Appendix 15: Environmental Baseline Report: Hydrogeology

APPENDIX 15

Environmental Baseline Report: Hydrogeology

EAGLE GOLD PROJECT

Environmental Baseline Report: Hydrogeology

FINAL REPORT

Prepared for: Victoria Gold Corp 680 – 1066 West Hastings Street Vancouver, BC V6E 3X2

Prepared by:

Stantec 4370 Dominion Street, Suite 500 Burnaby, BC V5G 4L7 Tel: (604) 436-3014 Fax: (604) 436-3752

Project No.: 1490-10002

February 2010

AUTHORSHIP

Jennifer Todd, B.Sc., GIT	Author
Steve Wilbur, Ph.D., P.Geo.	Senior Review

EXECUTIVE SUMMARY

Stantec was retained by Victoria Gold Corporation to prepare an environmental baseline report to characterize groundwater resources in the vicinity of the Eagle Gold Project. Field programs were conducted in 2009; following a review of current regulatory requirements and of historic data from consultant reports written in 1995, 1996, and 2006. This report presents background information, methods, and results for the baseline hydrogeology assessment.

This report presents background information, methods, and results for the baseline hydrogeology studies conducted during 2009 for Victoria Gold, related to their Eagle Gold Project. The objectives were to:

- Describe hydrogeologic and hydrostratigraphic units and their spatial variability
- Measure occurrence of groundwater
- Quantify hydraulic properties of the hydrostratigraphic units
- Sample, analyze, and summarize groundwater chemistry.

The 2009 field program consisted of locating and measuring groundwater levels, and determining the integrity of previously installed monitoring wells (1995 and 1996). Where the wells were intact, groundwater levels were measured. In most cases, these wells were then re-developed; recovery tests were conducted, and then sampled for selected analytical parameters. This was followed by a drilling program that consisted of; drilling, installing and developing wells, conducting hydraulic tests, measuring groundwater levels, and sampling wells for select analytical parameters.

During the 1995, 1996, and 2009 field programs, borings were drilled and monitoring wells were installed that penetrated unconsolidated surficial materials and/or bedrock with boring depths ranging from 3.7 m below ground (mbg) to 118.2 mbg. Surficial material in the local study area generally consisted of a thin cover of organic soils underlain by colluvium, followed by either metasedimentary or granodiorite weathered bedrock. The surficial material thickness and physical properties varied significantly throughout the local study area. Generally, groundwater was observed deeper (greater than 6 m below ground surface) at higher elevations and shallow (less than 6 m below ground surface) to artesian in lower elevations and in valley bottoms. Due to the low frequency of instantaneous groundwater level measurements, temporal trends were difficult to discern. Nevertheless, of the 58 wells assessed, only seven of the wells had groundwater levels that were measurably higher in 2009, while two had measurably lower groundwater levels, when compared to the 1995/1996 levels. In some cases, there was some evidence of a seasonal decrease in water levels prior to fall rains.

Three methods of hydraulic tests were performed (packer, aquifer pumping, and recovery tests) over the local study area. The results of hydraulic testing of the site were variable, generally ranging from 10^{-3} m/s to 10^{-7} m/s in the surficial deposits and from 10^{-5} m/s to 10^{-8} m/s for bedrock.

All groundwater quality, including samples collected by Hallam Knight Piésold in 1995 and 1996 and samples collected during the 2009 field program were tabulated and summarized. Results of analysis for wells sampled over multiple years were generally in the same range. Seasonal trends in

groundwater chemistry were not apparent, although this may be due to the short term and low frequency of sampling.

All groundwater quality data has been compared to federal, Canadian Council of Ministers of Environment (CCME) Canadian Water Quality Guidelines for the protection of Aquatic Life (December 2007), and to the British Columbia Contaminated Sites Regulation (CSR) Schedule 6 Generic Numerical Water Standards for the protection of Freshwater Aquatic Life (January 2009). The following parameters exceeded the CCME and/or CSR guidance parameters in the Project area: aluminum, arsenic, cadmium, copper, iron, lead, molybdenum, nickel, selenium, silver, and/or zinc. These exceedances do not imply that the groundwater at the site is currently contaminated; only that background concentrations of these parameters are higher than typically found in groundwater at other natural sites in Canada, and reflect the natural geologic and hydrogeologic conditions within these specific areas of the local study area.

ABBREVIATIONS AND ACRONYMS

AG	Ann Gulch
ALS	ALS Laboratory Group
BGC	BGC Engineering Ltd.
ВН	borehole
CCME	Canadian Council of Ministers of Environment
cm	centimetre
CSR	Contaminated Sites Registry
DG	Dublin Gulch
DH	drill hole
HDPE	high density polyethylene
К	hydraulic conductivity
km	kilometre
m	metres
mm	millimetre
m asl	meters above sea level
mbg	meters below ground
meq	milliequivalent
mg/L	milligram per litre
m/s	metres per second
MW	monitoring well
n.a	data not available
nm	not measured
OG	Olive Gulch
PVC	Polyvinly chloride
QA/QC	Quality assurance, quality control
STU	Stuttle Gulch
TDS	total dissolved solids
μS/cm	microsiemens per centimetre
μm	micrometre

TABLE OF CONTENTS

1	Introduction1				
2	Back	ground		. 1	
	2.1	Study Ar	ea	. 1	
		2.1.1	Regional Setting	. 1	
		2.1.2	Surficial Geology	. 2	
		2.1.3	Bedrock Geology	. 2	
	2.2	Review	of Existing Literature	. 3	
	2.3	Summar	y of Previous Investigations	. 3	
3	Meth	ods		. 5	
	3.1	Monitori	ng Well Drilling and Installation	. 5	
		3.1.1	Well Drilling	. 5	
		3.1.2	Well Completion	. 6	
	3.2	Groundv	vater Level Measurements	. 6	
	3.3	Well Red	covery Testing	. 6	
	3.4	Groundv	vater Sampling	. 8	
4	Resu	lts		. 8	
	4.1	Geologic	Setting	. 8	
	4.2	Monitori	ng Well Logs	. 9	
	4.3	Groundv	vater Elevation	10	
	4.4	Hydrauli	c Tests	11	
		4.4.1	Packer Tests	11	
		4.4.2	Aquifer Pumping Tests	12	
		4.4.3	Recovery Tests	12	
		4.4.4	Summary of Hydraulic Tests	13	
	4.5	Hydroge	ochemistry	14	
		4.5.1	General Physical Parameters, Major Ion Chemistry, and Hydrochemical Facies	15	
		4.5.2	QA/QC of Analytical Results	17	
5	Clos	ure		17	
6	Refe	rences		17	
7	Figu	res		19	

List of Figures

Figure 2-1:	Site Location Map	20
Figure 2-2:	Eagle Gold Local Study Area	21
Figure 2-3:	Eagle Gold Surficial Geology	22
Figure 2-4:	Eagle Gold Bedrock Geology	23
Figure 2-5:	Eagle Gold Monitoring Well Location Map	24

List of Tables

Table 4.1:	Summary of Hydraulic Tests	13
Table 4.2:	Summary of Groundwater Parameters	16

List of Appendices

Appendix A	Borehole Logs
Appendix B	Data Tables
Appendix C	
Appendix D	Hydrogeochemical Plots
Appendix E	Laboratory Certificates

List of Tables in Appendix B

Table 1:	Monitoring Well Location Summary	B-1
Table 2:	Ann Gulch Monitoring Well Summary	В-3
Table 3:	Dublin Gulch Monitoring Well Summary	B-3
Table 4:	Platinum Gulch Monitoring Well Summary	B-5
Table 5:	Suttle Gulch Monitoring Well Summary	B-6
Table 6:	Eagle Pup Monitoring Well Summary	B-9
Table 7:	Stewart Gulch Monitoring Well Summary	B-11
Table 8:	Olive Gulch Monitoring Well Summary	B-12
Table 9:	Bawn-Boy Gulch Monitoring Well Summary	B-13
Table 10:	Packer Test Summary	B-22
Table 11:	Recovery Test Summary	B-23
Table 12a:	Groundwater General Chemistry – Ann Gulch and Dublin Gulch	B-24
Table 12b:	Groundwater General Chemistry – Stuttle Gulch	B-25

Table 12c:	Groundwater General Chemistry – Stewart Gulch, Platinum Gulch, Eagle Pup, and Olive Gulch	.B-26
Table 12d:	Groundwater General Chemistry – Bawn-Boy Gulch, Lynx Creek Watershed, and Travel Blank	.B-27
Table 13a:	Groundwater Total Metals Chemistry – Ann Gulch and Dublin Gulch	.B-28
Table 13b:	Groundwater Total Metals Chemistry – Stuttle Gulch	.B-29
Table 13c:	Groundwater Total Metals Chemistry – Stewart Gulch, Platinum Gulch, Eagle Pup, and Olive Gulch	.B-30
Table 13d:	Groundwater Total Metals Chemistry –Bawn-Boy Gulch	.B-31
Table 13e:	Groundwater Total Metals Chemistry –Lynx Creek Watershed and Travel Blank	.B-33
Table 14a:	Groundwater Dissolved Metals Chemistry – Ann Gulch and Dublin Gulch	.B-35
Table 14b:	Groundwater Dissolved Metals Chemistry – Stuttle Gulch	.B-36
Table 14c:	Groundwater Dissolved Metals Chemistry – Stewart Gulch, Platinum Gulch, Eagle Pup, and Olive Gulch	.B-37
Table 14d:	Groundwater Dissolved Metals Chemistry – Bawn-Boy Gulch	.B-38
Table 14e:	Groundwater Dissolved Metals Chemistry – Bawn-Boy Gulch	.B-39
Table 15:	Developed Volumes and Field Parameters	.B-41

File Name and Path: P:_CMiC Projects\1053001_to_1054000\1053550 EPP - Victoria Gold - Eagle Zone Gold\Project Management\Baseline Reports\6 Client reviewed\Hydrogeology\EagleGold_Hydrogeology_BaselineDRAFTv3_4Mar10.DOCX

THIS PAGE INTENTIONALLY LEFT BLANK.

1 INTRODUCTION

This report presents background information, methods, and results for the baseline hydrogeology studies conducted during 2009 for the Eagle Gold Project proposed by Victoria Gold Corporation. The Eagle Gold Project is a proposed open pit gold mine within the Dublin Gulch watershed located 85 km northeast of the Village of Mayo, Yukon Territory.

Stantec was contracted by the Stratagold Corporation to begin environmental baseline studies in 2007. In 2009, Stratagold Corporation was acquired by Victoria Gold Corporation. During this time, the project was renamed from Dublin Gulch to Eagle Gold and the local study area was updated to reflect any changes to the geographic extent of the proposed Eagle Gold Project.

This report presents background information, methods, and results for the baseline hydrogeology assessment. The results of the baseline assessment include:

- Description of hydrogeologic and hydrostratigraphic units and their spatial variability
- The occurrence of groundwater
- Quantification of hydraulic properties of the hydrostratigraphic units
- Groundwater chemistry.

2 BACKGROUND

2.1 Study Area

The study area is located approximately 40 km north of The Village of Mayo in the Mayo Mining District, central Yukon (Figure 2-1), The local study area (LSA) includes the Dublin Gulch and Eagle Creek watersheds, which both drain to Haggart Creek (Figure 2-2).

2.1.1 Regional Setting

The regional setting consists of the Mayo Lake-Ross River Ecoregion, which encompasses the Stewart, Macmillan, and Pelly plateaus, a subdivision of the Yukon Plateau physiographic subdivision. Terrain consists of rolling upland plateaus and small mountain groups with nearly level tablelands dissected by deeply cut, generally broad U-shaped valleys (Rescan 1997).

Haggart Creek (Figure 2-2) drains to the South McQuesten River which ultimately reaches the Yukon River via the Stewart River. The local study area (LSA) includes Eagle Pup, Stuttle and Platinum Gulches which drain to Haggart Creek via Eagle Creek, and Bawn-Boy, Cascallen, Olive, Stewart, and Ann Gulches which drain to Haggart Creek via Dublin Gulch. Topographic elevations of the LSA range from approximately 760 m along Haggart Creek to over 1,500 m at the Dublin Gulch divide.

2.1.2 Surficial Geology

The general area was extensively glaciated during the Pleistocene period, although some topographically high areas protruded above the ice and were not affected by glaciation. Bond's (1998) surficial geology map of the Dublin Gulch area shows the extent of previous glaciation. Regionally, the past two glacial periods are known as the McConnell (approximately 23,000 to 29,000 years BP) and the Reid (190,000 to 310,000 BP) (Bond 1998; LeBarge, et al., 2002). The McConnell glacier advanced from the east, locally along the South McQuesten River valley, but did not extend to where it meets Haggart Creek. The Reid glacier advanced from the north and east, locally along Haggart Creek and Lynx Creek valleys (Bond 1999). Within the Dublin Gulch valley, the glacial ice extended as far east as Stewart Gulch, and partially into Ann, Stuttle, and Platinum Gulches, and Eagle Pup (to approximately 1,050 m asl) (Bond 1998).

For this reason, higher elevations have weathered saprolite to varying depths (from less than one metre to several tens of metres). The surficial material in the lower reaches of Bawn-Boy, Olive, and Stewart Gulches consist of alluvial material. In the lower reaches of Dublin Gulch and Eagle Pup, placer-mining tailings are present. South in the Dublin Gulch valley and along the Haggart Creek valley wall there is a till blanket covered with a colluvial veneer. Where Dublin Gulch meets Haggart Creek, an alluvial fan is present. South of the fan, additional placer tailings, as well as glaciofluvial complexes, exist (complexes include: deposits associated with ice contact environments, buried ice, re-sedimented till, and glaciolacustrine sediments). Alluvial fan deposits exist where tributaries flow into Creek (Bond 1998 and LeBarge, et al., 2002), (see Figure 2-3).

Discontinuous permafrost was observed, and there was field evidence of extensive thermal degradation in places. The extent of permafrost is inferred based on surficial expression, so the extent is not well-defined and thermal degradation of permafrost may be affecting groundwater movement. Additional surficial geology and information on permafrost is available from the concurrent baseline studies document *Surficial Geology, Terrain, and Soils Report.*

2.1.3 Bedrock Geology

The central Yukon is cut by extensive, northward directed thrust sheets formed in the early Cretaceous. There are three main thrust sheets: the easternmost Dawson Thrust, the central Tombstone Thrust, and the westernmost Robert Service Thrust. The latter has Upper Proterzoic to Lower Cambrian Hyland Group rocks in its hanging-wall and Mississippian Keno Hill Quartzite in its footwall. The LSA is situated in the hanging wall of the Robert Service Thrust. Hyland Group rocks are continental margin sediments comprised of mudstone, siltsone, quartzite, phyllite, schist, and minor carbonate. To the west of the project area, Cambrian to Devonian continental margin sediments overlie the Hyland Group.

Deformation related to the thrusting resulted in the widespread development of foliation, and phyllitic to schistose fabric is common. A series of regional scale gentle folds deformed the foliation. Locally the McQuesten anticline caused Cretaceous aged intrusions, which range from syenite to granodiorite in composition in the Selwyn Basin clastic rocks. Mineral deposits and occurrences are associated with these intrusions and are generally vein, shear, or skarn related (Rescan 1997).

The project property is underlain by deformed Upper Proterozoic to Lower Cambrian clastic rocks of the Hyland Group which have been intruded by Cretaceous age Tombstone suite stocks, dykes, and sills. Alteration and gold-tungsten mineralization are directly associated with the intrusion.

Generally, the bedrock in the LSA is dominated by a northeast elongated granodiorite stock, which measures up to approximately 2 km in width and approximately 5.5 km in length, and extends from Platinum Gulch to Potato Hills (Figure 2-4). The stock has intruded and metamorphosed the surrounding host metasediment, and is well jointed and fractured. Near the intrusive contact, the metasediments have been altered resulting in an apparent hardening of the rock. The metasediment is generally strongly foliated, and generally dipping to the southwest at approximately 30 degrees, as well as heavily jointed (Knight Piésold 1996a and 1996b).

2.2 Review of Existing Literature

Prior to the field program, existing information on the hydrogeology in the LSA was collected and reviewed. This information consisted of maps, federal government documents, and previous studies in the area, including the following sources:

- Bulletin 13 Placer gold deposits of the Mayo area, central Yukon, (LeBarge, et al., 2002)
- Dublin Gulch Project, Initial Environmental Evaluation Addendum Section 8.0, Eagle Pup MWRSA (Sitka Corp. 1996)
- Dublin Gulch Project Initial Environmental Evaluation Addendum Volume I. (Hallam Knight Piésold Ltd. 1996a)
- Dublin Gulch Project Initial Environmental Evaluation Volume II Environmental Setting. (Hallam Knight Piésold Ltd. 1996b)
- Field Investigation Data Report Dublin Gulch Project (Sitka Corp. 1996)
- Hydrogeology Characterization and Assessment, Dublin Gulch Gold Project Yukon (GeoViro Engineering Ltd. 1996)
- Placer Gold Deposits of the Mayo Area, Central Yukon (LeBarge, et al., 2002)
- Report on Feasibility Design of the Heap Leach Pad and Associated Structures (Knight Piésold Ltd. Consulting Engineers 1996a)
- Report on Feasibility Design of the Mine Waste Rock Storage Area (Knight Piésold Ltd. Consulting Engineers 1996b)
- Site Facilities Geotechnical Investigation Factual Data Report (BGC Engineering Inc. 2009).

2.3 Summary of Previous Investigations

Preliminary hydrogeological investigations in the local study area were undertaken in 1995 and 1996 by Knight Piésold Ltd. (1995, 1996a and 1996b), GeoViro Engineering Ltd. (1996), and Hallam Knight Piésold Ltd. (1996a and 1996b) as part of general geotechnical site investigations, detailed hydrogeological investigations, and baseline water quality investigations, respectively. Original data

reported by Knight Piésold, GeoViro, and Hallam Knight Piésold considered useful to the baseline hydrogeology is summarized in this report. These include geological information, packer permeability test data, hydraulic recovery test data, aquifer pump test data, water level data and groundwater quality results. The field investigations are summarized below. The results of the 1995 and 1996 field investigations are summarized together with the more recent field work data compilations in Section 4.0 (Results).

Knight Piésold 1995

Knight Piésold and First Dynasty Mines Ltd. drilled 57 boreholes using reverse circulation diamond drill HQ rock core (96.0 mm), for geotechnical and exploration purposes. Packer injection tests were conducted in thirteen of the boreholes at multiple intervals to estimate hydraulic conductivity. The hydraulic conductivity was calculated from the packer test data in general accordance with the Hvorselv (1951) equation.

Further, twelve representative holes were completed as monitoring wells in the Eagle Pup, and Dublin, Platinum, Stuttle, and Bawn Boy Gulches (DH95-105, DH95-106, DH95-108, DH95-139, DH95-141, DH95-144, DH95-146, DH95-147, DH95-149DH95-150, DH95-151, and DH95-152, Figure 2-5. Wells were completed using 58 mm Schedule 80 flush treaded PVC. Groundwater levels were then measured on an irregular basis during the 1995 season by Knight Piésold.

GeoViro Engineering 1996

GeoViro drilled an additional 35 boreholes and installed monitoring wells in each borehole in Eagle Pup, and the Dublin, Platinum, Stuttle, and Bawn Boy Gulches. Boreholes were drilled using either solid-stem auger or reverse circulation diamond drilling to depths ranging from 3.4 m to 79.2 m.

Deeper boreholes were installed with 51 mm Schedule 40 threaded PVC, with 10 slot screens (MW96-1, MW96-2, MW96-3, MW96-4, MW96-5, 6b, MW96-7b, MW96-8, MW96-9b, MW96-10b, MW96-12b, MW96-13b, MW96-14b, MW96-15b, MW96-16b, MW96-17b, MW96-18, MW96-23, MW96-24, MW96-25, MW96-26, MW96-27, and GT96-26). In some cases, shallow monitoring wells were installed adjacent to deeper monitoring wells using 25 mm Schedule 40 threaded PVC, with 10 slot screens (MW96-6a, MW96-7z, MW96-9a, MW96-10a, MW96-12a, MW96-13a, MW96-14, 15a, MW96-16a, and MW96-17a, Figure 2-5). All wells were completed with 10/20 silica filter sand, sealed with bentonite, and backfilled the remaining annulus with drill cuttings. Groundwater levels were measured on an irregular basis during the 1996 season by GeoViro.

Two boreholes (MW96-11 and MW96-19) were left open to conduct aquifer pumping tests. Surface steel casing (150 mm) was installed through to bedrock so the tests represent bedrock hydrogeologic conditions. Step drawdown tests and a 24 hour constant rate pumping tests were completed in each borehole. Drawdown was measured in the pumping well and in nearby observation wells. The transmissivity was estimated based on the Theis non-leaky artesian formula (Freeze and Cherry 1979).

Recovery tests (falling head tests) were conducted in 15 monitoring wells. The data were analysed based on methodology presented by Cooper, et al., (1967), Bouwer and Rice (1976), and Bouwer (1989) depending on the aquifer and monitoring well conditions.

Hallam Knight Piésold 1996a and 1996b

Hallam Knight Piésold collected baseline groundwater quality in 1996 from the wells installed in1995 and 1996. Monitoring wells were developed and sampled using Waterra high density polyethylene (HDPE) tubing and foot-valve system. Prior to collecting samples each well was purged, at least three well-volumes, and standard QA/QC procedures were followed.

3 METHODS

The 2009 field program consisted of the following:

- Locating, measuring groundwater levels, and determining the integrity of 1995 and 1996 monitoring wells. If the wells were intact, then groundwater levels were measured. In most cases, these wells were then re-developed, recovery tests were conducted, and then sampled for selected analytical parameters.
- Drilling, installing and developing wells, conducting hydraulic tests, measuring groundwater levels, and sampling wells for select analytical parameters.

3.1 Monitoring Well Drilling and Installation

3.1.1 Well Drilling

Eleven boreholes were drilled and installed as monitoring wells during August 10 - 31, 2009 by Top Rank Diamond Driller, subcontracted to Aggressive Drilling of Kelowna, BC. Top Rank Diamond Drilling used a Pioneer 2 rubber tire mounted auger driller rig equipped with a HQ3 core barrel for rock coring and a 1.4 m (4.5-foot) solid-stem auger for drilling and sampling the unconsolidated surficial deposits. An AST bobcat was used to transport the drill rig around site. Solid-stem auger drilling was advanced to limits of drilling capability (35 to 40 feet, i.e., length of auger) or to refusal (boulders or bedrock). Rock coring was done using an HQ core barrel, which provided 61.2 mm diameter core and 96.0 mm diameter hole.

A field geologist was with the drill rig to observe drilling progress, log the soil for hydrostratigraphy, take photographs, and design and observe monitoring well installation. Borehole logs and monitoring well completion details can be found in Appendix A. Depending on the ground conditions, whether surficial material or bedrock was being logged, the following core parameters were recorded:

- Run depth
- Run length
- Recovery (length and percent)

- Density or consistency
- Colour
- Moisture
- Plasticity
- Cohesiveness
- Sedimentary structure
- Alteration and weathering
- Interpreted depositional environment
- Stratigraphic contact
- Fractures or jointing.

3.1.2 Well Completion

The 11 boreholes were completed as monitoring wells (MW09-AG1, MW09-AG2, MW09-DG1, MW09-DG2, MW09-DG4, MW09-DG5, MW09-OG1, MW09-OG2, MW09-OG3, MW09-SUT1, and MW09-STU2, Figure 2-5) using schedule 40 PVC well materials. The screened sections had slot openings of 0.25 mm (0.010 inch or 10 slot). The lengths of the screened intervals were 3.05 m for 51 mm diameter wells.

A sand pack of silica sand (#10-20, grain size 1 mm) was placed around the screen, to approximately 0.5 m above the screen section of the wells. The annulus was then sealed with bentonite chips. Caution was exercised to install proper seals to prevent bridging of the bentonite chips, borehole instability and collapse, and/or to prevent surface water from entering the borehole. The seal was achieved by pouring the bentonite chips very slowly and regularly checking the depth to the bentonite seal using a downhole measuring tape.

3.2 Groundwater Level Measurements

Groundwater levels were recorded at existing (1995 – 1996) and new (2009) monitoring wells using a Solinst water level meter. Groundwater levels were measured monthly from July through October 2009.

Groundwater elevations at the well locations were surveyed by Underhill Geomatics Ltd. of Whitehorse, Yukon using ground based differential GPS methods. The casing stick-up and ground elevation was measured at each new (2009) and existing (1995/1996) monitoring well location.

3.3 Well Recovery Testing

Hydraulic tests were conducted in all new and select existing monitoring wells to determine the hydraulic conductivity of hydrogeologic units. All wells were developed (or redeveloped for existing monitoring wells) prior to testing to remove suspended sediments, develop the sand pack, and remove possible drill water that had been lost into the formation during drilling. Tests were performed once the well had been developed and recovered to static water level. The recovery test used a slug

(a piece of 32 mm diameter PVC pipe, filled with sand, and capped at both ends) to quickly change water levels in the wells. Slugs of two different lengths (0.94 m and 1.86 m) were used to assess the dependence of test response on the magnitude of the initial displacement. A minimum of three falling head (slug inserted into well) and rising head (slugs removed from well) tests were performed on each well. To ensure the most accurate results possible, all testing was done in the following manner:

- A Solinst pressure transducer was placed one meter below the bottom of the slug and was used to continuously record the changes in water levels.
- Approximately 10 minutes after the pressure transducer was installed, and water levels had stabilized, tests were performed.
- Water level readings were confirmed with manual measurements taken with the Solinst water level meter.
- Tests were run to approximately 95% completion.

The hydraulic tests results from the 2009 field program were interpreted using methods within the Aquifer Test version 3.0 software by Waterloo Hydrogeologic (now Schlumberger Water Services).

Hydraulic conductivity was estimated using an analytical relation between the instantaneous displacement of water in a well bore and the resulting rate of head change. These analyses were based on the Bouwer and Rice (1976) and KGS (2000) for fully or partially penetrating wells in unconfined aquifers. Both methods of analysis used a modified version of the Theim equation (Freeze and Cherry 1979) to estimate hydraulic conductivity:

$$K = \frac{r_c^2 \ln(\frac{R_e}{r_w})}{2L} \frac{1}{t} \ln \frac{y_0}{y_t}$$

where:

K = hydraulic conductivity [L/T]

r_c= radius of the well casing [L]

 R_e = effective radial distance over which the head difference is dissipated [L]

 r_w = radial distance between well center and undisturbed aquifer [L]

L = screened interval [L]

 y_0 = difference between static (undisturbed pre-test) and slug displaced water level at time 0 [L]

 y_t = difference between static (undisturbed pre-test) and slug displaced water levels at time t [L] t = time [T].

The equation assumes that the aquifer is homogeneous and isotropic, the water level change around the well is negligible, and no water flows through an unsaturated material above the water table.

3.4 Groundwater Sampling

Groundwater samples were collected from existing and new monitoring wells using disposable bailers. Sample bottles were provided by ALS Laboratory Group (ALS). Non-powdered nitril gloves were worn at all stages of the sampling procedure to prevent sample contamination.

The samples were analyzed for physical parameters, nutrients, total metals, dissolved metals, and total organic carbon. The samples to be analyzed for dissolved metals were filtered using a 0.45 μ m sterilized membrane. The appropriate preservatives were added to the samples, as outlined by ALS. The samples were labeled and stored in a chilled cooler with ice packs during transport to the lab. A chain of custody form detailing the sampling, handling information, and required analyses was prepared and included with the sample prior to shipping via air cargo to ALS in Vancouver, BC. All samples were received by lab within QA/QC protocol.

Field and duplicate samples were also collected based on standard QA/QC protocols.

4 RESULTS

4.1 Geologic Setting

The 11 new borings penetrated unconsolidated surficial materials and/or bedrock with boring depths ranging from 3.7 mbg to 118.2 mbg. Boring logs are provided in Appendix A. Surficial material in the LSA generally consists of a thin cover of organic soils underlain by colluvium, followed by either metasedimentary or granodiorite weathered bedrock. The surficial material thickness and physical properties vary significantly throughout the LSA.

The surficial deposits consist of undifferentiated colluvium and alluvium material that are extensive throughout the LSA and generally consist of loose, angular to sub-rounded gravelly silt or gravelly sand material, with clasts of metasedimentary or granodiorite origin (depending on location). Observed colluvium thicknesses ranged from 0.2 m to 15.2 m.

The lower portions of the Dublin Gulch valley and adjacent Haggart Creek Valley are flanked by till. Till is exposed on the lower south valley wall near the valley mouth and was observed to be covered with a thin veneer of glaciofluvial and glaciolacustrine materials, and capped by colluvial material of varying thickness. This material was observed to be weathered and cemented in part. Further away from Dublin Gulch the till pinches out, following the contour of the valley wall. The colluvial to till sequence was observed to be approximately 20 m deep in Haggart Creek Valley south of Dublin Gulch, and is expected to be deeper, based on observations made along the east side of lower Haggart Creek.

In the middle of the Dublin Gulch valley, the fluvial materials were extensively reworked by placer mining operations. Large stockpiles of washed sands, gravels, and fine-grained deposits (i.e., settling ponds) were present, with Dublin Gulch and Eagle Pup flowing along the valley sides of the

reworked material. In general, the placer deposits consist of graded sands and gravels with cobbles and trace boulders, and are typically comprised of sub-rounded metasediment and granodiorite clasts.

There are two bedrock types found on site: metasediment and granodiorite. Recorded depths to bedrock in the LSA ranged from 0 m to over 20 m. The distinction between colluvium and weathered bedrock was often subtle, as the two materials can be similar in character. For this reason depths noted in the 2009 borehole logs are approximate (it is assumed the same for historic field program).

4.2 Monitoring Well Logs

Fifty-two monitoring wells have been installed throughout the LSA in either 1995, 1996, or 2009. Their locations are shown in Figure 2-5. Table 1, Appendix B is a summary of monitoring well log data including completion date, location, elevation and screen interval.

Two monitoring wells were installed in the Ann Gulch basin during the 2009 field program (MW09-AG1 and MW09-AG2). The monitoring wells were completed at approximately the same depth, up to 16.9 mbg.

Five monitoring wells were installed in lower Dublin Gulch basin, one during the 1995 program (DH95-152) and four during the 2009 field program (MW09-DG1, MW09-DG2, MW09-DG4, and MW09-DG5). The depths of completion range from 7.9 mbg to 30.2 mbg.

Seven monitoring wells were installed in the Platinum Gulch basin, one during the 1995 field program (DH95-108) and six during the 1996 field program (MW96-23, MW96-24, MW96-25, GT96-33, GT96-34, and GT96-35). The depths of completion range from 3.7 mbg to 118.2 mbg.

Ten monitoring wells were installed in the Stuttle Gulch basin, two during the 1995 field program (DH95-105 and DH95-106), six during the 1996 field program (MW96-16a, MW96-16b, MW96-17a, MW96-17b, MW96-18, and MW96-19), and two during the 2009 field program (MW09-STU1 and MW09-STU2). The depths of the monitoring wells range from 4.6 mbg to 82.3 mbg.

Nine monitoring wells were installed in the Eagle Pup basin, one during the 1995 field program (DH95-151) and eight during the 1996 field program (MW96-12a, MW96-12b, MW96-13a, MW96-13b, MW96-14a, MW96-14b, MW96-15a, and MW96-15b). The depths of completion ranged from 5.3 mbg to 38.1 mbg.

One monitoring well was installed in the lower Stewart Gulch basin during the 1995 field program (DH95-150); it was completed to 30.2 mbg.

Two monitoring wells were installed in the Olive Gulch basin during the 2009 field program (MW09-OG2 and MW09-OG3). The wells were completed to 16.2 mbg.

Twenty six monitoring wells were installed in the upper Bawn Boy Gulch basin, seven during the 1995 field program (DH95-139, DH95-141, DH95-142, DH95-144, DH95-146, DH95-147, and DH95-149) and 19 during the 1996 field program (MW96-1, MW96-2, MW96-3, MW96-4, MW96-5, MW96-6a, MW96-6b, MW96-7a, MW96-7b, MW96-8, MW96-9a, MW96-9b, MW96-10a, MW96-10b, MW96-11,

MW96-26, MW96-27, GT96-26, and GT96-28). The depths of completion ranged from 3.7 mbg to 56.4 mbg.

4.3 Groundwater Elevation

Groundwater occurrence has been measured in the monitoring well network throughout the study area infrequently from 1995 to present. Tables 2 to 9, Appendix B, show details of groundwater level measurements including measurements from Knight Piésold (1995, 1996a, 1996b), GeoViro (1996), and 2009.

Generally, groundwater has been observed deeper (approximately >6 mbg) at higher elevations and shallow (approximately <6 mbg) to artesian in lower elevations and in valley bottoms. Although the monitoring wells have not been measured frequently enough to observe seasonal effects, groundwater levels are expected to have seasonal delayed trends related to higher groundwater due to the spring freshet and fall rainstorms, and lower groundwater levels due to dry summers.

Groundwater elevations were generally consistent over the monitoring period (1995 to present), There were exceptions in the following monitoring wells: MW96-23, MW96-17b, MW96-19, DH96-146, MW96-1, MW96-2, MW96-7b; these had groundwater elevations significantly higher in 2009 than 1996. Groundwater levels monitored in 2009 were at lower elevations than 1996 measurements in MW96-25 and GT96-26. Monitoring wells DH95-105, DH95-144, and MW96-9a had groundwater elevations that varied significantly, but not in any consistent way, during monitoring events from 1995 to 2009.

Groundwater elevations measured in the upper elevations of Ann Gulch were relatively deep (8.6 to 15.1 mbg) in 2009, with water levels apparently too low to provide baseflow, as the gulch was dry. Water was observed seeping out from the gulch along the road cut along Dublin Gulch, during July through October, 2009.

In the center of Dublin Gulch, groundwater was relatively shallow (2.5 to 4.6 mbg) in the placer tailings (MW09-DG1, MW09-DG2, and DH95-152). Further east, groundwater was deeper (6.6 to 14.9 mbg), in the fluvial material and till bluffs, as the gradient of the groundwater steepened towards Haggart Creek (MW09-DG4 and MW09-DG5). Groundwater elevations taken in 1995 and 2009 from DH95-152 are similar.

Groundwater elevations in the upper portions of the Platinum Gulch basin were observed to be deep (60 mbg in DH95-108) in the upper basin and were relatively shallow (26 mbg in MW96-23, in 1996, and 9 mbg in MW96-25) at lower elevations. Seeps and springs were observed in road cuts near MW96-23, MW96-25, and down near Haggart Creek.

In the Stuttle Gulch basin, monitoring wells were located in the upper (DH95-105, DH95-106, MW96-16a, MW96-16b, MW96-17a, MW96-17b, MW96-18, and MW96-19) and lower watershed (MW09-STU1 and MW09-STU2). In the upper portions of the watershed, water levels ranged between 15 and 46 mbg in the deeper monitoring wells, while water levels were shallower (i.e., 3.5 mbg) in the lower basin wells. Artesian conditions were observed in MW09-STU2, located in the lower part of the

basin. Water levels taken in the same monitoring wells in 1995, 1996, and 2009 were similar in most wells, with the exception of water level in MW96-19, which was shallower.

The Eagle Pup basin has three sets of nested wells: MW96-13a, MW96-13b, MW96-14a, MW96-14b, MW96-15a, and MW96-15b, and one single well (DH95-151). Water levels ranged between 3 and 6 mbg in the shallow, while they ranged between 7 and 19 mbg in the deep monitoring wells; the data indicated that downward vertical gradients existed at the time of measurement at these locations.

The monitoring well in the Stewart Gulch basin is located near the lower reaches of the gulch; water levels were observed to be approximately 7 mbg.

There are two monitoring wells in the Olive Gulch basin, one completed in bedrock on the upper reaches of the gulch, and one completed in fluvial material in the lower reaches. The monitoring well in the upper reaches had water levels that fluctuated between 6 and 7 mbg, while water levels in the lower reaches were shallower at 2 and 3 mbg.

Depths to water in the Bawn-Boy Gulch basin wells were relatively shallow, ranging between 0.5 mbg to 10 mbg. The depths to water generally deepened further from the gulch, as in MW96-1 and MW96-2, where water levels ranged from 12 mbg and 45 mbg); these wells are located near the groundwater divide with the Lynx Creek watershed. Generally, water levels measured in 2009 are similar to measured levels from 1995 and 1996.

4.4 Hydraulic Tests

Results of the hydraulic tests are summarized in Tables 10 and 11, Appendix B. Detailed results of the 2009 hydraulic recovery tests analysis are presented in Appendix C.

4.4.1 Packer Tests

Thirteen boreholes were tested in six sub-basins; select boreholes were tested over multiple intervals and depths by Knight Piésold in 1995. In general, for the LSA, higher hydraulic conductivity values appear to be associated with surficial deposits, intermediate values are associated with metasedimentary rock, and lower values with granodiorite. Data also suggests decreasing permeability with depth; this is expected as there are likely reduced weathering effects and fractured rock with depth.

One test was conducted in the Dublin Gulch basin in DH95-152, over a test interval of 18.0 m to 30.2 m bgs in metasediment bedrock. The hydraulic conductivity was estimated to be 1.2×10^{-6} m/s.

Tests conducted in the Platinum Gulch basin were performed in DH95-108 and DH95-102 (not completed as a monitoring well). Test intervals ranged from 12.2 m to 30.5 m, in granodiorite and metasediment bedrock, and the depth of the tests ranged between 18.0 mbg to 117.3 mbg. The hydraulic conductivity was estimated between 10^{-7} m/s to 10^{-8} m/s.

Tests in the Stuttle Gulch basin were performed in DH95-103 (not completed as a monitoring well), DH95-105, and DH95-106. Test intervals ranged from 14.4 m to 30.5 m, in granodiorite and

metasediment bedrock, and the depth of the tests ranged from 14.9 mbg to 165.0 mbg. The hydraulic conductivities were estimated between 10^{-7} m/s to 10^{-8} m/s, generally decreasing with depth.

Tests were conducted in the Eagle Pup basin in DH95-151, over a test interval from 11.9 m to 30.2 m, in metasediment bedrock. The hydraulic conductivity was estimated to be $2.4 \times 10^{-7} \text{ m/s}$.

Tests in the Stewart Gulch basin were performed in DH95-150, over a test interval of 18.0 m to 30.2 m, in metasediment bedrock. The hydraulic conductivity was estimated to be 8.9 X 10^{-7} m/s .

The tests in the Bawn Boy Gulch basin were performed in DH95-139, DH95-141, DH95-144, DH95-146, and DH95-147, the test interval in all test-holes was 18.3 mbg, with the depth of testing ranging from 11.6 mbg to 30.2 mbg, in metasediment and granodiorite bedrock. Hydraulic conductivities were all estimated to be in the 10^{-7} m/s range.

4.4.2 Aquifer Pumping Tests

Two aquifer pumping tests were performed by GeoViro (1996) in MW96-19 and MW96-11. Aquifer coefficients were estimated by evaluating water level drawdown data collected during a 24-hour pumping test.

For the tested wells, MW96-19 and MW96-11, GeoViro calculated hydraulic conductivities to be 2.9×10^{-7} m/s and 5.3×10^{-7} m/s, respectively.

4.4.3 Recovery Tests

Fifteen recovery tests were conducted in 1996 and 13 were conducted in 2009. The recovery tests were performed in wells located in the basins of Eagle Pup and Dublin, Stuttle, Olive, and Bawn Boy Gulches. The data was analyzed with methods applicable to fully penetrating wells in confined or unconfined aquifers, screened below the water table using Cooper, et al. (1996), Bouwer and Rice (1976), and Bouwer (1989), depending on the hydraulic conditions.

In the area of study, estimated hydraulic conductivity values in unconsolidated surficial materials varied over five orders of magnitude, tests conducted in bedrock varied over three orders of magnitude.

Recovery tests in Dublin Gulch were performed in MW09-DG1, MW09-DG2, MW09-DG4, and BH95-152. The 2009 monitoring wells were all completed in surficial deposits (including placer tailings and partially permafrosted till). Calculated hydraulic conductivities ranged from 3.8×10^{-3} m/s to 3.1×10^{-5} m/s. BH95-152 was completed in metasedimentary bedrock. Results from the 2009 recovery tests are up to an order of magnitude different (results were seen to be lesser and greater depending on the testing method, location, and material) from the results calculated from the 1995 packer tests. Discrepancies may be due to the differing testing methods or testing intervals in the rock, or may be associated with changed conditions in the well (i.e., the wells are fairly old and the seal around the annulus of the well may have been compromised due to frost heave).

Tests in the Stuttle Gulch basin were performed in 1996 at MW96-16b and MW96-18, and in 2009 at MW09-STU2. The 1996 monitoring wells were completed in bedrock and in general have hydraulic

conductivities of 10^{-7} m/s. The 2009 tested well was completed in colluvial material and had a higher calculated hydraulic conductivity of 3.2 x 10^{-5} m/s.

Tests in the Eagle Pup basin were performed at MW96-13b and MW96-15b in 1996 and 2009, both of which were completed in metasediment bedrock. MW96-14b was tested during the 1995 field program and is completed in colluvium. The tests completed in 1996 had estimated hydraulic conductivities of 10⁻⁶ m/s to 10⁻⁷ m/s, while results from the 2009 tests gave an order of magnitude lower. Discrepancies may be due to factors noted above (i.e., testing methods, testing intervals or well conditions).

Tests in the Olive Gulch basin were performed at MW09-OG2 and MW09-OG3, which were completed in fluvial material and granodiorite bedrock, respectively. The test results were approximately 10⁻⁶ m/s to 10⁻⁷ m/s, which is in the range for fluvial deposits with silt and fine sand and within the expected range for fractured bedrock.

Tests in the Bawn Boy Gulch basin were performed in MW96-1, MW96-2, MW96-3, MW96-4, MW96-5, MW96-6b, MW96-7b, MW96-8, MW96-9b, MW96-10b and GT96-26. Results ranged from 10^{-5} m/s to 10^{-7} m/s for wells completed in bedrock, and 10^{-5} m/s to 10^{-6} m/s for wells completed in surficial deposits. Wells that were tested in 1996 and again in 2009 vary over an order of magnitude. Discrepancies may be due to factors noted above (i.e., testing methods, testing intervals or well conditions).

4.4.4 Summary of Hydraulic Tests

The results of hydraulic testing of the site are variable, generally ranging in the surficial deposits from 10^{-3} m/s to 10^{-7} m/s and from 10^{-5} m/s – 10^{-8} m/s for bedrock. The variable hydraulic conductivity in the surficial geologic material is expected for the varying surficial geological facies including placer, colluvial, alluvial, fluvial, and till deposits. The variable hydraulic conductivity seen in the bedrock is typical of fractured crystalline rock, which showed decreasing hydraulic conductivity with depth. The test data did not demonstrate a measureable difference in the hydraulic conductivities of granodiorite and metasedimentary rock.

Location	Test Method	Year	Ranges of Hydraulic Conductivity (m/s)	Hydrostratigraphic Unit
Dublin Gulch	Packer Tests	1995	1.2 x 10 ⁻⁶	Metasediments
	Recovery Tests	2009	3.1 x 10 ⁻⁵ to 3.9 x 10 ⁻³	Surficial Deposits
			1.8 x 10 ⁻⁵	Metasediments
Platinum Gulch	Packer Tests	1995	9.9 x 10 ⁻⁸ to 8.4 x 10 ⁻⁷	Granodiorite

Table 4.1:	Summary	of H	vdraulic	Tests
		· · · ·	,	

Location	Test Method	Year	Ranges of Hydraulic Conductivity (m/s)	Hydrostratigraphic Unit
		1005	1.0 x 10 ⁻⁸ to 7.6 x 10 ⁻⁸	Granodiorite
	Packer Tests	1995	7.6 x 10 ⁻⁷	Granodiorite/Metasediments
Objettle Objete		1996	5.0 x ⁻⁷	Granodiorite
Stuttle Gulch	Recovery Tests	1996	1.0 x 10 ⁻⁷	Metasediments
		2009	3.2 x 10 ⁻⁵	Surficial Deposits
	Aquifer Test	1996	2.9 x 10 ⁻⁷	Granodiorite
	Packer Tests	1995	2.4 x 10 ⁻⁷	Metasediment
	Recovery Tests	1996	8.6 x 10 ⁻⁷	Granodiorite
Eagle Pup		1996	3.8 x 10 ⁻⁶ to 5.1 x 10 ⁻⁷	Mataaadimaata
		2009	7.3 x 10 ⁻⁶ to 7.4 x 10 ⁻⁵	Metasediments
		2009	7.3 x 10 ⁻⁶ to 7.4.1 x 10 ⁻⁵	Surficial Deposits
Olive Gulch	Recovery Tests	2009	8.5 x 10 ⁻⁷ to 4.1 x 10 ⁻⁶	Granodiorite
Stewart Gulch	Packer Test	1995	8.9 x 10 ⁻⁷	Metasediment
	Packer Test	1995	1.0 x 10 ⁻⁷ to 2.8 x 10 ⁻⁷	Granodiorite
	Packer Test		1.4 x 10 ⁻⁷	Metasediments
		1996	1.3 x 10 ⁻⁷ to 4.2 x 10 ⁻⁵	Granodiorite
Bawn-Boy Gulch	Decovery Tests	2009	7.6 x 10^{-7} to 3.6 x 10^{-6}	Granodiorite
Calon	Recovery Tests	1996	6.2 x 10 ⁻⁶	Metasediments
		1996	3.5 x 10 ⁻⁷ to 4.5 x 10 ⁻⁶	Surficial Deposits
	Aquifer Test	1996	5.3 x 10 ⁻⁷	Granodiorite

NOTE:

m/s = meters per second

4.5 Hydrogeochemistry

All groundwater quality data have been compared to federal, Canadian Council of Ministers of Environment (CCME), Canadian Water Quality Guidelines for the protection of Aquatic Life (December 2007). In addition, data have been compared to the British Columbia Contaminated Sites Regulation (CSR), Schedule 6 Generic Numerical Water Standards for the protection of Freshwater Aquatic Life (January, 2009). These criteria were selected due to the absence of any other existing federal or territorial guidelines for groundwater quality. These criteria are meant to represent approximate background concentrations to a representative ambient level which may reflect natural geologic variations in relatively undeveloped areas. In addition, these criteria are to provide general guidance only and have been used for comparison to existing background groundwater quality conditions at the site.

The analytical results of all groundwater samples collected as part of the hydrogeology field program are presented in Tables 13 - 15, Appendix B. Laboratory certificates from the 2009 sampling program are available in Appendix E.

Groundwater samples were collected by Hallam Knight Piésold in 1995 and 1996. The 1995 program sampled wells in August and September. The 1996 program also sampled wells in May, July, and September.

Existing and new monitoring wells were sampled up to three times during the 2009 field program (July, August/September, and October). The developed water volumes as well as the *in situ* field parameters measured (electrical conductivity, pH, and temperature) are presented in Table 16, Appendix B.

Results of analysis for wells sampled over multiple years were generally in the same range, and seasonal trends were not apparent.

4.5.1 General Physical Parameters, Major Ion Chemistry, and Hydrochemical Facies

Groundwater is classified based on major ion chemical compositions, while taking into account major anions and cations exceeding 10 meq-%. The water type (hydrochemical facies) is determined by listing the ions with concentrations greater than 10 meq-% in decreasing order (cations are listed first). Charts 1 - 8, Appendix D, show the major ion chemistry and hydrochemical facies summarized by watershed.

Calcium is the dominating cation in most groundwater samples from the site, in six sampling locations magnesium concentrations exceeded calcium (MW09-AG2, MW96-13, MW96-15, BH96-152, MW09-DG1, and MW09-DTU2). Carbonate was the dominating anion in all samples, and was relatively high in some samples (MW96-18, MW96-1, MW09-DG1, MW09-DG2, MW09-STU2, WM09-OG2, and MW09-DG4).

All groundwater samples were analyzed for their concentrations of total and dissolved metals. The measured dissolved metal concentrations were compared to CSR and CCME water quality guidelines for the protection of aquatic life. The CSR guideline values apply to both surface and groundwater, whereas the CCME guidelines only apply to surface water. However, as groundwater ultimately discharges to surface water bodies, the CCME guideline values are included here for reference. All exceedances are marked in Tables 13 – 15, Appendix B.

	Summary of Stoundwater Farameters						
Location	TDS (mg/L)	EC (µS/cm)	рН	Hydrogeochemical Facies	Exceeds CSR and/or CCME Guidelines		
Ann Gulch	n/a	964	7.24	magnesium-sodium- calcium-carbonate	Aluminum, Arsenic, Copper, Iron		
Dublin Gulch	124 – 715	183 – 939	7.31 – 8.08	calcium-magnesium- carbonate-sulphate and magnesium-calcium- carbonate-sulphate	Aluminum, Arsenic, Cadmium, Copper, Iron, Selenium, Silver, Zinc		
Platinum Gulch	133 – 192	140 – 313	7.78 – 7.84	calcium-magnesium- carbonate-sulphate	Aluminum, Arsenic, Cadmium, Copper, Iron, Selenium, Zinc		
Stuttle Gulch	161 – 496	267 – 659	6.08 - 8.02	calcium-magnesium- carbonate-sulphate and magnesium-calcium- carbonate-sulphate	Aluminum, Arsenic, Cadmium, Copper, Iron, Lead, Selenium, Zinc		
Eagle Pup	98 – 236	181 – 453	7.73 – 8.17	magnesium-calcium- carbonate-sulphate	Aluminum, Arsenic, Cadmium, Iron, Lead, Nickel, Silver, Zinc		
Olive Gulch	40 – 221	43 – 336	6.56 – 7.30	calcium-magnesium- carbonate-sulphate	Aluminum, Arsenic, Cadmium, Copper, Iron, Lead		
Stewart Gulch	568 – 653	686 – 825	7.25 – 7.86	n/a	Arsenic, Iron, Selenium, Silver		
Bawn-Boy Gulch	37 – 126	50 – 186	6.94 – 8.8	calcium-magnesium- carbonate-sulphate	Aluminum, Arsenic, Cadmium, Copper, Iron, Lead, Molybdenum, Nickel, Silver, Zinc		
Lynx Creek	190 – 478	282 – 633	7.36 – 7.68	n/a	Aluminum, Arsenic, Cadmium, Iron, Lead,		

Table 4.2: Summary of Groundwater Parameters

NOTES:

TDS = Total Dissolved Solids

EC = Electrical Conductivity

mg/L = milligram per liter

 μ S/cm = microsiemen pre centimetre

n/a = data not available

These exceedances of the CCME and/or CSR guidelines do not imply that the groundwater at the site is currently contaminated; only that background concentrations of these parameters are higher than typically found in groundwater at other natural sites in Canada. These background groundwater quality results reflect the natural geologic and hydrogeologic conditions within these specific areas of the property.

4.5.2 QA/QC of Analytical Results

The field blank consisted of de-ionized water, was handled in the same way as all other water samples; and results were below the detection limit of the respective analytical methods. This suggests that no significant alteration of the original chemical composition of the water samples occurred due to the sample handling procedure.

The duplicate samples DH95-152 and MW09-DG1 had very similar analytical results for most analyzed species. Notable differences are only present if concentrations were low and close to the detection limit of the analytical method. Stantec considers that the field duplicate results are within acceptable limits of reproducibility for the purpose of this study.

In addition, a QA/AC procedure has been implemented by ALS, and all analytical results have been approved by a laboratory representative.

5 CLOSURE

Stantec has prepared this report for the sole benefit of Victoria Gold for the purpose of documenting baseline conditions in anticipation of an environmental assessment under the Yukon Territory *Environmental and Socio-Economic Assessment Act.* The report may not be relied upon by any other person or entity, other than for its intended purposes, without the express written consent of Stantec and Victoria Gold. Any use of this report by a third party, or any reliance on decisions made based upon it, are the responsibility of such third parties.

The information provided in this report was compiled from existing documents and data provided by Victoria Gold, field data compiled by Stantec (formerly Jacques Whitford AXYS Ltd.). This report represents the best professional judgment of our personnel available at the time of its preparation. Stantec reserves the right to modify the contents of this report, in whole or in part, to reflect any new information that becomes available. If any conditions become apparent that differ significantly from our understanding of conditions as presented in this report, we request that we be notified immediately to reassess the conclusions provided herein.

6 **REFERENCES**

- BC Ministry of Environment. 2006. British Columbia Approved Water Quality Guidelines 2006 Edition. Water Quality Section, Water Management Branch, Environment and Resource Management Branch. Available at: http://www.env.gov.bc.ca/wat/wq/BCguidelines/approv_wq_guide/approved.html. Accessed November 2008.
- BGC Engineering Inc. 2009. *Site Facilities Geotechnical Investigation Factual Data Report*. Report prepared for Victoria Gold Corp., Vancouver, BC by BGC Engineering Inc.

- Bouwer, H., 1989. *The Bouwer and Rice slug test--an update*, Ground Water, vol. 27, no. 3, pp. 304-309.
- Bouwer, H. and R.C. Rice, 1976. A slug test method for determining hydraulic conductivity of unconfined aquifers with completely or partially penetrating wells, Water Resources Research, vol. 12, no. 3, pp. 423-428.
- Bulter, J.J., Jr., and E.J. Garnett, 2000, Simple Procedures for Analysis of Slug Tets in Formations of High Hydraulic Conductivity Using Spreadsheet and Scientific Graphics Software, Kansas Geological Survey (KGS) Open-File Rept. 2000-40, Lawrence, Ks.
- Canadian Council of Ministers of the Environment (CCME). 2007. Canadian Water Quality Guidelines for the Protection of Aquatic Life: Summary Table. Updated December 2007. In: Canadian environmental quality guidelines, 1999, Canadian Council of Ministers of the Environment.
- Cooper, H. H., Jr., J.D. Bredehoeft, and I.S.Papadopolos. 1967. Response of a finite-diameter well to an instantaneous charge of water. *Water Resources Res.*, 3, pp. 263 269.
- Freeze, Alan R., and John A Cherry. 1979. *Groundwater*. Hamel Hampstead: Prentice Hall International
- GeoViro Engineering Ltd. 1996. *Hydrogeology Characterization and Assessment, Dublin Gulch Gold Project Yukon.* Report prepared for New Millennium Mining Ltd., Denver, CO by GeoViro Engineering
- Hallam Knight Piésold Ltd. 1996a. *Dublin Gulch Project Initial Environmental Evaluation Volume II Environmental Setting*. Report prepared for First Dynasty Mines Ltd., Denver, CO by Knight Piésold Ltd. Consulting Engineers, Vancouver, BC.
- Hallam Knight Piésold Ltd. 1996b. *Dublin Gulch Project Initial Environmental Evaluation Addendum Volume I*. Report prepared for First Dynasty Mines Ltd., Denver, CO by Knight Piésold Ltd. Consulting Engineers, Vancouver, BC.
- Hvorselev, M.J. 1951. Time lag and soil permeability in groundwater observation. U.S. Army Corps Engrs. Waterways Exp. Sta. Bull. 36. Vicksburg, Miss.
- Jacques Whitford AXYS. 2008a. Gap Analysis Update Report: Environmental Assessment for the Dublin Gulch Gold Project (Eagle Zone and Mar-Tungsten Deposit). Prepared for StrataGold Corporation.
- Knight Piésold Ltd. Consulting Engineers. 1996a. *Report on Feasibility Design of the Mine Waste Rock Storage Area*. Report prepared for First Dynasty Mines Ltd., Denver, CO by Knight Piésold Ltd. Consulting Engineers, Vancouver, BC.
- Knight Piésold Ltd. Consulting Engineers. 1996b. *Report on Feasibility Design of the Heap Leach Pad and Associated Structures*. Report prepared for First Dynasty Mines Ltd. by Knight Piésold Ltd. Consulting Engineers, Vancouver, BC.
- LeBarge, W.P., J.D. Bond and F.J. Hein. 2002. Indian and Norther Affairs Canada Exploration and Geological Services Division, Yukon Region. *Placer Gold Deposites of the Mayo Area, Central Yukon*. Bulletin 13

- Madrone Environmental Services Ltd. 2006. Dublin Gulch Project Gap Analysis: Environmental Baseline Information. Prepared for Strata Gold Corporation.
- Sitka Corp. 1996. Field Investigation Data Report Dublin Gulch Project. Report prepared for New Millennium Mining Ltd., Denver, CO by Sitka Corp
- Sitka Corp. 1996. *Dublin Gulch Project, IEE Addendum Section 8.0, Eagle Pup MWRSA*. Report prepared for New Millennium Mining Ltd., Denver, CO by Sitka Corp
- Rescan Engineering Ltd. 1997. *Dublin Gulch Feasibility Report*. Report prepared for New Millennium Mining Ltd., by Rescan Engineering Ltd.
- Theis, C.V., 1935. The Relation Between Lowering of the Piezometric Surface and the Rate and Duration of Discharge of a Well Using Groundwater Storage. Am. Geophys. Union Trans., vol. 16, pp. 519-524.

7 FIGURES

Please see the following pages.

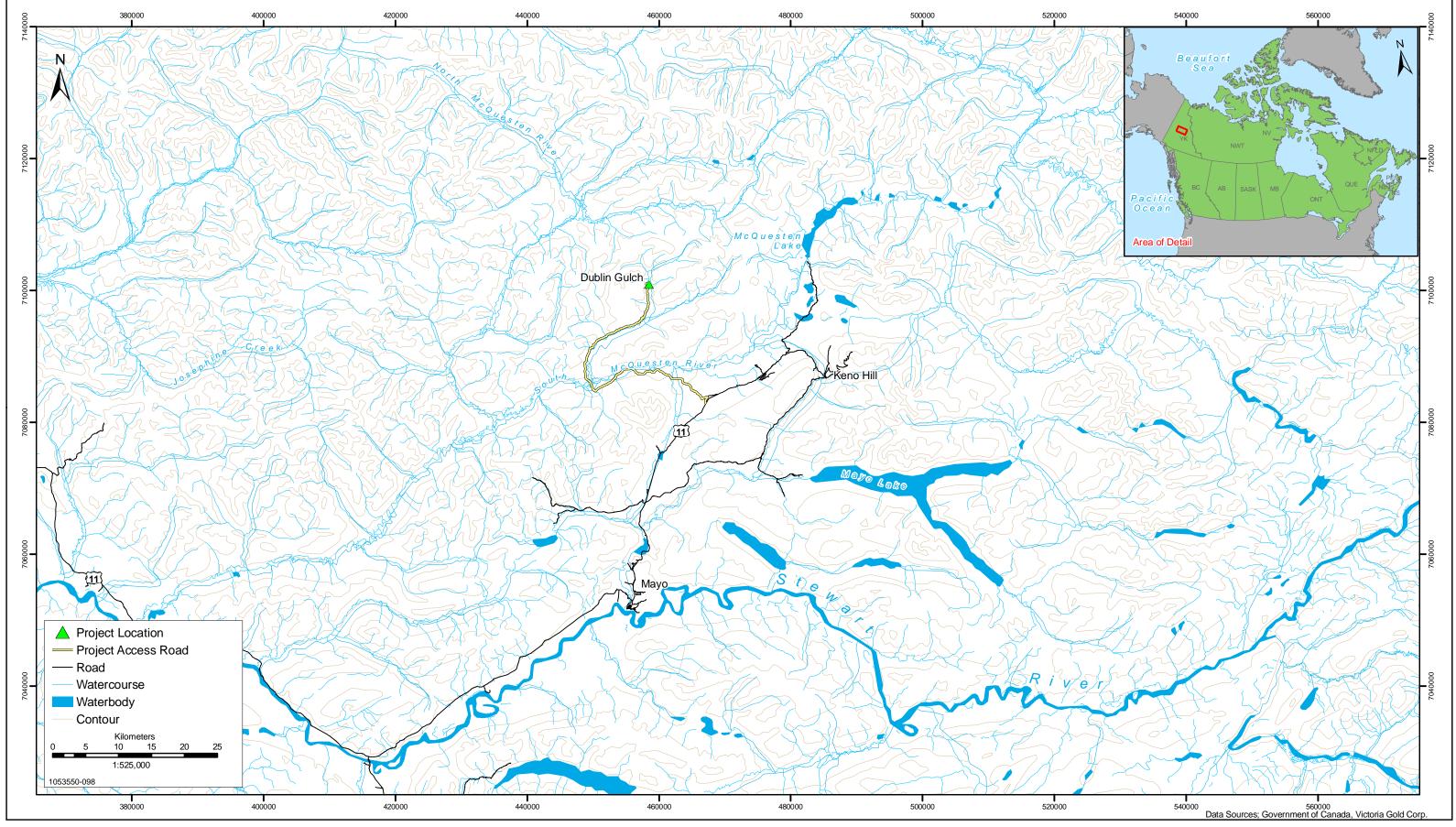
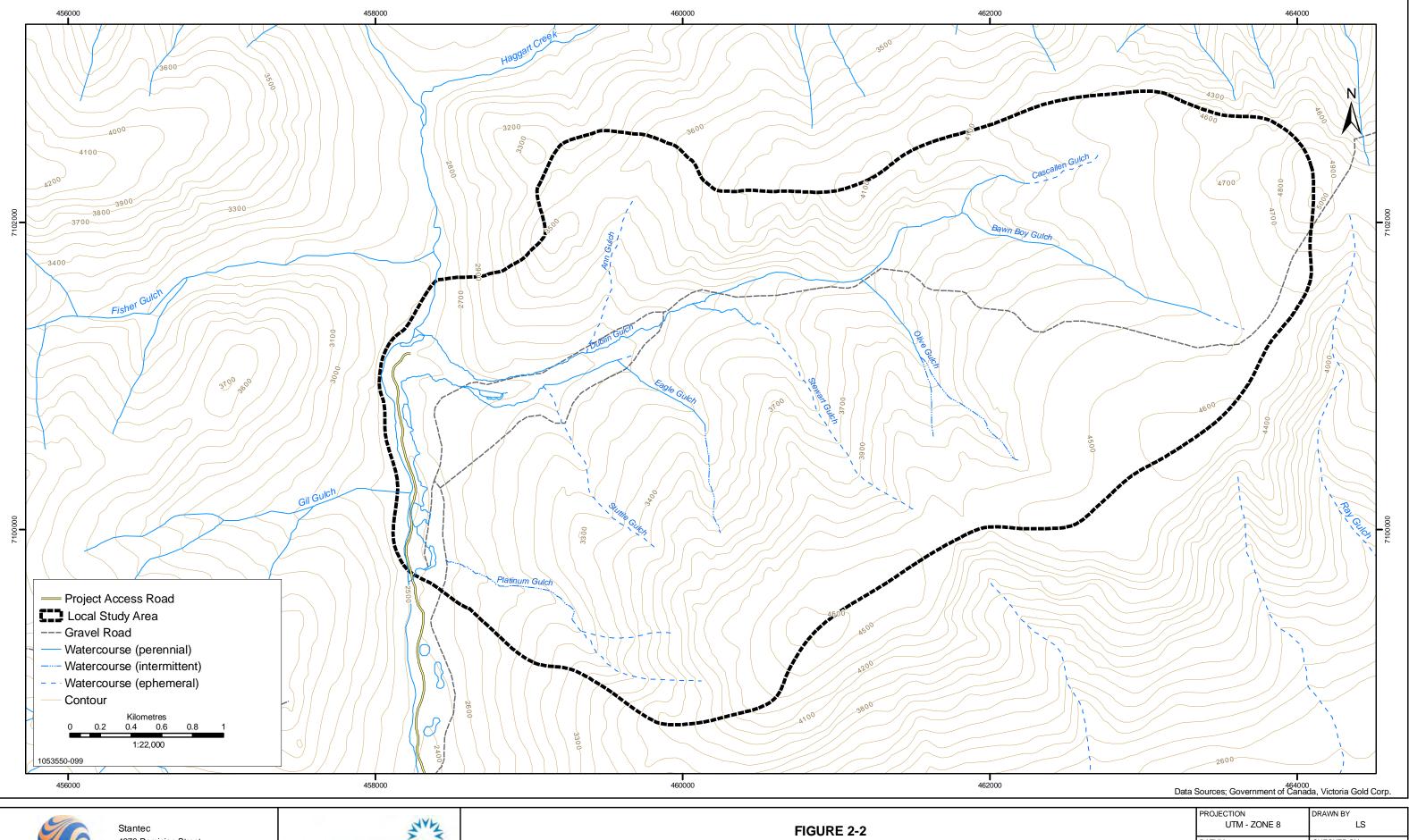



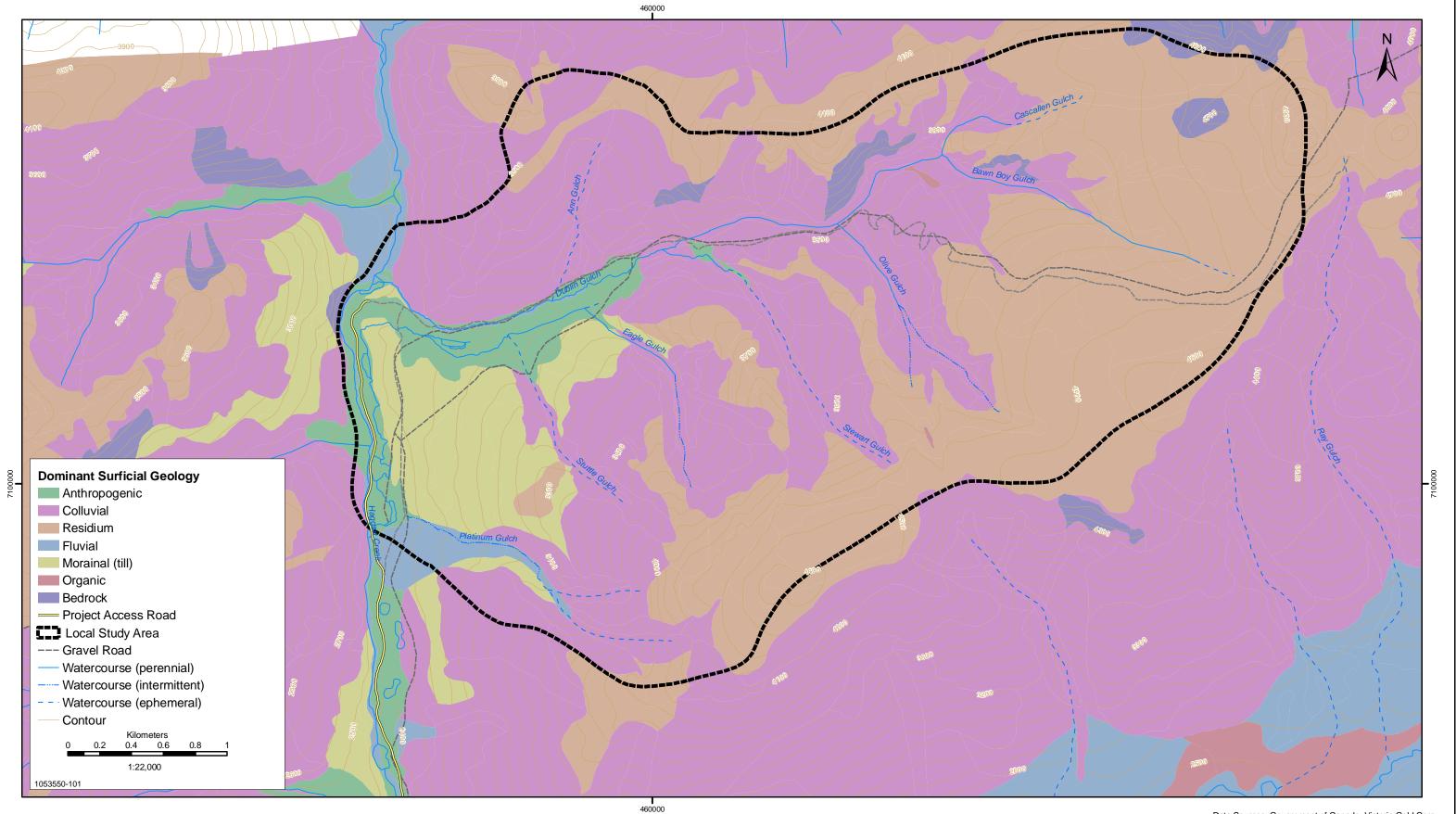
Figure 2-1 Site Location Map DUBLIN GULCH PROPERTY YUKON TERRITORY

PROJECTION	DRAWN BY
UTM - ZONE 8	LS
DATUM NAD 83	CHECKED BY RS
DATE	FIGURE NO.
16-Nov-2009	2-1

4370 Dominion Street Burnaby, British Columbia V5G 4L7 Stantec Fax. (604) 436 3014

EAGLE GOLD LOCAL STUDY AREA EAGLE GOLD PROPERTY YUKON TERRITORY

PROJECTION UTM - ZONE 8	DRAWN BY LS
DATUM NAD 83	CHECKED BY RS
DATE 17-Nov-2009	FIGURE NO. 2-2



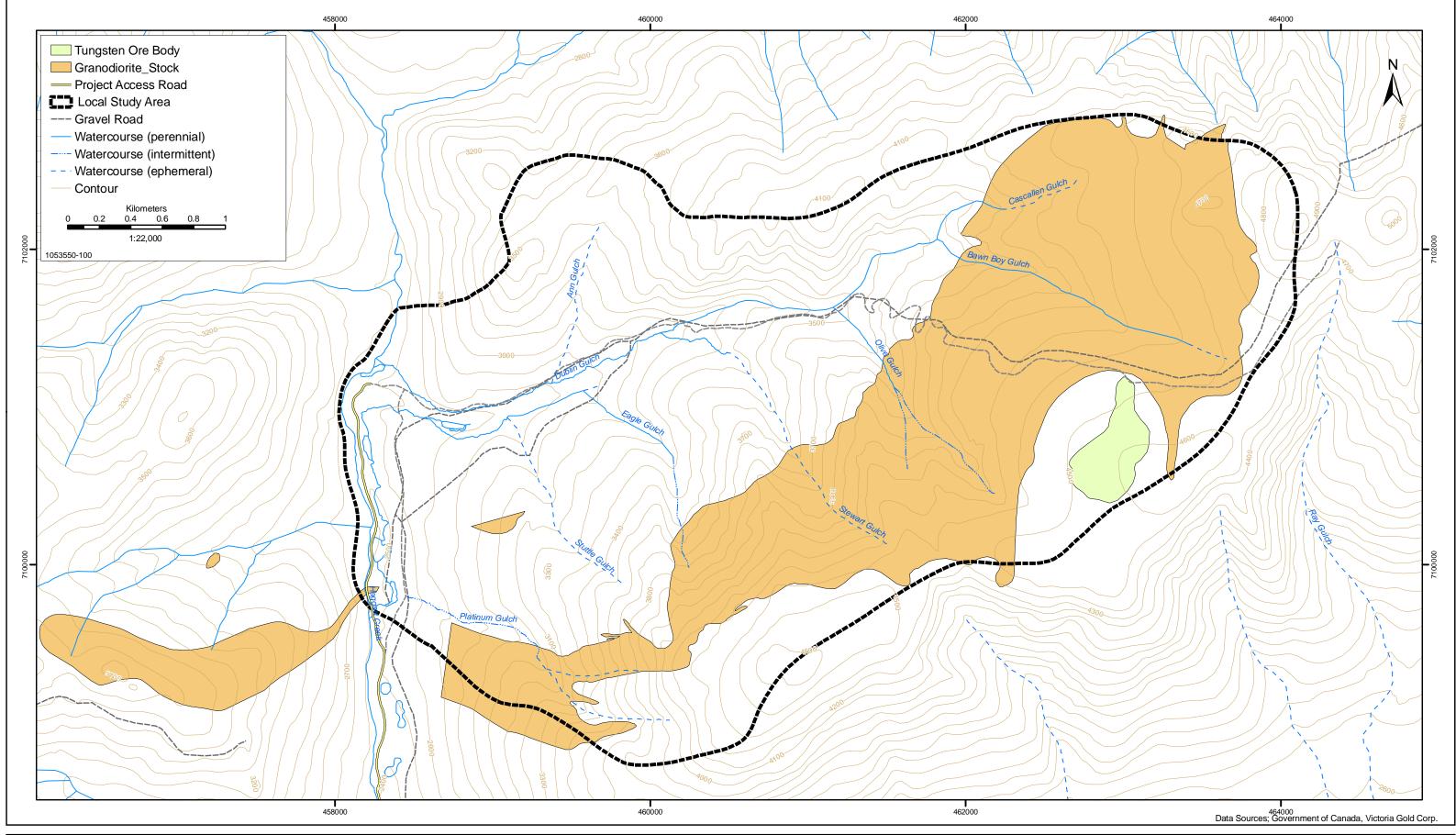
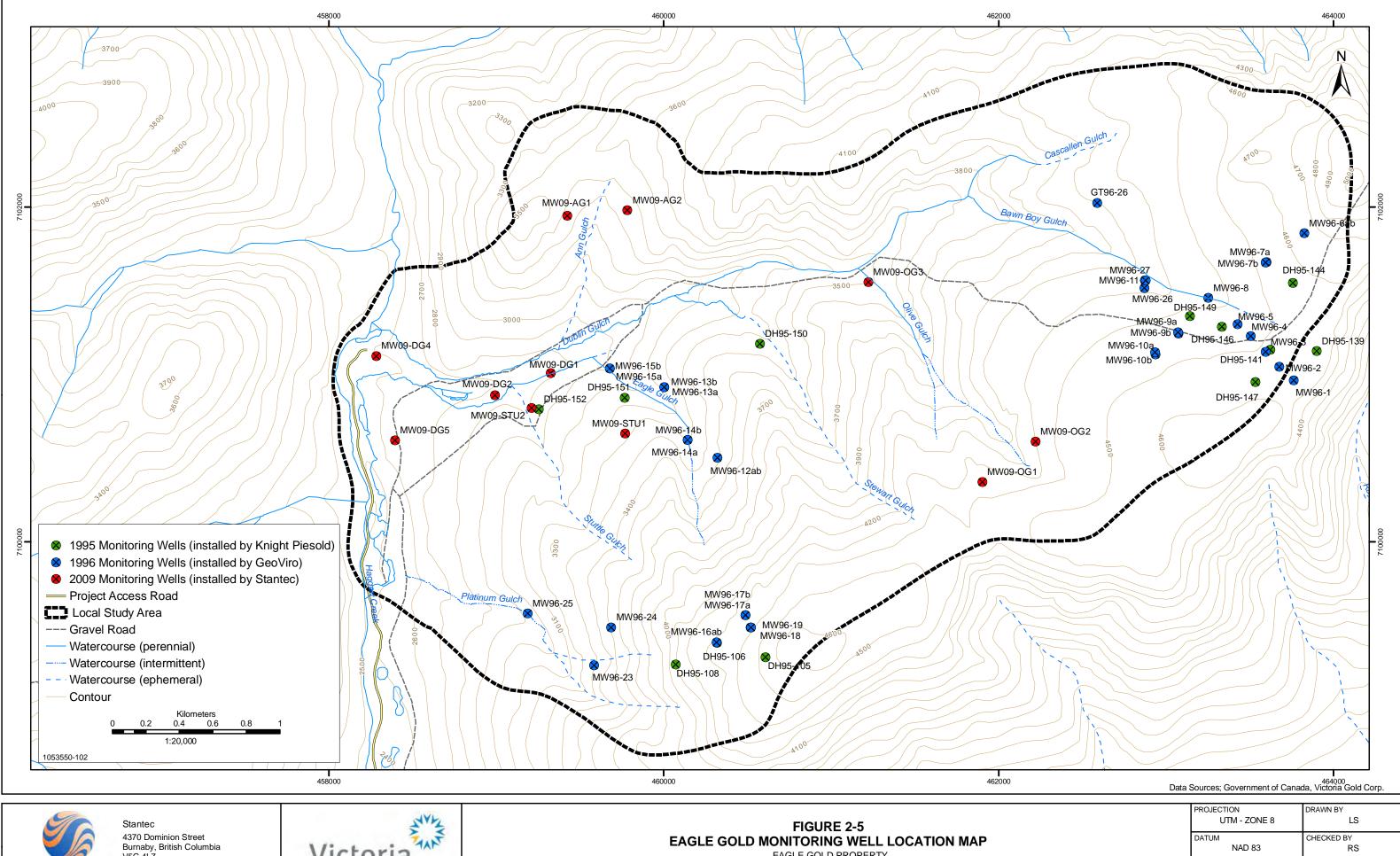


FIGURE 2-3 EAGLE GOLD SURFICIAL GEOLOGY EAGLE GOLD PROPERTY YUKON TERRITORY

Data Sources; Government of Canada, Victoria Gold Corp.

PROJECTION UTM - ZONE 8	DRAWN BY LS
DATUM NAD 83	CHECKED BY RS
DATE 23-November-2009	FIGURE NO. 2-3



4370 Dominion Street Burnaby, British Columbia V5G 4L7

FIGURE 2-4 EAGLE GOLD BEDROCK GEOLOGY EAGLE GOLD PROPERTY YUKON TERRITORY

PROJECTION UTM - ZONE 8	DRAWN BY LS
DATUM NAD 83	CHECKED BY RS
DATE 23-November-2009	FIGURE NO. 2-4

V5G 4L7 Tel. (604) 436 3014 Stantec Fax. (604) 436 3752

EAGLE GOLD PROPERTY YUKON TERRITORY

PROJECTION UTM - ZONE 8	DRAWN BY LS
DATUM NAD 83	CHECKED BY RS
DATE 15-Dec-2009	FIGURE NO. 2-5

Appendix A – Borehole Logs

Borehole Logs

One Team. Infinite Solutions.

CLIENT PROJEC	: Victoria Gold ⊤: Eagle Gold Project Dublin Gulch Yukon	PROJECT NC SURFACE ELEV) <u>:</u>	105	OLE RECORD 3550 6.77 m	BOREHOLE N
DEPTH [m] SOIL TYPE	SOIL DESCRIPTION	SITE DATUM:	WELL COMPLETION		COMPLETION NOTES	
	SM Silty fine sand with trace angular gravel, loose, brown, dry, second of clasts, colluvial	dary weathering			well box, 0.53 m stickup, jplug 10/20 silica sand (0.3 - 5.8 m)	- 102
0.0	 rusty orange gravel at 6.10 m yellow brown boulders at 7.62 m METASEDIMENT Pink grey, competent, some weathering, secondary clay and rusti 	ng in joints	_		bentonite seal (5.8 - 12.2 m) NQ Diamond Drilling at 9.7 m	
				Ā	10/20 silica sand (12.2 - 12.8 m) GW = 1002.80 m 50 mm 010 slot PVC pipe (12.8 - 15.9 n	- 10X
	End of borehole at 15.9 m Completion Information: Screened interval from 12.8 m to 15.9 m below surface				end cap	
	Groundwater Information: Depth to groundwater from TOP = 13.97 m (August 26, 2009)					
	METHOD: Solid Stem Auger / NQ Diamond Drill DATE: August 25, 2009 f: JT					Stanted

CL		T : Eagle Gold Project			OLE RECORD	BOREHOLE NO:
	UJEC	Dublin Gulch Yukon	PROJECT NO: SURFACE ELEVATION: SITE DATUM:		3550 9.41 m	MW09-AG2
DEPTH [m]	SOIL TYPE	SOIL DESCRIPTION	WELL		COMPLETION NOTES	ELEVATION [m]
		Pt ∖Organic soil, soft, black, moist, roots	N∎ 		well box, 0.65 m stickup, jplug	- 1010.0
		SM Silty fine sand with trace clay, soft, brown, moist, colluvial		•	10/20 silica sand (0.3 - 4.6 m)	
		Sand and angular to sub angular gravel, loose, brown, dry, colluvial			bentonite seal (4.6 - 12.5 m)	
10.0		Silt, with fine sand and gravel, soft, brown, dry, colluvial GC Silty sand with angular gravel, very dense, grey, moist			NQ Diamond Drilling at 10.7 m	- 1020.0
		METASEDIMENT Grey, very weak, weathered, secondary clays and rusting		Ξ	10/20 silica sand (12.5 - 12.8 m) 50 mm 010 slot PVC pipe (12.8 - 15 GW = 994.51 m	5.9 m)
		End of borehole at 15.9 m			end cap	
12/16/09		Completion Information: Screened interval from 12.8 m to 15.9 m below surface				
STANTEC - HYDROGEO 2009 MW09.GPJ EE DATA TEMPLATE V5.GDT 12/16/09 反		Groundwater Information: Depth to groundwater from TOP = 14.90 m (August 26, 2009)				
STANTEC - HYL D Z Z		IETHOD: Solid Stem Auger / NQ Diamond Drill DATE: August 24, 2009 ': JT			Jenne and State	Sheet 1 of 1

SOIL DESCRIPTION GM Sand and subrounded to sub angular grave with silt, brown, moist, we - orange brown, some cobbles and boulders at 0.6m GW With subrounded cobbles and boulders, brown, saturated End of borehole at 7.0 m				COMPLETION NOTES well box, 0.51 m stickup, jplug 10/20 silica sand (0.3 - 0.6 m) bentonite seal (0.6 - 3.1 m) GW = 837.68 m 10/20 silica sand (3.1 - 4.0 m)	-84
Sand and subrounded to sub angular grave with silt, brown, moist, we - orange brown, some cobbles and boulders at 0.6m GW With subrounded cobbles and boulders, brown, saturated End of borehole at 7.0 m				bentonite seal (0.6 - 3.1 m) GW = 837.68 m	
With subrounded cobbles and boulders, brown, saturated			Ţ	GW = 837.68 m	
				10/20 silica sand (3.1 - 4.0 m)	
	, , , , , , , , , , , ,				
				50 mm 010 slot PVC pipe (4.0 - 7.0 m)	
	• •	H.		end cap	
Completion Information: Screened interval from 4.0 m to 7.0 m below surface					
Groundwater Information: Depth to groundwater from TOP = 2.15 m (August 18, 2009)					
				e se a la companya de	Stante
	ETHOD: Solid Stem Auger ATE: August 14, 2009	ATE: August 14, 2009			ETHOD: Solid Stem Auger ATF: A united 14 2009

CL	IENT	Victoria Gold	B	O R	ΕH	OLE RECORD	BOREHO	DLE NO:
PR	OJEC	⊤∶Eagle Gold Project Dublin Gulch Yukon	PROJECT NO SURFACE ELEVA SITE DATUM:	: Ation:	1053 824. N/A	3550 06 m	MW09-	DG2
DEPTH [m]	SOIL TYPE	SOIL DESCRIPTION		WELL COMPLETION	WATER LEVEL	COMPLETION NOTES		ELEVATION [m]
		SW Sand with some fine to medium sub-angular gravel, loose, brown, of GC Clayey Gravel with sand and silt, sub rounded to sub angular grave dense, brown, moist, fill	-		Σ	well box, 0.86 m stickup, jplug GW = 822.40 m 10/20 silica sand (0.3 - 4.6 m)		-
		GW Sandy Gravel with some silt, sub-rounded to sub angular gravel, me brown, wet, fill - water at 4.9m	edium dense,			bentonite seal (4.6 - 7.3 m)		- 830.0
10.0		- cobbley below 7.6m				10/20 silica sand (7.3 - 9.1 m)		
10.0		- sandy below 12.5m				50 mm 010 slot PVC pipe (9.1 - 12.1 end cap NQ Diamond Drilling at 12.1 m	l m)	-
		METASEDIMENT Grey, fine grained, slightly weathered, jointing, trace clay				backfilled with drill cuttings		-840.0
		End of borehole at 16.3 m						
F 12/16/09		Completion Information: Screened interval from 9.1 m to 12.2 m below surface						
STANTEC - HYDROGEO 2009 MW09.GPJ EE DATA TEMPLATE V5.GDT 12/16/09 D 로 로		Groundwater Information: Depth to groundwater from TOP = 1.66 m (August 18.2009)						
STANTEC - HYDROC		IETHOD: Solid Stem Auger ATE: August 13, 2009 : JT					Stant	

CLII PRC	ENT DJEC	: Victoria Gold ⊤: Eagle Gold Project	B C PROJECT NO:			OLE RECORD	BOREHOLE N
		Dublin Gulch Yukon	SURFACE ELEVA	TION:			MW09-DO
DEPTH [m]	SOIL TYPE	SOIL DESCRIPTION		WELL COMPLETION	WATER LEVEL	COMPLETION NOTES	
	0 <u>\'/</u> 	Pt ∖Soil, soft, black brown, moist, roots			>	well box, stickup, jplug 10/20 silica sand (0.3 - 0.9 m)	
- - - - - - - - - - - - - - - - - - -		SM Silty fine to medium grainded sand, some small to medium grained gravel, brown, dry, colluvial	l subangular				- 79
: - -						bentonite seal (0.9 - 8.7 m)	
		CL Lean clay with trace fine to medium grained sand and gravel, brown colluvial	n grey, moist,		Ţ	GW = 780.93 m	
		- wet at 7.62 m					-
10.0-	•	GW Fine sand and sub-angular to angular gravel with silt, brown, wet, c	olluvial			10/20 silica sand (8.7 - 9.4 m)	
	•					50 mm 010 slot PVC pipe (9.4 - 12.8 m)	
						end cap	-80
						backfilled with drill cuttings	
-	•	End of borehole at 16.8 m		2007			
		Completion Information: Screened interval from 9.4 m to 12.8 m below surface					
		Groundwater Information: Depth to groundwater from TOP = 6.02 m (September 3, 2009)					
		METHOD: Solid Stem Auger DATE: August 31, 2009					Stante

CLIEN	NT:	Victoria Gold			ΕH	OLE RECO	RD	BOREHO	LE NO:
PROJ	EC	⊺∶ Eagle Gold Project Dublin Gulch Yukon	PROJECT NO: SURFACE ELEVA	TION:	810.	3550 24 m		MW09-I	DG5
DEPTH [m] SOIL TYPE		SOIL DESCRIPTION	SITE DATUM:	WELL COMPLETION	WATER LEVEL		PLETION DTES		ELEVATION [m]
		SOIL DESCRIPTION Pt Soil, soft, black brown, moist, roots GM Gravelly silt with fine to medium sand and trace clay, brown, dry, or ML Lean clay with trace sand, soft, grey, moist, colluvial GP Silty fine sand with angular gravel, dense, grey, moist, till End of borehole at 13.7 m Completion Information: Screened interval from 10.7 m to 13.7 m below surface Groundwater Information: Depth to groundwater from TOP = 13.20 m (September 2, 2009)			MATER ■		7 m)		- 820.0
M N	IG. D	ETHOD: Solid Stem Auger ATE: August 31, 2009						Stant et 1 of	ec

PROJECT: Eagle Gold Project Dublin Gulch Yukon PROJECT NO: SURFACE ELEVA: SITE DATUM: Image: Construction of the second	BOREHOLE COMPLETION	105 133 N/A N/A LEVEL	3550 9.84 m COMPLETION NOTES	MW09-(
	BOREHOLE COMPLETION			1	[m] NOI
		-			ELEVATION [m]
Bit Organization GW Sub-counded gravelly cobbles, loose, light grey brown, wet, fluvial GRANODORTE Grey, weathered with rusty alterations increasing with depth, silts and clays in fractures End of borehole at 6.1 m End of borehole at 6.1 m WESTIG. METHOD: NO Diamond Drill INVESTIG. METHOD: NO Diamond Drill INVESTIG. ATE: August 29, 2009 LLOGED PT: IP			bentonite seal		- - - -
INVESTIG. METHOD: NQ Diamond Drill INVESTIG. DATE: August 29, 2009 LOGGED BY: HP			y y	Stant	

CL	IENT	Victoria Gold		REI	HOLE RECO	RD	BOREHOLE N	10:
	OJEC	⊺∶ Eagle Gold Project Dublin Gulch Yukon	PROJECT NO: SURFACE ELEVATION SITE DATUM:	10 N: 13 N/	953550 332.41 m		MW09-OG	32
DEPTH [m]	SOIL TYPE	SOIL DESCRIPTION				PLETION DTES		ELEVATION [m]
		SW Angular sand and gravel medium dense, grev, dry, colluvial			well box, 0.95 m stickup, jr	blug		
10.0		Angular sand and gravel, medium dense, grey, dry, colluvial GRANODIORITE Fractures and weathering, secondary rusting and clay - more weathering and clay in fractures with depth			10/20 silica sand (0.3 - 9.1	m))	- 134	340.0
				· ·	50 mm 010 slot PVC pipe	(12.8 - 15.9 m)	
		End of borehole at 15.9 m						
STANTEC - HYDROGEO 2009 MW09.GPJ EE DATA TEMPLATE V5.GDT 12/16/09 反		Completion Information: Screened interval from 12.8 m to 15.9 m below surface Groundwater Information: Depth to groundwater from TOP = 6.64 m (September 2, 2009)						
STANTEC - OT II OT		ETHOD: NQ Diamond Drill ATE: August 28, 2009 : HP					Stanted	

С			В	O R	ΕH	OLE RECORD	BOREHC	LE NO:
P	KOJE	C⊤∶Eagle Gold Project Dublin Gulch Yukon	PROJECT NO SURFACE ELEVA SITE DATUM:			3550 4.99 m	MW09-	OG3
DEPTH [m]	SOIL TYPE	SOIL DESCRIPTION		WELL COMPLETION		COMPLETIO NOTES	N	ELEVATION [m]
STANTEC- HYDROGEO 2009 MW09.GPJ EE DATA TEMPLATE V5.GDT 12/16/09 [5 굴 코			ey, wet,			well box, 0.65 m stickup, jplug 10/20 silica sand (0.3 - 0.6 m) GW = 1063.12 m bentonite seal (0.6 - 4.8 m) 10/20 silica sand (4.8 - 5.3 m) 50 mm 010 slot PVC pipe (5.3 - 8.	4 m)	-1070.0
HYDROGEO 2009 MW09								
STANTEC - D		METHOD: NQ Diamond Drill DATE: August 26, 2009 Y: JT				e e	Sheet 1 of	

C L II P R C	ENT DJEC	 Yictoria Gold T: Eagle Gold Project Dublin Gulch 	BC PROJECT NO: SURFACE ELEVAT		1053	OLE RECORD 3550 40 m	BOREHOLE
		Yukon	SITE DATUM:		N/A	-+0 111	
DEPTH [m]	SOIL TYPE	SOIL DESCRIPTION		WELL COMPLETION	WATER LEVEL	COMPLETION NOTES	
		SM Sand with silt and trace angular gravel, loose, brown, dry, colluvial	, I			well box, 0.60 m stickup, jplug 10/20 silica sand (0.3 - 2.4 m)	
	•0°	GW Sub-rounded gravel , loose, brown, dry, colluvial	· .				-9
- - - -		SM Sand with silt and trace angular gravel, loose, mottled orange brow secondary weathering, colluvial	n, dry,			bentonite seal (2.4 - 9.8 m)	
		- yellow grey at 7.6m					-
0.0-		METASEDIMENT Weathered bedrock				10/20 silica sand (9.8 - 11.3 m) NQ Diamond Drilling at 10.7 m	
-					_	50 mm 010 slot PVC pipe (11.3 - 14.3)	-9
	\square				Ā	GW = 953.40 m end cap	
		End of borehole at 14.3 m Completion Information: Screened interval from 11.3 m to 14.3 m below surface					
		Groundwater Information: Depth to groundwater from TOP = 14.00 m (August 24, 2009)					
VVES		METHOD: Solid Stem Auger / NQ Diamond Drill DATE: August 17, 2009					Stante

CLIENT PROJEC	: Victoria Gold T: Eagle Gold Project Dublin Gulch Yukon	BOR PROJECT NO: SURFACE ELEVATION: SITE DATUM:	105		BOREHOLE N
DEPTH [m] SOIL TYPE	SOIL DESCRIPTION	STE DATOM.			
	SP Fine sand with trace gravel, loose, dark grey, wet, colluvial		. <u> </u>	ශ්ෂී/ සංසිදිම් වේ හා stickup, jplug 10/20 silica sand (0.3 - 1.5 m) bentonite seal (1.5 - 4.0 m)	
	SC Sandy lean clay with trace angular gravel, loose, grey, wet, colluvial GC Sandy Fat Clay with trace angular gravel, hard, blue grey, moist, till			10/20 silica sand (4.0 - 4.3 m)	-860
				50 mm 010 slot PVC pipe (4.3 - 7.3 m) end cap	
				backfilled with drill cuttings	-
	End of borehole at 10.1 m Completion Information: Screened interval from 4.3 m to 7.3 m below surface				
	Groundwater Information: Depth to groundwater from TOP = 0.00 m (August 22, 2009) Refusal at 10.06				
	//ETHOD: Solid Stem Auger DATE: August 16, 2009			Jan Sta	Stanteo

Appendix B – Data Tables

APPENDIX B

Data Tables

One Team. Infinite Solutions.

