REVEGETATION TRIALS

ON THE PESO SITE ON THE DUBLIN GULCH PROPERTY

2012 to 2018

Volunteer spruce and shrubs growing with the alder on a plot at the Waste Rock Dump

For Victoria Gold Corp.

Submitted by

ENVIRONMENTAL SERVICES

April 2019

EXECUTIVE SUMMARY

A six year revegetation trial was conducted at the old Peso mine site on Victoria Gold's Dublin Gulch property located in central Yukon. The latest mining activity and disturbance at Peso occurred in the 1960s and very little natural revegetation had taken place over the ensuing decades. Blocks of plots were established on two sites; an old trenched area and the waste rock dump below the adit. Plots in each block received no treatment or a variety of amendments including biochar, compost, leonardite and dolomite lime prior to seeding with native grasses and locally collected alder seed.

The soil at Peso is acidic, nutrient poor and highly mineralized. Biochar was chosen as one of the amendments due to its ability to transform degraded land. It increases the pH of acidic soils, adds moisture retention to arid soils, provides surface area for microbes and nutrients to use, immobilizes metals and can sequester carbon into the ground for very long periods. Biochar itself is not a fertilizer, and is combined with compost in this trial, to provide nutrients for initial plant growth.

Annual assessments were conducted midsummer from 2013 to 2018. Unsurprisingly, there was minimal, if any, growth on the plots that were seeded but received no amendments, analogous to the surrounding areas. Although grasses are not the dominant growth form in the nearby local environment, native grasses were initially planted as they germinate quickly, assist in retaining moisture and help to build up the soil through litter decomposition. By year two most of the treated plots supported relatively healthy growth of various grass species. Alder seeds that were also added to the plots began noticeably growing in years two and three. In year four grasses were gradually dying back and shrubs, mainly alder, were taking over. Willow, dwarf birch, Labrador tea, blueberry and Alaska birch were also beginning to colonize some of the plots, all of which are present in the neighbouring forest. The shrubs increased in growth over the final years and in 2018 some of the alders had produced seed cones.

Alder is a nitrogen fixing woody plant. Nitrogen is an essential element in plant development and the primary limiting factor for plant growth in boreal forests. The successful growth of this species on the plots provides nitrogen to the soil increasing soil fertility. During the 2018 assessment nitrogen nodules were observed on alder roots. In addition, the decomposition of alder leaves and other alder parts contributes nitrogen to the soil.

In the final year of the trial, soil and foliar tissue samples were collected and analysed for metals. Soil analysis indicated that the growth medium is acidic, nutrient poor and mineralized with very high concentrations of several metals. It appeared biochar was sequestering some metals in the treated plots. Although metal concentrations were extremely high in the soil (i.e arsenic, antimony and lead), these metals were not taken up in large amounts by the plants. Concentrations in the tissues appear relatively similar to those collected at other locations at Dublin Gulch and at other Yukon mine sites.

In summary, these trials have proven successful. With minimal effort, the use of appropriate species and soil amendments have produced healthy plants that have grown, propagated and even thrived on these acidic, highly mineralized soils.

TABLE OF CONTENTS

Execu	tive Su	mmary		i
Table	of Cont	ents		ii
Lists c	of Table	s and F	igures	iii
1.0	INTRO 1.1 1.2	DUCTI Backg Scope		1 1 1
2.0	STUD	Y AREA	A	3
3.0	3.1 3.2	3.2.2 3.2.3 ASSES Soils Vegeta 4.2.1	nalysis Design Site Preparation Treatments 3.2.2.1 Waste Rock Site 3.2.2.2 Trench Site Seed Mix	7 7 7 8 9 10 12 12 12 12 12 16 16 16 17 18 20
5.0	DISCU	JSSION		23
6.0	REFE	RENCE	S	27
APPE	NDICES	5		
Apper Apper		Soil Da Photog	ata graphs, 2012 to 2018	

Appendix C Revegetation Assessment Results

LIST OF TABLES

Table		Page
1	Means for Selected Climatic Parameters at Elevation 1125m	3
2	Block Locations at Peso Mine	5
3	Seed Mix and Rate of Application for Waste Rock and Trench Sites	12
4	Existing Soil Conditions, 2012 and 2018	13
5	Mean Concentrations (N=3) of Each Treatment, Trench Site	14
6	Mean Concentrations (N=3) of Each Treatment, Waste Rock Dump	15
7	Foliar Samples Collected per Plot	18
8	Metals (mg/kg) in Tissues per Amendment, Trench Site	19
9	Foliar Metals (mg/kg) per Tissue Type, Trench Site	20
10	Metals (mg/kg) in Tissues per Amendment, Waste Rock Dump	21
11	Metal Concentrations in Foliar Tissues per Species and Type, Waste Rock Dump	23
12	Metal Concentrations in Soil and Foliar from Various Projects	25

LIST OF FIGURES

Figure		Page
1	Revegetation and Bioremediation Trial Location on the Dublin Gulch Property	4
2	Test Plot Locations at the Old Peso Mine Site	6
3	Layout of Treatment and Plots at Waste Rock Site	9
4	Layout of Treatment and Plots at Trench Site	11

1.0 INTRODUCTION

1.1 Background

The claims at the Peso site were first staked in June 1910 by J. Alverson and G. Huffman, who sank a 4.9 m shaft in 1912 and trenched until 1916 (Yukon Minfile). In 1948, with antimony in demand, Cecil D. Poli re-staked Alverson's old silver-lead-antimony property as the Peso 1 - 12 claims and trenched the vein by hand. On route back to Haggart Creek he discovered the Rex vein two miles to the southeast. The Peso vein gave 40 ounces of silver per ton and a sample from the Rex vein gave 25 ounces per ton. These properties were optioned in the early 1950s at the height of the boom, but no significant work was done on them (Aho, 2006).

In 1961 Tanar Gold Mines Ltd transferred the claims to a new company, Peso Silver Mines Ltd who carried out extensive exploration from 1961 to 1965, including underground development on the Peso vein. The two main vein zones at Peso Rex contained a reasonably well provenprobable reserve of about 154,000 tons at 20.9 ounces of silver per ton and 3.7% lead (Campbell, 1965). The veins contain abundant pyrite and arsenopyrite, with jamesonite, tetrahedrite and minor shalerite and bismuthinite, including the metallic minerals galena and chalcopyrite (Aurum Geological Consultants, 1992).

M.J. Moreau explored with hand trenching in 1986 and bought the Peso and Rex claims at a Sheriff's sale in August 1988 (Yukon Minfile).

In 1991, M. J. Moreau Enterprises Ltd made a request of Aurum Geological Consultants to prepare a report summarizing the economic potential of the Pierre Property, which included the Peso claims. Results from samples collected in 1991 from the No. 1 Vein (Peso) returned a high silver value of 318.5 ppm which when fire assayed returned 37.8 oz/ton silver (Aurum Geological Consultants, 1992).

In 1994 First Dynasty Mines Ltd acquired claims throughout the area and in 1996 its wholly owned subsidiary, New Millennium Mining Ltd carried out a major drilling program in the Dublin Gulch area.

Stratagold acquired the Dublin Gulch property in 2004 and commenced a drilling program in 2005 to delineate the Eagle Zone. Victoria Gold Corp. assumed control in 2009.

Recent exploration work has been undertaken by Victoria Gold in the Rex/Peso area, however the locations of the trial plots are outside of the active zone and provide a representative site for the revegetation experiment.

1.2 Scope of Work

Victoria Gold Corp has sponsored revegetation research in support of reclamation planning for the Eagle Gold Project at their Dublin Gulch Property. The objective of the revegetation program at Peso is to test the viability of incorporating biochar and other soil amendments into the site with a goal of creating an ultimate reclamation and revegetation plan that will be transferable to the Eagle Gold Project Reclamation and Closure Plan (StrataGold 2014). The Peso site was chosen because 1) there were existing and un-reclaimed facilities (waste dump

and trenches) at the site that were located in similar terrain and with similar climatic conditions and geologic properties as the Eagle Gold Project, and 2) unlike other areas within the Eagle Gold Project area subject to exploration, construction and other activities, the established plots at Peso would remain undisturbed.

Biochar is a light charcoal material produced by heating or combusting biomass under low or no oxygen conditions, a process known as pyrolysis. Residues of incomplete organic pyrolysis (e.g., from cooking fires), are thought to be the key component of terra preta soils, a very dark fertile anthropogenic soil known most commonly from the Amazon basin. It was most likely intentionally developed by humans between 450BC and 950AD to improve the poor soil conditions in the Amazonian basin. Terra preta is characterized by high concentrations of low temperature charcoal; quantities of pottery shards; and organic matter such as plants, animals, bones and feces (Bates, 2010). While the biochar process has been known for over a century, recent efforts are underway to recreate the fertile Terra preta like soils through the biochar process (Economist 2009).

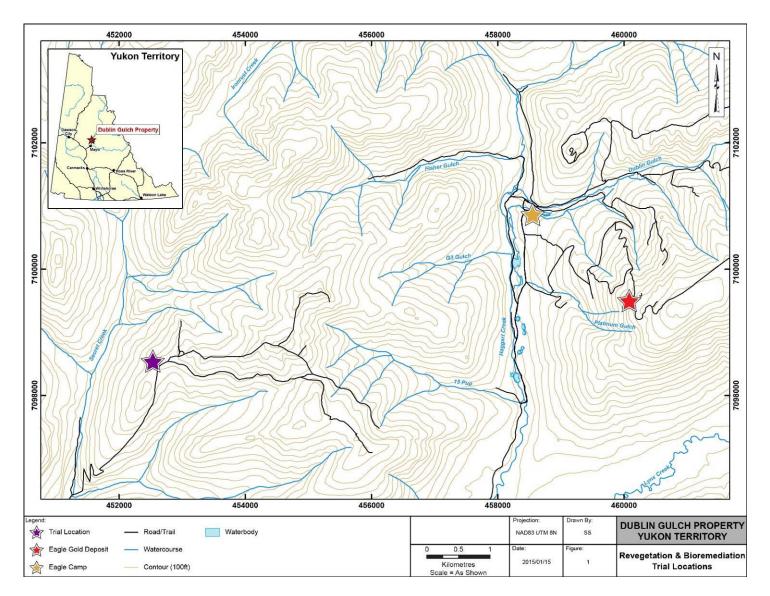
One of the greatest benefits of biochar is its capacity to transform degraded land. It adds moisture retention to arid soils, it provides surface area for microbes and nutrients to use, it immobilizes metals and it can lock carbon into the ground for very long periods (Bruges, 2009, Chen et al, 2018). The agronomic and environmental benefits of adding biochar to soils have been investigated for many years, but in the past several years research has begun into the use of biochar for bioremediation of mine-affected soil (Laberge Environmental Services, 2012). For example, Fellet *et al* (2011) found that an increase in biochar content in mine tailings reduced the bioavailability of cadmium, lead, thallium and zinc. In column leaching tests, the sorption of cadmium and zinc to biochar's surfaces reduced their leachate concentrations by 300 and 45 fold respectively (Beesley and Marmiroli, 2011). Therefore, as well as enhancing growing conditions in the soil for successful plant growth, biochar can also help to sequester metals and mitigate leachate water quality.

The organic material (i.e., trees, shrubs and organic surface cover) that will be cleared from the various development areas to make way for mining operations at Eagle Gold, can be processed into biochar on site thus creating a local source and thereby eliminating the introduction of unknown or unwanted components of outsourced biochar. The pyrolysis of plant biomass to generate biochar converts much of the carbon into a form of carbon which is very stable in soils for thousands of years. Thus, by creating biochar from the plant overburden, instead of allowing it to naturally decompose and consequently release carbon dioxide (a greenhouse gas) into the atmosphere, the carbon becomes unavailable and is sequestered. If applicable, Victoria Gold could earn carbon credits by 1) producing its own biochar as a soil amendment for the site's closure activities and 2) planting vegetation. With the introduction of a tax on carbon in the Yukon, the sequestration of carbon through these activities offsets at least some of the carbon dioxide that the mine will emit and thus lowers its carbon footprint.

The Peso plots were established in 2012 and assessed annually until 2018. Additional monitoring was completed in the final year (2018) of the trial, including soil testing, metal analysis of plant tissues, height of above ground growth and rooting depth.

2.0 STUDY AREA

The Eagle Gold Project at Dublin Gulch is located approximately 85 km northeast of the village of Mayo in central Yukon and lies wholly within the traditional territory of the First Nation of the Na Cho Nyak Dun. The project is 100% owned by Victoria Gold Corp and covers an area of approximately 650 square kilometers. Its centre is situated at the confluence of Haggart Creek and Dublin Gulch at the UTM Coordinates 7100950N / 453750E, Zone 8, NAD 83 Datum.

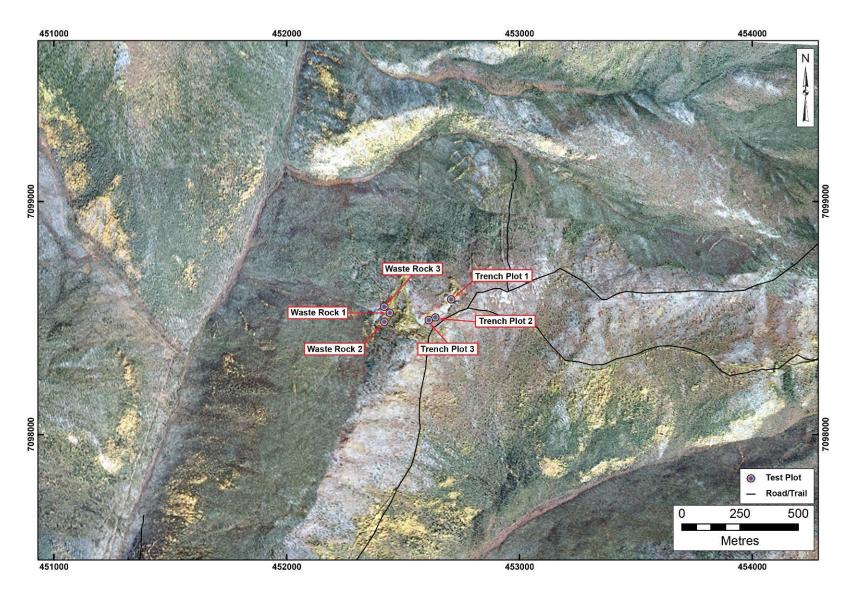

The historic Peso Minesite is located approximately 6.5 km west of the camp at the Eagle Gold Project, near Secret Creek, a tributary to Haggart Creek (Figure 1). The study area lies within the northern region of the Yukon Plateau North ecoregion in the Stewart River sub-basin of the Yukon River watershed. This area is generally characterized by rolling uplands with steep slopes leading into U-shaped valleys (Smith *et al*, 2006). There are two zones within the Eagle Gold Site; subalpine, and open black spruce forests at lower elevations. The subalpine zones (above 1225 masl) are generally dominated by dwarf birch and willows. Other species occurring within the forested areas are Alaska birch, aspen, balsam poplar and white spruce, depending on aspect. Subalpine fir is also found in small pockets at higher elevations (Stantec, 2011).

Climate stations are operational within the Eagle Gold Project area at the Potato Hills Station (1420 masl) and at the Camp Station (782 masl). Knight Piesold Consulting (KPC) examined and summarized the meteorological data collected over a four year period, 2009 to 2012 (KPC, 2013). Since the two climate stations are located at significantly different elevations and thus will have varied temperature and precipitation results due to orographic tendencies, KPC used a reference elevation of 1125m for their analysis and summary. Table 1 summarizes selected climatic parameters for this elevation.

TABLE 1 MEANS FOR SELECTED CLIMATIC	PARAMENTERS AT ELEVATION 1125m	
Parameter	Value	
Mean annual temperature	-4.2	
Mean January temperature	-19.7	
Mean July temperature	11.4	
Mean annual precipitation	500 mm	
Mean annual rainfall	190 mm	
Mean annual snowfall (water-equivalent)	310 mm	
Mean annual rainfall/snowfall distribution	38% / 62%	
Taken from KPC 2013		

Since the elevation of the vegetation trials is slightly lower than 1125 m (see Table 2), the above values should be relatively representative of temperature and rainfall at the Peso plots.

The majority of the exploration work at the Peso site was completed during the early 1960s. With the exception of dense growth of alders at the less disturbed sites, very little natural revegetation has taken place in the areas disturbed by historical activities in the Peso area over this time period. Vegetation in the adjacent undisturbed and lesser disturbed sites consists of subalpine fir, white spruce, black spruce and Alaska birch, with occasional balsam poplar and trembling aspen. Mountain alder, dwarf birch, Scouler's willow and blue-green willow are the most common medium to tall shrub species (Laberge and Nacho Nyak Dun Development Corporation, 2004).


The ground cover includes low shrubs such as Labrador tea, Beauverd's spiraea, kinnikinick, lingonberry, blueberry and crowberry. Dwarf dogwood, toadflax, lupine and fireweed are the most common forb species (Laberge Environmental Services and NND-DC, 2004).

During a reconnaissance trip in June 2012, two sites at Peso were selected for the revegetation trials, an exploration trench and the waste rock dump. Although trenching has been undertaken at the site since the early 1900s, mostly hand trenching, it is assumed that the trench chosen for the trials was a result of bulldozer exploration in the early 1960s by Peso Silver Mines. Three blocks, each containing 5 test plots, were established at the trench site. Block #1 is located north of an exploration trail and the other 2 Blocks are located south.

The Peso adit is located approximately 250 m west of the trench. Peso Silver Mines conducted underground development on the Peso vein resulting in the formation of the waste rock dump on the west facing slope. The waste rock dump covers an area approximately 50 m by 70 m. It is comprised of three lifts varying in thickness from two to six meters. A total of three blocks, each containing 5 test plots, were established on each tier. The locations of the blocks are detailed below in Table 2 and shown on Figure 2.

TABLE 2	BLOCK LOCATIONS AT PESO				
Site	Latitude	Longitude	Elevation (m)		
Trench:					
Block #1	64 [°] 00.649'	135° 58.038'	1040		
Block #2	64° 00.607'	135° 58.119'	1030		
Block #3	64° 00.601'	135° 58.154'	1042		
Waste Rock:					
Block #1	64 [°] 00.616'	135 [°] 58.360'	992		
Block #2	64° 00.595'	135° 58.388'	986		
Block #3	64 [°] 00.630'	135° 58.390'	973		

FIGURE 2 TEST PLOT LOCATIONS AT THE OLD PESO MINESITE

3.0 STUDY DESIGN

3.1 Soil Analysis

The success of a revegetation project depends firstly on characterizing site-specific conditions such as soil fertility, climate, aspect, elevation, slope, drainage, etc, prior to making any decisions regarding seed mixes and amendments.

For the purposes of this study, a reconnaissance visit to the old Peso mine site was initially conducted on June 24th, 2012. After assessing the area, two areas were chosen for the revegetation trials and are described in Section 2.0. Soil samples were collected from these sites and sent to Maxxam Analytical Laboratory in Burnaby, BC. The complete analytical report can be found in Appendix A and a summary of data in Section 4.1.

The soil was extremely acidic at the waste rock site and strongly acidic at the trench site. Acid tolerant plant species consequently were selected for the revegetation project. Soil samples collected from the waste rock in 2003 showed it to be extremely acidic with a pH value of 2.8 (Laberge, 2004). Soil samples collected near the portal and from the easternmost lobe of the waste rock in 1997 were potentially acid generating following bottle roll tests (Environmental Services, 1998). The soil samples collected in 2012 confirm the strong acidity of the waste rock dump (pH 2.6). Soil testing of the trench area had not been done previously.

All available nutrients were extremely low where detected. Organic matter and total organic carbon were very low at the waste rock site and below the detection limits at the trench site.

Concentrations of antimony, arsenic and lead were extremely high at both sites. Antimony is a trace element and background levels are generally very low. Antimony concentrations are usually much greater at mining and contaminated sites.

Background levels of arsenic in soils are low and rarely exceed 15 mg/kg (Singh, 2005). Arsenic concentrations were very high at the Peso site with much higher levels that appear atypical when compared to other sites sampled for soil geochemistry at the Dublin Gulch site (Burns, 2013, Laberge Environmental Services, 2018a).

Lead concentrations were also extremely high in the two soil samples at Peso and were much greater than documented at other locations at Dublin Gulch.

Generally the metal concentrations were similar at both of the selected trial sites.

3.2 Field Design

3.2.1 Site Preparation

The plots at the two sites were installed on July 19th, 2012. Three blocks of plots were situated on relatively level ground with the same aspect at each site. Each block measured 5m by 2m and contained 10 one-meter square plots. The blocks and plots were measured and demarked with orange fluorescent painted rebar. Labeled flagging tape was added to each corner pin of the plots.

The plots were prepared and seeded from September 18th to 20th, 2012. Each plot to be seeded was scarified first with a hand-cultivator (tine length 15 cm), and then raked with a fine-toothed rake (see Photo #1, Appendix B). Soil amendments were well mixed into the prepared plot and then the seeds were hand broadcast throughout the plot. Each plot was tamped gently but firmly with the back of a rake to create micro-sites and achieve good seed placement.

Every other plot within each block was seeded, allowing the unseeded/untreated plots to represent buffer zones. The implementation of buffer plots ensures that each test plot is isolated and uninfluenced from neighboring plots. As well, each plot can be assessed and closely examined without the risk of trampling on plants on the other test plots. Further details, including photographs are included in a report prepared for Victoria Gold (Laberge, 2013). As described below, due to the differences in acidity at the two sites, slightly different seed mixes and treatments were prepared.

3.2.2 Treatments

The intention of these trials was to determine in a relatively simple manner which amendments might be utilized for successful native plant growth to initiate the restoration process. The amendments used in these trials were biochar, compost, leonardite and dolomite.

Raw biochar chips were obtained locally from Zakuas Farms, Whitehorse, Yukon. Prior to application they were ground in a steel-blade seed grinder to produce a fine, almost powdery mix. It has been well established that biochar on its own (due to the lack of nutrients) is insufficient as an amendment on poor soils (Peltz *et al*, Beesley and Marmiroli, 2011, Beesley *et al*, 2010), hence it was combined with nutrient rich compost for each plot.

Bags of compost were obtained from the co-operative project at the Whitehorse Solid Waste Facility which produces commercial quantities of high quality compost.

Leonardite is defined as a naturally occurring oxidized form of lignite coal that is rich in humic acids. Its main use is as a soil amendment in agriculture and reclamation. For the purposes of this study, leonardite was obtained from Tisdale, Saskatchewan. This leonardite consisted mostly of humic acid with small amounts of fluvic acid and required minimal processing. It was also included with the amendments for some of the plots as an additional source of nutrients.

Due to the relatively higher acidity at the waste rock dump site, commercially available dolomite, purchased from Canadian Tire, was added to the amendment mix at some of the plots to create some buffering capacity.

No other fertilization was used and the plots were not watered at any time. The plots were exposed to the natural conditions that existed at each of the local areas throughout the seasons. Thus, aside from the initial site development and treatment, no other treatment or site modification was implemented.

3.2.2.1 Waste Rock Site

In attempts to control acid generation and enhance soil rehabilitation, the following amendments were used on the waste rock sites; biochar, compost, leonardite and dolomite lime.

The application rates per plot are as follows:

- 6 liters of biochar (just under 1 kg)
- 15 liters (1/2 bag) of compost
- 0.15 kg/m² of leonardite
- 3.3 kg/m² of dolomite

There were five treatments per block of plots:

Treatment Method #	Treatment Composition
1 Seed only	
2 Seed, biochar, compost	
3	Seed, biochar, compost, leonardite
4	Seed, biochar, compost, dolomite lime
5	Seed, biochar, compost, leonardite, dolomite lime

The layout of the plots and treatments per block is presented in Figure 3. Each treatment is represented once per block and three times in total for the site. The shaded plots received no treatments and represent buffers between plots.

FIGURE 3 LAYOUT OF TREATMENTS AND PLOTS AT WASTE ROCK

Waste Rock Block #1 (on top tier near the adit) – seeded and amendments added Sept 18, 2012 @13:00

1		3		5
Plot # 1-1		Plot # 1-3		Plot # 1-5
	2		4	
	Plot # 1-2		Plot # 1-4	

Waste Rock Block #2 – (on second tier) seeded and amendments added on September 18, 2012 @ 14:30

	2		4	
	Plot # 2-2		Plot # 2-4	
1		3		5
Plot # 2-1		Plot # 2-3		Plot # 2-5

Waste Rock Block #3 – (on third tier from top) seeded and amendments added on September 18, 2012 @ 16:00

1		3		5
Plot # 3-1		Plot # 3-3		Plot # 3-5
	2		4	
	Plot # 3-2		Plot # 3-4	

3.2.2.2 Trench Site

The soil at the trench site was not as acidic as on the waste rock dump, with a pH of 5.15, consequently dolomite lime was not included as an amendment. Biochar, compost and leonardite were again applied to the trench plots at the following application rates:

- 3 liters of biochar
- 15 liters (1/2 bag) of compost
- 0.15 kg/m2 of leonardite

There were three treatments per block of plots:

Treatment Method #	Treatment Composition	
1	Seed only	
2	Seed, biochar, compost	
3	Seed, biochar, compost, leonardite	

The layout of the plots and treatments per block is presented in Figure 4. Each treatment is represented five times for the site. The shaded plots received no treatments and represent buffers between plots.

FIGURE 4 LAYOUT OF TREATMENTS AND PLOTS AT TRENCH SITE

Trench Block #1 – seeded and amendments added on September 19, 2012 @ 11:00

1		3		2
Plot #1-1A		Plot #1-3		Plot #1-2B
	-		-	
	2		1	
	Plot #1-2A		Plot #1-1B	

Trench Block #2 – seeded and amendments added on September 18, 2012 @ 18:00

1		3	
Plot # 2-1A		Plot # 2-3A	
	2		1
	Plot # 2-2		Plot # 2-1B
	1 Plot # 2-1A	2	Plot # 2-1A Plot # 2-3A 2 2

Trench Block #3 – seeded and amendments added on September 19th, 2012 @ 10:00.

2		1		3
Plot #3-2A		Plot #3-1		Plot #3-3B
	3		2	
	Plot #3-3A		Plot #3-2B	

3.2.3 Seed Mix

The species chosen for the trials were determined through consultation of the Yukon Revegetation Manual (Matheus and Omtzigt, 2012) as well as through the observation of species currently growing in the near vicinity of the sites. The appropriate seed mixes were distributed for each plot as per the quantities noted in Table 3. In addition, because alder grows prolifically around the site and is well adapted to localized conditions, a small handful of local alder seeds was collected on site and distributed with the seed mix. Furthermore, alder fixes nitrogen and all parts of the plants contribute nitrogen to the soil during decomposition. Seeds from Hedysarum plants (a nitrogen fixing legume) were also added to the seed mix to increase the nitrogen potential.

The seed mix is slightly different for the two sites due to soil conditions. The soil at the waste rock site was extremely acidic, had little to no nutrient values and was highly mineralized. Several plant species were chosen due to their tolerances to acidic, low nutrient levels, drought and/or heavy metal conditions in the growth medium. The seed rate, adjusted to 1m² plot size, is also provided in Table 3. The soil at the trench site was not as acidic as on the waste rock dump and slight alterations were made to the seed mix (Table 3).

TABLE 3 SEED MIX AND RATE OF APPLICATION FOR WASTE ROCK AND TRENCH SITES									
Common Name	Scientific Name	Application rate/plot at Waste Rock	Application rate/plot at Trench						
Sheep fescue	Festuca ovina	0.4 g	0.4 g						
Tufted hairgrass	Deschampsia caespitosa	0.14 g	0.14 g						
Glaucous bluegrass	Poa glauca	0.19 g							
Alpine bluegrass	Poa alpina		0.21 g						
Tickle grass	Agrostis scabra	0.04 g							
Spike Trisetum	Trisetum spicatum		0.9 g						
Bear root	Hedysarum alpinum	20 seeds	20 seeds						
Alder	Alnus viridus	small handful	small handful						

The first six plant species are native occurring plants with commercially available accredited seed obtained from BrettYoung[™] of Calmar, Alberta. Alder seeds were hand collected from local plants near the plots on the day of planting and spread onto each plot. Hedysarum seeds, previously collected from various sites in the Yukon, were also added to the plots.

4.0 ASSESSMENTS

4.1 Soil

Soil samples were collected from each plot in 2018, including the plots that received no treatment. Surface samples were collected to a depth of 5 to 10 cm, using a stainless steel trowel and placed into resealable plastic bags. All samples were kept cool until delivered to the ALS lab in Whitehorse, Yukon.

The soil was analyzed for pH, organic content, available nutrients and metals. The complete analytical report is presented in Appendix A.

Selected parameters were compared from the untreated plots to the soil samples collected in 2012 (Table 4). As actual plot locations were not yet determined in June 2012, the soil samples were not collected from the exact locations on both years. The results for the 2018 soil sample analysis collected from the untreated plots in each block were averaged to represent the concentrations existing at the Trench and Waste Rock Dump sites.

It appears that the organic matter content has slightly increased over the time period. It was noted that scant vegetation was gradually colonizing the untreated plots as well as the buffer plots. The pH at each location is consistent. Available phosphate was similar however available potassium concentrations were higher in 2018 than in 2012. Some of the metal concentrations were quite different in the two time periods, notably at the waste rock dump, and likely is reflective of the distribution of the disturbed terrain as the waste material was removed from the adit.

TABLE 4 EX	ISTING S	SOIL COI	NCENTRAT	IONS, 2012	2 AND 2018	3		
			NO TREATMENT					
Parameter	MDL	Units	Waste	Rock	Tre	nch		
Falalleter	WIDL		2018	2012	2018	2012		
			N=3	N=1	N=3	N=1		
Loss on Ignition @ 375 C	1.0	%	1.7	6.1	1.6	4.0		
Organic Matter	1.0	%	1.6	0.6	1.5	<0.35		
pH (1:2 soil:water)	0.10	pН	2.70	2.62	5.8	5.15		
Total Carbon by Combustion	0.05	%	0.50	0.37	0.4	<0.20		
Available Phosphate-P	2.0	mg/kg	2.2	2.9	2.9	1.8		
Available Potassium	20	mg/kg	27.0	<2.0	28.3	8.5		
Aluminum (Al)	50	mg/kg	5,030	2,690	3,230	2,350		
Antimony (Sb)	0	mg/kg	1,777	3,680	3,567	3,580		
Arsenic (As)	0	mg/kg	2,743	6,150	7,863	9,810		
Cadmium (Cd)	0.020	mg/kg	1.3	4.88	4.7	4.28		
Chromium (Cr)	0.50	mg/kg	11.7	6.7	11.7	12.2		
Cobalt (Co)	0.10	mg/kg	6.04	3.54	5.31	5.33		
Copper (Cu)	0.50	mg/kg	161.0	210	125.4	75.9		
Iron (Fe)	50	mg/kg	40,700	57,500	50,300	46,300		
Lead (Pb)	1	mg/kg	2,427	9,070	7,057	7,330		
Mercury (Hg)	0.005	mg/kg	0.131	0.796	0.428	0.410		
Nickel (Ni)	0.50	mg/kg	17.6	9.1	11.7	12.0		
Selenium (Se)	0.20	mg/kg	5.4	19.30	7.9	12.70		
Silver (Ag)	0.10	mg/kg	23.2	89.4	44.4	103.0		
Zinc (Zn)	2.0	mg/kg	133.3	252.0	194.3	129.0		

Soil samples were also collected from each of the treated plots in 2018 and the analytical data is presented in Tables A-1 (Trench) and A-2 (Waste Rock) in Appendix A. Means for each treatment

was calculated and selected parameters tabulated for the Trench (Table 5) and the Waste Rock Dump (Table 6).

Soil pH was raised slightly with the amendments except for plots where leonardite was also included. Leonardite is rich in humic acid and this additional acid limited buffering by the biochar.

Organic matter (%), Total Kjeldahl Nitrogen and total carbon by combustion increased with the addition of amendments.

Parameter	MDL	Units	No treatment	Biochar and compost	Biochar, Compost and Lenardite	
pH (1:2 soil:water)	0.10	pН	5.8	6.7	6.6	
Organic matter	1.00	%	1.5	2.3	2.5	
Total Kjeldahl Nitrogen	0.020	%	0.066	0.086	0.094	
Total Carbon by Combustion	0.05	%	0.4	1.3	1.3	
Available Ammonium-N	1.0	mg/kg	1.8	2.5	2.3	
Available Phosphate-P	2.0	mg/kg	2.9	23.0	21.1	
Available Potassium	20	mg/kg	28.3	43.3	42.0	
Aluminum (Al)	50	mg/kg	3230	3037	2973	
Antimony (Sb)	0.10	mg/kg	3567	920	3036	
Arsenic (As)	0.10	mg/kg	7863	2697	5007	
Cadmium (Cd)	0.020	mg/kg	4.7	0.8	2.6	
Calcium (Ca)	50	mg/kg	620	1215	2137	
Chromium (Cr)	0.50	mg/kg	11.7	8.6	10.1	
Cobalt (Co)	0.10	mg/kg	5.3	3.7	4.0	
Copper (Cu)	0.50	mg/kg	125.4	66.4	74.7	
Iron (Fe)	50	mg/kg	50300	32100	33367	
Lead (Pb)	0.50	mg/kg	7057	1933	3273	
Magnesium (Mg)	20	mg/kg	102.0	250.0	253.3	
Manganese (Mn)	1.0	mg/kg	246.3	200.7	181.3	
Mercury (Hg)	0.0050	mg/kg	0.4	0.3	0.5	
Nickel (Ni)	0.50	mg/kg	11.7	8.6	9.4	
Phosphorus (P)	50	mg/kg	762	678	805	
Selenium (Se)	0.20	mg/kg	7.9	2.4	5.0	
Silver (Ag)	0.10	mg/kg	44.4	14.2	21.6	
Sulfur (S) *	1000	mg/kg	1733	1100	1600	
Zinc (Zn)	2.0	mg/kg	194.3	107.5	96.8	

The requisite macro nutrients required for all plant growth are nitrogen (N), phosphorus (P), potassium (K), calcium (Ca), sulfur (S) and magnesium (Mg) (DalCorso *et al*, 2014). Total Kjeldahl Nitrogen (TKN) is the amount of nitrogen that is in organic form. TKN was present in all of the plots and generally increased with the applied amendments. Phosphorus was present in all plots however available phosphate was absent in a few plots, more so at the waste rock site (probably a function of pH). Total potassium and available potassium were documented at each site and concentrations increased with amendments at the Trench site. There was little

change in potassium with the amendments at the waste rock site. Calcium concentrations increased considerably with the amendments at both locations. Magnesium levels fluctuated throughout the study area. Sulphur levels were low at the Trench plots and frequently not detected (Table A-1), whereas high Sulphur concentrations were documented at the waste rock site, reflective of the acid rock drainage potential here.

Essential micro nutrients include iron (Fe), boron (B), nickel (Ni), copper (Cu), manganese (Mn), zinc (Zn) and molybdenum (Mo). Iron concentrations were high throughout the study area and ranged from 17,900 mg/kg to 70,100 mg/kg. Boron and molybdenum levels were very low and were barely detected at some plots. Nickel, copper, manganese and zinc were present at all plots.

Elements that are not essential but however benefit plant growth are sodium (Na), selenium (Se), aluminum (Al) and cobalt (Co). Aluminum is one of the most abundant elements in the earth's crust. Although low levels of aluminum are beneficial for plants due to its role in increasing the bioavailability of nutrient metal ions, high concentrations are toxic to most plants, especially in acidic soils. High concentrations were recorded at all plots. Cobalt was present in low concentrations at all plots. Selenium was also present at all plots, but concentrations increased with amendments at the Waste Rock site. Sodium was not detected at the plots at the Trench site but was present with fluctuating concentrations at the Waste Rock plots.

TABLE 6 M	EAN CON	ICENTRA	TIONS (N=3) (OF EACH TRE	ATMENT, WA	ASTE ROCK D	UMP
Parameter	MDL	Units	No treatment	Biochar and compost	Biochar, compost and leonardite	Biochar, compost, dolomite lime	Biochar, compost, dolomite lime, leonardite
pH (1:2 soil:water)	0.10	pН	2.7	3.4	2.7	3.9	3.6
Total Kjeldahl Nitrogen	0.020	%	0.049	0.080	0.103	0.129	0.113
Total Carbon by Combustion	0.05	%	0.50	1.42	2.69	3.10	3.48
Available Ammonium-N	1.0	mg/kg	4.4	6.3	8.4	5.1	6.9
Available Phosphate-P	2.0	mg/kg	2.2	5.1	6.4	ND	15.6
Available Potassium	20	mg/kg	27.0	23.0	20.0	28.5	45.0
Aluminum (Al)	50	mg/kg	5030.0	4863.3	4336.7	4130.0	3360.0
Antimony (Sb)	0.10	mg/kg	1776.7	2855.0	2527.0	2952.7	4283.3
Arsenic (As)	0.10	mg/kg	2743.3	3653.3	4206.7	5466.7	5430.0
Cadmium (Cd)	0.020	mg/kg	1.3	2.4	2.9	3.0	3.2
Calcium (Ca)	50	mg/kg	476.7	918.7	588.7	4916.7	10726.7
Chromium (Cr)	0.50	mg/kg	11.7	12.0	10.0	10.1	6.7
Cobalt (Co)	0.10	mg/kg	6.0	6.0	8.9	6.5	2.0
Copper (Cu)	0.50	mg/kg	161.0	176.8	209.3	280.3	269.7
Iron (Fe)	50	mg/kg	40700.0	38233.3	45566.7	50600.0	47466.7
Lead (Pb)	0.50	mg/kg	2426.7	6400.3	5137.0	5223.3	9410.0
Magnesium (Mg)	20	mg/kg	1427.3	1477.3	677.3	3033.7	5464.0
Manganese (Mn)	1.0	mg/kg	171.0	170.6	161.7	147.9	127.3
Mercury (Hg)	0.0050	mg/kg	0.1	0.3	0.4	0.4	0.6
Nickel (Ni)	0.50	mg/kg	17.6	15.3	20.8	17.1	6.7
Phosphorus (P)	50	mg/kg	437.0	849.7	1011.0	1093.3	1144.0
Selenium (Se)	0.20	mg/kg	5.4	10.6	10.9	12.2	18.0
Silver (Ag)	0.10	mg/kg	23.2	11.8	30.8	45.8	62.9
Zinc (Zn)	2.0	mg/kg	133.3	137.8	174.9	126.2	93.5
 * less than values (<) were exclu 	uded from the	averaging					

Plants must deal with the non-essential elements such as arsenic (As), mercury (Hg), silver (Ag), antimony (Sb), cadmium (Cd), lead (Pb) and uranium (U), which may potentially be harmful. Arsenic

concentrations were very high throughout the soils in the study area and ranged from 1,240 mg/kg to 11,400 mg/kg. Mercury was detected at all plots. Silver is widely distributed in the earth's crust with an average abundance estimated at 0.07 mg/kg (Taylor, 1964). High concentrations of silver were documented in the soil samples collected from all the plots with some results greater than what the analytical method could determine. Antimony concentrations were very high at the plots with levels ranging from 369 mg/kg to 6,410 mg/kg. The earth's crustal average has been estimated at 0.2 mg/kg (Taylor, 1964). Lead concentrations were also high throughout ranging from 331 mg/kg to 16,600 mg/kg. Cadmium and uranium were present at all plots in fairly low concentrations.

4.2 Vegetation

4.2.1 Annual Assessments on Growth

The trial plots have been assessed on seven different occasions; twice in 2013 (July and September), early August 2014, early August 2015, mid July 2016, early August 2017 and late July 2018. All plots have had six full years of growth opportunity. Photographs chronicling each block and selected plots over the time period are provided in Appendix B.

The results for all seven assessments are presented in Table C-1 for the Trench Site and Table C-2 for the Waste Rock Site, both in Appendix C. The percentage of vegetative cover, species composition and overall health were observed for each plot. Vegetation cover is determined through point-based methods or ocular estimates. Due to the small size of the examined plots ocular estimates were made for the cover of each plot. Ocular estimates have a subjective element. In order to minimize observer variance, one member of the initial field team was present for each of the annual assessments.

The plots that were seeded but received no amendments supported very little, if any, growth over the six years. This is consistent with the general area as the acidic and mineral soils here have limited natural revegetation in the disturbed areas. The other plots with the different amendments sustained various levels of growth over time.

