Revision 2016-1 Physical Monitoring Plan Minto Mine, YT

Prepared by:
Minto Explorations Ltd.
Minto Mine
December 2016

Minto Mine Physical Monitoring Plan

First Issue: June 2014

REVISION INFORMATION

Rev. Number	Issue Date	Description \& Revisions Made
-	June, 2014	First issue
2015-1	November, 2015	Annual update of existing instrumentation and monitoring frequencies. Instruments Added: A215, A216, A217, A218, A2RAMP01, A2RAMP02, A2RAMP03, A2RAMP04, DSSH-26, DSSH-27, M82, M83, M84, M85, M86, M87, SWD06 Instruments Removed: DSI-14, DSI-21, DSSH-21, DSSH-22, DSSH-23, DSSH-25, WSP2
2016-1	December, 2016	Annual update of existing instrumentation and monitoring frequencies. Instruments Added: DSP-07, DSP-08, DSP-10, DSSH-28, DSSH-29, DSSH-30, DSSH-31, MV1, MV2, SWD-07, SWD-08, SWD-09 Instruments Replaced: DSSH-06, DSSH-10, DSSH-15, DSSH-18, DSSH19, DSSH-20 Instruments to be installed in 2016: DSI-22, DSI-23, SWD-10, SWD-11 Instruments Removed: A2RAMP01, A2RAMP02, A2RAMP03, A2RAMP04, SWD-02, SWD-02A, SWD-04A, SWD-05A, DSP-09

> Updated by:

Dale Heffernan, EIT
Geotechnical Engineer-in-Training

Reviewed by:

Kevin Cymbalisty, P.Eng.
Chief Engineer

Table of Contents

1 Introduction 1
2 Mine Structures 2
3 Design and Monitoring References 5
4 Roles and Responsbilities 9
5 Inspections 10
6 Instrumentation 13
Inclinometers 13
Survey Hubs 14
Thermistors 16
Vibrating Wire Piezometers 17
7 Instrumentation Procedures and Documentation 18
8 Quality Assurance/Quality Control 19
9 Reporting 19
List of Tables
Table 1: Description of Mine Structures at Minto 2
Table 2: Design Documents and Monitoring/Inspection Guidance Documents 5
Table 3: Roles and Responsibilities 9
Table 4: Inspections 10
Table 5: Inclinometers 13
Table 6: Survey Hubs. 14
Table 7: Thermistors 16
Table 8: Vibrating Wire Piezometers 17
Table 9: Reporting 19

List of Appendices

Appendix A: Instrumentation Map
Appendix B: Data Collection and Input Manuals

1 Introduction

The following document describes the instrumentation and monitoring program currently in place at Minto to monitor the stability of mining structures including waste rock, tailings, and water storage facilities. The program consists of two main components: instrumentation to measure ground conditions and deformation, and regular geotechnical inspections. The following sections summarize inspection and data collection frequencies, instrument installation details and locations, and data collection procedures.

Mining and monitoring activities at Minto included in this plan are licensed under the following:

- Type A Water Licence Qz14-031, August, 2015
- Type B Water Licence MS15-094, July 2016
- Quartz Mining Licence QML-0001, December, 2014

Existing mine structures at Minto are shown in Figure 1-1, and described in the following section.

Figure 1-1: Minto site plan (October 2014)

2 Mine Structures

Mine structures currently being monitored at Minto as well as future structures included in the Phase V/VI plan are listed in Table 1.

