

October 18, 2011

ISSUED FOR USE EBA FILE: W14101068.037

Minto Explorations Ltd. Suite 900-999 West Hastings Street Vancouver, B.C. V6C 2W2

Attention: Mr. John Knapp, General Manager

Subject: Dry Stack Tailings Storage Facility – 2011 Annual Review Minto Mine, YT

I.0 INTRODUCTION

As requested, this letter presents a report by EBA, A Tetra Tech Company (EBA) resulting from a site visit completed to examine the current condition of the Dry Stack Tailings Storage Facility (DSTSF) at Minto Mine, YT, and its associated construction quality assurance (CQA) and monitoring instrumentation data. This review consists of a summary of the findings resulting from the site visit completed to examine the physical condition of the DSTSF and a detailed review of the CQA data collected between October 13, 2010 and August 16, 2011 that consists of:

• Field density test results, 103 completed.

The monitoring instrumentation data review was summarized in an EBA report titled "Third Dry Stack Tailings Storage Facility Foundation Movement Monitoring Update, Minto Mine, YT" dated September 19, 2011. Please refer to this report for the latest review of the monitoring instrumentation associated with the DSTSF.

This annual review has been completed in partial fulfillment of the requirements of the existing Quartz Mining Licence (QML-0001), and the Minto Mine Tailings Management Plan and its conditions of approval.

EBA's last inspection of this site was in September 2010. This inspection is summarized in EBA's letter report "Dry Stack Tailings Storage Facility – 2010 Annual Review, Minto Mine, YT" dated March 30, 2011. EBA has used this background information to assist in assessing the recent performance of the DSTSF.

2.0 **OBSERVATIONS AND RECOMMENDATIONS**

Mr. Chad Cowan, P.Eng., of EBA's Whitehorse office completed a site visit on August 25, 2011. Specific details are presented below, and also noted on Figure 1 attached to this letter. Photographs were taken of the facility during the visit. Selected photos are attached while the remainder are available for review in the EBA files, if desired.

2.1 Observations

Observations noted during the site visit are very similar to observations noted during the previous September 2011 site visit and are as follows:

- As presented in Photos 1 through 3 and Figure 1, the components of the facility constructed at the time of the visit were the majority of the drainage blanket/starter bench, benches 1 through 7 of the waste rock shell and a surface diversion berm and ditch.
- Tailings placement covers roughly 95% of the facility. Typical placement and compaction practices are shown in Photo 4.
- The slopes of the waste rock shell benches appear consistent with original placement; no signs of slumping, bulging, or tension cracks were noted. No erosion was noted along the toe or external slopes of the facility.
- Water ponded over the areas of tailings upstream of bench 7 was noted in three locations, the west portion, the northeast portion, and the southeast portion within the facility shown on Figure 1 (Photos 5, 6 and 7). In all three cases, the water was observed as murky. The ponded water in the west portion of the facility can be attributed to possibly run-on surface water and water flowing under the liner at various locations along the South Diversion Ditch. The ponded water in the northeast portion of the facility can be attributed to melting snow that was stockpiled in the area during the previous winter. The ponded water in the southeast portion of the facility can be attributed to melting snow that was stockpiled in the area during the previous winter. The ponded water in the southeast portion of the facility can be attributed to melting snow that was stockpiled in the area during the previous winter. The ponded water in the southeast portion of the facility can be attributed to surface water run-on from southeastern slope of the facility.
- Seepage water from the facility was observed at three main locations, two that were at the facilities toe
 upslope of monitoring location W-8 and W-8a, and 50 m upstream of W-8. It is believed that this water
 is associated with the finger drains under the waste rock shell. Water was observed as murky at W-8a
 and the area 50 m upstream of W-8. Water was observed as clear at W-8.
- The western portion of the Tailings Diversion Ditch constructed in 2008 was rehabilitated during the winter of 2010 in accordance with EBA's March 23, 2010 Issued for Use drawing TDD-01. The rehabilitation consisted of regrading the existing ditch to convey this water to a lined ditch to discharge on the east side of the facility. The lined ditch (eastern portion) was excavated into a constructed rockfill berm. The ditch constructed in the rockfill berm was lined with HDPE liner (Photo 8).
- At the time of the site visit, the western portion of the Tailings Diversion Ditch was working in accordance with the design intent of conveying water from the western portion of the southern slope to the discharge point east of the DSTSF. The discharge water was observed as clear and was flowing northeast, away from the DSTSF (Photo 9).
- The discharge point of the Tailings Diversion Ditch was not constructed in accordance with the March 23, 2010 Issued for Use drawing TDD-01. The discharge should flow into a lined stilling basin to dissipate the water flow energy and reduce the amount degradation to the natural subsurface. EBA has discussed these discharge requirements with Minto site staff during previous site visits. Minto should