Although grasses are not the dominant growth form in the nearby local environment, native grasses were initially planted as they germinate quickly, assist in retaining moisture and helping to build up the soil. By year two most of the treated plots supported relatively healthy growth of various grass species. Hedysarum germinated in some plots during year one but was absent in the following years. Alder seeds that were also added to the plots began noticeably growing in years two and three. In year four grasses were gradually dying back and shrubs, mainly alder, were taking over. Willow, dwarf birch, Labrador tea, blueberry and Alaska birch were also beginning to colonize some of the plots, all of which are present in the neighbouring forest. Grasses were also dying back in the plots where alder was not prevalent. Table C-3 in Appendix C lists the species, planted and volunteer, that were identified in the plots over the course of the study period.

As the grasses and shrubs lose their leaves, organic matter builds up, which leads to an increase in soil fertility. During the 2018 assessment, nitrogen fixing nodules were observed on the roots of several alder plants on both the trench and waste rock plots (see Photos 40 and 55). Nitrogen is an essential element in plant development and generally the most limiting nutrient in boreal ecosystems. Plants however, cannot directly access nitrogen gas, which makes up about 80% of the atmosphere. Plants absorb the dissolved nitrogen in the soil

through their roots in the form of ammonium and nitrates. Legumes (Fabaceae) host a bacteria that fixes nitrogen in root nodules which then becomes available to plants. Alder, of the family Betulaceae, is a non-legume which also fixes nitrogen. The presence of these nodules on the alder roots indicates that nitrogen is being produced on the treated plots both on the Trench and the Waste Rock Dump. The decomposition of alder leaves and plant parts likewise provides available nitrogen. This in turn increases the nutrient levels in the soil allowing other species to grow and become established.

Initially the vegetative cover of the plots increased but generally decreased in years three and four, coinciding with grass die off. Cover typically increased in following years as the shrubs grew larger. The exception to this was the plots that received no amendments (seed only). On some of these plots there initially was some minor growth however it had died back in later assessments. Cover at all of the treated plots in Block 3 of the Waste Rock site also decreased over time.

Plant growth was stressed in the plots that were seeded with no treatment (Treatment #1). The healthiest plots generally occurred at those treated with biochar and compost (Treatment #2), and the addition of dolomite tended to assist in the health at some of the plots at the Waste Rock site. The inclusion of Leonardite did not show any marked improvements in the plots and actually tended to decrease the health in the plants on some of the plots on the Waste Rock site. Although most of the alder on the waste rock amended plots exhibited healthy growth, some plants appeared to be suffering from necrosis – browning of leaves and yellow venation (Photo #81). This is likely the result of high concentrations of metals in the soil coupled with nutrient deficiency.

Some of the grass species were mature and producing seed at several plots commencing in the second year. For the first time, several alder had produced seed cones (Photos 28 and 54) in 2018.

During the annual assessments there had been occasional signs of herbivory.

Rooting depth and length were measured on several of the plants in 2018. Rooting depth ranged from 2 to 5 cm depending on the depth of the humus layer that had been built up over time. The roots then grew laterally above the mineral substrate and tended to average around 7 to 9 cm (Table C-4). The root lengths are likely underestimated due to their fragility and the difficulty involved in removing them from the substrate.

4.2.2 Metals in Foliar Tissues

Foliar samples were collected in 2018 from each plot where possible. Several plots, primarily those that received no treatment, supported very little, if any, growth, preventing the collection of sufficient biomass for analysis. Alder was growing at most of the other plots and was the principal tissue collected. There was insufficient growth of grasses in any of the plots by the sixth year of the trial preventing the analysis of this tissue type. Willow was growing in adequate volume to warrant the individual collection of this shrub at Plot 1-4 on the Waste Rock Dump only. Table 7 describes which species were collected at the various plots.

	TABLE 7	FOLIAR	SAMPLES C	OLLECTED	PER PLOT	
SITE	BLOCK #	PLOT #	ALDER LEAVES	ALDER STEMS	ALDER LEAVES & STEMS	WILLOW LEAVES & STEMS
		1-1B			\checkmark	
	1	1-2AB				
		1-3				
TRENCH	2	2-3A	\checkmark	\checkmark		
		2-2				
	3	3-2AB	\checkmark	\checkmark		
		3-3AB				
	1	1-2	\checkmark	\checkmark		
		1-3				
	I	1-4				
		1-5				
WASTE ROCK- DUMP		2-2				
DOIVIE	2	2-3				
	2	2-4				
-		2-5				
	3	3-4			\checkmark	\checkmark
•	# of indi	vidual samples:	14	14	3	3*
* samples co	llected at Plot #3	3-4 were combin	ed into one sam	ple due to low b	biomass	

New disposable nitrile gloves were worn for each collection. Where possible, separate samples were collected for the shrub leaves and the current season's growth of twigs. Samples were placed in resealable plastic bags and kept cool until delivered to the ALS laboratory in Whitehorse, Yukon. After the samples were logged in, they were frozen and shipped to the lab in Burnaby, BC, for analysis. The foliar samples were rinsed thoroughly with de-ionized water, homogenized and sub-sampled prior to hot-block digestion with nitric and hydrochloric acids, in combination with the addition of hydrogen peroxide. Metals were analyzed using collision cell inductively coupled plasma-mass spectrometry. Analysis for mercury was done by atomic fluorescence or atomic absorption spectrophotometry.

The complete analytical report is provided in Appendix C. The data has been summarized according to the type of treatment and according to tissue type and is presented below per site.

4.2.2.1 Trench Site

There were three treatments applied to the Trench Site; no treatment, biochar and compost, and biochar, compost and leonardite. There were five plots per block so some treatments were repeated in each block. The tissue samples collected from the same treatment in the same block were combined and analyzed as a single sample. The analytical data for each of the plots is presented in Table C-5 in Appendix C. There were five metals that were below detection at all plots: beryllium, lithium, tellurium, vanadium and zirconium.

The data per treatment has been averaged and tabulated (Table 8). There are no guidelines regarding metal concentrations in vegetation with respect to wildlife consumption (e.g., moose and/or caribou). For reference, Stantec (2011) compared the 2009 baseline Eagle Gold foliar data to the dietary tolerances for beef cattle. These toxic values have also been included in Table 8.

Parameter	Lowest Detection Limit	No treatment N=1	Biochar and compost N=6	Biochar, compost and leonardite N=6	Toxicity Thresholds
Aluminum (Al)-Total	2.0	33.5	16.40	9.66	>1200
Antimony (Sb)-Total	0.010	5.59	0.915	0.447	1200
Arsenic (As)-Total	0.020	17.0	2.42	1.72	>10*
Barium (Ba)-Total	0.050	39.5	38.74	32.75	>20**
Bismuth (Bi)-Total	0.010	0.219	0.07	0.035	
Boron (B)-Total	1.0	7.7	7.15	8.33	>200
Cadmium (Cd)-Total	0.0050	ND	0.011	0.01	50 - 500
Calcium (Ca)-Total	20	11000	6156.67	7056.67	
Cesium (Cs)-Total	0.0050	0.136	0.246	0.149	
Chromium (Cr)-Total	0.050	0.22	0.06	ND	>40
Cobalt (Co)-Total	0.020	0.121	0.120	0.088	>30
Copper (Cu)-Total	0.10	6.54	8.06	6.39	>100
Iron (Fe)-Total	3.0	222	54.67	48.37	>4000
Lead (Pb)-Total	0.020	48.0	11.00	6.06	>100
Magnesium (Mg)-Total	2.0	2430	1513.83	1451.67	
Manganese (Mn)-Total	0.050	214	62.68	61.28	2000 - 4000
Mercury (Hg)-Total	0.0050	0.0067	ND	ND	
Molybdenum (Mo)-Total	0.020	3.71	3.39	4.74	10 - 20
Nickel (Ni)-Total	0.20	5.54	2.07	1.34	>1500
Phosphorus (P)-Total	10	938	2122	2013	
Potassium (K)-Total	20	7510	5907	6108	
Rubidium (Rb)-Total	0.050	7.81	11.44	7.82	
Selenium (Se)-Total	0.050	ND	0.14	0.12	5 - 20
Sodium (Na)-Total	20	29	ND	ND	
Strontium (Sr)-Total	0.050	44.0	34.13	31.37	>2000
Thallium (TI)-Total	0.0020	0.0060	0.0041	0.004	
Tin (Sn)-Total	0.10	0.21	ND	ND	
Uranium (U)-Total	0.0020	0.0180	0.0042	0.00	
Zinc (Zn)-Total	0.50	48.5	31.27	31.42	>5000

In one of the six plots that received no treatment at the Trench site (Plot #1-1B), there was enough alder growing to warrant tissue analysis. This has allowed for the comparison of no treatment versus treatment on the effects of metal uptake.

The addition of treatments significantly decreased the uptake of the following metals: antimony, arsenic, iron, lead and to a lesser extent chromium, nickel and uranium.

The addition of treatments significantly increased the uptake of the nutrient phosphorus.

There is no actual toxic threshold assigned for arsenic, but the value given is the concentration that is considered "normal" (Stantec, 2011). This value was exceeded in foliar tissues collected from the untreated plot only. Likewise there is no defined toxic concentration for barium although the value presented in the table is considered high. This value was exceeded in all of the treated plots and concentrations were similar.

Alder were the only plants sampled at the Trench site owing to the lack of other species. Due to the small size of alders in Plots 1-1B, alder leaves and twigs were combined and analyzed as one sample. The other plots had sufficient biomass that leaves and stems could be analyzed separately (Table 9). Concentrations of metals were generally higher in leaves than in stems. The exceptions to this include barium, boron, manganese, molybdenum, strontium and zinc where concentrations were greater in the stems.

TABLE 9 FOLIA	R METALS (mg/kg) PER TISSU	E TYPE, TRENCH S	SITE
PARAMETER	MDL	ALDER LEAVES AND TWIGS	ALDER LEAVES	ALDER STEMS
		N=1	N=6	N=6
Aluminum (Al)-Total	2.0	33.5	18.08	7.64
Antimony (Sb)-Total	0.010	5.59	0.791	0.571
Arsenic (As)-Total	0.020	17.0	2.50	1.64
Barium (Ba)-Total	0.050	39.5	22.35	49.13
Bismuth (Bi)-Total	0.010	0.219	0.059	0.051
Boron (B)-Total	1.0	7.7	6.92	8.57
Cadmium (Cd)-Total	0.0050	ND	0.0057	0.0118
Calcium (Ca)-Total	20	11000	7401.67	5811.67
Cesium (Cs)-Total	0.0050	0.136	0.212	0.183
Chromium (Cr)-Total	0.050	0.22	ND	0.06
Cobalt (Co)-Total	0.020	0.121	0.132	0.073
Copper (Cu)-Total	0.10	6.54	7.21	7.24
Iron (Fe)-Total	3.0	222	65.52	37.52
Lead (Pb)-Total	0.020	48.0	9.06	8.00
Magnesium (Mg)-Total	2.0	2430	1888.33	1077.17
Manganese (Mn)-Total	0.050	214	53.52	70.45
Mercury (Hg)-Total	0.0050	0.0067	ND	ND
Molybdenum (Mo)-Total	0.020	3.71	3.69	4.44
Nickel (Ni)-Total	0.20	5.54	1.90	1.51
Phosphorus (P)-Total	10	938	2456.67	1678.33
Potassium (K)-Total	20	7510	6471.67	5543.33
Rubidium (Rb)-Total	0.050	7.81	10.85	8.41
Selenium (Se)-Total	0.050	ND	0.156	0.10
Strontium (Sr)-Total	0.050	44.0	29.20	36.30
Thallium (TI)-Total	0.0020	0.0060	0.00	0.0047
Tin (Sn)-Total	0.10	0.21	ND	ND
Uranium (U)-Total	0.0020	0.0180	0.00	0.0025
Zinc (Zn)-Total	0.50	48.5	26.28	36.40
MDL = method detection lin	nit ND = not de	etected		

4.2.2.2 Waste Rock Site

There were five amendments applied to the blocks at the waste rock dump site: no treatment; biochar and compost; biochar, compost and leonardite; biochar, compost and dolomite lime; and biochar, compost, leonardite and dolomite lime. The data per treatment has been averaged and

tabulated (Table 10). Sodium, tellurium and zirconium were not detected in any samples and are not included in Table 10.

TABLE 10	METAL	S IN TISSUES	6 (mg/kg) PEF		T, WASTE RO	CK DUMP
Parameter	MDL	Biochar and compost	Biochar, compost & leondardite	Biochar, compost & dolomite lime	Biochar, compost, leondarite & dolomite lime	Toxicity
		N=4	N=3	N=5	N=4	
Aluminum (Al)-Total	2.0	22.7	43.1	11.4	7.4	>1200
Antimony (Sb)-Total	0.010	1.47	0.81	2.73	2.30	
Arsenic (As)-Total	0.020	4.25	3.34	4.38	2.93	>10*
Barium (Ba)-Total	0.050	4.66	3.09	0.78	0.48	>20**
Beryllium (Be)-Total	0.010	ND	0.019	ND	ND	
Bismuth (Bi)-Total	0.010	0.14	0.09	0.29	0.33	
Boron (B)-Total	1.0	11.9	8.9	5.0	9.5	>200
Cadmium (Cd)-Total	0.0050	0.059	0.036	0.544	0.060	50 - 500
Calcium (Ca)-Total	20	4603	2240	5010	6715	
Cesium (Cs)-Total	0.0050	0.394	0.616	0.566	0.364	
Chromium (Cr)-Total	0.050	0.082	ND	0.078	ND	>40
Cobalt (Co)-Total	0.020	0.308	0.197	0.206	0.140	>30
Copper (Cu)-Total	0.10	10.9	19.0	11.7	10.6	>100
Iron (Fe)-Total	3.0	105.9	104.4	92.7	65.1	>4000
Lead (Pb)-Total	0.020	5.19	2.05	5.04	5.14	>100
Lithium (Li)-Total	0.50	ND	0.6	ND	ND	
Magnesium (Mg)-Total	2.0	937	809	2678	2278	
Manganese (Mn)-Total	0.050	294.5	247.3	70.3	101.6	2000 - 4000
Mercury (Hg)-Total	0.0050	0.0051	ND	ND	0.0051	
Molybdenum (Mo)-Total	0.020	1.01	1.42	2.66	5.00	10 - 20
Nickel (Ni)-Total	0.20	3.3	7.0	2.1	2.2	>1500
Phosphorus (P)-Total	10	1658	1523	1778	1935	
Potassium (K)-Total	20	3645	3737	3634	3755	
Rubidium (Rb)-Total	0.050	11.1	14.7	11.4	11.3	
Selenium (Se)-Total	0.050	0.110	ND	0.062	0.138	5 - 20
Strontium (Sr)-Total	0.050	13.26	7.07	3.08	4.09	>2000
Thallium (TI)-Total	0.0020	0.0028	0.0061	0.0033	0.0091	
Tin (Sn)-Total	0.10	ND	ND	ND	ND	
Uranium (U)-Total	0.0020	0.0061	0.0128	0.0079	0.0040	
Vanadium (V)-Total	0.10	0.1	ND	ND	ND	
Zinc (Zn)-Total	0.50	43.7	23.0	45.5	58.5	>5000
Note: did not include the mu	Itiple species	s, W3-4. MDL = n	nethod detection	limit. ND = not de	tected	

There were no plants growing on any of the three untreated plots so comparisons can only be made regarding actual amendment type. The tissues collected from one plot only at Block 3 (Plot #3-4), were excluded from the table as there were a variety of species collected from this plot to increase tissue biomass for analysis. Also, the high metal concentrations had the potential to skew

the results and as there were no other tissues from Block 3 it is not possible to tell if the other amendments would have had different uptake concentrations. It has been left out as an outlier in these calculations, however the data is presented in Table C-1 in Appendix C. Generally the highest metal concentrations were documented in the tissues from Plot 3-4, notably antimony, arsenic, bismuth, cadmium, iron, lead, magnesium, manganese and zinc. Of these, only arsenic exceeded the referenced toxicity level.

There generally was not a great range in tissue concentrations for the different treatments and it cannot be suggested that any one of these treatments is obviously better than another in reducing metal uptake. It appears however that for the waste rock dump site an additional amendment to biochar and compost is beneficial.

Similar to the Trench site, the Waste Rock data has been compared to the dietary tolerances for beef cattle in Table 10. There were no exceedances for any parameter. Unlike the Trench site, barium concentrations were low throughout the plots.

The mean concentrations of metals in the types of tissues have been tabulated (Table 11). Alder was also the principal vegetation type at the Waste Rock Dump and leaves and stems were sampled and analyzed separately. There was sufficient willow biomass to allow the analysis of tissues from a different species.

The single sample of willow leaves and stems collected from Plot #1-3 generally had the lowest concentrations of most metals. The combination sample of willow leaves, willow stems, alder leaves and alder stems collected from Plot #3-4 had the greatest concentration of the majority of the metals. When comparing just the alder tissues, levels were frequently lower in the stems than the leaves, or were relatively similar. During an ecological health assessment at the decommissioned Sä Dena Hes mine north of Watson Lake, Azimuth (2014) found that metal concentrations in alder leaves tended to be approximately double of that of twigs. The combination sample containing alder leaves and stems collected from Plot #1-3 typically reported higher concentrations than either those in the leaves or in the stems.

		WASTE R			
Species	Alder	Alder	Alder	Willow	Alder & Willow
Tissue type	Leaves	Stems	Leaves & Stems	Leaves & Stems	Leaves & Stems
Ν	7	7	1	1	1
Aluminum (Al)-Total	25.2	5.2	82.6	11.0	40.8
Antimony (Sb)-Total	3.5	0.7	0.910	1.15	32.4
Arsenic (As)-Total	5.3	1.7	7.36	3.88	68.7
Barium (Ba)-Total	1.2	2.9	4.41	0.595	1.88
Beryllium (Be)-Total	ND	ND	0.019	ND	ND
Bismuth (Bi)-Total	0.4	0.1	0.139	0.164	4.29
Boron (B)-Total	8.7	8.7	9.7	5.9	30.7
Cadmium (Cd)-Total	0.016	0.064	0.0737	2.14	6.44
Calcium (Ca)-Total	6202.9	3470.0	3300	6030	9190
Cesium (Cs)-Total	0.573	0.404	0.777	0.0901	0.188
Chromium (Cr)-Total	0.080	ND	ND	ND	0.099
Cobalt (Co)-Total	0.284	0.100	0.256	0.466	0.769
Copper (Cu)-Total	11.1	12.0	34.8	4.68	9.20
Iron (Fe)-Total	131.1	45.5	166	58.5	530
Lead (Pb)-Total	7.6	2.0	2.66	2.60	68.6
Lithium (Li)-Total	ND	ND	0.63	ND	ND
Magnesium (Mg)-Total	2419.1	883.3	791	4770	4840
Manganese (Mn)-Total	134.5	183.3	360	93.0	414
Mercury (Hg)-Total	0.005	ND	ND	ND	0.0121
Molybdenum (Mo)-Total	2.1	3.5	2.22	0.049	1.15
Nickel (Ni)-Total	3.9	1.9	11.3	1.30	1.67
Phosphorus (P)-Total	1985.7	1411.4	1710	2340	3700
Potassium (K)-Total	4268.6	3042.9	3400	4400	7890
Rubidium (Rb)-Total	14.8	8.9	18.1	6.97	18.9
Selenium (Se)-Total	0.101	ND	ND	0.067	0.655
Strontium (Sr)-Total	6.1	7.5	8.47	2.70	8.04
Thallium (TI)-Total	0.006	0.005	0.0061	ND	0.0165
Tin (Sn)-Total	ND	ND	ND	ND	0.59
Uranium (U)-Total	0.006	ND	0.0203	ND	0.0313
Vanadium (V)-Total	0.1	ND	ND	ND	ND
Zinc (Zn)-Total	34.0	47.2	29.7	107	304
Zirconium (Zr)-Total	0.22	ND	ND	ND	0.23

5.0 DISCUSSION

No mining activity has taken place at the Peso site since the 1960s. After 50 years the disturbed areas of Peso have had very little natural colonization. There has been sporadic growth in the trench area, mainly shrubs, but the waste rock dump was devoid of any growth.

Phytoremediation, the use of plants to decontaminate soils and waters, has been developed over recent decades. The purpose of phytoremediation is to remove the contaminant from the media into plants. Heavy metals can be removed through plant processes such as uptake, adsorption, transport and translocation, sequestration into vacuoles, hyperaccumulation and, in some cases, volatilization (Bieby Voijant Tangahu et al, 2011). The strategy is to extract metals from contaminated soil and transfer it to the smaller volume of harvestable plants for disposal (Capuana, 2011). However, the purpose of this trial was to determine how to cover the contaminated soils with a sustaining plant community but leave the metals in situ. Uptake of metals into the tissues is not desirable as the resulting vegetation may be consumed by

herbivores (from mice to moose). Biochar has the ability to immobilize metals thereby reducing their bioavailability for plant uptake and hence was chosen as an amendment for the Peso trials.

The objective of on-site treatment of contaminated lands using soil amendments is to establish a self-sustaining system that does not rely on additional care, and, ideally, is similar to and provides nearly equal ecological value as the undisturbed adjacent landscape. Without the necessity of an application of a layer of till, the Peso site could be revegetated using biochar and some form of nutrient rich amendment. Dolomite should also be added for the waste rock site. This has implications for the revegetation of other areas eventually requiring reclamation at the Eagle Gold Project site. As areas are cleared, the woody material in the overburden could be turned into biochar on site in easily constructed pits. The remaining stockpiled overburden material can be spread over the area to be revegetated, providing soil material, nutrients, seed banks, and the associated mycorrhiza to allow healthy growth of native plants through direct seeding, planting and natural colonization.

As described in Section 4.1, all of the plots had very high concentrations of metals in the soils, notably antimony, arsenic and lead. This has not been reflected in the tissue samples. With the exception of a couple of plots, very low concentrations of these metals were taken up by the plants. The soil samples from Block 3 at the Waste Rock Dump had the highest concentrations of antimony, arsenic and lead in the study area and correspondingly the single foliar sample collected here contained the highest levels of these metals. (There was only sufficient plant biomass from one plot in this block for analysis.)

There currently is not an available database on metals in plant tissues for the Yukon. A compendium has been prepared by the Yukon College (Soprovich and Janin, 2017) discussing metal concentrations in plants from several mine sites in the Yukon, however the presented information and data is limited. A literature search was conducted in attempts to compare the Peso foliar data with other sites. Only studies that also included soil chemistry data were reviewed. Note that the soil samples were not necessarily collected at the same locations as the vegetation samples, however the data does give an idea of the metal concentrations throughout each study area.

Vegetation and soil samples were collected from four permanent sites at the Eagle Gold Project Site in the summer of 2018 to monitor any effects from the construction activities and basically represent baseline conditions (Laberge, 2018b). Willow and dwarf birch comprised the majority of the foliar samples. Stantec (2011) undertook baseline soil and foliar sampling in 2009 throughout the footprint of the Eagle Gold Project. Vegetation types analyzed included willow, sedge and grasses. Access Consulting Group (2015) devised a vegetation monitoring plan for the Minto Mine and collected soil and vegetation samples in areas that may be influenced by mining activities. Grasses, willows and aspen were the tissues analyzed. As part of a human health and ecological risk assessment, Azimuth (2014) conducted extensive soil sampling throughout the project area at Sä Dena Hes, and submitted several willow and alder twig samples for vegetation analysis.

Neither arsenic nor lead have any beneficial value to plants. These metals were extremely high in the soils at Peso and Table 12 summarizes the range of concentrations in the soil and in the vegetation at each project site. The two sites at Peso have been presented separately. The

numbers in brackets after the maximum value indicated the next highest concentration after the outlier is eliminated from the range. As significant numbers of willow and alder samples were collected at Sa Dena Hes, these have been included as separate entries. Only twigs were analyzed.

TABLE 1	2 METAL CONC	ENTRAT	IONS IN S	OIL AND FOLIAR	TISSUE	S FROM VARIOUS PRO	DJECTS		
Matal	Cite	Veen	Authon	Range of Concentration (mg/kg)					
Metal	Site	Year	Author	Soil	N	Foliar	Ν		
	Peso - Trench	2018	LES	1490 to 11,400	15	0.4 to 17.0 (4.09)	13		
	Peso - Waste Rock	2018	LES	1240 to 10,900	15	0.7 to 68.7 (7.4)	17		
	Eagle Gold	2018	LES	15.1 to 302	4	0.090 to 7.73	60		
Arsenic	Eagle Gold	2009	Stantec	9.4 to 1350	20	<0.1 to 0.4	16		
AISCHIC	Minto	2015	Access	1.1 to 9.0	12	0.06 to 0.49	10		
Sa Dona Hos	Sa Dena Hes	2013	Azimuth	1.0 to 357	69	willow: 0.006 to 0.012	16		
	Sa Della Lies				09	alder: 0.004 to 7.36	16		
	Keno Valley	2003	LES	12.9 to 373	11	<2 to 2.0	18		
	Peso - Trench	2018	LES	1160 to 8680	15	2.5 to 48.0 (18.5)	13		
	Peso - Waste Rock	2018	LES	331 to 16,600	15	1.0 to 68.6 (15.3)	17		
	Eagle Gold	2018	LES	19.8 to 40.6	4	0.036 to 1.55	60		
Lead	Eagle Gold	2009	Stantec	5.7 to 85.8	20	<0.1 to 0.2	16		
Leau	Minto	2015	Access	2.4 to 7.5	12	0.13 to 0.53	10		
	Sa Dena Hes	2013	Azimuth	76 to 10,400	115	willow: 0.042 to 61.4	16		
	Sa Della Hes	2013	Azimum	701010,400	115	alder: 0.045 to 5.35	16		
	Keno Valley	2003	LES	22.3 to 1350	11	<5 to 3.3	18		

The arsenic concentrations in the soil at Peso were far greater than at the other sites, especially when comparing the minimums. The maximum concentration of arsenic documented at Eagle Gold by Stantec was similar to the minimum concentrations reported at Peso. Arsenic concentrations were slightly higher in the tissues collected from Peso than the other sites, although the maximum concentration from alder tissues at Sä Dena Hes were similar to the maximums at Peso (which were mostly alder) when the outliers are excluded.

Generally lead concentrations were much greater in the soils at Peso than the other sites, however there was a comparable maximum lead concentration collected from a site at Sä Dena Hes. Again, the minimum concentrations of lead in the soils were much higher at Peso. Lead in tissues from Peso were somewhat higher than the other sites, even when the outliers where excluded. The exception to this was a willow sample analyzed from Sä Dena Hes which had concentrations almost as great as the sample analyzed from Block 3 at the Waste Rock Dump.

Although Peso is a highly contaminated site regarding metals, the potentially harmful metals do not appear bioavailable as evidenced by the low concentrations in the foliar tissues. Only two samples had a concentration greater than the referenced dietary tolerances for cattle. Arsenic concentrations in the foliar sample collected from an untreated plot at the Trench site slightly exceeded what is considered "normal". Arsenic in the vegetation sample from Block 3 on the Waste Rock Dump exceeded the tolerance level to a greater extent. All other metals were well below the referenced tolerances. It appears that biochar has been effective in

reducing the uptake of metals in plant tissues. The biochar application rate must be sufficient to match and treat the amount of heavy metals that are contained in the soil (Chen et al, 2018). The application rate for the plots on the waste rock was twice that applied to the Trench plots, however, an increase in the application rate may have reduced uptake more efficiently, notably at Block 3.

There is little doubt that amendments are required for plants to grow in the study area. All nontreated seeded plots produced no to very little growth. The acidic soil conditions at the Peso trench and the waste rock sites present a challenging scenario in relation to the site conditions at the majority of other disturbed sites in the Dublin Gulch area. However, the success of using compost and biochar to achieve robust plant growth on these highly mineralized and acidic soils, especially on the waste rock dump, indicates that nothing is impossible.

With minimal effort and resources, native plants were able to grow on the majority of the treated plots, including on the highly acidic (pH 2.6) waste rock dump.

In summary, these trials have proven successful. By using appropriate species and soil amendments, healthy plants have grown, propagated and even thrived on acidic, highly mineralized soils.

6.0 **REFERENCES**

- Access Consulting Group. 2015. Vegetation Metal Uptake Monitoring Plan for Minto Mine. Prepared for Minto Explorations Ltd.
- Aho, E. Aaro. 2006. Hills of Silver The Yukon's Mighty Keno Hill Mine. Harbour Publishing Co. Ltd. BC, Canada.
- Aurum Geological Consultants. Jan 1992. Report on the 1991 Geological and Geochemical Work on the Pierre Property. Prepared for M.J. Moreau Enterprises Ltd. Whitehorse, Yukon.
- Azimuth Consulting Group Partnership. 2014. Data Report in Support of the Human Health and Ecological Risk Assessments (HHERA), Sä Dena Hes Mine Prepared for Teck Metals Ltd.
- Bates, Albert. 2010. The Biochar Solution Carbon Farming and Climate Change. New Society Publishers, Gabriola Island, BC. ISBN 978-0-86571-677-3.
- Beesley, L. and M. Marmiroli. 2011. The Immobilization and Retention of Soluble Arsenic, Cadmium and Zinc by Biochar. Environmental Pollution 159; 474-480.
- Beesley, L., E. Moreno-Jimenez and J.L. Gomez-Eyles. 2010. Effects of biochar and greenwaste compost amendments on mobility, bioavailability and toxicity of inorganic and organic contaminants in a multi-element polluted soil. Environmental Pollution 158 (2010) 2282-2287.
- Bieby Voijant Tangahu, Siti Rozaimah Sheikh Abdullah, Hassan Basri, Mushrifah Idris, Nurina Anuar, and Muhammad Mukhlisin. 2011. A Review on Heavy Metals (As, Pb, and Hg) Uptake by Plants through Phytoremediation. International Journal of Chemical Engineering Volume 2011, Article ID 939161, 31 pages.
- Bruges, James. 2009. The Biochar Debate Charcoal's Potential to Reverse Climate Change and Build Soil Fertility. Chelsea Green Publishing Company, Vermont, USA. ISBN 978-1-60358-255-1.
- Burns, Bonnie. 2013. Soil Analysis for Possible Revegetation Trials on Three Sites at the Eagle Gold Project at Dublin Gulch. In-house technical memo to Victoria Gold Corp.
- Campbell, D. Douglas. November 1965. Peso Silver Mines Ltd. Properties, Yukon Territory. Vanouver, BC.
- Capuana M, 2011. Heavy metals and woody plants biotechnologies for phytoremediation. iForest 4: 7-15 [online: 2011-01-27] URL: http://www.sisef.it/ iforest/show.php?id=555
- DalCorso, G., A. Manara, S. Piasentin and A. Furini. 2014. Nutrient Metal Elements in Plants. Metallomics, Royal Society of Chemistry. DOI: 10.1039/c4mt00173g.

- Economist, 2009. The Virtues of Biochar: A New Growth Industry; in The Economist, August 27th, 2009 (http://www.economist.com/node/14302001).
- Environmental Services, Public Works and Government Services Canada. 1998. Phase III Environmental Assessment Peso Mine Site Final Report. Prepared for Action on Waste Program, Indian and Northern Affairs Canada, Whitehorse, Yukon.
- Fellet, G. L. Marchoil, G. Delle Vedove, A. Peressotti. 2011. Application of Biochar on Mine Tailings: Effects and Perspectives for Land Reclamation. Chemosphere 83; 1262-1267.
- Godı'nez-Alvarez, H., J.E. Herrick, M. Mattocks, D. Toledo, J. Van Zee. 2009. Comparison of Three Vegetation Monitoring Methods: Their Relative Utility for Ecological Assessment and Monitoring. Ecological Indicators 9: 1001-1008.
- Knight Piésold Consulting. 2013. Hydrometeorology Report, VA101-290/6-8. Prepared for Victoria Gold Corp.
- Laberge Environmental Services and Nacho Nyak Dun Development Corporation. 2004. Update Site Assessment Report Peso Mineral Exploration Site MN062. Prepared for DIAND Waste Management Branch, Whitehorse, Yukon.
- Laberge Environmental Services. 2004. Receiving Water and Contaminant Pathway Monitoring in the Keno Valley, 2003, Special Projects #2. Prepared for Nacho Nyak Dun Development Corporation.
- Laberge Environmental Services. 2012. The Use of Biochar in Mine Reclamation Results of a Literature Review. Prepared for the Yukon Technology Innovation Center, Whitehorse, Yukon.
- Laberge Environmental Services. 2013. Revegetation and Bioremediation Trials at the Old Peso Minesite, Phase I. Prepared for Victoria Gold Corporation, Whitehorse, Yukon.
- Laberge Environmental Services. 2018a. Soil Monitoring at the Eagle Gold Project, 2018. Section 13 of the EMSAMP, Version 2018-01. Submitted to Victoria Gold Corp.
- Laberge Environmental Services. 2018b. Vegetation Monitoring at the Eagle Gold Project Site, 2018, Section 12 of the EMSAMP, Version 2018-01. Prepared for Victoria Gold Corp.
- Matheus, P. and T. Oztmigt. 2012. Yukon Revegetation Manual Practical Approaches and Methods (Beta form). Prepared for Government of Yukon Advisory Committee and Mining and Petroleum Environmental Mining Research, EMR, Government of Yukon.
- Matheus, P.E. and C.M. Omtzigt, 2013. Yukon Revegetation Manual: Practical Approaches and Methods. Whitehorse, Yukon. 182 pages. ISBN 978-0-9919499-0-8. URL: yukonrevegetatiomanual.ca

- Peltz Christopher, Koren Nydick, Gretchen Fitzgerald, Cathleen Zillich. *Biochar for Soil Remediation on Abandoned Mine Lands*. Mountain Studies Institute, US Forest Service and Bureau of Land Management. GSA poster.
- Singh, V.P. 2005. Metal Toxicity and Tolerance in Plant and Animals. Published by Sarup and Sons, 328 pages.
- Smith, C.E., J.C. Meikle, C.R. Roots. (Editors). 2006. Ecoregions of the Yukon Territory Biophysical Properties of Yukon Landscapes. Agriculture and Agri-Food Canada, Research Branch. PARC Technical bulletin 04-01.
- Soprovich and Janin, 2017. Compendium of metal uptake data for plants growing on mine sites in Yukon. Yukon Research Centre, Yukon College. September 2017.
- Stantec. 2011. Eagle Gold Project, Environmental Baseline Report: Vegetation, Appendix 11. Project #1231-10377. Prepared for Victoria Gold Corp. Vancouver, BC.
- StrataGold, 2014. Eagle Gold Project, Reclamation and Closure Plan, Appendix 21 to Yukon Water Use License application, submitted August 2014 to Yukon Water Board.
- Taylor, S.R. 1964. Abundance of Chemical Elements in the Continental Crust: a new table. Geo chim. Cosmochim. Acta 28: 1273-1285.

Yukon Minfile. 2003. Minfile # 106D 021, Peso. Yukon Geological Survey, Whitehorse, Yukon.

