STREAM SEDIMENT MONITORING AT THE EAGLE GOLD PROJECT SEPTEMBER 2019

For

Steve Wilbur

Submitted by

January 2020

TABLE OF CONTENTS

Table of	of Contents	i
List of	Tables and Figures	i
1.0	INTRODUCTION	1
2.0	METHODS	1
3.0	RESULTS AND DISCUSSION	3
4.0	REFERENCES	8
Appen	dix A Stream Sediment Analytical Data and Tables, 2019	
	LIST OF TABLES	
Table	Pag	је
1 2 3	Location of Sample Sites Summary of Mean Stream Sediment Concentrations, September 2019 Mean Concentrations of Arsenic and Nickel in Stream Sediments, 1995 - 2019	4
	LIST OF FIGURES	
Figure	Pag	је
1 2 3 4 5	Locations of Stream Sediment Sample Sites During Construction Phase Mean Arsenic (mg/kg) in the Stream Sediments, 2019	6.6

1.0 INTRODUCTION

Various monitoring projects have been initiated at the Eagle Gold Project and will continue during the operation and closure phases as outlined in the updated Environmental Monitoring, Surveillance and Adaptive Management Plan (EMSAMP) version 2019-02 (StrataGold Corporation, 2019). During 2019, the site was in the third and final year of construction. The first annual late summer stream sediment monitoring program was conducted in September 2017. This report presents the findings of the 2019 survey.

The purpose of the study is to continue to obtain data on the stream sediment quality of the watercourses in the study area to evaluate changes related to the sequential phases of the Project. Previous sampling, prior to the implementation of the EMSAMP, was conducted throughout the project area from 1976 to 2010 on the various watersheds. Relevant past data is examined and presented with the current study where appropriate.

2.0 METHODS

Triplicate stream sediment samples were to be collected from nine sites representing four drainage basins. However, sampling could not be completed at one site, W26, due to the lack of any depositional areas. At the time of sampling, flows were very low and unconfined, with a depth of 3 cm or less, and were seeping through the vegetation on either side of the flume. Six of the sites are within the project influence, while sites W1 and W22 are considered upstream of project influence, and W6 is located in a different watershed, thus these three can be used as reference sites.

Each triplicate sample was a composite of five or more individual sediment grabs within the sampled area, homogenized to produce a single sample. Each grab consisted of a scoop of sediment representative of that micro site. Depositional sites were targeted to obtain fine-grained sediment. Samples were collected with a clean stainless steel trowel, well mixed and placed into 250 mL acid washed glass jars. All samples were kept cool until delivered to the ALS laboratory in Whitehorse, Yukon.

These samples were collected from four drainage areas within the Victoria Gold footprint and the sites are detailed below in Table 1 and illustrated on Figure 1.

Т	ABLE 1		LOCATION OF SAMPLE SITES	3	
Drainage	Site	Date	Site Description	Coord	inates
Drainage	Site	Sampled	Site Description	Northing	Easting
	W22	9/5/2019	Haggart Creek upstream Dublin Gulch	7101377	458319
	W4	9/5/2019	Haggart Creek downstream Dublin Gulch	7101223	458144
Haggart Creek	W29	9/6/2018	Haggart Creek downstream Eagle Creek	7099583	458225
	W5	9/5/2019	Haggart Creek upstream Lynx Creek	7095887	457815
	W23	9/5/2019	Haggart Creek downstream Lynx Creek	7095682	457790
Dublin	W1	9/7/2018	Dublin Gulch upstream Stewart Gulch	7101545	460249
Gulch	W26	not sampled	Stewart Gulch upstream Dublin Gulch	7101443	460331
Eagle Cr	W27	9/5/2019	Eagle Creek near Camp Climate Station	7100997	458235
Lynx Cr	W6	9/5/2019	Lynx Creek upstream Haggart Creek	7095964	458099

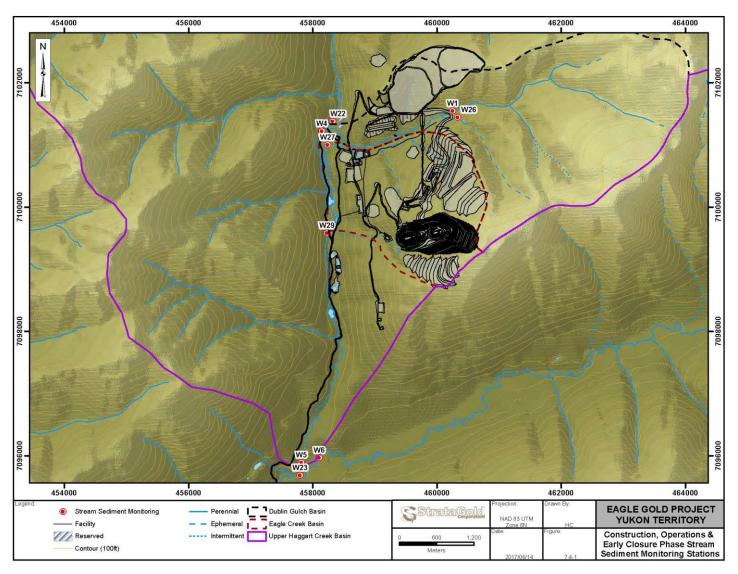


Figure 1 Locations of Stream Sediment Sample Sites During Construction Phase

At the laboratory, all samples were sieved and the portion passing 63 microns was analyzed for metals using inductively coupled plasma mass spectrophotometry (ICP-MS) or optical emission spectrophotometry (ICP-OES) as appropriate. Mercury was analyzed by cold vapour atomic fluorescence spectrophotometry (CVAFS).

As a measure of quality assurance/quality control (QA/QC) one replicate set of sediment samples was collected. Strict sampling protocols were adhered to throughout the field study; sampling equipment was cleaned between samples and sites, new disposable gloves were worn for each sample and samples were kept cool until relinquished at the laboratory. The lab also performed their own QA/QC by analyzing spiked samples with known concentrations of various parameters.

Upon receipt of the lab results various metrics were performed. To characterize the stream sediment conditions at each site the triplicates were averaged. Standard deviation analysis was performed to determine the spread of the values. As each of the triplicate samples was collected at different depositional areas within each site, the coefficient of variation (CV) was calculated; (standard deviation (SD) divided by mean multiplied by 100) to assess heterogeneity of the stream environment.

3.0 RESULTS AND DISCUSSION

3.1 2019 Data

Samples were analyzed for soil pH and a suite of 32 metals. The analytical report is presented in Appendix A. The triplicate samples at each site were averaged and these data were used for the tables and discussions. The sites have been arranged per watershed from upstream to downstream in the tables and graphs for ease of interpretation.

The streams sediments throughout the study area exhibit near neutral to slightly alkaline conditions ranging from a pH of 7.52 at W1 to 8.19 at W5 (Table 2).

The averages of selected metals are presented in Table 2. These elements were chosen for closer examination as they can potentially be toxic to aquatic systems, some may be present in the mineral deposit and several have environmental guidelines for the protection of freshwater aquatic life. Since there are no Canadian Environmental Quality Guidelines (CEQG) established for nickel, selenium and silver, the British Columbia Working Sediment Quality Guidelines (BCWSQG) have been used. Concentrations that exceeded the Interim Sediment Quality Guidelines (ISQG) or lower BCWSQG, are displayed in bold and gray highlighted. The ISQG guideline represents where adverse biological effects may only rarely occur. Concentrations that exceeded the Probable Effects Level (PEL), or upper BCWSQG, are displayed in bold and highlighted in orange, and indicate a 50% incidence of creating adverse biological effects.

Several guidelines were exceeded for the protection of freshwater aquatic life. The PEL for arsenic (17 mg/kg), was significantly exceeded at all of the sites ranging from 71 mg/kg at W29 to 444 mg/kg at W1.

The concentration of nickel exceeded the BCWSQG low level effect guideline (16 mg/kg) in the stream sediments at all of the sites and ranged from 26.3 mg/kg at W29 to 50.0 mg/kg at W22.

The ISQG was exceeded for cadmium at W23, W22 and W6. The ISQG for copper was slightly exceeded at W27. Concentration of lead in the stream sediments at W5 and W27 slightly

exceeded the ISQG. Zinc concentrations slightly exceeded the ISQG in the stream sediments at W22. Guidelines were met in the study area for chromium, mercury, selenium and silver.

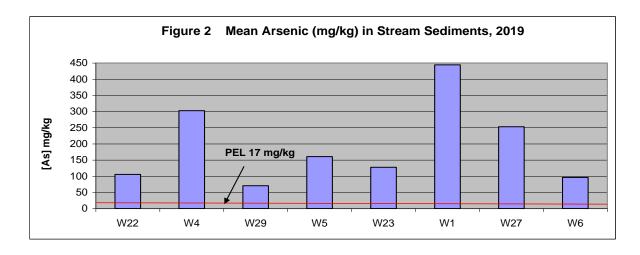
TABLE	E 2 SUI	MMARY C	F MEAN S	STREAM S	SEDIMENT	CONCE!	NTRATION	NS, SEPTE	MBER 20	19
Drainage		Н	aggart Cree	ek		Dublin Gulch	Eagle Cr	Lynx Cr	CEQG G	uidelines
Site	W22	W4	W29	W5	W23	W1	W27	W6	ISQG	PEL
рН	7.72	7.82	7.78	8.19	7.91	7.52	8.12	7.54	na	na
Arsenic (mg/kg)	106	303	71	161	128	444	253	96	5.9	17
Cadmium (mg/kg)	0.921	0.443	0.432	0.554	0.747	0.443	0.345	1.094	0.6	3.5
Chromium (mg/kg)	30.7	27.6	22.1	34.3	31.4	27.8	18.9	37.3	37.3	90
Copper (mg/kg)	29.3	32.2	24.0	30.6	27.4	24.6	36.2	27.4	35.7	197
Lead (mg/kg)	26.4	34.1	25.2	36.1	27.8	32.6	41.2	17.8	35.0	91.3
Mercury (mg/kg)	0.0844	0.0489	0.0459	0.0652	0.0580	0.0323	0.0449	0.0742	0.170	0.486
Nickel* (mg/kg)	50.0	39.6	26.3	42.4	39.7	36.1	29.7	39.6	16	75
Selenium* (mg/kg)	0.53	0.42	0.32	0.53	0.54	0.34	0.30	0.95	5	na
Silver* (mg/kg)	0.18	ND	ND	ND	ND	0.22	ND	ND	0.5	na
Zinc (mg/kg)	137.7	116.9	89.1	119.5	107.2	89.0	97.8	121.7	123	315
* BCWSQG	na	ı = not appli	cable	ND = not de	etected					

