North American Tungsten Corporation Limited

ISSUED FOR REVIEW

RESPONSE TO YESAB'S ADEQUACY REVIEW REPORT OF SUPPLEMENTARY INFORMATION RESPONSE FOR THE PROPOSED MACTUNG MINE, MACMILLAN PASS, YUKON (YESAB PROJECT NUMBER: 2008-0304)

ADDENDUM 2 OF THE MACTUNG PROJECT PROPOSAL

EBA FILE: W23101211.002

September 2009

EBA Engineering Consultants Ltd. p. 867.668.3068 • f. 867.668.4349 Calcite Business Centre • Unit 6, 151 Industrial Road • Whitehorse, Yukon Y1A 2V3 • CANADA

TABLE OF CONTENTS

PAGE

1.0	INTR	ODUCTION	1
2.0	GEN	ERAL INFORMATION	1
3.0	SUPF	PLEMENTARY INFORMATION REQUIRED	1
	3.1	Design of the Access Road to the Mine	1
	3.2	Mine Site Granular Resources and Quarry Development	2
4.0	CLOS	SURE	4

APPENDICES

- Appendix A Humidity Cell Kinetic Update
- Appendix B Road and Borrow Acccess Maps

1.0 INTRODUCTION

This document contains North American Tungsten Corporation's (NATC) response to the Yukon Environmental and Socio-economic Assessment Board's (YESAB) Adequacy Review Report of Supplementary Information Response dated September 2009 (YESAB Project #2008-0304). This document is Addendum 2 to the Project Proposal which was submitted to YESAB in December 2008. Although most of the information is contained within the Project Proposal and Addendum 1, the information contained within Addendum 2 supersedes the relevant sections of both the Project Proposal and the first Addendum.

To help the reader each follow the document, each of NATC's responses follows the text of each information requests issued by YESAB. These requests have been presented with a grey background in order to clearly separate the request from the response. Further, the responses presented below contain the same numbering presented in the Adequacy Review Report of Supplementary Information Response.

2.0 GENERAL INFORMATION

NATC has committed to the provision of results from its kinetic testing program. In keeping with this commitment, please find the humidity cell kinetic data, as an update to the information contained in the Supplementary Geochemical Information for Waste and Mineralized Rocks report submitted to the Board in July 2009, attached in Appendix A.

3.0 SUPPLEMENTARY INFORMATION REQUIRED

3.1 DESIGN OF THE ACCESS ROAD TO THE MINE

Additional Information Requirements

The Executive Committee is of the opinion that there remains insufficient information in order to understand the potential effects of the proposed access road to the mine. Please provide the following information.

a) A route map at an appropriate scale to show the location of the proposed access road relative to surrounding terrain features and topography, particularly those terrain units that could constrain routing (geo-hazards). An example of appropriate terrain mapping for linear developments can be found in the proposal for project #2006-0286 (Yukon Energy Corporation Carmacks-Stewart/Minto Spur Transmission Project).

Please refer to Figures 1.1-1.5 contained within Appendix B for mapping of the proposed mine road and associated terrain features. The Figures have been identified as "Preliminary" as they have been developed for assessment purposes only and are not suitable for site construction.

It should be noted that Figures 1.1-1.4 displays terrain hazard mapping based on an analysis of the area along the road route from the North Canol Road to approximately ten kilometres from the mine. Figure 1.5 presents the terrain mapping for the remaining ten kilometres in the immediate mine area with more detail, as a result of the extensive ground work conducted by NATC in the mine site area on the companies mining claims.

b) Provide the proposed access on the route map where additional access will need to be constructed for the borrow sources identified in Figures 3.1.1-1 and 3.4.1-2 (Response to Adequacy Review Report).

Please refer to Figures 1.6-1.7, contained within Appendix B, for a presentation of borrow sites and their proposed access routes. It should be noted that borrow sites 1, 2, 9, 10, 11, 12, and 13 overlap with the proposed road right-of-way and therefore will not require the development of access roads. Further, borrow sites 7, 14, and 15 may have more complex access requirements due to their physical location. For this reason NATC will consider these borrow sources as provisional. These sites will only be developed if the necessary material cannot be sourced from the other borrow pits in the area of road construction. As stated in Addendum 1, NATC has identified more borrow resources than it anticipates will be required.

As presented in Figure 1.7, access to borrow site 7 would be developed from borrow site 8. Access to borrow sites 14 and 15 would require a stream crossing across at Tributary A.. This would be done by installing the appropriate size culvert; the method for culvert sizing and installation has been outlined in the Project Proposal. The development of these sites would be done only if absolutely necessary and would be completed only after freshet. It is expected that these borrow sites would be utilized for one season after which the site would be reclaimed and the culvert removed.

3.2 MINE SITE GRANULAR RESOURCES AND QUARRY DEVELOPMENT

Additional Information Requirements

The Executive Committee is of the opinion that there remains insufficient information in order to understand the potential effects of developing the mine site granular resources and quarry. Please provide the following information.

a) Detail an estimate of the volumes of appropriate granular resources available for mine site engineering fill at each borrow sources.

It is understood that YESAB may have concerns regarding the amount of fill available at the site needed for the project. As stated, mine site development will require approximately 500,000 m³ of fill.

Analyses of the material available at the mine site for construction was conducted by EBA using available information, including site photographs, aerial photographs, National Topographic Survey maps and anecdotal information as well as field data resulting from the 2007 geotechnical drilling program.

In order to determine the amount of material available at the mine site, EBA performed geotechnical drilling programs at the Mactung mine site. These investigations were undertaken in 2007 for the purpose of determining the soil and bedrock conditions of the proposed site and to provide preliminary geotechnical information in the vicinity of proposed infrastructure and borrow sites.