APPENDIX A

SOILS DATA

- TABLE A-1
- TABLE A-2
- MAXXAM JOB #: B256252, 2012
- ALS Lab Work Order #: L2139940,2018

TABLE A-1				S	OIL DATA, T	RENCH SIT	E 2018				
Parameter	Lowest	Units	Block #1			Block #2			Block #3		
Parameter	Detection Limit	Units	T1-1AB	T1-2AB	T1-3	T2-1AB	T2-2	T2-3A	T3-1	T3-2AB	T3-3AB
Physical Tests (Soil)	1.0	%	1.2	3.1	3.6	1.3	1.3	1.4	2.3	3.3	3.5
Loss on Ignition @ 375 C Organic Matter	1.0	%	1.2	2.7	3.1	1.3	1.3	1.4	2.3	2.9	3.0
pH (1:2 soil:water)	0.10	pH	6.30	7.17	6.74	5.88	7.12	6.12	5.17	5.75	6.79
pri (1.2 301.water)	0.10	рп	0.00	7.17	0.74	5.00	1.12	0.12	5.17	5.75	0.75
Particle Size (Soil)											
% Sand (2.0mm - 0.05mm)	1.0	%	83.3	83.8	82.5	65.0	65.7	65.2	60.9	64.2	58.0
% Silt (0.05mm - 2um)	1.0	%	15.3	14.1	15.7	28.9	28.6	28.3	34.7	31.0	37.9
% Clay (<2um)	1.0	%	1.4	2.1	1.7	6.1	5.7	6.5	4.4	4.7	4.1
Texture		-	Loamy sand	Loamy sand	Loamy sand	Sandy loam	Sandy loam	Sandy loam	Sandy loam	Sandy loam	Sandy loam
Leachable Anions & Nutrient Total Kjeldahl Nitrogen	s (Soil) 0.020	%	0.069	0.118	0.132	0.059	0.064	0.063	0.070	0.077	0.088
Organic / Inorganic Carbon (Soil)										
C:N Ratio	0.05	-	5.8:1	15.7:1	14.5:1	7:01	8.9:1	6.8:1	7.2:1	20.1:1	17.5:1
Total Carbon by Combustion	0.05	%	0.40	1.86	1.91	0.42	0.57	0.43	0.50	1.55	1.53
Plant Available Nutrients (So Available Ammonium-N	il) 1.0	mg/kg	1.8	2.5	3.1	2.0	2.3	1.4	1.7	2.6	2.5
Calcium (Ca)	0.50	meg/100g	0.92	5.33	3.74	0.74	2.26	1.20	<0.50	3.97	4.48
Magnesium (Mg)	0.50	meq/100g	<0.50	< 0.50	<0.50	< 0.50	<0.50	<0.50	< 0.50	<0.50	<0.50
Available Phosphate-P	2.0	mg/kg	3.4	46.9	17.9	<2.0	6.8	<2.0	2.3	15.2	24.2
Available Potassium	20	mg/kg	24	51	51	30	39	29	31	40	46
Potassium (K)	0.50	meq/100g	<0.50	<0.50	<0.50	<0.50	<0.50	<0.50	<0.50	<0.50	<0.50
Sodium (Na)	0.50	meq/100g	<0.50	<0.50	<0.50	<0.50	<0.50	<0.50	<0.50	<0.50	<0.50
Metals (Soil)											
Aluminum (Al)	50	mg/kg	3220	2050	1630	3440	3390	4620	3030	3670	2670
Antimony (Sb)	0.10	mg/kg	3750	818	6410	2360	492	369	4590	1450	2330
Arsenic (As)	0.10	mg/kg	6380	2190	2690	5810	1490	1730	11400	4410	10600
Barium (Ba)	0.50	mg/kg	47.2	32.6	35.6	70.3	65.7	91.3	42.3	40.6	38.6
Beryllium (Be)	0.10	mg/kg	0.13	<0.10	<0.10	0.13	0.11	0.15	0.12	0.13	<0.10
Bismuth (Bi)	0.20	mg/kg	145	26.1	236	504	53.5	30.5	320	91.5	222
Boron (B)	5.0	mg/kg	10.0	<5.0 0.427	7.1 3.26	7.4 3.89	<5.0	8.2	7.4	<5.0 1.53	<5.0
Cadmium (Cd) Calcium (Ca)	0.020 50	mg/kg mg/kg	4.08 578	1830	3890	947	0.564 1180	0.482 1330	6.21 334	634	3.91 1190
Chromium (Cr)	0.50	mg/kg	16.6	7.83	5.92	7.33	7.84	10.6	11.2	10.1	13.8
Cobalt (Co)	0.10	mg/kg	7.91	4.18	2.26	2.93	2.84	3.44	5.08	4.21	6.24
Copper (Cu)	0.50	mg/kg	132	55.6	29.8	74.3	50.9	73.3	170	92.7	121
Iron (Fe)	50	mg/kg	56700	31900	17900	51100	28400	39300	43100	36000	42900
Lead (Pb)	0.50	mg/kg	7790	1440	3670	4700	1160	1260	8680	3200	4890
Lithium (Li)	2.0	mg/kg	<2.0	<2.0	<2.0	<2.0	<2.0	<2.0	<2.0	<2.0	<2.0
Magnesium (Mg)	20	mg/kg	94	312	475	81	84	92	131	354	193
Manganese (Mn)	1.0	mg/kg	278	290	131	277	142	199	184	170	214
Mercury (Hg)	0.0050	mg/kg	0.227	0.169	0.468	0.358	0.146	0.193	0.700	0.571	0.924
Molybdenum (Mo)	0.10	mg/kg	1.45	1.36	1.05	0.85	1.31	1.05	0.79	1.15	1.27
Nickel (Ni)	0.50	mg/kg	20.3	11.5	5.92	5.34	5.52	7.03	9.32	8.65	15.1
Phosphorus (P)	50	mg/kg	581	500	452	1170	1200	1480	534	333	484
Potassium (K)	100	mg/kg	580	460	320	670	630	790	520	470	590
Selenium (Se)	0.20	mg/kg	5.62	1.70	6.76	9.01	1.98	1.68	9.01	3.54	6.42
Silver (Ag) Sodium (Na)	0.10 50	mg/kg mg/kg	>165 <50	15.8 <50	>126 <50	50.7 <50	8.51 <50	7.37 <50	38.0 <50	18.3 <50	35.8 <50
Strontium (Sr)	0.50	mg/kg	93.0	35.7	32.6	337	349	483	108	57.1	79.5
Sulfur (S)	1000	mg/kg	1500	<1000	<1000	1700	<1000	<1000	2000	1100	1600
Thallium (TI)	0.050	mg/kg	0.262	0.149	0.147	0.282	0.118	0.116	0.263	0.180	0.189
Tin (Sn)	2.0	mg/kg	51.0	16.5	24.7	41.3	17.2	18.0	201	38.3	105
Titanium (Ti)	1.0	mg/kg	22.3	28.9	38.7	19.5	<16	18.4	17.3	37.1	<19
Tungsten (W)	0.50	mg/kg	<0.50	<0.50	<0.50	<0.50	<0.50	<0.50	<0.50	<0.50	<0.50
Uranium (U)	0.050	mg/kg	14.3	1.72	4.75	6.05	2.17	2.17	3.49	2.06	3.12
Vanadium (V)	0.20	mg/kg	18.6	10.4	6.31	10.7	8.41	11.7	10.5	12.7	13.3
Zinc (Zn)	2.0	mg/kg	354	142	70.4	117	85.5	113	112	95.0	107
Zirconium (Zr)	1.0	mg/kg	12.0	3.8	2.1	7.4	7.5	6.2	10.4	8.7	10.2

TABLE A-2 SOIL DATA, WASTE ROCK SITE 2018																	
Parameter	Lowest Detection Limit	Units	Block #1					Block #2					Block #3				
			W1-1	W1-2	W1-3	W1-4	W1-5	W2-1	W2-2	W2-3	W2-4	W2-5	W3-1	W3-2	W3-3	W3-4	W3-5
Physical Tests (Soil) Loss on Ignition @ 375 C	1.0	%	2.0	2.3	4.4	3.0	9.2	1.4	1.5	3.0	4.8	1.9	1.6	6.1	8.0	9.5	7.9
Organic Matter	1.0	%	1.8	2.5	3.7	2.6	7.5	1.4	1.5	2.6	4.0	1.5	1.5	5.0	6.5	7.7	6.5
pH (1:2 soil:water)	0.10	pH	3.04	4.81	3.25	4.10	5.71	2.75	3.11	3.04	3.28	2.84	2.32	2.41	1.77	4.32	2.20
(,							-	-									
Particle Size (Soil)																	
% Sand (2.0mm - 0.05mm)	1.0	%	59.4	69.2	80.3	82.3	75.5	37.4	42.6	87.1	73.2	71.2	53.3	69.2	63.7	68.6	68.8
% Silt (0.05mm - 2um) % Clay (<2um)	1.0 1.0	%	36.4 4.2	27.2 3.6	17.2 2.4	16.0 1.7	20.8 3.7	59.4 3.1	55.6 1.8	11.2 1.7	23.6 3.2	22.4 6.3	40.5 6.2	25.4 5.4	28.6 7.6	26.9 4.5	25.0 6.2
% Clay (<2011)	1.0	%	4.2	3.0	2.4	1.7	3.7	3.1	1.0	1.7	Sandy loam /	0.3	0.2	5.4	7.0	4.5	0.2
Texture		-	Sandy loam	Sandy loam	Loamy sand	Loamy sand	Loamy sand	Silt loam	Silt loam	Sand	Loamy sand	Sandy loam	Sandy loam	Sandy loam	Sandy loam	Sandy loam	Sandy loam
Leachable Anions & Nutrients	(Soil)																
Total Kjeldahl Nitrogen	0.020	%	0.062	0.073	0.095	0.115	0.152	0.023	0.033	0.063	0.096	0.046	0.061	0.135	0.150	0.175	0.140
Organic / Inorganic Carbon (S C:N Ratio	ioil)		10.5:1	12.2:1	30.7:1	11.5:1	37.6:1	15.1:1	12.9:1	15.6:1	24:01:00	5.7:1	8.7:1	21.9:1	27.6:1	32.4:1	32:01:00
Total Carbon by Combustion	0.05	- %	0.64	0.89	2.91	1.33	5.72	0.34	0.42	0.99	24.01.00	0.26	0.7.1	21.9.1	4.16	5.66	4.47
i stal carbon by combustion	0.00	70	0.04	0.00	2.01	1.00	0.72	0.04	0.72	0.00	2.01	0.20	0.00	2.00	4.10	0.00	7.77
Plant Available Nutrients (Soil																	
Available Ammonium-N	1.0	mg/kg	4.1	3.4	3.6	3.3	6.3	2.2	1.8	2.9	4.5	2.8	6.9	13.6	18.6	7.5	11.5
Calcium (Ca)	0.50	meq/100g	<0.50	1.27	<0.50	0.75	11.2	<0.50	<0.50	<0.50	2.84	<0.50	<0.50	<0.50	<0.50	3.60	19.4
Magnesium (Mg)	0.50	meq/100g	<0.50	<0.50	<0.50	<0.50	2.26	<0.50	<0.50	<0.50	0.90	<0.50	<0.50	<0.50	<0.50	1.96	2.12
Available Phosphate-P	2.0	mg/kg	2.2	5.7	6.4	<2.0	15.6	<2.0	<2.0	<2.0	<2.0	<2.0	<2.0	4.4	<2.0	<2.0	<2.0
Available Potassium Potassium (K)	20 0.50	mg/kg meq/100g	27 <0.50	23 <0.50	<20 <0.50	25 <0.50	45 <0.50	<20 <0.50	<20 <0.50	<20 <0.50	32 <0.50	<20 <0.50	<20 <0.50	<20 <0.50	20 <0.50	<20 <0.50	<20 <0.50
Sodium (Na)	0.50	meq/100g	<0.50	<0.50	<0.50	<0.50	<0.50	<0.50	<0.50	< 0.50	<0.50	< 0.50	<0.50	< 0.50	< 0.50	<0.50	<0.50
Sodium (Na)	0.50	meq/100g	<0.50	<0.50	<0.50	<0.50	<0.50	<0.50	<0.50	<0.50	<0.50	<0.50	<0.50	<0.50	<0.50	<0.50	<0.50
Metals (Soil)																	
Aluminum (Al)	50	mg/kg	7160	5840	4990	3550	2780	4540	5820	4920	5080	4590	3390	2930	3100	3760	2710
Antimony (Sb)	0.10	mg/kg	1280	542	241	838	3350	1110	333	1320	2100	2360	2940	7690	6020	5920	7140
Arsenic (As)	0.10	mg/kg	3750	3220	2140	3610	3130	1470	1240	2530	2980	2260	3010	6500	7950	9810	10900
Barium (Ba)	0.50	mg/kg	116	72.0	44.3	24.3	46.3	158	196	102	134	86.8	116	47.3	53.7	60.5	48.1
Beryllium (Be)	0.10	mg/kg	0.20	0.18	0.20	0.18	0.13	0.13	0.13	0.27	0.22	0.27	0.14	0.16	0.17	0.17	0.11
Bismuth (Bi)	0.20	mg/kg	110	66.5	21.2	73.4	313	43.5	12.1	132	252	422	246	1020	975	822	1250
Boron (B) Cadmium (Cd)	5.0 0.020	mg/kg	<5.0 1.85	<5.0 1.29	<5.0 1.61	<5.0 1.95	<5.0 2.40	<5.0 0.291	<5.0 0.253	<5.0 0.442	<5.0 0.633	5.2 0.996	<5.0 1.81	6.7 5.74	5.8 6.59	<5.0 6.44	5.8 6.31
Calcium (Ca)	50	mg/kg mg/kg	452	1.29	296	4040	2.40	756	1160	899	1540	1390	222	5.74 446	571	9170	2290
Chromium (Cr)	0.50	mg/kg	14.2	12.2	11.9	9.60	5.22	10.4	13.9	8.69	8.62	6.91	10.6	9.91	9.40	12.0	7.89
Cobalt (Co)	0.10	mg/kg	9.72	11.6	22.5	14.0	2.54	3.00	4.69	2.24	2.38	1.39	5.39	1.80	1.82	3.01	2.13
Copper (Cu)	0.50	mg/kg	145	172	120	214	229	88.0	59.4	194	194	180	250	299	314	433	400
Iron (Fe)	50	mg/kg	46500	45400	50500	48600	27200	38500	33500	53900	48900	45100	37100	35800	32300	54300	70100
Lead (Pb)	0.50	mg/kg	1870	4570	391	1380	6770	1600	331	2220	3590	4860	3810	14300	12800	10700	16600
Lithium (Li)	2.0	mg/kg	7.5	5.8	5.3	3.2	<2.0	4.7	6.9	2.2	2.2	<2.0	2.4	<2.0	<2.0	<2.0	<2.0
Magnesium (Mg)	20	mg/kg	2250	1820	1620	3190	14800	1410	2350	307	731	212	622	262	105	5180	1380
Manganese (Mn)	1.0	mg/kg	272	238	320	225	207	112	179	83.4	86.7	66.9	129	94.8	81.8	132	108
Mercury (Hg)	0.0050	mg/kg	0.0935	0.0853	0.0327	0.105	0.654	0.0933	0.0465	0.182	0.361	0.302	0.207	0.701	1.05	0.797	0.706
Molybdenum (Mo)	0.10	mg/kg	0.78	1.60	1.69	1.04	2.20	0.77	0.80	1.04	1.89	1.09	1.30	2.57	1.79	2.57	1.94
Nickel (Ni)	0.50	mg/kg	27.6	27.6	48.7	34.2	7.42	8.91	13.2	8.26	8.19	6.94	16.2	5.14	5.46	8.84	5.78
Phosphorus (P) Potassium (K)	50 100	mg/kg	461 640	827 580	594 420	410 400	914 700	561 970	602 980	1670 1130	1640 1240	1730 1460	289 670	1120 900	769 850	1230 870	788 750
Selenium (K)	0.20	mg/kg mg/kg	3.93	580	420	400	12.2	970 2.46	980	4.04	6.75	6.31	9.79	25.1	27.5	25.8	35.5
Silver (Ag)	0.20	mg/kg	17.6	18.9	3.50	4.02	62.9	2.46	4.72	58.0	75.3	>108	32.5	>122	>112	>111	>135
Sodium (Na)	50	mg/kg	149	184	73	<50	55	392	353	92	162	75	106	58	53	94	106
Strontium (Sr)	0.50	mg/kg	26.0	32.8	13.3	17.8	193	90.6	39.4	407	458	565	41.2	188	215	168	141
Sulfur (S)	1000	mg/kg	2900	3400	1600	2400	6700	6300	4000	5900	9000	9800	3900	6300	8500	8400	16600
Thallium (TI)	0.050	mg/kg	<0.10	<0.15	0.062	<0.10	< 0.35	0.151	0.078	0.242	0.301	0.418	<0.20	<0.30	< 0.35	0.265	<35
Tin (Sn)	2.0	mg/kg	6.9	7.6	2.6	7.6	33.2	11.3	5.1	21.0	32.2	26.5	33.9	64.0	131	81.7	68.5
Titanium (Ti)	1.0	mg/kg	99.7	75.9	49.8	26.8	<31	274	314	31.1	78.7	10.6	74.2	39.6	39.9	46.0	<47
Tungsten (W)	0.50	mg/kg	<0.50	<0.50	<0.50	<0.50	<0.50	<0.50	<0.50	<0.50	<0.50	<0.50	<0.50	<0.50	<0.50	<0.50	<0.50
Uranium (U)	0.050	mg/kg	2.41	2.27	2.73	2.99	2.21	0.967	0.785	2.32	2.46	3.87	2.52	6.00	7.07	5.62	6.01
Vanadium (V)	0.20	mg/kg	19.5	15.7	12.9	10.0	8.13	28.0	29.3	14.5	18.0	12.2	17.1	8.07	7.03	9.26	7.35
Zinc (Zn)	2.0	mg/kg	258	249	333	210	121	47.8	54.5	88.7	68.5	69.2	94.1	110	103	100	90.2
Zirconium (Zr)	1.0	mg/kg	3.3	1.4	2.5	7.1	<1.0	4.6	2.5	4.6	4.4	6.8	9.8	1.2	9.7	<1.0	2.9

Your Project #: BIOCHAR RESEARCH Your C.O.C. #: EB492312

Attention: Ken Nordin

LABERGE ENVIRONMENTAL SERVICES WHITEHORSE 405 Ogilvie Street PO Box 21072 Whitehorse, YT CANADA Y1A 6P7

Report Date: 2012/07/13

CERTIFICATE OF ANALYSIS

MAXXAM JOB #: B256252

Received: 2012/06/29, 14:00

Sample Matrix: Soil # Samples Received: 4

		Date	Date	
Analyses	Quantity	Extracted	Analyzed Laboratory Method	Analytical Method
Cation Exchange Capacity (1)	4	2012/07/10	2012/07/10 AB SOP-00009	SSMA 18.2, EPA 200.7
Carbon Nitrogen Ratio (1)	4	2012/07/05	2012/07/13 Calc	
Elements by ICPMS (total)	4	2012/07/05	2012/07/05 BBY7SOP-00001	EPA 6020A
Potassium (Available) (1)	4	2012/07/09	2012/07/09 AB SOP-00042	EPA 200.7
Loss on Ignition, Org. & Inorg. Residue (2)	4	N/A	2012/07/06 BBY6SOP-00040	Carter SSMA 44.3
Nitrate-N (Available) (1)	4	2012/07/09	2012/07/09 AB SOP-00023	SM 4110-B
Organic Matter - Calculated from LOI	4	N/A	2012/07/06 BBY6SOP-00040	Carter SSMA 44.3
Phosphorus (Available by ICP) (1)	4	2012/07/09	2012/07/09 AB SOP-00042	EPA 200.7
pH (2:1 DI Water Extract)	4	2012/07/05	2012/07/05 BBY6SOP-00028	Carter, SSMA 16.2
Texture by Hydrometer (1)	3	N/A	2012/07/13 AB SOP-00030	MMFSPA Ch9
Texture Class (1)	3	N/A	2012/07/13 AB SOP-00030	MMFSPA Ch9
Total Kjeldahl Nitrogen - Soil (1)	4	2012/07/13	2012/07/13 AB SOP-00008	EPA 351.1, 351.2
Organic Carbon and Organic Matter (1)	4	2012/07/11	2012/07/11 AB SOP-00012	MMFSPA Ch6

* RPDs calculated using raw data. The rounding of final results may result in the apparent difference.

(1) This test was performed by Maxxam Calgary Environmental

(2) Loss on Ignition was reported on a dry weight basis.

Encryption Key

Please direct all questions regarding this Certificate of Analysis to your Project Manager.

Tabitha Rudkin, Burnaby Project Manager Email: TRudkin@maxxam.ca Phone# (604) 638-2639

Maxxam has procedures in place to guard against improper use of the electronic signature and have the required "signatories", as per section 5.10.2 of ISO/IEC 17025:2005(E), signing the reports. For Service Group specific validation please refer to the Validation Signature Page. Total cover pages: 1

Maxxam Job #: B256252

Report Date: 2012/07/13

LABERGE ENVIRONMENTAL SERVICES Client Project #: BIOCHAR RESEARCH

CARBON NITROGEN RATIO (TKN,TOC)

20 0-1-1
QC Batch
6000949
5976738
5991753
5991753
į

Success Through Science®

LABERGE ENVIRONMENTAL SERVICES Client Project #: BIOCHAR RESEARCH

Maxxam Job #: B256252 Report Date: 2012/07/13

NPK (AVAILABLE)

	2012/06/24 12:00	2012/06/24	2012/06/26	0040/00/00		
	12.00		2012/00/20	2012/06/26		
	12.00	12:00	12:00	12:00		
	EB492312	EB492312	EB492312	EB492312		
UNITS	PESO	PESO	WHC A,B,C	MSGM A,B,C	RDL	QC Batch
	WASTE ROCK	TRENCHES				
		-	-			
mg/kg	<2.0	<2.0	<2.0	22	2.0	5985283
mg/kg	2.9	1.8	<1.0	<1.0	1.0	5978596
mg/kg	<2.0	8.5	72	150	2.0	5978595
					4	
r	ng/kg ng/kg	JNITS PESO WASTE ROCK	JNITS PESO PESO WASTE ROCK TRENCHES	JNITS PESO PESO TRENCHES WHC A,B,C WASTE ROCK 72.0 C2.0 C2.0 ng/kg 2.9 1.8 C1.0	JNITS PESO PESO TRENCHES WHC A,B,C MSGM A,B,C MASTE ROCK 22.0 42.0 42.0 22 ng/kg 2.9 1.8 41.0 41.0	JNITS PESO PESO TRENCHES WHC A,B,C MSGM A,B,C RDL mg/kg <2.0 <2.0 <2.0 <2.0 22 2.0 ng/kg 2.9 1.8 <1.0 <1.0 1.0

LABERGE ENVIRONMENTAL SERVICES Client Project #: BIOCHAR RESEARCH

RESULTS OF CHEMICAL ANALYSES OF SOIL

Maxxam ID		DV0612	DV0613	DV0614	DV0615		
Sampling Date		2012/06/24	2012/06/24	2012/06/26	2012/06/26		
		12:00	12:00	12:00	12:00		
COC Number		EB492312	EB492312	EB492312	EB492312		
	UNITS	PESO	PESO	WHC A,B,C	MSGM A,B,C	RDL	QC Batch
		WASTE ROCK	TRENCHES				
		1	1		1	_	
Elements							
Cation exchange capacity	cmol+/Kg	<10	<10	48	38	10	5984044
Misc. Inorganics							
Organic Matter	%	6.1	4.0	2.2	1.8	1.0	5976739
Physical Properties							
% sand by hydrometer	%		70	39	23	2.0	5999590
% silt by hydrometer	%		25	48	54	2.0	5999590
Clay Content	%		5.6	12	23	2.0	5999590
Loss on Ignition	%	6.1	4.0	2.2	1.8	1.0	5978220
Texture	N/A		SANDY LOAM	LOAM	SILT LOAM	N/A	5970847

LABERGE ENVIRONMENTAL SERVICES Client Project #: BIOCHAR RESEARCH

CSR/CCME METALS IN SOIL (SOIL)

Maxxam ID		DV0612	DV0613	DV0614	DV0615		
Sampling Date		2012/06/24	2012/06/24	2012/06/26	2012/06/26		
COC Number		12:00 EB492312	12:00 EB492312	12:00 EB492312	12:00 EB492312		
	UNITS	PESO	PESO	WHC A,B,C	MSGM A,B,C	RDL	QC Batch
		WASTE ROCK	TRENCHES				
Physical Properties							
Soluble (2:1) pH	pH Units	2.62	5.15	8.56	8.30	0.010	5974214
Total Metals by ICPMS							
Total Aluminum (Al)	mg/kg	2690	2350	10100	12200	100	5974132
Total Antimony (Sb)	mg/kg	3680	3580	1.32	1.45	0.10	5974132
Total Arsenic (As)	mg/kg	6150	9810	16.3	74.2	0.50	5974132
Total Barium (Ba)	mg/kg	46.0	46.8	90.9	31.5	0.10	5974132
Total Beryllium (Be)	mg/kg	<0.40	<0.40	<0.40	1.29	0.40	5974132
Total Bismuth (Bi)	mg/kg	527	372	9.59	0.14	0.10	5974132
Total Cadmium (Cd)	mg/kg	4.88	4.28	0.223	0.571	0.050	5974132
Total Calcium (Ca)	mg/kg	306	332	31300	35300	100	5974132
Total Chromium (Cr)	mg/kg	6.7	12.2	20.0	19.3	1.0	5974132
Total Cobalt (Co)	mg/kg	3.54	5.33	32.5	7.92	0.30	5974132
Total Copper (Cu)	mg/kg	210	75.9	2420	105	0.50	5974132
Total Iron (Fe)	mg/kg	57500	46300	143000	27900	100	5974132
Total Lead (Pb)	mg/kg	9070	7330	6.27	27.0	0.10	5974132
Total Lithium (Li)	mg/kg	<5.0	<5.0	7.3	20.7	5.0	5974132
Total Magnesium (Mg)	mg/kg	512	<100	46400	7890	100	5974132
Total Manganese (Mn)	mg/kg	927	189	803	640	0.20	5974132
Total Mercury (Hg)	mg/kg	0.796	0.410	<0.050	<0.050	0.050	5974132
Total Molybdenum (Mo)	mg/kg	0.87	0.74	36.1	3.16	0.10	5974132
Total Nickel (Ni)	mg/kg	9.06	12.0	13.9	3.14	0.80	5974132
Total Phosphorus (P)	mg/kg	500	623	527	738	10	5974132
Total Potassium (K)	mg/kg	475	340	2020	839	100	5974132
Total Selenium (Se)	mg/kg	19.3	12.7	1.01	1.13	0.50	5974132
Total Silver (Ag)	mg/kg	89.4	103	2.57	1.21	0.050	5974132
Total Sodium (Na)	mg/kg	<100	<100	104	468	100	5974132
Total Strontium (Sr)	mg/kg	114	134	88.9	77.4	0.10	5974132
Total Thallium (TI)	mg/kg	0.259	0.169	0.064	0.077	0.050	5974132
Total Tin (Sn)	mg/kg	35.0	38.8	0.75	0.52	0.10	5974132
Total Titanium (Ti)	mg/kg	31.1	5.8	380	549	1.0	5974132
Total Uranium (U)	mg/kg	3.73	4.81	3.31	0.419	0.050	5974132
Total Vanadium (V)	mg/kg	9.8	12.2	43.3	32.0	2.0	5974132

Maxxam Job #: B256252 Report Date: 2012/07/13

Maxxam Job #: B256252

Report Date: 2012/07/13

Success Through Science®

LABERGE ENVIRONMENTAL SERVICES Client Project #: BIOCHAR RESEARCH

CSR/CCME METALS IN SOIL (SOIL)

Maxxam ID		DV0612	DV0613	DV0614	DV0615		
Sampling Date		2012/06/24	2012/06/24	2012/06/26	2012/06/26		
		12:00	12:00	12:00	12:00		
COC Number		EB492312	EB492312	EB492312	EB492312		
	UNITS	PESO	PESO	WHC A,B,C	MSGM A,B,C	RDL	QC Batch
		WASTE ROCK	TRENCHES				
Total Zinc (Zn)	mg/kg	252	129	59.7	135	1.0	5974132
Total Zirconium (Zr)	mg/kg	9.15	9.77	3.24	6.91	0.50	5974132
RDL = Reportable Deter	ation Limit	-		5			
RDL = Reportable							

Page 6 of 13

Maxxam Job #: B256252 Report Date: 2012/07/13 LABERGE ENVIRONMENTAL SERVICES Client Project #: BIOCHAR RESEARCH

General Comments

Results relate only to the items tested.

Quality Assurance Report

Maxxam Job Number: VB256252

QA/QC			Date				
Batch			Analyzed				
Num Init	QC Type	Parameter	yyyy/mm/dd	Value	Recovery	UNITS	QC Limits
5974132 DJ	Matrix Spike	Total Antimony (Sb)	2012/07/05		94	%	75 - 125
		Total Arsenic (As)	2012/07/05		99	%	75 - 125
		Total Barium (Ba)	2012/07/05		NC	%	75 - 125
		Total Beryllium (Be)	2012/07/05		105	%	75 - 125
		Total Cadmium (Cd)	2012/07/05		100	%	75 - 125
		Total Chromium (Cr)	2012/07/05		97	%	75 - 125
		Total Cobalt (Co)	2012/07/05		99	%	75 - 125
		Total Copper (Cu)	2012/07/05		90	%	75 - 125
		Total Lead (Pb)	2012/07/05		97	%	75 - 125
		Total Lithium (Li)	2012/07/05		102	%	75 - 125
		Total Manganese (Mn)	2012/07/05		NC	%	75 - 125
		Total Mercury (Hg)	2012/07/05		106	%	75 - 125
		Total Molybdenum (Mo)	2012/07/05		100	%	75 - 125
		Total Nickel (Ni)	2012/07/05		89	%	75 - 125
		Total Selenium (Se)	2012/07/05		102	%	75 - 125
		Total Silver (Ag)	2012/07/05		98	%	75 - 125
		Total Strontium (Sr)	2012/07/05		97	%	75 - 125
		Total Thallium (TI)	2012/07/05		101	%	75 - 125
		Total Tin (Sn)	2012/07/05		95	%	75 - 125
		Total Titanium (Ti)	2012/07/05		NC	%	75 - 125
		Total Uranium (U)	2012/07/05		99	%	75 - 125
		Total Vanadium (V)	2012/07/05		NC	%	75 - 125
		Total Zinc (Zn)	2012/07/05		NC	%	75 - 125
	QC Standard	Total Aluminum (Al)	2012/07/05		100	%	70 - 130
	QC Stanuaru	Total Antimony (Sb)	2012/07/05		86	%	70 - 130
		Total Arsenic (As)	2012/07/05		89	%	70 - 130
		Total Barium (Ba)	2012/07/05		96	%	70 - 130
		Total Cadmium (Cd)	2012/07/05		91	%	70 - 130
		Total Calcium (Ca)	2012/07/05		89	%	70 - 130
		Total Chromium (Cr)	2012/07/05		98	%	70 - 130
		Total Cobalt (Co)	2012/07/05		87	%	70 - 130
		Total Copper (Cu)	2012/07/05		72	%	70 - 130
		Total Iron (Fe)	2012/07/05		92	%	70 - 130
		Total Lead (Pb)	2012/07/05		94	%	70 - 130
		Total Magnesium (Mg)	2012/07/05		94 88	%	70 - 130
		Total Magnese (Mn)	2012/07/05		93	%	70 - 130
		Total Mercury (Hg)	2012/07/05		114	%	70 - 130
		Total Molybdenum (Mo)	2012/07/05		91	%	70 - 130
		Total Nickel (Ni)	2012/07/05		72	%	70 - 130
		Total Phosphorus (P)	2012/07/05		87	%	70 - 130
		Total Strontium (Sr)	2012/07/05		82	%	70 - 130
		Total Thallium (TI)	2012/07/05		90	%	70 - 130
		Total Titanium (Ti)	2012/07/05		90 105	%	
		Total Uranium (U)	2012/07/05		82	%	70 - 130 70 - 130
			2012/07/05		82 99		70 - 130
		Total Vanadium (V)	2012/07/05			%	
	Spiked Blank	Total Zinc (Zn)			72 97	%	70 - 130
	Spikeu Dialik	Total Antimony (Sb)	2012/07/05		97 98	% %	75 - 125 75 - 125
		Total Arsenic (As) Total Barium (Ba)	2012/07/05 2012/07/05		98 97		75 - 125 75 - 125
		· · · ·				%	
		Total Beryllium (Be) Total Cadmium (Cd)	2012/07/05		104 101	%	75 - 125 75 - 125
			2012/07/05			%	
		Total Chromium (Cr)	2012/07/05		97	%	75 - 125
		Total Cobalt (Co)	2012/07/05		99	%	75 - 125
		Total Copper (Cu) Total Lead (Pb)	2012/07/05 2012/07/05 2012/07/05		99 100 96	% % %	75 - 125 75 - 125 75 - 125

Quality Assurance Report (Continued)

Maxxam Job Number: VB256252

QA/QC			Date				
Batch			Analyzed				
Num Init	QC Type	Parameter	yyyy/mm/dd	Value	Recovery	UNITS	QC Limits
5974132 DJ	Spiked Blank	Total Lithium (Li)	2012/07/05		98	%	75 - 125
		Total Manganese (Mn)	2012/07/05		95	%	75 - 125
		Total Mercury (Hg)	2012/07/05		106	%	75 - 125
		Total Molybdenum (Mo)	2012/07/05		97	%	75 - 125
		Total Nickel (Ni)	2012/07/05		97	%	75 - 125
		Total Selenium (Se)	2012/07/05		102	%	75 - 125
		Total Silver (Ag)	2012/07/05		97	%	75 - 125
		Total Strontium (Sr)	2012/07/05		95	%	75 - 125
		Total Thallium (TI)	2012/07/05		93	%	75 - 125
		Total Tin (Sn)	2012/07/05		93	%	75 - 125
		Total Titanium (Ti)	2012/07/05		95	%	75 - 125
		Total Uranium (U)	2012/07/05		95	%	75 - 125
		Total Vanadium (V)	2012/07/05		96	%	75 - 125
		Total Zinc (Zn)	2012/07/05		104	%	75 - 125
	Method Blank	Total Aluminum (Al)	2012/07/05	<100		mg/kg	
		Total Antimony (Sb)	2012/07/05	<0.10		mg/kg	
		Total Arsenic (As)	2012/07/05	<0.50		mg/kg	
		Total Barium (Ba)	2012/07/05	<0.10		mg/kg	
		Total Beryllium (Be)	2012/07/05	<0.40		mg/kg	
		Total Bismuth (Bi)	2012/07/05	<0.40		mg/kg	
		Total Cadmium (Cd)	2012/07/05	<0.050			
		Total Calcium (Ca)	2012/07/05	<0.050 <100		mg/kg	
						mg/kg	
		Total Chromium (Cr)	2012/07/05	<1.0		mg/kg	
		Total Cobalt (Co)	2012/07/05	< 0.30		mg/kg	
		Total Copper (Cu)	2012/07/05	< 0.50		mg/kg	
		Total Iron (Fe)	2012/07/05	<100		mg/kg	
		Total Lead (Pb)	2012/07/05	<0.10		mg/kg	
		Total Lithium (Li)	2012/07/05	<5.0		mg/kg	
		Total Magnesium (Mg)	2012/07/05	<100		mg/kg	
		Total Manganese (Mn)	2012/07/05	<0.20		mg/kg	
		Total Mercury (Hg)	2012/07/05	<0.050		mg/kg	
		Total Molybdenum (Mo)	2012/07/05	<0.10		mg/kg	
		Total Nickel (Ni)	2012/07/05	<0.80		mg/kg	
		Total Phosphorus (P)	2012/07/05	<10		mg/kg	
		Total Potassium (K)	2012/07/05	<100		mg/kg	
		Total Selenium (Se)	2012/07/05	<0.50		mg/kg	
		Total Silver (Ag)	2012/07/05	<0.050		mg/kg	
		Total Sodium (Na)	2012/07/05	<100		mg/kg	
		Total Strontium (Sr)	2012/07/05	<0.10		mg/kg	
		Total Thallium (TI)	2012/07/05	<0.050		mg/kg	
		Total Tin (Sn)	2012/07/05	<0.10		mg/kg	
		Total Titanium (Ti)	2012/07/05	<1.0		mg/kg	
		Total Uranium (U)	2012/07/05	<0.050		mg/kg	
		Total Vanadium (V)	2012/07/05	<2.0		mg/kg	
		Total Zinc (Zn)	2012/07/05	<1.0		mg/kg	
		Total Zirconium (Zr)	2012/07/05	<0.50		mg/kg	
	RPD	Total Aluminum (Al)	2012/07/05	3.5		%	35
		Total Antimony (Sb)	2012/07/05	NC		%	30
		Total Arsenic (As)	2012/07/05	2.1		%	30
		Total Barium (Ba)	2012/07/05	23.3		%	35
		Total Beryllium (Be)	2012/07/05	NC		%	30
		Total Bismuth (Bi)	2012/07/05	NC		%	30
		Total Cadmium (Cd)	2012/07/05	NC		%	30
		Total Calcium (Ca)	2012/07/05	2.1		%	30
		Total Chromium (Cr)	2012/07/05	3.1		%	30
			2012/01/03	0.1		70	50

Quality Assurance Report (Continued)

Maxxam Job Number: VB256252

QA/QC			Date				
Batch			Analyzed				
Num Init	QC Type	Parameter	yyyy/mm/dd	Value	Recovery	UNITS	QC Limit
5974132 DJ	RPD	Total Cobalt (Co)	2012/07/05	0.5		%	3
		Total Copper (Cu)	2012/07/05	4.5		%	3
		Total Iron (Fe)	2012/07/05	0.2		%	3
		Total Lead (Pb)	2012/07/05	4.7		%	3
		Total Lithium (Li)	2012/07/05	NC		%	3
		Total Magnesium (Mg)	2012/07/05	4.3		%	3
		Total Manganese (Mn)	2012/07/05	1.7		%	3
		Total Mercury (Hg)	2012/07/05	NC		%	3
		, , , , , , , , , , , , , , , , , , , ,				%	3
		Total Molybdenum (Mo)	2012/07/05	NC			
		Total Nickel (Ni)	2012/07/05	2.2		%	3
		Total Phosphorus (P)	2012/07/05	3.0		%	3
		Total Potassium (K)	2012/07/05	5.4		%	3
		Total Selenium (Se)	2012/07/05	NC		%	3
		Total Silver (Ag)	2012/07/05	NC		%	3
		Total Sodium (Na)	2012/07/05	NC		%	3
		Total Strontium (Sr)	2012/07/05	12.8		%	3
		Total Thallium (TI)	2012/07/05	NC		%	3
		Total Tin (Sn)	2012/07/05	NC		%	3
		Total Titanium (Ti)	2012/07/05	2.2		%	3
		Total Uranium (U)	2012/07/05	NC		%	3
		Total Vanadium (V)	2012/07/05	4.4		%	3
		Total Zinc (Zn)	2012/07/05	0.6		%	3
		Total Zirconium (Zr)	2012/07/05	NC		%	3
5974214 NS6	Spiked Blank	Soluble (2:1) pH	2012/07/05		101	%	96 - 10
0074214 1100	RPD	Soluble (2:1) pH	2012/07/05	0.5	101	%	2
5978220 JGD	Method Blank	Loss on Ignition	2012/07/06	<1.0		%	2
3970220 JGD	RPD [DV0615-01]		2012/07/06	NC		%	~
	• •	Loss on Ignition		NC	05		3
5978595 PL	Spiked Blank	Available (NH4OAc) Potassium (K)	2012/07/09	.0.0	95	%	80 - 12
	Method Blank	Available (NH4OAc) Potassium (K)	2012/07/09	<2.0		mg/kg	
	RPD	Available (NH4OAc) Potassium (K)	2012/07/09	0.4		%	3
5978596 PL	Spiked Blank	Available (NH4F) Phosphorus (P)	2012/07/09		101	%	80 - 12
	Method Blank	Available (NH4F) Phosphorus (P)	2012/07/09	<1.0		mg/kg	
	RPD	Available (NH4F) Phosphorus (P)	2012/07/09	NC		%	3
5984044 DL6	RPD [DV0612-02]	Cation exchange capacity	2012/07/10	NC		%	3
5985283 RP0	Matrix Spike	Available (NH4F) Nitrogen (N)	2012/07/09		100	%	80 - 12
	Spiked Blank	Available (NH4F) Nitrogen (N)	2012/07/09		98	%	90 - 11
	Method Blank	Available (NH4F) Nitrogen (N)	2012/07/09	<2.0		mg/kg	
	RPD	Available (NH4F) Nitrogen (N)	2012/07/09	NC		%	3
5991753 DL6	QC Standard	Organic Matter	2012/07/11		94	%	83 - 11
		Total Organic Carbon (C)	2012/07/11		94	%	83 - 11
	RPD [DV0613-02]	Organic Matter	2012/07/11	NC	• •	%	3
		Total Organic Carbon (C)	2012/07/11	NC		%	3
5999590 KVD	QC Standard	% sand by hydrometer	2012/07/13	110	99	%	88 - 11
5555555 RVD	QC Stanuaru	% silt by hydrometer	2012/07/13		101	%	85 - 11
		Clay Content	2012/07/13		101		79 - 12
				4.0	100	%	-
	RPD	% sand by hydrometer	2012/07/13	4.2		%	3
		% silt by hydrometer	2012/07/13	7.6		%	3
		Clay Content	2012/07/13	15.7		%	3
6000949 IA0	Matrix Spike						
	[DV0615-02]	Total Kjeldahl Nitrogen	2012/07/13		90	%	75 - 12
	QC Standard	Total Kjeldahl Nitrogen	2012/07/13		90	%	75 - 12
	Spiked Blank	Total Kjeldahl Nitrogen	2012/07/13		105	%	75 - 12
	Method Blank	Total Kjeldahl Nitrogen	2012/07/13	<10		mg/kg	
	RPD [DV0615-02]	Total Kjeldahl Nitrogen	2012/07/13	NC		%	3

Quality Assurance Report (Continued)

Maxxam Job Number: VB256252

Matrix Spike: A sample to which a known amount of the analyte of interest has been added. Used to evaluate sample matrix interference. QC Standard: A blank matrix to which a known amount of the analyte has been added. Used to evaluate analyte recovery. Spiked Blank: A blank matrix to which a known amount of the analyte has been added. Used to evaluate analyte recovery. Method Blank: A blank matrix containing all reagents used in the analytical procedure. Used to identify laboratory contamination. NC (Matrix Spike): The recovery in the matrix spike was not calculated. The relative difference between the concentration in the parent sample and the spiked amount was not sufficiently significant to permit a reliable recovery calculation. NC (RPD): The RPD was not calculated. The level of analyte detected in the parent sample and its duplicate was not sufficiently significant to permit a reliable calculation.

Validation Signature Page

Maxxam Job #: B256252

The analytical data and all QC contained in this report were reviewed and validated by the following individual(s).

show ____

Lfii Zhou, Senior analyst, Inorganic department.

Rob Reinert, Data Validation Coordinator

Maxxam has procedures in place to guard against improper use of the electronic signature and have the required "signatories", as per section 5.10.2 of ISO/IEC 17025:2005(E), signing the reports. For Service Group specific validation please refer to the Validation Signature Page.

Company Name: Contact Name: Address: Phone / Fax#: E-mail	voice To: Require Laberge Environ Ken Nordin						Repo	ort T	o:																					
Contact Name: Address: Phone / Fax#:	Ken Nordin		5	Company N	ame		same											F	0#		-	_	-	_	-			-		_
hone / Fax#:				Contact Nar		5	-		-	_		-	-	-	_		_			tion #	ŧ:		-		-					
	Box 21072 Whit	ehorse Yukon		Address:														F	roje	:# t	Bi	ochar	Re	searc	'n					
		PC: Y1A 6	5P7									P	C:					F	roj. I	Name	8									
	Ph: 867 668 683	8 Fax 867 6	67 6956	Phone / Fax E-mail	#:		Ph		-			F	axc		_		_		.ocat Samp	ion: ied b	y: Ke	n No	rdin			_			_	_
EGULATORY R	QUIREMENTS:	SERVICE REC	QUESTED:															- 22												
CSR		Regular T	urn Around	Time (TAT)												ANA	LY	SIS	RE	QUE	ST	ED								
CCME		(5 days fo	r most tests	B)								Т											Т				T		П	
BC Water Qua	lity		ease conta	ct the lab)	NUN	Y NI	ν Γ	(CEC)	1					1								1								
_ Other	- 24	() 1 Day		Day 🔾 3 Day	X		7	9	1					- 1								1								
DRINKING W	TER	Date Required	l:		ŝ	Field Acidified?	Acidified?	ŝ	~					1				1				1								
PECIAL INSTRU	CTIONS:			10 - A	Itere	cidif	cidifi	ap	act					- 1			1													1
Return Cooler	Ship Sa	mple Bottles (p	olease spe	cify)	Field Filtered?	N PI	AB	0	Capacity	ā		±5.1		- 1				1	94				1	1	1					iei
					E	Fe	E	gre	100 A 100	Aatt	100	2		-							1					1 /				1
		Lab Use Only				(W	stals	5	Pe -	Organic Matter	100			Size			1		AL.											1
		Lab	Sample	Date/Time(24hr)	ave.	s (D	ž	E I	5	gar	2	5	3	8	Rat											17				3
* Sample	Identification	Identification	Type	Sampled	Diss	Metals (DM)	Total Metals	Cation Exchange Capacity	Water Holding	0%	metals		<u> </u>	Particle size	C:N Ratio				N											Number of Containers
1 Peso Waste R	ock	DUDEN		12/06/24 12:00				x	×	x	x	x	×	x	x				1	10	1									
2 Peso Trenches	1	DV0613		12/06/24 12:00				x	×	x	x	x	×	×	x					1			Γ				П			
3 WHC A.B.C		DVOG14		12/06/26 12:00				x	×	×	×	×	×	×	×					Y			L			\Box			\square	
		DUDGIS	1									-				-	+			K	en l	Nor	din	:				1	+	
4 MSGM A,B,C		000615		12/06/26 12:00	-	-	-	x	×	×	×	×	×	×	<u>×</u>	-	-	+	+	- P	leas	se H	on	loge	eniz	ze W	HC	-	+ +	
5							-	_	_	_	_	_	-	_	_	-	_		_	a	nd I	MSG	M	jars	A,	Ba	nd C			\vdash
6																				to	o fo	rm s	sin	gle	san	nple	for			
7		_					1.0	1	1		8.0	1	- 1	1		6 A.	- 1			e	ach	•15								
0				5														t											\mathbf{H}	
0		1	-		-	+		i kuk		110		1110		ani)	000	1		ł	+	+	T	1	Т	1	1	T -		-	+	
9				·	-	-	- 1	H.	170	N) (86	18	ila)					ł	-	_	-	-	+	-	-	+-		_		
10		14 V	1.1	1.0				186	MA	nh	0.		۳N)	110	m															
11		-			1					000-0			10.63	1111							1	1								
12		~					Ъ	25.6	252									A					T			\square				
rint name and sign			Print nar	me and sign	-		-		-			_	-	10	_		-	1	-	-	-	-	abo	ratory	Use C	Inly				
Relinquished By	: Date (yy/mm	1/dd): Time (24)	nr):	Received by :		Date	e (yy/	mm/	(dd):		Tim	e (24	4 hr)		18	Time		Temp	perat	ure of	Re	ceipt	(°C)		Cu	stod	y Seal	Ye	s	No
	12/06/28	17:00		Laurel berth			nu			-	14:		the second second	_		insitiv	. F			B)		-		8	-	esent	-	_		D

6

14

Maxiam Analytics Success Through Science Ø.

