

APPENDIX M Characterization of Groundwater Conditions

SRK Consulting (Canada) Inc. Suite 200 – 1066 West Hastings Street Vancouver, B.C. V6E 3X2 Canada

vancouver@srk.com www.srk.com

Tel: 604.681.4196 Fax: 604.687.5532

August 19, 2010 2CM022.017

Minto Explorations Ltd. Suite 900–999 West Hastings St. Vancouver, BC V6C 2W2 Canada

Attention: Anne Labelle, Manager – Sustainability and Legal Affairs

Dear Anne,

Minto Mine: Groundwater Baseline Conditions

1.0 Requirements and Objectives

Groundwater baseline conditions found at the Minto Mine site are discussed in this report. The report outlines the work done to date to assess the hydrogeological conditions that are currently observed at the mine site, and the potential impacts of proposed mine design on the hydrogeological system.

1.1 Information Requirements

In order to carry out an assessment of the baseline conditions at the site, a conceptual model of the groundwater flow system, and its interaction with receiving surface water bodies, is required. This conceptual model is used to assess the potential flow regime by mapping out the groundwater flow paths, gradients, and geological materials that the water will flow through. These data are used to estimate the volume, or flux of water flowing through the system, and the related impact of groundwater flow on surface water bodies.

1.2 Monitoring Objectives

A groundwater monitoring program was designed to collect baseline data and monitor potential effects from the open pits, underground workings, tailings facilities (in-pit and dry stack tailings facility (DSTF), and waste rock and overburden dumps at the Minto Mine site (Figure 1). The objective of the groundwater monitoring program is to provide background and on-going water quality data to serve as an early indication of potential impact of the mine on the local groundwater quality.

SRK_GWBaselineConditions_LetReport_2CM022.017_MDR_20100819_FNL.docx

Grou	p Off	fices:

Africa Asia Australia Europe North America South America

Canadian Offices:						
Saskatoon	306.955.4778					
Sudbury	705.682.3270					
Toronto	416.601.1445					
Vancouver	604.681.4196					
Yellowknife	867.445.8670					

U.S. Offices:

0.0. 000	
Anchorage	907.677.3520
Denver	303.985.1333
Elko	775.753.4151
Fort Collins	970.407.8302
Reno	775.828.6800
Tucson	520.544.3688

2.0 Hydrogeological Conditions

To establish baseline conditions, a groundwater monitoring program was carried out in the vicinity of the waste rock, overburden dumps, and the dry stack tailings facility (DSTF) at the Minto Mine site to provide background and on-going water quality data. The objective of the groundwater monitoring program was to provide an early indication of potential impact of the mine workings on the local groundwater quality.

Groundwater at the Minto site will be constrained to the overburden and bedrock flow systems. A complicating factor for monitoring groundwater at the site is the extent of permafrost at the site. The general hydrogeological characteristics are discussed below to give a clearer picture of the conditions that will affect the movement of groundwater on the site, and were used to prepare a conceptual model of the hydrogeological conditions.

2.1 Geology

2.1.1 Overburden

Throughout the mine site the residual soils grade into weathered bedrock. The overburden soils thin out to the south and east of the DSTSF site.

Geotechnical investigations within the plan area of the dry stack tailings facility (DSTF), as reported in EBA, 2007, indicated overburden thicknesses of up to 45m. These deposits are thought to be an extension of an infilled valley, which also passes through the southern end of the open pit. The overburden soils generally comprise a thin veneer of peat and vegetation overlying a fine-grained silt or silt and sand of colluvium origin. The colluvium is underlain by coarse-grained sand with trace gravel that is considered to be a residual soil. The exception to this is at borehole 94-21, in which a clay layer from ground surface to a depth of 18-9m was observed (EBA, 2007).

Detailed soil logging by SRK in the area of the SW Dump (SRK, 2008) indicated that overburden material is comprised of silty, and in certain locations, clayey material, with fractions of sand, gravel and cobbles. Overburden thickness varies in this area (from 10.7m at 08SWC270 to 51.8m at 08SWC273). Typically, the overburden thickness increased along the valley bed, and decreased on the valley slopes. This is expected to be similar for overburden conditions across the project site.

2.1.2 Bedrock

The Minto site is underlain by predominantly igneous rocks of granodiorite composition. Minor amounts of other lithologies consisting of small dykes of simple quartz-feldspar pegmatite, aplite, and an aphanitic textured intermediate composition rock are also observed. Bodies of all of these units are relatively thin and rarely exceed one metre core intersections. These dykes are relatively late, generally postdating the peak ductile deformation event; however, some pegmatite and aplite bodies observed in a rock cut located north of the mill complex are openly folded. Conglomerate and volcanic flows have been logged in drill core by past operators, but have not been recently confirmed as the drill core from previous campaigns was largely destroyed in forest fires and no new drilling has intersected such rocks.

With the possible exception of the lithological contacts of the dykes, the lithology types encountered in the Minto Mine site are not expected to have significant primary porosity as it relates to hydraulic conductivity (K) or transmissivity. The low K values (less than 10^{-9} m/s), make it unlikely that significant groundwater flow will occur in competent bedrock. Flow may; however, occur in bedrock that has been fractured/faulted to produce open, secondary porosity/permeability.

Bedrock in the vicinity of the DSTF is located at approximately 45m depth (EBA, 2007). In general, outcrop exposure on the property is poor. Where exposure is available, it has been affected by deep weathering and variable oxidation, as the terrain was not glaciated during the last ice age event.

2.1.3 Structure

Secondary porosity/permeability is the dominant flow path in intrusive and metamorphic rocks. For this reason, it is important to have an understanding of the structural and mineralization environment of the site when constructing the conceptual flow model.

The copper-sulphide mineralization at Minto is strongly associated with foliated granodiorite within a deformation zone. The deformation zone forms sub-horizontal horizons within the more massive plutonic rocks of the region and can be traced laterally for more than 1,000 metres in the drill core. The similarity of chemistry and texture of both the deformed and the massive granodiorites suggest the deformation zones are structural in origin and not stratigraphic. The deformation zones are thought to represent healed, shallowly dipping faults that may have formed when the rocks passed through the brittle/ductile transformation zone in the earth's crust in transition from a deep emplacement environment to eventual exhumation of the regional batholith. Because of the inclusion of mineralization and the ductile nature of the main faulting at the site, these healed structures are not expected to represent significant flow paths.

Late, brittle fracturing and faulting is noted throughout the property area and is associated with a conjugate set of regional faults. The DEF Fault strikes more or less east-west and dips north-northwest and cuts off the main zone mineralization at its northern end. This type of faulting can often form significant flow paths within a rock mass. However; recent drilling results and data collected from instrumentation across the DEF fault in the north wall of the Area 1 Pit indicates that a significant hydraulic head is maintained across this feature (SRK, 2009–unreported work in progress). This appears to indicate that the DEF is not a significant flow feature, but rather is holding back water flow across the structure. This characteristic; whereby, fault zones act as barriers to flow has been observed at other mine sites.

Current structural analysis of the site (SRK, 2009 - work in progress) indicates that faults of any sort are not expected to occur within the footprints of the waste and overburden dumps or DSTF.

2.2 Permafrost Conditions

Permafrost conditions on the site will make groundwater monitoring problematic. Permafrost on the site has been found to be extensive and deep (SRK, 2008). Data from drilling at several locations has shown permafrost ranging from depths from within 1.0m of ground surface to depths of up to 10 m.

Geotechnical drilling in 1994 and 1996 by EBA observed permafrost in each of the boreholes drilled within the vicinity of the proposed DSTSF (Figure 1), with the base of the permafrost occurring at varying depths (EBA, 2007). Measurements of the active layer in these areas indicated a maximum depth of only about 1.0 m in September 1996, directly under the DSTSF footprint.

The observed ice contents in boreholes downstream of the DSTF (94-11 and 94-21) and within the footprint of the DSTSF (96-G07 through -G12, excluding -G10), typically ranged from frozen ground to visible ice at 10% to 20% of the total volume. Two of the boreholes, 96-G09 and 96-G12, showed ice intervals of 1.5 and 4.0m thick respectively within the upper 10m.

Initial data from the ground temperature cables installed in 94-11, 94-21, and 96-G08 indicate a relatively uniform ground temperature of close to -0.8°C after equilibration with slight seasonal warming within the top 2 to 4 m. The active layer in 94-G11 and 94G21 are on existing disturbed

trails, and so will be deeper than the surrounding soils. Readings from 2006 for 94-G11 indicate similar ground temperatures and active layer thickness.

In November 2007, vibrating wire piezometers were installed within and down gradient of the existing dry stack tailings storage facility (DSTSF) in boreholes DSP-1 and DSP-2. Each of these piezometers is equipped with temperature sensors at the piezometer tip. At both of the locations, the sensors were installed at 1 m and 1.7 m respectively. No pore water has been measured in the piezometers to date, as ground conditions have remained frozen.

In addition, three more temperature cables providing profile data were installed in the vicinity of the DSTSF in holes DST-1, DST-2, and DST-5. Initial observations from the piezometer temperature probes indicate that temperatures did not rise above -0.3° C at any time and ranged as low as -2.6° C. Temperature cable DST-5 (Figure 1) is located outside of the footprint of the DSTSF and provided a profile reflecting conditions on an un-insulated site. Temperature averaged approximately -0.5° C below 1 m depth, and fluctuated near surface to values exceeding 5° C.

No groundwater was observed in any of the boreholes during the EBA geotechnical drilling program.

Soil investigation drilling in the region of the SW waste rock dump in February to April, 2008 (SRK, 2008), most cores contained non-visible ice, indicating the pore water was frozen; however, clear chunks of ice were also observed in many cases. Data from thermistors installed in the same drill holes indicate that this permafrost is close to 0°C; however, water in any monitoring standpipes would freeze in the permafrost layer.

The results of the temperature and piezometer monitoring near the SW Dump through June 2008 suggest that unfrozen layers at depth may be limited or non-existent, and that shallow perched water tables within the seasonally thawed active layer may provide the only mechanism for transport within this region of the basin.

2.3 Historical and Existing Groundwater Monitoring

To date, groundwater monitoring has been installed under various initiatives, including:

- Installation of standpipes in 1994 at the proposed dam alignment (P94-20) and the pit vicinity (P93-E):
 - Water chemistry samples collected between 1994 and 2006
 - Water levels observed at ~15m and 26m depth in P94-20 and P93-E respectively
 - Both destroyed during construction and pit excavation, respectively, in 2006)
- Vibrating wire transducers down gradient of the DSTSF;
- Vibrating wire transducers in the dam core; and
- Standpipes installed during the SW dump foundation investigation.

Besides standpipes P93-e and P94-20, it appears that all standpipes installed on the site to date have frozen, indicating that permafrost conditions exist across most of the site at shallow depths.

2.4 Hydrogeological Implications of the Geological Model and Past Monitoring

The implications of the geology (overburden, lithology, and permafrost conditions) found at the Minto site and the past monitoring events are:

- Permafrost:
 - will dominate groundwater flow system below active zone to depths of up to 45m; and
 - Conventional "standpipe" monitoring wells installed through the permafrost into the underlying unfrozen ground will be inoperable as the piezometric levels will be near surface; therefore, the resulting water in them will freeze.
- Shallow flow:
 - will be dominated by permafrost conditions;
 - will occur in the seasonally thawed layer; and
 - will be controlled by overburden composition in the unfrozen areas.
- Deeper flow:
 - will occur below the permafrost within the bedrock;
 - will concentrate in the shallow, weathered zone if unfrozen; and
 - standpipe monitoring wells will not be an effective means of monitoring the deep groundwater system.

Based on this, we expect that groundwater flow related to the waste rock and overburden dumps and the DSTF will only have significant impact on the shallow, active layer system and will report to nearby surface drainages during times of thawed conditions. The deeper, bedrock hosted flow system is expected to be isolated from these facilities, due to the permafrost layer.

Groundwater flow may be impacted by the Area 1 and 2 pits, as well as the 118 Area underground mine, as these penetrate the permafrost and intersect the sub-permafrost groundwater system. However; the impact of these mine components will be controlled by the hydraulic conditions within the deeper bedrock, which is expected to be low K. Furthermore, due to the steep valley walls and location of the pits and underground workings near the Minto Creek catchment centre-line, an upwards gradient (as shown below in the assessment of monitoring data) is expected. Therefore, impact flow would likely report to surface rather than persist as deep groundwater flow.

3.0 Monitoring System Design and Operation

3.1 Monitoring Locations

To provide a means of monitoring potential impacts on the deep groundwater system, a series of multi-level monitoring wells capable of operating in permafrost conditions were installed in 2009. The wells were installed down gradient of the waste rock and overburden piles at the Main and South West Dump area, Area 1 Pit, North Pit, and DSTF. Monitoring well locations are presented in Figure 1.

All monitoring systems were installed outside the final design footprint of the waste rock and overburden piles, pits, and the DSTF as proposed at the time of installation. Consequently, the installation below the DSTF will need to be changed due to the proposal for the valley fill material placement. This is discussed later in the report. Appropriate monitoring points should be determined for the expanded waste rock dumps proposed in the Phase IV mine plan.

3.2 Monitoring Equipment

Multilevel MP System groundwater monitoring systems manufactured by Westbay Instruments (part of Schlumberger Water Services) were installed for the monitoring system. These systems consist of closed PVC pipe that has multiple valved sampling ports that are hydraulically separated using individually inflated external packers. The pressure and water sampling is carried out using a

wireline tool system that opens each monitoring zone valve independent of the others, and measure pressures and collects a sample from that zone only. The advantage that the MP System has over other monitoring systems is that, because is it a closed pipe system, it can be operated using anti-freeze inside the pipe to allow for access through the permafrost zone. Currently, this system is used at other mine sites with permafrost conditions in the NWT (Giant Mine, Ekati Mine, and the Hope Bay project) and northern Ontario (Victor Mine), and is deemed the only practical means of long-term groundwater monitoring through permafrost. Details of the monitoring equipment are given in the installation report (Appendix A) and the sampling report (Appendix B).

As well as pressures and groundwater samples, the system can also be used for hydraulic testing. All of the monitoring and sampling methods have been used extensively on mine sites, as well as contaminated waste sites, in Canada, the USA, and many other countries around the world, and are considered to meet the requirements for sampling for low level parameter concentrations.

3.3 Groundwater Sampling

3.3.1 Monitoring Parameters and Sampling Schedule

Monitoring of the groundwater network will occur on a quarterly basis as laid out in Table 1. The monitoring and sampling frequencies are based upon conditions encountered in the initial sampling rounds.

Groundwater samples collected will be analyzed for the parameters shown in Table 1.

Monitored Item	Parameters	Frequency
Groundwater Sample	Conductivity, total dissolved solids, hardness, pH, total suspended solids, dissolved anions, nutrients, cyanides, total metals (trace), dissolved metals (trace).	Quarterly
Piezometric Levels	Water Pressure	Quarterly
Ground Temperatures	Temperature	Quarterly

 Table 1: Sample Parameters and Monitoring Frequency for Groundwater and Ground

 Temperature

The groundwater monitoring program would be carried out on a scheduled basis until dumps and tailings facility are reclaimed and the mine site has been closed.

3.3.2 Sampling Protocol

Groundwater samples were collected using best practice methods. Standard SRK sampling procedures are provided in as an appendix in the appended installation report (Appendix A).

3.4 Hydraulic Response Testing

Hydraulic response testing has not been carried out during drilling programs to date. However, these tests can be carried out using the MP System and will be part of the ongoing monitoring program. During installation and initial testing of the MP System, quality assurance (QA) testing of the zones indicated that hydraulic conductivity of all zones was less than 1×10^{-9} m/s based on the time for recovery from pulse testing (designed to test packer seal integrity).

3.5 Monitoring Program Reporting

Reporting on the findings from the groundwater monitoring plan will be submitted as a component of the Water Use Licence Annual Report. This will include both raw data collected and an interpretive discussion of groundwater quality, elevations and temperature profiles at the monitored locations. An assessment of groundwater flow paths will be made, with a review of suitability of the monitoring locations based on piezometric levels, thermal data, and changes to the geological model as they become available.

Groundwater monitoring reporting would consist of the following:

- a. Monitoring system installation and initial sampling report consisting of:
 - i. Detailed field report to document the locations and ground conditions at all monitoring points, methods of installation, equipment specifications, and results of initial sampling and hydraulic testing; and
 - ii. Initial water quality results.
- b. Annual monitoring reports:
 - i. Compilation of all monitoring data collected during the reporting period;
 - ii. Analysis and assessment of data; and
 - iii. Recommendations for changes to the monitoring system if and when deemed necessary.

4.0 Baseline Conditions

4.1 Groundwater Flow System

Groundwater flow at the site is expected to mimic the steep topography, with influences from the mine infrastructure during dewatering operations. Pressure data from the three multilevel wells are illustrated on Figure 2, and in plan view on Figure 3.

Measured piezometric data from MW09-04 are not available as this well was damaged prior to initial monitoring; however, the static water level in the open hole prior to installation of the monitoring equipment was approximately 4 m below ground surface. The water level seems to be reasonable based on the depth of permafrost observed (ice observed in the core to 44m depth) and the location relative to the Area 1 Pit. This is also illustrated on Figure 3.

Based on the water levels and gradients observed, the expected flow directions on the site are illustrated on Figure 3. All groundwater is expected to report to the Minto Creek as direct discharge, as illustrated in both long section on Figure 4 (section line position shown on Figure 3) and in typical cross section view also on Figure 4.

The flow lines are drawn to illustrate the decreasing flux (volume) of flow that will occur with increasing depth in the bedrock. The change in flux is caused by the decreasing hydraulic conductivity found in this type of hydrogeological system, related to higher lithostatic pressure closing open fractures, etc as depth increases.

Upwards gradients from the steep valley walls discharging to the creek along the Minto Creek alignment, plus the reduced infiltration in the northern slopes due to permafrost are also illustrated in the cross section.

A long section through the site from roughly west to east, taking in the main mine infrastructure and natural components of the site is illustrated in Figure 4. The section has the monitoring wells superimposed on it, as well as the general outline of the open pits, underground workings, and waste rock dumps in order to illustrate how each of these will interact with the main drainage (Minto Creek) and the regulated surface water monitoring compliance point (W3).

Long Section 1100 MAIN WASTE DUMP AREA 1 PIT MW09-01 Projected topography section line 1000 AREA 2 PIT MW09-02 900 MILL COMPLEX AREA 600 ELEVATION (m) 600 600 **▽** -4m **AREA 118 UG** 500 DEVELOPMENT 400 300 Legend Permafrost aquiclude Groundwater flux lines MP well (projected onto cross section) Creek in valley bottom Permafrost Groundwater flow line (assumed) Note: Flow lines assume pits have been backfilled with tailings and all mine workings reflooded to static water levels SRK Consulting Engineers and Scientists south \longrightarrow \leftarrow south RK JOB NO .: 2CM022.017 Cross Section (exaggerated) ILE NAME: UG Profile.dwg

4.2 Hydrogeochemistry

Groundwater samples were collected from the multilevel monitoring wells in December 2009 and April 2010 (see Appendix A and B for details on well development and sampling). Results of the sampling are given in Table 2, and summarised in Figure 5 to Figure 12, are were compared to the mean annual site background water quality (Minnow, 2010), as shown in the plots as a means of benchmarking the hydrogeochemistry for potential loading influence on the surface water bodies.

As can be seen in Figure 5 and Figure 6, the groundwater chemistry is quite similar to the mean annual values in all sample zones, and that samples collected in December 2009 and April 2010 show little variation. The latter indicates that the zones were properly developed in the initial sampling round and that representative samples were collected.

Samples were also analysed for metals concentrations. All samples were analysed for both total and dissolved metals (see detailed lab analysis in Appendices A and B). However, although Total and Dissolved metals results are usually similar (indicating low suspended load in the samples), only dissolved species are presented in this report as these will be more representative of actual groundwater conditions as suspended particles in monitoring well samples are due to drill and well construction, not actual particulate matter moving through the groundwater system.

Results of the metals analysis (aluminum, cadmium, copper, iron, manganese, and selenium) are shown in Figure 7 to Figure 12. All samples show little variation (significantly less than 1 order of magnitude) and compare reasonably with the mean annual concentrations. This appears to indicate that the baseline groundwater chemistry is not significantly different than the baseline surface water chemistry on the site.

The results also indicate that metals concentrations also did not change significantly, so it is assumed that representative samples were collected in both sampling rounds. This also indicates that it would be reasonable to assume that the initial sampling results obtained from the destroyed well (MW09-02) represent groundwater chemistry with little to no impact from drilling and installation, so can be used for baseline assessment purposes.

Table 2: 2009 - 2010 Grounwater Quality Results

2009 Groundwater Quality Data

		Well-Zone				MW/00.2				
Parameter	Units	MW/00-1-2	MW09-1-3	MW/00-1-2-D	MW/09-2-1	09-2 MW/09-2-1-D	MW/00-2-1	MW/09-3-2	09-3 MW/09-3-2-D	MW/00-2-2
Date		30-Nov-09	30-Nov-09	30-Nov-09	2-Dec-09	2-Dec-09	1-Dec-09	1-Dec-09	1-Dec-09	1-Dec-09
Physical Properties										
рН	pH units	8.03	8.02	8.06	7.95	7.95	7.94	7.91	7.92	7.8
Conductivity	uS/cm	729	725	728	1090	1090	976	932	947	158
TDS	mg/L	528	364	442	814	812	652	626	672	110
TSS	mg/L	7	92	66	30	31	399	146	96	21
Alkalinity - Ricarbonato	maCaCO2/I	140	100	100	400	410	100	100	100	70
Alkalinity - Carbonate	mgCaCO3/L	<6	<6	<6	400 <6	<6	<6	<6	<6	<6
Alkalinity - Hydroxide	mgCaCO3/L	<5	<5	<5	<5	<5	<5	<5	<5	<5
Alkalinity - Total	mgCaCO3/L	112	100	100	329	333	93	85	81	55
Hardness	mgCaCO3/L	318	262	274	503	508	253	242	255	60
Turbidity	NTU	1.1	32	26	13	16	95	49	47	6.9
Chloride	mg/L	7.22	7.28	7.27	5.52	5.73	17.9	16	16.3	0.93
Nitrogen as NH4	mg/L	0.72	3.85	3.03	1.29	1.26	5.79	5.32	5.6	0.26
Nitrogen as NO23	mg/L	42.9	42.1	42.1	23.2	24.4	60.9	58.2	59.7	1.87
Deenhete (tetal)	mg/L	0.79	0 02	0.21	1.13	1.01	11.7	12.2	11.0	0.34
Sulphate (dissolved)	mg/L	77.4	82.5	83.3	166	170	117	110	115	10
Dissolved Metals	iiig/2		02.0	00.0	100					
Aluminium	mg/L	0.006	0.007	< 0.005	0.01	< 0.005	0.01	0.008	0.007	0.007
Antimony	mg/L	0.0053	0.0032	0.0008	0.0136	0.003	0.002	0.0021	0.0034	0.0021
Arsenic	mg/L	0.0002	0.0002	0.0003	0.0041	0.0047	0.0009	0.0008	0.0005	0.0002
Barium	mg/L	0.034	0.1	0.095	0.11	0.111	0.106	0.088	0.091	0.011
Berillium	mg/L	<0.00004	<0.00004	<0.00004	<0.00004	<0.00004	< 0.00004	<0.00004	<0.00004	<0.00004
Bismuth	mg/L	<0.001	< 0.001	< 0.001	<0.001	<0.001	< 0.001	< 0.001	<0.001	< 0.001
Cadmium	mg/L	0.045	0.052	0.044	16.6	0.09	0.32	0.218	0.2	0.044
Calcium	mg/L	89.7	75 4	78.2	98.2	99.2	74 1	73.7	77.6	19.00007
Chromium	ma/L	<0.0004	<0.0004	<0.0004	0.0036	0.0038	< 0.0004	<0.0004	<0.0004	<0.0004
Cobalt	mg/L	0.00102	0.00076	0.00078	0.00065	0.00062	0.00045	0.00057	0.00054	0.00024
Copper	mg/L	0.012	0.02	0.018	0.004	0.003	0.019	0.022	0.022	0.005
Iron	mg/L	0.05	0.04	0.04	0.11	0.09	0.03	0.02	0.02	0.02
Lead	mg/L	0.0001	<0.0001	<0.0001	0.0002	0.0002	0.0002	0.0001	<0.0001	0.0001
Lithium	mg/L	0.001	0.003	0.003	0.011	0.01	0.012	0.011	0.011	0.001
Magnesium	mg/L	22.9	18	19.1	62.6	63.1	16.5	14.2	14.9	2.4
Manganese	mg/L	0.0802	0.228	0.189	0.27	0.261	0.161	0.135	0.137	0.0184
Molyhdenum	mg/L	0.0341	0.0892	0.0733	0.0442	0.0487	0.0806	0 101	0 104	0.0267
Nickel	ma/L	0.004	0.002	0.002	0.004	0.003	0.008	0.004	0.004	0.002
Phosphorus	mg/L	< 0.01	< 0.01	<0.01	< 0.01	<0.01	0.02	< 0.01	<0.01	< 0.01
Potassium	mg/L	3.2	6.6	5.8	8.2	8.4	27	26	25	2.6
Selenium	mg/L	0.0028	0.0028	0.003	0.0067	0.0068	0.008	0.0067	0.0068	<0.0006
Silicon	mg/L	4.37	2.87	3.36	6.88	6.94	2.49	2.54	2.58	4.2
Silver	mg/L	0.00019	<0.00001	0.00002	<0.00001	<0.00001	0.00005	0.00004	0.00005	0.00001
Sodium	mg/L	16.8	28	26.2	70.4	74.2	70.5	63	66.8	5.5
Sulfur	mg/L mg/l	1.04	1.51	1.39	2.11	2.14	2.21	1.80	1.91	0.168
Tellurium	mg/L	<0.0001	<0.0001	<0.0001	<0.0001	<0.0001	<0.0001	<0.0001	<0.0001	<0.0001
Thallium	ma/L	< 0.00001	<0.00001	<0.00001	<0.00001	<0.00001	<0.00001	<0.00001	<0.00001	<0.00001
Thorium	mg/L	< 0.0004	< 0.0004	< 0.0004	< 0.0004	< 0.0004	< 0.0004	< 0.0004	<0.0004	< 0.0004
Tin	mg/L	<0.0001	0.0001	<0.0001	<0.0001	<0.0001	0.0002	0.0002	<0.0001	<0.0001
Titanium	mg/L	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01
Uranium	mg/L	0.0029	<0.0004	0.0008	0.0038	0.0039	0.001	0.0008	0.0008	<0.0004
Vanadium	mg/L	0.0002	0.0001	0.0001	0.0011	0.0012	0.0002	0.0001	0.0001	0.0002
Zinc	mg/L	0.009	0.006	0.004	0.01	0.007	0.022	0.01	0.014	0.012
Zirconium Total Motals	mg/L	<0.0001	0.0001	<0.0001	0.0001	0.0001	0.0001	<0.0001	<0.0001	<0.0001
Aluminium	ma/L	0.141	1.46	1.02	1.03	0.765	15.3	3.85	2.62	0.681
Antimony	mg/L	0.0003	0.0012	0.0003	0.003	0.0038	<0.001	0.0008	0.0032	0.0025
Arsenic	mg/L	0.0003	0.0009	0.0007	0.0053	0.005	0.0068	0.0007	0.0006	< 0.0002
Barium	mg/L	0.037	0.138	0.122	0.136	0.132	1.35	0.183	0.16	0.028
Berillium	mg/L	<0.001	<0.001	<0.001	<0.001	<0.001	<0.005	<0.001	<0.001	<0.001
Bismuth	mg/L	0.046	0.068	0.048	6.18	6.25	0.514	0.25	0.228	0.064
Buron Cadmium	mg/L	<0.00004	<0.00004	0.00004	0.00004	<0.00004	0.00066	0.00042	0.00004	<0.00004
Calcium	ma/L	0.00004 85 Q	0.00008	0.00008 70 Q	1000.0	95.00016	9.00012	0.00013 74	74.4	20.00008
Chromium	ma/L	0.0011	0.0052	0.0037	0.006	0.0054	0.003	0.002	0.0016	0.0013
Cobalt	mg/L	0.00109	0.00156	0.00145	0.00144	0.00121	0.0175	0.00147	0.00128	0.00027
Copper	mg/L	0.015	0.04	0.035	0.013	0.01	0.056	0.047	0.042	0.01
Iron	mg/L	0.324	2.68	1.65	1.76	1.28	44	4.93	3.47	0.673
Lead	mg/L	0.0001	0.0007	0.0005	0.0008	0.0006	0.004	0.0008	0.0006	0.0002
Lithium	mg/L	0.001	0.005	0.004	0.013	0.013	0.02	0.012	0.012	0.001
Magnesium	mg/L	22	18	17.8	62.2	61.9	21.8	14.6	14.6	2.54
Manganese	mg/L	0.0935	0.309	0.248	<0.34	-0.01	0.78	0.287	0.256	0.0384
Molvbdenum	ma/L	0.0356	0.0944	0.0758	0.0481	0.0499	0,0742	0.108	0.114	0.0288
Nickel	ma/L	0.004	0.005	0.004	0.006	0.005	0.01	0.005	0.005	0.002
Phosphorus	mg/L	<0.05	0.06	<0.05	<0.05	<0.05	0.19	0.07	0.05	<0.05
Potassium	mg/L	3.3	7.2	5.9	8.6	8.3	31	25.2	25.2	3
Selenium	mg/L	0.0029	0.0032	0.0031	0.0072	0.0073	0.011	0.0078	0.0077	0.0007
Silicon	mg/L	4.54	7.01	5.12	9.32	8.46	38.1	9.99	7.55	5.49
Silver	mg/L	0.00037	0.00013	0.00013	0.00024	0.00019	0.0104	0.00613	0.00377	0.00154
Sodium	mg/L	16.7	28.1	23.6	73.4	71.5	65.4	66.1	66.7	5.72
Sulfur	mg/L	1.27	1.84 29 F	1.64	2.55	2.53	2.41	2.17	2.31	0.189
Tellurium	mg/L	<0.0001	<0.001	<0.001	<0 00.0	<0 0001	<0.0005	<0.0001	<0 0001	3.0 <0.0001
Thallium	ma/L	<0.00001	0.00002	0.00001	0.00001	<0.00001	0.00016	0.00002	0.00002	<0.00001
Thorium	mg/L	< 0.0004	< 0.0004	<0.0004	< 0.0004	< 0.0004	<0.002	< 0.0004	< 0.0004	< 0.0004
Tin	mg/L	<0.0001	<0.0001	<0.0001	<0.0001	<0.0001	<0.0005	0.0003	0.0002	<0.0001
Uranium	mg/L	0.0032	0.0004	0.0008	0.0045	0.0044	0.002	0.0009	0.001	<0.0004
Vanadium	mg/L	0.0006	0.0046	0.0033	0.0036	0.0029	0.039	0.0065	0.005	0.0012
Zinc Zince	mg/L	0.007	0.029	0.019	0.024	0.018	0.13	0.036	0.033	0.033
∠irconium	mg/L	0.0002	0.0006	0.0004	0.0004	0.0004	0.0006	0.0004	0.0004	0.0001

