www.eba.ca

North American Tungsten Corporation Ltd.

ISSUED FOR USE

GEOCHEMICAL CHARACTERIZATION OF WASTE AND MINERALIZED ROCKS, MACTUNG DEPOSIT, YUKON TERRITORY

EBA Engineering Consultants Ltd.

W23101021.021

December 2008

p. 867.668.3068 • f. 867.668.4349 Calcite Business Centre • Unit 6, 151 Industrial Road • Whitehorse, Yukon Y1A 2V3 • CANADA

PAGE

INTR		TION		4				
	1.1	Backg	round	4				
	1.2	Setting]	4				
	1.3	Climat	.e	4				
	1.4	Scope	of Study	5				
	1.5	Yukon	Regulatory Requirements	5				
2.0	ACIE) ROCK	DRAINAGE AND METAL LEACHING CLASSIFICATION METHODS	5				
	2.1	Detern	nination of ARD Potential	5				
	2.2	Metal Leaching Evaluation						
3.0	PREVIOUS WORK							
	3.1	Geology						
	3.2	Previous Geochemistry						
	3.3	Water Quality and Downstream Effects9						
4.0	DATA REVIEW RESULTS							
	4.1	Summer 2008 Field Observations and Sampling						
		4.1.1	Waste Characterization	11				
		4.1.2	Natural Sulphidic Outcropping	12				
		4.1.3	Vegetative Growth Downgradient of Former Waste Dump and Sulphidic Outc	ropping12				
		4.1.4	Flow From Existing Adit	12				
	4.2	Geoch	emical Characterization of Ore Grade and Waste Rock	13				
		4.2.1	ABA Results for Ore Grade and Low Grade Ore Units	13				
		4.2.2	ABA Results for Waste Units	15				
		4.2.3	ABA Results for Existing Waste Rock Dump and Background Sampling	18				
		4.2.4	Comparison of Sobek and Carbonate Neutralization Potential					
	4.3	Contai	ined Metals Analyses					
		4.3.1	Exploration Program Samples					
		4.3.2	Geochemical Program Samples					
	4.4	Shake Flask Testwork for Metals Leaching Potential						
	4.5	Mineralogical Studies						
	4.6	Tailings Geochemical Characterization						
5.0	DISC	CUSSIO	N AND CONCLUSIONS	29				

PAGE

31 32

6.0 CLOSURE REFERENCES

TABLES (IN REPORT)

- Table 1. Acid Rock Drainage Classification System for Materials
- Table 2. Mactung Decant Water Chemistry (from CSM, 1975)
- Table 3. Results of Acid Base Accounting Ore Grade Samples
- Table 4. Sulphur and Carbon Analyses Ore Grade Samples
- Table 5. Results of Acid Base Accounting Waste Rock
- Table 6. Results of Sulphur and Carbon Analyses Waste Rock
- Table 7. ABA Results for Waste Rock Dump and Background Samples
- Table 8. Sulphur and Carbon Analyses Waste Rock Dump and Background Samples
- Table 9. Sulphide Depletion Calculations for Mactung Waste Dump Samples
- Table 10. Comparison of Sobek-NP and Carbonate-NP
- Table 12. Shake Flask Metal Concentrations Compared to MMER Guidelines
- Table 14. Sulphide Mineralogical Estimates for Mactung Ore

TABLES (ATTACHED)

- Table 11. Summary Statistics for Mactung Rock Metal Concentrations
- Table 12. ICP Metals Determination for Geochemical Program Samples
- Table 13. Shake Flask Metal Concentrations Compared to CCME Guidelines
- Table 16. ICP Metals Determination for Tailings Samples

FIGURES

- Figure 1. Site Location
- Figure 2. Climate Information
- Figure 3. Results of ABA Characterization
- Figure 4a. Copper versus Iron for Mactung Rock Units 1, 2B, 2BL
- Figure 4b. Copper versus Iron for Mactung Rock Units 3C, 3D, 3E
- Figure 4c. Copper versus Iron for Mactung Rock Units 3F, 3G
- Figure 5a. Iron versus Sulphur for Mactung Rock Units 1, 2B, 3C
- Figure 5b. Iron versus Sulphur for Mactung Rock Units 3D, 3E, 3F
- Figure 6a. Selenium versus Sulphur for Mactung Rock Units 1, 2B, 3C
- Figure 6b. Selenium versus Sulphur for Mactung Rock Units 3D, 3E, 3F

APPENDICES

- Appendix A ALS Chemex ABA and ICP Analytical Certificates
- Appendix B ALS Environmental Shake Flask Analytical Certificate
- Appendix C Vancouver Petrographics Mineralogical Assessment Report

INTRODUCTION

1.1 BACKGROUND

The Mactung property is owned by North American Tungsten Corporation Ltd. (NATCL). The property was discovered in 1962 and significant exploration work was completed on the property between 1963 and 1967 including geological and geochemical studies, both on the surface and underground. Twenty six diamond drill holes were completed on the property between 1968 and 1972. In 1973, an adit with 726 m of lateral underground development and 27 m of raising was completed in the lower ore zone and a 295 tonne bulk sample was collected for metallurgical testing. From 1973 to 1986, further work was done on the property, including 43 underground drill holes for delineation of the lower zone. Minor work was completed throughout the 1990's. In 2005, 6639 m of diamond drilling was completed to expand and upgrade the resources for the property. The 2005 exploration program also included bulk sampling. The 2008 advanced exploration drilling for resource infill, geotechnical, and hydrogeologic assessments on the property.

1.2 SETTING

The site is located in the Selwyn Mountain Range, near MacMillan Pass, Yukon, just on the Yukon side of the Yukon/NT border (Figure 1). It is a remote site with seasonal access by gravel road, approximately 6 hours drive north east of the town of Ross River. The elevation range of the site is from 1,520 m to 1,880 m.

1.3 CLIMATE

Climate information from the Macmillan Pass area weather station for the period from August 2006 to September 2007 is shown in Figure 2. The mean temperature at this site is generally below freezing from the start of October to the start of May with potential for above freezing temperatures during October and April. The mean annual temperature of the property is -8 degrees Celsius with approximately 60 to 75 mm of precipitation per year, most of which falls as snow.

Snowpack is present at the site starting September and typically remains at the minesite until June. The presence of the snowpack helps to mitigate temperatures due to the insulating effect of the snow.

1.4 SCOPE OF STUDY

This report has been prepared to review the results of geochemical characterization testing as required under the Yukon Environment and Socio-economic Assessment Act (YESAA). Geochemical characterization information is also required for permitting of the production phase of the project. The scope of the project includes the proposed underground workings that are anticipated to have a mine life of 11 years.

The proposed underground mine will intersect Units 1, 2B and 3C. Underground development to collect a bulk sample was conducted in 1973, which produced most of the waste rock that is stored on site close to the portal. Correspondence with Mr. D. Tenney of NATCL indicated that there is an ice plug at the portal and this was confirmed during 2008.

1.5 YUKON REGULATORY REQUIREMENTS

YESAA guidelines for sampling and characterization of waste rock and mineralized rocks for mining require that a minimum of three samples be collected from each trench or excavation area for ABA analysis. Samples should be collected from freshly exposed rock and have detailed geological descriptions recorded. The YESAA guidelines also describe the geochemical tests that are suggested to satisfy the definition of adequate characterization.

It is important to note that specific requirements are project specific and the YESAA guideline suggestions may be modified to meet the site specific condicitons of the project. Regulators defer to the standards and methods for evaluation of maximum potential acidity and neutralization potential in mine rock outlined in Draft Guidelines and Recommended Methods for the Prediction of Metal Leaching and Acid Rock Drainage at Minesites in British Columbia (Price, 1998).

2.0 ACID ROCK DRAINAGE AND METAL LEACHING CLASSIFICATION METHODS

The basic method used for the evaluation of acid rock drainage (ARD) in mining are acid base accounting (ABA) tests. The samples selected for testing should be representative of the rocks that will be mined, including both ore and waste rock. A detailed description of the ABA analytical procedure is appended.

2.1 DETERMINATION OF ARD POTENTIAL

Acid-Base Accounting (ABA) is an analytical procedure that compares the acid generating and acid neutralizing constituents of a material. The resulting comparison can be represented quantitatively as either net neutralization potential (NNP) or neutralization potential ratio (NPR). The NNP value is the numerical difference

between the neutralizing potential (NP) and the acid generation potential (AP) of the rock (NNP = NP – AP). The NPR is a ratio of these same values (NPR = NP/AP).

There are a number of accepted ABA procedures, however the method used to characterize materials at the Mactung property is the Sobek NP method, which is a standard accepted method of determining NP. As with most method, the Sobek procedure uses a crushed representative rock sample, which is subjected to a known excess of hydrochloric acid. The temperature of the mixture is raised to ensure a complete reaction. NP is determined by measuring the amount of acid remaining through titration with sodium hydroxide. A stoichiometric calculation is then used to determine the degree to which the sample was able to neutralize the acid. Price (1998) also recommends a second method of calculating NP which is the calculation of the carbonate NP based on the inorganic carbon content of the rock. Comparisons between the two methods allows for consideration of the source of buffering within the rock types being tested. Where the results from using these two methods differ, it is often taken as an indication that buffering is occurring from non-carbonate mineralization.

The AP in a rock is calculated by measuring the potential of sulphide minerals (pyrite, pyrrhotite, chalcopyrite, etc.) in the material being tested to oxidize into sulphuric acid. This process becomes complicated when sulphate minerals and/or organic sulphur are present in significant quantities. Sulphate minerals will not oxidize to sulphuric acid, however, their oxidation products may dissolve to generate acidity and, consequently, affect the results of the ABA test. Elemental sulphur will not oxidize to form sulphuric acid, therefore, using the total sulphur content of a sample may result in an over-estimation of the AP value.

Table 1 shows the classification system for materials based on NPR. This table is taken from Price (1998). Material with an NPR ratio between 2 and 4 is classified as non-acid generating (NAG) unless the characteristics of the material are such that the sulphide mineralization is highly reactive and the neutralization potential is non-reactive. Materials with an NPR ratio of less than 2 are classified as being potentially acid-generating (PAG).

TABLE 1. ACID ROCK DRAINAGE CLASSIFICATION SYSTEMS FOR MATERIALS					
NPR	ARD Potential	Classification			
NPR< 1	Likely	Likely acid generating unless sulphides are non-reactive.			
1 < NPR< 2	Possibly	Possibly acid generating if NP insufficiently reactive or is depleted faster than sulphides.			
2 < NPR< 4	Low	Not PAG unless: significant preferential exposure of sulphides in fractures zones, or highly reactive sulphides with non-reactive NP.			
NPR > 4	None	No ARD concern.			

2.2 METAL LEACHING EVALUATION

The evaluation of metal leaching (ML) is a requirement under YESAA to determine potential environmental effects of the project. ML can have significant environmental impacts with or without ARD.

Shake flask testwork is one means of determining the potential for ML without the requirement of acid generation. Rock samples are mixed with de-ionized water at a 3:1 water to solids ratio and continuously agitated for 24 hours. The leachate is then filtered and analyzed for general parameters and dissolved metal concentrations. The dissolved metal concentrations are compared to the relevant water quality objectives for the site.

Should the elemental concentration of the anticipated discharge calculated based on the leachate tests exceed the relevant standard for individual elements then there is a potential for ML concerns associated with that element and mitigative measures may be required. The significance of the exceedence is dependent on the eco-toxicology of the element and also on the magnitude of the exceedence. Evaluation of the results of this form of testwork must also take in to consideration such factors as the site water balance, materials placement and water management practices.

3.0 PREVIOUS WORK

Historical papers and studies from 1975 to 1982 were reviewed by EBA with regards to site geology and geochemical studies. Following are the results of those reviews.

3.1 GEOLOGY

There has been significant geological characterization of the rock units at the Mactung site. Nine units have been mapped at the site, four or which are mineralized. There has also been significant historical surface mapping, diamond drill coring and petrographic analysis including thin section and X-ray diffraction studies of the rock types in the project area. Sample descriptions and petrographic analysis show that mineralogical content within a single lithologic unit can be highly variable. Several reports were reviewed in this study on the site geology and these are included in the reference section of this report.

Site lithologies in descending lithologic sequence consist of:

- Units 5/6 Bioclastic Grey Limestone, Shale and Chert Conglomerates
- Unit 4 Grapolitic Black Shale
- Unit 3H Hornfelsed Black Carbonaceous Pyritic Shale

- Unit 3F Partially Skarnified Interbedded Black Shale and Grey to Black Limestone
- Unit 3E Partially Skarnified Pellitic Interbedded Black Shale and Grey to Black Limestone
- Unit 3D Partially Skarnified Interbedded Shale and Limestone Slump Breccia
- Unit 3C Hornfelsed Black Shale with Interbeds of Limestone
- Unit 2B Skarnified Limestone Slump Breccias
- Unit 1 Pyllite (Mica Schist)

Mineralization is hosted within units 2B, 3D, 3E and 3F. There are sharp contacts observed between all units with the exception of gradational contact between units 3C and 3D. The primary ore mineral is scheelite and occurs in varying quantities within the mineralized units. Pyrhottite is also present and can comprise up to 60% of the rock over short intervals. Gangue minerals within the skarn include diopside, garnet, quartz, calcite, fluorite, clinozoisite, sphene, wollastonite, tremolite, plagioclase, chlorite, biotite, muscovite and andalusite. Petrographic analysis of individual rock samples are highly varied and general compositions of minerals in each rock unit is too varied for classification.

3.2 PREVIOUS GEOCHEMISTRY

Geochemical investigations were completed in 1978 and 1979 to evaluate the acid drainage potential of tailings produced from the bulk sample collected in 1973.

The following reports were reviewed:

- Colorado School of Mines (CSM) Research Institute. (1978). Acid-Forming Potential of Mactung Tailings- Laboratory Investigation, Phase 1 Report. Prepared for Amax Inc., Colorado.
- Colorado School of Mines Research Institute. (1979). *Acid-Forming Potential of Mactung Tailing- Phase 2*. Prepared for Amax Inc., Colorado.

These reports document an initial eight-week and a full 44-week testing program respectively. The testing program was designed to include several variants such as temperature, inoculation with bacteria and circulation vs. free flow.

The CSM tailings study related to the tailing produced from the pilot scheelite flotation plant of AMAX Inc. (the site owner at that time). The sample used for the test work consisted of Mactung pilot plant tailings material of known composition (8.07 %)

Calcium; 13.80 % Carbonate; 5.83 % total Sulphur; 5.81% Sulphide Sulphur; and 0.02% Sulphate Sulphur). The results of the study did not indicate that acid generation was expected to occur from the tailings.

3.3 WATER QUALITY AND DOWNSTREAM EFFECTS

Downstream water quality effects from the Mactung site are documented in the following reviewed documents.

- Colorado School of Mines Research Institute. (1975). Study on Treatment of Scheelite-Flotation Circuit Effluent Mactung Project. Prepared for Amax Exploration Inc., Colorado.
- Colorado School of Mines Research Institute. (1976). Study of Downstream Effects of Effluent From Proposed Tailings Impoundment Mactung Project. Prepared for Amax Exploration Inc., Colorado.
- Kershaw, L.J. and Kershaw, G.P. (1982). A Discussion of the Potential Environmental Effects of the Mactung Project on the Keele Peak Area. Prepared for Amax Northwest Mining Co., Ltd., Vancouver.

These studies focused on water runoff from processing and tailings facilities and did not specifically address water runoff from individual mine components such as waste piles or discharge from adits. The CSM studies estimated the water quality of the Mactung tailings pond decant water that would be released to the receiving environment and this information is contained below in Table 2. The results in Table 2 are based on a simulated tailings pond test with the predicted results being reported based on CSM experience with similar operations. The current project utilizes dry stack tailings as the disposal methodology; however the simulated tailings pond water results would be applicable to the de-watered process water that reports to the Ageing Pond.

CCME Guidelines for the Protection of Aquatic Life are also shown in Table 2. A comparison of the decant water quality to the CCME guidelines shows that there is potential for the arsenic and copper guidelines to be exceeded. The chromium concentration is close to the CCME value and it is also possible that this element would exceed CCME during production.

TABLE 2. MACTUNG DECANT WATER CHEMISTRY (FROM CSM, 1975)								
Parameter	CSM Lab	Predicted Maximum 24-hr Average	CCME					
	Testing	Composition of Tailings Decant Water	Guidelines					
	0	during Operations						
рН	8.51	8.0 to 9.0	6.0 to 9.0					
Conductivity mmhos/cm	2.6	No estimate						
Total Suspended Solids, mg/L	2	< 10						
Total Dissolved Solids, mg/L	1648	<1800						
Alkalinity, mg/L	10	No estimate						
Total Organic Carbon, mg/L	15	<20						
Arsenic, mg/L	0.015	< 0.05	0.005					
Calcium, mg/L	272	No estimate						
Cadmium, mg/L	< 0.002	<0.01	0.000024					
Chromium, mg/L	0.006	No estimate	0.0089					
Copper, mg/L	0.015	<0.05	0.002					
Cobalt, mg/L	< 0.005	No estimate						
Iron, mg/L	0.07	<0.05	0.3					
Magnesium, mg/L	2.5	No estimate						
Manganese, mg/L	< 0.02	<0.1						
Mercury, mg/L	< 0.0001	No estimate	0.000026					
Nickel, mg/L	0.03	<0.05	0.065					
Zinc, mg/L	< 0.005	<0.1	0.03					
Chloride, mg/L	796	No estimate						
Total Cyanide, mg/L	0.038	<0.05						
Sulphate, mg/L	47	No estimate						

EBA conducted a geochemical comparative study between the Cantung and Mactung deposits and determined that the deposits have similar geochemical and geological characteristics (EBA, 2008). EBA (2008) included a singular result of process water from the Cantung tailings pond #3 that were deemed to be potentially similar in nature to the anticipated Mactung process water. The copper concentration for this singular sample was above CCME guidelines; however, it is important to note that the majority of copper was in the total form and not dissolved.

The proposed Mactung mine intends to utilize dry stack tailings disposal and as a result the process water will be filtered from the tailings and diverted to a reservoir. Fresh water is required for the proposed mine and NATCL anticipates there to be a 0.22 m^3 /sec water surplus between process water requirements and process water discharges under normal operating conditions. The difference in the tailings

deposition methods between the CSM study and the current proposed mine may result in some changes to the estimated discharge water quality. The longer contact time between the tailings solids and the process water for sub-aqueous disposal as presented in the CSM study allows for greater metals leaching potential from the tailings; however most readily soluble metals will be dissolved during the processing prior to tailings discharge. Therefore, the water quality in the tailings filtrate is expected to be better in the Mactung tailings than the Cantung.

The Mactung project is located 160 km from the Cantung property which is of similar geological origin. An ongoing humidity cell conducted on a tailings composite from the Cantung mine has almost 80 weeks of available results. Results provided to EBA by NATCL show that leachate from the tailings humidity cell marginally exceeded CCME guidelines for copper (0.00278, CCME 0.002) and selenium (0.00287, CCME 0.001). It is important to note that the results of humidity cell testwork represent weakly diluted pore water whereas actual run-off from the actual tailings will be more strongly diluted by natural precipitation and run-off. The approximately 3x exceedance of the CCME guidelines shown for the Cantung tailings humidity cell requires only slight dilution to be within the guidelines.

4.0 DATA REVIEW RESULTS

4.1 SUMMER 2008 FIELD OBSERVATIONS AND SAMPLING

EBA conducted sampling during the summer of 2008 to allow for further geochemical characterization of materials present at the Mactung property. The proposed Mactung site is mostly located above treeline. Vegetation in the area of the minesite is patchy as shown by Photo 1. Field examination was conducted in the area of the existing adit and waste dump to characterize the waste, determine the presence of natural sulphidic outcrops and also to observe vegetative growth in areas where sulphidic outcropping was noted.

4.1.1 Waste Characterization

Waste from the previous exploration activities at the site is stockpiled in the area shown on Photo 2. Samples of the waste rock were collected from this area on August 7, 2008 to characterize the behaviour of this material since exposure. The exact age of the waste rock at the sampling location is not known; however, D. Tenney, NATCL (pers. comm..) reported the materials to most likely be from the bulk sample collected in 1975. The only other underground sampling work that was conducted at the site was during 1983 which means the waste materials have been exposed at surface for 25 to 33 years. Advanced weathering was observed in shallow test pits excavated around the perimeter of the dump.

Iron rich waste rock was observed to be weathering to gravel sized lodestones. Iron staining was evident at depth in test pits excavated into the crest of the waste rock dump (Photo 3). These stained layers were inclined and are taken to represent preferential flow paths along material depositional boundaries within the waste rock dump. These flow paths may represent different ages of waste rock exposure from past site activities; however this is assertion would not be possible to substantiate.

4.1.2 Natural Sulphidic Outcropping

EBA observed natural outcropping of sulphidic rock on the slopes above the existing adit (Photo 4), and also in an area approximately 150 m to the east of the adit (Photo5). No characterization samples were collected from the slope above the existing adit. The slope is composed of boulder sized angular talus, with little to no mineral soil. The slope in this area is at an average angle of 32° .

4.1.3 Vegetative Growth Downgradient of Former Waste Dump and Sulphidic Outcropping

Observations were made of the soils and vegetation downgradient of the existing waste pile at the site. The waste in this area was disposed of directly onto the natural ground surface (Photo 6). Some revegetation of the mine waste was noted however, in general the former waste dump had sparse vegetation. Soil cover in this area is thin (<0.2 m) and an iron stained layer in the upper horizons was observed immediately adjacent to the waste rock. Vegetation growth in areas with no prior ground disturbance was observed along the entire perimeter of the waste dump (Photo 7) and there were no evident changes in the vegetation further downgradient from the waste dump. Two linear areas of iron staining were observed downgradient of the existing waste rock dump; however, these areas were subject to prior ground disturbance so it is not possible to definitively state whether these areas are related to the existing waste rock dump (Photo 8).

The area approximately 150 m east of the adit is a natural outcrop with low herbaceous vegetation growth. The iron content of the background sample is over 5% indicating naturally elevated iron. The vegetation in this area was not observed to be different from other vegetation growing in the surrounding area; although no detailed vegetation work was conducted at these specific sampling sites. The talus slope upslope of the adit had little to no vegetative growth observed.

4.1.4 Flow From Existing Adit

Observations made at the portal during August indicate the presence of an ice plug. EBA deemed that water flowing from the adit during August was a result of snow melt and upslope run-off entering the adit through cracks in the roofing timbers; however detailed inspection was not possible for safety reasons. This assertion is supported by observations of water dripping from the roof in the visible portion of the adit.

4.2 GEOCHEMICAL CHARACTERIZATION OF ORE GRADE AND WASTE ROCK

This section of the report presents results of characterization testwork for the proposed underground workings. Three of the nine mapped units at the site will be intersected by the proposed underground development. These are Units 1, 2B and 3C. In the current proposed mining plan, Unit 4 and Units 5/6 will form basement rocks and will not be excavated during mining.

Samples for this study were collected from core of various ages from past drill programs. Core samples were selected for testwork by Mr. Dave Tenney, Chief Geologist for the Mactung project. Samples for ABA and metals analysis were submittd to ALS Chemex is Vanvouver BC. Mr. Tenney also completed the geological descriptions for each sample and evaluated extent of weathering that may have influenced the analytical results. Detailed petrography samples were collected and submitted to Vancouver Petrographics for analysis. Thin sections representative of each rock type were inspected to quantify sulphide and carbonate mineralization and to evaluate extent of weathering of the mineral grains in each section. Copies of the mineralogical assessment are appended to this report with a brief summary description provided in Section 4.5.

4.2.1 ABA Results for Ore Grade and Low Grade Ore Units

Unit 2B is the mineralized host rock to be mined in the proposed underground development at the Mactung Mine. A total of 15 samples of ore grade (11) and low grade ore (4) were submitted for ABA analyses. The samples varied in age from 1972 to 2005 with 10 samples from the more recent core. The analytical results are summarized in Table 3, below, with full results contained in Appendix A. Figure 3 contains a summary of the ABA results for all geochemical program samples.

The results of the ABA analysis classify all but two of the ore grade samples as potentially acid-generating (PAG) using the methods outlined in section 2.0. Sample 36011 had a paste pH value that was only slightly above a value of 5.5 which is taken as the threshold for ongoing acid generation for the purposes of this report. This sample had the lowest NNP and a sulphide concentration of greater than 15%. The low grade ore samples are classified as 50% non acid generating (NAG) and 50% PAG. The average NPR for the low grade ore samples was 4.09 which suggested that the low grade ore is overall net acid neutralizing.

Comparison of the results for the more recently drilled core samples versus older core samples showed that the older core tended to have a lower paste pH. This indicates that some weathering of sulphide mineralization has occurred and that oxidation products are present on the core surface. Drill core for the Mactung project are stored inside of a building at the site which limits the ability of moisture to interact with the core samples. The older samples have neutral pH values which indicate that the time

to acidity for the Mactung ore would be estimated at greater than 35 years. This number may not be applicable to materials that are exposed at surface to weathering processes; however, this estimate may be applied to materials that potentially would be disposed of within the underground workings.

TABLE 3. RESULTS OF ACID BASE ACCOUNTING - ORE GRADE SAMPLES								
Sample ID	Core Age	Fizz Rating	Paste pH	Max. Potential Acidity (MPA)	Net Neutralization Potential (NNP)	Neutralization Potential Ratio (NPR) = (NP:MPA)	ARD Potential	
		Unity	Unity	t CaCO3/ 1000 t	t CaCO3/ 1000 t	Unity		
36010	2005	2	7.9	209	-174	0.17	Likely	
36011	2005	1	5.8	528	-515	0.02	Likely	
36012	1972	1	7.3	494	-476	0.04	Likely	
36013	2005	2	8.9	28	0	1.00	Likely	
36014	2005	2	8.4	35	0	0.99	Likely	
36015	1972	1	7.3	317	-30	0.04	Likely	
36016	2005	2	8.2	79	-18	0.77	Likely	
36018	1972	2	7.7	83	-48	0.42	Likely	
36020	2005	2	8.6	24	14	0.42	Likely	
36023	2005	2	9.1	30	3	1.11	Possible	
36024	1979	2	8.8	34	-12	0.65	Likely	
36017	2005	1	8.8	105	-86	0.18	Likely	
36019	2005	2	8.8	14	55	4.91	No Concern	
36021	1972	2	8.1	167	-141	0.16	Likely	
36022	2005	4	9.0	48	489	11.09	No Concern	

A comparison of the sulphur and carbon analyses are presented in Table 4, below. Sulphide sulphur represents the majority of the sulphur content of the samples. This suggests minimal weathering has occurred of the sulphide mineralization within the samples. Carbon content is often taken as a surrogate measurement of the amount of neutralization potential present in the rock. The results also show minimal carbon present in the rock. The lack of carbon in the samples corresponds to a low NP in many of the samples.

TABLE 4. SULPHUR AND CARBON ANALYSES - ORE GRADE SAMPLES							
Sample ID	Total Sulphur	Sulphate Sulphur (carbonate leach)	Sulphide Sulphur	Total Carbon			
	(%)	(%)	(%)	(%)			
	Or	e Grade Samples					
36010	6.7	0.08	6.62	0.32			
36011	16.9	0.12	16.80	< 0.05			
36012	15.8	0.06	15.75	< 0.05			
36013	0.9	0.06	0.84	0.08			
36014	1.13	0.08	1.05	0.06			
36015	10.15	0.07	10.08	< 0.05			
36016	2.52	0.06	2.46	< 0.05			
36018	2.66	0.07	2.59	< 0.05			
36020	0.77	0.05	0.72	< 0.05			
36023	0.95	0.04	0.91	0.23			
36024	1.09	0.04	1.05	0.07			
	Low	Grade Ore Samples					
36017	3.37	0.06	3.31	< 0.05			
36019	0.45	0.04	0.41	< 0.05			
36021	5.34	0.04	5.3	0.12			
36022	1.55	0.04	1.51	3.17			

4.2.2 ABA Results for Waste Units

Waste rock units encountered by the proposed underground development are Unit 1 and Unit 3. The underground mining will generate waste through the development of access drifts, and open stope dilution along the ore-waste contact. There are no planned surface stockpiles for waste rock as waste materials will be utilized as backfill in the underground mining. Approximately 50% of the total tailings produced by the proposed underground workings will be disposed of underground as backfill.

Waste rock samples collected from the 2007 geotechnical drilling program were used to evaluate the ARD and ML potential of local borrows in these areas. Rock samples were collected from the mill site, ravine dam and main tailings dam areas and submitted to ALS Chemex for ABA and ML analysis. The results of the ABA testwork on the waste rock samples for the project area are shown in Table 5, below. Complete lab reports are presented in Appendix A, attached. Figure 3 contains a summary of the ABA results for all geochemical program samples.

. 1.02 1	
- 2000	
2008	
16	

TABLE 5. RESULTS OF ACID BASE ACCOUNTING - WASTE ROCK									
Sample ID	Rock Unit	Fizz Rating	рН	Max. Potential Acidity (MPA)	Net Neutralization Potential (NNP)	Ratio (NP:MPA)	ARD Potential	Rock Type	
		Unity	Unity	t CaCO3/ 1000 t	t CaCO3/ 1000 t	Unity			
36001	1	1	9.2	29	-16	0.44	Likely	Hornfels	
36002	1	1	8.8	24	-9	0.63	Likely	Hornfels	
36003	1	1	8.7	24	-11	0.55	Likely	Hornfels	
36004	1	2	8.6	13	24	2.88	Low	Phyllite	
36005	1	1	8.4	2	6	4.27	No Concern	Phyllite	
36006	1	1	9.3	21	3	1.13	Possible	Phyllite	
36007	1	2	7.7	18	40	3.26	Low	Schist	
36008	1	2	8.7	28	-6	0.77	Likely	Schist	
36009	1	1	7.0	8	-1	0.90	Likely	Schist	
36025	3C	1	8.7	44	-33	0.25	Likely	Hornfels	
36026	3C	2	8.9	24	8	1.33	Possible	Hornfels	
36027	3C	2	8.7	8	16	3.07	Low	Hornfels	
36028	3C	2	9.0	17	6	1.36	Possible	Pelite	
36029	3C	2	9.3	30	-5	0.83	Likely	Pelite	
36030	3C	1	7.6	16	12	1.76	Possible	Pelite	
36031	2B	4	9.1	28	731	27.29	No Concern	Limestone skarn	
36032	2B	3	8.4	29	307	11.56	No Concern	Limestone skarn	
36033	2B	2	8.2	114	-84	0.26	Likely	Limestone skarn	
				•	Mill Site Waste				
36034	3*	1	6.9	62	-42	0.32	Likely	Grey pelite	
36035	3*	4	9.5	1	621	995	No Concern	Calcareous tremolite garnet skarn	
					Ravine Dam Site W	aste			
36036	3*	3	8.3	30	72	3.36	Low	black shale – carbonaceous with quartz and pyrite	
36037	3*	3	8.2	53	35	1.67	Possible	black shale – carbonaceous with quartz and pyrite	
36038	3*	3	7.9	48	96	2.99	Low	Calcareous black shale – carbonaceous with pyrite	
				Ta	uilings Dam Borrow Si	te Waste	L		
36039	3*	3	8.5	37	69	2.90	Low	Grey/black pelite – carbonaceous with pyrite	
36040	3*	3	9.3	32	84	3.64	Low	Grey/black pelite – carbonaceous with pyrite	
36041	3*	2	8.9	45	-12	0.73	Likely	Grey/black pelite – carbonaceous with pyrite	

The results show that waste rock generated by the underground workings will be a mixture of PAG and NAG. The limestone unit is predominantly NAG. The hornfels, pelite, and schist rock types are dominantly PAG material. The phyllite rock type is generally NAG although some PAG exists within this unit.

The sample results from the surface borrow areas returned a mixture of NAG and PAG results. Sample 36034 is a grey pelite that is classified as PAG, however the majority of the rock in the vicinity of the Mill site is limestone which has a high neutralization potential resulting in a predicted NNP for the excavation. The Ravine Dam samples classified 2 of 3 as NAG and one sample marginally classified as PAG. The overall classification of materials at this site is net neutralizing. The main tailings dam location classified 2 out of 3 samples as NAG. The one PAG sample is from a depth of greater than 11 m so it is anticipated that any borrow material generated from this location will be net neutralizing.

Table 6, below, contains results of the sulphur and carbon analyses for waste rock samples. The results show that waste rock in the surface borrow areas tends to be higher in carbon content which corresponds to a higher NP. The underground waste samples generally contain more carbon however there is still a large number of samples that do not have detectable carbon. The carbon and NP show high variability and there is no observable relation between carbon content and ARD potential for discrete rock types.