STRATAGOLD CORPORATION ATTN: Hugh Coyle Suite 1000 - 1050 W. Pender St Vancouver BC V6E 3S7 Date Received:01-AUG-18Report Date:29-AUG-18 12:31 (MT)Version:FINAL

Client Phone: 604-682-5122

Certificate of Analysis

Lab Work Order #: L2139940 Project P.O. #: NOT SUBMITTED

Job Reference: C of C Numbers: Legal Site Desc:

Victoria Gold Corp.

EAGLE GOLD

New

Heather McKenzie Account Manager

[This report shall not be reproduced except in full without the written authority of the Laboratory.]

ADDRESS: 8081 Lougheed Hwy, Suite 100, Burnaby, BC V5A 1W9 Canada | Phone: +1 604 253 4188 | Fax: +1 604 253 6700 ALS CANADA LTD Part of the ALS Group An ALS Limited Company

Environmental 💭

www.alsglobal.com

RIGHT SOLUTIONS RIGHT PARTNER

L2139940 CONTD.... PAGE 2 of 20 29-AUG-18 12:31 (MT) Version: FINAL

	Sample ID Description	L2139940-1 Soil	L2139940-2 Soil	L2139940-3 Soil	L2139940-4 Soil	L2139940-5 Soil
	Sampled Date Sampled Time	31-JUL-18 T1-1AB	31-JUL-18 T1-2AB	31-JUL-18 T1-3	31-JUL-18 T2-1AB	31-JUL-18 T2-2
	Client ID		112/0	110	12 110	122
Grouping	Analyte					
SOIL						
Physical Tests	Loss on Ignition @ 375 C (%)	1.2	3.1	3.6	1.3	1.3
	Organic Matter (%)	1.2	2.7	3.1	1.3	1.3
	pH (1:2 soil:water) (pH)	6.30	7.17	6.74	5.88	7.12
Particle Size	% Sand (2.0mm - 0.05mm) (%)	83.3	83.8	82.5	65.0	65.7
	% Silt (0.05mm - 2um) (%)	15.3	14.1	15.7	28.9	28.6
	% Clay (<2um) (%)	1.4	2.1	1.7	6.1	5.7
	Texture	Loamy sand	Loamy sand	Loamy sand	Sandy loam	Sandy loam
Leachable Anions & Nutrients	Total Kjeldahl Nitrogen (%)	0.069	0.118	0.132	0.059	0.064
Organic / Inorganic Carbon	C:N Ratio	5.8:1	15.7:1	14.5:1	7:1	8.9:1
	Total Carbon by Combustion (%)	0.40	1.86	1.91	0.42	0.57
Plant Available Nutrients	Available Ammonium-N (mg/kg)	1.8	2.5	3.1	2.0	2.3
	Calcium (Ca) (meq/100g)	0.92	5.33	3.74	0.74	2.26
	Magnesium (Mg) (meq/100g)	<0.50	<0.50	<0.50	<0.50	<0.50
	Available Phosphate-P (mg/kg)	3.4	46.9	17.9	<2.0	6.8
	Available Potassium (mg/kg)	24	51	51	30	39
	Potassium (K) (meq/100g)	<0.50	<0.50	<0.50	<0.50	<0.50
	Sodium (Na) (meq/100g)	<0.50	<0.50	<0.50	<0.50	<0.50
Metals	Aluminum (Al) (mg/kg)	3220	2050	1630	3440	3390
	Antimony (Sb) (mg/kg)	3750	818	6410	2360	492
	Arsenic (As) (mg/kg)	6380	2190	2690	5810	1490
	Barium (Ba) (mg/kg)	47.2	32.6	35.6	70.3	65.7
	Beryllium (Be) (mg/kg)	0.13	<0.10	<0.10	0.13	0.11
	Bismuth (Bi) (mg/kg)	145	26.1	236	504	53.5
	Boron (B) (mg/kg)	10.0	<5.0	7.1	7.4	<5.0
	Cadmium (Cd) (mg/kg)	4.08	0.427	3.26	3.89	0.564
	Calcium (Ca) (mg/kg)	578	1830	3890	947	1180
	Chromium (Cr) (mg/kg)	16.6	7.83	5.92	7.33	7.84
	Cobalt (Co) (mg/kg)	7.91	4.18	2.26	2.93	2.84
	Copper (Cu) (mg/kg)	132	55.6	29.8	74.3	50.9
	Iron (Fe) (mg/kg)	56700	31900	17900	51100	28400
	Lead (Pb) (mg/kg)	7790	1440	3670	4700	1160
	Lithium (Li) (mg/kg)	<2.0	<2.0	<2.0	<2.0	<2.0
	Magnesium (Mg) (mg/kg)	94	312	475	81	84
	Manganese (Mn) (mg/kg)	278	290	131	277	142
	Mercury (Hg) (mg/kg)	0.227	0.169	0.468	0.358	0.146

L2139940 CONTD.... PAGE 3 of 20 29-AUG-18 12:31 (MT) Version: FINAL

	Sample ID	L2139940-6 Soil	L2139940-7 Soil	L2139940-8 Soil	L2139940-9 Soil	L2139940-10 Soil
	Description Sampled Date	31-JUL-18	31-JUL-18	31-JUL-18	31-JUL-18	31-JUL-18
	Sampled Time Client ID	T2-3A	T3-1	Т3-2АВ	T3-3AB	W1-1
Grouping	Analyte					
SOIL						
Physical Tests	Loss on Ignition @ 375 C (%)	1.4	2.3	3.3	3.5	2.0
	Organic Matter (%)	1.4	2.0	2.9	3.0	1.8
	pH (1:2 soil:water) (pH)	6.12	5.17	5.75	6.79	3.04
Particle Size	% Sand (2.0mm - 0.05mm) (%)	65.2	60.9	64.2	58.0	59.4
	% Silt (0.05mm - 2um) (%)	28.3	34.7	31.0	37.9	36.4
	% Clay (<2um) (%)	6.5	4.4	4.7	4.1	4.2
	Texture	Sandy loam	Sandy loam	Sandy loam	Sandy loam	Sandy loan
Leachable Anions & Nutrients	Total Kjeldahl Nitrogen (%)	0.063	0.070	0.077	0.088	0.062
Organic / Inorganic Carbon	C:N Ratio	6.8:1	7.2:1	20.1:1	17.5:1	10.5:1
	Total Carbon by Combustion (%)	0.43	0.50	1.55	1.53	0.64
Plant Available Nutrients	Available Ammonium-N (mg/kg)	1.4	1.7	2.6	2.5	4.1
	Calcium (Ca) (meq/100g)	1.20	<0.50	3.97	4.48	<0.50
	Magnesium (Mg) (meq/100g)	<0.50	<0.50	<0.50	<0.50	<0.50
	Available Phosphate-P (mg/kg)	<2.0	2.3	15.2	24.2	2.2
	Available Potassium (mg/kg)	29	31	40	46	27
	Potassium (K) (meq/100g)	<0.50	<0.50	<0.50	<0.50	<0.50
	Sodium (Na) (meq/100g)	<0.50	<0.50	<0.50	<0.50	<0.50
Metals	Aluminum (Al) (mg/kg)	4620	3030	3670	2670	7160
	Antimony (Sb) (mg/kg)	369	4590	1450	2330	1280
	Arsenic (As) (mg/kg)	1730	11400	4410	10600	3750
	Barium (Ba) (mg/kg)	91.3	42.3	40.6	38.6	116
	Beryllium (Be) (mg/kg)	0.15	0.12	0.13	<0.10	0.20
	Bismuth (Bi) (mg/kg)	30.5	320	91.5	222	110
	Boron (B) (mg/kg)	8.2	7.4	<5.0	<5.0	<5.0
	Cadmium (Cd) (mg/kg)	0.482	6.21	1.53	3.91	1.85
	Calcium (Ca) (mg/kg)	1330	334	634	1190	452
	Chromium (Cr) (mg/kg)	10.6	11.2	10.1	13.8	14.2
	Cobalt (Co) (mg/kg)	3.44	5.08	4.21	6.24	9.72
	Copper (Cu) (mg/kg)	73.3	170	92.7	121	145
	Iron (Fe) (mg/kg)	39300	43100	36000	42900	46500
	Lead (Pb) (mg/kg)	1260	8680	3200	4890	1870
	Lithium (Li) (mg/kg)	<2.0	<2.0	<2.0	<2.0	7.5
	Magnesium (Mg) (mg/kg)	92	131	354	193	2250
	Manganese (Mn) (mg/kg)	199	184	170	214	272
	Mercury (Hg) (mg/kg)	0.193	0.700	0.571	0.924	0.0935

L2139940 CONTD.... PAGE 4 of 20 29-AUG-18 12:31 (MT) Version: FINAL

	Sample ID Description	L2139940-11 Soil	L2139940-12 Soil	L2139940-13 Soil	L2139940-14 Soil	L2139940-15 Soil
	Sampled Date Sampled Time	31-JUL-18 W1-2	31-JUL-18 W1-3	31-JUL-18 W1-4	31-JUL-18 W1-5	31-JUL-18 W2-1
	Client ID		W1-5	VV 1-4	W1-5	VV2-1
Grouping	Analyte					
SOIL						
Physical Tests	Loss on Ignition @ 375 C (%)	2.3	4.4	3.0	9.2	1.4
	Organic Matter (%)	2.1	3.7	2.6	7.5	1.4
	pH (1:2 soil:water) (pH)	4.81	3.25	4.10	5.71	2.75
Particle Size	% Sand (2.0mm - 0.05mm) (%)	69.2	80.3	82.3	75.5	37.4
	% Silt (0.05mm - 2um) (%)	27.2	17.2	16.0	20.8	59.4
	% Clay (<2um) (%)	3.6	2.4	1.7	3.7	3.1
	Texture	Sandy loam	Loamy sand	Loamy sand	Loamy sand	Silt loam
Leachable Anions & Nutrients	Total Kjeldahl Nitrogen (%)	0.073	0.095	0.115	0.152	0.023
Organic / Inorganic Carbon	C:N Ratio	12.2:1	30.7:1	11.5:1	37.6:1	15.1:1
	Total Carbon by Combustion (%)	0.89	2.91	1.33	5.72	0.34
Plant Available Nutrients	Available Ammonium-N (mg/kg)	3.4	3.6	3.3	6.3	2.2
	Calcium (Ca) (meq/100g)	1.27	<0.50	0.75	11.2	<0.50
	Magnesium (Mg) (meq/100g)	<0.50	<0.50	<0.50	2.26	<0.50
	Available Phosphate-P (mg/kg)	5.7	6.4	<2.0	15.6	<2.0
	Available Potassium (mg/kg)	23	<20	25	45	<20
	Potassium (K) (meq/100g)	<0.50	<0.50	<0.50	<0.50	<0.50
	Sodium (Na) (meq/100g)	<0.50	<0.50	<0.50	<0.50	<0.50
Metals	Aluminum (Al) (mg/kg)	5840	4990	3550	2780	4540
	Antimony (Sb) (mg/kg)	542	241	838	3350	1110
	Arsenic (As) (mg/kg)	3220	2140	3610	3130	1470
	Barium (Ba) (mg/kg)	72.0	44.3	24.3	46.3	158
	Beryllium (Be) (mg/kg)	0.18	0.20	0.18	0.13	0.13
	Bismuth (Bi) (mg/kg)	66.5	21.2	73.4	313	43.5
	Boron (B) (mg/kg)	<5.0	<5.0	<5.0	<5.0	<5.0
	Cadmium (Cd) (mg/kg)	1.29	1.61	1.95	2.40	0.291
	Calcium (Ca) (mg/kg)	1150	296	4040	28500	756
	Chromium (Cr) (mg/kg)	12.2	11.9	9.60	5.22	10.4
	Cobalt (Co) (mg/kg)	11.6	22.5	14.0	2.54	3.00
	Copper (Cu) (mg/kg)	172	120	214	229	88.0
	Iron (Fe) (mg/kg)	45400	50500	48600	27200	38500
	Lead (Pb) (mg/kg)	4570	391	1380	6770	1600
	Lithium (Li) (mg/kg)	5.8	5.3	3.2	<2.0	4.7
	Magnesium (Mg) (mg/kg)	1820	1620	3190	14800	1410
	Manganese (Mn) (mg/kg)	238	320	225	207	112
	Mercury (Hg) (mg/kg)	0.0853	0.0327	0.105	0.654	0.0933

L2139940 CONTD.... PAGE 5 of 20 29-AUG-18 12:31 (MT) Version: FINAL

	Sample ID Description	L2139940-16 Soil	L2139940-17 Soil	L2139940-18 Soil	L2139940-19 Soil	L2139940-20 Soil
	Sampled Date Sampled Time	31-JUL-18	31-JUL-18	31-JUL-18	31-JUL-18	31-JUL-18
	Client ID	W2-2	W2-3	W2-4	W2-5	W3-1
Grouping	Analyte					
SOIL						
Physical Tests	Loss on Ignition @ 375 C (%)	1.5	3.0	4.8	1.9	1.6
	Organic Matter (%)	1.5	2.6	4.1	1.7	1.5
	pH (1:2 soil:water) (pH)	3.11	3.04	3.28	2.84	2.32
Particle Size	% Sand (2.0mm - 0.05mm) (%)	42.6	87.1	73.2	71.2	53.3
	% Silt (0.05mm - 2um) (%)	55.6	11.2	23.6	22.4	40.5
	% Clay (<2um) (%)	1.8	1.7	3.2	6.3	6.2
	Texture	Silt loam	Sand	Sandy loam / Loamy sand	Sandy loam	Sandy loan
Leachable Anions & Nutrients	Total Kjeldahl Nitrogen (%)	0.033	0.063	0.096	0.046	0.061
Organic / Inorganic Carbon	C:N Ratio	12.9:1	15.6:1	24:1	5.7:1	8.7:1
	Total Carbon by Combustion (%)	0.42	0.99	2.31	0.26	0.53
Plant Available Nutrients	Available Ammonium-N (mg/kg)	1.8	2.9	4.5	2.8	6.9
	Calcium (Ca) (meq/100g)	<0.50	<0.50	2.84	<0.50	<0.50
	Magnesium (Mg) (meq/100g)	<0.50	<0.50	0.90	<0.50	<0.50
	Available Phosphate-P (mg/kg)	<2.0	<2.0	<2.0	<2.0	<2.0
	Available Potassium (mg/kg)	<20	<20	32	<20	<20
	Potassium (K) (meq/100g)	<0.50	<0.50	<0.50	<0.50	<0.50
	Sodium (Na) (meq/100g)	<0.50	<0.50	<0.50	<0.50	<0.50
Metals	Aluminum (Al) (mg/kg)	5820	4920	5080	4590	3390
	Antimony (Sb) (mg/kg)	333	1320	2100	2360	2940
	Arsenic (As) (mg/kg)	1240	2530	2980	2260	3010
	Barium (Ba) (mg/kg)	196	102	134	86.8	116
	Beryllium (Be) (mg/kg)	0.13	0.27	0.22	0.27	0.14
	Bismuth (Bi) (mg/kg)	12.1	132	252	422	246
	Boron (B) (mg/kg)	<5.0	<5.0	<5.0	5.2	<5.0
	Cadmium (Cd) (mg/kg)	0.253	0.442	0.633	0.996	1.81
	Calcium (Ca) (mg/kg)	1160	899	1540	1390	222
	Chromium (Cr) (mg/kg)	13.9	8.69	8.62	6.91	10.6
	Cobalt (Co) (mg/kg)	4.69	2.24	2.38	1.39	5.39
	Copper (Cu) (mg/kg)	59.4	194	194	180	250
	Iron (Fe) (mg/kg)	33500	53900	48900	45100	37100
	Lead (Pb) (mg/kg)	331	2220	3590	4860	3810
	Lithium (Li) (mg/kg)	6.9	2.2	2.2	<2.0	2.4
	Magnesium (Mg) (mg/kg)	2350	307	731	212	622
	Manganese (Mn) (mg/kg)	179	83.4	86.7	66.9	129
	Mercury (Hg) (mg/kg)	0.0465	0.182	0.361	0.302	0.207

L2139940 CONTD.... PAGE 6 of 20 29-AUG-18 12:31 (MT) Version: FINAL

	Sample ID Description	L2139940-21 Soil	L2139940-22 Soil	L2139940-23 Soil	L2139940-24 Soil	
	Sampled Date Sampled Time	31-JUL-18	31-JUL-18	31-JUL-18	31-JUL-18	
	Client ID	W3-2	W3-3	W3-4	W3-5	
Grouping	Analyte					
SOIL						
Physical Tests	Loss on Ignition @ 375 C (%)	6.1	8.0	9.5	7.9	
	Organic Matter (%)	5.0	6.5	7.7	6.5	
	pH (1:2 soil:water) (pH)	2.41	1.77	4.32	2.20	
Particle Size	% Sand (2.0mm - 0.05mm) (%)	69.2	63.7	68.6	68.8	
	% Silt (0.05mm - 2um) (%)	25.4	28.6	26.9	25.0	
	% Clay (<2um) (%)	5.4	7.6	4.5	6.2	
	Texture	Sandy loam	Sandy loam	Sandy loam	Sandy loam	
Leachable Anions & Nutrients	Total Kjeldahl Nitrogen (%)	0.135	0.150	0.175	0.140	
Organic / Inorganic Carbon	C:N Ratio	21.9:1	27.6:1	32.4:1	32:1	
	Total Carbon by Combustion (%)	2.95	4.16	5.66	4.47	
Plant Available Nutrients	Available Ammonium-N (mg/kg)	13.6	18.6	7.5	11.5	
	Calcium (Ca) (meq/100g)	<0.50	<0.50	3.60	19.4	
	Magnesium (Mg) (meq/100g)	<0.50	<0.50	1.96	2.12	
	Available Phosphate-P (mg/kg)	4.4	<2.0	<2.0	<2.0	
	Available Potassium (mg/kg)	<20	20	<20	<20	
	Potassium (K) (meq/100g)	<0.50	<0.50	<0.50	<0.50	
	Sodium (Na) (meq/100g)	<0.50	<0.50	<0.50	<0.50	
Metals	Aluminum (Al) (mg/kg)	2930	3100	3760	2710	
	Antimony (Sb) (mg/kg)	7690	6020	5920	7140	
	Arsenic (As) (mg/kg)	6500	7950	9810	10900	
	Barium (Ba) (mg/kg)	47.3	53.7	60.5	48.1	
	Beryllium (Be) (mg/kg)	0.16	0.17	0.17	0.11	
	Bismuth (Bi) (mg/kg)	1020	975	822	1250	
	Boron (B) (mg/kg)	6.7	5.8	<5.0	5.8	
	Cadmium (Cd) (mg/kg)	5.74	6.59	6.44	6.31	
	Calcium (Ca) (mg/kg)	446	571	9170	2290	
	Chromium (Cr) (mg/kg)	9.91	9.40	12.0	7.89	
	Cobalt (Co) (mg/kg)	1.80	1.82	3.01	2.13	
	Copper (Cu) (mg/kg)	299	314	433	400	
	Iron (Fe) (mg/kg)	35800	32300	54300	70100	
	Lead (Pb) (mg/kg)	14300	12800	10700	16600	
	Lithium (Li) (mg/kg)	<2.0	<2.0	<2.0	<2.0	
	Magnesium (Mg) (mg/kg)	262	105	5180	1380	
	Manganese (Mn) (mg/kg)	94.8	81.8	132	108	
	Mercury (Hg) (mg/kg)	0.701	1.05	0.797	0.706	

L2139940 CONTD.... PAGE 7 of 20 29-AUG-18 12:31 (MT) Version: FINAL

		Sample ID Description Sampled Date Sampled Time Client ID	L2139940-1 Soil 31-JUL-18 T1-1AB	L2139940-2 Soil 31-JUL-18 T1-2AB	L2139940-3 Soil 31-JUL-18 T1-3	L2139940-4 Soil 31-JUL-18 T2-1AB	L2139940-5 Soil 31-JUL-18 T2-2
Grouping	Analyte						
SOIL							
Metals	Molybdenum (Mo) (mg/kg)		1.45	1.36	1.05	0.85	1.31
	Nickel (Ni) (mg/kg)		20.3	11.5	5.92	5.34	5.52
	Phosphorus (P) (mg/kg)		581	500	452	1170	1200
	Potassium (K) (mg/kg)		580	460	320	670	630
	Selenium (Se) (mg/kg)		5.62	1.70	6.76	9.01	1.98
	Silver (Ag) (mg/kg)		>165	15.8	>126	50.7	8.51
	Sodium (Na) (mg/kg)		<50	<50	<50	<50	<50
	Strontium (Sr) (mg/kg)		93.0	35.7	32.6	337	349
	Sulfur (S) (mg/kg)		1500	<1000	<1000	1700	<1000
	Thallium (TI) (mg/kg)		0.262	0.149	0.147	0.282	0.118
	Tin (Sn) (mg/kg)		51.0	16.5	24.7	41.3	17.2
	Titanium (Ti) (mg/kg)		22.3	28.9	38.7	19.5	<16
	Tungsten (W) (mg/kg)		<0.50	<0.50	<0.50	<0.50	<0.50
	Uranium (U) (mg/kg)		14.3	1.72	4.75	6.05	2.17
	Vanadium (V) (mg/kg)		18.6	10.4	6.31	10.7	8.41
	Zinc (Zn) (mg/kg)		354	142	70.4	117	85.5
	Zirconium (Zr) (mg/kg)		12.0	3.8	2.1	7.4	7.5

L2139940 CONTD.... PAGE 8 of 20 29-AUG-18 12:31 (MT) Version: FINAL

	D [.] Sam	ample ID L2139940-i escription Soil apled Date 31-JUL-18 pled Time T2-3A	Soil	L2139940-8 Soil 31-JUL-18 T3-2AB	L2139940-9 Soil 31-JUL-18 T3-3AB	L2139940-10 Soil 31-JUL-18 W1-1
Grouping	Analyte					
SOIL						
Metals	Molybdenum (Mo) (mg/kg)	1.05	0.79	1.15	1.27	0.78
	Nickel (Ni) (mg/kg)	7.03	9.32	8.65	15.1	27.6
	Phosphorus (P) (mg/kg)	1480	534	333	484	461
	Potassium (K) (mg/kg)	790	520	470	590	640
	Selenium (Se) (mg/kg)	1.68	9.01	3.54	6.42	3.93
	Silver (Ag) (mg/kg)	7.37	38.0	18.3	35.8	17.6
	Sodium (Na) (mg/kg)	<50	<50	<50	<50	149
	Strontium (Sr) (mg/kg)	483	108	57.1	79.5	26.0
	Sulfur (S) (mg/kg)	<1000	2000	1100	1600	2900
	Thallium (Tl) (mg/kg)	0.116	0.263	0.180	0.189	<0.10
	Tin (Sn) (mg/kg)	18.0	201	38.3	105	6.9
	Titanium (Ti) (mg/kg)	18.4	17.3	37.1	<19 DLM	99.7
	Tungsten (W) (mg/kg)	<0.50	<0.50	<0.50	<0.50	<0.50
	Uranium (U) (mg/kg)	2.17	3.49	2.06	3.12	2.41
	Vanadium (V) (mg/kg)	11.7	10.5	12.7	13.3	19.5
	Zinc (Zn) (mg/kg)	113	112	95.0	107	258
	Zirconium (Zr) (mg/kg)	6.2	10.4	8.7	10.2	3.3

L2139940 CONTD.... PAGE 9 of 20 29-AUG-18 12:31 (MT) Version: FINAL

	Sample ID Description Sampled Date Sampled Time Client ID	L2139940-11 Soil 31-JUL-18 W1-2	L2139940-12 Soil 31-JUL-18 W1-3	L2139940-13 Soil 31-JUL-18 W1-4	L2139940-14 Soil 31-JUL-18 W1-5	L2139940-15 Soil 31-JUL-18 W2-1
Analyte						
•						
Molybdenum (Mo) (mg/kg)		1.60	1.69	1.04	2.20	0.77
Nickel (Ni) (mg/kg)						8.91
Phosphorus (P) (mg/kg)						561
Potassium (K) (mg/kg)						970
Selenium (Se) (mg/kg)		5.46	1.04	4.02	12.2	2.46
Silver (Ag) (mg/kg)		18.9	3.50	16.3	62.9	19.5
Sodium (Na) (mg/kg)		184	73	<50	55	392
Strontium (Sr) (mg/kg)		32.8	13.3	17.8	193	90.6
Sulfur (S) (mg/kg)		3400	1600	2400	6700	6300
Thallium (TI) (mg/kg)		<0.15	0.062	<0.10	<0.35	0.151
Tin (Sn) (mg/kg)		7.6	2.6	7.6	33.2	11.3
Titanium (Ti) (mg/kg)		75.9	49.8	26.8	_{DLM}	274
Tungsten (W) (mg/kg)		<0.50	<0.50	<0.50	<0.50	<0.50
Uranium (U) (mg/kg)		2.27	2.73	2.99	2.21	0.967
Vanadium (V) (mg/kg)		15.7	12.9	10.0	8.13	28.0
Zinc (Zn) (mg/kg)		249	333	210	121	47.8
Zirconium (Zr) (mg/kg)		1.4	2.5	7.1	<1.0	4.6
	Nickel (Ni) (mg/kg) Phosphorus (P) (mg/kg) Potassium (K) (mg/kg) Selenium (Se) (mg/kg) Silver (Ag) (mg/kg) Sodium (Na) (mg/kg) Strontium (Sr) (mg/kg) Strontium (Sr) (mg/kg) Thallium (Tl) (mg/kg) Titanium (Ti) (mg/kg) Titanium (Ti) (mg/kg) Uranium (U) (mg/kg) Vanadium (V) (mg/kg)	Description Sampled Date Sampled Time Client IDAnalyteMolybdenum (Mo) (mg/kg)Molybdenum (Mo) (mg/kg)Nickel (Ni) (mg/kg)Phosphorus (P) (mg/kg)Potassium (K) (mg/kg)Selenium (Se) (mg/kg)Selenium (Se) (mg/kg)Sodium (Na) (mg/kg)Sodium (Na) (mg/kg)Sulfur (S) (mg/kg)Sulfur (S) (mg/kg)Tinalium (TI) (mg/kg)Tin (Sn) (mg/kg)Tungsten (W) (mg/kg)Vanadium (V) (mg/kg)Vanadium (V) (mg/kg)Zinc (Zn) (mg/kg)	Description Sampled Date Sampled Time Client IDSoil 31-JUL-18 w1-2Analytew1-2Molybdenum (Mo) (mg/kg)1.60Nickel (Ni) (mg/kg)27.6Phosphorus (P) (mg/kg)827Potassium (K) (mg/kg)580Selenium (Se) (mg/kg)5.46Silver (Ag) (mg/kg)18.9Sodium (Na) (mg/kg)32.8Sulfur (S) (mg/kg)3400Thallium (TI) (mg/kg)7.6Tin (Sn) (mg/kg)7.6Tungsten (W) (mg/kg)2.27Vanadium (V) (mg/kg)2.27Vanadium (V) (mg/kg)15.7Zinc (Zn) (mg/kg)249	Description Sampled Date Sampled Time Client ID Soil 31-JUL-18 Soil 31-JUL-18 Malyte W1-2 W1-3 Molybdenum (Mo) (mg/kg) 1.60 1.69 Nickel (Ni) (mg/kg) 27.6 48.7 Phosphorus (P) (mg/kg) 827 594 Potassium (K) (mg/kg) 580 420 Selenium (Se) (mg/kg) 5.46 1.04 Silver (Ag) (mg/kg) 18.9 3.50 Sodium (Na) (mg/kg) 184 73 Strontium (Sr) (mg/kg) 3400 1600 Thallium (TI) (mg/kg) 7.6 2.6 Titanium (Ti) (mg/kg) 7.5.9 49.8 Tungsten (W) (mg/kg) 2.27 2.73 Vanadium (V) (mg/kg) 2.27 2.73 Vanadium (V) (mg/kg) 15.7 12.9 Zinc (Zn) (mg/kg) 249 333	Description Sampled Date Sampled Time Client ID Soil 31-JUL-18 Soil 31-JUL-18 Soil 31-JUL-18 Soil 31-JUL-18 Analyte W1-2 W1-3 W1-4 Molybdenum (Mo) (mg/kg) 1.60 1.69 1.04 Nickel (Ni) (mg/kg) 27.6 48.7 34.2 Phosphorus (P) (mg/kg) 827 594 410 Potassium (K) (mg/kg) 580 420 400 Solienium (Se) (mg/kg) 18.9 3.50 16.3 Solienium (Se) (mg/kg) 3400 1600 2400 Sulfur (S) (mg/kg) 3400 1600 2400 Sulfur (S) (mg/kg) 3400 1600 2400 Thallium (TI) (mg/kg) 7.6 2.6 7.6 Thallium (TI) (mg/kg) 7.6 2.6 7.6 Tungsten (W) (mg/kg) 2.27 2.73 2.99 Vanadium (V) (mg/kg) 15.7 12.9 10.0	Description Sampled Date Sampled Time Client IDSoil 31-JUL-18Soil 31-JUL-18Soil 31-JUL-18Soil 31-JUL-18Soil 31-JUL-18AnalyteW1-2W1-3W1-4W1-5AnalyteW1-2W1-3W1-4W1-5Molybdenum (Mo) (mg/kg)1.601.691.042.20Nickel (Ni) (mg/kg)27.648.734.27.42Phosphorus (P) (mg/kg)827594410914Potassium (K) (mg/kg)580420400700Selenium (Se) (mg/kg)5461.044.0212.2Silver (Ag) (mg/kg)18473<55

L2139940 CONTD.... PAGE 10 of 20 29-AUG-18 12:31 (MT) Version: FINAL

		Sample ID Description Sampled Date Sampled Time Client ID	L2139940-16 Soil 31-JUL-18 W2-2	L2139940-17 Soil 31-JUL-18 W2-3	L2139940-18 Soil 31-JUL-18 W2-4	L2139940-19 Soil 31-JUL-18 W2-5	L2139940-20 Soil 31-JUL-18 W3-1
Grouping	Analyte						
SOIL							
Metals	Molybdenum (Mo) (mg/kg)		0.80	1.04	1.89	1.09	1.30
	Nickel (Ni) (mg/kg)		13.2	8.26	8.19	6.94	16.2
	Phosphorus (P) (mg/kg)		602	1670	1640	1730	289
	Potassium (K) (mg/kg)		980	1130	1240	1460	670
	Selenium (Se) (mg/kg)		1.14	4.04	6.75	6.31	9.79
	Silver (Ag) (mg/kg)		4.72	58.0	75.3	>108	32.5
	Sodium (Na) (mg/kg)		353	92	162	75	106
	Strontium (Sr) (mg/kg)		39.4	407	458	565	41.2
	Sulfur (S) (mg/kg)		4000	5900	9000	9800	3900
	Thallium (TI) (mg/kg)		0.078	0.242	0.301	0.418	<0.20
	Tin (Sn) (mg/kg)		5.1	21.0	32.2	26.5	33.9
	Titanium (Ti) (mg/kg)		314	31.1	78.7	10.6	74.2
	Tungsten (W) (mg/kg)		<0.50	<0.50	<0.50	<0.50	<0.50
	Uranium (U) (mg/kg)		0.785	2.32	2.46	3.87	2.52
	Vanadium (V) (mg/kg)		29.3	14.5	18.0	12.2	17.1
	Zinc (Zn) (mg/kg)		54.5	88.7	68.5	69.2	94.1
	Zirconium (Zr) (mg/kg)		2.5	4.6	4.4	6.8	9.8

L2139940 CONTD.... PAGE 11 of 20 29-AUG-18 12:31 (MT) Version: FINAL

		Sample ID Description Sampled Date Sampled Time Client ID	L2139940-21 Soil 31-JUL-18 W3-2	L2139940-22 Soil 31-JUL-18 W3-3	L2139940-23 Soil 31-JUL-18 W3-4	L2139940-24 Soil 31-JUL-18 W3-5	
Grouping	Analyte						
SOIL							
Metals	Molybdenum (Mo) (mg/kg)		2.57	1.79	2.57	1.94	
	Nickel (Ni) (mg/kg)		5.14	5.46	8.84	5.78	
	Phosphorus (P) (mg/kg)		1120	769	1230	788	
	Potassium (K) (mg/kg)		900	850	870	750	
	Selenium (Se) (mg/kg)		25.1	27.5	25.8	35.5	
	Silver (Ag) (mg/kg)		>122	>112	>111	>135	
	Sodium (Na) (mg/kg)		58	53	94	106	
	Strontium (Sr) (mg/kg)		188	215	168	141	
	Sulfur (S) (mg/kg)		6300	8500	8400	16600	
	Thallium (TI) (mg/kg)		<0.30	<0.35	0.265	<35 DLM	
	Tin (Sn) (mg/kg)		64.0	131	81.7	68.5	
	Titanium (Ti) (mg/kg)		39.6	39.9	46.0	^{DLM}	
	Tungsten (W) (mg/kg)		<0.50	<0.50	<0.50	<0.50	
	Uranium (U) (mg/kg)		6.00	7.07	5.62	6.01	
	Vanadium (V) (mg/kg)		8.07	7.03	9.26	7.35	
	Zinc (Zn) (mg/kg)		110	103	100	90.2	
	Zirconium (Zr) (mg/kg)		1.2	9.7	<1.0	2.9	

Reference Information

Additional Comments for Sample Listed:

Samplenum	Matrix	Report Remarks	Sample Comment:
L2139940-1	Soil	Note: Method variance: analysis performed by ICPMS,	
		this method variance is not accredited.	
L2139940-10	Soil	Note: Method variance: analysis performed by ICPMS,	
		this method variance is not accredited.	
L2139940-11	Soil	Note: Method variance: analysis performed by ICPMS,	
		this method variance is not accredited.	
L2139940-12	Soil	Note: Method variance: analysis performed by ICPMS,	
		this method variance is not accredited.	
L2139940-13	Soil	Note: Method variance: analysis performed by ICPMS,	
		this method variance is not accredited.	
L2139940-14	Soil	Note: Method variance: analysis performed by ICPMS,	
		this method variance is not accredited.	
L2139940-15	Soil	Note: Method variance: analysis performed by ICPMS,	
		this method variance is not accredited.	
L2139940-16	Soil	Note: Method variance: analysis performed by ICPMS,	
		this method variance is not accredited.	
L2139940-17	Soil	Note: Method variance: analysis performed by ICPMS,	
		this method variance is not accredited.	
L2139940-18	Soil	Note: Method variance: analysis performed by ICPMS,	
		this method variance is not accredited.	
L2139940-19	Soil	Note: Method variance: analysis performed by ICPMS,	
		this method variance is not accredited.	
L2139940-2	Soil	Note: Method variance: analysis performed by ICPMS,	
		this method variance is not accredited.	
L2139940-20	Soil	Note: Method variance: analysis performed by ICPMS,	
		this method variance is not accredited.	
L2139940-21	Soil	Note: Method variance: analysis performed by ICPMS,	
	o "	this method variance is not accredited.	
L2139940-22	Soil	Note: Method variance: analysis performed by ICPMS,	
	o "	this method variance is not accredited.	
L2139940-23	Soil	Note: Method variance: analysis performed by ICPMS,	
1	0.1	this method variance is not accredited.	
L2139940-24	Soil	Note: Method variance: analysis performed by ICPMS,	
1 0 4 0 0 0 4 0 0	0.1	this method variance is not accredited.	
L2139940-3	Soil	Note: Method variance: analysis performed by ICPMS,	
10400040 4	0"	this method variance is not accredited.	
L2139940-4	Soil	Note: Method variance: analysis performed by ICPMS,	
10400040 5	0	this method variance is not accredited.	
L2139940-5	Soil	Note: Method variance: analysis performed by ICPMS,	
10400040.0	0"	this method variance is not accredited.	
L2139940-6	Soil	Note: Method variance: analysis performed by ICPMS,	
10400040 7	0	this method variance is not accredited.	
L2139940-7	Soil	Note: Method variance: analysis performed by ICPMS,	
10100000	Co.il	this method variance is not accredited.	
L2139940-8	Soil	Note: Method variance: analysis performed by ICPMS,	
1 2120040 0	Seil	this method variance is not accredited.	
L2139940-9	Soil	Note: Method variance: analysis performed by ICPMS,	
		this method variance is not accredited.	
QC Samples with Qu	ualifiers & Com	ments:	

QC Type Description Parameter Applies to Sample Number(s) Qualifier Duplicate DUP-H Cadmium (Cd) L2139940-10, -11, -12, -13, -14, -15, -16, -17, -18, -19, -20, -21, -22, -24 Duplicate Strontium (Sr) DUP-H L2139940-10, -11, -12, -13, -14, -15, -16, -17, -18, -19, -20, -21, -22, -24 L2139940-10, -11, -12, -13, -14, -15, -16, -17, -18, -19, -Duplicate DUP-H Zinc (Zn) 20, -21, -22, -24 Certified Reference Material Chromium (Cr)-Total RRQC L2139940-40, -41, -42, -43, -44, -45, -46, -47, -48, -49, -50, -51, -52, -53, -54

Qualifiers for Individual Parameters Listed:

Qualifier	Description
DLHC	Detection Limit Raised: Dilution required due to high concentration of test analyte(s).
DLM	Detection Limit Adjusted due to sample matrix effects (e.g. chemical interference, colour, turbidity).
DUP-H	Duplicate results outside ALS DQO, due to sample heterogeneity.
RRQC	Refer to report remarks for information regarding this QC result.