2010 Groundwater Quality Data

					Well-Zone			
Parameter	Unit	MW	09-1			MW09-3		
		MW09-1-3	MW09-1-5	MW09-3-1	MW09-3-2	MW09-3-3	MW09-3-4	MW09-4-4
Date Sampled		30-Mar-10	30-Mar-10	29-Mar-10	29-Mar-10	29-Mar-10	29-Mar-10	29-Mar-10
Sample Depth	m	24.7	83.4	37.9	24.2	10.5	92.5	15.3
Physical Tests								
nH @25°C	(1)	8.04	6.46	8	8.05	7 84	7 79	6 15
Electrical Conductivity	(1) US/cm	0.04	0.40	215	502	159	161	0.10
	µ3/cm	941	2	313	502	100	101	1
Hardness as CaCO3	mg/L	330	<5	144	178	69	/1	<0
I-Alkalinity as CaCO3	mg/L	184	<5	137	130	63	67	<5
Turbidity	NTU	64	0.4	2.5	3	0.3	0.7	0.1
Total Suspended Solids	mg/L	70	<3	<4	<7	<4	<4	<3
Total Dissolved Solids	mg/L	630	32	196	324	114	112	12
Colour	сŪ	<5	<5	<5	<5	<5	<5	<5
Major Anions and Cations								
Carbonate	ma/l	-6	-6	-6	~6	~6	~6	-6
Calcium	mg/L	03.7	<0.1	41.2	56.3	22.4	24.2	<0.1
Managina	mg/L	33.7	0.1	41.2	50.5	23.4	24.2	-0.1
Magnesium	mg/L	24.7	<0.1	9.9	9.2	2.4	2.6	<0.1
Sodium	mg/L	53.3	<0.1	5.7	24.9	2.6	2.7	<0.1
Phosphorus	mg/L	0.03	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01
Potassium	mg/L	7	0.7	4.4	6.6	2.3	2.2	0.6
Silicon	mg/L	3.39	3.38	4	3.7	3.85	3.98	< 0.05
Bicarbonate	mg/L	220	<5	170	160	80	80	<5
Hydroxide	ma/L	<5	<5	<5	<5	<5	<5	<5
Ionic Balance	%	106	40	115	108	116	111	
Aniona and Nutrianta	70	100		110	100	110		
Amons and Nutrients		0.40	0.05	0.05		0.05	0.05	0.05
Ammonium - N	mg/L	6.16	<0.05	0.35	0.99	<0.05	<0.05	<0.05
Total Kjeldahl Nitrogen	mg/L	8.89	<0.06	0.4	1.22	<0.06	<0.06	<0.06
Total Phosphorus	mg/L	0.09	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05
Orthophosphate-P	mg/L	0.06	0.06	0.06	0.07	0.06	0.06	<0.01
Nitrate and Nitrite - N	mg/L	21.6	0.02	0.26	16.1	0.47	0.48	<0.01
Chloride	mg/L	18.5	0.24	0.4	3.82	0.61	0.61	<0.02
Sulfate (SO4)	ma/L	169	<0.6	23	48.9	10	10	<0.6
Dissolved Metals	····9'	100	NO.0	20	40.5	10	10	~0.0
Aluariaura		0.040	0.005	0.005	0.005	0.005	0.010	0.005
Aluminum	mg/L	0.048	<0.005	<0.005	<0.005	<0.005	0.013	<0.005
Antimony	mg/L	0.0011	0.0007	0.0009	0.0018	0.0009	0.0012	0.0006
Arsenic	mg/L	0.0007	<0.0002	0.0002	0.0012	<0.0002	< 0.0002	<0.0002
Barium	mg/L	0.142	<0.001	0.047	0.035	0.013	0.01	<0.001
Beryllium	mg/L	< 0.00004	< 0.00004	< 0.00004	< 0.00004	< 0.00004	< 0.00004	< 0.00004
Bismuth	mg/L	< 0.001	< 0.001	< 0.001	< 0.001	< 0.001	< 0.001	< 0.001
Boron	ma/L	0.095	0.007	0.106	1.99	0.04	0.042	< 0.004
Cadmium	ma/l	0.00015	0.00002	0.00012	0.00072	0.00002	<0.00001	<0.00001
Chromium	mg/L	<0.00010	<0.0004	0.001	0.0012	<0.0004	<0.0004	<0.0004
Chioman	mg/L	0.0004	<0.0004	0.001	0.0013	0.0004	0.0004	0.0004
Cobait	mg/L	0.00045	0.00004	0.00014	0.0002	0.00009	0.00008	0.00002
Copper	mg/L	0.021	0.001	0.004	0.006	0.005	0.004	<0.001
Iron	mg/L	0.18	<0.01	0.04	<0.01	<0.01	0.03	<0.01
Lead	mg/L	0.0003	0.0001	0.0011	0.0003	0.0007	0.0002	0.0002
Lithium	mg/L	0.003	< 0.001	0.003	0.004	< 0.001	< 0.001	< 0.001
Manganese	mg/L	0.168	0.0003	0.109	0.0616	0.0129	0.0087	< 0.0002
Mercury	ua/L	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01
Molybdenum	ma/l	0 148	<0.0001	0.0052	0.045	0.0064	0.0049	<0.0001
Nickol	mg/L	0.002	<0.001	0.005	0.002	<0.001	<0.001	<0.0001
Calaaium	mg/L	0.002	0.001	0.000	0.002	0.001	0.001	0.001
Selenium	mg/L	0.0018	<0.0006	<0.0006	0.0028	<0.0006	<0.0006	<0.0006
Silver	mg/L	<0.00001	<0.00001	<0.00001	0.00001	<0.00001	<0.00001	<0.00001
Strontium	mg/L	1.41	<0.001	0.863	0.739	0.125	0.12	<0.001
Sulfur	mg/L	56.2	<0.2	7.6	16.3	3.4	3.5	<0.2
Tellurium	mg/L	< 0.0001	< 0.0001	< 0.0001	< 0.0001	< 0.0001	< 0.0001	< 0.0001
Thallium	ma/L	< 0.00001	< 0.00001	< 0.00001	< 0.00001	< 0.00001	< 0.00001	< 0.00001
Thorium	ma/l	<0.0004	<0.0004	<0.0004	<0.0004	<0.0004	<0.0004	<0.0004
Tin	mg/L	0.0003	<0.0001	<0.0001	<0.0001	<0.0001	<0.0001	<0.0001
Titonium	mg/L	-0.01	-0.01	-0.01	-0.01	-0.01	-0.01	-0.001
	mg/L	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01
Uranium	mg/L	<0.0004	<0.0004	0.0015	0.0014	<0.0004	<0.0004	<0.0004
Vanadium	mg/L	0.0003	<0.0001	0.0001	0.0004	0.0002	0.0004	<0.0001
Zinc	mg/L	0.016	0.004	0.014	0.005	0.005	0.004	0.004
Zirconium	mg/L	0.0002	< 0.0001	< 0.0001	< 0.0001	< 0.0001	< 0.0001	< 0.0001
Total Metals	1	1						
Aluminum	mg/L	1.31	< 0.005	0.043	0.03	0.01	0.014	< 0.005
Antimony	mg/L	0.0005	< 0.0002	0.0002	< 0.0002	< 0.0002	0.0003	< 0.0002
Arsenic	ma/L	0.0012	<0.0002	0.0004	0.0015	<0.0002	<0.0002	<0.0002
Barium	ma/L	0 186	<0.001	0.05	0.036	0.013	0.01	<0.001
Beryllium	mg/l	0.0005	<0.001	<0.00	<0.000	<0.010	<0.01	<0.001
Bismuth	mg/L	0.00005	-0.0004	-0.00004	<0.00004	-0.00004	<0.00004	~0.00004
Distriction	mg/L	<0.001	<0.001	<0.001	<0.001	<0.001	<0.001	<0.001
Boron	mg/L	0.095	0.016	0.29	1.92	0.034	0.034	0.01
Cadmium	mg/L	0.00014	< 0.00001	0.00011	0.00004	0.00001	0.00006	<0.00001
Calcium	mg/L	98.7	< 0.05	42.5	59.3	24.9	24.9	<0.05
Chromium	mg/L	0.0072	< 0.0004	0.0022	0.0014	< 0.0004	0.0006	< 0.0004
Cobalt	mg/L	0.00147	< 0.00002	0.00019	0.00022	0.00007	0.00006	< 0.00002
Copper	mg/L	0.029	< 0.001	0.006	0.008	0.004	0.004	< 0.001
Iron	ma/L	3.37	0.026	0.183	0.175	0.027	0.047	< 0.01
Lead	ma/L	0.001	0.0001	0.0003	0.0003	0 0002	0.0002	<0.0001
Lithium	mg/l	0.001	~0.0001	0.000	0.000	~0.001	~0.0002	~0.001
Magnosium	mg/L	0.003	-0.001	0.003	0.003	N.001	NU.001	-0.001
Magnesium	ing/L	26.8	<0.05	10.4	9.76	2.62	2.63	<0.05
wanganese (SemiTrace)	ing/L	0.219	<0.005	0.118	0.06	0.007	<0.005	<0.005
Manganese (Trace)	mg/L	0.225	0.0002	0.123	0.0677	0.0132	0.009	< 0.0002
Mercury	ug/L	0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01
Molybdenum	mg/L	0.146	< 0.0001	0.006	0.0468	0.0065	0.0051	<0.0001
Nickel	mg/L	0.006	< 0.001	0.007	0.002	< 0.001	0.001	< 0.001
Potassium	mg/L	7.2	0.1	4.2	6.8	2.1	1.9	<0.1
Selenium	mg/L	0.0019	<0.0006	<0.0006	0.0029	<0.0006	<0.0006	<0.0006
Silicon	mg/l	7	3.7	4.6	A 11	A A	4 30	~0.05
Silver	mg/L	0.00012	-0.00001	4.0	4.11	4.4	4.55	~0.000
Cadium	mg/L	0.00012	<0.00001	0.00000	0.00017	0.00004	0.00003	<0.00001
Otacativas	ing/L	56.9	0.13	1.31	25.7	3.08	3.07	0.3
Strontium	mg/L	1.43	<0.001	0.886	0.785	0.126	0.127	0.001
Sulfur	mg/L	58.3	<0.1	7.3	15.8	3.4	3.4	<0.1
Tellurium	mg/L	<0.0001	<0.0001	<0.0001	<0.0001	<0.0001	<0.0001	<0.0001
Thallium	ma/L	0.00002	< 0.00001	< 0.00001	< 0.00001	< 0.00001	< 0.00001	< 0.00001

SRK Consulting Groundwater Baseline Report – Minto Mine

2010 Groundwater Quality Data

		Well-Zone							
Parameter	Unit	MW	/09-1						
		MW09-1-3	MW09-1-5	MW09-3-1	MW09-3-2	MW09-3-3	MW09-3-4	MW09-4-4	
Date Sampled		30-Mar-10	30-Mar-10	29-Mar-10	29-Mar-10	29-Mar-10	29-Mar-10	29-Mar-10	
Sample Depth	m	24.7	83.4	37.9	24.2	10.5	92.5	15.3	
Thorium	mg/L	< 0.0004	< 0.0004	< 0.0004	< 0.0004	< 0.0004	< 0.0004	< 0.0004	
Tin	mg/L	< 0.0001	< 0.0001	< 0.0001	< 0.0001	< 0.0001	< 0.0001	< 0.0001	
Titanium	mg/L	0.079	<0.001	0.002	<0.001	< 0.001	< 0.001	< 0.001	
Uranium	mg/L	< 0.0004	< 0.0004	0.0015	0.0014	< 0.0004	< 0.0004	< 0.0004	
Vanadium	mg/L	0.0049	< 0.0001	0.0003	0.0005	0.0003	0.0004	< 0.0001	
Zinc	mg/L	0.025	0.003	0.016	0.01	0.01	0.01	0.005	
Zirconium	mg/L	0.0005	<0.0001	0.0001	<0.0001	< 0.0001	<0.0001	<0.0001	

5.0 Conclusions and Recommendations

Permafrost and piezometric (water level) conditions observed to date on the site support the conceptual model that groundwater flow will be concentrated in the shallow, active surface materials during summer thaw period and in the deeper, sub-permafrost aquifer system.

Based on the piezometric data and topography observed, the deeper groundwater flow is expected to discharge within the mine site, prior to the W3 compliance point. Therefore; any impacted groundwater will enter the surface water system and contribute to surface water loading. However; the expected flux (volume over time) will be low, so even at baseflow conditions we do not expect significant impact.

Groundwater chemistry across the site appears to be fairly consistent. Based on this observation, it is expected that it will be possible to model groundwater chemistry interactions with reasonable confidence across the site. This will be confirmed through additional monitoring of the ground water wells, and from seeps that are not influenced by mine workings (i.e.: not from the toe of an established waste dump, etc).

Going forward, the groundwater monitoring system will be upgraded to take into account new mine infrastructure and tailings facilities as required. At this time, Minto Exploration has committed to re-establishing connection to the damaged MW09-04 and replacement of the destroyed MW09-02 once the design for the valley fill has been finalised.

For monitoring system operation, Minto will:

- conduct quarterly pressure profiles and sampling for all monitoring locations for a minimum of one year. At the end of this period, a review of all available hydrogeological data will be conducted and monitoring locations prioritized for sampling frequency (e.g., quarterly versus bi-annually or annually).
- maintain a clear record of the installation, development, monitoring, and servicing carried out on each groundwater monitoring installation over time, with a log of these events recorded and included in the annual monitoring report.

This letter report, **'Minto Mine: Groundwater Baseline Conditions'**, has been prepared by SRK Consulting (Canada) Inc.:

Yours truly,

SRK Consulting (Canada) Inc.

lichaet

Michael Royle, M.App.Sci., P.Geo. Principal Hydrogeologist

References:

- 1. SRK 2008: Waste Dump Overburden Drilling. Minto Mine, Yukon.
- 2. EBA 2007: Geotechnical Design Report-'Dry' Stack tailings Storage facility. Minto Mine, Yukon.
- 3. Minnow 2010: Minto Creek Background Water Quality Data and Seasonality.

Appendix A Minto Mine: Groundwater Monitoring System Installation Report

Minto Mine Groundwater Monitoring System Installation Report

Prepared for

Minto Explorations Ltd.

Prepared by

Project Reference Number SRK 2CM022.007

February 2010

Minto Mine

Groundwater Monitoring System Installation Report

Capstone Mining Corp.

Suite 900-999 West Hastings Street Vancouver, B.C. V6C 2W2

SRK Consulting (Canada) Inc. Suite 2200, 1066 West Hastings Street Vancouver, B.C. V6E 3X2

Tel: 604.681.4196 Fax: 604.687.5532 E-mail: vancouver@srk.com Web site: www.srk.com

SRK Project Number 2CM022.007.0001.01

February 2010

Executive Summary

The groundwater monitoring system at the Minto Mine was augmented in 2009 with three multilevel monitoring systems. The main objectives of the Multiport (MP) monitoring wells are to:

- improve the understanding of hydrogeological conditions across the mine site, specifically as it behaves below the permafrost layer; and
- collect background data on piezometric levels and geochemistry of the hydrogeological system with respect to potential impact areas (waste rock piles, TMF, DSTF, etc).

This information will be used to establish baseline groundwater conditions at the site that can be directly monitored to detect possible impacts from mine infrastructure planned for the site.

This report summarizes the work carried out by SRK Consulting (Canada) Inc. during November and December, 2009 designed to drill and log four new holes, and install multi-level monitoring wells in each hole.

The new wells were designed to collect data to assess or enhance the understanding of:

- piezometric pressure distributions in depth discrete intervals in all monitoring wells;
- current pattern of groundwater flow across the site; and
- groundwater geochemistry for discrete depths in all wells.

The original plan called for the installation of four monitoring wells (MW09-01 to -04), located at current and future points of potential groundwater impact. The four new drillholes were all completed successfully to target depths; however, one of the installations (MW09-04) was damaged due to collapse of uncased waste rock near the surface soon after installation of the monitoring well had been completed.

MW09-04 may still be recoverable; however, frozen ground conditions do not allow for safe or easy access and so recovery efforts have been put on hold until the summer of 2010. It should be noted that MW09-04 is located up gradient of the currently dewatered Main Zone pit and so would not see any impacts from tailings or waste rock disposal until such time that mining in the pit ceases and it is converted to a tailings management facility (TMF) sometime in 2012. Therefore, a delay in data collection at this point is not considered to be significant with respect to site monitoring requirements.

Monitoring well and protective casing design and packer locations are illustrated for each drillhole to show the hydrogeological features that the data relate to. Installation details for MW09-04 are included for completeness, and to illustrate how this area will be covered by the recovered or replacement well.

Preliminary data were collected from each MP system and presented in this report. At this time, all available pressure and hydrogeochemistry data and the resulting interpretations are considered to be preliminary, as it is uncertain whether the monitoring zones have equilibrated from the drilling and installation disturbances. Future monitoring data will be used to determine when pressures and water chemistry have reached equilibrium with the surrounding rock.

The piezometric data collected from the new and existing multilevel monitoring wells will be used to better define the patterns of groundwater flow in the rock mass surrounding the currently dewatered Main Zone pit and throughout the site, as well as improve the conceptual model with respect to characteristics of hydrogeological features such as faults and regions on the site with little previous groundwater data. Geochemistry samples will be used to delineate flow paths and sources of water as it flows through the site and moves towards receptor bodies.

Table of Contents

	xecutive Summary	i
1	ntroduction	. 1 1 2
2	Hydrogeological Conditions .1 Permafrost Conditions .2 Overburden .3 Bedrock 2.3.1 Lithology 2.3.2 Structure 2.3.3 Historical and Existing Groundwater Monitoring 2.3.4 Hydrogeological Implications of the Geological Model and Past Monitoring	2 2 4 4 4 5 5
3	Groundwater Monitoring System 1 Locations 2 Drilling Techniques and Core Logging 3 MP Casing Installation Program 3.3.1 Installation Procedures 3.3.2 Details of Installed System 3.3.3 Documentation 3.3.4 MW09-4	• 6 7 7 7 8 8 9
4	Image: Anomaly of Initial Pressure Data .3 Development and Sampling .4 Initial Sampling Results	. 9 9 9 10 11
5	Ionitoring System Recommendations	13

Table 1:	Monitoring Well Locations and Design Objective	6
Table 2:	Monitoring Zone Details	8
Table 3:	Preliminary Sampling Results – December 2009 1	2

List of Figures

- Figure 1: Site Plan with Mine Infrastructure, Geological Features and Monitoring Locations
- Figure 2: SRK-09-01: MP Casing Log and Pressure Data
- Figure 3: SRK-09-02: MP Casing Log and Pressure Data
- Figure 4: SRK-09-03: MP Casing Log and Pressure Data
- Figure 5: SRK-09-04: MP Casing Log
- Figure 6: pH
- Figure 7: Alkalinity
- Figure 8: Dissolved Metals: Cu, Mo, Se

List of Appendices

- Appendix A: Drillhole Logs
- Appendix B: MP Monitoring Well Casing Design and Installation Records
- Appendix C: MP System: Groundwater Pressure Profiling and Sampling Protocols
- Appendix D: Pressure Profiles
- Appendix E: Sampling Records
- Appendix F: MP Monitoring Well History Log

1 Introduction

This report describes the design and installation of multilevel monitoring wells at the Minto Mine, Yukon. The purpose of the monitoring system is to improve the understanding of hydrogeological conditions across the sire and provide background water levels and hydrogeochemistry for environmental monitoring of the site. Four new drill holes were instrumented with the multilevel MP system. Figure 1 shows the general layout of the mine workings, major faults and all monitoring locations on the site. Information from the new monitoring system will be helpful in establishing the probable flow system in a flooded mine scenario and the hydrogeological controls for water entering and exiting the mine workings.

This report provides initial results of post installation pressure monitoring and makes limited recommendations for future monitoring of the MP well network.

1.1 Regulatory Requirements

The Minto Mine is subject to Type "A" Water Use License QZ96-006 (WUL) issued by the Yukon Water Board. Section 7.0 of the WUL require that a groundwater monitoring plan be prepared for the site, and stipulates that the monitoring plan shall:

Groundwater Monitoring Plan

- 71. On or before the first anniversary of the start up date, the Licensee shall submit to the Board a Groundwater Monitoring Plan.
- 72. The Groundwater Monitoring Plan shall be designed in order to monitor potential groundwater contamination related to the waste rock/overburden dumps.
- 73. The Groundwater Monitoring Plan shall include at least two groundwater monitoring wells below the toe of each of the waste rock and overburden dumps. The siting and depth of these wells shall be based on the hydro geology of the area below the dumps and shall be selected to provide an early indication of the impact of the dumps on local groundwater quality.

Monitoring of groundwater conditions is also a component to the monitoring program for the Dry Stack Tailings Facility (DSTF) at the site, as prescribed in the document Minto Mine Tailings Management Plan (January 2007), which was submitted as a requirement of the project's Quartz Mining License QML-0001 and approved by Yukon Government, Energy Mines and Resources (YG EMR). The requirements for groundwater monitoring in the DSTF are an element of the site groundwater monitoring regime, but will only be identified and referenced in this plan, as they may change with amendments to the Tailings Management Plan.

1.2 Monitoring Objectives

As stipulated in the WUL, a groundwater monitoring program will be carried out in the vicinity of the waste rock, overburden dumps, and the dry stack tailings facility (DSTF) at the Minto Mine site to provide background and on-going water quality data. The objective of the groundwater monitoring program is to provide an early indication of potential impact of the dumps on the local groundwater quality. In addition, this plan contains adaptive management and contingency measures if contamination is detected.

2 Hydrogeological Conditions

Groundwater at the Minto site will be constrained to the overburden and bedrock flow systems. A complicating factor for monitoring groundwater at the site is the extent of permafrost at the site. The general hydrogeological characteristics are discussed below to give a clearer picture of the conditions that will affect the movement of groundwater on the site.

2.1 Permafrost Conditions

Permafrost conditions on the site will make groundwater monitoring problematic. Permafrost on the site has been found to be extensive and deep (SRK, 2008). Data from drilling at several locations has shown permafrost ranging from depths from within 1.0m of ground surface to depths of up to 10 m.

Geotechnical drilling in 1994 and 1996 by EBA observed permafrost in each of the boreholes drilled within the vicinity of the proposed DSTF (See Figure 1), with the base of the permafrost occurring at varying depths (EBA, 2007). Measurements of the active layer in these areas indicated a maximum depth of only about 1.0 m in September 1996, directly under the DSTF footprint.

The observed ice contents in boreholes downstream of the DSTF (94-11 and 94-21) and within the footprint of the DSTF (96-G07 through -G12, excluding -G10), typically ranged from frozen ground to visible ice at 10% to 20% of the total volume. Two of the boreholes, 96-G09 and 96-G12, showed ice intervals of 1.5 and 4.0m thick respectively within the upper 10m.

Initial data from the ground temperature cables installed in 94-11, 94-21, and 96-G08 indicate a relatively uniform ground temperature of close to -0.8°C after equilibration with slight seasonal warming within the top 2 to 4 m. The active layer in 94-G11 and 94–G21 are on existing disturbed trails, and so will be deeper than the surrounding soils. Readings from 2006 for 94-G11 indicate similar ground temperatures and active layer thickness.

In November 2007, vibrating wire piezometers were installed within and down gradient of the existing dry stack tailings facility (DSTF) in boreholes DSP-1 and DSP-2. Each of these piezometers is equipped with temperature sensors at the piezometer tip. At both of the locations, the

sensors were installed at 1 m and 1.7 m respectively. No pore water has been measured in the piezometers to date, as ground conditions have remained frozen.

In addition, three more temperature cables providing profile data were installed in the vicinity of the DSTF in holes DST-1, DST-2, and DST-5. Initial observations from the piezometer temperature probes indicate that temperatures did not rise above -0.3°C at any time and ranged as low as -2.6°C. Temperature cable DST-5 (Figure 1) is located outside of the footprint of the DSTF and provided a profile reflecting conditions on an un-insulated site. Temperature averaged approximately -0.5°C below 1 m depth, and fluctuated near surface to values exceeding 5°C.

No groundwater was observed in any of the boreholes during the EBA geotechnical drilling program.

Soil investigation drilling in the region of the SW waste rock dump in February to April, 2008 (SRK, 2008), most cores contained non-visible ice, indicating the pore water was frozen; however, clear chunks of ice were also observed in many cases. Data from thermistors installed in the same drill holes indicate that this permafrost is close to 0°C; however, water in any monitoring standpipes would freeze in the permafrost layer.

The results of the temperature and piezometer monitoring near the SW Dump through June 2008 suggest that unfrozen layers at depth may be limited or non-existent, and that shallow perched water tables within the seasonally thawed active layer may provide the only mechanism for transport within this region of the basin.

2.2 Overburden

Geotechnical investigations within the plan area of the DSTF (EBA, 2007) indicated overburden thicknesses of up to 45m. These deposits are thought to be an extension of an infilled valley, which also passes through the southern end of the open pit. The overburden soils generally comprise a thin veneer of peat and vegetation overlying a fine-grained silt or silt and sand of colluvium origin. The colluvium is underlain by coarse-grained sand with trace gravel that is considered to be a residual soil. The exception to this is at borehole 94-21, in which a clay layer from ground surface to a depth of 18-9m was observed (EBA, 2007).

Throughout the mine site the residual soils grade into weathered bedrock. The overburden soils thin out to the south and east of the DSTSF site.

Detailed soil logging by SRK in the area of the SW Dump (SRK, 2008) indicated that overburden material is comprised of silty, and in certain locations, clayey material, with fractions of sand, gravel and cobbles. Overburden thickness varies in this area (from 10.7m at 08SWC270 to 51.8m at 08SWC273). Typically, the overburden thickness increased along the valley bed, and decreased on the valley slopes. This is expected to be similar for overburden conditions across the project site.
2.3 Bedrock

2.3.1 Lithology

Bedrock in the vicinity of the DSTF is located at approximately 45m depth (EBA, 2007). In general, outcrop exposure on the property is poor. Where exposure is available, it has been affected by deep weathering and variable oxidation, as the terrain was not glaciated during the last ice age event.

The Minto site is underlain by predominantly igneous rocks of granodiorite composition. Minor amounts of other lithologies consisting of small dykes of simple quartz-feldspar pegmatite, aplite, and an aphanitic textured intermediate composition rock are also observed. Bodies of all of these units are relatively thin and rarely exceed one metre core intersections. These dykes are relatively late, generally postdating the peak ductile deformation event; however, some pegmatite and aplite bodies observed in a rock cut located north of the mill complex are openly folded. Conglomerate and volcanic flows have been logged in drill core by past operators, but have not been recently confirmed as the drill core from previous campaigns was largely destroyed in forest fires and no new drilling has intersected such rocks.

With the possible exception of the lithological contacts of the dykes, the lithology types encountered in the Minto Mine site are not expected to have significant primary porosity as it relates to hydraulic conductivity (K) or transmissivity. The low K values (less than 10^{-9} m/s) make it unlikely that significant groundwater flow will occur in competent bedrock. Flow may; however, occur in bedrock that has been fractured/faulted to produce open, secondary porosity/permeability.

2.3.2 Structure

Secondary porosity/permeability is the dominant flow path in intrusive and metamorphic rocks. For this reason, it is important to have an understanding of the structural and mineralization environment of the site when constructing the conceptual flow model.

The copper-sulphide mineralization at Minto is strongly associated with foliated granodiorite within a deformation zone. The deformation zone forms sub-horizontal horizons within the more massive plutonic rocks of the region and can be traced laterally for more than 1,000 metres in the drill core. The similarity of chemistry and texture of both the deformed and the massive granodiorites suggest the deformation zones are structural in origin and not stratigraphic. The deformation zones are thought to represent healed, shallowly dipping faults that may have formed when the rocks passed through the brittle/ductile transformation zone in the earth's crust in transition from a deep emplacement environment to eventual exhumation of the regional batholith. Because of the inclusion of mineralization and the ductile nature of the main faulting at the site, these healed structures are not expected to represent significant flow paths.

Late, brittle fracturing and faulting is noted throughout the property area and is associated with a conjugate set of regional faults. The DEF Fault strikes more or less east-west and dips north-northwest and cuts off the main zone mineralization at its northern end. This type of faulting

can often form significant flow paths within a rock mass. However; recent drilling results and data collected from instrumentation across the DEF fault in the north wall of the main Pit indicates that a significant hydraulic head is maintained across this feature (SRK, 2009 – unreported work in progress). This appears to indicate that the DEF is not a significant flow feature, but rather is holding back water flow across the structure. This characteristic; whereby, fault zones act as barriers to flow has been observed at other mine sites.

Current structural analysis of the site (SRK, 2009 - work in progress) indicates that faults of any sort are not expected to occur within the footprints of the waste and overburden dumps or DSTF.

2.3.3 Historical and Existing Groundwater Monitoring

To date, groundwater monitoring has been installed under various initiatives, including:

- Installation of standpipes in 1994 at the proposed dam alignment (P94-20) and the pit vicinity (P93-E):
 - Water chemistry samples collected between 1994 and 2006.
 - Water levels observed at ~15m and 26m depth in P94-20 and P93-E respectively.
 - Both destroyed during construction and pit excavation, respectively, in 2006).
- Vibrating wire transducers down gradient of the DSTF;
- Vibrating wire transducers in the dam core; and
- Standpipes installed during the SW dump foundation investigation.

Besides standpipes P93-E and P94-20, it appears that all standpipes installed on the site to date have frozen, indicating that permafrost conditions exist across most of the site at shallow depths.

2.3.4 Hydrogeological Implications of the Geological Model and Past Monitoring

The implications of the geology (thermal conditions, overburden, and lithology) found at the Minto site and the past monitoring events are:

- Permafrost:
 - will dominate groundwater flow system below active zone to depths of up to 45m; and
 - SRK expects that conventional "standpipe" monitoring wells installed through the permafrost in to the underlying unfrozen ground will be inoperable as the piezometric levels will be near surface; therefore, the resulting water in them will freeze.
- Shallow flow:
 - will be dominated by permafrost conditions;
 - will occur in the seasonally thawed layer; and
 - will be controlled by overburden composition in the unfrozen areas.
- Deeper flow:
 - will occur below the permafrost within the overburden or bedrock;

- will concentrate in the shallow, weathered zone if unfrozen; and
- standpipe monitoring wells will not be an effective means of monitoring the deep groundwater system.

Based on this, we expect that groundwater flow related to the waste rock and overburden dumps and the DSTF will only have significant impact on the shallow, active layer system. The deeper, bedrock hosted flow system is expected to be isolated from these facilities due to the permafrost layer.

We also expect that standpipe monitoring wells will not be an effective means of monitoring groundwater below the permafrost at the Minto site, and would be effective only seasonally when installed in the active layer.

3 Groundwater Monitoring System

3.1 Locations

For the 2009 installation program, Westbay MP (multi-port) monitoring wells were installed in four new drillholes (MW09-01, MW09-02, MW09-03, and MW09-04).

MP systems were installed in order to gain as much depth discrete information as possible from each drillhole, and to allow for operation through the permafrost. This latter aspect is possible due to the MP System being a closed pipe system such that fluids inside the pipe are isolated from the surrounding formation fluid or natural groundwater. The formation water is accessed by a wireline tool that opens individual valves to measure pressure and collect groundwater samples. The water inside the MP Casing within the permafrost is kept from freezing by mixing polypropolene glycol (antifreeze).

Table 1 lists locations and purpose for each of the new monitoring systems. The locations for each monitoring system are illustrated on Figure 1.

Well ID	Drillhole Type and Diameter	Location	Purpose	
MW09-01	New; HQ	West Pit Access	384177 E 6944984 N 858 masl	Establish baseline groundwater conditions down gradient of the Main Dump, and the proposed NW, NE, and SW Dumps
MW09-02	New; HQ	Lower Tailings	385676 E 6945034 N 757 masl	Establish groundwater conditions down gradient of the dry stack tailings facility (DSTF)
MW09-03	New; HQ	Minto North	384253 E 6946159 N 908 masl	Establish baseline groundwater conditions down gradient of the proposed North Pit
MW09-04	New; HQ	Phase 1 Confluence	384954 E 6944926 N 794 masl	Establish baseline groundwater conditions down gradient of the Main Zone Pit tailings management facility

Table 1: Monitoring Well Locations and Design Objective

Monitoring wells were located to intercept expected flow paths from the adjacent mine waste facilities in order to act as a groundwater monitoring system. The flow paths were based on the current understanding of the site geology and conceptual hydrogeological model.

3.2 Drilling Techniques and Core Logging

MW09-01 to -04 were drilled as HQ3 diameter (96mm) boreholes using a hydraulic diamond coring drill rig operated by Driftwood Drilling of Smithers, BC. Polymer based drilling additives were only used when drilling through highly fractured surface rock. Drillholes were flushed significantly after use of polymer drilling fluids.

Core was collected over the entire drilled interval, boxed, and logged. Core logging included identification of lithology, structures, and hydrogeological features, such as zones or structures showing iron staining or concretion, interpreted to be a result of subsurface water flow. Rock Quality Designation (RQD), core recovery, and qualitative hammer tests to determine rock strength data were also recorded. Complete drillhole logs are included in Appendix A. Depths in the drill logs represent drillhole depth, and all holes were vertical. All holes were logged using imperial units, but have been converted to metric for use in this report.

Specific attention was paid to identification of ice, or frozen soil/rock, in the core. However, slow drilling conditions usually meant that recovered core had been heated to above 0°C so it was difficult to determine if material was frozen *in situ*. Therefore, delineation of the permafrost base is ambiguous at this point. Future monitoring should be able to define this boundary with reasonable accuracy based on casing fluid temperature profiles, and will be part of the regular monitoring data collection process.

All drill core was digitally photographed before the boxes were sealed. These photos are included on the accompanying disk, but have not been reproduced in this report.

The boxed core will be stored as with all other core on site.

3.3 MP Casing Installation Program

3.3.1 Installation Procedures

Installation of the Westbay MP casing consists of the following:

- 1. Design of modular component layout for each well (see component logs in Appendix B) based on drill core observations;
- 2. Lowering and field testing of components to design depth;
- 3. Individual inflation of hydraulic packers to hydraulically isolate the sampling zones;

- 4. Hydraulic integrity testing of MP casing (see if it can maintain a differential water level between it and the open drillhole) to check for leaks; and
- 5. Initial pressure profile to test for ability to maintain differential pressures across packers.

As the MP casing is watertight, it is buoyant in the drillhole and has to be sunk into position by adding clean water. During installation, propylene glycol was also added to protect the water in the casing from freezing in the permafrost zone. The antifreeze will not enter the sampling zone (groundwater) as the MP Casing is sealed until opened by the sampling tool, at which point fluid enters the casing and does not escape, as the piezometric pressure inside the casing is maintained below the outside pressure. This method of preventing casing fluid entering the sampling zone has been reviewed by the USEPA for use at Superfund sites and found to be technically and operationally acceptable.

3.3.2 Details of Installed System

Monitoring zones and related packer locations were identified based on geological logs. The number of monitoring zones for each drillhole was based on a combination of observed features of hydrogeological interest and logical spacing for reasonable sample collection ability in low K rock.

Monitoring zones are numbered from the bottom up. Therefore, zone 1 is at the bottom of the well, and higher numbered zones are shallower. Table 2 summarises monitoring system information at each new location.

ID	Number of Monitoring Zones	Drillhole Length (m)	Monitoring System Length (m)	Zone Comments
MW09-01	3	50	50	 Zone 1 did not produce a water sample Zone 3 extends to the surface as there is no packer above the measurement port
MW09-02	2	60	60	Zone 2 did not produce a water sample (possibly frozen)
MW09-03	3	50	50	
MW09-04	3	75	75	Well damaged post installationTo be re-established in summer 2010

Table 2: Monitoring Zone Details

*NOTE: all depths and lengths rounded to nearest metre

3.3.3 Documentation

Well designs and installation QA documentation are provided in Appendix B. Casing depths listed on well design sheets refer to true depth as all drill holes were vertical.