NA/	Date of Well	UTM N	AD83	Ground Elevation	Screen
Well	Completion	Northing	Easting	(m asl)	Interval (m)
DH95-105	27-Jul-95	7099312.0	460609.0	1334.4	19.6 – 69.8
DH95-106	29-Jul-95	7099399.0	460319.0	1261.0	26.4 - 82.3
DH95-108	6-Aug-95	7099269.0	460074.0	1192.0	10.0 – 118.2
DH95-139	13-Sep-95	7101141.1	463901.8	1383.4	8.2 – 29.9
DH95-141	14-Sep-95	7101147.6	463624.9	1366.0	25.9 – 30.2
DH95-144	18-Sep-95	7101546.8	463758.9	1388.8	25.5 – 30.2
DH95-146	20-Sep-95	7101284.3	463335.0	1338.0	24.7 – 30.2
DH95-147	20-Sep-95	7100954.9	463534.2	1378.5	7.3 – 30.2
DH95-149	21-Sep-95	7101348.3	463143.7	1320.4	12.5 – 22.9
DH95-150	22-Sep-95	7101183.1	460576.6	982.6	13.1 – 30.2
DH95-151	23-Sep-95	7100862.1	459767.6	884.0	6.4 - 30.2
DH95-152	23-Sep-95	7100792.0	459254.3	832.7	25.3 – 30.2
MW96-1	26-Jul-96	7100964.66	463763.43	1397.67	44.2 – 50.3
MW96-2	24-Jul-96	7101046.53	463678.67	1393.66	22.9 – 25.9
MW96-3	23-Jul-96	7101134.60	463596.70	1384.48	10.7 – 13.7
MW96-4	22-Jul-96	7101228.87	463508.03	1373.22	6.8 – 9.8
MW96-5	24-Jul-96	7101300.86	463428.65	1362.56	10.7 – 13.7
MW96-6a	24-Jul-96	n.m.	n.m.	1405.45	3.5 – 4.0
MW96-6b	24-Jul-96	n.m.	n.m.	1405.45	8.8 – 9.8
MW96-7a	24-Jul-96	7101670.24	463601.95	1380.82	3.7 – 5.2
MW96-7b	25-Jul-96	7101669.78	463596.36	1379.09	9.7 – 10.7
MW96-8	25-Jul-96	7101457.93	463252.36	1338.89	4.8 – 5.8
MW96-9a	26-Jul-96	7101243.89	463075.97	1360.31	3.1 – 4.6
MW96-9b	25-Jul-96	7101252.38	463073.02	1360.90	16.8 – 19.8
MW96-10a	26-Jul-96	7101120.61	462938.55	1367.16	2.2 – 3.7
MW96-10b	25-Jul-96	7101132.28	462936.48	1368.09	12.7 – 13.7
MW96-11	28-Jul-96	n.m.	n.m.	1307.43	open borehole
MW96-12a	31-Jul-96	n.m.	n.m.	1065.61	1.9 – 3.4
MW96-12b	31-Jul-96	n.m.	n.m.	1065.61	10.7 – 13.7
MW96-13a	31-Jul-96	7100925.38	460003.32	983.79	4.2 – 5.7
MW96-13b	31-Jul-96	7100925.38	460003.32	983.79	16.8 – 19.8
MW96-14a	2-Aug-96	7100609.04	460144.51	976.42	3.8 – 5.3
MW96-14b	2-Aug-96	7100609.04	460144.51	976.42	10.7 – 13.7
MW96-15a	2-Aug-96	7101037.48	459679.16	943.07	7.7 – 9.2

Table 1: Monitoring Well Location Summary

Eagle Gold Project

Environmental Baseline Report: Hydrogeology Draft Report

Appendix B – Data Tables

14/-11	Date of Well	UTM N	AD83	Ground Elevation	Screen	
Well	Completion	Northing	Easting	(m asl)	Interval (m)	
MW96-15b	2-Aug-96	7101037.48	459679.16	943.07	36.6 – 38.1	
MW96-16a	23-Jul-96	n.m.	n.m.	1261.49	8.2 – 9.7	
MW96-16b	23-Jul-96	n.m.	n.m.	1261.49	42.7 – 48.8	
MW96-17a	22-Jul-96	7099562.58	460489.83	1328.53	3.1 – 4.6	
MW96-17b	22-Jul-96	7099562.58	460489.83	1328.53	53.3 – 59.4	
MW96-18	20-Jul-96	7099488.15	460520.00	1335.27	60.6 - 66.7	
MW96-19	19-Jul-96	7099489.84	460522.54	1334.67	open borehole	
MW96-23	3-Aug-96	7099264.04	459586.02	993.01	36.1 – 38.1	
MW96-24	3-Aug-96	7099490.35	459687.85	1064.64	36.1 – 38.1	
MW96-25	2-Aug-96	7099573.45	459189.04	884.88	10.7 – 13.7	
GT96-26	n.a.	7102023.40	462590.99	1284.78	n.a.	
MW96-26	27-Jul-96	7101516.43	462872.78	1315.86	39.2 – 44.2	
MW96-27	27-Jul-96	7101561.81	462876.23	1307.94	33.1 – 38.1	
MW09-AG1	25-Aug-09	7101948.83	459425.43	1016.77	12.8 - 15.9	
MW09-AG2	24-Aug-09	7101980.62	459784.61	1009.41	12.8 - 15.9	
MW09-DG1	15-Aug-09	7101009.37	459325.45	839.83	4.0 - 7.0	
MW09-DG2	14-Aug-09	7100877.20	458992.35	824.06	9.1 - 12.2	
MW09-DG4	31-Aug-09	7101111.11	458284.12	786.95	9.4 - 12.8	
MW09-DG5	30-Aug-09	7100606.52	458396.99	810.24	10.7 - 13.7	
MW09-OG1	29-Aug-09	7100357.75	461904.33	1339.84		
MW09-OG2	28-Aug-09	7100599.22	462221.41	1332.41	12.8 - 15.9	
MW09-OG3	26-Aug-09	7101551.77	461222.78	1064.99	5.3 - 8.4	
MW09-STU1	18-Aug-09	7100647.80	459770.65	967.40	11.3 - 14.3	
MW09-STU2	16-Aug-09	7100798.93	459212.19	856.51	4.3 - 7.3	

NOTES:

n.a. - not available

n.m. - not measured

m asl - meter above sea level

m ags - meter above ground surface

All survey data for wells installed in 1995, as reported by Knight Piésold All elevation data for wells installed in 1996, as reported by GeoViro All 2009 survey data and 1996 co-ordinate data, as surveyed by Underhill Geomatics fall 2009 (measured in thousandth, reported as hundredth)

Draft Report

Appendix B – Data Tables

Table 2: Ann Gulch Monitoring Well Summary

MWID	Date	Coordinates		Elevation (masl)	Screened Length (m)	Sitck up (m)	EOH (mb TOP)	DTW (mb TOP)	Groundwater Elevation (masl)
	26-Aug-09	7101948.83	459425.43	4040 77	3.05	0.52	16.43	14.50	1002.27
MW09-AG1	6-Oct-09	7101946.63	409420.43	1016.77	3.05	0.53	10.43	14.43	1002.34
	25-Aug-09			1009.41	3.05	0.65	40.55	9.28	1000.13
	26-Aug-09	7101980.62	459784.61					15.74	993.67
MW09-AG2	4-Sep-09						16.55	14.67	994.74
1	6-Oct-09							15.50	993.92

NOTES:

m asl - meters above sea level EOH - end of hole mb TOP - meters below top of pipe DTW - depth to water

Table 3: Dublin Gulch Monitoring Well Summary

MWID	Date	Coordinates		Elevation (masl)	Screened Length (m)	Sitck up (m)	EOH (mb TOP)	DTW (mb TOP)	Groundwater Elevation (masl)
	18-Aug-09							2.66	836.68
W09-DG1	27-Aug-09	7101009.40	459325.44	839.34	3.05	0.51	7.88	2.70	836.64
	6-Oct-09	_						2.58	836.76
	18-Aug-09							2.52	821.54
MW09-DG2	27-Aug-09	7100877.20	458992.35	824.06	3.05	0.86	11.65	2.57	821.49
	6-Oct-09							2.49	821.57

Appendix B – Data Tables

MWID	Date	Date Coordinates		Elevation (masl)	Screened Length (m)	Sitck up (m)	EOH (mb TOP)	DTW (mb TOP)	Groundwater Elevation (masl)
	31-Aug-09							7.32	779.63
MW09-DG4	3-Sep-09	7101111.11	458284.12	786.95	3.05	0.60	13.39	6.62	780.32
	6-Oct-09							9.74	777.20
	31-Aug-09			040.04				11.97	798.27
	2-Sep-09	7100606 52	450000.00		3.05	0.60	45.70	14.29	795.95
MW09-DG5 4-Sep-09	7100606.52	458396.99	810.24	3.05	0.60	15.70	14.86	795.39	
	6-Oct-09							14.39	795.85
	24-Sep-95							4.60	828.10
	27-Sep-95							4.62	828.08
	20-Nov-95							4.19	828.51
	25-Jul-09	7400700	450054	000 7	1.00	0.00	00.00	4.38	828.32
DH95-152	11-Aug-09	7100792	459254	832.7	4.90	0.90	30.20	4.54	828.17
	28-Jul-09							4.46	828.24
	27-Aug-09							4.62	828.09
	6-Oct-09							4.53	828.17

NOTES:

m asl - meters above sea level EOH - end of hole mb TOP - meters below top of pipe DTW - depth to water

Appendix B – Data Tables

MWID	Date	Coord	Coordinates		Screened Length (m)	Sitck up (m)	EOH (mb TOP)	DTW (mb TOP)	Groundwater Elevation (masl)
	6-Aug-95							57.80	1134.90
	7-Aug-95							59.20	1133.50
DH95-108	9-Aug-95	7099269.0	460074.0	1192.0	108.20	0.70	118.20	59.34	1133.36
	25-Aug-95							59.22	1133.48
	20-Nov-95							59.62	1133.08
	11-Aug-96							26.41	966.60
	31-Aug-96							26.31	966.70
MW96-23	23-Aug-09	7099264.10	459585.94	993.01	6.10	n.m.	38.10	8.24	984.77
	27-Aug-09							10.29	982.73
	6-Oct-09							10.12	982.89
	11-Aug-96							dry	dry
	31-Aug-96	7000400.00	450007 70	4004.04	0.40		00.40	dry	dry
MW96-24	23-Aug-09	7099490.36	459687.79	1064.64	6.10	n.m.	38.10	dry	dry
	6-Oct-09							dry	dry
	11-Aug-96							8.81	876.07
	31-Aug-96		450400.00	004.00	0.05		40.70	8.89	875.99
MW96-25	23-Aug-09	7099573.44	459188.90	884.88	3.05	5 n.m. 13.70	dry	dry	
	6-Oct-09							8.10	876.78

Table 4: Platinum Gulch Monitoring Well Summary

NOTES:

m asl - meters above sea level EOH - end of hole mb TOP - meters below top of pipe DTW - depth to water n.m. – not measured

Table 5: Suttle Gulch Monitoring Well Summary

MWID	Date	Coord	linates	Elevation (masl)	Screened Length (m)	Sitck up (m)	EOH (mb TOP)	DTW (mb TOP)	Groundwater Elevation (masl)
	27-Jul-95							15.32	1319.68
	28-Jul-95							15.56	1319.44
	29-Jul-95							15.43	1319.57
	7-Aug-95							14.94	1320.06
DH95-105	9-Aug-95	7000212.0	460609.0	1334.4	50.20	0.00	69.80	14.75	1320.25
DH92-102	25-Aug-95	7099312.0	460609.0	1334.4	50.20	0.60	09.80	15.70	1319.30
	20-Nov-95							19.04	1315.96
	4-Aug-96							19.43	1314.97
11-Aug-96	11-Aug-96							19.62	1314.78
	30-Aug-96							18.31	1316.09
	29-Jul-95						19.82	1241.88	
	7-Aug-95							18.50	1243.20
	9-Aug-95							18.41	1243.29
	25-Aug-95	7000000 0	400040.0	4004.0	55.00	0.70	00.00	21.91	1239.79
DH95-106	20-Nov-95	7099399.0	460319.0	1261.0	55.90	0.70	82.30	24.36	1237.34
	4-Aug-96							19.85	1241.15
	11-Aug-96							20.05	1240.95
	30-Aug-96							20.74	1240.26
	8-Aug-96							3.49	1258.00
MW96-16a	11-Aug-96	n.m.	n.m.	1261.49	n.m.	n.m.	9.70	3.22	1258.27
	31-Aug-96			1201110				3.22	1258.27

Draft Report

MWID	Date	Coord	linates	Elevation (masl)	Screened Length (m)	Sitck up (m)	EOH (mb TOP)	DTW (mb TOP)	Groundwater Elevation (masl)	
	8-Aug-96							19.20	1242.29	
MW96-16b	11-Aug-96	n.m.	n.m.	1261.49	n.m.	n.m.	48.80	19.31	1242.18	
	31-Aug-96							20.04	1241.45	
	8-Aug-96							dry	dry	
MW96-17a	11-Aug-96	7000500 50	400 400 70	4000 50	4.50	0.05	4.00	dry	dry	
WW96-17a	31-Aug-96	7099562.58	460489.73	1328.53	1.50	0.65	4.60	dry	dry	
	6-Oct-09							dry	dry	
	4-Aug-96							46.94	1281.59	
8-4	8-Aug-96		400,400,70					>31	<1298.535	
	11-Aug-96	7000500 50		460490 72	460489.73	4000 54	6.10	0.04	50.40	>31
MW96-17b	31-Aug-96	7099562.58	460489.73	1328.54	6.10	0.64	59.40	45.72	1282.82	
	23-Aug-09							45.61	1283.56	
	6-Oct-09							22.32	1306.86	
	4-Aug-96							21.31	1313.96	
	8-Aug-96							21.55	1313.72	
	11-Aug-96							21.48	1313.79	
MW96-18	31-Aug-96	7099488.22	460520.03	1335.27	6.10	n.m.	66.70	19.86	1315.41	
2	25-Jul-09							19.41	1315.86	
	22-Aug-09							22.16	1313.11	
	27-Aug-09							22.10	1313.17	

Appendix B – Data Tables

MWID	Date	Coordinates		Elevation (masl)	Screened Length (m)	Sitck up (m)	EOH (mb TOP)	DTW (mb TOP)	Groundwater Elevation (masl)
	4-Aug-96							25.52	1309.15
	8-Aug-96		460522.48	1334.67	0.00	0.20	79.20	25.49	1309.18
MW96-19	11-Aug-96	7099489.87						26.16	1308.51
10100 90-19	31-Aug-96	7099489.87		1334.07				25.35	1309.32
23-Au	23-Aug-09	_						15.30	1319.37
	6-Oct-09							16.76	1319.37
	22-Aug-09							13.97	953.43
	24-Aug-09	7400047.00	450770.05	007.40	2.05	0.00	45 44	15.34	952.07
MW09-Stu1	27-Aug-09	7100647.80	459770.65	967.40	3.05	0.60	15.44	15.39	952.01
	6-Oct-09							15.38	952.02
MW09-Stu2	18-Aug-09	7100798.93						0.67	855.84
	24-Aug-09		459212.19	856.51	3.05	0.81	8.66	0.65	855.86
	27-Aug-09							0.62	855.89

NOTES:

m asl - meters above sea level EOH - end of hole mb TOP - meters below top of pipe DTW - depth to water

n.m. - not measured

Appendix B – Data Tables

MWID	Date	Coord	inates	Elevation (masl)	Screened Length (m)	Sitck up (m)	EOH (mb TOP)	DTW (mb TOP)	Groundwater Elevation (masl)
	23-Sep-95							2.80	881.20
DH95-151	24-Sep-95	7400000 4	459767.6	004.0	00.00	0.00	20.20	2.83	881.17
DH95-151	27-Sep-95	7100862.1	459767.6	884.0	23.80	0.90	30.20	2.86	881.14
	20-Nov-95							2.74	881.26
	8-Aug-96							2.90	1062.71
MW96-12a	11-Aug-96	n.m.	n.m.	1065.61	n.m.	n.m.	3.40	3.13	1062.48
	31-Aug-96							3.27	1062.34
	8-Aug-96							10.21	1055.40
MW96-12b	11-Aug-96	n.m.	n.m.	1065.61	n.m.	n.m.	13.70	10.33	1055.27
	31-Aug-96							10.50	1055.11
	8-Aug-96							dry	dry
MW96-13a	11-Aug-96	7100925.42	460003.30	983.79	1.00	0.97	5.70	dry	dry
	31-Aug-96							5.51	978.28
	8-Aug-96							17.32	966.48
	11-Aug-96							17.38	966.41
	31-Aug-96							17.54	966.25
MW96-13b	25-Jul-09	7100925.42	460003.30	983.79	0.00	0.97	19.80	18.82	964.97
	11-Aug-09							17.49	966.30
	28-Jul-09							17.69	966.10
	27-Aug-09							17.48	966.31

Table 6: Eagle Pup Monitoring Well Summary

Appendix B – Data Tables

MWID	MWID Date		inates	Elevation (masl)	Screened Length (m)	Sitck up (m)	EOH (mb TOP)	DTW (mb TOP)	Groundwater Elevation (masl)
	8-Aug-96							5.26	971.16
	11-Aug-96	7400000 07	100111.15	070.40	4.50		5.00	5.57	970.85
MW96-14a	31-Aug-96	7100609.07	460144.45	976.42	1.50	n.m.	5.30	5.28	971.14
	6-Oct-09							3.32	973.10
	8-Aug-96							8.77	967.65
	11-Aug-96	7400000 07	40044445	070 40	2.05		40.70	9.23	967.19
MW96-14b	31-Aug-96	7100609.07	460144.45	976.42	3.05	n.m.	13.70	7.01	969.41
	6-Oct-09							5.21	971.21
	8-Aug-96							9.06	934.01
	11-Aug-96							9.04	934.03
	31-Aug-96							9.12	933.95
	25-Jul-09	7404007 55		0.40.07	4.50	0.66	9.20	8.34	934.73
MW96-15a	11-Aug-09	7101037.55	459679.15	943.07	1.50			8.38	934.69
	28-Jul-09							8.11	934.96
	27-Aug-09							8.54	934.53
	6-Oct-09							8.33	934.74
	8-Aug-96							8.09	934.98
	11-Aug-96							8.05	935.02
MW96-15b	31-Aug-96	7101037.55	459679.15	943.07	1.50	0.66	38.10	7.96	935.11
	25-Jul-09		409079.10	343.07	1.00	0.00		9.32	933.75
	6-Oct-09							9.23	933.84

NOTES:

m asl - meters above sea level EOH - end of hole mb TOP - meters below top of pipe DTW - depth to water n.m. – not measured

Appendix B – Data Tables

MWID	Date	Coordinates		Elevation (masl)	Screened Length (m)	Sitck up (m)	EOH (mb TOP)	DTW (mb TOP)	Groundwater Elevation (masl)
	23-Sep-95							7.3	975.3
DH95-150	24-Sep-95	7101183.1	460576.6	982.6	17.1	0.9	30.2	7.65	974.95
DH95-150	27-Sep-95							7.7	974.9
	20-Nov-95							7.91	974.69

Table 7: Stewart Gulch Monitoring Well Summary

NOTES:

m asl - meters above sea level EOH - end of hole mb TOP - meters below top of pipe DTW - depth to water n.m. – not measured

Appendix B – Data Tables

Table 8: Olive Gulch Monitoring Well Summary

MWID	Date	Coordinates		Elevation (masl)	Screened Length (m)	Sitck up (m)	EOH (mb TOP)	DTW (mb TOP)	Groundwater Elevation (masl)
	29-Aug-09		462221.41	1332.41	3.05			6.80	1325.61
MW09-OG2	2-Sep-09	7100599.22				0.95	16.22	6.64	1325.76
	4-Sep-09							6.45	1325.96
	28-Aug-09							2.44	1062.56
	30-Aug-09	7404554 77	461222.78			0.65	0.40	1.89	1063.11
MW09-OG3	3-Sep-09	7101551.77		1064.99	3.05		8.48	3.41	1061.59
	5-Oct-09							2.52	1062.48

NOTES:

m asl - meters above sea level EOH - end of hole mb TOP - meters below top of pipe

DTW - depth to water

n.m. - not measured

Appendix B – Data Tables

MWID	Date	Coord	inates	Elevation (masl)	Screened Length (m)	Sitck up (m)	EOH (mb TOP)	DTW (mb TOP)	Groundwater Elevation (masl)
	9-Feb-96		463901.8					10.20	1373.20
	26-Jun-96							6.24	1377.16
	28-Jun-96							8.42	1374.98
	1-Jul-96				21.70			8.80	1374.60
	11-Jul-96	74044444		1383.4		n.m.	20.07	9.25	1374.15
DH95-139	14-Jul-96	7101141.1					29.87	9.36	1374.04
	15-Jul-96							9.39	1374.01
	27-Jul-96							9.59	1373.81
	1-Aug-96							9.70	1373.71
	10-Aug-96							9.90	1373.50
	9-Feb-96							4.30	1361.70
	26-Jun-96							4.79	1361.21
	28-Jun-96							4.71	1361.29
	1-Jul-96							4.74	1361.26
	11-Jul-96	7101147.0	462624.0	1266.0	4.20		20.49	4.84	1361.17
DH95-141	14-Jul-96	7101147.6	463624.9	1366.0	4.30	n.m.	30.18	4.84	1361.16
	15-Jul-96							4.74	1361.26
	27-Jul-96							4.70	1361.30
	1-Aug-96							4.70	1361.30
	10-Aug-96							4.70	1361.30

Table 9: Bawn-Boy Gulch Monitoring Well Summary

MWID	Date	Coordi	inates	Elevation (masl)	Screened Length (m)	Sitck up (m)	EOH (mb TOP)	DTW (mb TOP)	Groundwater Elevation (masl)
	9-Feb-96							6.20	1382.60
	26-Jun-96							9.42	1379.38
	28-Jun-96							7.30	1381.50
	1-Jul-96							7.05	1381.75
	11-Jul-96		6.32	1382.48					
DH95-144	14-Jul-96	7404540.0	400750.0	4000.0	4.30	0.93	20.00	6.32	1382.48
DH95-144	15-Jul-96	7101546.8	463758.9	1388.8			30.20	6.01	1382.79
	27-Jul-96							5.52	1383.28
	1-Aug-96							5.35	1383.45
	10-Aug-96							5.17	1383.63
	24-Jul-09							4.17	1384.63
	5-Oct-09							1.52	1387.28
	9-Feb-96							3.10	1334.90
	26-Jun-96							3.59	1334.41
	28-Jun-96							3.64	1334.36
	1-Jul-96							3.72	1334.28
	11-Jul-96							3.80	1334.21
DH95-146	14-Jul-96	7101284.3	463335.0	1338.0	5.50	0.93	30.18	3.90	1334.10
	15-Jul-96							3.70	1334.30
	25-Jul-96							3.79	1334.21
	27-Jul-96							3.80	1334.20
	1-Aug-96							3.88	1334.12
	10-Aug-96							3.88	1334.12

Eagle Gold Project

Environmental Baseline Report: Hydrogeology Draft Report

MWID	Date	Coord	inates	Elevation (masl)	Screened Length (m)	Sitck up (m)	EOH (mb TOP)	DTW (mb TOP)	Groundwater Elevation (masl)
	24-Jul-09							4.17	1334.76
	5-Oct-09							1.52	1337.41
	9-Feb-96							5.80	1372.70
	26-Jun-96	26-Jun-96 28-Jun-96 11-Jul-96 11-Jul-96 14-Jul-96 7100954.9 15-Jul-96 7100954.9 27-Jul-96 1-Aug-96 10-Aug-96 10-Aug-96 24-Jul-09 5-Oct-09		6.37	1372.13				
	28-Jun-96				22.90		30.18	6.37	1372.13
	11-Jul-96		463534.2	1378.5				6.31	1372.20
DH95-147	14-Jul-96							6.29	1372.21
	15-Jul-96					0.81		6.16	1372.34
	27-Jul-96							6.20	1372.30
	1-Aug-96							6.23	1372.27
	10-Aug-96							6.27	1372.23
	24-Jul-09							5.87	1372.63
	5-Oct-09							9.74	1368.76
	9-Feb-96							0.50	1319.90
DH95-149	14-Jul-96	7101348.3	463143.7	1320.4	10.40	n.m.	22.90	1.34	1319.07
	27-Jul-96							1.36	1319.05
	3-Aug-96	7100964.75						45.15	1352.52
	21-Aug-09		463763.47	1397.67	6.10	0.72	50.30	26.82	1370.85
MW96-1	23-Aug-09							27.32	1370.35
	27-Aug-09							24.69	1372.98

MWID	Date	Coord	inates	Elevation (masl)	Screened Length (m)	Sitck up (m)	EOH (mb TOP)	DTW (mb TOP)	Groundwater Elevation (masl)
	25-Jul-96	7101046.61			3.00	0.91		13.50	1380.17
	1-Aug-96		463678.68					13.57	1380.09
MW96-2	3-Aug-96			1393.66			25.90	13.61	1380.05
	10-Aug-96							13.76	1379.90
	24-Jul-09							(mb TOP) 13.50 13.57 13.61	1382.17
	25-Jul-96							5.46	1379.01
	27-Jul-96		463596.77	1384.48	3.00	0.87	13.70	5.48	1379.00
	1-Aug-96	7101134.71						5.49	1378.99
MW96-3	3-Aug-96							5.51	1378.97
	10-Aug-96							5.57	1378.91
	24-Jul-09							4.23	1380.25
	5-Oct-09								1380.23
	26-Jun-96			1373.22				7.69	1365.52
	28-Jun-96							7.73	1365.48
	1-Jul-96							7.76	1365.46
	11-Jul-96							7.75	1365.46
	14-Jul-96							7.75	1365.47
	15-Jul-96							7.70	1365.51
MW96-4	25-Jul-96	7101228.94	463508.09		3.00	1.02	9.80	7.62	1365.60
	27-Jul-96							7.63	1365.59
	1-Aug-96							7.65	1365.56
	3-Aug-96							7.66	1365.56
	10-Aug-96							7.68	1365.54
	24-Jul-09							7.34	1365.88

Eagle Gold Project

Environmental Baseline Report: Hydrogeology Draft Report

MWID	Date	Coord	inates	Elevation (masl)	Screened Length (m)	Sitck up (m)	EOH (mb TOP)	DTW (mb TOP)	Groundwater Elevation (masl)
	25-Jul-96	_			3.00			4.74	1357.82
	27-Jul-96							4.74	1357.82
	1-Aug-96							4.75	1357.81
MW96-5	3-Aug-96	7101300.94	463428.65	1362.56		0.68	13.70	4.76	1357.80
	10-Aug-96							4.76	1357.79
	24-Jul-09	1						4.36	1358.20
	5-Oct-09							5.86	1356.70
	26-Jun-96		n.m.					2.40	1403.05
	28-Jun-96	n.m.		1405.45				1.94	1403.51
	1-Jul-96							1.96	1403.49
	11-Jul-96							2.52	1402.93
	14-Jul-96				n.m.		4.00	2.05	1403.40
MW96-6a	15-Jul-96					n.m.	4.00	2.06	1403.39
	25-Jul-96							2.11	1403.34
	27-Jul-96							2.12	1403.33
	1-Aug-96							2.15	1403.31
	10-Aug-96							3.19	1402.26
	26-Jun-96							1.71	1403.74
	28-Jun-96	n.m.						1.56	1403.90
	1-Jul-96			4405 45		n.m.	0.00	1.70	1403.76
MW96-6b	11-Jul-96		n.m.	1405.45	n.m.		9.80	2.27	1403.19
	14-Jul-96							2.46	1402.99
	15-Jul-96							2.37	1403.08

MWID	Date	Coordi		Elevation (masl)	Screened Length (m)	Sitck up (m)	EOH (mb TOP)	DTW (mb TOP)	Groundwater Elevation (masl)
	25-Jul-96							2.55	1402.91
	27-Jul-96							2.61	1402.84
	1-Aug-96							2.79	1402.66
	10-Aug-96							3.24	1402.22
	26-Jun-96		463602.51					5.90	1374.93
	28-Jun-96			1380.82				5.88	1374.94
	1-Jul-96	7101670.31						5.84	1374.98
	11-Jul-96							5.60	1375.22
	14-Jul-96							5.51	1375.31
MW96-7a	15-Jul-96				0.50	0.76	6.10	5.43	1375.39
WW 50-7a	25-Jul-96				0.00		0.10	4.96	1375.87
	27-Jul-96							4.92	1375.90
	1-Aug-96							4.73	1376.09
	10-Aug-96							4.42	1376.40
	24-Jul-09							2.19	1378.64
	5-Oct-09							2.79	1378.03
	25-Jul-96							3.59	1375.50
	27-Jul-96	7101669.86			1.00	0.92	10.70	3.54	1375.55
MW96-7b	1-Aug-96		463596.40	1379.09				3.35	1375.74
	10-Aug-96							2.99	1376.10
	24-Jul-09							4.72	1374.37

Eagle Gold Project

Environmental Baseline Report: Hydrogeology Draft Report

MWID	Date	Coord	inates	Elevation (masl)	Screened Length (m)	Sitck up (m)	EOH (mb TOP)	DTW (mb TOP)	Groundwater Elevation (masl)
	26-Jun-96							2.65	1336.25
	28-Jun-96							2.65	1336.24
	1-Jul-96							2.70	1336.19
	11-Jul-96							2.76	1336.13
	14-Jul-96							2.80	1336.09
	15-Jul-96							2.75	1336.14
	25-Jul-96							2.78	1336.11
MW96-8	27-Jul-96	7101457.97	463252.36	1338.89	1.50	0.82	5.80	2.79	1336.10
	1-Aug-96							2.86	1336.03
	10-Aug-96							2.94	1335.95
	24-Jul-09							2.17	1336.72
	10-Aug-09							2.31	1336.58
	28-Jul-09							2.20	1336.69
	27-Aug-09							2.35	1336.55
	5-Oct-09							2.20	1336.69

MWID	Date	Coord	inates	Elevation (masl)	Screened Length (m)	Sitck up (m)	EOH (mb TOP)	DTW (mb TOP)	Groundwater Elevation (masl)
	25-Jul-96							8.23	1352.07
	27-Jul-96							8.24	1352.07
	1-Aug-96							8.29	1352.01
MW96-9b	10-Aug-96	7101252 45	463073.04	1260.21	1.00	n.m.	19.80	8.83	1351.47
10100 90-90	24-Jul-09	7101252.45	403073.04	1360.31	1.00	n.m.	19.00	7.96	1352.35
	10-Aug-09							8.29	1352.02
	28-Jul-09	1						8.02	1352.29
	5-Oct-09							7.62	1352.68
	18-Jun-95	7101243.98	463076.05	1360.90	1.00		4.60	dry	dry
MW96-9a	27-Aug-09					n.m.		8.41	1352.49
	5-Oct-09							5.40	1355.51
	26-Jun-96							3.04	1364.12
	28-Jun-96							3.10	1364.06
	1-Jul-96							3.19	1363.97
	11-Jul-96							3.33	1363.83
	14-Jul-96	7404400.00	400000 50	4007.40	4.50	0.00		3.36	1363.80
MW96-10a	15-Jul-96	7101120.66	462938.59	1367.16	1.50	0.93	3.70	3.00	1364.16
	25-Jul-96							3.33	1363.83
	10-Aug-96							3.47	1363.69
	24-Jul-09							3.57	1363.59
	5-Oct-09							3.30	1363.86

Eagle Gold Project

Environmental Baseline Report: Hydrogeology Draft Report

Appendix B – Data Tables

MWID	Date	Coord	inates	Elevation (masl)	Screened Length (m)	Sitck up (m)	EOH (mb TOP)	DTW (mb TOP)	Groundwater Elevation (masl)
	15-Jul-96							4.21	1363.88
	1-Aug-96	7404400.00	400000 50	4000.00	2.00	0.02	40.70	4.27	1363.82
MW96-10b	10-Aug-96	7101132.36	462936.50	1368.09	3.00	0.93	13.70	4.43	1363.66
	5-Oct-09							3.97	1364.12
	10-Aug-96			4007.40	4.50		50.40	11.02	1296.41
MW96-11	5-Oct-09	n.m.	n.m.	1307.43	1.50	n.m.	56.40	8.89	1298.55
	10-Aug-96							0.09	1283.91
	24-Jul-09							5.08	1278.92
OT00.00	10-Aug-09	7400000 45	400500.00	4004.00		0.00	20.70	5.14	1278.86
GT96-26	28-Jul-09	7102023.45	462590.96	1284.00	n.m.	0.88	20.70	5.01	1278.99
	27-Aug-09							5.09	1278.91
	5-Oct-09							4.78	1279.22
	10-Aug-96	7404540.40	400070 70	1015.00	5.00		44.00	7.59	1308.27
MW96-26	5-Oct-09	7101516.49	462872.79	1315.86	5.00	n.m.	44.20	7.46	1308.40
	10-Aug-96	7404504.00	400070.07	4007.04	5.00		00.40	11.02	1296.92
MW96-27	5-Oct-09	7101561.89	462876.27	1307.94	5.00	n.m.	38.10	9.95	1297.99

NOTES:

m asl - meters above sea level

EOH - end of hole

mb TOP - meters below top of pipe

DTW - depth to water

n.m. - not measured

Eagle Gold Project

Environmental Baseline Report: Hydrogeology Draft Report

Appendix B – Data Tables

Monitoring Well	Packer Test Interval (m)	Interval Length (m)	Rock Description	Depth to Water (m)	Hydraulic Conductivity (m/s)
Dublin Gulch					
95-152	18.0 – 30.2	12.2	Metasediment	1.8	1.2 X10 ⁻⁶
Platinum Gulo	ch				
95-102	16.2 – 45.1	28.9	Granodiorite/metased	0	8.4 X10 ⁻⁷
95-102	46.3 – 76.8	30.5	Granodiorite/metased	0	5.7 X10 ⁻⁷
95-103	41.9 – 72.4	30.5	Granodiorite	24	9.9 X10 ⁻⁸
95-108	18.0 – 30.2	12.2	Granodiorite	59.6	*a
95-108	67.1 – 92.4	25.3	Granodiorite	43	3.2 X10 ⁻⁷
95-108	94.5 – 117.3	22.8	Granodiorite	48.5	*a
Stuttle Gulch					
95-103	75.0 – 92.4	17.4	Granodiorite/metased	24	2.5 X10 ⁻⁷
95-103	107.6 – 138.0	30.4	Metasediment	24	4.8 X10 ⁻⁸
95-103	134.7 – 165.0	30.3	Metasediment	24	1.0 X10 ⁻⁸
95-105	14.9 – 29.3	14.4	Metasediment	13.1	7.6 X10 ⁻⁷
95-105	45.1 – 69.5	24.4	Metasediment	13.1	1.5 X10 ⁻⁸
95-106	30.2 - 60.7	30.5	Granodiorite	19.8	5.5 X10 ⁻⁸
95-106	64.1 – 82.9	18.8	Granodiorite	19.8	4.1 X10 ⁻⁸
Eagle Pup					
95-151	11.9 – 30.2	18.3	Metasediment	0.9	2.4 X10 ⁻⁷
Steward Gulc	h				
95-150	18.0 – 30.2	12.2	Metasediment	2.1	8.9 X10 ⁻⁷
Bawn-Boy Gu	lch				
95-139	11.6 – 29.9	18.3	Metasediment	11.89	1.4 X10 ⁻⁷
95-141	11.9 – 30.2	18.3	Granodiorite	3.66	1.6 X10 ⁻⁷
95-144	11.9 – 30.2	18.3	Granodiorite	4.88	2.8 X10 ⁻⁷
95-146	11.9 – 30.2	18.3	Granodiorite	1.83	1.0 X10 ⁻⁷
95-147	11.9 – 30.2	18.3	Granodiorite	4.27	1.1 X10 ⁻⁷

Table 10: Packer Test Summary

NOTES;

*a - pumping capacity could not fill test interval

Drill holes DH95-105, 106, 108 vertical, DH95-102 and 103 incline holes Depths are listed as reported by 1995 Knight Piésold

Monitoring Well	Year Tested	Screened Interval (m)	Screen Length (m)	Rock Description	Hydraulic Conductivity (m/s)	Interpretive Method
Dublin Gulch						
MW09-DG1	2009	4.0 - 7.0	3.05	Fluvial	3.1 X 10 ⁻⁵	Bouwer and Rice
MW09-DG2	2009	9.1 – 12.1	3.05	Placer Tailings	3.9 X 10 ⁻³	KGS
MW09-DG4	2009	9.8 – 12.8	3.05	Till	5.5 X 10 ⁻⁵	Bouwer and Rice
BH95-152	2009	27.2 – 30.2	3.05	Metasediment	1.8 X 10 ⁻⁵	Bouwer and Rice
Stuttle Gulch						
MW96-16b	1996	42.7 – 48.8	6.10	Granodiorite	5.0 X10 ⁻⁷	Cooper
MW96-18	1996	60.6 - 66.7	6.10	Metasediment	1.0 X10 ⁻⁷	Cooper
MW09-STU2	2009	4.3 – 7.3	3.05	Colluvial	3.2 X 10 ⁻⁵	Bouwer and Rice
Eagle Pup						
MW96-12b	1996	10.7 – 13.7	3.05	Granodiorite	8.6 X10 ⁻⁷	Bouwer and Rice
	1996	40.0 40.0	2.05		5.1 X10 ⁻⁷	Bouwer and Rice
MW96-13b	2009	16.8 – 19.8	3.05	Metasediment	7.3 X 10 ⁻⁶	Bouwer and Rice
MW96-14b	1996	10.7 -13.7	3.05	Colluvial	7.8 X10 ⁻⁶	Bouwer and Rice
	1996	20.0 20.4	4.50		3.8 X10 ⁻⁶	Bouwer and Rice
MW96-15b	2009	36.6 – 38.1	1.50	Metasediment	7.4 X 10 ⁻⁵	Bouwer and Rice
Olive Gulch						
MW09-OG2	2009	12.8 – 15. 8	3.05	Granodiorite	8.5 X 10 ⁻⁷	Bouwer and Rice
MW09-OG3	2009	5.3 – 8.4	3.05	fluvial/colluvial	4.1 X 10 ⁻⁶	Bouwer and Rice
Bawn-Boy Gu	lch					
MW96-2	1996	22.9 – 25.9	3.05	Granodiorite	1.0 X10 ⁻⁵	Bouwer and Rice
MW96-3	1996	10.7 – 13.7	3.05	Granodiorite	2.4 X10 ⁻⁵	Bouwer and Rice
MW96-4	1996	6.7 – 9.7	3.05	Colluvial	3.5 X10 ⁻⁷	Bouwer and Rice
MW96-5	1996	10.7 – 13.7	3.05	Granodiorite	4.4 X10 ⁻⁶	Bouwer and Rice
MW96-6b	1996	8.8 – 9.8	1.00	Colluvial	4.5 X10 ⁻⁶	Bouwer and Rice
MW96-7b	1996	9.7 – 10.7	1.00	Granodiorite	1.3 X10 ⁻⁷	Bouwer and Rice
	1996	4.3 – 5.8	1.50	Granodiorite	2.4 X10 ⁻⁷	Bouwer and Rice
MW96-8	2009	4.3 – 5.8	1.50	Granodiorite	4.2X 10 ⁻⁵	Bouwer and Rice
MW96-9b	1996	16.8 – 19.8	3.05	Granodiorite	4.8 X10 ⁻⁶	Bouwer and Rice
10100 90-90	2009	10.0 - 19.0	3.05	Granoulonite	8.9 X 10 ⁻⁶	Bouwer and Rice
MW96-10b	1996	12.7 – 12.7	1.00	Metasediment	6.2 X10 ⁻⁶	Bouwer and Rice
MW96-1	2009	44.2 – 50.3	6.10	Granodiorite	7.6 X 10 ⁻⁷	Bouwer and Rice
GT96-26	2009	n.a.	n.a.	Granodiorite	3.6 X 10 ⁻⁶	Bouwer and Rice

Table 11: Recovery Test Summary

NOTES:

n.a. - data not available

Bouwer and Rice – Bouwer and Rice (1976), Bouwer (1989)

Cooper - Cooper, et al (1969)

KGS - Butler, J.J., Jr., and E.J. Garnett, for the Kansas Geological Survey (2000)

Appendix B – Data Tables

Table 12a: Groundwater General Chemistry – Ann Gulch and Dublin Gulch

					Ann Gulch							Dubli	n Gulch						
Parameter	Units	D.L.*	CCME	BC CSR	MW09-AG2				DH95-152					MW09-DG1		MW09- DG2	MWO	9-DG4	MW09-DG5
	Units	D.L.	FAL	AW	1-OCT -09	2-May-96	2-Jul-96	1-Sep-96	7-Sep-95	60-ln[-7:	60-In[-7]	7-Aug-09	7-Aug-09	.7-Aug-09	5-ОСТ-09	7-Aug-09	-Sep-09	5-OCT-09	-Sep-09
Physicals		μ			N	N			7	N		N			- 8			. 0	
Hardness (as CaCO ₃)	mg/L	1	-	-	355	486	421	420	492	409	87.7	443	189	183	221	293	310	293	452
Conductivity	uS/cm	2	-	-	964	939	838	812	912	779	186	443	377	183	418	557	545	540	
pH	рН	0.01	6.5 - 9	-	7.24	7.35	7.54	7.39	7.35	8.08	7.79	7.74	7.74	7.72	7.61	7.5	7.31	7.67	
Total Dissolved Solids	mg/L	10	-	-		687	613	599	715	463	124	494	217	221	254	350	342	358	
Total Suspended Solids	mg/L	3	-	-	821	22	5	11	11	53.00	18.50	7.8	27.8	42.3	15.8	6.3	42.8	20.8	
Turbidity	NTU	0.1	-	-	437	22.3	4.2	9.8	10.6	54.7	23				34.0		11.5	6.70	
Anions			1				1	1	1	1	1	1	1	1	1			1	
Alkalinity, Total (as CaCO ₃)	mg/L	2	-	-	682	378	343	335	419	313	83.2	320	147	151	166	210	205	209	
Bromide (Br)	mg/L	0.05	-	-	<5.0					<0.05	<0.05	<0.05	<0.05	<0.05	<0.050	<0.05	<0.05	<0.050	
Chloride (CI)	mg/L	0.5	-	-	<50	1	0.7	0.6	1.7	1.5	<0.5	<5.0	<0.5	<0.5	<0.50	<0.5	<0.5	<0.50	
Fluoride (F)	mg/L	0.02	-	-	0.296	0.18	0.2	0.15	0.15	0.13	0.257	<0.2	0.138	0.139	0.228	0.104	0.08	0.080	
Sulfate (SO ₄)	mg/L	0.5	-	-	<50	160	142	139	164	125	10.2	129	52.6	55.6	67.7	98.9	94.1	92.8	
Nutrients			1				1	1	1	1	1	1	1	1	1			1	
Ammonia Nitrogen (NH ₄)	mg/L					0.34	0.33	0.27	0.36										
Nitrate as N	mg/L	0.005	13	-	<0.50	<0.005	<0.005	<0.005	0.013	0.262	<0.005	<0.05	<0.005	<0.005	<0.0050	<0.005	0.116	0.0826	
Nitrite as N	mg/L	0.001	0.060	-	<0.10	0.003	0.001	0.001	0.001	0.0127	<0.001	<0.01	<0.001	<0.001	<0.0010	0.0104	<0.001	0.0075	
Total Kjeldahl Nitrogen	mg/L	0.05	-	-	14.6					0.607	0.077	1.2	0.191	0.186	0.188	0.339	0.117	0.138	
Ortho Phosphate as P	mg/L	0.001	-	-	<0.10	<0.001	0.084	0.029	0.004	0.0115	0.0054	0.0082	0.0012	<0.001	<0.0010	<0.001	<0.001	<0.0010	
Total Phosphate as P	mg/L	0.00	-	-	0.54	<0.001	0.224	0.084	0.052	0.101	0.034	0.0297	<0.01	0.018	<0.0020	<0.002	0.0228	<0.0020	
Organics								·	·	·		·		·			·	·	
Total Organic Carbon (TOC)	mg/L	0.5	-	-	345					5.74	1.15	3.9	2.35	2.65	1.09	4.74	1.43	1.64	
Cyanide																			
Total Cyanide (CN-)	mg/L	0.001				<0.001	<0.001	<0.001	<0.001										

Table 12b:	Groundwater General	Chemistry	– Stuttle Gulch
------------	---------------------	-----------	-----------------

											Stuttle	Gulch								Stewar	t Gulch	
						DH95-151		MW	96-18		DH95-105				DH95-106			MW09- STU 2		DH9	5-150	
Parameter	Units	D.L.*	CCME FAL	BC CSR AW	27-Sep-95	22-Jul-96	21-Sep-96	27-Aug-09)5-ОСТ-09	21-Aug-95	27-Sep-95	22-Jul-96	21-Aug-95	27-Sep-95	22-May-96	22-Jul-96	21-Sep-96	27-Aug-09	27-Sep-95	24-May-96	22-Jul-96	21-Sep-96
Physicals		-		_																		
Hardness (as CaCO ₃)	mg/L	1	-	-	234	347	398	315	313	456	241	187	118	129	134	99	133	452	511	447	450	454
Conductivity	uS/cm	2	-	-	435	628	675	315	565	520	491	496	273	267	287	277	284	659	686	808	793	825
рН	pН	0.01	6.5 - 9	-	7.37	7.58	7.5	7.64	7.60	7.99	7.66	7.89	6.08	7.95	7.78	8.02	7.99	7.62	7.35	7.4	7.86	7.25
Total Dissolved Solids	mg/L	10	-	-	310	456	496	385	391	367	380	364	176	192	203	161	198	397	653	570	568	578
Total Suspended Solids	mg/L	3	-	-	7	10	4	133	43.3	4210	168	95	160	99	55	27	10	28.8	6	9	5	2
Turbidity	NTU	0.1	-	-	3.2	9.7	7.8		47.7	2000	48	29	43	23.6	15.3	7.7	4.5	23	5	11.3	7.4	9.4
Anions																						
Alkalinity, Total (as CaCO ₃)	mg/L	2	-	-	210	248	262	139	141	117	146	129	88.9	99	100	92.1	105	285	464	394	390	407
Bromide (Br)	mg/L	0.05	-	-				<0.05	<0.050									<0.05				
Chloride (Cl)	mg/L	0.5	-	-	0.7	<0.5	<0.5	<0.5	<0.50	8.8	1.1	<0.5	<0.5	1	<0.5	<0.5	<0.5	<0.5	1.1	<0.5	<0.5	<0.5
Fluoride (F)	mg/L	0.02	-	-	0.21	0.29	0.32	0.073	0.097	0.14	0.16	0.14	0.07	0.09	0.05	0.09	0.08	0.11	0.28	0.3	0.28	0.15
Sulfate (SO ₄)	mg/L	0.5	-	-	50.3	116	128	165	165	131	138	133	40.6	44	51.9	45.7	45.3	90.1	97.8	90.8	90.4	89.8
Nutrients																						
Ammonia Nitrogen (NH4)	mg/L				<0.005	0.019	0.024			0.024	<0.005	0.014	0.011	<0.005	0.016	<0.005	<0.005		0.001	0.021	0.019	0.042
Nitrate as N	mg/L	0.005	13	-	0.369	0.136	0.116	0.0085	0.0304	<0.005	<0.005	<0.005	0.045	0.028	<0.005	<0.005	0.011	0.0065	<0.005	<0.005	<0.005	<0.005
Nitrite as N	mg/L	0.001	0.060	-	0.002	0.001	0.001	<0.001	0.0019	<0.001	<0.001	0.001	0.001	0.002	0.007	0.001	0.003	<0.001	<0.001	0.002	0.001	0.002
Total Kjeldahl Nitrogen	mg/L	0.05	-	-				0.32	0.244									0.488				
Ortho Phosphate as P	mg/L	0.001	-	-	0.002	0.007	0.008	0.0027	0.0013	0.062	0.007	0.024	<0.001	0.002	<0.001	0.004	0.004	0.0011	0.006	<0.001	0.031	0.012
Total Phosphate as P	mg/L	0.00	-	-	0.011	0.051	0.038	0.259	<0.0020	9.17	0.08	0.2	0.028	0.02	0.019	0.051	0.025	0.024	0.032	0.002	0.295	0.256
Organics																						
Total Organic Carbon (TOC)	mg/L	0.5	-	-				1.24	8.18									2.32				
Cyanide																						
Total Cyanide (CN ⁻)	mg/L	0.001			<0.001	0.004	<0.001			<0.001	0.009	<0.001	<0.001	<0.001	<0.001	0.005	<0.001		0.013	<0.001	<0.001	<0.001

Appendix B – Data Tables

						Stewart	Gulch		Pla	tinum Gule	ch			Eagle Pup				Olive	e Gulch	
						DH95	-150		MW9	6-23	DH95-108	MW9	6-13b		MW96-15b		MWO	9-OG2	MWG	09-OG3
Parameter	Units	D.L.*	CCME FAL	BC CSR AW	:7-Sep-95	24-May-96	22-Jul-96	21-Sep-96	27-Aug-09)5-OCT-09	:1-Aug-95	27-Jul-09	27-Aug-09	60-In-7;	27-Aug-09	J5-OCT-09	-Sep-09)5-OCT-09	-Sep-09)5-OCT-09
Physicals					~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~							N								0
Hardness (as CaCO ₃)	mg/L	1	-	-	511	447	450	454	140	153	88.6	148	83.9	260	274	262	169	183	20.2	15.7
Conductivity	uS/cm	2	-	-	686	808	793	825	140	313	201	181	203	453	446	445	332	336	62	42.7
рН	pН	0.01	6.5 - 9	-	7.35	7.4	7.86	7.25	7.83	7.78	7.84	8.01	7.73	8.17	7.9	7.90	7.3	7.11	6.56	6.99
Total Dissolved Solids	mg/L	10	-	-	653	570	568	578	170	192	133	98	108	231	236	233	205	221	40	41
Total Suspended Solids	mg/L	3	-	-	6	9	5	2	29.8	7.8	85	1310	487	44	7.3	4.8	66.3	21.8	33.8	5.8
Turbidity	NTU	0.1	-	-	5	11.3	7.4	9.4		6.45	26.7	679		50.8		4.05	31.1	12.0	10	4.20
Anions																				
Alkalinity, Total (as CaCO ₃)	mg/L	2	-	-	464	394	390	407	130	136	60.2	88.9	107	241	243	239	103	108	26	20.5
Bromide (Br)	mg/L	0.05	-	-					<0.05	<0.050		<0.05	<0.05	<0.05	<0.05	<0.050	<0.05	<0.050	<0.05	<0.050
Chloride (Cl)	mg/L	0.5	-	-	1.1	<0.5	<0.5	<0.5	<0.5	<0.50	0.6	<0.5	<0.5	<0.5	<0.5	<0.50	<0.5	<0.50	<0.5	<0.50
Fluoride (F)	mg/L	0.02	-	-	0.28	0.3	0.28	0.15	0.056	0.063	0.07	0.092	0.061	0.372	0.318	0.337	0.282	0.414	0.025	<0.020
Sulfate (SO ₄)	mg/L	0.5	-	-	97.8	90.8	90.4	89.8	22.8	29.1	33.8	5.52	6.12	17.8	17.3	17.3	67.7	66.8	3.12	1.04
Nutrients																				
Ammonia Nitrogen (NH ₄)	mg/L				0.001	0.021	0.019	0.042			0.007									
Nitrate as N	mg/L	0.005	13	-	<0.005	<0.005	<0.005	<0.005	0.479	0.428	0.273	0.174	0.177	0.0071	<0.005	0.0060	0.0255	0.0139	0.125	0.0937
Nitrite as N	mg/L	0.001	0.060	-	<0.001	0.002	0.001	0.002	<0.001	0.0026	0.001	<0.001	<0.001	<0.001	<0.001	<0.0010	0.0043	0.0025	0.0011	0.0023
Total Kjeldahl Nitrogen	mg/L	0.05	-	-					0.119	0.193		<0.05	0.091	<0.05	0.094	0.136	0.301	0.207	2.3	0.081
Ortho Phosphate as P	mg/L	0.001	-	-	0.006	<0.001	0.031	0.012	0.0331	0.0292	0.001	<0.001	<0.001	0.0058	0.0026	0.0024	<0.001	0.0021	<0.001	<0.0010
Total Phosphate as P	mg/L	0.00	-	-	0.032	0.002	0.295	0.256	0.0585	0.0258	0.063	0.283	0.121	0.047	0.0045	<0.0020	0.049	0.0028	0.0185	<0.0020
Organics																				
Total Organic Carbon (TOC)	mg/L	0.5	-	-					2.18	1.85		5.54	2.56	2.14	<0.5	0.52	2.17	2.81	1.82	1.62
Cyanide																				
Total Cyanide (CN ⁻)	mg/L	0.001			0.013	<0.001	<0.001	<0.001			0.007									

Table 12c: Groundwater General Chemistry – Stewart Gulch, Platinum Gulch, Eagle Pup, and Olive Gulch

												Ba	iwn-Boy G	Gulch									Creek ershed	
-			ССМЕ	BC CSR	BH95-138		BH95-139			BH	95-141		BH95- 148	BH9	5-149	GT96-26		MW96-8		MWS	96-6b	MW	/96-1	Travel Blank
Parameter	Units	D.L.*	FAL	AW	27-Sep-95	24-May-96	22-Jul-96	21-Sep-96	27-Sep-95	24-May-96	22-Jul-96	21-Sep-96	27-Sep-95	22-Jul-96	21-Sep-96	27-Jul-09	27-Jul-09	27-Aug-09	05-Oct-09	27-Jul09	27-Aug-09	21-Sep-96	27-Aug-09	27-Aug-09
Physicals				_																				
Hardness (as CaCO ₃)	mg/L	1	-	-	25	24.8	25.1	24.1	58.9	62.1	56	61.4	29.8	26.6	31	89	24	25	25.8	18.6	23.2	281	151	
Conductivity	uS/cm	2	-	-	60.9	60.4	61.5	60.6	131	142	144	140	72.6	72.5	72.6	186	62.5	62.9	64.2	50	53.4	633	282	<2.0
рН	pН	0.01	6.5 - 9	-	7.64	7.01	7.61	7.44	7.64	7.64	7.8	8.8	7.2	7.44	7.41	7.72	7.38	7.14	7.08	7.04	6.94	7.68	7.36	5.7
Total Dissolved Solids	mg/L	10	-	-	39	38	39	37	75	87	86	91	49	43	41	126	49	47	49	42	44	478	190	<10
Total Suspended Solids	mg/L	3	-	-	65	14	5	24	366	67	31	4	123	1000	1140	27.5	66.5	23.2	9.3	32.50	42.3	4	148	<3.0
Turbidity	NTU	0.1	-	-	30.8	9.3	2	9.3	67.1	26.8	7.7	12.7	51	290	284	28.9	30.8		3.39	25.9		4.5		<0.1
Anions																								
Alkalinity, Total (as CaCO ₃)	mg/L	2	-	-	23.2	21.5	20.7	21.8	30.6	50.5	53.9	55.9	30.4	29.1	27.5	81.9	17.9	19	20.1	19.8	22.6	65.1	83.8	<2
Bromide (Br)	mg/L	0.05	-	-												<0.05	<0.05	<0.05	<0.05	<0.05	<0.05		<0.05	<0.05
Chloride (Cl)	mg/L	0.5	-	-	0.5	<0.5	<0.5	<0.5	1.8	<0.5	<0.5	<0.5	1	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	3.3	<0.5	<0.5
Fluoride (F)	mg/L	0.02	-	-	0.1	0.05	0.08	0.06	0.26	0.25	0.26	0.25	0.09	0.04	0.06	0.247	0.046	0.038	0.034	0.028	0.025	0.23	0.062	<0.02
Sulfate (SO ₄)	mg/L	0.5	-	-	5.4	6.8	6.2	6.6	14	12.7	13.1	13.4	4	3.2	3.4	9.76	8.99	9.16	8.98	2.41	2.51	256	64.4	<0.5
Nutrients																								
Ammonia Nitrogen (NH ₄)	mg/L					<0.005	<0.005	<0.005		0.043	0.007	<0.005		0.031	<0.005							0.07		
Nitrate as N	mg/L	0.005	13	-	<0.005	0.124	0.13	0.144	0.012	0.064	0.063	0.07	<0.005	0.065	0.069	<0.005	0.0976	0.0939	0.0906	0.399	0.145	0.009	0.0054	<0.005
Nitrite as N	mg/L	0.001	0.060	-	0.103	0.003	<0.001	<0.001	0.077	0.022	0.005	0.012	0.034	<0.001	0.059	<0.001	<0.001	<0.001	0.0012	0.0049	<0.001	0.006	<0.001	<0.001
Total Kjeldahl Nitrogen	mg/L	0.05	-	-	0.001				0.001				0.002			0.092	<0.05	0.056	0.193	0.592	0.159		0.126	<0.5
Ortho Phosphate as P	mg/L	0.001	-	-	0.016	0.007	0.03	0.024	0.019	0.018	0.031	0.034	0.004	0.012	0.016	0.0053	0.0077	0.005	0.0053	0.0337	0.0016	0.004	<0.001	<0.001
Total Phosphate as P	mg/L	0.00	-	-	0.178	0.049	0.04	0.057	0.1	0.045	0.083	0.128	0.036	0.79	1.59	0.053	0.066	0.0202	0.0052	0.086	0.0428	0.018	0.088	<0.002
Organics																								
Total Organic Carbon (TOC)	mg/L	0.5	-	-												1.79	0.92	0.85	1.72	5.74	0.8/		3.18	<0.5
Cyanide																								
Total Cyanide (CN)	mg/L	0.001			0.006	<0.001	<0.001	<0.001	0.008	<0.001	<0.001	<0.001	<0.001	<0.001	<0.001							<0.001		

Table 12d: Groundwater General Chemistry – Bawn-Boy Gulch, Lynx Creek Watershed, and Travel Blank

Eagle Gold Project Environmental Baseline Report: Hydrogeology Draft Report

Appendix B – Data Tables

					Ann Gulch							Du	blin Gulch						
			ССМЕ		MW09-AG2				DH95-152					MW09-DG1		MW09-DG2	MW)9-DG4	MW09-DG5
Total Metals	Units	D.L.*	FAL	BC CSR AW	21-OCT -09	27-Sep-95	22-May-96	22-Jul-96	21-Sep-96	27-Jul-09	27-Jul-09	27-Aug-09	27-Aug-09	27-Aug-09)5-OCT-09	27-Aug-09	t-Sep-09)5-OCT -09	3-Sep-09
Aluminum (Al)	mg/L	0.001	0.1 ₆	-	3.42	0.064	0.042	0.024	0.009	0.112	0.268	0.106	0.499	0.215	0.0564	0.595	0.223	0.269	
Antimony (Sb)	mg/L	0.0001	-	0.20	0.0026	0.0012	<0.0001	<0.0001	<0.0001	0.00077	0.0227	0.00075	0.00412	0.00178	0.00029	0.008	0.00092	0.00154	
Arsenic (As)	mg/L	0.0001	0.005	0.05	<u>0.0610</u>	<u>1.83</u>	<u>1.15</u>	<u>1.09</u>	<u>1.11</u>	<u>0.530</u>	<u>0.579</u>	<u>0.554</u>	<u>0.0712</u>	<u>0.119</u>	<u>0.462</u>	<u>0.0548</u>	0.00496	0.00478	
Barium (Ba)	mg/L	0.00005	-	10	0.0668	0.019	0.013	0.011	0.021	0.0236	0.0423	0.0259	0.0489	0.0382	0.0318	0.0797	0.12	0.111	
Beryllium (Be)	mg/L	0.0005	-	0.053	<0.0050	<0.005	<0.005	<0.005	<0.005	<0.0005	<0.0005	<0.001	<0.0005	<0.0005	<0.00050	<0.0005	<0.0005	<0.0025	
Bismuth (Bi)	mg/L	<0.10	-	-		<0.10	<0.10	<0.10	<0.10										
Boron (B)	mg/L	0.01	-	50	0.20	<0.10	<0.10	<0.10	<0.10	0.011	<0.01	<0.02	0.013	<0.01	<0.010	<0.01	<0.01	<0.050	
<u>Cadmium (Cd)</u>	mg/L	0.000017	0.000017	0.00001-0.000067	<0.00050	<0.002	<0.0002	<0.0050	<0.0002	<u>0.000148</u>	<u>0.000061</u>	<0.000034	<u>0.000062</u>	<u>0.000045</u>	<0.000017	0.000085	0.000038	<0.000085	
Calcium (Ca)	mg/L	0.05	-	-	104	76.2	76.8	64.3	65.9	66.1	25.7	71.5	37.1	36.4	40.1	57.3	79.6	74.8	
Chromium (Cr)	mg/L	0.0005	-	-	0.0170	<0.001	<0.001	<0.001	<0.001	<0.0005	0.00069	<0.001	0.0022	0.00111	<0.00050	0.00191	0.00142	<0.0025	
Cobalt (Co)	mg/L	0.0001	-	0.04	0.0191	<0.001	<0.001	<0.001	<0.001	0.0003	0.00213	0.0003	0.00144	0.00109	0.00020	0.00161	0.00067	<0.00050	
Copper (Cu)	mg/L	0.0001	0.002-0.0049	0.002 - 0.009 ₈	0.0789	<0.001	0.001	<0.001	<0.001	0.00295	0.00265	0.0026	0.00403	0.00177	0.00070	0.00415	0.00283	0.00216	
Iron (Fe)	mg/L	0.03	0.3	-	10.2	1.08	1.23	0.979	1.01	0.901	3.87	0.344	2.23	2.01	3.73	1.89	0.784	0.86	
Lead (Pb)	mg/L	0.00005	0.001 - 0.007 ₁₁	0.004 - 0.016 ₁₀	0.00398	<0.001	<0.001	<0.001	<0.001	0.00104	0.00113	0.00109	0.0017	0.000731	0.000270	0.0025	0.00193	0.00124	
Lithium (Li)	mg/L	0.005	-	-	0.073					0.0929	0.006	0.111	0.0211	0.027	0.0327	0.0257	0.0117	<0.025	
Magnesium (Mg)	mg/L	0.1	-	-	98.3	73.8	69.6	60.2	60	57.8	5.69	63.8	23.8	26.2	30.1	33.7	26.8	28.0	
Manganese (Mn)	mg/L	0.00005	-	-	0.732	0.029	0.023	0.02	0.023	0.0744	0.324	0.0747	0.292	0.311	0.201	0.411	0.0684	0.0316	
Mercury (Hg)	mg/L	0.00005	-	0.001		<0.00001	<0.00001	<0.00001	<0.00001			<0.00005	<0.00005	<0.00005	<0.000050	<0.00005	<0.00005	<0.000050	
Molybdenum (Mo)	mg/L	0.00005	0.073	10	0.016	<0.001	<0.001	<0.001	<0.001	0.000281	0.00791	0.0003	0.0121	0.0052	0.00111	0.00729	0.000618	0.00129	
Nickel (Ni)	mg/L	0.0005	0.025 - 0.15 ₁₃	0.025 - 0.15 ₁₃	0.0858	0.001	<0.001	<0.001	<0.001	0.0117	0.00543	0.0104	0.00433	0.00249	0.00057	0.006	0.00175	<0.0025	
Potassium (K)	mg/L	2	-	-	<20					4.5	<2.0	4.9	3.3	3.3	3.1	3.6	2.2	<10	
Selenium (Se)	mg/L	0.001	0.001	0.01	<0.010	0.0015	<0.0005	<0.0005	<0.0005	<0.001	<0.001	<0.002	<0.001	<0.001	<0.0010	<0.001	<0.001	<0.0050	
Silver (Ag)	mg/L	0.00001	0.0001	0.0005 - 0.015	<0.00010	0.0002	<0.0001	<0.0001	<0.0001	0.000077	0.000013	<0.00002	0.000158	<0.00006	0.000012	<0.0008	0.000015	0.000071	
Sodium (Na)	mg/L	2	-		170					21.4	2.4	22	11	8.3	8.2	20.3	3.4	<10	
Strontium (Sr)	mg/L	0.001	-	-		1.01	1.08	0.911	0.905										
Thallium (TI)	mg/L	0.0001	0.0008	0.003	<0.0010		<0.010	<0.010	<0.010	<0.0001	<0.0001	<0.0002	<0.0001	<0.0001	<0.00010	<0.0001	<0.0001	<0.00050	
Tin (Sn)	mg/L	0.0001	-	-	0.0022					0.00505	0.00134	0.00216	0.00081	0.00037	0.00079	0.00106	0.00064	0.00171	
Titanium (Ti)	mg/L	0.01	-	1	0.12	<0.010				0.014	0.017	0.087	0.026	<0.01	<0.010	0.031	0.022	<0.050	
Uranium (U)	mg/L	0.00001	-	0.30	0.00498	0.00754	0.00431	0.00327	0.00348	0.00306	0.000909	0.0036	0.00161	0.00173	0.00173	0.00469	0.00677	0.00980	
Vanadium (V)	mg/L	0.001	-	-	0.014	<0.030	<0.030	<0.030	<0.030	<0.001	<0.001	<0.002	<0.001	<0.001	<0.0010	0.0012	<0.001	<0.0050	
Zinc (Zn)	mg/L	0.001	0.03	0.075 - 2.4 ₁₄	0.115	<0.005	<0.005	0.012	<0.005	0.0241	0.0710	0.0134	0.0712	0.0632	0.0163	0.0466	0.0054	<0.0050	

Table 13a: Groundwater Total Metals Chemistry – Ann Gulch and Dublin Gulch

											St	tuttle Gulch						
			COME			95-151			95-105				95-106			MW96-18		MW09-STU 2
Total Metals	Units	D.L.*	CCME FAL	BC CSR AW	27-Sep-95	22-Jul-96	21-Sep-96	21-Aug-95	27-Sep-95	22-Jul-96	21-Aug-95	27-Sep-95	22-May-96	22-Jul-96	21-Sep-96	27-Aug-09	05-OCT-09	27-Aug-09
Aluminum (Al)	mg/L	0.001	0.16	-	0.072	0.129	0.042	4.07	0.754	0.27	1.42	0.577	0.185	0.184	0.045	0.203	0.423	0.42
Antimony (Sb)	mg/L	0.0001	-	0.20	0.0032	0.0045	0.0021	0.0175	0.0034	0.0016	0.0035	0.0035	0.0008	0.0027	0.0032	0.0215	0.0164	0.0013
Arsenic (As)	mg/L	0.0001	0.005	0.05	<u>0.117</u>	<u>0.241</u>	<u>0.246</u>	<u>2.31</u>	<u>0.885</u>	<u>0.608</u>	0.0425	0.043	0.0319	0.0284	0.0276	<u>0.618</u>	<u>0.993</u>	0.0167
Barium (Ba)	mg/L	0.00005	-	10	0.065	0.055	0.055	0.081	0.015	0.018	0.027	0.027	0.026	0.022	0.021	0.0251	0.0303	0.17
Beryllium (Be)	mg/L	0.0005	-	0.053	<0.005	<0.005	<0.005	<0.005	<0.005	<0.005	<0.005	<0.005	<0.005	<0.005	<0.005	<0.0005	<0.00050	<0.005
Bismuth (Bi)	mg/L	<0.10	-	-	<0.10	<0.10	<0.10	<0.10	<0.10	<0.10	<0.10	<0.10	<0.10	<0.10	<0.10			<0.10
Boron (B)	mg/L	0.01	-	50	<0.10	<0.10	<0.10	<0.10	<0.10	<0.10	<0.10	<0.10	<0.10	<0.10	<0.10	<0.01	<0.010	<0.10
<u>Cadmium (Cd)</u>	mg/L	0.000017	0.000017	0.00001-0.000067	<0.002	<0.0002	<0.0002	<u>0.0191</u>	<u>0.0005</u>	<u>0.0003</u>	<0.0002	<0.0002	<0.0002	<0.0002	<0.0002	0.000043	<u>0.000078</u>	<0.0002
Calcium (Ca)	mg/L	0.05	-	-	40.2	53.6	58.6	84.4	70.1	69.5	43.1	43.4	48	43.9	48.1	87.5	91.0	30.2
Chromium (Cr)	mg/L	0.0005	-	-	<0.001	<0.001	<0.001	0.011	0.002	<0.001	<0.001	<0.001	<0.001	<0.001	<0.001	0.00087	0.00167	<0.001
Cobalt (Co)	mg/L	0.0001	-	0.04	<0.001	<0.001	<0.001	0.014	<0.001	<0.001	<0.001	<0.001	<0.001	<0.001	<0.001	0.00148	0.00178	<0.001
Copper (Cu)	mg/L	0.0001	0.002-0.004,	0.002 - 0.009 ₈	0.001	<0.001	<0.001	<u>0.095</u>	<u>0.009</u>	0.003	0.001	0.001	<0.001	<0.001	<0.001	0.00153	0.00258	<u>0.008</u>
Iron (Fe)	mg/L	0.03	0.3	-	0.233	0.869	0.771	12.8	0.928	0.431	0.753	0.348	0.283	0.175	0.076	2.39	3.04	2.43
Lead (Pb)	mg/L	0.00005	0.001 - 0.007 ₁₁	0.004 - 0.016 ₁₀	<0.001	<0.001	<0.001	<u>0.35</u>	<u>0.016</u>	<u>0.007</u>	0.004	0.002	<0.001	<0.001	<0.001	0.00324	0.00516	0.003
Lithium (Li)	mg/L	0.005	-	-												<0.005	<0.0050	
Magnesium (Mg)	mg/L	0.1	-	-	32.6	50.2	55.1	20.3	16.8	16.4	4.21	4.27	4.62	4.35	4.55	20	20.9	4.95
Manganese (Mn)	mg/L	0.00005	-	-	0.031	0.101	0.116	0.522	0.205	0.213	0.038	0.46	0.066	0.06	0.06	0.341	0.370	0.095
Mercury (Hg)	mg/L	0.00005	-	0.001	<0.00001	<0.00001	<0.00001	<0.00001	<0.00001	0.00002	<0.00001	<0.00001	<0.00001	<0.00001	<0.00001	<0.00005	<0.000050	<0.00001
Molybdenum (Mo)	mg/L	0.00005	0.073	10	<0.001	<0.001	<0.001	<0.001	<0.001	0.002	0.01	0.013	0.015	0.016	0.014	0.00448	0.00478	0.003
Nickel (Ni)	mg/L	0.0005	0.025 - 0.15 ₁₃	0.025 - 0.15 ₁₃	0.002	0.001	<0.001	0.024	0.002	0.002	0.001	<0.001	<0.001	<0.001	<0.001	0.0084	0.00923	0.007
Potassium (K)	mg/L	2	-	-												3.5	3.7	
Selenium (Se)	mg/L	0.001	0.001	0.01	0.0019	0.0005	<0.0005	<0.005	<0.0005	<0.0005	<0.0005	<0.0005	<0.0005	<0.0005	<0.0005	<0.001	<0.0010	<0.0005
Silver (Ag)	mg/L	0.00001	0.0001	0.0005 - 0.015	0.0001	0.0003	<0.0001	0.0007	0.0002	<0.0001	<0.0001	0.0001	<0.0001	<0.0001	<0.0001	<0.00003	0.000052	<0.0001
Sodium (Na)	mg/L	2	-	-												4.7	4.8	
Strontium (Sr)	mg/L	0.001	-	-	0.336	0.491	0.539	0.707	0.547	0.566	1.15	1.38	1.77	1.67	1.69			0.21
Thallium (TI)	mg/L	0.0001	0.0008	0.003		<0.010	<0.010			<0.010			<0.010	<0.010	<0.010	<0.0001	<0.00010	
Tin (Sn)	mg/L	0.0001	-	-												0.00153	0.00452	
Titanium (Ti)	mg/L	0.01	-	1	<0.010			0.034	0.02		0.025	0.014				0.048	0.031	0.011
Uranium (U)	mg/L	0.00001	-	0.30	0.00655	0.00605	0.00638	0.00873	0.0063	0.00642	0.0157	0.0207	0.0234	0.0222	0.0254	0.00733	0.00741	0.00183
Vanadium (V)	mg/L	0.001	-	-	<0.030	<0.030	<0.030	<0.030	<0.030	<0.030	<0.030	<0.030	<0.030	<0.030	<0.030	<0.001	<0.0010	<0.030
Zinc (Zn)	mg/L	0.001	0.03	0.075 - 2.4 ₁₄	<0.005	<0.005	<0.005	0.735	0.038	0.021	<0.005	<0.005	<0.005	<0.005	<0.005	0.0088	0.0206	<u>0.039</u>

Table 13b: Groundwater Total Metals Chemistry – Stuttle Gulch

Eagle Gold Project Environmental Baseline Report: Hydrogeology Draft Report

Appendix B – Data Tables

						Stewar	t Gulch		P	latinum Gulo	h			Eagle Pup				Olive	Gulch	
Total Metals	Units	D.L.*	ССМЕ	BC CSR AW	95-150				MW96-23		95-108	MW96-13b			MW95-15b		MW09-OG2		MW09-OG3	
	Onits	D.L.	FAL		24-May-96	22-Jul-96	21-Sep-96	27-Sep-95	27-Aug-09)5-OCT-09	21-Aug-95	27-Jul-09	27-Aug-09	27-Jul-09	27-Aug-09	05-OCT-09	t-Sep-09)5-OCT-09	4-Sep-09)5-OCT-09
Aluminum (Al)	mg/L	0.001	0.1 ₆	-	0.022	0.034	0.007	0.098	0.54	0.394	0.42	0.527	2.5	0.0302	0.0665	0.100	0.495	0.251	0.736	0.243
Antimony (Sb)	mg/L	0.0001	-	0.20	0.0003	0.0003	0.0003	0.001	0.00182	0.00257	0.0013	0.00057	0.00204	0.00064	0.00021	0.00026	0.0026	0.00228	0.0006	0.00015
Arsenic (As)	mg/L	0.0001	0.005	0.05	<u>1.14</u>	<u>1.14</u>	<u>1.18</u>	<u>1.91</u>	<u>0.25</u>	0.244	0.0167	0.0120	0.0457	<u>0.117</u>	<u>0.118</u>	<u>0.126</u>	0.0215	0.0267	0.00242	0.00071
Barium (Ba)	mg/L	0.00005	-	10	0.026	0.028	0.033	0.034	0.0201	0.0203	0.17	0.0159	0.0421	0.0516	0.0578	0.0555	0.0849	0.0845	0.0152	0.00936
Beryllium (Be)	mg/L	0.0005	-	0.053	<0.005	<0.005	<0.005	<0.005	<0.0005	<0.00050	<0.005	<0.0005	<0.0005	<0.0005	<0.0005	<0.00050	<0.0005	<0.00050	<0.0005	<0.00050
Bismuth (Bi)	mg/L	<0.10	-	-	<0.10	<0.10	<0.10	<0.10			<0.10									
Boron (B)	mg/L	0.01	-	50	<0.10	<0.10	<0.10	<0.10	0.011	0.017	<0.10	<0.01	<0.01	<0.01	<0.01	0.011	<0.01	<0.010	<0.01	<0.010
Cadmium (Cd)	mg/L	0.000017	0.000017	0.00001-0.000067	<0.0002	<0.0050	<0.0002	<0.002	<u>0.000099</u>	<u>0.000074</u>	<0.0002	<u>0.000061</u>	<u>0.000172</u>	<0.000017	0.000037	0.000028	0.000198	0.000051	0.000035	<0.000017
Calcium (Ca)	mg/L	0.05	-	-	78.3	76.4	78.6	85.9	43.4	47.9	30.2	9.45	18.2	33.6	33.8	35.9	44	45.0	6.95	4.91
Chromium (Cr)	mg/L	0.0005	-	-	<0.001	<0.001	<0.001	<0.001	0.00112	0.00104	<0.001	0.00109	0.00434	<0.0005	<0.0005	<0.00050	0.00125	0.00105	0.00055	<0.00050
Cobalt (Co)	mg/L	0.0001	-	0.04	<0.001	<0.001	<0.001	<0.001	0.00087	0.00070	<0.001	0.00099	0.00393	<0.0001	<0.0001	0.00010	0.00084	0.00108	0.00048	0.00021
Copper (Cu)	mg/L	0.0001	0.002-0.004,	0.002 - 0.009 ₈	0.002	<0.001	<0.001	0.001	0.00449	0.00414	<u>0.008</u>	0.00168	0.00393	0.00092	<0.0001	0.00127	0.0059	0.00304	<u>0.00384</u>	<u>0.00321</u>
Iron (Fe)	mg/L	0.03	0.3	-	0.86	0.827	0.845	0.632	0.72	0.549	2.43	1.61	6.06	0.271	0.239	0.316	0.936	0.482	0.555	0.350
Lead (Pb)	mg/L	0.00005	0.001 - 0.007 ₁₁	0.004 - 0.016 ₁₀	<0.001	<0.001	<0.001	<0.001	0.00167	0.00133	0.003	0.00608	<u>0.0171</u>	0.000251	0.000371	0.000653	0.00263	0.00157	0.000907	0.000306
Lithium (Li)	mg/L	0.005	-	-					0.0112	0.0130		<0.005	0.0061	0.0180	0.018	0.0198	0.0073	0.0080	0.0056	<0.0050
Magnesium (Mg)	mg/L	0.1	-	-	62.2	62.5	63.7	73.6	5.79	6.75	4.95	9.14	30.6	40.9	43	42.9	14.6	17.2	1.13	0.83
Manganese (Mn)	mg/L	0.00005	-	-	0.069	0.067	0.069	086	0.0191	0.0235	0.095	0.0766	0.234	0.100	0.0376	0.0270	0.107	0.0930	0.0496	0.0177
Mercury (Hg)	mg/L	0.00005	-	0.001	0.00002	<0.00001	<0.00001	<0.0001	<0.00005	<0.000050	<0.00001		<0.00005		<0.00005	<0.000050	<0.00005	<0.000050	<0.00005	<0.000050
Molybdenum (Mo)	mg/L	0.00005	0.073	10	0.005	0.005	0.005	0.008	0.00725	0.00729	0.003	0.000493	0.000956	0.00408	0.00455	0.00480	0.00232	0.00207	0.00235	0.000950
Nickel (Ni)	mg/L	0.0005	0.025 - 0.15 ₁₃	0.025 - 0.15 ₁₃	<0.001	<0.001	<0.001	0.001	0.00221	0.00223	0.007	0.00318	0.0135	<0.0005	<0.0005	0.00058	0.00419	0.00425	0.00376	0.00230
Potassium (K)	mg/L	2	-	-					<2.0	2.1		<2.0	3.3	<2.0	2.3	2.4	2.1	2.6	<2.0	<2.0
Selenium (Se)	mg/L	0.001	0.001	0.01	<0.0005	<0.0005	<0.0005	0.0031	0.0023	0.0023	<0.0005	<0.001	<0.001	<0.001	<0.001	<0.0010	<0.001	<0.0010	<0.001	<0.0010
Silver (Ag)	mg/L	0.00001	0.0001	0.0005 - 0.015	<0.0001	<0.0001	<0.0001	<u>1.002</u>	<0.00003	0.000034	<0.0001	0.000016	0.00014	<0.00001	<0.00001	0.000013	0.000012	0.000016	0.000015	<0.000010
Sodium (Na)	mg/L	2	-	-					12.3	12.8		<2.0	<2.0	2.2	2.5	2.5	4.8	3.9	3.8	2.6
Strontium (Sr)	mg/L	0.001	-	-	0.548	0.545	0.561	0.612			0.21									
Thallium (TI)	mg/L	0.0001	0.0008	0.003	<0.010	<0.010	<0.010		<0.0001	<0.00010		<0.0001	<0.0001	<0.0001	<0.0001	<0.00010	<0.0001	<0.00010	<0.0001	<0.00010
Tin (Sn)	mg/L	0.0001	-	-					0.00263	0.00516		0.00153	0.00109	0.00029	0.00012	0.00285	0.00028	0.00063	0.00034	0.00037
Titanium (Ti)	mg/L	0.01	-	1				<0.010	0.013	0.021	0.011	0.030	0.011	<0.01	0.01	<0.010	0.03	0.019	0.026	0.012
Uranium (U)	mg/L	0.00001	-	0.30	0.00753	0.00669	0.0074	0.0104	0.00465	0.00547	0.00183	0.000386	0.00128	0.00704	0.00747	0.00753	0.00213	0.000972	0.000175	0.000168
Vanadium (V)	mg/L	0.001	-	-	<0.030	<0.030	<0.030	<0.030	<0.001	<0.0010	<0.030	<0.001	0.0032	<0.001	<0.001	<0.0010	0.001	<0.0010	<0.001	<0.0010
Zinc (Zn)	mg/L	0.001	0.03	0.075 - 2.4 ₁₄	<0.005	<0.005	<0.005	<0.005	0.011	0.0135	0.039	0.0076	0.0271	0.0141	0.0034	0.0104	0.0275	0.0122	0.0226	0.0087

Table 13c: Groundwater Total Metals Chemistry – Stewart Gulch, Platinum Gulch, Eagle Pup, and Olive Gulch

													Bawn-	Boy Gulch								
					95-138	95-141	95-148	95-139			95-141			95-149		GT96-26		MW96-8			MW96-9b	
Total Metals	Units	D.L.*	CCME FAL	BC CSR AW	27-Sep-95	27-Sep-95	27-Sep-95	24-May-96	22-Jul-96	21-Sep-96	24-May-96	22-Jul-96	21-Sep-96	22-Jul-96	21-Sep-96	27-Jul-09	27-Aug-09	27-Jul-09	27-Aug-09	05-OCT-09	27-Jul-09	27-Aug-09
Aluminum (Al)	mg/L	0.001	0.1₅	-	0.795	0.899	0.651	0.104	0.125	0.219	4.69	0.207	0.107	0.455	0.606	0.209	2.88	0.0085	0.274	0.171	0.394	0.802
Antimony (Sb)	mg/L	0.0001	-	0.20	0.0007	0.0007	0.006	0.0007	0.0009	0.0009	0.001	0.001	0.0009	0.0005	0.0007	0.0208	0.0299	0.00055	0.00138	0.00340	0.00143	0.00203
Arsenic (As)	mg/L	0.0001	0.005	0.05	<u>0.0786</u>	<u>0.153</u>	<u>0.118</u>	0.0642	<u>0.0661</u>	<u>0.0666</u>	<u>0.198</u>	<u>0.184</u>	<u>0.177</u>	<u>0.282</u>	<u>0.193</u>	<u>0.589</u>	<u>0.267</u>	<u>0.0709</u>	<u>0.0653</u>	<u>0.0667</u>	<u>0.0751</u>	<u>0.0673</u>
Barium (Ba)	mg/L	0.00005	-	10	0.021	0.032	0.057	<0.010	<0.010	<0.010	0.012	<0.010	0.017	0.136	0.164	0.0406	0.059	0.0267	0.0331	0.0315	0.0283	0.0397
Beryllium (Be)	mg/L	0.0005	-	0.053	<0.005	<0.005	<0.005	<0.005	<0.005	<0.005	<0.005	<0.005	<0.005	<0.005	<0.005	<0.0005	<0.0005	<0.0005	<0.0005	<0.00050	<0.0005	<0.0005
Bismuth (Bi)	mg/L	<0.10	-	-	<0.10	<0.10	<0.10	<0.10	<0.10	<0.10	<0.10	<0.10	<0.10	<0.10	<0.10							
Boron (B)	mg/L	0.01	-	50	<0.10	<0.10	<0.10	<0.10	<0.10	<0.10	<0.10	<0.10	<0.10	<0.10	<0.10	<0.01	0.01	<0.01	<0.01	<0.010	<0.01	<0.01
Cadmium (Cd)	mg/L	0.000017	0.000017	0.00001-0.000067	<0.0002	<0.0002	<0.002	<0.0002	<0.0002	<0.0002	<0.0002	<0.0002	<0.0002	<0.0002	<0.0002	<u>0.000063</u>	<u>0.000077</u>	<0.000017	<u>0.000045</u>	<u>0.000019</u>	<u>0.000047</u>	<u>0.000049</u>
Calcium (Ca)	mg/L	0.05	-	-	8.83	18.6	9.97	8.54	8.2	7.54	20.1	19.5	21.3	18.4	20.2	25.8	22.9	7.81	8.01	8.23	5.98	6.71
Chromium (Cr)	mg/L	0.0005	-	-	0.005	0.001	0.005	<0.001	<0.001	<0.001	<0.001	<0.001	<0.001	<0.001	0.002	<0.0005	0.00139	<0.0005	0.00087	0.00086	0.00097	0.0019
Cobalt (Co)	mg/L	0.0001	-	0.04	<0.001	<0.001	<0.001	<0.001	<0.001	<0.001	<0.001	<0.001	<0.001	0.003	0.003	0.00211	0.00284	<0.0001	0.00019	0.00011	0.00057	0.00055
Copper (Cu)	mg/L	0.0001	0.002-0.0049	0.002 - 0.0098	<u>0.011</u>	0.002	<u>0.006</u>	<u>0.003</u>	0.002	<u>0.004</u>	<0.001	<0.001	<0.001	<u>0.017</u>	<u>0.015</u>	0.00198	<u>0.0116</u>	0.0001	0.00019	0.00136	0.00228	0.00055
Iron (Fe)	mg/L	0.03	0.3	-	1	0.957	0.594	0.146	0.138	0.183	1.4	0.045	0.073	0.474	0.832	3.6	9.09	<0.03	0.381	0.247	0.736	1.25
Lead (Pb)	mg/L	0.00005	0.001 - 0.007 ₁₁	0.004 - 0.016 ₁₀	0.002	0.007	0.002	<0.001	<0.001	<0.001	<0.001	<0.001	<0.001	0.002	<u>0.007</u>	0.000824	0.00296	<0.00005	0.000672	0.00156	0.00219	<u>0.00419</u>
Lithium (Li)	mg/L	0.005	-	-												0.0064	0.008	<0.005	<0.005	<0.0050	<0.005	<0.005
Magnesium (Mg)	mg/L	0.1	-	-	1.43	3.34	1.87	1.15	1.17	1.07	3.75	3.12	2.87	2.72	3.06	5.73	5.69	1.06	1.18	1.21	0.88	1.4
Manganese (Mn)	mg/L	0.00005	-	-	0.033	0.039	0.07	0.007	<0.005	0.007	0.025	0.009	<0.005	0.205	0.281	0.324	0.377	0.000286	0.00876	0.00774	0.0668	0.027
Mercury (Hg)	mg/L	0.00005	-	0.001	<0.00001	<0.00001	0.00003	<0.00001	<0.00001	<0.00001	0.00005	<0.00001	<0.00001	0.00045	0.00032		<0.00005		<0.00005	<0.000050		<0.00005
Molybdenum (Mo)	mg/L	0.00005	0.073	10	0.003	0.004	0.002	0.001	0.002	0.001	0.008	0.008	0.007	0.001	<0.001	0.00802	0.00976	0.000704	0.000669	0.000731	0.000533	0.000498
Nickel (Ni)	mg/L	0.0005	0.025 - 0.15 ₁₃	0.025 - 0.15 ₁₃	0.005	0.004	0.003	<0.001	<0.001	<0.001	<0.001	<0.001	<0.001	<u>0.009</u>	<u>0.009</u>	0.0052	0.0253	<0.0005	0.00074	0.00062	0.00143	0.00218
Potassium (K)	mg/L	2	-	-												<2.0	<2.0	<2.0	<2.0	<2.0	<2.0	<2.0
Selenium (Se)	mg/L	0.001	0.001	0.01	<0.0005	<0.0005	<0.0005	<0.0005	<0.0005	<0.0005	0.0006	0.0008	<0.0005	<0.0005	<0.0005	<0.001	<0.001	<0.001	<0.001	<0.0010	<0.001	<0.001
Silver (Ag)	mg/L	0.00001	0.0001	0.0005 - 0.015	0.0002	<0.0001	<0.0001	<0.0001	0.0002	0.0006	<0.0001	<0.0001	<0.0001	<0.0001	<0.0001	<0.00001	<0.00004	<0.00001	0.000014	0.000015	<0.00001	<0.000020
Sodium (Na)	mg/L	2	-	-												2.3	6.9	2	2.3	2.4	<2.0	2.5
Strontium (Sr)	mg/L	0.001	-	-	0.035	0.131	0.067	0.034	0.035	0.034	0.135	0.127	0.215	0.132	0.131							
Thallium (TI)	mg/L	0.0001	0.0008	0.003				<0.010	<0.010	<0.010	0.037	<0.010	<0.010	<0.010	<0.010	<0.0001	<0.0001	<0.0001	<0.0001	<0.00010	<0.0001	<0.0001
Tin (Sn)	mg/L	0.0001	-	-												0.00097	0.00044	<0.0001	0.00029	0.00050	0.00199	0.00095
Titanium (Ti)	mg/L	0.01	-	1	0.031	0.021	0.013									0.012	0.037	<0.01	0.023	0.012	0.027	0.053
Uranium (U)	mg/L	0.00001	-	0.30	0.00025	0.0126	0.00231	0.00008	0.0001	0.0001	0.00504	0.0125	0.0118	0.00939	0.00937	0.000899	0.00113	0.000235	0.000267	0.000267	0.00102	0.000423
Vanadium (V)	mg/L	0.001	-	-	<0.030	<0.030	<0.03	<0.030	<0.030	<0.030	<0.030	<0.030	<0.030	<0.030	<0.030	<0.001	0.0012	<0.001	<0.001	<0.0010	<0.001	0.0018
Zinc (Zn)	mg/L	0.001	0.03	0.075 - 2.4 ₁₄	0.009	0.007	0.007	<0.005	<0.005	<0.005	<0.005	<0.005	<0.005	0.017	0.03	0.069	0.025	<0.003	0.0098	0.0121	0.0186	0.0676

Table 13d: Groundwater Total Metals Chemistry –Bawn-Boy Gulch

Eagle Gold Project Environmental Baseline Report: Hydrogeology Draft Report

						Creek rshed	
			CCME		MW	96-1	Travel Blank
Total Metals	Units	D.L.*	FAL	BC CSR AW	21-Sep-96	27-Aug-09	27-Aug-09
Aluminum (Al)	mg/L	0.001	0.1₅	-	0.082	0.815	<0.001
Antimony (Sb)	mg/L	0.0001	-	0.20	0.0024	0.0037	<0.0001
Arsenic (As)	mg/L	0.0001	0.005	0.05	0.005	0.0183	<0.0001
Barium (Ba)	mg/L	0.00005	-	10	0.029	0.0178	<0.00005
Beryllium (Be)	mg/L	0.0005	-	0.053	<0.005	<0.0005	<0.0005
Bismuth (Bi)	mg/L	<0.10	-	-	<0.10		
Boron (B)	mg/L	0.01	-	50	<0.10	<0.01	<0.01
Cadmium (Cd)	mg/L	0.000017	0.000017	0.00001 - 0.000067	0.0002	<u>0.000127</u>	<0.000017
Calcium (Ca)	mg/L	0.05	-	-	110	55.5	<0.05
Chromium (Cr)	mg/L	0.0005	-	-	<0.001	0.00221	<0.0005
Cobalt (Co)	mg/L	0.0001	-	0.04	<0.001	0.00059	<0.0001
Copper (Cu)	mg/L	0.0001	0.002-0.004,	0.002 - 0.009 ₈	0.001	0.00059	<0.0001
Iron (Fe)	mg/L	0.03	0.3	-	0.083	1.69	<0.03
Lead (Pb)	mg/L	0.00005	0.001 - 0.00711	0.004 - 0.016 ₁₀	<0.001	0.0044	<0.00005
Lithium (Li)	mg/L	0.005	-	-		0.0087	<0.005
Magnesium (Mg)	mg/L	0.1	-	-	4.53	2.01	<0.10
Manganese (Mn)	mg/L	0.00005	-	-	0.11	0.103	<0.00005
Mercury (Hg)	mg/L	0.00005	-	0.001	<0.00001	<0.00005	
Molybdenum (Mo)	mg/L	0.00005	0.073	10	0.04	0.00309	<0.00005
Nickel (Ni)	mg/L	0.0005	0.025 - 0.15 ₁₃	0.025 - 0.15 ₁₃	0.001	0.00267	<0.0005
Potassium (K)	mg/L	2	-	-		<2.0	<2.0
Selenium (Se)	mg/L	0.001	0.001	0.01	0.0006	<0.001	<0.001
Silver (Ag)	mg/L	0.00001	0.0001	0.0005 - 0.015	0.0001	0.000119	<0.00001
Sodium (Na)	mg/L	2	-	-		2.7	<2.0
Strontium (Sr)	mg/L	0.001	-	-	0.372		
Thallium (TI)	mg/L	0.0001	0.0008	0.003	<0.010	<0.0001	<0.0001
Tin (Sn)	mg/L	0.0001	-	-		0.00477	<0.0001
Titanium (Ti)	mg/L	0.01	-	1		0.018	<0.01
Uranium (U)	mg/L	0.00001	-	0.30	0.00265	0.000384	<0.00001
Vanadium (V)	mg/L	0.001	-	-	<0.030 0.0019		<0.001
Zinc (Zn)	mg/L	0.001	0.03	0.075 - 2.4 ₁₄	0.008	0.0185	<0.001