The mine site investigation consisted of drilling 42 vertical boreholes and excavating 42 testpits. Boreholes were drilled until a point of refusal and testpits were dug to a depth of 4.5-5.0 m, (the practical reach of the equipment used in the investigations). Borehole and testpit logs were maintained for each site of investigation. Further, this investigation resulted in the preparation of the "Mactung Preliminary Geotechnical Investigation - 2008".

For the delineation of fill for the project, EBA, used the results of the borehole and testpit logs and laboratory test results, specifically type and depth of material as well as the area of each site, determined through the use of maps. This information allowed for the determination of volume.

The volume of materials available at each borrow site is summarized as follows:

- Ravine Dam Reservoir Borrow Site 81,000 m³
- DSTF Borrow Site $-448,000 \text{ m}^3$

These volumes were determined by calculating the average thickness of sand and gravel overlying bedrock at the two locations then subtracting 0.5 m to account for loss during surface stripping. The remaining thickness of sand and gravel was 1.5 m and 2.3 m for the reservoir and DSTF locations, respectively. EBA then conservatively estimated, based on testhole logs and laboratory test results that, at a minimum, 50% of the remaining material would be suitable for use as engineered fill. The areas of the proposed borrow sites are 108,000 m² and 390,000 m², respectively. Therefore the usable volume in reservoir and DSTF borrow sites would be 81,000 m³ and 448,000 m³, respectively.

The 50% usable material estimate is a very conservative estimate, and based on the information available EBA believes that up to 75% of the available material may be usable. If 75% of the material is usable, then the volume of material available in the reservoir and DSTF borrow sites would be 121,000 m³ and 663,000 m³, respectively.

Based on these investigations as well as preliminary mine site designs, it is EBA's opinion that the site will offer more than the required material for the project.

b) If there is not sufficient granular material available in the borrow pits to meet the engineered fill requirements for min site construction, please identify and detail sources of additional appropriate granular resources and/or non-acid generating bedrock.

It is believed that the sites identified for use will be sufficient for the purpose of this project and that no other borrow pits will be needed.

4.0 CLOSURE

We trust this report meets your present requirements. Should you have any questions or comments, please contact the undersigned at your convenience.

Sincerely EBA Engineering Consultants Ltd.

Patricia L. Randell, B.Sc., M.Sc. Assessment & Regulatory Specialist Whitehorse Environment Group Direct Line: 867.668.2071 x242 prandell@eba.ca

No viC

W23101211.002 September 2009

Don Wilson, B.Sc. Team Leader, Contaminants Whitehorse Environment Group Direct Line: 867.668.2071 x223 dwilson@eba.ca

APPENDIX A

APPENDIX A HUMIDITY CELL KINETIC UPDATE

Table ²	1.0: Summa	ry Inform	ation for M	lactung Tai	lings Comp	osit Humic	dity Cells											
Cell No.	Sample ID	Sample Type	Method Reference	Col	umn Dimensi	ons	Co	olumn Pack	ing	Pore Volume	Total Volume of Initial Flushings	Flushing Rate / Weekly Input*	Temp	Sampling Frequency	Start-up Date	Sampling Day	Operation Procedure	Sample Prep for Flushings
				Inner Diameter (cm)			Dry Wt. of Sample (kg)		Column Material	(mL)	(mL)	(mL)	(°C)		2009			
	50051-001 Drill Core Composite Mill Tailings	Tailings	MEND	21.00	20.50		1.00	Plexiglas perforated disk & nylon mesh	Plexiglas		750	500	20-22 °C	Weekly	23-Jun	Tuesday	Flood Leach	Stirred
	50051-001 Tailings 2005 Drill Core Composite	Tailings	MEND	21.00	20.50		1.00	Plexiglas perforated disk & nylon mesh	Plexiglas		750	500	20-22 °C	Weekly	30-Jun	Tuesday	Flood Leach	Stirred

