Minto Explorations Ltd. Whitehorse, Yukon

ISSUED FOR USE

GEOTECHNICAL DESIGN PROPOSED RECLAMATION OVERBURDEN DUMP MINTO MINE, YUKON

W14101068.004

February 2008

TABLE OF CONTENTS

PAGE

1.0	INTR	ODUCT	ION1
	1.1	Genera	al1
	1.2	Scope	of Work1
	1.3	Report	Format1
2.0	BAC	KGROU	ND INFORMATION
	2.1	Require	ement for a Reclamation Overburden Dump2
	2.2	Schedu	ule of Activities to Date 2
	2.3	Design	Information
3.0	RECI	AMATI	ON OVERBURDEN SOURCING AND CHARACTERIZATION
	3.1	Overbu	Irden Sourcing
	3.2	Overbu	Irden Characterization
		3.2.1	2005 Overburden Characterization Program
			3.2.1.1 Moisture Content Determination
			3.2.1.2 Particle Size Distribution
			3.2.1.3 Atterberg Limit Determination
			3.2.1.4 Measured Frozen Bulk Density
			3.2.1.5 Ground Temperature Profile
		3.2.2	2008 Overburden Characterization Program
			3.2.2.1 Laboratory Test Results
		3.2.3	Summary of Overburden Geotechnical Characteristics
4.0	RECI	AMATI	ON OVERBURDEN DUMP SITE CHARACTERIZATION
	4.1	Site Ch	naracterization Programs
		4.1.1	1997 Site Characterization Program
			4.1.1.1 Laboratory Test Results – Shelby Tube Samples
		4.1.2	2008 Site Characterization Program
5.0	SITE	CONDI	ΓIONS9
	5.1	Surface	e Features9
	5.2	Subsur	face Conditions
		5.2.1	Groundwater
		5.2.2	Permafrost
		5.2.3	Bedrock
6.0	RECI	AMATI	ON OVERBURDEN DUMP DESIGN 11

TABLE OF CONTENTS

				PAG	E
	6.1	Design	Considera	ations1	1
	6.2	Layout	and Geom	netry1	1
	6.3	Stability	/ Evaluatio	on1	2
		6.3.1	Analysis	Methodology1	2
			6.3.1.1	Analyzed Profile 1	2
			6.3.1.2	Failure Scenarios 1	3
		6.3.2	Design C	riteria1	3
		6.3.3	Material I	Properties1	4
			6.3.3.1	Overburden 1	4
			6.3.3.2	Active Layer 1	5
			6.3.3.3	Permafrost 1	5
		6.3.4	Porewate	er Pressure Conditions1	5
			6.3.4.1	Natural Stratigraphy1	5
			6.3.4.2	Overburden 1	5
		6.3.5	Stability /	Analyses1	5
			6.3.5.1	Scenario 1 – Static and Pseudostatic (Earthquake) Cases for Foundation	
				Soils	5
			6.3.5.2	Scenario 2 – Static and Pseudostatic (Earthquake) Cases for Overburden Only	6
			6.3.5.3	Scenario 1 and 2 – Discussion 1	6
			6.3.5.4	Liquefaction Potential1	8
7.0	SURF	ACE W	ATER MA	NAGEMENT1	8
8.0	CONS	STRUCT		OMMENDATIONS	9
9.0	PERF	ORMAN	ICE MON	170RING	0
	9.1	Visual N	Monitorina		0
	9.2	Overbu	rden Mate	erial Monitoring	0
	9.3	Deform	ation surv	eys2	1
10.0	ANNU	JAL INS	PECTION	2	1
11.0	LIMIT	ATIONS		2	1
12.0	CLOS	SURF		2	2
RFFF	RENC	FS.		2	3
					-

TABLE OF CONTENTS

TABLES

- Table 1Laboratory Test Results 2008 Overburden Samples
- Table 2Laboratory Test Results 1997 Shelby Tube Samples
- Table 3Design Factors of Safety
- Table 4Material Properties used in Stability Analyses
- Table 5Stability Analyses Results Scenario 1
- Table 6Stability Analyses Results Scenario 2

FIGURES

- Figure 1 Location Plan
- Figure 2 Plan View
- Figure 3 Alignment 1 Profile
- Figure 4 Stability Analyses Scenario 1 and 2
- Figure 5 Plan View Intermediate Buffer Limit

APPENDICES

- Appendix A General Conditions
- Appendix B 2005 Overburden Characterization Program Borehole Logs
- Appendix C 2005 Overburden Characterization Program Additional Data
- Appendix D 2008 Overburden Characterization Program Laboratory Data
- Appendix E 1997 Site Characterization Program Borehole and Testpit Logs
- Appendix F 1997 Site Characterization Program Additional Data
- Appendix G 2008 Site Characterization Program Testpit Logs

1.0 INTRODUCTION

1.1 GENERAL

The Minto Mine is a copper-gold mine located about 240 km north of Whitehorse, Yukon and is owned and operated by Minto Explorations Ltd. (Minto). The general location of the Minto Mine, along with its specific structures, is shown in Figure 1. The mine is being developed as an open pit mining operation and has been in production since June 2007. Development of the Area 1 Open Pit commenced with stripping in April 2006, and currently operates on an ongoing basis with either ore being stockpiled for processing and/or waste materials being disposed of at one of the waste dumps. There are currently two waste dumps permitted at the Minto Mine - the Main Waste Dump (MWD), and the Ice-Rich Overburden Dump (IROD). The MWD is used to store both non ice-rich overburden and waste rock materials. The IROD is to be used for storing ice-rich overburden. To date, Minto has only used the MWD for waste from the open pit.

Minto has proposed the design and construction of a third waste dump, immediately west of the MWD, for the storage of non ice-rich overburden for possible use in future reclamation. Consequently, EBA Engineering Consultants Ltd. (EBA) was retained by Minto to undertake the geotechnical design of this third waste dump, the Reclamation Overburden Dump (ROD).

This design report presents the geotechnical design of the proposed ROD. Background information involving the proposed ROD, findings of several geotechnical characterization programs, which EBA conducted in 1997, 2005 and most recently January 2008, and analytical work associated with the geotechnical design of the ROD are summarized within this report. Furthermore, construction and monitoring recommendations for the ROD are also included.

EBA received approval from Minto to proceed with the geotechnical design of the ROD in December 2007.

This report is subject to the General Conditions provided in Appendix A.

1.2 SCOPE OF WORK

EBA's scope of work was specifically the geotechnical design of the proposed ROD, and did not include detailed waste deposition planning.

1.3 REPORT FORMAT

This geotechnical design report is contained in one volume and presents the main text together with the figures and appendices.

2.0 BACKGROUND INFORMATION

2.1 REQUIREMENT FOR A RECLAMATION OVERBURDEN DUMP

As recommended in EBA's design report (EBA, 1998a), "Geotechnical Evaluation, Proposed Main Waste Dump" dated April 1998, current mining operations for the MWD construction have been completed with the finer grained non ice-rich overburden material being placed within the interior of the MWD and only coarser free draining waste rock placed around the perimeter. This practice was recommended and is being used to ensure the long term stability of the structure; it did not account for the potential reuse of the finer grained overburden material for reclamation purpose.

The construction of the proposed ROD will allow reuse of this overburden material for mine reclamation purposes.

2.2 SCHEDULE OF ACTIVITIES TO DATE

The following information summarizes the main activities involving the proposed ROD that occurred prior to the completion of this design report.

- Minto provided EBA with the layout, geometry and associated volume of the proposed ROD, as shown in Figure 2 (labelled "original Reclamation Overburden Dump layout provided by Minto"). Minto's assumptions for this layout and geometry included the placement of approximately 10 m lifts with a 30 m berm setback to yield an overall slope of 2.5H:1V. The structure was reported to contain approximately 550,000 m³ of material.
- EBA reviewed the existing geotechnical information for the proposed ROD site and the overburden material to be stockpiled within the dump and issued the letter report (EBA, 2007), "Proposed Reclamation Overburden Dump, Minto Mine, YT" dated December 13, 2007. This letter report summarized the available geotechnical information and indicated that based on this information, the proposed ROD could be designed as an engineered structure at this location.
- Minto provided EBA with two samples of the typical overburden material to be stored within the proposed ROD. These samples were collected by Minto from the Area 1 Open Pit on December 10, 2007. These samples were sent to EBA's Edmonton laboratory for strength determination testing. Results from the testing would not be available until mid to end January 2008.
- Minto submitted a letter to Yukon Government Energy, Mines and Resources (EMR) entitled "Re: QML-0001 Notification of need to start a Reclamation Material Stockpile (RMS)" dated December 12, 2007 and a copy of EBA, 2007. Minto's letter discussed the immediate use of the proposed ROD as current open pit development planning required the removal of the overburden material from the south portion of the pit. With Minto's current waste dump permitting, this overburden material would be placed within the MWD and encapsulated with waste rock and lost to future reuse.

- On December 14, 2007, a meeting was held between EMR, Minto, and EBA to discuss the use and design of the proposed ROD.
- EMR issued the letter, "Temporary Approval for Reclamation Overburden Dump, Minto Mine", dated December 20, 2007. This letter stipulated conditions for the temporary approval of the proposed ROD layout provided by Minto.
- At the time of this report, no overburden material has been placed within the proposed ROD.

2.3 DESIGN INFORMATION

EBA developed the geotechnical design for the proposed ROD from the following background information:

- A drawing supplied by Minto on December 6, 2007 that detailed the proposed layout, geometry, and associated volume, and
- Several conversations and meetings with Minto involving the ROD's construction and intended use.

In addition, EBA also used the following information from EBA's files:

- A 1998 report (EBA, 1998a) entitled "Geotechnical Evaluation, Proposed Main Waste Dump" summarizing the geotechnical design of the MWD;
- A 1998 report (EBA, 1998b) entitled "1997 Geotechnical Program and Construction Inspection Reports" detailing the 1997 geotechnical investigations ;
- A 2006 report (EBA, 2006a) entitled "Geotechnical Design, Ice-Rich Overburden Dump" summarizing the geotechnical design of the IROD; and
- A 2006 letter report (EBA, 2006b) entitled "Addendum to Geotechnical (Open Pit) Feasibility Study" detailing a geotechnical investigation of the overburden material in the south portion of the open pit in the fall 2005.

3.0 RECLAMATION OVERBURDEN SOURCING AND CHARACTERIZATION

3.1 OVERBURDEN SOURCING

The current open pit development plan indicates that approximately 370,000 m³ (insitu) of overburden will be excavated from the south portion of the Area 1 Open Pit and placed within a current waste dump. This south portion of the Area 1 Open Pit is referred to as Phase 2 of the Area 1 Open Pit.

This overburden could be stored in the proposed ROD and used for reclamation purposes, as required. It is understood that the overburden material would be excavated the pit between January 2008 and April 2008.

Figure 2 identifies the location of the Phase 2, Area 1 Open Pit which is the source of the overburden.

3.2 OVERBURDEN CHARACTERIZATION

EBA has undertaken two separate characterization programs to evaluate the geotechnical properties of overburden located in the south portion of the Area 1 Open Pit. The first program was completed in November 2005 and formed part of EBA, 2006b. The second program was completed in January 2008 to supplement the data required for the ROD design.

3.2.1 2005 Overburden Characterization Program

The 2005 overburden characterization program included five boreholes drilled in the south portion of the Area 1 Open Pit. Figure 2 shows the location of these boreholes, 1200173-042 through -045B. Borehole logs summarizing the soil and ground ice descriptions, as well as the laboratory index testing (moisture content, particle size distribution, and Atterberg limit determinations) are presented in Appendix B. Individual particle size distribution results are also presented in Appendix B with the associated borehole log. Frozen bulk densities were also recorded for select permafrost samples.

A 25 mm PVC pipe was installed in Borehole 1200173-042 to enable the installation of a ground temperature cable at a later date. This cable would be used to determine the ground temperature profile within the south portion of the Area 1 Open Pit. The cable was installed on March 8, 2006.

3.2.1.1 Moisture Content Determination

A total of 114 moisture content determinations were undertaken. Figure C.1, in Appendix C, graphically summarizes the moisture content versus elevation for each borehole and provides the overall combined maximum, minimum, average and standard deviation values. The overall combined average moisture content along with the upper and lower standard deviation values are also presented in Figure C.1.

The moisture content results varied throughout the depth of each borehole and corresponding elevations. No correlation between the moisture content and elevation can be derived from this data.

3.2.1.2 Particle Size Distribution

A total of 24 particle size distribution determinations were completed. Table C.1, in Appendix C, summarizes the particle size distribution versus elevation for each borehole in tabular form and provides the overall combined maximum, minimum, average and standard deviation values for each particle size classification (Clay, Silt, Sand, and Gravel).

The particle size distribution results varied throughout the depth of each borehole and corresponding elevations. No correlation between the particle size distribution and elevation can be derived from this data.

3.2.1.3 Atterberg Limit Determination

A total of eight Atterberg limit determinations were completed. Table C.1, in Appendix C, summarizes the Atterberg limit versus elevation for each borehole in tabular form and provides the overall combined maximum, minimum, average and standard deviation values for the liquid limit, plastic limit, and plasticity index.

The Atterberg limit results indicate a fairly consistent plasticity index from the ground surface to elevation 795 m. Results from elevation 772 m to 774 m are also consistent but elevated from those above.

3.2.1.4 Measured Frozen Bulk Density

A total of 14 frozen bulk density determinations were completed. Figure C.2 graphically summarizes the 85% of measured bulk density versus elevation for each borehole and provides the overall combined maximum, minimum, average and standard deviation values for the 85% of measured bulk density results. Figure C.3 graphically summarizes moisture content versus 85% of measured bulk density for each sample. The 85% of measured bulk density is being used to evaluate the measured bulk densities to account for field measurement corrections. Figure C.2 and C.3 are presented in Appendix C.

The bulk density results varied throughout the depth of each borehole and corresponding elevations. No correlation between the frozen bulk density and elevation can be derived from this data.

Figure C.3 shows the expected inverse relationship between moisture content and frozen bulk density.

3.2.1.5 Ground Temperature Profile

Readings from the ground temperature cable installed in Borehole 1200173-042 were obtained on five occasions between March 24 and October 29, 2006. The ground temperature profiles from these readings are presented graphically in Figure C.4, Appendix C.

The readings indicate a relatively uniform ground temperature of close to -0.6°C at depth and seasonal warming over the top 10 m. The active layer depth was up to 2 m.

3.2.2 2008 Overburden Characterization Program

Minto provided two overburden samples, 08-ROD-OB01 and -OB02, in December 2007 for laboratory strength parameter testing for the proposed ROD design. Both samples were from the south portion of the Area 1 Open Pit as shown in Figure 2. The first sample was from the eastern section of the 796 m bench while the other sample came from the west end of the 808 m bench.

The following tests were undertaken at EBA's Edmonton laboratory:

- Particle size distributions (sieve and hydrometer analyses),
- Moisture density relationship (proctor at standard effort), and
- Direct shear tests.

3.2.2.1 Laboratory Test Results

A summary of the laboratory test results is presented in Table 1. The individual laboratory test results are attached in Appendix D.

TABLE 1: LABO	RATORY TEST RESUL	TS – 2008 OVERBURDEN SAMPLES
Sample	Type of Test	Results
08-ROD-OB01	Particle Size Distribution	Clay: 18 %, Silt: 30 %, Sand: 14 %, Gravel: 38 %
	Moisture Density	Maximum Dry Density (standard effort): 1780 kg/m ³
	Relationship	Optimum Moisture Content: 15.5 %
	Direct Shoor Toota	Tested at 85 % MDD - Peak Strength: $\theta' = 26.7^{\circ}$, $c' = 13.5$ kPa
	Direct Shear Tests	Tested at 90 % MDD - Peak Strength: $\theta' = 27.7^{\circ}$, $c' = 8.3$ kPa
08-ROD-OB02	Particle Size Distribution	Clay: 8 %, Silt: 18 %, Sand: 15 %, Gravel: 59 % ⁽¹⁾
Note: ⁽¹⁾ I	aboratory result affect	ted by the presence of one large gravel particle.

Laboratory result affected by the presence of one large gravel particle.

3.2.3 Summary of Overburden Geotechnical Characteristics

The above testing programs have found the overburden material typically comprises nonplastic silty sand or sandy silt to low plastic silty clay. These soils are typical of the colluvium that blankets the hillsides in the area.. Particle size distribution results are highly variable but average to a material comprised of approximately 13 % clay, 38 % silt, 33 % sand and 16 % gravel sized particles. The moisture content results ranged from 5.6 % to 57.9 % with an average of 20.4 % and standard deviation of 9.4 %.

The Atterberg limit results give an indication of the mechanical sensitivity of the overburden material at different moisture contents. The plastic limit (PL) defines the moisture content at which the material changes from being a semisolid to a plastic state and the liquid limit (LL) defines the moisture content at which the material changes from a plastic state to a liquid state. The Atterberg limit results indicated that for the material between the ground surface and elevation 795 m the plastic limit, liquid limit and plasticity index averaged 15, 21 and 6, respectively. Materials with these characteristic parameters are expected to behave as granular, non cohesive soils. The results from elevation 772 m to 775 m indicated elevated values of 24, 42, and 18, respectively. With an average moisture content of 20 %, roughly half of the overburden material excavated from above elevation 795 m will be around its liquid limit when it thaws within the dump. Consequently, trafficability in summer conditions could be impaired.

The moisture density relationship determined an optimum moisture content of 15.5% at a maximum dry density (MDD) (standard effort) of 1780 kg/m^3 . With an average moisture content of 20%, the overburden material will typically be above its optimum moisture content.

Direct shear tests undertaken at 85 % and 90 % of MDD determined an internal angle of friction of 26.7° and 27.7° and a cohesion intercept of 13.5 kPa and 8.3 kPa at peak shear strength, respectively. Testing was completed at 85 % and 90 % of MDD to represent the loose state of the dumped frozen overburden material during construction of the dump.

None of the 14 bulk density results were below the 1.7 Mg/m^3 threshold set as the "non ice-rich/ice-rich classification". Therefore, all of these samples are considered non ice-rich. Interpolating the results presented in Figure C.3, a moisture content greater than 36 % would indicate the presence of ice-rich overburden (bulk density less than 1.7 Mg/m³).

Of the 114 moisture content results, only six were in excess of the interpolated intersection of the 1.7 Mg/m^3 limit, which would indicate ice-rich material. Therefore, in general terms, the majority of overburden sampled would be considered non ice-rich.

4.0 RECLAMATION OVERBURDEN DUMP SITE CHARACTERIZATION

4.1 SITE CHARACTERIZATION PROGRAMS

EBA has undertaken two separate site characterization programs to evaluate the geotechnical properties of the proposed ROD foundation located adjacent to the MWD. The first program was completed in September and October 1997 (EBA, 1998b) and formed part of the geotechnical evaluation of the MWD (EBA, 1998a). The second program was completed in January 2008 to supplement the data required for the ROD design.

4.1.1 1997 Site Characterization Program

The 1997 site characterization program included seven boreholes drilled within the vicinity of the proposed ROD location and two testpits excavated within colluvium material at the MWD. Four of the seven boreholes are located within the proposed ROD footprint while the remaining three are located east of the footprint. Figure 2 shows the location of these seven boreholes, 97-G17 through –G23, and two testpits, 97-TP01 and –TP02. Borehole logs summarizing the soil and ground ice descriptions, as well as the laboratory index testing (moisture content, particle size distribution, and Atterberg limit determinations) are presented in Appendix E. Individual particle size distribution results are also presented in Appendix E with the associated borehole log.

Relatively undisturbed Shelby tube samples were obtained from Testpit 97-TP01 and – TP02. Two Shelby tubes were recovered from a depth of 0.3 m to 0.6 m (1 to 2 feet) from Testpit 97-TP01 and two Shelby tubes were taken from Testpit 97-TP02 between 1.0 m to 1.2 m (3 and 4 feet). Laboratory tests conducted on these samples include:

- Particle size distributions (sieve and hydrometer analyses),
- Atterberg limit determination, and
- Direct shear tests.

4.1.1.1 Laboratory Test Results – Shelby Tube Samples

A summary of the laboratory test results for the Shelby tube samples from Testpit 97-TP01 and –TP02 is presented in Table 2. The individual laboratory test results are attached in Appendix F.

TABLE 2: LABOI	RATORY TEST RESUL	TS – 1997 SHELBY TUBE SAMPLES
Sample	Type of Test	Results
97-TP01	Particle Size Distribution	 (1A) Clay: 8.9 %, Silt: 41.4 %, Sand: 43.0 %, Gravel: 6.7 % (1B) Clay: 7.2 %, Silt: 31.7 %, Sand: 40.4 %, Gravel: 20.7 %
	Atterberg Limits	Plastic Limit: 12, Liquid Limit: 17, Plasticity Index: 5
	Direct Shear Tests	Peak Strength: $\theta' = 35^{\circ}$ Residual Strength: $\theta' = 28^{\circ}$
97-TP02	Particle Size Distribution	 (2A) Clay: 18.6 %, Silt: 28.0 %, Sand: 25.5 %, Gravel: 27.9 % (2B) Clay: 21.7 %, Silt: 32.9 %, Sand: 27.7 %, Gravel: 17.7 %
	Atterberg Limits	Plastic Limit: 15, Liquid Limit: 28, Plasticity Index: 13
	Direct Shear Tests	Peak Strength: $\theta' = 30^{\circ}$ Residual Strength: $\theta' = 25^{\circ}$

4.1.2 2008 Site Characterization Program

The 2008 site characterization program was completed to provide additional subsurface information within the vicinity of the proposed ROD. The program consisted of a testpitting program in which three testpits were excavated up to a depth of 4.5 m. Figure 2 shows the location of these testpits, 08-ROD-TP01 through –TP03. Testpit logs summarizing the soil and ground ice descriptions, as well as the laboratory index testing (moisture content) are presented in Appendix G. Individual particle size distribution results are also presented in Appendix G with the associated testpit log.

5.0 SITE CONDITIONS

5.1 SURFACE FEATURES

The proposed ROD site is located over gently sloping (about 3° to 4°, or 17H:1V) terrain in the upper portion of a valley, and is directly west of the MWD and 60 m upslope of the IROD access road. The Pelly laydown site is located approximately 240 m downslope in the southeast direction. The IROD is located 320 m south.

The proposed ROD footprint is located on a northwest facing slope on the east side of the upper valley. The terrain steepens to the north and west of the proposed ROD site. Topographic information presented in Figure 2 indicates the presence of several small ephemeral creeks that converge to the middle of this upper valley roughly 30 m to the southwest of the proposed ROD footprint. These creeks collect the surface runoff water and route it down the mountain side. Three ephemeral creeks are shown within the proposed ROD footprint; one originates roughly 150 m northwest of the dump and runs through the upper portion of the dump while the other two originate within the MWD and

run through the bottom portion. One of the creeks (farthest east) that originate within the MWD has been disrupted by overburden fill placement within that dump.

The site and adjacent area has sparse to locally dense tree cover. The area was subject to a forest fire in 1995 that has resulted in areas of fallen trees with deciduous species regrowth.

5.2 SUBSURFACE CONDITIONS

The geotechnical site characterizations indicate that the subsurface conditions within the proposed ROD footprint generally comprise a thin veneer of peat and vegetation overlying a silty sand colluvium overlying residual soil (residuum).

The area to the south, towards the middle of this upper valley, generally comprise of a thin veneer of peat and vegetation overlying fine-grained sand and silt overlying coarser-grained sand with some silt and gravel. These soils are believed to be of colluvial origin and underlain by residual soil.

Throughout the mine site these residual soils grade into weathered bedrock (granodiorite).

5.2.1 Groundwater

Groundwater was noted between 1.2 m and 2.1 m at 97-G19 and at 1.5 m at 97-G22 during the site characterizations. No other borehole or testpit completed within the vicinity of the proposed ROD site identified groundwater.

5.2.2 Permafrost

Permafrost was encountered in one of the four boreholes, 97-G23, located within the proposed ROD footprint. The observed ice contents in this borehole were logged as Nf (Ice not visible – poorly bonded or friable) with moisture content results less than 15%. These moisture results are consistent with the overlying unfrozen soils at that location and indicate a non ice-rich material. The active layer at the time of drilling, September 14, 1997, was 5.1 m.

Permafrost was also encountered in Testpit 08-ROD-TP01 through –TP03, at varying depths. The observed ice contents in the three testpits typically ranged from Nbn (Ice not visible – well bonded) to visible ice at 5% to 15% of the total volume. The moisture contents ranged between 11.6 % and 31.0 %. These moisture results are consistent with the overlying unfrozen soils at that location and indicate a non ice-rich material. The maximum recorded active layer thickness was about 1.8 m on January 10, 2008.

5.2.3 Bedrock

Depths to competent bedrock (granodiorite) are unknown as all of the boreholes and testpits within the vicinity of the proposed ROD terminated in the colluvial soils. Weathered bedrock outcrops are present within the vicinity of the IROD and MWD.

6.0 RECLAMATION OVERBURDEN DUMP DESIGN

6.1 DESIGN CONSIDERATIONS

The primary considerations for the geotechnical design of the proposed Reclamation Overburden Dump are summarized below.

- The proposed ROD geometry could be maintained over a relatively short period of time as the overburden material will likely be reused for reclamation purposes. Consequently, the design life of the structure will be re-evaluated within five years.
- The volume of unused overburden to be permanently stored within the ROD is unknown.
- Minto's construction plan to utilize two benches to place the overburden material at an angle of repose (when frozen) will minimize time and effort flattening the slope angle of the dump sideslope, while providing a shallower overall slope angle.
- Localized shallow slip surface failures and sloughing of the 1.5H:1V sideslopes as the overburden thaws are expected and acceptable as long as the overall dump stability is maintained.
- Based on the occurrence of these shallow slip surface failures and sloughing, the proposed ROD footprint has been offset 60 m from the IROD access road and 30 m from the main ephemeral creek southwest of the dump. Furthermore, the construction of the 30 m wide 890 m bench will act as a catchment area in the event of sloughing of the 900 m bench.
- If required, slope remediation of the sloughed material can be completed during the design life of the structure. This adaptive management approach could entail flattening the sideslopes or constructing a waste rock shell in any problematic areas.
- Dependant on the volume of the unused material and final closure planning, the overburden should be recontoured with flatter sideslopes or an external toe berm or shell comprised of waste rock material could be incorporated into the closure design.

6.2 LAYOUT AND GEOMETRY

The original proposed ROD layout provided by Minto in December 2007 has been modified to alleviate several construction issues that would have arisen if the ROD was constructed at that specific location – specifically, permafrost and the main ephemeral stream located down the middle of the valley. The new layout of the proposed ROD is shown in Figure 2.

The geometry of the dump will be a crescent shaped structure with two main benches, one at elevation 890 m and the other at elevation 900 m, as shown in Figure 2 and 3. The 890 m bench will have a 30 m crest width. The 900 m bench is the ultimate elevation of the dump. Each bench will have a 1.5H:1V sideslope. The overall sideslope of the proposed

ROD will be 2.75H:1V. The maximum thickness of the overburden will be in the order of 20 m.

The proposed ROD will be able to contain approximately 479,000 m³ of material. Based on the 370,000 m³ (insitu) of overburden to be excavated from the Phase 2 Area 1 Open Pit, there will be adequate storage volume with normal bulking factors.

6.3 STABILITY EVALUATION

6.3.1 Analysis Methodology

Limit equilibrium analyses were conducted to determine the factor of safety against slope failure during construction and maintenance of the dump. All analyses were conducted using the commercially available two-dimensional, limit equilibrium software, SLOPE/W (Geo-Slope International Ltd., GeoStudio 2007 (Version 7.03)). The principles underlying the method of limit equilibrium analyses of slope stability are as follows:

- A slip mechanism is postulated;
- The shear resistance required to equilibrate the assumed slip mechanism is calculated by means of statics;
- The calculated shear resistance required for equilibrium is compared with the available shear strength in terms of factor of safety; and
- The slip surface with the lowest factor of safety is determined through iteration.

A factor of safety is used to account for the uncertainty and variability in the strength and porewater pressure parameters, and to limit deformations.

Earthquake loading has been modeled using pseudostatic peak horizontal ground acceleration.

6.3.1.1 Analyzed Profile

Stability analyses were carried out for a typical profile of the proposed ROD. The foundation at this location was inferred to be silt and sand with varying percentages of gravel, grading into coarser material. Although permafrost was only encountered within the south corner of the 890 m bench (97-G23 and 08-ROD-TP01), its presence was incorporated into the stability evaluation. The depth to permafrost was assumed to range from 2 m to 5 m beneath the overall sideslope. The alignment 2 profile presented in Figure 4 summarizes the typical profile used in the analyses.

6.3.1.2 Failure Scenarios

Two scenarios were evaluated for assessing the dump stability. Scenario 1 assessed the overall dump stability based on a deeper failure plane cutting through the dump to the permafrost interface in the foundation soil. The failure would then follow the permafrost interface and exit below the toe of the slope. The presence of the permafrost in the foundation soils will not greatly affect the overall dump stability as it is considered non icerich and thaw stable. It has been postulated, based on previous EBA experience, that some thaw at the base of the active layer will occur and that the shear strength acting along the thawed frozen interface will be a controlling factor in the overall dump design. For purposes of the limit equilibrium analyses, the underlying permafrost is considered much stronger than the unfrozen soil; therefore, the risk of shear failure through the frozen ground was not analysed.

Scenario 2 assessed the stability of the overburden material itself. The proposed ROD construction plan involves 1.5H:1V sideslopes for the 890 m and 900 m bench with an overall 2.75H:1V slope for the structure. It is anticipated that these 1.5H:1V sideslopes will exhibit localized shallow slip surface failures and sloughing once the material thaws in the summer resulting in flatter slopes. The extent of sloughing will be dependent on the moisture content and strength characteristics of the overburden material placed within the dump in the vicinity of the sideslope. Stability analyses were completed based on relatively shallow failures through the 890 m bench and a deep seated failure through the 900 m bench. All failures were forced to exit through the toe of the slope.

6.3.2 Design Criteria

The guidelines for minimum design factor of safety have been adopted from the British Columbia Interim Guidelines for Investigation and Design of Mine Dumps (Waste Rock Design Manual).

TABLE 3: DESIGN FACTORS OF SAFETY	
Stability Condition	Minimum Design Factor of Safety
Long Term Stability	1.3
Seismic (Pseudostatic) Stability	1.1

The design criteria adopted from the guidelines are included in Table 3.

The Waste Rock Design Manual recommends that seismic stability should be evaluated using pseudostatic horizontal accelerations that correspond to a 10% probability of exceedance in 50 years. When work was originally undertaken on the MWD in the mid 1990's, the Canadian Geological Survey Pacific Geosciences Centre provided a value for the

peak horizontal acceleration for the project site of 0.15 g. An updated value for the site has been provided by the Pacific Geosciences Centre and the current peak horizontal acceleration that corresponds to a 10% probability of exceedance in 50 years is 0.055 g. The reasoning for the decrease in the peak ground acceleration provided by the Pacific Geosciences Centre is that seismic data collection has increased substantially in the Yukon in recent years. A better understanding of ground motion and improved modelling has resulted in revised predictions, which are considered to be more accurate and representative for the project area.

6.3.3 Material Properties

The material properties chosen for the overburden and foundation materials in the stability analyses are presented in Table 4. The properties for the materials were selected based on the completed laboratory testing, and properties used in the design of the existing facilities on the site.