Reference Information

L2139940 CONTD.... PAGE 19 of 20 29-AUG-18 12:31 (MT) Version: FINAL

ALS Test Code	Matrix	Test Description	Method Reference**
AG-200.2-A-CCMS-VA	Soil	Elevated Ag in Soil by CRC ICPMS	EPA 200.2/6020A
	d. Depende	nt on sample matrix, some metals may be only part	berate metals that may be environmentally available. Silicate tially recovered, including AI, Ba, Be, Cr, Sr, Ti, TI, V, W, and
C-TOT-LECO-SK	Soil	Total Carbon by combustion method	CSSS (2008) 21.2
The sample is ignited in a	combustion	analyzer where carbon in the reduced CO2 gas is o	determined using a thermal conductivity detector.
CAT-XTR-SK	Soil	Ammonium Acetate Extractable Cations	CSSS 19.4 - 1M NH4OAc Extraction @ pH 7
Exchangeable Ca, Mg, Na	, and K are e		acetate, then determined by ICP-OES. This method does
ETL-C:N-RATIO-SK	Soil	Carbon:Nitrogen Ratio - Calculation	Calculation
HG-200.2-CVAF-VA	Soil	Mercury in Soil by CVAAS	EPA 200.2/1631E (mod)
Soil samples are digested acid leachable metals dige			vsis. This method is fully compliant with the BC SALM strong
HG-DRY-CVAFS-N-VA	Tissue	Mercury in Tissue by CVAFS (DRY)	EPA 200.3, EPA 245.7
samples are homogenized	l and sub-sa	mpled prior to hotblock digestion with nitric and hyd	al Tissue and Vegetation (Biota) - Prescriptive". Tissue Irochloric acids, in combination with addition of hydrogen actrophotometry, adapted from US EPA Method 245.7.
HG-DRY-MICR-CVAF-VA	Tissue	Mercury in Tissue by CVAFS Micro (DRY)	EPA 200.3, EPA 245.7
Biological Tissues" (1996)	. Tissue sam additions of	pples are homogenized and sub-sampled prior to ho hydrogen peroxide. Analysis is by atomic fluoresc	nical Determination of Total Recoverable Elements in otblock digestion with nitric and hydrochloric acids, in ence spectrophotometry or atomic absorption
MET-200.2-CCMS-VA	Soil	Metals in Soil by CRC ICPMS	EPA 200.2/6020A (mod)
minerals are not solubilize	d. Depende (including s	nt on sample matrix, some metals may be only part	berate metals that may be environmentally available. Silicat tially recovered, including AI, Ba, Be, Cr, Sr, Ti, TI, V, W, and uring sampling, storage, or digestion. Analysis is by
MET-DRY-CCMS-N-VA	Tissue	Metals in Tissue by CRC ICPMS (DRY)	EPA 200.3/6020A
samples are homogenized peroxide. Instrumental an	l and sub-sa alysis is by c	mpled prior to hotblock digestion with nitric and hyd collision cell inductively coupled plasma - mass spe	
			d to provide a conservative estimate of bio-available metals. nents associated with recalcitrant minerals may be only
MET-DRY-MICR-HRMS-VA	Tissue	Metals in Tissue by HR-ICPMS Micro (DRY)	EPA 200.3/200.8
Trace metals in tissue are	analyzed by	high resolution inductively coupled plasma mass s	pectrometry (HR-ICPMS) modified from US EPA Method . Analytical results are reported on dry weight basis.
			d to provide a conservative estimate of bio-available metals. nents associated with recalcitrant minerals may be only
N-TOTKJ-COL-SK	Soil	Total Kjeldahl Nitrogen	CSSS (2008) 22.2.3
The soil is digested with so nm.	ulfuric acid ir	n the presence of CuSO4 and K2SO4 catalysts. Arr	monia in the soil extract is determined colrimetrically at 660
NH4-AVAIL-SK	Soil	Available Ammonium-N	Comm Soil Sci 19(6)
		the soil using 2 N KCl. Ammonium in the extract is ally by auto analysis at 660 nm.	mixed with hypochlorite and salicylate to form indophenol
OM-LOI-SK	Soil	Organic Matter by LOI at 375 deg C.	CSSS (1978) p. 160
		o i	s C for a minimum of 16 hours. Samples are dried prior to
Reference: McKeague, J.A	A. Soil Samp	ling and Methods of Analysis. Can. Soc. Soil Sci.(1	978) method 4.23

Reference Information

This analysis is carried out in accordance with procedures described in the pH, Electrometric in Soil and Sediment method - Section B Physical/Inorganic and Misc. Constituents, BC Environmental Laboratory Manual 2007. The procedure involves mixing the dried (at <60°C) and sieved (No. 10 / 2mm) sample with deionized/distilled water at a 1:2 ratio of sediment to water. The pH of the solution is then measured using a standard pH probe.

PO4/K-AVAIL-SK Soil

Plant Available Phosphorus and Potassium

Particle Size Analysis:Mini-Pipet Method

SSIR-51 Method 3.2.1

Comm. Soil Sci. Plant Anal, 25 (5&6)

Dry, < 2 mm soil is treated with sodium hexametaphosphate to ensure complete dispersion of primary soil particles. The homogenized suspension is allowed to settle in accordance with Stoke's Law so that only clay particles remain in suspension. To determine the clay fraction, an aliquot of the clay suspension is removed, then dried and weighed. The sand fraction is determined by wet sieving the remaining suspension, then drying and weighing the sand retained on the sieve. The silt fraction is determined by calculation where % Silt = 100 - (%Sand+%Clay)

Plant available phosphorus and potassium are extracted from the soil using Modified Kelowna solution. Phosphorous in the soil extract is determined

Reference:

PSA-1-SK

Burt, R. (2009). Soil Survey Field and Laboratory Methods Manual. Soil Survey Investigations Report No. 5. Method 3.2.1.2.2. United States Department of Agriculture Natural Resources Conservation Service.

Kalra, Y.P., Maynard, D.G. 1991. Methods manual for forest soil and plant analysis. Forestry Canada. p. 42-45.

** ALS test methods may incorporate modifications from specified reference methods to improve performance.

The last two letters of the above test code(s) indicate the laboratory that performed analytical analysis for that test. Refer to the list below:

Laboratory Definition Code	Laboratory Location
SK	ALS ENVIRONMENTAL - SASKATOON, SASKATCHEWAN, CANADA
VA	ALS ENVIRONMENTAL - VANCOUVER, BRITISH COLUMBIA, CANADA

Chain of Custody Numbers:

GLOSSARY OF REPORT TERMS

Surrogate - A compound that is similar in behaviour to target analyte(s), but that does not occur naturally in environmental samples. For

applicable tests, surrogates are added to samples prior to analysis as a check on recovery.

colorimetrically at 880 nm, while potassiumis determined by flame emission at 770 nm.

Soil

mg/kg - milligrams per kilogram based on dry weight of sample.

mg/kg wwt - milligrams per kilogram based on wet weight of sample.

mg/kg lwt - milligrams per kilogram based on lipid-adjusted weight of sample. mg/L - milligrams per litre.

< - Less than.

D.L. - The reported Detection Limit, also known as the Limit of Reporting (LOR).

N/A - Result not available. Refer to qualifier code and definition for explanation.

Test results reported relate only to the samples as received by the laboratory. UNLESS OTHERWISE STATED. ALL SAMPLES WERE RECEIVED IN ACCEPTABLE CONDITION.

UNLESS OTHERWISE STATED, ALL SAMPLES WERE RECEIVED IN ACCEPTABLE CONDITION.

Analytical results in unsigned test reports with the DRAFT watermark are subject to change, pending final QC review.

L2139940-COFC

---- ---

.00 # ____

~

۰.

.

Chain of Custody / / Canada Toll Free: า ธยบาธอส 9878 <u>www.alsglobal.com</u>

Page <u>1</u> of <u>5</u>

Report To				IR	eport F	ormat / Distribut	tion		Sec.	dee E			(Du								
Company:	y: StrataGold Corporation										Service Requested (Rush for routine analysis subject to availability)										
Contact:	Hugh Coyle					☑PDF ☑Excel ☑Digital □Fax					Regular (Standard Turnaround Times - Business Days) OPriority (2-4 Business Days) - 50% Surcharge - Contact ALS to Confirm TAT										
Address:	1000 - 1050 West Pender Street				Email 1: hcoyle@vitgoldcorp.com																
	Vancouver, BC V6E 3S7					bonniebums@r	OEmergency (1-2 Bus. Days) - 100% Surcharge - Contact ALS to Confirm TAT														
Phone:	604-696-6600 Fax:					jknox@vitgoldc	OSame Day or Weekend Emergency - Contact ALS to Confirm TAT														
Invoice To	Same as Report ?	🛛 Yes			maii 3: lient / P	roject Informatio		ia yazvitaciacorp.c	Ce Analysis Request Please indicate below Filtered, Preserved or both (F, P, F/P)												
Hardcopy of I	nvoice with Report?	7 🗍 Yes	⊡ No		b#:	Eagle Gold	+	T					i, Fie:	server		un (r, pe	<u>, F/P)</u>	-			
Company:				P	PO/AFE:															4	
Contact:					LSD: Victoria Gold Corp.					>											
Address:									af:	Capacity				_	¥		1				
Phone:		Fax:		Q	uote #:	Q69293, Peso (Samples		2	8		ysis	Ē	2	and						
Lab W	/ork Order #				ALS Heather Bonnie Burns						l	۹na	旧	ي م	e D				1	Containare	
Lab Work Order # (tab use only) Sample Sample Identification # (This description will appear on the report) T1-1AB						Mackenzie	Sampler:	&Crystal Beaudry	to Nit	Exchange	CCME	Size	ie Am	matte	vailabl					5	
	(Ti	-		ie report)		Date (dd-mmm-yy)	Time (hh:mm)	Sample Type	Carbon to Nitrogen Ratio	Cation	Metals,	Particle Size Analysis	Availabie Ammonium	Organic matter by LOI	Plant Available P					Number	
	T1-1AB			31-7-17		Soil	х	Х	X	x	X	X	X				-	2			
	Т1-2АВ					31-7-17		Soil	X	X	X	x	X	x	x				+		
	T1-3					31-7-17		Soil	X	x	X	x	X	X	x		-	-+	-		
	Т2-1АВ					31-7-17	· · · · · ·	Soil	x	x	х	x	x	x	X	-				2	
	T2-2 T2-3A					31-7-17		Soil	X	X	x	x	x	х	X					2	
						31-7-17		Soil	x	X	X	X	x	х	X				-	2	
	T3-1					31-7-17		Soil	Х	X	Х	х	x	х	x	-				2	
	Т3-2АВ					31-7-17		Soil	X	X	x	x	x	х	x				+	2	
	T3-3AB					31-7-17	· ·	Soil	X	x	x	X	х	x	x		- +		-	2	
	W1-1					31-7-17	·	Sail	X	х	x	x	x	x	x					2	
	W1-2					31-7-17		Soil	X	X	X	X	X	x	x				+	2	
	W1-3					31-7-17	··-··	Soil	X	X	х	x	x	x	x			+		2	
	W1-4 ·					31-7-17		Soil	Х	X	X	Х	x	x	\mathbf{x}					2	
	Special Inst	tructions / Reg	ulations with v	water or land us	e (CCN	E-Freshwater A	quatic Life/BC	CSR - Commercia	al/AB	Tier '	1 - Na	itural,	etc)	/ Haz	ardoi	us De	tails			L	
	<u> </u>															-					
		By the use	ot this form the	e user acknowle	edges a	ind agrees with i	the Terms and	Please fill in this Conditions as pro	ablw	d on i		Arata	Exce	el tab.							
	SHIPMENT RELE	ASE (client use	ei tab are the A	LS location ad	aresse:	s, phone numbe MENT RECEPTIC	rs and sample	container / prese	rvatio	n/ho	olding	g time	tabl	e for	comn	non a	nalyse	S.			
Released by:		Date (dd-mmm-vy)		Received by:	- Onites				14:			_		_	ICAT		ab use				
Bonnie Burns				EHI	-	Date: Ziv18	K:30	Temperature: 12 D °C	verif	ied by i r	14		Date	ŝle	.	Time \	P~	Yes	servatio / No ? es add	>	
						· · ·								-			GF	NF 20.0	_	_	
																				-	

ι

L2139940-COFC

	Environm	ental				Canada Toll <u>www.</u>	alsglobal.com										Pa	ge _	<u>2</u> of	f_	
Report To					Report Format / Distribution					ice F	Reque	sted	(Rush	for re	utine	analys	sis subi	ect to :	availahi	iliba	
Company:	StrataGold Corporation										Service Requested (Rush for routine analysis subject to availability) Regular (Standard Turnaround Times - Business Days)										
Contact:	Hugh Coyle				⊡PDF	 ⊡Excel	OPriority (2-4 Business Days) - 50% Surcharge - Contact ALS to Confirm TAT														
Address:	1000 - 1050 West				Email 1:	hcovie@vitgolc	OEmergency (1-2 Bus, Days) - 100% Surcharge - Contact ALS to Confirm TAT														
	Vancouver, BC V6				Email 2:	OSame Day or Weekend Emergency - Contact ALS to Confirm TAT															
Phone:	604-696-6600	Fax:			Email 3:	Jknox@vitgold															
nvoice To	Same as Report ?	⊡ Yes	No No			roject Informati	on		Please indicate below Filtered, Preserved or both (F, P, F/P)												
	Invoice with Report?	∐ Yes	☑ No		Jop #:	Eagle Gold	·														
Company: Contact;					PO / AFE										_					_	
Address:					LSD:	Victoria Gold C	orp.			Capacity					i i						
Phone:		 			<u> </u>							is:	ΓE	ō	Ě						
	Vork Order #	Fax:			Quote #:	Q69293, Peso	Samples		uəő	Je C		stile	uniu.	۲ آم	p and						
(iat	use only)				ALS Contact:	Heather Mackenzie	Sampler:	Bonnie Burns & Crystal Beaudry	to Nitro	Exchange (CCME	Size Ar	a Ammonium	matter	ailable						
Sample #	(Th	Sample Io is description wil	lentification I appear on th	e report)		Date (dd-mmm-yy)	Time (hh:mm)	Sample Type	Carbon to Nitrogen Ratio	Cation E	Metals	Particle Size Analysis	Available	Organic matter by LOI	Plant Available						
_	W1-5					31-7-17		Soil	x	x	x	X	X	x	X	┝╼┥	├ ──╋		\rightarrow		
	W2-1					31-7-17	<u> </u>	Soil	x	x	x					-	┝──╄	-+		_	
	W2-2				-	31-7-17		Soil	^ X	×	×	X X	X X	Х .Х	X	\vdash	┟──╋	\dashv		_	
	W2-3					31-7-17	<u>├</u> -	Soil	x	Ŷ	Ŷ	Ŷ	Ŷ	X	X	┝─┥	┢╾╌┠	+-		_	
	W2-4	•••••••••••••••••••••••••••••••••••••••		······		31-7-17		Soil	x	Ŷ	x	x	x	x	X	┝━─┤					
	W2-5					31-7-17		Soit	$\hat{\mathbf{x}}$	x	x	x	Ŷ	Ŷ		\vdash		-+			
	W3-1					31-7-17	-	Soil	x	Â	Ŷ	Ŷ		Â	X		<u> </u>			_	
	W3-2					31-7-17		Soil	Ŷ	Ŷ	^ X	-	X X		X X	┢──┤				4	
	W3-3					31-7-17	<u></u>	Soil	x	Ŷ	Ŷ	X X	$\hat{\mathbf{x}}$	X X	× X	┝─┥		\rightarrow			
	W3-4		_			31-7-17	<u> </u>	Soil	x	Ŷ	x	$\hat{\mathbf{x}}$	$\hat{\mathbf{x}}$	÷	x	┝──┤	<u> </u>	-+-		_	
	W3-5					31-7-17		Soil	x	x	x	x	$\hat{\mathbf{x}}$	x	Ŷ			+	-+-	+	
									_			~	-		<u> </u>	┟──┦				+-	
								<u> ·</u>								┝─┤		-		+	
	Special Instr	uctions / Regula	ations with w	ater or land u	ise (CCM	E-Freshwater A	quatic Life/BC	CSR - Commerci	al/AB	Tier	1 - Na	atural	, etc)	/ Ha:	zardo	ous D	etails				
		By the use of another Excel	Failure to co this form the	omplete all po user acknow	ortions of riedges a ddresses	f this form may nd agrees with s, phone numbe	delay analysis the Terms and rs and sample	Please fill in this Conditions as proceedings of the container of the cont	s form	LEG	GIBLY a sep olding	'. Darate g tim	e Exci	el tab le for	com	- mon a	analys	ses.			
eleased by:	the second s		Time (hh-mm)	Received by		Date:	DN (lab use only Time:		SHIPMENT VERIFICATION (lab use only) Verified by: Date: Time: Observa												
						LUCIUS TAL . MATE	LIMP.	Temperature:	Vorifi	od hu			Date:			Time		10	bserva	stin n.	

7

,

.

۰-

GENF 20.00 Front

APPENDIX B

PHOTOGRAPHS, SEPTEMBER 2012 TO AUGUST 2018

TRENCH – BLOCK #1

Photo #1: Trench - Block #1 staked out, July 2012

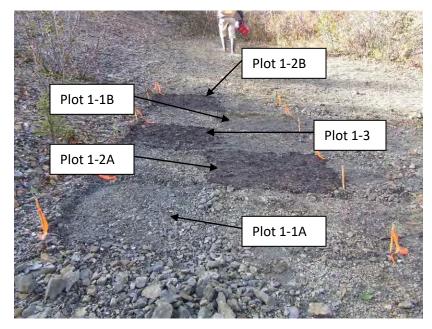


Photo #3: Trench - Block #1 plots prepared, seeded and treated.

Photo #2: Each plot was decompacted using a 5-pronged cultivator

Photo #4: Trench – Block #1, July 2013, grass has started growing.

Photo #5: Trench – Block #1, Aug 2014.

Photo #6: Trench – Block #1, alders becoming established, July 2016.

Photo #7: Trench – Block #1, increased growth of alders, Aug 2017.

Photo #8: Trench – Block #1, July 2018.

Photo #9: Trench – Plot #1-3, July 2013.

Photo #10: Trench – Plot #1-3, August 2014.

Photo #11: Trench – Plot #1-3, August 2015.

Photo #12: Trench – Plot #1-3, July 2016.

Photo #13: Trench – Plot #1-3, August 2017.

Photo #15: Trench, Block #1, young alder with long lateral root. 2018.

Photo #14: Trench – Plot #1-3, July 2018.

Photo #16: Root ball of alder plant from Plot #1-2B, July 2018.

TRENCH – BLOCK #2

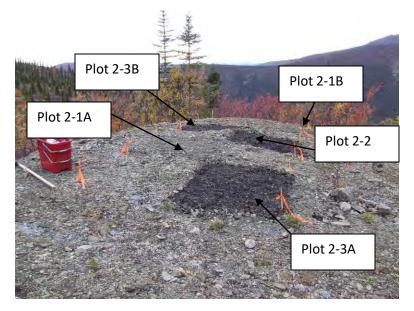


Photo #17: Trench – Block #2 prepared, seeded and treated. September 2012.

Photo #18: Trench – Block #2, July 2013.

Photo #19: Trench – Block #2, July 2016.

Photo #20: Trench – Block #2, Aug 2017.

Photo #21: Trench – Block #2, July 2018.

Photo #22: Trench, Plot #2-2, July 2013.

Photo #23: Trench, Plot #2-2, August 2014.

Photo #24: Trench, Plot #2-2, July 2015.

Photo #25: Trench, Plot #2-2, July 2016.

Photo #27: Trench, Plot #2-2, July 2018.

Photo #28: The alder in Plot #2-2 has produced seed cones in 2018.

Photo #26: Trench, Plot #2-2, August 2017.

TRENCH – BLOCK #3



Photo #29: Trench Block #3, prepared, seeded and treated, Sept/12

Photo #30: Trench – Block #3, July 2013.

Photo #31: Trench – Block #3, August 2014, increased growth.

Photo #32: Trench – Block #3, July 2016.

Photo #33: Trench – Block #3, August 2017.

Photo #35: Trench, Plot 3-2B, July 2013.

Photo #34: Trench – Block #3, July 2018. Increase alder growth.

Photo #36: Trench, Plot 3-2B, Aug 2014, healthy grasses.

Photo #37: Trench, Plot #3-2B, August 2015.

Photo #38: Trench, Plot #3-2B, August 2017.

Photo #39: Trench, Plot #3-2B, July 2018

Photo #40: Nitrogen nodule on alder from Plot 3-2B, July 2018.

WASTE ROCK DUMP – BLOCK #1

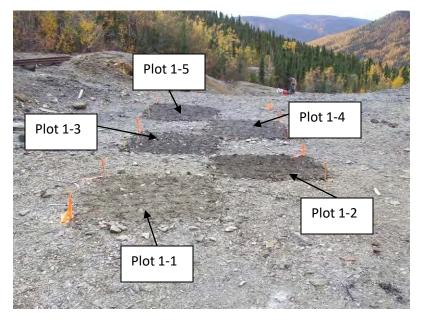


Photo #41: Waste Rock, Block #1, prepared, seeded and treated, Sept 2012.

Photo #42: Waste Rock, Block #1, July 2013.

Photo #43: Waste Rock, Block #1, August 2014, increased grass growth.

Photo #44: Waste Rock, Block #1, July 2016.

Photo #45: Waste Rock, Block #1, August 2017.

Photo #47: Waste Rock, Plot #1-5, very little growth, July 2013.

Photo #46: Waste Rock, Block #1, July 2018.

Photo #48: Waste Rock, Plot #1-5, healthy grass growth, Aug 2014.

Photo #49: Waste Rock, Plot #1-5, alders appearing, Aug 2015.

Photo #50: Waste Rock, Plot #1-5, grasses dying back, July 2016.

Photo #51: Waste Rock, Plot 1-5, August 2017.

Photo #52: Waste Rock, Plot 1-5, July 2018.

Photo #53: Waste Rock, healthy spruce growing among volunteer willow, paper birch and the alders at Plot #1-4.

Photo #54: Waste rock. Seed cones on an alder growing on Plot #1-4. July 2018.

Photo #55: Waste Rock, nitrogen nodules on alder root, Plot #1-2.

WASTE ROCK – BLOCK #2

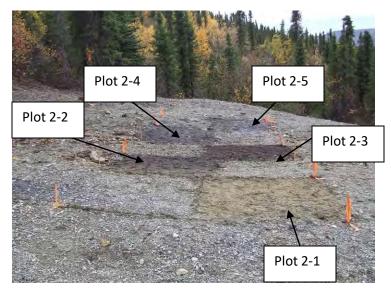


Photo #56 : Waste Rock, Block #2, prepared, seeded and treated, September 2012.

Photo #57: Waste Rock, Block #2, July 2013, good germination.

Photo #58: Waste Rock Block #2, August 2014. Healthy grasses.

Photo #59: Waste Rock, Block #2, July 2016. Alders growing.

Photo #60: Waste Rock, Block #2, August 2017. Alders have increased in growth.

Photo #61: Waste Rock, Block #2, July 2018.

Photo #62: Waste Rock, Plot 2-4, July 2013. Dolomite granules can still be seen.

Photo #63: Waste Rock, Plot 2-4, August 2014. Mature grasses.

Photo #64: Waste Rock, Plot 2-4, July 2015. Alders growing.

Photo #65: Waste Rock, Plot 204, August 2016.

Photo #66: Waste Rock, Plot #2-4, August 2017.

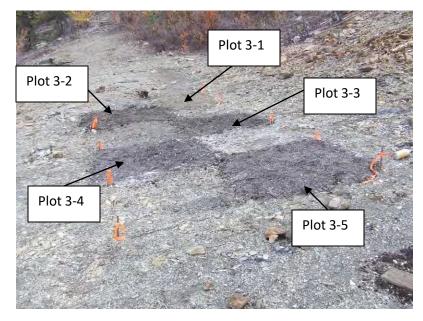



Photo #67: Waste Rock, Plot #2-4, July 2018. Defoliation evident on stems both in 2017 and 2018.

WASTE ROCK – BLOCK #3

Photo# 68: Waste Rock, Block #3, prepared, seeded and treated. September 2012.

Photo #69: Waste Rock, Block #3, July 2013.

Photo #70: Waste Rock, Block #3, August 2014.

Photo #71: Waste Rock, Block #3, July 2016.

Photo #72: Waste Rock, Block #3, August 2017.

Photo #73: Waste Rock, Block #3, July 2018.

Photo #74: Waste Rock, Plot 3-4, July 2013.

Photo #75: Waste Rock, Plot #3-4, August 2014. Note mature grass.

Photo #76: Waste Rock, Plot #3-4, August 2015.

Photo #78: Waste Rock, Plot #3-4, August 2017.

Photo #77: Waste Rock, Plot #3-4, July 2016. Young willow in plot.

Photo #79: Waste Rock, Plot #3-4, July 2018.

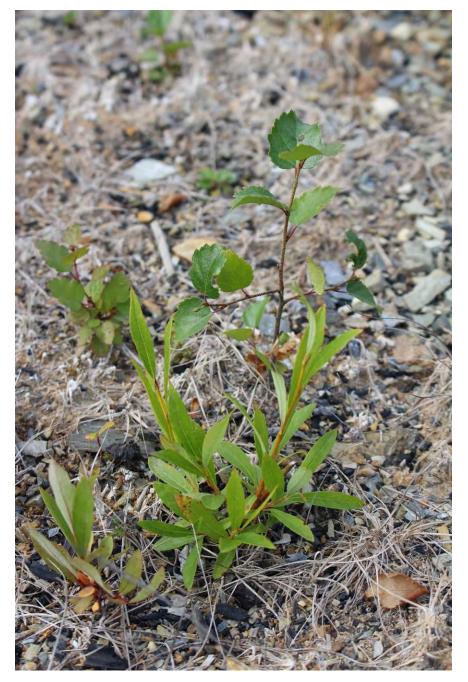


Photo #80: Waste Rock, willows and dwarf birch in Plot 3-4, July 2018.

Photo #81: Necrosis on leaf edges on several alder at Waste Rock, Plot 2-3, July 2018.

APPENDIX C

VEGETATION DATA

- TABLE C-1
- TABLE C-2
- TABLE C-3
- TABLE C-4
- TABLE C-5
- TABLE C-6
- ALS Lab Work Order #: L2139940, 2018

TABLE C-1ASSESSMENTS OF THE PLOTS AT THE TRENCH SITE, 2013, 2014, 2015, 2016, 2017 & 2018

BLOCK #1

Plot #	Date	% Cover	Species, avg height cm and/or # of individuals	Overall Health	Comments
	Jul-13	<1	sparse scraggly grass growth	stressed	a few shoots deep in gravel
			1 hedysarum		
	Sep-13	<1	unidentifiable grass, mostly brown, 2-3 cm	stressed	some green growth
	Aug-14 Aug-15	0 <1	4 alder	good	no growth small, seem healthy
1-1A	Jul-16	<1	2 alder	good	plants are small but appear
	541 20		3 dwarf birch, up to 4.5 cm	5000	healthy, no grass
	Aug-17	<1	5 dwarf birch, very small	good	no grass
	Jul-18	<1	1 dwarf birch, 5 cm	struggling	no grass
			3 small alder, <1 cm	stressed	browning of leaves
	Jul-13	45 - 50	alpine bluegrass	good	even grass cover
			unidentifiable grass		
	Sep-13	50	hedysarum, 7 plants alpine bluegrass < 2cm	good	Signs of grazing.
	3eb-13	50	2 other grass species up to 4cm	good	Signs of grazing.
			alder < 1cm		
			hedysarum, < 2cm		
	Aug-14	60	alpine bluegrass	good	lots of tufts of
			ticklegrass, max 30 cm		unidentifiable grass
			sheep fescue, max 30 cm		5 - 7 cm tall
			alder, 13 plants		
	Aug-15	40	alpine bluegrass	good	grass shows signs of
			tickle grass		grazing
			unidentified grasses		
	Jul-16	60	12 alder unidentified grasses, some possible immature hairgrass	good	some accumulated leaf
	201-10	00	alpine bluegrass	goou	litter,
1-2A			tickle grass		a few small mushrooms
			spike trisetum, some in seed		present.
			sheep fescue		
			12 alder, robust growth up to 21 cm		
	Aug-17	40	Fescue, several mature and producing seed, dominant	good	lots of leaf litter and last
			tufted harigrass, 1 is mature		year's grasses.
			alpine bluegrass		
			ticklegrass		
			spike trisetum, 1 is mature		
			10 alder , robust growth		
			unidentified small forbs		
	Jul-18	65	alpine bluegrass, 9 cm	good	all plants look healthy
			mature sheep fescue, 33 cm		lots of leaf litter - both alde
			mature tufted hairgrass, 35 cm unidentified grasses, 23, 27 cm		and grasses
			12 alder, 43.5, 65.5, 76 and 58 cm		
			moss		
	Jul-13	40	alpine bluegrass	good	most robust growth in
			unidentified grasses	-	Block #1
			hedysarum, 8 plants		
			alder, 3 plants		
	Sep-13	50 - 60	alpine bluegrass, dominant species, < 3cm	good	Signs of grazing.
			3 other grass species up to 5 cm		
			alder, <2 cm		
			hedysarum, < 2cm		
	Aug-14	70	ticklegrass, max 30 cm, more mature plants than 1-2A	good	Lots of tufts of
			alpine bluegrass, avg 4 cm		unidentifiable grass
			alder, 8 plants		5 - 6 cm tall.
	Aug-15	50	sheep fescue, max 22 cm, 1 mature plant alpine bluegrass	good	Signs of grazing. alders growing significantly
	, ug-10	50	tickle grass	BOOU	Signs of grazing.
			unidentified grasses		alder leaf litter
			20 alder		
	Jul-16	70	unidentified grasses	good	lots of leaf litter
1-3			alpine bluegrass	-	plants look healthy
			tickle grass		
			spike trisetum		
			sheep fescue		
			tufted hairgrass, 1 in seed, 50.5 cm		
			1 willow		
	A 17		24 alder, some heights: 30 cm, 21.5 cm, 18.5 cm		all alease and a little
	Aug-17	60	Fescue, several mature, dominant	good	all plants appear healthy
			alpine bluegrass		lots of leaf litter
			tickle grass 25 alder - robust		% cover includes leaf litter,
			unidentifed small forbs		
	Jul-18	80	alpine bluegrass, 42.5, 38 cm	good	all species of grasses had
	201-10	80	sheep fescue, 52, 48, 56 cm	goou	mature specimens,
			spike trisetum, 27, 40 cm		healthy growth
			tufted hairgrass, 33.5 cm		
			25 alder, 50.5, 87, 78, 67, 71		
	1	1	volunteer willow	1	

Plot #	Date	% Cover	Species, avg height cm and/or # of individuals	Overall Health	Comments
	Jul-13	<5	unidentified grass	stressed	but some green growth
			hedysarum, 4 plants		
			alder, 1 plant		
	Sep-13	<5	brown grasses, 2 - 4 cm	stressed	
			hedysarum		
	Aug-14	<1	hedysarum, 1 plant	stressed	dead grass from last year
	Aug-15	<1	alder	stressed	alder stunted
			unidentified grasses		
1-1B	Jul-16	<1	8 alder, all ≤ 1 cm		1 dwarf birch just ouside
					plot
	Aug-17	1	14 alder	good	no grasses
			1 spruce seedling		
	Jul-18	2	ticklegrass, 20.5 cm	fairly healthy	all alder were very small
			20 alder, 4.5 cm		
			1 spruce seedling		
			lichen		
			moss,		
	Jul-13	35	alpine bluegrass	good	even coverage of plot
			unidentified grasses		
			hedysarum		
			alder		
	Sep-13	45	alpine bluegrass, 2 - 3 cm	good	Signs of grazing.
			3 other grass species, 2 - 4 cm		scat in plot
			alder, < 1cm		
	Aug-14	60	tickle grass, many mature, max 38 cm	good	Several tufts of
			alpine bluegrass, 3-4 cm, not as many as 1-3		unidentifiable grass.
			alder, 4 plants		Alder leaf litter from
			some small hedysarum		near by.
	Aug-15	45	alpine bluegrass	good	Signs of grazing.
			tickle grass		rabbit scat
			unidentified grasses		leaf litter
			20 alder		1 juvenile willow
	Jul-16	55	unidentified grasses		small black bugs on some
1-2B			tickle grass		plants
1 20			alpine bluegrass		
			sheep fescue		
			51 alder, up to 8 cm		
			7 Salix spp		
	Aug-17	60	alpine bluegrass, some mature, dominant grass	good	even coverage of plot
			ticklegrass		lots of leaf litter
			tufted harigrass, 1 is mature		
			48 alder		
			1 spruce seedling		
	L		a few willow seedlings		
	Jul-18	80	sheep fescue, 73, 49, 45 cm		lots of alder leaf litter
			tufted hairgrass, 31, 36, 33 cm		
			alpine bluegrass, immature, 11.5, 13, 16 cm		
			>40 alder, 52, 49, 35, 55, 54 cm		
			several volunteer willow, 13, 11 cm		
			spruce seedling		
	1		moss		

TABLE C-1 ASSESSMENTS OF THE PLOTS AT THE TRENCH SITE, 2013, 2014, 2015, 2016, 2017 & 2018

BLOCK #2	
----------	--

Plot #	Date	% Cover	Species, height cm and/or # of individuals	Overall Health	Comments
	Jul-13	25 - 30	unidentified grasses	good	Buffer plot above 2-3A and
			alder, 2 plants	<u> </u>	beside 2-1A has 14 alder
			hedysarum, 1 plant		and 1 labrador tea.
	Sep-13	35	alpine bluegrass, <2cm	good	Signs of grazing.
			3 other species of grass	-	Rabbit pellet
			alder		spruce seedling
	Aug-14	45	spiked trisetum, 2 mature, up to 27 cms	good	1 possible volunteer
			sheep fescue, 5 mature, up to 27 cm		blueberry plant in plot
			alpine bluegrass, <2cm		
			lots of tufts of unidentified grasses		
			alder, 6 plants		
	Aug-15	40	alpine bluegrass	good	blueberry plant on edge
			spiked trisetum		of plot, 2 willow spp,
			sheep fescue		1 labrador tea in plot
			6 alder		
	Jul-16	30	alpine bluegrass	somewhat stressed	1 small spruce in plot
			sheep fescue		3 probable paper birch
			2 alder, one large 53 cm, robust growth		blueberry on plot edge
			11 dwarf birch		
2-3A		-	20 Salix spp		
	Aug-17	35	unidentified stressed grasses are dominant grass	grasses - poor	The grasses are stressed
			alpine bluegrass, none mature	others - good	but the alders and the
			4 alder, up to 80 cm		volunteer plants are healthy.
			labrador tea		
			willow seedlings		
			blueberry several dwarf birch		
			moss		
			spruce seedling		
	Jul-18	80	1 large alder, 122 cm, ~ a dozen small alder	good	large alder has cones
	301-10	80	several willow, 18, 12 cm	goou	large alder has colles
			dwarf birch 32 cm		
			labrador tea		
			blueberry, 5.5 cm		
			spike trisetum - sparse growth		
			alpine bluegrass		
			fescue, very small		
			spruce, 12 cm		
			moss		
	Jul-13	<5	sparse straggly grass shoots	stressed	
			alder, 3 plants		
	Sep-13	<5	2 grasses, 2 - 3 cm	stressed	Most grasses were brown
			hedysarum, 1 plant		
			alder		
	Aug-14	<1	small grasses	stressed	1 labrador tea in plot
			alder, 3 plants		
	Aug-15	<1	alder	stressed	1 labrador tea in plot
			unidentified grass species		1 spruce and willow
	Jul-16	<1	a few unidentified blades of grass	stressed	all plants very small
2-1A			9 dwarf birch		
			subalpine fir		
			Salix		
	Aug 17	~ -	spruce	الدمم	no groccos all valuateer
	Aug-17	<5	labrador tea dwarf birch	good	no grasses, all volunteer
			dwart birch blueberry		plants in plot
			spruce seedlings		
			small tufts of dead grass from previous years		
	Jul-18	1 to 2	1 alder, 17 cm	good	
	201-10	1.02	19 dwarf birch	5000	
			4 spruce seedlings		
		1	· sprace seconds	I	1

Dia 1 11	D -1	0/ 0-	Consists haided and south and the first of the state	0	Commente
Plot #	Date Jul-13	% Cover 40	Species, height cm and/or # of individuals alpine bluegrass	Overall Health good	Comments even distribution
	Jui-15	40	unidentified grasses	goou	even distribution
	Sep-13	45	alpine bluegrass, 2 cm	good	
	00p 10	.5	unidentified grass species up to 5 cm	5000	
	Aug-14	50	sheep fescue, several mature, up to 25 cm	good	good healthy coverage
			lots of immature alpine bluegrass, <3 cm		see Photo #23
			spiked trisetum, 3 mature, up to 15 cms		
			tickle grass, 1 mature, up to 23 cm		
	Aug 15	45	alder, 2 plants		4
	Aug-15	45	alpine bluegrass spiked trisetum	good	4 willow spp 1 labrador tea in plot
			sheep fescue		
			alder		
	Jul-16	45	sheep fescue, up to 46 cm	good	1 blueberry plant in plot
			alpine bluegrass		1 labrador tea below plot
2-2			spike trisetum		
			2 alder, one large 73 cm		
			12 Salix spp dwarf birch		
			spruce		
	Aug-17	50	fescue, several mature	good	some leaf litter
			alpine bluegrass	8	
			1 large alder - 130 cm, also small ones		
			labrador tea		
			blueberry		
			spruce seedling		
	Jul-18	95	1 giant alder, 189 cm labrador tea		the large alder takes up
			dwarf birch		almost the whole plot, has cones (see Photos #27 & 28)
			several small willow, 4.5 cm		cones (see 1 notos #27 & 20)
			fescue, 48 cm		
			moss		
	Jul-13	20	unidentified tufts of grasses	good	
			hedysarum, 1 plant		
	Sep-13	30	alpine bluegrass, 2 cm	good	Tiny capped mushrooms
			2 species of grass, <4 cm		in plot.
	Aug-14	40	hedysarum tickle grass, 2 plants up to 20 cm	good	2 alders growing just
	7105 14	40	alpine bluegrass, 1 mature, up to 10 cm	5000	outside of plot
			several tufts of unknown grasses		
			alder, 1 plant		
	Aug-15	35	alpine bluegrass	good	1 spruce seedling in plot
			spiked trisetum		labrador tea and willow spp
			sheep fescue		
	Jul-16	25	alder sheep fescue, up to 23.5 cm	good	many small shrubs growing
	Jui-10	25	alpine bluegrass	goou	in the neighbouring
2-3B			spike trisetum, up to 19 cm		buffer plot (dwarf birch,
			unidentified grasses		salix, labrador tea) and 3
			dwarf birch, 19.5 cm		paper birch and 3 spruce
			9 Salix spp		
			4 labrador tea	-	
	Aug-17	25	unidentified tufts of grasses	fair	leaf litter from grasses
			alpine bluegrass several willow seedlings		
			labrador tea		
			dwarf birch		
			spruce seedling		
	Jul-18	5	dwarf birch, 27.5, 13 cm	volunteer plants appear	very different from 2-3A
			willows 11, 11, 8.5, 6 cm	healthy	even tho they both have the
			labrador tea		same amendments
			mostly dead grasses		
	Jul-13	<5	moss a few blades of unidentified grass	stressed	1 spruce seedling in plot
	Jui-13	~5	hedysarum, 1 plant	30,63360	1 spruce seeding in plot
	Sep-13	5	unidentified grass, 3 - 4 cm	stressed	most grasses are brown
			alder, <1 cm, 4 plants		
	Aug-14	<1	quite a bit of dead grass - didn't survive	stressed	possible 3 willows in plot
			alder, 3 plants		
	Aug-15	<1	alder	stressed	willow spp in plot
	Jul-16	1 to 5	unidentified grasses	stressed	
			4 Salix spp 8 dwarf birch	shrubs fairly healthy	
2-1B			1 paper birch	nearring	
	Aug-17	1	a few blades of unidentified grass	grasses - poor	only 1 tuft of spindly grass
	Ĭ		dwarf birch	others - good	volunteer shrubs doing well
			willow seedlings		-
			labrador tea		
			spruce seedling		
	Jul-18	2 to 3	18 dwarf birch, 3.5, 19 cm	good	volunteer plants are small
			5 labrador tea, 8, 12 cm		but healthy
			2 willow, 12, 8 cm spruce		
L	1	l	-proof	1	1

