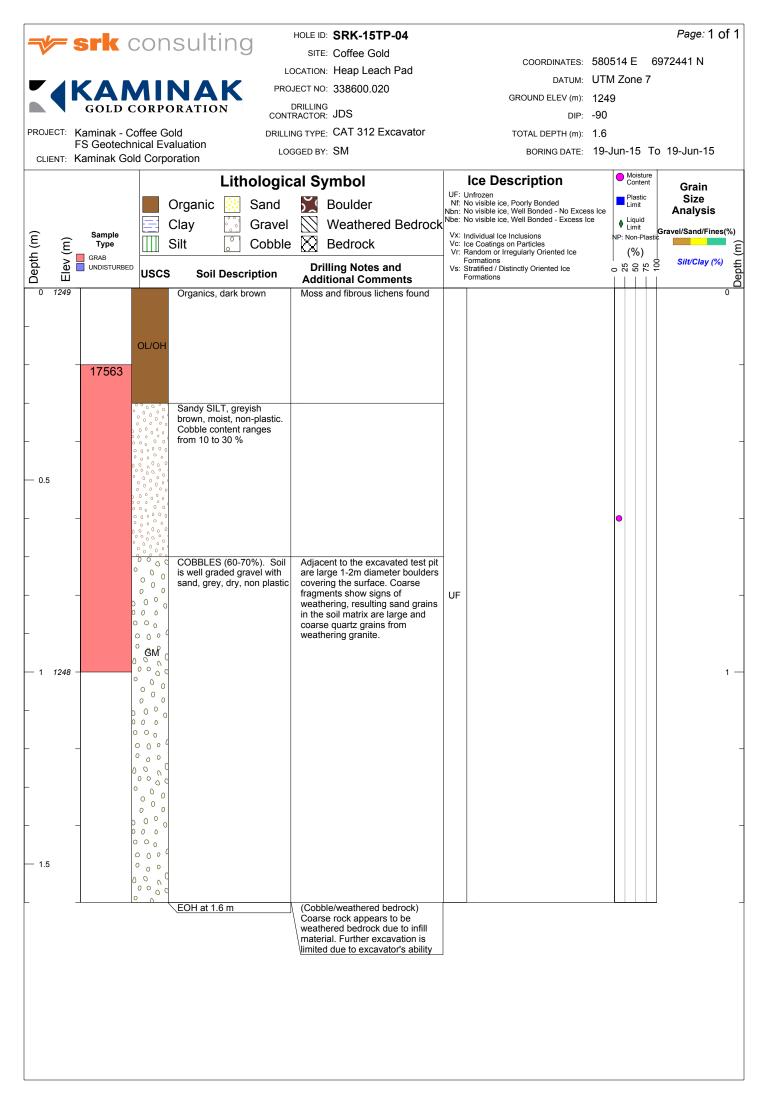

TOTAL DEPTH (m): 2.44

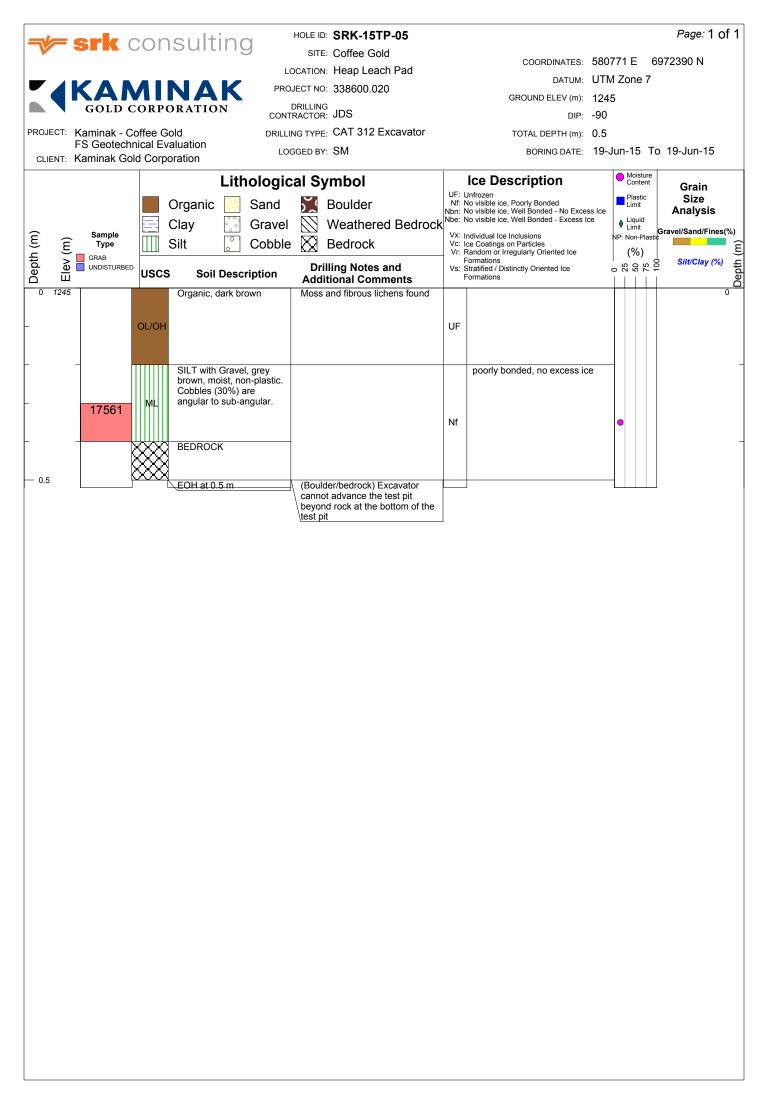
DIP: -90

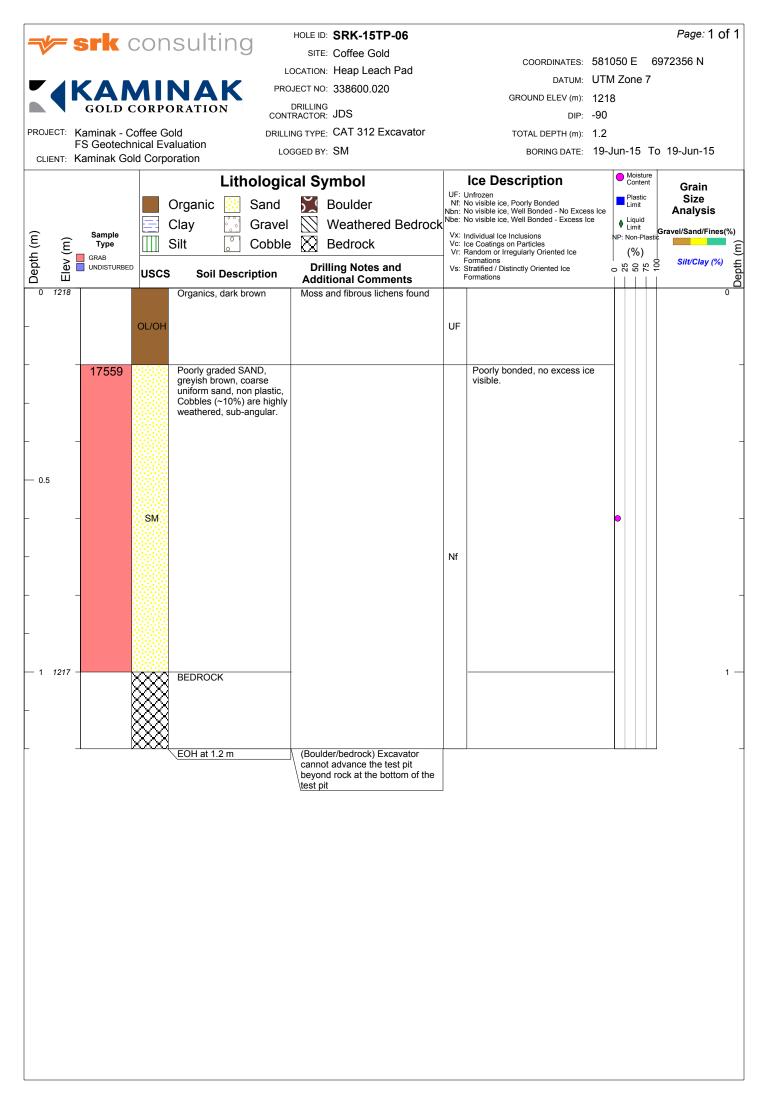

BORING DATE: 18-Apr-15 To 18-Apr-15

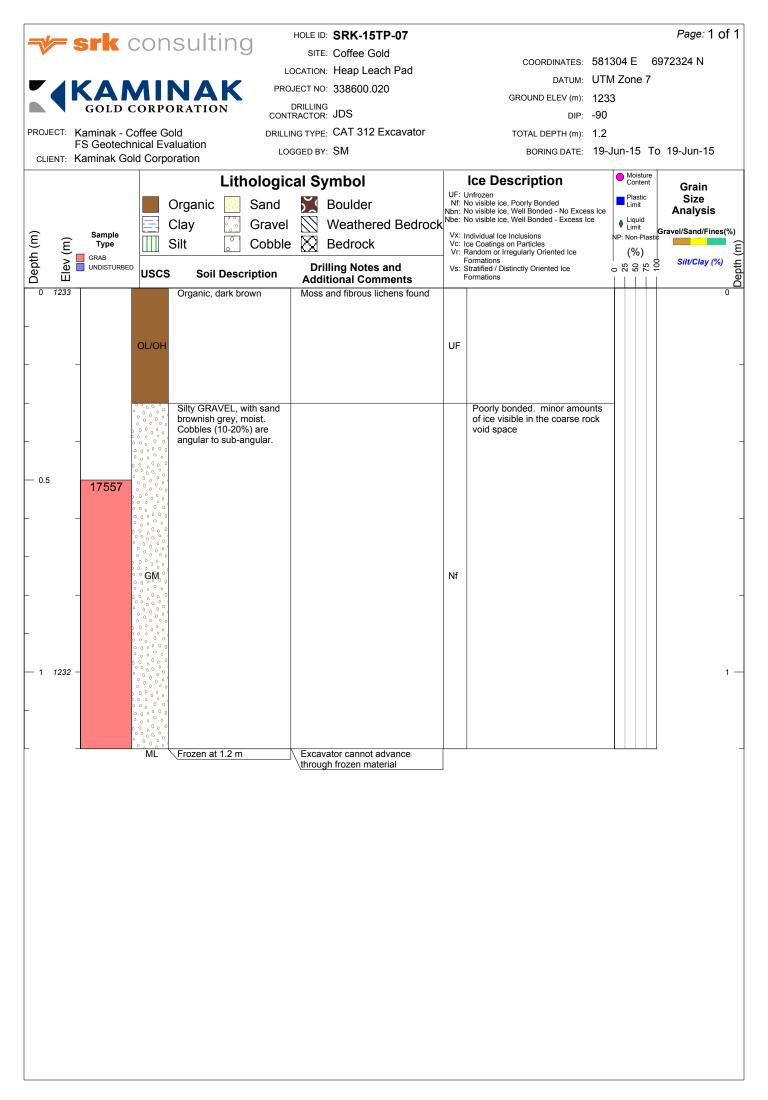


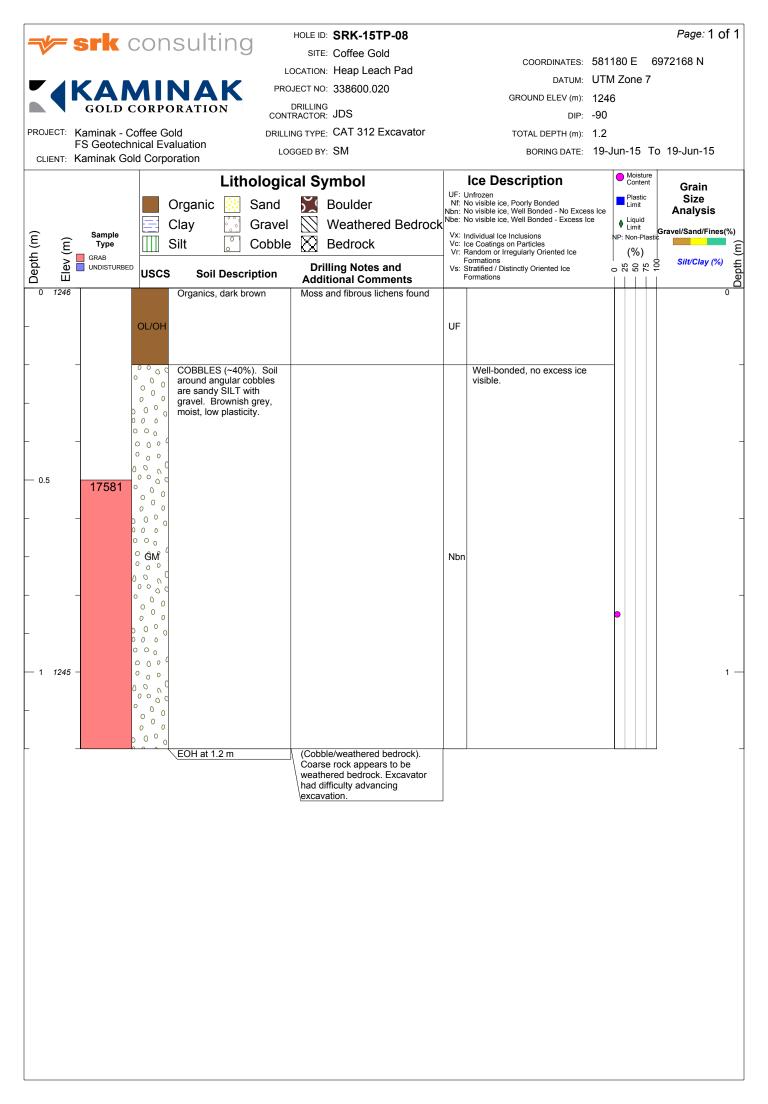



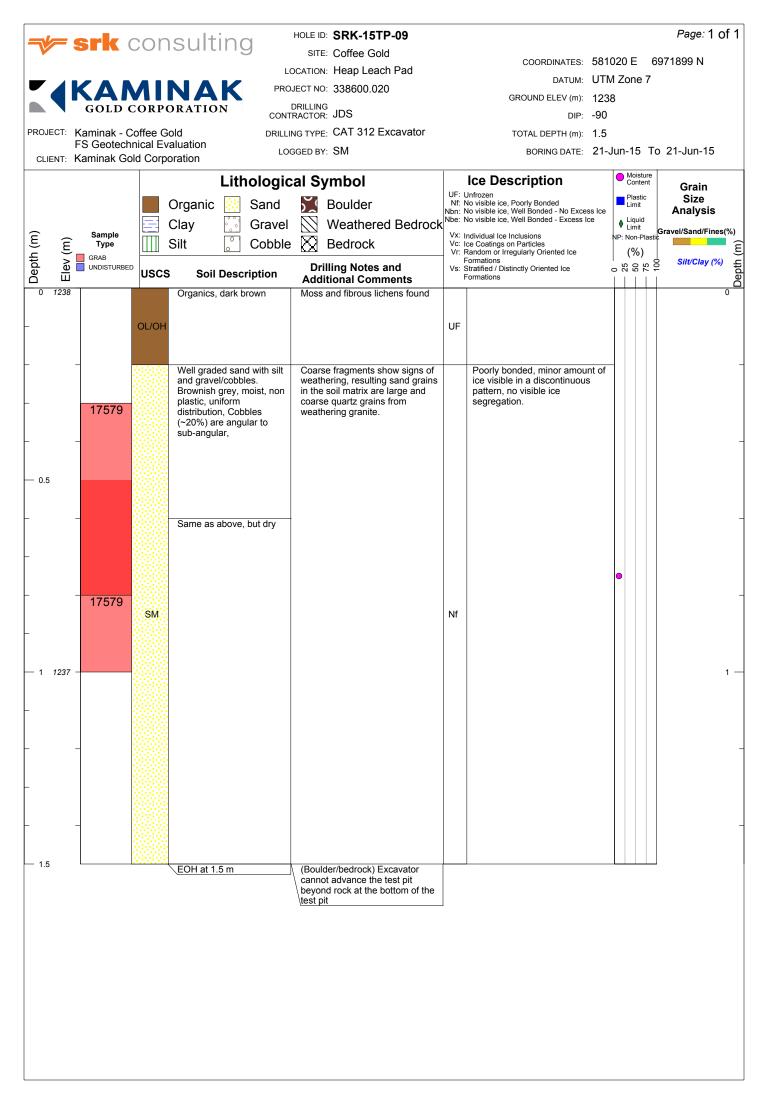



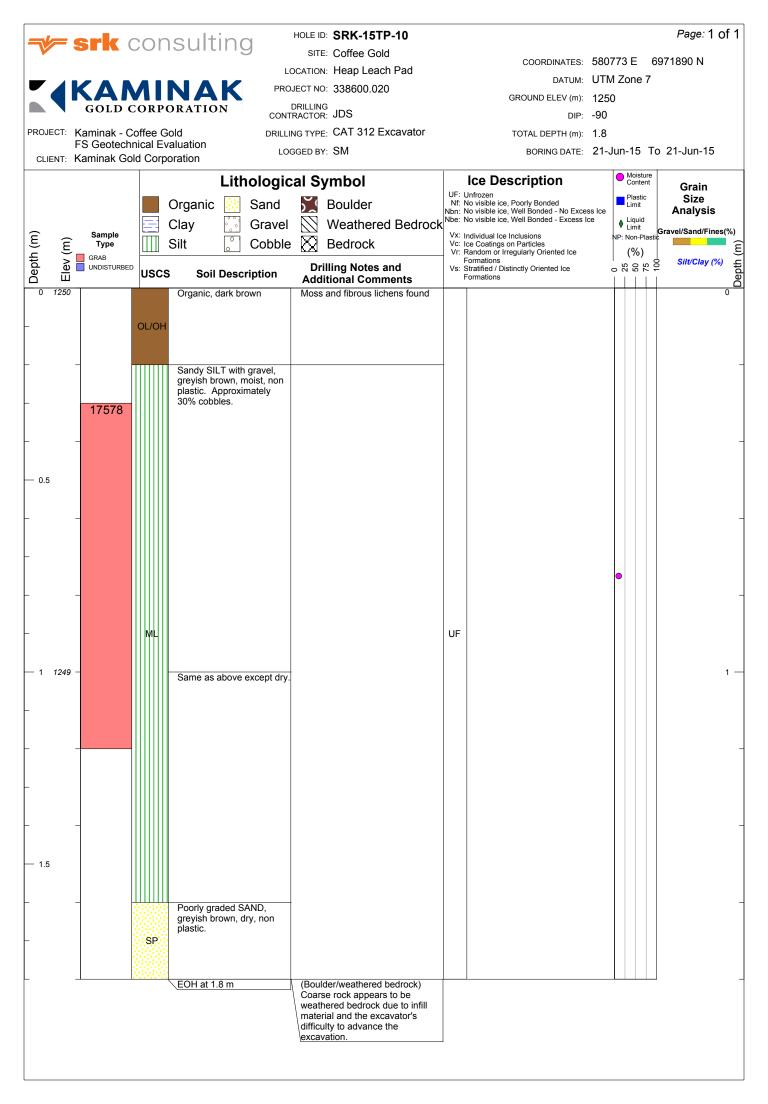


**Appendix B-2: Test Pit Logs** 

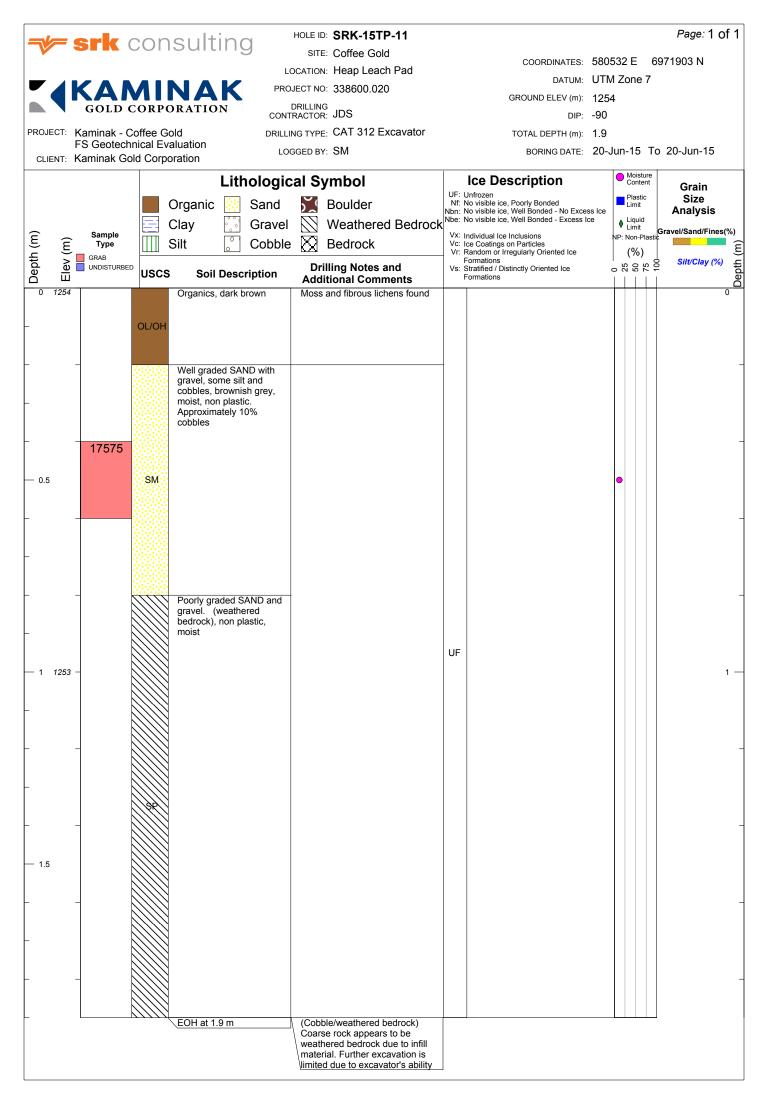


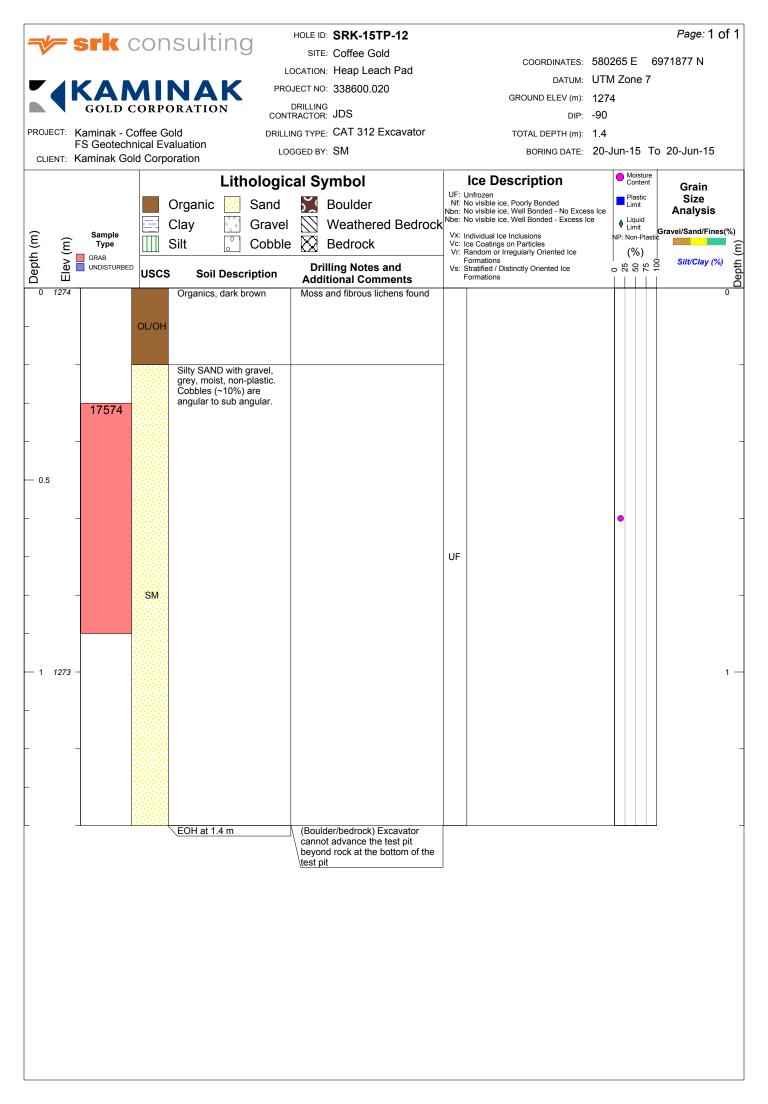



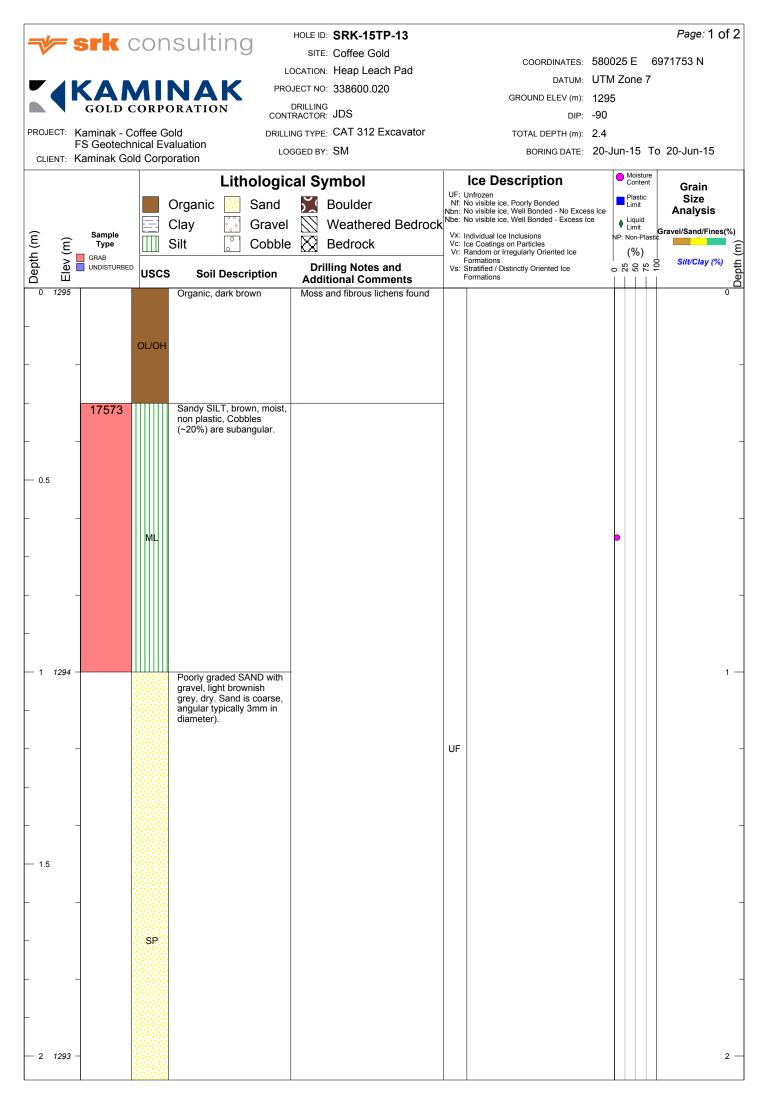



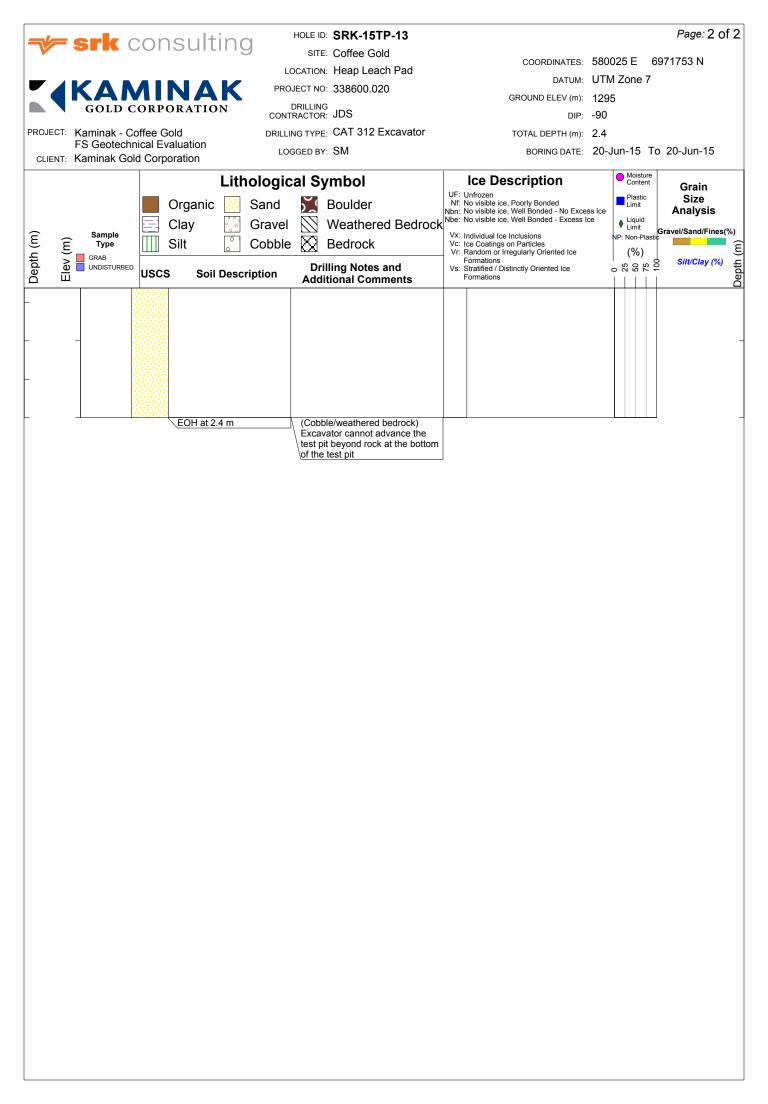



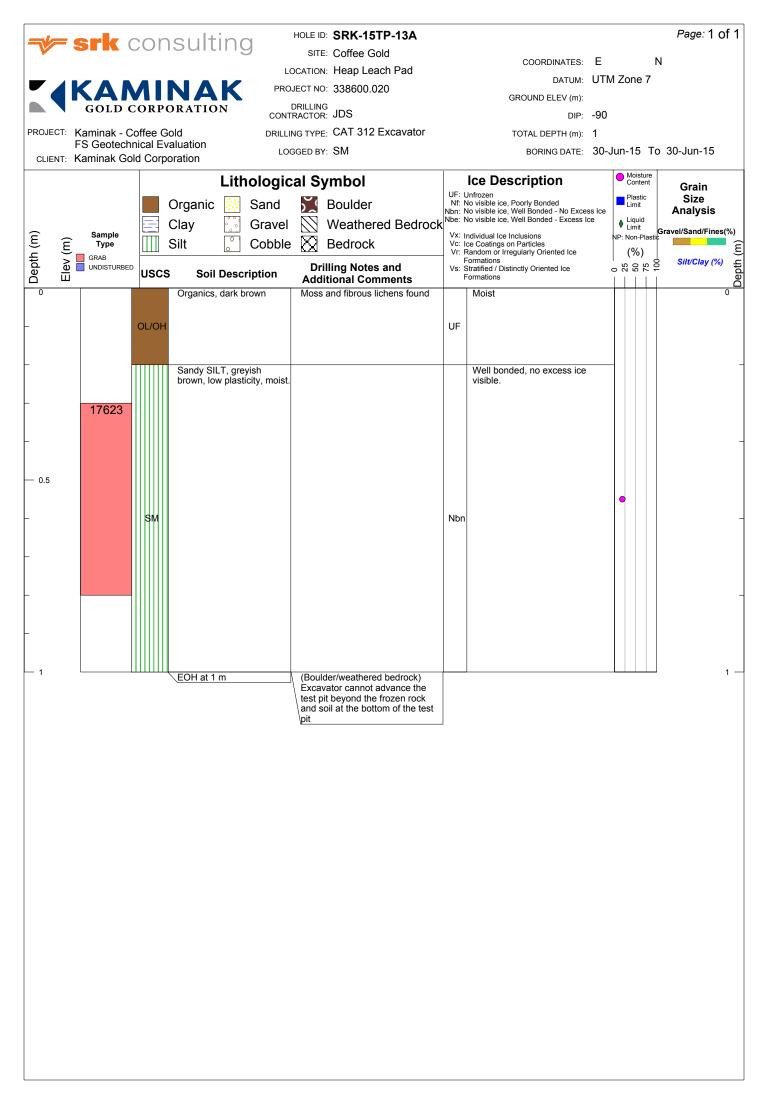



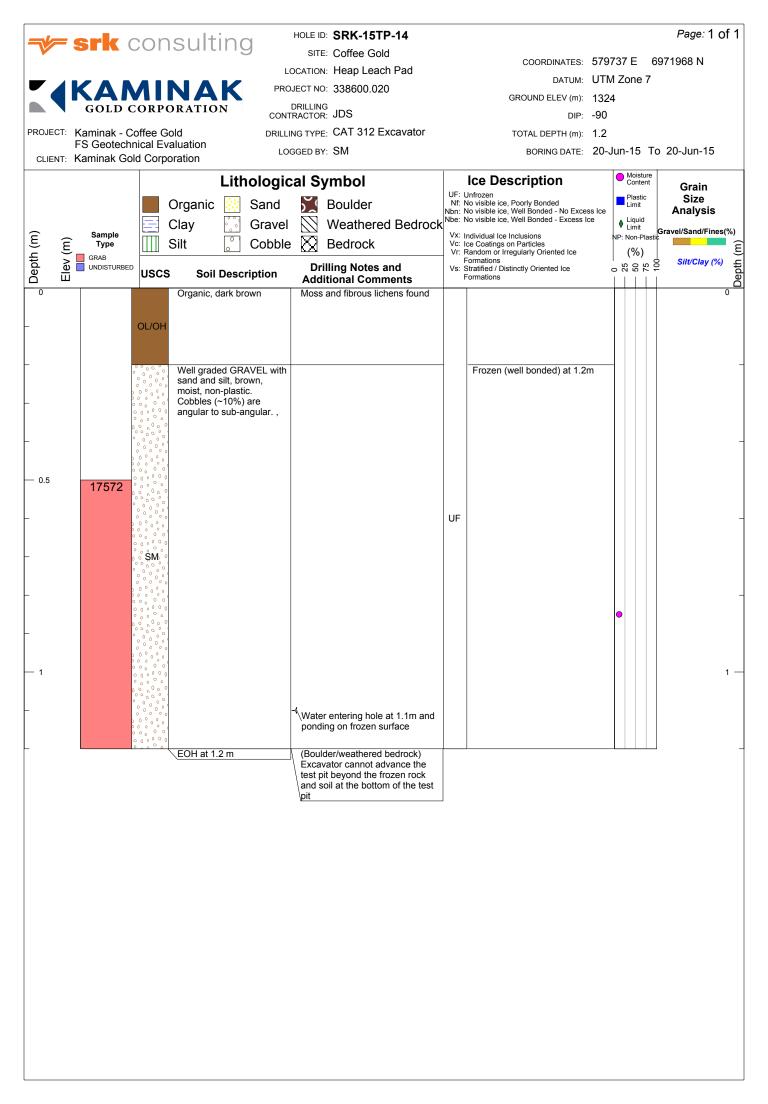



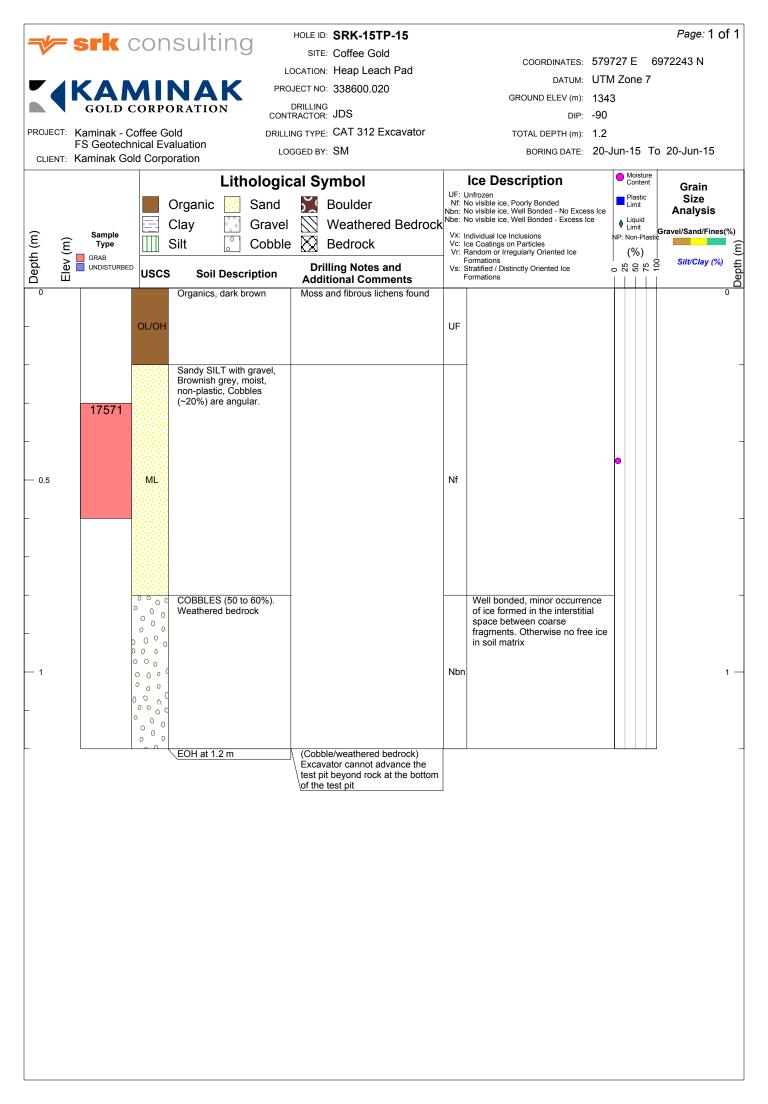



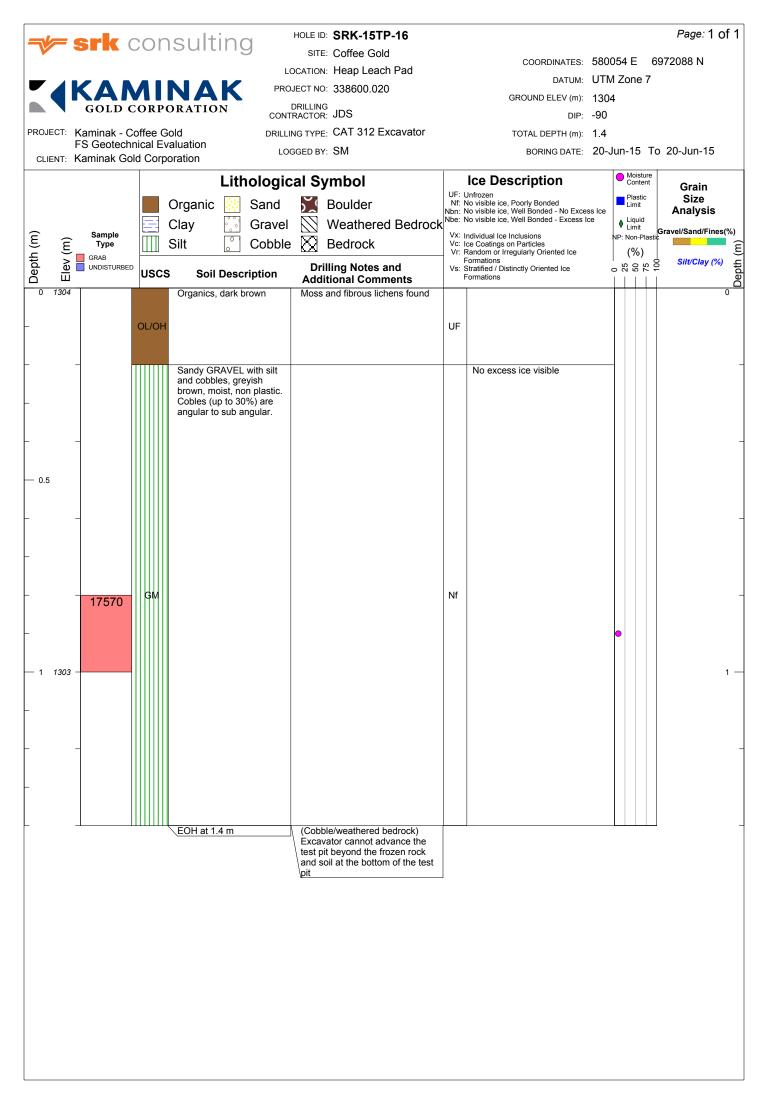



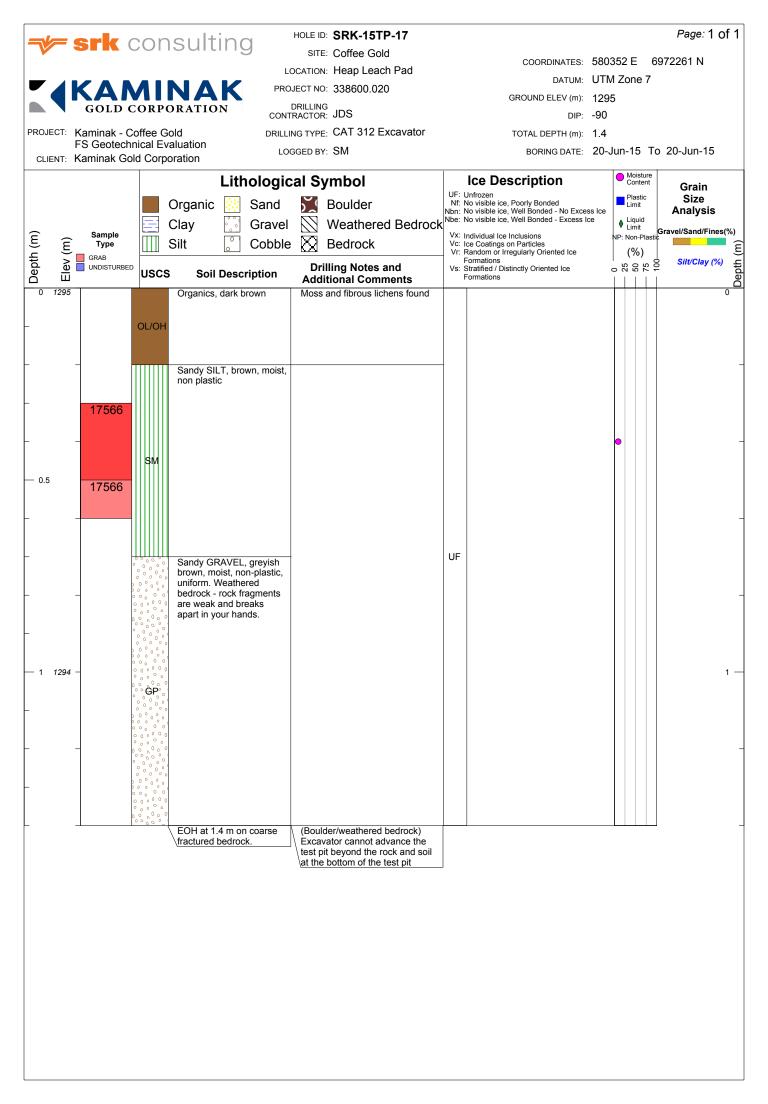



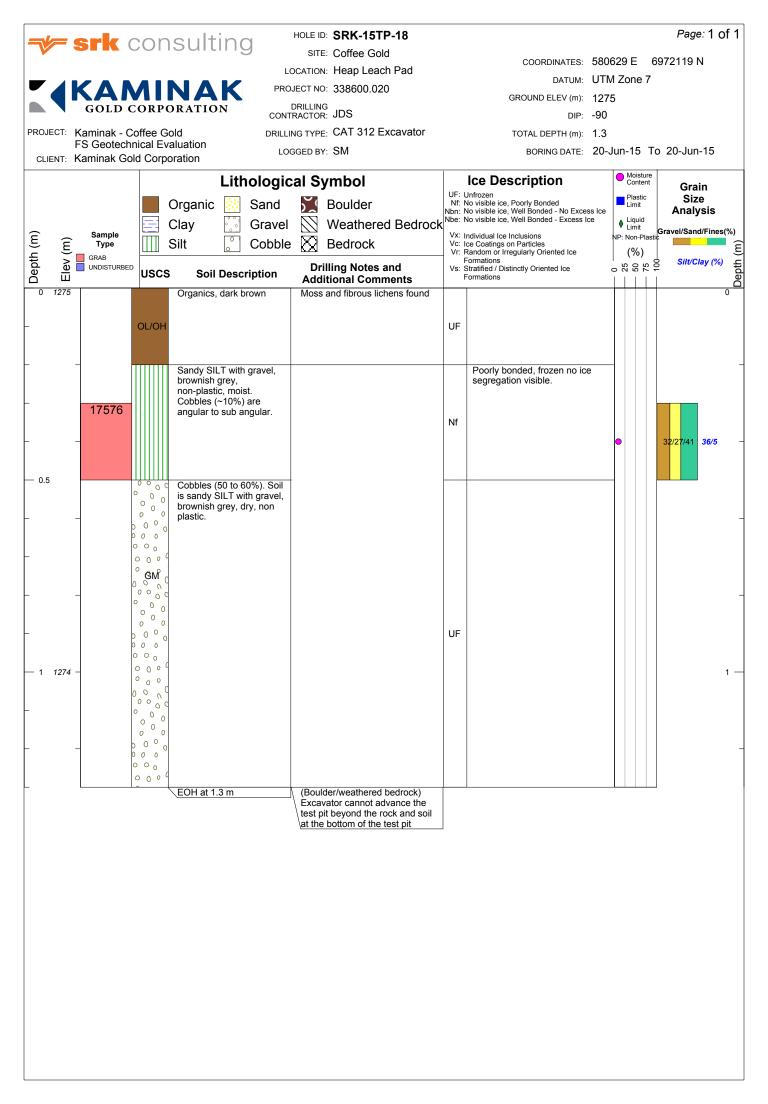



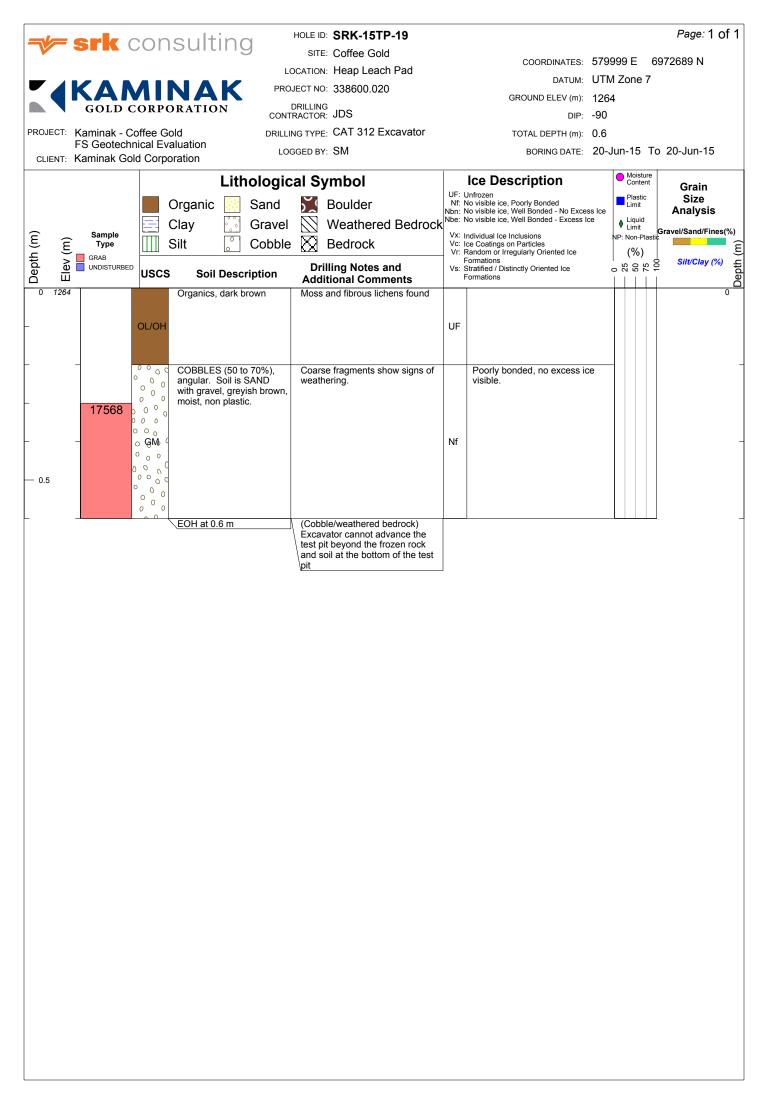



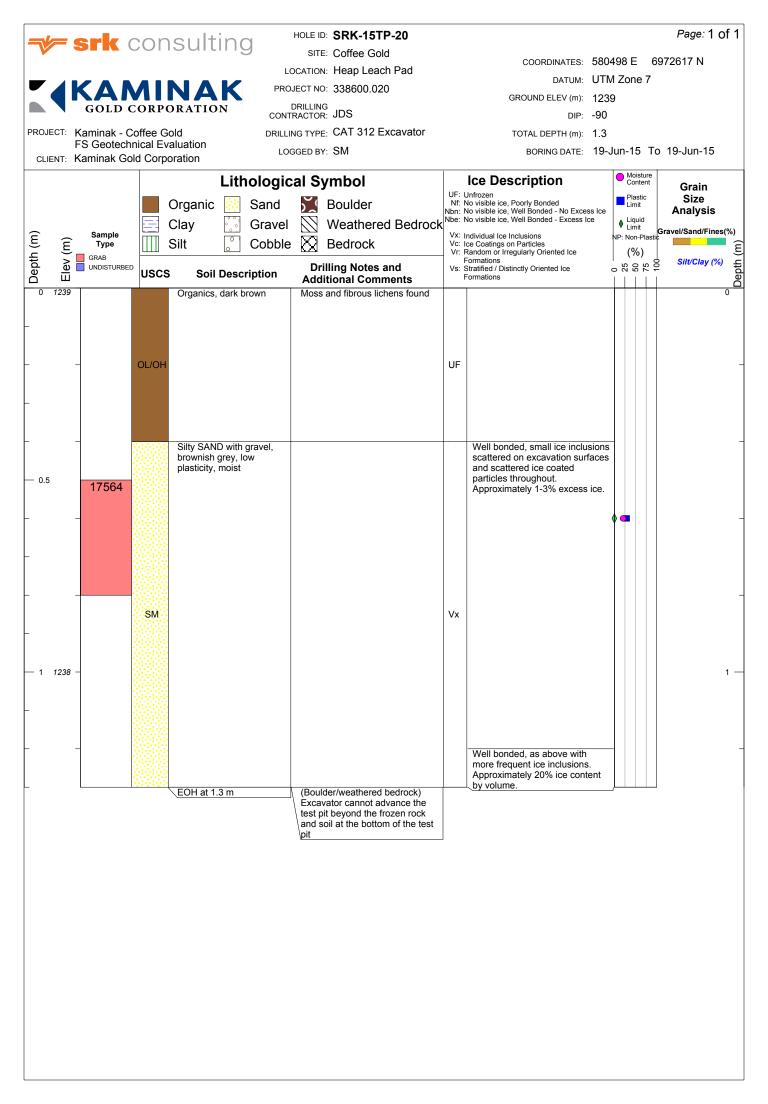



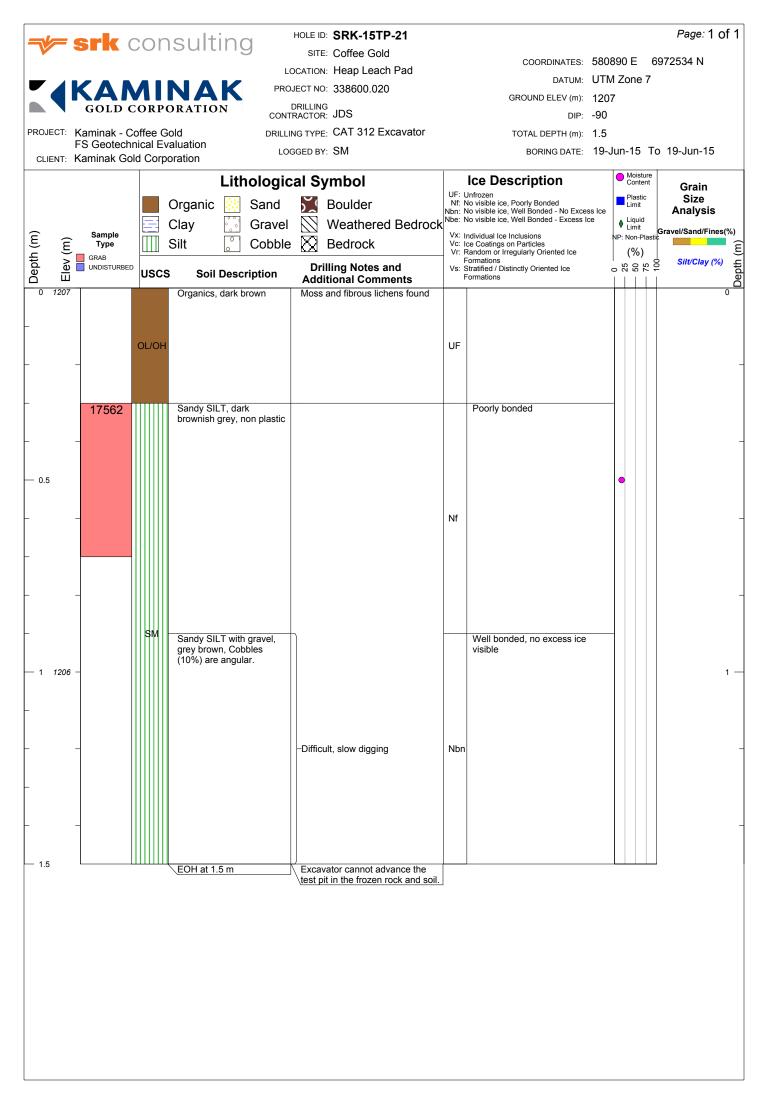



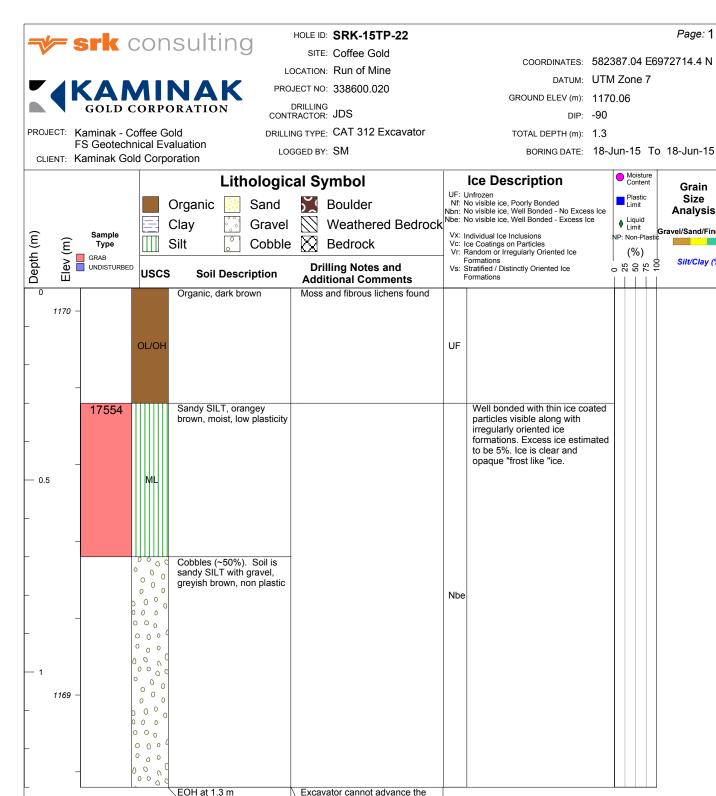











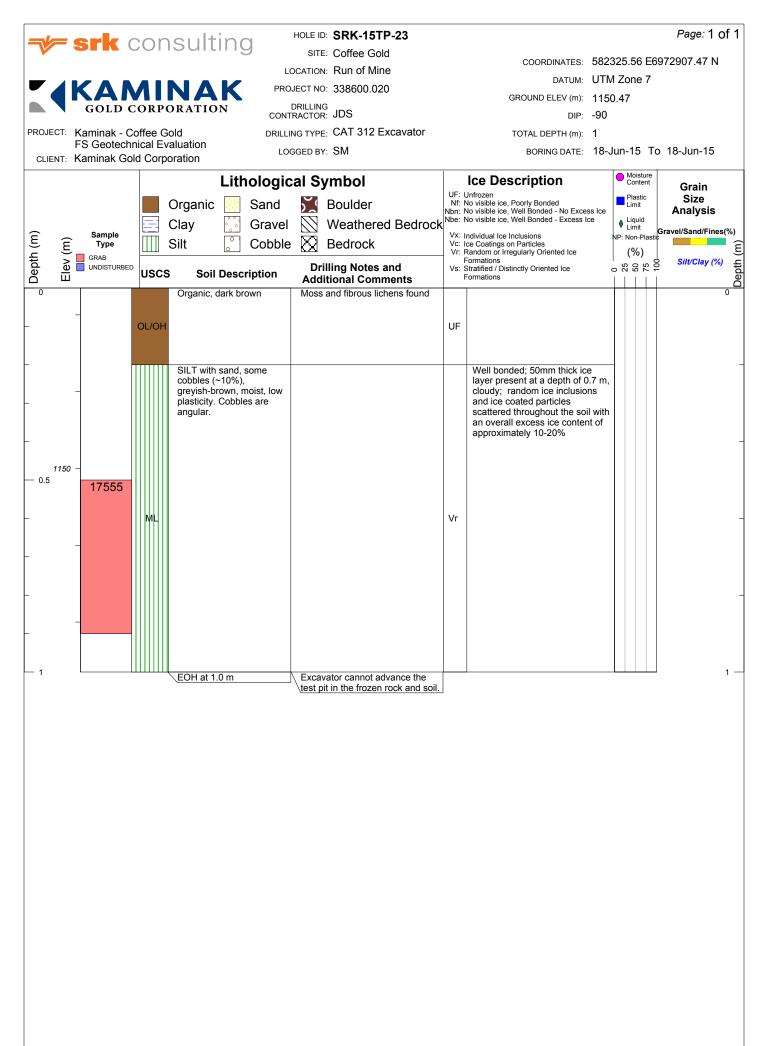


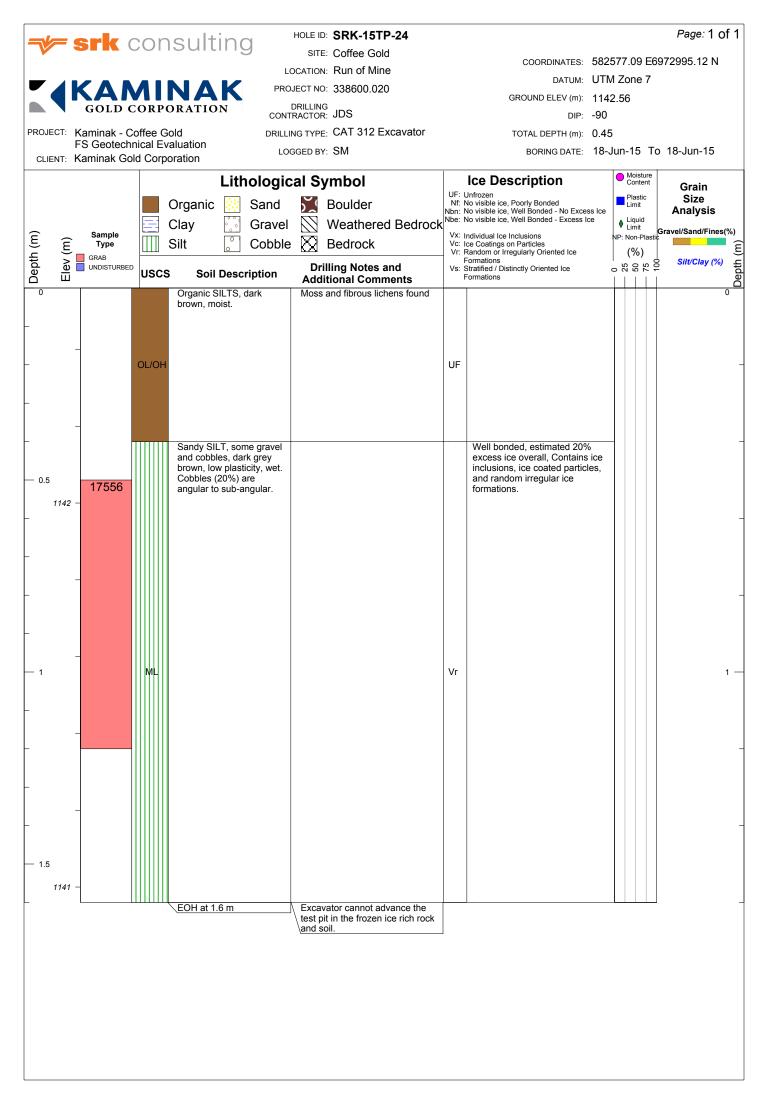

test pit in the frozen rock and soil.

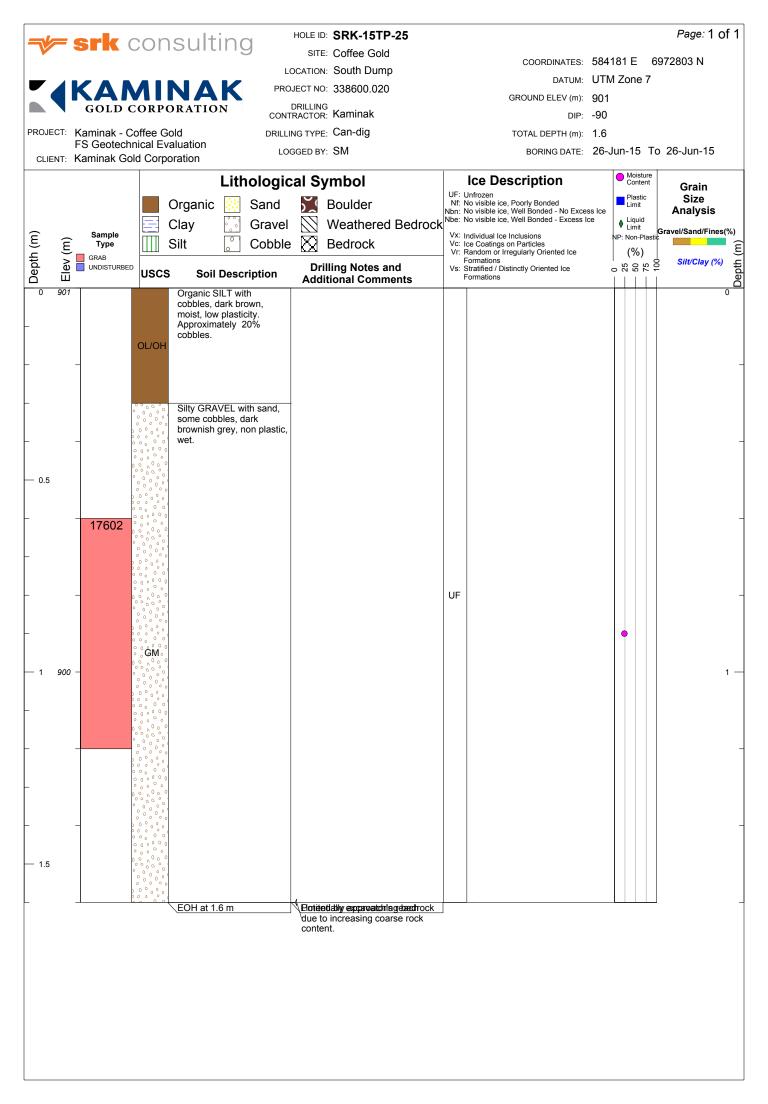
Page: 1 of 1

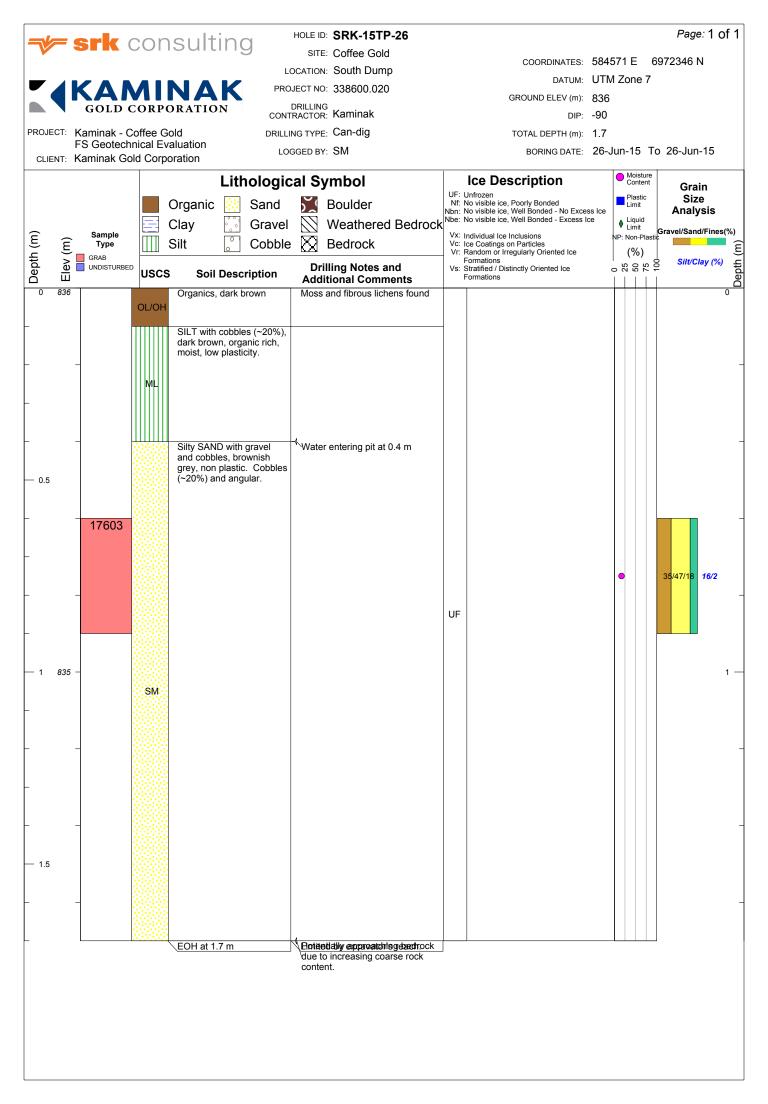
Grain

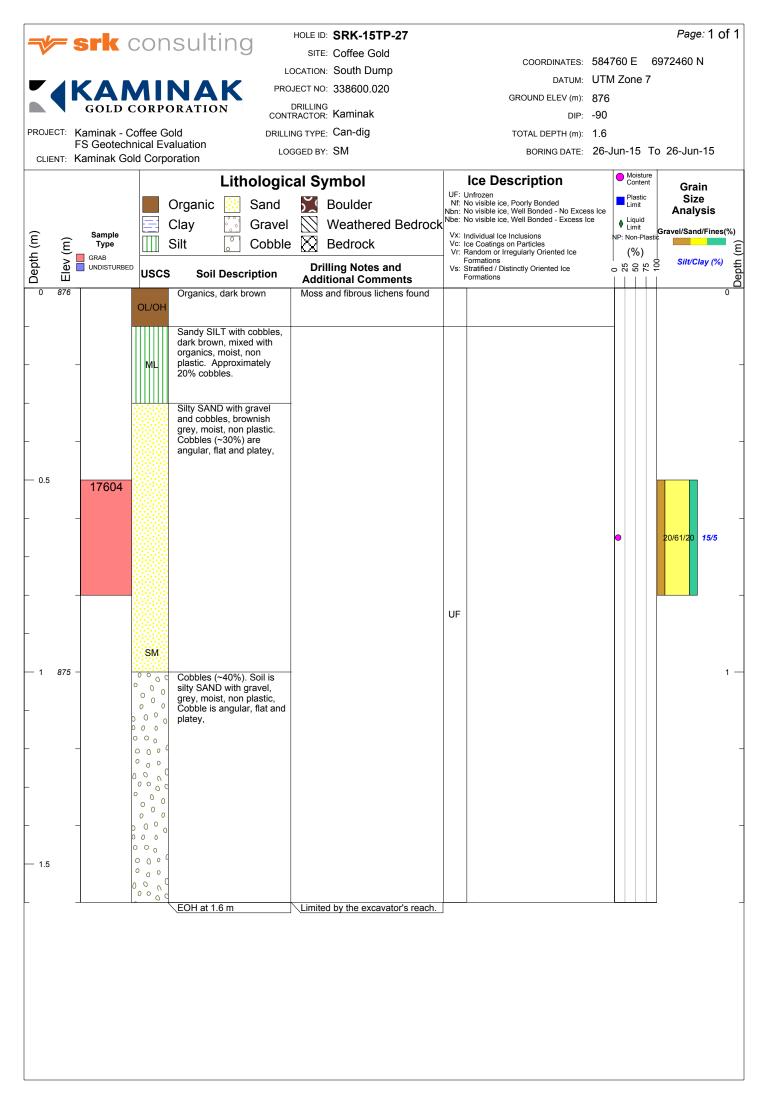
Size

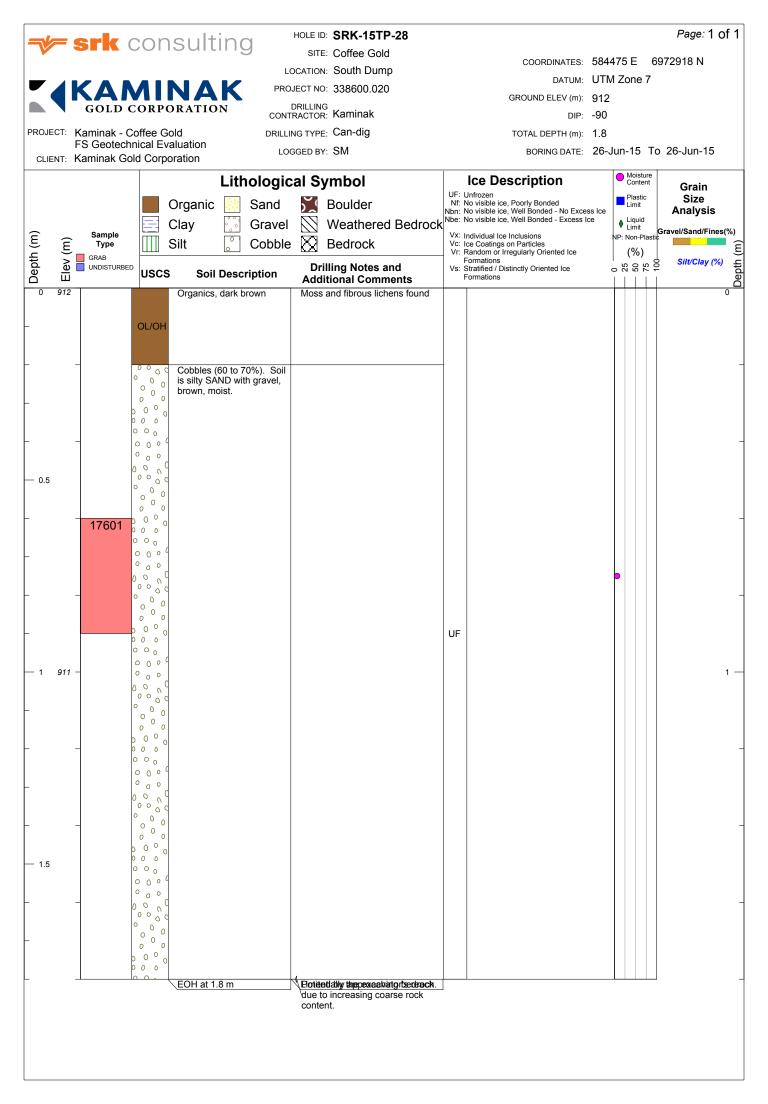

**Analysis** 

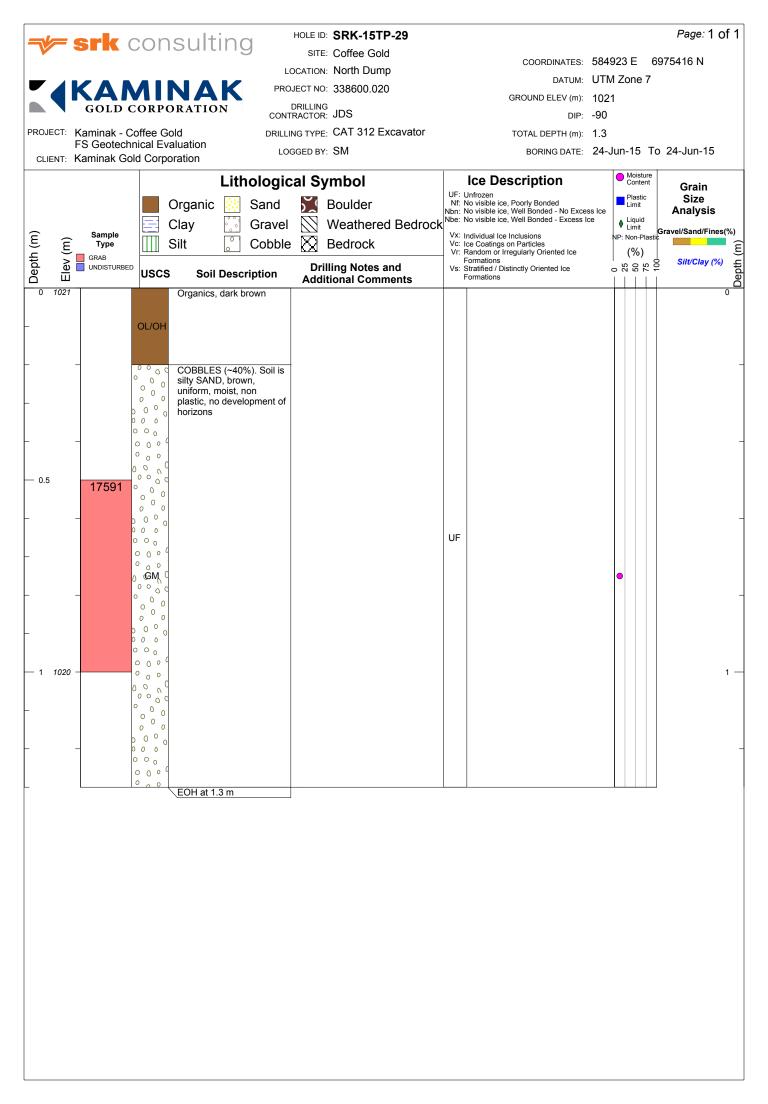

Gravel/Sand/Fines(%)

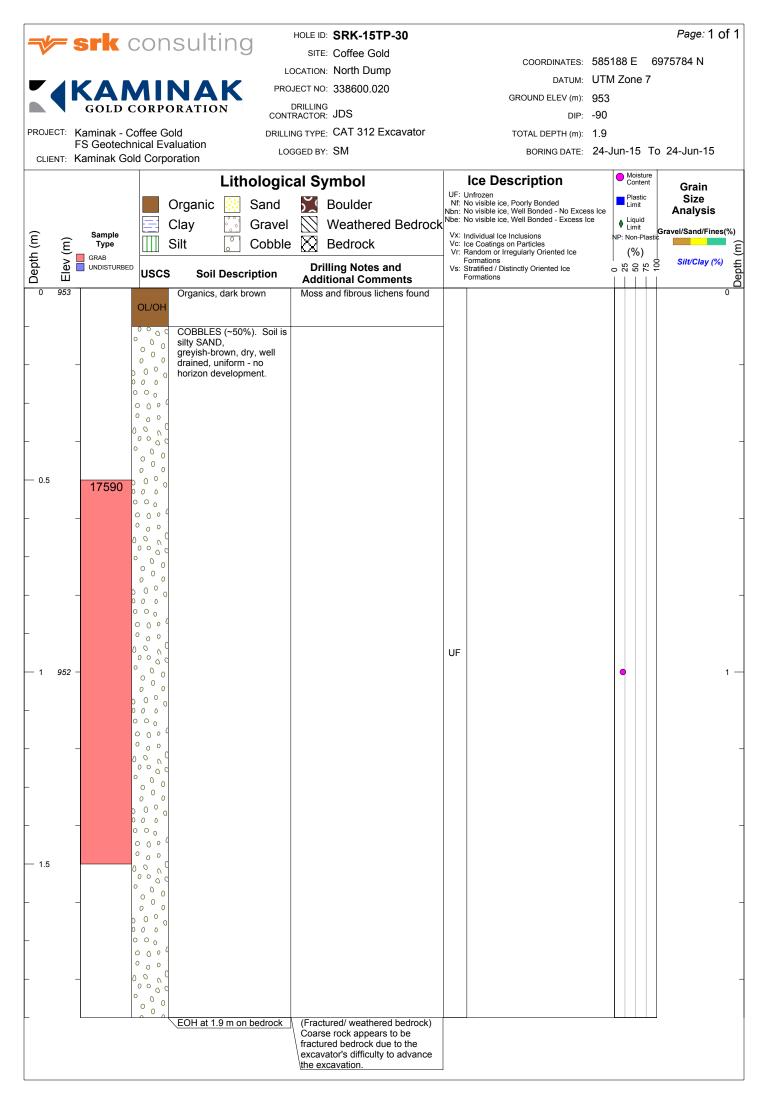

Silt/Clay (%)