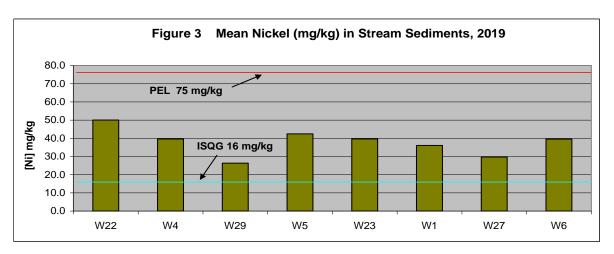
In attempts to determine the reliability of the current data set and the heterogeneity of each site, standard deviation (SD) and coefficient variation (CV) were calculated on the means of the triplicates. The target for CV is no more than 20% when replicate samples collected at the same time and location are all at least five times the detection limit. These results are tabulated in Table A-1 in Appendix A.

The CV was very low at W29, W5 and W27 indicating homogeneous substrates at these sites. Other sites had eight to ten parameters exceeding 20%, except for W1, where 18 parameters had CVs greater than 20%. The visual composition of the stream sediments at Dublin Gulch had much greater heterogeneity throughout the sampled reach.

As a measure of quality control and quality assurance, a set of replicate stream sediment samples was collected from W22. The relative percent difference (RPD) for all parameters was calculated

on the averages of W22 samples and on the replicate samples to determine the representativeness of collection and thus the validity of the data (Table A-2, Appendix A). Studies have determined an acceptable range of RPD of 20% in aqueous media and up to 50% in sediment. A very conservative value of 20% RPD was used for this study.


The comparison highlights six metals which exceed the 20% RPD value; bismuth, chromium, mercury, molybdenum, phosphorous, and silver. Of these six metals only chromium and mercury have environmental quality guidelines and all concentrations reported from W22 were below applicable guidelines. All RFP values were below the 50% guideline for sediment and ranged from 26.2% to 42.0%. As the other 27 parameters had low to very low RPD values it can be safely assumed that good collection techniques were employed during the sediment sampling procedure. The CV exceeded nine parameters at W22 (Table A-1, Appendix A) indicating that sediment distribution throughout the site is not very homogenous and thus variance is likely to occur within the replicates.


Arsenic is prevalent in the stream sediments throughout the study area; the PEL was exceeded at all sites. Arsenic is typically associated with the mineralogy of gold. The high concentrations documented at W1 upstream of Project activities, indicate that this stream drains a mineralized area. The standard deviation showed a small spread of values and the CV was 16.7% (Table A-1, Appendix A) confirming that the arsenic concentrations at W1 are representative of the site.

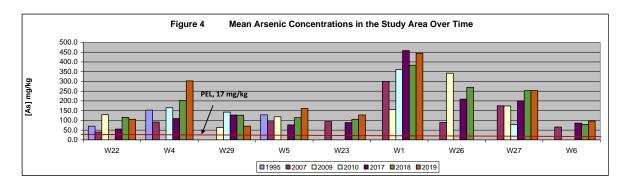
Generally arsenic concentrations were higher in the stream sediments at the sampling locations directly downstream of Site activities, Eagle Creek (W27) and Haggart Creek downstream of Dublin Gulch (W-4), with much lower concentrations in Lynx Creek (W6) (no project influence) and the lower sites on Haggart Creek.

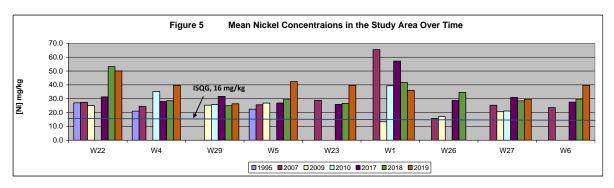
Nickel was widespread throughout the study area and concentrations in the stream sediments exceeded the ISQG at all sites. W-22 is another site that is located upstream of the Project. This reference site had four metals that exceeded recommended guidelines and had the highest concentration of nickel in the study area.

These two elements have been graphed below in Figures 2 and 3. Concentrations of arsenic fluctuate throughout the study area whereas nickel concentrations are relatively similar.

3.2 Previous Data

Stream sediment samples have been collected in the general Project area in 1976, 1977, 1993, 1995, 2007, 2009 and 2010 (Stantec, 2011), in 2017 (Laberge, 2017) and in 2018 (Laberge, 2018). The number of sites sampled, and the number of replicates collected varied in a given year. Data were examined from these surveys where the analysis was completed on the portion of the sediment that was less than 63 microns and for sites that were sampled in 2019. The mean concentrations for arsenic and nickel over time have been tabulated (Table 3) and graphically represented in Figures 4 and 5 with the 2019 data. Values that exceeded the PEL (or upper BCWSQG) are highlighted in orange. Where the ISQG (or lower BCWSQG) is exceeded, the value is highlighted in gray.


High levels of arsenic were reported at all sites and on all occasions and exceeded the PEL. Concentrations tended to fluctuate year to year at the sites.


Concentrations of nickel exceeded the lower BCWSQG throughout the study area and study period with the exception in 2007 at Stewart Gulch (W26), and 2009 at Dublin Gulch (W1).

There were periodic exceedances of guidelines of other metals in the earlier studies. This data has not been presented here but is available in a report prepared by Stantec (2011).

While there are exceedances in certain metals throughout the study area at sites both upstream and downstream of project influence, the high metal concentrations generally reflect the natural geochemistry of the mineralized watersheds in the area.

TABL	E 3	MI	EAN CO	NCENT	RATIO	NS OF	ARSEN	IC AND	NICKE	L IN ST	REAM	SEDIME	NTS, 1	995 - 20)19
				ARSI	ENIC (m	g/kg)					NIC	KEL* (m	g/kg)		
Drainage	Site	1995 n=5	2007 n=3	2009 n=3	2010 n=3	2017 n=3	2018 n=3	2019 n=3	1995 n=5	2007 n=3	2009 n=3	2010 n=3	2017 n=3	2018 n=3	2019 n=3
	W22	70.0	40.1	129.2		55.5	115.6	106	27.0	27.4	25.0		31.3	53.2	50.0
	W4	152.7	91.5		165.0	109.6	202.3	303	21.0	24.5		35.2	28.0	28.5	39.6
Haggart Creek	W29			63.6	142.4	127.2	126.3	71			25.3	25.7	31.7	25.0	26.3
	W5	128.5	92.7	118.3		76.8	114.0	161	22.4	25.6	26.8		26.9	29.8	42.4
	W23		93.4			88.8	105.6	128		28.8			25.9	26.7	39.7
Dublin	W1		300.0	156.0	360.4	458.0	383.0	444		65.5	13.3	39.3	57.2	41.7	36.1
Gulch	W26		89.1	342.0		209.0	269.7			15.7	17.0		28.7	34.6	
Eagle Cr	W27		175.0	173.7	77.9	200.3	252.7	253		25.3	20.6	21.1	31.0	28.4	29.7
Lynx Cr	W6		65.9			85.8	79.5	96		23.6			27.5	29.7	39.6
CEQG	ISQG				5.9							16*			
Guidelines	PEL				17							75*			
*BCWSQG	upper a	nd lower	guidelin	es used											

4.0 REFERENCES

- Canadian Council of Ministers of the Environment (CCME). 2007. Canadian sediment quality guidelines for the Protection of Aquatic Life. Canadian Council of Ministers of the Environment, Winnipeg, Manitoba
- Laberge Environmental Services. 2017. Stream Sediment Monitoring Program at the Eagle Gold Project Site, 2017. Prepared for Victoria Gold Corp.
- Laberge Environmental Services. 2018. Stream Sediment Monitoring Program at the Eagle Gold Project Site, 2018. Prepared for Victoria Gold Corp.
- Stantec Consulting Ltd. 2011. Baseline Environmental Report: Water Quality and Aquatic Biota. Prepared for Victoria Gold Corp. Project # 1231-10377.
- StrataGold Corporation. 2019. Eagle Gold Project Environmental Monitoring, Surveillance and Adaptive Management Plan. Version 2019-01.