TABLE C-1 ASSESSMENTS OF THE PLOTS AT THE TRENCH SITE, 2013, 2014, 2015, 2016, 2017 & 2018

Plot #	Date	% Cover	Species, avg height cm and/or # of individuals	Overall Health	Comments
	Jul-13	40	unidentified tufts of grass - lots	good	robust healthy plot
			alpine bluegrass, alder, 1 plant		
			hedysarum, 2 plants		
	Sep-13	40	alpine bluegrass, 2 cm	good	Sign of grazing.
			2 other grass species, <4 cm		Some moss in plot
			hedysarum, <1 cm		
	Aug-14	60	alder, <1 cm tufted hairgrass, 4 mature plants, up to 70 cm	good	4 volunteer willow in plot,
	Aug-14	00	ticklegrass, mature up to 35 cm	good	very diverse plot,
			sheep fescue, mature up to 35 cm		has the most mature plants
			spiked trisetum, mature up to 33 cm		
			alpine bluegrass, lots of immature, < 3cm		
			alder, 1 plant		
	Aug-15	50	tufted hairgrass	good	lots of moss, clover
			sheep fescue alpine bluegrass		willow
			spiked trisetum		
			tickle grass		
			alder		
	Jul-16	70*	unidentified grasses	grasses are stressed	lots of moss,
3-2A			tickle grass	other plants appear	large tuft of alsike clover
			tufted hairgrass alpine bluegrass (only a few plants)	healthy	
			5 alder, tallest 71 cm		
			11 Salix spp		
			5 dwarf birch		
	Aug-17	65	unhealthy grasses likely fescue - dominant grass	poor to good	most plants appear robust a
			alpine bluegrass, immature		healthy
			ticklegrass, mature 1 large alder, 118 cm		
			3 smaller alder		
			willow		
			labrador tea		
			dwarf birch		
			1 large tuft of alsike clover		
	Jul-18	65 to 70	moss	grass poor	alsika solvar is dving bask d
	Jui-10	05 10 70	alder, 80, 82, 173, 13 cm alsike clover	grass - poor others - good	alsike colver is dying back de to shading from the growing
			willows, 3 cm	others good	alder
			fescue		caterpillar in plot
			spruce seedling		rabbit pellet in plot
			dwarf birch, 5 cm		
	Jul-13	35	unidentified tufts of grass - lots tufted hairgrass, 1 mature plant	good	
	Sep-13	40	tufted hairgrass, mature, up to 30 cm	good	Sign of grazing.
	·		alpine bluegrass, 2 cm		
			other grasses, 3 cm		
			alder		
	Aug-14	50	tufted hairgrass, mature, up to 42 cm ticklegrass, mature up to 36 cm	good	1 willow in plot
			sheep fescue, mature up to 30 cm		
			spiked trisetum, mature up to 20 cm		
			alpine bluegrass, lots of immature, 2 - 4 cm		
			alder, 4		
	Aug-15	40	tufted hairgrass	good	willow late of mose
			alpine bluegrass spiked trisetum		lots of moss, 1 mushroom
			sheep fescue		
			tickle grass		
			alder		
	Jul-16	65	unidentified grasses	good	Some moss in plot
3-3A			tickle grass sheep fescue		
5 JA			alpine bluegrass		
			7 alder up to 37 cm		
			8 Salix spp		
			1 possible Hedysarum plant		
	Aug-19	50	tufted hairgrass, mature	good	good biodiversity
			ticklegrass, mature alpine bluegrass		healthy growth of all plants
			Calamagrotis canadensis, mature		
			fescues, mature		
			7 alder up to 88 cm		
			dwarf birch		
			willows,		
			labrador tea		
	hil 10	80	spruce alder 134, 95, 63 cm	and	
	Jul-18	80	alder, 134, 95, 63 cm spike trisetum, 19, 24 cm	good	
			trufted hairgrass, 19, 26 cm		
			willow, 15, 9, 5.5 cm		
	1	1	spruce seedlings		1
			spruce seedings		

	Date	% Cover	Species, avg height cm and/or # of individuals	Overall Health	Comments
	Jul-13	5	sparse unhealthy unidentified grass	stressed	in upper right corner only
	Sep-13	5 - 10	unidentified grass, <3 cm alder, <1 cm	stressed	grass is brown
	Aug-14	<5	sheep fescue, immature - small but healthy	good	1 labrador tea and 1 tiny
		-	ticklegrass, 1 mature, 10 cm	8	spruce seedling in plot,
			alder, 10 plants, very small		one fairly large aspen
					growing downhill of plot
	Aug-15	5	tickle grass	good	1 labrador tea
			unidentified grass species		1 willow
	Jul-16	5	alder unidentified grasses		small amount of moss
	301 10	5	tickle grass		1 very small blueberry
			alder		labrador tea
			8 dwarf birch		
3-1			2 small spruce		
	Aug-17	5 to 10	sparse unhealthy fescue	grasses - poor	grasses appear somewhat
			1 ticklegrass dwarf birch	others - good	stressed, volunteer plants appear to be doing well
			labrador tea		appear to be doing weil
			willow		
			spruce		
			moss		
	Jul-18	3 to 5	3 alder, 7, 10, 17 cm	grasses - fair	
			dwarf birch 5, 4 cm	others - good	
			tufted harigrass, 27, 25, 17 cm spruce seedlings, 3 cm		
			labrador tea, 5 cm		
			willow, 6.5, 4.5 cm		
	Jul-13	20	unidentified small tufts of grasses	good	
			alpine bluegrass		
			alder, 3 plants		
	Sep-13	30	hedysarum, 5 plants alder, <2cm, 12 plants	partially stressed	But lots of green healthy
	5ch 12	55	alpine bluegrass, < 2cm	portiony suressed	plants.
			unidentified grass, < 4cm		plants
			hedysarum, < 2cm		
	Aug-14	40	tickle grass up to 15 cm	good	1 willow growing in plot
			alpine bluegrass		
			unidentified immature grasses		
	Aug 15	35	alder, approx 20	good	willow,
	Aug-15	55	sheep fescue spiked trisetum	good	clover in flower
			alpine bluegrass		
			tickle grass		
			unidentified grasses		
			alder		
3-2B	Jul-16	45	unidentified grasses (may be some sheep fescue)	overall good but	some moss
			alpine bluegrass	some grasses appear	signs of grazing on upper
			tickle grass tufted hairgrass, 40.5 cm	slightly stressed	leaves of alder alsike clover in plot
			11 alder		2 paper birch
			13 dwarf birch		to be a second sec
			7 Salix spp		
	Aug-17	40	struggling fescue	fair to good	the fescues appear somewhat
			alpine bluegrass 9 robust alder up to 80 cm		stressed.
			willows,		alders appear very healthy
			spruce seedlings		
			moss		
			dwarf birch		
	Jul-18	75	dwarf birch alder, 26, 120, 139, 94 cm	grasses - poor	alders have grown quite a bit
	Jul-18	75	dwarf birch alder, 26, 120, 139, 94 cm dwarf birch, 21, 8.5 cm	grasses - poor others - good	since the previous year - see
	Jul-18	75	dwarf birch alder, 26, 120, 139, 94 cm dwarf birch, 21, 8.5 cm willow, 6.5 cm		since the previous year - see Photo #39.
	Jul-18	75	dwarf birch alder, 26, 120, 139, 94 cm dwarf birch, 21, 8.5 cm willow, 6.5 cm spruce seedling		since the previous year - see Photo #39. Alder has nitrogen nodule on roo
	Jul-18	75	dwarf birch alder, 26, 120, 139, 94 cm dwarf birch, 21, 8.5 cm willow, 6.5 cm		since the previous year - see
	Jul-18 Jul-13	75	dwarf birch alder, 26, 120, 139, 94 cm dwarf birch, 21, 8.5 cm willow, 6.5 cm spruce seedling mostly dead grasses - unidentified		since the previous year - see Photo #39. Alder has nitrogen nodule on roo
			dwarf birch alder, 26, 120, 139, 94 cm dwarf birch, 21, 8.5 cm willow, 6.5 cm spruce seedling mostly dead grasses - unidentified moss small tufts of unidentified grasses alpine bluegrass	others - good	since the previous year - see Photo #39. Alder has nitrogen nodule on roo see Photo #40
			dwarf birch alder, 26, 120, 139, 94 cm dwarf birch, 21, 8.5 cm willow, 6.5 cm spruce seedling mostly dead grasses - unidentified moss small tufts of unidentified grasses alpine bluegrass alder, 5 plants	others - good	since the previous year - see Photo #39. Alder has nitrogen nodule on roo see Photo #40
	Jul-13	10 - 15	dwarf birch alder, 26, 120, 139, 94 cm dwarf birch, 21, 8.5 cm willow, 6.5 cm spruce seedling mostly dead grasses - unidentified moss small tufts of unidentified grasses alpine bluegrass alder, 5 plants hedysarum, 1 plant	others - good fairly good	since the previous year - see Photo #39. Alder has nitrogen nodule on roo see Photo #40 possible willow in plot
			dwarf birch alder, 26, 120, 139, 94 cm dwarf birch, 21, 8.5 cm willow, 6.5 cm spruce seedling mostly dead grasses - unidentified moss small tufts of unidentified grasses alpine bluegrass alder, 5 plants hedysarum, 1 plant alpine bluegrass, < 1cm	others - good	since the previous year - see Photo #39. Alder has nitrogen nodule on roo see Photo #40 possible willow in plot plants appear healthy
	Jul-13	10 - 15	dwarf birch alder, 26, 120, 139, 94 cm dwarf birch, 21, 8.5 cm willow, 6.5 cm spruce seedling mostly dead grasses - unidentified moss small tufts of unidentified grasses alpine bluegrass alder, 5 plants hedysarum, 1 plant alpine bluegrass, < 1cm unidentified grass, < 3cm	others - good fairly good	since the previous year - see Photo #39. Alder has nitrogen nodule on roo see Photo #40 possible willow in plot
	Jul-13	10 - 15	dwarf birch alder, 26, 120, 139, 94 cm dwarf birch, 21, 8.5 cm willow, 6.5 cm spruce seedling mostly dead grasses - unidentified moss small tufts of unidentified grasses alpine bluegrass alder, 5 plants hedysarum, 1 plant alpine bluegrass, < 1cm	others - good fairly good	since the previous year - see Photo #39. Alder has nitrogen nodule on roo see Photo #40 possible willow in plot plants appear healthy
	Jul-13	10 - 15	dwarf birch alder, 26, 120, 139, 94 cm dwarf birch, 21, 8.5 cm willow, 6.5 cm spruce seedling mostly dead grasses - unidentified moss small tufts of unidentified grasses alpine bluegrass alder, 5 plants hedysarum, 1 plant alpine bluegrass, < 1cm unidentified grass, < 3cm alder, < 1cm	others - good fairly good	since the previous year - see Photo #39. Alder has nitrogen nodule on roo see Photo #40 possible willow in plot plants appear healthy
	Jul-13 Sep-13	10 - 15 15 - 20	dwarf birch alder, 26, 120, 139, 94 cm dwarf birch, 21, 8.5 cm willow, 6.5 cm spruce seedling mostly dead grasses - unidentified moss small tufts of unidentified grasses alpine bluegrass alder, 5 plants hedysarum, 1 plant alpine bluegrass, 4 cm unidentified grass, 4 cm alder, < 1 cm hedysarum, < 2 cm unidentified tufts of grass - several alpine bluegrass, immature	others - good fairly good good	since the previous year - see Photo #39. Alder has nitrogen nodule on roo see Photo #40 possible willow in plot plants appear healthy although small no mature grasses 1 spruce in plot
	Jul-13 Sep-13 Aug-14	10 - 15 15 - 20 30	dwarf birch alder, 26, 120, 139, 94 cm dwarf birch, 21, 8.5 cm willow, 6.5 cm spruce seedling mostly dead grasses - unidentified moss small tufts of unidentified grasses alpine bluegrass alder, 5 plants hedysarum, 1 plant alpine bluegrass, 4 cm unidentified grass, 4 cm hedysarum, < 2 cm unidentified tufts of grass - several alpine bluegras, immature alder, 9 plants	others - good fairly good good good	since the previous year - see Photo #39. Alder has nitrogen nodule on roo see Photo #40 possible willow in plot plants appear healthy although small no mature grasses 1 spruce in plot 1 willow in plot
	Jul-13 Sep-13	10 - 15 15 - 20	dwarf birch alder, 26, 120, 139, 94 cm dwarf birch, 21, 8.5 cm willow, 6.5 cm spruce seedling mosty dead grasses - unidentified moss small tufts of unidentified grasses alpine bluegrass alder, 5 plants hedysarum, 1 plant alpine bluegrass, < 1cm unidentified grass, < 3cm alder, < 1cm hedysarum, < 2cm unidentified tufts of grass - several alpine bluegrass, immature alpine bluegrass, immature alder, 9 plants spiked trisetum	others - good fairly good good	since the previous year - see Photo #39. Alder has nitrogen nodule on roo see Photo #40 possible willow in plot plants appear healthy although small no mature grasses 1 spruce in plot 1 willow in plot 1 spruce seedling
	Jul-13 Sep-13 Aug-14	10 - 15 15 - 20 30	dwarf birch alder, 26, 120, 139, 94 cm dwarf birch, 21, 8.5 cm willow, 6.5 cm spruce seedling mostly dead grasses - unidentified moss small tufts of unidentified grasses alpine bluegrass alder, 5 plants hedysarum, 1 plant alpine bluegrass, < 1 cm unidentified grass, < 3 cm alder, < 1 cm hedysarum, < 2 cm unidentified tufts of grass - several alpine bluegrass, immature alder, 9 plants spiked trisetum alpine bluegrass	others - good fairly good good good	since the previous year - see Photo #39. Alder has nitrogen nodule on roo see Photo #40 possible willow in plot plants appear healthy although small no mature grasses 1 spruce in plot 1 willow in plot 1 spruce seedling willow
	Jul-13 Sep-13 Aug-14	10 - 15 15 - 20 30	dwarf birch alder, 26, 120, 139, 94 cm dwarf birch, 21, 8.5 cm willow, 6.5 cm spruce seedling mostly dead grasses - unidentified moss small tufts of unidentified grasses alpine bluegrass alder, 5 plants hedysarum, 1 plant alpine bluegrass, < 1cm unidentified grass, < 3 cm alder, < 1cm hedysarum, < 2 cm unidentified tufts of grass - several alpine bluegrass, immature alder, 9 plants spiked trisetum alpine bluegrass unidentified grasses	others - good fairly good good good	since the previous year - see Photo #39. Alder has nitrogen nodule on roo see Photo #40 possible willow in plot plants appear healthy although small no mature grasses 1 spruce in plot 1 willow in plot 1 spruce seedling
	Jul-13 Sep-13 Aug-14	10 - 15 15 - 20 30	dwarf birch alder, 26, 120, 139, 94 cm dwarf birch, 21, 8.5 cm willow, 6.5 cm spruce seedling mostly dead grasses - unidentified moss small tufts of unidentified grasses alpine bluegrass alder, 5 plants hedysarum, 1 plant alpine bluegrass, < 1 cm unidentified grass, < 3 cm alder, < 1 cm hedysarum, < 2 cm unidentified tufts of grass - several alpine bluegrass, immature alder, 9 plants spiked trisetum alpine bluegrass	others - good fairly good good good	since the previous year - see Photo #39. Alder has nitrogen nodule on roo see Photo #40 possible willow in plot plants appear healthy although small no mature grasses 1 spruce in plot 1 willow in plot 1 spruce seedling willow
3-38	Jul-13 Sep-13 Aug-14 Aug-15	10 - 15 15 - 20 30 25	dwarf birch alder, 26, 120, 139, 94 cm dwarf birch, 21, 8.5 cm willow, 6.5 cm spruce seedling mostly dead grasses - unidentified moss small tufts of unidentified grasses alpine bluegrass alder, 5 plants hedysarum, 1 plant alpine bluegrass, < 1cm unidentified grass, < 3cm alder, < 1cm hedysarum, < 2cm unidentified tufts of grass - several alpine bluegrass, immature alpine bluegrass spiked trisetum alpine bluegrass unidentified grasses alder, 9 jants	others - good fairly good good good good	since the previous year - see Photo #39. Alder has nitrogen nodule on roo see Photo #40 possible willow in plot plants appear healthy although small no mature grasses 1 spruce in plot 1 willow in plot 1 spruce seedling willow lots of moss,
3-38	Jul-13 Sep-13 Aug-14 Aug-15	10 - 15 15 - 20 30 25	dwarf birch alder, 26, 120, 139, 94 cm dwarf birch, 21, 8.5 cm willow, 6.5 cm spruce seedling mostly dead grasses - unidentified moss small tufts of unidentified grasses algine bluegrass alder, 5 plants hedysarum, 1 plant alpine bluegrass, 4 cm unidentified grass, 4 cm algine bluegrass, immature algine bluegrass, immature algine bluegrass spiked trisetum algine bluegrass alder, 9 plants spiked trisetum algine bluegrass algine bluegrass algine bluegrass algine bluegrass algine bluegrass algine bluegrass algine bluegrass algine bluegrass algine bluegrass algine bluegrass, a few plants 5 alger	conters - good fairly good good good good grasses are stressed	since the previous year - see Photo #39. Alder has nitrogen nodule on roo see Photo #40 possible willow in plot plants appear healthy although small no mature grasses 1 spruce in plot 1 willow in plot 1 spruce seedling willow lots of moss, lots of moss, not included in
3-38	Jul-13 Sep-13 Aug-14 Aug-15	10 - 15 15 - 20 30 25	dwarf birch alder, 26, 120, 139, 94 cm dwarf birch, 21, 8.5 cm willow, 6.5 cm spruce seedling mostly dead grasses - unidentified moss small turts of unidentified grasses alpine bluegrass alder, 5 plants hedysarum, 1 plant alpine bluegrass, <1 cm unidentified grass, < 3 cm alder, < 1 cm hedysarum, 2 cm unidentified turts of grass - several alpine bluegrass, immature alder, 9 plants spiked trisetum alpine bluegrass unidentified grasses alpine bluegrass unidentified grasses alpine bluegrass, a few plants 5 alder 8 dwarf birch	others - good fairly good good good good grasses are stressed other plants appear	since the previous year - see Photo #39. Alder has nitrogen nodule on roo see Photo #40 possible willow in plot plants appear healthy although small no mature grasses 1 spruce in plot 1 willow in plot 1 spruce seedling willow lots of moss, lots of moss, not included in
3-3B	Jul-13 Sep-13 Aug-14 Aug-15	10 - 15 15 - 20 30 25	dwarf birch alder, 26, 120, 139, 94 cm dwarf birch, 21, 8.5 cm willow, 6.5 cm spruce seedling mostly dead grasses - unidentified moss small tufts of unidentified grasses alpine bluegrass alder, 5 plants hedysarum, 1 plant alpine bluegrass, cm alder, < 1 cm unidentified grass, < 3 cm alder, < 1 cm unidentified grass, < 3 cm alpine bluegrass, immature alpine bluegrass spiked trisetum alpine bluegrass unidentified grasses alpine bluegrass unidentified grasses alpine bluegrass bluegrass alpine bluegrass s < 3 der der S alder 8 dwarf birch 5 Salix spp	others - good fairly good good good good grasses are stressed other plants appear	since the previous year - see Photo #39. Alder has nitrogen nodule on roo see Photo #40 possible willow in plot plants appear healthy although small no mature grasses 1 spruce in plot 1 willow in plot 1 spruce seedling willow lots of moss, lots of moss, not included in
3-3В	Jul-13 Sep-13 Aug-14 Aug-15 Jul-16	10 - 15 15 - 20 30 25 5 to 10	dwarf birch alder, 26, 120, 139, 94 cm dwarf birch, 21, 8.5 cm willow, 6.5 cm spruce seedling mostly dead grasses - unidentified moss small tufts of unidentified grasses alpine bluegrass alder, 5 plants hedysarum, 1 plant alpine bluegrass, 2 cm unidentified grass, 4 cm hedysarum, < 2 cm unidentified tufts of grass - several alpine bluegrass, immature alpine bluegrass, immature alpine bluegrass spiked trisetum alpine bluegrass alpine bluegrass alpine bluegrass alder unidentified grasses alder unidentified grasses alder S alder 8 dwarf birch S Salix spp 1 spruce	others - good fairly good good good good grasses are stressed other plants appear healthy	since the previous year - see Photo #39. Alder has nitrogen nodule on roc see Photo #40 possible willow in plot plants appear healthy although small no mature grasses 1 spruce in plot 1 willow in plot 1 spruce seedling willow lots of moss, lots of moss, not included in cover estimate.
3-3B	Jul-13 Sep-13 Aug-14 Aug-15	10 - 15 15 - 20 30 25	dwarf birch alder, 26, 120, 139, 94 cm dwarf birch, 21, 8.5 cm willow, 6.5 cm spruce seedling mostly dead grasses - unidentified moss small tufts of unidentified grasses algen bluegrass alder, 5 plants hedysarum, 1 plant alpine bluegrass, < 1cm unidentified grass, < 3 cm alder, < 1cm hedysarum, < 2cm unidentified tufts of grass - several alpine bluegrass, immature alder, 9 plants spiked trisetum alpine bluegrass unidentified grasses alder soliked frisetum alpine bluegrass algen soliked trisetum alpine bluegrass algen S alder 8 dwarf birch 5 Salis spp 1 spruce alpine bluegrass	others - good fairly good good good good grasses are stressed other plants appear	since the previous year - see Photo #39. Alder has nitrogen nodule on roo see Photo #40 possible willow in plot plants appear healthy although small no mature grasses 1 spruce in plot 1 willow in plot 1 spruce seedling willow lots of moss, lots of moss, not included in cover estimate.
3-38	Jul-13 Sep-13 Aug-14 Aug-15 Jul-16	10 - 15 15 - 20 30 25 5 to 10	dwarf birch alder, 26, 120, 139, 94 cm dwarf birch, 21, 8.5 cm willow, 6.5 cm spruce seedling mostly dead grasses - unidentified moss small tufts of unidentified grasses alpine bluegrass alder, 5 plants hedysarum, 1 plant alpine bluegrass, 2 cm unidentified grass, - 3 cm alder, < 1 cm hedysarum, < 2 cm unidentified tufts of grass - several alpine bluegrass, immature alder, 9 plants spiked trisetum alpine bluegrass unidentified grasses alpine bluegrass alder unidentified grasses alder unidentified grasses algen bluegrass, a few plants 5 alder 8 dwarf birch 5 Salix spp 1 spruce alpine bluegrass fescues	others - good fairly good good good good grasses are stressed other plants appear healthy	since the previous year - see Photo #39. Alder has nitrogen nodule on roo see Photo #40 possible willow in plot plants appear healthy although small no mature grasses 1 spruce in plot 1 willow in plot 1 spruce seedling willow lots of moss, lots of moss, not included in cover estimate.
3-38	Jul-13 Sep-13 Aug-14 Aug-15 Jul-16	10 - 15 15 - 20 30 25 5 to 10	dwarf birch alder, 26, 120, 139, 94 cm dwarf birch, 21, 8.5 cm willow, 6.5 cm spruce seedling mostly dead grasses - unidentified moss small tufts of unidentified grasses alpine bluegrass alder, 5 plants hedysarum, 1 plant alpine bluegrass, 2 cm unidentified grass, 3 cm alder, < 1 cm hedysarum, < 2 cm unidentified tufts of grass - several alpine bluegrass, immature alder, 9 plants spiked trisetum alpine bluegrass unidentified grasses alder unidentified grasses alder unidentified grasses alder s 4 dwarf birch S Salix spp 1 spruce alpine bluegrass fescues fescues	others - good fairly good good good good grasses are stressed other plants appear healthy	since the previous year - see Photo #39. Alder has nitrogen nodule on roc see Photo #40 possible willow in plot plants appear healthy although small no mature grasses 1 spruce in plot 1 spruce seedling willow lots of moss, lots of moss, not included in cover estimate.
3-3B	Jul-13 Sep-13 Aug-14 Aug-15 Jul-16	10 - 15 15 - 20 30 25 5 to 10	dwarf birch alder, 26, 120, 139, 94 cm dwarf birch, 21, 8.5 cm willow, 6.5 cm spruce seedling mostly dead grasses - unidentified moss small tufts of unidentified grasses alpine bluegrass alder, 5 plants hedysarum, 1 plant alpine bluegrass, 2 cm unidentified grass, - 3 cm alder, < 1 cm hedysarum, < 2 cm unidentified tufts of grass - several alpine bluegrass, immature alder, 9 plants spiked trisetum alpine bluegrass unidentified grasses alpine bluegrass alder unidentified grasses alder unidentified grasses algen bluegrass, a few plants 5 alder 8 dwarf birch 5 Salix spp 1 spruce alpine bluegrass fescues	others - good fairly good good good good grasses are stressed other plants appear healthy	since the previous year - see Photo #39. Alder has nitrogen nodule on roo see Photo #40 possible willow in plot plants appear healthy although small no mature grasses 1 spruce in plot 1 willow in plot 1 spruce seedling willow lots of moss, lots of moss, not included in cover estimate.
3-3В	Jul-13 Sep-13 Aug-14 Aug-15 Jul-16	10 - 15 15 - 20 30 25 5 to 10	dwarf birch alder, 26, 120, 139, 94 cm dwarf birch, 21, 8.5 cm willow, 6.5 cm spruce seedling mostly dead grasses - unidentified moss small tufts of unidentified grasses algen bluegrass alder, 5 plants hedysarum, 1 plant alpine bluegrass, 2 cm unidentified grass, 3 cm alder, 4 cm hedysarum, 4 cm unidentified tufts of grass - several alpine bluegrass, immature alpine bluegrass spiked trisetum alpine bluegrass unidentified grasses alder unidentified grasses alder unidentified grasses alpine bluegrass, a few plants 5 slater 8 dwarf birch 5 Salix spp 1 spruce alpine bluegrass fescues 6 alder up to 44 cm dwarf birch	others - good fairly good good good good grasses are stressed other plants appear healthy	since the previous year - see Photo #39. Alder has nitrogen nodule on roc see Photo #40 possible willow in plot plants appear healthy although small no mature grasses 1 spruce in plot 1 willow in plot 1 spruce seedling willow lots of moss, lots of moss, not included in cover estimate. all grasses appear to be strugglin however the grasses growing near the alder appear more healthy.
3-38	Jul-13 Sep-13 Aug-14 Aug-15 Jul-16 Aug-17	10 - 15 15 - 20 30 25 5 to 10 20	dwarf birch alder, 26, 120, 139, 94 cm dwarf birch, 21, 8.5 cm willow, 6.5 cm spruce seedling mostly dead grasses - unidentified moss small tufts of unidentified grasses alpine bluegrass alder, 5 plants hedysarum, 1 plant alpine bluegrass, 2 cm unidentified grass, 4 cm alder, 4 cm hedysarum, 2 cm unidentified tufts of grass - several alpine bluegrass, immature alpine bluegrass, immature alpine bluegrass spiked trisetum alpine bluegrass alder unidentified grasses alder unidentified grasses alder 8 dwarf birch 5 Salix spp 1 spruce alpine bluegrass fescues 6 alder up to 44 cm dwarf birch willows spruce moss	others - good fairly good good good good grasses are stressed other plants appear healthy	since the previous year - see Photo #39. Alder has nitrogen nodule on roc see Photo #40 possible willow in plot plants appear healthy although small no mature grasses 1 spruce in plot 1 spruce seedling willow lots of moss, lots of moss, not included in cover estimate. all grasses appear to be strugglin however the grasses growing near the alder appear more healthy. Alder and volunteer plants appear healthy
3-38	Jul-13 Sep-13 Aug-14 Aug-15 Jul-16	10 - 15 15 - 20 30 25 5 to 10	dwarf birch alder, 26, 120, 139, 94 cm dwarf birch, 21, 8.5 cm willow, 6.5 cm spruce seedling mostly dead grasses - unidentified moss small tufts of unidentified grasses alpine bluegrass alder, 5 plants hedysarum, 1 plant alpine bluegrass, < 1 cm unidentified grass, < 3 cm alder, < 1 cm hedysarum, < 2 cm unidentified grass, < 3 cm alder, < 9 plants spiked tristeum alpine bluegrass unidentified grasses algine bluegrass unidentified grasses algine bluegrass, a few plants 5 alder 8 dwarf birch 5 Salix spp 1 spruce alpine bluegrass fescues 6 alder up to 44 cm dwarf birch willows spruce moss 7 alder, 67, 76, 49 cm	others - good fairly good good good good grasses are stressed other plants appear healthy stressed to healthy grass - poor	since the previous year - see Photo #39. Alder has nitrogen nodule on roc see Photo #40 possible willow in plot plants appear healthy although small no mature grasses 1 spruce in plot 1 willow in plot 1 spruce seedling willow lots of moss, lots of moss, not included in cover estimate. all grasses appear to be strugglin however the grasses growing near the alder appear more healthy.
3-3B	Jul-13 Sep-13 Aug-14 Aug-15 Jul-16 Aug-17	10 - 15 15 - 20 30 25 5 to 10 20	dwarf birch alder, 26, 120, 139, 94 cm dwarf birch, 21, 8.5 cm willow, 6.5 cm spruce seedling mostly dead grasses - unidentified moss small tufts of unidentified grasses alpine bluegrass alder, 5 plants hedysarum, 1 plant alpine bluegrass, 2 cm unidentified grass, 2 cm alder, < 1 cm hedysarum, < 2 cm unidentified grass, 3 cm alder, 9 plants spiked trisetum alpine bluegrass unidentified grasses alpine bluegrass unidentified grasses alpine bluegrass unidentified grasses alpine bluegrass by the trisetum alder 8 dwarf birch 5 Salix spp 1 spruce alpine bluegrass fescues 6 alder up to 44 cm dwarf birch willows spruce moss 7 alder, 67, 76, 49 cm dwarf birch, 14, 28, 13, 6.5 cm	others - good fairly good good good good grasses are stressed other plants appear healthy stressed to healthy	since the previous year - see Photo #39. Alder has nitrogen nodule on roc see Photo #40 possible willow in plot plants appear healthy although small no mature grasses 1 spruce in plot 1 spruce seedling willow lots of moss, lots of moss, not included in cover estimate. all grasses appear to be strugglin however the grasses growing near the alder appear more healthy. Alder and volunteer plants appear healthy
3-3В	Jul-13 Sep-13 Aug-14 Aug-15 Jul-16 Aug-17	10 - 15 15 - 20 30 25 5 to 10 20	dwarf birch alder, 26, 120, 139, 94 cm dwarf birch, 21, 8.5 cm willow, 6.5 cm spruce seedling mostly dead grasses - unidentified moss small tufts of unidentified grasses alpine bluegrass alder, 5 plants hedysarum, 1 plant alpine bluegrass, < 1 cm unidentified grass, < 3 cm alder, < 1 cm hedysarum, < 2 cm unidentified grass, < 3 cm alder, < 9 plants spiked tristeum alpine bluegrass unidentified grasses algine bluegrass unidentified grasses algine bluegrass, a few plants 5 alder 8 dwarf birch 5 Salix spp 1 spruce alpine bluegrass fescues 6 alder up to 44 cm dwarf birch willows spruce moss 7 alder, 67, 76, 49 cm	others - good fairly good good good good grasses are stressed other plants appear healthy stressed to healthy grass - poor	since the previous year - see Photo #39. Alder has nitrogen nodule on roc see Photo #40 possible willow in plot plants appear healthy although small no mature grasses 1 spruce in plot 1 spruce seedling willow lots of moss, lots of moss, not included in cover estimate. all grasses appear to be strugglin however the grasses growing near the alder appear more healthy. Alder and volunteer plants appear healthy

* = includes moss cover, without moss, approximately 35 % cover

TABLE C-2ASSESSMENTS OF THE PLOTS AT THE WASTE ROCK SITE, 2013, 2014, 2015, 2016, 2017 AND 2018

BLOCK #1

	Date	% Cover	Species, height cm and/or # of individuals	Overall Health	Comments
	Jul-13	0			bare plot
	Sep-13	<1	1 blade of unidentifiable grass	stressed	bare plot
	Aug-14	0			bare plot, moist soil
1-1	Aug-15	0			bare plot
	Jul-16	0			bare plot
	Aug-17	0			bare plot
	Jul-18	0			bare plot, ants in plot
	Jul-13	40 - 50	2 species of grass - unidentified	good	tallest and most robust
			alder, 8 plants		growth of all plots in block
			hedysarum, 2 plants		
	Sep-13	60 - 65	tickle grass, some in seed, max 30 cm	good	green healthy growth,
			glaucous bluegrass up to 12 cm		signs of grazing
			sheep fescue (?), 8 cm		
			alder < 1cm		
			hedysarum, < 2cm		
	Aug-14	70	tufted hairgrass, 2 plants up to 40 cm	good	even coverage of plot,
			ticklegrass, many plants, avg 35 cm		1 willow in plot
			sheep fescue, 3 mature plants, max 35 to 40 cm		
			alder, 7 plants		
	Aug-15	55	tufted hairgrass	good	willow in plot
			glaucous bluegrass		
			tickle grass		
			sheep fescue		
1-2			alder		
	Jul-16	50	unidentified grasses	good	some moss
			tickle grass		lady bug in plot
			sheep fescue		
			tufted hairgrass		
			glaucous bluegrass		
			5 alders up to 34.5 cm		
			10 Salix spp		
	Aug-17	50	fescue, some mature	stressed to good	mostly dead or stressed
			15 alder up to 61 cm		grasses,
			spruce		trees are healthy
			willows		
	Jul-18	50 - 60	6 large alder; heights: 71, 97, 90, 20, 13 cm	good	several small alder
			willows; heights: 15, 9, 4 cm		
				some grasses are	herbivory on one willow
			spruce sapling, 12 cm	some grasses are stressed	nitrogen nodule on alder root
			spruce sapling, 12 cm fescue, some mature; 38, 42, 25 cm	-	nitrogen nodule on alder root see Photo #55.
			spruce sapling, 12 cm fescue, some mature; 38, 42, 25 cm unidentified grass	-	nitrogen nodule on alder root see Photo #55. lots of dead grass
	hul 12	45 20	spruce sapling, 12 cm fescue, some mature; 38, 42, 25 cm unidentified grass moss	stressed	nitrogen nodule on alder root see Photo #55.
	Jul-13	15 - 20	spruce sapling, 12 cm fescue, some mature; 38, 42, 25 cm unidentified grass moss small tufts of unidentified grass	-	nitrogen nodule on alder root see Photo #55. lots of dead grass
			spruce sapling, 12 cm fescue, some mature; 38, 42, 25 cm unidentified grass moss small tufts of unidentified grass alder, 2 plants - very small	good	nitrogen nodule on alder root see Photo #55. lots of dead grass ant in plot
	Jul-13 Sep-13	15 - 20 30 - 35	spruce sapling, 12 cm fescue, some mature; 38, 42, 25 cm unidentified grass moss small tufts of unidentified grass alder, 2 plants - very small glaucous bluegrass up to 8 cm	stressed	nitrogen nodule on alder root see Photo #55. lots of dead grass
			spruce sapling, 12 cm fescue, some mature; 38, 42, 25 cm unidentified grass moss small tufts of unidentified grass alder, 2 plants - very small glaucous bluegrass up to 8 cm unidentified grass up to 10 cm	good	nitrogen nodule on alder root see Photo #55. lots of dead grass ant in plot
	Sep-13	30 - 35	spruce sapling, 12 cm fescue, some mature; 38, 42, 25 cm unidentified grass moss small tufts of unidentified grass alder, 2 plants - very small glaucous bluegrass up to 8 cm unidentified grass up to 10 cm alder, <1 cm	good good	nitrogen nodule on alder root see Photo #55. lots of dead grass ant in plot sporadic cover
			spruce sapling, 12 cm fescue, some mature; 38, 42, 25 cm unidentified grass moss small tufts of unidentified grass alder, 2 plants - very small glaucous bluegrass up to 8 cm unidentified grass up to 10 cm alder, <1 cm ticklegrass, max 35 cm	good	nitrogen nodule on alder root see Photo #55. lots of dead grass ant in plot sporadic cover uneven distribution,
	Sep-13 Aug-14	30 - 35 40	spruce sapling, 12 cm fescue, some mature; 38, 42, 25 cm unidentified grass moss small tufts of unidentified grass alder, 2 plants - very small glaucous bluegrass up to 8 cm unidentified grass up to 10 cm alder, <1 cm ticklegrass, max 35 cm alder, 1 plant	good good	nitrogen nodule on alder root see Photo #55. lots of dead grass ant in plot sporadic cover
	Sep-13	30 - 35	spruce sapling, 12 cm fescue, some mature; 38, 42, 25 cm unidentified grass moss small tufts of unidentified grass alder, 2 plants - very small glaucous bluegrass up to 8 cm unidentified grass up to 10 cm alder, <1 cm ticklegrass, max 35 cm alder, 1 plant tickle grass	stressed good good fairly good	nitrogen nodule on alder root see Photo #55. lots of dead grass ant in plot sporadic cover uneven distribution,
1-3	Sep-13 Aug-14	30 - 35 40	spruce sapling, 12 cm fescue, some mature; 38, 42, 25 cm unidentified grass moss small tufts of unidentified grass alder, 2 plants - very small glaucous bluegrass up to 8 cm unidentified grass up to 10 cm alder, <1 cm ticklegrass, max 35 cm alder, 1 plant tickle grass tufted hairgrass	stressed good good fairly good some grasses are	nitrogen nodule on alder root see Photo #55. lots of dead grass ant in plot sporadic cover uneven distribution,
1-3	Sep-13 Aug-14	30 - 35 40	spruce sapling, 12 cm fescue, some mature; 38, 42, 25 cm unidentified grass moss small tufts of unidentified grass alder, 2 plants - very small glaucous bluegrass up to 8 cm unidentified grass up to 10 cm alder, <1 cm ticklegrass, max 35 cm alder, 1 plant tickle grass tufted hairgrass unidentified grasses	stressed good good fairly good	nitrogen nodule on alder root see Photo #55. lots of dead grass ant in plot sporadic cover uneven distribution,
1-3	Sep-13 Aug-14 Aug-15	30 - 35 40 15	spruce sapling, 12 cm fescue, some mature; 38, 42, 25 cm unidentified grass moss small tufts of unidentified grass alder, 2 plants - very small glaucous bluegrass up to 8 cm unidentified grass up to 10 cm alder, <1 cm ticklegrass, max 35 cm alder, 1 plant tickle grass tufted hairgrass unidentified grasses alder	stressed good good fairly good some grasses are stressed	nitrogen nodule on alder root see Photo #55. lots of dead grass ant in plot sporadic cover uneven distribution,
1-3	Sep-13 Aug-14	30 - 35 40	spruce sapling, 12 cm fescue, some mature; 38, 42, 25 cm unidentified grass moss small tufts of unidentified grass alder, 2 plants - very small glaucous bluegrass up to 8 cm unidentified grass up to 10 cm alder, <1 cm ticklegrass, max 35 cm alder, 1 plant tickle grass tufted hairgrass unidentified grasses alder ticklegrass	stressed good good fairly good some grasses are	nitrogen nodule on alder root see Photo #55. lots of dead grass ant in plot sporadic cover uneven distribution,
1-3	Sep-13 Aug-14 Aug-15	30 - 35 40 15	spruce sapling, 12 cm fescue, some mature; 38, 42, 25 cm unidentified grass moss small tufts of unidentified grass alder, 2 plants - very small glaucous bluegrass up to 8 cm unidentified grass up to 10 cm alder, <1 cm ticklegrass, max 35 cm alder, 1 plant tickle grass tufted hairgrass unidentified grasses alder ticklegrass unidentified grasses alder	stressed good good fairly good some grasses are stressed	nitrogen nodule on alder root see Photo #55. lots of dead grass ant in plot sporadic cover uneven distribution,
1-3	Sep-13 Aug-14 Aug-15 Jul-16	30 - 35 40 15 5	spruce sapling, 12 cm fescue, some mature; 38, 42, 25 cm unidentified grass moss small tufts of unidentified grass alder, 2 plants - very small glaucous bluegrass up to 8 cm unidentified grass up to 10 cm alder, <1 cm ticklegrass, max 35 cm alder, 1 plant tickle grass tufted hairgrass unidentified grasses alder ticklegrass unidentified grasses alder ticklegrass unidentified tufts of stressed grasses 2 alders up to 11.5 cm	stressed good good fairly good some grasses are stressed stressed	nitrogen nodule on alder root see Photo #55. lots of dead grass ant in plot sporadic cover uneven distribution, bare sections
1-3	Sep-13 Aug-14 Aug-15	30 - 35 40 15	spruce sapling, 12 cm fescue, some mature; 38, 42, 25 cm unidentified grass moss small tufts of unidentified grass alder, 2 plants - very small glaucous bluegrass up to 8 cm unidentified grass up to 10 cm alder, <1 cm ticklegrass, max 35 cm alder, 1 plant tickle grass tufted hairgrass unidentified grasses alder ticklegrass unidentified tufts of stressed grasses 2 alders up to 11.5 cm live grasses growing next to alders only	stressed good good fairly good some grasses are stressed	nitrogen nodule on alder root see Photo #55. lots of dead grass ant in plot sporadic cover uneven distribution, bare sections lots of dead or stressed
1-3	Sep-13 Aug-14 Aug-15 Jul-16	30 - 35 40 15 5	spruce sapling, 12 cm fescue, some mature; 38, 42, 25 cm unidentified grass moss small tufts of unidentified grass alder, 2 plants - very small glaucous bluegrass up to 8 cm unidentified grass up to 10 cm alder, <1 cm ticklegrass, max 35 cm alder, 1 plant tickle grass tufted hairgrass unidentified grasses alder ticklegrass unidentified grasses alder ticklegrass unidentified tufts of stressed grasses 2 alders up to 11.5 cm	stressed good good fairly good some grasses are stressed stressed	nitrogen nodule on alder root see Photo #55. lots of dead grass ant in plot sporadic cover uneven distribution, bare sections