Table 1: Description of Mine Structures at Minto

Structure	Description	Instrumentation
Area 2 Pit and Area 2 Pit Tailings Management Facility (A2PTMF)	The Area 2 Pit was completed in 2015 to the extents licensed under Phase IV (Stages 1 and 2); the pit will be extended to the south as part of Phase V/VI (Stage 3), scheduled to commence in January, 2017. Tailings deposition Area 2 Stage 2 pit (A2S2) began in March, 2015 and the pit is now maintained as a tailings management facility.	- Survey hubs - GroundProbe radar (during A2S3 mining)
Area 2 Underground	The Area 2 underground began development in 2016 and is accessed by a portal and decline south of the Area 2 and Area 118 Pits. Production mining is currently taking place using a longhole stoping method and is expected to be completed in 2017.	None
Area 118 Pit	Mining of the Area 118 Pit was carried out in 2014. The pit is currently inactive and the access is barrricaded. As part of Area 2 Stage 3 pit mining, overburden will be dispatched to the Area 118 pit, scheduled to start in January, 2017.	- Survey hubs
Area 118 In-Pit Dump	The Area 118 In -Pit Dump is included in the Phase V/VI licence and has not commenced yet. The dump will fill in the Area 118 Pit. It is scheduled to commence in January, 2017 as part of A2S3 pit mining.	None
Area 118 Underground	The Area 118 underground began development in 2013 and was completed in 2016. It is accessed by a portal and decline south of the Area 2 and Area 118 Pits. Production mining took place using a longhole stoping method.	None
Big Creek Bridge	Bridge on the Minto access road crossing Big Creek, located at Km 19. Licenced under Type B water licence MS15-094.	None
Barge Landings	Barge landings on the Minto access road at the yukon river. Licensed under Type B water license MS15-094.	None
Camp	The camp consists of several connected bunkhouse buildings (Sherwood, Minto, Selkirk), a kitchen buidling, and several separate buildings including the gym and Site Services offices.	None
Dry Stack Tailings Storage Facility (DSTSF)	Construction of the DSTSF with filtered tailings placement was carried out from 2007 to November 2011. As part of progressive reclamation activities in 2012-2013, the DSTSF was covered with a layer of overburden approximately one to four meters thick. The DSTSF began showing deformation in 2009, interpreted as primarily horizontal sliding towards the north/northeast on an ice-rich layer in the underlying overburden, several meters above bedrock. The movement has continued since then but at a decreasing rate in response to construction of both the Mill Valley Fill waste rock buttress and the Mill Valley Fill Extension 2 waste rock buttress.	- Survey hubs - Thermistors - Inclinometers - Piezometers
Ice Rich Overburden Dump (IROD)	Originally constructed as a free-standing rockfill structure to contain ice-rich overburden. The IROD is no longer active and is now entirely surrounded by the Southwest Waste Dump rockfill.	None
Main Pit (Area 1 Pit) and Main Pit Tailings Management Facility (MPTMF)	Mining in the Main Pit was completed in 2011. Instability in the south wall of the pit occurred in 2009 during mining of Stage 3 of the pit, and subsequently a larger failure occurred in 2011 after completion of Stage 5. Continued sloughing and creep movement of the south wall led to the design and	- Survey hubs - Inclinometer

Structure	Description	Instrumentation
	construction of a waste rock buttress, known as the South Wall Buttress, completed in 2013. Slurry tailings deposition into the pit began in 2012 and the pit is now maintained as a tailings management facility. Dumping of NP:AP<3 waste rock (SAT), intended to be below the final water table at closure, continues into the pit, forming several benches of "in-pit dumps". Tension cracking on the west in-pit dump is monitored with a series of survey hubs installed in 2015 as recommended in previous inspection reports.	
Main Pit Dump	The Main Pit Dump is included in the Phase V/VI licence and has not commenced yet. The dump will be located on the southwest side of the Main Pit, partially on top of the South Wall Buttress. It is scheduled to commence in January, 2017 as part of A2S3 pit mining.	None
Main Waste Dump (MWD)	The Main Waste Dump stores waste rock released during the mining of the first three stages of the Main Pit. The dump is no longer active.	• Inclinometer
Main Waste Dump	This dump is an extension of the MWD that stores waste rock released from the Minto North Pit. The dump is no longer active. Reclamation re-sloping began in 2016.	•

Structure	Description	Instrumentation
Reclamation Overburden Dump (ROD)	Received the bulk of the overburden released as part of Phase IV and earlier mining of the Main Pit. The material in the ROD is available for use in reclamation of the mine at closure.	None
Ridgetop Pit (Ridgetop North Pit, Ridgetop South Pit)	The Ridgetop Pit (North and South) is included in the Phase V/VI licence and has not commenced yet.	- Thermistors
Ridgetop Waste Dump	The Ridgetop Waste Dump is included in the Phase V/VI licence and has not commenced yet.	N/A
South Diversion Ditch (SDD)	A diversion ditch located southeast of the Area 2 Pit to divert unimpacted surface water around the mine workings.	None
South Wall Buttress (SWB)	Waste rock buttress constructed against the Main Pit south wall from 20092011 as a result of instability in the south wall of the pit.	- Survey hubs
Southwest Waste Dump (SWD)	The Southwest Waste Dump (SWD) stores waste rock released during phase IV mining. Dumping at the SWD is now complete and reclamation re-sloping began in 2015. Re-sloping is expected to be completed in 2017.	- Survey hubs - Inclinometers - Thermistors - Piezometers
Tailings Diversion Ditch (TDD)	A diversion ditch located south of the DSTSF to divert unimpacted water around the tailings facility.	None
Water Storage Pond Dam (WSP)	The Water Storage Pond and Dam are located east of the mine along Minto Creek. The dam was constructed in 2006 as a clay-core water retention dam for collecting precipitation and surface water runoff at the site. Maximum depth of water at the face of the dam is approximately 15 m .	- Survey hubs - Thermistors - Piezometers

3 Design and Monitoring References

Table 2 lists the design reports for each structure and the monitoring/inspection guidance reports used to develop the inspection (Section 5) and instrumentation (Section 6) programs for each structure.