Table 13e: Groundwater Total Metals Chemistry –Lynx Creek Watershed and Travel Blank

Eagle Gold Project

Environmental Baseline Report: Hydrogeology Draft Report

Appendix B – Data Tables

NOTES:

- 1. Bolded and/or <u>Underlined</u> result implies a guideline exceedance
- 2. D.L. = laboratory detection limit
- 3. * some detection limits are varied '<' (less than) value implies detection limit
- 4. CCME FAL Canadian Council of Ministers of the Environment Freshwater Aquatic Life guidelines (December 2007)
- 5. BC CSR AW British Columbia Contaminated Sites Regulation Aquatic Life Guidelines; provided for comparison only
- 6. Aluminum guideline is 100 μ g/L when pH \ge 6.5
- 7. Cadmium Guideline: Cadmium Guideline (CCME): 10^{0.86[log(hardness)]-3.2} 0.1 µg/L when [CaCO₃] is 0 - 30 mg/L 0.3 µg/L when [CaCO₃] is 30 - 90 mg/L 0.5 µg/L when [CaCO₃] is 90 - 150 mg/L 0.6 µg/L when [CaCO₃] is > 150 mg/L
 8. Copper Guideline:
 - Copper Guideline: $2 \mu g/L$ when [CaCO₃] is 0 - 50 mg/L $3 \mu g/L$ when [CaCO₃] is 50 - 75 mg/L $4 \mu g/L$ when [CaCO₃] is 75 - 100 mg/L $5 \mu g/L$ when [CaCO₃] is 100 - 125 mg/L $6 \mu g/L$ when [CaCO₃] is 125 - 150 mg/L $7 \mu g/L$ when [CaCO₃] is 150 - 175 mg/L $8 \mu g/L$ when [CaCO₃] is 175 - 200 mg/L $9 \mu g/L$ when [CaCO₃] is > 200 mg/L
- Copper Guideline: <u>2 μg/L when [CaCO₃] is 0 - 120 mg/L</u> <u>3 μg/L when [CaCO₃] is 120 - 180 mg/L</u> <u>4 μg/L when [CaCO₃] is > 180 mg/L</u>
- Lead Guideline: <u>4 μg/L when [CaCO₃] is 0 - 50 mg/L</u> <u>5 μg/L when [CaCO₃] is 50 - 100 mg/L</u> <u>6 μg/L when [CaCO₃] is 100 - 200 mg/L</u> <u>110 μg/L when [CaCO₃] is 200 - 300 mg/L</u> <u>160 μg/L when [CaCO₃] is > 300 mg/L</u>
- Lead Guideline: <u>1 μg/L when [CaCO₃] is 0 - 60 mg/L</u> <u>2 μg/L when [CaCO₃] is 60 - 120 mg/L</u> <u>4 μg/L when [CaCO₃] is 120 - 180 mg/L</u> <u>7 μg/L when [CaCO₃] is > 180 mg/L</u>
- 12 Manganese Guideline: <u>1 μg/L when [CaCO₃] is 0 - 60 mg/L</u> <u>2 μg/L when [CaCO₃] is 60 - 120 mg/L</u> <u>4 μg/L when [CaCO₃] is 120 - 180 mg/L</u> <u>7 μg/L when [CaCO3] is > 180 mg/L</u>
- 13 Nickel Guideline: <u>25 μg/L when [CaCO₃] is 0 - 60 mg/L</u> <u>65 μg/L when [CaCO₃] is 60 - 120 mg/L</u> <u>110 μg/L when [CaCO₃] is 120 - 180 mg/L</u> <u>150 μg/L when [CaCO₃] is > 180 mg/L</u>
- 14 Zinc Guideline: <u>7.5 μg/L when [CaCO₃] is 0 - 90 mg/L</u> <u>15 μg/L when [CaCO₃] is 90 - 100 mg/L</u> <u>90 μg/L when [CaCO₃] is 100 - 200 mg/L</u> <u>165 μg/L when [CaCO₃] is 200 - 300 mg/L</u> <u>240 μg/L when [CaCO₃] is > 300 mg/L</u>

					Ann Gulch							D	ublin Gulch						
Dissolved			ССМЕ		MW09-AG2				DH95-	152				MW09-DG1		MW09-DG2	MW0	9-DG4	MW09-DG5
Metals	Units	D.L.*	FAL	BC CSR AW	21-OCT-09		22-May-96	22-Jul-96	21-Sep-96	27-Jul-09	27-Jul-09	27-Aug-09	05-OCT-09	27-Aug-09	27-Aug-09	27-Aug-09	4-Sep-09	05-OCT-09	3-Sep-09
Aluminum (Al)	mg/L	0.001	0.16	-	<0.050	0.016	0.007	0.007	<0.005	0.0012	0.001	0.0035	0.0023	0.0046	0.004	0.143	0.0014	<0.0050	0.0045
Antimony (Sb)	mg/L	0.0001	-	0.20	<0.0050	0.0019	<0.0001	<0.0001	<0.0001	0.00048	0.0165	0.00053	0.00018	0.00343	0.00365	0.0069	0.00037	<0.00050	0.00238
Arsenic (As)	mg/L	0.0001	0.005	0.05	0.0178	<u>1.78</u>	<u>1.18</u>	<u>1.1</u>	<u>1.11</u>	<u>0.644</u>	<u>0.576</u>	<u>0.557</u>	<u>0.196</u>	0.0203	0.0309	0.0492	0.00047	0.00059	0.00208
Barium (Ba)	mg/L	0.00005	-	10	0.0326	0.019	0.013	0.015	0.017	0.0219	0.0355	0.0226	0.0261	0.0398	0.0394	0.0661	0.113	0.0840	0.0431
Beryllium (Be)	mg/L	0.0005	-	0.053	<0.025	<0.005	<0.005	<0.005	<0.005	<0.0005	<0.0005	<0.001	<0.00050	<0.0005	<0.0005	<0.0005	<0.0005	<0.0025	<0.0005
Bismuth (Bi)	mg/L	0.1	-	-		<0.10	<0.10	<0.10	0.1										
Boron (B)	mg/L	0.01	-	50	<0.50	<0.10	<0.10	<0.10	<0.10	<0.01	<0.01	<0.02	<0.010	0.013	0.012	<0.01	<0.01	<0.050	0.019
Cadmium (Cd)	mg/L	0.000017	0.000017	0.00001 - 0.000067	<0.0025	<0.0002	<0.0002	<0.0050	<0.0002	<0.000017	0.000024	<0.000034	<0.000017	<0.000017	0.000018	0.000064	0.000019	<0.000085	<u>0.000108</u>
Calcium (Ca)	mg/L	0.05	-	-	64.0	76.1	78.8	66.3	67.2	67.6	25.8	73.8	40.5	35.3	37.2	61.2	79.8	72.8	100
Chromium (Cr)	mg/L	0.0005	-	-	<0.025	<0.001	<0.001	<0.001	<0.001	<0.0008	<0.0005	<0.001	<0.00050	<0.0005	<0.0005	0.00537	<0.0005	<0.0025	<0.0006
Cobalt (Co)	mg/L	0.0001	-	0.04	0.0101	<0.001	<0.001	<0.001	<0.001	0.00017	0.00186	<0.0002	0.00013	0.00111	0.00106	0.00124	0.00021	<0.00050	0.00339
Copper (Cu)	mg/L	0.0001	0.002-0.004,	0.002 - 0.0098	0.0274	<0.001	<0.001	<0.001	<0.001	0.00027	0.00061	0.00028	0.00028	0.00091	0.00084	0.00367	0.00278	<0.00050	<u>0.0105</u>
Iron (Fe)	mg/L	0.03	0.3	-	0.35	1.02	1.13	0.986	1.02	0.293	2.58	0.176	1.68	<0.03	<0.03	0.948	<0.03	<0.15	0.068
Lead (Pb)	mg/L	0.00005	0.001 - 0.007 ₁₁	0.004 - 0.016 ₁₀	<0.0025	<0.001	<0.001	<0.001	<0.001	<0.00005	0.000091	0.00012	<0.000050	<0.00005	<0.00005	0.00187	<0.00005	<0.00025	0.000347
Lithium (Li)	mg/L	0.005	-	-	<0.25					0.0896	0.0052	0.099	0.0305	0.0174	0.0197	0.0243	0.0111	<0.025	0.0943
Magnesium (Mg)	mg/L	0.1	-	-	47.4	73.3	70.2	62.1	61.2	58.4	5.66	63	29.0	23	23.3	34.1	26.8	27.0	49
Manganese (Mn)	mg/L	0.00005	-	-	0.451	0.029	0.021	0.021	0.023	0.0712	0.306	0.0656	0.171	0.279	0.276	0.411	0.0432	0.0191	0.411
Mercury (Hg)	mg/L	0.00005	-	0.001								<0.00005	<0.000050	<0.00005	<0.00005	<0.00005	<0.00005	<0.000050	<0.00005
Molybdenum (Mo)	mg/L	0.00005	0.073	10	0.018	<0.001	<0.001	<0.001	<0.001	0.000228	0.00835	0.00024	0.000925	0.0136	0.0136	0.00633	0.000942	0.00120	0.0056
Nickel (Ni)	mg/L	0.0005	0.025 - 0.15 ₁₃	0.025 - 0.15 ₁₃	0.057	0.002	<0.001	<0.001	<0.001	0.00964	0.00414	0.0085	<0.00050	0.00336	0.00316	0.00472	0.00075	<0.0025	0.00664
Potassium (K)	mg/L	2	-	-	<20	4.63	3.94	7.16	5.19	4.5	<2.0	4.8	2.7	3.1	3.2	3.2	2.2	<10	22.1
Selenium (Se)	mg/L	0.001	0.001	0.01	<0.050	0.0021	<0.0005	<0.0005	<0.0005	<0.001	<0.001	<0.002	<0.0010	<0.001	<0.001	<0.001	<0.001	<0.0050	<0.001
Silver (Ag)	mg/L	0.00001	0.0001	0.0005 - 0.015	<0.00050	<0.0001	<0.0001	<0.0001	<0.0001	<0.00001	<0.00001	<0.00002	<0.000010	<0.00001	<0.00001	<0.00001	<0.00001	<0.000050	<0.00001
Sodium (Na)	mg/L	2	-	-	81	21.9	29.3	25.2	23.6	21.4	2.2	20	7.4	11.5	11.7	18.2	3.5	<10	23.9
Strontium (Sr)	mg/L	0.001	-	-		1.01	1.1	0.936	0.922										
Thallium (TI)	mg/L	0.0001	0.0008	0.003	<0.0050					<0.0001	<0.0001	<0.0002	<0.00010	<0.0001	<0.0001	<0.0001	<0.0001	<0.00050	<0.0001
Tin (Sn)	mg/L	0.0001	-	-	<0.0050					0.00142	0.0001	0.00143	0.00079	<0.0001	<0.0001	0.00109	<0.0001	<0.00050	0.00243
Titanium (Ti)	mg/L	0.01	-	1	<0.10	<0.010	<0.010	<0.010	<0.010	<0.010	<0.010	<0.01	<0.010	<0.01	<0.01	0.013	<0.01	<0.050	<0.01
Uranium (U)	mg/L	0.00001	-	0.30	0.00497	0.00781	0.00433	0.00326	0.00346	0.00313	0.000771	0.00334	0.00167	0.00141	0.00149	0.00446	0.00685	0.0102	0.000768
Vanadium (V)	mg/L	0.001	-	-	<0.050	<0.030	<0.030	<0.030	<0.030	<0.0010	<0.0010	<0.002	<0.0010	<0.001	<0.001	<0.001	<0.001	<0.0050	<0.001
Zinc (Zn)	mg/L	0.001	0.03	0.075 - 2.4 ₁₄	<0.050	0.006	<0.005	<0.005	<0.005	0.0077	0.0277	0.0085	0.0114	0.00341	0.0374	0.0346	0.0122	<0.0050	0.0354

 Table 14a:
 Groundwater Dissolved Metals Chemistry – Ann Gulch and Dublin Gulch

Appendix B – Data Tables

Table 14b: Groundwater Dissolved Metals Chemistry – Stuttle Gulch

											St	uttle Gulch						
						BH95-105				BH95-106				95-151		MWS	96-18	MW09-STU 2
Dissolved Metals	Units	D.L.*	CCME FAL	BC CSR AW	21-Aug-95	27-Sep-95	22-Jul-96	21-Aug-95	27-Sep-95	22-May-96	22-Jul-96	21-Sep-96	27-Sep-95	22-Jul-96	21-Sep-96	27-Aug-09	05-OCT-09	27-Aug-09
Aluminum (Al)	mg/L	0.001	0.1 ₆	-	0.016	0.006	<0.005	0.007	0.627	0.009	<0.005	<0.005	0.007	0.012	<0.005	0.0026	0.0016	0.001
Antimony (Sb)	mg/L	0.0001	-	0.20	0.0096	0.0034	0.0019	0.005	0.0044	0.0015	0.0032	0.0037	0.0032	0.0039	0.0015	0.0192	0.0142	0.00023
Arsenic (As)	mg/L	0.0001	0.005	0.05	<u>0.618</u>	<u>0.91</u>	<u>0.578</u>	0.0361	0.028	0.0292	0.0267	0.0248	<u>0.127</u>	<u>0.189</u>	<u>0.236</u>	<u>0.0828</u>	<u>0.0342</u>	<u>1.33</u>
Barium (Ba)	mg/L	0.00005	-	10	0.011	0.011 <0.005	<0.010	0.018	0.018	0.024	0.014	0.021	0.064 <0.005	0.058	0.058	0.0213	0.0190	0.0214
Beryllium (Be) Bismuth (Bi)	mg/L	0.0005	-	0.053	<0.005 <0.10	<0.005	<0.005 <0.10	<0.005 <0.10	<0.005 <0.10	<0.005 <0.10	<0.005 <0.10	<0.005 <0.10	<0.005	<0.005 <0.10	<0.005 <0.10	<0.0005	<0.00050	<0.0005
	mg/L		-															
Boron (B)	mg/L	0.01	-	50	<0.10	<0.10	<0.10	<0.10	<0.01	<0.10	<0.10	<0.10	<0.10	<0.10	<0.10	<0.01	<0.010	<0.01
Cadmium (Cd)	mg/L	0.000017	0.000017	0.00001 - 0.000067	<0.002	<0.002	<0.0002	<0.0002	<0.002	<0.0002	<0.0002	<0.0002	< 0.002	<0.0002	<0.0002	<0.000017	0.000028	<0.000017
Calcium (Ca)	mg/L	0.05	-	-	70.5	69.1	69.5	41.2	41.6	46.4	34	46.1	40.2	54.7	62	92.7	92.1	81.6
Chromium (Cr)	mg/L	0.0005	-	-	<0.001	<0.001	<0.001	<0.001	<0.001	<0.001	<0.001	<0.001	<0.001	<0.001	<0.001	<0.0005	<0.00050	<0.0008
Cobalt (Co)	mg/L	0.0001	-	0.04	<0.001	<0.001	<0.001	<0.001	<0.001	<0.001	<0.001	<0.001	<0.001	<0.001	<0.001	0.00127	0.00117	<0.0001
Copper (Cu)	mg/L	0.0001	0.002-0.0049	0.002 - 0.009 ₈	<0.001	<0.001	<0.001	0.001	<0.001	<0.001	<0.001	<0.001	<0.001	<0.001	<0.001	<0.0001	0.00022	0.00018
Iron (Fe)	mg/L	0.03	0.3	-	<0.030	0.084	<0.030	<0.030	<0.030	<0.030	<0.030	<0.030	0.113	0.885	0.543	<0.03	<0.030	1.46
Lead (Pb)	mg/L	0.00005	0.001 - 0.007 ₁₁	0.004 - 0.016 ₁₀	<0.001	<0.001	<0.001	<0.001	<0.001	<0.001	<0.001	<0.001	<0.001	<0.001	<0.001	<0.00005	0.000081	0.000052
Lithium (Li)	mg/L	0.005	-	-												<0.005	<0.0050	0.057
Magnesium (Mg)	mg/L	0.1	-	-	16.7	16.6	16.4	3.76	3.92	4.4	3.42	4.3	32.6	51	59	20.3	20.3	60.1
Manganese (Mn)	mg/L	0.00005	-	-	0.151	0.188	0.198	0.027	0.034	0.052	0.021	0.051	0.029	0.104	0.127	0.326	0.299	0.0623
Mercury (Hg)	mg/L	0.00005	-	0.001												<0.00005	<0.000050	<0.00005
Molybdenum (Mo)	mg/L	0.00005	0.073	10	<0.001	<0.001	0.003	0.017	0.016	0.016	0.017	0.015	<0.001	<0.001	<0.001	0.00432	0.00408	0.00019
Nickel (Ni)	mg/L	0.0005	0.025 - 0.15 ₁₃	0.025 - 0.15 ₁₃	0.001	<0.001	0.001	0.001	<0.001	<0.001	<0.001	<0.001	0.001	0.001	<0.001	0.00705	0.00654	<0.0005
Potassium (K)	mg/L	2	-	-	2.07	1.45	1.52	0.8	0.46	0.47	0.63	0.42	1.37	4.03	1.85	3.7	3.2	5.1
Selenium (Se)	mg/L	0.001	0.001	0.01	<0.0005	<0.0005	<0.0005	<0.005	<0.0005	<0.0005	<0.0005	<0.0005	0.002	0.0005	<0.0005	<0.001	<0.0010	<0.001
Silver (Ag)	mg/L	0.00001	0.0001	0.0005 - 0.015	0.0001	0.0001	<0.0001	<0.001	<0.0001	<0.0001	<0.0001	<0.0001	<0.0001	<0.0001	<0.0001	<0.00001	<0.000010	<0.00001
Sodium (Na)	mg/L	2	-	-	4.72	4.14	5.03	5.2	6.85	5.19	4.78	5.09	2.98	3.46	3.21	4.4	4.2	6
Strontium (Sr)	mg/L	0.001	-	-	0.559	0.542	0.566	1.09	1.29	1.71	1.3	1.6	0.335	0.498	0.574			
Thallium (TI)	mg/L	0.0001	0.0008	0.003												<0.0001	<0.00010	<0.0001
Tin (Sn)	mg/L	0.0001	-	-												0.00033	0.00149	<0.0001
Titanium (Ti)	mg/L	0.01	-	1	<0.010	<0.010	<0.010	<0.010	<0.010	<0.010	<0.010	<0.010	<0.010	0.011	<0.010	<0.01	<0.010	<0.01
Uranium (U)	mg/L	0.00001	-	0.30	0.00451	0.00604	0.00634	0.0128	0.0204	0.0237	0.0222	0.0243	0.0066	0.00596	0.00644	0.00732	0.00733	0.00174
Vanadium (V)	mg/L	0.001	-	-	<0.030	<0.030	<0.030	<0.030	<0.030	<0.030	<0.030	<0.030	<0.030	<0.030	<0.030	<0.001	<0.0010	<0.001
Zinc (Zn)	mg/L	0.001	0.03	0.075 - 2.4 ₁₄	<0.005	0.01	<0.005	<0.005	<0.005	<0.005	<0.005	<0.005	<0.005	<0.005	<0.005	0.003	0.0095	0.005

						Stewar	t Gulch		P	latinum Gulo	ch			Eagle Pup				Olive	Gulch	
Disselved			COME			BH9	5-150		BH95-108	MWS	96-23	MW	96-13b		MW96-15b)	MWO)9-OG2	MWO	9-OG3
Dissolved Metals	Units	D.L.*	CCME FAL	BC CSR AW	27-Sep-95	24-May-96	22-Jul-96	21-Sep-96	21-Aug-95	27-Aug-09	05-OCT-09	27-Jul-09	27-Aug-09	27-Jul-09	27-Aug-09	05-OCT-09	4-Sep-09	05-OCT-09	4-Sep-09	05-OCT-09
Aluminum (Al)	mg/L	0.001	0.16	-	0.005	<0.005	0.006	<0.005	0.018	0.0034	0.0016	<0.001	0.0017	<0.001	0.0016	<0.0010	0.0079	0.0025	0.0248	0.0048
Antimony (Sb)	mg/L	0.0001	-	0.20	0.0016	0.0004	0.0003	0.0004	0.0011	0.00113	0.00117	0.00013	0.00015	<0.0001	<0.0001	<0.00010	0.0023	0.00143	0.0002	<0.00010
Arsenic (As)	mg/L	0.0001	0.005	0.05	<u>1.99</u>	<u>1.14</u>	<u>1.15</u>	<u>1.14</u>	0.0054	<u>0.222</u>	<u>0.225</u>	0.00087	0.00095	<u>0.132</u>	<u>0.104</u>	<u>0.0988</u>	0.0113	0.0171	0.00038	0.00028
Barium (Ba)	mg/L	0.00005	-	10	0.034	0.026	0.028	0.029	0.125	0.0123	0.0142	0.00299	0.00276	0.052	0.0551	0.0494	0.0639	0.0725	0.00605	0.00563
Beryllium (Be)	mg/L	0.0005	-	0.053	<0.005	<0.005	<0.005	<0.005	<0.005	<0.0005	<0.00050	<0.0005	<0.0005	<0.0005	<0.0005	<0.00050	<0.0005	<0.00050	<0.0005	<0.00050
Bismuth (Bi)	mg/L	0.1	-	-	<0.10	<0.10	<0.10	0.1	<0.10											
Boron (B)	mg/L	0.01	-	50	<0.10	<0.10	<0.10	<0.10	<0.10	<0.01	<0.010	<0.01	<0.01	<0.01	<0.01	<0.010	<0.01	<0.010	<0.01	<0.010
Cadmium (Cd)	mg/L	0.000017	0.000017	0.00001 - 0.000067	<0.0002	<0.0002	<0.0050	<0.0002	<0.0002	0.000044	0.000043	<0.000017	<0.000017	0.000037	0.000022	<0.000017	0.000088	0.000055	<u>0.000019</u>	<0.000017
Calcium (Ca)	mg/L	0.05	-	-	85	77.4	76.7	77.9	27.9	46.6	50.4	18.5	12.2	34.8	36.7	36.4	43.9	45.9	6.59	5.03
Chromium (Cr)	mg/L	0.0005	-	-	<0.001	<0.001	<0.001	<0.001	<0.001	<0.0005	<0.00050	<0.0005	<0.0005	<0.0005	<0.0005	<0.00050	<0.0005	<0.00050	<0.0005	<0.00050
Cobalt (Co)	mg/L	0.0001	-	0.04	<0.001	<0.001	<0.001	<0.001	<0.001	<0.0001	0.00021	<0.0001	<0.0001	<0.0001	<0.0001	<0.00010	0.00041	0.00078	0.00026	0.00012
Copper (Cu)	mg/L	0.0001	0.002-0.004,	0.002 - 0.009 ₈	<0.001	<0.001	<0.001	<0.001	0.003	0.00115	0.00196	0.00033	0.00026	0.0003	<0.0001	0.00022	0.00366	0.00129	<u>0.00336</u>	0.00199
Iron (Fe)	mg/L	0.03	0.3	-	0.585	0.82	0.804	0.827	0.182	<0.03	<0.030	<0.03	<0.03	0.055	<0.03	<0.030	<0.03	<0.030	<0.03	0.031
Lead (Pb)	mg/L	0.00005	0.001 - 0.007 ₁₁	0.004 - 0.016 ₁₀	<0.001	<0.001	<0.001	<0.001	<0.001	<0.00005	<0.000050	<0.00005	<0.00005	<0.00005	<0.00005	<0.000050	0.000146	0.000260	<0.00005	<0.000050
Lithium (Li)	mg/L	0.005	-	-						0.0102	0.0115	<0.005	<0.005	0.0188	0.0182	0.0177	0.0063	0.0070	0.0052	<0.0050
Magnesium (Mg)	mg/L	0.1	-	-	72.6	61.5	62.7	63	4.59	5.85	6.59	24.8	13	42.1	44.1	41.7	14.4	16.6	0.96	0.76
Manganese (Mn)	mg/L	0.00005	-	-	0.084	0.068	0.068	0.07	0.076	0.000096	0.0326	0.00137	0.0023	0.0826	0.0192	0.0110	0.078	0.0766	0.0379	0.0134
Mercury (Hg)	mg/L	0.00005	-	0.001						<0.00005	<0.000050		<0.00005		<0.00005	<0.000050	<0.00005	<0.000050	<0.00005	<0.000050
Molybdenum (Mo)	mg/L	0.00005	0.073	10	0.006	0.005	0.005	0.005	0.003	0.00688	0.00664	0.000675	0.000711	0.00433	0.00454	0.00425	0.00278	0.00161	0.0025	0.000887
Nickel (Ni)	mg/L	0.0005	0.025 - 0.15 ₁₃	0.025 - 0.15 ₁₃	0.001	<0.001	0.001	<0.001	0.005	0.0007	0.00101	<0.0005	<0.0005	<0.0005	<0.0005	<0.00050	0.00267	0.00317	0.00273	0.00184
Potassium (K)	mg/L	2	-	-	3.88	3.54	3.77	2.61	2.25	<2.0	<2.0	<2.0	<2.0	<2.0	2.1	2.0	<2.0	2.2	<2.0	<2.0
Selenium (Se)	mg/L	0.001	0.001	0.01	0.0031	<0.0005	<0.0005	<0.0005	<0.0005	0.0021	0.0023	<0.001	<0.001	<0.001	<0.001	<0.0010	<0.001	<0.0010	<0.001	<0.0010
Silver (Ag)	mg/L	0.00001	0.0001	0.0005 - 0.015	0.002	<0.0001	<0.0001	<0.0001	<0.0001	<0.00001	<0.000010	<0.00001	<0.00001	<0.00001	<0.00001	<0.000010	<0.00001	<0.000010	<0.00001	<0.000010
Sodium (Na)	mg/L	2	-	-	3.91	3.98	4.02	3.54	3.98	11.8	11.7	<2.0	<2.0	2.2	2.2	2.1	4.9	3.5	3.8	2.4
Strontium (Sr)	mg/L	0.001	-	-	0.602	0.546	0.546	0.551	0.196											
Thallium (TI)	mg/L	0.0001	0.0008	0.003						<0.0001	<0.00010	<0.0001	<0.0001	<0.0001	<0.0001	<0.00010	<0.0001	<0.00010	<0.0001	<0.00010
Tin (Sn)	mg/L	0.0001	-	-						0.00129	0.00188	<0.0001	<0.0001	0.00012	<0.0001	0.00097	0.00015	0.00050	<0.0001	0.00055
Titanium (Ti)	mg/L	0.01	-	1	<0.010	<0.010	<0.010	<0.010	<0.010	<0.01	<0.010	<0.010	<0.01	<0.010	<0.01	<0.010	<0.01	<0.010	<0.01	<0.010
Uranium (U)	mg/L	0.00001	-	0.30	0.0104	0.00727	0.00662	0.00743	0.00131	0.00438	0.00547	0.000511	0.000134	0.00735	0.00763	0.00747	0.00179	0.000908	0.00009	0.000134
Vanadium (V)	mg/L	0.001	-	-	<0.030	<0.030	<0.030	<0.030	<0.030	<0.001	<0.0010	<0.0010	<0.001	<0.0010	<0.001	<0.0010	<0.001	<0.0010	<0.001	<0.0010
Zinc (Zn)	mg/L	0.001	0.03	0.075 - 2.4 ₁₄	<0.005	<0.005	<0.005	<0.005	0.007	0.0024	0.0071	0.0014	0.0011	0.0025	0.001	0.0036	0.253	0.0118	0.0138	0.0074

Table 14c: Groundwater Dissolved Metals Chemistry – Stewart Gulch, Platinum Gulch, Eagle Pup, and Olive Gulch

Eagle Gold Project Environmental Baseline Report: Hydrogeology Draft Report

Appendix B – Data Tables

												Ba	wn-Boy G	ulch								
Dissolved	Units	D.L.*	ССМЕ	BC CSR AW	GTS	96-26		MW96-8		MW	96-9b	95-138		95-139			95-	141		95-148	95-	149
Metals	Units	D.L.	FAL	BC CSR AW	60-InC-7:	:7-Aug-09	eo-Iul-7:	:7-Aug-09	15-OCT-09	:7-Jul-09	:7-Aug-09	:7-Sep-95	4-May-96	:2-Jul-96	1-Sep-96	:4-May-96	:2-Jul-96	1-Sep-96	:7-Sep-95	:7-Sep-95	2-Jul-96	21-Sep-96
Aluminum (Al)	mg/L	0.001	0.1₅	-	0.0012	0.0027	<0.001	0.0019	0.0015	0.0203	0.0045	0.009	0.007	0.01	0.009	0.185	0.005	0.01	0.2	<0.10	0.013	0.011
Antimony (Sb)	mg/L	0.0001	-	0.20	0.0137	0.0312	0.00046	0.00044	0.00043	0.00075	0.00072	0.0013	0.0008	0.0009	0.0008	0.0009	0.001	0.0011	0.0011	0.0004	0.0004	0.0004
Arsenic (As)	mg/L	0.0001	0.005	0.05	0.605	<u>0.862</u>	<u>0.0708</u>	0.0649	0.0608	0.0580	0.0477	<u>0.068</u>	<u>0.0627</u>	<u>0.0661</u>	<u>0.065</u>	<u>0.171</u>	<u>0.176</u>	<u>0.158</u>	<u>0.163</u>	<u>0.082</u>	<u>0.11</u>	<u>0.102</u>
Barium (Ba)	mg/L	0.00005	-	10	0.0369	0.0192	0.0266	0.0133	0.0250	0.0199	0.0215	<0.010	<0.010	<0.010	<0.010	0.012	<0.010	0.018	<0.010	0.03	0.03	0.029
Beryllium (Be)	mg/L	0.0005	-	0.053	<0.0005	<0.0005	<0.0005	<0.0005	<0.00050	<0.0005	<0.0005	<0.005	<0.005	<0.005	<0.005	<0.005	<0.005	<0.005	<0.005	<0.005	<0.005	<0.005
Bismuth (Bi)	mg/L	0.1	-	-								<0.10	<0.10	<0.10	<0.10	<0.10	<0.10	<0.10	<0.10	<0.10	<0.10	<0.10
Boron (B)	mg/L	0.01	-	50	<0.01	<0.01	<0.01	<0.01	<0.010	<0.01	<0.01	<0.10	<0.10	<0.10	<0.10	<0.10	<0.10	<0.10	<0.10	<0.10	<0.10	<0.10
Cadmium (Cd)	mg/L	0.000017	0.000017	0.00001 - 0.000067	0.000026	<u>0.000036</u>	<0.000017	<0.000017	<0.000017	0.000024	0.000032	<0.0002	<0.0002	<0.0002	<0.0002	<0.0002	<0.0002	<0.0002	<0.0002	<0.0002	<0.0002	<0.0002
Calcium (Ca)	mg/L	0.05	-	-	26.2	24.2	7.86	8.16	8.46	6.12	7.35	6.01	8.16	8.2	7.88	19.8	17.7	20.7	15	8.96	8.42	9.79
Chromium (Cr)	mg/L	0.0005	-	-	<0.0005	<0.0005	<0.0005	<0.0005	<0.00050	<0.0005	<0.0005	<0.001	<0.001	<0.001	<0.001	<0.001	<0.001	<0.001	<0.001	<0.001	<0.001	<0.001
Cobalt (Co)	mg/L	0.0001	-	0.04	0.00197	0.00146	<0.0001	<0.0001	<0.00010	0.00021	<0.0001	<0.001	<0.001	<0.001	<0.001	<0.001	<0.001	<0.001	<0.001	<0.001	<0.001	<0.001
Copper (Cu)	mg/L	0.0001	0.002-0.004,	0.002 - 0.009 ₈	0.00023	0.004	0.00096	0.00089	0.00030	0.00125	0.00082	0.001	<0.001	0.001	<0.001	0.002	<0.001	<0.001	<0.001	<0.001	<0.001	<0.001
Iron (Fe)	mg/L	0.03	0.3	-	2.59	<0.03	<0.03	<0.03	<0.030	<0.03	<0.03	<0.030	<0.030	<0.030	<0.030	0.259	<0.030	<0.030	<0.030	0.059	<0.030	<0.030
Lead (Pb)	mg/L	0.00005	0.001 - 0.00711	0.004 - 0.016 ₁₀	0.000107	<0.00005	<0.00005	<0.0005	0.000117	0.000114	0.000125	<0.001	<0.001	<0.001	<0.001	0.001	<0.001	<0.001	<0.001	<0.001	<0.001	<0.001
Lithium (Li)	mg/L	0.005	-	-	0.0053	0.0057	<0.005	<0.005	<0.0050	<0.005	<0.005											
Magnesium (Mg)	mg/L	0.1	-	-	5.75	5.15	1.07	1.12	1.14	0.81	1.18	1.21	1.08	1.12	1.07	3.09	2.84	2.38	2.48	1.52	1.36	1.59
Manganese (Mn)	mg/L	0.00005	-	-	0.321	0.302	0.00109	0.0014	0.00155	0.0423	0.00768	0.006	<0.005	<0.005	<0.005	0.025	0.006	<0.005	0.013	<0.005	0.011	0.012
Mercury (Hg)	mg/L	0.00005	-	0.001		<0.00005		<0.00005	<0.000050		<0.00005											
Molybdenum (Mo)	mg/L	0.00005	0.073	10	0.00875	0.00832	0.000673	0.000619	0.000611	0.000499	0.000478	0.002	0.001	0.002	0.001	0.008	0.008	0.008	0.007	0.002	0.002	0.002
Nickel (Ni)	mg/L	0.0005	0.025 - 0.15 ₁₃	0.025 - 0.15 ₁₃	0.00420	0.0111	<0.0005	<0.0005	<0.00050	0.00077	0.00073	0.001	<0.001	<0.001	<0.001	<0.001	<0.001	<0.001	0.001	0.002	0.002	0.001
Potassium (K)	mg/L	2	-	-	<2.0	<2.0	<2.0	<2.0	<2.0	<2.0	<2.0	0.52	0.54	0.68	0.44	0.92	0.86	1.18	0.9	0.76	1.74	0.61
Selenium (Se)	mg/L	0.001	0.001	0.01	<0.001	<0.001	<0.001	<0.001	<0.0010	<0.001	<0.001	<0.0005	<0.0005	<0.0005	<0.0005	0.0005	0.001	<0.0005	<0.0005	<0.0005	<0.0005	<0.0005
Silver (Ag)	mg/L	0.00001	0.0001	0.0005 - 0.015	<0.00001	<0.00001	<0.00001	<0.00001	<0.000010	<0.00001	<0.00001	<0.0001	<0.0001	<0.0001	<0.0001	<0.0001	<0.0001	<0.0001	<0.001	<0.0001	<0.0001	<0.0001
Sodium (Na)	mg/L	2	-	-	2.4	6.6	2.1	2.2	2.1	2.0	2.3	1.95	1.74	1.9	1.44	4.43	3.58	3.81	8.92	2.81	2.21	1.89
Strontium (Sr)	mg/L	0.001	-	-								0.032	0.034	0.035	0.034	0.133	0.11	0.284	0.093	0.058	0.064	0.067
Thallium (TI)	mg/L	0.0001	0.0008	0.003	<0.0001	<0.0001	<0.0001	<0.0001	<0.00010	<0.0001	<0.0001											
Tin (Sn)	mg/L	0.0001	-	-	0.00011	<0.0001	<0.0001	<0.0001	0.00026	0.00055	0.00026											
Titanium (Ti)	mg/L	0.01	-	1	<0.010	<0.01	<0.010	<0.01	<0.010	<0.010	<0.01	<0.010	<0.010	<0.010	<0.010	<0.010	<0.010	<0.010	<0.010	<0.010	<0.010	<0.010
Uranium (U)	mg/L	0.00001	-	0.30	0.000806	0.000543	0.000177	0.000175	0.000168	0.000223	0.000061	0.00009	0.00005	0.00005	0.00005	0.0135	0.0125	0.0103	0.0104	0.00033	0.00066	0.00069
Vanadium (V)	mg/L	0.001	-	-	<0.0010	<0.001	<0.0010	<0.001	<0.0010	<0.0010	<0.001	<0.030	<0.030	<0.030	<0.030	<0.030	<0.030	<0.030	<0.030	<0.030	<0.030	<0.030
Zinc (Zn)	mg/L	0.001	0.03	0.075 - 2.4 ₁₄	0.0297	0.0297	0.0125	0.0051	0.0100	0.0233	0.0168	<0.005	<0.005	0.012	<0.005	<0.005	<0.005	<0.005	<0.005	<0.005	<0.005	<0.005

Table 14d: Groundwater Dissolved Metals Chemistry – Bawn-Boy Gulch

					Lynx Creek	Watershed
			CCME		MW96-1	MW96-1
Dissolved Metals	Units	D.L.*	FAL	BC CSR AW	27-Aug-09	21-Sep-96
Aluminum (Al)	mg/L	0.001	0.16	-	0.0075	0.015
Antimony (Sb)	mg/L	0.0001	-	0.20	0.00026	0.0025
Arsenic (As)	mg/L	0.0001	0.005	0.05	0.00615	0.0022
Barium (Ba)	mg/L	0.00005	-	10	0.00696	0.026
Beryllium (Be)	mg/L	0.0005	-	0.053	<0.0005	<0.005
Bismuth (Bi)	mg/L	0.1	-	-		<0.10
Boron (B)	mg/L	0.01	-	50	<0.01	<0.10
Cadmium (Cd)	mg/L	0.000017	0.000017	0.00001 - 0.000067	<0.000017	<u>0.0002</u>
Calcium (Ca)	mg/L	0.05	-	-	57.4	105
Chromium (Cr)	mg/L	0.0005	-	-	<0.0005	<0.001
Cobalt (Co)	mg/L	0.0001	-	0.04	<0.0001	<0.001
Copper (Cu)	mg/L	0.0001	0.002-0.004,	0.002 - 0.009₅	0.00012	0.001
Iron (Fe)	mg/L	0.03	0.3	-	<0.03	<0.030
Lead (Pb)	mg/L	0.00005	0.001 - 0.007 ₁₁	0.004 - 0.016 ₁₀	<0.00005	<0.001
Lithium (Li)	mg/L	0.005	-	-	0.0074	
Magnesium (Mg)	mg/L	0.1	-	-	1.79	4.38
Manganese (Mn)	mg/L	0.00005	-	-	0.0607	0.103
Mercury (Hg)	mg/L	0.00005	-	0.001	<0.00005	
Molybdenum (Mo)	mg/L	0.00005	0.073	10	0.00286	0.039
Nickel (Ni)	mg/L	0.0005	0.025 - 0.15 ₁₃	0.025 - 0.15 ₁₃	<0.0005	0.001
Potassium (K)	mg/L	2	-	-	<2.0	7.27
Selenium (Se)	mg/L	0.001	0.001	0.01	<0.001	0.0006
Silver (Ag)	mg/L	0.00001	0.0001	0.0005 - 0.015	<0.00001	0.0002
Sodium (Na)	mg/L	2	-	-	2.5	13.4
Strontium (Sr)	mg/L	0.001	-	-		0.363
Thallium (TI)	mg/L	0.0001	0.0008	0.003	<0.0001	
Tin (Sn)	mg/L	0.0001	-	-	0.00034	
Titanium (Ti)	mg/L	0.01	-	1	<0.01	<0.010
Uranium (U)	mg/L	0.00001	-	0.30	0.000298	0.00265
Vanadium (V)	mg/L	0.001	-	-	<0.001	<0.030
Zinc (Zn)	mg/L	0.001	0.03	0.075 - 2.4 ₁₄	0.0013	0.006

Table 14e: Groundwater Dissolved Metals Chemistry – Bawn-Boy Gulch

Eagle Gold Project

Environmental Baseline Report: Hydrogeology Draft Report

Appendix B – Data Tables

NOTES:

- 1. Bolded and/or Underlined result implies a guideline exceedance
- 2. D.L. = laboratory detection limit
- 3. * some detection limits are varied '<' (less than) value implies detection limit
- 4. CCME FAL Canadian Council of Ministers of the Environment Freshwater Aquatic Life guidelines (December 2007)
- 5. BC CSR AW British Columbia Contaminated Sites Regulation Aquatic Life Guidelines; provided for comparison only
- 6. Aluminum guideline is 100 μ g/L when pH \geq 6.5
- 7. Cadmium Guideline: Cadmium Guideline (CCME): 10^{0.86[log(hardness)]-3.2} <u>0.1 µg/L when [CaCO₃] is 0 - 30 mg/L</u> <u>0.3 µg/L when [CaCO₃] is 30 - 90 mg/L</u> <u>0.5 µg/L when [CaCO₃] is 90 - 150 mg/L</u> <u>0.6 µg/L when [CaCO₃] is > 150 mg/L</u>
 8. Copper Guideline:
 - Copper Guideline: 2 µg/L when [CaCO₃] is 0 - 50 mg/L 3 µg/L when [CaCO₃] is 50 - 75 mg/L 4 µg/L when [CaCO₃] is 75 - 100 mg/L 5 µg/L when [CaCO₃] is 100 - 125 mg/L 6 µg/L when [CaCO₃] is 125 - 150 mg/L 7 µg/L when [CaCO₃] is 150 - 175 mg/L 8 µg/L when [CaCO₃] is 175 - 200 mg/L 9 µg/L when [CaCO₃] is > 200 mg/L
- 9. Copper Guideline: <u>2 μg/L when [CaCO₃] is 0 - 120 mg/L</u> <u>3 μg/L when [CaCO₃] is 120 - 180 mg/L</u> <u>4 μg/L when [CaCO₃] is > 180 mg/L</u>
- Lead Guideline: <u>4 μg/L when [CaCO₃] is 0 - 50 mg/L</u> <u>5 μg/L when [CaCO₃] is 50 - 100 mg/L</u> <u>6 μg/L when [CaCO₃] is 100 - 200 mg/L</u> <u>110 μg/L when [CaCO₃] is 200 - 300 mg/L</u> <u>160 μg/L when [CaCO₃] is > 300 mg/L</u>
- Lead Guideline: <u>1 µg/L when [CaCO₃] is 0 - 60 mg/L</u> <u>2 µg/L when [CaCO₃] is 60 - 120 mg/L</u> <u>4 µg/L when [CaCO₃] is 120 - 180 mg/L</u> <u>7 µg/L when [CaCO₃] is > 180 mg/L</u>
- 12 Manganese Guideline: <u>1 μg/L when [CaCO₃] is 0 - 60 mg/L</u> <u>2 μg/L when [CaCO₃] is 60 - 120 mg/L</u> <u>4 μg/L when [CaCO₃] is 120 - 180 mg/L</u> <u>7 μg/L when [CaCO₃] is > 180 mg/L</u>
- 13 Nickel Guideline: <u>25 μg/L when [CaCO₃] is 0 - 60 mg/L</u> <u>65 μg/L when [CaCO₃] is 60 - 120 mg/L</u> <u>110 μg/L when [CaCO₃] is 120 - 180 mg/L</u> <u>150 μg/L when [CaCO₃] is > 180 mg/L</u>
- 14 Zinc Guideline: <u>7.5 μg/L when [CaCO₃] is 0 - 90 mg/L</u> <u>15 μg/L when [CaCO₃] is 90 - 100 mg/L</u> <u>90 μg/L when [CaCO₃] is 100 - 200 mg/L</u> <u>165 μg/L when [CaCO₃] is 200 - 300 mg/L</u> <u>240 μg/L when [CaCO₃] is > 300 mg/L</u>

MWID	Date	Developed		Field Parameters						
	Dale	Volume (L)	EC (µS)	рН	Temp (°C)					
Ann Gulch										
MW09-AG2	21-Oct-09	75	n.m.	n.m.	n.m.					
Dublin Gulch	· · · · · · · · · · · · · · · · · · ·	· · · ·		'						
	2.7	700	365	8.24	8.2					
MW09-DG1	6-Oct-09	720	441	7.76	3.9					
MW09-DG2	2.572	750	630	7.6	13.9					
	6.63	70	600	7.56	5.4					
MW09-DG4	6-Oct-09	70	554	7.43	4					
MW09-DG5	4-Sep-09	10	n.m.	n.m.	n.m.					
	28-Jul-09		648	7.07	8.5					
DH95-152	27-Aug-09	420	801	8.02	10					
Upper Platinum,	Suttle, Eagle Gulch	es								
MW96-18	27-Aug-09	150	586	7.94	5					
MW96-23	27-Aug-09	10	321	8.23	5					
10100 90-23	6-Oct-09	10	324	7.93	2.6					
Lower Suttle and	Eagle Gulches									
MW96-13	28-Jul-09	225	149	4.4	6.3					
10100 90-13	27-Aug-09	225	366	8.25	7.7					
	28-Jul-09		422	6.2	7					
MW96-15	27-Aug-09	500	454	8.19	6.9					
	6-Oct-09		450	7.88	3.9					
MW09-STU 2	27-Aug-09	750	682	7.81	11.8					
Olive Gulch										
MW09-OG2	4-Sep-09	70	171	8.23	4.9					
	5-Oct-09	10	31	7.64	n.m.					
MW09-OG3	3-Sep-09	150	405	7.76	3.8					
	5-Oct-09	100	332	7.6	2.2					
Bawn-Boy Gulch										
MW96-1	27-Aug-96	1450	301	8.4	4.8					
GT96-26	28-Jul-09	120	213	6.08	5.9					
2.00 20	27-Aug-09		223	8.49	8.8					
	28-Jul-09		93	6.08	6.5					
MW96-8	27-Aug-09	220	75	8.21	8.3					
	5-Oct-09		55	7.58	2.6					
	28-Jul-09	150	53	n.m.	6.5					
MW96-9	27-Aug-09	150	65	7.9	6.9					

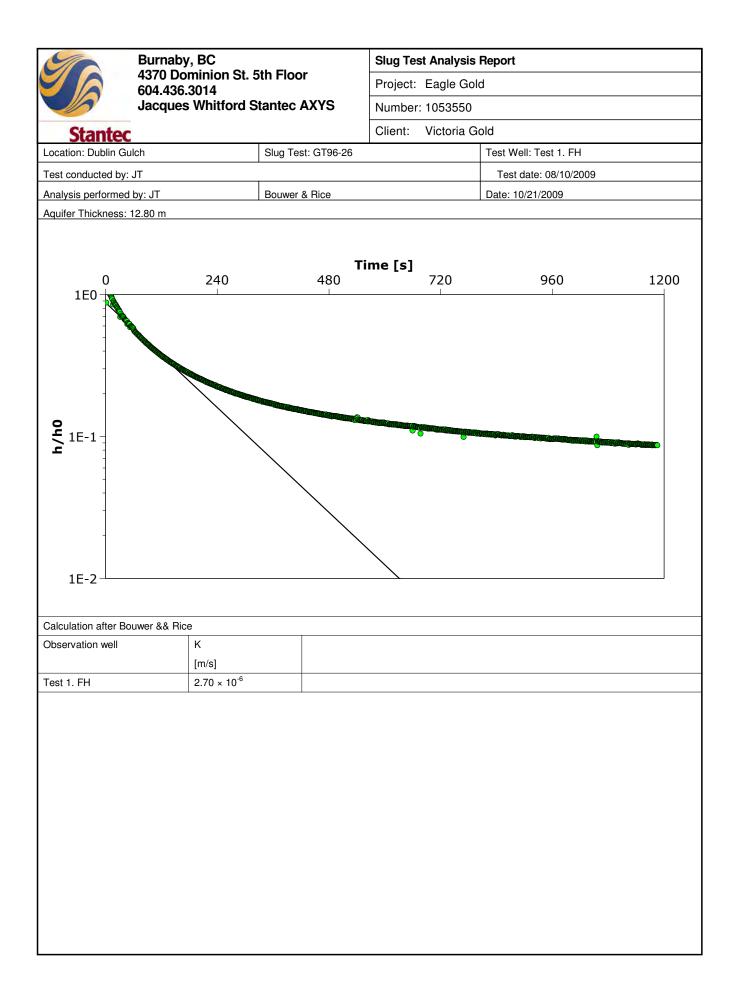
Table 15: Developed Volumes and Field Parameters

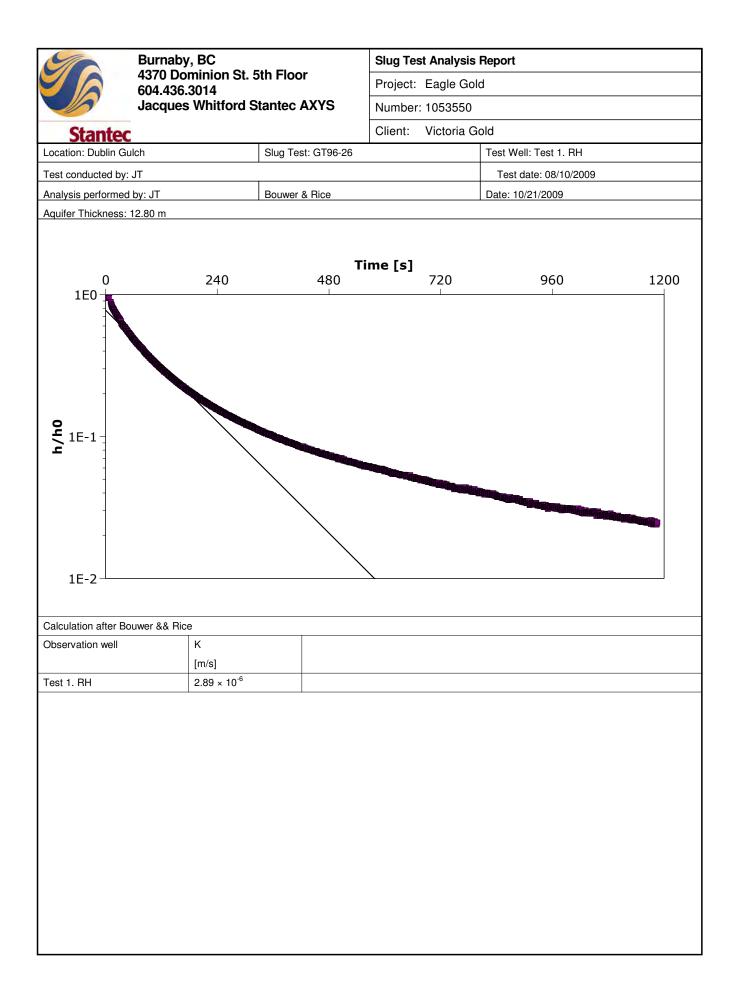
NOTES:

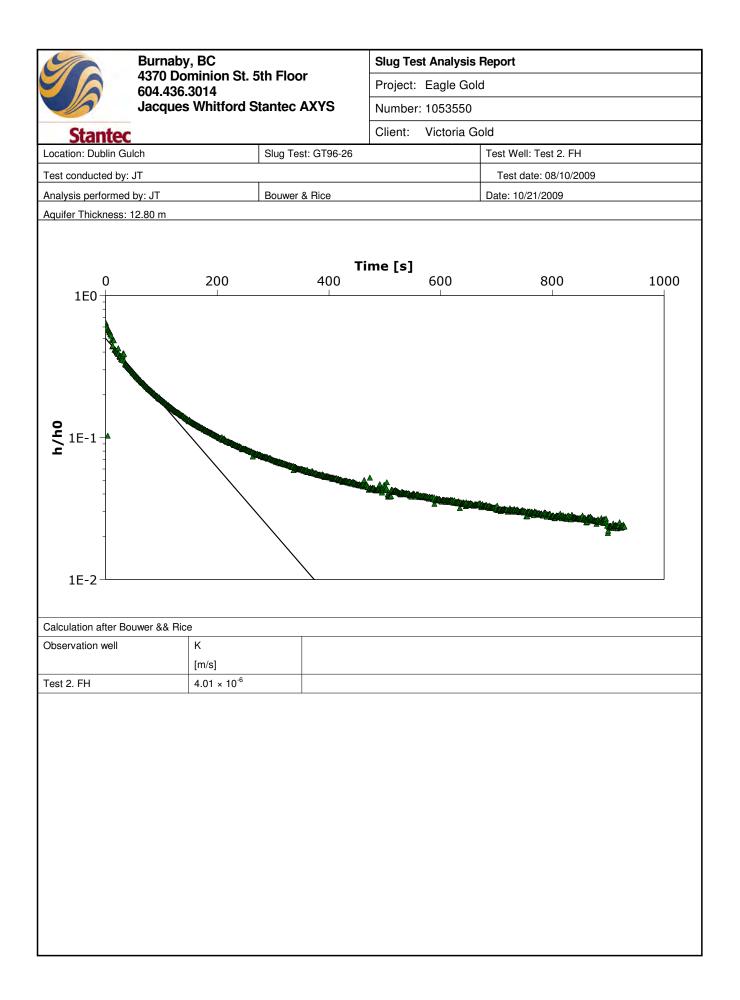
L – liters

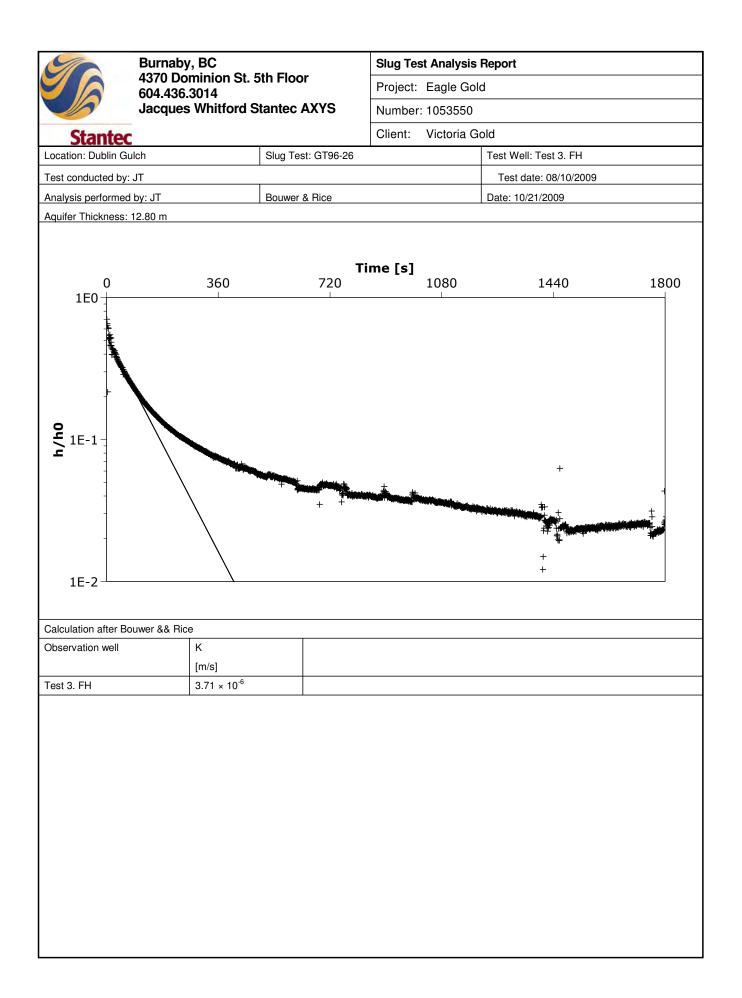
μS - micro semen

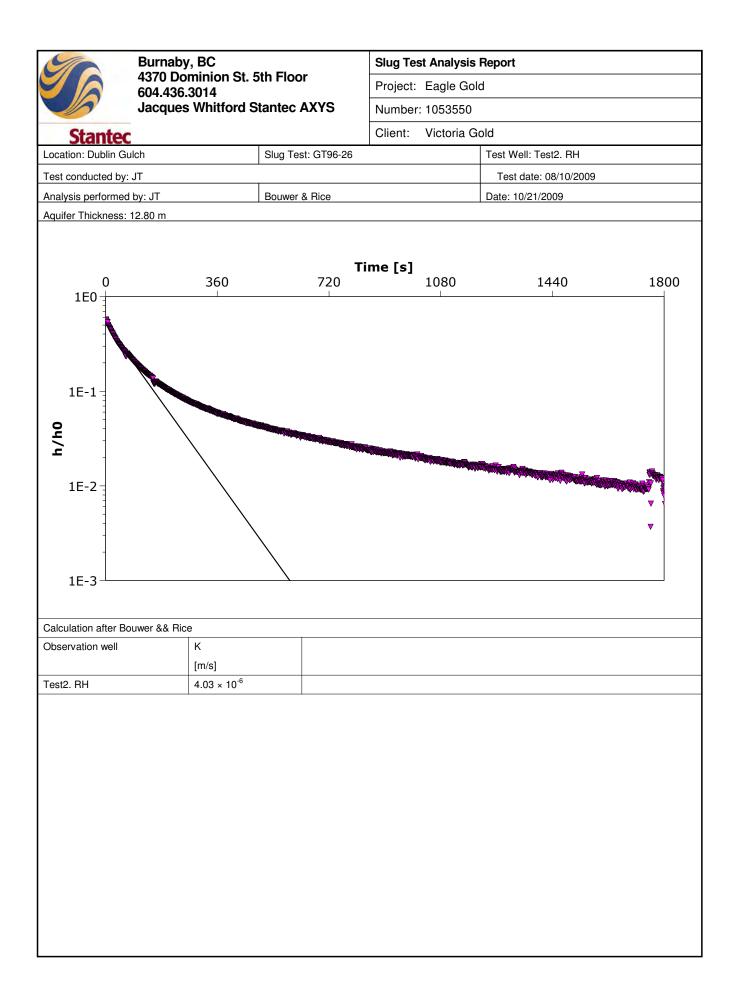
n.m. - not measured

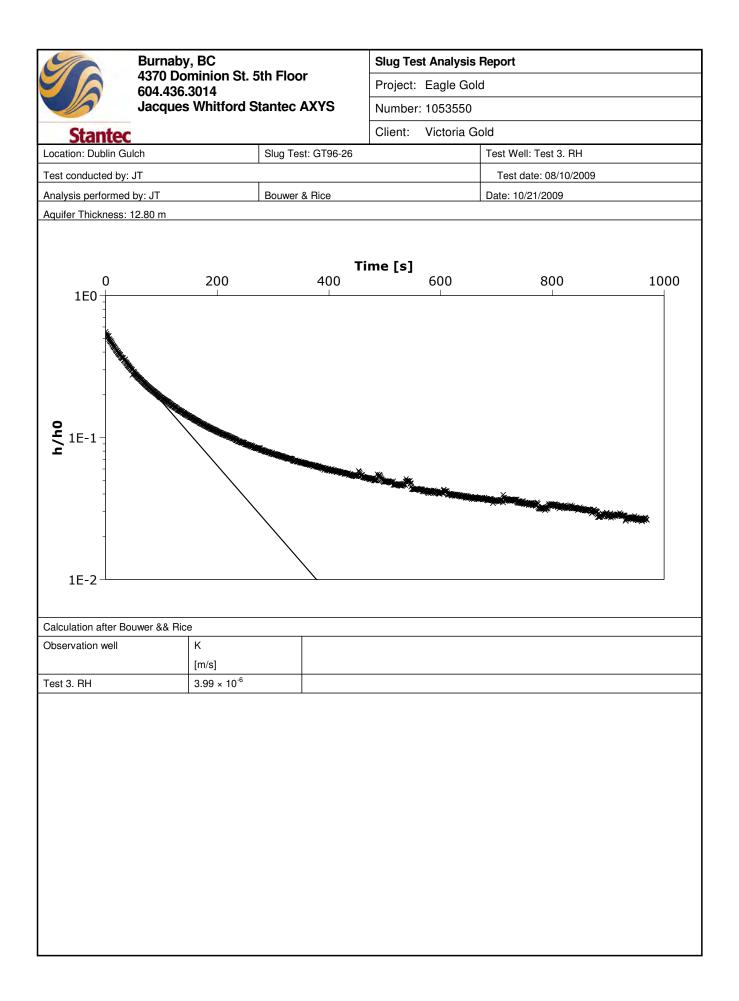

Appendix C – Hydraulic Tests

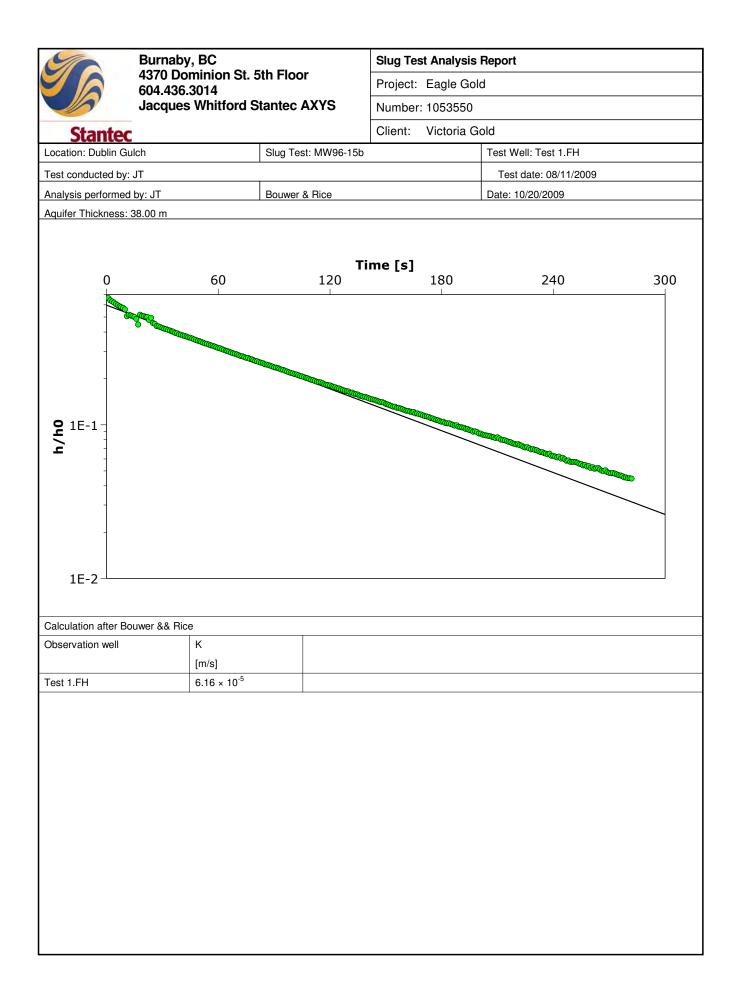


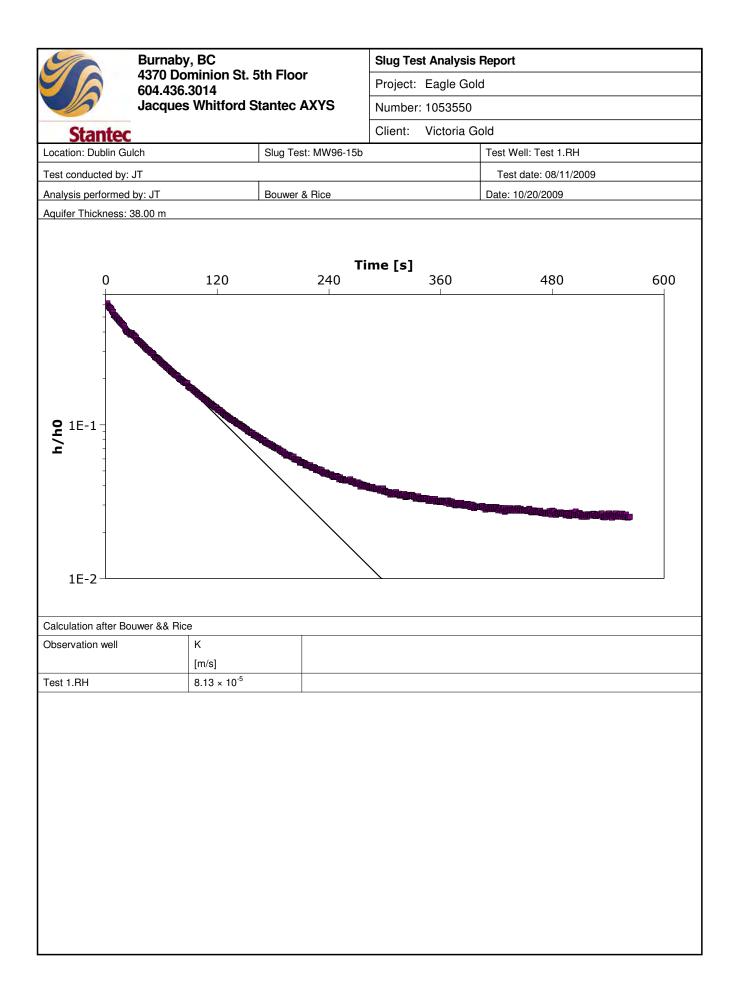

APPENDIX C

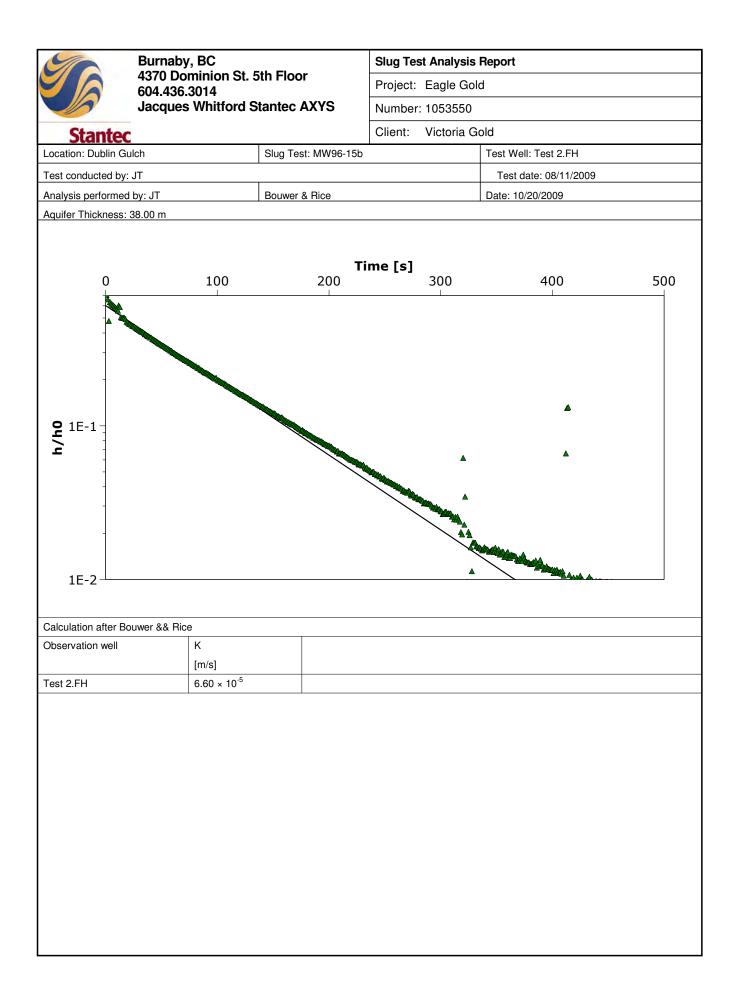

Hydraulic Tests

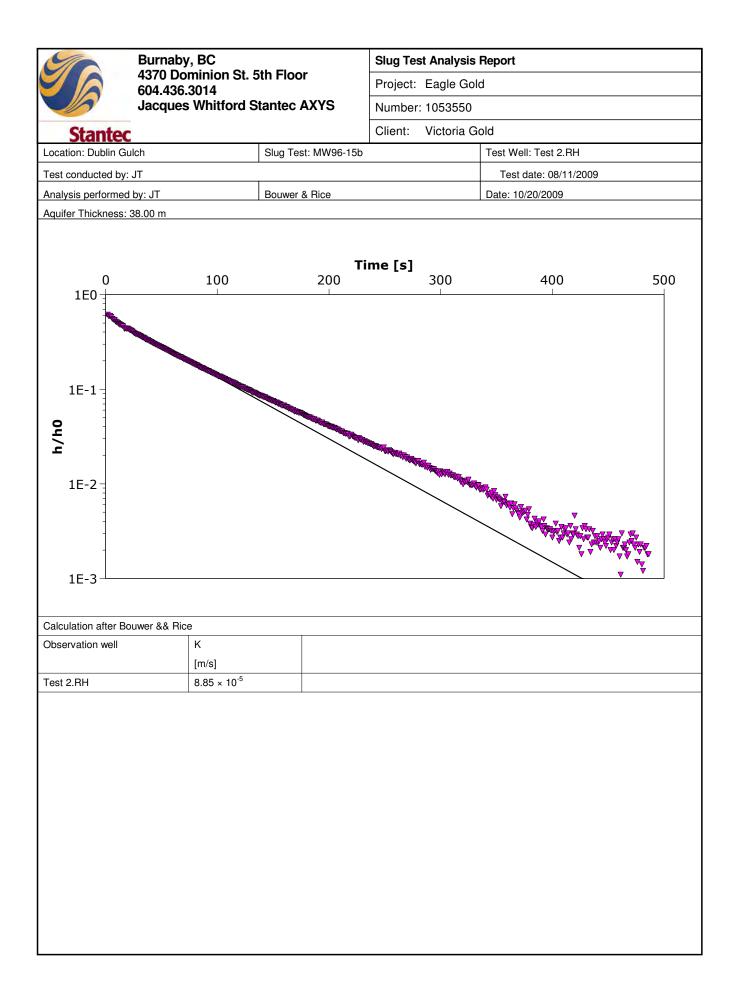

One Team. Infinite Solutions.