TABLE 6. RESULTS OF SULPHUR AND CARBON ANALYSES - WASTE ROCK							
Sample ID	Total Sulphur	Sulphate Sulphur (carbonate leach)	Sulphide Sulphur	Total Carbon			
	%	%	%	t CaCO3/ 1000 t			
36001	0.94	0.04	0.90	0.05			
36002	0.76	0.04	0.72	< 0.05			
36003	0.76	0.04	0.72	< 0.05			
36004	0.40	0.03	0.37	< 0.05			
36005	0.06	0.03	0.03	< 0.05			
36006	0.68	0.04	0.64	< 0.05			
36007	0.56	0.06	0.50	0.24			
36008	0.91	0.05	0.86	0.10			
36009	0.25	0.03	0.22	< 0.05			
36025	1.42	0.02	1.40	< 0.05			
36026	0.77	0.02	0.75	< 0.05			
36027	0.24	0.02	0.22	0.05			
36028	0.54	0.02	0.52	0.05			
36029	0.96	0.01	0.95	< 0.05			
36030	0.51	0.02	0.76	< 0.05			
36031	0.89	0.02	0.87	8.32			
36032	0.93	0.03	0.90	3.87			
36033	3.66	0.07	3.59	0.24			
		Mill Site Samples					
36034	1.99	0.04	1.95	0.05			
36035	0.02	0.02	< 0.01	2.09			
		Ravine Dam Samples					
36036	0.97	0.04	0.93	1.22			
36037	1.69	0.05	1.64	1.00			
36038	1.54	0.05	1.49	1.36			
	Μ	ain Tailings Dam Sample	s				
36039	1.17	0.04	1.13	0.69			
36040	1.02	0.02	1.00	1.22			
36041	1.45	0.02	1.43	0.11			

4.2.3 ABA Results for Existing Waste Rock Dump and Background Sampling

Waste from past exploration actitivies at the site was disposed of in the area of the existing adit. The age of this waste is not less than 25 years old (D Tenney, pers. comm.). Samples of this waste rock were characterized in order to better understand the behaviour of this material over longer time frames. The analytical results are summarized in Table 7, with full results contained in Appendix A.

The paste pH values for the samples indicate that the materials in the Pad 1 and Pad 3 have little to no effective neutralization potential remaining. Samples from Pad 2 and Pad 4 were slightly acidic to neutral with there still being some residual neutralization

potential. The materials from all samples with the exception of Pad 3 were classified as having an NPR of less than 2.0, indicating that these materials are potentially acid generating. The one background sample that was collected adjacent to the site had acidic paste pH but had little to no remaining sulphur content.

TABLE 7. ABA RESULTS FOR WASTE ROCK DUMP AND BACKGROUND SAMPLES								
Sample ID	Fizz Rating	paste pH	Max. Potential Acidity (MPA)	Net Neutralization Potential (NNP)	Neutralization Potential Ratio (NPR) = (NP:MPA)			
	Unity	Unity	t CaCO3/ 1000 t	t CaCO3/ 1000 t	Unity			
Pad 1a	1	4.5	29.4	-21	0.27			
Pad 1b	2	5	359.4	-350	0.03			
Pad 2	2	6.7	174.7	-148	0.15			
Pad 3	2	5	32.2	38	2.17			
Pad 4	2	7.8	50.3	1	1.01			
BG-1	1	5.5	2.2	1	1.37			

A comparison of the sulphur and carbon analyses are presented in Table 8, below. The results show that there is a high degree of variability in the materials comprising the waste dump. Sulphide sulphur is still the dominant sulphur type indicating that there is still ARD potential for materials like those from Pad 1b and Pad 2. Sulphate sulphur within the samples in Table 8 would have been generated as a result of weathering of sulphide mineralization within the rock types. The minimum age of the Pad series of samples is 25 years which allows for some basic kinetic calculations to be performed.

TABLE 8. SULPHUR AND CARBON ANALYSES - WASTE ROCK DUMP AND						
BACKGROUN	D SAMPLES					
Sample IDTotal SulphurSulphate Sulphur (carbonate leach)Sulphide SulphurTotal Carbon						
	(%)	(%)	(%)	(%)		
		Ore Grade Samples				
Pad 1a	0.94	< 0.01	0.94	< 0.05		
Pad 1b	11.5	0.26	11.24	0.05		
Pad 2	5.59	0.42	5.17	0.18		
Pad 3	1.03	0.01	1.02	0.61		
Pad 4	1.61	< 0.01	1.61	0.54		
BG-1	0.07	< 0.01	0.07	< 0.05		

Table 9, below, shows the calculation of the potential sulphide depletion rates based on the determination of the sulphate sulphur concentrations for samples where sulphate sulphur was observed. The major assumption in this approach is that all sulphur present when the rock was first excavated was in the form of sulphide sulphur and that there was no sulphate sulphur species present. As the initial carbonate content of the samples is not known it is not possible to determine the rate of NP depletion for the materials which would allow for estimation of the anticipated time to acidity. Extension of the estimated rate of sulphide depletion to determine the length of time that would be required to fully deplete all sulphide mineralization cannot be conducted with any degree of confidence. Factors that influence the rate of sulphide depletion that are not known for the site include the availability of sulphide mineralization for weathering and increase in sulphide oxidation rates associated with acid-rock drainage. The latter factor may range from 10x to 50x the stable sulphide oxidation rates for PAG materials that still have available NP.

TABLE 9. SULPHIDE DEPLETION CALCULATIONS FOR MACTUNG WASTE DUMP SAMPLES							
Sample ID	Total Sulphur	Sulphate Sulphur (carbonate leach)	% Sulphate Sulphur of Total Sulphur	Sulphide Depletion			
	(%)	(%)	(%)	(%/yr)			
Pad 1b	11.5	0.26	2.3	0.09			
Pad 2	5.59	0.42	7.5	0.300			
Pad 3	1.03	0.01	1.0	0.04			

4.2.4 Comparison of Sobek and Carbonate Neutralization Potential

A comparison of carbonate NP (Carb-NP) and Sobek NP (Sobek–NP) was conducted for samples with detectable inorganic carbon and is presented in Table 10, below. The comparison of Carb-NP to Sobek-NP allow for identification of potential non carbonaceous sources of neutralization. The calculation of the Carb-NP is based on the reported inorganic carbon content and a detailed description of the technique is outlined in Price (1997). A ratio greater than 1 for Sobek-NP:Carb-NP indicates that non-carbonaceous sources of neutralization are present within the rock.

TABLE 10. COMPARISON OF SOBEK-NP AND CABONATE-NP							
Sample	Rock Type	Sobek-NP	Carb-NP	Ratio			
36010	Skarn (ore grade)	35	27	1.3			
36013	Skarn (ore grade)	28	7	4.0			
36014	Skarn (ore grade)	35	5	7.0			
36021	Skarn (low grade ore)	26	10	2.6			
36022	Skarn (low grade ore)	537	264	2.0			
36023	Skarn (ore grade)	33	19	1.7			
36024	Skarn (ore grade)	22	6	3.7			
	Mine W	Vaste	-	-			
36001	Hornfels (waste)	13	4	3.3			
36007	Schist (waste)	57	20	2.9			
36008	Schist (waste)	22	8	2.8			
36027	Hornfels (waste)	23	4	5.8			
36028	Peilite (waste)	23	4	5.8			
36031	Limestone skarn (waste)	759	693	1.1			
36032	Limestone skarn (waste)	336	323	1.0			
36033	Limestone skarn (waste)	30	20	1.5			
	Mill S	Site	-	-			
36034	Pelite (waste)	20	4	5.0			
36035	Skarn (waste)	622	174	3.6			
	Tailings	Area					
36036	Black shale (waste)	102	102	1.0			
36037	Black shale (waste)	88	83	1.1			
36038	Black shale (waste)	144	113	1.3			
	Ravine	Dam	ſ	ſ			
36039	Peilte (waste)	106	58	1.8			
36040	Peilte (waste)	116	102	1.1			
36041	Peilte (waste)	33	9	3.7			

The results of the comparison of Sobek-NP to Carb-NP for ore samples showed a ratio range from 1.3 to 7.0. This indicates that there is some contribution to neutralization from non-carbonate mineralization within the ore. Limestone waste samples had comparable values for both Sobek-NP and Carb-NP which is expected for this material type. The remainder of the mine waste samples analyzed had a ratio range from 2.8 to 5.8 which also indicates that non-carbonaceous mineralization is contributing to the net buffering capacity of the waste rocks.

The borrow site samples showed good agreement between Sobek-NP and Carb-NP for most sites. Evidence of non-carbonate mineralization contributions to the buffering capacity was evident for some of the other areas investigated.

4.3 CONTAINED METALS ANALYSES

This section contains the results of metals analyses conducted on samples from the Mactung deposit. The samples described in this report (Geochemical Program Samples) are compared to the results from the exploration program and in-fill drilling conducted at the site during 2005 and 2007.

4.3.1 Exploration Program Samples

Select samples of drill core from the 2005 and 2008 exploration programs were analyzed for metals concentrations as part of ongoing exploration activities at the site. The analysis was conducted at Global Discovery Labs, which is owned and operated by Teck Cominco Limited. The result of the analyses were evaluated to determine the variability of the individual units present in the deposit. Table 11, attached, contains a summary metals concentrations for each major unit present at the site. Statistics were calculated for individual rock types present in each unit provided there was sufficient number of samples to warrant the statistical analysis. Selenium and sulphur were not analyzed as part of the 2005 exploration program but were added to the 2008 program.

The values in Table 11 show that copper is above average crustal abundance for most units with the largest concentrations being hosted in Unit 2B. The calcified silicate skarn and sulphide rock types had the highest concentration of copper within this unit. Sulphur is present in all of the tested rock units. Selenium which is also of interest in the project area is above average crustal abundance in Unit 2B but the highest concentrations of this metalloid are hosted within the sedimentary rocks of Unit 3D and Unit 3E.

Plots comparing copper versus iron, iron versus sulphur, and selenium versus sulphur were prepared in order to better understand the chemistry of the units at the site. Figure 4a through Figure 4c show the relation between copper and iron for the various units. Figure 5a and Figure 5b show the relation between iron and sulphur. These figures show that there is good agreement between these elements. The agreement between iron and sulphur is not surprising given that most of the sulphide mineralization present of the site are iron bearing. Within Unit 1, iron appears to be associated with the schist rock type. Figure 6a and Figure 6b compare selenium and sulphur content for samples submitted during the 2008 exploration program. These graphs show a generally good agreement between selenium and sulphur is content for Unit 1, Unit 2B, Unit 3C and Unit 3D. The relation between selenium and sulphur shows that selenium is associated with the sulphide mineralization present in the individual mineralized units. The correlation between copper, iron, selenium and

sulphur show that much of these three elements are associated with the sulphide mineralization present in the rock types present at the site.

4.3.2 Geochemical Program Samples

The solids chemistry of the samples submitted for this program was evaluated using a 48 elemental ICP analytical package from ALS Chemex. The four-acid "near total" digestion method was used for this testwork. Price (1997) suggested that analytes at concentrations at 10 times the crustal abundance provides an initial identification of significant concentrations of minerals. Elevated concentrations of certain elements reflect the mineralized nature of the deposit and does not necessarily indicate that there will be environmental impacts from these elements. In some instances metals at normal concentrations have been found to have environmental impacts. Table 12, attached, contains a summary of the comparison of metal concentrations to the 10x crustal abundances as reported in Price (1997). The discussion below focuses only on elements with potential for environmental impacts at the Mactung site.

The results of the elemental analysis show concentrations of sulphur and selenium for all material types consistently above the 10X crustal concentration. The ore grade material types were generally also above 10X crustal concentration in tungsten and tin content. Molybdenum was noted to be higher in concentration in the waste rock and some of the ore grade material samples.

The geochemical program samples were also plotted along with the exploration samples in Figures 4 through Figures 6. The geochemical program samples show generally good agreement with the exploration program samples. The iron concentration for Unit 2B is lower than the remainder of the higher sulphide samples for this unit. This is a result of the iron method detection limit for the geochemical program samples having a maximum concentration of 10%. The samples for Unit 3C are on the lower end of the iron and sulphur content for this unit.

The samples from the existing waste dump had variable metal concentrations which is likely a reflection of the limited number of samples. Samples Pad 1b and Pad 2 have copper, sulphur and tungsten concentrations consistent with the ore grade materials at the site while the other pads are more representative of the other waste rock type present in the waste dump.

4.4 SHAKE FLASK TESTWORK FOR METALS LEACHING POTENTIAL

A total of 19 samples were submitted for shake flask analysis. The shake flask analyses were conducted by ALS Environmental of Vancouver, BC. A copy of the analytical certificate for the shake flask testwork is contained in Appendix B. Comparisons to water quality guidelines in this section include both the federal Metal Mining Effluent Regulations (MMER) and the Canadian Council of Ministers of the Environment (CCME) guidelines for the Protection of Aquatic Life. CCME is the federal/provincial/territorial body that sets water quality objectives on a nation wide level. The CCME standards are taken to be applicable to the Mactung property in the absence of Yukon specific water quality guidelines.

The Mactung property will be subject to regulation under the federal MMER once in production. Table 13, below, contains a comparison of shake flask leachate metal concentrations relative to the MMER guidelines. Table 14, attached, contains a comparison of shake flask leachate metal concentrations relative to the CCME aquatic life guidelines. As noted above, the leachate from the shake flask test would indicate the maximum concentration that might be observed in the pore water of the sample, at a dilution of 3 to 1. The leachate from the same material that would be noted in the field would be substantially lower.

TABLE 12. SHAKE FLASK METAL CONCENTRATIONS COMPARED TO MMER GUIDELINES							
Sample ID	Material Type	Arsenic [mg/L]	Copper [mg/L]	Lead [mg/L]	Nickel [mg/L]	Zinc [mg/L]	
MME	MMER – Monthly Mean		0.3	0.2	0.5	0.5	
Ν	IMER - Grab	0.75	0.45	0.3	0.75	0.75	
36010	Ore grade	< 0.0013	< 0.004	< 0.00005	0.00254	0.0013	
36011	Ore grade	< 0.0003	< 0.03	0.00015	< 0.001	0.0059	
36013	Ore grade	0.00763	< 0.0013	< 0.00005	< 0.0005	0.0024	
36014	Ore grade	< 0.0034	< 0.005	< 0.00005	< 0.0005	0.0014	
36016	Ore grade	< 0.0011	< 0.004	< 0.00005	0.00068	0.0014	
36017	Ore grade	< 0.0016	< 0.0026	< 0.00005	< 0.0005	0.001	
36019	Ore grade	0.00618	< 0.0006	< 0.00005	< 0.0005	< 0.001	
36020	Ore grade	0.00824	< 0.0015	< 0.00005	< 0.0005	0.0018	
36021	Ore grade	< 0.0005	< 0.0042	< 0.00005	0.00096	0.0014	
36022	Ore grade	< 0.0024	< 0.0009	< 0.00005	< 0.0005	0.0011	
36023	Ore grade	0.0111	< 0.0027	< 0.00005	< 0.0005	0.0011	
36034	Waste – Mill Site	< 0.0003	< 0.009	< 0.00005	0.00919	0.0029	
36035	Waste – Mill Site	< 0.0011	< 0.0011	0.000051	< 0.0005	0.0016	
36036	Waste – Ravine Dam	< 0.0014	< 0.0015	< 0.00005	0.0163	0.0033	
36037	Waste – Ravine Dam	< 0.002	< 0.0022	< 0.00005	0.015	0.0035	
36038	Waste – Ravine Dam	< 0.0011	< 0.0022	< 0.00005	0.00239	0.0013	
36039	Waste – Main Dam	< 0.0022	< 0.0016	< 0.00005	< 0.0005	0.0012	
36040	Waste – Main Dam	< 0.0022	< 0.0016	< 0.00005	< 0.0005	0.001	
36041	Waste – Main Dam	< 0.0045	< 0.0022	< 0.00005	0.00068	0.0014	

As shown in Table 13, all samples tested returned metal concentrations below the MMER monthly mean guidelines for all elements with most results being less than the method detection limit. This indicates that, compared with the MMER guidelines there should not be significant ML associated with the Mactung ore and waste rock used for site development purposes. No waste rock samples from the underground working were submitted for analysis as no fresh samples were available. Older core from the 1970's is available; however; this core may have already been subject to some ML of the outer surfaces and would not be representative of freshly disturbed waste rock.

The comparison of the metal leaching results to the CCME guidelines (Table 14) is complicated by the variable detection limits for different samples. The variability of the detection limits for the analytical testwork is a result of matrix interference with

other elements and is a function of the sample matrix and spikes in the method blanks during analysis. If a spike is detected in the method blank then a different detection limit must be used to ensure acceptable data quality. To interpret the shake flask testwork results if the concentration of the parameter was below the detection limit, the detection limit was assumed to be the upper boundary of the readily mobile metals concentrations expected to be leached from the different rock types. Where the detection limit was higher than the CCME guideline for the specific parameter and the concentration of the parameter was below that limit, that concentration was used to determine the dilution factor required to meet the CCME guideline.

Copper and selenium required the highest dilution factors to meet CCME guidelines based on the shake flask results (15 and 13 times, respectively). The dilution required for copper was based on the concentrations being less than the detection limits so the dilution factor shown in Table 14 would be substantially higher than would be required in situ. Aluminum, cadmium and silver also required a greater than 10x dilution factor to achieve CCME guidelines. The cadmium and silver dilutions that were higher than the guidelines were all in waste rock and not from the ore grade or low ore grade material types.

The iron concentration noted in sample 36011 does not match with other test results and a comparison of the dissolved iron concentration with the other metal results indicate that the dissolved iron concentration is not correct. The lab re-analysed the sample and confirmed the result for this sample therefore, it appears that the sample was contaminated during collection.

The maximum dilution factor of 15 was required for all metals to meet CCME guidelines as noted in Table 14. The footprint of the infrastructure for the site is small enough that there will be substantial dilution of runoff from the dam and mill sites. Water balance information indicates that the natural inflows to the Ravine Dam will be approximately 15 times that of inflows from the mine.

Based on the low level of ML associated with the Mactung ore it is not anticipated that the tailings produced from the ore will have significant ML concerns.

4.5 MINERALOGICAL STUDIES

A total of 15 samples were submitted to Vancouver Petrographics for analysis using thin section microscopy. A copy of the report from Vancouver Petrographics is contained in Appendix C and contains detailed estimates of primary and replacement minerals within each sample. The discussion presented below focuses on the sulphidic mineralization within ore grade samples as this is the component that will potentially weather and produce acidic runoff. No discussion is presented on the waste samples as the disposal of this material will be underground with no discharge anticipated to the surface receiving environment. A summary of the estimated sulphide mineralization

contents within the ore samples from the Mactung site are presented below in Table 15.

Sulphide mineralization was noted in low concentrations in all but one of the ore grade samples. Sulphide mineralization was predominantly fine grained pyrrhotite crystals occurring within the host rock and associated with some veins. Sample 36012 had the highest estimate sulphide mineralization within Zone B of the sample, from 20% to 25% pyrrhotite. This corresponds to sulphur content within Zone B from 8% to 9% based on sulphur constituting 40% of pyrrhotite by weight.

TABLE 15. SULPHIDE MINERALOGICAL ESTIMATES FOR MACTUNG ORE								
Sample	Primary Minerals	Estimated Percentage	Main Grain Size (mm)					
36012 – A (15 – 17% of sample)	pyrrhotite	1 - 2	0.05 - 0.2					
36012 – B (70 – 75% of sample)	pyrrhotite	20 - 25	0.05 - 0.2					
36012 – C (7 – 8% of sample)	pyrrhotite	1 - 2	0.03 - 0.07					
36015	pyrrhotite	12 - 15	0.05 - 0.2					
	chalcopyrite	0.7	0.05 - 0.2					
36018	pyrite	7 - 8	0.2 - 1.0					
	chalcopyrite	1 - 2	0.05 - 0.3					
	vein: chlorite/pyrite	2 - 3	0.05 - 0.2					
36024	pyrrhotite	3-4	0.03 - 0.05					
	vein: diopside-pyrrhotite	0.3	0.07 - 0.15					
36021	pyrrhotite	4 - 5	0.1 - 1					
Low Grade Ore	chalcopyrite	0.3	0.05 - 0.2					
	pyrite	minor	0.1					
	replacement pyrrhotite	2 - 3	0.1 - 0.2					

The grain-size information from the above samples was compared with the anticipated grain-size of the tailings that are to be produced at the site. The Mactung tailings will be a silty sand sized material with over 90% of the material having a grain-size of less than 0.2 mm. The range grain-sizes for the sulphide mineralization present in the ore body vary. Most of the sulphide mineralization present in the ore body is between 0.05 and 0.2 mm. This means that not all of the grains will potentially be impacted by the grinding and crushing of the ore. Destruction and modification of sulphide grains has the ability to influence the rate of sulphide weathering as a result of changes in the exposure of the sulphide mineralization and also through an increase in surface area.

An estimate of the mineralogical distribution for the ore zone has been reconstructed from past petrographic reports by Dave Tenney of NATCL and is contained in

Appendix C. This estimate indicates that the ore body contains approximately 5% calcite. Sulphide mineralization accounts for approximately 11% of the ore body. The distribution estimate indicates that Fe-Mn carbonates (ankerite and siderite) do not occur in significant concentrations to influence the calculation of NP.

4.6 TAILINGS GEOCHEMICAL CHARACTERIZATION

Metals analyses were conducted on samples of Mactung tailings as part of the CSM (1975) study on treatment requirements. The results of the analyses are presented in Table 16, attached. Results of metals analysis on monthly tailings composites from the nearby Cantung Mine are also presented in this table for comparative purposes. A comparative study of the Mactung and Cantung deposits has shown that they are geochemically similar in nature (EBA, 2008); however, this study was based on a limited sample size. The flowsheet of the mill at Cantung is also similar to the proposed Mactung mill flowsheet.

The results presented in Table 16 are anticipated to be comparable to the tailings solids which will be produced by the current proposed Mactung Mine as there have been little changes to the processing flowsheets since the 1975 study. Detection limits for some of the analyses from the 1975 CSM study are higher than those used for the Cantung tailings samples which limits the ability to compare the results. Differences in the tailings disposition methodology should not significantly influence the geochemistry of the tailings solids provided similar processing and recovery methods are used.

The geochemical studies completed in 1978 and 1979 were specific to the sample produced from the pilot scheelite flotation system. Since this work was completed there has been a significant increase in the projected resources for the Mactung project. The average sulphur content of ore to be milled at Mactung has been estimated at approximately 8% as compared to an average of 5.8% for ore used in the previous pilot milling program. The increase in the sulphide content of the Mactung underground deposit translates to a higher AGP for the ore and tailings. Tailings samples analyzed during the prior pilot milling program did not show evidence of acid generation and the studies did not anticipate ARD concerns at the site.

No testwork has been conducted to determine the anticipated time to acidity for PAG tailings produced at the Mactung mine, however based on site observations and analyses conducted on older core samples, and the average site temperatures, it is considered unlikely that the tailings will generate significant ARD during the life of the mine. NATCL proposes to initiate humidity cell and field-based bulk sample testwork to confirm this assumption once production has begun at the site. These further studies will focus on evaluating the time to acidity and long term affects of ARD in the

post production phase and will be used in ongoing development of the final closure plan for the site.

A discussion on discharge water quality is contained in Section 3.3 of this report. The prior evaluation of the ML potential of the Mactung tailings did not identify any metals of concern which would result in exceedance of the current MMER guidelines. It is important to note that these samples contained approximately 2% less sulphide mineralization than the current deposit and at the time of the testwork the applicable receiving environment water quality guidelines for most parameters were lower than the current standards.

The results of shake flask testwork conducted on recent ore samples indicated that no dilution was required to achieve discharge limits for the receiving environment under the MMER regulation. The grain size of the ore materials tested was substantially greater than that of the proposed tailings which will affect the leaching of metals. The ML concentrations for the ore samples should therefore be taken as representing a minimum metals concentrations to be leached from the tailings. Additional testing of the ML potential for the ore should be conducted on materials ground to a representative grain-size in order to be able to make inferences with the respect to the behaviour of the tailings.

5.0 DISCUSSION AND CONCLUSIONS

The standard for prediction of ARD and ML at mine sites is by ABA, followed by kinetic testing as required. The majority of the geochemical characterization work for the Mactung site was completed between 1973 and 1982, prior to the implementation of current environmental permitting regulations. Testwork for ARD was conducted on samples that ranged in age from 1972 to 2005 and showed that the ore and much of the waste at the deposit were classified as being PAG. Low grade ore was overall classified as net-neutralizing however some PAG component was observed in the low grade ore.

The older core used for the geochemical program had generally lower paste pH values than the newer core which corresponds to the presence of weathering products on the surface of the samples. None of the samples tested were classified as being currently acid generating indicating a long time to acidity. The ABA results show that in general samples with greater than 2% total sulphur may be classified as being PAG.

The analysis of assay results for exploration and geochemical program samples shows that there is a good correlation between copper and iron, iron and sulphur, and selenium and sulphur. This relation is not surprising considering that most of the sulphide mineralization is pyrrhotite (Fe_7S_8) and chalcopyrite ($CuFeS_2$). The relation between selenium and sulphur indicates that the selenium is associated with the

sulphide mineralization. Oxidation of sulphides at the site would be expected to result in increased loadings of copper, iron and selenium due to these associations.

Prior testwork by CSM (1975) on effluent quality from the Mactung site reported the estimated decant water quality during operations. This estimate was based on a simulated tailings pond test. The results of this estimate suggest that there may be exceedances of the CCME guidelines (aquatic life) for arsenic, copper and possibly chromium during the operations in the tailings leachate, which would be considerably less than the guidelines when the decant reports to the Ravine Dam and subsequently to the environment. EBA (2008) reported results for a process water sample from the Cantung #3 tailings pond which contained elevated copper concentrations. A review of total versus dissolved metals concentrations for this sample identified that the majority of the copper was in the total metals component and not dissolved. This information suggests that settling of suspended solids within the Ravine Dam reservoir may result in lower copper concentrations.

Shake flask testwork conducted on ore grade samples indicate that there is some potential for neutral ML to occur (primarily aluminum and selenium). There were no exceedences of the federal MMER guidelines for discharges to the receiving environment in the decant from the shake flask tests. A dilution of 15 is required for the leachate from the shake flask tests to achieve CCME water quality guidelines for aquatic life. This dilution calculation is based on the highest non-detectable concentration for the copper concentration.

Water balance information for the Ravine Dam reservoir at the site indicates that natural inflows can be up to 15 times greater than inputs from the milling operations. It is also important to note that site diversion ditching will divert approximately half of the natural drainage around the Ravine Dam which will result in a 2x dilution factor immediately downstream of this structure. Geochemical modeling of the reservoir during the production phase is not included in the scope of this report.

Geochemical characterization of the tailings was completed in the early 1970's and 1980's and is equivalent to standard kinetic testing. The prior testwork did not indicate concerns with ARD, however, the average sulphur content of the deposit has risen from 5.8% to 8% since the earlier testwork programs were conducted. The short summer season helps to limit the period of exposure and oxidation of material types at the site.

The current lack of kinetic testwork for the project limits the ability to discuss long term trends in water quality for the site. The apparent long time to acidity indicates that there should be not be significant concerns associated with acid runoff during the underground mine life.

Shake flask extraction tests indicate that the MMER water quality objectives for the materials tested would not be exceeded during the mine operations. NATCL is currently evaluating a metallurgical program that will include characterization testing of tailings and process water.

6.0 CLOSURE

We trust that this report is sufficient for your needs at this time. This report has been prepared according to current professional standards and is subject to the EBA Environmental Report General Conditions (attached) which form part of this report. Limitations associated with this report are included in the Environmental Report General Conditions. Should you require any additional information please do not hesitate to contact the undersigned at (867) 668-2071 ext 248.

Respectfully Submitted, EBA Engineering Consultants Ltd.

Scott C. Davidson, M.Sc., P.Geo. (BC) Geoscientist Whitehorse Environmental Group Direct Line: (867) 668-2071 ext 248 E-mail: sdavidson@eba.ca

+ Pt

Bengt Pettersson B.Sc. M.A. Project Director, Whitehorse Environmental Group p. 867.668.3068 • f. 867.668.4349 E-mail: <u>bpettersson@eba.ca</u>

L. Rega

Lara Reggin, P.Geo. (BC) Senior Engineering Geologist Pacific Region Direct Line: (604) 685-0275 ext 254 E-mail: lreggin@eba.ca

REFERENCES

GENERAL

- Amax Exploration, Inc. (1976). 1976 Supplement to Summary Report Mactung Project Yukon-N.W.T., Canada.
- Amax Extractive Research and Development, Inc. (1979). Preliminary Investigation of Rock Types From the Upper Ore Units (3D, 3E, 3F) at the Macmillan Pass Tungsten Deposit (1218).
- Amax Northwest Mining Company Ltd. (1980). Initial Environmental Evaluation- Mactung Project.
- Atkinson, D. (1984). Mactung 1982 and 1983 Property Report.
- Canadian Council of Ministers of the Environment. (2007). Canadian Water Quality Guidelines for the Protection of Aquatic Life. Updated September 2007. In: Canadian Environmental Quality Guidelines, 1999, Canadian Council of Ministers of the Environment, Winnipeg.
- Colorado School of Mines Research Institute. (1979). Acid-Forming Potential of Mactung Tailing-Phase 2. Prepared for Amax Inc., Colorado.
- Colorado School of Mines Research Institute. (1978). Acid-Forming Potential of Mactung Tailings-Laboratory Investigation, Phase 1 Report. Prepared for Amax Inc., Colorado.
- Colorado School of Mines Research Institute. (1976). Study of Downstream Effects of Effluent From Proposed Tailings Impoundment Mactung Project. Prepared for Amax Inc., Colorado.
- Colorado School of Mines Research Institute. (1975). Study on Treatment of Scheelite-Flotation Circuit Effluent Water Mactung Project. Prepared for Amax Inc., Colorado.
- EBA Engineering Consultants Ltd. (2008). Geochemical Comparison of the Cantung and Mactung Deposits. Prepared for North American Tungsten Corporation Ltd., Vancouver.
- Findlay, A.R. (1969). Thin Section Descriptions, Yukon and Northwest Territories. Amax Office, Vancouver.
- Harris, F.R., and Godfrey, T.J.R. (1975). *Geology and Ore Reserves- MacMillan Tungsten Property*. Amax Northwest Mining Company Ltd, Vancouver.
- Kershaw, L.J. and Kershaw, G.P. (1982). A Discussion of the Potential Environmental Effects of the Mactung Project on the Keele Peak Area. Prepared for Amax Northwest Mining Co., Ltd., Vancouver.

- North American Tungsten Corporation Ltd. (2007). Mactung Project- 2007 Environmental Baseline Studies Fisheries and Aquatic Resources.
- North American Tungsten Corporation Ltd. (2007). Mactung Project- 2006 Environmental Baseline Studies Fisheries and Aquatic Resources.
- Oderik, J.R. (1978). Minerological Analysis of Mactung Composited Ore, Lot 2. Climax Molybdenum Company, Western Operation Mine Evaluation.
- Price, W.A. (1998). Draft Guidelines and Recommended Methods for the Prediction of Metal Leaching and Acid Rock Drainage at Minesites in British Columbia, British Columbia Ministry of Energy and Mines, Victoria.

SITE GEOLOGY

- Amax Exploration, Inc. (1976). 1976 Supplement to Summary Report Mactung Project Yukon-N.W.T., Canada.
- Amax Extractive Research and Development, Inc. (1979). Preliminary Investigation of Rock Types From the Upper Ore Units (3D, 3E, 3F) at the Macmillan Pass Tungsten Deposit (1218).
- Atkinson, D. (1984). Mactung 1982 and 1983 Property Report.
- Findlay, A.R. (1969). Thin Section Descriptions, Yukon and Northwest Territories. Amax Office, Vancouver.
- Harris, F.R., and Godfrey, T.J.R. (1975). *Geology and Ore Reserves- MacMillan Tungsten Property*. Amax Northwest Mining Company Ltd, Vancouver.
- Oderik, J.R. (1978). Minerological Analysis of Mactung Composited Ore, Lot 2. Climax Molybdenum Company, Western Operation Mine Evaluation.

ENVIRONMENTAL REPORT – GENERAL CONDITIONS

This report incorporates and is subject to these "General Conditions".

1.0 USE OF REPORT AND OWNERSHIP

This report pertains to a specific site, a specific development, and a specific scope of work. It is not applicable to any other sites, nor should it be relied upon for types of development other than those to which it refers. Any variation from the site or proposed development would necessitate a supplementary investigation and assessment.

This report and the assessments and recommendations contained in it are intended for the sole use of EBA's client. EBA does not accept any responsibility for the accuracy of any of the data, the analysis or the recommendations contained or referenced in the report when the report is used or relied upon by any party other than EBA's Client unless otherwise authorized in writing by EBA. Any unauthorized use of the report is at the sole risk of the user.

This report is subject to copyright and shall not be reproduced either wholly or in part without the prior, written permission of EBA. Additional copies of the report, if required, may be obtained upon request.

2.0 ALTERNATE REPORT FORMAT

Where EBA submits both electronic file and hard copy versions of reports, drawings and other project-related documents and deliverables (collectively termed EBA's instruments of professional service), only the signed and/or sealed versions shall be considered final and legally binding. The original signed and/or sealed version archived by EBA shall be deemed to be the original for the Project.

Both electronic file and hard copy versions of EBA's instruments of professional service shall not, under any circumstances, no matter who owns or uses them, be altered by any party except EBA. The Client warrants that EBA's instruments of professional service will be used only and exactly as submitted by EBA.

Electronic files submitted by EBA have been prepared and submitted using specific software and hardware systems. EBA makes no representation about the compatibility of these files with the Client's current or future software and hardware systems.