APPENDIX A

- Table A-1 Statistics on the Triplicate Analyses
- Table A-2 RPD for Duplicate Sample
- Analytical Report: L2343499

TABLE A-1 STATISTICS ON THE TRIPLICATE ANALYSES

Site	Parameter MDL 5 x MDL Units	pH (1:2 soil:water) 0.10 0.50 pH	Aluminum (AI) 50 250.00 mg/kg	Antimony (Sb) 0.10 0.50 mg/kg	Arsenic (As) 0.050 0.25 mg/kg	Barium (Ba) 0.50 2.50 mg/kg	Beryllium (Be) 0.10 0.50 mg/kg	Bismuth (Bi) 0.10 0.50 mg/kg	Boron (B) 10 50.00 mg/kg	Cadmium (Cd) 0.020 0.10 mg/kg	Calcium (Ca) 50 250.00 mg/kg	Chromium (Cr) 0.50 2.50 mg/kg	Cobalt (Co) 0.10 0.50 mg/kg	0.50 2.50 mg/kg	fron (Fe) 50 250.00 mg/kg	Lead (Pb) 0.10 0.50 mg/kg	Lithium (Li) 2.0 10.00 mg/kg	Magnesium (Mg) 10 50.00 mg/kg	Manganese (Mn) 0.20 1.00 mg/kg	Mercury (Hg) 0.0050 0.025 mg/kg	Molybdenu m (Mo) 0.10 0.50 mg/kg	Nickel (Ni) 0.50 2.50 mg/kg	Phosphorus (P) 50 250.00 mg/kg	Potassium (K) 100 500.00 mg/kg	Selenium (Se) 0.10 0.50 mg/kg	Silver (Ag) 0.050 0.25 mg/kg	50 250.00 mg/kg	Strontium (Sr) 0.10 0.50 mg/kg	Thallium (TI) 0.050 0.25 mg/kg	Tin (Sn) 0.20 1.00 mg/kg	Titanium (Ti) 1.0 5.00 mg/kg	Uranium (U) 0.050 0.25 mg/kg	Vanadium (V) 0.20 1.00 mg/kg	Zinc (Zn) 1.0 5.00 mg/kg	Total Organic Carbon 0.050 0.25 %
W23	Average S.D.	7.91 0.53	10563 1371	7.75 0.88	128 11	217 25	0.39	0.64		0.747	4860 755	31.4 10.7	13.6 2.9	27.4 4.8	26300 2685	27.8 5.3	14.6 2.1	4570 931	1358 669	0.0580	1.68	39.7 14.2	763 41	1090 176	0.54		113 11	40.0 5.5	0.129 0.023	0.78	284 20	1.45 0.10	28.5	107.2 19.4	0.389
	C.V.	6.7	13.0	11.4	8.2	11.5	14.3	37.1		39.2	15.5	34.1	21.6	17.6	10.2	19.1	14.4	20.4	49.2	20.2	45.3	35.7	5.4	16.1	38.5		9.9	13.6	18.0	30.6	7.1	6.6	5.9	18.1	19.6
			11030	10.82	161	209	0.48	0.69		0.554	4727	34.3	14.3	30.6	30167	36.1	16.1	4977	1533	0.0652	1.89	42.4	655	1337	0.53		99	43.1	0.150	0.00	289		29.2	119.5	0.320
W5	Average	8.19				209																								0.96		1.48			
	S.D. C.V.	0.11	1683 15.3	1.10	23 14.5	10.8	0.07 15.0	0.10		0.116 21.0	561 11.9	6.2 18.1	1.6	4.6 15.1	3215 10.7	3.6 10.0	2.4 15.1	920 18.5	341 22.3	0.0126 19.4	0.53 27.8	7.8 18.4	38 5.8	239 17.9	0.10 18.5		8.3	4.9	0.027 17.9	0.31	32 11.1	0.10 6.9	2.0 6.9	21.7 18.2	0.042
	C.V.	1.3	10.3	10.2	14.5	10.8	15.0	14.9		21.0	11.9	18.1	11.4	15.1	10.7	10.0	15.1	18.5	22.3	19.4	27.8	18.4	0.8	17.9	18.5	60	8.3	11.4	17.9	32.3	11.1	6.9	6.9	18.2	13.1
W6	Average	7.54	13767	3.05	96	240	0.46	0.28		1.094	6763	37.3	12.4	27.4	25600	17.8	18.2	5803	799	0.0742	2.22	39.6	839	1063	0.95	dwes	192	47.7	0.140	0.52	376	1.48	35.5	121.7	0.671
	S.D.	0.13	1436	0.54	28	30	0.07	0.04		0.295	854	10.8	1.7	4.0	2138	2.4	1.9	437	378	0.0243	1.07	8.1	32	104	0.15	8	17	4.9	0.018	0.12	20	0.28	2.9	18.7	0.119
	C.V.	1.7	10.4	17.8	28.5	12.7	14.2	12.4		27.0	12.6	29.1	13.8	14.5	8.4	13.6	10.3	7.5	47.4	32.8	48.0	20.4	3.8	9.8	15.9	ŧ	9.1	10.3	12.7	23.1	5.2	19.0	8.1	15.4	17.8
																										È									
W29	Average	7.78	8657	7.32	71	173	0.30	0.53		0.432	4093	22.1	10.0	24.0	23467	25.2	11.0	3730	495	0.0459	0.97	26.3	719	740	0.32	=	83	33.9	0.082	0.60	240	1.38	27.1	89.1	1.580
	S.D.	0.18	751	0.35	25	27	0.01	0.09		0.077	560	1.9	0.6	2.2	1002	1.8	0.6	286	52	0.0069	0.10	2.2	60	26	0.04	ě	9	4.7	0.007	0.12	19	0.11	1.9	6.9	#DIV/0!
	C.V.	2.4	8.7	4.8	35.5	15.7	3.9	16.3	ě	17.9	13.7	8.4	5.7	9.0	4.3	7.2	5.3	7.7	10.5	14.9	10.8	8.5	8.4	3.6	12.5	g g	10.3	13.8	8.3	19.4	8.0	8.1	7.0	7.7	#DIV/0!
									5																	Š									
W27	Average	8.12	8120	12.62	253	114	0.42	1.73	à.	0.345	3550	18.9	13.2	36.2	29033	41.2	12.1	3697	453	0.0449	1.05	29.7	587	1960	0.30		110	32.8	0.180	0.61	305	1.40	21.2	97.8	0.481
	S.D.	0.10	529	2.61	30	6	0.02	0.56	Æ	0.014	229	0.8	0.2	1.6	503	6.2	0.7	121	25	0.0076	0.10	0.7	20	312	0.05		8	0.7	0.008	0.03	13	0.14	0.6	9.2	0.077
	C.V.	1.2	6.5	20.7	11.8	5.1	3.6	32.2	edecte	4.2	6.5	4.0	1.6	4.3	1.7	15.1	5.7	3.3	5.5	16.9	9.7	2.4	3.3	15.9	15.6		6.9	2.0	4.5	4.8	4.2	9.7	2.9	9.4	16.0
W4	Average	7.82	10120	10.60	303	168	0.59	0.70	Ď.	0.443	3820	27.6	16.7	32.2	32233	34.1	18.5	4153	1374	0.0489	2.23	39.6	647	1710	0.42		99	33.9	0.226	0.81	323	1.90	27.4	116.9	0.248
	S.D.	0.14	1490	2.52	32	47	0.07	0.09	-	0.179	210	6.5	4.7	5.7	4649	12.1	3.4	619	693	0.0064	0.56	11.2	88	361	0.04		23	4.7	0.035	0.21	37	0.10	1.6	24.8	0.037
	C.V.	1.7	14.7	23.7	10.7	27.8	12.0	13.1		40.4	5.5	23.4	27.9	17.9	14.4	35.6	18.2	14.9	50.4	13.2	25.3	28.1	13.6	21.1	9.7		22.8	13.7	15.6	26.1	11.4	5.4	5.9	21.2	15.1
W22	Average	7.72	11257	5.91	106	224	0.44	0.66		0.921	3857	30.7	21.9	29.3	41567	26.4	16.6	4170	2417	0.0844	1.38	50.0	616	1170	0.53	0.18	96	37.0	0.181	1.07	238	1.57	28.1	137.7	0.313
	S.D.	0.16	1432	0.68	29	29	0.01	0.08		0.268	231	7.8	4.5	1.9	6652	4.6	1.5	233	895	0.0346	0.51	8.3	78	100	0.14	0.03	15	1.6	0.028	0.14	14	0.38	2.9	9.3	0.054
	C.V.	2.0	12.7	11.5	27.0	13.0	2.3	11.3		29.1	6.0	25.5	20.4	6.5	16.0	17.6	9.2	5.6	37.0	41.0	36.9	16.5	12.7	8.5	26.7	17.3	15.7	4.3	15.3	13.5	5.7	24.1	10.5	6.7	17.2
DUP	Average	7.71	10857	6.01	112	211	0.49	0.86		0.922	4013	22.9	23.6	31.6	44167	30.0	16.6	4230	2517	0.0551	1.06	47.7	819	1160	0.49	0.25	96	36.7	0.169	0.96	229	1.56	26.5	128.0	0.355
	S.D.	0.13	1216	1.14	29	7	0.12	0.52		0.149	686	3.7	7.4	6.1	11314	11.6	0.9	347	1104	0.0045	0.56	10.5	349	215	0.18	0.15	25	6.8	0.003	0.33	34	0.50	1.8	11.4	0.032
	C.V.	1.6	11.2	19.0	26.0	3.2	25.1	60.0		16.1	17.1	16.1	31.4	19.2	25.6	38.6	5.4	8.2	43.9	8.2	53.2	22.1	42.6	18.5	36.5	59.3	26.5	18.5	1.7	34.8	14.7	32.0	6.8	8.9	9.0
W1	Average	7.52	9933	14.60	444	188	0.62	0.64		0.443	3787	27.8	12.7	24.6	28000	32.6	15.0	3877	734	0.0323	3.55	36.1	910	1623	0.34	0.22	138	31.9	0.227	0.70	427	3.74	32.8	89.0	0.226
	S.D.	0.30	4144	2.82	74	56	0.24	0.16		0.250	1020	9.0	2.7	1.8	2524	7.2	5.1	1376	413	0.0077	1.94	10.8	217	174	0.12	0.01	33	2.4	0.027	0.20	65	2.29	7.5	25.2	0.047
	C.V.	4.0	41.7	19.3	16.7	30.0	38.4	24.6		56.4	26.9	32.4	21.5	7.5	9.0	21.9	34.1	35.5	56.3	24.0	54.8	29.9	23.9	10.7	35.8	5.5	23.7	7.5	11.7	28.1	15.2	61.2	22.9	28.3	21.0
W29-A BAG																																			0.43
W29-C BAG																																			0.839

NOTE: Values where the CV is greater than 20% and greater than 5 times the MDL are highlighted in red and with dark red text.