TABLE 4: MATERIAL PROPER	TIES USED IN STABILITY ANALY	/SES	-
Material	Angle of Internal Friction	Cohesion	Unit Weight
	(°)	(kPa)	(kN/m³)
Overburden	25		18
Active Layer	28		18
Permafrost			

6.3.3.1 Overburden

The shear strength parameters, internal friction angle and cohesion, were determined by evaluating the results of direct shear tests on samples of overburden material. Sample 08-ROD-OB01 was sampled from the actual overburden to be placed within the dump. Direct shear testing of this sample was undertaken at 85 % and 90 % of MDD to represent the loose state of the dumped frozen overburden material during construction of the dump. Results indicated an internal angle of shearing resistance of approximately 27° and a cohesion intercept between 8.3 kPa and 13.5 kPa at peak shear strength. These test results were evaluated with the direct shear tests from samples from 97-TP01 and –TP02. These testpits were not located within the Area 1 Open Pit; however, the material is of similar nature to the overburden. The results from samples from 97-TP01 and –TP02 are presented in Table 2.

Based on these results and evaluation, strength parameters of $\theta' = 25^{\circ}$ and c' = 0 kPa were used for the stability analyses.

6.3.3.2 Active Layer

The active layer soils are typically a silty sand or silt and sand with trace to some gravel. This material is believed to be representative of the colluvium found at Testpit 97-TP01. Direct shear testing of a silty sand colluvium sample from Testpit 97-TP01 indicates this material could exhibit strain-softening behaviour with a peak friction angle of 35° and a residual friction angle of 28°.

Based on these results, strength parameters of $\theta' = 28^{\circ}$ and c' = 0 kPa were used for the stability analyses.

6.3.3.3 Permafrost

The permafrost soil found beneath the south corner of the proposed ROD is typically a silty sand with some gravel. For the purpose of these analyses, this material has been modelled to act as bedrock to force the critical failure surface to the contact of the thawed and frozen material.

6.3.4 Porewater Pressure Conditions

6.3.4.1 Natural Stratigraphy

The geotechnical drilling and testpitting at this site suggests that the existing active layer was relatively dry; however, free flowing water was noted at two locations. Therefore, it is possible that a shallow perched groundwater table may exist for short periods of the year.

A groundwater table at the original ground surface was used for the stability analyses.

6.3.4.2 Overburden

The potential for a phreatic surface developing within the dump was not considered due to the following:

- The overburden will be placed in a loose state which will allow for any free water within the dump to drain with the slow rate of thaw of the overburden; and
- If required, a diversion berm will be constructed upstream of the dump to control surface run-on water.

6.3.5 Stability Analyses

6.3.5.1 Scenario 1 – Static and Pseudostatic (Earthquake) Cases for Foundation Soils

The results of the minimum factors of safety calculated during the static and pseudostatic stability analyses for Scenario 1 are summarized in Table 5. Figure 4 presents the typical profile used for the analyses and the resulting critical slip surfaces.

TABLE	5: SUMMARY OF STABILITY ANALYSES RESULTS – SCENARIO 1	
Case		Minimum Factor of Safety of the ROD
1	Static, deep seated failure from the 900 m bench toe to the permafrost contact, failure of the 890 m bench	1.9
2	Static, relatively shallow failure through the 890 m bench to the permafrost contact, failure commences approx. 10 m offset from 890 m bench crest	1.3
3	Pseudostatic, deep seated failure from the 900 m bench toe to the permafrost contact, failure of the 890 m bench	1.6
4	Pseudostatic, relatively shallow failure through the 890 m bench to the permafrost contact, failure commences approx. 10 m offset from 890 m bench crest	1.1

6.3.5.2 Scenario 2 – Static and Pseudostatic (Earthquake) Cases for Overburden Only

The results of the minimum factors of safety calculated during the static and pseudostatic stability analyses for Scenario 2 are summarized in Table 6. Figure 5 presents the typical profile used for the analyses and the resulting critical slip surfaces.

TABLE	6: SUMMARY OF STABILITY ANALYSES RESULTS – SCENARIO 2	
Case		Minimum Factor of Safety of the ROD
5	Static, deep seated failure from the 900 m bench toe to the permafrost contact, failure of the 890 m bench	1.7
6	Static, relatively shallow seated failure through the 890 m bench to the slope toe, failure of approximately half of 890 m bench	1.3
7	Static, relatively shallow failure through the 890 m bench to the slope toe, failure commences approx. 6 m offset from 890 m bench crest	1.0
8	Pseudostatic, deep seated failure from the 900 m bench toe to the permafrost contact, failure of the 890 m bench	1.4
9	Pseudostatic, relatively shallow seated failure through the 890 m bench to the slope toe, failure of approximately half of 890 m bench	1.1

6.3.5.3 Scenario 1 and 2 – Discussion

With the exception of Case 7, these results indicate that the factor of safety for the overall dump stability based on the failure planes through the foundation soils and the overburden

material itself (Scenario 1 and 2, respectively) exceed the design criteria in both the static and pseudostatic condition.

For failure planes through the foundation soils (Scenario 1), Case 1 and 3 determined the factor of safety against a deep seated failure that would mobilize the entire 890 m bench material to be 1.9 for the static analyses and 1.6 for the pseudostatic analyses. Case 2 and 4 determined that the minimum 1.3 (static) and 1.1 (pseudostatic) factor of safety is achieved approximately 10 m upslope of the 890 m bench crest. These results indicate that slip surface failures with factors of safety less than 1.3 are present between the 890 m crest and this 10 m offset. The mobilization of this material will not affect the overall dump stability.

For failure planes through the overburden (Scenario 2), Case 5 and 8 determined the factor of safety against a deep seated failure that would mobilize the entire 890 m bench material to be 1.7 for static analyses and 1.4 for pseudostatic analyses. Case 6 and 9 determined that the minimum 1.3 (static) and 1.1 (pseudostatic) factor of safety is achieved approximately 15 m upslope of the 890 m bench crest.

Case 7 indicates that the overburden material approaches unity (static) at approximately 6 m upslope of the 890 m bench crest. This indicates that based on the soil parameters used in the analyses, as the overburden material thaws it will have shallow slip failures and sloughing over time until the crest of the slope reaches this offset. Should this be the case, a resulting sideslope of 1.9H:1V would be created from the original 1.5H:1V slope. These shallow slip failures and sloughing will occur with the 900 m bench sideslope as well. If both the 890 m and 900 m 1.5H:1V sideslope naturally flattens to approximately 1.9H:1V, the 890 m bench crest width will be reduced to roughly 10 m.

To achieve the design criteria factors of safety, 1.3 (static) and 1.1 (pseudostatic), for the 890 m and 900 m overburden sideslopes and limit the potential of shallow slip failures and sloughing, the sideslopes would require flattening from 1.5H:1V to 2.75H:1V. Given the design life of this dump and its intended use, the construction of 2.75H:1V sideslopes are not likely warranted. This is also based on the fact that the overall dump stability meets the design criteria and that buffer zones have been incorporated into its design to contain shallow surface failures.

EBA recommends an adaptive management approach of visually monitoring the dump's crests and toes as the overburden thaws and regularly after that could provide an effective means of noting potential areas of instability that could be remediated before failure.

Slope remediation of the sloughed material areas can be completed during the design life of the structure. This could entail flattening the sideslopes or constructing a waste rock shell in the area of instability, if necessary.

To initiate remediation of areas of instability that exceed the expected distance of slope movement, the intermediate buffer limit, as presented in Figure 5, has been incorporated into the design. Should any overburden material encroach on the intermediate buffer limit

the affected sideslope and bench must be repaired to the satisfaction of the Geotechnical Engineer.

6.3.5.4 Liquefaction Potential

Liquefaction potential of the overburden was assessed by comparing the Atterberg limit results to empirical relationships developed for assessment of liquefiable soil types as presented in Seed et al., 2003. Based on the limited available data, the unfrozen overburden material is considered potentially susceptible to cyclically induced liquefaction. This is a result of the fact that the water content on the unfrozen overburden is expected to be greater than 85 % of the material's liquid limit.

Additional information of the characteristics of the unfrozen overburden material placed within the dump is required to further assess potential for liquefaction. This information involves measuring the density of the inplace material (currently expected to be loose), determining its moisture content (whether the material drains once thawed), and completing index testing of the overburden (particle size distribution and Atterberg limits). This information would need to be collected in the summer of 2008 once the overburden material thaws.

Another approach to this potential issue is to assume that the overburden material will liquefy and design the dump accordingly. One option could involve constructing a waste rock shell or toe berm on the exterior slope of the dump to provide some additional lateral constraint against any instability within the overburden slope. This approach would result in the construction of a dump similar to the MWD. This construction method does not allow for easy reuse of the material; and this reuse is the main reason for the proposed ROD.

As indicated, the potential susceptibility of the overburden to liquefaction commences once the material thaws within the dump; therefore, placement of frozen overburden in the winter/spring of 2008 is not a concern. A summer 2008 characterization program is recommended to further assess whether or not the overburden material is liquefiable under the design earthquake. If this program is not completed, a waste rock shell or toe berm on the exterior slope of the dump must be constructed prior to May 2009.

7.0 SURFACE WATER MANAGEMENT

As previously indicated, the topographic information presented in Figure 2 indicates the presence of several small ephemeral creeks that converge to the middle of the upper valley roughly 30 m to the southwest of the proposed ROD footprint. These creeks collect the surface runoff water and route it down the mountain side. Three ephemeral creeks are shown within the proposed ROD footprint; one originates roughly 150 m northwest of the dump and runs through the upper portion of the dump while the other two originate within the MWD and run through the bottom portion. One of the creeks (farthest east) that

originate within the MWD has been disrupted by overburden fill placement within that dump.

Neither these creeks nor any other natural drainage courses were able to be seen during the 2008 site characterization due to the presence of snow cover.

Three site reconnaissance visits, one prior to spring freshet, one at spring freshet and other in the summer 2008, are required to evaluate whether an upstream diversion berm to limit the volume of run-on water through the dump is required. This berm would divert run-on water from the catchment area above the dump to the main ephemeral creek.

It is understood that surface water ponds along the IROD access road downstream of the proposed ROD site during the summer months. The ponded water should be monitored and removed should it encroach within 40 m of the design toe.

Localized erosion of the dump slope is expected and not a concern for the overall stability of the dump. Any areas of consistent localized erosion that causes significant material transport should be remediated.

8.0 CONSTRUCTION RECOMMENDATIONS

General construction recommendations for the ROD are summarized below.

- Subgrade preparation for the proposed ROD is not required. The organic mat should remain undisturbed.
- The particle size distribution and moisture content of the overburden to be stored within the ROD is highly variable; however, if overburden material of low moisture content and/or coarser grained is sourced during pit development it should be used within the exterior slope on the dump.
- Minto must monitor the overburden material to determine whether it should be stored within the ROD (non ice-rich) or IROD (ice-rich).
- A monitoring program must be incorporated to provide photographs and record (as built) information of the construction progress.
- Regular visual inspections by Minto should be completed to note potential areas of instability.
- The intermediate buffer limit, presented in Figure 5, must be monitored. Should sloughed material encroach upon this limit, slope remediation must be completed by either flattening the sideslopes or constructing a waste rock shell in the area of instability.
- Construction should be completed in freezing conditions to aid with trafficability. As indicated in Section 3.2.3, trafficability of the overburden material will be hampered as the soil thaws.

• Removal of the overburden material must be completed in a manor that provides safe working conditions.

9.0 PERFORMANCE MONITORING

Performance monitoring is an integral part of the design, construction, and operation of the ROD. This section describes a recommended minimum monitoring program for the construction and operation phases of the dump.

The results of the monitoring program can be the basis of an adaptive management process that continually reviews the operation of the dump.

A monitoring program must be incorporated to provide photographs and record (as built) information of the construction progress.

9.1 VISUAL MONITORING

It is understood that the proposed dump will be constructed in the winter of 2008 when the overburden waste soils are frozen. Field observations and performance monitoring should be completed in the spring/summer of 2008 to evaluate the dump performance once the materials thaw. This monitoring should continue on a monthly basis and include the following:

- Inspection of the external slopes for any signs of distress;
- Inspection of the crest of the dump for any signs of transverse cracking; and
- Inspection of the dump toe for any signs of seepage from the base.

EBA recommends visual monitoring of the dump's crests and toes as the overburden thaws and regularly after that could provide an effective means of noting potential areas of instability that could be remediated before failure.

The intermediate buffer limit, as presented in Figure 5, must be monitored on a regular basis. Should any overburden material encroach on the intermediate buffer limit the effected sideslope and bench must be repaired to the satisfaction of the Geotechnical Engineer.

Any ponded water along the IROD access road should be monitored and removed if it comes within 40 m of the ROD design toe.

9.2 OVERBURDEN MATERIAL MONITORING

Monitoring of the overburden waste soils should be completed during open pit development to ensure only non ice-rich overburden waste is placed in the proposed Reclamation Overburden Dump. Ice-rich waste should be placed in the Ice-Rich Overburden Dump.

9.3 DEFORMATION SURVEYS

The breaklines (crest and toes) of the ROD should be surveyed at the completion of each main construction phase to determine the record (as built) geometry and to establish a basis for determining future deformations. These same breaklines should be resurveyed and reviewed in June and September of each year, or periodically at the discretion of the Geotechnical Engineer, to monitor deformation movements.

10.0 ANNUAL INSPECTION

It is recommended that an annual site inspection be conducted by the Geotechnical Engineer during the operational period to document the performance of the ROD. The specific tasks of these visits include:

- Inspection of the external slopes for any signs of distress;
- Inspection of the crest of the dump for any signs of transverse cracking;
- Inspection of the dump for any signs of seepage from the base;
- Review of survey data to confirm conformance with design assumptions; and
- Preparation of an annual report that summarizes the data and provides recommendations for maintenance or modification to the dump.

11.0 LIMITATIONS

Geological conditions are innately variable and are seldom spatially uniform. At the time of this report, information on stratigraphy at the project was at identified borehole locations from past studies. In order to develop recommendations from this information, it is necessary to make some assumptions concerning conditions other than at the specifically tested locations. Adequate monitoring should be provided during construction to check that these assumptions are reasonable.

The recommendations prepared and presented in this report are based on the geotechnical data gathered by EBA from previous reports and the current laboratory testing and site characterization program The provided data, in the form of geotechnical boreholes and associated laboratory index property test results, has been supplemented by EBA's direct observations of the site.

This report and the recommendations contained in it are intended for the sole use of Minto Explorations Ltd. EBA does not accept any responsibility for the accuracy of any of the data, the analysis or the recommendations contained or referenced in the report if the information presented in this report is used or relied upon by any party other than that specified above for the proposed ROD. Any such unauthorized use of this report is at the sole risk of the user. Additional information regarding the use of this report is presented in the attached General Conditions, which form a part of this report.

12.0 CLOSURE

EBA trusts that this report satisfies your requirements. Please do not hesitate to contact the undersigned should you have any questions or comments.

Respectfully Submitted, EBA Engineering Consultants Ltd.

prepared by: Jason P.W. Berkers, P.Eng. Project Engineer Direct Line: 867.668.2071 x233 jberkers@eba.ca

reviewed by: J. Richard Trimble, M.Sc. (Eng.), P.Eng. Project Director, Yukon Region Direct Line: 867.668.2071 x222 rtrimble@eba.ca

PERMIT TO PRACTICE
SIGNATUR Flucked Mindle
PERMIT NUMBER PP003
Association of Professional Engineers of Yukon

REFERENCES

- EBA, 1998a. "Geotechnical Evaluation, Proposed Main Waste Dump". Minto Explorations Ltd. Minto Mine, Yukon. (EBA Project No. 0201-11509, dated April 1998).
- EBA, 1998b. "1997 Geotechnical Program and Construction Inspection Reports". Minto Explorations Ltd. Minto Mine, Yukon. (EBA Project No. 0201-11509, dated February 1998).
- Seed et al., 2003. "Recent Advances in Soil Liquefaction Engineering: A Unified and Consistent Framework". College of Engineering. University of California. Berkeley. Report No. EERC 2003-06.
- EBA, 2006a. "Geotechnical Design, Ice-Rich Overburden Dump". Minto Explorations Ltd. Minto Mine, Yukon. (EBA Project No. 1200173, dated January 2006).
- EBA, 2006b. "Addendum to Geotechnical (Open Pit) Feasibility Study". Minto Explorations Ltd. Minto Mine, Yukon. (EBA Project No. 1200173, dated May 25, 2006).
- EMR, 2007. "Temporary Approval for Reclamation Overburden Dump, Minto Mine". Minto Explorations Ltd. Minto Mine, Yukon. (QML-0001, dated December 20, 2007).
- Minto, 2007. "Re: QML-0001, Notification of need to start Reclamation Material Stockpile (RMS)". Government Yukon – Energy, Mines and Resources. Minto Mine, Yukon. (QML-0001, dated December 12, 2007).
- EBA, 2007. "Proposed Reclamation Overburden Dump, Minto Mine, YT". Minto Explorations Ltd. Minto Mine, Yukon. (EBA Project No. W14101068.004, dated December 13, 2007).

FIGURES

l/eba.local.corp/Whitehorse/Data/0201drawings/Minto/Phase 004 Reclamation Dump/W14101068004 Dump.dwg [Figure 2 (11X17)] February 07, 2008 - 3:10pm ktomczyk

		6, 2008	DATE February	OFFICE EBA-WHSE	80	nts Ltd.
Flaure 4	0 REV	JPB	KJT DWN	PROJECT NO. W14101068.004		leering (
	nalyses 5 1 & 2	oility Ar enarios	Stal Sc			
ırden Dump	Overbu 1e, YT	imation Into Mir	sed Recla Mi	Propos	s Ltd.	Exploration
					ŏ	ALE 1:1,00
			0+500)) DETAIL	0+450 STATION (n ENARIO 2 [
					OST	D PERMAFF
	1					
	Ĥ	SURFAC	M	CRITICAL CASE 7 ELEV 890		m
			E SURFAC	CRITICAL FAILURE CASE 6 & 9		
			m	. FAILURE SURFAC	CRITICAL	
				1. 1. 1. 5		EUDOSTATIC) EUDOSTATIC)
				1.7		
			FETY	NUM FACTOR OF SA	MININ	ALYSIS

APPENDIX

APPENDIX A GENERAL CONDITIONS

GEOTECHNICAL REPORT – GENERAL CONDITIONS

This report incorporates and is subject to these "General Conditions".

1.0 USE OF REPORT AND OWNERSHIP

This geotechnical report pertains to a specific site, a specific development and a specific scope of work. It is not applicable to any other sites nor should it be relied upon for types of development other than that to which it refers. Any variation from the site or development would necessitate a supplementary geotechnical assessment.

This report and the recommendations contained in it are intended for the sole use of EBA's client. EBA does not accept any responsibility for the accuracy of any of the data, the analyses or the recommendations contained or referenced in the report when the report is used or relied upon by any party other than EBA's client unless otherwise authorized in writing by EBA. Any unauthorized use of the report is at the sole risk of the user.

This report is subject to copyright and shall not be reproduced either wholly or in part without the prior, written permission of EBA. Additional copies of the report, if required, may be obtained upon request.

2.0 NATURE AND EXACTNESS OF SOIL AND ROCK DESCRIPTIONS

Classification and identification of soils and rocks are based upon commonly accepted systems and methods employed in professional geotechnical practice. This report contains descriptions of the systems and methods used. Where deviations from the system or method prevail, they are specifically mentioned.

Classification and identification of geological units are judgmental in nature as to both type and condition. EBA does not warrant conditions represented herein as exact, but infers accuracy only to the extent that is common in practice.

Where subsurface conditions encountered during development are different from those described in this report, qualified geotechnical personnel should revisit the site and review recommendations in light of the actual conditions encountered.

3.0 LOGS OF TESTHOLES

The testhole logs are a compilation of conditions and classification of soils and rocks as obtained from field observations and laboratory testing of selected samples. Soil and rock zones have been interpreted. Change from one geological zone to the other, indicated on the logs as a distinct line, can be, in fact, transitional. The extent of transition is interpretive. Any circumstance which requires precise definition of soil or rock zone transition elevations may require further investigation and review.

4.0 STRATIGRAPHIC AND GEOLOGICAL INFORMATION

The stratigraphic and geological information indicated on drawings contained in this report are inferred from logs of test holes and/or soil/rock exposures. Stratigraphy is known only at the locations of the test hole or exposure. Actual geology and stratigraphy between test holes and/or exposures may vary from that shown on these drawings. Natural variations in geological conditions are inherent and are a function of the historic environment. EBA does not represent the conditions illustrated as exact but recognizes that variations will exist. Where knowledge of more precise locations of geological units is necessary, additional investigation and review may be necessary.

5.0 SURFACE WATER AND GROUNDWATER CONDITIONS

Surface and groundwater conditions mentioned in this report are those observed at the times recorded in the report. These conditions vary with geological detail between observation sites; annual, seasonal and special meteorologic conditions; and with development activity. Interpretation of water conditions from observations and records is judgmental and constitutes an evaluation of circumstances as influenced by geology, meteorology and development activity. Deviations from these observations may occur during the course of development activities.

6.0 PROTECTION OF EXPOSED GROUND

Excavation and construction operations expose geological materials to climatic elements (freeze/thaw, wet/dry) and/or mechanical disturbance which can cause severe deterioration. Unless otherwise specifically indicated in this report, the walls and floors of excavations must be protected from the elements, particularly moisture, desiccation, frost action and construction traffic.

7.0 SUPPORT OF ADJACENT GROUND AND STRUCTURES

Unless otherwise specifically advised, support of ground and structures adjacent to the anticipated construction and preservation of adjacent ground and structures from the adverse impact of construction activity is required.

There is a direct correlation between construction activity and structural performance of adjacent buildings and other installations. The influence of all anticipated construction activities should be considered by the contractor, owner, architect and prime engineer in consultation with a geotechnical engineer when the final design and construction techniques are known.

INFLUENCE OF CONSTRUCTION ACTIVITY

9.0 OBSERVATIONS DURING CONSTRUCTION

Because of the nature of geological deposits, the judgmental nature of geotechnical engineering, as well as the potential of adverse circumstances arising from construction activity, observations during site preparation, excavation and construction should be carried out by a geotechnical engineer. These observations may then serve as the basis for confirmation and/or alteration of geotechnical recommendations or design guidelines presented herein.

10.0 DRAINAGE SYSTEMS

8.0

Where temporary or permanent drainage systems are installed within or around a structure, the systems which will be installed must protect the structure from loss of ground due to internal erosion and must be designed so as to assure continued performance of the drains. Specific design detail of such systems should be developed or reviewed by the geotechnical engineer. Unless otherwise specified, it is a condition of this report that effective temporary and permanent drainage systems are required and that they must be considered in relation to project purpose and function.

11.0 BEARING CAPACITY

Design bearing capacities, loads and allowable stresses quoted in this report relate to a specific soil or rock type and condition. Construction activity and environmental circumstances can materially change the condition of soil or rock. The elevation at which a soil or rock type occurs is variable. It is a requirement of this report that structural elements be founded in and/or upon geological materials of the type and in the condition assumed. Sufficient observations should be made by qualified geotechnical personnel during construction to assure that the soil and/or rock conditions assumed in this report in fact exist at the site.

12.0 SAMPLES

EBA will retain all soil and rock samples for 30 days after this report is issued. Further storage or transfer of samples can be made at the client's expense upon written request, otherwise samples will be discarded.

13.0 STANDARD OF CARE

Services performed by EBA for this report have been conducted in a manner consistent with the level of skill ordinarily exercised by members of the profession currently practising under similar conditions in the jurisdiction in which the services are provided. Engineering judgement has been applied in developing the conclusions and/or recommendations provided in this report. No warranty or guarantee, express or implied, is made concerning the test results, comments, recommendations, or any other portion of this report.

14.0 ENVIRONMENTAL AND REGULATORY ISSUES

Unless stipulated in the report, EBA has not been retained to investigate, address or consider and has not investigated, addressed or considered any environmental or regulatory issues associated with development on the subject site.

15.0 ALTERNATE REPORT FORMAT

Where EBA submits both electronic file and hard copy versions of reports, drawings and other project-related documents and deliverables (collectively termed EBA's instruments of professional service), the Client agrees that only the signed and sealed hard copy versions shall be considered final and legally binding. The hard copy versions submitted by EBA shall be the original documents for record and working purposes, and, in the event of a dispute or discrepancies, the hard copy versions shall govern over the electronic versions. Furthermore, the Client agrees and waives all future right of dispute that the original hard copy signed version archived by EBA shall be deemed to be the overall original for the Project.

The Client agrees that both electronic file and hard copy versions of EBA's instruments of professional service shall not, under any circumstances, no matter who owns or uses them, be altered by any party except EBA. The Client warrants that EBA's instruments of professional service will be used only and exactly as submitted by EBA.

The Client recognizes and agrees that electronic files submitted by EBA have been prepared and submitted using specific software and hardware systems. EBA makes no representation about the compatibility of these files with the Client's current or future software and hardware systems.

APPENDIX

APPENDIX B 2005 OVERBURDEN CHARACTERIZATION PROGRAM - BOREHOLE LOGS

Minto Mine	Development 2005	Client: Sherwood Mining Corpo	BOREHOLE NO: 1200173-042								
Minto Coppe	er Mine	DRILL: DD HQ		PROJECT NO: 1200173							
NW of Minto	, YT	UTM ZONE: 8 N6944772.3 E3	84660.54	ELEVAT	10N: 819.64 m						
SAMPLE IY	PE GRAB SAMPLE NO RECOVER			. Barrel							
epth(m) IPLE TYPE	SOIL	GROUND ICE	▲ GROUND TEMPERATURE -2 -1 0		● PERCENT CLAY ● 20 40 60 80 ■ PERCENT SILT OR FINES ■ 20 40 60 80 ▲ PERCENT SAND ▲	ATION(ft)					
SAN D	- DESCRIPTION	DESCRIPTION	PLASHC M.C.		20 40 60 80 PERCENT GRAVEL	ELEV					
= 0.0	ORGANIC ROOT MAT		20 40 60		<u></u>	.=2689.0					
2.0 3.0 4.0 5.0 6.0 7.0 8.0	 becomes sand, silty around 3.0 f sand is fine to medium grained trace of fine to medium grained gravel below 3.7 m silt, trace sand from 4.8 m to 5. SAND is well graded below 5.2 m becomes gravelly, fine to medium grained around 5.2 m colour changes to medium grey some silt to silty 	m Vx, trace 5–10% 2 m				2683.0 2681.0 2677.0 2677.0 2677.0 2677.0 2669.0 2667.0 2665.0 2665.0 2665.0 2665.0					
10.0 × 11	 trace of fine angular gravel from 6.0 to 6.4 m coarser gravels encountered from 8.5 m to 13.7 m sand becomes coarser and angularound 10.0 m cobble present from 14.3 m - 1. 	Vr, Vs 10–15% 75~100 mm apart ar 5.2 m Vs. 10–15%				2657.0 2655.0 2655.0 2653.0 2649.0 2649.0 2645.0 2645.0 2643.0 2643.0					
16.0 17.0 18.0 20.0 21.0 23.0 23.0	13.7 m depth through to at least 24.0 m — silt content increases, some sand sandy, fine grained around 20.1 m	lce lens 100 mm thick, spaced 100—150 mm				2639.0 2637.0 2635.0 2633.0 2629.0 26					
24.0 25.0 26.0 27.0 28.0 30.0 31.0 32.0 33.0 34.0	 gravel from 24.7 - 26.2 m has a drilling to wash majarity of other solids and possible ice out of the core poor recovery in this section but may be zone containing mainly grav becomes silt, some sand, some a trace of gravel cobble encountered from 27.5 m 32.0 m from 100-300 mm in size 	vaused Vs, trace <5% Vs, 10-15% 50-100 mm apart 1ay, -				2611.0 2609.0 2605.0 2605.0 2605.0 2605.0 2605.0 2609.0 2599.0 2599.0 2599.0 2599.0 2599.0 2599.0 2599.0 2599.0 2580.0 2580.0 25					
EBA	Engineering Consulta	ants Ltd.	BY: JSB BY: JRT		IPLETION DEPTH: 56.39 n	ກ					
06/01/18 04:02PN (PUK	Whitehorse, Yukon Page 1 of 2										