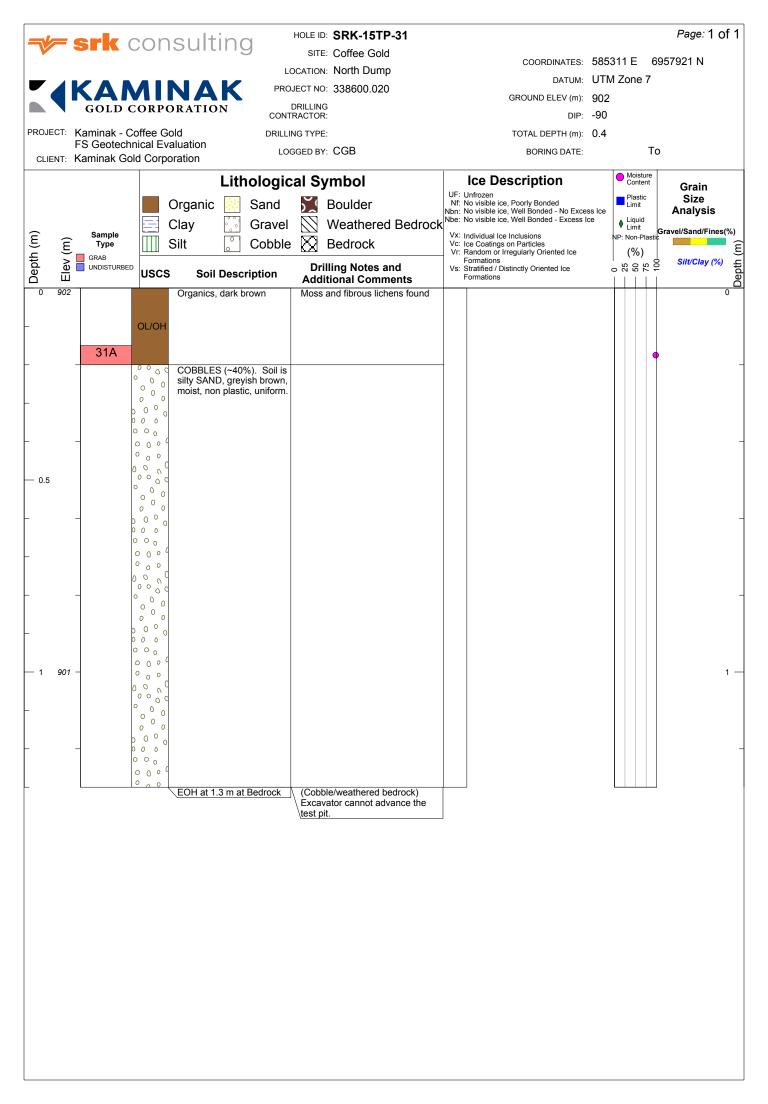

 $\widehat{\Xi}$ 

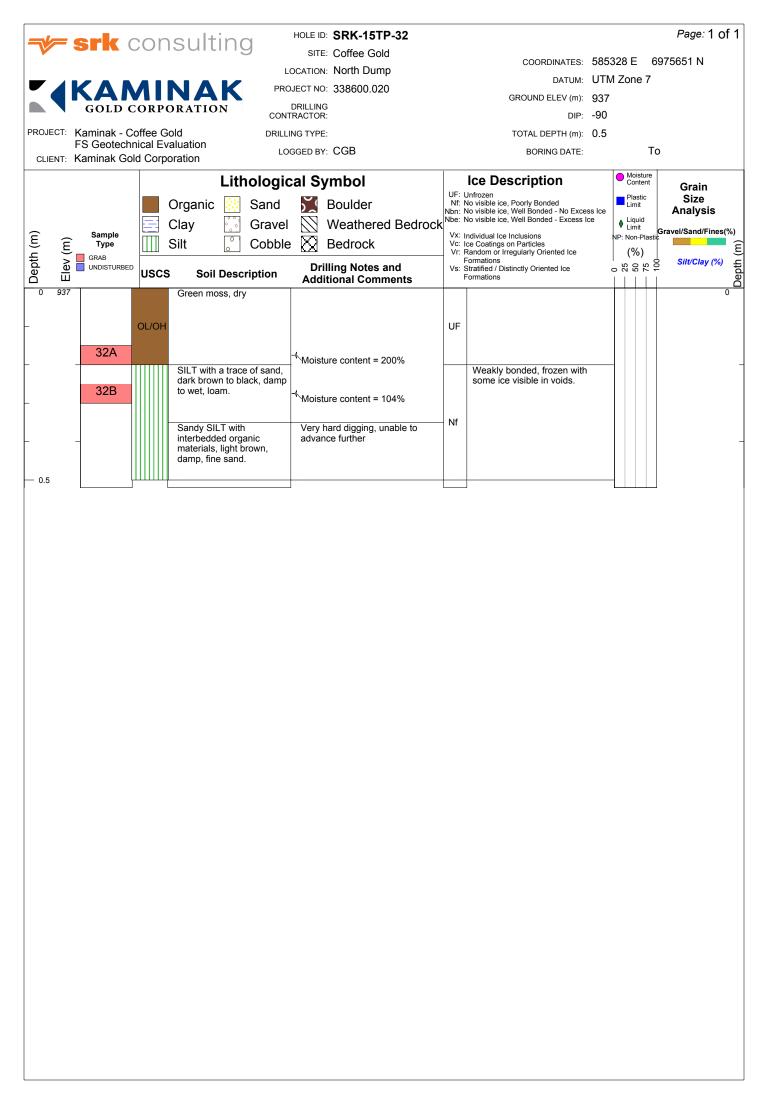

Depth

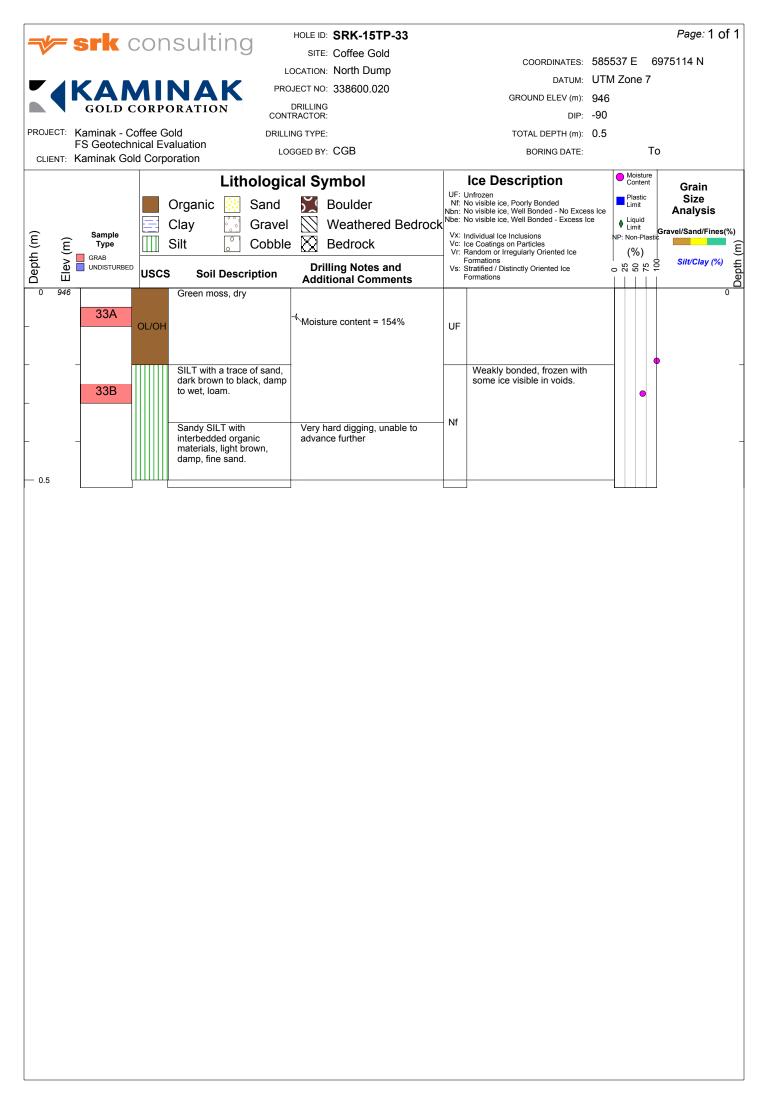


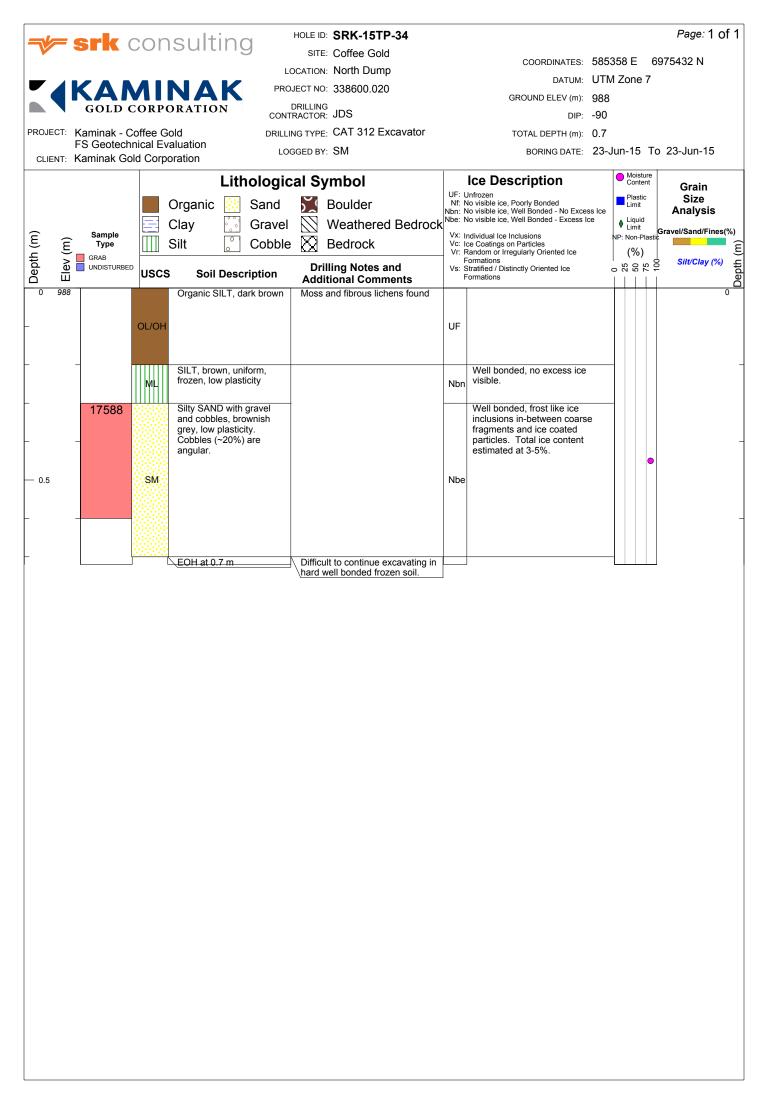



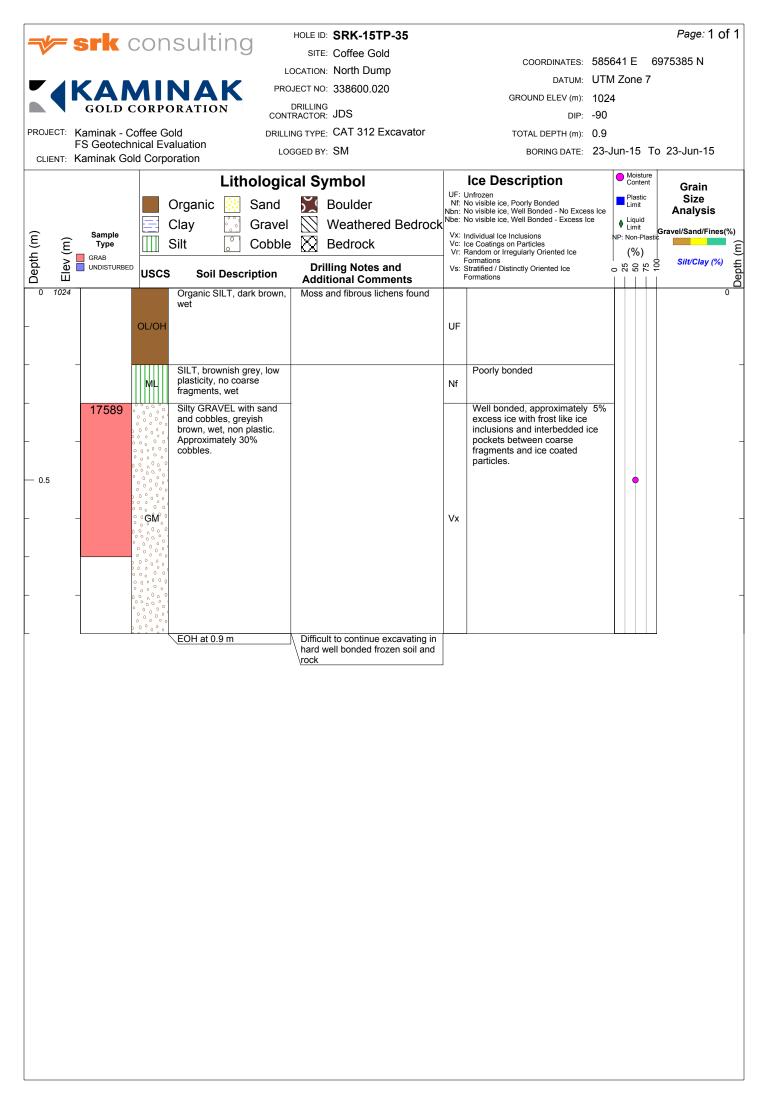



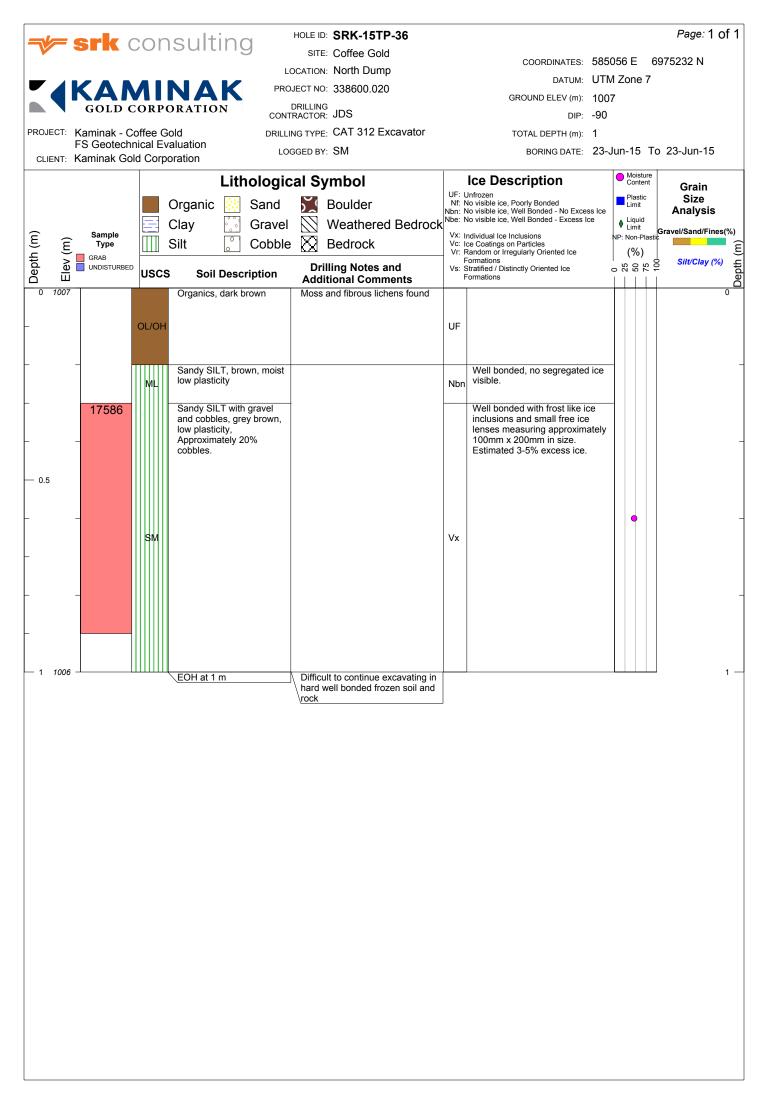



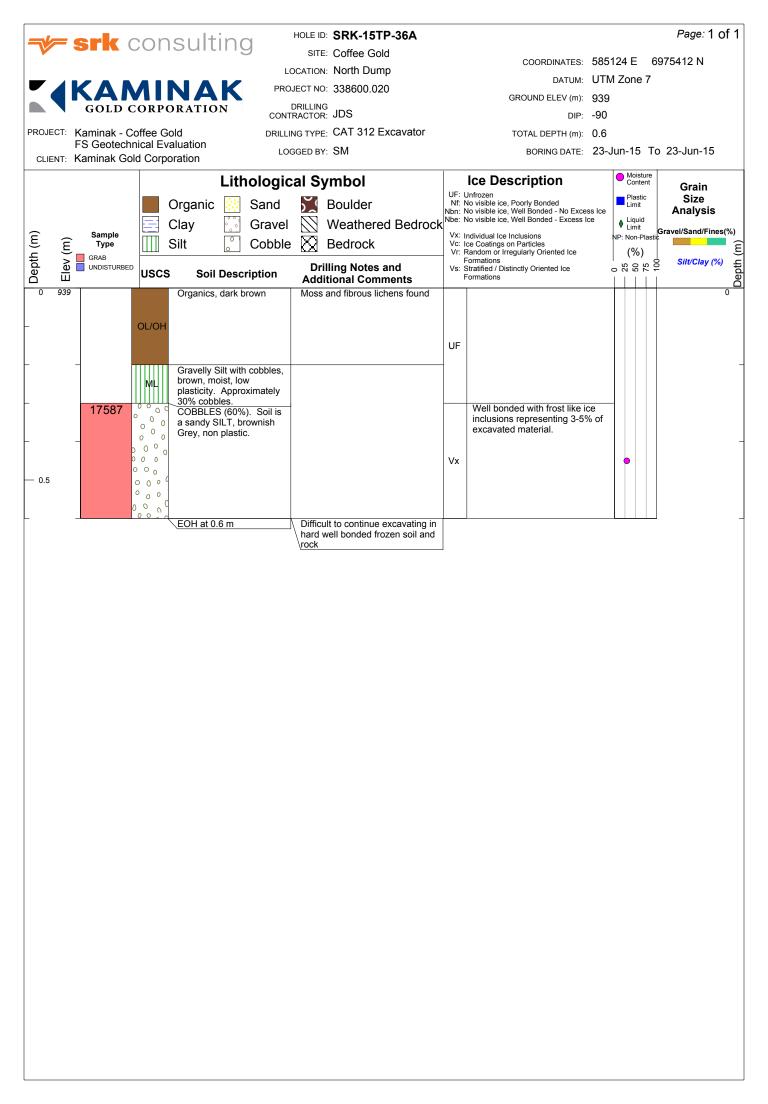



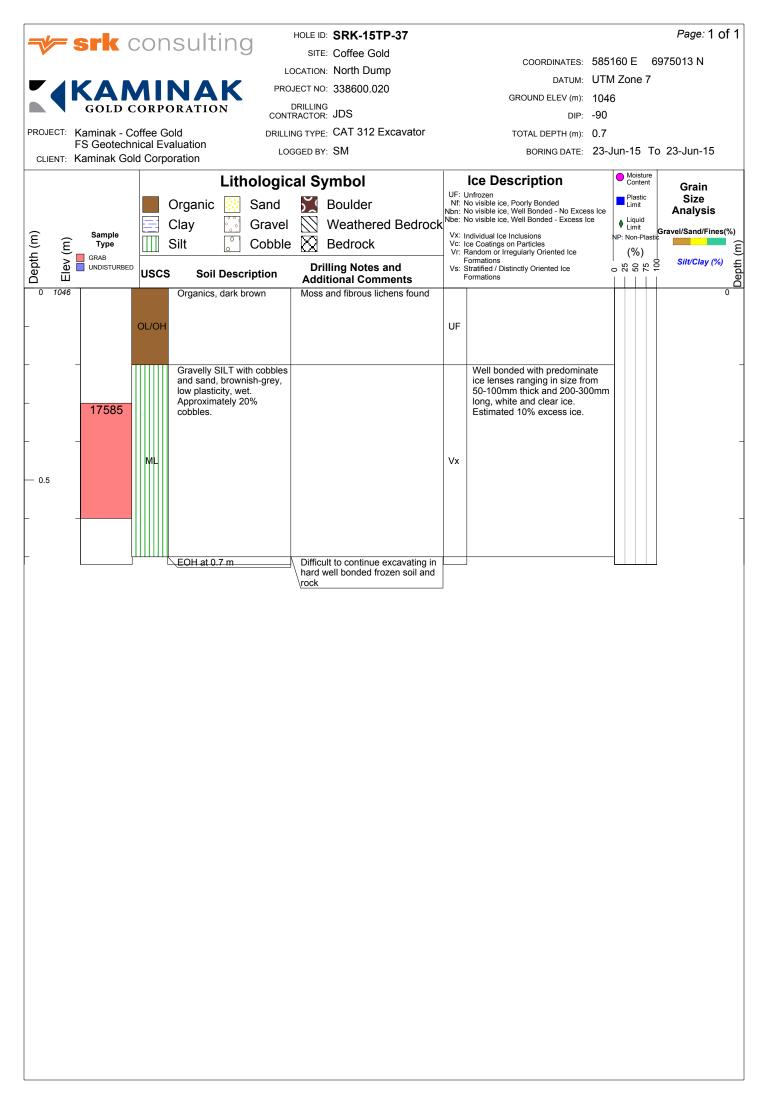



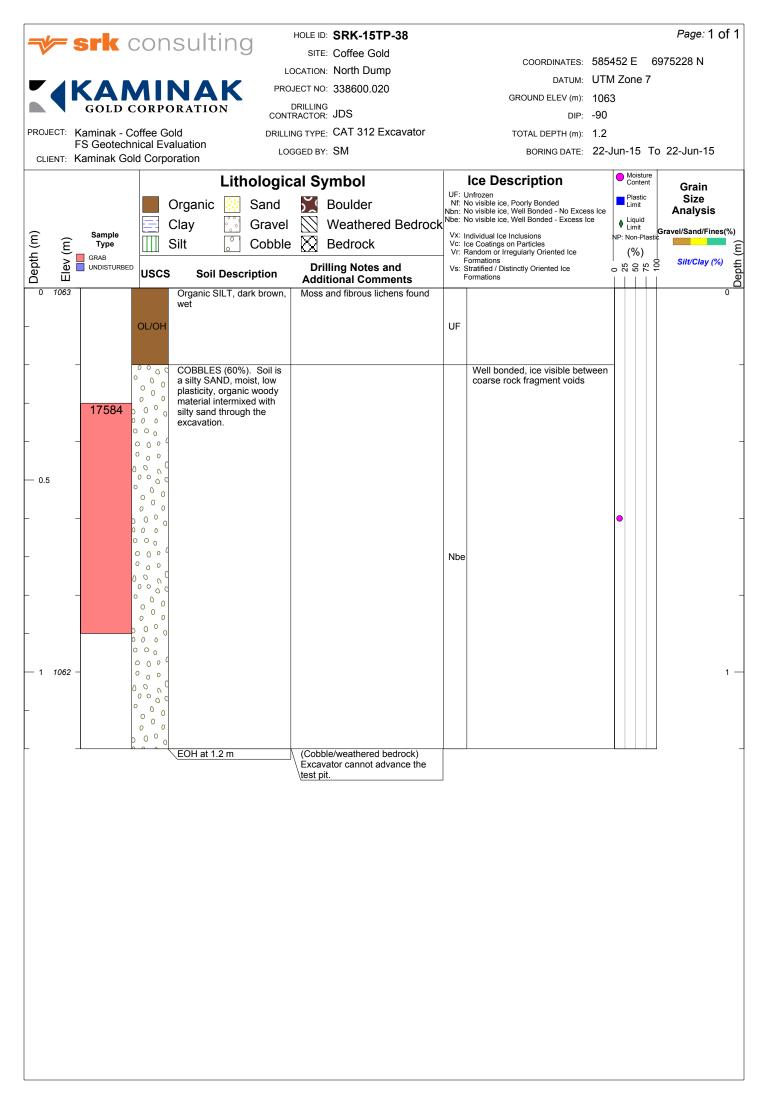



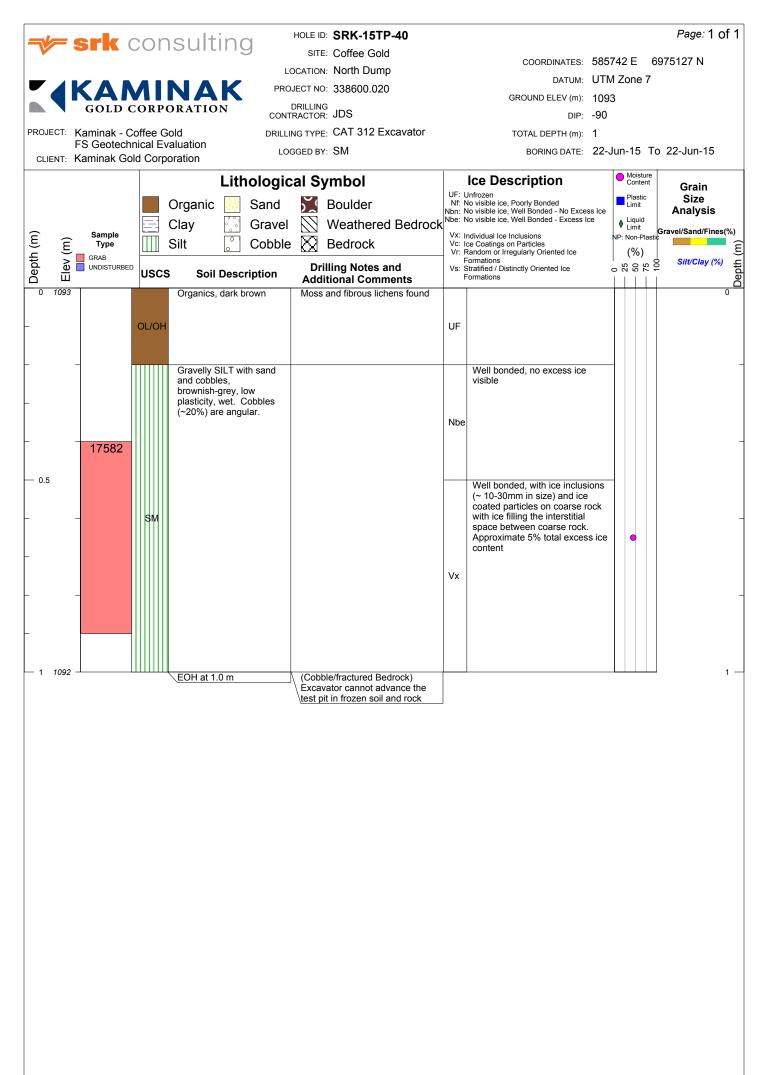



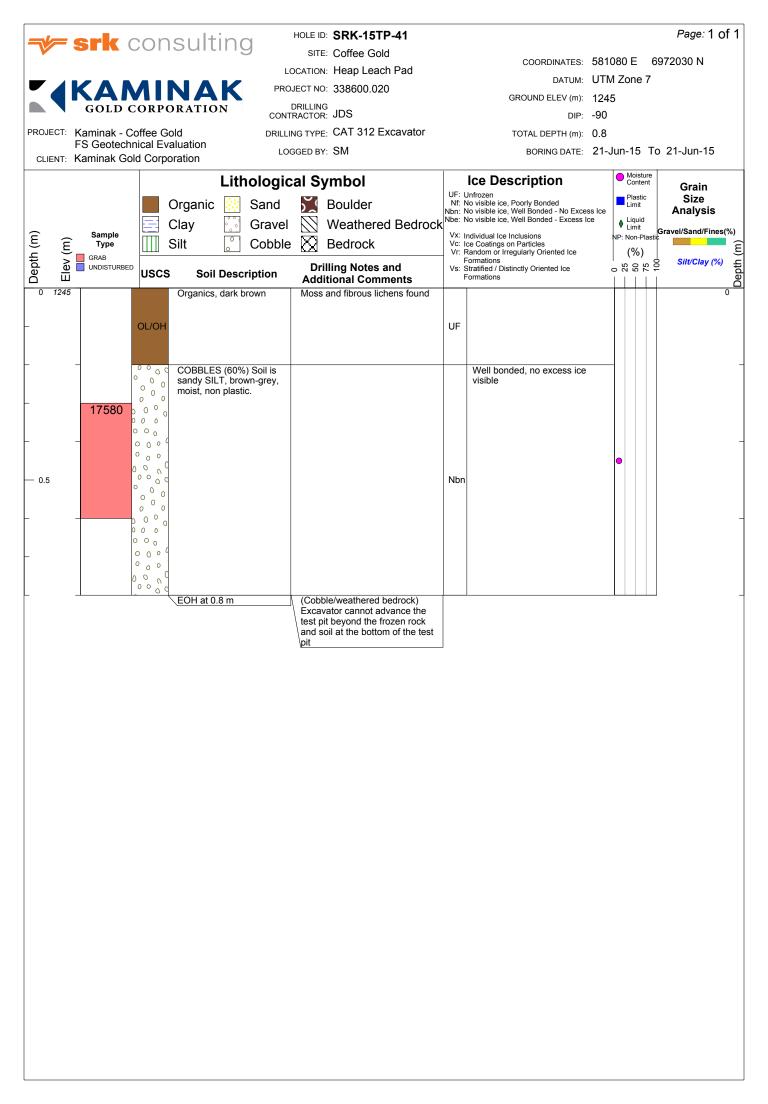



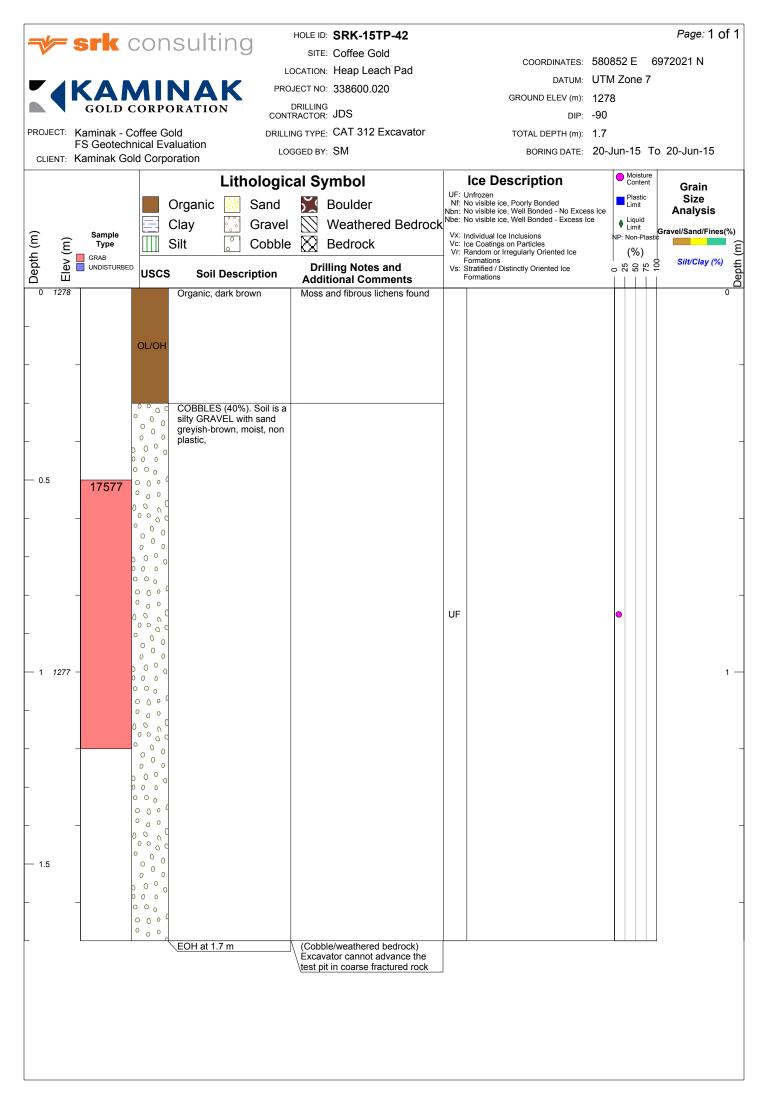



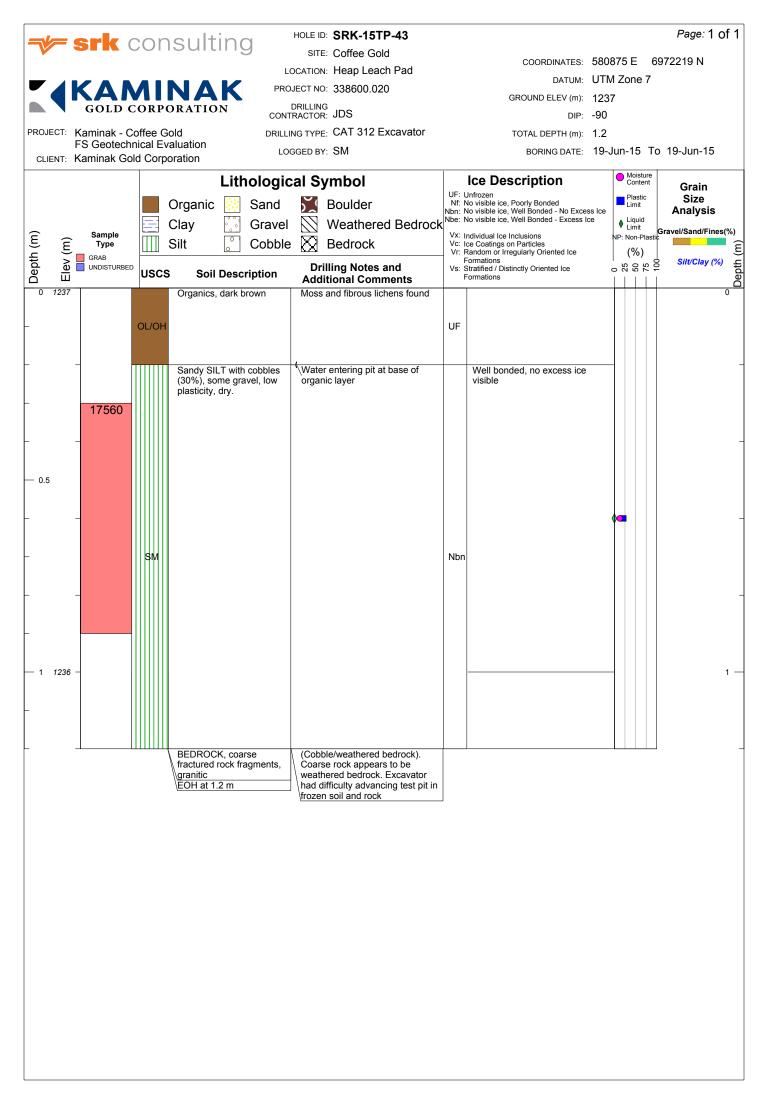



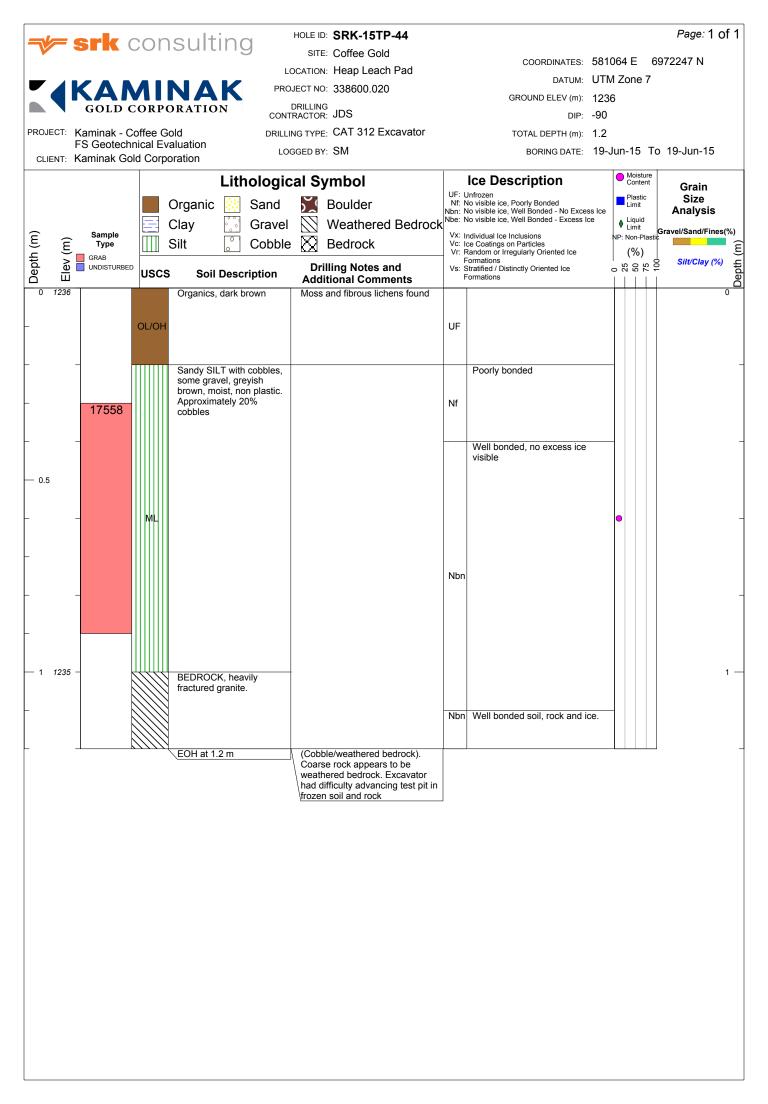


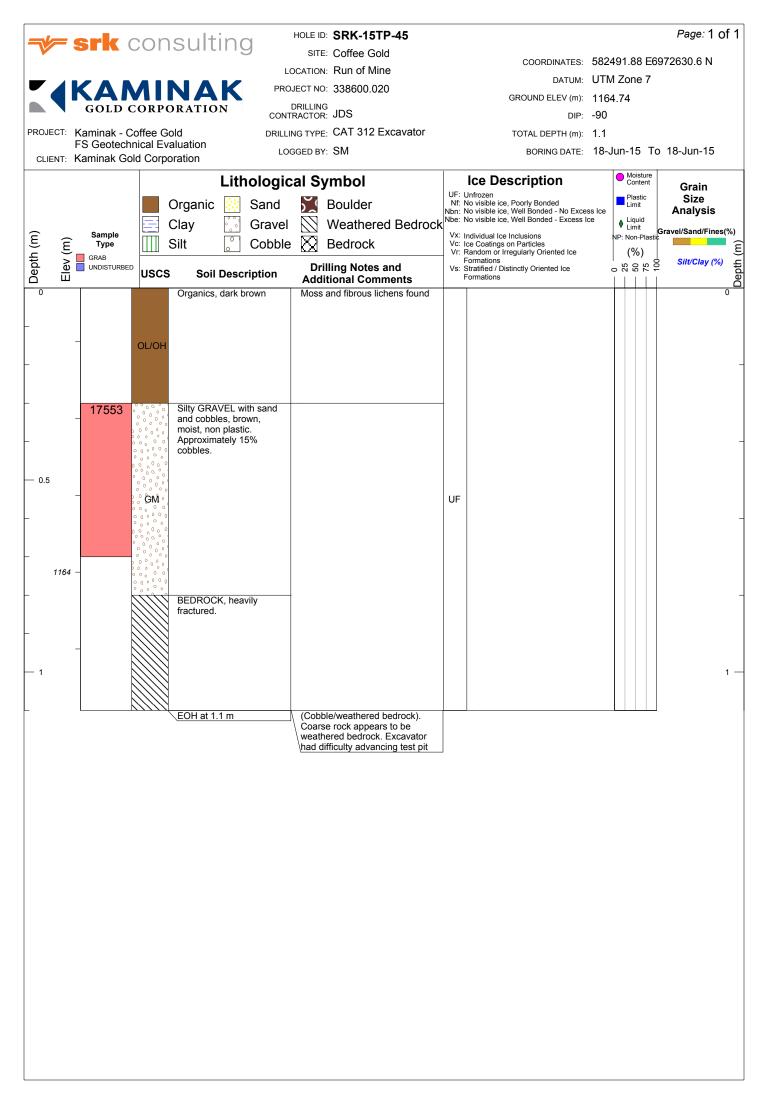



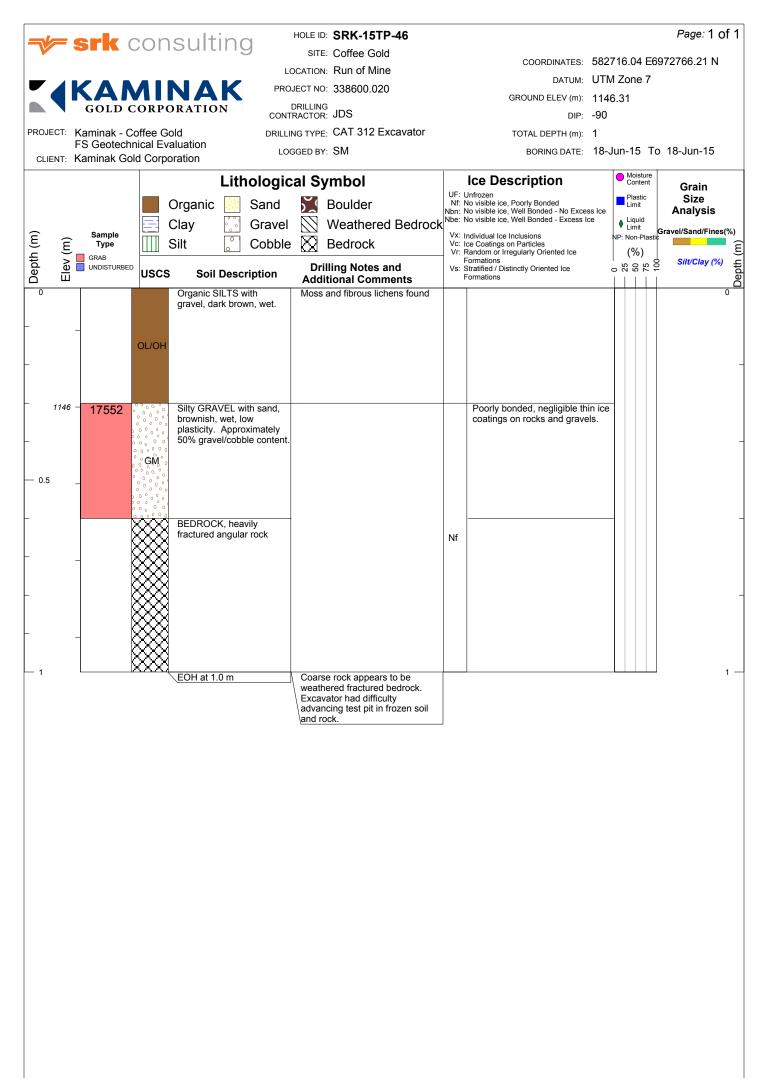



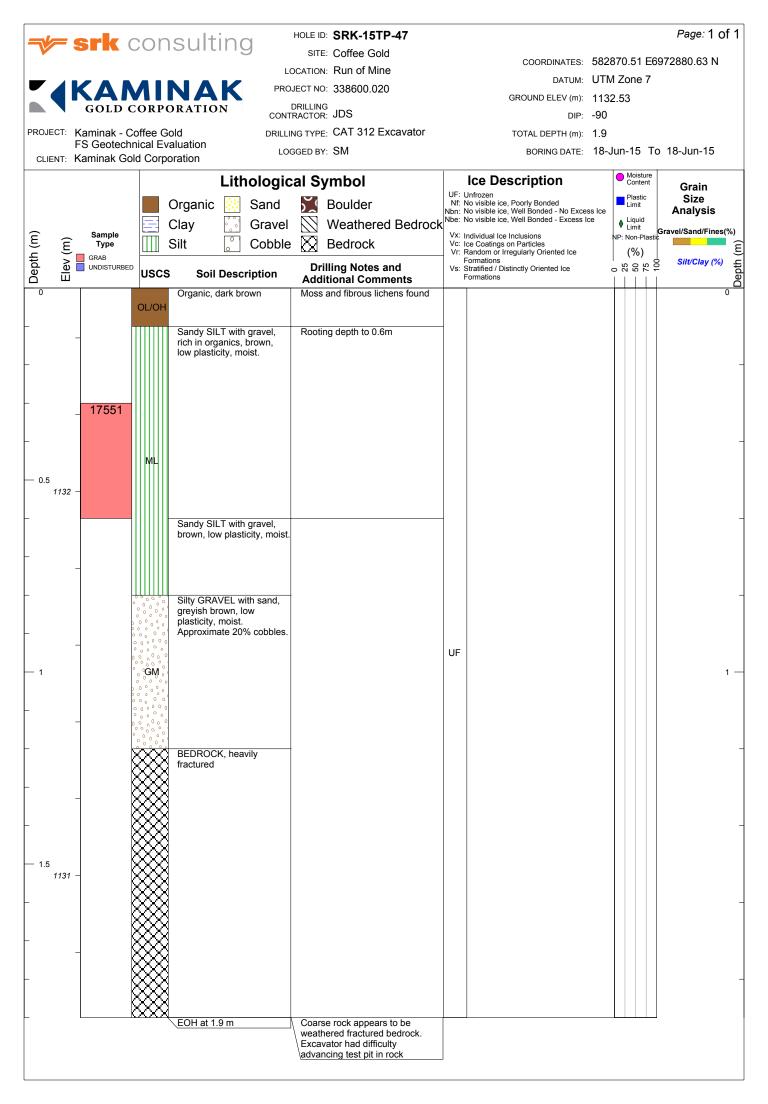



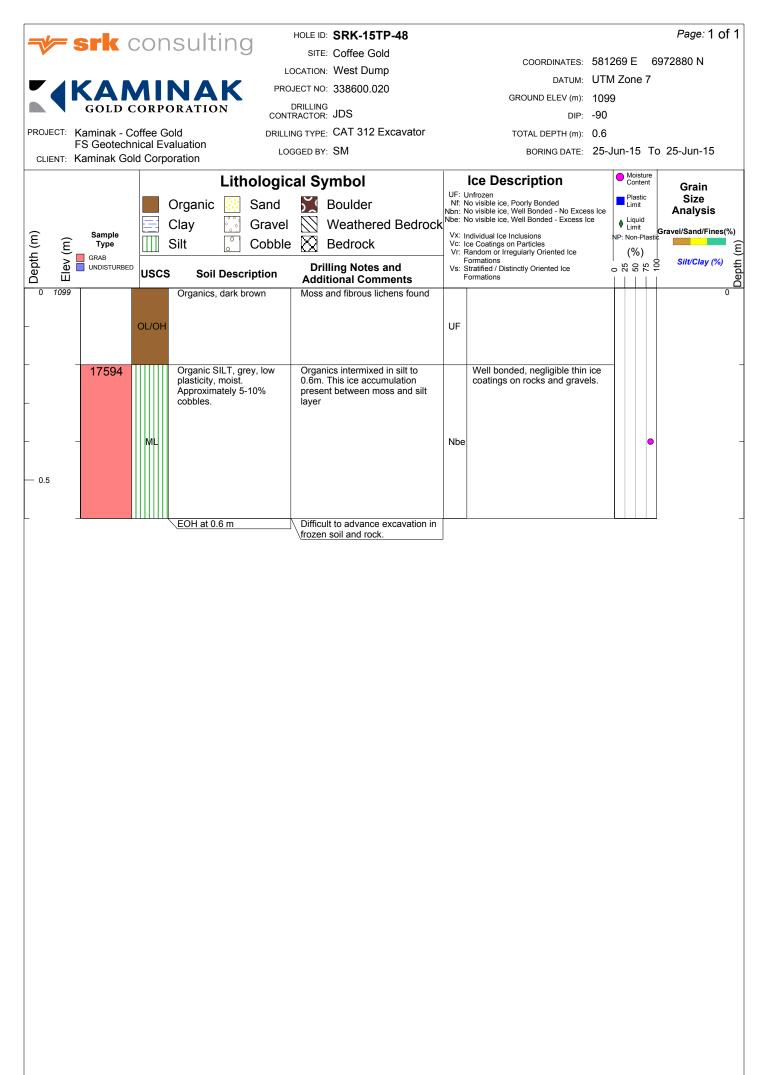



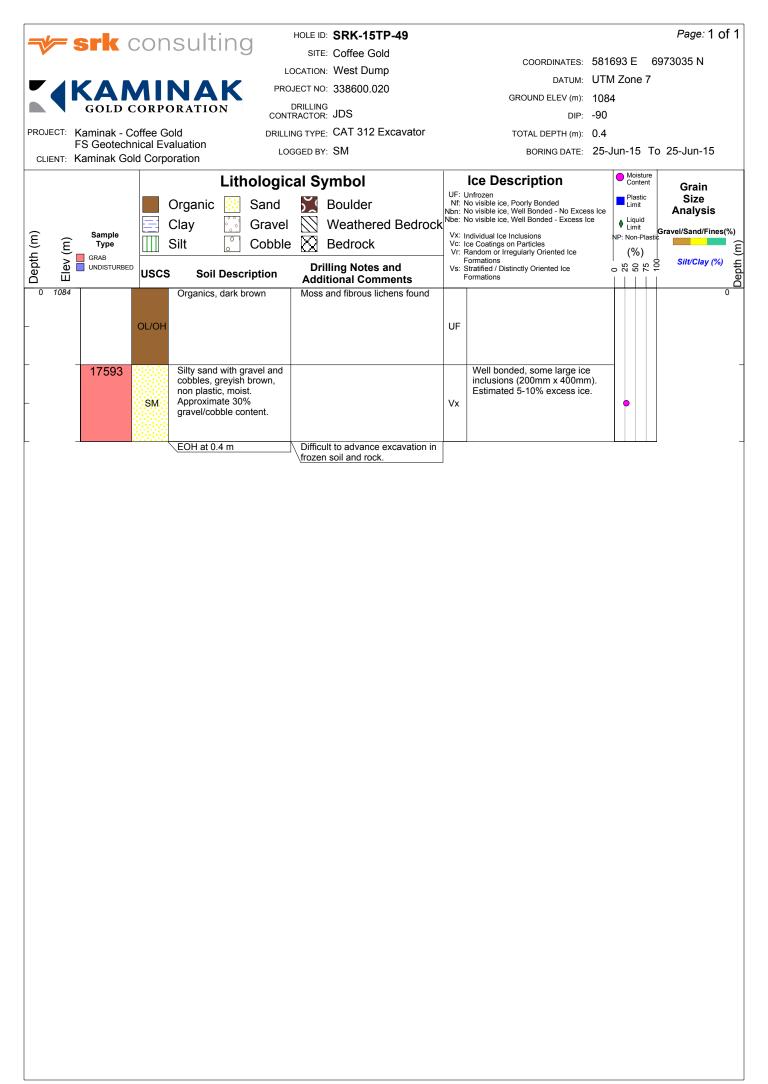



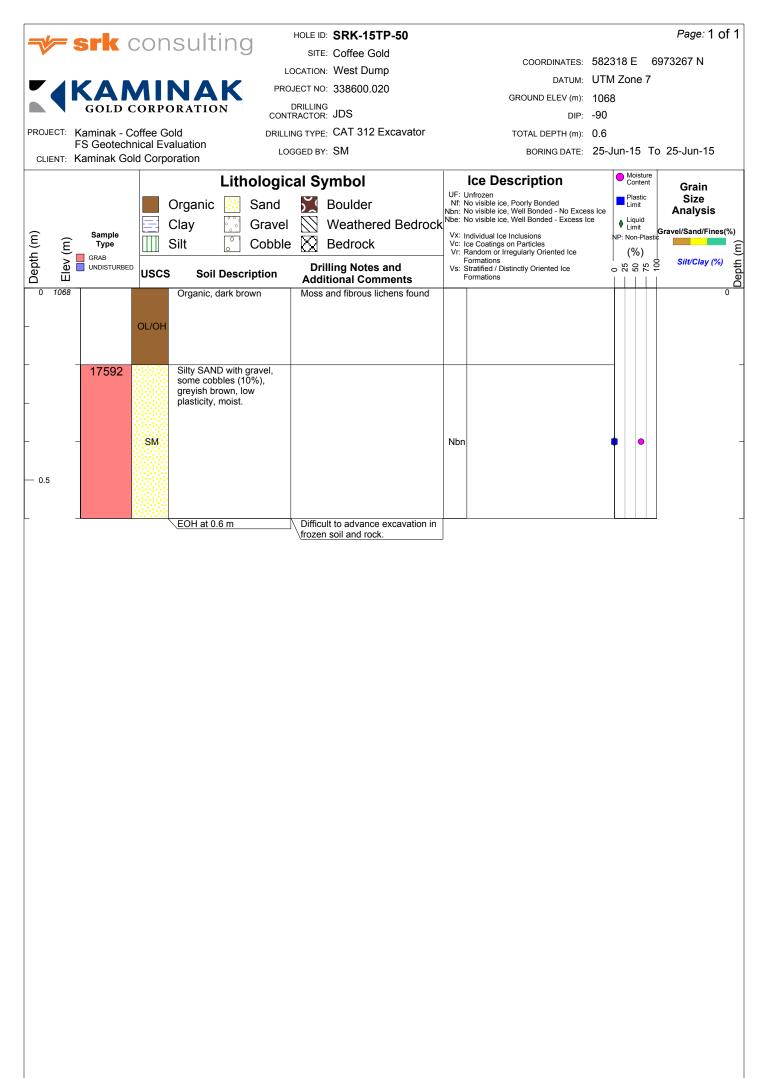



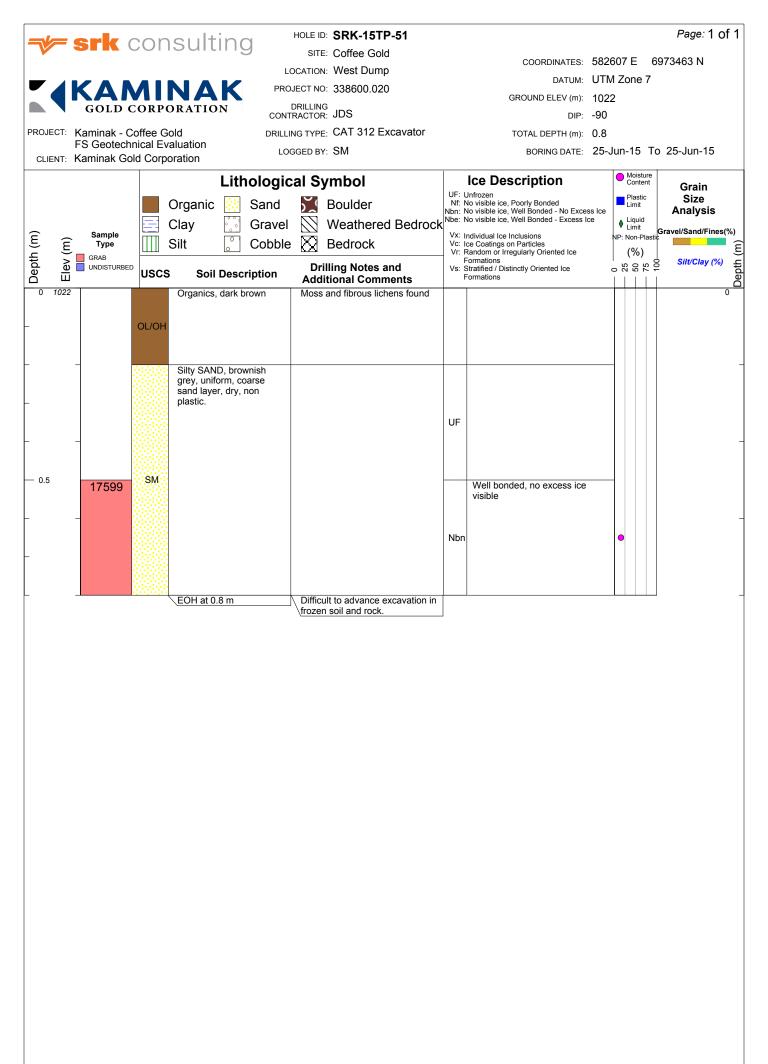



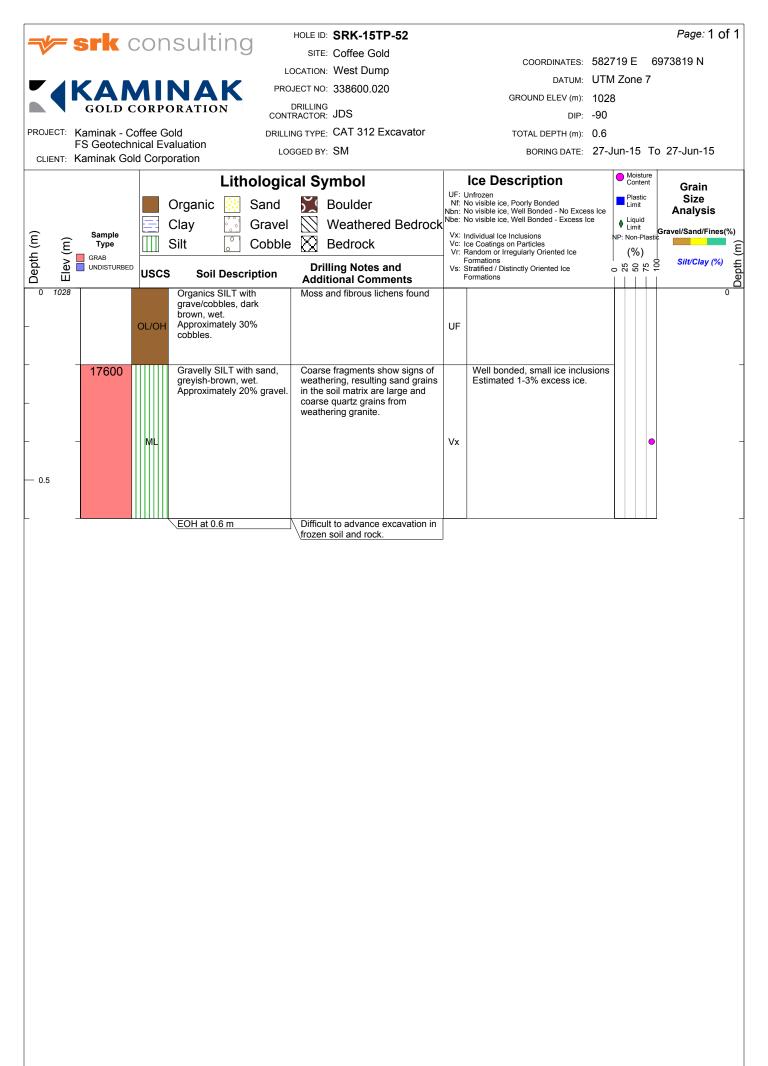



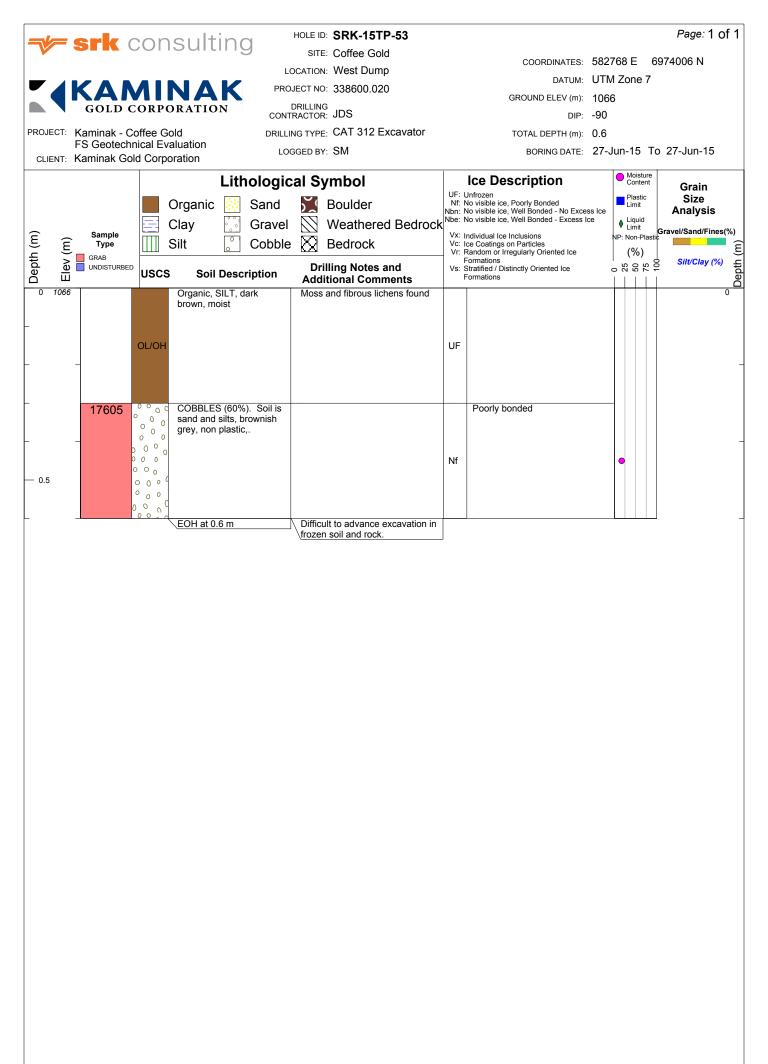



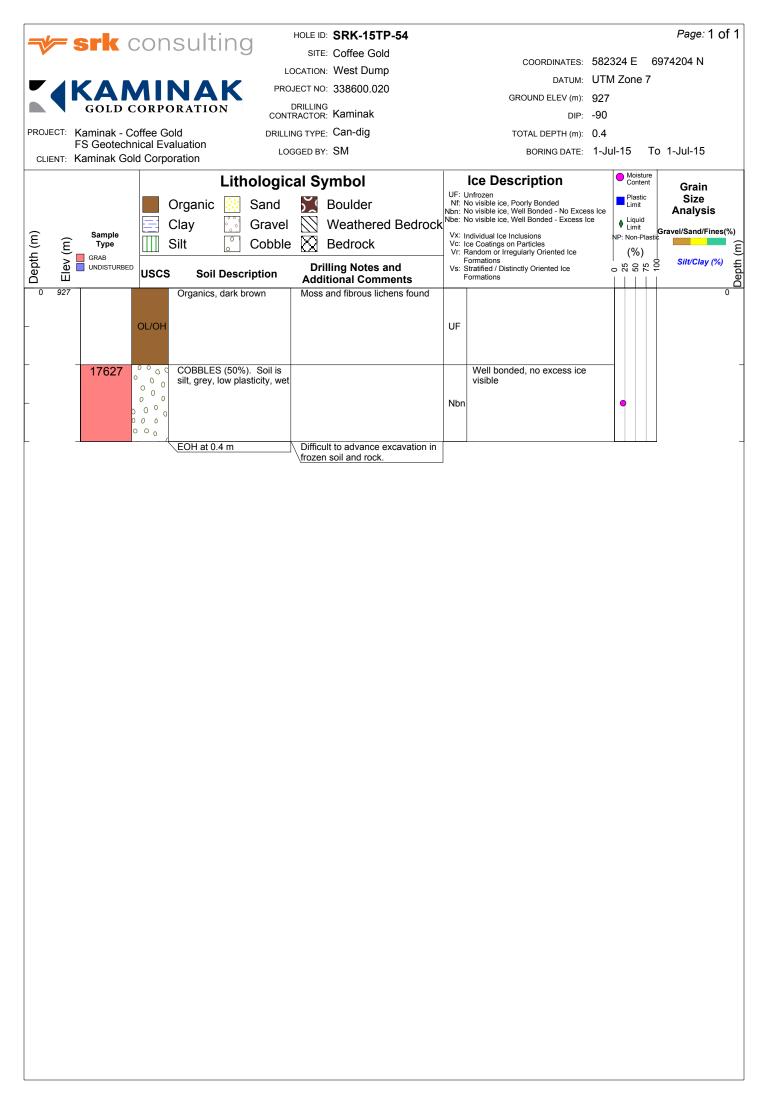



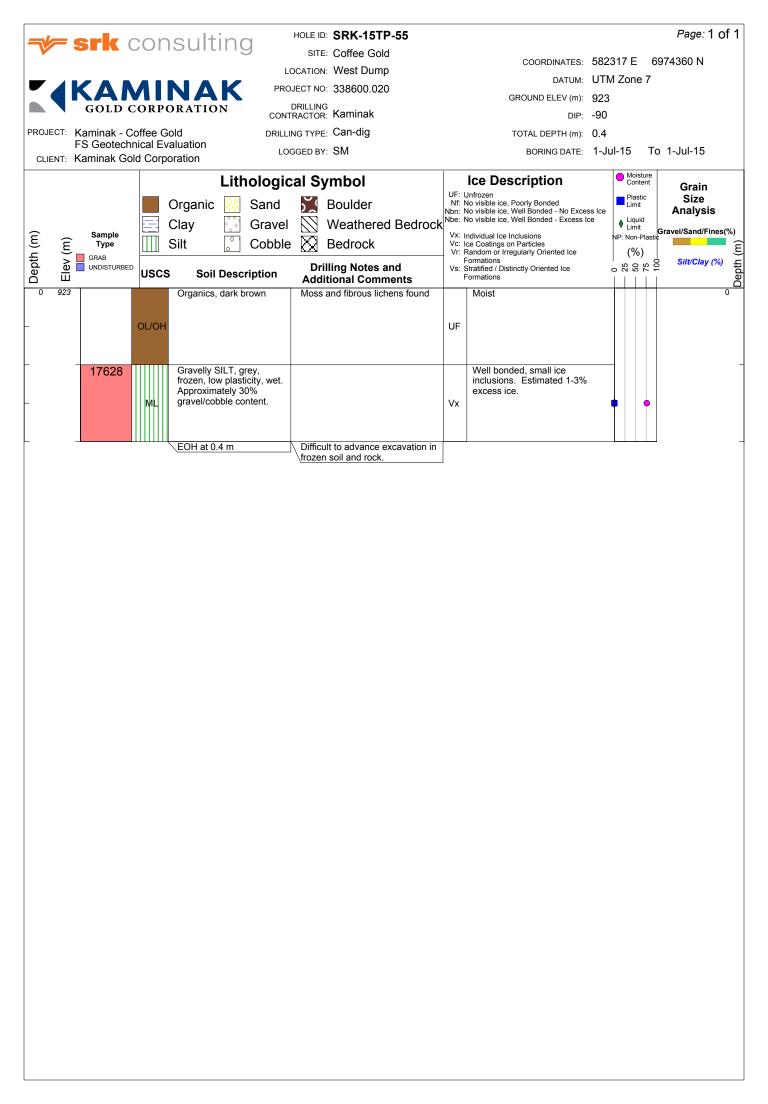



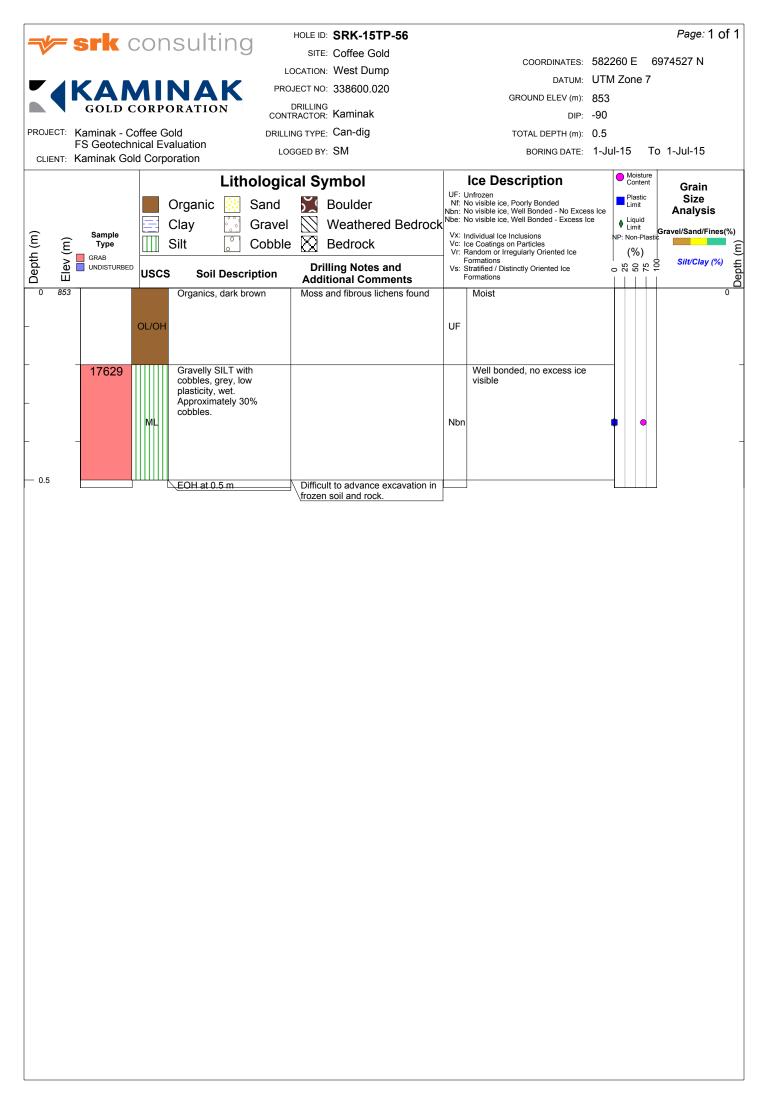



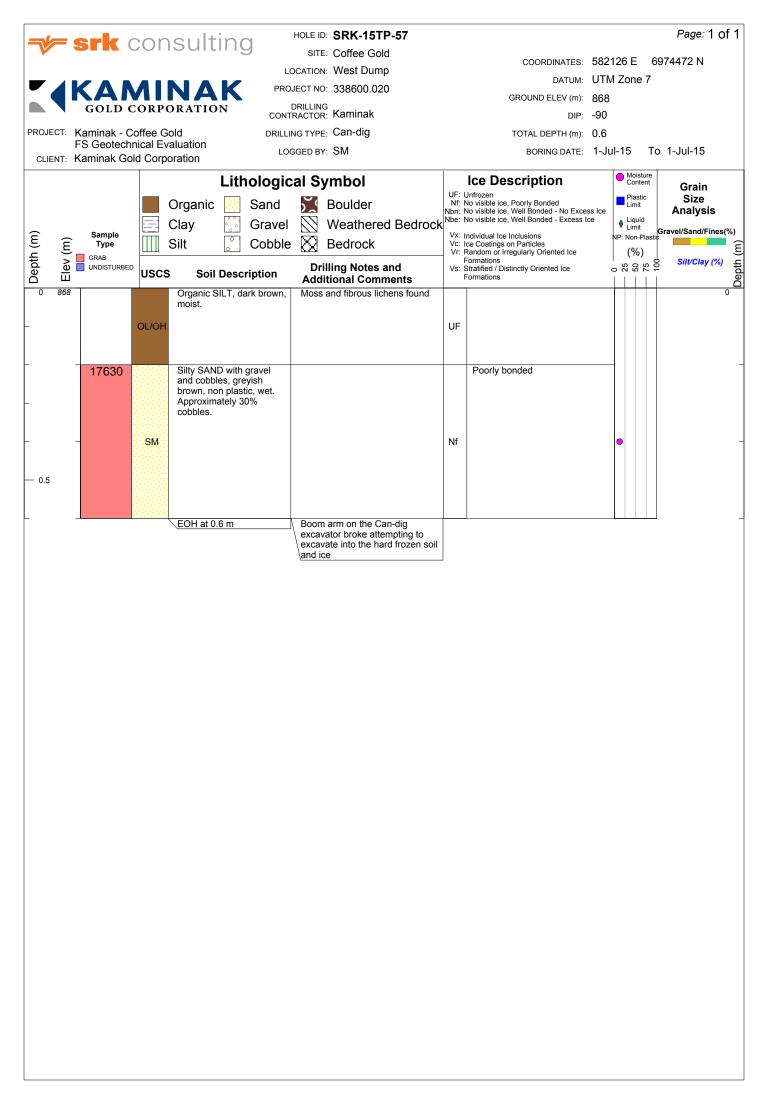



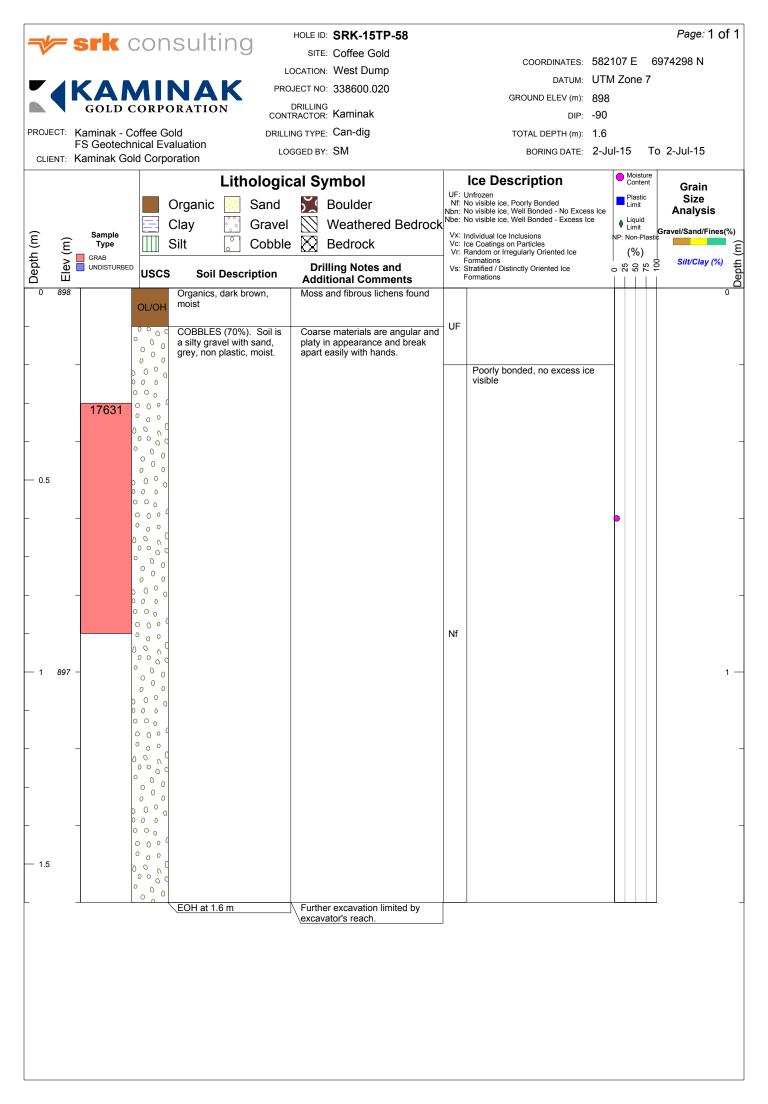



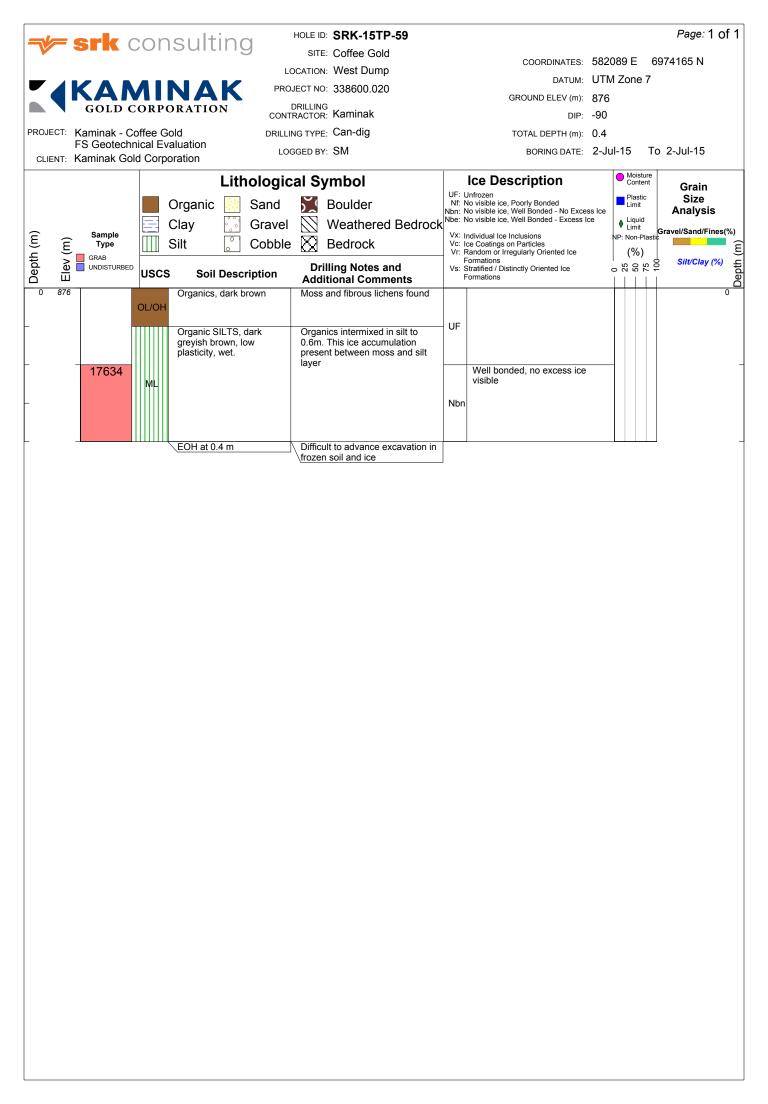



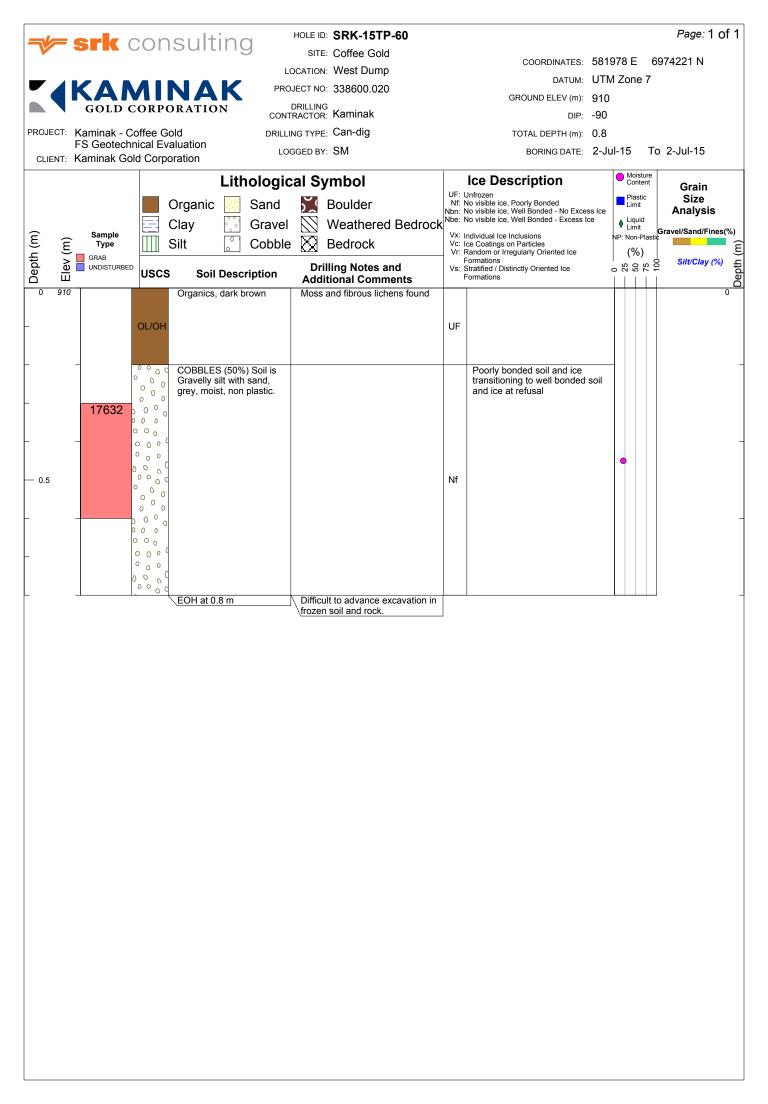



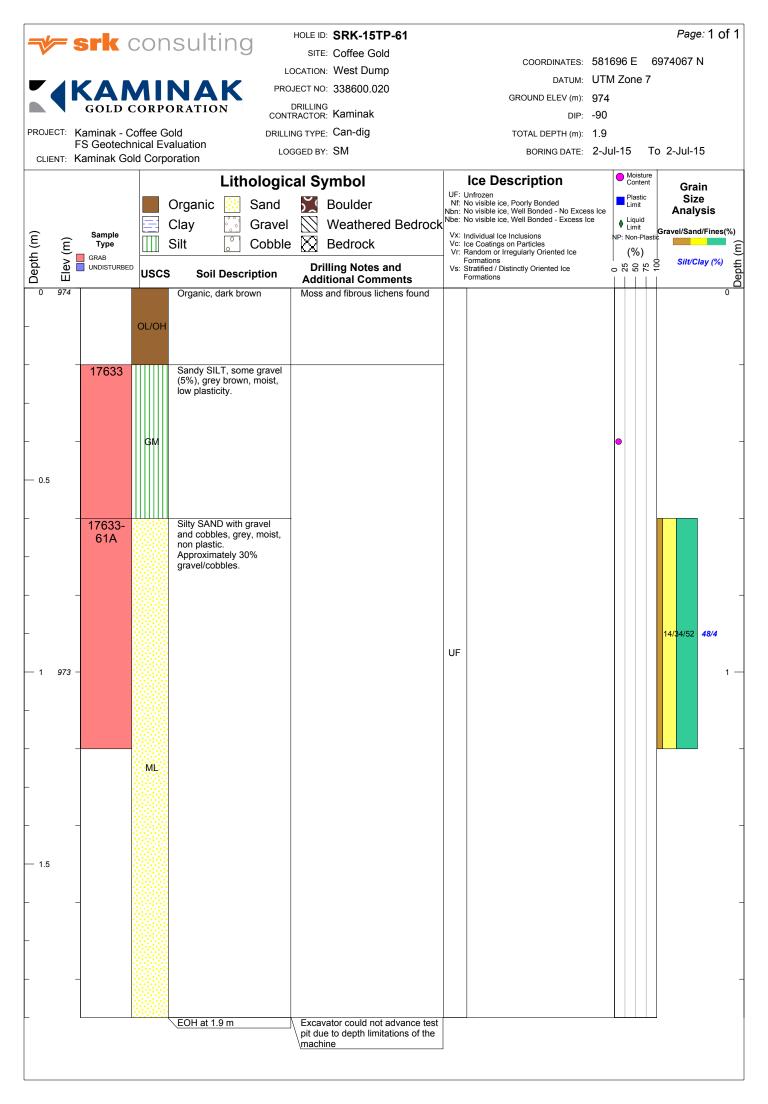



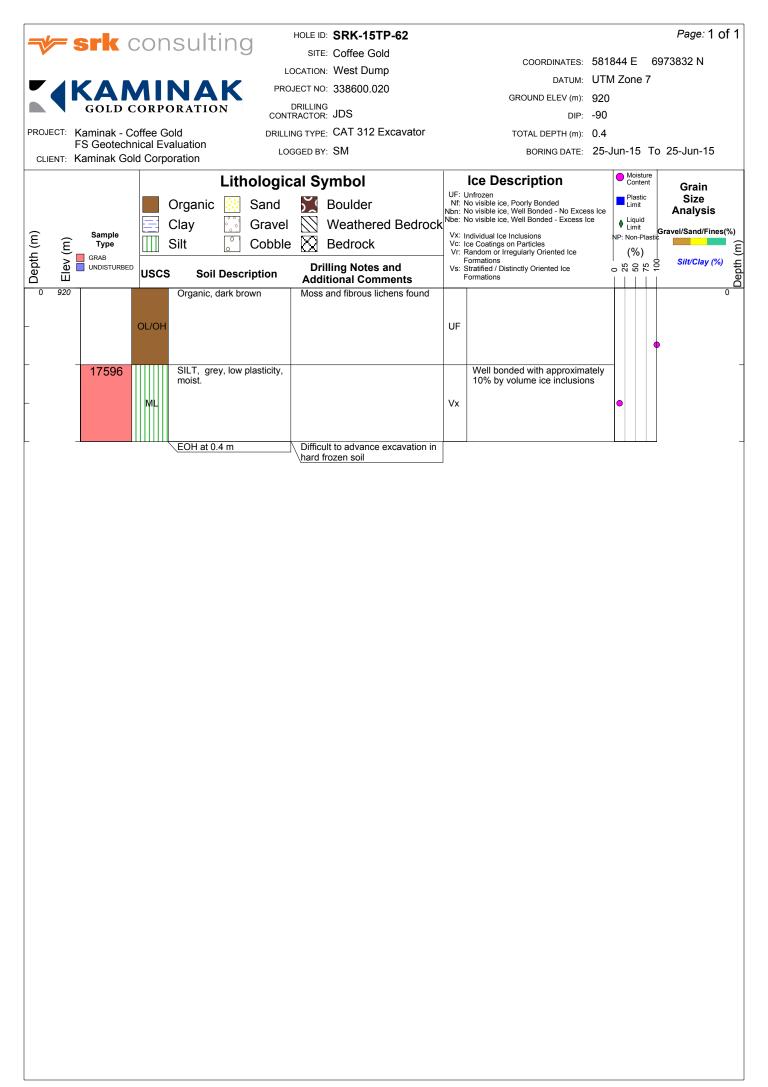



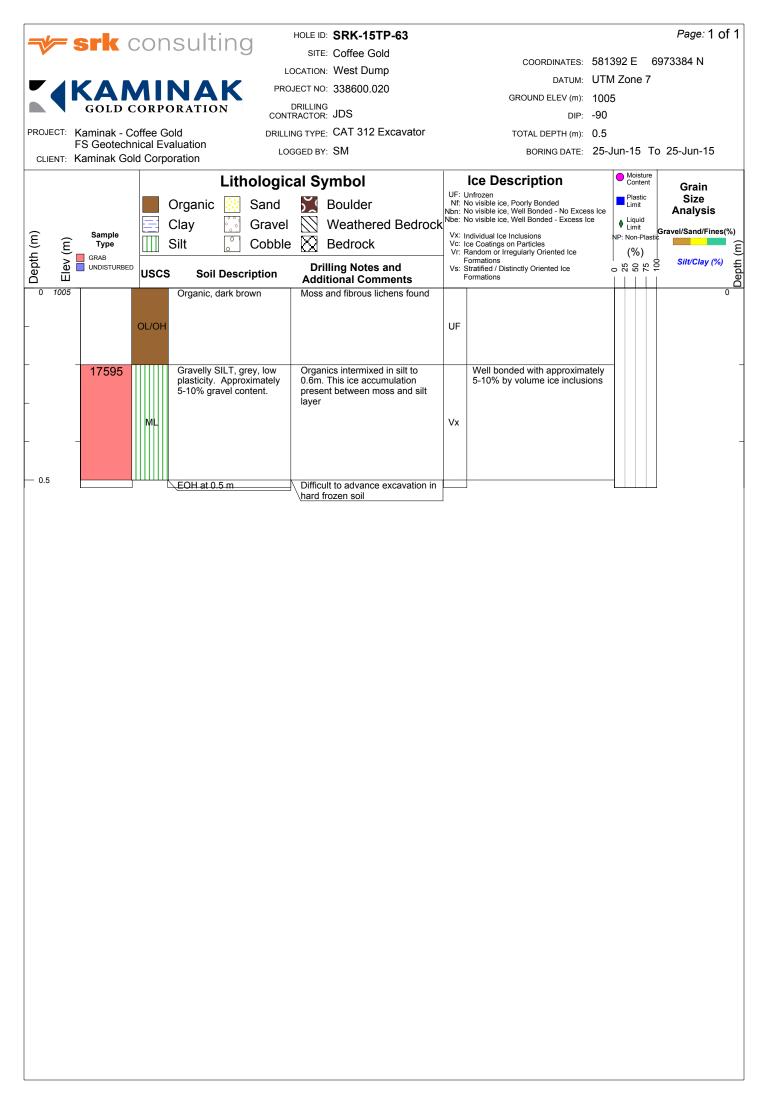



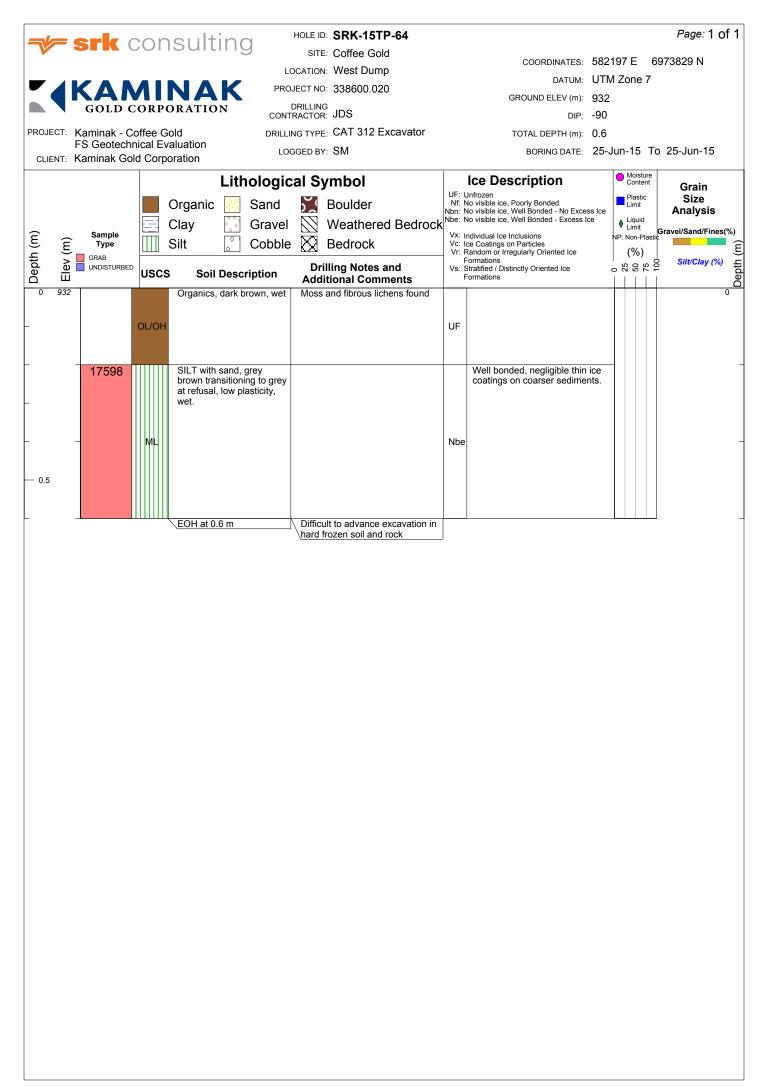



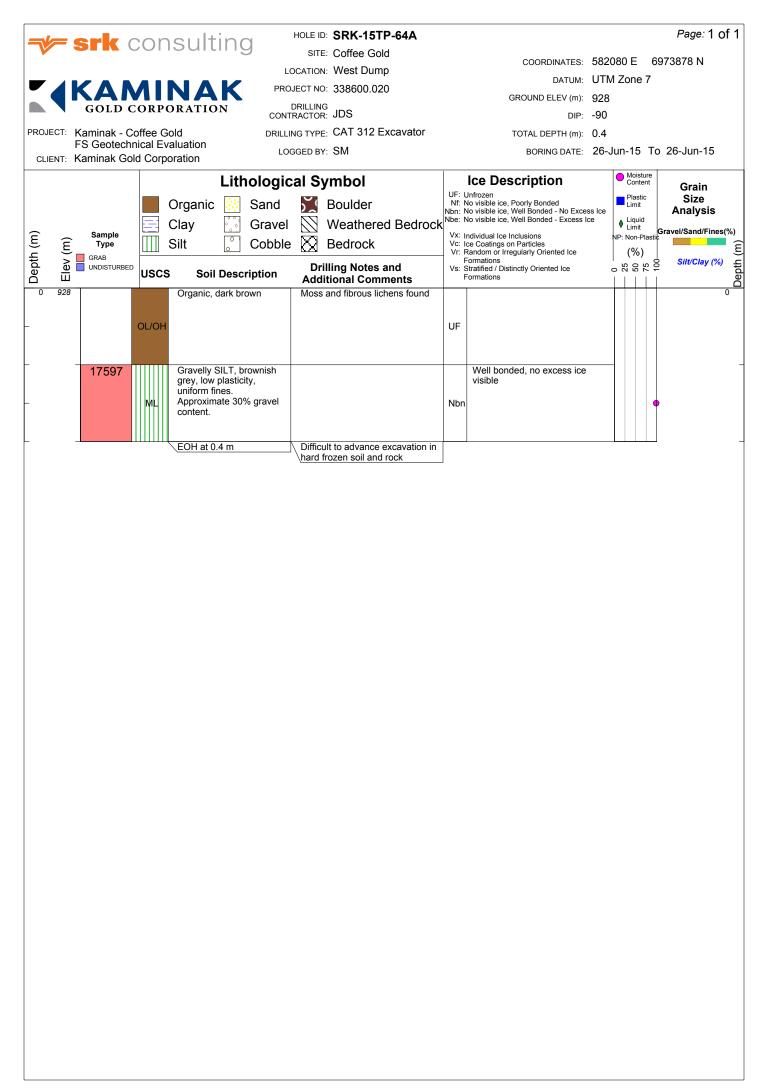



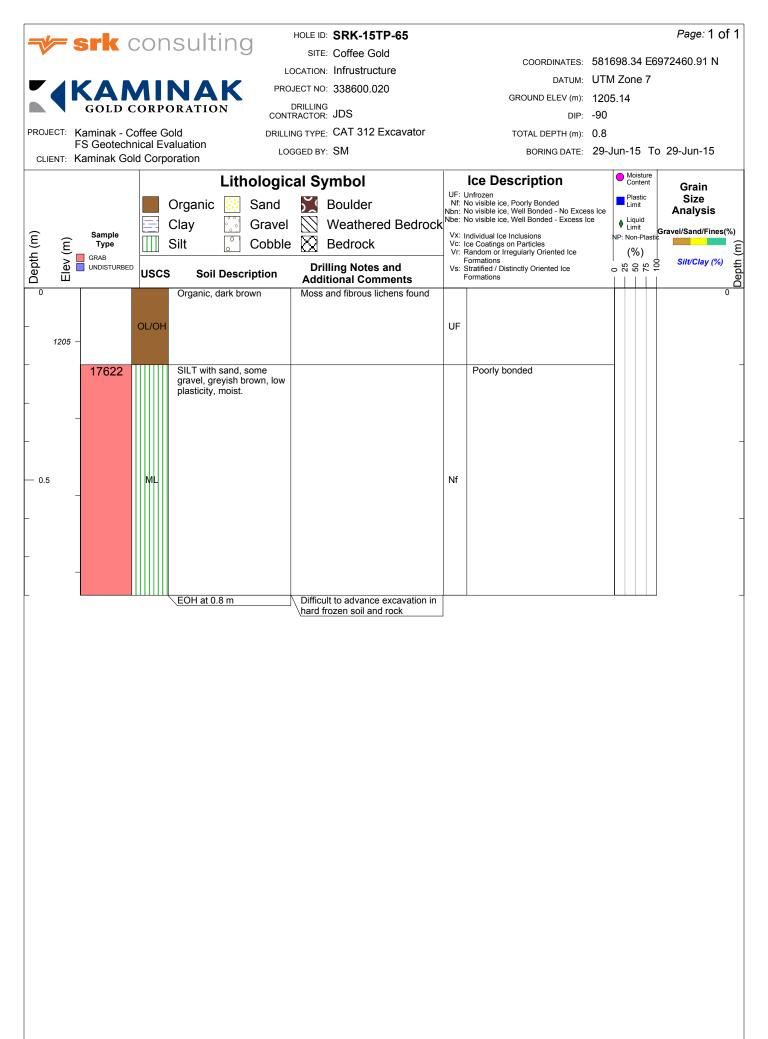



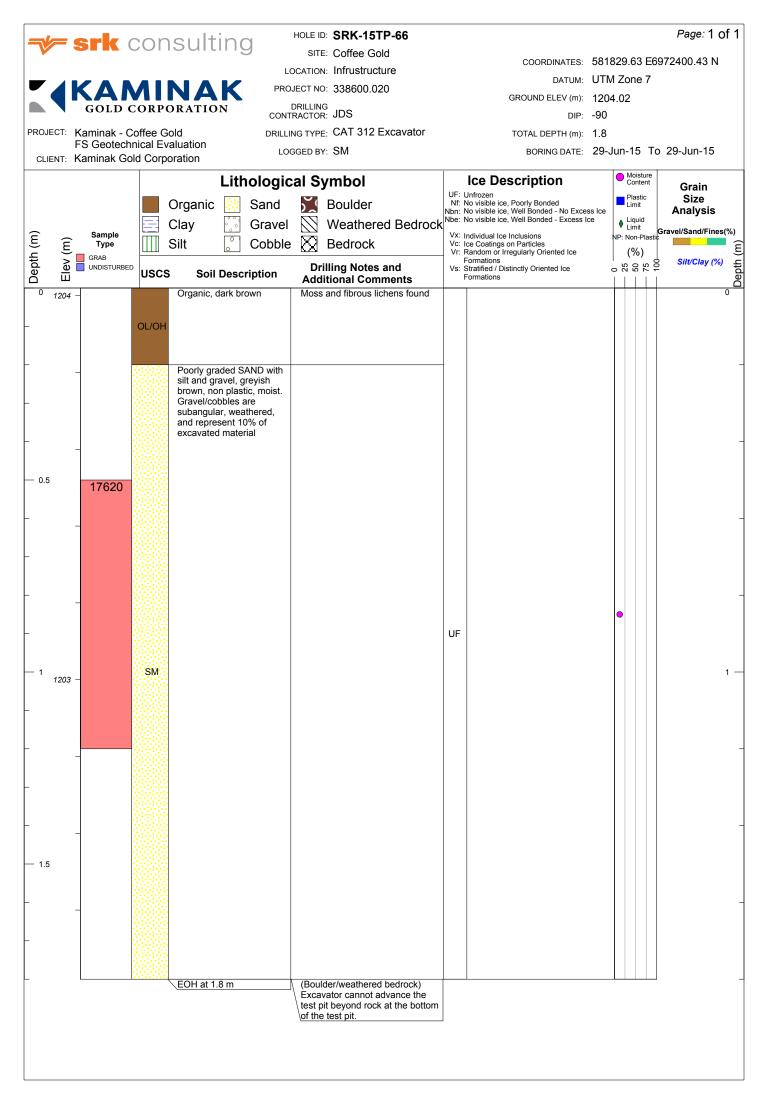



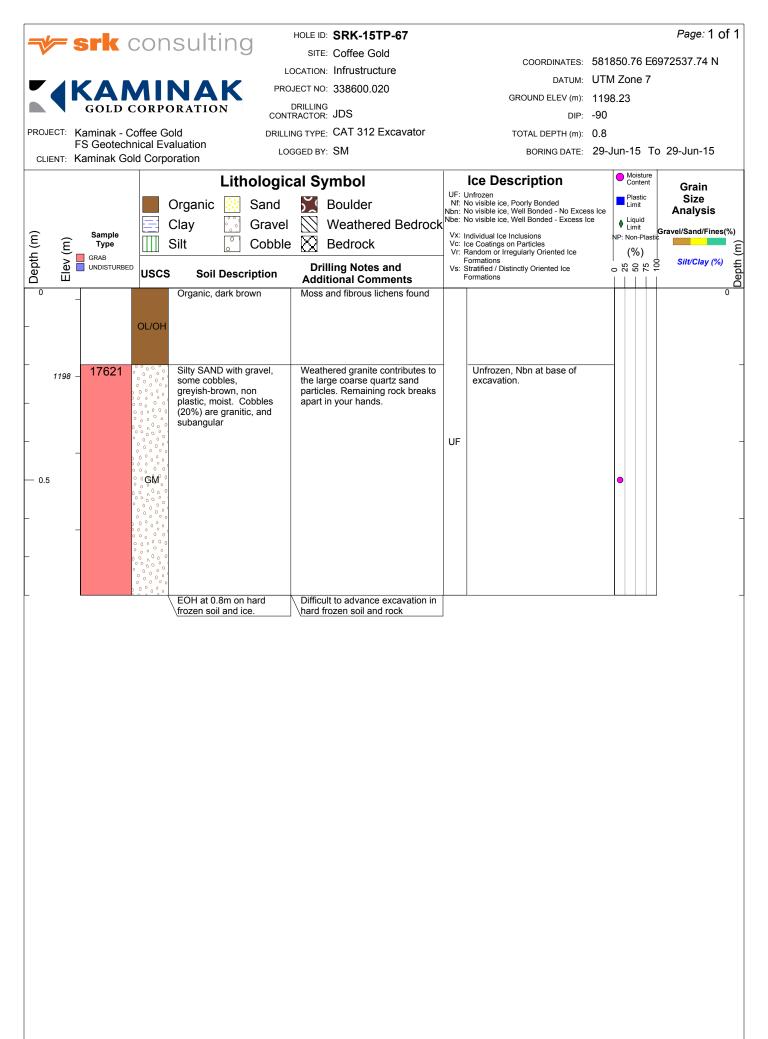



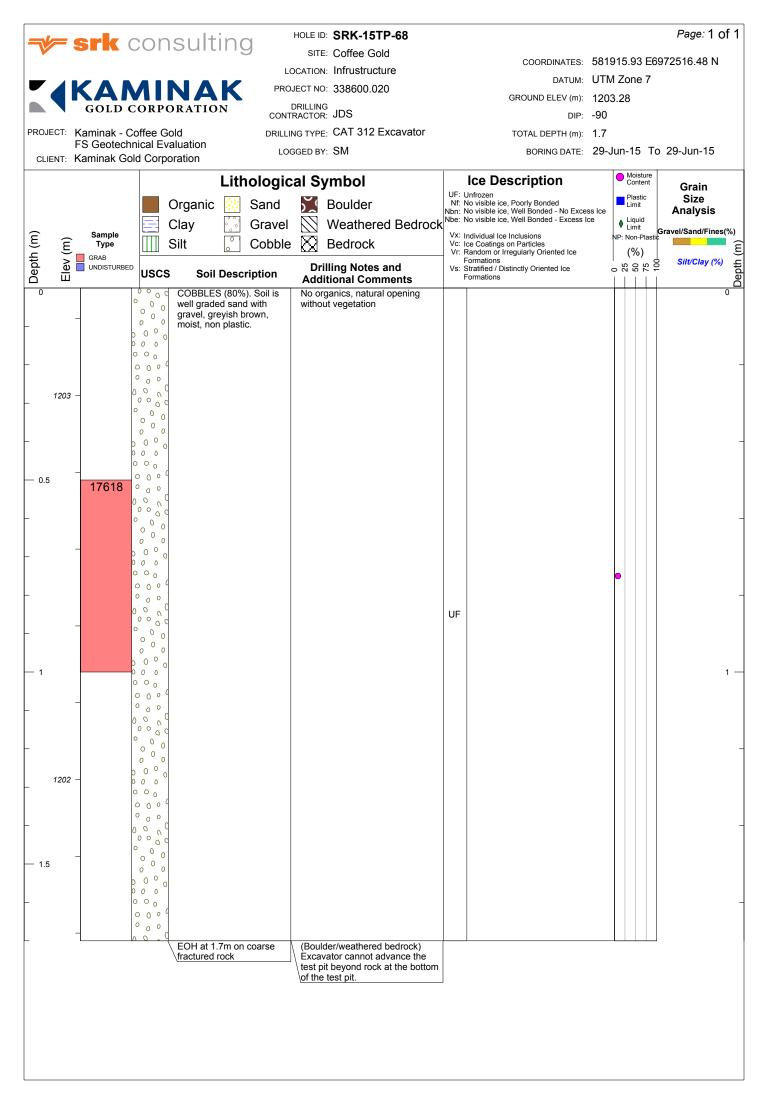



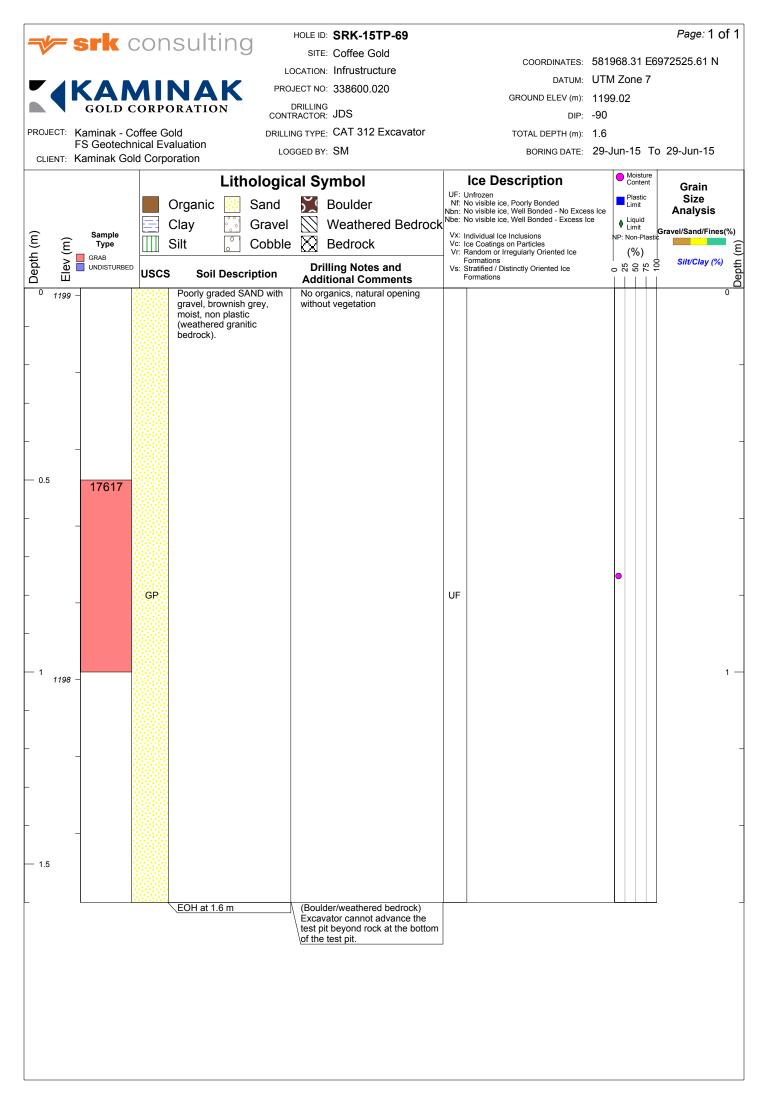



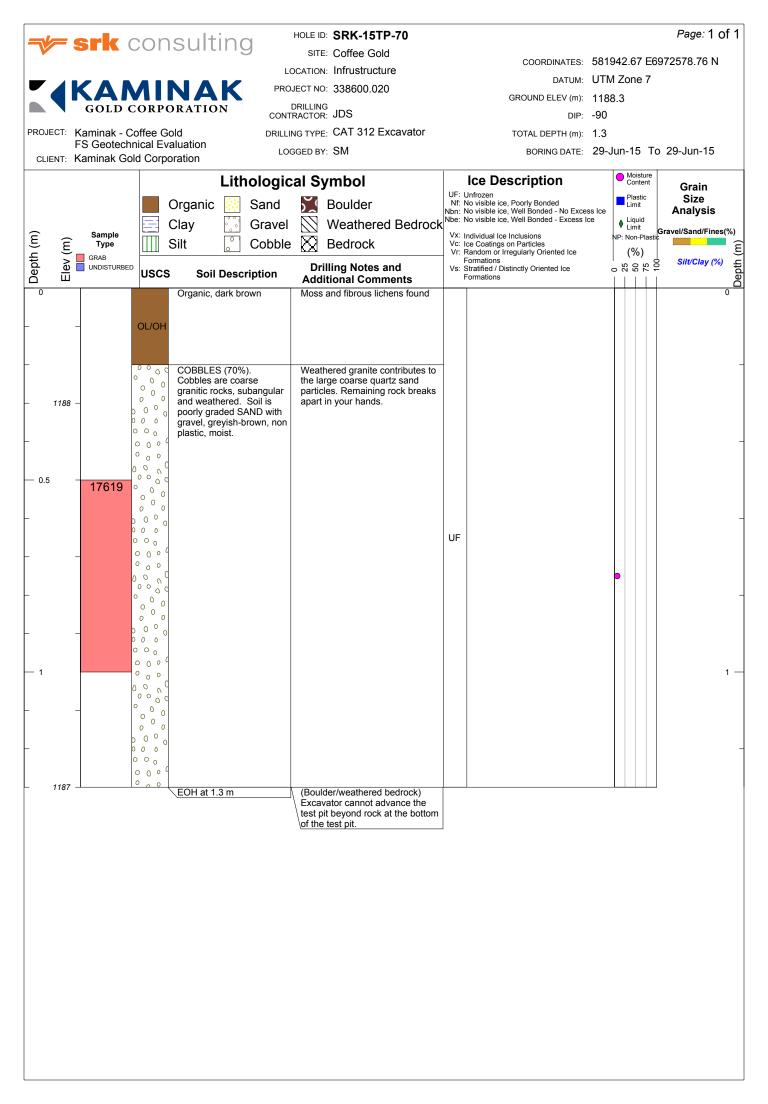



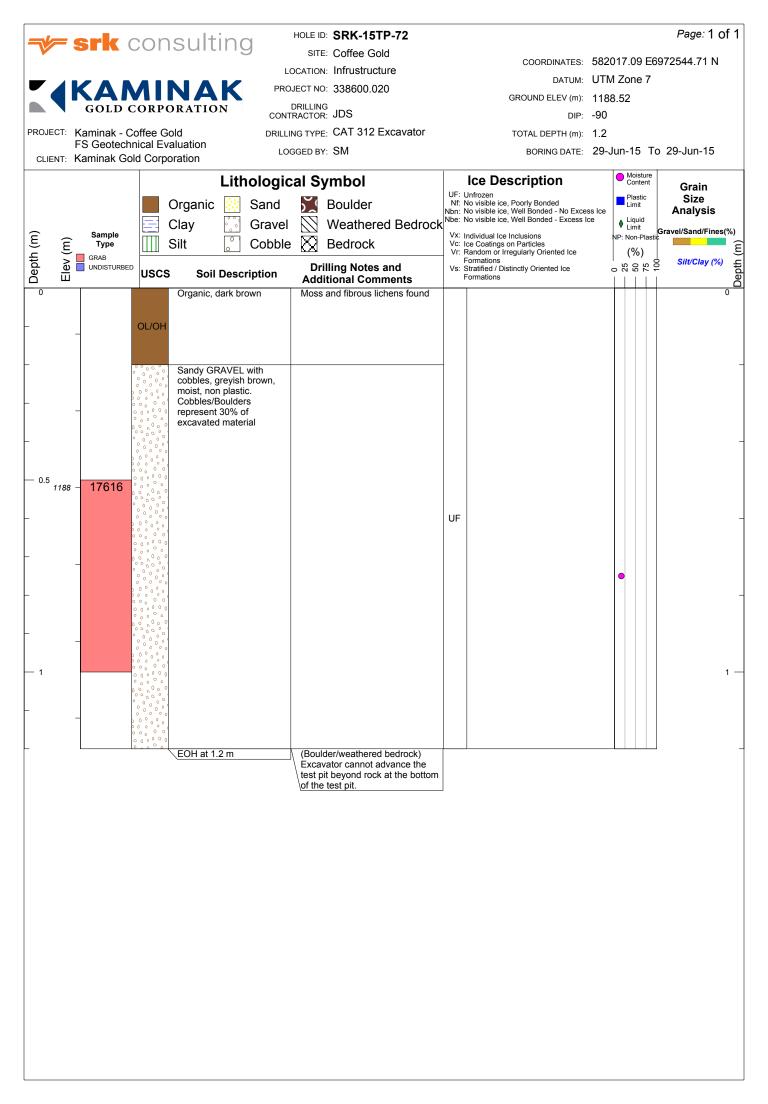



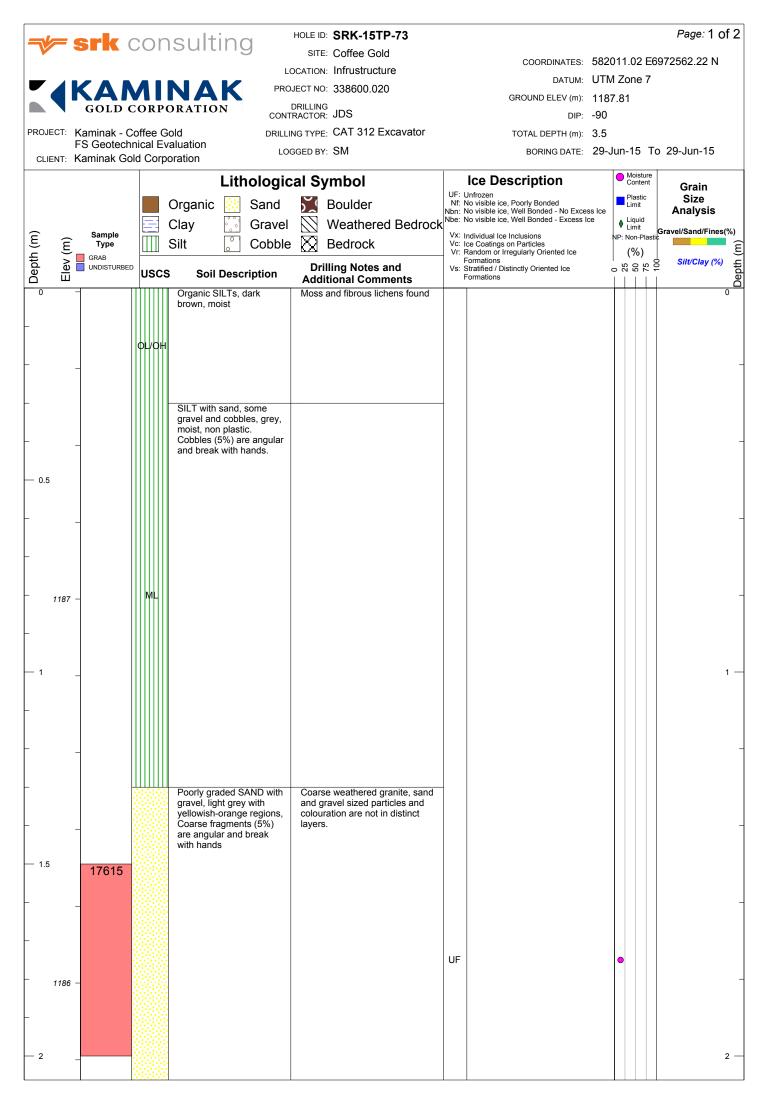



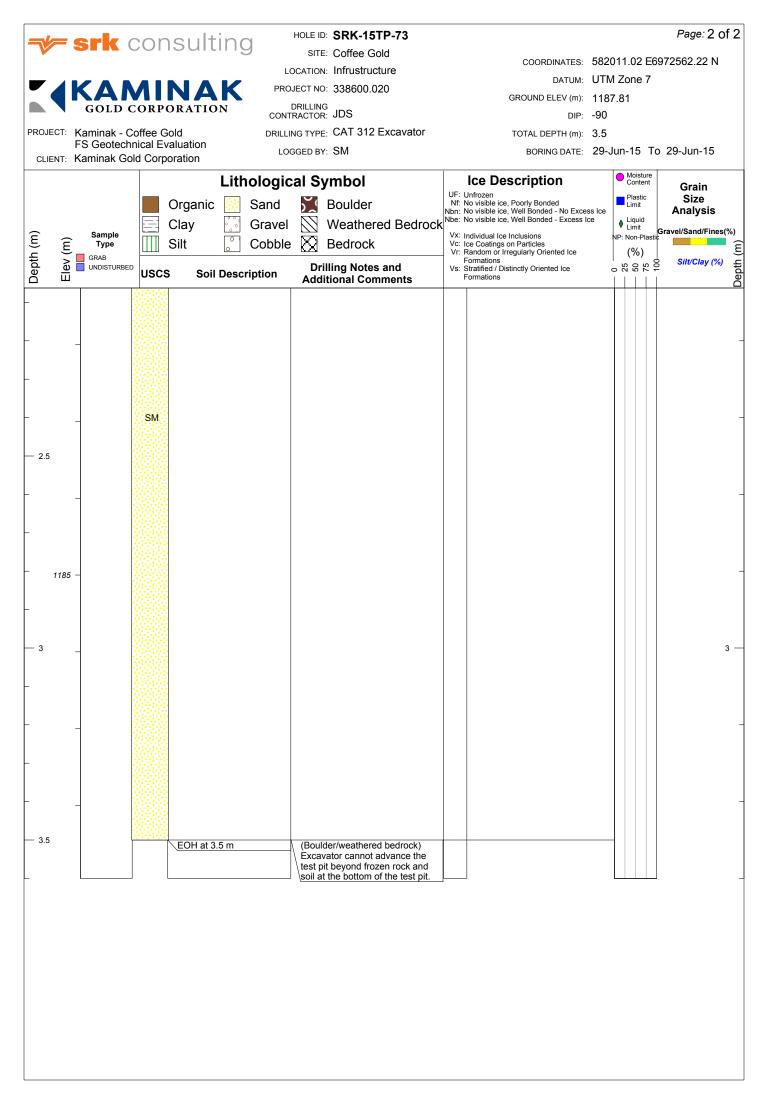



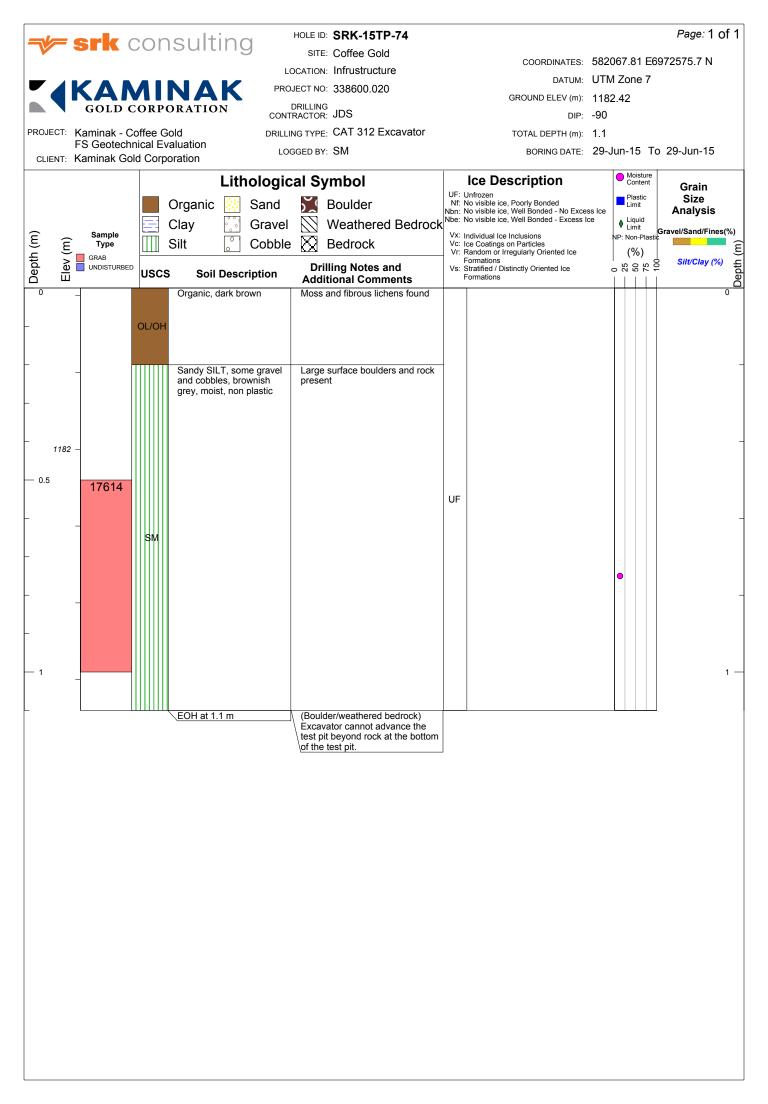



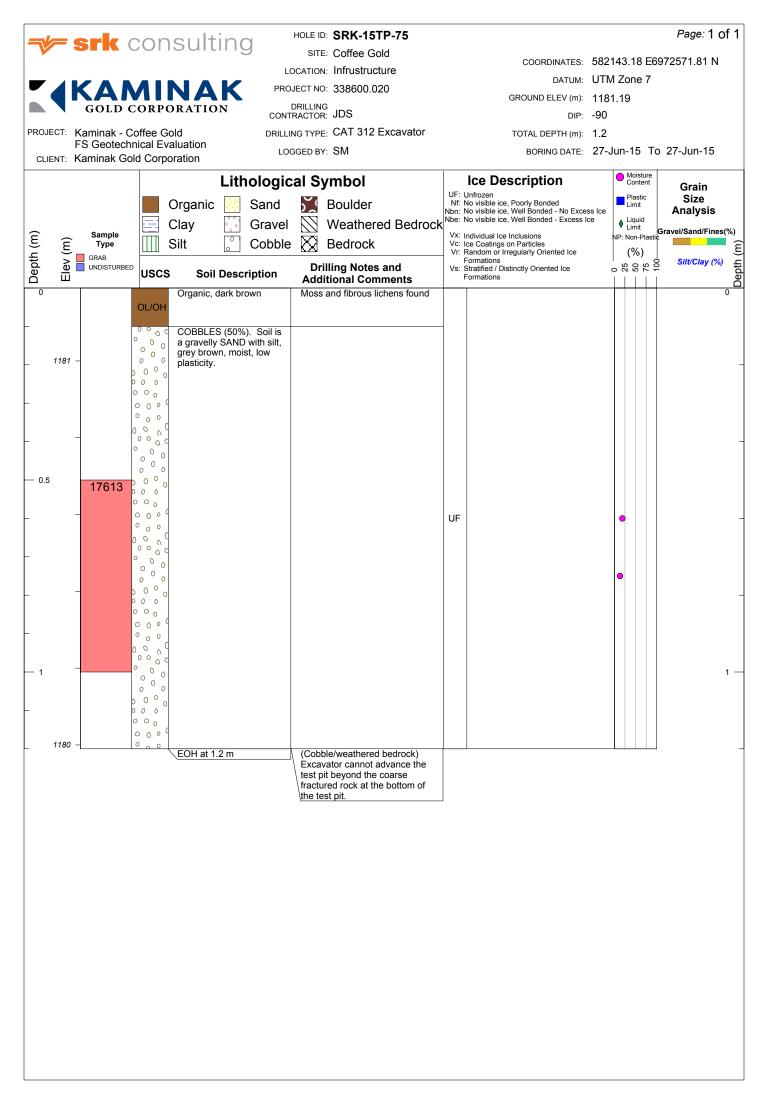



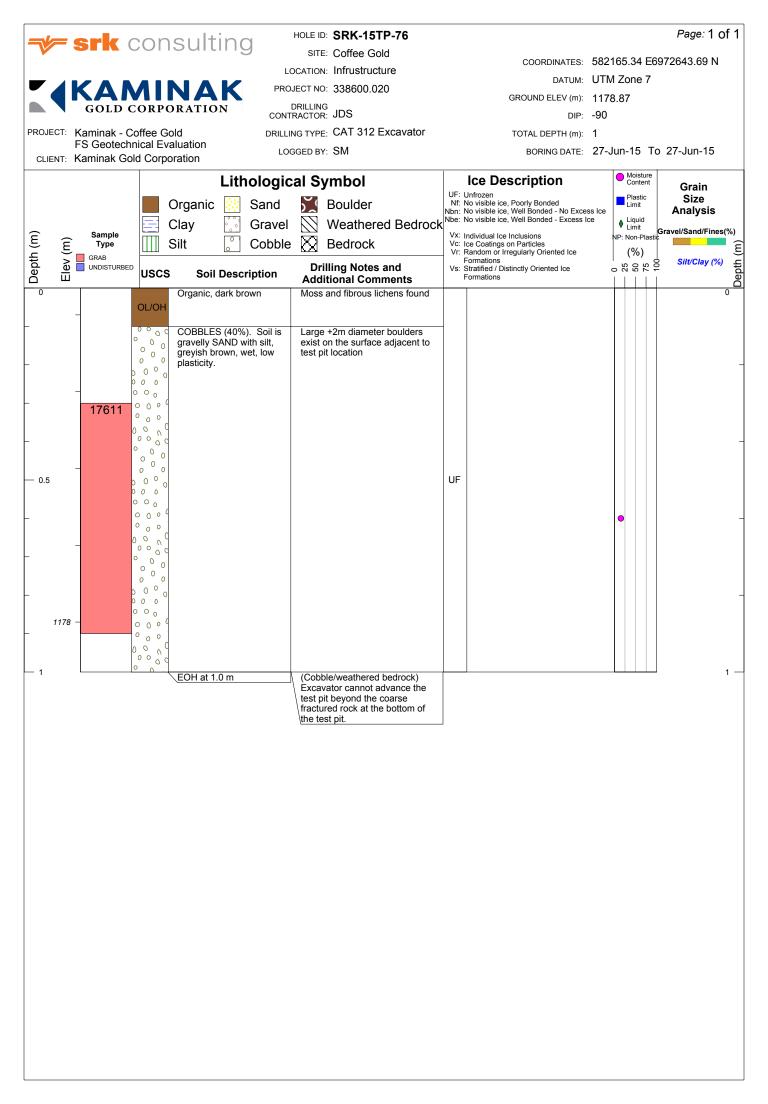



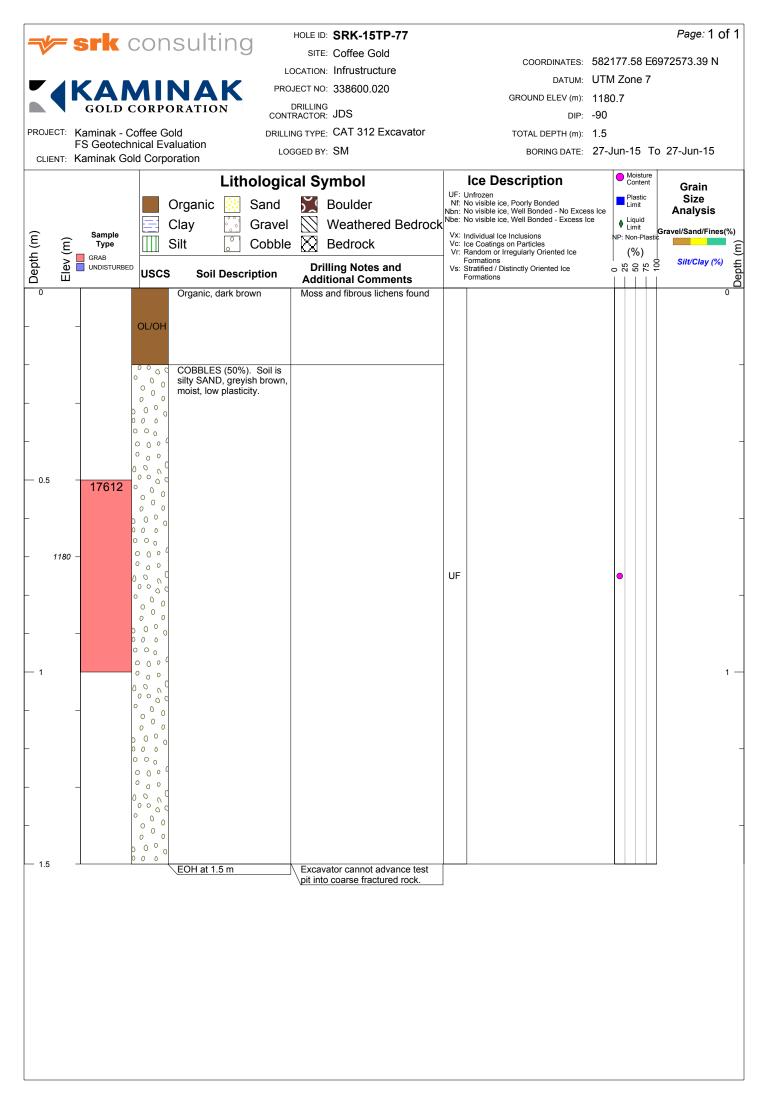



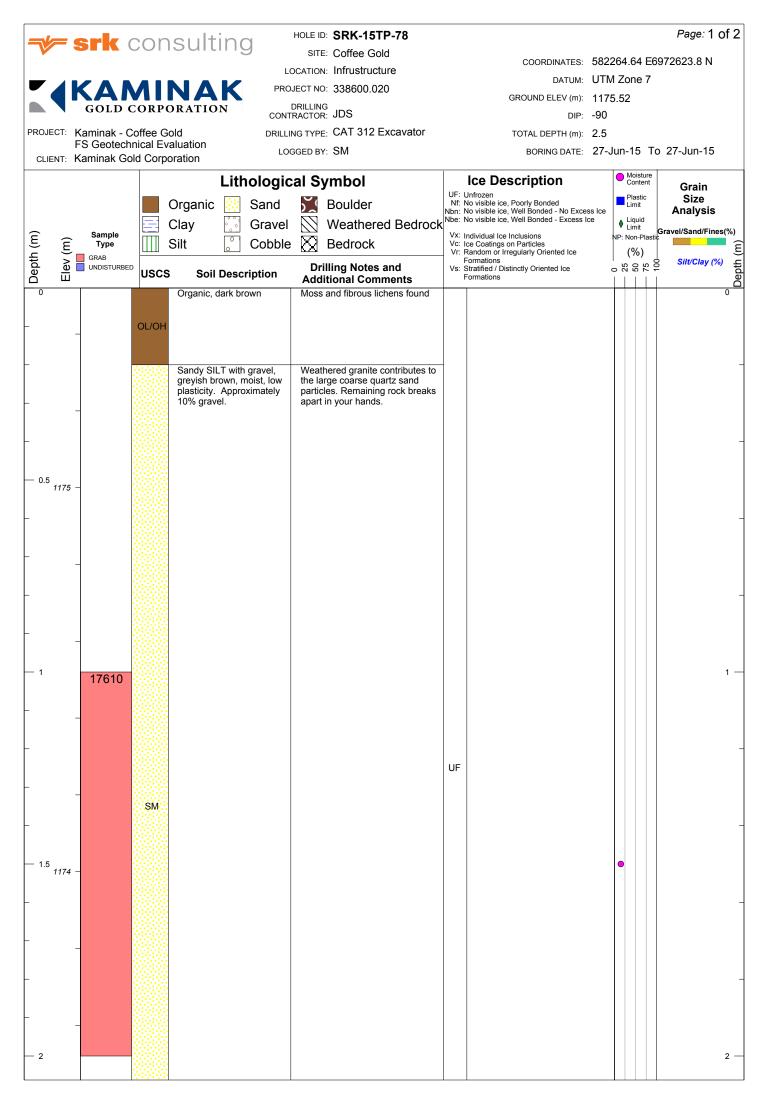



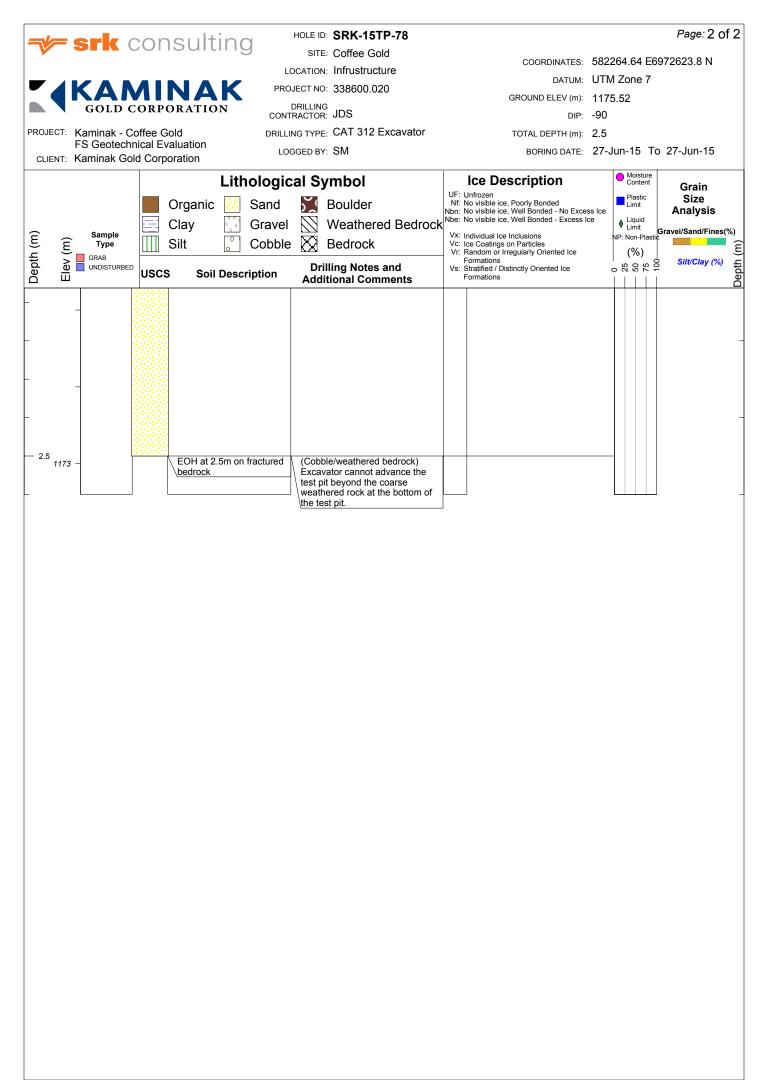



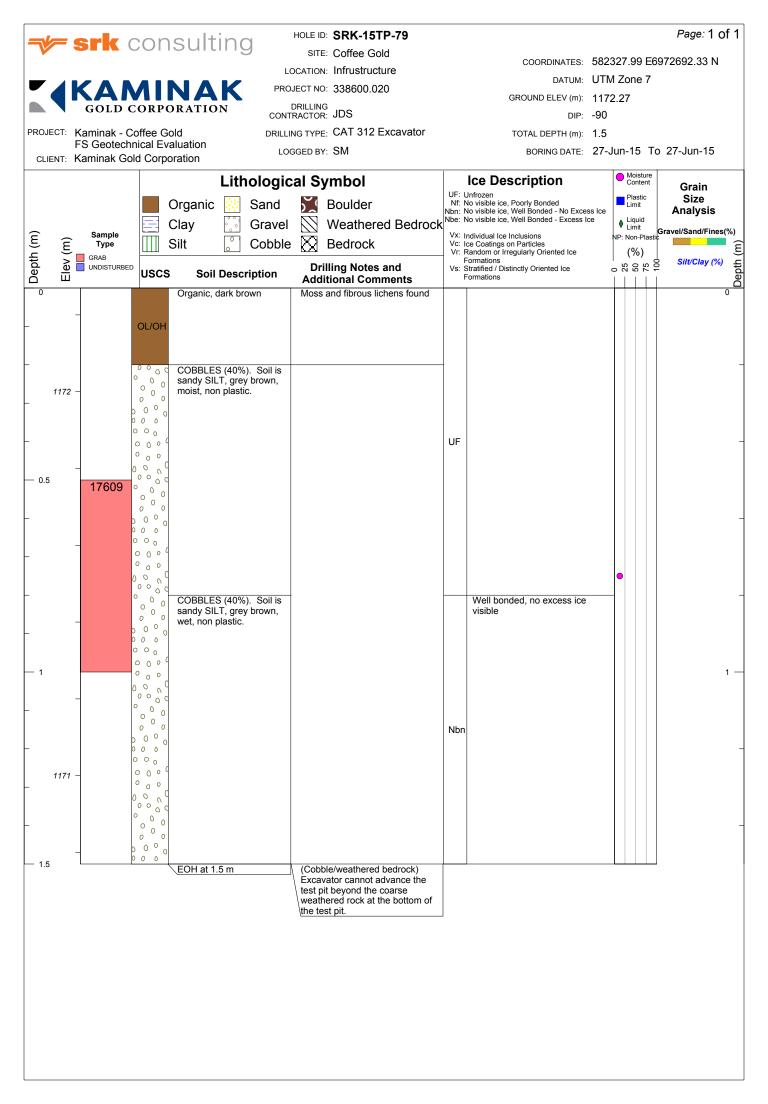



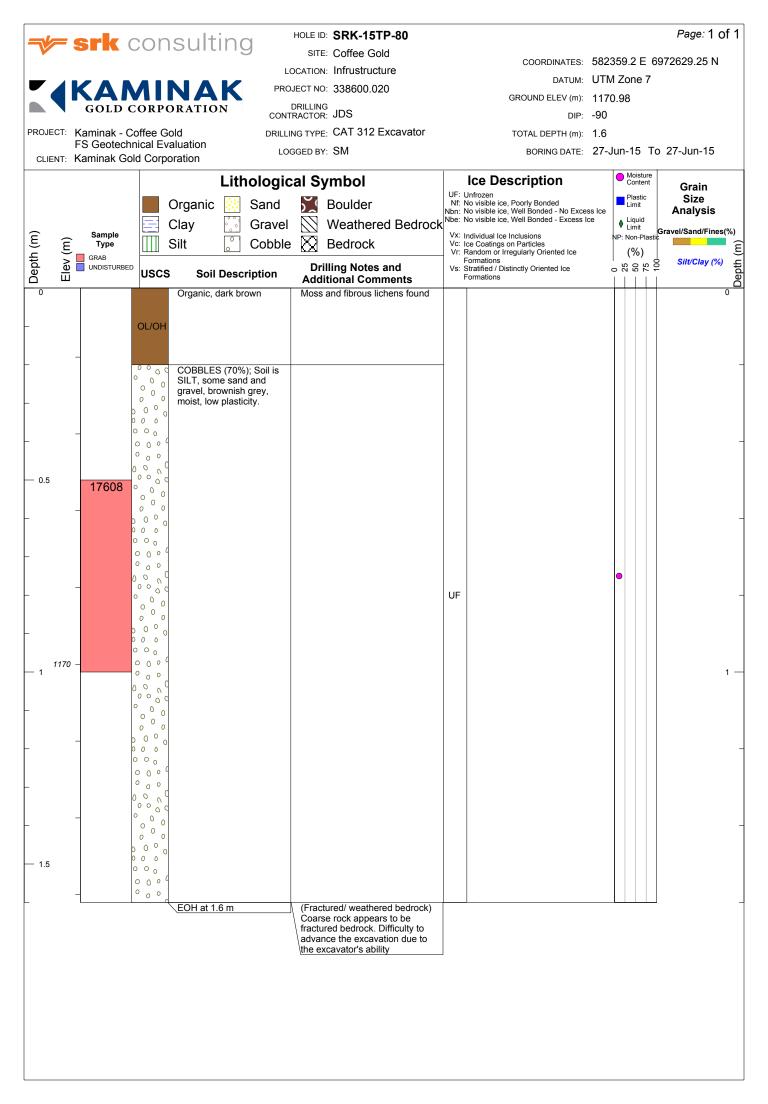



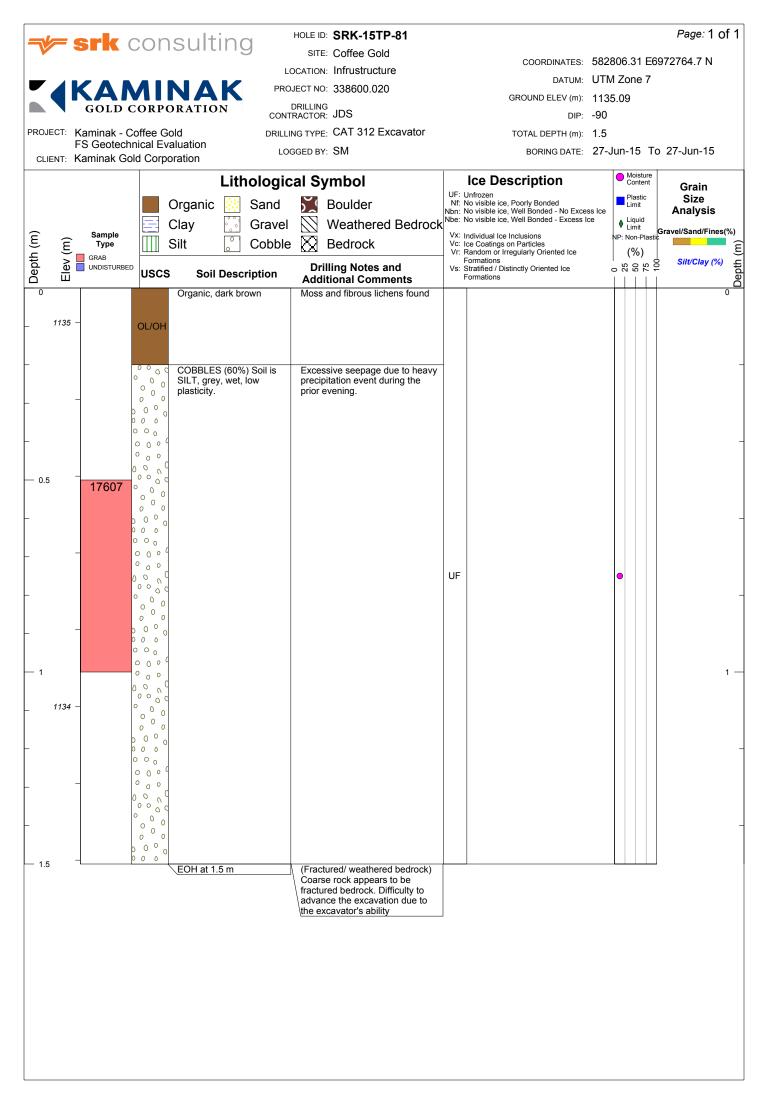



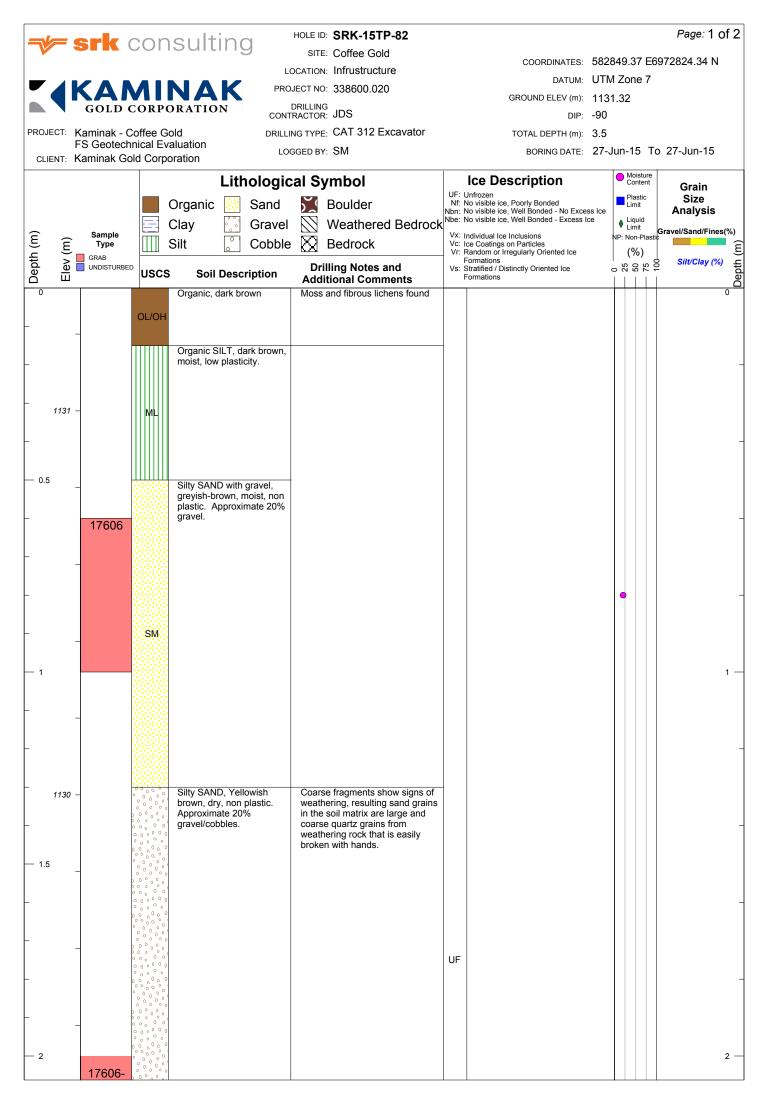



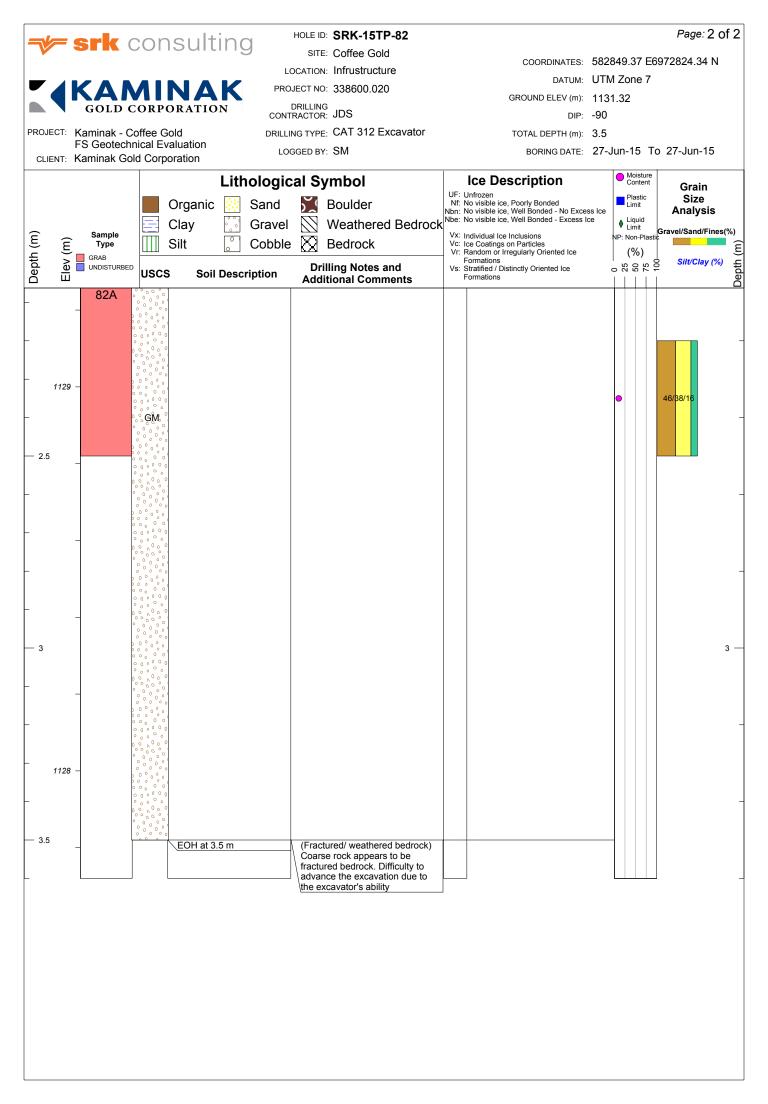



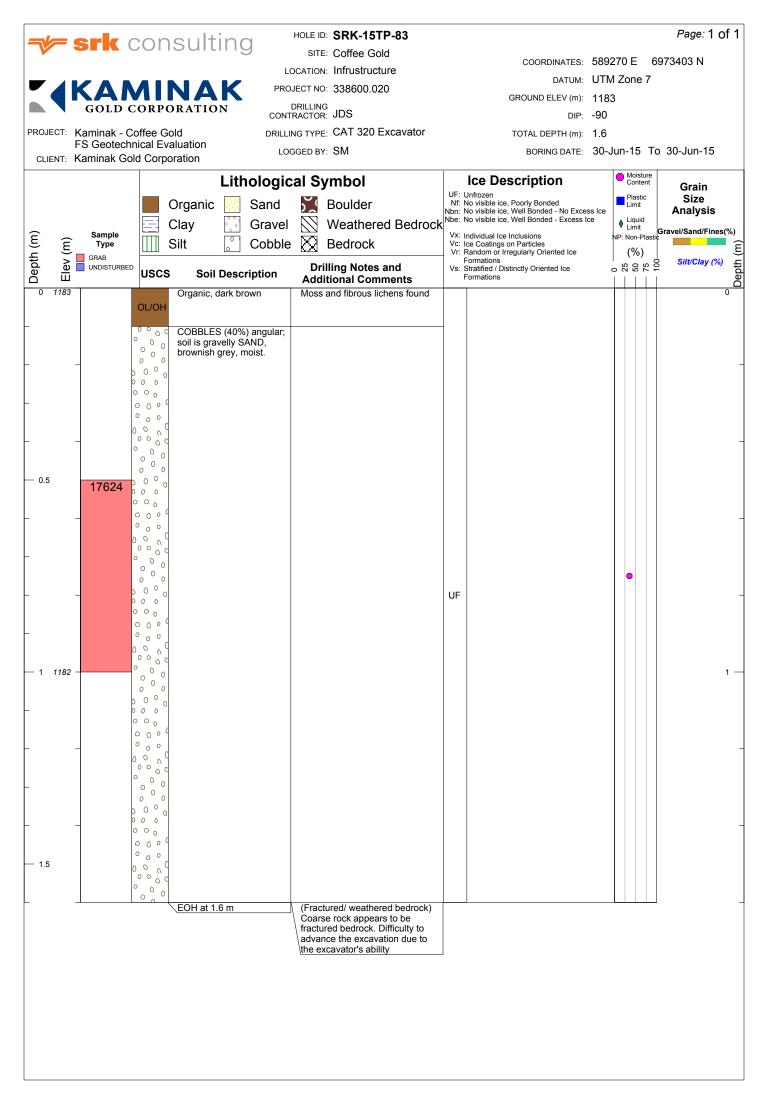



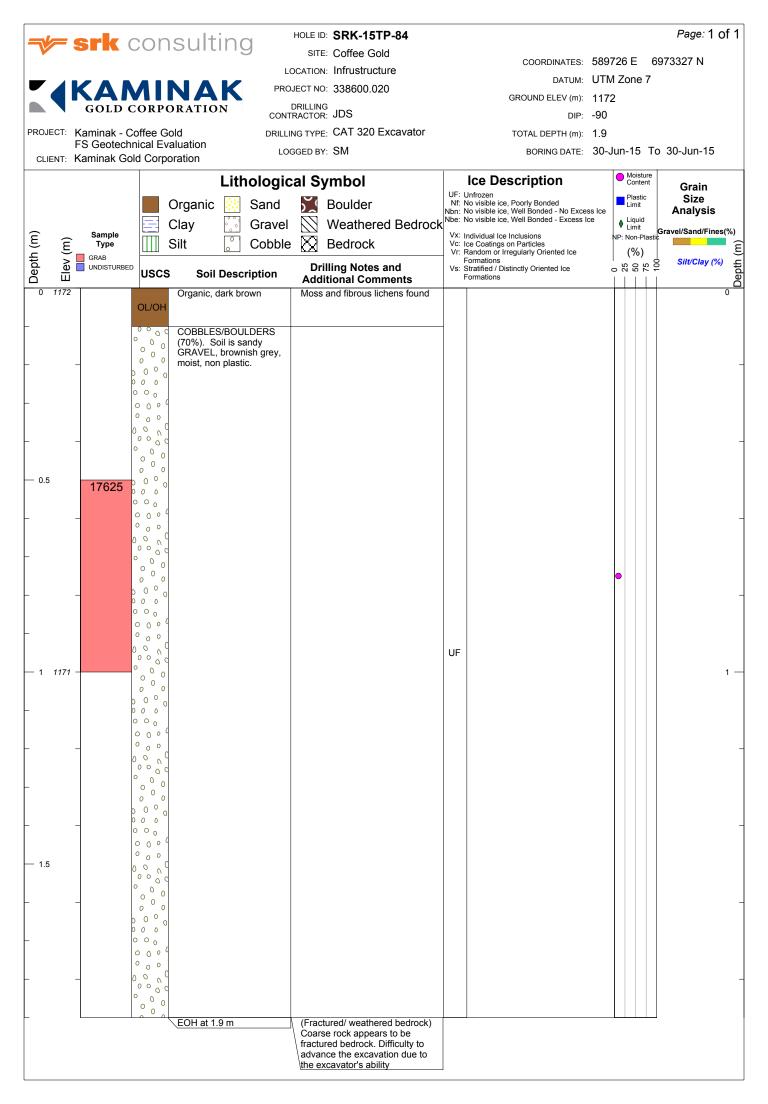



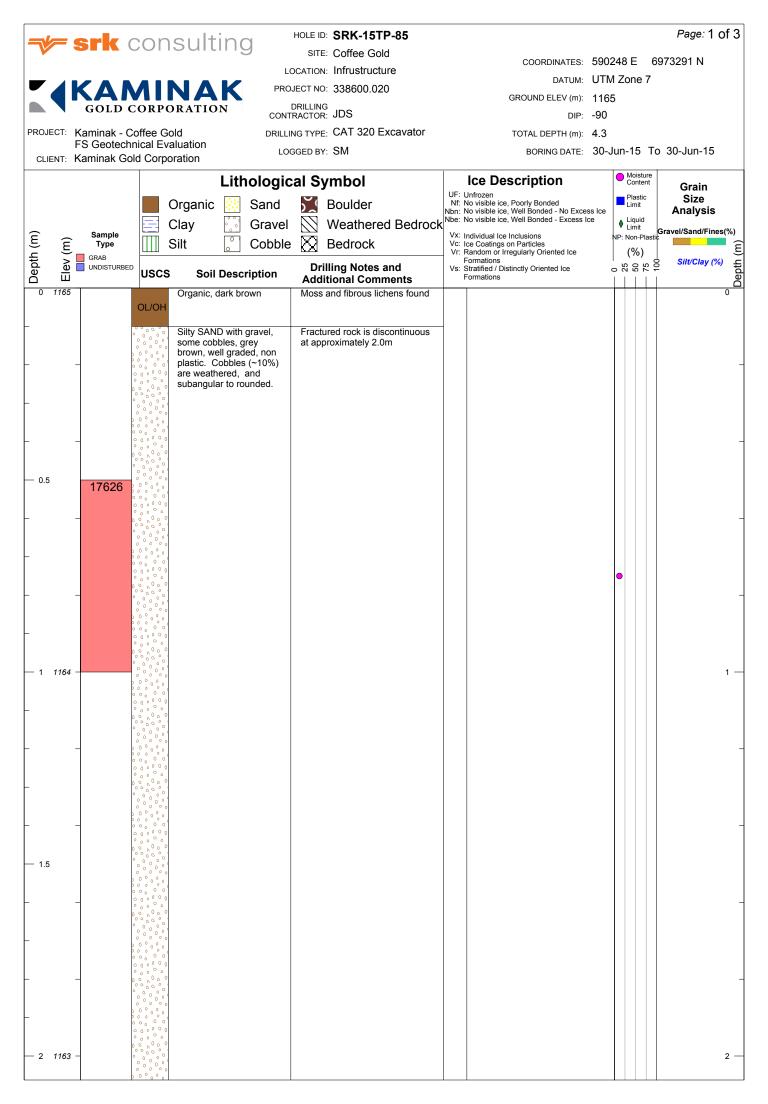



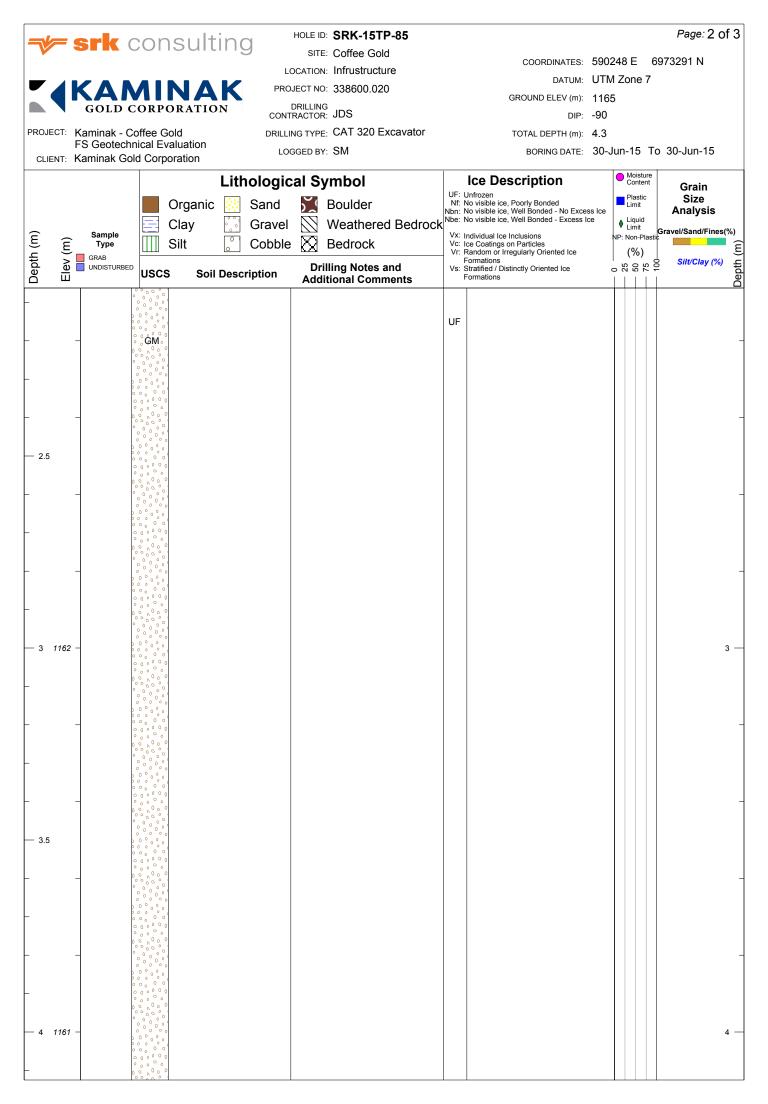



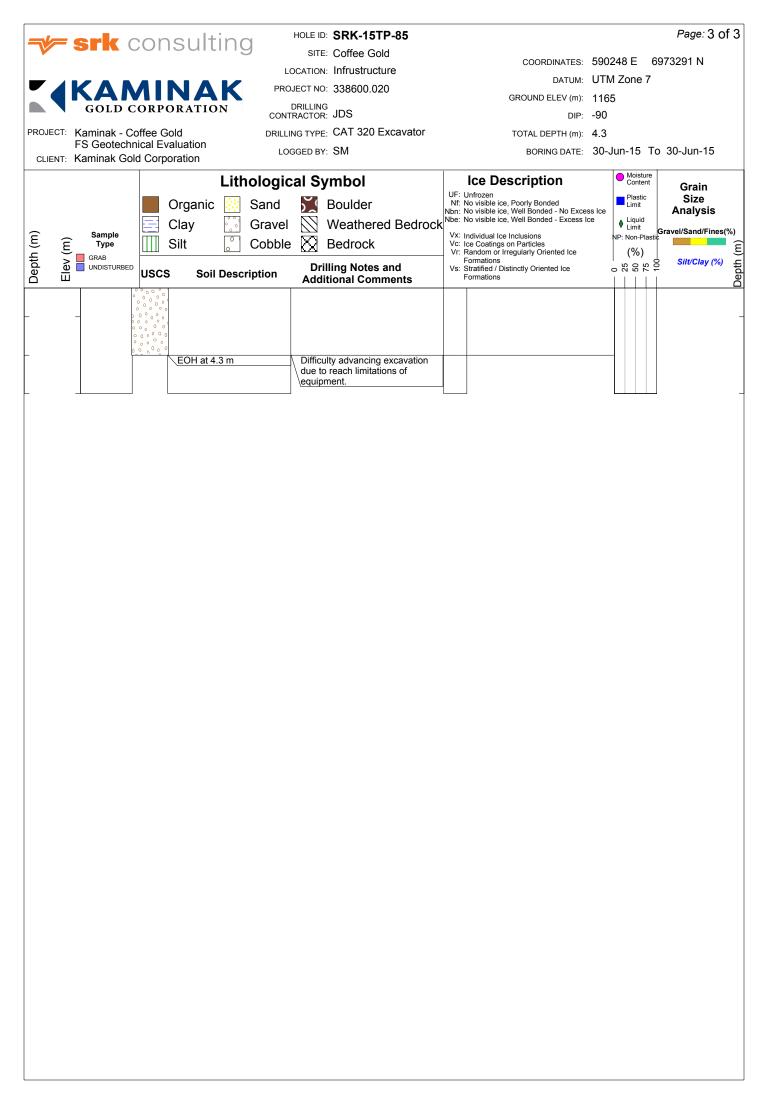














**Appendix C: Photograph Logs** 

**Appendix C-1: Phase 1 Sonic Drill Core Photographs** 

Bore Hole ID: SRK-15S-01 Location: North Dump **Elevation:** 1077 masl

Aspect: East Facing Mid Slope

1.5 feet 0 to



3.5 feet 1.5 to



4.5 feet 3.5 to





Job No:



2015 Geotech Investigation

SRK-15S-01

338600-020 Coffee Gold Filename: C-1\_Sonic Drill Photos.pptx

Date: September 18,2015

Approved:

Figure: 15S-01-01

Bore Hole ID: SRK-15S-01 Location: North Dump **Elevation:** 1077 masl

Aspect: East Facing Mid Slope

7 feet 4.5 to









2015 Geotech Investigation

SRK-15S-01

Coffee Gold

Date: September 18,2015

Approved:

Figure: 15S-01-02

Bore Hole ID: SRK-15S-02 Location: North Dump

**Elevation:** 946 masl

Aspect: North East Facing Slope Toe

1 feet 0 to











2015 Geotech Investigation

SRK-15S-02

Date: September 18,2015

Approved: Figure: 15S-02-01

338600-020 Filename: C-1\_Sonic Drill Photos.pptx

Job No:

Coffee Gold

Bore Hole ID: SRK-15S-02 Location: North Dump **Elevation:** 946 masl

Aspect: East Facing Mid Slope

4.5 feet 3 to







2015 Geotech Investigation

SRK-15S-02

Coffee Gold

Date: September 18,2015

Approved: Figure: 15S-02-02

Bore Hole ID: SRK-15S-03
Location: North Dump
Elevation: 986 masl

Aspect: West Facing Mid Slope

0 to 3.5 feet



3.5 to 8 feet



8 to 12.5 feet







2015 Geotech Investigation

SRK-15S-03

Job No: 338600-020

Filename: C-1\_Sonic Drill Photos.pptx

Coffee Gold

Date: September A

Approved: SM Figure: 15S-03-01

Bore Hole ID: SRK-15S-03
Location: North Dump
Elevation: 986 masl

**Aspect:** West Facing Mid Slope

12.5 to 16.5 feet



16.5 to 19 feet



19 to 21 feet







2015 Geotech Investigation

SRK-15S-03

Coffee Gold

Date: September 18,2015

Approved: Figure: 15S-03-02

Bore Hole ID: SRK-15S-03
Location: North Dump
Elevation: 986 masl

**Aspect:** West Facing Mid Slope

21 to 24.5 feet



24.5 to 34.5 feet







2015 Geotech Investigation

SRK-15S-03

Coffee Gold

Date: September 18,2015

Approved: Figure: 15S-03-03

Bore Hole ID: SRK-15S-04
Location: North Dump
Elevation: 1045 masl

**Aspect:** North Facing Mid Slope

0 to 5 feet



5 to 8.5 feet



8.5 to 11 feet







2015 Geotech Investigation

SRK-15S-04

Coffee Gold

Date: September 18,2015

Approved: SM Figure: **15S-04-01** 

Job No: 338600-020

Filename: C-1\_Sonic Drill Photos.pptx

Bore Hole ID: SRK-15S-04
Location: North Dump
Elevation: 1045 masl

**Aspect:** North Facing Mid Slope

11 to 15 feet



15.5 to 20.5 feet







2015 Geotech Investigation

SRK-15S-04

Date:

Date: September Approved: 18,2015 S

Figure: **15S-04-02** 

Bore Hole ID: SRK-15S-05 Location: West Dump **Elevation:** 880 masl

Aspect: West Facing Slope Toe

5 feet 0 to



10 feet 5 to









2015 Geotech Investigation

SRK-15S-05

Coffee Gold

Date: September Approved: 18,2015

SM

Figure: **15S-05-01** 

338600-020 Filename: C-1\_Sonic Drill Photos.pptx

Bore Hole ID: SRK-15S-05
Location: West Dump
Elevation: 880 masl

**Aspect:** West Facing Mid Slope

12.5 to 13.5 feet



13.5 to 16 feet



16 to 19 feet







2015 Geotech Investigation

SRK-15S-05

Job No: 338600-020

Filename: C-1\_Sonic Drill Photos.pptx

Coffee Gold

Date: September 18,2015

Approved: SM Figure: 15S-05-02

Bore Hole ID: SRK-15S-06
Location: West Dump
Elevation: 997 masl

**Aspect:** West Facing Mid Slope

0 to 1 feet



1 to 5 feet







Filename: C-1\_Sonic Drill Photos.pptx



2015 Geotech Investigation

SRK-15S-06

Job No: 338600-020

Coffee Gold

Date: September 18,2015

Approved: SM Figure: 15S-06-01

Bore Hole ID: SRK-15S-05 Location: West Dump **Elevation:** 997 masl

Aspect: West Facing Mid Slope

10 feet 8 to



15 feet 10 to







2015 Geotech Investigation

SRK-15S-06

Coffee Gold

Date: September 18,2015

Approved: SM Figure: 15S-06-02

Bore Hole ID: SRK-15S-07
Location: West Dump
Elevation: 956 masl

**Aspect:** West Facing Mid Slope

0 to 4.5 feet



4.5 to 9 feet



9 to 10 feet







2015 Geotech Investigation

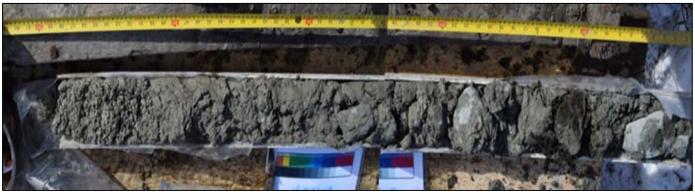
SRK-15S-07

Coffee Gold

Date: September 18,2015

Approved:

Figure: 15S-07-01


Job No: 338600-020

Filename: C-1\_Sonic Drill Photos.pptx

Bore Hole ID: SRK-15S-07
Location: West Dump
Elevation: 956 masl

Aspect: West Facing Mid Slope

10 to 13.5 feet



13.5 to 14.5 feet



14.5 to 16 feet







2015 Geotech Investigation

SRK-15S-07

Coffee Gold

Date: September 18,2015

Approved: Figure: 15S-07-02

Job No: 338600-020

Filename: C-1\_Sonic Drill Photos.pptx

Bore Hole ID: SRK-15S-07 Location: West Dump **Elevation:** 956 masl

Aspect: West Facing Mid Slope

18 feet 16 to







2015 Geotech Investigation

SRK-15S-07

Coffee Gold

Date: September 18,2015

Approved: Figure: 15S-07-03 SM

Bore Hole ID: SRK-15S-08
Location: West Dump
Elevation: 986 masl

**Aspect:** North Facing Mid Slope

0 to 5 feet



5 to 7 feet



7 to 10 feet







2015 Geotech Investigation

SRK-15S-08

Job No: 338600-020

Filename: C-1\_Sonic Drill Photos.pptx

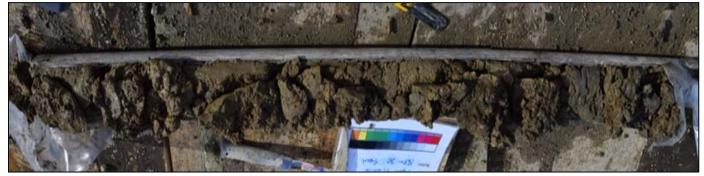
Coffee Gold

Date: September 18,2015

Approved: SM Figure: 15S-08-01

Bore Hole ID: SRK-15S-08
Location: West Dump
Elevation: 986 masl

Aspect: North Facing Mid Slope


10 to 12.5 feet



12.5 to 15.5 feet



15.5 to 20 feet







2015 Geotech Investigation

SRK-15S-08

Job No: 338600-020

Filename: C-1\_Sonic Drill Photos.pptx

Coffee Gold

Date: September 18,2015

Approved: SM Figure: 15S-08-02

**Bore Hole ID:** SRK-15S-08 Location: West Dump **Elevation:** 986 masl

Aspect: North Facing Mid Slope

25 feet 20 to



30 feet 25 to



35 feet 30 to







2015 Geotech Investigation

SRK-15S-08

Coffee Gold

Date: September 18,2015

Approved: Figure: 15S-08-03 SM

338600-020 Filename: C-1\_Sonic Drill Photos.pptx

Job No:

Bore Hole ID: SRK-15S-08 Location: West Dump 986 masl **Elevation:** 

Aspect: North Facing Mid Slope

40 feet 35 to







2015 Geotech Investigation

SRK-15S-08

Coffee Gold

Date: September Approved: 18,2015

Figure: 15S-08-04

Job No:

Bore Hole ID: SRK-15S-09
Location: South Dump
Elevation: 855 masl

Aspect: North Facing Mid Slope

0 to 5 feet



5 to 10 feet



10 to 15 feet







2015 Geotech Investigation

SRK-15S-09

Job No: 338600-020

Filename: C-1\_Sonic Drill Photos.pptx

Coffee Gold

Date: September 18,2015

Approved:

Figure: 15S-09-01

Bore Hole ID: SRK-15S-09
Location: South Dump
Elevation: 855 masl

**Aspect:** North Facing Mid Slope

15 to 20 feet



20 to 25 feet



25 to 30 feet







2015 Geotech Investigation

SRK-15S-09

Job No: 338600-020

Filename: C-1\_Sonic Drill Photos.pptx

Coffee Gold

Date: September 18,2015

Approved:

Figure: 15S-09-02

Bore Hole ID: SRK-15S-09
Location: South Dump
Elevation: 855 masl

**Aspect:** North Facing Mid Slope

30 to 35 feet







2015 Geotech Investigation

SRK-15S-09

Coffee Gold

Date: September 18,2015

Approved: Figure: 15S-09-03

Bore Hole ID: SRK-15S-10
Location: South Dump

**Elevation:** 870 masl

Aspect: North East Facing Mid Slope

0 to 3 feet



3 to 4 feet



4 to 5 feet







2015 Geotech Investigation

SRK-15S-10

Job No: 338600-020

Filename: C-1\_Sonic Drill Photos.pptx

Coffee Gold

Date: September 18,2015

Approved:

Figure: 15S-10-01

Bore Hole ID: SRK-15S-10
Location: South Dump
Elevation: 870 masl

Aspect: North East Facing Mid Slope

5 to 6 feet





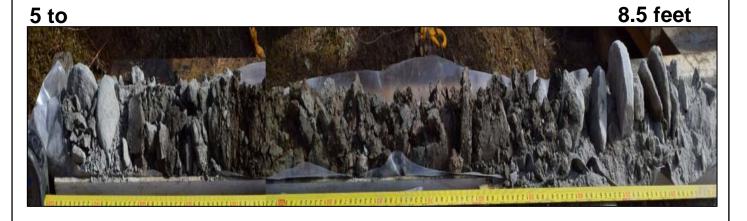


2015 Geotech Investigation

SRK-15S-10

Coffee Gold

Date: September A


Approved: Figure: 15S-10-02

Job No: 338600-020
Filename: C-1\_Sonic Drill Photos.pptx

Bore Hole ID: SRK-15S-11 Location: South Dump **Elevation:** 915 masl

Aspect: South West Facing Mid Slope











2015 Geotech Investigation

SRK-15S-11

Coffee Gold

Date: September 18,2015

Approved:

Figure: 15S-11-01

Job No:

Bore Hole ID: SRK-15S-12
Location: South Dump
Flevation: 788 masl

**Aspect:** South Facing Slope Toe

0 to 5 feet



5 to 10 feet



10 to 15 feet







2015 Geotech Investigation

SRK-15S-12

Coffee Gold

Date: September 18,2015

Approved: SM Figure: 15S-12-01

Job No: 338600-020

Filename: C-1\_Sonic Drill Photos.pptx

Bore Hole ID: SRK-15S-12
Location: South Dump
Televation: 788 masl

**Aspect:** South Facing Slope Toe

15 to 20 feet



20 to 25 feet



25 to 30 feet







2015 Geotech Investigation

SRK-15S-12

Job No: 338600-020

Filename: C-1\_Sonic Drill Photos.pptx

Coffee Gold

Date: September A

Approved:

Figure: 15S-12-02

**Location:** Heap Leach Area

**Elevation:** 1259 masl

Aspect: North Facing Mid to Upper Slope

0 to 1.5 feet



1.5 to 6.5 feet



6.5 to 8.5 feet



8.5 to 11.5 feet







2015 Geotech Investigation

SRK-15S-13A

Job No: 338600-020

Filename: C-1\_Sonic Drill Photos.pptx

Coffee Gold

Date: September Approved: 18,2015 S

oved: Figure: **15S-13A-01** 

**Location:** Heap Leach Area

Elevation: 1259 masl

Aspect: North Facing Mid to Upper Slope

11.5 to 14.5 feet













2015 Geotech Investigation

SRK-15S-13A

Job No: 338600-020

Filename: C-1\_Sonic Drill Photos.pptx

Coffee Gold

Date: September 18,2015

Approved: F

Figure: 15S-13A-02

Bore Hole ID: SRK-15S-13A Location: Heap Leach Area

**Elevation:** 1259 masl

Aspect: North Facing Mid to Upper Slope

31.5 feet 26.5 to







2015 Geotech Investigation

**SRK-15S-13A** 

Job No: 338600-020 Filename: C-1\_Sonic Drill Photos.pptx

Coffee Gold

Date: September Approved: 18,2015

Figure: 15S-13A-03

Location: Heap Leach Area

**Elevation:** 1305 masl

Aspect: North Facing Upper Slope

1 feet 0 to



1 to 5 feet









2015 Geotech Investigation

SRK-15S-14

Coffee Gold

Date: September 18,2015

Approved:

Figure: 15S-14-01

338600-020 Filename: C-1\_Sonic Drill Photos.pptx

Job No:

Location: Heap Leach Area

**Elevation:** 1250 masl

Aspect: Slope Crest

6 feet 0 to



8 feet 6 to









2015 Geotech Investigation

**SRK-15S-15** 

Coffee Gold

Date: September 18,2015

Approved:

Figure: 15S-15-01

Job No:

**Location:** Heap Leach Area

**Elevation:** 1313 masl

**Aspect:** Slope Crest

0 to 1 feet



1 feet 4 feet



4 feet 5 feet







2015 Geotech Investigation

SRK-15S-16

Job No: 338600-020

Filename: C-1\_Sonic Drill Photos.pptx

Coffe

Date: September 18,2015

Approved: SM Figure: 15S-16-01

Location: Heap Leach Area

**Elevation:** 1276 masl

Aspect: Slope Crest

2 feet 0 to



5 feet 2 to



10 feet 5 to





Job No:



2015 Geotech Investigation

SRK-15S-17

338600-020 Coffee Gold Filename: C-1\_Sonic Drill Photos.pptx

Date: September 18,2015

Approved:

Figure: 15S-17-01

**Location:** Heap Leach Area

**Elevation:** 1264 masl

**Aspect:** Slope Crest

0 to 1 feet



1 to 3.5 feet



3.5 to 6 feet



6 to 7 feet







2015 Geotech Investigation

SRK-15S-18

Job No: 338600-020

Filename: C-1\_Sonic Drill Photos.pptx

Coffee Gold

Date: September 18,2015

Approved: SM Figure: 15S-18-01

**Location:** Heap Leach Area

**Elevation:** 1311 masl

**Aspect:** South Facing Upper Slope

0 to 2 feet



2 to 7 feet



7 to 11 feet







2015 Geotech Investigation

SRK-15S-19

Job No: 338600-020

Filename: C-1\_Sonic Drill Photos.pptx

Coffee Gold

Date: September 18,2015

Approved:

Figure: 15S-19-01

Location: Heap Leach Area

**Elevation:** 1311 masl

Aspect: South Facing Upper Slope

15 feet 11 to









2015 Geotech Investigation

**SRK-15S-19** 

Date: September 18,2015

Approved:

Figure: 15S-19-02

**Location:** Heap Leach Area

Elevation: 1171 masl

**Aspect:** South Facing Upper Slope

0 to 5 feet



5 to 8 feet







2015 Geotech Investigation

SRK-15S-20

Coffee Gold

Date: September 18,2015

Approved:

Figure: 15S-20-01

338600-020

Job No:

**Location:** Heap Leach Area

**Elevation:** 1143 masl

**Aspect:** North Facing Upper Slope











2015 Geotech Investigation

SRK-15S-21

Coffee Gold

Date: September 18,2015

Approved: SM Figure: 15S-21-01

**Location:** Heap Leach Area

**Elevation:** 1154 masl

**Aspect:** Crest

0 to 1 feet



1 to 2 feet



2 to 5.5 feet



5.5 to 10 feet







2015 Geotech Investigation

SRK-15S-22

Job No: 338600-020

Filename: C-1\_Sonic Drill Photos.pptx

Coffee Gold

Date: September 18,2015

Approved:

Figure: 15S-22-01

**Location:** Heap Leach Area

**Elevation:** 1154 masl

**Aspect:** Crest

0 to 1 feet







2015 Geotech Investigation

SRK-15S-22

Job No: 338600-020

Filename: C-1\_Sonic Drill Photos.pptx

Coffee Gold

Date: September 18,2015

Approved:

Figure: 15S-22-02

**Location:** Heap Leach Area

**Elevation:** 1199 masl

**Aspect:** Crest

0 to 1.5 feet



1.5 to 3 feet



3.5 to 5.5 feet



7.5 feet





2015 Geotech Investigation

SRK-15S-23

Job No: 338600-020

Filename: C-1\_Sonic Drill Photos.pptx

Coffee Gold

Date: September A 18,2015

Approved: SM Figure: 15S-23-01

Location: Heap Leach Area

**Elevation:** 1170 masl

Aspect: South East Facing Upper Slope











2015 Geotech Investigation

SRK-15S-24

Job No: 338600-020

Filename: C-1\_Sonic Drill Photos.pptx

Coffee Gold

Date: September Approved: 18,2015

Figure: 15S-24-01

**Location:** Heap Leach Area

**Elevation:** 1170 masl

Aspect: South East Facing Upper Slope

5.5 to 7.5 feet



7.5 to 8.5 feet







2015 Geotech Investigation

SRK-15S-24

Job No: 338600-020

Filename: C-1\_Sonic Drill Photos.pptx

Date: September 18,2015

Approved:

Figure: 15S-24-02

**Location:** Heap Leach Area

**Elevation:** 1154 masl

**Aspect:** East Facing Mid Slope











2015 Geotech Investigation

SRK-15S-25

Job No: 338600-020

Filename: C-1\_Sonic Drill Photos.pptx

Coffee Gold

Date: September 18,2015

Approved: SM Figure: 15S-25-01

Location: Heap Leach Area

**Elevation:** 1154 masl

Aspect: East Facing Mid Slope

10.5 feet 8 to







2015 Geotech Investigation

SRK-15S-25

Job No: 338600-020

Filename: C-1\_Sonic Drill Photos.pptx

Coffee Gold

Date: September 18,2015

Approved:

Figure: 15S-25-02

**Location:** Foundation Area for Infrastructure

Elevation: 1143 masl

**Aspect:** Slope Crest

0 to 3 feet



3 to 6 feet



6 to 8 feet







2015 Geotech Investigation

SRK-15S-26

Job No: 338600-020

Filename: C-1\_Sonic Drill Photos.pptx

Coffee Gold

Date: September 18,2015

Approved: SM Figure: 15S-26-01

**Location:** Foundation Area for Infrastructure

**Elevation:** 1144 masl

**Aspect:** Slope Crest

0 to 3 feet



3 to 6.5 feet



9 to 14.5 feet





2015 Geotech Investigation

SRK-15S-27

Job No: 338600-020

Filename: C-1\_Sonic Drill Photos.pptx

Coffee Gold

Date: September A 18,2015

Approved:

Figure: 15S-27-01

**Location:** Foundation Area for Infrastructure

**Elevation:** 1144 masl

**Aspect:** Slope Crest

14.5 to 18 feet







2015 Geotech Investigation

SRK-15S-27

Job No: 338600-020

Filename: C-1\_Sonic Drill Photos.pptx

Coffee Gold

Date: September 18,2015

Approved:

Figure: 15S-27-02

**Location:** Foundation Area for Infrastructure

**Elevation:** 1119 masl

Aspect: South Facing Mid to Upper Slope

0 to 3.5 feet



3.5 to 6 feet









2015 Geotech Investigation

SRK-15S-28

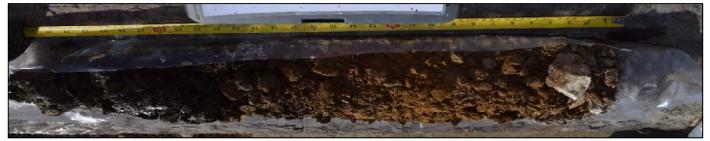
Job No: 338600-020

Filename: C-1\_Sonic Drill Photos.pptx

Coffee Gold

Date: September 18,2015

Approved:


Figure: 15S-28-01

**Location:** Foundation Area for Infrastructure

Elevation: 1111 masl

Aspect: South Facing Mid to Upper Slope

0 to 2 feet



2 to 3 feet











2015 Geotech Investigation

SRK-15S-29

Job No: 338600-020

Filename: C-1\_Sonic Drill Photos.pptx

Coffee Gold

Date: September 18,2015

Approved: Figure: 15S-29-01

**Location:** Foundation Area for Infrastructure

Elevation: 1126 masl

**Aspect:** Slope Crest

0 to 2 feet



2 to 4.5 feet



4.5 to 6 feet



6 to 11 feet







2015 Geotech Investigation

SRK-15S-30

Job No: 338600-020

Filename: C-1\_Sonic Drill Photos.pptx

Coffee Gold

Date: September 18,2015

Approved:

Figure: 15S-30-01

**Location:** Foundation Area for Infrastructure

**Elevation:** 1126 masl

**Aspect:** Slope Crest

9 to 11 feet



11 to 12 feet



12 to 14.5 feet







2015 Geotech Investigation

SRK-15S-30

Job No: 338600-020

Filename: C-1\_Sonic Drill Photos.pptx

Coffee Gold

Date: September 18,2015

Approved:

Figure: 15S-30-02

**Location:** Foundation Area for Infrastructure

Elevation: 1205 masl

Aspect: South East Facing Mid to Upper Slope











2015 Geotech Investigation

SRK-15S-31

Job No: 338600-020

Filename: C-1\_Sonic Drill Photos.pptx

Coffee Gold

Date: September 18,2015

Approved:

Figure: 15S-31-01

**Location:** Foundation Area for Infrastructure

Elevation: 1202 masl

Aspect: South East Facing Mid to Upper Slope

0 to 1.5 feet



1.5 to 3 feet



3 to 3.5 feet







2015 Geotech Investigation

SRK-15S-32

Job No: 338600-020

Filename: C-1\_Sonic Drill Photos.pptx

Coffee Gold

Date: September 18,2015

Approved:

Figure: 15S-32-01

Location: Foundation Area for Infrastructure

**Elevation:** 1202 masl

Aspect: South East Facing Mid to Upper Slope

4.5 feet 3.5 to











2015 Geotech Investigation

SRK-15S-32

338600-020 Job No:

Filename: C-1\_Sonic Drill Photos.pptx

Coffee Gold

Date: September Approved: 18,2015

Figure: 15S-32-02

Location: Foundation Area for Infrastructure

Elevation: 1195 masl

Aspect: South East Facing Mid to Upper Slope

2 feet 0 to



4.5 feet 2 to



5.5 feet 4.5 to







2015 Geotech Investigation

**SRK-15S-33** 

338600-020 Job No:

Filename: C-1\_Sonic Drill Photos.pptx

Coffee Gold

Date: September Approved: 18,2015

Figure: 15S-33-01

**Location:** Foundation Area for Infrastructure

**Elevation:** 1195 masl

Aspect: South East Facing Mid to Upper Slope

5.5 to 7 feet





2015 Geotech Investigation

SRK-15S-33

Job No: 338600-020

Filename: C-1\_Sonic Drill Photos.pptx

Coffee Gold

Date: September 18,2015

Approved:

Figure: 15S-33-02

**Location:** Foundation Area for Infrastructure

Elevation: 1181 masl

Aspect: South East Facing Mid to Upper Slope

0 to 1 feet



1 to 2 feet



2 to 5.5 feet







2015 Geotech Investigation

SRK-15S-34

Job No: 338600-020

Filename: C-1\_Sonic Drill Photos.pptx

Coffee Gold

Date: September 18,2015

Approved:

Figure: **15S-34-01** 

**Location:** Foundation Area for Infrastructure

**Elevation:** 1181 masl

Aspect: South East Facing Mid to Upper Slope

5.5 to 6 feet



6 to 8 feet





2015 Geotech Investigation

SRK-15S-34

Coffee Gold

Date: September 18,2015

Approved: SM Figure: **15S-34-02** 

**Location:** Foundation Area for Infrastructure / South WRD

Elevation: 868 masl

**Aspect:** South East Facing Slope Toe

0 to 5 feet













2015 Geotech Investigation

SRK-15S-35

Job No: 338600-020

Filename: C-1\_Sonic Drill Photos.pptx

Coffee Gold

Date: September A 18,2015

Approved:

Figure: 15S-35-01

**Location:** Foundation Area for Infrastructure / South WRD

Elevation: 868 masl

**Aspect:** South East Facing Slope Toe

20 to 25 feet







2015 Geotech Investigation

SRK-15S-35

Job No: 338600-020

Filename: C-1\_Sonic Drill Photos.pptx

Coffee Gold

Date: September 18,2015

Approved: SM Figure: 15S-35-02

**Appendix C-2: Phase 2 Test Pit Photographs** 

Test Pit ID: SRK-15TP-01 Elevation: 1257 masl

Location: Heap Leach Pad Area Aspect: North Facing Mid Slope



Test Pit ID: SRK-15TP-02 Elevation: 1291 masl

Location: Heap Leach Pad Area Aspect: North Facing Upper Slope







2015 Geotech Investigation

Heap Leach Pad SRK-15TP-01 and SRK-15TP-02

Job No: 338600-020

Filename: C-2\_Test Pit Photos.pptx

Coffee Gold

Date: September Approved: 18,2015 S

Figure: **15-TP-01/02** 

Test Pit ID: SRK-15TP-03 Elevation: 1260 masl

Location: Heap Leach Pad Area Aspect: North Facing Upper Slope



**Test Pit ID:** SRK-15TP-04 **Elevation:** 1249 masl

Location: Heap Leach Pad Area Aspect: North Facing Upper Slope







2015 Geotech Investigation

Heap Leach Pad SRK-15TP-03 and SRK-15TP-04

Job No: 338600-020

Filename: C-2\_Test Pit Photos.pptx

Coffee Gold

Date: September Approved: 18,2015 S

Figure: **15-TP-03/04** 

Test Pit ID: **Elevation:** SRK-15TP-05 1245 masl

Location: North Facing Upper Slope Heap Leach Pad Area Aspect:



Test Pit ID: SRK-15TP-06 Elevation: 1218 masl

North Facing Upper Slope Location: Heap Leach Pad Area Aspect:







2015 Geotech Investigation

**Heap Leach Pad** SRK-15TP-05 and SRK-15TP-06

Date: September Approved: 18,2015

Figure: **15-TP-05/06** 

Job No:

Test Pit ID: Elevation: SRK-15TP-07 1233 masl

Location: Heap Leach Pad Area Aspect: North Facing Upper Slope



Test Pit ID: SRK-15TP-08 Elevation: 1246 masl

North Facing Upper Slope Location: Heap Leach Pad Area Aspect:







2015 Geotech Investigation

**Heap Leach Pad** SRK-15TP-07 and SRK-15TP-08

338600-020 Job No:

Date: September Approved: 18,2015

Figure: **15-TP-07/08** 

Test Pit ID: SRK-15TP-09 Elevation: 1238 masl

Location: Heap Leach Pad Area Aspect: South Facing Upper Slope



Test Pit ID: SRK-15TP-10 Elevation: 1250 masl

Location: Heap Leach Pad Area Aspect: South Facing Upper Slope







2015 Geotech Investigation

Heap Leach Pad SRK-15TP-09 and SRK-15TP-10

Job No: 338600-020

Filename: C-2\_Test Pit Photos.pptx

Coffee

Date: September Approved: 18,2015 S

Figure: **15-TP-09/10** 

Test Pit ID: SRK-15TP-11 **Elevation:** 1254 masl

Location: Heap Leach Pad Area South Facing Upper Slope Aspect:



**Elevation:** Test Pit ID: SRK-15TP-12 1274 masl

East Facing Upper Slope Location: Heap Leach Pad Area Aspect:







2015 Geotech Investigation

**Heap Leach Pad** SRK-15TP-11 and SRK-15TP-12

338600-020 Job No: Filename: C-2\_Test Pit Photos.pptx

Date: September Approved: 18,2015

Figure: **15-TP-11/12** 

Test Pit ID:SRK-15TP-13Elevation:1295 maslLocation:Heap Leach Pad AreaAspect:Slope Crest



Test Pit ID: SRK-15TP-13A Elevation: 1259 masl

Location: Heap Leach Pad Area Aspect: North Facing Upper Slope







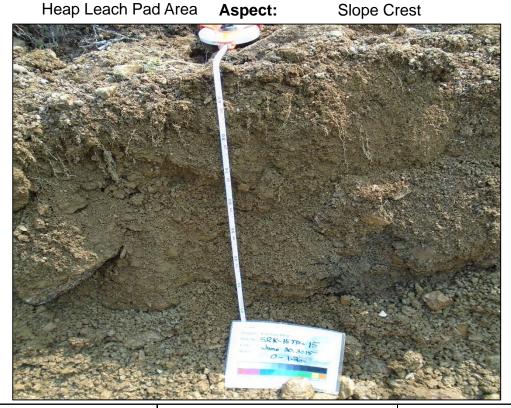
2015 Geotech Investigation

Heap Leach Pad SRK-15TP-13A

Job No: 338600-020
Filename: C-2\_Test Pit Photos.pptx

Coffee Gold

Date: September Approved: 18,2015 S


Figure: **15-TP-13/13A** 

**Test Pit ID:** SRK-15TP-14 **Elevation:** 1324 masl

Location: Heap Leach Pad Area Aspect: Slope Crest



**Test Pit ID:** SRK-15TP-15 **Elevation:** 1343 masl **Location:** Heap Leach Pad Area **Aspect:** Slope Cres







2015 Geotech Investigation

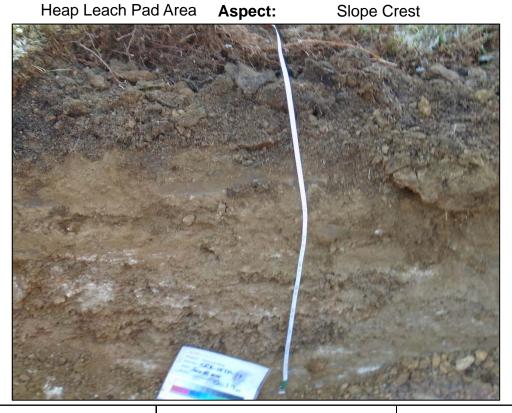
Heap Leach Pad SRK-15TP-14 and SRK-15TP-15

Job No: 338600-020

Filename: C-2\_Test Pit Photos.pptx

Coffee Gold

Date: September 18,2015 Approved: SM


Figure: **15-TP-14/15** 

**Test Pit ID: Elevation:** SRK-15TP-16 1304 masl

Location: Heap Leach Pad Area Slope Crest Aspect:



**Elevation:** 1295 masl Test Pit ID: SRK-15TP-17 Location:







2015 Geotech Investigation

**Heap Leach Pad** SRK-15TP-16 and SRK-15TP-17

Job No: 338600-020 Filename: C-2\_Test Pit Photos.pptx

Date: September Approved: 18,2015

Figure: **15-TP-16/17** 

Test Pit ID:SRK-15TP-18Elevation:1275 maslLocation:Heap Leach Pad AreaAspect:Slope Crest



Test Pit ID: SRK-15TP-19 Elevation: 1264 masl

Location: Heap Leach Pad Area Aspect: North Facing Upper Slope







2015 Geotech Investigation

Heap Leach Pad SRK-15TP-18 and SRK-15TP-19

Coffee Gold

Date: September 18,2015

Approved: Figure: 15-TP-18/19

Filename: C-2\_Test Pit Photos.pptx

Test Pit ID: **Elevation:** SRK-15TP-20 1239 masl

Location: North Facing Upper Slope Heap Leach Pad Area Aspect:



Test Pit ID: SRK-15TP-21 **Elevation:** 1207 masl

North Facing Upper Slope Location: Heap Leach Pad Area Aspect:







2015 Geotech Investigation

**Heap Leach Pad** SRK-15TP-20 and SRK-15TP-21

338600-020

Figure: **15-TP-20/21** Date: September Approved: 18,2015

Coffee Gold

Filename: C-2\_Test Pit Photos.pptx

Job No:

**Elevation:** Test Pit ID: SRK-15TP-22 1165 masl

Run of Mine Stockpile AreaAspect: Location: Slope Crest



Test Pit ID: SRK-15TP-23 **Elevation:** 1147 masl

Run of Mine Stockpile Area Aspect: North Facing Upper Slope Location:







2015 Geotech Investigation

**Run of Mine Area** SRK-15TP-22 and SRK-15TP-23

338600-020 Job No: Filename: C-2\_Test Pit Photos.pptx

Date: September Approved: 18,2015

Figure: 15-TP-22/23 Test Pit ID: Elevation: SRK-15TP-24 1140 masl

Run of Mine Stockpile AreaAspect: Location: North Facing Upper Slope







2015 Geotech Investigation

**Run of Mine Area SRK-15TP-24** 

Job No: 338600-020 Filename: C-2\_Test Pit Photos.pptx

Date: September Approved: 18,2015

Figure: 15-TP-24 SM

Test Pit ID: SRK-15TP-25 Elevation: 901 masl

**Location:** South Dump **Aspect:** East Facing Mid Slope



Test Pit ID: SRK-15TP-26 Elevation: 836 masl

**Location:** South Dump Aspect: East Facing Mid Slope







2015 Geotech Investigation

South Dump

SRK-15TP-25 and SRK-15TP-26

Job No: 338600-020
Filename: C-2\_Test Pit Photos.pptx

Coffee Gold

Date: September Approved: 18,2015 S

Figure: **15-TP-25/26** 

**Test Pit ID: Elevation:** SRK-15TP-27 876 masl

Location: South West Facing Mid Slope South Dump Aspect:



Test Pit ID: SRK-15TP-28 **Elevation:** 912 masl

South West Facing Mid Slope Location: South Dump Aspect:







2015 Geotech Investigation

**South Dump** SRK-15TP-27 and SRK-15TP-28

338600-020 Job No: Filename: C-2\_Test Pit Photos.pptx

Date: September Approved: 18,2015

Figure: **15-TP-27/28** 

Test Pit ID: SRK-15TP-29 Elevation: 1021 masl

**Location:** North Dump **Aspect:** West Facing Mid Slope



Test Pit ID: SRK-15TP-30 Elevation: 953 masl

Location: North Dump Aspect: West Facing Mid Slope







2015 Geotech Investigation

North Dump SRK-15TP-29 and SRK-15TP-30

Job No: 338600-020

Filename: C-2\_Test Pit Photos.pptx

Coffee Gold

Date: September 18,2015

Approved: Figure: 15-TP-29/30

Test Pit ID: SRK-15TP-31 Elevation: 902 masl

Location: North Dump Aspect: West Facing Mid Slope



**Test Pit ID:** SRK-15TP-32 **Elevation:** 937 masl

Location: North Dump Aspect: West Facing Mid Slope







2015 Geotech Investigation

North Dump SRK-15TP-31 and SRK-15TP-32

Job No: 338600-020

Filename: C-2\_Test Pit Photos.pptx

Date: September 18,2015 Approved: Figure: 15-TP-31/32

Test Pit ID: **Elevation:** SRK-15TP-33 1021 masl

Location: North Dump Aspect: West Facing Mid Slope



Test Pit ID: SRK-15TP-34 **Elevation:** 988 masl

Location: Aspect: East Facing Mid Slope North Dump







2015 Geotech Investigation

**North Dump** SRK-15TP-33 and SRK-15TP-34

338600-020 Job No: Filename: C-2\_Test Pit Photos.pptx

Date: September 18,2015

Figure: **15-TP-33/34** Approved:

Coffee Gold

Test Pit ID: **Elevation:** SRK-15TP-35 1042 masl

Location: North Dump North West Facing Mid Slope Aspect:



**Elevation:** Test Pit ID: SRK-15TP-36 1007 masl

Aspect: Location: North Facing Slope Toe North Dump







2015 Geotech Investigation

**North Dump** SRK-15TP-35 and SRK-15TP-36

Job No: 338600-020 Filename: C-2\_Test Pit Photos.pptx

Date: September 18,2015

Figure: **15-TP-35/36** Approved:

Test Pit ID: SRK-15TP-36A Elevation: 939 masl

**Location:** North Dump Aspect: North West Facing Slope Toe



**Test Pit ID:** SRK-15TP-37 **Elevation:** 1046 masl

**Location:** North Dump **Aspect:** North East Facing Mid Slope







2015 Geotech Investigation

North Dump SRK-15TP-36A and SRK-15TP-37

Job No: 338600-020

Filename: C-2\_Test Pit Photos.pptx

Coffee Gold

Date: September 18,2015 Approved: Fig. 15

Figure: **15-TP-36A/37** 

Test Pit ID: **Elevation:** 1093 masl SRK-15TP-40

North Dump Location: Aspect: West Facing Mid Slope







2015 Geotech Investigation

**North Dump SRK-15TP-40** 

Date: September 18,2015

Approved: Figure: 15-TP-40 SM

**Test Pit ID:** SRK-15TP-41 **Elevation:** 1245 masl

Heap Leach Pad Area **Location:** South Facing Upper Slope **Aspect:** 



**Test Pit ID:** SRK-15TP-42 **Elevation:** 1278 masl

South Facing Upper Slope **Location:** Heap Leach Pad Area **Aspect:** 





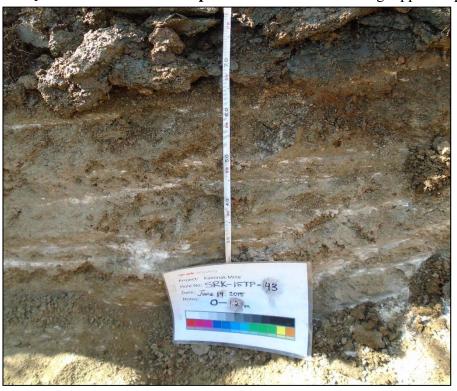


2015 Geotech Investigation

**Heap Leach Pad** SRK-15TP-41 and SRK-15TP-42

338600-020 Job No: Filename: C-2\_Test Pit Photos.pptx

Coffee Gold


Date: September Approved:

18,2015

Figure: **15-TP-41/42** 

**Test Pit ID:** SRK-15TP-43 **Elevation:** 1237 masl

**Location: Aspect:** South Facing Upper Slope Heap Leach Pad Area



**Test Pit ID:** SRK-15TP-44 **Elevation:** 1236 masl

Heap Leach Pad Area South Facing Upper Slope **Location: Aspect:** 







2015 Geotech Investigation

**Heap Leach Pad** SRK-15TP-43 and SRK-15TP-44

Job No: 338600-020 Filename: C-2\_Test Pit Photos.pptx

Date: September Approved: 18,2015

Figure: **15-TP-43/44** 

Coffee Gold

Test Pit ID: SRK-15TP-41 Elevation: 1245 masl

Location: Heap Leach Pad Area Aspect: South Facing Upper Slope



**Test Pit ID:** SRK-15TP-42 **Elevation:** 1278 masl

Location: Heap Leach Pad Area Aspect: South Facing Upper Slope



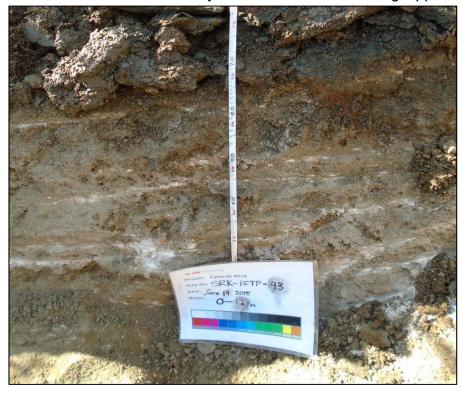




2015 Geotech Investigation

Heap Leach Pad SRK-15TP-41 and SRK-15TP-42

Job No: 338600-020


Filename: C-2\_Test Pit Photos.pptx

Date: September Approved: 18,2015 S

Figure: **15-TP-41/42** 

Test Pit ID: SRK-15TP-43 Elevation: 1237 masl

Location: Heap Leach Pad Area Aspect: South Facing Upper Slope



**Test Pit ID:** SRK-15TP-44 **Elevation:** 1236 masl

Location: Heap Leach Pad Area Aspect: South Facing Upper Slope







2015 Geotech Investigation

Heap Leach Pad SRK-15TP-43 and SRK-15TP-44

Job No: 338600-020

Filename: C-2\_Test Pit Photos.pptx

Coffee Gold

Date: September Approved: 18,2015 SM

Figure: **15-TP-43/44** 

Test Pit ID: SRK-15TP-45 Elevation: 1163 masl

Location: Run of Mine Stockpile Area Aspect: South Facing Upper Slope







2015 Geotech Investigation

Run of Mine Area SRK-15TP-45

Job No: 338600-020

Filename: C-2\_Test Pit Photos.pptx

Coffee Gold

Date: September Approved: 18,2015

ved: Figure: **15-TP-45** 

Test Pit ID: SRK-15TP-46 **Elevation:** 1148 masl

Run of Mine Stockpile Area Aspect: Location: South East Facing Upper Slope



Test Pit ID: SRK-15TP-47 **Elevation:** 1137 masl

Run of Mine Stockpile Area Aspect: Location: South East Facing Upper Slope







2015 Geotech Investigation

**Run of Mine Area** SRK-15TP-46 and SRK-15TP-47

338600-020 Job No: Filename: C-2\_Test Pit Photos.pptx

Date: September Approved: 18,2015

Figure: 15-TP-46/47 Test Pit ID: SRK-15TP-48 Elevation: 1099 masl

Location: West Dump Aspect: North West Facing Mid Slope



**Test Pit ID:** SRK-15TP-49 **Elevation:** 1084 masl

**Location:** West Dump Aspect: North West Facing Mid Slope







2015 Geotech Investigation

West Dump SRK-15TP-48 and SRK-15TP-49

Approved:

Coffee Gold

Date: September 18,2015 Figure: **15-TP-48/49** 

**Test Pit ID:** SRK-15TP-50 **Elevation:** 1068 masl

Location: West Dump Aspect: North West Facing Mid Slope



Test Pit ID: SRK-15TP-51 **Elevation:** 1022 masl

North West Facing Mid Slope Location: West Dump Aspect:







2015 Geotech Investigation

**West Dump** SRK-15TP-50 and SRK-15TP-51

338600-020 Job No: Coffee Gold Filename: C-2\_Test Pit Photos.pptx

Date: September Approved:

18,2015

Figure: **15-TP-50/51** 

**Test Pit ID: Elevation:** SRK-15TP-52 1028 masl

Location: Aspect: West Dump West Facing Mid Slope



Test Pit ID: SRK-15TP-53 **Elevation:** 1066 masl

Location: Aspect: West Facing Mid Slope West Dump







2015 Geotech Investigation

**West Dump** SRK-15TP-52 and SRK-15TP-53

Job No: 338600-020 Filename: C-2\_Test Pit Photos.pptx

Date: September Approved: 18,2015

Figure: **15-TP-52/53** 

Test Pit ID: SRK-15TP-54 Elevation: 927 masl

**Location:** West Dump Aspect: East Facing Slope Toe



**Test Pit ID:** SRK-15TP-55 **Elevation:** 923 masl

**Location:** West Dump **Aspect:** East Facing Slope Toe







2015 Geotech Investigation

West Dump SRK-15TP-54 and SRK-15TP-55

Job No: 338600-020

Filename: C-2\_Test Pit Photos.pptx

Date: September 18,2015 Approved: SM

proved: Figure: **15-TP-54/55** 

Test Pit ID: **Elevation:** SRK-15TP-56 853 masl

Location: West Dump Aspect: East Facing Slope Toe



Test Pit ID: SRK-15TP-57 **Elevation:** 868 masl

Location: East Facing Slope Toe West Dump Aspect:







2015 Geotech Investigation

**West Dump** SRK-15TP-56 and SRK-15TP-57

338600-020 Filename: C-2\_Test Pit Photos.pptx

Date: September 18,2015

Figure: **15-TP-56/57** Approved:

Coffee Gold

Job No:

Test Pit ID: **Elevation:** SRK-15TP-58 898 masl

Location: West Dump East Facing Slope Toe Aspect:



**Elevation:** Test Pit ID: SRK-15TP-59 876 masl

East Facing Slope Toe Location: West Dump Aspect:





Job No:



2015 Geotech Investigation

**West Dump** SRK-15TP-58 and SRK-15TP-59

338600-020 Filename: C-2\_Test Pit Photos.pptx

Date: September 18,2015

Figure: **15-TP-58/59** Approved:

Coffee Gold

Test Pit ID: SRK-15TP-60 Elevation: 910 masl

Location: West Dump Aspect: East Facing Mid Slope



**Test Pit ID:** SRK-15TP-61 **Elevation:** 974 masl

**Location:** West Dump **Aspect:** East Facing Mid Slope







2015 Geotech Investigation

West Dump SRK-15TP-60 and SRK-15TP-61

Job No: 338600-020
Filename: C-2\_Test Pit Photos.pptx

Coffee Gold

SRK-15TP-60 and SRK-15TP-61

Date: September | Approved: | Figure:

Date: September 18,2015

d: Figure: **15-TP-60/61** 

Test Pit ID: SRK-15TP-62 Elevation: 920 masl

Location: West Dump Aspect: North Facing Slope Toe



Test Pit ID: SRK-15TP-63 Elevation: 1005 masl

Location: West Dump Aspect: West Facing Mid Slope







2015 Geotech Investigation

West Dump SRK-15TP-62 and SRK-15TP-63

Job No: 338600-020
Filename: C-2\_Test Pit Photos.pptx

Coffee Gold

Date: September | Approved: | Fi

Date: Septembe 18,2015 ved: Figure: **15-TP-62/63** 

Test Pit ID: **Elevation:** SRK-15TP-64 932 masl

Location: Aspect: West Dump North Facing Mid Slope



Test Pit ID: SRK-15TP-64A **Elevation:** 928 masl

Location: North Facing Mid Slope West Dump Aspect:







2015 Geotech Investigation

**West Dump** 

18,2015

338600-020 Job No: Filename: C-2\_Test Pit Photos.pptx

Coffee Gold

SRK-15TP-64 and SRK-15TP-64A Figure: **15-TP-64/64A** Date: September Approved:

Test Pit ID:SRK-15TP-65Elevation:1206 maslLocation:InfrastructureAspect:Slope Crest



Test Pit ID:SRK-15TP-66Elevation:1201 maslLocation:InfrastructureAspect:Slope Crest







2015 Geotech Investigation

Infrastructure SRK-15TP-65 and SRK-15TP-66

Coffee Gold

Date: September Approved: 18,2015 S

Figure: **15-TP-65/66** 

Filename: C-2\_Test Pit Photos.pptx

**Test Pit ID: Elevation:** 1199 masl SRK-15TP-67 Location: Aspect: Slope Crest Infrastructure



Elevation: 1209 masl Test Pit ID: SRK-15TP-68 Location: Aspect: Slope Crest Infrastructure







2015 Geotech Investigation

Infrastructure SRK-15TP-67 and SRK-15TP-68

Job No: 338600-020

Date: September 18,2015

Figure: **15-TP-67/68** Approved:

Coffee Gold

Filename: C-2\_Test Pit Photos.pptx

Test Pit ID: Elevation: 1200 masl SRK-15TP-69 Location: Aspect: Slope Crest Infrastructure



Elevation: Test Pit ID: SRK-15TP-70 1186 masl Location: Slope Crest Infrastructure Aspect:







2015 Geotech Investigation

Infrastructure SRK-15TP-69 and SRK-15TP-70

Coffee Gold

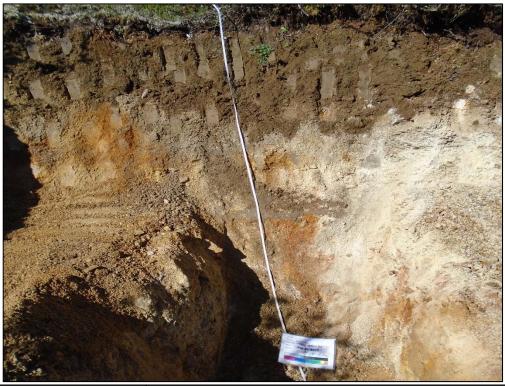

Date: September Approved: 18,2015

Figure: **15-TP-69/70** 

Test Pit ID:SRK-15TP-72Elevation:1187 maslLocation:InfrastructureAspect:Slope Crest



Test Pit ID:SRK-15TP-73Elevation:1193 maslLocation:InfrastructureAspect:Slope Crest







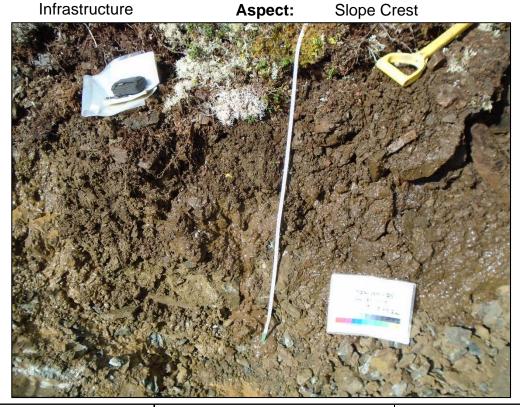
2015 Geotech Investigation

Infrastructure SRK-15TP-72 and SRK-15TP-73

Coffee Gold

Date: September Approved: 18,2015 S

Figure: **15-TP-72/73** 


Filename: C-2\_Test Pit Photos.pptx

**Test Pit ID: Elevation:** 1179 masl SRK-15TP-74

Location: Aspect: Slope Crest Infrastructure



SRK-15TP-75 Elevation: 1179 masl Test Pit ID: Location:

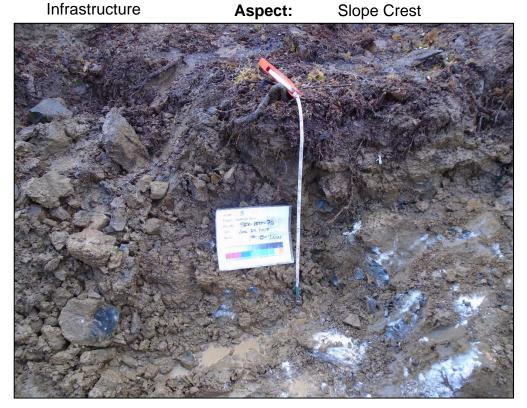






2015 Geotech Investigation

Infrastructure SRK-15TP-74 and SRK-15TP-75


Job No: 338600-020 Filename: C-2\_Test Pit Photos.pptx

Date: September Approved: 18,2015

Figure: **15-TP-74/75** 

Coffee Gold

**Test Pit ID: Elevation:** SRK-15TP-76 1181 masl Location:



Elevation: Test Pit ID: SRK-15TP-77 1174 masl Location: Aspect: Slope Crest Infrastructure







2015 Geotech Investigation

Infrastructure SRK-15TP-76 and SRK-15TP-77

Date: September 18,2015

Figure: **15-TP-76/77** Approved:

Test Pit ID:SRK-15TP-78Elevation:1173 maslLocation:InfrastructureAspect:Slope Crest



Test Pit ID:SRK-15TP-79Elevation:1170 maslLocation:InfrastructureAspect:Slope Crest







2015 Geotech Investigation

Infrastructure SRK-15TP-78 and SRK-15TP-79

Job No: 338600-020

Filename: C-2\_Test Pit Photos.pptx

Coffee Gold

Date: September Approved: 18,2015 S

Figure: **15-TP-78/79** 

Elevation: Test Pit ID: SRK-15TP-80 1160 masl

Slope Crest Location: Infrastructure Aspect:



**Elevation:** Test Pit ID: SRK-15TP-81 1143 masl

Aspect: East Facing Upper Slope Location: Infrastructure







2015 Geotech Investigation

Infrastructure SRK-15TP-80 and SRK-15TP-81

Filename: C-2\_Test Pit Photos.pptx

Date: September 18,2015

Figure: **15-TP-80/81** Approved:

Test Pit ID:SRK-15TP-82Elevation:1133 maslLocation:InfrastructureAspect:Slope Crest



Test Pit ID:SRK-15TP-83Elevation:1183 maslLocation:InfrastructureAspect:Slope Crest







2015 Geotech Investigation

Infrastructure SRK-15TP-82 and SRK-15TP-83

Job No: 338600-020

Filename: C-2\_Test Pit Photos.pptx

Coffee Gold

Date: September 18,2015

Approved: Figure: 15-TP-82/83

**Test Pit ID: Elevation:** 1172 masl SRK-15TP-84

Location: Aspect: Slope Crest Infrastructure



**Elevation:** Test Pit ID: SRK-15TP-85 1165 masl

Slope Crest Location: Aspect: Infrastructure







2015 Geotech Investigation

Infrastructure SRK-15TP-84 and SRK-15TP-85

Coffee Gold

Date: September 18,2015

Approved:

**Appendix D: Laboratory Test Data** 

**Appendix D-1: Moisture Contents** 

**ASTM D2216** 

Project: SRK Testing - May 2015 Sample No.: see below

Project No.: W14103592-01 Date Tested: May 12, 2015

Client: SRK Consulting Inc. Tested By: AMT

Address: Coffee Gold Project Page: 1 of 2

| B.H. Number | Sample<br>Number | Moisture<br>Content<br>(%) | Visual Description of Soil |
|-------------|------------------|----------------------------|----------------------------|
| SRK-15S-01  | 17727            | 16.4                       |                            |
| SRK-15S-02  | 17730            | 4.9                        |                            |
| SRK-15S-03  | 17729            | 12.9                       |                            |
| SRK-15S-04  | 17726            | 16.7                       |                            |
| SRK-15S-05  | 17701            | 255.7                      |                            |
| SRK-15S-05  | 17703            | 12.6                       |                            |
| SRK-15S-06  | 17704            | 6.8                        |                            |
| SRK-15S-06  | 17705            | 22.7                       |                            |
| SRK-15S-07  | 17708            | 12.4                       |                            |
| SRK-15S-08  | 17706            | 28.3                       |                            |
| SRK-15S-08  | 17707            | 13.8                       |                            |
| SRK-15S-09  | 17710            | 45.8                       |                            |
| SRK-15S-11  | 17711            | 8.8                        |                            |
| SRK-15S-12  | 17712            | 19.5                       |                            |
| SRK-15S-13a | 17719            | 8.0                        |                            |
| SRK-15S-14  | 17714            | 12.0                       |                            |
| SRK-15S-16  | 17715            | 12.4                       |                            |
| SRK-15S-17  | 17717            | 5.6                        |                            |
| SRK-15S-18  | 17720            | 9.8                        |                            |
| SRK-15S-19  | 17713            | 12.3                       |                            |
| SRK-15S-23  | 17721            | 5.9                        |                            |
| SRK-15S-25  | 17723            | 12.6                       |                            |
| SRK-15S-25  | 17724            | 6.9                        |                            |
| SRK-15S-26  | 17736            | 15.7                       |                            |
| SRK-15S-29  | 17732            | 2.9                        |                            |

[signature redacted]

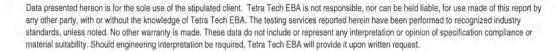
Reviewed By:





**ASTM D2216** 

Project: SRK Testing - May 2015 Sample No.: see below


Project No.: W14103592-01 Date Tested: May 12, 2015

Client: SRK Consulting Inc. Tested By: AMT

Address: Coffee Gold Project Page: 2 of 2

| B.H. Number | Sample<br>Number | Moisture<br>Content<br>(%) | Visual Description of Soil |
|-------------|------------------|----------------------------|----------------------------|
| SRK-15S-30  | 17734            | 107.3                      |                            |
| SRK-15S-30  | 17735            | 11.6                       |                            |
| SRK-15S-32  | 17737            | 12.3                       |                            |
| SRK-15S-33  | 17740            | 7.9                        |                            |
| SRK-15S-34  | 17739            | 14.9                       |                            |
| SRK-15S-35  | 17741            | 44.9                       |                            |
| SRK-15S-35  | 17742            | 5.9                        |                            |
| SRK-15S-35  | 17743            | 8.5                        |                            |
|             |                  |                            |                            |
|             |                  |                            |                            |
|             |                  |                            |                            |
|             |                  |                            |                            |
|             |                  |                            |                            |
|             |                  |                            |                            |

Reviewed By: \_[signature redacted] \_\_\_\_\_ C.E.T.





**ASTM D2216** 

Project: Phase 2 Test Pit Program Sample No.: See Below

Project No.: W14103592-02 Date Tested: September 1, 2015

Client: SRK Consulting Ltd. Tested By: AMT/KF

Address: Coffee Gold Project Page: 1 of 4

| B.H. Number  | Sample<br>Number | Moisture<br>Content<br>(%) | Visual Description of Soil |
|--------------|------------------|----------------------------|----------------------------|
| SRK-15TP-03  | 17565            | 10.5                       |                            |
| SRK-15TP-04  | 17563            | 10.9                       |                            |
| SRK-15TP-05  | 17561            | 14.4                       |                            |
| SRK-15TP-06  | 17559            | 7.8                        |                            |
| SRK-15TP-08  | 17581            | 6.8                        |                            |
| SRK-15TP-09  | 17579            | 10.9                       |                            |
| SRK-15TP-10  | 17578            | 10.2                       |                            |
| SRK-15TP-11  | 17575            | 11.7                       |                            |
| SRK-15TP-12  | 17574            | 14.6                       |                            |
| SRK-15TP-13  | 17573            | 6.2                        |                            |
| SRK-15TP-13a | 17623            | 18.8                       |                            |
| SRK-15TP-14  | 17572            | 11.3                       |                            |
| SRK-15TP-15  | 17571            | 8.5                        |                            |
| SRK-15TP-16  | 17570            | 9.2                        |                            |
| SRK-15TP-17  | 17566            | 9.0                        |                            |
| SRK-15TP-18  | 17576            | 9.5                        |                            |
| SRK-15TP-20  | 17564            | 20.7                       |                            |
| SRK-15TP-21  | 17562            | 17.1                       |                            |
| SRK-15TP-25  | 17602            | 23.6                       |                            |
| SRK-15TP-26  | 17603            | 16.8                       |                            |
| SRK-15TP-27  | 17604            | 8.8                        |                            |
| SRK-15TP-28  | 17601            | 6.3                        |                            |
| SRK-15TP-29  | 17591            | 12.6                       |                            |
| SRK-15TP-30  | 17590            | 20.1                       |                            |
| SRK-15TP-34  | 17588            | 85.5                       |                            |

| [sig          | gnature redacted] |        |
|---------------|-------------------|--------|
| Reviewed By:, |                   | C.E.T. |





**ASTM D2216** 

Project: Phase 2 Test Pit Program Sample No.: See Below

Project No.: W14103592-02 Date Tested: September 1, 2015

Client: SRK Consulting Ltd. Tested By: AMT/KF

Address: Coffee Gold Project Page: 2 of 4

| B.H. Number  | Sample<br>Number | Moisture<br>Content<br>(%) | Visual Description of Soil |
|--------------|------------------|----------------------------|----------------------------|
| SRK-15TP-35  | 17589            | 49.7                       |                            |
| SRK-15TP-36  | 17586            | 46.6                       |                            |
| SRK-15TP-36a | 17587            | 29.3                       |                            |
| SRK-15TP-37  | 17585            | 133.1                      |                            |
| SRK-15TP-38  | 17584            | 12.3                       |                            |
| SRK-15TP-39  | 17583            | 10.7                       |                            |
| SRK-15TP-40  | 17582            | 44.4                       |                            |
| SRK-15TP-41  | 17580            | 10.9                       |                            |
| SRK-15TP-42  | 17577            | 10.4                       |                            |
| SRK-15TP-43  | 17560            | 12.6                       |                            |
| SRK-15TP-44  | 17558            | 10.8                       |                            |
| SRK-15TP-48  | 17594            | 85.4                       |                            |
| SRK-15TP-49  | 17593            | 28.2                       |                            |
| SRK-15TP-50  | 17592            | 63.0                       |                            |
| SRK-15TP-51  | 17599            | 15.5                       |                            |
| SRK-15TP-52  | 17600            | 88.1                       |                            |
| SRK-15TP-53  | 17605            | 17.2                       |                            |
| SRK-15TP-54  | 17627            | 20.5                       |                            |
| SRK-15TP-55  | 17628            | 76.5                       |                            |
| SRK-15TP-56  | 17629            | 68.4                       |                            |
| SRK-15TP-57  | 17630            | 12.4                       |                            |
| SRK-15TP-58  | 17631            | 5.5                        |                            |
| SRK-15TP-59  | 17634            | 367.8                      |                            |
| SRK-15TP-60  | 17632            | 21.0                       |                            |
| SRK-15TP-61  | 17633            | 10.0                       |                            |

[signature redacted]

Reviewed By: \_\_\_\_\_ C.E.T.

Data presented hereon is for the sole use of the stipulated client. Tetra Tech EBA is not responsible, nor can be held liable, for use made of this report by any other party, with or without the knowledge of Tetra Tech EBA. The testing services reported herein have been performed to recognized industry standards, unless noted. No other warranty is made. These data do not include or represent any interpretation or opinion of specification compliance or material suitability. Should engineering interpretation be required, Tetra Tech EBA will provide it upon written request.



**ASTM D2216** 

Project: Phase 2 Test Pit Program Sample No.: See Below

Project No.: W14103592-02 Date Tested: September 1, 2015

Client: SRK Consulting Ltd. Tested By: AMT/KF

Address: Coffee Gold Project Page: 3 of 4

| 17596<br>17595<br>17598<br>17597<br>17620 | 12.3<br>228.4<br>201.0<br>98.7                                                                                       |                                                                                                                                                                                                                                                                                                    |                                                                                                                                                                                                                                                                                                                                                              |
|-------------------------------------------|----------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 17598<br>17597                            | 201.0                                                                                                                |                                                                                                                                                                                                                                                                                                    |                                                                                                                                                                                                                                                                                                                                                              |
| 17597                                     | T - 120 (Y) (X - )                                                                                                   |                                                                                                                                                                                                                                                                                                    |                                                                                                                                                                                                                                                                                                                                                              |
|                                           | 98.7                                                                                                                 |                                                                                                                                                                                                                                                                                                    |                                                                                                                                                                                                                                                                                                                                                              |
| 17620                                     | 2011                                                                                                                 |                                                                                                                                                                                                                                                                                                    |                                                                                                                                                                                                                                                                                                                                                              |
| 17020                                     | 12.6                                                                                                                 |                                                                                                                                                                                                                                                                                                    |                                                                                                                                                                                                                                                                                                                                                              |
| 17621                                     | 13.6                                                                                                                 |                                                                                                                                                                                                                                                                                                    |                                                                                                                                                                                                                                                                                                                                                              |
| 17618                                     | 8.2                                                                                                                  |                                                                                                                                                                                                                                                                                                    |                                                                                                                                                                                                                                                                                                                                                              |
| 17617                                     | 9.8                                                                                                                  |                                                                                                                                                                                                                                                                                                    |                                                                                                                                                                                                                                                                                                                                                              |
| 17619                                     | 6.7                                                                                                                  |                                                                                                                                                                                                                                                                                                    |                                                                                                                                                                                                                                                                                                                                                              |
| 17616                                     | 16.4                                                                                                                 |                                                                                                                                                                                                                                                                                                    |                                                                                                                                                                                                                                                                                                                                                              |
| 17615                                     | 14.6                                                                                                                 |                                                                                                                                                                                                                                                                                                    |                                                                                                                                                                                                                                                                                                                                                              |
| 17614                                     | 13.4                                                                                                                 |                                                                                                                                                                                                                                                                                                    |                                                                                                                                                                                                                                                                                                                                                              |
| 17613                                     | 13.4                                                                                                                 |                                                                                                                                                                                                                                                                                                    |                                                                                                                                                                                                                                                                                                                                                              |
| 17611                                     | 15.3                                                                                                                 |                                                                                                                                                                                                                                                                                                    |                                                                                                                                                                                                                                                                                                                                                              |
| 17612                                     | 12.6                                                                                                                 |                                                                                                                                                                                                                                                                                                    |                                                                                                                                                                                                                                                                                                                                                              |
| 17610                                     | 15.2                                                                                                                 |                                                                                                                                                                                                                                                                                                    |                                                                                                                                                                                                                                                                                                                                                              |
| 17609                                     | 12.7                                                                                                                 |                                                                                                                                                                                                                                                                                                    |                                                                                                                                                                                                                                                                                                                                                              |
| 17608                                     | 11.2                                                                                                                 |                                                                                                                                                                                                                                                                                                    |                                                                                                                                                                                                                                                                                                                                                              |
| 17607                                     | 12.8                                                                                                                 |                                                                                                                                                                                                                                                                                                    |                                                                                                                                                                                                                                                                                                                                                              |
| 17606                                     | 20.7                                                                                                                 |                                                                                                                                                                                                                                                                                                    |                                                                                                                                                                                                                                                                                                                                                              |
| 17624                                     | 35.5                                                                                                                 |                                                                                                                                                                                                                                                                                                    |                                                                                                                                                                                                                                                                                                                                                              |
| 17625                                     | 9.5                                                                                                                  |                                                                                                                                                                                                                                                                                                    |                                                                                                                                                                                                                                                                                                                                                              |
| 17626                                     | 11.8                                                                                                                 |                                                                                                                                                                                                                                                                                                    |                                                                                                                                                                                                                                                                                                                                                              |
| 1 1 1 1 1 1 1 1                           | 7617<br>7619<br>7616<br>7615<br>7614<br>7613<br>7611<br>7612<br>7610<br>7609<br>7608<br>7607<br>7606<br>7624<br>7625 | 7617     9.8       7619     6.7       7616     16.4       7615     14.6       7614     13.4       7613     13.4       7611     15.3       7612     12.6       7610     15.2       7609     12.7       7608     11.2       7607     12.8       7606     20.7       7624     35.5       7625     9.5 | 7617       9.8         7619       6.7         7616       16.4         7615       14.6         7614       13.4         7613       13.4         7611       15.3         7612       12.6         7610       15.2         7609       12.7         7608       11.2         7607       12.8         7606       20.7         7624       35.5         7625       9.5 |

[signature redacted]

Reviewed By: \_\_\_\_\_ C.E.T.

Data presented hereon is for the sole use of the stipulated client. Tetra Tech EBA is not responsible, nor can be held liable, for use made of this report by any other party, with or without the knowledge of Tetra Tech EBA. The testing services reported herein have been performed to recognized industry standards, unless noted. No other warranty is made. These data do not include or represent any interpretation or opinion of specification compliance or material suitability. Should engineering interpretation be required. Tetra Tech EBA will provide it upon written request.



**ASTM D2216** 

Project: Phase 2 Test Pit Program Sample No.: See Below

Project No.: W14103592-02 Date Tested: September 1, 2015

Client: SRK Consulting Ltd. Tested By: AMT/KF

Address: Coffee Gold Project Page: 4 of 4

| B.H. Number  | Sample<br>Number | Moisture<br>Content<br>(%) | Visual Description of Soil |
|--------------|------------------|----------------------------|----------------------------|
| SRK-15TP-82a | 82a              | 10.3                       |                            |
| SRK-15TP-61a | 61a              | 20.0                       |                            |
| SRK-15TP-62a | 62a (17596)      | 179.4                      |                            |
| SRK-15TP-75a | 17613            | 18.9                       |                            |
| SRK-15TP-31a | 31a              | 97.6                       |                            |
| SRK-15TP-32a | 32a              | 200.3                      |                            |
| SRK-15TP-32b | 32b              | 104.4                      |                            |
| SRK-15TP-33a | 33a              | 154.2                      |                            |
| SRK-15TP-33b | 33b              | 66.9                       |                            |
|              |                  |                            |                            |
|              |                  |                            |                            |
|              |                  |                            |                            |
|              |                  |                            |                            |
|              |                  |                            |                            |
|              |                  |                            |                            |
|              |                  |                            |                            |
|              |                  |                            |                            |
|              |                  |                            |                            |
|              |                  |                            |                            |
|              |                  |                            |                            |
|              |                  |                            |                            |

| [signat | ure red | lacted] |
|---------|---------|---------|
|---------|---------|---------|

Reviewed By: \_\_\_\_\_ C.E.T.

Data presented hereon is for the sole use of the stipulated client. Tetra Tech EBA is not responsible, nor can be held liable, for use made of this report by any other party, with or without the knowledge of Tetra Tech EBA. The testing services reported herein have been performed to recognized industry standards, unless noted. No other warranty is made. These data do not include or represent any interpretation or opinion of specification compliance or material suitability. Should engineering interpretation be required, Tetra Tech EBA will provide it upon written request.



**Appendix D-2: Particle Size Distributions** 

#### PARTICLE SIZE ANALYSIS REPORT

ASTM D422, C136 & C117

Project: SRK Testing - 2015 Sample No.:

17727

Project No.:

W14103592-01

Material Type:

Site:

Coffee Gold Project

Sample Loc.:

SRK-15S-01

Client:

SRK Consulting Ltd.

Sample Depth: 1.1 - 1.4 m

Sampling Method:

Grab

Date Tested:

May 18, 2015

By:

Date sampled:

April 14, 2015

Name REDACTED

Soil Description2: SAND - silty, gravelly, trace clay

Sampled By:

Client

147.3

Moisture Content:

16.4%

USC Classification:

Cu: Cc:

0.4

| Particle     | Cizo   Percent |                 |            |     |                  | Sand        |           | Gr          | avel           |
|--------------|----------------|-----------------|------------|-----|------------------|-------------|-----------|-------------|----------------|
| Size<br>(mm) | Passing        |                 | Clay Silt  |     | Fine             | Medium      | Coarse    | Fine        | Coarse         |
| 75           |                |                 |            | 400 | 200 100 60       | 40 30 20 16 | 10 8 4    | 3/8" 1/2" 3 | /4" 1" 1.5" 2" |
| 50           |                | 100             |            | 100 | 1 1 1            | 10 50 20 10 |           |             |                |
| 38           | 100            |                 |            |     |                  |             |           |             |                |
| 25           | 96             | 90 -            |            |     |                  |             |           |             |                |
| 19           | 95             | 80              |            |     |                  |             |           |             |                |
| 12.5         | 90             |                 |            |     |                  |             | /         |             |                |
| 10           | 85             | 70              |            |     | +                |             |           | +           |                |
| 5            | 78             |                 |            |     |                  |             |           |             |                |
| 2            | 70             | S 60            |            |     | 1 1 1            |             |           | -           |                |
| 0.85         | 58             | PERCENT PASSING |            |     |                  |             |           |             |                |
| 0.425        | 51             | T P/            |            |     |                  |             |           |             |                |
| 0.25         | 46             | CEN<br>40       |            |     |                  |             |           |             |                |
| 0.15         | 41             | ER              |            |     |                  |             | 1 1       |             |                |
| 0.075        | 34.7           | 30              |            |     |                  |             | -         |             |                |
| 0.0350       | 25.7           |                 |            |     | 4 11             | Coil Deceri | ntion Dro | nortiono    | (9/)           |
| 0.0229       | 18.8           | 20              |            |     |                  | Soil Descri |           |             |                |
| 0.0135       | 13.9           | 10              |            |     |                  | 1 2 2 2     | 5 Sa      |             | 43             |
| 0.0095       | 11.8           | ,,,             |            |     |                  | Silt        | 30 Gr     | avel        | 22             |
| 0.0068       | 9.7            | 0               | 205 0 001  |     | X 075 - 5 45 - 5 |             |           |             |                |
| 0.0034       | 7.0            | 0.00            | 0.001 0.00 |     | 0.075 0.15 0.2   |             | 2 4.75    | 9.5 12.5    | 19 25 37.5 50  |
| 0.0014       | 4.2            |                 |            | PAR | TICLE SIZE (1    | nm)         |           |             |                |

Notes:

<sup>1</sup> The upper clay size of 2 um, per the Canadian Foundation Engineering Manual

<sup>2</sup> The description is visually based & subject to EBA description protocols

Specification: Remarks:

Reviewed By:

[signature redacted]

C.E.T.

Data presented hereon is for the sole use of the stipulated client. Tetra Tech EBA is not responsible, nor can be held liable, for use made of this report by any other party, with or without the knowledge of Tetra Tech EBA. The testing services reported herein have been performed to recognized industry standards, unless noted. No other warranty is made. These data do not include or represent any interpretation or opinion of specification compliance or material suitability. Should engineering interpretation be required, Tetra Tech EBA will provide it upon written request.



## PARTICLE SIZE ANALYSIS REPORT

ASTM D422, C136 & C117

Project: SRK Testing - 2015 Sample No .:

17730

Project No .:

W14103592-01

Material Type:

Site:

Coffee Gold Project

Sample Loc.:

SRK-15S-02

Client:

SRK Consulting Ltd.

Sample Depth: Sampling Method: 0.6 - 0.9 m

Name REDACTED

May 31, 2015

IB By:

Date sampled:

April 15, 2015

Date Tested:

Soil Description2: SAND - silty, gravelly

Sampled By:

Client

Grab

#N/A

Moisture Content:

4.9%

**USC Classification:** 

Cu: Cc:

#N/A

| Particle     |         |                 | Sand               |      |      |       |     |       |        |      |                     | Gravel  |        |                    |       |       |   |
|--------------|---------|-----------------|--------------------|------|------|-------|-----|-------|--------|------|---------------------|---------|--------|--------------------|-------|-------|---|
| Size<br>(mm) | Passing |                 |                    | Fine |      |       | Med | ium   | Coarse |      | Fine                |         | Coars  | se                 | Col   | oble  |   |
| 300          |         |                 | 200                | 100  | 60   | 40    | 30  | 20 16 | 10 8   | 4    | 3/8" 1/3            | 2" 3/4" | 1" 1.5 | 2" 3"              | 4"    | 6" 8" |   |
| 200          |         | 100             |                    |      | Ť    |       | T   |       |        |      | 11                  | 1       |        | 11                 | 1     | H     |   |
| 150          |         | 90              |                    |      |      |       |     |       |        |      |                     |         |        |                    |       |       |   |
| 100          |         |                 |                    |      |      |       |     |       |        |      | 1                   |         |        |                    |       |       |   |
| 75           |         | 80              |                    |      |      | 1     |     |       |        | 10   |                     |         |        |                    |       |       |   |
| 50           |         | 70              | -                  |      | -    | -     |     |       |        | /    |                     | _       |        | -                  |       |       |   |
| 38           |         | <u>o</u>        | -                  |      | 1    |       |     |       |        |      |                     |         |        |                    |       |       |   |
| 25           | 100     | SSINC<br>60     | 1                  |      |      |       |     |       |        |      |                     |         |        |                    |       |       |   |
| 19           | 95      | PA 50           | -                  | -    | /    |       |     |       |        |      |                     | -       | -      | +                  |       |       | _ |
| 12.5         | 84      | PERCENT PASSING |                    | /    |      |       |     |       |        |      |                     |         |        |                    |       |       |   |
| 10           | 77      | ERC             | /                  |      | 1    |       |     |       |        |      |                     |         |        |                    |       | -     |   |
| 5            | 70      | 30              |                    | -    | +    | +     |     |       |        |      | Soil De             | escript | ion Pr | oportio            | ns (% | 5):   | ŀ |
| 2            | 66      | 20              |                    |      |      |       |     |       |        |      | Clay <sup>1</sup> 8 | 33      | G      | ravel              |       | 30    |   |
| 0.85         | 60      |                 |                    |      |      |       |     |       |        |      | Silt                | 00      |        |                    |       | OU    |   |
| 0.425        | 54      | 10              |                    |      |      | +     | Til |       |        |      | Sand                | 37      | C      | obble <sup>3</sup> |       | 0     |   |
| 0.25         | 48      | 0               | 0.075              | 0.45 | 0.05 | 0.45  |     |       |        | 75   | 05 10               | .5 19   | 05 07  |                    |       | 150   |   |
| 0.15         | 41      |                 | 0.075              | 0.15 | 0.25 | 0.425 | ,   | 0.85  |        | 1.75 | 9.5 12              | 9 19    | 25 37. | 5 50 75            |       | 150   | 3 |
| 0.075        | 33.3    |                 | PARTICLE SIZE (mm) |      |      |       |     |       |        |      |                     |         |        |                    |       |       |   |

Notes:

| _   | 100  |    |     |    |
|-----|------|----|-----|----|
| Spe | CITI | 00 | tin | n. |
|     |      |    |     |    |

Remarks:

[signature redacted]

Reviewed By:

C.E.T.

Data presented hereon is for the sole use of the stipulated client. Tetra Tech EBA is not responsible, nor can be held liable, for use made of this report by any other party, with or without the knowledge of Tetra Tech EBA. The testing services reported herein have been performed to recognized industry standards, unless noted. No other warranty is made. These data do not include or represent any interpretation or opinion of specification compliance or material suitability. Should engineering interpretation be required, Tetra Tech EBA will provide it upon written request.



<sup>&</sup>lt;sup>1</sup> The upper clay size of 2 um, per the Canadian Foundation Engineering Manual

<sup>&</sup>lt;sup>2</sup> The description is visually based & subject to EBA description protocols

<sup>&</sup>lt;sup>3</sup> If cobbles are present, sampling procedure may not meet ASTM C702 & D75

### PARTICLE SIZE ANALYSIS (Hydrometer) TEST REPORT

#### ASTM D422

Project:

SRK Testing - Coffee Gold Project - May 2015

Sample No.:

17728

Client:

SRK Consulting (Canada) Inc.

Borehole/ TP:

SRK-15S-03

Project No.:

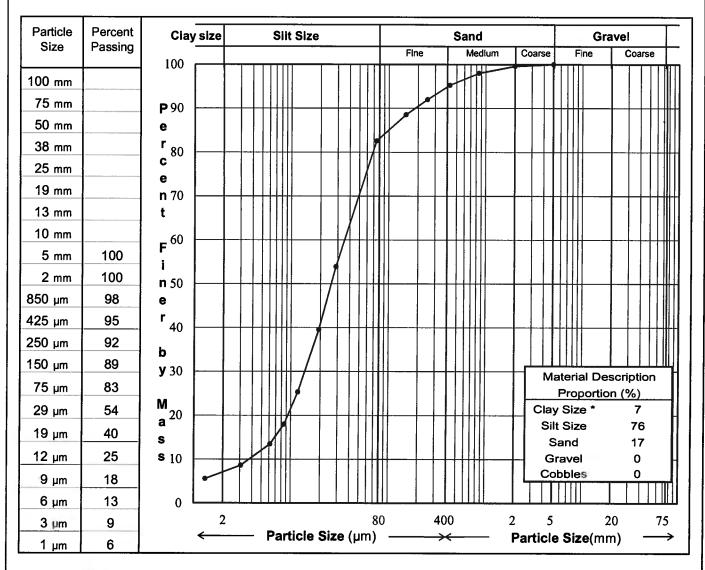
W14103592-01

Depth:

2.5'

Location:

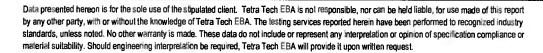
**Date Tested** 


June 23, 2015

Description \*\*:

ORGANIC SILT, some sand and clay, brown.

Tested By:


**KTP** 



Remarks: \* The upper clay size of 2 µm is as per the Canadian Foundation Manual.

\*\* The description is behaviour based & subject to EBA description protocols.

[signature redacted] Reviewed By: P.Eng.





### PARTICLE SIZE ANALYSIS REPORT

ASTM D422, C136 & C117

Project: SRK Testing - 2015

W14103592-01

Site: Coffee Gold Project

Client: SRK Consulting Ltd.

Name REDACTED

Project No.:

Date Tested: May 18, 2015 Bv: AMT

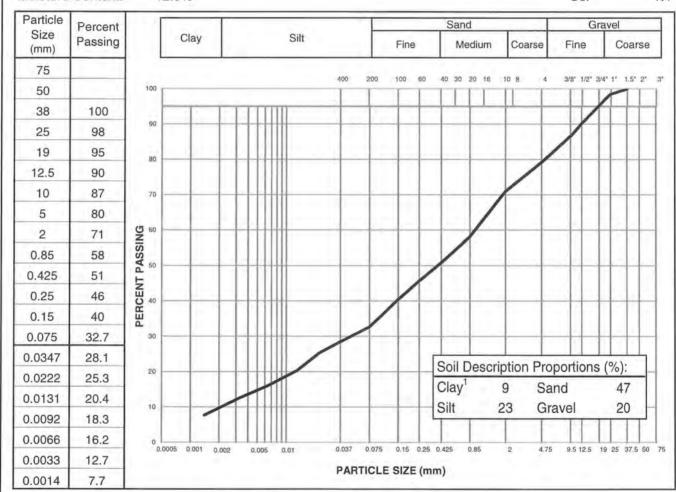
Soil Description2: SAND - silty, some gravel, trace clay

Sample No .: 17729

Material Type:

Sample Loc .: SRK-15S-03

Sample Depth: 6.7 - 7.0 m


Sampling Method: Grab

Date sampled: April 14, 2015

Sampled By: Client

USC Classification: Cu:

Moisture Content: 12.9% Cc: 1.1



Notes: <sup>1</sup> The upper clay size of 2 um, per the Canadian Foundation Engineering Manual

<sup>2</sup>The description is visually based & subject to EBA description protocols

Specification:

Remarks:

Reviewed By:

[signature redacted]

C.E.T.

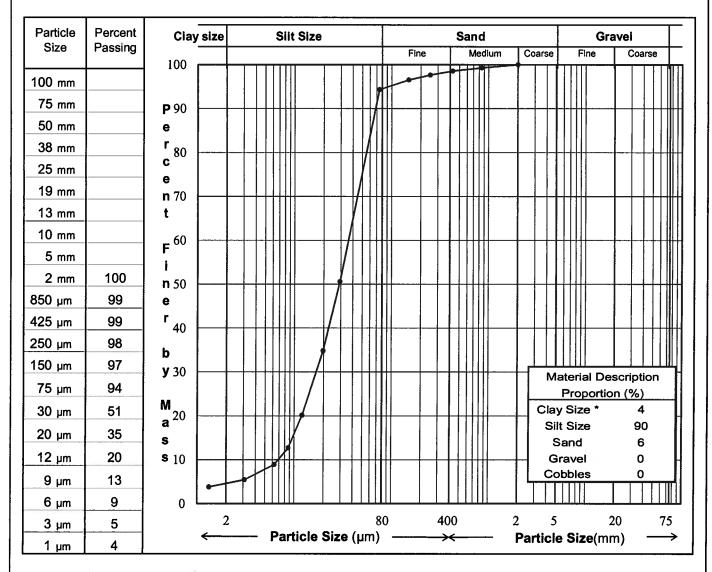
442.1

Data presented hereon is for the sole use of the stipulated client. Tetra Tech EBA is not responsible, nor can be held liable, for use made of this report by any other party, with or without the knowledge of Tetra Tech EBA. The testing services reported herein have been performed to recognized industry standards, unless noted. No other warranty is made. These data do not include or represent any interpretation or opinion of specification compliance or material suitability. Should engineering interpretation be required, Tetra Tech EBA will provide it upon written request,



## PARTICLE SIZE ANALYSIS (Hydrometer) TEST REPORT

#### ASTM D422


Project: SRK Testing - Coffee Gold Project - May 2015 Sample No.: 17725

Client: SRK Consulting (Canada) Inc. Borehole/ TP: SRK-15S-04

Project No.: W14103592-01 Depth: 3.5 '

Location: Date Tested June 23, 2015

Description \*\*: ORGANIC SILT, trace clay & sand, brown. Tested By: KTP



Remarks: \* The upper clay size of 2 µm is as per the Canadian Foundation Manual.

[signature redacted]

Reviewed By: P.Eng.



<sup>\*\*</sup> The description is behaviour based & subject to EBA description protocols.

## PARTICLE SIZE ANALYSIS REPORT

ASTM D422, C136 & C117

Project:

SRK Testing - 2015

Project No .:

W14103592-01

Site:

Coffee Gold Project

SRK Consulting Ltd.

Name REDACTED

May 18, 2015

By: AMT Date sampled:

Sample No .:

Material Type:

Sample Loc.:

Sample Depth:

April 13, 2015

Cu:

Date Tested: Soil Description2: SAND - silty, some gravel,

Sampled By:

SRK-15S-04

17726

3.7 m

Grab

Client

some clay

Sampling Method:

#N/A

Moisture Content:

16.7%

**USC** Classification:

Cc: #N/A

Particle Percent Sand Gravel Size Clay Silt Passing Fine Medium Coarse Fine Coarse (mm) 75 50 38 100 25 98 19 94 12.5 91 10 90 5 85 PERCENT PASSING 2 78 0.85 69 0.425 64 0.25 59 0.15 53 0.075 30 42.4 0.0340 36.4 Soil Description Proportions (%): 20 0.0219 31.8 Clay 14 Sand 43 0.0129 26.4 10 Silt 29 Gravel 15 0.0091 23.3 0.0065 20.9 0.0005 0.001 0.075 0.15 0.25 0.425 0.85 9.5 12.5 19 25 37.5 50 75 4.75 0.002 0.01 0.0033 16.3 PARTICLE SIZE (mm) 0.0014 12.4

Notes: <sup>1</sup> The upper clay size of 2 um, per the Canadian Foundation Engineering Manual

<sup>2</sup> The description is visually based & subject to EBA description protocols

Specification: Remarks:

Reviewed By:

[signature redacted]

C.E.T.

Data presented hereon is for the sole use of the stipulated client. Tetra Tech EBA is not responsible, nor can be held liable, for use made of this report by any other party, with or without the knowledge of Tetra Tech EBA. The testing services reported herein have been performed to recognized industry standards, unless noted. No other warranty is made. These data do not include or represent any interpretation or opinion of specification compliance or material suitability. Should engineering interpretation be required, Tetra Tech EBA will provide it upon written request.



### PARTICLE SIZE ANALYSIS (Hydrometer) TEST REPORT

#### ASTM D422

Project: SRK Testing - Coffee Gold Project - May 2015

17702 Sample No.:

Client:

SRK Consulting (Canada) Inc.

SRK-15S-05

Project No.:

W14103592-01

9.25'

Location:

Depth: **Date Tested** 

Description \*\*:

SILT, sandy, trace clay & gravel, brown.

Tested By:

Borehole/ TP:

June 23, 2015

**KTP** 



Remarks: \* The upper clay size of 2 µm is as per the Canadian Foundation Manual.

[signature redacted]

| Reviewed By: | P.Eng. |
|--------------|--------|
|              |        |



<sup>\*\*</sup> The description is behaviour based & subject to EBA description protocols.

ASTM D422, C136 & C117

Project:

SRK Testing - 2015

W14103592-01

Project No.: Site:

Coffee Gold Project

Client:

SRK Consulting Ltd.

# Name RED

Date Tested:

May 18, 2015 Soil Description2: SAND - gravelly, silty, trace clay

By: AMT

Date sampled:

April 3, 2015

SRK-15S-06

Sample No.:

Material Type:

Sample Loc.:

Sample Depth:

Sampling Method:

Sampled By:

Client

17704

0.8 m

Grab

520.3

Moisture Content:

6.8%

USC Classification:

Cu: Cc:

0.5

Particle Sand Gravel Percent Size Clay Silt Passing Medium Fine Coarse Fine Coarse (mm) 75 100 40 30 20 16 50 100 38 82 78 25 19 76 80 12.5 72 10 70 70 5 65 PERCENT PASSING 2 58 0.85 51 0.425 45 0.25 40

<sup>1</sup> The upper clay size of 2 um, per the Canadian Foundation Engineering Manual Notes: <sup>2</sup> The description is visually based & subject to EBA description protocols

Specification:

Remarks:

0.15

0.075

0.0347

0.0224

0.0132

0.0094

0.0067

0.0034

0.0014

35

29.0

22.9

18.9

14.9

12.0

10.9

8.0

5.7

20

10

0.0005 0.001

0.002

[signature redacted]

Soil Description Proportions (%):

Sand

Gravel

6

23

Clay

0.85

Silt

0.15 0.25 0.425

Reviewed By:

0.075

PARTICLE SIZE (mm)

C.E.T.

36

35

9.5 12.5 19 25 37.5 50 75



ASTM D422, C136 & C117

Project:

Project No.:

SRK Testing - 2015

W14103592-01

Site:

Coffee Gold Project

Client:

SRK Consulting Ltd.

Name REDACTED

Date Tested:

May 18, 2015

By: AMT

T D

Date sampled:

Sample No.:

Material Type:

Sample Loc.:

Sample Depth:

Sampling Method:

April 5, 2015

SRK-15S-07

3.4 - 3.7 m

17708

Grab

Soil Description<sup>2</sup>: SAND - gravelly, some silt,

trace clay

Sampled By:

Client

551.3

Moisture Content:

12.4%

USC Classification:

Cu: Cc:

3.4

| Particle     | Percent      |                 |             |       | TOUR |       | -       |             | Sano              |       |           | G           | avel           |
|--------------|--------------|-----------------|-------------|-------|------|-------|---------|-------------|-------------------|-------|-----------|-------------|----------------|
| Size<br>(mm) | Passing      | С               | lay         |       | Silt |       | Fir     | Fine Medium |                   | dium  | Coarse    | Fine        | Coarse         |
| 75           |              |                 |             |       |      | 400   | 100 100 | 60          | 40 30             | 20 16 | 10.8 4    | 3/8" 1/2" 5 | V4" 1" 1.5" 2" |
| 50           |              | 100             |             |       |      | 100   | 100     | T           |                   | 10    |           | 30 1/2      |                |
| 38           |              |                 |             | ПП    |      |       |         | $\top$      |                   |       |           | 1           |                |
| 25           | 100          | 90              |             |       |      |       |         |             |                   |       |           | /           |                |
| 19           | 98           | 80              |             | ШШ    |      |       |         | 4           |                   |       |           |             |                |
| 12.5         | 93           |                 |             |       |      |       |         |             |                   |       | /         |             |                |
| 10           | 89           | 70              | -           |       | 1    | -     | -       | +           | +                 |       |           | -           |                |
| 5            | 78           | AW              |             |       |      |       |         |             |                   | /     |           |             |                |
| 2            | 65           | NIO 60          |             |       |      |       |         |             |                   | /     |           |             |                |
| 0.85         | 56           | PERCENT PASSING |             |       |      |       |         | 4           | 1                 |       |           |             |                |
| 0.425        | 40           | Į.              |             |       |      |       |         |             | /                 |       |           |             |                |
| 0.25         | 36           | 2 40 —          |             | +++   | #    |       |         |             | 1                 |       | -         | -           | +              |
| 0.15         | 33           |                 |             |       |      |       |         |             |                   |       |           |             |                |
| 0.075        | 28.0         | 30              |             |       | 1    | _     |         |             |                   |       |           |             |                |
| 0.0344       | 27.8<br>25.9 | 20              |             |       |      |       |         | 4           | Soil D            | escri | otion Pro | portions    | (%):           |
| 0.0219       | 21.4         |                 |             |       | 1    |       |         |             | Clay <sup>1</sup> |       | 9 Sa      | nd          | 50             |
| 0.0130       | 18.1         | 10              |             |       |      | -     |         | +           | Silt              |       | 9 Gr      | avel        | 22             |
| 0.0065       | 16.8         | 0               |             |       |      |       |         |             |                   |       |           |             |                |
| 0.0033       | 12.3         |                 | 0.001 0.002 | 0.005 | 0.01 |       |         | 0.25        |                   | 0.85  | 2 4,75    | 9.5 12.5    | 19 25 37.5 50  |
| 0.0014       | 7.1          |                 |             |       |      | PARTI | CLE SIZ | E (m        | m)                |       |           |             |                |

Notes: <sup>1</sup> The upper clay size of 2 um, per the Canadian Foundation Engineering Manual

<sup>2</sup> The description is visually based & subject to EBA description protocols

Specification:

Remarks:

[signature redacted]

Reviewed By:

C.E.T.



ASTM D422, C136 & C117

Project: SRK Testing - 2015 Sample No.:

Project No.: W14103592-01 Material Type:

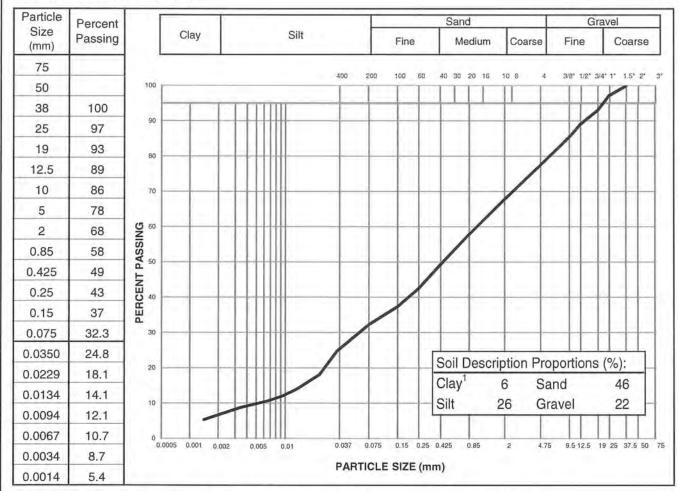
Site: Coffee Gold Project Sample Loc.: SRK-15S-08

Client: SRK Consulting Ltd. Sample Depth: 0.9 - 1.2 m

Name REDACTED

Date Tested: May 18, 2015 By: AMT Date sampled: April 4, 2015

Soil Description<sup>2</sup>: SAND - silty, gravelly, trace clay Sampled By: Client


USC Classification: Cu: 199.7

Grab

Sampling Method:

17706

Moisture Content: 27.2% Cc: 0.7



Notes: <sup>1</sup> The upper clay size of 2 um, per the Canadian Foundation Engineering Manual

<sup>2</sup>The description is visually based & subject to EBA description protocols

Specification:

Remarks:

[signature redacted]

Reviewed By:

C.E.T.



ASTM D422, C136 & C117

Project: SRK Testing - 2015 Sample No.:

17707

Project No.:

W14103592-01

Material Type:

Site:

Coffee Gold Project

Sample Loc.:

SRK-15S-08

Client:

SRK Consulting Ltd.

Sample Depth:

3.4 m Grab

Name REDACTED Date Tested:

May 18, 2015

By: AMT Date sampled:

Sampling Method:

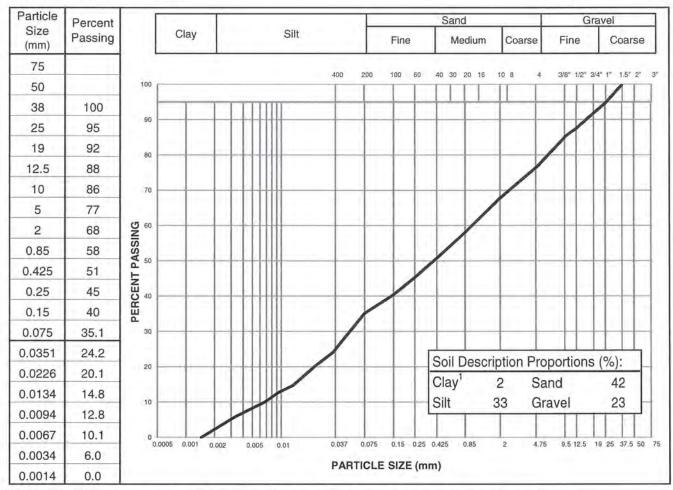
April 4, 2015

Soil Description2: SAND - silty, gravelly, trace clay

Sampled By:

Client

**USC** Classification:


Cu:

161.5 0.4

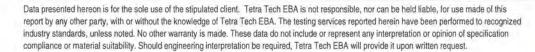
Moisture Content:

13.8%

Cc:



<sup>1</sup> The upper clay size of 2 um, per the Canadian Foundation Engineering Manual Notes:


<sup>2</sup> The description is visually based & subject to EBA description protocols

Specification:

Remarks:

C.E.T.

Reviewed By:





### PARTICLE SIZE ANALYSIS (Hydrometer) TEST REPORT

#### ASTM D422

Project: SRK Testing - Coffee Gold Project - May 2015 Sample No.: 17709

Client:

SRK Consulting (Canada) Inc.

Borehole/TP: SRK-15S-09

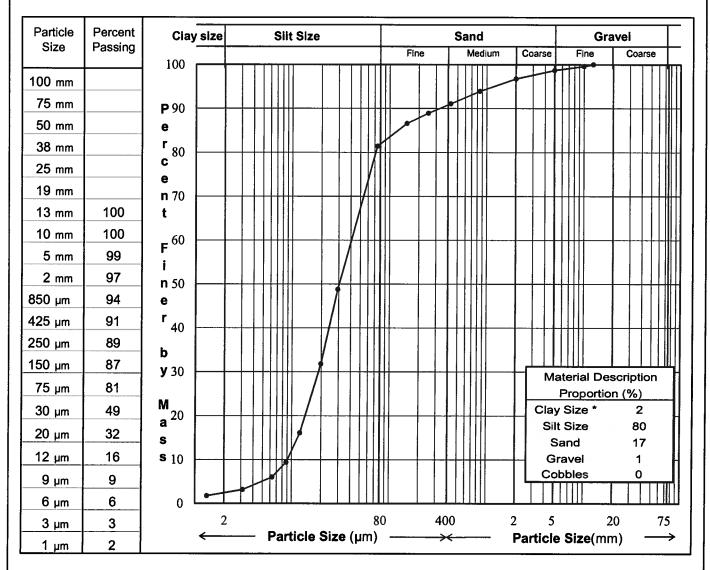
Project No.:

W14103592-01

Depth: 6.5'

Location:

**Date Tested** 


June 23, 2015

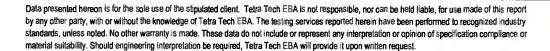
Description \*\*:

SILT, some sand, trace clay & gravel, brown.

Tested By:

**KTP** 




Remarks: \* The upper clay size of 2 µm is as per the Canadian Foundation Manual.

\*\* The description is behaviour based & subject to EBA description protocols.

[signature redacted]

Reviewed By:

P.Eng.





ASTM D422, C136 & C117

Project:

SRK Testing - 2015

Sample No .:

17710

Project No.:

W14103592-01

Material Type:

Coffee Gold Project Site:

Sample Loc .:

SRK-15S-09

Client:

SRK Consulting Ltd.

Sample Depth:

3.4 - 3.7 m

Name REDACTED

May 27, 2015

AMT

Date sampled:

Sampling Method:

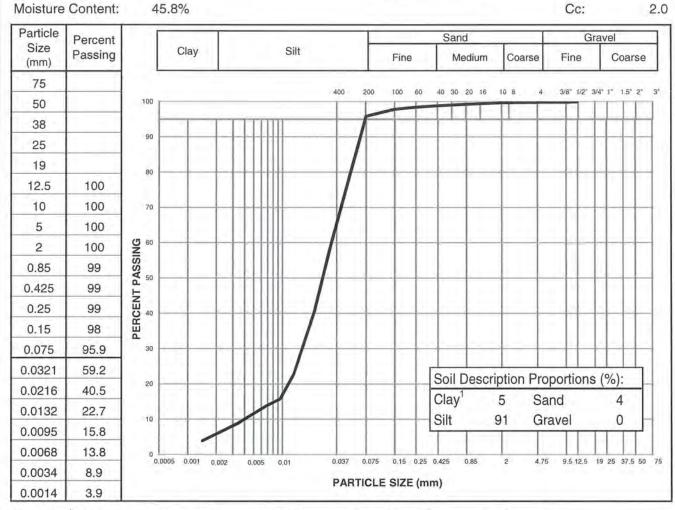
April 5, 2015

Date Tested:

Soil Description2: SILT - trace clay, trace sand

Sampled By:

Client


Grab

**USC Classification:** 

Cu:

Cc: 2.0

7.9



<sup>1</sup> The upper clay size of 2 um, per the Canadian Foundation Engineering Manual Notes:

<sup>2</sup> The description is visually based & subject to EBA description protocols

Specification:

Remarks:

[signature redacted]

Reviewed By

C.E.T.



ASTM D422, C136 & C117

Project:

SRK Testing - 2015

Project No .:

W14103592-01

Site:

Coffee Gold Project

Client:

SRK Consulting Ltd.

# Name REDACTED

Date Tested:

May 27, 2015

AMT

Date sampled:

Sample No.:

Material Type:

Sample Loc.:

Sample Depth:

Sampling Method:

April 6, 2015

SRK-15S-11

2.3 - 2.6 m

Soil Description2: GRAVEL - sandy, some silt,

Sampled By:

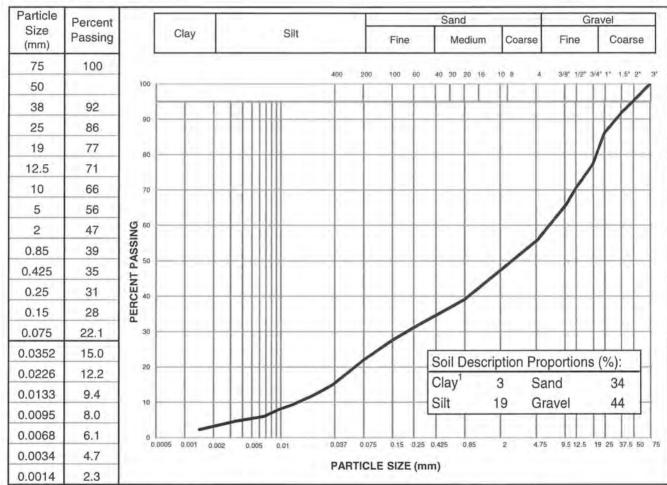
Client

Grab

17711

trace clay

USC Classification:


Cu:

452.3

Moisture Content:

8.8%

Cc: 0.4



<sup>1</sup> The upper clay size of 2 um, per the Canadian Foundation Engineering Manual Notes:

<sup>2</sup> The description is visually based & subject to EBA description protocols

Specification: Remarks:

[signature redacted]

Reviewed By:

C.E.T.



ASTM D422, C136 & C117

Project: SRK Testing - 2015

1 esting - 2015

Project No.: W14103592-01

Site: Coffee Gold Project

Client: SRK Consulting Ltd.

# Name REDACTED

Date Tested: May 27, 2015 By: AMT Date sampled: April 7, 2015

Soil Description<sup>2</sup>: SAND - gravelly, silty, trace clay Sampled By: Client

USC Classification:

17712

SRK-15S-12

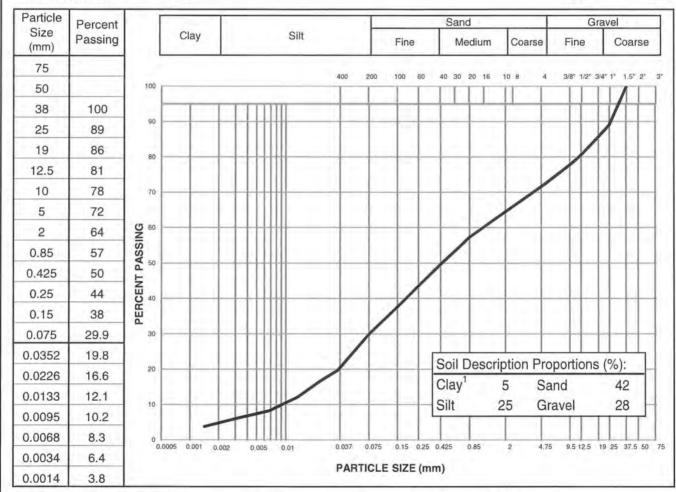
Cu:

139.7

2.4 - 2.7 m

Grab

Sample No .:


Material Type:

Sample Loc .:

Sample Depth:

Sampling Method:

Moisture Content: 19.5% Cc: 0.5



Notes: <sup>1</sup> The upper clay size of 2 um, per the Canadian Foundation Engineering Manual

<sup>2</sup>The description is visually based & subject to EBA description protocols

Specification:

Remarks:

[signature redacted]

Reviewed

C.E.T.



# PARTICLE SIZE ANALYSIS (Hydrometer) TEST REPORT

#### ASTM D422

Project: SRK Testing - Coffee Gold Project - May 2015

Sample No.: 17718

Client:

SRK Consulting (Canada) Inc.

Borehole/ TP: SRK-15S-13A

Project No.:

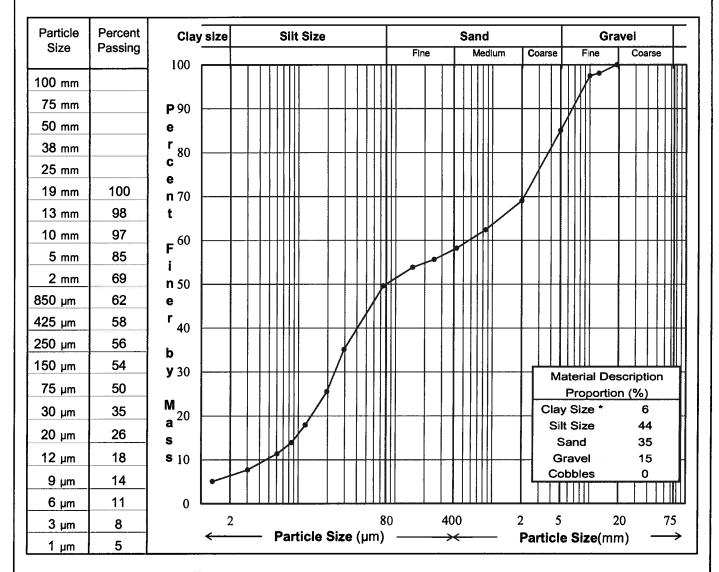
W14103592-01

Depth: 3.5 '

Location:

VV 14103392-01

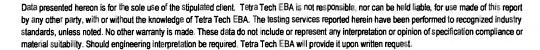
spui. 3.3


Description \*\*:

SILT and SAND, some gravel, trace clay, brown.

Date Tested June 23, 2015

Tested By:


KTP



Remarks: \* The upper clay size of 2 µm is as per the Canadian Foundation Manual.

[signature redacted]

Reviewed By: P.Eng.





<sup>\*\*</sup> The description is behaviour based & subject to EBA description protocols.

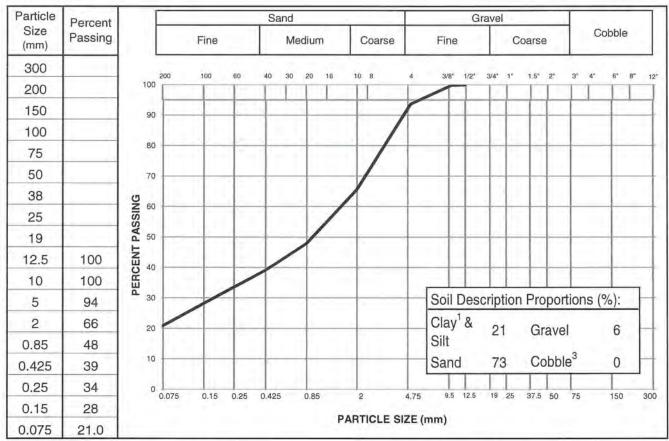
ASTM D422, C136 & C117

Project: SRK Testing - 2015 Sample No.: 17719

Project No.: W14103592-01 Material Type:

Site: Coffee Gold Project Sample Loc.: SRK-15S-13a
Client: SRK Consulting Ltd. Sample Depth: 4.0 - 4.3 m

Client Rep.: [name redacted]


By: IB Date sampled: April 10, 2015

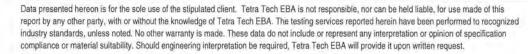
Soil Description<sup>2</sup>: SAND - some silt, trace gravel Sampled By: Client

USC Classification: Cu:

#N/A

Moisture Content: 8.0% Cc: #N/A




Notes: <sup>1</sup>The upper clay size of 2 um, per the Canadian Foundation Engineering Manual

<sup>2</sup> The description is visually based & subject to EBA description protocols

<sup>3</sup> If cobbles are present, sampling procedure may not meet ASTM C702 & D75

| Remarks:             |                      | Specification: |
|----------------------|----------------------|----------------|
|                      |                      | Remarks:       |
| [signature redacted] | [signature redacted] |                |

Reviewed By: \_\_\_\_ C.E.T.





ASTM D422, C136 & C117

Project: SRK Testing - 2015 Sample No .: 17715

Project No.:

W14103592-01

Material Type:

Site:

Coffee Gold Project

Sample Loc.:

SRK-15S-16

Client:

SRK Consulting Ltd.

Sample Depth:

0.6 - 0.9 m

Client Rep.:

[name redacted]

Sampling Method:

Grab

Date Tested:

May 27, 2015

By: AMT

Date sampled:

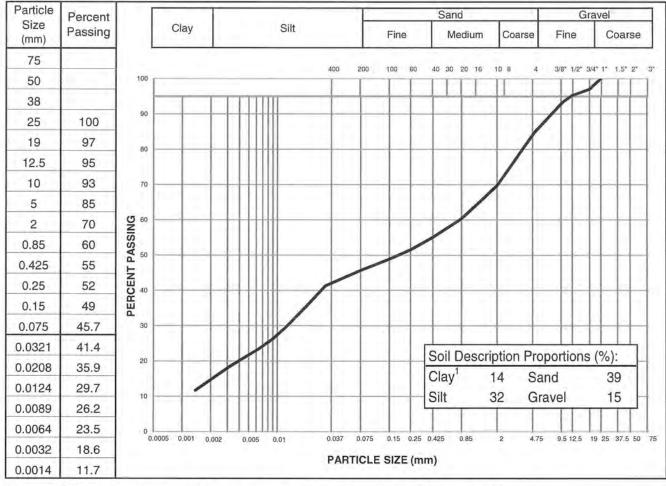
April 9, 2015

Soil Description<sup>2</sup>: SAND - silty, some gravel, some clay

Sampled By:

Client

USC Classification:


Cu:

#N/A

Moisture Content:

12.4%

Cc: #N/A



<sup>1</sup> The upper clay size of 2 um, per the Canadian Foundation Engineering Manual Notes:

<sup>2</sup> The description is visually based & subject to EBA description protocols

Specification:

Remarks:

[signature redacted]

Reviewed By:

C.E.T.



ASTM D422, C136 & C117

Project: SRK Testing - 2015 Sample No.: 17717

Project No.: W14103592-01 Material Type:

Site: Coffee Gold Project Sample Loc.: SRK-15S-17
Client: SRK Consulting Ltd. Sample Depth: 1.5 - 1.8 m

Client Rep.: [name redacted] Sampling Method: Grab

Date Tested: May 27, 2015 By: AMT Date sampled: April 10, 2015

Soil Description<sup>2</sup>: sandy, silty, gravelly, trace clay

Sampled By: Client

USC Classification: Cu: 567.2

Moisture Content: 5.6% Cc: 0.2



Notes: <sup>1</sup> The upper clay size of 2 um, per the Canadian Foundation Engineering Manual

<sup>2</sup>The description is visually based & subject to EBA description protocols

Specification:

Remarks:

[signature redacted]

Reviewed By: C.E.T.



ASTM D422, C136 & C117

Project: SRK Testing - 2015 Sample No.:

17713

Project No.:

W14103592-01

Material Type:

Site:

Coffee Gold Project

Sample Loc.:

SRK-15S-19

Client:

SRK Consulting Ltd.

Sample Depth:

2.7 - 3.0 m

April 8, 2015

Client Rep.:

[name redacted]

Sampling Method:

Grab

Date Tested:

May 27, 2015

By: AMT

Date sampled:

Client

Soil Description2: SAND and SILT - some clay,

trace gravel

Sampled By:


Cu: #N/A

Moisture Content:

12.3%

USC Classification:

Cc: #N/A



Notes: <sup>1</sup> The upper clay size of 2 um, per the Canadian Foundation Engineering Manual

<sup>2</sup>The description is visually based & subject to EBA description protocols

Specification:

Remarks:

[signature redacted]

Reviewed By:

C.E.T.