Mg, Na, Fe, P, Al, Ca, and K had CV's greater than 20% at some sites however the concentrations reported were not greater than five times the method detection limit.

TABLE A-2 RPD VALUES FOR THE AVERAGES OF THE DUPLICATE SEDIMENT SAMPLES COLLECTED AT W22

Parameter	Units	W22 (n=3)	DUP (n=3)	RPD%
pH (1:2 soil:water)	рН	7.72	7.71	0.0
Aluminum (Al)	mg/kg	11257	10857	3.6
Antimony (Sb)	mg/kg	5.91	6.01	1.6
Arsenic (As)	mg/kg	106	112	6.0
Barium (Ba)	mg/kg	224	211	6.3
Beryllium (Be)	mg/kg	0.44	0.49	10.8
Bismuth (Bi)	mg/kg	0.66	0.86	26.2
Boron (B)	mg/kg	0.00	0.00	ND
Cadmium (Cd)	mg/kg	0.921	0.922	0.1
Calcium (Ca)	mg/kg	3857	4013	4.0
Chromium (Cr)	mg/kg	30.7	22.9	28.9
Cobalt (Co)	mg/kg	21.9	23.6	7.5
Copper (Cu)	mg/kg	29.3	31.6	7.4
Iron (Fe)	mg/kg	41567	44167	6.1
Lead (Pb)	mg/kg	26.4	30.0	13.0
Lithium (Li)	mg/kg	16.6	16.6	0.4
Magnesium (Mg)	mg/kg	4170	4230	1.4
Manganese (Mn)	mg/kg	2417	2517	4.1
Mercury (Hg)	mg/kg	0.0844	0.0551	42.0
Molybdenum (Mo)	mg/kg	1.38	1.06	26.5
Nickel (Ni)	mg/kg	50.0	47.7	4.8
Phosphorus (P)	mg/kg	616	819	28.3
Potassium (K)	mg/kg	1170	1160	0.9
Selenium (Se)	mg/kg	0.53	0.49	8.5
Silver (Ag)	mg/kg	0.18	0.25	29.2
Sodium (Na)	mg/kg	96	96	0.0
Strontium (Sr)	mg/kg	37.0	36.7	0.9
Thallium (TI)	mg/kg	0.181	0.169	6.8
Tin (Sn)	mg/kg	1.07	0.96	11.2
Titanium (Ti)	mg/kg	238	229	3.9
Uranium (U)	mg/kg	1.57	1.56	0.9
Vanadium (V)	mg/kg	28.1	26.5	6.0
Zinc (Zn)	mg/kg	137.7	128.0	7.3

ND = not detected therefore RPD could not be calculated.

Values exceeding 20% RPD are highlighted in red, with dark red text.

STRATAGOLD CORPORATION

ATTN: Hugh Coyle

Suite 1000 - 1050 W. Pender St

Vancouver BC V6E 3S7

Date Received: 09-SEP-19

Report Date: 27-SEP-19 17:32 (MT)

Version: FINAL

Client Phone: 604-682-5122

Certificate of Analysis

Lab Work Order #: L2343499
Project P.O. #: NOT SUBMITTED

Job Reference: EAGLE GOLD SEDIMENT 2019

C of C Numbers:

Legal Site Desc: Victoria Gold Corp.

Comments: RRR: Silver detection limited raise due to reference material failure. Detection limit was

raised 2 times the failure.

Hilary Woods Account Manager

[This report shall not be reproduced except in full without the written authority of the Laboratory.]

ADDRESS: 8081 Lougheed Hwy, Suite 100, Burnaby, BC V5A 1W9 Canada | Phone: +1 604 253 4188 | Fax: +1 604 253 6700 ALS CANADA LTD Part of the ALS Group An ALS Limited Company

L2343499 CONTD.... PAGE 2 of 15

T 27-SEP-19 17:32 (MT) Version: FINAL

	Sample ID Description Sampled Date Sampled Time Client ID	L2343499-1 Sediment 05-SEP-19 12:10 W23-A	L2343499-2 Sediment 05-SEP-19 12:20 W23-B	L2343499-3 Sediment 05-SEP-19 12:30 W23-C	L2343499-4 Sediment 05-SEP-19 16:40 W5-A	L2343499-5 Sediment 05-SEP-19 16:50 W5-B
Grouping	Analyte					
SOIL						
Physical Tests	pH (1:2 soil:water) (pH)	7.30	8.18	8.24	8.29	8.08
Particle Size	% Sand (2.0mm - 0.05mm) (%)	88.4	93.3	90.7	96.9	86.9
	% Silt (0.05mm - 2um) (%)	10.8	6.3	8.7	2.7	12.2
	% Clay (<2um) (%)	<1.0	<1.0	<1.0	<1.0	<1.0
	Texture	Sand	Sand	Sand	Sand	Sand
Organic / Inorganic Carbon	Total Organic Carbon (%)	0.472	0.373	0.322	0.272	0.341
Metals	Aluminum (Al) (mg/kg)	8990	11200	11500	12100	9090
	Antimony (Sb) (mg/kg)	6.86	7.76	8.62	11.6	9.56
	Arsenic (As) (mg/kg)	117	138	128	171	134
	Barium (Ba) (mg/kg)	188	230	232	211	186
	Beryllium (Be) (mg/kg)	0.33	0.44	0.40	0.52	0.40
	Bismuth (Bi) (mg/kg)	0.45	0.91	0.57	0.76	0.57
	Boron (B) (mg/kg)	<10	<10	<10	<10	<10
	Cadmium (Cd) (mg/kg)	0.500	0.671	1.07	0.648	0.424
	Calcium (Ca) (mg/kg)	3990	5250	5340	5090	4080
	Chromium (Cr) (mg/kg)	20.6	31.5	42.0	40.9	28.6
	Cobalt (Co) (mg/kg)	10.9	13.1	16.7	15.3	12.4
	Copper (Cu) (mg/kg)	22.1	28.6	31.5	33.8	25.3
	Iron (Fe) (mg/kg)	23200	27900	27800	32500	26500
	Lead (Pb) (mg/kg)	22.7	27.3	33.3	38.9	32.0
	Lithium (Li) (mg/kg)	12.2	15.7	16.0	17.7	13.3
	Magnesium (Mg) (mg/kg)	3670	4510	5530	5600	3920
	Manganese (Mn) (mg/kg)	693	1350	2030	1750	1140
	Mercury (Hg) (mg/kg)	0.0445	0.0653	0.0643	0.0715	0.0507
	Molybdenum (Mo) (mg/kg)	0.97	1.58	2.48	2.48	1.47
	Nickel (Ni) (mg/kg)	26.0	38.7	54.3	49.2	33.9
	Phosphorus (P) (mg/kg)	809	747	732	624	697
	Potassium (K) (mg/kg)	890	1160	1220	1410	1070
	Selenium (Se) (mg/kg)	0.30	0.67	0.65	0.58	0.42
	Silver (Ag) (mg/kg)	<0.20	<0.35	<0.25	<0.30	<0.25
	Sodium (Na) (mg/kg)	101	123	115	92	97
	Strontium (Sr) (mg/kg)	33.8	42.4	43.9	43.4	38.0
	Thallium (TI) (mg/kg)	0.103	0.135	0.148	0.160	0.120
	Tin (Sn) (mg/kg)	0.52	0.84	0.99	1.31	0.72
	Titanium (Ti) (mg/kg)	292	299	261	253	300
	Uranium (U) (mg/kg)	1.50	1.34	1.51	1.59	1.39

^{*} Please refer to the Reference Information section for an explanation of any qualifiers detected.

L2343499 CONTD.... PAGE 3 of 15 27-SEP-19 17:32 (MT)

ALS ENVIRONMENTAL ANALYTICAL REPORT

	Sample ID Description Sampled Date Sampled Time Client ID	L2343499-6 Sediment 05-SEP-19 17:00 W5-C	L2343499-7 Sediment 05-SEP-19 18:20 W6-A	L2343499-8 Sediment 05-SEP-19 18:30 W6-B	L2343499-9 Sediment 05-SEP-19 18:40 W6-C	L2343499-10 Sediment 06-SEP-19 11:10 W29-A
Grouping	Analyte					
SOIL						
Physical Tests	pH (1:2 soil:water) (pH)	8.19	7.68	7.43	7.51	7.82
Particle Size	% Sand (2.0mm - 0.05mm) (%)	96.3	92.6	93.8	96.0	
	% Silt (0.05mm - 2um) (%)	3.3	7.0	5.7	3.7	
	% Clay (<2um) (%)	<1.0	<1.0	<1.0	<1.0	
	Texture	Sand	Sand	Sand	Sand	
Organic / Inorganic Carbon	Total Organic Carbon (%)	0.348	0.663	0.794	0.556	
Metals	Aluminum (AI) (mg/kg)	11900	13200	12700	15400	9080
	Antimony (Sb) (mg/kg)	11.3	2.98	2.55	3.63	7.15
	Arsenic (As) (mg/kg)	177	128	78.1	83.0	51.6
	Barium (Ba) (mg/kg)	231	252	205	262	193
	Beryllium (Be) (mg/kg)	0.53	0.46	0.39	0.52	0.29
	Bismuth (Bi) (mg/kg)	0.73	0.28	0.25	0.32	0.48
	Boron (B) (mg/kg)	<10	<10	<10	<10	<10
	Cadmium (Cd) (mg/kg)	0.591	1.11	0.791	1.38	0.403
	Calcium (Ca) (mg/kg)	5010	7320	5780	7190	4470
	Chromium (Cr) (mg/kg)	33.3	49.0	27.6	35.3	22.1
	Cobalt (Co) (mg/kg)	15.1	12.6	10.6	14.0	9.73
	Copper (Cu) (mg/kg)	32.6	26.6	23.9	31.7	23.9
	Iron (Fe) (mg/kg)	31500	26300	23200	27300	23400
	Lead (Pb) (mg/kg)	37.3	17.5	15.5	20.3	24.7
	Lithium (Li) (mg/kg)	17.3	18.5	16.2	19.9	11.4
	Magnesium (Mg) (mg/kg)	5410	5630	5480	6300	3880
	Manganese (Mn) (mg/kg)	1710	1220	487	690	485
	Mercury (Hg) (mg/kg)	0.0735	0.0636	0.102	0.0570	0.0424
	Molybdenum (Mo) (mg/kg)	1.72	3.40	1.33	1.93	0.85
	Nickel (Ni) (mg/kg)	44.2	45.0	30.3	43.4	25.2
	Phosphorus (P) (mg/kg)	644	875	814	829	778
	Potassium (K) (mg/kg)	1530	1030	980	1180	730
	Selenium (Se) (mg/kg)	0.60	0.96	0.79	1.09	0.32
	Silver (Ag) (mg/kg)	RRR <0.30	RRR <0.20	RRR <0.20	RRR <0.25	<0.20
	Sodium (Na) (mg/kg)	108	187	177	211	91
	Strontium (Sr) (mg/kg)	47.8	49.3	42.2	51.7	35.8
	Thallium (TI) (mg/kg)	0.171	0.131	0.128	0.160	0.074
	Tin (Sn) (mg/kg)	0.85	0.64	0.40	0.52	0.58
	Titanium (Ti) (mg/kg)	314	354	381	392	261
	Uranium (U) (mg/kg)	1.46	1.32	1.31	1.80	1.26

