March 30, 2015



Suite 584 Bentall Four 1055 Dunsmuir St PO Box 49215 Vancouver, British Columbia Canada V7X 1K8

> tel: (604) 682-5122 tf: (877) 682-5122 fax: (604) 682-5232

Mr. Robert Holmes, Director Mineral Resources Branch Yukon Government - Energy, Mines & Resources #400-211 Main Street, Box 2703 Whitehorse, Yukon Y1A 2C6

Dear Mr. Holmes,

### RE: Quartz Mining Licence QML–0011 Annual Report

To date, StrataGold Corporation (SGC) has not provided written notice of its intent to commence the Undertaking as required by Paragraph 3.2 of QML-0011 and no production or development has occurred on the Eagle Gold Project (the Project). Activity at the Project site during the term of the QML has involved the continued collection of baseline environmental data and ongoing hard rock exploration.

The objective of the 2014 environmental program was to collect continuous environmental data to augment the existing baseline dataset for future regulatory applications and operational plans. Temperature, rainfall, wind speed and direction, relative humidity, barometric pressure and solar radiation all continue to be measured at 15-minute intervals at the Potato Hills and Camp climate stations. Snow pack surveys were conducted in spring 2014 in which snow depth, snow water-equivalent, and snow density were sampled.

The continuous streamflow stations, consisting of a permanent staff gauge, pressure transducer and datalogger to record water level continuously at 15-minute intervals, continued in active operation during the ice-free season. Discharge measurements were conducted during periodic station visits and related to the corresponding water level at the time of measurement. Water samples were collected from midstream following the methods outlined in the BC Freshwater Biological Sampling Manual (BC Ministry of Water, Land Air Protection 2003) during periodic station visits. Surface water quality samples were collected for laboratory analysis at these stations as well as several additional stations in the project area (consistent with previous years). In some cases point discharge measurements were also conducted where a sample was collected consistent with the data collection programs in previous years.

Groundwater monitoring was generally conducted as part of each site visit discussed above and included the downloading of the continuous water level measurements from nine monitoring wells equipped with automated dataloggers, the manual measurement of groundwater levels in wells on the Project site, and the collection of groundwater quality samples for laboratory analysis.

As described in Section 5 of the Eagle Gold Project Decommissioning and Reclamation Plan - Stage 1 Construction Plan, Version 2013-01, SGC intends to initiate reclamation and closure research program during construction and throughout operations. To assist with Project planning, revegetation trials and passive treatment system trials have been initiated prior to the construction phase. The objective of the revegetation trials is to test the viability of incorporating biochar and other soil amendments into final site reclamation. Preliminary results (as discussed in the attached Revegetation and Bioremediation Trials on the Dublin Gulch Property) have been encouraging with robust plant growth achieved using compost and biochar on a site selected for its proximity to

the Project, the low likelihood of near term disturbance, and the relative absence of natural vegetation due to exploration disturbances during the early 1960s.

SGC is currently collaborating with Yukon College to evaluate the efficiency of anaerobic bioreactors, in support of developing components of the proposed passive treatment systems for closure. In 2014, four lab-scale bioreactors with/without wood chips were established using on-site creek sediments (to be used as inoculum) from the Eagle Pup channel. These were fed with either or some combination of a weak methanol solution, effluent collected from eight field barrels located on site, and/or a synthetic solution based on predicted closure water quality. The bioreactors have been exposed to either cold and/or standard temperature conditions.

The 2014 hard rock exploration program on the Property focused primarily on the Olive Zone located approximately 2km northeast of the Eagle Gold Zone. The 2014 Olive Zone program included the completion of 49 exploration diamond drill holes, 12 metallurgical diamond drill holes, 7 geotechnical drill holes (with a collective total of 9,800m) and 882m of surface trenching. To support the metallurgical program, bottle roll tests have been completed and column leach testing is ongoing.

The current 100-person exploration camp located at the Project site was utilized for the 2014 exploration and environmental programs. As the operation of the exploration camp, in its current configuration, is considered by SGC to be a component of the Class IV Mining Land Use Approval LQ00303, specific details regarding occupancy rates will be provided in the annual report for LQ00303.

In January 2014, to support the phased licencing of the Project, SGC applied to the Yukon Water Board (YWB) for the amendment of Type B Water Use Licence QZ11-013 to support the construction activities contemplated in QML-0011 with the exception of any development of the open pit area. The YWB officially granted the amendment of QZ11-013 on February 4, 2015.

In August 2014, SGC applied to the YWB for a Type A Water Use Licence for stage 2 construction, operations and closure of the Project. The application is currently in the adequacy review period and is expected to proceed to the public comment period in April 2015.

Given the existing status of Project development, and the details provided herein, the suggested annual report content specified in item 10 of you letter dated November 12, 2013 is currently not applicable.

Sincerely,

Mark Ayranto Executive Vice President Victoria Gold Corp.

# **REVEGETATION AND BIOREMEDIATION TRIALS**

# ON THE DUBLIN GULCH PROPERTY

# 2012 to 2014




Near Peso adit, July 2012

For

## Victoria Gold Corp.

# Submitted by





Office Phone: 867-668-6838 Cell Phone: 867-668-1043 Fax: 867-667-6956

### LETTER OF TRANSMITTAL

January 25<sup>th</sup>, 2015

Steve Wilbur Victoria Gold Corp PO Box 49215, Suite 584 - 1055 Dunsmuir Street Vancouver, BC V7X 1K8

Dear Steve:

# Re: Revegetation and Bioremediation Trials on the Dublin Gulch Property, 2012 to 2014

We are pleased to submit herewith, the above report covering the installation of test plots and two years of assessment of the revegetation trials with a focus on biochar as one of the amendments.

Should you have any questions or comments on the report, please do not hesitate to contact the undersigned.

Sincerely,

Bonnie Burns Laberge Environmental Services

### TABLE OF CONTENTS

|         |                                                                                                                                                                                            | Page                              |
|---------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------|
| Letter  | of Transmittal                                                                                                                                                                             | i                                 |
| Table   | of Contents                                                                                                                                                                                | ii                                |
| Lists o | of Tables and Figures                                                                                                                                                                      | iii                               |
| 1.0     | INTRODUCTION<br>1.1 Background<br>1.2 Scope of Work                                                                                                                                        | 1<br>1<br>1                       |
| 2.0     | STUDY AREA                                                                                                                                                                                 | 3                                 |
| 3.0     | STUDY DESIGN     3.1   Soil Analysis     3.2   Field Design     3.2.1   Site Preparation     3.2.2   Treatments     3.2.2.1   Waste Rock Site     3.2.2   Trench Site     3.2.3   Seed Mix | 7<br>7<br>8<br>9<br>9<br>11<br>12 |
| 4.0     | PLOT ASSESSMENTS4.1Methods4.2Results13                                                                                                                                                     | 13<br>13                          |
| 5.0     | DISCUSSION AND RECOMMENDATIONS                                                                                                                                                             | 15                                |
| 6.0     | REFERENCES                                                                                                                                                                                 | 16                                |
| APPEI   | NDICES                                                                                                                                                                                     |                                   |

- Appendix ASoil Analytical Data, June 2012Appendix BPhotographs, 2012 to 2014
- Appendix C Revegetation Assessment Results

### LIST OF TABLES

| Table |                                                                             | Page       |
|-------|-----------------------------------------------------------------------------|------------|
| 1     | Means for Selected Climatic Parameters at Elevation 1125m                   | 3          |
| 2     | Block Locations at Peso Mine                                                | 4          |
| 3     | Soil Characteristics, June 2012                                             | 7          |
| 4     | Seed Mix and Rate of Application for Waste Rock and Trench Sites            | 12         |
| 5     | Assessments of the Plots at the Waste Rock Site, 2013 and 2014              | Appendix C |
| 6     | Assessments of the Plots at the Trench Site, 2013 and 2014                  | Appendix C |
| 7     | Diversity and Dominant Species Where Applicable, at each Plot at the Trench |            |
|       | and Waste Rock Sites                                                        | Appendix C |
| 8     | Average Diversity per Treatment for the Plots                               | 14         |

### LIST OF FIGURES

| Figure |                                                                             | Page       |
|--------|-----------------------------------------------------------------------------|------------|
| 1      | Revegetation and Bioremediation Trial Location on the Dublin Gulch Property | 5          |
| 2      | Test Plot Locations at the Old Peso Mine Site                               | 6          |
| 3      | Layout of Treatment and Plots at Waste Rock Site                            | 10         |
| 4      | Layout of Treatment and Plots at Trench Site                                | 11         |
| 5      | Waste Rock Site as Assessed on August 5 <sup>th</sup> , 2014                | Appendix C |
| 6      | Trench Site as Assessed on August 5 <sup>th</sup> , 2014                    | Appendix C |

### 1.0 INTRODUCTION

### 1.1 Background

The claims at the Peso site were first staked in June 1910 by J. Alverson and G. Huffman, who sank a 4.9 m shaft in 1912 and trenched until 1916 (Yukon Minfile). In 1948, with antimony in demand, Cecil D. Poli re-staked Alverson's old silver-lead-antimony property as the Peso 1 - 12 claims and trenched the vein by hand. On route back to Haggart Creek he discovered the Rex vein two miles to the southeast. The Peso vein gave 40 ounces of silver per ton and a sample from the Rex vein gave 25 ounces per ton. These properties were optioned in the early 1950s at the height of the boom but no significant work was done on them (Aho, 2006).

In 1961 Tanar Gold Mines Ltd transferred the claims to a new company, Peso Silver Mines Ltd who carried out extensive exploration from 1961 to 1965, including underground development on the Peso vein. The two main vein zones at Peso Rex contained a reasonably well provenprobable reserve of about 154,000 tons at 20.9 ounces of silver per ton and 3.7% lead (Campbell, 1965). The veins contain abundant pyrite and arsenopyrite, with jamesonite, tetrahedrite and minor shalerite and bismuthinite, including the metallic minerals galena and chalcopyrite (Aurum Geological Consultants, 1992).

M.J. Moreau explored with hand trenching in 1986 and bought the Peso and Rex claims at a Sheriff's sale in August 1988 (Yukon Minfile).

In 1991, M. J. Moreau Enterprises Ltd made a request of Aurum Geological Consultants to prepare a report summarizing the economic potential of the Pierre Property, which included the Peso claims. Results from samples collected in 1991 from the No. 1 Vein (Peso) returned a high silver value of 318.5 ppm which when fire assayed returned 37.8 oz/ton silver (Aurum Geological Consultants, 1992).

In 1994 First Dynasty Mines Ltd acquired claims throughout the area and in 1996 its wholly owned subsidiary, New Millennium Mining Ltd carried out a major drilling program in the Dublin Gulch area.

Stratagold acquired the Dublin Gulch property in 2004 and commenced a drilling program in 2005 to delineate the Eagle Zone. Victoria Gold Corp. assumed control in 2009.

Recent exploration work has been undertaken by Victoria Gold in the Rex/Peso area, however the locations of the trial plots are outside of the active zone and provide a representative site for the revegetation experiment which is unlikely to be disturbed by near term exploration or development programs.

### 1.2 Scope of Work

Victoria Gold Corp has sponsored revegetation research in support of reclamation planning for the Eagle Gold Project at their Dublin Gulch Property. The objective of the revegetation program at Peso is to test the viability of incorporating biochar and other soil amendments into the site with a goal of creating an ultimate reclamation and revegetation plan that will be transferable to the Eagle Gold Project Reclamation and Closure Plan (StrataGold 2014). The Peso site was chosen

because 1) there were existing and un-reclaimed facilities (waste dump and trenches) at the site that were located in similar terrain and with similar climate conditions and geologic properties as the Eagle Gold Project, and 2) unlike other areas within the Eagle Gold Project area subject to exploration, construction and other activities, the established plots at Peso would remain undisturbed.

Biochar is a light charcoal material produced by heating or combusting biomass under low or no oxygen conditions, a process known as pyrolosis. Residues of incomplete organic pyrolysis (e.g., from cooking fires), are thought to be the key component of terra preta soils a very dark fertile anthropogenic soil known most commonly from the Amazon basin. It was most likely intentionally developed by humans between 450BC and 950AD to improve the poor soil conditions in the Amazonian basin. Terra preta is characterized by high concentrations of low temperature charcoal; quantities of pottery shards; and organic matter such as plants, animals, bones and feces (Bates, 2010). While the biochar process has been known for over a century, recent efforts are underway to recreate the fertile Terra preta like soils through the biochar process (Economist 2009).

One of the greatest benefits of biochar is its capacity to transform degraded land. It adds moisture retention to arid soils, it provides surface area for microbes and nutrients to use and it can lock carbon into the ground for very long periods (Bruges, 2009). The agronomic and environmental benefits of adding biochar to soils have been investigated for many years, but in the past several years research has begun into the use of biochar for bioremediation of mine-affected soil (Laberge Environmental Services, 2012). For example, Fellet *et al* (2011) found that an increase in biochar content in mine tailings reduced the bioavailability of cadmium, lead, thallium and zinc. In column leaching tests, the sorption of cadmium and zinc to biochar's surfaces reduced their leachate concentrations by 300 and 45 fold respectively (Beesley and Marmiroli, 2011). Therefore, as well as enhancing growing conditions in the soil for successful plant growth, biochar can also help to sequester metals and mitigate leachate water quality.

The organic material (i.e., trees, shrubs and organic surface cover) that will be cleared from the various development areas to make way for mining operations at Eagle Gold, can be processed into biochar on site thus creating a local source and thereby eliminating the introduction of unknown or unwanted components of outsourced biochar. The pyrolysis of plant biomass to generate biochar converts much of the carbon into a form of carbon which is very stable in soils for hundreds of years. Thus, by creating biochar from the plant overburden, instead of allowing it to naturally decompose and consequently release carbon dioxide (a greenhouse gas) into the atmosphere, the carbon becomes unavailable and is sequestered. If applicable, Victoria Gold could earn carbon credits by 1) producing its own biochar as a soil amendment for the site's closure activities and 2) planting vegetation. Currently there is not a system of carbon credits in the Yukon, nor a tax on carbon like in British Columbia, however the sequestration of carbon through these activities offsets at least some of the carbon dioxide that the mine emits and thus lowers its carbon footprint.

### 2.0 STUDY AREA

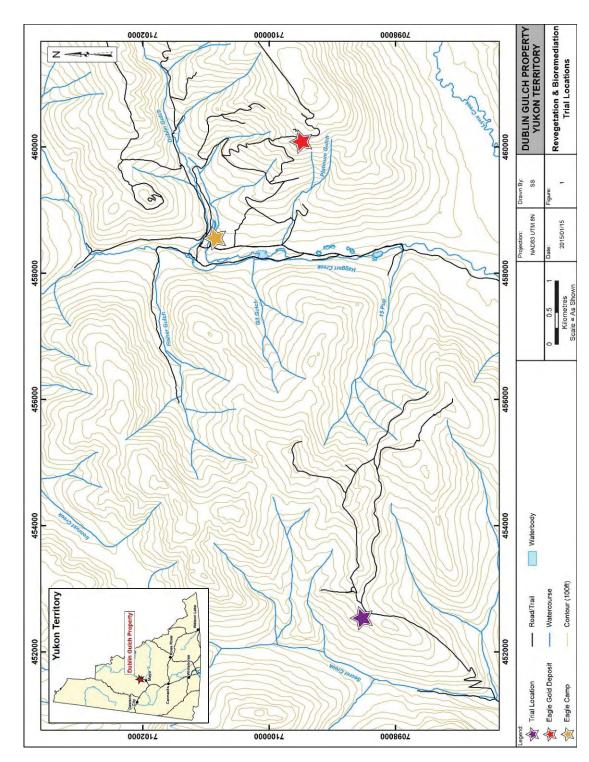
The Eagle Gold Project at Dublin Gulch is located approximately 85 km northeast of the village of Mayo in central Yukon and lies wholly within the traditional territory of the First Nation of the Na Cho Nyak Dun. The project is 100% owned by Victoria Gold Corp and covers an area of approximately 650 square kilometers. Its centre is situated at the confluence of Haggart Creek and Dublin Gulch at the UTM Coordinates 7100950N / 453750E, Zone 8, NAD 83 Datum.