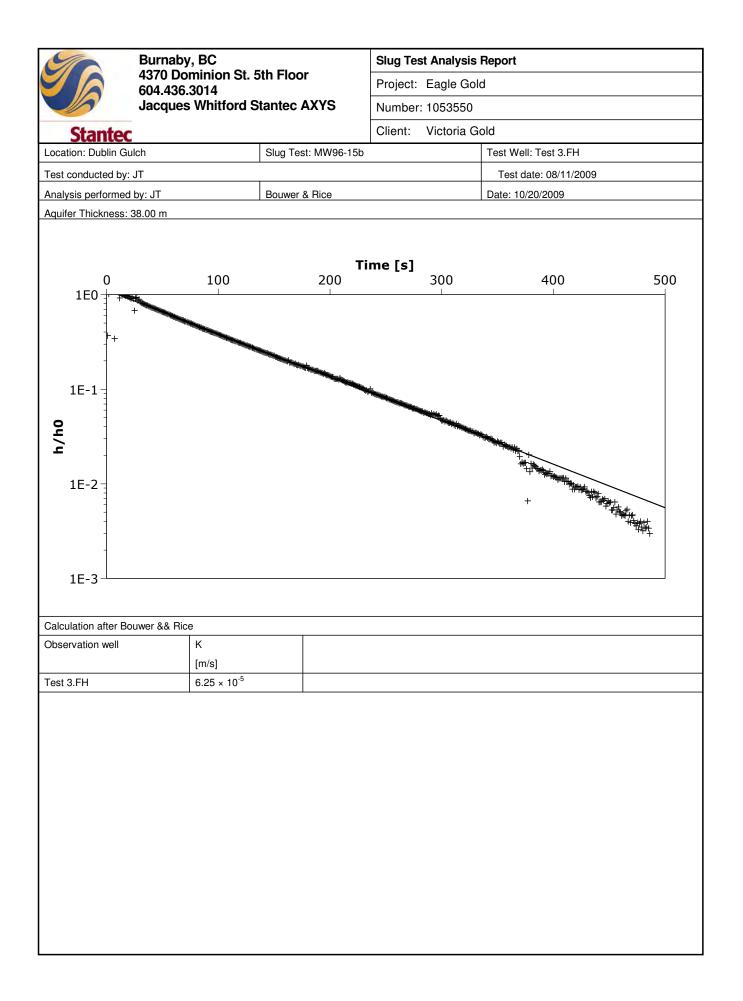


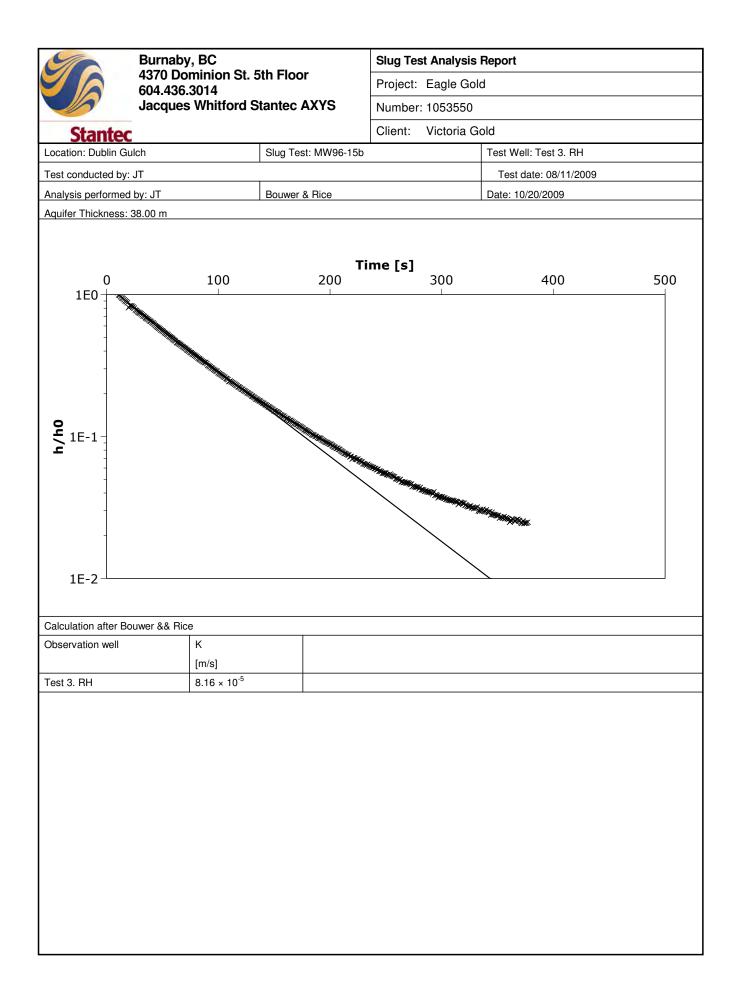


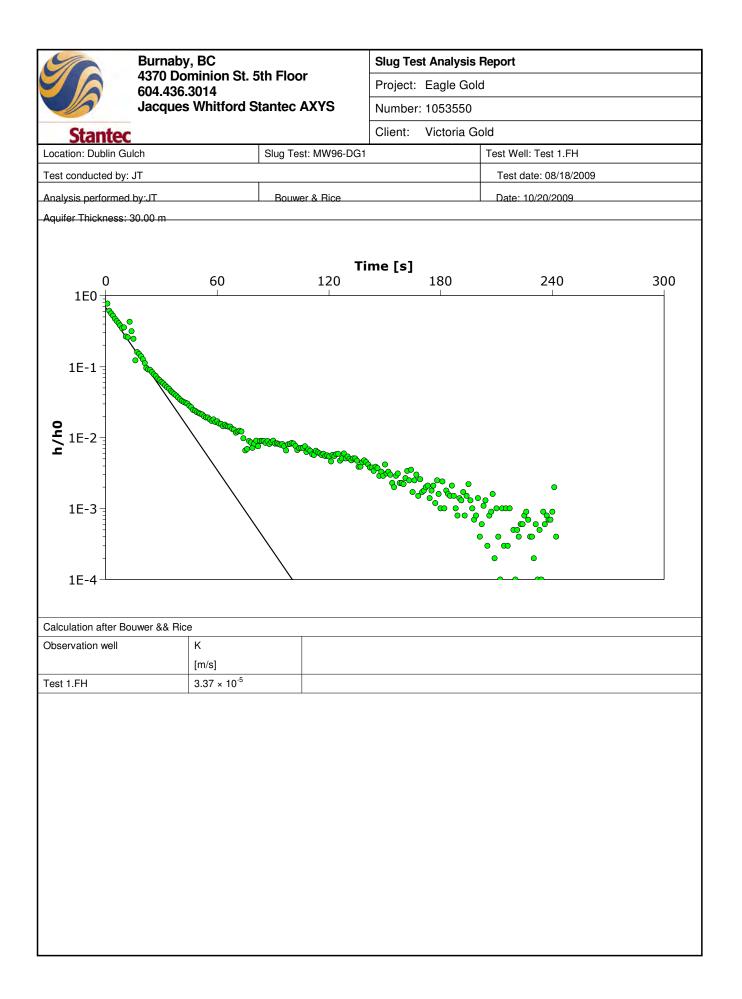


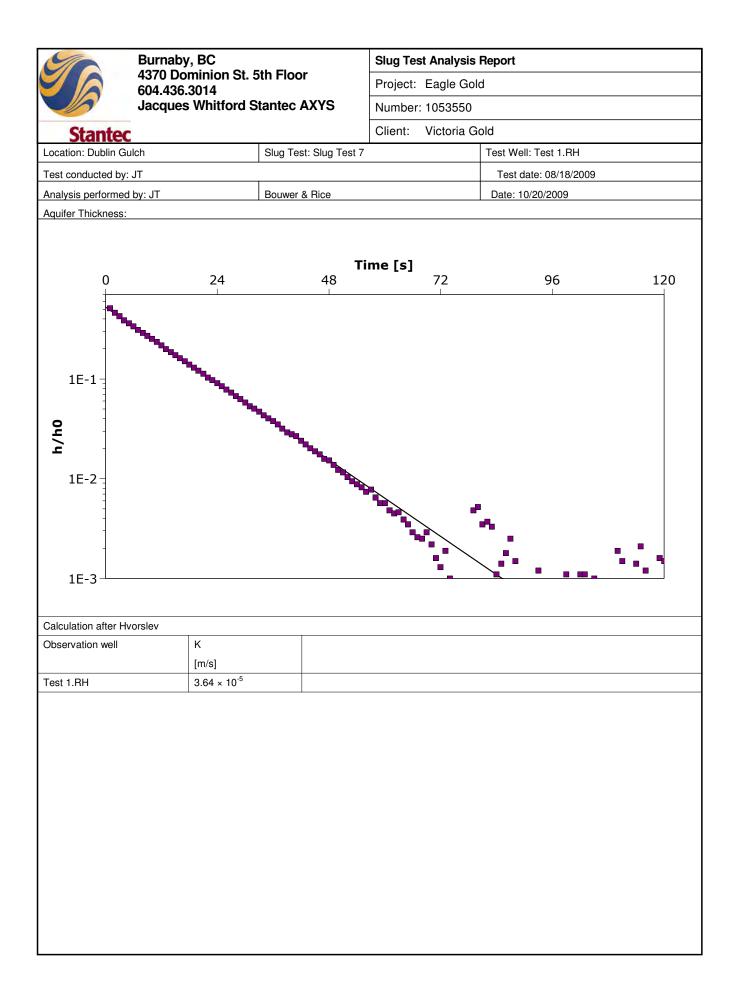


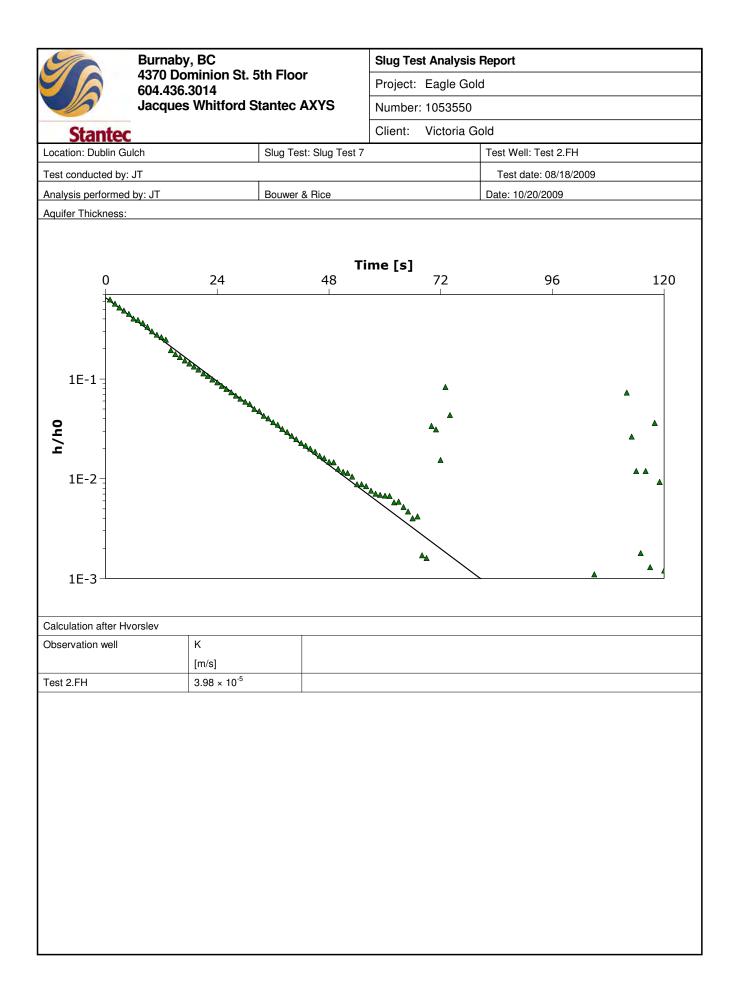


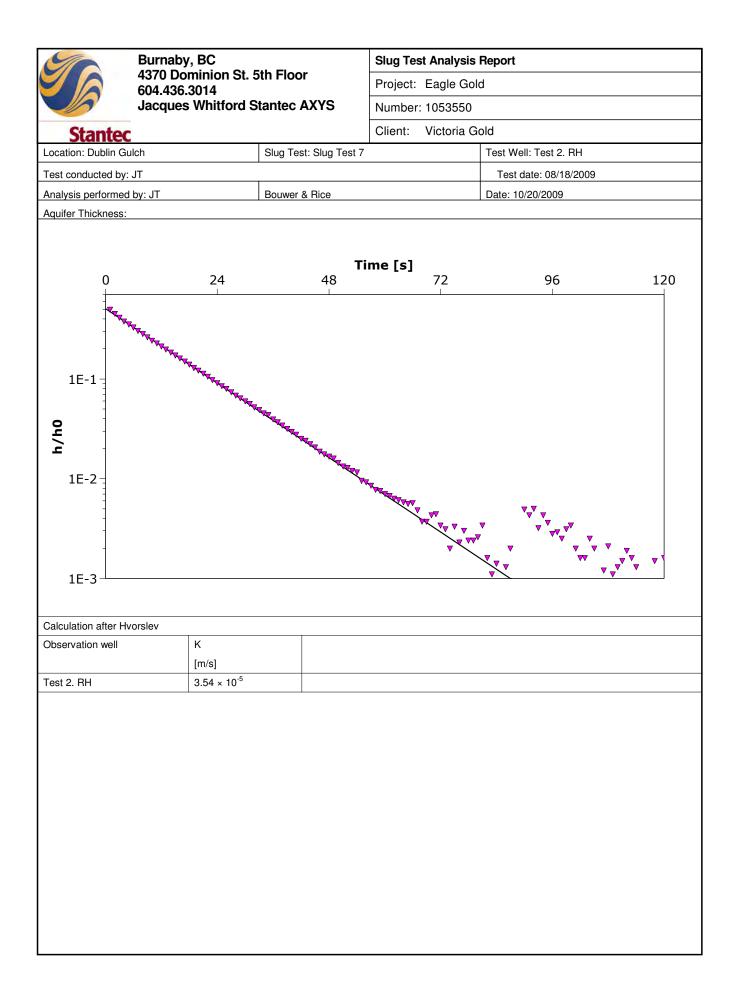


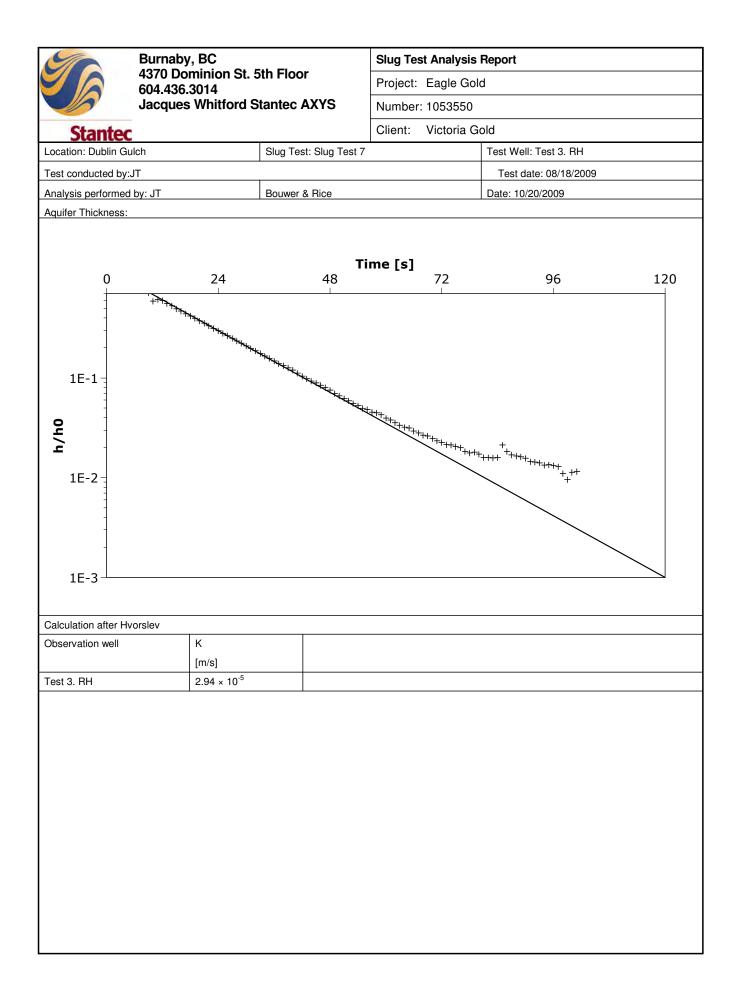


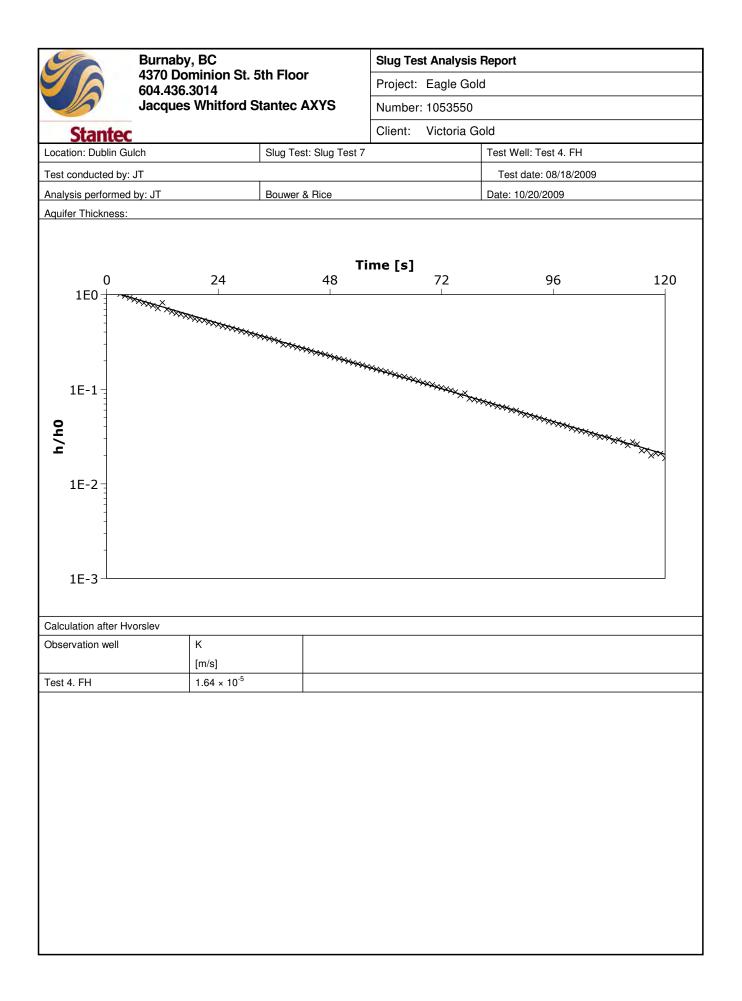


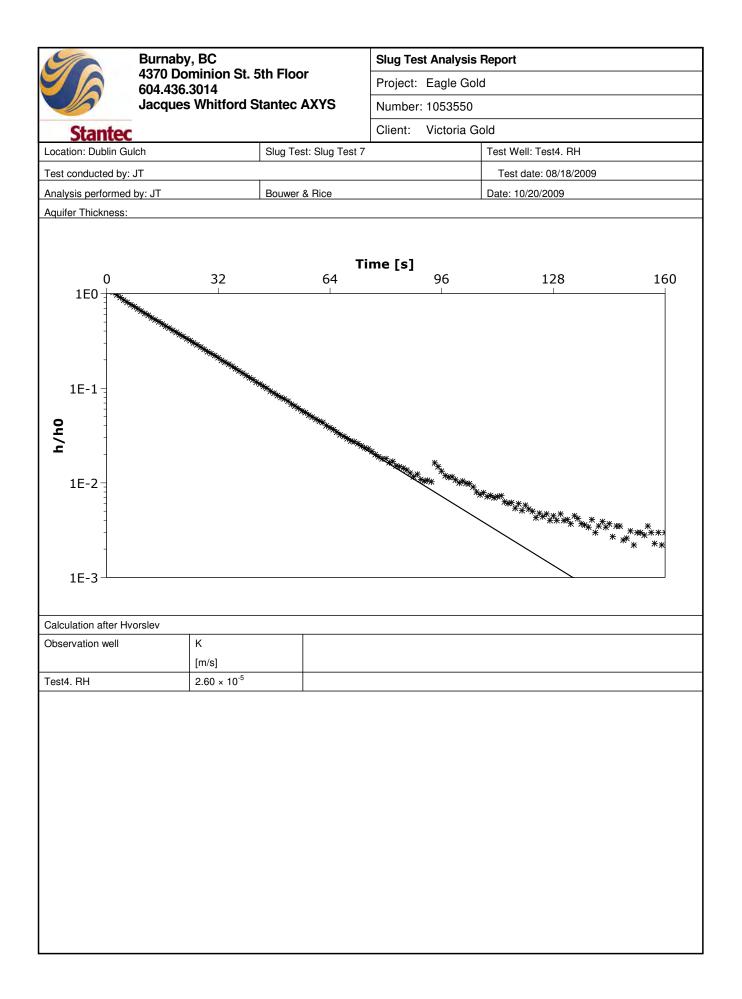


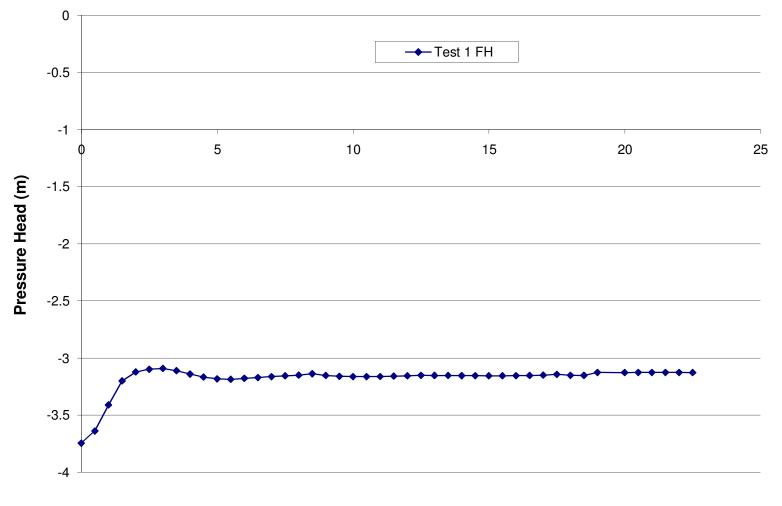


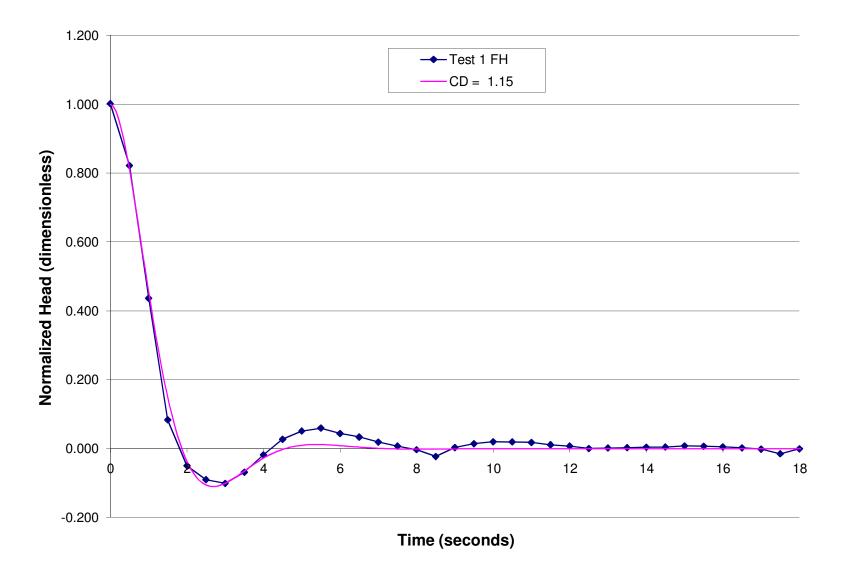


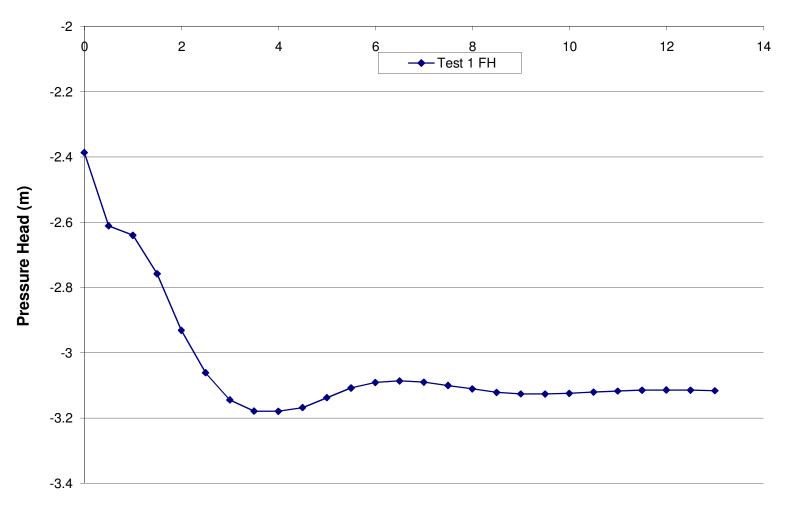


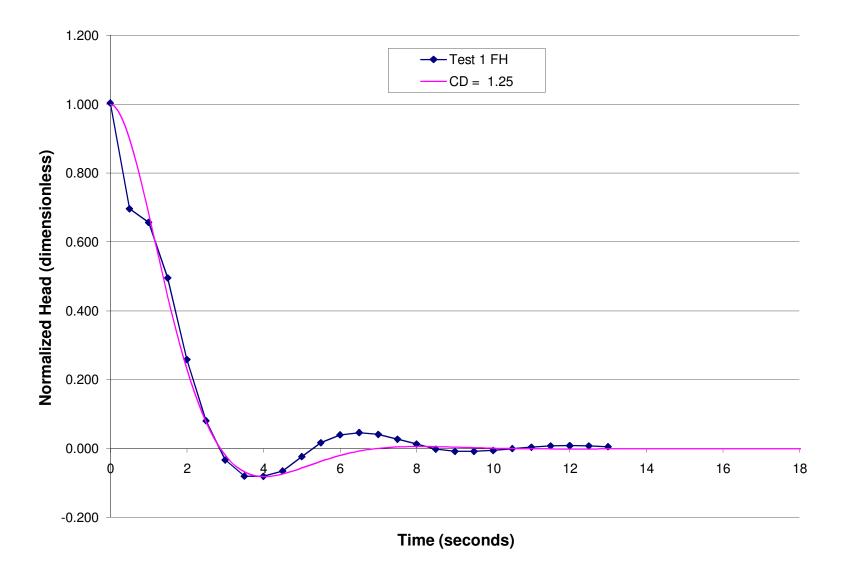


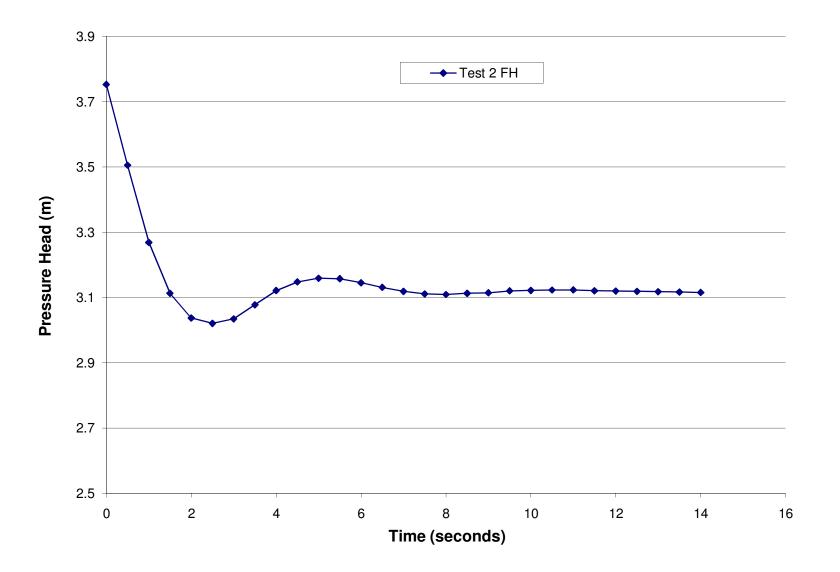


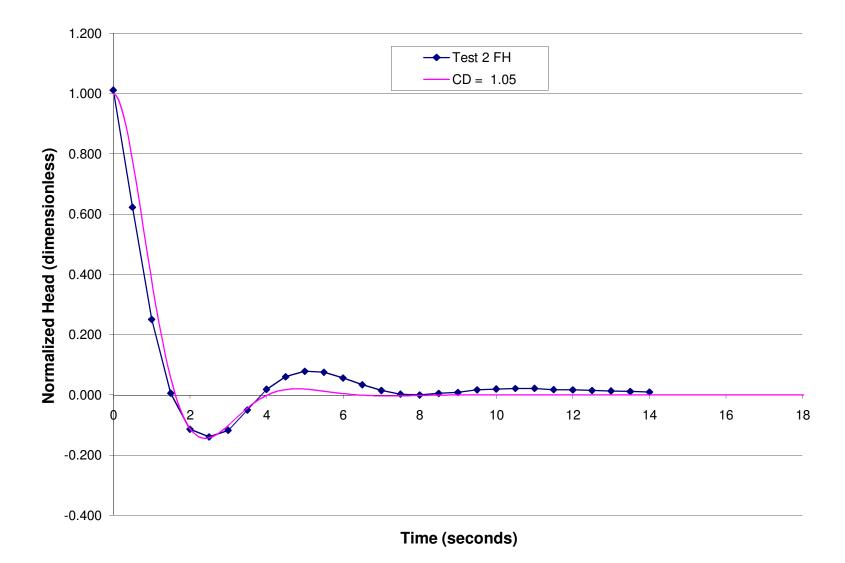


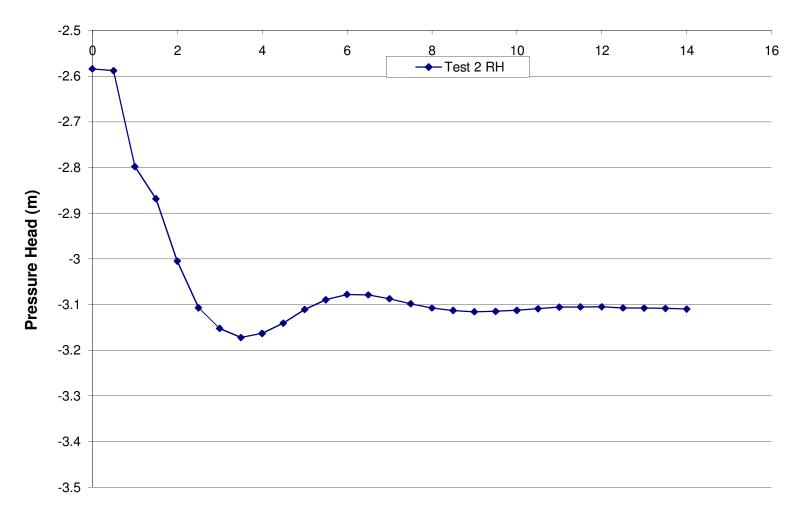


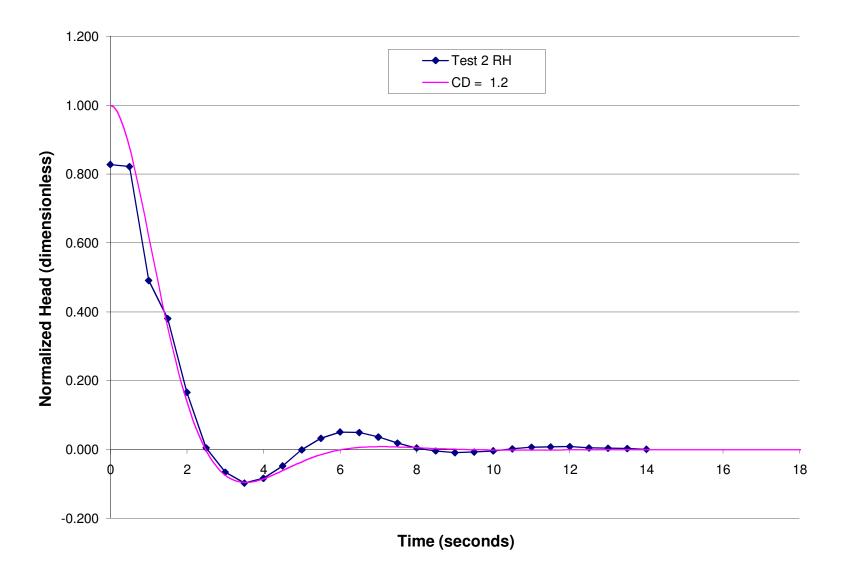


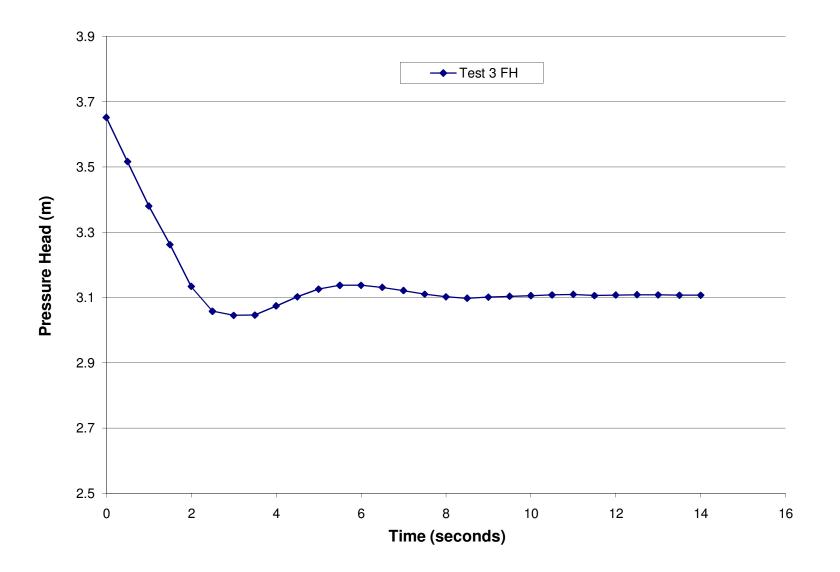


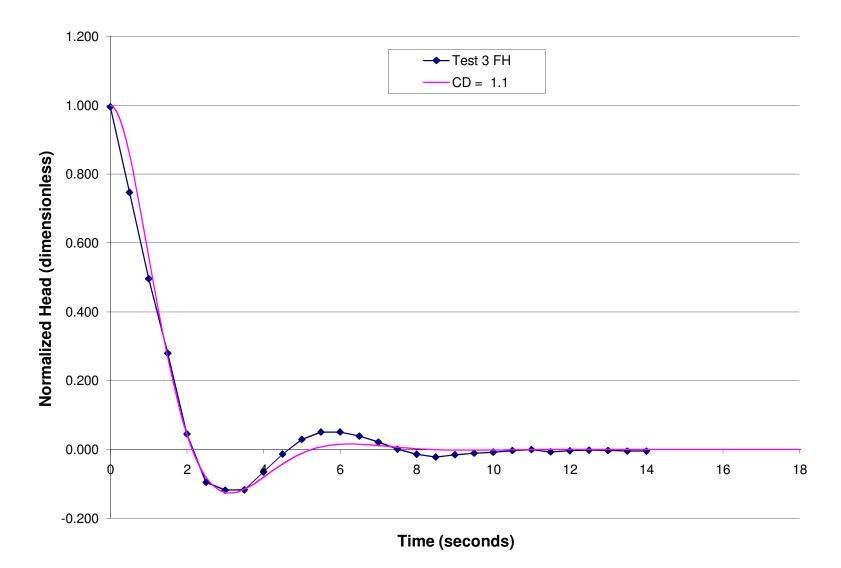


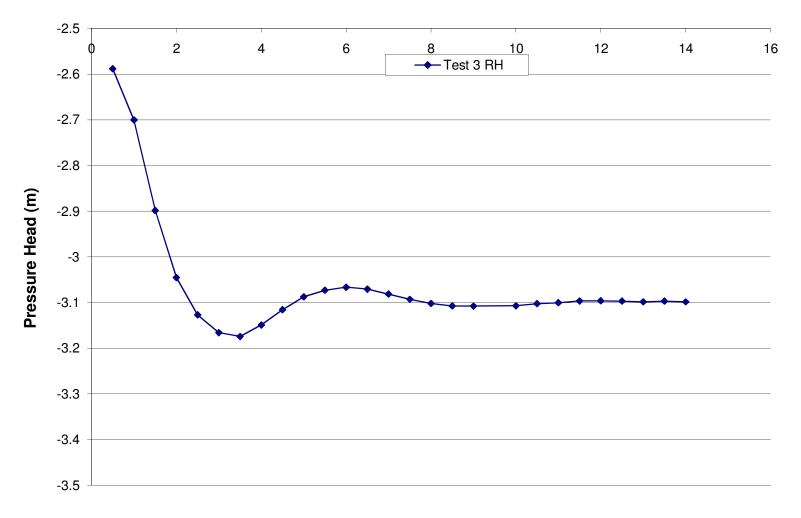


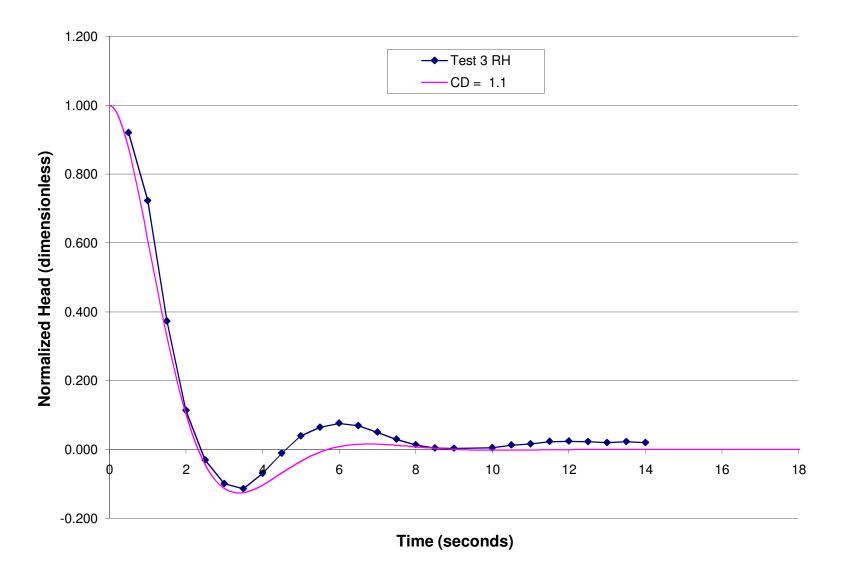


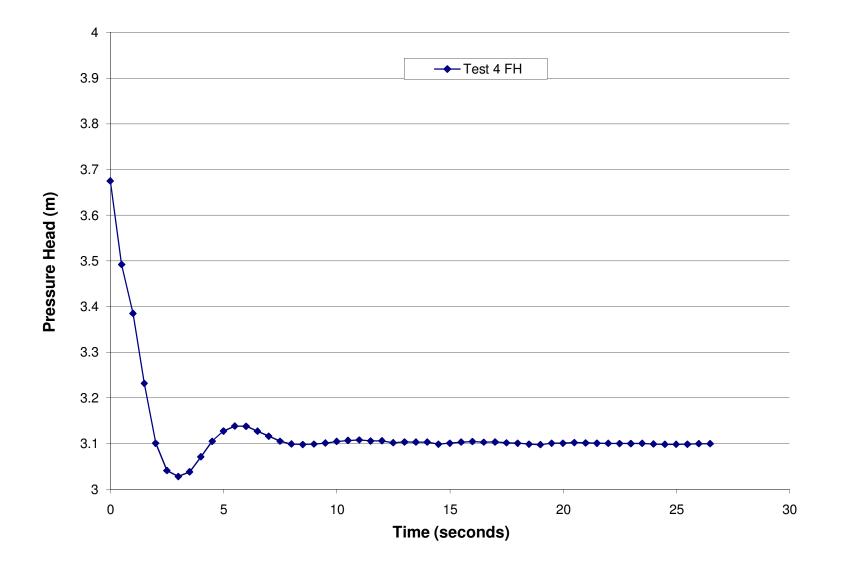


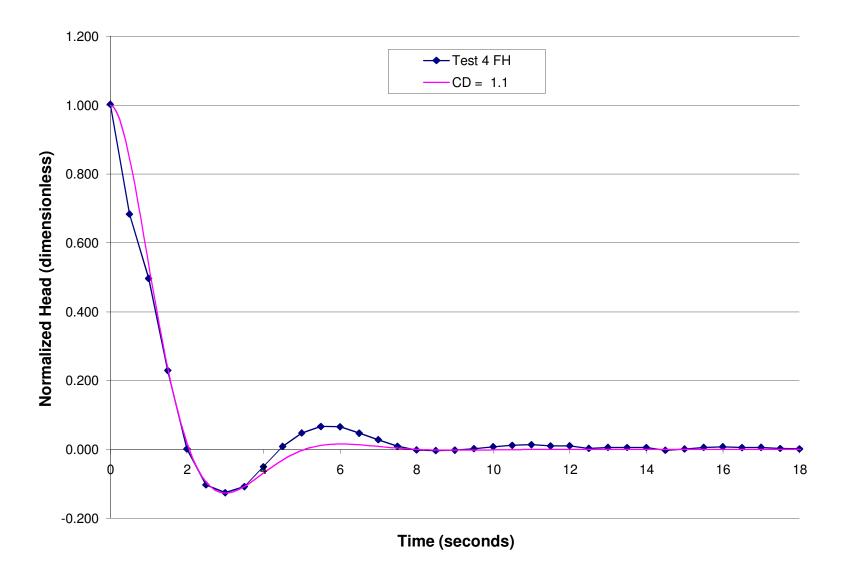


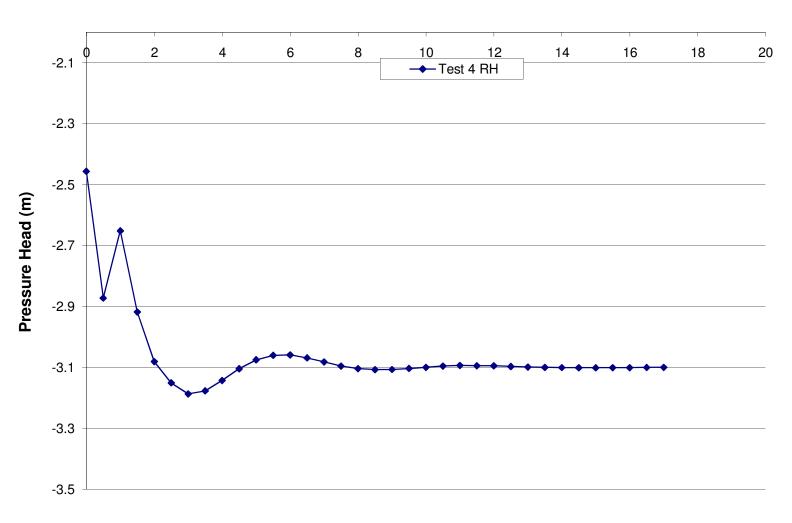


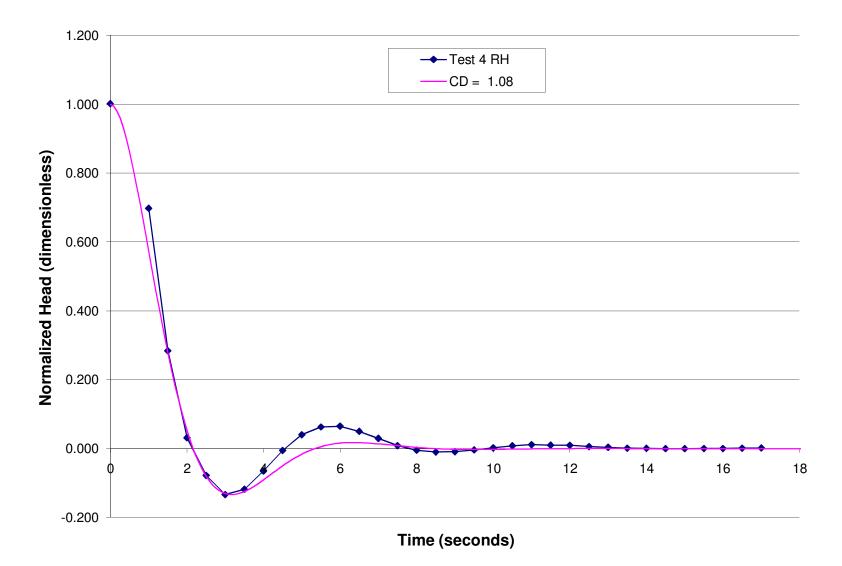


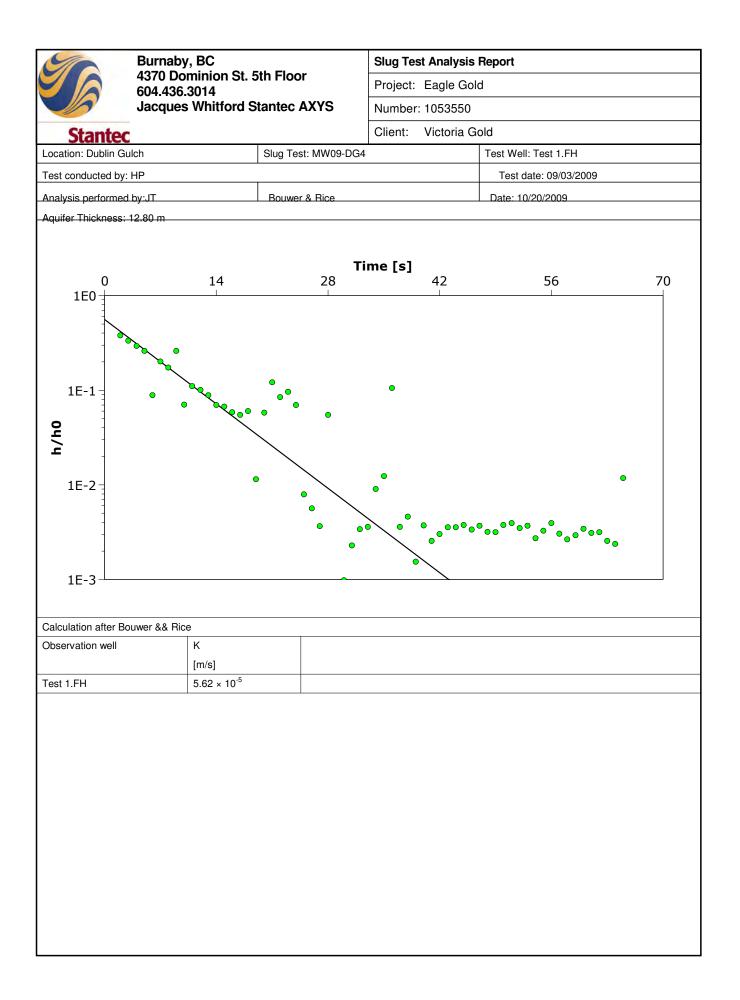


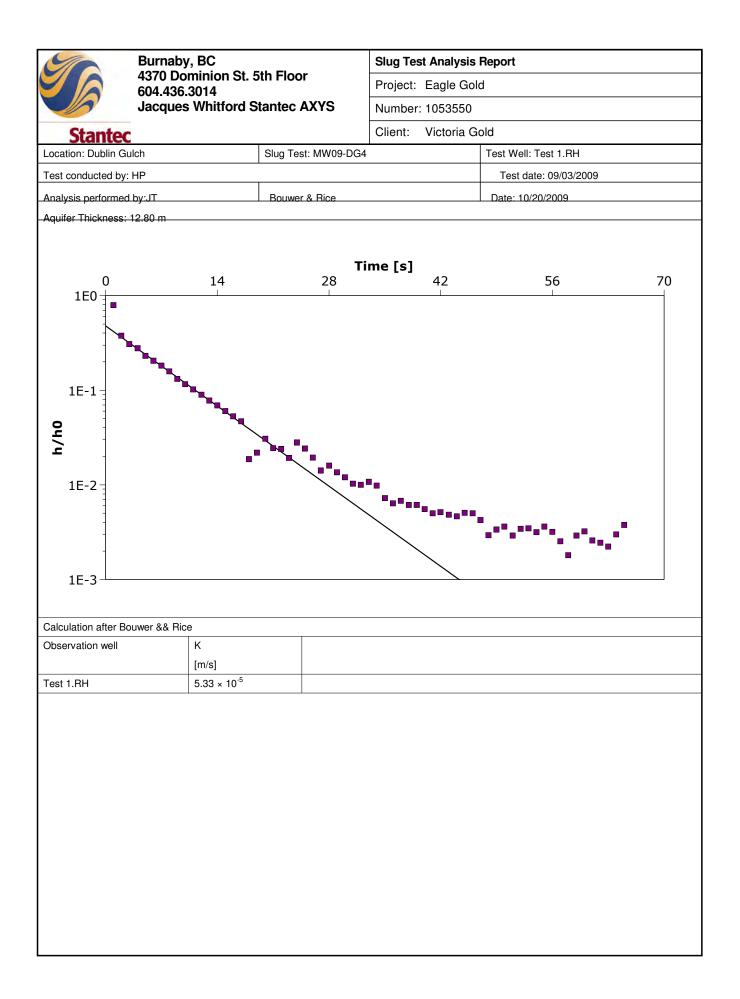


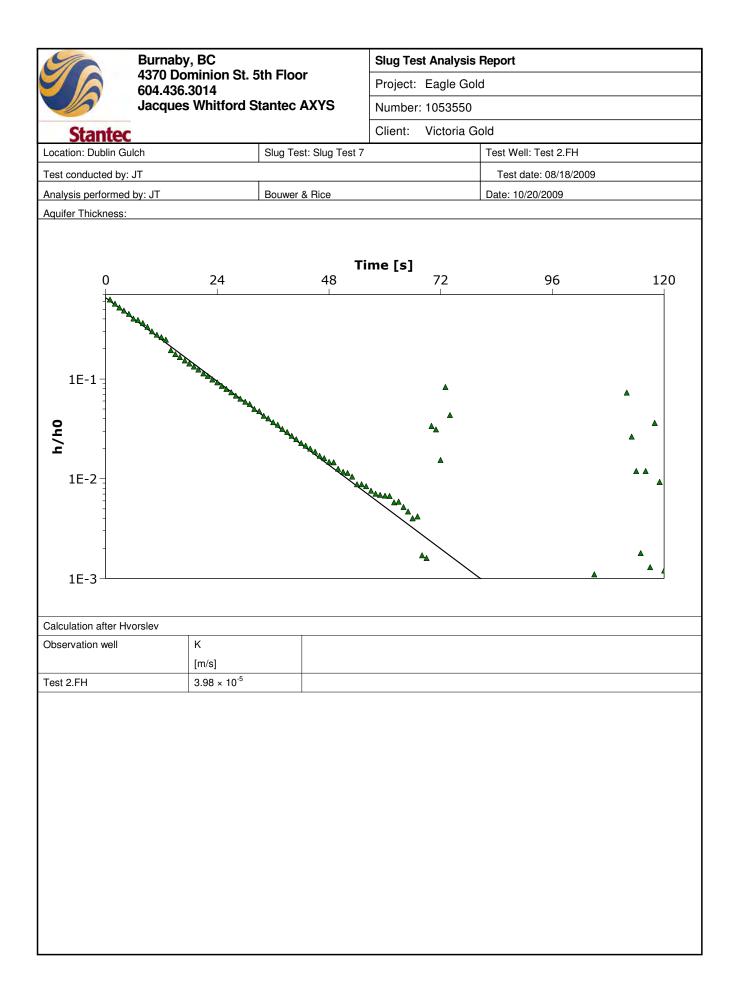


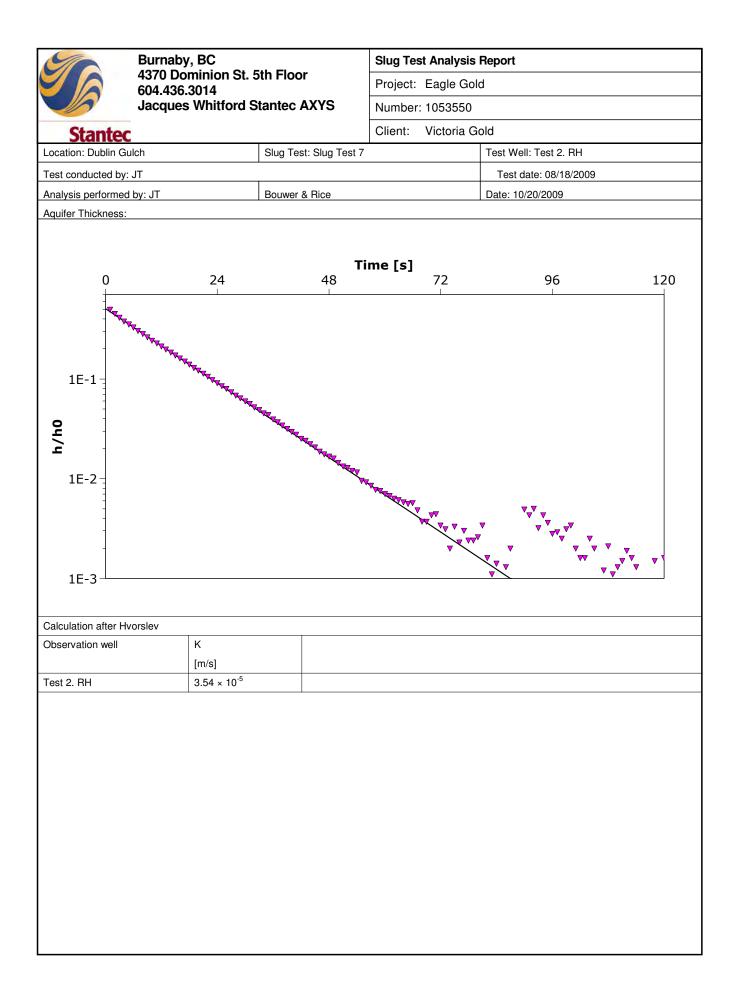


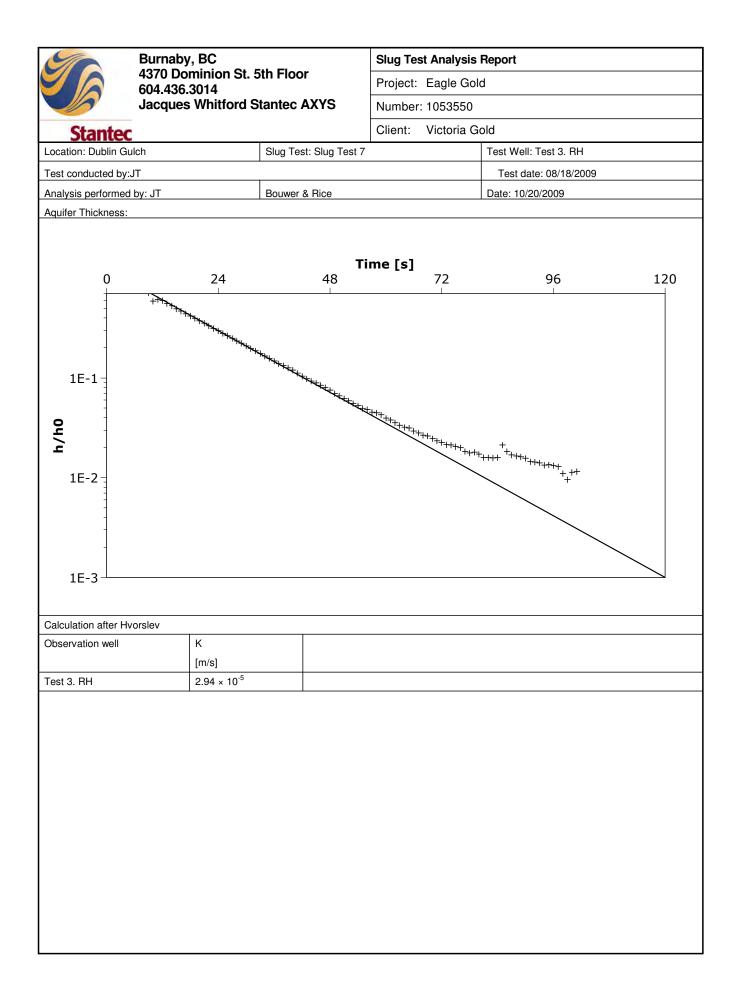


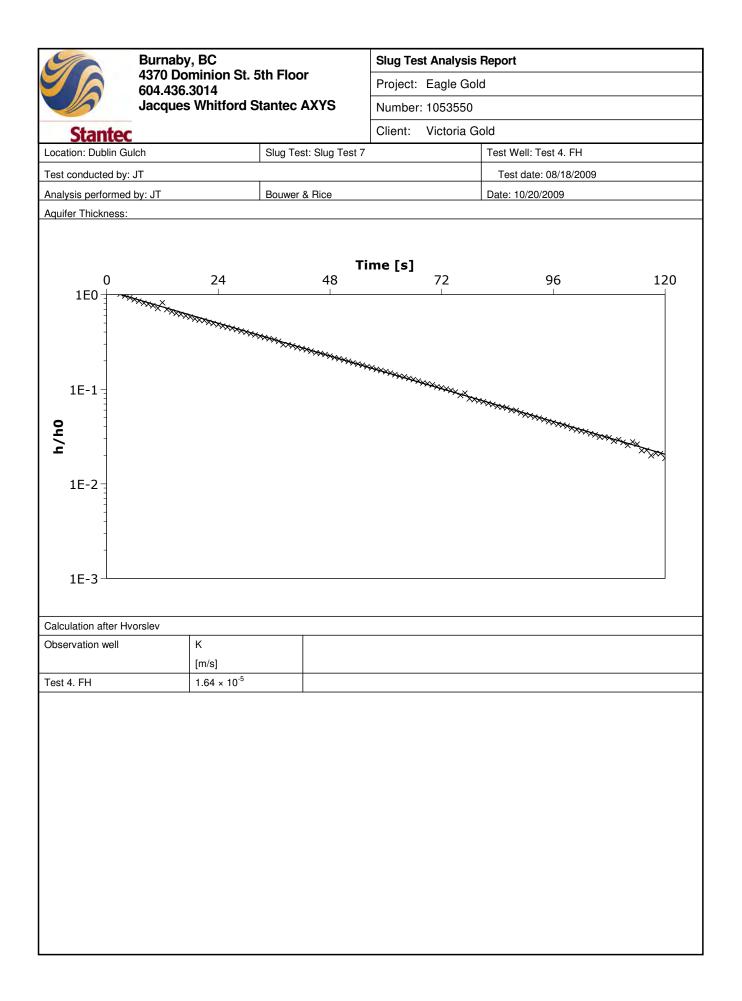


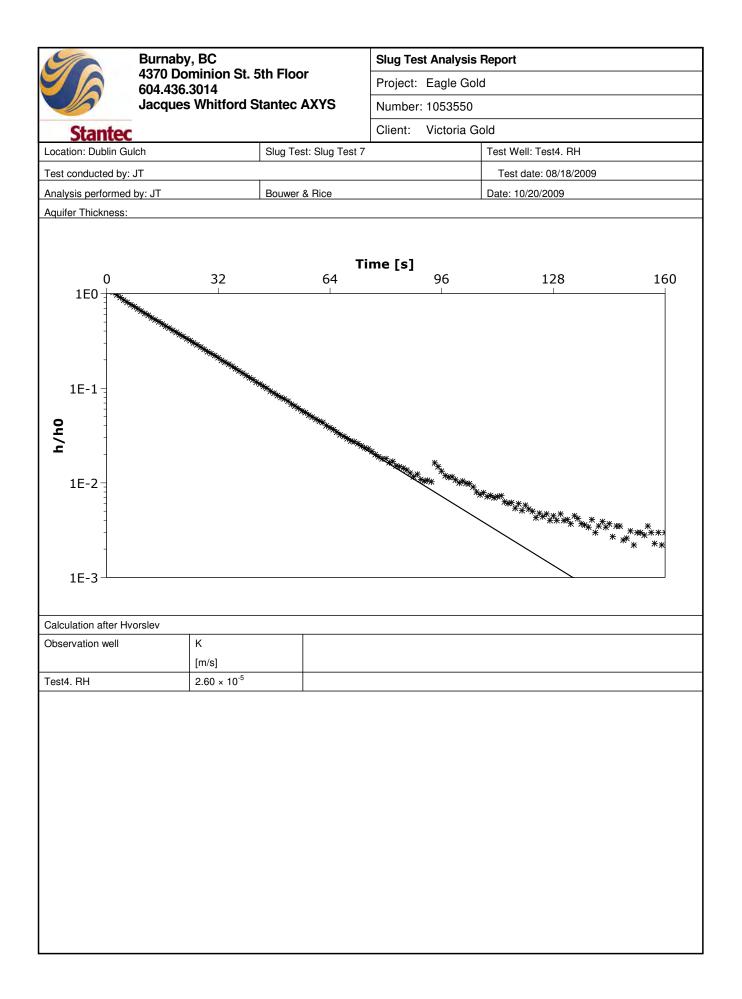


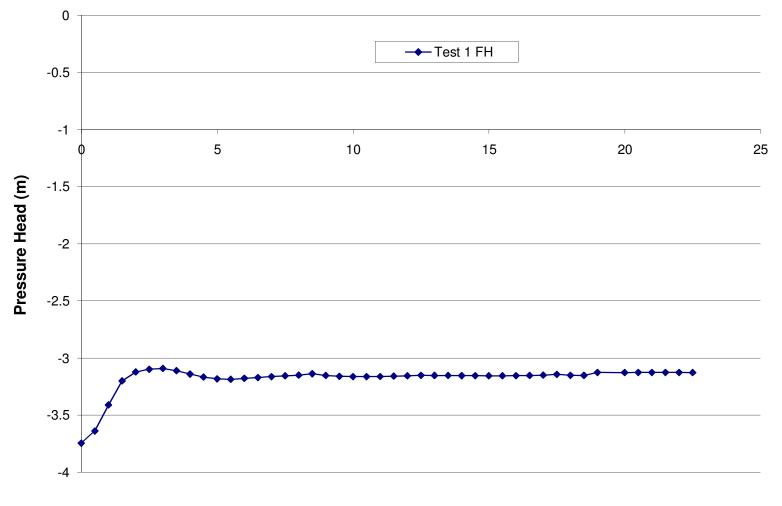


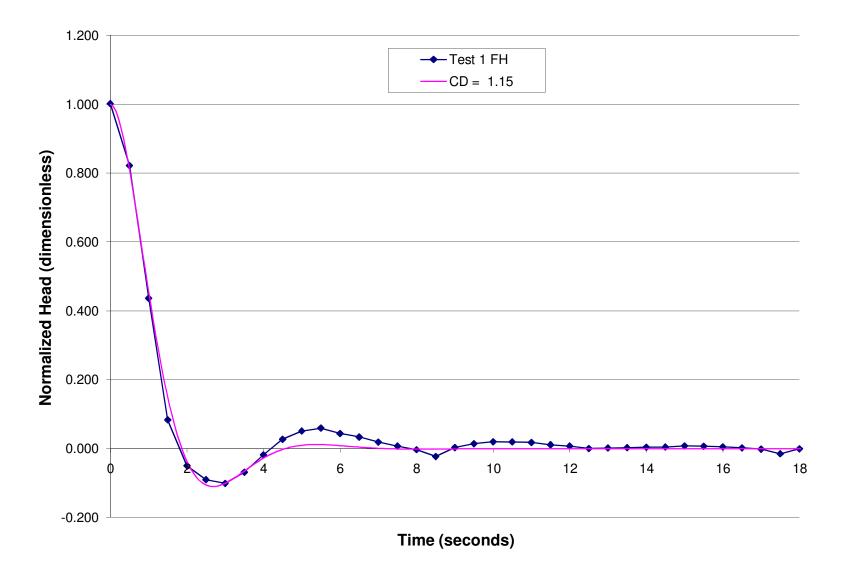

Slug Test Data

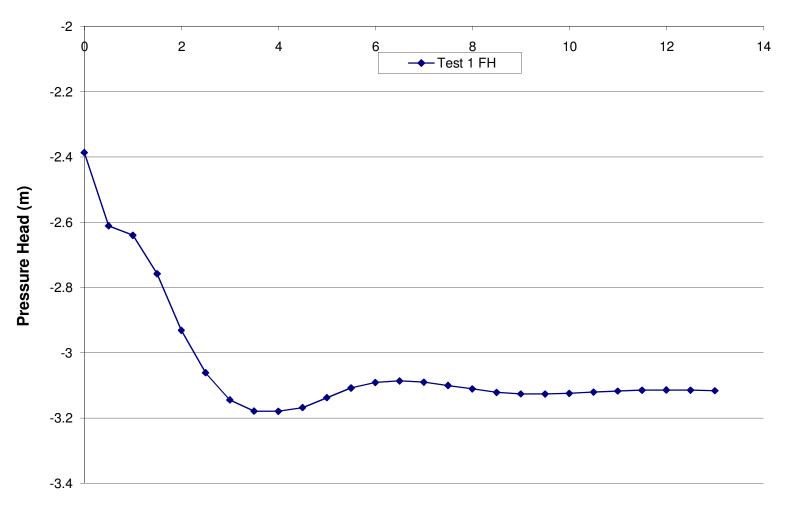


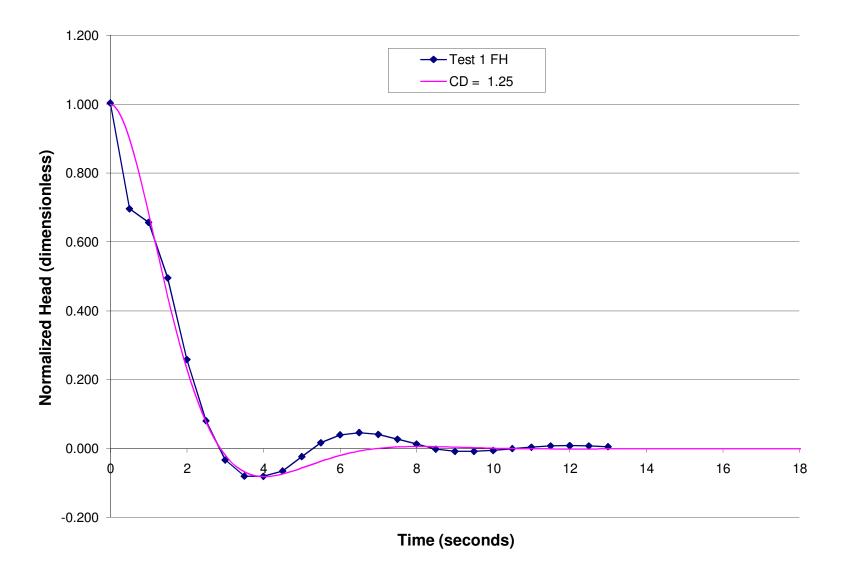


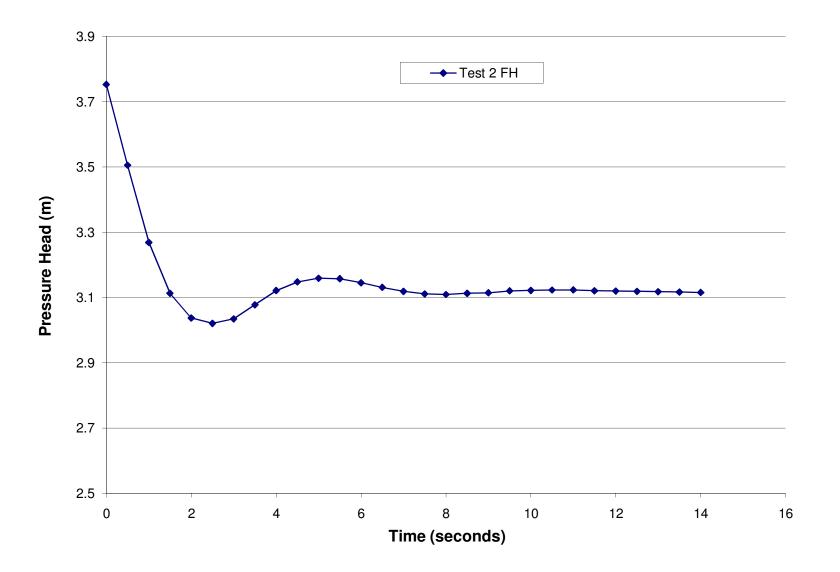


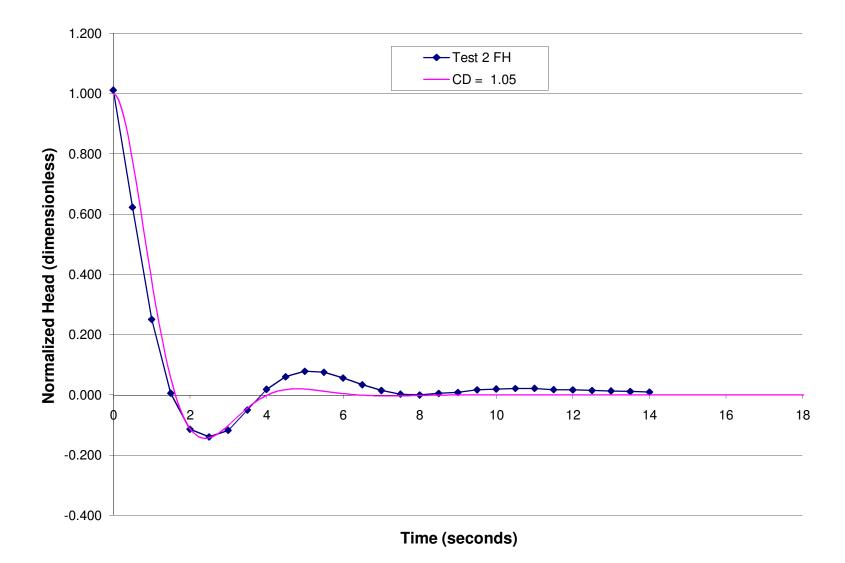


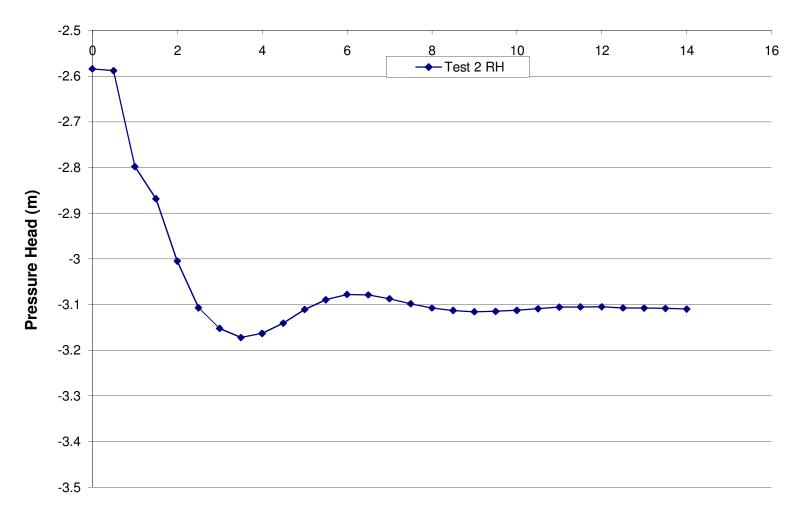


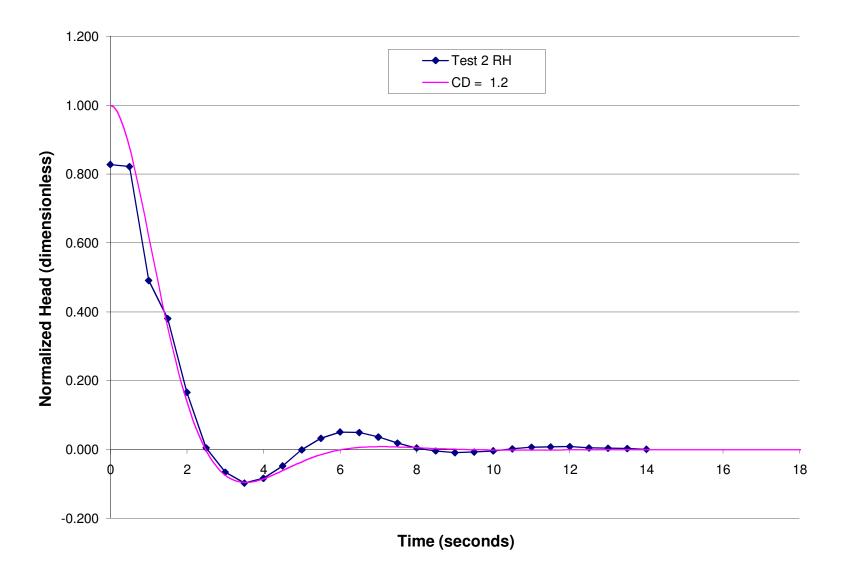


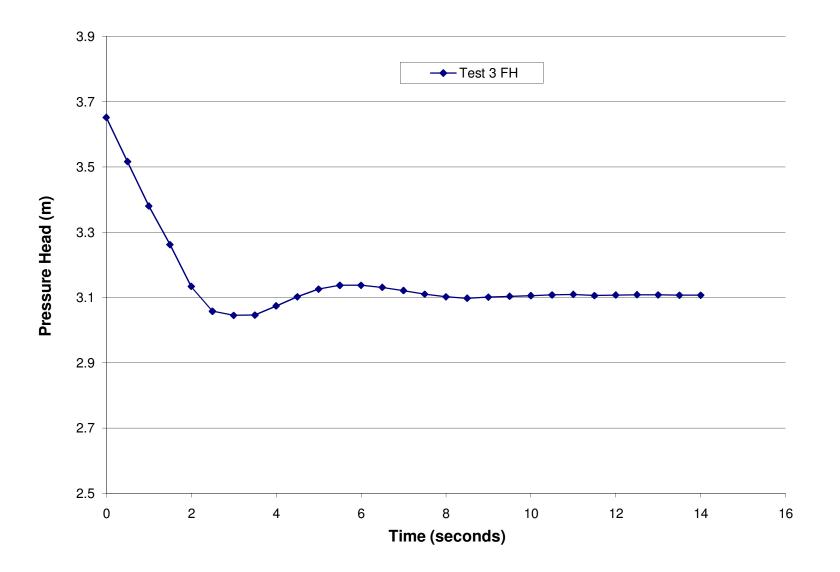


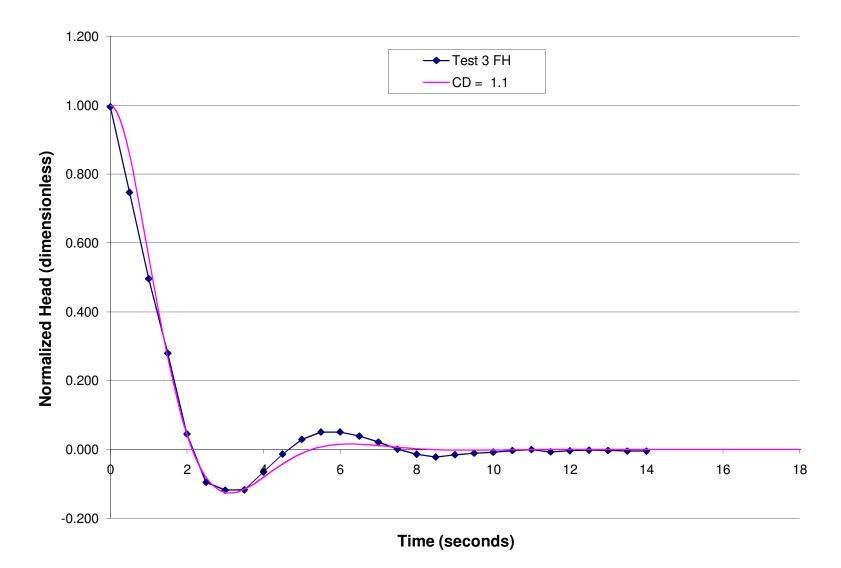


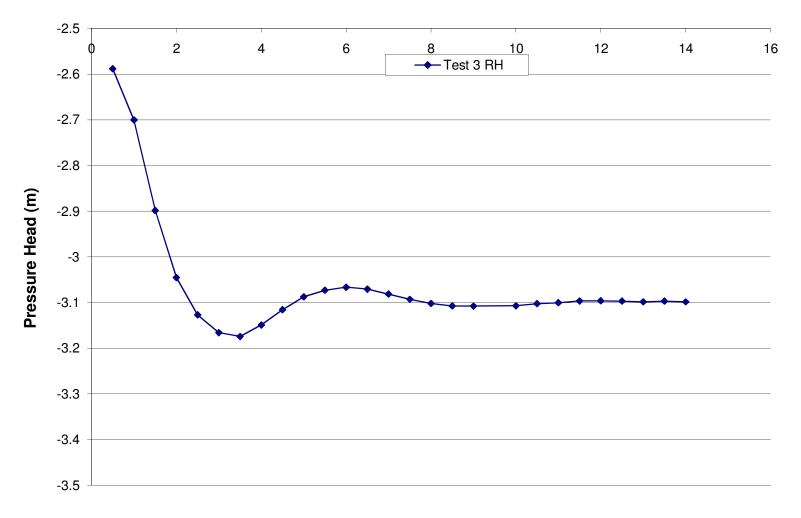




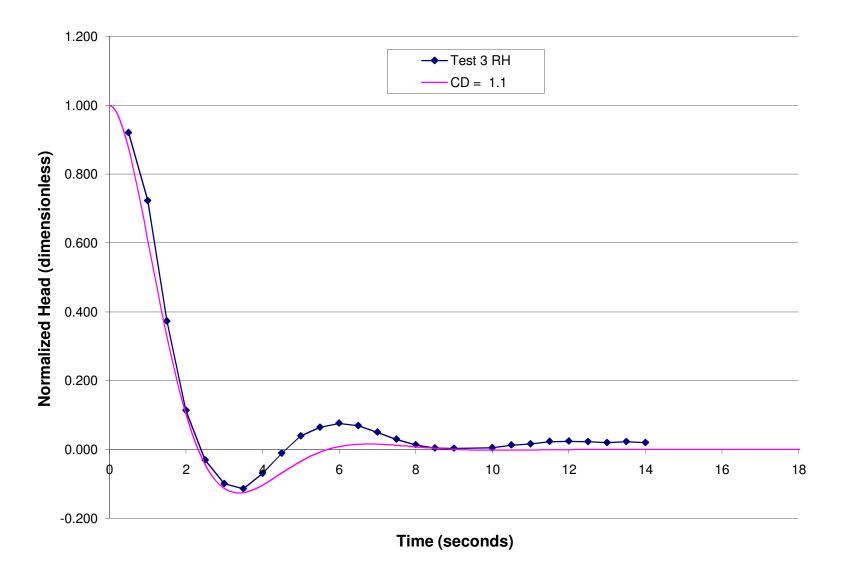


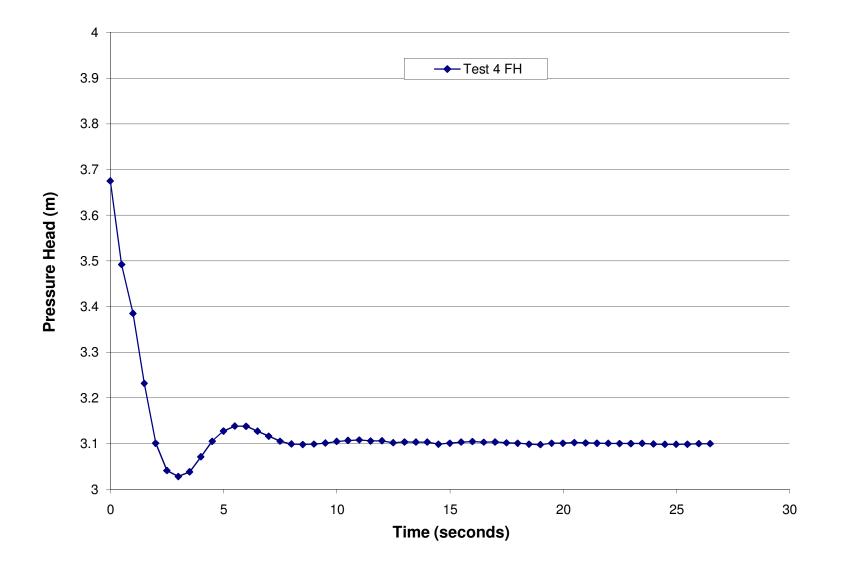


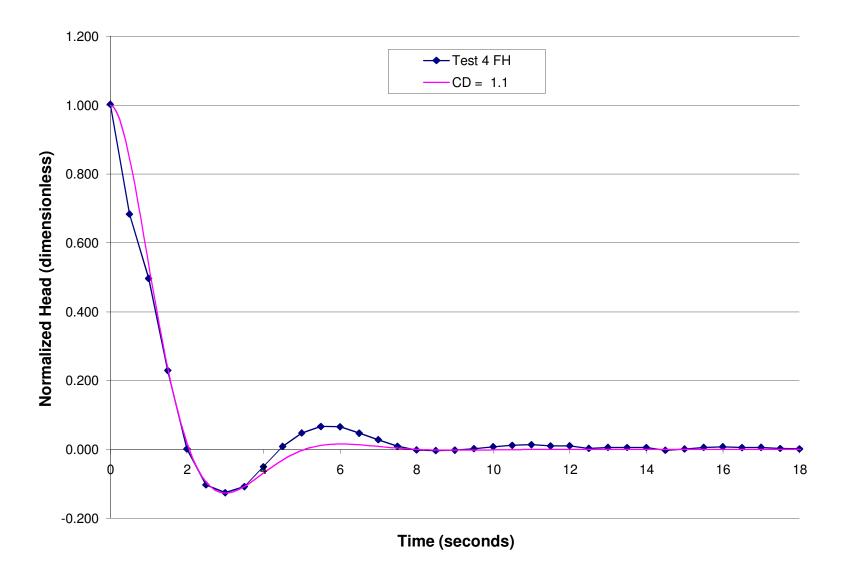


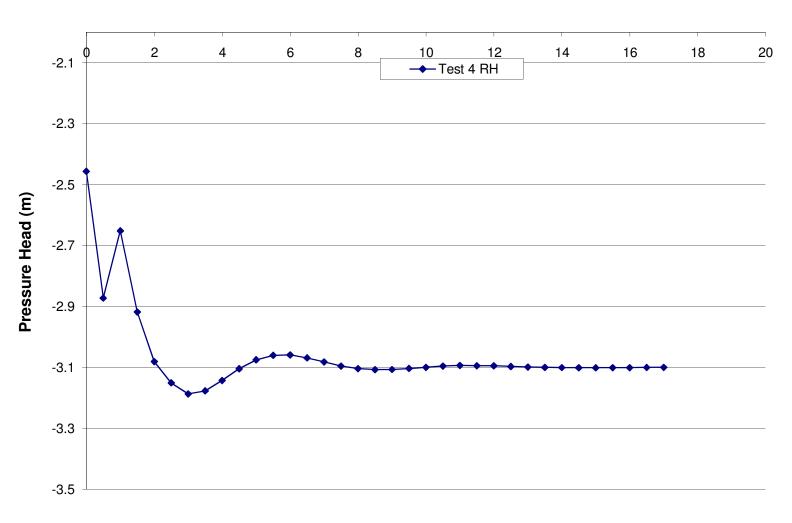


Slug Test Data

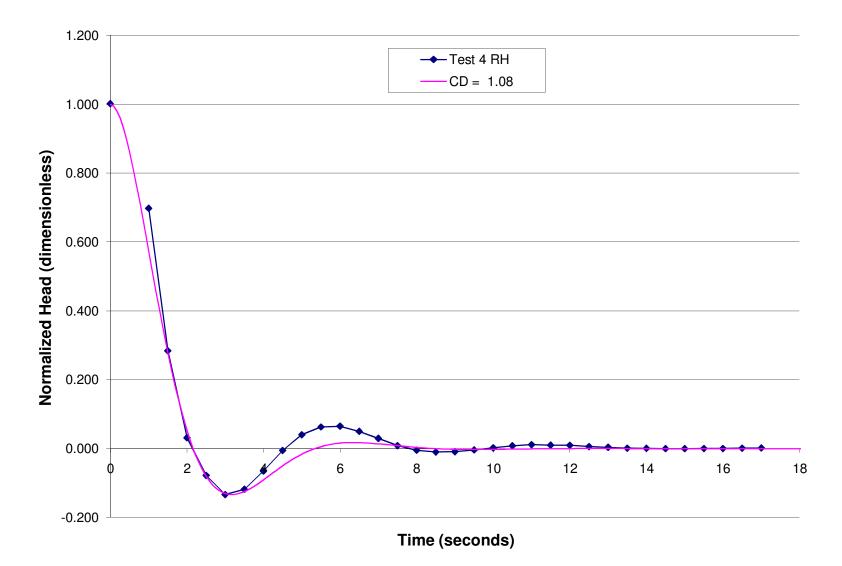


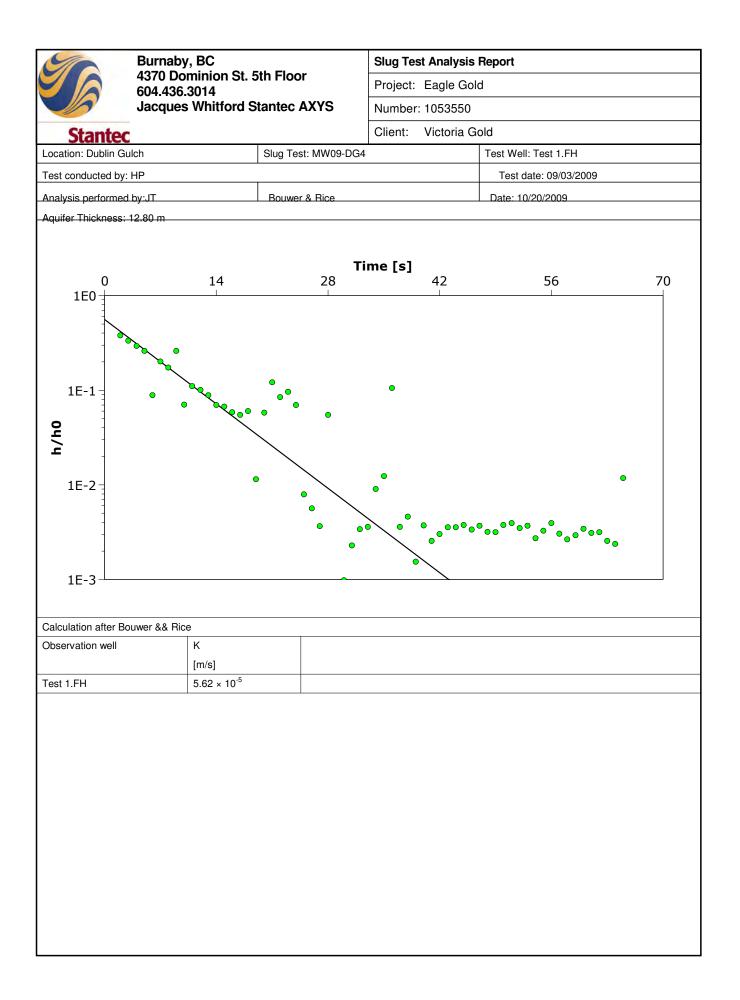

Slug Test Data

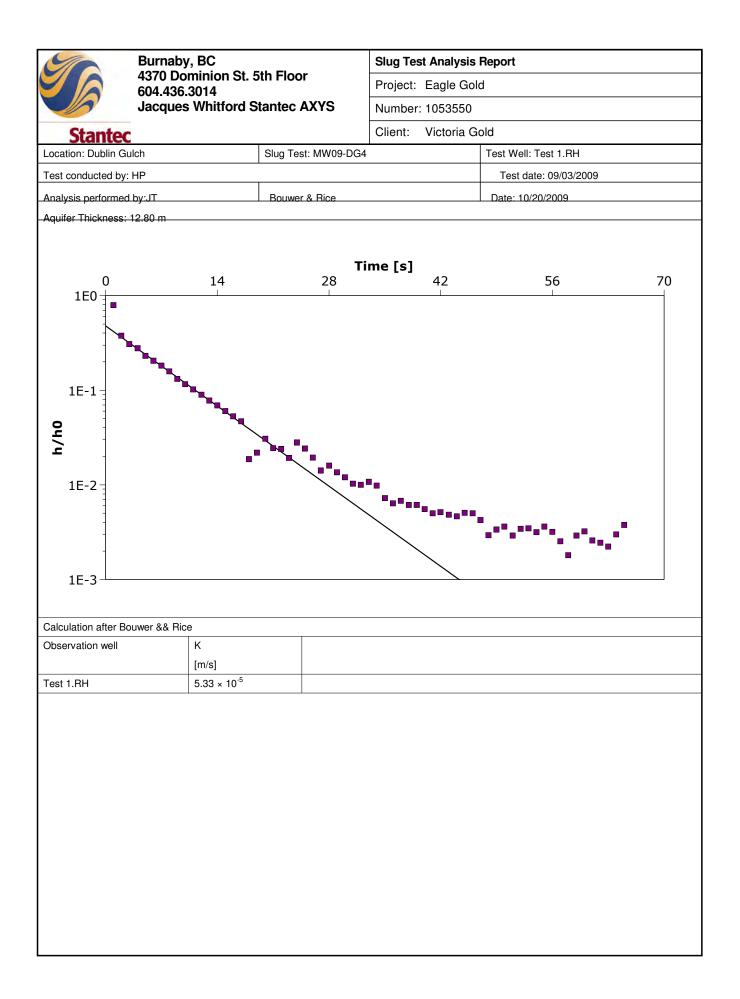


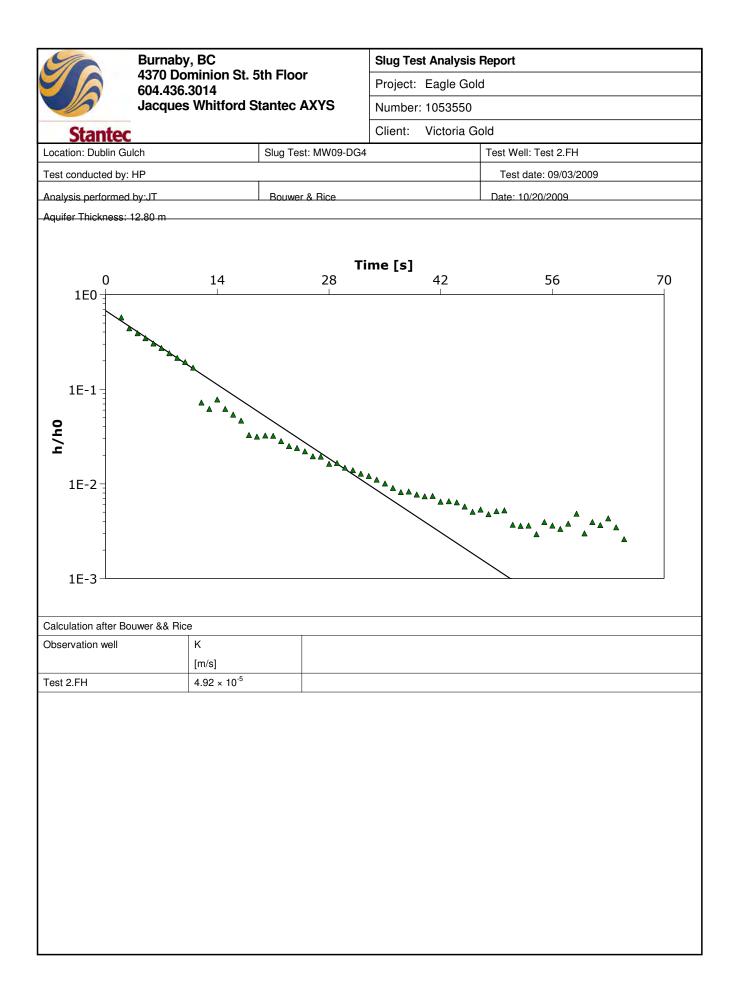

Time (seconds)

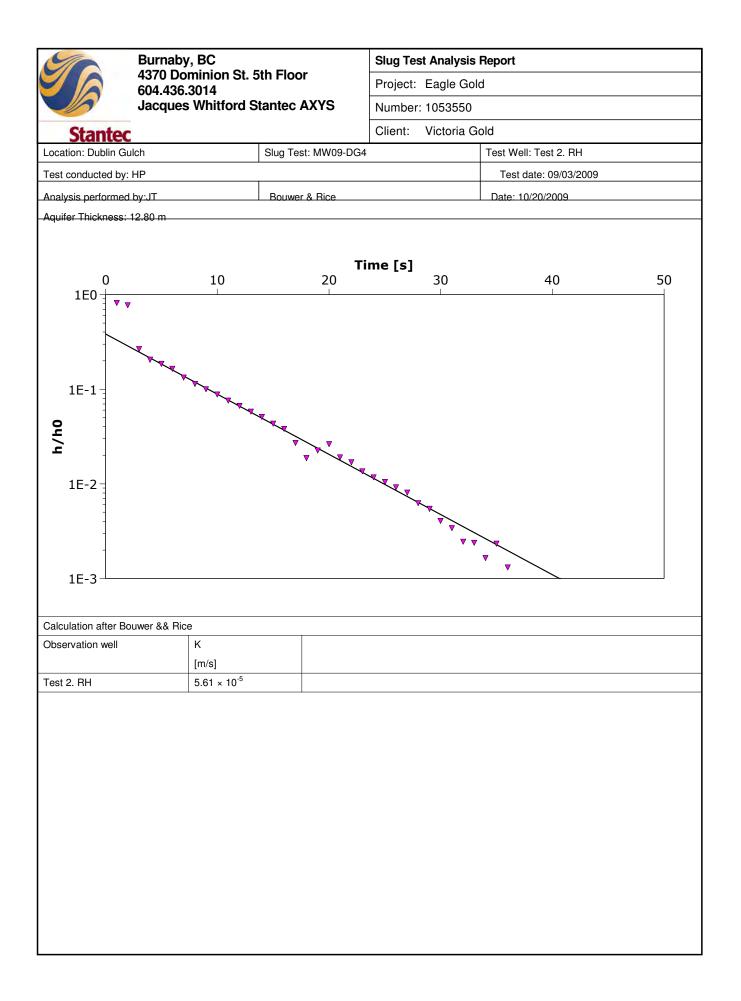
Slug Test Data

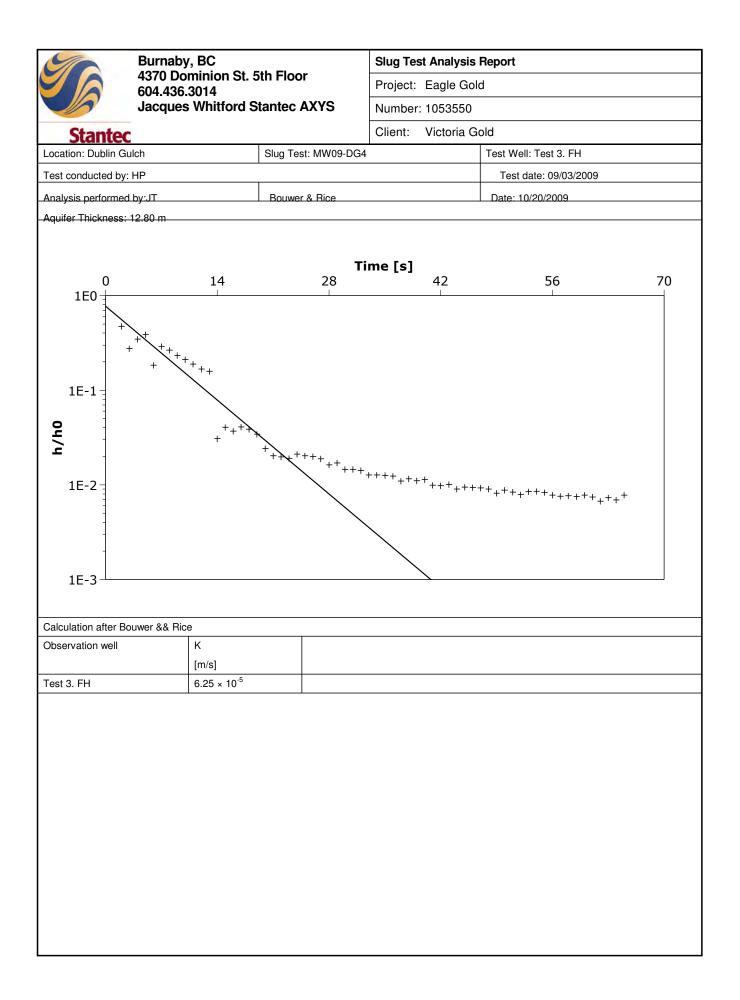


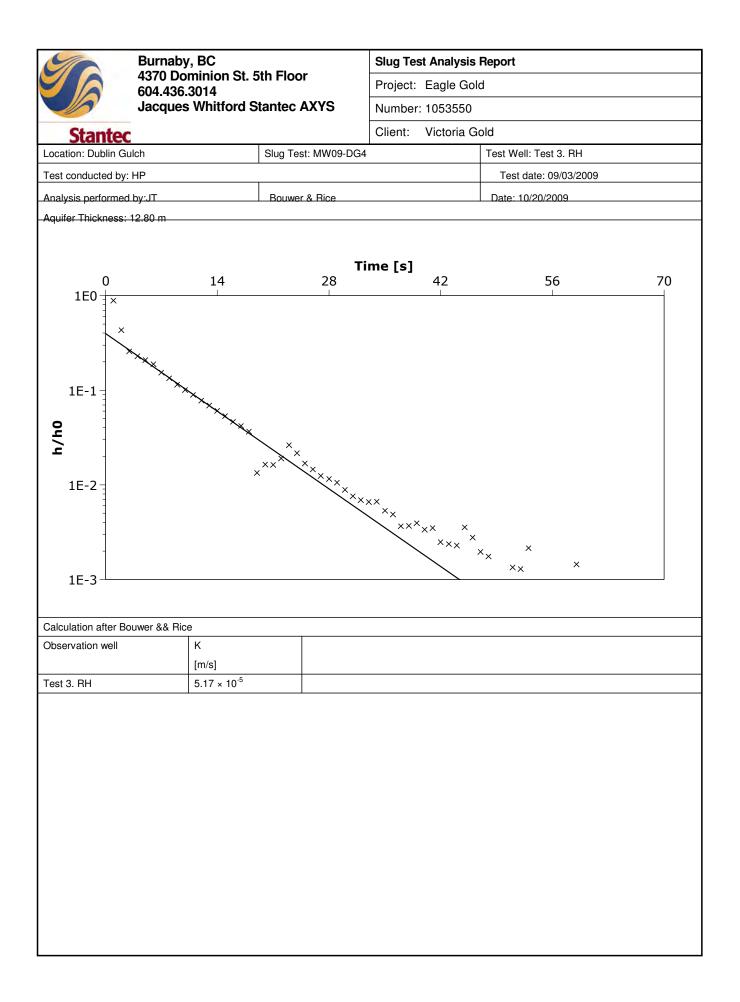


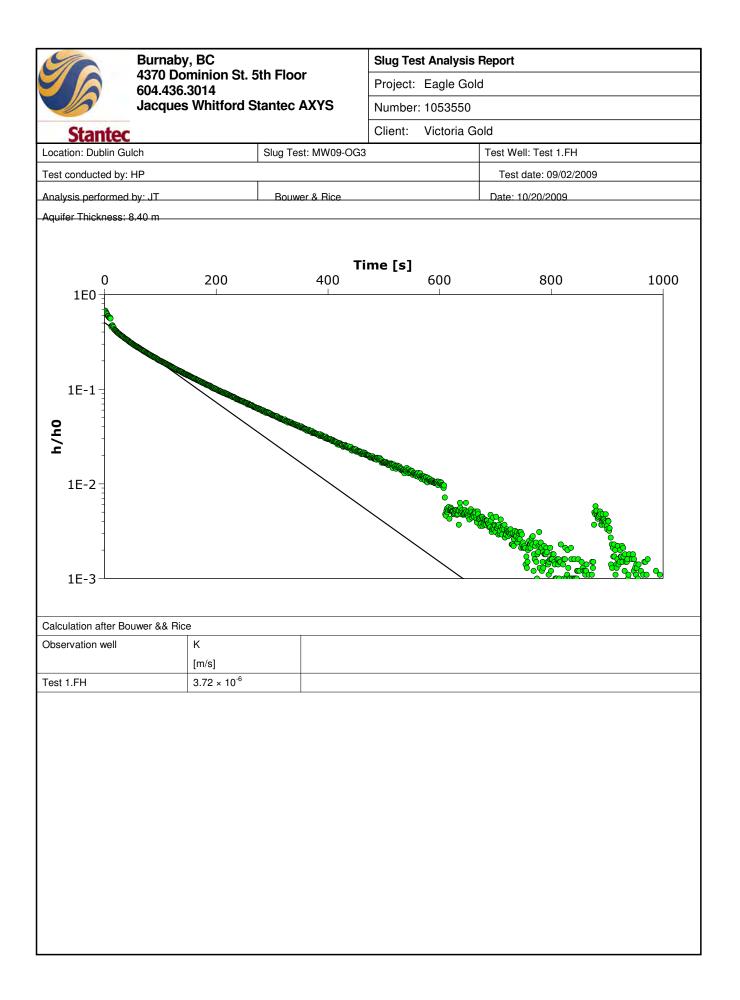


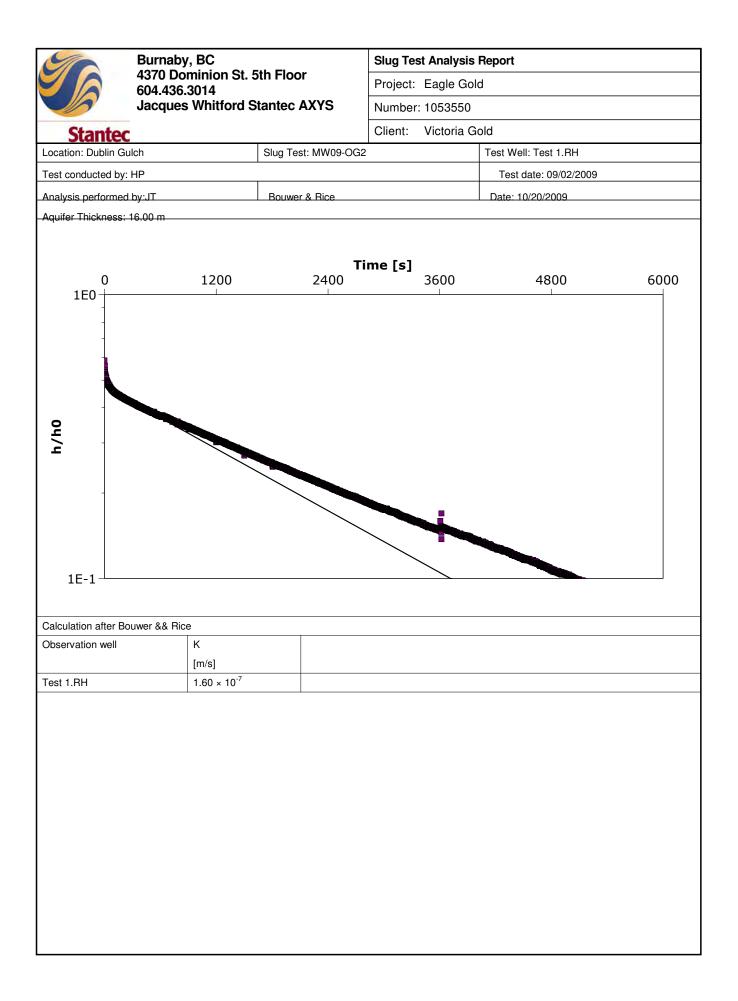

Slug Test Data

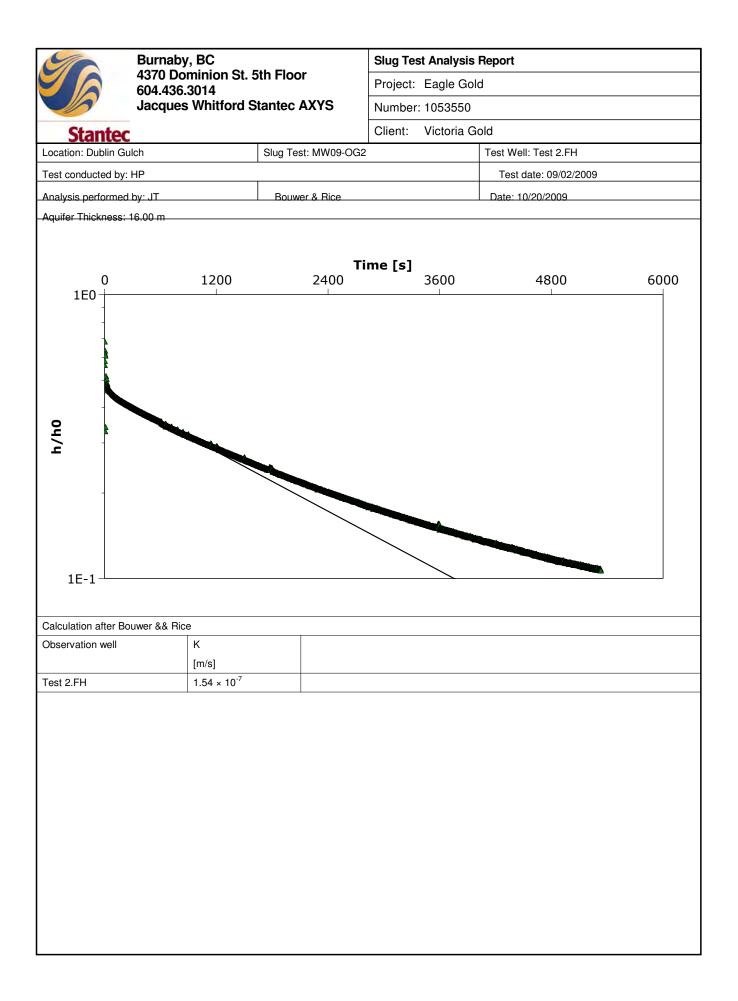

Time (seconds)