# PARTICLE SIZE ANALYSIS (Hydrometer) TEST REPORT

ASTM D422

Project: SRK Testing - Coffee Gold Project - May 2015

Sample No.: 17722

Client:

SRK Consulting (Canada) Inc.

Borehole/ TP: SRK-15S-20

Project No.:

11/4 /400500 04

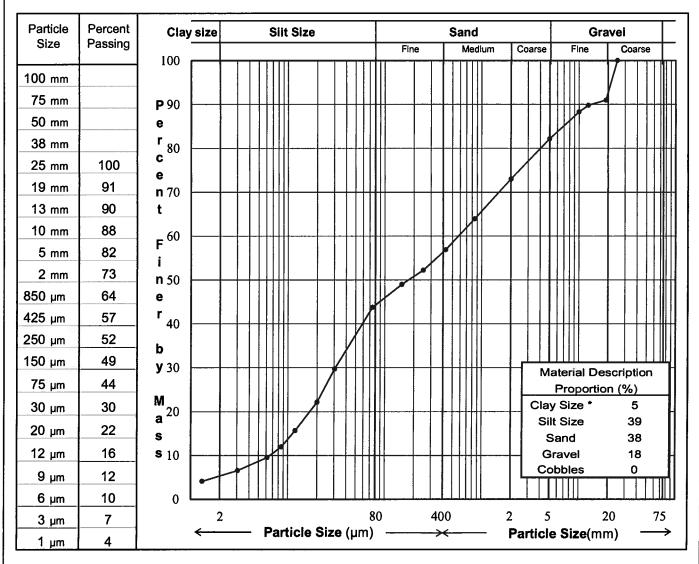
3.5 '

Location:

W14103592-01

Depth:

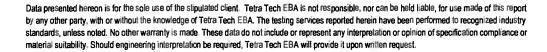
Date Tested


June 23, 2015

Description \*\*:

SILT and SAND, some gravel, trace clay, brown.

Tested By:


KTP



Remarks: \* The upper clay size of 2 µm is as per the Canadian Foundation Manual.

[signature redacted]

Reviewed By: P.Eng.





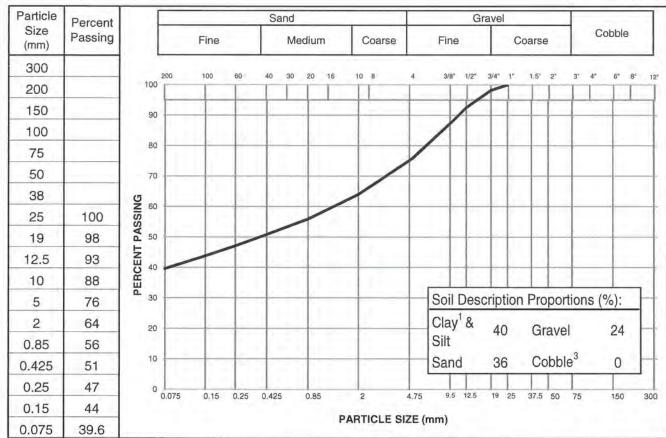
<sup>\*\*</sup> The description is behaviour based & subject to EBA description protocols.

ASTM D422, C136 & C117

Project: SRK Testing - 2015 Sample No.: 17721

Project No.: W14103592-01 Material Type:

Site: Coffee Gold Project Sample Loc.: SRK-15S-23
Client: SRK Consulting Ltd. Sample Depth: 0.6 - 0.9 m


Client Rep.: [name redacted]

By: IB Date sampled: April 11, 2015

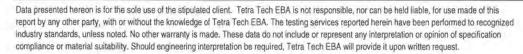
Soil Description<sup>2</sup>: SILT and SAND - some gravel Sampled By: Client

USC Classification: Cu: #N/A

Moisture Content: 5.9% Cc: #N/A



Notes: <sup>1</sup> The upper clay size of 2 um, per the Canadian Foundation Engineering Manual


<sup>2</sup> The description is visually based & subject to EBA description protocols

<sup>3</sup> If cobbles are present, sampling procedure may not meet ASTM C702 & D75

| Specification: |  |  |  |
|----------------|--|--|--|
| Remarks:       |  |  |  |

Reviewed By: [signature redacted]

C.F.T



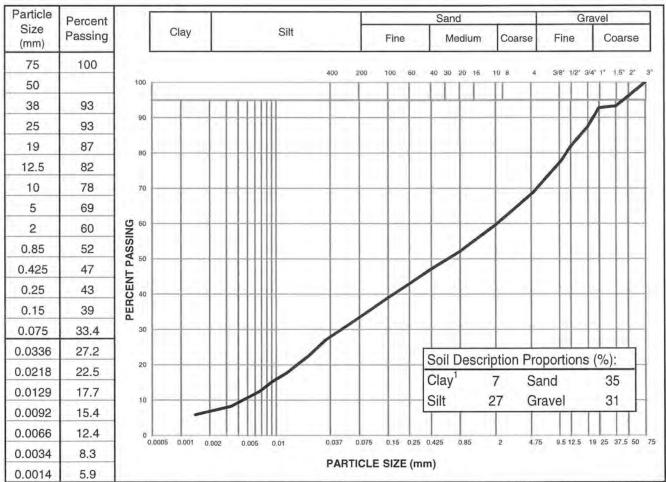


ASTM D422, C136 & C117

Project: SRK Testing - 2015 Sample No.: 17723

Project No.: W14103592-01 Material Type:

Site: Coffee Gold Project Sample Loc.: SRK-15S-25
Client: SRK Consulting Ltd. Sample Depth: 0.6 - 1.2 m


Client Rep.: [name redacted] Sampling Method: Grab

Date Tested: May 27, 2015 By: AMT Date sampled: April 12, 2015

Soil Description<sup>2</sup>: sandy, gravelly, silty, trace clay Sampled By: Client

USC Classification: Cu: 443.7

Moisture Content: 12.6% Cc: 0.3



Notes: <sup>1</sup> The upper clay size of 2 um, per the Canadian Foundation Engineering Manual

<sup>2</sup>The description is visually based & subject to EBA description protocols

Specification:
Remarks:

[signature redacted]

Reviewed By:

C.E.T.

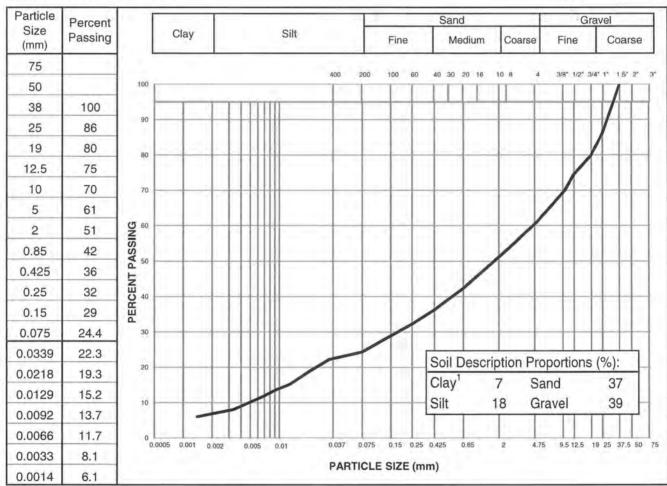


ASTM D422, C136 & C117

Project: SRK Testing - 2015 Sample No.: 17724

Project No.: W14103592-01 Material Type:

Site: Coffee Gold Project Sample Loc.: SRK-15S-25
Client: SRK Consulting Ltd. Sample Depth: 1.8 - 2.1 m


Client Rep.: [name redacted] Sampling Method: Grab

Date Tested: May 27, 2015 By: AMT Date sampled: April 12, 2015

Soil Description<sup>2</sup>: GRAVEL and SAND - some silt, Sampled By: Client

trace clay USC Classification:

Moisture Content: 6.9% Cc: 1.4



Notes: <sup>1</sup> The upper clay size of 2 um, per the Canadian Foundation Engineering Manual

<sup>2</sup>The description is visually based & subject to EBA description protocols

Specification:

Remarks:

[signature redacted]

C.E.T.



Cu:

927.9

ASTM D422, C136 & C117

AMT

Project: SRK Testing - 2015 Sample No.: 17736

Project No .:

W14103592-01

Material Type:

Site:

Coffee Gold Project

Sample Loc.:

Client:

SRK Consulting Ltd.

SRK-15S-26

Grab

Client Rep.:

[name redacted]

Sample Depth:

0.6 - 0.9 m

Date Tested:

May 27, 2015

Sampling Method:

April 16, 2015

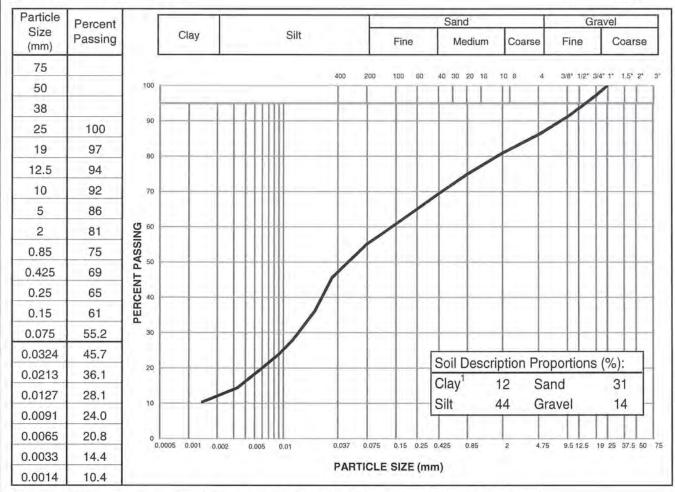
Soil Description<sup>2</sup>: SILT - sandy, some gravel, some clay

Date sampled:

Client

By:

Sampled By:


USC Classification:

Cu: #N/A

Moisture Content:

15.7%

Cc: #N/A



<sup>1</sup> The upper clay size of 2 um, per the Canadian Foundation Engineering Manual Notes:

<sup>2</sup> The description is visually based & subject to EBA description protocols

Specification: Remarks:

C.E.T.

Reviewed By:

[signature redacted]



ASTM D422, C136 & C117

Project: SRK Testing - 2015 Sample No.: 17732

Project No .:

W14103592-01

Material Type:

Site:

Client:

Coffee Gold Project SRK Consulting Ltd.

Sample Loc .: Sample Depth: SRK-15S-29

[name redacted]

Sampling Method:

0.9 - 1.4 m

Client Rep.: Date Tested:

May 27, 2015

Grab

April 15, 2015

Soil Description<sup>2</sup>: GRAVEL - sandy, some silt, trace clay

By: AMT Date sampled:

Sampled By: Client

1133.2

Moisture Content:

2.9%

USC Classification:

Cu: Cc:

0.5

| Particle     | Percent | Γ               |                 |       |      |           |               |          | Sand       |             | Gravel      |                 |  |
|--------------|---------|-----------------|-----------------|-------|------|-----------|---------------|----------|------------|-------------|-------------|-----------------|--|
| Size<br>(mm) | Passing |                 | Clay Silt       |       | Silt |           | Fine          |          | Medium     | Coarse      | Fine        | Coarse          |  |
| 75           |         |                 |                 |       |      | 400 20    | 0 100         | 60 4     | 0 30 20 16 | 10 8 4      | 3/8" 1/2" 3 | 8/4" 1" 1.5" 2" |  |
| 50           |         | 100             |                 |       |      | 100       | 100           |          |            |             |             |                 |  |
| 38           | 100     |                 | 111             | TIII  | III  |           | $\rightarrow$ |          |            |             |             |                 |  |
| 25           | 82      | 90              |                 |       | 111  |           |               |          |            |             |             |                 |  |
| 19           | 77      | 80 -            |                 |       |      |           |               |          |            |             |             |                 |  |
| 12.5         | 68      |                 |                 |       |      |           |               |          |            |             |             |                 |  |
| 10           | 64      | 70              |                 |       |      | _         |               | $\sqcup$ |            | -           |             |                 |  |
| 5            | 59      |                 |                 |       |      |           |               |          |            |             |             |                 |  |
| 2            | 54      | S 60            |                 | +     |      | +         | -             |          | -          |             |             |                 |  |
| 0.85         | 48      | PERCENT PASSING |                 |       |      |           |               |          |            |             |             |                 |  |
| 0.425        | 41      | PA 50           |                 | 1111  | 111  |           |               |          |            |             |             |                 |  |
| 0.25         | 37      | EN              |                 |       |      |           |               |          |            |             |             |                 |  |
| 0.15         | 32      | ERC             |                 |       |      |           | 1             |          |            |             |             |                 |  |
| 0.075        | 24.5    | 30              |                 |       | #    | -1-1      | /             |          |            |             |             |                 |  |
| 0.0350       | 17.6    |                 |                 | 1111  |      |           |               |          |            |             |             |                 |  |
| 0.0223       | 16.0    | 20              |                 |       | #    |           |               | _        |            | ription Pro |             |                 |  |
| 0.0131       | 13.9    |                 |                 |       |      |           |               |          | lay1       |             | ind         | 34              |  |
| 0.0093       | 12.3    | 10              |                 | +     | 111  |           |               | S        | ilt        | 18 Gr       | avel        | 41              |  |
| 0.0067       | 10.7    | 0               |                 |       |      |           |               |          |            |             |             | 1.4             |  |
| 0.0033       | 8.5     | 0.0             | 005 0.001 0.002 | 0.005 | 0.01 | 0.037 0.6 | 75 0.15       | 0.25 0.4 | 125 0.85   | 2 4.75      | 9.5 12.5    | 19 25 37,5 50   |  |
| 0.0014       | 5.9     |                 |                 |       |      | PARTIC    | LE SIZE       | (mm)     |            |             |             |                 |  |

<sup>1</sup> The upper clay size of 2 um, per the Canadian Foundation Engineering Manual Notes:

<sup>2</sup> The description is visually based & subject to EBA description protocols

Specification:

Remarks:

[signature redacted] Reviewed By:



ASTM D422, C136 & C117

Project: SRK Testing - 2015 Sample No .: 17734

Project No .:

W14103592-01

Material Type:

Site:

Coffee Gold Project

Sample Loc.:

SRK-15S-30

Client:

SRK Consulting Ltd.

Sample Depth:

0.9 - 1.2 m

Client Rep.:

[name redacted]

Sampling Method:

Grab

Date Tested:

May 29, 2015

By: AMT

Date sampled:

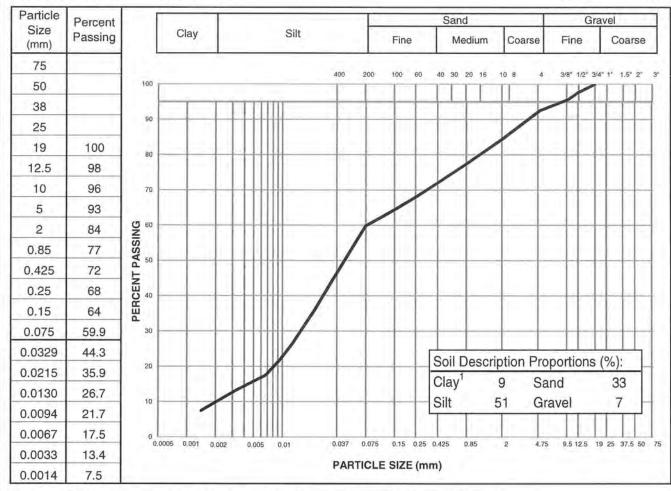
April 16, 2015

Soil Description<sup>2</sup>: SILT - sandy, trace clay, trace gravel

Sampled By:

Client

34.5


Moisture Content:

107.3%

USC Classification:

Cu: Cc:

1.5



<sup>1</sup> The upper clay size of 2 um, per the Canadian Foundation Engineering Manual Notes:

<sup>2</sup> The description is visually based & subject to EBA description protocols

Specification: Remarks:

Reviewed By:

[signature redacted]

C.E.T.



ASTM D422, C136 & C117

Project: SRK Testing - 2015 Sample No.:

17735

Project No.:

W14103592-01

Material Type:

Site:

Coffee Gold Project

Sample Loc.:

SRK-15S-30

Client:

SRK Consulting Ltd.

Sample Depth:

2.1 - 2.7 m

Client Rep.:

[name redacted]

Sampling Method:

Grab

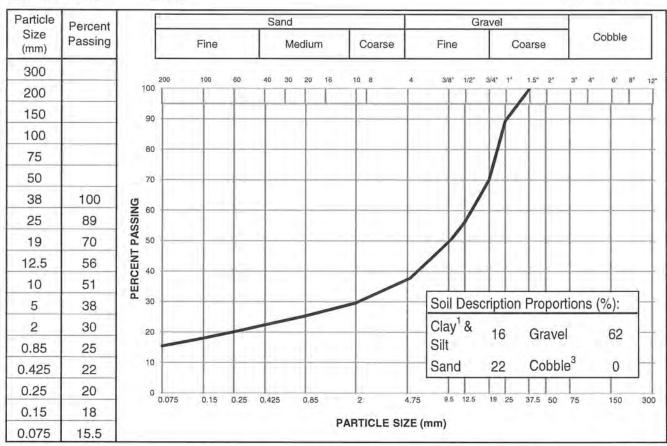
Date Tested:

May 31, 2015

By: IB Date sampled: April 16, 2015

Soil Description2: GRAVEL - sandy, some silt

Sampled By:


Client

#N/A

Moisture Content:

11.6%

USC Classification: Cu: Cc: #N/A



Notes:

| Specification: |                |         |
|----------------|----------------|---------|
| Remarks:       |                |         |
|                | [signature red | lacted1 |
|                | Reviewed By:   | C.E.T.  |

Data presented hereon is for the sole use of the stipulated client. Tetra Tech EBA is not responsible, nor can be held liable, for use made of this report by any other party, with or without the knowledge of Tetra Tech EBA. The testing services reported herein have been performed to recognized industry standards, unless noted. No other warranty is made. These data do not include or represent any interpretation or opinion of specification compliance or material suitability. Should engineering interpretation be required, Tetra Tech EBA will provide it upon written request.



<sup>&</sup>lt;sup>1</sup> The upper clay size of 2 um, per the Canadian Foundation Engineering Manual

<sup>&</sup>lt;sup>2</sup>The description is visually based & subject to EBA description protocols

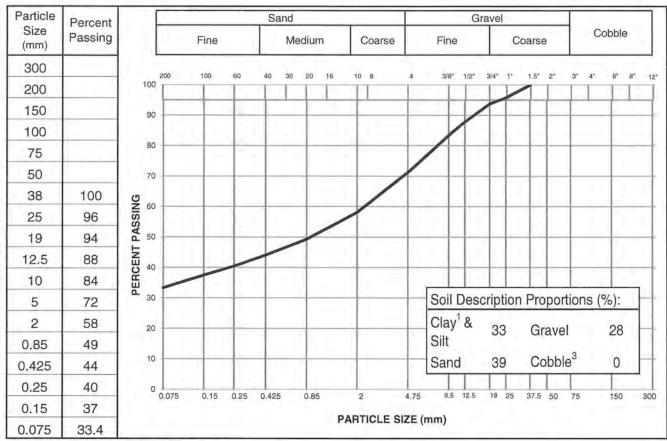
<sup>&</sup>lt;sup>3</sup> If cobbles are present, sampling procedure may not meet ASTM C702 & D75

ASTM D422, C136 & C117

Project: SRK Testing - 2015 Sample No.: 17737

Project No.: W14103592-01 Material Type:

Site: Coffee Gold Project Sample Loc.: SRK-15S-32
Client: SRK Consulting Ltd. Sample Depth: 0.6 - 0.9 m


Client Rep.: [name redacted] Sampling Method: Grab

Date Tested: May 31, 2015 By: IB Date sampled: April 16, 2015

Soil Description<sup>2</sup>: SAND - silty, gravelly Sampled By: Client

USC Classification: Cu: #N/A

Moisture Content: 12.4% Cc: #N/A



Notes: <sup>1</sup> The upper clay size of 2 um, per the Canadian Foundation Engineering Manual

<sup>2</sup> The description is visually based & subject to EBA description protocols

<sup>3</sup> If cobbles are present, sampling procedure may not meet ASTM C702 & D75

|                | [signature redacted] |
|----------------|----------------------|
| Remarks:       |                      |
| Specification: |                      |

Reviewed By: \_\_\_\_

Data presented hereon is for the sole use of the stipulated client. Tetra Tech EBA is not responsible, nor can be held liable, for use made of this report by any other party, with or without the knowledge of Tetra Tech EBA. The testing services reported herein have been performed to recognized industry standards, unless noted. No other warranty is made. These data do not include or represent any interpretation or opinion of specification compliance or material suitability. Should engineering interpretation be required, Tetra Tech EBA will provide it upon written request.



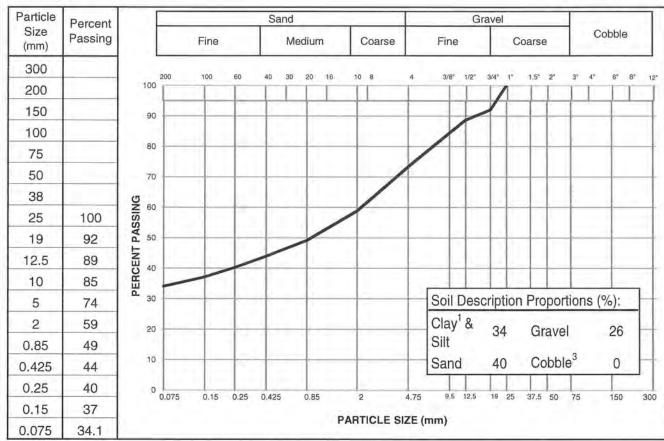
C.E.T.

ASTM D422, C136 & C117

Project: SRK Testing - 2015 Sample No.: 17740

Project No.: W14103592-01 Material Type:

Site: Coffee Gold Project Sample Loc.: SRK-15S-33
Client: SRK Consulting Ltd. Sample Depth: 0.9 - 1.2 m


Client Rep.: [name redacted] Sampling Method: Grab

Date Tested: May 31, 2015 By: IB Date sampled: April 18, 2015

Soil Description<sup>2</sup>: SAND - silty, gravelly Sampled By: Client

USC Classification: Cu:

Moisture Content: 7.9% Cc: #N/A



Notes: <sup>1</sup>The upper clay size of 2 um, per the Canadian Foundation Engineering Manual

<sup>2</sup>The description is visually based & subject to EBA description protocols

<sup>3</sup> If cobbles are present, sampling procedure may not meet ASTM C702 & D75

Specification:


Remarks:

[signature redacted]

Reviewed By:

C.E.T.

#N/A





ASTM D422, C136 & C117

Project:

SRK Testing - 2015

Sample No.:

17739

Project No.:

W14103592-01

Material Type:

Site:

Coffee Gold Project

Sample Loc.:

SRK-15S-34

Client:

SRK Consulting Ltd.

Sample Depth:

1.1 m

Client Rep.:

[name redacted]

Sampling Method:

Grab

Date Tested:

May 29, 2015

AMT By:

Date sampled:

April 18, 2015

Soil Description<sup>2</sup>: SILT - sandy, some gravel, trace clay

Sampled By:

Client

62.1

Moisture Content:

14.9%

USC Classification:

Cu: Cc:

0.8

| Particle     | Percent |                 | (San II      |                                          |      |            |          | Sand              |              | Gravel        |                 |  |
|--------------|---------|-----------------|--------------|------------------------------------------|------|------------|----------|-------------------|--------------|---------------|-----------------|--|
| Size<br>(mm) | Passing |                 | Clay         |                                          | Silt |            | Fine     | Mediur            | Coarse       | Fine          | Coarse          |  |
| 75           |         |                 |              |                                          |      | 100 000    | 400 0    | . (0.00.00.4      |              | 0.000 3.000 4 | 3/4" 1" 1.5" 2" |  |
| 50           |         | 100             |              |                                          |      | 400 200    | 100 6    | 0 40 30 20 1      | 108 4        | 3/8" 1/2" 3   | 34 1 1.5 2      |  |
| 38           | 100     |                 |              | -111                                     | m    | 1          |          |                   |              |               |                 |  |
| 25           | 94      | 90 -            |              |                                          | 111  |            |          |                   |              |               |                 |  |
| 19           | 93      | 80              |              |                                          |      |            |          |                   |              |               |                 |  |
| 12.5         | 92      |                 |              |                                          |      |            |          |                   |              |               |                 |  |
| 10           | 90      | 70              |              | -HH                                      |      | -          | -        |                   |              |               |                 |  |
| 5            | 86      |                 |              |                                          |      |            |          |                   |              | - 11          |                 |  |
| 2            | 79      | S 60            |              | +++                                      |      |            |          |                   |              | $\pm$         | +++             |  |
| 0.85         | 72      | PERCENT PASSING |              |                                          |      | 1          |          |                   |              |               |                 |  |
| 0.425        | 67      | H P             |              |                                          |      |            |          |                   |              |               |                 |  |
| 0.25         | 62      | NE GEN          |              | $\perp \downarrow \downarrow \downarrow$ | Ш    |            |          |                   |              |               |                 |  |
| 0.15         | 59      | ER              |              |                                          |      |            |          |                   |              |               |                 |  |
| 0.075        | 53.8    | 30              |              | +                                        | 1    |            | -        |                   | -            |               |                 |  |
| 0.0329       | 40.5    |                 |              | 1111                                     |      |            |          | Coil Doo          | arintian Dra | nortions      | /9/\            |  |
| 0.0218       | 30.4    | 20              |              |                                          |      | 11         |          |                   | cription Pro |               |                 |  |
| 0.0131       | 21.8    | 10              | 14           |                                          |      | 4 1 1 1 1  |          | Clay <sup>1</sup> |              | ind           | 32              |  |
| 0.0095       | 17.1    | 10              |              |                                          |      |            |          | Silt              | 46 Gr        | avel          | 14              |  |
| 0.0068       | 14.0    | 0               | 005 0004     |                                          | Ш    | 2007       | 5 045 5  | 05 0 105 15 15    |              | 1 1           | 10.05.07.5      |  |
| 0.0034       | 10.9    | 0.0             | 005 0.001 0. | 0.005                                    | 0.01 | 0.037 0.07 |          | 25 0.425 0.85     | 2 4.75       | 9.5 12.5      | 19 25 37.5 50   |  |
| 0.0014       | 6.2     |                 |              |                                          |      | PARTIC     | E SIZE ( | mm)               |              |               |                 |  |

Notes:

<sup>1</sup> The upper clay size of 2 um, per the Canadian Foundation Engineering Manual

<sup>2</sup> The description is visually based & subject to EBA description protocols

Specification: Remarks:

Reviewed By:

C.E.T.



ASTM D422, C136 & C117

Project: SRK Testing - 2015 Sample No .:

17741

Project No.:

W14103592-01

Material Type:

Site:

Coffee Gold Project

Sample Loc.:

SRK-15S-35

Client:

SRK Consulting Ltd.

Sample Depth:

1.2 - 1.4 m

Client Rep.:

[name redacted]

AMT By:

Date sampled:

April 18, 2015

Cu:

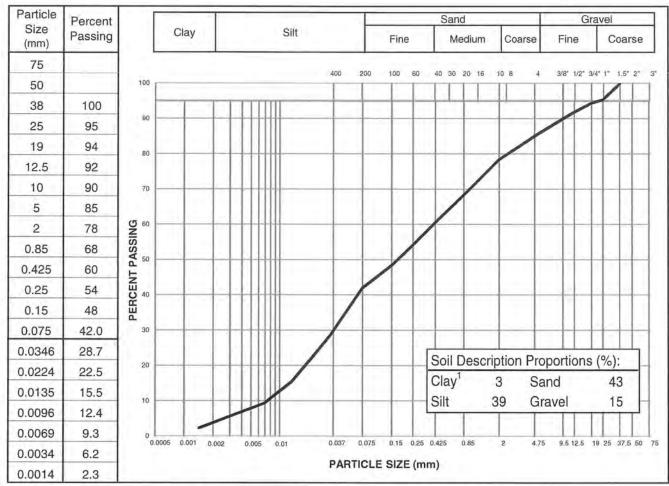
Soil Description2: SAND and SILT - some gravel,

Sampled By:

Client

trace clay

**USC Classification:** 


54.9

0.5

Moisture Content:

44.9%

Cc:



<sup>1</sup> The upper clay size of 2 um, per the Canadian Foundation Engineering Manual Notes:

<sup>2</sup>The description is visually based & subject to EBA description protocols

Specification:

Remarks:

[signature redacted]

Reviewed By:

C.E.T.



ASTM D422, C136 & C117

Project: SRK Testing - 2015 Sample No .:

17743

Project No.:

W14103592-01

Material Type:

Site:

Coffee Gold Project

Sample Loc .:

SRK-15S-35

Client:

SRK Consulting Ltd.

Sample Depth:

5.3 m

Client Rep.:

[name redacted]

Sampling Method:

Grab

Date Tested:

May 29, 2015

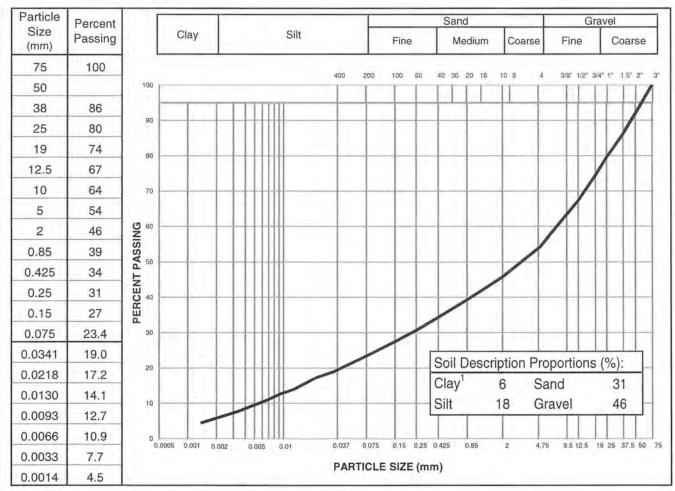
By: AMT Date sampled:

April 18, 2015

Soil Description2: GRAVEL - sandy, some silt, trace clay

Sampled By:

Client


Cu: 1380.0

Moisture Content:

8.5%

USC Classification:

Cc: 1.2



<sup>1</sup> The upper clay size of 2 um, per the Canadian Foundation Engineering Manual Notes:

<sup>2</sup>The description is visually based & subject to EBA description protocols

Specification: Remarks:

Reviewed

[signature redacted]

C.E.T.



ASTM D422, C136 & C117

Project: Phase 2 Test Pit Program

Sample No.:

17565

Project No .:

W14103592-02

Material Type:

SRK-15TP-03

Site:

Coffee Gold Project

Sample Loc.: Sample Depth:

0.5 - 1.0 m

Client: Client Rep.: SRK Consulting Inc.

Sampling Method:

Grab

Date Tested:

[name redacted]

By: AMT

Date sampled:

June 19, 2015

Soil Description2: GRAVEL and SAND - some silt,

August 31, 2015

By: AMI

Sampled By:

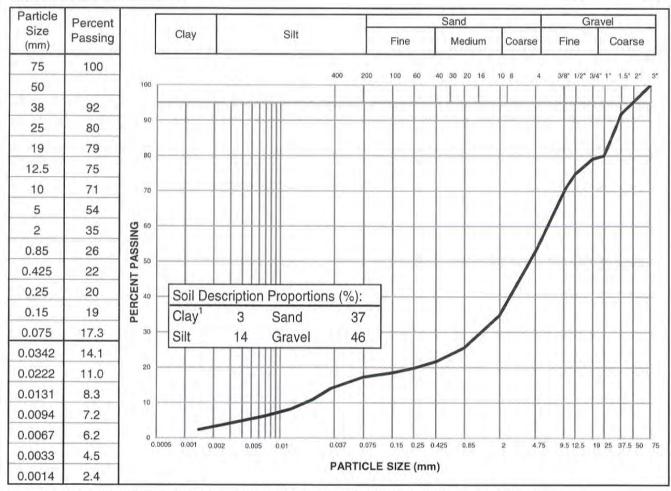
Client Name REDACTED

trace clay

campica by.

Cu:

361.2


Moisture Content:

10.5%

USC Classification:

Cc:

15.1



Notes: <sup>1</sup> The upper clay size of 2 um, per the Canadian Foundation Engineering Manual

<sup>2</sup> The description is visually based & subject to EBA description protocols

Specification:

Remarks:

[signature redacted]

Reviewed By:

C.E.T.



ASTM D422, C136 & C117

Phase 2 Test Pit Program Project:

Sample No.:

17563

Project No.:

W14103592-02

Material Type:

Site:

Coffee Gold Project

Sample Loc.:

SRK-15TP-04

Client:

SRK Consulting Inc.

Sample Depth:

0.3 - 0.7 m

Client Rep.:

[name redacted]

Sampling Method:

Grab

Date Tested:

September 3, 2015

By: AMT Date sampled:

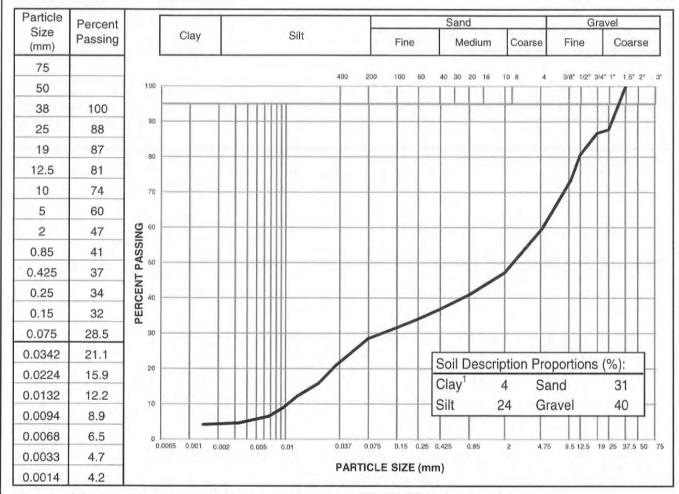
June 19 2015 Name REDACTED

Soil Description2: GRAVEL - sandy, silty, trace clay

Sampled By:

Client

470.3


Moisture Content:

10.9%

USC Classification:

Cu: Cc:

0.2



Notes:

<sup>1</sup> The upper clay size of 2 um, per the Canadian Foundation Engineering Manual

<sup>2</sup> The description is visually based & subject to EBA description protocols

Specification: Remarks:

[signature redacted]

Reviewed By:

C.E.T.

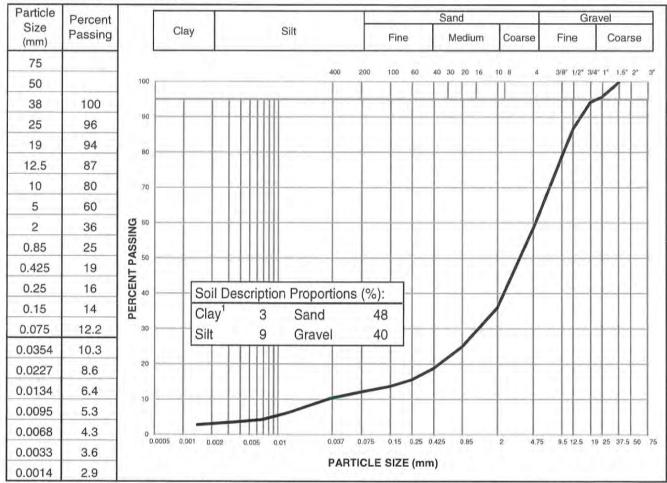


ASTM D422, C136 & C117

Project: Phase 2 Test Pit Program Sample No.: 17559

Project No .: W14103592-02 Material Type:

Site: Coffee Gold Project Sample Loc.: SRK-15TP-06 Client: SRK Consulting Inc. Sample Depth:


[name redacted] Client Rep.: Sampling Method: Grab

Date Tested: September 2, 2015 By: AMT Date sampled: June 19, 2015

Cli Name REDACTED Soil Description2: SAND and GRAVEL - trace silt, Sampled By:

trace clay **USC Classification:** 

Moisture Content: 7.8% Cc: 11.3



Notes: <sup>1</sup> The upper clay size of 2 um, per the Canadian Foundation Engineering Manual

<sup>2</sup>The description is visually based & subject to EBA description protocols

| Specification: |  |
|----------------|--|
| Remarks:       |  |

[signature redacted]

Reviewed By: C.E.T.

0.2 - 1.0 m

Cu:

153.4



ASTM D422, C136 & C117

Project: Phase 2 Test Pit Program

Sample No.:

17581

Project No .:

W14103592-02

Material Type:

SRK-15TP-08

Site: Client: Coffee Gold Project SRK Consulting Inc.

Sample Loc.: Sample Depth:

0.2 - 1.2 m

Client Rep.:

[name redacted]

Sampling Method:

Grab

Date Tested:

September 6, 2015

AMT Date sampled:

June 21, 2015

Soil Description2: GRAVEL and SAND - some silt,

r 6, 2015 By: AMT

Sampled By:

Name REDACTED

trace clay

.....

Cu: 444.8

Moisture Content:

6.8%

USC Classification:

Cc:

11.5

| Particle     | Percent |                 | 1.00       |             | A.0.02 a | - 200       |        | Sa         | ınd     |        | Gr          | avel           |
|--------------|---------|-----------------|------------|-------------|----------|-------------|--------|------------|---------|--------|-------------|----------------|
| Size<br>(mm) | Passing |                 | Clay       |             | Silt     |             | Fine   | 1          | Medium  | Coarse | Fine        | Coarse         |
| 75           |         |                 |            |             |          | 400 200     | 100    | 60 40 3    | 0 00 46 | 10.0   | 0/01 1/01 0 | /48 48 4 EL OF |
| 50           |         | 100             |            |             |          | 400 200     | 100    | 50 40 5    | 0 20 16 | 10 8 4 | 3/6 1/2 3   | /4" 1" 1,5" 2" |
| 38           | 100     |                 |            | THIII       |          |             |        |            | +       |        |             |                |
| 25           | 90      | 90              |            | 111111      |          |             |        |            |         |        |             |                |
| 19           | 85      | 80              |            |             |          |             |        |            |         |        |             |                |
| 12.5         | 76      | 77              |            |             |          |             |        |            |         |        | 1           |                |
| 10           | 69      | 70              | -          |             |          |             | -      |            | -       | -      |             |                |
| 5            | 53      |                 |            |             |          |             |        |            |         |        |             |                |
| 2            | 37      | <b>S</b> 60     |            |             |          |             |        |            |         |        |             |                |
| 0.85         | 28      | PERCENT PASSING |            | Coil Do     |          | Duamant     | i //   | 2/ \       |         | /      |             |                |
| 0.425        | 22      | T P             |            |             |          | Proport     | ions ( |            |         |        |             |                |
| 0.25         | 20      | CEN<br>40       |            | Clay        | 4        | Sand        |        | 37         |         |        |             |                |
| 0.15         | 18      | EB              |            | Silt        | 13       | Gravel      | -      | 47         |         |        |             |                |
| 0.075        | 16.9    | 30              |            |             |          |             | -      | -          | /       |        | -           |                |
| 0.0343       | 14.6    |                 |            |             |          |             |        | /          |         |        |             |                |
| 0.0222       | 11.7    | 20              |            |             |          |             | _      |            | -       |        |             |                |
| 0.0131       | 9.2     | 10              |            |             | /        |             |        |            |         |        |             |                |
| 0.0094       | 7.0     | 10              |            |             |          |             |        |            |         |        |             |                |
| 0.0067       | 5.9     | 0               |            |             |          |             |        |            |         |        |             |                |
| 0.0033       | 4.4     | 0.00            | 0.001 0.00 | 02 0.005 0. | 01       | 0.037 0.075 |        | 0.25 0.425 | 0.85    | 2 4.75 | 9.5 12.5    | 19 25 37.5 50  |
| 0.0014       | 3.3     |                 |            |             |          | PARTICLI    | SIZE   | (mm)       |         |        |             |                |

Notes:

<sup>1</sup>The upper clay size of 2 um, per the Canadian Foundation Engineering Manual

<sup>2</sup> The description is visually based & subject to EBA description protocols

Specification:

Remarks:

Atterberg Limit test requested but not performed due to low clay content.

[signature redacted]

Reviewed By:

C.E.T.



ASTM D422, C136 & C117

Project: Phase 2 Test Pit Program

Sample No.:

17579

Project No.:

W14103592-02

Material Type:

Site:

Coffee Gold Project

Sample Loc .: Sample Depth: SRK-15TP-09

Client:

SRK Consulting Inc.

Sampling Method:

0.5 - 1.2 m Grab

Client Rep.: Date Tested: [name redacted] August 31, 2015

Date sampled:

June 21, 2015 Name REDACTED

Soil Description2: SAND - silty, gravelly, trace clay

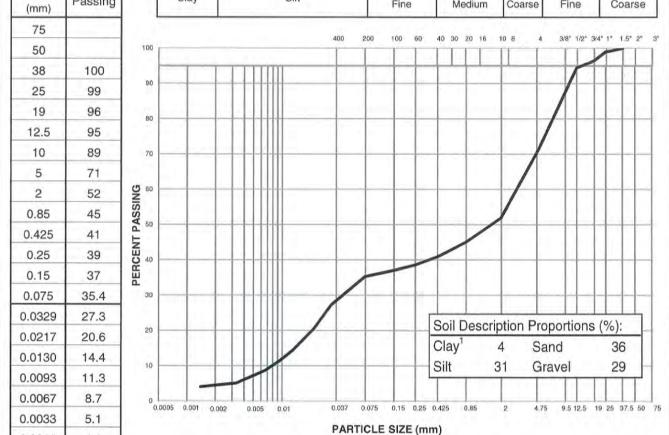
Sampled By:

Clier

404.9

Moisture Content:

10.9%


USC Classification:

Cu: Cc:

0.1

Particle Sand Gravel Percent Size Clay Silt Passing Fine Medium Coarse Fine Coarse (mm) 75 400 40 30 20 16 10 8 100 50 38

By: AMT



Notes: The upper clay size of 2 um, per the Canadian Foundation Engineering Manual

<sup>2</sup>The description is visually based & subject to EBA description protocols

| Shock | ticat | TOD:   |
|-------|-------|--------|
| Speci | noai  | .IUII. |
|       |       |        |

Remarks:

4.1

0.0014

[signature redacted]

Reviewed By:

C.E.T.



ASTM D422, C136 & C117

Project: Phase 2 Test Pit Program Sample No .:

17575

Project No.:

W14103592-02

Material Type:

SRK-15TP-11

Site:

Coffee Gold Project

Sample Loc.: Sample Depth:

0.3 - 0.8 m

Client:

SRK Consulting Inc.

Sampling Method:

Grab

Client Rep.: Date Tested: [name redacted] September 3, 2015

By: AMT Date sampled:

June 20, 2015

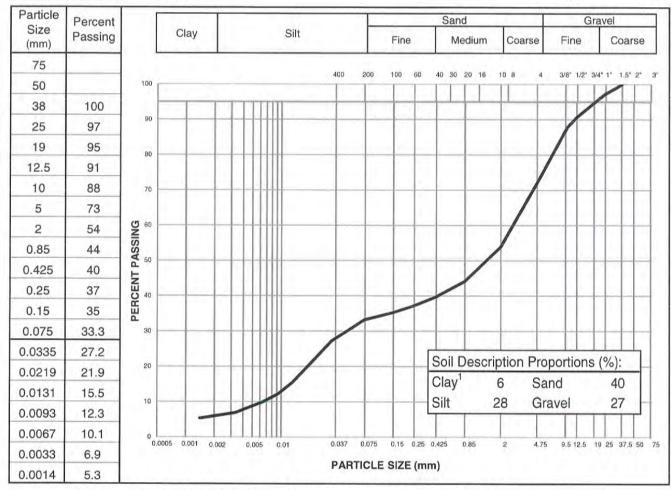
Sampled By:

CName REDACTED

Soil Description2: SAND - silty, gravelly, trace clay

USC Classification:

Cu:


454.0

0.1

Moisture Content:

11.7%

Cc:



<sup>1</sup> The upper clay size of 2 um, per the Canadian Foundation Engineering Manual Notes:

<sup>2</sup>The description is visually based & subject to EBA description protocols

Specification:

Remarks:

[signature redacted]

Reviewed By:

C.E.T.



ASTM D422, C136 & C117

Project: Phase 2 Test Pit Program Sample No.: 17574

Project No.:

W14103592-02

Material Type:

Site:

Coffee Gold Project

Sample Loc.:

SRK-15TP-12

Client:

SRK Consulting Inc.

Sample Depth:

0.3 - 1.2 m

Client Rep.:

[name redacted]

Sampling Method:

Grab

Date Tested:

August 31, 2015

By: AMT

Date sampled:

June 20, 2015 Name REDACTED

Soil Description2: SAND and GRAVEL - silty, trace clay

Sampled By:

Client

266.7

Moisture Content:

14.6%

**USC Classification:** 

Cu: Cc:

4.8

| Particle     | Percent |                 | 200             |            | V la C |          | Sand              |               | G             | ravel           |
|--------------|---------|-----------------|-----------------|------------|--------|----------|-------------------|---------------|---------------|-----------------|
| Size<br>(mm) | Passing |                 | Clay            |            | Silt   | Fine     | Media             | um Coarse     | Fine          | Coarse          |
| 75           |         |                 |                 |            | 400    | 200 400  |                   | 11 W. W.      | Salar along a | i.i.i.i.i.      |
| 50           |         | 100             |                 |            | 400    | 200 100  | 50 40 30 20       | 16 10 8 4     | 3/8" 1/2" 3   | 3/4" 1" 1.5" 2" |
| 38           | 100     |                 | 1 1             | TITIII     |        |          |                   |               |               |                 |
| 25           | 96      | 90              |                 | 111111     |        |          |                   |               |               |                 |
| 19           | 94      | 80 -            |                 |            |        |          |                   |               |               |                 |
| 12.5         | 90      |                 |                 |            |        |          |                   |               |               |                 |
| 10           | 85      | 70 -            |                 |            |        |          |                   |               |               |                 |
| 5            | 65      |                 |                 |            |        |          |                   |               |               |                 |
| 2            | 42      | 9 60 F          |                 | 111111     |        |          |                   |               |               |                 |
| 0.85         | 32      | PERCENT PASSING |                 |            |        |          |                   |               |               |                 |
| 0.425        | 29      | T P             |                 |            |        |          |                   |               |               |                 |
| 0.25         | 27      | CEN<br>40       |                 |            |        |          |                   |               |               |                 |
| 0.15         | 25      | PER             |                 |            |        |          |                   |               |               |                 |
| 0.075        | 24.2    | 30              | -               |            |        |          |                   |               |               |                 |
| 0.0343       | 16.8    |                 |                 |            |        |          | Cail Da           | aviation Dra  | no Hinna      | (9/)            |
| 0.0223       | 13.0    | 20              |                 |            | /      |          | -                 | scription Pro | -             |                 |
| 0.0133       | 8.4     | 10              |                 |            |        | - 3-1-4  | Clay <sup>1</sup> |               | ind           | 40              |
| 0.0096       | 5.9     | 10              |                 |            |        |          | Silt              | 23 Gr         | avel          | 36              |
| 0.0068       | 3.8     | 0               | NE 0001         | +++1111    |        |          |                   |               |               |                 |
| 0.0034       | 2.5     | 0.00            | 005 0.001 0.00. | 2 0.005 0. |        |          | .25 0.425 0.85    | 2 4.75        | 9.5 12.5      | 19 25 37.5 50   |
| 0.0014       | 0.4     |                 |                 |            | PARTI  | CLE SIZE | (mm)              |               |               |                 |

<sup>1</sup>The upper clay size of 2 um, per the Canadian Foundation Engineering Manual Notes:

<sup>2</sup> The description is visually based & subject to EBA description protocols

Specification: Remarks:

Reviewed By:

C.E.T.

[signature redacted]

Data presented hereon is for the sole use of the stipulated client. Tetra Tech EBA is not responsible, nor can be held liable, for use made of this report by any other party, with or without the knowledge of Tetra Tech EBA. The testing services reported herein have been performed to recognized industry standards, unless noted. No other warranty is made. These data do not include or represent any interpretation or opinion of specification

compliance or material suitability. Should engineering interpretation be required, Tetra Tech EBA will provide it upon written request.

TETRA TECH

ASTM D422, C136 & C117

Project: Phase 2 Test Pit Program Sample No .: 17623

Project No.:

W14103592-02

Material Type:

Site:

Coffee Gold Project

Sample Loc.:

SRK-15TP-13A

Client:

SRK Consulting Inc.

Sample Depth:

0.3 - 0.9 m

Client Rep.:

[name redacted]

By: AMT Sampling Method: Date sampled:

June 25, 2015 Name REDACTED

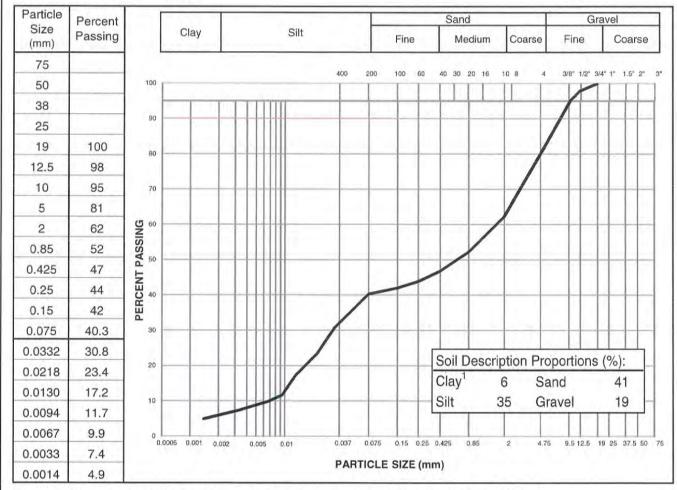
Date Tested: Soil Description2: SAND - silty, some gravel, trace clay

September 5, 2015

Sampled By:

Clien

Grab


251.5

Moisture Content:

18.8%

**USC Classification:** Cu:

> Cc: 0.1



<sup>1</sup> The upper clay size of 2 um, per the Canadian Foundation Engineering Manual Notes:

<sup>2</sup> The description is visually based & subject to EBA description protocols

Specification:

Remarks: Atterberg Limit test requested but not performed due to low clay content.

[signature redacted]

Reviewed By:

C.E.T.



ASTM D422, C136 & C117

Project: Phase 2 Test Pit Program Sample No.: 17572

Project No.:

W14103592-02

Material Type:

Site:

Coffee Gold Project

Sample Loc .:

SRK-15TP-14

Client:

SRK Consulting Inc.

Sample Depth:

0.3 - 1.0 m

Client Rep.:

[name redacted]

Sampling Method:

Grab

Date Tested:

September 2, 2015

By: AMT

Date sampled:

June 20, 2015 Client - Name REDACTED

Soil Description2: SAND and GRAVEL - silty, trace clay

Sampled By:

200.7

Moisture Content:

11.3%

USC Classification:

Cu: Cc:

19.3

| Particle     | Percent<br>Passing |                 |             | Silt            |                 |          |       | 1     | Sand |          |        |       |        |           | Gravel  |         |  |  |
|--------------|--------------------|-----------------|-------------|-----------------|-----------------|----------|-------|-------|------|----------|--------|-------|--------|-----------|---------|---------|--|--|
| Size<br>(mm) |                    |                 | Clay        |                 |                 |          |       |       | Fine |          | Medium |       | Coarse | Fine      | (       | Coarse  |  |  |
| 75           |                    |                 |             |                 |                 |          | 400   | 200   | 100  | 60 4     | 0 30   | 20 16 | 10 8 4 | 3/8" 1/2" | 9/48 48 | 1.5" 2" |  |  |
| 50           |                    | 100             |             |                 |                 | -        | 100   | 1     | 1    | 1        | 30     | 20 10 | 11     | 3/8 1/2   | 3/4 1   | 1       |  |  |
| 38           | 100                |                 |             |                 | ПП              |          | +     |       |      |          |        | 1     | 1      | 1         | 1       | #       |  |  |
| 25           | 99                 | 90              |             |                 | 1111            |          |       |       |      |          |        |       |        | /         | 1       |         |  |  |
| 19           | 96                 | 80              |             |                 | Ш               |          |       |       |      |          |        |       |        | /         | 4 -     |         |  |  |
| 12.5         | 92                 | 17              |             |                 | Ш               |          |       |       |      |          |        |       |        |           |         |         |  |  |
| 10           | 84                 | 70              | -           |                 |                 |          | -     | -     | +    | $\vdash$ |        | -     | -      |           | +       | -       |  |  |
| 5            | 60                 |                 |             |                 | Ш               |          |       |       |      |          |        |       |        |           | Ш       |         |  |  |
| 2            | 34                 | S 60            |             |                 | +#              |          | +     | +     | +    |          |        |       | 1      |           | +       | +       |  |  |
| 0.85         | 25                 | PERCENT PASSING |             |                 | il Do           | anintia  | Dra   |       |      | (9/ ).   |        |       |        |           |         |         |  |  |
| 0.425        | 21                 | H P             |             |                 | ay <sup>1</sup> | scriptio |       |       | ons  |          | _      |       |        |           | П       |         |  |  |
| 0.25         | 20                 | CEN<br>40       |             |                 | 1.65            | 123      |       | and   |      | 42       |        |       |        |           |         | 44      |  |  |
| 0.15         | 19                 | ER              |             | Si              | TIIII           | 18       | G     | avel  | -    | 40       | $\Box$ |       |        |           |         |         |  |  |
| 0.075        | 18.5               | 30              |             |                 |                 |          | -     | +     | -    |          |        | /     | 1      | -         | +       | -       |  |  |
| 0.0344       | 13.0               |                 |             |                 |                 |          |       |       |      |          |        |       |        |           |         |         |  |  |
| 0.0225       | 9.3                | 20              |             |                 | ##              |          | 1     | -     | +    |          |        |       |        |           | +       | +       |  |  |
| 0.0133       | 6.3                | 10              |             |                 |                 |          |       |       |      |          |        |       |        |           |         |         |  |  |
| 0.0096       | 4.7                | 10.             |             |                 |                 |          |       |       |      |          |        |       |        |           |         |         |  |  |
| 0.0069       | 3.0                | 0               | NOF 0.004   | $-\!\!+\!\!\!+$ | +111            |          | 0.007 | 0.075 | 1    |          | or.    |       |        |           |         |         |  |  |
| 0.0034       | 1.3                | 0.00            | 005 0.001 0 | 002 0.00        | 05 0.01         |          | 0.037 | 0.075 |      | 0.25 0.4 |        | 0.85  | 2 4.79 | 9,5 12.5  | 19 25   | 37.5 50 |  |  |
| 0.0014       | 0.3                |                 |             |                 |                 |          | PART  | ICLE  | SIZE | (mm)     |        |       |        |           |         |         |  |  |

<sup>1</sup> The upper clay size of 2 um, per the Canadian Foundation Engineering Manual

<sup>2</sup> The description is visually based & subject to EBA description protocols

Specification:

Remarks:

[signature redacted]

Reviewed By:

C.E.T.



ASTM D422, C136 & C117

Project: Phase 2 Test Pit Program Sample No.:

17570

Project No .:

W14103592-02

Material Type:

Site:

Coffee Gold Project

Sample Loc .:

SRK-15TP-16

Client:

SRK Consulting Inc.

Sample Depth:

0.5 - 1.2 m

Client Rep.:

[name redacted]

Sampling Method:

June 20, 2015

Grab

Date Tested:

September 3, 2015

By: AMT

Date sampled:

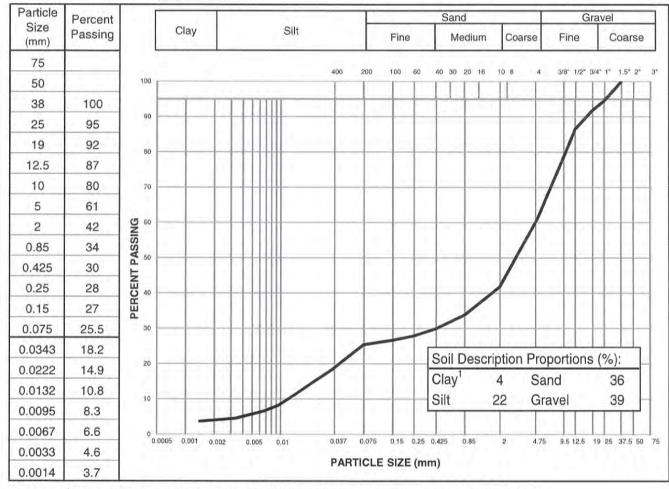
Name REDACTED

Soil Description2: GRAVEL and SAND - silty, trace clay

Sampled By:

Client

399.7


Moisture Content:

9.2%

USC Classification:

Cu: Cc:

3.1



Notes: <sup>1</sup>The upper clay size of 2 um, per the Canadian Foundation Engineering Manual

<sup>2</sup>The description is visually based & subject to EBA description protocols

Specification: Remarks:

[signature redacted]

Reviewed By:

C.E.T.



ASTM D422, C136 & C117

Project: Phase 2 Test Pit Program Sample No.:

17566

Project No .:

W14103592-02

Material Type:

Sample Loc.:

SRK-15TP-17

Site: Client: Coffee Gold Project SRK Consulting Inc.

Sample Depth:

0.3 - 0.6 m

Client Rep.:

[name redacted]

Sampling Method:

June 20, 2015

Date Tested:

August 31, 2015

Date sampled: By: AMT

Name REDACTED

Grab

Soil Description2: SAND and GRAVEL - silty, trace clay

Sampled By:

362.8

Moisture Content:

9.0%

**USC Classification:** 

Cu: Cc:

2.4

| Particle     | Percent | Г               | 7.7   |                   |       | 7    |       |        |      |     | Sar   | nd    |            | Gr          | avel           |
|--------------|---------|-----------------|-------|-------------------|-------|------|-------|--------|------|-----|-------|-------|------------|-------------|----------------|
| Size<br>(mm) | Passing |                 | Clay  |                   |       | Silt |       |        | Fine |     | N     | edium | Coarse     | Fine        | Coarse         |
| 75           |         |                 |       |                   |       |      | 400   | 200    | 100  | 60  | 40 30 | 20 16 | 10 8 4     | 3/8" 1/2" 3 | /4" 1" 1.5" 2" |
| 50           |         | 100             |       |                   |       |      |       | 1      | T    | T   | T     | TT    | TI I       |             |                |
| 38           |         |                 |       | TT                | TIII  | TI . |       |        | 1    | 1   | 1     | 1     |            |             |                |
| 25           | 100     | 90              |       |                   |       |      |       |        |      |     |       |       |            |             |                |
| 19           | 96      | 80              |       |                   |       | 1    |       |        |      |     |       |       |            |             |                |
| 12.5         | 92      |                 |       |                   | 1111  |      |       |        |      |     |       |       |            |             |                |
| 10           | 87      | 70 -            | -     | -                 | +     |      | -     | -      | +    | +   | -     | -     |            |             |                |
| 5            | 64      |                 |       |                   |       |      |       |        |      |     |       |       | <i> </i>   |             |                |
| 2            | 43      | N 60            | -     | +                 | +     | #    |       |        | +    | +   | 1     |       |            |             |                |
| 0.85         | 35      | PERCENT PASSING |       |                   |       |      |       |        |      |     |       |       | //         |             |                |
| 0.425        | 31      | T P             |       |                   |       |      |       |        |      |     |       |       |            |             |                |
| 0.25         | 29      | CEN<br>40       |       |                   |       | Ш    |       |        |      |     |       | 1     |            |             |                |
| 0.15         | 27      | PER             |       |                   |       |      |       |        |      |     |       | /     |            |             |                |
| 0.075        | 24.7    | 30              | -     | +                 | +HH   |      |       | -      | -    | _   |       |       | -          |             |                |
| 0.0336       | 19.5    |                 |       |                   | Ш     |      |       | /      |      | 1   | Coil  | Danau | intian Dra | nautiona    | (9/)           |
| 0.0219       | 15.3    | 20              |       |                   | 1111  |      | /     |        |      |     |       |       | ption Pro  |             |                |
| 0.0131       | 10.6    | 10              |       |                   |       | /    |       |        |      |     | Clay  |       |            | ind         | 39             |
| 0.0094       | 7.6     | 10              | - 11  |                   |       | -    |       |        |      |     | Silt  | T     | 22 Gr      | avel        | 36             |
| 0.0067       | 6.8     | 0               |       | $\exists \exists$ | Ш     |      |       |        |      |     |       |       |            |             |                |
| 0.0034       | 4.7     | 0.00            | 0.001 | 0.002             | 0.005 | 0.01 | 0.037 | 0.075  | 0,15 |     |       | 0.85  | 2 4.75     | 9.5 12.5    | 19 25 37.5 50  |
| 0.0014       | 2.5     |                 |       |                   |       |      | PAF   | RTICLE | SIZE | (mi | n)    |       |            |             |                |

Notes: <sup>1</sup> The upper clay size of 2 um, per the Canadian Foundation Engineering Manual

<sup>2</sup> The description is visually based & subject to EBA description protocols

Specification:

Remarks:

[signature redacted]

Reviewed By:

C.E.T.



ASTM D422, C136 & C117

Project: Phase 2 Test Pit Program Sample No .: 17576

Project No .:

W14103592-02

Coffee Gold Project

Site: Client:

SRK Consulting Inc.

Client Rep.:

[name redacted]

Date Tested:

August 31, 2015

By: AMT

Soil Description2: SILT - gravelly, sandy, trace clay

Date sampled:

June 20, 2015 Name REDACTED

SRK-15TP-18

0.3 - 0.5 m

Grab

Client - \_.

Sampled By:

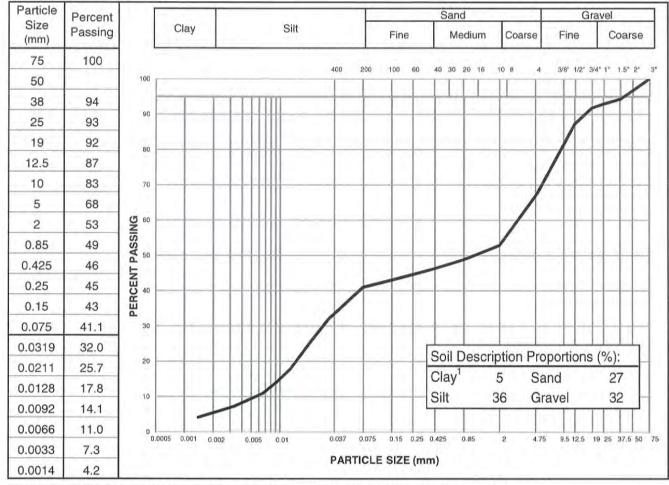
Material Type:

Sample Loc.:

Sample Depth:

Sampling Method:

599.9


Moisture Content:

9.5%

USC Classification:

Cu: Cc:

0.0



Notes: <sup>1</sup>The upper clay size of 2 um, per the Canadian Foundation Engineering Manual

<sup>2</sup> The description is visually based & subject to EBA description protocols

Specification: Remarks:

[signature redacted]

Reviewed By:

C.E.T.



ASTM D422, C136 & C117

Project: Phase 2 Test Pit Program Sample No .: 17564

Project No .:

W14103592-02

By: AMT

Material Type:

Site:

Coffee Gold Project

Sample Loc.: Sample Depth: SRK-15TP-20

Client:

SRK Consulting Inc. [name redacted]

Sampling Method:

USC Classification:

Grab

Client Rep.: Date Tested:

August 31, 2015

Date sampled:

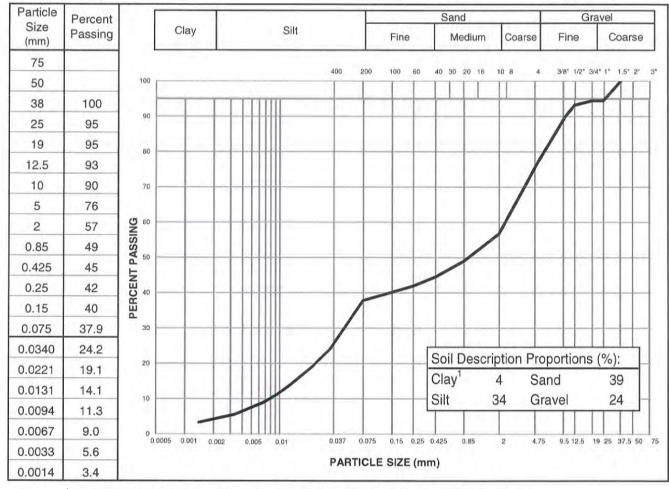
June 19, 2015

Soil Description2: SAND - silty, gravelly, trace clay

Sampled By:

Name REDACTED

Client


313.7

Moisture Content:

20.7%

Cu: Cc:

0.1



Notes: <sup>1</sup> The upper clay size of 2 um, per the Canadian Foundation Engineering Manual

<sup>2</sup> The description is visually based & subject to EBA description protocols

Specification:

Remarks:

[signature redacted]

Reviewed By:

C.E.T.



ASTM D422, C136 & C117

Project: Phase 2 Test Pit Program Sample No.:

17562

Project No.:

W14103592-02

Material Type:

Site:

Coffee Gold Project

Sample Loc.:

SRK-15TP-21

Client:

SRK Consulting Inc.

Sample Depth:

0.3 - 0.9 m

Client Rep.:

[name redacted]

Sampling Method:

Grab

Date Tested:

September 2, 2015

By: AMT

Date sampled:

June 19. 2015 Name REDACTED

Soil Description2: SAND - silty, gravelly, trace clay

Sampled By:

Client -

233.5

Moisture Content:

17.1%

USC Classification:

Cu: Cc:

0.2

| Particle     | Percent |                 |            | 100        |           |            | Sand                      |           | Gr          | avel           |
|--------------|---------|-----------------|------------|------------|-----------|------------|---------------------------|-----------|-------------|----------------|
| Size<br>(mm) | Passing | L               | Clay       | Silt       | -         | Fine       | Medium                    | Coarse    | Fine        | Coarse         |
| 75           |         |                 |            |            | 400 20    | 100 60     | 40 30 20 16               | 10 8 4    | 3/P* 1/0* 3 | V4" 1" 1.5" 2" |
| 50           |         | 100             |            |            | 1 1       | 1 1        | 10 30 20 10               | TI T      | 3/6 1/2 3   |                |
| 38           | 100     |                 |            | 1111111    |           |            |                           |           |             |                |
| 25           | 99      | 90              |            |            |           |            |                           |           |             |                |
| 19           | 99      | 80              |            |            |           |            |                           |           |             |                |
| 12.5         | 97      |                 |            |            |           |            |                           | /         |             |                |
| 10           | 93      | 70              |            |            |           |            |                           |           |             |                |
| 5            | 78      |                 |            |            |           |            |                           | //        |             |                |
| 2            | 55      | N 60            |            | ++++       |           |            |                           |           | +           | 111            |
| 0.85         | 44      | PERCENT PASSING |            |            |           |            |                           | 1         |             |                |
| 0.425        | 38      | T P             |            |            |           |            |                           |           |             |                |
| 0.25         | 34      | 40 -            |            |            |           |            |                           |           |             |                |
| 0.15         | 32      | PER             |            |            |           |            |                           |           |             |                |
| 0.075        | 29.7    | 30              |            |            |           |            |                           | -         |             |                |
| 0.0343       | 21.9    |                 |            |            |           |            | Soil Doggr                | ntion Pro | nortions    | (9/):          |
| 0.0223       | 17.0    | 20              |            |            |           |            | Soil Descr                |           |             |                |
| 0.0132       | 12.0    | 10              |            |            |           |            | Clay <sup>1</sup><br>Silt |           |             | 48             |
| 0.0095       | 8.2     | ,,,             |            |            |           |            | SIIL                      | 21 (31)   | avel        | 22             |
| 0.0069       | 5.5     | 0               | 005 0 004  |            | 0.007     | 25 045 000 | 5 0 105 0 05              |           |             | 10.05.07.5     |
| 0.0034       | 3.8     | 0.0             | 0.001 0.00 | 0.005 0.01 | 0.037 0.0 |            |                           | 2 4.75    | 9,5 12,5    | 19 25 37.5 50  |
| 0.0014       | 2.2     |                 |            |            | PARTIC    | LE SIZE (n | nm)                       |           |             |                |

Notes:

<sup>1</sup> The upper clay size of 2 um, per the Canadian Foundation Engineering Manual

<sup>2</sup> The description is visually based & subject to EBA description protocols

Specification:

Remarks:

[signature redacted]

Reviewed By:

C.E.T.



ASTM D422, C136 & C117

Project: Phase 2 Test Pit Program Sample No.:

17603

Project No.:

W14103592-02

Material Type:

Site: Client: Coffee Gold Project SRK Consulting Inc. Sample Loc.: Sample Depth: SRK-15TP-26 0.6 - 1.2 m

Client Rep.:

[name redacted]

Sampling Method:

Grab

Date Tested:

September 7, 2015

By: AMT Date sampled:

June 25, 2015 Name REDACTED

Soil Description2: SAND - gravelly, some silt, trace clay

Sampled By:

Client

78.6

Moisture Content:

16.8%

USC Classification:

Cu: Cc:

0.4

| Particle     | Percent |                 |                  |         | 1910 |      |      |          | Sa   | nd      |           | Gr            | avel           |
|--------------|---------|-----------------|------------------|---------|------|------|------|----------|------|---------|-----------|---------------|----------------|
| Size<br>(mm) | Passing |                 | Clay             |         | Silt |      |      | Fine     |      | Medium  | Coarse    | Fine          | Coarse         |
| 75           |         |                 |                  |         |      | 400  | 200  | 100 60   | 40 3 | 0 20 16 | 10 8 4    | 3/8* 1/2* 9   | /4" 1" 1.5" 2" |
| 50           |         | 100             |                  |         |      |      | T    |          |      | 11      |           | 1 1           |                |
| 38           | 100     |                 |                  | TITIII  |      |      |      |          | +    | +       | + +       | $\rightarrow$ | //             |
| 25           | 86      | 90              |                  |         |      |      |      |          |      |         |           |               | 1              |
| 19           | 84      | 80              |                  |         |      |      |      |          |      |         |           |               |                |
| 12.5         | 79      |                 |                  |         |      |      |      |          |      |         |           |               |                |
| 10           | 74      | 70              |                  |         |      | -    | -    | $\vdash$ | -    | -       |           |               |                |
| 5            | 65      |                 |                  |         |      |      |      |          |      |         | /         |               |                |
| 2            | 55      | 9 60            |                  |         | -    | +    | -    | +        |      | -       | /         |               |                |
| 0.85         | 47      | PERCENT PASSING |                  |         |      |      |      |          |      | /       |           |               |                |
| 0.425        | 38      | T PA            |                  | 111111  |      |      |      |          |      | /       |           |               |                |
| 0.25         | 31      | NE GEN          |                  |         |      |      |      |          | 1    |         |           |               |                |
| 0.15         | 25      | EB              |                  |         |      |      |      |          |      |         |           |               |                |
| 0.075        | 18.7    | 30              |                  |         |      |      | -    | /        |      | -       |           |               |                |
| 0.0369       | 8.2     |                 |                  |         |      |      | 1    |          | 0    | D       | -Nes D    |               | (0()           |
| 0.0236       | 6.0     | 20              |                  | 111111  |      |      | /    |          | _    |         | ption Pro |               |                |
| 0.0137       | 4.9     | 10              |                  |         |      | /    |      |          | Clay |         | 2 Sa      |               | 47             |
| 0.0097       | 3.8     | 10              |                  |         |      | 1    |      |          | Silt | -       | 16 Gr     | avel          | 35             |
| 0.0069       | 3.3     | 0               | -                | ++++    |      |      |      |          |      |         |           |               |                |
| 0.0034       | 2.7     | 0,0             | 0.005 0.001 0.00 | 0.005 0 | .01  |      |      | 0.15 0.2 |      | 0.85    | 2 4.75    | 9.5 12.5      | 19 25 37.5 50  |
| 0.0014       | 2.2     |                 |                  |         |      | PART | ICLE | SIZE (r  | nm)  |         |           |               |                |

Notes:

<sup>1</sup>The upper clay size of 2 um, per the Canadian Foundation Engineering Manual

<sup>2</sup>The description is visually based & subject to EBA description protocols

Specification:

Remarks:

[signature redacted]

Reviewed By:

C.E.T.



ASTM D422, C136 & C117

Project: Phase 2 Test Pit Program Sample No.:

Project No.: W14103592-02 Material Type:

Site: Coffee Gold Project Sample Loc.: SRK-15TP-27
Client: SRK Consulting Inc. Sample Depth: 0.1 - 0.3 m

Client Rep.: [name redacted] Sampling Method: Grab

Date Tested: September 7, 2015 By: AMT Date sampled: June 25, 2015

Soil Description<sup>2</sup>: SAND - some gravel, some silt, Sampled By: Client Name REDACTED

trace clay USC Classification: Cu: 95.1

17604

Moisture Content: 8.8% Cc: 2.0 Particle Sand Gravel Percent Size Clay Silt Passing Fine Medium Coarse Fine Coarse (mm) 75 100 50 38 100 25 96 19 93 12.5 90 10 88 5 80 PERCENT PASSING 2 70 0.85 56 0.425 44 0.25 36 0.15 28 0.075 19.8 0.0339 16.6 Soil Description Proportions (%): 0.0222 12.4 Clay1 5 Sand 61 0.0131 10.3 Silt 15 Gravel 20 0.0093 8.3 0.0066 7.6 0.0005 0.001 0.075 0.15 0.25 0.425 9.5 12.5 19 25 37.5 50 75 0.002 0.005 0.01 0.0033 5.9 PARTICLE SIZE (mm)

Notes: <sup>1</sup>The upper clay size of 2 um, per the Canadian Foundation Engineering Manual

0.0014

4.8

<sup>2</sup>The description is visually based & subject to EBA description protocols

Specification:
Remarks:

[signature redacted]

Reviewed By: \_\_\_\_\_ C.E.T.



ASTM D422, C136 & C117

Project: Phase 2 Test Pit Program

Sample No.:

17591

Project No.:

W14103592-02

Material Type:

Site:

Coffee Gold Project

Sample Loc.:

SRK Consulting Inc.

Sample Depth:

SRK-15TP-29

Client Rep.:

Client:

[name redacted]

Sampling Method:

Grab

Date Tested:

September 3, 2015

By: AMT

Date sampled:

June 24, 2015 Name REDACTED

Soil Description2: GRAVEL - sandy, silty, trace clay

Sampled By:

Client - :

1059.1

Moisture Content:

12.6%

USC Classification:

Cu: Cc:

0.3

| Particle     | Percent | Г               | 7.17     |       |       |      |       |        |      |      | 5    | Sanc            | 1     |           | Gr          | avel           |
|--------------|---------|-----------------|----------|-------|-------|------|-------|--------|------|------|------|-----------------|-------|-----------|-------------|----------------|
| Size<br>(mm) | Passing |                 | Clay     |       |       | Silt |       |        | Fin  | е    |      | Me              | dium  | Coarse    | Fine        | Coarse         |
| 75           | 100     |                 |          |       |       |      | 400   | 200    | 100  | 60   | 40   | 20              | 20 16 | 10 8 4    | 2/9" 1/0" 2 | /4" 1" 1.5" 2" |
| 50           |         | 100             |          |       |       | _    | 400   | 200    | 100  | 00   | 1    | 30              | 20 16 | 10 8 4    | 3/8 1/2 3   | 1.5 2          |
| 38           | 79      |                 |          | TT    | ПП    | П    |       |        |      | +    | +    | -               | -     |           |             |                |
| 25           | 66      | 90              |          |       |       |      |       |        |      |      | T    |                 |       |           |             |                |
| 19           | 64      | 80 -            |          |       | Ш     |      |       |        |      |      |      |                 |       |           |             |                |
| 12.5         | 58      | 7.              |          |       |       |      |       |        |      |      |      |                 |       |           |             |                |
| 10           | 55      | 70              | -        | +     |       |      | -     | -      | +    | +    | +    |                 |       |           |             |                |
| 5            | 50      |                 |          |       |       |      |       |        |      |      |      |                 |       |           |             | 7              |
| 2            | 45      | N 60            |          | ++    |       |      |       | +      | +    | +    | +    |                 |       |           |             |                |
| 0.85         | 39      | PERCENT PASSING |          |       |       |      |       |        |      |      |      |                 |       |           |             |                |
| 0.425        | 33      | II P            |          |       |       |      |       |        |      |      |      |                 |       |           |             |                |
| 0.25         | 30      | CEN 40          |          |       | Ш     |      |       | _      |      | 1    | _    |                 | /     |           |             |                |
| 0.15         | 27      | PER             |          |       |       |      |       |        |      |      |      | /               |       |           |             |                |
| 0.075        | 23.9    | 30              | -        | ++    | +++   | -    | -     | -      |      | /    | 1    |                 | -     |           | -H          |                |
| 0.0348       | 17.2    |                 |          |       |       |      |       |        | 1    |      | 90   | il F            | locar | ption Pro | portions    | (9/)           |
| 0.0226       | 13.2    | 20              |          |       |       | ii - | /     |        |      |      | _    | ay <sup>1</sup> | esci  |           |             |                |
| 0.0134       | 9.7     | 10              |          | 1000  |       | 1    |       |        |      |      | Sil  | 1               |       |           | ind<br>aval | 27             |
| 0.0095       | 7.5     |                 |          |       | 4     |      |       |        |      |      |      | ı               |       | ZI GI     | avel        | 50             |
| 0.0068       | 6.2     | 0.00            | OF 0.004 | 1     |       |      | 0.007 | 0.075  | 0.15 | 0.05 | 0.45 |                 | , or  |           | 05.00       | 10.05.02.5.53  |
| 0.0034       | 4.0     | 0.00            | 05 0.001 | 0.002 | 0.005 | 0.01 | 0.037 | 0.075  |      | 0.25 |      | 5 (             | 0.85  | 2 4.75    | 9.5 12.5    | 19 25 37 5 50  |
| 0.0014       | 3.1     |                 |          |       |       |      | PAR   | RTICLE | SIZ  | E (m | m)   |                 |       |           |             |                |

Notes: <sup>1</sup> The upper clay size of 2 um, per the Canadian Foundation Engineering Manual

<sup>2</sup>The description is visually based & subject to EBA description protocols

Specification: Remarks:

Reviewed By:

[signature redacted]

C.E.T.



ASTM D422, C136 & C117

Project: Phase 2 Test Pit Program Sample No .:

17586

Project No.:

W14103592-02

Material Type:

Site:

Coffee Gold Project

Sample Loc.:

SRK-15TP-36

Client:

SRK Consulting Inc.

Sample Depth:

0.3 - 0.9 m

Client Rep.:

[name redacted]

Sampling Method:

Date Tested:

September 5, 2015

By: AMT Date sampled:

June 23, 2015 Name REDACTED

Soil Description2: SAND - silty, some gravel, trace clay

Sampled By:

Client -

Grab

66.4

Moisture Content:

46.6%

**USC Classification:** 

Cu: Cc:

0.4

| Particle     | Percent |                 |              |       | 100  |           |         |      | Sand              |        | Gr            | avel           |
|--------------|---------|-----------------|--------------|-------|------|-----------|---------|------|-------------------|--------|---------------|----------------|
| Size<br>(mm) | Passing |                 | Clay         |       | Silt |           | Fine    | 9    | Medium            | Coarse | Fine          | Coarse         |
| 75           |         |                 |              |       |      | 400 20    | 100     |      | 40 30 20 16       | 40.0   | 0.001 4.001 0 | /4" 1" 1.5" 2" |
| 50           |         | 100             |              |       |      | 400 20    | 100     | 60   | 40 30 20 16       | 10 8 4 | 3/8" 1/2" 3   | /4" 1" 1.5" 2" |
| 38           | 100     |                 |              |       | Ш    |           |         | -    |                   | +++    | +             |                |
| 25           | 94      | 90              |              | 1111  |      |           |         |      |                   |        |               |                |
| 19           | 91      | 80              |              |       |      |           |         |      |                   |        |               |                |
| 12.5         | 89      | 80              |              |       |      |           |         |      |                   | /      |               |                |
| 10           | 88      | 70              |              |       |      |           | _       | -    |                   |        |               |                |
| 5            | 82      |                 |              |       |      |           |         |      |                   |        |               |                |
| 2            | 73      | S 60            |              | +HH   | -    |           |         | -    |                   |        | +             | +++            |
| 0.85         | 63      | PERCENT PASSING |              |       |      |           |         | 1    |                   |        |               |                |
| 0.425        | 55      | T PA            |              | +     |      |           |         | /    |                   |        |               |                |
| 0.25         | 48      | CEN<br>40       |              |       |      |           | /       |      |                   |        |               |                |
| 0.15         | 42      | ERG             |              |       |      |           |         |      |                   |        |               |                |
| 0.075        | 35.2    | 30              |              | -HH   | -    |           |         | -    |                   |        |               |                |
| 0.0350       | 23.9    |                 |              |       |      |           |         |      | 0.11.0            |        |               | (0/)           |
| 0.0227       | 17.4    | 20 -            |              | +     |      |           |         |      | Soil Descr        |        |               |                |
| 0.0134       | 11.6    |                 |              |       |      |           |         |      | Clay <sup>1</sup> | 4 Sa   |               | 47             |
| 0.0096       | 9.4     | 10              |              |       |      |           |         | T    | Silt              | 31 Gr  | avel          | 18             |
| 0.0068       | 6.5     | ٥               |              |       |      |           |         |      |                   |        |               |                |
| 0.0034       | 5.8     | 0.00            | 05 0.001 0.0 | 0.005 | 0.01 | 0.037 0.0 |         | 0.25 |                   | 2 4.75 | 9.5 12.5      | 19 25 37.5 50  |
| 0.0014       | 2.9     |                 |              |       |      | PARTIC    | LE SIZE | (mr  | n)                |        |               |                |

Notes:

<sup>1</sup> The upper clay size of 2 um, per the Canadian Foundation Engineering Manual

<sup>2</sup> The description is visually based & subject to EBA description protocols

Specification:

Remarks:

Atterberg Limit test requested but not performed due to low clay content.

[signature redacted]

Reviewed By:

C.E.T.



ASTM D422, C136 & C117

Project:

Phase 2 Test Pit Program

Sample No.:

17585

Project No .:

W14103592-02

Material Type:

SRK-15TP-37

Site:

Coffee Gold Project

Sample Loc.: Sample Depth:

0.3 - 0.6 m

Client:

SRK Consulting Inc.

Sampling Method:

Grab

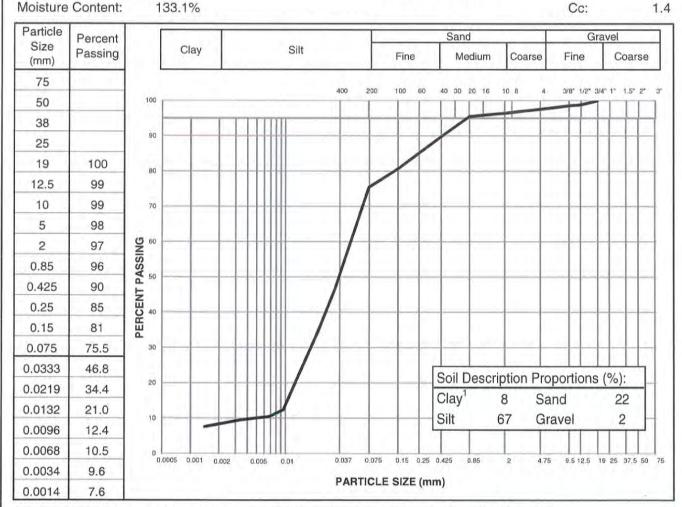
Client Rep.: Date Tested: [name redacted]

AMT Date sampled: June 23. 2015 Name REDACTED

September 6, 2015

Clien

Soil Description2: SILT - some sand, trace clay,


By:

Sampled By:

Cu: 10.5

trace gravel

**USC Classification:** 



<sup>1</sup> The upper clay size of 2 um, per the Canadian Foundation Engineering Manual Notes: <sup>2</sup> The description is visually based & subject to EBA description protocols

Specification:

Remarks:

Atterberg Limit test requested but not performed due to low clay content and

high organic content.

[signature redacted]

Reviewed By:

C.E.T.



ASTM D422, C136 & C117

Project: Phase 2 Test Pit Program Sample No.:

17583

Project No .:

W14103592-02

Material Type:

Sample Loc.:

SRK-15TP-39

Site: Client: Coffee Gold Project SRK Consulting Inc.

Sample Depth:

0.6 - 1.2 m

Client Rep.:

[name redacted]

Sampling Method:

June Rame REDACTED

Date Tested:

September 5, 2015

By: AMT Date sampled:

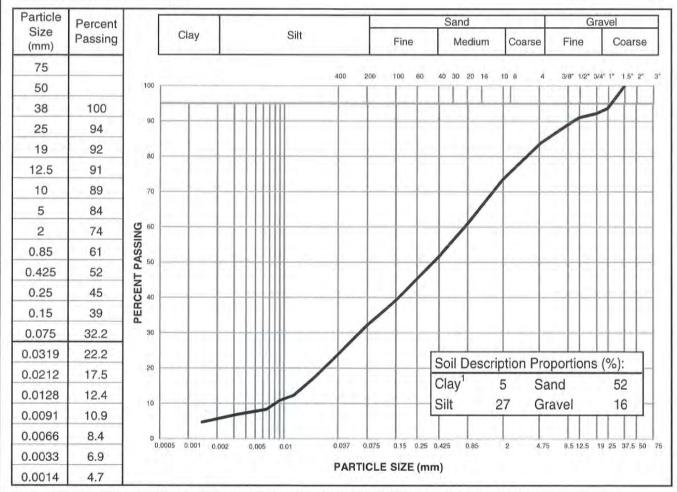
Grab

Soil Description2: SAND - silty, some gravel, trace clay

Sampled By:

Client

97.9


Moisture Content:

10.7%

USC Classification:

Cu: Cc:

0.7



Notes: <sup>1</sup>The upper clay size of 2 um, per the Canadian Foundation Engineering Manual

<sup>2</sup> The description is visually based & subject to EBA description protocols

Specification:

Remarks:

[signature redacted]

Reviewed By:

C.E.T.



ASTM D422, C136 & C117

Project: Phase 2 Test Pit Program Sample No .:

Project No .:

W14103592-02

Material Type:

17582

Site:

Coffee Gold Project

Sample Loc .:

SRK-15TP-40

Client:

SRK Consulting Inc.

Sample Depth:

0.4 - 0.9 m

Client Rep.:

[name redacted]

Sampling Method:

June 21, 2015 Name REDACTED

Date Tested:

September 6, 2015

AMT Date sampled:

Soil Description2: SAND and SILT - trace clay,

By:

Sampled By:

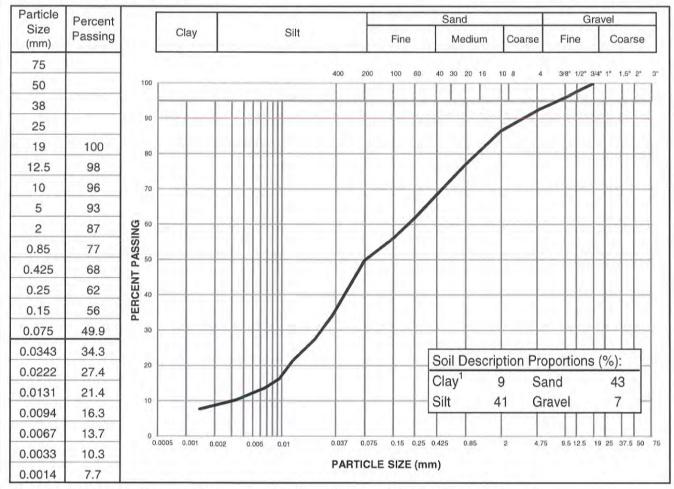
Client -

Grab

70.2

trace gravel

USC Classification:


Cu:

Moisture Content:

44.4%

Cc:

1.1



<sup>1</sup> The upper clay size of 2 um, per the Canadian Foundation Engineering Manual Notes:

<sup>2</sup> The description is visually based & subject to EBA description protocols

Specification:

Remarks: Atterberg Limit test requested but not performed due to low clay content.

[signature redacted]

Reviewed By:

C.E.T.



ASTM D422, C136 & C117

Project: Phase 2 Test Pit Program Sample No.:

17560

Project No.:

W14103592-02

Material Type: Sample Loc.:

Sample Depth:

SRK-15TP-43

Site: Client: Coffee Gold Project SRK Consulting Inc.

0.3 - 0.9 m

Client Rep.:

[name redacted]

Sampling Method:

Grab

Date Tested:

September 2, 2015

By: AMT Date sampled: June 19, 2015 Name REDACTED

Soil Description2: SAND - silty, gravelly, trace clay

Sampled By:

Client

848.1

Moisture Content:

12.6%

**USC** Classification:

Cu: Cc:

0.4

| Particle     | Percent |                 | Total T      |                               | 7.00                                              |           |               |       | San               | i          |           | Gr          | avel           |
|--------------|---------|-----------------|--------------|-------------------------------|---------------------------------------------------|-----------|---------------|-------|-------------------|------------|-----------|-------------|----------------|
| Size<br>(mm) | Passing |                 | Clay         |                               | Silt                                              |           | Fine          | )     | Me                | dium       | Coarse    | Fine        | Coarse         |
| 75           |         |                 |              |                               |                                                   | 400 00    | 0 400         | 60    | 10 00             | 20 10      | 10.0      | 0/01 4/01 0 | 45.45.4.55.00  |
| 50           |         | 100             |              |                               | -                                                 | 400 20    | 0 100         | 1     | 40 30             | 20 16      | 10 8 4    | 3/8 1/2 3   | /4" 1" 1.5" 2" |
| 38           |         |                 |              | П                             | ПП                                                |           |               | +     | +                 |            |           |             |                |
| 25           |         | 90              |              | 777                           | 1111                                              |           |               | 1     | 1                 |            |           |             | 1              |
| 19           | 100     | 80              |              |                               |                                                   |           |               | 1     |                   |            |           |             |                |
| 12.5         | 97      | - "             |              |                               |                                                   | -         | -             |       |                   |            |           |             |                |
| 10           | 95      | 70 -            |              |                               |                                                   |           | _             | +     | -                 | _          | //        | -H          | -              |
| 5            | 79      |                 |              |                               |                                                   |           |               |       |                   |            | /         |             |                |
| 2            | 58      | S 60            |              | ++                            | <del>                                      </del> |           |               | +     | -                 |            |           | -           | +++            |
| 0.85         | 48      | PERCENT PASSING |              |                               |                                                   |           |               |       |                   | /          |           |             |                |
| 0.425        | 42      | T PA            |              |                               |                                                   |           |               |       | 1                 |            |           |             |                |
| 0.25         | 39      | N 40            |              | $\perp \downarrow \downarrow$ |                                                   |           |               |       |                   |            |           |             |                |
| 0.15         | 37      | EB              |              |                               |                                                   |           |               | 1     |                   |            |           |             |                |
| 0.075        | 34.8    | 30              | -            | +++                           |                                                   |           | -             | +     | -                 | -          | -         | +           | ++-            |
| 0.0335       | 27.2    |                 |              |                               | _                                                 |           |               | l r   | Call              | ) o o o ri | ntion Dro | nortions    | (9/)           |
| 0.0217       | 23.2    | 20              |              |                               |                                                   |           | $\rightarrow$ |       |                   | Jesch      | ption Pro |             |                |
| 0.0128       | 18.5    | 10              |              |                               | HII                                               |           |               |       | Clay <sup>1</sup> | ,          | 9 Sa      |             | 44             |
| 0.0092       | 15.6    | 10              |              |                               |                                                   |           |               |       | Silt              | - 4        | 26 Gr     | avel        | 21             |
| 0.0066       | 13.9    | ٥               | 005 0 004    | Ш                             | Ш                                                 | 0.007     | 76 045        | 2.05  | 0.400             |            |           | 16105       | 1 1 1          |
| 0.0033       | 11.0    | 0.0             | 005 0.001 0. | 0.00                          | 0.01                                              | 0.037 0.0 |               | 0.25  |                   | 0.85       | 2 4.75    | 9.5 12.5    | 19 25 37.5 50  |
| 0.0014       | 8.1     |                 |              |                               |                                                   | PARTIC    | LE SIZE       | : (mr | n)                |            |           |             |                |

<sup>1</sup>The upper clay size of 2 um, per the Canadian Foundation Engineering Manual Notes:

<sup>2</sup>The description is visually based & subject to EBA description protocols

Specification:

Remarks:

[signature redacted]

Reviewed By:

C.E.T.



ASTM D422, C136 & C117

Project: Phase 2 Test Pit Program

Project No.: W14103592-02

Site: Coffee Gold Project

Client: SRK Consulting Inc.

Client Rep.: [name redacted]

Date Tested: September 7, 2015 By: AMT

Soil Description2: SAND - gravelly, some silt, trace clay

Sample No.: 17599

Material Type:

Sample Loc.: SRK-15TP-51

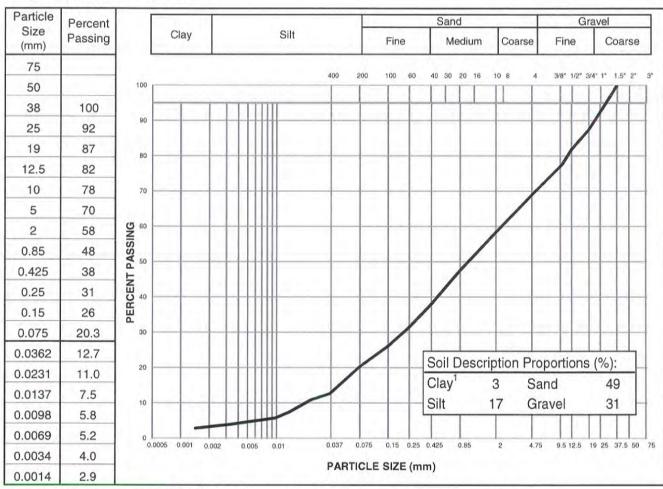
Sample Depth: 0.5 - 0.8 m

Sampling Method: Grab

June 25 2015 Name REDACTED Date sampled:

Sampled By: Client

**USC Classification:** 


Cu:

119.6

Moisture Content:

15.5%

Cc: 1.0



<sup>1</sup> The upper clay size of 2 um, per the Canadian Foundation Engineering Manual Notes:

<sup>2</sup> The description is visually based & subject to EBA description protocols

Specification:

Remarks:

-[signature redacted]

Reviewed By:

C.E.T.



ASTM D422, C136 & C117

Project:

Phase 2 Test Pit Program

Sample No.:

17633

Project No .:

W14103592-02

Material Type:

Site:

Coffee Gold Project

Sample Loc.:

SRK-15TP-61

Client:

SRK Consulting Inc.

Sample Depth:

0.2 - 0.6 m

Client Rep.:

[name redacted]

Sampling Method:

Grab

Date Tested:

September 9, 2015

By: AMT Date sampled: June 19 2015 Name REDACTED

Cc:

Soil Description2: GRAVEL & SAND - some silt

Sampled By:

Client

#N/A

**USC** Classification:

Cu:

#N/A

Moisture Content:

10.0%

Particle Sand Gravel Percent Size Cobble Passing Fine Medium Coarse Fine Coarse (mm) 300 100 20 100 200 150 100 75 50 38 100 PERCENT PASSING 60 25 96 19 95 12.5 85 40 10 76 30 Soil Description Proportions (%): 5 55 Clay1 & 2 39 20 17 Gravel 45 Silt 0.85 30 10 Cobble<sup>3</sup> 0 Sand 38 0.425 27 0.25 24 0.075 0.15 0.25 0.425 0.85 4.75 9.5 12.5 19 25 37.5 150 300 0.15 22

Notes:

0.075

17.3

- <sup>1</sup> The upper clay size of 2 um, per the Canadian Foundation Engineering Manual
- <sup>2</sup> The description is visually based & subject to EBA description protocols
- <sup>3</sup> If cobbles are present, sampling procedure may not meet ASTM C702 & D75

Specification:

Remarks:

[signature redacted]

Reviewed By:

PARTICLE SIZE (mm)

C.E.T.



ASTM D422, C136 & C117

Project: Phase 2 Test Pit Program

Sample No.: Material Type: 61A

Grab

Project No .:

W14103592-02

Sample Loc.:

SRK-15TP-61A

Site: Client: Coffee Gold Project SRK Consulting Inc.

Sample Depth:

0 - 1.6 m

Client Rep.:

[name redacted]

Sampling Method:

June 19, 2015 Name REDACTED

Date Tested:

September 6, 2015

By: AMT

Date sampled: Client -

Soil Description2: SILT - sandy, some gravel, trace clay

Sampled By:

22.0

Moisture Content:

20.0%

**USC Classification:** 

Cu: Cc:

0.8

| Particle     | Percent | Γ               | - 3. 1        |       |        |       |            |      | Sand              |           | Gr            | avel           |
|--------------|---------|-----------------|---------------|-------|--------|-------|------------|------|-------------------|-----------|---------------|----------------|
| Size<br>(mm) | Passing |                 | Clay          |       | Silt   |       | Fine       |      | Medium            | Coarse    | Fine          | Coarse         |
| 75           |         |                 |               |       |        | 400   | 200 100    | 60   | 40 30 20 16       | 10 8 4    | 0.001 4.01 0  | /4" 1" 1.5" 2" |
| 50           | 1,000   | 100             |               |       | 71     | 400   | 200 100    | 60   | 40 30 20 16       | 10 8 4    | 3/8 1/2 3     | /4 1 1.5 2     |
| 38           |         |                 |               |       | 1111   |       |            | -    |                   |           |               |                |
| 25           | 100     | 90              |               | 1111  | 111    |       |            |      |                   | /         |               |                |
| 19           | 99      | 80              |               |       |        |       |            |      |                   |           |               |                |
| 12.5         | 95      |                 |               |       |        |       |            |      | /                 |           |               |                |
| 10           | 93      | 70              |               | +     |        |       |            |      |                   | -         | -             | +++            |
| 5            | 86      |                 |               |       |        |       |            | /    |                   |           |               |                |
| 2            | 79      | N 60            |               | 1111  | 111    |       |            |      |                   |           | $\pm \pm \pm$ |                |
| 0.85         | 72      | PERCENT PASSING |               |       |        |       |            |      |                   |           | 444           |                |
| 0.425        | 67      | IT P.           |               |       |        |       |            |      |                   |           |               |                |
| 0.25         | 63      | CEN 40          |               |       |        | /     |            | _    |                   |           |               |                |
| 0.15         | 60      | PER             |               |       |        | /     |            |      |                   |           |               |                |
| 0.075        | 52.3    | 30              |               |       |        |       |            | -    |                   | -         | +             | +++            |
| 0.0342       | 31.9    |                 |               |       |        |       |            | lг   | Soil Descri       | ntion Pro | portions      | (9/.).         |
| 0.0222       | 24.9    | 20              |               |       |        |       |            | -    | Clay <sup>1</sup> | 4 Sa      |               | 34             |
| 0.0133       | 15.5    | 10              |               |       |        |       |            | 1 1  | 4.74              |           | nu<br>avel    | 14             |
| 0.0095       | 12.4    | ,,,             |               |       | 1111   |       |            | L    |                   | 1 1       | avei          | 14             |
| 0.0068       | 9.3     | 0               | 005 0.001 0.0 |       |        | 0.037 | 0.075 0.15 | 0.05 | 0.425 0.85        | 2 4.75    | 0.5.10.5      | 19 25 37.5 50  |
| 0.0034       | 5.4     | 0.0             | 005 0.001 0.0 | 0.005 | 5 0.01 |       |            |      |                   | 2 4.75    | 9.5 12.5      | 18 25 37.5 50  |
| 0.0014       | 3.9     |                 |               |       |        | PARI  | ICLE SIZE  | (mn  | n)                |           |               |                |

<sup>1</sup> The upper clay size of 2 um, per the Canadian Foundation Engineering Manual Notes:

<sup>2</sup> The description is visually based & subject to EBA description protocols

Specification:

Remarks:

[signature redacted]

Reviewed By:

C.E.T.



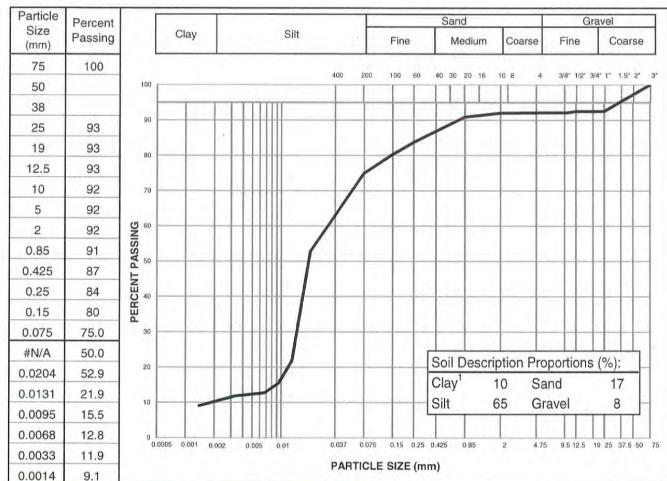
ASTM D422, C136 & C117

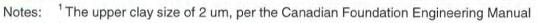
Project: Phase 2 Test Pit Program Sample No.:

Project No.: W14103592-02 Material Type:

Site: Coffee Gold Project Sample Loc.: SRK-15TP-64
Client: SRK Consulting Inc. Sample Depth: 0.2 - 0.6 m

Client Rep.: [name redacted] Sampling Method: Grab


Date Tested: September 5, 2015 By: AMT Date sampled: June 25, 2015


Soil Description<sup>2</sup>: SILT - some sand, trace clay, Sampled By: Client -

trace gravel USC Classification: Cu: #N/A

17598

Moisture Content: 201.1% Cc: #N/A





<sup>2</sup> The description is visually based & subject to EBA description protocols

Specification:

Remarks: Atterberg Limit test requested but not performed due to low clay content and

high organic content. [signature redacted]

[Signature reducted]

Reviewed By: C.E.T.



ASTM D422, C136 & C117

Project:

Project No.:

Phase 2 Test Pit Program

W14103592-02

Site:

Coffee Gold Project

Client:

SRK Consulting Inc.

Client Rep.: Date Tested: [name redacted]

September 3, 2015

By:

AMT

Date sampled:

Sample No.:

Material Type:

Sample Loc.:

Sample Depth:

Sampling Method:

June 25 2015 Name REDACTED

Sampled By:

Client

Grab

17620

SRK-15TP-66

0.5 - 1.2 m

573.3

Moisture Content:

12.6%

Soil Description2: SILT - sandy, gravelly, trace clay

USC Classification:

Cu: Cc:

0.2

| Particle     | Percent |                 | 1200        |            |        |       |         |        | Sand              |             | Gr            | avel           |
|--------------|---------|-----------------|-------------|------------|--------|-------|---------|--------|-------------------|-------------|---------------|----------------|
| Size<br>(mm) | Passing |                 | Clay        |            | Silt   |       | F       | ine    | Medium            | Coarse      | Fine          | Coarse         |
| 75           | 100     |                 |             |            |        | 400   | 200 1   | 00 00  | 40 00 00 40       | 10 8 4      | 0/01 4/01 0   | /4" 1" 1.5" 2" |
| 50           |         | 100             |             |            |        | 400   | 200     | 00 60  | 40 30 20 16       | 10 8 4      | 3/8 1/2 3     | 1 1.5 2        |
| 38           | 96      |                 |             | ППП        | TIII   |       |         |        |                   | +           |               |                |
| 25           | 96      | 90              |             |            |        |       |         |        |                   |             |               |                |
| 19           | 96      | 80 -            |             |            |        |       |         |        |                   |             |               |                |
| 12.5         | 93      |                 |             |            |        |       |         |        |                   |             |               |                |
| 10           | 90      | 70              |             |            |        |       |         | -      |                   | //          |               |                |
| 5            | 79      |                 |             |            |        |       |         |        |                   |             |               |                |
| 2            | 65      | S 60            |             |            |        | _     | +       | +      |                   |             | $\rightarrow$ |                |
| 0.85         | 58      | PERCENT PASSING |             |            |        |       |         | _      |                   |             | -14-          |                |
| 0.425        | 55      | T PA            |             |            |        |       |         |        |                   |             |               |                |
| 0.25         | 52      | NE 40           |             |            |        |       |         |        |                   |             |               |                |
| 0.15         | 50      | PER             |             |            |        |       |         |        |                   |             |               |                |
| 0.075        | 48.3    | 30 -            | -           | -          |        |       | -       | -      |                   | -           |               |                |
| 0.0322       | 40.0    |                 |             |            |        |       |         |        | Soil Doss         | ription Pro | nortions      | (9/)           |
| 0.0213       | 31.6    | 20              |             |            |        |       |         |        |                   | ription Pro |               |                |
| 0.0128       | 23.3    | 10              |             |            |        |       |         |        | Clay <sup>1</sup> | 10 Sa       |               | 31             |
| 0.0092       | 19.4    | 10              |             |            |        |       |         |        | Silt              | 38 Gr       | avel          | 21             |
| 0.0065       | 16.8    | 0               |             |            | Щ      |       |         |        |                   | Į.          |               |                |
| 0.0033       | 12.3    | 0.0             | 005 0,001 0 | .002 0.005 | 5 0.01 | 0.037 |         |        | 5 0.425 0.85      | 2 4.75      | 9.5 12.5      | 19 25 37.5 50  |
| 0.0014       | 9.0     |                 |             |            |        | PAR   | TICLE S | IZE (r | nm)               |             |               |                |

Notes:

<sup>1</sup> The upper clay size of 2 um, per the Canadian Foundation Engineering Manual

<sup>2</sup>The description is visually based & subject to EBA description protocols

Specification:

Remarks:

[signature redacted]

Reviewed By:

C.E.T.



ASTM D422, C136 & C117

Project: Phase 2 Test Pit Program

W14103592-02

Site: Coffee Gold Project

Client: SRK Consulting Inc.

Client Rep.: [name redacted]

Date Tested: September 2, 2015 By:

Soil Description2: GRAVEL and SAND - some silt,

trace clay

AMT

Sampled By:

Sampling Method:

Sample No.:

Material Type:

Sample Loc.:

Sample Depth:

Date sampled:

**USC** Classification:

Client Cu:

Name REDACTED

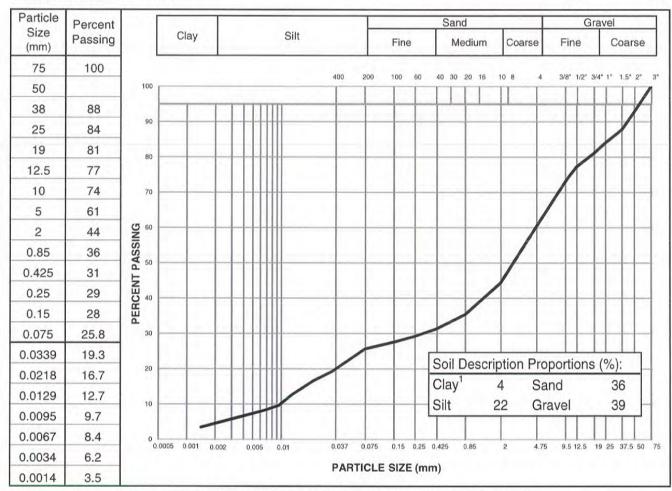
June 25, 2015

SRK-15TP-67

0.2 - 0.8 m

484.5

Moisture Content:


Project No.:

13.6%

Cc: 2.0

17621

Grab



<sup>1</sup> The upper clay size of 2 um, per the Canadian Foundation Engineering Manual Notes:

<sup>2</sup> The description is visually based & subject to EBA description protocols

Specification: Remarks:

[signature redacted]

Reviewed By:

C.E.T.



ASTM D422, C136 & C117

Project:

Phase 2 Test Pit Program

17617

Project No.:

W14103592-02

Material Type:

Sample No .:

SRK-15TP-69

Site: Client: Coffee Gold Project SRK Consulting Inc. Sample Loc.: Sample Depth:

0.5 - 1.0 m

Client Rep.:

[name redacted]

Sampling Method:

Grab

Date Tested:

September 2, 2015

By: AMT Date sampled:

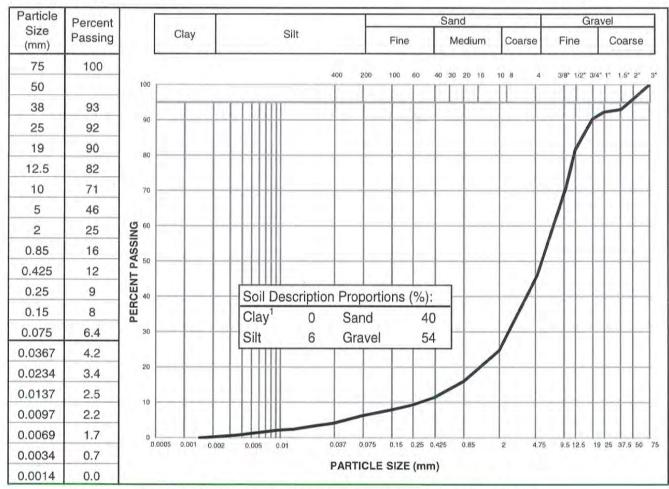
June 25, 2015 Name REDACTED

Soil Description2: GRAVEL and SAND - trace silt

Sampled By:

Client

26.1


Moisture Content:

9.8%

USC Classification:

Cu:

Cc: 3.2



<sup>1</sup> The upper clay size of 2 um, per the Canadian Foundation Engineering Manual Notes:

<sup>2</sup>The description is visually based & subject to EBA description protocols

Specification: Remarks:

[signature redacted]

Reviewed By:

C.E.T.



ASTM D422, C136 & C117

Project: Phase 2 Test Pit Program

Project No.: Site: Coffee Gold Project

Client: SRK Consulting Inc.

Client Rep.: [name redacted]

Date Tested: September 2, 2015

Soil Description2: Sandy, silty, gravelly, trace clay

By: AMT

Date sampled:

Sample No.:

Material Type:

Sample Loc.:

Sample Depth:

Sampling Method:

USC Classification:

June 25, 2015

SRK-15TP-73

1.5 - 2.0 m

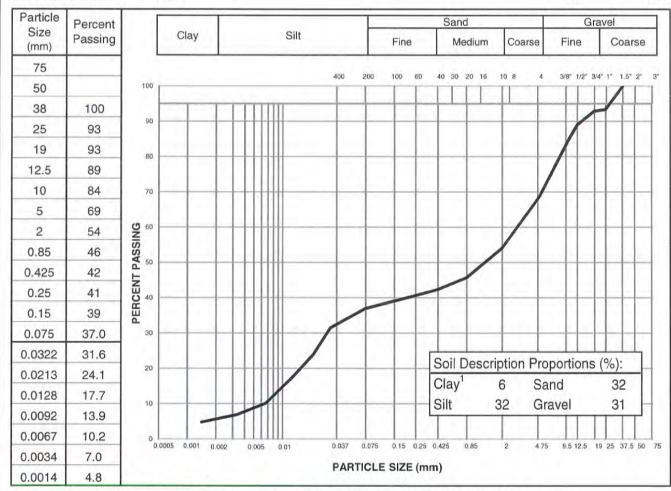
Clien Name REDACTED

Cu:

Sampled By:

Grab

17615


494.3

Moisture Content:

14.6%

W14103592-02

Cc: 0.0



<sup>1</sup> The upper clay size of 2 um, per the Canadian Foundation Engineering Manual Notes:

<sup>2</sup> The description is visually based & subject to EBA description protocols

Specification:

Remarks:

[signature redacted]

Reviewed By:

C.E.T.

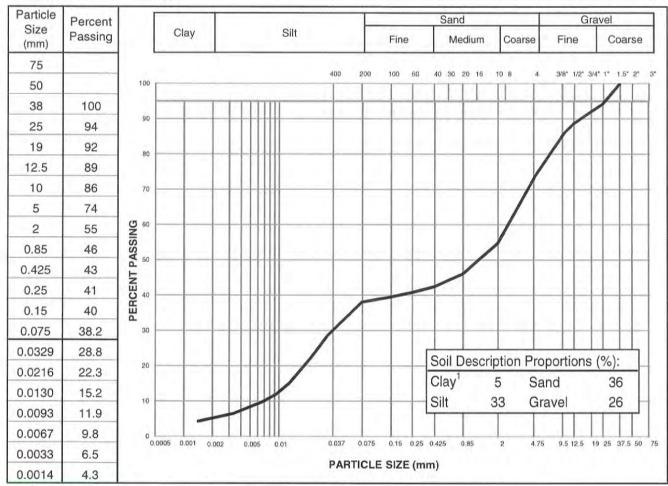


ASTM D422, C136 & C117

Project: Phase 2 Test Pit Program Sample No.: 17614

Project No.: W14103592-02 Material Type:

Site: Coffee Gold Project Sample Loc.: SRK-15TP-74
Client: SRK Consulting Inc. Sample Depth: 0.5 - 1.0 m


Client Rep.: [name redacted] Sampling Method: Grab

Date Tested: September 6, 2015 By: AMT Date sampled: June 25 2015 AMT Date sampled:

Soil Description<sup>2</sup>: SAND - silty, gravelly, trace clay Sampled By: Client

USC Classification: Cu: 403.7

Moisture Content: 13.4% Cc: 0.1



Notes: <sup>1</sup> The upper clay size of 2 um, per the Canadian Foundation Engineering Manual

<sup>2</sup>The description is visually based & subject to EBA description protocols

Specification:

Remarks: Atterberg Limit test requested, but not performed due to low clay content.

[signature redacted]

Reviewed By: C.E.T.



ASTM D422, C136 & C117

Project:

Phase 2 Test Pit Program

W14103592-02

Project No.: Site:

Coffee Gold Project

Client:

SRK Consulting Inc.

Client Rep.:

[name redacted]

Date Tested:

September 5, 2015

By: AMT

Soil Description2: SAND - gravelly, silty, trace clay

Sample No.:

Material Type:

Sample Loc.:

SRK-15TP-78

17610

Sample Depth:

1.0 - 2.0 m

Sampling Method:

Grab

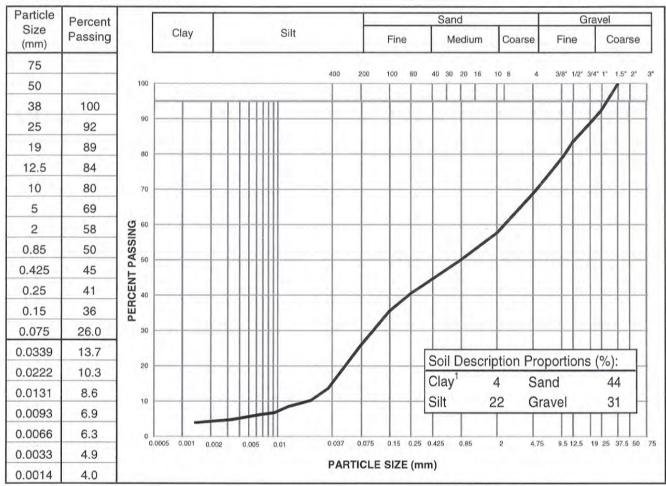
Date sampled:

June 25, 2015 Name REDACTED

Sampled By:

Client

Client


125.1

0.2

Moisture Content:

15.2%

USC Classification: Cu:



Notes: <sup>1</sup> The upper clay size of 2 um, per the Canadian Foundation Engineering Manual

<sup>2</sup>The description is visually based & subject to EBA description protocols

Specification:

Remarks: Atterberg Limit test requested but not performed due to low clay content.

[signature redacted]

Reviewed By:

C.E.T.



ASTM D422, C136 & C117

Project: Phase 2 Test Pit Program Sample No .:

17606

Project No.:

W14103592-02

Material Type: Sample Loc.:

Sample Depth:

SRK-15TP-82

Site: Client: Coffee Gold Project SRK Consulting Inc.

0.5 - 1.3 m

Client Rep.:

[name redacted]

Sampling Method:

Date Tested:

September 6, 2015

By: AMT

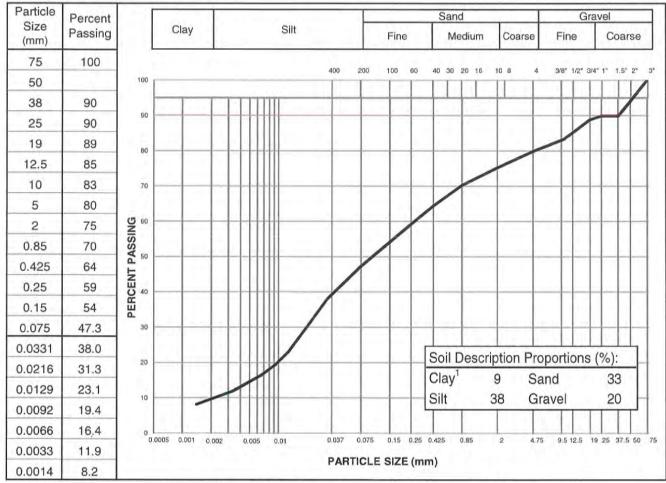
Date sampled:

June Name REDACTED

Soil Description2: SILT - sandy, some gravel, trace clay

Sampled By:

Cu: 117.1


Moisture Content:

20.7%

USC Classification: Cc: 0.6

Grab

Clien



<sup>1</sup> The upper clay size of 2 um, per the Canadian Foundation Engineering Manual Notes:

<sup>2</sup> The description is visually based & subject to EBA description protocols

Specification: Remarks:

[signature redacted]

Reviewed By:

C.E.T.



ASTM D422, C136 & C117

Project: Phase 2 Test Pit Program Sample No.: 82A

Project No .:

W14103592-02

Material Type:

Site:

Coffee Gold Project

Sample Loc.:

SRK-15TP-82A

Client:

SRK Consulting Inc.

Sample Depth:

1.3 - 3.5 m

Client Rep.:

[name redacted]

Sampling Method:

Grab June 19, 2015

Cu:

Date Tested:

September 9, 2015

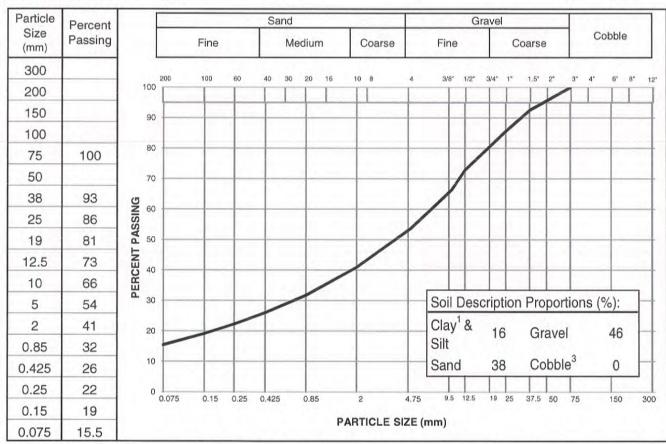
Date sampled: By: AMT

Name REDACTED

Soil Description2: GRAVEL & SAND - some silt

Sampled By:

Clier


**USC Classification:** 

#N/A

Moisture Content:

10.3%

Cc: #N/A



Notes:

<sup>1</sup> The upper clay size of 2 um, per the Canadian Foundation Engineering Manual

| Specification: |  |
|----------------|--|
| Remarks:       |  |
|                |  |

[signature redacted]

Reviewed By:

C.E.T.



<sup>&</sup>lt;sup>2</sup> The description is visually based & subject to EBA description protocols

<sup>&</sup>lt;sup>3</sup> If cobbles are present, sampling procedure may not meet ASTM C702 & D75

ASTM D422, C136 & C117

Project:

Phase 2 Test Pit Program

Project No.:

W14103592-02

Site:

Coffee Gold Project

Client:

SRK Consulting Inc.

Client Rep.:

[name redacted]

Date Tested:

September 6, 2015

By:

AMT

Date sampled:

June 25, 2015

SRK-15TP-85

0.5 - 1.0 m

Name REDACTED

Sampled By:

Sample No.:

Material Type:

Sample Loc.:

Sample Depth:

Sampling Method:

Client -

Grab

17626

540.7

Moisture Content:

11.8%

Soil Description<sup>2</sup>: GRAVEL - sandy, silty, trace clay

**USC Classification:** Cu:

Cc:

0.1

| Particle     | Percent |                 | 200           |                             | 144   |         |       |         |        | Sand            | t      |           | Gr          | avel           |
|--------------|---------|-----------------|---------------|-----------------------------|-------|---------|-------|---------|--------|-----------------|--------|-----------|-------------|----------------|
| Size<br>(mm) | Passing |                 | Clay          |                             | Silt  |         | F     | ine     |        | Me              | dium   | Coarse    | Fine        | Coarse         |
| 75           | 100     |                 |               |                             |       | 400 2   | 00 10 | 00 00   | 40     | 30              | 00 40  | 40.0      | 0/01 4/01 0 | /4" 1" 1.5" 2" |
| 50           |         | 100             |               |                             |       | 400 2   | 1     | 00 60   | 40     | 30              | 20 16  | 10 8 4    | 3/8 1/2 3   | /4 1 1.5 2     |
| 38           | 84      | -               |               | ПП                          | Ш     |         |       | 7       | +      | _               |        |           |             |                |
| 25           | 82      | 90              |               | 111                         | 111   |         |       |         |        |                 |        |           |             |                |
| 19           | 77      | 80              |               |                             |       |         |       |         |        |                 |        |           |             |                |
| 12.5         | 71      |                 |               | 1111                        |       |         |       |         |        |                 |        |           |             |                |
| 10           | 68      | 70              |               | +                           |       |         | _     |         | +      | _               |        |           |             |                |
| 5            | 62      |                 |               |                             |       |         |       |         |        |                 |        |           |             |                |
| 2            | 56      | S 60            |               | +++                         | - 111 | _       |       | +       | +      |                 |        |           |             | +++            |
| 0.85         | 51      | PERCENT PASSING |               |                             |       | _       |       |         |        |                 | /      |           |             |                |
| 0.425        | 46      | A L             |               |                             |       |         |       |         | 1      | /               |        |           |             |                |
| 0.25         | 42      | NE GEN          |               | $\perp \parallel \parallel$ |       |         |       | /       |        |                 |        |           |             |                |
| 0.15         | 38      | PER             |               |                             |       |         | /     |         |        |                 |        |           |             |                |
| 0.075        | 33.1    | 30              |               | +H                          |       |         |       | -       | +      |                 |        | -         |             |                |
| 0.0340       | 23.8    |                 |               |                             |       |         |       |         | 100    | SI F            | locori | ption Pro | nortions    | (9/):          |
| 0.0221       | 18.8    | 20              |               | +                           |       |         |       |         |        | ay <sup>1</sup> | Jesch  |           |             |                |
| 0.0131       | 14.4    | 10              |               |                             |       |         |       |         |        | (15)            |        |           |             | 29             |
| 0.0093       | 12.2    | , ,             | -             |                             |       |         |       |         | Si     | IL              |        | 27 GI     | avel        | 38             |
| 0.0067       | 9.4     | 0.0             | 005 0.001 0.0 | 00 0000                     |       | 0.037 0 | 07E 0 | 15.00   | 5 0 40 | E .             | 0.05   | 0 475     | 0.5.10.5    | 10.05. 27.5.50 |
| 0.0033       | 7.2     | 0.0             | 0.001 0.00    | 0.005                       | 0.01  |         |       | .15 0.2 |        | ь               | 0.85   | 2 4.75    | 9.5 12.5    | 19 25 37.5 50  |
| 0.0014       | 5.0     |                 |               |                             |       | PARTIC  | JLE S | IZE (r  | nm)    |                 |        |           |             |                |

<sup>1</sup> The upper clay size of 2 um, per the Canadian Foundation Engineering Manual

<sup>2</sup> The description is visually based & subject to EBA description protocols

Specification:

Remarks:

[signature redacted]

Reviewed By:

C.E.T.



**Appendix D-3: Atterberg Limits** 

**ASTM D4318** 

Project:

SRK Testing - Coffee Gold Project

Sample Number:

17728

2.5 '

- May 2015

Borehole Number:

SRK-15S-03

Project No: W14103592-01

Depth:

Client:

Sampled By:

Tested By: KTP

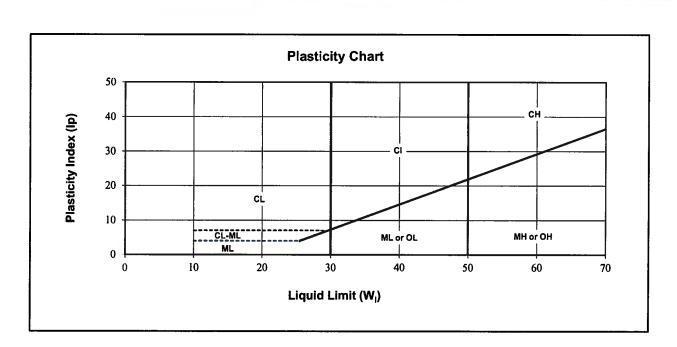
Attention:

[name redacted]

Date Sampled:

Date Tested:

June 25, 2015


Email:

Sample Description:

[email redacted]

SRK Consulting (Canada) Inc.

ORGANIC SILT, some sand & clay, brown.



Liquid Limit (W<sub>1)</sub>:

99

Natural Moisture (%)

Plastic Limit:

62

Soil Plasticity:

High

Plasticity Index (Ip):

37

Mod.USCS Symbol:

ОН

Remarks:

[signature redacted]

Reviewed By:

P.Eng.



ASTM D4318

Project: SRK Testing - May 2015 Sample Number: 17729

Coffee Gold Project

Borehole Number: SRK-15S-03

Project No: W14103592-01

Depth: 6.7 - 7.0 m

Client:

SRK Consulting Ltd.

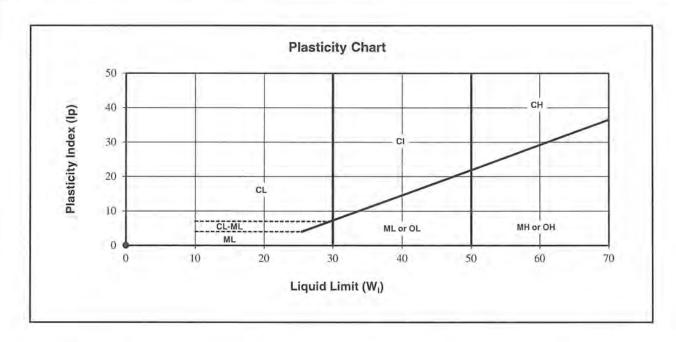
Sampled By: Client Tested By: AMT

Attention:

[name redacted]

Date Sampled: April 14, 2015

Email:


[email redacted]

Date Tested:

May 30, 2015

Sample Description:

SAND - silty, some gravel, trace clay



Liquid Limit (W<sub>1)</sub>:

Natural Moisture (%)

10.7

Plastic Limit:

0

Soil Plasticity:

NP

Plasticity Index (Ip):

0

Mod.USCS Symbol:

N/A

Remarks: Atterberg was attempted but material was found to be too silty,

therefore material was judged to be non-plastic.

[signature redacted]

Reviewed By:

C.E.T.



**ASTM D4318** 

Project: SRK Testing - Coffee Gold Project

Project No: W14103592-01

Client: SRK Consulting (Canada) Inc.

- May 2015

[name redacted] Attention:

Email: [email redacted] Sample Number:

17725

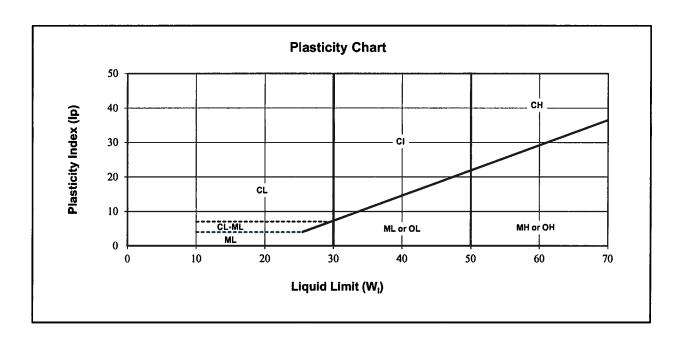
3.5'

Borehole Number:

SRK-15S-04

Depth:

Sampled By:


Tested By: KTP

Date Sampled:

Date Tested:

June 25, 2015

Sample Description: ORGANIC SILT, trace clay & sand, brown.



Liquid Limit (W<sub>1)</sub>: 129 Natural Moisture (%)

Plastic Limit: 85 Soil Plasticity: High

44 OH Plasticity Index (Ip): Mod.USCS Symbol:

Remarks:

[email redacted]

Reviewed By: P.Eng.



**ASTM D4318** 

Project: SRK Testing - May 2015 Sample Number: 17726

Coffee Gold Project

Borehole Number:

SRK-15S-04

Project No: W14103592-01

3.7 m

Client:

SRK Consulting Ltd.

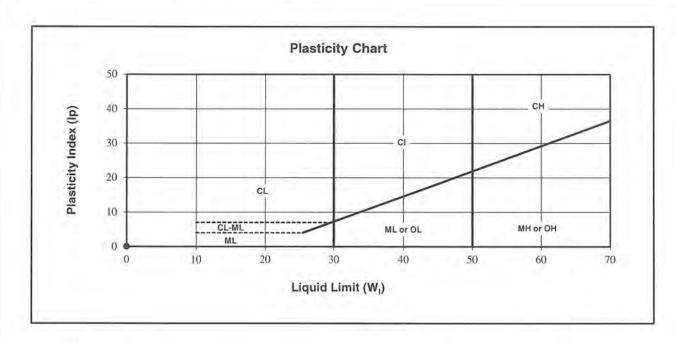
Sampled By:

Depth:

Client

Tested By: AMT

Attention:


[name redacted]

Date Tested:

May 30, 2015

Sample Description:

SAND - silty, some gravel, some clay



Liquid Limit (W1):

0

Natural Moisture (%)

16.7

Plastic Limit:

19

Soil Plasticity:

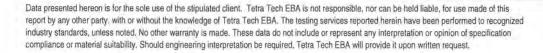
NP

Plasticity Index (Ip):

0

Mod.USCS Symbol:

N/A


Remarks: Atterberg was attempted but material was found to be too silty,

therefore material was judged to be non-plastic.

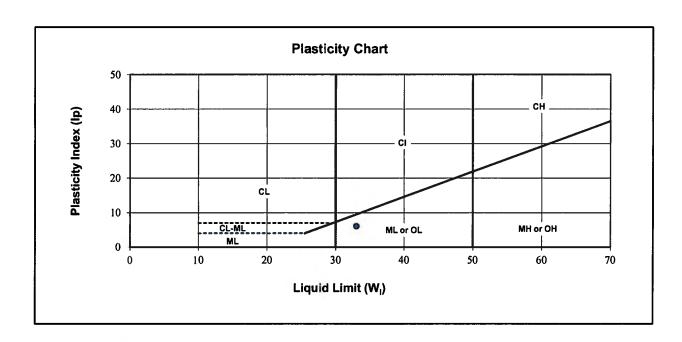
[signature redacted]

C.E.T.

Reviewed By:






#### ATTERBERG LIMITS TEST REPORT **ASTM D4318** Project: SRK Testing - Coffee Gold Project 17702 Sample Number: - May 2015 Borehole Number: SRK-15S-05 Project No: W14103592-01 Depth: 9.25' SRK Consulting (Canada) Inc. Client: Sampled By: Tested By: KTP [name redacted] Attention: Date Sampled: p [email redacted]

Date Tested:

June 24, 2015

Sample Description: SILT, sandy, trace clay & gravel, brown

Email:



| Liquid Limit (W <sub>1)</sub> : | 33 | Natural Moisture (%) |     |
|---------------------------------|----|----------------------|-----|
| Plastic Limit :                 | 27 | Soil Plasticity:     | Low |
| Plasticity Index (Ip):          | 6  | Mod.USCS Symbol:     | ML  |

| Remarks: |                      |        |
|----------|----------------------|--------|
|          | [signature redacted] |        |
|          | Reviewed By:         | P.Eng. |



**TETRA TECH** 

ASTM D4318

Project:

SRK Testing - May 2015

Sample Number:

17704

0.8 m

Coffee Gold Project

Borehole Number:

SRK-15S-06

Project No: W14103592-01

SRK Consulting Ltd.

Client

Attention:[name redacted]

Sampled By:

Depth:

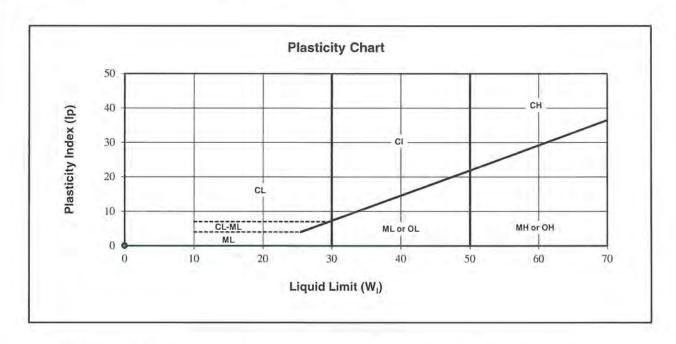
Tested By: AMT

Date Sampled:

April 3, 2015

Email:

Client:


[email redacted]

Date Tested:

May 30, 2015

Sample Description:

SAND - gravelly, silty, trace clay



Liquid Limit (W<sub>1)</sub>:

Natural Moisture (%)

6.8

Plastic Limit:

0

Soil Plasticity:

NP

Plasticity Index (Ip):

0

Mod.USCS Symbol:

N/A

Remarks: Atterberg was attempted but material was found to be too silty,

therefore material was judged to be non-plastic.

Reviewed By:

[signature redacted]

C.E.T.



ASTM D4318

SRK Testing - May 2015 Project:

Sample Number: 17708

Coffee Gold Project

Borehole Number: SRK-15S-07

Project No: W14103592-01

Depth:

Client:

3.4 - 3.7 m

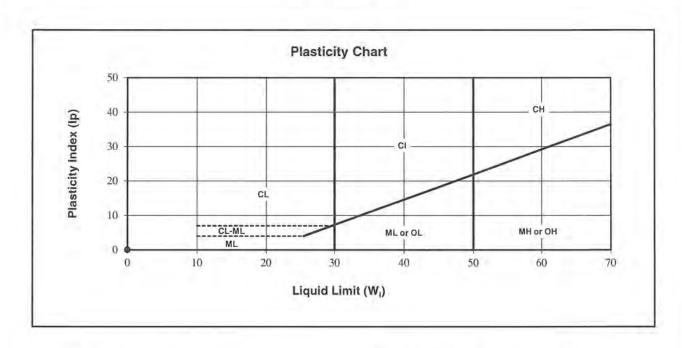
SRK Consulting Ltd.

Client

Tested By: AMT

Attention:

[name redacted]


Date Sampled: April 5, 2015

Sampled By:

Email:

pmikes@srk.com[email redacted]

velly, some silt, trace clay



Liquid Limit (W1):

Natural Moisture (%)

12.4

Plastic Limit:

0

Soil Plasticity:

NP

Plasticity Index (Ip):

0

Mod.USCS Symbol:

N/A

Remarks:

Atterberg was attempted but material was found to be too silty,

therefore material was judged to be non-plastic.

[signature redacted]

Reviewed By:

C.E.T.



ASTM D4318

Project: SRK Testing - May 2015

Sample Number: 177

17706

Coffee Gold Project

Borehole Number:

SRK-15S-08

Project No: W14103592-01

03592-01 Depth:

0.9 - 1.2 m

Client:

SRK Consulting Ltd.

Client

Tested By: AMT

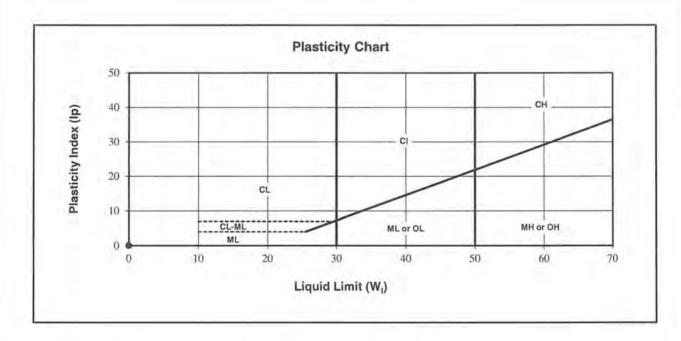
Attention:

[name redacted]

Date Sampled:

April 4, 2015

Email [email redacted]


Date Tested:

Sampled By:

May 30, 2015

Sample Description:

SAND - silty, gravelly, trace clay



Liquid Limit (W<sub>1)</sub>:

0

Natural Moisture (%)

27.2

Plastic Limit:

0

Soil Plasticity:

NP

Plasticity Index (Ip):

0

Mod.USCS Symbol:

N/A

Remarks:

Atterberg was attempted but material was found to be too silty,

therefore material was judged to be non-plastic.

[signature redacted]

Reviewed By:

C.E.T.



**ASTM D4318** 

Project: SRK Testing - May 2015

Sample Number: 177

17707

Coffee Gold Project

Borehole Number:

SRK-15S-08

Project No: W14103592-01

Depth:

3.4 m

Client:

SRK Consulting Ltd.

Client

Tested By: AMT

Attention:

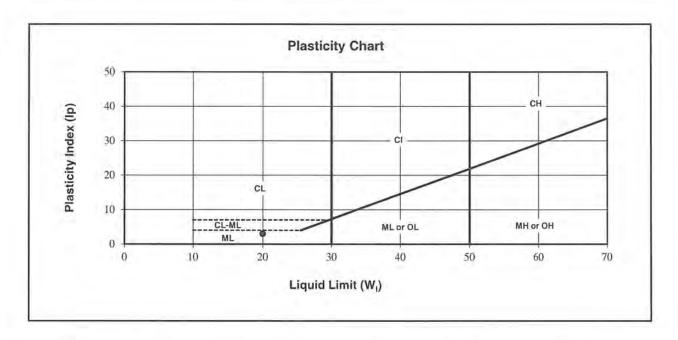
[name redacted]

Date Sampled:

April 4, 2015

Email:

[email redacted]


Date Tested:

Sampled By:

May 30, 2015

Sample Description:

SAND - silty, gravelly, trace clay



Liquid Limit (W<sub>1)</sub>:

20

Natural Moisture (%)

13.8

Plastic Limit:

17

Soil Plasticity:

Low

Plasticity Index (Ip):

3

Mod.USCS Symbol:

ML

Remarks:

Material is Low to Non-Plastic

[signature redacted]

Reviewed By:

C.E.T.



**ASTM D4318** 

Project: SRK Testing - Coffee Gold Project

orar resumg - conce cold i roject

Project No: W14103592-01

Client: SRK Consulting (Canada) Inc.

Attention: name redacted]

- May 2015

Email: [email redacted]

Sample Number:

17709

Borehole Number:

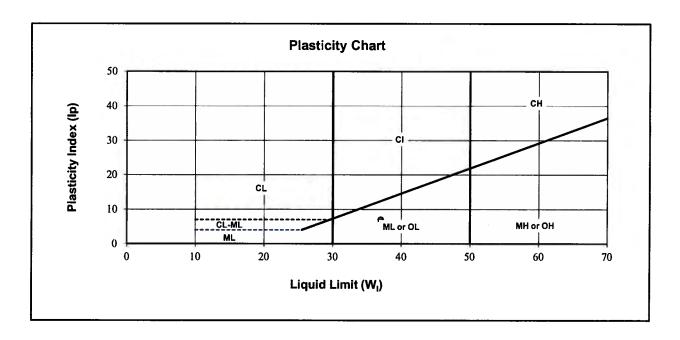
SRK-15S-09

Depth:

6.5'

Sampled By:

Tested By: KTP


Date Sampled:

Date Tested:

June 24, 2015

Sample Description:

SILT, some sand, trace clay & gravel, brown



Liquid Limit (W<sub>1)</sub>:

37

Natural Moisture (%)

Plastic Limit:

30

Soil Plasticity:

Low

Plasticity Index (Ip):

7

Mod.USCS Symbol:

ML

Remarks:

Reviewed By:

P.Eng.



ASTM D4318

Project: SRK Testing - May 2015

Sample Number: 17711

Borehole Number:

SRK-15S-11

Project No: W14103592-01

Coffee Gold Project

Depth:

2.3 - 2.6 m

Client:

SRK Consulting Ltd.

Sampled By:

Client

Tested By: [signature re

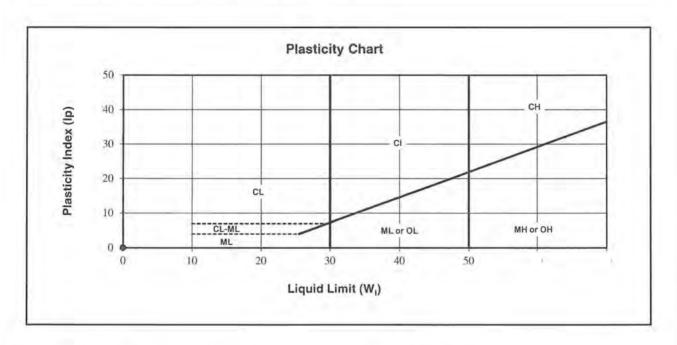
Attention:

[name redacted]

Date Sampled:

April 6, 2015

Email:


[email redacted]

Date Tested:

May 30, 2015

Sample Description:

GRAVEL - sandy, some silt, trace clay



Liquid Limit (W1):

Natural Moisture (%)

Plastic Limit:

0

Soil Plasticity:

Plasticity Index (Ip):

0

Mod.USCS Symbol:

Remarks:

Atterberg was attempted but material was found to be too silty,

therefore material was judged to be non-plastic.

[signature redacted]

Reviewed By:

C.E.T.



**ASTM D4318** 

Project: SRK Testing - May 2015 Sample Number: 17712

Coffee Gold Project

Borehole Number:

SRK-15S-12

Project No: W14103592-01

Depth:

2.4 - 2.7 m

Client:

SRK Consulting Ltd.

Sampled By:

Client

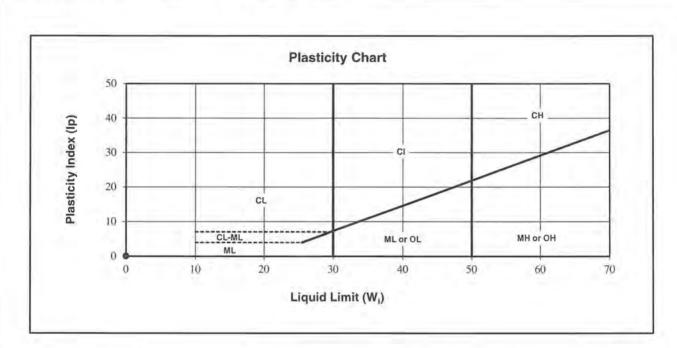
Tested By: AMT

Attention:

[name redacted]

Date Sampled:

April 7, 2015


Email:

[email redaccted]

Date Tested:

May 30, 2015

Sample Description: SAND - gravelly, silty, trace clay



Liquid Limit (W1):

Natural Moisture (%)

19.5

Plastic Limit:

0

Soil Plasticity:

NP

Plasticity Index (Ip):

0

Mod.USCS Symbol:

N/A

Remarks: Atterberg was attempted but material was found to be too silty,

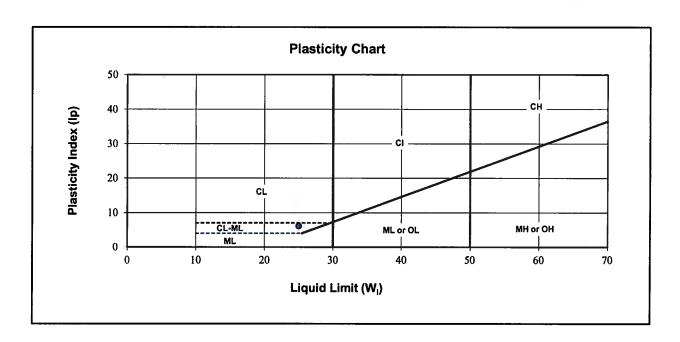
therefore material was judged to be non-plastic.

Reviewed By:

[signature redacted]

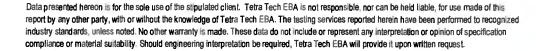
C.E.T.




#### ATTERBERG LIMITS TEST REPORT **ASTM D4318** Project: SRK Testing - Coffee Gold Project Sample Number: 17718 - May 2015 Borehole Number: SRK-15S-13A Project No: W14103592-01 Depth: 3.5' Client: SRK Consulting (Canada) Inc. Sampled By: Tested By: KTP [name redacted] Attention: Date Sampled: [email redaccted]

Date Tested:

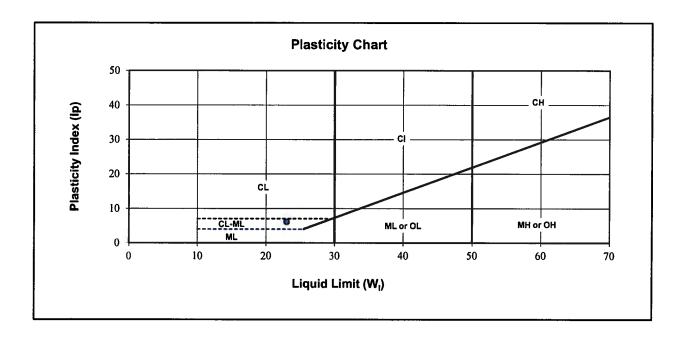
June 24, 2015


Sample Description: SILT and SAND, some gravel, trace clay, brown

Email:



| Liquid Limit (W <sub>1)</sub> : | 25 | Natural Moisture (%) |       |
|---------------------------------|----|----------------------|-------|
| Plastic Limit :                 | 19 | Soil Plasticity:     | Low   |
| Plasticity Index (Ip):          | 6  | Mod.USCS Symbol:     | CL-ML |


| Remarks: |             |                      |      |
|----------|-------------|----------------------|------|
|          |             |                      |      |
|          |             | [signature redacted] |      |
|          | Reviewed By | r:                   | Eng. |





#### ATTERBERG LIMITS TEST REPORT **ASTM D4318** Project: SRK Testing - Coffee Gold Project Sample Number: 17722 - May 2015 Borehole Number: SRK-15S-20 Project No: W14103592-01 Depth: 3.5' Client: SRK Consulting (Canada) Inc. Sampled By: Tested By: KTP [name redacted] Attention: Date Sampled: [email redaccted] Email: Date Tested: June 24, 2015

Sample Description: SILT and SAND, some gravel, trace clay, brown



| 23 | Natural Moisture (%) |                     |
|----|----------------------|---------------------|
| 17 | Soil Plasticity:     | Low                 |
| 6  | Mod.USCS Symbol:     | CL-ML               |
|    | 23<br>17<br>6        | 17 Soil Plasticity: |

| Remarks: |              |                      |        |
|----------|--------------|----------------------|--------|
|          |              | [signature redacted] |        |
|          | Reviewed By: |                      | P.Eng. |



ASTM D4318

Project: SRK Testing - May 2015 Sample Number:

17723

Coffee Gold Project

Borehole Number:

SRK-15S-25

Project No: W14103592-01

Depth:

0.6 - 1.2 m

Client:

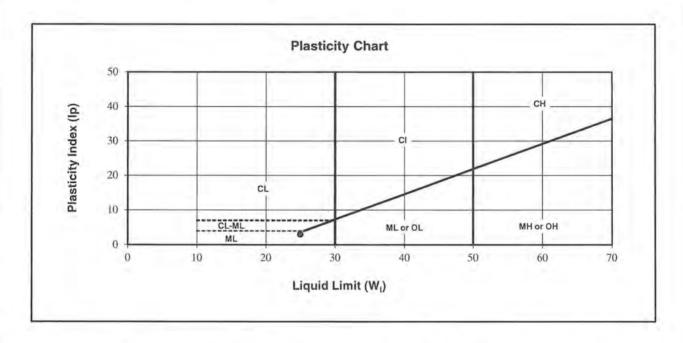
SRK Consulting Ltd.

Sampled By:

Client

Tested By: AMT

Attention:


[name redacted]

Date Tested:

May 30, 2015

Sample Description:

sandy, gravelly, silty, trace clay



Liquid Limit (W<sub>1)</sub>:

25

Natural Moisture (%)

12.6

Plastic Limit:

22

Soil Plasticity:

Low

Plasticity Index (Ip):

3

Mod.USCS Symbol:

ML

Remarks:

Material is Low to Non-Plastic

[signature redacted]

Reviewed By:

Data presented hereon is for the sole use of the stipulated client. Tetra Tech EBA is not responsible, nor can be held liable, for use made of this report by any other party, with or without the knowledge of Tetra Tech EBA. The testing services reported herein have been performed to recognized industry standards, unless noted. No other warranty is made. These data do not include or represent any interpretation or opinion of specification compliance or material suitability. Should engineering interpretation be required, Tetra Tech EBA will provide it upon written request.



C.E.T.

**ASTM D4318** 

Project: SRK Testing - May 2015

Sample Number:

17732

Coffee Gold Project

Borehole Number:

SRK-15S-29

r roject ivo.

Project No: W14103592-01

Depth:

0.9 - 1.4 m

Client:

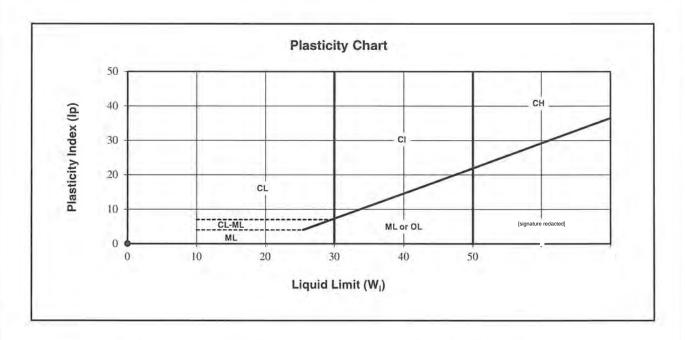
SRK Consulting Ltd.

Sampled By:

Client

Tested By: AMT

Attention:


[name redacted]

Date Tested:

May 30, 2015

Sample Description:

GRAVEL - sandy, some silt, trace clay



Liquid Limit (W1):

0

Natural Moisture (%)

Plastic Limit:

0

Soil Plasticity:

Plasticity Index (Ip):

0

Mod.USCS Symbol:

Remarks: Atterberg was attempted but material was found to be too silty,

therefore material was judged to be non-plastic.

[signature redacted]

Reviewed By:

E.T.

ASTM D4318

Project: SRK Testing - May 2015 Sample Number:

17739

Coffee Gold Project

Borehole Number:

SRK-15S-34

Project No: W14103592-01

Depth:

1.1 m

Client:

SRK Consulting Ltd.

Sampled By:

Client

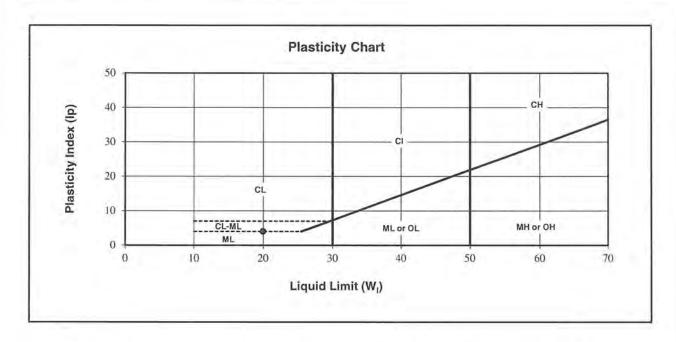
Tested By: AMT

Attention:

[name redacted]

Date Sampled:

April 18, 2015


Email:[email redaccted]

Date Tested:

May 30, 2015

Sample Description:

SILT - sandy, some gravel, trace clay



Liquid Limit (W1):

20

Natural Moisture (%)

14.9

Plastic Limit:

16

Soil Plasticity:

Low

Plasticity Index (Ip):

4

Mod.USCS Symbol:

ML

Remarks:

Material is Low to Non-Plastic

[signature redacted]

Reviewed By:

C.E.T.



ASTM D4318

Project: SRK Testing - May 2015

Sample Number: 17741

Coffee Gold Project

Borehole Number: SRK-15S-35

Project No: W14103592-01

Depth: 1.2 - 1.4 m

Client:

SRK Consulting Ltd. Sam

11.00

Attantan. Iname reda

Sampled By:

Client

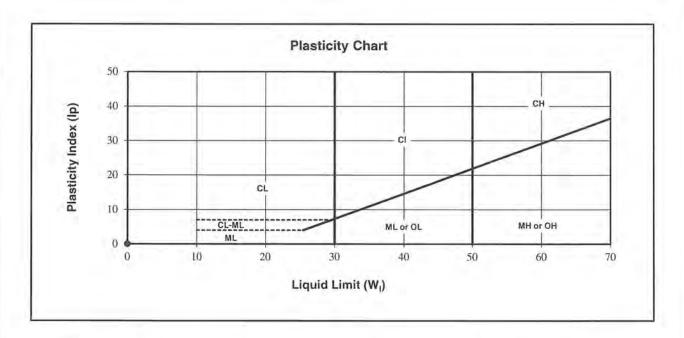
Tested By: AMT

Attention:

[name redacted]

Date Sampled: April 18, 2015

Email:


[email redaccted]

Date Tested:

May 30, 2015

Sample Description:

SAND and SILT - some gravel, trace clay



Liquid Limit (W<sub>1)</sub>:

0

Natural Moisture (%)

44.9

Plastic Limit:

0

Soil Plasticity:

NP

Plasticity Index (Ip):

0

Mod.USCS Symbol:

N/A

Remarks: Atterberg was attempted but material was found to be too silty,

therefore material was judged to be non-plastic.

[signature redacted]

Reviewed By:

C.E.T.



**ASTM D4318** 

Project: Phase 2 Test Pit Program

Sample Number:

17565

Project No: W14103592-02

Borehole Number:

SRK-15TP-03

0.5 - 1.0 m

Client:

SRK Consulting Ltd.

Sampled By:

Depth:

Client

Tested By: AMT

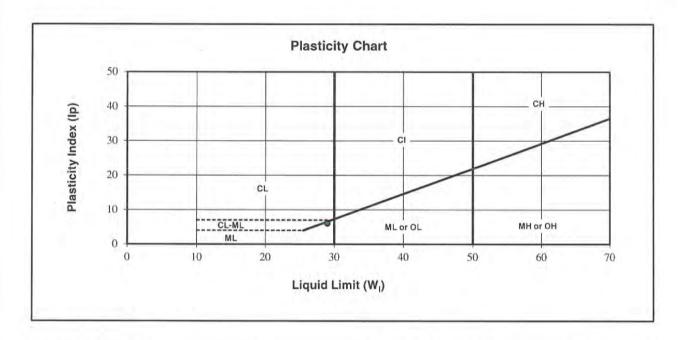
Attention:

[name redacted]

Date Sampled:

June 19, 2015

Email:


[email redaccted]

Date Tested:

September 4, 2015

Sample Description:

GRAVEL and SAND - some silt, trace clay



Liquid Limit (W1):

29

Natural Moisture (%)

10.5

Plastic Limit:

23

Soil Plasticity:

Low

Plasticity Index (Ip):

6

Mod.USCS Symbol:

ML

Remarks:

[signature redacted]

Reviewed By:

C.E.T.



**ASTM D4318** 

Project: Phase 2 Test Pit Program Sample Number:

17564

SRK Consulting Ltd.

Borehole Number:

SRK-15TP-20

Project No: W14103592-02

Sampled By:

Depth:

Client

Tested By: AMT

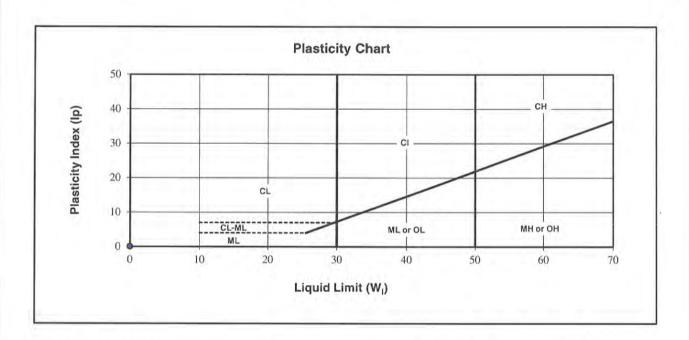
Client:

Attention: [name redacted]

Date Sampled:

June 19, 2015

Email:


[email redaccted]

Date Tested:

September 4, 2015

Sample Description:

SAND - silty, gravelly, trace clay



Liquid Limit (W1):

0

Natural Moisture (%)

13.0

Plastic Limit:

29

Soil Plasticity:

NP

Plasticity Index (Ip):

0

Mod.USCS Symbol:

N/A

Remarks:

Atterberg tests were attemped with little success.

Material was determined to be non-plastic; too silty.

[signature redacted]

Reviewed By:

C.E.T.



**ASTM D4318** 

Project: Phase 2 Test Pit Program Sample Number:

17560

Project No: W14103592-02

Borehole Number:

SRK-15TP-43

0.3 - 0.9 m

Client:

SRK Consulting Ltd.

Sampled By:

Depth:

Client

Tested By: AMT

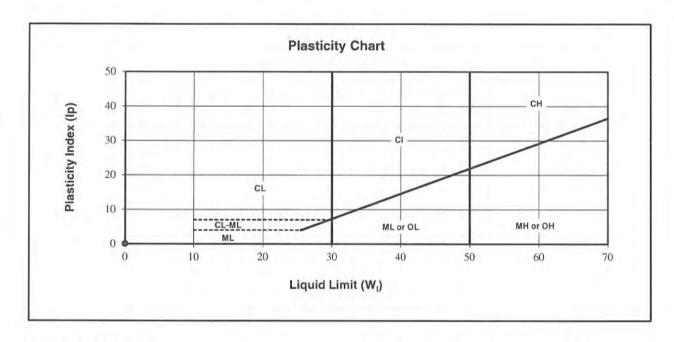
Attention:

Date Sampled:

June 19, 2015

[name redacted]

Email:


[email redaccted]

Date Tested:

September 4, 2015

Sample Description:

SAND - silty, gravelly, trace clay



Liquid Limit (W1):

0

Natural Moisture (%)

12.6

Plastic Limit:

21

Soil Plasticity:

NP

Plasticity Index (Ip):

0

Mod.USCS Symbol:

N/A

Remarks: Atterberg tests were attemped with little success.

Material was determined to be non-plastic; too silty.

[signature redacted]

Reviewed By:

C.E.T.



ASTM D4318

Project: Phase 2 Test Pit Program

Sample Number: 175

17592

Project No: W14103592-02

Borehole Number:

SRK-15TP-50

0.2 - 0.6 m

Client:

SRK Consulting Ltd.

Sampled By:

Depth:

Client

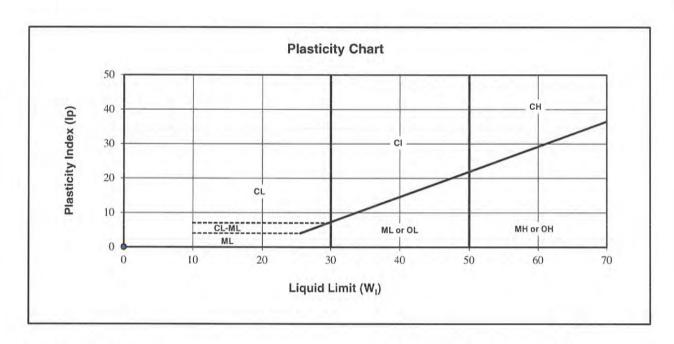
Tested By: AMT

Attention:

[name redacted]

Date Sampled:

June 25, 2015


Email:

[email redaccted]

Date Tested:

September 4, 2015

Sample Description:



Liquid Limit (W<sub>1)</sub>:

0

Natural Moisture (%)

63.0

Plastic Limit:

0

Soil Plasticity:

NP

Plasticity Index (Ip):

0

Mod.USCS Symbol:

N/A

Remarks:

No hydrometer test completed. Atterberg tests were attemped with no success.

Material was determined to be non-plastic; too much silt/organics.

[signature redacted]

Reviewed By:

C.E.T.



ASTM D4318

Project: Phase 2 Test Pit Program

Sample Number:

17628

Borehole Number:

SRK-15TP-55

Project No: W14103592-02

Depth:

0.2 - 0.4 m

Client:

SRK Consulting Ltd.

Sampled By:

Client

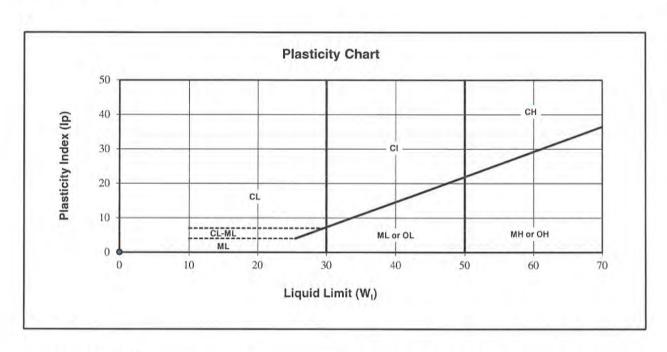
Tested By: AMT

Attention:

[name redacted]

Date Sampled:

June 20, 2015


Email:

[email redaccted]

Date Tested:

September 4, 2015

Sample Description:



Liquid Limit (W<sub>1)</sub>:

0

Natural Moisture (%)

76.5

Plastic Limit:

0

Soil Plasticity:

NP

Plasticity Index (Ip):

0

Mod.USCS Symbol:

N/A

Remarks: No hydrometer test completed. Atterberg tests were attemped with no success.

Material was determined to be non-plastic; too much silt/organics.

[signature redacted]

Reviewed By:

C.E.T.



**ASTM D4318** 

Project: Phase 2 Test Pit Program Sample Number:

17629

Project No: W14103592-02

Borehole Number:

SRK-15TP-56

Client:

SRK Consulting Ltd.

0.2 - 0.5 m

Sampled By:

Depth:

Client

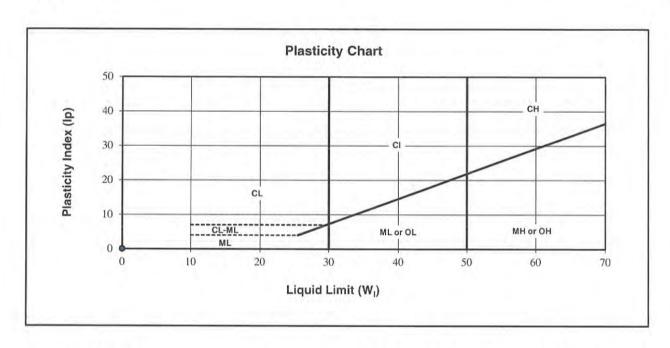
Tested By: AMT

Attention:

[name redacted]

Date Sampled:

June 20, 2015


Email:

[email redaccted]

Date Tested:

September 4, 2015

Sample Description:



Liquid Limit (W<sub>1)</sub>:

Natural Moisture (%)

68.4

Plastic Limit:

0

Soil Plasticity:

NP

Plasticity Index (Ip):

0

Mod.USCS Symbol:

N/A

Remarks:

No hydrometer test completed. Atterberg tests were attemped with no success.

Material was determined to be non-plastic; too much silt/organics.

[signature redacted]

Reviewed By:

C.E.T.



**Appendix D-4: Specific Gravity** 

# Specific Gravity of Soil

#### **ASTM D854**

Project: SRK Testing-Coffee Gold-May 2015

SRK Consulting (Canada) Inc.

Test Hole No.:

SRK-15S-03 Sa 17728

Project No.: W14103592-01

Depth:

2.5'

Client:

Sample Description:

ORGANIC SILT,

Date Tested: 24-Jun-15 Tested By:

**KTP** 

some sand & clay, brown.

| TRIAL                                             | 1      | 2      | 3 |  |  |
|---------------------------------------------------|--------|--------|---|--|--|
| Pycnometer No.                                    | D      | В      |   |  |  |
| Wt. of Soil, Pycnometer & Water (g)               | 174.03 | 174.33 |   |  |  |
| Wt. of Pycnometer (g)                             | 59.90  | 60.25  |   |  |  |
| Wt. of Dry Soil (g)                               | 25.24  | 25.09  |   |  |  |
| Temp. of Soil & Water (T <sub>x</sub> °C)         | 22.40  | 22.40  |   |  |  |
| Wt. of Pycnometer & Water @ T <sub>x</sub> °C (g) |        |        |   |  |  |
| Specific Gravity                                  | 2.334  | 2.325  |   |  |  |
| Avg. Specific Gravity                             | 2.330  |        |   |  |  |

$$G_s = \frac{W_o}{W_o + W_a - W_b}$$

Where:

W<sub>o</sub> = Dry wt. of soil

W<sub>a</sub> = Wt. of Pycnometer & Water @ Tx °C W<sub>b</sub> = Wt. of Soil, Pycnometer & Water

G<sub>s</sub> = Specific gravity of sample

| R | en | na | rk | S |  |
|---|----|----|----|---|--|
|---|----|----|----|---|--|

[signature redacted]

Reviewed By:



## Specific Gravity of Soil

### ASTM D854

Project: SRK Testing-Coffee Gold-May 2015 Test Hole No.:

SRK-15S-09 Sa 17709

Project No.: W14103592-01

Depth:

6.5 '

Client:

SRK Consulting (Canada) Inc.

Sample Description:

SILT, some sand,

Date Tested: 24-Jun-15 Tested By:

**KTP** 

trace clay & gravel, brown.

| Pycnometer No.         C         G           Wt. of Soil, Pycnometer & Water (g)         177.96         177.72           Wt. of Pycnometer (g)         61.78         62.40           Wt. of Dry Soil (g)         26.51         25.03           Temp. of Soil & Water (T <sub>x</sub> °C)         22.20         22.20           Wt. of Pycnometer & Water @ T <sub>x</sub> °C (g)         2644         2.636           Avg. Specific Gravity         2.640 | TRIAL                                             | 1      | 2      | 3 |  |
|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------|--------|--------|---|--|
| Wt. of Pycnometer (g)       61.78       62.40         Wt. of Dry Soil (g)       26.51       25.03         Temp. of Soil & Water (T <sub>x</sub> °C)       22.20       22.20         Wt. of Pycnometer & Water @ T <sub>x</sub> °C (g)       26.44       2.636                                                                                                                                                                                             | Pycnometer No.                                    | С      | G      |   |  |
| Wt. of Dry Soil (g)       26.51       25.03         Temp. of Soil & Water (T <sub>x</sub> °C)       22.20       22.20         Wt. of Pycnometer & Water @ T <sub>x</sub> °C (g)       26.51       25.03         Specific Gravity       26.51       25.03                                                                                                                                                                                                  | Wt. of Soil, Pycnometer & Water (g)               | 177.96 | 177.72 |   |  |
| Temp. of Soil & Water (T <sub>x</sub> °C)  22.20  22.20  Wt. of Pycnometer & Water @ T <sub>x</sub> °C (g)  Specific Gravity  2.644  2.636                                                                                                                                                                                                                                                                                                                | Wt. of Pycnometer (g)                             | 61.78  | 62.40  |   |  |
| Wt. of Pycnometer & Water @ T <sub>x</sub> °C (g)  Specific Gravity  2.644  2.636                                                                                                                                                                                                                                                                                                                                                                         | Wt. of Dry Soil (g)                               | 26.51  | 25.03  |   |  |
| Specific Gravity 2.644 2.636                                                                                                                                                                                                                                                                                                                                                                                                                              | Temp. of Soil & Water (T <sub>x</sub> °C)         | 22.20  | 22.20  |   |  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                           | Wt. of Pycnometer & Water @ T <sub>x</sub> °C (g) |        |        |   |  |
| Avg. Specific Gravity 2.640                                                                                                                                                                                                                                                                                                                                                                                                                               | Specific Gravity                                  | 2.644  | 2.636  |   |  |
| į .                                                                                                                                                                                                                                                                                                                                                                                                                                                       | Avg. Specific Gravity                             | 2.640  |        |   |  |

$$G_s = \frac{W_o}{W_o + W_a - W_b}$$

Where:

 $W_o = Dry wt. of soil$ 

W<sub>a</sub> = Wt. of Pycnometer & Water @ Tx °C W<sub>b</sub> = Wt. of Soil, Pycnometer & Water

G<sub>s</sub> = Specific gravity of sample

[signature redacted]

Reviewed By:

**TETRA TECH** 

### Specific Gravity of Soil

#### ASTM D854

Project: SRK Testing-Coffee Gold-May 2015 Test Hole No.:

SRK-15S-20 Sa 17722

Project No.: W14103592-01

Depth:

3.5 '

Client:

SRK Consulting (Canada) Inc.

Sample Description:

SILT and SAND,

Date Tested: 24-Jun-15 Tested By:

**KTP** 

some gravel, trace clay, brown.

| TRIAL                                             | 1      | 2      | 3 |  |  |
|---------------------------------------------------|--------|--------|---|--|--|
| Pycnometer No.                                    | К      | I      |   |  |  |
| Wt. of Soil, Pycnometer & Water (g)               | 174.93 | 169.68 |   |  |  |
| Wt. of Pycnometer (g)                             | 58.60  | 54.09  |   |  |  |
| Wt. of Dry Soil (g)                               | 26.73  | 25.70  |   |  |  |
| Temp. of Soil & Water (T <sub>x</sub> °C)         | 22.40  | 22.20  |   |  |  |
| Wt. of Pycnometer & Water @ T <sub>x</sub> °C (g) |        |        |   |  |  |
| Specific Gravity                                  | 2.634  | 2.629  |   |  |  |
| Avg. Specific Gravity                             | 2.632  |        |   |  |  |

$$G_s = \frac{W_o}{W_o + W_a - W_b}$$

Where:

 $W_o = Dry wt. of soil$ 

W<sub>a</sub> = Wt. of Pycnometer & Water @ Tx °C W<sub>b</sub> = Wt. of Soil, Pycnometer & Water

G<sub>s</sub> = Specific gravity of sample

| Remarks: |                      |
|----------|----------------------|
|          | [signature redacted] |
|          | Reviewed By:         |





**Appendix D-5: Frozen Density** 

Project: SRK Coffee Gold Project
Project Number: W14103592-01
Date Tested: June 23, 2015 Tes

Tested By: SK

|                           | Γ                                   |                                      | П                                   | 1                                |                                           |                                           |                                        |  |                                             |  |
|---------------------------|-------------------------------------|--------------------------------------|-------------------------------------|----------------------------------|-------------------------------------------|-------------------------------------------|----------------------------------------|--|---------------------------------------------|--|
| Soil Description          | ORGANIC SILT, some sand, trace clay | ORGANIC SILT, trace sand, trace clay | SII T condy frace clay trace grayel | מבון מתוכל מתכם מתל, מתכם פותנים | SILT, some sand, trace clay, trace gravel | <br>SILT and SAND, some gravel, trace day | SILT and SAND, some gravel, trace clay |  | A CANADA AND AND AND AND AND AND AND AND AN |  |
| Dry<br>Density<br>(kg/m³) | 478                                 | 248                                  | 1120                                | 22                               | 711                                       | 1411                                      | 812                                    |  |                                             |  |
| Wet<br>Density<br>(kg/m³) | 1096                                | 1034                                 | 1683                                | 222                              | 1383                                      | 1746                                      | 1405                                   |  |                                             |  |
| M.C.<br>(%)               | 129.4                               | 317.8                                | 50.3                                | 2                                | 94.6                                      | 23.7                                      | 73.1                                   |  |                                             |  |
| Volume (cm³)              | 2207.19                             | 605.80                               | 552 01                              | 0.70                             | 1161.05                                   | 599.67                                    | 683.96                                 |  |                                             |  |
| Initial Wet<br>Wt. (g)    | 2418.5                              | 626.52                               | 930 53                              |                                  | 1606.3                                    | 1046.8                                    | 961.1                                  |  |                                             |  |
| Depth<br>(ft)             | 2.5                                 | 3.5                                  | 9.25                                |                                  | 6.5                                       | 3.5                                       | 3.5                                    |  |                                             |  |
| Test Hole No.             | 17728                               | 17725                                | 17702                               |                                  | 17709                                     | 17718                                     | 17722                                  |  |                                             |  |

**Appendix D-6: Organic Content** 

#### Moisture, Ash, and Organic Matter of Peat and Other Organic Soils ASTM D2974 Test Method C Project No: W14103592-01 Sample No.: 17728 Project: SRK Testing - Coffee Gold Project - May 2015 **Date Sampled:** Client: SRK Consulting (Canada) Inc. Sampled By: **Date Tested:** 25-Jun-15 Attention: [name redacted] Fax: Tested By: **KTP** [email redaccted] Email: Office: Edmonton **Description:** ORGANIC SILT, some sand & clay, brown.

Source: Sample Location: BH: SRK-15S-03 @ 2.5 '

Supplier:

| Moi                         | sture Content       |             | Trial 1 | Trial 2 |
|-----------------------------|---------------------|-------------|---------|---------|
| Mass of As-Received Tes     | st Specimen & Tare, | g           |         |         |
| Mass of Oven Dried Spec     | cimen & tare, g     |             |         |         |
| Mass of Tare, g             |                     |             |         |         |
| Mass of As-Received Tes     | st Specimen, g      | Α           |         |         |
| Mass of Oven Dried Spec     | cimen, g            | В           | 79.6    | 75.8    |
| Α                           | sh Content          |             |         |         |
| Mass of Dish plus Oven D    | Oried Sample, g     |             | 153.95  | 153.83  |
| Mass of Dish, g             |                     |             | 74.31   | 78.03   |
| Mass of Dish plus Oven D    | Oried Sample, g     |             | 149.41  | 149.40  |
| (After Ignition in Furnace* | )                   |             | 143.41  | 143.40  |
| Mass of Ash, g              |                     | С           | 75.1    | 71.4    |
| Ash Content, %              | (C*100/B)           | D           | 94.3    | 94.2    |
|                             | Orga                | anic Matter |         |         |
| Organic Matter, %           | (100-D)             |             | 5.7     | 5.8     |
|                             |                     | Average     | 5       | .8      |

| * | <b>Furnace</b> | Temperature:    | 440 | °C |
|---|----------------|-----------------|-----|----|
|   | 1 dillacc      | i citipciataic. | 440 | ٠, |

Remarks: Sample oven dried prior to sieving through 2.0 mm sieve

Fraction of Aggregate Sample Tested:

Organic Content, Total Sample: 5.8% by dry mass of aggregate

[signature redacted]

Reviewed By: P. Eng.

100% passing 2.0 mm sieve



# Moisture, Ash, and Organic Matter of Peat and Other Organic Soils

#### ASTM D2974 Test Method C

| Project No: | W14103592-01         |                         | Sample No.:   | 17725     |
|-------------|----------------------|-------------------------|---------------|-----------|
| Project:    | SRK Testing - Coffee | Gold Project - May 2015 | Date Sampled: |           |
| Client:     | SRK Consulting (Can  | ada) Inc.               | Sampled By:   |           |
|             |                      |                         | Date Tested:  | 25-Jun-15 |
| Attention:  | [name redacted]      | Fax:                    | Tested By:    | KTP       |
| Email: [en  | nail redaccted]      |                         | Office:       | Edmonton  |

**Description:** 

ORGANIC SILT, trace clay & sand, brown.