also refer to the September 14th, 2011 Issued for Review EBA Technical Memo 013.06 titled "Upstream Water Management for the Mill Valley Fill Expansion and Dry Stack Tailings Storage Facility".

- No seepage was noted at the downstream toe of the western portion of the berm; therefore, it is believed that the majority of surface run-on water is being collected and diverted away from this area.
- The eastern portion of the ditch that has been constructed on top of the berm has slumped in several places (Photo 10). These slumps typically happen on the downhill side of the berm from areas of ponded water. There were also areas of seepage noted along this portion of the berm allowing the run-on water to flow into the tailings area.
- The additional section of the berm constructed south of the eastern portion of berm with ditch (surrounded by the red dashed line on Figure 1) is performing much in the same manner as it was during the 2010 inspection; several high points in the ditch have caused water to pond on the uphill side of the berm. Seepage was noted at several points along the downhill side of the berm along this portion. This seepage water was noted ponding on the uphill side of the rockfill berm and seeping into the tailings area in several areas (Photos 11 and 12). Therefore, run-on water from this section still flows into the tailings area.

2.2 **Recommendations**

It is recommended that the surface diversion berm be rehabilitated to effectively capture water along the entire length of ditch. Minto has engaged EBA in providing a updated design (September 14th, 2011 Issued for Review EBA Technical Memo 013.06 titled "Upstream Water Management for the Mill Valley Fill Expansion and Dry Stack Tailings Storage Facility") but the implementation is dependent on a lease boundary extension, which is pending. After rehabilitation, maintenance issues are expected and maintenance issues will need to be addressed throughout its use.

The discharge location of the lined ditch should be constructed in accordance with the September 14th, 2011 Issued for Review EBA Technical Memo 013.06 titled "Upstream Water Management for the Mill Valley Fill Expansion and Dry Stack Tailings Storage Facility".

The grading and surface water management of the stockpile and access road area should be reviewed to ensure that surface water is directed away from the DSTSF.

3.0 QUALITY ASSURANCE DATA

Quality Assurance (QA) testing was completed on the tailings between May 1, 2010 and September 14, 2010.

3.1 Tailings Composition and Placement

3.1.1 Field Density Testing

The results of the 103 field density tests are summarized in Tables B1, B2 and B3, included in Appendix B.

EBA personnel conducted 9 site visits between October 13, 2010 and August 30, 2011 to complete field density testing for the tailings placement throughout the DSTSF area.

During previous site visits many of the compaction results did not achieve the specified compaction effort of 95% Maximum Dry Density (MDD) under standard effort. This was the result of high moisture contents in the placed tailings from the Tailings Facility and a very wet summer with many periods of rain. During the previous site visits EBA informed Minto of the test results and Minto informed EBA that steps were being taken in the mill to reduce the moisture content of the tailings. Tailing were also being stockpiled prior to placement in the facility to allow for the underlying material to dry and receive proper compaction.

4.0 LIMITATIONS OF REPORT

This report and its contents are intended for the sole use of Minto Explorations Ltd. and their agents. EBA, A Tetra Tech Company, does not accept any responsibility for the accuracy of any of the data, the analysis, or the recommendations contained or referenced in the report when the report is used or relied upon by any Party other than Minto Explorations Ltd., or for any Project other than the proposed development at the subject site. Any such unauthorized use of this report is at the sole risk of the user. Use of this report is subject to the terms and conditions stated in EBA's General Conditions that are provided in Appendix A of this report.