^{*} Please refer to the Reference Information section for an explanation of any qualifiers detected.

L2343499 CONTD.... PAGE 4 of 15 27-SEP-19 17:32 (MT)

ALS ENVIRONMENTAL ANALYTICAL REPORT

	Sample ID Description Sampled Date Sampled Time Client ID	L2343499-11 Sediment 06-SEP-19 11:20 W29-B	L2343499-12 Sediment 06-SEP-19 11:30 W29-C	L2343499-13 Sediment 05-SEP-19 13:10 W27-A	L2343499-14 Sediment 05-SEP-19 13:20 W27-B	L2343499-15 Sediment 05-SEP-19 13:30 W27-C
Grouping	Analyte	-				
SOIL						
Physical Tests	pH (1:2 soil:water) (pH)	7.58	7.94	8.03	8.10	8.23
Particle Size	% Sand (2.0mm - 0.05mm) (%)	62.5		32.1	34.7	82.6
	% Silt (0.05mm - 2um) (%)	34.8		64.8	61.8	16.1
	% Clay (<2um) (%)	2.7		3.0	3.5	1.3
	Texture	Sandy loam		Silt loam	Silt loam	Loamy sand
Organic / Inorganic Carbon	Total Organic Carbon (%)	1.58		0.544	0.504	0.395
Metals	Aluminum (Al) (mg/kg)	7790	9100	7920	8720	7720
	Antimony (Sb) (mg/kg)	7.09	7.72	14.6	13.6	9.66
	Arsenic (As) (mg/kg)	99.0	61.3	278	261	220
	Barium (Ba) (mg/kg)	142	184	110	121	112
	Beryllium (Be) (mg/kg)	0.31	0.29	0.41	0.44	0.42
	Bismuth (Bi) (mg/kg)	0.48	0.63	2.23	1.82	1.13
	Boron (B) (mg/kg)	<10	<10	<10	<10	<10
	Cadmium (Cd) (mg/kg)	0.374	0.520	0.356	0.351	0.329
	Calcium (Ca) (mg/kg)	3450	4360	3350	3500	3800
	Chromium (Cr) (mg/kg)	20.3	24.0	18.0	19.2	19.4
	Cobalt (Co) (mg/kg)	9.54	10.6	13.1	13.4	13.0
	Copper (Cu) (mg/kg)	21.9	26.2	36.3	37.7	34.6
	Iron (Fe) (mg/kg)	22500	24500	29100	29500	28500
	Lead (Pb) (mg/kg)	23.7	27.2	44.6	45.0	34.0
	Lithium (Li) (mg/kg)	10.3	11.2	11.7	12.9	11.7
	Magnesium (Mg) (mg/kg)	3400	3910	3570	3710	3810
	Manganese (Mn) (mg/kg)	449	551	481	433	445
	Mercury (Hg) (mg/kg)	0.0415	0.0538	0.0405	0.0405	0.0536
	Molybdenum (Mo) (mg/kg)	1.02	1.04	1.17	1.01	0.98
	Nickel (Ni) (mg/kg)	24.9	28.9	28.9	30.0	30.2
	Phosphorus (P) (mg/kg)	658	720	606	567	589
	Potassium (K) (mg/kg)	720	770	2060	2210	1610
	Selenium (Se) (mg/kg)	0.28	0.36	0.27	0.27	0.35
	Silver (Ag) (mg/kg)	RRR <0.20	RRR <0.25	RRR <0.35	RRR <0.25	RRR <0.25
	Sodium (Na) (mg/kg)	74	85	111	117	102
	Strontium (Sr) (mg/kg)	28.6	37.4	33.4	32.1	32.9
	Thallium (TI) (mg/kg)	0.084	0.087	0.171	0.187	0.181
	Tin (Sn) (mg/kg)	0.50	0.73	0.59	0.64	0.59
	Titanium (Ti) (mg/kg)	224	234	308	316	291
	Uranium (U) (mg/kg)	1.40	1.48	1.48	1.47	1.24

^{*} Please refer to the Reference Information section for an explanation of any qualifiers detected.

L2343499 CONTD.... PAGE 5 of 15 27-SEP-19 17:32 (MT)

ALS ENVIRONMENTAL ANALYTICAL REPORT

	Sample ID Description Sampled Date Sampled Time Client ID	L2343499-16 Sediment 05-SEP-19 15:40 W4-A	L2343499-17 Sediment 05-SEP-19 15:50 W4-B	L2343499-18 Sediment 05-SEP-19 16:00 W4-C	L2343499-19 Sediment 05-SEP-19 17:30 W22-A	L2343499-20 Sediment 05-SEP-19 17:40 W22-B
Grouping	Analyte					
SOIL						
Physical Tests	pH (1:2 soil:water) (pH)	7.97	7.80	7.70	7.54	7.78
Particle Size	% Sand (2.0mm - 0.05mm) (%)	96.6	93.5	94.7	94.1	95.0
	% Silt (0.05mm - 2um) (%)	2.8	5.9	4.6	5.4	4.5
	% Clay (<2um) (%)	<1.0	<1.0	<1.0	<1.0	<1.0
	Texture	Sand	Sand	Sand	Sand	Sand
Organic / Inorganic Carbon	Total Organic Carbon (%)	0.208	0.282	0.254	0.302	0.372
Metals	Aluminum (Al) (mg/kg)	11700	9920	8740	11000	12800
	Antimony (Sb) (mg/kg)	13.5	8.96	9.35	5.75	5.33
	Arsenic (As) (mg/kg)	315	266	327	126	73.0
	Barium (Ba) (mg/kg)	219	156	128	258	206
	Beryllium (Be) (mg/kg)	0.67	0.58	0.53	0.43	0.44
	Bismuth (Bi) (mg/kg)	0.80	0.62	0.68	0.75	0.62
	Boron (B) (mg/kg)	<10	<10	<10	<10	<10
	Cadmium (Cd) (mg/kg)	0.647	0.367	0.314	1.23	0.763
	Calcium (Ca) (mg/kg)	4050	3770	3640	4100	3830
	Chromium (Cr) (mg/kg)	34.6	26.5	21.8	28.6	24.1
	Cobalt (Co) (mg/kg)	22.0	15.1	13.1	19.7	18.9
	Copper (Cu) (mg/kg)	38.3	31.3	26.9	29.2	27.5
	Iron (Fe) (mg/kg)	37500	30500	28700	45800	33900
	Lead (Pb) (mg/kg)	48.1	27.8	26.4	24.2	23.2
	Lithium (Li) (mg/kg)	22.2	17.7	15.6	15.8	18.4
	Magnesium (Mg) (mg/kg)	4810	4070	3580	4100	4430
	Manganese (Mn) (mg/kg)	2160	1110	852	1580	2310
	Mercury (Hg) (mg/kg)	0.0561	0.0467	0.0438	0.0691	0.124
	Molybdenum (Mo) (mg/kg)	2.87	1.99	1.82	1.39	0.87
	Nickel (Ni) (mg/kg)	52.1	36.2	30.6	49.4	42.1
	Phosphorus (P) (mg/kg)	581	612	747	705	586
	Potassium (K) (mg/kg)	2120	1570	1440	1070	1170
	Selenium (Se) (mg/kg)	0.44 RRR	0.44 RRR	0.37	0.48 RRR	0.42
	Silver (Ag) (mg/kg)	<0.25	<0.30	<0.30	<0.30	0.206
	Sodium (Na) (mg/kg)	125	85	87	81	95
	Strontium (Sr) (mg/kg)	38.1	34.7	28.9	38.2	37.7
	Thallium (TI) (mg/kg)	0.266	0.212	0.200	0.211	0.177
	Tin (Sn) (mg/kg)	1.05	0.65	0.73	1.23	0.95
	Titanium (Ti) (mg/kg)	364	292	314	252	236
	Uranium (U) (mg/kg)	2.01	1.81	1.87	1.42	1.29

^{*} Please refer to the Reference Information section for an explanation of any qualifiers detected.