The historic Peso Minesite is located approximately 6.5 km west of the camp at the Eagle Gold Project, near Secret Creek, a tributary to Haggart Creek (Figure 1). The study area lies within the northern region of the North Yukon Plateau ecoregion in the Stewart River sub-basin of the Yukon River watershed. This area is generally characterized by rolling uplands with steep slopes leading into U-shaped valleys (Smith *et al*, 2006). There are two zones within the Eagle Gold Site; subalpine, and open black spruce forests at lower elevations. The subalpine zones (above 1225 m asl) are generally dominated by dwarf birch and willows. Other species occurring within the forested areas are Alaska birch, aspen, balsam poplar and white spruce, depending on aspect. Subalpine fir are also found in small pockets at higher elevations (Stantec, 2011).

Climate stations are operational within the Eagle Gold Project area at the Potato Hills Station (1420 masl) and at the Camp Station (782 masl). Knight Piesold Consulting (KPC) examined and summarized the meteorological data collected over a four year period, 2009 to 2012 (KPC, 2013). Since the two climate stations are located at significantly different elevations and thus will have varied temperature and precipitation results due to orographic tendencies, KPC used a reference elevation of 1125m for their analysis and summary. Table 1 summarizes selected climatic parameters for this elevation.

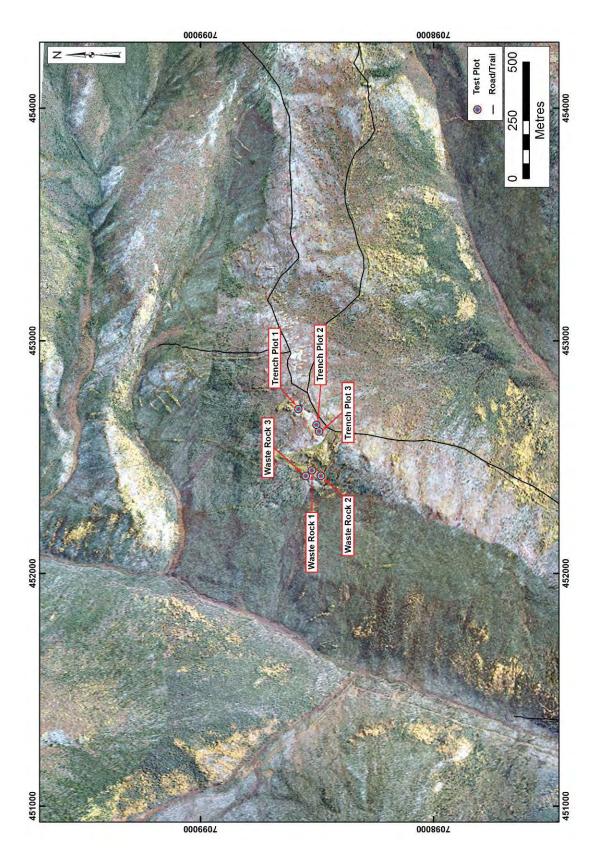
| TABLE 1     MEANS FOR SELECTED CLIMATIC              | PARAMENTERS AT ELEVATION 1125m |  |
|------------------------------------------------------|--------------------------------|--|
| Parameter                                            | Value                          |  |
| Mean annual temperature                              | -4.2                           |  |
| Mean January temperature                             | -19.7                          |  |
| Mean July temperature                                | 11.4                           |  |
| Mean annual precipitation                            | 500 mm                         |  |
| Mean annual rainfall                                 | 190 mm                         |  |
| Mean annual snowfall (water-equivalent)              | 310 mm                         |  |
| Mean annual rainfall/snowfall distribution 38% / 62% |                                |  |
| Taken from KPC 2013                                  |                                |  |

Since the elevation of the vegetation trials is slightly lower than 1125 m (see Table 2), the above values should be relatively representative of temperature and rainfall at the Peso plots.


The majority of the exploration work at the Peso site was completed during the early 1960s. With the exception of dense growth of alders at the less disturbed sites, very little natural revegetation has taken place in the areas disturbed by historical activities in the Peso area over this time period. Vegetation in the adjacent undisturbed and lesser disturbed sites consists of subalpine fir, white spruce, black spruce and paper birch, with occasional balsam poplar and trembling aspen. Mountain alder, dwarf birch, Scouler's willow and blue-green willow are the most common medium to tall shrub species. The ground cover includes low shrubs such as Labroador tea, Beauverd's

spiraea, kinnikinick, lingonberry, blueberry and crowberry. Dwarf dogwood, toadflax, lupine and fireweed are the most common forb species (Laberge Environmental Services and NND-DC, 2004).

During a reconnaissance trip in June 2012, two sites were selected for the revegetation trials, an exploration trench and the waste rock dump. Although trenching has been undertaken at the site since the early 1900s, mostly hand trenching, it is assumed that the trench chosen for the trials was a result of bulldozer exploration in the early 1960s by Peso Silver Mines. Three blocks, each containing 5 test plots, were established at the trench site. Block #1 is located north of an exploration trail and the other 2 Blocks are located south.


The Peso adit is located approximately 250 m west of the trench. Peso Silver Mines conducted underground development on the Peso vein resulting in the formation of the waste rock dump on the west facing slope. The waste rock dump covers an area approximately 50 m by 70 m. It is comprised of three lifts varying in thickness from two to six meters. A total of three blocks, each containing 5 test plots, were established on each tier. The locations of the blocks are detailed below in Table 2 and shown on Figure 2.

| TABLE 2     | BLOCK LOCATIONS AT PESO |                          |      |  |  |
|-------------|-------------------------|--------------------------|------|--|--|
| Site        | Latitude                | Latitude Longitude       |      |  |  |
| Trench:     |                         |                          |      |  |  |
| Block #1    | 64 <sup>°</sup> 00.649' | 135° 58.038'             | 1040 |  |  |
| Block #2    | 64 <sup>°</sup> 00.607' | 135° 58.119'             | 1030 |  |  |
| Block #3    | 64° 00.601'             | 135° 58.154'             | 1042 |  |  |
| Waste Rock: |                         |                          |      |  |  |
| Block #1    | 64 <sup>°</sup> 00.616' | 135 <sup>°</sup> 58.360' | 992  |  |  |
| Block #2    | 64 <sup>°</sup> 00.595' | 135 <sup>°</sup> 58.388' | 986  |  |  |
| Block #3    | 64 <sup>°</sup> 00.630' | 135 <sup>°</sup> 58.390' | 973  |  |  |



# REVEGETATION AND BIOREMEDIATION TRIAL LOCATIONS ON THE DUBLIN GULCH PROPERTY **FIGURE 1**

Laberge ENVIRONMENTAL SERVICES



# FIGURE 2 TEST PLOT LOCATIONS AT THE OLD PESO MINESITE

### 3.0 STUDY DESIGN

### 3.1 Soil Analysis

The success of a revegetation project depends firstly on characterizing site-specific conditions such as soil fertility, climate, aspect, elevation, slope, drainage, etc, prior to making any decisions regarding seed mixes and amendments.

For the purposes of this study, a reconnaissance visit to the old Peso minesite was initially conducted on June 24<sup>th</sup>, 2012. After assessing the area, two sites were chosen for the revegetation trials and are described in Section 2.0. Soil samples were collected from these sites and sent to Maxxam Analytical Laboratory in Burnaby, BC. The complete analytical report can be found in Appendix A, with selected parameters presented below in Table 3.

| TABLE 3 SOIL CHARACTERISTICS, JUNE 2012 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                                                                                                                                                      |  |  |  |  |
|-----------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|--|--|--|
| PARAMETER UNITS WASTE ROCK TRENCH       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                                                                                                                                                      |  |  |  |  |
| pH Units                                | 2.62                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 5.15                                                                                                                                                                                 |  |  |  |  |
| mg/kg                                   | 180                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 98                                                                                                                                                                                   |  |  |  |  |
| N/A                                     | 20.1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 0                                                                                                                                                                                    |  |  |  |  |
| %                                       | 0.37                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | <0.20                                                                                                                                                                                |  |  |  |  |
| %                                       | 0.64                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | <0.35                                                                                                                                                                                |  |  |  |  |
| mg/kg                                   | <2.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | <2.0                                                                                                                                                                                 |  |  |  |  |
| mg/kg                                   | 2.9                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 1.8                                                                                                                                                                                  |  |  |  |  |
| mg/kg                                   | <2.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 8.5                                                                                                                                                                                  |  |  |  |  |
| cmol+/Kg                                | <10                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | <10                                                                                                                                                                                  |  |  |  |  |
| %                                       | nd                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 70                                                                                                                                                                                   |  |  |  |  |
| %                                       | nd                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 25                                                                                                                                                                                   |  |  |  |  |
| %                                       | nd                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 5.6                                                                                                                                                                                  |  |  |  |  |
| %                                       | 6.1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 4.0                                                                                                                                                                                  |  |  |  |  |
| N/A                                     | nd                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | SANDY LOAM                                                                                                                                                                           |  |  |  |  |
| mg/kg                                   | 2690                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 2350                                                                                                                                                                                 |  |  |  |  |
| mg/kg                                   | 3680                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 3580                                                                                                                                                                                 |  |  |  |  |
| mg/kg                                   | 6150                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 9810                                                                                                                                                                                 |  |  |  |  |
| mg/kg                                   | 4.88                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 4.28                                                                                                                                                                                 |  |  |  |  |
| mg/kg                                   | 6.7                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 12.2                                                                                                                                                                                 |  |  |  |  |
| mg/kg                                   | 3.54                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 5.33                                                                                                                                                                                 |  |  |  |  |
| mg/kg                                   | 210                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 75.9                                                                                                                                                                                 |  |  |  |  |
| mg/kg                                   | 57500                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 46300                                                                                                                                                                                |  |  |  |  |
| mg/kg                                   | 9070                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 7330                                                                                                                                                                                 |  |  |  |  |
| mg/kg                                   | 0.796                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 0.410                                                                                                                                                                                |  |  |  |  |
| mg/kg                                   | 9.06                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 12.0                                                                                                                                                                                 |  |  |  |  |
| mg/kg                                   | 19.3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 12.7                                                                                                                                                                                 |  |  |  |  |
| mg/kg                                   | 89.4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 103                                                                                                                                                                                  |  |  |  |  |
| mg/kg                                   | 252                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 129                                                                                                                                                                                  |  |  |  |  |
|                                         | UNITS       pH Units       mg/kg       N/A       %       mg/kg       mg/kg | UNITS     WASTE ROCK       pH Units     2.62       mg/kg     180       N/A     20.1       %     0.37       %     0.64       mg/kg     2.9       mg/kg     2.0       cmol+/Kg     <10 |  |  |  |  |

The soil is extremely acidic at the waste rock site and strongly acidic at the trench site. Acid tolerant plant species consequently were selected for the revegetation project. Soil samples

collected from the waste rock in 2003 showed it to be extremely acidic with a pH value of 2.8 (Laberge, 2004). Soil samples collected near the portal and from the easternmost lobe of the waste rock in 1997 were potentially acid generating following bottle roll tests (Environmental Services, 1998). The soil samples collected in 2012 confirm the strong acidity of the waste rock dump (pH 2.6).

All available nutrients were extremely low where detected. Organic matter and total organic carbon was very low at the waste rock site and below the detection limits at the trench site. Cation exchange capacity was below measurable limits at both sites.

Concentrations of antimony, arsenic and lead were extremely high at both sites. Antimony is a trace element and background levels are generally very low. Antimony concentrations are usually much greater at mining and contaminated sites.

Background levels of arsenic in soils are low and rarely exceed 15 mg/kg (Singh, 2005). Arsenic concentrations were very high at the Peso site with much higher levels that appear atypical when compared to other sites sampled for soil geochemistry at the Dublin Gulch site (Burns, 2013).

Lead concentrations were also extremely high in the two soil samples at Peso and were much greater than documented at other locations at Dublin Gulch.

Generally the metal concentrations were similar at both of the selected trial sites.

### 3.2 Field Design

### 3.2.1 Site Preparation

The plots at the two sites were installed on July 19<sup>th</sup>, 2012. Three blocks of plots were situated on relatively level ground with the same aspect at each site. Each block measured 5m by 2m and contained 10 one meter square plots. The blocks and plots were measured and demarked with orange fluorescent painted rebar. Labeled flagging tape was added to each corner pin of the plots.

The plots were prepared and seeded from September 18<sup>th</sup> to 20<sup>th</sup>, 2012. Each plot to be seeded was scarified first with a hand-cultivator (tine length 15 cm), and then raked with a fine-toothed rake (see Photo #1, Appendix B). Soil amendments were well mixed into the prepared plot and then the seeds were hand broadcast throughout the plot. Each plot was tamped gently but firmly with the back of a rake to create micro-sites and achieve good seed placement.

Every other plot within each block was seeded, allowing the unseeded/untreated plots to represent buffer zones. The implementation of buffer plots ensures that each test plot is isolated and uninfluenced from neighboring plots. As well, each plot can be assessed and closely examined without the risk of trampling on plants on the other test plots. Further details, including photographs are included in a report prepared for Victoria Gold (Laberge, 2013). As described below, due to the differences in acidity at the two sites, slightly different seed mixes and treatments were prepared.

### 3.2.2 Treatments

The intention of these trials was to determine in a relatively simple manner which amendments might be utilized for successful native plant growth to initiate the restoration process. The amendments used in these trials were biochar, compost, leonardite and dolomite.

Raw biochar chips were obtained locally from Zukas Farms, Whitehorse Yukon. Prior to application they were ground in a steel-blade seed grinder to produce a fine, almost powdery mix. It has been well established that biochar on its own (due to the lack of nutrients) is insufficient as an amendment on poor soils (Peltz *et al*, Beesley and Marmiroli, 2011, Beesley *et al*, 2010), hence it was combined with nutrient rich compost for each plot.

Bags of compost were obtained from the co-operative project at the Whitehorse Solid Waste Facility which produces commercial quantities of high quality compost.

Leonardite is defined as a naturally occurring oxidized form of lignite coal that is rich in humic acids. Its main use is as a soil amendment in agriculture and reclamation. For the purposes of this study, leonardite was obtained from Tisdale, Saskatchewan. This leonardite consisted mostly of humic acid with small amounts of fluvic acid and required minimal processing. It was also included with the amendments for some of the plots as an additional source of nutrients.

Due to the relatively higher acidity at the waste rock dump site, commercially available dolomite, purchased from Canadian Tire, was added to the amendment mix at some of the plots to create some buffering capacity.

No other fertilization was used and the plots were not watered at any time. The plots were exposed to the natural conditions that existed at each of the local areas throughout the seasons. Thus, aside from the initial site development and treatment, no other treatment or site modification was used.

### 3.2.2.1 Waste Rock Site

In attempts to control acid generation and enhance soil rehabilitation, the following amendments were used on the waste rock sites; biochar, compost, leonardite and dolomite lime.

The application rates per plot are as follows:

- 6 liters of biochar (just under 1 kg)
- 15 liters (1/2 bag) of compost
- 0.15 kg/m2 of leonardite
- 3.3 kg/m2 of dolomite

There were five treatments per block of plots:

| Treatment Method                        | Treatment Composition                             |
|-----------------------------------------|---------------------------------------------------|
| 1                                       | Seed only                                         |
| 2 Seed, biochar, compost                |                                                   |
| 3                                       | Seed, biochar, compost, leonardite                |
| 4 Seed, biochar, compost, dolomite lime |                                                   |
| 5                                       | Seed, biochar, compost, leonardite, dolomite lime |

The layout of the plots and treatments per block is presented in Figure 3. Each treatment is represented once per block and three times in total for the site. The shaded plots received no treatments and represent buffers between plots.

