

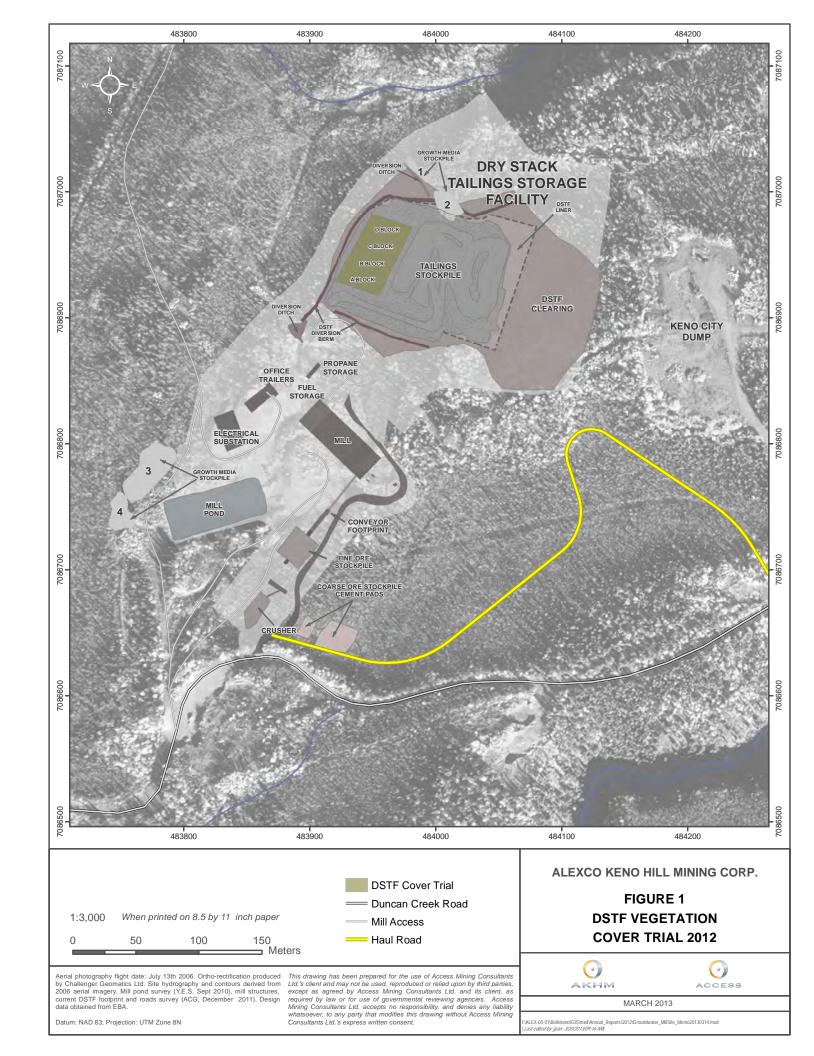
Memorandum

To: Alexco Keno Hill Mining Corp.