Source:

Sample Location:

BH: SRK-15S-04 @ 3.5 '

Supplier:

| Mo-                                    | isture Content       |             | Trial 1 | Trial 2 |
|----------------------------------------|----------------------|-------------|---------|---------|
| Mass of As-Received Te                 | est Specimen & Tare, | g           |         |         |
| Mass of Oven Dried Spe                 | ecimen & tare, g     |             |         |         |
| Mass of Tare, g                        |                      |             |         |         |
| Mass of As-Received Te                 | est Specimen, g      | Α           |         |         |
| Mass of Oven Dried Spe                 | cimen, g             | В           | 58.0    | 50.5    |
|                                        | Ash Content          |             |         |         |
| Mass of Dish plus Oven                 | Dried Sample, g      |             | 132.32  | 128.52  |
| Mass of Dish, g                        |                      |             | 74.31   | 78.02   |
| Mass of Dish plus Oven Dried Sample, g |                      |             | 114.27  | 112.75  |
| (After Ignition in Furnace             | *)                   |             | 114.21  | 112.70  |
| Mass of Ash, g                         |                      | С           | 40.0    | 34.7    |
| Ash Content, %                         | (C*100/B)            | D           | 68.9    | 68.8    |
|                                        | Orga                 | anic Matter |         |         |
| Organic Matter, %                      | (100-D)              |             | 31.1    | 31.2    |
| Average                                |                      | Average     | 32      | 1.2     |

| * Furnace Temperature: | 440 | °C |
|------------------------|-----|----|
|------------------------|-----|----|

Remarks: Sample oven dried prior to sieving through 2.0 mm sieve

Fraction of Aggregate Sample Tested:

100% passing 2.0 mm sieve

Organic Content, Total Sample: 31.2% by dry mass of aggregate

[signature redacted]

Reviewed By: P. Eng.



**Appendix D-7: Compaction Tests** 

#### MOISTURE-DENSITY RELATIONSHIP (Proctor) REPORT ASTM D698 Standard Project: Phase 2 Test Pit Program Sample No .: 17579 Client: SRK Consulting Ltd. Sampled By: Client [name redacted] Attention: Sample Date: June 21, 2015 Project No.: W14103592-02 Test Date: September 8, 2015 Description: SAND - silty, gravelly, trace clay Preparation: Moist Source: Coffee Gold Project Compaction: Manual 2400 2300 Maximum Dry Density: 1990 kg/m³ 2200 Optimum Moisture Content: 12.2 % As Received Moisture Content: 10.9 2100 Oversize (+19 mm) Retained: % 20 Corrected Density: 2094 % 2000 Dry Density (kg/m³) Corrected Moisture: 10.0 % 1900 1800 1700 Zero Air Voids 1600 Gs: 2.70 1500 1400 1300 10 25 Moisture Content (%) Remarks: [signature redacted] Reviewed By: -C.E.T.



#### MOISTURE-DENSITY RELATIONSHIP (Proctor) REPORT ASTM D698 Standard Project: Phase 2 Test Pit Program Sample No.: 17562 Client: SRK Consulting Ltd. Sampled By: Client [name redacted] Attention: Sample Date: June 19, 2015 Project No.: W14103592-02 Test Date: September 8, 2015 Description: SAND - silty, gravelly, trace clay Preparation: Moist Source: Coffee Gold Project Compaction: Manual 2400 2300 Maximum Dry Density: 1960 kg/m<sup>3</sup> 2200 Optimum Moisture Content: % 10.5 As Received Moisture Content: 10.9 % 2100 Oversize (+19 mm) Retained: 9 % Corrected Density: 2007 % 2000 Dry Density (kg/m3) Corrected Moisture: % 9.6 1900 1800 1700 Zero Air Voids 1600 Gs: 2.70 1500 1400 1300 10 30 **Moisture Content (%)** Remarks: [signature redacted] Reviewed By: -C.E.T.



#### MOISTURE-DENSITY RELATIONSHIP (Proctor) REPORT ASTM D698 Standard Project: Phase 2 Test Pit Program Sample No.: North Dump Client: SRK Consulting Ltd. Sampled By: Client [name redacted] Attention: Sample Date: June 19, 2015 Project No.: W14103592-02 Test Date: September 8, 2015 Description: Preparation: Moist Source: Coffee Gold Project Compaction: Manual 2400 2300 Maximum Dry Density: 1780 kg/m³ 2200 Optimum Moisture Content: 13.0 % As Received Moisture Content: 16.3 2100 Oversize (+19 mm) Retained: 17 % Corrected Density: 1885 % 2000 Dry Density (kg/m3) Corrected Moisture: 11.0 % 1900 1800 1700 Zero Air Voids 1600 Gs: 2.70 1500 1400 1300 10 Moisture Content (%) Remarks: [signature redacted] Reviewed By: -C.E.T.



**Appendix D-8: Consolidation Tests** 

### **CONSOLIDATION TEST REPORT** ASTM D2435 (1 of 2) Project: SRK Coffee Gold Project Test No.: C-1 Project No.: W14103592-01 Borehole No.: SRK-15S-03 Client: SRK Consulting Sample Depth: 0.7 m Date Tested: Attention: May 22, 2015 Soil Description: Organic Frozen Core

Initial Final

| Height (mm) | Moisture (%) | Wet Density<br>(Mg/m <sup>3</sup> ) | Dry Density<br>(Mg/m <sup>3</sup> ) | Void<br>Ratio | Saturation |
|-------------|--------------|-------------------------------------|-------------------------------------|---------------|------------|
| 25.50       | 139.9        | 1.223                               | 0.510                               | 2.49          | 100        |
| 17.66       | 99.7         | 1.470                               | 0.736                               | 1.47          | 100        |

Assumed Specific Gravity =

1.78

Swelling Pressure (kPa) =

Method to Compute Coefficient of Consolidation:

Casagrande or Taylor

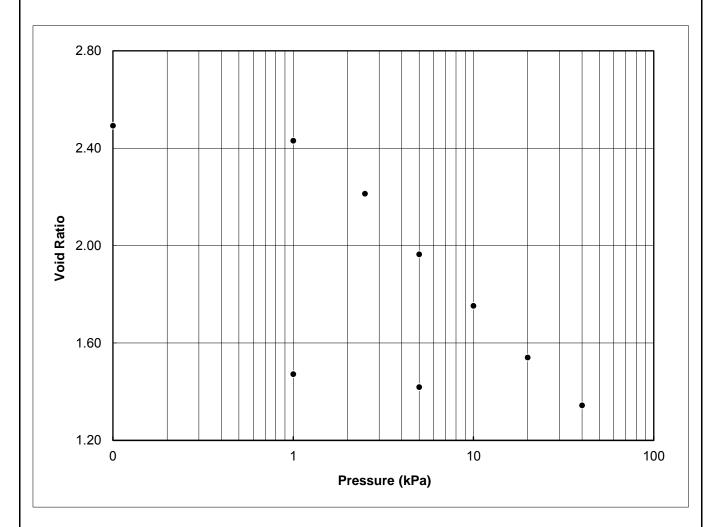
| Pressure (kPa) | Void Ratio | Cv (m <sup>2</sup> /yr) | Mv (m²/MN) | K (m/s) |
|----------------|------------|-------------------------|------------|---------|
| 0              | 2.49       |                         |            |         |
| 1              | 2.4308     | 32.48                   | 19.6465    | 2.0E-07 |
| 3              | 2.2136     | 10.18                   | 42.2042    | 1.3E-07 |
| 5              | 1.9644     | 6.06                    | 31.0205    | 5.8E-08 |
| 10             | 1.7525     | 1.31                    | 14.2973    | 5.8E-09 |
| 20             | 1.5407     | 0.94                    | 7.6955     | 2.2E-09 |
| 40             | 1.3438     | 0.87                    | 3.8738     | 1.0E-09 |
| 5              | 1.4187     |                         | 0.9132     |         |
| 1              | 1.4718     |                         | 5.4839     |         |
|                |            |                         |            |         |
|                |            |                         |            |         |
|                |            |                         |            |         |
|                |            |                         |            |         |
|                |            |                         |            |         |

| Remarks: Test specimen was thawed during the test and dried at 60°C after testing to reduce |              |       |  |  |  |
|---------------------------------------------------------------------------------------------|--------------|-------|--|--|--|
| decompostio                                                                                 | n.           |       |  |  |  |
|                                                                                             |              |       |  |  |  |
|                                                                                             | Paviawad Pvi | D Eng |  |  |  |



# **CONSOLIDATION TEST SUMMARY PLOT**

ASTM D2435 (2 of 2)


Project: SRK Coffee Gold Project Test No.: C-1

Project No.: W14103592-01 Borehole No.: SRK-15S-03

Client: SRK Consulting Sample Depth: 0.7 m

Attention: Date Tested: May 22, 2015

Soil Description: Organic Frozen Core



| Remarks:    | Test specimen was thawed during the test and dried at 60°C after testing to reduce |
|-------------|------------------------------------------------------------------------------------|
| decompostio | n.                                                                                 |

| Reviewed By: P.E |
|------------------|
|------------------|



# CONSOLIDATION TEST REPORT

ASTM D2435 (1 of 2)

| Project:     | SRK Coffee Gold Project   | Test No.:     | C-2         |
|--------------|---------------------------|---------------|-------------|
|              | Crare Condo Cola i rojece | 1001110       | <u> </u>    |
| Project No.: | W14103592-01              | Borehole No.: | SRK-15S-09  |
| Client:      | SRK Consulting            | Sample Depth: | 2.0 m       |
| Attention:   |                           | Date Tested:  | May 22 2015 |

Soil Description: Organic Frozen Core

| Height<br>(mm) | Moisture (%) | Wet Density<br>(Mg/m <sup>3</sup> ) | Dry Density<br>(Mg/m <sup>3</sup> ) | Void<br>Ratio | Saturation |
|----------------|--------------|-------------------------------------|-------------------------------------|---------------|------------|
| 25.28          | 57.2         | 1.501                               | 0.955                               | 1.20          | 100        |
| 20.48          | 32.8         | 1.565                               | 1.178                               | 0.80          | 100        |

Assumed Specific Gravity =

Initial Final

2.10 Swelling Pressure (kPa) =

Method to Compute Coefficient of Consolidation: Casagrande or Taylor

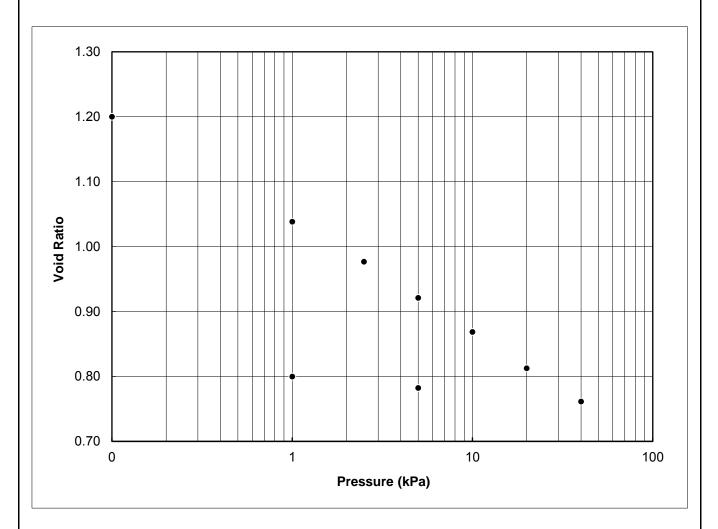
| Pressure (kPa) | Void Ratio | Cv (m²/yr) | Mv (m <sup>2</sup> /MN) | K (m/s) |
|----------------|------------|------------|-------------------------|---------|
| 0              | 1.20       |            |                         |         |
| 1              | 1.0382     | 14.20      | 81.7021                 | 3.6E-07 |
| 2.5            | 0.9768     | 6.68       | 20.0892                 | 4.2E-08 |
| 5              | 0.9210     | 5.73       | 11.2983                 | 2.0E-08 |
| 10             | 0.8685     | 4.26       | 5.4657                  | 7.2E-09 |
| 20             | 0.8126     | 0.62       | 2.9926                  | 5.8E-10 |
| 40             | 0.7613     | 0.53       | 1.4144                  | 2.3E-10 |
| 5              | 0.7824     |            | 0.3430                  |         |
| 1              | 0.7998     |            | 2.4336                  |         |
|                |            |            |                         |         |
|                |            |            |                         |         |
|                |            |            |                         |         |
|                |            |            |                         |         |
|                |            |            |                         |         |

| Remarks:    | Test specimen was thawed during the test and dried at 60°C after testing to reduce |      |
|-------------|------------------------------------------------------------------------------------|------|
| decompostio | n.                                                                                 |      |
|             |                                                                                    |      |
|             | Paviouad Rv                                                                        | DEna |



# **CONSOLIDATION TEST SUMMARY PLOT**

ASTM D2435 (2 of 2)


Project: SRK Coffee Gold Project Test No.: C-2

Project No.: W14103592-01 Borehole No.: SRK-15S-09

Client: SRK Consulting Sample Depth: 2.0 m

Attention: Date Tested: May 22, 2015

Soil Description: Organic Frozen Core



| Remarks:      | Test specimen was thawed during the test and dried at 60°C after testing to reduce |
|---------------|------------------------------------------------------------------------------------|
| decompostion. |                                                                                    |

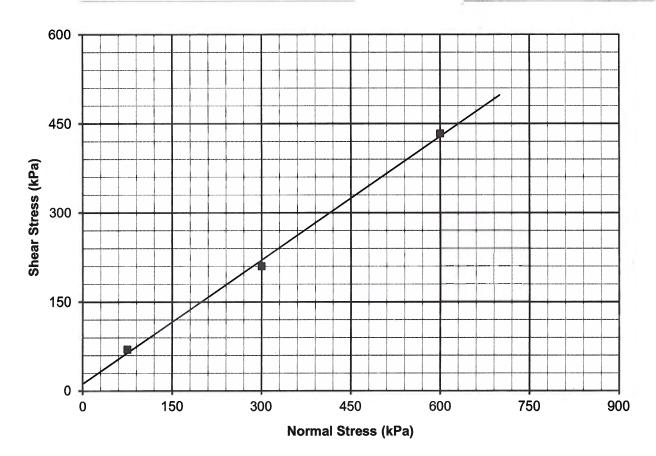
| Reviewed By: | P.Enc |
|--------------|-------|
|--------------|-------|



**Appendix D-9: Direct Shear Tests** 

# SUMMARY of DIRECT SHEAR TEST RESULTS

#### **ASTM D3080**


Project: SRK Gold Coffee Project Test Hole: SRK-15S-13A

Project No.: W14103592-01 Depth: 1.1 m

Client: SRK Consulting Ltd. Date: July 22, 2015

Attention: Tested By: SK

Email: Office: Edmonton



Inferred Shear Strength Parameters :-

Inferred Angle of Shearing

Cohesion Intercept Resistance

(kPa) (Degrees)

Peak Strength: 12 34.8

Residual Strength: NA NA

[signature redacted]

Reviewed By: P.Eng.



## **DIRECT SHEAR TEST**

**ASTM D3080** 

Project: SRK Coffee Gold Project

Project No.: W14103592-01

Client: SRK Consulting Ltd.

Date Tested: July 15, 2015

Description: SILT & SAND, some gravel, trace clay

Normal Stress (kPa) = 75

Peak Stress (kPa) = 70

Test Hole No.: SRK-15S-13A

Depth: 1.1 m

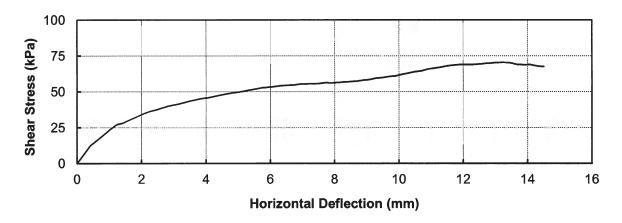
Test No.: DS-1

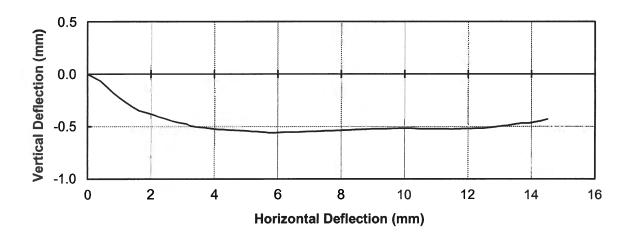
Machine:

1

Preparation: Remolded

Moisture Content (%) =


16.2


Wet Density (Mg/m<sup>3</sup>) =

1.676

Dry Density (Mg/m<sup>3</sup>) =

1.443





Remarks:

[signature redacted]

Reviewed By:

P.Eng.



**ASTM D3080** 

Project: SRK Coffee Gold Project

Project No.: W14103592-01

Client: SRK Consulting Ltd.

Date Tested: July 15, 2015

Description: SILT & SAND, some gravel, trace clay

Normal Stress (kPa) = 300

Peak Stress (kPa) = 210

Test Hole No.: SRK-15S-13A

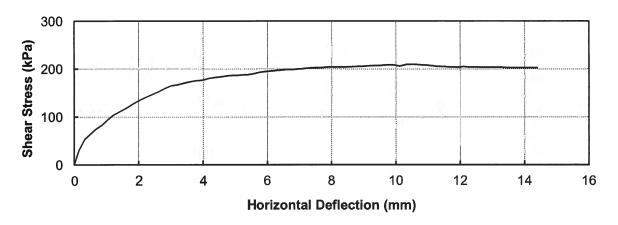
Depth: 1.1 m

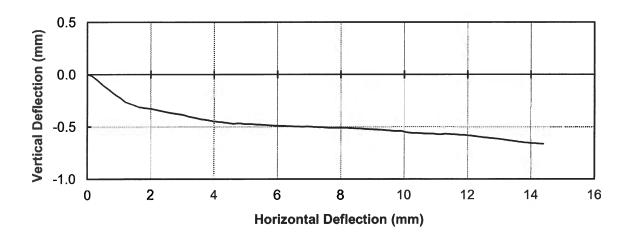
Test No.: DS-2

Machine: 3

Preparation: Remolded

Moisture Content (%) =


16.3


Wet Density (Mg/m<sup>3</sup>) =

1.692

Dry Density (Mg/m<sup>3</sup>) =

1.455





Remarks:

Reviewed By:

[signature redacted]

P.Eng.



**ASTM D3080** 

Project: SRK Coffee Gold Project

Project No.: W14103592-01

Client: SRK Consulting Ltd.

Date Tested: July 17, 2015

SILT & SAND, some gravel, trace clay Description:

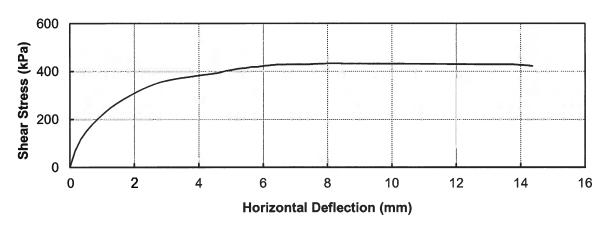
Normal Stress (kPa) = 600

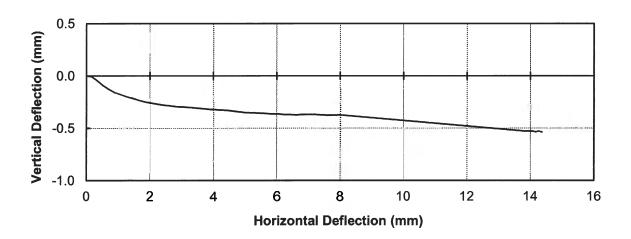
Peak Stress (kPa) = 433 Test Hole No.: SRK-15S-13A

Depth: 1.1 m

Test No.: **DS-3** 

Machine: 3


Remolded Preparation:


Moisture Content (%) =

16.0

Wet Density (Mg/m<sup>3</sup>) = 1.691

Dry Density (Mg/m<sup>3</sup>) = 1.458





Remarks:

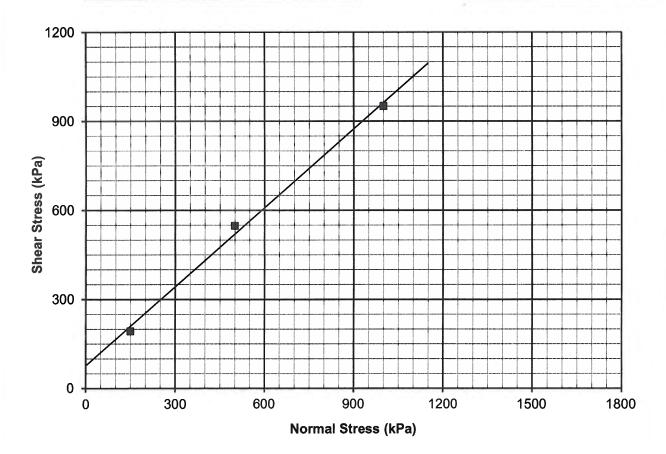
[signature redacted]

Reviewed By: P.Eng.



# SUMMARY of DIRECT SHEAR TEST RESULTS

### **ASTM D3080**


Project: SRK Gold Coffee Project Test Hole: SRK-15TP-17

Project No.: W14103592-02 Sample No.: 17566

Client: SRK Consulting Ltd. Date: September 24, 2015

Attention: Tested By: SK

Email: Office: Edmonton



Inferred Shear Strength Parameters :-

Inferred Angle of Shearing

Cohesion Intercept Resistance

(kPa) (Degrees)

Peak Strength: 77 41,5

Residual Strength: NA NA

[signature redacted]

Reviewed By: P.Eng.



**ASTM D3080** 

Project: SRK Coffee Gold Project

Project No.: W14103592-02

Client: SRK Consulting Ltd.

Date Tested: September 16, 2015

Description: SAND & GRAVEL, silty, trace clay, brown

Normal Stress (kPa) = 150

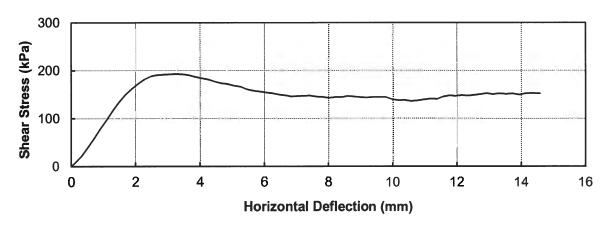
Peak Stress (kPa) = 193

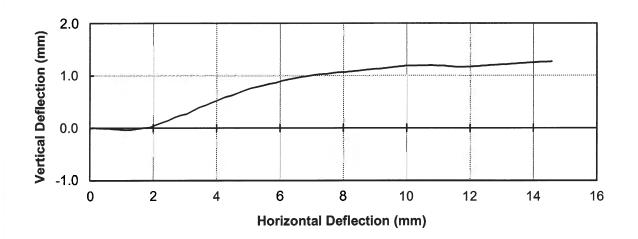
Test Hole No.: SRK-15TP-17

Sample No.: 17566

Test No.: DS-1

Machine:


Preparation: Remolded


Moisture Content (%) = 9.6

Wet Density  $(Mg/m^3) = 2.171$ 

Dry Density  $(Mg/m^3) = 1.982$ 

1





Remarks: Remolded sample tested at 94.8% SPD and 9.6% M.C.

[signature redacted]

Reviewed By: P.Eng.



**ASTM D3080** 

Project: SRK Coffee Gold Project

Project No.: W14103592-02

Client: SRK Consulting Ltd.

Date Tested: September 16, 2015

Description: SAND & GRAVEL, silty, trace clay, brown

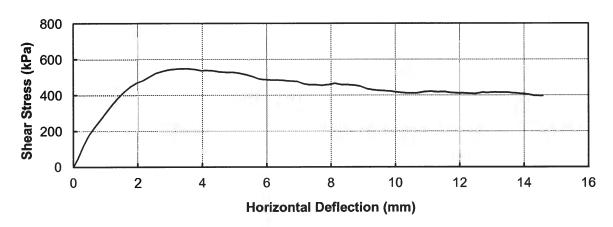
Normal Stress (kPa) = 500

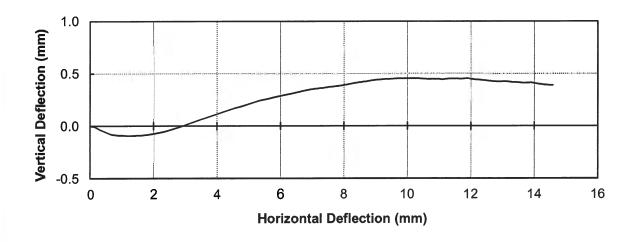
Peak Stress (kPa) = 548

Test Hole No.: SRK-15TP-17

Sample No.: 17566

Test No.: DS-2


Machine: 3


Preparation: Remolded

Moisture Content (%) = 9.6

Wet Density  $(Mg/m^3) = 2.171$ 

Dry Density  $(Mg/m^3) = 1.981$ 





Remarks: Remolded sample tested at 94.8% SPD and 9.6% M.C.

[signature redacted]

Reviewed By: P.Eng.



**ASTM D3080** 

Project: SRK Coffee Gold Project

Project No.: W14103592-02

Client: SRK Consulting Ltd.

Date Tested: September 18, 2015

Description: SAND & GRAVEL, silty, trace clay, brown

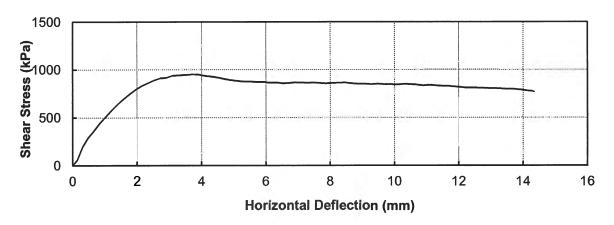
Normal Stress (kPa) = 1000

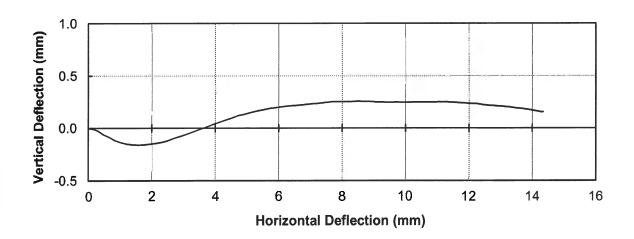
Peak Stress (kPa) = 951

Test Hole No.: SRK-15TP-17

Sample No.: 17566

Test No.: DS-3


Machine: 3


Preparation: Remolded

loisture Content (%) = 9.7

Moisture Content (%) = 9.7Wet Density (Mg/m<sup>3</sup>) = 2.175

Dry Density  $(Mg/m^3) = 1.982$ 





Remarks: Remolded sample tested at 94.8% SPD and 9.7% M.C.

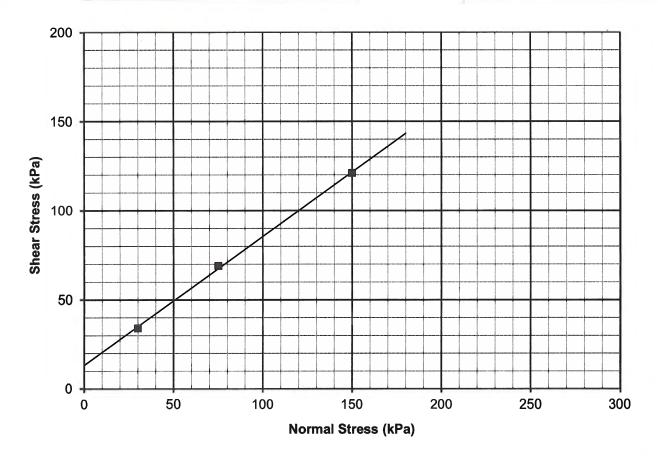
[signature redacted]

Reviewed By: P.Eng.



# SUMMARY of DIRECT SHEAR TEST RESULTS

### **ASTM D3080**


Project: SRK Gold Coffee Project Test Hole: SRK-15S-05

Project No.: W14103592-01 Depth: 2.8 m

Client: SRK Consulting Ltd. Date: July 24, 2015

Attention: Tested By: SK

Email: Office: Edmonton



Inferred Shear Strength Parameters :-

Inferred Angle of Shearing

Cohesion Intercept Resistance

(kPa) (Degrees)

Peak Strength: 13 35.8

Residual Strength: NA NA

[signature redacted]

Reviewed By: \_\_\_\_\_ P.Eng.



**ASTM D3080** 

SRK Coffee Gold Project Project:

Project No.: W14103592-01

Client: SRK Consulting Ltd.

July 17, 2015 Date Tested:

Description: SILT, sandy, trace gravel, trace clay

Normal Stress (kPa) = 75

Peak Stress (kPa) = 69 Test Hole No.: SRK-15S-05

Depth: 2.8 m

DS-4 Test No.:

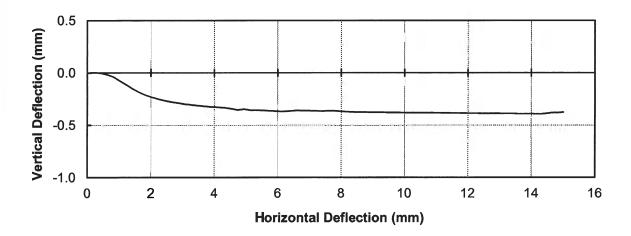
Machine:

Preparation: Remolded

1

Moisture Content (%) =

Wet Density (Mg/m<sup>3</sup>) =


17.8

1.363

Dry Density (Mg/m<sup>3</sup>) =

1.157





Remarks:

[signature redacted]

Reviewed By:

P.Eng.



**ASTM D3080** 

Project: SRK Coffee Gold Project

Project No.: W14103592-01

Client: SRK Consulting Ltd.

Date Tested: July 21, 2015

Description: SILT, sandy, trace gravel, trace clay

Normal Stress (kPa) =

Peak Stress (kPa) =

30

34

Depth: 2.8 m

SRK-15S-05

DS-5 Test No.:

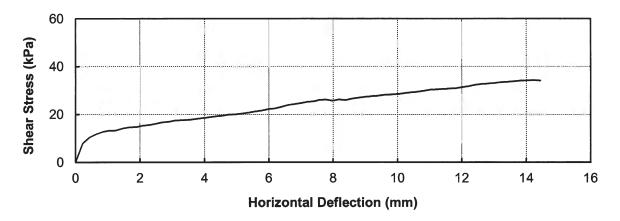
Machine:

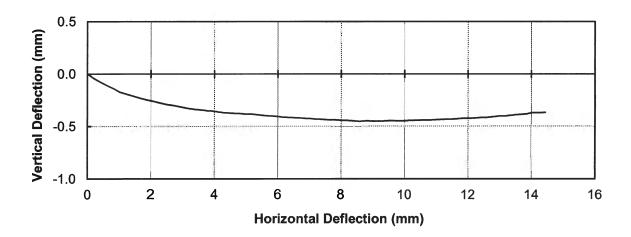
Test Hole No.:

Preparation: Remolded

1

Moisture Content (%) =


17.3


Wet Density (Mg/m<sup>3</sup>) =

1.387

Dry Density (Mg/m<sup>3</sup>) =

1.183





Remarks:

[signature redacted]

Reviewed By:

P.Eng.



**ASTM D3080** 

Project: SRK Coffee Gold Project

Project No.: W14103592-01

Client: SRK Consulting Ltd.

Date Tested: July 21, 2015

Description: SILT, sandy, trace gravel, trace clay

Normal Stress (kPa) = 150

Peak Stress (kPa) = 121

Test Hole No.: SRK-15S-05

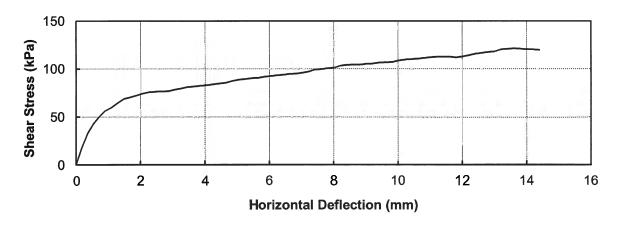
Depth: 2.8 m

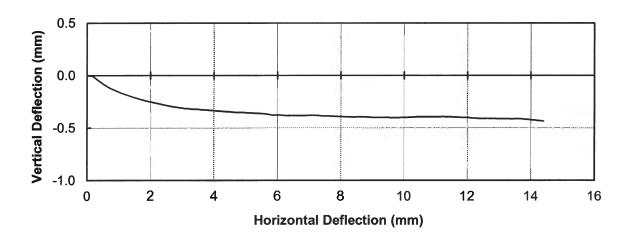
Test No.: DS-6

Machine: 3

Preparation: Remolded

Moisture Content (%) =


17.5


Wet Density (Mg/m<sup>3</sup>) =

1.385

Dry Density (Mg/m<sup>3</sup>) =

1.179





Remarks:

**Reviewed By:** [signature redacted]

P.Eng.

# Appendix 31-D-IV Fall 2016 Geotechnical Site Investigation Data Report





# FALL 2016 GEOTECHNICAL INVESTIGATION DATA REPORT, COFFEE MINE SITE COFFEE GOLD PROJECT



PRESENTED TO GOLDCORP INC.

MARCH 20, 2017 ISSUED FOR USE FILE: ENG.EARC03004-02

### **EXECUTIVE SUMMARY**

Tetra Tech Canada Inc. (Tetra Tech) and SRK Consulting (U.S. and Canada), Inc. (SRK) were retained by Goldcorp Inc. (Goldcorp) to conduct a geotechnical site investigation at the Coffee Mine Site, which is part of the Coffee Gold Project (the Project). The objective of the investigation was to acquire geotechnical and permafrost data to support the design of the mine WRSFs and respective sedimentation dams. Additional data was collected during the program to supplement the characterization of the WRSF foundation materials which were initially investigated during the 2015 geotechnical program (SRK, 2016) and to characterize foundation materials at the respective sedimentation dam locations.

The primary focus of the fall 2016 program was to provide an accurate as possible characterization of permafrost conditions and ice contents. As such chilled drilling fluids were used, minimizing thermal disturbance and providing high quality undisturbed frozen core samples. Cores were logged according to appropriate geotechnical and permafrost standards. Where soils were not frozen, poor recovery of soils occurred in some instances due to the lack of cohesion within the soils and the drilling fluid circulation. It is anticipated that these materials can be sampled with test pits at a later date if necessary.

Based on mine plans at that time, a total of seventy six drillhole locations were initially selected for the program to further characterize the WRSF foundation materials and provide initial foundation material information for the respective sedimentation dams. A total of thirty five of the seventy six drillholes were able to be completed during the fall 2016 program, before the program was suspended for the winter season. The program is currently anticipated to reconvene in late spring 2017 to complete the remaining forty one drillholes, pending the outcome of ongoing mine optimization and trade-off studies. It is possible that a portion of the forty one remaining holes may be eliminated or relocated if the ongoing studies significantly change the mine WRSF layout. This report summarizes results of the first thirty five holes.

The geotechnical investigation program was carried out from August 24, 2016 to October 5, 2016 and consisted of coring and testing frozen and unfrozen overburden and bedrock. A total of thirty five vertical boreholes with depths ranging from 4.0 m to 21.2 m were diamond-drilled and logged at the Kona Waste Rock Storage Facility (WRSF), Kona Pond, Halfway Pond, West WRSF area, West Pond, South Pond, North WRSF, and North Pond locations. Two multi-bead ground temperature cables (GTCs) were installed: one in Borehole GT-14 in the North WRSF area and another in Borehole GT-63, at the Halfway Pond site. A single bead thermistor was installed at GT-66 at the Halfway Pond site. Access to the drill sites and mobilization/demobilization of drill rigs was provided by helicopter. Selected core samples were tested for geotechnical properties in both onsite and offsite laboratories. One hundred ninety six soil samples were sent to Tetra Tech's Whitehorse geotechnical laboratory for soil index testing.

This report presents the results of the fall 2016 geotechnical site investigation, including observations of site terrain and subsurface conditions together with supporting borehole logs, geotechnical laboratory testing results, and initial ground temperature data collected from two newly installed ground temperature cables (GTCs). Subsurface and surface conditions are discussed in this report by summarizing the data acquired via drilling, logging, and laboratory testing, and by including observations of terrain conditions made in the field at each drill site.

The mine site area is characterized by a rolling plateau cut by tributary valleys – an ancient unglaciated landscape that forms gently rounded hills between the valleys. Valley side slopes generally range from 3° to 20°, but are locally 25° to 42°. Small creeks drain the valleys.

Vegetation consists of spruce and aspen trees on valley sides and low shrubs (dwarf birch, willow, blueberry, and Labrador tea). Sphagnum moss covers the forest floor on valley slopes and along creek channels. Plant cover varies with slope aspect. North-facing slopes host low shrubs and sparse to non-existent stunted black spruce ("drunken forest"), while south-facing slopes are characterized by mixed white and black spruce and trembling

aspen. Differences are also noted between slopes of northeast and northwest aspect. Frost hummocks are common on north-facing slopes.

Slopes underlain by shallow permafrost are imperfectly to poorly-drained. Seepage of suprapermafrost groundwater was observed at several locations across the project site.

Surficial materials encountered in the boreholes show that the surficial deposits generally comprise well graded coarse colluvium generally from 1.6 to 7 m thick (although locally colluvium can be up to 15 m thick). The colluvial material consists mainly of layers of sand and gravel, with some cobbles and boulders, and minor silt and clay. It is covered either with a thin layer of moss or a veneer of "black muck" (wind-blown silt mixed with organic material). Moisture content in the colluvium ranges from 5% to 68%, but was up to 387% in the black muck that was sampled.

Occasionally, black muck is interbedded with colluvium near the ground surface, indicating past mass movement activity. This was noted in various holes at Kona Pond (GT-45), West Pond (GT-66) and Halfway Pond. At one borehole, frost shattered bedrock was encountered at the base of the colluvium unit where it overlies bedrock.

Bedrock mainly comprises either weathered granite or weathered gneiss. The granite, ranging from very weak to very strong, is jointed and fractured and of very poor to excellent quality. The gneiss is weak to extremely strong, foliated, banded, or includes quartz veins, is heavily fractured and jointed, near the ground surface. Rock Quality Designation (RQD) values range from very poor to good. Joints in both types of bedrock may be infilled with oxides, calcite, sand, silt, clay, weathered bedrock, or ice.

Biotite schist was encountered in a few locations. It is weathered and weak to very strong. Quartz veins may be present and joints may be oxidized and/or may contain silt, sand, calcite, oxide or ice infill. Rock quality is very poor to good based on the RQD values.

The mine site area is located within the zone of extensive discontinuous permafrost. Ice-rich permafrost is most common on north-facing slopes, while steep, well drained, south-facing slopes are generally permafrost-free. Active layer thickness ranges from 0.5 m to 2 m. Permafrost conditions were encountered in twenty seven of the thirty five boreholes completed in the fall of 2016.

Permafrost temperatures at the two new GTC installation locations (North WRSF, Borehole GT-14 and Halfway Pond, Borehole GT-63) range from -1.1°C to -1.4°C at the depth of zero annual amplitude. A temperature of -0.5°C was recorded at the single-bead thermistor string location (Halfway Pond, GT-66). The depth of zero annual amplitude was estimated from the ground temperature data collected with two multi-bead GTCs installed in GT-14 and GT-63. It ranges from approximately 7 m depth below ground level (BGL) at the GT-14 site to approximately 8 m depth BGL at the GT-63 site.

Excess ground ice was observed in all twenty seven boreholes that encountered permafrost. It manifests in the frozen overburden in various forms, such as ice lenses (Vs, Vr); ice inclusions (Vx); or ice coatings (Vc) on gravel or cobbles. The excess ice content (percent by volume of visible ice) exceeds 50% in several locations.

Ground ice was also observed infilling some of the fractures and joints in bedrock as described in the appended borehole logs and illustrated in the report photographs.

# **TABLE OF CONTENTS**

| EXE | CUTI | /E SUN | MMARY                                    | 1                                               |
|-----|------|--------|------------------------------------------|-------------------------------------------------|
| 1.0 | INTF | RODUC  | CTION                                    | 1                                               |
| 2.0 | GFO  | TECHI  | NICAL INVESTIGATION                      | 1 2 2 2 3 3 3 4 4 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 |
|     | 2.1  |        | ral                                      |                                                 |
|     | 2.2  |        | ole Locations                            |                                                 |
|     | 2.3  |        | g and Coring Methodology                 |                                                 |
|     | 2.4  | _      | chnical Logging                          |                                                 |
|     | 2.5  |        | ling and Geotechnical Laboratory Testing |                                                 |
|     | 2.6  | •      | nd Temperature Monitoring                |                                                 |
|     | 2.7  |        | afrost Distribution Mapping              |                                                 |
| 3.0 | TER  | RAIN A | AND SUBSURFACE CONDITIONS                | 18                                              |
|     | 3.1  |        | ral                                      |                                                 |
|     | 3.2  |        | WRSF Area                                |                                                 |
|     |      | 3.2.1  | Terrain Assessment                       |                                                 |
|     |      | 3.2.2  | Overburden                               | 20                                              |
|     |      | 3.2.3  | Bedrock                                  | 20                                              |
|     | 3.3  | Kona I | Pond                                     | 21                                              |
|     |      | 3.3.1  | Terrain Assessment                       | 21                                              |
|     |      | 3.3.2  | Overburden                               | 23                                              |
|     |      | 3.3.3  | Bedrock                                  | 24                                              |
|     | 3.4  | Halfwa | ay Pond                                  | 25                                              |
|     |      | 3.4.1  | Terrain Assessment                       | 26                                              |
|     |      | 3.4.2  | Overburden                               | 27                                              |
|     |      | 3.4.3  | Bedrock                                  | 28                                              |
|     | 3.5  | West \ | WRSF                                     | 29                                              |
|     |      | 3.5.1  | Terrain Assessment                       | 30                                              |
|     |      | 3.5.2  | Overburden                               | 31                                              |
|     |      | 3.5.3  | Bedrock                                  | 31                                              |
|     | 3.6  | West F | Pond                                     | 32                                              |
|     |      | 3.6.1  | Terrain Assessment                       | 33                                              |
|     |      | 3.6.2  | Overburden                               | 34                                              |
|     |      | 3.6.3  | Bedrock                                  |                                                 |
|     | 3.7  |        | Pond                                     |                                                 |
|     |      | 3.7.1  | Terrain Assessment                       |                                                 |
|     |      | 3.7.2  | Overburden                               |                                                 |
|     |      | 3.7.3  | Bedrock                                  |                                                 |
|     | 3.8  |        | WRSF                                     |                                                 |
|     |      | 3.8.1  | Terrain Assessment                       |                                                 |
|     |      | 3.8.2  | Overburden                               |                                                 |
|     |      | 3.8.3  | Bedrock                                  |                                                 |
|     | 3.9  | North  | Pond                                     | 41                                              |

|       | 3.9.1                                                       | Terrain Assessment                                      |    |  |  |
|-------|-------------------------------------------------------------|---------------------------------------------------------|----|--|--|
|       | 3.9.2                                                       | Overburden                                              |    |  |  |
|       | 3.9.3                                                       | Bedrock                                                 | 46 |  |  |
| 4.0   | CLOSURE.                                                    |                                                         | 48 |  |  |
| REFE  | IST OF TABLES IN TEXT  able 1: Borehole Information Summary |                                                         |    |  |  |
|       |                                                             |                                                         |    |  |  |
| LIST  | OF TABLES                                                   | S IN TEXT                                               |    |  |  |
| Table | : 1: Borehole                                               | Information Summary                                     | 3  |  |  |
|       |                                                             |                                                         |    |  |  |
| Table | 3: Joint Set                                                | Number (JSN), J <sub>n</sub> (after Barton et al. 1974) | 9  |  |  |
| Table | 4: Correlation                                              | on Between RQD and Rock Mass Quality                    | 9  |  |  |
| Table | 5: Classifica                                               | ation of Rock with Regard to Strength                   | 9  |  |  |
| Table | e 6: Summary                                                | y of Onsite Laboratory Test Results                     | 12 |  |  |
| Table | 7: Summar                                                   | y of Offsite Laboratory Test Results                    | 15 |  |  |
| Table | e 9: Overburd                                               | den and Bedrock Condition Summary, Kona WRSF            | 19 |  |  |
| Table | e 10: Overbu                                                | rden and Bedrock Condition Summary, Kona Pond           | 21 |  |  |
|       |                                                             | rden and Bedrock Condition Summary, Halfway Pond        |    |  |  |
|       |                                                             | rden and Bedrock Condition Summary, West WRSF           |    |  |  |
|       |                                                             | rden and Bedrock Condition Summary, West Pond           |    |  |  |
|       |                                                             | rden and Bedrock Condition Summary, South Pond          |    |  |  |
|       |                                                             | rden and Bedrock Condition Summary, North WRSF          |    |  |  |
|       |                                                             | rden and Bedrock Condition Summary, North Pond          |    |  |  |
|       |                                                             | ••                                                      |    |  |  |
|       |                                                             |                                                         |    |  |  |
|       |                                                             |                                                         |    |  |  |

# **APPENDIX SECTIONS**

### **FIGURES**

| Figure 1 | Site Location                                                             |
|----------|---------------------------------------------------------------------------|
| Figure 2 | Borehole and Testpit Location Plan Overview                               |
| Figure 3 | Borehole and Testpit Location Plan North Waste Rock Storage Facility Area |
| Figure 4 | Borehole and Testpit Location Plan West WRSF and South WRSF Areas         |
| Figure 5 | Borehole Location Plan West Pond, Kona WRSF, Kona Pond, and Halfway Pond  |

### **PHOTOGRAPHS**

| Photo 1     | Borehole GT-01 |
|-------------|----------------|
| Photo 2     | Borehole GT-02 |
| Photo 3-4   | Borehole GT-09 |
| Photo 5-6   | Borehole GT-10 |
| Photo 7-9   | Borehole GT-11 |
| Photo 10    | Borehole GT-12 |
| Photo 11-12 | Borehole GT-13 |
| Photo 13-20 | Borehole GT-14 |
| Photo 21-23 | Borehole GT-15 |
| Photo 24    | Borehole GT-16 |
| Photo 25    | Borehole GT-17 |
| Photo 26-27 | Borehole GT-18 |
| Photo 28-29 | Borehole GT-20 |
| Photo 30-33 | Borehole GT-43 |
| Photo 34    | Borehole GT-44 |
| Photo 35-39 | Borehole GT-45 |
| Photo 40-44 | Borehole GT-46 |
| Photo 45-52 | Borehole GT-47 |
| Photo 53-54 | Borehole GT-48 |
| Photo 55-56 | Borehole GT-50 |
| Photo 57-62 | Borehole GT-51 |
| Photo 63-64 | Borehole GT-53 |
| Photo 65    | Borehole GT-55 |
| Photo 66-68 | Borehole GT-57 |
| Photo 69-70 | Borehole GT-58 |
| Photo 71    | Borehole GT-59 |
| Photo 72-77 | Borehole GT-60 |
| Photo 78-79 | Borehole GT-61 |
| Photo 80-81 | Borehole GT-62 |
| Photo 82-86 | Borehole GT-63 |
| Photo 87    | Borehole GT-64 |
| Photo 88-90 | Borehole GT-65 |
| Photo 91-94 | Borehole GT-66 |

### **APPENDICES**

| Appendix A | Tetra Tech's General Conditions                        |
|------------|--------------------------------------------------------|
| Appendix B | Borehole and Testpit Logs                              |
| Appendix C | Offsite Geotechnical Laboratory Soil Test Results      |
| Appendix D | Onsite Rock Strength Index Test Results                |
| Appendix F | GTC Installation Forms and Ground Temperature Profiles |

### **ACRONYMS AND ABBREVIATIONS**

BGL Below Ground Level

CYR Cyr Drilling International Ltd.

FF Fracture Frequency

GTC Ground Temperature Cable

JSN Joint Set Number KP Knight Piesold

Nbe Well bonded perennially frozen soil with excess ice
Nbn Well bonded perennially frozen soil, no excess ice
PECG Palmer Environmental Consulting Group, Inc.

PLT Point Load Testing

RQD Rock Quality Designation SRK SRK Consulting (Canada), Inc.

Vc Perennially frozen soil with excess ice visible as ice coatings on particles

Vr Perennially frozen soil with excess ice visible as random or irregularly oriented ice formations
Vs Perennially frozen soil with excess ice visible as stratified or distinctly oriented ice formations

Vx Perennially frozen soil with excess ice visible as individual ice inclusions

WRSF Waste Rock Storage Facility

### **GLOSSARY OF TERMS**

**ACTIVE LAYER** – the top layer of ground that is subject to annual thawing and freezing in areas underlain by permafrost. The thickness of the active layer varies from year to year, depending on such factors as the ambient air temperature, vegetation, drainage, soil and rock type, water content, snow cover, and degree and orientation of slope (NRCC 1988).

**CRYOSTRUCTURE** – the structural characteristics of frozen earth materials determined by the amount and distribution of pore ice and lenses of segregated ice. Can be described as massive, layered, reticulate etc.

**DEPTH OF ZERO ANNUAL AMPLITUDE (***depth of zero seasonal temperature variations***)** – the distance from the ground surface downward to the level beneath which there is practically no annual fluctuation in ground temperature (NRCC 1988).

**EXCESS ICE** – the volume of ice in the ground that exceeds the total pore volume that the ground would have under natural unfrozen conditions (NRCC 1988).

**GROUND ICE** – a general term referring to all types of ice (segregated, intrusive, vein etc.) formed in freezing and frozen ground. Occurs in pores, cavities, voids, cracks, fractures, and other openings in soil or rock.

**ICE AND SOIL TYPE (ICE and SILT etc.)** – discrete visible ice formations in frozen soils that are greater than 50% by volume. Frozen core interval that contains more ice (>50% by volume of visible ice) than soil particles.

ICE COATINGS – discernible layers of ice found on or below the larger soil particles in a frozen soil mass.

**ICE CONTENT** – the amount of ice contained in frozen or partially frozen soil or rock. Ice content is normally expressed in one of two ways:

- On a dry-weight basis (gravimetric), as the ratio of the mass of the ice in a sample to the mass of the dry sample, expressed as a percentage; or
- On a volume basis (volumetric), as the ratio of the volume of ice in a sample to the volume of the whole sample, expressed as a percentage.

**ICE LENS** – a dominantly horizontal, lens-shaped body of ice ranging in thickness from hairline to 0.3 m. Ice layers more than 0.3 m in thickness are better termed massive ice beds.

**ICE WEDGE** – a massive, generally wedge-shaped body of foliated or vertically banded, commonly white, ground ice with its apex pointing downward.

**PERMAFROST** – ground (soil and/or rock) that remains at or below 0°C for at least two consecutive years. Permafrost is defined exclusively on the basis of temperature. It is not necessarily frozen, i.e., it does not necessarily contain ground ice.

**PERMAFROST, ICE-RICH** – permafrost containing excess ice.

**PERMAFROST TABLE** – the upper boundary of permafrost.

**SUPRAPERMAFROST WATER** – water occurring in the active layer above the permafrost table.

**TALIK** – a layer or body of unfrozen ground in a permafrost area. Several types of taliks can be distinguished on the basis of their relationship to the permafrost: closed, open, lateral, isolated etc. (NRCC 1988).

### LIMITATIONS OF REPORT

This report and its contents are intended for the sole use of Goldcorp Inc. (Goldcorp) and their agents. Tetra Tech Canada Inc. (Tetra Tech) does not accept any responsibility for the accuracy of any of the data, the analysis, or the recommendations contained or referenced in the report when the report is used or relied upon by any Party other than Goldcorp or for any Project other than the proposed development at the subject site. Any such unauthorized use of this report is at the sole risk of the user. Use of this report is subject to the terms and conditions stated in Tetra Tech's Services Agreement. Tetra Tech's General Conditions are provided in Appendix A of this report.

# 1.0 INTRODUCTION

Tetra Tech Canada Inc. formally known as Tetra Tech EBA Inc. (Tetra Tech) and SRK Consulting (U.S. and Canada), Inc. (SRK) were retained by Goldcorp Inc. (Goldcorp) to conduct a geotechnical site investigation at the Coffee Mine Site, which is part of the Coffee Gold Project (the Project). The Project is located in west-central Yukon Territory and is approximately 400 km northwest of Whitehorse (Figure 1).

The objective of the investigation was to acquire geotechnical and permafrost data to support the design of the mine WRSFs and respective sedimentation dams. Additional data was collected during the program to supplement the characterization of the WRSF foundation materials which were initially investigated during the 2015 geotechnical program (SRK, 2016) and to characterize foundation materials at the respective sedimentation dam locations.

The geotechnical investigation program consisted of coring and testing frozen and unfrozen overburden and bedrock. For the purpose of this report, overburden is defined as all soils above bedrock consisting of organic soils and inorganic soils in both frozen and unfrozen states.

The primary focus of the fall 2016 program was to provide an accurate as possible characterization of permafrost conditions and ice contents. As such chilled drilling fluids were used minimizing thermal disturbance and providing high quality undisturbed frozen core samples. Cores were logged according to appropriate geotechnical and permafrost standards. Where soils were not frozen, poor recovery of soils occurred in some instances due to the lack of cohesion within the soils and the drilling fluid circulation. It is anticipated that these materials can be sampled with test pits at a later date if necessary.

Based on mine plans at that time, a total of seventy six drillhole locations were initially selected for the program to further characterize the WRSF foundation materials and provide initial foundation material information for the respective sedimentation dams. A total of thirty five of the seventy six drillholes were able to be completed during the fall 2016 program, before the program was suspended for the winter season. The program is currently anticipated to reconvene in late spring 2017 to complete the remaining forty one drillholes, pending the outcome of ongoing mine optimization and trade-off studies. It is possible that a portion of the forty one remaining holes may be eliminated or relocated if the ongoing studies significantly change the mine WRSF layout. This report summarizes results of the first thirty five holes.

The program used drilling and coring techniques designed specifically to minimize thermal disturbance to frozen core. Ground ice content of overburden materials (percent by volume of visible ice) and other subsurface geotechnical data was collected. This additional data augments the geotechnical information acquired prior to this investigation program. The entirety of the new and old data is needed to support ongoing engineering design work for the Project.

The fall 2016 geotechnical site investigation program was carried out jointly by Tetra Tech and SRK during the period from August 24, 2016 to October 5, 2016. This report presents the data collected during the investigation, including borehole logs, geotechnical laboratory test results, and initial ground temperature cable (GTC) readings collected from newly installed GTCs. Terrain and subsurface conditions at most of the waste rock storage facilities (WRSFs) and various sedimentation ponds within the mine site are summarized from the new data.

This report incorporates and is subject to Tetra Tech's General Conditions which are included in Appendix A.

### 2.0 GEOTECHNICAL INVESTIGATION

### 2.1 General

The fall 2016 geotechnical site investigation program was managed in the field by Dr. Vladislav E. Roujanski, a senior project geologist-geocryologist from Tetra Tech's Edmonton office. Field core logging, sampling, and onsite geotechnical soil and rock core testing was conducted by Dr. Vladislav Roujanski, P.Geol., Mr. Ernest Palczewski, P.Geo., Mr. Ryan Garritsen, E.I.T. (all from Tetra Tech's Edmonton Office), and Mr. Jonathon Dixon, P.Eng. (Tetra Tech's Whitehorse Office). Mr. Sam Amiralaei, Mr. Kendall Cator, and Mr. Stuart McPhee of SRK performed field core logging focusing on the non-permafrost related geotechnical characteristics of the materials. Technical support for the field program was provided by Mr. Kevin Jones, Tetra Tech Vice President for Arctic Development and Mr. Michael Levy, SRK Principal Consultant.

Mr. James Scott, M.Sc., P.Geo, Engineering Manager and Mr. Ryan Fetterley, Coffee Camp Manager, were Goldcorp's technical representatives on site, coordinating the drilling program on behalf of Goldcorp, and providing technical and logistical support. Ms. Jasmin Dobson was Goldcorp's site environmental superintendent.

Cyr Drilling International Ltd. (CYR) was the drilling contractor. Mr. Fred Crivea was CYR's driller.

Chilled drilling fluid was used to prevent permafrost from thawing during drilling. Mr. Bill McQuain of CT Control Temp visited the site intermittently to maintain the chiller (refrigeration) unit and oversee chiller operation.

Support for drill pad construction, moving the drill rig between the drill pads and access to the borehole locations was provided by helicopter (Photo 1).



Photo 1: A-Star helicopter in the Kona Pond area. Photo taken on September 15, 2016.

A total of thirty five vertical boreholes with depths ranging from 4.0 m to 21.2 m were drilled and logged at the following eight proposed infrastructure locations: Kona WRSF area, Kona Pond, Halfway Pond, West WRSF area,

West Pond, South Pond, North WRSF, and North Pond, as shown in Figures 2 to 5. Nine shallow test pits with depths ranging from 0.4 m to 0.7 m were hand-dug to refusal either on the permafrost table or on coarse colluvium at selected drill pad locations as shown in Figures 2 to 5.

The boreholes and testpits provide data regarding depth to bedrock, bedrock lithology, overburden sediment types, ground ice content, and conditions of the overburden and bedrock. One hundred ninety six representative soil samples were collected and sent to Tetra Tech's Whitehorse geotechnical laboratory for further testing. All boreholes but one (GT-10) were drilled through the overburden to a minimum depth of 2.3 m (GT-46) into competent bedrock. Borehole GT-10 did not reach bedrock.

Two multi-bead GTCs were installed: one in Borehole GT-14 in the North WRSF area and another in Borehole GT-63 at the Halfway Pond site. A single bead thermistor was installed in Borehole GT-66 at the Halfway Pond site.

### 2.2 Borehole Locations

The project area is located within Zone 7 of the Universal Transverse Mercator (UTM) Grid. The horizontal datum for this project is the North American Datum 1983 (NAD83).

Survey control for the geotechnical site investigation was provided jointly by Tetra Tech and SRK. Tetra Tech personnel used a handheld GPS unit (Garmin GPSMAP 60CSx) to locate and verify the borehole locations that were staked by Goldcorp prior to the investigation. An as-built RTK GPS survey, including borehole collar elevations, was carried out by Goldcorp (Challenger Geomatics Ltd.) following the completion of the site investigation. The coordinates, depth to bedrock, and completion depth for each of the boreholes are presented on borehole logs in Appendix B and are summarized in Table 1 below. Borehole locations are also presented on Figures 2 to 5.

**Table 1: Borehole Information Summary** 

| Cito                   | Borehole             | UTM ZONE 7      |             |                  | Depth to       | Completion   | Deilling           |
|------------------------|----------------------|-----------------|-------------|------------------|----------------|--------------|--------------------|
| Site<br>Infrastructure |                      | Northing<br>(m) | Easting (m) | Elevation<br>(m) | Bedrock<br>(m) | Depth<br>(m) | Drilling<br>Fluid  |
|                        | GT-01                | 6,973,518       | 580,350     | 1,209            | 1.6            | 4.0          | Perma-<br>Drill ES |
| Kona WRSF              | GT-02                | 6,973,353       | 580,246     | 1,202            | 2.0            | 5.0          | Perma-<br>Drill ES |
|                        | GT-09                | 6,973,144       | 580,132     | 1,196            | 15.0           | 19.0         | Perma-<br>Drill ES |
|                        | GT-10                | 6,975,327       | 585,072     | 972              | -              | 7.5          | Perma-<br>Drill ES |
|                        | GT-11                | 6,975,298       | 585,382     | 1,027            | 2.4            | 6.4          | Perma-<br>Drill ES |
| North WRSF             | GT-12                | 6,975,220       | 585,730     | 1,072            | 3.0            | 6.0          | Perma-<br>Drill ES |
| Notifi Witoi           | GT-13                | 6,975,116       | 585,041     | 1,026            | 5.8            | 10.0         | Perma-<br>Drill ES |
|                        | GT-14 <sup>(1)</sup> | 6,975,088       | 585,457     | 1,082            | 1.9            | 20.5         | Perma-<br>Drill ES |
|                        | GT-15                | 6,974,887       | 585,044     | 1,081            | 6.0            | 10.0         | Perma-<br>Drill ES |

**Table 1: Borehole Information Summary** 

|                        |                      | UTM ZONE 7      |             |               | Depth to       | Completion   |                    |
|------------------------|----------------------|-----------------|-------------|---------------|----------------|--------------|--------------------|
| Site<br>Infrastructure | Borehole             | Northing<br>(m) | Easting (m) | Elevation (m) | Bedrock<br>(m) | Depth<br>(m) | Drilling<br>Fluid  |
|                        | GT-16                | 6,974,297       | 582,601     | 1,006         | 2.7            | 6.0          | Glycol             |
|                        | GT-17                | 6,973,945       | 582,500     | 985           | 2.0            | 5.2          | Glycol             |
| West WRSF              | GT-18                | 6,973,630       | 582,637     | 988           | 3.7            | 7.0          | Glycol             |
|                        | GT-19                | 6,974,146       | 582,819     | 1,075         | 2.6            | 6.0          | Glycol             |
|                        | GT-20                | 6,973,768       | 582,947     | 1,079         | 3.2            | 7.0          | Glycol             |
|                        | GT-43                | 6,973,188       | 580,418     | 1,152         | 11.0           | 18.0         | Glycol             |
|                        | GT-44                | 6,973,159       | 580,436     | 1,151         | 2.0            | 6.0          | Glycol             |
| Kona Pond              | GT-45                | 6,973,178       | 580,399     | 1,155         | 13.6           | 21.0         | Glycol             |
|                        | GT-46                | 6,973,201       | 580,444     | 1,148         | 8.7            | 11.0         | Glycol             |
|                        | GT-47                | 6,973,208       | 580,413     | 1,154         | 13.0           | 18.0         | Glycol             |
|                        | GT-48                | 6,975,725       | 585,236     | 916           | 1.6            | 9.0          | Perma-<br>Drill ES |
| North Pond             | GT-50                | 6,975,666       | 585,289     | 906           | 3.4            | 10.0         | Perma-<br>Drill ES |
|                        | GT-51 <sup>(2)</sup> | 6,975,679       | 585,313     | 909           | 2.4            | 21.0         | Perma-<br>Drill ES |
|                        | GT-53                | 6,972,356       | 584,674     | 799           | 6.5            | 10.0         | Glycol             |
| South Pond             | GT-55                | 6,972,333       | 584,686     | 796           | 6.3            | 9.0          | Glycol             |
|                        | GT-56                | 6,972,376       | 584,655     | 802           | 6.2            | 10.0         | Glycol             |
|                        | GT-57                | 6,973,904       | 582,158     | 918           | 10.2           | 14.0         | Glycol             |
|                        | GT-58                | 6,973,942       | 582,205     | 901           | 4.6            | 8.0          | Glycol             |
| West Pond              | GT-59                | 6,973,971       | 582,239     | 913           | 1.0            | 5.0          | Glycol             |
|                        | GT-60                | 6,973,977       | 582,181     | 895           | 4.9            | 8.0          | Glycol             |
|                        | GT-61                | 6,973,921       | 582,216     | 905           | 4.0            | 8.0          | Glycol             |
|                        | GT-62                | 6,973,182       | 581,258     | 1,020         | 3.9            | 8.0          | Glycol             |
|                        | GT-63 <sup>(1)</sup> | 6,973,176       | 581,283     | 1,028         | 3.1            | 21.2         | Glycol             |
| Halfway Pond           | GT-64                | 6,973,182       | 581,213     | 1,029         | 3.5            | 7.0          | Glycol             |
|                        | GT-65                | 6,973,211       | 581,245     | 1,018         | 5.4            | 9.0          | Glycol             |
|                        | GT-66                | 6,973,166       | 581,235     | 1,023         | 7.7            | 11.0         | Glycol             |

Notes: (1) GTC installed

(2) PVC pipe installed for potential GTC

# 2.3 Drilling and Coring Methodology

The boreholes were drilled using a Helicopter portable D-10 Duralite 500 diamond drill rig (Photo 2) with a triple tube coring system operated by CYR. The maximum depth of drilling was 21.2 m. All overburden and bedrock core samples were recovered using an NQ3 core barrel (45.1 mm inner diameter) and conventional diamond drilling techniques.



Photo 2: Heli portable D-10 Duralite 500 Diamond Drill rig setup, North WRSF area. Chiller unit with a mixing tank filled with drilling fluid (Perma-Drill SE) in the middle of photo.

Photo taken on August 26, 2016.

Coring with a diamond drill generates heat at the core bit, especially when drilling through coarse-grained well-bonded frozen soil or hard rock. The drill bit requires continuous flushing with chilled drilling fluid to cool the bit, remove cuttings, and reduce friction between the drill string and the walls of the borehole. For this project, it was particularly important to minimize thermal disturbance of the permafrost by keeping ground temperatures below 0°C. To meet this thermophysical challenge, a refrigeration unit (chiller) was manufactured by CYR (Photos 2 and 3). It was used to chill drilling fluid to a temperature of approximately -6°C to -7°C.



Photo 3: Drilling fluid refrigeration unit (chiller) with a mixing tank filled with Perma-Drill ES mixed with water.

Photo taken on August 28, 2016.

Two types of drilling fluid additives, Perma-Drill ES and Propylene Glycol, were used because the former, which was utilized at the beginning of the drill program, required a higher concentration (approximately 60%), when mixing with water than the latter (approx. 30%) to lower the drilling fluid temperature to the required -6°C / -7°C. This posed a logistical challenge of shipping additional containers of Perma-Drill ES to the site. Perma-Drill ES (Photo 4) is manufactured by MATEX Control Chemical (1989) Corporation. It consists mainly of concentrated sugar beet juice. Table 1 shows which boreholes were drilled with which additive. Both methods allowed recovery of good quality

frozen soil core samples (Photo 5).



Photo 4: Perma-Drill ES drilling fluid additive. Photo taken on August 26, 2016.



Photo 5: Good quality intact frozen overburden core recovered with chilled Perma-Drill SE drilling fluid in Borehole GT-10 (0.3 m to 4.0 m depth interval).

Photo taken on September 1, 2016.

# 2.4 Geotechnical Logging

Frozen overburden and bedrock core examination and logging was conducted immediately following core recovery in a core shack adjacent to the borehole collar to ensure that minimal thermal disturbance affected the frozen core sample. This allowed accurate identification, logging, and sampling of frozen overburden core.

Frozen soil core logging involved three steps:

- 1. Description of soil composition (lithology) according to the Modified Unified Soil Classification System guidelines (Appendix C) and Tetra Tech's work method WM4440 guidelines;
- 2. Description of the frozen state of the soil (visible or non-visible ice); and
- Description of characteristic ice features, including cryogenic structures (cryostructures) found within frozen soil. Steps 2 and 3 were carried out according to the ASTM D4083 procedure and Tetra Tech's work method WM4102 guidelines.

Bedrock core logging followed Tetra Tech's work method WM3403 guidelines and consisted of identification of the following:

- 1. Rock type;
- 2. Degree of weathering (W1 to W6, Table 2)
- 3. Joint set number (JSN, Table 3);
- 4. Spacing of joints including their roughness, and type of the infill;
- 5. Fracture frequency (FF); and
- 6. Rock quality designation (RQD, Table 4).

Rock strength was determined by using a geological hammer at the drill site and a point load tester in the onsite geotechnical field laboratory located at the Coffee Camp. Classification of the rock with regard to strength and strength description terms are based on those suggested by the International Society for Rock Mechanics (ISRM 1981), which are summarized in Table 5.

**Table 2: Degree of Weathering** 

| Degree of Weathering         | Description                                                                             | Rating |
|------------------------------|-----------------------------------------------------------------------------------------|--------|
| Residual Soil                | Original fabric destroyed                                                               | W6     |
| Completely weathered/altered | Original fabric and relict structures remain, but rock is decomposed and friable        | W5     |
| Highly weathered/altered     | Rock is discoloured and strength is significantly reduced by weathering                 | W4     |
| Moderately weathered/altered | Rock is discoloured, but rock strength only slightly affected, discontinuous weathering | W3     |
| Slightly weathered/altered   | Rock strength unchanged, weathering on joints only                                      | W2     |
| Fresh and unweathered        | Alteration may result in an improvement in rock competency (e.g., silicification)       | W1     |

Table 3: Joint Set Number (JSN), J<sub>n</sub> (after Barton et al. 1974)

| Description                                                      | J <sub>n</sub> Rating |
|------------------------------------------------------------------|-----------------------|
| Massive, no or few joints                                        | 0.5 to 1.0            |
| One joint set                                                    | 2                     |
| One joint set plus random                                        | 3                     |
| Two joint sets                                                   | 4                     |
| Two joint sets plus random                                       | 6                     |
| Three joint sets                                                 | 9                     |
| Three joint sets plus random                                     | 12                    |
| Four or more joint sets, random, heavily jointed, "sugar coated" | 15                    |
| Crushed rock, earth-like                                         | 20                    |

**Table 4: Correlation Between RQD and Rock Mass Quality** 

| RQD<br>(%) | Rock Quality |  |
|------------|--------------|--|
| <25        | Very poor    |  |
| 25-50      | Poor         |  |
| 50-75      | Fair         |  |
| 75-90      | Good         |  |
| 90-100     | Excellent    |  |

Table 5: Classification of Rock with Regard to Strength

| Grade               | Strength Classification Field Identification Method |                                                                                                                           | Range of Unconfined<br>Compressive Strength<br>(MPa) |
|---------------------|-----------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------|
| R0                  | Extremely Weak                                      | Indented by thumbnail                                                                                                     | <1                                                   |
| R1                  | Very Weak                                           | Crumbles under firm blows of geological hammer; can be peeled with a pocket knife                                         | 1-5                                                  |
| R2 Weak Rock        |                                                     | Can be peeled by a pocket knife with difficulty; shallow indentations made by a firm blow with point of geological hammer | 5-25                                                 |
| R3 Medium Strong    |                                                     | Cannot be scraped or peeled with a pocket knife; specimen can be fractured with a single firm blow of geological hammer   | 25-50                                                |
| R4 Strong           |                                                     | Specimen required more than one blow of geological hammer to fracture                                                     | 50-100                                               |
| R5 Very Strong      |                                                     | Specimen required many blows of geological hammer to fracture                                                             | 100-250                                              |
| R6 Extremely Strong |                                                     | Specimen can only be chipped by the geological hammer                                                                     | >250                                                 |

# 2.5 Sampling and Geotechnical Laboratory Testing

All recovered core samples were placed in wooden core boxes and photographed immediately upon recovery, prior to sample removal. Close-up photographs were taken of ground ice formations and cryostructures where present. Some ground ice features identified in the recovered frozen soil and rock cores are illustrated in Photos 6 to 8.



Photo 6: 15 mm thick horizontal ice lens in frozen silt at 5.95 m depth BGL; GT-66, Halfway Pond.

Photo taken on September 24, 2016.



Photo 7: Ice infilling vertical fracture in gneiss bedrock at 2.65 m depth BGL; GT-51, North Pond.

Photo taken on September 6, 2016.



Photo 8: Ice inclusion (Vx) in fractured upper bedrock at 13.2 m depth BGL; GT-47, Kona Pond. Photo taken on September 14, 2016.

Representative undisturbed frozen core samples were wrapped in several layers of plastic wrap and were then wrapped in several layers of aluminum foil. The wrapped samples were temporarily stored at the drill sites in insulated coolers with ice packs to maintain their frozen undisturbed state until they could be transferred to a freezer located at the Coffee Camp.

Representative disturbed soil samples were placed in plastic bags, double-bagged for moisture preservation, and transported to the Coffee Camp geotechnical laboratory.

Some of the samples were tested in the field laboratory located at the camp, which was equipped with a microwave oven, an electronic scale, a point load tester, and other basic testing equipment. Testing included excess ground ice content measurement, porewater salinity, moisture content, and bulk density determinations. The remainder of the frozen core samples were shipped to Whitehorse for storage and testing at Tetra Tech's geotechnical laboratory. The offsite testing included natural moisture and excess ice contents, particle size distribution (hydrometer), organic content, bulk density, and Atterberg limits.

Surprisingly high salinities (up to 45 ppt, Table 6) in porewater in some soil samples measured with a handheld refractometer in the field might be explained by contamination of the soil samples with concentrated drilling fluid. However, the complete chemical contents of the drilling fluid additives (Perma-Drill ES) were not available during preparation of this report.

The geotechnical laboratory testing results are summarized below in Tables 6 and 7, are presented fully in Appendix C and Appendix D, and are shown on the borehole logs in Appendix B.

**Table 6: Summary of Onsite Laboratory Test Results** 

| Borehole<br>No. | Sample<br>Number | Depth<br>(m) | Frozen Bulk<br>Density<br>(kg/m³) | Excess Ice<br>Content<br>(% by volume) | Moisture<br>Content<br>(%) | Porewater<br>Salinity<br>(ppt) |
|-----------------|------------------|--------------|-----------------------------------|----------------------------------------|----------------------------|--------------------------------|
|                 | S1               | 0.5 - 0.65   |                                   | 28.2                                   | 119.1                      | 3                              |
|                 | S2               | 0.65 - 0.8   | 1,210                             | 50.6                                   | 129.2                      | 4                              |
|                 | S3A              | 0.8 - 1.05   | 1,344                             |                                        |                            |                                |
| GT10            | S4               | 1.05 - 1.15  |                                   | 41.1                                   | 72.2                       | 3                              |
|                 | S6               | 3.25 - 3.43  |                                   | 13.1                                   | 24.3                       | 13                             |
|                 | S9               | 5.3 - 5.5    |                                   |                                        | 8.3                        |                                |
|                 | S10              | 6.8 - 6.9    |                                   |                                        | 9.3                        |                                |
| GT11            | S2               | 2.15 - 2.37  |                                   | 19.5                                   | 29.9                       | 14                             |
| GT12            | S1               | 0.4 - 0.6    |                                   | 44.5                                   | 122.2                      | 5                              |
| GIIZ            | S3               | 2.5 - 3.0    |                                   | 9.4                                    | 29.3                       | 3                              |
|                 | S1               | 0.2 - 0.56   |                                   | 42.1                                   | 109.2                      | 13                             |
|                 | S2               | 0.56 - 0.66  | 1,318                             |                                        |                            |                                |
|                 | S3               | 1.07 - 1.15  |                                   | 12.3                                   | 10.9                       | 40                             |
| CT12            | S4               | 1.34 - 1.60  | 1,899                             |                                        |                            |                                |
| GT13 -          | S6               | 3.0 - 3.15   |                                   |                                        | 13.3                       |                                |
|                 | R1               | 5.75 - 6.0   |                                   |                                        | 9.8                        |                                |
|                 | R2               | 6.0 - 6.1    |                                   |                                        | 8.9                        |                                |
|                 | R4               | 8.3 - 8.4    |                                   |                                        | 4.0                        |                                |
| GT14            | S1               | 0.25 - 0.35  |                                   | 29.0                                   | 42.7                       | 5                              |
|                 | S1               | 0.25 - 0.40  |                                   | 28.2                                   | 123.9                      | 10                             |
|                 | S4               | 1.35 - 1.45  |                                   | 23.7                                   | 43.7                       | 8                              |
| GT15 -          | S5               | 2.55 - 2.85  | 2,132                             |                                        |                            |                                |
| GIID            | S6               | 3.35 - 3.50  |                                   | 12.0                                   | 12.7                       | 17                             |
|                 | S7               | 5.8 - 6.0    |                                   | 28.9                                   |                            | 5                              |
|                 | S8               | 5.55 - 5.80  | 2,051                             |                                        |                            |                                |
| GT16            | S1               | 2.19 - 2.28  |                                   | 10.1                                   | 27.1                       | 8                              |
| GT18 -          | S1               | 2.2 - 2.3    | 1,949                             | 21.4                                   | 28.6                       | 11                             |
| GIIO            | S2               | 2.51 - 2.61  |                                   | 16.3                                   | 28.4                       | 6                              |
| GT19            | S1               | 1.23 - 1.40  |                                   | 14.2                                   | 18.3                       | 10                             |
| GT20            | S1               | 1.1 - 1.3    |                                   | 13.2                                   | 24.2                       | 25                             |
|                 | S1               | 0.65 - 0.95  |                                   | 44.6                                   | 55.8                       | 3                              |
|                 | S2               | 1.0 - 1.1    |                                   | 1.6                                    | 19.2                       | 0                              |
|                 | S3               | 2.0 - 2.2    |                                   | 53.2                                   | 90.0                       | 7                              |
| GT43            | S5               | 2.5 - 2.75   | 1,868                             | 49.5                                   | 50.8                       | 10                             |
| 0140            | S7               | 4.48 - 4.62  | 1,932                             |                                        | 26.8                       | 16                             |
| Ī               | S8               | 6.67 - 6.79  |                                   |                                        | 11.5                       |                                |
| Ī               | S10              | 7.63 – 7.82  | 2,148                             |                                        |                            |                                |
|                 | S12              | 9.78 - 9.93  |                                   | 0.0                                    | 9.0                        | 28                             |
| GT44            | S1               | 1.30 - 1.42  |                                   |                                        | 22.1                       | 7                              |

**Table 6: Summary of Onsite Laboratory Test Results** 

| Borehole<br>No. | Sample<br>Number | Depth<br>(m)  | Frozen Bulk<br>Density<br>(kg/m³) | Excess Ice<br>Content<br>(% by volume) | Moisture<br>Content<br>(%) | Porewater<br>Salinity<br>(ppt) |
|-----------------|------------------|---------------|-----------------------------------|----------------------------------------|----------------------------|--------------------------------|
|                 | S1               | 1.0 -1.14     |                                   | 38.0                                   | 44.0                       | 21                             |
|                 | S2               | 1.2 - 1.35    |                                   | 36.1                                   | 38.8                       | 15                             |
|                 | S6               | 5.79 - 5.9    |                                   | 4.2                                    |                            |                                |
| OT45            | S7               | 6.51 - 6.6    |                                   |                                        | 8.2                        | 40                             |
| GT45            | S8               | 7.1 - 7.2     |                                   |                                        | 12.9                       |                                |
|                 | S12              | 9.37 - 9.65   |                                   |                                        | 11.1                       | 32                             |
|                 | S14              | 10.37 - 10.47 |                                   |                                        | 10.3                       | 30                             |
|                 | S16              | 12.78 - 12.85 |                                   |                                        | 9.5                        |                                |
|                 | S1               | 1.09 - 1.2    |                                   | 28.2                                   | 28.4                       | 5                              |
|                 | S2               | 2.2 - 2.3     | 1,484                             |                                        |                            |                                |
| OT40            | S3               | 2.4 - 2.5     |                                   | 45.0                                   | 67.6                       | 3                              |
| GT46            | S5               | 3.20 - 3.36   | 1,957                             |                                        |                            |                                |
|                 | S7               | 4.58 - 4.7    |                                   | 8.3                                    | 11.5                       | 20                             |
|                 | S9               | 7.18 - 7.34   |                                   |                                        | 9.0                        |                                |
|                 | S1               | 0.9 - 1.0     |                                   | 10.1                                   | 30.3                       | 40                             |
|                 | S3               | 2.05 - 2.25   |                                   | 15.4                                   | 24.8                       | 45                             |
|                 | S4               | 2.25 - 2.60   |                                   | 3.5                                    | 23.8                       | 35                             |
|                 | S6               | 4.0 - 4.2     | 1,886                             |                                        |                            |                                |
|                 | S7               | 4.45 - 4.55   |                                   |                                        | 13.3                       |                                |
|                 | S9               | 5.17 - 5.31   | 1,933                             |                                        |                            |                                |
| OT 47           | S10              | 5.31 - 5.41   |                                   |                                        | 9.2                        |                                |
| GT47            | S13              | 6.5 - 6.63    |                                   |                                        | 11.4                       |                                |
|                 | S14              | 7.0 - 7.15    |                                   |                                        | 33.9                       |                                |
|                 | S16              | 8.2 - 8.43    | 2,135                             |                                        |                            |                                |
|                 | S17              | 8.8 - 8.95    |                                   |                                        | 10.1                       |                                |
|                 | S18              | 9.4 - 9.46    |                                   |                                        | 15.0                       |                                |
|                 | S21              | 10.7 - 10.85  | 2,057                             |                                        |                            |                                |
|                 | S22              | 12.1 - 12.2   |                                   |                                        | 14.9                       |                                |
|                 | S1               | 0.4 - 0.6     |                                   | 12.0                                   | 213.6                      | 23                             |
|                 | S2               | 0.7 - 0.8     |                                   | 14.2                                   | 14.9                       | 20                             |
| GT50            | S4               | 2.25 - 2.35   | 1,542                             |                                        | 53.3                       | 8                              |
|                 | S5               | 2.35 - 2.65   | 1,669                             |                                        |                            |                                |
|                 | R3               | 6.8 - 7.0     |                                   |                                        | 12.3                       |                                |
|                 | S1               | 0.4 - 0.5     |                                   |                                        | 218.8                      | 15                             |
|                 | S2               | 0.5 - 0.7     |                                   | 17.9                                   | 17.9                       | 30                             |
| GT51            | S3               | 1.1 - 1.35    | 1,837                             |                                        |                            |                                |
|                 | S4               | 1.48 - 1.58   |                                   | 20.1                                   | 33.5                       | 5                              |
| F               | S6               | 2.0 - 2.15    |                                   | 19.8                                   | 29.5                       | 10                             |

**Table 6: Summary of Onsite Laboratory Test Results** 

| Borehole<br>No. | Sample<br>Number | Depth<br>(m) | Frozen Bulk<br>Density<br>(kg/m³) | Excess Ice<br>Content<br>(% by volume) | Moisture<br>Content<br>(%) | Porewater<br>Salinity<br>(ppt) |
|-----------------|------------------|--------------|-----------------------------------|----------------------------------------|----------------------------|--------------------------------|
|                 | S1               | 1.50 - 1.60  |                                   | 30.7                                   | 30.5                       | 15                             |
|                 | S2               | 2.16 - 2.30  | 1,581                             | 15.6                                   | 49.5                       | 7                              |
| 0757            | S4               | 3.37 - 3.56  | 2,007                             |                                        | 20.0                       | 9                              |
| GT57            | S5               | 5.00 - 5.12  |                                   | 0.0                                    | 14.0                       | 16                             |
|                 | S6               | 6.42 - 6.55  |                                   |                                        | 9.3                        | 15                             |
|                 | S8               | 9.20 - 9.30  |                                   | 0.0                                    | 17.7                       | 19                             |
|                 | S1               | 1.19 - 1.32  |                                   | 32.1                                   | 177.5                      | 4                              |
| GT58            | S3               | 2.27 - 2.39  |                                   | 11.5                                   | 14.2                       | 14                             |
|                 | S5               | 3.2 - 3.3    |                                   | 0.0                                    | 15.1                       | 19                             |
|                 | S1               | 0.92 - 1     |                                   |                                        | 76.9                       | 0                              |
|                 | S2               | 1.28 - 1.40  |                                   |                                        | 50.0                       | 2                              |
| GT60            | S3               | 1.88 - 2.00  |                                   |                                        | 35.7                       | 4                              |
|                 | S4               | 2.46 - 2.6   |                                   | 39.2                                   | 177.6                      | 6                              |
|                 | S6               | 3.75 - 4.00  | 2,101                             |                                        |                            |                                |
|                 | S1               | 1.23 - 1.33  |                                   |                                        | 155.5                      |                                |
| 0.704           | S2               | 1.63 - 1.74  |                                   | 7.7                                    | 12.0                       | 14                             |
| GT61            | S3               | 2.09 - 2.24  |                                   | 12.0                                   | 14.6                       | 13                             |
|                 | S5               | 3.0 - 3.15   |                                   | 17.9                                   | 13.1                       | 8                              |
|                 | S1               | 1.87 - 2.0   |                                   | 23.7                                   | 28.9                       | 20                             |
| GT62            | S3               | 2.42 - 2.48  |                                   | 46.6                                   | 37.5                       | 12                             |
|                 | S4               | 3.33 - 3.5   |                                   | 41.1                                   | 27.0                       |                                |
| OTCO            | S1               | 2.00 - 2.13  | 2,069                             |                                        |                            |                                |
| GT63            | S2               | 2.83 - 3.0   |                                   | 2.9                                    | 13.6                       | 9                              |
|                 | S1               | 2.0 - 2.11   |                                   | 6.2                                    | 11.9                       | 18                             |
| GT64            | S3               | 2.88 - 3.0   |                                   | 35.3                                   | 13.2                       | 7                              |
|                 | S4               | 3.1 - 3.2    |                                   |                                        | 12.3                       | 12                             |
|                 | S1               | 0.5 - 0.6    |                                   |                                        | 204.3                      | 15                             |
|                 | S3               | 1.55 - 1.63  |                                   | 39.2                                   | 225.2                      | 7                              |
|                 | S5               | 2.2 - 2.3    |                                   |                                        | 386.7                      | 18                             |
| OTOS            | S6               | 2.61 - 2.71  |                                   | 15.7                                   | 24.6                       | 3                              |
| GT65            | S8               | 2.44 - 2.63  | 1,126                             |                                        |                            |                                |
|                 | S9               | 3.32 - 3.42  |                                   |                                        | 14.6                       | 8                              |
|                 | S11              | 4.13 - 4.29  | 1,747                             |                                        |                            |                                |
|                 | S13              | 4.8 - 4.94   |                                   | 0.0                                    | 7.4                        | 8                              |

**Table 6: Summary of Onsite Laboratory Test Results** 

| Borehole<br>No. | Sample<br>Number | Depth<br>(m) | Frozen Bulk<br>Density<br>(kg/m³) | Excess Ice<br>Content<br>(% by volume) | Moisture<br>Content<br>(%) | Porewater<br>Salinity<br>(ppt) |
|-----------------|------------------|--------------|-----------------------------------|----------------------------------------|----------------------------|--------------------------------|
|                 | S1               | 2.10 - 2.18  |                                   |                                        |                            |                                |
|                 | S2               | 2.18 - 2.36  | 1,629                             | 52.2                                   | 68.5                       | 40                             |
|                 | S3               | 2.87 - 2.94  |                                   | 29.9                                   | 46.2                       | 14                             |
| GT66            | S5               | 4.00 - 4.11  |                                   | 31.5                                   | 136.1                      | 6                              |
|                 | S7               | 5.15 - 5.28  |                                   | 29.3                                   | 144.4                      | 5                              |
|                 | S8               | 6.00 - 6.12  |                                   | 16.3                                   | 99.3                       | 5                              |
|                 | S10              | 6.55 - 6.77  | 1,425                             |                                        |                            |                                |

**Table 7: Summary of Offsite Laboratory Test Results** 

| Borehole<br>No. | Sample<br>No. | Depth       |           | Moisture       | Excess Ice               | Clay | Silt | Sand | Gravel |
|-----------------|---------------|-------------|-----------|----------------|--------------------------|------|------|------|--------|
|                 |               | From<br>(m) | To<br>(m) | Content<br>(%) | Content<br>(% by volume) | (%)  | (%)  | (%)  | (%)    |
|                 | S3A           | 0.80        | 1.05      | 88.4           | 35.3                     | 13   | 72   | 14   | 0.0    |
| GT10            | S3B           | 0.80        | 1.05      | 108.9          | 24.9                     |      |      |      |        |
|                 | S8            | 4.20        | 4.80      | 6.0            |                          | 7    |      | 19   | 75     |
| GT11            | S1            | 1.70        | 2.15      | 24.8           | 15.7                     | 2    | 5    | 55   | 21     |
| GT12            | S2            | 0.60        | 0.80      | 11.1           | 33.9                     | 1    | 0    | 18   | 72     |
| GT13            | S7            | 3.15        | 3.73      | 5.9            | 0.0                      | (    | 3    | 20   | 74     |
| OT44            | S2            | 0.35        | 0.70      | 24.4           | 24                       | 17   |      | 29   | 54     |
| GT14            | S3            | 0.75        | 0.95      | 17.7           | 0.0                      | 15   | 33   | 35   | 17     |
| GT15            | S2            | 0.50        | 0.70      | 37.2           | 31.2                     | 7    | 22   | 39   | 32     |
|                 | S8            | 5.55        | 5.80      | 12.8           | 0.0                      | 5    | 11   | 71   | 13     |
| GT16            | S2            | 2.35        | 2.68      | 22.2           | 0.0                      | 7    |      | 89   | 4      |
| GT19            | S2            | 2.0         | 2.15      | 11.2           |                          | 6    | 11   | 80   | 3      |
| 0740            | S4            | 2.20        | 2.50      | 60.2           | 36.7                     |      |      |      |        |
| GT43            | S6            | 4.15        | 4.48      | 27.3           | 0.0                      | 15   | 62   | 13   | 10     |
| GT45            | S3            | 2.00        | 2.15      | 47.2           | 27.6                     | 10   | 43   | 29   | 18     |
| G145            | S5            | 5.20        | 5.45      | 10.4           |                          | 3    | 0    | 39   | 32     |
| GT46            | S4            | 2.50        | 3.00      | 17.9           | 9.7                      | 48   |      | 29   | 24     |
| G146            | S8            | 6.00        | 6.28      | 12.6           | 0.0                      | 13   |      | 34   | 53     |
| GT47            | S5            | 3.00        | 3.50      | 10.7           | 0.0                      | 26   |      | 27   | 48     |
|                 | S19           | 9.58        | 10.00     | 15.0           | 0.0                      | 9    | 28   | 25   | 37     |
| GT51            | S5            | 1.60        | 2.00      | 34.9           | 19.5                     | 9    | 23   | 60   | 8      |
| GT57            | S7            | 8.70        | 8.90      | 7.4            |                          | 4    |      | 28   | 68     |
| GT58            | S2            | 1.32        | 1.64      | 49.1           | 8.9                      | 9    | 25   | 64   | 2      |

**Table 7: Summary of Offsite Laboratory Test Results** 

| Borehole<br>No. | Sample<br>No. | Depth       |           | Moisture       | Excess Ice               | Clay | Silt | Sand | Gravel |
|-----------------|---------------|-------------|-----------|----------------|--------------------------|------|------|------|--------|
|                 |               | From<br>(m) | To<br>(m) | Content<br>(%) | Content<br>(% by volume) | (%)  | (%)  | (%)  | (%)    |
| GT61            | S4/S5         | 2.24        | 4.00      | 12.4           |                          | 14   |      | 38   | 48     |
| GT62            | S2            | 2.00        | 2.42      | 24.9           | 19.7                     | 18   |      | 42   | 39     |
| GT64            | S2            | 2.33        | 2.64      | 13.2           | 10.7                     | 2    | 11   | 49   | 38     |
| GT65            | S7            | 2.71        | 3.00      | 34.3           | 19.9                     | 4    | 11   | 37   | 49     |
| СТЕЕ            | S6            | 4.40        | 4.76      | 68.9           | 16.3                     | 10   | 76   | 13   | 1      |
| GT66            | S9            | 6.12        | 6.55      | 90.6           |                          | 10   | 51   | 25   | 14     |

### 2.6 Ground Temperature Monitoring

Two GTCs were installed to determine ground temperatures in locations where there is no or limited ground temperature data: one in Borehole GT-14 (TS 4135) in the North WRSF area and one in Borehole GT-63 (TS 4134) at the Halfway Pond site (Figures 3 and 5).

These boreholes were drilled to the target depth of 21.0 m. A 25 mm I.D. flush couple threaded watertight PVC pipe with a bottom cap were threaded and glued together and lowered into the borehole. The GTCs were inserted inside the watertight PVC pipes. The annulus between the 25 mm PVC pipe and the borehole wall was backfilled with clean, dry sand to hold the PVC pipe in place. A 50 mm solid PVC pipe with a metal housing unit attached at the top was set over the 25 mm PVC pipe to protect the GTC installations. The metal housing was attached to two 2 x 4 wood planks attached to the drill casing left in the hole. A 25 mm watertight PVC pipe was also installed in borehole GT-51 to a depth of approximately 19.8 m to allow potential GTC installation in the future. GTC cable installation reports are provided in Appendix E and the GTC installation set up is shown in Photos 9 and 10.



Photo 9: Downloading ground temperature data from GTC installed in Borehole GT-14, North WRSF area.

Photo taken on September 15, 2016.



Photo 10: Ground Temperature Cable installation in Borehole GT-63. Photo taken on September 26, 2016.

Initial GTC readings were taken manually immediately after installation to confirm that all the thermistor beads were working properly. Ground temperature readings were taken twice during the field program and on an approximately

monthly basis between October, 2016 and January, 2017. The measured ground temperatures at the depth of zero annual amplitude appear to have reached equilibrium and ranged from approximately -1.1°C in GT-14, North WRSF area to -1.4°C in GT-63, Halfway Pond site, indicating permafrost conditions at both locations. Ground temperature profiles from the GTCs showing changes in temperatures with depth are presented in Appendix E.

The depth of zero annual amplitude was estimated from the ground temperature data collected from the two multibead GTCs. It ranges from approximately 7 m depth BGL at the GT-14 site to approximately 8 m depth BGL at GT-63 (Appendix E).

A single-bead thermistor string was installed in Borehole GT-66, at the Halfway Pond site, on September 21, 2016, just below the depth where the permafrost table is expected to be located (approximately 1.8 m depth) to confirm the presence of permafrost. Manual readings taken on October 3, 2016 showed a temperature of -0.5°C at this depth.

# 2.7 Permafrost Distribution Mapping

Preliminary permafrost mapping was completed in early 2016 and documented by Tetra Tech in the Technical Memo "Permafrost and Related Geohazard Mapping within the Coffee Mine Site Study Area", dated May 3, 2016. Following the fall 2016 drilling program, some updates were necessary. These changes were done in PurVIEW (the mapping technique described in the May 2016 Memo) and are based on the subsurface information collected in the completed boreholes and terrain analysis conducted in the field both on the ground at the drill sites and airborne from a helicopter. The updated maps of permafrost distribution within the Coffee Mine Site are presented in the "Figures" section of this report.

More detailed permafrost mapping, which would show spatial distribution of permafrost parameters such as ground ice content and permafrost temperatures within the mine site area is recommended following completion of the potential second phase of geotechnical drilling planned for late spring of 2017.

# 3.0 TERRAIN AND SUBSURFACE CONDITIONS

#### 3.1 General

Thirty five vertical boreholes and nine testpits were completed, as described in Section 2.1. The borehole and testpit locations are shown in Figures 2 to 5. Borehole and testpit logs containing sample locations and geotechnical laboratory test results are provided in Appendix B.

Observed terrain and subsurface conditions are discussed in the following sections. The discussions are based on the drill site terrain assessment and the data collected during the drilling, logging, field and laboratory testing phases of the investigation. Subsurface conditions are not uniform; it is expected that conditions between and surrounding the boreholes may deviate from the subsurface conditions identified within the boreholes described in this report. However, the borehole data does give a general indication of the range of subsurface properties to be expected in the area.

Selected photographs (Photos 1 to 94) of the recovered overburden and bedrock cores are presented in the "Photographs" section of this report.

# 3.2 Kona WRSF Area

Three diamond core boreholes (GT-01, -02, and -09) were drilled within the footprint of the proposed Kona WRSF area, along an approximately northeast-trending line (Figure 5). Overburden recovery ranged from 0% to approximately 60% per run. Borehole GT-09 had no recovery between the 6 m and 14 m depth interval, possibly

due to the presence of a thick unfrozen fine-grained soil unit which may have been washed away in the course of diamond drilling. The driller noted that it "felt like drilling through air".

The terrain and subsurface conditions of the area are discussed in the following sections and are summarized in Table 9.

Table 9: Overburden and Bedrock Condition Summary, Kona WRSF

| General<br>Areas | Borehole<br>No. | Overburden<br>Thickness<br>(m) | Organic Layer<br>Thickness<br>(m) | Major Overburden<br>Soil Types                     | Permafrost<br>Conditions | Bedrock<br>Conditions                                                  |
|------------------|-----------------|--------------------------------|-----------------------------------|----------------------------------------------------|--------------------------|------------------------------------------------------------------------|
|                  | GT-01           | 1.6                            | 0.00                              | Boulder; Gravel                                    | Unfrozen                 | Granite; moderately weathered; competent; jointed                      |
| Kona<br>WRSF     | GT-02           | 2                              | 0.07                              | Silt; Gravel                                       | Unfrozen                 | Granite; moderately<br>to highly<br>weathered;<br>competent; jointed   |
|                  | GT-09           | 15                             | 0.00                              | Gravel; Silt and<br>Sand; Sand; Gravel<br>and Sand | Unfrozen                 | Granite; slightly to<br>moderately<br>weathered;<br>competent; jointed |

#### 3.2.1 Terrain Assessment

The Kona WRSF area was assessed in the field between September 10, 2016 and September 12, 2016.

The area is located on a northeast-trending ridge and extends partway down the upper slope of a small tributary of Halfway Creek (Figure 5). This area slopes to the southeast and south-southeast, with gentle to moderate slopes of 3° to 20° where overburden is thick and moderately steep slopes of 25° to 35° in the northeast, where bedrock is close to surface. The slopes in the vicinity of GT-01 and GT-02 (Photo 11) are vegetated by sparse but tall white spruce and low shrubs (dwarf birch, willow, blueberry, and Labrador tea).

Most of the proposed Kona WRSF area was interpreted to be permafrost-free terrain based on Tetra Tech's site assessment and the borehole data (Figure 5 and Appendix B). Unfrozen conditions were encountered in all three boreholes, although thick overburden material in GT-09 may be partially frozen. Installation of a multi-bead GTC is recommended at this location in 2017.



Photo 11: Aerial view of proposed Kona WRSF area (in foreground) and proposed Kona Pond (a cluster of drill pads in background), looking southeast. Scattered tall mature white spruce are dominant near GT-01 drill pad (in foreground), while sparse to moderately dense stunted black spruce can be seen in the Kona Pond area, in the creek valley.

Photo taken on September 10, 2016.

# 3.2.2 Overburden

Bedrock is close to surface just west of Borehole GT-01. Coarse colluvial deposits overlying bedrock are up to 2 m thick at Boreholes GT-01 and -02, but become much thicker (up to 15 m) at GT-09 (Table 9).

The surficial deposits encountered in the boreholes consist mainly of layers of sand and gravel, with some cobbles and boulders. Silt containing small amounts of sand, gravel, and organics is found in the uppermost 2 m at Boreholes GT-02 and -09. A very thin layer of wet, fibrous, woody moss with trace silt was noted at the top of borehole GT-02.

#### 3.2.3 Bedrock

Granite was encountered in all three boreholes. The depth BGL to bedrock is shown in Table 9.

The granite is white to pale yellow, with white, yellow, pink, grey, and black inclusions. It is fine- to coarse-grained and slightly to moderately weathered. Joints are common and may be oxidized or infilled with silt.

Point Load Testing (PLT) was performed onsite on selected bedrock samples to determine relative strength of the bedrock samples. Results of this analysis show that the granite is very weak to very strong and of very poor to excellent quality (RQD 4% to 95%). Fracture Frequency (FF) ranges from 0 to 11 per metre.

# 3.3 Kona Pond

Five boreholes (GT-43, -44, -45, -46, and -47) were drilled within the footprint of the proposed Kona Pond area (Figure 5). Recovery of overburden was highly variable, ranging from 0 to 100%, with areas of no recovery common within the coarse colluvial portions of the boreholes. A testpit was also dug to 0.9 m depth at GT-47.

The terrain and subsurface conditions of the area are discussed in the following sections and are summarized in Table 10.

Table 10: Overburden and Bedrock Condition Summary, Kona Pond

| General<br>Areas | Borehole<br>No. | Overburden<br>Thickness<br>(m) | Organic<br>Layer<br>Thickness<br>(m) | Major<br>Overburden<br>Soil Types                                                             | Active Layer<br>Thickness*<br>(m) | Permafrost<br>Conditions         | Bedrock<br>Conditions                                                              |
|------------------|-----------------|--------------------------------|--------------------------------------|-----------------------------------------------------------------------------------------------|-----------------------------------|----------------------------------|------------------------------------------------------------------------------------|
|                  | GT-43           | 11.0                           | 0.15                                 | Sand; ICE<br>and SILT;<br>Gravel and<br>Silt; Sand and<br>Gravel;<br>Gravel and<br>Sand       | 0.65                              | Vx, Vc, Vs,<br>5-50%             | Granite; highly<br>weathered;<br>very weak;<br>jointed                             |
|                  | GT-44           | 2.0                            | 0.1                                  | Gravel and<br>Sand                                                                            | Undetermined                      | Vs, Vc, Vx<br>5-10%              | Granite;<br>moderately to<br>completely<br>weathered;<br>weak to<br>medium strong  |
| Kona<br>Pond     | GT-45           | 14.0                           | 0.1                                  | Silt and Sand;<br>Gravel and<br>Sand; Silt;<br>Peat; Sand;<br>Cobbles                         | <1.0                              | Vx, Vs, Vc,<br>Nbe<br>1-40%      | Granite;<br>moderately to<br>completely<br>weathered;<br>jointed                   |
|                  | GT-46           | 8.7                            | 0.1                                  | Sand and<br>Gravel; Silt;<br>Cobble/<br>Boulder;<br>Gravel                                    | <1.0                              | Vs, Vc, Vx,<br>Vr, Nbe<br>10-30% | Granite;<br>moderately<br>weathered;<br>very weak to<br>strong                     |
|                  | GT-47           | 13.0                           | 0.15                                 | Gravel; Sand<br>and Silt;<br>Gravel and<br>Sand; Silt;<br>Cobble; Sand<br>and Gravel;<br>Sand | <1.0                              | Vx, Vs, Vc,<br>Vr<br>5-20%       | Granite;<br>slightly to<br>highly<br>weathered;<br>weak to very<br>strong; jointed |
| * - at the time  | e of drilling   |                                |                                      |                                                                                               |                                   |                                  |                                                                                    |

# 3.3.1 Terrain Assessment

The Kona Pond area was assessed in the field between September 13, 2016 and September 19, 2016.

The Kona Pond area drains directly into Halfway Creek (Figure 5). The proposed Kona Pond retention structure is located on northeast- and southeast-facing slopes, which contain permafrost. The gentlest slopes are on the south side of and within the tributary creek area, at about 9° slope. Here, stunted black spruce is present on the valley sides (Photo 12), with low shrubs covering the forest floor (Photo 13). The black spruce trees are sparser on the slope north of the creek, which is hummocky and also steeper, at about 15° (moderate slope). Slopes measured at GT-44, -45, and -46 are 19° to 20°, 10° to 15°, and 13° to 15°, respectively. These slopes have a continuous moss cover. The northeast-facing slope is poorly-drained at GT-46. The creek area is covered by a dense mat of shrub willow. The creek channel is 0.3 m to 0.5 m wide and was flowing at the time of assessment.



Photo 12: Sparse to moderately dense stunted black spruce forest on the east-facing slope of Kona Creek between GT-45 and GT-43. Hummocky continuous moss cover with low shrubs is also present. Looking north.

Photo taken on September 11, 2016.



Photo 13: Aerial view of proposed Kona Pond site, looking northeast. Shrub willow within the creek area is in its fall colours of bright yellow (in the centre of the photo). Low shrubs are evident on the south side of the creek and shrubs with stunted black spruce on the north side.

Photo taken on September 11, 2016.

The slopes are blanketed with coarse colluvium composed mainly of weathered bedrock and silt with thicknesses ranging from 2 m to 14 m (Table 10). The colluvium is covered by a thin layer of moss.

The proposed Kona Pond site is underlain by permafrost as per Tetra Tech's site assessment and the borehole data (Figure 5 and Appendix B). Permafrost conditions were encountered in all five boreholes.

#### 3.3.2 Overburden

Data from the boreholes and the test pit show that dark brown to black moss up to 0.15 m thick covers the surficial deposits in this area. It may contain roots.

Beds of well graded, brown to grey subangular to angular gravel, sand, silt, and rare cobbles (and mixtures of these) overlie the bedrock, forming a thick colluvial blanket. At Borehole GT-45, dark brown to black organic-rich sandy peat with roots is found between 8.2 m and 9.1 m depth. This suggests that the 8 m of colluvium above it moved downslope in the past, covering a pre-existing ground surface.

The gravimetric moisture content of the frozen overburden ranged from 8% in gravel and sand at depths of 6.5 m to 6.6 m to 90% in sandy silt at a depth of 2.0 to 2.2 m (Tables 6 and 7).

Permafrost conditions with excess ice (Vc, Vr, Vs, and Vx) were encountered in all five boreholes. Excess ice content was measured in the ICE and SILT unit and was found to be as high as 53% at a depth of 2 m in Borehole GT-43. The excess ground ice occurs in the frozen overburden in various forms, e.g. ice lenses (Vs, Vr) ranging in thickness from less than 1 mm to approximately 10 mm, ice inclusions (Vx) up to 5 mm in diameter or ice coatings a few mm thick (Vc) on gravel or cobbles. Photo 14 shows frequently spaced subhorizontal ice lenses observed in Borehole GT-46.



Photo 14: Closely spaced subhorizontal wavy ice lenses up to 2 mm thick in sandy, gravelly frozen silt at 2.5 m depth BGL; GT-46, Kona Pond.

Photo taken on September 19, 2016.

#### 3.3.3 Bedrock

Granite was encountered in all five boreholes. The depths are shown in Table 10.

The granite is white or pink, grey and black, although commonly oxidized, medium- to coarse-grained, generally moderately to completely weathered, very weak to very strong, and highly fractured. Joints are common (JSN ranges from 2 to 6) and may show oxidation and or have sand, silt, or ice infills. Quality is very poor to fair, with RQDs generally ranging from 0 to 70, but up to 90% (excellent quality) in Boreholes GT-46 and -47. Fracture frequency is 4 to 12 per metre.

Ground ice was observed infilling joints and fractures in granite as described in the borehole logs (Appendix B) and shown in Photo 15.



Photo 15: Ground ice infilling a fracture in oxidized granite at 13.7 m depth BGL; GT-47, Kona Pond. Photo taken on September 14, 2016.

# 3.4 Halfway Pond

Five boreholes (GT-62, -63, -64, -65, and -66) were drilled within the footprint of the proposed Halfway Pond area (Figure 5). Recovery of overburden was highly variable (0% to 100%), with sections of "no recovery" logged in all boreholes.

The terrain and subsurface conditions of the Halfway Pond area are discussed in the following sections and are summarized in Table 11.

Table 11: Overburden and Bedrock Condition Summary, Halfway Pond

| General<br>Areas | Borehole<br>No. | Overburden<br>Thickness<br>(m) | Organic<br>Layer<br>Thickness<br>(m) | Major<br>Overburden<br>Soil Types                       | Active<br>Layer<br>Thickness*<br>(m) | Permafrost<br>Conditions     | Bedrock<br>Conditions                                                                                                         |
|------------------|-----------------|--------------------------------|--------------------------------------|---------------------------------------------------------|--------------------------------------|------------------------------|-------------------------------------------------------------------------------------------------------------------------------|
|                  | GT-62           | 3.9                            | 0.12                                 | Gravel; Sand;<br>Sand and<br>Gravel; Gravel<br>and Sand | Up to 2                              | Vs, Vc, Vx, Vr<br>20-40%     | Granite; moderately to completely weathered; medium strong to strong; jointed                                                 |
| Halfway<br>Pond  | GT-63           | 3.1                            | 0.1                                  | Sand and<br>Gravel                                      | Up to 2                              | Vc, Vx, Vr<br>5%             | Granite; moderately to completely weathered; very weak to very strong; jointed; Gneiss; moderately weathered; strong; jointed |
|                  | GT-64           | 3.5                            | 0.15                                 | Sand; Sand<br>and Gravel                                | 1.0                                  | Vc, Vx<br>5-35%              | Granite;<br>moderately<br>weathered;<br>competent; jointed                                                                    |
|                  | GT-65           | 5.4                            | 0.1                                  | Peat; Sand;<br>Gravel and<br>Sand; Sand<br>and Gravel;  | 0.1                                  | Vs, Vc, Vx, Vr<br>10-40%     | Granite;<br>moderately to<br>highly weathered;<br>competent; jointed                                                          |
|                  | GT-66           | 7.7                            | -                                    | Cobbles and<br>Gravel; ICE<br>and SAND;<br>Peat; Silt   | Up to 2                              | Vs, Vc, Vx, Vr<br>5% to >50% | Granite;<br>moderately to<br>highly weathered;<br>competent; jointed                                                          |
| * - at the t     | ime of drilling |                                |                                      |                                                         |                                      |                              |                                                                                                                               |

#### 3.4.1 Terrain Assessment

The Halfway Pond site was assessed in the field between September 20, 2016 and September 24, 2016. It is located on both sides of a small tributary creek of Halfway Creek. Slopes are northeast- and northwest-facing (Figure 5) and are 20° to 27° and 27° to 31° respectively (moderate to moderately steep slopes).

Vegetation on the northeast-facing slope includes low shrubs and very sparse black spruce. The northwest-facing slope comprises mainly moderately dense black spruce and low shrubs (Photo 16).



Photo 16: Aerial view of proposed Halfway Pond site, looking north. Low shrubs and sparse black spruce cover the north-east-facing slope; whereas, the northwest-facing slope is vegetated by moderately dense black spruce and low shrubs.

Photo taken on September 24, 2016.

Wet organic-rich material locally called "black muck", i.e. wind-blown silt intermixed with organic material (McKillop et al 2013), forms a veneer underlain by colluvial sand and gravel up to 7.7 m thick (Table 11).

The proposed Halfway Pond site is underlain by permafrost as per Tetra Tech's site assessment and the borehole data (Figure 5 and Appendix B). Permafrost conditions were encountered in all five boreholes.

#### 3.4.2 Overburden

A thin black muck layer was found at the surface of all borehole locations except for GT-66. It includes brown to black peat or moss with organics, and contains roots and occasionally wood, silt, sand, or gravel. At GT-66, a 0.7 m thick black muck unit dominated by peat overlies silt (believed to be colluvium) and underlies a separate layer of colluvium. It is also found interbedded with sand in the upper 1.5 m of GT-65. These boreholes are in the centre of the small tributary valley, and as such, may have received several pulses of colluvium over the years, which appears to have buried successive layers of the black muck. Radiocarbon dating or paleontological analysis of the peat may be able to determine how long ago these events occurred.

Colluvial deposits at the Halfway Pond site are made up of brown, grey, or black sand and subangular gravel, with lesser amounts of silt. Clay, gravel, cobbles, and organics are present locally, but are rare. The colluvium is massive and well graded.

The moisture content of the overburden is as low as 7% in sand and gravel at 4.8 m in GT-65, but is as high as 387% in the same material at 2.2 m in the same borehole due to the presence of ice (Tables 6 and 7).

Permafrost conditions with excess ice (Vc, Vr, Vs, and Vx) were encountered in all five boreholes. Excess ice content measured in the ICE and SAND unit was found to be as high as 52% at a depth of 2.2 m in GT-66. The

excess ground ice typically forms ice lenses (Vs, Vr) ranging in thickness from less than 1 mm to approximately 25 mm, ice inclusions (Vx) up to 40 mm in diameter or ice coatings (Vc) up to 6 mm thick on gravel and cobbles. Photos 17 and 18 show examples of ground ice formations observed in the undisturbed frozen overburden core recovered at the Halfway Pond site.



Photo 17: Ice coating on a piece of gravel at 2.8 m depth BGL, GT-65, Halfway Pond. Photo taken on September 21, 2016.



Photo 18: Ice inclusion (Vx) in frozen sand and gravel at 5.1 m depth BGL, GT-65, Halfway Pond. Photo taken on September 21, 2016.

# 3.4.3 Bedrock

Granite was encountered in all boreholes, and some gneiss was found at Borehole GT-63. Depth to bedrock is shown in Table 11.

The granite is white, pink, grey and black, fine- to coarse-grained, moderately to completely weathered and very weak to very strong. It contains many joints (JSN is 2 to 6), which may contain ice, silt or sand infills and may be oxidized. RQD is variable (0-90%) and FF ranges from 4 to 9 per metre.

The blue-grey banded gneiss identified at 15.5 m to 17 m depths in Borehole GT-63 is strong, moderately weathered, fine-grained, and contains joints, some of which are infilled with silt or silt and sand. RQD is 38-42 (moderate quality) and FF is 4 to 9 per metre.

Ground ice was observed infilling fractures and joints in bedrock as described in the borehole logs (Appendix B) and shown in Photo 19.



Photo 19: Ground ice infilling joints in granite at 7.9 m depth BGL; GT-65, Halfway Pond.

Photo taken on September 21, 2016.

#### 3.5 West WRSF

Five boreholes (GT-16, -17, -18, -19, and -20) were drilled within the footprint of the proposed West WRSF area (Figure 4). Overburden recovery was variable, either ranging from 0% to 50% or 90% to 100%.

The terrain and subsurface conditions of the area are discussed in the following sections and are summarized in Table 12.

Table 12: Overburden and Bedrock Condition Summary, West WRSF

| General<br>Areas | Borehole<br>No. | Overburden<br>Thickness<br>(m) | Organic<br>Layer<br>Thickness<br>(m) | Major<br>Overburden<br>Soil Types | Active Layer<br>Thickness*<br>(m) | Permafrost<br>Conditions                                  | Bedrock<br>Conditions                                                                    |
|------------------|-----------------|--------------------------------|--------------------------------------|-----------------------------------|-----------------------------------|-----------------------------------------------------------|------------------------------------------------------------------------------------------|
|                  | GT-16           | 2.7                            | 0.1                                  | Gravel;<br>Sand                   | 2.0                               | Vx, Vc<br>5-10%                                           | Gneiss/Granite;<br>moderately<br>weathered;<br>weak to medium<br>strong; jointed,        |
|                  | GT-17           | 2.0                            | 0.1                                  | Gravel                            | Undetermined                      | Undetermined  - frozen overburden was thermally disturbed | Granite;<br>moderately<br>weathered;<br>weak to medium<br>strong; jointed                |
| West<br>WRSF     | GT-18           | 3.7                            | 0.1                                  | Gravel                            | <2.0                              | Vx, Vc<br>5-10%                                           | Granite; highly<br>to completely<br>weathered; very<br>weak to medium<br>strong; jointed |
|                  | GT-19           | 2.6                            | 0.1                                  | Sand                              | <1.0                              | Vc, Vx, Nbn<br>10-15%                                     | Gneiss; slightly<br>weathered;<br>competent;<br>jointed;                                 |
|                  | GT-20           | 3.2                            | 0.05                                 | Sandy<br>Gravel                   | <1.0                              | Vc<br>5%                                                  | Gneiss; weak to<br>very strong;<br>slightly to<br>completely<br>weathered;<br>jointed    |
| * - at the t     | ime of drilling | 9                              |                                      |                                   |                                   |                                                           |                                                                                          |

#### 3.5.1 Terrain Assessment

The West WRSF area was assessed in the field between September 30, 2016 and October 3, 2016.

The West WRSF footprint is on a slope of fairly straight configuration, with a westerly aspect. This slope makes up a portion of a laterally-convex hillside (Figure 4). The slope angle is also quite uniform and dips about 20°, with an area of about 15° at the southern end (moderate slopes).

The proposed West WRSF area is underlain by permafrost as per Tetra Tech's site assessment and the borehole data (Figure 4 and Appendix B). Permafrost conditions were encountered in all five boreholes. Vegetation consists mainly of low shrubs, with scattered stunted black spruce trees and continuous hummocky moss cover (Photo 20).

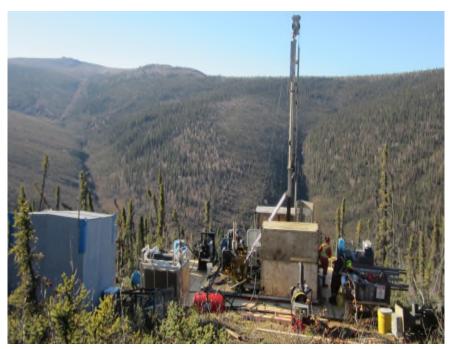



Photo 20: Ground view of proposed West WRSF terrain (GT-16 in foreground), looking west. Moderately dense stunted black spruce forest with continuous hummocky moss cover and low shrubs is evident.

Photo taken on September 25, 2016.

#### 3.5.2 Overburden

A thin, dark brown fibrous moss organic layer was encountered at the surface of all the boreholes. It contains roots and wood. This thin organic veneer is underlain by perennially frozen sandy and gravelly colluvium up to 3.7 m thick (Table 12).

Well graded subangular gravel and sand with minor silt and rare cobbles make up the colluvial unit that overlies the bedrock.

The gravimetric moisture content of the overburden material varied from 11% in frozen sand at a depth of 2.0 m in GT-19 to 29% in gravel with some sand at a depth of 2.23 m in GT-18 (Tables 6 and 7).

Permafrost conditions with excess ice (Vc and Vx) were observed in four of the five boreholes. Coarse-grained overburden core recovered in GT-17 was thermally disturbed due to excessive drilling. This did not allow estimation of its permafrost condition. Excess ice content in frozen gravel with some sand was found to be up to 21% at a depth of 2.2 m in GT-19.

#### 3.5.3 Bedrock

Gneiss was encountered at all the boreholes except GT-17 and -18, which are at the western boundary of the West WRSF footprint. Here, granite was encountered instead. Granite also underlies gneiss in Borehole GT-16.

The pink, grey, or dark green gneiss is slightly to completely weathered, weak to very strong, fine- to medium-grained, heavily fractured, and slightly oxidized. It contains numerous joints that may be oxidized and may contain ice, silt, sand, or weathered bedrock. Quartz veins are present, but rare.

Its RQD is variable, ranging from 0% to 50% in Boreholes GT-16 and -18 (very poor to poor) to 75% to 85% in GT-19 (good). FF ranges from 4 to 16 per metre and JSN from 2 to 3.

The granite is pink, grey, or black with white inclusions. It is medium- to coarse-grained, moderately to completely weathered, massive, weak to moderately strong, and highly fractured. Its many joints may or may not contain oxide stains, sand, silt, weathered bedrock, or ice.

Its RQD is very poor to fair at 0% to 70%, FF is 7 to 15 per metre, and JSN is 3 to 6.

Ground ice was observed infilling bedrock fractures and joints in four (GT-17 to GT-20) of the five boreholes as described in the borehole logs (Appendix B).

#### 3.6 West Pond

Five boreholes (GT-57, -58, -59, -60, and -61) were drilled within the footprint of the proposed West Pond area (Figure 5). Recovery was generally excellent, ranging from 20% to 100%, but commonly over 60%.

The terrain and subsurface conditions of the area are discussed in the following sections and are summarized in Table 13.

Table 13: Overburden and Bedrock Condition Summary, West Pond

| General<br>Areas | Borehole<br>No. | Overburden<br>Thickness<br>(m) | Organic<br>Layer<br>Thickness<br>(m) | Major<br>Overburden<br>Soil Types                              | Active<br>Layer<br>Thickness*<br>(m) | Permafrost<br>Conditions         | Bedrock<br>Conditions                                                                          |
|------------------|-----------------|--------------------------------|--------------------------------------|----------------------------------------------------------------|--------------------------------------|----------------------------------|------------------------------------------------------------------------------------------------|
| West<br>Pond     | GT-57           | 10.2                           | 0.1                                  | Sand and<br>Gravel; Organic<br>Silt; Gravel;<br>Sand, and Silt | 1.4                                  | Vx, Vc, Vs<br>5-30%              | Gneiss; slightly weathered; competent; jointed; Schist; slightly weathered; competent; jointed |
|                  | GT-58           | 4.6                            | 0.1                                  | Silt; Sand and<br>Gravel; Sand;<br>Gravel and Sand             | 0.55                                 | Vx, Vc, Nbe<br>3-10%             | Schist; slightly to<br>highly<br>weathered;<br>competent;<br>jointed                           |
|                  | GT-59           | 1.0                            | 0.1                                  | Sand and Gravel                                                | 1.2                                  | Ice in rock<br>joints            | Schist;<br>moderately to<br>highly<br>weathered; weak<br>to medium<br>strong; jointed          |
|                  | GT-60           | 4.9                            | 0.1                                  | Cobbles; Organic<br>Silt; Sand and<br>Gravel; Gravel           | 0.83                                 | Vx, Vc, Vs,<br>Vr, Nbe<br>10-40% | Schist; slightly to<br>moderately<br>weathered;<br>competent;<br>jointed                       |

Table 13: Overburden and Bedrock Condition Summary, West Pond

| General<br>Areas | Borehole<br>No. | Overburden<br>Thickness<br>(m) | Organic<br>Layer<br>Thickness<br>(m) | Major<br>Overburden<br>Soil Types | Active<br>Layer<br>Thickness*<br>(m) | Permafrost<br>Conditions | Bedrock<br>Conditions                                                |
|------------------|-----------------|--------------------------------|--------------------------------------|-----------------------------------|--------------------------------------|--------------------------|----------------------------------------------------------------------|
|                  | GT-61           | 4.0                            | 0.15                                 | Peat and Sand;<br>Gravel and Sand | 0.15                                 | Vx, Vc, Vs<br>1-15%      | Schist; slightly to<br>highly<br>weathered;<br>competent;<br>jointed |
| * - at the t     | ime of drilling | g                              |                                      |                                   |                                      |                          |                                                                      |

#### 3.6.1 Terrain Assessment

The West Pond area was assessed in the field between September 25, 2016 and September 29, 2016.

The proposed West Pond water retention structure area is located along a small tributary creek which flows into Halfway Creek, downstream of the West WRSF and Latte Pit (Figure 5). The slopes have northerly and westerly aspects. The northeast-facing slope is mostly barren, with low shrubs, sparse stunted black spruce, and frost hummocks on the ground surface (Photo 21). This slope is underlain by ice-rich permafrost. The west-facing slope is covered by denser stunted black spruce forest, but permafrost is likely prevalent on this slope as well. It has moderate slopes of 15° to 20°. The barren slope has moderate slopes of similar slope angles.

Thin surficial organic veneer is found at the surface. It is underlain by 1 m to 10 m thick coarse colluvium (Table 13).



Photo 21: Aerial view of proposed West Pond, looking north. The northeast-facing slope displays low shrubs, very few stunted black spruce trees, and continuous hummocky moss cover (foreground). The west-facing slope exhibits denser stunted black spruce forest.

Photo taken on September 29, 2016.

The proposed West Pond site is underlain by permafrost as per Tetra Tech's site assessment and the borehole data (Figure 5 and Appendix B). Permafrost conditions were encountered in all five boreholes.

#### 3.6.2 Overburden

The uppermost surficial deposit is black muck, comprising fibrous black moss or organic silt or fibrous peat and sand. This unit may also contain roots, wood chips, and coarser material up to gravel size.

The underlying colluvial deposits commonly contain beds of black muck to depths of 2.6 m, which is interpreted to indicate that past mass movement activity has buried older ground surfaces. The colluvial deposits themselves consist of mixes of massive sand, gravel, and silt that are dark grey to brown, subangular, and well graded. Trace clay, boulders, and cobbles are also present. At GT-58, frost shattered bedrock is present at the basal contact of this unit with bedrock.

Moisture content ranges from 7% in silty sand and gravel at 8.7 m depth in GT-57 to 178% in peat with a silty interbed approximately 0.2 m thick, which was penetrated at a depth of 2.4 m in GT-60 (Tables 6 and 7).

Permafrost conditions with excess ice (Vc, Vr, Vs, and Vx) were encountered in all five boreholes. Excess ice content was measured in silty frozen peat. It was determined to be as high as 39% at a depth of 2.4 m in GT-60. The excess ground ice occurs in the frozen overburden in various forms, e.g. ice lenses (Vs, Vr) ranging in thickness from less than 1 mm to approximately 3 mm, ice inclusions (Vx) up to 10 mm in diameter or ice coatings (Vc) up to 5 mm thick on gravel and cobbles.

#### 3.6.3 Bedrock

Biotite schist was encountered in all boreholes. Depth to bedrock is shown in Table 13.

The schist is pink, white, grey and black to greenish or bluish black and fine- to coarse-grained. It is moderately sericitized and weakly to moderately chloritized, slightly to completely weathered, massive, and weak to very strong. Quartz veins may be present and joints may be oxidized and/or may contain silt, sand, or ice infill. The JSN is 3 to 6. Rock quality is generally very poor to poor (0% to 50%), but is fair to good at Borehole GT-57, where it is 60% to 90%. FF is generally 4 to 10, but can be as high as 25 per metre.

Ground ice was observed infilling some of the bedrock fractures and joints as described in the borehole logs (Appendix B).

#### 3.7 South Pond

Three boreholes (GT-53, -55, and -56) were drilled within the footprint of the proposed South Pond site (Figure 4). Overburden recoveries were very poor (0% to 35%) and it was not possible to take representative samples for geotechnical analysis. Active layer thickness was measured with a permafrost probe and a hand-dug testpit. Measuring active layer thickness with the permafrost probe at the proposed borehole GT-54 site was found ineffective due to the high clast content of the surficial material. The probe's tip was cold to the touch after extraction at the GT-52 location. The active layer measurements at this location are considered to be more accurate than at GT-54 due to the issues with permafrost probe penetration at the latter site.

The terrain and subsurface conditions of the area are discussed in the following sections and are summarized in Table 14.

| General<br>Areas | Borehole<br>No. | Overburden<br>Thickness<br>(m) | Organic<br>Layer<br>Thickness<br>(m) | Major<br>Overburden<br>Soil Types | Active<br>Layer<br>Thickness*<br>(m) | Permafrost<br>Conditions | Bedrock<br>Conditions                            |
|------------------|-----------------|--------------------------------|--------------------------------------|-----------------------------------|--------------------------------------|--------------------------|--------------------------------------------------|
|                  | GT-53           | 6.5                            | 0.1                                  | Gravel                            | N/A                                  | Interpreted<br>Unfrozen  | Gneiss; slightly weathered; competent; jointed   |
| South<br>Pond    | GT-55           | 6.3                            | -                                    | Gravel, rock fragments            | N/A                                  | Interpreted<br>Unfrozen  | Gneiss; slightly weathered; competent; jointed   |
|                  | GT-56           | 7.0                            | 0.1                                  | Sand and<br>Gravel                | N/A                                  | Interpreted<br>Unfrozen  | Gneiss; moderately weathered; competent; jointed |

Table 14: Overburden and Bedrock Condition Summary, South Pond

#### 3.7.1 Terrain Assessment

The South Pond area was assessed in the field between October 3, 2016 and October 5, 2016.

The proposed South Pond is located in a creek valley that drains into Latte Creek (Figure 4). The northeast-facing and southwest-facing slopes are moderate to moderately steep, with angles of 32° to 33° and 37° to 38°, respectively (moderately steep to steep). As directed in Tetra Tech's 2016 memorandum "Review of Drill Pad

Design and Construction on Permafrost Slopes", drill pad structures to be built on slopes greater than 23° should be analyzed individually. Safety concerns about drill pad stability on the steep slopes prevented boreholes GT-52 and GT-54 from being drilled during this program.

Vegetation on the southwest-facing slope includes a mix of aspen and spruce (predominantly white spruce), indicating permafrost-free terrain (Photo 22). However, localized areas of stunted black spruce are indicative of the local presence of permafrost. Low shrubs cover the northeast-facing slope and are accompanied by sparse stunted black spruce and continuous moss blanket. Frost hummocks are present on the ground surface, indicating permafrost terrain.

Coarse to very coarse colluvium, which blankets the slopes, is overlain by a thin organic veneer (Table 14).



Photo 22: Aerial view of proposed South Pond, looking northwest. Mix of aspen and spruce (predominantly white spruce) dominates the southwest-facing slope vegetation (right side of photo). The northeast-facing slope is covered by low shrubs and sparse stunted black spruce with continuous hummocky moss cover (shaded left side of photo).

Photo taken on October 4, 2016.

Most of the proposed South Pond site was interpreted to be permafrost-free terrain based on Tetra Tech's site assessment, including testpitting (Testpit GT-54), analysis of the ground temperature data from Borehole SRK-15D-09T, which is located approximately 150 downstream of the site (measured temperatures are above 0°C), and the borehole data from this investigation (Figure 4 and Appendix B). Seemingly unfrozen conditions were encountered in all three boreholes and in Testpit GT-54, although very poor overburden recovery in all three 2016 boreholes (GT-53, GT-55, and GT-56) leaves this interpretation inconclusive. Installation of either a multi-bead GTC or a single-bead thermistor string at the proposed South Pond site is recommended for the 2017 drill program.

#### 3.7.2 Overburden

At the proposed GT-54 site (northeast-facing slope) approximately 0.1 m of moss/organic cover was encountered in the testpit. Below the moss was organic-rich colluvium consisting of silty angular gravel and sand.

The material recovered in the boreholes suggests that fibrous dark brown to black moss and organics (black muck) is also locally present at surface (to 0.1 m).

Below the black muck, gravel consisting of gneiss and granite (GT-53 and -55) or brown silty sand, gravel, and minor cobbles that is well graded (GT-56) makes up the colluvial unit. Sandy silt coating some of the cobbles suggests that at least some sandy silt is also present.

The poor borehole recovery could indicate that coarse colluvium accumulated at the bottom of the valley. The space between the boulders may have been filled in with fine, organic-rich material. This material in its assumed unfrozen state may have been washed away in the course of drilling. This assumption is supported by the driller's comments that within some sections up to 0.8 m long, the drill rod advanced through the material with little to no pressure applied.

#### 3.7.3 Bedrock

Gneiss was encountered in all three boreholes. Depth to bedrock is shown in Table 14.

The gneiss is grey to green with occasional pink bands, fine- to medium-grained, slightly to moderately weathered, medium to very strong, massive, and highly fractured with abundant joints that can contain silt, sand, or oxides. RQD is 5% to 90% (very poor to good), FF ranges from 4 to 11 per metre and JSN ranges from 2 to 10.

#### 3.8 North WRSF

Six boreholes (GT-10 to GT-15) were drilled at various locations within the footprint of proposed North WRSF area (Figure 3). Overburden recovery ranged from 40% to approximately 100% per run, except for Boreholes GT-11 and -15, which had a few sections of no recovery. Shallow (0.4 m to 0.5 m) testpits were hand-dug within the active layer at GT-10, GT-12, GT-13, GT-14, and GT-15 (Appendix B).

The terrain and subsurface conditions of the area are discussed in in the following sections and summarized in Table 15 below.

Table 15: Overburden and Bedrock Condition Summary, North WRSF

| General<br>Areas | Borehole<br>No. | Overburden<br>Thickness<br>(m) | Organic<br>Layer<br>Thickness<br>(m) | Major<br>Overburden<br>Soil Types                                | Active Layer<br>Thickness*<br>(m) | Permafrost<br>Conditions                  | Bedrock<br>Conditions                                                    |
|------------------|-----------------|--------------------------------|--------------------------------------|------------------------------------------------------------------|-----------------------------------|-------------------------------------------|--------------------------------------------------------------------------|
|                  | GT-10           | >7.5                           | 0.5                                  | Silt; ICE and<br>SILT with<br>organics ("Black<br>Muck"); Gravel | 0.5                               | Vx, Vc, Vs,<br>ICE and SILT<br>5% to >50% | Not<br>encountered<br>(at 7.5m depth)                                    |
| North<br>WRSF    | GT-11           | 2.3                            | 0.15                                 | Gravel; Sand                                                     | Undetermined                      | Vc, Vx 10-<br>20%                         | Gneiss; slightly<br>to moderately<br>weathered;<br>competent;<br>jointed |
|                  | GT-12           | 3.0                            | 0.2                                  | Silt; Gravel;<br>Boulders                                        | 0.4                               | Vx, Vr, Vc, Vs<br>5-40%                   | Schist; slightly<br>weathered;<br>competent;<br>jointed                  |

Table 15: Overburden and Bedrock Condition Summary, North WRSF

| General<br>Areas | Borehole<br>No. | Overburden<br>Thickness<br>(m) | Organic<br>Layer<br>Thickness<br>(m) | Major<br>Overburden<br>Soil Types                                  | Active Layer<br>Thickness*<br>(m) | Permafrost<br>Conditions | Bedrock<br>Conditions                                                                                                                                                        |
|------------------|-----------------|--------------------------------|--------------------------------------|--------------------------------------------------------------------|-----------------------------------|--------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|                  | GT-13           | 5.8                            | 0.2                                  | Silt; Gravel                                                       | 0.2                               | Vs, Vc, Vx<br>5-45%      | Mafic Gneiss;<br>strong to very<br>strong;;<br>completely<br>weathered;<br>extremely<br>weak                                                                                 |
|                  | GT-14           | 1.9                            | 0.2                                  | Silt; Gravel;<br>Cobble; Sand                                      | 0.3                               | Vx, Vs, Vc<br>15-40%     | Mafic Gneiss;<br>moderately to<br>highly<br>weathered,<br>weak to very<br>strong; jointed;<br>highly to<br>completely<br>weathered,<br>extremely to<br>very weak;<br>jointed |
|                  | GT-15           | 6.0                            | 0.2                                  | Silt; Sand; Sand<br>and Gravel;<br>Gravel; Cobbles<br>and Boulders | 0.2                               | Vx, Vc, Vs<br>5-40%      | Mafic Gneiss;<br>slightly to<br>completely<br>weathered;<br>very weak to<br>strong; jointed;<br>highly to<br>completely<br>weathered,<br>very weak                           |
| * - at the t     | ime of drilling | g                              |                                      |                                                                    |                                   |                          |                                                                                                                                                                              |

#### 3.8.1 Terrain Assessment

The North WRSF area was assessed in the field between August 29, 2016 and September 4, 2016.

The assessed area consists of predominantly gentle slopes (6° to 15°), with some sections being moderately steep (up to 20°). Slopes are mainly north- to north-west facing in the upper reaches of the YT-24 Creek basin (Figure 3); however, there is one east-facing slope in the far western part of the footprint, with moderate slopes of 15° to 25°.

The slopes are vegetated by sparse stunted ("drunken") black spruce forest with a forest floor covered by Sphagnum moss and low shrubs (Labrador tea, dwarf birch, willow, blueberry etc.) (Photo 23). The central portion lacks trees, while the east-facing slope is covered with deciduous trees at lower elevations.

The slopes are blanketed with colluvium ranging from silt to boulder size, and with thicknesses ranging from 1.9 m to more than 7.5 m. The colluvium is covered by veneer of black muck (Table 15).



Photo 23: Aerial view of permafrost terrain in the North WRSF area, looking northwest. Sparse stunted black spruce forest covers gentle slopes of northerly aspect in the foreground, but there are few trees in the central portion of the area (left foreground). Deciduous forest covers the east-facing slope in the central left background. Drill rig can be seen at the Borehole GT-14 site on the right.

Photo taken on August 30, 2016.

The proposed North WRSF area is underlain by permafrost as per Tetra Tech's site assessment and the borehole data (Figure 3 and Appendix B). Permafrost conditions were encountered in all six boreholes (Appendix B).

#### 3.8.2 Overburden

The testpit and borehole data show that the area is underlain by a thin layer of black muck at surface (moss, peat, and organic silt), ranging from 0.15 m to 0.5 m thick. This layer is underlain by variable layers of angular sand, gravel, cobbles, and boulders, with minor silt and clay, which form colluvium derived from the underlying bedrock. The surficial deposits are thicker in the western part of the North WRSF (5.8 m to >7.5 m) than in the east, where thicknesses range from 1.9 m to 2.3 m.

The proposed North WRSF area is imperfectly to poorly-drained. Seepage of suprapermafrost groundwater was observed at the bottom of the testpits (Appendix B). The gravimetric moisture content of the frozen overburden samples recovered in the six completed boreholes varied from 8% in frozen gravel with some sand at a depth of 5.3 m in GT-10 to 129% in the black muck (ICE and SILT with organics) at a depth of 0.6 m in the same borehole (Tables 6 and 7).

Permafrost conditions with excess ice (Vc, Vr, Vs, and Vx) were encountered in all six boreholes. Excess ice content was measured in the black muck (ICE and SILT with organics) to be higher than 50% at a depth of 0.6 m in GT-10. The excess ground ice occurs in the frozen overburden in various forms, e.g. ice lenses (Vs, Vr) ranging in thickness from less than 1 mm to approximately 3 mm, ice inclusions (Vx) up to 10 mm in diameter or ice coatings (Vc) up to

5 mm thick on gravel and cobbles. Photos 24 and 25 show examples of ground ice formations observed in the undisturbed frozen overburden core.



Photo 24: ICE and SILT with organics (black muck) encountered at a depth BGL of 0.6 m in Borehole GT-10, North WRSF.

Photo taken on September 1, 2016.



Photo 25: Ice lenses (Vs) and inclusions (Vx) in frozen sand with some gravel and silt at a depth of 5.8 m BGL in Borehole GT-15, North WRSF.

Photo taken on September 4, 2016.

#### 3.8.3 Bedrock

Mafic gneiss was the primary bedrock type encountered in boreholes GT-10, GT-11 and GT-13 through GT-15. Biotite schist was found in Borehole GT-12. Bedrock was not encountered at Borehole GT-10. Depths to bedrock are shown in Table 15.

The mafic gneiss is pinkish grey, dark grey, or black, very weak to very strong, fine- to medium-grained, and slightly to completely weathered. Oxidized joints and fractures are common; these may contain sand, silt, clay, or calcite. The mafic gneiss is of very poor to good quality (RQD 0% to 90%). Fracture frequency ranges from 1 to 10 per metre and JSN ranges from 1 to 2.

The mafic gneiss contains mafic bands that are grey to black, strongly metamorphosed, highly to completely weathered within some intervals forming residual soil, highly altered and extremely to very weak. They are jointed, with an RQD of 0% to 45%, indicating very poor to poor quality, and a FF of 5 to 10 per metre within more competent intervals. Gravimetric moisture content is up to 10% at a depth of 5.8 m in Borehole GT-13 (Table 6).

The biotite schist is light grey, slightly weathered, strong to very strong, with oxidized joints that may contain calcite or oxides. It is of good quality (RQD 70% to 85%), with a FF of 7 to 8 per metre.

Ground ice was observed infilling fractures and joints in bedrock as described in the borehole logs (Appendix B).

# 3.9 North Pond

Three boreholes (GT-48, -50, and -51) were drilled within the footprint of the proposed North Pond area, located in the southwest-northeast trending YT-24 Creek valley (Figure 3). Overburden recovery was poor in GT-48 (0% to 58%), but good to excellent in the other two boreholes (45-100%). Testpits were completed to 0.4 m depths at GT-48, -50 and at the proposed GT-49 borehole location. Borehole GT-49 was not drilled in 2016 due to safety concerns about drill pad stability on the steep slope underlain by shallow, ice-rich permafrost.

The terrain and subsurface conditions of the area are discussed in the following sections and summarized in Table 16.

**Table 16: Overburden and Bedrock Condition Summary, North Pond** 

| General<br>Areas | Borehole<br>No. | Overburden<br>Thickness<br>(m) | Organic<br>Layer<br>Thickness<br>(m) | Major<br>Overburden<br>Soil Types | Active Layer<br>Thickness*<br>(m) | Permafrost<br>Conditions | Bedrock<br>Conditions                                                                                             |
|------------------|-----------------|--------------------------------|--------------------------------------|-----------------------------------|-----------------------------------|--------------------------|-------------------------------------------------------------------------------------------------------------------|
| North<br>Pond    | GT-48           | 1.6                            | Undetermined                         | Gravel and<br>Cobbles             | Undetermined                      | Unfrozen                 | Schist; slightly to moderately weathered; competent; Gneiss; slightly to moderately weathered; competent; jointed |

Table 16: Overburden and Bedrock Condition Summary, North Pond

| General<br>Areas | Borehole<br>No.             | Overburden<br>Thickness<br>(m) | Organic<br>Layer<br>Thickness<br>(m) | Major<br>Overburden<br>Soil Types                                         | Active Layer<br>Thickness*<br>(m) | Permafrost<br>Conditions    | Bedrock<br>Conditions                                                    |
|------------------|-----------------------------|--------------------------------|--------------------------------------|---------------------------------------------------------------------------|-----------------------------------|-----------------------------|--------------------------------------------------------------------------|
|                  | GT-50                       | 3.4                            | 0.1                                  | Silt; Gravel;<br>Cobbles;<br>Gravel and<br>Sand,<br>Cobbles and<br>Gravel | 0.4                               | Vx, Vs, Vc,<br>Nbe<br>1-45% | Gneiss; slightly<br>to moderately<br>weathered;<br>competent;<br>jointed |
|                  | GT-51                       | 2.4                            | 0.5                                  | Gravel and<br>Sand; Sand                                                  | 0.5                               | Vs, Vc, Vx,<br>Nbe<br>5-30% | Gneiss; slightly<br>to moderately<br>weathered;<br>competent;<br>jointed |
| * - at the t     | * - at the time of drilling |                                |                                      |                                                                           |                                   |                             |                                                                          |

#### 3.9.1 Terrain Assessment

The North Pond site was assessed in the field on August 26, 2016 and between September 5, 2016 and September 8, 2016. Unfrozen conditions were encountered in borehole GT-48 (southeast facing slope), while permafrost conditions were encountered in GT-50 and GT-51 (northwest facing slope).

The North Pond area drains directly into YT-24 Creek (Figure 3). The southeast abutment of the proposed dyke will rest on a moderately steep (25° to 31°) northwest-facing slope underlain by permafrost and covered by sparse stunted ("drunken") black spruce forest with Sphagnum moss and low shrubs (Labrador tea, dwarf birch, alder, willow, blueberry etc.).

The moderately steep to steep (24° to > 42°) permafrost-free southeast-facing slope, which is covered by dense mixed white and black spruce and trembling aspen (Photo 26), will form the base for the northwest abutment. This slope consists of several subtle benches and is locally covered with rockfall talus. A bedrock outcrop was observed above the GT-48 drill pad location.

The pond will cover a treeless area in the centre that hosts low shrubs and has a gentle 9° slope that faces north.



Photo 26: Aerial view of proposed North Pond site, YT-24 Creek valley, looking south-southwest. Sparse stunted black spruce covers moderately steep northwest-facing slope underlain by permafrost. The steep permafrost-free southeast-facing slope is covered by a dense mix of white spruce and aspen. The treeless area is visible in the distance.

Photo taken on August 30, 2016.

The slopes are blanketed with coarse colluvium 1.6 m to 3.4 m thick (Table 16). The colluvium is covered by a veneer of black muck. Photo 27 shows the black muck veneer exposed in Testpit GT-50, which was excavated to refusal on the permafrost table on August 26, 2016 adjacent to Borehole GT-50.



Photo 27: Frozen ice-rich black muck exposed at a depth of 0.4 m (thickness of the active layer at the time of digging) in Testpit GT-50, North Pond.

Photo taken on August 26, 2016

#### 3.9.2 Overburden

The uppermost surficial deposits encountered in Boreholes GT-50 and -51 and the testpits (GT-48 had no overburden recovery) consist of black muck up to 0.50 m thick: dark brown to black moss with roots, peat, organics, and organic silt.

The colluvial deposits beneath the black muck comprise layers of well graded dark grey to brown subangular to angular gravel, sand, minor silt, and cobbles at GT-50 and -51, while poorly graded subangular to subrounded gravel and cobbles are all that was recovered in Borehole GT-48.

The northwest-facing slope is imperfectly to poorly-drained: seepage of suprapermafrost ground water was observed at the bottom of Testpit GT-51 (Photo 28).



Photo 28: Suprapermafrost ground water at 0.4 m depth BGL in Testpit GT-51, North Pond.
Photo taken on September 6, 2016.

The gravimetric moisture content of the frozen overburden varies from 15% in gravel at a depth of 0.7 m in Borehole GT-50 to 219% in frozen silt with organics (black muck) at 0.4 m to 0.5 m depth in Borehole GT-51 (Tables 6 and 7).

Permafrost conditions with excess ice (Vc, Vr, Vs, and Vx) were encountered in two (GT-50 and GT-51) of the three boreholes completed at the North Pond site. Excess ice content in frozen silty sand was found to be as high as 20% at a depth of 1.5 m in GT-51. Excess ice content in the black muck veneer was estimated to be as high as 45% at a depth of 0.4 m in the same borehole. The excess ground ice occurs in the frozen overburden in various forms, e.g. ice lenses (Vs, Vr) ranging in thickness from less than 1 mm to approximately 10 mm, ice inclusions (Vx) or ice coatings (Vc) up to 5 mm thick on gravel and cobbles. Photo 29 shows ice coating observed on gravel in Borehole GT-51.



Photo 29: Ice coating on gravel (Vc) in silty sand with a trace of gravel at a depth of approximately 1.5 m

BGL in Borehole GT-51, North Pond.

Photo taken on September 6, 2016.

#### 3.9.3 Bedrock

Gneiss was encountered in all three boreholes. The depth to bedrock is shown in Table 16.

The gneiss in Borehole GT-48 is bluish grey, fine grained, slightly to moderately weathered, medium strong to very strong, and may be foliated or include quartz veins. It is fractured, with abundant oxidized joints infilled with silt, sand, and/or calcite. JSN ranges from 2 to 9. Quality is variable, ranging from RQDs of 0% to 78% (very poor to good), and FF is 6 per metre.

The gneiss in boreholes GT-50 and GT-51 is grey or displays yellow, red, and grey bands. It is slightly to moderately weathered, strong to extremely strong, with abundant joints, faults, and fractures, which are commonly oxidized (JSN is 2 to 9). Joints may be infilled with ice, sand, silt, clay, or calcite. A few quartz veins are present as well. Quality is variable, with RQDs ranging from 0% to 90%, and FF is 1 to 14 per metre.

Ground ice was observed infilling some of the bedrock fractures and joints as described in the borehole logs (Appendix B) and illustrated in Photo 30. Excess ice (Vx, Vc, estimated at 1 to 12%) was observed in a fragmented zone (coarse sand to fine gravel-size fragments of rock) at 6.75 m to 7.0 m depth in Borehole GT-50 (Appendix B). Gravimetric moisture content of this fragmented material was measured to be as high as 12% (Table 6).



Photo 30: Ice infilling subvertical fracture in gneiss at a depth of 2.7 m BGL in GT-51, North Pond.

Photo taken in September 6, 2016.

# 4.0 CLOSURE

We trust this report meets your present requirements. If you have any questions or comments, please contact the undersigned.

Respectfully submitted, Tetra Tech Canada Inc.

[signatures redacted]

Prepared by:
Ernest Palczewski, P.Geo. (AB)
Geologist, Arctic Region
Email REDACTED

[signatures redacted]

Prepared by: Vladislav Roujanski, Ph.D., P.Geol. (NT/NU/AB) Senior Project Geologist – Geocryologist, Arctic Region

**Email REDACTED** 

[signatures redacted]

[signatures redacted]

Prepared by:
Ryan Garritsen, B.Sc., E.I.T. (AB)
Geotechnical Engineer I, Arctic Region
Email REDACTED

[signatures redacted]

Prepared by: Shirley McCuaig, Ph.D., P.Geo. (NT/NU/AB) Senior Terrain Geologist

Email REDACTED

[signatures redacted]

Reviewed by:
Kevin W. Jones, P.Eng. (YT/NT/NU/AB)
Vice President. Arctic Region
Email REDACTED

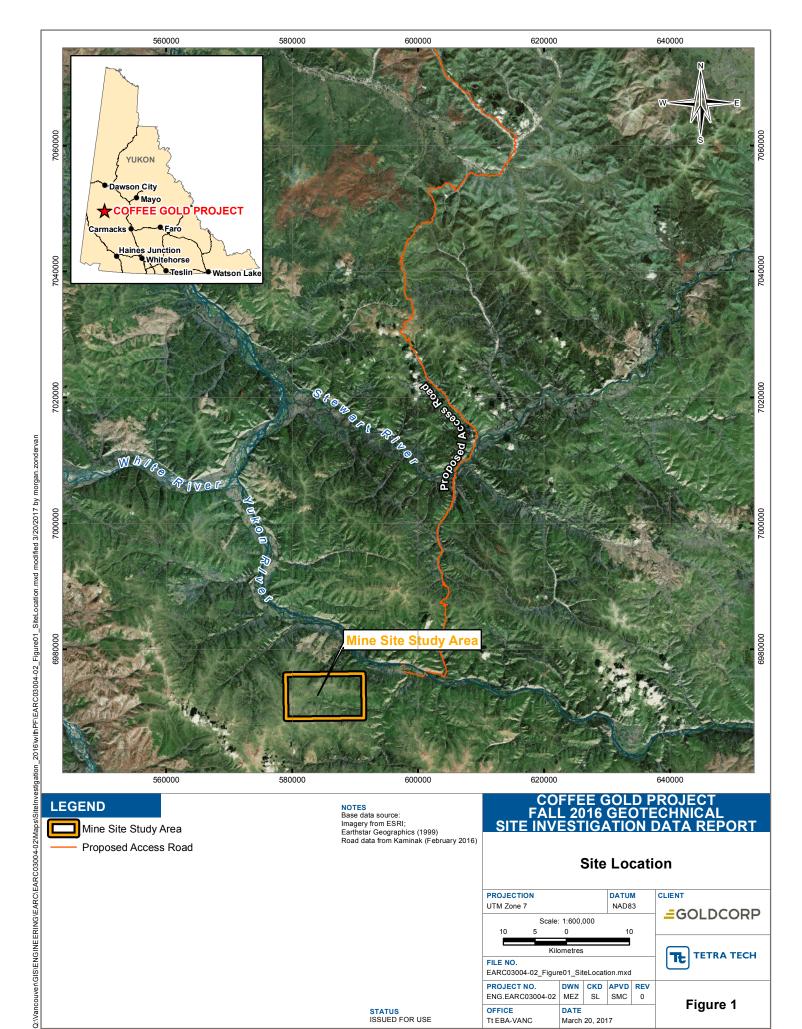
Reviewed by:
Michael Levy, P.E., P.G.
Principal Consultant (Geotechnics)
SRK Consulting (US), Inc.

**Email REDACTED** 

/jf/sm

# [signatures redacted]

# **REFERENCES**

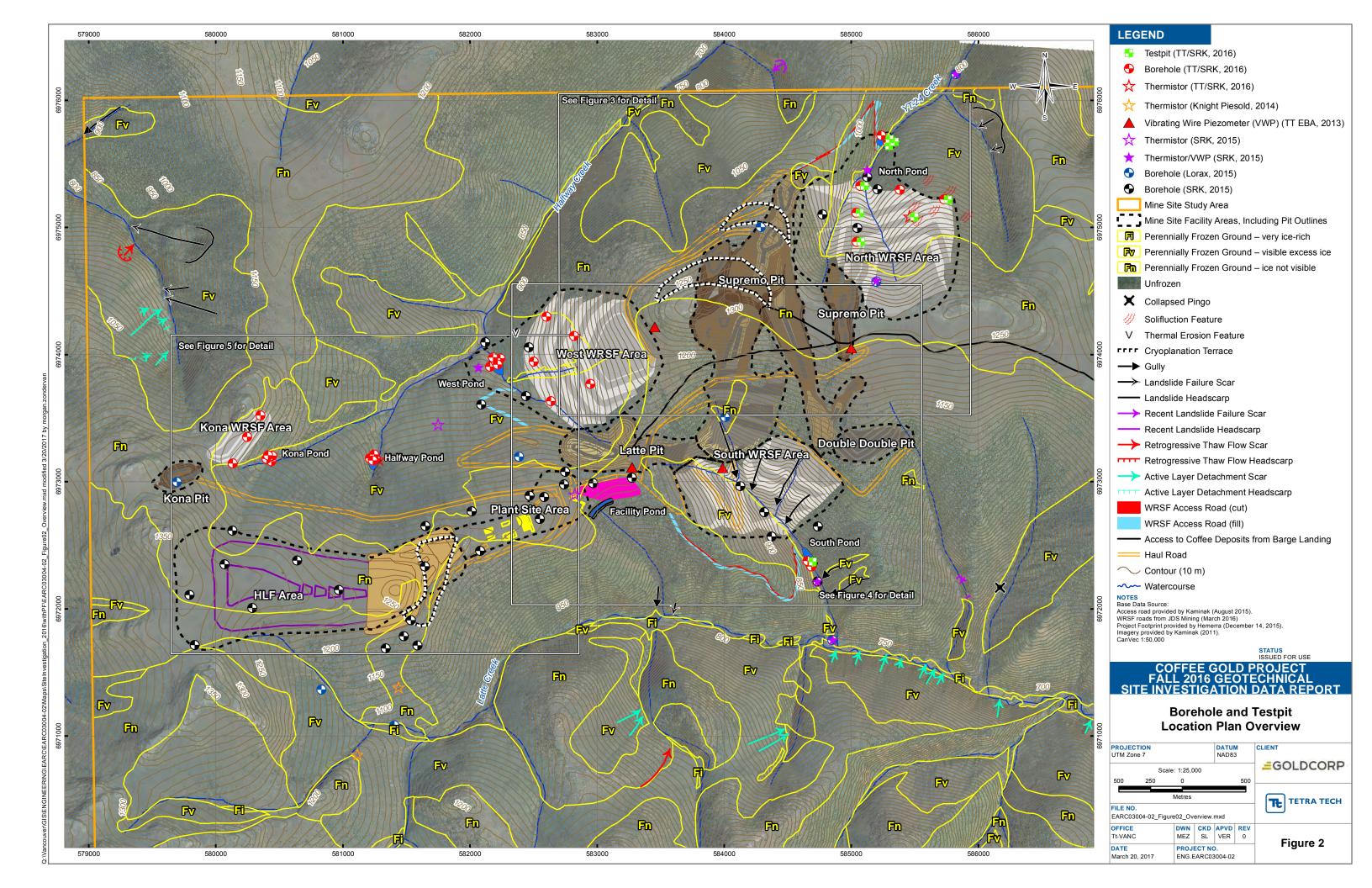

- AECOM Canada Ltd. 2012. Geomorphological Mapping and Landscape Model Development for Strategic Soil Geochemical Sampling at the Coffee Gold Project, Yukon Territory. Report prepared for Kaminak Gold Corporation, dated March 30, 2012.
- ASTM International. 2007. ASTM D4083: Standard Practice for Description of Frozen Soils (Visual-Manual Procedure).
- Bond, J.D. and Lipovsky, P.S. 2011. Surficial geology, soils and permafrost of the northern Dawson Range. In: Yukon Exploration and Geology, 2010, K.E. MacFarlane, L.H. Weston, and C. Ralf (eds.), Yukon Geological Survey, 19-32.
- Heginbottom, J.A., Dubreuil, M.A., and Harker, P.T. 1995. Canada Permafrost. *In:* The National Atlas of Canada, 5<sup>th</sup> Edition, Sheet MCR 4177, Plate 2.1, Scale: 1:7,500,000. National Atlas Information Service, Canada Centre for Mapping, Geomatics Canada, Terrain Sciences Division, Geological Survey of Canada, Natural Resources Canada, Ottawa.
- Knight Piesold (KP). 2015. Kaminak Gold Corporation, Coffee Gold Project, Report on Feasibility Study Level Geotechnical Investigations. Report prepared for Kaminak Gold Corporation, dated March 12, 2015.
- Lorax Environmental Services Ltd. (Lorax). 2016. Coffee Gold Baseline Hydrogeological Assessment. Report prepared for Kaminak Gold Corporation, dated March 14, 2016.
- McKillop, R., Turner, D., Johnston, K., and Bond, J. 2013. Property-Scale Classification of Surficial Geology for Soil Geochemical Sampling in the Unglaciated Klondike Plateau, West-Central Yukon. Yukon Geological Survey Open File 2013-15.
- Palmer Environmental Consulting Group (PECG) Inc. 2016. Terrain Stability and Hazard Mapping for the Coffee Gold Project. PN 13103. Report prepared for Kaminak Gold Corporation, dated March 19, 2016.
- SRK Consulting Inc. (SRK). 2016a. 2015 Geotechnical Field Investigation, Coffee Gold Project, Yukon Territory, Canada. Report prepared for Kaminak Gold Corporation, dated January 4, 2016.
- Tetra Tech EBA Inc. Technical Memorandum No.: 2 (Issued For Use Revision 2). 2016. Permafrost and Related Geohazard Mapping within the Coffee Mine Site Study Area. Submitted to Kaminak Gold Corporation on May 3, 2016.
- Tetra Tech EBA Inc. Technical Memorandum No.: 4 (Issued For Use). 2016. Permafrost Considerations for Proposed WRSF Access Road Configurations, Coffee Gold Project. Submitted to Kaminak Gold Corporation, dated May 9, 2016.
- Tetra Tech EBA Inc. Technical Memorandum No.:5 (Issued For Review). 2016. Review of Drill Pad Design and Construction on permafrost Slopes, Coffee Gold Project. Submitted to Goldcorp Kaminak Gold Corporation (Goldcorp) on August 11, 2016.
- Williams, D.J. 1995. Predicting the Location of Permafrost in Central Yukon Territory. Unpublished MA Thesis, Carleton University, Ottawa, Canada.
- Williams, D.J. and Burn, C.R. 1996. Surficial characteristics associated with the occurrence of permafrost near Mayo, central Yukon Territory, Canada. Permafrost and Periglacial Processes Vol. 7, 193-206.
- WM3403 Geotechnical Logging of Rock Core. EBA, A Tetra Tech Company's work method, 14 p.
- WM4102 Logging of Perennially Frozen Soils and Ground Ice for Engineering Purposes. Tetra Tech Canada Inc.'s work method, 37 p.
- WM4105 Installation of Ground Temperature Cables in Boreholes. EBA, A Tetra Tech Company's work method (DRAFT), 13 p.
- WM4400 Geotechnical Soil Classification. EBA, A Tetra Tech Company's work method, 16 p.

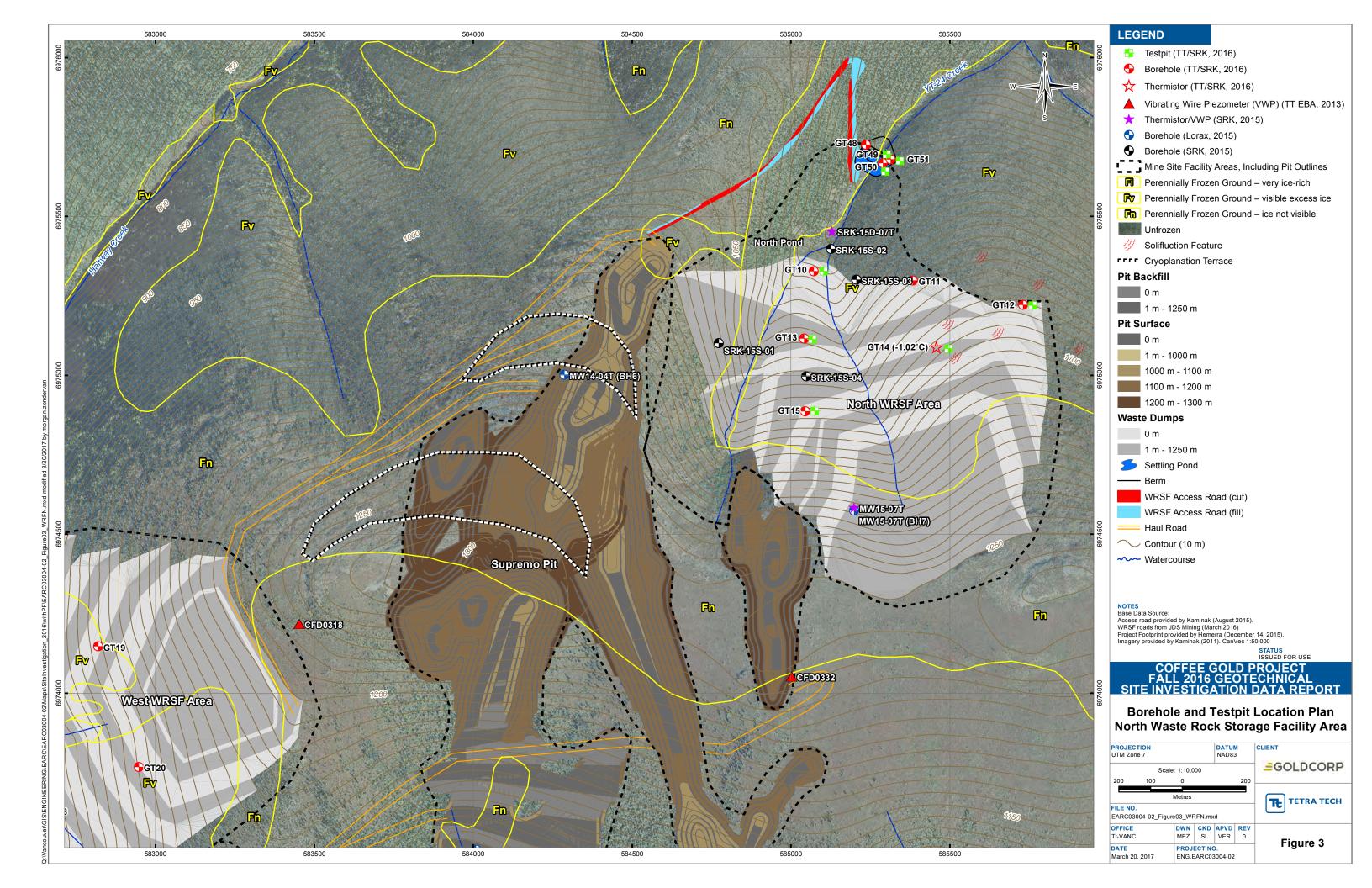
Yukon Ecoregions Working Group. 2004. Klondike Plateau. In: Ecoregions of the Yukon Territory: Biophysical Properties of Yukon Landscapes, C.A.S. Smith, J.C. Meikle, and C.F. Roots (eds.), Agriculture and Agri-Food Canada, PARC Technical Bulletin No 04-01, Summerland, B.C., 159-168

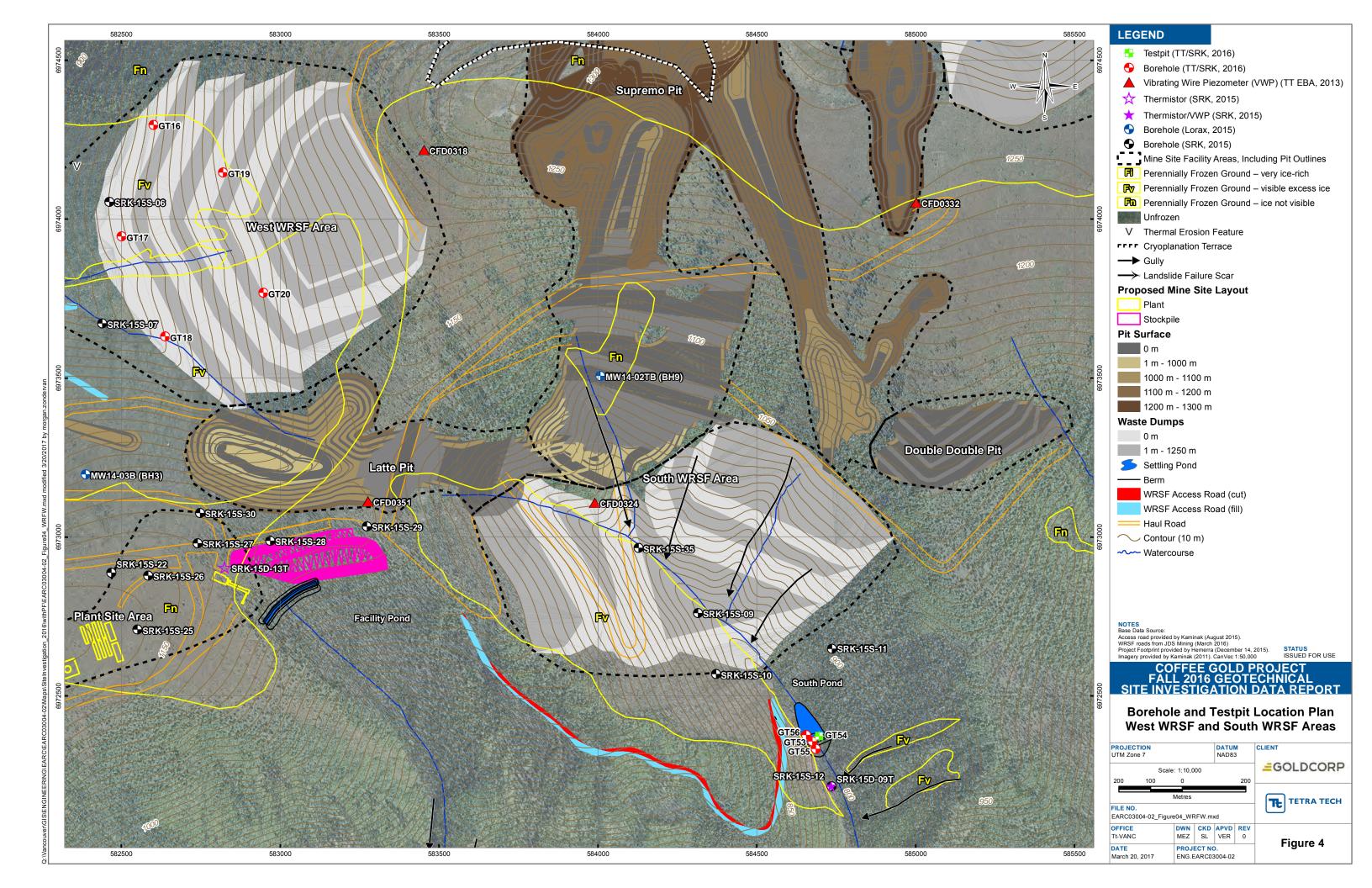
# **FIGURES**

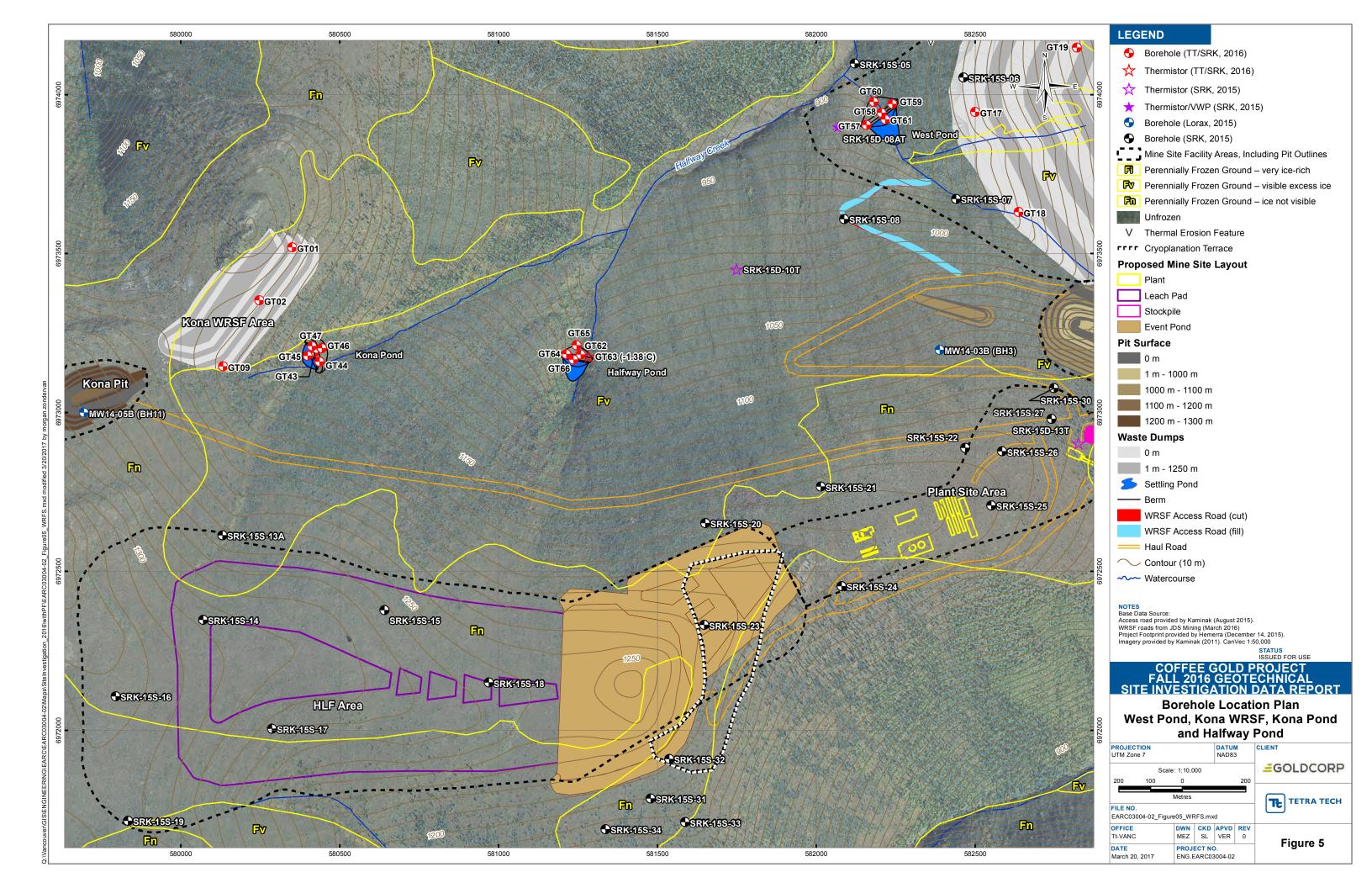
| Figure 1 | Site Location                                                             |
|----------|---------------------------------------------------------------------------|
| Figure 2 | Borehole and Testpit Location Plan Overview                               |
| Figure 3 | Borehole and Testpit Location Plan North Waste Rock Storage Facility Area |
| Figure 4 | Borehole and Testpit Location Plan West WRSF and South WRSF Areas         |
| Figure 5 | Borehole Location Plan West Pond, Kona WRSF, Kona Pond, and Halfway Pond  |







STATUS ISSUED FOR USE


OFFICE


Tt EBA-VANC

March 20, 2017









## **PHOTOGRAPHS**

| Photo 1     | Borehole GT-01 |
|-------------|----------------|
| Photo 2     | Borehole GT-02 |
| Photo 3-4   | Borehole GT-09 |
| Photo 5-6   | Borehole GT-10 |
| Photo 7-9   | Borehole GT-11 |
| Photo 10    | Borehole GT-12 |
| Photo 11-12 | Borehole GT-13 |
| Photo 13-20 | Borehole GT-14 |
| Photo 21-23 | Borehole GT-15 |
| Photo 24    | Borehole GT-16 |
| Photo 25    | Borehole GT-17 |
| Photo 26-27 | Borehole GT-18 |
| Photo 28-29 | Borehole GT-20 |
| Photo 30-33 | Borehole GT-43 |
| Photo 34    | Borehole GT-44 |
| Photo 35-39 | Borehole GT-45 |
| Photo 40-44 | Borehole GT-46 |
| Photo 45-52 | Borehole GT-47 |
| Photo 53-54 | Borehole GT-48 |
| Photo 55-56 | Borehole GT-50 |
| Photo 57-62 | Borehole GT-51 |
| Photo 63-64 | Borehole GT-53 |
| Photo 65    | Borehole GT-55 |
| Photo 66-68 | Borehole GT-57 |
| Photo 69-70 | Borehole GT-58 |
| Photo 71    | Borehole GT-59 |
|             |                |



| Borehole GT-60 |
|----------------|
| Borehole GT-61 |
| Borehole GT-62 |
| Borehole GT-63 |
| Borehole GT-64 |
| Borehole GT-65 |
| Borehole GT-66 |
|                |






Photo 1: Borehole GT-01; Depth: 0.0 - 4.0 m



Photo 2: Borehole GT-02; Depth: 0.0 - 5.0 m



**Photo 3:** Borehole GT-09; Depth: 0.0 - 16.81 m



**Photo 4:** Borehole GT-09; Depth: 16.81 - 19.0 m



Photo 5: Borehole GT-10; Depth: 0.0 - 4.0 m



Photo 6: Borehole GT-10; Depth: 0.0 - 6.0 m




Photo 7: Borehole GT-11; Depth: 0.0 - 2.85 m



Photo 8: Borehole GT-11; Depth: 3.0 - 4.50 m



**Photo 9:** Borehole GT-11; Depth: 4.50 - 6.40 m



**Photo 10:** Borehole GT-12; Depth: 0.0 - 6.0 m

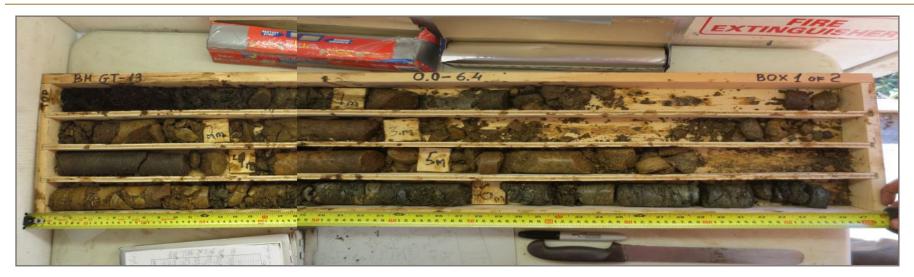



Photo 11: Borehole GT-13; Depth: 0.0 - 6.40 m



**Photo 12:** Borehole GT-13; Depth: 6.4 - 10.0 m



Photo 13: Borehole GT-14; Depth: 0.0 - 1.5 m



**Photo 14:** Borehole GT-14; Depth: 1.5 - 3.0 m



**Photo 15:** Borehole GT-14; Depth: 3.0 - 4.5 m



**Photo 16:** Borehole GT-14; Depth: 4.5 - 8.0 m



Photo 17: Borehole GT-14; Depth: 8.0 - 11.0 m



Photo 18: Borehole GT-14; Depth: 11.0 - 14.0 m



Photo 19: Borehole GT-14; Depth: 14.0 - 17.0 m



**Photo 20:** Borehole GT-14; Depth: 17.0 - 20.5 m



Photo 21: Borehole GT-15; Depth: 0.0 - 4.0 m



Photo 22: Borehole GT-15; Depth: 0.0 - 7.0 m



Photo 23: Borehole GT-15; Depth: 7.0 - 10.0 m



Photo 24: Borehole GT-16; Depth: 0.0 - 6.0 m



Photo 25: Borehole GT-17; Depth: 0.0 - 5.2 m



Photo 26: Borehole GT-18; Depth: 0.0 - 6.0 m



Photo 27: Borehole GT-18; Depth: 6.0 - 7.0 m



Photo 28: Borehole GT-20; Depth: 0.0 - 6.0 m



Photo 29: Borehole GT-20; Depth: 6.0 - 7.0 m



Photo 30: Borehole GT-43; Depth: 0.0 - 3.0 m



Photo 31: Borehole GT-43; Depth: 0.0 - 9.0 m



**Photo 32:** Borehole GT-43; Depth: 9.0 - 14.0 m



Photo 33: Borehole GT-43; Depth: 14.0 - 18.0 m



Photo 34: Borehole GT-44; Depth: 0.0 - 6.0 m



Photo 35: Borehole GT-45; Depth: 0.0 - 3.0 m



Photo 36: Borehole GT-45; Depth: 0.0 - 8.0 m



Photo 37: Borehole GT-45; Depth: 0.0 - 12.0 m



Photo 38: Borehole GT-45; Depth: 12.0 - 17.0 m



Photo 39: Borehole GT-45; Depth: 17.0 - 21.0 m



Photo 40: Borehole GT-46; Depth: 0.0 - 3.0 m



Photo 41: Borehole GT-46; Depth: 0.0 - 4.0 m



Photo 42: Borehole GT-46; Depth: 0.0 - 7.0 m



Photo 43: Borehole GT-46; Depth: 0.0 - 8.0 m



Photo 44: Borehole GT-46; Depth: 0.0 - 11.0 m



**Photo 45:** Borehole GT-47; Depth: 0.0 - 3.0 m



**Photo 46:** Borehole GT-47; Depth: 0.0 - 5.0 m



Photo 47: Borehole GT-47; Depth: 0.0 - 7.0 m



Photo 48: Borehole GT-47; Depth: 7.0 - 8.0 m



Photo 49: Borehole GT-47; Depth: 7.0 - 11.0 m



**Photo 50:** Borehole GT-47; Depth: 7.0 - 12.0 m



Photo 51: Borehole GT-47; Depth: 7.0 - 12.40 m



**Photo 52:** Borehole GT-47; Depth: 12.40 - 16.76 m



Photo 53: Borehole GT-48; Depth: 0.0 - 6.60 m



**Photo 54:** Borehole GT-48; Depth: 6.60 - 9.0 m



Photo 55: Borehole GT-50; Depth: 0.0 - 8.0 m



Photo 56: Borehole GT-50; Depth: 6.0 - 10.0 m

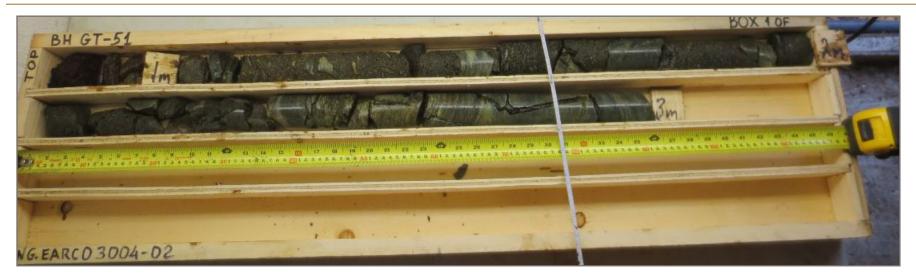



Photo 57: Borehole GT-51; Depth: 0.0 - 3.0 m



Photo 58: Borehole GT-51; Depth: 4.0 - 6.50 m



Photo 59: Borehole GT-51; Depth: 5.8 - 12.50 m



Photo 60: Borehole GT-51; Depth: 10.15 - 14.84 m

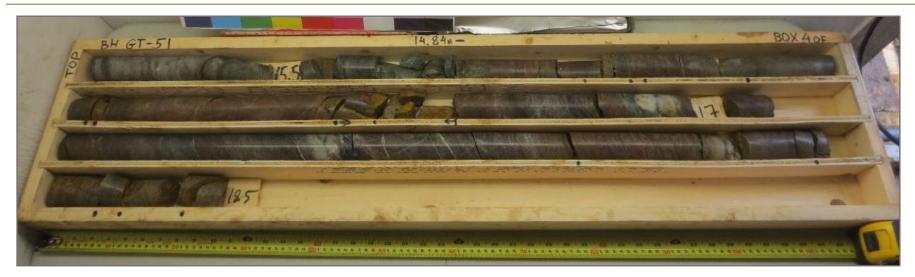



Photo 61: Borehole GT-51; Depth: 14.84 - 18.50 m



Photo 62: Borehole GT-51; Depth: 18.50 - 21.0 m



Photo 63: Borehole GT-53; Depth: 0.0 - 8.0 m



Photo 64: Borehole GT-53; Depth: 8.0 - 1.0 m



Photo 65: Borehole GT-55; Depth: 0.0 - 9.0 m



Photo 66: Borehole GT-57; Depth: 0.0 - 3.0 m

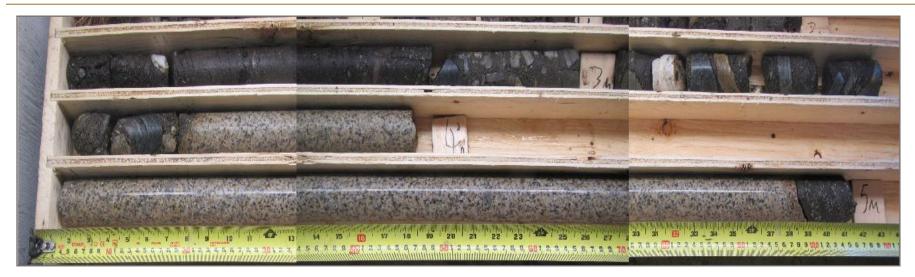



Photo 67: Borehole GT-57; Depth: 3.0 - 5.0 m



**Photo 68:** Borehole GT-55; Depth: 5.0 - 14.0 m



Photo 69: Borehole GT-58; Depth: 0.0 - 5.0 m



Photo 70: Borehole GT-58; Depth: 5.0 - 8.0 m



Photo 71: Borehole GT-59; Depth: 0.0 - 5.0 m



Photo 72: Borehole GT-60; Depth: 0.0 - 4.0 m



Photo 73: Borehole GT-60; Depth: 0.0 - 5.0 m



Photo 74: Borehole GT-60; Depth: 0.0 - 6.0 m



Photo 75: Borehole GT-60; Depth: 6.0 - 8.0 m



Photo 76: Borehole GT-60; Depth: 0.0 - 5.0 m



Photo 77: Borehole GT-60; Depth: 0.0 - 6.0 m



Photo 78: Borehole GT-61; Depth: 0.0 - 5.0 m



Photo 79: Borehole GT-61; Depth: 6.0 - 8.0 m



Photo 80: Borehole GT-62; Depth: 0.0 - 6.0 m



Photo 81: Borehole GT-62; Depth: 6.0 - 8.0 m



Photo 82: Borehole GT-63; Depth: 0.0 - 6.0 m



Photo 83: Borehole GT-63; Depth: 6.0 - 10.0 m



Photo 84: Borehole GT-63; Depth: 10.0 - 14.50 m



Photo 85: Borehole GT-63; Depth: 14.50 - 19.0 m



Photo 86: Borehole GT-63; Depth: 19.0 - 21.20 m



Photo 87: Borehole GT-64; Depth: 0.0 - 7.0 m



Photo 88: Borehole GT-65; Depth: 0.0 - 4.0 m



**Photo 89:** Borehole GT-65; Depth: 0.0 - 6.0 m



Photo 90: Borehole GT-65; Depth: 6.0 - 9.0 m



**Photo 91:** Borehole GT-66; Depth: 0.0 - 5.0 m



Photo 92: Borehole GT-66; Depth: 0.0 - 6.0 m



Photo 93: Borehole GT-66; Depth: 6.0 - 9.0 m



Photo 94: Borehole GT-66; Depth: 6.0 - 11.0 m

## **APPENDIX A**

## **TETRA TECH'S GENERAL CONDITIONS**



### **GENERAL CONDITIONS**

#### **GEOTECHNICAL REPORT**

This report incorporates and is subject to these "General Conditions".