Table 2: Design Documents and Monitoring/Inspection Guidance Documents

Structure	Design Reports	Monitoring/Inspection Guidance Reports
Area 2 Pit and Area 2 Pit Tailings Management Facility (A2PTMF)	Prefeasibility Geotechnical Evaluation, Phase IV, Minto Mine. SRK, December 2009. Review of Minto Area 2 West Wall Stability. SRK, September 11, 2012. Review of Minto Area 2 West Wall Stability-April 2013. SRK, April 18, 2013. Review of Minto Area 2 West Wall Stability-September 2013. SRK, September 30, 2013. Main Dam - Area 2 Pit Stability Assessment. SRK Consulting Project: 1CM002.003.0701, February, 2015.	Operation, Maintenance, and Surveillance Manual Area 2 Pit Tailings Management Facility Revision 20152. Minto, December 2015. Minto Mine Operations Adaptive Management Plan Revision 2016-01. Minto, May, 2016.
Area 2 Stage 3 Pit	Pit Slope Stability Evaluation, Minto Mine, Area 2 Pit Stage 3. SRK Consulting Project: 219500.190, August 2015.	Minto Mine Ground Control Plan - Open Pit Operations. Minto, 2016.
Area 2 Underground	Area 2 Mining Stability Assessment Summary. Golder Associates, June, 2016. Area 2 Mining Stability Assessment Summary. Golder Associates, December, 2016.	Minto Mine Ground Control Plan - Underground Operations. Minto, 2016.
Area 118 Pit	Prefeasibility Geotechnical Evaluation, Phase IV, Minto Mine. SRK, December 2009. Review of Final Area 118 Pit Design. SRK Consulting, Project: 219500.070. January, 2015.	-
Area 118 In -Pit Dump	Phase V/IV Ridgetop South and Area 118 Backfill Dumps Physical Stability Assessment. SRK, October 2013.	-
Area 118 Underground	Minto 118-Zone - FLAC3D Analysis of the Longhole Base Case Option. Itasca, August 2014. Geotechnical Characterization of Existing and Proposed Longhole Open Stope Mining Areas. Golder Associates File: 1528754-002-R-Rev0-3000. July 30, 2015. Longhole Open Stope Stability Addendum - Revised Mining Heights. Golder Associates, File 1528754-006-TM-Rev0-3000, November 2015.	Minto Mine Ground Control Plan - Underground Operations. Minto, 2016. Ground Control Management Plan Review. Golder Associates, File 1528754-007-TM-Rev0-1000. September 2015.

Structure	Design Reports	Monitoring/Inspection Guidance Reports
	Area 118 Plunge Mining Stability Assessment Summary. Golder Associates, File: 1528754-008-PP-Rev0-5000, December 2015	
Big Creek Bridge	-	-
Camp	-	-
Dry Stack Tailings Storage Facility (DSTSF)	Geotechnical Design Report, Dry Stack Tailings Storage Facility, Minto Mine, Yukon. EBA File: 1200173. January 2007.	Operation, Maintenance, and Surveillance Manual, Dry Stack Tailings Storage Facility, Minto Mine, YT. Revision 2014-1 Minto, November 2014. Minto Mine Operations Adaptive Management Plan. Revision 2016-01. Minto, May, 2016.
Ice Rich Overburden Dump (IROD)	Geotechnical Design Ice-Rich Overburden Dump, Minto Mine, Minto, YT. EBA file: 1200173. January 2006. Ice-Rich Overburden Dump Containment Berm Inspection Report, Minto Mine Site, Minto Yukon. EBA File: 1200173.001. June 19, 2007.	Geotechnical Design Ice-Rich Overburden Dump, Minto Mine, Minto, YT. EBA file: 1200173. January 2006. EBA, 2007. Minto Mine Operations Adaptive Management Plan Revision 2016-01. Minto, May, 2016.
Main Pit (Area 1 Pit) and Main Pit Tailings Management Facility (MPTMF)	Pit Slope Evaluation for Area 1 Open Pit. SRK Consulting, Project: 2CM022.03, July 2007. SAT Dump on Tailings. SRK Consulting Project: 1CM002.043, March 2016.	Operation, Maintenance, and Surveillance Manual Main Pit Tailings Management Facility. Revision 20152 Minto, December, 2015. Minto Mine Operations Adaptive Management Plan Revision 2016-01. Minto, May, 2016.
Main Pit Dump	Phase V/VI Main Pit Dump Physical Stability Assessment. SRK Consulting Project: 1CM002.003.0701, November, 2013. Update to the Main Pit Dump Physical Stability Assessment. SRK Consulting Project: 1CM002.003.0701. February, 2015.	-
Main Waste Dump (MWD)	Geotechnical Evaluation Proposed Main Waste Dump Minto Mine, Minto, YT. EBA. April, 1998.	Geotechnical Evaluation Proposed Main Waste Dump Minto Mine, Minto, YT. EBA. April, 1998. Minto Mine Operations Adaptive Management Plan Revision 2016-01. Minto, May, 2016.
Main Waste Dump Expansion (MWDE)	Minto Mine Phase V/VI Expansion Waste Rock and Overburden Management Plan. Minto. June, 2014. Phase V/VI Main Waste Dump Expansion - Physical Stability Assessment. SRK Consulting Project: 1CM002.012.012, November, 2013	Minto Mine Operations Adaptive Management Plan Revision 2016-01. Minto, May, 2016.
Mill Site	-	-