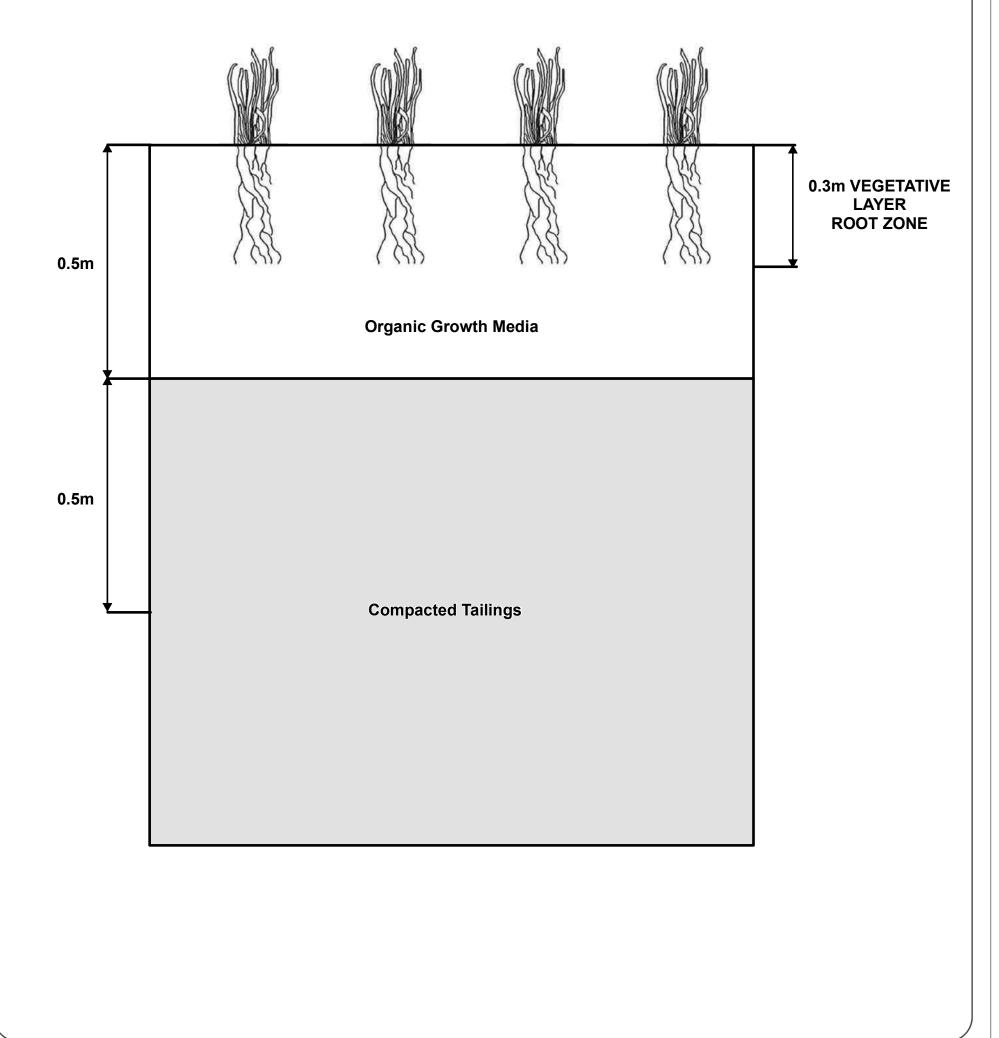
From: Access Consulting Group

CC:

Date: March 20, 2013


Re: 2012 Dry Stack Tailings Facility Cover Trial

Alexco Resource Corp. (Alexco) through its wholly owned subsidiary Alexco Keno Hill Mining Corp. owns and operates the Bellekeno Mine located in the Keno Hill Silver District. The Bellekeno Mine is licenced under Quartz Mining License QML-0009 and Water Use Licence QZ09-092.


Progressive reclamation of the Dry Stack Tailings Facility (DSTF), one of several mine components licenced under the authorizations above and shown in Figure 1. The reclamation was initiated during the summer of 2012 as outlined in the Reclamation and Closure Plan (Access, 2012) to prevent infiltration of meteoric water and prevention of dusting and erosion of exposed tailings slopes. The progressive reclamation included four areas (block A, B, C, & D) on the DSTF to be covered with granular material and seeded to test various cover trials.

Progressive reclamation of the DSTF is scheduled to occur after mill generated tailings are deposited, followed by recontouring of the slopes, and placement of a cover consisting of course soil and seeding with suitable vegetation. Reclamation was initiated in 2012 and on schedule with the year 2 start date (EBA 2010b). Ground surface preparation of the tailings prior to soil cover placement was not necessary (EBA 2010a) given that tailings are hauled from the mill at least once daily, and compacted with a drum packer to ensure proper compaction.

Phase I of the progressive reclamation tailings program covered an area of approximately 2,188 m² (\sim 0.22 ha) which would correspond to a volume of \sim 547 m³ of cover material for a cover thickness of 0.25 m. There was sufficient suitable granular material in the area of the DSTF to allow for construction of the proposed evapotranspiration cover. A conceptual evapotranspiration cover design is shown in Figure 2 and is based on the successful cover design constructed at the Brewery Creek Mine.

CONCEPTUAL SOIL COVER DESIGN

Conceptual drawing only. Drawing is not to scale.

ACCESS

ALEXCO KENO HILL MINING CORP. RECLAMATION AND CLOSURE PLAN FIGURE 2 **CONCEPTUAL SOIL COVER DESIGN**

DRAWN BY JP

VERIFIED BY BT NOVEMBER 2011 I:\ALEX-05-01\Bellekeno\GIS\mxd\Closure\2011\Submitted_Nov2011\Fig6-11_Soil_Cover_System20111117.mxd (Last ediled by: jpan:11/17/2011/12:25 PM)

In general, there is no dominant type of cover specifically designed for cold climates; rather, the type of cover design is site specific depending on the physical and chemical characteristics of the tailings facility (SRK, 2009). The cover design in this instance is defined as a store-and-release cover, which makes use of a generally thick layer of soil to store water until it can be taken up and evapo-transpired by plants (SRK, 2009).

As stated above and in the Preliminary Engineering Design and Management Plan of the DSTF (EBA, 2010b), progressive reclamation consists of placing an evapo-transpirative cover (a minimum of 0.25 m of loosely placed gravel soil) over the surface of the compacted tailings to temporarily store runoff and allow it to evaporate or be used by plants. Analogous to the successful results realized at the Brewery Creek Mine, the Reclamation Plan includes re-vegetation of the DSTF with plants that promote soil evapo-transpiration such that pore water is released to the atmosphere reducing the net infiltration across the soil system (Tremblay et al., 2001). The performance results of those covers indicate precipitation infiltration rates between 7% – 22% with the variation related to differences in cover thickness and site topography (Access, 2010).

The four stockpiles of growth media that were set aside during development of the mill site and ancillary support buildings (for the future use as DSFT cover material) were surveyed and the volumes calculated (Table 1). To prepare for the upcoming cover program activities over the summer, samples were obtained from each pile and sent to an outside laboratory for analysis of available nutrients, metals and physical properties in late spring, 2012. Nutrient levels ranged from very low to moderate as shown in the Appendix A laboratory analysis while soil pH ranged from neutral to mildly acidic. Physical locations, soil properties, and volumes of the piles are presented below in Table 1.