5.0 CLOSURE


We trust that this letter satisfies your requirements at this time. Additional information regarding the use of this report is presented in the attached General Conditions, which form a part of this report. If additional information or clarification of any recommendation presented in this report is required, please contact the undersigned.

Sincerely, EBA, A Tetra Tech Company

Chad Cowan, P.Eng. Project Director – Yukon, Arctic Region Direct Line: 867-668-2071x229 ccowan@eba.ca

Photographs Figure 1 Appendices A and B

Brian Cutts, P.Eng. Senior Geotechnical Engineer Direct Line: 250.505.4467 <u>bcutts@eba.ca</u>

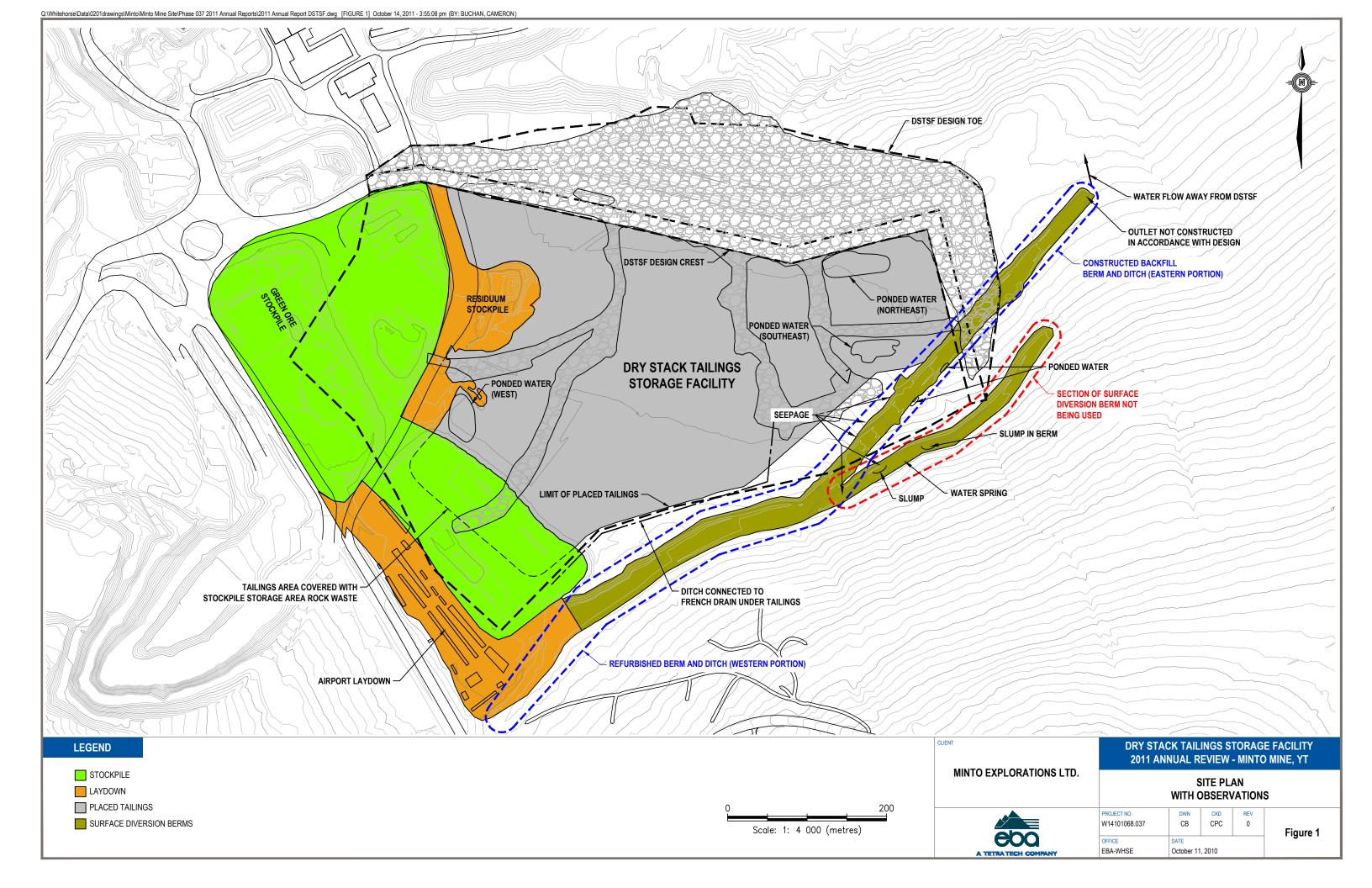

FIGURES

Figure I Site Plan with Observations

2011 Fall DSTSF Insp Report IFU.doc

CONSULTING ENGINEERS & SCIENTISTS - www.eba.ca

PHOTOGRAPHS

Photo I	DSTSF Tailings Placement
Photo 2	DSTSF Tailings Placement
Photo 3	DSTSF Front Face
Photo 4	Typical placement and compaction activities
Photo 5	Ponded water in West portion of DSTSF
Photo 6	Ponded water in Northeast portion of DSTSF
Photo 7	Ponded water in Southeast portion of DSTSF
Photo 8	Tailings Diversion Ditch – Lined ditch portion
Photo 9	Tailings Diversion Ditch outlet
Photo 10	Section of berm that has settled in area of ponded water upstream of berm
Photo II	Ponded water, surface run-off and tension cracks along 2008 diversion berm
Photo 12	Water seepage downslope of eastern portion of berm from ponded water upslope of berm

2011 Fall DSTSF Insp Report IFU.doc

CONSULTING ENGINEERS & SCIENTISTS . www.eba.ca

Photo 1 DSTSF Tailings Placement Aspect: Northwest (August 25, 2011)

Photo 2 DSTSF Tailings Placement Aspect: North (August 25, 2011)

Photo 3 DSTSF Front Face, Aspect: East (August 25, 2011)

Typical placement and compaction activities (August 25, 2011)

Photo 5 Ponded water in West portion of DSTSF Aspect: North (August 25, 2011)