L2343499 CONTD.... PAGE 6 of 15 27-SEP-19 17:32 (MT)

ALS ENVIRONMENTAL ANALYTICAL REPORT

	Sample ID Description Sampled Date Sampled Time Client ID	L2343499-21 Sediment 05-SEP-19 17:50 W22-C	L2343499-22 Sediment 05-SEP-19 DUP-A	L2343499-23 Sediment 05-SEP-19 DUP-B	L2343499-24 Sediment 05-SEP-19 DUP-C	L2343499-25 Sediment 07-SEP-19 11:30 W1-A
Grouping	Analyte					
SOIL						
Physical Tests	pH (1:2 soil:water) (pH)	7.83	7.58	7.83	7.73	7.57
Particle Size	% Sand (2.0mm - 0.05mm) (%)	93.3	92.4	92.7	94.4	86.0
	% Silt (0.05mm - 2um) (%)	6.1	6.8	6.4	5.2	12.9
	% Clay (<2um) (%)	<1.0	<1.0	<1.0	<1.0	1.1
	Texture	Sand	Sand	Sand	Sand	Sand
Organic / Inorganic Carbon	Total Organic Carbon (%)	0.266	0.379	0.368	0.319	0.183
Metals	Aluminum (Al) (mg/kg)	9970	9670	12100	10800	7910
	Antimony (Sb) (mg/kg)	6.66	4.75	6.98	6.30	13.5
	Arsenic (As) (mg/kg)	118	111	83.6	142	399
	Barium (Ba) (mg/kg)	209	203	215	214	166
	Beryllium (Be) (mg/kg)	0.45	0.40	0.44	0.63	0.49
	Bismuth (Bi) (mg/kg)	0.62	0.53	0.60	1.46	0.66
	Boron (B) (mg/kg)	<10	<10	<10	<10	<10
	Cadmium (Cd) (mg/kg)	0.769	1.09	0.807	0.869	0.303
	Calcium (Ca) (mg/kg)	3640	3490	3760	4790	3290
	Chromium (Cr) (mg/kg)	39.3	19.6	22.3	26.9	22.6
	Cobalt (Co) (mg/kg)	27.0	17.2	21.8	31.7	11.2
	Copper (Cu) (mg/kg)	31.3	25.0	32.9	36.9	25.4
	Iron (Fe) (mg/kg)	45000	39300	36100	57100	26800
	Lead (Pb) (mg/kg)	31.7	23.6	23.1	43.4	29.6
	Lithium (Li) (mg/kg)	15.7	15.7	17.5	16.5	12.8
	Magnesium (Mg) (mg/kg)	3980	3830	4410	4450	3340
	Manganese (Mn) (mg/kg)	3360	1360	2630	3560	530
	Mercury (Hg) (mg/kg)	0.0601	0.0560	0.0591	0.0502	0.0267
	Molybdenum (Mo) (mg/kg)	1.89	0.70	0.77	1.71	2.42
	Nickel (Ni) (mg/kg)	58.6	39.0	44.7	59.4	29.7
	Phosphorus (P) (mg/kg)	557	645	591	1220	766
	Potassium (K) (mg/kg)	1270	950	1150	1380	1490
	Selenium (Se) (mg/kg)	0.69	0.36	0.41	0.69	0.28
	Silver (Ag) (mg/kg)	0.161	0.167	0.157	0.415	0.230
	Sodium (Na) (mg/kg)	111	73	91	123	122
	Strontium (Sr) (mg/kg)	35.2	31.3	34.5	44.3	30.7
	Thallium (TI) (mg/kg)	0.156	0.171	0.171	0.166	0.230
	Tin (Sn) (mg/kg)	1.03	0.69	0.85	1.33	0.49
	Titanium (Ti) (mg/kg)	225	196	227	263	403
	Uranium (U) (mg/kg)	2.00	1.24	1.30	2.13	2.37

^{*} Please refer to the Reference Information section for an explanation of any qualifiers detected.

L2343499 CONTD.... PAGE 7 of 15

ALS ENVIRONMENTAL ANALYTICAL REPORT

27-SEP-19 17:32 (MT) Version: FINAL

	Sample ID Description Sampled Date Sampled Time Client ID	L2343499-26 Sediment 07-SEP-19 11:40 W1-B	L2343499-27 Sediment 07-SEP-19 11:50 W1-C	L2343499-28 W29-A BAG	L2343499-29 W29-C BAG	
Grouping	Analyte					
SOIL						
Physical Tests	pH (1:2 soil:water) (pH)	7.79	7.19			
Particle Size	% Sand (2.0mm - 0.05mm) (%)	85.7	94.3	88.2	83.5	
	% Silt (0.05mm - 2um) (%)	13.4	4.6	11.0	15.5	
	% Clay (<2um) (%)	<1.0	1.1	<1.0	<1.0	
	Texture	Sand / Loamy sand	Sand	Sand	Loamy sand	
Organic / Inorganic Carbon	Total Organic Carbon (%)	0.277	0.219	0.430	0.839	
Metals	Aluminum (Al) (mg/kg)	7190	14700			
	Antimony (Sb) (mg/kg)	12.5	17.8			
	Arsenic (As) (mg/kg)	404	530			
	Barium (Ba) (mg/kg)	146	252			
	Beryllium (Be) (mg/kg)	0.48	0.90			
	Bismuth (Bi) (mg/kg)	0.78	0.47			
	Boron (B) (mg/kg)	<10	<10			
	Cadmium (Cd) (mg/kg)	0.294	0.731			
	Calcium (Ca) (mg/kg)	3110	4960			
	Chromium (Cr) (mg/kg)	22.6	38.2			
	Cobalt (Co) (mg/kg)	11.1	15.9			
	Copper (Cu) (mg/kg)	25.9	22.5			
	Iron (Fe) (mg/kg)	26300	30900			
	Lead (Pb) (mg/kg)	27.5	40.8			
	Lithium (Li) (mg/kg)	11.3	20.8			
	Magnesium (Mg) (mg/kg)	2850	5440			
	Manganese (Mn) (mg/kg)	463	1210			
	Mercury (Hg) (mg/kg)	0.0290	0.0411			
	Molybdenum (Mo) (mg/kg)	2.43	5.79			
	Nickel (Ni) (mg/kg)	30.0	48.5			
	Phosphorus (P) (mg/kg)	804	1160			
	Potassium (K) (mg/kg)	1560	1820			
	Selenium (Se) (mg/kg)	0.26	0.48			
	Silver (Ag) (mg/kg)	0.208	0.228			
	Sodium (Na) (mg/kg)	117	176			
	Strontium (Sr) (mg/kg)	30.3	34.6			
	Thallium (TI) (mg/kg)	0.199	0.252			
	Tin (Sn) (mg/kg)	0.199	0.232			
	Titanium (Ti) (mg/kg)	377	500			
	Uranium (U) (mg/kg)					
	(-) (a/ \a/	2.47	6.39			

^{*} Please refer to the Reference Information section for an explanation of any qualifiers detected.

PAGE 8 of 15 27-SEP-19 17:32 (MT)

Version: FINAL

		Sample ID Description Sampled Date Sampled Time Client ID	L2343499-1 Sediment 05-SEP-19 12:10 W23-A	L2343499-2 Sediment 05-SEP-19 12:20 W23-B	L2343499-3 Sediment 05-SEP-19 12:30 W23-C	L2343499-4 Sediment 05-SEP-19 16:40 W5-A	L2343499-5 Sediment 05-SEP-19 16:50 W5-B
Grouping	Analyte						
SOIL							
Metals	Vanadium (V) (mg/kg)		26.6	29.7	29.3	29.8	26.9
	Zinc (Zn) (mg/kg)		85.5	113	123	132	94.4

^{*} Please refer to the Reference Information section for an explanation of any qualifiers detected.

PAGE 9 of 15 27-SEP-19 17:32 (MT)

Version: FINAL

		Sample ID Description Sampled Date Sampled Time Client ID	L2343499-6 Sediment 05-SEP-19 17:00 W5-C	L2343499-7 Sediment 05-SEP-19 18:20 W6-A	L2343499-8 Sediment 05-SEP-19 18:30 W6-B	L2343499-9 Sediment 05-SEP-19 18:40 W6-C	L2343499-10 Sediment 06-SEP-19 11:10 W29-A
Grouping	Analyte						
SOIL							
Metals	Vanadium (V) (mg/kg)		30.8	34.3	33.4	38.8	28.7
	Zinc (Zn) (mg/kg)		132	114	108	143	89.4

^{*} Please refer to the Reference Information section for an explanation of any qualifiers detected.

PAGE 10 of 15 27-SEP-19 17:32 (MT)

Version: FINAL

		Sample ID Description Sampled Date Sampled Time Client ID	L2343499-11 Sediment 06-SEP-19 11:20 W29-B	L2343499-12 Sediment 06-SEP-19 11:30 W29-C	L2343499-13 Sediment 05-SEP-19 13:10 W27-A	L2343499-14 Sediment 05-SEP-19 13:20 W27-B	L2343499-15 Sediment 05-SEP-19 13:30 W27-C
Grouping	Analyte						
SOIL							
Metals	Vanadium (V) (mg/kg)		25.0	27.6	20.5	21.5	21.6
	Zinc (Zn) (mg/kg)		82.1	95.9	106	99.5	87.8

^{*} Please refer to the Reference Information section for an explanation of any qualifiers detected.

PAGE 11 of 15 27-SEP-19 17:32 (MT)

Version: FINAL

		Sample ID Description Sampled Date Sampled Time Client ID	L2343499-16 Sediment 05-SEP-19 15:40 W4-A	L2343499-17 Sediment 05-SEP-19 15:50 W4-B	L2343499-18 Sediment 05-SEP-19 16:00 W4-C	L2343499-19 Sediment 05-SEP-19 17:30 W22-A	L2343499-20 Sediment 05-SEP-19 17:40 W22-B
Grouping	Analyte						
SOIL							
Metals	Vanadium (V) (mg/kg)		29.3	26.6	26.4	30.7	28.7
	Zinc (Zn) (mg/kg)		145	108	97.8	148	130

^{*} Please refer to the Reference Information section for an explanation of any qualifiers detected.