Table 1 Stockpiled Growth Media for Use as DSTF Cover

Stock Pile Number	Location	Soil Type	Volume (m³)
1	483987E, 7087017N	Loam	205.5
2	484007E, 7086993N	Loam	301.3
3	483770E, 7086777N	Sandy Loam	3102.9
4	483750E, 7086744N	Sandy Loam	615.0
		Total	4,224.7

The DSTF was constructed to the preliminary engineering design specification and as such has a slope of 3:1. The cover therefore, has a similar slope except in Block D where a small area, by design, has a steeper slope.

As discussed above, the area requiring a cover was estimated to be 2,188 m². Block A of the cover trial received a minimum cover thickness of 0.5 m, whereas Blocks B, C and D had a minimum cover thickness of 0.25 m. The actual thickness of the cover on the individual Blocks will vary due to the various types of surface landscaping included in the trial Blocks. The minimum total volume of material used for placement on the DSTF was calculated to be 687 m³ using the above compacted thicknesses; however, the actual volume of growth media placed is most likely greater due to a compaction factor and the surface landscaping, where the cover was placed thicker than the minimum thickness specification. This cover material was transferred from the stock piles to the DSTF using the Volvo trucks, which have a capacity of 17 m³ per load. It should be noted that unsuitable material such as boulders and organics were set aside and not used in the construction of the

cover. After the material was placed and profiles construction completed, the growth media was compacted by backtracking the hoe parallel to the slope which also created an irregular surface and therefore limiting the susceptibility of soil erosion. Prior to seeding, the dimensions of the individual blocks were measured (Table 2) to determine the appropriate mass of seed required per section. Cross sections of the individual block are presented in Appendix B and a photo log of the cover trial is presented in Appendix C.

Table 2 Area by Section of DSTF Cover

Block	Dimensions (m)	Area (m²)	Minimum Cover Thickness (m)
А	15.5 m x 36 m	558	0.50
В	16.75 m x 37.5 m	628.13	0.25
С	12 m x 37.5 m	450	0.25
D	16 m x 34.5 m	552	0.25
Total	60.25 m x ~36 m	2,188.13	0.25

The Keno District Dry Land Seed Mix (Table 3) was selected using a blend of suitable species seeded at the Brewery Creek and Minto mine sites, which was custom mixed by Brett-Young Seeds of Alberta and was applied using a seeding rate of 35 kg/ ha. All species used in the seed mix are Yukon natives except for Sheep Fescue which is native to Eurasia; however, it resembles many tufted fine-leaved fescues in North America (Matheus and Omtzigt 2011). This species was chosen because it is closely related to the Yukon native alpine fescue (*Festuca brachyphylla*) which is an ideal native fescue to sow on acidic alpine and subalpine sites; however this seed is not currently available commercially (Matheus and Omtzigt 2011).

Table 3 Seed Mix Used on DSTF (Matheus and Omtzigt 2011)

Common Name	Botanical Name	Origin	Seeds per kg	Percent Mix (%)
Violet Wheatgrass	Elymus alaskanus	native to Yukon	330,000	40.0
Sheep Fescue	Festuca ovina	not native (Eurasian)	1,100,000	23.5
Rocky Mountain Fescue	Festuca saximontana	native to Yukon	1,430,000	23.0
Glaucous Bluegrass	Poa glauca	native to Yukon	2,907,000	13.5

Fertilizer was applied at a calculated rate of 130 kg/ha (Matheus and Omtzigt 2011). In total, 25 kg of 19-19-19 was used. Individual blocks were seeded and fertilized using a grid and track-back method, using hand held hoppers for dispersal. Seeded areas that had been constructed with a slope greater than 3:1 were raked to ensure good seed-soil contact was made and to reduce the risk of seeds washing downslope in the event of a high intensity rainfall.

A follow up site visit was conducted in August 2012 to assess the progress of the seeding program. Seedlings were present on the cover and areas where seed had been raked into the soil appeared to a higher density of seedlings.

Follow up monitoring later spring 2013 will assess winterkill and survival rates. At this time additional seeding and fertilizing application rates will be calculated. The blocks will also be inspected for signs of rill erosion and will be mitigated should any be present

REFERENCES

- Access Consulting Group. 2012. Preliminary Reclamation and Closure Plan, Keno Hill Silver District Mining Operations. Prepared for Alexco Keno Hill Mining Corporation
- Access Consulting Group. 2010. Brewery Creek: From Assessment and Permitting Through Production and Closure: A Post Closure Analysis of a Northern Heap Leach Mine. Prepared for Mining, petroleum Environmental Research Group
- EBA Engineering Ltd., 2010a. Operation, Maintenance, and Surveillance Manual Dry Stack Tailings Facility, Keno Hill District Mill, YT. Revision 2010-1. Prepared for Alexco Hill Mining Corp. EBA File: W14101178.009
- EBA Engineering Ltd., 2010b. Preliminary Engineering Design and Management Plan: Dry-Stacked Tailings Facility, Bellekeno Mine Mill Site, Yukon. Prepared for Alexco Resource Corp. Issued for Use. EBA File: W14101178.003
- O'Kane Consultants Inc. (editors) 2004. Design, Construction and Performance Monitoring of Cover Systems for Waste Rock and Tailings. MEND 2.21.4. Volume 4: Field Performance Monitoring and Sustainable Performance of Cover Systems. Prepared for MEND.
- SRK Consulting (Canada) Inc. 2009. Mine Waste Covers in Cold Regions. Prepared for Mine Environmental Neutral Drainage Program (MEND).
- Tremblay, Gilles and Hogan, Charlene, 2001. "MEND Manual Volume 4 Prevention and Control". Mine Environment Neutral Drainage (MEND) Program.