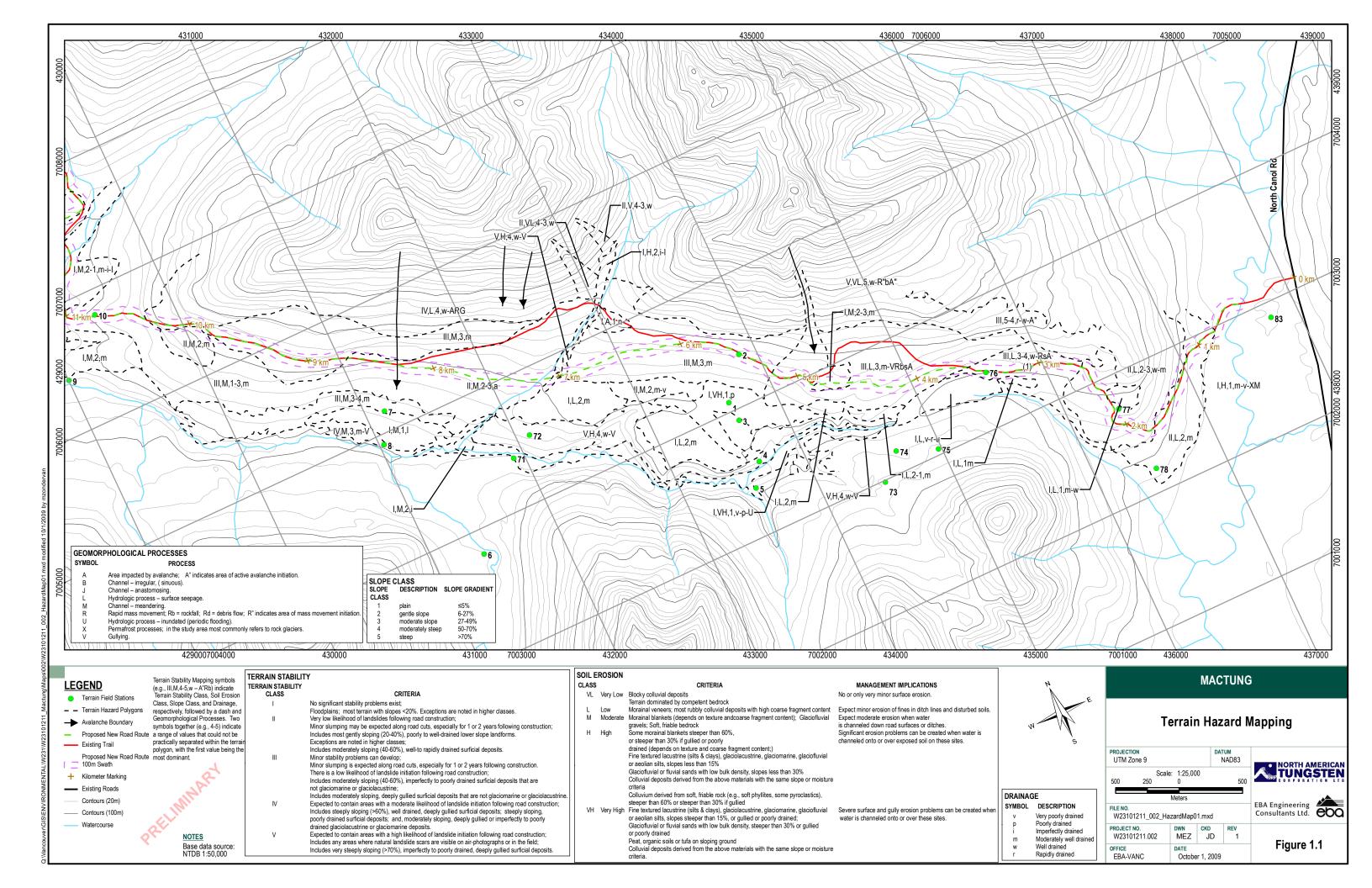
W23101211.002 September 2009

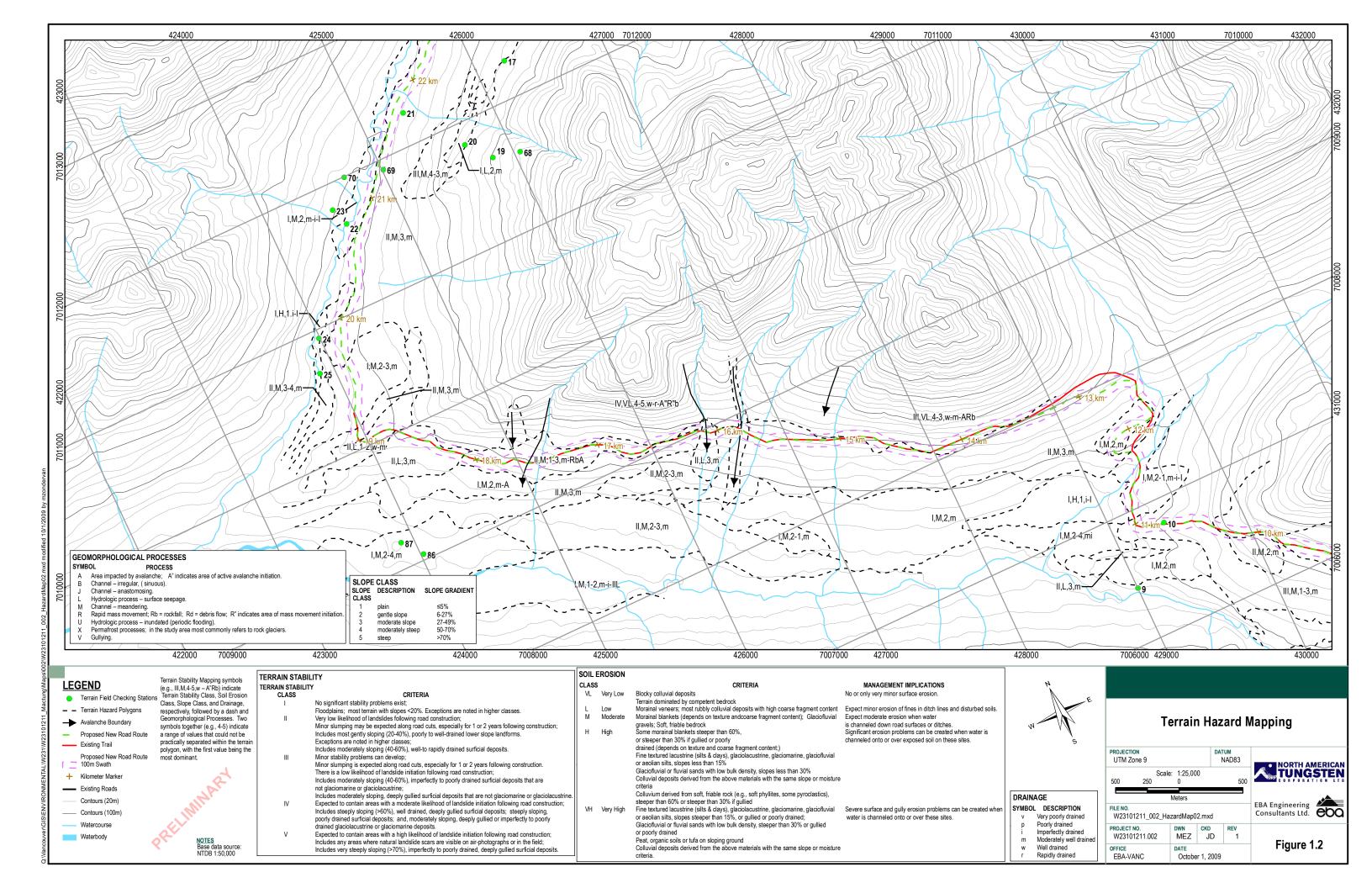
Date	Cycle	Volun	e mL	рН	ORP	Cond.	Acidity	Acidity	Alkalinity	Sulphate	Hardness	AI	Sb	As	Ba	Be	Bi	В	Cd	Ca	Cr	Со	Cu	Fe	Pb
	No.	Input	Output			umhos/cm	(pH 4.5)	(pH 8.3)			CaCO3														
					mV		mgCaCO3/L	mgCaCO3/L	mgCaCO3/L	mg/L	mg/L	mg/L	mg/L	mg/L	mg/L	mg/L	mg/L	mg/L	mg/L	mg/L	mg/L	mg/L	mg/L	mg/L	mg/L
23-Jun-09	1	750	250	8.96	315	861	#N/A	#N/A	224.8	314	6.5	0.244	0.0098	0.0958	0.0029	0.0001	0.00445	< 0.5	0.00025	2.28	< 0.001	0.00104	0.0364	0.705	0.00814
30-Jun-09	2	500	440	8.60	291	1037																			
7-Jul-09	3	500	380	8.37	329	1214	#N/A	#N/A	233.7	293	11	0.176	0.0258	0.183	0.0016	0.0001	0.00931	< 0.5	0.00007	3.88	< 0.001	0.0006	0.0204	0.521	0.00294
14-Jul-09	4	500	440	8.45	304	1050																			
21-Jul-09	5	500	460	8.40	299	961	#N/A	#N/A	228.9	193	17.2	0.387	0.0201	0.0802	0.0022	0.00023	0.0286	< 0.3	0.00026	6.02	< 0.0005	0.0003	0.0138	1.21	0.00673
28-Jul-09	6	500	455	8.23	329	783																			
4-Aug-09	7	500	485	8.21	336	655	#N/A	2.1	160.3	175	36.4	0.138	0.0151	0.0841	0.00181	0.00007	0.0092	< 0.05	0.00011	13	0.0005	0.000163	0.00855	0.368	0.00243
11-Aug-09	8	500	465	8.15	308	625																			
18-Aug-09	9	500	475	7.83	281	588	#N/A	4.2	92.8	181	125	0.0277	0.0126	0.039	0.00309	0.00002	0.000791	< 0.05	0.000186	44.7	< 0.0001	0.000198	0.00423	0.035	0.00023
25-Aug-09	10	500	485	8.10	333	521																			
l-Sep-09	11	500	440																						