PAGE 12 of 15 27-SEP-19 17:32 (MT)

Version: FINAL

		Sample ID Description Sampled Date Sampled Time Client ID	L2343499-21 Sediment 05-SEP-19 17:50 W22-C	L2343499-22 Sediment 05-SEP-19 DUP-A	L2343499-23 Sediment 05-SEP-19 DUP-B	L2343499-24 Sediment 05-SEP-19 DUP-C	L2343499-25 Sediment 07-SEP-19 11:30 W1-A
Grouping	Analyte						
SOIL							
Metals	Vanadium (V) (mg/kg)		24.9	25.1	28.5	25.8	29.0
	Zinc (Zn) (mg/kg)		135	115	136	133	73.8

^{*} Please refer to the Reference Information section for an explanation of any qualifiers detected.

L2343499 CONTD.... PAGE 13 of 15

ALS ENVIRONMENTAL ANALYTICAL REPORT

27-SEP-19 17:32 (MT) Version: FINAL

		Sample ID Description Sampled Date Sampled Time Client ID	L2343499-26 Sediment 07-SEP-19 11:40 W1-B	L2343499-27 Sediment 07-SEP-19 11:50 W1-C	L2343499-28 W29-A BAG	L2343499-29 W29-C BAG	
Grouping	Analyte						
SOIL							
Metals	Vanadium (V) (mg/kg)		27.9	41.4			
	Zinc (Zn) (mg/kg)		75.1	118			

^{*} Please refer to the Reference Information section for an explanation of any qualifiers detected.

Reference Information

L2343499 CONTD....

PAGE 14 of 15

27-SEP-19 17:32 (MT)

Version: FINAL

QC Samples with Qualifiers & Comments:

QC Type Description	Parameter	Qualifier	Applies to Sample Number(s)
Laboratory Control Sample	Magnesium (Mg)	MES	L2343499-1, -10, -11, -12, -13, -14, -15, -16, -17, -18, -19, -2, -3, -4, -5, -6, -7, -8, -9
Certified Reference Material	Silver (Ag)	RM-H	L2343499-1, -10, -11, -12, -13, -14, -15, -16, -17, -18, -19, -2, -3, -4, -5, -6, -7, -8, -9

Qualifiers for Individual Parameters Listed:

Qualifier	Description
MES	Data Quality Objective was marginally exceeded (by < 10% absolute) for < 10% of analytes in a Multi-Element Scan / Multi-Parameter Scan (considered acceptable as per OMOE & CCME).
RM-H	Reference Material recovery was above ALS DQO. Non-detected sample results are considered reliable. Other results, if reported, have been qualified.
RRR	Refer to Report Remarks for issues regarding this analysis

Test Method References:

ALS Test Code	LS Test Code Matrix Test Description		Method Reference**			
C-TIC-PCT-SK	Soil	Total Inorganic Carbon in Soil	CSSS (2008) P216-217			

A known quantity of acetic acid is consumed by reaction with carbonates in the soil. The pH of the resulting solution is measured and compared against a standard curve relating pH to weight of carbonate.

C-TOC-CALC-SK Soil Total Organic Carbon Calculation CSSS (2008) 21.2 Total Organic Carbon (TOC) is calculated by the difference between total carbon (TC) and total inorganic carbon. (TIC)

C-TOT-LECO-SK Soil Total Carbon by combustion method CSSS (2008) 21.2

The sample is ignited in a combustion analyzer where carbon in the reduced CO2 gas is determined using a thermal conductivity detector.

HG-63UM-CVAF-VA Soil Hq in Soil by CVAAS EPA 200.2/245.7

This analysis is carried out using procedures from CSR Analytical Method: "Strong Acid Leachable Metals (SALM) in Soil", BC Ministry of Environment, 26 June 2009, and procedures adapted from EPA Method 200.2. The sample is manually homogenized, dried at 60 degrees Celsius, sieved through a 63 um (230 mesh) sieve, and a representative subsample of the dry material is weighed. The sample is then digested at 95 degrees Celsius for 2 hours by block digester using concentrated nitric and hydrochloric acids. Instrumental analysis is by atomic absorption spectrophotometry (EPA Method 245.7).

Method Limitation: This method is not a total digestion technique. It is a very strong acid digestion that is intended to dissolve those metals that may be environmentally available. By design, elements bound in silicate structures are not normally dissolved by this procedure as they are not usually mobile in the environment.

Deviation from Reference Method: This procedure deviates from the BC CSR SALM method, which specifies sieving to 2 mm (10 mesh).

IC-CACO3-CALC-SKSoilInorganic Carbon as CaCO3 EquivalentCalculationMET-63UM-CCMS-VASoilMetals in Soil by CRC ICPMS (63um)EPA 200.2/6020A

Soil/sediment is dried, disaggregated, and sieved (63 um). Strong Acid Leachable Metals in the <63 um fraction are solubilized by heated digestion with nitric and hydrochloric acids. Instrumental analysis is by Collision / Reaction Cell ICPMS.

Limitations: This method is intended to liberate environmentally available metals. Silicate minerals are not solubilized. Some metals may be only partially recovered (matrix dependent), including Al, Ba, Be, Cr, S, Sr, Ti, Tl, V, W, and Zr. Elemental Sulfur may be poorly recovered by this method. Volatile forms of sulfur (e.g. sulfide, H2S) may be excluded if lost during sampling, storage, or digestion.

PH-1:2-VA Soil pH in Soil (1:2 Soil:Water Extraction) BC WLAP METHOD: PH, ELECTROMETRIC, SOIL

This analysis is carried out in accordance with procedures described in "pH, Electrometric in Soil and Sediment - Prescriptive Method", Rev. 2005, Section B Physical, Inorganic and Misc. Constituents, BC Environmental Laboratory Manual. The procedure involves mixing the dried (at <60°C) and sieved (No. 10 / 2mm) sample with deionized/distilled water at a 1:2 ratio of sediment to water. The pH of the solution is then measured using a standard pH probe.

PSA-1-SK Soil Particle Size Analysis:Mini-Pipet Method SSIR-51 Method 3.2.1

Dry, < 2 mm soil is treated with sodium hexametaphosphate to ensure complete dispersion of primary soil particles. After treatment, sub-samples of the homogenized soil suspension are taken at specific times and sampling depths as determined by Stoke's Law. The dry weight of soil found in each sub-sample is used determine the silt and clay content. The sand fraction is determined by difference.

The soil texture is determined according to the CSSC soil texture triangle.

** ALS test methods may incorporate modifications from specified reference methods to improve performance.

The last two letters of the above test code(s) indicate the laboratory that performed analytical analysis for that test. Refer to the list below:

Laboratory Definition Code Laboratory Location

Reference Information

L2343499 CONTD....

PAGE 15 of 15

27-SEP-19 17:32 (MT)

Version: FINAL

SK ALS ENVIRONMENTAL - SASKATOON, SASKATCHEWAN, CANADA
VA ALS ENVIRONMENTAL - VANCOUVER, BRITISH COLUMBIA, CANADA

Chain of Custody Numbers:

GLOSSARY OF REPORT TERMS

Surrogate - A compound that is similar in behaviour to target analyte(s), but that does not occur naturally in environmental samples. For applicable tests, surrogates are added to samples prior to analysis as a check on recovery.

mg/kg - milligrams per kilogram based on dry weight of sample.

mg/kg wwt - milligrams per kilogram based on wet weight of sample.

mg/kg lwt - milligrams per kilogram based on lipid-adjusted weight of sample.

mg/L - milligrams per litre.

< - Less than.

D.L. - The reported Detection Limit, also known as the Limit of Reporting (LOR).

N/A - Result not available. Refer to qualifier code and definition for explanation.

Test results reported relate only to the samples as received by the laboratory.

UNLESS OTHERWISE STATED, ALL SAMPLES WERE RECEIVED IN ACCEPTABLE CONDITION.

Analytical results in unsigned test reports with the DRAFT watermark are subject to change, pending final QC review.

L2343499-COFC

(ALS) Environmental

Chain of Custody / Analytical Request Form Canada Toll Free: 1 800 668 9878 www.alsglobal.com