3.3.4 MW09-4

Installation of MW09-4 was completed on November 24th 2009. When SRK and Minto staff returned to develop and sample the well on December 3rd, the MP casing was no longer vertical, and the wireline tools could not be lowered past an apparent bend in the casing just below the ground surface. Further investigation suggested that the uncased waste rock near the surface had shifted soon after installation of the monitoring well, causing the MP casing to deviate from its original alignment. Attempts were made to expose and straighten the upper part of the well, but the frozen ground conditions did not allow for safe or easy excavation. The well may still be intact and useable, but recovery efforts have been put on hold until the summer of 2010.

4 Monitoring

4.1 **Pressure Monitoring**

Preliminary pressure profiles for each of the monitoring wells are illustrated in Figures 2 through 4. Although no pressure data available at this time, Figure 5 illustrates the geology and well design for MW09-4 for comparison.

Piezometric data is only available for 2 monitoring events; immediately after installation and during the first sampling event several days later. Piezometric levels in each monitoring zone are plotted as the "equivalent depth to water" on the plots. This refers to the depth the water would be observed in an open standpipe if screened across the MP zone. The equivalent depth to water is calculated by adding the pressure head (height of water column calculated from the zone pressure measured) to the depth of the measurement port where the pressure was measured.

Plots also show an "atmospheric line". This line indicates where the pressure head equals zero (i.e., piezometric head equals elevation head). This condition will occur if the zone is unsaturated (dry), and is analogous to an open borehole where the water level is at, or below, the measurement zone. Therefore, unsaturated zones will plot along the atmospheric line while saturated zones will plot above this line.

Protocols for measuring fluid pressures are given in Appendix C. Tabulated pressure data are included in Appendix D.

4.2 Summary of Initial Pressure Data

Due to the low hydraulic conductivity of the rock observed to date at Minto Mine, it is not known whether piezometric pressures had equilibrated by the time the initial pressures were measured. Assuming that they are reasonably close to actual zone pressures, the following preliminary observations are presented:

• Data from MW09-01 indicate that that piezometric pressures in the three zones were slow to equilibrate (ie: significant change over two days) and that pressures are near atmospheric in the

zones. This may be due to the proximity of the monitoring system to the dewatered Main Zone pit, and indicate that the slope is mainly dewatered.

- Data from MW09-02 indicate that the two zones have the same piezometric pressure (hydrostatic), indicating either a well connected fracture system in the weathered bedrock, or possibly a suspect seal between packers. The latter will be tested during the next sampling round by monitoring an induced pressure between the zones to verify hydraulic performance.
- Data from MW09-03 indicate that generally hydrostatic conditions between the zones, with a slight upwards gradient as would be expected on a slope.
- No data available from MW09-04.

4.3 Development and Sampling

Monitoring wells were developed by opening the pumping ports using a wireline tool and then purging using a Waterra Hydrolift until the water was clear and pH, conductivity and temperature values were stable. The pumping ports were then closed and some of the water in the interior of the MP casing was pumped out in order to maintain a lower head relative to the water outside the casing. Development records are included in Appendix E.

Sampling from the MP wells was completed by attaching sample collection bottles to the wireline pressure measurement tool, and pumping out the air to create a near vacuum inside the bottles. When the tool is connected to a measurement port and the valve to the sample bottles is opened, water flows from outside the casing into the bottles due to the pressure difference. Two sample bottles were used, collecting approximately 500mL with each run. The sample bottles were thoroughly rinsed with distilled water between sampling zones, and with nitric acid at the start of each day. Standard SRK sampling protocols are attached in Appendix C.

Water samples were taken from all monitoring zones in wells MW09-01, MW09-2 and MW09-3, with the following exceptions:

- Zone 1 in MW09-1 showed a pressure reading lower than atmospheric pressure and did not appear to have any water flow; and
- Zone 2 in MW09-2 showed a pressure reading consistent with water in the formation, but no water flowed into the sample bottles on two separate attempts.

A duplicate sample was taken in each of the wells and labelled as if it were an additional zone, as noted on the sampling records, which are included in Appendix E.

Minto staff assisted with well development and sampling in order to become familiar with the MP system, and were trained to use the wireline sampling tools.

4.4 Initial Sampling Results

Initial water chemistry results are provided in Table 3 and Figures 6 to 8. Figures 6 and 7 illustrate the pH and alkalinity values from each of the zones sampled. Figure 8 gives the results for dissolved copper, molybdenum, and selenium. All sample results were above minimum detection limits. Results for filtered, dissolved metals have been presented as unfiltered samples are deemed to be unrepresentatively impacted by drill hole cuttings, etc.; therefore, not a good representation of true groundwater.

Table 3 presents detailed chemistry data. It should be noted that these data may be impacted by drilling fluids and should only be viewed as preliminary, and will be compared to future sampling results to determine when data are representative of formation hydrogeochemistry.

Table 3: Preliminary Sampling Results - December 2009

					-	Well-Zone				
Parameter	Units		MW09-1		MW	/09-2		MWC	9-3	
Dete		MW09-1-2	MW09-1-3	MW09-1-3-D	MW09-2-1	MW09-2-1-D	MW09-3-1	MW09-3-2 N	1W09-3-2-D N	AW09-3-3
Date Physical Properties		30-Nov-09	30-Nov-09	30-Nov-09	2-Dec-09	2-Dec-09	1-Dec-09	1-Dec-09	1-Dec-09	1-Dec-09
	nH units	8.03	8.02	8.06	7 95	7 95	7 94	7 91	7 92	7.8
Conductivity	uS/cm	729	725	728	1090	1.95	976	932	947	7.0 158
TDS	ma/l	528	364	442	814	812	652	626	672	130
TSS	mg/L	7	92	66	30	31	399	146	96	21
Misc. Parameters						01		110		21
Alkalinity - Bicarbonate	maCaCO3/L	140	100	100	400	410	100	100	100	70
Alkalinity - Carbonate	mgCaCO3/L	<6	<6	<6	<6	<6	<6	<6	<6	<6
Alkalinity - Hydroxide	mgCaCO3/L	<5	<5	<5	<5	<5	<5	<5	<5	<5
Alkalinity - Total	mgCaCO3/L	112	100	100	329	333	93	85	81	55
Hardness	mgCaCO3/L	318	262	274	503	508	253	242	255	60
Turbidity	NTU	1.1	32	26	13	16	95	49	47	6.9
Chloride	mg/L	7.22	7.28	7.27	5.52	5.73	17.9	16	16.3	0.93
Nitrogen as NH4	mg/L	0.72	3.85	3.03	1.29	1.26	5.79	5.32	5.6	0.26
Nitrogen as NO23	mg/L	42.9	42.1	42.1	23.2	24.4	60.9	58.2	59.7	1.87
Total Kjeldahl Nitrogen	mg/L	6.79	6	6.21	1.13	1.01	11.7	12.2	11.6	0.34
Phosphate (total)	mg/L	0.04	0.03	0.03	0.06	0.06	0.03	0.03	0.03	0.04
Sulphate (dissolved)	mg/L	77.4	82.5	83.3	166	170	117	110	115	10
Dissolved Metals										
Ag-D	mg/L	0.00019	<0.00001	0.00002	<0.00001	<0.00001	0.00005	0.00004	0.00005	0.00001
AI-D	mg/L	0.006	0.007	<0.005	0.01	<0.005	0.01	0.008	0.007	0.007
As-D	mg/L	0.0002	0.0002	0.0003	0.0041	0.0047	0.0009	0.0008	0.0005	0.0002
Ba-D	mg/L	0.034	0.1	0.095	0.11	0.111	0.106	0.088	0.091	0.011
B-D	mg/L	0.045	0.052	0.044	5.37	6.09	0.32	0.218	0.2	0.044
Be-D	mg/L	<0.00004	<0.00004	<0.00004	<0.00004	< 0.00004	<0.00004	<0.00004	<0.00004	<0.00004
Bi-D	mg/L	<0.001	<0.001	<0.001	<0.001	<0.001	<0.001	<0.001	<0.001	<0.001
Ca-D	mg/L	89.7	75.4	78.2	98.2	99.2	74.1	73.7	77.6	19.9
Cd-D	mg/L	0.00005	0.00008	0.00007	0.00009	0.00006	0.0002	0.00008	0.0001	0.00007
	mg/L	0.00102	0.00076	0.00078	0.00065	0.00062	0.00045	0.00057	0.00054	0.00024
	mg/L	<0.0004	<0.0004	< 0.0004	0.0036	0.0038	<0.0004	<0.0004	< 0.0004	< 0.0004
	mg/L	0.012	0.02	0.018	0.004	0.003	0.019	0.022	0.022	0.005
Fe-D	mg/L	0.05	0.04	0.04	0.11	0.09	0.03	0.02	0.02	0.02
Hg-D	ug/L	0.03	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	0.01
K-D	mg/L	3.2	6.6	5.8	8.2	8.4	27	26	25	2.6
	mg/L	0.001	0.003	0.003	0.011	0.01	0.012	0.011	0.011	0.001
Mg-D	mg/L	22.9	18	19.1	62.6	63.1	16.5	14.2	14.9	2.4
Mn-D	mg/L	0.0802	0.228	0.189	0.27	0.261	0.161	0.135	0.137	0.0184
Mo-D	mg/L	0.0341	0.0892	0.0733	0.0442	0.0487	0.0806	0.101	0.104	0.0267
	mg/L	16.8	28	26.2	70.4	74.2	70.5	63	0.004	5.5
	mg/L	0.004	0.002	-0.002	0.004	0.003	0.008	0.004	0.004	0.002
	mg/L	0.0001	<0.0001	<0.0001	0.0002	0.0002	0.0002	0.0001	<0.0001	0.0001
	mg/L	<0.01	<0.01	<0.01	<0.01	<0.01	0.02	<0.01	<0.01	<0.01
SD-D	mg/L	0.0053	0.0032	0.0008	0.0130	0.003	0.002	0.0021	0.0034	0.0021
S-D	mg/L	25.8	C.12	27.0	55.4	0.00	0.008	30.7	30.4	3.4 ∠0.0006
	mg/L mg/l	0.0028	0.0028	0.003	0.0007	0.0008	2.008	0.0007	0.0008	<0.0008
Sn-D	mg/L	~0.0001	0.0001	-0.0001	-0.0001	~0.001	0.0002	0.0002	~0.0001	-0.0001
Sr-D	mg/L	<0.0001	1 51	<0.0001 1 30	<0.0001	<0.0001 2 14	2 21	1.86	<0.0001 1 91	0.0001
	mg/L	<0.0001	-0.0001	-0.0001	~0.0001	~0.0001	~0.0001	-0.0001	-0.0001	~0.0001
	mg/L	<0.0001	<0.0001	<0.0001	<0.0001	<0.0001	<0.0001	<0.0001	<0.0001	<0.0001
Ti-D	mg/L	<0.004	<0.0004	<0.0004	<0.0004	<0.0004	<0.0004	<0.0004	<0.0004	<0.0004
	mg/L	<0.01	<0.01	<0.01	<0.001	<0.01	<0.01	<0.01	<0.01	<0.01
II-D	mg/L	0.0029	<0.0004	0.0008	0.0038	0.0039	0.001	0.0008	0.0008	<0.00001
V-D	mg/L	0.0002	0.0001	0.0001	0.0011	0.0012	0.0002	0.0001	0.0001	0.0002
Zn-D	mg/L	0.009	0.006	0.004	0.01	0.007	0.022	0.01	0.014	0.012
Zr-D	ma/L	< 0.0001	0.0001	<0.0001	0.0001	0.0001	0.0001	<0.0001	<0.0001	< 0.0001
Total Metals	0									
Ag-T	mg/L	0.00037	0.00013	0.00013	0.00024	0.00019	0.0104	0.00613	0.00377	0.00154
AI-T	mg/L	0.141	1.46	1.02	1.03	0.765	15.3	3.85	2.62	0.681
As-T	mg/L	0.0003	0.0009	0.0007	0.0053	0.005	0.0068	0.0007	0.0006	<0.0002
Ba-T	mg/L	0.037	0.138	0.122	0.136	0.132	1.35	0.183	0.16	0.028
Be-T	mg/L	<0.00004	<0.00004	0.00004	0.00004	<0.00004	0.00066	0.00008	0.00004	<0.00004
Bi-T	mg/L	<0.001	<0.001	<0.001	<0.001	<0.001	<0.005	<0.001	<0.001	<0.001
B-T	mg/L	0.046	0.068	0.048	6.18	6.25	0.514	0.25	0.228	0.064
Ca-T	mg/L	85.9	73.2	70.9	96	95.1	85.5	74	74.4	20.4
Cd-T	mg/L	0.00004	0.00008	0.00008	0.00017	0.00016	0.00012	0.00013	0.00011	0.00008
	mg/L	0.00109	0.00156	0.00145	0.00144	0.00121	0.0175	0.00147	0.00128	0.00027
Cr-I	mg/L	0.0011	0.0052	0.0037	0.006	0.0054	0.003	0.002	0.0016	0.0013
	mg/L	0.015	0.04	0.035	0.013	0.01	0.056	0.047	0.042	0.01
	mg/L	0.324	2.68	1.65	1.76	1.28	44	4.93	3.47	0.673
Hg-I	ug/L	0.05	<0.01	0.02	<0.01	<0.01	0.02	0.02	0.02	0.01
K-1	mg/L	3.3	7.2	5.9	8.6	8.3	31	25.2	25.2	3
	mg/L	0.001	0.005	0.004	0.013	0.013	0.02	0.012	0.012	0.001
Mg-1	mg/L	22	18	17.8	62.2	61.9	21.8	14.6	14.6	2.54
	mg/L	0.0935	0.309	0.248	0.34	0.332	0.78	0.287	0.256	0.0384
	mg/L	0.0356	0.0944	0.0758	0.0481	0.0499	0.0742	0.108	0.114	0.0288
Ni-T	mg/⊑	0.004	20.1	23.0	13.4	0.005	00.4			0.72
Ph-T	ma/l	0.004		0.004	0.000	0.000	0.01	0.005	0.000	0.002
P-T	ma/l	0.0001 ~0.0F	0.0007	0.0005 ~0.0E		0.0000 ∽∩ ∩⊑	0.004		0.0000	0.0002 ∠0.05
Sh-T	ma/l	0.00	0.00	CO.O> CO.O	<0.03 0.002	وم. <i>ن</i> ے 20.02	-0.001	0.07 0.000 0	0.03	0.00
Se-T	ma/l	0.0003	0.0012	0.0003	0.003	0.0030 0.0073	0.001	0.0000	0.0032	0.0020
Si-T	ma/l	0.0029 4.54	7 01	5 12	Q 22	0.0073 8.46	38.1	0.0070 Q QQ	7 55	5 40
Sn-T	ma/l	-4.04 -0 0001	۰.01 ۵ مرم مے	ے، د 20 001 ج	-0 0001	0.40 20 0001	<0.005	0 0003	0 0002	<0 0001
Sr-T	ma/l	1 27	1 84	1 64	2 55	2 53	2 41	2 17	2 31	0 189
S-T	ma/l	27.6	28 5	28 2	60 5	50 0	<u>ک</u> .ج۲	201	2.01 20 R	3.103
Te-T	ma/l	27.0 20 م-	20.3 20.1 c	20.2 20.01 c	<0 00.0	29.9 20 0001	<0.0005	<0 0001	<0.00 <0.0001	<0.001
Th-T	ma/l	<0.0001	<0.0001	<0.0001 <0.0004	<0.0001	<0.0001	<0.0003	<0.0001	<0.0001	<0.0001
ті-т	ma/L	<0.0001	0.00002	0.00004	0.00001	<0,00001	0.00016	0.00002	0.00002	<0.00001
U-T	ma/L	0.0032	0.0004	0.0008	0.0045	0.0044	0.002	0.0009	0.001	< 0.0004
V-T	ma/L	0.0006	0.0046	0.0033	0.0036	0.0029	0.039	0.0065	0.005	0.0012
Zn-T	ma/L	0.007	0.029	0.019	0.024	0.018	0.13	0.036	0.033	0.033
Zr-T	mg/L	0.0002	0.0006	0.0004	0.0004	0.0004	0.0006	0.0004	0.0004	0.0001

5 Monitoring System Recommendations

- Pressure profiles and sampling for all monitoring locations should be conducted quarterly for a minimum of one year. At the end of this period, a review of all available hydrogeological data should be conducted and monitoring locations prioritized for sampling frequency (e.g., quarterly versus bi-annually or annually).
- In order to maintain a clear record of the installation, development, monitoring, and servicing that is carried out on each MP installation over time, a log of these events should be recorded in a Monitoring System Well Log. A sample log is attached in Appendix F. This information should be updated any time work is carried out on the MP well(s).

This report, **Minto Mine: Groundwater Monitoring System Installation Report,** has been prepared by SRK Consulting (Canada) Inc.:

Prepared by

Chris Doughty, BSc, GIT Hydrogeologist

Reviewed by

Michael Royle, M.App.Sci., P.Geo. (BC & NT) Principal Hydrogeologist

Page 13

Figures

SRK Consulting Engineers and Scientists VANCOUVER	Minto Explorations Ltd.	Groun	dwater Moni Locations	toring	
Job No: 2CM022.001 Filename: Fig 3_SRK-09-02_MP Casing Log and Pressure Data	Minto Groundwater Monitoring Plan	Date: February 9, 2010	Approved: MDR	Figure:	3

Appendix A Drillhole Logs

overburden

fresh bedrock

Geotechnical log (basic+)

* 10ft rods were used, with 5ft core barrel, HQ3 bit, with split tubes; casing depth 10ft

		Run In	terval				TCD									10	26			
Run #	From	То	From	То			TCR									IN	15			comment
	ft	ft	m	m	ft	inches	decimal ft	m	%							strong	weak			
1	10	15	3.05	4.57	1.5		1.50	0.46	30											
2	15	20	4.57	6.10	2		2.00	0.61	40											
3	20	25	6.10	7.62	3	2	3.17	0.97	63							S2				
4	25	30	7.62	9.14	1.5		1.50	0.46	30							S 3				diamicton material (possibly reworked till)
5	30	35	9.14	10.67	1		1.00	0.30	20											
6	35	40	10.67	12.19	1	3	1.25	0.38	25											
7	40	45	12.19	13.72		8	0.67	0.20	13											
8	45	50	13.72	15.24	0	1	0.00	0.00	0											
9	50	55	15.24	16.76	1	9	1.75	0.53	35											
10	55	60	16.76	18.29	2	10	2.83	0.86	57							S1				
11	60	65	18.29	19.81		5	0.42	0.13	8											
12	65	70	19.81	21.34		5	0.42	0.13	8											
13	70	75	21.34	22.86	1		1.00	0.30	20											
14	75	77.5	22.86	23.62	4.5		4.50	1.37	180											sluff from drilling (c.sand), not actual recovery
15	77.5	85	23.62	25.91	2.5		2.50	0.76	33											overburden bottom
		Dune la	town		r									1						
		Kun in	itervai										+J		_			micro		
Run #	From	To	From	То		T	TCR			OF	J	CJ	+J from	RC)D	IF	RS	def.	J - properties	comment
Run #	From ft	To ft	From m	To m	ft	inches	TCR decimal ft	m	%	OF	ſ	CJ	+J from RZ	RC cm	2D %	IR strong	RS weak	def. 0 to 3	J - properties	comment
Run #	From ft 85	To ft 88	From m 25.91	To m 26.82	ft 3.5	inches	TCR decimal ft 3.50	m 1.07	%	OF 10	J 10	CJ	+J from RZ	Cm 0.70	XD % 66%	IR strong R3	veak	def. 0 to 3	J - properties rusty colour fill + clay, J surface rough undulating	comment weathered bedrock, jointed, altered near joints and stained, but fresh away from joints, high FF
Run #	From ft 85 88	To ft 88 97	From m 25.91 26.82	To m 26.82 29.57	ft 3.5 3	inches 6	TCR decimal ft 3.50 3.50	m 1.07 1.07	% 117 39	OF 10	ј 10	CJ	+J from RZ	Cm 0.70	2 D % 66% 65%	strong R3 R3	RS weak	def. 0 to 3	J - properties	comment weathered bedrock, jointed, altered near joints and stained, but fresh away from joints, high FF poor recovery
Run #	From ft 85 88 97	Run In To ft 88 97 100	From m 25.91 26.82 29.57	To m 26.82 29.57 30.48	ft 3.5 3	inches 6	TCR decimal ft 3.50 3.50 3.00	m 1.07 1.07 0.91	% 117 39 100	OF 10 10	J 10 10	CJ	+J from RZ	RC Cm 0.70 0.56	2 D % 666% 65% 61%	strong R3 R3 R3	RS weak	def. 0 to 3	J - properties rusty colour fill + clay, J surface rough undulating	comment weathered bedrock, jointed, altered near joints and stained, but fresh away from joints, high FF poor recovery
Run #	From ft 85 88 97	To ft 888 97 100 105	From m 25.91 26.82 29.57 30.48	To m 26.82 29.57 30.48 32.00	ft 3.5 3 3	inches 6	TCR decimal ft 3.50 3.50 3.00 5.00	m 1.07 1.07 0.91	% 117 39 100	OF 10 10 7	J 10 10 6	C)	+J from RZ	RC cm 0.70 0.56	2D % 66% 65% 61% 90%	strong R3 R3 R3 R3 R4	RO	0 to 3	J - properties rusty colour fill + clay, J surface rough undulating at 104.6ft v.weathered near Js, R0 near Js, clay in Js, orange colour	comment weathered bedrock, jointed, altered near joints and stained, but fresh away from joints, high FF poor recovery
Run #	From ft 85 88 97 100 105	To ft 888 97 100 105 110	From m 25.91 26.82 29.57 30.48 32.00	To m 26.82 29.57 30.48 32.00 33.53	ft 3.5 3 3 5 5	inches 6	TCR decimal ft 3.50 3.50 3.00 5.00 5.00	m 1.07 1.07 0.91 1.52 1.52	% 117 39 100 100	OF 10 10 7 8	J 10 10 6 7	CJ	+J from RZ	RC cm 0.70 0.56	2 D % 666% 65% 61% 90%	strong R3 R3 R3 R3 R4 R4	RO	0 to 3	J - properties	comment weathered bedrock, jointed, altered near joints and stained, but fresh away from joints, high FF poor recovery
Run #	From ft 85 88 97 100 105 110	To ft 888 97 100 105 110 115	From m 25.91 26.82 29.57 30.48 32.00 33.53	To m 26.82 29.57 30.48 32.00 33.53 35.05	ft 3.5 3 3 3 3 5 5 5 5	inches 6	TCR decimal ft 3.50 3.50 3.00 5.00 5.00 5.00	m 1.07 1.07 0.91 1.52 1.52 1.52	% 117 39 100 100 100 100	OF 10 10 7 8 18	J 10 10 6 7 14	CJ	+J from RZ	Cm 0.70 0.56	2D % 66% 65% 61% 90% 90% 79%	strong R3 R3 R3 R4 R4 R4	RS weak RO RO	0 to 3	J - properties rusty colour fill + clay, J surface rough undulating at 104.6ft v.weathered near Js, R0 near Js, clay in Js, orange colour same as above same as above	comment weathered bedrock, jointed, altered near joints and stained, but fresh away from joints, high FF poor recovery 10 10 cm R0 zone at 112.5ft
Run # 16 18 19 20 21 22 23	From ft 85 88 97 100 105 110 115	To ft 88 97 100 105 110 115 120	From m 25.91 26.82 29.57 30.48 32.00 33.53 35.05	To m 26.82 29.57 30.48 32.00 33.53 35.05 36.58	ft 3.5 3 3 5 5 5 5	inches 6	TCR decimal ft 3.50 3.50 3.00 5.00 5.00 5.00	m 1.07 1.07 0.91 1.52 1.52 1.52	% 117 39 100 100 100 100	OF 10 10 7 8 18 11	J 10 10 6 7 14 7	CJ 1 3	+J from RZ	RC - Cm 0.70 0.56 	2 D % 666% 65% 61% 90% 90% 79%	strong R3 R3 R3 R3 R3 R4 R4 R4 R4	xeak weak R0 R0	def. 0 to 3	J - properties rusty colour fill + clay, J surface rough undulating at 104.6ft v.weathered near Js, R0 near Js, clay in Js, orange colour same as above same as above same as above	comment weathered bedrock, jointed, altered near joints and stained, but fresh away from joints, high FF poor recovery 10 10 cm R0 zone at 112.5ft Qz vein present
Run # 16 18 19 20 21 22 23 24	From ft 85 88 97 100 105 110 115 120	To ft 88 97 100 105 110 115 120 125	From m 25.91 26.82 29.57 30.48 32.00 33.53 35.05 36.58	To m 26.82 29.57 30.48 32.00 33.53 35.05 36.58 38.10	ft 3.5 3 3 3 3 3 5 5 5 5 5 5 5 5	inches 6 9	TCR decimal ft 3.50 3.50 3.00 5.00 5.00 5.00	m 1.07 1.07 0.91 1.52 1.52 1.52 1.52	% 117 39 100 100 100 100 100	OF 10 10 7 8 18 11 8	J 10 6 7 14 7 7	CJ 1 3	+J from RZ	RC - Cm 0.70 - 0.56 - 0.56	2 D % 66% 65% 61% 90% 90% 79% 60% 92%	strong R3 R3 R3 R3 R4 R4 R4 R4 R4 R4	xweak weak RO RO	o to 3	J - properties rusty colour fill + clay, J surface rough undulating at 104.6ft v.weathered near Js, R0 near Js, clay in Js, orange colour same as above same as above same as above high weathering at 3 J's; other Js only stained rusty or black	comment weathered bedrock, jointed, altered near joints and stained, but fresh away from joints, high FF poor recovery 10 cm R0 zone at 112.5ft Qz vein present felsic dike present at 120.3ft
Run # 16 18 19 20 21 22 23 24 25	From ft 85 88 97 100 105 110 115 120 125	To ft 888 977 1000 1055 1100 1155 1200 1255 130	From m 25.91 26.82 29.57 30.48 32.00 33.53 35.05 36.58 38.10	To m 26.82 29.57 30.48 32.00 33.53 35.05 36.58 38.10 39.62	ft 3.5 3 3 3 3 3 3 5 5 5 5 5 5 5 5 5 5 5 5	inches 6 1	TCR decimal ft 3.50 3.00 5.00 5.00 5.00 5.00 5.00	m 1.07 0.91 1.52 1.52 1.52 1.52 1.52 1.52	% 117 39 100 100 100 100 100 100 100	OF 10 10 7 8 18 11 8 7	J 10 6 7 14 7 7 5		+J from RZ	RC - Cm 0.70 - 0.56 - 0.56	2 D % 66% 65% 61% 90% 90% 79% 60% 92% 95%	strong R3 R3 R3 R4 R4 R4 R4 R4 R4 R4	xeak weak R0 R0	def. 0 to 3	J - properties rusty colour fill + clay, J surface rough undulating at 104.6ft v.weathered near Js, R0 near Js, clay in Js, orange colour same as above same as above same as above high weathering at 3 J's; other Js only stained rusty or black rusty stained Js	comment weathered bedrock, jointed, altered near joints and stained, but fresh away from joints, high FF poor recovery 10 cm R0 zone at 112.5ft 0z vein present felsic dike present at 120.3ft
Run # 16 18 19 20 21 22 23 23 24 25 26	From ft 85 88 97 100 105 110 115 120 125 130	To ft 888 977 1000 105 1100 115 1200 1255 1300 135	From m 25.91 26.82 29.57 30.48 32.00 33.53 35.05 36.58 38.10 39.62	To m 26.82 29.57 30.48 32.00 33.53 35.05 36.58 38.10 39.62 41.15	ft 3.55 33 33 33 55 55 55 55 55 55	inches 6 9	TCR decimal ft 3.50 3.00 5.00 5.00 5.00 5.00 5.00 5.00	m 1.07 0.91 1.52 1.52 1.52 1.52 1.52 1.52 1.52 1.5	% 117 39 100 100 100 100 100 100 100 100	OF 10 10 7 8 18 11 8 7 12	J 10 10 6 7 14 7 7 7 5 12	CJ 1 3	+J from RZ	RC - Cm 0.70 0.56 	2 D % 66% 61% 90% 90% 79% 60% 92% 95% 82%	strong R3 R3 R3 R4 R4 R4 R4 R4 R4 R4 R4 R4	xeak weak R0 R0 R0	o to 3	J - properties rusty colour fill + clay, J surface rough undulating at 104.6ft v.weathered near Js, R0 near Js, clay in Js, orange colour same as above same as above same as above high weathering at 3 J's; other Js only stained rusty or black rusty stained Js rusty stained Js	comment weathered bedrock, jointed, altered near joints and stained, but fresh away from joints, high FF poor recovery 10 cm R0 zone at 112.5ft Qz vein present felsic dike present at 120.3ft
Run # 16 18 19 20 21 22 23 24 25 26 27	From ft 85 88 97 100 105 110 115 120 125 130 135	To ft 88 97 100 105 110 115 120 125 130 135 140	From m 25.91 26.82 29.57 30.48 32.00 33.53 35.05 36.58 38.10 39.62 41.15	To m 26.82 29.57 30.48 32.00 33.53 35.05 35.05 36.58 38.10 39.62 41.15 42.67	ft 3.5 3 3 3 3 3 3 3 3 5 5 5 5 5 5 5 5 5 5	inches 6 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7	TCR decimal ft 3.50 3.50 3.00 5.00 5.00 5.00 5.00 5.00	m 1.07 1.07 1.52 1.52 1.52 1.52 1.52 1.52 1.52 1.52	% 117 39 100 100 100 100 100 100 100 100	OF 10 10 7 8 18 11 8 7 12 7	J 10 10 6 7 14 7 7 7 5 12 5	CJ 1 3	+J from RZ	RC - Cm 0.70 0.56 	2 % 66% 61% 90% 90% 90% 60% 92% 92% 95% 82% 96%	strong R3 R3 R3 R4 R4 R4 R4 R4 R4 R4 R4 R4 R4 R4	xeak weak weak key key key key key key key key key ke	o to 3	J - properties rusty colour fill + clay, J surface rough undulating at 104.6ft v.weathered near Js, R0 near Js, clay in Js, orange colour same as above same as above same as above high weathering at 3 J's; other Js only stained rusty or black rusty stained Js rusty stained Js rusty stained Js rusty stained Js rusty stained Js, or weathered Js	comment weathered bedrock, jointed, altered near joints and stained, but fresh away from joints, high FF poor recovery for
Run # 16 18 19 20 21 22 23 24 25 26 27 28	From ft 85 88 97 100 105 110 115 120 125 130 135 140	To To ft 88 97 100 105 110 115 120 125 130 135 140 145	From m 25.91 26.82 29.57 30.48 32.00 33.53 35.05 36.58 38.10 39.62 41.15 42.67	To m 26.82 29.57 30.48 32.00 33.53 35.05 36.58 38.10 39.62 41.15 42.67 44.20	ft 3.5 3 3 3 3 3 3 3 3 5 5 5 5 5 5 5 5 5 5	inches 6 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7	TCR decimal ft 3.50 3.50 5.00 5.00 5.00 5.00 5.00 5.00	m 1.07 1.07 1.52 1.52 1.52 1.52 1.52 1.52 1.52 1.52	% 117 39 100 100 100 100 100 100 100 100 95	OF 10 10 7 8 18 11 8 7 12 7 8	J 10 10 6 7 14 7 7 7 7 5 5 12 5 5 5	CJ	+J from RZ	RC 0.70 0.56 1.20 1.20 1.40 1.45 1.25 1.47	2D % 66% 65% 61% 90% 90% 79% 60% 92% 95% 82% 96% 100%	strong R3 R3 R3 R4 R4 R4 R4 R4 R4 R4 R4 R4 R4 R4 R4 R4	xeak weak weak R0 R0	o to 3	J - properties rusty colour fill + clay, J surface rough undulating rusty colour fill + clay, J surface rough undulating at 104.6ft v.weathered near Js, R0 near Js, clay in Js, orange colour ame as above same as above same as above same as above same as above rusty stained Js full surface same as above black or rusty staining on Js	comment weathered bedrock, jointed, altered near joints and stained, but fresh away from joints, high FF poor recovery Door recovery Door R0 zone at 112.5ft Qz vein present felsic dike present at 120.3ft
Run # 16 18 19 20 21 22 23 24 25 26 27 28 29	From ft 85 88 97 100 105 110 115 120 125 130 135 140 145	To ft 88 97 100 105 110 125 130 135 140 145 150	From m 25.91 26.82 29.57 30.48 32.00 33.53 35.05 36.58 38.10 39.62 41.15 42.67 44.20	To m 26.82 29.57 30.48 32.00 33.53 35.05 36.58 38.10 39.62 41.15 42.67 44.20 45.72	ft 3.5 3 3 3 3 3 3 3 3 5 5 5 5 5 5 5 5 5 5	inches	tck decimal ft 3.50 3.50 3.50 5.00 5.00 5.00 5.00 5.00 5.00 5.00 5.00 5.00 5.00 5.00 5.00 5.00 5.00 5.00 5.00 5.00 5.00 5.00	m 1.07 1.07 1.52 1.52 1.52 1.52 1.52 1.52 1.52 1.52	% 117 39 100 100 100 100 100 100 100 100 100 10	OF 10 10 7 8 18 11 8 7 12 7 8 6 6	J 10 10 6 7 14 7 7 7 7 5 5 12 5 5 5 4	CJ	+J from RZ	RC 0.70 0.56 1.20 1.20 1.40 1.45 1.25 1.47	2D % 66% 65% 61% 90% 90% 79% 60% 92% 95% 82% 96% 100% 89%	strong R3 R3 R3 R4 R4 R4 R4 R4 R4 R4 R4 R4 R4 R4 R4 R4	weak weak R0 R0 R0 R0	def. 0 to 3	J - properties	comment weathered bedrock, jointed, altered near joints and stained, but fresh away from joints, high FF poor recovery Door recovery Door R0 zone at 112.5ft Qz vein present felsic dike present at 120.3ft Door R0 zone at 120.3ft Door R0 zone at 1426ft
Run # 16 18 19 20 21 22 23 24 25 26 27 28 29 30	From ft 85 88 97 100 105 110 115 120 125 130 135 140 145 150	To To ft 88 97 100 105 110 115 120 125 130 135 140 145 150	From m 25.91 26.82 29.57 30.48 32.00 33.53 35.05 36.58 38.10 39.62 41.15 42.67 44.20 45.72	To m 26.82 29.57 30.48 32.00 33.53 35.05 36.58 38.10 39.62 41.15 42.67 44.20 45.72 47.24	ft 3.55 33 33 55 55 55 55 55 55 55 55 55 55 5	inches	TCR decimal ft 3.50 3.50 5.00 5.00 5.00 5.00 5.00 5.00	m 1.07 1.07 1.52 1.52 1.52 1.52 1.52 1.52 1.52 1.52	% 117 39 100 100 100 100 100 100 100 100 95 100	OF 10 10 7 8 18 11 8 7 12 7 7 8 6 6 7	J 10 10 6 7 14 7 7 7 7 5 12 5 5 5 5 5 4 6	CJ	+J from RZ	.cm 0.70 0.566 1.20 1.20 1.40 1.45 1.25 1.40	2D % 66% 65% 61% 90% 90% 79% 60% 92% 92% 82% 96% 100% 89% 92%	strong R3 R3 R3 R4 R4 R4 R4 R4 R4 R4 R4 R4 R4 R4 R4 R4	weak weak R0 R0 R0 R0 R0 R0	def. 0 to 3	J - properties rusty colour fill + clay, J surface rough undulating rusty colour fill + clay, J surface rough undulating at 104.6ft v.weathered near Js, R0 near Js, clay in Js, orange colour same as above rusty stained Js rusty stained Js rusty stained Js rusty stained Js black or rusty staining on Js black staining on Js clean J walls, no weathering	comment weathered bedrock, jointed, altered near joints and stained, but fresh away from joints, high FF poor recovery Door recovery Door recovery Door R0 zone at 112.5ft Do cm R0 zone at 112.5ft Do cm R0 zone at 112.5ft Do cm R0 zone at 112.3ft Do cm R0 zone at 112.3
Run # 16 18 19 20 21 22 23 24 25 26 27 28 29 30 31	From ft 85 88 97 100 105 110 115 120 125 130 135 140 145 150	To To ft 88 97 100 105 110 115 120 125 130 135 140 145 150 155 160	From m 25.91 26.82 29.57 30.48 32.00 33.53 35.05 36.58 38.10 39.62 41.15 42.67 44.20 45.72 47.24	To m 26.82 29.57 30.48 32.00 33.53 35.05 36.58 38.10 39.62 41.15 42.67 44.20 45.72 47.24 48.77	ft 3.5 3 3 3 3 3 3 5 5 5 5 5 5 5 5 5 5 5 5	inches	TCR decimal ft 3.50 3.50 3.50 3.50 3.50 3.50 3.50 3.50 3.50 3.50 3.50 3.50 5.00	m 1.07 0.91 1.52 1.52 1.52 1.52 1.52 1.52 1.52 1.52 1.52 1.52 1.52 1.52 1.52 1.52 1.52 1.52 1.52 1.52	% 117 39 100 100 100 100 100 100 100 100 100 10	OF 10 10 7 8 18 11 8 7 12 7 8 6 6 7 8 8 6 7	J 10 10 6 7 14 7 7 5 12 5 5 12 5 5 4 6 7	CJ 1 3 2 2 2	+J from RZ	RC - Cm 0.70 0.56 0.	2D % 66% 61% 90% 90% 90% 79% 60% 92% 82% 96% 100% 89% 92% 82%	strong strong R3 R3 R3 R4 R4	weak weak R0 R0	def. 0 to 3	J - properties rusty colour fill + clay, J surface rough undulating rusty colour fill + clay, J surface rough undulating at 104.6ft v.weathered near Js, R0 near Js, clay in Js, orange colour at 104.6ft v.weathered near Js, R0 near Js, clay in Js, orange colour same as above same	comment weathered bedrock, jointed, altered near joints and stained, but fresh away from joints, high FF poor recovery poor recovery l l l l l l l l l l l l l l l l l l l