3.0 NOTIFICATION OF AUTHORITIES

In certain instances, the discovery of hazardous substances or conditions and materials may require that regulatory agencies and other persons be informed and the client agrees that notification to such bodies or persons as required may be done by EBA in its reasonably exercised discretion.

PHOTOGRAPHS

Photo 1 August 8, 2008. Aerial View of Mactung Mine Area

Photo 2 August 8, 2008. Aerial View of Existing Waste Materials Dump at Mactung

Photo 3 August 8, 2008. Iron Staining Below Surface in Existing Mactung Waste Dump Test Pit

Photo 4 August 8, 2008. Natural Sulphidic Rock Outcropping Above Existing Adit

Photo 5 August 8, 2008. Existing Sulphidic Outcropping East of Waste Dump

Photo 6 August 8, 2008. Waste Rock on Native Ground

Photo 7 August 8, 2008. Vegetation Growing Along Base of Waste Rock Dump

Photo 8 August 8, 2008. Aerial View of Existing Waste Dump Showing Linear Areas with Iron Staining.

TABLES

TABLE 11 Unit	Lithology	Statistic	Cu Cu	DNG ROCK	Zn Zn		ATIONS	Ba	Cd	Co	Ni F	e M	lo Cr	Bi	Sb	v	Sn	w	Sr	YL	a Mn	Ma	Ti	AI	Ca	Na	к	Р	S S	e
		n	32	32	32	32	32	32	32	32 3	32 3	2 3	32 32	32	32	32	32	32	32	32 33	32	32	32	32	32	32	32	32	31 3	1
	All	Min	19.2	4	32	0.04	0.3	61	0.03	6 1	18 1.	71 0.	.54 31	0.39	0.05	25	2	3.9	28	3 1	199	0.2	0.04	1.52	1.24	0.08	0.07	292	0.07 1	2
	-	Median n	125.25	4	73 14	0.4	3	252.5	1 14	14.8 35 14 1	14 1	24 4 1	4 73.5 14 14	8	5 14	66.5 14	4.5	311.5	80.25	10 19	5 <u>425</u> 14	1.14	0.155	3.015	3.955 14	0.195	1.01	835.5 14	0.76 5	4
Unit 1	Hornfels	Max Min	834 36	42	566 57	0.6	11	1180 63	5	22 1 7 2	19 6. 3.8 1	35 44 96	6.6 114 2 60	171	5	1215 25	15.3	4195 20.4	504 28	22 39 3 1	8 1270 214	11900	4180 0.04	81200 1.52	47000	6400 0.1	20900 0.15	3692 292	3.65 3 0.22 2	5
		Median	126.5	4	78.5	0.4	2.5	238.5	1	13.6 30	6.5 2	93 4.	.39 84.5	8	5	73.5	4.5	158	87	9 2	418	1.14	0.155	2.96	3.61	0.21	1.025	671.5	0.77 5	<u></u>
	Phyllite	Max	310	15	80	0.4	12	1110	1	30 52	5 2.9 4.	85 1	35 179	23	15	92	9	1195	421	18.5 48	1 546	11100	5050	99700	32700	7300	28100	3462	1.31 5	5
	,	Min Median	19.2 93.7	4 11.8	32 65	0.04	0.3 3	239 480	0.03	11.7 1 16.5 3	18 1. 8.5 3.	71 0. 16 3.	.54 43 .33 73	0.44	0.05 0.41	42 71	5 6.3	3.9 805	51.4 71	7 18	199 199 1 1 342	1.14 3900	0.14 3330	3.62 50400	3.71 6100	0.19 2000	0.96 16100	390 622	0.07 1 0.585 1.	.5
		n Max	560 6741	560 73	560 1139	560 4.6	560 362	560 402	560 17	560 5 143 8	60 5 34 35	60 5	60 560 67 245	560 1329	560 89	560 640	560 76.7	560 13410	560 1002	560 56 103 65	0 560 5 9200	560 40000	560 3190	560 76400	560 284000	560 4500	560 16200	560 23810	233 23 18.26 9	13 5
	All	Min	9	1.8	1	0.39	0.2	5	0.22	1	1 0.	27	2 4	3.06	0.14	2	2	2	2	2 2	30	0.01	0.01	0.08	0.17	0.01	0.01	104	0.05 3	1
		n	139	139	139	139	139	139	139	139 1	39 1	39 1	39 139	139	139	139	139	139	139	139 13	9 139	139	139	139	139	139	139	139	26 2	6
	Sulphides	Max Min	5422 9	42	790 5	0.4	98 2	5	1	143 /	74 35 1 0.	.66 E	2 111 2 4	885	89 5	291	23	13410	463 9	2 2	4519	0.04	0.15	0.38	26.64	0.39	0.01	231	18.26 9	ა i
		Median n	452 283	6 283	42 283	1 283	5 283	25 283	1 283	14 1 283 2	19 83 2	5 33 2	6 32 83 283	32 283	5 283	14 283	7 283	920 283	70 283	6 16 283 28	566 3 283	283	0 283	3 283	5 283	0 283	283	1363 283	4 10	31
Unit 2B	Calc Skarn	Max	6741	46	1139	4.6	362	350	12	94 6	35 3	0 3	28 137	943	72	295	76.7	9396	916	35 56	9200	40000	3190	76400	284000	4500	16200	14350	14.57 7	2
		Median	368	5	45	1	6	25	1	12 1	19	40	2 4 6 33	3.06	5	16	8	917	68	6 18	3 719	0.01	0.01	2	5	0.01	0.01	1087	4 1	ō
	Hornfole	n Max	7 495	7 39	7 988	7	7 16	7 152	7	7 11 8	7 34 3.	7 33 4	7 7	145	7	7 640	7 32	7 2541	314	7 7	7 3 521	0.71	0.14	7 6.54	7 21.54	7 0.24	7 0.34	7 6066	2.09 1:	2
	normeis	Min Median	25 130	4 8	1 35	0.4	2	7 72	1	1 3	1 0. 35	98 2 1	2 6 18 77	5	5	2 59	2	247 440	52 116	2 2	176 263	0.05	0.01	0.36	2.42	0.04	0.01	322 748	2.09 1	2
		n May	32	32	32	32	32	32	32	32 3	32 3 26 17	2 3	32 32 56 50	32	32	32	32	32	32	32 33	2 32	32	32	32	32	32	32	32	2 2	
	Limestone	Min	10	4	1	0.4	2	5	1	1	1 0.	45	2 4	5	5	2	2	52	35	2 2	160	0.02	0.01	0.27	4.07	0.03	0.01	178	0.51 5	j -
		n	12	12	12	1	3 12	12	12	12 1	/ 12 1	2 1	4 12 12 12	12	12	3 12	12	489	12	12 12	2 12	12	12	12	14	12	12	12/9	3 3	5
	All	Max Min	1070 25.2	14 4	174 9	1.3 0.09	26	1200 13	1 0.16	43.2 3	7.8 8. 5 0.	53 55 97 1.	9.5 46 .75 9	51 2.26	23 0.77	72	35.1 6	3130 41.9	676 68	15.5 35 2 2	6 2750 412	18100	2830 0.01	73200 0.22	327000 4.45	3000 0.03	17600 0.01	2020 204	3.52 6 0.83 2	2
Unit 2BL		Median	93	6	29	1	3	104	1	5 1	8	3	5 22	5	9	4	10	1353	217	4 6	741	0	0	1	17	0	0	737	1 5	(a)
1	Sulphides	Max	757	10	58	1.3	12	115	1	21 1	17 8	19 3	32 37	51	14	8	14	1707	405	5 19	1123	0.25	0.05	2.58	22.85	0.09	0.13	1303	n/a n/	a
		Median	30 86	* 5	9 24	1	2	69	1	4	5 0. 8	3	2 9 5 20	5	3 10	4	10	1232	205	2 2 3 2	412	0.05	0.01	1	4.67 15	0.03	0.01	204 523	n/a n/	a
		n Max	120 5640	120 25	120 1431	120 4.7	120 93	120 2570	120 25	120 1 72 9	20 1 96 18	20 1 .61 2	20 120 12 225	120 1102	120 97	120 918	120 16	120 10530	120 493	120 12 37 4	0 120	120 13300	120 3680	120 53000	120 35500	120 2800	120 23900	120 67360	55 5 11.81 8	5 9
	~	Min Median	32 280	4 6.3	18 61	0.07	0.2 4	5 105	0.06	1 9 4	1 1. 14 3	05 04 15	2 9 5.85 80	0.26	0.06	2 116.5	0.9 3	4.2 919.5	17 91.5	2 2	74	0.03	0.01 0.08	0.55 2.64	1.77 3.73	0.03	0.01	250 4229.5	0.17 3	
		n	19	19	19	19	19	19	19	19 1	19 1	9 1	19 19	19	19	19	19	19	19	19 19	19	19	19	19	19	19	19	19	14 1	4
	Calc Skarn	Min	85	4	22	0.4	2	5	1	2	1 1.	52	2 20	5	5	6	2	258	17	2 4	175	0.03	0.01	1.15	2.58	0.03	0.01	541	0.72 5	;
		Median n	43	43	41 43	43	3 43	36 43	1 43	43 4	28 4. 13 4	54 1 3 4	13 42 13 43	48	5 43	43	43	43	61 43	9 15 43 43	615 8 43	43	43	1.94 43	3.7 43	0.1 43	43	43	2.47 15	.5 3
Unit 3C	Hornfels	Max Min	2865 60.5	25 4	1300 18	1.3	40	2340 27	13 0.06	72 9	96 13 22 1.	.19 2	12 225 2 39	358	47 0.06	765	11 0.9	10530 4.2	317 48	30 37 6 9	620 113	10800	3250 0.02	49900 1.87	35500 1.99	2800 0.06	23900 0.01	32130 250	9.31 8 0.25 3	3
		Median	271	4 29	67 29	0.4	4	168 29	1 29	9 5	1.2 2	64 21 9 2	2.2 111	8	5 29	185 29	2.9	776	89 29	15 17	249	0.67	0.11	3.06	3.36	0.14	0.45	5394 29	0.91 8	1
	Pelites	Max	1033	14	1431	0.9	31	2570	25	25 7	75 6.	91 E	37 163	89	62	743	14	4371	299	32 47	721	13300	3680	53000	33900	2300	19000	27140	0.98 1	э 7
		Median	347	4 9	69	0.16	2	105	1	10 5	52 3	.5 18	2 11 8.35 81	16	12	187	4	10.1	91	13 30	299	0.13	0.02	3.59	3.44	0.09	0.04	3293	0.55 7	,
	Limostono	n Max	15 1647	15 16	15	15 0.9	15 25	15 247	15 2	15 1 32 5	15 1 55 10	5 1 .21 1	15 15 11 78	15	15 97	15 104	15	15 7648	15 493	15 15 25 44	5 15 1181	0.87	15	15 3.26	15 21.71	15 0.16	15 0.24	15 67360	n/a n/ n/a n/	a a
	Linestone	Min Median	32 112	4	33 53	0.4	3	17 84	1	1 8 1	2 1. 19 2.	12 94	2 9 7 35	5 24	5 33	5 29	2	89 2067	58 153	6 2 16 16	113 667	0.17	0.02	0.55	3.5 8.9	0.09	0.03	2839 22280	n/a n/ n/a n/	a
		n May	287	287	287	287	287	287	287	287 2	87 2	37 2	87 287	287	287	287	287	287	287	287 28	7 287	287	287	287	287 28.54	287	287	287	73 73	3
	All	Min	13	4	1	0.4	2	5	1	1	1 0	17	2 4	5	5	2	2	75	6	2 2	28	0.01	0.01	0.07	0.48	0.01	0.01	97	-0.05 5	i i
		n	49	49	49	49	49	49	49	49 4	19 4	41 9 4	6 48 19 49	49	49	40	49	49	49	49 49	593 49	49	49	49	49	49	49	49	1.56 2. n/a n/	2 a
	Sulphides	Max Min	1520 18	31 4	290 3	1.5 0.4	33 2	634 5	7	39 8 1	38 10 1 0.	0.4 4 43	10 75 2 4	364	110 5	86 3	18	18500 184	287	39 36 2 2	5 1993 34	1.13	0.06	3.51 0.51	18.8 0.8	0.21 0.01	0.51	84830 97	n/a n/ n/a n/	a a
		Median	347	17	53 156	0.7	7	58 156	1	8 4	10 3. 56 1	84 56 1	5 44 56 156	5	33 156	33 156	7	4153 156	100	16 9 156 15	677 6 156	0.34	0.02	1.95	8.18 156	0.1	0.07	30420 156	n/a n/ 48 4	a 8
Unit 3D	Calc Skarn	Max	1639	20	330	2	252	7847	10	48 9	38 20	.42 7	73 127	1031	360	216	16	25240	374	31 48	3505	1.3	0.1	3.64	19.85	0.21	0.67	74370	12.89 12	18
		Median	342	6	49	0.4	8	83	1	10 3	3.5 3.	55	7 50	13	15.5	41	6	3851	118.5	14 19	618	0.34	0.03	1.715	8.68	0.02	0.08	26115	1.75 2:	2
	Hornfels	n Max	32 2502	32	32 243	32	32 23	32 949	32	32 3 88 7	32 3 78 22	2 3	32 32 24 194	32	32 79	32 225	32 13	32 11830	32 573	32 33 38 48	32 32 32	32	32	32 3.79	32 28.54	32 0.22	32 0.63	32 97710	4.64 6	9
		Min Median	60 460.5	4	9 41	0.4	2 7.5	13 98	1	3 1 9 3	10 1. 36 3.	08 55	2 15 6 65.5	5 29.5	5 5	16 49.5	2 4	175 2485	60 105	10 4 13.5 19	91 284.5	0.07	0.01	0.99 2.005	2.78 4.38	0.02	0.01	3826 12120	0.22 5	.5
		n Max	11 167	11 19	11 77	2.4	11 35	11 2880	11 5	11 1	11 1 35 5	1 1 .9 3	11 11 31 47	11 1300	11 196	11 108	21	11 15320	11 571	11 1 ⁻ 36 24	11	0.62	11 0.04	11 2.04	11 27.45	11 0.14	0.2	11 83100	n/a n/ n/a n/	a a
	Limestone	Min Median	24	4	26	0.4	2	10	1	1 1	10 1.	48	3 15 8 20	5	5	7	2	847	62	8 2	209	0.13	0.01	0.84	5.23	0.02	0.01	9708 34610	n/a n/	a
		n	242	242	242	242	242	242	242	242 2	42 2	42 2	42 242	242	242	242	242	242	242	242 24	2 242	242	242	242	242	242	242	242	6 6	;
	All	Max Min	1962	40	1	0.4	2	303 5	12	82 1 1	18 11 1 0.	39	2 9	5	5	220	20	29	27	4 2	56	0.01	0.18	0.71	14.1	0.32	0.62	174	0.24 5	5
		Median n	106	9	34.5 16	0.4	5 16	37.5	1	7 1	19 1. 16 1	92 6 1	7 44 16 16	7.5	10	21 16	3	974 16	130.5	10 25	5 197 5 16	0.16	0.07	2.815	4.06	0.15	0.05	1632	0.895 10 n/a n/	.5 a
	Sulphides	Max Min	1962 89	21 5	134	1.3	16 2	198 6	4	82 8	32 11 3 0.	.68 1 92	19 56 2 10	21	115 5	38	14	8730 266	337 54	25 29 6 2	84	0.53	0.06	3.57	14.1 2.74	0.15	0.16	58880 252	n/a n/ n/a n/	a
		Median	453.5 53	9.5 53	36 53	0.55	6 53	67 53	1	12.5 2	27 3.	79 5	i.5 31	5	26.5 53	18 53	9.5 53	2179 53	155.5 53	16 10	402	0.265	0.025	1.8	8.225 53	0.13	0.06	27600	n/a n/	a
1	Calc Skarn	Max	935	19	738	1.9	93	192	12	37 4	10 8	.6 2	28 104	551	39	94	11	4190	237	14 38	1009	0.72	0.12	4.26	7.78	0.23	0.13	3011	n/a n/	a
		Median	65	8	22	0.4	6	26	1	5 1	1 0. 11 1.	82	2 12 9 41	33	3 7	2	2	648	136	-+ 9 9 25	87	0.01	0.01	2.8	2.43 4.36	0.05	0.01	842	n/a n/	a
Unit 3E	Hornfele	n Max	65 334	65 40	65 316	65 0.8	65 18	65 167	65 5	ຮຽ 6 22 1	xo 6 18 4	59 4	50 65 13 145	65 138	65 30	65 150	65 10	65 2986	65 253	20 65 20 38	65 3 377	65 0.86	65 0.16	65 4.41	6.03	65 0.3	65 0.62	65 12770	3 3 1.35 2	4
5 50		Min Median	10 121	4	1 31	0.4	2	11 42	1	1 7 1	1 0. 16 1.	47 89	2 9 7 52	5 5	5 10	2 27	2 3	32 1005	64 125	4 10 9 26	60 6 180	0.02	0.01 0.07	1.43 2.82	2.27 3.86	0.08	0.01	362 1612	0.78 6	5
		n Max	73 854	73 25	73 421	73	73 59	73 303	73	73 7	73 T	3 7 76 1	73 73 08 102	73	73 60	73	73 20	73 5075	73 370	73 73	3 73 971	73	73	73 5,41	73 13.14	73	73 0.38	73 8223	n/a n/	a
	Pelites	Min	23	4	12	0.4	2	8	1	1	5 0	52	2 16	5	5	2	2	29	61	5 8	94	0.03	0.02	1.61	1.66	0.04	0.01	588	n/a n/	a
		n	99 6	6	40 6	6	4 6	6	6	6	6	5 5	6 6	9	6	6	4 6	6	6	a 22 6 6	209	6	6	2.80	4.UD 6	6	6	6	n/a n/	a
	Limestone	Max Min	112 32	18 11	35 10	0.4	11 2	51 21	1	3 2 1 1	28 1. 10 0.	91 1 75	100 100 5 24	40	33 6	19 6	6 2	3258 489	2/1 115	13 35 6 12	250	0.05	0.13	3.93 2.18	7.51 2.8	0.2	0.02	1150 674	n/a n/ n/a n/	a
		Median n	83 9	16 9	19 9	0.4 9	6.5 9	37.5 9	9	2 1	15 1.0 9	655 9 9	9 9	10	21 9	15 9	3.5 9	1290.5 9	154 9	6.5 17 9 9	189.5	0.04	0.05 9	3.645 9	4.065 9	0.135 9	0.01	896.5 9	n/a n/ n/a n/	a
	Black Shale	Max Min	465	21	180 29	0.7	27	81 9	2	28 E	51 7. 23 1	44 E	35 112 3 36	85	44	164 29	11	3882	169 71	17 43	1053 85	0.78	0.17	3.7	5.76 2.35	0.25	0.53	5596 1504	n/a n/ n/a n/	a
		Median	123	15	50	0.4	2	33	1	13 3	35 2	.2	5 73	5	14	60	2	1524	102	10 29	173	0.19	0.09	3.12	4.22	0.21	0.11	2431	n/a n/	a
	AII	Max	∠44 1580	244	244 172	244 1.9	244 282	244 329	244	244 2 83 5	-+++ 2 57 12	.18 7		244 747	244 96	244 99	244 16	∠44 7919	244 401	244 24 18 53	- 244 3 3225	244	244	4.27	244 23.47	244 0.23	244 0.42	244 10280	0.6 2	1
		Min Median	1 67	6	1 29.5	0.4	2	5 29	1	4.5	1 0. 7 1.	22 91 1	2 4 12 29	5 72	5	2	2	20 778.5	21 124.5	2 2 5 23	60 366.5	0.02	0.01	0.29 2.145	1.76 4.2	0.01	0.01	119 921.5	0.25 5	7
		n Max	140 1580	140 21	140	140 1.9	140 282	140 329	140 2	140 1 83 F	40 1	10 1 .18 7	40 140 75 100	140 747	140 96	140 80	140 16	140 7919	140 351	140 14 17 39	0 140	140	140 0.15	140 3.84	140 18.69	140 0.18	140 0.33	140 10280	n/a n/ n/a n/	a a
	Calc Skarn	Min Median	1	4	2	0.4	2	5	1	1 4	1 0.	33	2 4	5	5	2	2	84 723.5	21	2 2	85	0.03	0.01	0.46	2.11	0.02	0.01	119	n/a n/	a
Unit 3F		n	48	48	48	48	48	48	48	48 4	18 4	8 4	18 48	48	48	48	48	48	48	48 48	48	48	48	48	48	48	48	48	n/a n/	a
	Hornfels	Min	10	4	1	0.4	2.0	5	1	1	,, 5. 1 0	.6	2 4	5	5	2	2	20	68	2 2	60	0.02	0.18	0.29	2.09	0.23	0.01	181	n/a n/	a
		Median	83.5 35	6.5 35	23.5 35	0.4 35	4 35	28.5 35	1 35	5 1 ⁻ 35 3	1.5 1.1 35 3	5 3	9 33 35 35	33.5	8.5 35	6.5 35	5 35	1013 35	135 35	6 23 35 35	5 326.5 35	U.195 35	0.04 35	2.28	3.98 35	0.11 35	0.035	1299 35	n/a n/ n/a n/	a
	Limestone	Max Min	203 18	12 4	93 11	0.5	42	95 5	2	19 3 1	37 3. 1 0	42 3	33 115 2 5	371 5	29 5	82 2	14 2	3180 34	401 56	17 53 3 12	624 70	0.62	0.14 0.02	3.92 1.09	19.5 2.22	0.23	0.42	5747 347	n/a n/ n/a n/	a
	ļ	Median	68	6	26	0.4	2	35	1	5 1	18 1.	71	8 34	22	7	5	4	869	151	9 21	228	0.13	0.09	2.7	4.64	0.16	0.06	1295	n/a n/	a
Unit 3G	All	Max	1268	9	56	1.6	11	266	1	15 2	23 8	96 1	63 145	718	15	66	7	1693	402	5 21	386	2.65	0.08	4.34	3.92	0.16	0.74	1824	n/a n/	a
		Min Median	6 28	4	4	0.4	2	6 33	1	1 2.5 6	з 0. i. <u>5 </u> 1.3	อซ่ 815 1	∠ 30 18 44.5	5 46	5 5	2	2	126 432	31 191	2 12	: 39 130	0.07	0.01	0.45	1.18 2.575	0.04	0.01	50 565	n/a n/ n/a n/	a
Ukran -	Col - C'	n Max	5 1268	5 8	5 25	5 1.6	5 11	5 97	5	5	5 8 8	5 96 1	5 5 63 79	5	5	5	5 2	5 375	5 247	5 5	5 312	5 0.63	5 0.04	5 2.31	5 3.33	5 0.12	5 0.05	5 683	n/a n/ n/a n/	a
Unit 3G	Caic Skarn	Min Median	22 86	4	4	0.4	2	6	1	1	3 C	.9 1	14 30	5	5	2	2	225	112	2 13	73	0.07	0.01	1.42	1.83	0.07	0.01	119	n/a n/	a
H	+			~		w*		~			4			0.4	5	-	-	201			1/*	0.10	0.01	1.01	L.UU	0.00	0.01	002	1954	

1 A value equal to the detection limit was used for samples with concentrations lises than the method detection limit for the above statistical analyse 2 No exploration samples from Unit 3G and Unit 2BL were submitted for anlytical analysis during 200