Ninto Corpor Mine DOLL DO H0 PROJECT Not: 1000173 NM of Mino, VT UNIX 2010: 3 Not 4772.3 E394000.54 ELECTION: 810.64 m. SAMPLE TYPE DORE SAMPLE NM ENCORPTION ENCORPTION SAMPLE TYPE DESCRIPTION ENCORPTION ENCORPTION ENCORPTION Additional and the second control of t	Minto Mir	ne De	evelopment 2005	Client: Sherwood Mining Corporation					BORE	OREHOLE NO: 1200173-042								
NM of Mitch, W UM 2016: 3 Alego 4472.3.E SAG60.54 ELEVATOR: 10.64 m. SMMPLE TYPE Gave swarz No RECOVERY Bio III GROUND ICE Associon Treesunter (c) A PERCENT RES.	Minto Co	pper	Mine	DRILL: DD HQ							OJECT NO: 1200173							
SMPLE TIPL CAUGE SMPLE Non-RECOVERY Non-Recovery <td>NW of Mi</td> <td>into,</td> <td><u>ҮТ</u></td> <td>UTM ZO</td> <td>NE: 8 N6944</td> <td>772.3 E384</td> <td>660.54</td> <td></td> <td></td> <td>ELEV</td> <td colspan="8">EVATION: 819.64 m</td>	NW of Mi	into,	<u>ҮТ</u>	UTM ZO	NE: 8 N6944	772.3 E384	660.54			ELEV	EVATION: 819.64 m							
E SOIL GROUND ICE Actions TureDistance (1) a Content of the second secon	SAMPLE	TTPE	GRAB SAMPLE	Y 🛛	HQ					el barr	EL							
E SOLL GROUND ICE Addwore treeportue (2/4 = 200 million <		1	COT								20	PERCEN 40	T CLAY 60	6 80	Ŧ			
B E DESCRIPTION DESCRIPTION 330		I S	SOIL		GROUN	D ICE	I GROU 2	IND TEN -1	(PERATU 0	RE (C)▲ 1	■ PERC 20	ent Sil 40	T OR 1 60	71NES ■ 80] NO			
B DEDUCINITION DESCRIPTION 340	Jept MPL		DESCRIPTION		DEGODI	ውመርረስ	PLASTIC	. N		LIQUID	▲F 20	ERCEN	T SANE		VATIO			
330 20 40 60 60 72 40 70 <t< td=""><td>AS</td><td>5</td><td></td><td></td><td>DEOUUI</td><td>FIION</td><td></td><td></td><td>*</td><td></td><td>◆ PI</td><td>RCENT</td><td>GRAVE</td><td>L¢</td><td></td></t<>	AS	5			DEOUUI	FIION			*		◆ PI	RCENT	GRAVE	L¢				
330 - trace to some gravel from 36.6 m to 37.8 m - some gravel from 36.6 m to 37.8 m - some gravel from 36.6 m to 37.8 m 330 - some gravel below 36.6 m - some gravel below 36.6 m 440 - some gravel below 36.6 m 450 - some gravel below 36.6 m 450 - some gravel from 39.6 to 11.1 m 450 - colour becomes dirk grave 450 - becomes some gravel, fine to medium grave 450 - becomes some gravel, fine to medium grave 510 - becomes some gravel, fine to medium grave 510 - becomes some gravel, fine to medium grave 510 - becomes some gravel, fine to medium grave 510 - becomes acome gravel, fine to medium grave 510 - no wather encountered at time of	= 34.0						20	40	60	80	20	40	60	80	=2577.0			
37.0 - trace to some gravel from 38.6 m to 37.8 m - some gravel balow 38.6 m 5990 38.0 - some gravel balow 38.6 m 5990 40.0 - some gravel balow 38.6 m 5990 40.0 - some gravel balow 38.6 m 5990 41.0 - some gravel balow 38.6 m 5990 42.0 - some basomes fine grained from 38.6 5990 42.0 - odour bocomes dating gravel, trace 5990 - colour bocomes dating gravel, trace - some gravel, trace moduling gravel, trace 5990 44.0 - broce of fine moduling gravel, trace 5990 - broce of fine moduling gravel, trace - broce of fine to medium gravel 5990 45.0 - broce of fine to medium gravel 5990 46.0 - broce of fine to medium gravel 5990 47.0 - broce of fine to medium gravel 5990 53.0 - broce of fine to medium gravel 5990 53.0 - broce of fine to medium gravel 5990 53.0 - broce of fine gravel, fine to medium gravel 5990 53.0 - browater encountered at time of dniling	E-35.0																	
37.0 - troce to some gravel from 36.6 m to 38.0 - some gravel below 36.6 m 38.0 - some gravel below 36.6 m 41.0 - sond becomes fine grained from 33.6 for to at1.1 m - alby, troce of fine gravel, troce of b 41.1 m - ocour becomes soft gray - was at1. cloyer, troce 44.0 - ocour becomes dork gray - ocour becomes dork gray - was at1. cloyer, troce of fine to medium gray - ocour becomes dork gray - was at1. cloyer, troce of fine to medium gray - becomes sorre gravel, fine to medium gray - was at1. cloyer, troce of fine to medium gray 48.0 - becomes sorre gravel, fine to medium gray - was at1. cloyer, troce of fine to medium gray 53.0 - becomes sorre gravel, fine to medium grained gravel, fine to medium grained below 50.5 m - becomes sorre gravel, fine to medium gray 53.0 - becomes sorre gravel, fine to medium grained gravel at1.0 m - becomes sorre gravel, fine to medium gray 53.0 - becomes sorre gravel, fine to medium grained gravel at1.0 m - becomes sorre gravel, fine to medium gray 53.0 - becomes sorre gravel, fine to medium grained gravel at1.0 m - becomes gravel at1.0 m 53.0 - becomes sorre gravel, fine to medium gravel at 1.0 m - becomes gravel at1.0 m	E 36.0														- 2571.0			
38.0 - some gravel below 36.6 m 39.0 - some gravel below 36.6 m 40.0 - some gravel below 36.6 m 41.0 - some gravel below 36.6 m 42.0 - some gravel below 36.6 m 43.0 - some gravel below 36.6 m 43.0 - some gravel frace of fine grouel trace of or buy between 38.6 to 11 m 43.0 - colour charges to medium gravel - colour charges to medium gravel - some gravel, fine to medium gravel 9.0 30.0 mm below 44.5 m 53.0 - becomes some gravel, fine to medium gravel 9.10 - becomes some gravel, fine to medium gravel 9.10 - becomes some gravel, fine to medium gravel 9.10 - becomes some gravel, fine to medium gravel 9.10 - becomes some gravel, fine to medium gravel 9.10 - becomes some gravel, fine to medium gravel 9.10 - becomes some gravel, fine to medium gravel 9.10 - becomes some gravel, fine to medium gravel 9.10 - becomes some gravel, fine to medium gravel 9.10 - becomes some gravel, fine to medium gravel 9.10 - becomes some gravel, fine to medium	E- 37.0	æ	- trace to some gravel from 36.6	m to											2569.0			
32.0 - sond becomes fine grained from 33.6 - sond becomes fine grained from 33.6 41.0 - sond becomes fine grained from 33.6 - sond becomes file gravel, trace 42.0 - colour becomes durk grav - sond becomes file gravel, trace 43.0 - colour becomes durk grav - sond becomes file gravel, trace 43.0 - colour becomes durk grav - sond becomes file gravel, trace 43.0 - colour becomes durk grav - becomes sile, close, trace 44.0 - becomes sile, close, trace - becomes sile, close, trace 45.0 - becomes some gravel, fine to medium gravel - becomes some gravel, fine to medium gravel 45.0 - becomes some gravel, fine to medium gravel - becomes some gravel, fine to medium gravel 52.0 - becomes some gravel, fine to medium gravel - becomes some gravel, fine to medium gravel 53.0 - becomes some gravel, fine to medium gravel - becomes some gravel, fine to medium gravel 53.0 - becomes some gravel, fine to medium gravel - becomes some gravel, fine to medium gravel 53.0 - becomes some gravel, fine to medium gravel - becomes some gravel, fine to medium gravel 53.0 - becomes some gravel, fine to medium gra	E 38.0		37.8 m — same aravel below 36.6 m												2565.0			
40.0 - sond becomes fine grained from 39.6 Vs. 5-10%, Vs. 55 41.0 - ally, trobe of fine gravel, trace of clay between 39.6 to 41.1 m Vs. 55 43.0 - colour becomes durk gray - becomes durk	E 39.0	-													2563.0			
41.0 to 41.1 m 957.7 42.0 - silty, trace of fine growel, trace of cloy between 306 to 41.1 m 956.0 43.0 - colour choices adir, grey 956.0 45.0 - colour choices adir, grey 956.0 - colour choices adir, grey - toce of fine to medium gread 956.0 45.0 - colour choices adir, grey - toce of fine to medium gread 956.0 45.0 - colour choices adir, doyey, trace to sand 90 rd 956.0 45.0 - colour choices adir, doyey, trace to sand 90 rd 956.0 45.0 - colour choices adir, grey - toce of fine to medium growel, trace to adir adir adir adir adir adir adir adir	E 40.0		- sand becomes fine grained from	39.6	Vs, 5-10%,										E2559.0			
42.0 - sitly, trace gravel, trace 5533 43.0 - colour becomes durk gray 5533 - becomes sitl, dowy, trace to sond around 43.0 m - colour becomes durk gray 5540 - solour becomes sitl, dowy, trace to sond gravel, intermittently spaced of 200 - colour changes to medium gray 5540 - solour becomes some gravel, fine to medium grained gravel, intermittently spaced of 200 - colour changes to medium gray - colour changes to medium gray - solour becomes some gravel, fine to medium grained below 50.5 m - becomes some gravel, fine to medium grained below 50.5 m - becomes some gravel, fine to medium grained below 50.5 m - becomes some gravel, fine to medium grained below 50.5 m - becomes durk gray - colour changes to medium gray - colour chang	E 41,0		to 41.1 m		Vx,< 5%													
43.0 - colour becomes dark grey - becomes sit, closey, trace to sand around 43.0 m 9240 45.0 - colour changes to mailum grey - colour changes to mailum grey 9241 45.0 - colour changes to mailum grey 9241 46.0 - colour changes to mailum grey 9241 47.0 to 300 mm below 44.5 m 9241 48.0 - becomes some grovel, fine to medium grained below 50.5 m 92510 59.0 - becomes some grovel, fine to medium grained below 50.5 m 92510 59.0 - becomes some grovel, fine to medium grained below 50.5 m 92510 59.0 - becomes and oxidizing 92510 59.0 - no water encountered at time of drilling 92510 60.0 - no water encountered at time of drilling 92610 61.0 - and colour encountered at time of drilling 92470 63.0 - and colour encountered at time of drilling 92470 63.0 - and colour encountered at time of drilling 92470	E42 n		- sitty, trace of fine gravel, trace of clay between 39.6 to 41.1 m							····					2553.0			
440 - becomes silt, doyey, trace to sand around 430 m 95 2 7 mm thick 100-200 mm opart 100 200 mm paget 450 - colour changes to medium grey trace of fine to medium grey trace of fine to medium gravel, intermitently spaced at 200 to 300 mm below 44.5 m 100-200 mm paget 100-200 mm paget 480 - becomes some gravel, fine to medium grained below 50.5 m 100-200 mm paget 100-200 mm paget 100-200 mm paget 510 - becomes some gravel, fine to medium grained below 50.5 m 100-200 mm paget 100-200 mm paget 100-200 mm paget 520 grained below 50.5 m 100-200 mm paget 100-200 mm paget 100-200 mm paget 100-200 mm paget 530 - becomes some gravel, fine to medium grained below 50.5 m 100-200 mm paget		-	 colour becomes dark grey 		16 (0)										2551.0			
45.0 - colour changes to medium grey - vrace of fine		=	- becomes silt, clayey, trace fo sa	าช	190-200 mm	INICK D												
45.0 - trace of fine to medium graned gravel, intermittently spaced at 200 to 300 mm below 44.5 m 5510 <td></td> <td></td> <td>— colour changes to medium grev</td> <td></td> <td>apart</td> <td>· ·</td> <td> </td> <td>· []</td> <td>·</td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td>			— colour changes to medium grev		apart	· ·		· []	·									
48.0 gravel, intermittently spaced at 200 953.0 48.0 to 300 mm below 44.5 m 953.0 48.0 - becomes some gravel, fine to medium grained below 50.5 m 953.0 50.0 - becomes some gravel, fine to medium grained below 50.5 m 953.0 52.0 BEDROCK (GRANTE) - poor quality, high fractures and oxidizing 951.0 53.0 Fractures and oxidizing 951.0 55.0 - no water encountered at time of drilling 950.0 56.0 - no water encountered at time of drilling 950.0 66.0 - 440.0 9497.0 66.0 - No water encountered at time of drilling 9497.0 66.0 - No water encountered at time of drilling 9497.0 66.0 - 440.0 9497.0 66.0 - 440.0 9497.0 66.0 - 440.0 9497.0 66.0 - 440.0 9497.0 66.0 - 440.0 9497.0 66.0 - 440.0 9497.0 66.0 - 440.0 9497.0 66.0 - 440.0 9497.0 66.0 - 440.0 9497.0 <t< td=""><td>E- 45.0</td><td></td><td>- trace of fine to medium grained</td><td></td><td></td><td></td><td></td><td>·</td><td></td><td></td><td></td><td>····</td><td></td><td></td><td>2541.0</td></t<>	E- 45.0		- trace of fine to medium grained					·				····			2541.0			
43.0 - becomes some gravel, fine to medium grained below 50.5 m - becomes some gravel, fine to medium grained below 50.5 m 53.0 - becomes some gravel, fine to medium grained below 50.5 m - 55.0 53.0 - becomes and oxidizing - 55.0 54.0 - 55.0 - 55.0 55.0 - becomes and oxidizing - 55.0 55.0 - no water encountered at time of drilling - 100 - 500.0 56.0 - no water encountered at time of drilling - 500.0 66.0 - no water encountered at time of drilling - 400.0 66.0 - 56.0 - 56.0 56.0 - no water encountered at time of drilling - 400.0 66.0 - 77.0 - 260.0 66.0 - 77.0 - 56.0 66.0 - 77.0 - 56.0 67.0 - 77.0 - 76.0 66.0 - 77.0 - 77.0 66.0 - 77.0 - 77.0 67.0 - 77.0 - 77.0 67.0 - 77.0 - 77.0 67.0 - 77.0 - 77.0 67.0 - 77.0 - 77.0 67.0	46.0		gravel, intermittently spaced at 200					.										
48.0 - becomes some gravel, fine to medium grained below 50.6 m 953.0 51.0 - becomes some gravel, fine to medium grained below 50.6 m 953.0 52.0 BEDROCK (GRANTE) - coor quolity, high fractures and oxidizing 953.0 55.0 Fractures and oxidizing 953.0 55.0 950.0 953.0 55.0 950.0 953.0 55.0 950.0 953.0 55.0 950.0 950.0 55.0 950.0 950.0 55.0 950.0 950.0 55.0 950.0 950.0 55.0 950.0 950.0 55.0 950.0 950.0 55.0 950.0 950.0 55.0 950.0 950.0 55.0 950.0 950.0 55.0 950.0 950.0 55.0 950.0 950.0 55.0 950.0 950.0 55.0 950.0 950.0 55.0 950.0 950.0 66.0 950.0 950.0 66.0 950.0 950.0	E-47.0														2535.0			
49.0 59.0 50.0 - becomes some gravel, fine to medium grained below 50.5 m (GRANTE) - poor quolity, high fractures and oxidizing 599.0 53.0 BEDROCK (GRANTE) - poor quolity, high fractures and oxidizing 599.0 53.0 Fractures and oxidizing 591.0 54.0 550.0 551.0 55.0 END OF BOREHOLE 56.7 m (SRANTE) - no water encountered at time of drilling 590.0 56.0 560.0 590.0 56.0 560.0 590.0 57.0 - no water encountered at time of drilling 590.0 66.0 590.0 590.0 66.0 590.0 590.0 66.0 590.0 590.0 66.0 590.0 590.0 66.0 590.0 590.0 66.0 590.0 590.0 66.0 590.0 590.0 66.0 590.0 590.0 66.0 590.0 590.0 66.0 590.0 590.0 66.0 590.0 590.0 680.0 <	E 48.0														2533.0			
50.0 - becomes some gravel, fine to medium grained below 50.5 m 5220 53.0 BEDROCK (GRANTE) - poor quality, high fractures and oxidizing - 2000 (0000) 54.0 55.0 2513.0 55.0 Final (0000) 2517.0 56.0 - no water encountered at time of drilling - no water encountered at time of drilling - 2000 66.0 - 4000 - 4000 - 4000 66.0 - 56.0 - 56.0 - 56.0 57.0 END OF BOREHOLE 56.7 m - no water encountered at time of drilling - 2000.0 - 2000.0 66.0 - 4000 - 4000 - 4000 66.0 - 4000 - 4000 - 4000 66.0 - 4000 - 4000 - 4000 66.0 - 4000 - 4000 - 4000 66.0 - 4000 - 4000 - 4000 66.0 - 4000 - 4000 - 4000 66.0 - 4000 - 4000 - 4000 66.0 - 4000 - 4000 - 4000 66.0 - 4000 - 4000	- 49.0														2529.0			
51.0 - becomes some gravel, fine to medium grained below 50.6 m 5220 53.0 BEDROCK (GRANTE) - poor quality, high fractures and oxidizing 510 510 55.0 Fractures and oxidizing 5210 5210 55.0 Fractures and oxidizing 5250 5250 56.0 Fractures and oxidizing 5250 5250 66.0 Fractures and oxidizing 5250 5250 66.0 Fractures and	E-50.0						·····		·						· 52527.0			
52.0 grained below 50.5 m [2231.0] 53.0 BEDROCK (GRANTE) - poor quality, high fractures and oxidizing [2231.0] 54.0 55.0 [2251.0] 55.0 [2251.0] [2251.0] 55.0 [2251.0] [2251.0] 55.0 [2251.0] [2251.0] 55.0 [2251.0] [2250.0] 55.0 [2050.0] [2250.0] 55.0 [2050.0] [2295.0] 55.0 [2295.0] [2295.0] 55.0 [2100.0] [2295.0] 55.0 [2100.0] [2295.0] 55.0 [2100.0] [2295.0] 55.0 [2100.0] [2295.0] 60.0 [2100.0] [2295.0] 61.0 [2295.0] [2295.0] 62.0 [2295.0] [2295.0] 63.0 [2295.0] [2295.0] 64.0 [2295.0] [2295.0] 65.0 [2295.0] [2295.0] 66.0 [2295.0] [2295.0] 65.0	51.0]	- becomes some gravel, fine to me	dium											2523.0			
53.0 BEUROCK (CRANNE) - poor quality, high fractures and oxidizing 55120 56.0 56.0 22013.0 57.0 END OF BOREHOLE 56.7 m - no water encountered at time of drilling 22000.0 56.0 22000.0 22000.0 60.0 61.0 22000.0 63.0 22000.0 22000.0 64.0 22000.0 22000.0 65.0 22000.0 22000.0 65.0 22000.0 22000.0 65.0 22000.0 22000.0 65.0 22000.0 22000.0 65.0 22000.0 22000.0 65.0 22000.0 22000.0 65.0 22000.0 22000.0 65.0 22000.0 22000.0 65.0 22000.0 22000.0 65.0 22000.0 22000.0 65.0 22000.0 22000.0 65.0 22000.0 22000.0 65.0 22000.0 22000.0 65.0 22000.0 22000.0 65.0 <td>52.0</td> <td></td> <td>grained below 50.5 m</td> <td></td>	52.0		grained below 50.5 m															
54.0 55.0 55.0 55.0 56.0 55.0 56.0 55.0 56.0 55.0 56.0 55.0 56.0 55.0 56.0 55.0 56.0 55.0 56.0 55.0 57.0 55.0 57.0 <td>E-53,0</td> <td></td> <td>BEDROCK (GRANITE) - poor quality, high</td> <td>ו</td> <td></td> <td>-2517.0</td>	E-53,0		BEDROCK (GRANITE) - poor quality, high	ו											-2517.0			
56.0 56.0 <td< td=""><td>540</td><td></td><td>indennes and oxidizing</td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td>2515.0</td></td<>	540		indennes and oxidizing												2515.0			
56.0 2503.0 57.0 END OF BOREHOLE 56.7 m 58.0 - no water encountered at time of drilling 59.0 2493.0 60.0 2493.0 61.0 2493.0 64.0 2483.0 65.0 2483.0 66.0 2483.0 66.0 2483.0 66.0 2483.0 66.0 2483.0 66.0 2483.0 66.0 2483.0 66.0 2483.0 66.0 2483.0 67.0 2483.0 68.0 2483.0 68.0 2483.0 68.0 2483.0 68.0 2483.0 68.0 2483.0 68.0 2483.0 68.0 2483.0 68.0 2483.0 68.0 2483.0 68.0 2483.0 68.0 2483.0 68.0 2483.0 68.0 2483.0 68.0 2483.0 68.0 2483.0 68.0															. 2511.0			
57.0 END OF BOREHOLE 56.7 m 22503.0 58.0 - no water encountered at time of drilling 2497.0 56.0 2493.0 2493.0 66.0 2493.0 2493.0 66.0 2493.0 2493.0 66.0 2493.0 2493.0 66.0 2493.0 2493.0 66.0 2493.0 2493.0 66.0 2493.0 2493.0 66.0 2493.0 2493.0 66.0 2493.0 2493.0 66.0 2493.0 2493.0 66.0 2493.0 2493.0 66.0 2493.0 2493.0 66.0 2493.0 2493.0 66.0 2493.0 2493.0 66.0 2493.0 2493.0 67.0 2493.0 2493.0 68.0 2493.0 2493.0 68.0 2493.0 2493.0 68.0 2493.0 2493.0 69.0 2493.0 2493.0 69.0 2493.0 2493.0 69.0 2493.0 2493.0															- 2509.4			
END OF BOREHOLE 56.7 m - no water encountered at time of drilling - 60.0 - 60.0 - 60.0 - 60.0 - 61.0 - 62.0 - 63.0 - 64.0 - 64.0 - 65.0 - 66.0 - 66.0 - 66.0 - 67.0 - EBA Engineering Consultants Ltd. Whitebarse, Yukop - Complete: - C	- 30.0							·		····					2505.0			
58.0 drilling 2499.0 59.0 2497.0 60.0 2495.0 61.0 2493.0 62.0 2493.0 63.0 2493.0 64.0 2497.0 66.0 2497.0 66.0 2497.0 66.0 2497.0 66.0 2497.0 66.0 2497.0 66.0 2477.0 66.0 2477.0 66.0 2477.0 66.0 2477.0 68.0 2477.0 68.0 2477.0 68.0 2477.0 68.0 2477.0 68.0 2477.0 68.0 2477.0 68.0 2477.0 68.0 2477.0 68.0 2477.0 68.0 2477.0 68.0 2477.0 68.0 2477.0 69.0 2477.0 2477.0 2477.0 2477.0 2477.0 2477.0 2477.0 2477.0 2477.0	E 57.0		= no water encountered at time of															
59.0 2495.0 60.0 2495.0 61.0 2489.0 62.0 2487.0 63.0 2487.0 64.0 2481.0 65.0 2487.0 66.0 2487.0 66.0 2487.0 66.0 2487.0 66.0 2477.0 66.0 2477.0 66.0 2477.0 67.0 2487.0 68.0 2477.0 68.0 2477.0 64.0 2487.0 64.0 2487.0 64.0 2487.0 64.0 2477.0 64.0 2477.0 64.0 2477.0 64.0 2477.0 64.0 2477.0 64.0 2477.0 64.0 2477.0 64.0 2477.0 64.0 2487.0 64.0 2487.0 64.0 2487.0 64.0 2487.0 64.0 2487.0 64.0 2487.0 64	E 58.0		drilling															
60.0 2493.0 61.0 2489.0 62.0 2487.0 63.0 2487.0 64.0 2483.0 66.0 2477.0 66.0 2477.0 67.0 2477.0 68.0 2477.0 EBA Engineering Consultants Ltd. LOGGED BY: JSB COMPLETION DEPTH: 56.39 m REVIEWED BY: JRT COMPLETE:	59.0														2497.0			
E 61.0 62.0 63.0 64.0 65.0 65.0 66.0 EBA Engineering Consultants Ltd. Whitebarse, Yukon Whitebarse, Yukon Whitebarse, Yukon	E-60.0														2493.0			
EBA Engineering Consultants Ltd.	E-61,0													••••	2489.0			
E 63.0 E 64.0 E 64.0 E 65.0 E 66.0 E 66.0 E 67.0 E BA Engineering Consultants Ltd. Whiteharse, Yukan Whiteharse, Yukan Whiteharse, Yukan E 63.0 E 63.0 E 63.0 E 63.0 E 64.0 E 7.0 E	62.0					:									2487.0			
E 64.0 66.0 66.0 66.0 66.0 66.0 E 67.0 E BA Engineering Consultants Ltd. Whiteharse, Yukan Whiteharse, Yukan Whiteharse, Yukan	E 63.0														. 2483.0			
EBA Engineering Consultants Ltd.	64.0														£2481.0			
EBA Engineering Consultants Ltd. Whiteharse, Yukan Whiteharse, Yukan Whiteharse, Yukan EBA Engineering Consultants Ltd. EBA EngineE EngineE EngineE EngineE EngineE EnginE	E _{65.0}								ļ,						E2477.0			
EBA Engineering Consultants Ltd. Whiteharse, Yukan Whiteharse, Yukan	E-66.0		·												2475.0			
EBA Engineering Consultants Ltd. Whitebarse, Yukan Whitebarse, Yukan															2471.0			
EBA Engineering Consultants Ltd. LOGGED BY: JSB COMPLETION DEPTH: 56.39 m REVIEWED BY: JRT COMPLETE:	<u>- 68</u> .0													····	2469.0			
Whitehorse Vukon	FI	٦A	Engineering Consults	anta	Lta	LOGGED BY:	: JSB	<u></u>	· <u>·</u> ··		OMPLETIC	<u>N DE</u>	PTH:	56.39	<u></u>			
	Whitehaven Webe-				ມເບ.	REVIEWED B	BY: JRT			0	COMPLETE:							

• _

Project: 0201-1200173

Date Tested: 05/12/07 Tested in accordance with ASTM D422 unless otherwise noted. BY: TS

Data presented hereon is for the sole use of the stipulated client. EBA is not responsible, nor can be heid liable, for use made of this report by any other party, with or without the knowledge of EBA

Project: 0201-1200173

Date Tested: 05/12/07

BY: TS

Data presented hereon is for the sale use of the stipulated client. EBA is not responsible, nor can be held liable, for use made of this report by any other party, with or without the knowledge of EBA

Project: 0201-1200173

Date Tested: 05/12/08

BY: TS

Data presented hereon is for the sole use of the stipulated client. EBA is not responsible, nor can be held liable, for use made of this report by any other party, with or without the knowledge of EBA

Project: 0201-1200173

Date Tested: 05/12/12

BY: TS

Data presented hereon is for the sole use of the stipulated client. EBA is not responsible, nor can be held liable, for use made of this report by any other party, with or without the knowledge of EBA

Project: 0201-1200173

Date Tested: 05/12/08

BY: TS

Data presented hereon is far the sole use of the stipulated client. EBA is not responsible, nor can be held liable, for use made of this report by any other party, with or without the knowledge of EBA

Minto	Minto Mine Development 2005 Client: Sherwa					Mining Corporation BC						BOREHOLE NO: 1200173-043							
Minto	Coppe	r Mine	DRILL: I	DD HQ					PR	PROJECT NO: 1200173									
NW of	Minto	, YT	UTM ZO	NE: 8 N694	4780.92 E38	4730	.74		EL	ELEVATION: 818.8 m									
SAMPI	LE TYF	PE GRAB SAMPLE 🗌 NO RECO	ivery 🔀	HQ	NQ				REL BA	RREL									
	ليبا										●PE	RCENT	CLAY		1				
E	₽g	SOIL		apoth		▲ GR	ound th) TEMPERATURE ((20 40 60 BD ■ PERCENT SUIT OR FINES ■			BD NFS	ΗΞ				
bth.	L Z			GROUI	ND ICE	-2 -1 0			1,		20 40 60 80			80	l S				
Del	AM R	DESCRIPTION	J	DESCR	ESCRIPTION PLASTIC M.C.		LIQU	ID		RCENT 40	SAND⊿ 60	80	M						
	S			DESCR		H			{		♦ PER	CENT (RAVEL	.					
F 0.0		SILT - sandy, fine grained, dark b	rown		· .		20 44	0 60	80	+	20	40	60	80	-				
- 1.0							[]							•					
E-2.0				Vx, troce <	5%								· · · · ·		. 2682.1				
F,				well bonded					ļ						- 2680. 1				
E		SAND - some silt, trace of fine to	medium	Nho Nho)).	····			·····	······		- E-2676.0				
F 4.0		grained gravel		well bonded											E 2674.0				
E 5.0	~	- colour changes to medium I	orown			·						·	·····		. 2672,0				
F		around 3.0 m						•				1		11					
E °.0		- sond becomes tine to medic	im grained			····}···								· · · · ·	E7666				
- 7.0		- silty below 3.5 m												j. È.	E2664.0				
E 8.0	×	- trace of fine gravel around	3.5 m				Ц	•						·	E2662.0				
F.		- cobbles and coarse gravel,		16. 40 4 0 00								11	1	11	. <u></u> ≣2660.0				
Ear		encountered around 6.1 m to	6.5 m	VX 10-15% Vo 20-25%											2658.0				
- 10.0		- medium grey colour	becomes 5-	5-100 mm thick	thick		۲					įį		1	. 2654.0				
E11.0		- gravel content increases, be		spaced 5-10	30 mm	····								·	£2652.0				
F		courser around 8.8 m						••••					·	ļļ	2650.0				
E ^{12.0}							•••••							·	2648.0				
- 13.0						٠		••••							2646.0				
- 14.0 -	asi			-1.					·····						E2642.0				
Ê.					·							1		<u>.</u>	E 2640.0				
E 15.0				Vx, 10-15%				••• ••• •••						·	2638.0				
E-16.0	7			med. bonded		٠							<u>.</u>						
E17.0													÷		E2632.0				
	=												· · · · · · · · · · · · · · · · · · ·		2630.0				
- 18.0											• •	.			2628.0				
- 19.0			1									<u>.</u>			2628.0				
20.0	32					•									E2622.0				
	i i	SILT — some clay, some sand, fine	grained,	VX, 5-10%											E 2620.0				
E 21.0		medium grey		2-5 mm thir	-k			•• •••				<u> </u>	<u>.</u>		2618.0				
- 22.0		– trace to some fine to medius below 20.1 m	m grovel	spaced 150									<u></u>		2616.0				
23.0	=	DEIOW 20.1 11		300 mm	ŀ										2612.0				
					.								<u>.</u>		2610.0				
24.∪ 					ŀ							<u> </u>			2608.0				
25.0 🛥		- hacomac clayou around 25 A		Ix. trace 5-	10%							<u> </u>							
E 26,0 ₽		- trace of sand around 25.0		,		•		•••							2004.0				
			'	ecomes well											2600.0				
- 27.0			Į.	onded				•• ••• •							2598.0				
- 28.0 =	≰						•								2596.0				
- 29.0						········			••••			·		·····	E2094.0				
		— trace of fine to medium orai	ned		ļ.							ļ	ļ	[E2590,d				
		gravel from 29,3 to 32.3 m				•••		•••••••••			·····	····	(···· (····	·	2588.0				
31.0	31.0														2586.0				
- 32.0							<u></u>								₿ <u>2584.0</u> ₿2582.0				
ŀ	BA	Engineering Consul	tante	Ьt	LOCCED BY:	JSB			(OMPI	ETION	DEPT	H: 61	m					
		Whitehaven Vislam	COTTON 1	-0 0 .	REVIEWED BY	': JRT				COMPL	LETE:								
06/01/17 04:2	MILLEHOI'SE, YUKON 1/17 01-2594 (70KONES4) Page 1 of 2																		

Minto Mine Developme	nt 2005	Client: Sherwood Mining C	orporation	BOREHOLE NO: 1200173-043								
Minto Copper Mine		drill: dd hq		PROJECT NO: 1200173								
NW of Minto, YI		UTM ZONE: 8 N6944780.	92 E384730.74	ELEVATION: 818.8 m								
SAMPLE IYPE	GRAB SAMPLE			BARREL								
Depth(m) SAMPLE TYPE RUN NO	SOIL DESCRIPTION	GROUND I DESCRIPTI	CE A GROUND TEMPERATURE -2 -1 0 DN PLASTIC M.C.	(C)▲ 1 (C)▲ 1 (C)▲ 1 (C)▲ 1 (C)▲ 1 (C)▲ 20 40 60 80 20 40 60 80 (C)▲ 20 40 80 (C)▲ 20 40 (C)▲ 20 40 (C)▲ 20 40 (C)▲ 20 40 (C)▲ 20 40								
			20 40 60 8	→ ◆ PERCENT GRAVEL ◆ 🖬								
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	ome gravel encountered from 2 m to 37.2 m hay have been ice rich with fin ned soils that would have been hed during drilling obbles present below 33.2 m becomes sandy below 33.8 m ome clay present below 33.8 m one clay present below 33.8 m race of fine gravel below 33.8 silty, some clay, some gravel, graded sand, fine to medium hed gravel, dark grey	Vs, trace spaced 200 – 600 mm 2–75 mm thick n m Vx, trace Vs, 10–15% 2–5 mm thick spaced 200 – 300 mm Nbe, well bonded		→ →								
- 60.0 - 61.0 - 63.0 - 63.0	comes competent with depth c m BOREHOLE 61.0 m			2490.0 2488.0 2488.0 2486.0 2484.0 2482.0 2482.0 2480.0								
				2478.0								
EBA Engir	eering Consulta	nts Ltd. <u>REVE</u>	ed by: JSB Wed by: JRT	COMPLETION DEPTH: 61 m COMPLETE:								
96/01/17 04:25PH (YUKONP84)	Whitehorse, Yukon Page 2 of 2											

Data presented hereon is for the sole use of the stipulated client. EBA is not responsible, nor can be held liable, for use made of this report by any other party, with or without the knowledge of EBA

Date Tested: 05/12/08

Project: 0201-1200173

Date Tested: 05/12/07

BY: TS

Data presented hereon is for the sole use of the stipulated client. EBA is not responsible, nor can be held liable, for use made of this report by any other party, with or without the knowledge of EBA

Project: 0201-1200173

۱

Data presented hereon is for the sole use of the stipulated client. EBA is not responsible, nor can be held liable, for use made of this report by any other party, with or without the knowledge of EBA Date Tested: 05/12/08

BY: TS

Project: 0201-1200173

Date Tested: 05/12/06

BY: TS

Data presented hereon is for the sole use of the stipulated client. EBA is not responsible, nor can be held liable, for use made of this report by any other party, with or without the knowledge of EBA

Data presented hereon is for the sole use of the stipulated client. EBA is not responsible, nor can be held liable, for use made of this report by any other party, with or without the knowledge of EBA Date Tested: 05/12/06