Overburden Properties

* core runs with the same properties were combined

	Doma	in interv	al					clay hardnes	s
From	То	From	То	description	permafrost	samples	clay plasticity	description (as found)	ISBM code
ft	ft	m	m					description (as found)	
10	25	3.05	7.62	artificial fill of cobbles, boulders, gravel, soil/reworked till				soft	S2
25	30	7.62	9.14	fill: brown moit clayey sand (f-c), with f.gravel (angular) + c.gravel pieces, crumbly		S1 at 29.5ft			
30	55	9.14	16.76	fill: cobbles, boulders, gravel (voids found during drilling), fine gr. materials washed out if present	core hot from drilling, cannot		medium to low	very soft (reworked by drilling process)	S1
55	60	16.76	18.29	grey moist/wet diamict with silty clay matrix, containing angular to sub-round gravel, broken sharp rock pieces, and coarse sand	determine ice presence in this	S2 at 59.5 ft	medium to low	very soft (reworked by drilling process)	S1
65	70	19.81	21.34	grey/white wet clean sub round to ang fine gravel	borehole				
70	75	21.34	22.86	sandy clay and grey wet clayey f-med sand with f-c gravel, sub ang to round			low	very soft (reworked by drilling process)	S1
75	85	22.86	25.91	m. gravel, rounded to sub ang, trace silt/clay (washed out)					

clay hardness - quantitative measurements

Tor Vane (* 0.1 kg/cm ²)	Penetrometer (kg/cm ²)	Tor Vane (MPa)	Penetrometer (MPa)
1.1		0.01	
1.1		0.01	
0.8		0.01	

ISRM Standard - Field Estimate of Rock Strength ~ UCS (MPa) Index Description Field Test S1 Very Soft Clay Easily penetrated by fist (flows between fingers) < 0.025 Soft Clay 0.025 - 0.05 Easily penetrated by thumb (>1") S3 Firm Clay Penetrated by thumb with moderate effort (>1") 0.05 - 0.10 S4 Stiff Clay Indented by thumb but penetrated with great effort 0.10 - 0.25 S5 Very Stiff Clay Readily indented with thumbnail 0.25 - 0.50 S6 Hard Clay Indented with difficulty by thumbnail > 0.50 indented by thumbnail, crumbles under soft blow of blunt end of hammer; breaks apart 0.25 - 1.0 R0 Extremely Weak when crushed by fingers R1 Very Weak crumbles under firm blow of geologic hammer pick; peeled by knife 1.0 - 5.0 Weak shallow indentation under firm blow of pick end of geologic hammer 5.0 - 25 R2 25 - 50 R3 Medium Strong fractured with single firm blow of geologic hammer requires more than one blow of hammer to fracture 50 - 100 R4 Strong R5 Very Strong requires many blows of hammer to fracture 100 - 250 **R6** Extremely Strong can only be chipped with strong blows of hammer > 250

MW09-2

weathered bedrock

fresh bedrock

Geotechnical log (basic+)

* 10ft rods were used, with 5ft core barrel, HQ3 bit, with split tubes; casing depth 10ft

Run #	From	Run In To	iterval From	То			TCR			OF	I	cı	+J from RZ	m RQD		IRS		micro def.	J - properties	comment	
	ft	ft	m	m	ft	inches	decimal ft	m	%					cm	%	strong	weak	0 to 3			
1	10	15	3.05	4.57	1.5		1.50	0.46	30					0.111	0%	5110118		0 10 5			
2	15	17	4.57	5.18	2	6	2.50	0.76	125						0%						
3	17	25	5.18	7.62	5	3	5.25	1.60	66						0%	S4					
4	25	30	7.62	9.14	5		5.00	1.52	100						0%						
E	20	25	0.14	10.67	E		E 00	1 5 2	100						0%	CE					
6	35	40	10.67	12.19	4	10	4.83	1.47	97						0%						
7	40	45	12.19	13.72	5		5.00	1.52	100						0%	S4					
8	45	50	13.72	15.24	5	2	5.17	1.57	103						0%	S4					
9	50	55	15.24	16.76	5		5.00	1.52	100						0%	S4					
10	55	60	16.76	18.29	5		5.00	1.52	100						0%	S4					
11	60	65	18.29	19.81	5		5.00	1.52	100						0%	S4					
12	65	70	19.81	21.34	5		5.00	1.52	100						0%	S5					
13	70	75	21.34	22.86	4		4.00	1.22	80						0%	S5					
14	75	80	22.86	24.38	5		5.00	1.52	100						0%	S5					
15	80	85	24.38	25.91	5		5.00	1.52	100						0%	S5					
16	85	90	25.91	27.43	3.5		3.50	1.07	70						0%	S5					
18	90	95	27.43	28.96	5		5.00	1.52	100						0%	S5					
19	95	100	28.96	30.48	2	3	2.25	0.69	45						0%	S5					
20	100	105	30.48	32.00	5		5.00	1.52	100						0%	S5					
21	105	110	32.00	33.53	3.5		3.50	1.07	70						0%	S5					
22	110	115	33.53	35.05	0		0.00	0.00	0							S5					
23	115	120	35.05	36.58	5		5.00	1.52	100						0%	S5					
24	120	125	36.58	38.10	5		5.00	1.52	100						0%	S3					
25	125	130	38.10	39.62	5	2	5.17	1.57	103						0%	S3					
26	130	135	39.62	41.15	5		5.00	1.52	100						0%	S4					
27	135	140	41.15	42.67	5		5.00	1.52	100						0%	S5	S4				
28	140	145	42.67	44.20	4		4.00	1.22	80						0%	S3					
29	145	150	44.20	45.72	5		5.00	1.52	100						0%						
30	150	155	45.72	47.24	5		5.00	1.52	100		38		38		0%	RO					
31	155	160	47.24	48.77	0.5		0.50	0.15	10		6		6		0%	RO				grey brown highly weahered curmbly / jointed rock	
32	160	165	48.77	50.29	4.9		4.90	1.49	98		30		30		0%	R2	RO		stained J's, smooth, no gouge	R0 crumbly to 163ft, then weak jointed	
33	165	170	50.29	51.82	5		5.00	1.52	100	6	25		20		0%	R2	RO		red stained J's, weathered at J's	highly weathered rock	
34	170	173	51.82	52.73	2		2.00	0.61	67		16		16		0%	R2	RO		red stained J's, weathered at J's	highly weathered rock	
35	1/3	1/8	52.73	54.25	1	11	1.92	0.58	38	5	25		20		0%	R2	RU		red stained J's, weathered at J's	highly weathered rock + one Qz vein	
36	178	180	54.25	54.86		9	0.75	0.23	38	4	8		4		0%	R3	RO		black staining	highly weathered rock	
37	180	185	54.86	56.39		10	0.83	0.25	17		32		32		0%	RO				highly weathered rock	
38	185	190	56.39	57.91		9	0.75	0.23	15	4	4				0%	R1				broken Qz pieces of Qz vein included	
39	190	195	57.91	59.44	1	8	1.67	0.51	33		40		40		0%	RO			red stained J's		

Overburden Properties

* core runs with the same properties were combined

* descriptions were modified to match quantitative measurements (TorVane and Penetrometer)

clay hardness - quantitative measurements

thawed min max

1.0 2.0 1.5 2.8 0.7 3.5 1.0 2.0

1.0 1.5

** reworked clay (by drill bit) that is caked around harder inner core was ignored here - this soft watery

clay does not represent in-situ conditions and is softened by drilling process

	Domai	n interval			cla		clay hard	Iness	Tor	Vane	12	(*	Pe	netron	neter		
		1		description	permafrost	samples	clay					0.1 Kg	/cm)			(kg/cn	1)
From	То	From	То				plasticity	description (as found,	thawed	ISRM	fr	ozen	tha	wed	froze	en 🔤	thawe
ft	ft	m	m					usually frozen)	only	code	mi	n max	min	max	min r	max n	nin m
10.0	15.0	3.05	4.57	wet black/white subangular crs gravel (crs grained rock), rusty staining	N/A										┢━━┼		
15.0	20.0	4.57	6.10	grey wet clay	N/A (core hot from drilling)		low-med										
20.0	20.5	6.10	6.25	grey moist clay with organic debris, fine gravel (sub round)	N/A												
20.5	24.0	6.25	7.32	dark grey-black frozen soil/clay with ice intervals	ice inclusions Nbe/Vr and some solid ice intervals		med-high	stiff		S4					\square		
24.0	25.0	7.32	7.62	light grey-brown silty clay, with crs gravel (angular clastsa at 25ft depth)	ice in clay	S1 at 22ft		stiff		S4							
25.0	27.0	7.62	8.23	brown-grey frozen silty clay, with ice inclusions	ice inclusions (Vt)												
27.0	28.0	8.23	8.53	cobbles with frozen clay matrix	frozen												
28.0	30.0	8.53	9.14	grey frozen clayey fine sand with silt with ice inclusions	ice inclusions												
30.0	32.0	9.14	9.75	grey-brown clay with crs.sand and f.gravel (sub ang)	N/A	S2 at 31ft	med										
32.0	34.5	9.75	10.52	ice with dark grey frozen clay inclusions, with silt and sand	ice w clay inclusions		low-med										
34.5	35.0	10.52	10.67	grey frozen clay, some ice	some ice		med-high	v.stiff		S5					4.6		
35.0	50.0	10.67	15.24	ice with grey clay inclusions	70 to 85% ice	S3 at 45ft	high	stiff		S4							
50.0	60.0	15.24	18.29	ice with grey clay inclusions, more firm clay between ice	50 to 70% ice	S4 at 60ft	med-high	stiff		S 4	10	.0			2.0		
60.0	65.0	18.29	19.81	ice with dark grey clay inclusions, 20cm frozen clay layers (no ice), cut with pure ice intervals	frozen		mod-high	stiff	firm	S4					2.5	3.5	
65.0	70.0	19.81	21.34	dark grev frozen clav with ice inclusions	<20% ice, Vc/Vx		mod	v.stiff	firm-stiff	S 5	q	5			3.5		
70.0	80.0	21.34	24.38	dark grey frozen clay with ice inclusions	30% ice in large veins and smaller ice flakes in clay (Vc/Vs)	S5 at 77ft	mod-high	v.stiff	firm	55					3.0	5.0	
80.0	100.0	24.38	30.48	dark grey frozen clay with ice inclusions	few ice inclusions, but some up to 5cm clear ice, big Vc/Vx	S6 at 89ft	high	v.stiff	firm-stiff	S5					3.0	4.5	1.0
				ice with frozen grey clay, and smaller ice inclusions in clay; near 110ft trace med.	70% pure ice, especially from 102.5 to 105ft, some Vr ice												
100.0	120.0	30.48	36.58	angular gravel	incl in clay where clay dominant	S7 at 107ft	high	v.stiff	stiff	S5					5.0		1.5
120.0	125.0	36.58	38.10	grey moist clay with small lenses of clayey crs sand, trace f. gravel (sub round)	N/A	S8 at 120ft	high		firm-stiff	S3		_	5.0	9.0			0.7
125.0	128.0	38.10	39.01	grey frozen clay with f. sand, tracel sub.ang. f. gravel, and minor ice inclusions	Vt, small veins of ice			firm	v.soft	S3		_			┢──┼		1.0
128.0	129.0	39.01	39.32	frozen clay with sub.ang. to sub.round. f.gravel, with ice inclusions	Vx (minor)										\vdash		
129.0	132.0	39.32	40.23	frozen clay with clayey f. sand interbeds, with trace gravel	Vx (minor)	S9 at 130ft		stiff	firm	S4					2.0		
132.0	134.0	40.23	40.84	frozen clay diamict (with sand and f. gravel)	5% ice, Vx			stiff	firm	S4					\square		
134.0	135.0	40.84	41.15	grey-brown compacted frozen clayey fine sand with ice inclusions	Vx (minor)			v.stiff		S5							
135.0	138.0	41.15	42.06	interbeds of brown med.sand (with trace clay + f.gravel) AND grey clay with ice inclusions	Vx	S10 at 137ft	mod	v.stiff	firm	S5			5.5		5.0		1.0
138.0	139.0	42.06	42.37	frozen clay diamict (with sand and f. gravel - angular) with ice inclusions	minor ice incl.			stiff	firm	S4							
139.0	139.5	42.37	42.52	moist grey clay with f.sand	N/A		low (crumbly)		firm								
139.5	142.7	42.52	43.49	brown frozen slightly clayey fcrs. sand, with ang.f.gravel	water in sand frozen holding sand grains together, when thawed sand is loose												
142.7	143.0	43.49	43.59	clay diamict (f.sand - f.ang-sub.round gravel)	N/A		med	firm	soft	S3	4	.5					
143.0	144.5	43.59	44.04	brown sandy clay (fcrs. sand)	N/A			firm	soft	S3	3	.0					
144.5	145.0	44.04	44.20	grey clay with f.sand	N/A	S11 at 144ft	low	firm	soft	S3	4	.0					
145.0	147.0	44.20	44.81	grey frozen silty clay w. trace c.sand and f.gravel	frozen		low	stiff									
147.0	148.0	44.81	45.11	brown moist clay with f-crs. sand and silt, res. sand lens (clean) at 148ft (2cm)	N/A		low		firm								
148.0	150.0	45.11	45.72	interbeds of silty clay, f.silty sand, and clayeye crs. sand	N/A		med										
150.0	155.0	45.72	47.24	frozen coarse grained weathered bedrock fragments (crs.sand to f.gravel size), Qz frags, trace clay	rock core is cold inside but any ice was melted during drilling process and cannot assess	S12 at 153ft				RO							
155.0	195.0	47.24	59.44	highly weathered crumbly very weak grey-brown/orange-brown stained rock, some joint structures preserved but mostly decomposed	rock core is cold inside and warm outside (from drilling) so Its probably that it is frozen to this depth					RO							

Тс	or Van	e (MF	Pa)	Penetrometer (MPa)					
fro	zen	tha	wed	fro	zen	tha	wed		
min	max	min	max	min	max	min	max		
-									
				0.45					
0.10				0.20					
				0.25	0.34				
0.09				0.34	0.5 .				
0.05				0.0 .					
				0.29	0.49				
				0.29	0.44	0.10	0.20		
				0.49		0.15	0.2		
		0.05	0.09			0.07	0.3/		
		0.05	0.05			0.07	0.5		
						0.10	0.20		
				0.20					
				0.20					
		0.05		0.49		0.10	0.1		
0.04									
0.03									
0.04									

Geotechnical log (basic+)

*	10f	t rods	were	e used,	with 5	ft core	barrel,

HQ3 bit, with split tubes; casing depth 10ft	
--	--

Num From To From To <th>Run # From To</th> <th>Interval</th> <th></th> <th></th> <th></th> <th>TCR</th> <th></th> <th></th> <th></th> <th></th> <th></th> <th>+I from</th> <th>R</th> <th>סכ</th> <th>IF</th> <th>25</th> <th>micro</th> <th></th> <th></th>	Run # From To	Interval				TCR						+I from	R	סכ	IF	25	micro				
In	Run #	From	То	From	То						OF	J	CJ	RZ		~-			def.	J - properties	comment
1 10 15 100 15 100 15 100 15 100 15 100 15 100 12 12 12 10 12 100 12 100 12 100 12 100 12 100 12 12 12 0 12 100 12 12 12 100 12 11 100 100 100 100 100 100 100 100 100 11 100		ft	ft	m	m	ft	inches	decimal ft	m	%					cm	%	strong	weak	0 to 3		
2 15 20 4.57 6.10 3 1 1.08 0.64 7 1.2 0 6 30 326 R3 R0 2 plant rugh, subset, starts,	1	10	15	3.05	4.57	3.5		3.50	1.07	70	8	28	0	24	15	14%	R2	RO	2	brown stained J's	crumbly R0 zones, highly weathered
3 20 25 5.00 7.22 8.10 7.22 8.13 8.1 2 2.14 10 0.00 12.2 8.13 R3 V 2 2.14 10 0.00 0.00 12.2 8.13 R3 V 2 2.14 10.00 0.00 10.00	2	15	20	4.57	6.10	3	1	3.08	0.94	62	7	12	0	6	30	32%	R3	RO	2	planar rough, stained, alpha 45 deg	weathered rock, jointed, RZ (15cm) R0, minor Qz vein
4 2 30 7.5 9.14 5 1 5.08 1.55 1.02 1.00 6 2 0 1.44 9.48 R4 R3 1 4.26 0.00 1.15 1.00 1.00 1.01 1.00 1.00 1.01 9.00 1.00 <td>3</td> <td>20</td> <td>25</td> <td>6.10</td> <td>7.62</td> <td>5</td> <td></td> <td>5.00</td> <td>1.52</td> <td>100</td> <td>13</td> <td>9</td> <td>0</td> <td></td> <td>123</td> <td>81%</td> <td>R3</td> <td></td> <td>2</td> <td>7, 4 9 0 staining only; alpha 50 to 60 degrees</td> <td>weathered rock, jointed</td>	3	20	25	6.10	7.62	5		5.00	1.52	100	13	9	0		123	81%	R3		2	7, 4 9 0 staining only; alpha 50 to 60 degrees	weathered rock, jointed
S 30 35 9.14 10.67 5. 5.00 1.52 100 6 3 0 147 96% R4 R3 0 147 106 85 10 100 100 100 100 96% R4 R3 0 110 10	4	25	30	7.62	9.14	5	1	5.08	1.55	102	10	9	0		145	94%	R4	R3	1	4, 7, 8 1, 3, 0 0 brown non softening fill, alpha 60 to 80 degrees	slithly weathered rock / competent rock
6 35 40 10.67 12.19 5 500 1.52 100 8 5 0 150 98% R4 R3 0 4 tot 1 0 1. stained towo-carge, apth 30 to 70 dages Highty altered trom 41 to 45' 7 40 45 13.23 15.24 5 3 5.25 16.01 0.5 15.2 15.24 5 5.5 15.2 10.05 9.7 1 148 9.2% R4 R3 0 7 10 0 310 come, apth 30 to 70 dages Highty altered trom 41 to 45' 9 50 55 15.24 10.5 4.88 149 98 6 0 149 100% R5 R4 0 457 1 [0 1 stained compact, apth 30 to 70 dages Highty altered trom 41 to 45' 11 60 65 132.2 13.61 10.01 11.7 2 1 0 1000 R5 R4 0 457 1 [0 1 stained compact, apth 30 to 70 dages Highty altered trom 41 to 45' 12 65 10.02 2.42	5	30	35	9.14	10.67	5		5.00	1.52	100	6	3	0		147	96%	R4	R3	0	4 to 7 0 0, stained brown-orange	1 Qz vein
7 40 45 12.39 13.28 4 9 4.45 9 12 10 0 108 75% 76 71 108 75% 76 71 108 75% 76 71 108 75% 76 71 108 75% 76 71	6	35	40	10.67	12.19	5		5.00	1.52	100	8	5	0		150	98%	R4	R3	0	4 to 8 0 0, stained brown-orange, alpha 50 to 70 degrees	
8 45 50 13.72 15.28 5 3 5.25 1.60 105 9 7 1 148 92% R4 R3 0 10 <	7	40	45	12.19	13.72	4	9	4.75	1.45	95	12	10	0		108	75%	R4	R3	0	7 0 to 3 0 stained orange, alpha 30 to 70 degrees	slightly altered from 41 to 43'
9 50 55 15.24 16.76 5 5.00 15.2 100 6 3 0 150 98% R5 R4 0 4 to 1 0 , stand, ghap 45 to degrees mechanism 10 65 61 16.76 18.29 19.81 4 10.5 4.88 149 98 6 5 0 149 100% R5 R4 0 4to 7 0 0, stand, ghap 45 to 7 degrees mecroander (regree) for a stand, grand, 1 arg wea 12 65 67 19.81 20.42 2 2.17 0.66 108 5 4 1 66 100% R5 R4 0 4to 7 10.0 94% R5 R4 0 100 arg stand, 1 arg baa, undusting regrees to many for a stand, 1 arg was stand, 1 ar	8	45	50	13.72	15.24	5	3	5.25	1.60	105	9	7	1		148	92%	R4	R3	0	7 0 0 stained orange, alpha 45	
10 55 60 15.76 18.29 4 10.5 4.88 1.49 98 7 4 0 149 100% R5 R4 0 4 to 7 [0], 0, dight yalaned very competent trah nod, cng galed, 1 large vein 11 66 65 18.29 19.81 4 10.5 4.88 1.49 98 6 5 0 1.49 100% R5 R4 0 4 to 7 [0], 0, en staining competent trah nod, cng galed, 1 large vein 13 67 70 20.42 21.34 3 6 3.50 1.07 117 2 1 0 100 94% R5 R4 0 1.48 1.47 1.4 0 1.48 1.47 97 6 3 0 1.44 100% R5 R4 0 target jarget mon obtaing matched jarget and jarget mon obtaing jarget mon obtaing matched jarget and jarget mon obtaing mat	9	50	55	15.24	16.76	5		5.00	1.52	100	6	3	0		150	98%	R5	R4	0	4 to 7 0 0, stained, alpha 45 to 70 degrees	
11 60 65 18.29 19.81 20.44 20.5 4.88 1.49 98 6 5 0 149 100% R5 R4 0 47.7 (0, co taking competint grey/sink rock logged from phote) 12 65 67 19.81 20.42 2.13.4 3 6 3.50 1.07 112 2 1 0 100 94% R5 R4 0 Justice from phote Competint grey/sink rock logged from phote) 14 70 75 21.34 22.86 4 10 4.83 1.47 97 6 3 0 148 100% R5 R4 0 statistice from phote grey brown R strend from phote 15 75 80 22.86 24.88 1.47 97 6 3 0 141 100% R5 R4 0 statistice from phote grey brown rds, sightly altered justice from phote justice from phote field from phote field from phote field from phote<	10	55	60	16.76	18.29	4	10.5	4.88	1.49	98	7	4	0		149	100%	R5	R4	0	4 to 7 0 0, slightly stained	very competent fresh rock, crs grained, 1 large vein
12 65 67 19.81 20.42 2 2 2.17 0.66 108 5 4 1 66 100 R5 R3 0 competent gry/pick rock (logged from photo) 13 67 70 20.42 21.34 3 6 3.50 1.07 117 2 1 0 94% R5 R4 0 reside grees, inclusion (rough, troom & altered, alpha 30 to algeres, undulating, rough, troom & altered, alpha 30 to algeres, inclusion (rough, troom & altered, alpha 30 to algeres, inclusion (rough, troom of altered, alpha 30 to algeres, inclusion (rough, troom of altered, alpha 30 to algeres, inclusion (rough, troom of altered) wall, alpha 45 (rough algeres, inclusion (rough, algered) wall, alpha 45 (rough algeres)	11	60	65	18.29	19.81	4	10.5	4.88	1.49	98	6	5	0		149	100%	R5	R4	0	4 to 7 0 0, no staining	
13 67 70 20.42 21.34 3 6 3.50 1.07 117 2 1 0 100 94% R5 R4 0 weit gram, undulating, rough, brown & aftered, alpha 30 C 14 70 75 21.34 22.86 4 10 4.83 1.47 97 6 3 0 148 100% R5 R4 0 subsymmetry, undulating, rough, brown & aftered, alpha 30 prey brown rock, slightly altered 15 75 80 22.86 24.38 4 10 4.83 1.47 97 6 5 0 138 94% R5 R4 0 subsymmetry subsymmetry <t< td=""><td>12</td><td>65</td><td>67</td><td>19.81</td><td>20.42</td><td>2</td><td>2</td><td>2.17</td><td>0.66</td><td>108</td><td>5</td><td>4</td><td>1</td><td></td><td>66</td><td>100%</td><td>R5</td><td>R3</td><td>0</td><td></td><td>competent grey/pink rock (logged from photo)</td></t<>	12	65	67	19.81	20.42	2	2	2.17	0.66	108	5	4	1		66	100%	R5	R3	0		competent grey/pink rock (logged from photo)
14 70 75 21.34 22.66 4 10 4.83 1.47 97 6 3 0 148 100% FS R4 0 ctained 1's call of segrees grey brown rock, slighty altered grey brown rock, slighty altered 15 75 80 22.86 24.38 4 10 4.83 1.47 97 6 5 0 138 94% R5 R4 0 ctained 1's dif 3 weathered with non softening fill, altered 1 wall, slights 4's grey brown rock, slighty altered 18 85 90 25.91 27.43 5 2 5.17 1.57 103 4 4 0 144 95% R5 R4 1 1 weathered with non softening fill, altered,	13	67	70	20.42	21.34	3	6	3.50	1.07	117	2	1	0		100	94%	R5	R4	0		
14 70 75 21.34 22.86 4 10 4.83 1.47 97 6 3 0 148 100% R5 R4 0 Bid agrees prybrown cx, sliptly altered prybrown cx, sliptly altered<						-						-								J walls planar, undulating, rough, brown & altered; alpha 30 t	D
15 75 80 22.86 24.38 4 10 4.83 1.47 97 6 5 0 138 94% 85 R4 0 talee 1/s getty converted, sightly altered 16 80 85 24.38 2.5.91 2.7.43 5 2 5.1.7 1.03 4 4 0 149 95% R5 R4 1 15 weathered with non softening fill, altered 1/s (altered 1/s), altered 1/s), altered 1/s getty converced, sightly altered 19 90 5 27.43 2.8.6 5 2 5.1.7 1.57 103 4 4 0 149 95% R5 R4 1 1 with soft fill 0.5mm brown clay, alpha 15 degrees R2 R2 1 al ety sha 1 1 with soft fill 0.5mm brown clay, alpha 15 degrees R2 R2 R4 1 al ety sha 1 1 al ety sha 1 1 al ety sha 1 R2 R2 R4	14	70	75	21.34	22.86	4	10	4.83	1.47	97	6	3	0		148	100%	R5	R4	0	80 degrees	
16 80 85 24.38 25.91 4 7.5 4.63 1.41 93 6 3 0 141 100% R5 R4 0 10 9 deader 0 winter 100 minited minised minited minited minised minis	15	75	80	22.86	24.38	4	10	4.83	1.47	97	6	5	0		138	94%	R5	R4	0	stained J's	grey brown rock, slightly altered
18 85 90 25.91 27.43 5 2 5.17 1.57 103 4 4 0 149 95% R5 R4 1 </td <td>16</td> <td>80</td> <td>85</td> <td>24.38</td> <td>25.91</td> <td>4</td> <td>7.5</td> <td>4.63</td> <td>1.41</td> <td>93</td> <td>6</td> <td>3</td> <td>0</td> <td></td> <td>141</td> <td>100%</td> <td>R5</td> <td>R4</td> <td>0</td> <td>to 90 degrees</td> <td>fluid flow evidence</td>	16	80	85	24.38	25.91	4	7.5	4.63	1.41	93	6	3	0		141	100%	R5	R4	0	to 90 degrees	fluid flow evidence
19 90 95 27.43 28.96 5 5.00 1.52 100 11 6 4 149 98% R5 R4 1 1 with soft fill 0.5mm brown clay, alpha 15 degrees State 20 95 100 28.96 30.48 5 2 5.17 1.57 103 12 13 0 4 133 84% R4 R2 0 11 at 99 has 1 cm brown clay, gauge fill (alpha 50 degrees) 86' 86' 86' 86' 84 1 1 at 99 has 1 cm brown clay, gauge fill (alpha 50 degrees) 86' 86' 86' 85 R4 0 1 at 99 has 1 cm brown clay, gauge fill (alpha 50 degrees) 86' 86' 85 R4 0 1 at 99 has 1 cm brown clay, gauge fill (alpha 50 degrees) 86' 86' 85 R4 1 1 bas 0.5mm soft fill	18	85	90	25.91	27.43	5	2	5.17	1.57	103	4	4	0		149	95%	R5	R4	1		
20 95 100 28.96 30.48 5 2 5.17 1.57 103 12 13 0 4 133 84% R4 R2 0 11 at 99' has 1 cm brown clay gauge fill (alpha 50 degrees) 96' 21 100 105 3.0.48 32.00 5 5.00 1.52 100 6 5 1 150 98% R5 R4 0 11 at 99' has 1 cm brown clay gauge fill (alpha 50 degrees) 96' 96' 22 105 110 32.00 3.53 5 2 5.17 1.57 103 7 5 1 146 93% R5 R4 0 mineralization around micro defects at 11.5' 11 at 99' has 1 cm brown clay gauge fill (alpha 50 degrees) 96'	19	90	95	27.43	28.96	5		5.00	1.52	100	11	6	4		149	98%	R5	R4	1	1 J with soft fill 0.5mm brown clay, alpha 15 degrees	
21 100 105 30.48 32.00 5 5.00 1.52 100 6 5 1 150 98% R5 R4 0 1 22 105 110 32.00 33.53 5 2 5.17 1.57 103 7 5 1 146 93% R5 R4 1 1 has 0.5mm soft fill 1 23 110 115 33.53 5 2 5.17 1.57 103 7 5 1 146 93% R5 R4 0 1 interalization around micro defects at 11.5' 24 115 120 35.05 36.58 5 1 5.08 1.55 102 12 7 1 103 66% R5 R4 1 hard fill in Js 25 120 125 36.58 38.10 5 2 5.17 1.57 103 12 6 2 140 89% R5 R4 1 hard fill in Js 26 125 36.58 38.10 5<	20	95	100	28.96	30.48	5	2	5.17	1.57	103	12	13	0	4	133	84%	R4	R2	0	1 J at 99' has 1 cm brown clay gauge fill (alpha 50 degrees)	RZ (10cm) jointed at 96'; R2 rock highly altered, brown from 95- 96'
100 101 32.00 33.53 5 2 5.17 1.57 103 7 5 1 146 93% R5 R4 1 1 1has 0.5mm soft fill 23 110 115 33.53 35.05 5 1 5.08 1.55 102 10 11 3 122 79% R5 R4 0 mineralization around micro defects at 111.5' 24 115 120 35.05 36.58 5 1 5.08 1.55 102 12 7 1 103 66% R5 R4 1 hard fill in 1s 25 120 125 36.58 38.10 5 2 5.17 1.57 103 12 6 2 140 89% R5 R4 1 1 hard fill in 1s 26 125 30 38.10 39.62 41.15 5 5.00 1.52 100 14 14 0 62 41% R5	21	100	105	30.48	32.00	5		5.00	1.52	100	6	5	1		150	98%	R5	R4	0		
23 10 115 33.53 35.05 5 1 5.08 1.55 102 10 11 3 122 79% R5 R4 0 mineralization around micro defects at 11.5' 24 115 120 35.05 36.58 5 1 5.08 1.55 102 12 7 1 103 66% R5 R4 1 hard fill in 1s 25 120 125 36.58 38.10 5 2 5.17 1.57 103 12 6 2 140 89% R5 R4 1 hard fill in 1s 26 125 36.58 38.10 5 2 5.17 1.57 103 12 6 2 140 89% R5 R4 1 1 hard fill in 1s 26 125 30 38.10 39.62 41.11 4.92 1.50 98 10 5 1 135 90% R5 R4 1 1 hard fill in 1s 27 130 135 94.0 4.1.5 <th< td=""><td>22</td><td>105</td><td>110</td><td>32.00</td><td>33.53</td><td>5</td><td>2</td><td>5.17</td><td>1.57</td><td>103</td><td>7</td><td>5</td><td>1</td><td></td><td>146</td><td>93%</td><td>R5</td><td>R4</td><td>1</td><td>1 J has 0.5mm soft fill</td><td></td></th<>	22	105	110	32.00	33.53	5	2	5.17	1.57	103	7	5	1		146	93%	R5	R4	1	1 J has 0.5mm soft fill	
24 15 120 35.05 36.88 5 1 5.08 1.05 102 12 7 1 103 66% R5 R4 1 hard fill in Js 25 120 125 36.58 38.10 5 2 5.17 1.57 103 12 6 2 140 89% R5 R4 1 hard fill in Js 26 125 130 38.10 39.62 4 11 4.92 1.50 98 10 5 1 135 90% R5 R4 1 hard fill in Js 26 125 130 38.10 39.62 41.15 5 5.00 1.52 100 14 14 0 62 41% R5 R3 1 I has 2mm soft fill 28 135 140 41.15 42.67 5 2 5.17 1.57 103 8 6 1 141 90% R5 R4 1 I has 2mm soft fill 29 140 145 42.67 44.20 <td>23</td> <td>110</td> <td>115</td> <td>33.53</td> <td>35.05</td> <td>5</td> <td>1</td> <td>5.08</td> <td>1.55</td> <td>102</td> <td>10</td> <td>11</td> <td>3</td> <td></td> <td>122</td> <td>79%</td> <td>R5</td> <td>R4</td> <td>0</td> <td></td> <td>mineralization around micro defects at 111.5'</td>	23	110	115	33.53	35.05	5	1	5.08	1.55	102	10	11	3		122	79%	R5	R4	0		mineralization around micro defects at 111.5'
25 120 125 36.58 38.10 5 2 5.17 1.57 103 12 6 2 140 89% R5 R4 1 </td <td>24</td> <td>115</td> <td>120</td> <td>35.05</td> <td>36.58</td> <td>5</td> <td>1</td> <td>5.08</td> <td>1.55</td> <td>102</td> <td>12</td> <td>7</td> <td>1</td> <td></td> <td>103</td> <td>66%</td> <td>R5</td> <td>R4</td> <td>1</td> <td>hard fill in Js</td> <td></td>	24	115	120	35.05	36.58	5	1	5.08	1.55	102	12	7	1		103	66%	R5	R4	1	hard fill in Js	
26 125 130 38.10 39.62 4 11 4.92 1.50 98 10 5 1 135 90% R5 R4 1 1 has 2mm soft fill 27 130 135 39.62 41.15 5 5.00 1.52 100 14 14 0 62 41% R5 R3 1 28 135 140 41.15 42.67 5 2 5.10 1.57 103 8 6 1 141 90% R5 R4 1 1 las 2mm soft fill 29 140 44.20 5 5.00 1.52 100 9 7 0 150 98% R5 R4 1 30 145 42.67 44.20 5 5.00 1.52 100 7 5 0 137 99% R5 R4 1 1 40 41 41 90% R5 R4 1 1 1 1 1 1 1 1 1 1 1	25	120	125	36.58	38.10	5	2	5.17	1.57	103	12	6	2		140	89%	R5	R4	1		
27 130 135 39.62 41.15 5 5.00 1.52 100 14 14 0 62 41% R5 R3 1 <t< td=""><td>26</td><td>125</td><td>130</td><td>38.10</td><td>39.62</td><td>4</td><td>11</td><td>4.92</td><td>1.50</td><td>98</td><td>10</td><td>5</td><td>1</td><td></td><td>135</td><td>90%</td><td>R5</td><td>R4</td><td>1</td><td>1 J has 2mm soft fill</td><td></td></t<>	26	125	130	38.10	39.62	4	11	4.92	1.50	98	10	5	1		135	90%	R5	R4	1	1 J has 2mm soft fill	
28 135 140 41.15 42.67 5 2 5.17 1.57 103 8 6 1 141 90% R5 R4 1 Accord (1)	27	130	135	39.62	41.15	5		5.00	1.52	100	14	14	0		62	41%	R5	R3	1		
29 140 145 42.67 44.20 5 5.00 1.52 100 9 7 0 150 98% R5 R4 1 1 30 145 150 44.20 45.72 5 5.00 1.52 100 7 5 0 137 90% R5 R4 1 <td>28</td> <td>135</td> <td>140</td> <td>41.15</td> <td>42.67</td> <td>5</td> <td>2</td> <td>5.17</td> <td>1.57</td> <td>103</td> <td>8</td> <td>6</td> <td>1</td> <td></td> <td>141</td> <td>90%</td> <td>R5</td> <td>R4</td> <td>1</td> <td></td> <td></td>	28	135	140	41.15	42.67	5	2	5.17	1.57	103	8	6	1		141	90%	R5	R4	1		
30 145 150 44.20 45.72 5 5.00 1.52 100 7 5 0 137 90% R5 R4 1 1 1 1 31 150 155 45.72 47.24 5 5.00 1.52 100 7 4 1 144 94% R5 R4 0 1 <td>29</td> <td>140</td> <td>145</td> <td>42.67</td> <td>44.20</td> <td>5</td> <td></td> <td>5.00</td> <td>1.52</td> <td>100</td> <td>9</td> <td>7</td> <td>0</td> <td></td> <td>150</td> <td>98%</td> <td>R5</td> <td>R4</td> <td>1</td> <td></td> <td></td>	29	140	145	42.67	44.20	5		5.00	1.52	100	9	7	0		150	98%	R5	R4	1		
31 150 155 45.72 47.24 5 5.00 1.52 100 7 4 1 144 94% R5 R4 0 32 155 160 47.24 48.77 4 10 4.83 1.47 97 10 5 1 133 90% R5 R4 1 1 J has 2mm soft fill 33 160 165 48.77 50.29 4 9 4.75 1.45 95 9 7 0 139 96% R5 R4 0 Js betw 162-163' have 2mm of soft fill	30	145	150	44.20	45.72	5		5.00	1.52	100	7	5	0		137	90%	R5	R4	1		
32 155 160 47.24 48.77 4 10 4.83 1.47 97 10 5 1 133 90% R5 R4 1 1 J has 2mm soft fill 33 160 165 48.77 50.29 4 9 4.75 1.45 95 9 7 0 139 96% R5 R4 1 J has 2mm soft fill	31	150	155	45.72	47.24	5		5.00	1.52	100	7	4	1		144	94%	R5	R4	0		
33 160 165 48.77 50.29 4 9 4.75 1.45 95 9 7 0 139 96% R5 R4 0 Js betw 162-163' have 2mm of soft fill	32	155	160	47.24	48.77	4	10	4.83	1.47	97	10	5	1		133	90%	R5	R4	1	1 J has 2mm soft fill	
	33	160	165	48.77	50.29	4	9	4.75	1.45	95	9	7	0		139	96%	R5	R4	0	Js betw 162-163' have 2mm of soft fill	