### FIGURE 3 LAYOUT OF TREATMENTS (# in bold) AND PLOTS AT WASTE ROCK

Waste Rock Block #1 (on top near the adit) – seeded and amendments added Sept 18, 2012 @ 13:00

| 1          |            | 3          |            | 5          |
|------------|------------|------------|------------|------------|
| Plot # 1-1 |            | Plot # 1-3 |            | Plot # 1-5 |
|            |            |            |            |            |
|            |            |            |            |            |
|            | 2          |            | 4          |            |
|            | Plot # 1-2 |            | Plot # 1-4 |            |
|            |            |            |            |            |
|            |            |            |            |            |

Waste Rock Block #2 – (on second tier) seeded and amendments added on September 18, 2012 @ 14:30

| · · . | 12 0 11.00 |            |            |            |            |
|-------|------------|------------|------------|------------|------------|
|       |            | 2          |            | 4          |            |
|       |            | Plot # 2-2 |            | Plot # 2-4 |            |
|       |            |            |            |            |            |
|       |            |            |            |            |            |
|       | 1          |            | 3          |            | 5          |
|       | Plot # 2-1 |            | Plot # 2-3 |            | Plot # 2-5 |
|       |            |            |            |            |            |
|       |            |            |            |            |            |

Waste Rock Block #3 – (on third tier from top) seeded and amendments added on September 18, 2012 @ 16:00

| 1          |            | 3          |            | 5          |
|------------|------------|------------|------------|------------|
| Plot # 3-1 |            | Plot # 3-3 |            | Plot # 3-5 |
|            |            |            |            |            |
|            |            |            |            |            |
|            | 2          |            | 4          |            |
|            | Plot # 3-2 |            | Plot # 3-4 |            |
|            |            |            |            |            |
|            |            |            |            |            |

### 3.2.2.2 Trench Site

The soil at the trench site was not as acidic as on the waste rock, with a pH of 5.15, consequently dolomite lime was not included as an amendment. Biochar, compost and leonardite were again applied to the trench plots at the following application rates:

- 3 litres of biochar
- 15 liters (1/2 bag) of compost
- 0.15 kg/m2 of leonardite

There were three treatments per block of plots:

| Treatment Method | Treatment Composition              |
|------------------|------------------------------------|
| 1                | Seed only                          |
| 2                | Seed, biochar, compost             |
| 3                | Seed, biochar, compost, leonardite |

The layout of the plots and treatments per block is presented in Figure 4. Each treatment is represented five times for the site. The shaded plots received no treatments and represent buffers between plots.

### FIGURE 4 LAYOUT OF TREATMENTS (# in bold) AND PLOTS AT TRENCH SITE

| 1         |   |            | 3         |            | 2          |
|-----------|---|------------|-----------|------------|------------|
| Plot #1-1 | A |            | Plot #1-3 |            | Plot #1-2B |
|           |   |            |           |            |            |
|           |   |            |           |            |            |
|           |   | 2          |           | 1          |            |
|           |   | Plot #1-2A |           | Plot #1-1B |            |
|           |   |            |           |            |            |
|           |   |            |           |            |            |

Trench Block #1 – seeded and amendments added on September 19, 2012 @ 11:00

### Trench Block #2 – seeded and amendments added on September 18, 2012 @ 18:00

|             | <b>1</b><br>Plot # 2-1A |            | <b>3</b><br>Plot # 2-3A |             |
|-------------|-------------------------|------------|-------------------------|-------------|
| 3           |                         | 2          |                         | 1           |
| Plot # 2-3B |                         | Plot # 2-2 |                         | Plot # 2-1B |
|             |                         |            |                         |             |

|            |            |           | ptombol 10 , 201 | 2 @ 10.00. |
|------------|------------|-----------|------------------|------------|
| 2          |            | 1         |                  | 3          |
| Plot #3-2A |            | Plot #3-1 |                  | Plot #3-3B |
|            |            |           |                  |            |
|            |            |           |                  |            |
|            | 3          |           | 2                |            |
|            | Plot #3-3A |           | Plot #3-2B       |            |
|            |            |           |                  |            |
|            |            |           |                  |            |

Trench Block #3 – seeded and amendments added on September 19th, 2012 @ 10:00.

### 3.2.3 Seed Mix

The species chosen for the trials were determined through consultation of the Yukon Revegetation Manual (Matheus and Oztmigt, 2012) as well as through the observation of species currently growing in the near vicinity of the sites. The appropriate seed mixes were distributed for each plot as per the quantities noted in Table 3. In addition, because alder grows prolifically around the site and is well adapted to localized conditions, a small handful of local alder seeds were collected on site and distributed with the seed mix. Furthermore, alder fixes nitrogen and all parts of the plants contribute nitrogen to the soil during decomposition. Seeds from Hedysarum plants (a nitrogen fixing legume) were also added to the mix to increase the nitrogen potential.

The seed mix is slightly different for each site due to soil conditions. The soil at the waste rock site was extremely acidic, had little to no nutrient values and was highly mineralized (refer to Table 2). Several plant species were chosen due to their tolerances to acidic, low nutrient levels, drought and/or heavy metal conditions in the growth medium. The seed rate, adjusted to 1m<sup>2</sup> plot size, is also provided in Table 3. The soil at the trench site was not as acidic as on the waste rock dump and slight alterations were made to the seed mix (Table 3).

| TABLE 4 SEE                                                                                                       | SITES                     |               |               |  |  |  |  |  |  |  |
|-------------------------------------------------------------------------------------------------------------------|---------------------------|---------------|---------------|--|--|--|--|--|--|--|
| Common Name     Scientific Name     Application rate/plot<br>at Waste Rock     Application rate/plot<br>at Trench |                           |               |               |  |  |  |  |  |  |  |
| Sheep fescue                                                                                                      | Festuca ovina             | 0.4 g         | 0.4 g         |  |  |  |  |  |  |  |
| Tufted hairgrass                                                                                                  | Deschampsia<br>caespitosa | 0.14 g        | 0.14 g        |  |  |  |  |  |  |  |
| Glaucous bluegrass                                                                                                | Poa glauca                | 0.19 g        |               |  |  |  |  |  |  |  |
| Alpine bluegrass                                                                                                  | Poa alpina                |               | 0.21 g        |  |  |  |  |  |  |  |
| Tickle grass                                                                                                      | Agrostis scabra           | 0.04 g        |               |  |  |  |  |  |  |  |
| Spike Trisetum                                                                                                    | Trisetum spicatum         |               | 0.9 g         |  |  |  |  |  |  |  |
| Bear root                                                                                                         | Hedysarum alpinum         | 20 seeds      | 20 seeds      |  |  |  |  |  |  |  |
| Alder                                                                                                             | Alnus viridus             | small handful | small handful |  |  |  |  |  |  |  |

The first six plant species are native occurring plants with commercially available accredited seed, which was obtained from BrettYoung<sub>™</sub> of Calmar, Alberta. Alder seeds were hand collected from local plants at the site on the day of planting and spread onto each plot. Hedysarum seeds, previously collected from various sites in the Yukon, were also added to the plots.

### 4.0 PLOT ASSESSMENTS

### 4.1 Methods

The trial plots have been assessed on three different occasions to date; July 2013, September 2013 and early August 2014. The August 2014 assessment represents two complete years of growth following seeding in September 2012.

Vegetation cover and composition are two indicators frequently used in terrestrial monitoring programs (Godi'nez-Alvarez *et al*, 2008). Vegetation cover is determined through point-based methods or ocular estimates. Due to the small size of the examined plots and the young stage of growth, ocular estimates were made for the cover of each plot. Ocular estimates have a subjective element. In order to minimize observer variance, the same experienced team members were used for each assessment.

Species richness<sup>1</sup> was determined through the counting of the number of species present in each plot. Species for some of the grasses used in these trials could not be accurately identified as they had not reached maturity.

### 4.2 RESULTS

The results for all three assessments are presented in Table 5 for the Waste Rock Site and Table 6 for the Trench Site, both in Appendix C. The percentage of vegetative cover, composition and overall health were observed for each plot.

Generally the cover of the plots increased over time. The exception to this was the plots that received no amendments (seed only). On some of these plots there initially was some minor growth however it had died back in later assessments. Cover at all of the treated plots in Block 3 of the Waste Rock site also decreased over time. Figures 5 and 6 in Appendix C display the cover of all the plots during the assessment conducted on August 5<sup>th</sup>, 2014. The greatest cover commonly occurred at the plots amended with biochar and compost only.

Plant growth was stressed in the plots that were seeded with no treatment (Treatment #1). The healthiest plots generally occurred at those treated with biochar and compost only (Treatment #2), and the addition of dolomite tended to assist in the health at some of the plots at the Waste Rock site. The inclusion of Leonardite did not show any marked improvements in any of the plots and actually tended to decrease the health in the plants on some of the plots on the Waste Rock site.

<sup>&</sup>lt;sup>1</sup> Species richness is the number of different species represented in an ecological community, landscape or region. Species richness is simply a count of species, and it does not take into account the abundances of the species or their relative abundance distributions.

Table 7 in Appendix C shows the species richness and the dominant species where applicable, at each of the plots. Most species of grass are difficult to identify until they are in flower. However some grasses can be identified in the immature stage such as the bluegrasses. They have wider leaf blades and are of a slightly different green colour and thus can be differentiated from the other grasses species that were seeded at the plots. Few plants were mature enough at the Trench site to accurately quantify the dominant species for any of the plots at this time.

Many plants had reached maturity in several of the waste rock plots. For each of the Waste Rock plots where enough mature plants existed to determine species, Ticklegrass (*Agrostis scabra*) was the dominant species. Although Ticklegrass was not one of the species planted at the Trench plots it was a common mature plant in several of the plots. Ticklegrass is a common native plant throughout the site, growing along the edges of the cleared areas and was prolific along the access road at the higher elevations near the Peso site.

Ticklegrass is a common pioneering plant, tolerant to acidic soils, drought, heavy metals and low nutrient conditions, and can grow on permafrost ground and on fine or coarse sediments (Matheus and Oztmigt, 2012). All of these attributes make Ticklegrass an ideal reclamation species for the Peso site. It is short lived, three to five years, and propagates through self seeding. As a pioneering species, Ticklegrass does not compete well with other grasses and will eventually give way to more aggressive species. Future monitoring will determine if it continues to grow at the plots, however its leaf litter will aid in building up the soil for other species as well.

Taxonomic richness, a measure of biodiversity, can indicate the health and productivity of a community. The number of planted species per plot was six, however assessments revealed that a couple of plots exceeded this number since any occurrence of an invading native species was also included (Table 7, Appendix C). Relatively high species richness was noted at some of the low cover sites since an individual alder, hedysarum or willow plant was included in the count as well as unidentified stressed grass. The average species richness per treatment method was calculated for the study period at each site and is displayed below in Table 8.

| TABLE 8     AVERAGE SPECIES RICHNESS PER          | R TREATMENT FOR THE | PLOTS                   |
|---------------------------------------------------|---------------------|-------------------------|
| Treatment                                         | Trench Plots<br>N=5 | Waste Rock Plots<br>N=3 |
| Seed only                                         | 2.1                 | 0.1                     |
| Seed, biochar, compost                            | 4.3                 | 3.6                     |
| Seed, biochar, compost, leonardite                | 4.2                 | 1.9                     |
| Seed, biochar, compost, dolomite lime             |                     | 2.8                     |
| Seed, biochar, compost, leonardite, dolomite lime |                     | 2.7                     |

The plots with the highest species richness at both sites were those treated with biochar and compost only. The inclusion of leonardite in the trench plots also appeared to increase species richness. Although not as effective in increasing species richness as the use of only biochar and compost at the waste rock sites, the addition of dolomite appeared to assist with the acidity.

### 5.0 CONCLUSIONS AND RECOMMENDATIONS

There is little doubt that amendments are required for plants to grow in the study area. All nontreated seeded plots produced no to very little growth. The acidic soil conditions at the Peso trench and the waste rock sites present a challenging scenario in relation to the site conditions at the majority of other disturbed sites in the Dublin Gulch area. However, the success of using compost and biochar to achieve robust plant growth on these highly mineralized and acidic soils, especially on the waste rock dump, is very encouraging.

The evaluation of the revegetation trials using the various treatments and seed mixes requires longer term monitoring. It is recommended that annual monitoring be continued during midsummer for at least a total of five years after which the program should be re-evaluated, and/or modified to assess the effect of particular variables (i.e., soil grain size distribution, aspect, treatment modifications, etc).

It is recommended that during the 2015 monitoring program mature plant tissues are collected for metal analysis from some of the plots. Concurrently soil samples should be collected at the same plots to determine the degree of any metal uptake. Plant tissues from the same species growing naturally in the area would also be analyzed.

The analysis should also determine if the cation exchange capacity (CEC) has been increased through the use of biochar on the plots. CEC is important to fertility as it assists in the retention of nutrients (nitrogen and phosphorus) and cations (like potassium) in soil.

### 6.0 **REFERENCES**

- Aho, E. Aaro. 2006. Hills of Silver The Yukon's Mighty Keno Hill Mine. Harbour Publishing Co. Ltd. BC, Canada.
- Aurum Geological Consultants. Jan 1992. Report on the 1991 Geological and Geochemical Work on the Pierre Property. Prepared for M.J. Moreau Enterprises Ltd. Whitehorse, Yukon.
- Bates, Albert. 2010. The Biochar Solution Carbon Farming and Climate Change. New Society Publishers, Gabriola Island, BC. ISBN 978-0-86571-677-3.
- Beesley, L. and M. Marmiroli. 2011. The Immobilization and Retention of Soluble Arsenic, Cadmium and Zinc by Biochar. Environmental Pollution 159; 474-480.
- Beesley, L., E. Moreno-Jimenez and J.L. Gomez-Eyles. 2010. Effects of biochar and greenwaste compost amendments on mobility, bioavailability and toxicity of inorganic and organic contaminants in a multi-element polluted soil. Environmental Pollution 158 (2010) 2282-2287.
- Bruges, James. 2009. The Biochar Debate Charcoal's Potential to Reverse Climate Change and Build Soil Fertility. Chelsea Green Publishing Company, Vermont, USA. ISBN 978-1-60358-255-1.
- Burns, Bonnie. 2013. Soil Analysis for Possible Revegetation Trials on Three Sites at the Eagle Gold Project at Dublin Gulch. In-house technical memo to Victoria Gold Corp.
- Campbell, D. Douglas. November 1965. Peso Silver Mines Ltd. Properties, Yukon Territory. Vanouver, BC.
- Economist, 2009. The Virtues of Biochar: A New Growth Industry; in The Economist, August 27<sup>th</sup>, 2009 (http://www.economist.com/node/14302001).
- Environmental Services, Public Works and Government Services Canada. 1998. Phase III Environmental Assessment Peso Mine Site Final Report. Prepared for Action on Waste Program, Indian and Northern Affairs Canada, Whitehorse, Yukon.
- Fellet, G. L. Marchoil, G. Delle Vedove, A. Peressotti. Application of Biochar on Mine Tailings: Effects and Perspectives for Land Reclamation. Chemosphere 83; 1262-1267.
- Godi nez-Alvarez, H., J.E. Herrick, M. Mattocks, D. Toledo, J. Van Zee. 2009. Comparison of Three Vegetation Monitoring Methods: Their Relative Utility for Ecological Assessment and Monitoring. Ecological Indicators 9: 1001-1008.
- Knight Piésold Consulting. 2013. Hydrometeorology Report, VA101-290/6-8. Prepared for Victoria Gold Corp.

- Laberge Environmental Services. 2013. Revegetation and Bioremediation Trials at the Old Peso Minesite, Phase I. Prepared for Victoria Gold Corporation, Whitehorse, Yukon.
- Laberge Environmental Services. 2012. The Use of Biochar in Mine Reclamation Results of a Literature Review. Prepared for the Yukon Technology Innovation Center, Whitehorse, Yukon.
- Laberge Environmental Services and Nacho Nyak Dun Development Corporation. 2004. Update Site Assessment Report Peso Mineral Exploration Site MN062. Prepared for DIAND Waste Management Branch, Whitehorse, Yukon.
- Matheus, P. and T. Oztmigt. 2012. Yukon Revegetation Manual Practical Approaches and Methods (Beta form). Prepared for Government of Yukon Advisory Committee and Mining and Petroleum Environmental Mining Research, EMR, Government of Yukon.
- Matheus, P.E. and C.M. Omtzigt, 2013. Yukon Revegetation Manual: Practical Approaches and Methods. Whitehorse, Yukon. 182 pages. ISBN 978-0-9919499-0-8. URL: yukonrevegetatiomanual.ca
- Peltz Christopher, Koren Nydick, Gretchen Fitzgerald, Cathleen Zillich. *Biochar for Soil Remediation on Abandoned Mine Lands*. Mountain Studies Institute, US Forest Service and Bureau of Land Management. GSA poster.
- Singh, V.P. 2005. Metal Toxicity and Tolerance in Plant and Animals. Published by Sarup and Sons, 328 pages.
- Smith, C.E., J.C. Meikle, C.R. Roots. (Editors). 2006. Ecoregions of the Yukon Territory Biophysical Properties of Yukon Landscapes. Agriculture and Agri-Food Canada, Research Branch. PARC Technical bulletin 04-01.
- Stantec. 2011. Eagle Gold Project, Environmental Baseline Report: Vegetation, Appendix 11. Project #1231-10377. Prepared for Victoria Gold Corp. Vancouver, BC.
- StrataGold, 2014. Eagle Gold Project, Reclamation and Closure Plan, Appendix 21 to Yukon Water Use License application, submitted August 2014 to Yukon Water Board.