#### 1.1 USE OF REPORT AND OWNERSHIP

This geotechnical report pertains to a specific site, a specific development and a specific scope of work. It is not applicable to any other sites nor should it be relied upon for types of development other than that to which it refers. Any variation from the site or development would necessitate a supplementary geotechnical assessment.

This report and the recommendations contained in it are intended for the sole use of TETRA TECH's Client. TETRA TECH does not accept any responsibility for the accuracy of any of the data, the analyses or the recommendations contained or referenced in the report when the report is used or relied upon by any party other than TETRA TECH's Client unless otherwise authorized in writing by TETRA TECH. Any unauthorized use of the report is at the sole risk of the user.

This report is subject to copyright and shall not be reproduced either wholly or in part without the prior, written permission of TETRA TECH. Additional copies of the report, if required, may be obtained upon request.

#### 1.2 ALTERNATE REPORT FORMAT

Where TETRA TECH submits both electronic file and hard copy versions of reports, drawings and other project-related documents and deliverables (collectively termed TETRA TECH's instruments of professional service); only the signed and/or sealed versions shall be considered final and legally binding. The original signed and/or sealed version archived by TETRA TECH shall be deemed to be the original for the Project.

Both electronic file and hard copy versions of TETRA TECH's instruments of professional service shall not, under any circumstances, no matter who owns or uses them, be altered by any party except TETRA TECH. TETRA TECH's instruments of professional service will be used only and exactly as submitted by TETRA TECH.

Electronic files submitted by TETRA TECH have been prepared and submitted using specific software and hardware systems. TETRA TECH makes no representation about the compatibility of these files with the Client's current or future software and hardware systems.

#### 1.3 ENVIRONMENTAL AND REGULATORY ISSUES

Unless stipulated in the report, TETRA TECH has not been retained to investigate, address or consider and has not investigated, addressed or considered any environmental or regulatory issues associated with development on the subject site.

## 1.4 NATURE AND EXACTNESS OF SOIL AND ROCK DESCRIPTIONS

Classification and identification of soils and rocks are based upon commonly accepted systems and methods employed in professional geotechnical practice. This report contains descriptions of the systems and methods used. Where deviations from the system or method prevail, they are specifically mentioned.

Classification and identification of geological units are judgmental in nature as to both type and condition. TETRA TECH does not warrant conditions represented herein as exact, but infers accuracy only to the extent that is common in practice.

Where subsurface conditions encountered during development are different from those described in this report, qualified geotechnical personnel should revisit the site and review recommendations in light of the actual conditions encountered

#### 1.5 LOGS OF TESTHOLES

The testhole logs are a compilation of conditions and classification of soils and rocks as obtained from field observations and laboratory testing of selected samples. Soil and rock zones have been interpreted. Change from one geological zone to the other, indicated on the logs as a distinct line, can be, in fact, transitional. The extent of transition is interpretive. Any circumstance which requires precise definition of soil or rock zone transition elevations may require further investigation and review.

#### 1.6 STRATIGRAPHIC AND GEOLOGICAL INFORMATION

The stratigraphic and geological information indicated on drawings contained in this report are inferred from logs of test holes and/or soil/rock exposures. Stratigraphy is known only at the locations of the test hole or exposure. Actual geology and stratigraphy between test holes and/or exposures may vary from that shown on these drawings. Natural variations in geological conditions are inherent and are a function of the historic environment. TETRA TECH does not represent the conditions illustrated as exact but recognizes that variations will exist. Where knowledge of more precise locations of geological units is necessary, additional investigation and review may be necessary.



#### 1.7 PROTECTION OF EXPOSED GROUND

Excavation and construction operations expose geological materials to climatic elements (freeze/thaw, wet/dry) and/or mechanical disturbance which can cause severe deterioration. Unless otherwise specifically indicated in this report, the walls and floors of excavations must be protected from the elements, particularly moisture, desiccation, frost action and construction traffic.

#### 1.8 SUPPORT OF ADJACENT GROUND AND STRUCTURES

Unless otherwise specifically advised, support of ground and structures adjacent to the anticipated construction and preservation of adjacent ground and structures from the adverse impact of construction activity is required.

#### 1.9 INFLUENCE OF CONSTRUCTION ACTIVITY

There is a direct correlation between construction activity and structural performance of adjacent buildings and other installations. The influence of all anticipated construction activities should be considered by the contractor, owner, architect and prime engineer in consultation with a geotechnical engineer when the final design and construction techniques are known.

#### 1.10 OBSERVATIONS DURING CONSTRUCTION

Because of the nature of geological deposits, the judgmental nature of geotechnical engineering, as well as the potential of adverse circumstances arising from construction activity, observations during site preparation, excavation and construction should be carried out by a geotechnical engineer. These observations may then serve as the basis for confirmation and/or alteration of geotechnical recommendations or design guidelines presented herein.

#### 1.11 DRAINAGE SYSTEMS

Where temporary or permanent drainage systems are installed within or around a structure, the systems which will be installed must protect the structure from loss of ground due to internal erosion and must be designed so as to assure continued performance of the drains. Specific design detail of such systems should be developed or reviewed by the geotechnical engineer. Unless otherwise specified, it is a condition of this report that effective temporary and permanent drainage systems are required and that they must be considered in relation to project purpose and function.

#### 1.12 BEARING CAPACITY

Design bearing capacities, loads and allowable stresses quoted in this report relate to a specific soil or rock type and condition. Construction activity and environmental circumstances can materially change the condition of soil or rock. The elevation at which a soil or rock type occurs is variable. It is a requirement of this report that structural elements be founded in and/or upon geological materials of the type and in the condition assumed. Sufficient observations should be made by qualified geotechnical personnel during construction to assure that the soil and/or rock conditions assumed in this report in fact exist at the site.

#### 1.13 SAMPLES

TETRA TECH will retain all soil and rock samples for 30 days after this report is issued. Further storage or transfer of samples can be made at the Client's expense upon written request, otherwise samples will be discarded.

#### 1.14 INFORMATION PROVIDED TO TETRA TECH BY OTHERS

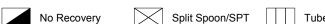
During the performance of the work and the preparation of the report, TETRA TECH may rely on information provided by persons other than the Client. While TETRA TECH endeavours to verify the accuracy of such information when instructed to do so by the Client, TETRA TECH accepts no responsibility for the accuracy or the reliability of such information which may affect the report.

## APPENDIX B BOREHOLE AND TESTPIT LOGS



## **BOREHOLE KEYSHEET**

## Water Level Measurement

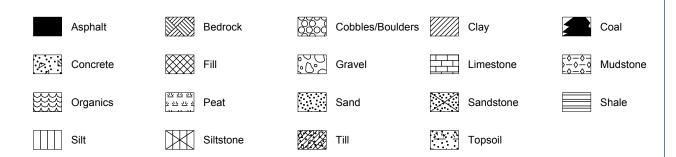

Measured in standpipe, piezometer or well

## Sample Types

Jar and Bag



NQ Core




HQ Core

## **Backfill Materials**



## Lithology - Graphical Legend<sup>1</sup>



<sup>1.</sup> The graphical legend is an approximation and for visual representation only. Soil strata may comprise a combination of the basic symbols shown above. Particle sizes are not drawn to scale



#### MODIFIED UNIFIED SOIL CLASSIFICATION **GROUP TYPICAL MAJOR DIVISION** LABORATORY CLASSIFICATION CRITERIA **SYMBOL** DESCRIPTION $C_{U} = D_{60} / D_{10}$ Greater than 4 Well-graded gravels and gravel-GW, GP, SW, SP GM, GC, SM, SC Borderline Classification requiring use of dual symbols GW $\frac{(D_{30})2}{D_{10} \times D_{6}}$ sand mixtures, little or no fines Between 1 and 3 CLEAN 50% or more of coarse fraction retained on 4.75 mm sieve Poorly graded gravels and gravel-GP Not meeting both criteria for GW sand mixtures, little or no fines Atterberg limits Silty gravels, Atterberg limits plot below "A" line More than 50% retained on 75 µm sieve\* GM plotting in hatched area are Classification on basis of percentage of fines gravel-sand-silt mixtures or plasticity index less than 4 GRAVELS WITH FINES borderline COARSE-GRAINED SOILS classifications Atterberg limits plot above "A" line Clayey gravels, requiring use of GC gravel-sand-clay mixtures or plasticity index greater than 7 dual symbols $C_{\scriptscriptstyle U}=D_{\scriptscriptstyle 60}\!/D_{\scriptscriptstyle 10}$ Greater than 6 Well-graded sands and gravelly SW $C_c = \frac{(D_{30/} - 1)^{-1}}{D_{10} \times D_{60}}$ $(D_{30})2$ sands, little or no fines Between 1 and 3 CLEAN More than 50% of coarse fraction passes 4.75 mm sieve Less than 5% Pass 75 µm sieve More than 12% Pass 75 µm sieve 5% to 12% Pass 75 µm sieve Poorly graded sands and gravelly Not meeting both criteria for SW SP sands. little or no fines SANDS Atterberg limits Atterberg limits plot below "A" line Silty sands, sand-silt mixtures SM plotting in or plasticity index less than 4 hatched area are SANDS WITH FINES borderline classifications Atterberg limits plot above "A" line requiring use of Clayey sands, sand-clay mixtures SC or plasticity index greater than 7 dual symbols Inorganic silts, very fine sands. <50 rock flour, silty or clayey fine sands ML Liquid limit of slight plasticity PLASTICITY CHART SILTS For classification of fine-grained Inorganic silts, micaceous or soils and fine fraction of coarse->20 50 МН diatomaceous fine sands or grained soils silts, elastic silts СН Equation of 'A' line: PI = 0.73(LL-20) FINE-GRAINED SOILS (by behavior) 50% or more passes 75 µm sieve\* Inorganic clays of low plasticity, 40 chart negligible organic content gravelly clays, sandy clays, CL Above "A" line on plasticity 8 silty clays, lean clays CI Liquid limit **LASTICITY** 30-50 Inorganic clays of medium CL CI plasticity, silty clays MH or OH >50 Inorganic clays of high СН plasticity, fat clays ML or OL Organic silts and organic silty clays ORGANIC SILTS AND CLAYS <50 60 70 80 90 100 0L of low plasticity Liquid limit LIQUID LIMIT Organic clays of medium >20 ОН to high plasticity \* Based on the material passing the 75 mm sieve ASTM Designation D 2487, for identification procedure see D 2488 USC as modified by PFRA Peat and other highly organic HIGHLY ORGANIC SOILS РТ SOIL COMPONENTS **OVERSIZE MATERIAL** DEFINING RANGES OF Rounded or subrounded **FRACTION** SIEVE SIZE PERCENTAGE BY MASS OF MINOR COMPONENTS **COBBLES** 75 mm to 300 mm **BOULDERS** > 300 mm **PASSING** RETAINED **PERCENTAGE DESCRIPTOR GRAVEL** Not rounded coarse 75 mm 19 mm >35 % "and" fine 19 mm 4.75 mm **ROCK FRAGMENTS** >75 mm 21 to 35 % "y-adjective" ROCKS > 0.76 cubic metre in volume SAND 11 to 20 % "some" coarse 4.75 mm 2.00 mm medium 2.00 mm 425 µm >0 to 10 % "trace" 75 µm fine 425 µm **TETRA TECH** SILT (non plastic) as above but 75 µm by behavior CLAY (plastic)

## **GROUND ICE DESCRIPTION**

GROUP Symbol

SYMBOL

Nf

Nbe

#### VISIBLE ICE LESS THAN 50% BY VOLUME

| GROUP<br>SYMBOL | SYMBOL | SUBGROUP DESCRIPTION                             | SKETCH | PHOTOGRAPH |
|-----------------|--------|--------------------------------------------------|--------|------------|
|                 | Vx     | Individual ice crystals or inclusions            | •      |            |
| V               | Vc     | lce coatings on particles                        | 000    |            |
| v               | Vr     | Random or irregularly oriented ice formations    |        |            |
|                 | Vs     | Stratified or distinctly oriented ice formations |        |            |

# N Nbn No excess ice, well-bonded

Poorly-bonded or friable

ICE NOT VISIBLE

SKETCH

PHOTOGRAPH

SUBGROUP DESCRIPTION

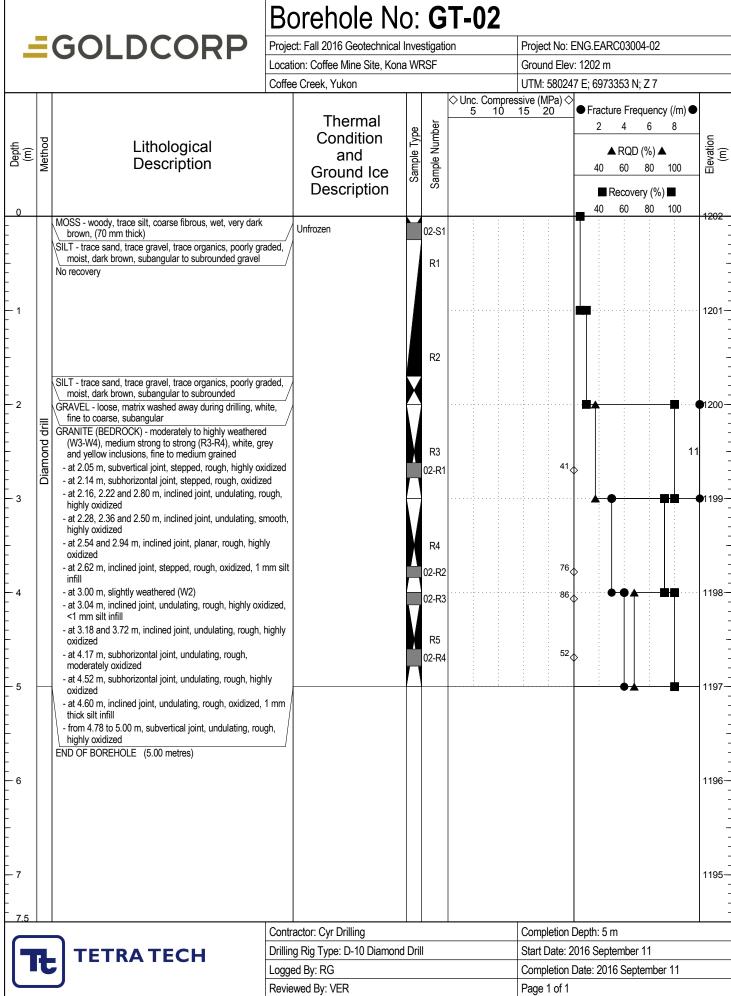
LEGEND: Soil Ice

NOTES:

1. Dual symbols are used to indicate borderline or mixed ice classifications.

Excess ice, well-bonded

2. Visual estimates of ice contents indicated on borehole logs  $\pm\,5\%$ 


 This system of ground ice description has been modified from NRC Technical Memo 79, Guide to the Field Description of Permafrost for Engineering Purposes.

#### **VISIBLE ICE GREATER THAN 50% BY VOLUME**

| ICE | ICE +<br>Soil Type | Ice with soil inclusions                                 |        |
|-----|--------------------|----------------------------------------------------------|--------|
| IGE | ICE                | lce without soil inclusions<br>(greater than 25 mm thick | diam's |



|                                      |              |                                                                                                                                                                   | Borehole N                                     | 0:          | G             | T-01                      |                                |                         |            |               |
|--------------------------------------|--------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------|-------------|---------------|---------------------------|--------------------------------|-------------------------|------------|---------------|
|                                      |              | GOLDCORP 🖪                                                                                                                                                        | oject: Fall 2016 Geotechnica                   | al Inve     | stigation     | on                        | Project No: E                  | NG.EARC03               | 004-02     |               |
|                                      |              | OOLDCOKI                                                                                                                                                          | ocation: Coffee Mine Site, Ko                  |             |               |                           | Ground Elev:                   |                         |            |               |
|                                      |              | C                                                                                                                                                                 | offee Creek, Yukon                             |             |               |                           | UTM: 580350                    | E; 6973519              | N; Z 7     |               |
| Depth<br>(m)                         | Method       | Lithological<br>Description                                                                                                                                       | Thermal Condition and Ground Ice Description   | Sample Type | Sample Number | ♦ Unc. Compress<br>5 10 1 | ive (MPa) $\diamondsuit$ 5 20  | 2 4  ▲ RQ 40 60  ■ Reco | very (%) ■ | Elevation (m) |
| 0                                    |              | GRAVEL - loose, matrix washed away during drilling,                                                                                                               | Unfrozen                                       |             |               | <u> </u>                  | : :                            | 40 = 60                 | 80 100     | <del> </del>  |
| -<br>-<br>-<br>-<br>-                |              | subrounded gravel, (200 mm thick)  BOULDER (GRANITE)  No recovery                                                                                                 | Ullilüzeli                                     | X           | R1            |                           |                                |                         |            | 1209-         |
| -<br>- 1<br>-<br>-<br>-<br>-         |              | GRAVEL - loose, silt matrix washed away during drilling, subangular to subrounded gravel                                                                          |                                                |             | R2            |                           |                                |                         |            | 1208-         |
| -<br>-<br>-<br>-<br>- 2<br>-         | iamond drill | GRANITE (BEDROCK) - massive, very strong (R5), white to pale yellowish with black specks, medium grained - from 1.60 to 1.65 m, moderately weathered (W3)         |                                                | A<br>V      | 01-R1         |                           | 128                            | , <u> </u>              | <b>T</b>   | -             |
| -<br>-<br>-<br>-<br>-<br>-<br>-<br>3 | Di           |                                                                                                                                                                   |                                                |             | R3<br>01-R2   |                           | 104                            |                         |            | 1207          |
| -<br>-<br>-<br>-<br>-<br>-           |              | <ul> <li>- at 3.00 m, horizontal joint, planar, rough, oxidation</li> <li>- at 3.52 and 3.55 m, inclined joints, planar, rough, oxidati silt at 3.55 m</li> </ul> | on,                                            | X           | R4            |                           |                                |                         |            | 1206-         |
| -<br>- 4<br>-<br>-<br>-<br>-<br>-    |              | - at 3.59 m, horizontal joint, planar, smooth, oxidation, silt alteration  END OF BOREHOLE (4.00 metres)                                                          |                                                |             | 01-R3         |                           | 161                            |                         |            | 1205          |
| -<br>- 5<br>-<br>-<br>-              |              |                                                                                                                                                                   |                                                |             |               |                           |                                |                         |            | 1204          |
| -<br>-<br>- 6<br>-                   |              |                                                                                                                                                                   |                                                |             |               |                           |                                |                         |            | -             |
| -<br>-<br>-<br>-<br>-<br>-<br>- 7    |              |                                                                                                                                                                   |                                                |             |               |                           |                                |                         |            | 1203-         |
| -<br>-<br>7.5                        |              |                                                                                                                                                                   |                                                |             |               |                           |                                |                         |            | -             |
|                                      |              | C                                                                                                                                                                 | ontractor: Cyr Drilling                        |             |               |                           | Completion D                   | epth: 4 m               |            | •             |
|                                      | ł            |                                                                                                                                                                   | rilling Rig Type: D-10 Diamor<br>ogged By: VER | nd Dril     | l<br>         |                           | Start Date: 20<br>Completion D |                         |            |               |
| BOCK COL                             | RE EN        | G-EARC03004-02.GPJ EBA.GDT 17/2/14                                                                                                                                | eviewed By: VER                                |             |               |                           | Page 1 of 1                    |                         |            |               |



|                   |             |                                                                           | В        | orehole N                                        | 0:          | G             | T-09                 |             |             |           |                                         |                                       |                  |
|-------------------|-------------|---------------------------------------------------------------------------|----------|--------------------------------------------------|-------------|---------------|----------------------|-------------|-------------|-----------|-----------------------------------------|---------------------------------------|------------------|
| -                 |             | GOLDCORP                                                                  | Proje    | ct: Fall 2016 Geotechnical                       | Inve        | stigati       | on                   | Project No: | ENG.        | EARC030   | 04-02                                   |                                       |                  |
|                   |             | OOLDCOIN                                                                  |          | ion: Coffee Mine Site, Kor                       |             |               |                      | Ground Ele  | v: 119      | 6.66 m    |                                         |                                       |                  |
|                   |             |                                                                           | Coffe    | e Creek, Yukon                                   |             |               |                      | UTM: 5801   | 33 E; 6     | 973145    | N; Z 7                                  |                                       |                  |
|                   |             |                                                                           |          | ,                                                |             |               | ♦ Unc. Compr<br>5 10 |             |             |           |                                         | " > 4                                 | I                |
|                   |             |                                                                           |          | Thermal                                          |             | _             | 5 10                 | 15 20       |             | acture Fr |                                         |                                       | <b>"</b>         |
|                   | ا ح         |                                                                           |          | Condition                                        | ype         | Sample Number |                      |             |             | 2 4       | 6                                       | 8                                     | L L              |
| Depth<br>(m)      | Method      | Lithological                                                              |          | and                                              | Sample Type | 2             |                      |             |             | ▲ RQI     | O (%) 🛭                                 | <b>L</b>                              | Elevation<br>(m) |
| ۵ ٔ               | ¥           | Description                                                               |          | Ground Ice                                       | amb         | mple          |                      |             | 4           | 40 60     | 80                                      | 100                                   | Ele              |
|                   |             |                                                                           |          | Description                                      | S           | Sa            |                      |             |             | Recov     | erv (%                                  | <b>\</b>                              |                  |
|                   |             |                                                                           |          | 2 000                                            |             |               |                      |             |             | 40 60     | 80                                      | 100                                   |                  |
| 0                 | $\vdash$    | No recovery - Driller noted that `it felt like drilling air'              |          | Hafragan (2) requires                            |             |               |                      | <u> </u>    | •           | : :       | :                                       | :                                     | -                |
| Ė                 |             |                                                                           |          | Unfrozen (?) - requires additional investigation | 14          |               |                      |             |             |           | :                                       |                                       | -                |
| Г                 |             |                                                                           |          | to more accurately determine thermal             |             | D4            |                      |             | 10          |           | :                                       | :                                     | -                |
| _<br> -           |             |                                                                           |          | condition due to poor                            |             | R1            |                      |             | 10          |           |                                         |                                       | 1196-            |
| Ē                 |             |                                                                           |          | overburden recovery                              |             |               | : :                  |             |             |           | :                                       | :                                     | 1190             |
| L <sub>1</sub>    |             |                                                                           |          |                                                  |             |               |                      |             | <b>.</b>    |           |                                         | į                                     | . 1              |
| r '               |             |                                                                           |          |                                                  |             |               |                      |             | T           | T         |                                         |                                       | ]                |
| _                 |             |                                                                           |          |                                                  | 14          |               |                      |             |             |           | :                                       | :                                     | -                |
| -                 |             |                                                                           |          |                                                  | 4           | R2            |                      |             |             |           | :                                       | :                                     | -                |
| _                 |             | GRAVEL - some sand, trace silt, loose, subrounded to subangular gravel    | /        |                                                  | M           |               |                      |             |             |           |                                         |                                       | 1195-            |
| _                 |             | BOULDER (GRANITE) - white, black inclusions                               |          |                                                  | М           |               |                      |             |             |           | :                                       | :                                     | -                |
| <del>-</del> 2    |             | SILT AND SAND - trace gravel, well graded, dark yellow                    | vish     |                                                  |             |               |                      |             | . 🕌         | <u> </u>  |                                         |                                       | -                |
| _                 |             | brown, subrounded to subangular gravel No recovery                        | /        |                                                  | 14          |               |                      |             |             |           |                                         |                                       | -                |
| -                 |             | no recovery                                                               |          |                                                  |             |               |                      |             |             |           | :                                       | :                                     | -                |
| _                 |             |                                                                           |          |                                                  |             | R3            |                      |             |             |           | :                                       | :                                     |                  |
| _                 |             |                                                                           |          |                                                  |             |               |                      |             |             |           |                                         |                                       | 1194             |
| -                 |             | SAND - trace to some silt, well graded, damp to moist, yellowish brown    |          |                                                  |             | 09-S1         |                      |             |             |           |                                         |                                       | -                |
| <del>-</del> 3    |             | No recovery                                                               |          |                                                  |             |               |                      |             | · 🖶 · · · I | P         | • • • • • • • • • • • • • • • • • • • • |                                       | -                |
| _                 |             | ,                                                                         |          |                                                  | 14          |               |                      |             |             |           | :                                       | :                                     |                  |
| _                 | l≡l         |                                                                           |          |                                                  |             |               |                      |             |             |           |                                         |                                       |                  |
| -                 | p           | OANID                                                                     |          |                                                  |             | R4            |                      |             |             |           |                                         |                                       | -                |
| _                 | amond drill | SAND - some silt, trace organics, well graded, damp to<br>yellowish brown | moist,   |                                                  |             | 09-S2         |                      |             |             |           | :                                       | :                                     | 1193-            |
| _ ,               | an          | ,                                                                         |          |                                                  |             |               |                      |             |             | <u> </u>  |                                         |                                       |                  |
| - 4               | 亩           | - at 4.00 m, very brittle                                                 |          |                                                  | М           |               |                      |             |             |           |                                         | :                                     |                  |
| _                 |             | No recovery                                                               |          |                                                  |             |               |                      |             |             |           | :                                       | :                                     | -                |
| -                 |             | ,                                                                         |          |                                                  |             | R5            |                      |             |             |           |                                         |                                       | -                |
| _                 |             |                                                                           |          |                                                  |             | 0             |                      |             |             |           |                                         |                                       | 1192             |
| -                 |             |                                                                           |          |                                                  |             |               |                      |             |             |           | :                                       | :                                     |                  |
| -<br>5            |             | SAND - trace to some silt, well graded, moist, yellowish                  | brown    |                                                  |             |               |                      |             | <b>.</b>    |           |                                         |                                       |                  |
| -                 |             | No recovery                                                               | DIOWII   |                                                  |             |               |                      |             |             |           | :                                       | :                                     | -                |
| -                 |             | ,                                                                         |          |                                                  |             |               |                      |             |             |           | :                                       | :                                     | _                |
| _                 |             |                                                                           |          |                                                  |             | R6            |                      |             | 12          |           |                                         |                                       | -                |
| _                 |             |                                                                           |          |                                                  |             |               |                      |             |             |           | :                                       | :                                     | 1191-            |
| -                 |             |                                                                           |          |                                                  |             |               |                      |             |             |           | :                                       | :                                     | -                |
| <del></del> 6<br> |             | SAND - trace to some silt, well graded, moist, loose, yel                 | lowish / |                                                  | =           |               |                      |             | T           | <u>-</u>  |                                         | · · · · · · · · · · · · · · · · · · · | 1 -              |
| _                 |             | brown No receives                                                         | /        |                                                  |             |               |                      |             |             | : :       | :                                       | :                                     | -                |
| _                 |             | No recovery                                                               |          |                                                  |             | R7            |                      |             | 2           |           |                                         |                                       | -                |
| -                 |             |                                                                           |          |                                                  |             | K/            |                      |             | ٢           |           | :                                       | :                                     | 1190-            |
| -                 |             |                                                                           |          |                                                  |             |               |                      |             |             |           | :                                       | :                                     | -                |
| -<br>7            |             |                                                                           |          |                                                  |             | ļ             |                      |             | <b>L</b>    | <u>.</u>  |                                         |                                       |                  |
| _                 |             |                                                                           |          |                                                  |             |               |                      |             | T           | : :       | :                                       | :                                     | -                |
| _                 |             |                                                                           |          |                                                  |             |               |                      |             |             |           |                                         | :                                     | -                |
| 7.5               |             |                                                                           |          |                                                  | 4           |               |                      | 10 :::      | <u>b</u>    | 10        | :                                       | - :                                   | _                |
|                   |             | <b>7</b>                                                                  |          | actor: Cyr Drilling                              |             |               |                      | Completion  |             |           |                                         |                                       |                  |
|                   |             | TETRA TECH                                                                |          | g Rig Type: D-10 Diamon                          | d Dril      | l             |                      | Start Date: |             | -         |                                         |                                       |                  |
|                   | U           |                                                                           | Logge    | ed By: RG                                        |             |               |                      | Completion  | Date:       | 2016 Se   | otembe                                  | er 12                                 |                  |
|                   |             | <b>)</b>                                                                  | Revie    | wed By: VER                                      |             |               | ·                    | Page 1 of 3 |             |           |                                         |                                       |                  |
| ROCK CO           | RE EN       | G-EARC03004-02.GPJ EBA.GDT 17/2/14                                        |          |                                                  |             |               |                      |             |             |           |                                         |                                       |                  |

|                 |               |                                                       | Вс     | rehole N                  | 0:             | G             | T-09                  |                                                                   |             |            |             |                        |                       |
|-----------------|---------------|-------------------------------------------------------|--------|---------------------------|----------------|---------------|-----------------------|-------------------------------------------------------------------|-------------|------------|-------------|------------------------|-----------------------|
| -               |               | GOLDCORP                                              | Projec | t: Fall 2016 Geotechnica  | Inve           | stigati       | on                    | Project No:                                                       | ENG.I       | EARC03     | 004-02      | 2                      |                       |
|                 |               | OOLDCOM                                               |        | on: Coffee Mine Site, Kor |                | _             |                       | Ground Elev                                                       |             |            |             |                        |                       |
|                 |               |                                                       | Coffee | Creek, Yukon              |                |               |                       | UTM: 58013                                                        | 33 E; 6     | 973145     | N; Z 7      | ,                      |                       |
|                 |               |                                                       |        |                           |                |               | ♦ Unc. Compre<br>5 10 | essive (MPa) <                                                    | <b>A</b> [. |            |             |                        | $\Box$                |
|                 |               |                                                       |        | Thermal                   |                |               | 5 10                  | 15 20                                                             | 7           | acture F   | requen<br>6 | ncy (/m) <b>€</b><br>8 | <b>'</b>              |
| ر               | þć            | Lithological                                          |        | Condition                 | Sample Type    | Sample Number |                       |                                                                   |             |            |             |                        | -<br>-<br>-<br>-<br>- |
| Depth<br>(m)    | etho          | Lithological<br>Description                           |        | and                       | ble -          | <u>S</u>      |                       |                                                                   |             |            | (%)         |                        | Elevation (m)         |
|                 | 2             | Description                                           |        | Ground Ice                | San            | amb           |                       |                                                                   |             | 40 60      | 80          | 100                    | _ 🗆                   |
|                 |               |                                                       |        | Description               |                | S             |                       |                                                                   |             | Reco       | very (%     | <b>6)</b> ■            |                       |
| 7.5             |               |                                                       |        |                           | 1              | R8            |                       |                                                                   |             | 40 60      | 80          | 100                    | _                     |
| -               |               |                                                       |        |                           | 14             | NO            |                       |                                                                   |             |            | :           | :                      | 1189-                 |
|                 |               |                                                       |        |                           |                |               |                       |                                                                   |             |            |             |                        |                       |
| - 8             |               |                                                       |        |                           |                |               |                       |                                                                   |             | <u> </u>   |             |                        |                       |
|                 |               |                                                       |        |                           |                |               |                       |                                                                   |             |            |             |                        |                       |
| -               |               |                                                       |        |                           |                | R9            |                       |                                                                   | 0           |            | :           |                        |                       |
|                 |               |                                                       |        |                           |                |               |                       |                                                                   |             |            |             |                        | 1188-                 |
|                 |               |                                                       |        |                           |                |               |                       |                                                                   |             |            | :           |                        |                       |
| - 9             |               |                                                       |        |                           |                |               |                       |                                                                   |             | i i        | <u></u>     | (<br>!                 |                       |
|                 |               |                                                       |        |                           |                |               |                       |                                                                   |             |            |             |                        | -                     |
| -               |               |                                                       |        |                           |                | R10           |                       |                                                                   | 0           |            | - :         |                        |                       |
|                 |               |                                                       |        |                           |                |               |                       |                                                                   |             |            |             |                        | 1187-                 |
|                 |               |                                                       |        |                           |                |               |                       |                                                                   |             |            |             |                        |                       |
| <del>-</del> 10 |               |                                                       |        |                           |                |               |                       |                                                                   | •           |            |             |                        | -                     |
|                 |               |                                                       |        |                           | 1              |               |                       |                                                                   |             |            |             |                        | -                     |
|                 |               |                                                       |        |                           |                | R11           |                       |                                                                   | 0           |            |             |                        | -                     |
|                 |               |                                                       |        |                           |                | KII           |                       |                                                                   |             |            | :           |                        | 1186-                 |
|                 |               |                                                       |        |                           |                |               |                       |                                                                   |             |            |             |                        | -                     |
| - 11            | drill         |                                                       |        |                           |                |               |                       |                                                                   |             |            |             |                        | -                     |
|                 | puc           |                                                       |        |                           |                |               | : :                   |                                                                   |             | : :        | :           | :                      | -                     |
|                 | Diamond drill |                                                       |        |                           |                | D40           |                       |                                                                   | h           |            |             |                        | -                     |
| -               | ⊡             |                                                       |        |                           |                | R12           |                       |                                                                   | 0           |            | :           |                        | 1185-                 |
|                 |               |                                                       |        |                           |                |               |                       |                                                                   |             |            |             |                        |                       |
| - 12            |               |                                                       |        |                           |                |               |                       |                                                                   | •           | ł          |             |                        |                       |
|                 |               |                                                       |        |                           |                |               |                       |                                                                   |             |            | :           | :                      | -                     |
|                 |               |                                                       |        |                           |                | R13           |                       |                                                                   | h           |            |             |                        |                       |
|                 |               |                                                       |        |                           |                | KIS           |                       |                                                                   | ١           |            |             |                        | 1184-                 |
|                 |               |                                                       |        |                           |                |               |                       |                                                                   |             |            | :           |                        |                       |
| - 13            |               |                                                       |        |                           |                |               |                       |                                                                   |             | <u>.</u>   |             |                        | :                     |
|                 |               |                                                       |        |                           |                |               |                       |                                                                   |             |            |             |                        | -                     |
|                 |               |                                                       |        |                           |                | D44           |                       |                                                                   |             |            | :           |                        | -                     |
|                 |               |                                                       |        |                           |                | R14           |                       |                                                                   | ٢           |            |             |                        | 1183-                 |
|                 |               |                                                       |        |                           |                |               |                       |                                                                   |             |            |             | :                      |                       |
| - 14            |               | GRAVEL AND SAND - white, oxidized, subangular grave   | el     |                           | $\blacksquare$ |               |                       |                                                                   | <b></b>     |            |             |                        |                       |
| -               |               | No recovery                                           |        |                           |                |               |                       |                                                                   |             |            |             | :                      | -                     |
|                 |               |                                                       |        |                           |                | <b>5</b>      |                       |                                                                   |             |            |             | :                      |                       |
| -               |               |                                                       |        |                           |                | R15           |                       |                                                                   | Ø           |            |             |                        | 1182-                 |
|                 |               |                                                       |        |                           |                |               |                       |                                                                   |             |            | :           | :                      | 1102                  |
| 15              |               |                                                       |        |                           |                |               |                       | 10 11                                                             | <u>↓</u>    | <u>: :</u> | :           | <u>:</u>               |                       |
|                 |               | <b>1</b>                                              |        | actor: Cyr Drilling       |                |               |                       | Completion                                                        |             |            |             |                        |                       |
|                 | -             | TETRA TECH                                            |        | g Rig Type: D-10 Diamon   | d Dril         | l             |                       | Start Date: 2016 September 12  Completion Date: 2016 September 12 |             |            |             |                        |                       |
| [ <b>"</b>      |               | <b>'</b> J                                            |        | d By: RG                  |                |               |                       |                                                                   |             | 2016 Se    | eptemb      | er 12                  |                       |
|                 |               | Reviewed By: VER ENG-EARC03004-02.GPJ EBA.GDT 17/2/14 |        |                           |                |               |                       | Page 2 of 3                                                       |             |            |             |                        |                       |

#### Borehole No: GT-09 **=**GOLDCORP Project: Fall 2016 Geotechnic Location: Coffee Mine Site, k Coffee Creek, Yukon Thermal Condition Depth (m) Method Lithological and Description Ground Ice Description GRANITE (BEDROCK) - moderately weathered (W3), very weak (R1), white/creamy, black inclusions, medium to coarse grained - at 15.15 and 15.19 m, subhorizontal joint, undulating, rough, oxidization - at 15.26 and 15.38 m, inclined joint, undulating, smooth, highly oxidized - at 15.46 m, horizontal joint, undulating, rough, highly 16 GRANITE (BEDROCK) - slightly to moderately weathered (W2-W3), medium strong (R3), massive, white/creamy, black and pink inclusions, medium to coarse grained - at 16.22, 16.31 and 16.45 m, inclined joints, undulating, rough, highly oxidized 17 - at 16.35 m, horizontal joint, undulating, smooth, highly - at 16.37 m, subhorizontal joints, undulating, smooth, highly oxidized - at 16.84 m, inclined joint, planar, rough, highly oxidized, <1 mm silt infill No recovery GRANITE (BEDROCK) - moderately weathered (W3), medium 18 strong (R3), massive, white/creamy, black and pink inclusions, medium to coarse grained

- at 17.01 m, inclined joint, undulating, rough, oxidized - from 17.31 to 17.51 m, subvertical joint, planar, rough,

GRANITE (BEDROCK) - slightly weathered (W2), weak (R2), massive, white/creamy, black and pink inclusions, medium

- at 18.06 m, inclined joint, undulating, rough, oxidized - at 18.14 m, subhorizontal joint, undulating, rough, oxidized

oxidized No recovery

20

21

to coarse grained

END OF BOREHOLE (19.00 metres)

| 1       | <u> </u>    |               | •                  | <u> </u>    |          |                 |          |           |          |             |            |                         |               |
|---------|-------------|---------------|--------------------|-------------|----------|-----------------|----------|-----------|----------|-------------|------------|-------------------------|---------------|
| ical lı | nve         | stigatio      | n                  |             |          | Projec          | ct No: E | ENG.      | EAF      | C030        | 04-02      |                         |               |
| Kona    |             |               |                    |             |          |                 | nd Elev  |           |          |             |            |                         |               |
|         |             |               |                    |             |          |                 | 58013    |           | 6973     | 3145 N      | l; Z 7     |                         |               |
|         |             |               | <> Un <sub>i</sub> | c. Cor      | npres    | sive (N<br>15 2 | (Pa) ♦   | •         | rooti    | ıro Erc     | auona      | cy (/m) ●               |               |
|         | ~           | er            | ;                  | J 1         | IU       | 10 2            | 20       | •r        | 2 2      | ле гте<br>4 | quenc<br>6 | sy (/III) <b>●</b><br>8 |               |
|         | Type        | qwn           |                    |             |          |                 |          |           |          |             |            |                         | <u>.</u>      |
|         | Sample Type | Sample Number |                    |             |          |                 |          |           |          |             | (%) 4      |                         | Elevation (m) |
| •       | San         | samp          |                    |             |          |                 |          |           | 40       | 60          | 80         | 100                     | - □           |
| )       |             | 0,            |                    |             |          |                 |          |           |          |             | ery (%     |                         |               |
|         |             |               |                    | :           | :        | :               |          |           | 40       | 60          | 80         | 100                     |               |
|         | V           |               |                    | :           |          | :               | :        |           | :        |             |            | :                       | -             |
|         | Λ           | R16           |                    | :           |          |                 | :        |           |          |             | 1          | :                       |               |
|         |             | KIO           |                    |             |          |                 |          |           |          |             |            |                         | 1181-         |
|         |             |               |                    |             |          |                 |          |           |          |             |            |                         |               |
|         |             |               |                    | :<br>:<br>: | ļ        | ļ               | ļ        | <b></b> . |          | <b>—</b>    | •          | <b>P</b>                |               |
|         | M           |               |                    |             |          |                 |          |           |          |             |            |                         | -             |
|         | V           | R17           |                    |             |          |                 | 30<      |           |          |             |            |                         |               |
|         |             | 09-R1         |                    | :           |          |                 | 304      |           |          |             |            |                         | 1180-         |
|         |             |               |                    | :           | :        | :               |          |           |          |             |            |                         |               |
|         |             | 09-R2         |                    | :<br>:<br>: | <u>.</u> | ÷               | 33<      |           | •        | <b>*</b>    | •          | <b>.</b>                |               |
|         |             | UJ-RZ         |                    | :           |          |                 |          |           |          |             |            |                         | -             |
|         | X           | R18           |                    | :           |          |                 |          |           |          |             |            |                         |               |
|         | Λ           | K 10          |                    |             |          |                 |          |           |          |             |            | •                       | 1179-         |
|         |             |               |                    | :           |          |                 |          |           |          |             | :          | •                       |               |
|         |             |               |                    |             |          | ÷               | ļ        | 4         | <b>P</b> | ▲           | •          |                         |               |
|         |             | 09-R3         |                    |             |          |                 |          |           |          |             |            |                         | -             |
|         |             | R19           |                    |             | . *      |                 |          |           |          |             |            |                         |               |
|         |             | 1(13          |                    |             |          |                 |          |           |          |             |            |                         | 1178-         |
|         |             |               |                    |             |          |                 |          |           |          |             |            |                         |               |
|         |             |               |                    | :           | <u>:</u> | :               | <u>:</u> | -         |          | -           | :          |                         | 1             |
|         |             |               |                    |             |          |                 |          |           |          |             |            |                         | ] -           |
|         |             |               |                    |             |          |                 |          |           |          |             |            |                         |               |
|         |             |               |                    |             |          |                 |          |           |          |             |            |                         | 1177-         |
|         |             |               |                    |             |          |                 |          |           |          |             |            |                         |               |
|         |             |               |                    |             |          |                 |          |           |          |             |            |                         |               |
|         |             |               |                    |             |          |                 |          |           |          |             |            |                         | -             |
|         |             |               |                    |             |          |                 |          |           |          |             |            |                         |               |
|         |             |               |                    |             |          |                 |          |           |          |             |            |                         | 1176-         |
|         |             |               |                    |             |          |                 |          |           |          |             |            |                         |               |
|         |             |               |                    |             |          |                 |          |           |          |             |            |                         |               |
|         |             |               |                    |             |          |                 |          |           |          |             |            |                         | -             |
|         |             |               |                    |             |          |                 |          |           |          |             |            |                         |               |
|         |             |               |                    |             |          |                 |          |           |          |             |            |                         | 1175-         |
|         |             |               |                    |             |          |                 |          |           |          |             |            |                         |               |
|         |             |               |                    |             |          |                 |          |           |          |             |            |                         |               |
|         |             |               |                    |             |          |                 |          |           |          |             |            |                         | -             |
|         |             |               |                    |             |          |                 |          |           |          |             |            |                         |               |
|         |             |               |                    |             |          |                 | letion l |           |          |             |            |                         |               |
| nond    | Dril        | l             |                    |             |          |                 | Date: 2  |           |          |             |            |                         |               |
|         |             |               |                    |             |          | Comp            | letion l | Date:     | 201      | 6 Sep       | tembe      | er 12                   |               |



| Contractor: Cyr Drilling              | Completion Depth: 19 m             |
|---------------------------------------|------------------------------------|
| Drilling Rig Type: D-10 Diamond Drill | Start Date: 2016 September 12      |
| Logged By: RG                         | Completion Date: 2016 September 12 |
| Reviewed By: VER                      | Page 3 of 3                        |

|                                                                                             |             |                                                                                                                                                                                                                                                              | Borehole                                                                                     | Ν           | lo:                  | G                    | T-10                                                                |                                                                             |                                       |  |  |  |  |
|---------------------------------------------------------------------------------------------|-------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------|-------------|----------------------|----------------------|---------------------------------------------------------------------|-----------------------------------------------------------------------------|---------------------------------------|--|--|--|--|
|                                                                                             |             | GOLDCORP                                                                                                                                                                                                                                                     | Project: Fall 2016 Geotec                                                                    | hnica       | al Inve              | stigatio             | on .                                                                | Project No:                                                                 | ENG.EARC03004-02                      |  |  |  |  |
|                                                                                             |             | OOLDCORP                                                                                                                                                                                                                                                     | Location: Coffee Mine Site                                                                   |             |                      |                      | -                                                                   | <u> </u>                                                                    | ev: 972.91 m                          |  |  |  |  |
|                                                                                             |             |                                                                                                                                                                                                                                                              | Coffee Creek, Yukon                                                                          | -,          |                      |                      |                                                                     | _                                                                           | 72 E; 6975328 N; Z 7                  |  |  |  |  |
| Depth<br>(m)                                                                                | Method      | Lithological<br>Description                                                                                                                                                                                                                                  | Thermal Condition and Ground Ice Description                                                 | Sample Type | Sample Number        | Moisture Content (%) | Excess Ice Conte 20 40  Bulk Dens 1400 1600  Plastic Mois Limit Con | 15 20 nt (% by volume) 4 60 80 ity (kg/m³) 1800 2000 ture Liquid tent Limit | Elevation (%) ■                       |  |  |  |  |
| 0                                                                                           |             | MOSS AND PEAT - organic, wet, dark brown to black                                                                                                                                                                                                            |                                                                                              |             |                      |                      | 20 40                                                               | 60 80                                                                       | 40 60 80 100                          |  |  |  |  |
| -<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>- |             | SILT - organics, trace to some sand, black ICE AND SILT - organics, trace to some sand, black SILT - organics, some clay, some sand, black - at 1.00 m, silty, cobbles disseminated throughout, well graded, angular gravel SAND AND GRAVEL - silty, cobbles | Frozen, Vx, Vs to 50%  Vx, Vs 25-50%  50 mm thick ice lens  Vx, Vc, Vs 30-40%  Vc, Vx 20-30% | V           | 10-S3A               | 108.9                | •                                                                   | •                                                                           | 972-                                  |  |  |  |  |
| - 2<br>- 2<br>                                                                              |             |                                                                                                                                                                                                                                                              |                                                                                              |             | R3                   |                      |                                                                     |                                                                             | 971-                                  |  |  |  |  |
| -<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>- | amond drill |                                                                                                                                                                                                                                                              | Vc, Vx 10-12%                                                                                |             | 10-S6<br>R4<br>10-S7 | 24.3                 | <b>A</b> •                                                          |                                                                             | 970-                                  |  |  |  |  |
|                                                                                             | Dia         | GRAVEL - some sand, trace silt, cobbles disseminated throughout                                                                                                                                                                                              | Vc, Vx ~10%                                                                                  |             | R5<br>10-S8          | 6                    | •                                                                   |                                                                             | 968                                   |  |  |  |  |
| -<br>-<br>-<br>-<br>-<br>-<br>-<br>6                                                        |             | - at 6.00 m, loose                                                                                                                                                                                                                                           | Thermally disturbed                                                                          |             | 10-S9<br>R6          | 8.3                  | •                                                                   |                                                                             | 967—                                  |  |  |  |  |
| _<br>_<br>_<br>_<br>_                                                                       |             | - at 6.50 m, pieces of frozen sand and gravel                                                                                                                                                                                                                |                                                                                              | Y           | R8<br>10-S10         | 9.3                  | •                                                                   |                                                                             | 966—                                  |  |  |  |  |
| -<br>-<br>-<br>-<br>-                                                                       |             | - at 7.00 m, some sand  END OF BOREHOLE (7.50 metres)                                                                                                                                                                                                        | Vc, Vs ~5%                                                                                   |             | 10-S11<br>R9         |                      |                                                                     |                                                                             | 966                                   |  |  |  |  |
| 7.5                                                                                         | _           |                                                                                                                                                                                                                                                              | Contractor: Cyr Drilling                                                                     | 7 \         |                      | l                    |                                                                     | Completion                                                                  | Depth: 7.5 m                          |  |  |  |  |
|                                                                                             |             | TETRATECH                                                                                                                                                                                                                                                    | Drilling Rig Type: D-10 Di                                                                   | amo         | nd Dri               |                      |                                                                     |                                                                             | 2016 September 1                      |  |  |  |  |
|                                                                                             | ŀ           | I IEIKA IECH                                                                                                                                                                                                                                                 | Logged By: RG                                                                                | 10          | 2111                 |                      |                                                                     | Completion Date: 2016 September 2                                           |                                       |  |  |  |  |
|                                                                                             | _           |                                                                                                                                                                                                                                                              |                                                                                              |             |                      |                      |                                                                     |                                                                             |                                       |  |  |  |  |
|                                                                                             |             |                                                                                                                                                                                                                                                              | Reviewed By: VER                                                                             |             |                      |                      |                                                                     | Page 1 of 2                                                                 | · · · · · · · · · · · · · · · · · · · |  |  |  |  |

|                                                |                                        |                                                                                                                                                              | Borehole                                                 | N           | lo:           | G                    | T-10                                                                          |                                                                              |              |                             |                                              |  |  |  |
|------------------------------------------------|----------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------|-------------|---------------|----------------------|-------------------------------------------------------------------------------|------------------------------------------------------------------------------|--------------|-----------------------------|----------------------------------------------|--|--|--|
|                                                |                                        | GOLDCORP                                                                                                                                                     | Project: Fall 2016 Geotech                               |             |               |                      |                                                                               | Project No: I                                                                | ENG.EARC03   | 004-02                      |                                              |  |  |  |
|                                                |                                        | OOLDCORF                                                                                                                                                     | Location: Coffee Mine Site                               |             |               |                      |                                                                               | Ground Elev                                                                  |              |                             |                                              |  |  |  |
|                                                |                                        |                                                                                                                                                              | Coffee Creek, Yukon                                      | -           |               |                      |                                                                               |                                                                              | 2 E; 6975328 | N; Z 7                      |                                              |  |  |  |
| Depth (m)                                      | Method                                 | Lithological<br>Description                                                                                                                                  | Thermal<br>Condition<br>and<br>Ground Ice<br>Description | Sample Type | Sample Number | Moisture Content (%) | Excess Ice Content 20 40  Bulk Densit 1400 1600 1  Plastic Moiste Limit Conte | 15 20<br>t (% by volume) ▲<br>60 80<br>y (kg/m³) ■<br>800 2000<br>ure Liquid |              | very (%) <b>■</b><br>80 100 | Elevation<br>(m)                             |  |  |  |
| -<br>-<br>-<br>- 8<br>-<br>-<br>-<br>-         |                                        | Note: Excess ice content determined in laboratory is shown graphically. Estimated excess ice content values are provided in 'Ground Ice Description' column. |                                                          |             |               |                      |                                                                               |                                                                              |              |                             | 965-                                         |  |  |  |
| -<br>- 9<br>-<br>-<br>-<br>-<br>-              |                                        |                                                                                                                                                              |                                                          |             |               |                      |                                                                               |                                                                              |              |                             | 964-                                         |  |  |  |
| -<br>-<br>-<br>10<br>-<br>-<br>-<br>-<br>-     |                                        |                                                                                                                                                              |                                                          |             |               |                      |                                                                               |                                                                              |              |                             | 963-                                         |  |  |  |
| -<br>-<br>- 11<br>-<br>-<br>-<br>-<br>-        |                                        |                                                                                                                                                              |                                                          |             |               |                      |                                                                               |                                                                              |              |                             | 962-                                         |  |  |  |
| -<br>- 12<br>-<br>-<br>-<br>-<br>-<br>-<br>-   |                                        |                                                                                                                                                              |                                                          |             |               |                      |                                                                               |                                                                              |              |                             | 961-                                         |  |  |  |
| -<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>- |                                        |                                                                                                                                                              |                                                          |             |               |                      |                                                                               |                                                                              |              |                             | 960-                                         |  |  |  |
| -<br>-<br>- 14<br>-<br>-<br>-<br>-<br>-<br>-   |                                        |                                                                                                                                                              |                                                          |             |               |                      |                                                                               |                                                                              |              |                             | 959—<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>- |  |  |  |
| 15                                             |                                        |                                                                                                                                                              |                                                          |             |               |                      |                                                                               |                                                                              |              |                             | 958                                          |  |  |  |
| 13                                             |                                        |                                                                                                                                                              | Contractor: Cyr Drilling                                 |             |               |                      | ı                                                                             | Completion                                                                   | Depth: 7.5 m |                             | 1                                            |  |  |  |
|                                                |                                        | TETRATECH                                                                                                                                                    | Drilling Rig Type: D-10 Diamond Drill                    |             |               |                      |                                                                               | Start Date: 2016 September 1                                                 |              |                             |                                              |  |  |  |
|                                                | TETRA TECH                             |                                                                                                                                                              | Logged By: RG                                            |             |               |                      |                                                                               | Completion Date: 2016 September 2                                            |              |                             |                                              |  |  |  |
|                                                |                                        | J                                                                                                                                                            | Reviewed By: VER                                         |             |               |                      |                                                                               | Page 2 of 2                                                                  |              | •                           |                                              |  |  |  |
| D001/ 005                                      | DE ENC EADCOSOM OS COLLEDA COT 17/2/44 |                                                                                                                                                              |                                                          |             |               |                      |                                                                               |                                                                              |              |                             |                                              |  |  |  |

|                                   |               |                                                                                                                                                                                             | Borehole                                                           | N           | lo:                  | G                    | T-11                                                                       |                                                             |             |                                       |         |              |                                |  |  |
|-----------------------------------|---------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------|-------------|----------------------|----------------------|----------------------------------------------------------------------------|-------------------------------------------------------------|-------------|---------------------------------------|---------|--------------|--------------------------------|--|--|
|                                   |               | GOLDCORP                                                                                                                                                                                    | Project: Fall 2016 Geotec                                          | hnica       | al Inve              | stigati              | on                                                                         | Project No:                                                 | ENG.EAI     | RC03004                               | 1-02    |              |                                |  |  |
|                                   |               | OOLDCORF                                                                                                                                                                                    | Location: Coffee Mine Site                                         |             |                      |                      |                                                                            | Ground Elev                                                 |             |                                       |         |              |                                |  |  |
|                                   |               |                                                                                                                                                                                             | Coffee Creek, Yukon                                                |             |                      |                      |                                                                            | UTM: 58538                                                  | 33 E; 697   | 5298 N;                               | Z 7     |              |                                |  |  |
|                                   |               |                                                                                                                                                                                             | Thermal                                                            |             | Je.                  | (%)                  | <ul> <li>Unc. Compres</li> <li>5</li> <li>10</li> </ul> ≜ Excess Ice Conte | ssive (MPa) <<br>15 20                                      | ● Fract     | ure Freq                              | uency ( | (/m) ●<br>8  |                                |  |  |
| Depth<br>(m)                      | Method        | Lithological                                                                                                                                                                                | Condition and                                                      | Sample Type | Sample Number        | Moisture Content (%) | 20 40  Bulk Dens 1400 1600                                                 | 60 80                                                       |             | ▲ RQD (                               |         | 0            | Elevation<br>(m)               |  |  |
|                                   | Ž             | Description                                                                                                                                                                                 | Ground Ice                                                         | Sam         | sampl                | sture                | Plastic Mois                                                               | ture Liquid                                                 | 40          |                                       | 80 1    |              | Ë                              |  |  |
| 0                                 |               |                                                                                                                                                                                             | Description                                                        |             | 0)                   | M                    | Limit Con                                                                  | -                                                           | 40          | Recover<br>60                         |         | 00           |                                |  |  |
|                                   |               | MOSS - organics, wet, (150 mm thick) GRAVEL - loose, matrix washed away during drilling No recovery                                                                                         | - Thawed                                                           | X           |                      |                      |                                                                            |                                                             |             |                                       |         |              | 1027—                          |  |  |
| -<br>-<br>-<br>-<br>- 1<br>-<br>- |               |                                                                                                                                                                                             |                                                                    |             | R1                   |                      |                                                                            |                                                             |             |                                       |         |              | 1026—                          |  |  |
| -<br>-<br>-<br>-                  |               | GRAVEL - loose, matrix washed away during drilling                                                                                                                                          |                                                                    |             |                      |                      |                                                                            | 1                                                           |             |                                       | †       |              | -<br>-<br>-                    |  |  |
| -<br>2<br>-<br>-                  |               | SAND - silty, gravelly, occasional cobble, well graded, dark grey, angular gravel                                                                                                           | Frozen, Vc, Vx 10-20%, ice coatings 1-3 mm, ice inclusions to 5 mm |             | 11-S1<br>11-S2<br>R2 |                      |                                                                            |                                                             |             |                                       |         |              | 1025—                          |  |  |
| -<br>-<br>-<br>-                  |               | GNEISS (BEDROCK) - moderately weathered (W3), strong to very strong (R4-R5), dark grey                                                                                                      |                                                                    |             | KΖ                   |                      |                                                                            |                                                             |             |                                       |         |              | -<br>-<br>-                    |  |  |
| -<br>-3<br>-<br>-<br>-<br>-       | Diamond drill | - at 3.00 m, slightly weathered (W2)     - from 3.00 to 4.10 m, vertical fracture, undulating, smooth, oxidation     - at 3.48 m, horizontal joint, infilled with clayey silt, 10           |                                                                    |             |                      |                      |                                                                            |                                                             |             | •                                     |         |              | 1024—<br>-<br>-<br>-<br>-<br>- |  |  |
| -<br>-<br>-<br>- 4                |               | mm                                                                                                                                                                                          |                                                                    | Ň           | R3<br>11-R1          |                      |                                                                            | 134                                                         |             |                                       |         |              | -                              |  |  |
| -<br>-<br>-<br>-<br>-             |               | - from 4.3 to 4.45 m, vertical fracture, undulating, oxidation - from 4.50 to 4.60 m, vertical fracture, planar, smooth, oxidation                                                          |                                                                    |             |                      |                      |                                                                            |                                                             |             | •                                     |         |              | 1023                           |  |  |
| -<br>5<br>                        |               |                                                                                                                                                                                             |                                                                    | H           | 11-R2                |                      |                                                                            |                                                             |             | l                                     |         |              | -                              |  |  |
| -<br>-<br>-<br>-<br>-             |               | at 5.18 m, inclined joint, undulating, smooth, oxidation     from 5.40 to 6.40 m, vertical fracture, undulating to planar, thick infill of oxide particles, calcite within planar section   |                                                                    |             | R4                   |                      |                                                                            |                                                             |             |                                       |         |              | 1022—<br>-<br>-<br>-<br>-<br>- |  |  |
| -<br><del></del> 6<br>-<br>-<br>- |               |                                                                                                                                                                                             |                                                                    |             |                      |                      |                                                                            |                                                             |             |                                       |         |              | 1021—                          |  |  |
| -<br>-<br>-<br>-<br>-<br>- 7      |               | END OF BOREHOLE (6.40 metres)  Note: Excess ice content determined in laboratory is shown graphically. Estimated excess ice content values are provided in `Ground Ice Description' column. |                                                                    |             |                      |                      |                                                                            |                                                             |             |                                       | •       | <del>-</del> | -<br>-<br>-<br>-               |  |  |
| -<br>-<br>- 7,                    |               |                                                                                                                                                                                             |                                                                    |             |                      |                      |                                                                            |                                                             |             |                                       |         |              | 1020-                          |  |  |
| 7.5                               | _             |                                                                                                                                                                                             | Contractor: Cyr Drilling                                           |             | <u> </u>             |                      | I                                                                          | Completion                                                  | Depth: 6    | .4 m                                  |         |              |                                |  |  |
|                                   |               | TETRATECLI                                                                                                                                                                                  | Drilling Rig Type: D-10 Di                                         | amo         | nd Dril              | ı                    |                                                                            |                                                             |             |                                       |         |              |                                |  |  |
|                                   | t             | TETRA TECH                                                                                                                                                                                  |                                                                    | J. 10       | וום אי               | •                    |                                                                            | Start Date: 2016 August 31  Completion Date: 2016 August 31 |             |                                       |         |              |                                |  |  |
|                                   | _             | ט                                                                                                                                                                                           |                                                                    |             |                      |                      |                                                                            |                                                             |             | · · · · · · · · · · · · · · · · · · · |         |              |                                |  |  |
|                                   |               | NG-EARC03004-02 GPJ EBA GDT 17/2/14                                                                                                                                                         | I VENIEWEU DY. VER                                                 |             |                      |                      |                                                                            | Faye 1011                                                   | Page 1 of 1 |                                       |         |              |                                |  |  |

|              |          |                                                                                                      | Borehole                                    | N           | lo:           | G                    | T-1        | 2                 |                           |               |            |         |                                                |               |
|--------------|----------|------------------------------------------------------------------------------------------------------|---------------------------------------------|-------------|---------------|----------------------|------------|-------------------|---------------------------|---------------|------------|---------|------------------------------------------------|---------------|
|              |          | GOLDCORP                                                                                             | Project: Fall 2016 Geotec                   |             |               |                      |            |                   | Project No:               | ENG.          | EARC0      | 3004-0  | )2                                             |               |
|              |          | GOLDCORP                                                                                             | Location: Coffee Mine Site                  |             |               |                      | •••        |                   | Ground Ele                |               |            |         | · <b>-</b>                                     |               |
|              |          |                                                                                                      | Coffee Creek, Yukon                         | ,           |               |                      |            |                   | UTM: 5857                 |               |            | 1 N· 7  | 7                                              |               |
|              |          |                                                                                                      | Conoc Crock, rukon                          | T           |               |                      | ♦ Unc. C   | Compres           | sive (MPa) <              | X             |            |         |                                                |               |
|              |          |                                                                                                      | Thermal                                     |             | _             | (%)                  | 5          | 10                | 15 20                     | ● F           |            | -       | ncy (/m)                                       |               |
|              | _        |                                                                                                      | Condition                                   | g.          | Sample Number | Moisture Content (%) | ≜Excess lo |                   | (% by volume).            | <b>^</b>      | 2 4        | 6       | 8                                              |               |
| Depth<br>(m) | Method   | Lithological                                                                                         | and                                         | Sample Type | N             | Cont                 |            |                   |                           |               | ▲R         | QD (%)  | <b>(</b>                                       | Elevation (m) |
| ا ۾ ا        | <u>₩</u> | Description                                                                                          | Ground Ice                                  | due         | nple          | Je (                 | D          |                   |                           |               | 40 6       | 0 80    | 100                                            | He i          |
|              |          |                                                                                                      | Description                                 | Š           | Sar           | oist                 | Limit      | Moistu<br>Conte   |                           |               | ■ Poo      | overy ( | 0/, )                                          |               |
|              |          |                                                                                                      | Boothpaon                                   |             |               | Σ                    | 20         | -                 | 60 80                     |               | 40 _6      |         | •                                              |               |
| 0            |          | MOSS - organics, roots, wet, dark brown, (200 mm                                                     | Thawed                                      |             |               |                      | 1 :        |                   | : :                       |               | ; <b>T</b> | :       | :                                              | -             |
| -            |          | thick) SILT - trace to some sand, organics, wet, black                                               | maweu                                       | И           |               |                      | :          | :                 | : :                       |               |            | :       | :                                              | 1072-         |
| E            |          | SILT - trace to some sand, organics, wet, black                                                      | Frozen, thermally disturbed                 | М           | 12 01         | 122.2                |            |                   |                           | 1             |            | :       |                                                |               |
| -            |          | ODAVEL III III III III III III III III III I                                                         | <ul> <li>voids to 5 mm wide, Vx,</li> </ul> |             | -             |                      |            | , i <sup>*</sup>  | : :                       | Ĭ             |            | :       |                                                |               |
| -            |          | GRAVEL - some sand, trace silt, cobbles disseminated throughout, well graded, greyish brown, angular | Vr, Vs 30-40%<br>Vc, Vx <10%                | П           | 12-S2<br>R1   | 11.1                 |            | •                 |                           |               |            |         |                                                | -             |
| - 1          |          | gravel                                                                                               |                                             | И           |               |                      |            |                   | .;;                       |               |            |         |                                                |               |
| -            |          | N.                                                                                                   |                                             |             |               |                      |            | :                 |                           |               |            |         |                                                | 1074          |
| -            |          | No recovery                                                                                          |                                             |             |               |                      |            | :                 |                           |               |            |         |                                                | 1071-         |
|              |          | BOULDER (BIOTITE SCHIST)                                                                             |                                             |             |               |                      | :          |                   |                           |               |            | - :     | <b>=</b>                                       |               |
| -            |          | ,                                                                                                    |                                             | $\vdash$    | 12-R1         |                      |            | :                 |                           |               |            |         |                                                | -             |
| F            |          | BOULDER (QUARTZ)                                                                                     |                                             | М           |               |                      | :          |                   |                           |               |            |         |                                                |               |
| - 2<br>-     |          | DOCEDET (QUARTE)                                                                                     |                                             | W           |               |                      |            | :                 | : :                       |               |            | :       |                                                | ··            |
| -            |          |                                                                                                      |                                             | ÷           | R2            |                      |            |                   | 109                       | '♦            |            | :       |                                                | 1070-         |
| _            |          |                                                                                                      |                                             | $\Lambda$   | 12-R2         |                      | :          | :                 |                           |               |            | :       | 1                                              |               |
| Ŀ            | =        | SILT - some sand, trace clay                                                                         | Vr, Vs 5-10%                                |             |               |                      | :          |                   |                           |               |            | :       |                                                |               |
| -            | drill    |                                                                                                      |                                             |             | 12-S3         | 29.3                 |            | •                 | : :                       |               | : :        | :       | 1                                              | -             |
| _<br>_ 3     | Diamond  | BIOTITE SCHIST (BEDROCK) - slightly weathered                                                        |                                             |             |               |                      |            |                   |                           |               |            |         | <b>‡</b> • • • • • • • • • • • • • • • • • • • |               |
| F            | ian      | (W2), strong to very strong (R4-R5), light grey                                                      |                                             | Н           | 12-R3         |                      | :          | :                 | . 78                      | <b>\</b>      | : :        | 1       |                                                | 1069-         |
| -            |          | - at 3.18, 3.50 and 3.55 m, inclined joints, undulating, smooth, calcite, oxide infill               |                                             | М           |               |                      |            |                   |                           |               |            |         |                                                | 1009          |
| -            |          | - at 3.58, 3.64 and 3.74 m, inclined joints, stepped,                                                |                                             | М           |               |                      | :          | :                 |                           |               |            |         |                                                |               |
| -            |          | smooth, calcite, oxide infill                                                                        |                                             | Y           | R3            |                      | :          | :                 | : :                       |               |            | 1       |                                                | -             |
| - 4          |          | - at 3.84 and 4.26 m, inclined joints, undulating,                                                   |                                             | М           |               |                      |            | <u>:</u>          | <u>:</u>                  |               |            |         |                                                |               |
|              |          | rough, calcite, oxide infill                                                                         |                                             | И           |               |                      | :          | :                 |                           |               |            | 1       |                                                | .             |
| F            |          |                                                                                                      |                                             | Ш           |               |                      | :          | :                 |                           |               |            |         |                                                | 1068-         |
| -            |          | - at 4.50 m, fresh to slightly weathered (W1-W2)                                                     |                                             | $\vdash$    |               |                      | :          | :                 | : :                       |               |            | 1       | <b>+</b>                                       |               |
| -            |          | - at 4.66 m, inclined joint, planar, smooth                                                          |                                             | 1/          | ĺ             |                      |            |                   |                           |               |            | į       |                                                |               |
| -            |          | at noon, nomer jent, planet, encour                                                                  |                                             | М           |               |                      |            | :                 |                           |               |            |         |                                                | -             |
| — 5<br>-     |          | - at 5.02 m, inclined joint, stepped, rough                                                          |                                             | М           |               |                      |            | • • • • • • • • • |                           |               |            |         | -                                              |               |
| Ŀ            |          | , , , , , , ,                                                                                        |                                             | N           | R4            |                      |            |                   |                           |               |            | 1       |                                                | 1067-         |
| E            |          |                                                                                                      |                                             |             | 10 04         |                      | :          | :                 | 111                       |               |            | :       |                                                |               |
| F            |          | - at 5.59, 5.38, 5.86 and 5.89 m, subhorizontal joints,                                              |                                             | H           | 12-R4         |                      | :          | :                 |                           | Y             |            | :       |                                                |               |
| F            |          | planar, smooth, slight oxidization, trace calcite                                                    |                                             | Ш           |               |                      |            | :                 |                           |               |            | :       |                                                | -             |
| -<br>- 6     |          | - at 5.74 m, subvertical joint, stepped, smooth, calcite, oxidization                                |                                             |             |               |                      | ļ <u>i</u> |                   | <u> </u>                  | -             |            | :       | <u> </u>                                       | ╣ .           |
| <u> </u>     |          | END OF BOREHOLE (6.00 metres)                                                                        |                                             |             |               |                      |            |                   |                           |               |            |         | _                                              |               |
| E            |          | Note: Excess ice content determined in laboratory is shown graphically. Estimated excess ice content |                                             |             |               |                      |            |                   |                           |               |            |         |                                                | 1066-         |
| -            |          | values are provided in `Ground Ice Description'                                                      |                                             |             |               |                      |            |                   |                           |               |            |         |                                                |               |
| F            |          | column.                                                                                              |                                             |             |               |                      |            |                   |                           |               |            |         |                                                | -             |
| F_           |          |                                                                                                      |                                             |             |               |                      |            |                   |                           |               |            |         |                                                |               |
| <b>-</b> 7   |          |                                                                                                      |                                             |             |               |                      |            |                   |                           |               |            |         |                                                |               |
| ļ.           |          |                                                                                                      |                                             |             |               |                      |            |                   |                           |               |            |         |                                                | 1065-         |
| 7.5          |          |                                                                                                      |                                             |             |               |                      |            |                   |                           |               |            |         |                                                |               |
|              |          | <u> </u>                                                                                             | Contractor: Cyr Drilling                    |             |               |                      |            |                   | Completion                | Deptl         | n: 6 m     |         |                                                |               |
|              |          | TETRA TECH                                                                                           | Drilling Rig Type: D-10 Di                  | amo         | nd Dri        | <u> </u>             |            |                   | Start Date:               | 2016          | August     | 29      |                                                |               |
|              | J        |                                                                                                      | Logged By: VER                              |             |               |                      |            |                   | Completion                | Date:         | 2016 A     | ugust : | 29                                             |               |
|              |          | <b>)</b>                                                                                             | Reviewed By: VER                            |             |               |                      |            |                   | Page 1 of 1               |               |            |         |                                                |               |
|              | ł        | TETRATECH                                                                                            | Drilling Rig Type: D-10 Di                  | amo         | nd Dril       | l                    |            |                   | Start Date:<br>Completion | 2016<br>Date: | August     |         | 29                                             |               |

|                                           |               |                                                                                                                                              | Borehole                                                                                                               | <u>\</u>    | lo:                           | G                    | T-1           | 3              |                                            |         |         |              |                    |                      |
|-------------------------------------------|---------------|----------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------|-------------|-------------------------------|----------------------|---------------|----------------|--------------------------------------------|---------|---------|--------------|--------------------|----------------------|
|                                           |               | GOLDCORP                                                                                                                                     | Project: Fall 2016 Geotech                                                                                             | hnic        | al Inve                       | stigation            | on            |                | Project No:                                | ENG.I   | EARC03  | 3004-02      | 2                  |                      |
| _                                         |               | OOLDCORP                                                                                                                                     | Location: Coffee Mine Site                                                                                             |             |                               |                      |               | -              | Ground Ele                                 |         |         |              |                    |                      |
|                                           |               |                                                                                                                                              | Coffee Creek, Yukon                                                                                                    |             |                               |                      |               |                | UTM: 5850                                  | 41 E; 6 | 975116  | N; Z 7       |                    |                      |
|                                           |               |                                                                                                                                              | Thermal                                                                                                                | e           | lber                          | nt (%)               | 5             | Compress<br>10 | sive (MPa) < 15 20<br>% by volume) 4 60 80 | ● Fr    |         |              | cy (/m) <b>(</b>   |                      |
| Depth<br>(m)                              | Method        | Lithological<br>Description                                                                                                                  | Condition<br>and<br>Ground Ice                                                                                         | Sample Type | Sample Number                 | Moisture Content (%) | ■ Bul<br>1400 |                | (kg/m³) <b>■</b><br>300 2000               |         | ▲ R0    | QD (%)<br>80 | 100                | Elevation (m)        |
| 0                                         |               |                                                                                                                                              | Description                                                                                                            | 0)          | Sa                            | Moist                | Limit<br>20   |                | nt Limit                                   |         | ■ Reco  |              | %) <b>■</b><br>100 |                      |
| -<br>-<br>-<br>-<br>-                     |               | MOSS AND PEAT - coarse fibrous, wet, (200 mm thick)  SILT - trace sand, organics, occasional gravel disseminated throughout, dark olive grey | Frozen, Vs, Vx, Vc 35-45%, ice lenses to 3 mm thick                                                                    |             | 13-S1<br>R1<br>13-S2          | 109.2                | •             | •              |                                            | •       |         |              |                    | -<br>-<br>-<br>-     |
| -<br>-<br>- 1<br>-                        |               | No recovery  GRAVEL - sandy, cobbles disseminated throughout, well graded, yellowish brown                                                   | Vc, Vx 10-12%                                                                                                          | Z           | 13-S3                         | 10.9                 | •             |                |                                            |         |         |              | <b>-</b>           | 1025—                |
| -<br>-<br>-<br>-                          |               |                                                                                                                                              |                                                                                                                        | Λ           | 13-S4<br>R2                   |                      |               |                |                                            |         |         |              |                    | -<br>-<br>-<br>-     |
| -<br>- 2<br>-<br>-                        |               |                                                                                                                                              |                                                                                                                        | V           | 13-S5                         |                      |               |                |                                            |         |         |              |                    | 1024—<br>-<br>-<br>- |
| -<br>-<br>-<br>-                          |               |                                                                                                                                              |                                                                                                                        | $\wedge$    | R3                            |                      |               |                |                                            |         |         |              |                    | -                    |
| - 3<br>-<br>-<br>-<br>-                   | E             | - at 3.15 m, some sand, trace silt                                                                                                           |                                                                                                                        |             | 13-S6<br>13-S7                |                      | •             |                | 3028                                       | •       |         |              |                    | 1023-                |
| -<br>-<br>-<br>-<br>- 4                   | Diamond drill | - at 3.73 m, 220 mm cobble                                                                                                                   |                                                                                                                        | Λ           | R4                            |                      | :             |                |                                            |         |         |              |                    | -<br>-<br>-<br>1022— |
| - '<br>                                   |               | - at 4.08 m, 120 mm cobble                                                                                                                   | Vc, Vx 5-10%, ice inclusions and coatings from 1-2 mm to 20 mm                                                         |             | R5<br>13-S8                   |                      |               |                |                                            |         |         |              |                    | -                    |
| -<br>- 5<br>-<br>-<br>-                   |               |                                                                                                                                              |                                                                                                                        | V           |                               |                      |               |                |                                            |         |         |              |                    | 1021-                |
| -<br>-<br>-<br>-<br>-<br>-<br>6<br>-      |               | MAFIC DYKE (BEDROCK) - completely weathered (W5), extremely weak (R0), grey, very closely spaced discontinuities                             | Vs 5-10%, to 3 mm thick ice lenses in joints                                                                           |             | R6<br>13-S9<br>13-R1<br>13-R2 |                      | •             |                |                                            | <b></b> |         |              |                    |                      |
| -<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>7 |               | - at 7.00 m, highly weak (W4)                                                                                                                |                                                                                                                        |             | R7                            |                      |               |                |                                            | 0       |         |              | <b></b> •          | 1019—                |
| F                                         |               |                                                                                                                                              |                                                                                                                        | M           |                               |                      | :             | :              |                                            |         |         | :            |                    |                      |
| 7.5                                       |               |                                                                                                                                              | 0 + + 0 5                                                                                                              | <b>/</b> \  |                               |                      |               | <u>:</u>       | 0 1 "                                      |         | 10      | <u>:</u>     |                    |                      |
|                                           |               | <b>_</b>                                                                                                                                     | Contractor: Cyr Drilling                                                                                               |             |                               |                      |               |                | Completion                                 |         |         | 0            |                    |                      |
|                                           | Ţ.            | TETRA TECH                                                                                                                                   | Drilling Rig Type: D-10 Diamond Drill  Start Date: 2016 September 3  Logged By: VER  Completion Date: 2016 September 3 |             |                               |                      |               |                |                                            |         |         |              |                    |                      |
| IĽ                                        | •             |                                                                                                                                              | Logged By: VER                                                                                                         |             |                               |                      |               |                |                                            |         | 2016 Se | eptemb       | er 3               |                      |
| DOOK OO                                   | DE E          | NG-FARC03004-02 GP.J FBA GDT 17/2/14                                                                                                         | Reviewed By: VER                                                                                                       |             |                               |                      |               |                | Page 1 of 2                                |         |         |              |                    |                      |

|                                                |               |                                                                                                                                                                                                                                         | Borehole                                      | Ν           | 0:                          | G                    | T-13                                           |                                         |                                           |                                         |  |  |  |  |
|------------------------------------------------|---------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------|-------------|-----------------------------|----------------------|------------------------------------------------|-----------------------------------------|-------------------------------------------|-----------------------------------------|--|--|--|--|
|                                                |               | GOLDCORP                                                                                                                                                                                                                                | Project: Fall 2016 Geotec                     | hnica       | al Inve                     | stigati              | Project No: ENG.EARC03004-02                   |                                         |                                           |                                         |  |  |  |  |
|                                                |               | COLDCOM                                                                                                                                                                                                                                 | Location: Coffee Mine Site                    |             |                             |                      | Ground Elev: 1025.99 m                         |                                         |                                           |                                         |  |  |  |  |
|                                                |               |                                                                                                                                                                                                                                         | Coffee Creek, Yukon                           |             |                             |                      |                                                | UTM: 585041 E; 6975116 N; Z 7           |                                           |                                         |  |  |  |  |
|                                                |               | Lithological<br>Description                                                                                                                                                                                                             | Thermal                                       | e e         | oer .                       | ıt (%)               | ▲ Excess Ice Content                           | 15 20 t (% by volume) ▲                 | <ul><li>Fracture Frequency (/m)</li></ul> |                                         |  |  |  |  |
| Depth<br>(m)                                   | Method        |                                                                                                                                                                                                                                         | Condition<br>and<br>Ground Ice<br>Description | Sample Type | Sample Number               | Moisture Content (%) | 20 40 ■ Bulk Densit 1400 1600 1 Plastic Moisti |                                         | ▲ RQD (%) ▲<br>40 60 80 100               | Elevation<br>(m)                        |  |  |  |  |
| 7.5                                            |               |                                                                                                                                                                                                                                         |                                               |             |                             |                      | Limit Conte                                    | ure Liquid<br>ent Limit<br>——1<br>60 80 | ■ Recovery (%) ■ 40 60 80 100             |                                         |  |  |  |  |
| -<br>-<br>-                                    |               | - at 7.40 m, medium strong (R3), reddish grey                                                                                                                                                                                           |                                               | M           | R8                          |                      |                                                |                                         |                                           | -                                       |  |  |  |  |
| -<br>8<br>-                                    |               | GNEISS (BEDROCK) - very strong (R5)                                                                                                                                                                                                     |                                               |             | 13-R3                       |                      |                                                | 220                                     | <u> </u>                                  | 1018                                    |  |  |  |  |
| -<br>-<br>-                                    | drill         | MAFIC DYKE (BEDROCK) - completely weathered (W5), extremely weak (R0), grey                                                                                                                                                             |                                               |             | 13-R4<br>R9<br>R10<br>13-R5 |                      | •                                              |                                         |                                           | -                                       |  |  |  |  |
| -<br>-<br>-<br>- 9                             | Diamond drill | GNEISS (BEDROCK) - strong (R4)  No recovery                                                                                                                                                                                             | -                                             |             |                             |                      |                                                |                                         |                                           | -<br>-<br>1017—                         |  |  |  |  |
| -<br>-<br>-<br>-<br>-                          |               | MAFIC DYKE (BEDROCK) - completely weathered (W5), extremely weak (R1), grey GNEISS (BEDROCK) - grey MAFIC DYKE (BEDROCK) - completely weathered (W5), extremely weak (R0), grey GNEISS (BEDROCK) - grey                                 |                                               |             |                             |                      |                                                | 78/                                     |                                           | -<br>-<br>-<br>-<br>-                   |  |  |  |  |
| -<br>-<br>- 10<br>-<br>-<br>-<br>-             |               | MAFIC DYKE (BEDROCK) - completely weathered (W5), extremely weak (R0), grey GNEISS (BEDROCK) - grey END OF BOREHOLE (10.00 metres) Note: Excess ice content determined in laboratory is shown graphically. Estimated excess ice content |                                               |             | C7-C1                       |                      |                                                |                                         |                                           |                                         |  |  |  |  |
| -<br>-<br>-<br>- 11<br>-<br>-<br>-<br>-        |               | values are provided in `Ground Ice Description' column.                                                                                                                                                                                 |                                               |             |                             |                      |                                                |                                         |                                           | 1015—<br>-<br>-<br>1015—<br>-<br>-<br>- |  |  |  |  |
| -<br>-<br>-<br>-<br>- 12<br>-<br>-<br>-<br>-   |               |                                                                                                                                                                                                                                         |                                               |             |                             |                      |                                                |                                         |                                           | 1014-                                   |  |  |  |  |
| -<br>-<br>-<br>13<br>-<br>-<br>-               |               |                                                                                                                                                                                                                                         |                                               |             |                             |                      |                                                |                                         |                                           | 1013-                                   |  |  |  |  |
| -<br>-<br>-<br>- 14<br>-<br>-<br>-<br>-        |               |                                                                                                                                                                                                                                         |                                               |             |                             |                      |                                                |                                         |                                           | 1012-                                   |  |  |  |  |
| _<br>_<br>_<br>_ 15                            |               |                                                                                                                                                                                                                                         |                                               |             |                             |                      |                                                | Г                                       |                                           | -<br>-<br>-<br>1011-                    |  |  |  |  |
|                                                |               | <u> </u>                                                                                                                                                                                                                                | Contractor: Cyr Drilling                      |             |                             |                      |                                                | Completion Depth: 10 m                  |                                           |                                         |  |  |  |  |
|                                                | ı,            | TETRA TECH                                                                                                                                                                                                                              | Drilling Rig Type: D-10 Di                    | amo         | nd Dril                     | l                    | Start Date: 2016 September 3                   |                                         |                                           |                                         |  |  |  |  |
| <b>"</b>                                       | U             | <b>7</b> ]                                                                                                                                                                                                                              | Logged By: VER                                |             |                             |                      | Completion Date: 2016 September 3              |                                         |                                           |                                         |  |  |  |  |
| ROCK CORE ENG-EARC03004-02 GPJ EBA GDT 17/2/14 |               |                                                                                                                                                                                                                                         | Reviewed By: VER                              |             |                             |                      | Page 2 of 2                                    |                                         |                                           |                                         |  |  |  |  |

| Borehole No: GT-14 |       |                                                                                              |                                                                |                                          |                         |               |                      |                    |                                         |                                 |                              |                                                  |                                   |             |          |                  |       |  |
|--------------------|-------|----------------------------------------------------------------------------------------------|----------------------------------------------------------------|------------------------------------------|-------------------------|---------------|----------------------|--------------------|-----------------------------------------|---------------------------------|------------------------------|--------------------------------------------------|-----------------------------------|-------------|----------|------------------|-------|--|
|                    |       | GOLDCORF                                                                                     | Project: Fall 2016 Geotechnical Investigation                  |                                          |                         |               |                      |                    |                                         | Projec                          | Project No: ENG.EARC03004-02 |                                                  |                                   |             |          |                  |       |  |
|                    |       | COLDCOIII                                                                                    | Location: Coffee Mi                                            | Location: Coffee Mine Site, North WRSF   |                         |               |                      |                    |                                         | Grour                           | Ground Elev: 1082.2 m        |                                                  |                                   |             |          |                  |       |  |
|                    |       |                                                                                              | Coffee Creek, Yuko                                             | n                                        |                         |               |                      |                    |                                         | UTM: 585458 E; 6975088 N; Z 7   |                              |                                                  |                                   |             |          |                  |       |  |
|                    |       | Lithological<br>Description                                                                  |                                                                | '                                        |                         | er            |                      | ♦Unc. (            | Com                                     | pressive                        | (MPa) 🗘                      | ● Eroot                                          | uro Er                            | oguon.      | w (/m) 🗭 |                  |       |  |
| Depth<br>(m)       | pc    |                                                                                              | Т                                                              | Thermal                                  |                         |               | (%)                  |                    | 5 10 15<br>▲ Excess Ice Content (% by v |                                 | 20<br>y volume) 🛦            | 2                                                | Fracture Frequency (/m)   2 4 6 8 |             |          |                  |       |  |
|                    |       |                                                                                              | Condition                                                      |                                          | Sample Type             | Sample Number | Moisture Content (%) | 20 40 60           |                                         |                                 |                              |                                                  |                                   |             | ري<br>ا  | uo               |       |  |
|                    | etho  |                                                                                              |                                                                | and                                      |                         |               | Ö                    |                    |                                         |                                 | ▲ RQD (%) ▲                  |                                                  |                                   |             | S4135    | Elevation<br>(m) |       |  |
| _                  | 2     |                                                                                              |                                                                | Ground Ice                               | San                     | Samp          | sture                | Plastic Moistu     |                                         | loisture                        | Liquid                       | 40                                               | 40 60 80 10                       |             |          | =                | ш     |  |
|                    |       |                                                                                              |                                                                | Description                              |                         | o)            | Moi                  | Limit              | lacksquare                              |                                 | Limit<br><b>—</b> I          | ■ Recovery (%) ■                                 |                                   |             | ) 🔳      |                  |       |  |
| 0                  |       | ODCANICO assts asses wat deal basis                                                          |                                                                |                                          | Ш                       |               |                      | 20                 | 4                                       | 0 60                            | 80                           | 40                                               | 60                                | 80          | 100      | <b>⊢</b>         |       |  |
| -                  |       | ORGANICS - roots, moss, wet, dark brown, (200 mm thick)                                      |                                                                |                                          | М                       |               |                      | :                  | :                                       |                                 |                              |                                                  |                                   | T           |          | 11               | 1082  |  |
| -                  |       | SILT - organics, wet, black                                                                  |                                                                | en, Vx ~30-40%<br>c, Vx 20-30%, ice      |                         | 14-S1         | 42.7                 | 4                  | <b>A</b> (                              | •                               | :                            |                                                  |                                   |             |          | T                |       |  |
| _                  |       | GRAVEL - sandy, some silt, well graded, brown, angular gravel                                | ler                                                            | nses to 5 mm thick,                      |                         | 14-S2         | 24.4                 | •                  | ' :                                     | :                               |                              |                                                  |                                   |             |          |                  | -     |  |
| _                  |       | SAND - silty, some gravel, some clay, greyish                                                |                                                                | ear<br>nally disturbed - moist           |                         | R1            |                      |                    | :                                       |                                 |                              |                                                  |                                   |             |          | #                | -     |  |
| -<br>- 1           |       | brown                                                                                        |                                                                | many diotal 200 miles                    |                         | 14-S3         | 17.7                 |                    |                                         |                                 |                              |                                                  |                                   |             |          |                  |       |  |
| _ '                |       | COBBLE (GRANITE ) No recovery                                                                |                                                                | Frozen, pieces of soil                   |                         |               |                      |                    |                                         |                                 |                              |                                                  |                                   |             |          |                  | 1081  |  |
| Ŀ                  |       | No recovery                                                                                  |                                                                |                                          |                         |               |                      | :                  |                                         | :                               |                              |                                                  |                                   |             |          | 1                |       |  |
| L                  |       | SAND - some gravel, trace to some silt, dark                                                 | Froze                                                          |                                          |                         |               |                      | :                  | :                                       | :                               |                              |                                                  | •                                 |             | :        |                  | -     |  |
| -                  |       | brownish grey                                                                                | the                                                            | ermally disturbed - wet,<br>c, Vx 15-25% |                         | 14-S4         |                      |                    | :                                       | :                               |                              |                                                  |                                   |             |          |                  | -     |  |
| F _                |       | GNEISS (BEDROCK) - highly weathered (W4),                                                    | Vc,                                                            |                                          |                         |               |                      |                    |                                         |                                 |                              |                                                  |                                   |             |          |                  |       |  |
| - 2<br>-           |       | pinkish brownish grey                                                                        |                                                                |                                          | И                       |               |                      | :                  | :                                       | :                               | :                            |                                                  |                                   | :           | :        | T                | 1000  |  |
| -                  |       | - from 1.90 to 2.15 m, vertical fracture, stepped, smooth, oxidization                       | 1                                                              |                                          | $\vdash$                | R2            |                      | :                  |                                         |                                 |                              |                                                  |                                   | :           |          |                  | 1080— |  |
| -                  |       | No recovery                                                                                  |                                                                |                                          | 1                       |               |                      |                    |                                         |                                 |                              |                                                  |                                   |             |          |                  |       |  |
| -                  |       |                                                                                              |                                                                |                                          |                         |               |                      | :                  | :                                       | :                               |                              | :                                                |                                   | :           | :        | <u> </u>         |       |  |
| _                  |       |                                                                                              |                                                                |                                          |                         | 14-R1         |                      |                    | :                                       | :                               | :                            |                                                  |                                   |             |          | T                | =     |  |
| — 3<br>-           |       | GNEISS (BEDROCK) - highly weathered (W4),                                                    |                                                                |                                          | $\overline{\mathbf{I}}$ | 14-K          |                      |                    |                                         |                                 |                              |                                                  | •                                 | •           | ₹        |                  |       |  |
| _                  |       | pinkish brownish grey                                                                        |                                                                |                                          |                         |               |                      |                    | :                                       | :                               | :                            |                                                  |                                   |             |          |                  | 1079  |  |
| _                  | drill | <ul> <li>at 3.32 and 3.43 m, inclined joints, planar,<br/>rough, oxidization</li> </ul>      |                                                                |                                          | М                       |               |                      | :                  | :                                       |                                 |                              |                                                  |                                   |             |          | 1                |       |  |
| _                  | p pı  | - at 3.54, 3.69 and 4.00 m, inclined joints,                                                 |                                                                |                                          | М                       |               |                      |                    | :                                       |                                 |                              |                                                  |                                   |             |          | T                |       |  |
| _                  | amond | planar, smooth, oxidization                                                                  |                                                                |                                          | 1                       | R3<br>14-R2   |                      |                    |                                         |                                 | 55,                          |                                                  |                                   |             |          |                  | -     |  |
| <del>-</del> 4     | Dia   | - at 3.88 to 3.96 m, strong (R4)<br>- from 4.00 to 4.50 m, weak (R2), oxides, clay           |                                                                |                                          | П                       | 14-KZ         |                      | <br>  <u>:</u><br> |                                         |                                 |                              | <u> </u>                                         | :                                 | <b>.</b>    |          |                  | ]     |  |
| F                  |       | infill, infinite fractures                                                                   |                                                                |                                          | И                       |               |                      |                    | :                                       | :                               | :                            |                                                  | :                                 | :           |          | ↓                | 1078  |  |
| -                  |       |                                                                                              |                                                                |                                          | П                       |               |                      | :                  | :                                       | :                               | :                            | :                                                | :                                 |             |          |                  | ]     |  |
| -                  |       | - at 4.50 m, mechanically broken into gravel                                                 |                                                                |                                          |                         |               |                      | :                  | :                                       |                                 |                              |                                                  | 4                                 | <b>T</b>    | -        |                  |       |  |
| -                  |       |                                                                                              |                                                                |                                          | M                       | R4            |                      | :                  |                                         | :                               |                              | :                                                |                                   |             | :        |                  |       |  |
| -<br>5             |       | - at 5.00 m, vertical fractures, stepped,                                                    |                                                                |                                          | $\square$               |               |                      |                    |                                         |                                 |                              | <b></b>                                          |                                   | <b>●</b> ⊭− | <b>-</b> |                  | -     |  |
| -                  |       | smooth, oxidization                                                                          | 1                                                              |                                          | M                       |               |                      |                    | :                                       |                                 |                              |                                                  |                                   |             |          | <u> </u>         | 1077  |  |
| -                  |       | - from 5.00 to 5.10 m, vertical fracture  MAFIC DYKE (BEDROCK) - strongly                    |                                                                |                                          | Н                       | 14-R3         |                      | <b>♦</b>           | :                                       | :                               |                              |                                                  |                                   |             |          | T                |       |  |
| -                  |       | metamorphosed, highly to completely                                                          |                                                                |                                          | М                       |               |                      | :                  |                                         | :                               |                              |                                                  |                                   |             |          |                  | -     |  |
| _                  |       | weathered (W4-W5), highly altered, very weak (R1), grey                                      |                                                                |                                          | H                       | R5            |                      |                    | :                                       |                                 |                              | 0                                                | :                                 |             |          |                  | -     |  |
| -<br>6             |       | - at 5.13 m, subhorizontal joint, oxidization                                                |                                                                |                                          | И                       |               |                      |                    |                                         |                                 |                              |                                                  |                                   |             |          |                  | -     |  |
| -                  |       | - from 5.77 to 5.88 m, subvertical fractures,                                                | 1                                                              |                                          | И                       |               |                      | :                  | :                                       | :                               |                              |                                                  |                                   |             |          |                  | 1076  |  |
| _                  |       | planar, smooth - at 5.90 and 5.95 m, horizontal joint,                                       |                                                                |                                          | И                       |               |                      | :                  |                                         | :                               |                              |                                                  |                                   |             |          |                  |       |  |
| -                  |       | oxidization                                                                                  |                                                                |                                          | $\forall$               |               |                      | :                  | :                                       | :                               | 4                            | <del>                                     </del> | :                                 | • •         | •        |                  | =     |  |
| E                  |       | GNEISS (BEDROCK) - moderately weathered (W3), strong (R4), pinkish grey                      |                                                                |                                          | Н                       | 14-R4         |                      | :                  | :                                       | :                               | :                            |                                                  | :                                 |             |          |                  | =     |  |
| -<br>- 7           |       | - at 6.08 m, inclined joint, calcite, oxidization                                            |                                                                |                                          | V                       |               |                      | l                  |                                         |                                 |                              |                                                  |                                   |             |          |                  | ]     |  |
| F '                |       | - at 6.45 m, inclined joint, oxidization<br>- at 6.50, 6.72, 6.85, 6.93 and 7.09 m, inclined |                                                                |                                          | Λ                       |               |                      |                    |                                         | :                               |                              |                                                  |                                   |             |          |                  | 1075— |  |
| F                  |       | joints, planar, smooth, oxidization                                                          |                                                                |                                          | 11                      | R6            |                      | :                  | :                                       | :                               | :                            |                                                  | :                                 |             | :<br> :  |                  | 1075  |  |
| 7.5                |       | - at 7.21 m, subhorizontal joint, planar, smooth                                             |                                                                | Contractor: Cur Drilling                 |                         |               |                      |                    |                                         |                                 | · :                          | Completion Depth: 20.5 m                         |                                   |             |          |                  |       |  |
|                    |       | <b>)</b>                                                                                     | Contractor: Cyr Drilling Drilling Rig Type: D-10 Diamond Drill |                                          |                         |               |                      |                    | <del></del>                             | Completion Depth: 20.5 m        |                              |                                                  |                                   |             |          |                  |       |  |
|                    | 7     | TETRA TECH                                                                                   |                                                                | - IU L                                   | Jiaino                  | וע טוו        | II                   |                    |                                         | _                               | Start Date: 2016 August 30   |                                                  |                                   |             |          |                  |       |  |
|                    | •     | ני                                                                                           | Logged By: VER                                                 |                                          |                         |               |                      |                    |                                         | Completion Date: 2016 August 30 |                              |                                                  |                                   |             |          |                  |       |  |
| DOCK COL           | )     | IC EADC03004 02 CD LEDA CDT 17/2/14                                                          | Reviewed By: VER                                               |                                          |                         |               |                      |                    |                                         | Page                            | Page 1 of 3                  |                                                  |                                   |             |          |                  |       |  |

|               |        |                                                                                            | Borehol                  | e N            | 10:                  | GT               | -14        |          |          |          |          |          |        |               |
|---------------|--------|--------------------------------------------------------------------------------------------|--------------------------|----------------|----------------------|------------------|------------|----------|----------|----------|----------|----------|--------|---------------|
|               |        | GOLDCORF                                                                                   | Project: Fall 2016 Geo   | technic        | cal Inve             | estigation       |            | Project  | No: EN   | NG.EAR   | C03004   | I-02     |        |               |
|               |        | OOLDCORP                                                                                   | Location: Coffee Mine    |                |                      |                  |            |          |          | 1082.2 ו |          |          |        |               |
|               |        |                                                                                            | Coffee Creek, Yukon      | ,              |                      |                  |            | _        |          | E; 6975  |          | <br>Z 7  |        |               |
|               |        |                                                                                            |                          |                |                      | ♦ Unc. Co        | ompressive | (MPa) 🛇  |          |          |          |          |        |               |
|               |        |                                                                                            | Thermal                  | _              | (%)                  | 5<br>▲Excess Ice | 10 15      | 20       |          | ture Fre |          |          |        |               |
|               | ٦      |                                                                                            | Condition                | abe Me         | tent                 |                  | 40 60      | 80       | 2        | 4        | 6        | 8        |        | <u></u>       |
| Depth<br>(m)  | Method | Lithological                                                                               | and                      |                | Sol                  |                  |            |          |          | ▲ RQD    | (%)▲     |          | TS4135 | Elevation (m) |
|               | Me     | Description                                                                                | Ground Ice               | Sample Number  | Moisture Content (%) | Plastic          | Moisture   | Liquid   | 40       | 60       | 80 1     | 00       | TS     | Ше            |
|               |        |                                                                                            | Description              | S              | Mois                 | Limit            | Content    | Limit    |          | Recove   | ery (%)  |          |        |               |
| 7.5           |        |                                                                                            |                          |                |                      | 20               | 40 60      | 80       | 40       | 60       | 80 1     | 00       |        |               |
| _             |        | - at 7.33 m, inclined joint, stepped, smooth, oxidization                                  |                          | 14-R           | 5                    | :                |            | 83       | · :      | :        |          | :        |        |               |
| -             |        | - at 7.60 m, inclined joint, stepped, smooth,                                              |                          | •              |                      |                  |            | :        |          |          |          |          |        | -             |
| _<br>_ 8      |        | oxidization                                                                                |                          | -              |                      |                  |            |          |          |          | ·∳Å∎     |          |        |               |
| -             |        | - from 8.00 to 8.30 m, vertical fracture, stepped to planar, smooth, oxidization           |                          | 1              |                      | :                | : :        | •        | :        | :        |          |          | Ţ      | 1074-         |
| -             |        |                                                                                            |                          |                |                      |                  |            |          |          |          |          |          | Ī      |               |
| -             |        |                                                                                            |                          | 14-R6          | 6                    | :                |            | 83       | >        |          |          |          |        |               |
| -             |        | - at 8.64, and 8.70 m, two subvertical joints, oxidization                                 |                          | R7             |                      |                  |            | :        | :        | :        |          |          |        | -             |
| -<br>- 9      |        | - from 8.75 to 9.15 m, vertical fracture,                                                  |                          |                |                      |                  |            |          |          |          |          |          |        |               |
| -             |        | stepped, rough, thick oxide infill                                                         |                          |                |                      |                  |            | •        |          |          |          |          | 1      | 1073-         |
| -<br>-        |        | - from 9.25 to 9.35 m, vertical fracture,<br>stepped, rough, thick oxide infill            |                          | 1              |                      |                  |            | :        |          |          |          |          | 1      |               |
| <u>-</u><br>- |        | - at 9.37 m, inclined joint, stepped, smooth,                                              |                          |                |                      |                  |            |          | •        | :        | 9-       |          |        |               |
| _             |        | oxidization                                                                                |                          | 1              |                      |                  |            | :        |          |          |          |          |        | -             |
| -<br>- 10     |        |                                                                                            |                          | 1              |                      |                  |            |          |          |          |          | <u>.</u> |        |               |
| F 10          |        | - from 10.00 to 10.10 m, three closely spaced joints, undulating to planar, smooth,        |                          |                |                      |                  |            |          |          |          |          |          |        | 4070          |
| F             |        | oxidization                                                                                |                          | R8             |                      |                  |            |          |          |          |          |          |        | 1072-         |
| Ē             |        |                                                                                            |                          |                |                      |                  |            |          |          |          |          |          |        |               |
| -             |        |                                                                                            |                          |                |                      |                  |            |          |          | :        |          |          |        | -             |
| -             | =      | - from 10.82 to 10.92 m, very strong (R5)                                                  |                          | 14-R7          | 7                    | :                | : :        | 240      | ,        |          | 11       |          |        |               |
| 11<br>        | drill  |                                                                                            |                          |                |                      |                  |            |          | •        | <b>↑</b> |          |          |        |               |
| -             | amond  | - from 11.16 to 11.53 m, mafic dyke (bedrock) - highly to completely weathered, (W4-W5),   |                          |                |                      |                  |            |          |          |          |          |          | ŧ      | 1071-         |
| <u> </u>      | Dian   | highly altered, extremely weak (R0), grey                                                  |                          | 1              |                      |                  |            |          |          |          |          |          |        |               |
| -<br>-        | ľ      | - at 11.31 and 11.55 m, subvertical joints, oxidization                                    |                          | R9             |                      |                  |            |          |          |          |          |          |        | -             |
| -             |        | - from 11.88 to 12.13 m, vertical fracture,                                                |                          | K9             |                      | :                |            | :        | :        |          |          |          |        |               |
| — 12<br>-     |        | undulating, rough, oxidization, calcite                                                    |                          |                |                      |                  |            |          |          |          |          |          |        |               |
| -             |        |                                                                                            |                          | 1              |                      |                  |            |          |          |          | :        |          |        | 1070-         |
| -             |        | - from 12.40 to 12.50 m, vertical fracture,                                                |                          |                |                      | :                |            | •        |          |          |          |          |        |               |
| _             |        | planar, smooth, oxidization - from 12.50 to 13.10 m, vertical fracture,                    |                          | 1              |                      | :                |            |          | Ĭ        | Ĭ -      | T        | Τl       |        |               |
| -             |        | undulating, smooth, oxidization                                                            |                          | 1              |                      |                  |            |          |          | :        |          |          | 1      |               |
| — 13<br>-     |        | - from 12.60 to 12.74 and 13.10 to 13.16 m,<br>mafic dyke (bedrock) - completely weathered |                          |                |                      |                  |            | 200      |          |          |          |          |        |               |
| _             |        | (W5), highly altered, extremely weak (R0),                                                 |                          | = 14-R8<br>R10 | 3                    | :                |            | 208      | <b>)</b> |          |          |          |        | 1069-         |
| _             |        | grey                                                                                       |                          | 11.10          |                      |                  |            |          |          |          |          |          |        |               |
| -             |        |                                                                                            |                          |                |                      |                  |            |          |          | :        |          |          |        |               |
| E             |        |                                                                                            |                          |                |                      |                  |            |          |          |          |          |          |        | -             |
| _ 14          |        |                                                                                            | _                        | $\pm$          |                      | ļ                |            |          | •        | •        | <u> </u> | •        |        |               |
| E             |        | - from 14.12 to 14.38 m, vertical fracture,                                                |                          | 1              |                      |                  |            |          | :        |          |          |          |        | 1068-         |
| Ė             |        | oxidization                                                                                |                          | 1              |                      |                  |            |          | :        |          | :        |          |        |               |
| F             |        | - from 14.48 to 14.66 and 14.87 to 15.16 m,<br>mafic dyke (bedrock) - completely weathered |                          | V              |                      |                  |            | :        | :        |          | :        |          |        | ]             |
| -             |        | (W5), highly altered, extremely weak (R0),                                                 |                          | R11            |                      |                  |            |          | :        |          | :        |          | ŧ      | -             |
| 15            |        | grey                                                                                       | 0                        |                |                      |                  | <u> </u>   |          | .e       |          | <u>:</u> |          |        |               |
|               |        | <b>1</b>                                                                                   | Contractor: Cyr Drilling |                |                      | ···              |            | <u> </u> |          | epth: 20 |          |          |        |               |
|               | Ŋ.     | TETRA TECH                                                                                 | Drilling Rig Type: D-10  | Diam           | ond Dr               |                  |            |          |          | 16 Augu  |          |          |        |               |
|               |        | <b>'</b> J                                                                                 | Logged By: VER           |                |                      |                  |            |          |          | ate: 201 | 6 Augus  | st 30    |        |               |
| DOOK OO       |        | G-EARC03004-02 GP.J EBA GDT 17/2/14                                                        | Reviewed By: VER         |                |                      |                  |            | Page 2   | of 3     |          |          |          |        |               |

|                     |         |                                                                                                                               | Boreho                 | le N                         | 10:                  | GT-14                                |                                                        |                                                |                            |
|---------------------|---------|-------------------------------------------------------------------------------------------------------------------------------|------------------------|------------------------------|----------------------|--------------------------------------|--------------------------------------------------------|------------------------------------------------|----------------------------|
|                     |         | GOLDCORP                                                                                                                      | Project: Fall 2016 G   | eotechnic                    | al Inve              | estigation                           | Projec                                                 | et No: ENG.EARC03004-02                        |                            |
|                     |         | OOLDCOM                                                                                                                       | Location: Coffee Mir   |                              |                      | •                                    | Groun                                                  | id Elev: 1082.2 m                              |                            |
|                     |         |                                                                                                                               | Coffee Creek, Yukor    | 1                            |                      |                                      | UTM:                                                   | 585458 E; 6975088 N; Z 7                       |                            |
|                     |         |                                                                                                                               |                        |                              |                      | ♦ Unc. Compressive (                 | MPa) ♦                                                 | <b>□</b> □ □ □ □ □ □ □ □ □ □ □ □ □ □ □ □ □ □   |                            |
|                     |         |                                                                                                                               | Thermal                | - Je                         | Moisture Content (%) | 5 10 15<br>▲Excess Ice Content (% by |                                                        | ● Fracture Frequency (/m) ● 2 4 6 8            |                            |
| _                   | pg      | Lithological                                                                                                                  | Condition              | Sample Type<br>ample Numbe   | tent                 |                                      | 80                                                     |                                                | 5<br>on                    |
| Depth<br>(m)        | etho    | Lithological<br>Description                                                                                                   | and                    | e N                          | S                    |                                      |                                                        | ▲ RQD (%) ▲                                    | TS4135<br>Elevation<br>(m) |
| _                   | Σ       | Description                                                                                                                   | Ground Ice             | Sample Type<br>Sample Number | sture                | Plastic Moisture                     | Liquid                                                 | 40 60 80 100                                   |                            |
|                     |         |                                                                                                                               | Description            | S                            | Moi                  | Limit Content                        | Limit                                                  | ■ Recovery (%) ■                               |                            |
| 15                  |         | at 44 CC as beginned bigint spidingtion                                                                                       |                        |                              |                      | 20 40 60                             | 80                                                     | 40 60 80 100                                   |                            |
| -                   |         | - at 14.66 m, horizontal joint, oxidization<br>- at 15.15 and 15.43 m, inclined joints,                                       |                        | V                            |                      |                                      | :                                                      |                                                | 1067-                      |
| -                   |         | oxidization                                                                                                                   |                        | Λ                            |                      |                                      |                                                        |                                                |                            |
| -                   |         |                                                                                                                               |                        | 14-R9                        |                      |                                      | 121                                                    | <b>→</b> • • • • • • • • • • • • • • • • • • • |                            |
| -                   |         | - at 15.70, 15.87 and 16.25 m, inclined joints,                                                                               |                        |                              |                      |                                      | :                                                      |                                                |                            |
| -<br>16             |         | oxidization                                                                                                                   |                        | M                            |                      |                                      |                                                        |                                                | -                          |
|                     |         | - from 16.00 to 16.20 and 16.62 to 17.00 m,<br>mafic dyke (bedrock) - completely weathered                                    |                        | D40                          |                      |                                      | :                                                      |                                                | 1066-                      |
| E                   |         | (W5), highly altered, extremely weak (R0),                                                                                    |                        | R12                          |                      |                                      |                                                        |                                                | -                          |
| _                   |         | grey                                                                                                                          |                        | Ν                            |                      |                                      | :                                                      |                                                |                            |
| _                   |         |                                                                                                                               |                        |                              |                      |                                      | :                                                      |                                                | <b>4</b>   -               |
| -<br>17             |         |                                                                                                                               |                        |                              |                      |                                      | <u>:</u>                                               |                                                |                            |
| _ ''                |         | - from 17.00 to 17.14 and 17.56 to 18.35 m,<br>mafic dyke (bedrock) - strongly                                                |                        |                              |                      |                                      | :                                                      |                                                | 1065-                      |
| _                   |         | metamorphised, highly to completely                                                                                           |                        | М                            |                      |                                      |                                                        |                                                | 1003                       |
| -                   | drill   | weathered (W4-W5), highly altered, extremely weak (R0), grey                                                                  |                        | M                            |                      |                                      | :                                                      |                                                |                            |
| -                   | Diamond | - at 17.06 m, subhorizontal joint, oxidization                                                                                |                        | R13                          |                      |                                      | :                                                      |                                                | -                          |
| F                   | amo     | - at 17.06 m, subhorizontal joint, oxidization - from 17.08 to 17.46 m, subvertical fractures, undulating, rough, oxidization |                        | 14-R10                       | 1                    | <b>♦</b>                             | :                                                      |                                                |                            |
| — 18<br>-           | ä       | - at 18.05 and 18.45 m,, inclined joints, planar,                                                                             |                        |                              |                      |                                      | :                                                      |                                                |                            |
| F                   |         | rough, oxidization                                                                                                            |                        |                              |                      |                                      | :                                                      |                                                | 1064-                      |
| Ė                   |         |                                                                                                                               |                        |                              |                      |                                      | :                                                      |                                                |                            |
| -                   |         | - from 18.60 to 18.80 m, mafic dyke (bedrock)                                                                                 |                        |                              |                      |                                      | :                                                      |                                                |                            |
| -                   |         | - highly weathered (W4), highly altered, extremely weak (R0), grey                                                            |                        |                              |                      |                                      |                                                        |                                                |                            |
| <del></del> 19<br>- |         | - at 18.87 m, inclined joint, stepped, smooth,                                                                                |                        | И                            |                      |                                      | · · <del>.</del> · · · · · · · · · · · · · · · · · · · |                                                |                            |
| -                   |         | oxidization - from 18.90 to 20.03 m, vertical fractures,                                                                      |                        |                              |                      |                                      | :                                                      |                                                | 1063-                      |
| _                   |         | undulating/stepped, rough, calcite,                                                                                           |                        | R14                          |                      |                                      | :                                                      |                                                |                            |
| _                   |         | oxidization                                                                                                                   |                        |                              |                      |                                      | :                                                      |                                                | 1   1                      |
| _                   |         |                                                                                                                               |                        |                              |                      |                                      | :                                                      |                                                | •   -                      |
| _ 20                |         |                                                                                                                               |                        | И                            |                      |                                      |                                                        |                                                |                            |
| _                   |         | - at 20.17 m, inclined joints, stepped, rough,                                                                                |                        |                              |                      |                                      | . 226                                                  |                                                | 1062                       |
| _                   |         | oxidization                                                                                                                   |                        | 14-R1                        | 1                    |                                      | 336                                                    |                                                | -                          |
| E                   |         | END OF BOREHOLE (20.50 metres)<br>GTC #TS4135 installed to 19.75 metres                                                       |                        |                              |                      |                                      |                                                        |                                                | -                          |
| Ē                   |         | Note: Excess ice content determined in                                                                                        |                        |                              |                      |                                      |                                                        |                                                | -                          |
| _<br>_ 21           |         | laboratory is shown graphically. Estimated excess ice content values are provided in                                          |                        |                              |                      |                                      |                                                        |                                                | -                          |
| -                   |         | `Ground Ice Description' column.                                                                                              |                        |                              |                      |                                      |                                                        |                                                | 1061-                      |
| F                   |         |                                                                                                                               |                        |                              |                      |                                      |                                                        |                                                | -                          |
| F                   |         |                                                                                                                               |                        |                              |                      |                                      |                                                        |                                                | -                          |
| Ė                   |         |                                                                                                                               |                        |                              |                      |                                      |                                                        |                                                | -                          |
| -<br>22             |         |                                                                                                                               |                        |                              |                      |                                      |                                                        |                                                | -                          |
| <u> </u>            |         |                                                                                                                               |                        |                              |                      |                                      |                                                        |                                                | 1060-                      |
| - 22.5              |         |                                                                                                                               |                        |                              |                      |                                      |                                                        |                                                | -                          |
| 22.5                |         | I                                                                                                                             | Contractor: Cyr Drilli | ing                          | 1                    | I                                    | Compl                                                  | letion Depth: 20.5 m                           | L                          |
|                     |         | TETRATECH                                                                                                                     | Drilling Rig Type: D-  |                              | nd Dr                | ill                                  | <del>                                     </del>       | Date: 2016 August 30                           |                            |
|                     | t       | TETRA TECH                                                                                                                    | Logged By: VER         | - 2.31110                    |                      |                                      |                                                        | letion Date: 2016 August 30                    |                            |
|                     | _       | J                                                                                                                             | Reviewed By: VER       |                              |                      |                                      | Page                                                   |                                                |                            |
| POCK COL            | DE ENI  | G-EARC03004-02 GPJ EBA.GDT 17/2/14                                                                                            | I NOVIGWEU DY. VEN     |                              |                      |                                      | l age                                                  | 0 01 0                                         |                            |

|                                        |            |                                                                                                                                                                                                                                                                                                                                                         | Borehole                                                                                              | Ν           | lo:                  | G                    | T-1                      | 5                  |                   |          |           |           |                   |                                      |
|----------------------------------------|------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------|-------------|----------------------|----------------------|--------------------------|--------------------|-------------------|----------|-----------|-----------|-------------------|--------------------------------------|
|                                        |            | GOLDCORP                                                                                                                                                                                                                                                                                                                                                | Project: Fall 2016 Geotec                                                                             | hnica       | al Inve              | stigati              | on                       |                    | Project           | No: EN   | G.EARC(   | 03004-02  | 2                 |                                      |
|                                        |            | OOLDCORF                                                                                                                                                                                                                                                                                                                                                | Location: Coffee Mine Site                                                                            |             |                      |                      |                          |                    |                   |          | 081.36 m  |           |                   |                                      |
|                                        |            |                                                                                                                                                                                                                                                                                                                                                         | Coffee Creek, Yukon                                                                                   |             |                      |                      |                          |                    | UTM: 58           | 35045 E  | ; 697488  | 87 N; Z 7 | ,                 |                                      |
|                                        |            |                                                                                                                                                                                                                                                                                                                                                         | Thermal                                                                                               | 0           | er                   |                      | ♦ Unc. C 5 A Excess loan | compress<br>10     | sive (MP<br>15 20 | a) ♦     | Fracture  |           | ncy (/m) <b>€</b> |                                      |
| Depth<br>(m)                           | Method     | Lithological<br>Description                                                                                                                                                                                                                                                                                                                             | Cround los                                                                                            | Sample Type | Sample Number        | Moisture Content (%) | 20<br>■ Bulk<br>1400     | Density<br>1600 18 |                   |          | ▲F        | RQD (%)   |                   | Elevation (m)                        |
| 0                                      |            | ·                                                                                                                                                                                                                                                                                                                                                       | Ground Ice<br>Description                                                                             | Sa          | Sam                  | Moistu               | Plastic<br>Limit<br>L    | Conte              |                   | nit      | ■ Red     | covery (% |                   |                                      |
| -<br>-<br>-<br>-<br>-<br>-             |            | MOSS AND ORGANICS - coarse fibrous, wet, brown, (200 mm thick)  SILT - organics, trace sand, poorly graded, dark grey, (200 mm thick)  SAND - gravelly, silty, trace clay, well graded, dark grey, subangular gravel                                                                                                                                    | Frozen, Vx, Vc 20-25%<br>Vx, Vc 25-30%<br>5 mm ice lens                                               |             | 15-S1<br>R1<br>15-S2 | 123.9<br>37.2        | <b>A</b>                 | 4                  |                   | •        |           |           |                   | 1081                                 |
| -<br>- 1<br>-<br>-<br>-<br>-           |            | No recovery SAND - gravelly, some silt, well graded, dark grey, subangular gravel                                                                                                                                                                                                                                                                       | Vx, Vc, Vs 10-15%, ice coatings to 5 mm                                                               | V           | 15-S3<br>15-S4<br>R2 | 43.7                 | <b>A</b>                 | •                  |                   |          |           |           |                   | 1080-                                |
| -<br>-<br>- 2<br>-<br>-<br>-<br>-<br>- |            | - at 1.80 m, 100 mm cobble (granite)  No recovery  SAND AND GRAVEL - some silt, cobbles and boulders disseminated throughout, well graded, dark grey, subangular gravel                                                                                                                                                                                 | Vx, Vc 5-10%                                                                                          | Y           | R3                   |                      |                          |                    |                   |          |           |           |                   | 1079—                                |
| -<br>-<br>-<br><del>-</del> 3<br>-     |            |                                                                                                                                                                                                                                                                                                                                                         | 5 mm ice coating                                                                                      |             | 15-S5                |                      |                          |                    |                   |          |           | T         |                   | -<br>-<br>-<br>-                     |
| -<br>-<br>-<br>-                       | mond drill |                                                                                                                                                                                                                                                                                                                                                         |                                                                                                       | \(\lambda\) | 15-S6<br>R4          | 12.7                 | •                        |                    |                   |          |           |           |                   | 1078                                 |
| -<br>4<br>-<br>-<br>-                  | Dian       | No recovery  GRAVEL - sandy, trace silt, subangular gravel                                                                                                                                                                                                                                                                                              |                                                                                                       | X           | R5                   |                      |                          |                    |                   |          |           |           |                   | 1077                                 |
| -<br>-<br>-<br>-                       |            | - at 4.43 m, 70 mm cobble  COBBLES AND BOULDERS - fines washed away during drilling, loose                                                                                                                                                                                                                                                              | Thermally disturbed                                                                                   | X           | R6                   |                      |                          |                    |                   |          |           |           |                   | -                                    |
| <del></del> 5<br><br>-<br>             |            | BOULDER (GRANITE) - slightly weathered, very dark grey, white and pink inclusions, fine grained                                                                                                                                                                                                                                                         | Thermally disturbed                                                                                   | V           | 15-R1                |                      |                          |                    |                   | 92       |           |           | -                 | 1076                                 |
| -<br>-<br>-<br>-<br><del>-</del> 6     |            | SAND - some gravel, some silt, trace clay, dark grey, subangular gravel                                                                                                                                                                                                                                                                                 | Vx, Vc, Vs 35-40%, ice<br>inclusions ~ 2-15 mm<br>diameter<br>60 mm ice lens<br>~ 15 mm ice inclusion |             | R7<br>15-S8<br>15-S7 | 12.8                 | •                        | <b>.</b>           |                   |          |           |           |                   | -<br>-<br>-                          |
| -<br>-<br>-<br>-<br>-<br>-             |            | GNEISS (BEDROCK) - highly to completely weathered (W4-W5), very weak to weak (R1-R2), very dark grey, sand inclusions, fine grained - at 6.35 m, slightly to moderately weathered (W2-W3), medium strong to strong (R3-R4), pink veins, fine to medium grained - at 6.43 m, subhorizontal joint, undulating, rough, > 1 mm thick brown sand/silt infill | ~ 25 mm ice lens                                                                                      |             | R8<br>15-R2          |                      |                          |                    |                   | 55       |           |           |                   | ●1075—<br>-<br>-<br>-<br>-<br>-<br>- |
| — 7<br>-<br>-<br>-<br>-<br>- 7.5       |            | - at 7.00 m, slightly weathered (W2), medium strong (R3), pink and white inclusions, fine grained - at 7.06 m, horizontal joint, stepped, rough, no visible                                                                                                                                                                                             |                                                                                                       | M           | 15-R3                |                      |                          |                    |                   |          |           |           |                   | 1074-                                |
|                                        |            |                                                                                                                                                                                                                                                                                                                                                         | Contractor: Cyr Drilling                                                                              |             |                      |                      |                          |                    | Comple            | tion De  | oth: 10 m | 1         |                   |                                      |
|                                        |            | TETRA TECH                                                                                                                                                                                                                                                                                                                                              | Drilling Rig Type: D-10 Di                                                                            | amo         | nd Dril              | I                    |                          |                    | Start Da          | te: 201  | 6 Septen  | nber 4    |                   |                                      |
|                                        | J          |                                                                                                                                                                                                                                                                                                                                                         | Logged By: RG                                                                                         |             |                      |                      |                          |                    | Comple            | tion Dat | e: 2016 S | Septemb   | er 4              |                                      |
|                                        |            | _                                                                                                                                                                                                                                                                                                                                                       | Reviewed By: VER                                                                                      |             |                      |                      |                          |                    | Page 1            | of 2     |           |           | _                 |                                      |

|               |               |                                                                                                         | Borehole                   | Ν            | lo:           | G                    | T-15                                                                         |                                    |                                                 |                   |
|---------------|---------------|---------------------------------------------------------------------------------------------------------|----------------------------|--------------|---------------|----------------------|------------------------------------------------------------------------------|------------------------------------|-------------------------------------------------|-------------------|
|               |               | GOLDCORP                                                                                                | Project: Fall 2016 Geotec  |              |               |                      |                                                                              | Project No: I                      | ENG.EARC03004-02                                |                   |
|               |               | OOLDCORP                                                                                                | Location: Coffee Mine Site |              |               |                      |                                                                              |                                    | /: 1081.36 m                                    |                   |
|               |               |                                                                                                         | Coffee Creek, Yukon        | -            |               |                      |                                                                              | UTM: 58504                         | 45 E; 6974887 N; Z 7                            |                   |
|               |               |                                                                                                         | Thermal                    |              | پ             | (%)                  | <ul> <li>Unc. Compres</li> <li>5</li> <li>10</li> </ul> ▲ Excess Ice Content | sive (MPa) $\diamondsuit$<br>15 20 | Fracture Frequency (/m)                         |                   |
| _             | р             |                                                                                                         | Condition                  | ype          | equi          | tent                 | 20 40                                                                        | 60 80                              | 2 4 6 8                                         |                   |
| Depth<br>(m)  | Method        | Lithological<br>Description                                                                             | and<br>Ground Ice          | Sample Type  | Sample Number | Moisture Content (%) | Bulk Density<br>1400 1600 1                                                  |                                    | ▲ RQD (%) ▲<br>40 60 80 100                     | Elevation<br>(m)  |
|               |               |                                                                                                         | Description                | Š            | Sar           | Moistu               | Plastic Moistu<br>Limit Conte                                                | ent Limit                          | ■ Recovery (%) ■                                |                   |
| 7.5           |               | weathering                                                                                              |                            |              | R9            |                      | 20 40                                                                        | 60 80                              | 40 60 80 100                                    | +                 |
| -<br> -<br> - |               | at 7.25 m, inclined joint, undulating, rough, oxidization                                               |                            | Ħ            | 15-R4         |                      |                                                                              |                                    |                                                 |                   |
| 8             |               | - at 7.33 m, horizontal joint, undulating, rough, oxidization                                           |                            |              |               |                      |                                                                              |                                    | <del>                                    </del> | .   =             |
|               |               | - at 7.48 m, subhorizontal, planar, rough, no visible                                                   |                            | М            |               |                      |                                                                              |                                    |                                                 | -                 |
| -             | III           | weathering   MAFIC DYKE (BEDROCK) - highly weathered (W4),                                              |                            | M            | R10           |                      |                                                                              |                                    |                                                 | 1073-             |
| -             | nd c          | very weak (R1), black, white quartz inclusions, medium grained                                          |                            | Λ            |               |                      |                                                                              |                                    |                                                 |                   |
| -<br>-<br>- 9 | Diamond drill | GNEISS (BEDROCK) - slightly to moderately weathered (W2-W3), medium strong to                           |                            |              |               |                      |                                                                              | <u></u>                            |                                                 |                   |
| -             | D             | strong(R3-R4), fine grained                                                                             |                            | $\mathbf{M}$ |               |                      |                                                                              |                                    |                                                 |                   |
| -             |               | <ul> <li>from 8.00 to 8.06 m, subvertical joint, stepped,<br/>smooth, oxidization</li> </ul>            |                            | M            |               |                      |                                                                              |                                    |                                                 | 1072              |
| _<br>-        |               | - at 8.09 m, inclined joint, planar, rough, oxidization - at 8.20 m, subvertical joint, planar, smooth, |                            |              | R11<br>15-R5  |                      |                                                                              | 65<                                | <b>↓</b>                                        |                   |
| <u>-</u>      |               | oxidization                                                                                             |                            | П            |               |                      |                                                                              |                                    |                                                 | -                 |
| 10            |               | - from 8.40 to 8.50 m, mafic dyke (bedrock) -<br>completely weathered (W5), very weak (R1),             |                            | $\vdash$     |               |                      |                                                                              | <u>: :</u>                         |                                                 |                   |
|               |               | medium grained - at 8.43 m, horizontal joint, stepped, smooth,                                          |                            |              |               |                      |                                                                              |                                    |                                                 |                   |
| _             |               | oxidization                                                                                             |                            |              |               |                      |                                                                              |                                    |                                                 | 1071              |
| -<br>-        |               | <ul> <li>at 8.50 m, inclined joint, undulating, rough, highly oxidized</li> </ul>                       |                            |              |               |                      |                                                                              |                                    |                                                 |                   |
| -             |               | - from 8.80 to 8.95 m, vertical joint, undulating, rough, highly oxidized                               |                            |              |               |                      |                                                                              |                                    |                                                 | $\mid \cdot \mid$ |
| - 11<br>-     |               | - at 9.04 m, subhorizontal joint, undulating, rough                                                     |                            |              |               |                      |                                                                              |                                    |                                                 | -                 |
| [             |               | - at 9.27 and 9.54 m, subhorizontal joint, undulating, rough, slight oxidization/weathering             |                            |              |               |                      |                                                                              |                                    |                                                 | 1070              |
| _             |               | - from 9.35 to 9.50 m, subvertical joint, undulating, smooth, highly oxidized/weathered                 |                            |              |               |                      |                                                                              |                                    |                                                 |                   |
| -<br>-        |               | - at 9.50 m, horizontal joint, stepped, smooth, slightly                                                |                            |              |               |                      |                                                                              |                                    |                                                 |                   |
| -<br>12       |               | oxidized - at 9.66 m, subhorizontal joint, undulating, smooth,                                          |                            |              |               |                      |                                                                              |                                    |                                                 |                   |
| -             |               | slight to no weathering END OF BOREHOLE (10.00 metres)                                                  |                            |              |               |                      |                                                                              |                                    |                                                 |                   |
|               |               | Note: Excess ice content determined in laboratory is                                                    |                            |              |               |                      |                                                                              |                                    |                                                 | 1069              |
|               |               | shown graphically. Estimated excess ice content values are provided in 'Ground Ice Description'         |                            |              |               |                      |                                                                              |                                    |                                                 | -                 |
| -             |               | column.                                                                                                 |                            |              |               |                      |                                                                              |                                    |                                                 |                   |
| — 13<br>-     |               |                                                                                                         |                            |              |               |                      |                                                                              |                                    |                                                 |                   |
| <u> </u>      |               |                                                                                                         |                            |              |               |                      |                                                                              |                                    |                                                 | 1068              |
| F             |               |                                                                                                         |                            |              |               |                      |                                                                              |                                    |                                                 | 1,000             |
| _             |               |                                                                                                         |                            |              |               |                      |                                                                              |                                    |                                                 | -                 |
| _<br>14       |               |                                                                                                         |                            |              |               |                      |                                                                              |                                    |                                                 |                   |
| ţ             |               |                                                                                                         |                            |              |               |                      |                                                                              |                                    |                                                 |                   |
| ļ.            |               |                                                                                                         |                            |              |               |                      |                                                                              |                                    |                                                 | 1067              |
| F             |               |                                                                                                         |                            |              |               |                      |                                                                              |                                    |                                                 |                   |
| -             |               |                                                                                                         |                            |              |               |                      |                                                                              |                                    |                                                 | -                 |
| 15            |               | _                                                                                                       | Contractor: Cyr Drilling   |              | 1             |                      | 1                                                                            | Completion                         | Depth: 10 m                                     |                   |
|               |               | TETRA TECH                                                                                              | Drilling Rig Type: D-10 Di | amo          | nd Dril       | II                   |                                                                              |                                    | 2016 September 4                                |                   |
|               | t             |                                                                                                         | Logged By: RG              |              |               |                      |                                                                              |                                    | Date: 2016 September 4                          |                   |
|               |               | G EADC02004 02 CD LEDA CDT 17/9/44                                                                      | Reviewed By: VER           |              |               |                      |                                                                              | Page 2 of 2                        |                                                 |                   |

|              |         |                                                                                                       | Borehole                   | N               | lo:           | G                    | T-16                   |                   |                 |                                              |          |          |                            |                  |
|--------------|---------|-------------------------------------------------------------------------------------------------------|----------------------------|-----------------|---------------|----------------------|------------------------|-------------------|-----------------|----------------------------------------------|----------|----------|----------------------------|------------------|
| _            |         | GOLDCORP                                                                                              | Project: Fall 2016 Geotec  | hnica           | al Inve       | stigati              | on                     | Р                 | roject No:      | ENG.                                         | EARC0    | 3004-0   | 2                          |                  |
|              |         | OOLDCORP                                                                                              | Location: Coffee Mine Site |                 |               |                      |                        |                   | Ground Elev     |                                              |          |          |                            |                  |
|              |         |                                                                                                       | Coffee Creek, Yukon        | -,              |               |                      |                        | _                 | ITM: 58260      |                                              |          | 7 N: 7 7 | 7                          |                  |
|              |         |                                                                                                       | Conco Grook, raken         |                 |               |                      | ♦ Unc. Com             | oressiv           | ve (MPa) ♦      | <u>,                                    </u> |          |          |                            |                  |
|              |         |                                                                                                       | Thermal                    |                 | _             | (%)                  | 5 10<br>▲Excess Ice Co | ) 15              | 5 20            | ● Fr                                         |          |          | ncy (/m)                   |                  |
|              | -       |                                                                                                       | Condition                  | /be             | Sample Number | Moisture Content (%) | 20 40                  |                   |                 | <b>.</b>                                     | 2 4      | 6        | 8                          | _ u              |
| Depth<br>(m) | Method  | Lithological                                                                                          | and                        | Sample Type     | Nu            | Sont                 |                        |                   |                 |                                              | ▲R       | QD (%)   | <b>A</b>                   | Elevation<br>(m) |
| ے ق          | Me      | Description                                                                                           | Ground Ice                 | amb             | nple          | Je (                 | Diagram M.             | . !               | الدائيسة ا      |                                              | 40 60    | 80       | 100                        | <br>Ele)         |
|              |         |                                                                                                       | Description                | S               | Saı           | oisti                |                        | oisture<br>ontent |                 |                                              | Rec      | wory (   | 0/ <sub>4</sub> ) <b>=</b> |                  |
|              |         |                                                                                                       | 2000                       |                 |               | 2                    | 20 40                  | •                 | —               |                                              | 40 60    |          |                            |                  |
| 0            |         | MOSS - rooty, coarse fibrous, (100 mm thick)                                                          | Thawed                     | X               |               |                      | 20 40                  |                   | <del>, 50</del> |                                              | : :      | :        | :                          | _                |
|              |         | GRAVEL - loose, fines washed away during drilling, (50)                                               | maweu                      |                 |               |                      | : :                    | :                 | :               |                                              |          | :        | :                          | 1006-            |
|              |         | \ mm thick) No recovery                                                                               |                            | 14              | R1            |                      |                        | :                 | į               | 15                                           |          |          |                            | _                |
|              |         | ,                                                                                                     |                            |                 | KI            |                      | : :                    | :                 | :               | 13                                           |          | :        | :                          | _                |
|              |         |                                                                                                       |                            |                 |               |                      |                        |                   |                 |                                              |          |          |                            | -                |
| - 1          |         | GRAVEL - loose, fines washed away during drilling                                                     | Thermally disturbed        |                 |               |                      | ļ                      |                   |                 |                                              |          |          |                            |                  |
|              |         | OITAVEL - 1005e, IIIIes washeu away during dilliing                                                   | mermany disturbed          | M               |               |                      |                        | :                 | :               |                                              |          |          | :                          | 1005—            |
|              |         | No recovery                                                                                           | Frozen                     |                 |               |                      |                        |                   |                 |                                              |          |          |                            | 1005—            |
| -            |         |                                                                                                       |                            | 14              | R2            |                      |                        | :                 |                 |                                              |          |          |                            | -                |
|              |         |                                                                                                       |                            |                 |               |                      |                        |                   |                 |                                              |          | - 1      |                            | -                |
| •            |         |                                                                                                       |                            |                 |               |                      |                        | :                 |                 | L                                            |          |          | <u>:</u>                   | -                |
| - 2          |         | SAND - trace silt, trace gravel, massive, well graded,                                                | Vx, Vc 5-10%, clear ice    | $\square$       |               |                      |                        | :                 | :               | -                                            |          | :        | <b>T</b>                   | -                |
|              |         | dark grey to black, subangular gravel                                                                 | coating on gravel surfaces | H               | 16-S1         | 27.1                 | <b>A</b> •             |                   | :               |                                              |          | :        |                            | 1004             |
| -            |         |                                                                                                       |                            |                 | R3            | 22.2                 |                        | :                 | :               |                                              |          | :        |                            | -                |
|              | =       |                                                                                                       |                            |                 | 16-S2         | 22.2                 |                        | :                 |                 |                                              |          | :        |                            | -                |
|              | drill   | GNEISS (BEDROCK) - moderately weathered (W3),<br>weak to medium strong (R2-R3), dark grey to dark     |                            | И               |               |                      | : :                    | :                 | :               |                                              |          | :        |                            | _                |
| - 3          | Diamond | green, highly fractured, fine grained                                                                 |                            | $\vdash$        |               |                      |                        |                   |                 | <b>.</b>                                     | l        |          |                            | _                |
|              | am      | - at 3.00 m, slight oxidization in joints, silt infill                                                |                            | 11              |               |                      |                        | :                 |                 |                                              |          |          |                            | 1000             |
|              | Ö       |                                                                                                       |                            | М               |               |                      |                        | :                 |                 |                                              |          | :        |                            | 1003-            |
|              |         |                                                                                                       |                            | H               | R4            |                      |                        |                   |                 | 0                                            |          |          |                            |                  |
|              |         |                                                                                                       |                            | И               |               |                      |                        |                   |                 |                                              |          |          |                            | -                |
|              |         |                                                                                                       |                            | $I \setminus I$ |               |                      |                        | :                 | :               |                                              |          |          |                            |                  |
| - 4          |         | - at 4.00 m, slight inclined bedding with dark grey and                                               |                            |                 |               |                      |                        | :                 |                 |                                              |          |          | T 7                        | ·   -            |
|              |         | brownish grey alternating, JSN: 2 - at 4.04, 4.10, 4.17, 4.24, 4.48, 4.63, 4.80, 4.83 and             |                            | М               |               |                      | : :                    | :                 | :               |                                              |          | :        |                            | 1002-            |
|              |         | 4.95 m, inclined joints, undulating, smooth, no                                                       |                            |                 | 16-R1<br>R5   |                      | <b>♦</b>               |                   |                 |                                              |          |          |                            | -                |
|              |         | visible alteration, slight silt infill in 4.95 m only                                                 |                            | М               | NJ            |                      | : :                    | :                 | :               |                                              |          | :        |                            | -                |
|              |         |                                                                                                       |                            | И               |               |                      |                        |                   |                 |                                              |          |          |                            | -                |
| - 5          |         |                                                                                                       |                            |                 |               |                      |                        |                   |                 | •                                            |          |          | —≢•                        | .   -            |
|              |         | - at 5.07, 5.22, 5.36, 5.45, 5.53 and 5.58 m, inclined joints, undulating, smooth, slight silt infill |                            |                 | 16-R2         |                      |                        | <b>♦</b>          |                 |                                              |          |          |                            | 1001-            |
|              |         | jointo, andatating, ornooth, slight sitt initial                                                      |                            | М               |               |                      | : :                    | :                 | :               |                                              |          |          |                            | 1001 -           |
| -            |         |                                                                                                       |                            | М               | R6            |                      |                        | :                 |                 |                                              |          |          |                            | -                |
|              |         | - from 5.66 to 5.73 and 5.80 to 5.95 m, rubble zones,                                                 |                            | II              |               |                      |                        | :                 | :               |                                              |          |          |                            | -                |
| - 6          |         | slight yellowish orange oxide staining                                                                |                            |                 |               |                      | <u> </u>               | :                 | :               |                                              | <u> </u> |          |                            |                  |
| U            |         | GRANITE (BEDROCK) - light pink, grey and black, medium grained                                        |                            |                 |               |                      |                        |                   |                 |                                              |          |          |                            | ] -              |
|              |         | END OF BOREHOLE (6.00 metres)                                                                         |                            |                 |               |                      |                        |                   |                 |                                              |          |          |                            | 1000-            |
|              |         | Note: Excess ice content determined in laboratory is shown graphically. Estimated excess ice content  |                            |                 |               |                      |                        |                   |                 |                                              |          |          |                            | -                |
|              |         | values are provided in `Ground Ice Description'                                                       |                            |                 |               |                      |                        |                   |                 |                                              |          |          |                            | -                |
|              |         | column.                                                                                               |                            |                 |               |                      |                        |                   |                 |                                              |          |          |                            | -                |
| - 7          |         |                                                                                                       |                            |                 |               |                      |                        |                   |                 |                                              |          |          |                            | -                |
|              |         |                                                                                                       |                            |                 |               |                      |                        |                   |                 |                                              |          |          |                            | 999—             |
| 7 =          |         |                                                                                                       |                            |                 |               |                      |                        |                   |                 |                                              |          |          |                            | - 239            |
| 7.5          |         |                                                                                                       | Contractor: Cyr Drilling   |                 |               | 1                    | I                      |                   | Completion      | Denth                                        | n: 6 m   |          |                            |                  |
|              |         | 7                                                                                                     | Drilling Rig Type: D-10 Di | amo             | nd Dril       | <u> </u>             |                        | _                 | tart Date: 2    |                                              |          | 1        |                            |                  |
|              | -       | TETRA TECH                                                                                            |                            | ano             | ווע טוו       |                      |                        |                   |                 |                                              |          |          | 1                          |                  |
| L            |         |                                                                                                       | Logged By: EP              |                 |               |                      |                        |                   | Completion      | ⊔ate:                                        | 2010 C   | clober   | 1                          |                  |
| 201/ 201     |         | IG-FARC03004-02 GPJ FBA GDT 17/2/14                                                                   | Reviewed By: VER           |                 |               |                      |                        | P                 | age 1 of 1      |                                              |          |          |                            |                  |

## Borehole No: GT-17 **=**GOLDCORP Project: Fall 2016 Geotechnical Investigation Project No: ENG.EARC03004-02 Location: Coffee Mine Site, West WRSF Ground Elev: 985.29 m Coffee Creek, Yukon UTM: 582500 E; 6973946 N; Z 7 ♦ Unc. Compressive (MPa) ♦ 10 15 20 ● Fracture Frequency (/m) ● Thermal 4 6 Sample Number Sample Type Condition Elevation (m) Lithological Depth (m) ▲ RQD (%) ▲ and Description 60 80 Ground Ice Description Recovery (%) 80 ORGANICS - roots, fine to coarse fibrous, dark brown to black, Thawed (100 mm thick) 985 No recovery R1 GRAVEL - loose particles, fines washed away during drilling, Frozen, thermally disturbed 984 No recovery R2 2 GRANITE (BEDROCK) - moderately weathered (W3), massive, weak to medium strong (R2-R3), grey, white 983 등 inclusions, coarse grained, JSN: 6 - from 2.00 to 2.18 m, rubble zone R3 12 15 Diamond - at 2.18 m, inclined joint, undulating, rough, slight oxide 17-R1 - at 2.20 m, inclined joint, undulating, smooth, slight silt infill, oxide staining 3 - at 2.27 m, inclined joint, undulating, rough Ice infill in joint - at 2.34 m, inclined joint, undulating, rough, slight staining 982 Ice infill in joint - at 2.39 m, inclined joint, undulating, rough, slight sand infill Ice infill in joint R4 48 12 - at 2.45 m, inclined joint, undulating, smooth, slight silt infill, 17-R2 oxide staining - at 2.49 m, inclined joint, stepped, rough, silt infill, oxide staining - from 2.56 to 2.61 m. rubble zone - at 2.74 m, inclined joint, undulating, smooth, slight sand 981 17-R3 - at 2.85 m, inclined joint, undulating, smooth, slight sand R5 infill, slight staining - at 2.89 m, inclined joint, stepped, smooth, sand infill - at 2.91 m, inclined joint, undulating, smooth, slight sand - 5 - from 3.00 to 3.15 m, rubble zone, fractures frozen together Ice infill in joint - at 3.17 m, inclined joint, undulating, smooth, ice and sand 980 Ce infill in joint infill, frozen closed - at 3.19 m, inclined joint, undulating, rough, silty sand infill, frozen closed - at 3.22 m, inclined joint, undulating, rough, ice on faces, frozen closed 6 - at 3.27 m, inclined joint, undulating, smooth, ice on faces, frozen closed 979 - at 3.37 m, subhorizontal joint, undulating, smooth, weathered rock infill - at 3.55 m, subhorizontal joint, undulating, smooth, slight silt infill, oxidized - at 3.58 m, inclined joint, undulating, smooth, oxide staining - at 3.74 m, inclined joint, undulating, smooth - at 3.75 m, inclined joint, undulating, smooth, slight sand 978 at 3.94 and 3.97 m, inclined joint, undulating, smooth Completion Depth: 5.2 m Contractor: Cyr Drilling Drilling Rig Type: D-10 Diamond Drill Start Date: 2016 September 30 **TETRA TECH** Logged By: JGD Completion Date: 2016 September 30 Reviewed By: VER Page 1 of 2



## Borehole No: GT-17

Project: Fall 2016 Geotechnical Investigation Project No: ENG.EARC03004-02

Location: Coffee Mine Site, West WRSF Ground Elev: 985.29 m

LITM: 582500 E: 6073046 N: 7.7

|                                                |        | Coff                                                                                                                                                                                                                                                                                         | ee Creek, Yukon                                          |             |               |                                       | 0 E; 6973946 N; Z 7                                                                          |                  |
|------------------------------------------------|--------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------|-------------|---------------|---------------------------------------|----------------------------------------------------------------------------------------------|------------------|
| Depth (m)                                      | Method | Lithological<br>Description                                                                                                                                                                                                                                                                  | Thermal<br>Condition<br>and<br>Ground Ice<br>Description | Sample Type | Sample Number | ♦ Unc. Compressive (MPa) ♦ 5 10 15 20 | ● Fracture Frequency (/m) ● 2 4 6 8  ▲ RQD (%) ▲ 40 60 80 100  ■ Recovery (%) ■ 40 60 80 100 | Elevation<br>(m) |
| -<br>-<br>-<br>-<br>- 8<br>-<br>-<br>-         |        | JSN: 3     at 4.14 and 4.18 m, inclined joints, undulating, smooth, oxide staining     at 4.29 m, subhorizontal joint, stepped, rough, oxide staining     at 4.39, 4.50, 4.63 and 4.88 m, inclined joints, undulating, smooth     at 5.00 m, inclined joint, undulating, rough, slight oxide |                                                          |             |               |                                       |                                                                                              | 977—             |
| -<br>-<br>-<br>-<br>-<br>9<br>-<br>-<br>-<br>- |        | staining - at 5.11 and 5.17 m, inclined joints, undulating, smooth, ice and sand infill  END OF BOREHOLE (5.20 metres)  Note: Excess ice content determined in laboratory is shown graphically. Estimated excess ice content values are provided in 'Ground Ice Description' column.         |                                                          |             |               |                                       |                                                                                              | 976—             |
| -<br>-<br>-<br>- 10<br>-<br>-<br>-             |        |                                                                                                                                                                                                                                                                                              |                                                          |             |               |                                       |                                                                                              | 975—             |
| -<br>-<br>-<br>- 11<br>-<br>-<br>-<br>-        |        |                                                                                                                                                                                                                                                                                              |                                                          |             |               |                                       |                                                                                              | 974—             |
| -<br>-<br>-<br>- 12<br>-<br>-<br>-<br>-        |        |                                                                                                                                                                                                                                                                                              |                                                          |             |               |                                       |                                                                                              | 973              |
| -<br>-<br>-<br>- 13<br>-<br>-<br>-<br>-        |        |                                                                                                                                                                                                                                                                                              |                                                          |             |               |                                       |                                                                                              | 972—             |
| -<br>-<br>-<br>- 14<br>-<br>-<br>-<br>-        |        |                                                                                                                                                                                                                                                                                              |                                                          |             |               |                                       |                                                                                              | 971—             |
| 15                                             |        | Con                                                                                                                                                                                                                                                                                          | tractor: Cyr Drilling                                    |             |               | Completion                            | Depth: 5.2 m                                                                                 |                  |

| <b>Tt</b> ] | TETRA TECH |
|-------------|------------|
|-------------|------------|

|                  |         |                                                                                                                                                                                                                                                                                                      | Borehole                                                                                                                                                                      | N           | 0:            | G                    | <b>T-1</b>   | 8                      |                  |                        |          |            |         |                |                      |
|------------------|---------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------|---------------|----------------------|--------------|------------------------|------------------|------------------------|----------|------------|---------|----------------|----------------------|
|                  |         | GOLDCORP                                                                                                                                                                                                                                                                                             | Project: Fall 2016 Geotech                                                                                                                                                    | nnica       | I Inve        | stigati              | on           |                        | Proje            | ct No:                 | ENG.     | EARC       | 03004-0 | 02             |                      |
|                  |         |                                                                                                                                                                                                                                                                                                      | Location: Coffee Mine Site                                                                                                                                                    |             |               |                      |              |                        | Grour            | nd Elev                | /: 988   | 3.71 m     |         |                |                      |
|                  | _       |                                                                                                                                                                                                                                                                                                      | Coffee Creek, Yukon                                                                                                                                                           |             |               |                      |              |                        |                  |                        |          | 697363     | 30 N; Z | 7              |                      |
|                  |         |                                                                                                                                                                                                                                                                                                      | Thermal                                                                                                                                                                       | Ф           | Jer.          | ıt (%)               | 5<br>▲Excess | Ice Content            | 15 2<br>(% by vo | 20 olume) ▲            | ● Fi     |            | Freque  | ency (/m)      |                      |
| th (             | pot     | Lithological                                                                                                                                                                                                                                                                                         | Condition                                                                                                                                                                     | Typ         | Arm.          | onter                | 20<br>■ Bu   |                        |                  | 30<br><sup>3</sup> \ ■ |          | <b>A</b> [ | RQD (%  | ١.             | igi                  |
| Depth<br>(m)     | Method  | Description                                                                                                                                                                                                                                                                                          | and                                                                                                                                                                           | Sample Type | Sample Number | ē<br>C               | 1400         | lk Density<br>0 1600 1 |                  |                        |          |            | 60 80   |                | Elevation (m)        |
|                  |         |                                                                                                                                                                                                                                                                                                      | Ground Ice<br>Description                                                                                                                                                     | Sa          | Sam           | Moisture Content (%) | Limit        | Moistu<br>Conte        | nt l             | iquid<br>_imit         |          | ■ Re       | covery  | (%)■           |                      |
| 0                |         | ORGANICS - roots, fine and coarse fibrous, dark                                                                                                                                                                                                                                                      |                                                                                                                                                                               | Н           |               |                      | 20           | 40                     | 80 0             | 30                     | <u> </u> | 40 (       | 60 80   | 0 100          |                      |
| -<br>-<br>-<br>- |         | brown, (100 mm thick)  No recovery                                                                                                                                                                                                                                                                   | Frozen, thermally disturbed                                                                                                                                                   |             | R1            |                      |              |                        |                  |                        | 10       |            |         |                | 988-                 |
| - 1<br>- 1       |         | GRAVEL - some sand, loose, fines washed away during drilling No recovery                                                                                                                                                                                                                             |                                                                                                                                                                               | X           | R2            |                      |              |                        |                  | <b>I</b>               |          |            |         |                | 987-                 |
| - 2              |         | GRAVEL - some sand, loose, fines washed away during drilling                                                                                                                                                                                                                                         | Vx, Vc 5%<br>Vc, Vx 10%, ice inclusions<br>to 7 mm                                                                                                                            | V           | R3            | 28.6                 | <b>A</b>     | •                      | •                | <b> </b>               |          |            |         |                |                      |
| - 3              | drill   |                                                                                                                                                                                                                                                                                                      |                                                                                                                                                                               |             | 18-S2         | 20                   |              |                        |                  |                        |          |            |         | ····•          | 986                  |
| - 4              | Diamond | GRANITE (BEDROCK) - completely weathered (W5), very weak (R1), dark grey, highly fractured, coarse grained                                                                                                                                                                                           |                                                                                                                                                                               | X<br>A      | R4            |                      |              |                        |                  |                        | 0        |            |         |                | 985                  |
|                  |         | - at 4.20 m, more competent                                                                                                                                                                                                                                                                          |                                                                                                                                                                               |             | R5            |                      |              |                        |                  |                        | 0        |            |         |                | 984                  |
| - 5              |         | - at 5.10 m, highly weathered (W4), medium strong (R3), grey, white inclusions, fractures infilled with soil and ice                                                                                                                                                                                 |                                                                                                                                                                               |             | R6            |                      |              |                        |                  |                        | 0        |            |         | Ī              | 983                  |
| - 6<br>6<br>7    |         | - from 6.00 to 6.21 m, rubble zone, ice and soil infill in fractures - at 6.21 m, inclined joint, undulating, smooth, slight oxide staining - at 6.32 m, inclined joint, undulating, smooth, slight oxide staining, ice on face - from 6.32 to 6.42 m, rubble zone, ice and soil infill in fractures | From 6.00 to 6.21, ice infill in fractures  Ice infill in joint From 6.32 to 6.42 m, ice infill in fractures Ice infill in joint From 6.72 to 7.00 m, ice infill in fractures | V<br>A      | R7<br>18-R1   |                      |              |                        |                  | 110,                   | <b>*</b> |            |         |                | <br>982 <sup>.</sup> |
| 7.5              |         | - at 6.42 m, inclined joint, undulating, smooth, silt and ice infill - at 6.72 m, inclined joint, undulating, smooth, slight                                                                                                                                                                         |                                                                                                                                                                               |             |               |                      |              |                        |                  |                        |          |            | _       | - <del>-</del> |                      |
| 7.3              |         |                                                                                                                                                                                                                                                                                                      | Contractor: Cyr Drilling                                                                                                                                                      | - 1         |               |                      |              |                        | Comp             | letion                 | Depth    | n: 7 m     |         |                | -                    |
|                  |         | TETRATECH                                                                                                                                                                                                                                                                                            | Drilling Rig Type: D-10 Dia                                                                                                                                                   | amor        | nd Dril       | l                    |              |                        |                  |                        |          |            | nber 30 |                |                      |
|                  | U       |                                                                                                                                                                                                                                                                                                      | Logged By: JGD                                                                                                                                                                |             |               |                      |              |                        | Comp             | letion                 | Date:    | 2016       | Septem  | nber 30        |                      |
|                  |         | )                                                                                                                                                                                                                                                                                                    | Reviewed By: VER                                                                                                                                                              |             |               |                      |              |                        | Page             | 1 -60                  |          |            |         |                |                      |

|                                            |        |                                                                                                                                                                                             | Borehole                    | N           | 0:            | G                    | T-18                                                                     |                                         |              |           |              |                                    |
|--------------------------------------------|--------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------|-------------|---------------|----------------------|--------------------------------------------------------------------------|-----------------------------------------|--------------|-----------|--------------|------------------------------------|
|                                            |        | GOLDCORP                                                                                                                                                                                    | Project: Fall 2016 Geotech  | nnica       | al Inve       | stigati              | on                                                                       | Project No: I                           | ENG.EARC     | 3004-02   | 2            |                                    |
|                                            |        | OOLDCOM                                                                                                                                                                                     | Location: Coffee Mine Site  |             |               |                      |                                                                          | Ground Elev                             |              |           |              |                                    |
|                                            |        |                                                                                                                                                                                             | Coffee Creek, Yukon         |             |               |                      |                                                                          | UTM: 58263                              | 88 E; 697363 | 0 N; Z 7  | ,            |                                    |
|                                            |        |                                                                                                                                                                                             | Thermal                     |             | e             | (%)                  | <ul><li>Unc. Compres</li><li>5 10</li><li>▲ Excess Ice Content</li></ul> | sive (MPa) $\diamondsuit$               | ● Fracture   |           |              |                                    |
| Depth<br>(m)                               | Method | Lithological<br>Description                                                                                                                                                                 | Condition and               | Sample Type | Sample Number | Moisture Content (%) | 20 40  Bulk Densit 1400 1600 1                                           | 60 80<br>y (kg/m³) <b>■</b><br>800 2000 | ▲R           | QD (%)    | <b>A</b>     | Elevation<br>(m)                   |
|                                            | ۷      |                                                                                                                                                                                             | Ground Ice<br>Description   | Sar         | Sam           | Moistur              | Plastic Moisto                                                           |                                         | ■ Red        | covery (% | <b>⁄</b> 6)■ | , W                                |
| 7.5<br>-<br>-                              |        | oxide staining - from 6.72 to 7.00 m, rubble zone, fractures mostly closed, ice infill                                                                                                      |                             |             |               |                      | 20 40                                                                    | 00 00                                   | 40 0         | 0 00      | 100          | 981-                               |
| - 8<br>-<br>-<br>-<br>-<br>-               |        | END OF BOREHOLE (7.00 metres)  Note: Excess ice content determined in laboratory is shown graphically. Estimated excess ice content values are provided in 'Ground Ice Description' column. |                             |             |               |                      |                                                                          |                                         |              |           |              |                                    |
| -<br>-<br>- 9<br>-<br>-<br>-               |        |                                                                                                                                                                                             |                             |             |               |                      |                                                                          |                                         |              |           |              | 980—                               |
| -<br>-<br>-<br>-<br>- 10<br>-<br>-         |        |                                                                                                                                                                                             |                             |             |               |                      |                                                                          |                                         |              |           |              | 979-                               |
| -<br>-<br>-<br>-<br>-<br>-<br>- 11         |        |                                                                                                                                                                                             |                             |             |               |                      |                                                                          |                                         |              |           |              | 978—<br>-<br>-<br>-<br>-<br>-<br>- |
| -<br>-<br>-<br>-<br>-<br>-<br>-<br>- 12    |        |                                                                                                                                                                                             |                             |             |               |                      |                                                                          |                                         |              |           |              | 977—                               |
| -<br>-<br>-<br>-<br>-<br>-<br>-<br>13      |        |                                                                                                                                                                                             |                             |             |               |                      |                                                                          |                                         |              |           |              | 976—                               |
| -<br>-<br>-<br>-<br>-<br>-<br>-<br>- 14    |        |                                                                                                                                                                                             |                             |             |               |                      |                                                                          |                                         |              |           |              | 975—                               |
| -<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>15 |        |                                                                                                                                                                                             | Contractors Our Delling     |             |               |                      |                                                                          | Completion                              | Donth: 7     |           |              | 974—                               |
|                                            |        | <b>)</b>                                                                                                                                                                                    | Contractor: Cyr Drilling    |             | -4 L          |                      |                                                                          | Completion                              |              | h 00      |              |                                    |
|                                            | 7      | TETRA TECH                                                                                                                                                                                  | Drilling Rig Type: D-10 Dia | amo         | na Dril       | l                    |                                                                          | Start Date: 2                           |              |           | 20           |                                    |
|                                            |        | <b>'</b> J                                                                                                                                                                                  | Logged By: JGD              |             |               |                      |                                                                          | Completion                              | Date: 2016 S | septemb   | er 30        |                                    |
|                                            |        | C EADC03004 02 CD LEDA CDT 47/2/44                                                                                                                                                          | Reviewed By: VER            |             |               |                      |                                                                          | Page 2 of 2                             |              |           |              |                                    |

|                |           |                                                                                                 | Borehole                  | · N         | 0:            | G                    | T-1      | 9                                     |                                  |                   |             |         |                     |               |
|----------------|-----------|-------------------------------------------------------------------------------------------------|---------------------------|-------------|---------------|----------------------|----------|---------------------------------------|----------------------------------|-------------------|-------------|---------|---------------------|---------------|
|                |           | GOLDCORP                                                                                        | Project: Fall 2016 Geote  |             |               |                      |          |                                       | Project No:                      | ENG.E             | EARC03      | 004-02  |                     |               |
|                |           | OOLDCORP                                                                                        | Location: Coffee Mine Si  |             |               |                      | ***      |                                       | Ground Ele                       |                   |             |         |                     |               |
|                |           |                                                                                                 | Coffee Creek, Yukon       | ,           |               |                      |          |                                       | UTM: 58282                       |                   |             | N: Z 7  |                     |               |
|                |           |                                                                                                 | Conce creek, ruken        |             |               |                      | ♦ Unc. C |                                       | ive (MPa) <                      | >                 |             |         |                     | Τ             |
|                |           |                                                                                                 | Thermal                   |             | <u>_</u>      | (%)                  | 5        | 10 1                                  | 5 `20 ´<br>% by volume) <b>4</b> | ● Fra             | acture Fi   |         |                     |               |
|                | ъ         |                                                                                                 | Condition                 | ype         | Sample Number | Moisture Content (%) | 20       |                                       | 60 80                            | }                 | 2 4         | 6       | 8                   | Ę             |
| Depth<br>(m)   | Method    | Lithological                                                                                    | and                       | Sample Type | e Nu          | Con                  |          |                                       |                                  |                   | <b>▲</b> RQ | D (%) 4 | <b>A</b>            | Elevation (m) |
|                | ž         | Description                                                                                     | Ground Ice                | Sam         | ldmr          | ture                 | Plastic  | Moistur                               | e Liquid                         | 4                 | 10 60       | 80      | 100                 | _  #          |
|                |           |                                                                                                 | Description               |             | Š             | Mois                 | Limit    | Conter                                |                                  |                   | Reco        | very (% | )                   |               |
| 0              |           |                                                                                                 |                           |             |               |                      | 20       | 40 6                                  | 08 0                             | 4                 | 10 60       | 80      | 100                 |               |
| _              |           | ORGANICS - roots, wood chips, coarse fibrous, dark brown, (100 mm thick)                        | Thawed                    | M           |               |                      |          |                                       | : : '                            |                   |             |         |                     | -             |
| -              |           | SAND - some silt to silty, some gravel, massive, well                                           |                           |             |               |                      |          | :                                     |                                  |                   |             | :       |                     | -             |
| -              |           | graded, grey brown, subangular gravel  No recovery                                              |                           |             | R1            |                      |          | :                                     |                                  | 15                |             |         |                     |               |
| -              |           | No receivery                                                                                    |                           |             |               |                      | :        | :                                     |                                  |                   |             | :       |                     | 1075-         |
| F              |           |                                                                                                 |                           |             |               |                      |          |                                       |                                  | L                 |             |         | _ :                 |               |
| -              |           | SAND - some silt to silty, some gravel, massive, well graded, grey brown, subangular gravel     | Frozen, Vx, Vc 10%        | $\square$   |               |                      |          |                                       |                                  |                   |             |         |                     |               |
| F              |           | graded, grey brown, subangular graver                                                           | Vx, Vc 15%                |             | 19-S1         | 18.3                 | 4        |                                       |                                  |                   |             | :       |                     | -             |
| -              |           |                                                                                                 |                           | R           | R2            |                      |          | :                                     |                                  |                   |             |         |                     |               |
| -              |           | - at 1.68 m, 300 mm cobble                                                                      | Clear ice inclusions      | И           |               |                      |          |                                       |                                  |                   |             |         |                     | 1074-         |
| -              |           | No recovery                                                                                     |                           |             |               |                      |          |                                       |                                  |                   |             | : _     | <u> </u>            |               |
| - 2<br>-       |           | SAND - some silt, trace clay, trace gravel, massive,                                            | Nbn                       |             | 19-S2         | 11.2                 | •        | · · · · · · · · · · · · · · · · · · · |                                  |                   |             |         |                     |               |
| -              |           | well graded, grey brown, subangular gravel                                                      |                           | М           |               |                      | :        |                                       |                                  |                   |             |         |                     | -             |
| _              |           | - at 2.00 m, mottled light brown                                                                |                           | M           | R3            |                      |          |                                       |                                  |                   |             |         |                     | -             |
| -              | <b></b> ≡ | GNEISS (BEDROCK) - slightly weathered (W2),<br>medium strong (R3), dark grey, white inclusion,  |                           | Λ           |               |                      |          | :                                     |                                  |                   |             |         |                     | 1073-         |
| -              | d dril    | JSN: 3                                                                                          |                           | И           |               |                      | :        | :                                     | : :                              |                   |             | :       |                     | -             |
| - 3<br>-       | Diamond   | at 2.00 as in altered in interpretation of the and in-                                          | las isfil is isist        |             |               |                      | <u>-</u> |                                       | }<br>!                           |                   | !····!      | 4       | ₽₩⋯                 | -             |
| _              | )ian      | - at 3.08 m, inclined joint, planar, smooth, silt and ice infill, oxidized                      | Ice infill in joint       | М           |               |                      |          |                                       |                                  |                   |             |         |                     | -             |
| _              | _         | - at 3.24 m, inclined joint, undulating, rough, slight                                          | Ice infill in joint       | M           | R4            |                      | :        |                                       |                                  |                   |             |         |                     | -             |
| Ŀ              |           | oxide staining - at 3.40 m, inclined joint, planar, rough, oxidized                             | 100 mm m jone             |             | 19-R1         |                      | :        | :                                     | 79                               | $\phi$            | i i         | :       |                     | 1072-         |
| _              |           | - at 3.43 m, inclined joint, undulating, smooth, silt and                                       |                           | П           |               |                      |          | :                                     |                                  |                   |             |         |                     | 1072          |
| <del>-</del> 4 |           | ice infill, oxidized - at 3.43 m, inclined joint, undulating, smooth, slight                    | Ice infill in joint       |             |               |                      |          |                                       | :                                |                   |             |         | <b>▶  ┿</b> · · · · | 1 -           |
| -              |           | oxide staining                                                                                  | loe illiii iii joilit     | Ц           | 40.00         |                      | :        |                                       | 140                              |                   |             |         |                     | -             |
| F              |           | - at 3.50 m, pink and grey<br>- at 3.50 m, strong (R4)                                          |                           | ₹           | 19-R2         |                      | :        |                                       |                                  | Ψ                 |             |         |                     | -             |
| F              |           | - at 3.54 and 3.76 m, inclined joint, undulating rough                                          |                           | Λ           | R5            |                      | :        | :                                     | : :                              |                   |             |         |                     | 1071-         |
| F              |           | - at 3.99 m, inclined joint, stepped, rough, slight staining                                    | Ice infill in joint       | М           |               |                      |          | :                                     |                                  |                   |             |         |                     | 1071-         |
| _<br>_ 5       |           | - at 4.00 m, moderately weathered (W3)                                                          |                           |             |               |                      |          |                                       | 212                              |                   | ļļ.         | بجلم    | 📥                   |               |
| -              |           | - at 4.03 m, inclined joint, undulating, smooth, silt/weathered rock and ice infill             |                           |             | 19-R3         |                      | :        |                                       | 213                              | $\uparrow$        |             |         |                     | -             |
| -              |           | - at 4.25 m, very strong (R5)                                                                   |                           | M           |               |                      |          |                                       |                                  |                   |             |         |                     |               |
| -              |           | - at 4.26, 4.40 and 4.45 m, inclined joints, undulating, smooth, oxidized/weathered rock infill |                           | М           | R6            |                      |          |                                       |                                  |                   |             |         |                     |               |
| -              |           | - at 4.52 m, inclined joint, undulating, smooth, oxide                                          | Ice infill in joint       | И           |               |                      |          | :                                     |                                  |                   |             |         |                     | 1070-         |
| -<br>- 6       |           | staining                                                                                        | Ice infill in joint       | $\bot$      |               |                      | ļi       | :                                     | <u> </u>                         | -                 | <u>: :</u>  |         | _                   | _             |
| <b> </b>       |           | - at 4.65 m, subvertical joint, undulating, rough, ice and sand infill                          |                           |             |               |                      |          |                                       |                                  |                   |             |         |                     | -             |
| Ė              |           | - at 4.91 m, inclined joint, stepped, smooth, silt infill                                       |                           |             |               |                      |          |                                       |                                  |                   |             |         |                     | :             |
| -              |           | - at 5.00 m, JSN: 4<br>- at 5.25 and 5.28 m, inclined joints, undulating,                       |                           |             |               |                      |          |                                       |                                  |                   |             |         |                     | -             |
| -              |           | smooth, ice and silt infill, oxidized                                                           |                           |             |               |                      |          |                                       |                                  |                   |             |         |                     | 1069-         |
| -<br>- 7       |           | - at 5.54 m, inclined joint, planar, smooth, slight staining                                    |                           |             |               |                      |          |                                       |                                  |                   |             |         |                     |               |
| <u> </u>       |           | - at 5.67 m, inclined joint, stepped, rough, oxide                                              |                           |             |               |                      |          |                                       |                                  |                   |             |         |                     | -             |
| -              |           | staining - at 5.75 m, subvertical joint, undulating, smooth, ice                                |                           |             |               |                      |          |                                       |                                  |                   |             |         |                     |               |
| 7.5            |           | account in, subvertical joint, undulating, smooth, ice                                          | Contractor: Cyr Drilling  |             |               |                      |          | 1.                                    | Completion                       | <u> </u><br>Denth | · 6 m       |         |                     |               |
|                |           | 7                                                                                               | Drilling Rig Type: D-10 D | )iama       | nd Dril       | <u> </u>             |          |                                       | Start Date: 2                    |                   |             | )       |                     |               |
|                | 1         | TETRA TECH                                                                                      | 0 0 7.                    | namo        | iiu DM        | ı                    |          |                                       |                                  |                   |             |         | )                   |               |
|                |           | נ                                                                                               | Logged By: JGD            |             |               |                      |          |                                       | Completion                       |                   | 20 10 UC    | lober 2 |                     |               |
|                |           | IG-FARC03004-02 GP.I EBA GDT 17/2/14                                                            | Reviewed By: VER          |             |               |                      |          |                                       | Page 1 of 2                      |                   |             |         |                     |               |