Structure	Design Reports	Monitoring/Inspection Guidance Reports
Mill Valley Fill Extension (MFVE)	Waste Rock and Overburden Management Plan, Phase IV Development, Minto Mine YT. EBA File: W14101068.015. September 9, 2011. Upstream Water Management for the Mill Valley Fill Expansion and Dry Stack Tailings Storage Facility. EBA File: W14101168.013. September 14, 2011.	Minto Mine Operations Adaptive Management Plan Revision 2016-01. Minto, May, 2016.
Mill Valley Fill Extension 2 (MVFE2)	Minto Mine Phase V/VI Expansion Waste Rock and Overburden Management Plan. Minto. June, 2014. Mill Valley Fill Extension Stage 2 Preliminary Design Report. SRK Consulting Project: 1CM002.015. March, 2014 Mill Valley Fill Extension Stage 2 Final Design Report. SRK Consulting Project: 1CM002.040. September, 2015. Mill Valley Fill Extension Stage 2 Record of Construction. Minto. November, 2016.	Mill Valley Fill Extension Stage 2 - Expected Performance and Evaluation Criteria. SRK Consulting Project: 1CM002.050, November, 2016. Minto Mine Operations Adaptive Management Plan Revision 2016-01. Minto, May, 2016.
Mill Valley Fill Extension 2 Collection Sump	Design for the MVFE Stage 2 Collection Sump. SRK Consulting Project: 1CM002.020. June, 2015. Mill Valley Fill Extension Stage 2 Colleciton Sump Record of Construction. Minto. April, 2016.	-
Minto Access Road	-	-
Minto East, Copper Keel, Wildfire Underground	Wildfire Proposed Underground Mine Area Geotechnical Characterization and Long Hole Open Stope Stability Assessment. Golder Associates, September, 2016. Minto East - Revised Longhole Open Stope Stability. Golder Associates, File: 1528754-009-TM-Rev0-6000, January, 2016. Geotechnical Characterization of Existing and Proposed Longhole Open Stope Mining Areas, Golder Associates, Reference No. 1528754-002-R-Rev0-3000, July, 2015. Minto Mine Underground Reserve Update Geotechnical Input, Golder Associates, Reference No. 1528754-003-R-Rev0-3000, July, 2015. Minto Phase VI Underground Geotech Evaluation, SRK Consulting Project: 2UC031.005, February, 2012.	-
Minto North Pit	Minto North South Wall Wedge Analysis. SRK, August, 2016. Site Visist and Review of North Pit - South Wall. BGC Engineering, July, 2016. Review of Minto North Wall Stability. SRK, May, 2016.	Minto Open Pit Ground Control Plan_RevO. Minto, 2016.