Photo 6 Ponded water in Northeast portion of DSTSF Aspect: East (August 25, 2011)

Photo 7 Ponded water in Southeast portion of DSTSF Aspect: Northeast (August 25, 2011)

Photo 8 Tailings Diversion Ditch – Lined ditch portion Aspect: Northeast (August 25, 2011)

Photo 9 Tailings Diversion Ditch outlet (August 25, 2011)

Photo 10 Section of berm that has settled in area of ponded water upstream of berm Aspect: East (August 25, 2011)

Ponded water, surface run-off and tension cracks along 2008 diversion berm Aspect: East (August 25, 2011)

Photo 12

Water seepage downslope of eastern portion of berm from ponded water upslope of berm Aspect: West (August 25, 2011)

2011 Fall DSTSF Insp Report IFU.doc

CONSULTING ENGINEERS & SCIENTISTS . www.eba.ca

GENERAL CONDITIONS

GEOTECHNICAL REPORT

This report incorporates and is subject to these "General Conditions".

1.0 USE OF REPORT AND OWNERSHIP

This geotechnical report pertains to a specific site, a specific development and a specific scope of work. It is not applicable to any other sites nor should it be relied upon for types of development other than that to which it refers. Any variation from the site or development would necessitate a supplementary geotechnical assessment.

This report and the recommendations contained in it are intended for the sole use of EBA's Client. EBA does not accept any responsibility for the accuracy of any of the data, the analyses or the recommendations contained or referenced in the report when the report is used or relied upon by any party other than EBA's Client unless otherwise authorized in writing by EBA. Any unauthorized use of the report is at the sole risk of the user.

This report is subject to copyright and shall not be reproduced either wholly or in part without the prior, written permission of EBA. Additional copies of the report, if required, may be obtained upon request.