MW09-4

Geotechnical log (basic+)

* 10ft rods were used, with 5ft core barrel, HQ3 bit, with split tubes; casing depth 10ft

verburden

weathered bedrock

fresh bedrock

micro TCR RQD +J from IRS Run Interval OF CJ J def. Run # J - properties comment RZ From To From To ft ft m cm % strong weak 0 to 3 m ft decimal f m % 6 1.52 1.83 0.30 100 0% S3 1 5 1.00 **11** 1.83 2 6 3.35 2.2 2.20 0.67 44 0% S4 11 15 3.35 4.57 3.00 0.91 79 0% S4 15 20 4.57 6.10 3.60 1.10 0% S3 4 3.6 72 20 **25** 6.10 7.62 1.52 100 0% S4 S2 5.00 25 30 7.62 9.14 5.00 1.52 0% S4 100 30 **35** 9.14 10.67 5.00 1.52 100 0% S4 35 40 10.67 12.19 5.00 1.52 100 0% S4 S3 40 **45** 12.19 13.72 4.00 1.22 80 0% S4 45 **50** 13.72 15.24 1.52 100 0% S4 5.00 10 0% S4 11 50 **55** 15.24 16.76 4.2 4.20 1.28 84 12 55 **60** 16.76 18.29 5.00 1.52 100 0% S4 13 60 **65** 18.29 19.81 5.00 1.52 100 0% S4 70 19.81 1.52 100 0% S4 14 65 21.34 5.00 S3 15 70 75 21.34 22.86 5.00 1.52 100 0% S4 80 22.86 5.00 1.52 S4 75 24.38 100 0% 16 5.00 18 80 **85** 24.38 25.91 1.52 100 0% S4 19 85 **90** 25.91 27.43 5.00 1.52 100 0% S4 20 90 **95** 27.43 28.96 0.00 0.00 S4 100 28.96 30.4 5.00 1.52 100 S4 95 09 22 100 **105** 30.48 32.00 3.00 0.91 60 0% S4 23 105 **110** 32.00 5.20 1.58 104 0% S4 33.53 5.2 24 110 **115** 33.53 35.05 5.00 1.52 100 0% S4 115 **120** 35.05 S4 36.58 5.00 1.52 100 0% 26 120 125 36.58 38.10 5.00 1.52 100 0% S4 **130** 38.10 5.00 0% **S**4 27 125 39.6 1.52 100 **130 135** 39.62 5.00 0% S4 28 41.15 5 1.52 100 29 135 140 41.15 42.67 5.00 1.52 100 0% S4 5 140 145 42.67 44.20 4.20 1.28 84 0% S4 30 4.2 ighly weathered rock (brown and pink rock fragments, light brown-orange crs.sand and 31 145 **150** 44.20 45.72 4 5 4.80 1.46 96 60 6 0% RO S4 gravel), low clay content (10%) **155** 45.72 100 0% R2 32 150 47.24 5.00 1.52 51 51 48 0 RO 1 0 rock most of this run highly wethered rock (brown-orange c.sand, clayey, altered rock frags, Qz vein, very weak rock highly wethered rock, orange-brown alteration, black/white coarse grains remaining of rock; 33 155 **160** 47.24 48.77 5.00 1.52 100 152 100% R3 RO 1 R0 zone 20cm (also jointed) ompetent rock at 159ft 160 **165** 48.77 50.29 3.33 1.02 67 24 24% R3 R1 1 soft/hard fill in J's 34 very weathered jointed rock **170** 50.29 165 51.82 5.00 1.52 100 80 52% R3 R2 1 soft fill in J's or red staining, veathered jointed rock 35 Λ 170 175 51.82 53.34 100 140 92% R3 crs. fill in J's, red staining 5.00 1.52 0 0 weathered jointed rock 36 37 175 **180** 53.34 54.86 5.25 1.60 105 136 85% R4 R2 0 0 180 185 54.86 1.47 137 93% R4 R0 2 38 56.39 10 4.83 97 0 black stained J's or crs.fill RZ (10cm) at litho change, RO rock 39 185 190 56.39 57.91 5.17 1.57 103 0 140 89% R4 R2 0 black rusty staining on all J's 40 190 195 57.91 59.44 5 5.08 1.55 102 10 8 0 143 92% R4 0 black rusty staining on all J's 41 195 199.5 59.44 60.81 Δ 4.42 1.35 98 12 0 82 61% R4 0 stained J's, various colours and minerals 42 199.5 205 60.81 62.48 5.25 1.60 95 9 1 136 85% R5 R3 0 hard fill on J surfaces 43 **205 210** 62.48 64.01 5.00 1.52 100 0 137 90% R5 R4 0 hard fill on J surfaces 9 78 51% R4 R3 0 44 210 215 64.01 65.53 5.00 1.52 100 10 10 0 hard fill on J surfaces **215 220** 65.53 67.06 93 59% R4 R1 O hard fill on J surfaces 45 5.17 1.57 103 14 10 0 46 **220 225** 67.06 68.58 5.17 1.57 103 158 100% R4 R3 0 hard fill on J surfaces 0 47 225 230 68.58 70.10 5.00 1.52 100 135 89% R4 11 0 1 - 5 8 48 230 235 70.10 5.00 1.52 100 85 56% R4 R2 71.63 13 0 49 235 240 71.63 73.15 4.92 1.50 98 150 100% R5 Δ 11 6 Ω 50 240 245 73.15 74.68 5.00 1.52 100 10 132 87% R4 R3 5 0 51 **245 250** 74.68 76.20 4.75 1.45 95 10 0 70 48% R4 bright green mineralization on J surfaces 4 8

MW09-4

Overburden Properties

* core runs with the same properties were combined

* descriptions were modified to match quantitative measurements (TorVane and Penetrometer)

** reworked clay (by drill bit) that is caked around harder

inner core was ignored here - this soft watery clay does not represent in-situ conditions and is softened by drilling process

0.05

0.15

0.10

0.03

0.20 0.10

0.15

								process			clay hardn	ess - quan	itative m	easurer	ments	_							
	Domain	interval		description	permafrost	samples	clay plasticity	clay hard	Iness		Tor Vane 0.1 k	(g/cm²)	* Pe	netrom (kg/cm ²	eter ²)		Tor Van	e (MPa))	Pene	etromet	er (MP	'a)
From	То	From	То	P			,	description (as found,	thawed	ISRM	frozen	thawed	froze	n t	hawed	fro	zen	thav	wed	froz	en	thaw	/ed
ft	ft	m	m					usually frozen)	only	code	min max	min ma	x min r	nax mi	in max	min	max	min	max	min	max	min	max
5.0	6.0	1.52	1.83	cobble																	1	1	
6.0	11.0	1.83	3.35	dark brown silty clay with fine gravel (sub round)		S1 at 10ft	low	firm		S3	3					0.03					1	1	
11.0	15.0	3.35	4.57	frozen grey clay with ice inclusions (includes 0.5ft layer of d.brown clay with f.gravel)	Vx / Vr small lenses	S2 at 14ft	med	stiff	soft	S4													
15.0	20.0	4.57	6.10	dark grey frozen clay, with ice inclusions	20 to 30% ice, Vr / Vx / Nbe		med	firm	v.soft	S3	4.5		1	0	0.3 0.5	5	0.04		0.01			0.03	0.0
20.0	21.5	6.10	6.55	dark grey frozen clay, with ice inclusions	frozen		med	stiff	v.soft	S4	2.5			1.5	0.0)	0.02				0.15		0.0
21.5	25.0	6.55	7.62	soft watery clay (reworked by drilling process)	N/A	S3 at 24ft	high		soft	S2													
25.0	32.5	7.62	9.91	dark grey frozen clay, with ice inclusions	10 to 15% ice		med	stiff		S4	7			3.2	0.5	5	0.07				0.31		0.0
32.5	35.0	9.91	10.67	dark grey frozen clay	frozen	S4 at 33ft	med-high	stiff	firm	S4	3.5			4.5	1.5	5	0.03				0.44		0.1
35.0	40.0	10.67	12.19	grey frozen clay, with ice inclusions AND zones of ice with clay inclusions	Vr, Vx, zones of ice		mod-high	stiff	firm	S 3			1.9	2	1.0)				0.19	0.20		0.1
40.0	55.0	12.19	16.76	ice with grey clay inclusions	>50% ice, random pattern, some stiff clay inclusions	S5 at 45ft	mod-high	stiff	soft	S4	7.5	0	5 2	4	0.3	3	0.07		0.00	0.20	0.39		0.0
55.0	63.0	16.76	19.20	grey frozen clay, with ice inclusions	5% ice, Vx, Vr	S6 at 58ft	high	stiff	firm	S4			4		1.5	5			0.04				0.1
63.0	64.5	19.20	19.66	grey frozen clay, with fine sand and fine gravel (sub ang to angular)	frozen	S7 at 63ft	low	stiff	soft	S4		7.8	8 3	3.5	_			0.08	0.08	0.29	0.34		
64.5	64.8	19.66	19.75	black-grey moist clay			mod	stiff		S4					_								
64.8	65.0	19.75	19.81	wet clayey coarse sand with fine gravel (sub-ang)									_		_								
65.0	69.0	19.81	21.03	clay diamict (fcrs. sand, fcrs. gravel (and - sub ang.), + cobble), frozen	frozen			stiff		S4					2.0)							0.2
69.0	70.0	21.03	21.34	clay with ice inclusions	some ice			firm		S3			_		1.0)							0.1
70.0	73.1	21.34	22.28	clay diamict (fcrs. gravel, anground, cobble)				stiff		S4			_		_								
73.1	74.1	22.28	22.59	ice	ice	S8 at 74ft									_								
74.1	74.8	22.59	22.80	clay				stiff		S4	10			3	_		0.10				0.29		
74.8	84.7	22.80	25.82	grey frozen clay interbeds with clay containing ice inclusions and interbeds of pure ice	frozen, 5% ice, Vr/Vs, some pure ice			stiff		S4			1.5	5 0	0.5 2.0	<u> </u>				0.15	0.49	0.05	0.2
84.7	85.0	25.82	25.91	clay diamict (f.gravel)				stiff		S4			2	2.5	_					0.20	0.25		
85.0	90.0	25.91	27.43	frozen clay with ice inclusions and with fcrs.gravel	more ice content than above	S9 at 89ft		stiff		S4					_								
90.0	95.0	27.43	28.96	N/A									_		_								
95.0	124.0	28.96	37.80	frozen grey clay with ice inclusions (Vr, Vt) and with trace of crs.gravel (sub-ang.) and few beds of clay diamict (with crs. sand / f.gravel)	frozen, once 10cm ice layer,	S10 at 103ft		stiff		S4			8 4	5 1	.5 3.0)			0.08	0.39	0.49	0.15	0.2
124.0	125.0	37.80	38.10	frozen clayey f.sand	frozen	S11 at 119ft														1	1	7	
125.0	141.0	38.10	42.98	clay diamict (c.sand-f.gravel) and beds of clayey f.sand, c.gravel and cobble fragments at 135ft, ice inclusions and small ice layers	ice inclusions	S12 at 130ft	low	stiff		S4			2.5	5	1.5	5				0.25	0.49		0.1
141.0	141.5	42.98	43.13	grey brown clay (thawed) and frozen black/grey clay	frost "flakes" in clay			stiff	soft	S4		3	5						0.03				
141.5	144.0	43.13	43.89	brown moist clayey crs.sand with f.gravel (angular) and trace crs.gravel		S13 at 143ft																	
144.0	145.0	43.89	44.20	frozen dark grey clay with crs.sand and f.gravel	frozen			stiff		S4				4.5 0	0.5 1.0)					0.44	0.05	0.1
145.0	146.0	44.20	44.50	clay diamict (f.gravel grey rock pieces) and interbeds of medium clayey brown sand	N/A			stiff		S4													
146.0	153.5	44.50	46.79	highly weathered rock (brown and pink rock fragments, light brown-orange crs.sand and f.gravel), low clay content (10%)	N/A	S14 at 151ft				RO													
153.5	155.0	46.79	47.24	weathered altered rock, Qz vein, very weak						R0/R2													
155.0	159.0	47.24	48.46	weathered altered rock, black/white crs.grains, orange-rusty alteration	warm core from drilling process in rock					R0/R1													

Appendix B MP Monitoring Well Casing Design and Installation Records

	SRK Co	o nsulti eers and Sciel	ng	I			MP S Casing Installatio	yste on Lo	em og
Project:	MINTO	2CM 022.	00	7.	001.1	0	WB Ref.:		
Location:	WEST PIT		Hole	No.:	MWO	9-1	Installed by: <u>JS</u> , d	CD	
Hole Dept	h: 165 FT MP Depth: 1	65 FT	Hole	Diar	neter:ł	4 Q	Date Installed: 28 N	100	<u>`0</u>
Measurer	ment Datum: GROUND SU	IRFACE	Datu	m El	evation:	357.6 m	Date Drawn: 1여 기	AN	<u>'io</u>
Depth, ET	Geological Description	Geologic Log	MP (Casinç og	g Serial No Batch No	Final Packer Pressure/Volume	Comments	Join Install	nt lesi
	1			8			0.23 m from ground		
	E IL I		-				piece 17.		
10 -	ا از لید. لیست ا		{	7		·····		_	
20 -				ь				-	
30 -		 		5		····			
									1
40 -				4					
			-			******		_	
<0				3					
60 -				2					
				,					
		1-1 - 1 		1					-
70 -				1					
			~						
80 -				0					
			MX	ĸ	2001				
	WEATHERED BEDROCH			0	2001				
90 -				ł			·····	-	
					~~~	600 PSI	VALUE OPEN 170 PSI	_	
100	V	<u> </u>	Ы	8	1702.5	6.5 L			
	P Casing MP Pack	er K Col Filt	gnetic lar er Slee	eve		Aeasurement fort Coupling	Pumping Port Regu Coupling Coup	ular oling	

and a start of the start of the

	SRK	<b>Cons</b> Engineers a	nd Scier	ntist	<b>g</b> s				Cas	ing Ins	MP stallat	Syst ion	tem Log
Project:	MINTO	20	4027.	00	)7.	0	01.10			_ WB Ref			
Location	: WEST PIT			Hol	e No	.:	MWC	29-1		- nstalled by	<u>,</u> JS	, CĽ	>
Hole Dep	oth: 165 FT MP Dept	h: 165 F	Т.	Hol	e Dia	me	eter:	10	Dai	te Installed	1: <u>28</u>	NOU	1 00
Measure	ement Datum: <u>GROUN</u>	ID SUR	FALE	Dat	um E	lev	ation:	857.6 m	Ü	)ate Drawr	1: 19	JAN	<u>1 '10</u>
Depth,	Geological Descripti	on	Geologic Log	M	Casir Log	ng	Serial No. Batch No.	Final Packer Pressure/Volume		Comments		lust	Joint all less
100	WEATHERED BEC			- M >	7	¢	2803						
120.	COMPETENT BEDR	20CK.			6 -0- 5		7955						
130-		بي من المراجع بي المراجع المراجع بي المراجع المراجع المراجع المراجع المراجع المراجع المراجع المراجع الم المراجع المراجع المراجع المراجع المراحم الم المراحم المراحم المراحم المراحم المراحم الم الم الم الم الم الم الم الم الم ال			4	//	17026	670 PS1 4.0 L	VALUE	OPEN	165 P.	SI	
140.					3		2800						
150 -					2 -0		7957						
160.	END O AT	0F HOLE 165 FT -	-		-			·····					
170 ·													
 			XK Ma	gneti				Aasuramaat		nina Bort	_D		
	IP Casing	P Packer		er Slo	eve		Po	rt Coupling	O Cour	ping rolt bling		sguiai Supling	)

SRK Consulting. Schlumberger WATER SERVICES

# Sheet of 2 Westbay Packer Inflation Record

															<u>.</u>				1										
Pro	oject:	Mi	nt	ъ				1.			_Pr	oje	ct N	o.:	<u>.</u>	MO	21.	10 10	of,		We	ell N	o.:_	Μ	W	00	eum.	1	. <u> </u>
Lo	cation:	Wes	t	Pit	-						_C	omp	olete	ed b	y:	C	D,	J.	5		Da	te Ir	nflat	ed:	2	8	N	07	0
Pa	cker No.	4		Seria	U\$	ŧ	F	707	26		_De	epth	1 (ft	) 'n	ו ):	_1	30	) {	9		Infl	atio	n To	loc	No.	:			
Pa	cker Valv	e Pressi	ure,	P _v :	16	55	ps	i	Fina	al L	ine	Pre	ssu	re, l	P _L :	6	77	~ `	psi		То	ol P	ress	sure	e, P	<u>г: Ч</u>	FO	0	osi
Во	rehole Wa	ater Lev	el:	33-6	5	_( ft	/٣	) =	47	1,8	⁷ ps	i (P	w)			-													
<u>.</u>	P.	= PE +	I Pv	10. +P _T	4 F -	ιε Pw		C =	alcu = ↓	late 60	ed P	ack 16	er E	Eler ⊦4	ner	nt P PO	res	sure 4	e, F 8	e= =	P _L	+P 67	w-1 7	• ۷-	P _T	=	61	2_p	si
	Volume	litres	t	2.5		]. ĺ	>	Ľ	5	ر. ک	2.1	2	2	٢		3	.0	>	3.	5		3.	75		3.	28	3	. <u>.</u>	5
	Pressur	e, psi	56	Ð	5	541	2	57	D	6	00	)	6	DC	,	61	0		в	20		64	20	1	64	0	K	isc	,
	Volume,	litres	4	.05	4	<i>i, ll</i>	)				-	4.	0	2		Ca	h	æl		/	1							<u>.</u>	Ī
	Pressur	e, psi	6	6D	6	;70	)																-						
• .																			•										
			Ţ-1		·	Т		гт		1	<b>T</b> ·		i 1	:	_	-	-		Ţ	_	-	_	T	- <b>-</b>		-			7
									$\mp$													1		1					
	. •				+-	-		┝─┼	-	-	+			_	-			-	-	-	+		+	╋	┿	+	$\vdash$	+	-
	800-									-	_													1				1	
. (1															-									$\pm$					
sd)	н ж			· · ·	-	+				+				+		_	+	+	+	-	-	+	+	╀	_		ar s	+	-
ure	700 -				-																			_				1	
ess	"PL -	->								+					Ģ			+			$\neg$		+	╀	+	+		+	-
ሻ			$\left  \right $	<u> </u>	┢				+-	+						_		-	-	_	_	_	_	$\mp$			$\square$	—	7
	600-								-0-				, Î											╈					-
					,	22					╂──			-	·		-		_	+				╉		+	$\left  - \right $		┦
	•		$\square$													_		-						$\mp$	1	$\square$	$\square$	4	
	(n)														_														
	500	0		1			2	2			3			4				5				6				7			8
												V	olu	me	e, li	tre	S.												
Con	nments: F	acker#		NOY	CU.	1a	l		nf	la	Au	òn	-								•	Tim	e -/	14	-1	'D			
 									Ŭ.							1				;' ·							· · ·		
	1																												
			ні Х. Ф.					· ·		****		3 ⁸ 8							1			a di							1. II.
					2			·			7		· · ·	ł.			d	<b>2</b>		1.1		• • •			2				



Sheet 2 of 2

# **Packer Inflation Record**

Project: Minto 201022.007.001.10	Project No.:	Well No.: MW09-
Location: West pit	Completed by: $\underline{CD}$ , $\underline{JS}$	Date Inflated: Mov 27 '09
Packer No. <u>8</u> 5/n 17025	Depth ( ft / m ): 95 A	Inflation Tool No.:
Packer Valve Pressure, Pv: 170 psi Final Lir	ne Pressure, P _L : 682 psi	Tool Pressure, P _T : 400 psi
Borehole Water Level: $33.65$ (ft (m) = $47.8$	psi (P _w )	
Calculated	d Packer Element Pressure, P _E :	$= P_L + P_W - P_V - P_T = 160 \text{ psi}$

Volume, litres	0.5	10	1.5	2.0	2.5	3.0	3,5	3.75	4.0	4.25
Pressure, psi	500	540	580	5.90	590	590	5.90	590	590	530
Volume, litres	4.5	5.0	6.5	6.8	(	6.75 actual	* fine	luol.	because	of lead
Pressure, psi	590	590	600	600						





# MP System Casing Installation Log

Project:	MINTO 20MOZZ.	007.001.1	0		WB Ref.:	
.ocation:_	LOWER TAILINGS	Hole No	MWC	9-2	Installed by: J	S, C D
lole Depti	h: <u>195 FT</u> MP Depth: <u>195 F</u>	T Hole Dia	ameter: <u> </u>	1 Q	Date Installed: 26	NOV 'O
Measurem	nent Datum: <u>AROUND</u> SURFAU	Datum I	Elevation:	157.5 m	Date Drawn: 19	JAN 1
Depth, FT	Geological Description	Geologic MP Casi Log Log	ing Serial No. Batch No.	Final Packer Pressure/Volume	Comments	Joint Install lest
-		22				
10 +		21				
20	CLAY + ICE PERMAFROST	20				
30						
40						
50 -						
60 -						
70 -						
80 -						
90						
	P Casing MP Packer	Magnetic Collar		leasurement ort Coupling	O Pumping Port Coupling	Regular Coupling



# MP System Casing Installation Log

Project:	MINTO 2CMOZZ.	007.0	<u>501.10</u>			WB Ref.:	·····
Location:	LOWER TAILINGS		Hole No.:	MWO	9-2	Installed by:	,CD
Hole Dept	th: 195 FT MP Depth: 195 FT	- sag	Hole Diam	eter: <u>H</u>	(a	Date Installed: 26	NOU '09
Measurer	ment Datum: GROUND SURFAC	E	Datum Elev	ation:	757.5m	Date Drawn: 19	JAN 10
Deptin, FT	Geological Description	Geologic Log	MP Casing Log	Serial No. Batch No.	Final Packer Pressure/Volume	Comments	Joint Install lest
100 110 -			12				
120 -	CLAY + ICE		10				
130 -			a				
140 -	CLAY + SAND + ICE		8				
150 -			M77	17022	760 PSI 4.75 L	MAG COLLAR AT TOP OF PACKER	
60 -	WEATHERED BEDROCK.		6 () 5	7958			
170 -	VERY POOR CORE RECOVERY		4 3 0	17021 2794 7951	760 P\$1 1.75 L	MAG COLLAR AT TOP OF PACKER	
180 -			2				
190-	END OF HOLE AT 195 FT	MuD					
7.00 M	P Casing MP Packer	X Ma Coll	_]     gnetic lar er Sleeve	M Po	l easurement rrt Coupling	Pumping Port	Regular Coupling



Sheet_l_of____

**Packer Inflation Record** 

Project:	Minto	Project No.:	Well No.: MWD9-2
Location: (	Lower Tailings	Completed by: <u>JScillek</u>	Date Inflated: Nov 26 '09
Packer No.	4 s/n 17021	Depth ((ft) m ): <u>170</u>	Inflation Tool No.:
Packer Valv	ve Pressure, Pv:_ <i>l65</i> psi  Final Lir	The Pressure, $P_L$ : 755 psi	Tool Pressure, P _T : <u>425</u> psi
Borehole W	/ater Level: 3.0 ( ft (m) =	psi (P _W )	
	Calculated	d Packer Element Pressure, P _E	$= P_L + P_W - P_V - P_T = (65)$ psi

Volume, litres	1.0	1,5	1.6	1.75	2,0		1.75	L fr.	hal Va	slume
Pressure, psi	620	760	720	740	76D	Fin	al P			
Volume, litres										
Pressure, psi										





Sheet 2 of 2

# **Packer Inflation Record**

Project:	Minto			Project No.:		4	Well No.: Mu	109-2	
Location: 2	lower	Tailings		Completed by:	I Scil	Sek	Date Inflated:	Nov 26	<u>('0</u> 9
Packer No.	7	5/n 17	022	 Depth ( ft / m ):	160	St	Inflation Tool N	0.:	
Packer Val	e Pressure,	P _v : 70 p	si Final	Line Pressure, P _L :	755	psi	Tool Pressure,	PT: 425	psi
Borehole W	ater Level:	(ft/r	n)= <u>4</u>	psi (P _W )					
			Calcula	ated Packer Elemer	nt Pressure	e, P _E =	: P _L + P _W - P _V - F	$r_{T} = 16D$	psi

Volume, litres	0.2	0.5	l.D	1.5	2.0	2.5	3.D	3,5	4.0	4.25
Pressure, psi	550	57D	610	620	64D	620	670	680	7110	720
Volume, litres	4.50	4.75	4.9		4.75	he fi	ind vei	val		
Pressure, psi	740	750	760							