Structure	Design Reports	Monitoring/Inspection Guidance Reports
	Minto Phase VI Preliminary Feasibility Study Technical Report. SRK, January 2012.	
Ore Stockpiles	-	-
Reclamation Overburden Dump (ROD)	Geotechnical Design Proposed Reclamation Overburden Dump, Minto Mine, Yukon. EBA File: W14101068.004. February 2008. Reclamation Overburden Dump Expansion Geotechnical Design Report. EBA File: W14101068.0040. June 29, 2010.	Reclamation Overburden Dump Expansion Geotechnical Design Report. EBA File: W14101068.0040. June 29, 2010. Minto Mine Operations Adaptive Management Plan Revision 2016-01. Minto, May, 2016.
Ridgetop Pit (Ridgetop North Pit, Ridgetop South Pit)	Pre-Feasibility Geotechnical Evaluation Phase IV Minto Mine, SRK Consulting Project: 2CM022.006, December, 2009. Ridgetop North Pit TMF Stability Assessment, SRK Consulting Project: 1CM002.003.710, February, 2015.	-
Ridgetop Waste Dump	Phase V/VI Ridgetop Waste Dump Physical Stability Assessment. SRK Consulting Project: 1CM002.012.0.12, November, 2013.	-
South Diversion Ditch (SDD)	Phase 1 - Preliminary Engineering, Stormwater Diversion Ditches Minto Mine, YT, EBA File: W14101068.013	-
South Wall Buttress	Area 1 South Wall Buttress Design Report, Minto Mine, Yukon. EBA File: W141010668.012, July 2011.	-
Southwest Waste Dump (SWD)	Geotechnical Design Proposed Southwest Waste Dump, Minto Mine, Yukon. EBA File: W14101068.005. September 2008.	Geotechnical Design Proposed Southwest Waste Dump, Minto Mine, Yukon. EBA File: W14101068.005. September 2008. Minto Mine Operations Adaptive Management Plan Revision 2016-01. Minto, May, 2016.
Tailings Diverion Ditch (TDD)	Preliminary Design of the Tailings Diversion Ditch Upgrade, SRK Consulting Project: 1CM002.012.006, November, 2013.	-
Water Storage Pond Dam (WSP)	Geotechnical Design Tailings/Water Dam, Minto Project, Yukon. EBA File: 0201-95-11509. Dec. 1995. As-built Construction Report, Water Retention Dam, Minto Mine, Minto, YT. EBA File: 1200173.001. April 2008.	Operation, Maintenance and Surveillance Manual, Water Retention Dam, Minto Mine, Minto, YT. EBA File: W14103414-01. August 2014.

4 Roles and Responsbilities

Table 3 lists the roles and responsibilites for physical monitoring on the site.
Table 3: Roles and Responsibilities

Role	Responsibilities
Mine Technician Assistants	- Collect instrumentation data at specified frequencies - Input data into monitoring spreadsheets/databases - Internal reporting of monitoring data - Maintain equipment
Geotechnical Engineers	- QA/QC of data collection - Ensure compliance with license requirements - Monthly and annual Water Licence reporting - Visual inspections at specified frequencies - Communicate with consultants as required - Review and update Physical Monitoring Plan
Environmental Officers	- Compile monthly and annual Water Licence reports - Visual inspections of water diversion/collection structures
Chief Engineer	- Review monthly and annual Water Licence reports - Ensure compliance with licence requirements

5 Inspections

Table 4 lists the regular, required inspections.
Table 4: Inspections

Structure	Frequency	Description
Area 2 Pit and Area 2 Pit Tailings Management Facility (A2PTMF)	Quarterly	Visual inspection by Geotechnical Engineer and review of monitoring data as per OMS Manual.
Area 2 Stage 3 Pit	Weekly (during active mining)	Weekly visual inspection by Geotechnical Engineer/EIT during active pit mining. Documented in weekly wall inspection report and two-week operating plan documents.
Area 2 Underground	Quarterly	Visual inspection by Geotechnical Engineer as per Underground Ground Control Plan.
Area 118 Pit	Semi-Annually - May/June post thaw, and September pre freeze-up	Included in site-wide geotechnical inspection - Inspection and data review by Professional Engineer as per QZ14-031 (Clause 100) and QML-0001 (Clause 13.2). Q2 inspection must be completed by an independent engineer by June 30 each year.
Area 118 In-Pit Dump	Minimum every 4 hours during active dumping	Visual inspection by the supervisor or other competent person (typically the Pelly Shifter or Minto Operations Supervisor) as per O.I.C. 2006/178 Clause 15.44.
Area 118 Underground	N/A	No longer accessible.
Big Creek Bridge	Annually	Visual inspection by a Professional Engineer as per MS15-094.
Camp	Semi-Annually - May/June post thaw, and September pre freeze-up	Included in site-wide geotechnical inspection - Inspection and data review by Professional Engineer as per QZ14-031 (Clause 100) and QML-0001 (Clause 13.2). Q2 inspection must be completed by an independent engineer by June 30 each year.
Dry Stack Tailings Storage Facility (DSTSF)	Monthly	Visual inspection by Geotechnical Engineer and review of monitoring data as per OMS Manual.
Ice Rich Overburden Dump (IROD)	Semi-Annually May/June post thaw, and September pre freeze-up	Included in site-wide geotechnical inspection - Inspection and data review by Professional Engineer as per QZ14-031 (Clause 100) and QML-0001 (Clause 13.2). Q2 inspection must be completed by an independent engineer by June 30 each year.
Main Pit (Area 1 Pit) and Main Pit Tailings Management Facility (MPTMF)	Quarterly	Visual inspection by Geotechnical Engineer and review of monitoring data as per OMS Manual.