BY: TS

Minto Mine	Development 2005	Client: Sherw	ent: Sherwood Mining Corporation						BOR	BOREHOLE NO: 1200173-044							
Minto Coppe	er Mine	DRILL: DD HQ)						PRC	PROJECT NO: 1200173							
NW of Minto), YT	UTM ZONE: 4	8 N69447	58.56 E38	4582	2.51			ELE	ELEVATION: 824.96 m							
SAMPLE TY	PE GRAB SAMPLE NO RECOVER	<u>ү 🛛 но</u>		NQ			Π	CRRE	L BAR	rel							
Depth(m) SAMPLE TYPE PLIN NO	SOIL DESCRIPTION	(E	GROUND DESCRIP	ICE TION	▲ GR PLAS	OUND -2 511C	TEMF -1 M.I	C.	E (C) ▲ 1 Liquit)	PE 20 PERCEN 20 ▲ PE 20 ▲ PE	RCENT 40 IT SILT 40 RCENT 40 CENT	CLAY 60 OR F 60 SAND 60	● 80 INES ■ 80 ▲ 80	ELEVATION (ft)		
0.0	ORGANIC ROOT AND MOSS COVER				<u> </u>	20	40	60	<u>B()</u>		20	40	60	80			
E 1.0	SILT - trace to some sand																
- 2.0 - 3.0	 poor to no recovery from 0.0 n 22.0 m some gravel, fine to coarse gradeling 	n to iined				•											
- 4.0 - 5.0	encountered from 2.1 m to 21.9 m - some cobbles are present between to 21.9 m	m een 2.1															
- 6.0 - 7.0															2690,0 2688.0 2686.0		
- 10.0 - 11.0																	
E 12.0 E 13.0	GRAVEL — sandy, silty, trace of clay, w	vell Visible	e ice														
14.0 	graded sand, fine to medium subri gravel, medium grey	ounded 10-1 ice, w	sions 5% clear vell ed betwee	n .		••••						Y			2662.0 2660.0 2658.0		
17.0 17.0 18.0	SILT — sandy, some gravel, some clay, medium to coarse angular so fine to medium grained gravel, gre	12.8 Vs, 2 thick, V 150 - Vx, tr	m — 16.2 —75 mm spaced — 300 mr ace	2 m . n .	•	•				· · · · · · · · · · · · · · · · · · ·							
20.0		***		•) - , , , , , , , , , , , , , , , , , ,				· · · · · · · · · · · · · · · · · · ·					2642.0 2642.0 2640.0		
23.0 23.0 24.0	— gravel content increases around 23.0 m	mainly below	y Vx trace 22.0 m						· · · · · · · · · · · · · · · · · · ·			•			2634.0 2632.0 2630.0 2628.0		
25.0	— poor recovery from 25.0 to 26.5	im		• • •	···· ···										2626.0 2624.0 2622.0		
27.0 == 28.0 29.0 ==	SAND — silty, some gravel to gravelly, well graded angular sand, well graded subangular and rounde gravel, dark grey	Vx, 10 med. Vs, tro d 2-5 r)—15% bonded ace nm thick		··· •	· · · · · · · · · · · · · · · · · · ·	•••••		· · · · · · · · · · · · · · · · · · ·						2618.0 2616.0 2614.0 2612.0 2610.0		
- 31.0	— visible ice from 27.3 to 40.2 m consists mainly of medium bonded			· · ·	•		·····			· · · · · · · · · · · · · · · · · · ·					2608.0 2606.0 2604.0 2602.0		
EBA	Engineering Consulta	nts Ltd)] 10	GGED BY:	JSB	т			<u> </u>	OMPL	ETION	DEP	TH: E	i1 m			
	Whitehorse, Yukon Reviewed Bi: JRT COMPLETE:																
06/01/17 05:XPH (NU	Whitehorse, Yukon Page 1 of 2													i uye			

Minto Mine Development 2005	Client: Sherwood Mining Corporat	ent: Sherwood Mining Corporation								
Minto Copper Mine	DRILL: DD HQ		PROJECT NO: 1200173							
NW of Minto, YT	UTM ZONE: 8 N6944758.56 E38	4582.51	ELEVATION: 824.96 m							
SAMPLE TYPE GRAB SAMPLE NO RECOVER			BARREL		.					
(The second seco	GROUND ICE	A GROUND TEMPERATURE -2 -1 0 PLASTIC M.C. 1	(C)▲ (C)▲ ■ PERCENT SILT (20 40 6 ■ PERCENT SILT (20 40 6 ■ PERCENT SILT (20 40 6	CLAY 0 80 DR FINES 10 80 SAND	ATION(ft)					
	DESCRIPTION		→ 28 40 6 → ◆PERCENT GF	io bo Ravel e	ELEV					
32.0 $-$ some intermittent layers of silt diamict are present from 32.6 to 34.7 m $-$ colour changes to dark brown f 33.2 m to 36.2 m and 36.9 m to 36.0 $-$ some clay below 42.0 m 37.0 $-$ some clay below 42.0 m 41.0 $-$ coarser gravels, cobbles from 4 42.0 $-$ coarser gravels, cobbles from 4 44.0 $-$ gravelly below 48.4 m 46.0 $-$ gravelly below 48.4 m 47.0 $-$ becomes sift $-$ sandy below 50.0 51.0 $-$ dark grey 52.0 BEDROCK (GRANITE) $-$ poor quality, hig fractured oxidized, sand and silt infilled 53.0 $-$ BOREHOLE 57.0 m 58.0 $-$ END OF BOREHOLE 57.0 m	Vs, well bonded spaced 200 500 mm 4.5				2600.0 2598.0 2598.0 2599.0 2599.0 2599.0 2599.0 2599.0 2598.0 2598.0 2598.0 2597.0 25					
- 61.0 - 62.0 - 63.0 - 64.0					2508.0 2506.0 2504.0 2502.0 2500.0					
FRA Engineering Concelle		<u>; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; </u>		· 61 m	<u>-</u> ∠498.0					
Whitehorse, Yukon	ILS LUC. REVIEWED BY:	JRT	COMPLETE:		of 7					

Project: 0201-1200173

Date Tested: 05/12/12

BY: TS

Data presented hereon is for the sole use of the stipulated client. EBA is not responsible, nor can be held liable, for use made of this report by any other porty, with or without the knowledge of EBA

Dota presented hereon is for the sole use of the sUpukted client. EBA is not responsible, nor can be held liable, for use made of this report by any other party, with or without the knowledge of EBA Date Tested: 05/12/07

BY: TS

Tested in accordance with ASTM D422 unless otherwise noted.

Dato presented hereon is for the sole use of the stipulated client. EBA is not responsible, nor can be held liable, for use made of this report by any other party, with or without the knowledge of EBA

Doto presented hereon is for the sole use of the slipulated client EBA is not responsible, nor can be held liable, for use made of this report by any other party, with or without the knowledge of EBA Date Tested: 05/12/06

BY: TS

Minto	Ninto Mine Development 2005 Client: Sherwood N					ining Corporation						BOREHOLE NO: 1200173-045								
Minto	Сорре	r Mine	DRILL: DI	D HQ					PROJ	PROJECT NO: 1200173										
NW of		, YI	UTM ZON	IE: 8 N6944	+772.1 E384	515.4	5		ELEV	ATION:	823.1	9 m								
SAMPI		GRAB SAMPLE NO RECOVER	Y <u>N</u> ł	10			[il Barr	.EL										
										20	PERCEI 40	NT CLAY 60	1 6 80							
Ξ.	μ	SOIL		GROUN	ID ICR	A GRC	UND TEA	IPERATUR	E_(0)▲	PER	CENT	LTOR	FINES	T S						
epti		DECODIDUTAN		010001	100		<u> </u>	<u>v</u>		20	<u>80</u> D▲									
	SAN	DESCRIPTION		DESCRI	IPTION			1.C. •	liquid i	20	40	60	80							
- 0.0		NOCE CONFERENCE ODGANING DOOT WAT				2	0 40	60	80	20	40	60	80 80	LU						
E 1.0		SILT - Some sand trace of clay						-						2700.0						
E-2.0		- poor to πα recovery from 0.0 π	n to											2696.0						
- 3.0		9.0 m																		
E 4.0		gravels present below 3.0 m to					••••	· · · · · · · · · · · · · · · · · · ·				·····	·····							
E 50		12,0 (1)					••••				-			2688.0						
En														2684,0						
		- visible ice below 6.4 m	٧	/x 10-15%								<u></u>								
		SAND — gravelly, sitty, trace of clay,		(s. 10-15%		••••		······						2678.0						
		well graded sand, fine to med.	2	?-5 mm thi	ck,						1			2674.(
E 9.0		grainea gravei, grey	3	paced 300	mm					.	 .			2672.0						
E 10.0		- some cobbles encountered below	W T	rom 7.6-22	(.6 m															
		10.0 m to 15.5 m												2666.0						
E-12.0				6 90 ZNV																
E 13.0	-		v	\$ 20~50%			•							···· 2 660.0						
Ē ^{14.0}														2656.0						
E 15.0	7							·····		 		·····								
E 16.0	_	SILT - clayey, trace sand, fine grained	Ϊ,			·····														
E-17.0		medium to dark grey												2645.0						
E-18.0		SAND - gravelly, some silt, well grader	4																	
E 19.0		sand, fine to medium grained grav	rel,											2640.0						
E-20.0		med. to dark grey												2638.0						
E 21.0	[- some gravel below 19.8 m																		
E. 		- becomes silty below 21.3 m																		
			1	▲ 10_150										2628.0						
E 24 D	=	- occasional cobbles encountered	below 2	–75 mm th	ick	•							····•							
- 27.0		22.9 11	s	paced 75 to	•															
			50	00 mm	f.m. u.s.									2618.0						
	_	- poor to no recovery from 26.2 r	m to 2	2.9 - 49.1	m		······													
E 27.0		27.7 m	.,			••••	••				· · · · · ·									
E 28.0 E	=					•														
E ^{29.0}																				
Ė ^{30,0} ⊨	4					•				P										
E-31.0							••••••							======================================						
52.0		— becomes silt, sandy around 32.0 m — trace of gravel below 32.0 m — becomes clayey around 32.0 m			•															
33.0			111		- -									=========						
- 34.0	_				ļ						ļ,									
- 35.0											ļļ									
= 36.0				·····,																
E	EBA	Engineering Consulta	nts L	td.	LOGGED BY:	JSB				MPLET	<u>)n de</u>	PTH: 6	<u> 30.96</u>	m						
		Whitehorse. Yukon		VEAIFAFD R	1: JK1			00	MPLETE	<u>:</u>	·	Page	1 06 12							
06/01/20 02:3	28PH (YUK	R72}											u uye	IVIZ						

Minto Mine	Development 2005	Client: Sherwood Mini	ng Corporation	BOREHOLE NO: 1200173-045								
Minto Coppe	er Mine	DRILL: DD HQ		F	PROJECT NO: 1200173							
NW of Minto	, YT	UTM ZONE: 8 N6944	772.1 E384515.45	E	ELEVATION: 823.19 m							
SAMPLE TY	PE GRAB SAMPLE NO RECOVE	RY 🛛 HQ	NQ		BARREL							
Depth(m) SAMPLE TYPE RIN NO	SOIL DESCRIPTION	GROUN DESCRI	D ICE A GROUN PTION PLASTIC	D TEMPERATURE (1 0 1 M.C. LI		ENT CLAY● 60 80 SILT OR FINES■ 60 80 ENT SAND▲ 60 80 SILT ORAVEL▲	ELEVATION (ft)					
	- hecomes sand aithe some are	wol	20	40 60 80	20 40	60 80						
37.0 38.0 39.0 40.0 41.0 42.0 43.0 44.0 43.0 44.0 43.0 44.0 44.0 44.0 44.0 44.0 44.0 44.0 44.0 44.0 44.0 44.0 44.0 44.0 44.0 44.0 44.0	 becomes sand, sitty, some grasome clay below 35.4 m colour changes to dark brown becomes silt, sandy, clayey, tr of fine gravel 	vel, Vš. 15-20% 5-10 mm tł spaced 300 600 mm Vx. 10% fron 43 0 to 59 0	ick to				2582.0 2580.0 2578.0 2576.0 2574.0 2577.0 2568.0 2568.0 2568.0 2568.0 2558.00000000000000000000000000000000000					
49.0 50.0 51.0 52.0 53.0 54.0 55.0 55.0 55.0 55.0 55.0 55.0 55	– poor recovery from 52.0 to 53	43.0 to 59.0 .6 m Vx, 20%	m				2540.0 22538.0 22538.0 22538.0 22538.0 22538.0 22533.0 22528.0 22518.0 22518.0 22518.0 22518.0 22518.0 22518.0 22518.0 22518.0 22518.0 22518.0 22518.0 22518.0 22518.0 22518.0 22518.0 22508.0					
60.0 61.0 62.0 63.0 65.0 66.0 66.0 67.0 68.0 70.0 71.0 72.0	SAND - silty, gravelly, trace of clay, well graded sand, fine to medium gravel, light to medium grey BEDROCK (GRANITE) - poor quality, h fractured, decomposed	ighły					2506.0 2504.0 2502.0 2498.0 2498.0 2498.0 2494.0 2494.0 2492.0 2482.0 2488.0 2488.0 2488.0 2488.0 2488.0 2488.0 2488.0 2488.0 2476.0 2476.0 2477.0 2470.0 2468.0 2466.0					
EBA	Engineering Consult Whitehorse, Yukon	ants Ltd.	REVIEWED BY: JSB		COMPLETION DI	LYIH: 60.96 m Page 2	1 of 2					

Data presented hereon is for the sole use of the slipulated client. EBA is not responsible, nor can be held liable, for use made of this report by any other party, with or without the knowledge of EBA

Date Tested: 05/12/06

BY: TS

Data presented herean is for the sole use of the stipulated client. EBA is not responsible, nor can be held liable, for use made of this report by any other party, with or without the knowledge of EBA

1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 -

. •

Project: 0201-1200173

,

Date Tested: 05/12/06

BY: TS

Data presented hereon is for the sole use of the stipulated client. EBA is not responsible, nor can be held liable, for use made of this report by any other party, with or without the knowledge of EBA

Data presented herean is for the sole use of the stipulated client. EBA is not responsible, nor can be held liable, for use made of this report by any other party, with ar without the knowledge of EBA

Project: 0201-1200173

Date Tested: 05/12/07

BY: TS

Data presented hereon is for the sole use of the slipukated client. EBA is not responsible, nor can be hekl liable, for use made of this report by any other party, with or without the knowledge of EBA

Unite Cooper Mine DelL: DEL 750 - Holler Stam PROJECT Not. 120:173 SMPLE TYPE ORF SAPLE UNIT 20NC & RIGHT721 ESA615.45 ELEATOR & 23.19 m SMPLE TYPE ORF SAPLE No Image: Same and the same and	Minto	Minto Mine Development 2005 Client:				Sherwood Mining Corporation						80	BOREHOLE NO: 1200173-045E							
Number UM UM <th< td=""><td>Minto</td><td>Co</td><td>pper</td><td>Mine</td><td>DRILL: (</td><td>CME 750 — H</td><td>ollow Stem</td><td></td><td></td><td></td><td></td><td>PR</td><td colspan="8">PROJECT NO: 1200173</td></th<>	Minto	Co	pper	Mine	DRILL: (CME 750 — H	ollow Stem					PR	PROJECT NO: 1200173							
SAMPLE TYPE NO RECOVERY No INCOME SAMPLE PERMENT CALL Colspan="2">Colspan="2">Colspan="2">PERMENT CALL Colspan="2">Colspan="2">Colspan="2">PERMENT CALL Colspan="2">Colspan="2">Colspan="2">PERMENT CALL Colspan="2">Colspan="2">Colspan="2">PERMENT CALL Colspan="2">Colspan="2">PERMENT CALL Colspan="2">PERMENT CALL <td>NW of</td> <td>f M</td> <td>into,</td> <td>YT</td> <td>UTM ZO</td> <td>NE: 8 N6944</td> <td>772.1 E384</td> <td>515.4</td> <td>45</td> <td></td> <td></td> <td>ELE</td> <td colspan="8">ELEVATION: 823.19 m</td>	NW of	f M	into,	YT	UTM ZO	NE: 8 N6944	772.1 E384	515.4	45			ELE	ELEVATION: 823.19 m							
SOIL GROUND ICE Account Thermony Count Description Description <thdescription< th=""> Description<td>SAMP</td><td><u>'LE</u></td><td>TYP</td><td>E GRAB SAMPLE NO RECOVER</td><td>Y 🛛</td><td>на</td><td>DM E</td><td></td><td></td><td></td><td>CRRI</td><td>EL BAF</td><td>REL</td><td></td><td></td><td></td><td></td><td></td><td></td></thdescription<>	SAMP	<u>'LE</u>	TYP	E GRAB SAMPLE NO RECOVER	Y 🛛	на	DM E				CRRI	EL BAF	REL							
End End DESCRIPTION DESCRIPTION 00 000000000000000000000000000000000000	(m)	TYPE	NO	SOIL		ריפטווא		▲ GR	OUND	TEMF	PERATU	RE (C)		● P 20 ■ PERCE	ERCEN 40 NT SIL	T CLA 60 T OR	iye Bo Finesi		N(ft)	
Bits Constraint Participant Paritipant Paritipant Par	pth	DIE DIE	S	DECODIDEIAN		anoon			-2	-1	<u></u>	1		20 ▲ P	40 FRCEN	60 T SAN	<u></u> 80		VIIO	
OD Decomes angular, well graded around 50 m PERMARROST PERMARCOST PERMARCOST PERMARROST <td>ď</td> <td>SAM</td> <td>l œ́</td> <td>DESCRIPTION</td> <td></td> <td>DESCRI</td> <td>PTION</td> <td>PLAS</td> <td>TC</td> <td>М.</td> <td>C.</td> <td>LIQU</td> <td></td> <td>20</td> <td>40</td> <td>60</td> <td>80</td> <td></td> <td>E</td>	ď	SAM	l œ́	DESCRIPTION		DESCRI	PTION	PLAS	TC	М.	C.	LIQU		20	40	60	80		E	
CREAME COOT MAT CREAME COOT MAT PERMATROST 20 Fill - soldy, trace of fire growel, dark brown Fill - Soldy Fill - So			ļ						20	40	60	80		◆PE 20	RCENT 40	GRAV 60	/EL� 80			
100 100 100 100 100 100 -colur conges to medium granded gravel vs. 10-15% 40 100 100 -colur conges to medium granded gravel vs. to cells 100 100 100 -colur conges to medium granded gravel 100 100 100 100 100 -colur conges to medium granded gravel 100 100 100 100 100 100 -colur conges to medium granded gravel 100 1	E 10			ORGANIC ROOT MAT		PERMAFROST													₹700.0	
20 — poor recovery CRREL has thowed somple during drilling grouted sond, fire to medium ground 2.5 m Vs. 10-15% crystals Vc trace < 5% Pool	È			brown	irk													Ē	_2698.0 _7696.0	
350 mr somple during drilling, consisting with the consent medium grained gravel of the consent read around 5.0 mr consent consent for the consent medium gravel consent for the	E 2.0	-	-	- poor recovery CRREL bas thaw	ed	Ve 10_15%												Ē	2694.0	
4.0 - becomes and, greely, sily, well Vx trace < 5%	E- 3.0	h		sample during drilling		crystals													<u>≕</u> 2692.0	
5.0 graded solid, fine to medium grained gradel Vc trace < 5%	<u>-</u> 4.0			- becomes sand, gravelly, silty, v	/ell	Vx trace < 5	5%						 						<u>-</u> 2688.0 =2688.0	
6.0 - color changes to medium grey around 2.5 m - color changes to medium gray around 2.5 m 7.0 - color changes to medium docarse around 5.0 m - color changes to medium grained group, dork grey 10.0 - study fornitues to fill CREL - some ckay below 11.2 m 12.0 - some ckay below 11.2 m Vx 5-10% 13.0 - some ckay below 11.2 m Vx 5-10% 14.0 - some ckay below 11.2 m Vx 5-10% 14.0 - some ckay below 11.2 m Vx 5-10% 14.0 - some ckay below 11.2 m Vx 5-10% 14.0 - some ckay below 11.2 m Vx 5-10% 14.0 - some ckay below 11.2 m Vx 5-10% 14.0 - some ckay below 11.2 m Vx 5-10% 14.0 - some ckay below 11.2 m Vx 5-10% 14.0 - some ckay below 11.2 m Vx 5-10% 15.0 - rooot of file ongular gravel around 18.9 m - rooot of file ongular gravel around 20.4 m 22.0 - becomes gravely, fine to medium grained around 20.4 m Vs, Vx 15-20% 23.0 - becomes gravely, fine to medium grained around 20.4 m Vs, Vx 15-20% 23.0 - becomes gravely, fine to medium gravel gravel gravel gravel gravel gravel grave	E 5.0	h		graded sand, fine to medium grai	ned	Vo trace < 5	5%												2686.0	
2.5 m more gravel and course or and 5.0 m 900 9.0 - cobble encountered around 5.0 m 900 9.0 - no recovery from 6.5 m to 7.5 m 900 9.0 - no recovery from 6.5 m to 7.5 m 900 11.0 - south escontinues to fill CREL 900 11.0 - south becomes ongular, well graded around 18.9 m 900 11.0 - trace of fine angular gravel around 20.4 m 900 22.0 - becomes gravely, time to medium grained around 20.4 m 900 23.0 - becomes gravely, time to medium grained around 20.4 m 900 23.0 - becomes gravely, time to medium grained around 20.4 m 900 23.0 - becomes to 30.1 m, 0.6 m 900 23.0 - becomes to 30.1 m, 0.6 m 900 23.0 - becomes to 30.1 m, 0.6 m 900 23.0 - becomes to 30.1 m, 0.6 m 900 33.0 South during 25 mm	E-60]	 – colour changes to medium area 	around														⊒2684.0 ⊒2682.0	
20 - cobble encountered ground 5.0 m - more growel and coarse ground 5.0 m - more growel and coarse ground 5.0 m - more growel and coarse ground 5.0 m - growel and coarse ground 5.0 m - some clay below 11.2 m - some clay below 11.2 m 11.0 - some clay below 11.2 m	È,	Ē		2.5 m										ļ					2680.0	
8.0 - more gravel and courser around 5.0 m - no recovery from 5.0 m to 7.5 m SULT - sondy, trace to some fine to medium grained gravel, dark gray - slough continues to fill CREL - some clay below 11.2 m - gravel and courser around 5.0 m - some clay below 11.2 m - gravel and courser around 5.0 m - some clay below 11.2 m - gravel and courser around 5.0 m - some clay below 11.2 m - gravel and courser around 5.0 m - some clay below 11.2 m - gravel and courser around 5.0 m - some clay below 11.2 m - gravel and courser around 5.0 m - some clay below 11.2 m - gravel and courser around 5.0 m - some clay below 11.2 m - gravel and courser around 5.0 m - some clay below 11.2 m - gravel and courser around 5.0 m - some clay below 11.2 m - gravel and courser around 5.0 m - some clay below 11.2 m - gravel and courser around 5.0 m - some clay below 11.2 m - gravel and courser around 5.0 m - some clay below 11.2 m - gravel around 5.0 m - gravel around 5.0 m - trace of fine angular gravel around 18.9 m - gravel around 18.9 m - gravel around 20.4 m - some clay below 11.2 m Nb - gravel around 5.0 m - gravel around 5.0 m - gravel around 20.4 m - some clay below 11.2 m - some clay below 12.2 m - gravel around 5.0 m - becomes gravely, fine to medium gravel around 5.0 m - gravel around 5.0 m - gravelo around 5.0 m - gravelo around 5.0 m - gravel around 5.	E			- cobble encountered around 5.0	m														2678.0	
9.0 III - sondy trace to some fine to medium grained gravel, dark grey - slough continues to fill CRREL - some clay below 11.2 m Vx 5-10% 9822 - slough continues to fill CRREL - some clay below 11.2 m 11.0 - some clay below 11.2 m Vx 5-10% 9826 - slough continues to fill CRREL - some clay below 11.2 m 11.0 - some clay below 11.2 m Vx 5-10% 9826 - slough continues to fill CRREL - some clay below 11.2 m 11.0 - some clay below 11.2 m Vx 5-10% 9826 - slough continues to fill CRREL - some clay below 11.2 m 11.0 - some clay below 11.2 m Vx 5-10% 9826 - slough continues to fill CRREL - some clay below 11.2 m 11.0 - some clay below 11.2 m Vx 5-10% 9826 - slough continues to fill CRREL - some clay below 11.2 m 11.0 - some clay below 11.2 m Vx 5-10% 9826 - slough continues to fill CRREL - some clay below 11.2 m 11.0 - some clay below 11.2 m Vx 5-10% 9826 - slough continues to fill CRREL - some clay below 11.2 m 11.0 - some clay below 11.2 m Vx 5-10% 9826 - slough continues to fill CRREL - trace of fine angular, well graded - trace of fine angular, well graded - some clay below 11.2 m 9826 - slough continues to fill CRREL - trace of fine angular gravel - some clay below 11.2 m 22.0 - some clay belo	E-8.0			- more gravel and coarser aroun	d 5.0 m													E	, <u>-</u> 2676.0 =2674.0	
10.0 medium grained growel, dark grey - slowah continues to fill CRFEL - some clay below 11.2 m Vx 5-10% Eeee Control Eeee Contro Eeeeeeee Control	F- 9.0			SILT - sondy trace to some fine to	<u> </u>											····;			2672.0	
11.0 - slough continués to fill CRREL - some cky below 11.2 m - some cky below 11.2 m 13.0 - some cky below 11.2 m - vx 5-10% - vx 5-10% - vx 5-10% 14.0 - some cky below 11.2 m - vx 5-10% - vx 5-10% - vx 5-10% 15.0 - vx 5-10% 15.0 - vx 5-10% - vx 5-10% <td< td=""><td>F 10.0</td><td></td><td></td><td>medium grained gravel, dark grev</td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td>₩2670.0 ₩</td></td<>	F 10.0			medium grained gravel, dark grev															₩2670.0 ₩	
12.0 - some ckgy below 11.2 m Vx 5-10% • • • • • • • • • • • • • • • • • • •	E 11.0	Γ		- slough continues to fill CRREL													.	E	<u>-</u> 2666.0	
13.0 14.0 2660. 2660. 14.0 15.0 2660. 2660. 15.0 15.0 2660. 2660. 15.0 15.0 2660. 2660. 15.0 15.0 2660. 2660. 15.0 15.0 2660. 2660. 15.0 15.0 2660. 2660. 15.0 15.0 2660. 2660. 22.0 - sand becomes angular, well graded around 18.9 m 4 2630. 22.0 - grinding, hord drilling around 20.4 m 26.0 2630. 22.0 - grinding, hord drilling around 20.4 m Vs. Vx 15-20% 2620. 22.0 - grinding, hord drilling around 20.4 m Vs. Vx 15-20% 2620. 22.0 - becomes gravely, fine to medium grained around 20.4 m Vs. Vx 17acce 5% 2660. 22.0 - becomes gravely. Sine to medium grained around 20.4 m Vs. Vx 17acce 5% 2660. 23.0 - becomes gravely. Sine to medium grained around 20.4 m Vs. Vx 17acce 5% 2660. 26.0 - becomes gravely.	Ê in o			- some clay below 11.2 m		Vx 5-10%													2664.0	
14.0 14.0	E ^{12.0}														···	···		Ē	≝2662.0 ≕2660 n	
14.0 15.0	E 13.0							·····											<u>-</u> 2658.0	
15.0 15.0	- 14.0																ļ		2656.0	
16.0 Image: Constraint of the constrai	E 15.0								••••				···· ····	····			<u> </u>		_2654.0 =2652.0	
17.0 17.0	L 16.0	Ħ				Vx, Vx 5-109	76												2650.0	
18.0 III - sand becomes angular, well graded around 18.9 m Nbn III - sand becomes angular, well graded around 18.9 m IIII - trace of fine angular gravel around 18.9 m IIIII - trace of fine angular gravel around 18.9 m IIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIII								•••••					••••						2648.0	
18.0 - sand becomes angular, well graded around 18.9 m - sand becomes angular, well graded around 18.9 m - trace of fine angular gravel around 18.9 m - trace of fine angular gravel around 18.9 m - grinding, hard drilling around 20.4 m Nf - 2230 - sand becomes gravelly, fine to medium grained around 20.4 m Vs, Vr 15-20% - 2260 - becomes gravelly, fine to medium grained around 20.4 m Vs, Vr 15-20% - 2260 - 2260 - becomes gravelly, fine to medium grained around 20.4 m Vs, Vr 15-20% - 2260	E- 17.0								···· ···										2646.0	
19.0 → sand becomes ongular, well graded around 18.9 m → trace of fine angular gravel oround 18.9 m ● <td< td=""><td>E 18.0</td><td></td><td></td><td></td><td></td><td>Nbn</td><td></td><td></td><td></td><td></td><td></td><td></td><td>··· ····</td><td></td><td></td><td></td><td></td><td></td><td>2642.0</td></td<>	E 18.0					Nbn							··· ····						2642.0	
20.0 around 18.9 m - trace of fine angular gravel around 18.9 m - trace around 18.9 m<	F 19.0	Π		– sand becomes apoular, well are	ded			•									ļ		⊒2640.0 ⊒2638.0	
21.0 - trace of fine angular gravel around 18.9 m Nf - grainding, hard drilling around 20.4 m 2832.0 22.0 - grinding, hard drilling around 20.4 m Vs, Vr 15–20% - grainding, hard drilling around 20.4 m 2828.0 22.0 - becomes gravelly, fine to medium grained around 20.4 m Vs, Vr 15–20% - grainding, hard drilling around 20.4 m - grainding, hard drilling around 20.4 m </td <td>E 20.0</td> <td></td> <td></td> <td>around 18.9 m</td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td>····</td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td>2636.0</td>	E 20.0			around 18.9 m							····								2636.0	
around 18.9 m - grinding, hard drilling around 20.4 m 20.4 m 20.4 m - becomes gravely, fine to medium grained around 20.4 m Vs, Vr 15–20% • 20.2 m 25.0 - grinding, hard drilling around 20.4 m Vs, Vr 15–20% • 20.2 m 26.0 - grinding, hard drilling around 20.4 m Vs, Vr 15–20% • 20.2 m 26.0 - grinding, hard drilling around 20.4 m Vs, Vr 15–20% • 20.2 m 27.0 - grinding, hard drilling around 20.4 m Vs, Vr 15–20% • 20.2 m 28.0 - grinding, hard drilling around 20.4 m Vs, Vr 15–20% • 20.2 m 28.0 - grinding, hard drilling around 20.4 m Vs, Vr 15–20% • 20.2 m 28.0 - grinding, hard drilling around 20.4 m Vs, Vr 15–20% • 20.2 m 28.0 - grinding, hard drilling around 20.4 m Vs, Vr 15–20% • 20.2 m 28.0 - grinding, hard drilling around 20.4 m Vs, Vr 17ace 5% 20.2 m 20.2 m 29.0 - grinding, hard drilling around 20.1 m, 0.6 m - grinding, hard drilling 25 mm PVC install, backfilled with mine residuum 25.2 m 25.2 m 25.2 m	E 21.0	Ŧ		— trace of fine angular gravel		Nf		••••••					⊾ . ;						2634.0	
22.0 - gintailing, hold drailing around 20.4 m 20.4 m <td>E 120</td> <td></td> <td></td> <td>around 18.9 m</td> <td></td> <td>-2632.0 -2630.0</td>	E 120			around 18.9 m															-2632.0 -2630.0	
23.0 - becomes gravelly, fine to medium Vs, Vr 15-20% 2620.0 25.0 - becomes gravelly, fine to medium Vs, Vr 15-20% 2620.0 25.0 - becomes gravelly, fine to medium Vs, Vr 15-20% 2620.0 26.0 - becomes gravelly, fine to medium Vs, Vr 15-20% 2620.0 27.0 - becomes gravelly, fine to medium Vs, Vr 15-20% 2620.0 28.0 - becomes gravelly, fine to medium Vs, Vr 15-20% 2610.0 28.0 - becomes gravelly, fine to medium Vs, Vr Trace 5% 2610.0 29.0 - becomes gravelly, fine to medium Vs, Vr Trace 5% 2610.0 29.0 - becomes gravelly, fine to medium Vs, Vr Trace 5% 2610.0 30.0 - becomes gravelly, fine to modium Vs, Vr Trace 5% 2600.0 31.0 NoTE: Hole advanced to 30.1 m, 0.6 m 2600.0 2596.0 33.0 - becomes gravelly, become 2596.0 2596.0 33.0 - becomes gravelly, become 2596.0 2596.0 - become - become - become 2596.0 - become - become - become 2596.0				20.4 m												····	į		2628.0	
24.0 grained around 20.4 m VS, Vx 15-20% 2622.0 26.0 26.0 26.0 26.0 26.0 27.0 28.0 28.0 26.0 26.0 26.0 28.0 29.0 29.0 26.0 25.0 25.0 25.0 25	= 23.0 =			- becomes gravelly, fine to mediu	m l	Ve Vr 15_20	197	¢.				- -							≣2626.0 ≣≊624 n	
25.0 26.10 26.12	E-24.0	Т		grained around 20.4 m	•	VS. Vx 15-20)%	0.									çç		£024.0	
26.0 27.0 26.1 2618.0 28.0 28.0 28.0 28.0 28.0 30.0 END OF BOREHOLE 30.1 m Nbe 2601.0 31.0 NoTE: Hole advanced to 30.1 m, 0.6 m 2600.0 2600.0 33.0 Slough during 25 mm PVC install, 2598.0 2598.0 33.0 EBA Engineering Consultants Ltd. LOCGED BY: JSB COMPLETION DEPTH: 30.1 m LOCGED BY: JSB COMPLETION DEPTH: 30.1 m Mitehorse, Yukon	- 25.0								····								[£2620.0	
27.0 Withehorse, Yukon Vs, Vx Trace 5% 2614.0 28.0 Vs, Vx Trace 5% 2612.0 29.0 END OF BOREHOLE 30.1 m 2603.0 -31.0 NoTE: Hole advanced to 30.1 m, 0.6 m 2600.0 -32.0 Slough during 25 mm PVC install, 2600.0 -33.0 backfilled with mine residuum 2598.0 -34.0 EBA Engineering Consultants Ltd. LOGGED BY: JSB COMPLETION DEPTH: 30.1 m Whitehorse, Yukon Page 1 of 1	E 26.0																	E	Ξ2618.0 Ξ2616.0	
28.0 29.0 29.0 2612.0 30.0 29.0 2602.0 2603.0 30.0 END OF BOREHOLE 30.1 m Clear 2602.0 31.0 NOTE: Hole advanced to 30.1 m, 0.6 m 2602.0 2602.0 32.0 Slough during 25 mm PVC install, 2598.0 2598.0 33.0 END of Borening Consultants Ltd. LOCGED BY: JSB COMPLETION DEPTH: 30.1 m EBA Engineering Consultants Ltd. LOCGED BY: JSB COMPLETION DEPTH: 30.1 m Whitehorse, Yukon Page 1 of 1	E 27 0					Vs, Vx Trace	5%							····· {····· {·					2614.0	
28.0 Nbe Vs, 25-30% 2600.0 30.0 END OF BOREHOLE 30.1 m Clear 2600.0 31.0 NOTE: Hole advanced to 30.1 m, 0.6 m 2602.0 33.0 slough during 25 mm PVC install, 2598.0 33.0 backfilled with mine residuum 2598.0 EBA Engineering Consultants Ltd. LOGGED BY: JSB COMPLETION DEPTH: 30.1 m Whitehorse, Yukon Page 1 of 1	F						•												2612.0	
29.0 Image: Constraint of the sector of	E 28.0									ŀ						···•{····			2610.0	
-30.0 END OF BOREHOLE 30.1 m Clear 2604.0 -31.0 NOTE: Hole advanced to 30.1 m, 0.6 m 2600.0 2600.0 -32.0 slough during 25 mm PVC install, 2598.0 2598.0 -33.0 -33.0 2599.0 2598.0 -34.0 EBA Engineering Consultants Ltd. LOGGED BY: JSB COMPLETION DEPTH: 30.1 m Whitehorse, Yukon Page 1 of 1	E ^{29.0}	ш				NDC 10 25-309													2606.0	
END OF BOREHULE 30.1 m NOTE: Hole advanced to 30.1 m, 0.6 m slough during 25 mm PVC install, backfilled with mine residuum EBA Engineering Consultants Ltd. Whitehorse, Yukon Whitehorse, Yukon Whitehorse, Yukon EBA Engineering Consultants Ltd.	E- 30.0		ļ			s, zo ova clear										~~ .			2604.0	
EBA Engineering Consultants Ltd. Whitehorse, Yukon Whitehorse, Yukon Whitehorse, Yukon	<u>-</u> 31.0			NOTE: Hole advanced to 30.1 m 0.6 -	n			•••				•							2600.0	
EBA Engineering Consultants Ltd. Whitehorse, Yukon Whitehorse, Yukon Whitehorse, Yukon				slough during 25 mm PVC install	1		ŀ												2598.0	
EBA Engineering Consultants Ltd. Whitehorse, Yukon Whitehorse, Yukon Whitehorse, Yukon	F ,,)			backfilled with mine residuum			-												-2596.0 -9594 n	
EBA Engineering Consultants Ltd. Whitehorse, Yukon Whitehorse, Yukon	E 33.0						ŀ												2592.0	
EDA Engineering Consultants Ltd. Reviewed BY: JRT COMPLete: Whitehorse, Yukon Page 1 of 1	<u></u>	ייייי זקו	L > A	En sin e snin - O - 11	I.	тіт	LOGGED BV-	JSR					COM			<u>. 111.</u>	<u>:</u>	<u> </u>	2590.0	
Whitehorse, Yukon Page 1 of 1		СĽ	ЭA	Engineering Consulta	ints	Ltd.	REVIEWED B	Y: JR	T		、		COM	PLETE		1131	00.1	111		
	05/01/2010	-5201	170120	Whitehorse, Yukon													Pag	e 1	of 1	