W23101110.001 December 2008

TABLE 12: ICP META	ALS DETERMINATION FOR G	EOCH	emicai	L PRO	GRAM	SAMPLE	ES																																								
	Crustal Abundance (ppm):	0.075	8230	0 1.8	8 42	2.8	0.0	085	41500	0.15	5 66.5	25	102	3	60	56300	19	1.5	3 (0.25 20	0900	39	20 2	23300	950	1.2 236	00 20) 84	4 105	0 14	90	0.0007	350	0.2	22 0	.05 2.3	3 37	70 2	0.001	9.6	5650	0.85	2.7 12	0 1.2	25 33	70	165
	10 x Crustal Abundance (ppm):	0.75	82300	00 18	3 42	50 28	0.0	085 4	415000	1.5	665	250	1020	30	600	563000	190	15	30	2.5 2E	+05	390	200 2	2E+05 9	9500	12 2360	000 20	0 840	0 1050	00 140	0 900	0.007	3500	2	220 0	0.5 23	3 37	00 20	0.01	96	56500	8.5	27 12	00 12.	.5 330	700	1650
MATERIAL	SAMPLE	Ag	AI	As	s Ba	a Be	E	3i 🛛	Ca	Cd	Ce	Co	Cr	Cs	Cu	Fe	Ga	Ge	Hf	In	K	La	Li	Mg	Mn	Mo Na	a Nt	b Ni	i P	Pb	Rb	Re	S	Sb	Sc	Se Si	n S	Sr Ta	Te	Th	Ti	TI	U \	/ W	/ Y	Zn	Zr
TYPE	DESCRIPTION	ppm	ppm	ppr	n pp	m ppm	і рр	m	ppm	ppm	n ppm	ppm	ppm	ppm	ppm	ppm	ppm	ppm p	pm	ppm p	pm	ppm	ppm	ppm	ppm	ppm ppi	m ppi	m ppn	n ppn	n ppm	n ppm	ppm	ppm	ppm	ppm p	pm ppi	m pp	om ppm	ppm	ppm	ppm	ppm	ppm pp	m ppr	m ppm	ppm	ppm
Mine Waste	36001	0.15	7580	0 0.7	7 118	80 3.13	1.9	97	30900	0.06	5 78	14.7	65	24.4	185	37700	20.8	0.16	1.9 0	0.046 18	3400	39.8 ·	104.5 1	11900	465	19.2 640	00 12.	.8 25.	.1 460) 9.9	9 188.	5 <0.002	9100	0.07	12.8	3 8.	6 13	6.5 0.88	0.06	15	4030	1.36	1.7 7	6 66.	.9 16.4	57	64.2
Mine Waste	36002	0.21	5530	0 1.8	3 73	0 4.97	33	3.3	47000	2.37	49	9.8	84	11.55	214	34100	21.5	0.17	2.7 0	0.461 9	400	28.2	78 1	10300 1	1270	46.6 280	00 16.	.2 84.	.3 710) 4.3	3 98.7	0.079	8000	0.13	10.8	7 14	.6 10	06 1	0.34	9.2	4180	0.95	16.8 12	15 35 [.]	1 22	279	92.1
Mine Waste	36003	0.12	8120	0 1.1	1 86	0 5.55	i 2.	77	35000	1.07	7 71.9	13.2	67	20.9	81.6	26100	23.6	0.12	2.4 0	0.095 20	0000	32	96 1	10400	391	4.78 420	00 11.	.9 23.	.8 360) 10.8	5 90.4	< 0.002	7600	0.06	15.6	2 15	.3 20	0.9	0.06	13.1	4130	1.2	2.2 9	1 20.	.4 17.1	106	76.1
Mine Waste	36004	0.11	9970	0 5	89	0 15.8	5 0.	87	32700	0.05	5 85	14.9	66	25.9	56.8	17100	27.6	0.15	2.6 0	0.058 28	3100	39.8	201	3900	199	3.33 730	00 11	1 52.	.9 530) 14.8	8 164	0.006	4800	0.41	13.2	1 8	42	21 0.76	0.05	15.9	3330	1.47	3.9 7	1 88	0 14	32	88.2
Mine Waste	36005	0.04	8780	0 1.9	9 11 [.]	10 3.54	0.4	44	6100	0.03	3 99.4	16.5	73	32.3	19.2	48500	24.8	0.15	2.4 0	0.087 26	5400	48.1	141 1	11100	342	0.54 200	00 18	3 38.	.5 390) 11.8	8 166	<0.002	700	0.05	17.4	2 6.	2 51	1.4 1.35	0.07	18.1	5050	1.59	2.6 9	2 3.9	9 18.5	73	78.8
Mine Waste	36006	0.07	50400	0 0.3	3 48	0 1.73	1.0	67	13700	0.07	7 79.6	11.7	43	23.2	93.7	31600	15.55	0.12	3.2 0	0.052 16	5100	39.1 ·	107.5	8600	432	1.1 400	00 11.	.8 18	3 930) 6	173	<0.002	6900	0.06	9.3	1 6.	3 51	1.8 1	<0.05	15.3	3390	1.27	3.5 4	2 80 .	.1 18.1	48	96.5
Mine Waste	36007	0.12	7590	0 3.9	9 11	50 4.71	19	9.6	35100	0.04	1 79.2	18.4	60	23.1	64.8	26100	24.6	0.14	2.5	0.08 24	1400	39.9	111 1	11800	476	2.08 270	00 14.	.6 28.	.7 490) 18	3 155.	5 0.005	6300	0.29	16.3	1 15	.2 16	65 1.09	0.36	15.6	3400	1.51	2 8	1 78	0 19.1	64	80.6
Mine Waste	36008	0.13	9380	0 1.3	3 14	50 3.94	2.	18	20600	0.04	4 98.6	16.5	73	28.1	106.5	40600	31.2	0.16	2.7	0.09 28	3000 :	50.6	157 1	12300	418	1.93 760	00 14.	.2 35.	.1 570) 11.8	8 234	0.002	8500	0.15	19.2	1 16	.7 79	9.5 1.15	0.06	19.5	4660	1.93	2.3 9	2 21 4	4 20.4	68	86.4
Mine Waste	36009	0.1	9460	0 39.	9 91	0 3.31	0.	39	3000	0.21	1 96.4	26.8	74	20.5	26.2	51000	26.5	0.15	2.2 0	0.066 26	5800	51.5	114	4800	548 1	16.75 180	00 13.	.2 47.	.9 510) 16	6 187.	5 <0.002	3300	12.65	15.1	1 3.	7 50	0.5 1	<0.05	18.6	3500	2.03	2.7 6	5 19 .	.1 13.2	448	72
Ore Grade	36010	1.41	5160	0 11	10	0 6.3	49	92	104500	0.38	3 47.3	50.3	33	1.7	1100	148500	21.3	0.59	1.3 0	0.949 1	500 :	25.3	18.1 1	15100 3	3220	3.9 160	00 9.	7 37.	.3 490) 7	11.4	0.058	53800	1.44	6.4	9 67	. <mark>6</mark> 13	34 0.56	8.5	8.8	2420	0.47	2.3 3	7 629	0 13.9	218	35.7
Ore Grade	36011	2.41	3860	0 1	10	0 15	3.	26	59100	0.55	5 9.15	81.3	5	1.38	4410	300000	35.3	0.69	0.2 0	0.281 1	000	4.3	14.3	8100 1	1330 1	13.05 200	00 15.	.2 15.	.1 353	0 5.6	5 14.8	0.054	100000	0.16	2.4	18 3.4	4 35	5.4 0.3	0.6	1.2	390	0.43	2.1 2	5 935	50 4.6	48	7.4
Ore Grade	36012	3.56	4670	0 0.2	2 60	0 6.69	79	96	32400	0.58	3 30.3	52.9	13	17.25	5210	273000	43.8	0.64	0.6 0).231 1 [.]	1100	14.5	92.3 1	10900	905	6.1 360	00 11.	.9 21.	5 407	0 8.4	4 199.	5 0.033	95200	0.41	5.9	32 4.9	9 74	1.4 0.06	11.1	3.6	910	1.46	2.9 3	D 618	30 10.6	77	22.8
Ore Grade	36013	0.39	7640	0 17	7 35	0 9.99	26	5.8	107500	0.5	71.3	15.1	49	4.16	290	75300	40.9	1	2 0	0.796 8	000 :	38.4	31.5 1	11500 4	4230	9.28 450	00 16.	.2 30.	1 173	0 8.9	9 48	0.055	9700	0.17	14.5	4 26	. <mark>6</mark> 12	22 0.82	0.84	11.8	2980	0.73	5.8 16	i4 452	20 17.8	206	69.5
Ore Grade	36014	1.25	5880	0 20	10	0 29.7	' 91	1.1	141000	0.25	5 43.2	22.7	27	4.29	129.5	105500	35.8	0.7	1.2 1	.205 1	100 :	22.5	27.8 1	11000 6	6080 1	15.85 150	00 24.	.3 16.	.7 980) 8.8	3 10.6	0.08	12500	2.61	11.2	4 51	.1 13	4.5 0.67	2.45	10.7	2760	0.79	3.3 4	4 892	20 12.4	327	35.7
Ore Grade	36015	1.53	6720	0 0.4	4 33	0 11.6	5 34	43	54400	0.5	58.5	35.6	41	16.2	2450	185500	44.8	0.86	1.4 C	0.459 16	5200	31.2	91.7 1	15900 2	2100	3.99 370	00 13.	.5 22	2 144	0 8.4	4 176	0.107	78700	0.26	10.1	17 11	.1 10	0.5 0.61	4.9	10.3	2540	1.99	3.1 3	5 923	30 12.6	110	49.2
Ore Grade	36016	0.61	2410	0 16	5 10	0 14.4	5 <u>6</u> .	.3	160500	0.47	8.59	43.5	5	0.09	691	139500	25.2	0.54	0.3 0	0.839	100	3.6	10.6 1	11600 9	9200	328 20	0 0.0	6 28.	.5 560) 1.8	3 0.5	0.041	24000	0.48	4	3 76	.7 32	2.1 0.05	0.13	0.6	390	0.26	0.7 3	3 244	10 10.1	395	10.2
Low Grade Ore	36017	0.76	6060	0 5	26	60 8.74	23	3.2	104000	0.26	62.2	30.3	36	5.3	907	93100	29.8	0.73	1.5 C	0.566 5	700	30.8	32.2 3	35300 3	3850	4.85 250	00 11.	.2 27.	5 199	0 5	57.1	0.041	29700	0.14	11.5	8 39	7 12	4.5 0.62	0.61	8.9	2270	0.66	3.2 6	4 399	0 21	153	53
Ore Grade	36018	0.85	40500	0 4.1	1 17	0 25.1	25	5.6	83300	0.3	28.2	15.5	26	6.2	828	98100	43.7	0.65	0.6 1	.035 1	000	14.5	36.1	7100 6	6340	9.41 160	00 4.3	3 12.	5 152	0 3.6	5 8.9	0.032	27600	0.6	8.2	6 30) 45	5.1 0.05	0.65	4.5	1170	0.36	2.8 3	2 771	10 12.9	188	18.9
Low Grade Ore	36019	0.45	7310	0 20	34	0 21.9) 31	1.1	167500	0.28	3 56.7	13.2	36	1.2	49.4	91200	34.1	0.56	1.4 1	.195 3	200	31.1	26.2	9100 5	5530	8.96 250	00 16.	.5 18.	2 530) 6.7	7 15.8	0.027	5000	1.61	12.5	3 51	.7 18	9.5 0.75	0.88	10.6	3190	0.3	3.1 7	0 250	0 13.3	278	41.9
Ore Grade	36020	0.46	54700	0 10) 50	0 13.5	15.	.85	128000	0.22	2 53	9.5	37	3.04	159	93300	37.3	0.58	1.8 0	0.831 8	300 :	29.8	18 1	14900 5	5290	69 170	00 19.	.9 31.	.9 398	0 3.1	1 4.6	0.069	8100	0.35	12.6	4 24	.3 16	59 0.79	0.55	8.5	3120	0.54	7 29	5 646	50 24.5	252	71.1
Low Grade Ore	36021	1.73	54300	0 1.5	5 30	0 16.9	5 42	20	82300	0.45	5 42.9	38.1	39	1.82	2540	121000	56.3	0.73	1.1 0	0.538 1	000	21.9	21.4 1	14400 4	4500	4.47 150	0 11.	.1 35.	9 167	0 4	14.1	0.05	47000	0.3	12.4	10 17	.9 80	0.9 0.45	4.29	6.7	1930	0.51	3.6 11	0 475	50 16.9	126	35.7
Low Grade Ore	36022	0.54	2510	0 10) 27	0 13.6	5 6.	74	284000	0.47	25.6	11.6	21	1.34	170.5	61100	16.6	0.52	0.6 0	0.529 1	500	12.9	17.1 1	11800 3	3980	6.26 20	0 6.2	2 7.9	9 640	3.9	8.7	0.019	14300	1.93	7.1	4 52	8 34	45 0.24	0.14	3.5	1060	0.23	2.1 2	177	0 8.6	1/2	16.1
Ore Grade	36023	0.43	62200	0 19	14	0 11.4	5 3.	06	145500	0.28	5 61.9	16.9	33	2.98	292	81700	27.8	0.45	1.4 0	0.724 1	700	32.3	29.4 4	40000 4	4650	3.52 200	JU 15.	.9 33.	.5 300	4.5	5 18.9	<0.002	9000	0.88	9.2	4 54	.8 1	70 1.03	0.18	11.2	2900	0.02	2.1 5	5 59	0 16.9	290	43.3
Ore Grade	36024	0.86	71200	0 14	1 20	0 20.8	11	11	130000	0.29	9 67	9.8	36	1.56	960	76900	46.9	0.62	1.2 1	.395	/00	37.1	14.6 2	28700 8	5750	2.09 160	JU 15.	.5 10.4	.4 450	3.7	9.5	0.03	11200	0.24	12.8	4 52	.8 14	40 0.75	1.6	10.5	2750	0.31	1.5 4	J 269	12.1	265	43.8
Mine Waste	36025	0.21	45100	0 0.4	4 108	80 1.72	2.	21	13000	0.06	5 42.7	10.7	39	9.12	170.5	30400	13	0.28	2.3 0	0.026 1	//00	23.8	/1.1	7700	155	24.3 280	00 7.	1 51.	2 250) 5.8	3 112.	5 0.012	12100	0.12	9.5	6 2.5	9 62	2.7 0.45	0.06	7.3	2220	0.95	6.1 27	4 14.	.6 10.6	42	90.3
Mine Waste	36026	0.24	44800	0 1.4	4 90	0 1.93	7.	27	35500	1.88	44.8	7.3	72	7.29	163	21100	12.65	0.32	2.2 0	0.032 20	0300	25.3	48.6 1	10800	207	19.2 190	00 12	2 49.	2 612	0 6.6	5 107.	5 0.036	6500	0.16	9.1	7 6.	2 14	49 0.75	0.28	7.2	2920	0.73	8.3 63	3 32.	.3 26.4	207	85
Mine Waste	36027	0.07	49900	0 0.2	2 234	40 2.07	0.	26	18400	0.1	35	9.3	61	8.04	60.5	23000	13.1	0.29	2.6 0	0.019 2	3900	19.5	79 1	7000	220	22.2 190	0 10.	.6 51.	.5 4/0) 7.6	5 139.	5 0.041	2500	0.06	10.2	3 0.	9 84	1.1 0.71	<0.05	8.3	3250	1.02	8 53	7 4.2	2 16.3	83	102
Mine Waste	36028	0.16	42800	0 0.3	3 10	10 4.38	0.	82	25400	1.72	44.1	/	/1	9.27	124	17400	13.5	0.33	2.8 0	0.051 1	400	24.6	52.4	7900	169	15.8 230	31 00	5 51.	2 165		104	0.04	5000	0.1	8	7 4	10	J6 1.12	0.06	7.4	3680	0.83	12.4 50	5 10.	.1 28	186	115
Mine Waste	36029	0.28	53000	0 0.5	132	20 2.38	1.	15	33900	1.79	51.9	8.9	6/	7.47	106	23900	15.55	0.38	2.8 0	0.043 1	00800	29.2	48.7 1	11900	161 1	18.35 140	0 9.	5 49.	.5 397	0 4.1	93.1	0.035	9800	0.16	10.7	1 1	10	J7 0.64	0.07	8.9	2780	0.77	8.8 42	1 11.	.4 27.6	208	109
Mine Waste	36030	0.49	4520	0 12.	4 25	70 3.10	0.	00	27400	1.14	40.50	8.5	60	9.17	05.0	20900	12.7	0.39	2.5 0	0.017 1	0000	30.2	40.9	0000	203	15.9 100	0 14.	.00 00.	.3 403	0 4.9	103.	0.001	0000	1.59	9.2	10 Z.		0.88	0.06	8.7	3080	0.68	8.8 5/	7 10.	3 32	133	99.8
Mine Waste	36031	0.09	2010	0 9	120	0 1.52	2	20	327000	0.18	3 18.50	12.4	14	0.87	25.2	20200	0.40	0.2	1.6 0	0.075 2	500	9.7	13.5	16500 1	764	3.49 100	0 3.0	0 8.7 E 10	202	0 4.1	1 12.1	0.002	8300	1.17	4.4	Z 7 E 2E	4 2	70 0.2	<0.05	3.2	1020	0.11	2.4 2	5 41.	9 0.9	52	
Mine Waste	36032	0.48	4840		49		4.	98	199000	0.54	48.5	12.4	31	2.35	198	45500	21.5	0.00	1.6 0	0.373 0	2000	25.5	20.1	10500 4	2750	3.48 100	JU 13.	.5 18.	3 137	0 0.8	3 31.5	0.012	10100	1.88	11.0	0 30 C 40	1 3		0.16	8.4	2830	0.29	3.3 0	J 113	14.9	07	54.5
Nine waste	36033	0.76	73200		74	0 0.97	21	50	57200	0.16	00.2	43.2	40	7.50	10/0	85300	38.7	0.73	1.5 0	0.201 1		35.0	82.9	0000	1225	39.3 300	0 17.	.8 37.	7 020	0 10.0	3 176.	5 0.036	35200	0.77	14.7	0 10	.2 13	99 0.85	0.71	10.5	2720	1.23	2.8 7.	2 313	10 15.5	97	50.9
Borrow Waste	36034	0.5	2060	0 0.8	9 09	0 2.00	2	52 1	24300	2.07	42.2	10.2	4/	0.12	40.3	16200	6.06	0.34	4.2 U	0.3 3	100	24.4	65	6000 4	1205	0.35 10	0 19	.9 35.	3 329	0 36	2 120.	5 0.009	200	0.29	14.0	3 2.	6 26	51 0.64	0.00	9.7	2270	0.04	27 3	0 <u>32</u> .	1 22.4	96	77.6
Borrow Waste	36035	1 29	21000	0 19	5 12·	10 1.55	0.	64	41500	0.63	47.5	5	102	5.21	62.7	14500	10.00	0.31	1 1 0	0.3	200	12.1	22.0	2400	161	40.8 20	0 13	6 14	7 720	0 3.0	3 1.3	0.002	0500	2.58	5	9 2	1 10	0.04	0.00	2.0	1720	1.05	12.1 60	2 49	9 76	630	69.2
Borrow Waste	36037	4.00	2760	0 25	5 00	10 1.00	0.	24	22800	9.67	270	6.1	04	47	02.7	16400	0.50	0.2	17 0	0.040 0	200	21	E1 1	2200	150	45.2 20	0 15	0 15	1 000		5 544	0.024	15700	2.00	6.9	44 4	2 11	1 5 0.0	0.00	2.5	2000	1.00	17 00	4 2.0	2 14.0	494	71.0
Borrow Waste	36038	1.20	2/00	0 30.	4 60			25	44000	5 10	27.0	7	95	5.7	22.3	25500	10.95	0.20	21 0	0.034 12	1800	22.2	122.5 1	12800	475	40.8 60	0 16	6 1/6	4 300 5 105	0 0.0	1 40.7	0.02	15500	5.90	11 /	7 0	2 9 76	2 0.99	0.00	4.2	2030	1.17	12.5 91	9 23	2 24 9	280	92.4
Borrow Waste	36039	1.15	5270	0 75	5 00	0 2.00		2	44000	3.13	48 7	0 0	69	10.05	165.5	24200	14.5	0.23	3.1 0	0.025 3	1000	31	89 1	19300	141 1	10.55 70	0 10	1 65	7 \100	0 123	2 128	5 0.037	11100	5.03	9.5	10 1.	4 13	21 1 11	0.13	8.1	3120	0.88	12.0 51	8 33	3 24.0	332	126.5
Borrow Waste	36039	1.45	5660	0 7.0	19	20 2.05		16	43300	3.34	21.2	0.2	50	10.03	103.5	24200	15.05	0.32		0.025 3	2600	10.1	101 5 1	25400	227	22 5 170		2 57	5 122	0 14.6	5 120.	0.037	10000	6.72	0.1	7 1	+ 12 2 11	27 0.59	0.02	0.1	2520	0.00	10.0 41	7 1 9	9 17	219	111
Borrow Waste	36040	1.01	62200	0 18	8 03	20 2.03		2	27000	4 66	53.5	14.6	63	7 97	121	29600	16.7	0.32	2.3 0	0.055 34	3900	29.6	70 1 1	18500	154 '	11 55 210	0 10	5 61	1 306	0 17.	7 140	5 0.031	12800	5.55	10	8 1.	4 22	24 0.50	0.00	10.8	2720	0.84	9 9 28	0 23	2 25 9	471	113
Old Mine Waste	BAD 1	0.61	6260	0 40	6 10	10 119	70	17	26100	0.02	67.3	12.9	70	12	450	51100	22.2	0.25	2.6 0	101 10	3300	24.9	67.7 1	12000	012	0.6 0.1	10 13	4 30	8 200	0 993	2 125	0.0017	0600	1 1 9	12.0	6 15	2 00	2 2 1 05	0.59	11.7	2540	0.07	6.6 20	7 120	2 20.5	147	101.5
Old Mine Waste	PAD 1b	2.89	3960	0 21	1 6	13 14	5 7	24	57900	0.32	23 9	51.2	11	3.68	4010	20700	48.3	0.32	0.5 0	802 2	500	12.4	27	7000	3160	5.71 0.1	2 01	39. 6 1 <i>4</i>	1 266	0 18	7 360	0.017	87100	0.66	3.9	21 12	7 54	11 0 13	7.52	33	890	0.68	28 2	4 853	30 71	93	17.9
Old Mine Waste	PAD 2	1 22	38200	0 2.1	8 25	0 6.51	2 74	51	54700	3 29	23.9	26	57	7.8	1665	10300	24.6	0.32	16 0	1431 5	800	21.2	30.7	8500	1085	23.2 0.1	2 9.0 14 11	5 50	4 200	0 12	, 30.8	0.000	52200	4.56	7.4	14 15	a 10	65 0.69	2.12	5.0	2480	0.87	Q.4 60	7 627	70 20.6	321	63.0
Old Mine Waste	PAD 3	0.34	4540	0 24	6 14	0 2.90	7	08	31400	5 16	 	11 1	78	13.8	228	27400	13	0.15	25 0	075 1	3600	26.9	58.1	9600	342	31.7 0.1	1 12	4 69	1 244	0 620	0 119	5 0.051	10800	1.66	10.1	11 5	3 2	10 0.00	0.14	7.5	3420	0.07	11.8 70	a 109	5 25 2	432	90.1
Old Mine Waste	PAD 4	0.34	7370	0 10	2 13	50 5 16	81	3	32600	1 14	1 80 3	17.6	62	19.05	449	52600	25	0.31	24 0	184 2	3400	40.4	85.9 1	12600	1105	9.34 0.	2 13	3 36	6 149	0 324	6 189	0.021	16400	3.16	14	5 13	8 70	12 1.08	1.62	12.9	3750	1.30	49 19	8 200	20.7	140	89.5
Background	BG 1	0.00	11050	0 16	4 14	10 2.71	11	08	<5000	0.21	1 136 5	20	93	21.3	36	59100	32.6	0.21	28 0	0.095 30	3800	67.9	113	2800	131	213 02	21 17	7 60	9 650	531	3 207	<0.021	800	3.67	20.2	2 6	10	1.00	<0.05	21.6	5060	1.31	3 8	9 25	2 19 7	43	90.5
Red values indicate or con	dance of 10x crustal abundance	0.15	11000	10.	. 14	2.71	1 10		-0000	0.21	100.0	2.3	55	21.0	50	00100	02.0	0.21				00	.10	2000	.01	2.70 0.2	. 17.	0.8	5 000	, 00.0	201	-\0.00Z	000	0.07	-3.2	- 0		1.02	0.00	21.0	0000		5 0	20.	- 13.7	5	00.0
No comparison available	for similar deposits																																														

TABLE 13: SHAKE FI	LASK METAL CONCEI	NTRATION	IS COMF	PARED TO) CCME GUI	DELINES	5									
Sample ID	Material Type	Aluminum [mg/L]	Arsenic [mg/L]	Cadmium [mg/L]	Chromium [mg/L]	Copper [mg/L]	Iron [mg/L]	Lead [mg/L]	Mercury [mg/L]	Molybdenum [mg/L]	Nickel [mg/L]	Phosphorus [mg/L]	Selenium [mg/L]	Silver [mg/L]	Thallium [mg/L]	Zinc [mg/L]
CCME – a	quatic life	0.1	0.005	0.000017	.001/.00891	0.002	0.3	.00010007	0.000026	0.073	0.025-0.15	0.04-0.1	0.001	0.0001	0.0008	0.03
36010	Ore grade	0.0469	< 0.0013	< 0.00005	< 0.0005	< 0.004	< 0.03	< 0.00005	< 0.0001	0.00246	0.00254	< 0.3	0.0026	< 0.00001	< 0.0001	0.0013
36011	Ore grade	< 0.011	< 0.0003	< 0.0001	< 0.001	< 0.03	93	0.00015	< 0.0001	0.00021	< 0.001	<0.3	0.0075	< 0.00002	< 0.0002	0.0059
36013	Ore grade	0.723	0.00763	< 0.00005	< 0.0005	< 0.0013	< 0.03	< 0.00005	< 0.0001	0.00368	< 0.0005	<0.3	< 0.001	< 0.00001	< 0.0001	0.0024
36014	Ore grade	0.102	< 0.0034	< 0.00005	< 0.0005	< 0.005	< 0.03	< 0.00005	< 0.0001	0.054	< 0.0005	< 0.3	0.002	0.000013	< 0.0001	0.0014
36016	Ore grade	< 0.009	< 0.0011	< 0.00005	< 0.0005	< 0.004	< 0.03	< 0.00005	< 0.0001	0.0518	0.00068	< 0.3	0.0012	< 0.00001	< 0.0001	0.0014
36017	Ore grade	0.162	< 0.0016	< 0.00005	< 0.0005	< 0.0026	< 0.03	< 0.00005	< 0.0001	0.00191	< 0.0005	< 0.3	< 0.001	< 0.00001	< 0.0001	0.001
36019	Ore grade	0.372	0.00618	< 0.00005	< 0.0005	< 0.0006	< 0.03	< 0.00005	< 0.0001	0.00398	< 0.0005	< 0.3	< 0.001	< 0.00001	< 0.0001	< 0.001
36020	Ore grade	0.305	0.00824	< 0.00005	< 0.0005	< 0.0015	< 0.03	< 0.00005	< 0.0001	0.0149	< 0.0005	< 0.3	0.0019	< 0.00001	< 0.0001	0.0018
36021	Ore grade	0.0997	< 0.0005	< 0.00005	< 0.0005	< 0.0042	< 0.03	< 0.00005	< 0.0001	0.00247	0.00096	< 0.3	< 0.001	< 0.00001	< 0.0001	0.0014
36022	Ore grade	0.032	< 0.0024	< 0.00005	< 0.0005	< 0.0009	< 0.03	< 0.00005	< 0.0001	0.00277	< 0.0005	< 0.3	< 0.001	< 0.00001	< 0.0001	0.0011
36023	Ore grade	0.29	0.0111	< 0.00005	< 0.0005	<0.0027	0.052	< 0.00005	< 0.0001	0.0269	< 0.0005	< 0.3	< 0.001	< 0.00001	< 0.0001	0.0011
36034	Waste – Mill Site	0.0157	< 0.0003	< 0.00005	< 0.0005	< 0.009	< 0.03	< 0.00005	< 0.0001	0.00171	0.00919	< 0.3	0.0013	< 0.00001	< 0.0001	0.0029
36035	Waste – Mill Site	< 0.012	< 0.0011	< 0.00005	< 0.0005	< 0.0011	< 0.03	0.000051	< 0.0001	0.00102	< 0.0005	< 0.3	< 0.001	< 0.00001	< 0.0001	0.0016
36036	Waste - Ravine Dam	0.0431	< 0.0014	0.000106	< 0.0005	< 0.0015	< 0.03	< 0.00005	< 0.0001	0.148	0.0163	< 0.3	0.0129	0.000704	< 0.0001	0.0033
36037	Waste – Ravine Dam	0.0556	< 0.002	0.000199	< 0.0005	< 0.0022	< 0.03	< 0.00005	< 0.0001	0.283	0.015	< 0.3	0.0091	0.000581	< 0.0001	0.0035
36038	Waste – Ravine Dam	0.138	< 0.0011	< 0.00005	< 0.0005	< 0.0022	< 0.03	< 0.00005	< 0.0001	0.01	0.00239	< 0.3	0.0061	0.000216	< 0.0001	0.0013
36039	Waste – Main Dam	0.309	< 0.0022	< 0.00005	< 0.0005	< 0.0016	< 0.03	< 0.00005	< 0.0001	0.0216	< 0.0005	<0.3	0.002	0.000043	< 0.0001	0.0012
36040	Waste – Main Dam	0.302	< 0.0022	< 0.00005	< 0.0005	< 0.0016	< 0.03	< 0.00005	< 0.0001	0.0211	< 0.0005	< 0.3	0.0018	0.000039	< 0.0001	0.001
36041	Waste – Main Dam	0.339	< 0.0045	< 0.00005	< 0.0005	< 0.0022	< 0.03	< 0.00005	< 0.0001	0.00972	0.00068	< 0.3	0.0097	0.000098	< 0.0001	0.0014
Dilution Factors	s to meet CCME	<10	<3	<12	none	152	none	none	<4	none	none	32	<13	<10	none	none
	1 the CCME guideline for Chromium	is dependent on s	peciation. Cr (III) is 0.0089 mg	/L while Cr (VI) is 0.0	01 mg/L.										

2 dilution factor shown represents required dilution for detection limit samples. No sample concentrations above detection limit.

TABLE 16: ICP ME	ETALS DETERMINATI	ON F	OR TAI	LING	S SAM	PLES																														
	Crustal Abundance (ppm):	0.075	82300	1.8	425	2.8	0.0085	41500	0.15	25	102	60	56300	20900	39	23300	950	1.2	23600	84	1050	14	350	0.2	22	0.05	2.3	370	9.6	5650	0.85	2.7	120	1.25	70	165
	10 x Crustal Abundance (ppm):	0.75	823000	18	4250	28	0.085	415000	1.5	250	1020	600	563000	209000	390	233000	9500	12	236000	840	10500	140	3500	2	220	0.5	23	3700	96	56500	8.5	27	1200	12.5	700	1650
MATERIAL	SAMPLE ¹	Ag	Al	As	Ba	Be	Bi	Ca	Cd	Со	Cr	Cu	Fe	К	La	Mg	Mn	Mo	Na	Ni	Р	Pb	S	Sb	Sc	Se	Sn	Sr	Th	Ti	Tl	U	V	W	Zn	Zr
		ppm	%	ppm	ppm	ppm	ppm	%	ppm	ppm	ppm	ppm	%	%	ppm	%	ppm	ppm	%	ppm	ppm	ppm	%	ppm	ppm	ppm	ppm	ppm	ppm	%	ppm	ppm	ppm	ppm	ppm	ppm
Mactung - tailings	CSM-1975 ²	0.4	>0.1	6	64	3	69	>0.1		33	>1000	>1000	>0.1	>0.1	30	>0.1	>1000	27	>0.1	250	>1000	11	>0.1	0.5		6	160	220	10	>0.1		8	84	250	140	77
Cantung - tailings	Oct 2005 Comp 4A	1.3	4.12	6	100	13.2	536	10.3	3	37	36	1985	17.15	0.84		3.02	3460	4	0.31	36	390	12	5.64	<5		0.2		200		0.19			47	2490	526	1
Cantung - tailings	Nov 2005 Comp 4A	1.4	3.64	8	80	14.2	582	9.92	< 0.5	48	33	2440	20.2	0.77		2.84	3710	5	0.28	12	440	5	6.59	<5				187		0.17			44	2550	177	
Cantung - tailings	Dec 2005 Comp 4A	1.1	3.9	16	80	14.2	534	11.3	0.5	- 30	30	2160	17.6	0.69		2.72	3900	5	0.29	19	470	5	5.33	<5		0.2		243		0.17			44	3160	283	
Cantung - tailings	Jan 2006 Comp 4A	1.2	3.83	23	80	13.2	580	9.87	< 0.5	51	29	2470	20.3	0.75		2.75	3920	5	0.31	9	490	9	6.58	<5				190		0.16			42	2410	208	
Cantung - tailings	Feb 2006 Comp 4A	1	3.57		97	15.7	613	10.46	1	43	32	1617	>15	0.89		2.85	4464	13	0.35	18	741	38						178		0.15			38	2359	263	
Cantung - tailings	Feb 2006 Comp AR	< 0.2	1.85	7	29	3.9	622	5.65	1	40	13	1810	11.01	0.39	<10	1.47	753	6	0.1	12	646	35	>5	<5	<1	0.1		133	5	0.05	<10	80	14	1437	165	9
Cantung - tailings	Mar 2006 Comp 4A	<1	2.77		71	15.6	595	10	4	44	25	2615	>15	0.66		3.09	5289	5	0.27	15	617	38						139		0.11			28	2160	481	
Cantung - tailings	Mar 2006 Comp AR	< 0.2	1.49	<5	23	3.9	579	5.67	3	40	9	2681	13.65	0.3	<10	1.71	879	4	0.09	9	513	36	>5	<5	<1			106	6	0.04	<10	87	9	1358	415	11
Cantung - tailings	Apr 2006 Comp 4A	<1	2.46		66	13	550	9.76	2	44	20	2702	>15	0.57		2.93	4119	8	0.26	10	561	40						130		0.09			22	2418	329	
Cantung - tailings	Apr 2006 Comp AR	< 0.2	1.28	<5	21	2.9	626	5.27	2	45	7	2809	14.97	0.26	<10	1.55	843	4	0.07	8	523	42	>5	<5	<1			106	12	0.03	<10	115	6	1564	272	12
Cantung - tailings	May 2006 Comp 4A	<1	2.7		91	12.8	617	10.49	2	39	25	2004	>15	0.72		2.91	4531	9	0.27	12	556	42						150		0.12			28	1855	343	
Cantung - tailings	May 2006 Comp AR	0.3	1.44	<5	24	2.7	563	5.57	1	36	10	2083	12.11	0.29	<10	1.57	760	5	0.08	9	489	39	>5	<5	<1			114	12	0.04	<10	111	9	1456	217	10
Cantung - tailings	June 2006 Comp 4A	<1	2.32		86	9.9	656	10.4	<1	84	19	2330	>15	0.75		2.67	2842	11	0.25	11	593	41						252		0.09			24	2375	142	
Cantung - tailings	June 2006 Comp AR	< 0.2	1.05	<5	24	1.7	637	7.05	<1	83	7	2668	>15	0.3	<10	1.59	624	6	0.05	8	480	40	>5	<5	<1	< 0.1		221	10	0.03	10	133	8	1691	77	13

1 4A indicates 4-acid "near-total" digestion, AR indicates Aqua Regia digestion

2 Digestion method for 1975 tailings sample not known

FIGURES

\Vancouve.hGIS\ENVIRONMENTAL\W231\W23101021_MacTung\Maps\021\W23101021_021_Figure1.mxd

NOTES	CLIENT	Pr	opose	ed Ma	ctun	g Mine
Blue Data from Exploration Program Assay Results Other Data from Geochemical Program Assay Results		Cc Mactur	opper ng Ro	vers ock U	sus Ir Inits	on for 3C, 3D, 3E
		PROJECT NO.	DWN	СНК	REV	
	EBA Engineering	W23101021.021 OFFICE	DATE	SCD	n	Figure 4b
	Consultants Ltd. COO	EBA-WHSE	October	r 2008		_

APPENDIX

APPENDIX A ALS CHEMEX ABA AND ICP ANALYTICAL CERTIFICATES

To: NORTH AMERICAN TUNGSTEN CORP LTD. 128D COPPER ROAD WHITEHORSE YT Y1A 2Z6

Page: 1 Finalized Date: 10-APR-2008 Account: NORTUN Г

CERTIFICATE TR08024596		SAMPLE PREPARATION	
	ALS CODE	DESCRIPTION	
Project:	WEI-21	Received Sample Weight	
	LOG-22	Sample login - Rcd w/o BarCode	
T.O. NO This second is fer 44 Drill Care screeting submitted in any job in Tarrers DC Carefornia	CRU-31	Fine crushing - 70% <2mm	
11/18 report is for 41 Utill Core satisfies submitted to our lab in Lenace, DV, Vanada UI 47 MAD 2000	SPL-21	Split sample - riffle splitter	
	PUL-31	Pulverize split to 85% <75 um	
The following have access to data associated with this certificate:	CRU-QC	Crushing QC Test	
DAVE TENNEY	PUL-QC	Pulverizing QC Test	
		ANALYTICAL PROCEDURES	
	ALS CODE	DESCRIPTION	
	0A-VOL08	Basic Acid Base Accounting	
	S-IR08	Total Sulphur (Leco)	LECO
	OA-ELE07	Paste pH	
	ME-MS61	48 element four acid ICP-MS	
	S-CAL06	Sulfide Sulfur (calculated)	LECO
	S-GRA06	Sulfate Sulfur-carbonate leach	LECO

Sulfate Sulfur (HCI leachable)

S-GRA06a C-GAS05

Inorganic Carbon (CO2)

NORTH AMERICAN TUNGSTEN CORP LTD. WHITEHORSE YT Y1A 2Z6 **ATTN: DAVE TENNEY 128D COPPER ROAD** To:

This is the Final Report and supersedes any preliminary report with this certificate number. Results apply to samples as submitted. All pages of this report have been checked and approved for release.