Table: T1	able: T1 Leachate Chemistry Results for 2008 Drill Core Composite Tailings																											
Sample = 50	051-001 Drill	Core Compo	site Mill Tailir	ngs																								
Date	Cycle	Volur	me mL	Li	Mg	Mn	Hg	Mo	Ni	Р	K	Se	Si	Ag	Na	Sr	S	TI	Sn	Ti	U	V	Zn	Zr	Major	Major	Diff	Diff
	No.	Input	Output																						Anions	Cations	, 1	(%)
				mg/L	mg/L	mg/L	ug/L	mg/L	mg/L	mg/L	mg/L	mg/L	mg/L	mg/L	mg/L	mg/L	mg/L	mg/L	mg/L	mg/L	mg/L	mg/L	mg/L	mg/L			,l	i
23-Jun-09	1	750	250	< 0.005	0.2	0.0171	< 0.1	0.0382	0.0023	0.698	4.12	0.0086	13.7	0.00087	211	0.0152	176	0.00003	0.0024	< 0.005	0.00624	0.02	0.004	< 0.001	11.04	9.41	-1.63	-8.0%
30-Jun-09	2	500	440																								<u> </u>	1
7-Jul-09	3	500	380	< 0.005	0.32	0.0241	< 0.1	0.0252	0.0029	< 0.02	4.07	0.016	9.53	0.00013	227	0.0319	229	0.00002	0.0004	< 0.005	0.0117	0.004	0.005	< 0.001	10.78	10.19	-0.58	-2.8%
14-Jul-09	4	500	440																								,,	1
21-Jul-09	5	500	460	0.006	0.54	0.0479	< 0.05	0.0065	0.0022	0.021	5.09	0.0075	10.4	0.00005	205	0.039	82	0.00003	0.00034	0.006	0.0055	0.002	0.0068	< 0.0005	8.60	9.39	0.79	4.4%
28-Jul-09	6	500	455																								,,	1
4-Aug-09	7	500	485	0.0063	0.99	0.0642	< 0.01	0.00527	0.00068	0.008	5.84	0.00309	9.14	0.000011	127	0.0643	66	0.000032	0.00028	0.002	0.0031	0.0013	0.0032	< 0.0001	6.85	6.40	-0.45	-3.4%
11-Aug-09	8	500	465																								,ı	1
18-Aug-09	9	500	475	0.0095	3.18	0.149	< 0.01	0.00499	0.00072	0.004	8.38	0.00175	8.37	< 0.000005	79.3	0.164	82	0.000045	0.00016	< 0.0005	0.00164	0.0004	0.0063	< 0.0001	5.63	6.15	0.53	4.5%
25-Aug-09	10	500	485	1																							,i	1
1-Sep-09	11	500	440																								, i	1
			1	1																							,	
J																		1										