COC#			
	Page	1 of	3
	raye	1 01	J

(74,5)	nondimental																
Report To		Report Fo	ormat / Distribut	ion		Serv	ice R	eque	sted	(Rush	for rea	utine a	ınalysis :	ubject	to avail	ability)	
Сотрапу:	StrataGold Corporation	☑ Standard	□ Other			_							ness Days				
Contact:	Hugh Coyle	⊡ PDF	☑ PDF ☑ Excel ☑ Digital ☐ Fax ○ Priority (2-4 Business Days) - 50% Surcharge - Contact ALS to Con) Confirm	n TAT								
Address:	1000 - 1050 West Pender Street	Email 1:	hcoyle@vitgold	corp.com		O Emergency (1-2 Bus. Days) - 100% Surcharge - Contact ALS to Confirm TAT											
	Vancouver, BC V6E 3S7	Email 2:	bonniebums@n	orthwestel.net		O San	ne Day	or We	ekend				ALS to C	onfirm T	AT		
Phone:	604-696-6600 Fax:	Email 3:				Analysis Request Please indicate below Filtered, Preserved or both (F, P, F/P)											
Invoice To	Same as Report? ☑ Yes ☐ No		roject Information			Pie	ase ii	ndicat	e bel	ow Fil	tered	, Pres	erved o	r both	(F, P, I	F/P)	i
Hardcopy of I	nvoice with Report? 🖾 Yes 🖾 No	Job#:	Eagle Gold Sed	liment 2019					_					_	╄	Щ	
Company:		PO / AFE				l i											
Contact:		LSD:	Victoria Gold Co	orp.							ļ						cn .
Address:		╄							.ş		. 1		Ī				Ē
Phone:	Fax:	Quote #:							Analysis					İ			캺
	/ork Order# use only)	ALS Contact:	Joanne Lee	Sampler:	CB, PE				Size								ວູ
Sample #	Sample Identification (This description will appear on the report)		Date (dd-mmm-yy)	Time (hh:mm)	Sample Type	700	듄	Metals*	Particle								Number of Containers
	W23-A		05-Sep-19	12:10	Sediment	х	Х	х	х					\top	\top		2
	W23-B		05-Sep-19	12:20	Sediment	х	х	х	Х						 		2
	W23-C		05-Sep-19	12;30	Sediment	Х	Х	Х	Х								2
	W5-A		05-Sep-19	16:40	Sediment	Х	X	Х	Х								2
	W5-B		05-Sep-19	16:50	Sediment	Х	X	Х	Х								2
	W5-C		05-Sep-19	17:00	Sediment	X	Х	Х	Х								2
	₩6-A		05-Sep-19	18:20	Sediment	Х	X	Х	Х							Ш	2
	W6-B		05-Sep-19	18:30	Sediment	X	Х	X	Х								2
	W6-C		05-Sep-19	18:40	Sediment	Х	. X	Х	Х					\perp		Ш	2
	W29-A		06-Sep-19	11:10	Sediment	Х	Х	Х	Х					\bot			2
	W29-B		06-Sep-19	11:20	Sediment	X	X	Х	Х							Ш	2
	W29-C		06-Sep-19	11:30	Sediment	X	Х	X	X								2
	Special Instructions / Regulations with water or lan	d use (CCM	IE-Freshwater A	quatic Life/BC	CSR - Commercia	I/AB	Tier	- Na	tural,	etc.)	/ Haz	zardo	us Deta	ils			
* ANALYSE	THE PORTION THAT PASSES A 63 MICRON SIEVE FOR MI	ETALS															
	Fallure to complete al	•	-									-					
	By the use of this form the user ackr Also provided on another Excel tab are the ALS locatio	_	_		•								non an	hear			
	SHIPMENT RELEASE (client use)		s, phone numbe MENT RECEPTI	-		vatto	107.00						ion ana				ᅴ
Released by:			Date: 1	Time:	Temperature:	Veri	fied b		,,	Date			Time:		Obse	ervatio	
Crystal Beaud	iry 7-Sep-19		& SCAT	4:17 PM		<u> </u>									If Ye	s add	SIF
			0,2019		911									GEN	F 20.00	Front	

8.4

L2343499-COEC

ALS) Environmental

Chain of Custody / Analytical Request Form Canada Toll Free: 1 800 668 9878 www.alsglobal.com

COC#			
	Page	2 of	3

(, ,,_																		
Report To			Report Format / Distribution					Service Requested (Rush for routine analysis subject to availability)										
Company:	y; StrataGold Corporation			Standard D Other				Regular (Standard Turnaround Times - Business Days)										
Contact:	Hugh Coyle			☑ Excel	☑ Digital	□ Fax	O Priority (2-4 Business Days) - 50% Surcharge - Contact ALS to Confirm TAT											
Address:				Email 1: hcoyle@vitgoldcorp.com © Emergency (1-2 Bus. Days) - 160% Surcharge - Contact ALS						LS to Con	irm TAT							
	Vancouver, BC V6E 3S7			Email 2: bonniebums@northwestel.net					O Same Day or Weekend Emergency - Contact ALS to Confirm TAT									
Phone:				mail 3: Analysis Request														
Invoice To	oice To Same as Report? 🗵 Yes 🗆 No			oject Informatic			Please indicate below Fiftered, Preserved or both (F, P, F/						F/P)					
Hardcopy of Invoice with Report? ☐ Yes ☐ No			Job#: Eagle Gold Sediment 2019											\Box				
Company:			PO / AFE:										Ì	li				
Contact:			LSD: Victoria Gold Corp.															
Address:			·							SiS.	ŀ					1	Jer.	
Phone:	Fax:		Quote #:							Analys							Hai.	
	ab Work Order # (lab use only)			Joanne Lee	Sampler:	CB, PE				Size As							Number of Containers	
Sample	Sample identi			Date	Time	Sample Type	ي		Metais*	article							mper	
#	(This description will appear on the report)			(dd-mmm-yy)	(hh:mm)		TOC	핕	Me	- E				Ш		$\downarrow \downarrow \downarrow$	<u> </u>	
	W27-A			05-Sep-19	13:10	Sediment	X	Х	Х	X							2	
4.1	W27-B			05-Sep-19	13:20	Sediment	X	X	X	Х							2	
	W27-C			05-Sep-19	13:30	Sediment	X	Х	X	Х							2	
	W4-A			05-Sep-19	15:40	Sediment	Х	Х	X	Х							2	
	W4-B			05-Sep-19	15:50	Sediment	Х	Х	Х	Х							2	
	W4-C			05-\$ep-19	16:00	Sediment	Х	Х	Х	Х							2	
* 4 - 14 - 14 - 14 - 14 - 14 - 14 - 14 -	W22-A			05-Sep-19	17:30	Sediment	Х	Х	Х	Х							2	
	W22-B			05-Sep-19	17:40	Sediment	Х	Х	Х	Х							2	
F - F	W22-C			05-Sep-19	17:50	Sediment	Х	X	Х	Х							2	
	DUP-A			06-Sep-19		Sediment	Х	Х	Х	Х		┸					2	
	DUP-B			06-Sep-19		Sediment	Х	Х	Х	Х							2	
1 1/4	DUP-C			06-Sep-19		Sediment	X	Х	Х	Х			<u>.l</u>				2	
	Special instructions / Regulation	ns with water or land (use (CCM	E-Freshwater A	quatic Life/BC (SR - Commercia	I/AB	Tier 1	- Na	tural,	etc.) /	Hazaro	ous D	etails				
* ANALYSE 1	THE PORTION THAT PASSES A 63 MIC	RON SIEVE FOR MET	ALS															
		allure to complete all p s form the user acknow									Excel	tab.						
	Also provided on another Excel tab		_	-		•			•				nmon	analys	es.			
SHIPMENT RELEASE (client use) SHIPMENT RECEPTION (lab use only) SHIPMENT VERIFICATION (lab use only)																		
Released by:	Date (dd-rimm-yy) Time	e (nh-mm) Received by	y:	Date: Sept 8	Time:	Temperature:	Verif	ied by	y:		Date:		Tim	e:	Yes	servation / No ? es add S	- 1	
		1 7		,		Ŭ									lu t	o auu c	/II	

GENF 20.00 Front

L2343499-COFC

(ALS) Environmental

Chain of Custody / Analytical Request Form Canada Toll Free: 1 800 668 9878 www.aisglobal.com

COC#			
	Page	3 of	3_

(ALS) E	noiranmentai					-												
Report To		Report Fo	Report Format / Distribution				Service Requested (Rush for routine analysis subject to availability)											
Company:	StrataGold Corporation	② Standard	□ Other			Regular (Standard Turnaround Times - Business Days)												
Contact:	Hugh Coyle	☑ PDF	☑ Excel	☑ Digital	☐ Fax	O Priority (2-4 Business Days) - 50% Surcharge - Contact ALS to Confirm TAT												
Address:	1000 - 1050 West Pender Street	Email 1:	Email 1: hcoyle@vitgoldcorp.com				O Emergency (1-2 Bus. Days) - 100% Surcharge - Contact ALS to Confirm TAT											
	Vancouver, BC V6E 3S7	bonnieburns@n	orthwestel.net		O San	me Day or Weekend Emergency - Contact ALS to Confirm TAT												
Phone:	604-696-6600 Fax:	Email 3:	Email 3:					Analysis Request										
Involce To Same as Report ? 🖸 Yes 🕒 No			Client / Project Information					Please indicate below Filtered, Preserved or both (F, P, F/P)										
Hardcopy of Invoice with Report? ☐ Yes ☐ No			Job #: Eagle Gold Sediment 2019							_					—	_		
Company:		PO / AFE:																
Contact:			LSD; Victoria Gold Corp.															
Address:									.52							Ę		
Phone:	Fax:	Quote #:]			Analysis							ntai		
	Vork Order# use only)	ALS Contact:	Joanne Lee	Sampler:	CB, PE				Size							Number of Containers		
Sample #	Sample Identification (This description will appear on the repo	Date (dd-mmm-yy)	Time (hh:mm)	Sample Type	700	Æ	Metais*	Particle							QuinN			
	W1-A	07-Sep-19	11:30	Sediment	Х	х	Х	Х						\top	2			
. •	W1-B		07-Sep-19	.11:40	Sediment	Х	Х	Х	Х							2		
	W1-C			11:50	Sediment	Х	Х	Х	Х							2		
															\perp			
1.1															\perp			
														_				
_											_					_		
				<u> </u>										\dashv	—	-		
										_	-		_		+	<u> </u>		
				41 11 100 1	200 2	LIA D	Tl 4		احددة	-4-1/1	1		100			٫ـــــــــــــــــــــــــــــــــــــ		
	Special Instructions / Regulations with water		E-Freshwater A	quatic Life/BC	JSR - Commercia	арды	Her	- NB	turai,	etc.j/i	nazaru	ous D	etans			-		
* ANALYSE	THE PORTION THAT PASSES A 63 MICRON SIEVE FO	OR METALS lete all portions of	thic form may	delay analysis	Please fill in this	s form	LEG	IRI V	,						—			
	By the use of this form the use	r acknowledges a	nd agrees with	the Terms and	Conditions as pr	ovide	d on	a sep	arate			mar.	h					
	Also provided on another Excel tab are the ALS is SHIPMENT RELEASE (client use)			ors and sample only		rvauc	n i n			NT VE								
Released by		ceived by:	Date: A 8	Time:	Temperature:	Veri	fied b			Date:		Time		Ö Y	bserva es / No	7		
														<u> </u>	If Yes add S			

GENF 20,00 Front