APPENDIX A

SOIL ANALYSIS

Your Project #: ALEX-12-BELLE-02 Your C.O.C. #: 08351389

Attention: Scott Davidson
ACCESS CONSULTING GROUP
#3 Calcite
151 Industrial Road
WHITEHORSE, YT
CANADA Y1A 3C8

Report Date: 2012/05/28

CERTIFICATE OF ANALYSIS

MAXXAM JOB #: B241340 Received: 2012/05/18, 08:30

Sample Matrix: Soil # Samples Received: 4

		Date	Date	
Analyses	Quantity	Extracted	Analyzed Laboratory Method	Analytical Method
Cation Exchange Capacity (1)	4	2012/05/25	2012/05/25 AB SOP-00009	SSMA 18.2, EPA 200.7
Conductivity (Soluble)	4	2012/05/24	2012/05/24 BBY6SOP-00029	SM-2510 B
Elements by ICPMS (total)	4	2012/05/24	2012/05/24 BBY7SOP-00001	EPA 6020A
Potassium (Available) (1)	4	2012/05/25	2012/05/25 AB SOP-00042	EPA 200.7
Nitrate-N (Available) (1)	4	2012/05/25	2012/05/25 AB SOP-00023	SM 4110-B
Phosphorus (Available by ICP) (1)	4	2012/05/25	2012/05/25 AB SOP-00042	EPA 200.7
pH (2:1 DI Water Extract)	4	2012/05/24	2012/05/24 BBY6SOP-00028	Carter, SSMA 16.2
Saturated Paste	4	2012/05/24	2012/05/24 BBY6SOP-00030	Carter SSMA 18.2.2
Total Organic Carbon LECO Method (1)	4	2012/05/25	2012/05/25 CAL SOP-00243	LECO# 203-821-170
Texture by Hydrometer (1)	4	N/A	2012/05/25 AB SOP-00030	MMFSPA Ch9
Texture Class (1)	4	N/A	2012/05/25 AB SOP-00030	MMFSPA Ch9
Total Nitrogen in Soil by LECO (1)	4	2012/05/28	2012/05/28 CAL SOP-00243	LECO# 203-821-170

^{*} Results relate only to the items tested.

(1) This test was performed by Maxxam Calgary Environmental

Encryption Key

Please direct all questions regarding this Certificate of Analysis to your Project Manager.

LANOY LUANGKHAMDENG, Burnaby Project Manager

 ${\it Email: LLuangkhamdeng@maxxam.ca}$

Phone# (604) 638-2636

.-----

Maxxam has procedures in place to guard against improper use of the electronic signature and have the required "signatories", as per section 5.10.2 of ISO/IEC 17025:2005(E), signing the reports. For Service Group specific validation please refer to the Validation Signature Page.

Total cover pages: 1

Maxxam Job #: B241340

Report Date: 2012/05/28

ACCESS CONSULTING GROUP Client Project #: ALEX-12-BELLE-02

Sampler Initials: LK

NPK (AVAILABLE)

Maxxam ID		DL5561		DL5562		DL5563	DL5564		
Sampling Date		2012/05/14		2012/05/14		2012/05/14	2012/05/14		
		13:30		13:30		13:30	13:30		
	Units	WP1 (DSTF)	RDL	WP2 (DSTP)	RDL	WP3 (MILL	WP4 (MILL	RDL	QC Batch
						WASTE)	WASTE)		
Nutrients									
Available (NH4F) Nitrogen (N)	mg/kg	<10(1)	10	<2.0	2.0	11(1)	<10(1)	10	5868444
Available (NH4F) Phosphorus (P)	mg/kg	10	5.0	<1.0	1.0	17	77	5.0	5867906
Available (NH4OAc) Potassium (K)	mg/kg	52	10	29	2.0	25	29	10	5867902

RESULTS OF CHEMICAL ANALYSES OF SOIL

Maxxam ID		DL5561	DL5562	DL5563		DL5564		
Sampling Date		2012/05/14	2012/05/14	2012/05/14		2012/05/14		
		13:30	13:30	13:30		13:30		
	Units	WP1 (DSTF)	WP2 (DSTP)	WP3 (MILL	QC Batch	WP4 (MILL	RDL	QC Batch
				WASTE)		WASTE)		
Elements								
Cation exchange capacity	cmol+/Kg	24	13	33	5867085	13	10	5867085
Soluble Parameters	•	-		-	-	•		•
Soluble Conductivity	uS/cm	197	2540	512	5863576	276	1.0	5863576
Saturation %	%	90.5	53.0	88.7	5863551	74.8	1.0	5863551
Physical Properties								
% sand by hydrometer	%	44	53	58	5866937	50	2.0	5866937
% silt by hydrometer	%	44	37	31	5866937	43	2.0	5866937
Clay Content	%	12	11	10	5866937	6.9	2.0	5866937
Texture	N/A	LOAM	LOAM	SANDY LOAM	5860280	SANDY LOAM	N/A	5861607

N/A = Not Applicable

RDL = Reportable Detection Limit

(1) - Detection limits raised due to sample matrix.