|                 |        |                                                                                                      | Borehole                    | N           | 0:            | G                    | T-19              |                             |                         |           |                    |     |                  |
|-----------------|--------|------------------------------------------------------------------------------------------------------|-----------------------------|-------------|---------------|----------------------|-------------------|-----------------------------|-------------------------|-----------|--------------------|-----|------------------|
|                 |        | GOLDCORP                                                                                             | Project: Fall 2016 Geotech  | nnica       | al Inve       | stigati              | on                | Project No:                 | ENG.EAR                 | 20300     | 04-02              |     |                  |
|                 |        | OOLDCOM                                                                                              | Location: Coffee Mine Site  |             |               |                      |                   | Ground Ele                  |                         |           |                    |     |                  |
|                 |        |                                                                                                      | Coffee Creek, Yukon         |             |               |                      |                   | UTM: 5828                   | 20 E; 6974 <sup>2</sup> | 147 N     | ; Z 7              |     |                  |
|                 |        |                                                                                                      | Thermal                     |             |               | (%                   | ♦ Unc. Compre     | essive (MPa) <<br>15 20     | ● Fractur               | e Fre     | quenc              |     |                  |
|                 | 5      |                                                                                                      | Condition                   | /pe         | mber          | ent (                | ▲Excess Ice Conte | nt (% by volume) 4<br>60 80 | 2                       | 4         | 6                  | 8   | _                |
| Depth<br>(m)    | Method | Lithological<br>Description                                                                          | and                         | Sample Type | Sample Number | Moisture Content (%) |                   |                             | 40                      | RQD<br>60 | (%) <b>4</b><br>80 | 100 | Elevation<br>(m) |
|                 | _      | 2 осонрасы                                                                                           | Ground Ice                  | Sar         | Sam           | oistur               | Plastic Mois      |                             |                         |           |                    |     | <b> "</b>        |
|                 |        |                                                                                                      | Description                 |             |               | ĭ                    | Limit Con         | ——                          |                         |           | ery (%)            |     |                  |
| 7.5             |        | and silt infill, oxide staining                                                                      |                             |             |               |                      | 20 40             | 60 80                       | 40                      | 60        | 80                 | 100 |                  |
| _               |        | - at 5.82 m, inclined joint, undulating, rough, ice and                                              |                             |             |               |                      |                   |                             |                         |           |                    |     | 1068             |
| -<br>- 8        |        | silt infill, oxidized END OF BOREHOLE (6.00 metres)                                                  |                             |             |               |                      |                   |                             |                         |           |                    |     | -                |
| <u> </u>        |        | Note: Excess ice content determined in laboratory is shown graphically. Estimated excess ice content |                             |             |               |                      |                   |                             |                         |           |                    |     |                  |
| -               |        | values are provided in `Ground Ice Description' column.                                              |                             |             |               |                      |                   |                             |                         |           |                    |     |                  |
| <del>-</del>    |        | Column.                                                                                              |                             |             |               |                      |                   |                             |                         |           |                    |     |                  |
| -               |        |                                                                                                      |                             |             |               |                      |                   |                             |                         |           |                    |     | 1067—            |
| -<br>- 9        |        |                                                                                                      |                             |             |               |                      |                   |                             |                         |           |                    |     | -                |
| -               |        |                                                                                                      |                             |             |               |                      |                   |                             |                         |           |                    |     | -                |
| F               |        |                                                                                                      |                             |             |               |                      |                   |                             |                         |           |                    |     | -                |
| -               |        |                                                                                                      |                             |             |               |                      |                   |                             |                         |           |                    |     | 1                |
| -               |        |                                                                                                      |                             |             |               |                      |                   |                             |                         |           |                    |     | 1066—            |
| <del>-</del> 10 |        |                                                                                                      |                             |             |               |                      |                   |                             |                         |           |                    |     | -                |
| F               |        |                                                                                                      |                             |             |               |                      |                   |                             |                         |           |                    |     | ]                |
| F               |        |                                                                                                      |                             |             |               |                      |                   |                             |                         |           |                    |     | ]                |
| F               |        |                                                                                                      |                             |             |               |                      |                   |                             |                         |           |                    |     | 1065             |
| E               |        |                                                                                                      |                             |             |               |                      |                   |                             |                         |           |                    |     | 1005             |
| 11              |        |                                                                                                      |                             |             |               |                      |                   |                             |                         |           |                    |     |                  |
| -               |        |                                                                                                      |                             |             |               |                      |                   |                             |                         |           |                    |     | -                |
| E               |        |                                                                                                      |                             |             |               |                      |                   |                             |                         |           |                    |     |                  |
| -               |        |                                                                                                      |                             |             |               |                      |                   |                             |                         |           |                    |     | 1064             |
| -               |        |                                                                                                      |                             |             |               |                      |                   |                             |                         |           |                    |     |                  |
| — 12<br>-       |        |                                                                                                      |                             |             |               |                      |                   |                             |                         |           |                    |     | -                |
| -               |        |                                                                                                      |                             |             |               |                      |                   |                             |                         |           |                    |     | -                |
| -               |        |                                                                                                      |                             |             |               |                      |                   |                             |                         |           |                    |     | -                |
| -               |        |                                                                                                      |                             |             |               |                      |                   |                             |                         |           |                    |     | 1063-            |
| F               |        |                                                                                                      |                             |             |               |                      |                   |                             |                         |           |                    |     | -                |
| - 13<br>-       |        |                                                                                                      |                             |             |               |                      |                   |                             |                         |           |                    |     | ]                |
| F               |        |                                                                                                      |                             |             |               |                      |                   |                             |                         |           |                    |     | 1                |
| F               |        |                                                                                                      |                             |             |               |                      |                   |                             |                         |           |                    |     | ]                |
| F               |        |                                                                                                      |                             |             |               |                      |                   |                             |                         |           |                    |     | 1062             |
| _<br>14         |        |                                                                                                      |                             |             |               |                      |                   |                             |                         |           |                    |     | ]                |
| F 14            |        |                                                                                                      |                             |             |               |                      |                   |                             |                         |           |                    |     |                  |
| E               |        |                                                                                                      |                             |             |               |                      |                   |                             |                         |           |                    |     | ]                |
| -               |        |                                                                                                      |                             |             |               |                      |                   |                             |                         |           |                    |     | -                |
| E               |        |                                                                                                      |                             |             |               |                      |                   |                             |                         |           |                    |     | 1061             |
| _<br>15         |        |                                                                                                      |                             |             |               |                      |                   |                             |                         |           |                    |     |                  |
|                 |        |                                                                                                      | Contractor: Cyr Drilling    |             |               |                      |                   | Completion                  |                         |           |                    |     |                  |
|                 |        | TETRA TECH                                                                                           | Drilling Rig Type: D-10 Dia | amoi        | nd Dril       | II                   |                   | Start Date:                 |                         |           |                    |     |                  |
| П               | U      | ·   · - · · · · · · · · · · · · · · · ·                                                              | Logged By: JGD              |             |               |                      |                   | Completion                  |                         | Octo      | ber 2              |     |                  |
|                 |        | C EADC02004 02 CD LEDA CDT 47/2/14                                                                   | Reviewed By: VER            |             |               |                      |                   | Page 2 of 2                 |                         |           |                    |     |                  |

|                       |               |                                                                                                                                                                                                  | Borehole                                          | Ν           | lo:           | G                    | T-20             | 0               |                                          |              |               |              |                    |                  |
|-----------------------|---------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------|-------------|---------------|----------------------|------------------|-----------------|------------------------------------------|--------------|---------------|--------------|--------------------|------------------|
|                       |               | GOLDCORP                                                                                                                                                                                         | Project: Fall 2016 Geotec                         |             |               |                      |                  |                 | Project No:                              | ENG.         | EARC03        | 3004-02      | <u> </u>           |                  |
|                       |               | OOLDCORF                                                                                                                                                                                         | Location: Coffee Mine Site                        |             |               |                      |                  | -               | Ground Ele                               |              |               |              |                    |                  |
|                       |               |                                                                                                                                                                                                  | Coffee Creek, Yukon                               |             |               |                      |                  |                 | UTM: 5829                                | 47 E; 6      | 973768        | N; Z 7       |                    |                  |
|                       |               |                                                                                                                                                                                                  | Thermal                                           |             | <u>_</u>      | (%)                  | 5                | 10 1            | sive (MPa) <<br>15 20<br>(% by volume) 4 | ● Fr         |               |              | cy (/m) <b></b>    |                  |
| _                     | ٥             | L 20 c L c c l c c l                                                                                                                                                                             | Condition                                         | ype         | ımbe          | tent                 |                  |                 | 60 80                                    |              | 2 4           | 6            | 8                  | l E              |
| Depth<br>(m)          | Method        | Lithological<br>Description                                                                                                                                                                      | and<br>Ground Ice                                 | Sample Type | Sample Number | Moisture Content (%) |                  |                 |                                          | 4            | ▲ R0<br>40 60 | QD (%)<br>80 | 100                | Elevation<br>(m) |
|                       |               | ·                                                                                                                                                                                                | Description                                       | Sa          | San           | oistu                | Plastic<br>Limit | Moistu<br>Conte |                                          |              | Reco          |              | (.) <b>■</b>       | 1                |
| 0                     |               |                                                                                                                                                                                                  | Becomplien                                        |             |               | Σ                    | <b>⊢</b>         | _               |                                          |              | 40 60         |              | °) <b>—</b><br>100 |                  |
|                       |               | MOSS - organics, roots and rootlets, coarse fibrous,                                                                                                                                             | Thawed                                            | X           |               |                      | :                |                 | : :                                      |              |               | :            | :                  |                  |
| -<br>-<br>-           |               | black, (50 mm thick) GRAVEL - loose, fines washed away during drilling No recovery                                                                                                               | Thawca                                            |             | R1            |                      |                  |                 |                                          | 15           |               |              |                    | 1079             |
| -<br>-<br>-<br>- 1    |               | GRAVEL - sandy, some silt, massive, oxide weathered,                                                                                                                                             | Frozen, Vc 5%                                     |             |               |                      |                  |                 |                                          |              |               |              |                    |                  |
| -                     |               | subangular gravel                                                                                                                                                                                |                                                   |             | 20-S1         | 24.2                 | <b>A</b> •       |                 |                                          |              |               |              |                    |                  |
| -                     |               |                                                                                                                                                                                                  |                                                   |             | R2            |                      | :                | :               |                                          |              |               | :            | :                  | 1078             |
| -<br>-<br>-           |               | No recovery                                                                                                                                                                                      |                                                   |             |               |                      |                  |                 |                                          |              |               |              |                    | -                |
| -<br>- 2<br>-<br>-    |               | GRAVEL - sandy, some silt, cobbles disseminated throughout                                                                                                                                       | Clear ice coatings on gravel<br>surfaces<br>Vc 5% |             |               |                      |                  |                 |                                          |              |               |              | _ <u></u>          |                  |
| -<br>-<br>-<br>-      |               | a noughout                                                                                                                                                                                       |                                                   | X           | R3            |                      |                  |                 |                                          |              |               |              |                    | 1077-            |
| -<br>3<br>-           |               | CNICIOC (DEDDOCIO) all'abblique ab cond (MO)                                                                                                                                                     |                                                   |             |               |                      |                  |                 |                                          |              |               | - P          | <u></u>            | -                |
| -<br>-<br>-<br>-<br>- | Diamond drill | GNEISS (BEDROCK) - slightly weathered (W2),<br>medium strong (R3), dark grey to greenish, heavily<br>fractured cobbles and gravel, slight oxidization,<br>slight banding, fine to medium grained |                                                   | X           | R4            |                      |                  |                 |                                          |              |               |              |                    | 1076-            |
| -<br>- 4<br>-<br>-    |               | - at 4.00 m, moderately weathered (W3), weak to<br>very strong (R2-R5), highly fractured, many inclined<br>joints                                                                                |                                                   | V           | 20-R1         |                      |                  |                 | 225                                      | •            |               |              |                    | 1075             |
| -<br>-<br>-           |               | - at 4.58 m, highly to completely weathered (W4-W5), friable, decomposed                                                                                                                         |                                                   | X           | R5            |                      |                  |                 |                                          | 11           |               |              |                    | 1075             |
| -<br>5<br>-<br>-<br>- |               | - at 4.90 m, 50 mm long quartz vein<br>- from 5.00 to 5.20 m, rubble zone<br>- at 5.20 m, slightly weathered (W2), very strong (R5),<br>JSN: 3                                                   |                                                   | V           |               |                      |                  |                 |                                          |              |               |              |                    | 1074             |
| -<br>-<br>-           |               | - at 5.31, 5.55 and 5.64 m, inclined joints, undulating, smooth, slight oxide alteration on joints                                                                                               |                                                   | Λ           | R6<br>20-R2   |                      | :                |                 | 173                                      | $\downarrow$ |               |              |                    | -                |
| -<br>-<br>6           |               | - at 5.77 m, inclined joint, different orientation                                                                                                                                               |                                                   |             |               |                      |                  |                 |                                          |              |               |              | •                  | • -              |
| -                     |               | - at 6.09, 6.21, 6.30, 6.34, 6.39, 6.45, 6.49, 6.55, 6.75, 6.79, 6.83, 6.86, 6.90 and 6.98 m, inclined joints, undulating, smooth, oxide staining in 6.09 and 6.55 m                             |                                                   | X           | 20-R3<br>R7   |                      |                  |                 | 96                                       | <b></b>      |               |              | 11                 | 1073—<br>6 -     |
| – 7                   |               | - at 6.75 m, subvertical joint, undulating, smooth, oxide staining                                                                                                                               | √Clear ice ~ 2 mm thick                           |             |               |                      |                  |                 |                                          |              |               |              |                    | <u> </u>         |
| 7.5                   |               | END OF BOREHOLE (7.10 metres)  Note: Excess ice content determined in laboratory is shown graphically. Estimated excess ice content                                                              | Clear ice ~ 2 mm thick                            | $\sqrt{}$   |               |                      |                  |                 |                                          |              |               |              |                    | 1072-            |
| 7.5                   |               |                                                                                                                                                                                                  | Contractor: Cyr Drilling                          |             |               |                      | 1                |                 | Completion                               | Depth        | n: 7.1 m      |              |                    | 1                |
|                       |               | TETRATECH                                                                                                                                                                                        | Drilling Rig Type: D-10 Di                        | amo         | nd Dri        |                      |                  |                 | Start Date:                              |              |               | 3            |                    |                  |
|                       | Ţ             | , i i i i i i i i i i i i i i i i i i i                                                                                                                                                          | Logged By: EP                                     |             |               |                      |                  |                 | Completion                               | Date:        | 2016 O        | ctober 3     | 3                  |                  |
|                       |               | NG-FARC03004-02 GPJ FBA GDT 17/2/14                                                                                                                                                              | Reviewed By: VER                                  |             |               |                      |                  |                 | Page 1 of 2                              |              |               |              |                    |                  |

|              |     |                                                         | Borehole                    | Ν           | lo:           | G                    | T-20                      |             |        |         |                |          |                  |
|--------------|-----|---------------------------------------------------------|-----------------------------|-------------|---------------|----------------------|---------------------------|-------------|--------|---------|----------------|----------|------------------|
|              |     | GOLDCORP                                                | Project: Fall 2016 Geotecl  |             |               |                      |                           | Project No: | ENG.EA | ARC030  | 04-02          |          |                  |
|              |     | COLDCORP                                                | Location: Coffee Mine Site  |             |               | _                    |                           | Ground Ele  |        |         |                |          |                  |
|              |     |                                                         | Coffee Creek, Yukon         | -           |               |                      |                           | UTM: 58294  |        |         | N; Z 7         |          |                  |
|              |     |                                                         | ,                           |             |               |                      | ♦ Unc. Compre<br>5 10     |             |        |         |                | " > •    |                  |
|              |     |                                                         | Thermal                     |             | _             | (%)                  | 5 10<br>▲Excess Ice Conte | 15 20       |        |         |                | y (/m) ■ | ]                |
| l _          | ٦   | 1.00                                                    | Condition                   | Sample Type | Sample Number | Moisture Content (%) | 20 40                     | 60 80       | 2      | 4       | 6              | 8        | ا ۾              |
| Depth<br>(m) | tho | Lithological                                            | and                         | Je T        | e Nu          | S                    |                           |             |        | ▲ RQE   | ) (%) <b>4</b> | <b>A</b> | Elevation<br>(m) |
|              | ž   | Description                                             | Ground Ice                  | Samp        | lduı          | ture                 | Plastic Mois              | ture Liquid | 40     | 60      | 80             | 100      | ∐ Ele            |
|              |     |                                                         | Description                 |             | Š             | Mois                 | Limit Con                 | tent Limit  |        | Recov   | ery (%         | ) 🔳      |                  |
| 7.5          |     |                                                         |                             |             |               | _                    | 20 40                     | 60 80       | 40     |         | 80             | 100      |                  |
| -            |     | values are provided in `Ground Ice Description' column. |                             |             |               |                      |                           |             |        |         |                |          | -                |
| F            |     | Column.                                                 |                             |             |               |                      |                           |             |        |         |                |          |                  |
| <b>-</b> 8   |     |                                                         |                             |             |               |                      |                           |             |        |         |                |          | -                |
| -            |     |                                                         |                             |             |               |                      |                           |             |        |         |                |          | -                |
| -            |     |                                                         |                             |             |               |                      |                           |             |        |         |                |          | 1071             |
| <u> </u>     |     |                                                         |                             |             |               |                      |                           |             |        |         |                |          |                  |
| _            |     |                                                         |                             |             |               |                      |                           |             |        |         |                |          |                  |
| -<br>9       |     |                                                         |                             |             |               |                      |                           |             |        |         |                |          | -                |
|              |     |                                                         |                             |             |               |                      |                           |             |        |         |                |          |                  |
|              |     |                                                         |                             |             |               |                      |                           |             |        |         |                |          | 1070             |
| _            |     |                                                         |                             |             |               |                      |                           |             |        |         |                |          | 1070             |
| -            |     |                                                         |                             |             |               |                      |                           |             |        |         |                |          | ]                |
| F 40         |     |                                                         |                             |             |               |                      |                           |             |        |         |                |          | -                |
| — 10<br>-    |     |                                                         |                             |             |               |                      |                           |             |        |         |                |          |                  |
| F            |     |                                                         |                             |             |               |                      |                           |             |        |         |                |          |                  |
| Ė.           |     |                                                         |                             |             |               |                      |                           |             |        |         |                |          | 1069-            |
| -            |     |                                                         |                             |             |               |                      |                           |             |        |         |                |          |                  |
| -            |     |                                                         |                             |             |               |                      |                           |             |        |         |                |          |                  |
| _ 11         |     |                                                         |                             |             |               |                      |                           |             |        |         |                |          |                  |
| -            |     |                                                         |                             |             |               |                      |                           |             |        |         |                |          | ]                |
| E            |     |                                                         |                             |             |               |                      |                           |             |        |         |                |          | 1068             |
| -            |     |                                                         |                             |             |               |                      |                           |             |        |         |                |          | ]                |
| -            |     |                                                         |                             |             |               |                      |                           |             |        |         |                |          |                  |
| _<br>_ 12    |     |                                                         |                             |             |               |                      |                           |             |        |         |                |          |                  |
| -            |     |                                                         |                             |             |               |                      |                           |             |        |         |                |          |                  |
| -            |     |                                                         |                             |             |               |                      |                           |             |        |         |                |          | 1067             |
| -            |     |                                                         |                             |             |               |                      |                           |             |        |         |                |          |                  |
| -            |     |                                                         |                             |             |               |                      |                           |             |        |         |                |          |                  |
| -<br>13      |     |                                                         |                             |             |               |                      |                           |             |        |         |                |          | -                |
| F            |     |                                                         |                             |             |               |                      |                           |             |        |         |                |          | 1 -              |
| E            |     |                                                         |                             |             |               |                      |                           |             |        |         |                |          | 1066—            |
| F            |     |                                                         |                             |             |               |                      |                           |             |        |         |                |          | 1000-            |
| F            |     |                                                         |                             |             |               |                      |                           |             |        |         |                |          |                  |
| F            |     |                                                         |                             |             |               |                      |                           |             |        |         |                |          |                  |
| - 14<br>-    |     |                                                         |                             |             |               |                      |                           |             |        |         |                |          |                  |
| ļ.           |     |                                                         |                             |             |               |                      |                           |             |        |         |                |          |                  |
| <u> </u>     |     |                                                         |                             |             |               |                      |                           |             |        |         |                |          | 1065             |
| -            |     |                                                         |                             |             |               |                      |                           |             |        |         |                |          | -                |
| <u>-</u>     |     |                                                         |                             |             |               |                      |                           |             |        |         |                |          |                  |
| 15           | Ш   |                                                         | Contractor: Cyr Drilling    |             |               | <u> </u>             |                           | Completion  | Donth: | 7 1 m   |                |          | $\vdash$         |
|              |     | <b>)</b>                                                |                             | nm-         | od D-:        | <u> </u>             |                           |             |        |         |                |          |                  |
|              | -   | TETRA TECH                                              | Drilling Rig Type: D-10 Dia | arno        | na Dri        | II                   |                           | Start Date: |        |         |                | 1        |                  |
|              |     | <b>'</b> J                                              | Logged By: EP               |             |               |                      |                           | Completion  |        | J16 Oct | ober 3         | <b>i</b> |                  |
|              |     | C EADC03004 02 CD LEDA CDT 17/2/14                      | Reviewed By: VER            |             |               |                      |                           | Page 2 of 2 |        |         |                |          |                  |

|                |        |                                                                                                           | Borehole                                           | N               | 0:             | G                    | T-43                                  | 3              |                             |          |          |             |          |                  |
|----------------|--------|-----------------------------------------------------------------------------------------------------------|----------------------------------------------------|-----------------|----------------|----------------------|---------------------------------------|----------------|-----------------------------|----------|----------|-------------|----------|------------------|
|                |        | GOLDCORP                                                                                                  | Project: Fall 2016 Geotec                          | hnica           | al Inve        | stigati              | on                                    |                | Project No: I               | ENG.EA   | RC0300   | )4-02       |          |                  |
|                |        | OOLDCORP                                                                                                  | Location: Coffee Mine Site                         |                 |                |                      |                                       |                | Ground Elev                 |          |          |             |          |                  |
|                |        |                                                                                                           | Coffee Creek, Yukon                                | ,               |                |                      |                                       |                | UTM: 58041                  |          |          | .77         |          |                  |
|                |        |                                                                                                           | ,                                                  |                 |                | (%)                  | 5                                     | mpress         | ive (MPa) ◇<br>5 20         | ● Fract  |          |             | (/m) ●   |                  |
|                |        |                                                                                                           | Thermal                                            | g               | ber            | ant (9               | ▲Excess Ice (                         | Content (      | % by volume) <b>4</b>       | 2        | 4        | 6           | 8        | _                |
| Depth<br>(m)   | Method | Lithological<br>Description                                                                               | Condition and                                      | Sample Type     | Sample Number  | Moisture Content (%) |                                       |                | (kg/m³) <b>■</b><br>00 2000 |          | ▲ RQD    |             |          | Elevation<br>(m) |
|                | 2      | Beschption                                                                                                | Ground Ice                                         | San             | amp            | sture                | Plastic I                             |                |                             | 40       | 60       | 80          | 100      | □                |
| 0              |        |                                                                                                           | Description                                        |                 | 0)             | Moi                  | <b>⊢</b>                              | Conter<br>40 6 | <del></del>                 | 40       | Recove   |             | 100      |                  |
|                |        | MOSS - rooty, brown black                                                                                 | Thawed                                             | H               |                |                      | <u> </u>                              | :              |                             | :        | 1        | :           | :        |                  |
| <u> </u>       |        | No recovery                                                                                               | Tilaweu                                            |                 |                |                      | :                                     | :              |                             | :        |          |             |          | -                |
| -              |        |                                                                                                           |                                                    |                 | R1             |                      |                                       | :              |                             |          |          |             |          | -                |
| -              |        | SAND - silty, trace gravel, massive, grey, subangular                                                     | Frozen, Vs, Vx 40-45%                              |                 |                |                      | :                                     | :              | : :                         | :        | :        | ÷           | :        | 1152-            |
| -              |        | gravel                                                                                                    | 1102011, V3, VX 40-4070                            |                 | 43-S1          | 55.8                 |                                       | <b>A</b> •     |                             |          |          |             |          | 1152             |
| _ 1            |        |                                                                                                           | Vx, Vc 15-25%                                      |                 | 43-S2          | 19.2                 | <u> </u>                              |                |                             | •        | •        |             |          |                  |
| E              |        | No recovery                                                                                               |                                                    |                 |                |                      | :                                     |                |                             |          |          |             |          | -                |
| L              |        |                                                                                                           |                                                    | 1               | R2             |                      |                                       | :              |                             | 10       |          |             |          | -                |
| F              |        |                                                                                                           |                                                    |                 | ΚZ             |                      | :                                     | :              |                             | 10       | :        |             |          | -                |
| F              |        |                                                                                                           |                                                    |                 |                |                      |                                       |                |                             |          |          |             |          | 1151-            |
| - 2            |        | ICE AND SILT - sandy, some gravel, some clay,                                                             | <br>  ICE ~50%                                     |                 |                |                      |                                       |                | <u>.</u>                    | <b>.</b> |          | <b>,</b>    |          | -                |
| -              |        | massive, grey, subangular gravel                                                                          | 10L 30%                                            |                 | 43-S3          | 90                   |                                       | <b>^</b>       | •                           |          |          | 1:          |          | -                |
| -              |        |                                                                                                           |                                                    |                 | 43-S4          | 60.2                 | 4                                     | <b>A</b> (     | •                           |          |          |             |          |                  |
| -              |        |                                                                                                           | Clear ice lenses to 6 mm                           |                 | R3<br>43-S5    | 50.8                 |                                       |                | _                           |          |          |             |          | -                |
| -              |        | No recovery                                                                                               | thick, ~ 3 mm thick                                |                 | 40-00          | 50.0                 |                                       | _              | 7                           | :        | :        |             |          | 1150-            |
| -<br>- 3       |        |                                                                                                           | lenses spaced at ~ 7 mm<br>intervals               |                 |                |                      |                                       |                |                             |          |          | <u> </u>    |          | -                |
|                |        | GRAVEL AND SILT - some matrix washed away when drilling                                                   | Thermally disturbed                                | М               |                |                      |                                       | :              |                             | l T      |          | -           |          | -                |
| _              | _      | No recovery                                                                                               |                                                    |                 |                |                      |                                       |                |                             |          |          |             |          | -                |
| -              | g      | INO TECOVERY                                                                                              |                                                    | 14              | R4             |                      | :                                     | :              |                             |          |          |             |          | -                |
| Ŀ              | mond   |                                                                                                           |                                                    |                 |                |                      |                                       |                |                             |          |          |             |          | 1149-            |
| -4             | an     |                                                                                                           |                                                    |                 |                |                      |                                       |                |                             |          | :        |             | <u>.</u> |                  |
| - 4            | Dia    | SILT - some clay, some sand, trace gravel, massive, poorly sorted, olive green to grey, subangular gravel | Vx, Vc, Vs 5%, < 1 mm<br>thick inclined ice lenses |                 |                |                      |                                       | :              |                             | -        | :        | :           | <b>T</b> |                  |
| F              |        | poorly sorted, onve green to grey, subdingular graver                                                     | thick monitorios for fortiscs                      |                 | 43-S6          | 27.3                 | •                                     | :              |                             |          |          |             |          | -                |
| F              |        |                                                                                                           |                                                    |                 | R5             | 26.8                 |                                       |                |                             |          | :        |             |          |                  |
| F              |        |                                                                                                           |                                                    | П               | 43-S7          | 20.0                 |                                       |                | H                           |          |          |             |          | 1148—            |
| F              |        |                                                                                                           |                                                    | $I \setminus I$ |                |                      |                                       |                |                             |          | <u> </u> |             | 1        | -                |
| — 5<br>-       |        |                                                                                                           |                                                    |                 |                |                      |                                       |                |                             |          | ···•     |             |          | -                |
| -              |        |                                                                                                           |                                                    | М               |                |                      |                                       |                |                             |          |          |             |          | -                |
| _              |        |                                                                                                           |                                                    | Λ               | R6             |                      | :                                     | :              |                             | :        |          | Ė           |          | -                |
| -              |        | No recovery                                                                                               |                                                    |                 |                |                      |                                       | :              |                             |          |          |             |          | -<br>1147—       |
| -              |        |                                                                                                           |                                                    |                 |                |                      | :                                     |                |                             |          |          |             |          | -                |
| <del>-</del> 6 |        | SAND AND GRAVEL - some silt, massive, well graded,                                                        | Vs, Vx, Vc 10%                                     |                 |                |                      | · · · · · · · · · · · · · · · · · · · |                | ·                           |          | •••      |             | <b></b>  | -                |
| Ŀ              |        | dark greyish brown, subangular gravel                                                                     |                                                    | М               |                |                      |                                       | :              |                             |          |          |             |          | _                |
| E              |        |                                                                                                           |                                                    | V               | R7             |                      |                                       | :              |                             |          | :        | i           |          | -                |
| E              |        |                                                                                                           |                                                    | Λ               |                |                      |                                       | :              |                             |          | :        |             |          |                  |
| E              |        |                                                                                                           | Three < 1 mm inclined ice                          |                 | 43-S8<br>43-S9 | 11.5                 |                                       | :              |                             |          | :        | į           |          | 1146-            |
| 7              |        |                                                                                                           | lenses                                             |                 | +5-59          |                      | ļ                                     |                | ļ                           | ļ        |          | · · · · · • | <u>.</u> | -                |
| F              |        |                                                                                                           |                                                    | M               |                |                      |                                       | :              |                             |          | :        |             | :        | -                |
| 7.5            |        |                                                                                                           |                                                    | $\mathcal{N}$   |                |                      |                                       | :              |                             |          | :        |             | -        | :                |
| 7.5            |        |                                                                                                           | Contractor: Cyr Drilling                           | •               | 1              | 1                    |                                       |                | Completion                  | Depth: 1 | 8 m      | · I         | -        |                  |
|                |        | TETRATECH                                                                                                 | Drilling Rig Type: D-10 Di                         | amo             | nd Dril        | l                    |                                       |                | Start Date: 2               |          |          | 17          |          |                  |
|                | It     | I IEIRA IECH                                                                                              | Logged By: EP                                      |                 |                |                      |                                       |                | Completion                  |          |          |             | 18       |                  |
|                | _      |                                                                                                           | Reviewed By: VER                                   |                 |                |                      |                                       | _              | Page 1 of 3                 |          | - 556    |             |          |                  |
|                |        | NG-EARC03004-02 GPJ EBA GDT 17/2/14                                                                       | 51.01.00 Dy. VLIX                                  |                 |                |                      |                                       |                | 290 1010                    |          |          |             |          |                  |

|                                 |        |                                                                                            | Borehole                                              | N           | 0:            | G                    | T-43                                           |                                      |        |          |        |       |               |                                     |
|---------------------------------|--------|--------------------------------------------------------------------------------------------|-------------------------------------------------------|-------------|---------------|----------------------|------------------------------------------------|--------------------------------------|--------|----------|--------|-------|---------------|-------------------------------------|
|                                 |        | GOLDCORP                                                                                   | Project: Fall 2016 Geotec                             | hnical      | Inve          | stigati              | on                                             | Project N                            | No: El | NG.EAF   | RC0300 | 04-02 |               |                                     |
|                                 |        | OOLDCORF                                                                                   | Location: Coffee Mine Site                            |             |               | _                    |                                                | Ground                               |        |          |        |       |               |                                     |
|                                 |        |                                                                                            | Coffee Creek, Yukon                                   |             |               |                      |                                                | UTM: 58                              | 0418   | E: 6973  | 3188 N | : Z 7 |               |                                     |
|                                 |        |                                                                                            | Thermal                                               |             | -e            | (%)                  | Unc. Comp<br>5 10 ≜ Excess Ice Con             | ressive (MPa                         | a) 🔷   |          |        |       | y (/m) ●<br>8 |                                     |
| ے                               | pc     | Lithological                                                                               | Condition                                             | Type        | qun           | tent                 | 20 40                                          | 60 80                                | -      |          |        |       |               | ь<br>Б                              |
| Depth<br>(m)                    | Method | Lithological<br>Description                                                                | and                                                   | Sample Type | Sample Number | Moisture Content (%) | ■ Bulk Der<br>1400 160                         | sity (kg/m³) <b>I</b><br>0 1800 2000 | 0      |          | ▲ RQD  |       |               | Elevation<br>(m)                    |
|                                 | 2      | Besonption                                                                                 | Ground Ice                                            | San         | amp           | sture                | Plastic Mo                                     |                                      |        | 40       | 60     | 80    | 100           | □                                   |
|                                 |        |                                                                                            | Description                                           |             | 0)            | Mo                   | l                                              | ntent Lim                            | nit    |          | Recove |       |               |                                     |
| 7.5                             |        |                                                                                            |                                                       | $\sqcup$    | R8            |                      | 20 40                                          | 60 80                                |        | 40       | 60     | 80    | 100           | _                                   |
| -<br>-<br>-<br>- 8<br>-         |        |                                                                                            |                                                       |             | 3-S10         |                      |                                                |                                      |        |          |        |       | ].            | -<br>1145—<br>-<br>-<br>-<br>-<br>- |
| -<br>-<br>-<br>-<br>-<br>-<br>9 |        | No recovery                                                                                | No. dia sala sissatalisa                              |             | R9            |                      |                                                |                                      |        |          |        |       |               | 1144—<br>-<br>-<br>1144—<br>-<br>-  |
| <u> </u>                        |        | GRAVEL AND SAND - some silt, massive, well graded, dark greyish brown, subangular gravel   | Very thin subhorizontal ice lenses                    | \<br>       | 3-S11         |                      |                                                |                                      |        |          |        | -     | T             | ] _                                 |
| <u> </u>                        |        |                                                                                            |                                                       |             |               |                      |                                                |                                      |        | :        |        |       |               | -                                   |
| -                               |        |                                                                                            | No. No. No. 5 400/                                    | M           | R10           |                      |                                                |                                      |        | :        | :      | :     |               | -                                   |
| -                               |        |                                                                                            | Vs, Vx, Vc 5-10%, clear ice within cracks ~ 3 m thick | Ц           | 2 040         | ^                    |                                                |                                      |        |          |        |       |               | 1143-                               |
| -<br>- 10                       |        |                                                                                            |                                                       |             | 3-S12         | 9 .                  | <b>^</b> • • • • • • • • • • • • • • • • • • • |                                      |        |          |        |       | . 🛓           | -                                   |
| F 10                            |        |                                                                                            | Vx, Vc 5-10%                                          | М           |               |                      |                                                |                                      |        |          | T      |       | :             | -                                   |
| -                               |        | - from 10.24 to 10.46 m, cobble (granite)                                                  |                                                       | M           |               |                      |                                                |                                      |        | :        |        | :     |               | -                                   |
| ŀ                               |        |                                                                                            |                                                       | $\square$   | R11           |                      |                                                |                                      |        |          |        |       |               | -                                   |
| -                               |        | No recovery                                                                                |                                                       |             |               |                      |                                                |                                      |        |          |        |       |               | 1142-                               |
| F <sub>44</sub>                 | ij     |                                                                                            |                                                       |             |               |                      |                                                |                                      |        |          | 1      |       | _ :           | -                                   |
| - 11<br>-                       | d dril | GRANITE (BEDROCK) - highly to completely weathered (W4-W5), very weak (R1), oxide staining |                                                       | $\Pi$       |               |                      |                                                |                                      | Ī      |          |        | •     | T i           | -                                   |
| -                               | amond  | throughout, highly fractured                                                               |                                                       | М           |               |                      |                                                |                                      |        |          |        |       |               | -                                   |
| -                               | Diar   |                                                                                            |                                                       | N           | R12           |                      |                                                |                                      | 0      | )        | :      |       |               | -                                   |
| F                               | _      |                                                                                            |                                                       | И           |               |                      |                                                |                                      |        |          | :      | :     | 1             | -<br>1141—                          |
|                                 |        | No management                                                                              |                                                       |             |               |                      |                                                |                                      |        | :        |        |       |               | -                                   |
| - 12<br>-                       |        | No recovery GRANITE (BEDROCK) - highly weathered (W4), very                                |                                                       | $\prod$     |               |                      |                                                |                                      | 1      |          |        |       |               | -                                   |
| -                               |        | weak (R1), oxide staining throughout, highly fractured                                     |                                                       | М           |               |                      |                                                |                                      |        |          |        |       |               | -                                   |
| F                               |        | nastaroa                                                                                   |                                                       | M           | R13           |                      |                                                |                                      | 0      | ) :      |        |       |               | -                                   |
| F                               |        |                                                                                            |                                                       | И           |               |                      |                                                |                                      |        |          |        |       |               | 1140—                               |
| - 12                            |        |                                                                                            |                                                       | И           |               |                      |                                                |                                      |        |          | :      |       | 1             | -                                   |
| — 13<br>-                       |        |                                                                                            |                                                       | $\Pi$       |               |                      |                                                |                                      | 1      |          |        |       |               | _                                   |
| F                               |        |                                                                                            |                                                       | М           |               |                      |                                                |                                      |        |          | :      |       |               | -                                   |
| F                               |        |                                                                                            |                                                       | M           | R14           |                      |                                                |                                      | 0      | )        |        |       |               | -                                   |
| F                               |        |                                                                                            |                                                       | Ν           |               |                      |                                                |                                      |        |          |        |       |               | -<br>1139—                          |
| F                               |        |                                                                                            |                                                       | / \         |               |                      |                                                |                                      |        |          |        |       |               | -                                   |
| — 14<br>-                       |        |                                                                                            |                                                       |             |               |                      |                                                |                                      | ···•   | **       |        |       | . <b></b>     | -                                   |
| F                               |        |                                                                                            |                                                       | M           |               |                      |                                                |                                      |        | :        |        |       |               | -                                   |
| F                               |        |                                                                                            |                                                       | M           | R15           |                      |                                                |                                      |        | :        |        |       |               | -                                   |
| F                               |        |                                                                                            |                                                       | /1          |               |                      |                                                |                                      |        |          |        |       |               | -<br>1138—                          |
| -<br>-<br>15                    |        |                                                                                            |                                                       |             |               |                      |                                                |                                      |        |          |        |       | <u>:</u>      | -                                   |
| 13                              |        |                                                                                            | Contractor: Cyr Drilling                              |             |               |                      |                                                | Complet                              | ion D  | epth: 18 | 3 m    |       |               |                                     |
|                                 |        | TETRA TECH                                                                                 | Drilling Rig Type: D-10 Di                            | amon        | d Dril        | l                    |                                                | Start Da                             |        |          |        | 17    |               |                                     |
|                                 | t      | I IEIRA IECH                                                                               | Logged By: EP                                         |             |               |                      |                                                | Complet                              |        |          |        |       | r 18          |                                     |
|                                 | _      | J                                                                                          | Reviewed By: VER                                      |             |               |                      |                                                | Page 2 d                             |        |          |        |       | -             |                                     |
| D001/ 005                       |        | IC EADC03004 02 CD LEDA CDT 17/2/14                                                        |                                                       |             |               |                      |                                                | 1. 490 2                             | 🗸      |          |        |       |               |                                     |

|                                         |               |                                                                                                                                                                                                         | Borehole                   | Ν           | 0:            | G                    | T-43                            |                                               |              |                        |                                          |
|-----------------------------------------|---------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------|-------------|---------------|----------------------|---------------------------------|-----------------------------------------------|--------------|------------------------|------------------------------------------|
|                                         |               | GOLDCORP                                                                                                                                                                                                | Project: Fall 2016 Geotec  | hnica       | al Inve       | stigati              | on                              | Project No: I                                 | ENG.EARC     | 03004-02               |                                          |
|                                         |               | COLDCOM                                                                                                                                                                                                 | Location: Coffee Mine Site |             |               |                      |                                 | Ground Elev                                   | /: 1152.73 m | 1                      |                                          |
|                                         |               |                                                                                                                                                                                                         | Coffee Creek, Yukon        |             |               |                      |                                 | UTM: 58041                                    | 18 E; 697318 | 38 N; Z 7              |                                          |
| th                                      | po            | Lithological                                                                                                                                                                                            | Thermal<br>Condition       | Туре        | Sample Number | Moisture Content (%) | ▲Excess Ice Content (           | 15 20<br>(% by volume) <b>▲</b><br>60 80      | • Fracture   | Frequency (/m)  4 6 8  |                                          |
| Depth<br>(m)                            | Method        | Description                                                                                                                                                                                             | and<br>Ground Ice          | Sample Type | nple №        | Ire Cc               | Bulk Density 1400 1600 18       |                                               |              | RQD (%) ▲<br>60 80 100 | Elevation<br>(m)                         |
| 15                                      |               |                                                                                                                                                                                                         | Description                | Š           | Sar           | Moist                | Plastic Moistur<br>Limit Conter | re Liquid<br>nt Limit<br>—— <b>I</b><br>50 80 |              | covery (%)             |                                          |
| -                                       |               | No recovery GRANITE (BEDROCK) - highly weathered (W4), very weak (R1), oxide staining throughout, highly fractured                                                                                      |                            | M           | R16           |                      |                                 | •                                             | 0            |                        | 1137—                                    |
| -<br>-<br>- 16<br>-<br>-                | drill         | - at 15.80 m, completely weathered (W5) - at 16.00 m, highly weathered (W4)                                                                                                                             |                            | X           |               |                      |                                 |                                               |              |                        | -                                        |
| -<br>-<br>-<br>-                        | Diamond drill | No recovery                                                                                                                                                                                             |                            | 7           | R17           |                      |                                 |                                               | 0            |                        | 1136-                                    |
| - 17<br>-<br>-<br>-<br>-                |               | GRANITE (BEDROCK) - highly weathered (W4), very weak (R1), oxide staining throughout, highly fractured, JSN: 9 - at 17.04, 17.14, 17.33 and 17.49 m, inclined joints, undulating, smooth, oxide coating |                            | Y           | 43-R1<br>R18  |                      |                                 | 36                                            | 16           |                        | -                                        |
| -<br>-<br>-<br>-<br>- 18<br>-           |               | - at 17.07 and 17.40 m, subvertical joints, undulating, smooth, oxide coating - at 17.52 and 17.56 m, subhorizontal joints, undulating, smooth, oxide coating                                           |                            |             |               |                      |                                 |                                               |              |                        | 1135—<br>-<br>-<br>-<br>-<br>-<br>-<br>- |
| -<br>-<br>-<br>-<br>-<br>-<br>-<br>19   |               | END OF BOREHOLE (18.00 metres)  Note: Excess ice content determined in laboratory is shown graphically. Estimated excess ice content values are provided in `Ground Ice Description' column.            |                            |             |               |                      |                                 |                                               |              |                        | 1134—<br>                                |
| -<br>-<br>-<br>-<br>-<br>-<br>-<br>20   |               |                                                                                                                                                                                                         |                            |             |               |                      |                                 |                                               |              |                        | 1133—<br>                                |
| -<br>-<br>-<br>-<br>-<br>-<br>- 21      |               |                                                                                                                                                                                                         |                            |             |               |                      |                                 |                                               |              |                        | 1132—                                    |
| -<br>-<br>-<br>-<br>-<br>-<br>-<br>- 22 |               |                                                                                                                                                                                                         |                            |             |               |                      |                                 |                                               |              |                        |                                          |
| 22.5                                    |               |                                                                                                                                                                                                         |                            |             |               |                      |                                 |                                               | <u>L</u>     |                        |                                          |
|                                         |               |                                                                                                                                                                                                         | Contractor: Cyr Drilling   |             |               |                      |                                 | Completion                                    | Depth: 18 m  | 1                      |                                          |
|                                         |               | TETRATECH                                                                                                                                                                                               | Drilling Rig Type: D-10 Di | amo         | nd Dril       | I                    |                                 | Start Date: 2                                 |              |                        |                                          |
|                                         | t             |                                                                                                                                                                                                         | Logged By: EP              |             |               |                      |                                 |                                               |              | September 18           |                                          |
|                                         |               | J                                                                                                                                                                                                       | Reviewed By: VER           |             |               |                      |                                 | Page 3 of 3                                   |              |                        |                                          |

|              |         |                                                                                                        | Borehole                                                        | Ν               | lo:           | G                    | T-4      | 4      |           |               |     |                                         |                            |         |                 |                  |
|--------------|---------|--------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------|-----------------|---------------|----------------------|----------|--------|-----------|---------------|-----|-----------------------------------------|----------------------------|---------|-----------------|------------------|
|              |         | GOLDCORP                                                                                               | Project: Fall 2016 Geoted                                       |                 |               |                      |          |        | Project I | No: E         | NG  | .EAR                                    | C030                       | 04-02   |                 |                  |
| _            |         | OOLDCORP                                                                                               | Location: Coffee Mine Sit                                       |                 |               |                      |          |        | Ground    |               |     |                                         |                            |         |                 |                  |
|              |         |                                                                                                        | Coffee Creek, Yukon                                             | ,               |               |                      |          |        | UTM: 58   |               |     |                                         |                            | l: Z 7  |                 |                  |
|              |         |                                                                                                        |                                                                 |                 |               |                      | ♦ Unc. C | ompres | sive (MP  | a) 🔷          |     |                                         |                            |         |                 |                  |
|              |         |                                                                                                        | Thermal                                                         |                 | <u>_</u>      | (%)                  | 5        | 10     | 15 `20    |               | ● F |                                         |                            |         | y (/m) <b>●</b> |                  |
| 1_           | ٦       |                                                                                                        | Condition                                                       | ype             | Sample Number | Moisture Content (%) |          |        |           | ŀ             |     | 2                                       | 4                          | 6       | 8               |                  |
| Depth<br>(m) | Method  | Lithological                                                                                           | and                                                             | Sample Type     | nN e          | Con                  |          |        |           |               |     | 4                                       | RQD                        | (%) ▲   | ١               | Elevation<br>(m) |
|              | ž       | Description                                                                                            | Ground Ice                                                      | amp             | ımple         | ture                 | Plastic  | Moisti | ıre Liqu  | iid           |     | 40                                      | 60                         | 80      | 100             | <u>B</u>         |
|              |         |                                                                                                        | Description                                                     | 0)              | Sa            | Mois                 | Limit    | Conte  |           |               |     | F                                       | Recove                     | ery (%) |                 |                  |
| 0            |         |                                                                                                        |                                                                 |                 |               | _                    | 20       | 40     | 60 80     |               |     | 40                                      | 60                         | 80      | 100             |                  |
| -            |         | MOSS - organics, roots, (100 mm thick) GRAVEL AND SAND - some silt to silty, massive,                  | Frozen, Vc, Vs, Vx 5-10%                                        | X               |               |                      | :        | :      | : :       |               | Т   | :                                       | :                          | :       | :               | 1151-            |
| F            |         | poorly sorted, olive brown, subangular gravel                                                          | 1102011, 10, 10, 17, 17, 10, 10, 10, 10, 10, 10, 10, 10, 10, 10 |                 |               |                      |          | :      |           |               |     |                                         | :                          |         | i               | -                |
| F            |         | No recovery                                                                                            |                                                                 | 14              | R1            |                      |          |        |           |               |     |                                         |                            |         |                 | -                |
| F            |         |                                                                                                        |                                                                 |                 |               |                      | :        |        |           |               |     |                                         | :                          | :       |                 | -                |
| F.           |         |                                                                                                        |                                                                 |                 |               |                      | :        | :      |           |               | L   | :                                       | :                          | :       | <u>:</u>        | -                |
| <u></u>      |         | GRAVEL AND SAND - some silt to silty, massive,                                                         |                                                                 | $\Box$          |               |                      |          |        |           |               |     |                                         | i                          | :       | <b>T</b>        | 1150-            |
| F            |         | poorly sorted, olive brown, subangular gravel                                                          |                                                                 | М               | 44-S1         | 22.1                 |          | :      |           |               |     |                                         | :                          |         |                 | -                |
| Ė            |         |                                                                                                        |                                                                 |                 | R2            | 22.1                 |          |        |           |               |     |                                         |                            | :       |                 | _                |
| -            |         |                                                                                                        |                                                                 |                 | 44-S2         |                      | :        | :      |           |               |     | :                                       | :                          | :       |                 | -                |
| -            |         | - at 1.84 m, oxidation                                                                                 |                                                                 | $I \setminus I$ |               |                      |          |        |           |               |     |                                         |                            |         |                 | -                |
| - 2          |         | GRANITE (BEDROCK) - completely weathered (W5),                                                         |                                                                 |                 |               |                      |          |        | ÷ :       | ••••          |     | ::::::::::::::::::::::::::::::::::::::: | · · · <del>!</del> · · · · |         |                 | 1149-            |
| <u> </u>     |         | weak (R2), oxide and dark staining on joints and core surface, highly fractured, would disintegrate if |                                                                 | М               |               |                      | :        |        |           |               |     |                                         |                            | :       |                 | -                |
| Ŀ            |         | not frozen                                                                                             |                                                                 | М               | R3            |                      | :        | :      | : :       | r             | )   | :                                       | :                          | :       |                 | -                |
| Ŀ            | =       |                                                                                                        |                                                                 | Λ               | 110           |                      | :        | :      |           | Ĩ             | ,   |                                         |                            |         |                 | -                |
| Ŀ            | drill   |                                                                                                        |                                                                 | И               |               |                      |          |        |           |               |     |                                         |                            | :       |                 | -                |
| - 3          | Diamond | - at 3.00 m, highly weathered (W4), weak to medium                                                     |                                                                 |                 |               |                      |          |        |           | ▲             |     |                                         | ••••                       |         | •               | -<br>1148—       |
| F            | ian     | strong (R2-R3)                                                                                         |                                                                 | М               |               |                      | :        | :      |           |               |     |                                         |                            |         |                 | 1140             |
| -            |         |                                                                                                        |                                                                 | M               | - 1           |                      |          |        |           |               |     |                                         |                            | :       |                 | -                |
| F            |         | - at 3.60 m, joint infilled with sand and silt                                                         |                                                                 | Λ               | R4            |                      | :        | :      |           | ١             | )   | :                                       | :                          | :       |                 | -                |
| F            |         | - at 3.00 m, joint innied with said and sit                                                            |                                                                 | И               |               |                      |          |        |           |               |     |                                         |                            |         |                 | -                |
| 4            |         |                                                                                                        |                                                                 |                 |               |                      |          |        |           |               |     |                                         |                            |         | . 📥             |                  |
| <u> </u>     |         |                                                                                                        |                                                                 | М               |               |                      | :        |        |           |               |     |                                         |                            | :       |                 | 1147-            |
| <u> </u>     |         | - at 4.35 m, moderately to highly weathered                                                            | 2 mm clear ice in fracture                                      | М               |               |                      | :        | :      |           | 26            |     | :                                       |                            | :       |                 | -                |
| -            |         | (W3-W4), slightly more competent, less obvious                                                         |                                                                 |                 | 44-R1<br>R5   |                      |          |        |           | <sup>36</sup> | •   |                                         |                            |         |                 | -                |
| -            |         | fracturing - at 4.36, 4.83 and 4.86 m, subhorizontal joints,                                           |                                                                 | И               | 110           |                      |          | :      |           |               |     |                                         |                            |         |                 | -                |
| -<br>- 5     |         | undulating, rough, orangish black weathering                                                           |                                                                 |                 |               |                      | :        |        | ii.       | 🗼             |     | 1                                       |                            |         | . 🛓             |                  |
|              |         | - at 4.41 m, inclined joint, undulating, rough to smooth, orangish black weathering, medium strong     |                                                                 | 1/              |               |                      | :        | :      |           | T             |     | -                                       | Ĭ                          | :       | Τ               | 1146-            |
| Ŀ            |         | (R3)                                                                                                   | Clear ice within joint                                          | М               |               |                      |          |        |           |               |     |                                         |                            |         |                 | -                |
| -            |         | - at 5.00 m, highly weathered (W4)                                                                     |                                                                 |                 | R6            |                      | :        | :      |           | C             | )   |                                         |                            |         |                 | -                |
| Ŀ            |         |                                                                                                        |                                                                 | М               |               |                      |          |        |           |               |     |                                         | :                          | :       |                 | -                |
| -<br>- 6     |         |                                                                                                        |                                                                 |                 |               |                      | :        |        | <u> </u>  |               |     |                                         | :                          | :       | _               |                  |
| F            |         | END OF BOREHOLE (6.00 metres)  Note: Excess ice content determined in laboratory is                    |                                                                 |                 |               |                      |          |        |           | Ī             |     |                                         |                            |         |                 | 1145-            |
| F            |         | shown graphically. Estimated excess ice content                                                        |                                                                 |                 |               |                      |          |        |           |               |     |                                         |                            |         |                 | -                |
| F            |         | values are provided in 'Ground Ice Description' column.                                                |                                                                 |                 |               |                      |          |        |           |               |     |                                         |                            |         |                 |                  |
| F            |         |                                                                                                        |                                                                 |                 |               |                      |          |        |           |               |     |                                         |                            |         |                 | _                |
| F            |         |                                                                                                        |                                                                 |                 |               |                      |          |        |           |               |     |                                         |                            |         |                 | -                |
| <b>⊢</b> 7   |         |                                                                                                        |                                                                 |                 |               |                      |          |        |           |               |     |                                         |                            |         |                 | 1144-            |
| ţ            |         |                                                                                                        |                                                                 |                 |               |                      |          |        |           |               |     |                                         |                            |         |                 | -                |
| 7.5          |         |                                                                                                        |                                                                 |                 |               |                      |          |        |           |               |     |                                         |                            |         |                 |                  |
|              |         | <b>-</b>                                                                                               | Contractor: Cyr Drilling                                        |                 |               |                      |          |        | Complet   |               | ÷   |                                         |                            |         |                 |                  |
|              |         | TETRA TECH                                                                                             | Drilling Rig Type: D-10 D                                       | iamo            | nd Dri        | l                    |          |        | Start Da  |               |     |                                         |                            |         |                 |                  |
|              | U       |                                                                                                        | Logged By: EP                                                   |                 |               |                      |          |        | Complet   | ion D         | ate | : 201                                   | 6 Sep                      | tembe   | r 18            |                  |
|              |         | NG-EARC03004-02 GP.I EBA GDT 17/2/14                                                                   | Reviewed By: VER                                                |                 |               |                      |          | _      | Page 1    | of 1          |     |                                         |                            |         |                 |                  |

|                |        |                                                                                                         | Borehole                                        | Λ           | lo:           | G                    | T-          | 4          | 5                 |           |                |            |            |            |             |                         |               |
|----------------|--------|---------------------------------------------------------------------------------------------------------|-------------------------------------------------|-------------|---------------|----------------------|-------------|------------|-------------------|-----------|----------------|------------|------------|------------|-------------|-------------------------|---------------|
| 2              |        | GOLDCORP                                                                                                | Project: Fall 2016 Geotecl                      | hnica       | al Inve       | stigati              | on          |            |                   | Proie     | ct No: I       | ENG        | EAR        | C0300      | )4-02       |                         |               |
|                |        | OOLDCORP                                                                                                | Location: Coffee Mine Site                      |             |               |                      |             |            |                   |           | nd Elev        |            |            |            |             |                         |               |
|                |        |                                                                                                         | Coffee Creek, Yukon                             | 5, 1 (0     | )             |                      |             |            |                   |           | 58039          |            |            |            | . 7 7       |                         |               |
|                |        |                                                                                                         | Conce Greek, Tukon                              | Τ           |               |                      | ♦Ur         | nc. Co     | mpress            |           |                | × .        |            |            |             |                         |               |
|                |        |                                                                                                         | Thermal                                         |             |               | (%                   |             | 5          | 10 1              | 5 2       | 20             | ●F         | ractu      | re Fred    | quenc       | y (/m) ●                |               |
|                |        |                                                                                                         | Condition                                       | æ           | lper          | ent (                |             |            | Content (         |           | olume) 📤<br>30 | <u> </u>   | 2          | 4          | 6           | 8                       | _             |
| Depth<br>(m)   | Method | Lithological                                                                                            | and                                             | e J         | N N           | onte                 |             |            | 10 0              |           |                |            | •          | RQD        | (%)         |                         | atio (        |
| De J           | Met    | Description                                                                                             | Ground Ice                                      | Sample Type | Sample Number | Moisture Content (%) |             |            |                   |           |                |            | 40         | 60         | 80          | 100                     | Elevation (m) |
|                |        | -                                                                                                       | Description                                     | SS          | San           | istu                 | Pla:<br>Lir |            | Moistur<br>Conter |           | iquid<br>_imit |            |            |            | (0.1        |                         | 1             |
|                |        |                                                                                                         | Description                                     |             |               | Ĭ                    |             | -          | -                 | -         |                |            |            | Recove     |             | •                       |               |
| 0              |        | MOSS - organics, roots, (100 mm thick)                                                                  |                                                 |             |               |                      | - 4         | 20         | 40 6              | : U       | 30             | •          | 40         | 60         | 80          | 100                     | -             |
| -              |        | No recovery                                                                                             | Thawed                                          |             |               |                      |             | :          | :                 |           | :              |            |            |            |             |                         | _             |
| Ė              |        |                                                                                                         |                                                 | 14          |               |                      |             | :          | :                 | :         | :              |            | :          | :          | :           | :                       | -             |
| _              |        |                                                                                                         |                                                 |             | R1            |                      |             |            |                   |           |                | 10         |            |            |             |                         | -             |
| -              |        |                                                                                                         |                                                 |             |               |                      |             | :          | :                 | :         | :              |            | :          | :          | :           | :                       | 1155-         |
| <u>-</u> 1     |        |                                                                                                         |                                                 |             |               |                      |             |            |                   |           |                | <b>L</b> _ |            |            |             |                         | -             |
| F 1            |        | SILT AND SAND - some gravel to gravelly, dark grey                                                      | Frozen, Vs, Vx, Vc 35-40% ~10 mm thick clear    | Ţ           | 45-S1         | 44                   |             | :          | A.                | :         |                |            |            |            |             |                         | `  -          |
| -              |        | silt, fine to coarse subangular to angular gravel                                                       | horizontal ice lens                             |             | 45-S2         | 38.8                 |             | •          | •                 |           | :              |            |            |            |             |                         | _             |
| _              |        | No recovery                                                                                             |                                                 |             | R2            |                      |             | :          | :                 | :         | :              |            | :          | :          |             | :                       | -             |
| -              |        |                                                                                                         |                                                 |             |               |                      |             |            | :                 |           | :              |            |            | :          |             |                         | 1154-         |
| E              |        |                                                                                                         |                                                 |             |               |                      |             | :          | :                 | :         | :              |            | :          | :          | :           | :                       | 1104          |
| <b>-</b> 2     |        | SILT - sandy, some gravel, trace clay, dark grey, fine                                                  | Vs ~ 1-2 mm thick four ice                      |             | 45-S3         | 47.2                 |             | .i         |                   | :<br>:    | <u>:</u>       |            |            | J          |             |                         | -             |
| F              |        | to coarse subangular to angular gravel                                                                  | lenses spaced at                                |             | 1             | 77.2                 |             | -          |                   | :         | :              |            |            | :          | :           | :                       | _             |
| -              |        |                                                                                                         | approximately 30 mm intervals, Vs, Vx 25-35%    |             | 45-S4         |                      |             | :          | -                 |           | :              |            |            |            |             |                         | -             |
|                |        | No recovery                                                                                             |                                                 |             | R3            |                      |             | :          | :                 | :         | :              |            | :          | :          | :           | :                       | -             |
| _              |        |                                                                                                         |                                                 |             |               |                      |             | :          | :                 |           | :              |            |            | :          |             |                         | 1153-         |
| -<br>- 3       |        |                                                                                                         |                                                 |             |               |                      |             |            |                   |           | <u>.</u>       | <u> </u>   |            |            |             |                         | ] -           |
| - 3            |        | SILT AND SAND - trace gravel, dark grey silt, fine to coarse subangular to angular gravel               |                                                 |             |               |                      |             |            |                   |           | •              |            | -          |            |             |                         | ] -           |
| -              |        | No recovery                                                                                             |                                                 | 1           |               |                      |             | :          |                   |           |                |            |            |            |             |                         | -             |
| _              | drill  | ,                                                                                                       |                                                 |             | R4            |                      |             | :          | :                 | :         | :              | 6          | :          | :          | :           | :                       |               |
| -              |        |                                                                                                         |                                                 |             |               |                      |             | :          | :                 |           | :              |            | :          | :          |             |                         | 1152-         |
| _              | amond  |                                                                                                         |                                                 |             |               |                      |             |            |                   | :         | :              |            |            |            |             |                         | -             |
| - 4            | Dia    | SILT AND SAND - some gravel to gravelly, fines                                                          | Thermally disturbed                             |             |               |                      |             | ÷          | :                 | :<br>:    | <u>:</u>       | •          |            |            |             |                         | -             |
| -              |        | washed out, dark grey silt, fine to coarse subangular                                                   | •                                               |             |               |                      |             | :          | :                 | :         | :              |            |            | :          |             |                         | -             |
| F              |        | to angular gravel No recovery                                                                           |                                                 |             | D.F.          |                      |             | :          | :                 | :         | :              |            | :          | :          |             | :                       | -             |
| -              |        | ,                                                                                                       |                                                 | L           | R5            |                      |             |            |                   |           | :              |            |            | :          |             |                         |               |
| -              |        |                                                                                                         |                                                 |             |               |                      |             | :          | :                 |           | :              |            | :          | :          | :           | :                       | 1151-         |
| -<br>- 5       |        |                                                                                                         |                                                 |             |               |                      |             | <u>.</u>   |                   | ļ<br>;    | į              | <b></b>    |            |            | <u>.</u>    | . <u>.</u>              |               |
| -              |        | COBBLE/GRAVEL (GRANITE)                                                                                 |                                                 | $\square$   |               |                      |             | :          | :                 |           | :              | Γ          | :          | :          | : -         | <u>-</u>                | -             |
| _              |        | SAND - gravelly, silty, cobbles (granite) disseminated throughout, well graded, brown to greyish brown, | Nbe<br>Thermally disturbed                      |             | 45-S5         | 10.4                 | •           | :          |                   |           |                |            |            |            |             | ı                       | -             |
|                |        | subangular gravel                                                                                       | mermany disturbed                               | П           | R6            |                      |             | :          | :                 | :         | :              |            | :          | :          | :           | :                       | -             |
| -              |        | - at 5.51 m, cobble (granite)                                                                           |                                                 | И           |               |                      |             | :          |                   |           |                |            |            |            |             | .                       | 1150-         |
| -              |        | No recover                                                                                              |                                                 |             | 45-S6         |                      | <b>A</b>    | :          | :                 | :         | :              |            | :          | :          | :           | L :                     | -             |
| <del>-</del> 6 |        | No recovery GRAVEL AND SAND - some silt, cobbles (granite)                                              | Thermally disturbed                             |             |               |                      |             | :<br>:     |                   | :<br>:    |                |            |            |            | · · · · · I | <b>1</b> - <del>.</del> | -             |
| <u> </u>       |        | disseminated throughout, well graded, brown to                                                          |                                                 | И           |               |                      |             | :          | :                 | :         | :              |            | :          |            | :           | :                       | -             |
| <u> </u>       |        | greyish brown, subangular gravel - from 6.00 to 6.30 m, broken cobble (granite)                         | Ice coating on granite<br>gravel/cobble, Vc, Vx | Λ           | D7            |                      |             | :          | :                 |           | :              |            |            |            | :           | :                       | -             |
| F              |        | No recovery                                                                                             | 15%                                             |             | R7<br>45-S7   | 8.2                  | •           | :          | :                 | :         | :              |            |            |            | :           | :                       | -             |
| -              |        | 1.00.000                                                                                                |                                                 |             |               |                      |             |            | :                 | :         | :              |            |            |            |             | :                       | 1149-         |
| -<br>- 7       |        | CODDIE (CDANITE)                                                                                        | O mana ingti                                    |             |               |                      |             | <u>.</u> ; |                   | :<br>;    | <u>;</u>       |            |            |            | j;          |                         | .  -          |
| <u> </u>       |        | COBBLE (GRANITE) - sandy, gravelly, silty, subangular                                                   | ~2 mm ice coating on granite cobble, Vc 1-5%    |             | 45-S8         | 12.9                 | •           | :          | :                 |           | :              |            |            | <u> </u>   |             | :                       | -             |
| -              |        | 5                                                                                                       | of matrix                                       | M           |               |                      |             | :          |                   | :         | :              |            |            |            |             |                         | -             |
| 7.5            |        |                                                                                                         | Contractor Com Deilling                         | <i>,</i> \  |               |                      |             | :          | :                 | :<br>Carr | i<br>dofic-    | Dorati     | :<br>h: 04 | <u>:  </u> | :           | :                       |               |
|                |        | <b>1</b>                                                                                                | Contractor: Cyr Drilling                        |             |               |                      |             |            |                   |           | letion         |            |            |            | 45          |                         |               |
|                | 7      | TETRA TECH                                                                                              | Drilling Rig Type: D-10 Dia                     | amo         | nd Dri        | I                    |             |            |                   |           | Date: 2        |            |            |            |             |                         |               |
| "              |        |                                                                                                         | Logged By: EP/VER                               |             |               |                      |             |            |                   |           | letion         |            | 2010       | 6 Sept     | embe        | r 16                    |               |
|                |        | IG-EARC03004-02.GPJ EBA.GDT 17/2/14                                                                     | Reviewed By: VER                                |             |               |                      |             |            |                   | Page      | 1 of 3         |            |            |            |             |                         |               |

|               |        |                                                                                                 | Borehole                               | N           | 0:            | G                    | T-45                |          |                          |          |                                         |                                                  |          |               |
|---------------|--------|-------------------------------------------------------------------------------------------------|----------------------------------------|-------------|---------------|----------------------|---------------------|----------|--------------------------|----------|-----------------------------------------|--------------------------------------------------|----------|---------------|
|               |        | GOLDCORP                                                                                        | Project: Fall 2016 Geotec              |             |               |                      |                     |          | oject No: I              | ENG.E/   | ARC030                                  | 04-02                                            |          |               |
|               |        | GOLDCORP                                                                                        | Location: Coffee Mine Sit              |             |               |                      | <u></u>             | _        | ound Elev                |          |                                         |                                                  |          |               |
|               |        |                                                                                                 | Coffee Creek, Yukon                    | .0, . 10    |               |                      |                     | _        | M: 58039                 |          |                                         | N· 7 7                                           |          |               |
|               |        |                                                                                                 | Thermal                                |             |               | (%                   | ♦ Unc. Comp<br>5 10 | oressive | (MPa) ◇<br>20            | ● Fra    |                                         |                                                  | y (/m) ● |               |
|               |        |                                                                                                 | Condition                              | be          | nber          | ent (                | ▲Excess Ice Col     |          | y volume) <b>4</b><br>80 | 2        | 4                                       | 6                                                | 8        | _ ا           |
| Depth<br>(m)  | Method | Lithological                                                                                    | and                                    | Sample Type | Sample Number | Moisture Content (%) |                     |          |                          |          | ▲ RQI                                   | O (%) <b>⊿</b>                                   | <b>L</b> | Elevation (m) |
| ۵             | Me     | Description                                                                                     | Ground Ice                             | amp         | mple          | nre (                | Plastic Mo          | oioturo  | Liquid                   | 40       | 60                                      | 80                                               | 100      |               |
|               |        |                                                                                                 | Description                            | S           | Sa            | /loist               |                     | ontent   | Liquid<br>Limit          |          | Recov                                   | erv (%                                           | ) 🔳      |               |
| 7.5           |        |                                                                                                 |                                        |             |               | ~                    | 20 40               | 60       | <b>⊣</b><br>80           | 40       |                                         | 80                                               | 100      |               |
| -             |        |                                                                                                 |                                        | H           | R8            |                      |                     | :        | :                        | :        | :                                       | 1                                                | -        |               |
| -             |        | No recovery                                                                                     |                                        |             |               |                      | : :                 | :        | :                        | :        | :                                       | :                                                | :        | 1148-         |
| -<br>8        |        | CODDLE (CDANITE) conductionally silts white                                                     | \\a\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\ |             |               |                      |                     |          |                          |          | <b>.</b>                                | <u> </u>                                         |          |               |
| -             |        | COBBLE (GRANITE) - sandy, gravelly, silty, white granite, quartz increasing, subangular         | Vc, Vx ~10%                            | М           |               |                      |                     | :        | :                        |          |                                         |                                                  |          | -             |
| -             |        | PEAT - some sand, organic rich, roots, dark brown to black                                      | Nbe                                    |             | 45-S9         |                      |                     |          | :                        |          |                                         | :                                                |          |               |
| -             |        | No recovery                                                                                     |                                        | 14          | R9            |                      | : :                 | :        |                          |          |                                         | - :                                              |          |               |
| _             |        | •                                                                                               |                                        | 14          |               |                      |                     |          |                          |          |                                         | :                                                |          | 1147-         |
| -<br>9        |        |                                                                                                 |                                        |             |               |                      |                     |          |                          | :        |                                         |                                                  |          |               |
| _             |        | PEAT - some sand, organic rich, roots, dark brown to black                                      | Vs, Vc, Vx 10-15%                      |             | 45-S10        |                      | : :                 | :        | :                        |          | <b>-</b> :T                             | :                                                | :        |               |
| _             |        | SAND AND GRAVEL - some silt, dark greyish brown,                                                | 70, 70, 77, 10 10 70                   |             | 45-S11        |                      |                     |          |                          |          |                                         |                                                  |          | 1             |
| -             |        | subangular gravel                                                                               | 2 mm thick subhorizontal               |             | R10           | 11.1                 | •                   |          |                          |          |                                         | :                                                |          |               |
| -             |        | No recovery                                                                                     | ice lens                               |             | 45-S12        |                      | : :                 | :        | :                        | :        |                                         | :                                                | :        | 1146-         |
|               |        |                                                                                                 |                                        | A           |               |                      |                     |          |                          |          |                                         | . :                                              |          |               |
| - 10<br>-     |        | GRAVEL AND SAND - silty, poorly sorted, dark greyish                                            | Vs, Vx, Vc 10-15%                      |             | 45.040        |                      |                     |          |                          |          | ····                                    |                                                  |          |               |
| -             |        | brown, subangular gravel                                                                        |                                        |             | 45-S13        |                      |                     |          |                          | :        |                                         | -                                                |          | -             |
| -             |        |                                                                                                 |                                        |             | 45-S14<br>R11 | 10.3                 | •                   | :        |                          |          |                                         |                                                  |          | :             |
| _             |        |                                                                                                 |                                        |             | IXII          |                      |                     | :        |                          |          |                                         |                                                  |          | 1145-         |
| -             | _      |                                                                                                 |                                        | 14          |               |                      |                     | :        |                          |          |                                         | :                                                |          | ::::          |
| — 11<br>-     | l dril | SAND - granite, poorly graded, medium grained sand                                              | Thermally disturbed                    |             |               |                      |                     |          |                          |          | •••                                     | <del>-                                    </del> |          | 1             |
| -             | mond   |                                                                                                 |                                        | М           |               |                      | : :                 | :        | :                        | i        | :                                       | :                                                |          | -             |
| -             | Diam   |                                                                                                 |                                        | М           | R12           |                      |                     | :        |                          |          |                                         |                                                  |          |               |
| _             | Ω      |                                                                                                 |                                        | М           | 1112          |                      |                     | :        |                          |          |                                         | :                                                |          | 1444          |
| _             |        | from 11.95 to 12.00 m, cobble (grapite)                                                         |                                        | И           |               |                      |                     | :        |                          | :        | :                                       | 1                                                |          | 1144-         |
| _ 12          |        | - from 11.85 to 12.00 m, cobble (granite)  GRAVEL AND SAND - silty, poorly sorted, dark greyish | Vs, Vc, Vx 5-10%                       | $\vdash$    |               |                      |                     |          |                          |          | • • • • • • • • • • • • • • • • • • • • | • • • • •                                        | 📥        |               |
| _             |        | brown, subangular gravel                                                                        | -, -, -                                | М           |               |                      |                     | :        | :                        |          |                                         |                                                  | :        | -             |
| -             |        |                                                                                                 |                                        |             | 45-S15        |                      |                     |          |                          |          | :                                       |                                                  |          |               |
| -             |        |                                                                                                 |                                        | П           | R13           |                      | : :                 | :        | :                        | :        | :                                       | :                                                | :        |               |
| -             |        |                                                                                                 |                                        |             | 45-S16        | 9.5                  | •                   | :        | :                        | i        | :                                       | :                                                | :        | 1143-         |
| _<br>13       |        | No recovery SILT - some sand, trace gravel, trace clay, grey                                    | Thermally disturbed                    | 4           |               |                      |                     | <u>.</u> |                          |          |                                         | · · · · · 📥 ·                                    |          |               |
| -             |        | COBBLES (GRANITE) - broken, slightly weathered                                                  | Thermany disturbed                     | М           |               |                      |                     |          | :                        |          |                                         | :                                                | :        | _             |
| -             |        | CODDLES (CIVANITE) - blokeri, slightly weathered                                                |                                        | Ν           |               |                      |                     | :        |                          |          |                                         | 1                                                |          |               |
| <u> </u>      |        | No recovery                                                                                     |                                        |             | R14           |                      |                     | :        | :                        |          |                                         | :                                                | :        | ] :           |
| <u> </u>      |        | No recovery                                                                                     |                                        |             |               |                      |                     | :        | ;                        | :        |                                         | :                                                | :        | 1142-         |
| -<br>14       |        | CDANITE (DEDDOCK) highlicong-th (AMA)                                                           |                                        |             |               |                      |                     |          |                          | <b>.</b> |                                         |                                                  |          | .  :          |
| -             |        | GRANITE (BEDROCK) - highly weathered (W4),<br>massive, weak (R2), white, grey and black,        |                                        | М           |               |                      |                     | :        |                          | Γ        | T                                       | Ė                                                |          | -             |
| -             |        | yellowish orange oxidization weathering, medium grained                                         |                                        | Λ           |               |                      |                     |          | :                        |          |                                         | :                                                | :        |               |
| <del> -</del> |        | No recovery                                                                                     |                                        | $\vdash$    | R15           |                      |                     | :        | •                        | 0        |                                         | :                                                |          |               |
| -             |        |                                                                                                 |                                        |             |               |                      |                     | :        | :                        |          |                                         | :                                                |          | 1141-         |
| _<br>15       |        |                                                                                                 |                                        |             |               |                      |                     |          | :                        |          |                                         | :                                                | :        |               |
|               |        |                                                                                                 | Contractor: Cyr Drilling               |             |               |                      |                     | Co       | mpletion                 | Depth:   | 21 m                                    |                                                  |          |               |
|               |        | TETRATECH                                                                                       | Drilling Rig Type: D-10 D              | iamo        | nd Dril       | I                    |                     | Sta      | art Date: 2              | 2016 Se  | eptembe                                 | er 15                                            |          |               |
|               | T      |                                                                                                 | Logged By: EP/VER                      |             |               |                      |                     | Со       | mpletion                 | Date: 2  | 016 Se <sub>l</sub>                     | otembe                                           | r 16     |               |
|               |        | )                                                                                               | Reviewed By: VER                       |             |               |                      |                     | _        | ge 2 of 3                |          |                                         |                                                  |          |               |

|                                                                    |               |                                                                                                                                                                                                                                                                                                                                         | Borehole                                                            | N           | lo:           | G                    | T-4                   | 45                |                |                                     |         |         |               |          |    |                                          |
|--------------------------------------------------------------------|---------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------|-------------|---------------|----------------------|-----------------------|-------------------|----------------|-------------------------------------|---------|---------|---------------|----------|----|------------------------------------------|
|                                                                    |               | GOLDCORP                                                                                                                                                                                                                                                                                                                                | Project: Fall 2016 Geote                                            | chnica      | al Inve       | stigati              | on                    |                   | Pro            | ject No:                            | ENG.    | EARCO   | 3004-0        | 02       |    |                                          |
|                                                                    |               |                                                                                                                                                                                                                                                                                                                                         | Location: Coffee Mine Si                                            | te, Ko      | na Po         | nd                   |                       |                   | Gro            | und Elev                            | v: 115  | 5.72 m  |               |          |    |                                          |
|                                                                    |               |                                                                                                                                                                                                                                                                                                                                         | Coffee Creek, Yukon                                                 |             |               |                      |                       |                   | UTI            | M: 58039                            | 99 E; 6 | 97317   | 8 N; Z        | 7        |    |                                          |
|                                                                    |               |                                                                                                                                                                                                                                                                                                                                         | Thermal                                                             | ЭС          | ber           | nt (%)               | 5<br>▲Excess          | 10<br>s Ice Conte | 15<br>nt (% by | (MPa) ≎<br>20<br>y volume) <b>4</b> | ● Fr    |         | Freque        | ency (/m |    |                                          |
| Depth<br>(m)                                                       | Method        | Lithological<br>Description                                                                                                                                                                                                                                                                                                             | Condition<br>and<br>Ground Ice                                      | Sample Type | Sample Number | Moisture Content (%) | 20                    |                   | 60             | 80                                  |         |         | QD (%<br>0 80 | •        |    | Elevation (m)                            |
| 15                                                                 |               |                                                                                                                                                                                                                                                                                                                                         | Description                                                         | Š           | Sar           | Moistu               | Plasti<br>Limit<br>20 | lacksquare        |                | Liquid<br>Limit<br>-1<br>80         |         | ■ Red   | covery (      |          |    |                                          |
|                                                                    |               | GRANITE (BEDROCK) - highly weathered (W4), massive, weak (R2), white, grey and black, yellowish orange oxidization weathering, medium grained                                                                                                                                                                                           | Clear ice infilling inclined<br>joints, ice lenses to 3<br>mm thick | X           | R16           |                      |                       |                   |                |                                     | 0       |         |               |          |    | -<br>-<br>-<br>-<br>-<br>1140—           |
| -<br>- 16<br>-<br>-<br>-<br>-<br>-<br>-                            |               | - at 16.00 m, moderately weathered (W3), medium strong (R3), more grey, JSN: 6 - from 16.00 to 16.11 m, highly broken up - at 16.17, 16.28, 16.65, 16.77 and 16.84 m, subhorizontal joints, undulating, smooth, orangish red oxidation weathering on surfaces, weak (R2) - at 16.28, 16.45 and 16.84 m, inclined joints,                |                                                                     | X           | 45-R1<br>R17  |                      |                       |                   | ***            |                                     |         |         |               |          | 12 | -<br>-<br>-<br>-<br>-<br>-<br>-<br>1139— |
| -<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>- | Diamond drill | undulating smooth to rough, orangish red oxide staining - at 16.38, 16.62 and 16.95 m, subvertical joints, undulating and stepped (16.95 m), smooth, orangish red oxide staining - at 17.41 and 17.63 m, inclined joints, undulating, smooth to rough, orangish red oxidation - at 17.63 m, completely weathered (W5), highly fractured |                                                                     |             | 45-R2<br>R18  |                      |                       |                   |                |                                     |         |         |               |          |    | -<br>-<br>-<br>-<br>-<br>-<br>1138—      |
| -<br>-<br>-<br>-<br>-<br>-                                         | Dian          | - at 18.00 m, very weak to weak (R1-R2)                                                                                                                                                                                                                                                                                                 |                                                                     | X           | R19           |                      |                       |                   |                |                                     | 0       |         |               |          |    | -<br>-<br>-<br>-<br>1137—                |
| - 19<br>-<br>-<br>-<br>-<br>-<br>-<br>-                            |               | <ul> <li>at 19.00 m, moderately weathered (W3), medium strong to strong (R3-R4), JSN: 4</li> <li>at 19.16, 19.32, 19.56 and 19.67 m, inclined joints, undulating, rough, oxidization</li> <li>at 19.21, 19.23, 19.26, 19.41 and 19.84 m, subhorizontal joints, undulating, rough, oxidization</li> <li>at 19.83 m, weak (R2)</li> </ul> |                                                                     | X           | R20<br>45-R3  |                      |                       |                   |                |                                     |         |         |               |          |    | 1136—                                    |
| - 20<br>-<br>-<br>-<br>-<br>-<br>-                                 |               | <ul> <li>at 20.14, 20.28, 20.57 and 20.85 m, inclined joints, undulating, rough, oxidization</li> <li>at 20.19, 20.33, 20.40 and 20.76 m, subhorizontal joints, undulating, rough, oxidization</li> </ul>                                                                                                                               |                                                                     |             | R21           |                      |                       |                   |                |                                     |         |         | <b>A</b>      |          |    | -<br>-<br>-<br>-<br>-<br>-<br>1135       |
| - 21<br>-<br>-<br>-<br>-<br>-<br>-<br>-                            |               | END OF BOREHOLE (21.00 metres)  Note: Excess ice content determined in laboratory is shown graphically. Estimated excess ice content values are provided in 'Ground Ice Description' column.                                                                                                                                            |                                                                     |             |               |                      |                       | ·······           |                |                                     |         | ·       |               |          | •  | -<br>-<br>-<br>-<br>-<br>-<br>1134       |
| -<br>- 22<br>-<br>-<br>-                                           |               |                                                                                                                                                                                                                                                                                                                                         |                                                                     |             |               |                      |                       |                   |                |                                     |         |         |               |          |    | -<br>-<br>-<br>-<br>-                    |
| 22.5                                                               |               |                                                                                                                                                                                                                                                                                                                                         | Contractor: Cyr Drilling                                            |             | <u> </u>      | <u> </u>             |                       |                   | Cor            | npletion                            | Depth   | n: 21 m |               |          |    |                                          |
|                                                                    |               | TETRATECH                                                                                                                                                                                                                                                                                                                               | Drilling Rig Type: D-10 D                                           | )iamoi      | nd Dril       | II                   |                       |                   | +              | rt Date: 2                          |         |         |               |          |    |                                          |
|                                                                    | t             |                                                                                                                                                                                                                                                                                                                                         | Logged By: EP/VER                                                   |             |               |                      |                       |                   | +              | npletion                            |         | •       |               |          |    |                                          |
|                                                                    |               | J                                                                                                                                                                                                                                                                                                                                       | Reviewed By: VER                                                    |             |               |                      |                       |                   |                | ge 3 of 3                           |         |         |               |          |    |                                          |

|                       |         |                                                                                            | Borehole                                               | Ν               | lo:           | G                    | T-4           | <del>1</del> 6 |          |                                        |              |         |        |             |                 |                  |
|-----------------------|---------|--------------------------------------------------------------------------------------------|--------------------------------------------------------|-----------------|---------------|----------------------|---------------|----------------|----------|----------------------------------------|--------------|---------|--------|-------------|-----------------|------------------|
|                       |         | GOLDCORP                                                                                   | Project: Fall 2016 Geotec                              | hnica           | al Inve       | stigati              | on            |                | Pro      | ject No:                               | ENG          | .EARC   | 03004  | I-02        |                 |                  |
|                       |         | OOLDCOM                                                                                    | Location: Coffee Mine Site                             |                 |               |                      |               |                | Gro      | und Elev                               | v: 114       | 18.43 r | n      |             |                 |                  |
|                       |         |                                                                                            | Coffee Creek, Yukon                                    |                 |               |                      |               |                | UTI      | M: 58044                               | 14 E;        | 69732   | 02 N;  | Z 7         |                 |                  |
|                       |         |                                                                                            | ,                                                      |                 |               |                      | ♦ Unc.        | Compre         | ssive    | (MPa) ♦                                | <del>\</del> |         |        |             |                 |                  |
|                       |         |                                                                                            | Thermal                                                |                 | <u>_</u>      | (%)                  | 5<br>A Fycess | 10             | 15       | `20 ´<br>/ volume) <b>4</b>            |              |         | -      | -           | y (/m) <b>●</b> | <b>'</b>         |
| _                     | р       |                                                                                            | Condition                                              | ype             | mpe           | tent                 | 20            |                | 60       | 80                                     | ]—           | 2       | 4      | 6           | 8               | - E              |
| Depth<br>(m)          | Method  | Lithological                                                                               | and                                                    | Je T            | 2             | Con                  | ■ Bu          | lk Densi       | ty (kg   | /m³) ■                                 |              | •       | RQD (  | %) <b>_</b> | <b>L</b>        | Elevation<br>(m) |
|                       | M       | Description                                                                                | Ground Ice                                             | Sample Type     | Sample Number | Moisture Content (%) | Plastic       |                |          | Liquid                                 |              | 40      | 60     | 80          | 100             | _ Ee             |
|                       |         |                                                                                            | Description                                            | 0               | Š             | Mois                 | Limit         |                |          | Limit                                  |              | ■ Re    | cover  | y (%)       |                 |                  |
| 0                     |         |                                                                                            |                                                        |                 |               |                      | 20            | 40             | 60       | 80                                     |              | 40      | 60     | 80          | 100             |                  |
| -                     |         | MOSS - organics, roots, (100 mm thick) No recovery - gravel (granite) piece                | Thawed                                                 |                 |               |                      | :             | :              | :        | : '                                    | T            | :       | :      | :           | :               | -                |
| -                     |         | No recovery - graver (granite) piece                                                       |                                                        | 1               |               |                      | :             |                |          | :                                      |              |         |        |             |                 |                  |
| F                     |         |                                                                                            |                                                        |                 | R1            |                      | :             | :              |          | :                                      | 10           |         |        |             |                 | 1148—            |
| -                     |         |                                                                                            |                                                        |                 |               |                      | :             | :              | :        | :                                      |              | i       | :      | 1           | i               | _                |
| -                     |         |                                                                                            |                                                        |                 |               |                      | :             |                |          |                                        | $\perp$ _    |         |        |             |                 | -                |
| <del> -</del> 1<br> - |         | SAND AND GRAVEL - some silt to silty, poorly sorted,                                       | Frozen, Vs, Vc 25-30%,                                 |                 | 46-S1         | 28.4                 | :             | • :<br>• :     | ****     |                                        | 77           | :       |        |             |                 | -                |
| -                     |         | brown grey, subangular gravel                                                              | subhorizontal clear ice<br>lenses to 4 mm thick        |                 | 40-01         | 20.4                 |               | •              |          | :                                      |              | 1       | i      | 1           | :               | -                |
| -                     |         | No recovery                                                                                |                                                        |                 | R2            |                      |               |                |          |                                        |              |         |        |             |                 | 1147—            |
| _                     |         |                                                                                            |                                                        |                 |               |                      | :             | :              |          | :                                      |              |         |        |             |                 | -                |
| _                     |         |                                                                                            |                                                        |                 |               |                      |               | :              |          |                                        |              |         | į      |             | :               | -                |
| _ 2                   |         | SAND AND GRAVEL - some silt to silty, slightly more                                        |                                                        |                 |               |                      |               |                |          |                                        | =            | -       | :      | :           | -₽…             | -                |
| E                     |         | weathered, poorly sorted, brown grey, orangish red                                         |                                                        | Н               | 46-S2         |                      |               | •              |          |                                        |              |         |        |             |                 | _                |
| F                     |         | tint, subangular gravel                                                                    | Vs, Vx, Vc 25-30%,                                     | V               | 46-S3         | 67.6                 |               | _              |          | , :                                    |              | :       | :      | :           |                 | 1146-            |
| F                     |         | SILT - sandy, gravelly, trace clay, massive,                                               | subhorizontal clear ice lenses to 1 mm thick           |                 | R3            |                      |               |                |          |                                        |              |         |        |             |                 | -                |
| <u>-</u>              |         | structureless, dark grey, subangular gravel                                                | Vs, Vx, Vr 10%                                         |                 | 46-S4         | 18                   | ▲             | :              |          | :                                      |              |         |        |             |                 | -                |
| -<br>- 3              |         |                                                                                            | Nbe                                                    |                 |               |                      |               |                |          |                                        |              |         |        |             |                 |                  |
| -<br> -               |         |                                                                                            | NDE                                                    | Ц               |               |                      |               |                |          | _                                      |              |         |        |             |                 | _                |
| -                     | =       |                                                                                            |                                                        |                 | 46-S5         |                      |               | :              |          |                                        |              |         |        |             |                 | 1145             |
| -                     | drill   |                                                                                            |                                                        |                 | R4<br>46-S6   |                      | :             | :              |          | :                                      |              |         |        |             |                 | -                |
| -                     | ouc     | COBBLE/BOULDER - granite, slight weathering, light                                         |                                                        | П               | 10 00         |                      |               |                |          |                                        |              |         |        |             |                 | _                |
| -<br>- 4              | Diamond | pink, grey and black, medium to coarse grained SAND AND GRAVEL - some silt, massive, grey, | Vc, Vx 10-15%                                          |                 |               |                      |               | .:II           |          |                                        |              |         |        | <u>.</u>    | . 🛓             |                  |
| -                     |         | subangular gravel                                                                          | Vs, Vc, Vx 10-15%                                      | М               |               |                      |               | :              |          |                                        |              |         | T      |             |                 | _                |
| _                     |         |                                                                                            |                                                        | М               |               |                      |               | :              |          | :                                      |              | :       |        |             | :               | ]                |
| -                     |         |                                                                                            | Vs, Vc, Vx 5-10%                                       | Δ               | R5            |                      | . :           | :              | ÷        | :                                      |              | i       | :      | 1           | i               | 1144-            |
| E                     |         | No recovery                                                                                | Three clear ice lenses to 2 mm thick, ice coatings     |                 | 46-S7         | 11.5                 | -             | :              |          |                                        |              |         |        |             |                 | -                |
| _<br>_ 5              |         | ,                                                                                          | <1 mm thick                                            |                 |               |                      | :             | :              |          | :                                      |              |         |        |             | Ė               | -                |
| F 3                   |         | GRAVEL - sandy, some silt, massive, grey, subangular gravel                                |                                                        |                 |               |                      |               |                |          |                                        |              |         |        |             | T               | -                |
| Ė                     |         | - at 5.27 m, ~ 11 mm cobble (granite)                                                      | 1 and 3 mm thick clear ice coatings on gravel          | M               |               |                      | :             | :              | :        | :                                      |              |         | :      | :           |                 | -                |
| F                     |         | <u> </u>                                                                                   | surfaces                                               | M               | R6            |                      |               | :              | :        | :                                      |              | :       | :      | :           |                 | 1143-            |
| -                     |         | - at 5.70 m, ~ 18 mm cobble (granite)                                                      | Vc, Vs 10-15%, two 1-2 mm<br>thick inclined ice lenses | И               |               |                      | :             | :              |          | :                                      |              |         |        |             |                 | -                |
|                       |         | - at 3.70 m, 10 mm cobbie (granic)                                                         | thick inclined ice lenses                              | $I \setminus I$ |               |                      | :             |                |          | :                                      |              |         |        |             |                 | _                |
| ─ 6<br>-              |         |                                                                                            | 1 mm thick clear ice                                   |                 | 46-S8         | 13                   | :             | :              | :        | :                                      |              | :       | :      |             | :               | -                |
| -                     |         |                                                                                            | coatings on gravel surfaces                            |                 | 40-00         |                      | Ī             |                |          |                                        |              |         | i      |             |                 | -                |
| -                     |         |                                                                                            |                                                        | М               | R7            |                      | :             | :              |          | :                                      |              |         |        |             |                 | 1142-            |
| <b> </b>              |         |                                                                                            |                                                        | И               |               |                      |               | :              | :        | :                                      |              |         |        |             | :               | _                |
| <u> </u>              |         |                                                                                            |                                                        |                 |               |                      | :             | :              | :        |                                        |              |         | :      | :           |                 | ]                |
| — 7<br>-              |         | No recovery                                                                                | Vc, Vs, Vx 10%                                         | 1               |               |                      |               |                |          | · · · (· · · · · · · · · · · · · · · · |              |         |        |             |                 | 1 -              |
| <u> </u>              |         |                                                                                            |                                                        |                 | 46-S9         | 9                    | •             | :              | i        | :                                      |              | :       |        |             |                 | -                |
| -<br>7.5              |         |                                                                                            |                                                        | $\prod$         |               |                      | :             | :              | <u>:</u> | :                                      |              | i       | :      | :           |                 | 1141—            |
|                       |         |                                                                                            | Contractor: Cyr Drilling                               |                 |               |                      |               |                | Cor      | npletion                               | Dept         | h: 11 r | n      |             |                 |                  |
|                       |         | TETRA TECH                                                                                 | Drilling Rig Type: D-10 Di                             | amo             | nd Dri        |                      |               |                | Sta      | rt Date: 2                             | 2016         | Septe   | mber 1 | 19          |                 |                  |
|                       | U       |                                                                                            | Logged By: EP                                          |                 |               |                      |               |                | Cor      | npletion                               | Date         | : 2016  | Septe  | mber        | r 19            |                  |
|                       |         | )                                                                                          | Reviewed By: VER                                       |                 |               |                      |               |                | Pag      | e 1 of 2                               |              |         |        |             |                 |                  |

|                                       |           |                                                                                                                                                                                                                                                                  | Borehole                   | Ν           | 0:            | G                    | T-46                           |                                  |                            |          |                      |                           |
|---------------------------------------|-----------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------|-------------|---------------|----------------------|--------------------------------|----------------------------------|----------------------------|----------|----------------------|---------------------------|
|                                       |           | GOLDCORP                                                                                                                                                                                                                                                         | Project: Fall 2016 Geotec  | hnica       | al Inve       | stigati              | on                             | Project No: I                    | ENG.EARC                   | 03004-   | 02                   |                           |
|                                       |           | OOLDCORP                                                                                                                                                                                                                                                         | Location: Coffee Mine Site |             |               |                      |                                | Ground Elev                      |                            |          |                      |                           |
|                                       |           |                                                                                                                                                                                                                                                                  | Coffee Creek, Yukon        |             |               |                      |                                | UTM: 58044                       | 4 E; 69732                 | 02 N; Z  | 7                    |                           |
|                                       |           |                                                                                                                                                                                                                                                                  | Thermal                    | 0           | ıer           | t (%)                | ▲ Excess Ice Content           | 15 20<br>(% by volume) ▲         | <ul><li>Fracture</li></ul> | e Freque |                      |                           |
| Depth<br>(m)                          | Method    | Lithological<br>Description                                                                                                                                                                                                                                      | Condition and              | Sample Type | Sample Number | Moisture Content (%) | 20 40  Bulk Densit 1400 1600 1 | 60 80<br>y (kg/m³) ■<br>800 2000 | •                          | RQD (%   | 5) <b>▲</b><br>0 100 | Elevation<br>(m)          |
|                                       | _         | 1.2                                                                                                                                                                                                                                                              | Ground Ice<br>Description  | Sar         | Sam           | Moistur              | Plastic Moiste                 | ent Limit                        | ■Re                        | ecovery  | (%)■                 | _   "                     |
| 7.5<br>-<br>-                         |           |                                                                                                                                                                                                                                                                  |                            | V           | R8            |                      | 20 40                          | 60 80                            | 40                         | 60 8     | 0 100                | -<br>-<br>-               |
| -<br>-<br>8                           |           | - from 8.00 to 8.15 m, cobble                                                                                                                                                                                                                                    |                            |             |               |                      |                                |                                  |                            |          |                      | .   -                     |
| -<br>-<br>-<br>-                      |           | GRANITE (BEDROCK) - moderately weathered (W3),                                                                                                                                                                                                                   |                            | M           | R9            |                      |                                |                                  | •                          |          | •                    | 1140-                     |
| -<br>-<br>- 9<br>-                    | ond drill | medium strong to strong (R3-R4), grey to light pink, inclined joints with orange weathering and silt infill, medium to coarse grained, JSN: 2 - at 9.00 m, JSN: 4                                                                                                |                            |             | 46-R1         |                      |                                | 60<                              |                            |          | _                    | -<br><br><br>             |
| -<br>-<br>-<br>-<br>-                 | Diamond   | - at 9.15, 9.23, 9.58 and 9.87 m, inclined joints, undulating, smooth, oxide staining - at 9.31, 9.91 and 9.57 m, subhorizontal joints, undulating, smooth, oxide staining - from 9.58 to 10.50 m, vertical joint, undulating,                                   |                            | \\          | R10<br>46-R2  |                      |                                | 28<                              | <b>&gt;</b> :              |          |                      | 1139—<br>-<br>-<br>-<br>- |
| 10<br>-<br>-<br>-<br>-<br>-<br>-      |           | smooth, oxide staining                                                                                                                                                                                                                                           |                            | V           | R11           |                      |                                |                                  |                            |          |                      | 1138—                     |
| -<br>-<br>-<br>- 11                   |           | - at 10.68, 10.80 and 10.90 m, inclined joints, undulating, smooth, oxide staining - at 10.75 and 10.86 m, subhorizontal joints,                                                                                                                                 |                            |             | 46-R3         |                      |                                | 115<                             |                            |          |                      | -<br>-<br>-               |
| -<br>-<br>-<br>-<br>-<br>-            |           | undulating, smooth, oxide staining, very strong (R5)/<br>END OF BOREHOLE (11.00 metres)<br>Note: Excess ice content determined in laboratory is<br>shown graphically. Estimated excess ice content<br>values are provided in `Ground Ice Description'<br>column. |                            |             |               |                      |                                |                                  |                            |          |                      | 1137                      |
| — 12<br>-<br>-<br>-<br>-<br>-         |           |                                                                                                                                                                                                                                                                  |                            |             |               |                      |                                |                                  |                            |          |                      | 1136—                     |
| -<br>-<br>- 13<br>-<br>-              |           |                                                                                                                                                                                                                                                                  |                            |             |               |                      |                                |                                  |                            |          |                      | -<br>-<br>-               |
| -<br>-<br>-<br>-<br>-                 |           |                                                                                                                                                                                                                                                                  |                            |             |               |                      |                                |                                  |                            |          |                      | 1135—<br>-<br>-<br>-<br>- |
| 14<br>-<br>-<br>-<br>-<br>-<br>-<br>- |           |                                                                                                                                                                                                                                                                  |                            |             |               |                      |                                |                                  |                            |          |                      | 1134-                     |
| 15                                    |           |                                                                                                                                                                                                                                                                  | Contractor: Cyr Drilling   |             |               |                      | 1                              | Completion                       | I<br>Denth: 11 r           | n        |                      |                           |
|                                       |           | 7                                                                                                                                                                                                                                                                | Drilling Rig Type: D-10 Di | amo         | nd Dril       | 1                    |                                | Start Date: 2                    |                            |          | 1                    |                           |
|                                       | Ŧ.        | TETRA TECH                                                                                                                                                                                                                                                       | Logged By: EP              | aniO        | ווע טוו       | 1                    |                                | Completion                       |                            |          |                      |                           |
|                                       |           | נ                                                                                                                                                                                                                                                                |                            |             |               |                      |                                | -                                | ⊔al <del>e</del> . 2010    | oepten   | ווטטו                |                           |
|                                       |           | IG-FARC03004-02 GPJ FBA GDT 17/2/14                                                                                                                                                                                                                              | Reviewed By: VER           |             |               |                      |                                | Page 2 of 2                      |                            |          |                      |                           |

|                |        |                                                                                 | Borehole                     | N                  | 0:            | G                    | T-4             | 17                |                                |       |            |              |           |               |
|----------------|--------|---------------------------------------------------------------------------------|------------------------------|--------------------|---------------|----------------------|-----------------|-------------------|--------------------------------|-------|------------|--------------|-----------|---------------|
|                |        | GOLDCORP                                                                        | Project: Fall 2016 Geotecl   |                    |               |                      |                 |                   | Project No                     | : ENC | G.EAR      | C03004-      | .02       |               |
|                |        | GOLDCORP                                                                        | Location: Coffee Mine Site   |                    |               |                      | -               |                   | Ground Ele                     |       |            |              | <u></u>   |               |
|                |        |                                                                                 | Coffee Creek, Yukon          | J, 11011           | u . o.        |                      |                 |                   | UTM: 5804                      |       |            |              | 7         |               |
|                |        |                                                                                 | Conce Oreek, rukon           | П                  |               |                      | ♦Unc            | Compres           | sive (MPa)                     |       | ., 0370    | 200 11, 2    | - 1       |               |
|                |        |                                                                                 | Thermal                      |                    |               | (%                   | 5               | 10                | 15 20                          | ַ     | Fractu     | ire Frequ    | ency (/m) | •             |
|                |        |                                                                                 |                              | B                  | Sample Number | Moisture Content (%) | ▲Excess<br>20   |                   | (% by volume)<br>60 80         | _     | 2          | 4            | 6 6       |               |
| Depth<br>(m)   | Method | Lithological                                                                    | Condition                    | Sample Type        | Nun           | onte                 |                 |                   | y (kg/m³) <b>■</b><br>800 2000 |       | 4          | RQD (%       | 6) ▲      | Elevation (m) |
| Pe E           | Met    | Description                                                                     | and<br>Ground Ice            | du                 | ple           | <u>9</u>             |                 |                   |                                |       | 40         |              | 30 100    |               |
|                |        |                                                                                 | Description                  | S                  | San           | oistn                | Plasti<br>Limit | c Moistu<br>Conte |                                |       |            |              | (0/)      |               |
|                |        |                                                                                 | Description                  |                    |               | Š                    |                 | •                 |                                |       |            | Recovery     |           |               |
| 0              |        | MOSS - (150 mm thick)                                                           |                              |                    |               |                      | 20              | 40                | 60 80                          | ╅     | 40         | 60 8         | 100       | -             |
| F              |        | No recovery                                                                     | Thawed                       | $\Box$             |               |                      | :               | :                 | : :                            |       | :          | :            | : :       | -             |
| F              |        |                                                                                 |                              | 14                 |               |                      | :               |                   |                                |       |            |              |           | -             |
| <u> </u>       |        |                                                                                 |                              | I                  | R1            |                      | :               | :                 | : :                            |       | - :        | :            |           | 1154-         |
| L              |        |                                                                                 |                              |                    |               |                      | :               |                   |                                |       |            |              |           | -             |
| <u>-</u> 1     |        | GRAVEL - sandy, silty, thermally disturbed                                      | Frozen, Vc, Vr ~10%          | 4                  | 7-S1          | 30.3                 | <b>A</b> :      | •                 | <u> </u>                       | ┈     |            | _            | <u> </u>  |               |
| F'             |        | SAND AND SILT - trace gravel, wet, thermally                                    |                              | 4                  | 7-S2          |                      |                 |                   |                                |       | •          | T            |           |               |
| F              |        | disturbed, brown grey, subangular gravel GRAVEL AND COBBLES - subangular gravel | _                            |                    |               |                      |                 |                   |                                |       |            |              |           | -             |
| Ļ              |        | 3 · · · · · · · · · · · · · · · · · · ·                                         |                              | /\                 | R2            |                      | :               | :                 |                                |       | i          |              |           | -             |
| <u> </u>       |        | No recovery                                                                     |                              |                    |               |                      | :               |                   |                                |       |            |              |           | 1153-         |
| Ł              |        |                                                                                 |                              |                    |               |                      | :               | :                 | : :                            |       | :          |              | : :       | -             |
| - 2            |        | GRAVEL AND SAND - silty, well graded, grey,                                     | Vs, Vx, Vc 10-20%            |                    |               |                      |                 |                   |                                |       |            |              | :<br>:    |               |
| F              |        | subangular gravel                                                               | V3, VX, VC 10-2070           | 4                  | 7-S3          | 24.8                 | <b>A</b> •      | •                 |                                |       |            |              |           | -             |
| <u> </u>       |        |                                                                                 |                              |                    | 7-51          | 23.8                 |                 |                   | : :                            |       | :          |              | : :       | -             |
| -              |        |                                                                                 |                              |                    | R3            | 23.0                 |                 | 1                 |                                |       | - 1        |              |           | 4450          |
| -              |        | No recovery                                                                     |                              | 14                 |               |                      |                 |                   |                                |       |            |              |           | 1152-         |
| F.             |        |                                                                                 |                              |                    |               |                      | :               | :                 |                                |       | : <u>.</u> |              | : :       | -             |
| <del>-</del> 3 |        | GRAVEL - sandy, silty, well graded, grey, subangular                            |                              |                    |               |                      |                 |                   |                                |       |            |              | ) (<br>]  | -             |
| <u> </u>       |        | gravel                                                                          |                              | 4                  | 7-S5          | 10.7                 | •               | :                 | : :                            |       | :          |              | : :       | -             |
| Ŀ              | drill  |                                                                                 |                              |                    | R4            |                      | :               |                   |                                |       |            |              |           | -             |
| }              |        | No recovery                                                                     |                              | 14                 | 114           |                      | :               | :                 | : :                            |       | :          | :            | : :       | 1151          |
| F              | amond  |                                                                                 |                              |                    |               |                      | :               |                   |                                |       |            |              |           | -             |
| - 4            | Diar   | GRAVEL AND SAND - silty, well graded, grey,                                     | -                            |                    |               |                      |                 |                   | <u> </u>                       |       |            | <del>-</del> | <u>.</u>  |               |
| ļ              | ľ      | subangular gravel                                                               |                              | 4                  | 7-S6          |                      |                 |                   |                                |       |            |              |           | -             |
| -              |        |                                                                                 |                              | М                  |               |                      |                 |                   |                                |       |            |              |           | -             |
| ŀ              |        |                                                                                 |                              |                    | R5            | 13.3                 | •               | :                 |                                |       | i          |              | :         |               |
| F              |        |                                                                                 |                              |                    | 7-S7<br>7-S8  |                      | :               |                   |                                |       |            |              |           | 1150-         |
| F              |        |                                                                                 |                              | -                  | 1-30          |                      | :               | :                 |                                |       | :          | :            | <u> </u>  | -             |
| <u></u> 5 − 5  |        | SILT - trace to some sand, grey                                                 | Vx, Vs 20%                   | $\Box$             |               |                      |                 |                   |                                |       |            |              | T         | -             |
| <u> </u>       |        |                                                                                 |                              | 4                  | 7-S9          |                      | _ :             | :                 |                                |       | - 1        |              | :         | -             |
| Ł              |        |                                                                                 |                              |                    | 7-S10<br>R6   | 9.2                  |                 |                   |                                |       |            |              |           | -             |
| -              |        |                                                                                 |                              |                    |               |                      | :               | :                 |                                |       | :          |              | :         | 1149          |
| F              |        |                                                                                 |                              | 4                  | 7-S11         |                      | :               | :                 |                                |       | i          |              | :         | -             |
| -<br>- 6       |        |                                                                                 |                              |                    |               |                      | ļ <u>.</u>      |                   | 44                             |       |            |              | ·         |               |
| ţ              |        | GRAVEL AND SAND - some silt, medium brown,                                      | Vc, Vs, Vx 15-20%            |                    |               |                      |                 | :                 |                                |       | :          |              |           | -             |
| t              |        | subangular gravel                                                               |                              | 47                 | 7-S12         |                      | :               |                   |                                |       |            |              |           | -             |
| -              |        | - at 6.35 m, cobble                                                             | Subhorizontal undulating ice |                    | R7            | 11.4                 |                 | :                 |                                |       | - 1        |              | :         | -             |
| F              |        |                                                                                 | lens, 2 mm thick             | $\mathbf{\Pi}^{4}$ | 7-S13         |                      |                 |                   |                                |       |            |              |           | 1148-         |
| F              |        |                                                                                 |                              | 11                 |               |                      |                 |                   |                                |       |            | :            | <u></u> _ | -             |
| <del>-</del> 7 |        | COBBLES - gravelly, sandy, trace to some silt,                                  | Vx, Vc 5-10%                 | 47                 | 7-S14         | 33.9                 |                 | •                 |                                |       |            |              |           | -             |
| ţ              |        | sandy/gravelly intervals between cobbles                                        | Ice inclusions ~ 5 mm        |                    |               |                      | :               | :                 |                                |       |            |              |           | -             |
| 7.5            |        |                                                                                 | diameter                     |                    |               |                      | <u></u>         | <u>:</u>          | <u>ii</u> _ii                  |       | <u>:</u>   |              |           |               |
|                |        |                                                                                 | Contractor: Cyr Drilling     |                    |               |                      |                 |                   | Completion                     | n Dep | oth: 18    | m            |           |               |
|                |        | TETRA TECH                                                                      | Drilling Rig Type: D-10 Dia  | amono              | d Dril        |                      |                 |                   | Start Date:                    |       |            |              | 3         |               |
|                | t      | I IEIRA IECH                                                                    | Logged By: VER               |                    |               |                      |                 |                   | Completion                     |       |            |              |           |               |
|                | _      |                                                                                 | Reviewed By: VER             |                    |               |                      |                 |                   | Page 1 of                      |       | <u></u>    | 2 Doptor     |           |               |
|                |        | IC EADC03004 03 CD LEDA CDT 17/2/14                                             | I TOVIOWOU DY. VER           |                    |               |                      |                 |                   | i age i ul                     | т     |            |              |           |               |

|                                                             |               |                                                                                                                                                                                                                                                                                                                                                                                           | Borehole                                                                                                                                                                                        | No                               | ):              | G                    | T-4                         | 7                  |                |                      |        |        |          |                |             |                  |
|-------------------------------------------------------------|---------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------|-----------------|----------------------|-----------------------------|--------------------|----------------|----------------------|--------|--------|----------|----------------|-------------|------------------|
|                                                             |               | GOLDCORP                                                                                                                                                                                                                                                                                                                                                                                  | Project: Fall 2016 Geotec                                                                                                                                                                       | hnical Ir                        | ives            | tigati               | on                          |                    | Proje          | ct No: E             | ENG.E  | EARCO  | 3004-    | 02             |             |                  |
|                                                             |               |                                                                                                                                                                                                                                                                                                                                                                                           | Location: Coffee Mine Site                                                                                                                                                                      |                                  |                 |                      |                             |                    |                | nd Elev              |        |        |          |                |             |                  |
|                                                             |               |                                                                                                                                                                                                                                                                                                                                                                                           | Coffee Creek, Yukon                                                                                                                                                                             |                                  |                 |                      |                             |                    | UTM:           | 58041                | 3 E; 6 | 97320  | 8 N; Z   | 7              |             |                  |
|                                                             |               |                                                                                                                                                                                                                                                                                                                                                                                           | Thermal                                                                                                                                                                                         | 9 g                              | D C             | nt (%)               | ♦ Unc. Co                   | 10 c<br>Content    | 15<br>(% by v  | 20 olume) ▲          | ● Fr   | acture | Freque   |                | [/m) ●<br>8 |                  |
| Depth<br>(m)                                                | Method        | Lithological<br>Description                                                                                                                                                                                                                                                                                                                                                               | Condition<br>and<br>Ground Ice                                                                                                                                                                  | Sample Type                      | וושום ואמוו     | Moisture Content (%) | 20<br>■ Bulk<br>1400        | Density<br>1600 18 | (kg/n<br>300 2 |                      | - 4    |        | QD (%    | -              | 00          | Elevation<br>(m) |
| 7.5                                                         |               |                                                                                                                                                                                                                                                                                                                                                                                           | Description                                                                                                                                                                                     | S S                              | 2               | Moist                | Plastic<br>Limit<br>—<br>20 | Conte              | nt<br>——I      | iquid<br>Limit<br>80 |        | ■ Red  | covery   |                | <b>■</b>    |                  |
| -                                                           |               |                                                                                                                                                                                                                                                                                                                                                                                           |                                                                                                                                                                                                 | R<br>47-9                        |                 |                      |                             |                    |                |                      |        |        |          |                |             | 1147             |
| — 8<br>-<br>-<br>-<br>-<br>-                                |               | No recovery GRAVEL AND SAND - some silt, well graded, angular gravel  - from 8.55 to 8.80 m, boulder/cobble                                                                                                                                                                                                                                                                               | Vc, Vx 5-10%                                                                                                                                                                                    | 47-9<br>R                        |                 |                      |                             |                    |                | •                    |        |        |          |                |             | 1146—            |
| -<br>-<br>- 9<br>-                                          |               | GRAVEL - sandy, silty, trace clay, grey                                                                                                                                                                                                                                                                                                                                                   |                                                                                                                                                                                                 | 47-5                             | S17             | 10.1                 | •                           |                    |                |                      |        |        |          |                |             | -<br>-           |
| -<br>-<br>-<br>-<br>-                                       |               | - from 9.46 to 9.58 m, cobble<br>- at 9.58 m, becomes siltier                                                                                                                                                                                                                                                                                                                             | Inclined ice lens ~ 1.5 mm<br>thick<br>Vs, Vx, Vc 10-20%                                                                                                                                        | 47-5<br>R1<br>47-5               | 10              | 15<br>15             | •                           |                    |                |                      |        |        |          | _              |             | 1145—            |
| - 10<br>-<br>-<br>-<br>-<br>-<br>-                          |               | GRAVEL AND SAND - some silt, well graded                                                                                                                                                                                                                                                                                                                                                  | Vx, Vc, Vs 10-20%                                                                                                                                                                               | R1<br>47-5<br>47-5               | S20             |                      |                             |                    |                |                      |        |        |          |                |             | 1144-            |
| -<br>- 11<br>-<br>-<br>-<br>-<br>-<br>-<br>-                | Diamond drill | No recovery                                                                                                                                                                                                                                                                                                                                                                               | Thermally disturbed                                                                                                                                                                             | R1                               |                 |                      |                             |                    |                |                      |        |        |          | ····· <b>I</b> |             | 1143-            |
| -<br>- 12<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>- |               | GRAVEL AND COBBLES - sandy silt matrix, grey  GRAVEL AND SAND - some silt, well graded - from 12.50 to 12.90 m, boulder (granite) - fracture in boulder infilled with silt/sand matrix  SAND - gravelly, some silt, dark yellowish brown, fine                                                                                                                                            | Vs, Vc 10-15%, inclined ice<br>lenses ~ 1 mm thick<br>spaced at 50 mm<br>intervals in sandy silt<br>matrix<br>Thermally disturbed<br>Vx, Vc 10-15%<br>Vx, Vc 7-10%<br>Vs 9-12%, ~ 1 mm inclined | 47-5<br>R1<br>47-5<br>R1<br>47-5 | 13<br>523<br>14 | 14.9                 | •                           |                    |                |                      |        |        |          |                |             | 1142-            |
| -<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>14             |               | gravel  GRANITE (BEDROCK) - highly weathered (W4), weak to medium strong (R2-R3), white, light pink and black, medium to coarse grained  - from 13.00 to 13.50 m, completely weathered to residual soil (W5-W6)  - from 13.00 to 14.00 m, vertical fracture, planar to undulating, oxidated, infilled with clear ice to 25 mm thick, numerous inclined and subhorizontal joints, oxidated | ice lenses spaced at 10 mm intervals                                                                                                                                                            | R1                               | 15              |                      |                             |                    |                |                      |        |        | <b>↑</b> |                | •           | 1141-            |
| -<br>-<br>-<br>-<br>-<br>-<br>-<br>15                       |               | No recovery  GRANITE (BEDROCK) - highly weathered (W4), weak to medium strong (R2-R3), white, light pink and black, medium to coarse grained  - from 14.00 to 14.50 m, vertical fracture infilled with                                                                                                                                                                                    |                                                                                                                                                                                                 | R1<br>47-                        |                 |                      |                             |                    |                | 32<                  | ľ      |        |          |                |             | 1140-            |
|                                                             |               | <b>-</b>                                                                                                                                                                                                                                                                                                                                                                                  | Contractor: Cyr Drilling                                                                                                                                                                        |                                  |                 |                      |                             |                    |                | oletion l            |        |        |          |                |             |                  |
|                                                             |               | . TETRA TECH                                                                                                                                                                                                                                                                                                                                                                              | Drilling Rig Type: D-10 Di                                                                                                                                                                      | amond I                          | Drill           |                      |                             |                    |                | Date: 2              |        | -      |          |                |             |                  |
| "                                                           | U             | <b>7</b> ]                                                                                                                                                                                                                                                                                                                                                                                | Logged By: VER                                                                                                                                                                                  |                                  |                 |                      |                             |                    |                | oletion I            | Date:  | 2016 9 | Septen   | nber 1         | 4           |                  |
|                                                             |               | G-FARC03004-02 GPJ FBA GDT 17/2/14                                                                                                                                                                                                                                                                                                                                                        | Reviewed By: VER                                                                                                                                                                                |                                  |                 |                      |                             |                    | Page           | 2 of 4               |        |        |          |                |             |                  |

|                     |          |                                                                                                             | Borehole                  | ١           | lo:           | G                    | T-47                        |                                    |             |                                                    |                              |                  |
|---------------------|----------|-------------------------------------------------------------------------------------------------------------|---------------------------|-------------|---------------|----------------------|-----------------------------|------------------------------------|-------------|----------------------------------------------------|------------------------------|------------------|
|                     |          | GOLDCORP                                                                                                    | Project: Fall 2016 Geoted | hnica       | al Inve       | stigati              | on                          | Project No:                        | ENG.E       | ARC0300                                            | 4-02                         |                  |
|                     |          | OOLDCORF                                                                                                    | Location: Coffee Mine Sit |             |               |                      |                             | Ground Elev                        |             |                                                    |                              |                  |
|                     |          |                                                                                                             | Coffee Creek, Yukon       | -,          |               |                      |                             | UTM: 58041                         |             |                                                    | Z7                           |                  |
|                     |          |                                                                                                             | Thermal                   |             |               | (%)                  | ♦ Unc. Compre               | ssive (MPa) $\diamondsuit$         | ● Fra       | cture Freq                                         | uency (/m)                   |                  |
|                     | _        |                                                                                                             | Condition                 | g.          | nber          | ent (                | ▲Excess Ice Conter<br>20 40 | nt (% by volume) <b>4</b><br>60 80 | 2           | 2 4                                                | 6 8                          |                  |
| Depth<br>(m)        | Method   | Lithological<br>Description                                                                                 | and<br>Ground Ice         | Sample Type | Sample Number | Moisture Content (%) | ■ Bulk Densi<br>1400 1600   | ty (kg/m³) <b>■</b><br>1800 2000   | 40          | ▲ RQD 60                                           | (%) ▲<br>80 100              | Elevation<br>(m) |
|                     |          | •                                                                                                           | Description               | SS          | San           | oistu                | Plastic Moist<br>Limit Cont |                                    |             | <b>-</b> D                                         | (0/ )                        | <b> </b>         |
|                     |          |                                                                                                             | Description               |             |               | Š                    | <b>⊢</b>                    | 60 80                              | 4(          | Recover                                            | y (%) ■<br>_801 <u>0</u> 0 _ |                  |
| <u>15</u>           |          | silty sand, thermally disturbed, wet, JSN: 4                                                                |                           |             |               |                      | 20 40                       | 00 00                              | 40          | <del>)                                      </del> |                              | _                |
| -                   |          | <ul> <li>at 14.12 m, subhorizontal joint, undulating, rough,<br/>silt infill</li> </ul>                     |                           | М           |               |                      |                             |                                    |             |                                                    |                              | ]                |
| -<br>-<br>-         |          | - at 14.38 m, subhorizontal joint, undulating, smooth, silt infill                                          |                           |             | 47-R2<br>R17  |                      |                             | 117                                | <b>&gt;</b> |                                                    |                              | 1139—            |
| -                   |          | <ul> <li>at 14.43 m, inclined joint, undulating, smooth, oxidized</li> </ul>                                |                           | И           |               |                      |                             |                                    |             |                                                    |                              | -                |
| -<br>16<br>-        | _        | at 14.49 m, subhorizontal joints, planar, rough, oxidized, silt infill                                      |                           |             |               |                      |                             |                                    |             | <b>~</b>                                           | ▄▗▄                          | <u> </u>         |
| -                   | ll drill | - at 14.50 m, slightly to moderately weathered (W2-W3), medium strong (R3)                                  |                           | V           | D40           |                      |                             |                                    |             |                                                    |                              | -                |
| -                   | Diamond  | - at 14.56 m, subhorizontal joint, stepped, smooth, oxidized, silt infill                                   |                           | 1           | R18<br>47-R3  |                      |                             | 25                                 | <b>.</b>    |                                                    |                              | 1138-            |
| -<br>-<br>-         | Dia      | - at 14.62 m, subhorizontal joint, planar, rough, oxidized                                                  |                           | П           |               |                      |                             |                                    |             |                                                    |                              |                  |
| — 17<br>-<br>-      |          | - at 14.90 m, subhorizontal joint, undulating, rough, oxidized                                              |                           |             |               |                      |                             |                                    |             | _                                                  |                              | • -<br>-         |
| -<br>-              |          | - at 15.09 m, subhorizontal joint, planar, smooth, oxidized                                                 |                           | M           | R19           |                      |                             |                                    |             |                                                    |                              | -                |
| _                   |          | - at 15.33 and 15.37 m, closely spaced inclined joints, stepped, smooth, heavily oxidized, very strong (R5) |                           | Λ           | KIS           |                      |                             |                                    |             |                                                    |                              | 1137—            |
|                     |          | - at 15.45 m, subhorizontal joint, undulating, rough,                                                       |                           | Ш           | 47-R4         |                      |                             | 76                                 |             |                                                    |                              | -                |
| — 18<br>–           |          | oxidized - at 15.61 m, inclined joint, undulating, smooth,                                                  |                           | $\vdash$    |               |                      |                             | ii                                 |             | <u>:</u>                                           | <del>: 🛦 📥 -</del>           | <b>♦</b> ∃       |
| _                   |          | oxidized, silt infill                                                                                       |                           |             |               |                      |                             |                                    |             |                                                    |                              |                  |
| -                   |          | - at 15.70 m, inclined joint, undulating, rough, oxidized                                                   |                           |             |               |                      |                             |                                    |             |                                                    |                              | -                |
| -                   |          | - at 15.73 and 15.74 m, subhorizontal joints, undulating, rough, oxidized                                   |                           |             |               |                      |                             |                                    |             |                                                    |                              | 1136-            |
| -<br><del></del> 19 |          | No recovery GRANITE (BEDROCK) - slightly to moderately                                                      |                           |             |               |                      |                             |                                    |             |                                                    |                              | _                |
| -                   |          | weathered (W2-W3), very strong (R5), white, light                                                           |                           |             |               |                      |                             |                                    |             |                                                    |                              | _                |
| _                   |          | pink and black, medium to coarse grained, JSN: 6 - at 16.00 m, subhorizontal joint, planar, rough,          |                           |             |               |                      |                             |                                    |             |                                                    |                              | _                |
| -                   |          | oxidized                                                                                                    |                           |             |               |                      |                             |                                    |             |                                                    |                              | 1135-            |
| _                   |          | - at 16.08 to 16.30 m, subvertical joint, undulating, smooth, ice infill                                    |                           |             |               |                      |                             |                                    |             |                                                    |                              | 1135             |
| -<br>20             |          | - at 16.23 m, inclined joint, stepped, smooth, heavily oxidized                                             |                           |             |               |                      |                             |                                    |             |                                                    |                              | -                |
| -                   |          | - at 16.35 m, subhorizontal joint, planar, rough, heavily oxidized                                          |                           |             |               |                      |                             |                                    |             |                                                    |                              | -                |
| -                   |          | - at 16.38 m, subhorizontal joint, planar, smooth, heavily oxidized                                         |                           |             |               |                      |                             |                                    |             |                                                    |                              | -                |
| -                   |          | - at 16.45 m, subhorizontal joint, planar, rough,                                                           |                           |             |               |                      |                             |                                    |             |                                                    |                              | 1134-            |
| -<br>-<br>21        |          | oxidized - at 16.57 m, inclined joint, undulating, smooth, oxidized                                         |                           |             |               |                      |                             |                                    |             |                                                    |                              |                  |
| Ė                   |          | - at 16.59 m, subhorizontal joint, undulating, rough,                                                       |                           |             |               |                      |                             |                                    |             |                                                    |                              | -                |
| _                   |          | oxidized, medium strong (R3)  - at 16.76 m, subhorizontal joint, undulating, smooth,                        |                           |             |               |                      |                             |                                    |             |                                                    |                              | -                |
| L                   |          | oxidized                                                                                                    |                           |             |               |                      |                             |                                    |             |                                                    |                              | 1133             |
| _                   |          | - at 16.85 m, inclined joint, undulating, smooth, heavily oxidized                                          |                           |             |               |                      |                             |                                    |             |                                                    |                              | -                |
| — 22<br>-<br>-      |          | - at 16.91 m, subhorizontal, undulating, smooth, heavily oxidized                                           |                           |             |               |                      |                             |                                    |             |                                                    |                              |                  |
| -<br>22.5           |          | No recovery GRANITE (BEDROCK) - slightly weathered (W2),                                                    |                           |             |               |                      |                             |                                    | L_          |                                                    |                              | =                |
|                     |          |                                                                                                             | Contractor: Cyr Drilling  |             |               |                      |                             | Completion                         | Depth:      | 18 m                                               |                              |                  |
|                     |          | TETRA TECH                                                                                                  | Drilling Rig Type: D-10 D | iamo        | nd Dril       | ı                    |                             | Start Date: 2                      | 2016 Se     | eptember                                           | 13                           |                  |
|                     | U        |                                                                                                             | Logged By: VER            |             |               |                      |                             | Completion                         | Date: 2     | 2016 Septe                                         | ember 14                     |                  |
|                     |          | J                                                                                                           | Reviewed By: VER          |             |               |                      |                             | Page 3 of 4                        |             |                                                    |                              |                  |

|                                                              |        |                                                                                                                                                                                                                                                                                                                           | Borehole                    | Ν           | lo:           | G                    | T-47                                                                           |             |            |            |              |              |                |                  |
|--------------------------------------------------------------|--------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------|-------------|---------------|----------------------|--------------------------------------------------------------------------------|-------------|------------|------------|--------------|--------------|----------------|------------------|
| _                                                            |        | GOLDCORP                                                                                                                                                                                                                                                                                                                  | Project: Fall 2016 Geotech  | nica        | al Inve       | stigati              | on                                                                             | Project No  | ENG        | EAR        | C030         | 04-02        |                |                  |
|                                                              |        | COLDCOM                                                                                                                                                                                                                                                                                                                   | Location: Coffee Mine Site  | , Ko        | na Po         | nd                   |                                                                                | Ground Ele  | ev: 11     | 54.63      | m            |              |                |                  |
|                                                              |        |                                                                                                                                                                                                                                                                                                                           | Coffee Creek, Yukon         |             |               |                      |                                                                                | UTM: 5804   | 13 E;      | 6973       | 208 N        | l; Z 7       |                |                  |
|                                                              |        |                                                                                                                                                                                                                                                                                                                           | Thermal                     |             | e             | (%)                  | <ul><li>Unc. Compre</li><li>5</li><li>10</li><li>▲ Excess Ice Conter</li></ul> | 15 20       | <b>●</b> F | ractu<br>2 | re Fre       | quenc        | ey (/m) ●<br>8 | 1                |
| Depth<br>(m)                                                 | Method | Lithological<br>Description                                                                                                                                                                                                                                                                                               | Condition and               | Sample Type | Sample Number | Moisture Content (%) |                                                                                | 60 80       |            | 4          | RQD          | (%)          | <b>\</b>       | Elevation<br>(m) |
|                                                              | 2      | Везоприот                                                                                                                                                                                                                                                                                                                 | Ground Ice<br>Description   | San         | Samp          | Moisture             | Plastic Moist<br>Limit Cont                                                    |             |            | 40<br>■ F  | 60<br>Recove | 80<br>ery (% | 100            |                  |
| 22.5                                                         |        |                                                                                                                                                                                                                                                                                                                           |                             |             |               |                      | 20 40                                                                          | 60 80       |            | 40         | 60           | 80           | 100            |                  |
| -                                                            |        | strong (R4), white, light pink and black, medium to coarse grained, JSN: 6                                                                                                                                                                                                                                                |                             |             |               |                      |                                                                                |             |            |            |              |              |                | 1132             |
| -                                                            |        |                                                                                                                                                                                                                                                                                                                           |                             |             |               |                      |                                                                                |             |            |            |              |              |                | _                |
| - 23<br>-<br>-<br>-<br>-<br>-<br>-<br>-                      |        |                                                                                                                                                                                                                                                                                                                           |                             |             |               |                      |                                                                                |             |            |            |              |              |                | 1131—            |
| - 24<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>25<br>- |        | - at 17.00 m, subhorizontal joint, undulating, rough, oxidized - at 17.25 m, inclined joint, planar, rough, oxidized - at 17.28 m, subhorizontal joint, stepped, smooth, altered, oxidized - from 17.28 to 17.58 m, subvertical joint, undulating, rough, oxidized - at 17.63 m, inclined joint, planar, smooth, oxidized |                             |             |               |                      |                                                                                |             |            |            |              |              |                | 1130—            |
| -<br>-<br>-<br>-<br>-<br>-<br>-<br>26                        |        | - at 17.83 and 17.86 m, inclined joint, planar, rough, oxidized     - at 17.95 m, inclined joint, stepped, rough, oxidized     - at 18.00 m, inclined joint, undulating, smooth, heavily oxidized, subhorizontal joint, undulating, rough, oxidized  END OF BOREHOLE (18.00 metres)                                       |                             |             |               |                      |                                                                                |             |            |            |              |              |                | 1129             |
| -<br>-<br>-<br>-<br>-<br>-<br>-<br>27                        |        |                                                                                                                                                                                                                                                                                                                           |                             |             |               |                      |                                                                                |             |            |            |              |              |                | 1128-            |
| -<br>-<br>-<br>-<br>-<br>-<br>28                             |        |                                                                                                                                                                                                                                                                                                                           |                             |             |               |                      |                                                                                |             |            |            |              |              |                | 1127—            |
| -<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>29                   |        |                                                                                                                                                                                                                                                                                                                           |                             |             |               |                      |                                                                                |             |            |            |              |              |                | 1126—            |
| -<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-                    |        |                                                                                                                                                                                                                                                                                                                           |                             |             |               |                      |                                                                                |             |            |            |              |              |                | 1125—            |
|                                                              |        |                                                                                                                                                                                                                                                                                                                           | Contractor: Cyr Drilling    |             |               |                      |                                                                                | Completion  | n Dept     | th: 18     | m            |              |                |                  |
|                                                              |        | TETRATECH                                                                                                                                                                                                                                                                                                                 | Drilling Rig Type: D-10 Dia | amo         | nd Dril       | I                    |                                                                                | Start Date: | 2016       | Sept       | embei        | r 13         |                |                  |
|                                                              | C      |                                                                                                                                                                                                                                                                                                                           | Logged By: VER              |             |               |                      |                                                                                | Completion  | n Date     | : 201      | 6 Sep        | tembe        | er 14          |                  |
|                                                              |        | J                                                                                                                                                                                                                                                                                                                         | Reviewed By: VER            |             |               |                      |                                                                                | Page 4 of   |            |            |              |              |                |                  |
|                                                              |        |                                                                                                                                                                                                                                                                                                                           |                             |             |               |                      |                                                                                |             |            |            |              |              |                |                  |

Borehole No: GT-48 **=**GOLDCORP Project: Fall 2016 Geotechnical Investigation Project No: ENG.EARC03004-02 Location: Coffee Mine Site, North Pond Ground Elev: 916.22 m Coffee Creek, Yukon UTM: 585236 E; 6975725 N; Z 7 ♦ Unc. Compressive (MPa) ♦ 10 15 20 ● Fracture Frequency (/m) ● Thermal 4 6 Sample Number Sample Type Condition Elevation (m) Lithological Depth (m) ▲ RQD (%) ▲ and Description 60 80 Ground Ice Description Recovery (%) No recovery Unfrozen 916 R1 915 GRAVEL AND COBBLES - fines washed away during drilling, poorly graded, loose, yellowish brown, blue and grey, subangular to subrounded gravel and cobbles - at 1.50 m, grey to white, subangular gravel and cobbles SCHIST (BEDROCK) - slightly to moderately weathered (W2-W3), strong (R4), bluish grey 2 914 No recovery 3 913 Diamond drill GNEISS (BEDROCK) - slightly to moderately weathered R3 (W2-W3), medium strong to strong (R3-R4), bluish grey, fine grained, JSN: 9 912 - at 4.27 m, 50 mm white quartz vein - at 4.50 m, slightly weathered (W2), strong to very strong (R4-R5), white quartz veins - at 4.73 and 4.85 m, inclined joints, planar, rough, oxidized, 264 48-R1 silt infill - 5 - at 4.85 m, extremely strong (R6) - at 5.03 and 5.18 m, inclined joints, undulating, smooth, R4 911 - from 5.03 to 5.18 m, two vertical veins - at 5.27 m, inclined joint, stepped, smooth, oxidized, calcite - at 5.39 m, inclined joint, undulating, rough, oxidized, calcite 6 infill, yellow staining - at 5.53 m, subhorizontal joint, planar, rough, red oxides, 910 calcite infill, yellow staining - at 5.65 m, inclined, planar, rough, oxidized, calcite mixture, 48-R2 - from 5.69 to 5.81 m, vertical joint, undulating, smooth, 172 48-R3 oxidized, silt infill R5 - at 5.81 m, subhorizontal joint, undulating, smooth, oxidized, silt infill at 5.92 and 5.96 m, two closely separated joints, inclined, 909 undulating, smooth, oxidized, silt infill, yellow to brown Completion Depth: 9 m Contractor: Cyr Drilling Drilling Rig Type: D-10 Diamond Drill Start Date: 2016 September 8 TETRA TECH Logged By: RG Completion Date: 2016 September 8 Reviewed By: VER Page 1 of 2



## Borehole No: **GT-48**

Project: Fall 2016 Geotechnical Investigation Project No: ENG.EARC03004-02

Location: Coffee Mine Site, North Pond Ground Elev: 916.22 m

Coffee Creek Yukon UITM: 585236 F: 6975725 N: 7.7

|                                                               |               | Coff                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | ee Creek, Yukon                                          |             |                      |                        | UTM: 58523            | 86 E; 6975725 N; Z 7                                                                                              |                  |
|---------------------------------------------------------------|---------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------|-------------|----------------------|------------------------|-----------------------|-------------------------------------------------------------------------------------------------------------------|------------------|
| Depth<br>(m)                                                  | Method        | Lithological<br>Description                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | Thermal<br>Condition<br>and<br>Ground Ice<br>Description | Sample Type | Sample Number        | ♦ Unc. Compres<br>5 10 | sive (MPa) 🗘<br>15 20 | ● Fracture Frequency (/m) ●  2   4   6   8  ■ RQD (%) ■  40   60   80   100  ■ Recovery (%) ■  40   60   80   100 | Elevation<br>(m) |
| - 8<br>- 8<br>                                                | Diamond drill | No recovery GNEISS (BEDROCK) - slightly to moderately weathered (W2-W3), bluish grey, fractures due to mechanical breaks and natural joints, fine grained, JSN: 6 - at 6.35 m, very strong (R5) - at 6.60 m, slightly weathered (W2), wet, quartz veins to 15 mm, fine grained - at 6.60 m, inclined joint, planar, rough, oxidized - at 6.79 m, subhorizontal joint, planar, smooth, oxidized - at 6.94 m, inclined joint, undulating, rough, oxidized, calcite mixture                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                          | V           | 48-R4<br>R6<br>48-R5 |                        | 240 <sub>&lt;</sub>   | <b>Y</b>                                                                                                          | 908-             |
| - 9                                                           |               | <ul> <li>at 6.98 m, subhorizontal joint, undulating, smooth, oxidized from 7.06 to 7.26 m, subvertical joint, planar, smooth, highly oxidized, calcite</li> <li>at 7.34 m, inclined joint, planar, smooth, minor oxidization</li> <li>at 7.39 m, inclined joint, undulating, rough, oxidized</li> <li>at 7.50 m, more frequent quartz veins</li> <li>at 7.87 m, inclined joint, planar, rough, minor oxidization</li> <li>at 8.00 m, inclined joint, planar, rough, moderately oxidized</li> <li>at 8.05 m, subvertical joint, planar, rough, highly oxidized</li> <li>at 8.52 m, inclined joint, undulating, rough, slightly oxidized</li> <li>at 8.57 m, inclined joint, undulating, rough, oxidized</li> <li>at 8.62 m, inclined joint, undulating, rough, oxidized</li> <li>at 8.70 m, inclined joint, undulating, rough, oxidized</li> <li>at 8.70 m, inclined joint, undulating, rough, ~ 1 mm thick silt/sand infill</li> <li>from 8.80 to 9.00 m, subvertical joint, planar, rough, highly oxidized with calcite</li> </ul> |                                                          |             |                      |                        |                       |                                                                                                                   | 907              |
| - 12<br>- 12<br>12<br>13                                      |               | END OF BOREHOLE (9.00 metres)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                          |             |                      |                        |                       |                                                                                                                   | 905—             |
| -<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>- |               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                          |             |                      |                        |                       |                                                                                                                   | 902-             |
| 15                                                            |               | Con                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | L<br>tractor: Cyr Drilling                               |             |                      |                        | Completion            | L<br>Depth: 9 m                                                                                                   |                  |



| Contractor: Cyr Drilling              | Completion Depth: 9 m             |
|---------------------------------------|-----------------------------------|
| Drilling Rig Type: D-10 Diamond Drill | Start Date: 2016 September 8      |
| Logged By: RG                         | Completion Date: 2016 September 8 |
| Reviewed By: VER                      | Page 2 of 2                       |

|                |          |                                                                                           | Borehole                                 | N              | 0:            | G                    | T-50                | )                  |                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |        |                  |              |               |
|----------------|----------|-------------------------------------------------------------------------------------------|------------------------------------------|----------------|---------------|----------------------|---------------------|--------------------|-----------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------|------------------|--------------|---------------|
|                |          | GOLDCORP                                                                                  | Project: Fall 2016 Geotech               |                |               |                      |                     |                    | Project No                  | : ENG.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | .EARC  | 03004-02         | <u>)</u>     |               |
|                |          | OOLDCORP                                                                                  | Location: Coffee Mine Site               |                |               |                      |                     |                    | Ground E                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |        |                  | <del>-</del> |               |
|                |          |                                                                                           | Coffee Creek, Yukon                      | ,              |               |                      |                     |                    | JTM: 585                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |        | 67 N: <i>7</i> 7 |              |               |
|                |          |                                                                                           | Thermal                                  |                |               | (%                   |                     | mpress<br>10 1     | ve (MPa)<br>5 20            | ◆ Find the find t |        | -                | cy (/m) ●    | ,             |
|                | _        |                                                                                           | Condition                                | <u>B</u>       | nber          | ent (                | ▲Excess Ice 0       | Content (°<br>40 6 |                             | )                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 2      | 4 6              | 8            |               |
| Depth<br>(m)   | Method   | Lithological Description                                                                  | and                                      | Sample Type    | Sample Number | Moisture Content (%) | ■ Bulk E<br>1400 16 | Density<br>600 18  | (kg/m³) <b>■</b><br>00 2000 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |        | RQD (%)          | 100          | Elevation (m) |
|                | _        |                                                                                           | Ground Ice<br>Description                | Sar            | Sam           | Aoistur              | Plastic I           | Moistur<br>Conten  |                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |        | covery (%        |              | - I III       |
| 0              |          |                                                                                           | •                                        |                |               | _                    | 20 4                | 40 6               | 0 80                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |        | 80 _ 80          | 100          |               |
|                |          | MOSS AND PEAT - wet, dark brown, (100 mm thick) No recovery                               | Thawed                                   |                |               |                      | :                   | :                  |                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |        | T                |              |               |
| -              |          | SILT - organics, wet, dark brown                                                          |                                          | М              |               |                      | :                   |                    | :                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |        |                  |              | -             |
| _              |          |                                                                                           | Frozen, Vx, Vs 35-45%                    |                | 50-S1<br>R1   | 213.6                | <b>A</b>            | :                  | ;                           | •                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | :      |                  | :            |               |
| -              |          | GRAVEL - some sand, trace silt, well graded, dark greyish brown, subangular gravel        | Vc, Vx 10-15%, ice coating to 5 mm thick |                | 50-S2         | 14.9                 | •                   |                    |                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |        |                  |              | 906-          |
| - 1<br>-       |          | No recovery  COBBLES - gravelly, loose                                                    | Vc, Vx 10-15%                            |                |               |                      |                     |                    |                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |        |                  |              |               |
| -              |          |                                                                                           |                                          | M              |               |                      |                     | :                  |                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |        |                  |              | -             |
| -              |          |                                                                                           |                                          | И              | R2            |                      | :                   | :                  | :                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |        |                  |              |               |
| -              |          | No recovery                                                                               |                                          |                |               |                      |                     |                    | :                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |        |                  | :            | 905-          |
| F <sub>2</sub> |          |                                                                                           |                                          |                |               |                      | :                   | :                  | :                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |        |                  | i            |               |
| - 2<br>-       |          | GRAVEL AND SAND - some silt, well graded, grey, subangular gravel                         | Vc, Vx 10-15%                            |                | 50-S3         |                      |                     |                    |                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |        |                  |              |               |
| E              |          | SILT - organics, interlayers of sand to 100 mm thick                                      | Nbe                                      |                | 50-S4         | 53.3                 |                     | I •                |                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |        |                  |              | -             |
| E              |          |                                                                                           |                                          |                | R3<br>50-S5   |                      |                     |                    |                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |        |                  |              |               |
| -              |          | COBBLES AND GRAVEL - sandy, silty                                                         | Vc, Vx 10-20%                            | П              | 30-S3         |                      | :                   | :                  | :                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | :      |                  |              | 904-          |
| -<br>- 3       |          | GRAVEL - sandy, trace silt, residual soil of completely                                   | Vc, Vs <10%                              | Ш              |               |                      |                     |                    |                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |        |                  |              |               |
| -              |          | weathered bedrock                                                                         | VC, VS < 10%                             | И              |               |                      |                     |                    | :                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |        |                  |              | -             |
| -              | <b>=</b> | GNEISS (BEDROCK) - foliated, grey                                                         |                                          | М              | D.4           |                      |                     | :                  |                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |        |                  |              |               |
| F              | d drill  |                                                                                           |                                          | И              | R4            |                      | :                   | :                  | :                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |        |                  | :            |               |
| E              | puou     | No recovery                                                                               |                                          |                |               |                      | :                   | :                  | :                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |        |                  |              | 903-          |
| <del>-</del> 4 | Dia      | GNEISS (BEDROCK) - slightly to moderately                                                 | Nbe                                      |                | 50 D4         |                      |                     | . <u> </u>         |                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |        | •                | I            | <b>•</b> :    |
| -              |          | weathered (W2-W3), foliated, strong (R4), grey, JSN: 2                                    |                                          | $\mathbf{\Pi}$ | 50-R1         |                      |                     |                    |                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |        |                  |              | -             |
| -              |          | - at 4.11, 4.24, 4.25, 4.30 and 4.35 m, inclined joints,                                  |                                          | М              | R5            |                      | :                   | :                  | :                           | o                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |        |                  | 14           | 1             |
| -              |          | planar and undulating, smooth, oxidized, silt infill, fine sand                           |                                          | И              |               |                      | :                   | :                  | :                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | i      |                  | :            | 902-          |
| <b>-</b>       |          | - at 4.39, 4.46, 4.52, 4.60, 4.65 and 4.73 m, inclined joints, oxidized, silt infill      |                                          |                |               |                      | :                   |                    |                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |        | <u> </u>         | <u> </u>     |               |
| — 5<br>-       |          | No recovery /                                                                             |                                          | П              |               |                      | :                   |                    | :                           | 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | Ė      |                  |              | •             |
| F              |          | GNEISS (BEDROCK) - slightly to moderately weathered (W2-W3), foliated, strong (R4), grey, |                                          | М              | 50-R2         |                      |                     |                    |                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |        |                  |              | -             |
| E              |          | JSN: 9                                                                                    |                                          | X              | R6            |                      | :                   | :                  | :                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |        |                  |              |               |
| _              |          | - at 5.00 m, subhorizontal joint, stepped, smooth, oxidized                               |                                          | II             |               |                      | :                   | :                  | :                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | :      |                  |              | 901-          |
| _<br>_ 6       |          | - at 5.11 m, inclined joint, stepped, smooth, slightly oxidized                           |                                          | Ц              |               |                      |                     | <u>:</u>           |                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | -      |                  |              |               |
| -              |          | - at 5.19 m, subhorizontal joint, stepped, smooth,                                        |                                          |                |               |                      |                     |                    |                             | T                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |        |                  |              |               |
| -              |          | oxidized - from 5.43 to 5.51 m, vertical fracture, undulating,                            |                                          | M              |               |                      |                     | :                  |                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | :      |                  |              |               |
| -              |          | rough, oxidized - at 5.45, 5.50 and 5.56 m, inclined joints, planar,                      |                                          | И              | R7            |                      | :                   | :                  | :                           | 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | :      |                  |              |               |
| -              |          | smooth, oxidized                                                                          | Vx, Vc 1-12% — — — —                     | Ц              | FO P.         | 40.0                 |                     | :                  | :                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | :      |                  |              | 900-          |
| _<br>_ 7       |          | - at 5.63 and 5.67m, inclined joints, undulating, rough, silt infill                      |                                          |                | 50-R3         | 12.3                 |                     |                    |                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |        | •                |              |               |
| _              |          | - at 5.80 m, inclined joint, planar, smooth, oxidized, silt infill                        |                                          | M              |               |                      |                     | :                  |                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |        |                  |              | -             |
| 7.5            |          | - at 5.92 m, subhorizontal joint, stepped, rough,                                         |                                          | /              |               |                      |                     | : .                |                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | :      |                  |              |               |
|                |          | <b>-</b>                                                                                  | Contractor: Cyr Drilling                 |                |               |                      |                     |                    | Completic                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |        |                  |              |               |
|                |          | TETRA TECH                                                                                | Drilling Rig Type: D-10 Dia              | amor           | nd Dril       | I                    |                     |                    | Start Date                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |        |                  |              |               |
|                |          | •]                                                                                        | Logged By: VER                           |                |               |                      |                     |                    | Completic                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | : 2016 | Septemb          | er 5         |               |
|                |          | NG-FARC03004-02 GP.I FBA GDT 17/2/14                                                      | Reviewed By: VER                         |                |               |                      |                     |                    | Page 1 of                   | 2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |        |                  |              |               |

|                                            |               |                                                                                                                                                                                                                 | Borehole                         | Ν           | 0:            | G                    | T-50                |                                                                |                             |                                    |
|--------------------------------------------|---------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------|-------------|---------------|----------------------|---------------------|----------------------------------------------------------------|-----------------------------|------------------------------------|
|                                            |               | GOLDCORP                                                                                                                                                                                                        | Project: Fall 2016 Geotec        |             |               |                      |                     | Project No: I                                                  | ENG.EARC03004-02            |                                    |
|                                            |               | COLDCOM                                                                                                                                                                                                         | Location: Coffee Mine Sit        | e, No       | rth Po        | nd                   |                     | Ground Elev                                                    | r: 906.73 m                 |                                    |
|                                            |               |                                                                                                                                                                                                                 | Coffee Creek, Yukon              |             |               |                      |                     | UTM: 58528                                                     | 9 E; 6975667 N; Z 7         |                                    |
| Depth<br>(m)                               | Method        | Lithological<br>Description                                                                                                                                                                                     | Thermal Condition and Ground Ice | Sample Type | Sample Number | Moisture Content (%) | ▲ Excess Ice Conten | 15 20<br>t (% by volume) ▲<br>60 80<br>y (kg/m³) ■<br>800 2000 | ● Fracture Frequency (/m) ● | Elevation<br>(m)                   |
|                                            |               |                                                                                                                                                                                                                 | Description                      | S           | Sa            | Moist                | Limit Conte         |                                                                | ■ Recovery (%) ■            |                                    |
| 7.5                                        |               | oxidized                                                                                                                                                                                                        |                                  |             | R8            |                      | 20 40               | 60 80                                                          | 40 60 80 100                |                                    |
| -<br>-<br>-<br>- 8<br>-<br>-               |               | - from 6.00 to 6.75 m, very closely spaced joint, 20-60 mm spacing - from 6.75 to 7.00 m, fragmented zone, coarser sand to fine gravel - at 7.00 m, moderately weathered (W3), weak (R2),                       |                                  | X           | 50-R4         |                      |                     | 62,                                                            |                             | 899—<br>-<br>-<br>-<br>-           |
| -<br>-<br>-<br>-<br>-<br>-<br>9<br>-       | Diamond drill | very closely spaced joints - at 7.85 m, strong (R4) - from 8.00 to 8.25 m, mechanically fragmented, loose, gravel sized rock fragments - from 8.25 to 8.80 m, very closely spaced joints - at 8.80 m, weak (R2) |                                  | X           | R9<br>50-R5   |                      |                     | *                                                              |                             | 898—<br>-<br>-<br>-<br>-           |
| -<br>-<br>-<br>-<br>-<br>-<br>-            |               | No recovery                                                                                                                                                                                                     |                                  | X           | R10<br>50-R6  |                      |                     | <b>♦</b>                                                       | 0                           | 897—                               |
| - 10<br>                                   |               | END OF BOREHOLE (10.00 metres)  Note: Excess ice content determined in laboratory is shown graphically. Estimated excess ice content values are provided in `Ground Ice Description' column.                    |                                  |             |               |                      |                     | •                                                              |                             | 896—                               |
| -<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>12 |               |                                                                                                                                                                                                                 |                                  |             |               |                      |                     |                                                                |                             | 895—                               |
| -<br>-<br>-<br>-<br>-<br>-<br>13           |               |                                                                                                                                                                                                                 |                                  |             |               |                      |                     |                                                                |                             | 894—<br>-<br>-<br>-<br>-<br>-<br>- |
| -<br>-<br>-<br>-<br>-<br>-<br>- 14         |               |                                                                                                                                                                                                                 |                                  |             |               |                      |                     |                                                                |                             | 893—                               |
| -<br>-<br>-<br>-<br>-<br>-<br>-<br>15      |               |                                                                                                                                                                                                                 |                                  |             |               |                      |                     |                                                                |                             | 892—                               |
|                                            |               | <b>-</b>                                                                                                                                                                                                        | Contractor: Cyr Drilling         |             |               |                      |                     | Completion                                                     | •                           |                                    |
|                                            |               | . TETRA TECH                                                                                                                                                                                                    | Drilling Rig Type: D-10 D        | iamo        | nd Dril       | I                    |                     | <b>+</b>                                                       | 2016 September 5            |                                    |
| [ <b>"</b>                                 |               | <b>'</b> J                                                                                                                                                                                                      | Logged By: VER                   |             |               |                      |                     | 1                                                              | Date: 2016 September 5      |                                    |
| BOCK COE                                   |               |                                                                                                                                                                                                                 | Reviewed By: VER                 |             |               |                      |                     | Page 2 of 2                                                    |                             |                                    |

|                    |       |                                                                                            | Boreho                       | ole N                        | lo:                  | GT-51                                    |                                              |                   |
|--------------------|-------|--------------------------------------------------------------------------------------------|------------------------------|------------------------------|----------------------|------------------------------------------|----------------------------------------------|-------------------|
|                    |       | GOLDCORF                                                                                   | Project: Fall 2016 (         | Geotechnic                   | al Inve              | estigation                               | Project No: ENG.EARC03004-02                 |                   |
|                    |       | COLDCOM                                                                                    | Location: Coffee M           | line Site, No                | orth Po              | ond                                      | Ground Elev: 909.84 m                        |                   |
|                    |       |                                                                                            | Coffee Creek, Yuki           | on                           |                      |                                          | UTM: 585314 E; 6975679 N; Z 7                |                   |
|                    |       |                                                                                            | '                            |                              |                      | ♦ Unc. Compressive (                     | MPa) ♦ 20 Fracture Frequency (/m) ●          |                   |
|                    |       |                                                                                            | Thermal                      | e e                          | Moisture Content (%) | 5 10 15<br>▲ Excess Ice Content (% by    |                                              |                   |
| ے                  | pc    | Lithological                                                                               | Condition                    | Sample Type<br>ample Numbe   | ntent                | 20 40 60                                 | 80                                           | uoi<br>uoi        |
| Depth<br>(m)       | leth. | Description                                                                                | and                          | lple<br>N ele                | S                    | ■ Bulk Density (kg/r<br>1400 1600 1800 2 | m³) ■                                        | TS#3<br>Elevation |
|                    | 2     | Becomplien                                                                                 | Ground Ice                   | Sample Type<br>Sample Number | sture                |                                          | Liquid 40 80 80 100                          | .                 |
|                    |       |                                                                                            | Description                  |                              | Mo                   | l                                        | Limit ■ Recovery (%) ■                       |                   |
| 0                  |       | MOSS AND PEAT - wet, dark brown, wood                                                      |                              |                              |                      | 20 40 60                                 | 80 40 60 80 100                              |                   |
| -                  |       | pieces, (200 mm thick)                                                                     | Thawed                       |                              |                      |                                          |                                              |                   |
| Ē                  |       | No recovery  ORGANICS - trace to some silt, trace sand,                                    | Frozen, Vx 15-20%            | 51-S1                        | 218.8                |                                          |                                              |                   |
|                    |       | black, (100 mm thick)                                                                      | Vc, Vx 20-30%                | R1<br>51-S2                  | 179                  | •                                        |                                              |                   |
|                    |       | GRAVEL AND SAND - some silt, dark grey, angular gravel                                     |                              | 31-52                        |                      |                                          |                                              | 909               |
| _ 1                |       | No recovery                                                                                | Vc, Vs, Vx 20-25%, ice       |                              |                      |                                          | •••••                                        |                   |
|                    |       | SAND - silty, trace clay, trace gravel, cobbles disseminated throughout, well graded, dark | lenses and coatings to 5     | 51-S3                        |                      |                                          |                                              |                   |
| _                  |       | grey, angular gravel                                                                       | THIT UNCK                    | VI R2                        | 22.5                 |                                          |                                              |                   |
| _                  |       |                                                                                            |                              | 51-S4                        | 33.5                 |                                          |                                              |                   |
| _                  |       |                                                                                            |                              | 51-S5                        | 34.9                 | <b>A</b> •                               |                                              | 908               |
| <u> </u>           |       |                                                                                            | Vc, Vs, Vx 20-25%, 10 mm     | 51-S6                        | 29.5                 | <b>A</b> •                               | ····                                         |                   |
| -                  |       |                                                                                            | thick subhorizontal ice lens | П                            |                      |                                          |                                              |                   |
| -                  |       | GNEISS (BEDROCK) - highly weathered (W4), very strong (R5), grey                           |                              | R3                           |                      |                                          |                                              |                   |
| -                  |       | - at 2.65 m, subvertical fracture infilled with ice                                        | Clear ice lens 3-8 mm thick  | Λ                            |                      |                                          |                                              |                   |
| -                  |       | 3-8 mm thick                                                                               | 0.000.000.0000               | 51-R1                        |                      |                                          | 116                                          | 907               |
| — 3<br>-           |       | No recovery GNEISS (BEDROCK) - slightly to moderately                                      |                              | 51-R2                        |                      |                                          | 280                                          |                   |
| -                  |       | weathered (W2-W3), extremely strong (R6),                                                  | Frozen SILT - sandy - joint  | M                            |                      |                                          |                                              |                   |
| -                  | drill | grey, JSN: 4 - from 3.18 to 3.83 m, subvertical fracture,                                  | infill to 15 mm thick, Nbe   | R4                           |                      |                                          |                                              |                   |
| -                  | pu    | undulating, smooth, infilled with ice and frozen sandy silt                                |                              | И                            |                      |                                          |                                              |                   |
| -                  | amond | - at 3.34 and 3.93 m, inclined joint, planar,                                              |                              | 51-R3                        |                      |                                          | 280                                          | 906               |
| <del></del> 4<br>- | Ö     | smooth, oxidized, calcite infill - at 4.00 m, slightly weathered (W2), strong              |                              |                              |                      |                                          |                                              |                   |
| _                  |       | (R4)                                                                                       |                              | М                            |                      |                                          |                                              |                   |
| _                  |       | - at 4.05 and 4.11 m, inclined joints, stepped, rough, oxidized, calcite infill            |                              | $\Lambda$ R5                 |                      |                                          | 36                                           |                   |
| -<br>-             |       | - at 4.40 m, inclined joint, undulating, smooth,                                           |                              | 51-R4                        |                      |                                          |                                              |                   |
| -<br>-             |       | slight oxidization - at 4.50 m, medium strong (R3)                                         |                              | 4                            |                      |                                          |                                              | 905               |
| <del></del> 5<br>- |       | No recovery /                                                                              |                              |                              |                      |                                          |                                              |                   |
| -                  |       | GNEISS (BEDROCK) - slightly weathered (W2),<br>strong (R4), grey, JSN: 9                   |                              | 14                           |                      |                                          |                                              |                   |
| _                  |       | - at 5.20 m, inclined joint, planar, rough,                                                |                              | М                            |                      |                                          |                                              |                   |
| -                  |       | oxidized - at 5.54 m, subhorizontal joint, stepped,                                        |                              | R6                           |                      |                                          |                                              |                   |
| -                  |       | smooth, oxidized                                                                           |                              | NO ING                       |                      |                                          |                                              | 904               |
| <del></del> 6<br>  |       | - at 6.00 m, subhorizontal joint, stepped,                                                 |                              | 11                           |                      |                                          |                                              |                   |
| -                  |       | rough, oxidized - from 6.20 to 6.30 m, subvertical joint,                                  |                              |                              |                      |                                          |                                              |                   |
| _                  |       | undulating, rough, oxidized                                                                |                              | 51-R5                        |                      |                                          | 102                                          |                   |
| _                  |       | - at 6.50 m, very strong (R5)                                                              |                              |                              |                      |                                          |                                              |                   |
| -                  |       |                                                                                            |                              | M                            |                      |                                          |                                              | 903               |
| <del></del> 7<br>  |       | - at 7.00 m, inclined joint, undulating, rough,                                            |                              | M                            |                      |                                          |                                              |                   |
| -                  |       | oxidized<br>- at 7.15 m, strong (R4), JSN: 4                                               |                              | 51-R6<br>R7                  |                      |                                          | 82                                           |                   |
| 7.5                |       | ,                                                                                          | <u> </u>                     |                              |                      |                                          | <u>:                                    </u> |                   |
|                    |       | <b>1</b>                                                                                   | Contractor: Cyr Dri          |                              |                      |                                          | Completion Depth: 21 m                       |                   |
|                    | 7     | TETRA TECH                                                                                 | Drilling Rig Type: [         | 0-10 Diamo                   | nd Dri               | ill                                      | Start Date: 2016 September 6                 |                   |
|                    |       | <b>'</b>                                                                                   | Logged By: VER               |                              |                      |                                          | Completion Date: 2016 September 7            |                   |
| DOCK CO            | DE E1 | IG-EARC03004-02 GPJ FBA GDT 17/2/14                                                        | Reviewed By: VER             | <u> </u>                     |                      |                                          | Page 1 of 3                                  |                   |

|                 |             |                                                                                               | Boreho                | le N                         | 10                   | GT-51                                        |                         |                                         |               |      |               |
|-----------------|-------------|-----------------------------------------------------------------------------------------------|-----------------------|------------------------------|----------------------|----------------------------------------------|-------------------------|-----------------------------------------|---------------|------|---------------|
|                 |             | GOLDCORP                                                                                      | Project: Fall 2016 G  | eotechni                     | cal Inv              | estigation                                   | Project N               | o: ENG.EARC03                           | 3004-02       |      |               |
|                 |             | OOLDCORI                                                                                      | Location: Coffee Mir  |                              |                      |                                              | <del> </del>            | lev: 909.84 m                           |               |      |               |
|                 |             |                                                                                               | Coffee Creek, Yuko    |                              |                      |                                              | UTM: 585                | 5314 E; 6975679                         | N: Z 7        |      |               |
|                 |             |                                                                                               |                       |                              |                      | ♦ Unc. Compressive (                         | MPa) 🛇                  | ·                                       |               |      |               |
|                 |             |                                                                                               | Thermal               |                              | 8                    | 5 10 15                                      | 20                      | Fracture Freque                         |               |      |               |
|                 | _           |                                                                                               | Condition             | Sample Type<br>Sample Number | Moisture Content (%) | ▲ Excess Ice Content (% by 20 40 60          | volume) A               | 2 4 6                                   | 8             |      | _             |
| Depth<br>(m)    | Method      | Lithological                                                                                  | and                   | Sample Type<br>ample Numbe   | Sont                 | ■ Bulk Density (kg/i                         | m³) <b>■</b>            | ▲ RQD (%)                               | •             | LS#3 | Elevation (m) |
| ے ا             | ₩           | Description                                                                                   | Ground Ice            | amb                          | Jie (                |                                              |                         | 40 60 80                                | 100           | 2    | Ele)          |
|                 |             |                                                                                               | Description           | Sar                          | oist                 |                                              | Liquid<br>Limit         | Recovery (                              | D/. \ ■       |      |               |
| 7.5             |             |                                                                                               | Boomption             |                              | 2                    | <b>I</b>                                     | <br>1<br>80             | 40 60 80                                | ·             |      |               |
| <u>7.5</u>      |             | - at 7.30 m, subhorizontal joint, planar, rough,                                              |                       |                              |                      | 20 40 00                                     | :                       | : : :                                   | 100           | Т    | -             |
| _               |             | oxidized                                                                                      |                       | M                            |                      |                                              |                         |                                         |               |      | -             |
| -               |             | - at 7.50 m, inclined joint, planar, rough, oxidized                                          |                       | Λ                            |                      |                                              | :                       |                                         | $\perp \perp$ |      | 902-          |
| 8<br>-          |             | - from 7.70 to 7.74 m, subhorizontal fault                                                    |                       |                              |                      |                                              | :                       |                                         |               |      | -             |
| -               |             | zone, silty, clay (rock flour/gouge), yellowish - at 7.90 m, inclined joint, stepped, smooth, |                       | И                            |                      |                                              | :                       |                                         |               |      | -             |
| _               |             | oxidized                                                                                      |                       | M                            |                      |                                              |                         |                                         |               |      | -             |
| -               |             | - at 7.96 m, subhorizontal joint, planar, rough, calcite infill                               |                       | D0                           |                      |                                              | :                       |                                         |               |      | -             |
| _               |             | - at 8.00 m, subhorizontal joint, planar,                                                     |                       | R8                           |                      |                                              | :                       |                                         |               |      | 901-          |
| <b>-</b> 9      |             | smooth, oxidized, calcite infill, JSN: 9                                                      |                       | И                            |                      |                                              |                         |                                         |               |      | -             |
| F               |             | - at 8.10 m, subhorizontal joint, planar, smooth, oxidized, calcite infill                    |                       | И                            |                      |                                              | :                       | : :                                     |               |      | _             |
| F               |             | - from 8.44 to 9.50 m, vertical fracture,                                                     |                       | / /                          |                      |                                              |                         |                                         |               |      | -             |
| <del>-</del>    |             | undulating, rough to smooth, oxidized, calcite infill                                         |                       |                              |                      |                                              | :                       | <b>•</b>                                | 1:            |      | _             |
| -               |             | - at 9.50 m, strong (R4)                                                                      |                       | M                            |                      |                                              |                         |                                         |               |      |               |
| -<br>10         |             | - at 9.72 m, inclined joint, planar, rough,                                                   |                       | M                            |                      |                                              |                         |                                         |               |      | 900-          |
| - '°            |             | oxidized, calcite infill - at 9.76 m, 20 mm thick quartzite vein                              |                       |                              |                      |                                              |                         |                                         |               |      | -             |
| F               |             | - at 10.00 m, inclined joint, planar, rough,                                                  |                       | R9                           |                      |                                              |                         |                                         |               |      | _             |
| -               |             | oxidized                                                                                      |                       | И                            |                      |                                              |                         |                                         |               |      | -             |
| -               |             |                                                                                               |                       | И                            |                      |                                              |                         |                                         |               |      | -             |
| -               | _           | - at 10.80 m, extremely strong (R6)                                                           |                       | 51-R                         | 7                    |                                              | 294                     |                                         |               |      | 899-          |
| _ 11            | amond drill | - at 11.05 m, inclined joint, planar, rough,                                                  |                       |                              |                      |                                              | · · <u>· · · · · · </u> | •                                       |               |      | -             |
| -               | puc         | oxidized                                                                                      |                       |                              |                      |                                              |                         |                                         |               |      | -             |
| _               | au          | - at 11.13 m, inclined joint, planar, rough,                                                  |                       | H                            |                      |                                              | :                       |                                         |               |      | _             |
| F               | ä           | oxidized - at 11.43 m, horizontal joint, planar, rough,                                       |                       | M                            |                      |                                              | :                       |                                         |               |      | -             |
| -               |             | oxidized                                                                                      |                       | R10                          |                      |                                              | :                       |                                         |               |      | 898-          |
| -<br>12         |             |                                                                                               |                       | 51-R                         | 8                    |                                              | 262                     |                                         |               |      | -             |
| _               |             |                                                                                               |                       | И                            |                      |                                              | :                       |                                         |               |      | -             |
| Ė               |             | - from 12.30 to 12.40 m, subhorizontal joint,                                                 |                       | / I                          |                      |                                              | :                       |                                         |               |      | _             |
| _               |             | stepped, rough, oxidized                                                                      |                       |                              |                      |                                              |                         | ›┊∳┊ <mark></mark>                      | <b>■ Å</b>    |      | -             |
| F               |             |                                                                                               |                       | M                            |                      |                                              |                         |                                         |               |      | -             |
|                 |             |                                                                                               |                       | M                            |                      |                                              |                         |                                         |               |      | 897—          |
| — 13<br>-       |             |                                                                                               |                       | M                            |                      |                                              | 275                     |                                         |               |      | -             |
| ļ.              |             |                                                                                               |                       | 51-R<br>R11                  |                      |                                              | 2750                    |                                         |               |      | _             |
| _               |             |                                                                                               |                       | /                            |                      |                                              |                         |                                         |               |      | -             |
| _               |             | - at 13.55 m, subhorizontal joint, planar,                                                    |                       | / \                          |                      |                                              |                         |                                         |               |      | -             |
| -               |             | rough, oxidized No recovery                                                                   |                       |                              |                      |                                              | :                       |                                         | :             |      | 896-          |
| <del>-</del> 14 |             | GNEISS (BEDROCK) - slightly weathered (W2),                                                   |                       |                              |                      |                                              |                         | ) · · · · · · · · · · · · · · · · · · · | <u>.</u>      |      | -             |
| _               |             | extremely strong (R5), grey, JSN: 9                                                           |                       | M                            |                      |                                              | :                       |                                         | :             |      | -             |
| -               |             |                                                                                               |                       | M                            |                      |                                              |                         |                                         |               |      | _             |
| -               |             |                                                                                               |                       | M                            |                      |                                              |                         |                                         | :             |      | -             |
| <u> </u>        |             | - at 14.75 m, horizontal joint, planar, rough,                                                |                       | L R12                        |                      |                                              |                         |                                         |               | ļ    | -             |
| _<br>15         |             | oxidized                                                                                      |                       | 51-R1                        | 0                    | <u>                                     </u> | :                       | <u> </u>                                | <u>:</u>      |      | 895-          |
|                 |             |                                                                                               | Contractor: Cyr Drill | ing                          |                      |                                              | Completion              | on Depth: 21 m                          |               |      |               |
|                 |             | TETRA TECH                                                                                    | Drilling Rig Type: D- | 10 Diam                      | ond Dr               | ill                                          | Start Date              | e: 2016 Septemb                         | per 6         |      |               |
|                 | t           | H I L I KA I L CH                                                                             | Logged By: VER        |                              |                      |                                              | +                       | on Date: 2016 S                         |               | ,    |               |
|                 |             | J                                                                                             | Reviewed By: VER      |                              |                      |                                              | Page 2 of               |                                         |               |      |               |
| ROCK COR        | RE EN       | G-EARC03004-02.GPJ EBA.GDT 17/2/14                                                            |                       |                              |                      |                                              | 1 51                    |                                         |               |      |               |

|                                                                                             |               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | Boreho                                                                    | le N                         | 10:                  | GT-51                                                                                     |               |                                                                             |      |               |
|---------------------------------------------------------------------------------------------|---------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------|------------------------------|----------------------|-------------------------------------------------------------------------------------------|---------------|-----------------------------------------------------------------------------|------|---------------|
|                                                                                             |               | GOLDCORP                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | Project: Fall 2016 (                                                      | Geotechnic                   | cal Inve             | estigation                                                                                | Project       | No: ENG.EARC03004-02                                                        |      |               |
|                                                                                             |               | OOLDCOKI                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | Location: Coffee M                                                        |                              |                      |                                                                                           | <del></del>   | d Elev: 909.84 m                                                            |      |               |
|                                                                                             |               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | Coffee Creek, Yuko                                                        | •                            |                      |                                                                                           | UTM: 5        | 585314 E; 6975679 N; Z 7                                                    |      |               |
|                                                                                             |               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | Thermal                                                                   |                              | (%)                  | <ul> <li>Unc. Compressive</li> <li>5 10 15</li> <li>▲ Excess Ice Content (% b)</li> </ul> | (MPa) ♦<br>20 | ● Fracture Frequency (/m) ●                                                 |      |               |
| Depth (m)                                                                                   | Method        | Lithological<br>Description                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | Condition<br>and<br>Ground Ice<br>Description                             | Sample Type<br>Sample Number | Moisture Content (%) | 20 40 60  Bulk Density (kc 1400 1600 1800  Plastic Moisture Limit Content 20 40 60        | 80            | 2 4 6 8  ▲ RQD (%) ▲  40 60 80 100  ■ Recovery (%) ■  40 60 80 100          | LS#3 | Elevation (m) |
| -                                                                                           |               | - at 14.77 m, 10 mm thick horizontal quartz                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                                           | M                            |                      |                                                                                           | :             |                                                                             |      |               |
| -                                                                                           |               | vein No recovery                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                                           |                              |                      |                                                                                           |               |                                                                             |      | -             |
| -<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>- |               | GNEISS (BEDROCK) - slightly weathered (W2), very strong (R5), greyish, JSN: 4 - at 15.65 m, subhorizontal joint, undulating, smooth, oxidized - at 15.72 and 15.74 m, two closely spaded subhorizontal joints, planar, smooth, oxidized, calcite infill and stepped, rough, oxidized, calcite infill - at 15.93 m, inclined joint, planar, rough, oxidized - at 16.10, two closely spaced subhorizontal joint, planar, smooth, oxidized - at 16.48 and 16.53 m, subhorizontal joints, planar, smooth, oxidized - from 16.48 to 16.65 m, subvertical fracture,                                      |                                                                           | R13                          |                      |                                                                                           | 124           |                                                                             |      | 894—          |
| <br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-  | Diamond drill | undulating, rough, oxidized  - at 17.85 m, subhorizontal joint, stepped, rough, oxidized - at 18.00 m, 50 mm thick quartz vein - at 18.18 m, subhorizontal joint, planar, rough, oxidized - at 18.28, 18.32 and 18.40 m, three closely spaced subhorizontal joint,s planar, rough, oxidized                                                                                                                                                                                                                                                                                                        |                                                                           | 51-R1<br>R14                 |                      |                                                                                           | 122           | , <b>*</b>                                                                  |      | 892-          |
| 19<br>20<br>                                                                                |               | No recovery GNEISS (BEDROCK) - moderately weathered (W3), strong (R3), multicoloured rock, bands of reddish, yellowish, greyish rock, mica in breaks, JSN: 4  - at 19.10 m, two closely spaced subhorizontal joints, planar and stepped, rough, oxidized - from 19.25 to 19.50 m, fault gouge, silty clay, trace fine sand, fragmented zone, infinite FF - at 19.65 m, 19.82 and 19.85 m, subhorizontal joints, planar, rough, oxidized, medium strong (R3) - at 20.10 and 20.22 m, subhorizontal joints, planar, rough, oxidized - at 20.42 and 20.47 m, inclined joints, planar, rough, oxidized |                                                                           | R15<br>51-R1<br>R16<br>51-R1 | 3                    |                                                                                           | 38            |                                                                             |      | 890-          |
| -<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>- |               | - at 20.57 m, strong (R4) - from 20.7 to 21.00 m, subvertical fractures, undulating, rough, oxidized, weak broken rock  END OF BOREHOLE (21.00 metres) 25 mm diameter PVC installed to 19.84 metres Thermistor string #3 installed to 14.80 metres Note: Excess ice content determined in laboratory is shown graphically. Estimated excess ice content values are provided in 'Ground Ice Description' column.                                                                                                                                                                                    |                                                                           |                              |                      |                                                                                           | ;             | ; ; ↓ ↓ . •                                                                 |      | 888-          |
| 22.5                                                                                        |               | Ground ree Description Conditin.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | Confinente Com D. 1                                                       | llina                        |                      |                                                                                           | 0             | otion Donth: 04                                                             |      |               |
| <b>1</b>                                                                                    | t             | TETRA TECH                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | Contractor: Cyr Dril Drilling Rig Type: D Logged By: VER Reviewed By: VER | )-10 Diam                    | ond Dr               | ill                                                                                       | Start D       | etion Depth: 21 m<br>late: 2016 September 6<br>etion Date: 2016 September 7 |      |               |

|                                           |             |                                                                                                                                                                                                                                                               | В     | orehole No                                                                                                                 | <b>)</b> :  | G             | T-53                                                            |
|-------------------------------------------|-------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------|----------------------------------------------------------------------------------------------------------------------------|-------------|---------------|-----------------------------------------------------------------|
|                                           |             | GOLDCORP                                                                                                                                                                                                                                                      | Proje | ct: Fall 2016 Geotechnical I                                                                                               | nve         | stigatio      | on Project No: ENG.EARC03004-02                                 |
|                                           |             | COLDCOM                                                                                                                                                                                                                                                       |       | ion: Coffee Mine Site, Sout                                                                                                |             |               | Ground Elev: 799.34 m                                           |
|                                           |             |                                                                                                                                                                                                                                                               | Coffe | e Creek, Yukon                                                                                                             |             |               | UTM: 584675 E; 6972356 N; Z 7                                   |
|                                           |             |                                                                                                                                                                                                                                                               |       |                                                                                                                            |             |               | ♦ Unc. Compressive (MPa) ♦ 5 10 15 20 Fracture Frequency (/m) ● |
|                                           |             |                                                                                                                                                                                                                                                               |       | Thermal                                                                                                                    | 4           | e             | 5 10 15 20 Fracture Frequency (/m) • 2 4 6 8                    |
| £ _                                       | ро          | Lithological                                                                                                                                                                                                                                                  |       | Condition                                                                                                                  | Sample Type | Sample Number | 4 POD ((V) 4                                                    |
| Depth<br>(m)                              | Method      | Description                                                                                                                                                                                                                                                   |       | and                                                                                                                        | nple        | l elc         | ▲ RQD (%) ▲ (5) to (5) to (6) 40 60 80 100                      |
|                                           | -           | 2000p                                                                                                                                                                                                                                                         |       | Ground Ice                                                                                                                 | Sar         | Sam           |                                                                 |
|                                           |             |                                                                                                                                                                                                                                                               |       | Description                                                                                                                |             |               | ■ Recovery (%) ■                                                |
| 0                                         |             | MOSS - organics, coarse fibrous, black, (100 mm thick)                                                                                                                                                                                                        |       |                                                                                                                            |             |               | 40 60 80 100                                                    |
| -<br>-<br>-<br>-<br>-<br>-                |             | GRAVEL - loose, granite and mixed felsic gneiss, matrix washed away during drilling  No recovery                                                                                                                                                              |       | Unfrozen (?) - requires<br>additional investigation<br>(GTC borehole) to more<br>accurately determine<br>thermal condition |             | R1            | 15                                                              |
| - 1<br>-<br>-<br>-<br>-<br>-<br>-         |             | GRAVEL - loose, granite and mixed felsic gneiss, matrix washed away during drilling No recovery                                                                                                                                                               |       |                                                                                                                            | X           | R2            | 798                                                             |
| -<br>- 2<br>-<br>-<br>-<br>-<br>-<br>-    |             | GRAVEL - loose, granite and mixed felsic gneiss, matrix washed away during drilling No recovery                                                                                                                                                               | :     |                                                                                                                            | Ĭ           | R3            | 797                                                             |
| -<br>-<br>-<br>3<br>-<br>-<br>-<br>-<br>- | amond drill | GRAVEL - loose, granite and mixed felsic gneiss, matrix washed away during drilling  No recovery                                                                                                                                                              |       |                                                                                                                            | X           | R4            | 796                                                             |
| -<br>- 4<br>-                             |             | GRAVEL - loose, granite and mixed felsic gneiss, matrix washed away during drilling                                                                                                                                                                           | :     |                                                                                                                            | X           |               | <b>T</b>                                                        |
| -<br>-<br>-<br>-                          |             | No recovery                                                                                                                                                                                                                                                   |       |                                                                                                                            |             | R5            | 795                                                             |
| <del></del>                               |             | GRAVEL - loose, granite and mixed felsic gneiss, matrix washed away during drilling                                                                                                                                                                           |       |                                                                                                                            | X           |               | 794                                                             |
| -<br> -<br> -<br> -                       |             | No recovery                                                                                                                                                                                                                                                   |       |                                                                                                                            |             | R6            |                                                                 |
| -<br>6<br>-<br>-<br>-                     |             | GRAVEL - loose, granite and mixed felsic gneiss, matrix washed away during drilling                                                                                                                                                                           | :     |                                                                                                                            | V           |               | 793                                                             |
| -<br>-<br>-<br>-<br>- 7<br>-<br>-         |             | GNEISS (BEDROCK) - slightly weathered (W2), extreme strong (R6), dark grey to green, fractured, fine to med grained  No recovery  GNEISS (BEDROCK) - slightly weathered (W2), extreme strong (R6), dark grey to green, fractured, fine to med grained, JSN: 4 | lium  |                                                                                                                            | Ż           | R7<br>53-R1   | 792                                                             |
| 7.5                                       |             |                                                                                                                                                                                                                                                               |       |                                                                                                                            | / \         |               |                                                                 |
|                                           |             | <b>1</b>                                                                                                                                                                                                                                                      |       | actor: Cyr Drilling                                                                                                        |             |               | Completion Depth: 10 m                                          |
|                                           | Ŋ.          | TETRA TECH                                                                                                                                                                                                                                                    |       | g Rig Type: D-10 Diamond                                                                                                   | Dril        | l             | Start Date: 2016 October 4                                      |
| [ <b>'</b>                                |             | •]                                                                                                                                                                                                                                                            |       | ed By: EP                                                                                                                  |             |               | Completion Date: 2016 October 4                                 |
| DUCK CO                                   | DE E        | IG-EARC03004-02.GPJ EBA.GDT 17/2/14                                                                                                                                                                                                                           | Revie | wed By: VER                                                                                                                |             |               | Page 1 of 2                                                     |