Project: 0201-1200173

Dato presented herean is for the sole use of the Supulated client. EBA is not responsible, nor can be held liable, for use made of this report by any other party, with or without the knowledge of EBA Date Tested: 05/12/12

BY: TS

Data presented hereon is for the sole use of the stipulated client. EBA is not responsible, nor can be held liable, for use made of this report by any other party, with or without the knowledge of EBA

Project: 0201-1200173

Date Tested: 05/12/12

BY: TS

Data presented hereon is for the sole use of the stipulated client. EBA is not responsible, nor can be held liable, for use made of this report by any other party, with or without the knowledge of EBA

Project: 0201-1200173

.

Date Tested: 05/12/09

BY: TS

Data presented hereon is for the sole use of the slipukted client. EBA is not responsible, nor can be held liable, for use made of this report by any other party, with or without the knowledge of EBA

Project: 0201-1200173

Data presented hereon is for the sole use of the stipulated client. EBA is not responsible, nor can be held liable, for use made of this report by any other party, with or without the knowledge of EBA Date Tested: 05/12/12

BY: TS

APPENDIX

APPENDIX C 2005 OVERBURDEN CHARACTERIZATION PROGRAM – ADDITIONAL DATA

ISSUED FOR REVIEW

Figure C.1 Moisture Content versus Elevation for 2005 Characterization Minto Mine Proposed Reclamation Overburden Dump

Figure C.2 Frozen Bulk Density versus Elevation for 2005 Characterization Minto Mine Proposed Reclamation Overburden Dump

Figure C.3 Moisture Content versus Frozen Bulk Density for 2005 Characterization Minto Mine Proposed Reclamation Overburden Dump

Figure C.4 Ground Temperature Profile for Borehole 1200173-042 Minto Mine Proposed Reclamation Overburden Dump

Min % Max % Average %

W14101068.004 February 2008

Contraction of the local division of the and the second second

	and the second	Section of			North L	14/18	28.12
		ALL	BOREHOL	ES COMB	NED		
Elevation(m)	% Clay	% Cilt	% Sand	% Gravel	A	tterber	g
	% Clay	% SIII	% Sand	% Gravel	LL	PL	PI
820.2	2	18	49	31			
817	6	32	27	35	16.5	11	5.5
814.6	0	59	40	SS 2168			
814.4	1	32	37	30			
811.9	5	22	28	45	177	14.8	29
811.5	20	19	36	25		11.0	2.0
811.1	5	69	26	0	32	23.4	8.6
804.6	6	37	47	10	19	13	6
803.4	0	12	63	25			
801.2	11	29	42	39			
800.0	14	46	42	0			
		10	10				
705 1	16	47	26		22	14-	9
795.1	35	47	15	2	- 26	(1 4),	0
793.1	3	57	40	0			
790.9	56	41	3	0			
784.2	8	38	41	13			
783.9	11	30	4/	12			
782.1	36	62	2	0			
774.4	3	64	33	0	50.5	26.2	24.3
772.8	28	56	15	1	39.2	25.8	13.4
112.0	17	10	22	43	35.4	20.0	14.0
769.6	28	19	38	15			
					1		
762.7	1	21	41	37			
Min %	0	12	2	0	16.5	11	29
Max %	56	69	63	45	50.5	26.2	24.3
Average %	13.3	38.0	32.5	16.3	29.0	18.6	10.4
Standard Deviation	14.2	16.9	14.6	15.8	12.2	6.1	6.9

APPENDIX

APPENDIX D 2008 OVERBURDEN CHARACTERIZATION PROGRAM – LABORATORY DATA

PARTICLE SIZE ANALYSIS (Hydrometer) TEST REPORT

ASTM D422

Date Tested:

2008/01/11

Project:Reclamation Overburden DumpClient:Minto Explorations Ltd.Project No.:W14101068.004Location:Minto Mine, YTSample No.:08 - ROD -OB01Depth:796 m BenchDescription**:SILT AND SAND - trace clay

Data presented hereon is for the sole use of the stipulated client. EBA is not responsible, nor can be held liable, for use made of this report by any other party, with or without the knowledge of EBA. The testing services reported herein have been performed by an EBA technician to recognized industry standards, unless otherwise noted. No other warranty is made. These data do not include or represent any interpretation or opinion of specification compliance or material suitability. Should engineering interpretation be required, EBA will provide it upon written request.

Data presented herein is for the sole use of the stipulated client. EBA is not responsible, nor can be held liable, for use made of this report by any other party, with or without the knowledge of EBA.

Creating and Delivering Better Solutions

Summary of Direct Shear Test Results

Direct Shear Test

Reclamation Overburden Dump

Project No.: W14101068.004 Date Tested: 08-01-18

Test Hole No.: 08-ROD-OB01 Test Number: DS-4

Initial Sample Conditions

Moisture Content (%): 16.6 Wet Density (Mg/m3): 1.759 Dry Density (Mg/m3): 1.509

Horiz. Disp.	Vert Disp.	Shear Stress	Horiz. Disp.	Vert Disp.	Shear Stress
<u>(mm)</u>	<u>(mm)</u>	<u>(kPa)</u>	<u>(mm)</u>	<u>(mm)</u>	<u>(kPa)</u>
0.00	0.000	0.0	7.62	-0.523	88.1
0.14	-0.006	7.3	7.88	-0.521	88.7
0.29	-0.010	14.7	8.15	-0.518	88.9
0.45	-0.019	23.3	8.41	-0.525	89.1
0.66	-0.041	33.0	8.65	-0.532	88.7
0.86	-0.060	38.7	8.91	-0.538	89.1
1.09	-0.107	45.0	9.17	-0.538	89.4
1.32	-0.161	49.2	9.42	-0.541	89.7
1.54	-0.205	53.4	9.66	-0.542	89.3
1.78	-0.244	56.2	9.93	-0.542	89.5
1.99	-0.272	58.9	10.19	-0.543	89.6
2.21	-0.294	62.2	10.44	-0.553	89.4
2.43	-0.318	65.5	10.67	-0.549	89.5
2.67	-0.338	67.9	10.94	-0.558	89.3
2.89	-0.364	70.4	11.18	-0.551	89.3
3.32	-0.378	74.6	11.43	-0.552	88.8
3.54	-0.393	76.0	11.68	-0.548	88.8
3.76	-0.404	77.5	11.92	-0.553	88.8
3.97	-0.416	78.8	12 15	-0.553	88.6
4.19	-0.439	80.2	12.37	-0.547	88.6
4.40	-0.453	81.5	12.59	-0.552	88.8
4.61	-0,465	82.5	12.83	-0.545	88.2
4.84	-0.468	83.7	13.28	-0.549	87.6
5.03	-0.474	84.3	13 51	-0.560	87.7
5.29	-0.482	85.3	13 75	-0.560	87.4
5.55	-0.487	86.1	13.98	-0.559	87.2
5.81	-0.502	86.7	14 20	-0 556	86.9
6.07	-0.507	87 1	14.20	-0.550	86.3
6.32	-0.512	87.5	14 67	-0.561	86.1
6.58	-0.515	87 7	14.87	-0.566	85.6
6.85	-0.518	87.6	15.00	-0.500	85.3
7 09	-0.521	87 9	10.00	-0.000	00.0
7.35	-0.526	87.9			

Project: <u>Keclamation Overbu</u> Address:	<u>irden Dump</u>	Borehole Nur	nber: <u>0</u> 2	s-ROD	-080/	
Addi 655.		Toot Number		$D \leq -$	1	
Project Number: W 1410/068	004	Sample Deer	rintion: S	$\frac{D}{11T}$	7	
Date Tested: $OB \cdot O/ \cdot / B$ Rv:	S.K	Some	sand	tre	amuel	
Test Apparatus: Direct S	hear				grader	
Machine Number: /	*** *** ********		Sample	Description		
Rate of Strain: . 024	mm % / minute		Diamet	ter (mm)	Height (mm	2
Normal Stress: 150	kPa	1 ,				1
Cell Pressure:	kPa	2			· · · · · · · · · · · · · · · · · · ·	
Sack Pressure:	kPa	3				
lead Differential:	kPa	4				
Şwelling Pressure:	kPa	Mean	63,	50	19.06	
TMAK = 1.780 Mg/m = @	15,5%	pt.m.c.	- 141 - 2	$\sqrt{-6}$	0.36 cm ³	
	nnanings	۱۱ 			Final	
Tare Number	****				-	
Mass of Wet Soll & Tare g	······································	18	2,13	(11]. 10	7 116.64	
Mass of Dry Soli & Tare g				(91,0	8) 96.75	
Mass of Day Solt a			5,91		6.67	
Mass of Moleture a						
Molsture Content %			· ~ /			17
Wet Density Ma/m ³		///////////////////////////////////////	750		22.08	E
Dry Density Ma/m ³		1	<u>127</u> 509			
		<u> </u>	8%50h			
ketch and Remarks:						
	kPa = 21	75 pm >	× 4.91 in	2 = 10	6.8 165.	
		,		= 2.6	163. on Lr.	5/
					<u> </u>	

stipulated client. EBA is not responsible, nor can be held liable, for use made of this report by any other party, with or without the knowledge of EBA.

Industry standards, unless otherwise noted. No other warranty is made. These data do not include or represent any interpretation or opinion of specification compliance or material suitability. Should engineering interpretation be required, EBA will provide it upon written request.

Direct Shear Test

Reclamation Overburden Dump

Project No.: W14101068.004 Date Tested: 08-01-18 Test Hole No.: 08-ROD-OB01 Test Number: DS-5

Initial Sample Conditions

Moisture Content (%): 16.2 Wet Density (Mg/m3): 1.752 Dry Density (Mg/m3): 1.508

Horiz. Disp.	Vert Disp.	Shear Stress	Horiz. Disp.	Vert Disp.	Shear Stress
<u>(mm)</u>	<u>(mm)</u>	(kPa)	(mm)	<u>(mm)</u>	<u>(kPa)</u>
0.00					
0.00	0.000	0.0	7.34	-0.523	186.2
0.11	-0.017	17.5	7.60	-0.531	185.9
0.17	-0.029	33.5	7.86	-0.530	185.9
0.29	-0.050	51.3	8.13	-0.535	185.1
0.48	-0.075	67.5	8.37	-0.541	184.8
0.71	-0.115	88.4	8.63	-0.548	184.5
0.95	-0.154	107.5	8.90	-0.556	183.7
1.17	-0.188	119.5	9.16	-0.559	183.0
1.39	-0.214	126.7	9.41	-0.569	182.8
1.60	-0.240	134.9	9.68	-0.570	182.2
1.82	-0.265	140.2	9.93	-0.574	181.3
2.05	-0.282	147.3	10.18	-0.583	180.9
2.25	-0.302	152.4	10.43	-0.585	180.0
2.47	-0.308	158.1	10.67	-0.592	179.7
2.69	-0.323	161.2	10.94	-0.592	178.6
3.13	-0.354	167.7	11.19	-0.596	176.0
3.34	-0.372	169.4	11,44	-0.596	175.3
3.56	-0.380	172.2	11.69	-0.602	175.4
3.78	-0.395	175.4	11.93	-0.603	173.5
3.98	-0.415	177.4	12.19	-0.609	173.8
4.19	-0.426	179.0	12,43	-0.614	172.7
4.40	-0.432	180.2	12.67	-0.622	172.0
4.62	-0.434	181.4	12.90	-0.626	171.4
4.83	-0.444	182.3	13.39	-0.627	170.1
5.06	-0.453	183.4	13.63	-0.635	169.7
5.31	-0.461	183.9	13.86	-0.637	169.0
5.55	-0.477	184.3	14.09	-0.648	167.3
5.81	-0.488	185.2	14.38	-0.652	167.0
6.07	-0,493	185.2	14.57	-0.658	166.6
6.32	-0.510	185.8	14 79	-0.659	166.6
6.60	-0.504	186.3	15.01	-0.660	164 4
6.86	-0.509	186.4		0.000	104.4
7.10	-0.516	186.7			

Project: Reclamation Overburde	<u>n Dump</u>	Borehole Num	ber: <u>08 - /</u>	<u> POD - 0801</u>
Address:		Depth:		
	·····	Test Number:	<u> </u>	-5
Project Number: / 1410/068,	004	Sample Descri	iption: <u>SIC7</u>	, clayey,
Date Tested: <u>08.01.18</u> By: <u>5</u>	. <u>K.</u>	some	sand ,	tre. grave
Test Apparatus: <u>Direct St</u>	<u>near</u>	r		
Machine Number: 2			Sample Desc	ription
Rate of Strain:, 024 mm	🛸 / minute		Diameter (mm) Height min
Normal Stress: <u>350</u>	kPa			
Cell Pressure:	kPa	2		
Back Pressure:	kPa	3		
Head Differential:	kPa	4	······	
Swelling Pressure:	kPa	Mean	63,50	19,06
max. = 1.780 Mg/m @	15.5% (pt. m.C.		$= 60.36 \text{ cm}^3$
	anniyə	1116		r11180
Mass of Wet Soll & Tare g		18	2,74 (1	09.10 114.40
Mass of Dry Soll & Tare g			(c	71.01) 96.54
Mass of Tare g		75	5.97	6.67
Mass of Dry Soll g		1		
Moisture Content %		16	,22	19.87
Wet Density Mg/m ²		1.	752	
Dry Density Mg/m°	·····	<u> </u>	508	·····
Sketch and Remarks:		84.7	7 % SPD	
25-	1.0. 5	12	1 1 A A . 3	2
	Rra = 2	0,76 ps/	× 4.91 10	= 244, 2.11
		·····		- 16.8 lbs. on 1
			·····	
			-121	·
		•		
Angle of Shear:				

7,8

hange

Direct Shear Test

Reclamation Overburden Dump

Project No.: W14101068.004 Date Tested: 08-01-21 Test Hole No.: 08-ROD-OB01 Test Number: DS-6

Initial Sample Conditions

Moisture Content (%): 16.3 Wet Density (Mg/m3): 1.755 Dry Density (Mg/m3): 1.510

Horiz. Disp.	Vert Disp.	Shear Stress	Horiz. Disp.	Vert Disp.	Shear Stress
<u>(mm)</u>	<u>(mm)</u>	<u>(kPa)</u>	(mm)	(mm)	<u>(kPa)</u>
0.00	0.000	0.0	6.46	-0.444	290.4
0.09	-0.006	25.9	6.72	-0.446	291.2
0.16	-0.012	53.9	6.96	-0.450	290.9
0.25	-0.016	80.8	7.19	-0.451	290.8
0.30	-0.020	107.5	7.45	-0.463	290.7
0.38	-0.034	128.7	7.66	-0.463	290.2
0.52	-0.062	152.5	7.94	-0.466	290.1
0.66	-0.091	167.4	8,16	-0.470	289.4
0.81	-0.122	186.1	8.42	-0.472	288.4
0.97	-0.143	198.8	8.69	-0.475	288.7
1.14	-0.160	211.3	8.94	-0.483	288.4
1.41	-0.174	224.1	9.18	-0.487	287.9
1.62	-0.191	230.5	9.42	-0.484	286.9
1.81	-0.207	238.2	9.70	-0.484	286.9
1.96	-0.225	243.4	9.99	-0.484	286.6
2.10	-0.243	249.4	10.30	-0.483	286.3
2.27	-0.263	252.7	10.60	-0.483	285.6
2.42	-0.279	256.9	10.89	-0.483	285.0
2.58	-0.283	260.8	11.24	-0.484	285.2
2.99	-0.289	268.2	11.52	-0.485	283.6
3.22	-0.293	271.8	11.83	-0.485	283.2
3.44	-0.299	274.3	12.09	-0.483	280.5
3.67	-0.300	276.7	12.37	-0.483	280.4
3.91	-0.315	279.8	12.65	-0.483	279.4
4.18	-0.324	282.5	12.94	-0.484	278.8
4.45	-0.344	285.0	13.22	-0.485	276.7
4,71	-0.362	286.4	13.48	-0.488	276.5
4.97	-0.373	287.0	13.81	-0.491	274.9
5.23	-0.387	288.0	14.05	-0.494	274.3
5.50	-0.402	287.6	14.33	-0.495	274.2
5.73	-0.420	288.8	14.60	-0.498	273.1
5.98	-0.430	289.7			
6.23	-0.434	290.2			

Project: <u>Reclamation Werbu</u>	<u>irden Dump</u>	Borehole Nul	mber:	<u>5- Rab-</u>	000
Address:		Depth:		わちゃく	
Protect Number: 11/14101068	204	Sample Des	· vintion:	<u>US-6</u> RI/T	alangu
Dete Testeri: $OB \cdot O[\cdot 2]$ But	S.K.	Sample Desc	sand	tro	amuel
Test Apparatus: Direct Sh	enn		/	,	<u>J. 6. 66/</u>
Machine Number: 3	<u></u>		Sample	Description	L
Rate of Strain: $^{\circ}24$	mm@#:/minute		Diame	eter(mm)	Height mm
Normal Stress: 550	kPa	1 .	T		
Cell Pressure:	kPa	2			
Back Pressure:	kPa	3			
Head Differential:	kPa	4			
Swelling Pressure:	kPa	Məan	63,	50	19.06
max = 1.780 Mg/m ² @	15,5% Op	st. m.C.		$\sqrt{-\epsilon}$	50.36 cm ³
		1			F1[180
Tare Number					
Mass of Wet Soll & Tare g		18	1,94	(108,0	1) 113,67
Mass of Dry Soil & Tare g				$\left(\frac{91.1}{91}\right)$	3) 46.95
Mass of Dry Soll o			5,90		6,67
Mass of Moisture o			· · · · · · · · · · · · · · · · · · ·		······································
Moisture Content %		/	677		18 57
Wet Density Mg/m ³		<u>_</u>	1.755		0.22
Dry Density Mg/m ³		<u> </u>	510		**************************************
		Be	7.8 % SF	>D	
Sketch and Remarks:			-		
550	KPa = 79.	77 psi, X	4.9.1 in2	= 391.	7 1bs.
		·		= 30,9	165 on fr. h
	·····				
			·····		

Data presented hereon is for the sole use of the stipulated client. EBA is not responsible, nor can be held liable, for use made of this report by any other party, with or without the knowledge of EBA.

Creating and Delivering Better Solutions

Summary of Direct Shear Test Results

Direct Shear Test

Reclamation Overburden Dump

Project No.: W14101068.004 Date Tested: 08-01-15

Test Hole No.: 08-ROD-OB01 Test Number: DS-1

Initial Sample Conditions

Moisture Content (%): 16.4 Wet Density (Mg/m3): 1.866 Dry Density (Mg/m3): 1.603

Horiz. Disp.	Vert Disp.	Shear Stress	Horiz, Disp.	Vert Disp.	Shear Stress
(mm)	(mm)	(kPa)	(mm) .	(mm)	(kPa)
				·····	
0.00	0.000	0.0	5.34	-0.601	82.2
0.07	-0.012	7.8	5.64	-0.612	82.8
0.17	-0.011	15.1	5.94	-0.624	83.3
0.25	-0.020	19.3	6.29	-0.627	83.7
0.35	-0.034	23.9	6.63	-0.644	84.5
0.47	-0.073	28.8	6.98	-0.655	85.1
0.56	-0.108	32.2	7.34	-0.663	85.5
0.67	-0.132	36.0	7.68	-0.669	85.7
0.78	-0.151	38.7	8.02	-0.681	86.5
0.89	-0.178	42.1	8.36	-0.697	86.9
0.98	-0.210	44.4	8.72	-0.703	87.0
1.11	-0.227	46.7	9.06	-0.713	87.1
1.20	-0.245	48.9	9.41	-0.722	87.4
1.31	-0.270	51.0	9.75	-0.735	87.4
1.42	-0.288	52.9	10.10	-0.741	87.5
1.49	-0.301	54.7	10.44	-0.751	87.2
1.62	-0.320	56.8	10.78	-0.757	87.3
1.73	-0.338	57.6	11.12	-0.762	87.3
1.84	-0.354	59.2	11.45	-0.766	87.0
1.93	-0.372	60.9	11.77	-0.774	86.9
2.05	-0.377	62.0	12.09	-0.782	87.0
2.19	-0.390	63.6	12.40	-0.783	86.8
2.35	-0.405	65.9	12.70	-0.787	86.0
2.57	-0.445	68.3	13.00	-0.792	85.8
2.84	-0.464	70.3	13.33	-0.798	86.1
3.08	-0.490	72.4	13.62	-0.800	85.8
3.33	-0.509	74.1	13,99	-0.802	85.8
3.60	-0.523	75.9	14.31	-0.803	85.8
3.85	-0.532	77.1			
4.13	-0.551	78.4			
4.44	-0.563	79.7			
4.73	-0.580	80.6			
5.04	-0.589	81.6			

Test Num Test Num Project Number: $W14101068.004$ Sample I Date Tested: $08.01.(5 By: 5.K.)$ Som Test Apparatus: $Direct Shear$ Machine Number: Som Rate of Strain: $.024$ mm#r/minute Normal Stress: 150 kPa 1 Cell Pressure: kPa 2 Back Pressure: kPa 3 Head Differential: kPa 4 Swelling Pressure: kPa 15.5 % Opt-m.c. Tare Number Trimmings Trimmings Tare Number Mass of Dry Soli & Tare g Mass of Tare g Mass of Tare g Mass of Dry Soli & Tare g Mass of Dry Soli & Tare g	Iber: Description: 2 <u>e</u> <u>Sand</u> Sample Diama 	$\frac{DS}{SILT},$ $\frac{frc}{f}, \frac{frc}{frc},$ $\frac{DS}{SILT}, \frac{frc}{frc}, \frac{frc}{frc}, \frac{ds}{ds}$ $\frac{DS}{SILT}, \frac{ds}{ds}$ $\frac{DS}{SILT}, \frac{ds}{ds}$	l <u>clayey</u> <u>gravel</u> Height(mn
Project Number: $W14101068.004$ Sample IDate Tested: $OB.OI. (5By; S.K.)$ SomTest Apparatus: $Direct Shear$ Machine Number: B Rate of Strain: $O24$ Normal Stress: $I50$ KPa1Cell Pressure:kPaBack Pressure:kPaHead Differential:kPaMass of Wet Soli & Tare gI5.5% Opt. m.c.,Tare NumberIstare gMass of Dry Soli & Tare g	Description:	SILT, trc, e Description eter(mm) 2.25	clayey, gravel, Height(mn
Date Tested: $\bigcirc \mathcal{B} \cdot \bigcirc 1 \cdot (\bigcirc By: \bigtriangleup NK, $ Som Test Apparatus: $\bigcirc I'rect \ Shean$ Machine Number: $\bigcirc 3$ Rate of Strain: $\bigcirc 24$ mm%/minute Normal Stress: $(\bigcirc 24)$ mm%/minute Nease Pressure: kPa 2 Mass of Pressure: kPa 4 Swelling Pressure: kPa Mear $\widehat{\mathcal{Max}} = 1, 780$ $\widehat{\mathcal{My/m}^3 \oplus 15, 5\%$ $\bigcirc Dpt \cdot m.c.$ Tare Number Imminute Imminute Mass of Wet Soil & Tare g Imminute Imminute Mass of Dry Soil & Tare g Imminute Imminute Mass of Dry Soil & Tare g Imminute Imminute	sample Sample Diamo	$\frac{frc}{p} \frac{frc}{p} \frac{frc}{p} \frac{d}{p} \frac{d}{p$	<u>grave</u>], Height(<i>mn</i>
Test Apparatus: Direct Shear Machine Number: 3 Rate of Strain: 024 mm#/minute Normal Stress: 150 kPa Cell Pressure: kPa Back Pressure: kPa Mead Differential: kPa Max. = 1.780 Mg/m ³ @ 15.5% Tare Number Trimmings Mass of Wet Soil & Tare g Mass of Tare g Mass of Tare g Mass of Tare g	Sample Diame	e Description eter(mm)	Height (mn
Machine Number: 3 Rate of Strain: 024 mm%/minute Normal Stress: 150 kPa Cell Pressure: kPa Back Pressure: kPa Back Pressure: kPa Mead Differential: kPa Swelling Pressure: kPa Mass of Wet Soli & Tare g Mass of Tare g Mass of Tare g Mass of Tare g Mass of Tare g Mass of Tare g	Sample Diamo 1 02	e Description eter(mm)	Height(mn
Rate of Strain: .024 mm#/minute Normal Stress: 150 kPa 1 Cell Pressure: kPa 2 Back Pressure: kPa 3 Head Differential: kPa 4 Swelling Pressure: kPa 4 $Mear$ kPa 4 Swelling Pressure: kPa Mear Max $= 1.780$ Mg/m^3 $@$ $15.5 %$ Opt Max $= 1.780$ Mg/m^3 $@$ $15.5 %$ Opt Max $= 1.780$ Mg/m^3 $@$ $15.5 %$ Opt $Mass$ of Wet Soli & Tare g $Mass$ of Dry Soli & Tare g $Mass$ of Dry Soli & Tare g Mass of Tare g $Mass$ $Mass$ $Mass$ $Mass$	Diame 1 0 2 Initial	eter(mm) 2.25	Height (mn
Normal Stress: 1.50 kPa 1 Cell Pressure: kPa 2 Back Pressure: kPa 3 Head Differential: kPa 4 Swelling Pressure: kPa 4 Mear kPa 4 Swelling Pressure: kPa Mear Max. = 1.780 Mg/m ³ @ 15.5 % Opt-m.c., Trimmings Tare Number Imass of Wet Soli & Tare g Imass of Wet Soli & Tare g Mass of Dry Soli & Tare g Imass of Tare g Imass of Tare g Mass of Tare g Imass of Tare g Imass of Tare g	l oz	2.25	
Cell Pressure: kPa 2 Back Pressure: kPa 3 Head Differential: kPa 4 Swelling Pressure: kPa Mear Max, = 1,780 Mg/m ³ @ 15,5 % Opt-m.c., Trimmings Tare Number Imax of Wet Soil & Tare g Imax Mass of Wet Soil & Tare g Imax Imax Mass of Tare g Imax Imax Mass of Tare g Imax Imax	/ 02	2.25	
Back Pressure: kPa 3 Head Differential: kPa 4 Swelling Pressure: kPa Mear max = 1.780 Mg/m ³ @ 15.5% Opt-m.c. Trimmings Trimmings 15.5% Opt-m.c. Mass of Wet Solit & Tare g 15.5% Mass of Dry Solit & Tare g 15.5% Mass of Dry Solit & Tare g 15.5% Mass of Dry Solit & Tare g 15.5% Mass of Tare g 15.5% 15.5% 15.5% 15.5% Mass of Dry Solit & Tare g 15.5% 15.5% 15.5% 15.5% Mass of Dry Solit & Tare g 15.5% 15.5% 15.5% 15.5% 15.5% Mass of Dry Solit & Tare g 15.5% <td>Initial</td> <td>2.25</td> <td></td>	Initial	2.25	
Head Differential: kPa 4 Swelling Pressure: kPa Mear max = 1,780 Mg/m ³ @ 15,5 % Opt-m.c., Trimmings Trimmings Tare Number	Initial	2.25	
Swelling Pressure: kPa Mear max , = 1,780 Mg/m^3 3 15,5 % Opt-m.c., Trimmings Trimmings Tare Number Mass of Wet Soli & Tare g Mass of Dry Soli & Tare g Mass of Tare g Mass of Tare g Mass of Tare g	Initial	2.25	
$Tmax = 1.780 \text{ Mg/m}^2 @ 15.5\% \text{ Opt} m.c.,$ Trimmings Tare Number Mass of Wet Soli & Tare g Mass of Dry Soli & Tare g Mass of Tare g Mass of Tare g Mass of Tare g	Initial	· · · · · · · · · · · · · · · · · · ·	20,00
Tare Number Mass of Wet Soil & Tare g Mass of Dry Soil & Tare g Mass of Tare g		$V = \frac{1}{2}$	<u>209,10 cm</u> Final
Mass of Wet Soli & Tare g Mass of Dry Soli & Tare g Mass of Tare g			<u>, (, , , , , , , , , , , , , , , , , , </u>
Mass of Dry Soll & Tare g Mass of Tare g	567.45	404.5	2)404.05
Mass of Tare g		(335.16	6) 336,62
Mana of Day Soll a	177.21		10.78
Mass of Dry Son g			····
Mass of Moisture g			
Molsture Content %	16.43	2	0,69
Wet Density Mg/m ³	1.866		
Dry Density Mg/m ³	1,603		
Sketch and Bemarks:	70.0 % 5	PD	

Data presented hereon is for the sole use of the stipulated client. EBA is not responsible, nor can be held liable, for use made of this report by any other party, with or without the knowledge of EBA.