Yukon Minfile. 2003. Minfile # 106D 021, Peso. Yukon Geological Survey, Whitehorse, Yukon.

# **APPENDIX A**

# ANALYTICAL RESULTS – SOIL, 2012

• MAXXAM JOB # B256252



Your Project #: BIOCHAR RESEARCH Your C.O.C. #: EB492312

Attention: Ken Nordin

LABERGE ENVIRONMENTAL SERVICES WHITEHORSE 405 Ogilvie Street PO Box 21072 Whitehorse, YT CANADA Y1A 6P7

Report Date: 2012/07/13

### **CERTIFICATE OF ANALYSIS**

### MAXXAM JOB #: B256252

### Received: 2012/06/29, 14:00

Sample Matrix: Soil # Samples Received: 4

|                                             |          | Date       | Date                       |                      |
|---------------------------------------------|----------|------------|----------------------------|----------------------|
| Analyses                                    | Quantity | Extracted  | Analyzed Laboratory Method | Analytical Method    |
| Cation Exchange Capacity (1)                | 4        | 2012/07/10 | 2012/07/10 AB SOP-00009    | SSMA 18.2, EPA 200.7 |
| Carbon Nitrogen Ratio (1)                   | 4        | 2012/07/05 | 2012/07/13 Calc            |                      |
| Elements by ICPMS (total)                   | 4        | 2012/07/05 | 2012/07/05 BBY7SOP-00001   | EPA 6020A            |
| Potassium (Available) (1)                   | 4        | 2012/07/09 | 2012/07/09 AB SOP-00042    | EPA 200.7            |
| Loss on Ignition, Org. & Inorg. Residue (2) | 4        | N/A        | 2012/07/06 BBY6SOP-00040   | Carter SSMA 44.3     |
| Nitrate-N (Available) (1)                   | 4        | 2012/07/09 | 2012/07/09 AB SOP-00023    | SM 4110-B            |
| Organic Matter - Calculated from LOI        | 4        | N/A        | 2012/07/06 BBY6SOP-00040   | Carter SSMA 44.3     |
| Phosphorus (Available by ICP) (1)           | 4        | 2012/07/09 | 2012/07/09 AB SOP-00042    | EPA 200.7            |
| pH (2:1 DI Water Extract)                   | 4        | 2012/07/05 | 2012/07/05 BBY6SOP-00028   | Carter, SSMA 16.2    |
| Texture by Hydrometer (1)                   | 3        | N/A        | 2012/07/13 AB SOP-00030    | MMFSPA Ch9           |
| Texture Class (1)                           | 3        | N/A        | 2012/07/13 AB SOP-00030    | MMFSPA Ch9           |
| Total Kjeldahl Nitrogen - Soil (1)          | 4        | 2012/07/13 | 2012/07/13 AB SOP-00008    | EPA 351.1, 351.2     |
| Organic Carbon and Organic Matter (1)       | 4        | 2012/07/11 | 2012/07/11 AB SOP-00012    | MMFSPA Ch6           |

\* RPDs calculated using raw data. The rounding of final results may result in the apparent difference.

(1) This test was performed by Maxxam Calgary Environmental

(2) Loss on Ignition was reported on a dry weight basis.

**Encryption Key** 

Please direct all questions regarding this Certificate of Analysis to your Project Manager.

Tabitha Rudkin, Burnaby Project Manager Email: TRudkin@maxxam.ca Phone# (604) 638-2639

Maxxam has procedures in place to guard against improper use of the electronic signature and have the required "signatories", as per section 5.10.2 of ISO/IEC 17025:2005(E), signing the reports. For Service Group specific validation please refer to the Validation Signature Page. Total cover pages: 1

Maxam

Maxxam Job #: B256252

Report Date: 2012/07/13

LABERGE ENVIRONMENTAL SERVICES Client Project #: BIOCHAR RESEARCH

### **CARBON NITROGEN RATIO (TKN,TOC)**

| Maxxam ID                                              |       | DV0612             | DV0613           | DV0614     | DV0615     |      |          |
|--------------------------------------------------------|-------|--------------------|------------------|------------|------------|------|----------|
| Sampling Date                                          |       | 2012/06/24         | 2012/06/24       | 2012/06/26 | 2012/06/26 |      |          |
|                                                        |       | 12:00              | 12:00            | 12:00      | 12:00      |      |          |
| COC Number                                             |       | EB492312           | EB492312         | EB492312   | EB492312   |      |          |
|                                                        | UNITS | PESO<br>WASTE ROCK | PESO<br>TRENCHES | WHC A,B,C  | MSGM A,B,C | RDL  | QC Batch |
| Misc. Inorganics                                       |       |                    |                  |            |            |      |          |
| Total Kjeldahl Nitrogen                                | mg/kg | 180                | 98               | 18         | 18         | 10   | 6000949  |
| Misc. Inorganics                                       |       |                    |                  |            |            |      |          |
| Carbon Nitrogen Ratio                                  | N/A   | 20.1               | 0.000            | 0.000      | 142        | N/A  | 5976738  |
| Organic Matter                                         | %     | 0.64               | <0.35            | <0.35      | 0.44       | 0.35 | 5991753  |
| Total Organic Carbon (C)                               | %     | 0.37               | <0.20            | <0.20      | 0.25       | 0.20 | 5991753  |
| Total Organic Carbon (C)<br>RDL = Reportable Detection |       | 0.37               | <0.20            | <0.20      | 0.25       | 0.20 | 5991753  |



LABERGE ENVIRONMENTAL SERVICES Client Project #: BIOCHAR RESEARCH

### NPK (AVAILABLE)

| Maxxam ID                        |       | DV0612     | DV0613     | DV0614     | DV0615     |     |          |
|----------------------------------|-------|------------|------------|------------|------------|-----|----------|
| Sampling Date                    |       | 2012/06/24 | 2012/06/24 | 2012/06/26 | 2012/06/26 |     |          |
|                                  |       | 12:00      | 12:00      | 12:00      | 12:00      |     |          |
| COC Number                       |       | EB492312   | EB492312   | EB492312   | EB492312   |     |          |
|                                  | UNITS | PESO       | PESO       | WHC A,B,C  | MSGM A,B,C | RDL | QC Batch |
|                                  |       | WASTE ROCK | TRENCHES   |            |            |     |          |
|                                  |       |            |            |            |            |     |          |
| Nutrients                        |       |            |            |            |            |     |          |
| Available (NH4F) Nitrogen (N)    | mg/kg | <2.0       | <2.0       | <2.0       | 22         | 2.0 | 5985283  |
| Available (NH4F) Phosphorus (P)  | mg/kg | 2.9        | 1.8        | <1.0       | <1.0       | 1.0 | 5978596  |
| Available (NH4OAc) Potassium (K) | mg/kg | <2.0       | 8.5        | 72         | 150        | 2.0 | 5978595  |
| RDL = Reportable Detection Limit |       |            |            |            |            | ·   |          |

Page 3 of 13

Maxxam Job #: B256252 Report Date: 2012/07/13

Maxam

Maxxam Job #: B256252 Report Date: 2012/07/13 LABERGE ENVIRONMENTAL SERVICES Client Project #: BIOCHAR RESEARCH

### **RESULTS OF CHEMICAL ANALYSES OF SOIL**

| Maxxam ID                |          | DV0612     | DV0613     | DV0614     | DV0615     |     |          |
|--------------------------|----------|------------|------------|------------|------------|-----|----------|
| Sampling Date            |          | 2012/06/24 | 2012/06/24 | 2012/06/26 | 2012/06/26 |     |          |
|                          |          | 12:00      | 12:00      | 12:00      | 12:00      |     |          |
| COC Number               |          | EB492312   | EB492312   | EB492312   | EB492312   |     |          |
|                          | UNITS    | PESO       | PESO       | WHC A,B,C  | MSGM A,B,C | RDL | QC Batch |
|                          |          | WASTE ROCK | TRENCHES   |            |            |     |          |
|                          | 1        |            | 1          |            | 1          |     | 1        |
| Elements                 |          |            |            |            |            |     |          |
| Cation exchange capacity | cmol+/Kg | <10        | <10        | 48         | 38         | 10  | 5984044  |
| Misc. Inorganics         |          |            |            |            |            |     |          |
| Organic Matter           | %        | 6.1        | 4.0        | 2.2        | 1.8        | 1.0 | 5976739  |
| Physical Properties      |          |            |            |            |            |     |          |
| % sand by hydrometer     | %        |            | 70         | 39         | 23         | 2.0 | 5999590  |
| % silt by hydrometer     | %        |            | 25         | 48         | 54         | 2.0 | 5999590  |
| Clay Content             | %        |            | 5.6        | 12         | 23         | 2.0 | 5999590  |
| Loss on Ignition         | %        | 6.1        | 4.0        | 2.2        | 1.8        | 1.0 | 5978220  |
| Texture                  | N/A      |            | SANDY LOAM | LOAM       | SILT LOAM  | N/A | 5970847  |

Maxam

Maxxam Job #: B256252

Report Date: 2012/07/13

LABERGE ENVIRONMENTAL SERVICES Client Project #: BIOCHAR RESEARCH

### **CSR/CCME METALS IN SOIL (SOIL)**

| Maxxam ID             |          | DV0612            | DV0613            | DV0614            | DV0615            |       |          |
|-----------------------|----------|-------------------|-------------------|-------------------|-------------------|-------|----------|
| Sampling Date         |          | 2012/06/24        | 2012/06/24        | 2012/06/26        | 2012/06/26        |       |          |
| COC Number            |          | 12:00<br>EB492312 | 12:00<br>EB492312 | 12:00<br>EB492312 | 12:00<br>EB492312 |       |          |
|                       | UNITS    | PESO              | PESO              | WHC A,B,C         | MSGM A,B,C        | RDL   | QC Batch |
|                       |          | WASTE ROCK        | TRENCHES          |                   |                   |       |          |
| Physical Properties   |          |                   |                   |                   |                   |       |          |
| Soluble (2:1) pH      | pH Units | 2.62              | 5.15              | 8.56              | 8.30              | 0.010 | 5974214  |
| Total Metals by ICPMS |          |                   |                   |                   |                   |       |          |
| Total Aluminum (Al)   | mg/kg    | 2690              | 2350              | 10100             | 12200             | 100   | 5974132  |
| Total Antimony (Sb)   | mg/kg    | 3680              | 3580              | 1.32              | 1.45              | 0.10  | 5974132  |
| Total Arsenic (As)    | mg/kg    | 6150              | 9810              | 16.3              | 74.2              | 0.50  | 5974132  |
| Total Barium (Ba)     | mg/kg    | 46.0              | 46.8              | 90.9              | 31.5              | 0.10  | 5974132  |
| Total Beryllium (Be)  | mg/kg    | <0.40             | <0.40             | <0.40             | 1.29              | 0.40  | 5974132  |
| Total Bismuth (Bi)    | mg/kg    | 527               | 372               | 9.59              | 0.14              | 0.10  | 5974132  |
| Total Cadmium (Cd)    | mg/kg    | 4.88              | 4.28              | 0.223             | 0.571             | 0.050 | 5974132  |
| Total Calcium (Ca)    | mg/kg    | 306               | 332               | 31300             | 35300             | 100   | 5974132  |
| Total Chromium (Cr)   | mg/kg    | 6.7               | 12.2              | 20.0              | 19.3              | 1.0   | 5974132  |
| Total Cobalt (Co)     | mg/kg    | 3.54              | 5.33              | 32.5              | 7.92              | 0.30  | 5974132  |
| Total Copper (Cu)     | mg/kg    | 210               | 75.9              | 2420              | 105               | 0.50  | 5974132  |
| Total Iron (Fe)       | mg/kg    | 57500             | 46300             | 143000            | 27900             | 100   | 5974132  |
| Total Lead (Pb)       | mg/kg    | 9070              | 7330              | 6.27              | 27.0              | 0.10  | 5974132  |
| Total Lithium (Li)    | mg/kg    | <5.0              | <5.0              | 7.3               | 20.7              | 5.0   | 5974132  |
| Total Magnesium (Mg)  | mg/kg    | 512               | <100              | 46400             | 7890              | 100   | 5974132  |
| Total Manganese (Mn)  | mg/kg    | 927               | 189               | 803               | 640               | 0.20  | 5974132  |
| Total Mercury (Hg)    | mg/kg    | 0.796             | 0.410             | <0.050            | <0.050            | 0.050 | 5974132  |
| Total Molybdenum (Mo) | mg/kg    | 0.87              | 0.74              | 36.1              | 3.16              | 0.10  | 5974132  |
| Total Nickel (Ni)     | mg/kg    | 9.06              | 12.0              | 13.9              | 3.14              | 0.80  | 5974132  |
| Total Phosphorus (P)  | mg/kg    | 500               | 623               | 527               | 738               | 10    | 5974132  |
| Total Potassium (K)   | mg/kg    | 475               | 340               | 2020              | 839               | 100   | 5974132  |
| Total Selenium (Se)   | mg/kg    | 19.3              | 12.7              | 1.01              | 1.13              | 0.50  | 5974132  |
| Total Silver (Ag)     | mg/kg    | 89.4              | 103               | 2.57              | 1.21              | 0.050 | 5974132  |
| Total Sodium (Na)     | mg/kg    | <100              | <100              | 104               | 468               | 100   | 5974132  |
| Total Strontium (Sr)  | mg/kg    | 114               | 134               | 88.9              | 77.4              | 0.10  | 5974132  |
| Total Thallium (TI)   | mg/kg    | 0.259             | 0.169             | 0.064             | 0.077             | 0.050 | 5974132  |
| Total Tin (Sn)        | mg/kg    | 35.0              | 38.8              | 0.75              | 0.52              | 0.10  | 5974132  |
| Total Titanium (Ti)   | mg/kg    | 31.1              | 5.8               | 380               | 549               | 1.0   | 5974132  |
| Total Uranium (U)     | mg/kg    | 3.73              | 4.81              | 3.31              | 0.419             | 0.050 | 5974132  |
| Total Vanadium (V)    | mg/kg    | 9.8               | 12.2              | 43.3              | 32.0              | 2.0   | 5974132  |



Maxxam Job #: B256252 Report Date: 2012/07/13 LABERGE ENVIRONMENTAL SERVICES Client Project #: BIOCHAR RESEARCH

### **CSR/CCME METALS IN SOIL (SOIL)**

| Maxxam ID              |             | DV0612     | DV0613     | DV0614     | DV0615     |      |          |
|------------------------|-------------|------------|------------|------------|------------|------|----------|
| Sampling Date          |             | 2012/06/24 | 2012/06/24 | 2012/06/26 | 2012/06/26 |      |          |
|                        |             | 12:00      | 12:00      | 12:00      | 12:00      |      |          |
| COC Number             |             | EB492312   | EB492312   | EB492312   | EB492312   |      |          |
|                        | UNITS       | PESO       | PESO       | WHC A,B,C  | MSGM A,B,C | RDL  | QC Batch |
|                        |             | WASTE ROCK | TRENCHES   |            |            |      |          |
|                        |             |            |            |            |            |      |          |
| Total Zinc (Zn)        | mg/kg       | 252        | 129        | 59.7       | 135        | 1.0  | 5974132  |
| Total Zirconium (Zr)   | mg/kg       | 9.15       | 9.77       | 3.24       | 6.91       | 0.50 | 5974132  |
| RDL = Reportable Deter | ction Limit | -          | -          |            | -          |      |          |
|                        |             |            |            |            |            |      |          |



Maxxam Job #: B256252 Report Date: 2012/07/13 Success Through Science®

LABERGE ENVIRONMENTAL SERVICES Client Project #: BIOCHAR RESEARCH

**General Comments** 

Results relate only to the items tested.