ACCESS CONSULTING GROUP Client Project #: ALEX-12-BELLE-02

Sampler Initials: LK

MISCELLANEOUS (SOIL)

Maxxam ID		DL5561		DL5562		DL5563		DL5564		
Sampling Date		2012/05/14		2012/05/14		2012/05/14		2012/05/14		
		13:30		13:30		13:30		13:30		
	Units	WP1 (DSTF)	RDL	WP2 (DSTP)	RDL	WP3 (MILL	RDL	WP4 (MILL	RDL	QC Batch
						WASTE)		WASTE)		
Misc. Inorganics										
Total Nitrogen	%	0.28	0.20	<0.20	0.20	0.25	0.20	0.23	0.20	5871016

^{(1) -} Detection limits raised due to dilution to bring analyte within the calibrated range.

ACCESS CONSULTING GROUP Client Project #: ALEX-12-BELLE-02

Sampler Initials: LK

CSR/CCME METALS IN SOIL (SOIL)

Maxxam ID		DL5561	DL5562	DL5563	DL5564		1
Sampling Date		2012/05/14	2012/05/14	2012/05/14 13:30	2012/05/14 13:30		
J g		13:30	13:30				
	Units	WP1 (DSTF)	WP2 (DSTP)	WP3 (MILL	WP4 (MILL	RDL	QC Batch
		, ,	, ,	WASTE)	WASTE)		
Physical Properties							
Soluble (2:1) pH	pH Units	5.67	6.33	7.25	5.53	0.010	5863833
Total Metals by ICPMS							
Total Aluminum (AI)	mg/kg	12100	9370	9130	11500	100	5863755
Total Antimony (Sb)	mg/kg	1.10	39.5	2.01	2.32	0.10	5863755
Total Arsenic (As)	mg/kg	29.2	712	65.1	58.2	0.50	5863755
Total Barium (Ba)	mg/kg	217	182	188	289	0.10	5863755
Total Beryllium (Be)	mg/kg	<0.40	<0.40	<0.40	<0.40	0.40	5863755
Total Bismuth (Bi)	mg/kg	0.19	1.03	0.44	0.21	0.10	5863755
Total Cadmium (Cd)	mg/kg	1.17	148	2.13	2.66	0.050	5863755
Total Calcium (Ca)	mg/kg	4750	5760	10400	4050	100	5863755
Total Chromium (Cr)	mg/kg	19.0	15.9	17.2	20.5	1.0	5863755
Total Cobalt (Co)	mg/kg	7.39	11.6	9.73	9.90	0.30	5863755
Total Copper (Cu)	mg/kg	19.0	87.0	35.4	28.0	0.50	5863755
Total Iron (Fe)	mg/kg	23200	47000	23300	27600	100	5863755
Total Lead (Pb)	mg/kg	38.9	3730	50.2	134	0.10	5863755
Total Lithium (Li)	mg/kg	11.7	10.1	11.2	11.9	5.0	5863755
Total Magnesium (Mg)	mg/kg	3400	4050	4960	3790	100	5863755
Total Manganese (Mn)	mg/kg	597	7790	610	674	0.20	5863755
Total Mercury (Hg)	mg/kg	0.057	0.223	< 0.050	0.062	0.050	5863755
Total Molybdenum (Mo)	mg/kg	1.20	1.66	1.63	1.50	0.10	5863755
Total Nickel (Ni)	mg/kg	15.5	20.7	22.1	21.3	0.80	5863755
Total Phosphorus (P)	mg/kg	469	511	685	659	10	5863755
Total Potassium (K)	mg/kg	494	394	402	435	100	5863755
Total Selenium (Se)	mg/kg	0.72	1.19	0.91	0.76	0.50	5863755
Total Silver (Ag)	mg/kg	0.491	29.0	0.921	1.79	0.050	5863755
Total Sodium (Na)	mg/kg	<100	<100	<100	<100	100	5863755
Total Strontium (Sr)	mg/kg	18.7	15.4	29.0	18.5	0.10	5863755
Total Thallium (TI)	mg/kg	0.116	0.131	0.101	0.127	0.050	5863755
Total Tin (Sn)	mg/kg	0.42	11.0	0.93	0.44	0.10	5863755
Total Titanium (Ti)	mg/kg	226	197	197	238	1.0	5863755
Total Uranium (U)	mg/kg	0.609	0.643	0.835	0.706	0.050	5863755
Total Vanadium (V)	mg/kg	39.5	28.1	29.0	34.3	2.0	5863755
Total Zinc (Zn)	mg/kg	123	11800	219	251	1.0	5863755
Total Zirconium (Zr)	mg/kg	0.55	<0.50	1.32	<0.50	0.50	5863755