2.0 ALTERNATE REPORT FORMAT

Where EBA submits both electronic file and hard copy versions of reports, drawings and other project-related documents and deliverables (collectively termed EBA's instruments of professional service), only the signed and/or sealed versions shall be considered final and legally binding. The original signed and/or sealed version archived by EBA shall be deemed to be the original for the Project.

Both electronic file and hard copy versions of EBA's instruments of professional service shall not, under any circumstances, no matter who owns or uses them, be altered by any party except EBA. EBA's instruments of professional service will be used only and exactly as submitted by EBA.

Electronic files submitted by EBA have been prepared and submitted using specific software and hardware systems. EBA makes no representation about the compatibility of these files with the Client's current or future software and hardware systems.

3.0 ENVIRONMENTAL AND REGULATORY ISSUES

Unless stipulated in the report, EBA has not been retained to investigate, address or consider and has not investigated, addressed or considered any environmental or regulatory issues associated with development on the subject site.

4.0 NATURE AND EXACTNESS OF SOIL AND ROCK DESCRIPTIONS

Classification and identification of soils and rocks are based upon commonly accepted systems and methods employed in professional geotechnical practice. This report contains descriptions of the systems and methods used. Where deviations from the system or method prevail, they are specifically mentioned.

Classification and identification of geological units are judgmental in nature as to both type and condition. EBA does not warrant conditions represented herein as exact, but infers accuracy only to the extent that is common in practice.

Where subsurface conditions encountered during development are different from those described in this report, qualified geotechnical personnel should revisit the site and review recommendations in light of the actual conditions encountered.

5.0 LOGS OF TESTHOLES

The testhole logs are a compilation of conditions and classification of soils and rocks as obtained from field observations and laboratory testing of selected samples. Soil and rock zones have been interpreted. Change from one geological zone to the other, indicated on the logs as a distinct line, can be, in fact, transitional. The extent of transition is interpretive. Any circumstance which requires precise definition of soil or rock zone transition elevations may require further investigation and review.

6.0 STRATIGRAPHIC AND GEOLOGICAL INFORMATION

The stratigraphic and geological information indicated on drawings contained in this report are inferred from logs of test holes and/or soil/rock exposures. Stratigraphy is known only at the locations of the test hole or exposure. Actual geology and stratigraphy between test holes and/or exposures may vary from that shown on these drawings. Natural variations in geological conditions are inherent and are a function of the historic environment. EBA does not represent the conditions illustrated as exact but recognizes that variations will exist. Where knowledge of more precise locations of geological units is necessary, additional investigation and review may be necessary.

7.0 PROTECTION OF EXPOSED GROUND

Excavation and construction operations expose geological materials to climatic elements (freeze/thaw, wet/dry) and/or mechanical disturbance which can cause severe deterioration. Unless otherwise specifically indicated in this report, the walls and floors of excavations must be protected from the elements, particularly moisture, desiccation, frost action and construction traffic.

8.0 SUPPORT OF ADJACENT GROUND AND STRUCTURES

Unless otherwise specifically advised, support of ground and structures adjacent to the anticipated construction and preservation of adjacent ground and structures from the adverse impact of construction activity is required.

9.0 INFLUENCE OF CONSTRUCTION ACTIVITY

There is a direct correlation between construction activity and structural performance of adjacent buildings and other installations. The influence of all anticipated construction activities should be considered by the contractor, owner, architect and prime engineer in consultation with a geotechnical engineer when the final design and construction techniques are known.

10.0 OBSERVATIONS DURING CONSTRUCTION

Because of the nature of geological deposits, the judgmental nature of geotechnical engineering, as well as the potential of adverse circumstances arising from construction activity, observations during site preparation, excavation and construction should be carried out by a geotechnical engineer. These observations may then serve as the basis for confirmation and/or alteration of geotechnical recommendations or design guidelines presented herein.

11.0 DRAINAGE SYSTEMS

Where temporary or permanent drainage systems are installed within or around a structure, the systems which will be installed must protect the structure from loss of ground due to internal erosion and must be designed so as to assure continued performance of the drains. Specific design detail of such systems should be developed or reviewed by the geotechnical engineer. Unless otherwise specified, it is a condition of this report that effective temporary and permanent drainage systems are required and that they must be considered in relation to project purpose and function.