SRK	<b>Consulting</b> Engineers and Scientists
-----	-----------------------------------------------

# MP System Casing Installation Log Sheet 1 of 2

Project:	MINTO 20MOZZ.	007.001.	. 10			WB Ref.:	
ocation:	MINTO NORTH	Hol	e No.:	MWO	9-3	Installed by: JS	, CD
lole Dept	th: <u>165 FT</u> MP Depth: <u>165 F</u>	T Hol	e Diame	eter:	-1 Q	Date Installed: 27	NOV 'C
Aeasurer	ment Datum: GROUND SURFAC	E Dat	tum Elev	ration: <u>9</u>	08.0 m	Date Drawn: 19	JAN 'I
Depth, FT	Geological Description	Geologic Ml Log	Casing Log	Serial No. Batch No.	Final Packer Pressure/Volume	Comments	Joint Install Test
	WELL CASING		18			2.9 m from top of casing to top of piece 17.	
10 -	WEATHERED BEDROCK		7				
20 -			16	17023	740 PSI 2-9 L	VALUE OPEN 170 PSI	
30 -	COMPETENT ROCK	m>	15 K				
40 -			- <b>@</b> - [9]	2805			
1	ALTERATION		-0-	7956			
50.			13		240 001	JALVE ODEN	
60 -			12	17028	3.75 L	165 <i>PSI</i>	
70.							
ØD		M;	10	9800			
80.			9	LOUL			
90.	RZ ROCK, HIGHLY ALTERED		Ф 8	7949			
100							
М	P Casing MP Packer	Hagnel Collar Filter Sl	tic leeve	● M Po	easurement ort Coupling	Pumping Port F Coupling	Regular Coupling



# $\begin{array}{c} \text{MP System} \\ \text{Casing Installation Log} \\ \\ & \text{Sheet } \underline{2} \text{ or } \underline{-2} \end{array}$

Project:_	MINTO 2CM022	.007.	001.	10		WB Ref.:	
Location:	MINTO NORTH		Hole No	MWC	19-3	Installed by: JS	CD
Hole Dep	oth: 165 FT MP Depth: 165 F	7	Hole Dia	ameter:	HQ	Date Installed: Z7-1	JOV 109
Measure	ment Datum: GROUND SURFA	LE	Datum I	Elevation:	108.0 m	Date Drawn: 19 C	FAN 10
Depth,	Geological Description	Geologic I.og	MP Casi Log	ng Serial No. Batch No.	Final Packer Pressure/Volume	Comments	Joint Install Lest
100	COMPETENT BEDROCK		77	17027	750 PS1 3.75 L	VALVE OPEN 170 PSI	
110 -			6				
170 -			M7 5	<			
130 -			<b>*</b> -4	2804			
			-0	7950			
40			3				
150			2				
160	END OF HOLE 165'						
170							
	I MP Packer		]   Ignetic Iar er Sleeve		L leasurement ort Coupling	Pumping Port Re Coupling Co	gular upling



à

Sheet 1 of 3

2

# **Packer Inflation Record**

Proje	ect:	Minto		~ · · ·		1 ^{- 1}			••••	Pro	ojec	t No	5.: 2	21	102	2,	007	۱ <i>ــــــــــــــــــــــــــــــــــــ</i>	<u>_</u> w	ell N	lo.:_	Мŀ	$\mathcal{W}_{\mathcal{C}}$	29	- (	3_	
Loca	ation:	Minto	Nov	rth						Co	mp	lete	d by	y: _	CD	>/.	JS	5	Da	ate I	nflat	ed:	: 2	17	Nov	<u>,</u>	09
Pack	ker No.	7	S	erial	#	702	, of m			De	pth	(ft	/ m	):	1	0C	) f	<u>}</u>	Inf	latio	on To	ool	No	·.: _		į	
Pack	ker Valvo	e Pressu	ure, I	⊳ _{v:_1}	70	)_ps	i	Fina	al Li	ne F	Pres	sur	e, P	,	7:	54	r	osi	Тс	ol F	ress	sure	e, F	י _{ד:} _	42	.5	_ psi
Bore	hole Wa	ater Leve	əl:	4		( ft //n	j)) =		<u> </u>	_psi	(P	w)															
							C	Calcu	late	d Pa	ack	er E	lem	າer	nt Pi	ess	sure	e, P 7	E = P _l	, + F	יש ² 4	P _V ·	- P ₁	r = _	16	0	_psi
	Volúme,	litres		5	1	D	1	5	9	) (	$\sum_{i=1}^{n}$	2	.5	-	3.	0		3.	5	3	. 75	5	, 3,1	85	·		
				<i>°</i> − ∩		000		0		n 17 1	pres	-	m			1.0		<u> </u>	1		11	$\frac{1}{1}$	-7	·~~	+		
	Pressur	e, psi	5	80	\$	25	6	35	6	5.	>	6.	55		6'	<i>t</i> >		66		1		<u> </u>	10	) 	<u>_</u>		
,	Volume,	litres		2 in	eel	VE	le le	ene	2	3	~ `	25	,	2	t				-								
	Pressur	e, psi																									х. -
	800	,							1	1			- 1					Ĩ		<u>.</u> 		1				-	
	Χ,				-					1						_	-					4				1	
					·						-											4			#		
	750 -	2											1													╈	
si)													$\left  \right $					+			$\vdash$	$\rightarrow$	$\neg$		╋	╉	
id) e	~ ^								1	-												一			4	—	
sure	400 -												,									╡			#	╈	
res			$\square$				$\left  \right $		+	╉		$\left  \right $						_				-			+	╉	
L	[		ŀ						•			$\square$										$\neg$		$\square$	$\overline{+}$	—	
	650-								╈			Ľ													1	1	
					+				+			<b>-</b>														$\pm$	
	6 a	-				*****	*	~		1								_		+				$\vdash$	+	╋	
	600	0	ø./	<u> </u>	<u> </u>	<b>.</b>	2			3			4	1				;			<del>   </del> 6			<del>-</del>	,		
		1									٧	/olu	ime	э,	litre	es											
	5 CD	for a		1 -	~		1	<u>о</u> .	1 and 1	P		Ν.	a										1 Lr	۲. <b>پ</b> ر	25	urija	
Com	nments:	Packer #	¥	no.	1 8	na)		1 m	yeline l	CC.	/70	01	)							Ti	<u>me -</u>	. /	<u> </u>	C	ad mored		
															<u>;</u>					in							



Sheet  $2_{of}3_{}$ 

# **Packer Inflation Record**

Project:	/	ha	nt	D										Pro	ojec	t N	o.:	24	107	2.0	507.	001	.10	Ne	II N	o.:	Ņ	W	09		3	
Location	:	1in	力	ľ	$\int_{\Sigma}$	int	h							Co	mp	lete	ed b	y:	C	D	,J	S	I	Dat	e Ir	flate	ed:	2	71	101	17	009
Packer N	<u>ار</u> . ما	2	S	evi	ial	_ ‡	#	17	0	28				De	pth	(ft	/ m	ı ):	5	-5	f	È	1	nfla	atio	n To	ol.	No.	:			
Packer V	/alve F	res	sure	e, F	•v:	le	55		psi	I	Fi	inal	Lir	ne F	Pres	su	re, I	P _L :	7	49		psi	-	Тос	bl Pi	ress	ure	ə, P	י <mark>ר</mark>	72	5	psi
Borehole	Wate	r Le	vel			4		(ft	(m	)) =				psi	(P	_N )																
		N.		-				•		1	Cal	cula	ateo	d Pa	ack	er E	Eler	ner	nt P	ress	sure	ə, P	e =	P _L	+ P	_w - F	• _v -	· P _T	=!	60	)	psi
						-								42	51	- li	65	4-	16	0	~	l :	-	74	t9	P!	si					_
Volu	me, lit	res		0.	,5		l	· C	)	1	,5	•	2		)	2	•5	5	3	.0		3	.5	-	3	8		3	.9	F	21N/ 37	n 56
Pres	ssure,	psi		5	515	5	5	80	0	6	00	)	6	00	2	6	0	0	6	00		6	0	2	7	20	7	74	10			
Volume, litres																																
Pres	Pressure, psi																										+					
													L				,													_		
800																																
8	800																					_					$\overline{+}$	7		$\bot$	-	
:	$\rightarrow$																~	,									1	士				
7			+	+	$\dashv$	_					<u> </u>										_			_	-		╉	+		╋	┢	
10	0 -																			$\neg$							4	_	$\mp$	—	F	
(isi																											_	+			$\perp$	
e (p			_	_										_	<u> </u>	[				_	_		_			+	-+	÷	+	╋	┢	
00 ssur	0 —					$\swarrow$	Contraction of the local division of the loc					-	~	1	1	<u> </u>									_		4	1	1	Ŧ	Ţ	
Pres			+	$\rightarrow$	A	•										•											$\pm$	+		$\pm$	$\pm$	
_ <b>L</b>			-	4	$\neg$																			_			4	_		╄	$\overline{+}$	
500	ツ —		1	Ì																							_	╧		╧	上	
			4		_					-													-	-		_	┥	+	_	╀	┿	
			μ		ゴ																						4	ゴ		丰	$\bot$	
40	)0				-	 1			L								·			-0					_	 `						
	(	, 				1				۷				J .	V	οlι	um	+ e,	litre	es	(	J			C	,			,			0
t i s											J		ſ	1	ı	•																
Commer	nts: <u>Pa</u>	cker	•#			1	Ν	10	γr	ne	r	n	1	ra	H	0	Λ.								Tin	1e -						



Sheet  $3_{of} 3$ 

# **Packer Inflation Record**

Project:	Manto	Project No.: 2 CM 022_007.	Well No.: MW09-3
Location:	Minto North	Completed by: <u>()</u> , <u>J</u> S	Date Inflated: 27 Nov 09
Packer No.	16 Serial # 17023	_Depth (ft) m ): 20 ft	Inflation Tool No.:
Packer Valv	e Pressure, P _v : <u>[775</u> psi Final Li	ne Pressure, P _L : <u>754</u> psi	Tool Pressure, $P_T$ : <u>425</u> psi
Borehole Wa	ater Level: <u> </u>	psi (P _W )	
	Calculate	d Packer Element Pressure, P _E	$= P_L + P_W - P_V - P_T = \underline{60}$ psi

Volume, litres	0.5	1.0	1.5	2.0	2.5	3.0	3.25	3.5	3.75	4.0
Pressure, psi	560	600	620	620	620	620	620	630	640	640
Volume, litres	4-1	4-15	F	Final	volu	me 3	.96			
Pressure, psi	700	740				-				~



Comments: Packer #	lime -
On first pumping, pressure rose then	suddenly dropped, then rose again. Packer
onstring loose rock antil it gave wa	y? Otherwise normal inflation,

Pi K	roject:_ ocation	Minto 2CN022 Phase 1 conflue	.007 nce 150	FT	Hole No.:	MWO	9-4	WB Ref.: WB Ref.: Installed by:	M-ROLYI E. Doughty Nove T	le_ b
H M	ole Dep leasure	oth: <u>2001</u> MP Depth:			Hole Diam	eter: <u>720</u>	<u>x</u>	Date Installed:	Nov 21	4 12
Γ	Depth,	Geological Description	m FT	Geologic Log	MP Casing	Serial No. Batch No.	Final Packer Pressure/Volume	Comments		Join
										Ř.
	5			V	27					
	10 -	· · · ·			1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1				- 64 - 6	-
	12				26					
	20-		 		- <del>KNIL</del> QUINA			<b></b>	- All	
	25			$\checkmark$	25	14 A. 1				
	30-									-/
-	35			V	24			· · · ·		
	40 -		2-1 					dár.		
	45			$\checkmark$	23					
	50-									
	55		  		22			· · · · · · · · · · · · · · · · · · ·		_
	60 -				-					
	65				21					
	70 -									
	75			$\checkmark$	20					
	80-			7						
	85			$\checkmark$	19					
,	90-									
	95				18			v	· · ·	
	lur A									

.

. 62-3

	Project:	MINID				1020	£ ,6	<i>N</i> 7	•	001.1			_ WB Ref.			
	Location	<u>Phase</u>	1 conf	wence			Hol	e No	).; _]	MWD9	-4		installed by	r. <u>M. Roy</u>	<u>le</u>	Ļ
	Hole Dep	oth: <u>25C</u>	> FT MP D	epth: <u>250</u>	) F	T	Hol	e Dia	ame	eter: <u>H</u>	<u> </u>	Da	ite Installed	: Nor 2	4	0
	Measure	ment Datu	m: <u>grovn</u>	d scripac	<u>e</u>		Dat	um E	Elev	ation:	<u>г</u>		Date Drawr	NOV	<u></u>	<u>t</u>
	Depth,		Geological Desc	ription	G	ieologic Log	MF	Casil Log	ng	Serial No. Batch No.	Final Packer Pressure/Volume		Comments		JOi Install	int Iesi
			)			/		13								
	[0]		1			V										
	110 -	mo	stly dia	mict ("4ill"												
	<u>)</u> 115	or give	n prozen e	illery		$\checkmark$		16								1
	1,20-	unte: c	1th ice 1	nclusions								1121 =	74 59	-5FT	. _c ti	è.La
	125		(A)	rezen)				۱S				offer	instach	(30min)		
	130-		· · · · · · · · · · · · · · · · · · ·					$\left  - \right $								
	125		V			$\checkmark$		14								
	192	small 1	ice layeo-	27 136.51	H,	- 165										
	140-	firm c compac	lay diam ted) - fro	ict zen	即	=140		13							1	
2/	145	highly,	weathered	1 bedrock						•						
_,	150-	Crumple	( cloayey			- M		12				mag.	collar			
Ĵ	155	weath.	ulfered	bedrock,		$\checkmark$		-@-		2798					1	ara) ara
- - -	160-	R2 stre	ngth, cove	plutad				11								
5	165					$\checkmark$		6		7954						
	170					$\checkmark$		10					1			
n	175		- 										•			
te		strong	nock, ioi	nted			K	3	$\geq$	17031	197	mag c	collow on	bottom		
600	180-	Ň			間、	/ IM	7			2797		7		14		
ine iopt	185	· .		y. V	H	V		0	:		·					
	130-		1 8			V		0		7953			ey. 			
	195					$\checkmark$		7							+	
)					HĻ.				 میں	<u></u>		1.12				\$

. .

			Sulti and Scier	ntist	<b>9</b> s				MP S Casing Installati	Syst on l	em _og	 
)		Minto 2CMp92	DD7						Sheet	of	<u> </u>	
	Project:_	Phase 1 concluence		Hol	0 N/	 	MWO	9-4	Installed by: M.Ro	ule/	<u>/J.</u> S	Scil
	Hole Dep	th: 250 FT MP Depth: 250 1	=T	Hole	e Ni	am	eter: HE	2 2	Date Installed: <u>Nov</u>	24 8	<u>69</u>	С.
	Measure	ment Datum: ground surface		Dat	um	Ele	vation:		Date Drawn: Nov	24 %	09	
	Depth,	Geological Description	Geologic Log	MP	Cas Log	ing	Serial No. Batch No.	Final Packer Pressure/Volume	Comments	. j Insta	oint II 1est	
		strong rock, jointed			G.		17024					
	205			$\left \right\rangle$					don't put packer below 2091			
R	210-		% /Q √ K=ISD		5							
	215		~ 									
۶.	220-				4				mag-rollar		+	
	225				Ø-		2796					
	280-		Υ γ	1.	3							
	025		1	1 P	0	Ç.	7952		$\gamma_{1} = \gamma_{1} 2 \omega$			
}	225			. /								
· 	240-	EOH at 243'	-		*		a de la secte da sec		Pin d		<u> </u>	
`* 	- 245	4. 	Edu		din an			dull hole	ul = measor	e	+	-
					<b>-</b>			and the	Marcine install		-	
	ad 250'											
	-											
		period and							probed hole = 243.1		_	
									shortened orig desig	14		
		L. B. HE with the form	-						by 5' by remain	<b>1</b> 5		
			-						#2 pipe (5ti)	5		
	· -											
												1.
	-											
		<u>.</u>							· · · · · · · · · · · · · · · · · · ·			- - - - - - - - - - - - - - - - - - -
ς.	ļ					ŀ					_	-
ser ^{er}		Casing MP Packer		gneti Iar	C		M	easurement	Pumping Port	gular		



Sheet <u>l</u>of <u>3</u>

# **Packer Inflation Record**

Project:	Minto			Projec	t No.: _2	CMOZZ.O	07,001We	ell No.:	MWO9	-04				
Location: Phase	e 1 G	onfluen	C	Comp	leted by:	MR/JS/C	, /0 - றDa	te Inflated	d: <u>Nor</u>	125/09				
Packer No.	6			Depth	( ft) m ):	205	Inf	ation Too	ol No.:					
Packer Valve Press	ure, P _V : <u>k</u>	<u>70</u> psi	i Fina	Line Pres	ssure, P _L :	780	psi To	ol Pressu	re, P _T : <u> </u>	<u>75</u> psi				
Borehole Water Level: $-30$ (ft/m) = 15 psi (Pw) $P_L = P_V + P_T - P_W + P_E$														
Calculated Packer Element Pressure, $P_E = P_L + P_W - P_T = \frac{150}{150}$ $P_L = +150 - 15 + 170 + 475 = 780 + 15 - 170 - 475$														
Volume, litres		2,0	2.5	3.0	3.5	4.0	4.25	4.5	5.0	5,5				
Pressure, psi	6 <i>0</i> D	600	600	610	CID	620	630	64D	650	700				
Volume, litres	5.75	6.0		Final	575L									
Pressure, psi	24D	780												



...........



)

Sheet 2 of 3_

# **Packer Inflation Record**

Project: Minto	Project No.: 2CM022.007.00	Well No.: <u>MW09-04</u>
Location: Phase 1 Confluence	Completed by: <u>JS/MR</u>	_Date Inflated: <u>\lov 25'o</u> g
Packer No	Depth (ft /m): <u>180</u>	Inflation Tool No.:
Packer Valve Pressure, Pv: <u>170</u> psi	Final Line Pressure, P _L : <u>78⊖</u> psi	Tool Pressure, P _T : <u>475</u> psi
Borehole Water Level: 25 (ft / m)	= <u>/</u> \$psi (P _w )	100

Calculated Packer Element Pressure,  $P_E = P_L + P_W - P_V - P_T = \frac{150}{2}$  psi

Volume, litres	1.D	2.D	3.0	3.2	3.25	3.}	Final= Vol	= 3,15	L
Pressure, psi	550	57D	600	690	74D	76D			
Volume, litres									
Pressure, psi									





Sheet <u>3</u> of <u>3</u>

# **Packer Inflation Record**

Project:	linto	Project No.: 2CM022 , 007.00)	Well No.: <u>MWD9-4</u>
Location:	Phase 1 Con Fluence	Completed by: <u>JS</u>	Date Inflated: Nov 25 109
Packer No.	13	_Depth ((ft) m ): <u>145</u>	Inflation Tool No.:
Packer Valve	Pressure, P _V : <u>165</u> psi Final Li	ne Pressure, P _L : <u>775</u> psi	Tool Pressure, P _T : <u>475</u> psi
Borehole Wat	ter Level:( ft / m ) =	psi (P _W )	

Calculated Packer Element Pressure,  $P_E = P_L + P_W - P_V - P_T = ___) SD___$  psi

Volume, litres	1.0	2.0	2.5	3.0	3.25	3.5	3.75	4.0	4.25	4.5
Pressure, psi	510	580	630	650	660	680	700	710	740	730
Volume, litres	5.D	5,15		5 L f	chal					
Pressure, psi	740	420								



Appendix C MP System: Groundwater Pressure Profiling and Sampling Protocols



Steffen Robertson and Kirsten (Canada.) Inc. 800, 580 Hornby Street Vancouver, BC. V6C 3B6

email: vancouver@srk.com URL: http://www.srk.com Tel: 604.681.4196 Fax: 604.687.5532

# TECHNICAL MEMORANDUM

DATE: May 30, 2007

TO: Field Personnel – SRK

FROM: Michael Royle

## **RE:** MP System: Groundwater Pressure Profiling and Sampling Protocols

In order to ensure we have consistent pressure monitoring and water sampling methodology and sample QA/QC using the Westbay MP System equipment, the following field procedure is provided for all field staff to follow. This will be used to ensure that all pressure monitoring and water sample collection, handling, and equipment decontamination procedures are same for each monitoring round. Good monitoring QA will also help identify possible errors in pressure measurements and sample chemistry.

Please make note of sample volume requirement changes in section 3.2

# **1. General Operating Procedures**

When operating the MP probes, the following points must be kept in mind:

- 1. <u>The probe must be protected from freezing.</u> Water in the sampling and transducer channels will expand and can easily damage/destroy the transducer or valve.
- 2. The probe should always be moved in its case, and never left in an unheated area for any length of time.
- 3. All connections and o-rings must be kept clean and lubricated. O-rings must be inspected regularly for damage. Failure of the connections can lead to leaks and damage the tool electronics.

# **PROBLEMS** – when pressure profiling or sampling

If any problems arise during probe operation, remember the following rules:

- 1. DO **NOT** PULL UP ON THE CABLE IF PROBE OR TAPE APPEARS TO BE JAMMED this will only jam things in tighter.
- 2. STOP ALL WORK AND DRAW A DIAGRAM OF WHAT EQUIPMENT IS DOWN HOLE AND IN WHAT POSITION.
- 3. Check to see if anything may have been dropped down the MP Casing (pens, etc.);



- 4. Ensure water level tape is removed from drillhole, but <u>DO NOT TRY AND REMOVE IF</u> <u>JAMMED</u> as the tape may pull out of the probe head (yup .. it happens).
- 5. Make sure probe shoe is retracted (repeat this operation several times if necessary);
- 6. Gently test to see if probe is still stuck by pulling up GENTLY on the probe by hand. Stop immediately if it seems jammed.
- 7. If still stuck, call Michael Royle (SRK) at (604-681-4196) or Westbay Technical Services (604-984-4215) for advice

## Note:

I spent a year at Westbay where I mostly dealt with minor problems that became major problems because people did not follow these steps. Main thing is, <u>as soon as something seems wrong, stop and think about what is going on down the well</u>. Don't worry about wasting a bit of time as most probes that get really stuck are due to haste And really stuck probes usually end up stuck at the bottom of the well, or coming out in pieces after a lot of very expensive work has been spent tearing them apart in order to save the well.

# 2. Pressure Profiling

A copy of the well log and the previous profile data must be taken to the field when conducting a pressure profile. This will provide the operator with a log of the casing to help in locating the magnetic collars and the measurement ports.

Any significant changes in zone pressure between the current and last reading must be noted. This helps spot operation errors (mislocating probe, testing against blank casing wall, etc.), or alerts the operator that the pressures have changed significantly and should be noted.

# 3. Water Sampling

# 3.1. Sampling Supplies

# 3.1.1. Sample Bottles

Sample bottles will be coordinated through the client. Please ensure that they have at least four days notice to acquire all of the required bottles. Samples will be transported to the appropriate lab by either client staff or SRK staff. This needs to be clarified with the client before sampling takes place.

When ordering the sample bottles for the event, ask the client or lab to supply deionised water from the testing lab suitable for decontaminating equipment, trip blanks and equipment rinsate samples. The lab should be able to provide you with high grade ultra-pure water.



# 3.1.2. Deionised Water

The lab should also be requested to supply sample bottles with blank labels already affixed. Labels must be applied using water-proof adhesive. The DI water must be tested by the lab as part of the QA process to confirm it is not contested.

# 3.1.3. Chain of Custody Forms

Chain of Custody (COC) will be supplied by the lab with the bottles.. The COC forms must be filled in completely and signed by either the client or SRK and the lab when samples are relinquished.

The parameters to be analyzed will also be indicated on the COC.

# 3.2. Sampling Requirements

As the sampling probe only collects approximately 400 to 500ml per sampling trip, the lab should be informed that reduced volumes will be collected from MP wells in order to make appropriate allowances for sample preparation and QA procedures. The following sample types and volumes will be used for these sampling stations:

Parameter	Minimum Sample Vol. (ml)	Preservation	Filtration
Dissolved metals	100	Store between 2 and 10°C	none
Physical Parameters and Major Anions	200	Store between 2 and 10°C	none
TSS	na	na	na
Ammonia	na	na	na

# 3.3. Decontaminating Sampler and Sample Collection Bottles

See attached figures for explanation.

Decontamination procedure for the sampler and collection bottle/hoses is as follows:

- 1. Throughout this procedure, equipment should be handled with clean nitrile or latex gloves and every effort should be made to keep the equipment clean;
- 2. Hang sampler and collection bottle(s) from tripod on hanger hook, (be careful not to kink cable);
- 3. Dry off excess water on outside of probe and bottles using a clean, lint free cloth or paper towel;
- 4. Disconnect sample collection bottles from the string by detaching connecter hose at top of each bottle;



- 5. Set bottles aside on inclined decon racks (connector hose down);
- 6. Open sampler valve;
- 7. Rinse sampler face plate using lab supplied deionised (DI) water from spray bottle;
- 8. Rinse face plate and sampler internal tubing using dilute (1%) nitric acid solution, allowing fluid to flow through instrument and into collection bucket;
- 9. Rinse face plate and internal tubing three times more with DI water;
- 10. Rinse sample collection bottles by removing top cap and washing out with DI, 1% nitric acid, and then 3 DI rinses;
- 11. Repeat for top cap, making sure all fluids run through sample pathway. Ensure that 0-rings are well rinsed and in good condition.
- 12. Replace top cap onto clean bottle (do not place on table);
- 13. Reconnect collection bottles to sampler;
- 14. Collect rinsate sample by spraying DI water through open sampler valve and out bottom valve of the steel collection bottle (see Figure 1);
- 15. Let bottles drain and then close bottom valve.

### **Bottle shelf (if available)**





# 3.4. Sample Bottle Labelling

All labels MUST be completed in full. Ensure the well and zone ID are on the label, ie:

# "Well ID" – "Zone Number"

No other information should be added to the sample ID.

Date and time, as well as sampler initials, are required as these are useful for tracking potential sample mix ups in lab. To be consistent, time recorded should be when sample is transferred to sample bottle(s).

# 3.5. Sample Collection

Sample collection procedures are listed in the manual stored in the sampler case lid (under the foam). The general procedures are as follows:

# 3.5.1. Surface Checks and Preparation

- 1. Set up the MOSDAX Sampler probe following Steps 1 through 8 of Section 2.2 of the manual.
- 2. Record the results of the Surface Checks on the Groundwater Sampling Field Data Sheet.
- 3. Attach the sample containers. Make sure that all the valves except the last one on the bottom sample collection bottle are open.
- 4. Release the location arm (Arm Out command). Locate the probe in the vacuum coupling, making sure that the arm is resting in the groove on the inside of the coupling.
- 5. Activate the shoe in the vacuum coupling (Shoe Out command).
- 6. Close the sampler valve, if not already closed. The motor should run for about 5 seconds. The display should indicate one revolution.
- 7. Use the vacuum pump to apply a vacuum through the vacuum coupling (>18 psi). The vacuum should remain constant. If the vacuum is not maintained, inspect for leaks at the face seal of the probe, the connection to the pump and at the probe sampling valve.
- 8. Once a vacuum has been maintained, open the sampler valve (pressure should decrease rapidly). Apply a vacuum again (>18 psi).
- 9. Hold vacuum for at least 10 seconds (pressure remains constant) to ensure no leaks in connections to sample bottles.
- 10. Close the sampler valve. A vacuum has now been applied to the sample bottles.
- 11. Retract the shoe (Shoe In command).
- 12. Retract the arm (Arm In command).



# 3.5.2. Zone Sampling

- 1. Check recent pressure logs of the hole and ensure that the head inside the MP casing is lower than the head outside the measurement port to be sampled.
- 2. After completing the surface checks, follow Steps 1 to 5 of Section 2.3 in the manual to locate the sampler at the measurement port in the monitoring zone to be sampled.
- 3. Record the interior casing pressure (P_i) reading.
- 4. Activate the probe (Shoe Out command) and record the formation/zone pressure.
- 5. Open the sampler valve. The outer, or zone pressure (P_o) should drop and then slowly increase as the bottles fill. When the pressure in the bottle equals the zone pressure from Step 4, the bottle is full. Wait a maximum of two minutes per sample bottle if the pressures do not equilibrate. Record the pressure after filling (should not be significantly different than before opening the valve).
- 6. Close the sampler valve.
- 7. Retract the shoe (Shoe In command).
- 8. Record the interior casing pressure ( $P_i$ ) reading. A reading the same as in Step 3 indicates that the sample is OK. If the interior pressure has dropped, the sample is suspect and may contain MP casing water (assuming  $P_i < P_o$ ).
- 9. Raise probe 1 to 2 m to remove any slack on the cable and to ensure that the probe is no longer landed. Retract the arm (Arm In command).
- 10. Reel the sampler to the surface and remove it from the MP casing. <u>Care must be taken</u> not to bend the probe cable excessively when lifting the tool and bottles from the MP casing. Make sure hose connectors are also not bent excessively.
- 11. Hang probe and bottles from holder on tripod or roof of shack. Spray outside of probe with clean water to remove any soil or dirt on the probe and collection bottles.
- 12. Do not open the sampler valve as damage to the probe or injury to the operator could occur if sample under pressure.
- 13. Dry off excess water on outside of probe and bottles, using clean, lint free paper towels, to make sure it does not drip into sample bottles in next step.
- 14. Check sample bottles to ensure labels are correctly, and fully, filled in with all required details;
- 15. Remove the plastic thread protector cap from the bottom sample bottle and open the valve on the bottom of the bottle to release the pressure and to transfer the sample. Control flow using bottom valve.
- 16. Open the sampler valve to allow the sample to flow from the steel collection bottles directly into the lab supplied sample bottles. Once the pressure in the sampler and steel collection bottles has decreased to atmospheric, the bottles may be disconnected to speed the process.
- 17. Take particular care in handling pressurized samples.
- 18. Thoroughly rinse all equipment, inside and out, with deionised water before continuing to the next sample zone. Equipment does not need to be decontaminated if returning to same sample zone.



# 3.6. Sample QA/QC

To verify that sample results accurately reflect what was actually collected and not contamination during sample handling and laboratory analysis, a strict sample QA/QC protocol will be used.

<u>NOTE:</u> All QA samples should be labelled with a "dummy" ID that mimics actual well or zone samples. The sample will be labelled with a unique identifier that indicates it is a regular sample from a false sampling zone (ie: Zone 12 in a well that only has 11 zones). The sample will be analyzed for the same analytes as the other sampled zones.

All QA sample IDs MUST be recorded on the sample collection forms to prevent errors in data analysis later.

# 3.6.1. Travel Blanks

One unlabelled travel blank will be supplied by the laboratory for each sampling episode. The travel blank will consist of a lab prepared, sealed sample bottle containing lab supplied decontamination rinse water (deionised water). This sample will be carried in the sample cooler to the site and with the sampling gear to ensure it is in the same temperature conditions etc.

This sample should be returned to the lab with a "dummy" ID.

# 3.6.2. Field Blanks

One "field" blank will be prepared by the samplers using the same laboratory supplied DI as that used for the Rinsate Blanks. The field blank will be prepared under clean conditions (indoors or in the back of a clean truck), and will include the steps of rinsing the lab supplied bottles, and filling the bottles. These should be labelled with an ID resembling the sample ID's (as above). This sample is intended to distinguish any constituents that may be present in the lab supplied water from those that may be originating from the sampler.

# 3.6.3. Equipment Rinsate Blanks

Equipment Rinsate blanks should be collected from the decontaminated equipment to ensure proper decontamination is taking place. It is recommended that at least one rinsate sample be collected during each sampling event. This should be modified to one/sampler if staff changes occur during the sampling period.



# 3.6.4. Duplicate or Split Samples

Duplicate or splits will be submitted to test repeatability of the lab analysis. Duplicates and splits should be labelled with dissimilar sample IDs (ie: use false zone number for second sample). Collection of duplicate samples will need to take into account sample volume requirements discussed above.

# 3.6.5. Lab QA

Prior to carrying out the analyses, the lab will be requested to provide a full set of their QA data showing the calibration, detection limit and repeatability of the various analytical methods when they complete the analyses. These should be provided at the same time as the results.

The results of the lab and sample QA procedures should be reviewed at the same time as the data quality review. Any incidences of suspected contamination or mislabelling should be reviewed with the lab and samplers.