ACCESS CONSULTING GROUP
Client Project #: ALEX-12-BELLE-02

Sampler Initials: LK

Package 1 1.7°C

Each temperature is the average of up to three cooler temperatures taken at receipt

General Comments

NPK (AVAILABLE) Comments

Sample DL5561-01 Phosphorus (Available by ICP): Due to the sample matrix, sample required dilution. Detection limit was adjusted accordingly DL5563-01 Phosphorus (Available by ICP): Due to the sample matrix, sample required dilution. Detection limit was adjusted accordingly DL5564-01 Phosphorus (Available by ICP): Due to the sample matrix, sample required dilution. Detection limit was adjusted accordingly DL5561-01 Potassium (Available): Due to the sample matrix, sample required dilution. Detection limit was adjusted accordingly DL5563-01 Potassium (Available): Due to the sample matrix, sample required dilution. Detection limit was adjusted accordingly Sample DL5564-01 Potassium (Available): Due to the sample matrix, sample required dilution. Detection limit was adjusted accordingly

ACCESS CONSULTING GROUP Client Project #: ALEX-12-BELLE-02

Sampler Initials: LK

QUALITY ASSURANCE REPORT

			Matrix S	Spike	Spiked	Blank	Method	Blank	RF	PD 20	QC Star	ndard
QC Batch	Parameter	Date	% Recovery	QC Limits	% Recovery	QC Limits	Value	Units	Value (%)	QC Limits	% Recovery	QC Limits
5863551	Saturation %	2012/05/24			99	80 - 120	<1.0	%	0.4	30		
5863576	Soluble Conductivity	2012/05/24			111	70 - 130	<1.0	uS/cm	2.5	35		
5863755	Total Antimony (Sb)	2012/05/24	NC	75 - 125	93	75 - 125	<0.10	mg/kg			39	N/A
5863755	Total Arsenic (As)	2012/05/28	NC	75 - 125	102	75 - 125	<0.50	mg/kg	0.5	30	192	N/A
5863755	Total Barium (Ba)	2012/05/24	NC	75 - 125	97	75 - 125	<0.10	mg/kg			470	N/A
5863755	Total Beryllium (Be)	2012/05/24	104	75 - 125	106	75 - 125	<0.40	mg/kg			1.8	N/A
5863755	Total Cadmium (Cd)	2012/05/24	98	75 - 125	105	75 - 125	<0.050	mg/kg			5.0	N/A
5863755	Total Chromium (Cr)	2012/05/24	100	75 - 125	97	75 - 125	<1.0	mg/kg			72	N/A
5863755	Total Cobalt (Co)	2012/05/24	96	75 - 125	98	75 - 125	<0.30	mg/kg			25	N/A
5863755	Total Copper (Cu)	2012/05/24	NC	75 - 125	99	75 - 125	<0.50	mg/kg			367	N/A
5863755	Total Lead (Pb)	2012/05/24	NC	75 - 125	97	75 - 125	<0.10	mg/kg			274	N/A
5863755	Total Lithium (Li)	2012/05/24	95	75 - 125	96	75 - 125	<5.0	mg/kg			31	N/A
5863755	Total Manganese (Mn)	2012/05/24	NC	75 - 125	98	75 - 125	<0.20	mg/kg			1060	N/A
5863755	Total Mercury (Hg)	2012/05/24	111	75 - 125	109	75 - 125	<0.050	mg/kg			44	N/A
5863755	Total Molybdenum (Mo)	2012/05/24	98	75 - 125	88	75 - 125	<0.10	mg/kg			29	N/A
5863755	Total Nickel (Ni)	2012/05/24	88	75 - 125	95	75 - 125	<0.80	mg/kg			104	N/A
5863755	Total Selenium (Se)	2012/05/24	117	75 - 125	118	75 - 125	<0.50	mg/kg			1.3	N/A
5863755	Total Silver (Ag)	2012/05/24	83	75 - 125	89	75 - 125	<0.050	mg/kg			20	N/A
5863755	Total Strontium (Sr)	2012/05/24	NC	75 - 125	91	75 - 125	<0.10	mg/kg			417	N/A
5863755	Total Thallium (TI)	2012/05/24	94	75 - 125	88	75 - 125	<0.050	mg/kg			43	N/A
5863755	Total Tin (Sn)	2012/05/24	NC	75 - 125	85	75 - 125	<0.10	mg/kg			33	N/A
5863755	Total Titanium (Ti)	2012/05/24	NC	75 - 125	94	75 - 125	<1.0	mg/kg			2070	N/A
5863755	Total Uranium (U)	2012/05/24	99	75 - 125	94	75 - 125	<0.050	mg/kg			2.7	N/A
5863755	Total Vanadium (V)	2012/05/24	NC	75 - 125	97	75 - 125	<2.0	mg/kg			82	N/A
5863755	Total Zinc (Zn)	2012/05/24	NC	75 - 125	115	75 - 125	<1.0	mg/kg			981	N/A
5863755	Total Aluminum (AI)	2012/05/24					<100	mg/kg				
5863755	Total Bismuth (Bi)	2012/05/24					<0.10	mg/kg				
5863755	Total Calcium (Ca)	2012/05/24					<100	mg/kg				
5863755	Total Iron (Fe)	2012/05/24					<100	mg/kg				
5863755	Total Magnesium (Mg)	2012/05/24					<100	mg/kg				
5863755	Total Phosphorus (P)	2012/05/24					<10	mg/kg				
5863755	Total Potassium (K)	2012/05/24					<100	mg/kg				
5863755	Total Sodium (Na)	2012/05/24					<100	mg/kg				
5863755	Total Zirconium (Zr)	2012/05/24					<0.50	mg/kg				
5863833	Soluble (2:1) pH	2012/05/24			101	96 - 104			0.2	20		
5866937	% sand by hydrometer	2012/05/25							17.9	35	99	75 - 125
5866937	% silt by hydrometer	2012/05/25							11.1	35	108	75 - 125
5866937	Clay Content	2012/05/25							3.3	35	85	75 - 125
5867085	Cation exchange capacity	2012/05/25							NC	35		
5867097	Total Organic Carbon (C)	2012/05/25			100	75 - 125	<0.020	%	7.7	50	108	75 - 125