12.0 BEARING CAPACITY

Design bearing capacities, loads and allowable stresses quoted in this report relate to a specific soil or rock type and condition. Construction activity and environmental circumstances can materially change the condition of soil or rock. The elevation at which a soil or rock type occurs is variable. It is a requirement of this report that structural elements be founded in and/or upon geological materials of the type and in the condition assumed. Sufficient observations should be made by qualified geotechnical personnel during construction to assure that the soil and/or rock conditions assumed in this report in fact exist at the site.

13.0 SAMPLES

EBA will retain all soil and rock samples for 30 days after this report is issued. Further storage or transfer of samples can be made at the Client's expense upon written request, otherwise samples will be discarded.

14.0 INFORMATION PROVIDED TO EBA BY OTHERS

During the performance of the work and the preparation of the report, EBA may rely on information provided by persons other than the Client. While EBA endeavours to verify the accuracy of such information when instructed to do so by the Client, EBA accepts no responsibility for the accuracy or the reliability of such information which may affect the report.

APPENDIX B APPENDIX B FIELD DENSITY TEST RESULT SUMMARY

2011 Fall DSTSF Insp Report IFU.doc

CONSULTING ENGINEERS & SCIENTISTS - www.eba.ca

TABLE B1: TAILINGS COMPACTION SUMMARY

Project:	Dry Stack Tailings Storage Facility	Soil Description:	Tailings
Project No:	Minto Mine, Yukon	Specified Compaction:	95%
Client: Attention:	Minto Explorations Ltd. Mr. John Knapp	Compaction Standard: Maximum Dry Density: Optimum Moisture Content:	Standard Proctor varies kg/m ³ varies

Test Test Date	Probe Depth	Location	Maximum Dry	Moisture	Dry Density	Percent	
Number	Test Date	[mm]	Location	Density	Content	[kg/m ³]	Compaction
1	13-Oct-10	200	N6944840, E385628	1770	24.8	1399	80.4
2	13-Oct-10	200	N6944826, E385631	1770	26.0	1381	79.3
3	13-Oct-10	200	N6944820, E385664	1770	27.0	1260	72.4
4	13-Oct-10	200	N6944805, E385680	1770	21.8	1573	90.4
5	13-Oct-10	200	N6944826, E385674	1770	23.9	1466	84.3
6	13-Oct-10	200	N6944858, E385678	1770	24.8	1337	76.8
7	13-Oct-10	200	N6944691, E385331	1770	18.0	1693	97.3
8	13-Oct-10	200	N6944572, E385329	1770	32.3	1198	68.8
9	13-Oct-10	200	N6944680, E385345	1770	11.4	1624	93.4
10	13-Oct-10	200	N6944535, E385502	1770	17.4	1529	87.9
11	13-Oct-10	200	N6944531, E385483	1770	17.1	1621	93.2
12	13-Oct-10	200	N6944525, E385468	1770	24.1	1262	72.5
13	13-Oct-10	200	N6944559, E385568	1770	13.4	1762	101.3
14	13-Oct-10	200	N6944570, E385590	1770	11.6	1784	102.5
15	16-Nov-10	200	N6944814, E385769	1800	16.8	1545	85.8
16	16-Nov-10	200	N6944821, E385798	1800	21.6	1414	78.6
17	16-Nov-10	200	N6944838, E385802	1800	16.8	1509	83.8
18	16-Nov-10	200	N6944834, E385780	1800	18.8	1492	82.9
19	16-Nov-10	200	N6944850, E385777	1800	20.1	1398	77.7
20	16-Nov-10	150	N6944854, E385802	1800	16.5	1596	88.7
21	16-Nov-10	200	N6944769, E385791	1800	18.9	1616	89.8
22	16-Nov-10	200	N6944767, E385816	1800	15.8	1637	90.9
23	16-Nov-10	200	N6944785, E385829	1800	15.4	1576	87.6
24	16-Nov-10	200	N6944783, E385806	1800	17.7	1667	92.6
25	16-Nov-10	200	N6944794, E385785	1800	17.8	1613	89.6
26	16-Nov-10	200	N6944798, E385809	1800	16.0	1652	91.8
27	16-Nov-10	200	N6944805, E385814	1800	14.6	1602	89.0
28	16-Nov-10	200	N6944805, E385793	1800	23.6	1557	86.5
29	10-Dec-10	100	N6944799, E385505	1800	14.9	1561	86.7
30	10-Dec-10	200	N6944783, E385532	1800	16.5	1671	92.8
31	10-Dec-10	150	N6944807, E385539	1800	17.7	1534	85.2
32	10-Dec-10	200	N6944794, E385548	1800	16.4	1633	90.7
33	10-Dec-10	200	N6944816, E385560	1800	15.4	1605	89.2
34	10-Dec-10	100	N6944798, E385563	1800	20.1	1378	76.6
35	10-Dec-10	150	N6944804, E385500	1800	22.0	1546	85.9
36	10-Dec-10	150	N6944785, E385495	1800	21.3	1542	85.7
37	10-Dec-10	100	N6944755, E385482	1800	19.1	1559	86.6
38	10-Dec-10	100	N6944743, E385467	1800	20.6	1367	75.9