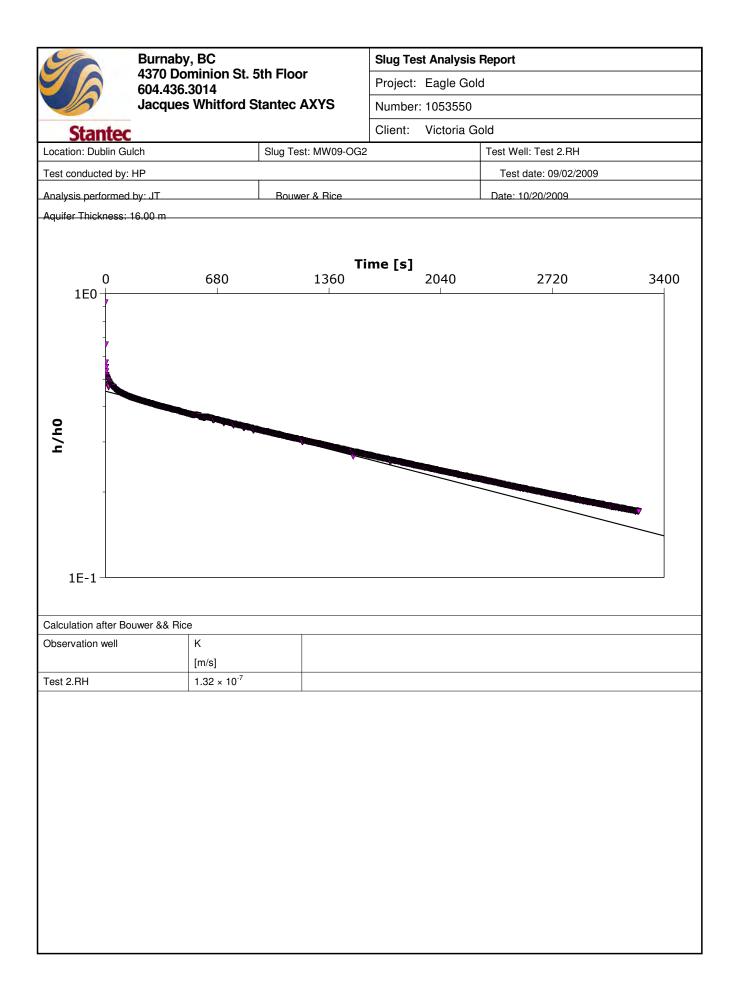


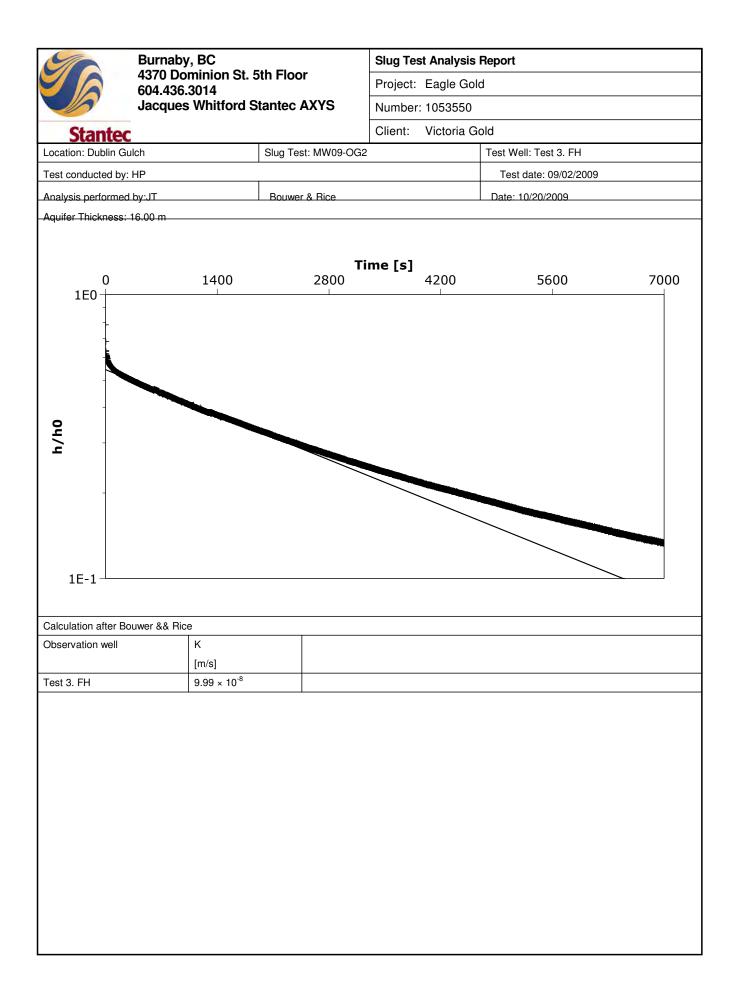


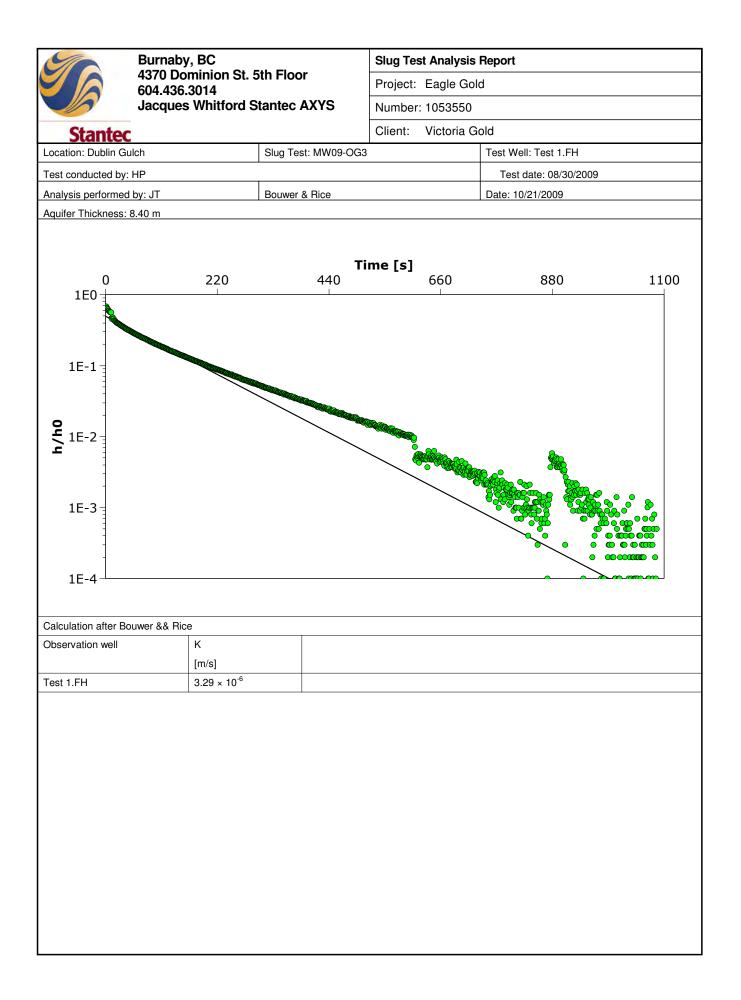


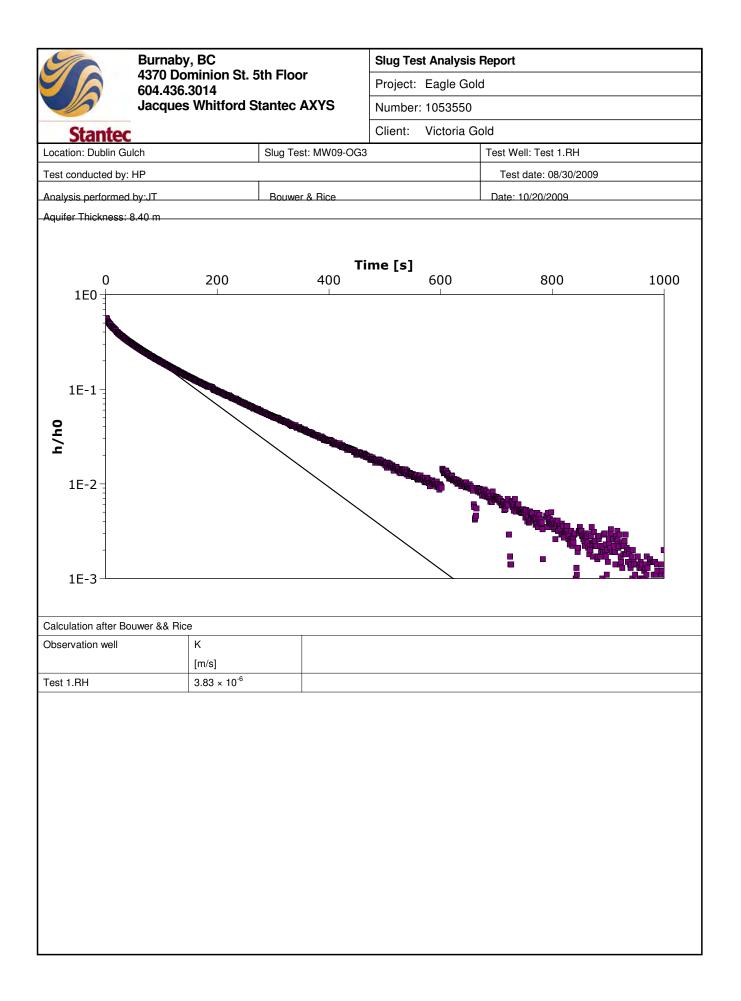


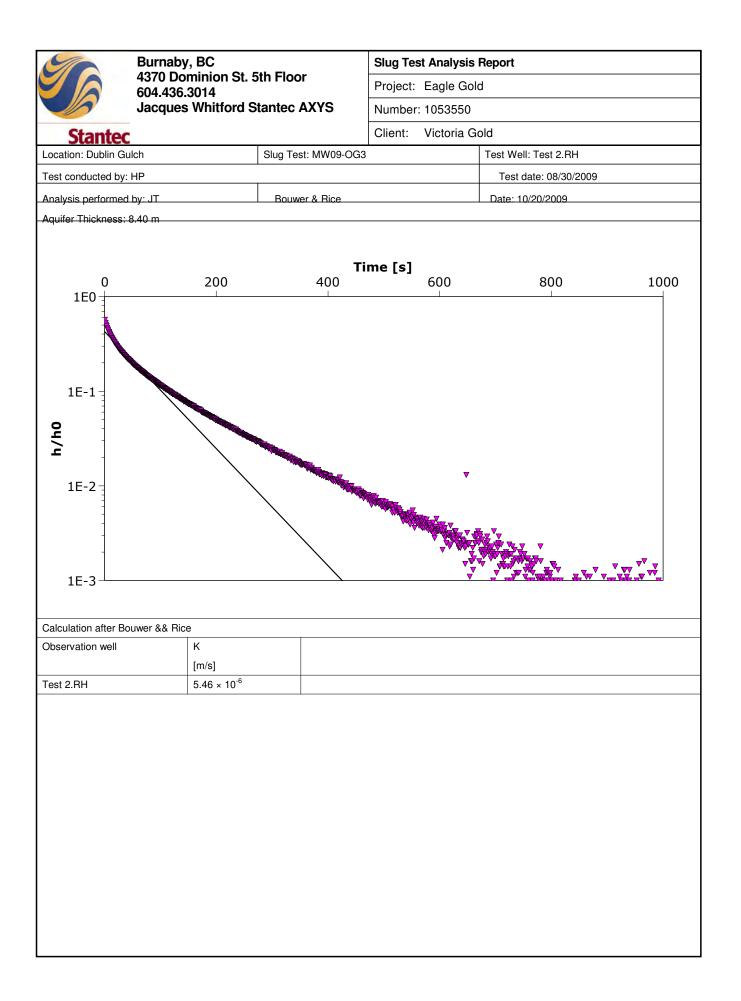


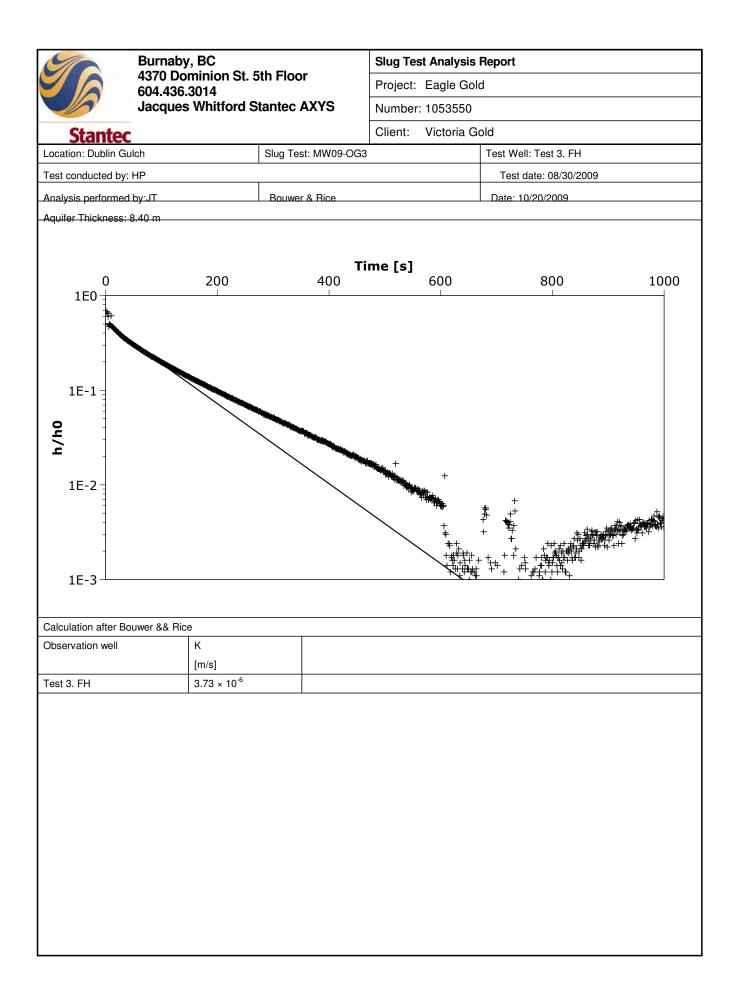


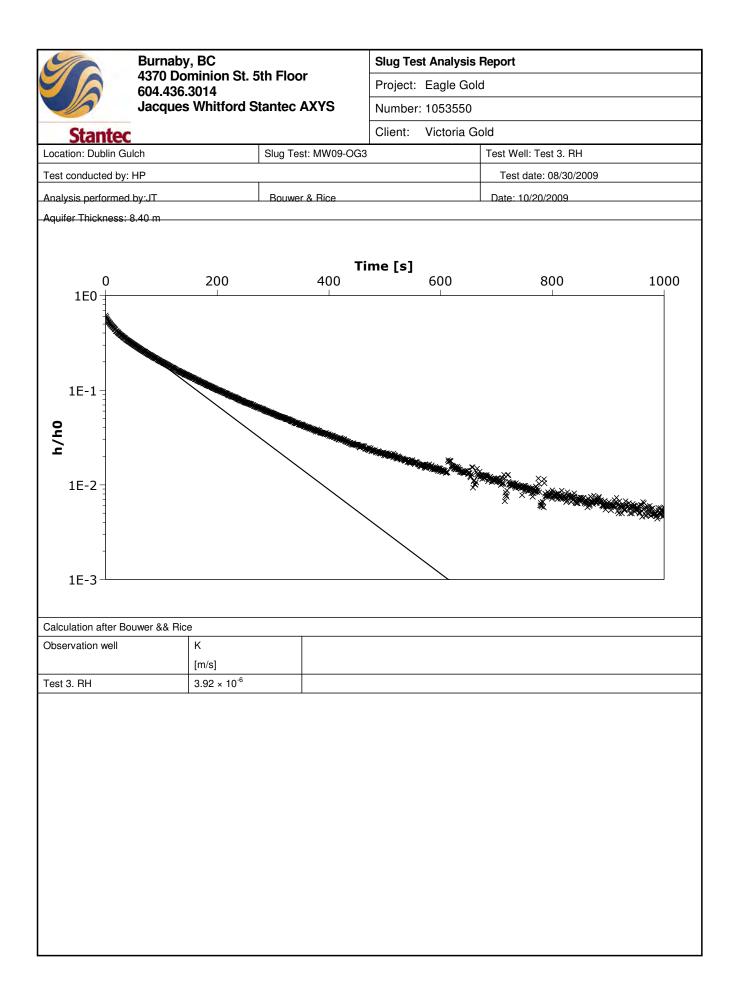


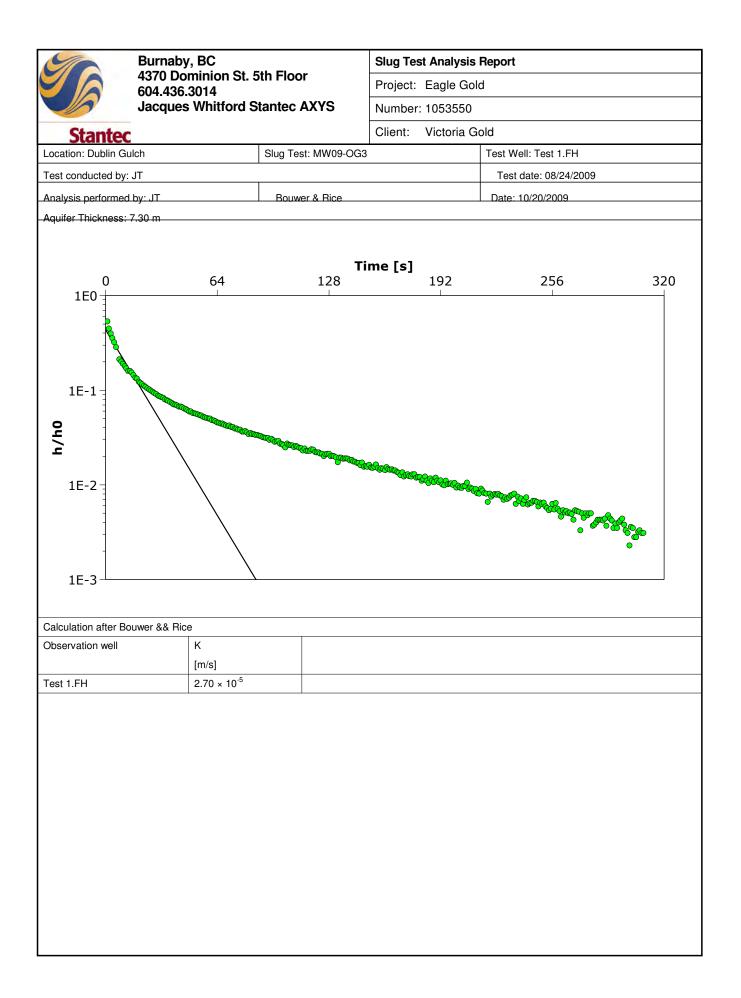


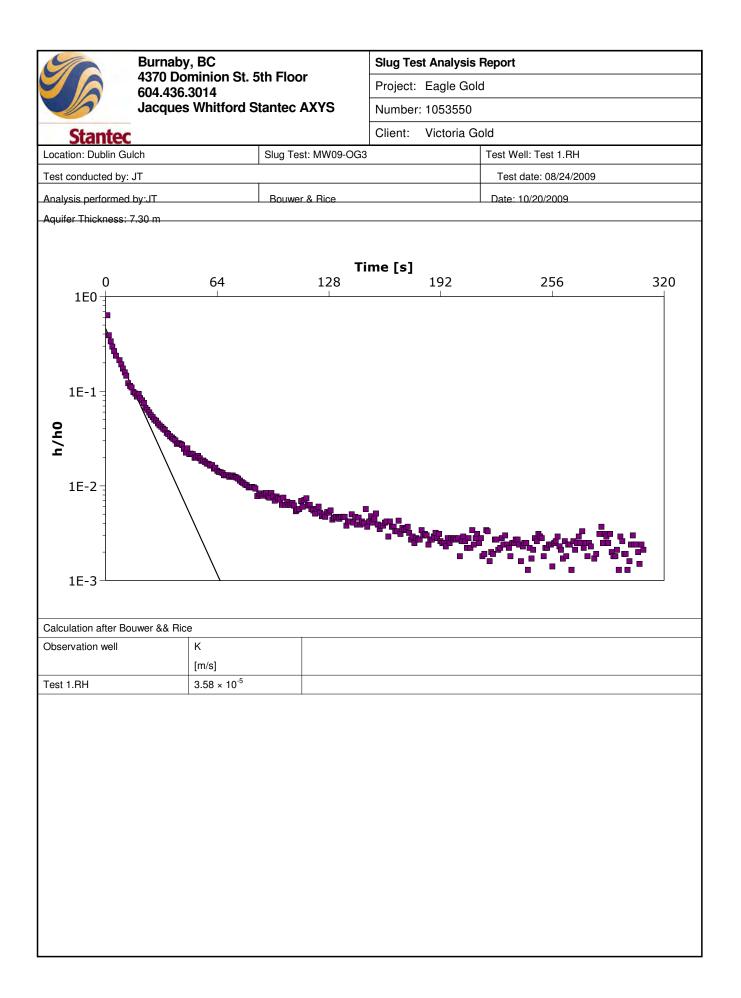


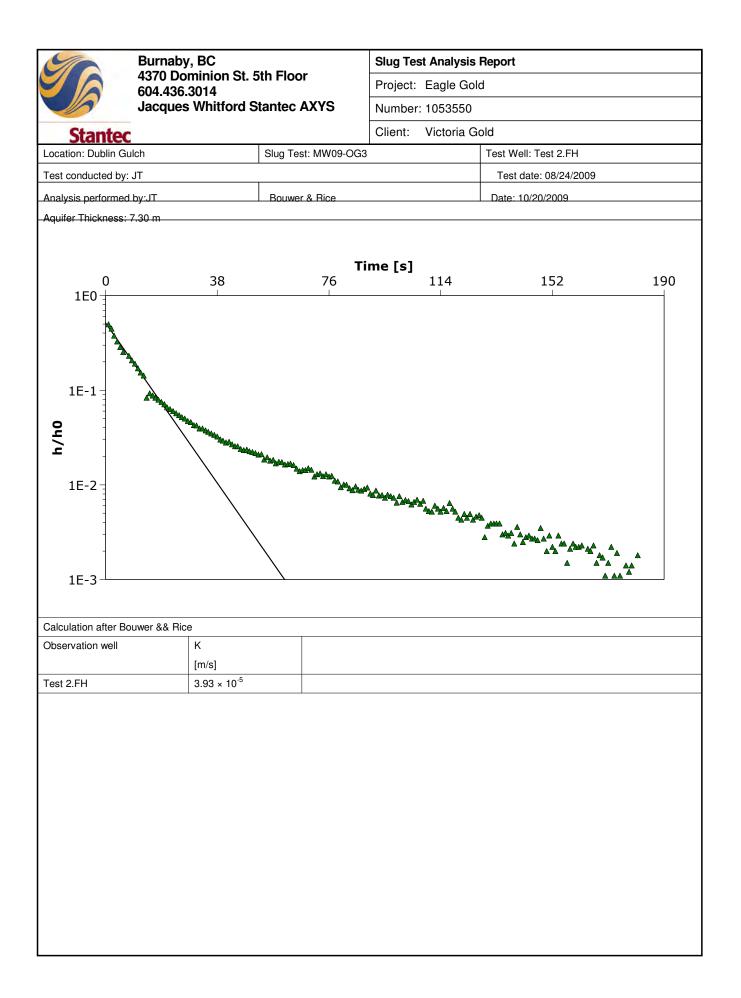


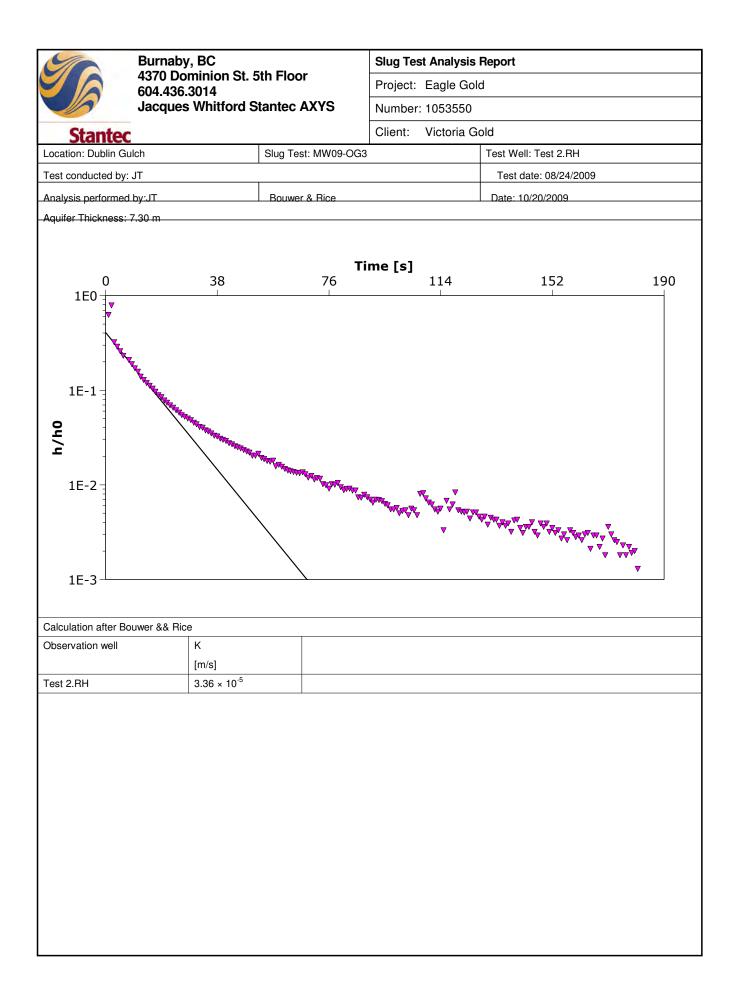


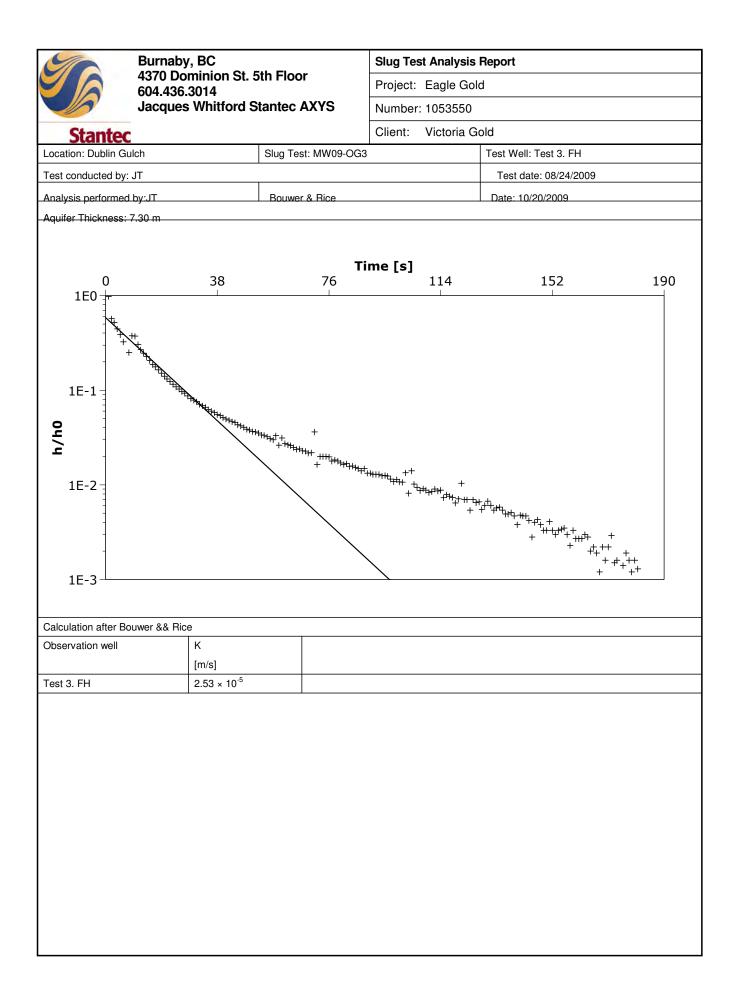


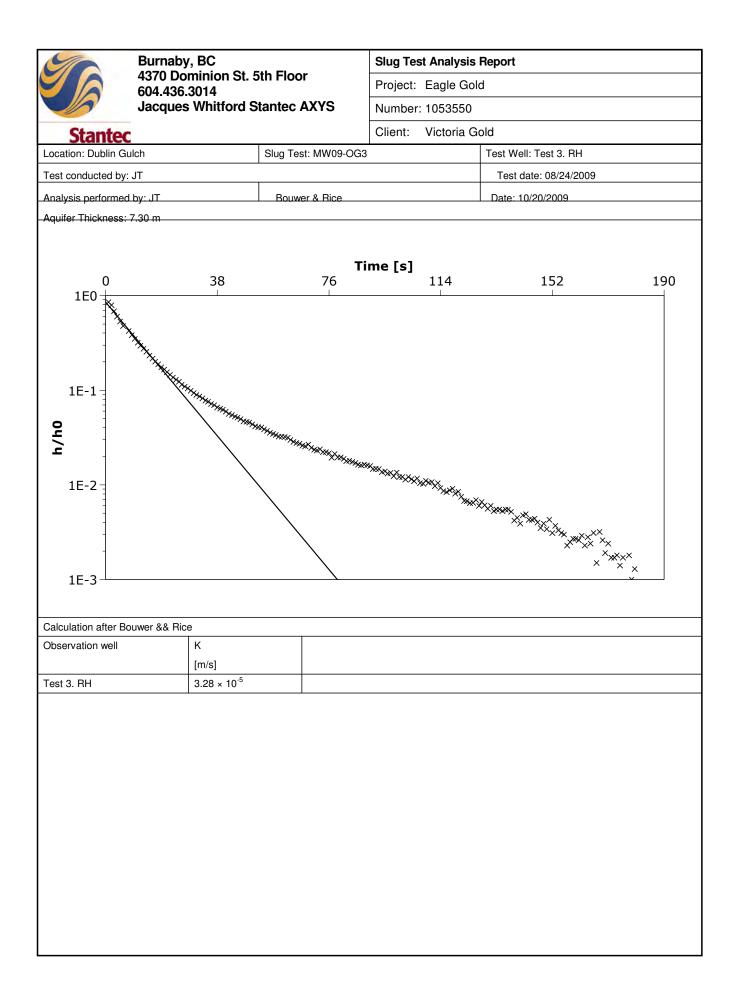


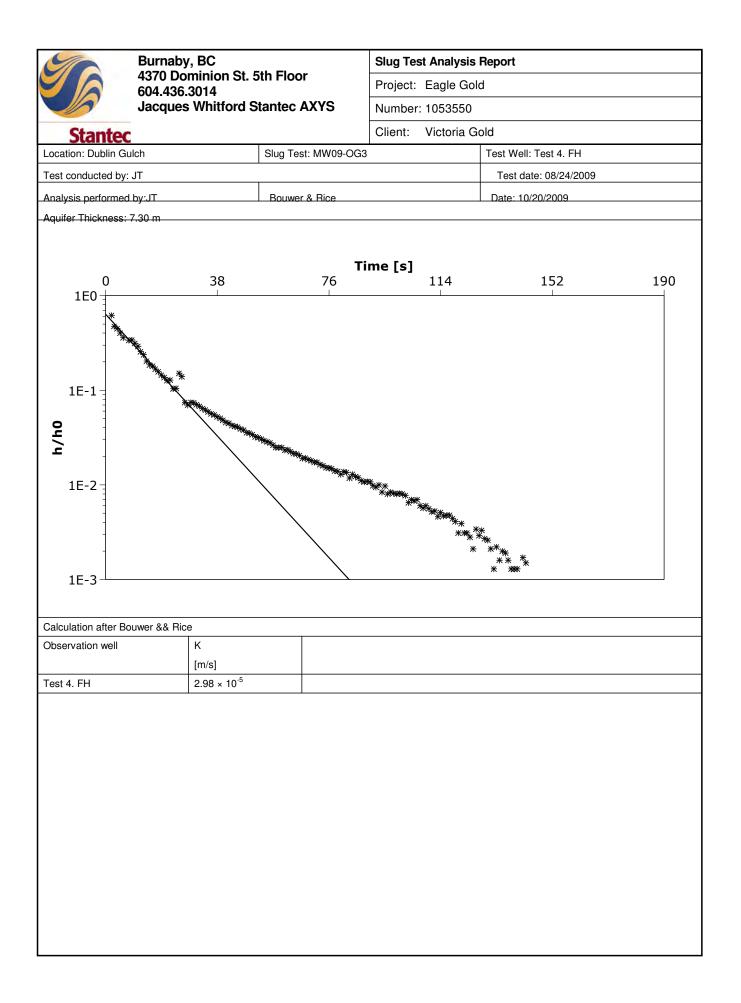


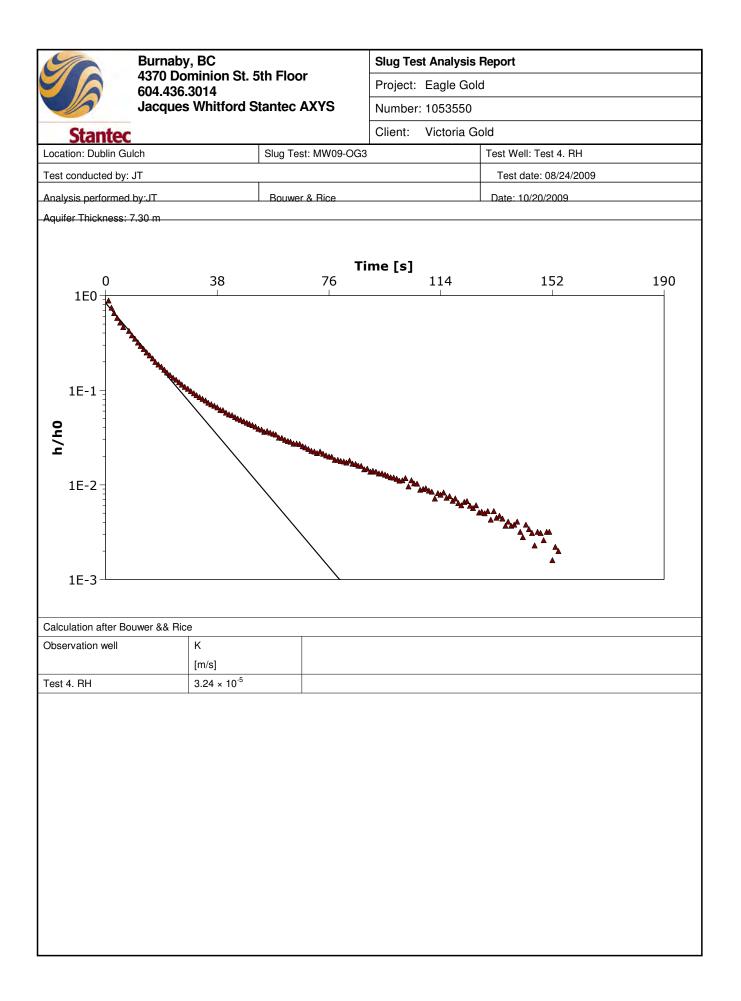


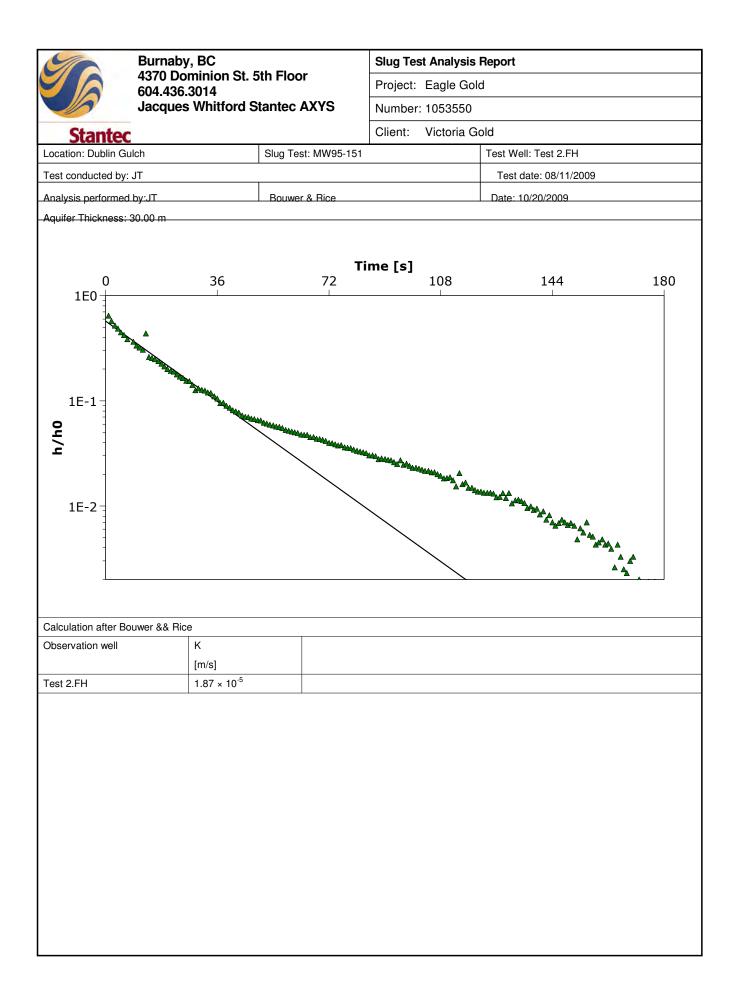


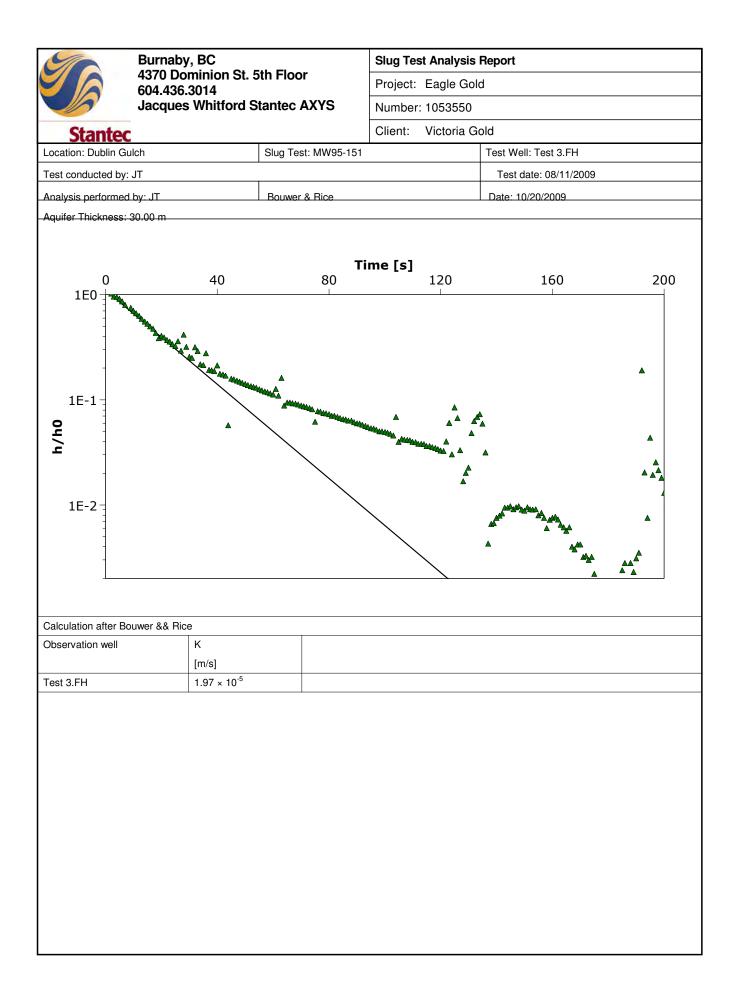


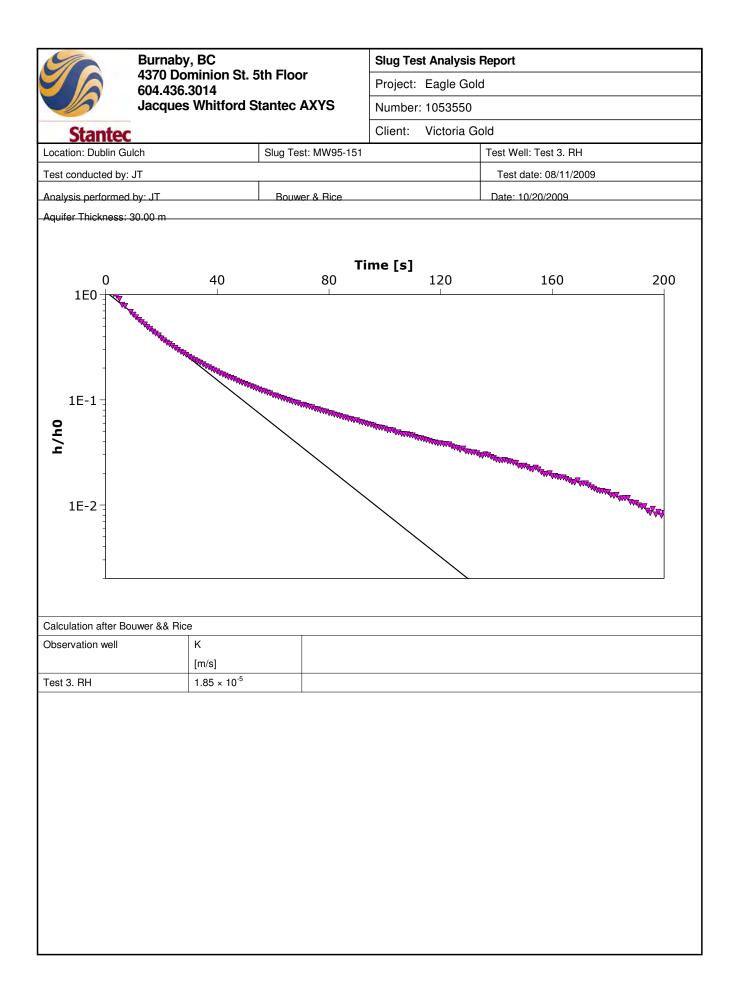


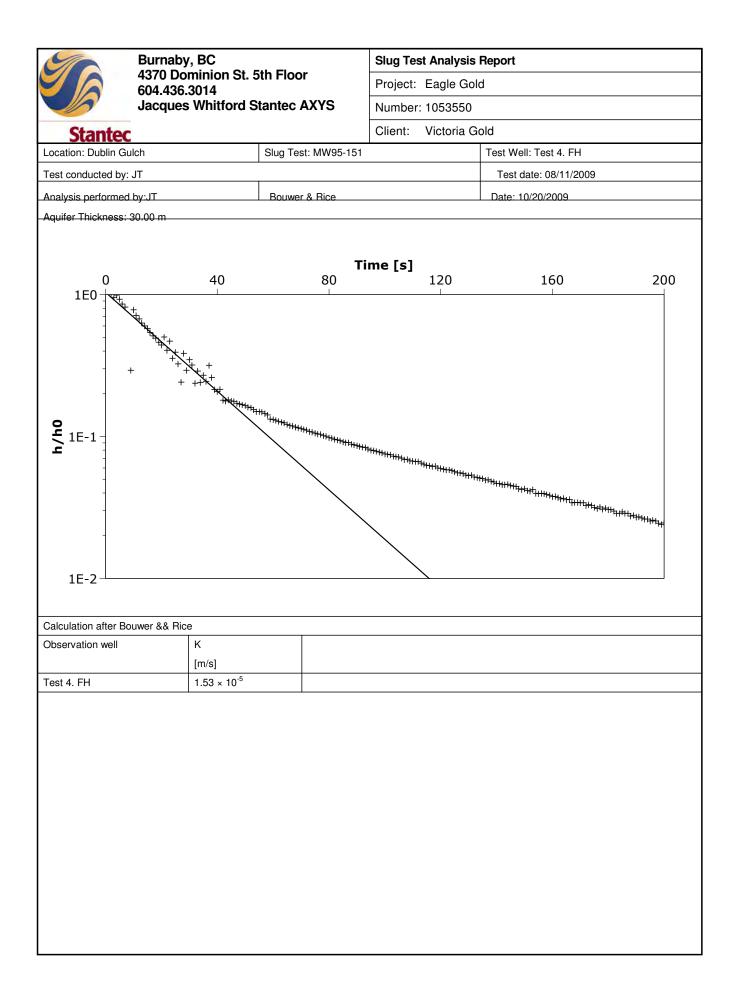


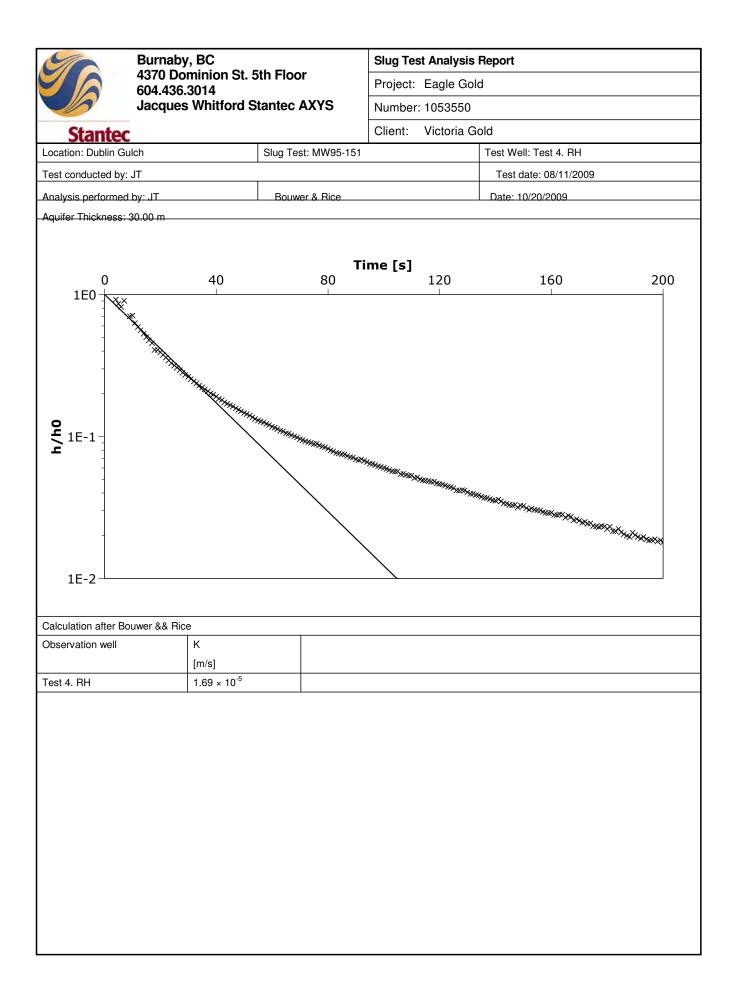


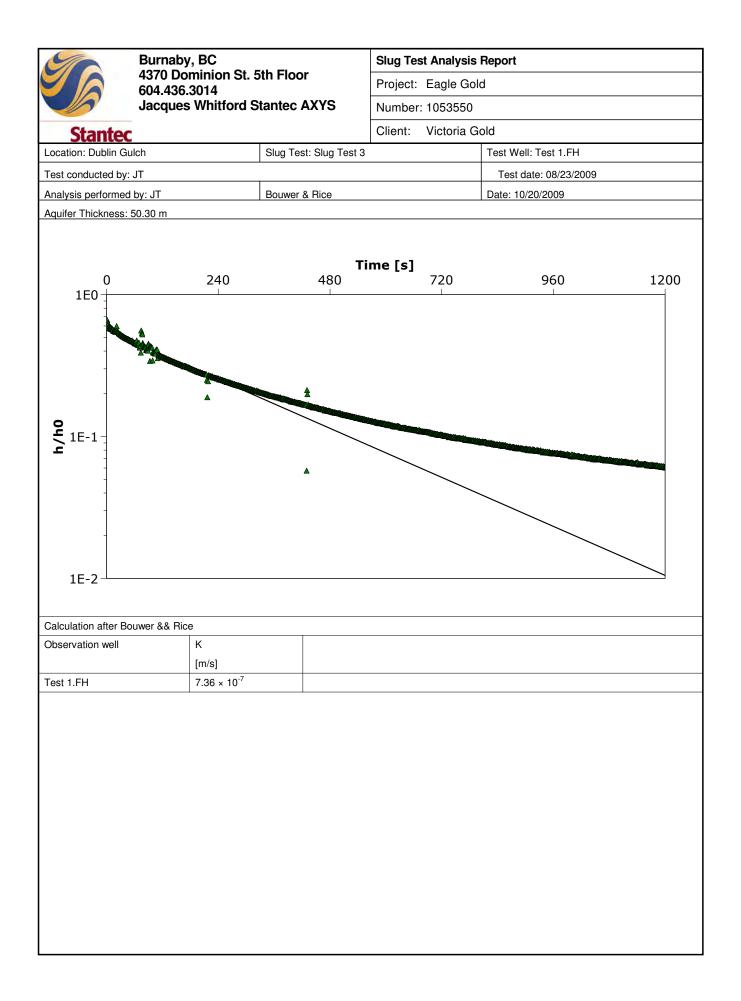


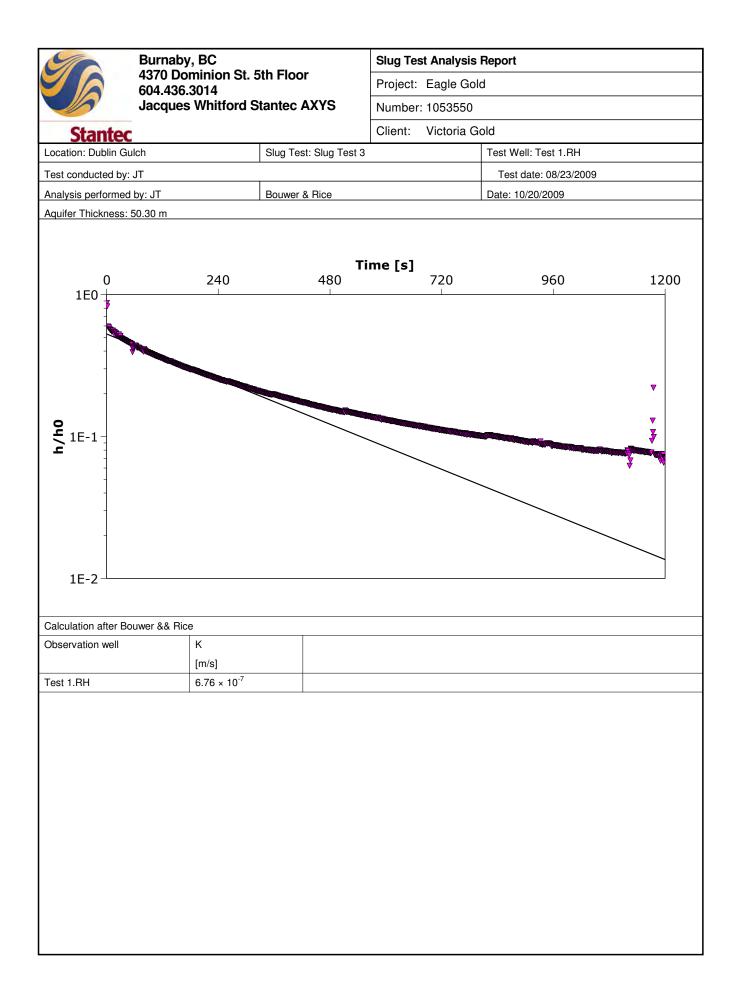


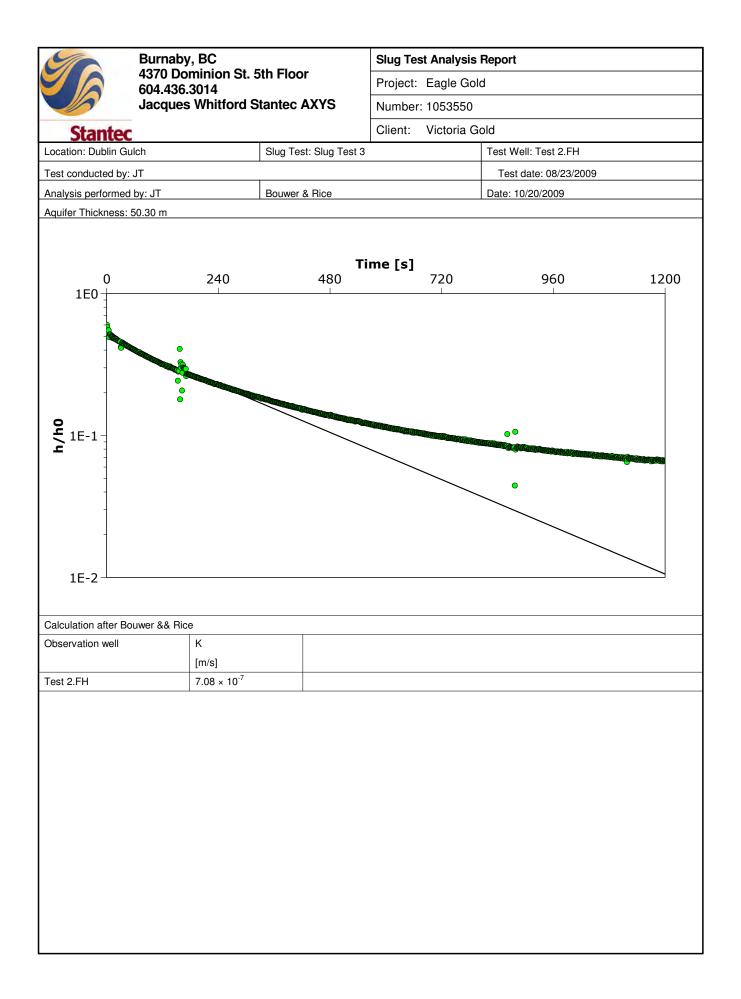


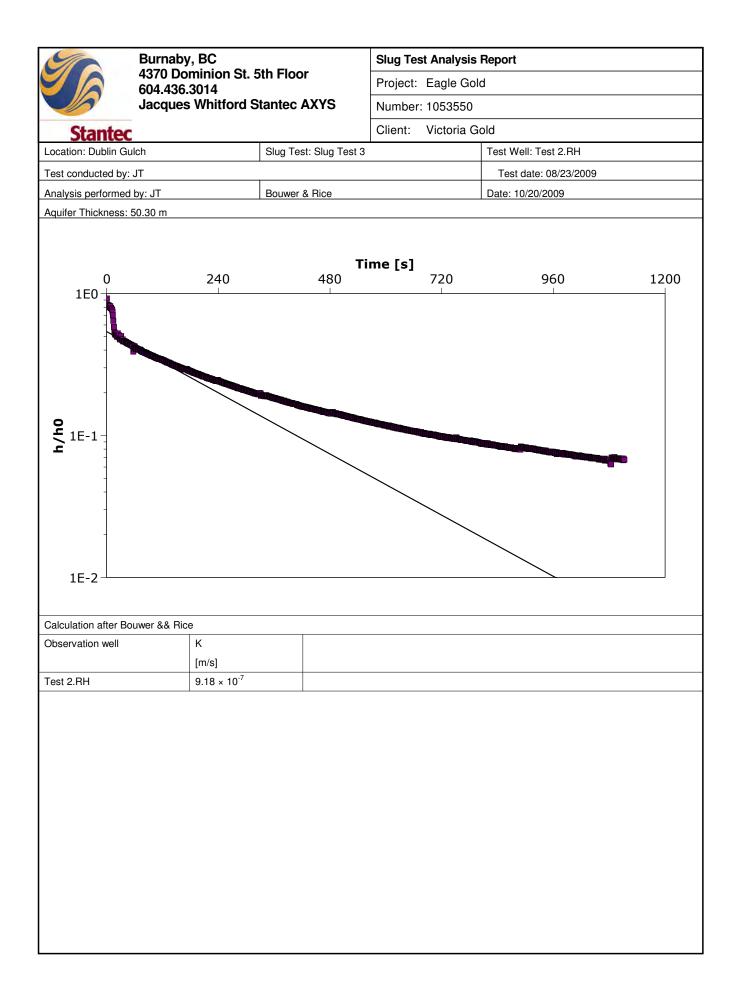


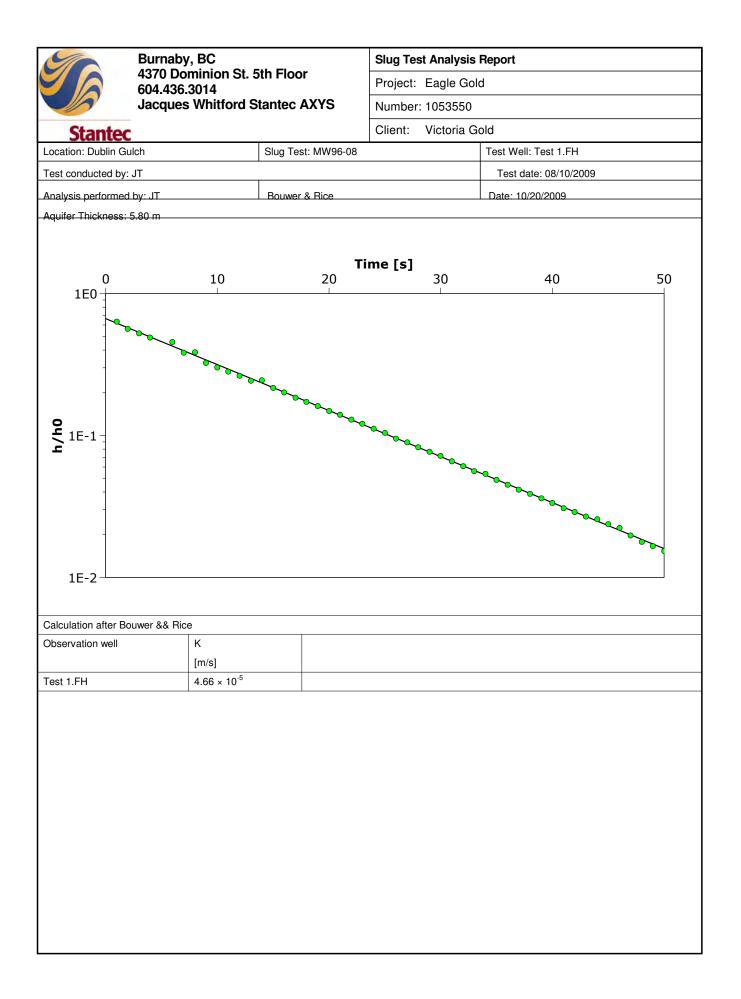


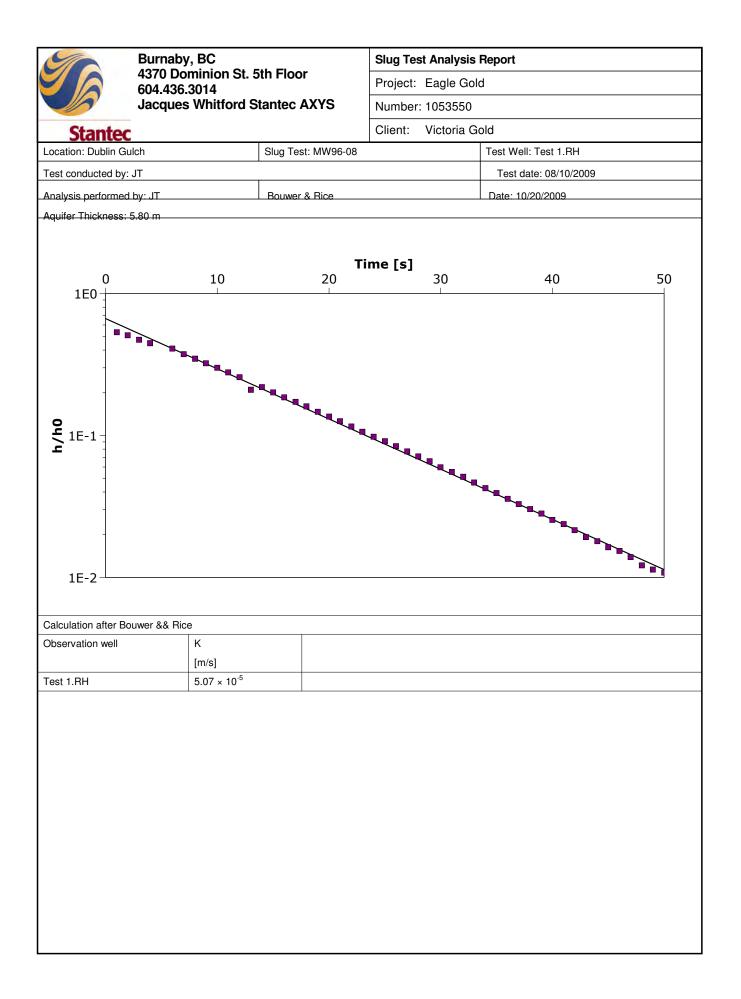


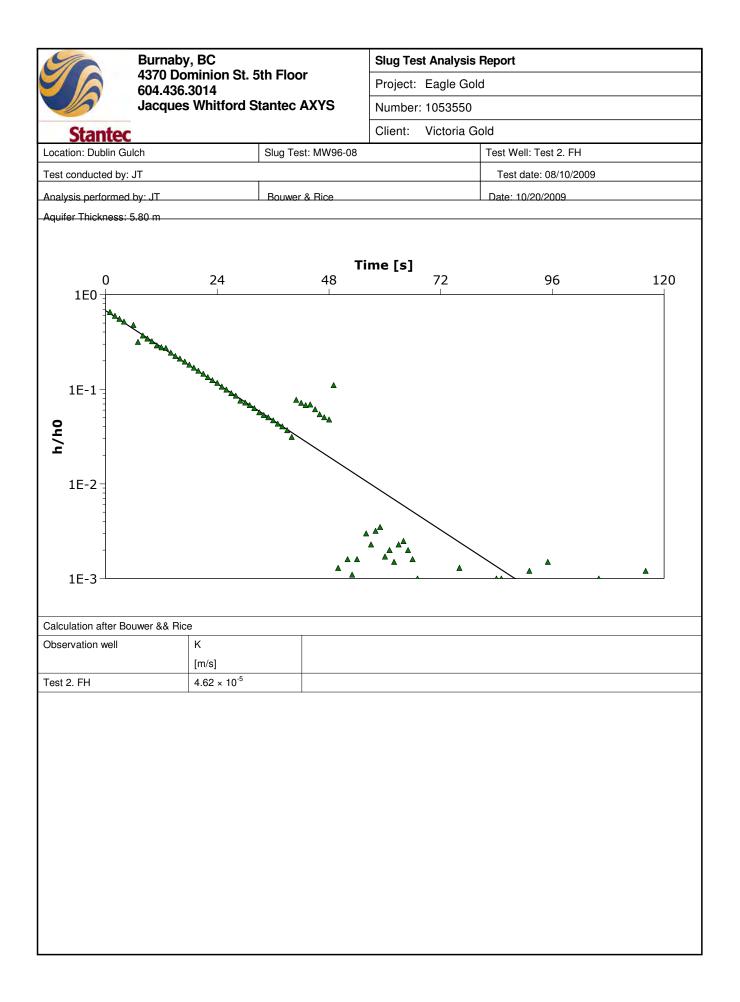


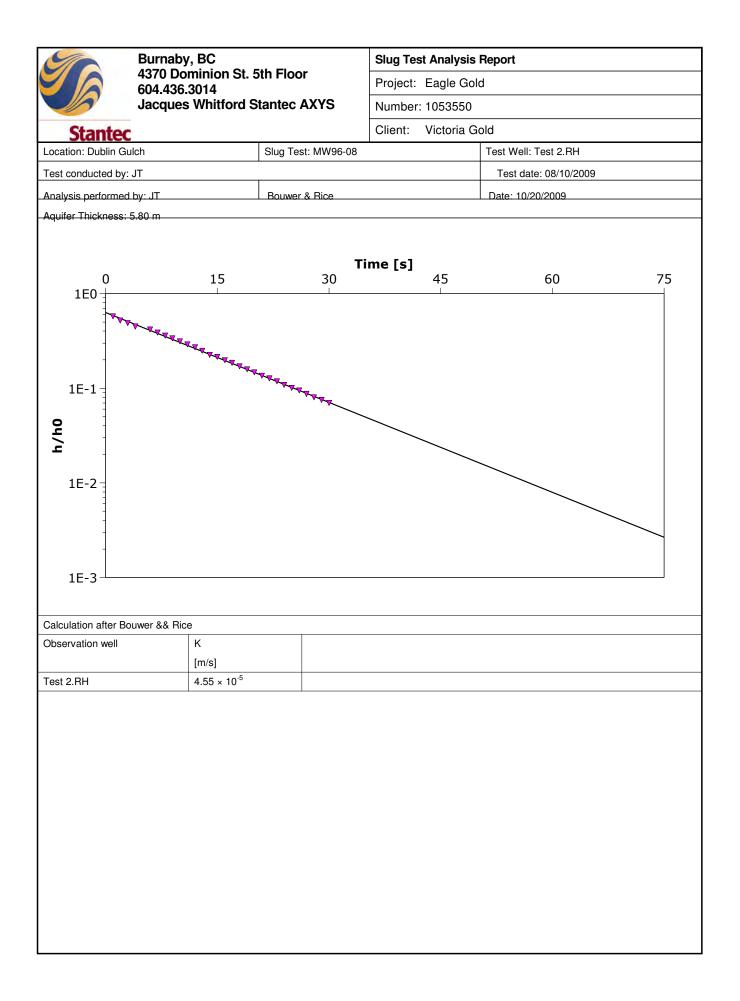


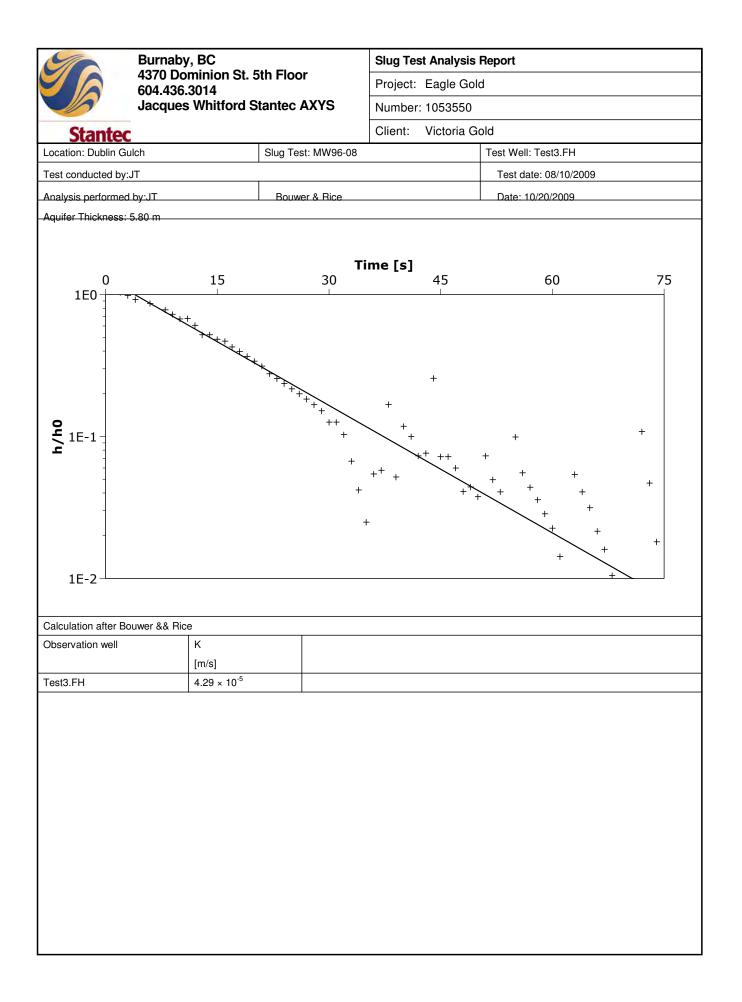


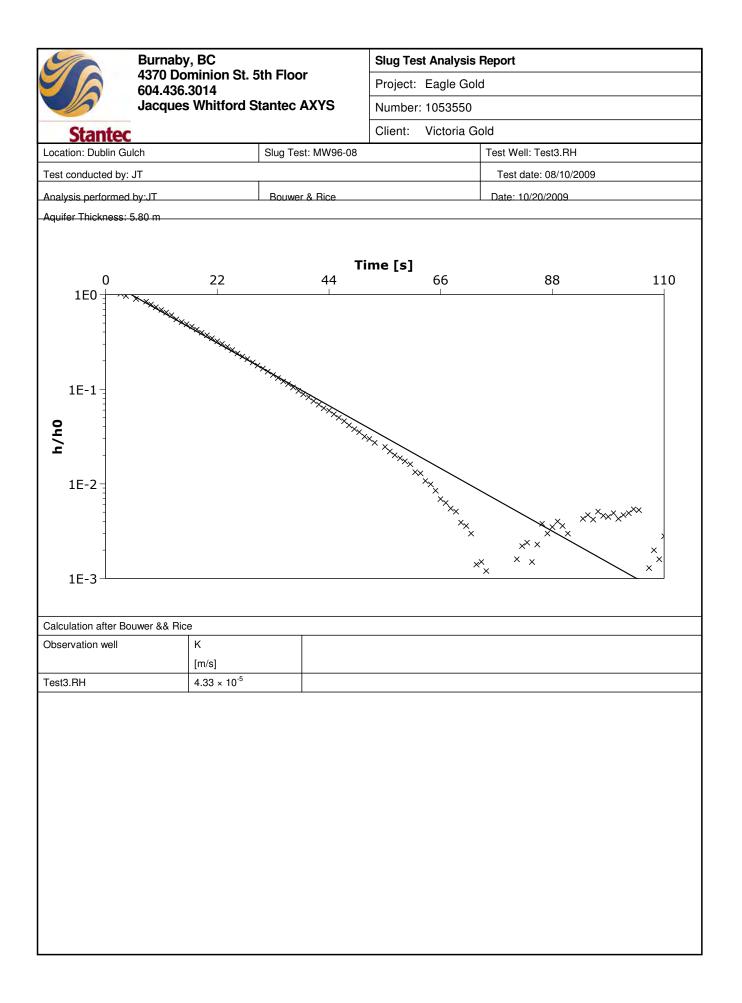




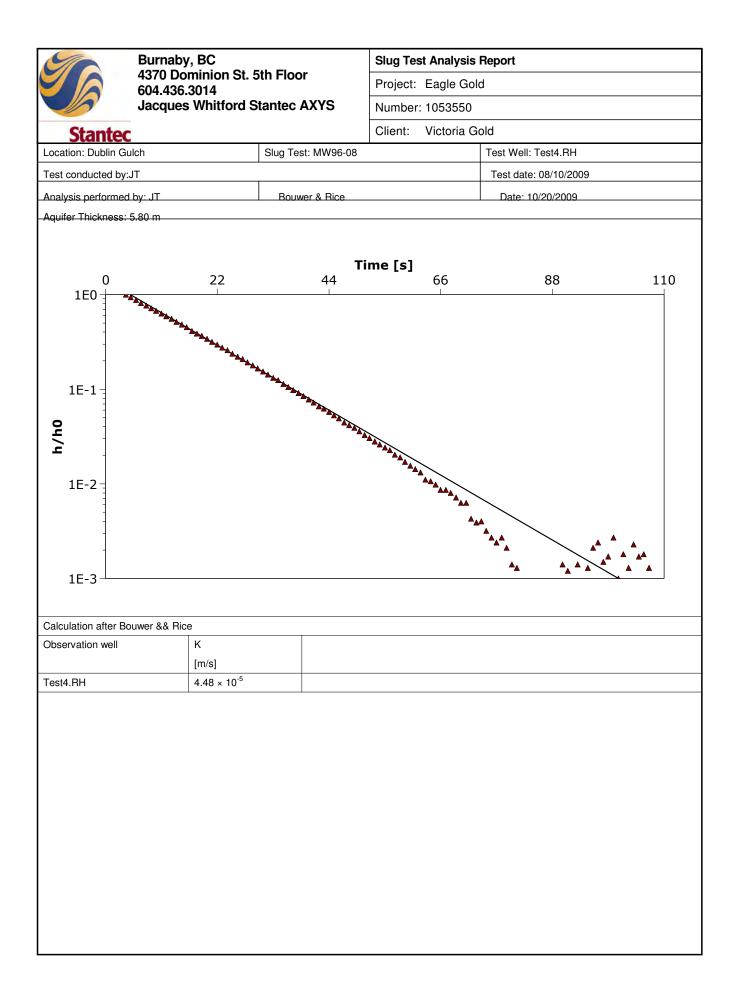


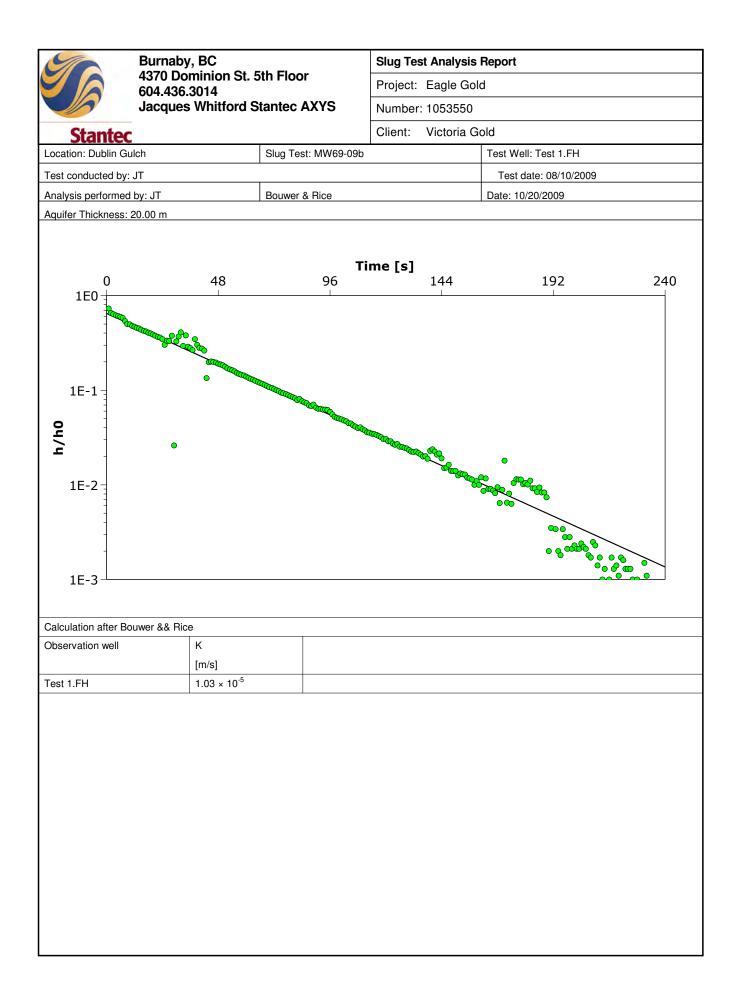


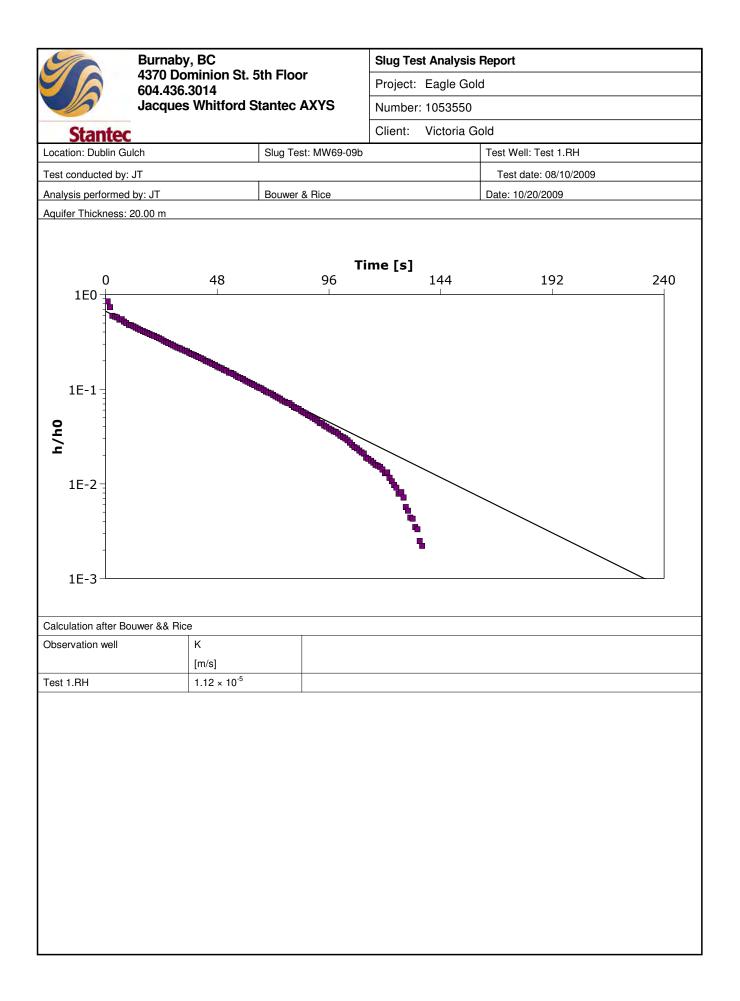


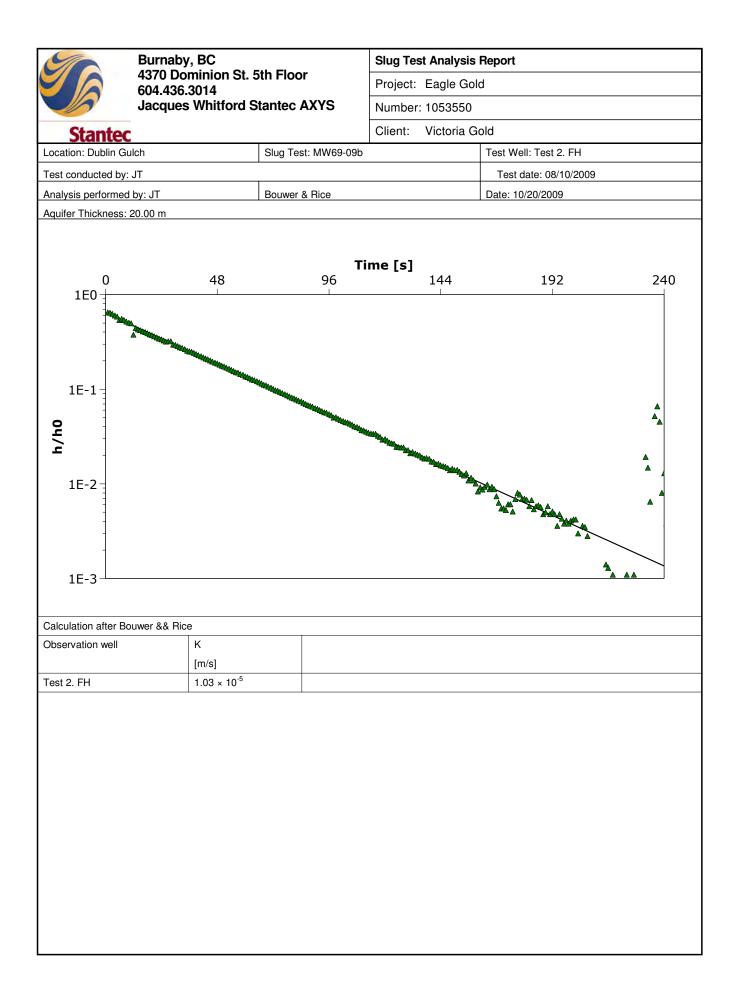


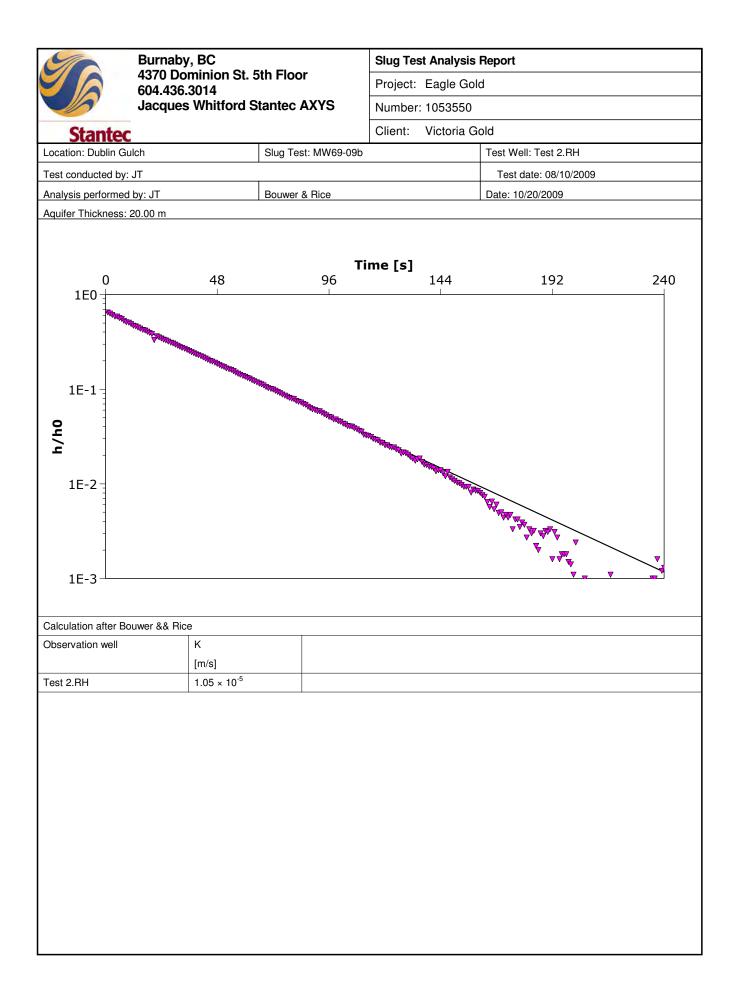


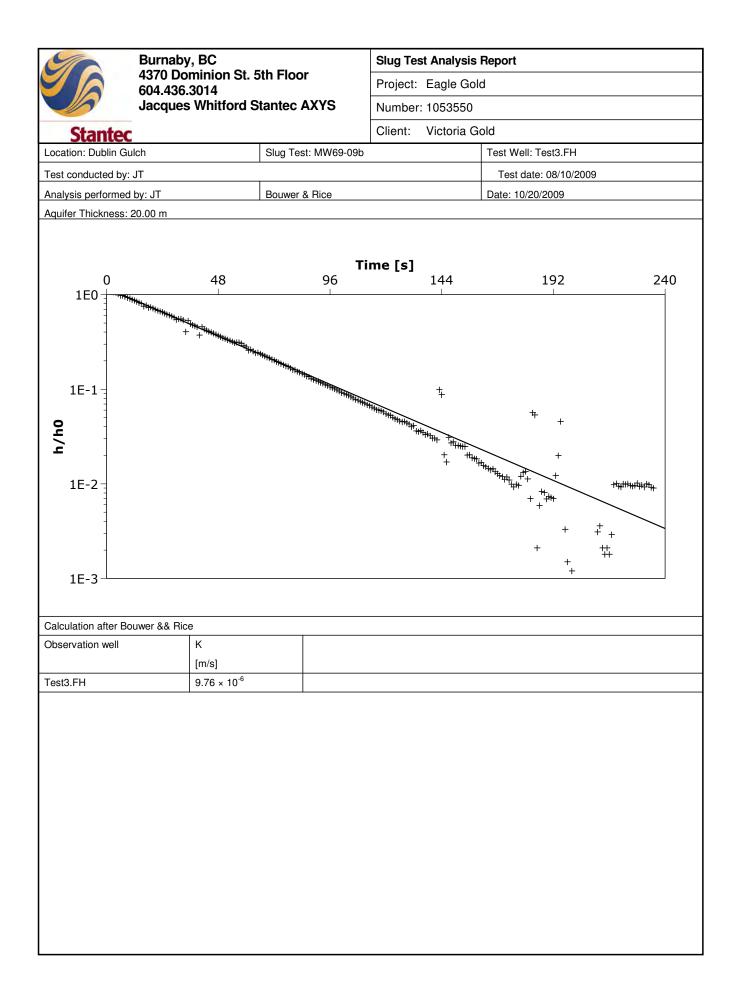


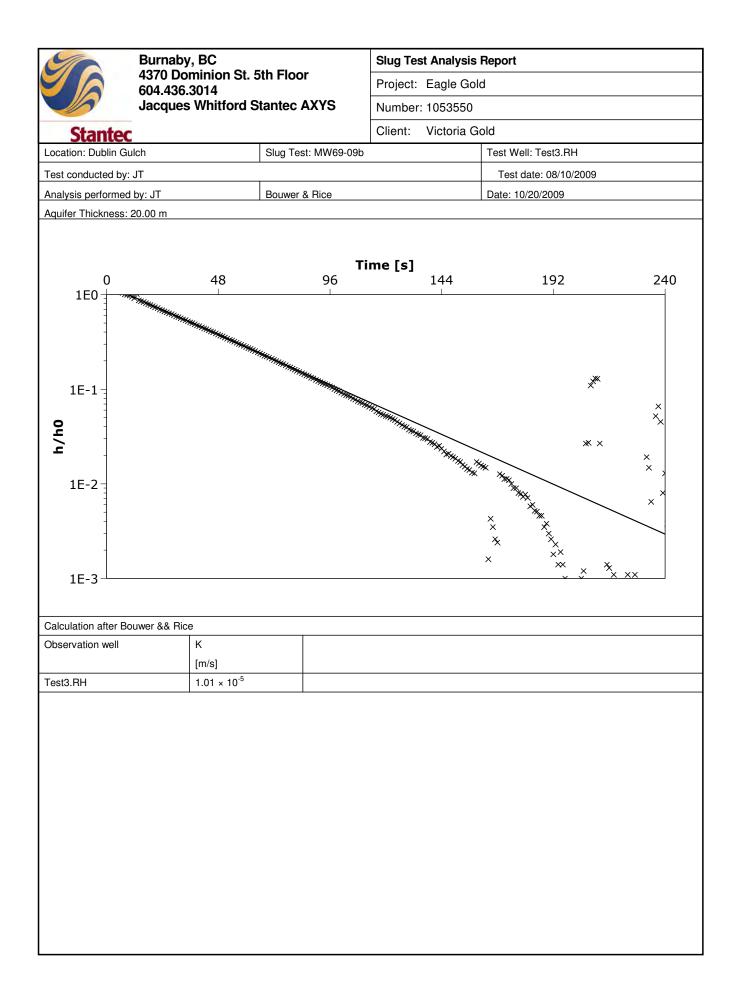


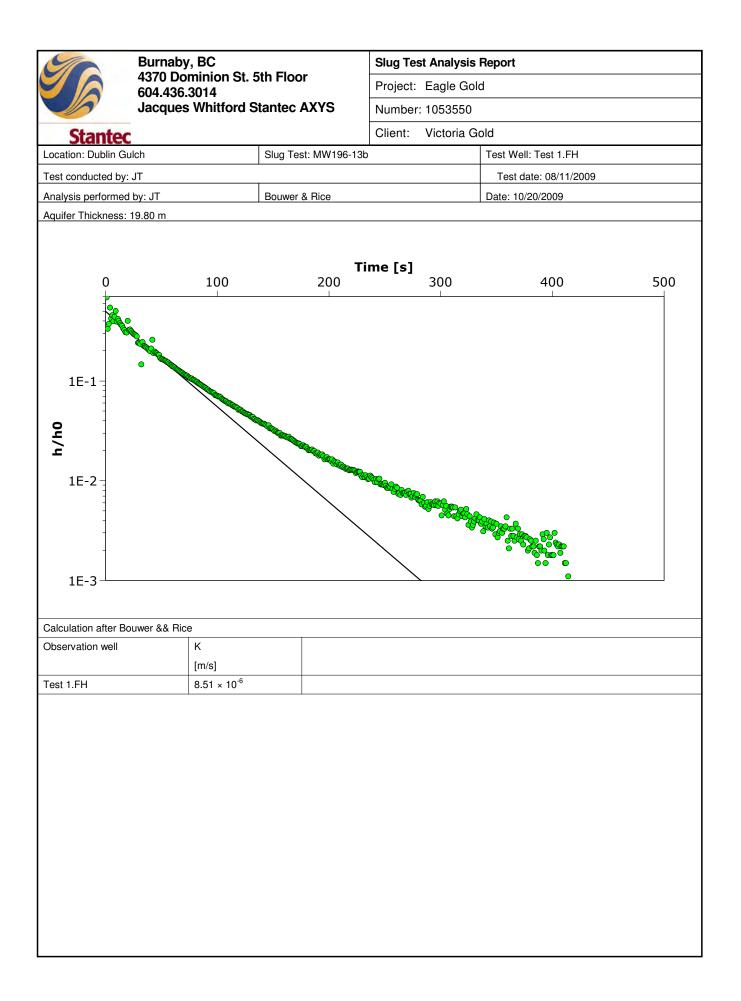


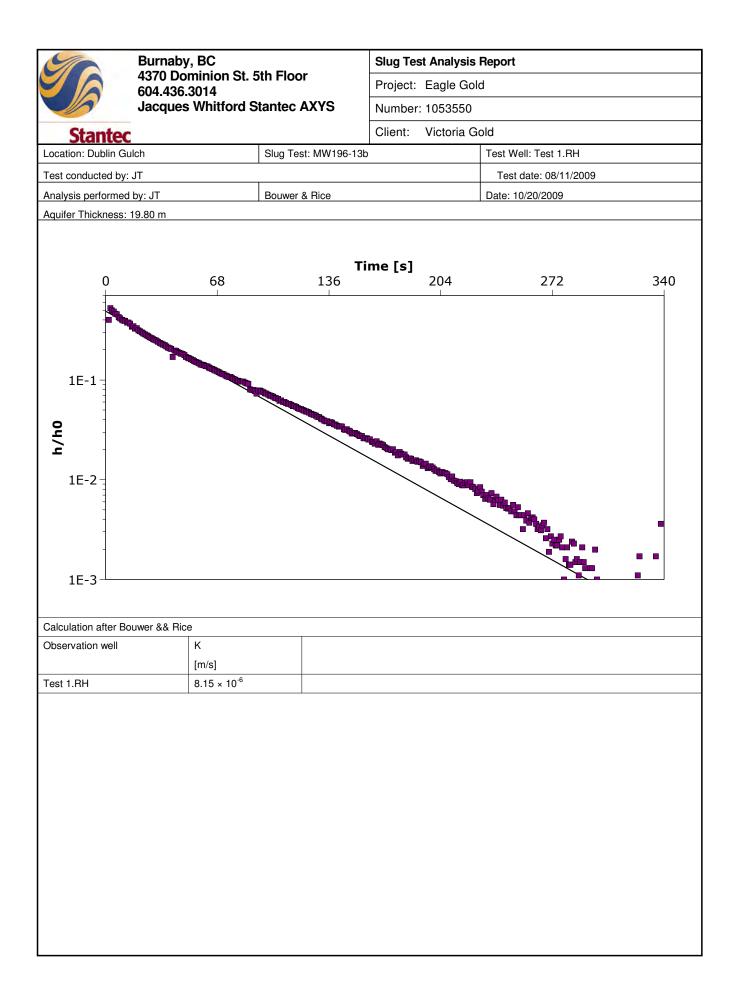


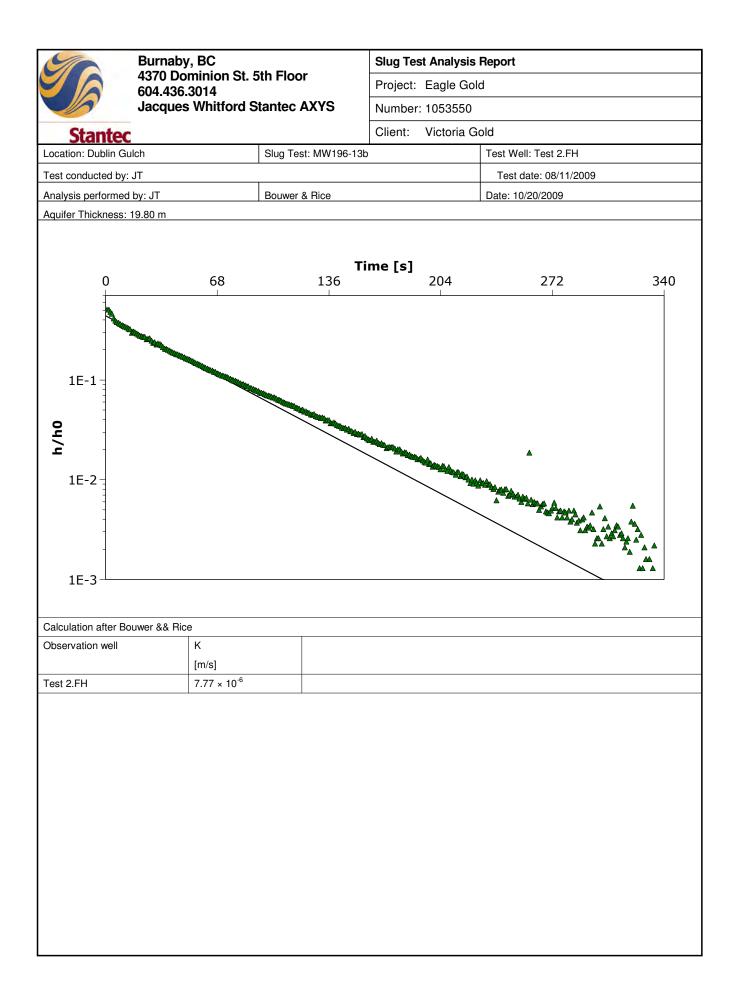


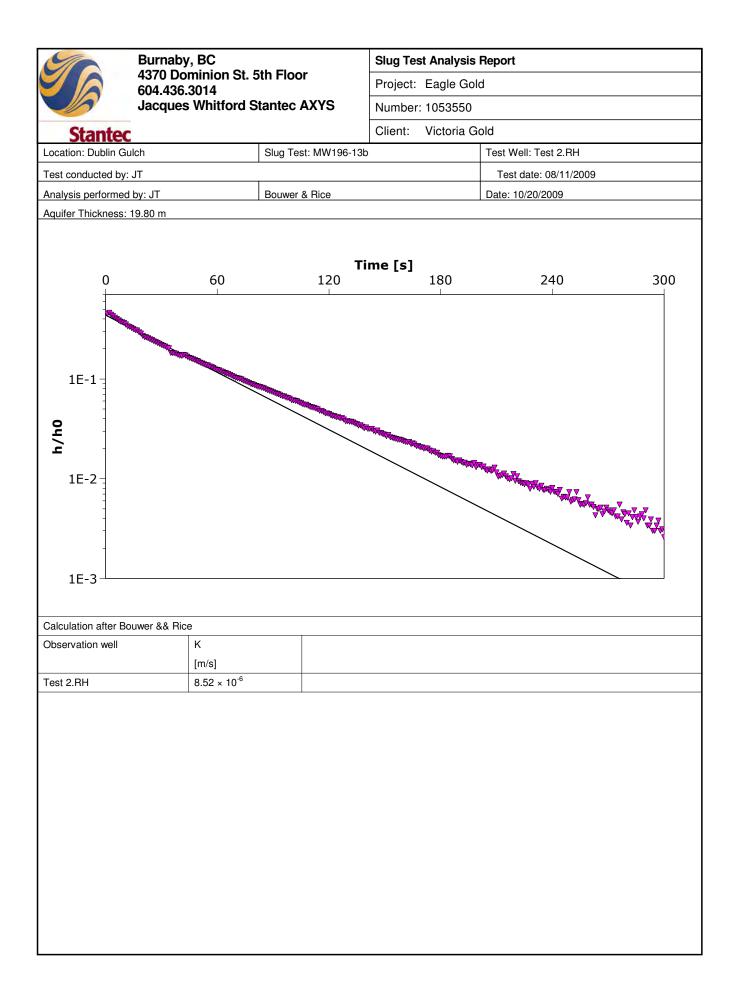


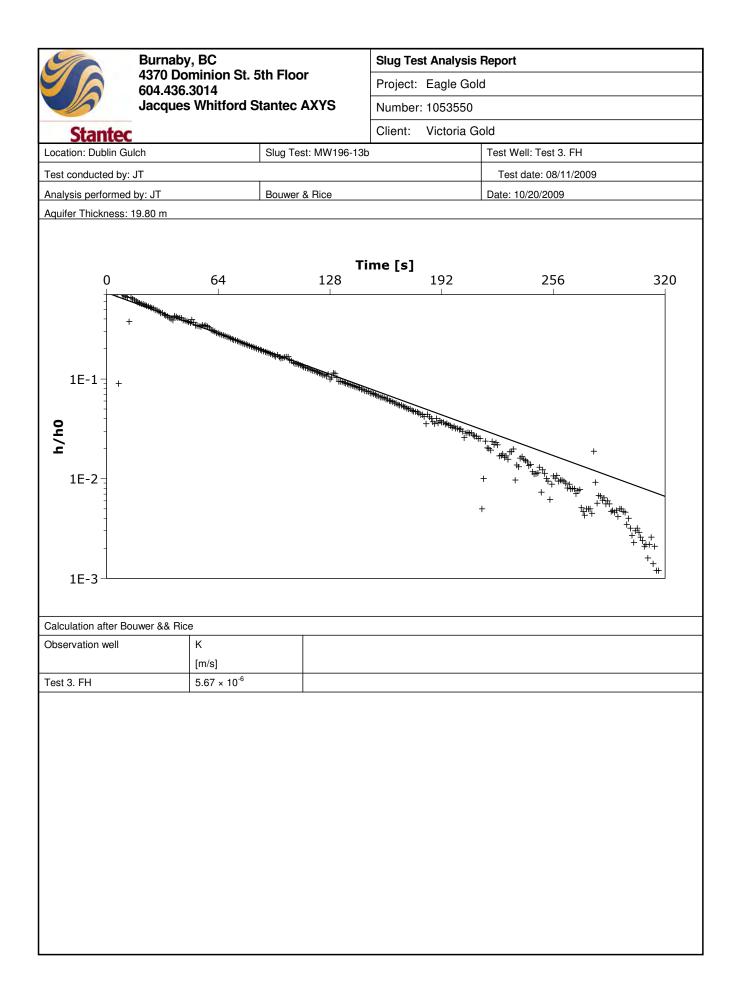


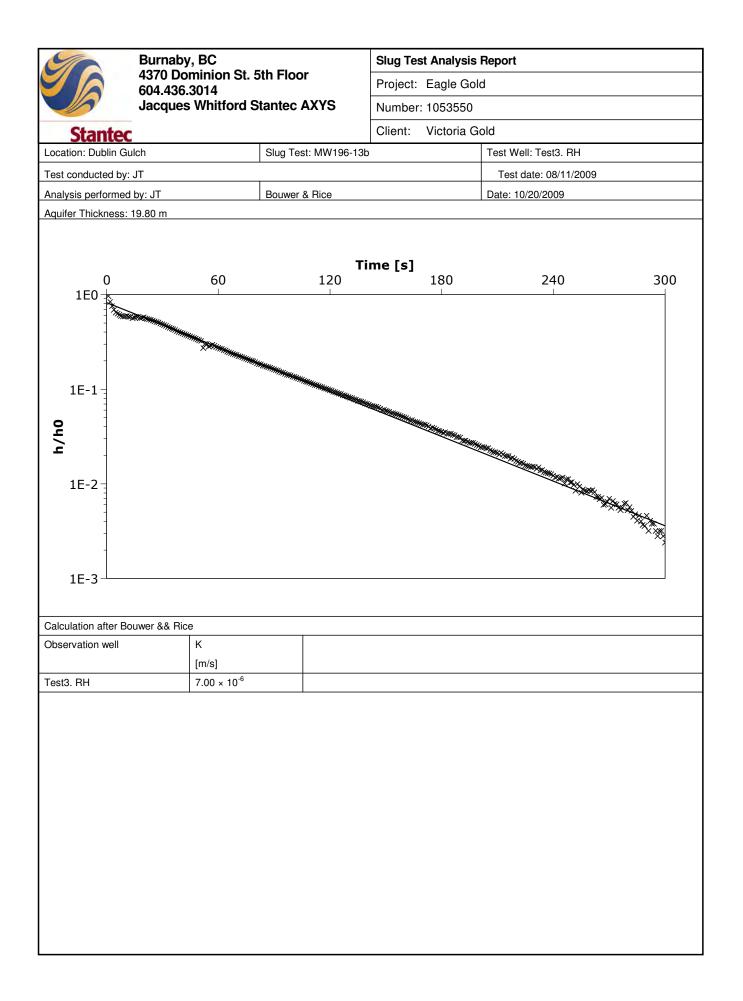


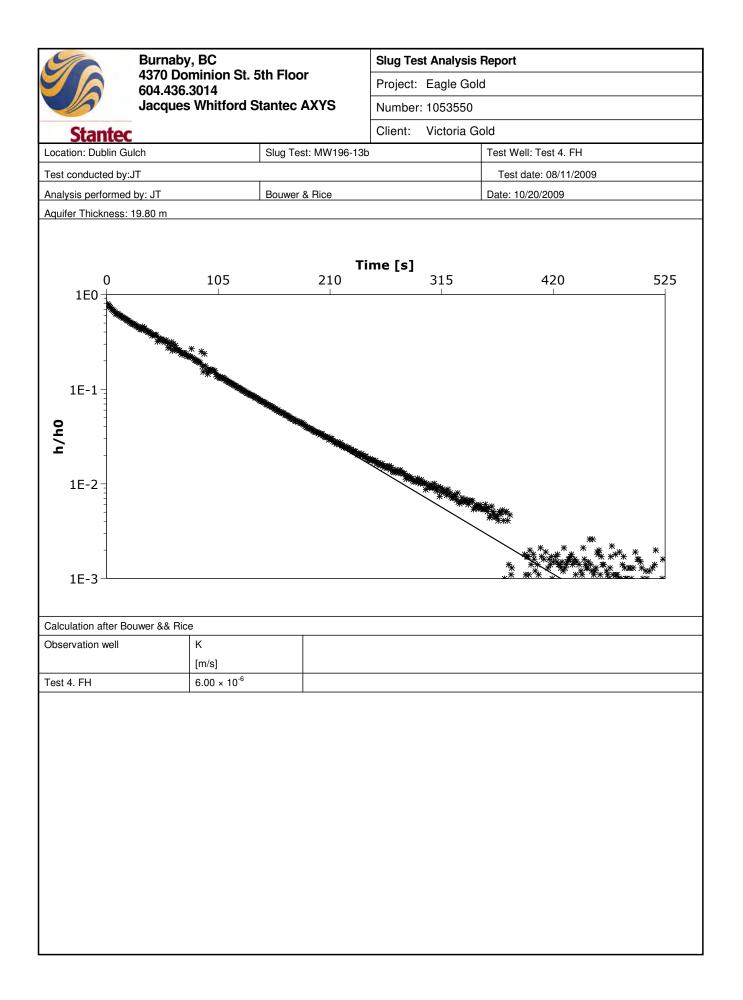


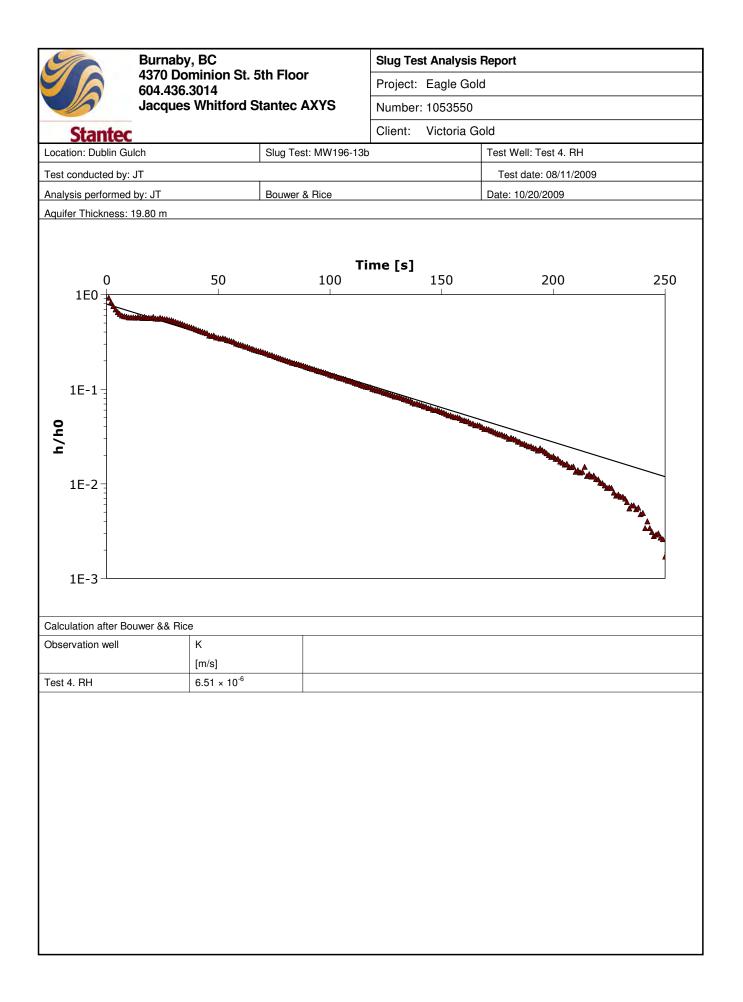




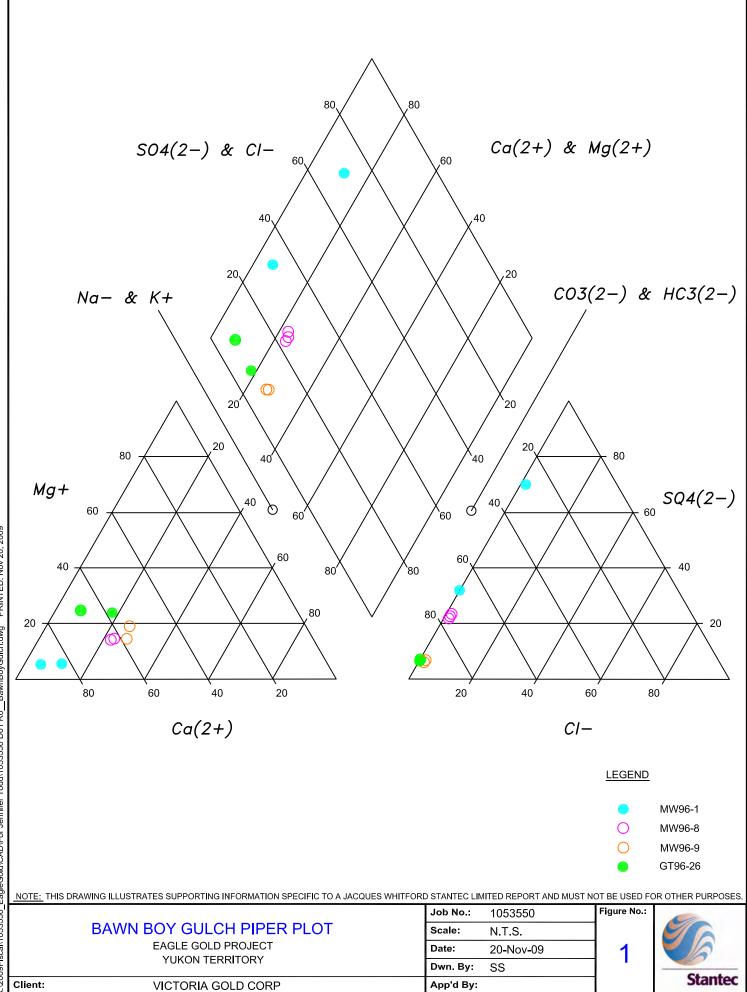


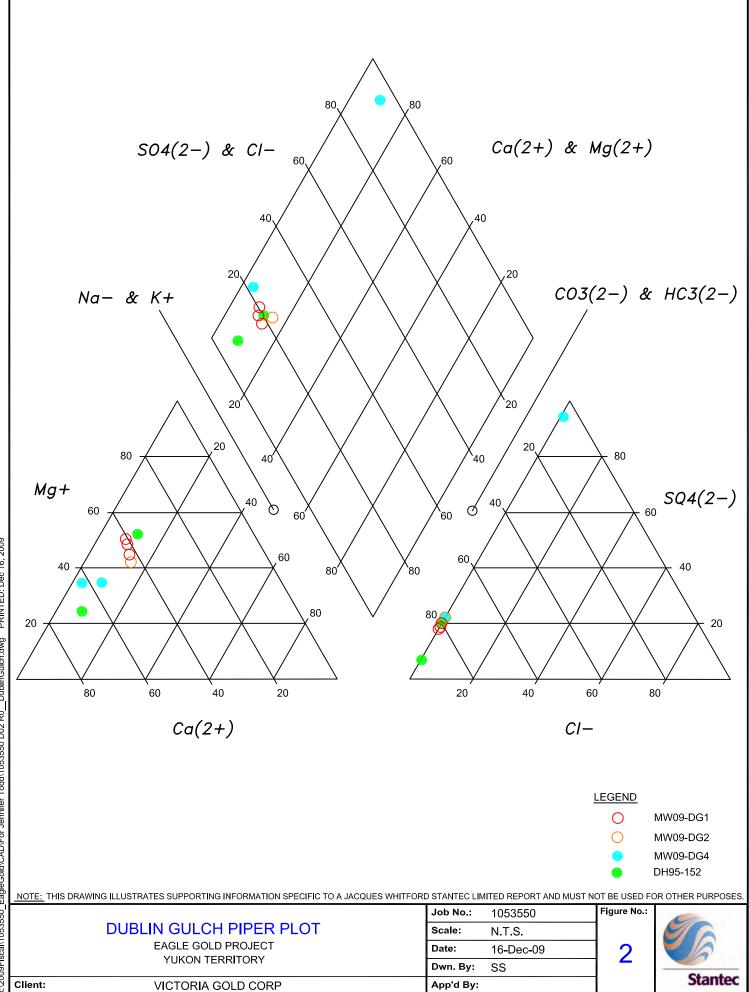


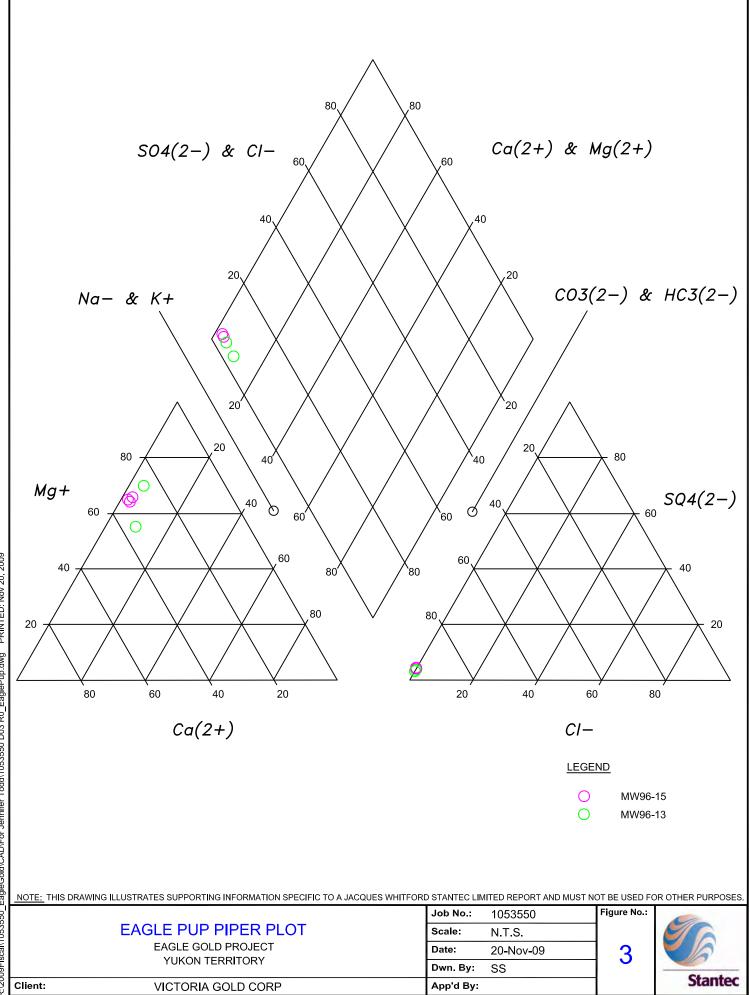


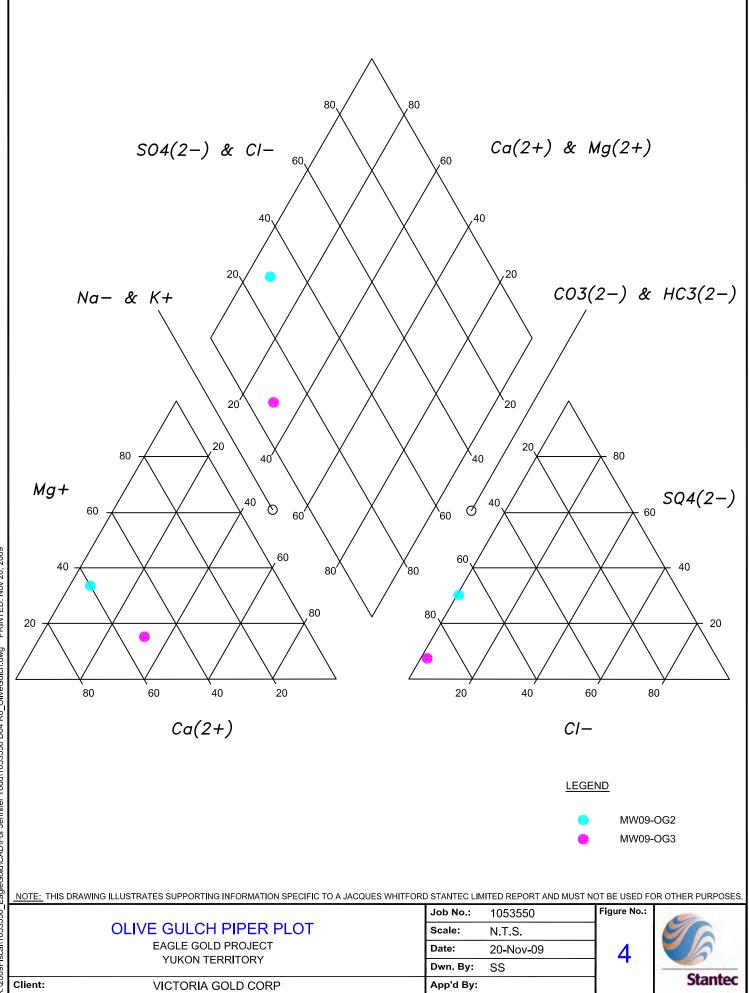


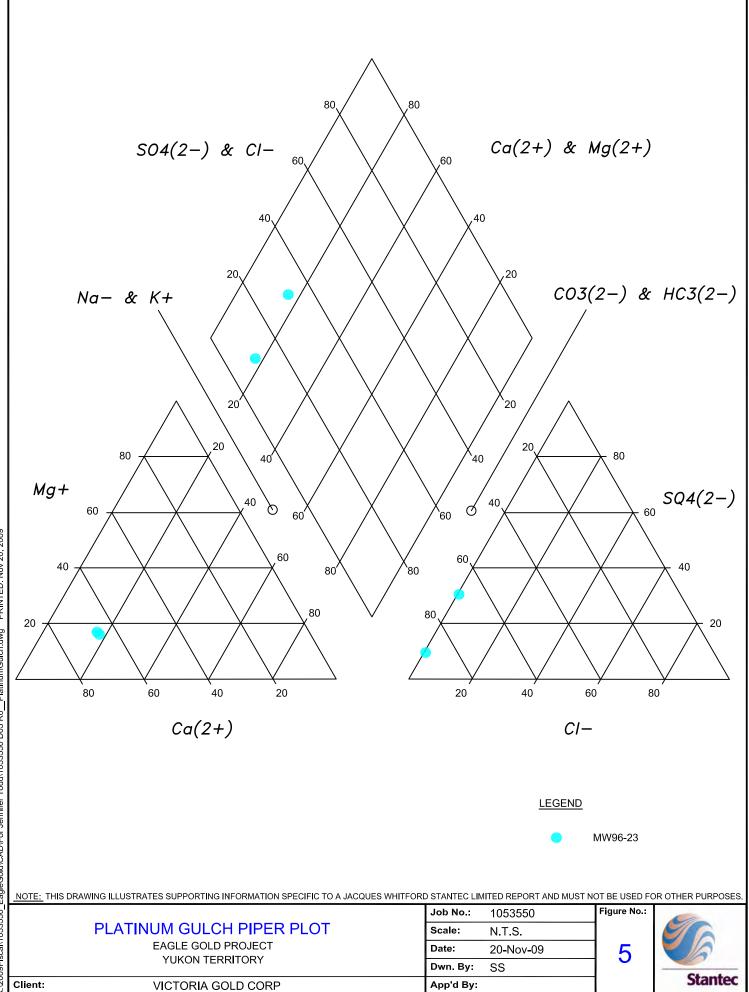
Eagle Gold Project Environmental Baseline Report: Hydrogeology Final Report

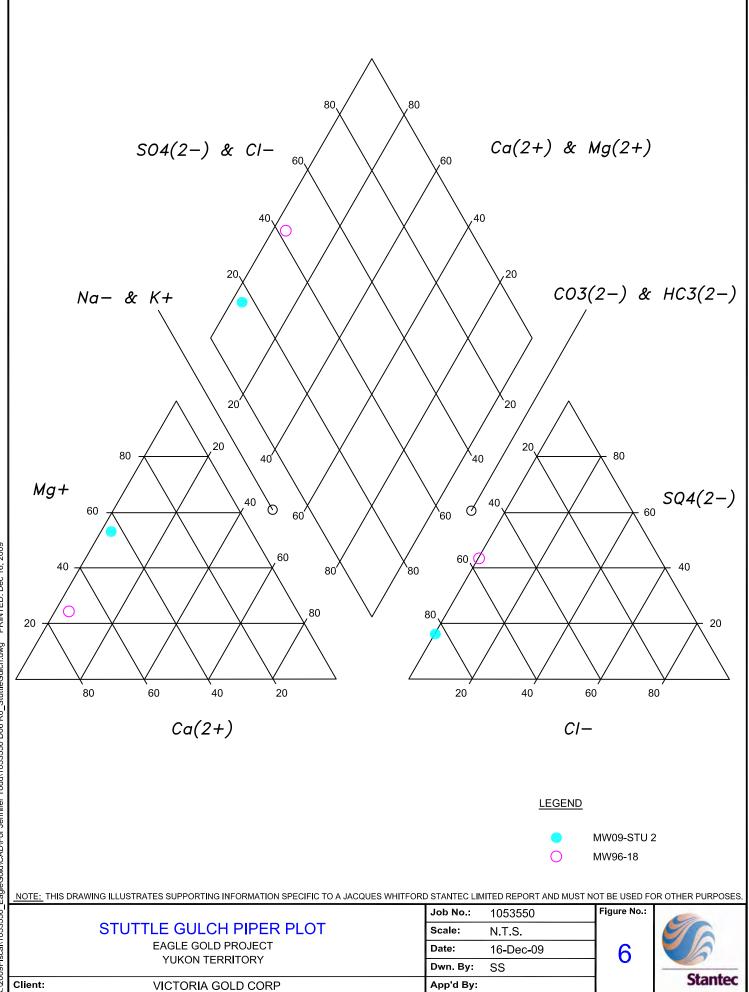

Appendix D – Hydrogeochemical Plots

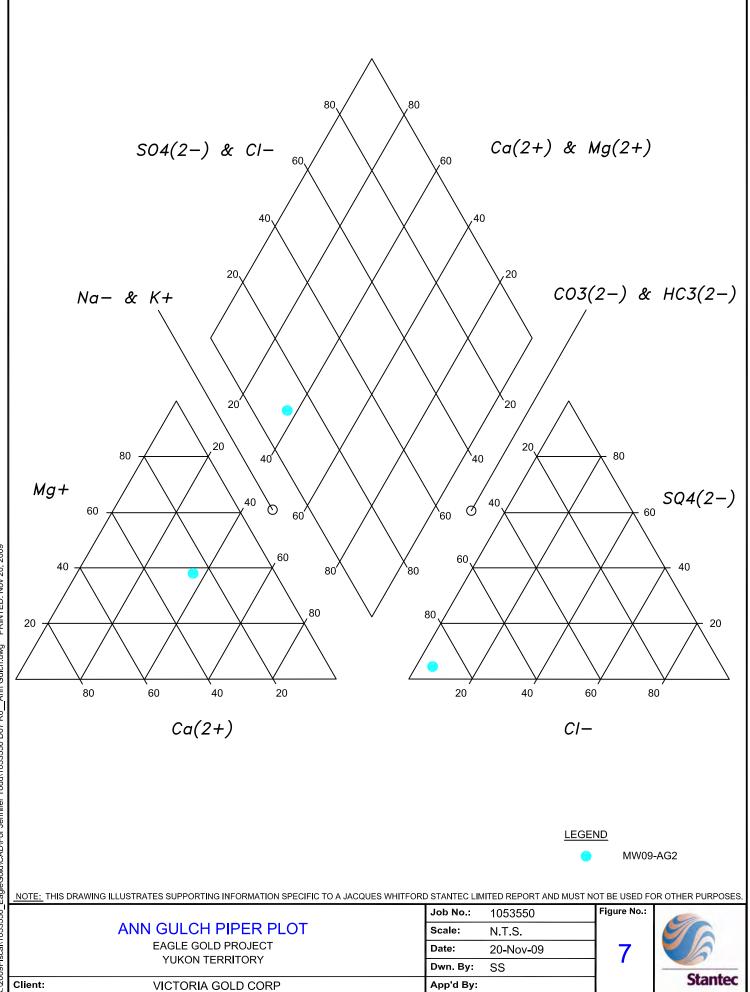


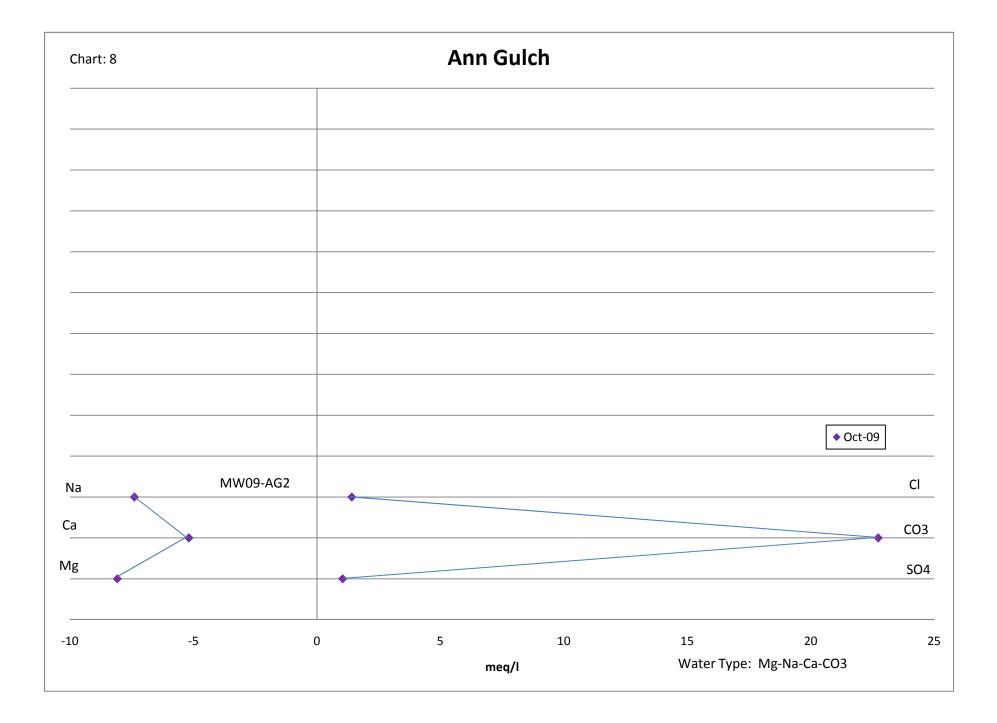


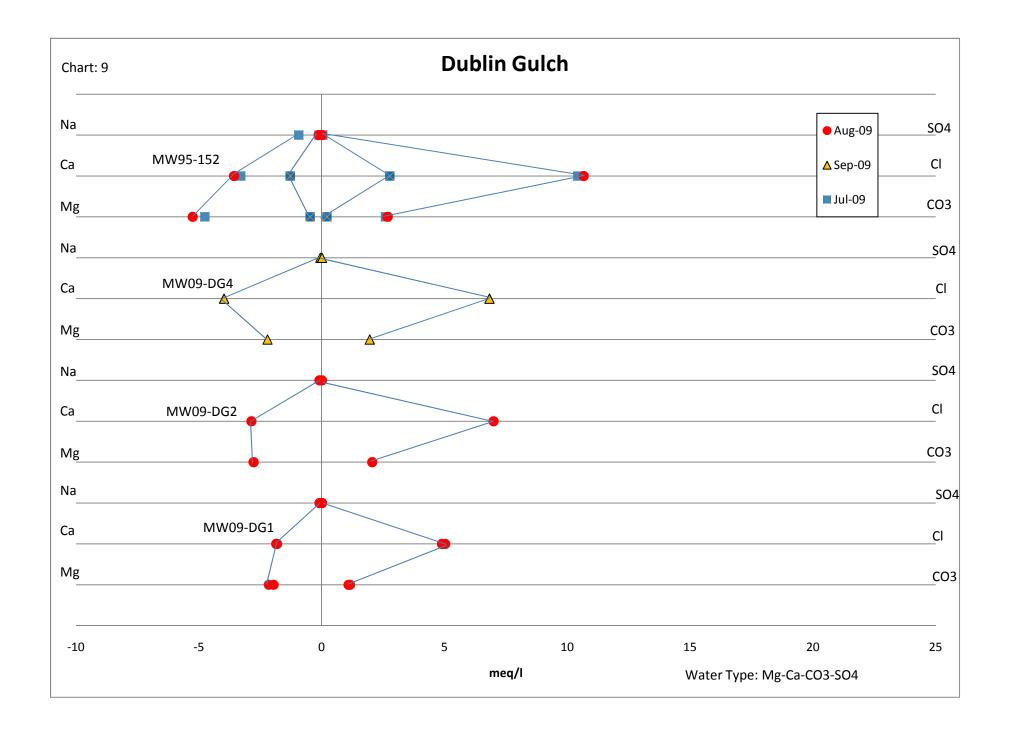

Hydrogeochemical Plots

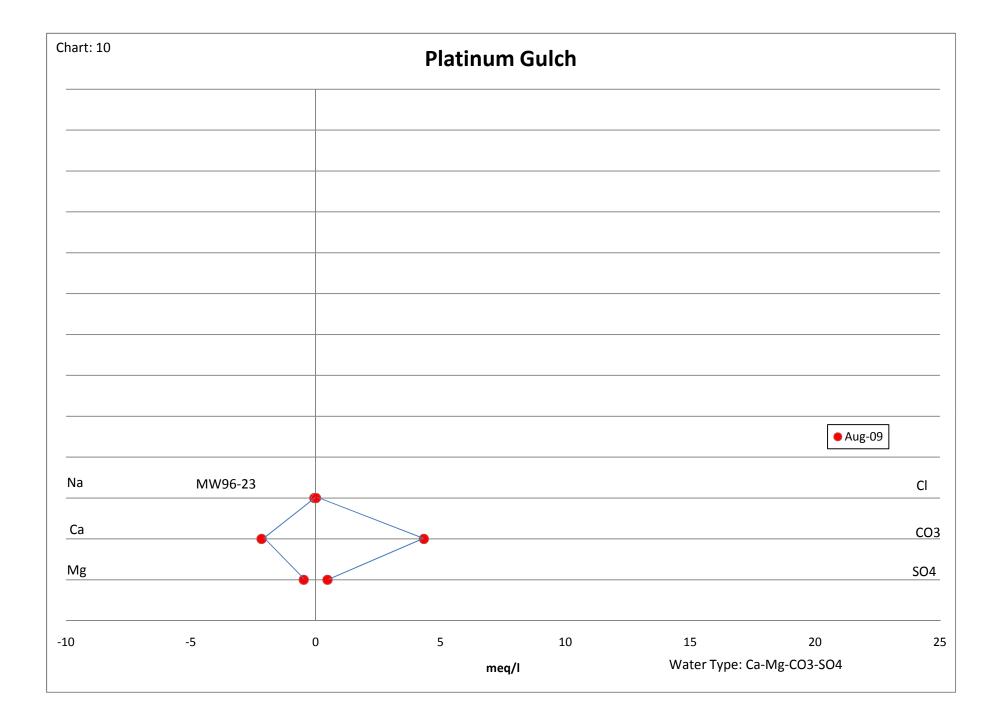

One Team. Infinite Solutions.

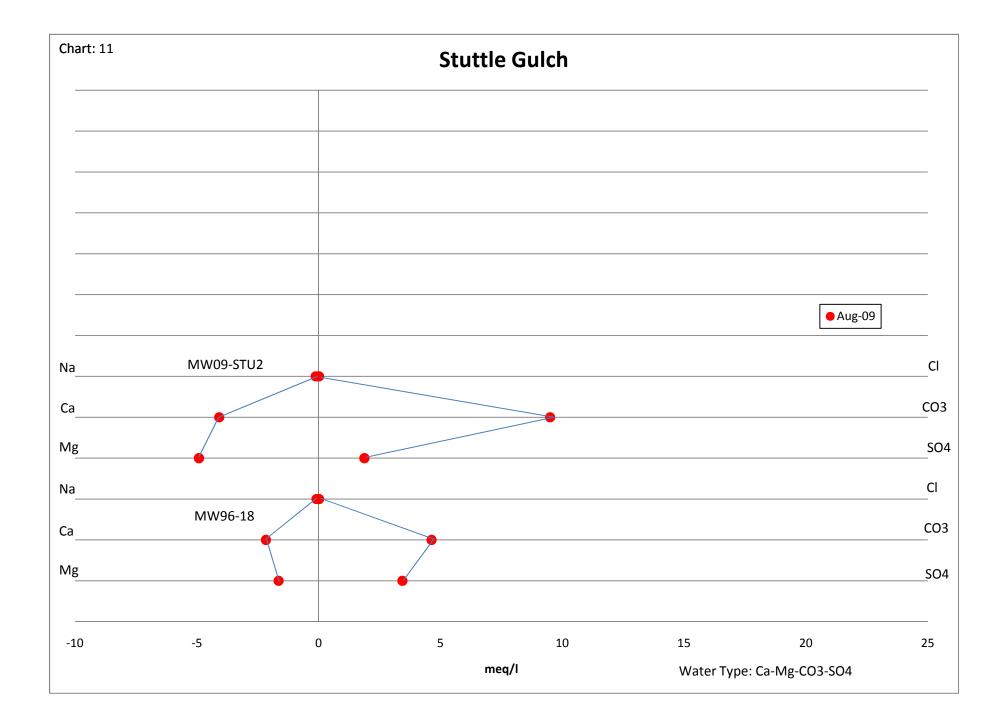


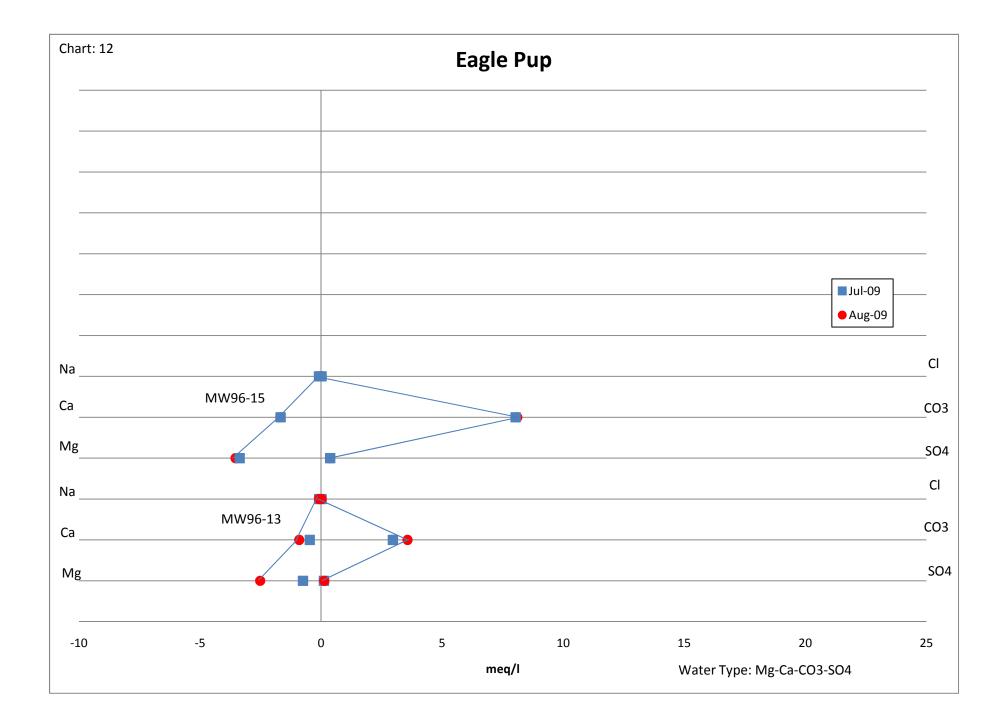


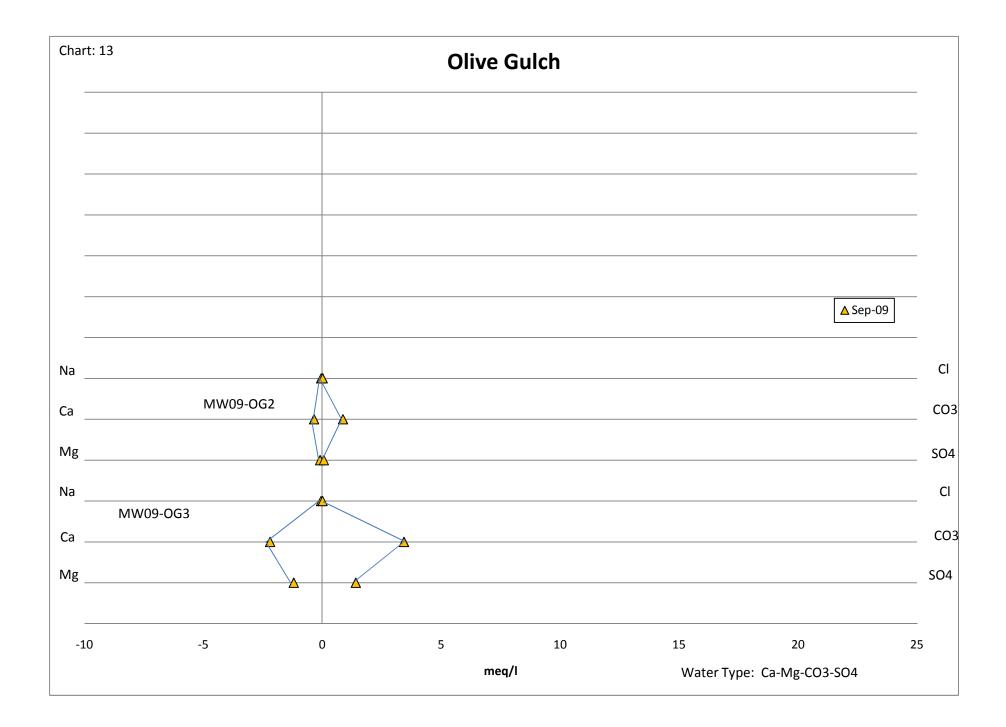


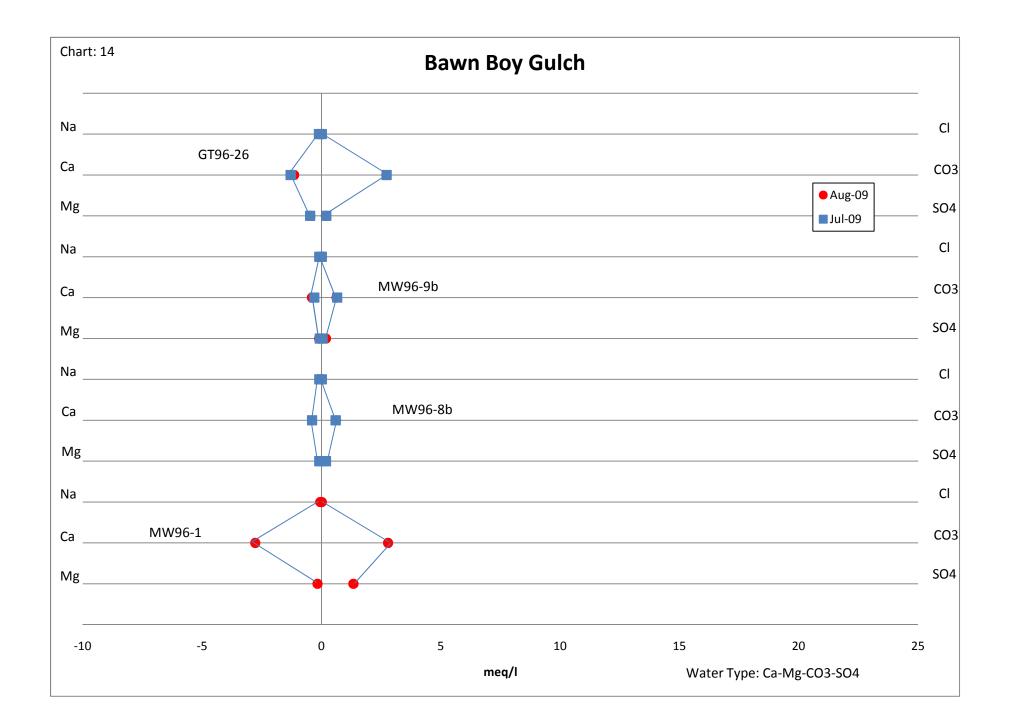






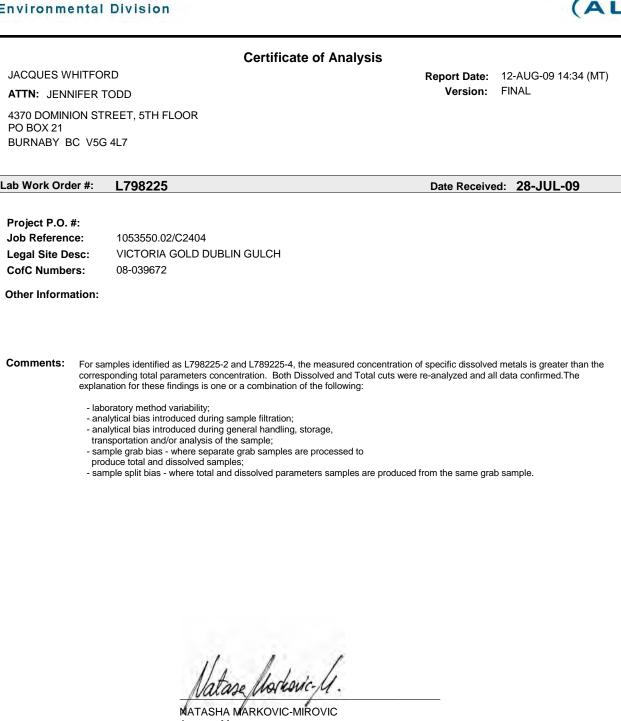

Jacques Whitford Stantec Limited © 2009





Eagle Gold Project Environmental Baseline Report: Hydrogeology Final Report

Appendix E – Laboratory Certificates


Laboratory Certificates

One Team. Infinite Solutions.

ALS Laboratory Group

ANALYTICAL CHEMISTRY & TESTING SERVICES

Environmental Division

Account Manager

THIS REPORT SHALL NOT BE REPRODUCED EXCEPT IN FULL WITHOUT THE WRITTEN AUTHORITY OF THE LABORATORY. ALL SAMPLES WILL BE DISPOSED OF AFTER 30 DAYS FOLLOWING ANALYSIS. PLEASE CONTACT THE LAB IF YOU REQUIRE ADDITIONAL SAMPLE STORAGE TIME.

> ALS Canada Ltd. Part of the ALS Laboratory Group 1988 Triumph Street, Vancouver, BC V5L 1K Phone: +1 604 253 4188 Fax: +1 604 253 6700 www.alsglobal.com A Campbell Brothers Limited Company

L798225 CONTD PAGE 2 of 11

ALS LABORATORY GROUP ANALYTICAL REPORT

12-AUG-09 14:39

	Sample ID Description	L798225-1	L798225-2	L798225-3	L798225-4	L798225-5
	Sampled Date Sampled Time Client ID	27-JUL-09 09:30 113	27-JUL-09 10:00 114	27-JUL-09 10:30 102	27-JUL-09 11:00 63	27-JUL-09 11:30 85
Grouping	Analyte					
WATER						
Physical Tests	Conductivity (uS/cm)	186	62.5	50.0	181	453
	Hardness (as CaCO3) (mg/L)	89.0	24.0	18.6	148	260
	рН (рН)	7.72	7.38	7.04	8.01	8.17
	Total Suspended Solids (mg/L)	27.5	66.5	32.5	1310	44.0
	Total Dissolved Solids (mg/L)	126	49	42	98	231
	Turbidity (NTU)	28.9	30.8	25.9	679	50.8
Anions and Nutrients	Alkalinity, Bicarbonate (as CaCO3) (mg/L)	81.9	17.9	19.8	88.9	241
	Alkalinity, Carbonate (as CaCO3) (mg/L)	<2.0	<2.0	<2.0	<2.0	<2.0
	Alkalinity, Hydroxide (as CaCO3) (mg/L)	<2.0	<2.0	<2.0	<2.0	<2.0
	Alkalinity, Total (as CaCO3) (mg/L)	81.9	17.9	19.8	88.9	241
	Ammonia as N (mg/L)	<0.0050	<0.0050	<0.0050	<0.0050	0.0077
	Bromide (Br) (mg/L)	<0.050	<0.050	<0.050	<0.050	<0.050
	Chloride (Cl) (mg/L)	<0.50	<0.50	<0.50	<0.50	<0.50
	Fluoride (F) (mg/L)	0.247	0.046	0.028	0.092	0.372
	Nitrate (as N) (mg/L)	<0.0050	0.0976	0.399	0.174	0.0071
	Nitrite (as N) (mg/L)	<0.0010	<0.0010	0.0049	<0.0010	<0.0010
	Total Kjeldahl Nitrogen (mg/L)	0.092	<0.050	0.592	<0.050	<0.050
	Ortho Phosphate as P (mg/L)	0.0053	0.0077	0.0337	<0.0010	0.0058
	Total Phosphate as P (mg/L)	0.053	0.066	0.086	0.283	0.047
	Sulfate (SO4) (mg/L)	9.76	8.99	2.41	5.52	17.8
Organic /	Total Organic Carbon (mg/L)	1.79	0.92	5.74	5.54	2.14
Inorganic Carbon						
Total Metals	Aluminum (Al)-Total (mg/L)	0.209	0.0085	0.394	0.527	0.0302
	Antimony (Sb)-Total (mg/L)	0.0208	0.00055	0.00143	0.00057	0.00064
	Arsenic (As)-Total (mg/L)	0.589	0.0709	0.0751	0.0120	0.117
	Barium (Ba)-Total (mg/L)	0.0406	0.0267	0.0283	0.0159	0.0516
	Beryllium (Be)-Total (mg/L)	<0.00050	<0.00050	<0.00050	<0.00050	<0.00050
	Bismuth (Bi)-Total (mg/L)	<0.00050	<0.00050	<0.00050	<0.00050	<0.00050
	Boron (B)-Total (mg/L)	<0.010	<0.010	<0.010	<0.010	<0.010
	Cadmium (Cd)-Total (mg/L)	0.000063	<0.000017	0.000047	0.000061	<0.000017
	Calcium (Ca)-Total (mg/L)	25.8	7.81	5.98	9.45	33.6
	Chromium (Cr)-Total (mg/L)	<0.00050	<0.00050	0.00097	0.00109	<0.00050
	Cobalt (Co)-Total (mg/L)	0.00211	<0.00010	0.00057	0.00099	<0.00010
	Copper (Cu)-Total (mg/L)	0.00198	0.00010	0.00228	0.00168	0.00092
	Iron (Fe)-Total (mg/L)	3.60	<0.030	0.736	1.61	0.271
	Lead (Pb)-Total (mg/L)	0.000824	<0.000050	0.00219	0.00608	0.000251
	Lithium (Li)-Total (mg/L)	0.0064	<0.0050	<0.0050	<0.0050	0.0180
	Magnesium (Mg)-Total (mg/L)	5.73	1.06	0.88	9.14	40.9
	Manganese (Mn)-Total (mg/L)	0.324	0.000286	0.0668	0.0766	0.100
	Molybdenum (Mo)-Total (mg/L)	0.00802	0.000704	0.000533	0.000493	0.00408
	Nickel (Ni)-Total (mg/L)	0.00520	<0.00050	0.00143	0.00318	<0.00050

L798225 CONTD P/

PAGE	3	of	11	
12-AUG	-09	14:	39	

Description Sampled Date Sampled Time Client ID Analyte Conductivity (uS/cm) Hardness (as CaCO3) (mg/L) pH (pH) Total Suspended Solids (mg/L) Total Dissolved Solids (mg/L) Turbidity (NTU) Alkalinity, Bicarbonate (as CaCO3) (mg/L) Alkalinity, Hydroxide (as CaCO3) (mg/L)	27-JUL-09 12:10 133 779 409 8.08 53.0 463 54.7 313 <2.0	27-JUL-09 09:30 DUP1 186 87.7 7.79 18.5 124 23.0 83.2	<2.05.70<3.0<10<0.10<2.0
Sampled Time Client IDAnalyteConductivity (uS/cm)Hardness (as CaCO3) (mg/L)pH (pH)Total Suspended Solids (mg/L)Total Dissolved Solids (mg/L)Turbidity (NTU)Alkalinity, Bicarbonate (as CaCO3) (mg/L)Alkalinity, Carbonate (as CaCO3) (mg/L)	12:10 133 779 409 8.08 53.0 463 54.7 313	09:30 DUP1 186 87.7 7.79 18.5 124 23.0	<2.0 5.70 <3.0 <10 <0.10
Client ID Analyte Conductivity (uS/cm) Hardness (as CaCO3) (mg/L) pH (pH) Total Suspended Solids (mg/L) Total Dissolved Solids (mg/L) Turbidity (NTU) Alkalinity, Bicarbonate (as CaCO3) (mg/L) Alkalinity, Carbonate (as CaCO3) (mg/L)	133 779 409 8.08 53.0 463 54.7 313	DUP1 186 87.7 7.79 18.5 124 23.0	<2.0 5.70 <3.0 <10 <0.10
Conductivity (uS/cm) Hardness (as CaCO3) (mg/L) pH (pH) Total Suspended Solids (mg/L) Total Dissolved Solids (mg/L) Turbidity (NTU) Alkalinity, Bicarbonate (as CaCO3) (mg/L) Alkalinity, Carbonate (as CaCO3) (mg/L)	409 8.08 53.0 463 54.7 313	87.7 7.79 18.5 124 23.0	5.70 <3.0 <10 <0.10
Hardness (as CaCO3) (mg/L) pH (pH) Total Suspended Solids (mg/L) Total Dissolved Solids (mg/L) Turbidity (NTU) Alkalinity, Bicarbonate (as CaCO3) (mg/L) Alkalinity, Carbonate (as CaCO3) (mg/L)	409 8.08 53.0 463 54.7 313	87.7 7.79 18.5 124 23.0	5.70 <3.0 <10 <0.10
Hardness (as CaCO3) (mg/L) pH (pH) Total Suspended Solids (mg/L) Total Dissolved Solids (mg/L) Turbidity (NTU) Alkalinity, Bicarbonate (as CaCO3) (mg/L) Alkalinity, Carbonate (as CaCO3) (mg/L)	409 8.08 53.0 463 54.7 313	87.7 7.79 18.5 124 23.0	5.70 <3.0 <10 <0.10
pH (pH) Total Suspended Solids (mg/L) Total Dissolved Solids (mg/L) Turbidity (NTU) Alkalinity, Bicarbonate (as CaCO3) (mg/L) Alkalinity, Carbonate (as CaCO3) (mg/L)	8.08 53.0 463 54.7 313	7.79 18.5 124 23.0	<3.0 <10 <0.10
Total Suspended Solids (mg/L) Total Dissolved Solids (mg/L) Turbidity (NTU) Alkalinity, Bicarbonate (as CaCO3) (mg/L) Alkalinity, Carbonate (as CaCO3) (mg/L)	53.0 463 54.7 313	18.5 124 23.0	<3.0 <10 <0.10
Total Dissolved Solids (mg/L) Turbidity (NTU) Alkalinity, Bicarbonate (as CaCO3) (mg/L) Alkalinity, Carbonate (as CaCO3) (mg/L)	463 54.7 313	124 23.0	<10 <0.10
Turbidity (NTU) Alkalinity, Bicarbonate (as CaCO3) (mg/L) Alkalinity, Carbonate (as CaCO3) (mg/L)	54.7 313	23.0	<0.10
Alkalinity, Bicarbonate (as CaCO3) (mg/L) Alkalinity, Carbonate (as CaCO3) (mg/L)	313		
Alkalinity, Carbonate (as CaCO3) (mg/L)		83.2	<2.0
	~20		
Alkalinity, Hydroxide (as CaCO3) (mg/L)	<2.U	<2.0	<2.0
	<2.0	<2.0	<2.0
Alkalinity, Total (as CaCO3) (mg/L)	313	83.2	<2.0
Ammonia as N (mg/L)	0.406	<0.0050	<0.0050
Bromide (Br) (mg/L)	<0.050	<0.050	<0.050
Chloride (Cl) (mg/L)	1.50	<0.50	<0.50
Fluoride (F) (mg/L)	0.130	0.257	<0.020
Nitrate (as N) (mg/L)	0.262	<0.0050	<0.0050
Nitrite (as N) (mg/L)	0.0127	<0.0010	<0.0010
Total Kjeldahl Nitrogen (mg/L)	0.607	0.077	<0.050
Ortho Phosphate as P (mg/L)	0.0115	0.0054	<0.0010
Total Phosphate as P (mg/L)	0.101	0.034	<0.0020
Sulfate (SO4) (mg/L)	125	10.2	<0.50
Total Organic Carbon (mg/L)	5.74	1.15	<0.50
Aluminum (AI)-Total (mg/L)	0.112	0.268	<0.0010
Antimony (Sb)-Total (mg/L)	0.00077	0.0227	<0.00010
Arsenic (As)-Total (mg/L)	0.530	0.579	<0.00010
Barium (Ba)-Total (mg/L)	0.0236	0.0423	<0.000050
Beryllium (Be)-Total (mg/L)	<0.00050	<0.00050	<0.00050
Bismuth (Bi)-Total (mg/L)	<0.00050	<0.00050	<0.00050
Boron (B)-Total (mg/L)	0.011	<0.010	<0.010
Cadmium (Cd)-Total (mg/L)	0.000148	0.000061	<0.000017
Calcium (Ca)-Total (mg/L)	66.1	25.7	<0.050
Chromium (Cr)-Total (mg/L)	<0.00050	0.00069	<0.00050
Cobalt (Co)-Total (mg/L)	0.00030	0.00213	<0.00010
Copper (Cu)-Total (mg/L)	0.00295	0.00265	<0.00010
Iron (Fe)-Total (mg/L)	0.901	3.87	<0.030
Lead (Pb)-Total (mg/L)	0.00104	0.00113	<0.000050
Lithium (Li)-Total (mg/L)	0.0929	0.0060	<0.0050
Magnesium (Mg)-Total (mg/L)	57.8	5.69	<0.10
Manganese (Mn)-Total (mg/L)	0.0744	0.324	<0.000050
Molybdenum (Mo)-Total (mg/L)	0.000281	0.00791	<0.000050
Nickel (Ni)-Total (mg/L)	0.0117	0.00543	<0.00050
	Ammonia as N (mg/L) Bromide (Br) (mg/L) Chloride (Cl) (mg/L) Fluoride (F) (mg/L) Nitrate (as N) (mg/L) Nitrite (as N) (mg/L) Total Kjeldahl Nitrogen (mg/L) Ortho Phosphate as P (mg/L) Total Phosphate as P (mg/L) Sulfate (SO4) (mg/L) Total Organic Carbon (mg/L) Aluminum (Al)-Total (mg/L) Antimony (Sb)-Total (mg/L) Barium (Ba)-Total (mg/L) Barium (Ba)-Total (mg/L) Bismuth (Bi)-Total (mg/L) Bismuth (Bi)-Total (mg/L) Cadmium (Cd)-Total (mg/L) Cadmium (Cd)-Total (mg/L) Cadmium (Cr)-Total (mg/L) Cobalt (Co)-Total (mg/L) Copper (Cu)-Total (mg/L) Lead (Pb)-Total (mg/L) Lead (Pb)-Total (mg/L) Magnesium (Mg)-Total (mg/L) Manganese (Mn)-Total (mg/L)	Ammonia as N (mg/L) 0.406 Bromide (Br) (mg/L) <0.050	Ammonia as N (mg/L) 0.406 <0.0050 Bromide (Br) (mg/L) <0.050

L798225 CONTD PAGE 4 of 11

TAGE	-	01	••
12-AUG	-09	14:	39

	Sample ID Description Sampled Date Sampled Time Client ID	L798225-1 27-JUL-09 09:30 113	L798225-2 27-JUL-09 10:00 114	L798225-3 27-JUL-09 10:30 102	L798225-4 27-JUL-09 11:00 63	L798225-5 27-JUL-09 11:30 85
Grouping	Analyte					
WATER						
Total Metals	Phosphorus (P)-Total (mg/L)	<0.30	<0.30	<0.30	<0.30	<0.30
	Potassium (K)-Total (mg/L)	<2.0	<2.0	<2.0	<2.0	<2.0
	Selenium (Se)-Total (mg/L)	<0.0010	<0.0010	<0.0010	<0.0010	<0.0010
	Silicon (Si)-Total (mg/L)	14.5	6.56	6.50	6.14	5.77
	Silver (Ag)-Total (mg/L)	<0.000010	<0.000010	<0.000010	0.000016	<0.000010
	Sodium (Na)-Total (mg/L)	2.3	2.0	<2.0	<2.0	2.2
	Strontium (Sr)-Total (mg/L)	0.171	0.0483	0.0319	0.0634	0.257
	Thallium (TI)-Total (mg/L)	<0.00010	<0.00010	<0.00010	<0.00010	<0.00010
	Tin (Sn)-Total (mg/L)	0.00097	<0.00010	0.00199	0.00153	0.00029
	Titanium (Ti)-Total (mg/L)	0.012	<0.010	0.027	0.030	<0.010
	Uranium (U)-Total (mg/L)	0.000899	0.000235	0.00102	0.000386	0.00704
	Vanadium (V)-Total (mg/L)	<0.0010	<0.0010	<0.0010	<0.0010	<0.0010
	Zinc (Zn)-Total (mg/L)	0.0690	<0.0030	0.0186	0.0076	0.0141
Dissolved Metals	Aluminum (AI)-Dissolved (mg/L)	0.0012	<0.0010	0.0203	<0.0010	<0.0010
	Antimony (Sb)-Dissolved (mg/L)	0.0137	0.00046	0.00075	0.00013	<0.00010
	Arsenic (As)-Dissolved (mg/L)	0.605	0.0708	0.0580	0.00087	0.132
	Barium (Ba)-Dissolved (mg/L)	0.0369	0.0266	0.0199	0.00299	0.0520
	Beryllium (Be)-Dissolved (mg/L)	<0.00050	<0.00050	<0.00050	<0.00050	<0.00050
	Bismuth (Bi)-Dissolved (mg/L)	<0.00050	<0.00050	<0.00050	<0.00050	<0.00050
	Boron (B)-Dissolved (mg/L)	<0.010	<0.010	<0.010	<0.010	<0.010
	Cadmium (Cd)-Dissolved (mg/L)	0.000026	<0.000017	0.000024	<0.000017	0.000037
	Calcium (Ca)-Dissolved (mg/L)	26.2	7.86	6.12	18.5	34.8
	Chromium (Cr)-Dissolved (mg/L)	<0.00050	<0.00050	<0.00050	<0.00050	<0.00050
	Cobalt (Co)-Dissolved (mg/L)	0.00197	<0.00010	0.00021	<0.00010	<0.00010
	Copper (Cu)-Dissolved (mg/L)	0.00023	0.00096	0.00125	0.00033	0.00030
	Iron (Fe)-Dissolved (mg/L)	2.59	<0.030	<0.030	<0.030	0.055
	Lead (Pb)-Dissolved (mg/L)	0.000107	<0.000050	0.000114	<0.000050	<0.000050
	Lithium (Li)-Dissolved (mg/L)	0.0053	<0.0050	<0.0050	<0.0050	0.0188
	Magnesium (Mg)-Dissolved (mg/L)	5.75	1.07	0.81	24.8	42.1
	Manganese (Mn)-Dissolved (mg/L)	0.321	0.00109	0.0423	0.00137	0.0826
	Molybdenum (Mo)-Dissolved (mg/L)	0.00875	0.000673	0.000499	0.000675	0.00433
	Nickel (Ni)-Dissolved (mg/L)	0.00420	<0.00050	0.00077	<0.00050	<0.00050
	Phosphorus (P)-Dissolved (mg/L)	<0.30	<0.30	<0.30	<0.30	<0.30
	Potassium (K)-Dissolved (mg/L)	<2.0	<2.0	<2.0	<2.0	<2.0
	Selenium (Se)-Dissolved (mg/L)	<0.0010	<0.0010	<0.0010	<0.0010	<0.0010
	Silicon (Si)-Dissolved (mg/L)	14.3	6.61	6.25	4.43	5.86
	Silver (Ag)-Dissolved (mg/L)	<0.000010	<0.000010	<0.000010	<0.000010	<0.000010
	Sodium (Na)-Dissolved (mg/L)	2.4	2.1	2.0	<2.0	2.2
	Strontium (Sr)-Dissolved (mg/L)	0.176	0.0484	0.0320	0.118	0.267
	Thallium (TI)-Dissolved (mg/L)	<0.00010	<0.00010	<0.00010	<0.00010	<0.00010
	Tin (Sn)-Dissolved (mg/L)	0.00011	<0.00010	0.00055	<0.00010	0.00012

L798225 CONTD.... PAGE 5 of 11 12-AUG-09 14:39

Sample ID Description Sampled Date Sampled Time Client ID	L798225-6 27-JUL-09 12:10 133	L798225-7 27-JUL-09 09:30 DUP1	L798225-8 TRAVEL BLANK		
Analyte					
Phosphorus (P)-Total (mg/L)	<0.30	<0.30	<0.30		
	4.5	<2.0	<2.0		
Selenium (Se)-Total (mg/L)	<0.0010	<0.0010	<0.0010		
	7.46	14.4	<0.050		
Silver (Ag)-Total (mg/L)	0.000077	0.000013	<0.000010		
	21.4	2.4	<2.0		
	0.650				
	<0.00010	<0.00010	<0.00010		
Tin (Sn)-Total (mg/L)	0.00505	0.00134	<0.00010		
			<0.010		
() (<u> </u>)					
	0.00048	0.0165			
	0.644				
	0.0219				
Cadmium (Cd)-Dissolved (mg/L)	<0.000017	0.000024			
Calcium (Ca)-Dissolved (mg/L)	67.6	25.8			
Nickel (Ni)-Dissolved (mg/L)	0.00964	0.00414			
() () ()	<0.30				
	<0.0010				
	<0.000010	<0.000010			
		0.168			
	Description Sampled Date Sampled Date Sampled Time Client ID Analyte Phosphorus (P)-Total (mg/L) Potassium (K)-Total (mg/L) Selenium (Se)-Total (mg/L) Silicon (Si)-Total (mg/L) Silver (Ag)-Total (mg/L) Sodium (Na)-Total (mg/L) Strontium (Sr)-Total (mg/L) Thallium (TI)-Total (mg/L) Titanium (Ti)-Total (mg/L) Titanium (Ti)-Total (mg/L) Vanadium (V)-Total (mg/L) Zinc (Zn)-Total (mg/L) Zinc (Zn)-Total (mg/L) Auminum (Al)-Dissolved (mg/L) Artimony (Sb)-Dissolved (mg/L) Barium (Ba)-Dissolved (mg/L) Beryllium (Be)-Dissolved (mg/L) Boron (B)-Dissolved (mg/L) Cadmium (Cd)-Dissolved (mg/L) Cadmium (Cd)-Dissolved (mg/L) Cobalt (Co)-Dissolved (mg/L) Cobalt (Co)-Dissolved (mg/L) Cobalt (Co)-Dissolved (mg/L) Lead (Pb)-Dissolved (mg/L) Lead (Pb)-Dissolved (mg/L) Lead (Pb)-Dissolved (mg/L) Magnesium (Mg)-Dissolved (mg/L) Magnese (Mn)-Dissolved (mg/L) Manganese (Mn)-Dissolved (mg/L)	Description Sampled Date Sampled Time Client ID27-JUL-09 12:10 133Analyte27-JUL-09 12:10Phosphorus (P)-Total (mg/L)<0.030Potassium (K)-Total (mg/L)<0.0010Silicon (Si)-Total (mg/L)<0.000077Solium (Na)-Total (mg/L)0.000077Sodium (Na)-Total (mg/L)0.000077Sodium (Na)-Total (mg/L)0.000077Sodium (Na)-Total (mg/L)0.000070Sodium (Na)-Total (mg/L)0.000070Sodium (Na)-Total (mg/L)0.00505Thallium (TI)-Total (mg/L)0.00505Titanium (TI)-Total (mg/L)0.0010Uranium (U)-Total (mg/L)0.0012Vanadium (V)-Total (mg/L)0.0012Antimony (Sb)-Dissolved (mg/L)0.0012Antimony (Sb)-Dissolved (mg/L)0.0012Antimony (Sb)-Dissolved (mg/L)0.00050Bismuth (Bi)-Dissolved (mg/L)<0.000017Calcium (Ca)-Dissolved (mg/L)<0.00017Calcium (Ca)-Dissolved (mg/L)<0.00017Calcium (Ca)-Dissolved (mg/L)<0.00017Colper (Cu)-Dissolved (mg/L)<0.00017Copper (Cu)-Dissolved (mg/L)<0.00027Iron (Fe)-Dissolved (mg/L)<0.00027Molydenum (Mo)-Dissolved (mg/L)<0.00027Molydenum (Mo)-Dissolved (mg/L)<0.00027Molydenum (Mo)-Dissolved (mg/L)<0.000278Maganese (Mn)-Dissolved (mg/L)<0.000278Maganese (Mn)-Dissolved (mg/L)<0.000278Mickel (Ni)-Dissolved (mg/L)<0.000278Mickel (Ni)-Dissolved (mg/L)<0.000278Nic	Description Sampled Date Sampled Date Date 27-JUL-09 13:3 Analyte	Description Sampled Time Client ID 27.JUL.09 13:3 27.JUL.09 09:30 DUPI TRAVELBLANK Analyte - - - Prosphorus (P)-Total (mg/L) - - - Prosphorus (P)-Total (mg/L) - - - - Selenium (Se)-Total (mg/L) - - - - - - Silicon (Si)-Total (mg/L) 7.46 1.4.4 -	Description Sampled Time Client 10 27.101.09 12:10 130 27.00.09 00:30 00:01 TRAVEL BLANK Analyse - <t< td=""></t<>