ACCESS CONSULTING GROUP
Client Project #: ALEX-12-BELLE-02

Sampler Initials: LK

QUALITY ASSURANCE REPORT

			Matrix S	Spike	Spiked	Blank	Method	Blank	RF	סי	QC Star	dard
QC Batch	Parameter	Date	% Recovery	QC Limits	% Recovery	QC Limits	Value	Units	Value (%)	QC Limits	% Recovery	QC Limits
5867902	Available (NH4OAc) Potassium (K)	2012/05/25			105	80 - 120	<2.0	mg/kg	3.4	35		
5867906	Available (NH4F) Phosphorus (P)	2012/05/25			102	80 - 120	<1.0	mg/kg	12.6	35		
5868444	Available (NH4F) Nitrogen (N)	2012/05/25	NC	80 - 120	100	90 - 110	<2.0	mg/kg	NC	35		
5871016	Total Nitrogen	2012/05/28			100	75 - 125	<0.20	%	NC	35	101	75 - 125

N/A = Not Applicable

RPD = Relative Percent Difference

Duplicate: Paired analysis of a separate portion of the same sample. Used to evaluate the variance in the measurement.

Matrix Spike: A sample to which a known amount of the analyte of interest has been added. Used to evaluate sample matrix interference.

QC Standard: A blank matrix to which a known amount of the analyte has been added. Used to evaluate analyte recovery.

Spiked Blank: A blank matrix to which a known amount of the analyte has been added. Used to evaluate analyte recovery.

Method Blank: A blank matrix containing all reagents used in the analytical procedure. Used to identify laboratory contamination.

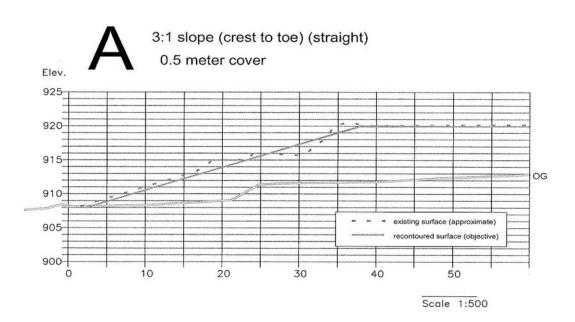
NC (Matrix Spike): The recovery in the matrix spike was not calculated. The relative difference between the concentration in the parent sample and the spiked amount was not sufficiently significant to permit a reliable recovery calculation.

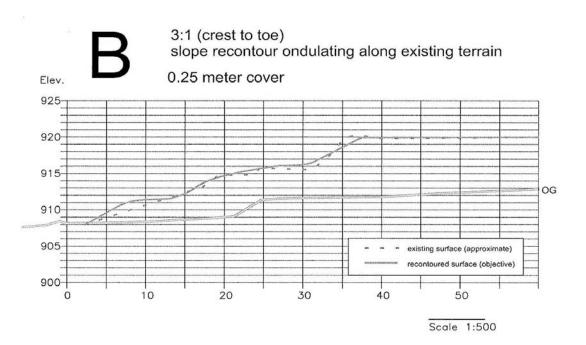
NC (RPD): The RPD was not calculated. The level of analyte detected in the parent sample and its duplicate was not sufficiently significant to permit a reliable calculation.