Colin Ramshaw, Vancouver Laboratory Manager ١ Signature:

EXCELLENCE IN ANALYTICAL CHEMISTRY ALS Canada Luc. 212 Brooksbank Avenue North Vancouver BC V7J 2C1 North Vancouver BC V7J 2C1 Phone: 604 984 0221 Fax: 604 984 0218 www.alschemex.com

ALS

To: NORTH AMERICAN TUNGSTEN CORP LTD. 128D COPPER ROAD WHITEHORSE YT Y1A 2Z6

Page: 2 - A Total # Pages: 3 (A - E) Plus Appendix Pages Finalized Date: 10-APR-2008 Account: NORTUN

										CERTIFI	CATE C	JF ANA	LYSIS	TR080	24596	
	Method	WEI-21	OA-VOL08	OA-VOL08	OA-VOL08	OA-VOL08	OA-ELE07	OA-VOL08	S-IR08	S-GRA06	S-GRA06a	S-CAL06	C-GAS05	C-GAS05	ME-MS61	ME-MS61
	Analyte Units	Necvo wr. ka		LInity		tracros/1000t	nd vite	Katio (N	0 2	n s	ю 9	n a	ິ	205 205	Ag	A 9
Sample Description	LOR	0.02	0.3	-	-	1	0.1	0.01	0.01	0.01	0.01	0.01	0.05	0.2	0.01	0.01
36001		1.30	29.4	Ļ	-16	13	9.2	0.44	0.94	0.04	0.01	0.90	0.05	0.2	0.15	7.58
36002		1.93	23.8	-	တု	15	8.8	0.63	0.76	0.04	0.01	0.72	<0.05	<0.2	0.21	5.53
36003		1.76	23.8	-	- 1	13	8.7	0.55	0.76	0.04	<0.01	0.72	<0.05	<0.2	0.12	8.12
36004		2.02	12.5	2	24	36	8.6	2.88	0.40	0.03	<0.01	0.37	<0.05	<0.2	0.11	9.97
36005		1.91	1.9	1	6	8	8.4	4.27	0.06	0.03	<0.01	0.03	<0.05	<0.2	0.04	8.78
36006		1.61	21.3	-	ę	24	9.3	1.13	0.68	0.04	0.01	0.64	<0.05	<0.2	0.07	5.04
36007		1.05	17.5	2	40	22	2.7	3.26	0.56	0.06	<0.01	0.50	0.24	0.9	0.12	7.59
36008		1.91	28.4	N 7	φ ,	52 1	8.7	0.77	0.91	0.05	6.01	0.86	0.10	0.4	0.13 2 1	9.38 9.5
36010		1.44	209.4	- 01	-174	35	0.7 9.7	0.17 0.17	67.0 6.70	0.08	-0.03	0.22 6.62	0.32	40.2 1.2	1.41	9.46 5.16
36011		0.89	528.1	۲	-515	13	5.8	0.02	16.90	0.12	0.07	16.80	<0.05	0.2	2.41	3.86
36012		2.21	493.8	*-	-476	18	7.3	0.04	15.80	0.06	0.02	15.75	<0.05	<0.2	3.56	4.67
36013		1.08	28.1	7	0	28	8.9	1.00	0.90	0.06	0.02	0.84	0.08	0.3	0.39	7.64
36014		0.77	35.3	2	0	35	8,4	0.99	1.13	0.08	0.01	1.05	0.06	0.2	1.25	5.88
36015		1.02	317.2	۳	-303	14	7.3	0.04	10.15	0.07	0.01	10.10	<0.05	<0.2	1.53	6.72
36016		1.10	78.8	2	-18	61	8.2	0.77	2.52	0.06	0.02	2.46	<0.05	<0.2	0.61	2.41
36017		1.42	105.3	•	-86	19	8.8	0.18	3.37	0.06	0.01	3.31	<0.05	<0.2	0.76	6.06
36018		2.24	83.1	2	48	35	7.7	0.42	2.66	0.07	0.04	2.59	<0.05	<0.2	0.85	4.05
36019		0.72	14.1	5	55	69	8.8	4.91	0.45	0.04	<0.01	0.41	<0.05	<0.2	0.45	7.31
36020		1.05	24.1	2	14	38	8.6	1.58	0.77	0.05	0.01	0.72	<0.05	0.2	0.46	5.47
36021		1.69	166.9	2	-141	26	8.1	0.16	5.34	0.04	0.01	5.30	0.12	0.4	1.73	5.43
36022		1.09	48.4	4	489	537	9.0	11.09	1.55	0.04	<0.01	1.51	3.17	11.6	0.54	2.51
36023		0.61	29.7	~ `	ო (83	9.1	1.11	0.95	0.04	<0.01	0.91	0.23	0.9	0.43	6.22
36024 36025		1.38	34.1	N •	71, 60	77	8.8	0.65	1.09	0.04	<u>6.0</u>	1.05	0.07	0.3	0.86	7.12
2005		40.4	+,++	-	00-		0.1	67.0	1.42	20-0	-0.01	1.40	c0.0>	2.U2	17.0	4.01
36026		1.31	24.1	2	∞ ;	32	8,9 1	1.33	0.77	0.02	40.01	0.75	<0.05	<0.2	0.24	4.48
36028		5.U9	C.) 0.91	2	16 6	S 8	0.0	3.07	0.24	0.02	0.02	0.22	0.05	0.2	0.07	4.99
36029		2.14	30.0	40	οų	25	ວ.ຕ ຄ.ອ	0.83	40 O	0.02	0.01 60.01	0.02 0.05	0.05	7 O S	0.10 0.28	4.20 5.3
36030		1.95	15.9	I 	12	58	972	1.76	0.51	0.02	0.01	0.49	<0.05	40.2 6.2	0.49	4.52
36031		1.75	27.8	4	731	759	9.1	27.29	0.89	0.02	<0.01	0.87	8.32	30.5	0.09	2.01
36032		1.39	29.1	ę	307	336	8.4	11.56	0.93	0.03	<0.01	06.0	3.87	14.2	0.48	4.84
36033		1.46	114.4	2	-84	30	8.2	0.26	3.66	0.07	0.01	3.59	0.24	0.9	0.76	7.32
36034		1.32	62.2	-	42	20	6'9	0.32	1.99	0.04	0.05	1.95	0.05	0.2	0.5	6.34
36035		1.25	0.6	4	621	622	9.5	995.2	0.02	0.02	0.02	<0.01	2.09	7.7	0.1	2.06
36036		1.22	30.3	e	72	102	8.3	3.36	0.97	0.04	<0.01	0.93	1.22	4.5	1.38	2.1
36037		1.07	52.8	ന	35	88	8.2	1.67	1.69	0.05	<0.01	1.64	1.00	3.7	1.23	2.76
36038		1.02	48.1 25.6	in (96	144	5.7	2.99	1.54	0.05	0.01 5.25	1.49	1.36	5.0 2.6	5 5	3.4 7 0.7
36039 26040		1.4.1	20.0 21 Q	יט מי	94 84	116	ο α α	2.80	55	0.04 0.02	10.95 10.05	1.13	0.09 0 1 2 2	9 7 9 9 7	1.45	5.27 5.66
04000		···	0.10	o	Ş	2	מיר	50	1.02	77.0	10.01	20.1	77-1	2, 1		0.00

ALS Canada Ltd. 212 Brooksbank Avenue North Vancouver BC V7J 2C1 Phone: 604 984 0221 Fax: 604 984 0218 WWW.alschemex.com

ALS

To: NORTH AMERICAN TUNGSTEN CORP LTD. 128D COPPER ROAD WHITEHORSE YT Y1A 2Z6

Page: 2 - B Total # Pages: 3 (A - E) Plus Appendix Pages Finalized Date: 10-APR-2008 Account: NORTUN

- - - -										CERTIFI	CATE C	JF ANA	LYSIS	TR080	24596	
	Method Analyto	ME-MS61 As	ME-MS61 Ba	ME-MS61 Be	ME-MS61 Bi	ME-MS61 Ca	ME-MS61 Cd	ME-MS61 Ce	ME-MS61 Co	ME-MS61 Cr	ME-MS61 Cs	ME-MS61 Cu	ME-MS61 Fe	ME-MS61 Ga	ME-MS61 Ge	ME-MS61 Hf
Sample Description	Units LOR	ррт 0.2	ndq 1	ppm 0.05	ppm 0.01	% 0.01	ррт 0.02	ррт 0.01	ррт 0.1	ppm 1	ррт 0.05	ррт 0.2	% 0.01	ррт 0.05	ррт 0.05	ррт 0.1
36001		0.7	1180	3.13	1.97	3.09	0.06	78	14.7	65	24,4	185	3.77	20.8	0.16	1.9
36002		1.8	730	4.97	33.3	4.7	2.37	49	9.8	84	11.55	214	3.41	21.5	0.17	2.7
36003		ť.,	860	5.55	2.77	3.5	1.07	71.9	13.2	67	20.9	81.6	2.61	23.6	0.12	2.4
36004 36005		ი (890	15.85	0.87	3.27	0.05	85 25	14.9 1.71	66	25.9	56.8	1.71	27.6	0.15	2.6
cuuas		1.9	1110	3.54	U.44	0.61	0.03	99.4	16.5	73	32.3	19.2	4.85	24.8	0.15	2.4
36006		0.3	480	1.73	1.67	1.37	0.07	79.6	11.7	43	23.2	93.7	3.16	15.55	0.12	3.2
36007		3.0 7	1150	4.71	19.6	3.51	0.04	79.2	18.4	8	23.1	64.8	2.61	24.6	0.14	2.5
36009		39.9	010 010	9.84 9.31	2.18 0.39	00.2	0.04	98.6 96.4	10.5 26.8	27	28.1	106.5 26.2	4.06 5.1	31.2 26.5	0.16	2.7
36010		11	100	6.3	492	10.45	0.38	47.3	50.3	33	1.7	1100	۰.۲ 14.85	21.3	0.59	4.4 1.3
36011		-	<10	15	3.26	5.91	0.55	9.15	81.3	5	1.38	4410	30	35.3	0.69	0.2
36012		<0.2	60	6.69	796	3.24	0.58	30.3	52.9	13	17.25	5210	27.3	43.8	0.64	0.6
36013		17	350	9.99	26.8	10.75	0.5	71.3	15.1	49	4.16	290	7.53	40.9	۰-	2
36014		20	100	29.7	91.1	14.1	0.25	43.2	22.7	27	4.29	129.5	10.55	35.8	0.7	1.2
36015		0.4	330	11.65	343	5.44	0.5	58.5	35.6	41	16.2	2450	18.55	44.8	0.86	1.4
36016		16	<10	14.45	6,3	16.05	0.47	8.59	43.5	5	0.09	691	13.95	25.2	0.54	0.3
36017		\$	260	8.74	23.2	10.4	0.26	62.2	30.3	36	5.3	907	9.31	29.8	0.73	1.5
36018		4.1	170	25.1	25,6	8.33	0.3	28.2	15.5	26	6.2	828	9.81	43.7	0.65	0.6
36019		20	340	21.9	31.1	16.75	0.28	56.7	13.2	36	1.2	49.4	9.12	34.1	0.56	4
36020		10	50	13.5	15.85	12.8	0.22	53	9.5	37	3.04	159	9.33	37.3	0.58	1.8
36021		1.5	30	16.95	420	8.23	0.45	42.9	38.1	39	1.82	2540	12.1	56.3	0.73	1.1
36022		6	270	13.65	6.74	28.4 44 Fr	0.47	25.6 24 0	11.6	53	1.34	170.5	6.11 5.12	16.6 22.0	0.52	0.6
36024		91	20	00 B	3.U0 111	14.00 13	0.28	61.9 67	16.9 0 8	55 55	2.98 1 56	292 060	8.17 7.50	27.8	0.45	4, 0
36025		0.4	1080	1.72	2.21	- . .	0.06	42.7	10.7	88	9.12	300 170.5	3.04	13	0.28	2.3
36026		1.4	800	1.93	7.27	3.55	1.88	44.8	7.3	72	7.29	163	2.11	12.65	0.32	2.2
36027		<0.2	2340	2.07	0.26	1.84	0.1	35	9.3	61	8.04	60.5	2.3	13.1	0.29	2.6
36028		0.3	1010	4.38	0.82	2.54	1.72	44.1	7	5	9.27 	124	1.74	13.5	0.33	2.8
36030		12.4	2570	2.30 3.16	0.66	3.39 2.74	1.14	56 56	8.5 8.5	09 09	1.47 9.17	-106 88.1	2.39	12.7 12.7	0.39 0.39	2.5 2.5
36031		6	1200	1.52	2.26	32.7	0.18	18.55	5	14	0.87	25.2	2.02	5.45	0.2	0.5
36032		26	490	4- 4-	4.98	19.9	0.54	48.5	12.4	31	2.35	198	4.55	21.5	0.66	1.6
36033		Q	740	6.97	21.7	5.72	0.16	66.2	43.2	46	16.9	1070	8.53	38.7	0.73	1.5
36034 36035		0.9	690 30	2.53 0.65	0.59 3.52	2.43 32 4	0.21 2.07	42.2 47.9	18.2	47 10	7.52 0.12	48.3 5.8	3.08 1.62	18.45 6.06	0.34	4.2 2
2000			2010	1 1	2010		5.5			2		2.20	2011	0.00		, ; ;
36037 36037		18.5 35.5	1310 860	دد.1 66	0.64	4.15 3.38	9.63 8.67	17.7 27.8	ۍ وړ	103 94	5.31 4 7	62.7 98.5	1.45 1.64	10.25 9.59	0.26	1.4
36038		30.4	600	2.06	0.25	4.4	5.19	30.7	7	85	5.7	22.3	2.55	10.85	0.25	2.1
36039		7.5	930	2.05	0.2	4.55	3.94	48.7	6	69	10.05	165.5	2.42	14.5	0.32	3,1
36040		ო	1820	2.05	0.16	4.14	3.46	31.3	9.3	50	10.2	103	2.57	15.05	0.32	2.9

ALS

STRY 128D COPPER

To: NORTH AMERICAN TUNGSTEN CORP LTD. 128D COPPER ROAD WHITEHORSE YT Y1A 2Z6

Page: 2 - C Total # Pages: 3 (A - E) Plus Appendix Pages Finalized Date: 10-APR-2008 Account: NORTUN

										CERTIFI	CATE O	F ANA	LYSIS	TR080)	24596	
	Method Analvto	ME-MS61 In	ME-MS61 K	ME-MS61 La	ME-MS61 Li	ME-MS61 Mg	ME-MS61 Mn	ME-MS61 Mo	ME-MS61 Na	ME-MS61 Nb	ME-MS61 NI	ME-MS61 P	ME-MS61 Pb	ME-MS61 Rb	ME-MS61 Re	ME-MS61 S
Sample Description	Units LOR	ppm 0.005	% 0.01	ppm 0.5	ppm 0.2	% 0.01	ppm 5	60.0 0.05	% 0.01	ppm 0.1	ррт 0.2	pp 10	ppm 0.5	ррт 0.1	ppm 0.002	0.01
36001		0.046	1.84	39.8	104.5	1.19	465	19.2	0.64	12.8	25.1	460	9.9	188.5	<0.002	0.91
36002		0.461	0.94	28.2	78	1,03	1270	46.6	0.28	16.2	84.3	710	4.3	98.7	0.079	0.8
36003 26003		0.095	2.09	32	98 26	1.04	391 100	4.78	0.42	11.9	23.8	360	10.5	90.4 101	<0.002	0.76
36005 36005		0.030	10'7 2 64	03.00 48.1	141	0.58 11	342	0.00 0.54	0.73 0.73	- a	22.9 28.5	300	14.8 8 4 1	166	0.000	0.07
00000		0.001	5.3	1.04	1 5 5 7	0.00	740	to:0	7.0	01	0.00	nen	o' 5-	DO1 4,	200.02	10'0
30000		250.0	1.61	59.5 20.0	c./01	0.86	432	1.1	0.4 7 27	20 C	18	930 100	ۍ ۲	1/3	<0.002	0.69
36008 36008		80.0 0.09	2.8	50.6 50.6	111 157	1.18 1.23	4/b 418	2.08 1.93	0.27	14.6 14.2	28.7 35.1	490 570	18 11.8	155.5 234	0.005	0.85 0.85
36009		0.066	2.68	51.5	114	0.48	548	16.75	0.18	13.2	47.9	510	16	187.5	<0.002	0.33
36010		0.949	0.15	25.3	18.1	1.51	3220	3.9	0.16	9.7	37.3	490	7	11.4	0.058	5.38
36011		0.281	0.1	4.3	14.3	0.81	1330	13.05	0.2	15.2	15.1	3530	5.6	14.8	0.054	>10.0
36012		0.231	1.11	14.5	92.3	1.09	905	6.1	0.36	11.9	21.5	4070	8.4	199.5	0.033	9.52
36013		0.796	0.8	38.4	31.5	1.15	4230	9.28	0.45	16.2	30.1	1730	0.0	48	0.055	0.97
36014 36015		1.205 0.459	0.11 1.62	22.55 31.2	27.8	1.1	6080 2100	15.85 3 00	0.15 0.37	24.3 13.5	16.7 22	980 1440	α.α 7	10.6 176	0.08 0.107	1.25 7.87
01000	Ţ	00410	70.1	2.10	1.10	eo.1	2002	0.00	10.0	0.01	77	0++1	+ · ·	021	0.101	10.1
36016		0.839	0.01	3.6	10.6	1.16	9200	328	0.02	0.6	28.5	560	1.8	0.5	0.041	2.4
36017		0.566	0.57	30.8	32.2	3.53	3850	4.85	0.25	11.2	27.5	1990	ۍ ا	57.1	0.041	2.97
36018 26010		1.035	0.1	14.5	36.1	5.0	6340 6630	9.41 0.06	0.16	4.3 7.5 n	12.5	1520 520	3,0 0,0	8.9 7 9	0.032	2.76
36020		0.831	0.08	29.8	18	1.49	5290 5290	090 69	0.17	19.9	31.9	3980 3980	5 6	4.6	0.069	0.81
96004		0 600	× C	0.50	4 10	4.4	0027	7 17	14.0		010	0707	,		200	
36021 36022		U.538 D 529	0.15	12 0	4.12	1.44 1.48	45UU 3080	4.4/ 6.26	0.05	11.1 6.2	9.05 7 0	16/U 640	4 6 0	14,1 ¤ 7	0.05	4.7
36023		0.724	0.17	32.3	29.4	6 4	4650	3.52	0.2	15.9	33.5	300	4.5	18.9	<0.002	6.0
36024		1.395	0.07	37.1	14.6	2.87	5750	2.09	0.16	15.5	10.4	450	3.7	9.5	0.03	1,12
36025		0.026	1.77	23.8	71.1	0.77	155	24.3	0.28	7.1	51.2	250	5.8	112.5	0.012	1.21
36026		0.032	2.03	25.3	48.6	1.08	207	19.2	0.19	12	49.2	6120	6.6	107.5	0.036	0.65
36027		0.019	2.39	19.5	79	-	220	22.2	0.19	10.6	51.5	470	7.6	139.5	0.041	0.25
36028		0.051	1.74	24.6	52.4	0.79	169	15.8	0.23	38	51.2	1650	~ `	104	0.04	0.5
36030 36030		0.017	9.1 1.9	29.2 30.2	46.9	1.13	203	15.9 15.9	0.1	9.5 14.6	49.0 66.3	3970 4030	- 6.4	93. I 103.5	0.031	0.55
36031		0.075	0.29	9.7	13.5	0.69	764	1.75	0.05	3.6	8.7	2020	4.1	12.1	0.002	0.83
36032		0.373	0.65	25.5	20.1	1,65	2750	3.48	0.1	13.5	18.3	1370	6.8	31.5	0.012	1.01
36033		0.201	1.76	35.6	82.9	1.81	1225	59.5	0.3	17.8	37.8	1290	10.3	176.5	0.036	3.52
36034 26035		0.033 2.2	3.56	24.4	89.5 6 E	0.9	153 1705	11.7	0.57	30.9	35.7 2.6	830	16.2 2 0	120.5	0.009	1.87
30030		0.3	0.04	29.1	c.0	U.03	GRZI	cc.U	L0:0	18.4	4.5	3280	3.D	e.1	20.02	70'0
36036		0.048	0.92	13.1	22.9	0.24	161	40.8	0.03	13.6	147	730	16	49.2	0.024	0.95
30U37 36038		0.034	07.1	27.3	סו.ד 102 ה	0.33 80 1	475 475	40.3 A0 R	0.05	15.0 16.6	104 146 5	1050	0.0 2.0	1.4C	0.013	1.0/ 1.5/
36039		0.025	ۍ ۳	31	68	1.93	141	10.55	0.07	19.1	65.7	>10000	12.2	128.5	0.037	111
36040		0.035	3.26	19,1	101.5	2.54	227	22.5	0.17	9.2	57.5	1220	14.5	135	0.033	4

***** See Appendix Page for comments regarding this certificate *****

212 Brooksbank Avenue 212 Brooksbank Avenue North Vancouver BC V7J 2C1 Phone: 604 984 0221 Fax: 604 984 0218 www.alschemex.com

ALS

To: NORTH AMERICAN TUNGSTEN CORP LTD. 128D COPPER ROAD WHITEHORSE YT Y1A 2Z6

Page: 2 - D Total # Pages: 3 (A - E) Plus Appendix Pages Finalized Date: 10-APR-2008 Account: NORTUN

									0	CERTIFI	CATE C	F ANA	LYSIS	TR080	24596	
	Method Analyte	ME-MS61 Sb	ME-MS61 Sc	ME-MS61 Se	ME-MS61 Sn	ME-MS61 Sr	ME-MS61 Ta	ME-MS61 Te	ME-MS61 Th	ME-MS61 Ti	ME-MS61 Ti	ME-MS61 U	ME-MS61 V	ME-MS61 W	MĒ-MS61 Y	ME-MS61 Zn
Sample Description	Units LOR	ррт 0.05	ррт 0.1	ppm 1	ррт 0.2	ррт 0.2	ррт 0.05	ррт 0.05	ррт 0.2	% 0.005	ррт 0.02	ppm 0.1	mqq ₽	ррт 0.1	ррт 0.1	ppm 2
36001		0.07	12.8	e	8.6	136.5	0.88	0.06	15	0.403	1.36	1.7	76	60.9	16.4	57
36002		0.13	10.8	7	34.6	106	-	0.34	9.2	0.418	0.95	16.8	1215	351	22	279
36003		0.06	15.6 12.2	~ ~	15.3 a	203	0.9 27.0	0.06	13.1	0.413	1.2	2.2	6	20.4	17.1	106
30004 36005		0.41	13.2	- c	ο u	1747	0.75 1.25	c0.0	10.4	0.333	1.4/ 1 ED	, 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	5 8	880 2 0	14	22.52
20002		60°0		7	2.0	51.4	cc.1	0.07	10.1	ene-n	AC'L	Q.7	34	5.G	C.01	5
36006		0.06 2.06	9.3	~- ⁷	6.3	51.8	- ;	<0.05	15.3	0.339	1.27	3.5	42	80.1	18.1	48
36007 36008		0.29 0.15	16.3 19.2	⊽ ⊽	15.2 16.7	165 79 ዳ	1.09	0.36	15.6 19.5	0.34 0.466	1.51 1 93	2 2	6 	780	19.1 20.4	64 68
36009		12.65	15.1	- -	3.7	50.5	,	<0.05	18.6	0.35	2.03	2.7		19.1	13.2	448
36010		1.44	6.4	6	67.6	134	0.56	8.5	8.8	0.242	0.47	2.3	37	6290	13.9	218
36011		0.16	2.4	18	3.4	35.4	0.3	0.6	1.2	0.039	0.43	2.1	25	9350	4.6	48
36012		0.41	5.9	32	4.9	74.4	0.06	1.1	3.6	0.091	1.46	2.9	30	6180	10.6	77
36013		0.17	14.5	4	26.6	122	0.82	0.84	11.8	0.298	0.73	5.8	164	4520	17.8	206
36014		2.61	11.2	4	51.1	134.5	0.67	2.45	10.7	0.276	0.79	3.3	44	8920	12.4	327
36015		0.26	10.1	17	11.1	100.5	0.61	4.9	10.3	0.254	1.99	3.1	36	9230	12.6	110
36016		0.48	4	33	76.7	32.1	<0.05	0.13	0.6	0.039	0.26	0.7	33	2440	10.1	395
36017		0.14	11.5	8	39.7	124.5	0.62	0.61	8.9	0.227	0.66	3.2	64	3990	21	153
36018		0.6	8.2	9	30	45.1	<0.05	0.65	4.5	0.117	0.36	2.8	32	7710	12.9	188
36019		1.61	12.5	ę	51.7	189.5	0.75	0.88	10.6	0.319	0.3	3.1	70	2500	13.3	278
36020		0.35	12.6	4	24.3	169	0.79	0.55	8.5	0.312	0.54	7	295	6460	24.5	252
36021		0.3	12.4	10	17.9	80.9	0.45	4.29	6.7	0.193	0.51	3.6	110	4750	16.9	126
36022		1.93	7.1	4	52.8	345	0.24	0.14	3.5	0.106	0.23	2.1	27	1770	8.6	172
36023		0.88	9.2	4	54.8	170	1.03	0.18	11.2	0.29	0.02	2.1	58	590	16.9	290
36024 26225		0.24	12.8	4 (52.8	140	0.75	1.6	10.5	0.275	0.31	1.5	40	2690	12.1	265
30U23		7L'N	9.5	۵	2. 3	1.29	U.45	0.06	<i>1.</i> 3	0.222	66.U	6.1	2/4	14.6	30.6	42
36026		0.16	9.1	2	6.2	149	0.75	0.28	7.2	0.292	0.73	8.3	633	32.3	26.4	207
36027		0.06	10.2	1 CT	6.0 •	84.1 406	0.71	40.05 20.05	- CC 1 CC	0.325	1.02	ο ,	537	4.2	36.3 20	83 29
36020		0.16	10.7	- ^	t -	107	1.12	0.00	τ, α - α	0.200	20.0 22.0	⁴ .α	50C	19.1	20 27 6	201 802
36030		1.59	9.2	10	2.5	85	0.88	0.06	8.7	0.308	0.68	8.8	577	10.3	32	133
36031		1.17	4,4	2	7.2	676	0.2	<0.05	3.2	0.102	0.11	2.4	28	41.9	6.9	52
36032		1.88	11.6	ъ	35.1	378	0.7	0.16	8.4	0.283	0.29	3.3	60	1130	14.9	174
36033		0.77	14.7	9	10.2	199	0.85	0.71	10.5	0.272	1.23	2.8	72	3130	15.5	97
36034 36035		1.71 0.38	14.6 4 2	ۍ م	2.8 276	137 251	1.87 D.64	0.08 0.06	9.7	0.501	0.64 <0.02	7.6	158 33	32.1 34	22.4 25.8	59 99
222		22.2		, ,	244								2		2.24	8
36036 36037		2.58 2.33	5 6.8	∞	3.1 1.2	102 111.5	0.6 0.8	0.08 0.06	2,9 3,7	0.172 0.209	1.05 1.17	12.1 17	693 814	4.8 3.3	7.6 14.8	630 484
36038		5.89	11,4	7	0.8	75.2	0.88	0.15	4.2	0.226	1.41	13.5	818	3.3	24.8	380
36039		5.12	9.5	10	1.4	121	1.11	0.1	8.1	0.312	0.88	12.9	518	3.3	32.9	332
36040		6.73	9.1	7	1.3	127	0.58	0.08	9,4	0.253	0.87	10.9	417	1.8	17	318

	ALS CHEMEX EXCELLENCE IN ANALYTICAL CHEMISTRY ALS CONTAILO	To: NORTH AMERICAN TUNGSTEN CORP LTD. 128D COPPER ROAD WHITEHORSE YT Y1A 226	Page: 2 - E Total # Pages: 3 (A - E) Plus Appendix Pages
ALS	212 Brooksbank Avenue North Vancouver BC V7J 2C1 Phone: 604 984 0221 Fax: 604 984 0218 www.alschemex.com		Finalized Date: 10-APR-2008 Account: NORTUN
		CERTIFICATE OF ANALYSIS	TR08024596
Mett	nod ME-MS6f We Zr		
Uni Sample Description Lo	R 0.5		
36001	64.2		
36002	92.1 76.1		
36004 36005	88.2 78.8		
36006	96.5		
36007	80.6		
36009 36009	86.4		
36010	35.7		
36011	7.4		
36013	22.8 69.5		
36014 36015	35.7		
30015 36016	40.5		
36017	53		
36018	18.9		
36020	41.9 71.1		
36021	35.7		
36022	16.1 43.3		
36024 36025	43.6		
36026	85		
36027	102		
36029	109		
36030	99.8		
36031	17.1		
36032	54.5 50.9		
36034	168.5		
36035	77.6		
36036	68.2 71.8		
36038	82.4		
36039 36040	126.5		

:: 3 - A (A - E) Pages R-2008 RTUN		-MS61 AI % 0.01	22
Page ges: 3 pendix 10-APF unt: NO	9	61 ME	
tal # Pa Plus Ap d Date: Acco	02459	ME-MS Ag ppm 0.01	10
To F Finalize	TR08	C-GAS05 CO2 % 0.2	0.4.
	TYSIS	C-GAS05 C 0.05	0.1
ORP LTD.	DF ANA	S-CAL06 S 0.01	1.43
SSTEN CO	ICATE (S-GRA06a S % 0.01	0.01
ICAN TUN ROAD YT Y1A 2	CERTIFI	S-GRA06 S % 0.01	0.02
TH AMER Copper Ehorse		S-IR08 S 0.01	بر. ۲
To: NOR 128D WHIT		OA-VOL08 Ratio (N Unity 0.01	0.73
μ		OA-ELE07 PH Unity 0.1	σ, ά
STRY strry		OA-VOL08 NP tCaCO3/1000t	ñ
AL CHEMI 218 WWW.8		OA-VOL08 NNP ICaCO3/10001	5 2
2C1 2C1 2C1 2C1 2C1 2C1 2C1		OA-VOL08 FIZZ RAT Unily 1	8
Ltd. Dank Avenue Dank Avenue Daver BC V7J 984 0221 F		0A-VOL08 MPA tCaCO3/1000t 0.3	45.3
AL EXCELL ALS Canada 212 Brooksi North Vanco Phone: 604		WEI-21 Recvd Wt. kg 0.02	1.63
		Method Analyte Units LOR	
		ription	
		mple Desci	6041
		š	

3 - B A - E) ages -2008 RTUN		AS61	o,
Page: 3 (/ endix P 0-APR nt: NOF		M M M	2
al # Page lus Appe I Date: 1 Accour	24596	ME-MS61 Ge ppm 0.05	0 4
Tot P Finalizec	TR080	ME-MS61 Ga ppm 0.05	16.7
	LYSIS	ME-MS61 Fe % 0.01	5.96 2.96
JRP LTD.	DF ANA	ME-MS61 Cu ppm 0.2	ž
STEN COI	CATE C	ME-MS61 Cs ppm 0.05	26.7
CAN TUNG ROAD YT Y1A 22	ERTIFI	ME-MS61 Cr ppm	ŝ
TH AMERI COPPER EHORSE		ME-MS61 Co Ppm 0.1	4. 6
To: NOR 128D WHIT		ME-MS61 Ce ppm 0.01	9 8 6
Ę		ME-MS61 Cd ppm 0.02	4. 80
STRY STRY		ME-MS61 Ca % 0.01	2.7
		ME-MS61 Bi ppm 0.01	0.2
2C1 2C1 2C1 2C1 2C1 2C1 2C1 2C1 2C1 2C1		ME-MS61 Be ppm 0.05	5.29
Lid. Carlor A Content Nuver BC V7J 984 0221 F		ME-MS61 Ba ppm 10	0E
AL EXCELLI ALS Canada L ALS Canada L ALS Canada L 212 Brookst North Vancs Phone: 604		ME-MS61 As ppm 0.2	16. 8. 8.
\sim		Method Analyte Units LOR	
		ription	
		ple Desci	4
		Sam	Dge

e: 3 - C (A - E) Pages R-2008 ORTUN		E-MS61 S % 0.01	1.28
Pag Pages: 3 Appendix te: 10-AP count: N	596	MS61 M Re pm 002	33
Total # F Plus / ized Dat Acc	38024	561 ME-	Ö
Final	TR(ME-MS Rb ppm 0.1	6 6
	TVSIS	ME-MS61 Pb ppm 0.5	12
ORP LTD.	CATE OF ANA	ME-MS61 P ppm 10	09 66
SSTEN CC		ME-MS61 Ni Ppm 0.2	61.1
CAN TUN ROAD YT Y1A 22	CERTIFI	ME-MS61 Nb ppm 0.1	10.5
COPPER COPPER EHORSE		ME-MS61 Na % 0.01	0
To: NOR 128D WHIT		ME-MS61 Mo ppm 0.05	11.5S
Ę		ME-MS61 Mn ppm 5	ະ ເດີ 4
STRY stray		ME-MS61 Mg % 0.01	8 8
L CHEMIC 218 WWW.a		ME-MS61 Li Ppm 0.2	70.1
NAL YTC 2C1 2C1 2C1 2C1 2C1 2C1 2C1 2C1 2C1 2C1		ME-MS61 La ppm 0.5	29.62 2
dd. ank Avenue uver BC V7J 884 0221 FR		ME-MS61 K % 0.01	69 κ
EXCELLE EXCELLE ALS Canada L ALS Canada L ALS Canada L 212 Brooks North Vanco Phone: 604 (ME-MS61 In ppm 0.005	0.065
\sim		Method Anakyte Units LOR	
ALS		le Description	-
		Samp	3604

3 - D A - E) ages 2008 ₹TUN		1561 1561	2
Page: ss: 3 (/ endix P 0-APR- nt: NOF		ME-A Pp	47
al # Page lus Appe d Date: 1 Accour	24596	ME-MS61 Y ppm 0.1	55.9
Tot P Finalize	TR08(ME-MS61 W ppm 0.1	2.2
	LYSIS	ME-MS61 V ppm	280
STEN CORP LTD.	F ANAI	ME-MS61 U ppm 0.1	တွ တ
	CATE C	ME-MS61 Ti ppm 0.02	0.84
CAN TUNG ROAD YT Y1A 22	ERTIFI	ME-MS61 Ti 0.005	0.272
TH AMERI COPPER EHORSE		ME-MS61 Th ppm 0.2	20. 8.
To: NOR 128D WHI1		ME-MS61 Te ppm 0.05	0-
Ę		ME-MS61 Ta ppm 0.05	0.62
STRY stray		ME-MS61 Sr ppm 0.2	224
AL CHEMI 218 WWW.8		ME-MS61 Sn ppm 0.2	4. 4.
NALYTIC 2C1 2C1 2C1 2C1		ME-MS61 Se ppm	∞
In the second se		ME-MS61 Sc ppm 0.1	6
ALS Canada L ALS Canada L ALS Canada L 212 Brookst North Vanco Phone: 604		ME-MS61 Sb ppm 0.05	5.55
\sim		Method Analyte Units LOR	
ALS		ple Description	2
		Sam	390

Page: 3 - E Total # Pages: 3 (A - E) Plus Appendix Pages Finalized Date: 10-APR-2008 Account: NORTUN	TR08024596		
To: NORTH AMERICAN TUNGSTEN CORP LTD. 128D COPPER ROAD WHITEHORSE YT Y1A 226	CERTIFICATE OF ANALYSIS		
ALS CHEREX EXCELLENCE IN ANALYTICAL CHEMISTRY ALS Canada Ltd. 212 Brooksbank Avenue 212 Brooksbank Avenue North Vancouver BC V7J 2C1 Phone: 604 984 0221 Fax: 604 984 0218 www.alschermex.com		ME-MS61 Zr ppm 0.5	13
ALS		Method Analyte Units Sample Description Log	36041

APPENDIX

APPENDIX B ALS ENVIRONMENTAL SHAKE FLASK ANALYTICAL CERTIFICATE

ALS Laboratory Group ANALYTICAL CHEMISTRY & TESTING SERVICES

Environmental Division

10

		ANALYTICAL RE	EPORT		
EBA ENGINEERING	CONSULTANTS LTD.				
ATTN: SCOTT DAV	IDSON				
CALCITE BUSINESS CENTREReported On:03-JUN-08 05:47 FUNIT 6 - 151 INDUSTRIAL ROADRevision: 3WHITEHORSE YT Y1A 2V3					
Lab Work Order #:	L629653		Date Receive	ed: 14-MAY-08	
Project P.O. #:	NOT SUBMITTED				
Job Reference:	W23101021.015				
Legal Site Desc:					
CofC Numbers:	C006544				
Other Information:					
Comments:					
		1			
		1			
		Th			
		Nhow .			
	Joyce C Genera	l Manager, Vancouver			
I	For any questions abou	t this report please con	tact your Account Manager:		
		Andre Langla	is		
		-			

THIS REPORT SHALL NOT BE REPRODUCED EXCEPT IN FULL WITHOUT THE WRITTEN AUTHORITY OF THE LABORATORY. ALL SAMPLES WILL BE DISPOSED OF AFTER 30 DAYS FOLLOWING ANALYSIS. PLEASE CONTACT THE LAB IF YOU REQUIRE ADDITIONAL SAMPLE STORAGE TIME.