	<b>S</b> F	IK Co	onsu	lting		Piez	ometric	Press	sures/Lev	els		Well No.:			
V		Engii	neers and	Scientists		Fie	ld Data a	ind Calcu	ulation Shee	t		Date:			
		Datum:				l	Probe Type:			_	Client:				
		Elev. G.S.:					Serial No.:			_	Job No.:				
F	leight of MP	above G.S.:				Pi	obe Range:			_	Location:				
	Elev. top of	MP Casing:				MP C	asing Type:			_	Weather:	Weather:			
	Reference	e Elevation:				Depth to water in MP:			Depth to water in MP: (at			(at start)	Operator(s):		
	Dri	ilhole angle:				Depth to	water in MP:			(at finish)	Ambient Deedline (D				
Note: "Por	t position" in	angled drilll	holes refer to	position alor	ıg drillhole.	True depth (	Dp) needs to	be			Ambient Reading (P _{atm} ) (pressure, te Start:	Finish:			
	calculated ı	ısing drillhol	e angle and	deviation data	a to calculate	e zone piezon	netric level (E	Dz).				P _{atm}	psi		
Zone No.	Port Position From Log (m)	Port Position From Cable (m)	True Port Depth "Dp" (m)	Fluid	I Pressure Read	dings	Probe Temp. (°C )	Time H:M:S	Pressure Head Outside Port (m)	Piez. Level Outside Port (m)	Comm	ients			
				Inside Casing (P1)	Outside Casing (P2)	Inside Casing (P1)			H = (P2-Patm)/w	Dz = Dp - H					

Notes:  $w = 1.422psi/m \text{ of } H_2O$ H = pressure head of water in zone

Dz = piezometric level in zone

Patm = atmospheric pressure

Dp = true depth of measurement port





# Groundwater Sampling Field Data Sheet

Project:	_	Date:
Monitorina Well No:	_	Start Time:
Sampling Zone No(s):	Angled Drillhole (Y/N):	End Time:
	Drillhole Anale:	Technicians:

No.	Depth )	epth of t (m)	No.		Su (pr	irface Fu obe in fl	rface Function Tests obe in flushing collar)			Position Sampler	PositionSample Collection ChecksSampler(probe located at sampling zone in MP casing)								
Zone	Cable   (m	Log De Mpor	Run	Shoe Out	Close Valve	Check Vacuum	Open Valve	Evacuate Container	Close Valve	Locate port ( ) Arm out ( ) Land probe ( )	Pressure in MP ( psi )	Shoe Out	Zone Pressure ( psi )	Open Valve	Zone Pressure ( psi )	Close Valve	Shoe In	Pressure in MP ( psi)	(vol. retrieved)

Additional Comments: (pH, Turbidity, S.C., etc.)



### Well Development / Purging Record

Well:				Well Inner D	Diameter :		cm	
Total Depth:		mbtc	Static Water	Level:		mbtc	Static Well Volume:	Litres
Date/Time	Volume Purged (Litres)	рН	EC (uS/cm)	<b>Т</b> (С)	Eh (mv)	<b>dO</b> (mg/l)	Comme	nts
N.B. mbtc - met	ers below top	of casing	<u>ı                                    </u>			1	1	

Appendix D Pressure Profiles

						,								
V	<b>S</b> F	RK CO Engir	DNSU neers and	<b>Iting</b> Scientists		Piez Fie	ometric Id Data a	C Press	ures/Lev	els et	Well No.: MWO Date: 28 No			
ŀ	Datum:    Dp off MP well      Elev. G.S.:						Probe Type: Serial No.: robe Range: Casing Type: water in MP: water in MP:	MOS EMS 250 PVC -48 n/a	0AX 2835 psi .8m#	_ (at start) (at finish)	Client: Min to Job No.: <u>2CM 077.007.0</u> Location: <u>West Pit</u> Weather: <u>Cold</u> , <u>sunny</u> Operator(s): <u>CD</u> , <u>JS</u> Ambient Reading (Prov) (pressure, temperature, time)			
lote: "Por	rt position" in calculated (	angled drillh	oles refer to e angle and o	position alor deviation dat	ng drillhole. a to calculate	True depth ( e zone piezon	(Dp) needs to netric level (I	) be Dz).		I	Start: $12-95$ 1-7°, Finish: $12.96$ psi 16:16 Patra 12.96 psi	<u>4-0</u> і		
Zone No.	Port Position From Log (m)	Port Position From Cable (m)	True Port Depth "Dp" (m)	Flui	d Pressure Rea	dings	Probe Temp. (°C)	Time H:M:S	Pressure Head Outside Port (m)	Piez. Level Outside Port (m)	Comments			
				Inside Casing (P1)	Outside Casing (P2)	Inside Casing (P1)			H = (P2-Patm)/w	Dz = Dp - H	· · · · · · · · · · · · · · · · · · ·			
I	44.2	43.6	44.2	12.96	19.34	12.99	<5.7°C	16:40						
2	33.5	33.0	33.5	12,93	37.10	13.03	<4.8°	16:45			· · ·			
3	25.9	25.3	25.9	13.02	26.28	12-99	< 4.4	16:49						
					,			· · · · · ·						
	· · ·													
en sen generale de la c														
										-				
				· · · ·						1				
		·······												
		L		L		L	<u>.</u>	1						

10. A.

	<b>=</b> SR	RK Co Engir	DNSU neers and S	<b>Iting</b> Scientists		Piez Fie	ometric Id Data a	Press	ures/Leve	els t	Well No.: <u>MW0</u> ペー( Date: <u>ろの N OV O</u>
H te: "Port	leight of MP Elev. top of Referenc Dri t position" in calculated u	Datum: Elev. G.S.: above G.S.: MP Casing: e Elevation: lihole angle: angled drilll using drillhol	TOPOT $O \cdot 2$ $QO^{\circ}$ noles refer to e angle and o	FMP U 9 M position alou	vELL - - - - - - - - - - - - - - - - - -	Pr MP C Depth to v Depth to v True depth ( e zone piezon	Probe Type: Serial No.: robe Range: Casing Type: water in MP: water in MP: (Dp) needs to netric level (D	Mosi <u>emis</u> <u>zso</u> <u>pvc</u> <u>42.4</u> be z)	0 AY 3835 psi 16 m	(at start) (at finish)	Client: $ \underbrace{MINTD} \\ Job No.: \underbrace{2CMOZZ-007.00} \\ Location: \underbrace{WESTPLT} \\ Weather: \underbrace{COLO+SUNNY} \\ Operator(s): \underbrace{CO+RS} \\ \\ \hline \\ Ambient Reading (P_{atm}) (pressure, temperature, time) \\ Start: \underbrace{V3.12, 11.4}_{UVSO} \\ \hline \\ \hline \\ \underbrace{VSO} \\ \hline \\ P_{atm} \underbrace{VS.V2}_{Psi} \\ \hline \\ $
one No.	Port Position From Log (m)	Port Position From Cable (m)	True Port Depth "Dp" (m)	Fluid	d Pressure Rea	dings	Probe Temp. (°C )	Time H:M:S	Pressure Head Outside Port (m)	Piez. Level Outside Port (m)	Comments
				Inside Casing (P1)	Outside Casing (P2)	Inside Casing (P1)			H = (P2-Patm)/w	Dz = Dp - H	· · · · · · · · · · · · · · · · · · ·
Ť	43.2	42-8	43.2	14.70	12.85	14-69	3.4	11:36			
2	32.5	32.0	32-5	13 - 18	18.95	13-19	<2.3	11:40			
3	24-9	24.4	24.9	13-13	14.76	13.20	<2-0	11:43			
		1									
										1	
		1								1	
			· · · · · · · · · · · · · · · · · · ·								
			· · · · · · · · · · · · · · · · · · ·								

w = 1.422psi/m of H₂O Notes: H = pressure head of water in zone

Dz = piezometric level in zone

Patm = atmospheric pressure

Dp = true depth of measurement port

							:				
	<b>=</b> SR	RK Co	onsu	Iting		Piez	ometric	Press	ures/Lev	els	Well No.: MW09 - Z
		Engir	neers and	Scientists		Fie	ld Data a	Ind Calcu	ilation Shee	t	Date:   DEC 04
		Datum: Elev. G.S.:	TOC			ł	Probe Type: Serial No.:	MOSI	)AY 3835	-	Client: MINTO Job No.: 2CM 022,007,00
н	leight of MP a	above G.S.:	0.16	m		Pi	robe Range:	250	PSI	-	Location: LOWDR TAILIA
	Elev. top of	MP Casing:				MP C	asing Type:	MP	38	-	Weather: <u>LOUD + CLEAR</u>
	Referenc	e Elevation:	 	0		Depth to	water in MP:	1+.4	14m	_(at start)	Operator(s): <u>()</u>
e: "Port	t position" in calculated u	angled drillh sing drillhol	noles refer to e angle and o	position alor deviation dat	ng drillhole. a to calculate	True depth ( e zone piezon	(Dp) needs to netric level (E	be Dz).		_(at iinisii)	$\begin{array}{c c} \text{Ambient Reading (P_{atm}) (pressure, temperature, time)} \\ \text{Start: } 13 \underline{-26}, 11 \underline{-01}, \\ 19 \underline{-33} \\ \text{Patm} \underline{13 \underline{-26}} \\ \text{Patm} \underline{13 \underline{-26}} \\ \text{psi} \end{array}$
one No.	Port Position From Log (m)	Port Position From Cable (m)	True Port Depth "Dp" (m)	Fluid	l Pressure Rea	dings	Probe Temp. (°C )	Time H:M:S	Pressure Head Outside Port (m)	Piez. Level Outside Port (m)	Comments
				Inside Casing (P1)	Outside Casing (P2)	Inside Casing (P1)			H = (P2-Patm)/w	Dz = Dp - H	
1	51.8	50.0	50.0	62.10	80.89	62.09	<4-6	19:38			
2	47.7	45.3	45.3	55.36	74.39	55.35	< 2.8	19:40			
										-	
								ļ			
										53	
					1		1	1		1	
				· · ·							

Notes: w = 1.422psi/m of H₂O H = pressure head of water in zone

Dp = true depth of measurement port

								$\bigcirc$				<
	a server and	TU	TES	ST-	pu	mp	tor	TS	CLO	SED		
	= SA	RK C	onsu	Iting		Piez	ometric	c Press	sures/Lev	els	Well No.: Mik	09-
V		Engi	neers and	Scientists	et	Date: 2 4	EZ					
		Datum:	TO	С	_		Probe Type:	mos	DAX		Client: MINT	5
		Elev. G.S.:			-		Serial No.:	EMIS	3835	_	Job No .: 20022.00	7.001
F	leight of MP	above G.S.:	0,16	m	-	P	robe Range:		<u>Dpsi</u>	-	Location: LOWER T	AILM
	Elev. top of	MP Casing:			-	MP (	Casing Type:	MP	58	-	Weather: $\frac{10009}{1000}$	700
	Dri	illhole angle:	900		-	Depth to	water in MP:			_(at start) (at finish)	Operator(s):	
					-					_(at initially	Ambient Reading (Patm) (pressure, temperature, time)	
Note: "Por	t position" in	angled drill	holes refer to	position alo	ng drillhole.	True depth	(Dp) needs to	be			Start: $3 \cdot 10$ , $14 \circ C$ Finish:	<u> </u>
	calculated t	using aritinoi	le angle and (	deviation dat	a to calculate	e zone piezor	netric level (1	Jz).			(6:10pm Patm	psi
Zone No.	Port Position From Log (m)	Port Position From Cable (m)	True Port Depth "Dp" (m)	Fluid	d Pressure Rea	dings	Probe Temp. (°C )	Time H:M:S	Pressure Head Outside Port (m)	Piez. Level Outside Port (m)	Comparts	
				Inside Casing (P1)	Outside Casing (P2)	Inside Casing (P1)			H = (P2-Patm)/w	Dz = Dp - H	Commenta	
h	51-8	498	49.8	68.03	80.32	68.03	22.1c	16:15				
*1	1						_					
2	47.2	45.3	45.3	61.51	73.83	61.51	<1°C	16:18				
2	47.2	45.3	45.3	61.51	73.83	6 •51	<1°C	16-18	· · · · · · · · · · · · · · · · · · ·		TURI ANO ANTIER	~~~~
2	47.2	45.3	45.3	61.51	73.83	6]•51	<1°C	16:18			THEN ADDED A NTIFRE	EEZ
2	47.2	45.3	45.3	61.51	73.83	61.51	<1°C	16-18			THEN ADDED A NTIFRE	EEZ
2	47.2	45.3	45.3	61,51	73.83	61.51	<   °C	16:18			THEN ADDED A NTIFRE	EEZ
2	47-2	45.3	45.3	61,51	73.83	61.51	<   °C				THEN ADDED A NTIFRE	EEZ
2	47-2	45.3	45.3	61.51	73.83	61.51	<   °C				THEN ADDED A NTIFRE	2524
2	47-2	45.3		61.51	73.83	61.51	< 1 °C				THEN ADDED A NTIFRE	2626
2	47-2	45.3	45.3	61.51	73.83	61.51	<   °C				THEN ADDED A NTIFRE	2526
2	47-2	45.3			73.83	61.51	<   °C				THEN ADDED A NITIFRO	EE
2	47-2	45.3			7-3.83	61.51	< 1 °C				THEN ADDED A NTIFRO	
2		45.3			73.83						THEN ADDED A NTIFRE	

w = 1.422psi/m of H₂O H = pressure head of water in zone

Notes:

Dz = piezometric level in zone Dp = true depth of measurement port Patm = atmospheric pressure



### Piezometric Pressures/Levels Field Data and Calculation Sheet

# Well No.: MW09-3 Date: 27 NoV 09

Datum:	0.5mags
Elev. G.S.:	
Height of MP above G.S.:	0.35m
Elev. top of MP Casing:	
Reference Elevation:	
Drillhole angle:	900

Probe Type:	MOSDAY	
Serial No .:	EMUS 3835	
Probe Range:	250 psi	
MP Casing Type:	MP 38	
Depth to water in MP:	12.80 m	(at start)
Depth to water in MP:	•	(at finish)

Client:	Minto
Job No.:	2CM022,007,001,10
Location:	Minto North
Weather:	Cold, avercast
Operator(s):	JS, CD

Ambient Reading (Patm) (pressure, temperature, time)

Start: 12.<u>84 ps1, 19.7 °C</u> Finish: 17:18 Patro

P_{atm} <u>12,84</u> psi

Note: "Port position" in angled drillholes refer to position along drillhole. True depth (Dp) needs to be calculated using drillhole angle and deviation data to calculate zone piezometric level (Dz).

Zone No.	Port Position From Log (m)	Port Position From Cable (m)	True Port Depth "Dp" (m)	Fluid	t Pressure Rea	dings	Probe Temp. (°C )	Time H:M:S	Pressure Head Outside Port (m)	Piez. Level Outside Port (m)	Comments
				Inside Casing Outsid (P1) Casing (		Inside Casing (P1)			H = (P2-Patm)/w	Dz = Dp - H	
	38.1	37.5	38,1	49.98	66.29	50.04	<1.35	17:35			· · · · · · · · · · · · · · · · · · ·
2	24.4	23.7	24-4	30.13	42.70	30.13	< 0,94	17:44 _	1 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 -		·
3	10.7	10.0	10.7	12.91	23.16	12.94	1.05	17=48			
				•	· .						
					-						
				- 14 - 14 - 14 - 14 - 14 - 14 - 14 - 14							
			, i								
				1							
					-						

Notes: w = 1.422psi/m of H₂O H = pressure head of water in zone

Dz = piezometric level in zone

log day to ; were version to to

in zone Patm = atmospheric pressure

Dp = true depth of measurement port



Elev. top of MP Casing: Reference Elevation:

Drillhole angle:

	i iciu	
Datum:	Top of casing	Pro
Elev. G.S.:		S
Height of MP above G.S.:	0.32 m	Prob

Field Data and Calculation Sheet

**Piezometric Pressures/Levels** 

Serial No .:	EMIS 3835	_
Probe Range:	250 psi	
MP Casing Type:	MP 38	
Depth to water in MP:	17.78	(at start)
Depth to water in MP:		(at finish)

-3 Well No.: MWO Date:

,2-27

Client:	MINTO
Job No.:	2CM022.007
Location:	MINTO NTH
Weather:	COLD + SUNNY
Operator(s):	CD, RS, GH

Patm 13-06 psi

Ambient Reading ( $P_{atm}$ ) (pressure, temperature, time) Start: 3.05, 8.06 Finish: 13.06

9:46

Note: "Port position" in angled drillholes refer to position along drillhole. True depth (Dp) needs to be calculated using drillhole angle and deviation data to calculate zone piezometric level (Dz).

900

Zone No.	Port Position From Log (m)	Port Position From Cable (m)	True Port Depth "Dp" (m)	Fluid	Pressure Read	lings	Probe Temp. (°C)	Time H:M:S	Pressure Head Outside Port (m)	Piez. Level Outside Port (m)	Comments
				Inside Casing Outside (P1) Casing (P2)		Inside Casing (P1)			H = (P2-Patm)/w	Dz = Dp - H	
l	39.0	37-6	39.0	50-18	67.13	50·18	<7.8	09:50			
2	25.3	23-8	25-3	30.26	42.75	30,25	<b>&lt;</b> 4·3	09:52			
Ś	11.6	10.1	11-6	13-06	23.13	13.05	< 2.5	09:54			
х.	•	:									
							·				

Notes: w = 1.422psi/m of H₂O

Dz = piezometric level in zone

Patm = atmospheric pressure

H = pressure head of water in zone Dp = true depth of measurement port

Appendix E Sampling Records

1. Page _____ of _____ SRK Consulting Well Development / Purging Record * 29 Nov 09 Engineers and Scientis (MR well) Well Inner Diameter : MP 38 Well: MW09-1 m MINTD 3 Total Depth: mbtc Static Water Level: Static Well Volume: mbtc Litres Prove veals + 0.5 + EC Volume Date/Time Purged pН Started with Waterra full of water/outifreeze. т Eh dO (HETCHAS (Litres) (C) (mv) (mg/l) 15:45 9.69 brown /red (antipresse) 20 1.7 14.6 8.96 0.7 brown -very muddy 16:00 30 <6.0 16:12 8,84 017 6.1 40 brown - very minday XX \$129  $O_{ij}$ 4 16:33 50 8.29 0.5 6.9 grey-brown. 8.21 0.5 60 7.7 grey-brown 16:45 17:00 70 8.07 6.9 0.5 grey-brown 18:20 80 8.02 0.5 71 gren - brown 6·B 8,02 0.5 18:30 90 grey-brown 0.4 18:45 7.96 (0)28 gren-brown 8.D 7.9 (0.9] 19:20 115 1 cloudy -grey 125 19:38 7.1 0.78 )7.5 Clauder -91ec 6.4 7.80 19:50 150 0.81 cloudy -grey 7.89 70:45 175 0.81 7.0 Cloudy 7.7 7.88 0.82 21:20 9,00 clou N.B. mbtc - meters below top of casing This form is for a standpipe - better form for MP well? - Find it or make it.



Zones sampled: 90 Drillhole angle: degrees 12:05 Start Time: 19:50 End Time:

# Groundwater Sampling Field Data Sheet

Well No .: MW 09 -1 Client: MINTO Job No .: 2 CM 022-007,001.10 Location: 小ルモミア PTT Weather: COCD + SUNNY Operator(s): CD

	Label	m Log	rom (		Surface Function Tests (probe in flushing collar)							sitior mple	r r	Sample Collection ChecksVolume(probe located at sampling zone in MP casing)Retrieved												
Zone No.	Sample Bottle	Port Position Fro ( m )	Port Position F Cable (m	Run No.	Shoe Out	Close Valve	Check Vacuum	Open Valve	Evacuate Container	Close Valve	Locate Port ()	Arm Out () Land Probe ()	Pressure in MP	( bsi )	Shoe Out	Zone Pressure	( isd )	Open Valve	Zone Pressure ( psi )	Time to Fill ( min )	Close Valve	Shoe In	Pressure in MP ( psi )	Filtered & Preserved ( mL )	Not Filtered / Not Preserved ( mL )	Comments
1	MW09-1-1	43-2	43.6	1	1	~	1	$\checkmark$	V	1	J,	ĴĴ	15	5.74	$\checkmark$	12	82	$\overline{\checkmark}$	12.66	0.5	$\checkmark$	~	15.73	0	0	one ting drop in bottle.
				<u>.</u>													i Signi Vigasi							1997) 1997 - 1997 1997 - 1997		> Void with air ?
2	MW09-1-2	32.5	32-1	1	$\checkmark$		$\overline{\mathbf{V}}$	$\langle \rangle$	V	$\overline{\mathbf{N}}$	$\overline{\Lambda}$	/ /	13	-10	$\checkmark$	18.	42	$\checkmark$	18-02	5	$\checkmark$	/	13-18	400		Dissolved Metals HNO3 +
			anna Agrill Martin an Anna											i Maria												Nutrients \$\$ \$\$ 504
2	MW09-1-2	32-5	32-1	2	$\overline{}$	$\checkmark$	V,	$\nabla$	J,	$\checkmark$			2	3-14	$\checkmark$	18.	12	$\checkmark$	17-79	5	$\vee$	V	13.19		400	Total metals MNO3
2	MW09-1-2	32-5	32.1	3	V	11	$\nabla$	$\bigvee$	$\nabla$	$\checkmark$	1	/ /	13	:15	$\checkmark$	17.	89	$\checkmark$	17.57	5	$\checkmark$	$\checkmark$	13-19		200	Routine Parameters.
3	MW 09-1-3	24.9	24.0	1	$\nabla$	$\bigvee$	$\checkmark$	V	$\bigvee$	V	V	VV	13	, ili	$\checkmark$	141	00	V	13.98	5	$\checkmark$	$\checkmark$	13.18	400		Dissolved, Total, 1/2 Nutrient
3	MW09-1-3	24-9	23.8	2	$\checkmark$	V	$\checkmark$	1	$\nabla$	V	M	V	13	5-14	V	13.	<i>97</i>	$\checkmark$	13-85	5	$\bigvee$	$\checkmark$	13.14		400	V2 Nutrients, V2 RP
3	MW.09-1-3	24.9	23-8	3	$\bigvee$	V	V	$\overline{\mathbf{V}}$	$\overline{\mathcal{N}}$	V	V	$\sqrt{}$	13	-10		13.	81	V	13.81	5	N		13.14		400	Y2RP, Y2RP for zone 4
4*	MW 09-1-4	24.9	23.6	1	1	0	1	17	V	17	1	VV	13	-12	$\checkmark$	13.	58	$\checkmark$	13.55	5	V		13-13		400	VIRP, DM
47	MW09-1-4	24-9	23.5	2	V		V	1	$\checkmark$			VV	13	-13	$\checkmark$	13.	51	$\checkmark$	13.49	5	V	V	13.14		300	TM- Nutrients
<u>.</u>		a sure		Ē					1	Τ														÷.,		

Additional Comments: (pH, Turbidity, S.C., etc.)

+"zone 4"is a duplicate of zone 3 for QA/QC

Page ____ of ____ DEL 2009 SRK Consultina Well Development / Purging Record +2 DEC 2009 Well: MW09-2 MP38 Well Inner Diameter : cm 46LIN Static Water Level: 3 - 7 1 Static Well Volume: MD Casiny Strong purging Total Depth: mbtc mbtc WS Volume dO Date/Time Purged pН т Eh Comments -(11843AN) (C) (mg/l) (Litres) (mv) 3.3 black mud tantifreeze 25 9.19 20:45 .07 50 9.01 1.34 2.4 black-grey 10:50 75 8.54 2-3 1.16 20:55 grei brack 7.68 1.03 2.0 21:00 100 Al Se are . * 0 ANTIFREEZE PAT OVERN GHT ) 10 2 DEC 2009 09:48 125 brown tantifreeze. 8.71 6.0 1.15 150 09:58 7.97 .08 cloudy - grea 4.1 brown 7.75 1.05 10:04 4. 175 cloudy grey-brown 7.59 .05 4.010:12 2.00 Cloudy quell brown 2-9 7.49 1.00 225 cloudy 10:19 grey-brown 2.3 7-53 250 quey - brown 10:25 1.01 ma 7.49 3.1 0.99 275 10:31 aren cloudy 0-99 3.8 10:39 300 7.51 ave rloudi 0.97 325 7.52 3.5 trans went 0:46 cloudy gne 10:51 850 0.99 7.51 31 cloudy 10:57 375 0.98 3.4 7.53 loudy Λ. 1.68 7.53 400 0.99 2.5 11:02 cloudi S.

N.B. mbtc - meters below top of casing



Zones sampled:	3
Drillhole angle:	90 degrees
Start Time:	13:10
End Time:	16:30

# Groundwater Sampling Field Data Sheet

Well No.: MW09-2 Date: 2 DEC09

51-8 Fone 1 47.2 Zone 2

Patm = 13.12 psi

Client: MINTO Job No.: 2CMOZZ.007.001-10 Location: LOWER TAILLNES Weather: <u>COLD</u>, WINDY ; SUNNY Operator(s): **CD**, GH

	Bit  Surface Fun    Ferrit										Positio Sampl	on Ier	(prob	e la	Sample ocated at	Co sar	npling z	<b>Che</b> one i	Volume Retrieved		RP = routine params N= nictrients (H2Soy) TM = Total apple lived			
Zone No.	Sample Bottle	Port Position Fr	Port Position Cable (m	Run No.	Shoe Out	Close Valve	Check Vacuum	Open Valve	Evacuate Container	Close Valve	Locate Port() Arm Out()	Land Probe ()	Pressure in MP ( psi )	Shoe Out	Zone Pressure ( psi )	Open Valve	Zone Pressure ( psi )	Time to Fill ( min )	Close Valve	Shoe In	Pressure in MP ( psi )	Filtered & Preserved ( mL )	Not Filtered / Not Preserved ( mL )	DM = Dissolut while whose Comments
1	MW09-2-1	51-8	49.8	-	$\checkmark$	$\checkmark$	$\checkmark$	/	$\checkmark$	$\checkmark$	<b>V</b> V \	/6	0.57	V	80.13	$\checkmark$	74.36	10	V	V	80.59			Temp <0.1°C
														L,										Sample had anthrease - last
Si Manana	MW09-2-1	51-8	49.5	2	٧	5	~	6	$\checkmark$		VVI	6	3.12	V	80.19	$\checkmark$	80.16	4	$\vee$	V	63.13	400		NTM, OM - no antifice
ł	MW09-2-1	51-8	49.4	3	V	$\checkmark$	N	V	V	V	VV	6	3.88		80.21	$\checkmark$	80-18	2	Ø	V	63.95		400	RP
3	MW09-2-3	51.8	49.4		<	1		V	6		VV	6	4.05		80-20	V	80.19	2	$\bigvee$	V	64.10	400		N, TM, DM
3	MW09-2-3	51.8	49.0	2			1	1		( where the second	V/ .	16	4.44	$\bigvee$	80.26	V	80.23	2		1	64.47		400	RP
2	MW09-2-2	47.2	44.3	1	$\overline{\mathbf{V}}$	V	V	V	1 And	6	V 1/ 1	15	8.70	V	73.77	$\overline{\mathbf{V}}$	3-10	Section and	V	1	58.96			NO FLOW > ICE ?
		S																						T~0.2°C
												11 S. S.	1					na in Desira						
									1															
	a second and the statements	ی میروند در این از می مربق میروند این از میروند میروند این ا														-		Barrie						

Additional Comments: (pH, Turbidity, S.C., etc.)

is a duplicate of MW09-2-1 MW09 - 2 - 3

Page / of / SRK Consulting DEC 2009 Well Development / Purging Record MP38 Well: MW09-3 Well Inner Diameter : cm Static Well Volume: MP well prior to dev. Static Water Level: 3.5 2 m. With ports open, Total Depth: 50 - 4 5 mbtc mbtc Volume Date/Time Purged Comments pН EC т Eh dO MS/CM (Litres) (C) (mv) (mg/l) Antifreeze solution NA 25 NA NA 11:22 Antifreeze solution. 11:35 50 9.08 5.5 1.65 11:40 75 0.57 cloudy-brown 8.80 3, 0.34 cloudy - brown 2.4 11:46 100 8.38 0.30 cloudy-brown 11:51 125 2-2 8.00 cloudy -brown, small container. 11:55 150 7.97 0.26 1.7 clear insmall container 11:59 75 7.93 0.23 2.0 12:03 200 7,82 0.23 1.7 1 1 11 1.7 12:07 225 7.85 0.22 Ŵ 11 12.11 250 7.81 0.21 1.7 11 11 # 275 7.79 0.21 12-16 1.7 11 11 WL 3-74 after WL 4.08m from TOC after ports closed N.B. mbtc - meters below top of casing EC is a little off but abs. values not important for development purpases.


MP Groundwater Sampling Field Data Sheet

Zones sampled: Ø Drillhole angle: D degrees Start Time: 13:10 End Time: 16:45

Atmospheric Pressure = 13.06 psia

Well No.:	MW09-3
Date:	1 DEC 2009

Client:	MINTO	
Job No.:	ZCM022,007.401.11	0
Location:	MINTO NORTH	~.
Weather:	SUNNY + COLD	-
Operator(s):	CD, RS, GH	
	, ,	

		Label	om Log	-rom		S	Surfa Tes flus	ace ts ( shine	Fun prot	oe ir llar)	<mark>วท</mark> า	Posi Sam	tion pler	(prot	e lo	Sample cated at	Co san	l <b>lection</b>	Cheo one in	c <b>ks</b> n MF	^o ca	sing)	Vol Retri	ume ieved	OM=di TM=tr	issolved ,fal n	i motals (Hr Thite netals (Hi	NO3) 21003) ADO3)
Zene Ne	ZONE NO.	Sample Bottle	Port Position Fr ( m )	Port Position I Cable (m	Run No.	Shoe Out	Close Valve	Check Vacuum	Open Valve	Evacuate Container	Close Valve	Locate Port ()	Land Probe ()	Pressure in MP ( psi )	Shoe Out	Zone Pressure ( psi )	Open Valve	Zone Pressure ( psi )	Time to Fill ( min )	Close Valve	Shoe In	Pressure in MP ( psi )	Filtered & Preserved ( mL )	Not Filtered / Not Preserved ( mL )	N= RP=	nutni Somme routi panal	ents (42: nts (42: me melars	504)
		MW09-3-1	37.6	37.4	1	ł.		1		\$	$\checkmark$	VV		63-03	V	64.86	Martin	62-85	6	V	V	63.08	400		DM, TM	1,Nu	trientst	and the second
\$ * *	(	MW09-3-1	37.6	37.3	2	$\checkmark$	W	V	V	V	W	$\checkmark$		63.03	2	64.38		62·73	8	-	A.	63.03		400	RP	brow	n colour	
1	2	MW09-3-2	23.8	23.3	1	$\checkmark$	V	~	$\checkmark$	$\checkmark$	V		$\sum$	43.36	L	42.61	V	41.87	13	1	V	43.37	400		OM, TN	1,N,	clear	
	2	MW09-3-2	23.8	23-2	2	6	V		~	$\bigvee$	1	s/V	V	43.33	V	42.48	$\checkmark$	41-88	13	W	V	43.35		400	RP	<u> </u>	iar. T=	p-3 E
	Ψ	MW09-3-4*	23-8	23-1	1	L.	. 4	6000		V	V	V .	1	43.30	$\checkmark$	42-54	i.	41.87	13	V	V	43-31	400		DM, TM	1, N	dear	5 - S. S. S.
4	*	MW09-3-4*	23-8	23.0	2	W.		1	~	V	$\checkmark$	$\sqrt{v}$	1.	43.28	$\checkmark$	42.53	V	41-88	13	1 and	V	43-28		400	RP	cla	200	
[	3	MW09-3-3	0.1	17.2	1	V		1 town	been a	$\checkmark$	$\checkmark$	$\checkmark$	$\mathcal{V}_{\mathcal{I}}$	23.61	$\bigvee$	23.05	V	23:05	4	V	$\bigvee$	23-60	400		DM, TM	, N	clear	
	3	MW09-3-3	10.1	10.2	2	V	V	C.	V	$\bigvee$	$\checkmark$	Ŵ		23.60	$\checkmark$	23-08	v	23.05	3-5	$\mathcal{V}$	$\checkmark$	23.59		400	LP	cl	ear	
		and and a second se							· · ·					-														
						. 1																A Statistics Statistics		2 ⁴¹				
																			n in Anglasi	-		the spects			·			_
Γ		• · ·												87								- States						

Additional Comments: (pH, Turbidity, S.C., etc.)

MW09-3-4 is a duplicate of MW09-3-2 *

Appendix F MP Monitoring Well History Log

Monitoring Well	Date	Comments	Pumping Port Status
MW09-1	Nov28, 09 Nov 29, 09 Nov 30, 09	<ul> <li>installed, pressure profile</li> <li>developed</li> <li>sampled zones 1 to 4</li> </ul>	- all closed
MW09-2	Nov 26, 09 Dec 1, 09 Dec 2, 09	<ul> <li>installed</li> <li>pressure profile and developed</li> <li>sampled zones 1 to 4</li> </ul>	- all closed
MW09-3	Nov 27, 09 Dec 2, 09	<ul> <li>installed, pressure profile</li> <li>developed and sampled zones 1 to 4</li> </ul>	- all closed
MW09-4	Nov 24, 09	- installed	- all closed

Appendix B Minto Mine: Groundwater Monitoring System Sampling Report

# Minto Mine Groundwater Monitoring System Sampling Report

Prepared for

*Minto Explorations Ltd.* Suite 900-999 West Hastings Street Vancouver, B.C. V6C 2W2



Project Reference Number SRK 2CM022.007

July 2010

# **Minto Mine**

# Groundwater Monitoring System Sampling Report

# Capstone Mining Corp.

Suite 900-999 West Hastings Street Vancouver, B.C. V6C 2W2

SRK Consulting (Canada) Inc. Suite 2200, 1066 West Hastings Street Vancouver, B.C. V6E 3X2

Tel: 604.681.4196 Fax: 604.687.5532 E-mail: vancouver@srk.com Web site: www.srk.com

SRK Project Number 2CM022.007.0001.03

July 2010

## **Table of Contents**

1	Introduction	1
2	Monitoring	1
:	2.1 Pressure Monitoring	1
	2.2 Development and Sampling	2

## List of Tables

Table 1: Pressure Measurements in MP Wells	1
Table 2: List of Groundwater Sampling Locations	2
Table 3: QA/QC – Blanks and Duplicate Sample	4
Table 4: Summary of Groundwater Sampling Results	5

## **List of Figures**

- Figure 1: Minto Groundwater Monitoring Plan
- Figure 2: MW09-01 Groundwater Pressure Profile
- Figure 3: MW09-03 Groundwater Pressure Profile

## **List of Appendices**

Appendix A: Sampling Records

# 1 Introduction

This report provides monitoring results collected in March 2010 from the multilevel monitoring wells at the Minto Mine, Yukon. The purpose of the monitoring system is to improve the understanding of hydrogeological conditions across the site and provide background water levels and hydrogeochemistry for environmental monitoring of the site.