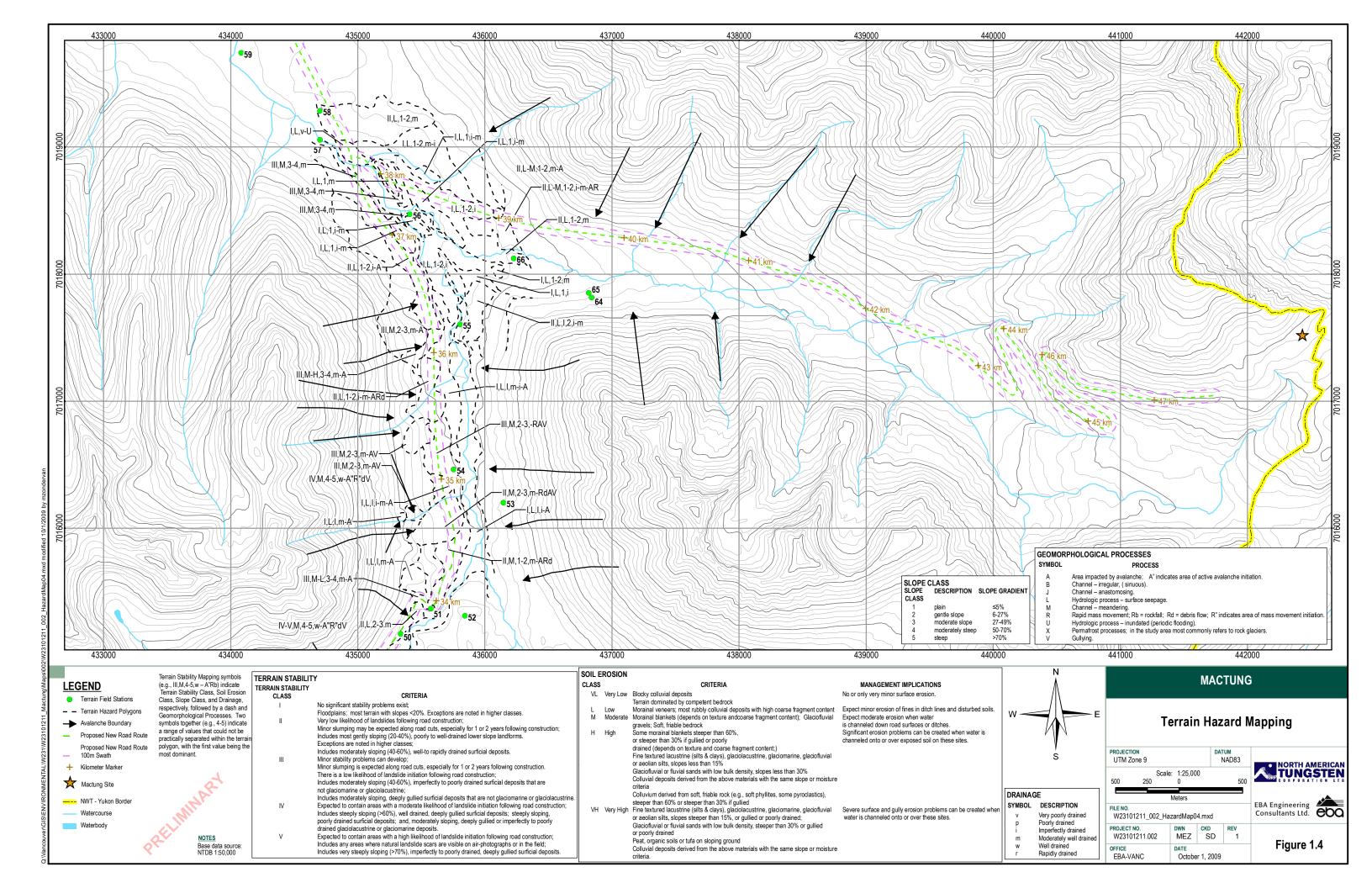
Table T2: Leachate Chemistry Results for 2005 Drill Core Composite Tailings

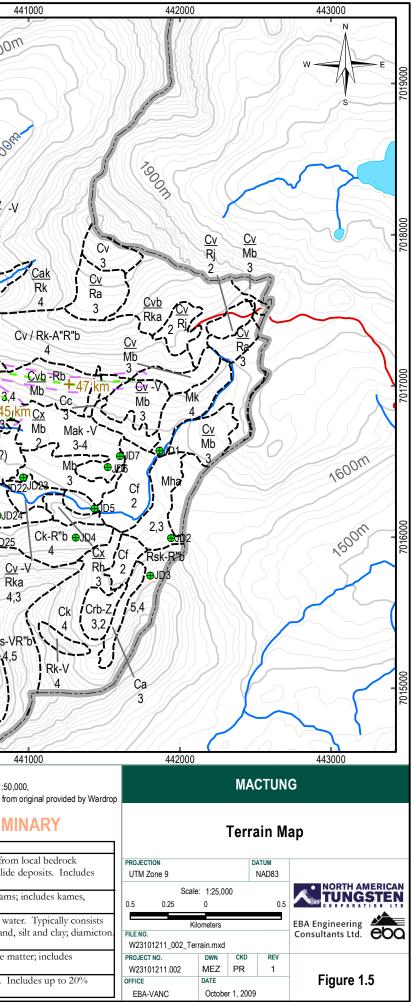
Sample = 500	51-001 Tailir	nas 2005 Dril	Core Compo	site			-																						
Date	Cycle	3	ne mL	pН	ORP	Cond.	Acidity	Acidity	Alkalinity	Sulphate	Hardness	Al	Sb	As	Ba	Be	Bi	В	Cd	Са	Cr	Co	Cu	Fe	Pb	Li	Mg	Mn	Hg
	No.	Input	Output			umhos/cm	(pH 4.5)	(pH 8.3)	-		CaCO3																_		_
					mV		mgCaCO3/L	mgCaCO3/L	mgCaCO3/L	mg/L	mg/L	mg/L	mg/L	mg/L	mg/L	mg/L	mg/L	mg/L	mg/L	mg/L	mg/L	mg/L	mg/L	mg/L	mg/L	mg/L	mg/L	mg/L	ug/L
30-Jun-09	1	750	235	8.81	295	740	#N/A	#N/A	248.0	32	27	0.28	0.0034	0.0347	0.0181	< 0.0001	0.00005	< 0.5	0.00085	7.6	< 0.001	0.00055	0.0114	0.566	0.00077	< 0.005	1.94	0.0154	< 0.5
7-Jul-09	2	500	460	9.02	292	967																							
14-Jul-09	3	500	455	8.87	267	912	#N/A	#N/A	316.8	66	5.3	0.083	0.0201	0.195	0.0007	< 0.0002	0.0002	<1	< 0.0001	2.1	< 0.002	0.0002	0.016	0.099	0.0008	< 0.01	< 0.2	0.006	< 0.2
21-Jul-09	4	500	435	8.56	287	845																							
28-Jul-09	5	500	475	8.32	316	770	#N/A	#N/A	199.4	179	14.8	0.064	0.0182	0.13	0.0014	< 0.00005	0.00028	< 0.3	0.00008	5.33	< 0.0005	0.00012	0.008	0.063	0.00071	0.009	0.37	0.0137	0.07
4-Aug-09	6	500	425	8.11	338	754																							
11-Aug-09	7	500	460	8.09	312	719	#N/A	4.0	102.9	274	98.8	0.026	0.0104	0.0898	0.0049	< 0.00005	< 0.00003	< 0.3	0.00004	35.6	< 0.0005	0.00021	0.0031	0.008	0.00029	0.018	2.39	0.0771	< 0.05
18-Aug-09	8	500	460	7.93	296	625																							
25-Aug-09	9	500	425	8.08	336	606	#N/A	3.4	74.9																				
1-Sep-09	10	500	490																										