L798225 CONTD PAGE 6 of 11

PAGE	6	ot	11
12-AUG-	09	14:	39

L798225 CONTD.... PAGE 7 of 11 12-AUG-09 14:39

	Sample ID Description	L798225-6	L798225-7	L798225-8	
	Sampled Date	27-JUL-09	27-JUL-09		
	Sampled Time	12:10	09:30		
	Client ID	133	DUP1	TRAVEL BLANK	
Grouping	Analyte				
WATER					
Dissolved Metals	Titanium (Ti)-Dissolved (mg/L)	<0.010	<0.010		
	Uranium (U)-Dissolved (mg/L)	0.00313	0.000771		
	Vanadium (V)-Dissolved (mg/L)	<0.0010	<0.0010		
	Zinc (Zn)-Dissolved (mg/L)	0.0077	0.0277		

Additional Comments for Sample Listed: Sample Comments Samplenum Matrix Report Remarks Methods Listed (if applicable): ALS Test Code Matrix Test Description Analytical Method Reference(Based On) ALK-SCR-VA Water EPA 310.2 OR APHA 2320 Alkalinity by colour or titration This analysis is carried out using procedures adapted from EPA Method 310.2 "Alkalinity". Total Alkalinity is determined using the methyl orange colourimetric method. OR This analysis is carried out using procedures adapted from APHA Method 2320 "Alkalinity". Total alkalinity is determined by potentiometric titration to a pH 4.5 endpoint. Bicarbonate, carbonate and hydroxide alkalinity are calculated from phenolphthalein alkalinity and total alkalinity values. ANIONS-BR-IC-VA Water APHA 4110 B. Bromide by Ion Chromatography This analysis is carried out using procedures adapted from APHA Method 4110 B. "Ion Chromatography with Chemical Suppression of Eluent Conductivity" and EPA Method 300.0 "Determination of Inorganic Anions by Ion Chromatography". ANIONS-CL-IC-VA Water APHA 4110 B. Chloride by Ion Chromatography This analysis is carried out using procedures adapted from APHA Method 4110 B. "Ion Chromatography with Chemical Suppression of Eluent Conductivity" and EPA Method 300.0 "Determination of Inorganic Anions by Ion Chromatography". ANIONS-F-IC-VA Water Fluoride by Ion Chromatography APHA 4110 B. This analysis is carried out using procedures adapted from APHA Method 4110 B. "Ion Chromatography with Chemical Suppression of Eluent Conductivity" and EPA Method 300.0 "Determination of Inorganic Anions by Ion Chromatography". ANIONS-NO2-IC-VA Water Nitrite by Ion Chromatography APHA 4110 B. This analysis is carried out using procedures adapted from APHA Method 4110 B. "Ion Chromatography with Chemical Suppression of Eluent Conductivity" and EPA Method 300.0 "Determination of Inorganic Anions by Ion Chromatography". Specifically, the nitrite detection is by UV absorbance and not conductivity. ANIONS-NO3-IC-VA Water Nitrate by Ion Chromatography APHA 4110 B. This analysis is carried out using procedures adapted from APHA Method 4110 B. "Ion Chromatography with Chemical Suppression of Eluent Conductivity" and EPA Method 300.0 "Determination of Inorganic Anions by Ion Chromatography". Specifically, the nitrate detection is by UV absorance and not conductivity. ANIONS-SO4-IC-VA Water APHA 4110 B. Sulfate by Ion Chromatography This analysis is carried out using procedures adapted from APHA Method 4110 B. "Ion Chromatography with Chemical Suppression of Eluent Conductivity" and EPA Method 300.0 "Determination of Inorganic Anions by Ion Chromatography". **CARBONS-TOC-VA** Water Total organic carbon by combustion APHA 5310 "TOTAL ORGANIC CARBON (TOC)" This analysis is carried out using procedures adapted from APHA Method 5310 "Total Organic Carbon (TOC)". **CARBONS-TOC-VA** Water Total organic carbon by combustion APHA 5310 TOTAL ORGANIC CARBON (TOC) This analysis is carried out using procedures adapted from APHA Method 5310 "Total Organic Carbon (TOC)". EC-PCT-VA Water APHA 2510 Auto, Conduc, Conductivity (Automated) This analysis is carried out using procedures adapted from APHA Method 2510 "Conductivity". Conductivity is determined using a conductivity electrode. HARDNESS-CALC-VA APHA 2340B Water Hardness Hardness is calculated from Calcium and Magnesium concentrations, and is expressed as calcium carbonate equivalents.

MET-DIS-ICP-VA

Water

Dissolved Metals in Water by ICPOES

EPA SW-846 3005A/6010B

Methods Listed (if appli	cable):		
ALS Test Code	Matrix	Test Description	Analytical Method Reference(Based On)
American Public Health As	ssociation, and tection Agency	lures adapted from "Standard Methods for the Examination of d with procedures adapted from "Test Methods for Evaluating / (EPA). The procedure involves filtration (EPA Method 3005 A Method 6010B).	Solid Waste" SW-846 published by the United
MET-DIS-LOW-MS-VA	Water	Dissolved Metals in Water by ICPMS(Low)	EPA SW-846 3005A/6020A
American Public Health As States Environmental Prot	ssociation, and tection Agency	ures adapted from "Standard Methods for the Examination of d with procedures adapted from "Test Methods for Evaluating ((EPA). The procedures involves preliminary sample treatme pupled plasma - mass spectrometry (EPA Method 6020A).	Solid Waste" SW-846 published by the United
MET-DIS-ULTRA-MS-VA	Water	Diss. Metals in Water by ICPMS (Ultra)	EPA SW-846 3005A/6020A
American Public Health As States Environmental Prot	ssociation, and tection Agency	ures adapted from "Standard Methods for the Examination of d with procedures adapted from "Test Methods for Evaluating / (EPA). The procedures involves preliminary sample treatme pupled plasma - mass spectrometry (EPA Method 6020A).	Solid Waste" SW-846 published by the United
MET-TOT-ICP-VA	Water	Total Metals in Water by ICPOES	EPA SW-846 3005A/6010B
American Public Health As States Environmental Prot	ssociation, and tection Agency	lures adapted from "Standard Methods for the Examination of d with procedures adapted from "Test Methods for Evaluating / (EPA). The procedures may involve preliminary sample trea Instrumental analysis is by inductively coupled plasma - optic	Solid Waste" SW-846 published by the United atment by acid digestion, using either hotblock or
MET-TOT-LOW-MS-VA	Water	Total Metals in Water by ICPMS(Low)	EPA SW-846 3005A/6020A
American Public Health As States Environmental Prot	ssociation, and tection Agency	lures adapted from "Standard Methods for the Examination of d with procedures adapted from "Test Methods for Evaluating / (EPA). The procedures may involve preliminary sample trea od 3005A). Instrumental analysis is by inductively coupled pla	Solid Waste" SW-846 published by the United atment by acid digestion, using either hotblock or
MET-TOT-ULTRA-MS-VA	Water	Total Metals in Water by ICPMS (Ultra)	EPA SW-846 3005A/6020A
American Public Health As States Environmental Prot	ssociation, and tection Agency	lures adapted from "Standard Methods for the Examination of d with procedures adapted from "Test Methods for Evaluating / (EPA). The procedures may involve preliminary sample trea od 3005A). Instrumental analysis is by inductively coupled pla	Solid Waste" SW-846 published by the United atment by acid digestion, using either hotblock or
NH3-COL-VA	Water	Ammonia by Colour	APHA 4500-NH3 "Nitrogen (Ammonia)"
This analysis is carried our determined using the pher		ved samples, using procedures adapted from APHA Method - tric method.	4500-NH3 "Nitrogen (Ammonia)". Ammonia is
NH3-COL-VA	Water	Ammonia by Colour	APHA 4500-NH3 Nitrogen (Ammonia)
This analysis is carried our determined using the pher		ved samples, using procedures adapted from APHA Method - tric method.	4500-NH3 "Nitrogen (Ammonia)". Ammonia is
PH-MAN-VA	Water	pH by Manual Meter	APHA 4500-H "pH Value"
This analysis is carried our electrode.	t using proced	lures adapted from APHA Method 4500-H "pH Value". The pH	H is determined in the laboratory using a pH
PH-MAN-VA	Water	pH by Manual Meter	APHA 4500-H pH Value
This analysis is carried our electrode.	t using proced	lures adapted from APHA Method 4500-H "pH Value". The pH	H is determined in the laboratory using a pH

L798225 CONTD.... PAGE 10 of 11

Reference Information

ALS Test Code	pplicable): Matrix	Test Description	Analytical Method Reference(Based On)
PH-PCT-VA	Water	pH by Meter (Automated)	APHA 4500-H "pH Value"
This analysis is carried electrode	I out using proc	edures adapted from APHA Method 4500-H	"pH Value". The pH is determined in the laboratory using a pH
PH-PCT-VA	Water	pH by Meter (Automated)	APHA 4500-H pH Value
This analysis is carried electrode	l out using proc	edures adapted from APHA Method 4500-H	"pH Value". The pH is determined in the laboratory using a pH
PO4-DO-COL-VA	Water	Dissolved ortho Phosphate by Colour	APHA 4500-P "Phosphorous"
ascorbic acid colourim phosphate (total phosp	etric method. E phorous) is dete	Dissolved ortho-phosphate (dissolved reactive	"Phosphorus". All forms of phosphate are determined by the phosphorous) is determined by direct measurement. Total ole. Total dissolved phosphate (total dissolved phosphorous) is y persulfate digestion of the filtrate.
PO4-DO-COL-VA	Water	Dissolved ortho Phosphate by Colour	APHA 4500-P Phosphorous
ascorbic acid colourim phosphate (total phosp	etric method. E phorous) is dete	Dissolved ortho-phosphate (dissolved reactive	"Phosphorus". All forms of phosphate are determined by the phosphorous) is determined by direct measurement. Total ole. Total dissolved phosphate (total dissolved phosphorous) is y persulfate digestion of the filtrate.
PO4-T-COL-VA	Water	Total Phosphate P by Color	APHA 4500-P "Phosphorous"
ascorbic acid colourim phosphate (total phosp	etric method. E phorous) is dete	Dissolved ortho-phosphate (dissolved reactive	"Phosphorus". All forms of phosphate are determined by the phosphorous) is determined by direct measurement. Total ole. Total dissolved phosphate (total dissolved phosphorous) is y persulfate digestion of the filtrate.
PO4-T-COL-VA	Water	Total Phosphate P by Color	APHA 4500-P Phosphorous
ascorbic acid colourim phosphate (total phosp	etric method. E phorous) is dete	Dissolved ortho-phosphate (dissolved reactive	"Phosphorus". All forms of phosphate are determined by the phosphorous) is determined by direct measurement. Total le. Total dissolved phosphate (total dissolved phosphorous) is y persulfate digestion of the filtrate.
TDS-VA	Water	Total Dissolved Solids by Gravimetric	APHA 2540 C - GRAVIMETRIC
			olids". Solids are determined gravimetrically. Total Dissolved Solids mined by evaporating the filtrate to dryness at 180 degrees celsius.
FKN-SIE-VA	Water	Total Kjeldahl Nitrogen by SIE	APHA 4500-Norg (TKN)
		edures adapted from APHA Method 4500-No analysis using an ammonia selective electrod	org "Nitrogen (Organic)". Total kjeldahl nitrogen is determined by e.
rss-va	Water	Total Suspended Solids by Gravimetric	APHA 2540 D - GRAVIMETRIC
			olids". Solids are determined gravimetrically. Total Suspended s determined by drying the filter at 104 degrees celsius.
FURBIDITY-VA	Water	Turbidity by Meter	APHA 2130 "Turbidity"
This analysis is carried	l out using proc	edures adapted from APHA Method 2130 "To	urbidity". Turbidity is determined by the nephelometric method.
TURBIDITY-VA	Water	Turbidity by Meter	APHA 2130 Turbidity

** Laboratory Methods employed follow in-house procedures, which are generally based on nationally or internationally accepted methodologies.

L798225 CONTD.... PAGE 11 of 11

Reference Information

Methods Listed (if applicable):

ALS Test Code	Matrix	Test Description	Analyti	cal Method Reference(Based On)
The last two letters of the above ALS Test Code column indicate the laboratory that performed analytical analysis for that test. Refer to the list below:				
Laboratory Definition	on Code La	aboratory Location	Laboratory Definition Code	Laboratory Location
VA		S LABORATORY GROUP - NCOUVER, BC, CANADA		

GLOSSARY OF REPORT TERMS

Surr - A surrogate is an organic compound that is similar to the target analyte(s) in chemical composition and behavior but not normally detected in environmental samples. Prior to sample processing, samples are fortified with one or more surrogate compounds.

The reported surrogate recovery value provides a measure of method efficiency.

mg/kg (units) - unit of concentration based on mass, parts per million

mg/L (units) - unit of concentration based on volume, parts per million

N/A - Result not available. Refer to qualifier code and definition for explanation

Test results reported relate only to the samples as received by the laboratory. UNLESS OTHERWISE STATED, ALL SAMPLES WERE RECEIVED IN ACCEPTABLE CONDITION. Although test results are generated under strict QA/QC protocols, any unsigned test reports, faxes, or emails are considered preliminary.

ALS Laboratory Group has an extensive QA/QC program where all analytical data reported is analyzed using approved referenced procedures followed by checks and reviews by senior managers and quality assurance personnel. However, since the results are obtained from chemical measurements and thus cannot be guaranteed, ALS Laboratory Group assumes no liability for the use or interpretation of the results.

ALS Laboratory Group

ANALYTICAL CHEMISTRY & TESTING SERVICES

Environmental Division

Report to:

Contact:

Address:

Phone:

Contact:

Address:

Phone:

#

14

102

DO

Chain of Custody / Analytical Request Form Canada Toll Free: 1 800 668 9878

Report Format / Distribution

www.alsglobal.com

coc # **08-** 039672

of

Number of Containers

5

5

5

5

5

5

5

Page

Service Requested: (rush - subject to availability)

Company: Stantec Regular (Default) Standard: Other: lennifer Todd Priority (2-3 Business Days) - 50% Surcharge Select: PDF / Excel / Digital iennifer. todd @ starter 4370 Dominion St. Emergency (1 Business Day) - 100% Surcharge Email 1: V564L7 Email 2: inaby BI con For Emergency < 1 Day, ASAP or Weekend - Contact ALS Fax: 604 436 . 3752 Analysis Request 2014 (es/No? (Indicate Filtered or Preserved, F/P) Same as Report ? Client / Project Information: Invoice To: 1053550.0 C2404 Company: Job #: PO / AFE ameters Hetals Hetals Victoria Gok Legal Site Description: Dublin Gulch Fax: Quote #: エフ De Dissolved Lab Work Order # ALS 1798225 Sampler: ennify Toda 10tol Contact: Law (lab use only) ZY Sample Identification Sample Date Sample Type Time (This description will appear on the report) 113 groundwater 9.30 v 27 groundwater 21 10:00 groundwate 030 63 groundwate 1:00 85 11:30 avoundubite 132 12:10 ~ 420 anondonate -De 7 9:30 7 woundwater 2 Special Instructions / Regulations / Hazardous Details Total = 35 CCME / CSR QAQC/EDT Failure to complete all portions of this form may delay analysis. Please fill in this form LEGIBLY By the use of this form the user acknowledges and agrees with the Terms and Conditions as specified on the back page of the white - report copy. SHIPMENT RELEASE (client use) SHIPMENT RECEPTION (lab use only) SHIPMENT VERIFICATION (lab use only) Observations: Released by: Received by: Date: Date & Time: Time: Verified by: Date & Time: Temperature: Yes / No ? ۱2° 14.26 HD 09/07/28 IIf Yes attach SIF REFER TO BACK PAGE FOR ALS LOCATIONS AND SAMPLING INFORMATION WHITE - REPORT COPY, PINK - FILE COPY, YELLOW - CLIENT COPY GENF 18.00 Front

ALS Laboratory Group ANALYTICAL CHEMISTRY & TESTING SERVICES

Environmental Division

					_		
		-	Certific	ate of Analy			
JACQUES W					I	Report Date: Version:	24-SEP-09 10:23 (MT) FINAL REV. 2
ATTN: JENN	NIFER T	ODD				version:	FINAL REV. 2
4370 DOMINI PO BOX 21	ON STI	REET, 5TH FLOOR					
BURNABY B	C V5G	4L7					
Lab Work Ord	er #:	L812430				Date Receive	ed: 31-AUG-09
Project P.O.	#:						
Job Reference	ce:	1053550.08					
Legal Site De	esc:	DUBLIN GULCH					
CofC Numbe	rs:	08-023699, 08-023	3703				
Other Informa	ation:						
Comments:							
	Please analysi		s limits have been in	creased for some o	of the samples d	ue to the interfe	ences encountered during the
	-						
							ved parameters is greater combination of the following:
	lab	pratory method variabilit	\ <u>/</u>				
	- ana	lytical bias introduced d	uring sample filtratio				
		lytical bias introduced d sportation and/or analys		ng, storage,			
	- san	nple grab bias - where s	eparate grab sample	es are processed to	D		
		duce total and dissolved nple split bias - where to		rameters samples a	are produced fro	om the same gra	b sample
	ban		iai ana alooontea pa			sin the same gre	is oumpto.
	This re	vision, 2, of the report r	eplaces and superse	des all previous rev	visions. The mis	sing Mercury re	sults have been added to all
	sample	es analyzed for metals.	All other data remain	s unchanged.			
			11 1	1			
		1	htme lore	1. 1. 11			
		N	alase non	auc-M.			
		MAT	ASHA MARKOVIC	C-MIROVIC		=	
		Acco	unt Manager				

THIS REPORT SHALL NOT BE REPRODUCED EXCEPT IN FULL WITHOUT THE WRITTEN AUTHORITY OF THE LABORATORY. ALL SAMPLES WILL BE DISPOSED OF AFTER 30 DAYS FOLLOWING ANALYSIS. PLEASE CONTACT THE LAB IF YOU REQUIRE ADDITIONAL SAMPLE STORAGE TIME.