Structure	Frequency	Description
Main Pit Dump	Minimum every 4 hours during active dumping	Visual inspection by the supervisor or other competent person (typically the Pelly Shifter or Minto Operations Supervisor) as per O.I.C. 2006/178 Clause 15.44.
Main Waste Dump (MWD)	Semi-Annually - May/June post thaw, and September pre freeze-up	Included in site-wide geotechnical inspection - Inspection and data review by Professional Engineer as per QZ14-031 (Clause 100) and QML-0001 (Clause 13.2). Q2 inspection must be completed by an independent engineer by June 30 each year.
Main Waste Dump Expansion (MWDE)	Semi-Annually - May/June post thaw, and September pre freeze-up	Included in site-wide geotechnical inspection - Inspection and data review by Professional Engineer as per QZ14-031 (Clause 100) and QML-0001 (Clause 13.2). Q2 inspection must be completed by an independent engineer by June 30 each year.
Mill Site	Semi-Annually - May/June post thaw, and September pre freeze-up	Included in site-wide geotechnical inspection - Inspection and data review by Professional Engineer as per QZ14-031 (Clause 100) and QML-0001 (Clause 13.2). Q2 inspection must be completed by an independent engineer by June 30 each year.
Mill Valley Fill Extension (MFVE)	Monthly	Visual inspection by Geotechnical Engineer and review of monitoring data as part of DSTSF monthly inspection.
Mill Valley Fill Extension 2 (MVFE2)	Monthly	Visual inspection by Geotechnical Engineer and review of monitoring data as part of DSTSF monthly inspection.
Mill Valley Fill Extension 2 Collection Sump	Monthly	Visual inspection by Geotechnical Engineer and review of monitoring data as part of DSTSF monthly inspection.
Minto Access Road	Annually	Visual inspection by a Professional Engineer as per MS15-094.
Minto East, Copper Keel, Wildfire Underground	N/A	N/A - structure does not exist yet.
Minto North Pit	Semi-Annually - May/June post thaw, and September pre freeze-up	Included in site-wide geotechnical inspection - Inspection and data review by Professional Engineer as per QZ14-031 (Clause 100) and QML-0001 (Clause 13.2). Q2 inspection must be completed by an independent engineer by June 30 each year.
Ore Stockpiles	Semi-Annually - May/June post thaw, and September pre freeze-up	Included in site-wide geotechnical inspection - Inspection and data review by Professional Engineer as per QZ14-031 (Clause 100) and QML-0001 (Clause 13.2). Q2 inspection must be completed by an independent engineer by June 30 each year.
Reclamation Overburden Dump (ROD)	Semi-Annually - May/June post thaw, and September pre freeze-up	Included in site-wide geotechnical inspection - Inspection and data review by Professional Engineer as per QZ14-031 (Clause 100) and QML-0001 (Clause 13.2). Q2 inspection must be completed by an independent engineer by June 30 each year.

Structure	Frequency	Description
Ridgetop Pit (Ridgetop North Pit, Ridgetop South Pit)	N/A	N/A - structure does not exist yet.
Ridgetop Waste Dump	N/A	N/A - structure does not exist yet.
South Diversion Ditch (SDD)	Semi-Annually - May/June post thaw, and September pre freeze-up	Included in site-wide geotechnical inspection - Inspection and data review by Professional Engineer as per QZ14-031 (Clause 100) and QML-0001 (Clause $13.2) . ~ Q 2 ~ i n s p e c t i o n ~ m u s t ~ b e ~ c o m p l e t e d ~ b y ~ a n ~ i n d e p e n d e n t ~ e n g i n e e r ~ b y ~ J u n e ~ 30 ~$ each year.
South Wall Buttress (SWB)	Quarterly	Visual inspection by Geotechnical Engineer and review of monitoring data as part of the MPTMF quarterly inspection.
Southwest Waste Dump (SWD)	Semi-Annually - May/June post thaw, and September pre freeze-up	Included in site-wide geotechnical inspection - Inspection and data review by Professional Engineer as per QZ14-031 (Clause 100) and QML-0001 (Clause 13.2). Q2 inspection must be completed by an independent engineer by June 30 each year.
Tailings Diversion Ditch		
(TDD)	Semi-Annually - May/June post thaw, and September pre freeze-up	Included in site-wide geotechnical inspection - Inspection and data review by Professional Engineer as per QZ14-031 (Clause 100) and QML-0001 (Clause 13.2). Q2 inspection must be completed by an independent engineer by June 30 each year.
Water Storage Pond Dam		
(WSP)	Monthly	Visual inspection by Geotechnical Engineer as per OMS Manual.