8577 Commerce Court Burnaby, BC V5A 4N5 www.maxxamanalytics.com

Phone: (604) 444-4808 Fax.: (604) 444-4511 Toil-Free: 1-800-440-4808

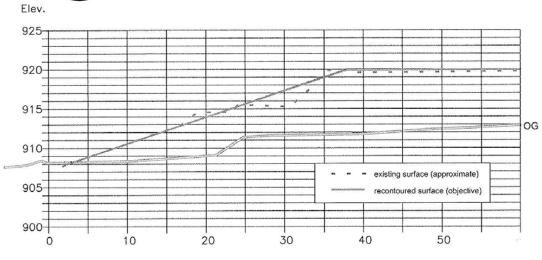
CHAIN-OF CUSTODY RECORD AND ANALYSIS REQUEST

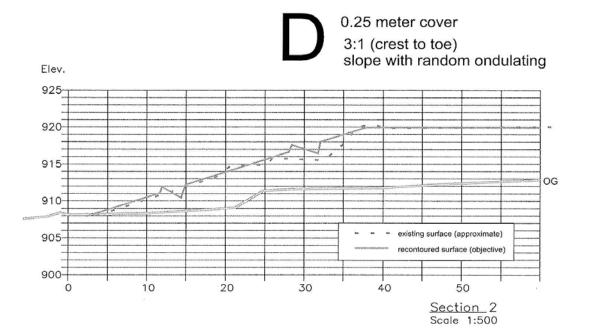

PAGE 1 OF 1


110.12	Analytics	Inc					08351389	E i		MAX	XAM	JOB A	u	0	,	AN.	ALY	/SIS	RE	QU	ES	- 4	COC	JSE C	MLY
OMPANY NAME:	3:#		CLIENT PROJECT N												_	_	1	AB US	SE ON	ILY	12				0,7
ccess Consulting Group	p		ALEX-12-BELL																						
DMPANY ADDRESS: 3 Calcite Business Cen 51 Industrial Rd. /hitehorse, YT 1A 2V3			TEL.: 867-6 E-MAIL: FAX: 867-6		80																				
MPLER NAME (PRINT): sa Knight		PROJECT MAN Scott David				1.000.000.000	ATORY CONTACT: y Luangkhamo						V I									Н			
sa ixiigiit		SCOIL DAVIG	Tarana and	1 1	MATR			IPLING	_	1												Н			
. FIELD	SAMPLE ID		MAXXAM LAB (F	GROUNDWATER SURFACE WATER	DRINKING WATER	SOIL	DATE	TIME	# CONTAINERS	ICP Metals	pH/EC	Texture	тос	C:N Ration	CEC	Total N	Nutrients	Phosphorus							Y
WP1 (DSTF)		39	DLS 561		П	x	14/05/12	13:30	1	X	x	х	X	x	X	X	X	X							
WP2 (DSTP)					П	x	1	- (1	х	X	х	х	х	x	х	х	x							
WP3'(Mill Waste)				П		x			1	x	x	х	x	х	x	x	x	x		\top					
WP4 (Mill Waste)			564			×	1	V	1	×	×	х	×	х	×	x	X	x		\top		П			
			TO THE STATE		П		100	7											1	\top					
		,	于。 建设 加度自己现代														. 1			1.	l,				1
			Pro a law																						1
- Xc			10000000000000000000000000000000000000	11	П					Т		П		_	22.00	20200									T
			20 0V											_		MY	Jan.	×	1	MT	Albry	Ŋĸ.	Ш		T
			满色色色色											_	н	RN	m	900	(NO	0,070	æ	Wal.	ш		T
			进入多种的人。													Ten.	n Y	nhiri	noi"	MAN	rin i	mini	l.		T
			130 / 20											- S.	32	413	40								T
TAT (Turnssound Time) ESS THAN 5 DAY TAT MUST HAVE PRIOR APPROVAL	PO NUMBER OR QU	JOTE NUMBER:	SPECIAL DETECTIO	N LIMIT	S/C	ONTAM	INANT TYPE:				CSR AB TO	ER 1			ERA	TURE		D	LA IUE D	B USE	ONL		LOG	IN CH	ECK:
* Some exceptions apply - please contact laboratory DARD 5 BUSINESS DAYS	ACCOUNTING CON	TACT:	SPECIAL REPORTIN	G OR B	BILLIN	G INST	RUCTIONS:			#JA	RS U	SED:	5	l	10	ς,	d								
3 BUSINESS DAYS 2 BUSINESS DAYS ENT 1 BUSINESS DAY	RELINQUINSHED BY	Y SAMPLER:	DATE: DD/MM/YY				TIME:			REC	EIVE	D BY:										- 00			
R BUSINESS DAYS	RELINQUINSHED BY	Y:	DATE: DOMMYY 18	05	11.	2	TIME: 08:3	30		REC	B	9 BY:	1	1C	le	1	00	CK)	KI	V					
CUSTODY	RELINQUINSHED BY	r:	CLAB USE ONLY) DUSS 6 1				Page 8 of 8			REC	Erve	D BY	LABO	DRAT	ORY:	•									

APPENDIX B

BLOCK PROFILES


DSTF Phase I Reclamation - Slope Profiles



3:1 slope (straight)
0.25 meter cover

I

Scale 1:500

APPENDIX C

Рното Log

Photo 1: Growth Media Pile 1

Photo 2: Growth Media Pile 2

Photo 3: Growth Media Pile 2

Photo 4: Growth Media Pile 3

Photo 5: Growth Media Pile 4

Photo 6: Growth Media Pile 4

Photo 7: Covered DSTF toe looking north

Photo 8: Covered DSTF mid-slope looking south

Photo 9: Covered DSTF crest looking north

Photo 10: Covered DSTF crest looking south

Photo 11: Grass sprouts DSTF looking south from crest

Photo 12: Grass sprouts DSTF looking west from crest