ALS Canada Ltd. Part of the ALS Laboratory Group 1988 Triumph Street, Vancouver, BC V5L 1K5 Phone: +1 604 253 4188 Fax: +1 604 253 6700 www.alsglobal.com A Campbell Brothers Limited Company

L812430 CONTD.... PAGE 2 of 14

ALS LABORATORY GROUP ANALYTICAL REPORT

24-SEP-09 10:24

	Sample ID Description	L812430-1	L812430-2	L812430-3	L812430-4	L812430-5
	Sampled Date Sampled Time	27-AUG-09	27-AUG-09	27-AUG-09	27-AUG-09	27-AUG-09
	Client ID	MW96-1	MW96-8	MW96-9	MW96-13	MW96-15
Grouping	Analyte					
WATER						
Physical Tests	Conductivity (uS/cm)	282	62.9	53.4	203	446
-	Hardness (as CaCO3) (mg/L)	151	25.0	23.2	83.9	274
	рН (рН)	7.36	7.14	6.94	7.73	7.90
	Total Suspended Solids (mg/L)	148	23.3	42.3	487	7.3
	Total Dissolved Solids (mg/L)	190	47	44	108	236
	Turbidity (NTU)	100			100	200
Anions and Nutrients	Alkalinity, Bicarbonate (as CaCO3) (mg/L)	83.8	19.0	22.6	107	243
	Alkalinity, Carbonate (as CaCO3) (mg/L)	<2.0	<2.0	<2.0	<2.0	<2.0
	Alkalinity, Hydroxide (as CaCO3) (mg/L)	<2.0	<2.0	<2.0	<2.0	<2.0
	Alkalinity, Total (as CaCO3) (mg/L)	83.8	19.0	22.6	107	243
	Ammonia as N (mg/L)	0.0606	<0.0050	0.0297	0.0076	0.0245
	Bromide (Br) (mg/L)	<0.050	<0.050	<0.050	<0.050	<0.050
	Chloride (CI) (mg/L)	<0.50	<0.50	<0.50	<0.50	<0.50
	Fluoride (F) (mg/L)	0.062	0.038	0.025	0.061	0.318
	Nitrate (as N) (mg/L)	0.0054	0.0939	0.145	0.177	<0.0050
	Nitrite (as N) (mg/L)	<0.0010	<0.0010	<0.0010	<0.0010	<0.0010
	Total Kjeldahl Nitrogen (mg/L)	0.126	0.056	0.159	0.091	0.094
	Ortho Phosphate as P (mg/L)	<0.0010	0.0050	0.0016	<0.0010	0.0026
	Total Phosphate as P (mg/L)	0.088	0.0202	0.0428	0.121	0.0045
	Sulfate (SO4) (mg/L)	64.4	9.16	2.51	6.12	17.3
Organic /	Total Organic Carbon (mg/L)	3.18	0.85	0.80	2.56	<0.50
Inorganic Carbon Total Metals	Aluminum (Al)-Total (mg/L)	0.815	0.274	0.802	2.50	0.0665
	Antimony (Sb)-Total (mg/L)	0.00370	0.00138	0.00203	0.00204	0.00021
	Arsenic (As)-Total (mg/L)	0.00370	0.0653	0.0673	0.0457	0.00021
	Barium (Ba)-Total (mg/L)	0.0178	0.0331	0.0397	0.0437	0.0578
	Beryllium (Be)-Total (mg/L)	<0.00050	<0.00050	<0.00050	<0.00050	<0.00050
	Bismuth (Bi)-Total (mg/L)	<0.00050	<0.00050	<0.00050	<0.00050	<0.00050
	Boron (B)-Total (mg/L)	<0.00030	<0.00050	<0.00050	<0.00050	<0.00050
	Cadmium (Cd)-Total (mg/L)	0.000127	0.000045	0.000049		0.000037
					0.000172	
	Calcium (Ca)-Total (mg/L)	55.5	8.01	6.71	18.2	33.8
	Chromium (Cr)-Total (mg/L)	0.00221	0.00087	0.00190	0.00434	<0.00050
	Cobalt (Co)-Total (mg/L)	0.00059	0.00019	0.00055	0.00393	<0.00010
	Copper (Cu)-Total (mg/L)	0.00417	0.00092	0.00315	0.00631	0.00062
	Iron (Fe)-Total (mg/L)	1.69	0.381	1.25	6.06	0.239
	Lead (Pb)-Total (mg/L)	0.00440	0.000672	0.00419	0.0171	0.000371
	Lithium (Li)-Total (mg/L)	0.0087	<0.0050	<0.0050	0.0061	0.0180
	Magnesium (Mg)-Total (mg/L)	2.01	1.18	1.40	30.6	43.0
	Manganese (Mn)-Total (mg/L)	0.103	0.00876	0.0270	0.234	0.0376
	Mercury (Hg)-Total (mg/L)	<0.000050	<0.000050	<0.000050	<0.000050	<0.000050
	Molybdenum (Mo)-Total (mg/L)	0.00309	0.000669	0.000498	0.000956	0.00455

L812430 CONTD.... PAGE 3 of 14

ALS LABORATORY GROUP ANALYTICAL REPORT

24-SEP-09 10:24

	Sample ID Description	L812430-6	L812430-7	L812430-8	L812430-9	L812430-10
	Sampled Date Sampled Time	27-AUG-09	27-AUG-09	27-AUG-09	27-AUG-09	27-AUG-09
	Client ID	MW96-18	MW96-23	GT96-26	MW95-152	DUP
Grouping	Analyte					
WATER						
Physical Tests	Conductivity (uS/cm)	568	287	180	787	384
-	Hardness (as CaCO3) (mg/L)	315	140	81.6	443	183
	рН (рН)	7.64	7.83	7.33	7.74	7.72
	Total Suspended Solids (mg/L)	133	29.8	106	7.8	42.3
	Total Dissolved Solids (mg/L)	385	170	125	494	221
	Turbidity (NTU)					
Anions and Nutrients	Alkalinity, Bicarbonate (as CaCO3) (mg/L)	139	130	81.6	320	151
	Alkalinity, Carbonate (as CaCO3) (mg/L)	<2.0	<2.0	<1.0	<2.0	<2.0
	Alkalinity, Hydroxide (as CaCO3) (mg/L)	<2.0	<2.0	<1.0	<2.0	<2.0
	Alkalinity, Total (as CaCO3) (mg/L)	139	130	81.6	320	151
	Ammonia as N (mg/L)	0.361	<0.0050	<0.0050	0.412	0.0839
	Bromide (Br) (mg/L)	<0.050	<0.050	<0.050	<0.50	<0.050
	Chloride (CI) (mg/L)	<0.50	<0.50	<0.50	<5.0	<0.50
	Fluoride (F) (mg/L)	0.073	0.056	0.131	<0.20	0.139
	Nitrate (as N) (mg/L)	0.0085	0.479	<0.0050	<0.050	<0.0050
	Nitrite (as N) (mg/L)	<0.0010	<0.0010	<0.0010	<0.010	<0.0010
	Total Kjeldahl Nitrogen (mg/L)	0.32	0.119	0.363	1.20	0.186
	Ortho Phosphate as P (mg/L)	0.0027	0.0331	0.0808	0.0082	<0.0010
	Total Phosphate as P (mg/L)	0.259	0.0585	0.543	0.0297	0.018
	Sulfate (SO4) (mg/L)	165	22.8	8.89	129	55.6
Organic /	Total Organic Carbon (mg/L)	1.24	2.18	7.28	3.90	2.65
Inorganic Carbon						
Total Metals	Aluminum (Al)-Total (mg/L)	0.203	0.540	2.88	0.106	0.215
	Antimony (Sb)-Total (mg/L)	0.0215	0.00182	0.0299	0.00075	0.00178
	Arsenic (As)-Total (mg/L)	0.618	0.250	0.267	0.554	0.119
	Barium (Ba)-Total (mg/L)	0.0251	0.0201	0.0590	0.0259	0.0382
	Beryllium (Be)-Total (mg/L)	<0.00050	<0.00050	<0.00050	<0.0010	<0.00050
	Bismuth (Bi)-Total (mg/L)	<0.00050	0.00062	<0.00050	<0.0010	<0.00050
	Boron (B)-Total (mg/L)	<0.010	0.011	0.010	<0.020	<0.010
	Cadmium (Cd)-Total (mg/L)	0.000043	0.000099	0.000077	<0.000034	0.000045
	Calcium (Ca)-Total (mg/L)	87.5	43.4	22.9	71.5	36.4
	Chromium (Cr)-Total (mg/L)	0.00087	0.00112	0.00139	<0.0010	0.00111
	Cobalt (Co)-Total (mg/L)	0.00148	0.00087	0.00284	0.00030	0.00109
	Copper (Cu)-Total (mg/L)	0.00153	0.00449	0.0116	0.00260	0.00177
	Iron (Fe)-Total (mg/L)	2.39	0.720	9.09	0.344	2.01
	Lead (Pb)-Total (mg/L)	0.00324	0.00167	0.00296	0.00109	0.000731
	Lithium (Li)-Total (mg/L)	<0.0050	0.0112	0.0068	0.111	0.0270
	Magnesium (Mg)-Total (mg/L)	20.0	5.79	5.69	63.8	26.2
	Manganese (Mn)-Total (mg/L)	0.341	0.0191	0.377	0.0747	0.311
	Mercury (Hg)-Total (mg/L)	<0.000050	<0.000050	<0.000050	<0.000050	<0.000050
	Molybdenum (Mo)-Total (mg/L)	0.00448	0.00725	0.00976	0.00030	0.00520

L812430 CONTD PAGE 4 of 14

-	-			-		
2	4	-5	SEP	-09	10:	24

	Sample ID Description	L812430-11	L812430-12	L812430-13
	Sampled Date Sampled Time	27-AUG-09	27-AUG-09	27-AUG-09
	Client ID	MW09-DG1	MW09-DG2	MW09-STU 2
Grouping	Analyte			
WATER				
Physical Tests	Conductivity (uS/cm)	377	557	659
,	Hardness (as CaCO3) (mg/L)	189	293	452
	рН (рН)	7.74	7.50	7.62
	Total Suspended Solids (mg/L)	27.8	6.3	28.8
	Total Dissolved Solids (mg/L)	217	350	397
	Turbidity (NTU)	2		23.0
Anions and Nutrients	Alkalinity, Bicarbonate (as CaCO3) (mg/L)	147	210	285
	Alkalinity, Carbonate (as CaCO3) (mg/L)	<2.0	<2.0	<2.0
	Alkalinity, Hydroxide (as CaCO3) (mg/L)	<2.0	<2.0	<2.0
	Alkalinity, Total (as CaCO3) (mg/L)	147	210	285
	Ammonia as N (mg/L)	0.0554	0.0315	0.152
	Bromide (Br) (mg/L)	<0.050	<0.050	<0.050
	Chloride (CI) (mg/L)	<0.50	<0.50	<0.50
	Fluoride (F) (mg/L)	0.138	0.104	0.110
	Nitrate (as N) (mg/L)	<0.0050	<0.0050	0.0065
	Nitrite (as N) (mg/L)	<0.0010	0.0104	<0.0010
	Total Kjeldahl Nitrogen (mg/L)	0.191	0.339	0.488
	Ortho Phosphate as P (mg/L)	0.0012	<0.0010	0.0011
	Total Phosphate as P (mg/L)	<0.010	<0.0020	0.024
	Sulfate (SO4) (mg/L)	52.6	98.9	90.1
Organic /	Total Organic Carbon (mg/L)	2.35	4.74	2.32
Inorganic Carbon Total Metals	Aluminum (Al)-Total (mg/L)	0.499	0.595	0.0280
	Antimony (Sb)-Total (mg/L)	0.499	0.00800	0.00029
	Arsenic (As)-Total (mg/L)	0.00412		
	Barium (Ba)-Total (mg/L)	0.0712	0.0548 0.0797	1.32 0.0224
	Barluin (Ba)-Total (mg/L) Beryllium (Be)-Total (mg/L)			<0.0224
	, , , , , , , , , , , , , , , , , , ,	<0.00050	<0.00050	
	Bismuth (Bi)-Total (mg/L)	< 0.00050	<0.00050	<0.00050
	Boron (B)-Total (mg/L)	0.013	<0.010	<0.010
	Cadmium (Cd)-Total (mg/L)	0.000062	0.000085	<0.000017
	Calcium (Ca)-Total (mg/L)	37.1	57.3	81.8
	Chromium (Cr)-Total (mg/L)	0.00220	0.00191	<0.00070
	Cobalt (Co)-Total (mg/L)	0.00144	0.00161	<0.00010
	Copper (Cu)-Total (mg/L)	0.00403	0.00415	0.00019
	Iron (Fe)-Total (mg/L)	2.23	1.89	1.57
	Lead (Pb)-Total (mg/L)	0.00170	0.00250	0.000317
	Lithium (Li)-Total (mg/L)	0.0211	0.0257	0.0578
	Magnesium (Mg)-Total (mg/L)	23.8	33.7	59.7
	Manganese (Mn)-Total (mg/L)	0.292	0.411	0.0645
	Mercury (Hg)-Total (mg/L)	<0.000050	<0.000050	<0.000050
	Molybdenum (Mo)-Total (mg/L)	0.0121	0.00729	0.000208

L812430 CONTD.... PAGE 5 of 14

ALS LABORATORY GROUP ANALYTICAL REPORT

24-SEP-09 10:24

	Sample ID Description Sampled Date	L812430-1 27-AUG-09	L812430-2 27-AUG-09	L812430-3 27-AUG-09	L812430-4 27-AUG-09	L812430-5 27-AUG-09
	Sampled Time					
	Client ID	MW96-1	MW96-8	MW96-9	MW96-13	MW96-15
Grouping	Analyte					
WATER						
Total Metals	Nickel (Ni)-Total (mg/L)	0.00267	0.00074	0.00218	0.0135	<0.00050
	Phosphorus (P)-Total (mg/L)	<0.30	<0.30	<0.30	<0.30	<0.30
	Potassium (K)-Total (mg/L)	<2.0	<2.0	<2.0	3.3	2.3
	Selenium (Se)-Total (mg/L)	<0.0010	<0.0010	<0.0010	<0.0010	<0.0010
	Silicon (Si)-Total (mg/L)	8.21	6.80	9.53	8.41	5.85
	Silver (Ag)-Total (mg/L)	0.000119	0.000014	<0.000020	0.000140	<0.000010
	Sodium (Na)-Total (mg/L)	2.7	2.3	2.5	<2.0	2.5
	Strontium (Sr)-Total (mg/L)	0.326	0.0473	0.0471	0.150	0.341
	Thallium (TI)-Total (mg/L)	<0.00010	<0.00010	<0.00010	<0.00010	<0.00010
	Tin (Sn)-Total (mg/L)	0.00477	0.00029	0.00095	0.00109	0.00012
	Titanium (Ti)-Total (mg/L)	0.048	0.013	0.037	0.087	<0.010
	Uranium (U)-Total (mg/L)	0.000384	0.000267	0.000423	0.00128	0.00747
	Vanadium (V)-Total (mg/L)	0.0019	<0.0010	0.0018	0.0032	<0.0010
	Zinc (Zn)-Total (mg/L)	0.0185	0.0098	0.0676	0.0271	0.0034
Dissolved Metals	Aluminum (AI)-Dissolved (mg/L)	0.0075	0.0019	0.0045	0.0017	0.0016
	Antimony (Sb)-Dissolved (mg/L)	0.00026	0.00044	0.00072	0.00015	<0.00010
	Arsenic (As)-Dissolved (mg/L)	0.00615	0.0649	0.0477	0.00095	0.104
	Barium (Ba)-Dissolved (mg/L)	0.00696	0.0133	0.0215	0.00276	0.0551
	Beryllium (Be)-Dissolved (mg/L)	<0.00050	<0.00050	<0.00050	<0.00050	<0.00050
	Bismuth (Bi)-Dissolved (mg/L)	<0.00050	<0.00050	<0.00050	<0.00050	<0.00050
	Boron (B)-Dissolved (mg/L)	<0.010	<0.010	<0.010	<0.010	<0.010
	Cadmium (Cd)-Dissolved (mg/L)	<0.000017	<0.000017	0.000032	<0.000017	0.000022
	Calcium (Ca)-Dissolved (mg/L)	57.4	8.16	7.35	12.2	36.7
	Chromium (Cr)-Dissolved (mg/L)	<0.00050	<0.00050	<0.00050	<0.00050	<0.00050
	Cobalt (Co)-Dissolved (mg/L)	<0.00010	<0.00010	<0.00010	<0.00010	<0.00010
	Copper (Cu)-Dissolved (mg/L)	0.00012	0.00089	0.00082	0.00026	<0.00010
	Iron (Fe)-Dissolved (mg/L)	<0.030	<0.030	<0.030	<0.030	<0.030
	Lead (Pb)-Dissolved (mg/L)	<0.000050	<0.000050	0.000125	<0.000050	<0.000050
	Lithium (Li)-Dissolved (mg/L)	0.0074	<0.0050	<0.0050	<0.0050	0.0182
	Magnesium (Mg)-Dissolved (mg/L)	1.79	1.12	1.18	13.0	44.1
	Manganese (Mn)-Dissolved (mg/L)	0.0607	0.00140	0.00768	0.00230	0.0192
	Mercury (Hg)-Dissolved (mg/L)	<0.000050	<0.000050	<0.000050	<0.000050	<0.000050
	Molybdenum (Mo)-Dissolved (mg/L)	0.00286	0.000619	0.000478	0.000711	0.00454
	Nickel (Ni)-Dissolved (mg/L)	<0.00050	<0.00050	0.00073	<0.00050	<0.00050
	Phosphorus (P)-Dissolved (mg/L)	<0.30	<0.30	<0.30	<0.30	<0.30
	Potassium (K)-Dissolved (mg/L)	<2.0	<2.0	<2.0	<2.0	2.1
	Selenium (Se)-Dissolved (mg/L)	<0.0010	<0.0010	<0.0010	<0.0010	<0.0010
	Silicon (Si)-Dissolved (mg/L)	7.34	6.64	8.69	4.73	6.02
	Silver (Ag)-Dissolved (mg/L)	<0.000010	<0.000010	<0.000010	<0.000010	<0.000010
	Sodium (Na)-Dissolved (mg/L)	2.5	2.2	2.3	<2.0	2.2
	Strontium (Sr)-Dissolved (mg/L)	0.319	0.0454	0.0429	0.0874	0.336

L812430 CONTD.... PAGE 6 of 14

ALS LABORATORY GROUP ANALYTICAL REPORT

24-SEP-09 10:24

	Sample ID Description Sampled Date	L812430-6	L812430-7	L812430-8	L812430-9	L812430-10
	Sampled Date	27-AUG-09	27-AUG-09	27-AUG-09	27-AUG-09	27-AUG-09
	Client ID	MW96-18	MW96-23	GT96-26	MW95-152	DUP
Grouping	Analyte					
WATER						
Total Metals	Nickel (Ni)-Total (mg/L)	0.00840	0.00221	0.0253	0.0104	0.00249
	Phosphorus (P)-Total (mg/L)	<0.30	<0.30	0.59	<0.30	<0.30
	Potassium (K)-Total (mg/L)	3.5	<2.0	<2.0	4.9	3.3
	Selenium (Se)-Total (mg/L)	<0.0010	0.0023	<0.0010	<0.0020	<0.0010
	Silicon (Si)-Total (mg/L)	3.99	5.23	18.7	7.79	5.41
	Silver (Ag)-Total (mg/L)	<0.000030	<0.000030	<0.000040	<0.000020	<0.000060
	Sodium (Na)-Total (mg/L)	4.7	12.3	6.9	22.0	8.3
	Strontium (Sr)-Total (mg/L)	0.619	0.208	0.239	0.966	0.327
	Thallium (TI)-Total (mg/L)	<0.00010	<0.00010	<0.00010	<0.00020	<0.00010
	Tin (Sn)-Total (mg/L)	0.00153	0.00263	0.00044	0.00216	0.00037
	Titanium (Ti)-Total (mg/L)	0.018	0.023	0.053	0.011	0.010
	Uranium (U)-Total (mg/L)	0.00733	0.00465	0.00113	0.00360	0.00173
	Vanadium (V)-Total (mg/L)	<0.0010	<0.0010	0.0012	<0.0020	<0.0010
	Zinc (Zn)-Total (mg/L)	0.0088	0.0110	0.0250	0.0134	0.0632
Dissolved Metals	Aluminum (Al)-Dissolved (mg/L)	0.0026	0.0034	0.0027	0.0035	0.0046
	Antimony (Sb)-Dissolved (mg/L)	0.0192	0.00113	0.0312	0.00053	0.00343
	Arsenic (As)-Dissolved (mg/L)	0.0828	0.222	0.0862	0.557	0.0203
	Barium (Ba)-Dissolved (mg/L)	0.0213	0.0123	0.0192	0.0226	0.0398
	Beryllium (Be)-Dissolved (mg/L)	<0.00050	<0.00050	<0.00050	<0.0010	<0.00050
	Bismuth (Bi)-Dissolved (mg/L)	<0.00050	<0.00050	<0.00050	<0.0010	<0.00050
	Boron (B)-Dissolved (mg/L)	<0.010	<0.010	<0.010	<0.020	0.013
	Cadmium (Cd)-Dissolved (mg/L)	<0.000017	0.000044	0.000036	<0.000034	<0.000017
	Calcium (Ca)-Dissolved (mg/L)	92.7	46.6	24.2	73.8	35.3
	Chromium (Cr)-Dissolved (mg/L)	<0.00050	<0.00050	<0.00050	<0.0010	<0.00050
	Cobalt (Co)-Dissolved (mg/L)	0.00127	<0.00010	0.00146	<0.00020	0.00111
	Copper (Cu)-Dissolved (mg/L)	<0.00010	0.00115	0.00400	0.00028	0.00091
	Iron (Fe)-Dissolved (mg/L)	< 0.030	<0.030	< 0.030	0.176	< 0.030
	Lead (Pb)-Dissolved (mg/L)	<0.000050	<0.000050	<0.000050	0.00012	<0.000050
	Lithium (Li)-Dissolved (mg/L)	<0.0050	0.0102	0.0057	0.099	0.0174
	Magnesium (Mg)-Dissolved (mg/L)	20.3	5.85	5.15	63.0	23.0
	Manganese (Mn)-Dissolved (mg/L)	0.326	0.000096	0.302	0.0656	0.279
	Mercury (Hg)-Dissolved (mg/L)	<0.000050	<0.000050	<0.000050	<0.000050	<0.000050
	Molybdenum (Mo)-Dissolved (mg/L)	0.00432	0.00688	0.00832	0.00024	0.0136
	Nickel (Ni)-Dissolved (mg/L)	0.00705	0.00070	0.0111	0.0085	0.00336
	Phosphorus (P)-Dissolved (mg/L)	<0.30	<0.30	<0.30	<0.30	< 0.30
	Potassium (K)-Dissolved (mg/L)	3.7	<2.0	<2.0	4.8	3.1
	Selenium (Se)-Dissolved (mg/L)	<0.0010	0.0021	<0.0010	<0.0020	<0.0010
	Silicon (Si)-Dissolved (mg/L)	3.77	4.59	12.6	7.68	4.57
	Silver (Ag)-Dissolved (mg/L)	<0.000010	<0.000010	<0.000010	<0.000020	<0.000010
	Sodium (Na)-Dissolved (mg/L)	4.4	11.8	6.6	20.0	11.5
	Strontium (Sr)-Dissolved (mg/L)	0.608	0.198	0.213	0.860	0.252

L812430 CONTD PAGE 7 of 14 24-SEP-09 10:24

ALS LABORATORY GROUP ANALYTICAL REPORT

Silicon (Si)-Dissolved (mg/L)

Silver (Ag)-Dissolved (mg/L)

Sodium (Na)-Dissolved (mg/L)

Strontium (Sr)-Dissolved (mg/L)

	Sample ID Description	L812430-11	L812430-12	L812430-13	
	Sampled Date	27-AUG-09	27-AUG-09	27-AUG-09	
	Sampled Time Client ID	MW09-DG1	MW09-DG2	MW09-STU 2	
Grouping	Analyte				
WATER					
Total Metals	Nickel (Ni)-Total (mg/L)	0.00433	0.00600	<0.00050	
	Phosphorus (P)-Total (mg/L)	<0.30	<0.30	<0.30	
	Potassium (K)-Total (mg/L)	3.3	3.6	4.9	
	Selenium (Se)-Total (mg/L)	<0.0010	<0.0010	<0.0010	
	Silicon (Si)-Total (mg/L)	5.37	6.79	7.53	
	Silver (Ag)-Total (mg/L)	0.000158	<0.000080	<0.000010	
	Sodium (Na)-Total (mg/L)	11.0	20.3	5.8	
	Strontium (Sr)-Total (mg/L)	0.274	0.445	0.642	
	Thallium (TI)-Total (mg/L)	<0.00010	<0.00010	<0.00010	
	Tin (Sn)-Total (mg/L)	0.00081	0.00106	0.00017	
	Titanium (Ti)-Total (mg/L)	0.026	0.031	<0.010	
	Uranium (U)-Total (mg/L)	0.00161	0.00469	0.00175	
	Vanadium (V)-Total (mg/L)	<0.0010	0.0012	<0.0010	
	Zinc (Zn)-Total (mg/L)	0.0712	0.0466	0.0041	
Dissolved Metals	Aluminum (AI)-Dissolved (mg/L)	0.0040	0.143	0.0010	
	Antimony (Sb)-Dissolved (mg/L)	0.00365	0.00690	0.00023	
	Arsenic (As)-Dissolved (mg/L)	0.0309	0.0492	1.33	
	Barium (Ba)-Dissolved (mg/L)	0.0394	0.0661	0.0214	
	Beryllium (Be)-Dissolved (mg/L)	<0.00050	<0.00050	<0.00050	
	Bismuth (Bi)-Dissolved (mg/L)	<0.00050	<0.00050	<0.00050	
	Boron (B)-Dissolved (mg/L)	0.012	<0.010	<0.010	
	Cadmium (Cd)-Dissolved (mg/L)	0.000018	0.000064	<0.000017	
	Calcium (Ca)-Dissolved (mg/L)	37.2	61.2	81.6	
	Chromium (Cr)-Dissolved (mg/L)	<0.00050	0.00537	<0.00080	
	Cobalt (Co)-Dissolved (mg/L)	0.00106	0.00124	<0.00010	
	Copper (Cu)-Dissolved (mg/L)	0.00084	0.00367	0.00018	
	Iron (Fe)-Dissolved (mg/L)	<0.030	0.948	1.46	
	Lead (Pb)-Dissolved (mg/L)	<0.000050	0.00187	0.000052	
	Lithium (Li)-Dissolved (mg/L)	0.0197	0.0243	0.0570	
	Magnesium (Mg)-Dissolved (mg/L)	23.3	34.1	60.1	
	Manganese (Mn)-Dissolved (mg/L)	0.276	0.411	0.0623	
	Mercury (Hg)-Dissolved (mg/L)	<0.000050	<0.000050	<0.000050	
	Molybdenum (Mo)-Dissolved (mg/L)	0.0136	0.00633	0.000190	
	Nickel (Ni)-Dissolved (mg/L)	0.00316	0.00472	<0.00050	
	Phosphorus (P)-Dissolved (mg/L)	<0.30	<0.30	<0.30	
	Potassium (K)-Dissolved (mg/L)	3.2	3.2	5.1	
	Selenium (Se)-Dissolved (mg/L)	<0.0010	<0.0010	<0.0010	
	Silioon (Si) Dissolved (mg/L)	4.50	6.40	7.40	

4.53

< 0.000010

11.7

0.267

6.40

< 0.000010

18.2

0.426

7.49 < 0.000010

6.0

0.632

L812430 CONTD.... PAGE 8 of 14

ALS LABORATORY GROUP ANALYTICAL REPORT

24-SEP-09 10:24

	Sample ID Description Sampled Date	L812430-1 27-AUG-09	L812430-2 27-AUG-09	L812430-3	L812430-4	L812430-5 27-AUG-09
	Sampled Time			27-AUG-09	27-AUG-09	
	Client ID	MW96-1	MW96-8	MW 96-9	MW96-13	MW96-15
Grouping	Analyte					
WATER						
Grouping WATER Dissolved Metals	Analyte Thallium (TI)-Dissolved (mg/L) Titanium (Ti)-Dissolved (mg/L) Uranium (U)-Dissolved (mg/L) Vanadium (V)-Dissolved (mg/L) Zinc (Zn)-Dissolved (mg/L)	<0.00010 0.00034 <0.010 0.0013	<0.00010 <0.010 0.000175 <0.0010 0.0051	<0.00010 0.00026 <0.010 0.000061 <0.0010 0.0168	<0.00010 <0.0010 0.000134 <0.0010 0.0011	<0.00010 <0.010 0.00763 <0.0010 0.0010

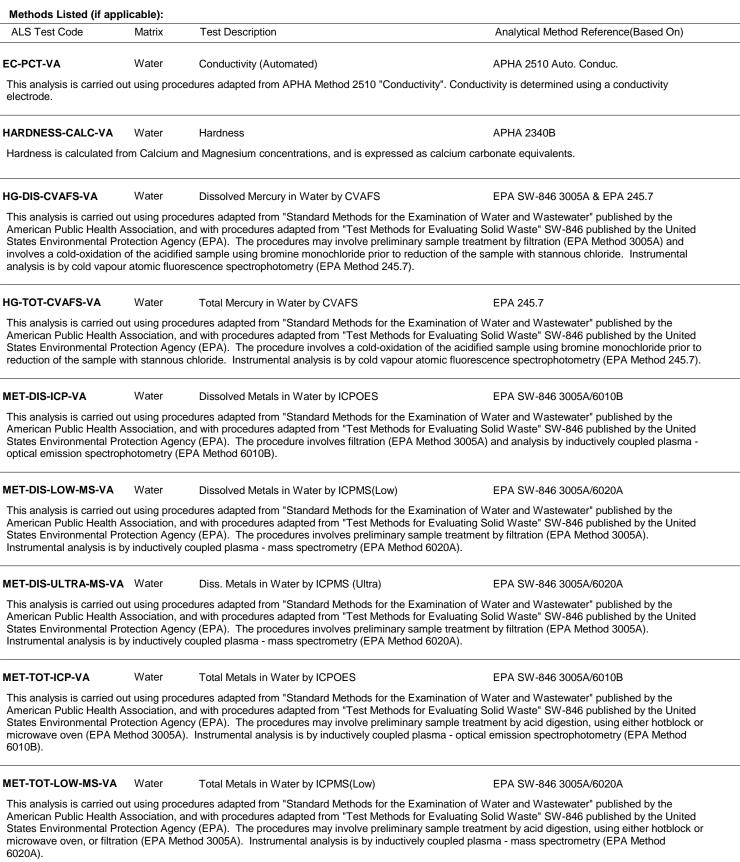
L812430 CONTD.... PAGE 9 of 14

ALS LABORATORY GROUP ANALYTICAL REPORT

PAGE	9	στ	14
24-SEP	-09	10:	24

Grouping	Sample ID Description Sampled Date Sampled Time Client ID	L812430-6 27-AUG-09 MW96-18	L812430-7 27-AUG-09 MW96-23	L812430-8 27-AUG-09 GT96-26	L812430-9 27-AUG-09 MW95-152	L812430-10 27-AUG-09 DUP
	, inclusio					
Grouping WATER Dissolved Metals	Analyte Thallium (TI)-Dissolved (mg/L) Titanium (Ti)-Dissolved (mg/L) Uranium (U)-Dissolved (mg/L) Vanadium (V)-Dissolved (mg/L) Zinc (Zn)-Dissolved (mg/L)	<0.00010 0.00033 <0.010 0.00732 <0.0010 0.0030	<0.00010 0.00129 <0.010 0.00438 <0.0010 0.0024	<0.00010 <0.00010 <0.010 0.000543 <0.0010 0.0297	<0.00020 0.00143 <0.010 0.00334 <0.0020 0.0085	<0.00010 <0.0010 0.00141 <0.0010 0.0341

L812430 CONTD.... PAGE 10 of 14 24-SEP-09 10:24


	Sample ID Description	L812430-11	L812430-12	L812430-13	
	Sampled Date Sampled Time	27-AUG-09	27-AUG-09	27-AUG-09	
	Client ID	MW09-DG1	MW09-DG2	MW09-STU 2	
Grouping	Analyte				
WATER					
Grouping WATER Dissolved Metals	Analyte Thallium (TI)-Dissolved (mg/L) Titanium (Ti)-Dissolved (mg/L) Uranium (U)-Dissolved (mg/L) Zinc (Zn)-Dissolved (mg/L)	<0.00010 <0.010 0.00149 <0.0010 0.0374	<0.00010 0.00109 0.013 0.00446 <0.0010 0.0346	<0.00010 <0.0010 0.00174 <0.0010 0.0050	

Samplenum	Matrix	Report Remarks	Sample Comments
Methods Listed (if a	pplicable):		
ALS Test Code	Matrix	Test Description	Analytical Method Reference(Based On)
LK-PCT-VA	Water	Alkalinity by Auto. Titration	APHA 2320 "Alkalinity"
			2320 "Alkalinity". Total alkalinity is determined by potentiometric titration to culated from phenolphthalein alkalinity and total alkalinity values.
LK-PCT-VA	Water	Alkalinity by Auto. Titration	APHA 2320 Alkalinity
			2320 "Alkalinity". Total alkalinity is determined by potentiometric titration to culated from phenolphthalein alkalinity and total alkalinity values.
LK-SCR-VA	Water	Alkalinity by colour or titration	EPA 310.2 OR APHA 2320
colourimetric method. DR			10.2 "Alkalinity". Total Alkalinity is determined using the methyl orange
			2320 "Alkalinity". Total alkalinity is determined by potentiometric titration to culated from phenolphthalein alkalinity and total alkalinity values.
NIONS-BR-IC-VA	Water	Bromide by Ion Chromatography	APHA 4110 B.
		edures adapted from APHA Method "Determination of Inorganic Anions b	4110 B. "Ion Chromatography with Chemical Suppression of Eluent by Ion Chromatography".
NIONS-CL-IC-VA	Water	Chloride by Ion Chromatography	APHA 4110 B.
		edures adapted from APHA Method "Determination of Inorganic Anions b	4110 B. "Ion Chromatography with Chemical Suppression of Eluent by Ion Chromatography".
NIONS-F-IC-VA	Water	Fluoride by Ion Chromatography	APHA 4110 B.
		edures adapted from APHA Method "Determination of Inorganic Anions b	4110 B. "Ion Chromatography with Chemical Suppression of Eluent by Ion Chromatography".
NIONS-NO2-IC-VA	Water	Nitrite by Ion Chromatography	APHA 4110 B.
	Method 300.0		4110 B. "Ion Chromatography with Chemical Suppression of Eluent by Ion Chromatography". Specifically, the nitrite detection is by UV
NIONS-NO3-IC-VA	Water	Nitrate by Ion Chromatography	APHA 4110 B.
This analysis is carried Conductivity" and EPA absorance and not cor	Method 300.0	edures adapted from APHA Method "Determination of Inorganic Anions b	4110 B. "Ion Chromatography with Chemical Suppression of Eluent by Ion Chromatography". Specifically, the nitrate detection is by UV
NIONS-SO4-IC-VA	Water	Sulfate by Ion Chromatography	APHA 4110 B.
		edures adapted from APHA Method "Determination of Inorganic Anions b	4110 B. "Ion Chromatography with Chemical Suppression of Eluent by Ion Chromatography".
ARBONS-TOC-VA	Water	Total organic carbon by combust	ion APHA 5310 "TOTAL ORGANIC CARBON (TOC)
This analysis is carried	l out using prod	cedures adapted from APHA Method	5310 "Total Organic Carbon (TOC)".
ARBONS-TOC-VA	Water	Total organic carbon by combust	ion APHA 5310 TOTAL ORGANIC CARBON (TOC)
		č	5310 "Total Organic Carbon (TOC)".

MET-TOT-ULTRA-MS-VA Water Total Metals in Water by ICPMS (Ultra)

This analysis is carried out using procedures adapted from "Standard Methods for the Examination of Water and Wastewater" published by the

EPA SW-846 3005A/6020A

L812430 CONTD PAGE 12 of 14

Methods Listed (if app		Test Description	Analytical Mathad Deference (Deced On)
ALS Test Code	Matrix	Test Description	Analytical Method Reference(Based On)
States Environmental Pr	otection Age	ncy (EPA). The procedures may involve	Methods for Evaluating Solid Waste" SW-846 published by the United preliminary sample treatment by acid digestion, using either hotblock or v inductively coupled plasma - mass spectrometry (EPA Method
NH3-COL-VA	Water	Ammonia by Colour	APHA 4500-NH3 "Nitrogen (Ammonia)"
This analysis is carried of determined using the ph			ed from APHA Method 4500-NH3 "Nitrogen (Ammonia)". Ammonia is
NH3-COL-VA	Water	Ammonia by Colour	APHA 4500-NH3 Nitrogen (Ammonia)
This analysis is carried on the phetermined using the phetermined			ed from APHA Method 4500-NH3 "Nitrogen (Ammonia)". Ammonia is
IH3-SIE-VA	Water	Ammonia by SIE	APHA 4500 D NH3 NITROGEN (AMMONIA)
		uric acid preserved samples, using proced monia selective electrode.	dures adapted from APHA Method 4500-NH3 "Nitrogen (Ammonia)".
РН-РСТ-VA	Water	pH by Meter (Automated)	APHA 4500-H "pH Value"
This analysis is carried c electrode	out using proc	cedures adapted from APHA Method 450	0-H "pH Value". The pH is determined in the laboratory using a pH
PH-PCT-VA	Water	pH by Meter (Automated)	APHA 4500-H pH Value
This analysis is carried of electrode	out using proc	cedures adapted from APHA Method 450	0-H "pH Value". The pH is determined in the laboratory using a pH
PO4-DO-COL-VA	Water	Dissolved ortho Phosphate by Colour	r APHA 4500-P "Phosphorous"
ascorbic acid colourimet phosphate (total phosph	ric method. E orous) is dete	Dissolved ortho-phosphate (dissolved read	0-P "Phosphorus". All forms of phosphate are determined by the ctive phosphorous) is determined by direct measurement. Total sample. Total dissolved phosphate (total dissolved phosphorous) is ed by persulfate digestion of the filtrate.
PO4-DO-COL-VA	Water	Dissolved ortho Phosphate by Colour	r APHA 4500-P Phosphorous
ascorbic acid colourimet phosphate (total phosph	ric method. E orous) is dete	Dissolved ortho-phosphate (dissolved read	0-P "Phosphorus". All forms of phosphate are determined by the ctive phosphorous) is determined by direct measurement. Total sample. Total dissolved phosphate (total dissolved phosphorous) is ed by persulfate digestion of the filtrate.
PO4-T-COL-VA	Water	Total Phosphate P by Color	APHA 4500-P "Phosphorous"
ascorbic acid colourimet phosphate (total phosph	ric method. E orous) is dete	Dissolved ortho-phosphate (dissolved read	0-P "Phosphorus". All forms of phosphate are determined by the ctive phosphorous) is determined by direct measurement. Total sample. Total dissolved phosphate (total dissolved phosphorous) is ed by persulfate digestion of the filtrate.
PO4-T-COL-VA	Water	Total Phosphate P by Color	APHA 4500-P Phosphorous
ascorbic acid colourimet phosphate (total phosph	ric method. E orous) is dete	Dissolved ortho-phosphate (dissolved read	0-P "Phosphorus". All forms of phosphate are determined by the ctive phosphorous) is determined by direct measurement. Total sample. Total dissolved phosphate (total dissolved phosphorous) is ed by persulfate digestion of the filtrate.
TDS-VA	Water	Total Dissolved Solids by Gravimetric	c APHA 2540 C - GRAVIMETRIC
			0 "Solids". Solids are determined gravimetrically. Total Dissolved Solids determined by evaporating the filtrate to dryness at 180 degrees celsius.

L812430 CONTD PAGE 14 of 14

Reference Information

Methods Listed (if applicable): ALS Test Code Matrix Test Description Analytical Method Reference(Based On)						
ALS Test Code	IVIALITA		Analy			
TKN-SIE-VA	Water	Total Kjeldahl Nitrogen by S	IE APHA	A 4500-Norg (TKN)		
		edures adapted from APHA Me analysis using an ammonia sele	thod 4500-Norg "Nitrogen (Organic)". To ctive electrode.	tal kjeldahl nitrogen is determined by		
TSS-VA	Water	Total Suspended Solids by	Gravimetric APHA	A 2540 D - GRAVIMETRIC		
,	01	•	thod 2540 "Solids". Solids are determine e filter, TSS is determined by drying the f	5 1		
TURBIDITY-VA	Water	Turbidity by Meter	APHA	A 2130 "Turbidity"		
This analysis is carried	d out using proc	edures adapted from APHA Me	thod 2130 "Turbidity". Turbidity is determ	ined by the nephelometric method.		
TURBIDITY-VA Water Turbidity by Meter		Turbidity by Meter	APHA 2130 Turbidity			
This analysis is carried	d out using proc	edures adapted from APHA Me	thod 2130 "Turbidity". Turbidity is determ	ined by the nephelometric method.		
			re generally based on nationally or internationally or international of the second state of the second sta			
Laboratory Definition	on Code La	boratory Location	Laboratory Definition Code	Laboratory Location		
VA		S LABORATORY GROUP - NCOUVER, BC, CANADA				

Surr - A surrogate is an organic compound that is similar to the target analyte(s) in chemical composition and behavior but not normally detected in enviromental samples. Prior to sample processing, samples are fortified with one or more surrogate compounds.

The reported surrogate recovery value provides a measure of method efficiency.

mg/kg (units) - unit of concentration based on mass, parts per million

mg/L (units) - unit of concentration based on volume, parts per million

N/A - Result not available. Refer to qualifier code and definition for explanation

Test results reported relate only to the samples as received by the laboratory. UNLESS OTHERWISE STATED, ALL SAMPLES WERE RECEIVED IN ACCEPTABLE CONDITION. Although test results are generated under strict QA/QC protocols, any unsigned test reports, faxes, or emails are considered preliminary.

ALS Laboratory Group has an extensive QA/QC program where all analytical data reported is analyzed using approved referenced procedures followed by checks and reviews by senior managers and quality assurance personnel. However, since the results are obtained from chemical measurements and thus cannot be guaranteed, ALS Laboratory Group assumes no liability for the use or interpretation of the results.

REPER TO BACK PAGE FOR ALS LOCATIONS AND SAMPLING INFORMATION	Released by Law Edd Date & Time: My 15/09	Failure to complete all portions of this form may delay analysis. By the use of this form the user acknowledges and agrees with the Terms and Conditions	phase lither & preasure re		- DG2	HW07 - DGI	Dup	Mw95-152	9796-26	Hwqb-23	81-96WW	C1 -96MH	Hwq6-13	P - 4 MM 4 - 4	Mm9.6-8	Hw96-1	(This description will appear on the report)	Sample Identification		Phone: Fax:		Address:	Contact: **		0	ଟ	Burman BC V5C 4L7	Address: 4370 Dominion St		5 Jennihr Toold	Report to: A Jacano Whitford Starter	Environmental Division	ANALYTICAL CHEMISTRY & TESTING SERVICES	ALS Laboratory Group
NG INFORMATION	5/09 Received by	Failure to complete all portions of this form may delay analysis. re user acknowledges and agrees with the Terms and Condition	remaining of														e report)		ALS Contact:	Quote #:		Legal Site	PO / AFE:	Job #:	Client / F		Email 2:	Email 1:	Select: PDF		Axis		Canada	Chain of Cus
V (WHITE	Puter 31/P	f this form may delay with the Terms and	chissolved	references and the second first of the second s	4											Ng 27	, Cam	Date	Sa			Legal Site Description: D		1053050	Client / Project Information:			R ·			Report Format / Distribution	www.alsqlobal.com	Canada Toll Free: 1 800 668 9878	Chain of Custody / Analytical Request Form
WHITE - REPORT COPY,			metal s	and the second secon												6		Time Sa	Sampler:			Dublin Gulch		, 08				NO SI	Digital	Other:			8 9878	onliest Form
PINK - FILE COPY,	emperature: Ve	Please fill in this form LEGIBLY. as specified on the back page o	Sampleo	Concern Contractor	4	, , ,	~									Groundmater .		Sample Type				1						rantac. com						
PY, YELLOW - CLIENT COPY	Verified by:	m LEGIBLY. back page of the	(MWg6-	and the second second	イノマ		77	イント	4	ر ۲ ۲	5	ر ۲ ۲	\ \ \ \ \	7 7 7	1 7 7	 7 7	Ø		olved Solve 21	4 h Me		<u>عله</u> ع <u>ا</u> م		AN NA	Indica		For Emergency	Emergency (1)	Priority (2-3 Bu	Regular (Default)	Service Reque			
ENT COPY	Date & Time:	Please fill in this form LEGIBLY. as specified on the back page of the white - report copy.	-1 /9 /13/	and the Alexandree	マン	2	7 1	7 7	7	7	بر ر ر	7 1	7 7	۲ ۲ ۲	7 7 7	۲ ۲ ۱	- R	_	ns_	۲D. - Tv	s, it	A1 1	k		Indicate Filtered or Preserved,	Analysis Request	For Emergency < 1 Day, ASAP or Weekend - Contact ALS	Emergency (1 Business Day) - 100% Surcharge	Priority (2-3 Business Days) - 50% Surcharge	lt)	Service Requested: (rush - subject to availability)		-	coc #
GENF 18.00 Front	Observations: Yes / No ? If Yes attach SIF	× C	5/18/2															T. 0 S (SS, PD PCcic	T-	PC	4. Al	<u>د)</u>		erved, F/P)	luest	' Weekend - Conta	10% Surcharge	6 Surcharge		ct to availability)	Page 🔟		
10 Front	ions: ? ?ch SIF		ίοω		عر	5	2	5	5	-	7	٦	5	٦	Ч	4	Nu	mbe	er of Co	ntair	iers			$\overline{\ }$			ct ALS							PDAC

REFER ISLAACA FAGE FOR ALS LOCATIONS AND SAMPLING INFORMATION	Failure to complet By the use of this form the user acknowled		Autrical orbustrer a testing services Charles Charles
	agrees with the Terms and Conditions agrees with the Terms and Conditions Date: Date		Chain of Custody / Analytical Request Form Canada Toll Free: 1 800 668 9878 www.alsglobal.com Report Format / Distribution ALS ALS Contact: Date Time Sampler: Date National Custody / Analytical Request Form ALS Nation: Date Time Sampler: Aug 2004
COPY, YELLOW - CLIENT COPY GENF 18.00 Front	f the white - report copy.		Service Requested: (rush - subject to availability) Regular (Default) Priority (2-3 Business Days) - 50% Surcharge Emergency (1 Business Days) - 50% Surcharge For Emergency (1 Business Day) - 100% Surcharge Indicate Filtered or Preserved, F/P) Alk-, Turb, pit Conduct INITY Speciated Alk-, Turb, pit Speciated Alk-, Turb, pit OPD 4 Speciated Alk-, Turb, pit OPD 4 Alk-, Turb, pit OPD 4 Speciated Alk-, Turb, pit OPD 4 Speciated

ALS Laboratory Group ANALYTICAL CHEMISTRY & TESTING SERVICES

Environmental Division

			Certificate	of Analysis		
JACQUES WH	HITFOR	D			Report Date:	18-SEP-09 16:19 (MT)
ATTN: JENN	IFER T	ODD			Version:	
4370 DOMINIO	ON STR	REET, 5TH FLOOR				
PO BOX 21						
BURNABY BO	C V5G	4L7				
Lab Work Orde	er #:	L815386			Date Receive	ed: 08-SEP-09
Project P.O. #	:	C3106				
Job Reference	e:	1053550.08				
Legal Site De	sc:	EAGLE GOLD				
CofC Number	s:	08-022572				
Other Informa	tion:					
Comments:	Please analysis		ts have been increas	ed for some of the sample	es due to the interfer	ences encountered during the
		more, for some of the submeter corresponding total param				ved parameters is greater combination of the following:
		ratory method variability;			- J	
	- anal	ytical bias introduced during				
		ytical bias introduced during sportation and/or analysis of		orage,		
	- sam	ple grab bias - where separa	ate grab samples are	processed to		
		uce total and dissolved sam ple split bias - where total a		ters samples are produced	d from the same gra	b sample.
			·		5	
				15		
		1/		1		
		Alat	no lateria	-4.		
		Van	and the second	/		
		MATASH Account I	A MARKOVIC-MIR	ROVIC		
		Account	viailayei			

THIS REPORT SHALL NOT BE REPRODUCED EXCEPT IN FULL WITHOUT THE WRITTEN AUTHORITY OF THE LABORATORY. ALL SAMPLES WILL BE DISPOSED OF AFTER 30 DAYS FOLLOWING ANALYSIS. PLEASE CONTACT THE LAB IF YOU REQUIRE ADDITIONAL SAMPLE STORAGE TIME.

ALS Canada Ltd. Part of the ALS Laboratory Group 1988 Triumph Street, Vancouver, BC V5L 1K5 Phone: +1 604 253 4188 Fax: +1 604 253 6700 www.alsglobal.com A Campbell Brothers Limited Company

L815386 CONTD PAGE 2 of 8

ALS LABORATORY GROUP ANALYTICAL REPORT

18-SEP-09 16:23

	Sample ID Description Sampled Date	L815386-1 04-SEP-09	L815386-2 04-SEP-09	L815386-3 04-SEP-09	L815386-4 03-SEP-09	
	Sampled Time					
	Client ID	MW09-OG3	MW09-OG2	MW09-DG4	MW09-DG5	
Grouping	Analyte					
WATER						
Physical Tests	Conductivity (uS/cm)	62.0	332	545		
	Hardness (as CaCO3) (mg/L)	20.2	169	310	452	
	рН (рН)	6.56	7.30	7.31		
	Total Suspended Solids (mg/L)	33.8	66.3	42.8		
	Total Dissolved Solids (mg/L)	40	205	342		
	Turbidity (NTU)	10.0	31.1	11.5		
Anions and Nutrients	Alkalinity, Bicarbonate (as CaCO3) (mg/L)	26.0	103	205		
	Alkalinity, Carbonate (as CaCO3) (mg/L)	<2.0	<2.0	<2.0		
	Alkalinity, Hydroxide (as CaCO3) (mg/L)	<2.0	<2.0	<2.0		
	Alkalinity, Total (as CaCO3) (mg/L)	26.0	103	205		
	Ammonia as N (mg/L)	<0.020	<0.020	<0.020		
	Bromide (Br) (mg/L)	<0.050	<0.050	<0.050		
	Chloride (Cl) (mg/L)	<0.50	<0.50	<0.50		
	Fluoride (F) (mg/L)	0.025	0.282	0.080		
	Nitrate (as N) (mg/L)	0.125	0.0255	0.116		
	Nitrite (as N) (mg/L)	0.0011	0.0043	<0.0010		
	Total Kjeldahl Nitrogen (mg/L)	2.30	0.301	0.117		
	Ortho Phosphate as P (mg/L)	<0.0010	<0.0010	<0.0010		
	Total Phosphate as P (mg/L)	0.0185	0.049	0.0228		
	Sulfate (SO4) (mg/L)	3.12	67.7	94.1		
Organic / Inorganic Carbon	Total Organic Carbon (mg/L)	1.82	2.17	1.43		
Total Metals	Aluminum (Al)-Total (mg/L)	0.736	0.495	0.223		
	Antimony (Sb)-Total (mg/L)	0.00060	0.00260	0.00092		
	Arsenic (As)-Total (mg/L)	0.00242	0.0215	0.00496		
	Barium (Ba)-Total (mg/L)	0.0152	0.0849	0.120		
	Beryllium (Be)-Total (mg/L)	<0.00050	<0.00050	<0.00050		
	Bismuth (Bi)-Total (mg/L)	<0.00050	<0.00050	<0.00050		
	Boron (B)-Total (mg/L)	<0.010	<0.010	<0.010		
	Cadmium (Cd)-Total (mg/L)	0.000035	0.000198	0.000038		
	Calcium (Ca)-Total (mg/L)	6.95	44.0	79.6		
	Chromium (Cr)-Total (mg/L)	0.00055	0.00125	0.00142		
	Cobalt (Co)-Total (mg/L)	0.00048	0.00084	0.00067		
	Copper (Cu)-Total (mg/L)	0.00384	0.00590	0.00283		
	Iron (Fe)-Total (mg/L)	0.555	0.936	0.784		
	Lead (Pb)-Total (mg/L)	0.000907	0.00263	0.00193		
	Lithium (Li)-Total (mg/L)	0.0056	0.0073	0.0117		
	Magnesium (Mg)-Total (mg/L)	1.13	14.6	26.8		
	Manganese (Mn)-Total (mg/L)	0.0496	0.107	0.0684		
	Mercury (Hg)-Total (mg/L)	<0.000050	<0.000050	<0.000050		
	Molybdenum (Mo)-Total (mg/L)	0.00235	0.00232	0.000618		

L815386 CONTD P/

PAGE	3	of	8
18-SEP	-09	16:2	23

	Sample ID Description	L815386-1	L815386-2	L815386-3	L815386-4
	Sampled Date Sampled Time	04-SEP-09	04-SEP-09	04-SEP-09	03-SEP-09
	Client ID	MW09-OG3	MW09-OG2	MW09-DG4	MW09-DG5
Grouping	Analyte				
WATER					
Total Metals	Nickel (Ni)-Total (mg/L)	0.00376	0.00419	0.00175	
	Phosphorus (P)-Total (mg/L)	<0.30	<0.30	<0.30	
	Potassium (K)-Total (mg/L)	<2.0	2.1	2.2	
	Selenium (Se)-Total (mg/L)	<0.0010	<0.0010	<0.0010	
	Silicon (Si)-Total (mg/L)	7.75	7.93	5.31	
	Silver (Ag)-Total (mg/L)	0.000015	0.000012	0.000015	
	Sodium (Na)-Total (mg/L)	3.8	4.8	3.4	
	Strontium (Sr)-Total (mg/L)	0.0318	0.170	0.303	
	Thallium (TI)-Total (mg/L)	< 0.0010	<0.00010	< 0.00010	
	Tin (Sn)-Total (mg/L)	0.00034	0.00028	0.00064	
	Titanium (Ti)-Total (mg/L)	0.026	0.030	0.0004	
	Uranium (U)-Total (mg/L)	0.000175	0.00213	0.00677	
	Vanadium (V)-Total (mg/L)	<0.00173	0.00213	<0.0017	
	Zinc (Zn)-Total (mg/L)	0.0226	0.0275	0.0054	
Dissolved Metals	Aluminum (Al)-Dissolved (mg/L)	0.0220	0.0273	0.0014	0.0045
Dissolved Metals	Antimony (Sb)-Dissolved (mg/L)	0.00248	0.00230	0.00037	0.0043
	Animony (Sb)-Dissolved (mg/L) Arsenic (As)-Dissolved (mg/L)	0.00020	0.00230	0.00037	0.00238
	Barium (Ba)-Dissolved (mg/L)	0.00605	0.0639	0.113	0.0431
	Beryllium (Be)-Dissolved (mg/L) Bismuth (Bi)-Dissolved (mg/L)	<0.00050	< 0.00050	< 0.00050	< 0.00050
		<0.00050	<0.00050	<0.00050	<0.00050
	Boron (B)-Dissolved (mg/L)	<0.010	<0.010	<0.010	0.019
	Cadmium (Cd)-Dissolved (mg/L)	0.000019	0.000088	0.000019	0.000108
	Calcium (Ca)-Dissolved (mg/L)	6.49	43.9	79.8	100
	Chromium (Cr)-Dissolved (mg/L)	< 0.00050	< 0.00050	< 0.00050	< 0.00060
	Cobalt (Co)-Dissolved (mg/L)	0.00026	0.00041	0.00021	0.00339
	Copper (Cu)-Dissolved (mg/L)	0.00336	0.00366	0.00278	0.0105
	Iron (Fe)-Dissolved (mg/L)	< 0.030	< 0.030	< 0.030	0.068
	Lead (Pb)-Dissolved (mg/L)	<0.000050	0.000146	<0.000050	0.000347
	Lithium (Li)-Dissolved (mg/L)	0.0052	0.0063	0.0111	0.0943
	Magnesium (Mg)-Dissolved (mg/L)	0.96	14.4	26.8	49.0
	Manganese (Mn)-Dissolved (mg/L)	0.0379	0.0780	0.0432	0.411
	Mercury (Hg)-Dissolved (mg/L)	<0.000050	<0.000050	<0.000050	<0.000050
	Molybdenum (Mo)-Dissolved (mg/L)	0.00250	0.00278	0.000942	0.00560
	Nickel (Ni)-Dissolved (mg/L)	0.00273	0.00267	0.00075	0.00664
	Phosphorus (P)-Dissolved (mg/L)	<0.30	<0.30	<0.30	<0.30
	Potassium (K)-Dissolved (mg/L)	<2.0	<2.0	2.2	22.1
	Selenium (Se)-Dissolved (mg/L)	<0.0010	<0.0010	<0.0010	<0.0010
	Silicon (Si)-Dissolved (mg/L)	6.04	6.91	4.92	3.39
	Silver (Ag)-Dissolved (mg/L)	<0.000010	<0.000010	<0.000010	<0.000010
	Sodium (Na)-Dissolved (mg/L)	3.8	4.9	3.5	23.9
	Strontium (Sr)-Dissolved (mg/L)	0.0305	0.162	0.308	0.407

L815386 CONTD.... PAGE 4 of 8

PAGE	4	στ	ø
18-SEF	- 09	16:	23

	Sample ID	L815386-1	L815386-2	L815386-3	L815386-4	
	Description Sampled Date	04-SEP-09	04-SEP-09	04-SEP-09	03-SEP-09	
	Sampled Time Client ID	MW09-OG3	MW09-OG2	MW09-DG4	MW09-DG5	
Grouping	Analyte					
WATER						
Dissolved Metals	Thallium (TI)-Dissolved (mg/L)	<0.00010	<0.00010	<0.00010	<0.00010	
	Tin (Sn)-Dissolved (mg/L)	<0.00010	0.00015	<0.00010	0.00243	
	Titanium (Ti)-Dissolved (mg/L)	<0.010	<0.010	<0.010	<0.010	
	Uranium (U)-Dissolved (mg/L)	0.000090	0.00179	0.00685	0.000768	
	Vanadium (V)-Dissolved (mg/L)	<0.0010	<0.0010	<0.0010	<0.0010	
	Zinc (Zn)-Dissolved (mg/L)	0.0138	0.0253	0.0122	0.0354	

Additional Comments for Sample Listed: Sample Comments Samplenum Matrix Report Remarks Methods Listed (if applicable): ALS Test Code Matrix Test Description Analytical Method Reference(Based On) ALK-SCR-VA Water EPA 310.2 OR APHA 2320 Alkalinity by colour or titration This analysis is carried out using procedures adapted from EPA Method 310.2 "Alkalinity". Total Alkalinity is determined using the methyl orange colourimetric method. OR This analysis is carried out using procedures adapted from APHA Method 2320 "Alkalinity". Total alkalinity is determined by potentiometric titration to a pH 4.5 endpoint. Bicarbonate, carbonate and hydroxide alkalinity are calculated from phenolphthalein alkalinity and total alkalinity values. ANIONS-BR-IC-VA Water APHA 4110 B. Bromide by Ion Chromatography This analysis is carried out using procedures adapted from APHA Method 4110 B. "Ion Chromatography with Chemical Suppression of Eluent Conductivity" and EPA Method 300.0 "Determination of Inorganic Anions by Ion Chromatography". ANIONS-CL-IC-VA Water APHA 4110 B. Chloride by Ion Chromatography This analysis is carried out using procedures adapted from APHA Method 4110 B. "Ion Chromatography with Chemical Suppression of Eluent Conductivity" and EPA Method 300.0 "Determination of Inorganic Anions by Ion Chromatography". ANIONS-F-IC-VA Water Fluoride by Ion Chromatography APHA 4110 B. This analysis is carried out using procedures adapted from APHA Method 4110 B. "Ion Chromatography with Chemical Suppression of Eluent Conductivity" and EPA Method 300.0 "Determination of Inorganic Anions by Ion Chromatography". ANIONS-NO2-IC-VA Water Nitrite by Ion Chromatography APHA 4110 B. This analysis is carried out using procedures adapted from APHA Method 4110 B. "Ion Chromatography with Chemical Suppression of Eluent Conductivity" and EPA Method 300.0 "Determination of Inorganic Anions by Ion Chromatography". Specifically, the nitrite detection is by UV absorbance and not conductivity. ANIONS-NO3-IC-VA Water Nitrate by Ion Chromatography APHA 4110 B. This analysis is carried out using procedures adapted from APHA Method 4110 B. "Ion Chromatography with Chemical Suppression of Eluent Conductivity" and EPA Method 300.0 "Determination of Inorganic Anions by Ion Chromatography". Specifically, the nitrate detection is by UV absorance and not conductivity. ANIONS-SO4-IC-VA Water APHA 4110 B. Sulfate by Ion Chromatography This analysis is carried out using procedures adapted from APHA Method 4110 B. "Ion Chromatography with Chemical Suppression of Eluent Conductivity" and EPA Method 300.0 "Determination of Inorganic Anions by Ion Chromatography". **CARBONS-TOC-VA** Water Total organic carbon by combustion APHA 5310 "TOTAL ORGANIC CARBON (TOC)" This analysis is carried out using procedures adapted from APHA Method 5310 "Total Organic Carbon (TOC)". **CARBONS-TOC-VA** Water Total organic carbon by combustion APHA 5310 TOTAL ORGANIC CARBON (TOC) This analysis is carried out using procedures adapted from APHA Method 5310 "Total Organic Carbon (TOC)". EC-PCT-VA Water APHA 2510 Auto, Conduc, Conductivity (Automated) This analysis is carried out using procedures adapted from APHA Method 2510 "Conductivity". Conductivity is determined using a conductivity electrode. HARDNESS-CALC-VA APHA 2340B Water Hardness Hardness is calculated from Calcium and Magnesium concentrations, and is expressed as calcium carbonate equivalents.

Methods Listed (if applicable):

ALS Test Code	Matrix	Test Description	Analytical Method Reference(Based On)

This analysis is carried out using procedures adapted from "Standard Methods for the Examination of Water and Wastewater" published by the American Public Health Association, and with procedures adapted from "Test Methods for Evaluating Solid Waste" SW-846 published by the United States Environmental Protection Agency (EPA). The procedures may involve preliminary sample treatment by filtration (EPA Method 3005A) and involves a cold-oxidation of the acidified sample using bromine monochloride prior to reduction of the sample with stannous chloride. Instrumental analysis is by cold vapour atomic fluorescence spectrophotometry (EPA Method 245.7).

HG-TOT-CVAFS-VA Water Total Mercury in Water by CVAFS

This analysis is carried out using procedures adapted from "Standard Methods for the Examination of Water and Wastewater" published by the American Public Health Association, and with procedures adapted from "Test Methods for Evaluating Solid Waste" SW-846 published by the United States Environmental Protection Agency (EPA). The procedure involves a cold-oxidation of the acidified sample using bromine monochloride prior to reduction of the sample with stannous chloride. Instrumental analysis is by cold vapour atomic fluorescence spectrophotometry (EPA Method 245.7).

MET-DIS-ICP-VA

Water Dissolved Metals in Water by ICPOES

This analysis is carried out using procedures adapted from "Standard Methods for the Examination of Water and Wastewater" published by the American Public Health Association, and with procedures adapted from "Test Methods for Evaluating Solid Waste" SW-846 published by the United States Environmental Protection Agency (EPA). The procedure involves filtration (EPA Method 3005A) and analysis by inductively coupled plasma optical emission spectrophotometry (EPA Method 6010B).

MET-DIS-LOW-MS-VA Water Dissolved Metals in Water by ICPMS(Low)

This analysis is carried out using procedures adapted from "Standard Methods for the Examination of Water and Wastewater" published by the American Public Health Association, and with procedures adapted from "Test Methods for Evaluating Solid Waste" SW-846 published by the United States Environmental Protection Agency (EPA). The procedures involves preliminary sample treatment by filtration (EPA Method 3005A). Instrumental analysis is by inductively coupled plasma - mass spectrometry (EPA Method 6020A).

MET-DIS-ULTRA-MS-VA Water

Diss. Metals in Water by ICPMS (Ultra)

EPA SW-846 3005A/6020A

EPA SW-846 3005A/6010B

EPA SW-846 3005A/6010B

EPA SW-846 3005A/6020A

EPA 245.7

This analysis is carried out using procedures adapted from "Standard Methods for the Examination of Water and Wastewater" published by the American Public Health Association, and with procedures adapted from "Test Methods for Evaluating Solid Waste" SW-846 published by the United States Environmental Protection Agency (EPA). The procedures involves preliminary sample treatment by filtration (EPA Method 3005A). Instrumental analysis is by inductively coupled plasma - mass spectrometry (EPA Method 6020A).

MET-TOT-ICP-VA Water Total Metals in Water by ICPOES

This analysis is carried out using procedures adapted from "Standard Methods for the Examination of Water and Wastewater" published by the American Public Health Association, and with procedures adapted from "Test Methods for Evaluating Solid Waste" SW-846 published by the United States Environmental Protection Agency (EPA). The procedures may involve preliminary sample treatment by acid digestion, using either hotblock or microwave oven (EPA Method 3005A). Instrumental analysis is by inductively coupled plasma - optical emission spectrophotometry (EPA Method 6010B).

MET-TOT-LOW-MS-VA Water

Total Metals in Water by ICPMS(Low)

This analysis is carried out using procedures adapted from "Standard Methods for the Examination of Water and Wastewater" published by the American Public Health Association, and with procedures adapted from "Test Methods for Evaluating Solid Waste" SW-846 published by the United States Environmental Protection Agency (EPA). The procedures may involve preliminary sample treatment by acid digestion, using either hotblock or microwave oven, or filtration (EPA Method 3005A). Instrumental analysis is by inductively coupled plasma - mass spectrometry (EPA Method 6020A).

MET-TOT-ULTRA-MS-VA Water

Total Metals in Water by ICPMS (Ultra)

EPA SW-846 3005A/6020A

EPA SW-846 3005A/6020A

This analysis is carried out using procedures adapted from "Standard Methods for the Examination of Water and Wastewater" published by the American Public Health Association, and with procedures adapted from "Test Methods for Evaluating Solid Waste" SW-846 published by the United States Environmental Protection Agency (EPA). The procedures may involve preliminary sample treatment by acid digestion, using either hotblock or microwave oven, or filtration (EPA Method 3005A). Instrumental analysis is by inductively coupled plasma - mass spectrometry (EPA Method 6020A).

NH3-SIE-VA

Water Ammonia by SIE

APHA 4500 D. - NH3 NITROGEN (AMMONIA)

This analysis is carried out, on sulphuric acid preserved samples, using procedures adapted from APHA Method 4500-NH3 "Nitrogen (Ammonia)". Ammonia is determined using an ammonia selective electrode.

L815386 CONTD.... PAGE 7 of 8

	Matrix	Test Description	Analytical Method Reference(Based On)
H-PCT-VA This analysis is carried electrode	Water out using proc	cedures adapted from APHA Method 4500-H "pH \	Value". The pH is determined in the laboratory using a pH
РН-РСТ-VA	Water	pH by Meter (Automated)	APHA 4500-H pH Value
This analysis is carried electrode	out using proc	cedures adapted from APHA Method 4500-H "pH \	Value". The pH is determined in the laboratory using a pH
PO4-DO-COL-VA	Water	Dissolved ortho Phosphate by Colour	APHA 4500-P "Phosphorous"
ascorbic acid colourime phosphate (total phosph	etric method. E norous) is dete	Dissolved ortho-phosphate (dissolved reactive phose	sphorus". All forms of phosphate are determined by the sphorous) is determined by direct measurement. Total otal dissolved phosphate (total dissolved phosphorous) is sulfate digestion of the filtrate.
PO4-DO-COL-VA	Water	Dissolved ortho Phosphate by Colour	APHA 4500-P Phosphorous
ascorbic acid colourime phosphate (total phosph	etric method. E norous) is dete	Dissolved ortho-phosphate (dissolved reactive phose	sphorus". All forms of phosphate are determined by the sphorous) is determined by direct measurement. Total otal dissolved phosphate (total dissolved phosphorous) is sulfate digestion of the filtrate.
PO4-T-COL-VA	Water	Total Phosphate P by Color	APHA 4500-P "Phosphorous"
ascorbic acid colourime phosphate (total phosph	etric method. E norous) is dete	Dissolved ortho-phosphate (dissolved reactive phose	sphorus". All forms of phosphate are determined by the sphorous) is determined by direct measurement. Total otal dissolved phosphate (total dissolved phosphorous) is sulfate digestion of the filtrate.
PO4-T-COL-VA	Water	Total Phosphate P by Color	APHA 4500-P Phosphorous
This analysis is carried ascorbic acid colourime phosphate (total phosph	out using proc etric method. E norous) is dete	cedures adapted from APHA Method 4500-P "Pho Dissolved ortho-phosphate (dissolved reactive pho	sphorus". All forms of phosphate are determined by the sphorous) is determined by direct measurement. Total otal dissolved phosphate (total dissolved phosphorous) is
This analysis is carried ascorbic acid colourime phosphate (total phosph determined by filtering a	out using proc etric method. E norous) is dete	cedures adapted from APHA Method 4500-P "Pho Dissolved ortho-phosphate (dissolved reactive pho ermined after persulphate digestion of a sample. T	sphorus". All forms of phosphate are determined by the sphorous) is determined by direct measurement. Total otal dissolved phosphate (total dissolved phosphorous) is
This analysis is carried ascorbic acid colourime phosphate (total phosph determined by filtering a FDS-VA This analysis is carried	out using proc etric method. E norous) is dete a sample throu Water out using proc	cedures adapted from APHA Method 4500-P "Pho Dissolved ortho-phosphate (dissolved reactive pho ermined after persulphate digestion of a sample. T ugh a 0.45 micron membrane filter followed by person Total Dissolved Solids by Gravimetric cedures adapted from APHA Method 2540 "Solids"	sphorus". All forms of phosphate are determined by the sphorous) is determined by direct measurement. Total otal dissolved phosphate (total dissolved phosphorous) is sulfate digestion of the filtrate.
This analysis is carried ascorbic acid colourime phosphate (total phosph determined by filtering a FDS-VA This analysis is carried (TDS) are determined b	out using proc etric method. E norous) is dete a sample throu Water out using proc	cedures adapted from APHA Method 4500-P "Pho Dissolved ortho-phosphate (dissolved reactive pho ermined after persulphate digestion of a sample. T ugh a 0.45 micron membrane filter followed by person Total Dissolved Solids by Gravimetric cedures adapted from APHA Method 2540 "Solids"	sphorus". All forms of phosphate are determined by the sphorous) is determined by direct measurement. Total otal dissolved phosphate (total dissolved phosphorous) is sulfate digestion of the filtrate. APHA 2540 C - GRAVIMETRIC ". Solids are determined gravimetrically. Total Dissolved Solids
This analysis is carried ascorbic acid colourime phosphate (total phosph determined by filtering a TDS-VA This analysis is carried (TDS) are determined b TKN-SIE-VA This analysis is carried	out using proc etric method. E norous) is dete a sample throu Water out using proc by filtering a sa Water Out using proc	cedures adapted from APHA Method 4500-P "Photo Dissolved ortho-phosphate (dissolved reactive photo ermined after persulphate digestion of a sample. T ugh a 0.45 micron membrane filter followed by person Total Dissolved Solids by Gravimetric cedures adapted from APHA Method 2540 "Solids" ample through a glass fibre filter, TDS is determine Total Kjeldahl Nitrogen by SIE	sphorus". All forms of phosphate are determined by the sphorous) is determined by direct measurement. Total 'otal dissolved phosphate (total dissolved phosphorous) is sulfate digestion of the filtrate. APHA 2540 C - GRAVIMETRIC ". Solids are determined gravimetrically. Total Dissolved Solids ad by evaporating the filtrate to dryness at 180 degrees celsius.
This analysis is carried ascorbic acid colourime phosphate (total phosph determined by filtering a rDS-VA This analysis is carried (TDS) are determined b rKN-SIE-VA This analysis is carried	out using proc etric method. E norous) is dete a sample throu Water out using proc by filtering a sa Water Out using proc	cedures adapted from APHA Method 4500-P "Pho- Dissolved ortho-phosphate (dissolved reactive pho- ermined after persulphate digestion of a sample. T ugh a 0.45 micron membrane filter followed by personal Total Dissolved Solids by Gravimetric cedures adapted from APHA Method 2540 "Solids" ample through a glass fibre filter, TDS is determine Total Kjeldahl Nitrogen by SIE cedures adapted from APHA Method 4500-Norg "N	sphorus". All forms of phosphate are determined by the sphorous) is determined by direct measurement. Total otal dissolved phosphate (total dissolved phosphorous) is sulfate digestion of the filtrate. APHA 2540 C - GRAVIMETRIC ". Solids are determined gravimetrically. Total Dissolved Solids ed by evaporating the filtrate to dryness at 180 degrees celsius. APHA 4500-Norg (TKN)
This analysis is carried ascorbic acid colourime phosphate (total phosph determined by filtering a rDS-VA This analysis is carried (TDS) are determined b rKN-SIE-VA This analysis is carried sample digestion at 367 rSS-VA This analysis is carried	out using proc etric method. E norous) is dete a sample throu Water out using proc y filtering a sa Water out using proc ' celcius with a Water out using proc	cedures adapted from APHA Method 4500-P "Photo Dissolved ortho-phosphate (dissolved reactive photo ermined after persulphate digestion of a sample. T ugh a 0.45 micron membrane filter followed by person Total Dissolved Solids by Gravimetric cedures adapted from APHA Method 2540 "Solids" ample through a glass fibre filter, TDS is determine Total Kjeldahl Nitrogen by SIE cedures adapted from APHA Method 4500-Norg "N analysis using an ammonia selective electrode. Total Suspended Solids by Gravimetric cedures adapted from APHA Method 2540 "Solids"	sphorus". All forms of phosphate are determined by the sphorous) is determined by direct measurement. Total otal dissolved phosphate (total dissolved phosphorous) is sulfate digestion of the filtrate. APHA 2540 C - GRAVIMETRIC ". Solids are determined gravimetrically. Total Dissolved Solids ad by evaporating the filtrate to dryness at 180 degrees celsius. APHA 4500-Norg (TKN) Nitrogen (Organic)". Total kjeldahl nitrogen is determined by
This analysis is carried ascorbic acid colourime phosphate (total phosph determined by filtering a rDS-VA This analysis is carried (TDS) are determined b rKN-SIE-VA This analysis is carried sample digestion at 367 rSS-VA This analysis is carried Solids (TSS) are determ	out using proc etric method. E norous) is dete a sample throu Water out using proc y filtering a sa Water out using proc ' celcius with a Water out using proc	cedures adapted from APHA Method 4500-P "Photo Dissolved ortho-phosphate (dissolved reactive photo ermined after persulphate digestion of a sample. T ugh a 0.45 micron membrane filter followed by person Total Dissolved Solids by Gravimetric cedures adapted from APHA Method 2540 "Solids" ample through a glass fibre filter, TDS is determine Total Kjeldahl Nitrogen by SIE cedures adapted from APHA Method 4500-Norg "N analysis using an ammonia selective electrode. Total Suspended Solids by Gravimetric cedures adapted from APHA Method 2540 "Solids"	sphorus". All forms of phosphate are determined by the sphorous) is determined by direct measurement. Total otal dissolved phosphate (total dissolved phosphorous) is sulfate digestion of the filtrate. APHA 2540 C - GRAVIMETRIC ". Solids are determined gravimetrically. Total Dissolved Solids ed by evaporating the filtrate to dryness at 180 degrees celsius. APHA 4500-Norg (TKN) Nitrogen (Organic)". Total kjeldahl nitrogen is determined by APHA 2540 D - GRAVIMETRIC ". Solids are determined gravimetrically. Total Suspended
This analysis is carried ascorbic acid colourime phosphate (total phosph determined by filtering a rDS-VA This analysis is carried (TDS) are determined b rKN-SIE-VA This analysis is carried sample digestion at 367 rSS-VA This analysis is carried Solids (TSS) are determ rURBIDITY-VA	out using proc etric method. E horous) is dete a sample throu Water out using proc y filtering a sa Water out using proc 7 celcius with a Water out using proc nined by filterin Water	cedures adapted from APHA Method 4500-P "Photo Dissolved ortho-phosphate (dissolved reactive photo ermined after persulphate digestion of a sample. T ugh a 0.45 micron membrane filter followed by person Total Dissolved Solids by Gravimetric cedures adapted from APHA Method 2540 "Solids" ample through a glass fibre filter, TDS is determine Total Kjeldahl Nitrogen by SIE cedures adapted from APHA Method 4500-Norg "N analysis using an ammonia selective electrode. Total Suspended Solids by Gravimetric cedures adapted from APHA Method 2540 "Solids" analysis using an ammonia selective electrode. Total Suspended Solids by Gravimetric cedures adapted from APHA Method 2540 "Solids" ng a sample through a glass fibre filter, TSS is det Turbidity by Meter	sphorus". All forms of phosphate are determined by the sphorous) is determined by direct measurement. Total otal dissolved phosphate (total dissolved phosphorous) is sulfate digestion of the filtrate. APHA 2540 C - GRAVIMETRIC ". Solids are determined gravimetrically. Total Dissolved Solids ad by evaporating the filtrate to dryness at 180 degrees celsius. APHA 4500-Norg (TKN) Nitrogen (Organic)". Total kjeldahl nitrogen is determined by APHA 2540 D - GRAVIMETRIC ". Solids are determined gravimetrically. Total Suspended termined by drying the filter at 104 degrees celsius.
This analysis is carried ascorbic acid colourime phosphate (total phosph determined by filtering a TDS-VA This analysis is carried (TDS) are determined b TKN-SIE-VA This analysis is carried sample digestion at 367 TSS-VA This analysis is carried Solids (TSS) are determ TURBIDITY-VA	out using proc etric method. E horous) is dete a sample throu Water out using proc y filtering a sa Water out using proc 7 celcius with a Water out using proc nined by filterin Water	cedures adapted from APHA Method 4500-P "Photo Dissolved ortho-phosphate (dissolved reactive photo ermined after persulphate digestion of a sample. T ugh a 0.45 micron membrane filter followed by person Total Dissolved Solids by Gravimetric cedures adapted from APHA Method 2540 "Solids" ample through a glass fibre filter, TDS is determine Total Kjeldahl Nitrogen by SIE cedures adapted from APHA Method 4500-Norg "N analysis using an ammonia selective electrode. Total Suspended Solids by Gravimetric cedures adapted from APHA Method 2540 "Solids" analysis using an ammonia selective electrode. Total Suspended Solids by Gravimetric cedures adapted from APHA Method 2540 "Solids" ng a sample through a glass fibre filter, TSS is det Turbidity by Meter	sphorus". All forms of phosphate are determined by the sphorous) is determined by direct measurement. Total otal dissolved phosphate (total dissolved phosphorous) is sulfate digestion of the filtrate. APHA 2540 C - GRAVIMETRIC ". Solids are determined gravimetrically. Total Dissolved Solids ed by evaporating the filtrate to dryness at 180 degrees celsius. APHA 4500-Norg (TKN) Nitrogen (Organic)". Total kjeldahl nitrogen is determined by APHA 2540 D - GRAVIMETRIC ". Solids are determined gravimetrically. Total Suspended termined by drying the filter at 104 degrees celsius. APHA 2130 "Turbidity"

L815386 CONTD.... PAGE 8 of 8

Reference Information

Methods Listed (if applicable):

ALS Test Code	Matrix	Test Description	Analyt	ical Method Reference(Based On)
Laboratory Definiti	on Code La	boratory Location	Laboratory Definition Code	Laboratory Location
VA		S LABORATORY GROUP - NCOUVER, BC, CANADA		

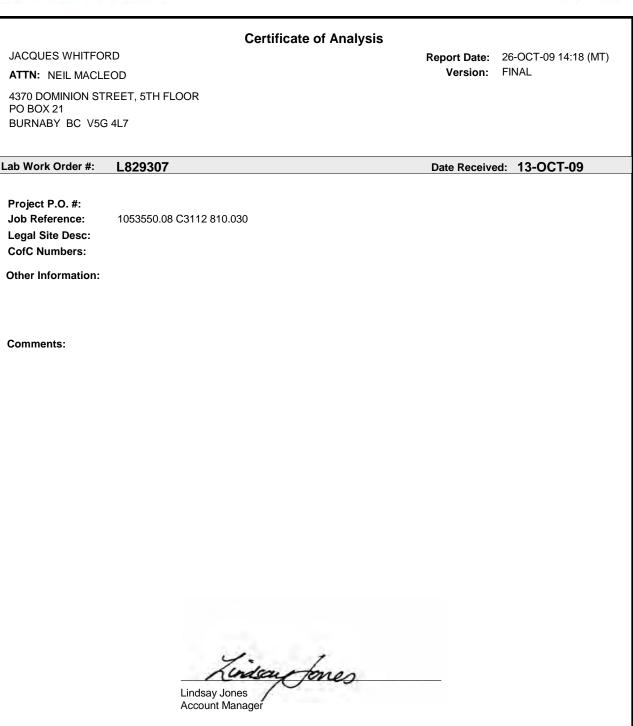
GLOSSARY OF REPORT TERMS

Surr - A surrogate is an organic compound that is similar to the target analyte(s) in chemical composition and behavior but not normally detected in environmental samples. Prior to sample processing, samples are fortified with one or more surrogate compounds. The reported surrogate recovery value provides a measure of method efficiency.

mg/kg (units) - unit of concentration based on mass, parts per million

mg/L (units) - unit of concentration based on volume, parts per million

N/A - Result not available. Refer to qualifier code and definition for explanation


Test results reported relate only to the samples as received by the laboratory. UNLESS OTHERWISE STATED, ALL SAMPLES WERE RECEIVED IN ACCEPTABLE CONDITION. Although test results are generated under strict QA/QC protocols, any unsigned test reports, faxes, or emails are considered preliminary.

ALS Laboratory Group has an extensive QA/QC program where all analytical data reported is analyzed using approved referenced procedures followed by checks and reviews by senior managers and quality assurance personnel. However, since the results are obtained from chemical measurements and thus cannot be guaranteed, ALS Laboratory Group assumes no liability for the use or interpretation of the results.

Failure to complete all port By the use of this form the user acknowledges and a SHIPMENT RELEASE (client use) Released by: J. David SHIPMENT RELEASE (client use) Received b SHIPMENT RELEASE (client use) Received b SHIPMENT RELEASE (client use) Date & Time: Set # G I GA	1995				nwog- DGIS	MWO9 - DCH	Jung-062	mud-003	#	Sample	Lab V (lat	Phone:		Address:	Contact:	Company:	To:	6.1	4	Address: Mo	Contact: Jenni	Company: 51	Report to:	Environmental Division
IIPME					V				(This desi		(lab use only)						Same as Report ?	436 3014		370	nifer Todd	Stantac		AMALYTICAL CHEMISTRY & TESTING SERVICES
Failure to complet the user acknowle Time: + & IA	CCMEI								(This description will appear on the report)	Sample Identification	1815386	Fax:				(in St 5th Flac				A.5
ate all portions of dges and agrees SH Received by:	CSR	Special Instr									ALS Contact:	Quote #:		Legal Site	PO / AFE:	Job #:	-	152	Email 2: James	Email 1:	Select: PDF	Standard:	Report Fo	Canada Toll Free: 1 800 668 9878 www.alsglobal.com
s of this form may delay analysis. ses with the Terms and Conditions SHIPMENT RECEPTION (lab use o Date: 001 08 00 Time:	Q.A	Special Instructions / Regulations			Sept 3/09	3684 4/09	Scot 4/29	Sept 4109	Caro	Date				Legal Site Description:		105	Client / Project Information:		0.00	P NY	V Excel		Report Format / Distribution	Canada Toll Free: 1 800 668 9878 Www.alsglobal.com
elay analysis. Pl ind Conditions as iON (lab use only Time:	~	tions / Hazardous								Time	Sampler: J.		J.	2	6	\$550		0	e stante	Dp pp a	Digital	Other:	on	668 9878 <u>m</u>
Please fill in this form LEGIBLY, as specified on the back page o <u>(V)</u> Temperature: Verified by:	1 GDT	us Details			K			grand worked	1	Sample Type	Phoies			pla		80		com	Com	Stantec.				
form LEGIB the back pag Verified by:					5	5	-	5):5		-	a15			2010	5		F	in	J	R	Se	
t page of states of the states		-	-			7	7	7	To	ta O		ne	<u>ta</u>	15	-	1	2	1	or Emer	nergen	iority (2	Regular (Default)	rvice R	
of the w						2	5	7	R	av	- (ime	ter	5	A.	Indicate		gency <	cy (1 Bu	-3 Busi	Default	equest	
hite - report NT VERIFICA Date & Time:		-		-		1	2	7	T	k	N/1	V+	13		_	1	Filterec	Ana	1 Day,	isiness.	ness Da	5	ed: (rus	
aport co tiFiCAT Time:										1				-		1	or Pres	Analysis Request	ASAP (Day) - 1	ys) - 50		h - subj	0
Y. of the white - report copy. SHIPMENT VERIFICATION (lab use only) Date & Time; Observ Yes / N		-				-				-			1		_	1	Indicate Filtered or Preserved, F/P)	equest	For Emergency < 1 Day, ASAP or Weekend - Contact ALS	Emergency (1 Business Day) - 100% Surcharge	Priority (2-3 Business Days) - 50% Surcharge		Service Requested: (rush - subject to availability)	Page 1 of 1
o use or Obs Yes		-	-	-		-				-				-	-	1	F/P)		end - C	ircharge	harge		vailabilit	Page
ie only) Observations: Yes / No ? If Yes attach SIF	Total =					-					-					1			ontact A				y)	- of
I SI	= 16	-		-		5		5					_		_	1	_		ST			1		C

ALS Laboratory Group ANALYTICAL CHEMISTRY & TESTING SERVICES

Environmental Division

THIS REPORT SHALL NOT BE REPRODUCED EXCEPT IN FULL WITHOUT THE WRITTEN AUTHORITY OF THE LABORATORY. ALL SAMPLES WILL BE DISPOSED OF AFTER 30 DAYS FOLLOWING ANALYSIS. PLEASE CONTACT THE LAB IF YOU REQUIRE ADDITIONAL SAMPLE STORAGE TIME.

ALS Canada Ltd. Part of the ALS Laboratory Group 1988 Triumph Street, Vancouver, BC V5L 1K5 Phone: +1 604 253 4188 Fax: +1 604 253 6700 www.alsglobal.com A Campbell Brothers Limited Company

L829307 CONTD PAGE 2 of 11

PAGE	2	ot	11
26-OCT-	09	14:	23

	Sample ID Description	L829307-1	L829307-2	L829307-3	L829307-4	L829307-5
	Sampled Date	05-OCT-09	05-OCT-09	05-OCT-09	05-OCT-09	05-OCT-09
	Sampled Time Client ID	12:00	12:30	15:30	12:00	13:30
	Client ID	MW-09-OG-3	MW-96-8	MW09-OG-2	MW96-19	MW96-15-B
Grouping	Analyte					
WATER						
Physical Tests	Conductivity (uS/cm)	336	64.2	42.7	565	445
	Hardness (as CaCO3) (mg/L)	183	25.8	15.7	313	262
	рН (рН)	7.11	7.08	6.99	7.60	7.90
	Total Suspended Solids (mg/L)	21.8	9.3	5.8	43.3	4.8
	Total Dissolved Solids (mg/L)	221	49	41	391	233
	Turbidity (NTU)	12.0	3.39	4.20	47.7	4.05
Anions and Nutrients	Alkalinity, Total (as CaCO3) (mg/L)	108	20.1	20.5	141	239
	Ammonia as N (mg/L)	0.0342	0.0156	<0.0050	0.0480	<0.0050
	Bromide (Br) (mg/L)	<0.050	<0.050	<0.050	<0.050	<0.050
	Chloride (Cl) (mg/L)	<0.50	<0.50	<0.50	<0.50	<0.50
	Fluoride (F) (mg/L)	0.414	0.034	<0.020	0.097	0.337
	Nitrate (as N) (mg/L)	0.0139	0.0906	0.0937	0.0304	0.0060
	Nitrite (as N) (mg/L)	0.0025	0.0012	0.0023	0.0019	<0.0010
	Total Kjeldahl Nitrogen (mg/L)	0.207	0.193	0.081	0.244	0.136
	Ortho Phosphate as P (mg/L)	0.0021	0.0053	<0.0010	0.0013	0.0024
	Total Dissolved Phosphate As P (mg/L)	0.0028	0.0052	<0.0020	<0.0020	<0.0020
	Total Phosphate as P (mg/L)	0.0302	0.0221	0.0038	0.101	0.0079
	Sulfate (SO4) (mg/L)	66.8	8.98	1.04	165	17.3
Organic / Inorganic Carbon	Total Organic Carbon (mg/L)	2.81	1.72	1.62	8.18	0.52
Total Metals	Aluminum (Al)-Total (mg/L)	0.251	0.171	0.243	0.423	0.100
	Antimony (Sb)-Total (mg/L)	0.00228	0.00340	0.00015	0.0164	0.00026
	Arsenic (As)-Total (mg/L)	0.0267	0.0667	0.00071	0.993	0.126
	Barium (Ba)-Total (mg/L)	0.0845	0.0315	0.00936	0.0303	0.0555
	Beryllium (Be)-Total (mg/L)	<0.00050	<0.00050	<0.00050	<0.00050	<0.00050
	Bismuth (Bi)-Total (mg/L)	<0.00050	<0.00050	<0.00050	<0.00050	<0.00050
	Boron (B)-Total (mg/L)	<0.010	<0.010	<0.010	<0.010	0.011
	Cadmium (Cd)-Total (mg/L)	0.000051	0.000019	<0.000017	0.000078	0.000028
	Calcium (Ca)-Total (mg/L)	45.0	8.23	4.91	91.0	35.9
	Chromium (Cr)-Total (mg/L)	0.00105	0.00086	<0.00050	0.00167	<0.00050
	Cobalt (Co)-Total (mg/L)	0.00108	0.00011	0.00021	0.00178	0.00010
	Copper (Cu)-Total (mg/L)	0.00304	0.00136	0.00321	0.00258	0.00127
	Iron (Fe)-Total (mg/L)	0.482	0.247	0.350	3.04	0.316
	Lead (Pb)-Total (mg/L)	0.00157	0.00156	0.000306	0.00516	0.000653
	Lithium (Li)-Total (mg/L)	0.0080	<0.0050	<0.0050	<0.0050	0.0198
	Magnesium (Mg)-Total (mg/L)	17.2	1.21	0.83	20.9	42.9
	Manganese (Mn)-Total (mg/L)	0.0930	0.00774	0.0177	0.370	0.0270
	Mercury (Hg)-Total (mg/L)	<0.000050	<0.000050	<0.000050	<0.000050	<0.000050
	Molybdenum (Mo)-Total (mg/L)	0.00207	0.000731	0.000950	0.00478	0.00480
	Nickel (Ni)-Total (mg/L)	0.00425	0.00062	0.00230	0.00923	0.00058
	Phosphorus (P)-Total (mg/L)	<0.30	<0.30	<0.30	<0.30	<0.30

L829307 CONTD PAGE 3 of 11 26-OCT-09 14:23

	Sample ID Description Sampled Date	L829307-6 05-OCT-09	L829307-7 05-OCT-09	L829307-8 05-OCT-09	
	Sampled Time	14:00	18:00	19:30	
	Client ID	MW09-DG-1	MW96-23	MW09-DG-4	
Grouping	Analyte				
WATER					
Physical Tests	Conductivity (uS/cm)	418	313	540	
	Hardness (as CaCO3) (mg/L)	221	153	293	
	рН (рН)	7.61	7.78	7.67	
	Total Suspended Solids (mg/L)	15.8	7.8	20.8	
	Total Dissolved Solids (mg/L)	254	192	358	
	Turbidity (NTU)	34.0	6.45	6.70	
Anions and Nutrients	Alkalinity, Total (as CaCO3) (mg/L)	166	136	209	
	Ammonia as N (mg/L)	0.0280	<0.0050	<0.0050	
	Bromide (Br) (mg/L)	<0.050	<0.050	<0.050	
	Chloride (Cl) (mg/L)	<0.50	<0.50	<0.50	
	Fluoride (F) (mg/L)	0.228	0.063	0.080	
	Nitrate (as N) (mg/L)	<0.0050	0.428	0.0826	
	Nitrite (as N) (mg/L)	<0.0010	0.0026	0.0075	
	Total Kjeldahl Nitrogen (mg/L)	0.188	0.193	0.138	
	Ortho Phosphate as P (mg/L)	<0.0010	0.0292	<0.0010	
	Total Dissolved Phosphate As P (mg/L)	<0.0020	0.0258	<0.0020	
	Total Phosphate as P (mg/L)	0.034	0.0406	0.0145	
	Sulfate (SO4) (mg/L)	67.7	29.1	92.8	
Organic / norganic Carbon	Total Organic Carbon (mg/L)	1.09	1.85	1.64	
Total Metals	Aluminum (Al)-Total (mg/L)	0.0564	0.394	0.269	
	Antimony (Sb)-Total (mg/L)	0.00029	0.00257	0.00154	
	Arsenic (As)-Total (mg/L)	0.462	0.244	0.00478	
	Barium (Ba)-Total (mg/L)	0.0318	0.0203	0.111	
	Beryllium (Be)-Total (mg/L)	<0.00050	<0.00050	<0.0025	
	Bismuth (Bi)-Total (mg/L)	<0.00050	<0.00050	<0.0025	
	Boron (B)-Total (mg/L)	<0.010	0.017	<0.050	
	Cadmium (Cd)-Total (mg/L)	<0.000017	0.000074	<0.000085	
	Calcium (Ca)-Total (mg/L)	40.1	47.9	74.8	
	Chromium (Cr)-Total (mg/L)	<0.00050	0.00104	<0.0025	
	Cobalt (Co)-Total (mg/L)	0.00020	0.00070	<0.00050	
	Copper (Cu)-Total (mg/L)	0.00070	0.00414	0.00216	
	Iron (Fe)-Total (mg/L)	3.73	0.549	0.86	
	Lead (Pb)-Total (mg/L)	0.000270	0.00133	0.00124	
	Lithium (Li)-Total (mg/L)	0.0327	0.0130	<0.025	
	Magnesium (Mg)-Total (mg/L)	30.1	6.75	28.0	
	Manganese (Mn)-Total (mg/L)	0.201	0.0235	0.0316	
	Mercury (Hg)-Total (mg/L)	<0.000050	<0.000050	<0.000050	
	Molybdenum (Mo)-Total (mg/L)	0.00111	0.00729	0.00129	
	Nickel (Ni)-Total (mg/L)	0.00057	0.00223	<0.0025	
	Phosphorus (P)-Total (mg/L)	<0.30	<0.30	<1.5	

L829307 CONTD PAGE 4 of 11

	70		-	01	•••
2	6-C	ост	-09	14:	23

	Sample ID Description	L829307-1	L829307-2	L829307-3	L829307-4	L829307-5
	Sampled Date Sampled Time Client ID	05-OCT-09 12:00 MW-09-OG-3	05-OCT-09 12:30 MW-96-8	05-OCT-09 15:30 MW09-OG-2	05-OCT-09 12:00 MW96-19	05-OCT-09 13:30 MW96-15-B
Grouping	Analyte					
WATER						
Total Metals	Potassium (K)-Total (mg/L)	2.6	<2.0	<2.0	3.7	2.4
	Selenium (Se)-Total (mg/L)	<0.0010	<0.0010	<0.0010	<0.0010	<0.0010
	Silicon (Si)-Total (mg/L)	8.03	6.73	6.50	4.34	6.15
	Silver (Ag)-Total (mg/L)	0.000016	0.000015	<0.00010	0.000052	0.000013
	Sodium (Na)-Total (mg/L)	3.9	2.4	2.6	4.8	2.5
	Strontium (Sr)-Total (mg/L)	0.200	0.0483	0.0295	0.600	0.336
	Thallium (TI)-Total (mg/L)	<0.00010	<0.0483	<0.0295	<0.00010	<0.00010
	Tin (Sn)-Total (mg/L)	<0.00010	<0.00010	0.00037	<0.00010	<0.00010
	Titanium (Ti)-Total (mg/L)	0.00083	0.00050	0.00037	0.00452	<0.00285
	Uranium (U)-Total (mg/L)		0.012		0.031	<0.010 0.00753
	Vanadium (V)-Total (mg/L)	0.000972 <0.0010		0.000168	<0.00741	
	Zinc (Zn)-Total (mg/L)	<0.0010	<0.0010	<0.0010		<0.0010
Dissolved Metals	Aluminum (Al)-Dissolved (mg/L)		0.0121	0.0087	0.0206	0.0104
		0.0025	0.0015	0.0048	0.0016	<0.0010
	Antimony (Sb)-Dissolved (mg/L)	0.00143	0.00043	<0.00010	0.0142	< 0.00010
	Arsenic (As)-Dissolved (mg/L)	0.0171	0.0608	0.00028	0.0342	0.0988
	Barium (Ba)-Dissolved (mg/L)	0.0725	0.0250	0.00563	0.0190	0.0494
	Beryllium (Be)-Dissolved (mg/L)	<0.00050	<0.00050	<0.00050	<0.00050	<0.00050
	Bismuth (Bi)-Dissolved (mg/L)	<0.00050	<0.00050	<0.00050	<0.00050	<0.00050
	Boron (B)-Dissolved (mg/L)	<0.010	<0.010	<0.010	<0.010	<0.010
	Cadmium (Cd)-Dissolved (mg/L)	0.000055	<0.000017	<0.000017	0.000028	<0.000017
	Calcium (Ca)-Dissolved (mg/L)	45.9	8.46	5.03	92.1	36.4
	Chromium (Cr)-Dissolved (mg/L)	<0.00050	<0.00050	<0.00050	<0.00050	<0.00050
	Cobalt (Co)-Dissolved (mg/L)	0.00078	<0.00010	0.00012	0.00117	<0.00010
	Copper (Cu)-Dissolved (mg/L)	0.00129	0.00030	0.00199	0.00022	0.00022
	Iron (Fe)-Dissolved (mg/L)	<0.030	<0.030	0.031	<0.030	<0.030
	Lead (Pb)-Dissolved (mg/L)	0.000260	0.000117	<0.000050	0.000081	<0.000050
	Lithium (Li)-Dissolved (mg/L)	0.0070	<0.0050	<0.0050	<0.0050	0.0177
	Magnesium (Mg)-Dissolved (mg/L)	16.6	1.14	0.76	20.3	41.7
	Manganese (Mn)-Dissolved (mg/L)	0.0766	0.00155	0.0134	0.299	0.0110
	Mercury (Hg)-Dissolved (mg/L)	<0.000050	<0.000050	<0.000050	<0.000050	<0.000050
	Molybdenum (Mo)-Dissolved (mg/L)	0.00161	0.000611	0.000887	0.00408	0.00425
	Nickel (Ni)-Dissolved (mg/L)	0.00317	<0.00050	0.00184	0.00654	<0.00050
	Phosphorus (P)-Dissolved (mg/L)	<0.30	<0.30	<0.30	<0.30	<0.30
	Potassium (K)-Dissolved (mg/L)	2.2	<2.0	<2.0	3.2	2.0
	Selenium (Se)-Dissolved (mg/L)	<0.0010	<0.0010	<0.0010	<0.0010	<0.0010
	Silicon (Si)-Dissolved (mg/L)	7.71	6.62	6.12	3.64	5.94
	Silver (Ag)-Dissolved (mg/L)	<0.000010	<0.000010	<0.000010	<0.000010	<0.000010
	Sodium (Na)-Dissolved (mg/L)	3.5	2.1	2.4	4.2	2.1
	Strontium (Sr)-Dissolved (mg/L)	0.179	0.0443	0.0266	0.538	0.302
	Thallium (TI)-Dissolved (mg/L)	<0.00010	<0.00010	<0.00010	<0.00010	<0.00010
	Tin (Sn)-Dissolved (mg/L)	0.00050	0.00026	0.00055	0.00149	0.00097

L829307 CONTD.... PAGE 5 of 11 26-OCT-09 14:23

	Sample ID Description Sampled Date Sampled Time Client ID	L829307-6 05-OCT-09 14:00 MW09-DG-1	L829307-7 05-OCT-09 18:00 MW96-23	L829307-8 05-OCT-09 19:30 MW09-DG-4	
Grouping	Analyte				
WATER	-				
Total Metals	Potassium (K)-Total (mg/L)	3.1	2.1	<10	
	Selenium (Se)-Total (mg/L)	<0.0010	0.0023	<0.0050	
	Silicon (Si)-Total (mg/L)	5.99	5.23	5.59	
	Silver (Ag)-Total (mg/L)	0.000012	0.000034	0.000071	
	Sodium (Na)-Total (mg/L)	8.2	12.8	<10	
	Strontium (Sr)-Total (mg/L)	0.336	0.219	0.385	
	Thallium (TI)-Total (mg/L)	<0.00010	<0.00010	<0.00050	
	Tin (Sn)-Total (mg/L)	0.00079	0.00516	0.00171	
	Titanium (Ti)-Total (mg/L)	< 0.010	0.021	<0.050	
	Uranium (U)-Total (mg/L)	0.00173	0.00547	0.00980	
	Vanadium (V)-Total (mg/L)	<0.00110	<0.0010	<0.0050	
	Zinc (Zn)-Total (mg/L)	0.0163	0.0135	<0.0050	
Dissolved Metals	Aluminum (Al)-Dissolved (mg/L)	0.0023	0.0016	<0.0050	
	Antimony (Sb)-Dissolved (mg/L)	0.00018	0.00117	<0.00050	
	Arsenic (As)-Dissolved (mg/L)	0.196	0.225	0.00059	
	Barium (Ba)-Dissolved (mg/L)	0.0261	0.0142	0.0840	
	Beryllium (Be)-Dissolved (mg/L)	<0.00050	< 0.00050	<0.0025	
	Bismuth (Bi)-Dissolved (mg/L)	< 0.00050	<0.00050	<0.0025	
	Boron (B)-Dissolved (mg/L)	<0.010	<0.010	<0.050	
	Cadmium (Cd)-Dissolved (mg/L)	<0.000017	0.000043	<0.00085	
	Calcium (Ca)-Dissolved (mg/L)	40.5	50.4	72.8	
	Chromium (Cr)-Dissolved (mg/L)	<0.00050	<0.00050	<0.0025	
	Cobalt (Co)-Dissolved (mg/L)	0.00013	0.00021	<0.00050	
	Copper (Cu)-Dissolved (mg/L)	0.00028	0.00196	< 0.00050	
	Iron (Fe)-Dissolved (mg/L)	1.68	<0.030	<0.15	
	Lead (Pb)-Dissolved (mg/L)	<0.000050	<0.000050	<0.00025	
	Lithium (Li)-Dissolved (mg/L)	0.0305	0.0115	<0.025	
	Magnesium (Mg)-Dissolved (mg/L)	29.0	6.59	27.0	
	Manganese (Mn)-Dissolved (mg/L)	0.171	0.0326	0.0191	
	Mercury (Hg)-Dissolved (mg/L)	<0.000050	<0.000050	<0.000050	
	Molybdenum (Mo)-Dissolved (mg/L)	0.000925	0.00664	0.00120	
	Nickel (Ni)-Dissolved (mg/L)	<0.00050	0.00101	<0.0025	
	Phosphorus (P)-Dissolved (mg/L)	<0.30	<0.30	<1.5	
	Potassium (K)-Dissolved (mg/L)	2.7	<2.0	<10	
	Selenium (Se)-Dissolved (mg/L)	<0.0010	0.0023	<0.0050	
	Silicon (Si)-Dissolved (mg/L)	5.78	4.61	5.13	
	Silver (Ag)-Dissolved (mg/L)	<0.000010	<0.000010	<0.000050	
	Sodium (Na)-Dissolved (mg/L)	7.4	11.7	<10	
	Strontium (Sr)-Dissolved (mg/L)	0.303	0.203	0.390	
	Thallium (TI)-Dissolved (mg/L)	<0.00010	<0.00010	<0.00050	
	Tin (Sn)-Dissolved (mg/L)	0.00079	0.00188	<0.00050	

L829307 CONTD PAGE 6 of 11

26 OCT	<u> </u>	
26-OCT-	09	14:23

	Sample ID Description Sampled Date Sampled Time Client ID	L829307-1 05-OCT-09 12:00 MW-09-OG-3	L829307-2 05-OCT-09 12:30 MW-96-8	L829307-3 05-OCT-09 15:30 MW09-OG-2	L829307-4 05-OCT-09 12:00 MW96-19	L829307-5 05-OCT-09 13:30 MW96-15-B
Grouping	Analyte					
WATER						
Dissolved Metals	Titanium (Ti)-Dissolved (mg/L)	<0.010	<0.010	<0.010	<0.010	<0.010
	Uranium (U)-Dissolved (mg/L)	0.000908	0.000168	0.000134	0.00733	0.00747
	Vanadium (V)-Dissolved (mg/L)	<0.0010	<0.0010	<0.0010	<0.0010	<0.0010
	Zinc (Zn)-Dissolved (mg/L)	0.0118	0.0100	0.0074	0.0095	0.0036

L829307 CONTD.... PAGE 7 of 11 26-OCT-09 14:23

	Sample ID Description Sampled Date Sampled Time Client ID	L829307-6 05-OCT-09 14:00 MW09-DG-1	L829307-7 05-OCT-09 18:00 MW96-23	L829307-8 05-OCT-09 19:30 MW09-DG-4	
Grouping	Analyte				
WATER					
	Analyte Titanium (Ti)-Dissolved (mg/L) Uranium (U)-Dissolved (mg/L) Vanadium (V)-Dissolved (mg/L) Zinc (Zn)-Dissolved (mg/L)	<0.010 0.00167 <0.0010 0.0114	<0.010 0.00547 <0.0010 0.0071	<0.050 0.0102 <0.0050 <0.0050	

L829307 CONTD.... PAGE 8 of 11 26-OCT-09 14:23

Additional Comments	for Sample	Listed:	
Samplenum	Matrix	Report Remarks	Sample Comments
Methods Listed (if app	olicable):		
ALS Test Code	Matrix	Test Description	Analytical Method Reference(Based On)
ALK-COL-VA	Water	Alkalinity by Colourimetric (Automated)	APHA 310.2
This analysis is carried c colourimetric method.	out using pro	cedures adapted from EPA Method 310.2 "Alkalinit	y". Total Alkalinity is determined using the methyl orange
ANIONS-BR-IC-VA	Water	Bromide by Ion Chromatography	APHA 4110 B.
		cedures adapted from APHA Method 4110 B. "Ion "Determination of Inorganic Anions by Ion Chroma	Chromatography with Chemical Suppression of Eluent atography".
ANIONS-CL-IC-VA	Water	Chloride by Ion Chromatography	APHA 4110 B.
		cedures adapted from APHA Method 4110 B. "Ion "Determination of Inorganic Anions by Ion Chroma	Chromatography with Chemical Suppression of Eluent atography".
ANIONS-F-IC-VA	Water	Fluoride by Ion Chromatography	APHA 4110 B.
		cedures adapted from APHA Method 4110 B. "Ion "Determination of Inorganic Anions by Ion Chroma	Chromatography with Chemical Suppression of Eluent atography".
ANIONS-NO2-IC-VA	Water	Nitrite by Ion Chromatography	APHA 4110 B.
	lethod 300.0		Chromatography with Chemical Suppression of Eluent atography". Specifically, the nitrite detection is by UV
ANIONS-NO3-IC-VA	Water	Nitrate by Ion Chromatography	APHA 4110 B.
	lethod 300.0		Chromatography with Chemical Suppression of Eluent atography". Specifically, the nitrate detection is by UV
ANIONS-SO4-IC-VA	Water	Sulfate by Ion Chromatography	APHA 4110 B.
		cedures adapted from APHA Method 4110 B. "Ion "Determination of Inorganic Anions by Ion Chroma	Chromatography with Chemical Suppression of Eluent atography".
CARBONS-TOC-VA	Water	Total organic carbon by combustion	APHA 5310 "TOTAL ORGANIC CARBON (TOC)"
This analysis is carried o	out using pro	cedures adapted from APHA Method 5310 "Total C	Organic Carbon (TOC)".
CARBONS-TOC-VA	Water	Total organic carbon by combustion	APHA 5310 TOTAL ORGANIC CARBON (TOC)
This analysis is carried c	out using pro	cedures adapted from APHA Method 5310 "Total C	Organic Carbon (TOC)".
EC-PCT-VA	Water	Conductivity (Automated)	APHA 2510 Auto. Conduc.
This analysis is carried of electrode.	out using pro	cedures adapted from APHA Method 2510 "Condu	ctivity". Conductivity is determined using a conductivity
HARDNESS-CALC-VA	Water	Hardness	APHA 2340B
Hardness is calculated fi	rom Calcium	and Magnesium concentrations, and is expressed	as calcium carbonate equivalents.
HG-DIS-CVAFS-VA	Water	Dissolved Mercury in Water by CVAFS	EPA SW-846 3005A & EPA 245.7
This analysis is carried o	out usina pro	cedures adapted from "Standard Methods for the E	xamination of Water and Wastewater" published by the

This analysis is carried out using procedures adapted from "Standard Methods for the Examination of Water and Wastewater" published by the American Public Health Association, and with procedures adapted from "Test Methods for Evaluating Solid Waste" SW-846 published by the United

Methods Listed (if applicable):

ALS Test Code	Matrix	Test Description	Analytical Method Reference(Based On)

States Environmental Protection Agency (EPA). The procedures may involve preliminary sample treatment by filtration (EPA Method 3005A) and involves a cold-oxidation of the acidified sample using bromine monochloride prior to reduction of the sample with stannous chloride. Instrumental analysis is by cold vapour atomic fluorescence spectrophotometry (EPA Method 245.7).