Plot #	Date	% Cover	Species, height cm and/or # of individuals	Overall Health	Comments
	Jul-13	10 - 15	small tufts of unidentified grass, at least 2 species	fairly good	
	Sep-13	30 - 35	glaucous bluegrass up to 8 cm	partially stressed	
A			unidentified grass up to 4 cm		
			alder, <1 cm		
	Aug-14	50	ticklegrass, many mature plants, up to 30 cm	good	uneven distribution
			sheep fescue, a few plants, up to 15 cm		
			alder, 5 plants		
	Aug-15	20	tickle grass	good	willow in plot
			glaucous bluegrass		
			alder		
	Jul-16	15 to 20	unidentified grasses	grasses appear	herbivory on the alders
			glaucous bluegrass	somewhat stressed,	and on some grasses
			ticklegrass	others appear healthy	
1-4			13 alder		
			22 Salix spp		
			3 spruce		
	Aug-17	40	fescue, several in seed	good	
	Ū		alders up to 68 cm	C C	
			willows - healthy and growing		
			spruce - growing		
	Jul-18	75	alder; heights: 84, 72, 88, 27 cm	good	all plants are healthy except
			felt leaf willow; 32, 34 cm	C C	for the grasses - only a few
			another willow species; 34, 30, 15, 12 cm		green blades and none
			spruce; 28 cm		were mature
			paper birch; 38 cm		Some willows had insect
			grass		damage
			8.000		Seed cones on alder, Photo #54
	Jul-13	5	sparse short growth of grasses	stressed	
	Sep-13	50	glaucous bluegrass, 4 cm	good	Signs of grazing.
	000 10		tickle grass up to 3 cm	8000	even coverage of growth
			unidentified grass up to 4 cm		
			alder, < 2cm		
			hedysarum		
	Aug-14	60	tickle grass, mature, max 25 cm	good	Several tufts of
			immature glaucous bluegrass	8	unidentifiable grass.
			immature grass - may be sheep fescue		Photo #48.
			alder, 2 plants		
	Aug-15	45	sheep fescue	good	willows
	Aug 15	45	tickle grass	good	WIIIOWS
			glaucous bluegrass		
			alpine bluegrass		
			alders		
1-5	Jul-16	30	unidentified grasses	grasses appear	
13	501 10	50	ticklegrass	somewhat stressed,	
			sheep fescue	shrubs appear	
			glaucous bluegrass	healthy	
			5 alders up to 61.5 cm	nearthy	
			16 Salix spp		
	Aug-17	30	ticklegrass - immature	fair to good	lots of grass litter
	~ug-1/	50	fescue		grasses appear stressed
			4 large alder up to 111 cm		grasses appear stressed
			small willow seedlings		
	Jul-18	65 - 70		and	1 of the alders had produced
	AT-INC	07 - כס	alder; 122, 98, 68, 97 cm	good	1 of the alders had produced
			fescue; 31, 29 cm		cones
			spruce seedling		previous year's grass litter
			willow 8, 6, 8 cm		
			paper birch		
			moss		

TABLE C-2ASSESSMENTS OF THE PLOTS AT THE WASTE ROCK SITE, 2013, 2014, 2015, 2016, 2017 AND 2018

BLOCK #2

Plot #	Date	% Cover	Species, height cm and/or # of individuals	Overall Health	Comments
	Jul-13	0	no sign of any growth		bare plot
	Sep-13	0	no sign of any growth		bare plot
	Aug-14	0	no sign of any growth		bare plot
2-1	Aug-15	0	no sign of any growth		bare plot
	Jul-16	0	no sign of any growth		bare plot
	Aug-17	0	no sign of any growth		bare plot, moose tracks in plot
	Jul-18	0	no sign of any growth		bare plot
	Jul-13	35	unidentified tufts of grass - healthy	good	coverage mostly on east half
			alder, 1 plant, very small		
			hedysarum, 2 plants		
	Sep-13	50	ticklegrass up to 16 cm	good	growth covers most of the
			sheep fescue up to 12 cm		eastern half of plot
			glaucous bluegrass up to 8 cm		
			alder		
			hedysarum,		
	Aug-14	60	ticklegrass, mature, max 30 cm	good	growth covers most of the
			alder, 7 plants		eastern half of plot
			volunteer willow, 6 plants		
			volunteer spruce, 2 plants		
	Aug-15	60	tickle grass	good	healthy alder growth, many
			glaucous bluegrass		juvenile willow plants, 2 spruce
			unidentified grasses		seedlings, leaf litter
2 2			alders		
2-2	Jul-16	40	ticklegrass	good	moose had walked thru Block
			unidentified grasses		leaf litter
			51 alder up to 34 cm, many small		blue bug on alder leaf
			16 Salix spp		
Aug-17			2 spruce		
			1 subalpine fir		
	Aug-17	60	ticklegrass, mature plants	good	grass leaf litter
			immature fescue		coverage mostly on east half
			many alder of various sizes		
			2 spruce seedlings		
			willows		
	Jul-18	85	alder; heights: 45, 76, 63, 26, 95 cm	good	some alder leaves have brown
			7 spruce		edges and some alders have no
					leaves on the top of the stem
					possible defoliation
	Jul-13	45	unidentified tufts of grass - healthy	good	more even coverage
			alder, 9 plants		
	Sep-13	60	ticklegrass up to 11 cm	good	even cover of plot
			glaucous bluegrass up to 11 cm		
			alder, several small seedlings		
	Aug-14	60	ticklegrass, max 38 cm	good	even distribution
	_		immature sheep fescue	_	
			alder, >20 plants		
	Aug-15	60	tickle grass	good	healthy alder growth
	Ũ		unidentified grasses	5	willow in plot
			many alder		
	Jul-16	40	ticklegrass		
2-3			unidentified grasses		
			many alder, more than in 2-2, up to 36 cm		
			6 Salix spp		
			3 paper birch		
	Aug-17	60	numerous alder	good	some of the alder appear to have
			5 paper birch		suffered from browsers and/or
			3 spruce		defoliators
			willows		
	Jul-18	60 - 65	alder; 94, 31, 92, 48, 31 cm	good	some alders have necrosis
	JUI-10	00 - 03	paper birch; 45, 21 cm	good	on some of their leaves, see
					Photo #81
	1				1 11010 #01

Plot #	Date	% Cover	Species, height cm and/or # of individuals	Overall Health	Comments
	Jul-13	50	unidentified tufts of 2 to 3 species of grass - healthy	good	even growth on plot
			glaucous bluegrass		
			alder, 1 plant		
	Sep-13	60	glaucous bluegrass up to 8 cm	good	even cover of plot
			sheep fescue up to 4 cm		
			ticklegrass up to 3 cm		
			alder, <1 cm		
	Aug-14	60	sheep fescue, several mature	good	even distribution
			immature glaucous bluegrass, up to 15 cm		1 volunteer willow plant
			alder, 15 plants		see Photo #63
	Aug-15	70	tufted hairgrass	good	healthy alder growth
			tickle grass		willow in plot
			sheep fescue		
			glaucous bluegrass		
2-4			many alder		
	Jul-16	80	glaucous bluegrass	good	lush growth
			ticklegrass		
			lots of alder		
			2 Salix spp		
			2 spruce		
			1 paper birch		
	Aug-17	90	tufted hairgrass, several in flower	good	some of the alder seem to have
			fescue, some mature		suffered as in Plot 2-3 (2017)
			ticlegrass		
			numerous alder - thick growth		
	1.1.10	05	willows		
	Jul-18	95	numerous alder; 45, 103, 82, 94 cm	good	no leaf disease on alder but tops
			fescue - mature		of stems appear to be stripped
	Jul-13	30	tufted hairgrass mature unidentified tufts of grass - healthy	good	by a grazer - Photos #66 & 67
	Jul-13	30	hedysarum, 2 plants	good	
	Sep-13	40 - 50	tickle grass up to 30 cm	good	even cover of plot,
	Jeb-12	40 - 50	glaucous bluegrass up to 13 cm	good	less robust growth than
			alder, < 1cm		plot 2-4
	Aug-14	50	tickle grass, many mature, up to 30 cm	good	
	7.00 <u>5</u> 1 1	50	sheep fescue, several, up to 25 cm	good	
			alder, 8 plants		
	Aug-15	50	ticklegrass	good	willows in plot
	1008 10		glaucous bluegrass	8000	
			unidentified grasses		
2-5	Jul-16	30	unidentified grasses	grasses appear	
			glaucous bluegrass - couple of plants	stressed, others look	
			16 alder	healthy	
			3 Salix spp	,	
			1 paper birch		
	Aug-17	75	numerous alder	fair to good	some of the alder seem to have
			unhealthy fescue	_	suffered as in Plot 2-3 (2017)
			willows		
			spruce seedlings		
	Jul-18	99	numerous alder	good	some alders have stripped stems
			some willow		as in Plot 2-4 (2018)
			dead grass		

Plot #	Date	% Cover	Species, height cm and/or # of individuals	Overall Health	Comments
	Jul-13	0	no growth		bare plot
	Sep-13	0	no growth		bare, moist plot
	Aug-14	0	no growth		moose track in plot
3-1	Aug-15	0	no growth		
	Jul-16	0	no growth		bare plot
	Aug-17	0	no growth		bare plot
	Jul-18	0	no growth		old moose prints in bare plot
	Jul-13	30	unidentified tufts of grass alder, 5 plants	partially stressed	growth localized, plants appear stressed on right side
	Sep-13	30	ticklegrass, lots in seed, up to 35 cm glaucous bluegrass up to 8 cm	partially stressed	
	Aug-14	20	ticklegrass, mature, max 33 cm sheep fescue, several mature, max 15 cm	partially stressed	half of plot is bare
3-2	Aug-15	10	tickle grass glaucous bluegrass	stressed	
	Jul-16	<5	ticklegrass glaucous bluegrass	stressed	
	Aug-17	0	no live growth		only dead plant material from previous years
	Jul-18	0	no live growth		only dead plant material from previous years
	Jul-13	5	sparse stressed grass growth	stressed	
	Sep-13	5 - 10	unidentified grass up to 5 cm	stressed	
	Aug-14	0	dead grasses from last year's growth	stressed	
3-3	Aug-15	0	no growth		
	Jul-16	0	no growth		
	Aug-17	0	no growth		bare plot
	Jul-18	0	no growth		bare plot
	Jul-13	40 - 50	many tufts of healthy unidentified grasses	good	good growth in lower half
	Sep-13	50	tickle grass, some in seed, up to 4 cm sheep fescue (?), 7 cm	good	
			glaucous bluegrass, up to 2 cm		
	Aug-14	35	ticklegrass, up to 35 cm	good	healthiest plot in Block #3
			tufted hairgrass, 1 mature plant, up to 40 cm		see Photo #74
			sheep fescue, 1 mature plant, up to 34 cm		
	Aug-15	25	tufted hairgrass	good	willow in plot
			tickle grass		
			sheep fescue		
			glaucous bluegrass		
	Jul-16	15	unidentified grasses	grasses stressed	
			glaucous bluegrass		
3-4			ticklegrass		
			tufted hairgass		
			4 Salix spp		
		_	2 dwarf birch		
	Aug-17	5	1 ticklegrass in seed	fair to stressed	
			1 tuft of glaucous bluegrass		
			2 alder		
			a few willows		
			small dwarf birch		
			small tufts of fescue	1 1.1	
	Jul-18	2	several willow; 7, 12, 13, 8, 11, 15.5 cm	healthy	See Photo #80
			alder; 4 cm		
			paper birch; 15 cm		
			ticklegrass; 31, 19 cm, mature		
		10	dwarf birch; 5.5 cm		
	Jul-13	<10	unidentified grasses	partially stressed	some tufts quite healthy
	Sep-13	10 - 15	glaucous bluegrass, < 2 cm	stressed	most plants are brown
	A		unidentified grass up to 3 cm		and and and a
	Aug-14	<10	tickle grass, a few mature and immature, up to 25 cm	stressed	good soil moisture
			glaucous bluegrass, 1 mature, 25 cm		
-			stressed stunted grasses		
3-5			dead grass from last year		
	Aug-15	10	tickle grass	good	
	Jul-16	<5	glaucous bluegrass unidentified grasses	stressed	
	Aug-17	<5	glaucous bluegrass, mature	fair	
		1	ticklegrass, mature	1	
	Jul-18		a few tufts of ticklegrass; 29, 19 cm	fair	

TABLE C-2 ASSESSMENTS OF THE PLOTS AT THE WASTE ROCK SITE, 2013, 2014, 2015, 2016, 2017 AND 2018

NOTE: stressed = brown or withered plants

good = green plants showing vigor

	TABLE C-3 SPECIES DOC	CUMENTED AT THE PLOTS
	Common Name	Scientific Name
	Sheep fescue	Festuca ovina
	Tufted hairgrass	Deschampsia caespitosa
eq	Glaucous bluegrass	Poa glauca
Planted	Alpine bluegrass	Poa alpina
Ë	Tickle grass	Agrostis scabra
	Spike Trisetum	Trisetum spicatum
	Bear root	Hedysarum alpinum
	Alder	Alnus viridus
	Willow	Salix spp
	Dwarf birch	Betula glandulosa
er	Labrador Tea	Rhododendron groenlandicum
Volunteer	Blueberry	Vaccinium uliginosum
olu	White spruce	Picea glauca
>	Alaska birch	Betula neoalaskana
	Alsike clover	Trifolium hybridum
	Bluejoint grass	Calamagrotis canadensis

TABLE C-4	ROOT LENGTH	OF RANDOMLY SELECTED	PLANTS
Site	Plot #	Species	Root Length (cm)
	1-3A	Alpine Bluegrass	7
	1-3A	Alder	9
	1-1B	Alder	7
	1-2B	Sheep Fescue	8
	1-2B	Alpine Bluegrass	6
<u>ч</u>	1-2B	Alder	7
Trench	2-1A	Alder	9
μ μ	2-1A	Dwarf birch	6
	2-2	Alder	8
	2-2	Willow	7
	2-1B	Dwarf birch	7
	2-1B	Dwarf birch	8
	3-2A	Alder	6
	1-2	Willow	9
du	1-3	Alder	8
n	1-3	Alder	9
L X	1-5	Willow	4
COC	2-2	Alder	18
е В	2-3	Alder	7
Waste Rock Dump	2-4	Alder	7
Ň	2-5	Alder	3
	2-5	Alder	7

TABLE C-5 METAL CONCENTRATIONS (mg/kg) IN FOLIAR TISSUES AT THE TRENCH SITE, 2018

Plot #	T1-1B	T1-2AB	T1-2AB	T1-3	T1-3	T2-2	T2-2	T2-3A	T2-3A	T3-2AB	T3-2AB	T3-3AB	T3-3AB	Range
Species	Alder	Alder	Alder	Alder	Alder	Alder	Alder	Alder	Alder	Alder	Alder	Alder	Alder	
Tissue Type	Leaves and stems	Leaves	Stems	Leaves	Stems	Leaves	Stems	Leaves	Stems	Leaves	Stems	Leaves	Stems	
Aluminum (Al)-Total	33.5	14.3	12.1	10.0	4.8	20.0	5.2	8.2	<2.0	37.2	9.6	18.8	6.5	4.8 to 37.2
Antimony (Sb)-Total	5.59	1.16	0.963	0.471	1.32	0.127	0.050	0.117	0.044	2.48	0.709	0.391	0.337	0.044 to 5.590
Arsenic (As)-Total	17.0	4.02	2.88	3.40	3.07	1.37	0.626	0.571	0.411	4.09	1.53	1.54	1.31	0.41 to 17.00
Barium (Ba)-Total	39.5	4.61	12.8	5.60	10.5	37.2	62.5	28.2	58.9	36.2	79.1	22.3	71.0	4.6 to 79.1
Beryllium (Be)-Total	<0.010	<0.010	<0.010	<0.010	<0.010	<0.010	<0.010	<0.010	<0.010	<0.010	<0.010	<0.010	<0.010	ND to ND
Bismuth (Bi)-Total	0.219	0.058	0.044	0.014	0.072	0.020	<0.010	<0.010	<0.010	0.173	0.060	0.028	0.026	0.014 to 0.219
Boron (B)-Total	7.7	5.5	8.3	7.3	7.7	7.8	10.4	9.4	12.0	4.9	6.0	6.6	7.0	4.9 to 12.0
Cadmium (Cd)-Total	<0.010	0.0052	0.0163	< 0.0050	0.0055	< 0.0050	0.0163	< 0.0050	0.0097	0.0062	0.0111	< 0.0050	0.0120	ND to 0.016
Calcium (Ca)-Total	11000	7370	5170	10600	6710	7470	6020	6860	5690	5790	5120	6320	6160	5120 to 11000
Cesium (Cs)-Total	0.136	0.0957	0.258	0.149	0.176	0.330	0.225	0.161	0.104	0.379	0.191	0.159	0.145	0.10 to 0.38
Chromium (Cr)-Total	0.22	< 0.050	0.060	< 0.050	< 0.050	< 0.050	< 0.050	< 0.050	< 0.050	< 0.050	<0.050	<0.050	<0.050	ND to 0.22
Cobalt (Co)-Total	0.121	0.058	0.030	0.065	<0.020	0.100	0.065	0.054	0.034	0.334	0.132	0.180	0.105	0.03 to 0.33
Copper (Cu)-Total	6.54	6.03	6.12	4.34	5.20	9.61	9.16	7.03	7.85	9.51	7.94	6.75	7.16	4.34 to 9.61
Iron (Fe)-Total	222	64.5	42.6	47.2	26.3	71.6	35.9	68.2	42.6	75.9	37.5	65.7	40.2	26.30 to 222.00
Lead (Pb)-Total	48.0	7.39	5.28	2.46	4.43	11.5	8.24	5.15	5.85	18.5	15.1	9.35	9.09	2.46 to 48.00
Lithium (Li)-Total	<0.50	<0.50	<0.50	<0.50	<0.50	<0.50	<0.50	<0.50	<0.50	<0.50	<0.50	<0.50	<0.50	ND to ND
Magnesium (Mg)-Total	2430	1670	983	1660	780	2170	1230	1960	1290	1930	1100	1940	1080	780 to 2430
Manganese (Mn)-Total	214	42.3	71.2	64.2	74.2	44.9	44.0	30.7	35.3	72.7	101	66.3	97.0	30.7 to 214.0
Mercury (Hg)-Total	0.0067	< 0.0050	< 0.0050	< 0.0050	<0.0050	<0.0050	<0.0050	< 0.0050	< 0.0050	< 0.0050	< 0.0050	< 0.0050	<0.0050	ND to 0.0067
Molybdenum (Mo)-Tota	il 3.71	4.34	6.40	8.51	6.59	1.15	1.73	2.16	3.82	1.98	4.74	3.97	3.38	1.15 to 8.51
Nickel (Ni)-Total	5.54	1.08	0.77	0.55	0.39	3.03	2.66	1.65	1.77	3.05	1.83	2.04	1.64	0.39 to 5.54
Phosphorus (P)-Total	938	2820	1980	2470	1450	2270	1780	2330	1770	2350	1530	2500	1560	938 to 2820
Potassium (K)-Total	7510	5850	5110	5330	4110	7080	6590	7970	7750	6000	4810	6600	4890	4110 to 7970
Rubidium (Rb)-Total	7.81	11.4	11.0	7.09	5.92	10.3	8.64	7.58	6.58	17.5	9.79	11.2	8.55	5.92 to 17.50
Selenium (Se)-Total	<0.10	< 0.050	< 0.050	< 0.050	< 0.050	0.241	0.124	0.242	0.116	0.054	<0.050	0.087	0.052	0.052 to 0.242
Sodium (Na)-Total	29	<20	<20	<20	<20	<20	<20	<20	<20	<20	<20	<20	<20	ND to 29.0
Strontium (Sr)-Total	44.0	18.0	20.5	22.7	22.8	52.1	60.7	37.2	49.3	23.5	30.0	21.7	34.5	18.0 to 60.7
Tellurium (Te)-Total	<0.020	<0.020	<0.020	<0.020	<0.020	<0.020	<0.020	<0.020	<0.020	<0.020	<0.020	<0.020	<0.020	0.0 to 0.0
Thallium (TI)-Total	0.0060	0.0021	0.0052	0.0020	0.0058	<0.0020	0.0038	<0.0020	<0.0020	<0.0020	0.0053	<0.0020	0.0032	ND to 0.0060
Tin (Sn)-Total	0.21	<0.10	<0.10	<0.10	<0.10	<0.10	<0.10	<0.10	<0.10	<0.10	<0.10	<0.10	<0.10	ND to 0.21
Uranium (U)-Total	0.0180	0.0023	0.0025	<0.0020	<0.0020	0.0092	<0.0020	0.0027	<0.0020	0.0026	<0.0020	<0.0020	<0.0020	ND to 0.0180
Vanadium (V)-Total	<0.10	<0.10	<0.10	<0.10	<0.10	<0.10	<0.10	<0.10	<0.10	<0.10	<0.10	<0.10	<0.10	ND to ND
Zinc (Zn)-Total	48.5	24.6	34.5	34.8	43.6	22.1	40.1	25.7	31.7	29.7	36.6	20.8	31.9	20.8 to 48.5
Zirconium (Zr)-Total	<0.20	<0.20	<0.20	<0.20	<0.20	<0.20	<0.20	<0.20	<0.20	<0.20	<0.20	<0.20	<0.20	ND to ND

ND = not detected

TABLE C-6 METAL CONCENTRATIONS (mg/kg) IN FOLIAR TISSUES AT THE WASTE ROCK DUMP, 2018

Plot #	W1-2	W1-2	W1-3	W1-4	W1-4	W1-4	W1-5	W1-5	W2-2	W2-2	W2-3	W2-3	W2-4	W2-4	W2-5	W2-5	W3-4	Range
Species	Alder	Alder	Alder	Alder	Alder	Willow	Alder	Alder	Alder	Alder	Alder	Alder	Alder	Alder	Alder	Alder	Several Species	
Tissue type	Leaves	Stems	Leaves and Stems	Leaves	Stems	Leaves and Stems	Leaves	Stems	Leaves	Stems	Leaves	Stem	Leaves	Stems	Leaves	Stems		
Aluminum (Al)-Total	27.8	6.9	82.6	14.9	5.1	11.0	13.7	3.8	48.3	7.7	40.7	5.9	22.6	3.5	8.7	3.4	40.8	3.4 to 82.6
Antimony (Sb)-Total	1.85	0.640	0.910	2.35	0.903	1.15	6.08	1.08	2.77	0.629	1.11	0.402	8.51	0.726	1.48	0.575	32.4	0.4 to 32.4
Arsenic (As)-Total	7.37	2.97	7.36	7.31	2.96	3.88	6.72	2.19	5.16	1.51	1.97	0.701	6.84	0.900	2.04	0.778	68.7	0.7 to 68.7
Barium (Ba)-Total	3.64	8.78	4.41	0.513	1.02	0.595	0.573	0.591	1.76	4.47	0.609	4.26	0.960	0.820	0.355	0.417	1.88	0.36 to 8.78
Beryllium (Be)-Total	<0.010	< 0.010	0.019	<0.010	< 0.010	<0.010	<0.010	< 0.010	<0.010	< 0.010	<0.010	<0.010	< 0.010	< 0.010	< 0.010	< 0.010	<0.010	ND to 0.01900
Bismuth (Bi)-Total	0.181	0.070	0.139	0.327	0.124	0.164	0.937	0.160	0.252	0.050	0.100	0.037	0.782	0.062	0.156	0.065	4.29	0.037 to 4.290
Boron (B)-Total	17.3	13.3	9.7	3.1	6.7	5.9	15.1	10.8	8.1	9.0	8.3	8.6	4.1	5.2	4.6	7.4	30.7	3.1 to 30.7
Cadmium (Cd)-Total	0.0200	0.166	0.0737	< 0.0050	0.0136	2.14	0.0439	0.178	0.0080	0.0420	0.0091	0.0262	0.0088	0.0125	0.0079	0.0093	6.44	0.008 to 6.440
Calcium (Ca)-Total	6860	4550	3300	4790	3450	6030	10900	3670	3570	3430	1490	1930	7640	3140	8170	4120	9190	1490.0 to 10900.0
Cesium (Cs)-Total	0.254	0.148	0.777	1.05	0.578	0.0901	0.239	0.129	0.690	0.483	0.594	0.477	0.668	0.445	0.519	0.569	0.188	0.090 to 1.050
Chromium (Cr)-Total	< 0.050	< 0.050	< 0.050	< 0.050	< 0.050	< 0.050	< 0.050	< 0.050	0.082	< 0.050	< 0.050	< 0.050	0.078	< 0.050	< 0.050	< 0.050	0.099	0.078 to 0.099
Cobalt (Co)-Total	0.515	0.146	0.256	0.274	0.140	0.466	0.228	0.110	0.448	0.124	0.285	0.049	0.094	0.055	0.143	0.079	0.769	0.049 to 0.769
Copper (Cu)-Total	11.3	11.6	34.8	12.0	16.9	4.68	9.73	11.7	10.2	10.3	12.1	10.1	13.2	11.9	9.20	11.7	9.20	4.7 to 34.8
Iron (Fe)-Total	123	47.9	166	130	56.8	58.5	97.1	37.6	195	57.8	111	36.3	177	41.3	84.6	41.0	530	36.3 to 530.0
Lead (Pb)-Total	8.84	3.67	2.66	4.28	1.61	2.60	12.3	3.74	6.86	1.37	2.48	1.01	15.3	1.42	3.21	1.32	68.6	1.0 to 68.6
Lithium (Li)-Total	<0.50	<0.50	0.63	<0.50	<0.50	<0.50	<0.50	<0.50	<0.50	<0.50	< 0.50	<0.50	<0.50	<0.50	<0.50	< 0.50	<0.50	ND to 0.6
Magnesium (Mg)-Total	1900	689	791	2950	1180	4770	3920	942	734	426	930	706	3330	1160	3170	1080	4840	426.0 to 4840.0
Manganese (Mn)-Total	206	311	360	45.6	70.5	93.0	117	101	262	399	107	275	94.2	48.1	110	78.4	414	45.6 to 414.0
Mercury (Hg)-Total	0.0051	< 0.0050	< 0.0050	< 0.0050	< 0.0050	< 0.0050	0.0051	< 0.0050	< 0.0050	< 0.0050	< 0.0050	< 0.0050	< 0.0050	< 0.0050	< 0.0050	< 0.0050	0.0121	ND to 0.012
Molybdenum (Mo)-Total	1.05	1.88	2.22	1.81	5.78	0.049	4.52	5.81	0.158	0.946	0.297	1.73	2.52	3.16	4.48	5.19	1.15	0.05 to 5.810
Nickel (Ni)-Total	4.68	2.01	11.3	2.71	2.00	1.30	2.93	1.50	4.65	2.01	7.23	2.39	2.86	1.81	2.52	1.79	1.67	1.30 to 11.300
Phosphorus (P)-Total	2170	1390	1710	1570	1410	2340	2390	1570	1840	1230	1730	1130	2020	1550	2180	1600	3700	1130 to 3700
Potassium (K)-Total	4800	2650	3400	3130	2750	4400	3870	2830	4460	2670	4960	2850	4360	3530	4300	4020	7890	2650 to 7890
Rubidium (Rb)-Total	11.8	5.14	18.1	15.1	9.79	6.97	11.7	6.54	18.7	8.82	16.9	9.20	14.6	10.5	14.8	12.3	18.9	5.1 to 18.9
Selenium (Se)-Total	0.110	< 0.050	< 0.050	0.059	< 0.050	0.067	0.159	< 0.050	< 0.050	< 0.050	< 0.050	< 0.050	0.060	< 0.050	0.117	< 0.050	0.655	0.059 to 0.655
Sodium (Na)-Total	<20	<20	<20	<20	<20	<20	<20	<20	<20	<20	<20	<20	<20	<20	<20	<20	<20	ND to ND
Strontium (Sr)-Total	14.6	17.5	8.47	1.86	2.29	2.70	7.92	4.52	7.53	13.4	2.78	9.95	5.46	3.10	2.29	1.62	8.04	1.62 to 17.50
Tellurium (Te)-Total	<0.020	< 0.020	< 0.020	<0.020	< 0.020	<0.020	<0.020	< 0.020	< 0.020	< 0.020	< 0.020	< 0.020	<0.020	< 0.020	< 0.020	< 0.020	<0.020	ND to ND
Thallium (TI)-Total	< 0.0020	0.0022	0.0061	< 0.0020	0.0053	< 0.0020	0.0085	0.0162	< 0.0020	0.0034	< 0.0020	< 0.0020	0.0026	0.0021	< 0.0020	0.0025	0.0165	0.002 to 0.0165
Tin (Sn)-Total	<0.10	<0.10	<0.10	<0.10	<0.10	<0.10	<0.10	<0.10	<0.10	<0.10	<0.10	<0.10	<0.10	<0.10	<0.10	<0.10	0.59	ND to 0.590
Uranium (U)-Total	0.0049	< 0.0020	0.0203	0.0074	< 0.0020	< 0.0020	0.0048	< 0.0020	0.0072	< 0.0020	0.0053	< 0.0020	0.0084	< 0.0020	0.0031	<0.0020	0.0313	ND to 0.0313
Vanadium (V)-Total	<0.10	<0.10	<0.10	<0.10	<0.10	<0.10	<0.10	<0.10	0.11	<0.10	<0.10	<0.10	<0.10	<0.10	<0.10	<0.10	<0.10	ND to 0.110
Zinc (Zn)-Total	43.5	76.1	29.7	23.6	41.8	107	82.5	79.7	20.0	35.2	12.6	26.6	24.6	30.7	31.5	40.1	304	12.6 to 304.0
Zirconium (Zr)-Total	0.22	<0.20	<0.20	<0.20	<0.20	<0.20	<0.20	<0.20	<0.20	<0.20	<0.20	<0.20	<0.20	<0.20	<0.20	< 0.20	0.23	ND to 0.23

STRATAGOLD CORPORATION ATTN: Hugh Coyle Suite 1000 - 1050 W. Pender St Vancouver BC V6E 3S7 Date Received:01-AUG-18Report Date:29-AUG-18 12:31 (MT)Version:FINAL

Client Phone: 604-682-5122

Certificate of Analysis

Lab Work Order #: L2139940 Project P.O. #: NOT SUBMITTED

Job Reference: C of C Numbers: Legal Site Desc:

Victoria Gold Corp.

EAGLE GOLD

New

Heather McKenzie Account Manager

[This report shall not be reproduced except in full without the written authority of the Laboratory.]

ADDRESS: 8081 Lougheed Hwy, Suite 100, Burnaby, BC V5A 1W9 Canada | Phone: +1 604 253 4188 | Fax: +1 604 253 6700 ALS CANADA LTD Part of the ALS Group An ALS Limited Company

Environmental 💭

www.alsglobal.com

RIGHT SOLUTIONS RIGHT PARTNER

L2139940 CONTD.... PAGE 12 of 20 29-AUG-18 12:31 (MT) Version: FINAL

	Sample ID		L2139940-26 Veg	L2139940-27 Veg	L2139940-28 Veg	L2139940-29 Veg
	Description Sampled Date	e 31-JUL-18	31-JUL-18	31-JUL-18	31-JUL-18	31-JUL-18
	Sampled Tim Client II		T1-2AB - ALDER LEAVES	T1-2AB - ALDER TWIGS	T1-3 - ALDER LEAVES	T1-3 - ALDER TWIGS
Grouping	Analyte					
TISSUE						
Metals	Aluminum (Al)-Total (mg/kg)	33.5	14.3	12.1	10.0	4.8
	Antimony (Sb)-Total (mg/kg)	5.59	1.16	0.963	0.471	1.32
	Arsenic (As)-Total (mg/kg)	17.0	4.02	2.88	3.40	3.07
	Barium (Ba)-Total (mg/kg)	39.5	4.61	12.8	5.60	10.5
	Beryllium (Be)-Total (mg/kg)	<0.010	<0.010	<0.010	<0.010	<0.010
	Bismuth (Bi)-Total (mg/kg)	0.219	0.058	0.044	0.014	0.072
	Boron (B)-Total (mg/kg)	7.7	5.5	8.3	7.3	7.7
	Cadmium (Cd)-Total (mg/kg)	<0.010	0.0052	0.0163	<0.0050	0.0055
	Calcium (Ca)-Total (mg/kg)	11000	7370	5170	10600	6710
	Cesium (Cs)-Total (mg/kg)	0.136	0.0957	0.258	0.149	0.176
	Chromium (Cr)-Total (mg/kg)	0.22	<0.050	0.060	<0.050	<0.050
	Cobalt (Co)-Total (mg/kg)	0.121	0.058	0.030	0.065	<0.020
	Copper (Cu)-Total (mg/kg)	6.54	6.03	6.12	4.34	5.20
	Iron (Fe)-Total (mg/kg)	222	64.5	42.6	47.2	26.3
	Lead (Pb)-Total (mg/kg)	48.0	7.39	5.28	2.46	4.43
	Lithium (Li)-Total (mg/kg)	<0.50	<0.50	<0.50	<0.50	<0.50
	Magnesium (Mg)-Total (mg/kg)	2430	1670	983	1660	780
	Manganese (Mn)-Total (mg/kg)	214	42.3	71.2	64.2	74.2
	Mercury (Hg)-Total (mg/kg)	0.0067	<0.0050	<0.0050	<0.0050	<0.0050
	Molybdenum (Mo)-Total (mg/kg)	3.71	4.34	6.40	8.51	6.59
	Nickel (Ni)-Total (mg/kg)	5.54	1.08	0.77	0.55	0.39
	Phosphorus (P)-Total (mg/kg)	938	2820	1980	2470	1450
	Potassium (K)-Total (mg/kg)	7510	5850	5110	5330	4110
	Rubidium (Rb)-Total (mg/kg)	7.81	11.4	11.0	7.09	5.92
	Selenium (Se)-Total (mg/kg)	<0.10	<0.050	<0.050	<0.050	<0.050
	Sodium (Na)-Total (mg/kg)	29	<20	<20	<20	<20
	Strontium (Sr)-Total (mg/kg)	44.0	18.0	20.5	22.7	22.8
	Tellurium (Te)-Total (mg/kg)	<0.020	<0.020	<0.020	<0.020	<0.020
	Thallium (TI)-Total (mg/kg)	0.0060	0.0021	0.0052	0.0020	0.0058
	Tin (Sn)-Total (mg/kg)	0.21	<0.10	<0.10	<0.10	<0.10
	Uranium (U)-Total (mg/kg)	0.0180	0.0023	0.0025	<0.0020	<0.0020
	Vanadium (V)-Total (mg/kg)	<0.10	<0.10	<0.10	<0.10	<0.10
	Zinc (Zn)-Total (mg/kg)	48.5	24.6	34.5	34.8	43.6
	Zirconium (Zr)-Total (mg/kg)	<0.20	<0.20	<0.20	<0.20	<0.20

L2139940 CONTD.... PAGE 13 of 20 29-AUG-18 12:31 (MT) Version: FINAL

	Sample ID		L2139940-31	L2139940-32	L2139940-33	L2139940-34
	Description Sampled Date		Veg 31-JUL-18	Veg 31-JUL-18	Veg 31-JUL-18	Veg 31-JUL-18
	Sampled Time Client IE		T2-2 - ALDER TWIGS	T2-3A - ALDER LEAVES	T2-3A - ALDER TWIGS	T3-2AB - ALDEF LEAVES
Grouping	Analyte					
TISSUE						
Metals	Aluminum (Al)-Total (mg/kg)	20.0	5.2	8.2	<2.0	37.2
	Antimony (Sb)-Total (mg/kg)	0.127	0.050	0.117	0.044	2.48
	Arsenic (As)-Total (mg/kg)	1.37	0.626	0.571	0.411	4.09
	Barium (Ba)-Total (mg/kg)	37.2	62.5	28.2	58.9	36.2
	Beryllium (Be)-Total (mg/kg)	<0.010	<0.010	<0.010	<0.010	<0.010
	Bismuth (Bi)-Total (mg/kg)	0.020	<0.010	<0.010	<0.010	0.173
	Boron (B)-Total (mg/kg)	7.8	10.4	9.4	12.0	4.9
	Cadmium (Cd)-Total (mg/kg)	<0.0050	0.0163	<0.0050	0.0097	0.0062
	Calcium (Ca)-Total (mg/kg)	7470	6020	6860	5690	5790
	Cesium (Cs)-Total (mg/kg)	0.330	0.225	0.161	0.104	0.379
	Chromium (Cr)-Total (mg/kg)	<0.050	<0.050	<0.050	<0.050	<0.050
	Cobalt (Co)-Total (mg/kg)	0.100	0.065	0.054	0.034	0.334
	Copper (Cu)-Total (mg/kg)	9.61	9.16	7.03	7.85	9.51
	Iron (Fe)-Total (mg/kg)	71.6	35.9	68.2	42.6	75.9
	Lead (Pb)-Total (mg/kg)	11.5	8.24	5.15	5.85	18.5
	Lithium (Li)-Total (mg/kg)	<0.50	<0.50	<0.50	<0.50	<0.50
	Magnesium (Mg)-Total (mg/kg)	2170	1230	1960	1290	1930
	Manganese (Mn)-Total (mg/kg)	44.9	44.0	30.7	35.3	72.7
	Mercury (Hg)-Total (mg/kg)	<0.0050	<0.0050	<0.0050	<0.0050	<0.0050
	Molybdenum (Mo)-Total (mg/kg)	1.15	1.73	2.16	3.82	1.98
	Nickel (Ni)-Total (mg/kg)	3.03	2.66	1.65	1.77	3.05
	Phosphorus (P)-Total (mg/kg)	2270	1780	2330	1770	2350
	Potassium (K)-Total (mg/kg)	7080	6590	7970	7750	6000
	Rubidium (Rb)-Total (mg/kg)	10.3	8.64	7.58	6.58	17.5
	Selenium (Se)-Total (mg/kg)	0.241	0.124	0.242	0.116	0.054
	Sodium (Na)-Total (mg/kg)	<20	<20	<20	<20	<20
	Strontium (Sr)-Total (mg/kg)	52.1	60.7	37.2	49.3	23.5
	Tellurium (Te)-Total (mg/kg)	<0.020	<0.020	<0.020	<0.020	<0.020
	Thallium (TI)-Total (mg/kg)	<0.0020	0.0038	<0.0020	<0.0020	<0.0020
	Tin (Sn)-Total (mg/kg)	<0.10	<0.10	<0.10	<0.10	<0.10
	Uranium (U)-Total (mg/kg)	0.0092	<0.0020	0.0027	<0.0020	0.0026
	Vanadium (V)-Total (mg/kg)	<0.10	<0.10	<0.10	<0.10	<0.10
	Zinc (Zn)-Total (mg/kg)	22.1	40.1	25.7	31.7	29.7
	Zirconium (Zr)-Total (mg/kg)	<0.20	<0.20	<0.20	<0.20	<0.20