Direct Shear Test

Reclamation Overburden Dump

Project No.: W14101068.004 Date Tested: 08-01-16

Test Hole No.: 08-ROD-OB01 Test Number: DS-2

Initial Sample Conditions

Moisture Content (%): 16.5 Wet Density (Mg/m3): 1.868 Dry Density (Mg/m3): 1.604

Horiz. Disp.	Vert Disp.	Shear Stress	Horiz. Disp.	Vert Disp.	Shear Stress
 <u>(mm)</u>	<u>(mm)</u>	(kPa)	(mm)	(mm)	(kPa)
0.00	0.000	0.0	5.75	-0.515	183.0
0.18	-0.009	46.3	6.11	-0.522	184.6
0.31	-0.038	63.6	6.47	-0.529	185.8
0.44	-0.064	75.9	6.82	-0.544	186.8
0.55	-0.107	84.6	7.17	-0.553	187.6
0.69	-0.132	92.8	7.52	-0.566	188.5
0.82	-0.156	99.9	7.88	-0.577	188.6
0.95	-0.181	106.7	8.24	-0.595	189.0
1.09	-0.202	112.9	8.60	-0.611	189.3
1.21	-0.227	118.2	8.95	-0.624	189.7
1.34	-0.243	123.4	9.31	-0.636	189.8
1.47	-0.262	127.9	9.67	-0.645	189.7
1.61	-0.276	132.4	10.01	-0.657	189.7
1.74	-0.294	136.5	10.36	-0.667	189.7
1.88	-0.307	139.7	10.74	-0.680	189.5
2.02	-0.313	143.4	11.13	-0.696	189.1
2.15	-0.328	146.6	11.51	-0.711	188.2
2.28	-0.341	149.4	11.89	-0.726	187.0
2.40	-0.351	152.3	12.27	-0.740	185.9
2.53	-0.365	155.0	12.65	-0.754	184.9
2.67	-0.373	157.3	13.03	-0.763	184.2
2.83	-0.390	160.1	13.41	-0.778	183.7
2.98	-0.399	162.4	13.79	-0.795	183.3
3.15	-0.407	164.5	14.17	-0.818	182.8
3.30	-0.418	166.4	14.55	-0.832	182.5
3.46	-0.424	168.3			
3.62	-0.429	170.0			
3.79	-0.435	172.1			
4.08	-0.448	174.1			
4.40	-0.459	176.2			
4.71	-0.473	178.3			
5.06	-0.484	179.9			
5.41	-0.497	181.3			
		· •			

ddress:	P	Depth:	ID91.		<u> </u>
		Test Number		DS-2	2_
Project Number: $W14101068.00$	 F	Sample Desc	ription:	JLT	claveu
pate Tested: $OB \cdot O[\cdot] GBy: 5.4$	Κ.	Some	e sand	t tre	aravel
est Apparatus: Direct Shee	an			7	
Iachine Number:			Sample	Descriptio	n
ate of Strain:, 02.4 mm	≠ minute		Diame	oter(mm)	Height (mm)
ormal Stress: 350	kPa	1 .			
ell Pressure:	kPa	2			
ack Pressure:	_ kPa	3			
ead Differential:	kPa	4			
welling Pressure:		Mean	107	2.25	20.00
max = 1.780 Mg/m 3@ 15.	<u>5 % 0</u>	ot.m.c.		$\sqrt{=}$	$\frac{209.10 \text{ cm}^3}{\text{Final}}$
		11			
				(1+5	
Mass of Wet Soll & Tare g		56	7.75	402,1	06/ 402.64
Mass of Dry Soli & Tare g		17	7 71	(335,	35) 337,63
		17	1.21		10.81
Mass of Mojeture a			·		
Moisture Content %		16	4/		19.09
Wet Density Ma/m ³		1	8/8		
Dry Density Mg/m ³		1	604		
		90.	 1 % SP1	L >	
ketch and Remarks:		, -,			

Data presented hereon is for the sole use of the stipulated client. EBA is not responsible, nor can be held limble, for use made of this report by any other party, with or without the knowledge of EBA.

Direct Shear Test

Reclamation Overburden Dump

Project No.: W14101068.004 Date Tested: 08-01-18

Test Hole No.: 08-ROD-OB01 Test Number: DS-3

Initial Sample Conditions

Moisture Content (%): 16.4 Wet Density (Mg/m3): 1.925 Dry Density (Mg/m3): 1.654

Horiz. Disp.	Vert Disp.	Shear Stress	Horiz. Disp.	Vert Disp.	Shear Stress
(mm)	(mm)	(kPa)	(mm) [`]	(mm) [.]	(kPa)
		······································	······································		
0.00	0.000	0.0	6.76	-0.560	290.5
0.10	-0.004	21.8	7.00	-0.575	291.4
0.21	-0.006	39.4	7.25	-0.580	292.4
0.38	-0.009	63.6	7.50	-0.587	293.5
0.55	~0.015	91.4	7.76	-0.590	294.6
0.68	-0.049	110.6	8.04	-0.592	295.3
0.84	-0.095	128.3	8.27	-0.595	295.6
1.04	-0.130	146.2	8.52	-0.602	296.4
1.25	-0.183	162.5	8.78	-0.610	296.9
1.46	-0.221	176.1	9.05	-0.613	297.6
1.67	-0.258	188.9	9.28	-0.619	297.0
1.86	-0.291	201.0	9.52	-0.629	297.1
2.08	-0.310	214.4	9.79	-0.630	297.1
2.28	-0.336	225.9	10.04	-0.637	296.9
2.48	-0.357	233.0	10.29	-0.637	296.6
2.71	-0.370	239.7	10.54	-0.637	295.6
2.91	-0.388	246.5	10.78	-0.641	294.9
3.13	-0.405	251.3	11.02	-0.643	294.7
3.34	-0.421	256.1	11.26	-0.651	294.9
3.53	-0.430	259.9	11.50	-0.654	293.9
3.74	-0.447	262.8	11.74	-0.657	293.3
3.95	-0.454	265.6	11.98	-0.655	292.8
4.16	-0.469	268.2	12.21	-0.655	291.5
4.36	-0.482	270.5	12.43	-0.661	289.8
4.57	-0.490	272.1	12.66	-0.662	289.3
4.78	-0.503	273.2	12.89	-0.662	289.0
4.98	-0.509	274.9	13.12	-0.667	288.3
5.23	-0.516	276.5	13.34	-0.673	286.7
5.49	-0.529	280.3	13.57	-0.676	285.9
5.74	-0.542	282.8	13.79	-0.677	284.8
5.98	-0.550	285.3	14.01	-0.684	283.6
6.23	-0.555	287.3			
6.50	-0.555	289.1			

Address.	<u>Lun</u> p			<u> </u>	
		Deptn:		~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	~
Protot Number: 1/1/1/01068 000	1_	lest Number	; 	$\frac{D}{\sqrt{T}}$	>
Date Testad: $(28, 6)$ (28 Bur S.	<u>+</u>	Sample Desc		<u></u>	clayey,
Test Annaratus: Direct Shaa		JOME	Juna	, 770	-gravel
Machine Number: 3	<u> </u>		Samnia i	Description	
Bate of Strain: , 024	(Diamet	of mm)	Height mm
Normal Stress: 550	/ minute	1.	1		
Cell Pressure:	- KP8	2			
Back Pressure:	- nra kPa	3			*******************************
Head Differential:	– NA	4			······
Swelling Pressure:	kPa	Mean	63.	50	19.06
fmax = 1.780 Mg/m3 @	15.5 %	% Opt. m	7.C,	$\sqrt{=6}$	0.36 cm^3
Trimmir	ngs	1	nitial		Final
Tare Number					
Mass of Wet Soll & Tare g		19	2.15	(118,4	7)123.81
Mass of Dry Soil & Tare g				(99.8	5) 105,39
Mass of Tare g		7	597		6.60
Mass of Dry Soil g					
Mass of Molsture g					
Moisture Content %		/	6.35	18	3.65
Der Density Mg/m ⁻	<u></u>	•	1.925		
DIY Densky Mg/m		<u> </u>	1.654		
Sketch and Remarks:		92.	770 SPD		

stipulated client. EBA is not responsible, nor can be held liable, for use made of this report by any other party, with or without the knowledge of EBA. The testing services reported herein have been performed by an EBA technician to recognized industry standards, unless otherwise noted. No other warranty is made. These data do not include or represent any interpretation or opinion of specification compliance or material suitability. Should engineering interpretation be required, EBA will provide it upon written request.

ł

PARTICLE SIZE ANALYSIS (Hydrometer) TEST REPORT

ASTM D422

Project:	Reclamation Overburden Dump	Date Tested:	2008/01/11
Client:	Minto Explorations Ltd.		
Project No.:	W14101068.004		
Location:	Minto Mine, YT		
Sample No.:	08 - ROD -OB02		
Depth:	808 m Bench		
Description**;	SILT AND SAND - trace clav		

Data presented hereon is for the sole use of the stipulated client. EBA is not responsible, nor can be held liable, for use made of this report by any other party, with or without the knowledge of EBA. The testing services reported herein have been performed by an EBA technician to recognized industry standards, unless otherwise noted. No other warranty is made. These data do not include or represent any interpretation or opinion of specification compliance or material suitability. Should engineering interpretation be required, EBA will provide it upon written request.

APPENDIX

APPENDIX E 1997 SITE CHARACTERIZATION PROGRAM – BOREHOLE AND TESTPIT LOGS

THE	MINT	O PI	ROJEC	T		CLIENT: MINT) EXPLORAT	IONS LTD.			BORF	HOI	ENC)· Q	7-01	7				
GEOT	ECH	NICA	L EVA	L. —	WASTE DUMP AREA	DRILL: CME-	-75 c/w SO	LID SHAFT A	UGERS		PROJ	PROJECT NO: 0201-97-11509								
MINT		EEK,	YUKO	N		UTM ZONE:	- N - E				ELEVA		N: 28	327.2	1					
SAMI	<u> </u>	IYPE	<u> </u>	GR 1	VAB SAMPLE NO RECOVER	Y 🛛 STAND	ard pen.	75 mm SF	"OON		EL BARRE	L								
	Щ	0		5					GROUN	D TEMPER	ATURE (C)4	∎P 20	ERCENT	GRAVEL					
Ē	∠	Щ	Ω.	MB	SOIL		GROU	ND ICF			<u>, .</u>	-	PERCENT SAND				Ê			
EPI	<u>IPL</u>	MP	S	L S	חדפרסוסיי	IOM							20 40 60 80 ▲PERCENT SILT OR FINES (TH(
	SA	S	ĺ	8		ION	DESCH	RIPTION		м.с. 	LIQU. 		20	40	60 8	0	DEL			
- 0.0					MOSS AND ROOT HAT				10	20 3	0 40		20	40	CLAY 60 8	0				
È		98 00			SAND & SILT - trace of fine	arained	JUNFRUZEN			•						F	0.0			
F		99			gravel, well graded sand,	brownish	PERMAFRO	ST		•			ļ	ļ,			-			
Ē					grey — become come oilt to oilt		Vx, <5%									-	-			
- 1.0					Decome some sut to sit	y delow U.S m								,,,.		-				
Ē		100														F				
F		100					Vx, 15 to 2	20%	····.	•						E				
Ē					 silt content increases to 1.6 m 	silty below										-				
L 2.0		ĺ		ĺ	 trace of clay below 1.6 r 	T									.,	E	- 2.0			
F		ĺ			- gravel becomes fine to r	ned grained										Ē				
Ē					 below 1.5 m Color becomes grow bala 	. 16 -														
-	803 752	01			color becomes grey belo	W 1.0 m										Ē				
- 3.0					- some gravel below 3.0 m		Vx, <5%		•	····•						····				
Ê			l													E	I			
		ļ						ľ	•••••••••••••••••••••••••••••••••••••••		•••••••••••••••••••••••••••••••••••••••					<u>E</u>				
E ₄₀								1												
F		Ì		ĺ				ŀ						···{···	· · · · · · ·		4.0			
Ē	3 1:	n2														F	1			
E						ĺ				•					· · · · · ·					
E 5.0																Ē				
Ē		ĺ						[``								····	1			
F								1								Ē				
F								"								-				
- 6.0	10	13								-						Ē				
F				Ē	ND OF BOREHOLE @ 6.1 m										Ì	F	6.0			
-				-	 no water table encountere 	d										E				
-				N	OTE: Mine Coordinates N 104	16.00										Ē				
- 7.0		1			E 7347.00	10.00		ļ								Ē	ł			
-																Ē	,			
										<u>.</u>						F	Í			
																F	ì			
- 8.0		1		-				ļ		ļ						ĿÈ,	80			
	1																.v.			
-																Ē				
				1												-				
9.0						1										E.				
-				1												Ē				
10.0				1												F				
<u> </u>	R٨	٦Ţ	nai	ne	ering Concult		LOGGE	D BY: JSB				ובד	<u>i j</u> IDN 1			- 1	0.0			
Ē	UR	. ت	ugi	1101 117	cring consultan	us Lta.	REVIEW	ED BY: CRH			COMP	LET	E 97	////	12					
/02/17 11:54	ALC: MIK			Wh	<u>utenorse, Yukon</u>		Fig. No	>:			- <u> </u>			L		- 1 of	1			

THE MINTO PROJECT CLIENT: MINTO									(PLORATIONS LTD						BOREHOLE NO: 97-G18							
GEO	TEC	HNIC/	L EVA	<u> </u>	WAST	E DUMP AREA	DRILL: CME-75 c/	# SOL	JD SHA	FT AU	GERS		PROJECT NO: 0201-97-11509									
MINT	00	REEK	(, YUK	ON			UTM ZONE: - N -	- E -	-				ELE	VATI	ION:	2841.	51.					
SAM	PLE	TYP	E	GR	VAB SA	MPLE NO RECOVER	(🛛 🛛 STANDARD PET	<u>4. [</u>	75 m	m SPO	ON		el bar	REL								
BACI	KFIL	<u>L T</u>	YPE	BE	NTON	TE . PEA GRAVEL	III]SLOUGH	GROU	T			L CUTTINGS SAND										
	님				Ы				20	one pe 40	NETRA 60	110N = 80	2	■ PEF 20		RCENT GRAVEL # 40 60 80						
L E						S S	OIL						• P 20	ERCEN 40	IT SAN) . 80	LINI,	E				
E E		Ĩ	SPT	S	-S	DECCI				▲P		HTH N										
	CAL	۶,			S		VIETION		· · · ·	l,∪. ∳~~—		2	20	40	60 IT (11)	<u>80</u>	-III	8				
- 00			-			HOCO IND DOOT HAT	······		10	20	30	40	2	20	40	60 60	80	Ľ.				
F		104				SUT & SAND - trace	of grovel well grad	Ind I		•									È 0.0			
F						sand, fine to me	d. arained anaular	icu											Ē.			
E.						and sub-rounded	gravels, moist, loo	se,											Ē ^{2.0}			
E 1.0	Å	105	[mottled brown an	d grey		•										Ē			
-						SANU - silty, some o	rovel, well graded											E- 4.0				
È				ļ		sub-rounded ara	vel, laase, moist.	nu						÷					Ē			
- 2.0			1			light greyish brow	n			ļ									E- 6.0			
F						– sand becomes c	oorse grained below												È-			
F		106		SP-SI	0000	2.1 m													E 8.0			
Ę				<u> </u>	" <u>Cana</u>	some silt below :	2.1 m d gravel helew 2.1 .															
- 3.0						 some rine gruine trace of silt belo 	u yravei below 2.1 i w 2.1 m	n											E 10.0			
F		Ì				 very wet below 2 	.1 m, possible water	-											[
F						table				·									E 12.0			
- - 4.0																			Ê			
Ê		107			Ì				•										E			
						 sand becomes fir 	ne to med. grained												E 14.0			
Ē						 Delow 4.5 m troce of fine and 	and arrival balow												-			
5.0						4.3 m	ued gruvel nelow											⊨ 16.0 E-				
Ē																		Ē				
F		108	ĺ															E 18.0				
E 6.0																	i i					
E																			È- 20.0			
F																						
F																			E- 22.0			
- 7.0		100		.				.											-			
Ē		109		SM	9191	<u>- silty, some clay b</u>	<u>elow 7.1 m</u>			•					۲				E-24.0			
						- major sloughing	7.5 m	·														
- 80						NOTE: Mine Coordinat	es N 10730.00												E			
E						E 7575.00		ľ											- 20.0			
È																			E.			
-																			E 28.0			
- 9.0																						
Ē		}																	E 30.0			
Ē					1														Ē			
-																			E 32.0			
- 10.0																			È			
-																			- 34.0			
-	EE	BA (Eng	gine	eer	ing Consulta	nts Ltd.		ED BY:	JSB			0	OMP		N DE	PTH: #	,*				
				N	/hite	ehorse, Yukon		Fig. 1		. UKH	·····			UMP		: 9//	09/13	Pone	of 1			

EBA Engineering

included client. EBA is not responsible, nor can include client. EBA is not responsible, nor can include, for use made of this report by any the party, with or without the knowledge of EBA

EBA Engineering

Data presented hereon is for the sole use of the stipulated client. EBA is not responsible, nor can be held liable, for use made of this report by any other party, with or without the knowledge of EBA Date Tested: 97/10/20 Tested in accordance with ASTM 0422 unless otherwise noted.

BY: RS

THE I	MINT	O PR	COLEC	T		CLIENT: MINTO EXPL	.ORATI	ons ltd				BOREHOLE NO: 97-G19							
GEOT	ECH	NICAL	. EVA	L - V	VASTE	DUMP AREA DRILL: CME-75 c/	w SOI	JD SHAF	t aug	ERS		PROJECT NO: 0201-97-11509							
MINTO) CF	REEK,	YUK	ON		UTM ZONE: - N -	- E -					ELEVAT	rion:	285	7.7'			·····	
SAMF	LE	TYPE		GR/	vb saj	APLE NO RECOVERY STANDARD PE	N. E	75 mn	1 SPOC	N	CRRE	l Barrel							
BACK	FIL	_ TY	PE	BEN	TONI		IIII SLOUGH					CUTTING							
					Ι.			■ 00	NE PEN	VETRATIO		PERCENT GRAVEL							
Ê				SUIL			40	60	80	20	40 PFRCF	00 10 TIME	BO	[c		\$			
IH			DOIL	OIT					20 40 60 80 Z						H(fi				
EP	MP	AMF	Sp			DESCRIPTION		PLASTIC	M.	.C.	LIQUID	▲ PERC 20	SENT S	3 A	58	EPT			
	S	S			S S			• • • • • • • • • • • • • • • • • • •		•			PERCI	ENT CL	<u></u> AY♦			Ω	
- 0.0				I		NOSS AND POOTMAT		10	20	30	40	20	40	60	80	<u> </u>	<u> </u>	0.0	
F	16.00 19.00	110				SIT & SAND - trace of argvel well argu	/ dad		•	•							Ē	- 0.0	
Ē.						sand, fine to med, argined sub-rour	nded											-	
Ē						gravel, soft, moist, dark olive brown	1000											- 2.0	
1.0 F		111				SAND - silty, trace of gravel, well grade	d											-	
Ē	\square					sand, fine to med. grained sub-rour	ided											4.0	
Ē						gravel, loose, moist, greyish brown											Ē	_	
È 🔒						 water table at 1.2 M possibly lower sand seam below 2.1 m 	at										þ	- 6.0	
F 2.0	80	112				= 0.3 m thick lower of mode to account								··		•••		-	
È						argined sand trace of silt loose	;										ļ	- - - 0л	
F		113				very wet, arev		۲										- 0.0	
E ₃₀						,													
F																		- 10.0	
Ē																	ŀ		
E						and herein a set to the	,											- 12.0	
4.0						 sand becomes med to coarse graine below 3.7 m 	ed											-	
Ē		114	Ì	SM	994	 some silt below 37 m 	Î	•				a 61			٠			-	
F						 trace of fine ordined sub-rounded 							ļļ					- 14.V	
F						gravels											Ē	_	
5.0						 gravel content increases below 4.1 r 	n										Ē	16.0	
E						 becomes silty below 4.4 m 											ĥ	-	
E.																	E	- 18.0	
	5.82	115	Ì					•									11	-	
- 6.0							ĺ				······							- 	
						 drilling slightly harder below 6.1 m 											Ē	- 20.0	
Ē																	Ē	-	
	1		1														Ē	- 22.0	
		116		ĺ										· ····	· · · · ·		Ē	-	
E.			Ì					•									L L	24.0	
t l															1	"	Ē	.	
E-8.0	ļ																Ē	- 26.0	
E	Ì						ľ										- -		
E		Į															-	-	
F I	- 1	17			ļ			•									E	- 28.0	
- 9.0						END OF BOREHOLE @ 8.8 m											Ē	-	
	Ì				.	- Dorehole sloughing											E F	- 30.0	
E			1	ļ	,	- maler around 1.2 M MTE: Mine Coordinator N 10837 ND											Ē	-	
E				ĺ		E 7237.00											Ē	- 32.0	
10.0							-										Ē	-	
																	F		
Ĭ	קק	ΛT	 7	rin o	i	ng Congultant III	LOGO	ED BY .	<u> </u>			ICOM		<u>: :</u> 10n r	<u>)</u>)FPTH	<u>:</u>	F	, - J4.V	
1	D.	AI	عييد	, me	er.	ing consultants Ltd.	REVI	WED BY:	CRH			COM	PLET	E: 97	//09/	<u>, ,,</u> 13			
09./01/14.10	45.447	YIKON-	101	W	<u>hite</u>	horse, Yukon	Fig.	No:							L	Pa	qe 1	of 1	

EBA Engineering

Data presented hereon is for the sole use of the stipulated client. EBA is not responsible, nor can be held liable, for use made of this report by any other party, with or without the knowledge of EBA Tested in accordance with ASTM D422 unless otherwise noted.

BY: RS

THE	MIN	TO P	ROJE	CT			CLIENT: MINTO EXPLORATIONS LTD					BOREHOLE NO: 97-G20								
GEOT	ECI	INIC/	L EV	4L -	WAST	E DUMP AREA	DRILL: CME-75 c/w SOLID SHAFT AUGERS						PROJECT NO: 0201-97-11509							
MINI		REEK	, YUI	CON			UTM ZONE: - N	– E ·					ELEVA	TION	2900	5.3				
SAM	- <u>1</u> F	111	<u>L</u>	GR	AB SA	MPLE NO RECOVER	y 🛛 🛛 standard pe	N. [=75 m	m SPO	ON	CRRE	l barre	L						
BACK	<hil< td=""><td></td><td>YPE T</td><td>BE</td><td>NTON</td><td>E PEA GRAVEL</td><td>IIII SLOUGH</td><td>[</td><td>GROU</td><td>ſ</td><td></td><td>DRILL</td><td>CUTTIN</td><td>GS</td><td>SA</td><td>ND</td><td></td><td></td></hil<>		YPE T	BE	NTON	E PEA GRAVEL	IIII SLOUGH	[GROU	ſ		DRILL	CUTTIN	GS	SA	ND				
	Ц	0							■C 20	ONE PE	NEIRAT		20	PERCE	NT CRA	VEL	z			
					MB(l S	OIL		~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~		00		20	12						
1d	L L L	PL L)Id	S	No.	DDOO	CRIPTION						20	TH(
B	MAS	E			10	L DESCI				PLASTIC M.C. LIC			ID 20 40 6			80	<u> </u>	리법		
	Ľ				Ŭ,				10	20	30	40	20	PERC	ENT CU	₩ ♦	ISN			
E 0.0	118 MOSS AND ROOT MAT					MOSS AND ROOT MAT												<u> </u>		
F						SAND — silty, trace of	gravel, well graded											Ē		
Ē	1	ĺ				loose. moist. nlive	, gruinea gravei, hrawn									1		- 2.0		
- 1.0	1	110				- color changes to	brownish grey below											Ē		
È		113			1	0.4 m												E 4.0		
F	İ.																	Ē		
Ē																		È.		
E 2.0	1000	120		SH	1010	0.7 0.1.1			•••••	·····				· · · · · · ·				E		
F	19484. 1948	120		SNK	ਸ਼ਿਸ਼	- U.S M thick layer	of fine to med.					É	4			•		Ē		
Ē		121				moist, olive brown	e of sill, loose,		• •	••••	••••							E 8.0		
E 30						- some coarse grain	ned sub-rounded gro	avel										<u>.</u>		
È						below 2.4 m - 2.7	'm											E 10.0		
Ē.						 Increases slightly in the low 3.0 m 	to very moist											5		
																		E 12.0		
- 4.0		122													Ē					
						۲									È.					
F		ĺ	ļ				becomes moist below							ļ				E 14.0		
	Í					 moisture content t 		ı										Ē		
- 5,0						4.6 m									ļ		E 16.0			
																		È		
		123															18.0			
		.23		ĺ				۹								Í	Ē			
			1														E-20.0			
			1														Ē			
E						 trace of fine graine 	trace of fine grained gravel below						1					F		
- 7.0	Ì					6.5 m												E 22.0		
-	1	24	ĺ						•											
-																		24.0		
-				İ														È.		
8.0					-	- drilling becomes ha	rder below 7.9 m											- 26.0		
	ĺ																	Ē		
_	1	25		ļ	ļ													E-280		
		2.5		ĺ	F	ND OF BORFHOLE & .	8 m		9									Ē		
- 810					-	- borehole slouahing	0 111											E_		
					-	по water encounter	ed											E 30.0		
					N	OTE: Mine Coorindates	N 11303.00	ļ				·····	····		{}			E		
- 10.0						E 6833.00												E 32.0		
																	·	⊨		
]						······												- 34.0		
E	'B	J F	Ing	ine	eri	ng Consultar	nts Ltd.		D BY: J	SB			COM	PLETI	ON DE	PTH: *.	, ‡			
			0	WI	hite	horse. Yukon			WED BY:	LKH				PLETI	97/	09/13				
/01/14 10:1	7A (()	KON-1	<u>ش</u>					<u>, iy</u> , iy	<u>v.</u>				1			ł	Maae 1	of 1		

Data presented hereon is for the sole use of the stipulated client. EBA is not responsible, nor can be held liable, for use made of this report by any other party, with or without the knowledge of EBA

Tested in accordance with ASTM D422 unless otherwise noted.

The testing services reported herein have been performed by an EBA technician to recognized industry standards, unless otherwise noted. No other warranty is made. These data do not include or represent any interpretation or opinion of specification compliance or meterial suitability. Should engineering interpretation be required, EBA will provide it upon written request.

THE	MINT) PF	ROJEC	T		CLIENT:	MINTO EXPLORATI	ons ltd	•			BOREH	OLE N	10: 9)7-G2	21	
GEOT	ECHN	ICA	. EVA	L -	WAST	DUMP AREA DRILL	CME-75 c/w SOL	JD SHAF	t auge	ERS		PROJEC	CT NO	: 020	1-97-	11509	3
MINT) CR	EEK,	YUK	ON		UTM ZC	NE: - N - E -	-				ELEVAT	ION: 2	2928.7	, ,	********	
SAMF	PLE]	IYPE		GR	AB SA	APLE 🛛 NO RECOVERY 🔀	Standard pen.	75 mn	1 SP001	N []	CRRE	L BARREL					
BACK	FILL	T	'PE	BE	NTONI	E 💽 PEA GRAVEL 🏢	SLOUGH	GROUT		P		CUTTINGS	5 🗄	SAN	3		
	ш								NE PEN	ETRATIO		≣ P	ERCENT	GRAVE		z	Τ
Ê	Ł	8	9		6	SOIL		20	40	00/	<u>ov</u>	20	PERCEN	T SAND	<u>₿0</u>	ATIC	E
Ш(ш	Щ	L)	Sc	SK							20	40	60	80	EN	H
E E	dW	MW	5			DESCRIPT	ION	PLASTIC	M.C		LIQUID	▲ PERG 20	ENE SIL 40	.1 OR 1 60	INES A B()	RUN D	E E
	S	07			12			 10		3/		• • f	ERCEN	T CLAY	♠	ISN	
- 0.0		126		1		MOSS AND ROOT MAT				<u>.v.</u>	40	20	40	00			- 0.0
F		320				SAND - silty, trace of gravel	, well graded										È.
-						sand, fine to med. graine	ed sub-rounded										E 2.0
						gravel, loose, moist, grey	ish brown										E
				-		— some sin below 0.5 m	ravish brown										EAO
£		127				below 0.3 m		٠									F
Ē																	E.
E- 20																	E 6.0
ŧ																1	
F				}		- 0.6 m thick layer of me	1. to coarse										Ē 8.0
E		128				grained sand at 2.4 m											F
- 3.0						- trace of fine argined and	ular aravel	•									E 10.0
Ę						trace of silt, loose, very	moist, grey										-
Ē			ĺ														E 12.0
E ₄₀			ļ														-
					1919	 hard drilling from 0.3 m 	to 4.0 m							Î			Ē
Ę		29		SM		- some larger gravel siltie	r helow	•				A I	I 🕈				E ^{14,0}
						4.4 m	1 DGIO N										E
- 5.0						- easier drilling below 4.9	m										E 16.0
F						- moist to wet below 5.0 r	n										E.
Ē																	E 18.0
E.																	Ē
<u>⊢ 6.0</u>	<u>i</u> 1	30	ĺ					•									E 20 0
Ē																	
Ē																	Ē
						 little to no gravel below f 	6.7 m										E 22.0
						 damp to moist below 6.7 	m				·						Ē
E I	1	31															E 24.0
Εĺ			Ì					•									Ē
E- 8.0											ļ						26.0
Ë					Í	 very moist to wet below 8 	3.U m										E
F				ļ							ļ						E 28.0
E I																	
9.0		52			ļ				•		ļ				-		-
Ē						LNU OF BOREHOLE @ 9.1 m											E 30.0
	ĺ					- ourenole sloughing, no wa NOTE: Mine Coordinates N 11	1.er			·							
<u> </u>						E 6541.00	020.00										E 32.0
						· · -				T.							È.
						······································											- 34.0
Ī	EB/	AI	Ing	zine	eer	ing Consultants		GED BY: .	JSB			COM	PLETIC)n de	PTH: *.	¢	
-			E	, W	l Thite	horse Yukon		-WED_BY	: CRH				PLETE	: 97/0	09/13		
98/01/14 10	1944 ()	UKON-	10)	11	mu	MOLSE, TUKUII	riq.	NO:			·····				ł	'oge 1	1 10

Data presented hereon is for the sole use of the stipulated client. EBA is not responsible, nor can be held liable, for use made of this report by any other party, with or without the knowledge of EBA

Tested in accordance with ASTM D422 unless otherwise noted. The testing services reported herein have been performed by an EBA technician to recognized industry standards, unless otherwise noted. No other warranty is made. These data do not include or represent any interpretation or opinion of specification compliance or material suitability. Should engineering interpretation be required, EBA will provide it upon written request.