### **Quality Assurance Report**

Maxxam Job Number: VB256252

|            | QC Type<br>Matrix Spike | Parameter<br>Total Antimony (Sb) | Analyzed<br>yyyy/mm/dd   | Value | Recovery  |        |                      |
|------------|-------------------------|----------------------------------|--------------------------|-------|-----------|--------|----------------------|
|            |                         |                                  | yyyy/mm/dd               | Value | Pacovory  |        |                      |
| 5974132 DJ | Matrix Spike            | Total Antimony (Sb)              |                          | valuo | Recovery  | UNITS  | QC Limits            |
|            |                         |                                  | 2012/07/05               |       | 94        | %      | 75 - 125             |
|            |                         | Total Arsenic (As)               | 2012/07/05               |       | 99        | %      | 75 - 125             |
|            |                         | Total Barium (Ba)                | 2012/07/05               |       | NC        | %      | 75 - 125             |
|            |                         | Total Beryllium (Be)             | 2012/07/05               |       | 105       | %      | 75 - 125             |
|            |                         | Total Cadmium (Cd)               | 2012/07/05               |       | 100       | %      | 75 - 125             |
|            |                         | Total Chromium (Cr)              | 2012/07/05               |       | 97        | %      | 75 - 125             |
|            |                         | Total Cobalt (Co)                | 2012/07/05               |       | 99        | %      | 75 - 125             |
|            |                         | Total Copper (Cu)                | 2012/07/05               |       | 90        | %      | 75 - 125             |
|            |                         | Total Lead (Pb)                  | 2012/07/05               |       | 97        | %      | 75 - 125             |
|            |                         | Total Lithium (Li)               | 2012/07/05               |       | 102       | %      | 75 - 125             |
|            |                         | Total Manganese (Mn)             | 2012/07/05               |       | NC        | %      | 75 - 125             |
|            |                         | Total Mercury (Hg)               | 2012/07/05               |       | 106       | %      | 75 - 125             |
|            |                         | Total Molybdenum (Mo)            | 2012/07/05               |       | 100       | %      | 75 - 125             |
|            |                         | Total Nickel (Ni)                | 2012/07/05               |       | 89        | %      | 75 - 125             |
|            |                         | Total Selenium (Se)              | 2012/07/05               |       | 102       | %      | 75 - 125             |
|            |                         | Total Silver (Ag)                | 2012/07/05               |       | 98        | %      | 75 - 125             |
|            |                         | Total Strontium (Sr)             | 2012/07/05               |       | 97        | %      | 75 - 125             |
|            |                         | Total Thallium (TI)              | 2012/07/05               |       | 101       | %      | 75 - 125             |
|            |                         | Total Tin (Sn)                   | 2012/07/05               |       | 95        | %      | 75 - 125             |
|            |                         | Total Titanium (Ti)              | 2012/07/05               |       | NC        | %      | 75 - 125             |
|            |                         | Total Uranium (U)                | 2012/07/05               |       | 99        | %      | 75 - 125             |
|            |                         | Total Vanadium (V)               | 2012/07/05               |       | NC        | %      | 75 - 125             |
|            |                         | Total Zinc (Zn)                  | 2012/07/05               |       | NC        | %      | 75 - 125             |
| (          | QC Standard             | Total Aluminum (Al)              | 2012/07/05               |       | 100       | %      | 70 - 130             |
|            |                         | Total Antimony (Sb)              | 2012/07/05               |       | 86        | %      | 70 - 130             |
|            |                         | Total Arsenic (As)               | 2012/07/05               |       | 89        | %      | 70 - 130             |
|            |                         | Total Barium (Ba)                | 2012/07/05               |       | 96        | %      | 70 - 130             |
|            |                         | Total Cadmium (Cd)               | 2012/07/05               |       | 91        | %      | 70 - 130             |
|            |                         | Total Calcium (Ca)               | 2012/07/05               |       | 89        | %      | 70 - 130             |
|            |                         | Total Chromium (Cr)              | 2012/07/05               |       | 98        | %      | 70 - 130             |
|            |                         | Total Cobalt (Co)                | 2012/07/05               |       | 87        | %      | 70 - 130             |
|            |                         | Total Copper (Cu)                | 2012/07/05               |       | 72        | %      | 70 - 130             |
|            |                         | Total Iron (Fe)                  | 2012/07/05               |       | 92        | %      | 70 - 130             |
|            |                         | Total Lead (Pb)                  | 2012/07/05               |       | 94        | %      | 70 - 130             |
|            |                         | Total Magnesium (Mg)             | 2012/07/05               |       | 88        | %      | 70 - 130             |
|            |                         | Total Manganese (Mn)             | 2012/07/05               |       | 93        | %      | 70 - 130             |
|            |                         | Total Mercury (Hg)               | 2012/07/05               |       | 114       | %      | 70 - 130             |
|            |                         | Total Molybdenum (Mo)            | 2012/07/05               |       | 91        | %      | 70 - 130             |
|            |                         | Total Nickel (Ni)                | 2012/07/05               |       | 72        | %      | 70 - 130             |
|            |                         | Total Phosphorus (P)             | 2012/07/05               |       | 87        | %      | 70 - 130             |
|            |                         | Total Strontium (Sr)             | 2012/07/05               |       | 82        | %      | 70 - 130             |
|            |                         | Total Thallium (TI)              | 2012/07/05               |       | 90        | %      | 70 - 130             |
|            |                         | Total Titanium (Ti)              | 2012/07/05               |       | 105       | %      | 70 - 130             |
|            |                         | Total Uranium (U)                | 2012/07/05               |       | 82        | %      | 70 - 130             |
|            |                         | Total Vanadium (V)               | 2012/07/05               |       | 99        | %      | 70 - 130             |
|            |                         | Total Zinc (Zn)                  | 2012/07/05               |       | 72        | %      | 70 - 130             |
|            | Spiked Blank            | Total Antimony (Sb)              | 2012/07/05               |       | 97        | %      | 75 - 125             |
| ``         |                         | Total Arsenic (As)               | 2012/07/05               |       | 98        | %      | 75 - 125             |
|            |                         | Total Barium (Ba)                | 2012/07/05               |       | 97        | %      | 75 - 125             |
|            |                         | Total Beryllium (Be)             | 2012/07/05               |       | 104       | %      | 75 - 125             |
|            |                         | Total Cadmium (Cd)               | 2012/07/05               |       | 104       | %      | 75 - 125             |
|            |                         | Total Chromium (Cr)              | 2012/07/05               |       | 97        | %      | 75 - 125             |
|            |                         | Total Cobalt (Co)                | 2012/07/05               |       | 97<br>99  | %      | 75 - 125<br>75 - 125 |
|            |                         |                                  |                          |       |           |        |                      |
|            |                         | Total Copper (Cu)                | 2012/07/05<br>2012/07/05 |       | 100<br>96 | %<br>% | 75 - 125<br>75 - 125 |
|            |                         | Total Lead (Pb)                  | 2012/07/03               |       | 90        | /0     | 10-120               |



### Quality Assurance Report (Continued)

Maxxam Job Number: VB256252

| QA/QC      |                 |                       | Date       |            |          |        |           |
|------------|-----------------|-----------------------|------------|------------|----------|--------|-----------|
| Batch      |                 |                       | Analyzed   |            |          |        |           |
| Num Init   | QC Type         | Parameter             | yyyy/mm/dd | Value      | Recovery | UNITS  | QC Limits |
| 5974132 DJ | Spiked Blank    | Total Lithium (Li)    | 2012/07/05 |            | 98       | %      | 75 - 125  |
|            |                 | Total Manganese (Mn)  | 2012/07/05 |            | 95       | %      | 75 - 125  |
|            |                 | Total Mercury (Hg)    | 2012/07/05 |            | 106      | %      | 75 - 125  |
|            |                 | Total Molybdenum (Mo) | 2012/07/05 |            | 97       | %      | 75 - 125  |
|            |                 | Total Nickel (Ni)     | 2012/07/05 |            | 97       | %      | 75 - 125  |
|            |                 | Total Selenium (Se)   | 2012/07/05 |            | 102      | %      | 75 - 125  |
|            |                 | Total Silver (Ag)     | 2012/07/05 |            | 97       | %      | 75 - 125  |
|            |                 | Total Strontium (Sr)  | 2012/07/05 |            | 95       | %      | 75 - 125  |
|            |                 | Total Thallium (TI)   | 2012/07/05 |            | 93       | %      | 75 - 125  |
|            |                 | Total Tin (Sn)        | 2012/07/05 |            | 93       | %      | 75 - 125  |
|            |                 | Total Titanium (Ti)   | 2012/07/05 |            | 95<br>95 | %      | 75 - 125  |
|            |                 | Total Uranium (U)     | 2012/07/05 |            | 95<br>95 | %      | 75 - 125  |
|            |                 | ( )                   |            |            |          |        | 75 - 125  |
|            |                 | Total Vanadium (V)    | 2012/07/05 |            | 96       | %<br>% |           |
|            | Mathead Directo | Total Zinc (Zn)       | 2012/07/05 | 400        | 104      |        | 75 - 125  |
|            | Method Blank    | Total Aluminum (Al)   | 2012/07/05 | <100       |          | mg/kg  |           |
|            |                 | Total Antimony (Sb)   | 2012/07/05 | <0.10      |          | mg/kg  |           |
|            |                 | Total Arsenic (As)    | 2012/07/05 | <0.50      |          | mg/kg  |           |
|            |                 | Total Barium (Ba)     | 2012/07/05 | <0.10      |          | mg/kg  |           |
|            |                 | Total Beryllium (Be)  | 2012/07/05 | <0.40      |          | mg/kg  |           |
|            |                 | Total Bismuth (Bi)    | 2012/07/05 | <0.10      |          | mg/kg  |           |
|            |                 | Total Cadmium (Cd)    | 2012/07/05 | <0.050     |          | mg/kg  |           |
|            |                 | Total Calcium (Ca)    | 2012/07/05 | <100       |          | mg/kg  |           |
|            |                 | Total Chromium (Cr)   | 2012/07/05 | <1.0       |          | mg/kg  |           |
|            |                 | Total Cobalt (Co)     | 2012/07/05 | <0.30      |          | mg/kg  |           |
|            |                 | Total Copper (Cu)     | 2012/07/05 | <0.50      |          | mg/kg  |           |
|            |                 | Total Iron (Fe)       | 2012/07/05 | <100       |          | mg/kg  |           |
|            |                 | Total Lead (Pb)       | 2012/07/05 | <0.10      |          | mg/kg  |           |
|            |                 | Total Lithium (Li)    | 2012/07/05 | <5.0       |          | mg/kg  |           |
|            |                 | Total Magnesium (Mg)  | 2012/07/05 | <100       |          | mg/kg  |           |
|            |                 | Total Manganese (Mn)  | 2012/07/05 | <0.20      |          | mg/kg  |           |
|            |                 | Total Mercury (Hg)    | 2012/07/05 | < 0.050    |          | mg/kg  |           |
|            |                 | Total Molybdenum (Mo) | 2012/07/05 | <0.10      |          | mg/kg  |           |
|            |                 | Total Nickel (Ni)     | 2012/07/05 | <0.10      |          | mg/kg  |           |
|            |                 | Total Phosphorus (P)  | 2012/07/05 | <0.00      |          | mg/kg  |           |
|            |                 |                       |            |            |          |        |           |
|            |                 | Total Potassium (K)   | 2012/07/05 | <100       |          | mg/kg  |           |
|            |                 | Total Selenium (Se)   | 2012/07/05 | < 0.50     |          | mg/kg  |           |
|            |                 | Total Silver (Ag)     | 2012/07/05 | < 0.050    |          | mg/kg  |           |
|            |                 | Total Sodium (Na)     | 2012/07/05 | <100       |          | mg/kg  |           |
|            |                 | Total Strontium (Sr)  | 2012/07/05 | <0.10      |          | mg/kg  |           |
|            |                 | Total Thallium (TI)   | 2012/07/05 | <0.050     |          | mg/kg  |           |
|            |                 | Total Tin (Sn)        | 2012/07/05 | <0.10      |          | mg/kg  |           |
|            |                 | Total Titanium (Ti)   | 2012/07/05 | <1.0       |          | mg/kg  |           |
|            |                 | Total Uranium (U)     | 2012/07/05 | <0.050     |          | mg/kg  |           |
|            |                 | Total Vanadium (V)    | 2012/07/05 | <2.0       |          | mg/kg  |           |
|            |                 | Total Zinc (Zn)       | 2012/07/05 | <1.0       |          | mg/kg  |           |
|            |                 | Total Zirconium (Zr)  | 2012/07/05 | <0.50      |          | mg/kg  |           |
|            | RPD             | Total Aluminum (Al)   | 2012/07/05 | 3.5        |          | %      | 35        |
|            |                 | Total Antimony (Sb)   | 2012/07/05 | NC         |          | %      | 30        |
|            |                 | Total Arsenic (As)    | 2012/07/05 | 2.1        |          | %      | 30        |
|            |                 | Total Barium (Ba)     | 2012/07/05 | 23.3       |          | %      | 35        |
|            |                 | Total Beryllium (Be)  | 2012/07/05 | 23.3<br>NC |          | %      | 30        |
|            |                 | Total Bismuth (Bi)    |            | NC         |          | %      | 30        |
|            |                 |                       | 2012/07/05 |            |          |        |           |
|            |                 | Total Cadmium (Cd)    | 2012/07/05 | NC         |          | %      | 30        |
|            |                 | Total Calcium (Ca)    | 2012/07/05 | 2.1        |          | %      | 30        |
|            |                 | Total Chromium (Cr)   | 2012/07/05 | 3.1        |          | %      | 30        |