L2139940 CONTD.... PAGE 14 of 20 29-AUG-18 12:31 (MT) Version: FINAL

	Sample		L2139940-36	L2139940-37	L2139940-38	L2139940-39
	Descript Sampled D		Veg 31-JUL-18	Veg 31-JUL-18	Veg 31-JUL-18	Veg 31-JUL-18
	Sampled Ti Client	TO OND ALDED	T3-3AB - ALDER LEAVES	T3-3AB - ALDER TWIGS	W1-2 - ALDER LEAVES	W1-2 - ALDER TWIGS
Grouping	Analyte					
TISSUE	•	_				
Metals	Aluminum (Al)-Total (mg/kg)	9.6	18.8	6.5	27.8	6.9
	Antimony (Sb)-Total (mg/kg)	0.709	0.391	0.337	1.85	0.640
	Arsenic (As)-Total (mg/kg)	1.53	1.54	1.31	7.37	2.97
	Barium (Ba)-Total (mg/kg)	79.1	22.3	71.0	3.64	8.78
	Beryllium (Be)-Total (mg/kg)	<0.010	<0.010	<0.010	<0.010	<0.010
	Bismuth (Bi)-Total (mg/kg)	0.060	0.028	0.026	0.181	0.070
	Boron (B)-Total (mg/kg)	6.0	6.6	7.0	17.3	13.3
	Cadmium (Cd)-Total (mg/kg)	0.0111	<0.0050	0.0120	0.0200	0.166
	Calcium (Ca)-Total (mg/kg)	5120	6320	6160	6860	4550
	Cesium (Cs)-Total (mg/kg)	0.191	0.159	0.145	0.254	0.148
	Chromium (Cr)-Total (mg/kg)	<0.050	<0.050	<0.050	<0.050	<0.050
	Cobalt (Co)-Total (mg/kg)	0.132	0.180	0.105	0.515	0.146
	Copper (Cu)-Total (mg/kg)	7.94	6.75	7.16	11.3	11.6
	Iron (Fe)-Total (mg/kg)	37.5	65.7	40.2	123	47.9
	Lead (Pb)-Total (mg/kg)	15.1	9.35	9.09	8.84	3.67
	Lithium (Li)-Total (mg/kg)	<0.50	<0.50	<0.50	<0.50	<0.50
	Magnesium (Mg)-Total (mg/kg)	1100	1940	1080	1900	689
	Manganese (Mn)-Total (mg/kg)	101	66.3	97.0	206	311
	Mercury (Hg)-Total (mg/kg)	<0.0050	<0.0050	<0.0050	0.0051	< 0.0050
	Molybdenum (Mo)-Total (mg/kg)	4.74	3.97	3.38	1.05	1.88
	Nickel (Ni)-Total (mg/kg)	1.83	2.04	1.64	4.68	2.01
	Phosphorus (P)-Total (mg/kg)					
	Potassium (K)-Total (mg/kg)	1530 4810	2500 6600	1560 4890	2170 4800	1390 2650
	Rubidium (Rb)-Total (mg/kg)	9.79	11.2	8.55	11.8	5.14
	Selenium (Se)-Total (mg/kg)	<0.050	0.087	0.052	0.110	<0.050
	Sodium (Na)-Total (mg/kg)	<0.050	<20	<20	<20	<0.050
	Strontium (Sr)-Total (mg/kg)	30.0	21.7	34.5	14.6	17.5
	Tellurium (Te)-Total (mg/kg)	<0.020	<0.020	<0.020	<0.020	<0.020
	Thallium (TI)-Total (mg/kg)	0.0053	<0.020	0.0032	<0.020	0.0022
	Tin (Sn)-Total (mg/kg)	<0.10	<0.0020	<0.10	<0.0020	<0.10
	Uranium (U)-Total (mg/kg)	<0.0020	<0.0020	<0.0020	0.0049	<0.0020
	Vanadium (V)-Total (mg/kg)	<0.0020	<0.0020	<0.0020	<0.10	<0.0020
	Zinc (Zn)-Total (mg/kg)	36.6	20.8	31.9	43.5	<0.10 76.1
	Zirconium (Zr)-Total (mg/kg)	<0.20	<0.20	<0.20	43.5	<0.20
		<0.20	<0.20	<0.20	0.22	<0.20

L2139940 CONTD.... PAGE 15 of 20 29-AUG-18 12:31 (MT) Version: FINAL

TISSUE Metals Alum Antin Arsei Bariu Beryl Bism Boro Cadr Calci Cesii Chro Coba Copp Iron (Lead Lithiu Mag Mang Mang Moly Nicka Phos Pota	Description Sampled Date Sampled Time Client ID nalyte ninum (Al)-Total (mg/kg) nony (Sb)-Total (mg/kg) nic (As)-Total (mg/kg) um (Ba)-Total (mg/kg) llium (Be)-Total (mg/kg) nuth (Bi)-Total (mg/kg) nuth (Bi)-Total (mg/kg) mium (Cd)-Total (mg/kg) um (Cs)-Total (mg/kg) um (Cs)-Total (mg/kg)	Veg 31-JUL-18 W1-3 - ALDER LEAVES AND TWIGS 82.6 0.910 7.36 4.41 0.019 0.139 9.7 0.0737	Veg 31-JUL-18 W1-4 - ALDER LEAVES 14.9 2.35 7.31 0.513 <0.010 0.327 3.1	Veg 31-JUL-18 W1-4 - ALDER STEMS 5.1 0.903 2.96 1.02 <0.010 0.124	Veg 31-JUL-18 W1-4 - WILLOW LEAVES AND TWIGS 11.0 1.15 3.88 0.595	Veg 31-JUL-18 W2-2 - ALDER LEAVES 48.3 2.77 5.16
TISSUE Metals Alum Antin Arse Bariu Beryl Bism Boro Cadr Calci Cesi Chro Coba Copp Iron Lead Lithiu Mag Mang Marc Moly Nicka Phos Pota	Sampled Time Client ID nalyte	LEAVES AND TWIGS 82.6 0.910 7.36 4.41 0.019 0.139 9.7	LEAVES 14.9 2.35 7.31 0.513 <0.010 0.327	5.1 0.903 2.96 1.02 <0.010	LEAVES AND TWIGS 11.0 1.15 3.88 0.595	48.3 2.77 5.16
TISSUE Metals Alum Antin Arser Bariu Beryl Bism Boro Cadr Calci Cesi Chro Coba Copp Iron Lead Lithiu Magr Mang Marc Moly Nicka Phos Pota Rubi	ninum (Al)-Total (mg/kg) nony (Sb)-Total (mg/kg) nic (As)-Total (mg/kg) um (Ba)-Total (mg/kg) llium (Be)-Total (mg/kg) nuth (Bi)-Total (mg/kg) nium (Cd)-Total (mg/kg) ium (Ca)-Total (mg/kg) um (Cs)-Total (mg/kg)	LEAVES AND TWIGS 82.6 0.910 7.36 4.41 0.019 0.139 9.7	LEAVES 14.9 2.35 7.31 0.513 <0.010 0.327	5.1 0.903 2.96 1.02 <0.010	LEAVES AND TWIGS 11.0 1.15 3.88 0.595	48.3 2.77 5.16
TISSUE Metals Alum Antin Arse Bariu Beryl Bism Boro Cadr Calci Cesi Chro Coba Copp Iron Lead Lithiu Mag Mang Marc Moly Nicka Phos Pota	ninum (Al)-Total (mg/kg) nony (Sb)-Total (mg/kg) nic (As)-Total (mg/kg) um (Ba)-Total (mg/kg) llium (Be)-Total (mg/kg) nuth (Bi)-Total (mg/kg) nium (Cd)-Total (mg/kg) ium (Ca)-Total (mg/kg) um (Cs)-Total (mg/kg)	82.6 0.910 7.36 4.41 0.019 0.139 9.7	2.35 7.31 0.513 <0.010 0.327	0.903 2.96 1.02 <0.010	11.0 1.15 3.88 0.595	2.77 5.16
Metals Alum Antin Antin Arse Bariu Bery Bism Boro Cadr Calci Cesi Chro Coba Copp Iron (Lead Lithiu Magr Mang Merc Moly Nicka Phos Pota	nony (Sb)-Total (mg/kg) nic (As)-Total (mg/kg) um (Ba)-Total (mg/kg) llium (Be)-Total (mg/kg) nuth (Bi)-Total (mg/kg) n (B)-Total (mg/kg) nium (Cd)-Total (mg/kg) ium (Ca)-Total (mg/kg) um (Cs)-Total (mg/kg)	0.910 7.36 4.41 0.019 0.139 9.7	2.35 7.31 0.513 <0.010 0.327	0.903 2.96 1.02 <0.010	1.15 3.88 0.595	2.77 5.16
Antin Arse Bariu Bery Bism Boro Cadr Calci Cesii Chro Coba Copp Iron (Lead Lithiu Mag Mang Mang Mang Phos Pota Rubi	nony (Sb)-Total (mg/kg) nic (As)-Total (mg/kg) um (Ba)-Total (mg/kg) llium (Be)-Total (mg/kg) nuth (Bi)-Total (mg/kg) n (B)-Total (mg/kg) nium (Cd)-Total (mg/kg) ium (Ca)-Total (mg/kg) um (Cs)-Total (mg/kg)	0.910 7.36 4.41 0.019 0.139 9.7	2.35 7.31 0.513 <0.010 0.327	0.903 2.96 1.02 <0.010	1.15 3.88 0.595	2.77 5.16
Arse Bariu Bery Bism Boro Cadr Calci Cesi Chro Coba Copp Iron (Lead Lithiu Magr Mang Mang Merc Moly Nicka Phos Pota Rubi	nic (As)-Total (mg/kg) um (Ba)-Total (mg/kg) llium (Be)-Total (mg/kg) nuth (Bi)-Total (mg/kg) n (B)-Total (mg/kg) nium (Cd)-Total (mg/kg) ium (Ca)-Total (mg/kg) um (Cs)-Total (mg/kg)	0.910 7.36 4.41 0.019 0.139 9.7	7.31 0.513 <0.010 0.327	2.96 1.02 <0.010	3.88 0.595	5.16
Bariu Bery Bism Boro Cadr Calci Cesii Chro Coba Copp Iron (Lead Lithiu Mag Mang Mang Mang Noly Nicka Phos Pota Rubi	um (Ba)-Total (mg/kg) Ilium (Be)-Total (mg/kg) nuth (Bi)-Total (mg/kg) ni (B)-Total (mg/kg) mium (Cd)-Total (mg/kg) ium (Ca)-Total (mg/kg) um (Cs)-Total (mg/kg)	4.41 0.019 0.139 9.7	0.513 <0.010 0.327	1.02 <0.010	0.595	
Bery Bism Boro Cadr Calci Cesi Chro Coba Copp Iron (Lead Lithiu Magr Mang Mang Merc Moly Nicka Phos Pota Rubi	llium (Be)-Total (mg/kg) nuth (Bi)-Total (mg/kg) n (B)-Total (mg/kg) nium (Cd)-Total (mg/kg) ium (Ca)-Total (mg/kg) um (Cs)-Total (mg/kg)	4.41 0.019 0.139 9.7	0.513 <0.010 0.327	<0.010		
Bism Boro Cadr Calci Cesi Chro Coba Copp Iron Lead Lithiu Mag Mang Mang Mang Noly Nicka Phos Pota Rubi	nuth (Bi)-Total (mg/kg) n (B)-Total (mg/kg) nium (Cd)-Total (mg/kg) ium (Ca)-Total (mg/kg) um (Cs)-Total (mg/kg)	0.139 9.7	0.327			1.76
Boro Cadr Calci Cesi Chro Coba Copp Iron (Lead Lithiu Magr Mang Marc Moly Nicka Phos Pota: Rubi	n (B)-Total (mg/kg) nium (Cd)-Total (mg/kg) ium (Ca)-Total (mg/kg) um (Cs)-Total (mg/kg)	9.7		0.124	<0.010	<0.010
Cadr Calci Cesi Chro Coba Copp Iron (Lead Lithiu Mag Mang Mang Mang Noly Nicka Phos Pota Rubi	nium (Cd)-Total (mg/kg) ium (Ca)-Total (mg/kg) um (Cs)-Total (mg/kg)		3.1		0.164	0.252
Calci Cesi Chro Coba Copp Iron (Lead Lithiu Magr Mang Mang Marc Moly Nicka Phos Pota Rubi	ium (Ca)-Total (mg/kg) um (Cs)-Total (mg/kg)	0.0737		6.7	5.9	8.1
Cesi Chro Coba Copp Iron Lead Lithiu Mag Mang Mang Moly Nicka Phos Pota Rubi	um (Cs)-Total (mg/kg)		<0.0050	0.0136	2.14	0.0080
Chro Coba Copp Iron Lead Lithiu Mag Mang Mang Moly Nicka Phos Pota Rubi		3300	4790	3450	6030	3570
Coba Copp Iron (Lead Lithiu Mag Mang Marc Moly Nicka Phos Pota Rubi	mium (Cr)-Total (mg/kg)	0.777	1.05	0.578	0.0901	0.690
Copp Iron (Lead Lithiu Mag Mang Marc Moly Nicka Phos Pota Rubi		<0.050	<0.050	<0.050	<0.050	0.082
Iron (Lead Lithiu Magr Mang Merc Moly Nicke Phos Pota Rubi	alt (Co)-Total (mg/kg)	0.256	0.274	0.140	0.466	0.448
Lead Lithiu Magr Mang Merc Moly Nicka Phos Pota Rubi	per (Cu)-Total (mg/kg)	34.8	12.0	16.9	4.68	10.2
Lithiu Magr Mang Merc Moly Nicke Phos Pota Rubi	(Fe)-Total (mg/kg)	166	130	56.8	58.5	195
Magr Mang Merc Moly Nicka Phos Pota Rubi	l (Pb)-Total (mg/kg)	2.66	4.28	1.61	2.60	6.86
Mang Merc Moly Nicke Phos Pota Rubi	um (Li)-Total (mg/kg)	0.63	<0.50	<0.50	<0.50	<0.50
Merc Moly Nicke Phos Pota Rubi	nesium (Mg)-Total (mg/kg)	791	2950	1180	4770	734
Moly Nicke Phos Pota Rubie	ganese (Mn)-Total (mg/kg)	360	45.6	70.5	93.0	262
Nicke Phos Pota Rubi	cury (Hg)-Total (mg/kg)	<0.0050	<0.0050	<0.0050	<0.0050	<0.0050
Phos Pota Rubi	bdenum (Mo)-Total (mg/kg)	2.22	1.81	5.78	0.049	0.158
Pota: Rubi	el (Ni)-Total (mg/kg)	11.3	2.71	2.00	1.30	4.65
Rubi	sphorus (P)-Total (mg/kg)	1710	1570	1410	2340	1840
	ssium (K)-Total (mg/kg)	3400	3130	2750	4400	4460
Selei	dium (Rb)-Total (mg/kg)	18.1	15.1	9.79	6.97	18.7
	nium (Se)-Total (mg/kg)	<0.050	0.059	<0.050	0.067	<0.050
Sodi	um (Na)-Total (mg/kg)	<20	<20	<20	<20	<20
Stror	ntium (Sr)-Total (mg/kg)	8.47	1.86	2.29	2.70	7.53
Tellu	irium (Te)-Total (mg/kg)	<0.020	<0.020	<0.020	<0.020	<0.020
Thall	lium (TI)-Total (mg/kg)	0.0061	<0.0020	0.0053	<0.0020	<0.0020
Tin (Sn)-Total (mg/kg)	<0.10	<0.10	<0.10	<0.10	<0.10
Uran	ium (U)-Total (mg/kg)	0.0203	0.0074	<0.0020	<0.0020	0.0072
Vana	adium (V)-Total (mg/kg)	<0.10	<0.10	<0.10	<0.10	0.11
Zinc	(Zn)-Total (mg/kg)	29.7	23.6	41.8	107	20.0
Zirco	onium (Zr)-Total (mg/kg)	<0.20	<0.20	<0.20	<0.20	<0.20

L2139940 CONTD.... PAGE 16 of 20 29-AUG-18 12:31 (MT) Version: FINAL

	Sample ID Description Sampled Date Sampled Time Client ID	L2139940-45 Veg 31-JUL-18 W2-2 - ALDER STEMS	L2139940-46 Veg 31-JUL-18 W2-3 - ALDER LEAVES	L2139940-47 Veg 31-JUL-18 W2-3 - ALDER STEMS	L2139940-48 Veg 31-JUL-18 W2-4 - ALDER LEAVES	L2139940-49 Veg 31-JUL-18 W2-4 - ALDER STEMS
Grouping	Analyte	-				
TISSUE						
Metals	Aluminum (Al)-Total (mg/kg)	7.7	40.7	5.9	22.6	3.5
	Antimony (Sb)-Total (mg/kg)	0.629	1.11	0.402	8.51	0.726
	Arsenic (As)-Total (mg/kg)	1.51	1.97	0.701	6.84	0.900
	Barium (Ba)-Total (mg/kg)	4.47	0.609	4.26	0.960	0.820
	Beryllium (Be)-Total (mg/kg)	<0.010	<0.010	<0.010	<0.010	<0.010
	Bismuth (Bi)-Total (mg/kg)	0.050	0.100	0.037	0.782	0.062
	Boron (B)-Total (mg/kg)	9.0	8.3	8.6	4.1	5.2
	Cadmium (Cd)-Total (mg/kg)	0.0420	0.0091	0.0262	0.0088	0.0125
	Calcium (Ca)-Total (mg/kg)	3430	1490	1930	7640	3140
	Cesium (Cs)-Total (mg/kg)	0.483	0.594	0.477	0.668	0.445
	Chromium (Cr)-Total (mg/kg)	<0.050	<0.050	<0.050	0.078	<0.050
	Cobalt (Co)-Total (mg/kg)	0.124	0.285	0.049	0.094	0.055
	Copper (Cu)-Total (mg/kg)	10.3	12.1	10.1	13.2	11.9
	Iron (Fe)-Total (mg/kg)	57.8	111	36.3	177	41.3
	Lead (Pb)-Total (mg/kg)	1.37	2.48	1.01	15.3	1.42
	Lithium (Li)-Total (mg/kg)	<0.50	<0.50	<0.50	<0.50	<0.50
	Magnesium (Mg)-Total (mg/kg)	426	930	706	3330	1160
	Manganese (Mn)-Total (mg/kg)	399	107	275	94.2	48.1
	Mercury (Hg)-Total (mg/kg)	<0.0050	<0.0050	<0.0050	<0.0050	<0.0050
	Molybdenum (Mo)-Total (mg/kg)	0.946	0.297	1.73	2.52	3.16
	Nickel (Ni)-Total (mg/kg)	2.01	7.23	2.39	2.86	1.81
	Phosphorus (P)-Total (mg/kg)	1230	1730	1130	2020	1550
	Potassium (K)-Total (mg/kg)	2670	4960	2850	4360	3530
	Rubidium (Rb)-Total (mg/kg)	8.82	16.9	9.20	14.6	10.5
	Selenium (Se)-Total (mg/kg)	<0.050	<0.050	<0.050	0.060	<0.050
	Sodium (Na)-Total (mg/kg)	<20	<20	<20	<20	<20
	Strontium (Sr)-Total (mg/kg)	13.4	2.78	9.95	5.46	3.10
	Tellurium (Te)-Total (mg/kg)	<0.020	<0.020	<0.020	<0.020	<0.020
	Thallium (TI)-Total (mg/kg)	0.0034	<0.0020	<0.0020	0.0026	0.0021
	Tin (Sn)-Total (mg/kg)	<0.10	<0.10	<0.10	<0.10	<0.10
	Uranium (U)-Total (mg/kg)	<0.0020	0.0053	<0.0020	0.0084	<0.0020
	Vanadium (V)-Total (mg/kg)	<0.10	<0.10	<0.10	<0.10	<0.10
	Zinc (Zn)-Total (mg/kg)	35.2	12.6	26.6	24.6	30.7
	Zirconium (Zr)-Total (mg/kg)	<0.20	<0.20	<0.20	<0.20	<0.20

L2139940 CONTD.... PAGE 17 of 20 29-AUG-18 12:31 (MT) Version: FINAL

	Sample ID Description Sampled Date Sampled Time Client ID	L2139940-50 Veg 31-JUL-18 W2-5 - ALDER LEAVES	L2139940-51 Veg 31-JUL-18 W2-5 - ALDER STEMS	L2139940-52 Veg 31-JUL-18 W3-4 - SEVERAL SPECIES	L2139940-53 Veg 31-JUL-18 W1-5 ALDER STEMS	L2139940-54 Veg 31-JUL-18 W1-5 ALDER LEAVES
Grouping	Analyte					
TISSUE						
Metals	Aluminum (Al)-Total (mg/kg)	8.7	3.4	40.8	3.8	13.7
	Antimony (Sb)-Total (mg/kg)	1.48	0.575	32.4	1.08	6.08
	Arsenic (As)-Total (mg/kg)	2.04	0.778	68.7	2.19	6.72
	Barium (Ba)-Total (mg/kg)	0.355	0.417	1.88	0.591	0.573
	Beryllium (Be)-Total (mg/kg)	<0.010	<0.010	<0.010	<0.010	<0.010
	Bismuth (Bi)-Total (mg/kg)	0.156	0.065	4.29	0.160	0.937
	Boron (B)-Total (mg/kg)	4.6	7.4	30.7	10.8	15.1
	Cadmium (Cd)-Total (mg/kg)	0.0079	0.0093	6.44	0.178	0.0439
	Calcium (Ca)-Total (mg/kg)	8170	4120	9190	3670	10900
	Cesium (Cs)-Total (mg/kg)	0.519	0.569	0.188	0.129	0.239
	Chromium (Cr)-Total (mg/kg)	<0.050	<0.050	0.099	<0.050	<0.050
	Cobalt (Co)-Total (mg/kg)	0.143	0.079	0.769	0.110	0.228
	Copper (Cu)-Total (mg/kg)	9.20	11.7	9.20	11.7	9.73
	Iron (Fe)-Total (mg/kg)	84.6	41.0	530	37.6	97.1
	Lead (Pb)-Total (mg/kg)	3.21	1.32	68.6	3.74	12.3
	Lithium (Li)-Total (mg/kg)	<0.50	<0.50	<0.50	<0.50	<0.50
	Magnesium (Mg)-Total (mg/kg)	3170	1080	4840	942	3920
	Manganese (Mn)-Total (mg/kg)	110	78.4	414	101	117
	Mercury (Hg)-Total (mg/kg)	<0.0050	<0.0050	0.0121	<0.0050	0.0051
	Molybdenum (Mo)-Total (mg/kg)	4.48	5.19	1.15	5.81	4.52
	Nickel (Ni)-Total (mg/kg)	2.52	1.79	1.67	1.50	2.93
	Phosphorus (P)-Total (mg/kg)	2180	1600	3700	1570	2390
	Potassium (K)-Total (mg/kg)	4300	4020	7890	2830	3870
	Rubidium (Rb)-Total (mg/kg)	14.8	12.3	18.9	6.54	11.7
	Selenium (Se)-Total (mg/kg)	0.117	<0.050	0.655	<0.050	0.159
	Sodium (Na)-Total (mg/kg)	<20	<20	<20	<20	<20
	Strontium (Sr)-Total (mg/kg)	2.29	1.62	8.04	4.52	7.92
	Tellurium (Te)-Total (mg/kg)	<0.020	<0.020	<0.020	<0.020	<0.020
	Thallium (TI)-Total (mg/kg)	<0.0020	0.0025	0.0165	0.0162	0.0085
	Tin (Sn)-Total (mg/kg)	<0.10	<0.10	0.59	<0.10	<0.10
	Uranium (U)-Total (mg/kg)	0.0031	<0.0020	0.0313	<0.0020	0.0048
	Vanadium (V)-Total (mg/kg)	<0.10	<0.10	<0.10	<0.10	<0.10
	Zinc (Zn)-Total (mg/kg)	31.5	40.1	304	79.7	82.5
	Zirconium (Zr)-Total (mg/kg)	<0.20	<0.20	0.23	<0.20	<0.20

Reference Information

L2139940 CONTD.... PAGE 19 of 20 29-AUG-18 12:31 (MT) Version: FINAL

ALS Test Code	Matrix	Test Description	Method Reference**
AG-200.2-A-CCMS-VA	Soil	Elevated Ag in Soil by CRC ICPMS	EPA 200.2/6020A
This method uses a heated	strong acid . Dependen	digestion with HNO3 and HCI and is intended to liberat t on sample matrix, some metals may be only partially	te metals that may be environmentally available. Silicate recovered, including AI, Ba, Be, Cr, Sr, Ti, TI, V, W, and
C-TOT-LECO-SK	Soil	Total Carbon by combustion method	CSSS (2008) 21.2
The sample is ignited in a c	ombustion a	nalyzer where carbon in the reduced CO2 gas is deter	mined using a thermal conductivity detector.
CAT-XTR-SK	Soil	Ammonium Acetate Extractable Cations	CSSS 19.4 - 1M NH4OAc Extraction @ pH 7
Exchangeable Ca, Mg, Na,	and K are ex	Attracted from the soil using neutral 1N ammonium acet (tracted from carbonates or free gypsum.	•
ETL-C:N-RATIO-SK	Soil	Carbon:Nitrogen Ratio - Calculation	Calculation
HG-200.2-CVAF-VA	Soil	Mercury in Soil by CVAAS	EPA 200.2/1631E (mod)
Soil samples are digested vacial leachable metals digested was acid leachable metals digested with the second seco			This method is fully compliant with the BC SALM strong
HG-DRY-CVAFS-N-VA	Tissue	Mercury in Tissue by CVAFS (DRY)	EPA 200.3, EPA 245.7
samples are homogenized	and sub-sam	sh Columbia Lab Manual method "Metals in Animal Tis pled prior to hotblock digestion with nitric and hydroch sence spectrophotometry or atomic absorption spectrop	loric acids, in combination with addition of hydrogen
HG-DRY-MICR-CVAF-VA	Tissue	Mercury in Tissue by CVAFS Micro (DRY)	EPA 200.3, EPA 245.7
Biological Tissues" (1996).	Tissue samp additions of h	lethod 200.3 "Sample Procedures for Spectrochemical oles are homogenized and sub-sampled prior to hotbloo hydrogen peroxide. Analysis is by atomic fluorescence PA Method 245.7.	ck digestion with nitric and hydrochloric acids, in
MET-200.2-CCMS-VA	Soil	Metals in Soil by CRC ICPMS	EPA 200.2/6020A (mod)
minerals are not solubilized	 Dependen (including su 		te metals that may be environmentally available. Silicate recovered, including AI, Ba, Be, Cr, Sr, Ti, TI, V, W, and sampling, storage, or digestion. Analysis is by
MET-DRY-CCMS-N-VA	Tissue	Metals in Tissue by CRC ICPMS (DRY)	EPA 200.3/6020A
samples are homogenized	and sub-sam	sh Columbia Lab Manual method "Metals in Animal Tis ppled prior to hotblock digestion with nitric and hydroch Illision cell inductively coupled plasma - mass spectron	loric acids, in combination with addition of hydrogen
		is a strong acid/peroxide digestion, and is intended to p for most toxicologically important metals, but elements	provide a conservative estimate of bio-available metals. s associated with recalcitrant minerals may be only
MET-DRY-MICR-HRMS-VA	Tissue	Metals in Tissue by HR-ICPMS Micro (DRY)	EPA 200.3/200.8
		nigh resolution inductively coupled plasma mass spect aration procedure is modified from US EPA 200.3. And	
		rs a strong acid/peroxide digestion, and is intended to p for most toxicologically important metals, but elements	provide a conservative estimate of bio-available metals. associated with recalcitrant minerals may be only
N-TOTKJ-COL-SK	Soil	Total Kjeldahl Nitrogen	CSSS (2008) 22.2.3
The soil is digested with su	lfuric acid in	the presence of CuSO4 and K2SO4 catalysts. Ammon	ia in the soil extract is determined colrimetrically at 660
NH4-AVAIL-SK	Soil	Available Ammonium-N	Comm Soil Sci 19(6)
Ammonium (NH4-N) is extr	acted from th	ne soil using 2 N KCl. Ammonium in the extract is mixe by by auto analysis at 660 nm.	
OM-LOI-SK	Soil	Organic Matter by LOI at 375 deg C.	CSSS (1978) p. 160
		al of organic matter by combustion at 375 degrees C for	
combustion.			
Reference: McKeague, J.A	. Soil Sampli	ng and Methods of Analysis. Can. Soc. Soil Sci.(1978)	method 4.23
PH-1:2-VA	Soil	pH in Soil (1:2 Soil:Water Extraction)	BC WLAP METHOD: PH, ELECTROMETRIC, SOIL

Chain of Custody / Canada Toll F

• -

1

COC #

: . <u>...</u>.

.

Λ				Ç	nain of Custod Canada To		L2139940-0	JOH	C				COC #									
ALS	Environme	Potal				<u>w.a.</u>					_	-		Page	3	of						
Report To						<u> </u>		-														
Company:	StrataGold Corpor	ation			Report Format / Distribution					Service Requested (Rush for routine analysis subject to availability)												
Contact:	Hugh Coyle			Standa		Regular (Standard Turnaround Times - Business Days)																
Address:	1000 - 1050 West	Pender Street	<u> </u>			Digital	Fax	OPriority (2-4 Business Days) - 50% Surcharge - Contact ALS to Confirm TAT														
	Vancouver, BC V6			Email 1 Email 2				OEmergency (1-2 Bus. Days) - 100% Surcharge - Contact ALS to Confirm TAT														
Phone:	604-696-6600	Fax:		Email 3		Osame Day or Weekend Emergency - Contact ALS to Confirm TAT D.C Analysis Request																
Invoice To	Same as Report ?		□ No		Project Informa		udry@vitgoldcorp.e	Please indicate below Filtered, Preserved or both (F, P, F/P)														
Hardcopy of Invoice with Report? Yes INo					Eagle Gold			Pie	ase indi			red, P	reserve	d or both	(F, P, F	/P)						
Company:				Job #: PO / Al		<u> </u>		1—					_	├	-∔¦							
Contact:				LSD:	Victoria Gold	Corp.		-														
Address:																5						
Phone:		Fax:		Quote	; Q69293, Pes	o Samples										a.						
Lab V	/ork Order #			ALS	Heather						ĺ			o te								
(lab	use only)			Contac	t: Mackenzie	Sampler:	Bonnie Burns & Crystal Beaudry			-						of						
Sample		Sample Id	lentification		Date	Time		_ ≌								per la						
#		is description wil	appear on th	e report)	(dd-mmm-yy)		Sample Type	Metal								Number of Containers						
	T1-18 - alder				31-7-17			x						- -	+ +	1						
	T1-2AB - alder leav	/es			31-7-17			x			+	-			+-+	- 1						
	T1-2AB - alder twigs				31-7-17			x		+-	++		-	┠━┠─	+-+							
	T1-3 - alder leaves				31-7-17			x		+-				L	╉╌┤	1						
	T1-3 - alder twigs T2-2 - alder leaves				31-7-17			x		-	┼─┼		<u> </u>		┦─┥	_						
					31-7-17			x			+ +		+-	┝╴┼╴		1						
	T2-2 - alder twigs				31-7-17			x		-1	┼╺╇				++	1						
	T2-3A - alder leave	s			31-7-17			x		+	+-+-				┼╌╇	- 1						
	T2-3A - alder twigs				31-7-17		+	x			┥┤	+			┿─┼							
	T3-2AB - alder leav	eș –	·		31-7-17			x		+	+	-			╆							
	T3-2AB - alder twig	s			31-7-17	_		x			+		-		╀╍┽	1						
	T3-3AB - alder leav	es			31-7-17			x			┿╴┟	_		_	++	1						
	T3-3AB - alder twig	s		• • • • • • •	31-7-17			x			┼╌╄╴				+-+	1						
	Special Instr	uctions / Regula	ations with w	ater or land use (CC		Aquatic Life/BC	CSR - Commerci	al/AB	Tier 1 -	Natur		Hazar	idaya D		╧╧╧┥	1						
NOTE: THER	E IS NO TISSUE OF	PTION IN THE P		ENU FOR SAMPLE	TYPE ON THIS	FOOM DUT TH				Titatur	ar, etcj /	пага	uous L	etans								
			Failure to co	omplete all portions	of this form ma	iv delav analysis	Please fill in thi	e form	LEGIR													
	Al	By the use of	this form the	user acknowledges	and agrees wit	th the Terms and	Conditions as nr	ovide	d on a e	onara	te Excel	tab.										
	Also provided on	another Excel	tab are the A	LS location address	es, phone numi	bers and sample	container / prese	rvatio	n / hold	ing tir	ne table	for co	mmon	analyses	\$.							
Released by:	OTTENT RELEA	SE (client use)		SH	SHIPMENT RECEPTION (lab use only)					SHIPN	IENT VE	RIFIC/	ATION (
ι teleased μγ;		Date (dd-mmm-vv)	Time (hh-mm)	Received by:	Date: Jog S	Time:	Temperature:	Verifi	ied by:		Date:	1	Time			vations:						
Bonnie Burns				EHP	Date: 2012	16:30	12.0°C	ItA			8/2		(p-		Yes / I If Yes	No ? add SIF						
					\sim		~							GEN	IF 20.00 I							
							+															

L2139940-COFC

Chain of Custody /

• -

- COC #

		_			Canada Toll F. <u></u> <u>www.alsglobal.com</u>									COC #							
	Environme	ental				www.	alsglobal.com	1							Р	age	<u>4</u> of	· –			
Report To					Report Format / Distribution					Service Requested (Rush for routine analysis subject to availability)											
Company:	StrataGold Corpor	ation		Standard	Standard Dther					@Regular (Standard Turnaround Times - Business Days)											
Contact:	Hugh Coyle					Excel	⊡Digital	Fax	OPriority (2-4 Business Days) - 50% Surcharge - Contact ALS to Confirm TAT												
					Email 1:	hcoyle@vitgok	lcorp.com		OEmergency (1-2 Bus. Days) - 100% Surcharge - Contact ALS to Confirm TAT												
24	Vancouver, BC V6		<u> </u>		Email 2:	bonnieburns@			OSame Day or Weekend Emergency - Contact ALS to Confirm TA7												
hone: nvoice To	604-696-6600 Same as Report ?	Fax:			Email 3:			audry@vitgoldcorp.c													
	ovoice with Report?					roject Informati	ion		Please indicate below Filtered, Preserved or both (F, P, F/P)												
Company:	avoice with Report?	Yes	No No		Job #:	Eagle Gold															
Contact:					PO / AFE													٦			
ddress:					.SD:	Victoria Gold C	orp.														
hone:		Fax:				Q69293, Peso															
Lab W	Vork Order #				Quote #:		Samples														
(lab use only)				ALS Contact:	Heather Mackenzie	Sampler:	Bonnie Burns & Crystal Beaudry														
Sample		-	dentification			Date	Time	Sample Type	sla												
#		is description wi	I appear on the	e report)		(dd-mmm-yy)	(hh:mm)	Cample Type	Metals			_									
	W1-2 - alder leaves					31-7-17			X				•					1			
	W1-2 - alder twigs					31-7-17			x		1		_				-+-	+			
	W1-3 - alder leaves	s and twigs				31-7-17			х	- -	+			_	-			+			
	W1-4 - alder leaves					31-7-17			X						+		-+-	+			
	W1-4 - alder stems					31-7-17			x		1				+						
	W1-4 - willow leaves and twigs					31-7-17			Â		╞─┤			_				\downarrow			
	W2-2 - alder leaves											_		-				\downarrow			
· · · · ·	W2-2 - alder stems					31-7-17	<u> </u>		X												
	W2-3 - alder leaves					31-7-17			X												
						31-7-17			Х									Τ			
	W2-3 - alder stems W2-4 - alder leaves					31-7-17			х				-					1			
						. 31-7-17			X			-			-						
	W2-4 - alder stems				31-7-17	<u> </u>		x			-+						╈				
W2-5 - alder leaves						31-7-17		- †	x	-					┼──┤		-+	┈┝			
	Special Instr	uctions / Regul	ations with w	ater or land u	se (CCM		quatic Life/BC	CSR - Commerci		Tior 1 A			(11		ليبل						
OTE: THERE	E IS NO TISSUE OF	TION IN THE P										, etc)	/ naza	raous	Details						
· · · · · ·			Failure to co	omplete all po	rtions of	this form may	delav analysis	Please fill in this	form	LECIDI	-										
_	Also provided on	By the use of another Excel	this form the	user acknow	ledoes a	nd agrees with	the Terms and	Conditions as pro- container / prese			4 -	Exce	el tab.								
	SHIPMENT RELEA	ASE (client use)			SHIPA	VENT RECEPTION	ON (lab use on	v)	vatio	n / holdir	ig time	e tabl	e for co	ommor	1 analy	ses.	<u>, </u>				
eleased by:			Time (hh-mm)	Received by:			Time:	Temperature:	Verifi	ed by:	nir ME	Date:	,		ie:	o use only) Observation					
onnie Byrns				EHP		<u>1 Hugʻo</u>	1630	12,0 °C		AL	_	<u></u>	<u>k</u>		<u> p</u> m	<u> </u>	f Yes / N f Yes a	d			

1

GENF 20.00 Front

L2139940-COFC

Chain of Custody / A Canada Tolł Fre

1.27

Ω

COC #

(ALS) Environmental Report To					www.alsglobal.com Page 5 of											5						
					Report Format / Distribution					Service Requested (Rush for routine analysis subject to availability)												
Сотралу:	StrataGold Corpor	ation		77Standard	☑Standard □Other																	
Contact:	Hugh Coyle			[]PDF											irm TAT							
Address: 1000 - 1050 West Pender Street				Email 1;	hcoyte@vitgold			OEmergency (1-2 Bus, Days) - 100% Surcharge - Contact ALS to Confirm TAT														
Vancouver, BC V6E 3S7					bonnieburns@	Osame Day or Weekend Emergency - Contact ALS to Confirm TAT																
Phone:	604-696-6600	Fax:		Email 2: Email 3:	Jknox@vitgold	-		_				eques	_									
Invoice To	Same as Report ?	✓ Yes		Client / P	roject Informat	Ple	ase ind	icate h						th (F, F		г—						
Hardcopy of	Invoice with Report?	, □Yes	⊡ No	Job #:	Eagle Gold						T	1	<u> </u>			<u></u>	$\frac{1}{1}$	ł				
Company:				PO / AFE	:							-	-			-+-						
Contact:				LSD:	Victoria Gold C	Corp.																
Address:								1					[ĺ		۶.				
Phone:		Fax:		Quote #:	Q69293, Peso	Samples												aine				
Lab V	Vork Order #			ALS	Heather		Bonnie Burns &											١, T				
(iab	use only)				Mackenzie	Sampler:	Crystal Beaudry		1									Number of Containers				
Sample		Sample	dentification		Date	Time		2					Ι.					ber				
#	(Th	is description w	ill appear on th	e report)	(dd-mmm-yy)	(bh:mm)	Sample Type	Metals			-	1						E				
	W2-5 - alder stems	3			31-7-17			X			1-			-+			-	1				
	W3-4 - several spe	cies			31-7-17	· •		X			+				-+			1				
								<u> </u>		_			\vdash			+		1				
·					<u> </u>	<u> </u>		-			+						_	<u> </u>				
				· · ·		 					_	<u> </u>										
		· · · ·									_											
-										_ [ĺ							
									T													
										1				-				<u> </u>				
								-			-		_			<u> </u>	+	ļ				
						+		_		_		<u> </u>					_					
			<u> </u>																			
														·								
										-												
	Special Inst	ructions / Regu	lations with w	ater or land use (CCM	IE-Freshwater A	Aquatic Life/BC	CSR - Commerci	al/AB	Tier 1	Natu	rai, etc	:) / Ha	zardo	us De	tails							
NOTE: THER	E IS NO TISSUE O	PTION IN THE	PULL DOWN N	NENU FOR SAMPLE T		ORM, BUT THE	SE ARE TISSUE	SAMP	LES.													
			Failure to co	omplete all portions of	f this form may	delay analysis	. Please fill in this	: form	LEGIE	ЗĹҮ.												
	Alco provided as	By the use of	f this form the	user acknowledges a	nd agrees with	the Terms and	I Conditions as pr	ovide	d on a :	separa	ate Exc	cei tal	b .									
	SHIPMENT RELE	ASE (client use)	tao are the A	LS location addresses	, phone numbe	ers and sample	container / prese	rvatio	n / holo	ling ti	me tal	ole for	com	mon a	inalys	es.						
Released by:		Date (dd-mmm-vv)		Received by:	SHIPMENT RECEPTION (lab use only)						MENT		ICAT									
,,			1811 9 (00-001)		Date: 20/8		Temperature:	Verified by: Date:					,	Time:	servations: s / No ?							
<u>Bonnie Burns</u>				EIHF	1449	16:30	<u> /≺·</u> /∕∾c		[t p	· · ·		8/7	L	Ĩ	8~		'es add					
												-		-	GE	_	00 Front	_				
			•				1															