П	HE N	AINT	0 PI	ROJEC	CT.			CLIENT: MINTO EXPL	ORATI	ONS LT)			BOR	EHO	ENC): Q	7_0	22	
G	EOTE	CH	NICA	l. EVA	L - 1	VAST	E DUMP AREA	DRILL: CME-75 c/	w SOL	ID SHAF	T AU	GERS		PRO	IFCT	NO:	0201	-97-	-1150	9
M	INTO	CR	EEK	, YUK	ON			UTM ZONE: - N -	- E -				····	ELEV	ATIC	N: 29	202.5	7	1100	
S	AMP	LE	TYPI	-	GR/	VB SA	MPLE NO RECOVER	(STANDARD PE	N. E	∃75 m	m SP(DON		1 BARR	EI.					
B	ACK	FILL	. Tì	(PE	BEI	TONT	E 💽 PEA GRAVEL	TTTSLOUGH	L	GROU	Г			СШТІК	VGS					
					1				<u> </u>	E C	One pi	ENETRA	TION		PER	CENT (GRAVEL		7	
1	Ê	E	8			BO	Q	ΛΠ		20	4 0	60	80	20)	40	60	80	<u></u>	
	Ē	Ľ.	Ц		SC	X	د د	VIL						20	• PC)	40	5AND 4	80	NIA	Į Ę
	L L	<u>d</u>	AMF	ا مک			DESCI	2IPTION		PLASTIC	I	I.C.	HQUID	▲ PE	RCEN	IT SILT	OR FI	NES A	- Mar	
'		5	S			S						•			↓ ◆PF	<u>nu</u> RCENT		<u> </u>	-ES	B
	0.0						MOSS ROOT MAT			10	20	30	40	20)	40	60	80	Z	
Ē			133		-		SAND - silty trace of	aravel well araded		•										E 0.0
F							sand, fine to med.	grained sub-anaula	or		ļ									E
Ē							gravel, moist to we	et, loose, light												E 2.0
	1.0		134				brownish grey										<u>.</u>			Ē
Ē							 sand becomes con 0.75 m 	arse grained below		•										4.0
Ē	ĺ						- trace to some eilt	halow 0.75 m				·					·++-			E
F.							 water table around 	1.5 m												Eng
Ē	20									•••••										F
F	l																			Ē
F	ļ	૾ૺૼૼૼૼ૾	135	ļ						•					••••					E 8.0
Ė,									ĺ											È
ţ					ĺ											•••••				E 10.0
-	ľ	83	130	-						٠										Ē
È		Í							ľ											E 120
- 4	.0			ĺ		Ì														È
Ē	Ì								ľ								1			
F		-					A W													E 14.0
Ē	ſ	100	3/				 0.5 m thick layer a 	of med. grained				٠								Ē
- 5,	0		ļ	ĺ			unitorni sene et 4.3	2 m												- 16.0
F	Í		ĺ	1																E
Ē						ĺ														
Ę		Si 1.	38							•										
F 6.1	0																			-
Ē	1					Ì														- 20.0
F		ĺ					 harder drilling below 	v 6.4 m									ļļ	ļļ		
Ē					ĺ	-	- grinding below 6.7	m												22.0
F 7.0		8 1.7					V J			···				·····						
Ē	P		19								٩									- 24 0
Ē	ļ															····				
È									ĺ											-
F- 8.0	'					-	 no grinding, hard di 	nilling below									····			<u> </u>
E					ĺ		7.9 M - sand becomes mod	arginal unitary												-
F	ŝ	14	0	Î			below 7.9 m	grained uniform so	ina	·										- 28.0
Ean						Ē	ND OF BOREHOLE @ 8.	 В m												-
							water table at 1.5 m	~ 113												
						-	major slough through	out												- 30.0
È			ļ			N	UIE: Mine Coordinates i	N 11127.00							·			\$		-
L ⁱ 10.(0						E 0728.00													32.0
	1				ĺ				[1	ΠÌ					-
-		<u> </u>																		34.0
EBA Engineering Consultants Ltd.					ſH: ∗ .∙	¥														
	Whitehorse, Yukon																			
8/01/14	10:20	ALC YU	KON- i	በን		<u></u>	LOLDO, IUNUII		irig. N	v:				l				P	ade 1	of 1

THE M	INTO	PROJ	ECT		CLIENT: MINTO	EXPLOR/	TIONS LTD			BOREI	IOLE NO	: 97-	-G23	
GEOTE	CHNI	CALE	/AL	WASTE DUMP AREA	DRILL: CME-	75 c/w S	OLID SHAFT A	UGERS		PROJE	CT NO:	0201-9	97-115	09
MINTO	CRE	ΕΚ, Υι	IKON		UTM ZONE: -	- N - E				ELEVA	TION: 28	85		·····
SAMP	le ty	PE	G	RAB SAMPLE 🛛 NO RECOVE	ery 🖾 stand/	ARD PEN.	75 mm S	FOON		L BARRE	L		******	
EPTH(m)	APLE TYPE		I SYMROI	SOIL	ľί∩N	GRO	UND ICE	A GROUN	D TEMPERV 0 1	ATURE (C) 2	▲ ■P 20 ● 20 ▲ PERC	ERCENT G 40 6 2ERCENT 5 40 6 ENT SILT	RAVEL 10 80 SAND SAND NO 80 OR FINES	PTH(m)
	SA	ð	SO	S DEDOMI	IIUN	DES	RIFTION				20	<u>40</u> PERCENT	<u>AU 80</u> CLAY♠	
- 0.0				MOSS AND ROOT MAT		UNFROZE	N	10	20 30) 40	20	<u>40 E</u>	0 80	L 0.0
- - - - - - - - - - - - - - - - - - -	14	-2		SAND — some silt, trace of coarse grained sond, f sub—rounded gravel, de light greyish brown — harder drilling below 0	r gravel, med, to ine grained ense, moist, 3 m							· · · · · · · · · · · · · · · · · · ·		
- 2.0				 gravel content increase becomes fine to med. 1.6 m 	es slightly and grained below									2.0
	14	3												
- 4.0 	14	4											· · · · · · · · · · · · · · · · · · ·	- 4.0
						PERMAFR	DST TREE							- - - - - - - - -
6.0	14!	5				-0.09 de Nf	gree C.	•••••						
- 7.0	146			yong hard drilling and a	dadta salah									
		All and a second second second second second second second second second second second second second second se		 very nura arilling and g 7.7 m END OF BOREHOLE 7.9 m (F very little slough no water table encounter NOTE: Mine Coordinates N 1 E 6560.00 	rinding below REFUSAL) ared 0932.00									8.0
														Ē
10.0		<u> </u>		<u> </u>			0000 0	Ĺ						<u> </u>
F	BA	Er	igin	eering Consult	ants Ltd	LC	GGED BY: JSE	3		CON	IPLETION	I DEPTH	; *,*	
-			0	Whitchargo Vulsa-	LUCE LUCE	<u><u>x</u>t</u>	VIEWED BY: C	кH			IPLETE:	97/09/	14	
				minicenorse, Iukon		11K	1. NO:						Page	1 of 1

THE M	IINT	0 P	ROJEC	T	(CLIENT: MINTO EXPLO	RATIO	VS LT)			TEST F	IT NO	; (37-7	P01	· · · · · · · · · · · · · · · · · · ·
GEOTE	CH	NICA	L EVA	LUATI	on – Main Dump	EXCAVATOR: CAT 23	5					PROJE	CT NO	: 020	1-97	-1150	9
MINTO	CF	REEK	, YUK	ON	1	JTM ZONE: - N -	E -					ELEVAT	10N: 2	2805'			
SAMPI	LE	TYP	E 🚺	GR	AB NO RECOVERY	SHELBY TUBE											
DEPTH(m)	SAMPLE TYPE	SAMPLE NO	usc	SOIL SYMBOL	SOI DESCRII	L PTION	-	PLASTK	ANDAR 20) PENETR 30 M.C.	ATION 188 40 L/QUII	,	PEF 20 PERCEP 20 PERCEP 20	ICENT (40 RCENT 40 NT SILT 40	RAVEL I 60 SAND • 60 OR FIN 60	80 80 80 ES▲ 80	DEPTH(ft)
00								10	20	30	40		20	40	60 60	80	
0.0 - 1.0 - 2.0		1	ML G₩-Gk		TOPSOIL & ORGANIC LAYER SAND AND SILT - trace to trace of clay well grade grained gravel, moist, li - 150 mm clayey layer wet - PP = 2.6 & 3.3 tsf SAND - some gravel, trace graded sand, fine to mo rounded gravel, damp, l brown GRAVEL(RESIDUUM) - sandy well graded, brown, fine grained, damp to moist - seepage from side of	some gravel, d sand, fine ght brown , elive brown, on tube sample of silt, well ed. grained sub ight greyish , trace of silt, to coarse TP											4.0
		3						\$									L 8.0
- 3.0		4			END OF TESTPIT @ 2.9 m(RE NOTE: TP located about 120 – Mine Coordinates N 10 E 8770.00	FUSAL) Om West of 96-1 D990.00											10.0 10.0 12.0 12.0 14.0
Ŧ	ζR	3A	End	rin	eering Consultar	nts I.t.d	LOGGE	D BY:	AFR			СОМ	PLETIC)n de	PTH: 7	9 m	<u> </u>
-	EBA Engineering Consultants Lto					a. REVIEWED BY: CRH COMPLETE: 97/10/01											
A.M. 8 71X - X6-				1	<u>initentorse, rukon</u>		rig. No):				1				Page	1 of 1

Data presented hereon is for the sole use of the stipulated client. EBA is not responsible, nor can be held liable, for use made of this report by any other party, with or without the knowledge of EBA

Date Tested: 97/10/17

BY: SK

Tested in accordance with ASTM 0422 unless otherwise noted. The testing services reported herein have been performed by an EBA technician to recognized industry standards, unless otherwise noted. No other warranty is made. These data do not include or represent any interpretation or opinion of specification compliance or material suitability. Should engineering interpretation be required, EBA will provide it upon written request.

Project: 0201-11509

Date Tested: 97/10/17

BY: SK

Data presented hereon is for the sole use of the stipulated client. EBA is not responsible, nor can be held liable, for use made of this report by any other party, with or without the knowledge of EBA Tested in accordance with ASTM D422 unless otherwise noted. The testing services reported herein have been performed by an EBA technician to recognized industry standards, unless otherwise noted. No other warranty is made. These data do not include or represent any interpretation or opinion of specification compliance or material suitability. Should engineering interpretation be required, EBA will provide it upon written request

Data presented hereon is for the sole use of the stipulated client. EBA is not responsible, nor can be held liable, for use made of this report by any other party, with or without the knowledge of EBA

Date Tested: 97/10/21

BY: JSB

Tested in accordance with ASTM D422 unless otherwise noted. The testing services reported herein have been performed by an EBA technician to recognized industry standards, unless otherwise noted. No other warranty is made. These data do not include or represent any interpretation or opinion of specification compliance or material suitability. Should engineering interpretation be required, EBA will provide it upon written request.

THE M	IINTO	PRO	JEC	Γ		CLIENT: MINTO EXP	LORATIO	NS LTC)			TEST PIT	NO:	97.	-TP02	1
GEOTE	CHNI	CAL E	EVAL	UATI	ON - MAIN DUMP	EXCAVATOR: CAT 2	235					PROJECT	NO: (97-115	09
MINTO	CRE	EK, Y	UKC)N		UTM ZONE: - N	- E -					ELEVATIO	N: 28	63 '		
SAMP		(PE		GR GR	AB /NO RECOVE	RY []]SHELBY TUBI										
	Ш,	∍					1	■ ST/ 10	ANDARD 20	PENETR/ 30		20	PERCE	NT CRAV	EL 18	
Ę		Z H	ç	WB.	S S	DIL	F						PERCI	ENT SAN	De	ר ≘
EPI	E E		S	LS	חדיכרים	ΤΟΨΙΛΝ		DI ACTIV			10100	20 ▲ PI	RCENT	SILT OR	BO FINES A	THE
ā	SAN	5		Sol		JE LION			·····	₩.U. -⊗		20	40	60	80	DEI
0.0				ļ				10	20	30	40	20	40	60	80	
Ē.					SAND - some silt trace	of argvel well	/									10.0°
		5			graded sand, fine to	med. grained										187
		-			gravel, light brown		/	••••••••••••••••••••••••••••••••••••••	· · · · · ·							يبلين
F					CLAY — silty, sondy, trac	e of grovel,										E 2.0
F		3			to stiff, damp, light	isuc, iirm hrownish										E .
- 1.0				777	grey	STORTHON .	ļ.,		• ••			ļ,			·····	
-			ЭL	\square	- PP = 1.7 & 3.4 ts	sf on tube sample										Ē
	<u>,</u>	7						<i>R</i> u								Ē
	8068				SAND - silty, trace of ar	ovel.						ļ,			÷	E.
E l					cobbles and boulders	, well graded										
-	8	,			sand, fine to med, gi	ained gravel,		•								Ē- 6,0
- 2.0		ł		Ì	- occasional pockets	of decomposed	···	·····								<u>u</u>
					granodiorite	or accomposed										L ¹ IIII
					- coarser with depth											
F	9		Ì		 occasional blocks 	of till-like		•								
F					material		Í									
																ىلىت
-		1									~~~					-E- 10.0
				aa	,											E.
	10) SI	ų ا		— becomes gravelly a	round 3.3 m		۵				8		٩		L.
-		ļ	ļ													12,0
- 4.0																Lud.
	ĺ															Ē
-																E 14.0
	11									,						u lu
- 8	12							\$								ปน
	17	ĺ						-								ilu.
- 5.0					SAND & SILT (TILL-LIKE) -	- some gravel							ļļ			E 16.0
																1
			Í													1111
- [E 18.0
	14							6								E I
. <u>0638</u>				F	ND OF TESTPIT @ 5.8 m	·····										
5.0				1	NOTE: Dry on completion									·····		ціці ці
					- Mine Coordinates N	11540.00										E 20.0
Ī					E 0700.00											1
 די	D A	<u></u>			oning Consult.	wha That	LOGGE	D BY: 4	<u>i i</u> VFR	<u>;</u> ;			<u>; i</u> Ftinn	<u>ПЕРТН</u>	58 m	<u>F</u>
Ľ	DA	Ľĺ	1g	ше •••	ering Consulta	unts Lta.	REVIEW	ED BY:	CRH			COMPL	ETE: 9	7/10/0)1	
203718-03-41	Whitehorse, Yukon					Fig. No	>:							Page	1 of 1	

Project: 0201-11509

Date Tested: 97/10/23

BY: SK

Data presented hereon is for the sole use of the stipulated client. EBA is not responsible, nor can be held liable, for use made of this report by any other party, with or without the knowledge of EBA Tested in accordance with ASTM D422 unless otherwise noted. The testing services reported herein have been performed by an EBA technician to recognized industry standards, unless otherwise noted. No other warranty is made. These data do not include or represent any interpretation or opinion of specification compliance or material suitability. Should engineering interpretation be required, EBA will provide it upon written request.

Into presented hereon is for the sale use of the stipulated client. EBA is not responsible, nor can be held liable, for use made of this report by any other party, with or without the knowledge of EBA

Date Tested: 97/10/23

87: SK

Tested in accordance with ASTM D422 unless otherwise noted. The testing services reported herein have been performed by an EBA technician to recognized industry standards, unless otherwise noted. No other warranty is made. These data do not include or represent any interpretation or opinion of specification compliance or material suitability, should engineering interpretation be required, EBA will provide it upon written request.

Data presented hereon is for the sole use of the stipulated client. EBA is not responsible, nor can be held liable, for use made of this report by any other party, with or without the knowledge of EBA

The testing services reported herein have been partormed by an EBA technician to recognized industry standards, unless otherwise noted. No other warranty is made. These data do not include or represent any interpretation or opinion of specification compliance or material suitability. Should engineering interpretation be required, EBA will provide it upon written request.

APPENDIX

APPENDIX F 1997 SITE CHARACTERIZATION PROGRAM – ADDITIONAL DATA

February, 1998

8

Project: 0201-11509

Date Tested: 97/10/17 Tested in accordance with ASTM D422 unless otherwise noted.

BY: SK

Data presented hereon is for the sole use of the stipulated client. EBA is not responsible, nor can be held liable, for use mode of this report by any other party, with ar without the knowledge of EBA

The lesting services reported herein have been performed by an EBA technician to recognized industry standards, unless otherwise noted. No other warranty is made. These data do not include or represent any interpretation or opinion of specification compliance or material suitability. Should engineering interpretation be required, EBA will provide it upon written request

Project: 0201-11509

Dote Tested: 97/10/17

BY: SK

Data presented hereon is for the sole use of the stipulated client. EBA is not responsible, nor can be held liable, for use made of this report by any other party, with ar without the knowledge of EBA Tested in accordance with ASTM D422 unless otherwise noted. The testing services reported herein have been performed by an EBA technician to recognized industry standards, unless otherwise noted. No other worranty is made. These data do not include or represent any interpretation or opinion of specification compliance or material suitability. Should engineering interpretation be required, EBA will provide it upon written request

ebo

Direct Shear Test

 Project No.:
 0201-11509
 Test Hole No.:
 TP1 (1B)

 Date Tested:
 97-10-16
 Depth (ft):
 1.0-2.0

 Test Number:
 DS-1

Initial Sample Conditions

Moisture Content (%): 10.3 Wet Density (Mg/m3): 2.314 Dry Density (Mg/m3): 2.098

Horiz. Disp.	Vert Disp.	Shear Stress	Horiz, Disp.	Vert Disp.	Shear Stress
(mm)	(mm)	(kPa)	(mm) .	(mm) [.]	(kPa)
			······································		
0.00	0.000	0.0	6.93	0.013	716.8
0.36	-0.040	113.8	7.20	0.018	716.6
0.64	-0.057	209.3	7.46	0.022	718.1
0.93	-0.071	303.3	7.73	0.023	716.3
1.19	-0.078	367.4	7.99	0.024	717.0
1.31	-0.082	409.0	8.24	0.028	716.7
1.45	-0.090	446.7	8.51	0.026	718.5
1.72	-0.101	504.5	8.76	0.026	718.2
1.87	-0.102	532.2	9.02	0.027	718.6
2.03	-0.103	555.9	9.27	0.024	719.5
2.18	-0.104	578.4	9.54	0.024	719.5
2.33	-0.103	598.3	9.80	0.020	719.8
2.49	-0.102	618.1	10.14	0.013	717.4
2.65	-0.099	634.8	10.32	0.009	716.7
2.80	-0.096	650.1	10.58	0.004	718.7
2.96	-0.092	662.1	10.92	-0.002	717.8
3.16	-0.088	676.5	11.18	-0.005	719.1
3.37	-0.080	688.7	11.68	-0.014	718.6
3.58	-0.075	697.4	11.98	-0.020	717.2
3.79	-0.068	703.7	12.21	-0.022	716.7
3.99	-0.060	706.7	12.50	-0.030	715.9
4.20	-0.054	707.5	12.77	-0.034	715.4
4.41	-0.047	708.4	13.03	-0.040	713.3
4.62	-0.039	709.3	13.30	-0.045	713.7
4.83	-0.033	710.1	13.56	-0.051	712.4
5.04	-0.026	710.3	13.82	-0.058	713.6
5.26	-0.020	711.5	14.09	-0.063	710.9
5.46	-0.014	712.4	14.34	-0.071	710.3
5.68	-0.006	711.6	14.59	-0.077	710.5
5.89	-0.002	712.5	14.86	-0.084	709.9
6.13	0.002	713.4	15.12	-0.090	708.8
6.40	0.005	714.3			
6.67	0.009	715.7			

RESIDUAL STRENGTH TEST

Test Hole No.: TP1 (1B) Test Number: DS-1 Depth (ft): 1.0-2.0

Horiz. Disp. (mm)	Vert Disp. (mm)	Shear Stress (kPa)	Horiz. Disp.	Vert Disp.	Shear Stress
		<u></u>	(1110)	(11111)	(кра)
0.00	0.000	0.0	9.46	0 0 4 0	640 4
0.10	-0.012	36.5	9.73	-0.048	647.0
0.12	-0.016	70.2	9,99	-0.000	646.9
0.23	-0.025	96.2	10.25	-0.064	647.5
0.29	-0.032	126.1	10.20	-0.004	640.0
0.36	-0.037	152.3	10.02	-0.008	040.3
0.46	-0.043	188.4	11.06	-0.074	644.4
0.60	-0.050	242.1	11.00	-0.001	643.9
0.73	-0.055	289.4	11.50	-0.000	043.7
0.87	-0.059	334.1	11.86	-0.080	040.2
1.12	-0.062	401.5	12 12	-0.103	644.3
1.37	-0.062	454.9	12.12	-0.111	643.7
1.63	-0.059	492.9	12.00	-0.119	644.2
1.88	-0.053	519.8	12.00	-0.120	040.4
2.14	-0.045	542.4	13 18	-0.137	044.7
2.41	-0.038	557.3	13 44	-0.140	045.8
2.67	-0.033	565.6	13.70	-0.152	047.3
2.92	-0.026	571.9	13.97	-0.102	001.1
3.18	-0.022	576.2	14.23	-0.108	000.9
3.44	-0.020	578.9	14.20	-0.177	000.0
3.70	-0.017	581.9	14.76	-0.100	047.2
3.96	-0.015	583.8	15.03	0.192	649.0
4.22	-0.011	586.8	10.00	-0.200	043.0
4.49	-0.010	584.1			
4.76	-0.011	580.9			
5.02	-0.013	585.9			
5.28	-0.015	594.4			
5.55	-0.017	599.5			
5.82	-0.018	603.2			
6.07	-0.020	608,9			
6.34	-0.020	619.0			
6.61	-0.023	622.3			
6.87	-0.022	624.1			
7.13	-0.022	628.6			
7.39	-0.024	634.3			
7.66	-0.027	638.8			
7.91	-0.027	642.6			
8.17	-0.027	641.3			
8.42	-0.031	645.9			
8.69	-0.035	647.0			
8.94	-0.039	646 1			
9.19	-0.045	646 5			
_		01010			

Direct Shear Test

Project No.: 0201-11509 Date Tested: 97-10-15 Test Hole No.: TP1 (1A) Depth (ft): 1.0-2.0 Test Number: DS-2

Initial Sample Conditions

Moisture Content (%): 12.2 Wet Density (Mg/m3): 2.288 Dry Density (Mg/m3): 2.039

Horiz. Disp.	Vert Disp.	Shear Stress	Horiz. Disp.	Vert Disp.	Shear Stress
 <u>(mm)</u>	<u>(mm)</u>	(kPa)	<u>(mm)</u>	(mm)	(kPa)
0.00	0.000				
0.00	0.000	0.0	6.67	-0.102	1328.1
0.08	-0.001	54.8	6.87	-0.095	1323.5
0.24	0.000	118.8	7.08	-0.095	1316.8
0.31	0.001	183.3	7.28	-0.092	1317.1
0.35	-0.002	233.7	7.54	-0.092	1317.3
0.46	-0.015	317.5	7.80	-0.102	1323.9
0.54	-0.027	397.7	8.05	-0.102	1321.8
0.62	-0.040	465.0	8.30	-0.104	1318.8
0.71	-0.053	527.1	8.57	-0.106	1316.2
0.80	-0.065	584.7	8.83	-0.112	1309.6
0.98	-0.085	688.5	9.09	-0.115	1312.1
1.17	-0.103	778.4	9.34	-0.123	1314.3
1.37	-0.118	856.4	9.60	-0.129	1303.0
1.56	-0.127	923.5	9.85	-0.135	1298.8
1.75	-0.133	983.2	10.12	-0.141	1296.6
2.12	-0.147	1084.8	10.38	-0.149	1287.2
2.32	-0.149	1128.8	10.64	-0.159	1283,9
2.52	-0.151	1164.3	10.90	-0.164	1279.9
2.72	-0.153	1201.7	11.15	-0.173	1274,4
2.93	-0.150	1233.7	11.42	-0.178	1271.4
3.13	-0.149	1260.3	11.67	-0.188	1261.5
3.34	-0.149	1284.6	11.92	-0.193	1254.2
3.54	-0.144	1304.9	12.19	-0.202	1252.3
3.75	-0.140	1313.2	12,45	-0.208	1244.8
3.95	-0.138	1317.4	12.71	-0.217	1242.4
4.15	-0.132	1328.6	12.97	-0.223	1234 0
4.36	-0.128	1335.0	13.23	-0.234	1231.0
4,65	-0.123	1335.4	13,49	-0.240	1231.0
4.96	-0.121	1331.2	13.76	-0.249	1229.9
5.27	-0.116	1330.1	14.02	-0.255	1226.3
5.57	-0.114	1328.1	14.28	-0.266	1220.0
5.88	-0.118	1323.4		0,200	1220.0
6.26	-0.111	1328.1			

RESIDUAL STRENGTH TEST

Test Hole No.: TP1 (1A) Depth (ft): 1.0-2.0

Test Number: DS-2

Horiz. Disp. (mm)	Vert Disp. (mm)	Shear Stress (kPa)	Horiz. Disp. (mm)	Vert Disp. (mm)	Shear Stress (kPa)
Horiz. Disp. (mm) 0.00 0.24 0.43 0.53 0.75 0.85 0.96 1.11 1.18 1.29 1.42 1.54 1.66 1.92	Vert Disp. (mm) 0.000 -0.014 -0.026 -0.035 -0.048 -0.062 -0.076 -0.098 -0.102 -0.110 -0.119 -0.127 -0.133 -0.146	Shear Stress (kPa) 0.0 81.9 158.1 202.4 271.8 329.6 385.9 444.8 496.3 541.7 586.0 630.1 667.4 740.4	Horiz. Disp. (mm) 9.78 10.04 10.30 10.55 10.81 11.06 11.31 11.57 11.83 12.09 12.35 12.61 12.88	Vert Disp. (mm) -0.442 -0.459 -0.472 -0.492 -0.509 -0.524 -0.540 -0.555 -0.570 -0.586 -0.602 -0.617 -0.631 -0.631	Shear Stress (kPa) 1004.8 1004.0 1004.6 1009.2 1021.2 1023.9 1032.0 1039.1 1049.7 1058.6 1067.4 1069.9 1071.2
1.92 2.17 2.42 2.68 2.93 3.19 3.44 3.69 3.95 4.19 4.45 4.71	-0.146 -0.156 -0.161 -0.164 -0.167 -0.171 -0.173 -0.174 -0.177 -0.179 -0.183	740.4 804.9 855.3 896.0 932.3 949.5 971.4 988.4 999.9 1006.7 1011.4	13.13 13.39 13.65 13.92 14.17 14.43	-0.645 -0.659 -0.675 -0.690 -0.704 -0.718	1073.0 1077.1 1075.9 1075.4 1070.9 1067.9
4.71 4.97 5.23 5.49 5.75 6.00 6.26 6.53 6.78 7.05 7.31 7.62 7.88 8.23 8.40 8.66 9.26 9.52	-0.187 -0.192 -0.200 -0.207 -0.215 -0.226 -0.238 -0.249 -0.261 -0.274 -0.289 -0.306 -0.319 -0.337 -0.347 -0.363 -0.406 -0.424	1014.5 1017.3 1013.4 1016.8 1015.9 1014.5 1017.3 1015.1 1015.1 1015.9 1012.9 1006.7 1008.4 1009.0 1010.4 1009.2 1002.8 1004.3			

Direct Shear Test

 Project No.:
 0201-11509
 Test Hole No.:
 TP1 (1A)

 Date Tested:
 97-10-15
 Depth (ft):
 1.0-2.0

 Test Number:
 DS-3

Initial Sample Conditions

Moisture Content (%): 11.8 Wet Density (Mg/m3): 2.303 Dry Density (Mg/m3): 2.059

Horiz. Disp.	Vert Disp.	Shear Stress	Horiz. Disp.	Vert Disp.	Shear Stress
(mm)	(mm)	(kPa)	(mm) .	(mm)	(kPa)
			· · · · · · · · · · · · · · · · · · ·		
0.00	0.000	0.0	6.77	-0.172	1827.2
0.06	-0.003	70.8	6.97	-0.173	1837.5
0.11	-0.008	180.1	7.17	-0.168	1831.1
0.19	-0.012	339.4	7.42	-0.161	1832.2
0.34	-0.039	512.4	7.67	-0.161	1835.6
0.52	-0.062	633.5	7.92	-0.156	1824.6
0.70	-0.084	762.4	8.17	-0.155	1818.4
0.88	-0.101	883.8	8.43	-0.153	1812.8
1.07	-0.119	995.0	8.68	-0.155	1815.1
1.25	-0.140	1096.7	8.93	-0.150	1811.7
1.44	-0.153	1191.4	9.18	-0.154	1808.9
1.63	-0.162	1278.2	9.44	-0.154	1786.1
1.92	-0.184	1394.0	9.70	-0.157	1784.2
2.29	-0.199	1524.3	9.96	-0.161	1779.4
2.69	-0.217	1634.4	10.22	-0.163	1762.8
3.08	-0.219	1703.0	10.48	-0.169	1752.7
3.46	-0.215	1736.1	10.75	-0.173	1709.2
3.87	-0.213	1760.0	11.02	-0.188	1667.6
4.07	-0.205	1764.8	11.28	-0.193	1678.3
4.38	-0.204	1773.5	11.54	-0.200	1704.4
4.53	-0.200	1775.2	11.81	-0.201	1693.4
4.69	-0.198	1777.1	12.07	-0.213	1664.5
4.84	-0.198	1779.1	12.33	-0.215	1653.0
4.99	-0.194	1781.1	12.59	-0.224	1653.3
5.15	-0.193	1781.6	12.86	-0.228	1639.8
5.30	-0.195	1785.6	13.11	-0.237	1649.3
5.46	-0.190	1790.4	13.37	-0.240	1626.3
5.61	-0.189	1794.3	13.63	-0.247	1618.7
5.77	-0.190	1798.8	13,89	-0.251	1610.0
5.95	-0.186	1804.4	14.14	-0.258	1610.8
6.15	-0.179	1810.6			
6.36	-0.181	1815.1			
6.56	-0.176	1820.7			

RESIDUAL STRENGTH TEST

.