TABLE B2 (CONTINUED): TAILINGS COMPACTION SUMMARY

Project:	Dry Stack Tailings Storage Facility	Soil Description:	Tailings
Project No:	Minto Mine, Yukon	Specified Compaction:	95%
Client: Attention:	Minto Explorations Ltd. Mr. John Knapp	Compaction Standard: Maximum Dry Density: Optimum Moisture Content:	Standard Proctor varies kg/m ³ varies

Test Test Date	Probe Depth	Location	Maximum Dry	Moisture	Dry Density	Percent	
Number	Test Date	[mm]	Location	Density	Content	[kg/m³]	Compaction
39	10-Dec-10	200	N6944694, E385418	1800	13.0	1460	81.1
40	10-Dec-10	200	N6944681, E385393	1800	14.4	1663	92.4
41	10-Dec-10	200	N6944670, E385419	1800	14.9	1574	87.4
42	24-May-11	250	N6944808, E385740	1770	11.3	1909	106.1
43	24-May-11	300	N6944817, E385768	1770	13.7	1878	104.3
44	24-May-11	300	N6944825, E385802	1770	15.6	1827	101.5
45	24-May-11	300	N6944850, E385794	1770	14.8	1762	97.9
46	24-May-11	300	N6944845, E385772	1770	15.0	1726	95.9
47	24-May-11	300	N6944753, E385798	1770	16.8	1759	97.7
48	24-May-11	300	N6944727, E385815	1770	19.0	1710	95.0
49	24-May-11	300	N6944707, E0385827	1770	17.4	1777	98.7
50	24-May-11	300	N6944691, E385806	1770	19.8	1699	94.4
51	24-May-11	300	N6944713, E385792	1770	19.0	1712	95.1
52	24-May-11	300	N6944735, E385780	1770	16.1	1819	101.1
53	24-May-11	300	N6944723, E385756	1770	11.7	1850	102.8
54	24-May-11	300	N6944699, E385767	1770	18.8	1727	95.9
55	24-May-11	300	N6944672, E385669	1770	16.4	1791	99.5
56	24-May-11	300	N6944651, E385679	1770	19.3	1725	95.8
57	24-May-11	300	N6944626, E385691	1770	17.2	1759	97.7
58	24-May-11	250	N6944616, E385671	1770	11.9	1841	102.3
59	24-May-11	300	N6944641, E385664	1770	15.9	1781	98.9
60	24-May-11	300	N6944666, E385656	1770	15.7	1758	97.7
61	24-May-11	300	N6944649, E385507	1770	15.8	1807	100.4
62	24-May-11	300	N6944676, E385499	1770	17.5	1750	97.2
63	24-May-11	300	N6944610,E385473	1770	17.3	1768	98.2
64	24-May-11	300	N6944649,E385482	1770	17.9	1755	97.5
65	24-May-11	300	N6944629,E385489	1770	14.8	1767	98.2
66	12-Jul-11	300	N6544803, E385634	1770	16.6	1715	94.5
67	12-Jul-11	300	Retest of 458	1770	18.7	1685	97.3
68	12-Jul-11	300	N6944795, E385608	1770	22.1	1605	98.0
69	12-Jul-11	300	N6944792, E385578	1770	20.0	1673	94.7
70	12-Jul-11	300	Retest of 461	1770	16.5	1722	97.2
71	12-Jul-11	300	N6944766, E385588	1770	16.4	1735	99.0
72	12-Jul-11	300	N6944777, E385611	1770	18.8	1677	97.1
73	12-Jul-11	300	N6944785, E385638	1770	16.5	1720	96.4
74	21-Jul-11	250	N9644688, W385505	1770	16.5	1752	91.4
75	21-Jul-11	250	N6944698, W385476	1770	17.6	1719	90.3
4							