### Quality Assurance Report (Continued)

Maxxam Job Number: VB256252

| QA/QC       |                      |                                  | Date       |       |          |        |          |
|-------------|----------------------|----------------------------------|------------|-------|----------|--------|----------|
| Batch       |                      |                                  | Analyzed   |       |          |        |          |
| Num Init    | QC Type              | Parameter                        | yyyy/mm/dd | Value | Recovery | UNITS  | QC Limit |
| 5974132 DJ  | RPD                  | Total Cobalt (Co)                | 2012/07/05 | 0.5   | <b>/</b> | %      | 3        |
|             |                      | Total Copper (Cu)                | 2012/07/05 | 4.5   |          | %      | 3        |
|             |                      | Total Iron (Fe)                  | 2012/07/05 | 0.2   |          | %      | 3        |
|             |                      | Total Lead (Pb)                  | 2012/07/05 | 4.7   |          | %      | 3        |
|             |                      | Total Lithium (Li)               | 2012/07/05 | NC    |          | %      | 3        |
|             |                      |                                  |            |       |          |        |          |
|             |                      | Total Magnesium (Mg)             | 2012/07/05 | 4.3   |          | %<br>% | 3        |
|             |                      | Total Manganese (Mn)             | 2012/07/05 | 1.7   |          |        | 3        |
|             |                      | Total Mercury (Hg)               | 2012/07/05 | NC    |          | %      | 3        |
|             |                      | Total Molybdenum (Mo)            | 2012/07/05 | NC    |          | %      | 3        |
|             |                      | Total Nickel (Ni)                | 2012/07/05 | 2.2   |          | %      | 3        |
|             |                      | Total Phosphorus (P)             | 2012/07/05 | 3.0   |          | %      | 3        |
|             |                      | Total Potassium (K)              | 2012/07/05 | 5.4   |          | %      | 3        |
|             |                      | Total Selenium (Se)              | 2012/07/05 | NC    |          | %      | 3        |
|             |                      | Total Silver (Ag)                | 2012/07/05 | NC    |          | %      | 3        |
|             |                      | Total Sodium (Na)                | 2012/07/05 | NC    |          | %      | 3        |
|             |                      | Total Strontium (Sr)             | 2012/07/05 | 12.8  |          | %      | 3        |
|             |                      | Total Thallium (TI)              | 2012/07/05 | NC    |          | %      | 3        |
|             |                      | Total Tin (Sn)                   | 2012/07/05 | NC    |          | %      | 3        |
|             |                      | Total Titanium (Ti)              | 2012/07/05 | 2.2   |          | %      | 3        |
|             |                      | Total Uranium (U)                | 2012/07/05 | NC    |          | %      | 3        |
|             |                      | Total Vanadium (V)               | 2012/07/05 | 4.4   |          | %      | 3        |
|             |                      | Total Zinc (Zn)                  | 2012/07/05 | 0.6   |          | %      | 3        |
|             |                      | Total Zirconium (Zr)             | 2012/07/05 | NC    |          | %      |          |
| 5974214 NS6 | Spiked Blank         |                                  |            | NC    | 101      | %      | 96 - 10  |
|             |                      | Soluble (2:1) pH                 | 2012/07/05 | 0.5   | 101      |        |          |
| 5978220 JGD | RPD<br>Matheod Black | Soluble (2:1) pH                 | 2012/07/05 | 0.5   |          | %      | 2        |
|             | Method Blank         | Loss on Ignition                 | 2012/07/06 | <1.0  |          | %      |          |
|             | RPD [DV0615-01]      | Loss on Ignition                 | 2012/07/06 | NC    |          | %      | 3        |
| 5978595 PL  | Spiked Blank         | Available (NH4OAc) Potassium (K) | 2012/07/09 |       | 95       | %      | 80 - 12  |
|             | Method Blank         | Available (NH4OAc) Potassium (K) | 2012/07/09 | <2.0  |          | mg/kg  |          |
|             | RPD                  | Available (NH4OAc) Potassium (K) | 2012/07/09 | 0.4   |          | %      | 3        |
| 5978596 PL  | Spiked Blank         | Available (NH4F) Phosphorus (P)  | 2012/07/09 |       | 101      | %      | 80 - 12  |
|             | Method Blank         | Available (NH4F) Phosphorus (P)  | 2012/07/09 | <1.0  |          | mg/kg  |          |
|             | RPD                  | Available (NH4F) Phosphorus (P)  | 2012/07/09 | NC    |          | %      | 3        |
| 5984044 DL6 | RPD [DV0612-02]      | Cation exchange capacity         | 2012/07/10 | NC    |          | %      | 3        |
| 5985283 RP0 | Matrix Spike         | Available (NH4F) Nitrogen (N)    | 2012/07/09 |       | 100      | %      | 80 - 12  |
|             | Spiked Blank         | Available (NH4F) Nitrogen (N)    | 2012/07/09 |       | 98       | %      | 90 - 11  |
|             | Method Blank         | Available (NH4F) Nitrogen (N)    | 2012/07/09 | <2.0  |          | mg/kg  |          |
|             | RPD                  | Available (NH4F) Nitrogen (N)    | 2012/07/09 | NC    |          | %      | 3        |
| 5991753 DL6 | QC Standard          | Organic Matter                   | 2012/07/11 |       | 94       | %      | 83 - 11  |
|             |                      | Total Organic Carbon (C)         | 2012/07/11 |       | 94       | %      | 83 - 11  |
|             | RPD [DV0613-02]      | Organic Matter                   | 2012/07/11 | NC    | 54       | %      | 3        |
|             | KFD [DV0013-02]      | Total Organic Carbon (C)         |            | NC    |          |        | 3        |
|             | OC Chandand          |                                  | 2012/07/11 | NC    | 00       | %      |          |
| 5999590 KVD | QC Standard          | % sand by hydrometer             | 2012/07/13 |       | 99       | %      | 88 - 11  |
|             |                      | % silt by hydrometer             | 2012/07/13 |       | 101      | %      | 85 - 11  |
|             |                      | Clay Content                     | 2012/07/13 |       | 100      | %      | 79 - 12  |
|             | RPD                  | % sand by hydrometer             | 2012/07/13 | 4.2   |          | %      | 3        |
|             |                      | % silt by hydrometer             | 2012/07/13 | 7.6   |          | %      | Э        |
|             |                      | Clay Content                     | 2012/07/13 | 15.7  |          | %      | 3        |
| 6000949 IA0 | Matrix Spike         |                                  |            |       |          |        |          |
|             | [DV0615-02]          | Total Kjeldahl Nitrogen          | 2012/07/13 |       | 90       | %      | 75 - 12  |
|             | QC Standard          | Total Kjeldahl Nitrogen          | 2012/07/13 |       | 90       | %      | 75 - 12  |
|             | Spiked Blank         | Total Kjeldahl Nitrogen          | 2012/07/13 |       | 105      | %      | 75 - 12  |
|             | Method Blank         | Total Kjeldahl Nitrogen          | 2012/07/13 | <10   |          | mg/kg  |          |
|             | RPD [DV0615-02]      | Total Kjeldahl Nitrogen          | 2012/07/13 | NC    |          | %      | 3        |
|             |                      |                                  | 2012/01/10 | 110   |          | 70     |          |



### Quality Assurance Report (Continued)

Maxxam Job Number: VB256252

Matrix Spike: A sample to which a known amount of the analyte of interest has been added. Used to evaluate sample matrix interference. QC Standard: A blank matrix to which a known amount of the analyte has been added. Used to evaluate analyte recovery. Spiked Blank: A blank matrix to which a known amount of the analyte has been added. Used to evaluate analyte recovery. Method Blank: A blank matrix containing all reagents used in the analytical procedure. Used to identify laboratory contamination. NC (Matrix Spike): The recovery in the matrix spike was not calculated. The relative difference between the concentration in the parent sample and the spiked amount was not sufficiently significant to permit a reliable recovery calculation. NC (RPD): The RPD was not calculated. The level of analyte detected in the parent sample and its duplicate was not sufficiently significant to permit a reliable calculation.



### Validation Signature Page

### Maxxam Job #: B256252

The analytical data and all QC contained in this report were reviewed and validated by the following individual(s).

sh

Lhi Zhou, Senior analyst, Inorganic department.

Rob Reinert, Data Validation Coordinator

Maxxam has procedures in place to guard against improper use of the electronic signature and have the required "signatories", as per section 5.10.2 of ISO/IEC 17025:2005(E), signing the reports. For Service Group specific validation please refer to the Validation Signature Page.

BBY FCD-00077R1\_C

Maxim Analytics Success Through Science @

| 5                       | Page: 1 of 1  |                             |                                |               | Biochar Research   |             |                    | ordin                  |                          |                                |                         |                               |                                                                                 |                    |                                      | 400                    |                |                                                     |                   |                 |                | rdin:          | Please nomogenize who<br>and MSGM iars A. B and C | to form single sample for |       |     |                  |    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |         | Laboration Lise Only | These was from the second | t (°C) Custody Seal Yes No       |
|-------------------------|---------------|-----------------------------|--------------------------------|---------------|--------------------|-------------|--------------------|------------------------|--------------------------|--------------------------------|-------------------------|-------------------------------|---------------------------------------------------------------------------------|--------------------|--------------------------------------|------------------------|----------------|-----------------------------------------------------|-------------------|-----------------|----------------|----------------|---------------------------------------------------|---------------------------|-------|-----|------------------|----|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------|----------------------|---------------------------|----------------------------------|
| COC number              | EB492312      |                             | PO #:                          | Quotation #:  | Project # : Biocha | Proj. Name: | Location:          | Sampled by: Ken Nordin |                          | ANALYSIS REQUESTED             | *                       |                               |                                                                                 | ~                  | ~                                    | _                      | ~              |                                                     |                   |                 |                | Ken Nordin:    | and MS                                            | to form                   | each. |     |                  |    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |         |                      |                           | Time Temperature on Receipt (°C) |
| 1988                    | COC # EB      |                             |                                |               |                    | 50          | Fax                |                        |                          |                                |                         |                               |                                                                                 |                    |                                      |                        | nsintu<br>size | k Orga<br>Petats<br>MPK (N<br>MPK (N<br>MPK (N      | x x x x           | x x x x x x     | × × × × ×      | x x x x x      |                                                   |                           |       |     | UNYARIA MARKARIA |    | A REALL CONTRACTOR OF A CONTRACT | 04      |                      |                           | : Time (24 hr):                  |
| VSG 1K5 Ph. (804) 734-7 | PS 695 CQ     | Report To:                  | ame; same                      | me:           |                    |             | とも                 |                        |                          |                                |                         |                               | K                                                                               | city<br>647<br>647 |                                      | ange<br>Field          | etels          | )) state<br>Mitate<br>Mitato<br>I noita:<br>Vater H | ) ×               | ×               | ×              | ×              | -                                                 |                           |       |     |                  |    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | B256252 |                      |                           | Date (yy/mm/dd);                 |
| nada Way, Burnaby, BC 1 | Maxxam Job #: |                             | Company Name,                  | Contact Name: | Address:           | 1           | 1                  | E-mail                 | TED:                     | ound Time (TAT)                | t tests)                | contact the lab)              | O 2 Day O 3 Day                                                                 |                    |                                      | - Cunner               |                | Sample Date/Time(24hr)<br>Tune Samulari             | 12/               | 12/06/24 12:00  | 12/06/26 12:00 | 12/06/26 12:00 |                                                   |                           |       |     | ~                |    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |         | Print name and sign  |                           | Received by :                    |
| -                       |               | Yes                         | Laberge Environmental Services |               | ehorse Yukon       | PC: Y1A 6P7 | 8 Fax 867 667 6956 |                        | SERVICE REQUESTED:       | Regular Turn Around Time (TAT) | (5 days for most tests) | RUSH (Please contact the lab) |                                                                                 | Date Required:     | Shin Samala Rottlas (alassa sadaifu) | account company and in | Lab Use Dolv   | 1                                                   |                   | Dvo613          | DVOGIH         | DUDGIS         |                                                   |                           |       |     |                  | -  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |         | Pr                   |                           | Date (yy/mm/dd):  Time (24hr):   |
| MaXiam                  | ~             | Involce To: Require Report? |                                | Ken Nordin    | Box 21072 White    |             | Phr 867 668 6838   |                        | REGULATORY REQUIREMENTS: |                                |                         | uality                        | 20<br>20<br>20<br>20<br>20<br>20<br>20<br>20<br>20<br>20<br>20<br>20<br>20<br>2 | NATER              | RUCTIONS:                            |                        |                | * Samula Identification                             | Rock              | es              |                | 0              |                                                   |                           |       |     | 34               |    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |         |                      |                           |                                  |
| Max                     |               |                             | Company Name:                  | Contact Name: | Address:           |             | Phone / Fax#:      | E-mail                 | REGULATORY               | CSR                            | COME                    | BC Water Quality              | Other                                                                           | DRINKING WATER     | SPECIAL INSTRUCTIONS                 |                        |                | • Samo                                              | 1 Peso Waste Rock | 2 Poso Trenches | 3 WHC A,B,C    | 4 MSGM A.B.C   | 5                                                 | 9                         | 7     | -00 | Ó                | 10 | 11                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 12      | Print name and sign  |                           | *Relinquished By:                |

**APPENDIX B** 

PHOTOGRAPHS, 2012 TO 2014

### PHOTOGRAPHS OF THE PESO RESEARCH SITES, 2012 TO 2014



Photo #1: Each plot was first decompacted using a 5-pronged hand cultivator. Sept 2012.

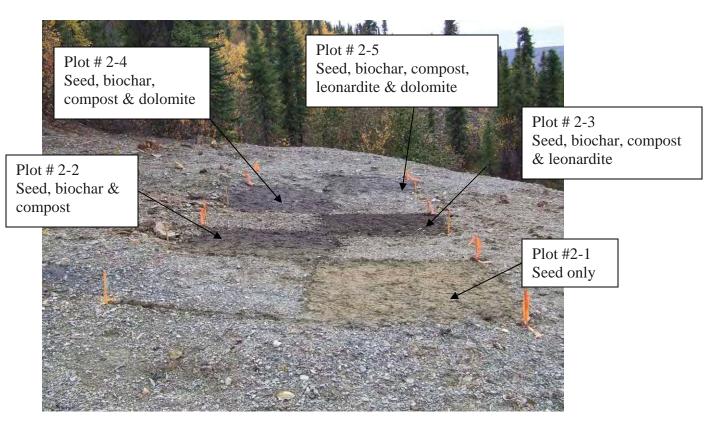



Photo #2: Seeded and treated plots at Block #2 on the waste rock dump, Sept 2012.



Photo #3: Trench Block #1. Plot # 1-2B in lower right corner. July 25<sup>th</sup>, 2013



Photo #4: Trench Block #1. Plot # 1-2B in lower right corner. August 5<sup>th</sup>, 2014



Photo #5: Trench Block #2. Plot # 2-1B in lower left. July 25<sup>th</sup>, 2013



Photo #6: Trench Block #2: Plot # 2-3A in lower right corner. September 15<sup>th</sup>, 2013.



Photo #7: Trench Block #3. Plot # 3-2A in lower left corner. July 25<sup>th</sup>, 2013



Photo #8: Trench Block #3. Plot # 3-2A in lower left corner. August 5<sup>th</sup>, 2014



Photo #9: Waste Rock Block #1: Plot # 1-1 in lower left corner. July 25th, 2013



Photo #10: Waste Rock Block #1, Plot # 1-1 in lower left corner. August 5<sup>th</sup>, 2014



Photo #11: Waste Rock Block #2, Plot # 2-1 in lower right corner. July 25<sup>th</sup>, 2013.



Photo #12: Waste Rock Block #2, Plot # 2-1 in lower right corner. August 5<sup>th</sup>, 2014 The pinkish colour are the mature seed heads of Ticklegrass.



Photo #13: Waste Rock Block #3. Plot # 3-5 in lower right of the block, July 25<sup>th</sup>, 2013



Photo #14: Waste Rock Block #3. Plot # 3-5 in lower right corner, August 5<sup>th</sup>, 2014



Photo #15: Diverse growth at Plot # 1-3 at the Trench site, August 5<sup>th</sup>, 2014



Photo #16: Healthy growth at Plot # 2-2 at the Trench site, August 5<sup>th</sup>, 2014.



Photo #17: Plot # 3-2A was diverse and had the most mature plants of any plots at the Trench site, August  $5^{th}$ , 2014.



Photo # 18: Plot # 1-2 at the Waste Rock site had many mature ticklegrass plants, Aug 5<sup>th</sup>, 2014.



Photo #19: There were also many mature Ticklegrass plants at Block 2 at the Waste Rock Site, August 5<sup>th</sup>, 2014. Plot # 2-3 is in the centre of the photo.



Photo #20: Plot # 3-4 was the healthiest plot in Block 3 of the Waste Rock Site, August 5<sup>th</sup>, 2014.

**APPENDIX C** 

**REVEGETATION ASSESSMENT RESULTS** 

## APPENDIX C, TABLE 5 ASSESSMENTS OF THE PLOTS AT THE WASTE ROCK SITE, 2013 and 2014

| Plot # | Date   | % Cover                             | Species, height cm and/or # of individuals            | Overall Health     | Comments                     |
|--------|--------|-------------------------------------|-------------------------------------------------------|--------------------|------------------------------|
|        | Jul-13 | 0                                   |                                                       |                    | bare plot                    |
| 1-1    | Sep-13 | <1                                  | 1 blade of unidentifiable grass                       | stressed           | bare plot                    |
|        | Aug-14 | 0                                   |                                                       |                    | bare plot, moist soil        |
|        | Jul-13 | 40 - 50                             | 2 species of grass - unidentified                     | good               | tallest and most robust      |
|        |        |                                     | alder, 8 plants                                       |                    | growth of all plots in block |
|        |        |                                     | hedysarum, 2 plants                                   |                    |                              |
|        | Sep-13 | 60 - 65                             | tickle grass, some in seed, max 30 cm                 | good               | green healthy growth,        |
|        |        |                                     | glaucous bluegrass up to 12 cm                        |                    | signs of grazing             |
| 1-2    |        |                                     | sheep fescue (?), 8 cm                                |                    |                              |
| 1-2    |        |                                     | alder < 1cm                                           |                    |                              |
|        |        |                                     | hedysarum, < 2cm                                      |                    |                              |
| Aug-14 | Aug-14 | 70                                  | tufted hairgrass, 2 plants up to 40 cm                | good               | even coverage of plot,       |
|        |        | ticklegrass, many plants, avg 35 cm |                                                       | 1 willow in plot   |                              |
|        |        |                                     | sheep fescue, 3 mature plants, max 35 to 40 cm        |                    |                              |
|        |        |                                     | alder, 7 plants                                       |                    |                              |
|        | Jul-13 | 15 - 20                             | small tufts of unidentified grass                     | good               |                              |
|        |        |                                     | alder, 2 plants - very small                          |                    |                              |
|        | Sep-13 | 30 - 35                             | glaucous bluegrass up to 8 cm                         | good               | sporadic cover               |
| 1-3    |        |                                     | unidentified grass up to 10 cm                        |                    |                              |
|        |        |                                     | alder, <1 cm                                          |                    |                              |
|        | Aug-14 | 40                                  | ticklegrass, max 35 cm                                | fairly good        | uneven distribution,         |
|        |        |                                     | alder, 1 plant                                        |                    | bare sections                |
|        | Jul-13 | 10 - 15                             | small tufts of unidentified grass, at least 2 species | fairly good        |                              |
|        | Sep-13 | 30 - 35                             | glaucous bluegrass up to 8 cm                         | partially stressed |                              |
|        |        |                                     | unidentified grass up to 4 cm                         |                    |                              |
| 1-4    |        |                                     | alder, <1 cm                                          |                    |                              |
|        | Aug-14 | 50                                  | ticklegrass, many mature plants, up to 30 cm          | good               | uneven distribution          |
|        |        |                                     | sheep fescue, a few plants, up to 15 cm               |                    |                              |
|        |        |                                     | alder, 5 plants                                       |                    |                              |
|        | Jul-13 | 5                                   | sparse short growth of grasses                        | stressed           |                              |
|        | Sep-13 | 50                                  | glaucous bluegrass, 4 cm                              | good               | Signs of grazing.            |
|        |        |                                     | tickle grass up to 3 cm                               |                    | even coverage of growth      |
|        |        |                                     | unidentified grass up to 4 cm                         |                    |                              |
| 1-5    |        |                                     | alder, < 2cm                                          |                    |                              |
| 15     |        |                                     | hedysarum                                             |                    |                              |
|        | Aug-14 | 60                                  | tickle grass, mature, max 25 cm                       | good               | Several tufts of             |
|        |        |                                     | immature glacous bluegrass                            |                    | unidentifiable grass.        |
|        |        |                                     | immature grass - may be sheep fescue                  |                    |                              |
|        |        |                                     | alder, 2 plants                                       |                    |                              |