	Test Hole No.: Depth (ft):	: TP1 (1A) 1.0-2.0	Test Number: [DS-3	
Horiz. Disp. (mm)	Vert Disp. (mm)	Shear Stress (kPa)	Horiz. Disp. (mm)	Vert Disp. (mm)	Shear Stress (kPa)
0.00 0.14 0.30 0.42 0.64 0.83 1.04 1.24 1.43 1.61 1.80 1.99 2.19 2.41 2.62 2.85 3.08 3.33 3.57 3.83 4.08 4.34 4.60 4.87 5.13 5.39 5.65 5.90 6.15 6.41 6.67 6.92 7.17 7.47 7.72 8.05 8.23 8.96 9.22 9.49	0.000 -0.004 -0.011 -0.022 -0.042 -0.061 -0.080 -0.091 -0.104 -0.119 -0.127 -0.138 -0.148 -0.153 -0.155 -0.157 -0.153 -0.155 -0.157 -0.153 -0.150 -0.148 -0.147 -0.145 -0.140 -0.137 -0.138 -0.140 -0.138 -0.140 -0.154 -0.156 -0.170 -0.178	0.0 84.6 166.9 249.5 387.4 492.5 588.8 675.6 769.5 870.0 963.6 1053.2 1141.7 1223.4 1291.4 1350.4 1398.7 1436.4 1463.1 1478.0 1488.9 1494.5 1499.0 1503.2 1508.3 1507.5 1512.0 1513.6 1515.3 1515.3 1516.7 1515.9 1513.1 1516.7 1512.0 1513.1 1512.0 1513.1 1514.8 1506.9	10.01 10.27 10.54 10.81 11.07 11.32 11.59 11.85 12.11 12.37 12.63 12.88 13.14 13.41 13.67 13.94 14.21 14.48 14.75 15.02 15.30	$\begin{array}{c} -0.187\\ -0.196\\ -0.201\\ -0.207\\ -0.216\\ -0.219\\ -0.226\\ -0.232\\ -0.238\\ -0.240\\ -0.249\\ -0.249\\ -0.257\\ -0.266\\ -0.275\\ -0.278\\ -0.286\\ -0.296\\ -0.306\\ -0.316\\ -0.325\\ -0.332\end{array}$	1501.6 1501.6 1500.2 1497.3 1497.1 1495.4 1496.2 1499.9 1497.3 1494.8 1495.1 1492.6 1492.3 1490.9 1489.8 1490.6 1488.9 1488.6 1489.5 1489.8
9.75	-0.184	1507.2			

0201-11509D11A.dwg

Figure C-2

Peak Shear Stress Mohr Coulomb Failure Envelope Residual Shear Stress Mohr Coulomb Failure Envelope

-

I

2500

2000

1500

1000

500

20

NORMAL STRESS (kPa)

Data presented hereon is for the sale use of the stipulated client. EBA is not responsible, nor can be held liable, for use made of this report by any other party, with or without the knowledge of EBA Tested in accordance with ASTM D422 unless otherwise noted

BY: SK

The testing services reported herein have been performed by an EBA technician to recognized industry standards, unless otherwise noted. No other warranty is made. These data do not include or represent any interpretation or opinion of specification compliance or material suitability. Should engineering interpretation be required, EBA will provide it upon written request.

bata presented nervon is for the sole use of the stipulated client. EBA is not responsible, nor can be held liable, for use made of this report by any other party, with or without the knowledge of EBA

Tested in accordance with ASTM D422 unless otherwise noted. The testing services reported herein have been performed by an EBA technician to recognized industry standards, unless otherwise noted. No other warranty is made. These data do not include or represent any interpretation or opinion of specification compliance or material suitability. Should engineering interpretation be required, EBA will provide it upon written request.

Direct Shear Test

 Project No.:
 0201-11509
 Test Hole No.:
 TP2 (2B)

 Date Tested:
 97-10-22
 Depth (ft):
 3.0-4.0

 Test Number:
 DS-4

Initial Sample Conditions

Moisture Content (%): 20.0 Wet Density (Mg/m3): 2.093 Dry Density (Mg/m3): 1.745

Horiz. Disp.	Vert Disp.	Shear Stress	Horiz. Disp.	Vert Disp.	Shear Stress
<u>(mm)</u>	(mm)	(kPa)	(mm)	(mm)	(kPa)
0.00	0.000	0.0	6.97	-0.327	435.3
0.12	-0.001	29.1	7.23	-0.327	435.5
0.26	-0.003	70.8	7.48	-0.328	436.3
0.39	-0.010	133.6	7.74	-0.331	437.7
0.54	-0.029	182.5	8.01	-0.334	436.3
0.68	-0.053	216.1	8.27	-0.337	436.2
0.83	-0.078	243.3	8.53	-0.339	436.7
0.99	-0.102	264.8	8.79	-0.342	437.6
1.14	-0.123	283.9	9.06	-0.346	435.6
1.29	-0.140	301.7	9.33	-0.348	434.5
1.44	-0.155	318.0	9.58	-0.351	433.2
1.59	-0.170	330.4	9.85	-0.353	433.6
1.75	-0.181	342.9	10.12	-0.355	431.8
1.89	-0.190	352.5	10.39	-0.359	431.6
2.05	-0.201	361.0	10.65	-0.360	431.7
2.21	-0.212	368.0	10.92	-0.363	431.5
2.36	-0.221	375.4	11.19	-0.364	431.1
2.62	-0.237	385.7	11.45	-0.366	429.4
2.87	-0.251	393.5	11.72	-0.369	428.9
3.14	-0.264	401.8	11.98	-0.370	426.7
3.40	-0.278	407.3	12.24	-0.373	426.0
3.67	-0.288	414.0	12.51	-0.374	425.7
3.92	-0.298	419.4	12.77	-0.376	425.1
4.19	-0.306	425.5	13.03	-0.377	425.5
4.60	-0.313	429.2	13.31	-0.377	425.7
4.87	-0.317	431.1	13.57	-0.378	424.6
5.14	-0.319	432.7	13.84	-0.380	424.4
5.40	-0.320	433.6	14.12	-0.380	423.1
5.66	-0.321	435.6	14.39	-0.382	422.1
5.93	-0.322	437.2			
6.19	-0.323	436.1			
6.45	-0.324	435.9			
6.70	-0.324	435.8			

RESIDUAL STRENGTH TEST

	Test Hole No.: Depth (ft):	: TP2 (2B) 3.0-4.0	Test Number: DS-4		
Horiz. Disp. (mm)	Vert Disp. (mm)	Shear Stress (kPa)	Horiz. Disp. (mm)	Vert Disp. (mm)	Shear Stress (kPa)
Horiz. Disp. (mm) 0.00 0.11 0.23 0.35 0.60 0.86 1.11 1.37 1.63 1.88 2.14 2.40 2.65 2.91 3.16 3.42 3.69 3.95 4.22 4.48 4.75 5.02 5.29 5.55 5.82 6.09 6.35 6.62 6.88 7.13 7.40 7.66 7.91 8.17 8.43 8.69 8.96 9.21 0.48	Vert Disp. (mm) 0.000 0.000 -0.001 -0.006 -0.035 -0.066 -0.091 -0.113 -0.131 -0.147 -0.162 -0.175 -0.186 -0.197 -0.206 -0.219 -0.229 -0.236 -0.244 -0.253 -0.261 -0.268 -0.275 -0.261 -0.268 -0.275 -0.285 -0.292 -0.299 -0.309 -0.316 -0.323 -0.316 -0.323 -0.340 -0.340 -0.340 -0.340 -0.340 -0.340 -0.340 -0.340 -0.340 -0.340 -0.340 -0.341 -0.363 -0.373 -0.363 -0.373 -0.381 -0.398 -0.398	Shear Stress (kPa) 0.0 27.1 61.0 98.9 147.1 178.3 209.5 239.5 264.4 282.5 297.5 308.8 318.6 324.9 330.6 336.2 340.3 342.2 346.8 349.1 352.2 353.0 356.4 356.9 359.2 358.6 360.2 360.8 361.6 361.9 364.3 364.1 365.4 365.4 365.3	Horiz. Disp. (mm) 10.53 10.80 11.06 11.33 11.59 11.86 12.13 12.38 12.64 12.91 13.17 13.43 13.69 13.96 14.23 14.49 14.76 15.02	Vert Disp. (mm) -0.436 -0.442 -0.449 -0.458 -0.463 -0.472 -0.478 -0.478 -0.494 -0.499 -0.508 -0.512 -0.518 -0.526 -0.529 -0.539 -0.543 -0.549	Shear Stress (kPa) 365.4 364.8 365.2 363.0 364.0 362.2 361.1 358.5 359.2 357.0 356.1 354.1 354.1 353.3 352.9 352.6 352.3
9.74 10.01 10.27	-0.412 -0.420 -0.425	365.8 366.0 364.5			

Direct Shear Test

Project No.: 0201-11509 Date Tested: 97-10-21

Test Hole No.: TP2 (2A) Depth (ft): 3.0-4.0 Test Number: DS-5

Initial Sample Conditions

Moisture Content (%): 16.4 Wet Density (Mg/m3): 2.167 Dry Density (Mg/m3): 1.862

	/1.000
<u>(mm) (kPa) (mm) (kPa) (kPa) (mm) (kPa</u>	<u>ı)</u>
	•
	.2
0.12 0.000 51.8 7.35 -0.308 $932.$.3
0.24 -0.001 146.1 7.62 -0.312 $935.$.1
0.29 - 0.004 193.3 7.88 - 0.316 935.	.7
0.42 - 0.020 288.2 8.14 - 0.320 937.	.2
0.54 - 0.040 369.5 8.40 - 0.324 938.	.9
0.68 -0.062 437.7 8.67 -0.328 939.	.0
0.82 -0.081 496.1 8.93 -0.333 941.	.4
0.96 -0.100 549.5 9.19 -0.336 943.	.3
1.11 -0.117 597.7 9.44 -0.340 943.	.7
1.28 -0.134 644.5 9.69 -0.344 948.	.6
1.48 -0.152 687.6 9.95 -0.348 946.	.7
1.68 -0.168 726.3 10.21 -0.353 942.	.9
1.91 -0.182 763.2 10.72 -0.365 942.	.6
2.16 -0.194 794.7 10.98 -0.368 944.	.2
2.42 -0.206 820.2 11.24 -0.372 946.	.4
2.68 -0.217 840.6 11.50 -0.376 949.	.2
2.94 -0.225 856.8 11.75 -0.377 945.	.8
3.21 -0.235 870.0 12.01 -0.381 945.	.5
3.47 -0.242 883.5 12.26 -0.384 951.	.1
3.73 -0.248 889.9 12.52 -0.386 945.	.5
4.00 -0.256 897.5 12.77 -0.390 948	1
4.24 -0.260 906.0 13.04 -0.391 945	0
4.50 -0.266 912.1 13.29 -0.395 943	3
4.76 -0.271 919.0 13.55 -0.396 945	ġ
5.02 -0.276 918.5 13.81 -0.398 945	1
5.28 -0.282 923.8 14.07 -0.402 943	7
5.54 - 0.285 928.5 14.33 - 0.402 941	7
5.80 - 0.289 930.4 14.59 - 0.405 938	. г А
6.06 - 0.293 - 931.8 - 14.84 - 0.400 - 0.36	, , 1
6.32 - 0.296 - 932.5 - 15.10 - 0.414 - 0.29	.~. 0
6.58 -0.299 934.3	.0
6.83 -0.301 933.1	

RESIDUAL STRENGTH TEST

Test Hole No.: TP2 (2A) Depth(ft): 3.0-4.0			Test Number: DS-5		
Horiz. Disp. (mm)	Vert Disp. (mm)	Shear Stress (kPa)	Horiz. Disp. (mm)	Vert Disp. (mm)	Shear Stress (kPa)
Horiz. Disp. (mm) 0.00 0.08 0.14 0.22 0.31 0.42 0.53 0.64 0.76 0.99 1.11 1.23 1.35 1.47 1.60 1.73 1.35 1.47 1.60 1.73 1.86 2.11 2.37 2.63 2.89 3.15 3.41 3.67 3.92 4.34 4.60 4.86 5.12 5.38 5.64 5.90 6.16 6.41 6.67 6.93 7.19 7.45	Vert Disp. (mm) 0.000 -0.013 -0.020 -0.027 -0.037 -0.048 -0.054 -0.065 -0.077 -0.089 -0.100 -0.110 -0.120 -0.129 -0.137 -0.145 -0.151 -0.156 -0.166 -0.175 -0.182 -0.188 -0.194 -0.200 -0.205 -0.209 -0.216 -0.225 -0.230 -0.235 -0.238 -0.245 -0.249 -0.258 -0.262 -0.266 -0.272	Shear Stress (kPa) 0.0 62.2 98.2 151.1 212.1 246.4 271.9 329.4 372.3 411.1 450.4 482.7 512.9 539.7 561.3 582.7 603.7 623.3 654.7 680.4 700.3 716.6 731.3 741.6 752.6 760.6 770.0 776.4 775.9 778.1 781.1 782.5 785.5 786.5 787.5 792.8 793.3 792.0 796.3	Horiz. Disp. (mm) 8.50 8.76 9.02 9.27 9.53 9.79 10.04 10.30 10.56 10.82 11.07 11.33 11.58 11.84 12.10 12.35 12.61 12.87 13.13 13.40 13.66 13.91 14.17 14.42 14.68	Vert Disp. (mm) -0.293 -0.299 -0.304 -0.311 -0.315 -0.322 -0.328 -0.328 -0.322 -0.340 -0.344 -0.350 -0.360 -0.368 -0.360 -0.368 -0.374 -0.379 -0.387 -0.399 -0.405 -0.409 -0.418 -0.422 -0.428 -0.435	Shear Stress (kPa) 801.3 799.9 799.9 803.1 801.9 802.5 803.5 804.1 807.4 806.1 809.1 810.7 806.0 808.3 808.8 808.2 807.7 806.3 805.6 804.6 801.9 801.3 799.1 797.8 797.2
7.72 7.98 8.24	-0.277 -0.283 -0.288	795.6 799.1 798.8			

ebo
EBA Engineering Consultants Ltd.

Direct Shear Test

Project No.: 0201-11509 Date Tested: 97-10-15

Test Hole No.: TP2 (2B) Depth (ft): 3.0-4.0 Test Number: DS-6

Initial Sample Conditions

Moisture Content (%): 15.9 Wet Density (Mg/m3): 2.199 Dry Density (Mg/m3): 1.897

Horiz. Disp.	Vert Disp.	Shear Stress	Horiz. Disp.	Vert Disp.	Shear Stress
<u>(mm)</u>	(mm)	(kPa)	(mm)	(mm)	(kPa)
0.00	0.000	0.0	5.73	-0.291	1374.6
0.04	0.000	65.7	6.00	-0.295	1374.3
0.07	-0.001	151.1	6.26	-0.299	1374.3
0.11	-0.004	242.7	6.52	-0.306	1368.4
0.15	-0.008	325.6	6.78	-0.312	1362.5
0.20	-0.014	402.9	7.03	-0.316	1359.7
0.33	-0.026	489.7	7.29	-0.318	1356.6
0.46	-0.043	601.5	7.55	-0.326	1354.4
0.60	-0.059	690.8	7.81	-0.327	1345.6
0.74	-0.078	766.7	8.32	-0.339	1331.6
0.88	-0.094	835.5	8.57	-0.345	1323.7
1.02	-0.109	896.7	8.82	-0.350	1318.7
1.17	-0.123	952.1	9.33	-0.363	1307.4
1.31	-0.137	1002.1	9.59	-0.372	1295.4
1.46	-0.149	1045.3	9.84	-0.379	1284.7
1.61	-0.159	1086.1	10.36	-0.399	1274.0
1.76	-0.169	1121.2	10.63	-0.410	1263.9
1.91	-0.179	1155.5	10.89	-0.420	1260.0
2.05	-0.188	1183.5	11.42	-0.439	1246.2
2.20	-0.195	1209.4	11.68	-0.454	1239.7
2.40	-0.204	1237.2	11.95	-0.464	1233.3
2.66	-0.216	1270.4	12.47	-0.487	1225.1
2.90	-0.226	1293.1	12.71	-0.499	1200.1
3.16	-0.235	1317.0	12.97	-0.510	1222.9
3.41	-0.243	1333.0	13.49	-0.537	1230.2
3.66	-0.250	1342.3	13.74	-0.549	1231.9
3.91	-0.257	1358.3	14.00	-0.562	1237.8
4.17	-0.262	1359.4	14.52	-0.585	1251.8
4.43	-0.267	1364.5	14.79	-0.595	1254.9
4.68	-0.274	1363.3	15.05	-0.606	1262.8
4.95	-0.277	1369.8			
5.21	-0.283	1372.1			
5.47	-0.286	1373.5			

RESIDUAL STRENGTH TEST

	Test Hole No.: Depth (ft):	: TP2 (2B) 3.0-4.0	Test Number:	DS-6	
Horiz, Disp. (mm)	Vert Disp. (mm)	Shear Stress (kPa)	Horiz. Disp. (mm)	Vert Disp. (mm)	Shear Stress (kPa)
Horiz, Disp. (mm) 0.00 0.23 0.42 0.61 0.81 1.01 1.22 1.44 1.65 1.88 2.10 2.34 2.57 2.81 3.06 3.31 3.56 3.81 4.07 4.33 4.59 4.85 5.11 5.37 5.63 5.89 6.14 6.39 6.65 6.90 7.15 7.40 7.66 7.90 8.15 8.41 8.66 8.92 9.18 9.44	Vert Disp. (mm) 0.000 -0.028 -0.052 -0.072 -0.094 -0.112 -0.133 -0.151 -0.165 -0.183 -0.208 -0.221 -0.232 -0.244 -0.255 -0.267 -0.278 -0.289 -0.301 -0.313 -0.325 -0.363 -0.375 -0.385 -0.385 -0.397 -0.409 -0.421 -0.433 -0.445 -0.458 -0.458 -0.458 -0.459 -0.509 -0.522 -0.538 -0.550	Shear Stress (kPa) 0.0 192.2 309.3 413.0 510.7 593.3 672.0 728.2 799.5 857.7 905.7 948.1 983.0 1013.0 1033.5 1055.4 1069.8 1081.3 1089.7 1095.6 1103.8 1108.8 1105.1 1126.8 1128.8 1132.4 1134.7 1136.4 1139.2 1141.7 1146.2 1147.6 1147.6 1147.6 1147.9	Horiz. Disp. (mm) 10.22 10.48 10.75 11.01 11.27 11.52 11.79 12.05 12.30 12.55 12.81 13.07 13.32 13.59 13.85 14.11 14.38 14.65 14.92 15.19 15.47	Vert Disp. (mm) -0.595 -0.610 -0.624 -0.637 -0.648 -0.663 -0.676 -0.691 -0.707 -0.722 -0.743 -0.756 -0.772 -0.792 -0.808 -0.824 -0.841 -0.857 -0.874 -0.890 -0.904	Shear Stress (kPa) 1140.0 1141.1 1141.1 1140.6 1138.3 1139.7 1140.3 1144.5 1121.5 1132.4 1120.9 1125.4 1125.4 1125.4 1126.2 1126.0 1131.9 1131.3 1130.5 1129.0
9.96	-0.579	1149.6			

APPENDIX

APPENDIX G 2008 SITE CHARACTERIZATION PROGRAM – TESTPIT LOGS

Recla	mation Overburg	ien Dump		Client: Minto Explore	ations	Ltd		TESTPIT NO: 08-ROD-TP01	
Minto	Mine			Excavator: 385B CA	T			PROJECT NO: W14101068.004	ł
Minto,	<u>, YT</u>			6945021N; 383576E	E; Zon	e 8			
SAMF	PLE TYPE	DISTURBED	NO RECOV	ERY 🔀 SPT	E	⊒,	A-CASING III SHELI	BY TUBE	
BACK	FILL TYPE 📗	BENTONITE	PEA GRAVE	EL III SLOUGH	Ē	•] (CUTTINGS SAND	
Depth (m)		DESC	SOIL RIPTION		SAMPLE TYPE	SAMPLE NUMBER	▲ TEMPERATURE (°C) ▲ -7 -4 -1 2 PLASTIC M.C. LIQUI 20 40 60 80	GROUND ICE DESCRIPTION	Depth (ft)
_ 0	ORGANIC MAT	 silt, sand, and orga 	nics, fiberous, dark	brown, frozen					0 -
	SAND AND SILT size 10mm - unfrozen @	- trace gravel, trace , rounded to sub-ang 0.4m	clay, fine grained s jular, moist, brown,	sand, maximum aggregate frozen		G1	•	unfrozen al 0.4m	
	SAND - silty, son 40mm, rou - some silt, w	ne gravel, trace clay, nded to angular, moi rell graded sand, max	fine grained sand, st, brown kimum aggregate si	maximum aggregale size ize 150mm, light brown		G2	•		5
- 2	- gravelly					G3	•	PERMAFROST Nbn	
						G4	•		
3 						G5			
4						G6	•		111
	END OF TESTPI	T 4.5m				G7	•		15_1
									201
					RF		UDT. JPB VED RY: JRT	COMPLETION DEPTH: 4.50 COMPLETE: 1/10/2008	1
<u> </u>	4				DR	AWI	NG NO:	Page 1 of 1	
YELLOWKNI	FE W14101068.004.GPJ E	BA GDT 08/01/31							

ASTM D422

Project:	Reclamation Overburden Dump
Client:	Minto Explorations Ltd
Project No.:	W14101068.004
Location:	Minto Mine, YT
Sample No.:	08-ROD-TP01
Depth:	0.6 - 0.8 m
Description**:	SAND AND SILT - trace gravel, trace clay

Sizo	Percent	Clay Si	ze Silt Size		Sand		Gravel	
3128	rassing	100		Fine	Medium	Coarse	Fine	Coarse
100 mm							مر	
75 mm		P 90						
50 mm		е						
38 mm	100	r 80						
25 mm	97	C			/			
19 mm	97	n 70				-		
13 mm	95	t						
10 mm	94	e 60 ·····						
5 mm	91	i i		1				
2 mm	85	n 50						
850 µm	79	е		/				
425 µm	71	r 40						
250 µm	66	b		/				
150 µm	58	y 30						
75 µm	48					Mate Pr	rial Des	scription
33 µm	34	M 20 −				Clay S	ize *	8
22 µm	28	a S				Silt S	ize	40
13 µm	22	s 10				Sar	id (ol	43
9 µm	18	•	1			Cobb	les	9
6 µm	15	0						-
3 µm	10		2	80	400	2 5	2	:0 7
1 µm	7	€	Particle Size	(µm) ——	→ ←	Particle S	ize (mr	n) —

Reviewed By:

Date Tested:

2008/01/24

Data presented hereon is for the sole use of the stipulated client. EBA is not responsible, nor can be held liable, for use made of this report by any other party, with or without the knowledge of EBA. The testing services reported herein have been performed by an EBA technician to recognized industry standards, unless otherwise noted. No other warranty is made. These data do not include or represent any interpretation or opinion of specification compliance or material suitability. Should engineering interpretation be required, EBA will provide it upon written request.

ASTM D422

Date Tested:

2008/01/14

Project:	Reclamation	(

Overburden Dump

Client: Minto Explorations Ltd

Project No.: W14101068.004

Location: Minto Mine, YT

Sample No.: 08-ROD-TP01

Depth: 3.3 - 3.5 m

Description**: SAND - gravelly, some silt, trace clay

Reviewed By:

Data presented hereon is for the sole use of the stipulated client. EBA is not responsible, nor can be held liable, for use made of this report by any other party, with or without the knowledge of EBA. The testing services reported herein have been performed by an EBA technician to recognized industry standards, unless otherwise noted. No other warranty is made. These data do not include or represent any interpretation or opinion of specification compliance or material suitability. Should engineering interpretation be required, EBA will provide it upon written request.

Recla	mation Overburden Dump	Client: Minto Ex	plorations	Ltd.		TE	STPIT NO: 08-ROD-TP02	
Minto	Mine	Excavator: 385E	3 CAT			PR	OJECT NO: W14101068.00	4
Minto,	YT	6945000N; 3834	120E; Zon	e 8				
SAMF	PLE TYPE 🔛 DISTURBED 🗌 NO RECOV	ERY 🛛 SPT	E		A-CASING []] SH	ELBY T		
BACK	FILL TYPE 📓 BENTONITE 🚺 PEA GRAV	EL []]] SLOUGH	+ [<u>.</u>	GROUT 🛛 DR	ILL CU	TTINGS 🔃 SAND	
Depth (m)	SOIL DESCRIPTION		SAMPLE TYPE	SAMPLE NUMBER	▲ TEMPERATURE (°C -7 -4 -1 PLASTIC M.C. LIC 20 40 60	2)▲ 2 UID + 30	GROUND ICE DESCRIPTION	Depth (ft)
0	URANGIC MAT - sill, sand and organics, fiberous, dark SILT AND SAND - trace organics, trace clay, trace grav	brown, frozen el, fine grained sand.					Vx, Vr 5%	0 _
	rounded to sub-angular, maximum aggregate size	10mm, brown, frozen		G1	•			
	SAND - silty, trace gravel to gravelly, trace clay, fine gra aggregate size 100mm, angular to sub-rounded, I	ined sand, maximum ght brown, frozen		G2	•••••••••••••••••••••••••••••••••••••••	· · · · · · · · · · · · · · · · · · ·	Vx, Vc, Vr 5-15%	5
2				G3	•			
				G4	•			
	- silt content decreases slightly			G5				
_ 4				CA				
5	END OF TESTPIT 4.1m			. 66				15
			LO	GGE	D BY: JPB		COMPLETION DEPTH: 4.1	m
ebc	ג		RE	VIEV			COMPLETE: 1/10/2008	
YELLOWKNI	FE W14101068.004.GPJ EBA.GDT 08/01/31			1YYI	NO NO.		raye i vi i	

ASTM D422

Project:	Reclamation Overburden Dump
Client:	Minto Explorations Ltd
Project No.:	W14101068.004
Location:	Minto Mine, YT
Sample No.:	08-ROD-TP02
Depth:	1.4 - 1.5 m
Description**:	SAND - silty, gravelly, trace clay

Size Percent Clay Size Silt Si			Silt Size		Sa	Gr	Gravel			
3126	rassing	100			F	ine I	Medium	Coarse	Fine	Coarse
100 mm										$\left[\right]$
75 mm		P 90								
50 mm	100	e								
38 mm	87	r 80								
25 mm	84	C C								
19 mm	83	n 70								
13 mm	80	t								
10 mm	79	E 60					\checkmark			
5 mm	76	i.								
2 mm	70	n 50				Δ				-
850 µm	62	е				/				
425 µm	55	r 40			/					
250 µm	49	b			X					
150 µm	42	y 30							torial D-	
75 µm	36	NA			/				Proportio	scription
33 µm	26	a ²⁰						Clay	Size *	2
22 µm	21	s						Silt	Size	34
13 µm	15	s 10							and avel	40 24
9 µm	13								obles	2 4 0
6 µm	10	0	-							
3 µm	4		2		80	400		2 5		20 7
1 µm	1		←	—— Particle Siz	e(µm)	> <		Particle	Size(m	m) —

Reviewed By:

Date Tested:

2008/01/24

Data presented hereon is for the sole use of the stipulated client. EBA is not responsible, nor can be held liable, for use made of this report by any other party, with or without the knowledge of EBA. The testing services reported herein have been performed by an EBA technician to recognized industry standards, unless otherwise noted. No other warranty is made. These data do not include or represent any interpretation or opinion of specification compliance or material suitability. Should engineering interpretation be required, EBA will provide it upon written request.

EBA Engineering Consultants Ltd.

Recla	mation Overburden Dump	Client: Minto Explorat	ions	Ltd.		TESTPIT NO: 08-ROD-TP03	
Minto	Mine	Excavator: 385B CAT	•			PROJECT NO: W14101068.004	
Minto,	YT	6945100N; 383300E;	Zon	e8			
SAMF	PLE TYPE DISTURBED NO RECOVI	ERY 🔀 SPT	E		-CASING III SHEL	BY TUBE	
BACK	FILL TYPE 💹 BENTONITE 🚺 PEA GRAVE	EL []]] SLOUGH		•] G		CUTTINGS 🔃 SAND	
Depth (m)	SOIL DESCRIPTION		SAMPLE TYPE	SAMPLE NUMBER	▲ TEMPERATURE (°C) . -7 -4 -1 2 PLASTIC M.C. LIQUI 20 40 60 80	GROUND ICE DESCRIPTION	Depth (ft)
U	ORGANIC MAT - sill, sand and organics, fiberous, dark	brown, frozen				SEASONAL FROST	0 -
* * * *	SAND AND SIL I - trace gravel, trace clay, tine grained size 15mmm angular to sub-rounded, dark brown, - unfrozen @ 0.4m	sand, maximum aggregate frozen		G1		unfrozen @ 0.4m	
	SAND - silty, some gravel, trace clay, fine grained sand, 50mm, angular to rounded, light brown - some silt to silty, gravel content increases	maximum aggregate size		G2		PERMAFROST	5 5 5 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7
				G3	• • • • • • • • • • • • • • • • • • •		1
- 3 	- gravelly, some silt, well graded sand, harder digging			G4	•		10_1 10_1 1
- - - - - - - - - -	- trace silt			G5 G6	•		ليتبليبيليبلي
- 5	END OF TESTPIT 4.5m			GGE	D BY: JPB	COMPLETION DEPTH: 4.5n	15_1
	د د				NG NO: NG NO:	COMPLETE: 1/10/2008	
L YELLOWKN	EE W14101068 004 GPLEBA GDT 08/02/06		LDU	27.8 ¥ E		I age i oi i	

ASTM D422

Project:	Reclamation Overburden Dump
Client:	Minto Explorations Ltd
Project No .:	W14101068.004
Location:	Minto Mine, YT
Sample No.:	08-ROD-TP03
Depth:	1.6 - 1.8 m
Description**:	SAND AND SILT - some gravel, trace clay

Particle	Percent Clay Size Silf			Silt Size			Sand	Gravel			
3128	rassing	100			F	ine	Medium	Coarse	Fine	Coarse	
100 mm		100									
75 mm		P 90							سعر	40	
50 mm	100	e									
38 mm	95	r 80									
25 mm	93	с е									
19 mm	92	n 70					/				
13 mm	92	t					F				
10 mm	90	E 60				/					
5 mm	86	i			1	, 					
2 mm	78	n 50			/						
850 µm	74	е			/						
425 µm	68	r 40			1						
250 µm	64	b									
150 µm	56	y 30			/				atorial Dr		
75 µm	41	ħ.#							Proporti	on (%)	
34 µm	25	a 20						Clay	/ Size *	4	
22 µm	20	s						Sil	t Size	37	
13 µm	13	s 10						G	ravel	45 14	
9 µm	10								bbles	0	
6 µm	8	0							17-11-	1	
3μm	5		2	Deutiele Clas	80	40	0	2 5	.	20 7	
1 µm	3		<u> </u>	Particle Size	(µm) —	\rightarrow	«	Particle	e Size(m	m) —	

** The description is visually based & subject to EBA description protocols.

Reviewed By:

Data presented hereon is for the sole use of the stipulated client. EBA is not responsible, nor can be held liable, for use made of this report by any other party, with or without the knowledge of EBA. The testing services reported herein have been performed by an EBA technician to recognized industry standards, unless otherwise noted. No other warranty is made. These data do not include or represent any interpretation or opinion of specification compliance or material suitability. Should engineering interpretation be required, EBA will provide it upon written request.

EBA Engineering Consultants Ltd.

Date Tested: 2008/01/24