TABLE B3 (CONTINUED): TAILINGS COMPACTION SUMMARY

Project:	Dry Stack Tailings Storage Facility	Soil Description:	Tailings
Project No:	Minto Mine, Yukon	Specified Compaction:	95%
Client: Attention:	Minto Explorations Ltd. Mr. John Knapp	Compaction Standard: Maximum Dry Density: Optimum Moisture Content:	Standard Proctor varies kg/m ³ varies

Test Number	Test Date	Probe Depth [mm]	Location	Maximum Dry Density	Moisture Content	Dry Density [kg/m ³]	Percent Compaction
76	12-Jul-11	300	N6944785, E385638	1770	18.2	1706	96.4
77	21-Jul-11	250	N9644688, W385505	1770	24.9	1618	91.4
78	21-Jul-11	250	N6944698, W385476	1770	27.8	1598	90.3
79	21-Jul-11	250	N6944710, W385453	1770	20.7	1673	94.5
80	21-Jul-11	250	N6944844, W385623	1770	20.3	1629	92.0
81	21-Jul-11	250	N6944841, W385599	1770	19.4	1667	94.2
82	25-Jul-11	250	N6944844, E385593	1770	14.2	1792	101.2
83	25-Jul-11	300	N6944868, E385588	1770	15.3	1769	100.0
84	25-Jul-11	300	N6944818, E385621	1770	15.8	1687	95.3
85	25-Jul-11	300	N6944817, E38545	1770	12.0	1786	100.9
86	4-Aug-11	300	N6944843, E0385712	1770	22.4	1462	82.6
87	4-Aug-11	300	N6944824, E385716	1770	23.6	1417	80.1
88	4-Aug-11	300	N6944792, E385752	1770	22.5	1447	81.8
89	4-Aug-11	300	N6944808, E385786	1770	23.5	1417	80.1
90	9-Aug-11	300	N6944709, E385846	1770	28.2	1481	83.7
91	9-Aug-11	300	N6944706, E385837	1770	27.2	1531	86.5
92	12-Aug-11	300	N6944636, E385557	1770	21.2	1588	89.7
93	12-Aug-11	300	N6944635, E385582	1770	23.9	1575	89.0
94	12-Aug-11	300	N6944644, E385621	1770	24.9	1514	85.5
95	16-Aug-11	300	N6944829, E3805637	1770	27.1	1540	87.0
96	16-Aug-11	250	N69444810, E385643	1770	25.6	1566	88.5
97	16-Aug-11	300	N6944780, E385645	1770	25.0	1561	88.2
98	30-Aug-11	300	N6944556,E385537	1800	13.3	1764	98.0
99	30-Aug-11	300	N6944542,E385547	1800	13.1	1797	99.9
100	30-Aug-11	300	N6944538,E385529	1800	11.7	1860	103.3
101	30-Aug-11	300	N6944686,E385415	1800	21.4	1658	92.1
102	30-Aug-11	300	N6944673,E385403	1800	19.0	1656	92.0
103	30-Aug-11	300	N6944660,E385498	1800	19.1	1661	92.3