## APPENDIX C, TABLE 5 ASSESSMENTS OF THE PLOTS AT THE WASTE ROCK SITE, 2013 and 2014

| Plot # | Date   | % Cover | Species, height cm and/or # of individuals              | Overall Health | Comments                     |
|--------|--------|---------|---------------------------------------------------------|----------------|------------------------------|
|        | Jul-13 | 0       | no sign of any growth                                   |                | bare plot                    |
| 2-1    | Sep-13 | 0       | no sign of any growth                                   |                | bare plot                    |
|        | Aug-14 | 0       | no sign of any growth                                   |                | bare plot                    |
|        | Jul-13 | 35      | unidentified tufts of grass - healthy                   | good           | coverage mostly on east half |
|        |        |         | alder, 1 plant, very small                              |                |                              |
|        |        |         | hedysarum, 2 plants                                     |                |                              |
|        | Sep-13 | 50      | ticklegrass up to 16 cm                                 | good           | growth covers most of the    |
|        |        |         | sheep fescue up to 12 cm                                |                | eastern half of plot         |
| 2-2    |        |         | glaucous bluegrass up to 8 cm                           |                |                              |
| 2-2    |        |         | alder                                                   |                |                              |
|        |        |         | hedysarum,                                              |                |                              |
|        | Aug-14 | 60      | ticklegrass, mature, max 30 cm                          | good           | growth covers most of the    |
|        |        |         | alder, 7 plants                                         |                | eastern half of plot         |
|        |        |         | volunteer willow, 6 plants                              |                |                              |
|        |        |         | volunteer spruce, 2 plants                              |                |                              |
|        | Jul-13 | 45      | unidentified tufts of grass - healthy                   | good           | more even coverage           |
|        | ,,     |         | alder, 9 plants                                         |                |                              |
|        | Sep-13 | 60      | ticklegrass up to 11 cm                                 | good           | even cover of plot           |
| 2-3    |        |         | glaucous bluegrass up to 11 cm                          |                |                              |
| 2-5    |        |         | alder, several small seedlings                          |                |                              |
|        | Aug-14 | 60      | ticklegrass, max 38 cm                                  | good           | even distribution            |
|        |        |         | immature sheep fescue                                   |                |                              |
|        |        |         | alder, >20 plants                                       |                |                              |
|        | Jul-13 | 50      | unidentified tufts of 2 to 3 species of grass - healthy | good           | even growth on plot          |
|        |        |         | glacuous bluegrass                                      |                |                              |
|        |        |         | alder, 1 plant                                          |                |                              |
|        | Sep-13 | 60      | glaucous bluegrass up to 8 cm                           | good           | even cover of plot           |
| 2-4    |        |         | sheep fescue up to 4 cm                                 |                |                              |
|        |        |         | ticklegrass up to 3 cm                                  |                |                              |
|        |        |         | alder, <1 cm                                            |                |                              |
|        | Aug-14 | 60      | sheep fescue, several mature                            | good           | even distribution            |
|        |        |         | immature glaucous bluegrass, up to 15 cm                |                | 1 volunteer willow plant     |
|        |        |         | alder, 15 plants                                        |                |                              |
|        | Jul-13 | 30      | unidentified tufts of grass - healthy                   | good           |                              |
|        |        |         | hedysarum, 2 plants                                     |                |                              |
|        | Sep-13 | 40 - 50 | tickle grass up to 30 cm                                | good           | even cover of plot,          |
| 2-5    |        |         | glaucous bluegrass up to 13 cm                          |                | less robust growth than      |
|        |        |         | alder, < 1cm                                            |                | plot 2-4                     |
|        | Aug-14 | 50      | tickle grass, many mature, up to 30 cm                  | good           |                              |
|        |        |         | sheep fescue, several, up to 25 cm                      |                |                              |
|        |        |         | alder, 8 plants                                         |                |                              |

## APPENDIX C, TABLE 5 ASSESSMENTS OF THE PLOTS AT THE WASTE ROCK SITE, 2013 and 2014

| Plot # | Date   | % Cover | Species, height cm and/or # of individuals           | Overall Health     | Comments                      |
|--------|--------|---------|------------------------------------------------------|--------------------|-------------------------------|
|        | Jul-13 | 0       | no growth                                            |                    | bare plot                     |
| 3-1    | Sep-13 | 0       | no growth                                            |                    | bare, moist plot              |
|        | Aug-14 | 0       | no growth                                            |                    | moose track in plot           |
|        | Jul-13 | 30      | unidentified tufts of grass                          | partially stressed | growth localized, plants      |
|        |        |         | alder, 5 plants                                      |                    | appear stressed on right side |
| 3-2    | Sep-13 | 30      | ticklegrass, lots in seed, up to 35 cm               | partially stressed |                               |
| 5-2    |        |         | glaucous bluegrass up to 8 cm                        |                    |                               |
|        | Aug-14 | 20      | ticklegrass, mature, max 33 cm                       | partially stressed | half of plot is bare          |
|        |        |         | sheep fescue, several mature, max 15 cm              |                    |                               |
|        | Jul-13 | 5       | sparse stressed grass growth                         | stressed           |                               |
| 3-3    | Sep-13 | 5 - 10  | unidentified grass up to 5 cm                        | stressed           |                               |
|        | Aug-14 | 0       | dead grasses from last year's growth                 | stressed           |                               |
|        | Jul-13 | 40 - 50 | many tufts of healthy unidentified grasses           | good               | good growth in lower half     |
|        | Sep-13 | 50      | tickle grass, some in seed, up to 4 cm               | good               |                               |
|        |        |         | sheep fescue (?), 7 cm                               |                    |                               |
| 3-4    |        |         | glaucous bluegrass, up to 2 cm                       |                    |                               |
|        | Aug-14 | 35      | ticklegrass, up to 35 cm                             | good               | healthiest plot in Block #3   |
|        |        |         | tufted hairgrass, 1 mature plant, up to 40 cm        |                    |                               |
|        |        |         | sheep fescue, 1 mature plant, up to 34 cm            |                    |                               |
|        | Jul-13 | <10     | unidentified grasses                                 | partially stressed | some tufts quite healthy      |
|        | Sep-13 | 10 - 15 | glaucous bluegrass, < 2 cm                           | stressed           | most plants are brown         |
|        |        |         | unidentified grass up to 3 cm                        |                    |                               |
| 3-5    | Aug-14 | <10     | tickle grass, a few mature and immature, up to 25 cm | stressed           | good soil moisture            |
|        |        |         | glacous bluegrass, 1 mature, 25 cm                   |                    |                               |
|        |        |         | stressed stunted grasses                             |                    |                               |
|        |        |         | dead grass from last year                            |                    |                               |

#### BLOCK #3

NOTE: stressed = brown or withered plants good = green plants showing vigor

# APPENDIX C, TABLE 6 ASSESSMENTS OF THE PLOTS AT THE TRENCH SITE, 2013 and 2014

| Plot # | Date   | % Cover | Species, avg height cm and/or # of individuals       | Overall Health | Comments                    |
|--------|--------|---------|------------------------------------------------------|----------------|-----------------------------|
|        | Jul-13 | <1      | sparse scraggly grass growth                         | stressed       | a few shoots deep in gravel |
| 1-1A   |        |         | 1 hedysarum                                          |                |                             |
| 1-1A   | Sep-13 | <1      | unidentifiable grass, mostly brown, 2-3 cm           | stressed       | some green growth           |
|        | Aug-14 | 0       |                                                      |                | no growth                   |
|        | Jul-13 | 45 - 50 | alpine bluegrass                                     | good           | even grass cover            |
|        |        |         | unidentifiable grass                                 |                |                             |
|        |        |         | hedysarum, 7 plants                                  |                |                             |
|        | Sep-13 | 50      | alpine bluegrass < 2cm                               | good           | Signs of grazing.           |
|        |        |         | 2 other grass species up to 4cm                      |                |                             |
| 1-2A   |        |         | alder < 1cm                                          |                |                             |
|        |        |         | hedysarum, < 2cm                                     |                |                             |
|        | Aug-14 | 60      | alpine bluegrass                                     | good           | lots of tufts of            |
|        |        |         | ticklegrass, max 30 cm                               |                | unidentifiable grass        |
|        |        |         | sheep fescue, max 30 cm                              |                | 5 - 7 cm tall               |
|        |        |         | alder, 13 plants                                     |                |                             |
|        | Jul-13 | 40      | alpine bluegrass                                     | good           | most robust growth in       |
|        |        |         | unidentified grasses                                 |                | Block #1                    |
|        |        |         | hedysarum, 8 plants                                  |                |                             |
|        |        |         | alder, 3 plants                                      |                |                             |
|        | Sep-13 | 50 - 60 | alpine bluegrass, dominant species, < 3cm            | good           | Signs of grazing.           |
| 1-3    |        |         | 3 other grass species up to 5 cm                     |                |                             |
| 1-3    |        |         | alder, <2 cm                                         |                |                             |
|        |        |         | hedysarum, < 2cm                                     |                |                             |
|        | Aug-14 | 70      | ticklegrass, max 30 cm, more mature plants than 1-2A | good           | Lots of tufts of            |
|        |        |         | alpine bluegrass, avg 4 cm                           |                | unidentifiable grass        |
|        |        |         | alder, 8 plants                                      |                | 5 - 6 cm tall.              |
|        |        |         | sheep fescue, max 22 cm, 1 mature plant              |                | Signs of grazing.           |
|        | Jul-13 | <5      | unidentified grass                                   | stressed       | but some green growth       |
|        |        |         | hedysarum, 4 plants                                  |                |                             |
| 4.40   |        |         | alder, 1 plant                                       |                |                             |
| 1-1B   | Sep-13 | <5      | brown grasses, 2 - 4 cm                              | stressed       |                             |
|        |        |         | hedysarum                                            |                |                             |
|        | Aug-14 | <1      | hedysarum, 1 plant                                   | stressed       | dead grass from last year   |
|        | Jul-13 | 35      | alpine bluegrass                                     | good           | even coverage of plot       |
|        |        |         | unidentified grasses                                 |                |                             |
|        |        |         | hedysarum                                            |                |                             |
|        |        |         | alder                                                |                |                             |
|        | Sep-13 | 45      | alpine bluegrass, 2 - 3 cm                           | good           | Signs of grazing.           |
| 1-2B   |        |         | 3 other grass species, 2 - 4 cm                      |                | scat in plot                |
|        |        |         | alder, < 1cm                                         |                |                             |
|        | Aug-14 | 60      | tickle grass, many mature, max 38 cm                 | good           | Several tufts of            |
|        |        |         | alpine bluegrass, 3-4 cm, not as many as 1-3         |                | unidentifiable grass.       |
|        |        |         | alder, 4 plants                                      |                | Alder leaf litter from      |
|        |        |         | some small hedysarum                                 |                | near by.                    |

## APPENDIX C, TABLE 6 ASSESSMENTS OF THE PLOTS AT THE TRENCH SITE, 2013 and 2014

| Plot # | Date   | % Cover | Species, height cm and/or # of individuals | Overall Health | Comments                   |
|--------|--------|---------|--------------------------------------------|----------------|----------------------------|
|        | Jul-13 | 25 - 30 | unidentifed grasses                        | good           | Buffer plot above 2-3A and |
|        |        |         | alder, 2 plants                            |                | beside 2-1A has 14 alder   |
|        |        |         | hedysarum, 1 plant                         |                | and 1 labrador tea.        |
|        | Sep-13 | 35      | alpine bluegrass, <2cm                     | good           | Signs of grazing.          |
|        |        |         | 3 other species of grass                   |                | Rabbit pellet              |
| 2-3A   |        |         | alder                                      |                | spruce seedling            |
|        | Aug-14 | 45      | spiked trisetum, 2 mature, up to 27 cms    | good           | 1 possible volunteer       |
|        |        |         | sheep fescue, 5 mature, up to 27 cm        |                | blueberry plant in plot    |
|        |        |         | alpine bluegrass, <2cm                     |                |                            |
|        |        |         | lots of tufts of unidentifed grasses       |                |                            |
|        |        |         | alder, 6 plants                            |                |                            |
|        | Jul-13 | <5      | sparse straggly grass shoots               | stressed       |                            |
|        |        |         | alder, 3 plants                            |                |                            |
|        | Sep-13 | <5      | 2 grasses, 2 - 3 cm                        | stressed       | Most grasses were brown    |
| 2-1A   |        |         | hedysarum, 1 plant                         |                |                            |
|        |        |         | alder                                      |                |                            |
|        | Aug-14 | <1      | small grasses                              | stressed       | 1 labrador tea in plot     |
|        |        |         | alder, 3 plants                            |                |                            |
|        | Jul-13 | 40      | alpine bluegrass                           | good           | even distribution          |
|        |        |         | unidentified grasses                       |                |                            |
|        | Sep-13 | 45      | alpine bluegrass, 2 cm                     | good           |                            |
|        |        |         | unidentified grass species up to 5 cm      |                |                            |
| 2-2    | Aug-14 | 50      | sheep fescue, several mature, up to 25 cm  | good           | good healthy coverage      |
|        |        |         | lots of immature apline bluegrass, <3 cm   |                |                            |
|        |        |         | spiked trisetum, 3 mature, up to 15 cms    |                |                            |
|        |        |         | tickle grass, 1 mature, up to 23 cm        |                |                            |
|        |        |         | alder, 2 plants                            |                |                            |
|        | Jul-13 | 20      | unidentified tufts of grasses              | good           |                            |
|        |        |         | hedysarum, 1 plant                         |                |                            |
|        | Sep-13 | 30      | alpine bluegrass, 2 cm                     | good           | Tiny capped mushrooms      |
|        |        |         | 2 species of grass, <4 cm                  |                | in plot.                   |
| 2-3B   |        |         | hedysarum                                  |                |                            |
|        | Aug-14 | 40      | tickle grass, 2 plants up to 20 cm         | good           | 2 alders growing just      |
|        |        |         | alpine bluegrass, 1 mature, up to 10 cm    | -              | outside of plot            |
|        |        |         | several tufts of unknown grasses           |                |                            |
|        |        |         | alder, 1 plant                             |                |                            |
|        | Jul-13 | <5      | a few blades of unidentifed grass          | stressed       | 1 spruce seedling in plot  |
|        |        |         | hedysarum, 1 plant                         |                |                            |
| 2 4 5  | Sep-13 | 5       | unidentified grass, 3 - 4 cm               | stressed       | most grasses are brown     |
| 2-1B   |        |         | alder, <1 cm, 4 plants                     |                | -                          |
|        | Aug-14 | <1      | quite a bit of dead grass - didn't survive | stressed       | possible 3 willows in plot |
|        |        |         | alder, 3 plants                            |                |                            |