## Borehole No: **GT-53**

Project: Fall 2016 Geotechnical Investigation
Project No: ENG.EARC03004-02
Location: Coffee Mine Site, South Pond
Ground Elev: 799.34 m

|                                                                                             |               | Co                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | offee Creek, Yukon                                       |             |                            |                           |                     | '5 E; 6972356 N; Z                          | 7                              |                                         |
|---------------------------------------------------------------------------------------------|---------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------|-------------|----------------------------|---------------------------|---------------------|---------------------------------------------|--------------------------------|-----------------------------------------|
| Depth<br>(m)                                                                                | Method        | Lithological<br>Description                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | Thermal<br>Condition<br>and<br>Ground Ice<br>Description | Sample Type | Sample Number              | ♦ Unc. Compress<br>5 10 1 |                     | 2 4 6  ARQD (% 40 60 80  Recovery (40 60 80 | 6 8<br>5) ▲<br>00 100<br>(%) ■ | Elevation<br>(m)                        |
| -<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>- | Diamond drill | <ul> <li>from 7.03 to 7.10 m, quartz vein</li> <li>at 7.03 and 7.28 m, subhorizontal joints, undulating, smooth, slight oxidization</li> <li>at 7.21, 7.60, 7.67, 7.74, 7.81 and 7.98 m, inclined joints undulating, smooth, oxidization</li> <li>at 7.81 m, 20 mm thick quartz vein</li> <li>at 8.07, 8.09, 8.68 and 8.97 m, subhorizontal joints, undulating, smooth, slight oxidization</li> <li>at 8.12, 8.27, 8.29, 8.33, 8.70, 8.81 and 8.86 m, inclined joints, undulating, smooth, slight oxidization</li> </ul> |                                                          | V           | R8<br>53-R2<br>R9<br>53-R3 |                           | 271,                |                                             | 11                             | 791                                     |
| - 9<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-                                       | Di            | - at 9.00 m, JSN: 3  - at 9.33 m, subhorizontal joint, undulating, smooth, no visible alteration - at 9.39, 9.62, 9.88 and 9.98 m, inclined joints, undulating smooth to rough, no visible alteration                                                                                                                                                                                                                                                                                                                    | ,                                                        | V           | R10<br>53-R4               |                           | 273 <sub>&lt;</sub> |                                             |                                | 790-                                    |
| -<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>11                                                  |               | END OF BOREHOLE (10.00 metres)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                          |             |                            |                           |                     | ·                                           | - <del>-</del>                 | 789—<br>-<br>-<br>-<br>-<br>-<br>-<br>- |
| -<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>12                                                  |               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                          |             |                            |                           |                     |                                             |                                | 788                                     |
| -<br>-<br>-<br>-<br>-<br>-<br>13                                                            |               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                          |             |                            |                           |                     |                                             |                                | 787                                     |
| -<br>-<br>-<br>-<br>-<br>-<br>14                                                            |               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                          |             |                            |                           |                     |                                             |                                | 786—                                    |
| -<br>-<br>-<br>-<br>-<br>15                                                                 |               | Cc                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | ontractor: Cyr Drilling                                  |             |                            |                           | Completion          | Depth: 10 m                                 |                                | -                                       |

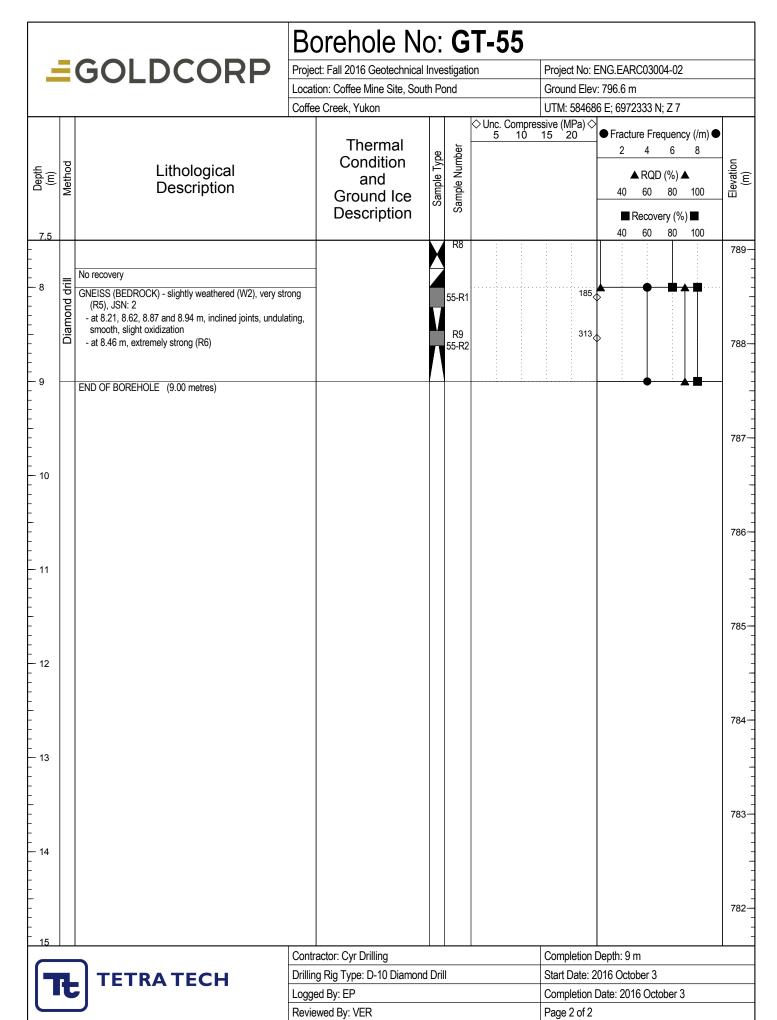
TETRA TECH

Contractor: Cyr Drilling

Completion Depth: 10 m

Drilling Rig Type: D-10 Diamond Drill

Start Date: 2016 October 4


Logged By: EP

Completion Date: 2016 October 4

Reviewed By: VER

Page 2 of 2

|              |             |                                                                | В     | orehole No                                      | o:           | G             | T-55                                         |             |          |                      |          |        |                 |               |
|--------------|-------------|----------------------------------------------------------------|-------|-------------------------------------------------|--------------|---------------|----------------------------------------------|-------------|----------|----------------------|----------|--------|-----------------|---------------|
| -            |             | GOLDCORP                                                       | Proje | ct: Fall 2016 Geotechnical                      | Inve         | stigation     | on                                           | Project No: | ENG      | .EAR(                | 20300    | )4-02  |                 |               |
|              |             | COLDCOM                                                        |       | ion: Coffee Mine Site, Sout                     |              |               |                                              | Ground Ele  |          |                      |          |        |                 |               |
|              |             |                                                                | -     | e Creek, Yukon                                  |              |               |                                              | UTM: 58468  |          |                      | 333 N    | :Z7    |                 |               |
|              |             |                                                                |       | , , , , ,                                       |              |               | ♦ Unc. Compre                                |             |          |                      |          |        |                 | T             |
|              |             |                                                                |       | Thermal                                         |              |               | 5 10                                         | 15 20       | ┛┞       |                      |          | -      | y (/m) <b>●</b> |               |
|              | ס           |                                                                |       | Condition                                       | ype          | Sample Number |                                              |             |          | 2                    | 4        | 6      | 8               | ۾             |
| Depth<br>(m) | tho         | Lithological                                                   |       | and                                             | Sample Type  | nN e          |                                              |             |          | •                    | RQD      | (%) 4  | <b>\</b>        | Elevation (m) |
|              | ž           | Description                                                    |       | Ground Ice                                      | Sam          | du            |                                              |             |          | 40                   | 60       | 80     | 100             |               |
|              |             |                                                                |       | Description                                     | 0            | Š             |                                              |             |          | ■R                   | ecove    | ery (% | ) 🔳             |               |
| 0            |             |                                                                |       | -                                               |              |               |                                              |             | ┙        | 40                   | 60       | 80     | 100             |               |
| -            | ı ⊩         | ROCK FRAGMENTS - felsic gneiss, quartz                         |       | Unfrozen (?) - requires                         | X            |               | : :                                          | : :         |          | :                    | :        | :      | :               | -             |
|              |             | No recovery                                                    |       | additional investigation (GTC borehole) to more |              |               |                                              |             |          |                      |          |        |                 |               |
| -            |             |                                                                |       | accurately determine                            |              | R1            |                                              |             | 15       |                      |          |        |                 |               |
| -            |             |                                                                |       | thermal condition                               |              |               |                                              | : :         |          | Ė                    | :        | :      | i               | 796-          |
| -            |             |                                                                |       |                                                 |              |               |                                              |             |          |                      |          |        |                 | -             |
| – 1<br>-     |             | ROCK FRAGMENTS - felsic gneiss, quartz                         |       |                                                 | $\mathbf{A}$ |               |                                              |             | T · · ·  |                      |          |        |                 | -             |
| -            |             | No recovery                                                    |       |                                                 |              |               |                                              |             |          |                      | :        | :      | :               | -             |
| -            |             |                                                                |       |                                                 |              | R2            |                                              |             |          |                      |          |        |                 |               |
|              |             |                                                                |       |                                                 |              |               |                                              |             |          |                      |          |        |                 | 795-          |
|              |             |                                                                |       |                                                 |              |               |                                              |             |          |                      |          |        |                 | -             |
| - 2          |             | ROCK FRAGMENTS - felsic gneiss, quartz                         |       |                                                 |              |               |                                              |             | •        | · <del>!</del> · · · |          |        |                 | -             |
| -            |             | No recovery                                                    |       |                                                 |              |               |                                              |             |          |                      |          |        |                 | -             |
| -            |             |                                                                |       |                                                 |              | R3            |                                              |             | 1 =      |                      |          | :      | :               |               |
|              |             |                                                                |       |                                                 |              | KS            |                                              | : :         | 15       | Ė                    | :        | :      | i               | 794-          |
| -            |             |                                                                |       |                                                 |              |               |                                              |             |          |                      |          |        |                 | -             |
| -<br>3       |             |                                                                |       |                                                 | 4            |               |                                              |             | <b>.</b> |                      |          |        |                 | -             |
|              |             |                                                                |       |                                                 | 1 /          |               |                                              |             |          |                      |          |        |                 | -             |
|              | _           |                                                                |       |                                                 |              |               |                                              |             |          |                      |          |        |                 | -             |
| -            | dri         |                                                                |       |                                                 |              | R4            |                                              |             | 0        |                      | :        |        |                 | 793           |
| -            | amond drill |                                                                |       |                                                 |              |               |                                              |             |          |                      |          |        |                 | -             |
| -<br>4       | iam         |                                                                |       |                                                 |              |               |                                              |             | <u></u>  |                      |          |        |                 |               |
|              |             | ROCK FRAGMENTS - felsic gneiss, quartz                         |       |                                                 | М            |               |                                              |             | Π        |                      |          |        | :               | -             |
|              |             | No recovery                                                    |       |                                                 |              |               |                                              |             |          |                      | :        | :      | :               | -             |
| -            |             |                                                                |       |                                                 | 14           | R5            |                                              |             |          |                      |          |        |                 | 792-          |
|              |             |                                                                |       |                                                 |              |               |                                              |             |          |                      |          |        |                 | 192-          |
|              |             |                                                                |       |                                                 |              |               |                                              |             | Ш.       | _                    |          |        | :               | -             |
| – 5<br>-     |             |                                                                |       |                                                 |              |               |                                              |             |          |                      |          |        |                 | -             |
|              |             |                                                                |       |                                                 |              |               |                                              |             |          |                      |          |        |                 | -             |
| -            |             |                                                                |       |                                                 |              | R6            |                                              |             |          |                      |          |        |                 | -             |
| -            |             | ROCK FRAGMENTS - felsic gneiss, quartz                         |       |                                                 | $\nabla$     |               |                                              |             |          |                      |          |        |                 | 791—          |
|              |             | - at 5.86 m, 140 mm long mixed felsic gneiss with              |       |                                                 | M            |               |                                              |             |          |                      |          |        |                 | -             |
| – 6<br>-     |             | subvertical joint, slightly weathered                          | /     |                                                 |              |               |                                              |             |          |                      | <b>-</b> | J      |                 | -             |
|              |             | SAND - completely pulverized rock                              |       |                                                 | М            |               |                                              |             |          |                      |          |        |                 | -             |
| -            |             | GNEISS (BEDROCK) - slightly weathered (W2), medium strong (R3) | n     |                                                 | 1            | R7            |                                              |             |          | -                    |          |        |                 | -             |
| -            |             |                                                                |       |                                                 | $\Lambda$    | 131           |                                              |             |          | -                    |          |        |                 | 790-          |
| -            |             | No recovery                                                    |       |                                                 |              |               |                                              |             |          | į                    |          | :      | :               | -             |
| -<br>- 7     |             | GNEISS (BEDROCK) - slightly weathered (W2), medium             | 1     |                                                 |              |               | ļ <u>.</u>                                   |             |          | . <u>.</u>           |          |        |                 |               |
| -            |             | strong (R3)                                                    |       |                                                 | М            |               |                                              |             |          | -                    | :        |        |                 | -             |
| 7.5          |             |                                                                |       |                                                 | /            |               |                                              | <u> </u>    |          | -                    |          |        |                 | :             |
|              |             |                                                                | Contr | actor: Cyr Drilling                             |              |               |                                              | Completion  | Dept     | h: 9 m               | 1        |        |                 |               |
|              |             | TETRATECH                                                      |       | g Rig Type: D-10 Diamono                        | l Dril       | l             |                                              | Start Date: |          |                      |          |        |                 |               |
|              | t           | I I I I I I I I I I I I I I I I I I I                          |       | ed By: EP                                       |              |               |                                              |             |          |                      |          | ber 3  |                 |               |
| l            |             | J                                                              | _     | wed By: VER                                     |              |               | Completion Date: 2016 October 3  Page 1 of 2 |             |          |                      |          |        |                 |               |





### Borehole No: GT-56

Project: Fall 2016 Geotechnical Investigation
Project No: ENG.EARC03004-02
Location: Coffee Mine Site, South Pond
Ground Elev: 802.23 m

|    |               |                                                                                                                                                                            | Coffee Creek, Yukon                        |                                                                                                                           | UTM         | : 58465       | 56 E; 697237 | 76 N; Z 7                                                         |           |
|----|---------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------|---------------------------------------------------------------------------------------------------------------------------|-------------|---------------|--------------|-------------------------------------------------------------------|-----------|
|    | Method        | Lithologic<br>Descriptio                                                                                                                                                   | al<br>on                                   | Thermal<br>Condition<br>and<br>Ground Ice<br>Description                                                                  | Sample Type | Sample Number | 2 ▲ F 40 6   | Frequency (/m) 4 6 8  RQD (%)   60 80 100  covery (%)   60 80 100 | Elevation |
| 0  |               | ORGANICS - roots, coarse fibrous, dark brown, (100 mi<br>No recovery                                                                                                       | m thick)                                   | Unfrozen (?) - requires<br>additional investigatior<br>(GTC borehole) to moi<br>accurately determine<br>thermal condition | n<br>re     | R1            | 10           |                                                                   | 802       |
|    | -             | SAND AND GRAVEL - silty, well graded, brown, subang                                                                                                                        | gular gravel                               |                                                                                                                           | ×           | R2            |              |                                                                   | 80        |
|    | -             | SAND AND GRAVEL - silty, well graded, brown, subang No recovery                                                                                                            | gular gravel                               |                                                                                                                           | *           | R3            | 15           |                                                                   | 80        |
|    | Diamond drill | SAND AND GRAVEL - silty, well graded, brown, subang No recovery                                                                                                            | gular gravel                               |                                                                                                                           | ×           | R4            |              |                                                                   | 79        |
|    |               | SAND AND GRAVEL - silty, well graded, brown, subang                                                                                                                        | gular gravel                               |                                                                                                                           | ×           | R5            |              |                                                                   | 79        |
|    |               | SAND AND GRAVEL - silty, well graded, brown, subang - from 5.00 to 6.15 m, poor recovery, only gravel and washed away during drilling, some sandy silt recover No recovery | cobbles sized particles recovered - matrix |                                                                                                                           | ×           | R6            |              |                                                                   | 79        |
|    |               | SAND AND GRAVEL - silty, well graded, brown, subang GNEISS (BEDROCK) - moderately weathered (W3), manighly fractured, fine grained                                         |                                            |                                                                                                                           |             | R7            | . •          |                                                                   | 79        |
| .5 | -             | No recovery GNEISS (BEDROCK) - moderately weathered (W3), many highly fractured, fine grained - at 7.00 m, more competent, JSN: 10                                         | assive, strong (R4), grey, pink banding,   |                                                                                                                           |             |               | <b>A</b>     |                                                                   | 79        |
|    |               |                                                                                                                                                                            | Contractor: Cyr Drilling                   |                                                                                                                           | Com         | oletion       | Depth: 10 m  | 1                                                                 |           |
|    |               | 1                                                                                                                                                                          | Drilling Pig Type: D-10 Diamond Dr         | ill                                                                                                                       | Start       | Date:         | 2016 Octobe  | vr 5                                                              |           |



Contractor: Cyr Drilling

Completion Depth: 10 m

Drilling Rig Type: D-10 Diamond Drill

Start Date: 2016 October 5

Logged By: JGD

Completion Date: 2016 October 5

Reviewed By: VER

Page 1 of 2



## Borehole No: GT-56

Project: Fall 2016 Geotechnical Investigation
Project No: ENG.EARC03004-02
Location: Coffee Mine Site, South Pond
Ground Elev: 802.23 m

LITM: 584656 F: 6972376 N: 7.7

|                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | Coffee Creek, Yukon                                                                        |                                                          | UTM:        | 58465              | 66 E; 6972376 N; Z 7                                                                                     |                                              |
|-------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------|----------------------------------------------------------|-------------|--------------------|----------------------------------------------------------------------------------------------------------|----------------------------------------------|
| Depth (m) Wethod        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                                            | Thermal<br>Condition<br>and<br>Ground Ice<br>Description | Sample Type | Sample Number      | ● Fracture Frequency (/m) ●  2  4  6  8  ▲ RQD (%) ▲  40  60  80  100  ■ Recovery (%) ■  40  60  80  100 | Elevation<br>(m)                             |
| - 8                     | <ul> <li>- at 7.03 m, subhorizontal joint, undulating, smooth</li> <li>- at 7.10 m, subhorizontal joint, undulating, rough, slig</li> <li>- at 7.15 m, subhorizontal joint, undulating, smooth</li> <li>- at 7.16 m, inclined joint, stepped, smooth, slight sand</li> <li>- at 7.24 m, subvertical joint, stepped, rough, oxide states</li> <li>- at 7.34 m, subhorizontal joint, undulating, rough</li> <li>- at 7.42 m, inclined joint, undulating, smooth, slight st</li> </ul>                                                                                                       | l infill<br>ining                                                                          |                                                          |             | 56-R1              |                                                                                                          | -<br>-<br>-<br>-<br>-<br>-<br>794—           |
| . 6 - 6 - Oiamond drill | <ul> <li>- at 7.48 m, subvertical joint, undulating, rough, slight</li> <li>- at 7.54 m, subhorizontal joint, stepped, rough, slight</li> <li>- at 7.60 m, inclined joint, undulating, smooth, slight st</li> <li>- at 7.78 m, inclined joint, stepped, rough</li> <li>- at 8.00 m, oxidization in joints</li> <li>- at 8.14 m, subvertical joint, undulating, smooth, oxid</li> <li>- at 8.21 m, subhorizontal joint, undulating, rough</li> <li>- at 8.24 m, subhorizontal joint, undulating, rough, slig</li> <li>- at 8.35 m, subhorizontal joint, undulating, rough, slig</li> </ul> | oxide staining<br>staining<br>aining<br>e staining, slight silt infill<br>nt sand infill   |                                                          |             | R9<br>56-R2<br>R10 |                                                                                                          | 793—                                         |
| - 10                    | at 8.49 m, subhorizontal joint, undulating, smooth, sl at 8.52 m, subhorizontal joint, undulating, smooth, sl at 8.74 m, inclined joint, undulating, rough, oxidized at 8.88 m, inclined joint, stepped, rough, oxidized from 9.00 to 9.65 m, rubble zone at 9.65 m, subhorizontal joint, undulating, smooth, sl No recovery at 9.75 m, subhorizontal joint, undulating, smooth, sl                                                                                                                                                                                                       | ght oxide staining<br>idized, slight silt infill<br>ght oxide staining, slight silt infill |                                                          |             | 56-R3              |                                                                                                          | 792—                                         |
| - 11                    | - at 9.77 m, subhorizontal joint, stepped, smooth END OF BOREHOLE (10.00 metres)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                                                            |                                                          |             |                    |                                                                                                          | 791—<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>- |
| - 12                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                                            |                                                          |             |                    |                                                                                                          | 790—<br>-<br>-<br>-<br>-<br>-                |
| - 13                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                                            |                                                          |             |                    |                                                                                                          | 789—                                         |
| - 14                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                                            |                                                          |             |                    |                                                                                                          | 788—                                         |
| 15                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | Contractor: Cyr Drilling                                                                   |                                                          | Comp        | eletion            | Depth: 10 m                                                                                              | -<br>-<br>-                                  |

TETRA TECH

Contractor: Cyr Drilling

Completion Depth: 10 m

Drilling Rig Type: D-10 Diamond Drill

Start Date: 2016 October 5

Logged By: JGD

Completion Date: 2016 October 5

Reviewed By: VER

Page 2 of 2

|                                      |               |                                                                                                                                          | Borehole                                                          | Ν           | 0:            | G                    | T-57                        |                         |        |          |          |                  |           |                  |
|--------------------------------------|---------------|------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------|-------------|---------------|----------------------|-----------------------------|-------------------------|--------|----------|----------|------------------|-----------|------------------|
|                                      |               | GOLDCORP                                                                                                                                 | Project: Fall 2016 Geotec                                         |             |               |                      |                             | Project N               | No: E  | NG.E     | EARCO    | 3004-02          | )         |                  |
|                                      |               | OOLDCORP                                                                                                                                 | Location: Coffee Mine Site                                        |             |               |                      |                             | Ground                  |        |          |          |                  |           |                  |
|                                      |               |                                                                                                                                          | Coffee Creek, Yukon                                               | -,          |               |                      |                             | UTM: 58                 |        |          |          | 4 N: Z 7         |           |                  |
|                                      |               |                                                                                                                                          | Thermal                                                           |             |               | (%                   | ♦ Unc. Compre<br>5 10       | ssive (MPa              | a) 🔷   | ● Fra    | acture   |                  | cy (/m) ● |                  |
|                                      | _             |                                                                                                                                          | Condition                                                         | /be         | nber          | ent (                | ▲Excess Ice Conter<br>20 40 | nt (% by volun<br>60 80 | ne) 📤  |          | 2 4      | 4 6              | 8         | _                |
| Depth<br>(m)                         | Method        | Lithological<br>Description                                                                                                              | and<br>Ground Ice                                                 | Sample Type | Sample Number | Moisture Content (%) | ■ Bulk Densi<br>1400 1600   |                         |        | 4        |          | QD (%) .<br>0 80 | 100       | Elevation<br>(m) |
|                                      |               | ·                                                                                                                                        | Description                                                       | Sa          | San           | Moistu               | Plastic Moist<br>Limit Cont |                         |        |          |          | covery (%        |           | ]                |
| 0                                    |               | ORGANICS - roots, wood chips, fine to coarse fibrous,                                                                                    |                                                                   |             |               |                      | 20 40                       | 60 80                   |        | <b>=</b> | 10 6     | 0 80             | 100       |                  |
| -<br>-<br>-<br>-<br>-<br>-<br>-<br>- |               | brown, (100 mm thick)  SAND AND GRAVEL - silty, trace clay, massive, well  graded, brown, subangular gravel  No recovery                 | Thawed                                                            |             | R1            |                      |                             |                         |        |          |          |                  |           | 918-             |
| - '<br>-                             |               |                                                                                                                                          |                                                                   |             | R2            |                      |                             |                         |        |          |          |                  |           | -                |
| -                                    |               | SAND AND GRAVEL - silty, trace clay, massive, well graded, brown, subangular gravel                                                      | Frozen, Vx, Vc 30%                                                | M           |               | 20.5                 |                             |                         |        |          |          |                  | :         | -                |
| -                                    |               | graded, brown, Subangular graver                                                                                                         | Vx, Vc 10%                                                        |             | 57-S1         | 30.5                 |                             |                         |        |          |          |                  | :         | 917-             |
| -<br>-<br>- 2                        |               | No recovery                                                                                                                              |                                                                   |             | R3            |                      |                             |                         |        |          |          |                  |           |                  |
| -<br>-<br>-                          |               | SILT (ORGANIC) - some sand, some gravel, trace clay, brown, subangular gravel, slight organic odour                                      | Vs 15%, 1-2 mm thick ice<br>lenses closely spaced<br>3-5 mm apart | V           | 57-S2<br>R4   | 49.5                 | <b>A ■</b> •                |                         |        |          |          |                  |           |                  |
| -<br>-<br>-                          |               | SAND AND GRAVEL - silty, massive, well graded, brown, subangular gravel                                                                  | Vs 10%, becomes randomly<br>spaced<br>Vx, Vc 10%                  |             | 57-S3         |                      | A                           |                         |        |          |          |                  |           | 916-             |
| - 3<br>-<br>-<br>-                   |               | - from 3.00 to 3.40 m, large gravel inclusions to 40 mm diameter                                                                         |                                                                   | V           |               |                      |                             |                         |        |          | <br>!    |                  |           | -<br>-           |
| _<br>-<br>-<br>-<br>-<br>- 4         | Diamond drill | - from 3.72 to 4.95 m, boulder (granite)                                                                                                 |                                                                   |             | 57-S4<br>R5   | 20                   | •                           |                         |        |          |          |                  |           | 915-             |
| -<br>-<br>-<br>-<br>-                |               |                                                                                                                                          |                                                                   | X           | R6            |                      |                             |                         |        |          |          |                  |           | 914-             |
| -<br>5<br>-<br>-                     |               | - at 5.00 m, poor recovery, matrix washed away, only gravel sized particles recovered                                                    | 1 mm thick ice lens                                               | Y           | 57-S5         | 14                   | 40                          |                         |        |          | <b>-</b> |                  |           | -<br>-           |
| -<br>-<br>-<br>-                     |               | No recovery                                                                                                                              |                                                                   |             | R7            |                      |                             |                         |        |          |          |                  |           | 913-             |
| 6<br>-<br>-<br>-<br>-                |               | SAND AND GRAVEL - silty, massive, well graded, brown, subangular gravel                                                                  |                                                                   | V           | 57-S6         | 9.3                  |                             |                         |        |          |          |                  |           | -<br>-           |
| -<br>-<br>-<br>-<br>- 7              |               | - at 6.65 m, 100 mm diameter cobble                                                                                                      |                                                                   |             | R8            | <i>3</i> .3          |                             |                         |        |          |          |                  |           | 912-             |
| - '<br>-<br>-<br>- 7.5               |               | No recovery  SAND AND GRAVEL - silty, massive, well graded, brown, subangular gravel  - from 7.00 to 8.00 m, loose gravel, matrix washed |                                                                   | X           |               |                      |                             |                         |        |          |          |                  |           | -                |
|                                      |               |                                                                                                                                          | Contractor: Cyr Drilling                                          |             |               |                      |                             | Complet                 | ion D  | epth     | : 14 m   |                  |           |                  |
|                                      |               | TETRA TECH                                                                                                                               | Drilling Rig Type: D-10 Di                                        | amo         | nd Dril       | I                    |                             | Start Da                | te: 20 | )16 S    | Septem   | ber 25           |           |                  |
|                                      | U             |                                                                                                                                          | Logged By: JGD/EP                                                 |             |               |                      |                             | Complet                 | ion D  | ate:     | 2016     | Septemb          | er 26     |                  |
|                                      |               | IG-EARC03004-02 GP.I EBA GDT 17/2/14                                                                                                     | Reviewed By: VER                                                  |             |               |                      |                             | Page 1 o                | of 2   |          |          |                  |           |                  |

|              |         |                                                                                                                    | Borehole                    | N                      | 0:            | G                    | T-5               | 7                   |                                       |             |                 |              |                                         |                  |
|--------------|---------|--------------------------------------------------------------------------------------------------------------------|-----------------------------|------------------------|---------------|----------------------|-------------------|---------------------|---------------------------------------|-------------|-----------------|--------------|-----------------------------------------|------------------|
|              |         | GOLDCORP                                                                                                           | Project: Fall 2016 Geotecl  | hnica                  | I Inve        | stigatio             | on                | F                   | Project No: I                         | NG.E        | EARC0           | 3004-02      | )                                       |                  |
|              |         | COLDCOM                                                                                                            | Location: Coffee Mine Site  | e, We                  | st Po         | nd                   |                   |                     | Ground Elev                           | : 918.      | 67 m            |              |                                         |                  |
|              |         |                                                                                                                    | Coffee Creek, Yukon         |                        |               |                      |                   | ι                   | JTM: 58215                            | 8 E; 6      | 973904          | N; Z 7       |                                         |                  |
|              |         |                                                                                                                    |                             |                        |               |                      |                   |                     | ve (MPa) 🛇                            | <b>A</b> F. |                 | <u> </u>     | . //\                                   |                  |
|              |         |                                                                                                                    | Thermal                     |                        | Ę.            | (%)                  | 5<br>▲ Excess Ice | 10 1:<br>Content (% | 5 20<br>6 by volume) ▲                |             | acture F<br>2 4 |              | cy (/m) ●<br>8                          | '                |
| _            | ٥       | 1.20 1                                                                                                             | Condition                   | Sample Type            | Sample Number | Moisture Content (%) | 20                | 40 60               | 08 0                                  |             | <u> </u>        | 0            | 0                                       | ۾                |
| Depth<br>(m) | Method  | Lithological                                                                                                       | and                         | Je J                   | e N           | Con                  | ■ Bulk            | Density (           | (kg/m³) <b>■</b><br>00 2000           |             | <b>▲</b> R0     | QD (%)       | <b>A</b>                                | Elevation<br>(m) |
|              | Ž       | Description                                                                                                        | Ground Ice                  | Sam                    | ampl          | ture                 |                   | Moisture            |                                       | 4           | 10 60           | 80           | 100                                     | ļ≝               |
|              |         |                                                                                                                    | Description                 |                        | Ś             | Mois                 | Limit             | Content             | t Limit                               |             | Reco            | overy (%     | <b>(</b> ₀) <b>■</b>                    |                  |
| 7.5          |         |                                                                                                                    |                             |                        |               |                      | 20                | 40 6                | 0 80                                  | 4           | 10 60           | 80           | 100                                     |                  |
|              |         | away, only large gravel sized particles recovered                                                                  |                             |                        | R9            |                      |                   |                     | :                                     |             |                 | :            |                                         | 911-             |
|              |         |                                                                                                                    |                             |                        |               |                      | :                 |                     | :                                     |             | i i             | :            | :                                       |                  |
| _<br>_ 8     |         |                                                                                                                    |                             |                        |               |                      |                   |                     |                                       | · · · 📥     | •               | <del>-</del> | <u>.</u>                                |                  |
| -            |         |                                                                                                                    |                             | М                      |               |                      | :                 |                     | :                                     |             |                 | :            |                                         |                  |
| -            |         |                                                                                                                    |                             | И                      |               |                      | :                 |                     | :                                     |             |                 | :            | :                                       |                  |
| -            |         | No recovery                                                                                                        | Vc, Vx 5%                   |                        | R10<br>57-S7  | 7.4                  | •                 |                     | :                                     |             |                 |              |                                         |                  |
| -            |         | GRAVEL - sandy, trace silt, massive, well graded, brown, subangular gravel                                         |                             |                        | o. o.         |                      | :                 | : :                 | •                                     |             |                 | :            | :                                       | 910-             |
| -<br>- 9     |         | - from 8.00 to 8.50 m, poor recovery, matrix washed                                                                |                             |                        |               |                      |                   | [ ]                 |                                       |             | <u>.</u>        |              |                                         |                  |
| -            | 1       | away during drilling, only gravel sized particles recovered                                                        |                             | Ш                      |               |                      | :                 | : :                 | :                                     |             | 1               | :            | Τ                                       |                  |
| _            |         | - some silt, orangey brown                                                                                         |                             | $ abla^{\frac{1}{2}} $ | 57-S8         | 17.7                 | <b>A</b> •        |                     |                                       |             |                 |              |                                         |                  |
| -            |         | No recovery                                                                                                        |                             | M                      | R11           |                      | :                 |                     | :                                     |             | : :             | :            |                                         |                  |
| -            |         | SAND AND SILT - trace clay, massive, grey to dark brown                                                            |                             | М                      |               |                      | :                 |                     |                                       |             |                 |              |                                         | 909-             |
| -            |         | S.O.M.                                                                                                             |                             | И                      |               |                      | :                 |                     | :                                     |             | i i             | :            |                                         |                  |
| — 10<br>-    |         | - gravel sized bedrock                                                                                             |                             | Н                      |               |                      |                   |                     |                                       |             | } <u>}</u>      | T            | l · · · · · · · · · · · · · · · · · · · |                  |
|              | Ì       | GNEISS (BEDROCK) - slightly weathered (W2),                                                                        |                             | М                      |               |                      | :                 |                     | :                                     |             | i i             |              |                                         | -                |
| -            | ا≡      | massive, very strong (R5), dark grey to greenish black, fine grained, JSN: 2                                       |                             |                        | 57-R1         |                      |                   |                     | 173                                   | >           |                 | 1            | Ť                                       |                  |
| -            | d drill | - at 10.29, 10.33, 10.48, 10.55 and 10.67 m, inclined                                                              |                             | И                      | R12           |                      |                   |                     |                                       |             |                 |              |                                         | 908-             |
| -            | ē       | joints, undulating, smooth, slight weathering, 10 mm thick silt infill at 10.48                                    |                             | Ш                      |               |                      |                   |                     |                                       |             |                 |              |                                         | 300              |
| -<br>11      | Diamond | - at 10.75 m, 20 mm thick quartz vein                                                                              |                             | 4                      |               |                      |                   |                     |                                       |             | •               | ı            | <b>■</b> ••••••                         |                  |
| -            | ᅵ       | No recovery                                                                                                        |                             | И                      |               |                      | :                 |                     | :                                     |             |                 |              |                                         | _                |
| -            |         | BIOTITE SCHIST (BEDROCK) - slightly weathered (W2), massive, medium strong (R3), dark grey to                      |                             | М                      |               |                      | :                 |                     |                                       |             |                 |              |                                         |                  |
| -            |         | greenish black, fine grained, JSN: 2                                                                               |                             |                        | R13<br>57-R2  |                      | :                 |                     | 36                                    | >           |                 | :            |                                         |                  |
| _            |         | <ul> <li>at 11.00 m, more inclined quartz veins</li> <li>at 11.02 m, inclined joint, undulating, smooth</li> </ul> |                             | П                      | 01-RZ         |                      |                   |                     |                                       |             |                 | :            |                                         | 907-             |
| - 40         |         | - from 11.33 to 11.48 and 11.77 to 11.90 m, rubble                                                                 |                             |                        |               |                      | :                 |                     |                                       |             |                 |              |                                         |                  |
| — 12<br>-    | Ì       | zones                                                                                                              |                             | $\Box$                 |               |                      | :                 |                     | :                                     |             | -               |              |                                         | ] _              |
| -            |         | - at 11.65 m, subhorizontal joint, undulating, smooth, slightly weathered (W2)                                     |                             | М                      |               |                      | :                 |                     |                                       |             |                 |              |                                         |                  |
| _            |         | No recovery                                                                                                        |                             | M                      | R14           |                      |                   |                     | :                                     |             |                 |              |                                         |                  |
| -            |         | BIOTITE SCHIST (BEDROCK) - slightly weathered (W2), massive, very strong (R5), dark grey to                        |                             | N                      |               |                      |                   |                     | :                                     |             | į į             |              |                                         | 906-             |
|              |         | greenish black, fine grained, JSN: 3                                                                               |                             | / \                    |               |                      |                   |                     | :                                     |             |                 |              |                                         |                  |
| — 13<br>-    |         | - from 12.00 to 12.16 m, rubble zone - at 12.35 m, subhorizontal joint, undulating, smooth,                        |                             |                        | 57-R3         |                      |                   |                     | 113                                   |             | •               |              |                                         |                  |
|              |         | slightly weathered (W2)                                                                                            |                             | $\prod$                |               |                      |                   |                     | :                                     |             |                 |              |                                         | [ -              |
| <u> </u>     |         | - at 12.46, 12.57 and 12.97 m, inclined joints,                                                                    |                             | M                      | R15           |                      |                   |                     | :                                     |             |                 |              |                                         |                  |
| -            |         | undulating, smooth, slightly weathered (W2) - at 13.00 m, JSN: 4                                                   |                             | Λ                      | 1/10          |                      |                   |                     | :                                     |             |                 |              |                                         | 905-             |
| <u> </u>     |         | - at 13.01 m, very strong (R5)                                                                                     |                             | /1                     |               |                      |                   |                     | :                                     |             |                 |              |                                         |                  |
| -<br>- 14    |         | - at 13.43 and 13.89 m, subhorizontal joint, undulating, smooth                                                    |                             | H                      |               |                      | ļi                | i                   | · · · · · · · · · · · · · · · · · · · |             |                 |              |                                         | -                |
|              | ľ       | - at 13.56 and 13.65 m, inclined joints, undulating to                                                             |                             |                        |               |                      |                   |                     |                                       |             |                 |              |                                         | -                |
| -            |         | \stepped, smooth, slightly weathered (W2)  <br>END OF BOREHOLE (14.00 metres)                                      |                             |                        |               |                      |                   |                     |                                       |             |                 |              |                                         |                  |
| -            |         | Note: Excess ice content determined in laboratory is                                                               |                             |                        |               |                      |                   |                     |                                       |             |                 |              |                                         |                  |
| -            |         | shown graphically. Estimated excess ice content values are provided in `Ground Ice Description'                    |                             |                        |               |                      |                   |                     |                                       |             |                 |              |                                         | 904-             |
| 15           |         | column.                                                                                                            |                             |                        |               |                      |                   |                     |                                       |             |                 |              |                                         |                  |
|              |         |                                                                                                                    | Contractor: Cyr Drilling    |                        |               |                      |                   |                     | Completion                            | Depth       | : 14 m          |              |                                         |                  |
|              |         | TETRA TECH                                                                                                         | Drilling Rig Type: D-10 Dia | amon                   | nd Dril       | l                    |                   | 5                   | Start Date: 2                         | 016 S       | Septemb         | er 25        |                                         |                  |
|              | T       |                                                                                                                    | Logged By: JGD/EP           |                        |               |                      |                   |                     | Completion                            | Date:       | 2016 S          | eptemb       | er 26                                   |                  |
|              |         | J                                                                                                                  | Reviewed By: VER            |                        |               |                      |                   |                     | Page 2 of 2                           |             |                 |              |                                         |                  |

|                                |            |                                                                                                                                                                                                                                           | Borehole                               | N           | 0:             | G                    | T-58                                                                                                          |                        |                                |          |         |                |             |               |
|--------------------------------|------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------|-------------|----------------|----------------------|---------------------------------------------------------------------------------------------------------------|------------------------|--------------------------------|----------|---------|----------------|-------------|---------------|
|                                |            | GOLDCORP                                                                                                                                                                                                                                  | Project: Fall 2016 Geotec              | hnica       | l Inve         | stigati              | on                                                                                                            | Proi                   | ect No: I                      | ENG.EA   | ARC030  | 04-02          |             |               |
|                                |            | OOLDCORP                                                                                                                                                                                                                                  | Location: Coffee Mine Site             |             |                | _                    |                                                                                                               |                        | und Elev                       |          |         |                |             |               |
|                                |            |                                                                                                                                                                                                                                           | Coffee Creek, Yukon                    |             |                |                      |                                                                                                               | UTM                    | 1: 58220                       | 5 E; 69  | 73942 N | N; Z 7         |             |               |
|                                |            |                                                                                                                                                                                                                                           | Thermal<br>Condition                   | ed          | nber           | ent (%)              | <ul> <li>Unc. Complete</li> <li>5</li> <li>10</li> <li>▲Excess Ice Content</li> <li>20</li> <li>40</li> </ul> | ressive (<br>15        | (MPa) ◇<br>20                  | ● Frac   |         | equency<br>6   | (/m) ●<br>8 | _             |
| Depth<br>(m)                   | Method     | Lithological<br>Description                                                                                                                                                                                                               | and<br>Ground Ice                      | Sample Type | Sample Number  | Moisture Content (%) | Bulk Den<br>1400 1600<br>Plastic Moi                                                                          | sity (kg/i<br>0 1800 2 | m³) <b>■</b><br>2000<br>Liquid | 40       |         | 0 (%) ▲<br>80  | 100         | Elevation (m) |
| 0                              |            |                                                                                                                                                                                                                                           | Description                            |             | S              | Mois                 | l —                                                                                                           | ntent<br>60            | Limit<br>1<br>80               | 40       |         | ery (%)<br>80  | 100         |               |
| -<br>-<br>-                    |            | MOSS - organics, fine fibrous, black, (100 mm thick) No recovery                                                                                                                                                                          | Thawed                                 |             |                |                      |                                                                                                               |                        | :                              |          | T       |                |             | -             |
| -<br>-<br>-<br>-               |            | SILT - sandy, organics, rootlets, fine fibrous                                                                                                                                                                                            | Nbe                                    | A           | R1             |                      |                                                                                                               |                        |                                |          |         |                |             | 901           |
| -<br>1<br>-<br>-<br>-          |            | SAND AND GRAVEL - silty, trace clay, massive, grey, subangular gravel  SAND - silty, trace clay, trace gravel, organics, massive, black to grey, subangular gravel                                                                        | Vc 3%<br>Vx, Vc, Vs 5%                 |             | 58-S1          | 177.5                | <b>A</b>                                                                                                      |                        | •                              | •        |         |                | •           | -             |
| -<br>-<br>-<br>-               |            | - from 1.71 to 1.88 m, cobble (granite)                                                                                                                                                                                                   | 3 mm thick clear ice lens              | ,           | 58-S2<br>R2    | 49.1                 | <b>A B</b>                                                                                                    | •                      |                                |          |         |                |             | 900-          |
| _<br>_ 2<br>_                  |            | GRAVEL AND SAND - silty, trace clay, massive, grey, subangular gravel                                                                                                                                                                     | Vc, Vx 3-5%                            |             |                |                      |                                                                                                               |                        |                                |          |         |                | •           | -<br>-<br>-   |
| -<br>-<br>-<br>-               |            |                                                                                                                                                                                                                                           | Vc, Vx 10%                             | X           | 58-S3<br>R3    | 14.2                 |                                                                                                               |                        |                                |          |         |                |             | 899-          |
| -<br>3<br>-                    |            |                                                                                                                                                                                                                                           | Vc, Vx 3%                              | П           | 58-S4<br>58-S5 | 15.1                 |                                                                                                               |                        |                                |          |         |                |             | -<br>-<br>-   |
| -<br>-<br>-<br>-               | mond drill | - from 3.55 to 3.74 and 3.81 to 3.95 m, ice shattered cobbles (granite)                                                                                                                                                                   | VC, VX 370                             | M           | R4             | 10.14                |                                                                                                               |                        |                                |          |         |                |             | 898-          |
| 4<br>-<br>-<br>-               | _ ~        | No recovery  GRAVEL AND SAND - silty, trace clay, massive, grey, subangular gravel  - from 4.00 to 4.55 m, frost shattered rock                                                                                                           |                                        | V           |                |                      |                                                                                                               |                        |                                |          |         | ····· <b>!</b> |             | 897-          |
| -<br>-<br>-<br>-               |            | BIOTITE SCHIST (BEDROCK) - highly weathered (W4), massive, medium strong (R3), grey, pink and white, fine to medium grained                                                                                                               |                                        | M           | R5             |                      |                                                                                                               |                        |                                |          |         |                |             | 697-          |
| <del></del>                    |            | - at 5.00 m, slightly weathered (W2), light pink to dark grey                                                                                                                                                                             |                                        | V           | 58-R1          |                      |                                                                                                               |                        | 28,                            | <b>†</b> |         |                |             | 896-          |
| -<br>-<br>-<br>-<br>-<br>6     |            | - from 5.59 to 5.66 m, quartz vein - from 5.66 to 5.78 m, rubble zone, ~25 inclined joints, undulating, smooth, some slight light green weathering                                                                                        |                                        |             | R6             |                      |                                                                                                               |                        |                                | 10       | •       |                | 25          | -             |
| -<br>-<br>-<br>-<br>-          |            | - at 6.00 m, dark grey to green, JSN: 4 - at 6.23 and 6.53 m, inclined joints, undulating, rough, oxidized, slight silt infill - at 6.55 m, strong (R4) - at 6.70 and 6.91 m, subhorizontal joints, undulating, rough, slight silt infill | ~3 mm thick clear ice lens along joint | M           | R7<br>58-R2    |                      |                                                                                                               |                        | 77,                            | <b>*</b> |         |                |             | 895-          |
| 7<br>-<br>-<br>-<br>-<br>- 7.5 |            | - at 7.00 m, JSN: 9<br>- from 7.00 to 7.10 and 7.78 to 8.00 m, subvertical<br>joints, undulating, smooth, slight oxidization                                                                                                              |                                        | V           | 58-R3          |                      |                                                                                                               |                        | 78,                            | <b>♦</b> |         | :              | 11          | 894-          |
|                                |            | <b>1</b>                                                                                                                                                                                                                                  | Contractor: Cyr Drilling               |             |                |                      |                                                                                                               | _                      | pletion                        | -        |         |                |             |               |
|                                |            | TETRA TECH                                                                                                                                                                                                                                | Drilling Rig Type: D-10 Di             | amor        | d Dril         | l                    |                                                                                                               |                        | t Date: 2                      |          | •       |                |             |               |
|                                | U          |                                                                                                                                                                                                                                           | Logged By: EP                          |             |                |                      |                                                                                                               | Com                    | pletion                        | Date: 20 | 016 Sep | tember         | 26          |               |
|                                |            | IG-EARC03004-02 GP.I FBA GDT 17/2/14                                                                                                                                                                                                      | Reviewed By: VER                       |             |                |                      |                                                                                                               | Page                   | e 1 of 2                       |          |         |                |             |               |

|                                                                                             |        |                                                                                                                                                                                                                                                                                                                                                                                                      | Borehole                                                 | N           | 0:            | G                    | T-58                                                                        |                                                                              |                             |                                                                                    |
|---------------------------------------------------------------------------------------------|--------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------|-------------|---------------|----------------------|-----------------------------------------------------------------------------|------------------------------------------------------------------------------|-----------------------------|------------------------------------------------------------------------------------|
| -                                                                                           |        | GOLDCORP                                                                                                                                                                                                                                                                                                                                                                                             | Project: Fall 2016 Geotecl                               | nnica       | al Inve       | stigation            | on                                                                          | Project No: E                                                                | ENG.EARC03004-02            |                                                                                    |
|                                                                                             |        | COLDCOM                                                                                                                                                                                                                                                                                                                                                                                              | Location: Coffee Mine Site                               | e, We       | est Po        | nd                   |                                                                             | Ground Elev                                                                  | r: 901.44 m                 |                                                                                    |
|                                                                                             |        |                                                                                                                                                                                                                                                                                                                                                                                                      | Coffee Creek, Yukon                                      |             |               |                      |                                                                             | UTM: 58220                                                                   | 5 E; 6973942 N; Z 7         |                                                                                    |
| Depth<br>(m)                                                                                | Method | Lithological<br>Description                                                                                                                                                                                                                                                                                                                                                                          | Thermal<br>Condition<br>and<br>Ground Ice<br>Description | Sample Type | Sample Number | Moisture Content (%) | Excess Ice Conten 20 40  Bulk Densit 1400 1600 1  Plastic Moist Limit Conte | 15 20<br>1 (% by volume) ▲<br>60 80<br>y (kg/m³) ■<br>800 2000<br>ure Liquid | ● Fracture Frequency (/m) ● | Elevation<br>(m)                                                                   |
| - 7.5<br>- 8<br>- 8<br>- 9<br>- 10<br>- 11<br>- 12<br>- 13                                  |        | - at 7.07, 7.40, 7.41, 7.45, 7.55, 7.63 and 7.71 m, subhorizontal joints, undulating, rough to smooth, slight oxidization - at 7.22 and 7.76 m, inclined joints, undulating, smooth, slight oxidization  END OF BOREHOLE (8.00 metres)  Note: Excess ice content determined in laboratory is shown graphically. Estimated excess ice content values are provided in 'Ground Ice Description' column. |                                                          |             | R8            |                      |                                                                             |                                                                              |                             | 893— 893— 893— 892— 891— 891— 890— 8890— 8890— 8890— 8890— 8890— 8890— 8890— 8890— |
| -<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>- |        |                                                                                                                                                                                                                                                                                                                                                                                                      |                                                          |             |               |                      |                                                                             |                                                                              |                             | 888-                                                                               |
|                                                                                             |        |                                                                                                                                                                                                                                                                                                                                                                                                      | Contractor: Cyr Drilling                                 |             |               |                      |                                                                             | Completion I                                                                 | Depth: 8 m                  |                                                                                    |
|                                                                                             |        | TETRATECH                                                                                                                                                                                                                                                                                                                                                                                            | Drilling Rig Type: D-10 Dia                              | amoi        | nd Dril       | <u> </u>             |                                                                             | Start Date: 2                                                                | 2016 September 26           |                                                                                    |
|                                                                                             | U      |                                                                                                                                                                                                                                                                                                                                                                                                      | Logged By: EP                                            |             |               |                      |                                                                             | Completion I                                                                 | Date: 2016 September 26     |                                                                                    |
|                                                                                             |        | J                                                                                                                                                                                                                                                                                                                                                                                                    | Reviewed By: VER                                         |             |               |                      |                                                                             | Page 2 of 2                                                                  | ·                           |                                                                                    |

#### Borehole No: GT-59 **=**GOLDCORP Project: Fall 2016 Geotechnical Investigation Project No: ENG.EARC03004-02 Location: Coffee Mine Site, West Pond Ground Elev: 913.47 m Coffee Creek, Yukon UTM: 582239 E; 6973971 N; Z 7 ♦ Unc. Compressive (MPa) ♦ 10 15 20 ● Fracture Frequency (/m) ● Thermal 4 6 Sample Number Sample Type Condition Elevation (m) Lithological Depth (m) ▲ RQD (%) ▲ and Description 60 80 Ground Ice Description Recovery (%) ORGANICS - roots, wood chips, coarse fibrous, (100 mm Thawed SAND AND GRAVEL - some silt, massive, well graded, brown, subangular gravel 913 R1 BIOTITE SCHIST (BEDROCK) - moderately weathered (W3), medium strong (R3), light pink, light grey and black, fine to R2 Frozen - ice in rock joints medium grained, JSN: 6 - at 1.03 m, inclined joint, undulating, smooth, silt, sand and 912 59-R1 ٥ - at 1.10 m, inclined joint, undulating, rough, silty sand and R3 - at 1.14 m, inclined joint, undulating, smooth, silty sand and 2 Diamond drill - at 1.18 m, inclined joint, undulating, rough, oxidized - at 1.30 m, highly weathered (W4), weak (R2) 911 - from 1.30 to 1.50 m, rubble zone R4 16 59-R2 - at 1.50 m, JSN: 3 - at 1.60 m, moderately weathered (W3), weak (R2) - at 1.60 m, inclined joint, undulating, smooth, oxidized 3 - at 1.72 m, inclined joint, undulating, smooth, oxidized, silty 59-R3 $\Diamond$ sand and ice infill - at 1.78 m, inclined joint, undulating, smooth, oxidized - at 1.80 m, inclined joint, undulating, smooth, oxidized, clear 910 R5 13 - at 1.85 m, inclined joint, undulating, rough, oxidized, sand - at 1.89 and 1.96 m, inclined joints, undulating, smooth, - at 2.08 m, inclined joint, undulating, smooth, oxidized - at 2.13 m, inclined joint, undulating, smooth, weathered, 909 R6 silty sand and ice infill - at 2.15 m, inclined joint, undulating, smooth, oxidized, 60 59-R4 slight sand infill - at 2.20 and 2.24 m, inclined joints, undulating, rough, - 5 oxidized - at 2.25 m, inclined joint, undulating, smooth, oxidized, slight sand infill - at 2.35 m, inclined joint, undulating, smooth, oxidized 908 - at 2.39 m, inclined joint, undulating, smooth, weathered - at 2.42 m, inclined joint, undulating, smooth, oxidized - at 2.44 m, inclined joint, undulating, smooth, 3 mm thick ice 6 - at 2.48 m, inclined joint, undulating, smooth, oxidized, ice 907 - from 2.52 to 2.85 m, pink, grey and white inclusions, strong at 2.52, 2.62, 2.77 and 2.86 m, inclined joints, undulating, smooth, oxidized - at 2.91 m, inclined joint, undulating, rough, oxidized - at 3.00 m, JSN: 6 - at 3.11 m, inclined joint, undulating, rough, oxidized at 3.24 m, inclined joint, undulating, rough, slightly oxidized Contractor: Cyr Drilling Completion Depth: 5 m Drilling Rig Type: D-10 Diamond Drill Start Date: 2016 September 27 TETRA TECH Logged By: JGD Completion Date: 2016 September 27 Reviewed By: VER Page 1 of 2



## Borehole No: GT-59

Project: Fall 2016 Geotechnical Investigation

Location: Coffee Mine Site, West Pond

Coffee Creek, Yukon

Project No: ENG.EARC03004-02

Ground Elev: 913.47 m

UTM: 582239 E; 6973971 N; Z 7

|                                            | Coll                                                                                                                                                                                                                                                                                                                                                                  | ee Creek, rukon                              |                              | 0 1 W. 30223           | 9 E, 097397 I N, Z 7                                                                   |                               |
|--------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------|------------------------------|------------------------|----------------------------------------------------------------------------------------|-------------------------------|
| Depth (m) Method                           | Lithological<br>Description                                                                                                                                                                                                                                                                                                                                           | Thermal Condition and Ground Ice Description | Sample Type<br>Sample Number | ssive (MPa) ◇<br>15 20 | Fracture Frequency (// 2 4 6 8  ARQD (%) A  40 60 80 10  Recovery (%) III  40 60 80 10 | Elevation (m)                 |
| - 8<br>8                                   | - at 3.31 m, inclined joint, undulating, smooth, oxidized, slight sand infill     - at 3.40 m inclined joint, undulating, smooth, slightly oxidized     - at 3.54 and 3.62 m, inclined joints, undulating, rough, slightly oxidized     - at 3.65 m, inclined joint, undulating, rough, oxidized, slight                                                              |                                              |                              |                        |                                                                                        | -                             |
| -<br>-<br>-<br>-<br>-<br>9<br>-<br>-       | sand infill  - at 3.67 m, inclined joint, undulating, rough, oxidized, sand and ice infill  - at 3.81 m, inclined joint, undulating, smooth, oxidized, sand infill  - at 3.88 m, inclined joint, undulating, rough, slightly oxidized  - at 3.92 m, inclined joint, undulating, smooth, slightly oxidized  - at 3.96 m, inclined joint, undulating, smooth, oxidized, |                                              |                              |                        |                                                                                        | 905-                          |
| -<br>-<br>-<br>- 10<br>-<br>-<br>-         | slight sand infill     at 4.00 m, inclined joint, stepped, smooth, oxidized, slight sand and ice infill     at 4.10 m, inclined joint, undulating, rough, sand infill, rock altered and weak around joint     at 4.20 m, inclined joint, undulating, smooth, oxidized     from 4.20 to 4.26 m, rubble zone, ice in joints                                             |                                              |                              |                        |                                                                                        | 903—                          |
| -<br>-<br>-<br>- 11<br>-<br>-<br>-         | - from 4.23 to 4.36 m, pink and white inclusions - at 4.35 m, inclined joint, undulating, rough, oxidized - at 4.44 and 4.52 m, inclined joints, undulating, smooth, oxidized - at 4.61 m, inclined joint, undulating, smooth, slightly oxidized - at 4.70 m, inclined joint, undulating, smooth, oxidized, silty sand infill                                         |                                              |                              |                        |                                                                                        | 902-                          |
| -<br>-<br>-<br>-<br>12<br>-<br>-<br>-<br>- | - at 4.88 m, inclined joint, undulating, smooth, completely weathered, silty sand infill, rock altered and weak around joint  END OF BOREHOLE (5.00 metres)  Note: Excess ice content determined in laboratory is shown graphically. Estimated excess ice content values are provided in `Ground Ice Description' column.                                             |                                              |                              |                        |                                                                                        | 901—                          |
| -<br>-<br>-<br>- 13<br>-<br>-<br>-         |                                                                                                                                                                                                                                                                                                                                                                       |                                              |                              |                        |                                                                                        | 900—                          |
| <br>-<br>-<br>-<br>- 14<br>-<br>-          |                                                                                                                                                                                                                                                                                                                                                                       |                                              |                              |                        |                                                                                        | -                             |
| -<br>-<br>-<br>-<br>-<br>-<br>15           | Con                                                                                                                                                                                                                                                                                                                                                                   | tractor: Cyr Drilling                        |                              | Completion             | Depth: 5 m                                                                             | 899—<br>-<br>-<br>-<br>-<br>- |



| Contractor: Cyr Drilling              | Completion Depth: 5 m              |
|---------------------------------------|------------------------------------|
| Drilling Rig Type: D-10 Diamond Drill | Start Date: 2016 September 27      |
| Logged By: JGD                        | Completion Date: 2016 September 27 |
| Reviewed By: VER                      | Page 2 of 2                        |

|                |         |                                                                                              | Borehole                                          | Ν           | lo:           | G                    | T-6                                   | 0                                       |          |       |          |             |                 |                 |               |
|----------------|---------|----------------------------------------------------------------------------------------------|---------------------------------------------------|-------------|---------------|----------------------|---------------------------------------|-----------------------------------------|----------|-------|----------|-------------|-----------------|-----------------|---------------|
|                |         | GOLDCORP                                                                                     | Project: Fall 2016 Geotec                         |             |               |                      |                                       |                                         | Project  | No: E | ENG.E    | EARC03      | 004-02          |                 |               |
|                |         | OOLDCORP                                                                                     | Location: Coffee Mine Site                        |             |               |                      |                                       |                                         | Ground   |       |          |             |                 |                 |               |
|                |         |                                                                                              | Coffee Creek, Yukon                               |             |               |                      |                                       |                                         | UTM: 5   | 3218  | 1 E; 6   | 973978      | N; Z 7          |                 |               |
|                |         |                                                                                              |                                                   |             |               | (%)                  | ♦ Unc. C                              | ompres                                  |          | a) 🔷  |          |             |                 | y (/m) <b>€</b> |               |
|                |         |                                                                                              | Thermal                                           | e           | per           | nt (9                | ▲Excess lo                            | e Content<br>40                         |          |       |          | 2 4         | 6               | 8               | _             |
| Depth<br>(m)   | Method  | Lithological                                                                                 | Condition and                                     | Sample Type | Sample Number | onte                 |                                       | Density<br>1600 18                      |          |       |          | <b>▲</b> R0 | QD (%) <b>⊿</b> | <b>\</b>        | ation<br>n)   |
| ا ۾ ڪ          | Mei     | Description                                                                                  | Ground Ice                                        | ampl        | nple          | nre (                |                                       |                                         |          |       | 4        | 10 60       |                 | 100             | Elevation (m) |
|                |         |                                                                                              | Description                                       | S           | Sal           | Moisture Content (%) | Plastic<br>Limit                      | Conte                                   |          |       |          | Reco        | very (%         | ) 🔳             |               |
| 0              |         |                                                                                              | •                                                 |             |               | ~                    | 20                                    | 40                                      | <b></b>  | 1     |          | 10 60       | • .             | 100             |               |
| _              |         | ORGANICS - rooty, fine to coarse fibrous, dark brown, (100 mm thick)                         | Thawed                                            | M           |               |                      | :                                     | :                                       |          |       |          |             | :               | :               | 895-          |
| F              |         | No recovery                                                                                  |                                                   |             |               |                      | :                                     | :                                       |          |       |          |             |                 |                 |               |
| E              |         |                                                                                              |                                                   |             | R1            |                      |                                       | Ė                                       |          |       |          |             |                 |                 |               |
| E              |         | CORDI E fresh shattered ded core                                                             |                                                   |             |               |                      | :                                     | :                                       |          |       |          |             |                 |                 | -             |
| <u> </u>       |         | COBBLE - frost shattered, dark grey SILT (ORGANIC) - trace sand, trace gravel, roots, dark   | Frozen, Nbe                                       | M           | 60-S1         | 76.9                 | l                                     |                                         | •        |       |          | L           |                 |                 |               |
| <u> </u>       |         | brown, inclusions, fine gravel - at 1.00 m, gravel chips                                     |                                                   | 1/          |               |                      | :                                     |                                         |          |       | -        |             |                 | T               | 894-          |
| E              |         | - at 1.10 m, some sand                                                                       |                                                   |             | 60-S2         | 50                   | :                                     | •                                       |          |       |          |             |                 |                 |               |
| -              |         | - at 1.55 m, 80 mm diameter cobble                                                           |                                                   | Х           | R2            |                      |                                       | Ė                                       |          |       |          |             |                 |                 | -             |
| L              |         | SAND AND GRAVEL - silty, massive, well graded, dark                                          | Vx, Vc 10-15%                                     | И           |               |                      |                                       | :                                       |          |       |          |             |                 |                 |               |
| - 2            |         | grey and brown, subangular gravel                                                            |                                                   |             | 60-S3         | 35.7                 |                                       | •                                       | <u> </u> |       |          |             |                 | 🛓               |               |
| ļ -            |         |                                                                                              |                                                   | И           |               |                      |                                       | :                                       |          |       |          |             |                 | Τ               | 893-          |
| -              |         |                                                                                              |                                                   | M           |               |                      |                                       | :                                       |          |       |          |             |                 |                 |               |
| -              |         | SILT (ORGANIC) AND PEAT - fine fibrous, dark brown                                           | Vs, Vr 40%                                        |             | R3<br>60-S4   | 177.6                | :                                     | <b>A</b>                                |          | •     |          |             |                 |                 | -             |
| -              |         | SAND AND GRAVEL - silty, massive, well graded, brown grey, subangular gravel                 | Vx, Vc 10-15%                                     |             | 60-S5         |                      | :                                     | :                                       |          |       |          |             |                 |                 |               |
| - 3            |         | g                                                                                            |                                                   |             |               |                      | ļ                                     |                                         | <u>.</u> |       |          | :<br>}      |                 | 🛓               |               |
| -              |         |                                                                                              |                                                   | M           |               |                      |                                       | :                                       |          |       |          |             |                 |                 | 892-          |
| -              | =       | - at 3.31 m, 75 mm diameter cobble                                                           |                                                   | M           |               |                      | :                                     | :                                       |          |       |          |             |                 |                 |               |
| -              | d drill |                                                                                              |                                                   | И           | R4            |                      |                                       | :                                       |          |       |          |             |                 |                 | -             |
| F              | mond    |                                                                                              | Ice inclusion - 10 mm thick                       | Н           | 60-S6         |                      |                                       |                                         |          |       |          |             |                 |                 | :             |
| - 4            | Dian    | GRAVEL - some sand, some silt                                                                | clear ice<br>5 mm thick clear ice coating         |             | 00-30         |                      | ļ <u>.</u>                            |                                         | <u> </u> |       |          | <u> </u>    |                 | <b></b>         | 891-          |
| -              |         | CHAINE COME COME, COME CAN                                                                   | on particles                                      | M           |               |                      |                                       | :                                       |          |       |          |             |                 |                 | 091           |
| F              |         |                                                                                              |                                                   | М           | DE            |                      | :                                     |                                         |          |       |          |             |                 |                 | -             |
| E              |         |                                                                                              |                                                   | Ν           | R5            |                      |                                       |                                         |          |       |          |             |                 |                 | -             |
|                |         | No recovery                                                                                  |                                                   |             |               |                      | :                                     | :                                       |          |       |          |             |                 |                 | -             |
| <del>-</del> 5 |         | No recovery BIOTITE SCHIST (BEDROCK) - moderately weathered                                  |                                                   |             |               |                      |                                       |                                         | ·····    |       | <u>♠</u> | •           |                 | •               | 890-          |
| -              |         | (W3), medium strong to strong (R3-R4), black grey, pink and white inclusions, coarse grained |                                                   | М           |               |                      | :                                     | :                                       |          |       |          |             |                 |                 |               |
| _              |         | - from 5.00 to 5.17 m, rubble zone                                                           |                                                   | М           | R6            |                      | :                                     | :                                       |          | 40,   |          |             |                 |                 | -             |
| -              |         | - at 5.00 m, medium strong (R3), JSN: 6<br>- from 5.28 to 5.42 m, rubble zone                |                                                   | Н           | 60-R1         |                      | :                                     | :                                       |          | 70<   |          |             | :               |                 | -             |
| -              |         | - at 5.60 m, inclined joint, undulating, rough, silty                                        | Ice coatings on fracture surfaces in rubble zones | Ц           |               |                      | :                                     |                                         |          |       |          |             | :               |                 |               |
| <del>-</del> 6 |         | sand infill - from 5.75 to 6.00 m, rubble zone                                               | Surraces in rubble 201185                         |             |               |                      | · · · · · · · · · · · · · · · · · · · | ::::::::::::::::::::::::::::::::::::::: | <u>:</u> |       | <b>-</b> | <b>*</b>    | •               |                 | 889-          |
| ļ.             |         | No recovery                                                                                  |                                                   | M           |               |                      | :                                     | :                                       |          |       |          |             |                 |                 | -             |
| <u> </u>       |         | BIOTITE SCHIST (BEDROCK) - slightly weathered (W2), medium strong (R3), black grey, pink and | 2 mm think along :                                | V           | R7            |                      | :                                     | :                                       |          |       |          |             |                 |                 |               |
| F              |         | white inclusions, coarse grained                                                             | 3 mm thick clear ice                              | ۱           | 60-R2         |                      | :                                     | :                                       |          | 122   |          |             |                 |                 | -             |
| <u> </u>       |         | - at 6.10 m, inclined joint, undulating, rough, slight sand infill                           |                                                   | П           |               |                      | :                                     | :                                       |          |       |          |             |                 | 1               |               |
| <b>⊢</b> 7     |         | - from 6.10 to 6.34 m, rubble zone, silty sand and ice infill                                |                                                   | abla        |               |                      |                                       | :                                       |          |       |          | ^           |                 | - <b>-</b>      | 888           |
| F              |         | - at 6.42 m, inclined, silty sand infill, frozen shut                                        |                                                   | M           |               |                      |                                       | :                                       |          |       |          |             | i               |                 |               |
| 7.5            |         | - st 6.50 m, inclined joint, undulating, rough                                               | Combrants == Cr == D :==                          |             |               |                      |                                       | - :                                     | <u> </u> | Er. " | b        | . 0         | :               |                 |               |
|                |         | <b>)</b>                                                                                     | Contractor: Cyr Drilling                          |             | - J D "       | 1                    |                                       |                                         | Comple   |       |          |             | 05              |                 |               |
|                | 7       | TETRATECH                                                                                    | Drilling Rig Type: D-10 Dia                       | amo         | na Dril       | I                    |                                       |                                         | Start Da |       |          | •           |                 | . OF            |               |
|                |         |                                                                                              | Logged By: JGD                                    |             |               |                      |                                       |                                         | Comple   |       | Date: 1  | ∠016 Se     | eptembe         | 25              |               |
|                |         | IG-FARC03004-02 GPJ FBA GDT 17/2/14                                                          | Reviewed By: VER                                  |             |               |                      |                                       |                                         | Page 1   | ot 2  |          |             |                 |                 |               |

|                                                     |        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | Borehole                                                 | Ν           | 0:            | G                    | T-60                                                                       |                                                                              |                             |                                         |
|-----------------------------------------------------|--------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------|-------------|---------------|----------------------|----------------------------------------------------------------------------|------------------------------------------------------------------------------|-----------------------------|-----------------------------------------|
|                                                     |        | GOLDCORP                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | Project: Fall 2016 Geotecl                               | nnica       | al Inve       | stigation            | on                                                                         | Project No: I                                                                | ENG.EARC03004-02            |                                         |
|                                                     |        | COLDCOM                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | Location: Coffee Mine Site                               | , We        | est Po        | nd                   |                                                                            | Ground Elev                                                                  | r: 895.08 m                 |                                         |
|                                                     |        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | Coffee Creek, Yukon                                      |             |               |                      |                                                                            | UTM: 58218                                                                   | 11 E; 6973978 N; Z 7        |                                         |
| Depth (m)                                           | Method | Lithological<br>Description                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | Thermal<br>Condition<br>and<br>Ground Ice<br>Description | Sample Type | Sample Number | Moisture Content (%) | Excess Ice Conten 20 40 Bulk Densit 1400 1600 1 Plastic Moisti Limit Conte | 15 20<br>t (% by volume) ▲<br>60 80<br>y (kg/m³) ■<br>800 2000<br>ure Liquid | ● Fracture Frequency (/m) ● | Elevation<br>(m)                        |
| 8                                                   |        | - at 6.65 m, very strong (R5) - at 6.80 m, subvertical joint, undulating, rough - from 6.68 to 7.00 m, rubble zone - silty sand infill - at 7.00 m, JSN: 3 - at 7.13 m, 3 mm thick quartz vein - at 7.16 m, 10 mm thick quartz vein - from 7.21 to 7.65 m, subvertical fracture, inclined fractures typically have ice infill, oxidized - at 7.81 m, strong (R4)  END OF BOREHOLE (8.00 metres) Note: Excess ice content determined in laboratory is shown graphically. Estimated excess ice content values are provided in `Ground Ice Description' column. |                                                          |             | R8<br>60-R3   |                      |                                                                            | 76,                                                                          |                             | 887—<br>                                |
| -<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>- |        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                          |             |               |                      |                                                                            |                                                                              |                             | 885—                                    |
| -<br>-<br>-<br>11<br>-<br>-<br>-<br>-<br>-          |        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                          |             |               |                      |                                                                            |                                                                              |                             | 884-                                    |
| -<br>- 12<br>-<br>-<br>-<br>-<br>-<br>-             |        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                          |             |               |                      |                                                                            |                                                                              |                             | 883-                                    |
| -<br>- 13<br>-<br>-<br>-<br>-<br>-<br>-             |        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                          |             |               |                      |                                                                            |                                                                              |                             | 882—<br>-<br>-<br>-<br>-<br>-<br>-<br>- |
| -<br>- 14<br>-<br>-<br>-<br>-<br>-<br>-             |        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                          |             |               |                      |                                                                            |                                                                              |                             | 881—<br>                                |
| 15                                                  | Ш      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | Contractor: Cyr Drilling                                 |             |               |                      |                                                                            | Completion                                                                   | I<br>Denth: 8 m             |                                         |
|                                                     |        | TETRATECU                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | Drilling Rig Type: D-10 Dia                              | amo         | nd Dril       | l                    |                                                                            |                                                                              | 2016 September 25           |                                         |
|                                                     | t      | TETRA TECH                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | Logged By: JGD                                           |             | ווום בי.      | •                    |                                                                            |                                                                              | Date: 2016 September 25     |                                         |
|                                                     | _      | J                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | Reviewed By: VER                                         |             |               |                      |                                                                            | Page 2 of 2                                                                  |                             |                                         |
|                                                     |        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | I TOVIOWOU Dy. VLIV                                      |             |               |                      |                                                                            | 1 ugo 2 01 2                                                                 |                             |                                         |

|                |             |                                                                                                                    | Borehole                                        | ١            | lo:           | G                    | T-61           |                     |                          |            |                                              |        |          |                  |
|----------------|-------------|--------------------------------------------------------------------------------------------------------------------|-------------------------------------------------|--------------|---------------|----------------------|----------------|---------------------|--------------------------|------------|----------------------------------------------|--------|----------|------------------|
| _              |             | GOLDCORP                                                                                                           | Project: Fall 2016 Geoted                       | chnic        | al Inve       | stigation            | on             | Pr                  | oject No: E              | ENG.EA     | RC0300                                       | 04-02  |          |                  |
|                |             | OOLDCORF                                                                                                           | Location: Coffee Mine Sit                       |              |               |                      |                |                     | round Elev               |            |                                              |        |          |                  |
|                |             |                                                                                                                    | Coffee Creek, Yukon                             |              |               |                      |                | U.                  | TM: 58221                | 7 E; 697   | 73922 N                                      | ; Z 7  |          |                  |
|                |             |                                                                                                                    |                                                 |              |               | (%                   |                | npressiv<br>0 15    | e (MPa) ◇<br>20          | ● Frac     | ture Fre                                     |        | (/m) ●   |                  |
|                |             |                                                                                                                    | Thermal                                         | g            | Jber          | ant (9               | ▲Excess Ice C  | Content (%<br>10 60 |                          | 2          | 4                                            | 6      | 8        |                  |
| Depth<br>(m)   | Method      | Lithological                                                                                                       | Condition and                                   | Sample Type  | Sample Number | Moisture Content (%) |                |                     |                          | -          | ▲ RQD                                        | (%) ▲  |          | Elevation<br>(m) |
|                | ×           | Description                                                                                                        | Ground Ice                                      | Samp         | ample         | sture                | Plastic N      | /loisture           | Liquid                   | 40         | 60                                           | 80     | 100      | Ele              |
| 0              |             |                                                                                                                    | Description                                     |              | S             | Mois                 | l <del>-</del> | Content<br>60       | Limit<br><b>⊢l</b><br>80 | 40         | Recove                                       |        | 100      |                  |
| -              |             | MOSS - organics, roots, rootlets, fine to coarse fibrous, black, (150 mm thick)                                    | F                                               | $\mathbf{A}$ |               |                      | :              |                     | :                        | :          | <b>T</b>                                     | :      | :        |                  |
| F              |             | PEAT AND SAND - silty, some gravel, fine fibrous,                                                                  | Frozen, Vx, Vc 1-3%, ice coatings on gravel     | M            |               |                      | :              |                     |                          |            |                                              | :      |          | 905-             |
| F              |             | black, subangular gravel No recovery                                                                               |                                                 |              | R1            |                      | :              |                     | :                        |            |                                              | :      |          |                  |
| Ŀ              |             | 110 1000 101                                                                                                       |                                                 |              |               |                      |                |                     |                          |            |                                              |        |          | _                |
| <u>-</u> 1     |             |                                                                                                                    |                                                 |              |               |                      |                | ļ                   |                          |            |                                              |        | <u>.</u> |                  |
| <u> </u>       |             | PEAT AND SAND - silty, some gravel, fine fibrous, black, subangular gravel                                         |                                                 |              |               |                      |                |                     |                          |            | -                                            |        | T        |                  |
| -              |             | GRAVEL AND SAND - some silt, massive, well graded,                                                                 | Vc, Vx 3%                                       | V            | 61-S1         | 155.5                |                |                     | •                        |            |                                              |        |          | 904-             |
| -              |             | dark grey, subangular gravel (granite)                                                                             | VO, VX 070                                      | M            | R2            |                      | :              |                     | i                        |            | :                                            | :      |          |                  |
| -              |             |                                                                                                                    |                                                 | П            | 61-S2         | 12                   | 40             |                     |                          |            |                                              |        |          | -                |
| -<br>- 2       |             |                                                                                                                    | V - V - 40 450/ - Ol '                          |              |               |                      |                | ļ                   |                          | ļ <u>.</u> |                                              |        | <u> </u> |                  |
| -              |             |                                                                                                                    | Vc, Vs 10-15%, Clear ice coatings to 3 mm thick |              | 61-S3         | 14.6                 | •              |                     | :                        |            |                                              |        | T        |                  |
| ļ.             |             |                                                                                                                    | -                                               |              | 61-S4         | 12.4                 | •              |                     |                          |            |                                              |        |          | 903-             |
| -              |             |                                                                                                                    |                                                 | М            | R3            |                      |                |                     |                          |            |                                              |        |          |                  |
| -              |             |                                                                                                                    |                                                 | И            |               |                      | :              |                     | :                        | :          | :                                            |        |          | -                |
| -<br>- 3       |             |                                                                                                                    |                                                 |              | 04.05         | 40.4                 |                | <u>.</u>            |                          |            |                                              |        | <b></b>  |                  |
| -              |             |                                                                                                                    |                                                 | П            | 61-S5         | 13.1                 |                |                     | :                        |            | :                                            | :      |          | -                |
| -              | =           |                                                                                                                    |                                                 | M            |               |                      |                |                     | :                        |            |                                              |        |          | 902-             |
| F              | amond drill |                                                                                                                    |                                                 | N            | R4            |                      | :              |                     | :                        |            |                                              | :      |          |                  |
| F              | Jou         |                                                                                                                    |                                                 |              | 61-S6         |                      | :              |                     | :                        |            | :                                            | :      |          | -                |
| 4              | Dian        | BIOTITE SCHIST (BEDROCK) - highly weathered                                                                        |                                                 |              | 61-R1         |                      |                | <u>:</u>            | 62                       |            |                                              |        |          |                  |
| F              | ľ           | (W4), strong (R4), light pink, grey and black, fine to                                                             |                                                 | П            | 01-K1         |                      | :              |                     |                          |            | :                                            | :      |          |                  |
| F              |             | medium grained, frozen - numerous fractures infilled with silt and sand, some                                      |                                                 | M            | D.F.          |                      |                |                     | :                        | 40         |                                              |        |          | 901-             |
| F              |             | 1 mm thick ice lenses                                                                                              |                                                 | Λ            | R5            |                      | :              |                     | :                        | 13         |                                              |        |          |                  |
| F              |             |                                                                                                                    |                                                 | М            |               |                      | :              |                     | :                        |            | :                                            | :      |          | -                |
| <del>-</del> 5 |             | - at 4.90 m, moderately weathered (W3), less silt and sand infill                                                  |                                                 |              |               |                      |                | ļ                   | ·····                    | •          |                                              |        | <b>#</b> |                  |
| E              |             | - at 5.00 m, slightly weathered (W2), JSN: 2                                                                       |                                                 |              | 61-R2         |                      | :              |                     | 44<                      |            |                                              |        |          |                  |
| E              |             | - at 5.06, 5.10, 5.45, 5.54, 5.67, 5.71, 5.73, 5.76, 5.86<br>and 5.91 m, inclined joints, undulating, smooth, very |                                                 | M            | R6            |                      | :              |                     | :                        |            | :                                            | :      |          | 900-             |
| E              |             | slight weathering, some have little silt infill                                                                    |                                                 | Λ            | ΚU            |                      | :              |                     |                          |            | :                                            | :      |          |                  |
| _              |             | - at 5.10 m, medium strong (R3) - at 5.50 m, grey to dark blue, slight banding of quartz                           |                                                 | М            |               |                      | :              |                     | :                        |            | :                                            | :      |          | -                |
| 6              |             | veins, fine to medium grained                                                                                      |                                                 |              |               |                      |                |                     |                          | <u> </u>   | <b></b>                                      |        | # •      |                  |
| <u> </u>       |             | - at 6.00 m, JSN: 4<br>- at 6.06, 6.12, 6.22, 6.31, 6.39, 6.46 and 6.65 m,                                         |                                                 | $\mathbf{M}$ |               |                      |                |                     |                          |            |                                              |        |          | 899-             |
| L              |             | inclined joints, undulating, smooth, no visible                                                                    |                                                 | M            | R7            |                      |                |                     |                          |            |                                              |        |          |                  |
| -              |             | staining or weathering - at 6.65 m, strong (R4)                                                                    |                                                 | ٨            | 61-R3         |                      |                |                     | 70                       |            |                                              | :      |          | :                |
| -              |             | - at 6.82 and 6.85 m, subhorizontal joints, undulating,                                                            |                                                 |              | 01-K3         |                      |                |                     |                          |            |                                              |        |          | -                |
| <b>−</b> 7     |             | smooth, no visible staining or weathering<br>- at 7.00 m, JSN: 2                                                   |                                                 |              |               |                      | :              |                     |                          |            |                                              |        |          | :                |
| F              |             | - at 7.11, 7.27, 7.29, 7.33, 7.44, 7.58, 7.75, 7.86 and                                                            |                                                 | M            | 04.57         |                      | :              |                     | 99                       |            |                                              | :      |          | 898-             |
| 7.5            |             | 7.94 m, inclined joints, undulating, smooth, slight                                                                | 0 1 1 2                                         |              | 61-R4         |                      | :              | <u>: :</u>          |                          | <u> </u>   | <u>                                     </u> | :      |          |                  |
|                |             | <b>1</b>                                                                                                           | Contractor: Cyr Drilling                        |              | 1 = 1         |                      |                |                     | ompletion I              | -          |                                              | 00     |          |                  |
|                | 7           | TETRA TECH                                                                                                         | Drilling Rig Type: D-10 D                       | iamo         | nd Dril       | I                    |                |                     | art Date: 2              |            |                                              |        | 00       |                  |
|                |             |                                                                                                                    | Logged By: EP                                   |              |               |                      |                |                     | ompletion I              | Date: 20   | 116 Sep                                      | tember | 29       |                  |
| 2001/ 00       |             | IC EADC02004 02 CD   EDA CDT 17/2/14                                                                               | Reviewed By: VER                                |              |               |                      |                | Pa                  | age 1 of 2               |            |                                              |        |          |                  |

|                                  |        |                                                                                                                                                                                                                                                           | Borehole                                                           | Ν           | lo:           | G                    | T-61                                                 |                                                   |                                                            |                                                                      |
|----------------------------------|--------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------|-------------|---------------|----------------------|------------------------------------------------------|---------------------------------------------------|------------------------------------------------------------|----------------------------------------------------------------------|
| _                                |        | GOLDCORP                                                                                                                                                                                                                                                  | Project: Fall 2016 Geotech                                         | nnica       | al Inve       | stigati              | on                                                   | Project No:                                       | ENG.EARC03004-02                                           |                                                                      |
| _                                |        | COLDCOIN                                                                                                                                                                                                                                                  | Location: Coffee Mine Site                                         | , We        | est Po        | nd                   |                                                      | Ground Elev                                       | /: 905.31 m                                                |                                                                      |
|                                  |        |                                                                                                                                                                                                                                                           | Coffee Creek, Yukon                                                |             |               |                      |                                                      | UTM: 58221                                        | 7 E; 6973922 N; Z 7                                        |                                                                      |
| Depth (m)                        | Method | Lithological<br>Description                                                                                                                                                                                                                               | Thermal<br>Condition<br>and<br>Ground Ice<br>Description           | Sample Type | Sample Number | Moisture Content (%) | Excess Ice Content 20 40  Plastic Moiste Limit Conte | 15 20<br>t (% by volume) ▲<br>60 80<br>ure Liquid | <ul><li>Fracture Frequency (/m)</li></ul>                  | Elevation<br>(m)                                                     |
|                                  |        | weathered, greenish alteration                                                                                                                                                                                                                            |                                                                    | V           | R8            |                      | : :                                                  | i i                                               |                                                            | -                                                                    |
| - 8<br>9<br>10<br>11<br>12<br>13 |        | - at 7.86 m, 10 mm thick gouge, silt and ice infill on joint  END OF BOREHOLE (8.00 metres)  Note: Excess ice content determined in laboratory is shown graphically. Estimated excess ice content values are provided in 'Ground Ice Description' column. |                                                                    |             |               |                      |                                                      |                                                   |                                                            | 897— 897— 896— 896— 896— 896— 897— 897— 897— 898— 898— 898— 898— 898 |
| 15                               | -<br>F | TETRATECH                                                                                                                                                                                                                                                 | Contractor: Cyr Drilling Drilling Rig Type: D-10 Dia Logged By: EP | amo         | nd Dril       | <u> </u>             |                                                      | <b>.</b>                                          | Depth: 8 m<br>2016 September 29<br>Date: 2016 September 29 |                                                                      |
|                                  |        | IG-EARC03004-02.GPJ EBA.GDT 17/2/14                                                                                                                                                                                                                       | Reviewed By: VER                                                   |             |               |                      |                                                      | Page 2 of 2                                       |                                                            |                                                                      |

|                                        |            |                                                                                                                                                                                                                                          | Borehole                                                                                                                                        | N           | lo:                           | G                    | T-6                                                      | 2             |                                       |          |          |             |       |        |               |
|----------------------------------------|------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------|-------------|-------------------------------|----------------------|----------------------------------------------------------|---------------|---------------------------------------|----------|----------|-------------|-------|--------|---------------|
|                                        |            | GOLDCORP                                                                                                                                                                                                                                 | Project: Fall 2016 Geotec                                                                                                                       | hnica       | al Inve                       | stigati              | on                                                       |               | Project No:                           | : ENC    | G.EAF    | RC0300      | )4-02 |        |               |
|                                        |            | COLDCOM                                                                                                                                                                                                                                  | Location: Coffee Mine Site                                                                                                                      | e, Ha       | alfway                        | Pond                 |                                                          |               | Ground Ele                            | ev: 10   | 020.93   | 3 m         |       |        |               |
|                                        |            |                                                                                                                                                                                                                                          | Coffee Creek, Yukon                                                                                                                             |             |                               |                      |                                                          |               | UTM: 5812                             | 259 E    | ; 697    | 3183 N      | ; Z 7 |        |               |
|                                        |            |                                                                                                                                                                                                                                          | Thermal                                                                                                                                         | Ф           | oer .                         | ıt (%)               | 5<br>▲Excess loa                                         | ompress<br>10 | sive (MPa) <<br>15 20<br>% by volume) | <b>◇</b> |          | ure Fre     |       | (/m) • |               |
| Depth<br>(m)                           | Method     | Lithological<br>Description                                                                                                                                                                                                              | Condition<br>and<br>Ground Ice                                                                                                                  | Sample Type | Sample Number                 | Moisture Content (%) | 20<br>Plastic                                            |               | 08 06                                 |          | 40       | ▲ RQD<br>60 |       | 100    | Elevation (m) |
| 0                                      |            |                                                                                                                                                                                                                                          | Description                                                                                                                                     | S           | Sa                            | Moist                | Limit<br>Louit<br>Louit<br>Louit<br>Louit<br>Louit<br>20 | Conter        |                                       |          | 40       | Recove      |       | 100    |               |
| -<br>-<br>-<br>-<br>-                  |            | MOSS - organics, roots, fine to coarse fibrous, (120 mm thick)  GRAVEL - loose, matrix washed away during drilling  No recovery                                                                                                          | Thawed                                                                                                                                          | X           | R1                            |                      |                                                          |               |                                       |          |          |             |       |        | -             |
| -<br>- 1<br>-<br>-<br>-<br>-<br>-      |            | GRAVEL - loose, matrix washed away during drilling  No recovery                                                                                                                                                                          |                                                                                                                                                 | X           | R2                            |                      |                                                          |               |                                       |          |          |             |       |        | 1020-         |
| -<br>-<br>- 2<br>-<br>-<br>-<br>-<br>- |            | SAND - silty, some gravel, trace clay, massive, well graded, grey, subangular gravel  SAND AND GRAVEL - some silt, massive, well graded, dark grey to black, subangular gravel  - from 2.10 to 2.20 and 2.50 to 2.62 m, granite cobble   | Frozen, Vs, Vc, Vx 20-25%, ~3-4 mm thick clear subhorizontal ice lenses Vs, Vr, Vx, Vc 40%, 1-7 mm thick clear ice lenses 30 mm thick clear ice |             | 62-S1<br>62-S2<br>62-S3<br>R3 | 24.9                 | 40                                                       | • 🛦           |                                       |          | <b>J</b> |             |       |        | 1019-         |
| -<br>- 3<br>-<br>-<br>-<br>-<br>-<br>- | mond drill | No recovery SAND AND GRAVEL - silty, trace clay, massive, well graded, dark grey to black, subangular gravel GRAVEL AND SAND - trace to some silt, well graded, brownish, subangular to angular gravel                                   | vs, Vx, Vr, Vc 40%, 5-10 mm thick clear ice lenses and coatings on gravel, ice inclusions to 10 mm                                              | Y<br>N      | 62-S4<br>R4<br>62-R1          | 27                   | •                                                        | <b>A</b>      | 74                                    | ······   |          |             |       | •      | 1018-         |
| -<br>- 4<br>-<br>-<br>-                | Diamo      | GRANITE (BEDROCK) - moderately weathered (W3), strong (R4), light pink, grey, black and white, coarse grained                                                                                                                            | _ thick                                                                                                                                         | V           |                               |                      |                                                          |               |                                       |          |          | ·····•      | ļ     |        | 1017-         |
| -<br>-<br>-<br>-<br>-<br>- 5           |            | - at 4.50 m, completely weathered (W5), very weak to weak (R1-R2)  No recovery                                                                                                                                                           |                                                                                                                                                 |             | R5                            |                      |                                                          |               |                                       | 0        |          |             |       |        | 1016-         |
| -<br>-<br>-<br>-<br>-<br>-<br>-        |            | GRANITE (BEDROCK) - highly weathered (W4), medium strong (R3), light pink, grey, black and white, some ice infill in joints, coarse grained - from 5.40 to 5.89 m, strong (R4)                                                           |                                                                                                                                                 | \<br>\      | R6<br>62-R2                   |                      |                                                          |               | 58                                    | 3♦       |          |             |       |        |               |
| - 6<br>-<br>-<br>-<br>-<br>-<br>-      |            | - at 6.00 m, moderately weathered (W3), JSN: 4     - at 6.10 and 6.20 m, subhorizontal joints, undulating, smooth, oxidized     - at 6.25, 6.48, 6.55, 6.82, 6.90 and 6.93 m, inclined joints, undulating, smooth, oxidized, silt infill |                                                                                                                                                 |             | R7                            |                      |                                                          |               |                                       |          |          | <b></b>     |       |        | 1015-         |
| -<br>- 7<br>-<br>-<br>-<br>- 7.5       |            | - from 6.95 to 7.00 m, rubble zone - at 7.00 m, JSN: 2 - at 7.03, 7.10, 7.17, 7.33, 7.38, 7.43, 7.55 and 7.98 m, inclined joints, undulating, smooth, oxidized,                                                                          | 3 mm thick ice lens in joint                                                                                                                    | X           |                               |                      |                                                          |               |                                       |          |          | 1           |       | ••     | 1014-         |
|                                        |            | <b>-</b>                                                                                                                                                                                                                                 | Contractor: Cyr Drilling                                                                                                                        |             |                               |                      |                                                          |               | Completion                            |          |          |             |       |        |               |
|                                        |            | TETRA TECH                                                                                                                                                                                                                               | Drilling Rig Type: D-10 Di                                                                                                                      | amo         | nd Dri                        | l                    |                                                          |               | Start Date:                           |          |          |             |       |        |               |
|                                        | U          |                                                                                                                                                                                                                                          | Logged By: EP/JGD                                                                                                                               |             |                               |                      |                                                          |               | Completion                            | n Dat    | e: 20′   | 16 Sept     | ember | 22     |               |
|                                        |            | NG-FARC03004-02 GPJ FBA GDT 17/2/14                                                                                                                                                                                                      | Reviewed By: VER                                                                                                                                |             |                               |                      |                                                          |               | Page 1 of 2                           | 2        |          |             |       |        |               |

|                                                 |       |                                                                                                                                                              | Borehole                   | Ν           | 0:            | G                    | T-62                                                                           | 2        |                                                 |           |             |                      |       |               |
|-------------------------------------------------|-------|--------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------|-------------|---------------|----------------------|--------------------------------------------------------------------------------|----------|-------------------------------------------------|-----------|-------------|----------------------|-------|---------------|
| -                                               |       | GOLDCORP                                                                                                                                                     | Project: Fall 2016 Geotec  | hnica       | al Inve       | stigati              | on                                                                             |          | Project No:                                     | ENG.EAF   | RC030       | 04-02                |       |               |
|                                                 |       | COLDCOM                                                                                                                                                      | Location: Coffee Mine Site |             |               |                      |                                                                                |          | Ground Elev                                     |           |             |                      |       |               |
|                                                 |       |                                                                                                                                                              | Coffee Creek, Yukon        |             |               |                      |                                                                                |          | UTM: 58125                                      | 59 E; 697 | 3183 N      | N; Z 7               |       |               |
|                                                 |       |                                                                                                                                                              | Thermal                    |             | ند            | (%)                  | ♦ Unc. Co                                                                      | ompress  | sive (MPa) <><br>15 20<br>% by volume) <b>4</b> | 7         |             |                      |       |               |
| _                                               | ō     | 120-1-2-1                                                                                                                                                    | Condition                  | ype         | equi          | tent                 | 20                                                                             | 40 6     | 80 80                                           | 2         | 4           | 6                    | 8     | <sub>E</sub>  |
| Depth<br>(m)                                    | Metho | Lithological<br>Description                                                                                                                                  | and<br>Ground Ice          | Sample Type | Sample Number | Moisture Content (%) | Plastic                                                                        | Moistu   | re Liquid                                       | 40        | ▲ RQE<br>60 | O (%) <b>4</b><br>80 | 100   | Elevation (m) |
| 7.5                                             |       |                                                                                                                                                              | Description                |             | Se            | Mois                 | Limit                                                                          | Conter   |                                                 | 40        | Recov<br>60 | ery (%<br>80         | 100   |               |
| -                                               |       | slight silt infill                                                                                                                                           |                            | X           | R8<br>62-R3   |                      |                                                                                |          |                                                 |           |             | :                    |       | -             |
| _<br>_ 8                                        |       | END OF BOREHOLE (8.00 metres)                                                                                                                                |                            | Λ           |               |                      | <u> </u>                                                                       | <u>:</u> | <u> </u>                                        | :         |             |                      | _     | 1013          |
| -<br>-<br>-<br>-<br>-<br>-                      |       | Note: Excess ice content determined in laboratory is shown graphically. Estimated excess ice content values are provided in `Ground Ice Description' column. |                            |             |               |                      |                                                                                |          |                                                 |           |             |                      |       |               |
| - 9<br>-<br>-<br>-<br>-<br>-<br>-               |       |                                                                                                                                                              |                            |             |               |                      |                                                                                |          |                                                 |           | 1012-       |                      |       |               |
| -<br>-<br>-<br>10<br>-<br>-<br>-<br>-<br>-      |       |                                                                                                                                                              |                            |             |               |                      |                                                                                |          |                                                 |           |             |                      |       |               |
| -<br>-<br>-<br>11<br>-<br>-<br>-<br>-           |       |                                                                                                                                                              |                            |             |               |                      |                                                                                |          |                                                 |           |             |                      |       |               |
| -<br>-<br>-<br>- 12<br>-<br>-<br>-<br>-         |       |                                                                                                                                                              |                            |             |               |                      |                                                                                |          |                                                 |           |             |                      |       | 1009-         |
| -<br>-<br>-<br>-<br>13<br>-<br>-<br>-<br>-<br>- |       |                                                                                                                                                              |                            |             |               |                      |                                                                                |          |                                                 |           |             |                      |       | 1008-         |
| -<br>-<br>-<br>- 14<br>-<br>-<br>-<br>-         |       |                                                                                                                                                              |                            |             |               |                      |                                                                                |          |                                                 |           |             |                      |       | 1007—         |
| Ē                                               |       |                                                                                                                                                              |                            |             |               |                      |                                                                                |          |                                                 |           |             |                      |       | 1000          |
| 15                                              |       |                                                                                                                                                              | Contractor: Cyr Drilling   |             |               |                      |                                                                                |          | Completion                                      | Denth: 9  | m           |                      |       | 1006—         |
|                                                 |       | <b>)</b>                                                                                                                                                     | · · · · · ·                | ama         | nd Drii       | II                   |                                                                                |          |                                                 |           |             | r 22                 |       |               |
|                                                 |       | TETRA TECH                                                                                                                                                   | Drilling Rig Type: D-10 Di | aiil0       | iiu DM        | 11                   |                                                                                |          |                                                 |           |             |                      | vr 22 |               |
|                                                 | _     |                                                                                                                                                              | Logged By: EP/JGD          |             |               |                      |                                                                                |          |                                                 | Date: 20' | io Sep      | nembe                | # ZZ  |               |
|                                                 |       | C EADC03004 02 CD LEDA CDT 47/2/44                                                                                                                           | Reviewed By: VER           |             |               |                      | Start Date: 2016 September 22  Completion Date: 2016 September 22  Page 2 of 2 |          |                                                 |           |             |                      |       |               |

|                     |               |                                                                                    | Boreh                               | ole         | N             | lo:                  | GT               | -63                     |                 |          |                                       |                       |         |               |
|---------------------|---------------|------------------------------------------------------------------------------------|-------------------------------------|-------------|---------------|----------------------|------------------|-------------------------|-----------------|----------|---------------------------------------|-----------------------|---------|---------------|
|                     |               | <b>GOLDCORF</b>                                                                    | Project: Fall 2016                  | 6 Geot      | echnic        | al Inve              | estigation       |                         | Projec          | ct No: E | NG.EARC                               | 03004-02              |         |               |
|                     |               | OCLDCOM                                                                            | Location: Coffee                    |             |               |                      |                  |                         |                 |          | 1028.67 n                             |                       |         |               |
|                     |               |                                                                                    | Coffee Creek, Yu                    |             |               |                      |                  |                         | _               |          | E; 69731                              |                       |         |               |
|                     |               |                                                                                    | Thermal                             |             | <u></u>       | (%)                  | ♦ Unc. Co        | 10 15                   | e (MPa) ≎<br>20 | ● Frac   | cture Frequ                           | iency (/m) <b>€</b>   |         |               |
| - :                 | р             | Lithological                                                                       | Condition                           | Type        | qun           | ntent                | 20               | 40 60                   | 80              |          |                                       |                       | 8       | ioi           |
| Depth<br>(m)        | Meth          | Description                                                                        | and                                 | Sample Type | Sample Number | Moisture Content (%) | 1400 1           | Density (kg<br>600 1800 | 2000            | 40       | ▲ RQD (%                              | %) <b>▲</b><br>30 100 | #TS4134 | Elevation (m) |
|                     |               | ·                                                                                  | Ground Ice Description              | Sa          | San           | oistu                | Plastic<br>Limit | Moisture<br>Content     | Liquid<br>Limit |          | Recovery                              |                       | #       |               |
| 0                   |               |                                                                                    | Decomplion                          |             |               | Σ                    | <br>             | 40 60                   | ⊣<br>80         | 40       | -                                     | 30 100                |         |               |
|                     |               | PEAT - roots, coarse fibrous, wet, dark brown to black, (100 mm thick)             | Thawed                              |             |               |                      |                  | : :                     | :               | T        |                                       | : :                   |         | -             |
| -                   |               | No recovery                                                                        |                                     | - 14        | 1             |                      | :                |                         | :               |          | :                                     |                       | †       | -             |
| -                   |               |                                                                                    |                                     | - 14        | R1            |                      | :                |                         | :               |          | :                                     |                       |         | -             |
| -                   |               |                                                                                    |                                     |             |               |                      | :                |                         | :               |          | :                                     |                       | ↓       | 1028-         |
| -<br>-<br>1         |               | SAND AND GRAVEL (COLLUVIUM) - silty,<br>trace clay, well graded, brown, subangular |                                     |             |               |                      | :                |                         |                 |          | :                                     |                       |         |               |
| - '                 |               | gravel to 60 mm diameter                                                           |                                     |             | 1             |                      |                  |                         |                 |          |                                       |                       |         | -             |
| -                   |               | No recovery                                                                        |                                     |             |               |                      | :                |                         | :               |          | :                                     |                       | †       | -             |
| -                   |               | ,                                                                                  |                                     |             | R2            |                      | :                |                         | :               |          | :                                     |                       |         | -             |
| -                   |               |                                                                                    |                                     |             |               |                      |                  |                         | :               |          | :                                     |                       |         | 1027          |
| -<br>2              |               |                                                                                    | Frozen, Vx, Vr, Vc 5%               |             |               |                      |                  |                         | <u>.</u>        |          | <u>:</u>                              | <u>:</u>              | 1       | -             |
| -                   |               | SAND AND GRAVEL (COLLUVIUM) - silty,<br>trace clay, well graded, brown, subangular |                                     |             | 63-S1         |                      | :                |                         |                 |          | :                                     | T                     | T       | -             |
| -                   |               | gravel to 60 mm diameter                                                           |                                     | M           |               |                      | :                |                         |                 |          | :                                     |                       |         | :             |
| -                   |               | - at 2.20 m, more gravel                                                           |                                     | N           | R3            |                      | :                |                         | :               |          | :                                     |                       |         | :             |
| -                   |               |                                                                                    |                                     | _ /\        |               |                      |                  |                         |                 |          |                                       |                       | .       | 1026-         |
| -<br><del>-</del> 3 |               |                                                                                    |                                     |             |               |                      |                  |                         |                 | <u>.</u> |                                       | <u> </u>              |         | -             |
| - 3<br>-            |               | GRANITE (BEDROCK) - completely weathered                                           |                                     |             | 00.00         | 40.0                 |                  |                         |                 |          |                                       | T                     |         | _             |
| _                   | _             | (W5), very weak (R1), light pink, medium to                                        |                                     | V           | 63-S2         | 13.6                 | •                |                         | :               |          | :                                     |                       |         | -             |
| -                   | drill         | coarse grained, ice and six minimum mactures                                       |                                     | X           | R4            |                      | :                |                         | :               | 0        | :                                     |                       | •       | -             |
| -                   | Diamond drill | - at 3.55 m, highly weathered (W4)                                                 |                                     | $\Lambda$   |               |                      |                  |                         | :               | :        | :                                     |                       |         | 1025-         |
| -<br>4              | iam           |                                                                                    |                                     |             | 1             |                      |                  |                         |                 |          | , <u>.</u>                            | <u> </u>              |         | -             |
|                     |               | - at 4.00 m, moderately weathered (W3), medium strong (R3)                         | 15 mm thick ice lens in<br>fracture | - N.        | 1             |                      | :                |                         |                 |          | •                                     | T                     |         | _             |
| -                   |               |                                                                                    | 10 mm thick ice lens in             | M           |               |                      | :                | : :                     | :               |          | :                                     |                       | 1       |               |
| -                   |               | - at 4.52 m, strong (R4)                                                           | fracture<br>10 mm thick ice lens in |             | R5<br>63-R1   |                      | :                |                         | 84              |          | :                                     |                       |         |               |
| -                   |               | , ,                                                                                | fracture<br>15 mm thick ice lens in |             | 03-1          |                      |                  |                         | ;               |          | :                                     |                       |         | 1024-         |
| -<br><del>-</del> 5 |               |                                                                                    | fracture<br>15 mm thick ice lens in |             | 1             |                      |                  |                         |                 |          | <u></u>                               | <u>.</u>              |         | :             |
| -<br>-              |               | - at 5.00 m, JSN: 6<br>- at 5.09 m, inclined joint, undulating, smooth,            | fracture                            | 1.          | 1             |                      | :                |                         |                 | l        | T T                                   | T                     |         | -             |
| -                   |               | oxidized                                                                           |                                     | M           |               |                      | :                |                         |                 |          |                                       |                       | 1       |               |
| -                   |               | - at 5.40 m, subhorizontal joint, undulating, rough, silt/sand and ice infill      |                                     | N           | R6            |                      |                  |                         |                 |          |                                       |                       |         | -             |
| -                   |               | - at 5.58 m, inclined joint, undulating, smooth,                                   |                                     | _ /\        |               |                      |                  |                         | :               |          |                                       |                       |         | 1023-         |
| -<br><del>-</del> 6 |               | oxidized<br>- from 5.58 to 5.80 m, rubble zone - rubble to                         |                                     |             | 1             |                      |                  |                         |                 |          |                                       | <u>.</u>              |         |               |
|                     |               | 40 mm diameter                                                                     |                                     |             |               |                      |                  |                         |                 | Γ        | <u> </u>                              | i Ti                  |         | -             |
| -                   |               | - at 6.00 m, JSN: 9, silt/sand and ice infill in joints                            |                                     |             |               |                      |                  |                         | :               |          | :                                     |                       |         |               |
| -                   |               | ,                                                                                  |                                     |             | R7            |                      |                  |                         | :               | 15       | :                                     |                       |         | -             |
|                     |               | - at 6.60 m, weak (R2), white, oxidized on core surface                            |                                     | <b> </b>    |               |                      | :                |                         | :               |          | :                                     |                       |         | 1022-         |
| -<br>— 7            |               | - at 6.68 m, inclined joint, undulating, smooth,                                   |                                     |             | 1             |                      |                  |                         |                 | <u> </u> | · · · · · · · · · · · · · · · · · · · | <u>.</u> <u></u>      |         |               |
|                     |               | oxidized, silt/sand and ice infill - at 6.74 m, subhorizontal joint, undulating,   |                                     |             | 1             |                      |                  |                         | •               | Γ        | :                                     | T                     |         | -             |
| . <b></b>           |               | smooth, oxidized, ice on joint surface                                             |                                     |             |               |                      |                  |                         | :               |          | :                                     |                       |         | -             |
| 7.5                 |               | - at 6.81 m, inclined joint, undulating, smooth,                                   | Contractor: Cyr [                   | Orillina    | _             |                      |                  | <u>. :</u>              | Comp            | letion D | epth: 21.2                            | m ·                   |         |               |
|                     |               | TETRATECH                                                                          | Drilling Rig Type                   |             | Diamo         | nd Dri               |                  |                         | ·               |          | )16 Septer                            |                       |         |               |
| П                   | l             | TETRA TECH                                                                         | Logged By: EP/J                     |             |               |                      |                  |                         | _               |          |                                       | September             | 23      |               |
|                     | _             | J                                                                                  | Reviewed By: VE                     |             |               |                      |                  |                         | Page            |          |                                       |                       |         |               |
|                     |               | IC EARC(3004 02 CR LERA CDT 17/2/14                                                | 1. 10 VIO 110 a Dy. VI              | `           |               |                      |                  |                         | ı ugu           | . 5. 5   |                                       |                       |         |               |

|                                                                       |         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | Boreho                | le          | N             | 0:                   | GT              | -63                   | )                |           |             |             |             |                |         |                   |
|-----------------------------------------------------------------------|---------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------|-------------|---------------|----------------------|-----------------|-----------------------|------------------|-----------|-------------|-------------|-------------|----------------|---------|-------------------|
| -                                                                     |         | GOLDCORF                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | Project: Fall 2016 G  | eotecl      | hnica         | l Inve               | stigation       |                       | Р                | roject    | No: EN      | IG.EA       | RC030       | 04-02          |         |                   |
|                                                                       |         | COLDCOIN                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | Location: Coffee Min  | ne Site     | e, Hal        | fway                 | Pond            |                       | G                | round     | Elev: 1     | 028.6       | 67 m        |                |         |                   |
|                                                                       |         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | Coffee Creek, Yuko    | n           |               |                      |                 |                       | U                | JTM: 58   | 31284       | E; 697      | 73177 N     | N; Z 7         |         |                   |
|                                                                       |         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | •                     |             |               |                      | ♦ Unc. C        | ompressi              | ve (MP           | a) 🔷      | Frank       | Г.          |             | //ma\ 🗪        |         |                   |
|                                                                       |         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | Thermal               |             | Ē             | Moisture Content (%) | 5<br>▲Excess lo | 10 19 e Content (%    |                  |           | Fracti<br>2 | ure Fr<br>4 | equenc<br>6 | sy (/m) ●<br>8 |         |                   |
| _                                                                     | ام      | Lithological                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | Condition             | Sample Type | Sample Number | tent                 | 20              | 40 6                  | ) 80             | )         |             | •           |             |                | 7       | l lo              |
| Depth<br>(m)                                                          | Method  | Lithological<br>Description                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | and                   | ble         | e<br>S        | ဝ်                   | ■ Bulk<br>1400  | Density (<br>1600 180 | kg/m³)<br>00 200 | 00        |             |             | D (%) 🗸     |                | #TS4134 | Elevation (m)     |
|                                                                       | Σ       | Description                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | Ground Ice            | Sam         | amb           | sture                |                 | Moisture              |                  |           | 40          | 60          | 80          | 100            | #       | Ĭ                 |
|                                                                       |         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | Description           |             | S             | Moi                  | Limit           | Content               | Lin              | nit       |             | Recov       | ery (%      | ) ■            |         |                   |
| 7.5                                                                   |         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                       |             | R8            |                      | 20              | 40 60                 | 08 0             | 59        | 40          | 60          | 80          | 100            | _       |                   |
| -<br>-<br>-                                                           |         | oxidized, silt/sand and ice infill - at 7.00 m, highly weathered (W4) - at 7.41 m, strong (R4)                                                                                                                                                                                                                                                                                                                                                                                                     |                       |             | 3-R2          |                      |                 |                       |                  | Ĭ         |             |             |             |                |         | 1021-             |
| — 8<br>-<br>-                                                         |         | - at 8.00 m, JSN: 3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                       |             |               |                      |                 |                       |                  | ***       |             |             | 1           | •              |         |                   |
| -<br>-<br>-<br>-<br>-<br>-<br>-<br>9                                  |         | at 8.27 m, moderately weathered (W3), medium strong (R3), more competent     at at 8.27 m, subhorizontal joint, undulating, smooth, oxidized, sand and ice infill     at 8.60 and 8.76 m, inclined joints, undulating, smooth, oxidized                                                                                                                                                                                                                                                            |                       | _           | R9<br>3-R3    |                      |                 |                       |                  | 115       |             |             |             |                |         | 1020-             |
| -<br>-<br>-<br>-<br>-                                                 |         | - at 8.85 m, very strong (R5)<br>- at 9.00 m, heavily oxidized, JSN: 4<br>- at 9.19, 9.60., 9.78 and 9.87 m, inclined<br>joints, undulating, smooth, oxidized                                                                                                                                                                                                                                                                                                                                      |                       |             | 3-R4<br>R10   |                      |                 |                       |                  | 103♦      |             |             |             |                |         | 1019 <sup>-</sup> |
| - 10<br>                                                              | d drill | <ul> <li>at 10.00 m, JSN: 6, less oxidization on surface</li> <li>at 10.05 m, subhorizontal joint, undulating, smooth, oxidized, slight silt infill</li> <li>at 10.12 m, subhorizontal joint, undulating, rough, oxidized</li> <li>at 10.71, 10.78 and 10.93 m, inclined joints, undulating, smooth, oxidized</li> <li>at 11.10 m inclined joint, stepped, smooth,</li> </ul>                                                                                                                      |                       |             | R11<br>3-R5   |                      |                 |                       |                  | 1170      |             |             |             |                |         | 1018-             |
| - 12<br>- 12<br>                                                      | Diamond | oxidized - at 11.23 m, subhorizontal joint, undulating, rough, oxidized - at 11.50 m, JSN: 6 - at 11.58 m, inclined joint, undulating, smooth, oxidized, slight silt infill - at 11.67 m, inclined joint, undulating, rough, oxidized - at 11.69 m, highly weathered (W4), weak (R2) - from 11.76 to 12.13 m, subvertical joint, undulating, smooth, oxidized                                                                                                                                      |                       |             | R12<br>3-R6   |                      |                 |                       |                  |           |             |             | •           |                |         | 1017              |
| -<br>- 13<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>- |         | <ul> <li>at 11.98 m, subhorizontal joint, undulating, smooth, oxidized, slight silt/sand infill</li> <li>at 12.19 m, inclined joint, undulating, smooth, oxidized, slight silt infill</li> <li>at 12.50 m, inclined joint, undulating, smooth, oxidized</li> <li>from 12.60 to 13.30 m, rubble zone, granite rubble to 60 mm diameter</li> <li>at 13.00 m, moderately weathered (W3), medium strong (R3)</li> <li>at 13.30 m, inclined joint, undulating, smooth, oxidized, silt infill</li> </ul> |                       | F           | R13           |                      |                 |                       |                  |           |             |             |             |                |         | 1015              |
| -<br>-<br>-<br>-<br>-<br>-<br>15_                                     |         | - at 13.42 m, inclined joint, undulating, rough, silty sand infill - from 13.50 to 13.90 m, rubble zone - at 14.19 m, inclined joint, undulating, smooth, oxidized, coarse sand                                                                                                                                                                                                                                                                                                                    | 0                     | X           | 3-R7          |                      |                 |                       |                  | <b>\$</b> | £           | •           |             |                | •       | 1014              |
|                                                                       |         | <b>1</b>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | Contractor: Cyr Drill |             |               |                      |                 |                       | _                |           | tion De     | ·           |             | 00             |         |                   |
|                                                                       | 7       | TETRA TECH                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | Drilling Rig Type: D  |             | amon          | id Dri               |                 |                       | -                |           |             |             | otembe      |                |         |                   |
| <b>\</b> '                                                            |         | 'J                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | Logged By: EP/JGD     | )           |               |                      |                 |                       |                  |           |             | te: 20      | 16 Sep      | tember 2       | 23      |                   |
|                                                                       |         | G-EARC03004-02.GPJ EBA.GDT 17/2/14                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | Reviewed By: VER      |             |               |                      |                 |                       | P                | age 2     | of 3        |             |             |                |         |                   |

|                                                 |               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | Borehole N                                                                                        | 10:                  | GT-63                                                                                                                                       |                   |                                                                                                      |         |                  |
|-------------------------------------------------|---------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------|----------------------|---------------------------------------------------------------------------------------------------------------------------------------------|-------------------|------------------------------------------------------------------------------------------------------|---------|------------------|
| -                                               |               | GOLDCORP                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | Project: Fall 2016 Geotechnic                                                                     | cal Inve             | estigation                                                                                                                                  | Project N         | lo: ENG.EARC03004-02                                                                                 | )       |                  |
|                                                 |               | COLDCOM                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | Location: Coffee Mine Site, H                                                                     | lalfway              | / Pond                                                                                                                                      | Ground E          | Elev: 1028.67 m                                                                                      |         |                  |
|                                                 |               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | Coffee Creek, Yukon                                                                               |                      |                                                                                                                                             | UTM: 58           | 1284 E; 6973177 N; Z 7                                                                               |         |                  |
| Depth (m)                                       | Method        | Lithological<br>Description                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | Thermal Condition and Ground Ice Description                                                      | Moisture Content (%) | Unc. Compressive 5 10 15  A Excess Ice Content (% by 20 40 60  ■ Bulk Density (kg/ 1400 1600 1800)  Plastic Moisture Limit Content 20 40 60 | volume) <b>A</b>  | Fracture Frequency (/m<br>2 4 6 8<br>▲ RQD (%) ▲<br>40 60 80 100<br>■ Recovery (%) ■<br>40 60 80 100 | #TS4134 | Elevation<br>(m) |
|                                                 | Diamond drill | - at 14.36 m, weak (R2) - at 14.55, 14.68 and 14.97 m, inclined joints, undulating, smooth, oxidized - at 15.00 m, medium strong (R3) - from 15.17 to 15.32 m, rubble zone, sand to gravel sized particles - 15.40 m, inclined joint, undulating, smooth, oxidized, silt/sand infill - at 15.43 m, inclined joint, undulating, smooth, oxidized, silt infill  GNEISS (BEDROCK) - moderately weathered (W3), strong (R4), blue grey, banded, fine grained - from 15.67 to 16.25 m, rubble zone - at 16.42 m, inclined joint, undulating, smooth, oxidized, silght silt infill - at 16.60 m, inclined joint, undulating, rough, oxidized, silt and sand infill - from 16.80 to 16.90 m, rubble zone, sand to gravel sized particles  No recovery  GRANITE (BEDROCK) - highly weathered (W4), medium strong (R3), light pink, dark grey and black, highly fractured, fine to medium grained  No recovery  GRANITE (BEDROCK) - highly weathered (W4), medium strong (R3), light pink, dark grey and black, highly fractured, fine to medium grained - from 18.50 to 21.20 m, rubble zone  No recovery  END OF BOREHOLE (21.20 metres) GTC #TS4135 installed Note: Excess ice content determined in laboratory is shown graphically. Estimated | 63-Rs R14  63-Rs R15  63-Rs R15  63-Rs R16  63-Rs R16  63-Rs R16  63-Rs R17  63-Rs R18  63-Rs R18 | O C                  |                                                                                                                                             | 32 \rightarrow 19 |                                                                                                      |         | 1013-            |
| -<br>-<br>- 22<br>-<br>-<br>-<br>-<br>-<br>22.5 |               | laboratory is shown graphically. Estimated excess ice content values are provided in 'Ground Ice Description' column.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                                                   |                      |                                                                                                                                             |                   |                                                                                                      |         | 1007-            |
| 22.0                                            |               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | Contractor: Cyr Drilling                                                                          |                      | •                                                                                                                                           | Completi          | on Depth: 21.2 m                                                                                     | •       |                  |
|                                                 |               | TETRATECH                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | Drilling Rig Type: D-10 Diamo                                                                     | ond Dr               |                                                                                                                                             | · ·               | e: 2016 September 23                                                                                 |         |                  |
|                                                 | t             | , i i i i i i i i i i i i i i i i i i i                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | Logged By: EP/JGD                                                                                 |                      |                                                                                                                                             |                   | on Date: 2016 Septemb                                                                                | er 23   |                  |
|                                                 |               | J                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | Reviewed By: VER                                                                                  |                      |                                                                                                                                             | Page 3 o          |                                                                                                      |         |                  |

|                |         |                                                                                                               | Borehole                  | <u> </u>     | lo:           | G                    | T-6              | 4                 |                                       |           |             |          |                  |               |
|----------------|---------|---------------------------------------------------------------------------------------------------------------|---------------------------|--------------|---------------|----------------------|------------------|-------------------|---------------------------------------|-----------|-------------|----------|------------------|---------------|
|                |         | GOLDCORP                                                                                                      | Project: Fall 2016 Geotec | chnica       | al Inve       | stigati              | on               |                   | Project No:                           | ENG.E     | ARC03       | 004-02   |                  |               |
|                |         | OOLDCORP                                                                                                      | Location: Coffee Mine Si  |              |               |                      |                  | -                 | Ground Ele                            |           |             |          |                  |               |
|                |         |                                                                                                               | Coffee Creek, Yukon       | ,            |               |                      |                  |                   | UTM: 5812                             |           |             | N: 7 7   |                  |               |
|                |         |                                                                                                               |                           |              |               |                      | 5                | Compress          | sive (MPa) <<br>15 20                 | ● Fra     |             |          | cy (/m) <b>●</b> |               |
|                |         |                                                                                                               | Thermal<br>Condition      | g            | Jper          | o) tu                | ▲Excess lo<br>20 |                   | (% by volume) 4                       | 2         | 2 4         | 6        | 8                |               |
| Depth<br>(m)   | Method  | Lithological                                                                                                  | and                       | le Ty        | Nur           | Conte                |                  |                   |                                       |           | <b>▲</b> RC | D (%)    | <b>A</b>         | Elevation (m) |
| ا ۾ ا          | ₩       | Description                                                                                                   | Ground Ice                | Sample Type  | Sample Number | Moisture Content (%) | Disatio          | Majatuu           | امنینما مم                            | 4         | 0 60        | 80       | 100              |               |
|                |         |                                                                                                               | Description               | S            | Sa            | /loist               | Limit            | Moistur<br>Conter |                                       |           | Reco        | very (%  | .)               |               |
| 0              |         |                                                                                                               | '                         |              |               | ~                    | 20               | 40 6              | <b>──</b> ┃<br>80 80                  | 4         |             |          | 100              |               |
| -              |         | MOSS - organics, gravel (granite), roots, dark, (150 mm                                                       | Thawed                    | M            |               |                      | :                | :                 | : :                                   | T         | :           | :        | :                | -             |
| -              |         | thick) No recovery                                                                                            |                           |              |               |                      |                  |                   |                                       |           | :           | :        |                  | _             |
| _              |         | ,                                                                                                             |                           |              | R1            |                      |                  | :                 |                                       | 15        |             |          |                  |               |
| -              |         |                                                                                                               |                           |              |               |                      |                  | :                 |                                       |           |             |          | :                | 1000          |
| -              |         |                                                                                                               |                           |              |               |                      |                  |                   |                                       | <u></u> : |             |          |                  | 1029-         |
| - 1<br>-       |         | SAND - some silt to silty, trace gravel, trace clay,                                                          | Frozen, Vx, Vc 5%         | $\square$    |               |                      |                  |                   | · · · · · · · · · · · · · · · · · · · |           |             |          |                  |               |
| -              |         | massive, brown grey, subangular gravel - at 1.06 m, 160 mm long cobble (granite)                              |                           |              |               |                      | :                | :                 | : :                                   |           | :           | :        | :                | -             |
| -              |         | No recovery                                                                                                   |                           |              | R2            |                      |                  |                   |                                       |           |             | :        |                  |               |
| _              |         |                                                                                                               |                           |              |               |                      |                  | :                 |                                       |           |             |          | :                | -             |
| -              |         |                                                                                                               |                           |              |               |                      |                  |                   |                                       |           |             | :        |                  | 1028-         |
| _ 2            |         | SAND AND GRAVEL - some silt, trace clay, massive,                                                             | Vx, Vc 5-10%              |              | 64-S1         | 11.9                 | ▲●               | <u>.</u>          |                                       |           | <u> </u>    | :        | <b>-</b>         |               |
| _              |         | brown grey, subangular gravel                                                                                 | ,                         | $\mathbf{I}$ |               |                      |                  | :                 |                                       |           |             |          |                  |               |
| F              |         |                                                                                                               |                           |              | 64-S2         | 13.2                 |                  |                   |                                       |           |             | :        |                  | -             |
| F              |         |                                                                                                               |                           |              | R3            | 13.2                 | ~                | :                 |                                       |           |             |          |                  | -             |
| -              |         |                                                                                                               |                           | И            |               |                      |                  | :                 |                                       |           |             |          |                  | 1027-         |
| - 3            |         |                                                                                                               | Vx, Vc 35%                |              | 64-S3         | 13.2                 | •                | .≜¦               | ļ                                     |           |             |          |                  |               |
| F              | drill   |                                                                                                               |                           |              | 64-R4         | 12.3                 | •                | :                 |                                       |           | :           |          | :                | -             |
| -              |         | No recovery                                                                                                   |                           |              |               |                      |                  |                   |                                       |           |             |          |                  | -             |
| -              | Diamond | GRANITE (BEDROCK) - moderately weathered (W3),                                                                |                           |              | R4            |                      |                  | :                 |                                       |           |             |          |                  | -             |
| -              | Dia     | medium strong to strong (R3-R4), light pink, medium to coarse grained                                         |                           | M            |               |                      | :                | :                 |                                       |           |             |          | :                | 1026-         |
| - 4            |         |                                                                                                               |                           | $\triangle$  |               |                      |                  |                   | <u>:</u>                              |           |             |          | _ <u>:</u>       |               |
| -              |         | - at 4.00, silt and sand infilled joints, JSN: 4<br>- at 4.06, 4.33 and 4.72 m, subhorizontal joints,         |                           |              | 64-R1         |                      |                  |                   | 44                                    |           |             |          | T                | -             |
| -              |         | undulating, smooth to rough, slight silt infill                                                               |                           | V            |               |                      |                  | :                 |                                       |           |             |          |                  | -             |
| _              |         | - from 4.33 to 4.47 m, rubble zone, more silt and sand infill                                                 |                           | М            | R5            |                      |                  | :                 |                                       |           |             |          |                  | -             |
| -              |         | - at 4.47 and 4.95 m, inclined joints, undulating,                                                            |                           | И            |               |                      |                  |                   |                                       |           | :           |          |                  | 1025-         |
| -<br>5         |         | smooth to rough, silt infill - from 4.50 to 4.81 m, vertical joint, held together by                          | ~ 2-3 mm thick clear ice  |              |               |                      |                  | :<br>:<br>:       | <u>.</u>                              |           |             |          | <b>↓</b> ↓       |               |
| F °            |         | ~1 mm thick ice and silt infill                                                                               | lens in joint             |              |               |                      |                  |                   |                                       |           |             | <b>-</b> | T                |               |
| _              |         | - at 5.00 m, JSN: 3<br>- at 5.02, 5.31, 5.53, 5.73 and 5.80 m, inclined joints,                               |                           | М            |               |                      |                  | :                 |                                       |           | :           |          |                  | -             |
| E              |         | undulating, smooth to rough, silt/sand infill, 3 mm                                                           |                           |              | R6            |                      |                  | :                 | 111                                   |           |             |          |                  | -             |
| F              |         | thick at 5.31 m, 6 mm thick at 5.80 m, ~1 mm thick ice infill at 5.73 m, slight weathering                    |                           |              | 64-R2         |                      |                  | :                 |                                       | Ŷ         | :           |          |                  | 1024-         |
| F <sub>2</sub> |         | - at 5.53 m, very strong (R5)                                                                                 |                           |              |               |                      |                  |                   |                                       |           |             |          |                  | 1024          |
| — 6<br>-       |         | - from 5.80 to 5.95 m, vertical joint, undulating, smooth, silt/sand and ice infill                           |                           |              |               |                      |                  | :                 |                                       |           | Î           | :        |                  | ] -           |
| F              |         | No recovery                                                                                                   |                           | М            |               |                      |                  |                   |                                       |           |             | :        |                  | _             |
| -              |         | GRANITE (BEDROCK) - moderately weathered (W3),<br>medium strong to strong (R3-R4), light pink, medium         |                           |              | 64-R3         |                      | :                | :                 | 62                                    | <b>†</b>  |             | :        |                  | -             |
| -              |         | to coarse grained, JSN: 4                                                                                     |                           | $\Lambda$    | R7            |                      | :                | :                 | i i                                   |           |             | :        |                  | 1000          |
| F              |         | - from 6.00 to 6.23 m, vertical joint, undulating, smooth, silt/sand and ice infill                           |                           | 11           |               |                      |                  | :                 |                                       |           |             | :        |                  | 1023-         |
| — 7<br>-       |         | - at 6.07, 6.70, 6.84 and 6.97 m, inclined joints,                                                            |                           | 1            |               |                      | <u> </u>         |                   | <del></del>                           | 1         |             |          | -                | 1 -           |
| -              |         | undulating, smooth, slightly oxidized, silt/sand infill - at 6.36 m, subhorizontal joint, undulating, smooth, |                           |              |               |                      |                  |                   |                                       |           |             |          |                  | _             |
| 7.5            |         | very slight weathering                                                                                        |                           |              |               |                      |                  |                   |                                       |           |             |          |                  |               |
|                |         | <u> </u>                                                                                                      | Contractor: Cyr Drilling  |              |               |                      |                  | -                 | Completion                            | -         |             |          |                  |               |
|                |         | TETRA TECH                                                                                                    | Drilling Rig Type: D-10 D | iamo         | nd Dril       | l                    |                  |                   | Start Date:                           |           | •           |          |                  |               |
|                | U       |                                                                                                               | Logged By: EP/JGD         |              |               |                      |                  |                   | Completion                            | Date: 2   | 2016 Se     | eptembe  | er 20            |               |
|                |         | NG-EARC03004-02 GP.I EBA GDT 17/2/14                                                                          | Reviewed By: VER          |              |               |                      |                  |                   | Page 1 of 2                           |           |             |          |                  |               |

|                                              |        |                                                                                                                                                                                                                                                                                | Borehole                    | N           | 0:            | G                    | T-64                                                              |                                                |              |                    |                   |                  |
|----------------------------------------------|--------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------|-------------|---------------|----------------------|-------------------------------------------------------------------|------------------------------------------------|--------------|--------------------|-------------------|------------------|
| _                                            |        | GOLDCORP                                                                                                                                                                                                                                                                       | Project: Fall 2016 Geotecl  |             |               |                      |                                                                   | Project No:                                    | ENG.EARC     | 3004-02            | 2                 |                  |
|                                              |        | COLDCOM                                                                                                                                                                                                                                                                        | Location: Coffee Mine Site  |             |               |                      |                                                                   | Ground Ele                                     | v: 1029.78 m |                    |                   |                  |
|                                              |        |                                                                                                                                                                                                                                                                                | Coffee Creek, Yukon         |             |               |                      |                                                                   | UTM: 5812                                      | 13 E; 697318 | 3 N; Z 7           | ,                 |                  |
|                                              |        |                                                                                                                                                                                                                                                                                | Thermal                     |             | ər            | (%)                  | <ul><li>Unc. Compre<br/>5 10</li><li>▲ Excess Ice Conte</li></ul> | essive (MPa) <<br>15 20<br>ent (% by volume) 4 |              | Frequer            | ncy (/m) <b>●</b> |                  |
| Depth<br>(m)                                 | Method | Lithological<br>Description                                                                                                                                                                                                                                                    | Condition and               | Sample Type | Sample Number | Moisture Content (%) | 20 40                                                             | 60 80                                          |              | RQD (%)            | <b>A</b>          | Elevation<br>(m) |
|                                              | ×      | Description                                                                                                                                                                                                                                                                    | Ground Ice<br>Description   | Sam         | Samp          | Moisture             | Plastic Mois<br>Limit Con                                         |                                                |              | 60 80<br>covery (% |                   |                  |
| 7.5                                          |        | 1.000 m day (DA)                                                                                                                                                                                                                                                               |                             |             |               |                      | 20 40                                                             | 60 80                                          | 40 6         | 08 0               | 100               |                  |
| -<br>-<br>-<br>- 8<br>-<br>-                 |        | - at 6.36 m, strong (R4) - from 6.70 to 6.84 m, rubble zone, silt and sand infill  END OF BOREHOLE (7.00 metres)  Note: Excess ice content determined in laboratory is shown graphically. Estimated excess ice content values are provided in `Ground Ice Description' column. |                             |             |               |                      |                                                                   |                                                |              |                    |                   | 1022             |
| -<br>-<br>-<br>-<br>- 9<br>-<br>-            |        |                                                                                                                                                                                                                                                                                |                             |             |               |                      |                                                                   |                                                |              | 1021—              |                   |                  |
| -<br>-<br>-<br>-<br>-<br>-<br>-<br>10        |        |                                                                                                                                                                                                                                                                                |                             |             |               |                      |                                                                   |                                                | 1020-        |                    |                   |                  |
| -<br>-<br>-<br>-<br>-<br>-<br>- 11           |        |                                                                                                                                                                                                                                                                                |                             |             |               |                      |                                                                   |                                                |              |                    |                   |                  |
| -<br>-<br>-<br>-<br>-<br>-<br>12<br>-<br>-   |        |                                                                                                                                                                                                                                                                                |                             |             |               |                      |                                                                   |                                                |              |                    |                   | 1018-            |
| -<br>-<br>-<br>-<br>-<br>-<br>-<br>13        |        |                                                                                                                                                                                                                                                                                |                             |             |               |                      |                                                                   |                                                |              |                    |                   |                  |
| -<br>-<br>-<br>-<br>-<br>-<br>- 14<br>-<br>- |        |                                                                                                                                                                                                                                                                                |                             |             |               |                      |                                                                   |                                                |              |                    |                   | 1016—            |
| -<br>-<br>-<br>-<br>-<br>15                  |        |                                                                                                                                                                                                                                                                                | Contractor: Cyr Drilling    |             |               |                      |                                                                   | Completion                                     | Denth: 7 m   |                    |                   | 1015—            |
|                                              |        | <b>)</b>                                                                                                                                                                                                                                                                       | Drilling Rig Type: D-10 Dia | ma          | nd Drii       | II                   |                                                                   | _                                              | 2016 Septen  | her 20             |                   |                  |
|                                              | ſ,     | TETRA TECH                                                                                                                                                                                                                                                                     |                             | ai i iOl    | iiu Dill      |                      |                                                                   | +                                              |              |                    | or 20             |                  |
|                                              | •      | בי<br>י                                                                                                                                                                                                                                                                        | Logged By: EP/JGD           |             |               |                      |                                                                   |                                                | Date: 2016   | septemb            | Der ZU            |                  |
|                                              | -      | C EADC03004 02 CD   EDA CDT 17/2/14                                                                                                                                                                                                                                            | Reviewed By: VER            |             |               |                      |                                                                   | Page 2 of 2                                    |              |                    |                   |                  |

|                                   |               |                                                                                                                                                                                                                                                                    | Borehole                                                                                | N           | 0:                      | G                                   | T-65                 | )                 |                 |             |            |           |               |
|-----------------------------------|---------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------|-------------|-------------------------|-------------------------------------|----------------------|-------------------|-----------------|-------------|------------|-----------|---------------|
|                                   |               | GOLDCORP                                                                                                                                                                                                                                                           | Project: Fall 2016 Geotecl                                                              |             |                         |                                     |                      |                   | oiect No: I     | ENG.EAF     | RC03004-0  | 02        |               |
|                                   |               | OOLDCORP                                                                                                                                                                                                                                                           | Location: Coffee Mine Site                                                              |             |                         |                                     | -                    |                   | ound Elev       |             |            | -         |               |
|                                   |               |                                                                                                                                                                                                                                                                    | Coffee Creek, Yukon                                                                     | -, -        | -,                      |                                     |                      |                   |                 |             | 3212 N; Z  | 7         |               |
|                                   |               |                                                                                                                                                                                                                                                                    | Thermal                                                                                 |             |                         | (%)                                 |                      | pressiv           | e (MPa) ◇<br>20 | ● Fracti    | ure Freque | ency (/m) |               |
|                                   | _             |                                                                                                                                                                                                                                                                    | Condition                                                                               | be /        | nber                    | ent (                               | ▲Excess Ice Co       | ontent (%<br>0 60 |                 | 2           | 4 6        | 8         |               |
| Depth<br>(m)                      | Method        | Lithological<br>Description                                                                                                                                                                                                                                        | and<br>Ground Ice                                                                       | Sample Type | Sample Number           | Moisture Content (%)                | ■ Bulk De<br>1400 16 |                   |                 | 40          | ▲ RQD (%   | •         | Elevation (m) |
|                                   |               |                                                                                                                                                                                                                                                                    | Description                                                                             | Ss          | San                     | Moistu                              | <b>—</b>             | content           | Liquid<br>Limit |             | Recovery ( |           |               |
| 0                                 |               | MOSS - roots, (100 mm thick)                                                                                                                                                                                                                                       |                                                                                         | Н           |                         |                                     | 20 4                 | 0 60              | 80              | 40          | 60 80      | 100       | +             |
| -<br>-<br>-<br>-                  |               | PEAT - woody, silty, fine fibrous, amorphous granular, brown to black                                                                                                                                                                                              | Frozen, Vs, Vr 10%, < 1<br>mm thick subvertical and<br>subhorizontal ice lenses         | X           | R1<br>65-S1             | 204.3                               |                      |                   | •               | •           |            |           | 1018          |
| -                                 |               | SAND - silty, grey                                                                                                                                                                                                                                                 |                                                                                         |             |                         |                                     |                      |                   |                 | :           |            |           | -             |
| <del>-</del> 1                    |               | No recovery                                                                                                                                                                                                                                                        |                                                                                         | 4           |                         |                                     |                      |                   |                 |             |            | •         |               |
| -<br>-<br>-                       |               | SAND - silty, grey PEAT - woody, silty, some sand, fine fibrous, amorphous granular, brown to black                                                                                                                                                                | Vx, Vs 10-15%, 10 mm<br>thick clear subhorizontal<br>ice lens                           |             | 65-S2                   |                                     |                      | :                 |                 |             |            |           | 1017          |
| -                                 |               | GRAVEL AND SAND - some silt, trace clay                                                                                                                                                                                                                            | Vs, Vx, Vr 40%, very thin inclined ice lenses                                           |             | R2<br>65-S3             | 225.2                               |                      | . :               |                 |             |            |           |               |
| -<br>-<br>-<br>- 2                |               |                                                                                                                                                                                                                                                                    | throughout Two 5 mm thick clear subhorizontal ice lenses                                | ш           | 65-S4                   |                                     |                      |                   | <u>:</u>        |             |            |           |               |
| -<br>-                            |               |                                                                                                                                                                                                                                                                    | 50 mm apart<br>Vs, Vx, Vc 15%, 25 mm<br>thick ice inclusion                             | H           | 65-S5                   | 386.7                               |                      |                   | •               |             |            | T         | 1016-         |
| -                                 |               |                                                                                                                                                                                                                                                                    |                                                                                         |             | R3                      | 1126                                |                      |                   |                 |             |            |           |               |
| -                                 |               | SAND AND GRAVEL - some silt to silty, poorly sorted, grey, subangular gravel                                                                                                                                                                                       | Vc, Vx 10%                                                                              |             | 65-S8<br>65-S6<br>65-S7 | <ul><li>24.6</li><li>34.3</li></ul> | <b>▲ ●</b>           | •                 |                 |             |            |           | -             |
| - 3<br>-                          |               | - at 3.00 m, 180 mm thick silt layer                                                                                                                                                                                                                               | Vx, Vs 10%                                                                              | $\Box$      |                         |                                     |                      |                   | :               |             |            | T         |               |
| -<br>-<br>-<br>-<br>-<br>-        | Diamond drill |                                                                                                                                                                                                                                                                    |                                                                                         |             | 65-S9<br>R4<br>65-S10   | 14.6                                | •                    |                   |                 |             |            |           | 1015-         |
| -<br>-<br>-<br>-<br>-<br>-        |               |                                                                                                                                                                                                                                                                    | Vc, Vx, Vs 15%, various ice inclusions and lenses, ice coatings on gravel to 6 mm thick | V           | 65-S11<br>R5<br>65-S12  |                                     |                      |                   |                 |             |            | Ī         | 1014-         |
| -                                 |               |                                                                                                                                                                                                                                                                    |                                                                                         |             | 65-S13                  | 7.4                                 | •                    |                   | ;               | :           |            | 1         | -             |
| - 5<br>-<br>-<br>-<br>-           |               | - at 5.00 m, larger gravel  GRANITE (BEDROCK) - highly weathered (W4), very                                                                                                                                                                                        | 25 mm thick clear ice lens at bottom of gravel                                          | V           | R6                      |                                     |                      |                   | 4               |             |            |           | 1013-         |
| -                                 |               | fractured, silt infilling in joints                                                                                                                                                                                                                                |                                                                                         | $\bigwedge$ | . 10                    |                                     |                      |                   |                 | 0           |            |           | -<br>-        |
| - 6<br>-<br>-<br>-<br>-<br>-<br>- |               | - at 6.00 m, pyrite nodules, moderately weathered (W3), strong (R4), JSN: 6     - at 6.02 and 6.31 m, inclined joints, undulating, smooth, oxidized, weathering in joints     - at 6.20 and 6.95 m, subhorizontal joints, undulating, smooth, oxidized, weathering |                                                                                         | V           | 65-R1<br>R7             |                                     |                      |                   | 53,             | <b>&gt;</b> |            |           | 1012-         |
| -<br>- 7<br>-<br>-<br>-<br>- 7.5  |               | - at 7.00 m, subvertical joint, undulating, smooth, oxidized - at 7.00 m, medium strong (R3), JSN: 3                                                                                                                                                               |                                                                                         | X           | 65-R2                   |                                     |                      |                   | 65,             | Y           | •••        |           | 1011-         |
|                                   |               | <u> </u>                                                                                                                                                                                                                                                           | Contractor: Cyr Drilling                                                                |             |                         |                                     |                      |                   | mpletion        |             |            |           |               |
|                                   |               | TETRA TECH                                                                                                                                                                                                                                                         | Drilling Rig Type: D-10 Dia                                                             | amo         | nd Dril                 | l                                   |                      |                   |                 |             | tember 21  |           |               |
| "                                 |               | • ]                                                                                                                                                                                                                                                                | Logged By: EP                                                                           |             |                         |                                     |                      |                   | •               | Date: 20    | 16 Septem  | ber 21    |               |
|                                   |               | NG-FARC03004-02 GPJ FBA GDT 17/2/14                                                                                                                                                                                                                                | Reviewed By: VER                                                                        |             |                         |                                     |                      | Pa                | nge 1 of 2      |             |            |           |               |

|                                                                                                     |               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | Borehole                                                         | <u>\</u>    | lo:           | G                    | T-65                                                                                               |                                                                              |                             |                                                         |  |  |
|-----------------------------------------------------------------------------------------------------|---------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------|-------------|---------------|----------------------|----------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------|-----------------------------|---------------------------------------------------------|--|--|
|                                                                                                     |               | GOLDCORP                                                                                                                                                                                                                                                                                                                                                                                                                                                           | Project: Fall 2016 Geotecl                                       |             |               |                      |                                                                                                    | Project No: I                                                                | ENG.EARC03004-02            |                                                         |  |  |
|                                                                                                     |               | OOLDCORP                                                                                                                                                                                                                                                                                                                                                                                                                                                           | Location: Coffee Mine Site                                       |             |               |                      |                                                                                                    | Ground Elev                                                                  |                             |                                                         |  |  |
|                                                                                                     |               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | Coffee Creek, Yukon                                              |             |               |                      |                                                                                                    | UTM: 58124                                                                   | 5 E; 6973212 N; Z 7         |                                                         |  |  |
| Depth (m)                                                                                           | Method        | Lithological<br>Description                                                                                                                                                                                                                                                                                                                                                                                                                                        | Thermal Condition and Ground Ice Description                     | Sample Type | Sample Number | Moisture Content (%) | Excess Ice Content 20 40  Bulk Densit 1400 1600 1  Plastic Moiste Limit Conte                      | 15 20<br>1 (% by volume) ▲<br>60 80<br>y (kg/m³) ■<br>800 2000<br>ure Liquid | ● Fracture Frequency (/m) ● | Elevation<br>(m)                                        |  |  |
|                                                                                                     | Diamond drill | - from 7.23 to 7.70 m, subvertical joint running through - at 7.26, 7.65 and 7.80 m, inclined joints, undulating, smooth, oxidized, weathering - from 7.80 to 8.44 m, rubble zone, joints infilled with clear ice to 4 mm  - at 8.44, 8.52, 8.71 and 8.92 m, inclined joints, undulating, smooth, oxidized, weathering, slight silt infill, black coatings on joints - at 8.61 m,subhorizontal joint, undulating, smooth, oxidized, weathering, slight silt infill | 3 mm thick clear ice in joint                                    | X<br>V      | R9<br>65-R3   |                      |                                                                                                    | 30<                                                                          |                             | -<br>-<br>-<br>-<br>-<br>1010—<br>-<br>-<br>-<br>-<br>- |  |  |
| - 10<br>                                                                                            |               | - at 8.70 m, medium strong (R3)  END OF BOREHOLE (9.00 metres)  Note: Excess ice content determined in laboratory is shown graphically. Estimated excess ice content values are provided in 'Ground Ice Description' column.                                                                                                                                                                                                                                       |                                                                  |             |               |                      |                                                                                                    |                                                                              |                             | 1009                                                    |  |  |
| - 11<br>- 11<br>                                                                                    |               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                                  |             |               |                      |                                                                                                    |                                                                              |                             | 1007—                                                   |  |  |
| - 13<br>- 13<br>1<br>14                                                                             |               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                                  |             |               |                      |                                                                                                    |                                                                              |                             | 1005—                                                   |  |  |
| - 14<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>- |               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                                  |             |               |                      |                                                                                                    |                                                                              |                             | 1004—<br>                                               |  |  |
| 13                                                                                                  |               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | Contractor: Cyr Drilling                                         |             |               |                      | 1                                                                                                  | Completion                                                                   | Depth: 9 m                  |                                                         |  |  |
|                                                                                                     | t             | TETRATECH                                                                                                                                                                                                                                                                                                                                                                                                                                                          | Drilling Rig Type: D-10 Dia<br>Logged By: EP<br>Reviewed By: VER | amo         | nd Dril       | I                    | Completion Depth: 9 m Start Date: 2016 September 21 Completion Date: 2016 September 21 Page 2 of 2 |                                                                              |                             |                                                         |  |  |

|              |               |                                                                                                                                                                                                                                                |                    | Boreho                                                                                             | le          | N                              | lo:                  | G          | T-       | 66                                | ;                     |             |        |             |             |                    |                   |            |                                |
|--------------|---------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------|----------------------------------------------------------------------------------------------------|-------------|--------------------------------|----------------------|------------|----------|-----------------------------------|-----------------------|-------------|--------|-------------|-------------|--------------------|-------------------|------------|--------------------------------|
|              |               | GOLDCORF                                                                                                                                                                                                                                       |                    | Project: Fall 2016 G                                                                               | Seote       | echnica                        | al Inve              | stigati    | on       |                                   |                       | Proje       | ct No: | ENG         | S.EAR       | C030               | 04-02             |            |                                |
|              |               | COLDCOM                                                                                                                                                                                                                                        |                    | Location: Coffee Mi                                                                                | ne S        | Site, Ha                       | alfway               | Pond       |          |                                   |                       | Grou        | nd Ele | ev: 10      | 23.37       | m                  |                   |            |                                |
|              |               |                                                                                                                                                                                                                                                |                    | Coffee Creek, Yuko                                                                                 | n           |                                |                      |            |          |                                   |                       | UTM:        | 5812   | 36 E;       | 6973        | 3166 N             | N; Z 7            |            |                                |
|              | þ             |                                                                                                                                                                                                                                                |                    | Thermal<br>Condition                                                                               | ype         | ımber                          | tent (%)             | £Exce<br>2 | ss Ice ( | 1 <u>0</u> 1<br>Content (<br>10 6 | 5 :<br>% by v<br>60 : |             | ●Fi    | ractur<br>2 | re Fre<br>4 | quenc<br>6         | ey (/m) <b>(</b>  | ╛.         | uc                             |
| Depth<br>(m) | Metho         | Lithological<br>Description                                                                                                                                                                                                                    |                    | and<br>Ground Ice                                                                                  | Sample Type | Sample Number                  | Moisture Content (%) |            | tic I    | ensity<br>300 18<br>Moistur       | e L                   | iquid       | -      | 40          | RQD<br>60   | (%) <b>4</b><br>80 | 100               | Thermistor | Elevation (m)                  |
| 0            |               |                                                                                                                                                                                                                                                | L                  | Description                                                                                        |             | 00                             | Moi                  | Lim<br>2   | $\vdash$ | Conter<br>10 6                    | -                     | Limit<br>80 |        |             | ecove       | ery (%<br>80       | ) <b>■</b><br>100 |            |                                |
|              | -             | COBBLES AND GRAVEL - granite, moderately weathered (W3), light pink, grey and black, medium to coarse gravel  No recovery                                                                                                                      | Thaw               | ved                                                                                                | M           | R1                             |                      |            |          |                                   |                       |             | 0      |             |             |                    |                   |            | 1023                           |
| - 1          |               | no locotory                                                                                                                                                                                                                                    |                    |                                                                                                    |             |                                |                      |            |          |                                   | }<br>                 |             | •      |             |             |                    |                   |            | -<br>-<br>-<br>-               |
| -            |               |                                                                                                                                                                                                                                                |                    |                                                                                                    |             | R2                             |                      |            |          |                                   |                       |             | 0      |             |             |                    |                   |            | 1022                           |
| - 2          |               | ICE AND SAND - some gravel, some silt, trace clay, organics, massive, well graded, dark grey, subangular gravel - from 2.40 to 2.63 m, cobble (granite)  SAND - some gravel, some silt, trace clay, organics, massive, well graded, dark grey, | Vs, V<br>su<br>lei | en, ice ~ 50%  'r, Vc, Vs 30%, ibhorizontal clear ice nses to 7 mm thick, ear ice inclusions to 40 |             | 66-S1<br>66-S2<br>R3           | 68.5                 |            |          | <b>A</b>                          | •                     |             |        |             |             |                    |                   |            | 1021                           |
| - 3          | d drill       | subangular gravel  - at 3.00 m increasing gravel and organics content                                                                                                                                                                          | m                  | m thick<br>fr, Vc, Vx 30%                                                                          |             | 66-S3<br>R4<br>66-S4           | 46.2                 |            | •        | •                                 |                       |             |        |             |             |                    |                   |            | 1020                           |
|              | Diamond drill | PEAT - trace sand, trace silt, roots 3-10 mm thick, fine fibrous, black                                                                                                                                                                        | su                 | s, Vr, Vc 30%,<br>abhorizontal clear ice<br>ases, sections of ice<br>of mm thick                   | A<br>V      | 66-S5                          | 136.1                |            | •        |                                   |                       |             | •      |             |             |                    |                   |            | 1019                           |
| - 5          | •             | SILT - some sand, trace clay, trace gravel                                                                                                                                                                                                     | =                  |                                                                                                    |             | R5<br>66-S6                    | 68 <sup>7</sup> .9   | •          |          |                                   | •                     |             |        |             |             |                    |                   |            | -                              |
| -            |               | - from 5.41 to 5.45 m, wood chunk<br>- from 5.45 to 5.55 m, more sand and gravel                                                                                                                                                               |                    |                                                                                                    | X           | 66-S7<br>R6                    | 144.4                |            | •        |                                   |                       |             |        |             |             |                    |                   |            | 1018-                          |
| - 6          |               | - at 6.12 m, sandy, some gravel, trace clay - from 6.40 to 6.47 and 6.95 to 7.00 m, intervals of sand                                                                                                                                          | 7                  | c, Vr, Vx 15%, three ~<br>mm thick clear inclined<br>e lenses                                      |             | 66-S8<br>66-S9<br>R7<br>66-S10 | 90.6                 | <b>.</b>   |          |                                   |                       | •           | •      |             |             |                    |                   |            | 1017—                          |
| - 7<br>7.5   |               | - from 7.07 to 7.10 m, increased sand and gravel                                                                                                                                                                                               | 2 mm               | r, Vc, Vs 5-10%<br>thick ice coating on<br>avel                                                    | A<br>Y      | 50 010                         |                      |            |          |                                   |                       |             |        |             |             |                    |                   |            | -<br>-<br>-<br>-<br>-<br>1016— |
|              |               |                                                                                                                                                                                                                                                |                    | Contractor: Cyr Drill                                                                              | ling        |                                |                      |            |          |                                   |                       | Comp        | letion | n Dep       | th: 11      | m                  |                   | •          |                                |
|              |               | TETRATECH                                                                                                                                                                                                                                      |                    | Drilling Rig Type: D                                                                               | -10 I       | Diamo                          | nd Dri               | I          |          |                                   |                       | Start       | Date:  | 2016        | Sept        | embe               | r 24              |            |                                |
|              | T             |                                                                                                                                                                                                                                                |                    | Logged By: EP                                                                                      |             |                                |                      |            |          |                                   |                       | Comp        | letion | Date        | e: 201      | 6 Sep              | tember            | 24         |                                |
|              |               | J                                                                                                                                                                                                                                              |                    | Reviewed By: VER                                                                                   |             |                                |                      |            |          |                                   |                       | Page        | 1 of 2 | 2           |             |                    |                   |            |                                |

|                                                                            |               |                                                                                                                                                                                                                                                                                                                                   | Boreho                                       | le N                         | 10:                  | GT-66                                                                                                                                  |                               |                                                                                              |            |                                |  |  |  |
|----------------------------------------------------------------------------|---------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------|------------------------------|----------------------|----------------------------------------------------------------------------------------------------------------------------------------|-------------------------------|----------------------------------------------------------------------------------------------|------------|--------------------------------|--|--|--|
|                                                                            |               | GOLDCORP                                                                                                                                                                                                                                                                                                                          |                                              |                              |                      |                                                                                                                                        | Project                       | t No: ENG.EARC03004-02                                                                       |            |                                |  |  |  |
|                                                                            |               | OOLDCORP                                                                                                                                                                                                                                                                                                                          | Location: Coffee Mi                          |                              |                      |                                                                                                                                        | <del></del>                   | d Elev: 1023.37 m                                                                            |            |                                |  |  |  |
|                                                                            |               |                                                                                                                                                                                                                                                                                                                                   | Coffee Creek, Yuko                           | n                            |                      |                                                                                                                                        | UTM: 5                        | 581236 E; 6973166 N; Z 7                                                                     |            |                                |  |  |  |
| Depth (m)                                                                  | Method        | Lithological<br>Description                                                                                                                                                                                                                                                                                                       | Thermal Condition and Ground Ice Description | Sample Type<br>Sample Number | Moisture Content (%) | Unc. Compressive 5 10 15  Excess lce Content (% by 20 40 60  Bulk Density (kg/ 1400 1600 1800  Plastic Moisture Limit Content 20 40 60 | 20<br>volume) ▲<br>80         | ● Fracture Frequency (/m) ● 2 4 6 8  ▲ RQD (%) ▲ 40 60 80 100  ■ Recovery (%) ■ 40 60 80 100 | Thermistor | Elevation<br>(m)               |  |  |  |
| -<br>-<br>-<br>-<br>8<br>-<br>-<br>-<br>-<br>-                             |               | GRANITE (BEDROCK) - moderately weathered (W3), medium strong to strong (R3-R4), light pink, grey and black - from 7.90 to 7.92 m, 20 mm thick sand and silt within joint - at 8.00 m, highly weathered (W4), friable, weak (R2)                                                                                                   |                                              | R8<br>66-R:<br>66-R:         |                      |                                                                                                                                        | 32<br>76                      |                                                                                              |            | 1015                           |  |  |  |
| - 9<br>-<br>-<br>-<br>-<br>-<br>-<br>-                                     | Diamond drill | - at 9.00 m oxide weathering on joints and outside of core                                                                                                                                                                                                                                                                        |                                              | R10                          |                      |                                                                                                                                        |                               |                                                                                              | 1014       |                                |  |  |  |
| - 10<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>1 |               | No recovery GRANITE (BEDROCK) - moderately weathered (W3), medium strong (R3), light pink, grey and black, JSN: 4 - at 10.05, 10.13, 10.21 and 10.29 m, subhorizontal joints, undulating, smooth to rough, oxidized, silt infill - at 10.34, 10.45 and 10.79 m, inclined joints, undulating, smooth, oxidized, slight silt infill |                                              | 66-R2<br>R11                 |                      | <b>♦</b>                                                                                                                               |                               |                                                                                              |            | 1013-                          |  |  |  |
| -<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-                   |               | - at 10.34 m, weak (R2)  END OF BOREHOLE (11.00 metres)  Single bead thermistor installed to 1.80 metres  Note: Excess ice content determined in  laboratory is shown graphically. Estimated excess ice content values are provided in  'Ground Ice Description' column.                                                          |                                              |                              |                      |                                                                                                                                        |                               |                                                                                              |            | 1012                           |  |  |  |
| -<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>13                                 |               |                                                                                                                                                                                                                                                                                                                                   |                                              |                              |                      |                                                                                                                                        |                               |                                                                                              | 1011       |                                |  |  |  |
| -                                                                          |               |                                                                                                                                                                                                                                                                                                                                   |                                              |                              |                      |                                                                                                                                        |                               |                                                                                              |            | 1010—<br>-<br>-<br>-<br>-<br>- |  |  |  |
| - 14<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-                |               |                                                                                                                                                                                                                                                                                                                                   |                                              |                              |                      |                                                                                                                                        |                               |                                                                                              |            | 1009-                          |  |  |  |
|                                                                            |               |                                                                                                                                                                                                                                                                                                                                   | Contractor: Cyr Dril                         | ling                         |                      |                                                                                                                                        | Compl                         | etion Depth: 11 m                                                                            |            |                                |  |  |  |
| [=                                                                         |               | TETRA TECH                                                                                                                                                                                                                                                                                                                        | Drilling Rig Type: D                         | -10 Diamo                    | ond Dr               | ill                                                                                                                                    | Start Date: 2016 September 24 |                                                                                              |            |                                |  |  |  |
|                                                                            | U             | ·                                                                                                                                                                                                                                                                                                                                 | Logged By: EP                                |                              |                      |                                                                                                                                        | Compl                         | etion Date: 2016 September 24                                                                | 4          |                                |  |  |  |
|                                                                            |               | G-EARC03004-02.GPJ EBA.GDT 17/2/14                                                                                                                                                                                                                                                                                                | Reviewed By: VER                             |                              |                      |                                                                                                                                        | Page 2                        | 2 of 2                                                                                       |            |                                |  |  |  |



| Test | tpit 1 | No: ( | GT- | 10 |
|------|--------|-------|-----|----|
|      |        |       |     |    |

|                                           | Project: Fall 2016 Geotechnical Investigation Data Report | Project No: ENG.EARC03004-02   |  |
|-------------------------------------------|-----------------------------------------------------------|--------------------------------|--|
| Location: Coffee Mine Site, North WRSF Gr |                                                           | Ground Elev: 972.91 m          |  |
|                                           | Coffee Crook Vulken                                       | LITM: 505070 E: 6075200 N: 7 7 |  |

|              |         |                                                                                                                                            | Coffee Creek, Yukon                                            | UTM: 585072 E                   | ; 6975328 N; Z 7      |           |
|--------------|---------|--------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------|---------------------------------|-----------------------|-----------|
| Depth<br>(m) | Method  |                                                                                                                                            | Soil<br>Description                                            |                                 | Notes and<br>Comments | Elevation |
| 0            |         | MOSS - (200 mm thick)                                                                                                                      |                                                                |                                 |                       | 972.9     |
| 0.1          |         |                                                                                                                                            |                                                                |                                 |                       | 972.8     |
| 0.2          | Testpit | ORGANICS - silty, wet, black, (100 mm thick), (black mu                                                                                    | uck)                                                           |                                 |                       | 972.7     |
| 0.3          |         | SILT - gravel and cobbles disseminated throughout, wet                                                                                     | , grey, angular gravel and cobbles                             |                                 |                       | 972.6     |
| 0.4          |         | END OF TESTPIT (0.4 metres)  Note: Refusal on permafrost table. Slow water seepagice lenses are visible at the frozen bottom of the tests. | ge visible at the bottom of the testpit along the perma<br>it. | frost table, Ice inclusions and |                       | 972.      |
| 0.5          |         |                                                                                                                                            |                                                                |                                 |                       | 972.      |
| 0.6          |         |                                                                                                                                            |                                                                |                                 |                       | 972.      |
| 0.7          |         |                                                                                                                                            |                                                                |                                 |                       | 972.      |
| 0.8          |         |                                                                                                                                            |                                                                |                                 |                       | 972.      |
| 0.9          |         |                                                                                                                                            |                                                                |                                 |                       | 972.      |
| 1            |         | _                                                                                                                                          | Contractor:                                                    | Completion Dep                  | oth: 0.4 m            |           |

| TETRA TECH |  |
|------------|--|
|------------|--|

| Contractor:                    | Completion Depth: 0.4 m         |
|--------------------------------|---------------------------------|
| Drilling Rig Type: Hand Shovel | Start Date: 2016 August 26      |
| Logged By: RG/VER              | Completion Date: 2016 August 26 |
| Reviewed By: VER               | Page 1 of 1                     |



| restpit No: G1-12                                         |                               |
|-----------------------------------------------------------|-------------------------------|
| Project: Fall 2016 Geotechnical Investigation Data Report | Project No: ENG.EARC03004-02  |
| Location: Coffee Mine Site, North WRSF                    | Ground Elev: 1072.26 m        |
| Coffee Creek Yukon                                        | UTM: 585731 F: 6975221 N: 7 7 |

| 0.1 MOSS - roots, (200 mm trick) 1072 0.1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | <u> </u>     |        | Coffee Creek, Yukon                                                         | UTM: 58573 | 1 E; 6975221 N; Z 7   |                  |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------|--------|-----------------------------------------------------------------------------|------------|-----------------------|------------------|
| 0.1   1072   1072   1072   1072   1072   1073   1073   1074   1074   1075   1075   1075   1075   1075   1075   1075   1075   1075   1075   1075   1075   1075   1075   1075   1075   1075   1075   1075   1075   1075   1075   1075   1075   1075   1075   1075   1075   1075   1075   1075   1075   1075   1075   1075   1075   1075   1075   1075   1075   1075   1075   1075   1075   1075   1075   1075   1075   1075   1075   1075   1075   1075   1075   1075   1075   1075   1075   1075   1075   1075   1075   1075   1075   1075   1075   1075   1075   1075   1075   1075   1075   1075   1075   1075   1075   1075   1075   1075   1075   1075   1075   1075   1075   1075   1075   1075   1075   1075   1075   1075   1075   1075   1075   1075   1075   1075   1075   1075   1075   1075   1075   1075   1075   1075   1075   1075   1075   1075   1075   1075   1075   1075   1075   1075   1075   1075   1075   1075   1075   1075   1075   1075   1075   1075   1075   1075   1075   1075   1075   1075   1075   1075   1075   1075   1075   1075   1075   1075   1075   1075   1075   1075   1075   1075   1075   1075   1075   1075   1075   1075   1075   1075   1075   1075   1075   1075   1075   1075   1075   1075   1075   1075   1075   1075   1075   1075   1075   1075   1075   1075   1075   1075   1075   1075   1075   1075   1075   1075   1075   1075   1075   1075   1075   1075   1075   1075   1075   1075   1075   1075   1075   1075   1075   1075   1075   1075   1075   1075   1075   1075   1075   1075   1075   1075   1075   1075   1075   1075   1075   1075   1075   1075   1075   1075   1075   1075   1075   1075   1075   1075   1075   1075   1075   1075   1075   1075   1075   1075   1075   1075   1075   1075   1075   1075   1075   1075   1075   1075   1075   1075   1075   1075   1075   1075   1075   1075   1075   1075   1075   1075   1075   1075   1075   1075   1075   1075   1075   1075   1075   1075   1075   1075   1075   1075   1075   1075   1075   1075   1075   1075   1075   1075   1075   1075   1075   1075   1075   1075   1075   1075   1075   107 | Deptn<br>(m) | Method | Soil<br>Description                                                         |            | Notes and<br>Comments | Elevation<br>(m) |
| 1072 0.2   7   8     GRAVEL AND COBBLES - some silt, trace clay, wet, angular gravel and cobbles   1072 0.3   END OF TESTPIT (0.4 metres)   1071 0.6   1071 0.7   1071 0.8   1071                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 0            |        | MOSS - roots, (200 mm thick)                                                |            |                       | 1072.2           |
| 0.3   1072 0.4   END OF TESTPIT (0.4 metres)   1073 0.5   1074 0.6   1074 0.7   1074 0.8   1074                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |              | t      |                                                                             |            |                       | 1072.1           |
| 1071 0.4 END OF TESTPIT (0.4 metres) 1071 0.5 1071 0.7 1071 0.8 1071                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |              | Testp  | GRAVEL AND COBBLES - some silt, trace clay, wet, angular gravel and cobbles |            |                       | 1072.0-          |
| 1071 0.5 1071 0.6 1071 0.7 0.8 1071                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |              |        |                                                                             |            |                       | 1071.9           |
| 0.6   1071<br>0.7   1071<br>0.8   1071                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |              |        | END OF TESTPIT (0.4 metres)                                                 |            |                       | 1071.8           |
| 0.7   1071                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |              |        |                                                                             |            |                       | 1071.7           |
| 0.8                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 0.7          |        |                                                                             |            |                       | 1071.6           |
| 0.9                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 0.8          |        |                                                                             |            |                       | 1071.5           |
| 1071                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 0.9          |        |                                                                             |            |                       | 1071.4           |
| Contractor: Completion Depth: 0.4 m                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 1            |        |                                                                             |            |                       | 1071.3           |

| TETRA TECH |
|------------|
|------------|

| Contractor:                    | Completion Depth: 0.4 m         |
|--------------------------------|---------------------------------|
| Drilling Rig Type: Hand Shovel | Start Date: 2016 August 25      |
| Logged By: RG/VER              | Completion Date: 2016 August 25 |
| Reviewed By: VER               | Page 1 of 1                     |



| Tes | tpit | No: | G1 | Γ-13 |  |
|-----|------|-----|----|------|--|
|     |      |     |    |      |  |

Project: Fall 2016 Geotechnical Investigation Data Report Project No: ENG.EARC03004-02

Location: Coffee Mine Site, North WRSF Ground Elev: 1025.99 m

|     |         |                                                                                                          | Location. Conce wine one, North Wito                            |                   | . 1020.00 111         |                  |
|-----|---------|----------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------|-------------------|-----------------------|------------------|
|     |         |                                                                                                          | Coffee Creek, Yukon                                             | UTM: 58504        | 1 E; 5975116 N; Z 7   |                  |
| (m) | Method  |                                                                                                          | Soil<br>Description                                             |                   | Notes and<br>Comments | Elevation<br>(m) |
| 0   |         |                                                                                                          |                                                                 |                   |                       |                  |
| 0.1 |         | MOSS - roots, (250 mm thick)                                                                             |                                                                 |                   |                       | 1025.9           |
| 0.2 | Testpit |                                                                                                          |                                                                 |                   |                       | 1025.8           |
| ).3 | •       | SILT - gravel and cobbles disseminated throughout, ang                                                   | ular gravel and cobbles                                         |                   |                       | 1025.7           |
| .4  |         |                                                                                                          |                                                                 |                   |                       | 1025.6           |
| .5  |         | END OF TESTPIT (0.45 metres)  Note: Refusal on permafrost table. Slow water seepa inclusions and lenses. | ge visible at the bottom of the testpit along the permafrost to | able. Visible ice |                       | 1025.            |
| .6  |         |                                                                                                          |                                                                 |                   |                       | 1025.4           |
| .7  |         |                                                                                                          |                                                                 |                   |                       | 1025.3           |
| 1.8 |         |                                                                                                          |                                                                 |                   |                       | 1025.2           |
| .9  |         |                                                                                                          |                                                                 |                   |                       | 1025.1           |
|     |         |                                                                                                          | Contractor:                                                     | Completies        | Depth: 0.45 m         | 1025.0           |

| TETRA TECH |  |
|------------|--|
|------------|--|

| Contractor:                    | Completion Depth: 0.45 m        |
|--------------------------------|---------------------------------|
| Drilling Rig Type: Hand Shovel | Start Date: 2016 August 25      |
| Logged By: RG/VER              | Completion Date: 2016 August 25 |
| Reviewed By: VER               | Page 1 of 1                     |



## Testpit No: GT-14

| H | Project: Fall 2016 Geotechnical Investigation Data Report | Project No: ENG.EARC03004-02    |
|---|-----------------------------------------------------------|---------------------------------|
| , |                                                           | Ground Elev: 1082.2 m           |
|   | Coffee Creek Vulcan                                       | LITM: 505450 F. 6075000 Nr. 7.7 |

|                                                                                    | Location. Conce wine one, North Witter    | Ground Liev. 1002.2 m       |       |
|------------------------------------------------------------------------------------|-------------------------------------------|-----------------------------|-------|
|                                                                                    | Coffee Creek, Yukon                       | UTM: 585458 E; 6975088 N; Z | .7    |
|                                                                                    |                                           |                             |       |
| Method                                                                             | Soil<br>Description                       | Notes a<br>Comme            |       |
| MOSS - peat, roots, (150 mm thick)                                                 |                                           |                             |       |
|                                                                                    |                                           |                             |       |
| 0.1                                                                                |                                           |                             | 1082. |
| GRAVEL AND COBBLES - silty, some clay, wet                                         |                                           |                             |       |
| .2                                                                                 |                                           |                             | 1082. |
| Testpit                                                                            |                                           |                             | 1081  |
|                                                                                    |                                           |                             |       |
| 4                                                                                  |                                           |                             | 1081  |
|                                                                                    |                                           |                             |       |
| .5 END OF TESTPIT (0.5 metres) Note: Refusal on cobble or boulder. Slow water seep | age visible at the bottom of the testpit. |                             | 1081  |
|                                                                                    |                                           |                             | 4004  |
| .6                                                                                 |                                           |                             | 1081  |
| .7                                                                                 |                                           |                             | 1081  |
|                                                                                    |                                           |                             |       |
| 0.8                                                                                |                                           |                             | 1081  |
|                                                                                    |                                           |                             |       |
| .9                                                                                 |                                           |                             | 1081  |
|                                                                                    |                                           |                             | 1081  |
|                                                                                    | Contractor:                               | Completion Depth: 0.5 m     |       |
| TL TETRA TECH                                                                      | Drilling Rig Type: Hand Shovel            | Start Date: 2016 August 25  |       |



# Testpit No: **GT-15**

|                                                                                                  | Project: Fall 2016 Geotechnical Investigation Data Report | Project No: ENG.EARC03004-02   |
|--------------------------------------------------------------------------------------------------|-----------------------------------------------------------|--------------------------------|
| Project: Fall 2016 Geotechnical Investigation Data Report Location: Coffee Mine Site, North WRSF | Ground Elev: 1081.36 m                                    |                                |
|                                                                                                  | Coffee Creek Vulcan                                       | LITM, 505045 F. 6074007 N. 7.7 |

|              |         |                                                                         | Coffee Creek, Yukon | UTM: 585045 E;  | 6974887 N; Z 7        |               |
|--------------|---------|-------------------------------------------------------------------------|---------------------|-----------------|-----------------------|---------------|
| Depth<br>(m) | Method  |                                                                         | Soil<br>Description |                 | Notes and<br>Comments | Elevation (m) |
| 0            |         | MOSS - (200 mm thick)                                                   |                     |                 |                       |               |
| - 0.1        |         | MOGO - (200 Hill tillox)                                                |                     |                 |                       | 1081.3 -      |
| - 0.2        |         | SILT - organics, trace sand, wet, dark brown                            |                     |                 |                       | 1081.2 -      |
| - 0.3        | Testpit |                                                                         |                     |                 |                       | 1081.1 -      |
| - 0.4        |         |                                                                         |                     |                 |                       | 1081.0—       |
| - 0.5        |         | END OF TESTPIT (0.5 metres)  Note: Refusal on gravel or cobble material |                     |                 |                       | 1080.9 -      |
| - 0.6        |         | , (c. c. ) (c. c. ) (c. c. ) (c. c. )                                   |                     |                 |                       | 1080.8 -      |
| - 0.7        |         |                                                                         |                     |                 |                       | 1080.7 -      |
| - 0.8        |         |                                                                         |                     |                 |                       | 1080.6 -      |
| - 0.9        |         |                                                                         |                     |                 |                       | 1080.5 —      |
| _1_          |         |                                                                         |                     |                 |                       | 1080.4 -      |
|              |         |                                                                         | Contractor:         | Completion Dept | h: 0.5 m              |               |

| TETRA TECH | ł |
|------------|---|
|------------|---|

| Contractor:                    | Completion Depth: 0.5 m         |
|--------------------------------|---------------------------------|
| Drilling Rig Type: Hand Shovel | Start Date: 2016 August 25      |
| Logged By: RG/VER              | Completion Date: 2016 August 25 |
| Reviewed By: VER               | Page 1 of 1                     |



| Testpit No: <b>G1-49</b>                                  |                              |
|-----------------------------------------------------------|------------------------------|
| Project: Fall 2016 Geotechnical Investigation Data Report | Project No: ENG.EARC03004-02 |
| Location: Coffee Mine Site, North Pond                    |                              |
| Coffee Creek, Yukon                                       | UTM: E; N; Z 7               |

|              |         | Conce Greek, Tukon                                                                                                                                                                     | , = ,     | _             |
|--------------|---------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------|---------------|
| Depth<br>(m) | ethod   | Soil<br>Description                                                                                                                                                                    | Notes and | Depth<br>(ft) |
| ۵ -          | ×       | Description                                                                                                                                                                            | Comments  |               |
|              |         |                                                                                                                                                                                        |           |               |
| 0            |         | MOSS - roots, (200 mm thick)                                                                                                                                                           |           | 0             |
|              |         |                                                                                                                                                                                        |           | 0.1 -         |
|              |         |                                                                                                                                                                                        |           | 0.2 -         |
| - 0.1        |         |                                                                                                                                                                                        |           | 0.3 -         |
|              |         |                                                                                                                                                                                        |           | 0.4           |
|              | ≓       |                                                                                                                                                                                        |           | 0.6 -         |
| - 0.2        | Testpit | COBBLES AND BOULDERS - silt and organic matrix (black muck), wet, dark brown to black                                                                                                  | -         | 0.7 -         |
|              | ľ       |                                                                                                                                                                                        |           | 0.8 -         |
|              |         |                                                                                                                                                                                        |           | 0.9 -         |
| - 0.3        |         |                                                                                                                                                                                        |           | 1.0-          |
|              |         |                                                                                                                                                                                        |           | 1.1 -         |
|              |         |                                                                                                                                                                                        |           | 1.2 -         |
| - 0.4        |         | END OF TESTPIT (0.4 metres)                                                                                                                                                            |           | 1.3 -         |
|              |         | END OF TESTPIT (0.4 metres)  Note: Refusal on permafrost table. Slow water seepage visible at the bottom of the testpit along the permafrost table. Visible ice inclusions and lenses. |           | 1.4 -         |
|              |         |                                                                                                                                                                                        |           | 1.5 -         |
| - 0.5        |         |                                                                                                                                                                                        |           | 1.6 -         |
|              |         |                                                                                                                                                                                        |           | 1.7           |
|              |         |                                                                                                                                                                                        |           | 1.9 -         |
| - 0.6        |         |                                                                                                                                                                                        |           | 2.0-          |
|              |         |                                                                                                                                                                                        |           | 2.1 -         |
|              |         |                                                                                                                                                                                        |           | 2.2 -         |
| - 0.7        |         |                                                                                                                                                                                        |           | 2.3 -         |
|              |         |                                                                                                                                                                                        |           | 2.4 -         |
|              |         |                                                                                                                                                                                        |           | 2.5 -         |
| - 0.8        |         |                                                                                                                                                                                        |           | 2.6 -         |
|              |         |                                                                                                                                                                                        |           | 2.7 -         |
|              |         |                                                                                                                                                                                        |           | 2.8 -         |
| - 0.9        |         |                                                                                                                                                                                        |           | 2.9 -         |
|              |         |                                                                                                                                                                                        |           | 3.0 -         |
|              |         |                                                                                                                                                                                        |           | 3.1 -         |
| 1            |         |                                                                                                                                                                                        |           | J. <u>.</u>   |

| TETRA TECH | Н |
|------------|---|
|------------|---|

| Contractor:                    | Completion Depth: 0.4 m         |
|--------------------------------|---------------------------------|
| Drilling Rig Type: Hand Shovel | Start Date: 2016 August 26      |
| Logged By: RG/VER              | Completion Date: 2016 August 26 |
| Reviewed By: VER               | Page 1 of 1                     |



# Testpit No: GT-50

| H | Project: Fall 2016 Geotechnical Investigation Data Report | Project No: ENG.EARC03004-02   |  |
|---|-----------------------------------------------------------|--------------------------------|--|
|   |                                                           | Ground Elev: 906.73 m          |  |
|   | Coffee Creek Vulker                                       | LITM: 505000 E: 6075667 N: 7.7 |  |

|              |         |                                                                                     | Coffee Creek, Yukon | UTM: 58528   | 9 E; 6975667 N; Z 7   |               |
|--------------|---------|-------------------------------------------------------------------------------------|---------------------|--------------|-----------------------|---------------|
| Depth<br>(m) | Method  |                                                                                     | Soil<br>Description |              | Notes and<br>Comments | Elevation (m) |
| 0            |         | MOSS - roots, (150 mm thick)                                                        |                     |              |                       | 906.7         |
| - 0.1        |         | SILT - organics, trace sand, wet, black                                             |                     |              |                       | 906.6         |
| - 0.2        | Testpit |                                                                                     |                     |              |                       | 906.5 -       |
| - 0.3        |         |                                                                                     |                     |              |                       | 906.4         |
| 0.4          |         | END OF TESTPIT (0.4 metres)  Note: Refusal on permafrost table. Visible ice inclusi | ons and lenses      |              |                       | 906.3         |
| - 0.5        |         |                                                                                     |                     |              |                       | 906.2         |
| 0.6          |         |                                                                                     |                     |              |                       | 906.1         |
| 0.7          |         |                                                                                     |                     |              |                       | 906.0-        |
| - 0.8        |         |                                                                                     |                     |              |                       | 905.9         |
| - 0.9        |         |                                                                                     |                     |              |                       | 905.8         |
|              |         | _                                                                                   | Contractor:         | Completion I | Depth: 0.4 m          |               |
|              |         | <b>7</b>                                                                            |                     | Scriptedori  |                       |               |

| TETRA TECH |
|------------|
|------------|

| Contractor:                    | Completion Depth: 0.4 m         |
|--------------------------------|---------------------------------|
| Drilling Rig Type: Hand Shovel | Start Date: 2016 August 26      |
| Logged By: RG/VER              | Completion Date: 2016 August 26 |
| Reviewed By: VER               | Page 1 of 1                     |



| Testpit No: <b>GT-5</b> | 1 |
|-------------------------|---|
|-------------------------|---|

| Project: Fall 2016 Geotechnical Investigation Data Report | Project No: ENG.EARC03004-02     |
|-----------------------------------------------------------|----------------------------------|
| Location: Coffee Mine Site, North Pond                    | Ground Elev: 909.84 m            |
| Coffee Creek Vulcan                                       | LITM: 505214 F: 6075670 Nr. 7. 7 |

|              |         |                                                                                                         | Coffee Creek, Yukon                                                  | UTM: 58531   | 4 E; 6975679 N; Z 7   |           |
|--------------|---------|---------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------|--------------|-----------------------|-----------|
| Depth<br>(m) | Method  |                                                                                                         | Soil<br>Description                                                  |              | Notes and<br>Comments | Elevation |
| 0            |         | MOSS - roots, (150 mm thick)                                                                            |                                                                      |              |                       | 909.8     |
| 0.1          |         | PEAT - some silt, wet, black, (200 mm thick)                                                            |                                                                      |              |                       | 909.7     |
| 0.2          | Testpit |                                                                                                         |                                                                      |              |                       | 909.      |
| 0.3          |         | PEAT AND SILT - dark brownish grey                                                                      |                                                                      |              |                       | 909.      |
| 0.4          |         | END OF TESTPIT (0.4 metres)  Note: Refusal on permafrost table. Slow water seepa inclusions and lenses. | ige visible at the bottom of the testpit along the permafrost table. | Visible ice  |                       | 909.      |
| 0.5          |         |                                                                                                         |                                                                      |              |                       | 909.      |
| 0.6          |         |                                                                                                         |                                                                      |              |                       | 909.      |
| 0.7          |         |                                                                                                         |                                                                      |              |                       | 909.      |
| 0.8          |         |                                                                                                         |                                                                      |              |                       | 909.      |
| 0.9          |         |                                                                                                         |                                                                      |              |                       | 908.      |
|              |         |                                                                                                         | Contractor:                                                          | Completion [ | Depth: 0.4 m          |           |

| Tt | TETRA TECH |
|----|------------|
|----|------------|

| Contractor:                    | Completion Depth: 0.4 m         |
|--------------------------------|---------------------------------|
| Drilling Rig Type: Hand Shovel | Start Date: 2016 August 26      |
| Logged By: RG/VER              | Completion Date: 2016 August 26 |
| Reviewed By: VER               | Page 1 of 1                     |



| Testpit No: <b>GT-54</b>                                  |                              |
|-----------------------------------------------------------|------------------------------|
| Project: Fall 2016 Geotechnical Investigation Data Report | Project No: ENG.EARC03004-02 |
| Location: Coffee Mine Site, South Pond                    |                              |
| Coffee Creek, Yukon                                       | UTM: E; N; Z 7               |

|              |         | Corree Creek, Yukon                                                                                                    | 1: E; N; Z /           |                |
|--------------|---------|------------------------------------------------------------------------------------------------------------------------|------------------------|----------------|
|              |         |                                                                                                                        |                        |                |
| Depth<br>(m) | Method  | Soil<br>Description                                                                                                    | Notes and              | Depth<br>(ft)  |
|              | ğ       | Description                                                                                                            | Comments               |                |
| 0            |         |                                                                                                                        |                        | 0              |
|              |         | MOSS - organic cover, leaf litter, roots, (200 mm thick)                                                               |                        |                |
|              |         |                                                                                                                        |                        | 0.1 -          |
|              |         |                                                                                                                        |                        | 0.2            |
| - 0.1        |         |                                                                                                                        |                        | 0.4 -          |
|              |         |                                                                                                                        |                        | 0.5 -          |
|              |         |                                                                                                                        |                        | 0.6 -          |
| - 0.2        |         | SILT AND GRAVEL - trace sand, organic rich, damp, subangular to angular gravel to 200 mm long, unfrozen                |                        | 0.7 -          |
|              |         |                                                                                                                        |                        | 0.8 -          |
|              |         |                                                                                                                        |                        | 0.9 -          |
| - 0.3        | _       |                                                                                                                        |                        | 1.0-           |
|              | Testpit |                                                                                                                        |                        | 1.1 -          |
|              | Ľ       |                                                                                                                        |                        | 1.2 -          |
| - 0.4        |         |                                                                                                                        |                        | 1.4 -          |
|              |         |                                                                                                                        |                        | 1.5 -          |
|              |         |                                                                                                                        |                        | 1.6 -          |
| - 0.5        |         |                                                                                                                        |                        | 1.7 -          |
|              |         |                                                                                                                        |                        | 1.8 -          |
|              |         |                                                                                                                        |                        | 1.9 -          |
| - 0.6        |         |                                                                                                                        |                        | 2.0-           |
|              |         |                                                                                                                        |                        | 2.1 -          |
| 0.7          |         |                                                                                                                        |                        | 2.2 -          |
| - 0.7        |         | END OF TESTPIT (0.7 metres)  Note: Permafrost Probe tested to 1.1 metres, refusal on gravel, not likely frozen ground. |                        | 2.3 -          |
|              |         |                                                                                                                        |                        | 2.4 -<br>2.5 - |
| 0.0          |         |                                                                                                                        |                        | 2.6 -          |
| - 0.8        |         |                                                                                                                        |                        | 2.7 -          |
|              |         |                                                                                                                        |                        | 2.8 -          |
| 0.5          |         |                                                                                                                        |                        | 2.9 -          |
| - 0.9        |         |                                                                                                                        |                        | 3.0-           |
|              |         |                                                                                                                        |                        | 3.1 -          |
| 1            |         |                                                                                                                        |                        | 3.2 -          |
|              | 1       | Contractor                                                                                                             | nolation Double, 0.7 m |                |

| TETRA TECI | Н |
|------------|---|
|------------|---|

| Contractor:                    | Completion Depth: 0.7 m            |
|--------------------------------|------------------------------------|
| Drilling Rig Type: Hand Shovel | Start Date: 2016 September 18      |
| Logged By: EP                  | Completion Date: 2016 September 18 |
| Reviewed By: VER               | Page 1 of 1                        |

## **APPENDIX C**

### OFFSITE GEOTECHNICAL LABORATORY SOIL TEST RESULTS



#### **BULK DENSITY AND ICE CONTENT TEST RESULTS** Project: Coffee Gold Project - 2016 Geotech. Invest. Sample No.: See Below Project No.: ENG.EARC03004-02 Date Tested: November 18, 2016 Tested By: Client: Kaminak Gold Corporation AT/TW Address: Coffee Creek Page: 1 of 1 Height of Height of B.H. & Sample Mass of Supernatant Saturated Excess Ice Width **Bulk Density** Sample Diameter Length Water Sediment Content Number (g) (mm) (mm) (mm) $(kg/m^3)$ (mm) (mm) GT10-S3A 107.7 7.0 14.0 35.3 GT10-S3B 88.0 ----7.0 23.0 24.9 GT11-S1 561.4 45.0 1277.5 6.0 35.0 15.7 293.0 42.4 GT12-S2 806.4 8.0 17.0 33.9 \_ \_ \_ GT13-S7 1057.3 44.8 225.0 3028.2 0.0 90.0 0.0 44.1 GT14-S2 700.1 11.0 38.0 24.0 GT14-S3 543.4 0.0 55.0 0.0 24.0 31.2 GT15-S2 422.1 10.0 GT15-S8 897.4 0.0 80.0 0.0 0.0 GT16-S2 942.5 0.0 81.0 GT43-S4 574.8 17.0 32.0 36.7 GT43-S6 939.5 0.0 105.0 0.0 GT45-53 294.4 7.0 20.0 27.6 ---GT45-S5 0.0 40.0 0.0 608.6 GT46-S4 1224.7 7.0 71.0 9.7 \_ \_ \_ \_ GT46-S8 940.7 0.0 70.0 0.0 GT47-S5 1252.4 0.0 115.0 0.0 0.0 0.0 GT47-S19 1149.3 130.0 8.0 19.5 GT51-S5 591.3 36.0 GT57-S7 570.6 0.0 55.0 0.0 GT58-S2 736.0 43.2 44.8 325.0 1489.4 5.0 56.0 8.9 GT62-S2 706.2 9.0 40.0 19.7 GT64-S2 7.0 64.0 10.7 8.0 GT65-S7 636.0 43.2 44.6 257.7 1630.5 35.0 19.9 GT66-S6 649.7 54.0 355.3 975.7 10.0 56.0 16.3 43.7

| Remarks:       |              |         |
|----------------|--------------|---------|
| Whitehorse, YT | Reviewed By: | _P.Eng. |



#### ATTERBERG LIMITS TEST REPORT

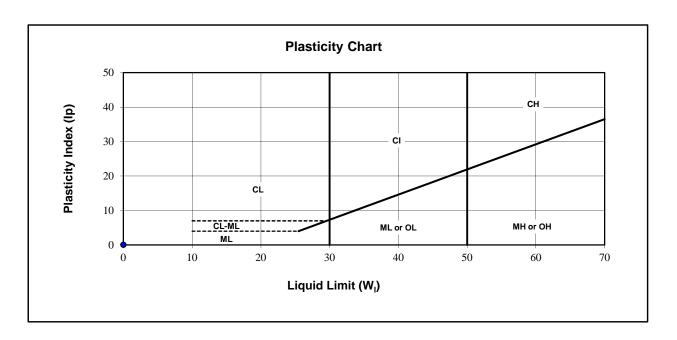
**ASTM D4318** 

Project: Coffee Gold 2016 - Geotech. Invest. Sample Number: S3 (A/B)

Coffee Creek - North WRD Borehole Number: GT10

Project No: ENG.EARC03004-02 Source: 0.80 - 1.05 m

Client: Kaminak Gold Corporation Sampled By: VER Tested By: AMT


Date Sampled: September 1, 2016

Email: Date Tested: November 30, 2016

Sample Description: SILT - some sand, some clay

[name redacted]

Attention:



 Liquid Limit  $(W_1)$ :
 0
 Natural Moisture (%)
 98.7

 Plastic Limit :
 0
 Soil Plasticity:
 NP

 Plasticity Index (Ip) :
 0
 Mod.USCS Symbol:
 N/A

Remarks: Material is too silty to perform tests; plastic limit could not be determined.