ALS Canada Ltd. Part of the ALS Laboratory Group 1988 Triumph Street, Vancouver, BC V5L 1K5 Phone: +1 604 253 4188 Fax: +1 604 253 6700 www.alsglobal.com A Campbell Brothers Limited Company
L629653 CONTD PAGE 2 of 8

PAGE	2	01	0
03-JUN-	80	17:4	45

	Sample ID Description Sampled Date Sompled Time	L629653-1 09-MAY-08	L629653-2 09-MAY-08	L629653-3 09-MAY-08	L629653-4 09-MAY-08	L629653-5 09-MAY-08
	Client ID	WQ-1	WQ-1A	WQ-2	WQ-2A	WQ-3
Grouping	Analyte					
WATER						
Physical Tests	Anion Sum (meq/L)	3.9	6.2	2.8	2.4	1.4
	Cation Sum (meq/L)	3.9	6.3	2.6	2.5	1.4
	Cation - Anion Balance (%)	0.1	0.1	-3.4	1.3	2.2
	Hardness (as CaCO3) (mg/L)	178	308	128	123	70.5
	Conductivity (uS/cm)	395	606	302	275	150
	рН (рН)	7.86	7.87	7.37	6.11	7.32
	Total Dissolved Solids (mg/L)	251	435	185	177	104
	Total Suspended Solids (mg/L)	<3.0	8.9	23.9	20.4	6.4
	Turbidity (NTU)	0.14	0.10	15.0	16.9	2.31
Anions and Nutrients	Ammonia as N (mg/L)	<0.0050	0.0052	<0.0050	<0.0050	0.0105
	Alkalinity, Total (as CaCO3) (mg/L)	64.2	73.7	19.2	2.9	27.5
	Chloride (Cl) (mg/L)	1.08	<0.50	<0.50	<0.50	<0.50
	Fluoride (F) (mg/L)	0.433	0.207	0.190	0.152	0.081
	Sulfate (SO4) (mg/L)	121	228	113	114	39.4
	Nitrate (as N) (mg/L)	0.0218	0.0658	0.0555	0.0560	0.0087
	Nitrite (as N) (mg/L)	<0.0010	<0.0010	0.0039	<0.0010	<0.0010
	Total Phosphate as P (mg/L)	0.0091	0.0034	0.0290	0.0246	0.026
Cyanides	Cyanide, Total (mg/L)	<0.0050	<0.0050	0.0077	<0.0050	0.0110
Total Metals	Aluminum (Al)-Total (mg/L)	0.0187	0.014	4.06	3.50	0.232
	Antimony (Sb)-Total (mg/L)	<0.00050	<0.0010	<0.00050	<0.00050	<0.00050
	Arsenic (As)-Total (mg/L)	0.00061	<0.0010	0.00060	<0.00050	0.00068
	Barium (Ba)-Total (mg/L)	0.065	0.042	0.051	0.055	0.037
	Beryllium (Be)-Total (mg/L)	<0.0010	<0.0020	<0.0010	<0.0010	<0.0010
	Boron (B)-Total (mg/L)	<0.10	<0.10	<0.10	<0.10	<0.10
	Cadmium (Cd)-Total (mg/L)	0.000735	0.00109	0.00500	0.00550	0.000084
	Calcium (Ca)-Total (mg/L)	64.7	109	35.9	30.6	15.8
	Chromium (Cr)-Total (mg/L)	<0.0010	<0.0020	<0.0010	<0.0010	<0.0010
	Cobalt (Co)-Total (mg/L)	<0.00030	<0.00060	0.00976	0.0109	0.00080
	Copper (Cu)-Total (mg/L)	0.0014	<0.0020	0.0164	0.0079	0.0022
	Iron (Fe)-Total (mg/L)	0.097	0.062	1.23	1.54	0.608
	Lead (Pb)-Total (mg/L)	<0.00050	<0.0010	<0.00050	<0.00050	<0.00050
	Lithium (Li)-Total (mg/L)	<0.0050	<0.010	0.0084	0.0076	<0.0050
	Magnesium (Mg)-Total (mg/L)	4.51	9.00	9.11	11.0	6.88
	Manganese (Mn)-Total (mg/L)	0.00184	0.00116	0.153	0.132	0.0514
	Mercury (Hg)-Total (mg/L)	<0.000020	<0.000020	<0.000020	<0.000020	<0.000020
	Molybdenum (Mo)-Total (mg/L)	0.0036	0.0055	0.0013	<0.0010	<0.0010
	Nickel (Ni)-Total (mg/L)	0.0074	0.0106	0.107	0.132	0.0055
	Potassium (K)-Total (mg/L)	<2.0	<2.0	<2.0	<2.0	<2.0

L629653 CONTD.... PAGE 3 of 8 03-JUN-08 17:45

Grouping	Sample ID Description Sampled Date Sampled Time Client ID Analyte	L629653-6 09-MAY-08 10:20 WQ-4		
WATER				
Physical Tests	Anion Sum (mea/L)	. 1.5		
	Cation Sum (meq/L)	1.6		
	Cation - Anion Balance (%)	2.0		
	Hardness (as CaCO3) (mg/L)	76.9		
	Conductivity (uS/cm)	165		
	pH (pH)	7.36		
	Total Dissolved Solids (mg/L)	113		
	Total Suspended Solids (mg/L)	29.9		
	Turbidity (NTU)	7.92		
Anions and Nutrients	Ammonia as N (mg/L)	0.0085		
	Alkalinity, Total (as CaCO3) (mg/L)	24.0		
	Chloride (Cl) (mg/L)	<0.50		
	Fluoride (F) (mg/L)	0.178		
	Sulfate (SO4) (mg/L)	48.7		
	Nitrate (as N) (mg/L)	0.0135		
	Nitrite (as N) (mg/L)	<0.0010		
	Total Phosphate as P (mg/L)	0.029		
Cyanides	Cyanide, Total (mg/L)	0.0144		
Total Metals	Aluminum (Al)-Total (mg/L)	1.01		
	Antimony (Sb)-Total (mg/L)	<0.00050		
	Arsenic (As)-Total (mg/L)	0.00058		
	Barium (Ba)-Total (mg/L)	0.042		
	Beryllium (Be)-Total (mg/L)	<0.0010		
	Boron (B)-Total (mg/L)	<0.10		
	Cadmium (Cd)-Total (mg/L)	0.000824		
	Calcium (Ca)-Total (mg/L)	18.2		
	Chromium (Cr)-Total (mg/L)	<0.0010		
	Cobalt (Co)-Total (mg/L)	0.00201		
	Copper (Cu)-Total (mg/L)	0.0052		
	Iron (Fe)-Total (mg/L)	0.654		
	Lead (Pb)-Total (mg/L)	<0.00050		
	Lithium (Li)-Total (mg/L)	<0.0050		
	Magnesium (Mg)-Total (mg/L)	6.95		
	Manganese (Mn)-Total (mg/L)	0.0553		
	Mercury (Hg)-Total (mg/L)	<0.000020		
	Molybdenum (Mo)-Total (mg/L)	<0.0010		
	Nickel (Ni)-Total (mg/L)	0.0206		
	Potassium (K)-Total (mg/L)	<2.0		

L629653 CONTD.... PAGE 4 of 8 03-JUN-08 17:45

	Sample ID Description Sampled Date Sampled Time Client ID	L629653-1 09-MAY-08 12:35 WQ-1	L629653-2 09-MAY-08 11:30 WQ-1A	L629653-3 09-MAY-08 11:05 WQ-2	L629653-4 09-MAY-08 13:25 WQ-2A	L629653-5 09-MAY-08 10:50 WQ-3
Grouping	Analyte					
WATER						
Total Metals	Selenium (Se)-Total (mg/L)	0.0031	0.0037	0.0026	0.0025	<0.0010
	Silver (Ag)-Total (mg/L)	<0.000020	<0.000040	<0.000020	<0.000020	<0.000020
	Sodium (Na)-Total (mg/L)	7.2	2.3	<2.0	<2.0	<2.0
	Thallium (TI)-Total (mg/L)	<0.00020	<0.00040	<0.00020	<0.00020	<0.00020
	Tin (Sn)-Total (mg/L)	<0.00050	<0.0010	<0.00050	<0.00050	<0.00050
	Titanium (Ti)-Total (mg/L)	<0.010	<0.010	<0.010	<0.010	0.011
	Uranium (U)-Total (mg/L)	0.00430	0.0193	0.00168	0.00082	0.00053
	Vanadium (V)-Total (mg/L)	<0.0010	<0.0020	0.0012	0.0011	<0.0010
	Zinc (Zn)-Total (mg/L)	0.0254	0.0371	0.350	0.441	0.0079
Dissolved Metals	Aluminum (Al)-Dissolved (mg/L)	0.0204	0.010	0.0413	0.272	0.117
	Antimony (Sb)-Dissolved (mg/L)	<0.00050	<0.0010	<0.00050	<0.00050	<0.00050
	Arsenic (As)-Dissolved (mg/L)	0.00057	<0.0010	<0.00050	<0.00050	0.00060
	Barium (Ba)-Dissolved (mg/L)	0.062	0.043	0.049	0.056	0.035
	Beryllium (Be)-Dissolved (mg/L)	<0.0010	<0.0020	<0.0010	<0.0010	<0.0010
	Boron (B)-Dissolved (mg/L)	<0.10	<0.10	<0.10	<0.10	<0.10
	Cadmium (Cd)-Dissolved (mg/L)	0.000721	0.000385	0.00433	0.00538	0.000095
	Calcium (Ca)-Dissolved (mg/L)	63.7	108	36.2	30.8	16.4
	Chromium (Cr)-Dissolved (mg/L)	<0.0010	<0.0020	<0.0010	<0.0010	<0.0010
	Cobalt (Co)-Dissolved (mg/L)	<0.00030	<0.00060	0.00918	0.0109	0.00071
	Copper (Cu)-Dissolved (mg/L)	0.0016	<0.0020	0.0041	0.0050	0.0022
	Iron (Fe)-Dissolved (mg/L)	0.056	0.050	<0.030	0.068	0.361
	Lead (Pb)-Dissolved (mg/L)	<0.00050	<0.0010	<0.00050	<0.00050	<0.00050
	Lithium (Li)-Dissolved (mg/L)	<0.0050	<0.010	0.0081	0.0077	<0.0050
	Magnesium (Mg)-Dissolved (mg/L)	4.53	9.19	9.08	11.2	7.14
	Manganese (Mn)-Dissolved (mg/L)	0.00228	0.00116	0.148	0.131	0.0480
	Mercury (Hg)-Dissolved (mg/L)	<0.000020	<0.000020	<0.000020	<0.000020	<0.000020
	Molybdenum (Mo)-Dissolved (mg/L)	0.0037	0.0055	0.0010	<0.0010	<0.0010
	Nickel (Ni)-Dissolved (mg/L)	0.0076	0.0109	0.101	0.132	0.0053
	Potassium (K)-Dissolved (mg/L)	<2.0	<2.0	<2.0	<2.0	<2.0
	Selenium (Se)-Dissolved (mg/L)	0.0032	0.0035	0.0023	0.0024	<0.0010
	Silver (Ag)-Dissolved (mg/L)	<0.000020	<0.000040	<0.000020	<0.000020	<0.000020
	Sodium (Na)-Dissolved (mg/L)	7.0	2.3	<2.0	<2.0	<2.0
	Thallium (TI)-Dissolved (mg/L)	<0.00020	<0.00040	<0.00020	<0.00020	<0.00020
	Tin (Sn)-Dissolved (mg/L)	<0.00050	<0.0010	<0.00050	<0.00050	<0.00050
	Titanium (Ti)-Dissolved (mg/L)	<0.010	<0.010	<0.010	<0.010	<0.010
	Uranium (U)-Dissolved (mg/L)	0.00416	0.0184	<0.00020	<0.00020	0.00044
	Vanadium (V)-Dissolved (mg/L)	<0.0010	<0.0020	<0.0010	<0.0010	<0.0010
	Zinc (Zn)-Dissolved (mg/L)	0.0237	0.0309	0.281	0.441	0.0099

L629653 CONTD.... PAGE 5 of 8 03-JUN-08 17:45

	Sample ID Description Sampled Date Sampled Time Client ID	L629653-6 09-MAY-08 10:20 WQ-4		
Grouping	Analyte			
WATER				
Total Metals	Selenium (Se)-Total (mg/L)	<0.0010		
	Silver (Ag)-Total (mg/L)	<0.000020		
	Sodium (Na)-Total (mg/L)	<2.0		
	Thallium (TI)-Total (mg/L)	<0.00020		
	Tin (Sn)-Total (mg/L)	<0.00050		
	Titanium (Ti)-Total (mg/L)	<0.010		
	Uranium (U)-Total (mg/L)	0.00079		
	Vanadium (V)-Total (mg/L)	<0.0010		
	Zinc (Zn)-Total (mg/L)	0.0616		
Dissolved Metals	Aluminum (Al)-Dissolved (mg/L)	0.142		
	Antimony (Sb)-Dissolved (mg/L)	<0.00050		
	Arsenic (As)-Dissolved (mg/L)	<0.00050		
	Barium (Ba)-Dissolved (mg/L)	0.041		
	Beryllium (Be)-Dissolved (mg/L)	<0.0010		
	Boron (B)-Dissolved (mg/L)	<0.10		
	Cadmium (Cd)-Dissolved (mg/L)	0.000770		
	Calcium (Ca)-Dissolved (mg/L)	19.0		
	Chromium (Cr)-Dissolved (mg/L)	<0.0010		
	Cobalt (Co)-Dissolved (mg/L)	0.00178		
	Copper (Cu)-Dissolved (mg/L)	0.0042		
	Iron (Fe)-Dissolved (mg/L)	0.169		
	Lead (Pb)-Dissolved (mg/L)	<0.00050		
	Lithium (Li)-Dissolved (mg/L)	<0.0050		
	Magnesium (Mg)-Dissolved (mg/L)	7.18		
	Manganese (Mn)-Dissolved (mg/L)	0.0508		
	Mercury (Hg)-Dissolved (mg/L)	<0.000020		
	Molybdenum (Mo)-Dissolved (mg/L)	<0.0010		
	Nickel (Ni)-Dissolved (mg/L)	0.0197		
	Potassium (K)-Dissolved (mg/L)	<2.0		
	Selenium (Se)-Dissolved (mg/L)	<0.0010		
	Silver (Ag)-Dissolved (mg/L)	<0.000020		
	Sodium (Na)-Dissolved (mg/L)	<2.0		
	Thallium (TI)-Dissolved (mg/L)	<0.00020		
	Tin (Sn)-Dissolved (mg/L)	<0.00050		
	Titanium (Ti)-Dissolved (mg/L)	<0.010		
	Uranium (U)-Dissolved (mg/L)	0.00030		
	Vanadium (V)-Dissolved (mg/L)	<0.0010		
	Zinc (Zn)-Dissolved (mg/L)	0.0479		

Reference Information

L629653 CONTD.... PAGE 6 of 8 03-JUN-08 17:45

Methods Listed (if ap	plicable):		
ALS Test Code	Matrix	Test Description	Analytical Method Reference(Based On)
ALK-COL-VA	Water	Alkalinity by Colourimetric (Automated)	APHA 310.2
This analysis is carried colourimetric method.	out using proc	cedures adapted from EPA Method 310.2 "Alkalinity". T	otal Alkalinity is determined using the methyl orange
ANIONS-CL-IC-VA	Water	Chloride by Ion Chromatography	APHA 4110 "Determination of Anions by IC
This analysis is carried 300.0 "Determination of nitrate, nitrite and sulph	out using proo Inorganic An ate.	cedures adapted from APHA Method 4110 "Determinat ions by Ion Chromatography". Anions routinely determine	ion of Anions by Ion Chromatography" and EPA Method ned by this method include: bromide, chloride, fluoride,
ANIONS-F-IC-VA	Water	Fluoride by Ion Chromatography	APHA 4110 "Determination of Anions by IC
This analysis is carried 300.0 "Determination of nitrate, nitrite and sulph	out using proo Inorganic An ate.	cedures adapted from APHA Method 4110 "Determinat ions by Ion Chromatography". Anions routinely determine	ion of Anions by Ion Chromatography" and EPA Method ned by this method include: bromide, chloride, fluoride,
ANIONS-NO2-IC-VA	Water	Nitrite by Ion Chromatography	APHA 4110 "Determination of Anions by IC
This analysis is carried 300.0 "Determination of nitrate, nitrite and sulph	out using proo Inorganic An ate.	cedures adapted from APHA Method 4110 "Determinat ions by Ion Chromatography". Anions routinely determine	ion of Anions by Ion Chromatography" and EPA Method ned by this method include: bromide, chloride, fluoride,
ANIONS-NO3-IC-VA	Water	Nitrate by Ion Chromatography	APHA 4110 "Determination of Anions by IC
This analysis is carried 300.0 "Determination of nitrate, nitrite and sulph	out using proo Inorganic An ate.	cedures adapted from APHA Method 4110 "Determinat ions by Ion Chromatography". Anions routinely determine	ion of Anions by Ion Chromatography" and EPA Method ned by this method include: bromide, chloride, fluoride,
ANIONS-SO4-IC-VA	Water	Sulfate by Ion Chromatography	APHA 4110 "Determination of Anions by IC
This analysis is carried 300.0 "Determination of nitrate, nitrite and sulph	out using proc f Inorganic An ate.	cedures adapted from APHA Method 4110 "Determinat ions by Ion Chromatography". Anions routinely determined the second s	ion of Anions by Ion Chromatography" and EPA Method ned by this method include: bromide, chloride, fluoride,
CN-T-MID-HH-COL-VA	Water	Total Cyanide by HH Distillation	APHA 4500-CN "Cyanide"
This analysis is carried determined by sample of	out using proc distillation and	cedures adapted from APHA Method 4500-CN "Cyanid analysis using the chloramine-T colourimetric method.	e". Total or strong acid dissociable (SAD) cyanide are
EC-PCT-VA	Water	Conductivity (Automated)	APHA 2510 Auto. Conduc.
This analysis is carried electrode.	out using proc	cedures adapted from APHA Method 2510 "Conductivit	y". Conductivity is determined using a conductivity
HARDNESS-CALC-VA	Water	Hardness	APHA 2340B
Hardness is calculated	from Calcium	and Magnesium concentrations, and is expressed as c	alcium carbonate equivalents.
HG-DIS-CCME-CVAFS	- Water	Diss. Mercury in Water by CVAFS (CCME)	EPA 3005A/245.7
VA This analysis is carried American Public Health States Environmental P involves a cold-oxidation analysis is by cold vapo	out using proc Association, Protection Age n of the acidifi our atomic fluo	cedures adapted from "Standard Methods for the Exam and with procedures adapted from "Test Methods for E ncy (EPA). The procedures may involve preliminary sa ied sample using bromine monochloride prior to reducti rescence spectrophotometry (EPA Method 245.7).	ination of Water and Wastewater" published by the valuating Solid Waste" SW-846 published by the United mple treatment by filtration (EPA Method 3005A) and on of the sample with stannous chloride. Instrumental
HG-TOT-CCME-CVAFS	- Water	Total Mercury in Water by CVAFS (CCME)	EPA 245.7
VA This analysis is carried American Public Health	out using proc	cedures adapted from "Standard Methods for the Exam	ination of Water and Wastewater" published by the valuating Solid Waste" SW-846 published by the United

American Public Health Association, and with procedures adapted from "Test Methods for Evaluating Solid Waste" SW-846 published by the United States Environmental Protection Agency (EPA). The procedure involves a cold-oxidation of the acidified sample using bromine monochloride prior to reduction of the sample with stannous chloride. Instrumental analysis is by cold vapour atomic fluorescence spectrophotometry (EPA Method 245.7).

L629653 CONTD.... PAGE 7 of 8

Reference Information

Methods Listed (if applicable):

ALS Test Code	Matrix	Test Description	Analytical Method Reference(Based On)

IONBALANCE-VA Water Ion Balance Calculation

Cation Sum, Anion Sum, and Ion Balance (as % difference) are calculated based on guidance from APHA Standard Methods (1030E Checking Correctness of Analysis). Because all aqueous solutions are electrically neutral, the calculated ion balance (% difference of cations minus anions) should be near-zero.

Cation and Anion Sums are the total meq/L concentration of major cations and anions. Dissolved species are used where available. Minor ions are included where data is present. Ion Balance is calculated as:

Ion Balance (%) = [Cation Sum-Anion Sum] / [Cation Sum+Anion Sum]

MET-DIS-CCME-ICP-VA Water

Diss. Metals in Water by ICPOES (CCME)

This analysis is carried out using procedures adapted from "Standard Methods for the Examination of Water and Wastewater" published by the American Public Health Association, and with procedures adapted from "Test Methods for Evaluating Solid Waste" SW-846 published by the United States Environmental Protection Agency (EPA). The procedures may involve preliminary sample treatment by acid digestion, using either hotblock or microwave oven, or filtration (EPA Method 3005A). Instrumental analysis is by inductively coupled plasma - optical emission spectrophotometry (EPA Method 6010B).

MET-DIS-CCME-MS-VA Water

Diss. Metals in Water by ICPMS (CCME)

This analysis is carried out using procedures adapted from "Standard Methods for the Examination of Water and Wastewater" published by the American Public Health Association, and with procedures adapted from "Test Methods for Evaluating Solid Waste" SW-846 published by the United States Environmental Protection Agency (EPA). The procedures may involve preliminary sample treatment by acid digestion, using either hotblock or microwave oven, or filtration (EPA Method 3005A). Instrumental analysis is by inductively coupled plasma - mass spectrometry (EPA Method 6020A).

MET-TOT-CCME-ICP-VA Water

Total Metals in Water by ICPOES (CCME)

This analysis is carried out using procedures adapted from "Standard Methods for the Examination of Water and Wastewater" published by the American Public Health Association, and with procedures adapted from "Test Methods for Evaluating Solid Waste" SW-846 published by the United States Environmental Protection Agency (EPA). The procedures may involve preliminary sample treatment by acid digestion, using either hotblock or microwave oven, or filtration (EPA Method 3005A). Instrumental analysis is by inductively coupled plasma - optical emission spectrophotometry (EPA Method 6010B).

MET-TOT-CCME-MS-VA Water

Total Metals in Water by ICPMS (CCME)

This analysis is carried out using procedures adapted from "Standard Methods for the Examination of Water and Wastewater" published by the American Public Health Association, and with procedures adapted from "Test Methods for Evaluating Solid Waste" SW-846 published by the United States Environmental Protection Agency (EPA). The procedures may involve preliminary sample treatment by acid digestion, using either hotblock or microwave oven, or filtration (EPA Method 3005A). Instrumental analysis is by inductively coupled plasma - mass spectrometry (EPA Method 6020A).

NH3-COL-VA

VA Water Ammonia by Color

Water

APHA 4500-NH3 "Nitrogen (Ammonia)"

This analysis is carried out, on unpreserved samples, using procedures adapted from APHA Method 4500-NH3 "Nitrogen (Ammonia)". Ammonia is determined using the phenate colourimetric method.

PH-PCT-VA

Water pH by Meter (Automated)

APHA 4500-H "pH Value"

APHA 1030E

EPA SW-846 3005A/6010B

EPA SW-846 3005A/6020A

EPA SW-846 3005A/6010B

EPA SW-846 3005A/6020A

This analysis is carried out using procedures adapted from APHA Method 4500-H "pH Value". The pH is determined in the laboratory using a pH electrode

PO4-T-COL-VA

Water Total Phosphate P by Color

APHA 4500-P "Phosphorous"

This analysis is carried out using procedures adapted from APHA Method 4500-P "Phosphorus". All forms of phosphate are determined by the ascorbic acid colourimetric method. Dissolved ortho-phosphate (dissolved reactive phosphorous) is determined by direct measurement. Total phosphate (total phosphorous) is determined after persulphate digestion of a sample. Total dissolved phosphate (total dissolved phosphorous) is determined by filtering a sample through a 0.45 micron membrane filter followed by persulfate digestion of the filtrate.

TDS-VA

Total Dissolved Solids by Gravimetric

APHA 2540 C - GRAVIMETRIC

This analysis is carried out using procedures adapted from APHA Method 2540 "Solids". Solids are determined gravimetrically. Total Dissolved Solids (TDS) are determined by filtering a sample through a glass fibre filter, TDS is determined by evaporating the filtrate to dryness at 180 degrees celsius.

Reference Information

Methods Listed (if applicable):

ALS Test Code	Matrix	Test Description	Analytical Method Reference(Based On)
TSS-VA	Water	Solids by Gravimetric	APHA 2540 D - GRAVIMETRIC

This analysis is carried out using procedures adapted from APHA Method 2540 "Solids". Solids are determined gravimetrically. Total Suspended Solids (TSS) are determined by filtering a sample through a glass fibre filter, TSS is determined by drying the filter at 104 degrees celsius.

TURBIDITY-VA Water Turbidity by Meter

APHA 2130 "Turbidity"

This analysis is carried out using procedures adapted from APHA Method 2130 "Turbidity". Turbidity is determined by the nephelometric method.

** Laboratory Methods employed follow in-house procedures, which are generally based on nationally or internationally accepted methodologies. The last two letters of the above ALS Test Code column indicate the laboratory that performed analytical analysis for that test. Refer to the list below:

Laboratory Definition Code	Laboratory Location	Laboratory Definition Code	Laboratory Location
VA	ALS LABORATORY GROUP - VANCOUVER, BC, CANADA		

GLOSSARY OF REPORT TERMS

Surr - A surrogate is an organic compound that is similar to the target analyte(s) in chemical composition and behavior but not normally detected in environmental samples. Prior to sample processing, samples are fortified with one or more surrogate compounds.

The reported surrogate recovery value provides a measure of method efficiency.

mg/kg (units) - unit of concentration based on mass, parts per million

mg/L (units) - unit of concentration based on volume, parts per million

N/A - Result not available. Refer to qualifier code and definition for explanation

Test results reported relate only to the samples as received by the laboratory. UNLESS OTHERWISE STATED, ALL SAMPLES WERE RECEIVED IN ACCEPTABLE CONDITION. Although test results are generated under strict QA/QC protocols, any unsigned test reports, faxes, or emails are considered preliminary.

ALS Laboratory Group has an extensive QA/QC program where all analytical data reported is analyzed using approved referenced procedures followed by checks and reviews by senior managers and quality assurance personnel. However, since the results are obtained from chemical measurements and thus cannot be guaranteed, ALS Laboratory Group assumes no liability for the use or interpretation of the results.

SERVICE REQUESTED RUGH SERVICE (DEFAULT) RUGH SERVICE (DAY or ASAP) PRIORITY SERVICE (1 DAY or ASAP) EMERGENCY SERVICE (1 DAY OF ASAP) EMERGENCY SERVIC
6 m W

APPENDIX

APPENDIX C VANCOUVER PETROGRAPHICS MINERALOGICAL ASSESSMENT REPORT

- C1. Reconstructed Percent Distribution of Minerals in Ore. Dave Tenney NATCL 2008.
- C2. 2008 Vancouver Petrographics Mineralogical Thin Section Report

		R	ECONSTRU	CTED % DISR	IBUTION OF	MINERALS IN	ORE				
	PE	ETROGRAPH	IC DESCRIP	TIONS BY VA	NCOUVER PE	ETROGRAPHI	CS (2008) AN	ID FINDLAY	(1969)		
		(AS	SUMED TO E	BE 5% DILUTI	ON FROM BO	TH UNITS 1 A	ND 3C)				
UNIT	1	1	1	2B	2B	2B	2B	2B	3C	3C	
ROCK TYPE	3**	4**	5**	1**	1/**	**/1	2**	7**	3**	6**	TOTAL
% CONTENT IN ORE	0.76	3.06	1.18	14.08	15.65	23.55	31.71	5.02	3.63	1.37	100.01
MINERAL											
PLAGIOCLASE	0.44	1.07	0.65	1.69	8.22	0.35	8.24		2.15	1.02	23.83
QUARTZ	0.09	0.75	0.02	5.28	0.70	11.19	5.95	0.10	0.86	0.09	25.03
BIOTITE	0.16	0.22	0.13						0.18	0.01	0.71
PHLOGOPITE				0.63	3.52						4.15
SERICITE		0.82	0.30						0.07	0.10	1.29
DIOPSIDE						7.65	14.46	0.08			22.19
TREMOLITE/ACTINOLITE							0.55	0.03	0.00		0.58
PYRILE	0.01	0.04	0.00	1.00	0.44	2.00	4.00		0.07	0.00	2.01
	0.02	0.04	0.02	4.29	2.11	0.47	1.68		0.07	0.09	8.34
CHLORITE/BIOTTE	0.00			0.21	0.05	0.47	0.05				0.78
	0.01	0.00		0.21	0.11	0.35	0.05		0.05		0.73
MUSCOVITE	0.02	0.00		0.56		0.01	0.00	474	0.05		0.64
	0.00					0.31	0.02	4.74	0.01		5.07
	0.00	0.00							0.00		0.00
		0.00	0.00						0.00		0.00
7100001		0.04	0.02						0.09		0.15
											0.00
			0.00								0.00
			0.00	0.25	0.11	0.25	0.05				0.00
				0.35	0.11	0.35	0.03				0.60
				0.10		0.02	0.40				0.52
						0.07	0.03			0.00	0.10
						0.07	0.02			0.00	0.07
FLUORITE(2)							0.02		0.03		0.02
									0.00		0.00
SPHENE									0.00		0.00
CARBONACEOUS									1	0.05	0.05
TOTAL	0.75	2.94	1.15	13.33	14.82	22.84	31.49	4.94	3.52	1.37	97.17
						n.b. Mineral per	rcentages in pet	rographic descri	ptions do not ad	ld up to 100%.	

Report 080418 for: David Tenney, Northern American Tungsten Exploration, Ltd., 128D Copper Road, Whitehorse, YT, Y1A 2Z6

April 2008

Project: Mactung (Acid Base Accounting)

Samples: 36002, 36003, 36005, 36006, 36007, 36008, 36012, 36015, 36018, 36021, 36024, 36025, 36026, 36027, 36029, 36034, 36035, 36037, 36038, 36040

Summary:

Sample 36002 MT79130 30.78-31.70 m is of hornfels dominated by plagioclase with lesser quartz and biotite and with minor pyrite. At one end is a patch a few mm across of pyrrhotite with moderately abundant quartz, much less abundant chlorite and pyrite, and minor chalcopyrite. A vein is of quartz-(pyrite). A veinlet is of quartz.

Sample 36003 MT79117 160.32-161.24 m is of weakly to moderately foliated hornfels, much of which is dominated by an intergrowth of plagioclase, biotite, and much less abundant quartz, with minor disseminated pyrrhotite. Colourless lensy mottles and veinlike patches consist of intergrowths of plagioclase and sericite/muscovite with much less abundant quartz and minor pyrrhotite. A few veinlike zones of coarser grained plagioclase-pyrrhotite are rimmed by envelopes enriched moderately in biotite. Several subparallel wispy skeletal veinlets are of pyrrhotite with minor patches of sphalerite and chalcopyrite. A veinlet is of quartz with lenses of pyrrhotite.

Sample 36005 MT72051 101.50-102.41 is of weakly foliated, slightly mottled phyllite dominated by plagioclase and sericite with much less abundant biotite, and Mineral X, and minor quartz and ilmenite. A slightly branching banded veinlet is of opal(?). A much narrower veinlet is of calcite.

Sample 36006 MT79129 39.01-39.62 m is of mottled metamorphosed siltstone/mudstone that contains two main assemblages; a finer grained one dominated by plagioclase with lesser sericite and much less abundant quartz and biotite and minor ilmenite/Ti-oxide, and a coarser grained one dominated by quartz with lesser biotite and pyrrhotite. The second one may be in part at least of replacement origin. A few seams are rich in biotite. A veinlet is of calcite.

Sample 36007 MT72053 78.94-79.55 m is of very weakly foliated metamorphosed mudstone that is dominated by plagioclase with lesser sericite and biotite, much less abundant clinozoisite, and minor disseminated pyrrhotite and quartz. A veinlet is of quartz-biotite-pyrrhotite.

Sample 36008 MT79129 26.82-27.74 m is of slightly banded hornfelsed mudstone and is dominated by sericite with lesser plagioclase and biotite, with minor pyrrhotite, quartz and ankerite. Darker bands contain more abundant biotite, plagioclase, and pyrrhotite, whereas lighter bands contain more sericite. A veinlet is of quartz with patches of scheelite and minor ones of chalcopyrite. A few wispy veinlets parallel to compositional banding are of quartz, pyrrhotite, and biotite.

Sample 36012 M72040 107.90-108.81 m contains three main types of zones, labelled A, B, and C on the scanned section. Zone A consists of a well foliated intergrowth of phlogopite, plagioclase, and pyrrhotite, with disseminated grains of scheelite and one lens dominated by chlorite. Zone B consists of an intergrowth of quartz and pyrrhotite with lesser muscovite, apatite, and scheelite. Zone C is dominated by plagioclase.

Sample 36015 MT72057 100.58-102.11 is of skarn that contains various zones with different textures and mineralogies. Some patches are relatively uniform in texture and are dominated by plagioclase and lesser phlogopite/biotite with disseminated pyrrhotite and minor patches of quartz and scheelite. Some patches are dominated by pyrrhotite with lesser biotite and plagioclase. Scheelite forms disseminated grains. A delicately banded veinlet is of chlorite.

Sample 36018 MT72057 80.77-82.30 m is of patchy zoned skarn dominated by diopside (altered slightly to completely to limonite-chlorite/smectite), plagioclase, and quartz, with patches of pyrite (probably after pyrrhotite) and much less abundant chalcopyrite, and disseminated grains of scheelite and patches of ankerite. A few veinlets are of calcite-pyrite-chlorite/smectite.

Sample 36021 M72059 189.92-90.53 m is of metamorphosed latite that contains patches of variable host rock dominated by plagioclase with much less abundant pyrrhotite and tremolite/actinolite, and replacement patches dominated by quartz and pyrrhotite with disseminated grains of apatite and minor scheelite, and patches of chlorite. Apatite, pyrrhotite, and scheelite are concentrated along the margins of the host rock and replacement patches.