6 Instrumentation

A map of site wide active instrumentation is shown in Appendix A. Installation information and data collection schedules are contained in the following sections.

Inclinometers

Inclinometers are used to measure lateral, differential ground movement in a borehole. Inclinometer stations consist of grouted, slotted PVC pipe into which the inclinometer probe is lowered and deflection is measured at 0.5 m intervals. The current probe used on site is an RST digital MEMS inclinometer system.

Table 5: Inclinometers

Area	ID	Northing (m)	$\begin{aligned} & \text { Easting } \\ & (\mathrm{m}) \end{aligned}$	Elevation (m)	AO Azimuth	Hole Depth (m)	Date Installed	Reading Frequency
Area 2 Pit	A2I-1	6944164.73	385298.95	822.46	302	55.5	$\begin{gathered} \text { 2013-04- } \\ 26 \end{gathered}$	Quarterly
Dry Stack Tailings Storage Facility and Mill Valley Fill Extension 2	DSI-22	-	-	-	-	-	To be installed in Q4 2016	Bi-weekly
Dry Stack Tailings Storage Facility and Mill Valley Fill Extension 2	DSI-23	-	-	-	-	-	To be installed in Q4 2016	Bi-weekly
Dry Stack Tailings Storage Facility and Mill Valley Fill Extension 2	DSI-24	-	-	-	-	-	```To be installed in Q4 2016```	Bi-weekly
Main Pit (Area 1 Pit) and Main Pit Tailings Management Facility (MPTMF)	MDI -2	6945013.08	384217.20	858.67	93	50.5	$\begin{gathered} \text { 2010-02- } \\ 10 \end{gathered}$	Quarterly
Southwest Waste Dump	SDI-3	6944591.11	383966.00	847.42	90	46.5	$\begin{gathered} 2010-02- \\ 11 \end{gathered}$	Quarterly

Survey Hubs

Survey hubs are used to monitor surface movement of structures and are comprised of steel posts cemented into waste rock or bedrock and equipped with a threaded base to which a high precision RTK-corrected GPS instrument is attached. The GPS currently used on site is a Trimble R8.

Table 6: Survey Hubs

Area	ID	Northing (m)	Easting (m)	Elevation (m)	Date Installed	Frequency
Area 2 Pit	A210	6944268.42	384934.69	861.28	2011-07-01	Monthly
Area 2 Pit	A215	6944649.45	385155.49	808.72	2015-09-17	Monthly
Area 2 Pit	A216	6944749.21	385046.39	805.78	2015-09-17	Monthly
Area 2 Pit	A217	6944756.78	384852.52	806.68	2015-09-17	Monthly
Area 2 Pit	A218	6944707.23	384783.21	806.83	2015-09-17	Monthly
Dry Stack Tailings Storage Facility	ASH05	6944280.52	385830.65	850.16	2011-03-07	Monthly
Dry Stack Tailings Storage Facility	ASH06	6944331.73	385623.79	824.17	2011-03-07	Monthly
Dry Stack Tailings Storage Facility	DSSH-24	6944757.90	385712.10	792.07	2014-02-28	Weekly
Dry Stack Tailings Storage Facility	DSSH-26	6944601.28	385490.96	796.35	2015-07-28	Weekly
Dry Stack Tailings Storage Facility	DSSH-27	6944755.11	385894.59	792.70	2015-07-28	Weekly
Dry Stack Tailings Storage Facility	DSSH-06	6944971.372	385553.396	783.866	2016-08-21	Weekly
Dry Stack Tailings Storage Facility	DSSH-10	6944992.584	385806.037	769.004	2016-08-21	Weekly
Dry Stack Tailings Storage Facility	DSSH-12	6944947.303	385707.165	778.364	2016-08-16	Weekly
Dry Stack Tailings Storage Facility	DSSH-14	6944920.27	385606.55	782.88	2012-04-21	Weekly
Dry Stack Tailings Storage Facility	DSSH-15	6944944.092	385490.104	784.82	2016-08-16	Weekly
Dry Stack Tailings Storage Facility	DSSH-17	6944980.74	385896.26	772.07	2012-04-21	Weekly
Dry Stack Tailings Storage Facility	DSSH-18	6945070.727	385513.039	782.379	2016-08-16	Weekly
Dry Stack Tailings Storage Facility	DSSH-19	6945109.679	385575.406	781.303	2016-08-16	Weekly
Dry Stack Tailings Storage Facility	DSSH-20	6945072.083	385754.334	775.779	2016-08-21	Weekly
Dry Stack Tailings Storage Facility	DSSH-28	6945045.688	385931.012	767.752	2016-08-21	Weekly
Dry Stack Tailings Storage Facility	DSSH-29	6945162.176	385833.535	766.045	2016-08-21	Weekly
Dry Stack Tailings Storage Facility	DSSH-30	6944883.247	385890.044	789.008	2016-08-21	Weekly
Dry Stack Tailings Storage Facility	DSSH-31	6945030.732	386040.736	776.254	2016-11-01	Weekly
Dry Stack Tailings Storage Facility	MV1	6945249.731	386021.140	727.554	2016-04-04	Weekly
Dry Stack Tailings Storage Facility	MV2	6945216.537	385979.321	740.349	2016-04-04	Weekly
South Wall Buttress	M73	6944723.57	384312.30	840.77	2011-05-23	Monthly