HG-TOT-CVAFS-VA Water Total Mercury in Water by CVAFS

This analysis is carried out using procedures adapted from "Standard Methods for the Examination of Water and Wastewater" published by the American Public Health Association, and with procedures adapted from "Test Methods for Evaluating Solid Waste" SW-846 published by the United States Environmental Protection Agency (EPA). The procedure involves a cold-oxidation of the acidified sample using bromine monochloride prior to reduction of the sample with stannous chloride. Instrumental analysis is by cold vapour atomic fluorescence spectrophotometry (EPA Method 245.7).

MET-DIS-ICP-VA Water **Dissolved Metals in Water by ICPOES**

This analysis is carried out using procedures adapted from "Standard Methods for the Examination of Water and Wastewater" published by the American Public Health Association, and with procedures adapted from "Test Methods for Evaluating Solid Waste" SW-846 published by the United States Environmental Protection Agency (EPA). The procedure involves filtration (EPA Method 3005A) and analysis by inductively coupled plasma optical emission spectrophotometry (EPA Method 6010B).

MET-DIS-LOW-MS-VA Water Dissolved Metals in Water by ICPMS(Low)

This analysis is carried out using procedures adapted from "Standard Methods for the Examination of Water and Wastewater" published by the American Public Health Association, and with procedures adapted from "Test Methods for Evaluating Solid Waste" SW-846 published by the United States Environmental Protection Agency (EPA). The procedures involves preliminary sample treatment by filtration (EPA Method 3005A). Instrumental analysis is by inductively coupled plasma - mass spectrometry (EPA Method 6020A).

MET-DIS-ULTRA-MS-VA Water

Diss. Metals in Water by ICPMS (Ultra)

This analysis is carried out using procedures adapted from "Standard Methods for the Examination of Water and Wastewater" published by the American Public Health Association, and with procedures adapted from "Test Methods for Evaluating Solid Waste" SW-846 published by the United States Environmental Protection Agency (EPA). The procedures involves preliminary sample treatment by filtration (EPA Method 3005A). Instrumental analysis is by inductively coupled plasma - mass spectrometry (EPA Method 6020A).

MET-TOT-ICP-VA Water Total Metals in Water by ICPOES

This analysis is carried out using procedures adapted from "Standard Methods for the Examination of Water and Wastewater" published by the American Public Health Association, and with procedures adapted from "Test Methods for Evaluating Solid Waste" SW-846 published by the United States Environmental Protection Agency (EPA). The procedures may involve preliminary sample treatment by acid digestion, using either hotblock or microwave oven (EPA Method 3005A). Instrumental analysis is by inductively coupled plasma - optical emission spectrophotometry (EPA Method 6010B).

MET-TOT-LOW-MS-VA Water

Total Metals in Water by ICPMS(Low)

This analysis is carried out using procedures adapted from "Standard Methods for the Examination of Water and Wastewater" published by the American Public Health Association, and with procedures adapted from "Test Methods for Evaluating Solid Waste" SW-846 published by the United States Environmental Protection Agency (EPA). The procedures may involve preliminary sample treatment by acid digestion, using either hotblock or microwave oven, or filtration (EPA Method 3005A). Instrumental analysis is by inductively coupled plasma - mass spectrometry (EPA Method 6020A).

MET-TOT-ULTRA-MS-VA Water

Total Metals in Water by ICPMS (Ultra)

EPA SW-846 3005A/6020A

EPA 245.7

EPA SW-846 3005A/6010B

EPA SW-846 3005A/6020A

EPA SW-846 3005A/6020A

EPA SW-846 3005A/6010B

EPA SW-846 3005A/6020A

This analysis is carried out using procedures adapted from "Standard Methods for the Examination of Water and Wastewater" published by the American Public Health Association, and with procedures adapted from "Test Methods for Evaluating Solid Waste" SW-846 published by the United States Environmental Protection Agency (EPA). The procedures may involve preliminary sample treatment by acid digestion, using either hotblock or microwave oven, or filtration (EPA Method 3005A). Instrumental analysis is by inductively coupled plasma - mass spectrometry (EPA Method 6020A).

NH3-COL-VA

Ammonia by Colour

Water

APHA 4500-NH3 "Nitrogen (Ammonia)"

This analysis is carried out, on unpreserved samples, using procedures adapted from APHA Method 4500-NH3 "Nitrogen (Ammonia)". Ammonia is determined using the phenate colourimetric method.

NH3-COL-VA

L829307 CONTD PAGE 9 of 11

ALS Test Code	icable): Matrix	Test Description	Analytical Mothod Poteroneo(Pased On)
ALS Test Code	IVIALITX		Analytical Method Reference(Based On)
This analysis is carried ou determined using the phe			ed from APHA Method 4500-NH3 "Nitrogen (Ammonia)". Ammonia is
РН-РСТ-VA	Water	pH by Meter (Automated)	APHA 4500-H "pH Value"
This analysis is carried ou electrode	t using proc	edures adapted from APHA Method 450	0-H "pH Value". The pH is determined in the laboratory using a pH
РН-РСТ-VA	Water	pH by Meter (Automated)	APHA 4500-H pH Value
This analysis is carried ou electrode	t using proc	edures adapted from APHA Method 450	0-H "pH Value". The pH is determined in the laboratory using a pH
PO4-DO-COL-VA	Water	Dissolved ortho Phosphate by Colou	Ir APHA 4500-P "Phosphorous"
ascorbic acid colourimetric phosphate (total phosphot	c method. D rous) is dete	Dissolved ortho-phosphate (dissolved read	00-P "Phosphorus". All forms of phosphate are determined by the ctive phosphorous) is determined by direct measurement. Total sample. Total dissolved phosphate (total dissolved phosphorous) is ed by persulfate digestion of the filtrate.
PO4-DO-COL-VA	Water	Dissolved ortho Phosphate by Colou	r APHA 4500-P Phosphorous
ascorbic acid colourimetric phosphate (total phosphot	c method. D rous) is dete	Dissolved ortho-phosphate (dissolved real	00-P "Phosphorus". All forms of phosphate are determined by the ctive phosphorous) is determined by direct measurement. Total sample. Total dissolved phosphate (total dissolved phosphorous) is ed by persulfate digestion of the filtrate.
PO4-T-COL-VA	Water	Total Phosphate P by Color	APHA 4500-P "Phosphorous"
ascorbic acid colourimetri phosphate (total phosphot	c method. D rous) is dete	Dissolved ortho-phosphate (dissolved real	00-P "Phosphorus". All forms of phosphate are determined by the ctive phosphorous) is determined by direct measurement. Total sample. Total dissolved phosphate (total dissolved phosphorous) is ed by persulfate digestion of the filtrate.
PO4-T-COL-VA	Water	Total Phosphate P by Color	APHA 4500-P Phosphorous
ascorbic acid colourimetri phosphate (total phosphol	c method. D rous) is dete	Dissolved ortho-phosphate (dissolved real	00-P "Phosphorus". All forms of phosphate are determined by the ctive phosphorous) is determined by direct measurement. Total sample. Total dissolved phosphate (total dissolved phosphorous) is ed by persulfate digestion of the filtrate.
PO4-TD-COL-VA	Water	Total Dissolved Phosphate by Colou	r APHA 4500-P Phosphorous
ascorbic acid colourimetric phosphate (total phosphore	c method. D ous) is dete	Dissolved ortho-phosphate (dissolved read	00-P "Phosphorus". All forms of phosphate are determined by the ctive phosphorous) is determined by direct measurement. Total sample. Total dissolved phosphate (total dissolved phosphorous) is ed by persulfate digestion of the filtrate.
	Water	Total Dissolved Phosphate by Colou	r APHA 4500-P " Phosphorous"
PO4-TD-COL-VA	t usina proc		00-P "Phosphorus". All forms of phosphate are determined by the ictive phosphorous) is determined by direct measurement. Total
This analysis is carried ou ascorbic acid colourimetrio phosphate (total phosphol	c method. D rous) is dete	a 0.45 micron membrane filter follower	
This analysis is carried ou ascorbic acid colourimetrio phosphate (total phosphol	c method. D rous) is dete	ermined after persulphate digestion of a s	ed by persulfate digestion of the filtrate.
This analysis is carried ou ascorbic acid colourimetri phosphate (total phosphoi determined by filtering a s FDS-VA This analysis is carried ou	c method. D rous) is dete ample throu Water t using proc	ermined after persulphate digestion of a s ugh a 0.45 micron membrane filter followe Total Dissolved Solids by Gravimetric cedures adapted from APHA Method 254	ed by persulfate digestion of the filtrate.
This analysis is carried ou ascorbic acid colourimetri phosphate (total phosphoi determined by filtering a s FDS-VA This analysis is carried ou	c method. D rous) is dete ample throu Water t using proc	ermined after persulphate digestion of a s ugh a 0.45 micron membrane filter followe Total Dissolved Solids by Gravimetric cedures adapted from APHA Method 254	ed by persulfate digestion of the filtrate. c APHA 2540 C - GRAVIMETRIC 10 "Solids". Solids are determined gravimetrically. Total Dissolved Solids

Methods Listed (if a	, ,			
ALS Test Code	Matrix	Test Description	Ana	lytical Method Reference(Based On)
sample direction at 36	7 celcius with a	nalysis using an ammonia sele	activa electrode	
sample digestion at se				
TSS-VA	Water	Total Suspended Solids by	Gravimetric APH	IA 2540 D - GRAVIMETRIC
			ethod 2540 "Solids". Solids are determine re filter, TSS is determined by drying the	
TURBIDITY-VA	Water	Turbidity by Meter	APH	A 2130 "Turbidity"
This analysis is carried	d out using proc	edures adapted from APHA Me	ethod 2130 "Turbidity". Turbidity is deterr	nined by the nephelometric method.
TURBIDITY-VA	Water	Turbidity by Meter	APH	A 2130 Turbidity
This analysis is carried	d out using proc	edures adapted from APHA Me	ethod 2130 "Turbidity". Turbidity is deterr	nined by the nephelometric method.
•		•	are generally based on nationally or internet e laboratory that performed analytical an	nationally accepted methodologies. alysis for that test. Refer to the list below:
Laboratory Definitio	n Code La	boratory Location	Laboratory Definition Code	Laboratory Location
VA	ALS	S LABORATORY GROUP -		

GLOSSARY OF REPORT TERMS

Surr - A surrogate is an organic compound that is similar to the target analyte(s) in chemical composition and behavior but not normally detected in environmental samples. Prior to sample processing, samples are fortified with one or more surrogate compounds.

The reported surrogate recovery value provides a measure of method efficiency.

mg/kg (units) - unit of concentration based on mass, parts per million

mg/L (units) - unit of concentration based on volume, parts per million

N/A - Result not available. Refer to qualifier code and definition for explanation

Test results reported relate only to the samples as received by the laboratory. UNLESS OTHERWISE STATED, ALL SAMPLES WERE RECEIVED IN ACCEPTABLE CONDITION. Although test results are generated under strict QA/QC protocols, any unsigned test reports, faxes, or emails are considered preliminary.

ALS Laboratory Group has an extensive QA/QC program where all analytical data reported is analyzed using approved referenced procedures followed by checks and reviews by senior managers and quality assurance personnel. However, since the results are obtained from chemical measurements and thus cannot be guaranteed, ALS Laboratory Group assumes no liability for the use or interpretation of the results.

Chain of Custody / Analytical Request Form Canada Toll Free: 1 800 668 9878 <u>www.alsglobal.com</u>

COC #

ស. 🔊 េតបានដលាម បើកាលព្	Chain of Custody / Analytical Request Form Canada Toll Free: 1 800 668 9878	iical Request Form 800 668 9878			ō	COC #								Т
Envir controttat Evision	www.alsglobal.com	l.com							Ра	Page	1 of	ł		
Report to:	Report Format / Distribution	bution		Ser	Service Requested:	duest	ëd							
Company: Stantec-Jacques Whitford	Standard Other			i	Regular Service (Default)	Ir Sen	rice (D	Default						1
Contact: Neil MacLeod	V PDF V Excel	Fax		D.	Rush Service (2-3 Days)	Servic	e (2-3	Days						<u> </u>
Address: 4370 Dominion St., 5th Floor, POBOX 21, Bumaby	Email 1: neil.macleod	neil.macleod@jacqueswhitford.com	Ε	i	Priority Service (1 Day or ASAP	Serv	ce (1	Day o	r AS/	(a)				T
	Email 2: karen.munro	kareri.munro@jacqueswhitford.com	ε		Emerg	ency :	Servic	e (<1	Day /	Wker	Emergency Service (<1 Day / Wkend) - Contact ALS	ontac	t ALS	1.0
Phone: 604-436-3014 Fax:							An	Analysis Request	Req	uest				
Invoice To: 🏹 Same as Report		Indicate Bottles	ndicate Bottles: Filtered / Preserved (F/P) →			_							┝	_
Company:	Client / Project Information:	ation:						-						_
Contact:	Job #: 105355	1053550.08 C3112 810.030		, γ j i	1									
Address:	PO/AFE:			rbidı										
Sample	Legal Site Description:			υT ,										2111
Phone: Fax:	Quote #:			۷ity	_				_					
Lab Work Order # L & P307 (tab use only) / L & P307	ALS Natasha MM Contact:	Sampler (Initials):	Ken Nordin	itoubri	1 'SS) neo8	1H3		sig , pis	ICPOE		2snop	Contai	
Sample Sample Identification	Date	Time	Sample Type	°C '			N 'N							
# (This description will appear on the report)	t) dd-mmm-yy	y hh:mm	(Select from drop-down list)	Hq			тк	01						201
MW 09-0G-3	05-Oct-09	9 12:00	Water	×	×	×	×	×	× ×	×				-
T MW 96-8	05-Oct-09	9 12:30	Water	×	×	×	×	×	××	×				
3 MW09-OG-2	05-Oct-09	9 15:30	Water	×	×	×	×	×	××	×				
MW 96-19	06-Oct-09	9 12:00	Water	×	×	×	×	×	××	×				
H MW 96-15-b	06-Oct-09	9 13:30	Water	×	×	×	×	×	××	×				
6 MW 09-DG-1	06-Oct-09	9 14:00	Water	×	×	×	×	×	××	×			-	
7 MW 96-23	06-Oct-09	9 18:00	Water	×	×	×	×	×	××	×				
😵 MW 09-DG-4	06-Oct-09	9 19:30	Water	×	×	×	×	×	××	×				
					┥	_		┥	\neg			-	_	-
Guidelines / Regulations			Special Instructions / Hazardous Details	/ Haz	ardou	s Deta	ils							
	detection limi	detection limits must meet CCME guidelines	guidelines											
Failure to complete all portions of this form may delay analysis. Please fill in this form LEGIBLY. By the use of this form the user acknowledges and agrees with the Terms and Conditions as specified on the adjacent worksheet.	ete all portions of this form may delay analysis. Please fill in this form LEGIBLY. acknowledges and agrees with the Terms and Conditions as specified on the adia	m may delay analys with the Terms and	is. Please fill in this fo I Conditions as specifie	d on 1	GIBL) he adi	acent	work	sheet						
Relinquished KEN NORDIN Date & Time: 00/10/2009 16:00	Received V NN	Dates Tipe	MT 12 MM			4	attra	Sample Condition (tab use only)	on (lab	use on	(A)			
Inquished Date & Time:	By: Received	Date & Time:			Temperature	en e	Sampl	Samples Received in Good Condition? Y / N (if no	eived i	n Good (if no				
ey:	Þý.				1		<u> </u>	provided details)	detail	S)				

ł.

ALS Laboratory Group ANALYTICAL CHEMISTRY & TESTING SERVICES

Environmental Division

		Certific	ate of Analysis		
JACQUES W	HITFOR		-	Report Date:	09-NOV-09 13:58 (MT)
ATTN: NEIL	MACLE	OD		Version:	FINAL
4370 Domini Po Box 21 Burnaby B		EET, 5TH FLOOR 4L7			
Lab Work Ord	er #:	L833680		Date Received	1: 26-OCT-09
Project P.O. a Job Referenc Legal Site De CofC Numbe	#: ;e: esc:	1053550.08 C3112 810.030			
Other Informa	ation:				
Comments:	request Please receive	note that the chain of custody requests DO d. This analysis was cancelled as per the c note that some of the metals and anions de	C analysis for sample MW09-AG ient's request.	-2 but no bottle appr	opriate for this analysis was

THIS REPORT SHALL NOT BE REPRODUCED EXCEPT IN FULL WITHOUT THE WRITTEN AUTHORITY OF THE LABORATORY. ALL SAMPLES WILL BE DISPOSED OF AFTER 30 DAYS FOLLOWING ANALYSIS. PLEASE CONTACT THE LAB IF YOU REQUIRE ADDITIONAL SAMPLE STORAGE TIME.

ALS Canada Ltd. Part of the ALS Laboratory Group 1988 Triumph Street, Vancouver, BC V5L 1K5 Phone: +1 604 253 4188 Fax: +1 604 253 6700 www.alsglobal.com A Campbell Brothers Limited Company

L833680 CONTD PAGE 2 of 15

ALS LABORATORY GROUP ANALYTICAL REPORT

09-NOV-09 14:10

	Sample ID Description	L833680-1	L833680-2	L833680-3	L833680-4	L833680-5
	Sampled Date	20-OCT-09	20-OCT-09	21-OCT-09	21-OCT-09	21-OCT-09
	Sampled Time	18:00	19:00	10:30	12:30	14:00
	Client ID	W-22 HAGGART UPSTREAM	W-21 DUBLIN GULCH	W-9 EAGLE PUP	MW09-AG-2	W-1 DUBLIN MIDWAY
Grouping	Analyte					
WATER						
Physical Tests	Conductivity (uS/cm)	297	175	405	964	111
	Hardness (as CaCO3) (mg/L)	166	84.9	238	355	51.9
	рН (рН)	7.87	7.82	7.91	7.24	7.74
	Total Suspended Solids (mg/L)	<3.0	<3.0	<3.0	821	<3.0
	Total Dissolved Solids (mg/L)	193	114	223	3100	61
	Turbidity (NTU)	0.41	0.25	1.20	437	0.46
Anions and Nutrients	Alkalinity, Total (as CaCO3) (mg/L)	89.9	59.2	171	682	41.4
	Ammonia as N (mg/L)	0.025	0.025	<0.020	1.39	0.020
	Bromide (Br) (mg/L)	<0.050	<0.050	<0.050	<5.0 *	<0.050
	Chloride (Cl) (mg/L)	<0.50	<0.50	<0.50	<50 *	<0.50
	Fluoride (F) (mg/L)	0.072	0.069	0.137	0.296	0.061
	Nitrate (as N) (mg/L)	0.108	0.0628	0.382	<0.50 *	0.0540
	Nitrite (as N) (mg/L)	<0.0010	<0.0010	<0.0010	<0.10 *	<0.0010
	Total Kjeldahl Nitrogen (mg/L)	0.142	0.118	0.063	14.6	<0.050
	Total Nitrogen (mg/L)	0.250	0.181	0.445	14.6	<0.060
	Ortho Phosphate as P (mg/L)	<0.0010	0.0025	0.0031	<0.10	0.0049
	Total Dissolved Phosphate As P (mg/L)	<0.0020	0.0029	0.0044	<0.20	0.0036
	Total Phosphate as P (mg/L)	<0.0020	0.0032	0.0054	0.54	0.0040
	Sulfate (SO4) (mg/L)	64.8	31.3	50.3	<50 *	13.2
Cyanides	Cyanide, Weak Acid Diss (mg/L)	<0.0050	<0.0050	<0.0050		<0.0050
	Cyanide, Total (mg/L)	<0.0050	<0.0050	<0.0050		<0.0050
Organic /	Dissolved Organic Carbon (mg/L)	1.51	2.51	2.77		1.45
Inorganic Carbon	Total Organia Carbon (mg/l)				245	
Total Matala	Total Organic Carbon (mg/L)	0.010	0.010	0.0457	345	0.0404
Total Metals	Aluminum (Al)-Total (mg/L)	<0.010	<0.010	0.0457	3.42	0.0134
	Antimony (Sb)-Total (mg/L)	0.00022	0.00133	0.00060	0.0026	0.00105
	Arsenic (As)-Total (mg/L)	0.00066	0.0342	0.0184	0.0610	0.0349
	Barium (Ba)-Total (mg/L)	0.0315	0.0431	0.0758	0.0668	0.0392
	Beryllium (Be)-Total (mg/L)	<0.00050	<0.00050	<0.00050	<0.0050	<0.00050
	Bismuth (Bi)-Total (mg/L)	<0.00050	<0.00050	<0.00050	<0.0050	< 0.00050
	Boron (B)-Total (mg/L)	<0.010	<0.010	< 0.010	0.20	< 0.010
	Cadmium (Cd)-Total (mg/L)	<0.000050	<0.000050	<0.000050	<0.00050	<0.000050
	Calcium (Ca)-Total (mg/L)	38.7	21.3	43.3	104	14.1
	Chromium (Cr)-Total (mg/L)	<0.00050	<0.00050	<0.00050	0.0170	<0.00050
	Cobalt (Co)-Total (mg/L)	<0.00010	<0.00010	<0.00010	0.0191	<0.00010
	Copper (Cu)-Total (mg/L)	<0.00060	<0.00040	<0.00060	0.0789	<0.00050
	Iron (Fe)-Total (mg/L)	0.058	<0.030	0.066	10.2	<0.030
	Lead (Pb)-Total (mg/L)	<0.000050	<0.000050	0.000101	0.00398	<0.000050
	Lithium (Li)-Total (mg/L)	0.0053	0.0080	0.0101	0.073	<0.0050
	Magnesium (Mg)-Total (mg/L)	13.3	7.12	29.1	98.3	3.46
	Manganese (Mn)-Total (mg/L)	0.0181	0.00206	0.00119	0.732	0.000480

L833680 CONTD 5 0

ALS LABORATORY GROUP ANALYTICAL REF

	PAGE 3 of 15
TICAL REPORT	09-NOV-09 14:10

	Sample ID Description Sampled Date Sampled Time	L833680-6 21-OCT-09 14:30	L833680-7 21-OCT-09 16:00	L833680-8 22-OCT-09 09:00	L833680-9 22-OCT-09 10:20	L833680-10 22-OCT-09 11:10
	Client ID	W-26 STEWART GULCH	W-20 BAWNBOY	W-27 EAGLE PUP	W-29 HAGGART CRK MID	W-23 HAGGART CRK D/S
Grouping	Analyte					
WATER						
Physical Tests	Conductivity (uS/cm)	291	65.9	343	322	323
	Hardness (as CaCO3) (mg/L)	165	28.7	194	182	182
	рН (рН)	7.91	7.65	8.10	7.95	7.87
	Total Suspended Solids (mg/L)	<3.0	4.5	<3.0	<3.0	<3.0
	Total Dissolved Solids (mg/L)	179	44	215	202	217
	Turbidity (NTU)	0.36	1.24	2.33	1.37	0.55
Anions and Nutrients	Alkalinity, Total (as CaCO3) (mg/L)	124	25.9	122	101	95.3
	Ammonia as N (mg/L)	0.022	0.023	0.023	0.021	0.021
	Bromide (Br) (mg/L)	<0.050	<0.050	<0.050	<0.050	<0.050
	Chloride (CI) (mg/L)	<0.50	<0.50	<0.50	<0.50	<0.50
	Fluoride (F) (mg/L)	0.100	0.035	0.121	0.083	0.078
	Nitrate (as N) (mg/L)	0.147	0.0519	0.109	0.104	0.147
	Nitrite (as N) (mg/L)	<0.0010	<0.0010	<0.0010	<0.0010	<0.0010
	Total Kjeldahl Nitrogen (mg/L)	0.094	0.067	0.074	0.058	0.085
	Total Nitrogen (mg/L)	0.241	0.119	0.183	0.162	0.232
	Ortho Phosphate as P (mg/L)	0.0062	0.0031	0.0022	<0.0010	<0.0010
	Total Dissolved Phosphate As P (mg/L)	0.0062	0.0041	0.0031	<0.0020	0.0023
	Total Phosphate as P (mg/L)	0.0072	0.0067	0.0053	0.0021	0.0023
	Sulfate (SO4) (mg/L)	32.7	5.32	54.7	67.1	67.7
Cyanides	Cyanide, Weak Acid Diss (mg/L)	<0.0050	<0.0050	<0.0050	<0.0050	<0.0050
	Cyanide, Total (mg/L)	<0.0050	<0.0050	<0.0050	<0.0050	<0.0050
Organic / Inorganic Carbon	Dissolved Organic Carbon (mg/L)	2.44	0.97	1.78	1.45	2.05
T- (- M-(- -	Total Organic Carbon (mg/L)	0.0405	0.0504	0.0750	0.0010	0.440
Total Metals	Aluminum (Al)-Total (mg/L)	0.0185	0.0534	0.0758	0.0212	0.112
	Antimony (Sb)-Total (mg/L)	0.00076	0.00061	0.00471	0.00068	0.00047
	Arsenic (As)-Total (mg/L)	0.0179	0.0686	0.0364	0.00417	0.00469
	Barium (Ba)-Total (mg/L)	0.0599	0.0250	0.0581	0.0354	0.0423
	Beryllium (Be)-Total (mg/L)	<0.00050	<0.00050	< 0.00050	<0.00050	<0.00050
	Bismuth (Bi)-Total (mg/L)	<0.00050	<0.00050	<0.00050	<0.00050	<0.00050
	Boron (B)-Total (mg/L)	<0.010	<0.010	< 0.010	< 0.010	<0.010
	Cadmium (Cd)-Total (mg/L)	<0.000050	<0.000050	<0.000050	<0.000050	<0.000050
	Calcium (Ca)-Total (mg/L)	36.5	8.77	39.2	42.8	48.7
	Chromium (Cr)-Total (mg/L)	<0.00050	<0.00050	<0.00050	<0.00050	<0.00050
	Cobalt (Co)-Total (mg/L)	<0.00010	<0.00010	<0.00010	<0.00010	<0.00010
	Copper (Cu)-Total (mg/L)	0.00210	<0.00030	0.00116	<0.00060	0.00103
	Iron (Fe)-Total (mg/L)	<0.030	0.066	0.132	0.072	0.036
	Lead (Pb)-Total (mg/L)	0.000060	0.000118	0.000261	0.000139	<0.000050
	Lithium (Li)-Total (mg/L)	<0.0050	<0.0050	0.0107	0.0064	< 0.0050
	Magnesium (Mg)-Total (mg/L)	16.6	1.48	20.6	15.2	11.8
	Manganese (Mn)-Total (mg/L)	0.000607	0.00246	0.00483	0.0268	0.0223

L833680 CONTD ----.

ALS LABORATORY GROUP ANALYTICAL REPORT

PAGE	4	of	15
09-NOV	09	14:	10

	Sample ID Description Sampled Date Sampled Time	L833680-11 22-OCT-09 13:30	L833680-12	L833680-13	L833680-14 22-OCT-09 11:45	
	Client ID	FIELD BLANK	TRAVEL BLANK	BD BLIND DUPLICATE	W-5 HAGGART CRK U/S	
Grouping	Analyte					
WATER						
Physical Tests	Conductivity (uS/cm)	<2.0	<2.0	318	340	
	Hardness (as CaCO3) (mg/L)	<1.0	<1.0	181	191	
	рН (рН)	5.53	5.48	7.85	7.97	
	Total Suspended Solids (mg/L)	<3.0	<3.0	5.0	<3.0	
	Total Dissolved Solids (mg/L)	<10	<10	211	222	
	Turbidity (NTU)	<0.10	<0.10	1.26	0.66	
Anions and Nutrients	Alkalinity, Total (as CaCO3) (mg/L)	<2.0	<2.0	94.6	98.3	
	Ammonia as N (mg/L)	<0.020	<0.020	<0.020	0.021	
	Bromide (Br) (mg/L)	<0.050	<0.050	<0.050	<0.050	
	Chloride (CI) (mg/L)	<0.50	<0.50	<0.50	<0.50	
	Fluoride (F) (mg/L)	<0.020	<0.020	0.083	0.085	
	Nitrate (as N) (mg/L)	<0.0050	0.0060	0.104	0.101	
	Nitrite (as N) (mg/L)	<0.0010	<0.0010	<0.0010	<0.0010	
	Total Kjeldahl Nitrogen (mg/L)	<0.050	<0.050	0.080	0.061	
	Total Nitrogen (mg/L)	<0.060	<0.060	0.184	0.162	
	Ortho Phosphate as P (mg/L)	<0.0010	<0.0010	0.0014	<0.0010	
	Total Dissolved Phosphate As P (mg/L)	<0.0020	<0.0020	<0.0020	0.0025	
	Total Phosphate as P (mg/L)	<0.0020	<0.0020	0.0027	0.0071	
	Sulfate (SO4) (mg/L)	<0.50	<0.50	67.1	74.1	
Cyanides	Cyanide, Weak Acid Diss (mg/L)	<0.0050	<0.0050	<0.0050	<0.0050	
	Cyanide, Total (mg/L)	<0.0050	<0.0050	<0.0050	<0.0050	
Organic / Inorganic Carbon	Dissolved Organic Carbon (mg/L)	<0.50	<0.50	1.40	1.68	
	Total Organic Carbon (mg/L)					
Total Metals	Aluminum (Al)-Total (mg/L)	<0.0010	<0.0010	0.0420	0.0215	
	Antimony (Sb)-Total (mg/L)	<0.00010	<0.00010	0.00069	0.00058	
	Arsenic (As)-Total (mg/L)	<0.00010	<0.00010	0.00418	0.00326	
	Barium (Ba)-Total (mg/L)	<0.000050	<0.000050	0.0368	0.0357	
	Beryllium (Be)-Total (mg/L)	<0.00050	<0.00050	<0.00050	<0.00050	
	Bismuth (Bi)-Total (mg/L)	<0.00050	<0.00050	<0.00050	<0.00050	
	Boron (B)-Total (mg/L)	<0.010	<0.010	<0.010	<0.010	
	Cadmium (Cd)-Total (mg/L)	<0.000050	<0.000050	<0.000050	<0.000050	
	Calcium (Ca)-Total (mg/L)	<0.050	<0.050	43.4	44.5	
	Chromium (Cr)-Total (mg/L)	<0.00050	<0.00050	<0.00050	<0.00050	
	Cobalt (Co)-Total (mg/L)	<0.00010	<0.00010	<0.00010	0.00011	
	Copper (Cu)-Total (mg/L)	<0.00010	<0.00010	<0.00060	<0.00060	
	Iron (Fe)-Total (mg/L)	< 0.030	< 0.030	0.114	0.067	
	Lead (Pb)-Total (mg/L)	<0.000050	<0.000050	0.000360	0.000078	
	Lithium (Li)-Total (mg/L)	<0.0050	<0.0050	0.0065	0.0068	
	Magnesium (Mg)-Total (mg/L)	<0.10	<0.10	15.3	16.3	
	Manganese (Mn)-Total (mg/L)	<0.000050	<0.000050	0.0302	0.0518	

L833680 CONTD.... PAGE 5 of 15 09-NOV-09 14:10

ALS LABORATORY GROUP ANALYTICAL REPORT

	Sample ID Description Sampled Date Sampled Time	L833680-1 20-OCT-09	L833680-2 20-OCT-09 19:00	L833680-3 21-OCT-09	L833680-4 21-OCT-09	L833680-5 21-OCT-09
	Client ID	18:00 W-22 HAGGART UPSTREAM	W-21 DUBLIN GULCH	10:30 W-9 EAGLE PUP	12:30 MW09-AG-2	14:00 W-1 DUBLIN MIDWAY
Grouping	Analyte					
WATER						
Total Metals	Mercury (Hg)-Total (mg/L)	<0.000050	<0.000050	<0.000050	<0.00010	<0.000050
	Molybdenum (Mo)-Total (mg/L)	0.000120	0.00164	0.00128	0.0161	0.00186
	Nickel (Ni)-Total (mg/L)	0.00087	0.00065	<0.00050	0.0858	<0.00050
	Phosphorus (P)-Total (mg/L)	<0.30	<0.30	<0.30	<3.0	<0.30
	Potassium (K)-Total (mg/L)	<2.0	<2.0	<2.0	<20	<2.0
	Selenium (Se)-Total (mg/L)	<0.0010	<0.0010	<0.0010	<0.010	<0.0010
	Silicon (Si)-Total (mg/L)	3.48	5.80	3.86	12.0	5.72
	Silver (Ag)-Total (mg/L)	<0.000010	<0.000010	<0.000010	<0.00010	<0.000010
	Sodium (Na)-Total (mg/L)	<2.0	<2.0	3.0	170	<2.0
	Strontium (Sr)-Total (mg/L)	0.178	0.125	0.337	0.850	0.0786
	Thallium (TI)-Total (mg/L)	<0.00010	<0.00010	<0.00010	<0.0010	<0.00010
	Tin (Sn)-Total (mg/L)	<0.00020	<0.00010	<0.00010	0.0022	<0.00010
	Titanium (Ti)-Total (mg/L)	<0.010	<0.010	<0.010	0.12	<0.010
	Uranium (U)-Total (mg/L)	0.000876	0.000752	0.0100	0.00498	0.000450
	Vanadium (V)-Total (mg/L)	<0.0010	<0.0010	<0.0010	0.014	<0.0010
	Zinc (Zn)-Total (mg/L)	0.0014	0.0013	<0.0010	0.115	<0.0010
Dissolved Metals	Aluminum (AI)-Dissolved (mg/L)	0.0031	0.0032	0.0020	<0.050	0.0035
	Antimony (Sb)-Dissolved (mg/L)	0.00020	0.00129	0.00064	<0.0050	0.00101
	Arsenic (As)-Dissolved (mg/L)	0.00071	0.0335	0.0185	0.0178	0.0339
	Barium (Ba)-Dissolved (mg/L)	0.0324	0.0412	0.0735	0.0326	0.0376
	Beryllium (Be)-Dissolved (mg/L)	<0.00050	<0.00050	<0.00050	<0.025	<0.00050
	Bismuth (Bi)-Dissolved (mg/L)	<0.00050	<0.00050	<0.00050	<0.025	<0.00050
	Boron (B)-Dissolved (mg/L)	<0.010	<0.010	<0.010	<0.50	<0.010
	Cadmium (Cd)-Dissolved (mg/L)	<0.000050	<0.000050	<0.000050	<0.0025	<0.000050
	Calcium (Ca)-Dissolved (mg/L)	42.7	22.0	46.0	64.0	14.9
	Chromium (Cr)-Dissolved (mg/L)	<0.00050	<0.00050	<0.00050	<0.025	<0.00050
	Cobalt (Co)-Dissolved (mg/L)	<0.00010	<0.00010	<0.00010	0.0101	<0.00010
	Copper (Cu)-Dissolved (mg/L)	0.00033	0.00143	0.00159	0.0274	0.00018
	Iron (Fe)-Dissolved (mg/L)	0.033	<0.030	<0.030	0.35	<0.030
	Lead (Pb)-Dissolved (mg/L)	<0.000050	0.000084	<0.000050	<0.0025	<0.000050
	Lithium (Li)-Dissolved (mg/L)	0.0054	0.0075	0.0095	<0.25	<0.0050
	Magnesium (Mg)-Dissolved (mg/L)	14.4	7.29	30.0	47.4	3.57
	Manganese (Mn)-Dissolved (mg/L)	0.0396	0.00198	0.000287	0.451	0.000108
	Mercury (Hg)-Dissolved (mg/L)	<0.000050	<0.000050	<0.000050	<0.00010	<0.000050
	Molybdenum (Mo)-Dissolved (mg/L)	0.000068	0.00153	0.00121	0.0175	0.00174
	Nickel (Ni)-Dissolved (mg/L)	0.00069	0.00057	<0.00050	0.057	<0.00050
	Phosphorus (P)-Dissolved (mg/L)	<0.30	<0.30	<0.30	<3.0	<0.30
	Potassium (K)-Dissolved (mg/L)	<2.0	<2.0	<2.0	<20	<2.0
	Selenium (Se)-Dissolved (mg/L)	<0.0010	<0.0010	<0.0010	<0.050	<0.0010
	Silicon (Si)-Dissolved (mg/L) Silver (Ag)-Dissolved (mg/L)	3.76 <0.000010	5.94 <0.000010	3.96 <0.000010	5.18 <0.00050	6.02 <0.000010

L833680 CONTD.... PAGE 6 of 15 09-NOV-09 14:10

ALS LABORATORY GROUP ANALYTICAL REPORT

-

	Sample ID Description Sampled Date Sampled Time Client ID	L833680-6 21-OCT-09 14:30 W-26 STEWART GULCH	L833680-7 21-OCT-09 16:00 W-20 BAWNBOY	L833680-8 22-OCT-09 09:00 W-27 EAGLE PUP	L833680-9 22-OCT-09 10:20 W-29 HAGGART CRK MID	L833680-10 22-OCT-09 11:10 W-23 HAGGART CRK D/S
Grouping	Analyte					
WATER						
Total Metals	Mercury (Hg)-Total (mg/L)	<0.000050	<0.000050	<0.000050	<0.000050	<0.000050
	Molybdenum (Mo)-Total (mg/L)	0.00305	0.000981	0.00110	0.000260	0.000535
	Nickel (Ni)-Total (mg/L)	0.00437	<0.00050	0.00061	0.00074	0.00059
	Phosphorus (P)-Total (mg/L)	<0.30	<0.30	<0.30	<0.30	<0.30
	Potassium (K)-Total (mg/L)	<2.0	<2.0	2.1	<2.0	<2.0
	Selenium (Se)-Total (mg/L)	<0.0010	<0.0010	<0.0010	<0.0010	<0.0010
	Silicon (Si)-Total (mg/L)	5.20	6.09	4.89	3.82	3.94
	Silver (Ag)-Total (mg/L)	<0.000010	<0.000010	<0.000010	<0.000010	<0.000010
	Sodium (Na)-Total (mg/L)	<2.0	<2.0	2.7	<2.0	<2.0
	Strontium (Sr)-Total (mg/L)	0.266	0.0534	0.246	0.197	0.198
	Thallium (TI)-Total (mg/L)	<0.00010	<0.00010	<0.00010	<0.00010	<0.00010
	Tin (Sn)-Total (mg/L)	<0.00020	<0.00020	<0.00010	<0.00010	<0.00010
	Titanium (Ti)-Total (mg/L)	<0.010	<0.010	<0.010	<0.010	<0.010
	Uranium (U)-Total (mg/L)	0.00365	0.000300	0.00362	0.00134	0.00111
	Vanadium (V)-Total (mg/L)	<0.0010	<0.0010	<0.0010	<0.0010	<0.0010
	Zinc (Zn)-Total (mg/L)	0.0018	0.0017	0.0017	0.0016	0.0011
Dissolved Metals	Aluminum (AI)-Dissolved (mg/L)	0.0028	0.0040	<0.0010	0.0025	0.0037
	Antimony (Sb)-Dissolved (mg/L)	0.00074	0.00060	0.00456	0.00067	0.00048
	Arsenic (As)-Dissolved (mg/L)	0.0182	0.0653	0.0351	0.00386	0.00470
	Barium (Ba)-Dissolved (mg/L)	0.0579	0.0235	0.0551	0.0355	0.0410
	Beryllium (Be)-Dissolved (mg/L)	<0.00050	<0.00050	<0.00050	<0.00050	<0.00050
	Bismuth (Bi)-Dissolved (mg/L)	<0.00050	<0.00050	<0.00050	<0.00050	<0.00050
	Boron (B)-Dissolved (mg/L)	<0.010	<0.010	<0.010	<0.010	<0.010
	Cadmium (Cd)-Dissolved (mg/L)	<0.000050	<0.000050	<0.000050	<0.000050	<0.000050
	Calcium (Ca)-Dissolved (mg/L)	38.3	9.04	42.5	46.4	52.4
	Chromium (Cr)-Dissolved (mg/L)	<0.00050	<0.00050	<0.00050	<0.00050	<0.00050
	Cobalt (Co)-Dissolved (mg/L)	<0.00010	<0.00010	<0.00010	<0.00010	<0.00010
	Copper (Cu)-Dissolved (mg/L)	0.00038	0.00011	0.00078	0.00034	0.00052
	Iron (Fe)-Dissolved (mg/L)	<0.030	<0.030	<0.030	<0.030	<0.030
	Lead (Pb)-Dissolved (mg/L)	<0.000050	<0.000050	<0.000050	<0.000050	<0.000050
	Lithium (Li)-Dissolved (mg/L)	<0.0050	<0.0050	0.0107	0.0059	<0.0050
	Magnesium (Mg)-Dissolved (mg/L)	16.9	1.50	21.4	16.0	12.5
	Manganese (Mn)-Dissolved (mg/L)	0.000140	0.000517	0.00232	0.0233	0.0198
	Mercury (Hg)-Dissolved (mg/L)	<0.000050	<0.000050	<0.000050	<0.000050	<0.000050
	Molybdenum (Mo)-Dissolved (mg/L)	0.00286	0.000905	0.00107	0.000210	0.000528
	Nickel (Ni)-Dissolved (mg/L)	<0.00050	<0.00050	<0.00050	0.00056	<0.00050
	Phosphorus (P)-Dissolved (mg/L)	<0.30	<0.30	<0.30	<0.30	<0.30
	Potassium (K)-Dissolved (mg/L)	<2.0	<2.0	2.0	<2.0	<2.0
	Selenium (Se)-Dissolved (mg/L)	<0.0010	<0.0010	<0.0010	<0.0010	<0.0010
	Silicon (Si)-Dissolved (mg/L)	5.38	6.21	5.03	4.04	4.20
	Silver (Ag)-Dissolved (mg/L)	<0.000010	<0.000010	<0.000010	<0.000010	<0.000010

L833680 CONTD.... PAGE 7 of 15 09-NOV-09 14:10

ALS LABORATORY GROUP ANALYTICAL REPORT

	Sample ID Description Sampled Date Sampled Time Client ID	L833680-11 22-OCT-09 13:30 FIELD BLANK	L833680-12 TRAVEL BLANK	L833680-13 BD BLIND DUPLICATE	L833680-14 22-OCT-09 11:45 W-5 HAGGART CRK U/S	
Grouping	Analyte					
WATER						
Total Metals	Mercury (Hg)-Total (mg/L)	<0.000050	<0.000050	<0.000050	<0.000050	
	Molybdenum (Mo)-Total (mg/L)	<0.000050	<0.000050	0.000228	0.000256	
	Nickel (Ni)-Total (mg/L)	<0.00050	<0.00050	0.00084	0.00086	
	Phosphorus (P)-Total (mg/L)	<0.30	<0.30	<0.30	<0.30	
	Potassium (K)-Total (mg/L)	<2.0	<2.0	<2.0	<2.0	
	Selenium (Se)-Total (mg/L)	<0.0010	<0.0010	<0.0010	<0.0010	
	Silicon (Si)-Total (mg/L)	<0.050	<0.050	3.83	3.67	
	Silver (Ag)-Total (mg/L)	<0.000010	<0.000010	<0.000010	<0.000010	
	Sodium (Na)-Total (mg/L)	<2.0	<2.0	<2.0	<2.0	
	Strontium (Sr)-Total (mg/L)	<0.00010	<0.00010	0.193	0.209	
	Thallium (TI)-Total (mg/L)	<0.00010	<0.00010	<0.00010	<0.00010	
	Tin (Sn)-Total (mg/L)	<0.00010	<0.00010	<0.00010	<0.00010	
	Titanium (Ti)-Total (mg/L)	<0.010	<0.010	<0.010	<0.010	
	Uranium (U)-Total (mg/L)	<0.000010	<0.000010	0.00130	0.00142	
	Vanadium (V)-Total (mg/L)	<0.0010	<0.0010	<0.0010	<0.0010	
	Zinc (Zn)-Total (mg/L)	<0.0010	<0.0010	0.0019	0.0013	
Dissolved Metals	Aluminum (AI)-Dissolved (mg/L)	<0.0010		0.0028	0.0024	
	Antimony (Sb)-Dissolved (mg/L)	<0.00010		0.00068	0.00061	
	Arsenic (As)-Dissolved (mg/L)	<0.00010		0.00385	0.00311	
	Barium (Ba)-Dissolved (mg/L)	<0.000050		0.0353	0.0353	
	Beryllium (Be)-Dissolved (mg/L)	<0.00050		<0.00050	<0.00050	
	Bismuth (Bi)-Dissolved (mg/L)	<0.00050		<0.00050	<0.00050	
	Boron (B)-Dissolved (mg/L)	<0.010		<0.010	<0.010	
	Cadmium (Cd)-Dissolved (mg/L)	<0.000050		<0.000050	<0.000050	
	Calcium (Ca)-Dissolved (mg/L)	<0.050		46.2	48.0	
	Chromium (Cr)-Dissolved (mg/L)	<0.00050		<0.00050	<0.00050	
	Cobalt (Co)-Dissolved (mg/L)	<0.00010		<0.00010	<0.00010	
	Copper (Cu)-Dissolved (mg/L)	<0.00010		0.00032	0.00040	
	Iron (Fe)-Dissolved (mg/L)	<0.030		<0.030	<0.030	
	Lead (Pb)-Dissolved (mg/L)	<0.000050		<0.000050	<0.000050	
	Lithium (Li)-Dissolved (mg/L)	<0.0050		0.0063	0.0060	
	Magnesium (Mg)-Dissolved (mg/L)	<0.10		15.8	17.2	
	Manganese (Mn)-Dissolved (mg/L)	<0.000050		0.0232	0.0455	
	Mercury (Hg)-Dissolved (mg/L)	<0.000050		<0.000050	<0.000050	
	Molybdenum (Mo)-Dissolved (mg/L)	<0.000050		0.000205	0.000195	
	Nickel (Ni)-Dissolved (mg/L)	<0.00050		0.00060	0.00066	
	Phosphorus (P)-Dissolved (mg/L)	<0.30		<0.30	<0.30	
	Potassium (K)-Dissolved (mg/L)	<2.0		<2.0	<2.0	
	Selenium (Se)-Dissolved (mg/L)	<0.0010		<0.0010	<0.0010	
	Silicon (Si)-Dissolved (mg/L)	<0.050		4.01	3.91	
	Silver (Ag)-Dissolved (mg/L)	<0.000010		<0.000010	<0.000010	

L833680 CONTD PAGE 8 of 15 09-NOV-09 14:10

ALS LABORATORY GROUP ANALYTICAL REPORT

	Sample ID Description	L833680-1	L833680-2	L833680-3	L833680-4	L833680-5
	Sampled Date Sampled Time	20-OCT-09	20-OCT-09	21-OCT-09	21-OCT-09	21-OCT-09
	Client ID	18:00 W-22 HAGGART UPSTREAM	19:00 W-21 DUBLIN GULCH	10:30 W-9 EAGLE PUP	12:30 MW09-AG-2	14:00 W-1 DUBLIN MIDWAY
Grouping	Analyte					
WATER						
Dissolved Metals	Sodium (Na)-Dissolved (mg/L)	<2.0	<2.0	2.9	81	<2.0
	Strontium (Sr)-Dissolved (mg/L)	0.178	0.117	0.321	0.632	0.0742
	Thallium (TI)-Dissolved (mg/L)	<0.00010	<0.00010	<0.00010	<0.0050	<0.00010
	Tin (Sn)-Dissolved (mg/L)	<0.00010	<0.00010	<0.00010	<0.0050	<0.00010
	Titanium (Ti)-Dissolved (mg/L)	<0.010	<0.010	<0.010	<0.10	<0.010
	Uranium (U)-Dissolved (mg/L)	0.000895	0.000704	0.00966	0.00497	0.000407
	Vanadium (V)-Dissolved (mg/L)	<0.0010	<0.0010	<0.0010	<0.050	<0.0010
	Zinc (Zn)-Dissolved (mg/L)	<0.0010	0.0028	0.0022	<0.050	<0.0010

L833680 CONTD.... PAGE 9 of 15 09-NOV-09 14:10

ALS LABORATORY GROUP ANALYTICAL REPORT

	Sample ID Description Sampled Date Sampled Time Client ID	L833680-6 21-OCT-09 14:30 W-26 STEWART GULCH	L833680-7 21-OCT-09 16:00 W-20 BAWNBOY	L833680-8 22-OCT-09 09:00 W-27 EAGLE PUP	L833680-9 22-OCT-09 10:20 W-29 HAGGART CRK MID	L833680-10 22-OCT-09 11:10 W-23 HAGGART CRK D/S
Grouping	Analyte					
WATER						
		 <2.0 0.248 <0.00010 <0.010 <0.0010 <0.0010 <0.0010 <0.0024 	<2.0 0.0500 <0.00010 <0.010 0.000245 <0.0010 <0.0010	2.7 0.228 <0.00010 <0.0010 0.00340 <0.0010 0.0010	<pre><2.0 0.192 <0.00010 <0.0010 0.00131 <0.0010 <0.0010 <0.0010</pre>	<pre><2.0 0.188 <0.00010 <0.0010 <0.00105 <0.0010 <0.0010 <0.0010</pre>

L833680 CONTD.... PAGE 10 of 15 09-NOV-09 14:10

ALS LABORATORY GROUP ANALYTICAL REPORT

	Sample ID Description Sampled Date Sampled Time Client ID	L833680-11 22-OCT-09 13:30 FIELD BLANK	L833680-12 TRAVEL BLANK	L833680-13 BD BLIND DUPLICATE	L833680-14 22-OCT-09 11:45 W-5 HAGGART CRK U/S	
Grouping	Analyte					
WATER						
	Analyte Sodium (Na)-Dissolved (mg/L) Strontium (Sr)-Dissolved (mg/L) Thallium (Ti)-Dissolved (mg/L) Titanium (Ti)-Dissolved (mg/L) Uranium (U)-Dissolved (mg/L) Zinc (Zn)-Dissolved (mg/L)	<pre><2.0 <0.00010 <0.00010 <0.00010 <0.00010 <0.0010 <0.0010 <0.0010</pre>		<2.0 0.187 <0.00010 <0.0010 0.00128 <0.0010 <0.0010	<2.0 0.202 <0.00010 <0.0010 0.00139 <0.0010 0.0111	

Additional Com	ments for Sample Li	sted:			
Samplenum	Matrix	Report Remarks		Sample Comment:	
Qualifiers for In	dividual Parameters	Listed:			
Qualifier	Description				
DLM	Detection Limit Adjust	ment For Sample Ma	trix Effects		
Samples with Q	ualifiers for Individu	al Parameters as list	ed above:		
Sample Number	Client Sample ID		Parameters	Qualifier	
L833680-4	MW09-AG-2		Chloride (Cl) Bromide (Br) Nitrite (as N) Sulfate (SO4) Nitrate (as N)	DLM	
Methods Listed	(if applicable):				
ALS Test Code	Matrix	Test Description		Analytical Method Reference(Based On)	
ALK-COL-VA	Water	Alkalinity by Colouri	metric (Automated)	APHA 310.2	
This analysis is ca colourimetric met		dures adapted from E	PA Method 310.2 "Alkalinity".	otal Alkalinity is determined using the methyl orange	
ALK-MAN-VA	Water	Alkalinity (Species)	by Manual Titration	APHA 2320 "Alkalinity"	
				Total alkalinity is determined by potentiometric titratic nolphthalein alkalinity and total alkalinity values.	n to
ALK-MAN-VA	Water	Alkalinity (Species)	by Manual Titration	APHA 2320 Alkalinity	
				Total alkalinity is determined by potentiometric titratic olphthalein alkalinity and total alkalinity values.	n to
ANIONS-BR-IC-V	A Water	Bromide by Ion Chro	omatography	APHA 4110 B.	
			PHA Method 4110 B. "Ion Chro anic Anions by Ion Chromatog	omatography with Chemical Suppression of Eluent raphy".	
ANIONS-CL-IC-V	A Water	Chloride by Ion Chro	omatography	APHA 4110 B.	
			PHA Method 4110 B. "Ion Chro anic Anions by Ion Chromatog	omatography with Chemical Suppression of Eluent raphy".	
ANIONS-F-IC-VA	Water	Fluoride by Ion Chro	omatography	APHA 4110 B.	
This analysis is can conductivity" and	arried out using proce EPA Method 300.0 "[dures adapted from A Determination of Inorg	PHA Method 4110 B. "Ion Chro anic Anions by Ion Chromatog	omatography with Chemical Suppression of Eluent raphy".	
ANIONS-NO2-IC-	A Water	Nitrite by Ion Chrom	atography	APHA 4110 B.	
	EPA Method 300.0 "[omatography with Chemical Suppression of Eluent raphy". Specifically, the nitrite detection is by UV	
ANIONS-NO3-IC-	A Water	Nitrate by Ion Chron	natography	APHA 4110 B.	
	EPA Method 300.0 "			omatography with Chemical Suppression of Eluent raphy". Specifically, the nitrate detection is by UV	
ANIONS-SO4-IC-	/A Water	Sulfate by Ion Chror	natography	APHA 4110 B.	
			PHA Method 4110 B. "Ion Chro anic Anions by Ion Chromatog	omatography with Chemical Suppression of Eluent raphy".	

L833680 CONTD.... PAGE 12 of 15

Methods Listed (if appli	cable):		
ALS Test Code	Matrix	Test Description	Analytical Method Reference(Based On)
CARBONS-DOC-VA	Water	Dissolved organic carbon by combustion	APHA 5310 "TOTAL ORGANIC CARBON (TOC)"
		lures adapted from APHA Method 5310 "Total Organic Carbon gh a 0.45 micron membrane filter prior to analysis.	(TOC)". Dissolved carbon (DOC) fractions are
CARBONS-DOC-VA	Water	Dissolved organic carbon by combustion	APHA 5310 TOTAL ORGANIC CARBON (TOC)
		lures adapted from APHA Method 5310 "Total Organic Carbon gh a 0.45 micron membrane filter prior to analysis.	(TOC)". Dissolved carbon (DOC) fractions are
CARBONS-TOC-VA	Water	Total organic carbon by combustion	APHA 5310 "TOTAL ORGANIC CARBON (TOC)"
This analysis is carried ou	t using proced	ures adapted from APHA Method 5310 "Total Organic Carbon	(TOC)".
CARBONS-TOC-VA	Water	Total organic carbon by combustion	APHA 5310 TOTAL ORGANIC CARBON (TOC)
This analysis is carried ou	t using proced	ures adapted from APHA Method 5310 "Total Organic Carbon	(TOC)".
CN-T-MID-HH-COL-VA	Water	Total Cyanide by HH Distillation	APHA 4500-CN "Cyanide"
		ures adapted from APHA Method 4500-CN "Cyanide". Total o alysis using the chloramine-T colourimetric method.	r strong acid dissociable (SAD) cyanide are
CN-T-MID-HH-COL-VA	Water	Total Cyanide by HH Distillation	APHA 4500-CN Cyanide
		ures adapted from APHA Method 4500-CN "Cyanide". Total or alysis using the chloramine-T colourimetric method.	r strong acid dissociable (SAD) cyanide are
CN-WAD-MID-COL-VA	Water	Weak Acid Dissociable Cyanide by Dist.	APHA 4500-CN Cyanide
		ures adapted from APHA Method 4500-CN "Cyanide". Weak a the chloramine-T colourimetric method.	acid dissociable (WAD) cyanide are determined
EC-MAN-VA	Water	Conductivity (Manual)	APHA 2510 "Conductivity"
This analysis is carried ou electrode.	t using proced	ures adapted from APHA Method 2510 "Conductivity". Conductive adapted from APHA Method 2510 "Conductivity".	ctivity is determined using a conductivity
EC-MAN-VA	Water	Conductivity (Manual)	APHA 2510 Conductivity
This analysis is carried ou electrode.	t using proced	ures adapted from APHA Method 2510 "Conductivity". Conductive adapted from APHA Method 2510 "Conductivity".	ctivity is determined using a conductivity
EC-PCT-VA	Water	Conductivity (Automated)	APHA 2510 Auto. Conduc.
This analysis is carried ou electrode.	t using proced	ures adapted from APHA Method 2510 "Conductivity". Conduc	ctivity is determined using a conductivity
F-SIE-VA	Water	Fluoride by SIE	APHA 4500-F "Fluoride"
		ures adapted from APHA Method 4500-F "Fluoride". Fluoride interference (i.e. results could be biased low) when Al3+ is pres	
F-SIE-VA	Water	Fluoride by SIE	APHA 4500-F Fluoride
		ures adapted from APHA Method 4500-F "Fluoride". Fluoride i nterference (i.e. results could be biased low) when Al3+ is pres	

ALS Test Code	Matrix	Test Description	Analytical Method Reference(Based On)
IARDNESS-CALC-VA Hardness is calculated fro	Water om Calcium	and Magnesium concentrations, and is expressed	as calcium carbonate equivalents.
IG-DIS-CVAFS-VA	Water	Dissolved Mercury in Water by CVAFS	EPA SW-846 3005A & EPA 245.7
American Public Health A States Environmental Pro involves a cold-oxidation	ssociation, a tection Ager	and with procedures adapted from "Test Methods ncy (EPA). The procedures may involve prelimina	Examination of Water and Wastewater" published by the for Evaluating Solid Waste" SW-846 published by the United iry sample treatment by filtration (EPA Method 3005A) and duction of the sample with stannous chloride. Instrumental
IG-TOT-CVAFS-VA	Water	Total Mercury in Water by CVAFS	EPA 245.7
American Public Health A States Environmental Pro	ssociation, a tection Ager	and with procedures adapted from "Test Methods ncy (EPA). The procedure involves a cold-oxidation	Examination of Water and Wastewater" published by the for Evaluating Solid Waste" SW-846 published by the United on of the acidified sample using bromine monochloride prior to r atomic fluorescence spectrophotometry (EPA Method 245.7).
IET-DIS-ICP-VA	Water	Dissolved Metals in Water by ICPOES	EPA SW-846 3005A/6010B
American Public Health A	ssociation, a tection Ager	and with procedures adapted from "Test Methods ncy (EPA). The procedure involves filtration (EPA	Examination of Water and Wastewater" published by the for Evaluating Solid Waste" SW-846 published by the United Method 3005A) and analysis by inductively coupled plasma -
IET-DIS-LOW-MS-VA	Water	Dissolved Metals in Water by ICPMS(Low)	EPA SW-846 3005A/6020A
American Public Health A States Environmental Pro	ssociation, a tection Ager	and with procedures adapted from "Test Methods	Examination of Water and Wastewater" published by the for Evaluating Solid Waste" SW-846 published by the United ample treatment by filtration (EPA Method 3005A). od 6020A).
IET-TOT-ICP-VA	Water	Total Metals in Water by ICPOES	EPA SW-846 3005A/6010B
American Public Health A States Environmental Pro	ssociation, a tection Ager	and with procedures adapted from "Test Methods ncy (EPA). The procedures may involve prelimina	Examination of Water and Wastewater" published by the for Evaluating Solid Waste" SW-846 published by the United ry sample treatment by acid digestion, using either hotblock or plasma - optical emission spectrophotometry (EPA Method
IET-TOT-LOW-MS-VA	Water	Total Metals in Water by ICPMS(Low)	EPA SW-846 3005A/6020A
American Public Health A States Environmental Pro	ssociation, a tection Ager	and with procedures adapted from "Test Methods ncy (EPA). The procedures may involve prelimina	Examination of Water and Wastewater" published by the for Evaluating Solid Waste" SW-846 published by the United ry sample treatment by acid digestion, using either hotblock or ely coupled plasma - mass spectrometry (EPA Method
IH3-SIE-VA	Water	Ammonia by SIE	APHA 4500 D NH3 NITROGEN (AMMONIA)
		ric acid preserved samples, using procedures ada nonia selective electrode.	apted from APHA Method 4500-NH3 "Nitrogen (Ammonia)".
PH-MAN-VA	Water	pH by Manual Meter	APHA 4500-H "pH Value"
This analysis is carried ou electrode.	it using proc	edures adapted from APHA Method 4500-H "pH \	/alue". The pH is determined in the laboratory using a pH
PH-MAN-VA	Water	pH by Manual Meter	APHA 4500-H pH Value

L833680 CONTD.... PAGE 14 of 15

ALS Test Code	Matrix	Test Description	Analytical Method Reference(Based On)
PH-PCT-VA	Water	pH by Meter (Automated)	APHA 4500-H "pH Value"
This analysis is carried electrode	d out using pro	cedures adapted from APHA Method 4500-H "p	H Value". The pH is determined in the laboratory using a pH
PH-PCT-VA	Water	pH by Meter (Automated)	APHA 4500-H pH Value
This analysis is carried electrode	d out using pro	cedures adapted from APHA Method 4500-H "p	H Value". The pH is determined in the laboratory using a pH
PO4-DO-COL-VA	Water	Dissolved ortho Phosphate by Colour	APHA 4500-P "Phosphorous"
ascorbic acid colourim phosphate (total phosp	etric method. I phorous) is det	Dissolved ortho-phosphate (dissolved reactive p	Phosphorus". All forms of phosphate are determined by the hosphorous) is determined by direct measurement. Total 2. Total dissolved phosphate (total dissolved phosphorous) is bersulfate digestion of the filtrate.
PO4-DO-COL-VA	Water	Dissolved ortho Phosphate by Colour	APHA 4500-P Phosphorous
ascorbic acid colourim phosphate (total phosp	etric method. [phorous) is det	Dissolved ortho-phosphate (dissolved reactive p	Phosphorus". All forms of phosphate are determined by the hosphorous) is determined by direct measurement. Total 2. Total dissolved phosphate (total dissolved phosphorous) is persulfate digestion of the filtrate.
PO4-T-COL-VA	Water	Total Phosphate P by Color	APHA 4500-P "Phosphorous"
ascorbic acid colourim phosphate (total phosp	etric method. I phorous) is det	Dissolved ortho-phosphate (dissolved reactive p	Phosphorus". All forms of phosphate are determined by the hosphorous) is determined by direct measurement. Total e. Total dissolved phosphate (total dissolved phosphorous) is persulfate digestion of the filtrate.
PO4-T-COL-VA	Water	Total Phosphate P by Color	APHA 4500-P Phosphorous
This analysis is carried ascorbic acid colourim phosphate (total phosp	d out using pro- etric method. I phorous) is det	cedures adapted from APHA Method 4500-P "P Dissolved ortho-phosphate (dissolved reactive p	hosphorus". All forms of phosphate are determined by the hosphorous) is determined by direct measurement. Total dissolved phosphorous) is
This analysis is carried ascorbic acid colourim phosphate (total phosp determined by filtering	d out using pro- etric method. I phorous) is det	cedures adapted from APHA Method 4500-P "P Dissolved ortho-phosphate (dissolved reactive p ermined after persulphate digestion of a sample	hosphorus". All forms of phosphate are determined by the hosphorous) is determined by direct measurement. Total dissolved phosphorous) is
This analysis is carried ascorbic acid colourim phosphate (total phosp determined by filtering PO4-TD-COL-VA This analysis is carried ascorbic acid colourim phosphate (total phosp	d out using pro etric method. I shorous) is det a sample thro Water d out using pro etric method. I shorous) is det	cedures adapted from APHA Method 4500-P "P Dissolved ortho-phosphate (dissolved reactive p ermined after persulphate digestion of a sample ugh a 0.45 micron membrane filter followed by p Total Dissolved Phosphate by Colour cedures adapted from APHA Method 4500-P "P Dissolved ortho-phosphate (dissolved reactive p	Phosphorus". All forms of phosphate are determined by the hosphorous) is determined by direct measurement. Total a. Total dissolved phosphate (total dissolved phosphorous) is bersulfate digestion of the filtrate. APHA 4500-P Phosphorous Phosphorus". All forms of phosphate are determined by the hosphorous) is determined by direct measurement. Total a. Total dissolved phosphate (total dissolved phosphorous) is
This analysis is carried ascorbic acid colourim phosphate (total phosp determined by filtering PO4-TD-COL-VA This analysis is carried ascorbic acid colourim phosphate (total phosp determined by filtering	d out using pro etric method. I shorous) is det a sample thro Water d out using pro etric method. I shorous) is det	cedures adapted from APHA Method 4500-P "P Dissolved ortho-phosphate (dissolved reactive p ermined after persulphate digestion of a sample ugh a 0.45 micron membrane filter followed by p Total Dissolved Phosphate by Colour cedures adapted from APHA Method 4500-P "P Dissolved ortho-phosphate (dissolved reactive p ermined after persulphate digestion of a sample	Phosphorus". All forms of phosphate are determined by the hosphorous) is determined by direct measurement. Total a. Total dissolved phosphate (total dissolved phosphorous) is bersulfate digestion of the filtrate. APHA 4500-P Phosphorous Phosphorus". All forms of phosphate are determined by the hosphorous) is determined by direct measurement. Total a. Total dissolved phosphate (total dissolved phosphorous) is
This analysis is carried ascorbic acid colourim phosphate (total phosp determined by filtering PO4-TD-COL-VA This analysis is carried ascorbic acid colourim phosphate (total phosp determined by filtering PO4-TD-COL-VA This analysis is carried ascorbic acid colourim phosphate (total phosp	d out using pro etric method. I ohorous) is det a sample thro Water d out using pro etric method. I ohorous) is det a sample thro Water d out using pro etric method. I ohorous) is det	cedures adapted from APHA Method 4500-P "P Dissolved ortho-phosphate (dissolved reactive p ermined after persulphate digestion of a sample ugh a 0.45 micron membrane filter followed by p Total Dissolved Phosphate by Colour cedures adapted from APHA Method 4500-P "P Dissolved ortho-phosphate (dissolved reactive p ermined after persulphate digestion of a sample ugh a 0.45 micron membrane filter followed by p Total Dissolved Phosphate by Colour cedures adapted from APHA Method 4500-P "P Dissolved ortho-phosphate by Colour	Phosphorus". All forms of phosphate are determined by the hosphorous) is determined by direct measurement. Total e. Total dissolved phosphate (total dissolved phosphorous) is bersulfate digestion of the filtrate. APHA 4500-P Phosphorous Phosphorous". All forms of phosphate are determined by the hosphorous) is determined by direct measurement. Total e. Total dissolved phosphate (total dissolved phosphorous) is bersulfate digestion of the filtrate. APHA 4500-P " Phosphorous" APHA 4500-P " Phosphorous" Phosphorus". All forms of phosphate are determined by the hosphorous) is determined by direct measurement. Total e. Total dissolved phosphate (total dissolved phosphorous) is determined by the hosphorous) is determined by direct measurement. Total e. Total dissolved phosphate (total dissolved phosphorous) is
This analysis is carried ascorbic acid colourim phosphate (total phosp determined by filtering PO4-TD-COL-VA This analysis is carried ascorbic acid colourim phosphate (total phosp determined by filtering PO4-TD-COL-VA This analysis is carried ascorbic acid colourim phosphate (total phosp determined by filtering	d out using pro etric method. I ohorous) is det a sample thro Water d out using pro etric method. I ohorous) is det a sample thro Water d out using pro etric method. I ohorous) is det	cedures adapted from APHA Method 4500-P "P Dissolved ortho-phosphate (dissolved reactive p ermined after persulphate digestion of a sample ugh a 0.45 micron membrane filter followed by p Total Dissolved Phosphate by Colour cedures adapted from APHA Method 4500-P "P Dissolved ortho-phosphate (dissolved reactive p ermined after persulphate digestion of a sample ugh a 0.45 micron membrane filter followed by p Total Dissolved Phosphate by Colour cedures adapted from APHA Method 4500-P "P Dissolved ortho-phosphate by Colour cedures adapted from APHA Method 4500-P "P Dissolved ortho-phosphate (dissolved reactive p ermined after persulphate digestion of a sample	Phosphorus". All forms of phosphate are determined by the hosphorous) is determined by direct measurement. Total e. Total dissolved phosphate (total dissolved phosphorous) is bersulfate digestion of the filtrate. APHA 4500-P Phosphorous Phosphorous". All forms of phosphate are determined by the hosphorous) is determined by direct measurement. Total e. Total dissolved phosphate (total dissolved phosphorous) is bersulfate digestion of the filtrate. APHA 4500-P " Phosphorous" APHA 4500-P " Phosphorous" Phosphorus". All forms of phosphate are determined by the hosphorous) is determined by direct measurement. Total e. Total dissolved phosphate (total dissolved phosphorous) is determined by the hosphorous) is determined by direct measurement. Total e. Total dissolved phosphate (total dissolved phosphorous) is
This analysis is carried ascorbic acid colourim phosphate (total phosp determined by filtering PO4-TD-COL-VA This analysis is carried ascorbic acid colourim phosphate (total phosp determined by filtering PO4-TD-COL-VA This analysis is carried ascorbic acid colourim phosphate (total phosp determined by filtering TDS-VA This analysis is carried	d out using pro etric method. I ohorous) is det a sample thro Water d out using pro etric method. I ohorous) is det a sample thro Water d out using pro etric method. I ohorous) is det a sample thro Water d out using pro Water d out using pro	cedures adapted from APHA Method 4500-P "P Dissolved ortho-phosphate (dissolved reactive p ermined after persulphate digestion of a sample ugh a 0.45 micron membrane filter followed by p Total Dissolved Phosphate by Colour cedures adapted from APHA Method 4500-P "P Dissolved ortho-phosphate (dissolved reactive p ermined after persulphate digestion of a sample ugh a 0.45 micron membrane filter followed by p Total Dissolved Phosphate by Colour cedures adapted from APHA Method 4500-P "P Dissolved ortho-phosphate (dissolved reactive p ermined after persulphate digestion of a sample ugh a 0.45 micron membrane filter followed by p Total Dissolved Phosphate by Colour cedures adapted from APHA Method 4500-P "P Dissolved ortho-phosphate (dissolved reactive p ermined after persulphate digestion of a sample ugh a 0.45 micron membrane filter followed by p Total Dissolved Solids by Gravimetric cedures adapted from APHA Method 2540 "Soli	Phosphorus". All forms of phosphate are determined by the hosphorous) is determined by direct measurement. Total e. Total dissolved phosphate (total dissolved phosphorous) is bersulfate digestion of the filtrate. APHA 4500-P Phosphorous Phosphorous) is determined by direct measurement. Total e. Total dissolved phosphate (total dissolved phosphorous) is bersulfate digestion of the filtrate. APHA 4500-P " Phosphorous" APHA 4500-P " Phosphorous" Phosphorus". All forms of phosphate are determined by the hosphorous) is determined by direct measurement. Total e. Total dissolved phosphate (total dissolved phosphorous) is bersulfate digestion of the filtrate. APHA 4500-P " Phosphorous" Phosphorous) is determined by direct measurement. Total e. Total dissolved phosphate (total dissolved phosphorous) is bersulfate digestion of the filtrate. APHA 2540 C - GRAVIMETRIC ids". Solids are determined gravimetrically. Total Dissolved Solids
This analysis is carried ascorbic acid colourim phosphate (total phosp determined by filtering PO4-TD-COL-VA This analysis is carried ascorbic acid colourim phosphate (total phosp determined by filtering PO4-TD-COL-VA This analysis is carried ascorbic acid colourim phosphate (total phosp determined by filtering TDS-VA This analysis is carried (TDS) are determined	d out using pro etric method. I ohorous) is det a sample thro Water d out using pro etric method. I ohorous) is det a sample thro Water d out using pro etric method. I ohorous) is det a sample thro Water d out using pro Water d out using pro	cedures adapted from APHA Method 4500-P "P Dissolved ortho-phosphate (dissolved reactive p ermined after persulphate digestion of a sample ugh a 0.45 micron membrane filter followed by p Total Dissolved Phosphate by Colour cedures adapted from APHA Method 4500-P "P Dissolved ortho-phosphate (dissolved reactive p ermined after persulphate digestion of a sample ugh a 0.45 micron membrane filter followed by p Total Dissolved Phosphate by Colour cedures adapted from APHA Method 4500-P "P Dissolved ortho-phosphate (dissolved reactive p ermined after persulphate digestion of a sample ugh a 0.45 micron membrane filter followed by p Total Dissolved Phosphate by Colour cedures adapted from APHA Method 4500-P "P Dissolved ortho-phosphate (dissolved reactive p ermined after persulphate digestion of a sample ugh a 0.45 micron membrane filter followed by p Total Dissolved Solids by Gravimetric cedures adapted from APHA Method 2540 "Soli	Phosphorus". All forms of phosphate are determined by the hosphorous) is determined by direct measurement. Total e. Total dissolved phosphate (total dissolved phosphorous) is bersulfate digestion of the filtrate. APHA 4500-P Phosphorous Phosphorus". All forms of phosphate are determined by the hosphorous) is determined by direct measurement. Total e. Total dissolved phosphate (total dissolved phosphorous) is bersulfate digestion of the filtrate. APHA 4500-P "Phosphorous" ADHA 4500-P "Phosphorous" APHA 4500-P " Phosphorous" APHA 4500-P " Phosphorous" APHA 4500-P " Phosphorous" Chosphorus". All forms of phosphate are determined by the hosphorous) is determined by direct measurement. Total a. Total dissolved phosphate (total dissolved phosphorous) is bersulfate digestion of the filtrate.
ascorbic acid colourim phosphate (total phosp determined by filtering PO4-TD-COL-VA This analysis is carriec ascorbic acid colourim phosphate (total phosp determined by filtering PO4-TD-COL-VA This analysis is carriec ascorbic acid colourim phosphate (total phosp determined by filtering TDS-VA This analysis is carriec (TDS) are determined TKN-SIE-VA This analysis is carriec	d out using pro etric method. I ohorous) is det a sample thro Water d out using pro etric method. I ohorous) is det a sample thro Water d out using pro etric method. I ohorous) is det a sample thro Water d out using pro by filtering a sa Water d out using pro	Cedures adapted from APHA Method 4500-P "P Dissolved ortho-phosphate (dissolved reactive p ermined after persulphate digestion of a sample ugh a 0.45 micron membrane filter followed by p Total Dissolved Phosphate by Colour cedures adapted from APHA Method 4500-P "P Dissolved ortho-phosphate (dissolved reactive p ermined after persulphate digestion of a sample ugh a 0.45 micron membrane filter followed by p Total Dissolved Phosphate by Colour cedures adapted from APHA Method 4500-P "P Dissolved ortho-phosphate (dissolved reactive p ermined after persulphate digestion of a sample ugh a 0.45 micron membrane filter followed by p Total Dissolved Phosphate by Colour cedures adapted from APHA Method 4500-P "P Dissolved ortho-phosphate (dissolved reactive p ermined after persulphate digestion of a sample ugh a 0.45 micron membrane filter followed by p Total Dissolved Solids by Gravimetric cedures adapted from APHA Method 2540 "Soli ample through a glass fibre filter, TDS is determ Total Kjeldahl Nitrogen by SIE	Phosphorus". All forms of phosphate are determined by the hosphorous) is determined by direct measurement. Total a. Total dissolved phosphate (total dissolved phosphorous) is bersulfate digestion of the filtrate. APHA 4500-P Phosphorous Phosphorous). All forms of phosphate are determined by the hosphorous) is determined by direct measurement. Total a. Total dissolved phosphate (total dissolved phosphorous) is bersulfate digestion of the filtrate. APHA 4500-P " Phosphorous" Phosphorus". All forms of phosphate are determined by the hosphorous) is determined by direct measurement. Total bersulfate digestion of the filtrate. APHA 4500-P " Phosphorous" Phosphorous) is determined by direct measurement. Total bersulfate digestion of the filtrate. APHA 2540 C - GRAVIMETRIC ids". Solids are determined gravimetrically. Total Dissolved Solids ined by evaporating the filtrate to dryness at 180 degrees celsius APHA 4500-Norg (TKN) g "Nitrogen (Organic)". Total kjeldahl nitrogen is determined by

Methods Listed (if a	pplicable):			
ALS Test Code	Matrix	Test Description	Analy	rtical Method Reference(Based On)
Total Nitrogen is deter	mined by calcu	lation by suming TKN and the	NO2 and NO3 results.	
TSS-VA	Water	Total Suspended Solids by	Gravimetric APHA	2540 D - GRAVIMETRIC
			lethod 2540 "Solids". Solids are determin bre filter, TSS is determined by drying the	
TURBIDITY-VA	Water	Turbidity by Meter	APHA	A 2130 "Turbidity"
This analysis is carried	d out using proo	cedures adapted from APHA N	lethod 2130 "Turbidity". Turbidity is deter	mined by the nephelometric method.
TURBIDITY-VA	Water	Turbidity by Meter	APHA	A 2130 Turbidity
This analysis is carried	d out using pro	cedures adapted from APHA N	lethod 2130 "Turbidity". Turbidity is deter	mined by the nephelometric method.
, , , , , , , , , , , , , , , , , , ,			are generally based on nationally or inter a laboratory that performed analytical ana	nationally accepted methodologies. Ilysis for that test. Refer to the list below:
Laboratory Definitio	n Code La	boratory Location	Laboratory Definition Code	Laboratory Location
VA		S LABORATORY GROUP - NCOUVER, BC, CANADA		

GLOSSARY OF REPORT TERMS

Surr - A surrogate is an organic compound that is similar to the target analyte(s) in chemical composition and behavior but not normally detected in environmental samples. Prior to sample processing, samples are fortified with one or more surrogate compounds.

The reported surrogate recovery value provides a measure of method efficiency.

mg/kg (units) - unit of concentration based on mass, parts per million

mg/L (units) - unit of concentration based on volume, parts per million

N/A - Result not available. Refer to qualifier code and definition for explanation

Test results reported relate only to the samples as received by the laboratory. UNLESS OTHERWISE STATED, ALL SAMPLES WERE RECEIVED IN ACCEPTABLE CONDITION. Although test results are generated under strict QA/QC protocols, any unsigned test reports, faxes, or emails are considered preliminary.

ALS Laboratory Group has an extensive QA/QC program where all analytical data reported is analyzed using approved referenced procedures followed by checks and reviews by senior managers and quality assurance personnel. However, since the results are obtained from chemical measurements and thus cannot be guaranteed, ALS Laboratory Group assumes no liability for the use or interpretation of the results.

Relinguished By:	By:	Delinquished		T												-	Sample) Lat	Phone:	Sample	Address:	Contact:	Company:	Invoice To	Phone:		Address:	Contact:	Company:	Report to:	Environmental Division	ALS La
	By:				Guic	W-23 Haggart Creek	W-29 Haggart Creek Midway	W-27 Eagle Pup plus Suttle Gulch	W-20 Bawnboy	W-26 Stewart Gulch	W-1 Dublin Midway	MW09-AG-2	W-9 Eagle Pup	W-21 Dublin Gulch U	W-22 Haggart Upstream Dublin Gulch	(This c		(lab Work Order #						: V Same as Report	604-436-3014		4370 Dominion St., 5	Neil MacLeod	Stantec- Jacques Whitford		ntal Division	ALS Laboratory Group
Date & Time:	23/10/2009 12:00	Date & Time:	Failure to complete all portions of this form may delay analysis. Please till in By the use of this form the user acknowledges and agrees with the Terms and Conditions as		Guidelines / Regulations	W-23 Haggart Creek Downstream Lynx Creek	Midway	Suttle Gulch						W-21 Dublin Gulch Upstream Haggart Creek	am Dublin Gulch	(This description will appear on the report)	Sample Identification	1633680	Fax:					port	Fax:		4370 Dominion St., 5th Floor, POBOX 21, Burnaby		hitford			•
Received By:	By:	Deceived	complete all portio user acknowledge													eport)		ALS Contact:	Quote #:	Legal Sit	PO/AFE:	Job #:	Client / F			Email 2:	Email 1:	I PDF	Standard	Report F		Chain of Cu Canad
	orely	-	Failure to complete all portions of this form may delay analysis. Please fill in s form the user acknowledges and agrees with the Terms and Conditions as :	detection limits must meet CCME guidelines. Note:		22-Oct-09	22-Oct-09	22-Oct-09	21-Oct-09	21-Oct-09	21-Oct-09	21-Oct-09	21-Oct-09	20-Oct-09	20-Oct-09	dd-mmm-yy	Date	Natasha MM		Legal Site Description:		1053550.08	Client / Project Information:			karen.munro@jacqueswhitford.com	neil.macleod@jacqueswhitford.com	F Excel		Report Format / Distribution	www.alsglobal.com	Chain of Custody / Analytical Request Form Canada Toll Free: 1 800 668 9878
Date & Time		Date & Time	delay analysis he Terms and	st meet CCME		11:10	10:20	9:00	16:00	14:30	14:00	12:30	10:30	19:00	18:00	hh:mm	Time	Sampler (Initials):				1053550.08 C3112 810.030		Indicate Bottles:		ueswhitford.cor	ueswhitford.cor	Fax				equest Form 38 9878
	10/26/09, 9				Special Instruct	Water	Water	Water	Water	Water	Water	Water	Water	Water	Water	(Select from drop-down list)	Sample Type	Ken Nordin						es: Filtered / Preserved (F/P)		Ξ						
	Å		this form LEGIBLY. specified on the adjacent worksheet.	MW09AG-2 is mostly silicone - CAUTION	structions / Hazardous Details	L																		ļ					ব	S		
٩	Tem		JIBL)		lazar	××	××	××	××	××	××	××	××	××	×	ŀ-	_	onduct				aity		\vdash		m	P	2		Service Requested:		
۾ ا	Temperature	ľ	r. Ijacei	stly s	bog	F		-					-	-		\vdash		Cyanic	_	_		yan	ide	\vdash		nerge	ority	sh Se	gular	Req		
		<i>"</i>	nt wo	licon	Deta	×	×	×	×	×	×	×	×	×	×	-		Scan	_		_		-		1	ncy S	Servio	Vice	Servi	ueste		C #
Co	Sam	ample	rksh	• • •	iis	×	×	×	×	×	×	×	×	×	×			NH3, a				_			₽	Emergency Service	Priority Service (1 Day or ASAP)	Rush Service (2-3 Days)	Regular Service (Default)	ġ		
ndition	ples R	Cond	eet.	TU		×	×	×	×	×	×	×	×	×	×	DC	ж								halys		Day	Days)efaul			
dition N (i provided details)	eceive	ition (ß		×	×	×	×	×	×	×	×	×	×	То	t-P	04, Di	s- P	04,	Or	tho-	PO4		is Re	Day	or AS	Ĩ	Ē			
Condition N (if no provided details)	id in G	Sample Condition (lab use only)				×	×	×	×	×	×	×	×	×	×	Т-	Met		DES	/MS	+ 1	Γ-Hę			Analysis Request	(<1 Day / Wkend) -	βP				Page	
ß	bod	e only)				×	×	×	×	×	×	×	×	×	×	D-	Met		ES/	MS	+ [)-Hç]	L	 *	end)						
							-		_	_		×		-	L	тс										- Co					의 의 의	
						\vdash	-		-			-	_	-	-			dous?								Contact ALS						
						\vdash	-	-		-		-		-				Conta					_			ALS					12	
																Νι	ımb	er of C	Cont	aine	ers								L			

Relinquished By	By:	Palinniishad						1 -								*	Sample	Lat	Phone:	Sample	Address:	Contact:	Company:	Invoice To:	Phone:		Address:	Contact:	Company:	Report to:	Environmer	
		Palinguished KEN NORDIN				Gui						W-5 Haggart Creek	BD Blind Duplicate	ALS Travel Blank	Field Blank (ALS D.I. water)	(This		Lab Work Order # (lab use only)						: I⊽ Same as Report	604-436-3014		4370 Dominion St.,	Neil MacLeod	Stantec- Jacques Whitford		Environmental Division	ALS Laboratory Group
Date & Time:		Data & Time:	By the use of this fo	Fa		Guidelines / Regulations						W-5 Haggart Creek Upstream Lynx Creek			I. water)	(This description will appear on the report)	Sample Identification	1833680	Fax:					port	Fax:		4370 Dominion St., 5th Floor, POBOX 21, Burnaby		hitford		ALS	
	09/10/2009 16:00		orm the user ackn	ilure to complete a		S						^				r on the report)	ation															Cha
Received By:	By:	Denniver	owledges a	all portions														ALS Contact:	Quote #:	Legal Site Description:	PO/AFE:	Job #:	Client / Pro			Email 2:	Email 1:	PDF	Standard	Report For		ain of Cust
	orecly		and agrees with the	of this form may	detection limits must meet CCME guidelines							22-Oct-09			22-Oct-09	dd-mmm-yy	Date	Natasha MM		Description:		1053550.08	Client / Project Information:			karen.munro@jacqueswhitford.com	neil.macleod@jacqueswhitford.com	F Excel	d T Other	Report Format / Distribution	www.alsglobal.com	Chain of Custody / Analytical Request Form Canada Toll Free: 1 800 668 9878
Date & Time:		Data & Time	he Terms and (delav analysis	st meet CCME							11:45			13:30	hh:mm	Time	Sampler (Initials):				1053550.08 C3112 810.030		Indicate Bottles		ueswhitford.con	ueswhitford.con	Fax				equest Form 38 9878
	1-6 ba/2/01		By the use of this form the user acknowledges and agrees with the Terms and Conditions as specified on the adjacent worksheet.	Failure to complete all portions of this form may delay analysis. Please fill in this form LEGIBLY	guidelines	Special Instruction						Water	Water	Other	Other	(Select from drop-down list)	Sample Type							Indicate Bottles: Filtered / Preserved (F/P) -		5	3					
	2	6	id on 1	j M		uctions / Hazardous Details			_	_	_	~		-										ļ		-	-	-	য	S		
0.	Tem		the ac	GIBL		lazaru				+	-	××	×	×	××			onduct			_	uty,		-		En	Pri	Ru		Service Requested:		
2 ~	Temperature	ŀ	djace	.≺		snop						×	×	×	×		_	Cyanid	_		-	yan	ide			herge	Priority Service (1 Day or ASAP)	Rush Service	Regular Service (Default)	Req		8
[]		2	nt wo			Deta						×	×	×	×			Scan			_	-	_			ncy S	Servi	Prvice	Serv	luest		COC #
Con	Samp	amnia	orksh			ils		_				×	×	×	×	T۲	KN,	NH3, a	nd	T-N	itroç	jen			Ą	iervic	ce (1	(2-3	ice (E	đ		
ndition	Samples Rec	Cond	leet.									×	×	×	×	D	С								lalys	ie (<1	Day	Days)	Defau			
ndition N (BOE IVE	tion ();								_		×	×	×		Тс	ot-Po	04, Di	6- P	04,	Ort	ho-	PO4		is Re	Day	or AS	Ť	Ð		-	
Condition N (if no provided details)	Samples Received in Good											×	×	×	×	-		ICPC			-				Analysis Request	/ Wk	ÂP)				Page	
0	bod (1)	nnív)						_	_	\rightarrow	-	×	×	×	×	D	Met	ICPO	ES/	MS	+ D	-Hg			Ä	Emergency Service (<1 Day / Wkend) -						
									-	-+		_		-		μ.		dourca								- Con					2 of	
							-		-	\neg	-			-	-			dous?	min	nate	d7			-		Contact ALS						
										1				-		Highly Contaminated? Number of Containers								-		ST					2	