Sample 36024 MT79129 90.83-91.44 m is of massive skarn dominated by diopside with much less abundant plagioclase and pyrrhotite. Pyrrhotite is concentrated in bands and patches. A coarser grained veinlet at one end is dominated by plagioclase. A veinlet is of slightly coarser grained diopside and pyrrhotite. A veinlet is of calcite with lesser epidote and minor tremolite. A few veinlets of epidote contain minor chalcopyrite and pyrrite.

Sample 36025 MT72027 93.27-93.88 m is of slightly foliated hornfelsed siltstone dominated by plagioclase and quartz, with much less abundant sericite/muscovite, Mineral X, biotite, and pyrrhotite. A veinlet is of quartz-pyrrhotite-(chalcopyrite) and a smaller veinlet is of quartz. An irregular veinlet is of fluorite(?) with a vuggy centreline containing minor patches of calcite.

Sample 36026 MT71022 25.60-26.21 m is of slightly banded hornfels that is dominated by plagioclase and lesser quartz, with much less abundant sericite/muscovite, minor pyrrhotite and biotite, and trace epidote. A few veinlets are of quartz with lenses of pyrrhotite; some of these contain patches of sphalerite and of chalcopyrite. A quartz-rich veinlet has an envelope containing moderately abundant K-feldspar. A few late braided veinlets are of zeolite. A few veinlets are of fluorite.

Sample 36027 MT71022 52.43-53.34 m is of slightly banded hornfels composed of plagioclase with much less abundant biotite and quartz. Mineral X is concentrated strongly in a band 3.5 mm wide that cuts across compositional banding. A coarser grained lens consists of quartz with scattered grains of allanite.

Sample 36029 MT71022 48.46-49.38is of pelite that contains abundant dusty carbonaceous opaque that obscures the optical properties of the silicates. Silicates are dominated by plagioclase with much less abundant sericite and minor quartz. No other transparent minerals could be recognized. Pyrrhotite forms abundant disseminated patches and lenses. A few lenses parallel to foliation are of pyrrhotite-quartz. A large veinlet is of quartz and pyrrhotite with lesser biotite-(sericite) and much less chalcopyrite. A veinlet is of limonite.

Sample 36034 2007-BH4 4.00-4.40 m is of well foliated metamorphosed carbonaceous pelite that contains minor coarser, possibly detrital grains of quartz and plagioclase in a groundmass of cryptocrystalline material, probably dominated by plagioclase with moderately abundant dusty carbonaceous opaque and disseminated patches of pyrrhotite (altered moderately to secondary Feminerals) and minor patches of Ti-oxide. One ragged porphyroblastic patch contains abundant elongate grains of orthoamphibole(?) in subparallel orientation. Some larger patches consist of cores of pyrrhotite partly surrounded by Ti-oxide and rimmed by quartz. A few lenses, in part elongated parallel to foliation, are of quartz, pyrrhotite, and pyrite, with minor to moderately abundant chlorite and minor chalcopyrite.

Sample 36035 2007-BH4 4.97-5.07 m is of slightly banded skarn that contains disseminated equant garnet grains in a matrix of extremely fine grained tremolite with ragged, slightly coarser grains of diopside. Minor minerals include ankerite and quartz. A veinlet on one side of the section is of Mineral Y. Veinlets on fractures in the core sample are of calcite.

Sample 38037 2007-BH21 8.55-8.82 m is of metamorphosed shale that contains disseminated, subrounded to lensy patches of calcite and minor ones of quartz in a moderately foliated matrix that contains very abundant carbonaceous opaque that obscures the optical properties of the other matrix minerals (probably plagioclase with lesser calcite and sericite). A braided veinlet is of quartz with lesser calcite and much less pyrite and sericite.

Sample 36038 2007-BH21 11.68-11.93 m is of slightly foliated carbonaceous limestone dominated by calcite with moderately abundant disseminated dusty carbonaceous opaque. A network of irregular veinlets consists of calcite, chlorite/biotite, minor pyrite and quartz, and trace chalcopyrite.

Sample 36040 2007-BH22 8.48-8.79 m is of slightly to locally moderately contorted metamorphosed ankeritic mudstone dominated by plagioclase with abundant carbonaceous opaque and moderately abundant ankerite, and minor grains of quartz, some of which may be of detrital origin. A few strongly contorted veinlets are of calcite and pyrrhotite, with much less abundant quartz and sericite/muscovite.

Mineralogy Notes

Mineral X occurs in several samples of hornfels. It forms patches, mainly less than 0.1 mm in size of cryptocrystalline grains. It has a moderate to high relief with a R.I. less than that of plagioclase and quartz. It is isotropic or nearly so. It is soft.

Mineral Y forms one vein. It is moderately hard (4-5), has a low relief and is colourless with very low birefringence (0.002).

One complex porphyroblast was tentatively identified as orthoamphibole. It has parallel extinction and otherwise fits the properties of tremolite.

The presence of abundant carbonaceous opaque in the black and dark grey samples obscures the optical properties of the translucent minerals in transmitted light. Thus, identification of these minerals, mainly plagioclase, with lesser sericite, and carbonates is tentative.

Photographic Notes:

The scanned section shows the gross textural features of the sections; these features are seen much better on the digital image than on the printed image. Photo numbers are shown in the lower left corner of the photographs. The letter in the lower right-hand corner indicates the lighting conditions: P = plane light, X = plane light in crossed nicols, R = reflected light, RP = reflected light and plane light, RX = reflected light and plane light in almost crossed nicols, and XR = reflected light in crossed nicols. Locations of photographs are shown on the scanned sections. Descriptions of the photographs are at the end of the report.

John G. Payne, Ph.D., P.Geol. Tel: (604)-597-1080 Fax: (604)-597-1080 (call first) email: jgpayne@telus.net

Sample 36002 MT79130 30.78-31.70 m Hornfels Replacement: Pyrrhotite/Pyrite-Quartz-(Chlorite-Chalcopyrite) Veinlets: Quartz-Pyrite-(Chalcopyrite); Quartz

The sample is of hornfels dominated by plagioclase with lesser quartz and biotite and with minor pyrite. At one end is a patch a few mm across of pyrrhotite with moderately abundant quartz, much less abundant chlorite and pyrite, and minor chalcopyrite. A vein is of quartz-(pyrite). A veinlet is of quartz.

mineral	percentage	main grain size range (mm)				
plagioclase	60-65%	0.01-0	.03	(a few up to 0.05 mm)		
quartz	12-15	0.01-0	.03	(a few up to 0.05 mm)		
biotite	12-15	0.02-0	.03			
pyrite	1-2	0.02-0	.05			
replacement						
pyrrhotite	3-4	0.1-0.7	7			
quartz	2-3	0.07-0	.2			
biotite/chlorite	0.5	0.01-0	.02			
pyrite	0.2	0.2-0.7	7			
chalcopyrite	0.1	0.1-0.5	5			
veinlets						
1) quartz-pyrite-((chalcopyrite)	2-3	0.07-0.15			
[chlorite-musc	covite-calcite]	0.3	(0.02 - 0.05)	in envelope about veinlet		
2) quartz	minor	0.02-0	.03			

Plagioclase and lesser quartz form anhedral, equant grains.

Biotite forms disseminated stubby flakes that show a weakly preferred orientation that defines a weak foliation.

Pyrite forms disseminated anhedral grains and trains of a few grains.

A replacement patch at one end of the section consists of pyrrhotite and lesser submosaic quartz, with scattered patches of biotite/chlorite and chalcopyrite. Locally, pyrrhotite was altered to pyrite. Chalcopyrite is most common in quartz-rich patches. Hematite forms selvages between quartz grains.

A veinlet up to 0.5 mm wide is dominated by submosaic quartz with scattered anhedral grains of pyrite, in part along selvages between quartz grains. Some patches of pyrite are intergrown with non-reflective material in textures that suggest that the intergrowths are secondary after pyrrhotite. Chalcopyrite forms scattered grains in quartz. In an envelope up to 0.25 mm wide about the veinlet, biotite was altered to chlorite and/or muscovite and calcite forms scattered patches.

A diffuse veinlet up to 0.05 mm wide is dominated by submosaic quartz.

Sample 36003 MT79117 160.32-161.24 m Mottled Hornfels Veinlets: Quartz-Pyrrhotite; Plagioclase-Pyrrhotite-[Biotite]; Pyrrhotite

The sample is of weakly to moderately foliated hornfels, much of which is dominated by an intergrowth of plagioclase, biotite, and much less abundant quartz, with minor disseminated pyrrhotite. Colourless lensy mottles and veinlike patches consist of intergrowths of plagioclase and sericite/muscovite with much less abundant quartz and minor pyrrhotite. A few veinlike zones of coarser grained plagioclase-pyrrhotite are rimmed by envelopes enriched moderately in biotite. Several subparallel wispy skeletal veinlets are of pyrrhotite with minor patches of sphalerite and chalcopyrite. A veinlet is of quartz with lenses of pyrrhotite.

mineral	percentage	main grain size range (mm)
plagioclase	50-55%	0.02-0.05
biotite	25-30	0.02-0.05
quartz	7-8	0.02-0.05
muscovite	5-7	0.02-0.04
pyrrhotite	1-2	0.02-0.07
veinlets		
1) plagioclase-	pyrrhotite 1-2	0.03-0.06
2) quartz-pyrrh	otite 0.5	0.03-0.07
3) pyrrhotite-(s	sphalerite-chalco	pyrite) 1-2 0.01-0.03

The host rock consists of an intimate intergrowth of plagioclase, biotite, and lesser quartz. Plagioclase is altered slightly to sericite. Biotite is pleochroic from pale to light/medium reddish brown.

Interconnected irregular colourless lenses up to several mm long that are elongated parallel to foliation consist of plagioclase and sericite/muscovite (probably after biotite).

Pyrrhotite forms disseminated lenses that are elongated parallel to foliation. A few patches up to 1 mm in size of pyrrhotite were altered completely to intimate intergrowths of pyrite and non-reflective material.

A few diffuse veinlets are of slightly coarser grained plagioclase with disseminated patches of pyrrhotite. These are bordered by envelopes up to a few mm wide with diffuse margins that contain more abundant biotite than normal.

A veinlet up to 0.1 mm wide is of submosaic quartz with a few lenses of pyrrhotite and minor patches of chalcopyrite and sphalerite.

A few wispy subparallel discontinuous strongly braided veinlets up to 0.15 mm wide are of pyrrhotite that is intergrown with host-rock minerals. Associated with one of these veinlets is a lens of coarser grained sulphides dominated by pyrite (after pyrrhotite) with a lens containing abundant sphalerite and lesser chalcopyrite.

Sample 36005 MT72051 101.50-102.41 Phyllite Veinlets: Opal(?); Calcite

The sample is of weakly foliated, slightly mottled phyllite dominated by plagioclase and sericite with much less abundant biotite, and Mineral X, and minor quartz and ilmenite. A slightly branching banded veinlet is of opal(?). A much narrower veinlet is of calcite.

mineral	percentage	main grain size range (mm)
plagioclase	40-45%	0.005-0.015
sericite	40-45	0.01-0.02
biotite	5-7	0.01-0.02
Mineral X	2-3	cryptocrystalline-0.015
quartz	1	0.03-0.05
ilmenite	0.2	0.02-0.05
muscovite	trace	0.1-0.2
veinlets		
1) opal(?)	0.3	amorphous
2) calcite	minor	0.02-0.07

Much of the rock is dominated by an intimate intergrowth of plagioclase and sericite, with lesser biotite and Mineral X, and minor disseminated ilmenite. Sericite is concentrated slightly to moderately in patches up to 0.5 mm in size, giving the rock a weakly mottled texture.

Mineral X has moderate to high relief and low birefringence and is soft; it forms aggregates of anhedral grains mainly intergrown with biotite.

In a few places the rock has a more strongly mottled texture produced by oval-shaped to irregular patches up to 0.7 mm in size of sericite-biotite-(plagioclase-ilmenite) that are set in a matrix dominated by sericite with only minor plagioclase, biotite, and ilmenite. In the biotite-rich envelopes of the veinlets, sericite-rich mottles up to 0.7 mm in size that are free of ilmenite and relatively free of biotite are surrounded by a matrix of plagioclase-sericite with 3-5% disseminated biotite flakes and 0.5% disseminated ilmenite grains.

Quartz forms scattered equant grains that may be of detrital origin. Ilmenite forms disseminated equant to tabular grains. Muscovite forms a few very slender flakes.

One lensy patch up to a few mm long consists of submosaic quartz (0.03-0.05 mm) with abundant disseminated patches (0.03-0.05 mm) of pyrrhotite, a few of which also contain chalcopyrite, and less abundant interstitial flakes of biotite. A few patches up to 1.5 mm in size consist of aggregates of submosaic quartz (0.03-0.07 mm) with disseminated flakes of biotite (0.015-0.02 mm); one of these also contains disseminated pyrrhotite as in the largest patch described earlier in the paragraph.

A delicately banded, slightly branching veinlet up to 0.2 mm wide is of a hard, colourless isotropic mineral with negative relief; it may be opal.

An irregular veinlet 0.015-0.02 mm wide is of calcite.

Sample 36006 MT79129 39.01-39.62 m

Metamorphosed Siltstone/Mudstone Veinlet: Calcite

The sample is of mottled metamorphosed siltstone/mudstone that contains two main assemblages; a finer grained one dominated by plagioclase with lesser sericite and much less abundant quartz and biotite and minor ilmenite/Ti-oxide, and a coarser grained one dominated by quartz with lesser biotite and pyrrhotite. The second one may be in part at least of replacement origin. A few seams are rich in biotite. A veinlet is of calcite.

mineral	percentage	main grain s	size range (mm)
detrital grains			
quartz	trace	0.2-0.4	
groundmass			
quartz	45-50%	0.03-0.07	
plagioclase	25-30	0.01-0.02	
sericite	10-12	0.01-0.03	
biotite	5-7	0.03-0.07	
pyrrhotite	2-3	0.05-0.1	
muscovite	0.2	0.05-0.15	
Ti-oxide	0.1	cryptocrystal	lline-0.03
zircon	minor	0.03-0.05	(a few grains up to 0.08 mm long)
tourmaline	minor	0.05-0.08	
chalcopyrite	trace	0.02-0.04	
veinlets, seams			
1) biotite-rich	2-3	0.03-0.07	
1) calcite	minor	0.02-0.05	

A few rounded quartz grains from 0.2-0.4 mm in size probably are detrital in origin.

Finer grained zones and bands are dominated by slightly interlocking plagioclase with much less abundant sericite and scattered to moderately abundant, coarser equant grains of quartz (0.05-0.07 mm). Some bands contain disseminated grains and wispy seams of Ti-oxide; trains of these grains define a weak foliation which may be primary. In places these zones have sharp contacts with coarser grained zones, and in places the boundaries are gradational.

The coarser grained zones are up to 1.5 cm in size and are generally oval in outline. They are dominated by equant quartz grains with disseminated patches of biotite and patches of pyrrhotite, mainly less than 0.2 mm in size, with a few up to 0.3 mm across. Biotite is pleochroic from light to medium orangish brown. Chalcopyrite forms a few patches, mainly associated with pyrrhotite.

Tourmaline also forms disseminated grains, some of which are colour-zoned concentrically from light to medium green cores to paler yellowish green rims.

Zircon forms disseminated anhedral equant grains and a few subhedral prismatic grains.

A few seams up to 0.5 mm wide are dominated by biotite. These contain scattered anhedral to subhedral prismatic grains of tournaline with pleochroism from neutral to light orange-brown. They are mainly subparallel to trains of Ti-oxide in the finer grained parts of the section.

A slightly irregular veinlet up to 0.03 mm wide is of calcite.

Sample 36007 MT72053 78.94-79.55 m

Metamorphosed Mudstone Veinlet: Quartz-Biotite-Pyrrhotite

The sample is very weakly foliated and is dominated by plagioclase with lesser sericite and biotite, much less abundant clinozoisite, and minor disseminated pyrrhotite and quartz. A veinlet is of quartz-biotite-pyrrhotite.

mineral	percentage	main grain size range (mm)
plagioclase	65-70%	0.01-0.03
sericite	17-20	0.01-0.03
biotite	7-8	0.01-0.03
Mineral X	3-4	0.005-0.01
pyrrhotite	0.5	0.02-0.07
quartz	0.2	0.03-0.05
veinlet		
1) quartz-biotite	-pyrrhotite 2-	3 0.03-0.05

Plagioclase forms equant, slightly to moderately interlocking grains. It commonly contains dusty opaque inclusions that give the grains a light grey colour.

Sericite and lesser biotite form equant unoriented flakes. Biotite is pleochroic from pale to light brown. In the central band of the section, sericite and minor biotite are concentrated moderately to strongly in disseminated mottles up to 1 mm in size. A weak yellow stain in this party of the rock may be due to minor K-feldspar intergrown with plagioclase between the mottles.

Mineral X forms disseminated patches mainly from 0.05-0.1 mm in size of cryptocrystalline aggregates. It has moderate relief, low birefringence, and is soft. It is concentrated in the paler coloured, central band of the section between the mottles.

Pyrrhotite forms disseminated grains and patches up to 0.1 mm in size.

Quartz forms disseminated, equant grains.

A veinlet up to 1 mm wide consists of an intimate intergrowth of quartz, biotite, and pyrrhotite. A much smaller subparallel lens is of quartz and pyrrhotite.

Sample 36008 MT79129 26.82-27.74 m Hornfelsed Meta-mudstone Veinlets: Quartz-Scheelite-(Chalcopyrite); Quartz-Biotite-Pyrrhotite

The sample is slightly banded and is dominated by sericite with lesser plagioclase and biotite, with minor pyrrhotite, quartz and ankerite. Darker bands contain more abundant biotite, plagioclase, and pyrrhotite, whereas lighter bands contain more sericite. A veinlet is of quartz with patches of scheelite and minor ones of chalcopyrite. A few wispy veinlets parallel to compositional banding are of quartz, pyrrhotite, and biotite.

mineral	percentage	main	grain s	ize range (mm)
plagioclase	40-45%	0.01-0	0.02	
sericite	30-35	0.02-0	0.04	
biotite	12-15	0.02-0).04	
pyrrhotite	2	0.02-0	0.05	
ankerite	0.5	0.07-0).2	
quartz	0.2	0.02-0	0.05	
veinlet				
1) quartz-sch	eelite-(chalcopyri	te)	2-3	0.1-0.15 (qz, sc); 0.03-0.1 (cp); 0.03-0.05 (sl)
envelope s	ericite			
2) quartz-bio	tite-pyrrhotite-(an	kerite)	2	0.03-0.05

Much of the rock is dominated by an intergrowth of plagioclase and biotite with much less abundant sericite. The thick band at one end of the section is dominated by sericite with lesser biotite and much less abundant plagioclase. Banding is defined by variations in the abundances of sericite and biotite. The rock was folded tightly about axial planes at a high angle to compositional banding, but contacts of compositional layers cut across the foliation.

Pyrrhotite forms disseminated anhedral patches. It is concentrated moderately in wispy seams parallel to compositional banding. A few pyrrhotite patches contain a patch up to 0.03 mm in size of chalcopyrite.

Ankerite forms disseminated porphyroblastic grains.

Quartz forms disseminated, equant grains.

A veinlet up to 0.5 mm wide is dominated by equant grains of quartz and lesser ones of scheelite. Chalcopyrite forms minor grains along the margin of the veinlet. Sphalerite forms minor red-brown grains, in part associated with chalcopyrite. Bordering the veinlet is a zone up to 0.7 mm wide dominated by tightly contorted sericite/muscovite with much less abundant biotite and trace tourmaline. Outwards from this is a second alteration envelope dominated by biotite with lesser plagioclase and clinozoisite(?), and minor sericite and pyrrhotite.

A few partly contorted veinlets mainly less than 0.4 mm wide and locally up to 0.7 mm wide are dominated by quartz with generally lesser biotite and pyrrhotite. Some contain patches of ankerite. The largest contains minor chalcopyrite associated with a few patches of pyrrhotite.

Sample 36012 M72040 107.90-108.81 m

Plagioclase-Plagioclase-Chlorite-Pyrrhotite-Scheelite Schist Replacement 1: Quartz-Pyrrhotite-Apatite-Scheelite-(Chalcopyrite) Replacement 2: Plagioclase

The sample contains three main types of zones, labelled A, B, and C on the scanned section. Zone A consists of a well foliated intergrowth of phlogopite, plagioclase, and pyrrhotite, with disseminated grains of scheelite and one lens dominated by chlorite. Zone B consists of an intergrowth of quartz and pyrrhotite with lesser muscovite, apatite, and scheelite. Zone C is dominated by plagioclase.

mineral	percentage	main grain size range (mm)		
Zone A	(15-17% of s	section)		
plagioclase	5-7%	0.03-0.07		
phlogopite	4-5	0.05-0.2	(a few up to 0.4 mm long)	
chlorite	1-2	0.03-0.05		
pyrrhotite	1-2	0.05-0.2		
scheelite	1-2	0.05-0.2	(a few grains up to 1 mm)	
Zone B	(70-75% of s	section)		
quartz	35-40%	1-2		
pyrrhotite	25-30	0.05-0.2		
muscovite	2-3	0.05-0.2		
scheelite	1	0.1-0.3	(a few up to 1 mm, one grain 1.7 mm across)	
apatite	0.5	0.05-0.7		
chalcopyrite	1-2	0.07-0.5	(a few patches up to 1 mm long)	
Zone C	(7-8% of see	ction)		
plagioclase	5-7	0.03-0.07		
sericite/muscovite	1-2	0.03-0.3		
pyrrhotite	1-2	0.03-0.07		
apatite	0.2	0.05-0.2		

In Zone A, phlogopite forms elongate flakes oriented parallel to foliation; pleochroism is from pale to light brown. Plagioclase forms anhedral grains intergrown with phlogopite; grain size varies moderately between lenses. Pyrrhotite forms elongated patches intergrown finely with phlogopite and plagioclase. Scheelite forms disseminated anhedral equant grains. Chlorite is concentrated strongly in several lenses up to 1 mm wide parallel to foliation, in which it forms elongate colourless to pale green flakes parallel to foliation.

In Zone B, quartz forms anhedral, equant grains, some of which contain minor to abundant inclusions of phlogopite and lesser ones of chlorite. Pyrrhotite and lesser chalcopyrite form irregular patches up to a few mm across that are intergrown coarsely to moderately with quartz and phlogopite. Scheelite forms disseminated anhedral equant grains and clusters of grains; a few coarser grains are skeletal in outline and appear to have been corroded by quartz and phlogopite. Apatite forms subhedral to euhedral prismatic grains from 0.2-0.8 mm long; some of which are included in quartz and some of which are included in pyrrhotite. Apatite also forms clusters of subhedral to euhedral prismatic grains (0.05-0.15 mm long) that are included in coarser quartz grains.

	(continued)
Sample 36012 M72040 107.90-108.81 m	(page 2)

Zone C is dominated by strongly interlocking, unoriented plagioclase grains. In places, plagioclase is intergrown intimately with patches of pyrrhotite and elsewhere with phlogopite, mainly along its margins against Zone B. Apatite forms disseminated grains that are concentrated in a few parts of the zone, and commonly occur in pyrrhotite of Zone B adjacent to plagioclase of Zone C. Sericite/muscovite forms ragged, in part subradiating patches up to 1 mm in size. Along the margin with Zone B some large quartz grains contain abundant inclusions of plagioclase similar to that in Zone C.

Sample 36015 MT72057 100.58-102.11 Skarn: Plagioclase-Phlogopite/Biotite-Pyrrhotite-Quartz-(Chalcopyrite-Scheelite) Veinlets: Chlorite

The sample contains various zones with different textures and mineralogies. Some patches are relatively uniform in texture and are dominated by plagioclase and lesser phlogopite/biotite with disseminated pyrrhotite and minor patches of quartz and scheelite. Some patches are dominated by pyrrhotite with lesser biotite and plagioclase. Scheelite forms disseminated grains. A delicately banded veinlet is of chlorite.

mineral	percentage	main grain size range (mm)
plagioclase	50-55	0.03-0.5 (a few up to 1 mm)
phlogopite/biotite	20-25	0.05-0.1
pyrrhotite	12-15	0.05-0.2
quartz	4-5	0.3-0.8
chalcopyrite	0.7	0.05-0.2
scheelite	0.7	0.07-0.3
veinlets		
1) chlorite	0.3	cryptocrystalline

Plagioclase forms anhedral to locally subhedral grains that vary widely in grain size from patch to patch. It generally is intergrown slightly to moderately with phlogopite/biotite and pyrrhotite.

Phlogopite/biotite forms clusters of flakes with pleochroism from pale to light/medium brown. It is concentrated moderately to strongly in some patches where it is intergrown with lesser pyrrhotite and plagioclase.

Pyrrhotite is concentrated strongly in pyrrhotite-rich patches that are intergrown moderately along their margins with phlogopite/biotite and lesser plagioclase. In places, pyrrhotite forms sieve-textured interstitial patches enclosing subhedral plagioclase grains.

Scheelite forms anhedral, commonly irregular grains, mainly included in patches of phlogopite/biotite. Some grains have skeletal outlines.

Quartz is concentrated in one patch several mm across that contains much less abundant patches of pyrrhotite, plagioclase, and phlogopite/biotite. Quartz also forms scattered patches up to a few mm in size intergrown mainly with coarser grained plagioclase and minor pyrrhotite and phlogopite/biotite. Some small patches contain an equant grain of scheelite.

A delicately banded veinlet 0.25 mm wide and a few smaller veinlets are of pale yellow to light olive green chlorite. Near the main veinlet are a few smaller veinlets and a few patches where chlorite replaced phlogopite.

Sample 36018 MT72057 80.77-82.30 m

Skarn: Quartz-Diopside-Pyrite-Scheelite-Chalcopyrite-Plagioclase-Epidote Alteration: Chlorite/Smectite, Limonite Veinlets: Calcite-Pyrite-Chlorite/Smectite

The sample is of patchy zoned skarn dominated by diopside (altered slightly to completely to limonite-chlorite/smectite), plagioclase, and quartz, with patches of pyrite (probably after pyrrhotite) and much less abundant chalcopyrite, and disseminated grains of scheelite and patches of ankerite. A few veinlets are of calcite-pyrite-chlorite/smectite.

mineral	percentage	main grain size range (mm)
quartz	45-50%	0.5-1.5 a few up to 2 mm long)
diopside	30-35	0.05-0.2 (a few up to 1 mm across)
pyrite	7-8	0.2-1
chalcopyrite	1-2	0.05-0.3
scheelite	1-2	0.1-0.7
chlorite/smectite	1-2	cryptocrystalline
plagioclase	1-2	0.05-0.3 (a few up to 1 mm across)
epidote	0.3	0.2-0.7
calcite	0.3	0.05-0.3
limonite	0.3	cryptocrystalline/amorphous
apatite	0.1	0.1-0.2
veinlet		

1) calcite-pyrite-chlorite/smectite 2-3 0.05-0.2 (ct, py); 0.02-0.03 (cl/sm)

Quartz forms anhedral grains, most of which contain minor to moderately abundant ragged equant inclusions of diopside (0.05-0.15 mm).

Diopside forms anhedral, mainly equant submosaic grains, in part intergrowth coarsely with plagioclase. In places it is fresh and in others it was altered moderately to completely to chlorite/smectite and limonite.

Pyrite forms mainly anhedral patches that contain dusty non-reflective inclusions; textures suggest that pyrite was formed by replacement of pyrrhotite. Some pyrite patches are surrounded by zones of dark brown limonite.

Chalcopyrite forms anhedral patches up to 0.5 mm in size, in part associated with pyrite.

Pyrrhotite forms scattered anhedral grains that were replaced moderately inwards from their margins by limonite. Pyrrhotite commonly is associated with pyrite.

Chlorite/smectite forms patches up to 0.5 mm in size adjacent to and interstitial to large patches of pyrite. Chlorite/smectite is light to medium greenish brown.

Scheelite forms anhedral, in part irregular grains mainly intergrown with diopside and pyrite. One scheelite cluster is 2.5 mm across.

Plagioclase is concentrated strongly in a few patches up to 2 mm across in which it forms anhedral equant grains intergrown coarsely with diopside.

Epidote is concentrated in a few patches of anhedral grains commonly bordering chalcopyrite, which is in part altered to limonite along its margins.

Ankerite/calcite forms anhedral grains intergrown with a few patches of pyrite and altered diopside.

(continued)

Limonite forms patches up to 0.5 mm in size adjacent to and interstitial to pyrite. A patch 1 mm across consists of an aggregate of anhedral to subhedral prismatic apatite grains.

Several slightly braided veinlets up to 0.5 mm wide are mainly of calcite and pyrite, with much less abundant patches of chlorite/smectite.

Sample 36021 M72059 189.92-90.53 m Metamorphosed Latite Replacement: Quartz-Pyrrhotite-Apatite

The sample contains patches of variable host rock dominated by plagioclase with much less abundant pyrrhotite and tremolite/actinolite, and replacement patches dominated by quartz and pyrrhotite with disseminated grains of apatite and minor scheelite, and patches of chlorite. Apatite, pyrrhotite, and scheelite are concentrated along the margins of the host rock and replacement patches.

mineral	percentage	main grai	n size range (mm)
host rock			
plagioclase	40-45%	0.05-0.1	(some patches from 0.5-1 mm)
pyrrhotite	4-5	0.1-1	
tremolite/actinolite	3-4	0.05-0.15	
chalcopyrite	0.3	0.05-0.2	
scheelite	0.3	0.1-0.3	
epidote	0.1	0.2-0.5	
scapolite(?)	0.1	0.1-0.2	
pyrite	minor	0.1	
replacement			
quartz	35-40	0.3-1	(a few up to 2 mm)
plagioclase	4-5	0.2-0.5	-
pyrrhotite	2-3	0.1-0.2	
apatite	2-3	0.2-1	

The host rock is dominated by aggregates of plagioclase grains that are mainly in the range from 0.05-0.15 mm, with a few patches up to a few mm across with grains in the range from 0.5-1.2 mm. One patch 2 mm long contains abundant subhedral wedge-shaped grains of sphene with lesser interstitial plagioclase and pyrrhotite.

Pyrrhotite forms disseminated patches of anhedral grains.

Tremolite/actinolite is concentrated in a few bands and patches that range from anhedral to fan textured. Pleochroism ranges from colourless to pale green to pale green to light green.

Along the margin of patches of host rock are coarser grained aggregates that contain clusters of apatite, pyrrhotite, and scheelite.

Epidote forms a few anhedral grains associated with patches of chalcopyrite.

Scheelite forms disseminated equant grains.

Scapolite(?) forms a few grains associated with a patch of chalcopyrite and epidote.

Pyrite forms a few anhedral equant grains associated with larger patches of chalcopyrite and pyrrhotite.

A replacement patch up to 20 mm long and a few much smaller ones are dominated by aggregates of anhedral, slightly recrystallized quartz, some grains of which have slightly sutured borders.

Plagioclase forms subhedral to euhedral grains that were altered slightly to sericite.

Pyrrhotite forms irregular patches and a few seams, some of which are concentrated on the border of the replacement patch.

Apatite forms disseminated subhedral to euhedral grains and clusters of a few anhedral to subhedral grains. It is very abundant along the margin of the replacement zones with the host rock.

Sample 36024MT79129 90.83-91.44 m Diopside-(Plagioclase-Pyrrhotite) Skarn Veinlets: Plagioclase; Diopside-Pyrrhotite; Calcite-Epidote(?); Epidote(?)

The sample is of massive skarn dominated by diopside with much less abundant plagioclase and pyrrhotite. Pyrrhotite is concentrated in bands and patches. A coarser grained veinlet at one end is dominated by plagioclase. A veinlet is of slightly coarser grained diopside and pyrrhotite. A veinlet is of calcite with lesser epidote and minor tremolite. A few veinlets of epidote contain minor chalcopyrite and pyrite.

mineral	percentage	e mai	n grain size range (mm)	
diopside	90-92%	0.01	5-0.02; 0.05-0.08	
plagioclase	4-5	0.01	.5-0.02	
pyrrhotite	3-4	0.03	3-0.05	
veinlets				
1) plagioclase	0.5	5 0.1-	0.3	
2) diopside-pyrrh	otite 0.3	3 0.07	-0.15	
3) calcite-epidote) calcite-epidote(?)-(tremolite[?]) 0.3 0.05-0.08			
4) epidote(?)-(ch	alcopyrite-p	yrite)	0.1 0.02-0.05	

Diopside forms a granular aggregate of equant grains.

Plagioclase is concentrated slightly to moderately in certain layers parallel to banding outlined by pyrrhotite-rich bands.

Pyrrhotite is concentrated moderately to strongly in parallel bands that may define original bedding. Many grains are surrounded by pyrite, suggesting that pyrite formed by replacement of pyrrhotite.

Chalcopyrite forms disseminated anhedral grains, mainly associated with pyrite.

Two veinlets up to 0.1 mm wide are dominated by pyrrhotite-pyrite with lesser chalcopyrite.

A veinlet up to 0.1 mm wide is of slightly coarser grained diopside (0.5-0.008 mm) and patches of pyrrhotite.