Figure 1 shows the general layout of the mine workings and all monitoring locations on the site.

Drillhole logs, methodologies and MP wells installation details are described in "Minto Mine, Groundwater Monitoring System Installation Report", SRK Consulting, Feb.2010.

# 2 Monitoring

## 2.1 **Pressure Monitoring**

Pressure profiles were carried out in wells MW09-1 and MW09-3. It was not possible to access the measurement ports in MW09-2 as the pipe had been sheared off by the ground movement, nor in MW09-04 as a large boulder had bent the pipe at shallow depth, preventing the probe to be lowered.

Well ID	Zone #	Port Depth	Initial Pr Read	essure ing*	Press Round	sure d #1*	Pressure Round#2*		
		Mbgs*	psi	m	psi	m	psi	m	
	1	43.19	18.34	39.40	12.85	43.38	12.86	43.10	
MW09-01	2	32.52	37.10	15.54	18.95	28.42	13.48	32.00	
	3	24.90	26.28	15.53	14.76	23.75	30.72	12.25	
	1	51.82	-	-	80.89	4.26	-	-	
101009-02	2	47.24	-	-	74.39	4.26	-	-	
	1	37.95	66.29	0.36	67.13	-0.07	65.29	0.89	
MW09-03	2	24.24	42.70	3.24	42.75	3.36	46.76	0.21	
	3	10.52	23.16	3.26	23.13	3.44	22.54	3.52	
	1	68.58	-	-	-	-	-	-	
MW09-04	2	54.86	-	-	-	-	-	-	
	3	47.24	-	-	-	-	-	-	

Table 1: Pressure Measurements in MP Wells

NOTE:

mbgs. Meter Below Ground Surface Initial Pressure reading: November 27th and 28th 2009 Round #1: November 30th and December 1st 2009 Round#2: March 29th and 30th 2010 Figure 2 and Figure 3 show piezometric levels measured in each monitoring zone, plotted as "equivalent depth to water" for each time of measurements. "Equivalent depth to water" refers to the depth the water would be observed in an open standpipe if screened across the MP zone, and calculated by adding the pressure head (height of water column calculated from the zone pressure measured) to the depth of the measurement port where the pressure was measured.

Plots also show an "atmospheric line", which indicates where the pressure head equals zero (i.e., piezometric head equals elevation head). This condition will occur if the zone is unsaturated (dry), and is analogous to an open borehole where the water level is at, or below, the measurement zone. Therefore, unsaturated zones will plot along the atmospheric line while saturated zones will plot above this line.

## 2.2 Development and Sampling

Monitoring wells were sampled using equipment consisting of a "pressure probe/sampler" with stainless steel sample collection bottles to the wireline pressure measurement tool. A vacuum is induced in the bottles so that when the tool is connected to a measurement port and the valve to the sample bottles is opened, water flows from outside the casing into the bottles due to the pressure difference. Two 250ml sample bottles were used in tandem, collecting approximately 500mL with each run. The sample bottles were thoroughly rinsed with distilled water between sampling zones, and with nitric acid at the start of each day. Geochemical analyses were conducted by MEL Laboratory.

Well ID	Well ID         Zone #         Port Depth         Sample ID         Sampled		Comments		
		m		Yes/No	
	1	43.19	Dry	No	
MW09-01	2	32.52	Dry	No	-
	3	24.90	MW09-1-3	Yes	
	1	51.82	-	No	Well broken
101009-02	2	47.24	-	No	vven broken
	1	37.95	MW09-3-1	Yes	
MW09-03	2	24.24	MW09-3-2	Yes	
	3	10.52	MW09-3-3	Yes	1111103-03-04
	1	68.58	-	No	
MW09-04	2	54.86	-	No	-
	3	47.24	-	No	

Table 2: List of Groundwater Sampling Locations

Water samples were taken from:

- MW09-01 in Zone 3. Zone 1 and 2 did not appear to have any water flow; and
- MW09-03 in all zones.

One duplicate sample of MW09-03 in zone 3 and two blanks were taken and labelled as if it were an additional zone, as noted on the sampling records, which are included in Appendix A.

## 2.3 Sampling Results

Table 3 shows analyses of the laboratory results using blanks and duplicate sample. QA/QC of the groundwater laboratory results are summarized below:

- Ionic balance range between 106 and 116% which is considered reasonable;
- In both blank samples, parameters analyzed in laboratory remain below or close to the limit of detection. Concentration levels that have been measured above the limit of detection have very low concentrations and considered insignificant in terms of potential external contamination;
- There are no significant variations between measured concentrations in the MW09-03 (zone 3) sample and its duplicate; both of them have identical chemistry. The relative difference between the two samples is for most of the parameters less than 20%. Eleven parameters out of 93 show difference higher than 20%, but all within a very close range of the limit of detection which increase measurement sensitivity.

Results of the groundwater sampling are shown in Table 4.

	Unit	DL	MW09-03	MW09-03 DUP	Relative diff%
Zone#	-		3	3	-
Sample Label			MW09-3-3	MW09-3-4	-
Sample Id	-	-	3305939	3305940	-
Sample Location	-	-	Minto North	Minto North	-
Date Sampled	m/dd/yyyy	-	3/29/2010	3/29/2010	-
Sample Depth	m	0.1	10.5	-	-
Completed Date	m/dd/yyyy		4/12/2010	4/12/2010	-
Matrix	-	-	Water	Water	-
Physical Tests	(1)		7.04	7 70	0.6%
pH @25°C	(1)	-	7.84	7.79	0.6%
Electrical Conductivity	μS/cm	1	158	161	1.9%
Hardness as CaCO3	mg/L	5	69	/1	2.9%
T-AIKdillilly ds CdCU3	IIIg/L	5	03	07	0.2%
Total Suspended Solids	mg/l	0.1	0.5	0.7	0.0%
Total Dissolved Solids	mg/L	5	11/	112	1.8%
Colour		5	5	5	0.0%
Major Anions and Cations	60	5	5	5	0.070
Carbonate	mg/L	6	6	6	0.0%
Calcium	mg/L	0.1	23.4	24.2	3.4%
Magnesium	mg/L	0.1	2.4	2.6	8.0%
Sodium	mg/L	0.1	2.6	2.7	3.8%
Phosphorus	mg/L	0.01	0.01	0.01	0.0%
Potassium	mg/L	0.1	2.3	2.2	4.4%
Silicon	mg/L	0.05	3.85	3.98	3.3%
Bicarbonate	mg/L	5	80	80	0.0%
Hydroxide	mg/L	5	5	5	0.0%
Ionic Balance	%	-	116	111	4.4%
Anions and Nutrients					
Ammonium - N	mg/L	0.05	0.05	0.05	0.0%
Total Kjeldahl Nitrogen	mg/L	0.06	0.06	0.06	0.0%
Total Phosphorus	mg/L	0.05	0.05	0.05	0.0%
Orthophosphate-P	mg/L	0.01	0.06	0.06	0.0%
Nitrate and Nitrite - N	mg/L	0.01	0.47	0.48	2.1%
Chloride	mg/L	0.02	0.61	0.61	0.0%
Sulfate (SO4)	mg/L	0.6	10	10	0.0%
Dissolved Metals		1	1		
Aluminum	mg/L	0.005	0.005	0.013	88.9%
Antimony	mg/L	0.0002	0.0009	0.0012	28.6%
Arsenic	mg/L	0.0002	0.0002	0.0002	0.0%
Barium	mg/L	0.001	0.013	0.01	26.1%
Beryllium	mg/L	0.00004	0.00004	0.00004	0.0%
Bismuth	mg/L	0.001	0.001	0.001	0.0%
Cadmium	mg/L	0.004	0.04	0.042	4.9%
Chromium	mg/L	0.00001	0.00002	0.00001	0.7%
Cohalt	mg/L	0.00004	0.0009	0.0004	11.8%
Copper	mg/l	0.001	0.005	0.00003	22.2%
Iron	mg/L	0.01	0.01	0.03	100.0%
Lead	mg/L	0.0001	0.0007	0.0002	111.1%
Lithium	mg/L	0.001	0.001	0.001	0.0%
Manganese	mg/L	0.0002	0.0129	0.0087	38.9%
Mercury	ug/L	0.01	0.01	0.01	0.0%
Molybdenum	mg/L	0.0001	0.0064	0.0049	26.5%
Nickel	mg/L	0.001	0.001	0.001	0.0%
Selenium	mg/L	0.0006	0.0006	0.0006	0.0%
Silver	mg/L	0.00001	0.00001	0.00001	0.0%
Strontium	mg/L	0.001	0.125	0.12	4.1%
Sulfur	mg/L	0.2	3.4	3.5	2.9%
Tellurium	mg/L	0.0001	0.0001	0.0001	0.0%
Thallium	mg/L	0.00001	0.00001	0.00001	0.0%
Thorium	mg/L	0.0004	0.0004	0.0004	0.0%
Tin	mg/L	0.0001	0.0001	0.0001	0.0%
Titanium	mg/L	0.01	0.01	0.01	0.0%
Uranium	mg/L	0.0004	0.0004	0.0004	0.0%
Vanadium	mg/L	0.0001	0.0002	0.0004	66.7%
Zinc	mg/L	0.001	0.005	0.004	22.2%
Zirconium	mg/L	0.0001	0.0001	0.0001	0.0%

					Relative
	Unit	DL	MW09-03	MW09-03 DUP	diff%
Zone#	-	1	3	3	-
Sample Label		1	MW09-3-3	MW09-3-4	-
Sample Id	-	-	3305939	3305940	-
Sample Location	-	-	Minto North	Minto North	-
Date Sampled	m/dd/yyyy	-	3/29/2010	3/29/2010	-
Sample Depth	m	0.1	10.5	-	-
Completed Date	m/dd/yyyy		4/12/2010	4/12/2010	-
Matrix	-	-	Water	Water	-
Total Metals					
Aluminum	mg/L	0.005	0.01	0.014	33.3%
Antimony	mg/L	0.0002	0.0002	0.0003	40.0%
Arsenic	mg/L	0.0002	0.0002	0.0002	0.0%
Barium	mg/L	0.001	0.013	0.01	26.1%
Beryllium	mg/L	0.00004	0.00004	0.00004	0.0%
Bismuth	mg/L	0.001	0.001	0.001	0.0%
Boron	mg/L	0.004	0.034	0.034	0.0%
Cadmium	mg/L	0.00001	0.00001	0.00006	142.9%
Calcium	mg/L	0.05	24.9	24.9	0.0%
Chromium	mg/L	0.0004	0.0004	0.0006	40.0%
Cobalt	mg/L	0.00002	0.00007	0.00006	15.4%
Copper	mg/L	0.001	0.004	0.004	0.0%
Iron	mg/L	0.01	0.027	0.047	54.1%
Lead	mg/L	0.0001	0.0002	0.0002	0.0%
Lithium	mg/L	0.001	0.001	0.001	0.0%
Magnesium	mg/L	0.05	2.62	2.63	0.4%
Manganese	mg/L	0.0002	0.0132	0.009	37.8%
Manganese	mg/L	0.005	0.007	0.005	33.3%
Mercury	ug/L	0.01	0.01	0.01	0.0%
Molybdenum	mg/L	0.0001	0.0065	0.0051	24.1%
Nickel	mg/L	0.001	0.001	0.001	0.0%
Potassium	mg/L	0.1	2.1	1.9	10.0%
Selenium	mg/L	0.0006	0.0006	0.0006	0.0%
Silicon	mg/L	0.05	4.4	4.39	0.2%
Silver	mg/L	0.00001	0.00004	0.00003	28.6%
Sodium	mg/L	0.02	3.08	3.07	0.3%
Strontium	mg/L	0.001	0.126	0.127	0.8%
Sulfur	mg/L	0.1	3.4	3.4	0.0%
Tellurium	mg/L	0.0001	0.0001	0.0001	0.0%
Thallium	mg/L	0.00001	0.00001	0.00001	0.0%
Thorium	mg/L	0.0004	0.0004	0.0004	0.0%
Tin	mg/L	0.0001	0.0001	0.0001	0.0%
Titanium	mg/L	0.001	0.001	0.001	0.0%
Uranium	mg/L	0.0004	0.0004	0.0004	0.0%
Vanadium	mg/L	0.0001	0.0003	0.0004	28.6%
Zinc	mg/L	0.001	0.01	0.01	0.0%
Zirconium	mg/L	0.0001	0.0001	0.0001	0.0%

Zone#	Unit	DL	Blank	Blank
Sample Label			MW/09-1-5	MW09-04-04
Sample Id	_	_	3305935	3305936
Sample Location	_	-	West Pit	Camp
Date Sampled	m/dd/www	_	3/30/2010	3/29/2010
Sample Denth	m	01	3/30/2010	3/23/2010
Completed Date	m/dd/www	0.1	4/12/2010	4/12/2010
Matrix	iii/ du/ yyyy	_	4/12/2010	4/12/2010
Physical Tests	-	-	water	water
nH @25°C	(1)	_	6.46	6.15
Electrical Conductivity	(1) uS/cm	1	0.40	0.15
Hardness as CaCO2	μ3/tin mg/l		Z	1
T Alkalinity as CaCO3	mg/L	5	<5 <5	< <u>5</u>
T-Alkalillity as CaCOS		01	< 3	0.1
Total Suspended Solids	mal	0.1	0.4	0.1
Total Suspended Solids	mg/L		~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~	13
Colour	IIIg/L	5	52	12
Colour	CU	5	<5	< 5
Corbonate	m a /I	C	-6	-6
Calibonate	mg/L	0	×6 10.1	< <u>0</u>
Calcium	mg/L	0.1	<0.1	<0.1
	mg/L	0.1	<0.1	<0.1
Sodium	mg/L	0.1	<0.1	<0.1
Phosphorus	mg/L	0.01	<0.01	<0.01
Potassium	mg/L	0.1	0.7	0.6
Silicon	mg/L	0.05	3.38	<0.05
Bicarbonate	mg/L	5	<5	<5
Hydroxide	mg/L	5	<5	<5
Ionic Balance	%	-	-	-
Anions and Nutrients				
Ammonium - N	mg/L	0.05	<0.05	<0.05
Total Kjeldahl Nitrogen	mg/L	0.06	<0.06	<0.06
Total Phosphorus	mg/L	0.05	<0.05	< 0.05
Orthophosphate-P	mg/L	0.01	0.06	< 0.01
Nitrate and Nitrite - N	mg/L	0.01	0.02	< 0.01
Chloride	mg/L	0.02	0.24	< 0.02
Sulfate (SO4)	mg/L	0.6	<0.6	<0.6
Dissolved Metals				
Aluminum	mg/L	0.005	< 0.005	< 0.005
Antimony	mg/L	0.0002	0.0007	0.0006
Arsenic	mg/L	0.0002	< 0.0002	< 0.0002
Barium	mg/L	0.001	< 0.001	< 0.001
Beryllium	mg/L	0.00004	<0.00004	<0.00004
Bismuth	mg/L	0.001	< 0.001	< 0.001
Boron	mg/L	0.004	0.007	< 0.004
Cadmium	mg/L	0.00001	0.00002	<0.00001
Chromium	mg/L	0.0004	<0.0004	<0.0004
Cobalt	mg/L	0.00002	0.00004	0.00002
Copper	mg/L	0.001	0.001	< 0.001
Iron	mg/L	0.01	< 0.01	< 0.01
Lead	mg/L	0.0001	0.0001	0.0002
Lithium	mg/L	0.001	< 0.001	< 0.001
Manganese	mg/L	0.0002	0.0003	<0.0002
Mercury	ug/L	0.01	< 0.01	< 0.01
Molybdenum	mg/L	0.0001	< 0.0001	<0.0001
Nickel	mg/L	0.001	< 0.001	< 0.001
Selenium	mg/L	0.0006	<0.0006	<0.0006
Silver	mg/L	0.00001	<0.00001	< 0.00001
Strontium	mg/L	0.001	< 0.001	< 0.001
Sulfur	mg/L	0.2	<0.2	<0.2
Tellurium	mg/L	0.0001	< 0.0001	< 0.0001
Thallium	mg/L	0.00001	< 0.00001	< 0.00001
Thorium	mg/L	0.0004	< 0.0004	< 0.0004
Tin	mg/L	0.0001	< 0.0001	< 0.0001
Titanium	mg/L	0.01	< 0.01	< 0.01
Uranium	mg/L	0.0004	< 0.0004	<0.0004
Vanadium	mg/L	0.0001	< 0.0001	< 0.0001
Zinc	mg/L	0.001	0.004	0.004
Zirconium	mg/L	0.0001	< 0.0001	< 0.0001

	Unit	DL	Blank	Blank
Zone#	-		-	-
Sample Label			MW09-1-5	MW09-04-04
Sample Id	-	-	3305935	3305936
Sample Location	-	-	West Pit	Camp
Date Sampled	m/dd/yyyy	-	3/30/2010	3/29/2010
Sample Depth	m	0.1	-	-
Completed Date	m/dd/yyyy		4/12/2010	4/12/2010
Matrix	-	-	Water	Water
Total Metals				
Aluminum	mg/L	0.005	< 0.005	< 0.005
Antimony	mg/L	0.0002	< 0.0002	< 0.0002
Arsenic	mg/L	0.0002	< 0.0002	< 0.0002
Barium	mg/L	0.001	< 0.001	< 0.001
Beryllium	mg/L	0.00004	< 0.00004	< 0.00004
Bismuth	mg/L	0.001	< 0.001	< 0.001
Boron	mg/L	0.004	0.016	0.01
Cadmium	mg/L	0.00001	< 0.00001	<0.00001
Calcium	mg/L	0.05	<0.05	<0.05
Chromium	mg/L	0.0004	< 0.0004	< 0.0004
Cobalt	mg/L	0.00002	< 0.00002	< 0.00002
Copper	mg/L	0.001	< 0.001	< 0.001
Iron	mg/L	0.01	0.026	< 0.01
Lead	mg/L	0.0001	0.0001	< 0.0001
Lithium	mg/L	0.001	< 0.001	< 0.001
Magnesium	mg/L	0.05	<0.05	< 0.05
Manganese	mg/L	0.0002	0.0002	< 0.0002
Manganese	mg/L	0.005	< 0.005	< 0.005
Mercury	ug/L	0.01	< 0.01	< 0.01
Molybdenum	mg/L	0.0001	< 0.0001	< 0.0001
Nickel	mg/L	0.001	< 0.001	< 0.001
Potassium	mg/L	0.1	0.1	<0.1
Selenium	mg/L	0.0006	<0.0006	< 0.0006
Silicon	mg/L	0.05	3.7	< 0.05
Silver	mg/L	0.00001	< 0.00001	<0.00001
Sodium	mg/L	0.02	0.13	0.3
Strontium	mg/L	0.001	< 0.001	0.001
Sulfur	mg/L	0.1	<0.1	<0.1
Tellurium	mg/L	0.0001	< 0.0001	< 0.0001
Thallium	mg/L	0.00001	< 0.00001	<0.00001
Thorium	mg/L	0.0004	< 0.0004	< 0.0004
Tin	mg/L	0.0001	< 0.0001	<0.0001
Titanium	mg/L	0.001	< 0.001	< 0.001
Uranium	mg/L	0.0004	< 0.0004	<0.0004
Vanadium	mg/L	0.0001	< 0.0001	< 0.0001
Zinc	mg/L	0.001	0.003	0.005
Zirconium	mg/L	0.0001	< 0.0001	< 0.0001

	Unit	DL	MW09-01	MW09-03	MW09-3-2	MW09-03	1W09-03 DUP	Blank	Blank
Zone#	-		3	1	2	3	3	-	-
Sample Label			MW09-1-3	MW09-3-1	MW09-3-2	MW09-3-3	MW09-3-4	MW09-1-5	MW09-04-04
Sample Id	-	-	3305934	3305937	3305938	3305939	3305940	3305935	3305936
Sample Location	-	-	West Pit	Minto North	Minto North	Minto North	Minto North	West Pit	Camp
Date Sampled	m/dd/yyyy	-	3/30/2010	3/29/2010	3/29/2010	3/29/2010	3/29/2010	3/30/2010	3/29/2010
Sample Depth	m	0.1	24.7	37.9	24.2	10.5	-	-	-
Completed Date	m/dd/yyyy		4/12/2010	4/12/2010	4/12/2010	4/12/2010	4/12/2010	4/12/2010	4/12/2010
Matrix	-	-	Water	Water	Water	Water	Water	Water	Water
Physical Tests									
pH @25°C	(1)	-	8.04	8	8.05	7.84	7.79	6.46	6.15
Electrical Conductivity	μS/cm	1	941	315	502	158	161	2	1
Hardness as CaCO3	mg/L	5	336	144	178	69	71	<5	<5
T-Alkalinity as CaCO3	mg/L	5	184	137	130	63	67	<5	<5
Turbidity	NTU	0.1	64	2.5	3	0.3	0.7	0.4	0.1
Total Suspended Solids	mg/L	1	70	<4	<7	<4	<4	<3	<3
Total Dissolved Solids	mg/L	5	630	196	324	114	112	32	12
Colour	CU	5	<5	<5	<5	<5	<5	<5	<5
Major Anions and Cations									
Carbonate	mg/L	6	<b< td=""><td><b< td=""><td>&lt;6</td><td><b< td=""><td>&lt;6</td><td>&lt;6</td><td>&lt;6</td></b<></td></b<></td></b<>	<b< td=""><td>&lt;6</td><td><b< td=""><td>&lt;6</td><td>&lt;6</td><td>&lt;6</td></b<></td></b<>	<6	<b< td=""><td>&lt;6</td><td>&lt;6</td><td>&lt;6</td></b<>	<6	<6	<6
	mg/L	0.1	93.7	41.2	56.3	23.4	24.2	<0.1	<0.1
Niagnesium Codium	mg/L	0.1	24.7	9.9	9.2	2.4	2.6	<0.1	<0.1
Phosphorus	mg/L	0.1	0.02	-0.01	24.9	2.0	<0.01	<0.01	<0.1
Potossium	mg/L	0.01	0.03	<0.01	<0.01 6.6	2.2	<0.01 2.2	0.01	<0.01 0.6
Silicon	mg/L	0.1	2 20	4.4 A	0.0 7 2	2.3 2 QF	2.2	0.7	0.0 ~0.05
Bicarbonate	mg/L	0.05 E	5.53 770	170	3./	2.65	3.38	5.38 ~E	<0.03 /F
Hydroxide	mg/L	5	22U ~5	170	100	00 /F	00 ~5	<>	<3
	//////////////////////////////////////	5	106	115	109	116	111	5	< 3
Anions and Nutrients	70	- 1	100	115	108	110	111	_	_
Ammonium - N	mg/l	0.05	6.16	0.35	0.99	<0.05	<0.05	<0.05	<0.05
Total Kieldahl Nitrogen	mg/l	0.06	8 89	0.4	1 22	<0.05	<0.06	<0.06	<0.06
Total Phosphorus	mg/L	0.05	0.09	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	<0.05
Orthophosphate-P	mg/L	0.01	0.06	0.06	0.07	0.06	0.06	0.06	< 0.01
Nitrate and Nitrite - N	mg/L	0.01	21.6	0.26	16.1	0.47	0.48	0.02	< 0.01
Chloride	mg/L	0.02	18.5	0.4	3.82	0.61	0.61	0.24	< 0.02
Sulfate (SO4)	mg/L	0.6	169	23	48.9	10	10	<0.6	<0.6
Total Metals	0,					1		1	1
Aluminum	mg/L	0.005	1.31	0.043	0.03	0.01	0.014	< 0.005	< 0.005
Antimony	mg/L	0.0002	0.0005	0.0002	< 0.0002	< 0.0002	0.0003	< 0.0002	< 0.0002
Arsenic	mg/L	0.0002	0.0012	0.0004	0.0015	< 0.0002	< 0.0002	< 0.0002	< 0.0002
Barium	mg/L	0.001	0.186	0.05	0.036	0.013	0.01	< 0.001	< 0.001
Beryllium	mg/L	0.00004	0.00005	< 0.00004	< 0.00004	< 0.00004	< 0.00004	< 0.00004	< 0.00004
Bismuth	mg/L	0.001	< 0.001	< 0.001	< 0.001	< 0.001	< 0.001	< 0.001	< 0.001
Boron	mg/L	0.004	0.095	0.29	1.92	0.034	0.034	0.016	0.01
Cadmium	mg/L	0.00001	0.00014	0.00011	0.00004	0.00001	0.00006	< 0.00001	< 0.00001
Calcium	mg/L	0.05	98.7	42.5	59.3	24.9	24.9	<0.05	<0.05
Chromium	mg/L	0.0004	0.0072	0.0022	0.0014	< 0.0004	0.0006	< 0.0004	< 0.0004
Cobalt	mg/L	0.00002	0.00147	0.00019	0.00022	0.00007	0.00006	< 0.00002	<0.00002
Copper	mg/L	0.001	0.029	0.006	0.008	0.004	0.004	< 0.001	< 0.001
Iron	mg/L	0.01	3.37	0.183	0.175	0.027	0.047	0.026	<0.01
Lead	mg/L	0.0001	0.001	0.0003	0.0003	0.0002	0.0002	0.0001	< 0.0001
Lithium	mg/L	0.001	0.003	0.003	0.005	< 0.001	<0.001	<0.001	<0.001
iviagnesium	mg/L	0.05	26.8	10.4	9.76	2.62	2.63	< 0.05	< 0.05
ivianganese (Trace)	mg/L	0.0002	0.225	0.123	0.0677	0.0132	0.009	0.0002	<0.0002
Ivianganese (SemiTrace)	mg/L	0.005	0.219	0.118	0.06	0.007	<0.005	<0.005	< 0.005
Molyhdonum	ug/L mg/l	0.001	0.01	<0.01	<0.01	<0.01	<0.01	<0.001	<0.001
Nickol	mg/L	0.0001	0.146	0.006	0.0468	0.0065	0.0051	<0.0001	<0.0001
Potassium	mg/L	0.001	0.006	0.007	0.002 2 0	<0.001 2 1	0.001	<0.001 0.1	<0.001
Solonium	mg/L	0.1	0.0019	4.2	0.0	<0.0006	<0.0006	<0.0006	<0.0006
Silicon	mg/L	0.0000	0.0013	<0.0000	0.0023	<0.0000	<0.0000	<0.0000	<0.0000
Silver	mg/l	0.0001	0 00012	0.0006	0,00017	0.00004	0.00003	<0.00001	<0.03
Sodium	mg/L	0.00001	56.9	7 37	25.7	3.08	3.07	0.13	0.00001
Strontium	mg/l	0.001	1 42	0.886	0 785	0.126	0 127	<0.13	0.0
Sulfur	mg/l	0.001	5.8.2	7 2	15 9	2 /	2 /	<0.001	0.001 <0 1
Tellurium	mg/L	0.0001	<0 0001	<0 0001	<0.0001	<0.0001	<0.0001	<0.001	<0.001
Thallium	mg/L	0.00001	0.00002	<0.0001	<0.0001	<0.0001	<0.0001	<0.0001	<0.0001
Thorium	mg/l	0.0004	<0 0004	<0.0001	<0.0001	<0.0001	<0.0001	<0.0001	<0.0001
Tin	mg/L	0.0001	<0.0001	<0.0001	<0.0001	< 0.0001	<0.0001	<0.0001	< 0.0001
Titanium	mg/L	0.001	0.079	0.002	< 0.001	< 0.001	< 0.001	< 0.001	< 0.001
Uranium	mg/L	0.0004	< 0.0004	0.0015	0.0014	< 0.0004	< 0.0004	< 0.0004	< 0.0004
Vanadium	mg/L	0.0001	0.0049	0.0003	0.0005	0.0003	0.0004	< 0.0001	< 0.0001
Zinc	mg/L	0.001	0.025	0.016	0.01	0.01	0.01	0.003	0.005
Zirconium	mg/L	0.0001	0.0005	0.0001	< 0.0001	< 0.0001	< 0.0001	< 0.0001	< 0.0001
	j								

#### Table 4: Summary of Groundwater Sampling Results

	Unit	DL	MW09-01	MW09-03	MW09-3-2	MW09-03	1W09-03 DUP	Blank	Blank
Zone#	-		3	1	2	3	3	-	-
Sample Label			MW09-1-3	MW09-3-1	MW09-3-2	MW09-3-3	MW09-3-4	MW09-1-5	MW09-04-04
Sample Id	-	-	3305934	3305937	3305938	3305939	3305940	3305935	3305936
Sample Location	-	-	West Pit	Minto North	Minto North	Minto North	Minto North	West Pit	Camp
Date Sampled	m/dd/yyyy	-	3/30/2010	3/29/2010	3/29/2010	3/29/2010	3/29/2010	3/30/2010	3/29/2010
Sample Depth	m	0.1	24.7	37.9	24.2	10.5	-	-	-
Completed Date	m/dd/yyyy		4/12/2010	4/12/2010	4/12/2010	4/12/2010	4/12/2010	4/12/2010	4/12/2010
Matrix	-	-	Water	Water	Water	Water	Water	Water	Water
Dissolved Metals									
Aluminum	mg/L	0.005	0.048	< 0.005	< 0.005	< 0.005	0.013	< 0.005	< 0.005
Antimony	mg/L	0.0002	0.0011	0.0009	0.0018	0.0009	0.0012	0.0007	0.0006
Arsenic	mg/L	0.0002	0.0007	0.0002	0.0012	< 0.0002	< 0.0002	< 0.0002	< 0.0002
Barium	mg/L	0.001	0.142	0.047	0.035	0.013	0.01	< 0.001	< 0.001
Beryllium	mg/L	0.00004	< 0.00004	< 0.00004	< 0.00004	< 0.00004	< 0.00004	< 0.00004	< 0.00004
Bismuth	mg/L	0.001	< 0.001	< 0.001	< 0.001	< 0.001	< 0.001	< 0.001	< 0.001
Boron	mg/L	0.004	0.095	0.106	1.99	0.04	0.042	0.007	< 0.004
Cadmium	mg/L	0.00001	0.00015	0.00012	0.00072	0.00002	< 0.00001	0.00002	< 0.00001
Chromium	mg/L	0.0004	< 0.0004	0.001	0.0013	< 0.0004	< 0.0004	< 0.0004	< 0.0004
Cobalt	mg/L	0.00002	0.00045	0.00014	0.0002	0.00009	0.00008	0.00004	0.00002
Copper	mg/L	0.001	0.021	0.004	0.006	0.005	0.004	0.001	< 0.001
Iron	mg/L	0.01	0.18	0.04	< 0.01	< 0.01	0.03	< 0.01	< 0.01
Lead	mg/L	0.0001	0.0003	0.0011	0.0003	0.0007	0.0002	0.0001	0.0002
Lithium	mg/L	0.001	0.003	0.003	0.004	< 0.001	< 0.001	< 0.001	< 0.001
Manganese	mg/L	0.0002	0.168	0.109	0.0616	0.0129	0.0087	0.0003	< 0.0002
Mercury	ug/L	0.01	<0.01	< 0.01	< 0.01	< 0.01	<0.01	< 0.01	<0.01
Molybdenum	mg/L	0.0001	0.148	0.0052	0.045	0.0064	0.0049	< 0.0001	< 0.0001
Nickel	mg/L	0.001	0.002	0.005	0.002	< 0.001	< 0.001	< 0.001	< 0.001
Selenium	mg/L	0.0006	0.0018	< 0.0006	0.0028	< 0.0006	< 0.0006	<0.0006	< 0.0006
Silver	mg/L	0.00001	< 0.00001	< 0.00001	0.00001	< 0.00001	< 0.00001	< 0.00001	< 0.00001
Strontium	mg/L	0.001	1.41	0.863	0.739	0.125	0.12	< 0.001	< 0.001
Sulfur	mg/L	0.2	56.2	7.6	16.3	3.4	3.5	<0.2	<0.2
Tellurium	mg/L	0.0001	<0.0001	< 0.0001	< 0.0001	< 0.0001	< 0.0001	< 0.0001	< 0.0001
Thallium	mg/L	0.00001	< 0.00001	< 0.00001	< 0.00001	< 0.00001	< 0.00001	< 0.00001	< 0.00001
Thorium	mg/L	0.0004	< 0.0004	< 0.0004	< 0.0004	< 0.0004	< 0.0004	< 0.0004	< 0.0004
Tin	mg/L	0.0001	0.0003	< 0.0001	< 0.0001	< 0.0001	< 0.0001	< 0.0001	< 0.0001
Titanium	mg/L	0.01	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01
Uranium	mg/L	0.0004	< 0.0004	0.0015	0.0014	< 0.0004	< 0.0004	< 0.0004	< 0.0004
Vanadium	mg/L	0.0001	0.0003	0.0001	0.0004	0.0002	0.0004	< 0.0001	< 0.0001
Zinc	mg/L	0.001	0.016	0.014	0.005	0.005	0.004	0.004	0.004
Zirconium	mg/L	0.0001	0.0002	< 0.0001	< 0.0001	< 0.0001	< 0.0001	< 0.0001	< 0.0001

This report, **"Minto Mine: Groundwater Monitoring System Sampling"**, has been prepared by SRK Consulting (Canada) Inc.:

### Prepared by

Michael Royle, M.App.Sci., P.Geo. (BC & NT) Principal Hydrogeologist

Figures



### MW09-01