#### **APPENDIX C, TABLE 6**

| BLOCK #3 |             |         |                                                |                    |                             |
|----------|-------------|---------|------------------------------------------------|--------------------|-----------------------------|
| Plot #   | Date        | % Cover | Species, avg height cm and/or # of individuals | Overall Health     | Comments                    |
|          | Jul-13      | 40      | unidentified tufts of grass - lots             | good               | robust healthy plot         |
|          |             |         | alpine bluegrass,                              |                    |                             |
|          |             |         | alder, 1 plant                                 |                    |                             |
|          |             |         | hedysarum, 2 plants                            |                    |                             |
|          | Sep-13      | 40      | alpine bluegrass, 2 cm                         | good               | Sign of grazing.            |
|          |             |         | 2 other grass species, <4 cm                   |                    | Some moss in plot           |
| 3-2A     |             |         | hedysarum, <1 cm                               |                    |                             |
| J-2A     |             |         | alder, <1 cm                                   |                    |                             |
|          | Aug-14      | 60      | tufted hairgrass, 4 mature plants, up to 70 cm | good               | 4 volunteer willow in plot, |
|          |             |         | ticklegrass, mature up to 35 cm                |                    | very diverse plot,          |
|          |             |         | sheep fescue, mature up to 35 cm               |                    | has the most mature plants  |
|          |             |         | spiked trisetum, mature up to 33 cm            |                    |                             |
|          |             |         | alpine bluegrass, lots of immature, < 3cm      |                    |                             |
|          |             |         | alder, 1 plant                                 |                    |                             |
|          | Jul-13      | 35      | unidentified tufts of grass - lots             | good               |                             |
|          |             |         | tufted hairgrass, 1 mature plant               |                    |                             |
|          | Sep-13      | 40      | tufted hairgrass, mature, up to 30 cm          | good               | Sign of grazing.            |
|          |             |         | alpine bluegrass, 2 cm                         |                    |                             |
|          |             |         | other grasses, 3 cm                            |                    |                             |
| 3-3A     |             |         | alder                                          |                    |                             |
| 5 5/1    | Aug-14      | 50      | tufted hairgrass, mature, up to 42 cm          | good               | 1 willow in plot            |
|          |             |         | ticklegrass, mature up to 36 cm                |                    |                             |
|          |             |         | sheep fescue, mature up to 30 cm               |                    |                             |
|          |             |         | spiked trisetum, mature up to 20 cm            |                    |                             |
|          |             |         | alpine bluegrass, lots of immature, 2 - 4 cm   |                    |                             |
|          |             |         | alder, 4                                       |                    |                             |
|          | Jul-13      | 5       | sparse unhealthy unidentified grass            | stressed           | in upper right corner only  |
|          | Sep-13      | 5 - 10  | unidentifed grass, <3 cm                       | stressed           | grass is brown              |
|          |             |         | alder, <1 cm                                   |                    |                             |
| 3-1      | Aug-14      | <5      | sheep fescue, immature - small but healthy     | good               | 1 labrador tea and 1 tiny   |
|          |             |         | ticklegrass, 1 mature, 10 cm                   |                    | spruce seedling in plot,    |
|          |             |         | alder, 10 plants, very small                   |                    | one fairly large aspen      |
|          |             |         |                                                |                    | growing downhill of plot    |
|          | Jul-13      | 20      | unidentified small tufts of grasses            | good               |                             |
|          |             |         | alpine bluegrass                               |                    |                             |
|          |             |         | alder, 3 plants                                |                    |                             |
|          | <b>a</b> 10 |         | hedysarum, 5 plants                            |                    |                             |
|          | Sep-13      | 30      | alder, <2cm, 12 plants                         | partially stressed | But lots of green healthy   |
| 3-2B     |             |         | alpine bluegrass, < 2cm                        |                    | plants.                     |
|          |             |         | unidentified grass, < 4cm                      |                    |                             |
|          |             | 40      | hedysarum, < 2cm                               |                    | a 10                        |
|          | Aug-14      | 40      | tickle grass up to 15 cm                       | good               | 1 willow growing in plot    |
|          |             |         | alpine bluegrass                               |                    |                             |
|          |             |         | unidentified immature grasses                  |                    |                             |
|          | 1.1.1.2     | 10 15   | alder, approx 20                               | foirly good        | nessible willow in plat     |
|          | Jul-13      | 10 - 15 | small tufts of unidenfied grasses              | fairly good        | possible willow in plot     |
|          |             |         | alpine bluegrass                               |                    |                             |
|          |             |         | alder, 5 plants                                |                    |                             |
|          | Son 12      | 15 20   | hedysarum, 1 plant                             | rood               | plants appear bealthy       |
| 3-3B     | Sep-13      | 15 - 20 | alpine bluegrass, < 1cm                        | good               | plants appear healthy       |
| 2-2D     |             |         | unidentified grass, < 3cm                      |                    | although small              |
|          |             |         | alder, < 1cm                                   |                    |                             |
|          | Aug 14      | 20      | hedysarum, < 2cm                               |                    | no mature grasses           |
|          | Aug-14      | 30      | unidentified tufts of grass - several          | good               | no mature grasses           |
|          |             |         | alpine bluegrass, immature                     |                    | 1 spruce in plot            |
|          |             |         | alder, 9 plants                                |                    | 1 willow in plot            |

#### BLOCK #3

NOTE: stressed = brown or withered plants good = green plants showing vigor

# APPENDIX C, FIGURE 5 Waste Rock Site as Assessed on August 5<sup>th</sup>, 2014

| Treatment Number | Treatment                                         |
|------------------|---------------------------------------------------|
| 1                | Seed only                                         |
| 2                | Seed, biochar, compost                            |
| 3                | Seed, biochar, compost, leonardite                |
| 4                | Seed, biochar, compost, dolomite lime             |
| 5                | Seed, biochar, compost, leonardite, dolomite lime |

## Waste Rock Block #1

| <b>1</b><br>Plot # 1-1 |                  | <b>3</b><br>Plot # 1-3 |                        | 5<br>Plot # 1-5  |
|------------------------|------------------|------------------------|------------------------|------------------|
| C = 0%<br>D = 0        |                  | C = 40%<br>D = 2       |                        | C = 60%<br>D = 4 |
|                        | 2<br>Plot # 1-2  |                        | <b>4</b><br>Plot # 1-4 |                  |
|                        | C = 70%<br>D = 5 |                        | C = 50%<br>D = 3       |                  |

## Waste Rock Block #2

|                        | <b>2</b><br>Plot # 2-2 |                        | <b>4</b><br>Plot # 2-4 |                        |
|------------------------|------------------------|------------------------|------------------------|------------------------|
|                        | C = 60%<br>D = 4       |                        | C = 60%<br>D = 3       |                        |
| <b>1</b><br>Plot # 2-1 |                        | <b>3</b><br>Plot # 2-3 |                        | <b>5</b><br>Plot # 2-5 |
| C = 0%<br>D = 0        |                        | C = 60%<br>D = 3       |                        | C = 50%<br>D = 3       |

## Waste Rock Block #3

| Muoto Rook Bio                                                                      |                        |                        |                        |                        |  |  |
|-------------------------------------------------------------------------------------|------------------------|------------------------|------------------------|------------------------|--|--|
| <b>1</b><br>Plot # 3-1                                                              |                        | <b>3</b><br>Plot # 3-3 |                        | <b>5</b><br>Plot # 3-5 |  |  |
| C = 0%<br>D = 0                                                                     |                        | C = 0%<br>D = 0        |                        | C = <10%<br>D = 3      |  |  |
|                                                                                     | <b>2</b><br>Plot # 3-2 |                        | <b>4</b><br>Plot # 3-4 |                        |  |  |
|                                                                                     | C = 20%<br>D = 2       |                        | C = 35%<br>D = 3       |                        |  |  |
| $C = Cover$ $D = Diversity$ $\longrightarrow$ Buffer plots – not seeded or treated. |                        |                        |                        |                        |  |  |

# APPENDIX C, FIGURE 6 Trench Site as Assessed on August 5<sup>th</sup>, 2014

| Treatment Number | Treatment                          |
|------------------|------------------------------------|
| 1                | Seed only                          |
| 2                | Seed, biochar, compost             |
| 3                | Seed, biochar, compost, leonardite |

## Trench Block #1

| <b>1</b><br>Plot #1-1A |                  | 3<br>Plot #1-3   |                        | 2<br>Plot #1-2B  |
|------------------------|------------------|------------------|------------------------|------------------|
| C = 0%<br>D = 0        |                  | C = 70%<br>D = 4 |                        | C = 60%<br>D = 4 |
|                        | 2<br>Plot #1-2A  |                  | <b>1</b><br>Plot #1-1B | ·                |
|                        | C = 60%<br>D = 4 |                  | C = <1%<br>D = 1       |                  |

## Trench Block #2

|                         | <b>1</b><br>Plot # 2-1A |                        | <b>3</b><br>Plot # 2-3B |                         |
|-------------------------|-------------------------|------------------------|-------------------------|-------------------------|
|                         | C = <1%<br>D = 3        |                        | C = 40%<br>D = 4        |                         |
| <b>3</b><br>Plot # 2-3A |                         | <b>2</b><br>Plot # 2-2 |                         | <b>1</b><br>Plot # 2-1B |
| C = 45%<br>D = 6        |                         | C = 50%<br>D = 5       |                         | C = <1%<br>D = 2        |

## Trench Block #3

| <b>2</b><br>Plot #3-2A |                        | <b>1</b><br>Plot #3-1 |                        | <b>3</b><br>Plot #3-3B |
|------------------------|------------------------|-----------------------|------------------------|------------------------|
| C = 60%<br>D = 8       |                        | C = <5%<br>D = 5      |                        | C = 30%<br>D = 5       |
|                        | <b>3</b><br>Plot #3-3A |                       | <b>2</b><br>Plot #3-2B |                        |
|                        | C = 50%<br>D = 7       |                       | C = 40%<br>D = 5       |                        |

->

C = Cover D = Diversity

Buffer plots – not seeded or treated.

|                                       | T        |                |          |          |          |          |          |          |          |          |          |          |          |          |          |          |          | T        |          |          |          |          |          |          |          |          |          |          |          |          |          |                      |          |          |          |          |          |          |          |          |          |
|---------------------------------------|----------|----------------|----------|----------|----------|----------|----------|----------|----------|----------|----------|----------|----------|----------|----------|----------|----------|----------|----------|----------|----------|----------|----------|----------|----------|----------|----------|----------|----------|----------|----------|----------------------|----------|----------|----------|----------|----------|----------|----------|----------|----------|
| Dominant Species<br>(if identifiable) |          |                |          |          |          |          |          |          |          |          |          |          |          |          |          |          |          |          |          |          |          |          |          |          |          |          |          |          |          |          |          |                      |          |          |          |          |          |          |          |          |          |
| Richness<br>(# of species)            | 2        | I <del>-</del> | 0        |          | 2<br>2   | 4        | 4        | 9        | 4        | с        | 2        | 1        | 4        | ى<br>ك   | 4        | с        | ഗ        |          | V C      | ) m      |          | 10       | S        | 2        | 0 .      | 4        | ოი       | 1 01     | 4        | റവ       | α        | 0.4                  | 7        |          | . 0      | 22       | 4        | 4        | 5        | 4        | വ        |
| Date                                  | 2013/Jul | 2013/Sep       | 2014/Aug | 2013/Jul | 2013/Sep | 2014/Aug | 2013/Jul | 2013/Sep | 2014/Aug | 2013/Jul | 2013/Sep | 2014/Aug | 2013/Jul | 2013/Sep | 2014/Aug | 2013/Jul | 2013/Sep | 6ny/+107 | 2013/Sen | 2014/Aug | 2013/Jul | 2013/Sep | 2014/Aug | 2013/Jul | 2013/Sep | 2014/Aug | 2013/Jul | 2014/Aug | 2013/Jul | 2013/Sep | 5014/Aug | 2013/Jul<br>2013/Sen | 2014/Aug | 2013/Jul | 2013/Sep | 2014/Aug | 2013/Jul | 2013/Sep | 2014/Aug | 2013/Jul | 2013/Sep |
| Plot #                                |          | 1-1A           |          |          | 1-2A     |          |          | 1-3      |          |          | 1-1B     |          |          | 1-2B     |          |          | 2-3A     |          | 2-1A     | 1        |          | 2-2      |          |          | 2-3B     |          | 0-1R     | 1<br>J   |          | 3-2A     |          | 3-3A                 | 500      |          | 3-1      |          |          | 3-2B     |          |          | 3-3B     |
| Block #                               |          |                |          |          |          |          |          | ~        |          |          |          |          |          |          |          |          |          |          |          |          |          | 2        |          |          |          |          |          |          |          |          |          |                      |          |          | ŝ        | )        |          |          |          |          |          |
| Site                                  |          |                |          |          |          |          |          |          |          |          |          |          |          |          |          |          |          |          |          | ŀ        | чЭ       | ΝΞ       | IY.      | L        |          |          |          |          | -        |          |          |                      |          |          |          |          |          |          |          |          |          |

SPECIES RICHNESS AND DOMINANT SPECIES WHERE APPLICABLE, AT EACH PLOT AT THE TRENCH AND WASTE ROCK SITES **APPENDIX C, TABLE 7** 

| Site | Block # | Plot #   | Date     | (# of species) | (if identifiable) |
|------|---------|----------|----------|----------------|-------------------|
|      |         |          | 2013/Jul | 0              |                   |
|      |         | 1-1      | 2013/Sep |                |                   |
|      |         |          | 2014/Aug | 0              |                   |
|      |         |          | 2013/101 | -<br>7         |                   |
|      |         | 1-2      | 2013/Sen | . rC           |                   |
|      |         | 1        | 2014/010 | о LC           | Adrostis scahra   |
|      |         |          | 2013/111 | 0              |                   |
|      |         | с<br>т   | 0010107  | 10             |                   |
|      | _       | <u>}</u> |          | <b>)</b> (     |                   |
|      |         |          | 2014/Aug | 2              | Agrostis scabra   |
|      |         |          | 2013/Jul | 2              |                   |
|      |         | 1-4      | 2013/Sep | ę              |                   |
|      |         |          | 2014/Aua | c              | Adrostis scabra   |
|      |         |          | 2013/Jul | <b>.</b>       | <b>b</b>          |
|      |         | ר-ג      | 2013/Sen | · 10           |                   |
|      |         | -        | 40000102 |                |                   |
|      |         |          | ZU14/Aug | 4              | Agrostis scapta   |
|      |         |          | 2013/Jul | 0              |                   |
|      |         | 2-1      | 2013/Sep | 0              |                   |
|      |         |          | 2014/Aug | 0              |                   |
|      |         |          | 2013/Jul | ę              |                   |
| >    |         | 2-2      | 2013/Sep | ŝ              |                   |
| I)   |         | 1        | 2014/Aug | 4              | Aurostis scahra   |
| 02   |         |          | 2013/11  |                |                   |
| 9 3  | c       | c<br>c   | 10/0/07  | 40             |                   |
| эт   | N       | 2-3      | dac/c107 | <b>o</b>       |                   |
| S'   |         |          | 2014/Aug | 3              | Agrostis scabra   |
| ٨N   |         |          | 2013/Jul | e              |                   |
| ٨    |         | 2-4      | 2013/Sep | 4              |                   |
|      |         |          | 2014/Aug | ę              | Agrostis scabra   |
|      |         |          | 2013/Jul | 2              |                   |
|      |         | 2-5      | 2013/Sep | က              |                   |
|      |         |          | 2014/Aua | n              | Adrostis scabra   |
|      |         |          | 2013/Jul | 0              | >                 |
|      |         | 3-1      | 2013/Sen |                |                   |
|      |         | -        | 2014/Aug |                |                   |
|      |         |          | 2013/11  | 0 0            |                   |
|      |         | 00       | 0010107  | 1 C            |                   |
|      |         | 2-1      |          | 4 C            |                   |
|      |         |          | ZU14/Aug | 7              |                   |
|      | l       | 0        | 2013/Jul | <u> </u>       |                   |
|      | Ω.      | 0-0<br>0 | ZU13/Sep |                |                   |
|      |         |          | 2014/Aug | 0              |                   |
|      |         |          | 2013/Jul | 1              |                   |
|      |         | 3-4      | 2013/Sep | ę              |                   |
|      |         |          | 2014/Aug | c              | Adrostis scabra   |
|      |         |          | 2013/Jul |                | 5.0000            |
|      |         | א-ה<br>ג | 2013/San |                |                   |
|      |         |          |          |                |                   |