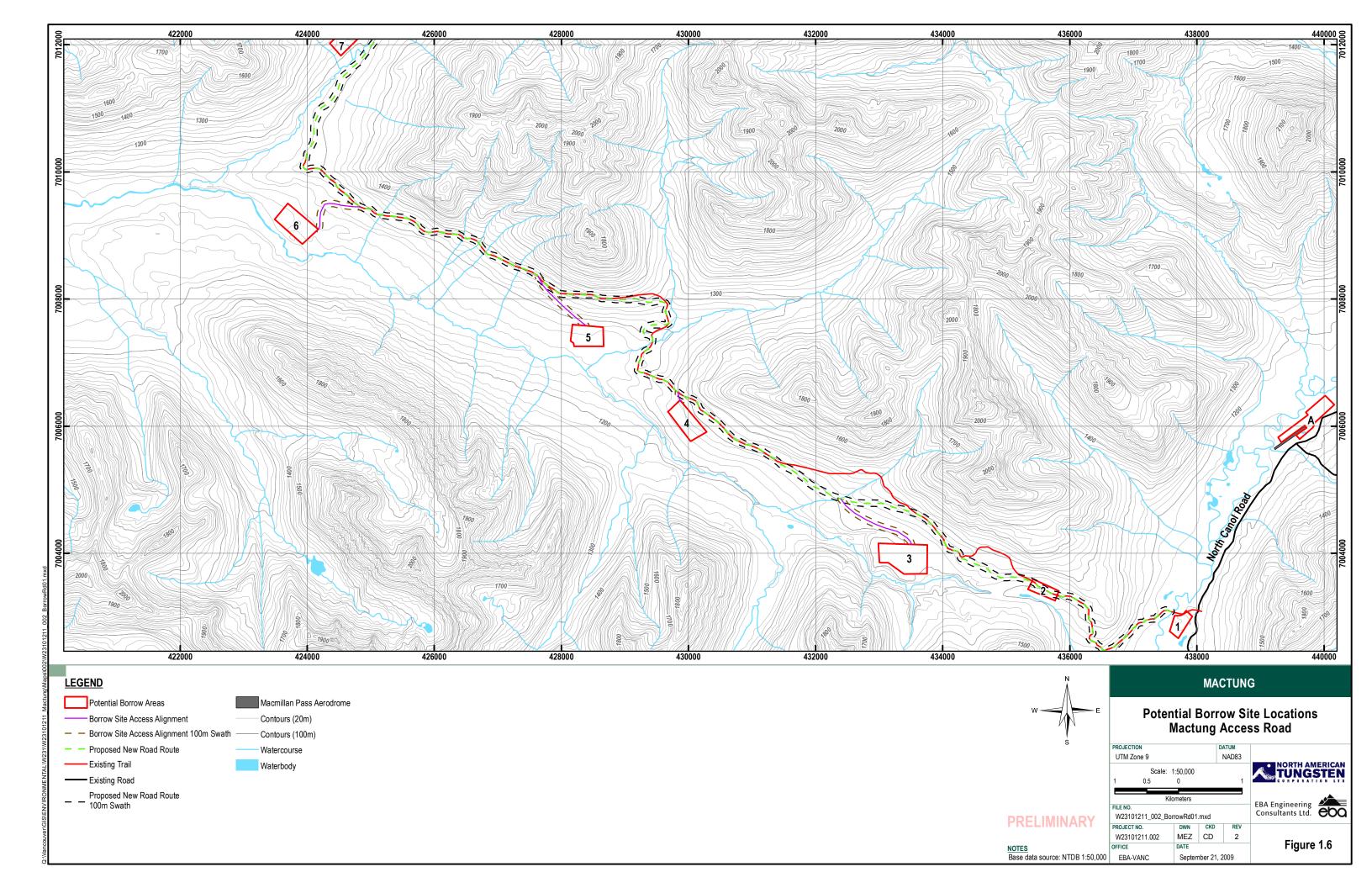

ite	Cycle	Volur	ne mL	Mo	Ni	Р	K	Se	Si	Ag	Na	Sr	S	TI	Sn	Ti	U	V	Zn	Zr	Major	Major	Diff	Diff
	No.	Input	Output	mg/L	mg/L	mg/L	mg/L	mg/L	mg/L	mg/L	mg/L	mg/L	mg/L	mg/L	mg/L	mg/L	mg/L	mg/L	mg/L	mg/L	Anions	Cations		(%)
-Jun-09	1	750	235	0.0215	0.0049	0.067	0.85	0.0025	6.5	0.00009	85.6	0.0529	49	0.00013	0.0004	0.008	0.00438	0.006	0.064	< 0.001	5.63	4.28	-1.34	-13.6%
[ul-09	2	500	460																					
-Jul-09	3	500	455	0.017	0.0036	0.085	2.7	0.0089	11.2	< 0.0001	206	0.016	157	0.00006	0.0002	< 0.01	0.00875	0.008	0.006	< 0.002	7.71	9.13	1.42	8.4%
-Jul-09	4	500	435																					
-Jul-09	5	500	475	0.0066	0.0015	0.014	3.62	0.0063	8.93	0.00004	150	0.036	111	0.00014	0.00026	< 0.003	0.00353	0.003	0.0119	< 0.0005	7.72	6.91	-0.81	-5.5%
Aug-09	6	500	425																					
-Aug-09	7	500	460	0.0044	0.0018	< 0.01	6.29	0.002	8.03	< 0.00003	111	0.154	90	0.00006	0.00009	< 0.003	0.00135	< 0.001	0.0029	< 0.0005	7.77	6.96	-0.81	-5.5%
-Aug-09	8	500	460																					
-Aug-09	9	500	425																					
Sep-09	10	500	490																					
0	10	500																						