A veinlet 0.07 mm wide is of calcite and lesser epidote(?), with scattered acicular grains of tremolite(?).

A few discontinuous veinlets up to 0.3 mm wide are of epidote(?) with minor disseminated chalcopyrite and pyrite (0.01-0.03 mm).

Sample 36025 MT72027 93.27-93.88 m Hornfels Veinlets: Quartz, Quartz-Pyrrhotite, Fluorite(?)-(Calcite)

The sample is of slightly foliated hornfelsed siltstone dominated by plagioclase and quartz, with much less abundant sericite/muscovite, Mineral X, biotite, and pyrrhotite. A veinlet is of quartz-pyrrhotite-(chalcopyrite) and a smaller veinlet is of quartz. An irregular veinlet is of fluorite(?) with a vuggy centreline containing minor patches of calcite.

mineral	percentage	main grain size range (mm)		
plagioclase	55-60%	0.01-0.03		
quartz	17-20	0.02-0.03		
sericite/muscovite	e 5-7	0.01-0.03		
Mineral X	3-4	cryptocrystalline		
pyrrhotite	2-3	0.03-0.05		
biotite	1	0.02-0.04		
chalcopyrite	trace	0.02-0.04		
veins, veinlets				
1) quartz-pyrrhotite-(chalcopyrite) 4-5 0.1-0.5				
2) fluorite(?)-(cal	lcite) $2-3$	0.2-0.5		

The hornfels is dominated by a uniform intergrowth of equant plagioclase and less abundant quartz.

Sericite/muscovite and lesser biotite form disseminated flakes, most of which are oriented parallel to foliation. Biotite is pleochroic from pale to light brown.

Mineral X has moderate relief is colourless and moderately soft with very low birefringence. It forms patches up to 0.1 mm in size of cryptocrystalline grains.

Pyrrhotite forms disseminated lenses that show a slightly preferred elongation parallel to foliation. It is concentrated slightly to strongly in wispy lenses parallel to foliation

Chalcopyrite forms scattered patches associated with pyrrhotite.

A vein from 1.5-2 mm wide with slightly irregular borders is dominated by coarse patches of pyrrhotite and of quartz. Chalcopyrite forms scattered patches up to 0.1 mm in size within patches of quartz. A second veinlet 0.6 mm wide is of quartz; it has sharp planar borders.

An irregular, warped veinlet up to 0.8 mm wide is dominated by fluorite(?) with minor calcite along its vuggy centreline.

Sample 36026 MT71022 25.60-26.21 m Hornfels Veinlets: Quartz-Pyrrhotite-(Sphalerite-Chalcopyrite); Quartz; Fluorite

The sample is of slightly banded hornfels that is dominated by plagioclase and lesser quartz, with much less abundant sericite/muscovite, minor pyrrhotite and biotite, and trace epidote. A few veinlets are of quartz with lenses of pyrrhotite; some of these contains patches of sphalerite and of chalcopyrite. A quartz-rich veinlet has an envelope containing moderately abundant K-feldspar. A few late braided veinlets are of zeolite. A few veinlets are of fluorite.

mineral	percentage	main grain size range (mm)		
plagioclase	55-60%	0.01-0.03		
quartz	25-30	0.02-0.05		
sericite/muscovite	e 4-5	0.02-0.03	(a few up to 0.1 mm)	
pyrrhotite	1	0.03-0.07		
biotite	0.7	0.02-0.03		
Mineral X	0.7	cryptocrystalli	ine	
tremolite	0.2	0.08-0.12		
sphalerite	0.2	0.02-0.05	(a few up to 0.15 mm long)	
chalcopyrite	trace	0.01-0.03		
ilmenite/sphene	trace	0.03-0.05		
veinlets				
1) quartz-pyrrhot	tite-(sphalerite-	chalcopyrite)	2-3 0.02-0.07	
2) quartz	2	0.02-0.05		
3) zeolite	0.3	0.015-0.03	(late veinlets)	
4) fluorite	0.1	0.05-0.07		

Quartz forms a few rounded grains from 0.05-0.07 mm in size that may be detrital in origin. These are contained in a groundmass dominated by equant, anhedral plagioclase and lesser quartz.

Sericite/muscovite and much less abundant biotite form disseminated flakes that have a moderately preferred orientation parallel to foliation.

Pyrrhotite forms disseminated equant to elongate patches, the latter up to 2 mm long. Associated with the latter are patches of light brown chlorite and minor patches of chalcopyrite and sphalerite.

Mineral X forms disseminated spots averaging 0.05 mm in size of equant cryptocrystalline grains.

Sphalerite forms equant to elongated, medium reddish brown grains and lenses, in part disseminated in silicates and in part associated with small patches of pyrrhotite.

Tremolite forms scattered subhedral to euhedral prismatic grains.

A few lenses up to 0.7 mm long are of slightly coarser grained (0.05-0.07 mm), slightly interlocking quartz.

Chalcopyrite forms disseminated grains associated with sphalerite and pyrrhotite.

Ilmenite forms a few equant anhedral grains that were replaced moderately inwards from their margins by sphene.

A veinlet 0.5 mm wide is of quartz with lenses up to several mm long containing abundant pyrrhotite intergrown with lesser quartz. Two veinlets from 0.5-1.5 mm wide are of equant quartz with minor patches of pyrrhotite with lesser chalcopyrite and sphalerite, scattered clusters of pale grey chlorite and others of ragged grains of calcite, scattered anhedral to subhedral prismatic grains of epidote, and scattered patches of fluorite up to 0.3 mm long). One of these has an envelope up to a few mm wide containing moderately abundant K-feldspar (see stained offcut block).

A few late braided veinlets up to 0.05 mm wide of zeolite cut the earlier veinlets at a high angle. A few late veinlets mainly from 0.01-0.03 mm wide and one 0.05 mm wide are of fluorite.

Sample 36027 MT71022 52.43-53.34 m Hornfels Lens: Quartz-(Allanite)

The sample is of slightly banded hornfels composed of plagioclase with much less abundant biotite and quartz. Mineral X is concentrated strongly in a band 3.5 mm wide that cuts across compositional banding. A coarser grained lens consists of quartz with scattered grains of allanite.

mineral	percentage	main grain size r	ange (mm)
plagioclase	60-65%	0.02-0.03	
quartz	17-20	0.02-0.04	
biotite	12-15	0.02-0.04	
Mineral X	3-4	cryptocrystalline	
sphene	minor	0.015-0.025	(one grain 0.07 mm across)
pyrite	trace	0.005-0.01	
lenses			
quartz-(allanite)	minor	0.1-0.2 (qz); 0.1-0	0.3 (al)

A few quartz grains from 0.05-0.06 mm across may be original detrital grains.

These are set in a slightly banded groundmass dominated by plagioclase with lesser quartz and biotite. Biotite is pleochroic from pale to light reddish brown.

Mineral X forms diffuse patches up to 0.1 mm in size of cryptocrystalline grains that contain dusty opaque. It is concentrated strongly in a band up to 3.5 mm wide that cuts compositional banding at a high angle. The contact suggests an alteration front.

Sphene forms scattered anhedral grains (0.01-0.025 mm) and one equant subhedral grain 0.07 mm across.

Pyrite forms scattered subrounded grains.

A lens 2.5 mm long by up to 0.015 mm wide is dominated by coarser grained quartz (0.1-0.2 mm) with a few grains of allanite (0.1-0.3 mm) with pleochroism from straw to light reddish brown.

Sample 36029 MT71022 48.46-49.38 Carbonaceous Pelite Veinlets: Quartz-Pyrrhotite-(Sericite-Biotite-Chalcopyrite); Limonite

The sample contains abundant dusty carbonaceous opaque that obscures the optical properties of the silicates. Silicates are dominated by plagioclase with much less abundant sericite and minor quartz. No other transparent minerals could be recognized. Pyrrhotite forms abundant disseminated patches and lenses. A few lenses parallel to foliation are of pyrrhotite-quartz. A large veinlet is of quartz and pyrrhotite with lesser biotite-(sericite) and much less chalcopyrite. A veinlet is of limonite.

mineral	percentage	main grain size range (mm)
plagioclase	72-77%	0.005-0.01
sericite	7-8	0.01-0.02
pyrrhotite	4-5	0.05-0.15
quartz	3-4	0.02-0.05
carbonaceous opaque	3-4	dusty
sphalerite	trace	0.05
chalcopyrite	trace	0.015-0.02
veinlets		
1) quartz-pyrrhotite-bio	tite-(sericite) 5	5-7 0.03-0.2 (qz, cp); 0.03-0.07 (se/bi); 0.05-0.3 (po)
1) limonite	0.2	cryptocrystalline

Plagioclase forms anhedral grains that contain dusty carbonaceous opaque.

Sericite forms stubby flakes with a moderately preferred orientation that defines a moderate foliation.

Pyrrhotite forms disseminated patches and lenses up to 0.5 mm long.

Quartz forms disseminated anhedral grains, in part alone, and in part associated with lenses and patches of pyrrhotite. A few of the quartz grains may be detrital in origin.

Carbonaceous opaque forms dusty disseminated grains that are concentrated slightly in wispy lenses parallel to foliation.

Sphalerite forms a few patches up to 0.07 mm long, in part associated with pyrrhotite. Chalcopyrite forms a few patches associated with sphalerite and with pyrrhotite.

A vein up to 2 mm wide at one end of the section is of quartz and pyrrhotite with lesser patches of biotite-sericite. Biotite is pleochroic from pale to light orangish brown. Chalcopyrite forms a few patches up to 0.4 mm in size intergrown coarsely with pyrrhotite. The veinlet is mainly parallel to foliation, but where a sericite-biotite patch extends into the vein from the edge of the host rock, the foliation is warped locally to nearly perpendicular to the veinlet. The host rock plagioclase was altered strongly to sericite in this transition zone.

A few wispy veinlets and lenses parallel to foliation up to 0.05 mm wide are of pyrrhotite and quartz.

A wispy slightly braided, en echelon veinlet up to 0.02 mm wide of orange limonite cuts across foliation at a high angle.

Sample 36034 2007-BH4 4.00-4.40 m Metamorphosed Carbonaceous Pelite

The sample is of well foliated rock that contains minor coarser, possibly detrital grains of quartz and plagioclase in a groundmass of cryptocrystalline material, probably dominated by plagioclase with moderately abundant dusty carbonaceous opaque and disseminated patches of pyrrhotite (altered moderately to secondary Fe-minerals) and minor patches of Ti-oxide. One ragged porphyroblastic patch contains abundant elongate grains of orthoamphibole(?) in subparallel orientation. Some larger patches consist of cores of pyrrhotite partly surrounded by Ti-oxide and rimmed by quartz. A few lenses, in part elongated parallel to foliation, are of quartz, pyrrhotite, and pyrite, with minor to moderately abundant chlorite and minor chalcopyrite.

mineral	percentage	main grain size range (mm)
detrital (?) grains		
quartz	1-2%	0.03-0.05
plagioclase	0.3	0.03-0.05
groundmass		
plagioclase(?)	70-75	0.005-0.01
sericite	10-12	0.005-0.01
carbonaceous opaque	2-3	dusty
pyrrhotite	0.5	0.02-0.07; 0.005-0.01
orthoamphibole(?)	0.5	0.07-0.15
Ti-oxide	0.3	0.005-0.015
pyrite	minor	0.03-0.07
chalcopyrite	trace	0.03-0.05
lenses		

quartz-pyrrhotite-pyrite-chlorite-(chalcopyrite) 0.3 0.03-0.07

A few grains of quartz from 0.03-0.07 mm in size may be of detrital origin.

The groundmass of the rock contains abundant dusty carbonaceous opaque that obscures the optical properties of the other minerals in all but the thinner margins of the section. The groundmass silicates probably are dominated by cryptocrystalline plagioclase with much less abundant quartz and sericite.

Orthoamphibole forms an irregular porphyroblastic patch up to 2 mm across of abundant prismatic grains, many of which are in subparallel orientation. The mineral is colourless, with moderate relief and moderate birefringence, length-slow with parallel extinction.

Pyrrhotite forms disseminated grains from 0.005-0.02 mm in size, and patches from 0.05-0.2 mm in size. Most larger patches were altered moderately to strongly to secondary Fe-minerals including pyrite and dusty, non-reflective material of unknown composition. Bordering many larger patches are clusters of Ti-oxide and rims of quartz (0.02-0.05 mm).

Ti-oxide forms disseminated patches from 0.02-0.05 mm in size. It commonly occurs as an outer zone in pyrrhotite patches over 0.1 mm in size.

Pyrite forms scattered anhedral grains, some of which probably are secondary after pyrrhotite. Some grains are associated with patches of quartz up to 0.1 mm in size.

Chalcopyrite forms a few patches associated with larger patches of pyrrhotite and with a few grains of pyrite.

A few lenses up to 1.5 x 0.2 mm are of quartz with patches of pyrrhotite, pyrite, chlorite, and lesser chalcopyrite.

Sample 36035 2007-BH4 4.97-5.07 m

Tremolite-Garnet-Diopside-(Ankerite) Skarn Veinlets: Calcite; Mineral Y

The sample is of skarn that contains disseminated equant garnet grains in a matrix of extremely fine grained tremolite with ragged, slightly coarser grains of diopside. Minor minerals include ankerite and quartz. A veinlet on one side of the section is of Mineral Y. Veinlets on fractures in the core sample are of calcite.

mineral	percentage	main grain	size range (m	m)
tremolite	60-65%	0.01-0.03; 0.	1-0.15 mm	(a few up to 0.2 mm)
garnet	7-8	0.3-0.7		
diopside	7-8	0.1-0.2		
ankerite	1	0.05-0.2		
veinlets				
1) calcite	1-2	0.05-0.1	(in core sam	ple only)
2) Mineral Y	0.3	0.2-0.3		

At one end of the section, garnet forms disseminated equant isotropic anhedral grains. At the other end of the section, most grains are subhedral to locally euhedral and slightly to moderately anisotropic. Some grains contain well developed growth zones of slightly different compositions. Garnet contains minor to moderately abundant ragged grains of diopside and minor to locally abundant clusters of tremolite and patches of ankerite

Diopside forms disseminated, anhedral, somewhat ragged equant grains that are intergrown with groundmass tremolite and with garnet.

Tremolite occurs in two main modes. Much of it is as a felted groundmass (0.02-0.04 mm) between garnet grains. This contains disseminated grains of diopside. Tremolite also forms scattered patches up to 0.2 mm in size of subparallel to irregular aggregates of prismatic grains.

Non-reflective, probably carbonaceous opaque forms ragged interstitial patches up to 0.2 mm in size.

Ankerite forms anhedral inclusions in garnet (0.03-0.05 mm) and a few patches (up to 1 mm) that replaced groundmass tremolite. The latter contain ragged inclusions of diopside as in the tremolite groundmass nearby.

A veinlet up to 0.4 mm wide along one corner of the section is of equant anhedral grains of Mineral Y. It is colourless, with a R.I. about 1.57 and very low birefringence (0.002).

The core sample contains a few veinlets up to 0.3 mm wide of calcite along fracture surfaces.

Sample 38037 2007-BH21 8.55-8.82 m Metamorphosed Shale Veinlet: Quartz-Calcite-Pyrite

The sample contains disseminated, subrounded to lensy patches of calcite and minor ones of quartz in a moderately foliated matrix that contains very abundant carbonaceous opaque that obscures the optical properties of the other matrix minerals (probably plagioclase with lesser calcite and sericite). A braided veinlet is of quartz with lesser calcite and much less pyrite and sericite.

mineral	percentage	main grain size range (mm)
patches, lenses		
calcite	7-8%	0.03-0.07
quartz	0.3	0.3-0.5
groundmass		
plagioclase	65-70%	0.005-0.01
carbonaceous opaque	7-8	amorphous
sericite	3-4	0.01-0.015
calcite	3-4	0.005-0.01
pyrite	2-3	0.02-0.2 (a few up to 0.5 mm, one 1.5 mm across)
Ti-oxide	0.2	0.02-0.05
veinlet		
1) quartz-calcite-pyrite	-sericite 3-4	0.01-0.02 (qz, ct, se); 0.05-0.25 (py)

Calcite forms rounded patches (0.07-0.15 mm) and lenses up to 0.3 mm long of anhedral grains The groundmass is obscured strongly by abundant carbonaceous opaque. It probably is dominated by plagioclase, with much less abundant sericite and calcite.

Pyrite forms disseminated anhedral to subhedral grains, some of which contain minor to moderately abundant tiny non-reflective inclusions. One large porphyroblastic pyrite grain straddles a small veinlet of quartz-calcite-sericite; where it intersects the veinlet, pyrite is relatively free of non-reflective inclusions, and where it intersects the host rock, it contains abundant non-reflective dusty inclusions. Many smaller pyrite grains that straddle the border of the veinlet show a similar distribution of dusty non-reflective inclusions.

Ti-oxide forms disseminated ragged patches.

Chalcopyrite forms very minor disseminated grains in patches o host rock included in the veinlet.

A braided veinlet from 0.3-1 mm wide is dominated by quartz with lesser calcite, much less abundant sericite, and scattered grains of pyrite. Quartz commonly has a slightly banded texture that commonly is at a moderate angle to the length of the veinlet. This is enhances by seams of sericite between bands of quartz. Calcite is concentrated moderately in lenses parallel to the borders of the veinlet or parallel to seams of calcite-quartz that cut across the veinlet at a moderate angle. Pyrite forms disseminated euhedral to subhedral grains. Sericite forms scattered lenses, mainly along the margins of the veinlet.

Sample 36038 2007-BH21 11.68-11.93 m Metamorphosed Carbonaceous Limestone Veinlets: Quartz-Chlorite/Biotite-Pyrite

The sample is of slightly foliated carbonaceous limestone dominated by calcite with moderately abundant disseminated dusty carbonaceous opaque. A network of irregular veinlets consist of calcite, chlorite/biotite, minor pyrite and quartz, and trace chalcopyrite.

mineral	percentage	main grain size range (mm)
calcite	90-93%	0.02-0.03
carbonaceous opaque	2-3	amorphous
pyrite	0.3	0.01-0.015; 0.03-0.05
Ti-oxide	0.1	0.005-0.015
veinlets		
1) calcite-chlorite/bioti	te-(pyrite-quart	z) 4- 5 0.03-0.05 (ct, py). 0.005-0.02 (cl)

Calcite forms anhedral, slightly interlocking grains that contain moderately abundant dusty carbonaceous opaque. Carbonaceous opaque is concentrated slightly to moderately in wispy seams that define a weak foliation.

Pyrite forms disseminated, anhedral grains (0.01-0.015 mm) and scattered coarser single grains and clusters of grains (0.03-0.05 mm). A few patches up to 0.15 mm in size consist of skeletal aggregates of pyrite that are intergrown with calcite.

A network of intersecting veinlets from 0.05-0.3 mm wide (locally up to 0.7 mm) are of calcite with patches of brownish green chlorite, and locally moderately abundant pyrite and quartz. Chlorite/biotite occurs mainly as aggregates of equant grains (0.005 mm) and locally as patches of a few flakes (0.05-0.1 mm). Much of it has low birefringence and a light greenish brown colour, suggesting that the mineral is chlorite; some patches have moderate birefringence and slightly browner colour, indicating biotite. Chalcopyrite forms a few grains associated with calcite and biotite/chlorite.

Sample 36040 2007-BH22 8.48-8.79 m Metamorphosed Ankeritic Mudstone Veinlets: Calcite-Pyrrhotite-(Quartz-Sericite/Muscovite)

The sample is of slightly to locally moderately contorted metamorphosed ankeritic mudstone dominated by plagioclase with abundant carbonaceous opaque and moderately abundant ankerite, and minor grains of quartz, some of which may be of detrital origin. A few strongly contorted veinlets are of calcite and pyrrhotite, with much less abundant quartz and sericite/muscovite.

mineral	percentage	main grain size range (mm)
plagioclase	60-65%	0.01-0.02
ankerite	8-10	0.01-0.02 (a few up to 0.07 mm)
carbonaceous opaque	7-8	amorphous
sericite	1	0.015-0.02
sphene (?)	0.7	0.005-0.01
pyrrhotite	0.7	0.01-0.03 (a few up to 0.07 mm)
quartz	0.3	0.2-0.4
chalcopyrite	minor	0.01-0.03
sphalerite	trace	0.01-0.015
veinlets		

1) calcite-pyrrhotite-(quartz-sericite/muscovite) 3-4 0.02-0.1 (ct, qz, po); 0.02-0.05 (se)

The rock is dominated by equant plagioclase grains with much less abundant ankerite.

Abundant dusty carbonaceous opaque obscures the optical properties of the other minerals in transmitted light. Some lenses contain less carbonaceous opaque than normal, and in these the other minerals can be identified.

Sericite forms disseminated stubby flakes that are oriented moderately parallel to a weak foliation.

Quartz forms scattered equant grains, many of which may be of detrital origin.

Sphene(?) forms disseminated ragged patches, mainly from 0.07-0.15 mm in size and a few up to 0.3 mm in size of aggregates of grains.

Pyrrhotite forms disseminated grains and anhedral patches, the latter up to 0.1 mm in size.

Chalcopyrite forms a few disseminated grains.

Sphalerite forms a few grains associated with chalcopyrite.

A few strongly contorted veinlets up to 1 mm wide are dominated by calcite and pyrrhotite with less abundant patches of quartz and sericite/muscovite.

List of Photographs (page 1 of 5)

Photo	Section	Description
01	36002	plagioclase-quartz-biotite hornfels cut by vein of quartz-pyrite-(chalcopyrite) that has an alteration envelope 0.3 mm wide in which biotite was altered completely to chlorite and scattered flakes of muscovite, and which contains scattered grains of calcite.
02	36002	replacement patch: pyrrhotite (altered partly to pyrite) and submosaic quartz with minor chalcopyrite (in quartz) and hematite selvages between quartz grains.
03	36003	groundmass is moderately foliated intergrowth off plagioclase and biotite with lesser quartz; replacement patch of pyrrhotite (replaced by an intimate intergrowth of pyrite and non-reflective material); skeletal veinlets and patches of pyrrhotite intergrown with the host rock.
04	36003	lower left: mottled zone of plagioclase-sericite/muscovite-(quartz) with minor disseminated lenses of pyrrhotite; upper right: plagioclase-biotite-(quartz)
(main		rock) with lenses of pyrrhotite; veinlet of quartz-pyrrhotite with somewhat diffuse margins.
05	36005	top left: coarser grained patch of quartz with disseminated pyrrhotite and biotite; main rock contains spheroidal to irregular patches of sericite- (plagioclase) in a matrix of plagioclase-biotite-sericite with disseminated
grains		of ilmenite.
06	36005	weakly mottled zone with diffuse patches of sericite-biotite-(plagioclase- ilmenite) enclosed in a matrix dominated by sericite with minor biotite, plagioclase, and ilmenite.
07 and	36005	variable host rock, with patches dominated by plagioclase with lesser biotite
and		sericite and minor ilmenite, and others dominated by sericite and plagioclase with minor biotite; one replacement patch dominated by quartz with lesser plagioclase, biotite, and pyrrhotite, and minor chalcopyrite; finely banded veinlet of opal(?).
08	36006	to the left: extremely fine grained band rich in plagioclase with lesser biotite, dusty Ti-oxide, and scattered quartz grains; to the right this grades into a zone with more abundant quartz and biotite and less plagioclase and Ti-oxide; right half: replacement zone of quartz with disseminated patches of biotite and of pyrrhotite with trace relic zircon; lower left corner: veinlet of calcite.
09	36006	to the left: one large, probably detrital quartz grain in a groundmass of quartz with lesser biotite and pyrrhotite with trace zircon; to the right: coarser

(possibly detrital) quartz grains in a finer grained groundmass dominated by plagioclase with lesser biotite and sericite and minor ilmenite/Ti-oxide. List of Photographs (page 2 of 5)

Photo	Section	Description
10	36007	groundmass of plagioclase with much less abundant biotite and disseminated pyrrhotite surrounds ragged mottles dominated by sericite with much less abundant plagioclase, biotite, and pyrrhotite.
11	36007	host rock: plagioclase with lesser biotite and sericite and minor disseminated pyrrhotite; veinlet of quartz-biotite-pyrrhotite with narrow envelope in which biotite is more abundant than in the host rock.
12	36008	to the left: outer envelope on vein composed of biotite, plagioclase, clinozoisite(?), with much less abundant sericite and pyrrhotite; in the centre: inner envelope dominated by contorted sericite/muscovite with trace tourmaline and minor pyrrhotite; to the right: vein of quartz with disseminated patches of scheelite and minor ones of chalcopyrite.
13	36008	sericite-biotite-plagioclase host rock cut by veinlet of sericite-ankerite- pyrrhotite-quartz (roughly outlined by the dashed yellow line); veinlet was folded, boudinaged, and offset by a shear fold parallel to foliation.
14	36012	Zone A: intergrowth of plagioclase and phlogopite, with lenses of pyrrhotite and irregular grains of scheelite.
15	36012	Zone B: coarser grained quartz with finer grained scheelite and minor apatite and phlogopite, intergrown with patches of pyrrhotite and lesser chalcopyrite.
16	36012	contact: Zone C: extremely fine grained plagioclase with patches of sericite- muscovite and minor pyrrhotite; Zone B: coarse quartz with inclusions of plagioclase and minor ones of phlogopite and pyrite; patch of scheelite
adjace	nt	to large patch of pyrrhotite with minor chalcopyrite.
17	36015	intergrowth of plagioclase, phlogopite/biotite, and pyrrhotite, with a few irregular grains of scheelite (mainly in phlogopite/biotite.
18	36015	subhedral to euhedral plagioclase grains (altered in a few patches to sericite) with interstitial patches of pyrrhotite and minor chalcopyrite.
19	36015	pyrrhotite -rich zone with band of phlogopite; cut by delicately banded veinlet of chlorite, with patches of chlorite replacing phlogopite near the veinlet; smaller wispy veinlets also are of chlorite.
20 scheeli	36018	intergrowth of diopside and plagioclase with a few irregular grains of
50110011	ιι,	irregular veinlet of chlorite and minor calcite near the top right corner.
List of Photographs (page 3 of 5)

Photo	Section	Description
21	36018	to the left: intergrowth of quartz and granular diopside with minor patch of pyrite; in the centre: coarser grained quartz with minor diopside; to the right: pyrite (with dusty non-reflective inclusions) with chlorite/smectite along the quartz-pyrite margin and interstitial to pyrite.
22	36018	intergrowth of quartz and clinopyroxene (altered very strongly to intergrowths of limonite, ankerite, and chlorite/smectite; patches of chalcopyrite, mainly rimmed by or adjacent to patches of epidote.
23	36021	to the left: host rock: plagioclase with minor patches of pyrrhotite; middle: border zone: intergrowth of apatite (in part euhedral), pyrrhotite, and minor scheelite; to the right: coarser grained quartz with minor pyrrhotite.
24	36021	patch of chalcopyrite-pyrrhotite with minor pyrite surrounded by aggregate of epidote, scapolite(?), and lesser plagioclase and quartz; on the margin between a quartz-rich patch with lesser plagioclase and tremolite/actinolite, and the host rock dominated by very fine grained plagioclase.
25	36024	granular diopside with disseminated patches of pyrrhotite (in part replaced by plagioclase); one grain of chalcopyrite associated with pyrrhotite.
26	36024	to the left: veinlike zone of coarser grained plagioclase with disseminated patches of pyrite-pyrrhotite (su); to the right: border zone of plagioclase- (diopside) grades into diopside-plagioclase and eventually to diopside- (plagioclase) (at the edge of the photo).
27	36024	granular diopside with disseminated patches of pyrite, pyrrhotite, and minor chalcopyrite; veinlet of slightly coarser grained diopside-pyrrhotite-pyrite- chalcopyrite.
28	36025	top left: hornfels: plagioclase-quartz with much less abundant sericite and muscovite flakes whose elongation defines a weak foliation; lower right: vein
OI		quartz and pyrrhotite, with a few patches of chalcopyrite in quartz and minor plagioclase (on or near the border of the vein); minor cluster of coarser grained muscovite along margin of the vein.
29	36025	hornfels: plagioclase-quartz-(sericite) with disseminated patches of cryptocrystalline Mineral X and a few patches of pyrrhotite; warped (folded?) veinlet of fluorite(?) with a central cavity containing minor calcite.
30	36026	top right: hornfels: plagioclase-quartz-sericite with disseminated patches of pyrrhotite and of Mineral X; lower left: quartz veinlet with disseminated patches of pyrrhotite-(chalcopyrite-sphalerite), chlorite, and calcite; vein

braided		contains wispy lenses and patches of partially assimilated host rock; late
		veinlet of quartz. List of Photographs
Photo	Section	(page 4 of 5) Description
31	36026	hornfels: plagioclase-quartz with much less abundant sericite and disseminated patches of pyrrhotite; veinlet of pyrrhotite-quartz with a few patches of chalcopyrite, sphalerite, and chlorite associated with pyrrhotite.
32	36027	to the left: slightly banded intergrowth of plagioclase with lesser quartz and biotite and minor Mineral X; to the right: similar rock but it contains abundant patches of Mineral X; the contact appears to be an alteration front.
33	36027	hornfels: intergrowth of plagioclase with lesser quartz and much less biotite; weak foliation defined by parallel orientation of biotite flakes parallel to compositional banding in the rock elsewhere in the section; lens of quartz with two grains of allanite.
34	36029	moderately foliated host rock: plagioclase with lesser sericite and minor biotite with abundant dusty carbonaceous opaque; patches of pyrrhotite and disseminated grains of quartz (commonly adjacent to pyrrhotite); en echelon veinlet of limonite.
35	36029	to the left: veinlet of pyrrhotite-quartz with patches and seams of biotite and lesser sericite; to the right: host rock: plagioclase with abundant carbonaceous opaque, lesser sericite-biotite, and disseminated patches of pyrrhotite; in the centre: transition zone contains abundant sericite-(biotite) with foliation
warped		to a high angle to the border of the veinlet.
36	36034	minor coarser grains of quartz (some probably detrital) in a slightly banded groundmass dominated by plagioclase with much less abundant carbonaceous opaque and sericite, with disseminated patches of pyrrhotite and of quartz.
37	36034	patches of pyrrhotite (altered partly to secondary Fe-minerals) rimmed by irregular patches of Ti-oxide, with an outer zone of quartz; enclosed in host rock dominated by plagioclase with lesser sericite, carbonaceous opaque, and quartz.
38	36035	anhedral to subhedral garnet grains with abundant inclusions of diopside and ankerite in a groundmass of feathery tremolite with ragged disseminated grains of diopside; ankerite forms an elongate patch along the border of one garnet grain against groundmass tremolite.
39	36035	to the left: veinlet of Mineral Y: colourless, very low birefringence, R.I. about that of quartz; hardness medium; to the right: aggregate of feathery tremolite with ragged grains of diopside and one anhedral grain of garnet with inclusions

of diopside and minor tremolite.

List of Photographs (page 5 of 5)

Photo	Section	Description
40	36037	rounded to lensy patches of calcite in a moderately foliated groundmass of plagioclase with very abundant carbonaceous opaque and minor calcite and sericite.
41	36037	host rock of plagioclase, carbonaceous opaque, and minor calcite and pyrite; veinlet dominated by quartz (in part in trains with minor sericite at a moderate angle to the length of the veinlet) with lesser lenses of calcite and of sericite
and		disseminated grains of pyrite.
42	36034	porphyroblastic patch of prismatic grains of orthoamphibole(?), many of which are in subparallel orientation; in a groundmass of plagioclase with much less abundant sericite, carbonaceous opaque, and quartz, and with disseminated patches of pyrrhotite.
43	36038	host rock: calcite with abundant carbonaceous opaque; veinlets of calcite with patches of chlorite/biotite.
44	36038	Host rock: calcite with abundant carbonaceous opaque; irregular patchy veinlets of calcite-quartz-pyrite-chlorite/biotite and minor chalcopyrite.
45	36040	contorted veinlet of calcite-pyrrhotite with a patch of quartz-(muscovite) cuts host rock: plagioclase-ankerite-carbonaceous opaque.
46 pyrrho	36040 tite)	vein in fold nose: top left: spheroidal patch of pyrite (secondary after
1,5	- /	showing a variety of textures and reflectances; lower left: pyrrhotite-rich zone with a few patches of sphalerite; right centre: calcite-quartz with minor muscovite; far upper right: edge of host rock: carbonaceous opaque obscures silicates.

Photo 1

Photo 2

Photo 3

Photo 5

Photo 6

Photo 7

Photo 8

Photo 9

Photo 10

Photo 11

Photo 12

Photo 13

Photo 14

Photo 15

Photo 16

Photo 17

Photo 18

Photo 20

Photo 21

Photo 23

Photo 24

Photo 25

Photo 26

Photo 27

Photo 30

Photo 31

Photo 32

Photo 33

Photo 34

Photo 35

Photo 36

Photo 37

Photo 38

Photo 39

Photo 41

Photo 42

Photo 43

Photo 44

Photo 45

080418 NAm tungsten blocks (1)

Photo Mactung Blocks 1

080418 NAm tungsten blocks (2)

Photo Mactung Blocks 2

080418 NAm tungsten sections (1)

Photo Mactung Sections 1

080418 NAm tungsten sections (2)

Photo Mactung Sections 2