Reviewed By: C.E.T.

Data presented hereon is for the sole use of the stipulated client. Tetra Tech EBA is not responsible, nor can be held liable, for use made of this report by any other party, with or without the knowledge of Tetra Tech EBA. The testing services reported herein have been performed to recognized industry standards, unless noted. No other warranty is made. These data do not include or represent any interpretation or opinion of specification compliance or material suitability. Should engineering interpretation be required, Tetra Tech EBA will provide it upon written request.



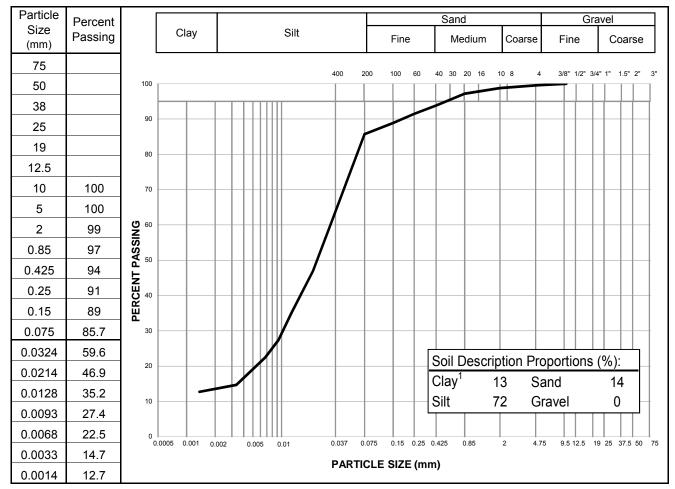
ASTM D422, C136 & C117

Project: Coffee Gold 2016 - Geotech. Invest. Sample No.: S3 (A/B)

Project No.: ENG.EARC03004-02 Material Type:

Site: Coffee Creek - North WRD Sample Loc.: GT10

Client: Kaminak Gold Corporation Sample Depth: 0.80 - 1.05 m


Client Rep.: [name redacted] Sampling Method: Grab

Date Tested: November 28, 2016 By: AMT Date sampled: September 1, 2016

Soil Description<sup>2</sup>: SILT - some sand, some clay Sampled By: VER

USC Classification: Cu: #N/A

Moisture Content: 98.7% Cc: #N/A



| Notes: | <sup>1</sup> The upper clay size of 2 um, per the | Canadian Foundation Engineering Manual |
|--------|---------------------------------------------------|----------------------------------------|
|--------|---------------------------------------------------|----------------------------------------|

<sup>2</sup> The description is visually based & subject to EBA description protocols

| Specification: |  |  |  |
|----------------|--|--|--|
| Remarks:       |  |  |  |
|                |  |  |  |



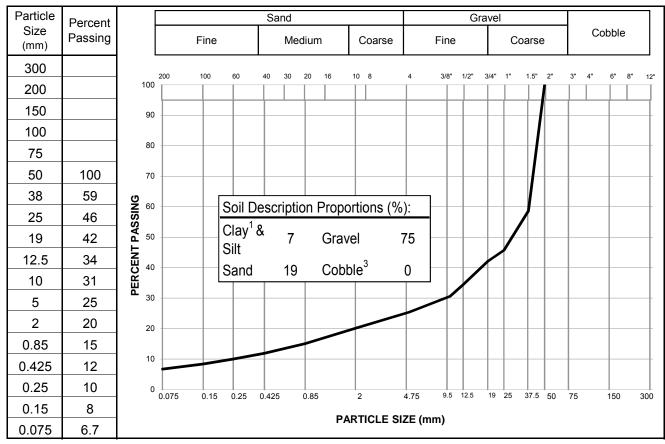
ASTM D422, C136 & C117

Project: Coffee Gold 2016 - Geotech. Invest. Sample No.: S8

Project No.: ENG.EARC03004-02 Material Type:

Site: Coffee Creek - North WRD Sample Loc.: GT10

Client: Kaminak Gold Corporation Sample Depth: 4.20 - 4.80 m


Client Rep.: [name redacted] Sampling Method: Grab

Date Tested: December 5, 2016 By: AMT Date sampled: September 1, 2016

Soil Description<sup>2</sup>: GRAVEL - some sand, trace silt Sampled By: VER

USC Classification: Cu: 154.3

Moisture Content: 6.0% Cc: 9.3



| Specification: |              |        |
|----------------|--------------|--------|
| Remarks:       |              |        |
|                |              |        |
|                |              |        |
|                | Reviewed By: | P.Eng. |



<sup>&</sup>lt;sup>2</sup> The description is visually based & subject to EBA description protocols

<sup>&</sup>lt;sup>3</sup> If cobbles are present, sampling procedure may not meet ASTM C702 & D75

ASTM D422, C136 & C117

Project: Coffee Gold 2016 - Geotech. Invest. Sample No.: S1

Project No.: ENG.EARC03004-02 Material Type:

Site: Coffee Creek - North WRD Sample Loc.: GT11

Client: Kaminak Gold Corporation Sample Depth: 1.70 - 2.15 m

Client Rep.: [name redacted] Sampling Method: Grab

Date Tested: December 1, 2016 By: TW Date sampled: August 31, 2016

Soil Description<sup>2</sup>: SAND - silty, gravelly Sampled By: SA/VER

USC Classification: Cu: #N/A

#N/A

Moisture Content: 24.8% Cc:

| Particle<br>Size<br>(mm) | Percent<br>Passing |                 |       | Fine |      | Sand  | edium | Coarse     |          | Gr.<br>Fine         | avel C  | coarse    | С      | obble |           |
|--------------------------|--------------------|-----------------|-------|------|------|-------|-------|------------|----------|---------------------|---------|-----------|--------|-------|-----------|
| 300                      |                    |                 | 200   | 100  | 60   | 40 30 | 20 16 | 10 8       | 4        | 3/8" 1/2"           | 3/4" 1" | 1.5" 2"   | 3" 4"  | 6" 8" | <br>' 12" |
| 200                      |                    | 100             |       | 100  |      | 1 1   |       |            | Ť        | 30 1/2              |         |           |        |       |           |
| 150                      |                    | 90              |       |      |      |       |       |            |          |                     | 7       |           |        |       | $\Box$    |
| 100                      |                    |                 |       |      |      |       |       |            |          |                     |         |           |        |       |           |
| 75                       |                    | 80              |       |      |      |       |       |            |          |                     |         |           |        | 1     | $\dashv$  |
| 50                       |                    | 70              | -     |      |      | -     |       |            |          |                     |         |           |        | -     | _         |
| 38                       | 100                | <b>9</b> 60     |       |      |      |       | /     |            |          |                     |         |           |        |       |           |
| 25                       | 93                 | PERCENT PASSING |       |      |      |       |       |            |          |                     |         |           |        |       |           |
| 19                       | 93                 | <b>A</b> 50     | -     | -    | -    | +/    |       |            | $\vdash$ |                     |         |           |        | +     | $\dashv$  |
| 12.5                     | 90                 |                 |       |      |      |       |       |            |          |                     |         |           |        |       |           |
| 10                       | 87                 | ERC             |       |      |      |       |       |            |          |                     |         |           |        |       | ,         |
| 5                        | 79                 | 30              |       |      |      | -     |       |            |          | Soil Desc           | riptior | n Proport | ions ( | %):   | _         |
| 2                        | 68                 | 20              |       |      | -    |       |       |            |          | Clay <sup>1</sup> & | 25      | Gravel    |        | 21    |           |
| 0.85                     | 54                 |                 |       |      |      |       |       |            |          | Silt                |         |           |        |       |           |
| 0.425                    | 43                 | 10              |       |      |      |       |       |            |          | Sand                | 55      | Cobble    | ,      | 0     |           |
| 0.25                     | 36                 | 0               | 0.075 | 0.15 | 0.25 | 0.425 | 0.85  | 2          | 4.75     | 9.5 12.5            | 19 25   | 37.5 50   | 75     | 150   | 300       |
| 0.15                     | 31                 |                 | 0.070 | 0.15 | 5.25 | 0.720 |       |            |          |                     | - 20    | 50        |        | 100   | 500       |
| 0.075                    | 24.5               |                 |       |      |      |       | F     | ARTICLE SI | ZE (     |                     |         |           |        |       |           |

| Specification: |             |       |
|----------------|-------------|-------|
| Remarks:       |             |       |
|                |             |       |
|                | Reviewed Bv | P Eng |



<sup>&</sup>lt;sup>2</sup> The description is visually based & subject to EBA description protocols

<sup>&</sup>lt;sup>3</sup> If cobbles are present, sampling procedure may not meet ASTM C702 & D75

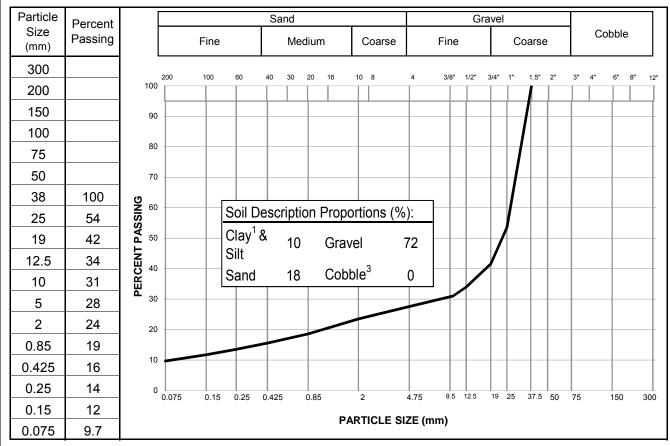
ASTM D422, C136 & C117

Project: Coffee Gold 2016 - Geotech. Invest. Sample No.: S2

Project No.: ENG.EARC03004-02 Material Type:

Site: Coffee Creek - North WRD Sample Loc.: GT12

Client: Kaminak Gold Corporation Sample Depth: 0.60 - 0.80 m


Client Rep.: [name redacted] Sampling Method: Grab

Date Tested: December 1, 2016 By: TW Date sampled: August 31, 2016

Soil Description<sup>2</sup>: GRAVEL - some sand, trace silt Sampled By: SA/VER

USC Classification: Cu: 311.6

Moisture Content: 11.1% Cc: 30.8



| Specification: |              |        |
|----------------|--------------|--------|
| Remarks:       |              |        |
|                |              |        |
|                | Reviewed By: | P.Eng. |



<sup>&</sup>lt;sup>2</sup> The description is visually based & subject to EBA description protocols

<sup>&</sup>lt;sup>3</sup> If cobbles are present, sampling procedure may not meet ASTM C702 & D75

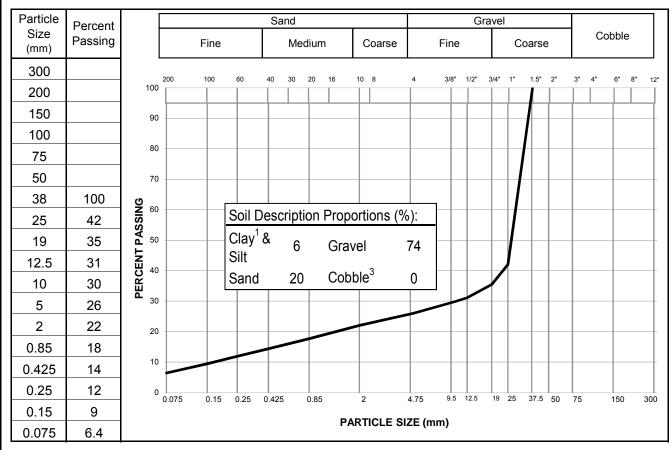
ASTM D422, C136 & C117

Project: Coffee Gold 2016 - Geotech. Invest. Sample No.: S7

Project No.: ENG.EARC03004-02 Material Type:

Site: Coffee Creek - North WRD Sample Loc.: GT13

Client: Kaminak Gold Corporation Sample Depth: 3.15 - 3.73 m


Client Rep.: [name redacted] Sampling Method: Grab

Date Tested: December 1, 2016 By: TW Date sampled: September 3, 2016

Soil Description<sup>2</sup>: GRAVEL - some sand, trace silt Sampled By: VER

USC Classification: Cu: 167.4

Moisture Content: 5.9% Cc: 21.7



| Specification: |              |        |
|----------------|--------------|--------|
| Remarks:       |              |        |
|                |              |        |
|                |              |        |
|                | Reviewed Bv: | P.Ena. |



<sup>&</sup>lt;sup>2</sup> The description is visually based & subject to EBA description protocols

<sup>&</sup>lt;sup>3</sup> If cobbles are present, sampling procedure may not meet ASTM C702 & D75

ASTM D422, C136 & C117

Project: Coffee Gold 2016 - Geotech. Invest. Sample No.: S2

Project No.: ENG.EARC03004-02 Material Type:

Site: Coffee Creek - North WRD Sample Loc.: GT14

Client: Kaminak Gold Corporation Sample Depth: 0.35 - 0.70 m

Client Rep.: [name redacted] Sampling Method: Grab

Date Tested: December 1, 2016 By: TW Date sampled: August 30, 2016

Soil Description<sup>2</sup>: GRAVEL - sandy, some silt Sampled By: SA/VER

USC Classification: Cu: #N/A

Cc:

#N/A

Moisture Content: 24.4%

| Particle     | Percent |                 | Sand  |      |      |               |               |             |       | Gra                 | Cobble        |         | $\neg$  |       |           |
|--------------|---------|-----------------|-------|------|------|---------------|---------------|-------------|-------|---------------------|---------------|---------|---------|-------|-----------|
| Size<br>(mm) | Passing |                 | Fine  |      | M    | Medium Coarse |               | Fine        |       | Coarse              |               |         |         |       |           |
| 300          |         |                 | 200   | 100  | 60   | 40 30         | 20 16         | 10 8        | 4     | 3/8" 1/2"           | 3/4" 1"       | 1.5" 2" | 3" 4"   | 6" 8" | 12"       |
| 200          |         | 100             |       |      |      |               |               |             | Ť     |                     |               | 7       |         |       | Ï         |
| 150          |         | 90              |       |      |      |               |               |             |       |                     |               |         |         |       | $\exists$ |
| 100          |         |                 |       |      |      |               |               |             |       |                     |               |         |         |       |           |
| 75           |         | 80              |       |      |      |               |               |             |       |                     | $  \cdot   /$ |         |         |       | $\dashv$  |
| 50           |         | 70              | -     | -    | -    | -             |               |             | -     |                     | + H           |         |         |       | $\dashv$  |
| 38           | 100     | <b>9</b> 60     |       |      |      |               |               |             |       |                     | <b>J</b>      |         |         |       |           |
| 25           | 61      | PERCENT PASSING |       |      |      |               |               |             |       |                     |               |         |         |       | 7         |
| 19           | 56      | <b>A</b> 50     | -     | +    | -    | +             |               |             |       |                     |               |         |         |       | +         |
| 12.5         | 50      | L SEN 40        |       |      |      |               |               |             |       |                     |               |         |         |       |           |
| 10           | 49      | ERC             |       |      |      |               |               |             |       |                     |               |         |         |       | .         |
| 5            | 46      | 30              |       | _    |      |               | $\overline{}$ |             | +     | Soil Desc           | ription       | Proport | ions (% | (o):  | $\forall$ |
| 2            | 41      | 20              |       |      |      |               |               |             | 1     | Clay <sup>1</sup> & | 17            | Gravel  |         | 54    | $\sqcup$  |
| 0.85         | 33      |                 |       |      |      |               |               |             |       | Silt                |               |         |         |       |           |
| 0.425        | 27      | 10              |       |      |      |               |               |             |       | Sand                | 29            | Cobble  | 3       | 0     |           |
| 0.25         | 23      | 0               | 0.075 | 0.15 | 0.25 | 0.425         | 0.85          | 2           | 4.75  | 9.5 12.5            | 19 25         | 37.5 50 | 75      | 150   | 300       |
| 0.15         | 20      |                 | 0.075 | 0.15 | 0.23 | 0.423         |               |             |       |                     | 20            | 07.0 30 | 75      | 150   | 300       |
| 0.075        | 17.0    |                 |       |      |      |               | ,             | PARTICLE SI | IZE ( | mm)                 |               |         |         |       |           |

| Specification: |              |        |
|----------------|--------------|--------|
| Remarks:       |              |        |
|                |              |        |
|                | Reviewed By: | P.Ena. |



<sup>&</sup>lt;sup>2</sup> The description is visually based & subject to EBA description protocols

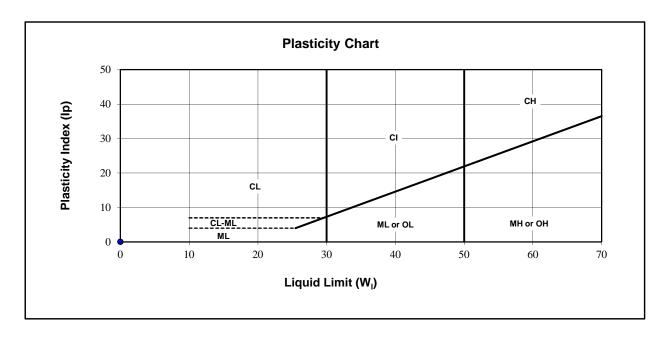
<sup>&</sup>lt;sup>3</sup> If cobbles are present, sampling procedure may not meet ASTM C702 & D75

#### ATTERBERG LIMITS TEST REPORT

ASTM D4318

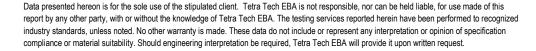
Project: Coffee Gold 2016 - Geotech. Invest. Sample Number: S3

Coffee Creek - North WRD Borehole Number: GT14


Project No: ENG.EARC03004-02 Source: 0.75 - 0.95 m

Client: Kaminak Gold Corporation Sampled By: VER/SA Tested By: AMT

Attention: [name redacted] Date Sampled: August 30, 2016


Email: Date Tested: November 30, 2016

Sample Description: SAND - silty, some gravel, some clay



| Liquid Limit (W <sub>1)</sub> : | 0 | Natural Moisture (%) | 17.7 |
|---------------------------------|---|----------------------|------|
| Plastic Limit :                 | 0 | Soil Plasticity:     | NP   |
| Plasticity Index (Ip):          | 0 | Mod.USCS Symbol:     | N/A  |

| Remarks: | Material is too silty to perform tests; plastic limit could not be determined. |  |
|----------|--------------------------------------------------------------------------------|--|
|          |                                                                                |  |





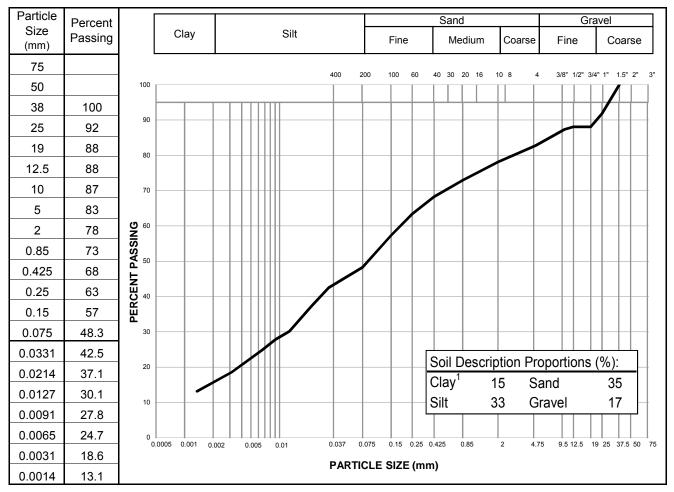
ASTM D422, C136 & C117

Project: Coffee Gold 2016 - Geotech. Invest. Sample No.: S3

Project No.: ENG.EARC03004-02 Material Type:

Site: Coffee Creek - North WRD Sample Loc.: GT14

Client: Kaminak Gold Corporation Sample Depth: 0.75 - 0.95 m


Client Rep.: [name redacted] Sampling Method: Grab

Date Tested: November 30, 2016 By: AMT Date sampled: August 30, 2016

Soil Description<sup>2</sup>: SAND - silty, some gravel, some clay Sampled By: VER/SA

USC Classification: Cu: #N/A

Moisture Content: 17.7% Cc: #N/A



| Notes: | <sup>1</sup> The upper clay size of 2 um, per th | ne Canadian Foundation Engineering Manual |
|--------|--------------------------------------------------|-------------------------------------------|
|--------|--------------------------------------------------|-------------------------------------------|

<sup>2</sup> The description is visually based & subject to EBA description protocols

| Specification: |  |  |  |
|----------------|--|--|--|
| Remarks:       |  |  |  |
|                |  |  |  |

Reviewed By: P.Eng.

Data presented hereon is for the sole use of the stipulated client. Tetra Tech EBA is not responsible, nor can be held liable, for use made of this report by any other party, with or without the knowledge of Tetra Tech EBA. The testing services reported herein have been performed to recognized industry standards, unless noted. No other warranty is made. These data do not include or represent any interpretation or opinion of specification compliance or material suitability. Should engineering interpretation be required, Tetra Tech EBA will provide it upon written request.

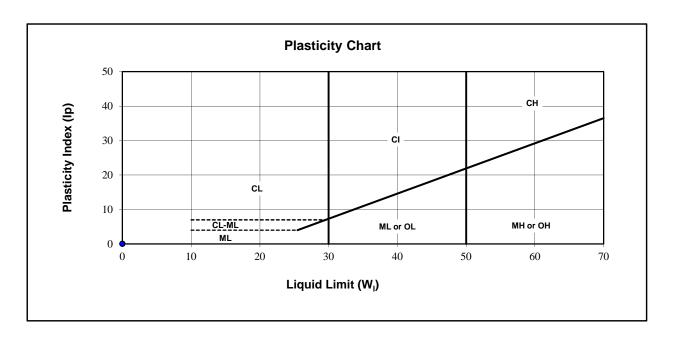


#### ATTERBERG LIMITS TEST REPORT

ASTM D4318

Project: Coffee Gold 2016 - Geotech. Invest. Sample Number: S2

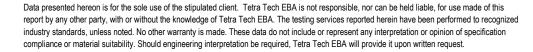
Coffee Creek - North WRD Borehole Number: GT15


Project No: ENG.EARC03004-02 Source: 0.50 - 0.70 m

Client: Kaminak Gold Corporation Sampled By: RG Tested By: AMT

Attention: [name redacted] Date Sampled: September 4, 2016

Email: Date Tested: November 30, 2016


Sample Description: SAND - gravelly, silty, trace clay



| Liquid Limit (W <sub>1)</sub> : | 0 | Natural Moisture (%) | 37.2 |
|---------------------------------|---|----------------------|------|
| Plastic Limit :                 | 0 | Soil Plasticity:     | NP   |
| Plasticity Index (Ip):          | 0 | Mod.USCS Symbol:     | N/A  |

Remarks: Material is too silty to perform tests; plastic limit could not be determined.

Reviewed By: C.E.T.





ASTM D422, C136 & C117

Project: Coffee Gold 2016 - Geotech. Invest. Sample No.: S2

Project No.: ENG.EARC03004-02 Material Type:

Site: Coffee Creek - North WRD Sample Loc.: GT15

Client: Kaminak Gold Corporation Sample Depth: 0.50 - 0.70 m

Client Rep.: [name redacted] Sampling Method: Grab

Date Tested: November 28, 2016 By: AMT Date sampled: September 4, 2016

Soil Description<sup>2</sup>: SAND - gravelly, silty, trace clay Sampled By: RG

USC Classification: Cu: 251.6

Moisture Content: 37.2% Cc: 0.6

|              | 1       |                 |                |                |            |             |              |        |              |                  |
|--------------|---------|-----------------|----------------|----------------|------------|-------------|--------------|--------|--------------|------------------|
| Particle     | Percent |                 |                |                |            |             | Sand         | ,      | Gr           | avel             |
| Size<br>(mm) | Passing |                 | Clay           | Silt           |            | Fine        | Medium       | Coarse | Fine         | Coarse           |
| 75           |         |                 |                |                | 400 200    | 100 60      | 40 30 20 16  | 10 8 4 | 3/8" 1/2" 3/ | 4" 1" 1.5" 2" 3" |
| 50           |         | 100             |                |                | 400 200    | 100 00      | 40 30 20 10  |        | 3/6 1/2 3/   | 4 1 1.5 2 3      |
| 38           | 100     |                 |                |                | + +        |             |              |        |              |                  |
| 25           | 87      | 90              |                |                |            |             |              |        |              | /                |
| 19           | 77      |                 |                |                |            |             |              |        |              | /                |
| 12.5         | 76      | 80              |                |                |            |             |              |        | لسر          |                  |
| 10           | 73      | 70              |                |                |            |             |              |        |              |                  |
| 5            | 68      |                 |                |                |            |             |              |        |              |                  |
| 2            | 61      | <b>9</b> 60     |                |                |            |             |              |        |              |                  |
| 0.85         | 53      | PERCENT PASSING |                |                |            |             |              |        |              |                  |
| 0.425        | 45      | PA 50           |                |                |            |             |              |        |              |                  |
| 0.25         | 39      | Ä,              |                |                |            |             |              |        |              |                  |
| 0.15         | 34      | ERC             |                |                |            |             |              |        |              |                  |
| 0.075        | 28.9    | 30              |                |                |            |             |              |        |              |                  |
| 0.0352       | 21.1    |                 |                |                |            |             |              |        |              |                  |
| 0.0226       | 18.1    | 20              |                |                |            |             | Soil Descrip |        |              |                  |
| 0.0134       | 12.7    |                 |                |                |            |             | 1            |        | and          | 39               |
| 0.0095       | 11.5    | 10              |                |                |            |             | Silt 2       | 22 Gr  | avel         | 32               |
| 0.0069       | 9.6     | 0               |                |                |            |             |              |        |              |                  |
| 0.0003       | 8.4     | 0               | .0005 0.001 0. | 002 0.005 0.01 | 0.037 0.07 | 5 0.15 0.25 | 0.425 0.85   | 2 4.7  | 5 9.5 12.5   | 19 25 37.5 50 75 |
|              |         |                 |                |                | PARTICI    | E SIZE (m   | m)           |        |              |                  |
| 0.0014       | 6.0     |                 |                |                |            |             |              |        |              |                  |

| Notes: | <sup>1</sup> The upper clay size of 2 um, per the | Canadian Foundation Engineering Manual |
|--------|---------------------------------------------------|----------------------------------------|
|--------|---------------------------------------------------|----------------------------------------|

<sup>2</sup> The description is visually based & subject to EBA description protocols

| Specification | <u> </u> |  |  |  |
|---------------|----------|--|--|--|
| Remarks:      |          |  |  |  |
|               |          |  |  |  |
|               |          |  |  |  |



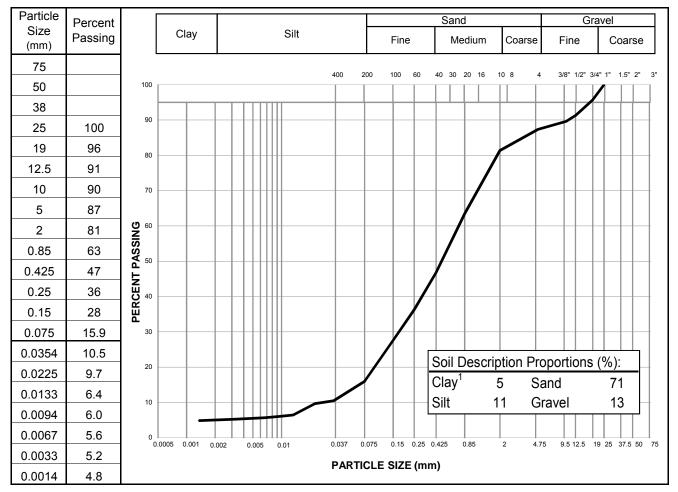
ASTM D422, C136 & C117

Project: Coffee Gold 2016 - Geotech. Invest. Sample No.: S8

Project No.: ENG.EARC03004-02 Material Type:

Site: Coffee Creek - North WRD Sample Loc.: GT15

Client: Kaminak Gold Corporation Sample Depth: 5.55 - 5.80 m


Client Rep.: [name redacted] Sampling Method: Grab

Date Tested: December 2, 2016 By: AMT Date sampled: September 4, 2016

Soil Description<sup>2</sup>: SAND - some gravel, some silt, Sampled By: RG

trace clay USC Classification: Cu: 27.4

Moisture Content: 12.8% Cc: 1.5



| Notes: | <sup>1</sup> The upper clay size of 2 um, per th | ne Canadian Foundation Engineering Manual |
|--------|--------------------------------------------------|-------------------------------------------|
|--------|--------------------------------------------------|-------------------------------------------|

<sup>2</sup> The description is visually based & subject to EBA description protocols

| Specification: |  |  |  |
|----------------|--|--|--|
| Remarks:       |  |  |  |
| _              |  |  |  |
| =              |  |  |  |



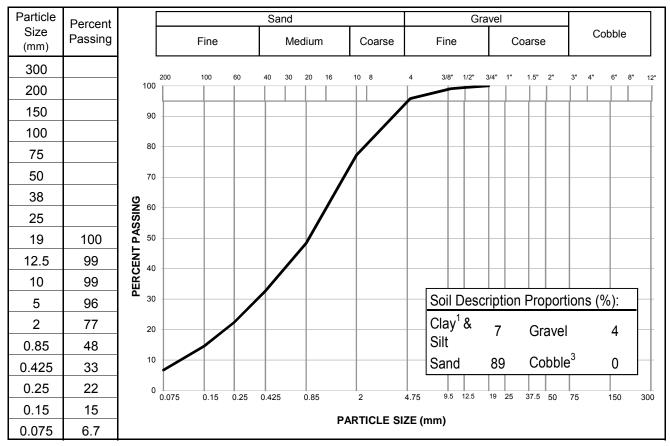
ASTM D422, C136 & C117

Project: Coffee Gold 2016 - Geotech. Invest. Sample No.: S2

Project No.: ENG.EARC03004-02 Material Type:

Site: Coffee Creek - West Dump Sample Loc.: GT16

Client: Kaminak Gold Corporation Sample Depth: 2.35 - 2.68 m


Client Rep.: [name redacted] Sampling Method: Grab

Date Tested: December 1, 2016 By: TW Date sampled: August 30, 2016

Soil Description<sup>2</sup>: SAND - trace silt, trace gravel Sampled By: SA/VER

USC Classification: Cu: 12.4

Moisture Content: 22.2% Cc: 1.0



| Specification: |              |        |
|----------------|--------------|--------|
| Remarks:       |              |        |
|                |              |        |
|                | Reviewed By: | P.Eng. |



<sup>&</sup>lt;sup>2</sup> The description is visually based & subject to EBA description protocols

<sup>&</sup>lt;sup>3</sup> If cobbles are present, sampling procedure may not meet ASTM C702 & D75

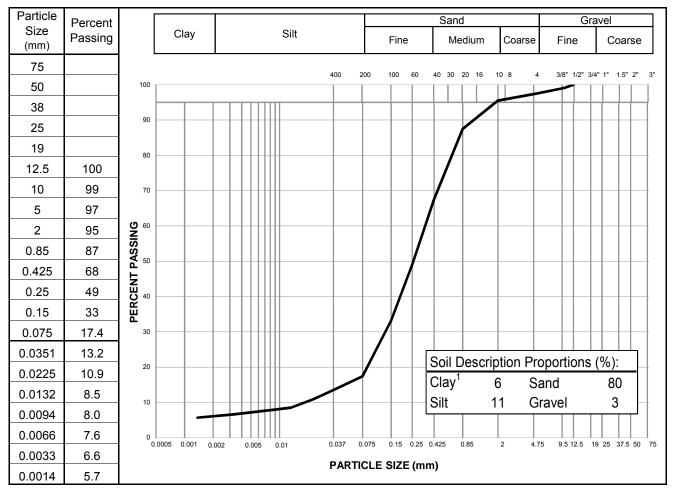
ASTM D422, C136 & C117

Project: Coffee Gold 2016 - Geotech. Invest. Sample No.: S2

Project No.: ENG.EARC03004-02 Material Type:

Site: Coffee Creek - West Dump Sample Loc.: GT19

Client: Kaminak Gold Corporation Sample Depth: 2.00 - 2.15 m


Client Rep.: [name redacted]t Sampling Method: Grab

Date Tested: December 2, 2016 By: AMT Date sampled: October 2, 2016

Soil Description<sup>2</sup>: SAND - some silt, trace clay, Sampled By: JGD

trace gravel USC Classification: Cu: 18.5

Moisture Content: 11.2% Cc: 2.7



| Notes: | <sup>1</sup> The upper clay size of 2 um, | er the Canadian Foundation | on Engineering Manual |
|--------|-------------------------------------------|----------------------------|-----------------------|
|--------|-------------------------------------------|----------------------------|-----------------------|

<sup>2</sup> The description is visually based & subject to EBA description protocols

| Specification: |  |  |  |
|----------------|--|--|--|
| Remarks:       |  |  |  |
|                |  |  |  |
|                |  |  |  |



ASTM D422, C136 & C117

Project: Coffee Gold 2016 - Geotech. Invest. Sample No.: S4

Project No.: ENG.EARC03004-02 Material Type:

Site: Coffee Creek - Kona Pond Sample Loc.: GT43

Client: Kaminak Gold Corporation Sample Depth: 2.20 - 2.50 m

Client Rep.: [name redacted] Sampling Method: Grab

Date Tested: November 30, 2016 By: AMT Date sampled: September 17, 2016

Soil Description<sup>2</sup>: SILT - sandy, some gravel, some clay Sampled By: EP

USC Classification: Cu: 379.8

Moisture Content: 60.2% Cc: 0.3

| Particle     | Percent |                 |                |            |               |       |       |         |    | San               | d     | •        |      | G         | ravel     |            |
|--------------|---------|-----------------|----------------|------------|---------------|-------|-------|---------|----|-------------------|-------|----------|------|-----------|-----------|------------|
| Size<br>(mm) | Passing |                 | Clay           |            | Silt          |       |       | Fine    |    | Мє                | edium | Coarse   | )    | Fine      | Co        | arse       |
| 75           |         |                 |                |            |               | 400   | 200   | 100 60  | 0  | 40 30             | 20 16 | 10 8     | 4    | 3/8" 1/2" | 2/4" 1" 1 | .5" 2" 3"  |
| 50           |         | 100             |                |            |               | 400   | 200   | 100 00  |    | 40 30             | 20 10 | 10 8     | -    | 3/6 1/2   | 3/4       | .5 2 3     |
| 38           |         |                 |                |            | Ш             |       | +     | +       |    |                   |       | +        |      |           |           |            |
| 25           | 100     | 90              |                |            | 11            |       |       | +       |    |                   |       |          |      |           |           |            |
| 19           | 96      | 80              |                |            |               |       |       |         |    |                   |       |          |      |           |           |            |
| 12.5         | 95      | 00              |                |            |               |       |       |         |    |                   |       |          |      |           |           |            |
| 10           | 89      | 70              |                |            |               |       |       | $\perp$ |    |                   |       |          |      |           |           |            |
| 5            | 81      |                 |                |            |               |       |       |         |    |                   |       | 1        |      |           |           |            |
| 2            | 68      | <b>9</b> 60     |                |            | H             |       |       | +       |    |                   |       |          |      |           |           |            |
| 0.85         | 62      | PERCENT PASSING |                |            |               |       |       |         |    |                   |       |          |      |           |           |            |
| 0.425        | 59      | <b>74</b> L 50  |                |            | Ш             |       |       |         |    |                   |       |          |      |           |           |            |
| 0.25         | 57      | NE 40           |                |            |               |       |       |         |    |                   |       |          |      |           |           |            |
| 0.15         | 55      | ER(             |                |            |               | /     |       |         |    |                   |       |          |      |           |           |            |
| 0.075        | 53.7    | 30              |                |            | $\parallel /$ |       |       | +       |    |                   |       |          |      |           |           |            |
| 0.0314       | 46.3    |                 |                |            |               |       |       |         | Г  | 0-:15             | \     | :        |      |           | - (0/ )-  | 4          |
| 0.0210       | 36.3    | 20              |                |            |               |       |       | ++      |    |                   |       | iption P |      |           |           | _          |
| 0.0127       | 26.9    |                 |                |            |               |       |       |         |    | Clay <sup>1</sup> |       |          | Sand |           | 28        |            |
| 0.0091       | 22.8    | 10              |                |            |               |       |       |         | L  | Silt              | 1     | 43 (     | Grav | rei       | 19        |            |
| 0.0066       | 20.1    | 0               |                |            |               |       |       |         |    |                   |       |          |      |           |           |            |
| 0.0033       | 14.8    | 0               | .0005 0.001 0. | .002 0.005 | 0.01          | 0.037 | 0.075 | 0.15 0. |    |                   | 0.85  | 2 4      | 1.75 | 9.5 12.5  | 19 25 3   | 37.5 50 75 |
| 0.0014       | 9.4     |                 |                |            |               | PAR   | TICLE | SIZE (  | mn | n)                |       |          |      |           |           |            |

| Notes: | <sup>1</sup> The upper clay size of 2 um, per th | ne Canadian Foundation Engineering Manual |
|--------|--------------------------------------------------|-------------------------------------------|
|--------|--------------------------------------------------|-------------------------------------------|

<sup>2</sup> The description is visually based & subject to EBA description protocols

| Specification: |  |  |  |
|----------------|--|--|--|
| Remarks:       |  |  |  |
| _              |  |  |  |
| =              |  |  |  |



ASTM D422, C136 & C117

Project: Coffee Gold 2016 - Geotech. Invest. Sample No.: S6

Project No.: ENG.EARC03004-02 Material Type:

Site: Coffee Creek - Kona Pond Sample Loc.: GT43

Client: Kaminak Gold Corporation Sample Depth: 4.15 - 4.48 m


Client Rep.: [name redacted] Sampling Method: Grab

Date Tested: November 30, 2016 By: AMT Date sampled: September 17, 2016

Soil Description<sup>2</sup>: SILT - some clay, some sand, Sampled By: EP

trace gravel USC Classification: Cu: #N/A

Moisture Content: 27.3% Cc: #N/A



| Notes: | <sup>1</sup> The upper clay size of 2 um, per th | ne Canadian Foundation Engineering Manual |
|--------|--------------------------------------------------|-------------------------------------------|
|--------|--------------------------------------------------|-------------------------------------------|

<sup>2</sup> The description is visually based & subject to EBA description protocols

| Specification: |  |  |  |
|----------------|--|--|--|
| Remarks:       |  |  |  |
|                |  |  |  |
|                |  |  |  |



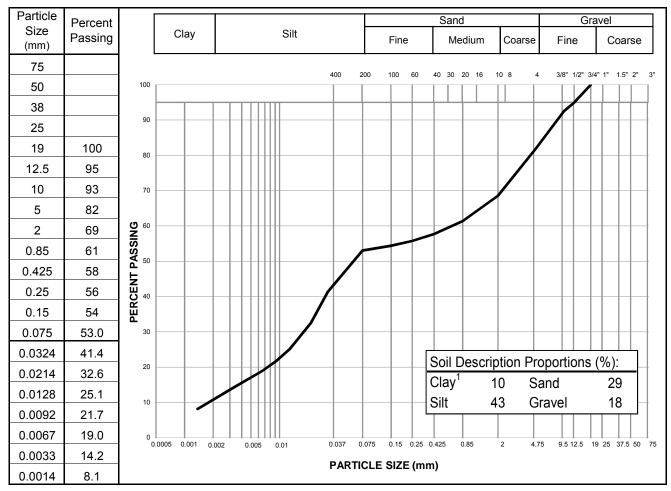
ASTM D422, C136 & C117

Project: Coffee Gold 2016 - Geotech. Invest. Sample No.: S3

Project No.: ENG.EARC03004-02 Material Type:

Site: Coffee Creek - Kona Pond Sample Loc.: GT45

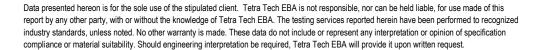
Client: Kaminak Gold Corporation Sample Depth: 2.00 - 2.15 m


Client Rep.: [name redacted] Sampling Method: Grab

Date Tested: November 30, 2016 By: AMT Date sampled: September 15, 2016

Soil Description<sup>2</sup>: SILT - sandy, some gravel, trace clay Sampled By: VER/EP

USC Classification: Cu: 353.4


Moisture Content: 47.2% Cc: 0.3



| Notes: | <sup>1</sup> The upper clay size of 2 um, per th | ne Canadian Foundation Engineering Manual |
|--------|--------------------------------------------------|-------------------------------------------|
|--------|--------------------------------------------------|-------------------------------------------|

<sup>2</sup> The description is visually based & subject to EBA description protocols

| Specification: | <br> | <br> | <br> |
|----------------|------|------|------|
| Remarks:       |      |      |      |
|                |      |      |      |





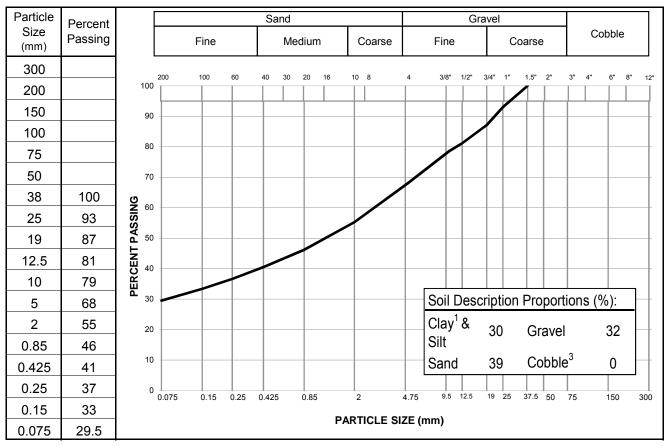
ASTM D422, C136 & C117

Project: Coffee Gold 2016 - Geotech. Invest. Sample No.: S5

Project No.: ENG.EARC03004-02 Material Type:

Site: Coffee Creek - Kona Pond Sample Loc.: GT45

Client: Kaminak Gold Corporation Sample Depth: 5.20 - 5.45 m


Client Rep.: [name redacted] Sampling Method: Grab

Date Tested: December 5, 2016 By: AMT Date sampled: September 15, 2016

Soil Description<sup>2</sup>: SAND - gravelly, silty Sampled By: EP

USC Classification: Cu: #N/A

Moisture Content: 10.4% Cc: #N/A



| Specification: |              |        |
|----------------|--------------|--------|
| Remarks:       |              |        |
|                |              |        |
|                | Reviewed By: | P.Eng. |



<sup>&</sup>lt;sup>2</sup> The description is visually based & subject to EBA description protocols

<sup>&</sup>lt;sup>3</sup> If cobbles are present, sampling procedure may not meet ASTM C702 & D75

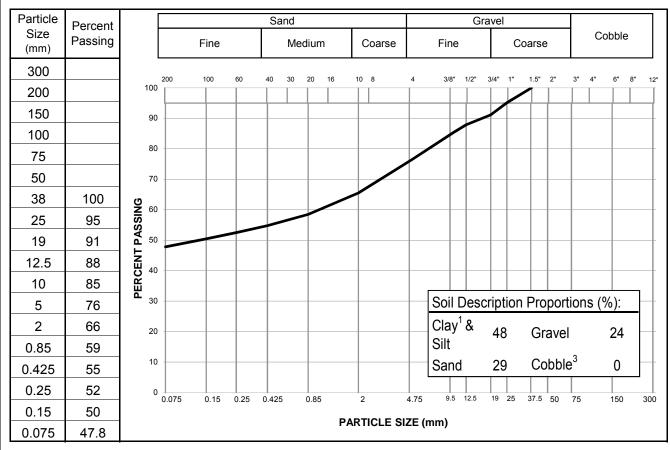
ASTM D422, C136 & C117

Project: Coffee Gold 2016 - Geotech. Invest. Sample No.: S4

Project No.: ENG.EARC03004-02 Material Type:

Site: Coffee Creek - Kona Pond Sample Loc.: GT46

Client: Kaminak Gold Corporation Sample Depth: 2.50 - 3.00 m


Client Rep.: [name redacted] Sampling Method: Grab

Date Tested: December 5, 2016 By: AMT Date sampled: September 19, 2016

Soil Description<sup>2</sup>: SILT - sandy, gravelly Sampled By: EP

USC Classification: Cu: #N/A

Moisture Content: 17.9% Cc: #N/A



| Specification: |                |        |
|----------------|----------------|--------|
| Remarks:       |                |        |
|                |                |        |
|                |                |        |
|                | Reviewed By: P | P.Eng. |



<sup>&</sup>lt;sup>2</sup> The description is visually based & subject to EBA description protocols

<sup>&</sup>lt;sup>3</sup> If cobbles are present, sampling procedure may not meet ASTM C702 & D75

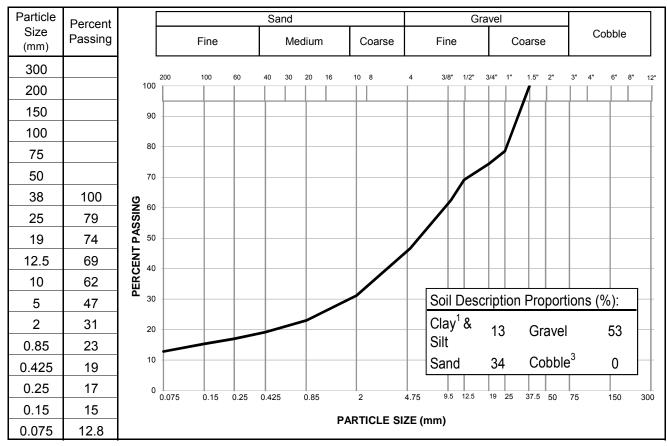
ASTM D422, C136 & C117

Project: Coffee Gold 2016 - Geotech. Invest. Sample No.: S4

Project No.: ENG.EARC03004-02 Material Type:

Site: Coffee Creek - Kona Pond Sample Loc.: GT46

Client: Kaminak Gold Corporation Sample Depth: 6.00 - 6.28 m


Client Rep.: [name redacted] Sampling Method: Grab

Date Tested: December 5, 2016 By: AMT Date sampled: September 19, 2016

Soil Description<sup>2</sup>: GRAVEL - sandy, some silt Sampled By: EP

USC Classification: Cu: #N/A

Moisture Content: 12.6% Cc: #N/A



| Specification: |              |       |
|----------------|--------------|-------|
| Remarks:       |              |       |
|                |              |       |
|                | Reviewed By: | P Eng |



<sup>&</sup>lt;sup>2</sup> The description is visually based & subject to EBA description protocols

<sup>&</sup>lt;sup>3</sup> If cobbles are present, sampling procedure may not meet ASTM C702 & D75

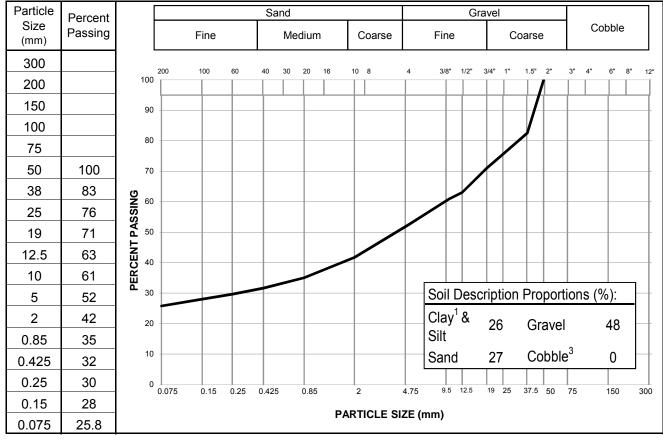
ASTM D422, C136 & C117

Project: Coffee Gold 2016 - Geotech. Invest. Sample No.: S5

Project No.: ENG.EARC03004-02 Material Type:

Site: Coffee Creek - Kona Pond Sample Loc.: GT47

Client: Kaminak Gold Corporation Sample Depth: 3.00 - 3.50 m


Client Rep.: [name redacted] Sampling Method: Grab

Date Tested: December 5, 2016 By: AMT Date sampled: September 13, 2016

Soil Description<sup>2</sup>: GRAVEL - sandy, silty Sampled By: VER

USC Classification: Cu: #N/A

Moisture Content: 10.7% Cc: #N/A



| Specification: |             |       |
|----------------|-------------|-------|
| Remarks:       |             |       |
|                |             |       |
|                | Reviewed Bv | P Eng |



<sup>&</sup>lt;sup>2</sup> The description is visually based & subject to EBA description protocols

<sup>&</sup>lt;sup>3</sup> If cobbles are present, sampling procedure may not meet ASTM C702 & D75

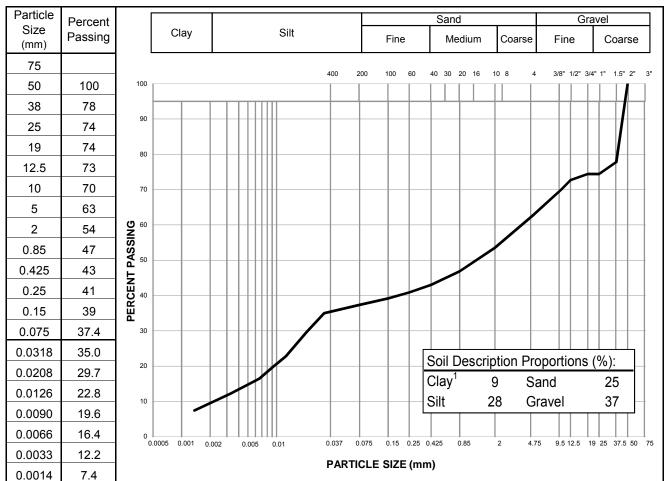
ASTM D422, C136 & C117

Project: Coffee Gold 2016 - Geotech. Invest. Sample No.: S19

Project No.: ENG.EARC03004-02 Material Type:

Site: Coffee Creek - Kona Pond Sample Loc.: GT47

Client: Kaminak Gold Corporation Sample Depth: 9.58 - 10.00 m


Client Rep.: [name redacted] Sampling Method: Grab

Date Tested: December 2, 2016 By: AMT Date sampled: September 13, 2016

Soil Description<sup>2</sup>: GRAVEL - silty, sandy, trace clay Sampled By: VER

USC Classification: Cu: 1724.2

Moisture Content: 18.6% Cc: 0.0



| Notes: | <sup>1</sup> The upper clay size of 2 um, per th | ne Canadian Foundation Engineering Manual |
|--------|--------------------------------------------------|-------------------------------------------|
|--------|--------------------------------------------------|-------------------------------------------|

<sup>2</sup> The description is visually based & subject to EBA description protocols

| Specification: |  |  |  |
|----------------|--|--|--|
| Remarks:       |  |  |  |
| _              |  |  |  |
| =              |  |  |  |

Reviewed By: P.Eng.

TETRA TECH

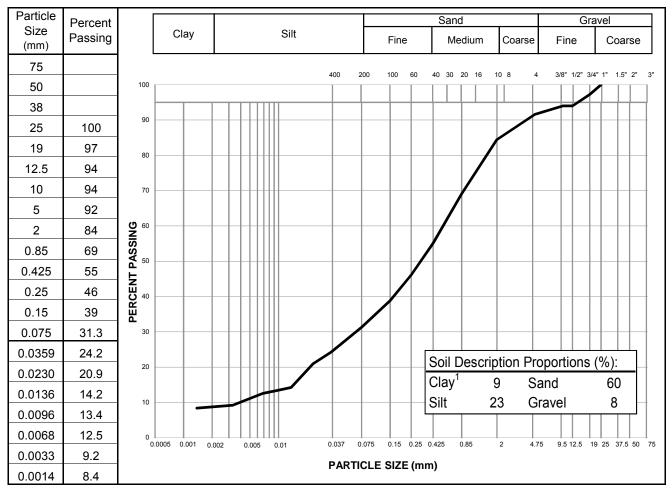
ASTM D422, C136 & C117

Project: Coffee Gold 2016 - Geotech. Invest. Sample No.: S5

Project No.: ENG.EARC03004-02 Material Type:

Site: Coffee Creek - North Pond Sample Loc.: GT51

Client: Kaminak Gold Corporation Sample Depth: 1.60 - 1.20 m


Client Rep.: [name redacted] Sampling Method: Grab

Date Tested: November 30, 2016 By: AMT Date sampled: September 6, 2016

Soil Description<sup>2</sup>: SAND - silty, trace clay, trace gravel Sampled By: VER

USC Classification: Cu: 138.7

Moisture Content: 34.9% Cc: 1.9



| Notes: | <sup>1</sup> The upper clay size of 2 um, per th | ne Canadian Foundation Engineering Manual |
|--------|--------------------------------------------------|-------------------------------------------|
|--------|--------------------------------------------------|-------------------------------------------|

<sup>2</sup> The description is visually based & subject to EBA description protocols

| Specification: |  |  |  |
|----------------|--|--|--|
| Remarks:       |  |  |  |
| ·              |  |  |  |
| -              |  |  |  |

Reviewed By: P.Eng.

made of this



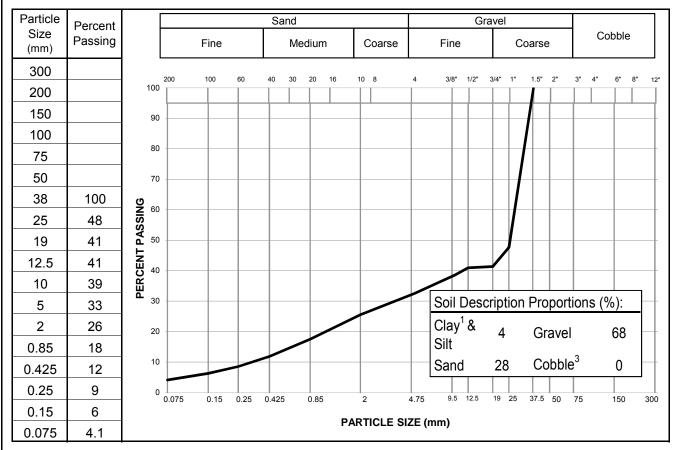
ASTM D422, C136 & C117

Project: Coffee Gold 2016 - Geotech. Invest. Sample No.: S7

Project No.: ENG.EARC03004-02 Material Type:

Site: Coffee Creek - North Pond Sample Loc.: GT57

Client: Kaminak Gold Corporation Sample Depth: 8.70 - 8.90 m


Client Rep.: [name redacted] Sampling Method: Grab

Date Tested: December 5, 2016 By: AMT Date sampled: September 8, 2016

Soil Description<sup>2</sup>: GRAVEL - sandy, trace silt Sampled By: JGD

USC Classification: Cu: 85.9

Moisture Content: 7.4% Cc: 1.7



| Specification: |              |        |
|----------------|--------------|--------|
| Remarks:       |              |        |
| <u>-</u>       |              |        |
|                |              |        |
|                | Reviewed By: | P.Eng. |



<sup>&</sup>lt;sup>2</sup> The description is visually based & subject to EBA description protocols

<sup>&</sup>lt;sup>3</sup> If cobbles are present, sampling procedure may not meet ASTM C702 & D75

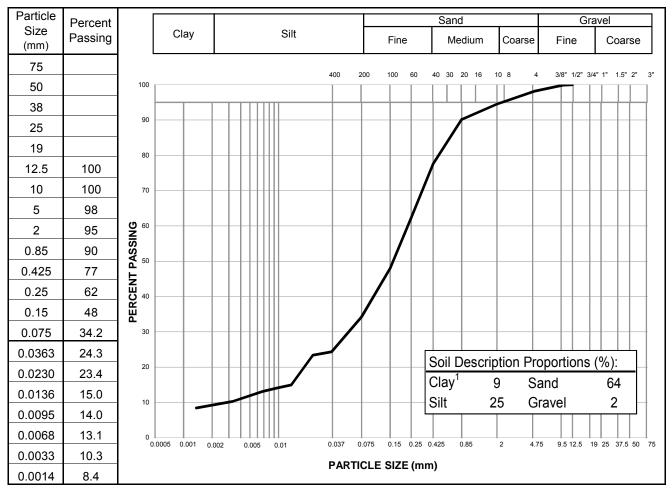
ASTM D422, C136 & C117

Project: Coffee Gold 2016 - Geotech. Invest. Sample No.: S2

Project No.: ENG.EARC03004-02 Material Type:

Site: Coffee Creek - West Pond Sample Loc.: GT58

Client: Kaminak Gold Corporation Sample Depth: 1.32 - 1.64 m


Client Rep.: [name redacted] Sampling Method: Grab

Date Tested: November 30, 2016 By: AMT Date sampled: September 26, 2016

Soil Description<sup>2</sup>: SAND - silty, trace clay, trace gravel Sampled By: EP

USC Classification: Cu: 78.0

Moisture Content: 49.1% Cc: 4.9



| Notes: | <sup>1</sup> The upper clay size of 2 um, per th | ne Canadian Foundation Engineering Manual |
|--------|--------------------------------------------------|-------------------------------------------|
|--------|--------------------------------------------------|-------------------------------------------|

<sup>2</sup> The description is visually based & subject to EBA description protocols

| Specification: |      |      |      |
|----------------|------|------|------|
| Remarks:       |      |      |      |
|                |      |      |      |
|                | <br> | <br> | <br> |

Reviewed By: P.Eng.

Data presented hereon is for the sole use of the stipulated client. Tetra Tech EBA is not responsible, nor can be held liable, for use made of this report by any other party, with or without the knowledge of Tetra Tech EBA. The testing services reported herein have been performed to recognized industry standards, unless noted. No other warranty is made. These data do not include or represent any interpretation or opinion of specification compliance or material suitability. Should engineering interpretation be required, Tetra Tech EBA will provide it upon written request.



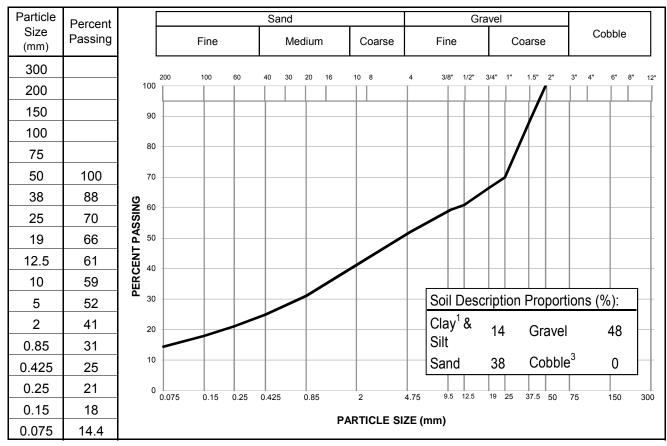
ASTM D422, C136 & C117

Project: Coffee Gold 2016 - Geotech. Invest. Sample No.: S4 & S6 (combined)

Project No.: ENG.EARC03004-02 Material Type:

Site: Coffee Creek - West Pond Sample Loc.: GT61

Client: Kaminak Gold Corporation Sample Depth: 2.24 - 4.00 m


Client Rep.: [name redacted] Sampling Method: Grab

Date Tested: December 5, 2016 By: AMT Date sampled: September 29, 2016

Soil Description<sup>2</sup>: GRAVEL and SAND - some silt Sampled By: EP

USC Classification: Cu: #N/A

Moisture Content: 12.4% Cc: #N/A



|                | Poviowed By: | D Fna |
|----------------|--------------|-------|
|                |              |       |
| Remarks:       |              |       |
| Specification: |              |       |
|                |              |       |



<sup>&</sup>lt;sup>2</sup> The description is visually based & subject to EBA description protocols

<sup>&</sup>lt;sup>3</sup> If cobbles are present, sampling procedure may not meet ASTM C702 & D75

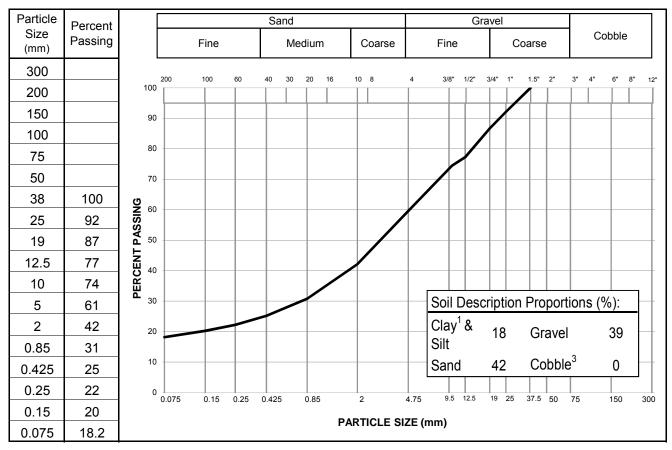
ASTM D422, C136 & C117

Project: Coffee Gold 2016 - Geotech. Invest. Sample No.: S2

Project No.: ENG.EARC03004-02 Material Type:

Site: Coffee Creek - HL Pond Sample Loc.: GT62

Client: Kaminak Gold Corporation Sample Depth: 2.00 - 2.42 m


Client Rep.: [name redacted] Sampling Method: Grab

Date Tested: December 5, 2016 By: AMT Date sampled: September 22, 2016

Soil Description<sup>2</sup>: GRAVEL and SAND - some silt Sampled By: JGD

USC Classification: Cu: #N/A

Moisture Content: 24.9% Cc: #N/A



| Specification:  Remarks: |                    |   |
|--------------------------|--------------------|---|
|                          |                    |   |
| F                        | Reviewed By: P.Eng | _ |



<sup>&</sup>lt;sup>2</sup> The description is visually based & subject to EBA description protocols

<sup>&</sup>lt;sup>3</sup> If cobbles are present, sampling procedure may not meet ASTM C702 & D75

ASTM D422, C136 & C117

Project: Coffee Gold 2016 - Geotech. Invest. Sample No.: S2

Project No.: ENG.EARC03004-02 Material Type:

Site: Coffee Creek - HL Pond Sample Loc.: GT64

Client: Kaminak Gold Corporation Sample Depth: 2.33 - 2.64 m

Client Rep.: [name redacted] Sampling Method: Grab

Date Tested: November 30, 2016 By: AMT Date sampled: September 20, 2016

Soil Description<sup>2</sup>: SAND and GRAVEL - some silt, Sampled By: EP

trace clay USC Classification: Cu: 149.1

Moisture Content: 13.2% Cc: 7.7

| Particle     | Percent |                 |             |                   |           |             |              | Sand         |           | Gı                    | ravel                   |
|--------------|---------|-----------------|-------------|-------------------|-----------|-------------|--------------|--------------|-----------|-----------------------|-------------------------|
| Size<br>(mm) | Passing |                 | Clay        |                   | Silt      |             | Fine         | Mediu        | m Coarse  | Fine                  | Coarse                  |
| 75           |         |                 |             |                   |           | 400 000     | 100 00       | 40.00.00     | 40 40 0   | 0.0011 4.0011 6       | )/4   4   4   5   0   0 |
| 50           |         | 100             |             |                   |           | 400 200     | 100 60       | 40 30 20     | 16 10 8 4 | 3/8" 1/2" 3           | 3/4" 1" 1.5" 2" 3"      |
| 38           |         |                 |             |                   | ПП        |             |              |              |           |                       |                         |
| 25           | 100     | 90              |             |                   |           |             |              |              |           |                       |                         |
| 19           | 98      | 80              |             |                   |           |             |              |              |           | //                    |                         |
| 12.5         | 93      | 80              |             |                   |           |             |              |              |           |                       |                         |
| 10           | 84      | 70              |             |                   |           |             |              | $\perp$      |           | $/\!\!\perp\!\!\perp$ |                         |
| 5            | 62      |                 |             |                   |           |             |              |              |           | /                     |                         |
| 2            | 40      | <b>9</b> 60     |             |                   | }         |             |              |              | /         |                       |                         |
| 0.85         | 28      | SSI             |             |                   |           |             |              |              |           |                       |                         |
| 0.425        | 21      | PERCENT PASSING |             |                   |           |             |              |              |           |                       |                         |
| 0.25         | 17      | NEN<br>SO 40    |             | Soil De           | ccrintion | n Proportio | ne (%):      | 7            |           |                       |                         |
| 0.15         | 15      | )ER(            |             | Clay <sup>1</sup> | 2         | Sand        | 49           | -            |           |                       |                         |
| 0.075        | 12.8    | 30              |             | Silt              | 11        | Gravel      | 38           |              |           |                       |                         |
| 0.0359       | 11.4    |                 |             |                   |           | Glavel      |              | -            |           |                       |                         |
| 0.0234       | 7.1     | 20              |             |                   |           |             |              |              |           |                       |                         |
| 0.0137       | 5.1     | 10              |             |                   |           |             |              |              |           |                       |                         |
| 0.0096       | 4.3     | 10              |             |                   |           |             |              |              |           |                       |                         |
| 0.0068       | 3.9     | 0               |             | +-+-              |           | 0.027       | 75 0.45 0.00 | 5 0 425 0 25 |           | 75 05 12 5            | 40.25.27.5.50.75        |
| 0.0033       | 3.1     | 0               | .0005 0.001 | 0.002 0.005       | 0.01      | 0.037 0.0   |              |              | 2 4.7     | 75 9.5 12.5           | 19 25 37.5 50 75        |
| 0.0014       | 2.0     |                 |             |                   |           | PARTIC      | LE SIZE (n   | nm)          |           |                       |                         |

| Notes: | <sup>1</sup> The upper clay size of 2 um, per th | ne Canadian Foundation Engineering Manual |
|--------|--------------------------------------------------|-------------------------------------------|
|--------|--------------------------------------------------|-------------------------------------------|

<sup>2</sup> The description is visually based & subject to EBA description protocols

| Specification: |  |  |   |
|----------------|--|--|---|
| Remarks:       |  |  |   |
|                |  |  | · |

Reviewed By: P.Eng.

Data presented hereon is for the sole use of the stipulated client. Tetra Tech EBA is not responsible, nor can be held liable, for use made of this report by any other party, with or without the knowledge of Tetra Tech EBA. The testing services reported herein have been performed to recognized industry standards, unless noted. No other warranty is made. These data do not include or represent any interpretation or opinion of specification compliance or material suitability. Should engineering interpretation be required, Tetra Tech EBA will provide it upon written request.



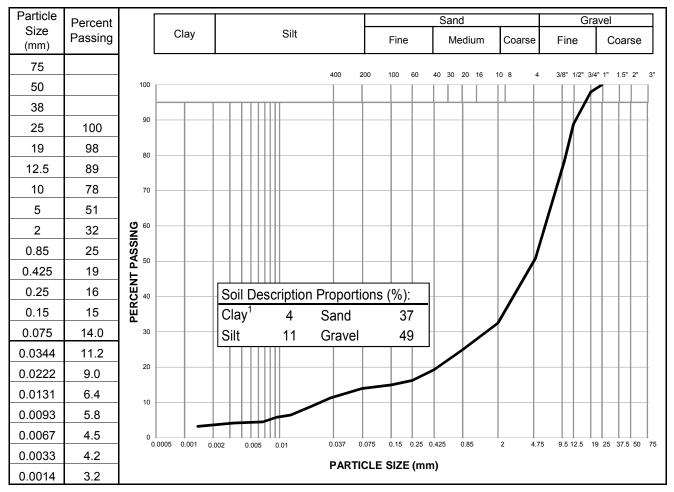
ASTM D422, C136 & C117

Project: Coffee Gold 2016 - Geotech. Invest. Sample No.: S2

Project No.: ENG.EARC03004-02 Material Type:

Site: Coffee Creek - HL Pond Sample Loc.: GT65

Client: Kaminak Gold Corporation Sample Depth: 2.71 - 3.00 m


Client Rep.: [name redacted] Sampling Method: Grab

Date Tested: November 30, 2016 By: AMT Date sampled: September 21, 2016

Soil Description<sup>2</sup>: GRAVEL and SAND - some silt, Sampled By: EP

trace clay USC Classification: Cu: 241.0

Moisture Content: 34.3% Cc: 14.3



| Notes: | <sup>1</sup> The upper clay size of 2 um, per the | Canadian Foundation Engineering Manual |
|--------|---------------------------------------------------|----------------------------------------|
|--------|---------------------------------------------------|----------------------------------------|

<sup>2</sup> The description is visually based & subject to EBA description protocols

| Specification: |  |  |  |
|----------------|--|--|--|
| Remarks:       |  |  |  |
| •              |  |  |  |
| :              |  |  |  |

Reviewed By: P.Eng.

TETRA TECH

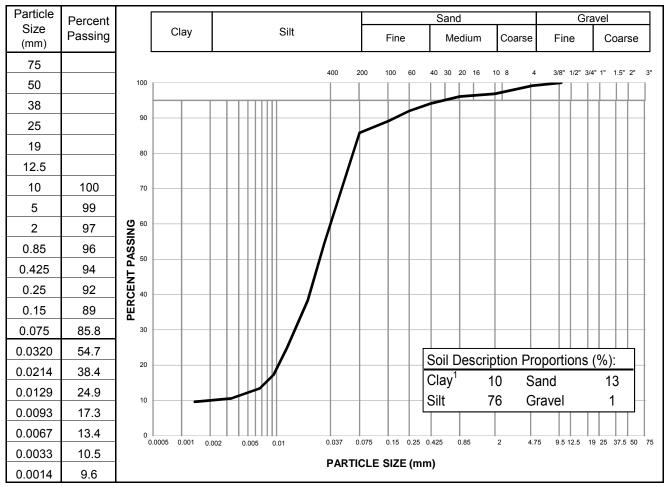
ASTM D422, C136 & C117

Project: Coffee Gold 2016 - Geotech. Invest. Sample No.: S6

Project No.: ENG.EARC03004-02 Material Type:

Site: Coffee Creek - HL Pond Sample Loc.: GT66

Client: Kaminak Gold Corporation Sample Depth: 4.40 - 4.76 m


Client Rep.: [name redacted] Sampling Method: Grab

Date Tested: November 30, 2016 By: AMT Date sampled: September 24, 2016

Soil Description<sup>2</sup>: Organic SILT - some sand, trace clay, Sampled By: EP

trace gravel USC Classification: Cu: 17.7

Moisture Content: 68.9% Cc: 3.0



| Notes: | <sup>1</sup> The upper clay size of 2 um, per th | e Canadian Foundation Engineering Manual |
|--------|--------------------------------------------------|------------------------------------------|
|--------|--------------------------------------------------|------------------------------------------|

<sup>2</sup> The description is visually based & subject to EBA description protocols

| Specification: |  |  |  |
|----------------|--|--|--|
| Remarks:       |  |  |  |
|                |  |  |  |



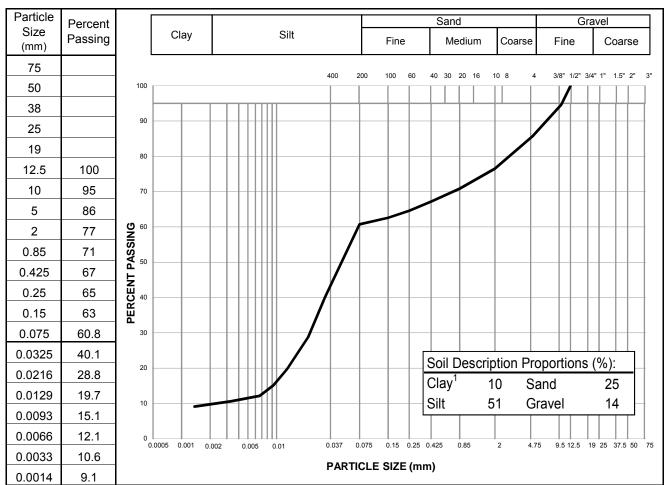
ASTM D422, C136 & C117

Project: Coffee Gold 2016 - Geotech. Invest. Sample No.: S9

Project No.: ENG.EARC03004-02 Material Type:

Site: Coffee Creek - HL Pond Sample Loc.: GT66

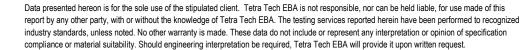
Client: Kaminak Gold Corporation Sample Depth: 6.12 - 6.55 m


Client Rep.: [name redacted] Sampling Method: Grab

Date Tested: December 2, 2016 By: AMT Date sampled: September 24, 2016

Soil Description<sup>2</sup>: SILT - sandy, some gravel, trace clay Sampled By: EP

USC Classification: Cu: 28.9


Moisture Content: 90.6% Cc: 2.8



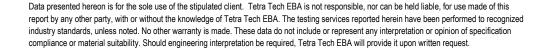
| Notes: | <sup>1</sup> The upper clay size of 2 um, per the | Canadian Foundation Engineering Manual |
|--------|---------------------------------------------------|----------------------------------------|
|--------|---------------------------------------------------|----------------------------------------|

<sup>2</sup> The description is visually based & subject to EBA description protocols

| Specification: |  |  |
|----------------|--|--|
| Remarks:       |  |  |
|                |  |  |
|                |  |  |






#### **MOISTURE CONTENT TEST RESULTS ASTM D2216** Project: Coffee Gold Project - 2016 Geotech. Invest. Sample No.: See Below Project No.: ENG.EARC03004-02 Date Tested: November 18, 2016 Client: Kaminak Gold Corporation Tested By: **AMT** Address: Coffee Creek Page: 1 of 2

| B.H. Number | Sample<br>Number | Moisture<br>Content<br>(%) | Visual Description of Soil |
|-------------|------------------|----------------------------|----------------------------|
| GT10        | S3A              | 88.4                       |                            |
| GT10        | S3B              | 108.9                      |                            |
| GT10        | S8               | 6.0                        |                            |
| GT11        | S1               | 24.8                       |                            |
| GT12        | S2               | 11.1                       |                            |
| GT13        | S7               | 5.9                        |                            |
| GT14        | S2               | 24.4                       |                            |
| GT14        | S3               | 17.7                       |                            |
| GT15        | S2               | 37.2                       |                            |
| GT15        | S8               | 12.8                       |                            |
|             |                  |                            |                            |
| GT16        | S2               | 22.2                       |                            |
| GT19        | S2               | 11.2                       |                            |
|             |                  |                            |                            |
| GT43        | S4               | 60.2                       |                            |
| GT43        | S6               | 27.3                       |                            |
| GT45        | S3               | 47.2                       |                            |
| GT45        | S5               | 10.4                       |                            |
| GT46        | S4               | 17.9                       |                            |
| GT46        | S8               | 12.6                       |                            |
| GT47        | S5               | 10.7                       |                            |
| GT47        | S19              | 15.0                       |                            |
| GT51        | S5               | 34.9                       |                            |
| GT57        | S7               | 7.4                        |                            |
|             |                  |                            |                            |

| Reviewed By: | P.Eng |
|--------------|-------|
|--------------|-------|



### **MOISTURE CONTENT TEST RESULTS ASTM D2216** Project: Coffee Gold Project - 2016 Geotech. Invest. Sample No.: See Below Project No.: ENG.EARC03004-02 Date Tested: November 18, 2016 Client: Kaminak Gold Corporation Tested By: AMT Address: Coffee Creek Page: 2 of 2 Moisture Sample B.H. Number Visual Description of Soil Content Number (%) S2 GT58 49.1 GT61 S4/S6 12.4 GT62 24.9 S2 GT64 S2 13.2 **S7** GT65 34.3 GT66 S6 68.9 GT66 S9 90.6 Reviewed By: P.Eng.





# **APPENDIX D**

## **ONSITE ROCK STRENGTH INDEX TEST RESULTS**



Table D.1. Diametral Point Load Rock Strength Test Results

|                                                                                                                                                                                                                         | Rock Core Testing Point Load (Diametral)                                                                                                                                                                                                                                                                                                  |                                                                                                                                                                                        |                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |  |
|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|
| Sample No.                                                                                                                                                                                                              | Depth<br>(m)                                                                                                                                                                                                                                                                                                                              | UCS<br>(Mpa)                                                                                                                                                                           | Rock Strength                                                                                                                                                                                                                                                                                                                                                                                   | Photo ID                                                                                                                                                                                                                                                                      | Comments                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |  |
| GT01-R1                                                                                                                                                                                                                 | 1.80 - 1.90                                                                                                                                                                                                                                                                                                                               | 128.1                                                                                                                                                                                  | Very Strong                                                                                                                                                                                                                                                                                                                                                                                     | Photo 1E                                                                                                                                                                                                                                                                      | Valid test                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |  |
| GT01-R2                                                                                                                                                                                                                 | 2.82 - 2.98                                                                                                                                                                                                                                                                                                                               | 103.6                                                                                                                                                                                  | Very Strong                                                                                                                                                                                                                                                                                                                                                                                     | Photo 2E                                                                                                                                                                                                                                                                      | Valid test                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |  |
| GT01-R3                                                                                                                                                                                                                 | 3.84 - 3.92                                                                                                                                                                                                                                                                                                                               | 160.9                                                                                                                                                                                  | Very Strong                                                                                                                                                                                                                                                                                                                                                                                     | Photo 3E                                                                                                                                                                                                                                                                      | Valid test                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |  |
| GT02-R1                                                                                                                                                                                                                 | 2.62 - 2.78                                                                                                                                                                                                                                                                                                                               | 40.7                                                                                                                                                                                   | Medium Strong                                                                                                                                                                                                                                                                                                                                                                                   | Photo 4E                                                                                                                                                                                                                                                                      | Valid test                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |  |
| GT02-R2                                                                                                                                                                                                                 | 3.72 - 3.84                                                                                                                                                                                                                                                                                                                               | 76.3                                                                                                                                                                                   | Strong                                                                                                                                                                                                                                                                                                                                                                                          | Photo 5E                                                                                                                                                                                                                                                                      | Valid test                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |  |
| GT02-R3                                                                                                                                                                                                                 | 4.00 - 4.18                                                                                                                                                                                                                                                                                                                               | 85.5                                                                                                                                                                                   | Strong                                                                                                                                                                                                                                                                                                                                                                                          | Photo 6E                                                                                                                                                                                                                                                                      | Valid test                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |  |
| GT02-R4                                                                                                                                                                                                                 | 4.60 - 4.78                                                                                                                                                                                                                                                                                                                               | 52.2                                                                                                                                                                                   | Strong                                                                                                                                                                                                                                                                                                                                                                                          | Photo 7E                                                                                                                                                                                                                                                                      | Valid test                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |  |
| GT09-R1                                                                                                                                                                                                                 | 16.45 - 16.62                                                                                                                                                                                                                                                                                                                             | 30.3                                                                                                                                                                                   | Medium Strong                                                                                                                                                                                                                                                                                                                                                                                   | Photo 8E                                                                                                                                                                                                                                                                      | Valid test                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |  |
| GT09-R2                                                                                                                                                                                                                 | 17.00 - 17.19                                                                                                                                                                                                                                                                                                                             | 33.4                                                                                                                                                                                   | Medium Strong                                                                                                                                                                                                                                                                                                                                                                                   | Photo 9E                                                                                                                                                                                                                                                                      | Valid test                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |  |
| GT09-R3                                                                                                                                                                                                                 | 18.14 - 18.44                                                                                                                                                                                                                                                                                                                             | 13.2                                                                                                                                                                                   | Weak                                                                                                                                                                                                                                                                                                                                                                                            | Photo 10E<br>Photo 11E                                                                                                                                                                                                                                                        | Valid test                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |  |
| GT11-R1<br>GT11-R2                                                                                                                                                                                                      | 3.73 - 3.80<br>4.95 - 5.10                                                                                                                                                                                                                                                                                                                | 133.5<br>95.1                                                                                                                                                                          | Very Strong<br>Strong                                                                                                                                                                                                                                                                                                                                                                           | Photo 11E                                                                                                                                                                                                                                                                     | Valid test Invalid test                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |  |
| GT11-R2<br>GT12-R1                                                                                                                                                                                                      | 1.70 - 1.77                                                                                                                                                                                                                                                                                                                               | 45.3                                                                                                                                                                                   | Medium Strong                                                                                                                                                                                                                                                                                                                                                                                   | Photo 13E                                                                                                                                                                                                                                                                     | Invalid test                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |  |
| GT12-R1                                                                                                                                                                                                                 | 2.20 - 2.30                                                                                                                                                                                                                                                                                                                               | 108.7                                                                                                                                                                                  | Very Strong                                                                                                                                                                                                                                                                                                                                                                                     | -                                                                                                                                                                                                                                                                             | Valid test                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |  |
| GT12-R3                                                                                                                                                                                                                 | 3.20 - 3.30                                                                                                                                                                                                                                                                                                                               | 77.7                                                                                                                                                                                   | Strong                                                                                                                                                                                                                                                                                                                                                                                          | Photo 14E                                                                                                                                                                                                                                                                     | Valid test                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |  |
| GT12-R4                                                                                                                                                                                                                 | 5.40 - 5.60                                                                                                                                                                                                                                                                                                                               | 88.6                                                                                                                                                                                   | Strong                                                                                                                                                                                                                                                                                                                                                                                          | Photo 15E                                                                                                                                                                                                                                                                     | Invalid test; Fracture occurred along joint                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |  |
| GT12-R4 (Redo)                                                                                                                                                                                                          | 5.40 - 5.60                                                                                                                                                                                                                                                                                                                               | 110.5                                                                                                                                                                                  | Very Strong                                                                                                                                                                                                                                                                                                                                                                                     | Photo 16E                                                                                                                                                                                                                                                                     | Valid test; Redo of previous test                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |  |
| GT13-R3                                                                                                                                                                                                                 | 8.00 - 8.20                                                                                                                                                                                                                                                                                                                               | 220.0                                                                                                                                                                                  | Very Strong                                                                                                                                                                                                                                                                                                                                                                                     | Photo 17E                                                                                                                                                                                                                                                                     | Valid test                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |  |
| GT13-R5                                                                                                                                                                                                                 | 9.60 - 9.70                                                                                                                                                                                                                                                                                                                               | 78.4                                                                                                                                                                                   | Strong                                                                                                                                                                                                                                                                                                                                                                                          | Photo 18E                                                                                                                                                                                                                                                                     | Valid test                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |  |
| GT14-R1                                                                                                                                                                                                                 | 2.90 - 3.00                                                                                                                                                                                                                                                                                                                               | -                                                                                                                                                                                      | -                                                                                                                                                                                                                                                                                                                                                                                               | -                                                                                                                                                                                                                                                                             | Not tested as it was determined to be a cobble sample                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |  |
| GT14-R2                                                                                                                                                                                                                 | 3.88 - 3.96                                                                                                                                                                                                                                                                                                                               | 54.5                                                                                                                                                                                   | Strong                                                                                                                                                                                                                                                                                                                                                                                          | Photo 19E                                                                                                                                                                                                                                                                     | Valid test                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |  |
| GT14-R3                                                                                                                                                                                                                 | 5.30 - 5.40                                                                                                                                                                                                                                                                                                                               | 2.7                                                                                                                                                                                    | Very Weak                                                                                                                                                                                                                                                                                                                                                                                       | Photo 20E                                                                                                                                                                                                                                                                     | Valid test; very weathered                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |  |
| GT14-R4                                                                                                                                                                                                                 | 6.72 - 6.85                                                                                                                                                                                                                                                                                                                               | 76.9                                                                                                                                                                                   | Strong                                                                                                                                                                                                                                                                                                                                                                                          | Photo 21E                                                                                                                                                                                                                                                                     | Invalid test                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |  |
| GT14-R5                                                                                                                                                                                                                 | 7.53 - 7.72                                                                                                                                                                                                                                                                                                                               | 83.2                                                                                                                                                                                   | Strong                                                                                                                                                                                                                                                                                                                                                                                          | Photo 22E                                                                                                                                                                                                                                                                     | Valid test                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |  |
| GT14-R6                                                                                                                                                                                                                 | 8.46 - 8.60                                                                                                                                                                                                                                                                                                                               | 82.7                                                                                                                                                                                   | Strong                                                                                                                                                                                                                                                                                                                                                                                          | Photo 23E                                                                                                                                                                                                                                                                     | Valid test                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |  |
| GT14-R7                                                                                                                                                                                                                 | 10.82 - 10.92                                                                                                                                                                                                                                                                                                                             | 240.3                                                                                                                                                                                  | Very Strong                                                                                                                                                                                                                                                                                                                                                                                     | Photo 24E                                                                                                                                                                                                                                                                     | Valid test                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |  |
| GT14-R8<br>GT14-R9                                                                                                                                                                                                      | 13.15 - 13.24<br>15.50 - 15.65                                                                                                                                                                                                                                                                                                            | 207.9<br>121.4                                                                                                                                                                         | Very Strong                                                                                                                                                                                                                                                                                                                                                                                     | Photo 25E                                                                                                                                                                                                                                                                     | Valid test                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |  |
| GT14-R9<br>GT14-R10                                                                                                                                                                                                     | 17.70 - 17.90                                                                                                                                                                                                                                                                                                                             | 12.7                                                                                                                                                                                   | Very Strong<br>Weak                                                                                                                                                                                                                                                                                                                                                                             | Photo 26E<br>Photo 27E                                                                                                                                                                                                                                                        | Valid test<br>Valid test                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |  |
| GT14-R10<br>GT14-R11                                                                                                                                                                                                    | 20.30 - 20.40                                                                                                                                                                                                                                                                                                                             | 335.8                                                                                                                                                                                  | Extremely strong                                                                                                                                                                                                                                                                                                                                                                                | Photo 28E                                                                                                                                                                                                                                                                     | Valid test  Valid test                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |  |
| GT15-R1                                                                                                                                                                                                                 | 5.33 - 5.46                                                                                                                                                                                                                                                                                                                               | 92.4                                                                                                                                                                                   | Strong                                                                                                                                                                                                                                                                                                                                                                                          | Photo 29E                                                                                                                                                                                                                                                                     | Valid test: Boulder sample                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |  |
| GT15-R2                                                                                                                                                                                                                 | 6.80 - 6.95                                                                                                                                                                                                                                                                                                                               | 55.2                                                                                                                                                                                   | Strong                                                                                                                                                                                                                                                                                                                                                                                          | Photo 30E                                                                                                                                                                                                                                                                     | Valid test                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |  |
| GT15-R3                                                                                                                                                                                                                 | 7.32 - 7.45                                                                                                                                                                                                                                                                                                                               | 38.4                                                                                                                                                                                   | Medium Strong                                                                                                                                                                                                                                                                                                                                                                                   | Photo 31E                                                                                                                                                                                                                                                                     | Invalid test; Fracture did not cross both conical platens                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |  |
| GT15-R4                                                                                                                                                                                                                 | 7.65 - 7.70                                                                                                                                                                                                                                                                                                                               | -                                                                                                                                                                                      | -                                                                                                                                                                                                                                                                                                                                                                                               | Photo 32E                                                                                                                                                                                                                                                                     | Invalid test; Fracture occurred while setting up plate load test (very weak)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |  |
| GT15-R5                                                                                                                                                                                                                 | 9.55 - 9.68                                                                                                                                                                                                                                                                                                                               | 65.4                                                                                                                                                                                   | Strong                                                                                                                                                                                                                                                                                                                                                                                          | Photo 33E                                                                                                                                                                                                                                                                     | Valid test                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |  |
| GT16-R1                                                                                                                                                                                                                 | 4.34 - 4.48                                                                                                                                                                                                                                                                                                                               | 8.8                                                                                                                                                                                    | Weak                                                                                                                                                                                                                                                                                                                                                                                            | Photo 34E                                                                                                                                                                                                                                                                     | Valid test                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |  |
| GT16-R2                                                                                                                                                                                                                 | 5.07 - 5.22                                                                                                                                                                                                                                                                                                                               | 14.8                                                                                                                                                                                   | Weak                                                                                                                                                                                                                                                                                                                                                                                            | Photo 35E                                                                                                                                                                                                                                                                     | Valid test                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |  |
| GT17-R1                                                                                                                                                                                                                 | 2.72 - 2.88                                                                                                                                                                                                                                                                                                                               | 19.4                                                                                                                                                                                   | Weak                                                                                                                                                                                                                                                                                                                                                                                            | Photo 36E                                                                                                                                                                                                                                                                     | Invalid test; Through existing fracture                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |  |
| GT17-R2                                                                                                                                                                                                                 | 3.50 - 3.68                                                                                                                                                                                                                                                                                                                               | 47.9                                                                                                                                                                                   | Medium Strong                                                                                                                                                                                                                                                                                                                                                                                   | Photo 37E                                                                                                                                                                                                                                                                     | Valid test                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |  |
| GT17-R3<br>GT18-R1                                                                                                                                                                                                      | 4.28 - 4.39<br>6.43 - 6.58                                                                                                                                                                                                                                                                                                                | 13.4<br>109.5                                                                                                                                                                          | Weak<br>Very Strong                                                                                                                                                                                                                                                                                                                                                                             | Photo 38E<br>Photo 39E                                                                                                                                                                                                                                                        | Valid test<br>Valid test                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |  |
| GT19-R1                                                                                                                                                                                                                 | 3.50 - 3.71                                                                                                                                                                                                                                                                                                                               | 79.2                                                                                                                                                                                   | Strong                                                                                                                                                                                                                                                                                                                                                                                          | Photo 40E                                                                                                                                                                                                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |  |
| GT19-R1                                                                                                                                                                                                                 | 4.25 - 4.39                                                                                                                                                                                                                                                                                                                               | 140.0                                                                                                                                                                                  |                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |  |
| GT19-R3                                                                                                                                                                                                                 |                                                                                                                                                                                                                                                                                                                                           |                                                                                                                                                                                        |                                                                                                                                                                                                                                                                                                                                                                                                 | Photo /11F                                                                                                                                                                                                                                                                    | Valid test                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |  |
|                                                                                                                                                                                                                         | 5 00 - 5 25                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                        | Very Strong                                                                                                                                                                                                                                                                                                                                                                                     | Photo 41E                                                                                                                                                                                                                                                                     | Valid test                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |  |
|                                                                                                                                                                                                                         | 5.00 - 5.25<br>4.00 - 4.11                                                                                                                                                                                                                                                                                                                | 212.5                                                                                                                                                                                  | Very Strong                                                                                                                                                                                                                                                                                                                                                                                     | Photo 42E                                                                                                                                                                                                                                                                     | Valid test<br>Valid test                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |  |
| GT20-R1                                                                                                                                                                                                                 | 4.00 - 4.11                                                                                                                                                                                                                                                                                                                               | 212.5<br>224.8                                                                                                                                                                         | Very Strong<br>Very Strong                                                                                                                                                                                                                                                                                                                                                                      | Photo 42E<br>Photo 43E                                                                                                                                                                                                                                                        | Valid test<br>Valid test<br>Valid test                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |  |
|                                                                                                                                                                                                                         |                                                                                                                                                                                                                                                                                                                                           | 212.5                                                                                                                                                                                  | Very Strong                                                                                                                                                                                                                                                                                                                                                                                     | Photo 42E                                                                                                                                                                                                                                                                     | Valid test<br>Valid test                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |  |
| GT20-R1<br>GT20-R2                                                                                                                                                                                                      | 4.00 - 4.11<br>5.64 - 5.77                                                                                                                                                                                                                                                                                                                | 212.5<br>224.8<br>172.9                                                                                                                                                                | Very Strong Very Strong Very Strong                                                                                                                                                                                                                                                                                                                                                             | Photo 42E<br>Photo 43E<br>Photo 44E                                                                                                                                                                                                                                           | Valid test<br>Valid test<br>Valid test<br>Valid test                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |  |
| GT20-R1<br>GT20-R2<br>GT20-R3                                                                                                                                                                                           | 4.00 - 4.11<br>5.64 - 5.77<br>6.09 - 6.20<br>17.14 - 17.33<br>4.41 - 4.57                                                                                                                                                                                                                                                                 | 212.5<br>224.8<br>172.9<br>95.5                                                                                                                                                        | Very Strong Very Strong Very Strong Strong                                                                                                                                                                                                                                                                                                                                                      | Photo 42E Photo 43E Photo 44E Photo 45E Photo 46E Photo 47E                                                                                                                                                                                                                   | Valid test<br>Valid test<br>Valid test<br>Valid test<br>Valid test                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |  |
| GT20-R1<br>GT20-R2<br>GT20-R3<br>GT43-R1<br>GT44-R1<br>GT45-R1                                                                                                                                                          | 4.00 - 4.11<br>5.64 - 5.77<br>6.09 - 6.20<br>17.14 - 17.33<br>4.41 - 4.57<br>16.17 - 16.29                                                                                                                                                                                                                                                | 212.5<br>224.8<br>172.9<br>95.5<br>35.7<br>36.4<br>15.5                                                                                                                                | Very Strong Very Strong Very Strong Strong Medium Strong Medium Strong Weak                                                                                                                                                                                                                                                                                                                     | Photo 42E Photo 43E Photo 44E Photo 45E Photo 46E Photo 47E Photo 48E                                                                                                                                                                                                         | Valid test                                                                                                                                                                                                                                                                                                                                                                                                                                                         |  |
| GT20-R1<br>GT20-R2<br>GT20-R3<br>GT43-R1<br>GT44-R1<br>GT45-R1<br>GT45-R2                                                                                                                                               | 4.00 - 4.11<br>5.64 - 5.77<br>6.09 - 6.20<br>17.14 - 17.33<br>4.41 - 4.57<br>16.17 - 16.29<br>17.18 - 17.35                                                                                                                                                                                                                               | 212.5<br>224.8<br>172.9<br>95.5<br>35.7<br>36.4<br>15.5<br>11.3                                                                                                                        | Very Strong Very Strong Very Strong Strong Medium Strong Medium Strong Weak Weak                                                                                                                                                                                                                                                                                                                | Photo 42E Photo 43E Photo 44E Photo 45E Photo 46E Photo 47E Photo 48E Photo 49E                                                                                                                                                                                               | Valid test                                                                                                                                                                                                                                                                                                                                                                                                                                   |  |
| GT20-R1<br>GT20-R2<br>GT20-R3<br>GT43-R1<br>GT44-R1<br>GT45-R1<br>GT45-R2<br>GT45-R3                                                                                                                                    | 4.00 - 4.11<br>5.64 - 5.77<br>6.09 - 6.20<br>17.14 - 17.33<br>4.41 - 4.57<br>16.17 - 16.29<br>17.18 - 17.35<br>19.83 - 20.00                                                                                                                                                                                                              | 212.5<br>224.8<br>172.9<br>95.5<br>35.7<br>36.4<br>15.5<br>11.3                                                                                                                        | Very Strong Very Strong Very Strong Strong Medium Strong Medium Strong Weak Weak Weak                                                                                                                                                                                                                                                                                                           | Photo 42E<br>Photo 43E<br>Photo 44E<br>Photo 45E<br>Photo 46E<br>Photo 47E<br>Photo 48E<br>Photo 49E<br>Photo 50E                                                                                                                                                             | Valid test                                                                                                                                                                                                                                                                                                                                                                                       |  |
| GT20-R1<br>GT20-R2<br>GT20-R3<br>GT43-R1<br>GT44-R1<br>GT45-R1<br>GT45-R2<br>GT45-R3<br>GT46-R1                                                                                                                         | 4.00 - 4.11<br>5.64 - 5.77<br>6.09 - 6.20<br>17.14 - 17.33<br>4.41 - 4.57<br>16.17 - 16.29<br>17.18 - 17.35<br>19.83 - 20.00<br>9.00 - 9.15                                                                                                                                                                                               | 212.5<br>224.8<br>172.9<br>95.5<br>35.7<br>36.4<br>15.5<br>11.3<br>11.7<br>60.4                                                                                                        | Very Strong Very Strong Very Strong Strong Medium Strong Medium Strong Weak Weak Weak Strong                                                                                                                                                                                                                                                                                                    | Photo 42E<br>Photo 43E<br>Photo 44E<br>Photo 45E<br>Photo 46E<br>Photo 47E<br>Photo 48E<br>Photo 49E<br>Photo 50E<br>Photo 51E                                                                                                                                                | Valid test                                                                                                                                                                                                                                                                                                                                                                 |  |
| GT20-R1<br>GT20-R2<br>GT20-R3<br>GT43-R1<br>GT44-R1<br>GT45-R1<br>GT45-R2<br>GT45-R3<br>GT46-R1<br>GT46-R2                                                                                                              | 4.00 - 4.11<br>5.64 - 5.77<br>6.09 - 6.20<br>17.14 - 17.33<br>4.41 - 4.57<br>16.17 - 16.29<br>17.18 - 17.35<br>19.83 - 20.00<br>9.00 - 9.15<br>9.43 - 9.58                                                                                                                                                                                | 212.5<br>224.8<br>172.9<br>95.5<br>35.7<br>36.4<br>15.5<br>11.3<br>11.7<br>60.4<br>27.6                                                                                                | Very Strong Very Strong Strong Medium Strong Medium Strong Weak Weak Weak Strong Medium Strong                                                                                                                                                                                                                                                                                                  | Photo 42E Photo 43E Photo 44E Photo 45E Photo 46E Photo 47E Photo 48E Photo 49E Photo 50E Photo 51E Photo 52E                                                                                                                                                                 | Valid test                                                                                                                                                                                                                                                                                                          |  |
| GT20-R1<br>GT20-R2<br>GT20-R3<br>GT43-R1<br>GT44-R1<br>GT45-R1<br>GT45-R2<br>GT45-R3<br>GT46-R1<br>GT46-R2<br>GT46-R3                                                                                                   | 4.00 - 4.11<br>5.64 - 5.77<br>6.09 - 6.20<br>17.14 - 17.33<br>4.41 - 4.57<br>16.17 - 16.29<br>17.18 - 17.35<br>19.83 - 20.00<br>9.00 - 9.15<br>9.43 - 9.58<br>10.90 - 11.00                                                                                                                                                               | 212.5<br>224.8<br>172.9<br>95.5<br>35.7<br>36.4<br>15.5<br>11.3<br>11.7<br>60.4<br>27.6<br>114.5                                                                                       | Very Strong Very Strong Very Strong Strong Medium Strong Medium Strong Weak Weak Weak Strong Medium Strong                                                                                                                                                                                                                                                                                      | Photo 42E Photo 43E Photo 44E Photo 45E Photo 46E Photo 47E Photo 48E Photo 48E Photo 50E Photo 51E Photo 52E Photo 53E                                                                                                                                                       | Valid test                                                                                                                                                                                                                                                                                                          |  |
| GT20-R1<br>GT20-R2<br>GT20-R3<br>GT43-R1<br>GT44-R1<br>GT45-R1<br>GT45-R2<br>GT45-R3<br>GT46-R1<br>GT46-R2<br>GT46-R3<br>GT47-R1                                                                                        | 4.00 - 4.11<br>5.64 - 5.77<br>6.09 - 6.20<br>17.14 - 17.33<br>4.41 - 4.57<br>16.17 - 16.29<br>17.18 - 17.35<br>19.83 - 20.00<br>9.00 - 9.15<br>9.43 - 9.58<br>10.90 - 11.00<br>14.50 - 14.60                                                                                                                                              | 212.5<br>224.8<br>172.9<br>95.5<br>35.7<br>36.4<br>15.5<br>11.3<br>11.7<br>60.4<br>27.6<br>114.5<br>31.6                                                                               | Very Strong Very Strong Very Strong Strong Medium Strong Medium Strong Weak Weak Weak Strong Medium Strong Medium Strong                                                                                                                                                                                                                                                                        | Photo 42E Photo 43E Photo 44E Photo 45E Photo 46E Photo 47E Photo 48E Photo 49E Photo 50E Photo 51E Photo 52E Photo 53E Photo 54E                                                                                                                                             | Valid test                                                                                                                                                                                                                                                                         |  |
| GT20-R1 GT20-R2 GT20-R3 GT43-R1 GT44-R1 GT45-R1 GT45-R2 GT45-R3 GT46-R1 GT46-R2 GT46-R3 GT47-R1 GT47-R2                                                                                                                 | 4.00 - 4.11<br>5.64 - 5.77<br>6.09 - 6.20<br>17.14 - 17.33<br>4.41 - 4.57<br>16.17 - 16.29<br>17.18 - 17.35<br>19.83 - 20.00<br>9.00 - 9.15<br>9.43 - 9.58<br>10.90 - 11.00<br>14.50 - 14.60<br>15.38 - 15.46                                                                                                                             | 212.5<br>224.8<br>172.9<br>95.5<br>35.7<br>36.4<br>15.5<br>11.3<br>11.7<br>60.4<br>27.6<br>114.5<br>31.6<br>117.4                                                                      | Very Strong Very Strong Very Strong Strong Medium Strong Medium Strong Weak Weak Weak Strong Medium Strong Weak Very Strong Medium Strong Very Strong Very Strong Very Strong                                                                                                                                                                                                                   | Photo 42E Photo 43E Photo 44E Photo 45E Photo 46E Photo 47E Photo 48E Photo 49E Photo 50E Photo 51E Photo 52E Photo 53E Photo 54E Photo 55E                                                                                                                                   | Valid test                                                                                                                                                                                                                                                   |  |
| GT20-R1 GT20-R2 GT20-R3 GT43-R1 GT44-R1 GT45-R1 GT45-R2 GT45-R3 GT46-R1 GT46-R2 GT46-R3 GT47-R1 GT47-R2 GT47-R3                                                                                                         | 4.00 - 4.11<br>5.64 - 5.77<br>6.09 - 6.20<br>17.14 - 17.33<br>4.41 - 4.57<br>16.17 - 16.29<br>17.18 - 17.35<br>19.83 - 20.00<br>9.00 - 9.15<br>9.43 - 9.58<br>10.90 - 11.00<br>14.50 - 14.60<br>15.38 - 15.46<br>16.60 - 16.71                                                                                                            | 212.5<br>224.8<br>172.9<br>95.5<br>35.7<br>36.4<br>15.5<br>11.3<br>11.7<br>60.4<br>27.6<br>114.5<br>31.6<br>117.4<br>25.1                                                              | Very Strong Very Strong Very Strong Strong Medium Strong Medium Strong Weak Weak Strong Medium Strong Medium Strong Medium Strong Very Strong Very Strong Medium Strong Very Strong Medium Strong                                                                                                                                                                                               | Photo 42E Photo 43E Photo 44E Photo 45E Photo 46E Photo 47E Photo 48E Photo 49E Photo 50E Photo 51E Photo 53E Photo 53E Photo 54E Photo 55E Photo 55E Photo 55E Photo 55E                                                                                                     | Valid test                                                                                                                                                                                                                  |  |
| GT20-R1 GT20-R2 GT20-R3 GT43-R1 GT44-R1 GT45-R1 GT45-R2 GT46-R1 GT46-R2 GT46-R3 GT47-R1 GT47-R2 GT47-R3 GT47-R4                                                                                                         | 4.00 - 4.11<br>5.64 - 5.77<br>6.09 - 6.20<br>17.14 - 17.33<br>4.41 - 4.57<br>16.17 - 16.29<br>17.18 - 17.35<br>19.83 - 20.00<br>9.00 - 9.15<br>9.43 - 9.58<br>10.90 - 11.00<br>14.50 - 14.60<br>15.38 - 15.46<br>16.60 - 16.71<br>17.82 - 17.95                                                                                           | 212.5<br>224.8<br>172.9<br>95.5<br>35.7<br>36.4<br>15.5<br>11.3<br>11.7<br>60.4<br>27.6<br>114.5<br>31.6<br>117.4<br>25.1<br>75.6                                                      | Very Strong Very Strong Very Strong Strong Medium Strong Medium Strong Weak Weak Weak Strong Medium Strong Wedium Strong Medium Strong Very Strong Medium Strong Very Strong Medium Strong Strong Strong                                                                                                                                                                                        | Photo 42E Photo 43E Photo 44E Photo 45E Photo 46E Photo 48E Photo 49E Photo 50E Photo 51E Photo 52E Photo 53E Photo 54E Photo 55E Photo 55E Photo 56E Photo 56E Photo 57E                                                                                                     | Valid test                                                                                                                                                                                 |  |
| GT20-R1 GT20-R2 GT20-R3 GT43-R1 GT44-R1 GT45-R1 GT45-R2 GT46-R1 GT46-R2 GT46-R3 GT47-R1 GT47-R2 GT47-R3 GT47-R4 GT47-R4                                                                                                 | 4.00 - 4.11<br>5.64 - 5.77<br>6.09 - 6.20<br>17.14 - 17.33<br>4.41 - 4.57<br>16.17 - 16.29<br>17.18 - 17.35<br>19.83 - 20.00<br>9.00 - 9.15<br>9.43 - 9.58<br>10.90 - 11.00<br>14.50 - 14.60<br>15.38 - 15.46<br>16.60 - 16.71<br>17.82 - 17.95<br>4.85 - 5.03                                                                            | 212.5<br>224.8<br>172.9<br>95.5<br>35.7<br>36.4<br>15.5<br>11.3<br>11.7<br>60.4<br>27.6<br>114.5<br>31.6<br>117.4<br>25.1<br>75.6<br>264.1                                             | Very Strong Very Strong Very Strong Strong Medium Strong Medium Strong Weak Weak Strong Medium Strong Medium Strong Medium Strong Very Strong Medium Strong Very Strong Medium Strong Very Strong Medium Strong Strong Strong Extremely strong                                                                                                                                                  | Photo 42E Photo 43E Photo 44E Photo 46E Photo 46E Photo 48E Photo 49E Photo 50E Photo 51E Photo 52E Photo 54E Photo 54E Photo 54E Photo 55E Photo 56E Photo 56E Photo 57E Photo 58E                                                                                           | Valid test                                                                                                                                                           |  |
| GT20-R1 GT20-R2 GT20-R3 GT43-R1 GT44-R1 GT45-R1 GT45-R2 GT46-R1 GT46-R2 GT46-R3 GT47-R1 GT47-R2 GT47-R3 GT47-R4 GT48-R1 GT48-R1                                                                                         | 4.00 - 4.11<br>5.64 - 5.77<br>6.09 - 6.20<br>17.14 - 17.33<br>4.41 - 4.57<br>16.17 - 16.29<br>17.18 - 17.35<br>19.83 - 20.00<br>9.00 - 9.15<br>9.43 - 9.58<br>10.90 - 11.00<br>14.50 - 14.60<br>15.38 - 15.46<br>16.60 - 16.71<br>17.82 - 17.95<br>4.85 - 5.03<br>6.35 - 6.45                                                             | 212.5<br>224.8<br>172.9<br>95.5<br>35.7<br>36.4<br>15.5<br>11.3<br>11.7<br>60.4<br>27.6<br>114.5<br>31.6<br>117.4<br>25.1<br>75.6<br>264.1<br>143.8                                    | Very Strong Very Strong Very Strong Strong Strong Medium Strong Medium Strong Weak Weak Weak Strong Medium Strong Medium Strong Very Strong Medium Strong Very Strong Medium Strong Very Strong Strong Extremely strong Very Strong                                                                                                                                                             | Photo 42E Photo 43E Photo 44E Photo 45E Photo 46E Photo 47E Photo 48E Photo 50E Photo 51E Photo 52E Photo 53E Photo 55E Photo 55E Photo 56E Photo 57E Photo 58E Photo 59E                                                                                                     | Valid test                                                                                                                                                |  |
| GT20-R1 GT20-R2 GT20-R3 GT43-R1 GT44-R1 GT45-R1 GT45-R2 GT45-R3 GT46-R2 GT46-R2 GT46-R3 GT47-R1 GT47-R2 GT47-R3 GT47-R4 GT48-R1 GT48-R1                                                                                 | 4.00 - 4.11<br>5.64 - 5.77<br>6.09 - 6.20<br>17.14 - 17.33<br>4.41 - 4.57<br>16.17 - 16.29<br>17.18 - 17.35<br>19.83 - 20.00<br>9.00 - 9.15<br>9.43 - 9.58<br>10.90 - 11.00<br>14.50 - 14.60<br>15.38 - 15.46<br>16.60 - 16.71<br>17.82 - 17.95<br>4.85 - 5.03<br>6.35 - 6.45<br>6.68 - 6.82                                              | 212.5<br>224.8<br>172.9<br>95.5<br>35.7<br>36.4<br>15.5<br>11.3<br>11.7<br>60.4<br>27.6<br>114.5<br>31.6<br>117.4<br>25.1<br>75.6<br>264.1<br>143.8<br>171.8                           | Very Strong Very Strong Very Strong Strong Strong Medium Strong Medium Strong Weak Weak Weak Strong Medium Strong Medium Strong Very Strong Medium Strong Very Strong Medium Strong Strong Strong Extremely strong Very Strong Very Strong                                                                                                                                                      | Photo 42E Photo 43E Photo 44E Photo 45E Photo 46E Photo 47E Photo 48E Photo 50E Photo 51E Photo 53E Photo 53E Photo 55E Photo 56E Photo 56E Photo 57E Photo 58E Photo 59E Photo 59E Photo 59E Photo 59E Photo 60E                                                             | Valid test                                                                                                                          |  |
| GT20-R1 GT20-R2 GT20-R3 GT43-R1 GT44-R1 GT45-R1 GT45-R2 GT46-R3 GT46-R3 GT47-R1 GT47-R2 GT47-R3 GT47-R4 GT48-R1 GT48-R1                                                                                                 | 4.00 - 4.11<br>5.64 - 5.77<br>6.09 - 6.20<br>17.14 - 17.33<br>4.41 - 4.57<br>16.17 - 16.29<br>17.18 - 17.35<br>19.83 - 20.00<br>9.00 - 9.15<br>9.43 - 9.58<br>10.90 - 11.00<br>14.50 - 14.60<br>15.38 - 15.46<br>16.60 - 16.71<br>17.82 - 17.95<br>4.85 - 5.03<br>6.35 - 6.45                                                             | 212.5<br>224.8<br>172.9<br>95.5<br>35.7<br>36.4<br>15.5<br>11.3<br>11.7<br>60.4<br>27.6<br>114.5<br>31.6<br>117.4<br>25.1<br>75.6<br>264.1<br>143.8                                    | Very Strong Very Strong Very Strong Strong Strong Medium Strong Medium Strong Weak Weak Weak Strong Medium Strong Medium Strong Very Strong Medium Strong Very Strong Medium Strong Very Strong Strong Extremely strong Very Strong                                                                                                                                                             | Photo 42E Photo 43E Photo 44E Photo 45E Photo 46E Photo 47E Photo 48E Photo 50E Photo 51E Photo 52E Photo 53E Photo 55E Photo 55E Photo 56E Photo 57E Photo 58E Photo 59E                                                                                                     | Valid test                                                                                                                                                |  |
| GT20-R1 GT20-R2 GT20-R3 GT43-R1 GT44-R1 GT45-R1 GT45-R2 GT45-R3 GT46-R2 GT46-R2 GT46-R3 GT47-R1 GT47-R2 GT47-R3 GT47-R4 GT48-R1 GT48-R1 GT48-R1 GT48-R2 GT48-R3 GT48-R1                                                 | 4.00 - 4.11<br>5.64 - 5.77<br>6.09 - 6.20<br>17.14 - 17.33<br>4.41 - 4.57<br>16.17 - 16.29<br>17.18 - 17.35<br>19.83 - 20.00<br>9.00 - 9.15<br>9.43 - 9.58<br>10.90 - 11.00<br>14.50 - 14.60<br>15.38 - 15.46<br>16.60 - 16.71<br>17.82 - 17.95<br>4.85 - 5.03<br>6.35 - 6.45<br>6.68 - 6.82<br>7.87 - 8.00                               | 212.5<br>224.8<br>172.9<br>95.5<br>35.7<br>36.4<br>15.5<br>11.3<br>11.7<br>60.4<br>27.6<br>114.5<br>31.6<br>117.4<br>25.1<br>75.6<br>264.1<br>143.8<br>171.8<br>239.5                  | Very Strong Very Strong Very Strong Strong Medium Strong Medium Strong Weak Weak Weak Strong Medium Strong Wedium Strong Very Strong Medium Strong Very Strong Medium Strong Very Strong Strong Extremely strong Very Strong                                                                    | Photo 42E Photo 43E Photo 44E Photo 45E Photo 46E Photo 47E Photo 48E Photo 50E Photo 50E Photo 53E Photo 53E Photo 55E Photo 56E Photo 57E Photo 57E Photo 58E Photo 59E Photo 59E Photo 59E Photo 60E Photo 60E Photo 60E                                                   | Valid test                                                                                         |  |
| GT20-R1 GT20-R2 GT20-R3 GT43-R1 GT44-R1 GT45-R1 GT45-R2 GT45-R3 GT46-R1 GT46-R2 GT46-R3 GT47-R1 GT47-R2 GT47-R3 GT47-R4 GT48-R1 GT48-R2 GT48-R3 GT47-R4 GT48-R5 GT48-R3 GT48-R3                                         | 4.00 - 4.11<br>5.64 - 5.77<br>6.09 - 6.20<br>17.14 - 17.33<br>4.41 - 4.57<br>16.17 - 16.29<br>17.18 - 17.35<br>19.83 - 20.00<br>9.00 - 9.15<br>9.43 - 9.58<br>10.90 - 11.00<br>14.50 - 14.60<br>15.38 - 15.46<br>16.60 - 16.71<br>17.82 - 17.95<br>4.85 - 5.03<br>6.35 - 6.45<br>6.68 - 6.82<br>7.87 - 8.00<br>8.52 - 8.57                | 212.5<br>224.8<br>172.9<br>95.5<br>35.7<br>36.4<br>15.5<br>11.3<br>11.7<br>60.4<br>27.6<br>114.5<br>31.6<br>117.4<br>25.1<br>75.6<br>264.1<br>143.8<br>171.8<br>239.5<br>197.7         | Very Strong Very Strong Very Strong Strong Medium Strong Medium Strong Weak Weak Weak Strong Medium Strong Medium Strong Medium Strong Very Strong Medium Strong Very Strong Strong Extremely strong Very Strong                    | Photo 42E Photo 43E Photo 44E Photo 45E Photo 46E Photo 47E Photo 48E Photo 49E Photo 50E Photo 51E Photo 53E Photo 53E Photo 55E Photo 56E Photo 57E Photo 57E Photo 58E Photo 59E Photo 59E Photo 59E Photo 59E Photo 59E Photo 59E Photo 60E Photo 60E Photo 61E Photo 62E | Valid test                                                                   |  |
| GT20-R1 GT20-R2 GT20-R3 GT43-R1 GT44-R1 GT45-R1 GT45-R2 GT45-R3 GT46-R1 GT46-R2 GT46-R3 GT47-R1 GT47-R2 GT47-R3 GT47-R4 GT48-R1 GT48-R3 GT48-R1 GT48-R2 GT48-R3 GT48-R1 GT48-R2 GT48-R3 GT48-R3 GT48-R3 GT48-R3 GT48-R3 | 4.00 - 4.11<br>5.64 - 5.77<br>6.09 - 6.20<br>17.14 - 17.33<br>4.41 - 4.57<br>16.17 - 16.29<br>17.18 - 17.35<br>19.83 - 20.00<br>9.00 - 9.15<br>9.43 - 9.58<br>10.90 - 11.00<br>14.50 - 14.60<br>15.38 - 15.46<br>16.60 - 16.71<br>17.82 - 17.95<br>4.85 - 5.03<br>6.35 - 6.45<br>6.68 - 6.82<br>7.87 - 8.00<br>8.52 - 8.57<br>4.10 - 4.19 | 212.5<br>224.8<br>172.9<br>95.5<br>35.7<br>36.4<br>15.5<br>11.3<br>11.7<br>60.4<br>27.6<br>114.5<br>31.6<br>117.4<br>25.1<br>75.6<br>264.1<br>143.8<br>171.8<br>239.5<br>197.7<br>62.3 | Very Strong Very Strong Very Strong Strong Strong Medium Strong Medium Strong Weak Weak Weak Strong Medium Strong Medium Strong Medium Strong Very Strong Very Strong Medium Strong Very Strong Strong Extremely strong Very Strong | Photo 42E Photo 43E Photo 44E Photo 45E Photo 46E Photo 47E Photo 48E Photo 50E Photo 51E Photo 53E Photo 53E Photo 55E Photo 56E Photo 57E Photo 58E Photo 58E Photo 58E Photo 58E Photo 60E Photo 61E Photo 62E Photo 63E                                                   | Valid test |  |

Table D.1. Diametral Point Load Rock Strength Test Results

|                      | Rock Core Testing              |               |                           |                            |                                                                                                                     |
|----------------------|--------------------------------|---------------|---------------------------|----------------------------|---------------------------------------------------------------------------------------------------------------------|
| Sample No.           | Depth<br>(m)                   | UCS<br>(Mpa)  | Rock Strength             | t Load (Diamet<br>Photo ID | ral)  Comments                                                                                                      |
| GT50-R6              | 9.50 - 9.60                    | 14.4          | Weak                      | Photo 67E                  | Invalid test; Fracture did not cross both conical platens                                                           |
| GT51-R1              | 2.84 - 2.90                    | 115.6         | Very Strong               | Photo 68E                  | Valid test                                                                                                          |
| GT51-R2              | 3.00 - 3.12                    | 279.8         | Extremely strong          | Photo 69E                  | Valid test                                                                                                          |
| GT51-R3              | 3.80 - 3.90                    | -             | -                         | -                          | Sample was not located                                                                                              |
| GT51-R4              | 4.50 - 4.60                    | 35.7          | Medium Strong             | Photo 70E                  | Valid test                                                                                                          |
| GT51-R5              | 6.44 - 6.50                    | 102.4         | Very Strong               | Photo 71E                  | Valid test                                                                                                          |
| GT51-R6              | 7.15 - 7.30                    | 81.9          | Strong                    | Photo 72E                  | Valid test                                                                                                          |
| GT51-R7              | 10.80 - 11.00                  | 294.2         | Extremely strong          | Photo 73E                  | Valid test                                                                                                          |
| GT51-R8              | 11.90 - 12.00                  | 262.2         | Extremely strong          | Photo 74E                  | Valid test                                                                                                          |
| GT51-R9              | 13.13 - 13.25                  | 274.6         | Extremely strong          | Photo 75E                  | Valid test                                                                                                          |
| GT51-R10             | 14.77 - 14.83                  | -             | -<br>\/                   | Photo 76E                  | Invalid test; Fracture occurred while setting up plate load test (very weak)                                        |
| GT51-R11             | 16.85 - 17.00                  | 124.1         | Very Strong               | Photo 77E                  | Valid test                                                                                                          |
| GT51-R12<br>GT51-R13 | 17.68 - 17.80<br>19.85 - 20.00 | 122.2<br>37.6 | Very Strong Medium Strong | Photo 78E<br>Photo 79E     | Invalid test; Fracture did not cross both conical platens Invalid test; Fracture did not cross both conical platens |
| GT51-R13             | 20.57 - 20.70                  | 53.9          | Strong                    | Photo 80E                  | Invalid test, Fracture did not cross both conical platens                                                           |
| GT53-R1              | 6.50 - 6.61                    | 251.5         | Extremely strong          | Photo 81E                  | Valid test                                                                                                          |
| GT53-R1              | 7.50 - 7.64                    | 371.7         | Extremely strong          | Photo 82E                  | Invalid test; Broke along existing fracture                                                                         |
| GT53-R2<br>GT53-R3   | 8.86 - 8.97                    | 271.0         | Extremely strong          | Photo 83E                  | Valid test                                                                                                          |
| GT53-R4              | 9.62 - 9.88                    | 272.9         | Extremely strong          | Photo 84E                  | Valid test                                                                                                          |
| GT55-R1              | 8.00 - 8.21                    | 185.2         | Very Strong               | Photo 85E                  | Valid test                                                                                                          |
| GT55-R2              | 8.46 - 8.62                    | 312.6         | Extremely strong          | Photo 86E                  | Valid test                                                                                                          |
| GT57-R1              | 10.33 - 10.48                  | 173.4         | Very Strong               | Photo 87E                  | Valid test                                                                                                          |
| GT57-R2              | 11.49 - 11.66                  | 35.5          | Medium Strong             | Photo 88E                  | Valid test                                                                                                          |
| GT57-R3              | 13.01 - 13.14                  | 113.0         | Very Strong               | Photo 89E                  | Valid test                                                                                                          |
| GT58-R1              | 5.19 - 5.30                    | 28.2          | Medium Strong             | Photo 90E                  | Valid test                                                                                                          |
| GT58-R2              | 6.55 - 6.72                    | 77.3          | Strong                    | Photo 91E                  | Valid test                                                                                                          |
| GT58-R3              | 7.24 - 7.34                    | 77.7          | Strong                    | Photo 92E                  | Valid test                                                                                                          |
| GT59-R1              | 1.60 - 1.71                    | 20.3          | Weak                      | Photo 93E                  | Valid test                                                                                                          |
| GT59-R2              | 2.51 - 2.61                    | 61.4          | Strong                    | Photo 94E                  | Valid test                                                                                                          |
| GT59-R3              | 3.11 - 3.23                    | 18.6          | Weak                      | Photo 95E                  | Valid test; Weathering in joint                                                                                     |
| GT59-R4              | 4.73 - 4.81                    | 59.6          | Strong                    | Photo 96E                  | Valid test                                                                                                          |
| GT60-R1              | 5.47 - 5.60                    | 39.7          | Medium Strong             | Photo 97E                  | Valid test                                                                                                          |
| GT60-R2<br>GT60-R3   | 6.64 - 6.78<br>7.81 - 7.90     | 122.2         | Very Strong               | Photo 98E<br>Photo 99E     | Valid test                                                                                                          |
| GT61-R1              | 4.00 - 4.15                    | 76.1<br>61.9  | Strong<br>Strong          | Photo 100E                 | Valid test Valid test                                                                                               |
| GT61-R2              | 5.10 - 5.25                    | 43.9          | Medium Strong             | Photo 101E                 | Valid test                                                                                                          |
| GT61-R3              | 6.65 - 6.22                    | 70.2          | Strong                    | Photo 101E                 | Valid test                                                                                                          |
| GT61-R4              | 7.33 - 7.44                    | 99.0          | Strong                    | Photo 103E                 | Valid test                                                                                                          |
| GT62-R1              | 3.73 - 3.82                    | 73.6          | Strong                    | Photo 104E                 | Valid test                                                                                                          |
| GT62-R2              | 5.44 - 5.62                    | 57.9          | Strong                    | Photo 105E                 | Valid test                                                                                                          |
| GT62-R4              | 9.31 - 9.50                    | 103.0         | Very Strong               | Photo 106E                 | Valid test                                                                                                          |
| GT63-R1              | 4.52 - 4.66                    | 84.0          | Strong                    | Photo 107E                 | Valid test                                                                                                          |
| GT63-R2              | 7.41 - 7.66                    | 59.1          | Strong                    | -                          | Valid test                                                                                                          |
| GT63-R3              | 8.85 - 8.76                    | 115.1         | Very Strong               | Photo 108E                 | Valid test                                                                                                          |
| GT63-R4              | 9.31 - 9.50                    | -             | -                         | -                          | Sample was not located                                                                                              |
| GT63-R5              | 10.75 - 10.91                  | 117.2         | Very Strong               | Photo 109E                 | Valid test                                                                                                          |
| GT63-R6              | 12.20 - 12.34                  | 18.6          | Weak                      | Photo 110E                 | Invalid test                                                                                                        |
| GT63-R7              | 14.36 - 14.50                  | 23.6          | Weak                      | Photo 111E                 | Valid test                                                                                                          |
| GT63-R8              | 15.02 - 15.20                  | 32.2          | Medium Strong             | Photo 112E                 | Valid test                                                                                                          |
| GT63-R9              | 16.23 - 16.35                  | 27.4          | Medium Strong             | Photo 113E                 | Invalid test                                                                                                        |
| GT63-R10             | 17.37 - 17.50                  | 31.6          | Medium Strong             | Photo 114E                 | Valid test                                                                                                          |
| GT64-R1              | 4.06 - 4.33                    | 43.5          | Medium Strong             | Photo 115E                 | Valid test                                                                                                          |
| GT64-R2              | 5.53 - 5.73                    | 110.8         | Very Strong               | Photo 116E                 | Valid test                                                                                                          |
| GT64-R3              | 6.36 - 6.53                    | 62.1          | Strong                    | Photo 117E                 | Valid test                                                                                                          |
| GT65-R1<br>GT65-R2   | 6.26 - 6.41<br>6.85 - 6.95     | 52.5<br>65.2  | Strong<br>Strong          | Photo 118E<br>Photo 119E   | Valid test<br>Valid test                                                                                            |
| GT65-R2              | 8.70 - 8.83                    | 30.3          | Medium Strong             | Photo 120E                 | Valid test                                                                                                          |
| GT66-R1              | 7.70 - 7.83                    | 31.8          | Medium Strong             | Photo 121E                 | Valid test  Valid test                                                                                              |
|                      |                                |               |                           |                            |                                                                                                                     |

Ae - Surface area of platens

P - Load at failure

lsc - Size corrected point load strength

Isc= F\*Is

F - Size correction factor =(De/50)^0.45

UCS - Unconfined compressive strength

UCS ~ 23\*lsc

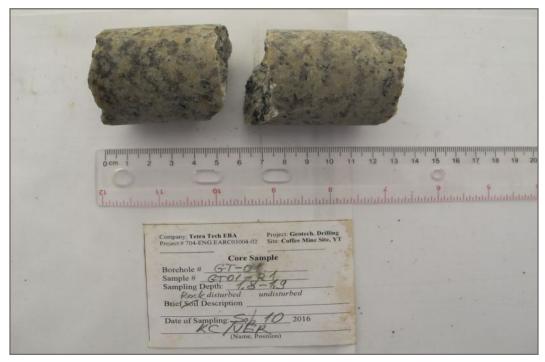



Photo 1E: Tested rock core sample GT01-R1; Depth: 1.80 - 1.90 m; Valid test

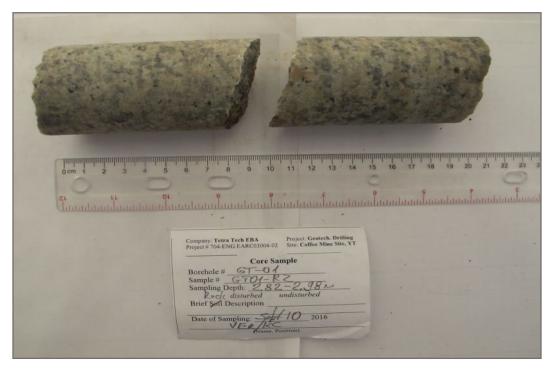



Photo 2E: Tested rock core sample GT01-R2; Depth: 2.82 - 2.98 m; Valid test

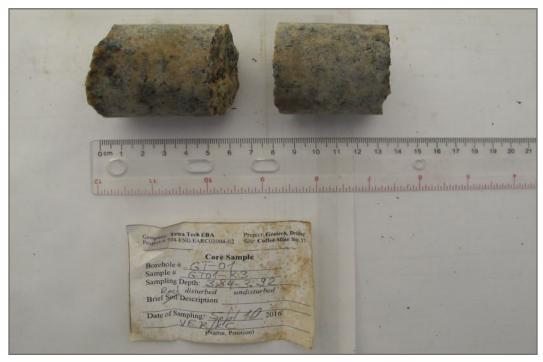



Photo 3E: Tested rock core sample GT01-R3; Depth: 3.84 - 3.92 m; Valid test



Photo 4E: Tested rock core sample GT02-R1; Depth: 2.62 - 2.78 m; Valid test

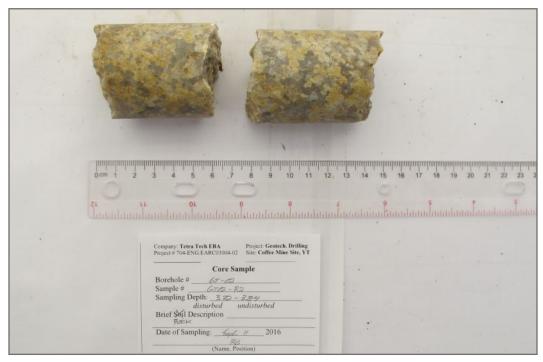



Photo 5E: Tested rock core sample GT02-R2; Depth: 3.72 - 3.84 m; Valid test



Photo 6E: Tested rock core sample GT02-R3; Depth: 4.00 - 4.18 m; Valid test



Photo 7E: Tested rock core sample GT02-R4; Depth: 4.60 - 4.78 m; Valid test



Photo 8E: Tested rock core sample GT09-R1; Depth: 16.45 - 16.62 m; Valid test

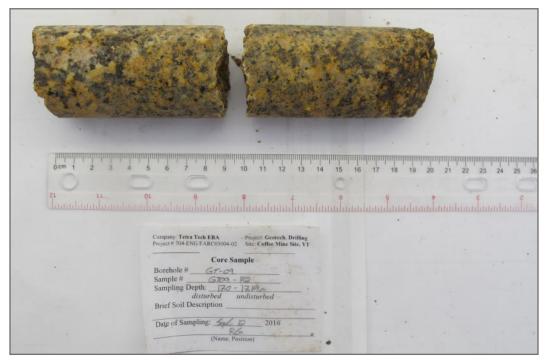



Photo 9E: Tested rock core sample GT09-R2; Depth: 17.00 - 17.19 m; Valid test



Photo 10E: Tested rock core sample GT09-R3; Depth: 18.14 - 18.44 m; Valid test



Photo 11E: Tested rock core sample GT11-R1; Depth: 3.73 - 3.80 m; Valid test



Photo 12E: Tested rock core sample GT11-R2; Depth: 4.95 - 5.10 m; Invalid test



Photo 13E: Tested rock core sample GT12-R1; Depth: 1.70 - 1.77 m; Invalid test

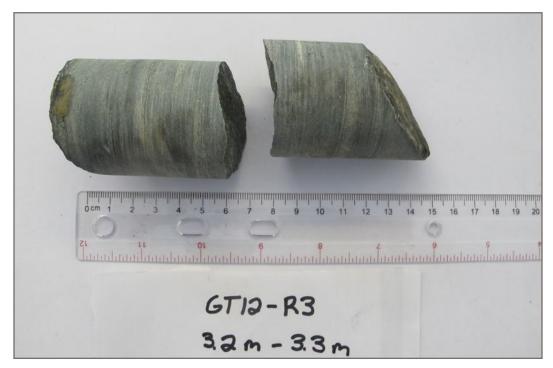



Photo 14E: Tested rock core sample GT12-R3; Depth: 3.20 - 3.30 m; Valid test




Photo 15E: Tested rock core sample GT12-R4; Depth: 5.40 - 5.60 m; Invalid test



Photo 16E: Tested rock core sample GT12-R4 (Redo); Depth: 5.40 - 5.60 m; Valid test



Photo 17E: Tested rock core sample GT13-R3; Depth: 8.00 - 8.20 m; Valid test



Photo 18E: Tested rock core sample GT13-R5; Depth: 9.60 - 9.70 m; Valid test



Photo 19E: Tested rock core sample GT14-R2; Depth: 3.88 - 3.96 m; Valid test



Photo 20E: Tested rock core sample GT14-R3; Depth: 5.30 - 5.40 m; Valid test



Photo 21E: Tested rock core sample GT14-R4; Depth: 6.72 - 6.85 m; Invalid test



Photo 22E: Tested rock core sample GT14-R5; Depth: 7.53 - 7.72 m; Valid test



Photo 23E: Tested rock core sample GT14-R6; Depth: 8.46 - 8.60 m; Valid test



Photo 24E: Tested rock core sample GT14-R7; Depth: 10.82 - 10.92 m; Valid test




Photo 25E: Tested rock core sample GT14-R8; Depth: 13.15 - 13.24 m; Valid test



Photo 26E: Tested rock core sample GT14-R9; Depth: 15.50 - 15.65 m; Valid test



Photo 27E: Tested rock core sample GT14-R10; Depth: 17.70 - 17.90 m; Valid test



Photo 28E: Tested rock core sample GT14-R11; Depth: 20.30 - 20.40 m; Valid test



Photo 29E: Tested rock core sample GT15-R1; Depth: 5.33 - 5.46 m; Valid test



Photo 30E: Tested rock core sample GT15-R2; Depth: 6.80 - 6.95 m; Valid test



Photo 31E: Tested rock core sample GT15-R3; Depth: 7.32 - 7.45 m; Invalid test



Photo 32E: Tested rock core sample GT15-R4; Depth: 7.65 - 7.70 m; Invalid test



Photo 33E: Tested rock core sample GT15-R5; Depth: 9.55 - 9.68 m; Valid test



Photo 34E: Tested rock core sample GT16-R1; Depth: 4.34 - 4.48 m; Valid test



Photo 35E: Tested rock core sample GT16-R2; Depth: 5.07 - 5.22 m; Valid test



Photo 36E: Tested rock core sample GT17-R1; Depth: 2.72 - 2.88 m; Invalid test



Photo 37E: Tested rock core sample GT17-R2; Depth: 3.50 - 3.68 m; Valid test

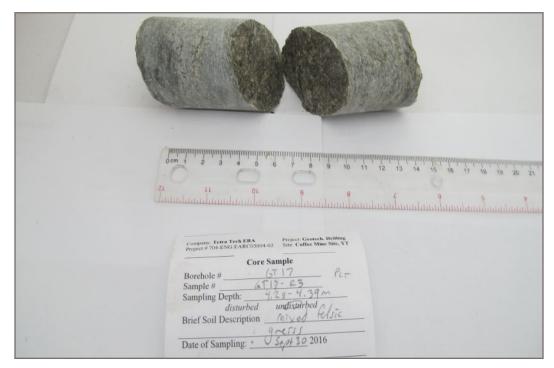



Photo 38E: Tested rock core sample GT17-R3; Depth: 4.28 - 4.39 m; Valid test



Photo 39E: Tested rock core sample GT18-R1; Depth: 6.43 - 6.58 m; Valid test



Photo 40E: Tested rock core sample GT19-R1; Depth: 3.50 - 3.71 m; Valid test



Photo 41E: Tested rock core sample GT19-R2; Depth: 4.25 - 4.39 m; Valid test



Photo 42E: Tested rock core sample GT19-R3; Depth: 5.00 - 5.25 m; Valid test



Photo 43E: Tested rock core sample GT20-R1; Depth: 4.00 - 4.11 m; Valid test



Photo 44E: Tested rock core sample GT20-R2; Depth: 5.64 - 5.77 m; Valid test



Photo 45E: Tested rock core sample GT20-R3; Depth: 6.09 - 6.20 m; Valid test



Photo 46E: Tested rock core sample GT43-R1; Depth: 17.14 - 17.33 m; Valid test



Photo 47E: Tested rock core sample GT44-R1; Depth: 4.41 - 4.57 m; Valid test



Photo 48E: Tested rock core sample GT45-R1; Depth: 16.17 - 16.29 m; Valid test



Photo 49E: Tested rock core sample GT45-R2; Depth: 17.18 - 17.35 m; Valid test



Photo 50E: Tested rock core sample GT45-R3; Depth: 19.83 - 20.00 m; Valid test



Photo 51E: Tested rock core sample GT46-R1; Depth: 9.00 - 9.15 m; Valid test



Photo 52E: Tested rock core sample GT46-R2; Depth: 9.43 - 9.58 m; Valid test

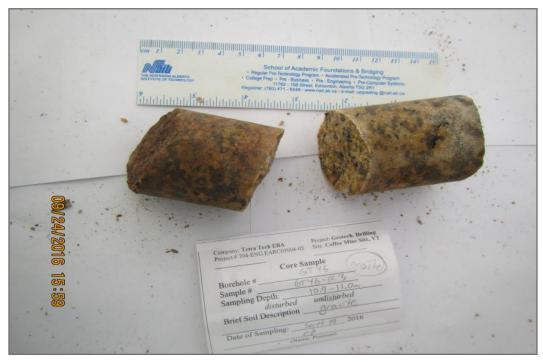



Photo 53E: Tested rock core sample GT46-R3; Depth: 10.90 - 11.00 m; Valid test



Photo 54E: Tested rock core sample GT47-R1; Depth: 14.50 - 14.60 m; Valid test

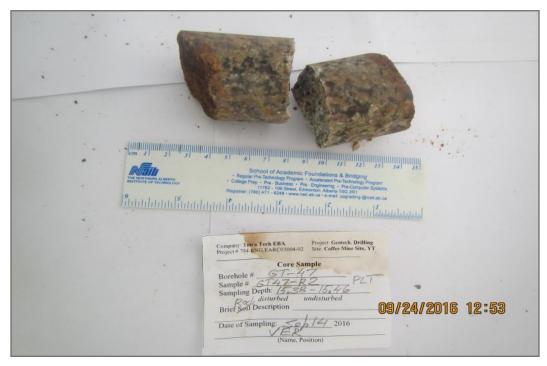



Photo 55E: Tested rock core sample GT47-R2; Depth: 15.38 - 15.46 m; Valid test



Photo 56E: Tested rock core sample GT47-R3; Depth: 16.60 - 16.71 m; Valid test



Photo 57E: Tested rock core sample GT47-R4; Depth: 17.82 - 17.95 m; Valid test

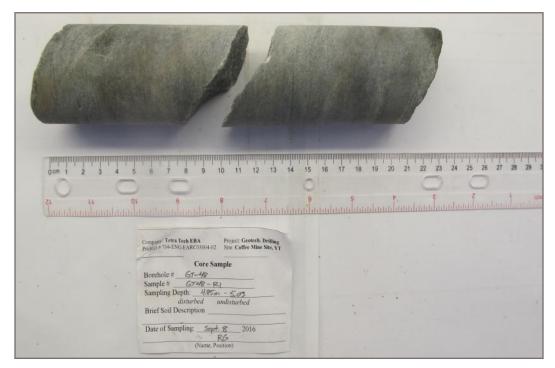



Photo 58E: Tested rock core sample GT48-R1; Depth: 4.85 - 5.03 m; Valid test



Photo 59E: Tested rock core sample GT48-R2; Depth: 6.35 - 6.45 m; Valid test



Photo 60E: Tested rock core sample GT48-R3; Depth: 6.68 - 6.82 m; Valid test



Photo 61E: Tested rock core sample GT48-R4; Depth: 7.87 - 8.00 m; Valid test



Photo 62E: Tested rock core sample GT48-R5; Depth: 8.52 - 8.57 m; Valid test



Photo 63E: Tested rock core sample GT50-R1; Depth: 4.10 - 4.19 m; Invalid test



Photo 64E: Tested rock core sample GT50-R2; Depth: 5.25 - 5.35 m; Invalid test



Photo 65E: Tested rock core sample GT50-R4; Depth: 7.85 - 7.95 m; Valid test



Photo 66E: Tested rock core sample GT50-R5; Depth: 8.80 - 9.00 m; Valid test



Photo 67E: Tested rock core sample GT50-R6; Depth: 9.50 - 9.60 m; Invalid test



Photo 68E: Tested rock core sample GT51-R1; Depth: 2.84 - 2.90 m; Valid test



Photo 69E: Tested rock core sample GT51-R2; Depth: 3.00 - 3.12 m; Valid test



Photo 70E: Tested rock core sample GT51-R4; Depth: 4.50 - 4.60 m; Valid test



Photo 71E: Tested rock core sample GT51-R5; Depth: 6.44 - 6.50 m; Valid test



Photo 72E: Tested rock core sample GT51-R6; Depth: 7.15 - 7.30 m; Valid test



Photo 73E: Tested rock core sample GT51-R7; Depth: 10.80 - 11.00 m; Valid test



Photo 74E: Tested rock core sample GT51-R8; Depth: 11.90 - 12.00 m; Valid test



Photo 75E: Tested rock core sample GT51-R9; Depth: 13.13 - 13.25 m; Valid test



Photo 76E: Tested rock core sample GT51-R10; Depth: 14.77 - 14.83 m; Invalid test



Photo 77E: Tested rock core sample GT51-R11; Depth: 16.85 - 17.00 m; Valid test



Photo 78E: Tested rock core sample GT51-R12; Depth: 17.68 - 17.80 m; Invalid test

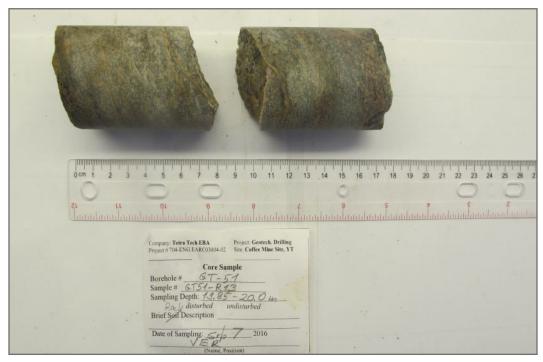



Photo 79E: Tested rock core sample GT51-R13; Depth: 19.85 - 20.00 m; Invalid test



Photo 80E: Tested rock core sample GT51-R14; Depth: 20.57 - 20.70 m; Invalid test



Photo 81E: Tested rock core sample GT53-R1; Depth: 6.50 - 6.61 m; Valid test



Photo 82E: Tested rock core sample GT53-R2; Depth: 7.50 - 7.64 m; Invalid test



Photo 83E: Tested rock core sample GT53-R3; Depth: 8.86 - 8.97 m; Valid test

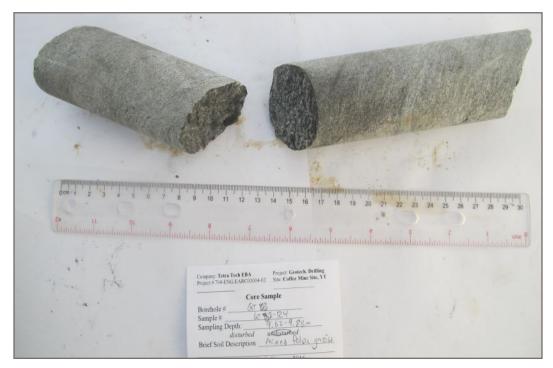



Photo 84E: Tested rock core sample GT53-R4; Depth: 9.62 - 9.88 m; Valid test



Photo 85E: Tested rock core sample GT55-R1; Depth: 8.00 - 8.21 m; Valid test



Photo 86E: Tested rock core sample GT55-R2; Depth: 8.46 - 8.62 m; Valid test



Photo 87E: Tested rock core sample GT57-R1; Depth: 10.33 - 10.48 m; Valid test



Photo 88E: Tested rock core sample GT57-R2; Depth: 11.49 - 11.66 m; Valid test



Photo 89E: Tested rock core sample GT57-R3; Depth: 13.01 - 13.14 m; Valid test



Photo 90E: Tested rock core sample GT58-R1; Depth: 5.19 - 5.30 m; Valid test



Photo 91E: Tested rock core sample GT58-R2; Depth: 6.55 - 6.72 m; Valid test



Photo 92E: Tested rock core sample GT58-R3; Depth: 7.24 - 7.34 m; Valid test



Photo 93E: Tested rock core sample GT59-R1; Depth: 1.60 - 1.71 m; Valid test



Photo 94E: Tested rock core sample GT59-R2; Depth: 2.51 - 2.61 m; Valid test



Photo 95E: Tested rock core sample GT59-R3; Depth: 3.11 - 3.23 m; Valid test



Photo 96E: Tested rock core sample GT59-R4; Depth: 4.73 - 4.81 m; Valid test



Photo 97E: Tested rock core sample GT60-R1; Depth: 5.47 - 5.60 m; Valid test



Photo 98E: Tested rock core sample GT60-R2; Depth: 6.64 - 6.78 m; Valid test



Photo 99E: Tested rock core sample GT60-R3; Depth: 7.81 - 7.90 m; Valid test



Photo 100E: Tested rock core sample GT61-R1; Depth: 4.00 - 4.15 m; Valid test



Photo 101E: Tested rock core sample GT61-R2; Depth: 5.10 - 5.25 m; Valid test



Photo 102E: Tested rock core sample GT61-R3; Depth: 6.65 - 6.22 m; Valid test



Photo 103E: Tested rock core sample GT61-R4; Depth: 7.33 - 7.44 m; Valid test



Photo 104E: Tested rock core sample GT62-R1; Depth: 3.73 - 3.82 m; Valid test



Photo 105E: Tested rock core sample GT62-R2; Depth: 5.44 - 5.62 m; Valid test



Photo 106E: Tested rock core sample GT62-R4; Depth: 9.31 - 9.50 m; Valid test

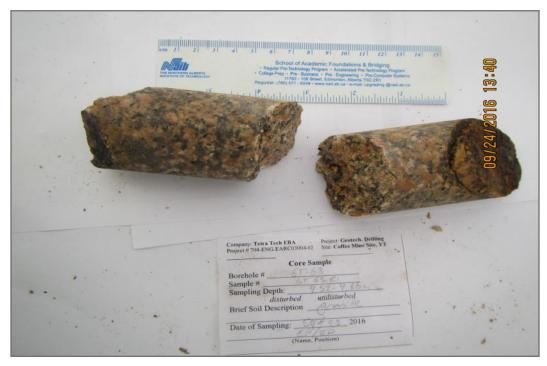



Photo 107E: Tested rock core sample GT63-R1; Depth: 4.52 - 4.66 m; Valid test



Photo 108E: Tested rock core sample GT63-R3; Depth: 8.85 - 8.76 m; Valid test



Photo 109E: Tested rock core sample GT63-R5; Depth: 10.75 - 10.91 m; Valid test




Photo 110E: Tested rock core sample GT63-R6; Depth: 12.20 - 12.34 m; Invalid test



Photo 111E: Tested rock core sample GT63-R7; Depth: 14.36 - 14.50 m; Valid test



Photo 112E: Tested rock core sample GT63-R8; Depth: 15.02 - 15.20 m; Valid test



Photo 113E: Tested rock core sample GT63-R9; Depth: 16.23 - 16.35 m; Invalid test




Photo 114E: Tested rock core sample GT63-R10; Depth: 17.37 - 17.50 m; Valid test



Photo 115E: Tested rock core sample GT64-R1; Depth: 4.06 - 4.33 m; Valid test



Photo 116E: Tested rock core sample GT64-R2; Depth: 5.53 - 5.73 m; Valid test



Photo 117E: Tested rock core sample GT64-R3; Depth: 6.36 - 6.53 m; Valid test



Photo 118E: Tested rock core sample GT65-R1; Depth: 6.26 - 6.41 m; Valid test



Photo 119E: Tested rock core sample GT65-R2; Depth: 6.85 - 6.95 m; Valid test



Photo 120E: Tested rock core sample GT65-R3; Depth: 8.70 - 8.83 m; Valid test



Photo 121E: Tested rock core sample GT66-R1; Depth: 7.70 - 7.83 m; Valid test

## **APPENDIX E**

GTC INSTALLATION FORMS AND GROUND TEMPERATURE PROFILES



Table F.1. Summary of Boreholes Instrumented with Ground Temperature Cables (GTC)

| Borehole No. Site Infrastructure        |  | GTC Type                           | GTC Serial No. |  |
|-----------------------------------------|--|------------------------------------|----------------|--|
| GT-14 North Waste Rock Storage Facility |  | Multi-bead GTC                     | TS 4135        |  |
| GT-51 North Pond                        |  | PVC Pipe for future multi-bead GTC | -              |  |
| GT-63 Heap Leach Pond                   |  | Multi-bead GTC                     | TS 4134        |  |
| GT-66 Heap Leach Pond                   |  | Single-bead thermistor string      | 2              |  |

SITE: COFFEE MINE SITE, YT

LOCATION: GT-14 (NORTH WRSF)

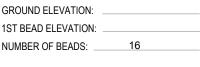
COORDINATES: NORTHING: 6 975 088

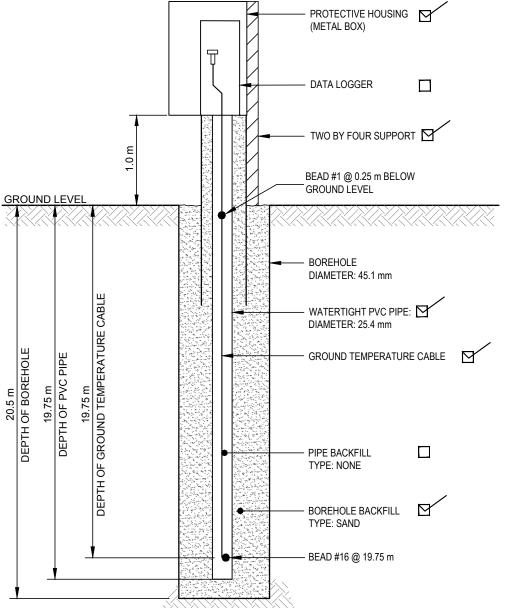
EASTING: 585 456

GROUND ELEVATION:

 CABLE INSTALLATION NO.:
 1

 CABLE SERIAL NO.:
 TS 4135


 DRILLING DATE:
 August 30, 2016


 INSTALLATION DATE:
 August 30, 2016

 CABLE LENGTH:
 20.0 m

 LEAD LENGTH:
 3.3 m

 HOLE DEPTH:
 20.5 m



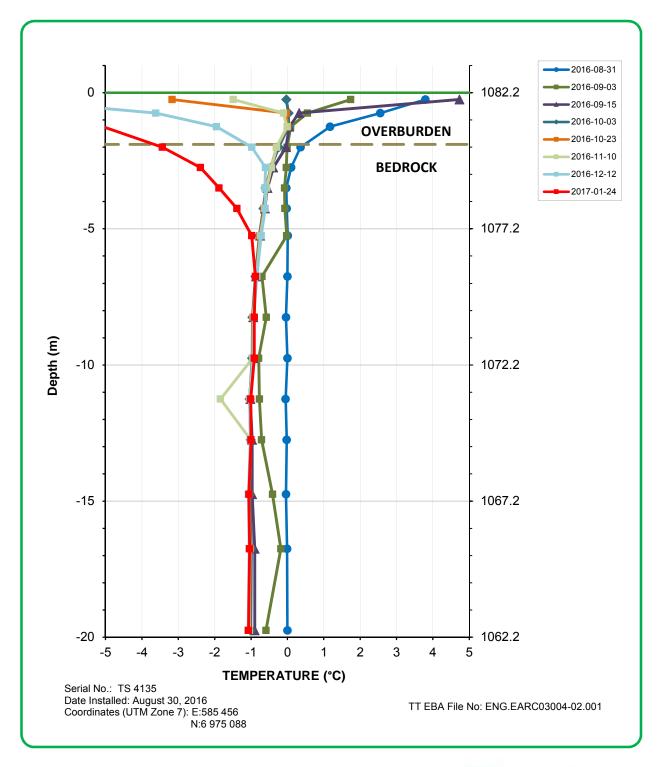


| BEAD NO. | DEPTH BELOW<br>OG (m) |
|----------|-----------------------|
| 1        | 0.25                  |
| 2        | 0.75                  |
| 3        | 1.25                  |
| 4        | 2.00                  |
| 5        | 2.75                  |
| 6        | 3.50                  |
| 7        | 4.25                  |
| 8        | 5.25                  |
| 9        | 6.75                  |
| 10       | 8.25                  |
| 11       | 9.75                  |
| 12       | 11.25                 |
| 13       | 12.75                 |
| 14       | 14.75                 |
| 15       | 16.75                 |
| 16       | 19.75                 |

### **NOTES**

- 1) INDICATE ORIGINAL GROUND ELEVATIONS
- 2) INDICATE ALL BEAD LOCATIONS
- 3) LEAD LENGTH IS THE LENGTH OF CABLE TO THE FIRST BEAD
- 4) ALL DIMENSIONS ARE IN METRES
- 5) DRAWING NOT TO SCALE




CLIENT

# GROUND TEMPERATURE CABLE INSTALLATION REPORT COFFEE MINE SITE, YT NORTH WASTE ROCK STORAGE FACILITY



| PROJECT NO.<br>ENG.EARC03004-02 | DWN<br>RG | CKD<br>VER | REV<br>0 | GTC# TS 4135 |
|---------------------------------|-----------|------------|----------|--------------|
| OFFICE                          | DATE      |            |          |              |
| EDM                             | October 2 | 2016       |          |              |

**GT-14** 



**Ground Temperature Profile Borehole GT-14, North WRSF** 



SITE: COFFEE MINE SITE, YT

LOCATION: GT-51 (NORTH POND)

COORDINATES: NORTHING: 6 975 675

EASTING: 585 313

GROUND ELEVATION:

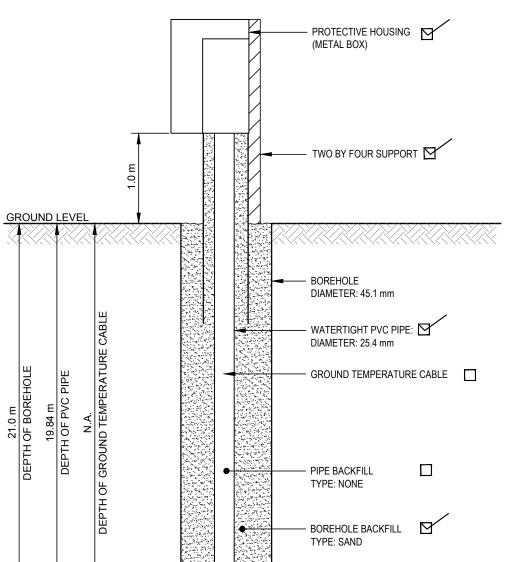
1ST BEAD ELEVATION:

NUMBER OF BEADS:

N.A.

CABLE INSTALLATION NO.: N.A.

CABLE SERIAL NO.: N.A.


DRILLING DATE: September 6, 2016

INSTALLATION DATE: September 7, 2016

CABLE LENGTH: N.A.

LEAD LENGTH: N.A.

HOLE DEPTH: 21.0 m



| BEAD NO. | DEPTH BELOW<br>OG (m) |
|----------|-----------------------|
| 1        | -                     |
| 2        | -                     |
| 3        | -                     |
| 4        | -                     |
| 5        | -                     |
| 6        | -                     |
| 7        | -                     |
| 8        | -                     |
| 9        | -                     |
| 10       | -                     |
| 11       | -                     |
| 12       | -                     |
| 13       | -                     |
| 14       | -                     |
| 15       | -                     |
| 16       | -                     |

### NOTES

- 1) INDICATE ORIGINAL GROUND ELEVATIONS
- 2) INDICATE ALL BEAD LOCATIONS
- 3) LEAD LENGTH IS THE LENGTH OF CABLE TO THE FIRST BEAD
- 4) ALL DIMENSIONS ARE IN METRES
- 5) DRAWING NOT TO SCALE



| Tt | TETRA | TECH |
|----|-------|------|
|----|-------|------|

### GROUND TEMPERATURE CABLE INSTALLATION REPORT COFFEE MINE SITE, YT

**NORTH POND** 

 GT-51

 PROJECT NO.
 DWN
 CKD
 REV

 ENG.EARC03004-02
 RG
 VER
 0

 OFFICE
 DATE

 EDM
 October 2016

PVC#1

SITE: COFFEE MINE SITE, YT

LOCATION: GT-63 (HALFWAY POND)

COORDINATES: NORTHING: 6 973 171

EASTING: 581 284

GROUND ELEVATION:

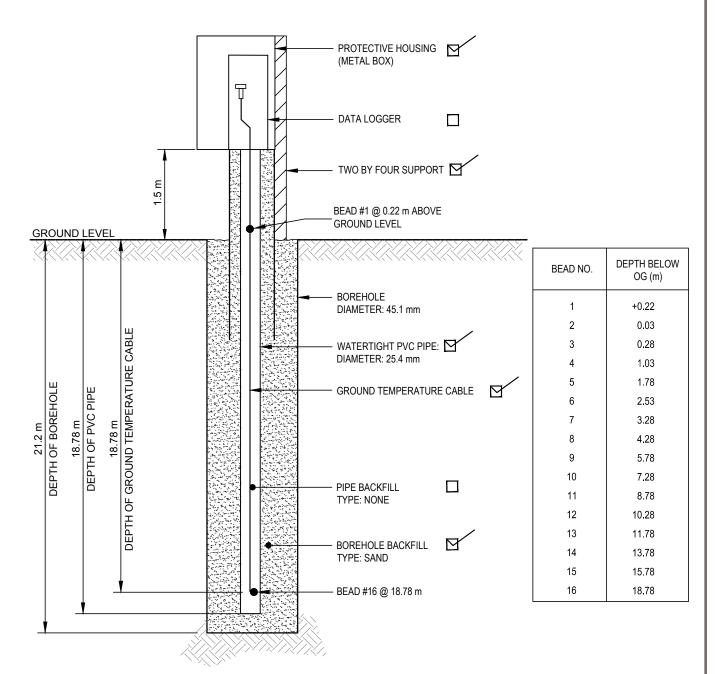
1ST BEAD ELEVATION:

16

NUMBER OF BEADS: \_

CABLE INSTALLATION NO.: 2

CABLE SERIAL NO.: TS 4134

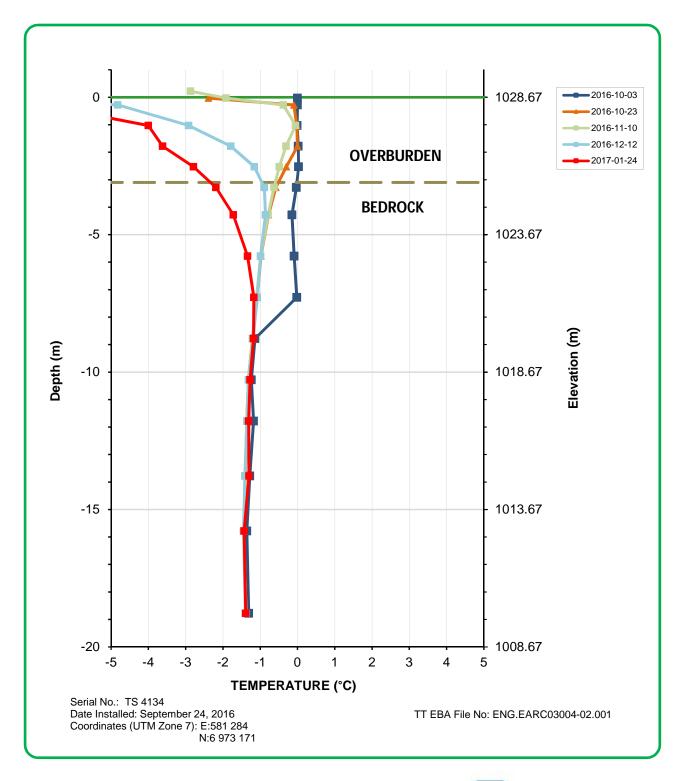

DRILLING DATE: September 23, 2016

INSTALLATION DATE: September 23 & 24, 2016

CABLE LENGTH: 20.0 m

LEAD LENGTH: 3.3 m

HOLE DEPTH: 21.2 m




#### NOTES

2):EdmontoniEngineeringE141ProjectsiENG. EARC03004-02 - Coffee Fall 2016 GilDrafting/GTC Installation Reports dwg (GTC# TS 4134) February 15, 2017 - 2.17:47 pm (BY: PALCZEWSKI, ERNEST)

- 1) INDICATE ORIGINAL GROUND ELEVATIONS
- 2) INDICATE ALL BEAD LOCATIONS
- 3) LEAD LENGTH IS THE LENGTH OF CABLE TO THE FIRST BEAD
- 4) ALL DIMENSIONS ARE IN METRES
- 5) DRAWING NOT TO SCALE





Ground Temperature Profile Borehole GT-63, Halfway Pond



SITE: COFFEE MINE SITE, YT
LOCATION: GT-66 (HALFWAY POND)

COORDINATES: NORTHING: 6 973 169

EASTING: 581 235

GROUND ELEVATION:

1ST BEAD ELEVATION:

NUMBER OF BEADS:

1

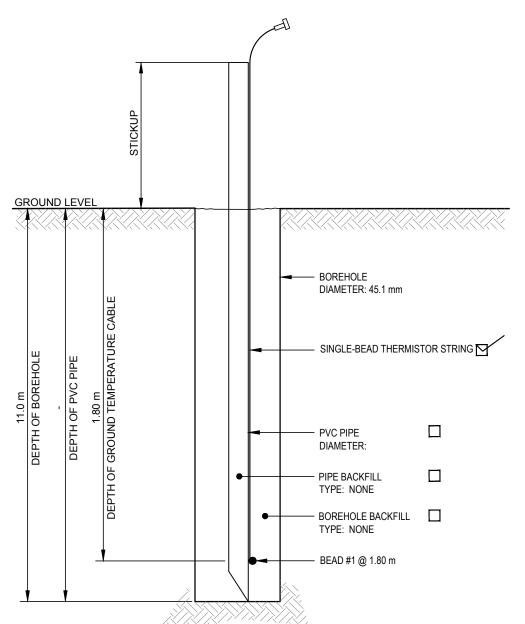
CABLE INSTALLATION NO.:

CABLE SERIAL NO.:

DRILLING DATE:

September 24, 2016

INSTALLATION DATE:


September 25, 2016

CABLE LENGTH:

LEAD LENGTH:

HOLE DEPTH:

11.0 m



| DEPTH BELOW<br>OG (m) |  |  |  |  |
|-----------------------|--|--|--|--|
| 1.80                  |  |  |  |  |
| -                     |  |  |  |  |
| -                     |  |  |  |  |
| -                     |  |  |  |  |
| -                     |  |  |  |  |
| -                     |  |  |  |  |
| -                     |  |  |  |  |
| -                     |  |  |  |  |
| -                     |  |  |  |  |
| -                     |  |  |  |  |
| -                     |  |  |  |  |
| -                     |  |  |  |  |
| -                     |  |  |  |  |
| -                     |  |  |  |  |
| -                     |  |  |  |  |
| -                     |  |  |  |  |
|                       |  |  |  |  |

### NOTES

- 1) INDICATE ORIGINAL GROUND ELEVATIONS
- 2) INDICATE ALL BEAD LOCATIONS
- 3) LEAD LENGTH IS THE LENGTH OF CABLE TO THE FIRST BEAD
- 4) ALL DIMENSIONS ARE IN METRES
- 5) DRAWING NOT TO SCALE





### GROUND TEMPERATURE CABLE INSTALLATION REPORT COFFEE MINE SITE, YT

**HALFWAY POND** 

|                                 |           | G1-66      |          |  |
|---------------------------------|-----------|------------|----------|--|
| PROJECT NO.<br>ENG.EARC03004-02 | DWN<br>RG | CKD<br>VER | REV<br>0 |  |
| OFFICE<br>EDM                   | October : | 2016       |          |  |

THERM. #2

| Project:             | Coffee Gold Geotechnical Investigation |                    | Date of                     | f Calibrati  | on:                   | August 4, 201                         | 6              |  |
|----------------------|----------------------------------------|--------------------|-----------------------------|--------------|-----------------------|---------------------------------------|----------------|--|
| Project No.:         | ENG.EARCO                              | 3004-02            | Calibra                     | tion Tem     | p.:                   | 0.02                                  |                |  |
| Client:              |                                        | Attention:         |                             |              |                       |                                       |                |  |
| Length of Thermistor | String                                 |                    | Calibration Resistance (kΩ) |              |                       | Temperature                           | Calibration    |  |
| feet                 | Number                                 | Location of String | Trial                       | Trial        | Trial                 | (°C)                                  | Factor<br>(°C) |  |
| meters               |                                        |                    | 1                           | 2            | 3                     |                                       |                |  |
| 5                    | 1                                      |                    | 16.29                       | 16.29        | 16.29                 | 0.04                                  | -0.02          |  |
| 5                    | 2                                      |                    | 16.31                       | 16.31        | 16.31                 | 0.02                                  | 0.00           |  |
| 15                   | 3                                      |                    | 16.31                       | 16.31        | 16.31                 | 0.02                                  | 0.00           |  |
| 15                   | 4                                      |                    | 16.30                       | 16.30        | 16.30                 | 0.03                                  | -0.01          |  |
|                      | Lagran (Mary)                          |                    |                             |              |                       |                                       |                |  |
|                      |                                        |                    |                             |              |                       | ný.                                   |                |  |
|                      |                                        |                    |                             |              | a V                   |                                       |                |  |
|                      |                                        |                    |                             |              |                       | 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 |                |  |
|                      |                                        |                    |                             |              |                       | * * * * * * * * * * * * * * * * * * * |                |  |
|                      |                                        |                    | 11 16                       |              | l iu                  |                                       |                |  |
|                      |                                        |                    | 1,                          |              |                       |                                       |                |  |
|                      |                                        |                    | [ met]                      |              |                       |                                       |                |  |
| WIND TO THE          |                                        |                    |                             |              |                       |                                       |                |  |
|                      |                                        |                    |                             |              | Victorial description |                                       |                |  |
|                      |                                        |                    |                             |              |                       |                                       |                |  |
|                      |                                        |                    |                             |              |                       |                                       |                |  |
|                      |                                        |                    |                             |              | 0 11                  |                                       |                |  |
|                      |                                        |                    | Air mgs                     |              |                       |                                       |                |  |
|                      |                                        |                    | III YELE                    |              | - 4                   |                                       |                |  |
|                      |                                        |                    | - 11                        | in k         |                       |                                       |                |  |
|                      | 11 3/4                                 |                    |                             | =            |                       | KVS mail in                           |                |  |
|                      |                                        |                    |                             |              |                       |                                       | 201            |  |
|                      |                                        |                    |                             |              |                       |                                       |                |  |
|                      |                                        |                    | 11 -12 -13                  |              |                       |                                       |                |  |
|                      |                                        |                    | A S                         |              |                       |                                       |                |  |
|                      |                                        |                    | ziii. jei                   | 63-24-1100FT |                       | IN FBW LIE                            |                |  |
|                      |                                        |                    |                             | ta annual a  |                       |                                       |                |  |
|                      | <i>C</i>                               |                    |                             |              | la, n                 | , , , , , , , , , , , , , , , , , , , |                |  |
|                      |                                        | H=4521             |                             | - 31         |                       | 70                                    |                |  |