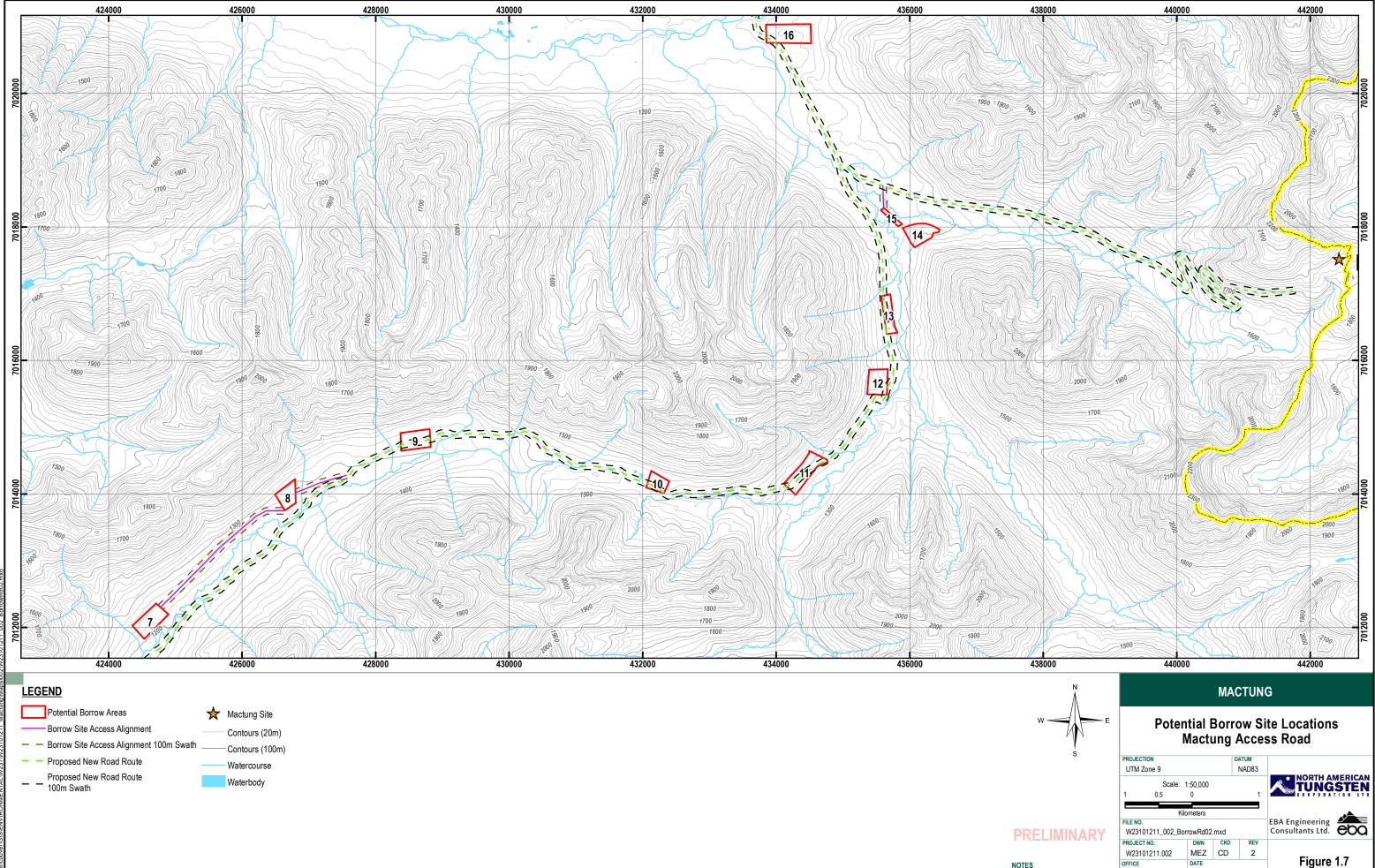


APPENDIX B


APPENDIX B ROAD AND BORROW ACCCESS MAPS







	434000	435000	436000	437000 4	38000	43900	00 440000
7018000 7019000	434000 7200m	435000 + 38 km + 37 k	39;km Cv-R -39;km Cv-R -2 Mb	$\begin{array}{c} Cx + F'b \\ F \\ F \\ Cf \\ 2,1 \\ 1 \\ 40 \\ km \\ 2,1 \\ cf \\ cf \\ 2,1 \\ cf \\ c$	38000 Mb-V 41 kr JD	Cvb 2 MbJD27 2	00 440000 180 0 2 1600m V JD30 Mk-V 4 Mb 3 JD30 Mk-V 4 JD30 Mk-V 4 Mb 3 JD30 Mk-V 4 JD30 MK-V 4
7017000	1500m	40000 1300m	Cv Mb (FGt?) 4 1+36 km 3,2 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	cka ck-Rb Cjr-Z 2,3	gzsMb ³	42 km Mb or FGt? Ck 4 Ck 4 Cka Cka Cka Cka Cka Cka Cka Cka	Cf $Cf 2$ $JD 2$ 43 km $Mb - V$ 46 km $gz Mb CV$ 2 Mb 3 Ca 4.5 Mb 4.5 Mb $3 \text{ JD} 32 \text{ Ma} - V$ 4.5 Mb $3 \text{ JD} 32 \text{ Ma} - V$ $Mh 2.3 \text{ Mb}$ $Mh 2.3 \text{ Mb}$ Rks/CV Rks
7016000	SURFACE EXPRESSION a moderate slope(s) b blanket c cone f fan	predominantly planar slopes; 15-26° (28 - 4 material >1-2 m thick with topography der (which may not be mapped) or surficial ma a fan-shaped surface that is a sector of a co a fan-shaped surface that is a sector of a co	19%) ived from underlying bedrock terial one; slopes 15° (27%) and steeper one; slopes 3-15° (5-27%)			Looon Call	Ck Ma 4 3 Cf ZgsMh 3,2 UD CbMb Cxv D26 Rh ZgsMb 2
7015000	h hummocky j gentle slope(s) k moderately steep slope m rolling topography P plain r ridges s steep slope(s) t terrace(s) v veneer x thin veneer 434000	steep-sided hillocks and hollows; many slo predominantly planar slopes; 4-15° (6 - 27' predominantly planar slopes; 26-35° (50 - linear rises and depressions; < 15° (27%) 0-3° (0-5%) linear rises and depressions with many slop slopes steeper than 35° (> 70%) steeped topography and benchlands material <1-2 m thick with topography de (may not be mapped) or surficial materials a subset of v (veneer), where there is a do 10-25 centimetres thick	70%) pes 15° and steeper rived from underlying bedrock s; may include outcrops of underly	but	1	1700m 600m 43900	3 Cka 4,3 Rks aCtZ1 Cj-Z Cka Rsk-R"b 5,4
	LEGEND	Terrain Unit Symbols	Composite Units: Up to 3 let	ters may be used to describe any characteristic. Processes fol	llow the dash '	-" symbol.	NOTES:
	- Proposed New Road Route	surficial material	<u>Cb</u> -Mb	indicates "Cb" and "Mb" are roughly equal in extent			Base Data Source: NTS 1: Site Plan Design adapted
	Proposed New Road Route — 100m Swath	texture aCk- Rb 2,3	Mv/Rk	indicates "Mv" is more extensive than "Rk" (about 2/	l or 3/2)		PRELI
	+ Kilometer Marker		0 1	one or more surficial materials overlie a different material or		ATEDIALO	T NEED
	Terrain Boundary SLOI		e.g. <u>Mw</u> Rr	indicates that "Mw" overlies "Rr"	M/	ATERIALS Colluvium	Products of gravitational slope movements; materials derived fr
	Avalanche Boundary 1 NWT - Yukon Border 2	$\begin{array}{c c} plain & \leq 5\% \\ gentle slope & 6-27\% \end{array}$	GEOMORPHOLOGICAL P V Gullying	PROCESSES Slope affected by gully erosion]		and major deposits derived from drift; includes talus and landslup to 20% bedrock.
	Existing Road 3	moderate Slope 27-49%	W Washing	Winnowing of fines by flowing water resulting in develo	pment FG	Glaciofluvial sediments	Sands and gravels transported and deposited by meltwater strea
	100m Contour 5	moderately steep 50-70% steep >70%	Xp Permafrost processes	of lag deposits. Processes related to the presence of permafrost, permaf	rost M	Till	eskers and outwash plains. Material deposited by glaciers without modification by flowing
	20m Contour Field Stations TEXTU	1		aggradation and degradation. (p= palsa) Solifluction, cryoturbation and nivation occurring withir			of a mixture of pebbles, cobbles and boulders in a matrix of same
1	Rock glacier	clay $< 2 \mu m$		same unit. Most Z processes noted in the terrain study		Organic materials	Includes up to 20% bedrock and/or colluvium. Material resulting from the accumulation of decaying vegetative
	Streams	silt 2 - 62.5 µm sand 62.5 µm - 2 mm	Rb Rapid Mass Movement	indicate rock glaciers. Slope or parts of slope affected by rockfall	R	Bedrock	peat and organic soils. Outcrops and bedrock within a few centimetres of the surface.
	Waterbody a	blocks > 256 mm; angular particles	s Rr Rapid Mass Movement	Slope or parts of slope affected by rockslide.		DUIUCK	colluvium.

NOTES Base data source: NTDB 1:50,000 EBA-VANC

Figure 1.7

September 21, 2009