Area	ID	Northing (m)	Easting (m)	Elevation (m)	Date Installed	Frequency
South Wall Buttress	M75	6944639.43	384475.64	837.55	2011-05-23	Monthly
South Wall Buttress	M76	6944623.10	384560.12	835.27	2011-05-23	Monthly
South Wall Buttress	M79	6944846.97	384208.90	847.66	2011-09-04	Monthly
South Wall Buttress	M80	6944931.70	384256.33	842.06	2011-09-04	Monthly
Main Pit	M81	6944971.63	384890.13	806.83	2012-05-08	Monthly
South Wall Buttress	M82	6944844.39	384433.50	820.17	2015-05-23	Bi-weekly
South Wall Buttress	M83	6944947.98	384475.79	809.06	2015-01-08	Bi-weekly
South Wall Buttress	M84	6945021.46	384445.11	807.37	2015-01-08	Bi-weekly
South Wall Buttress	M85	6944846.60	384315.66	826.08	2015-07-27	Monthly
South Wall Buttress	M86	6944668.03	384400.26	837.96	2015-07-27	Monthly
South Wall Buttress	M87	6944894.30	384383.86	821.67	2015-09-19	Bi-weekly
Southwest Waste Dump	SWD01	6944760.85	384077.86	859.07	2011-03-07	Monthly
Southwest Waste Dump	SWD05A	6943939.94	383837.70	869.16	2011-03-07	Monthly
Southwest Waste Dump	SWD06	6944762.06	384189.37	836.42	2015-07-27	Monthly
Southwest Waste Dump	SWD07	6944743.49	384111.649	840.00	2016-11-21	Monthly
Southwest Waste Dump	SWD08	6944560.14	383883.182	867.25	2016-11-21	Monthly
Southwest Waste Dump	SWD09	6944163.106	383790.749	861.532	2016-11-21	Monthly
Southwest Waste Dump	SWD10	-To be installed Q1, 2017 as a replacement for SWD-05A				Monthly
Southwest Waste Dump	SWD11	To be installed Q1, 2017 as a replacement for SWD-03A				Monthly
Water Storage Pond Dam	WSP1	6945613.04	386480.98	723.31	2011-06-09	Monthly
Water Storage Pond Dam	WSP3	6945551.85	386548.62	719.73	2011-06-09	Monthly
Water Storage Pond Dam	WSP4	6945531.56	386555.22	719.93	2011-06-09	Monthly
Water Storage Pond Dam	WSP5	6945504.74	386560.23	721.02	2011-06-09	Monthly

Thermistors

Thermistor strings are used to measure ground temperature profiles in boreholes, and in particular permafrost conditions at Minto. Thermistor strings consist of multiple temperature sensor nodes distributed along a single multi-conductor cable, installed within or attached to the outside of grouted PVC pipe. EBA and RST thermistor strings have been installed on site. EBA thermistors are read using a basic ohmmeter and RST thermistors are read using a RST TH2016B readout unit.

Table 7: Thermistors

Area	ID	Northing (\mathbf{m})	Easting (\mathbf{m})	Elevation (\mathbf{m})	Thermistor String No.	Nodes	Hole Depth (\mathbf{m})	Date Installed	Reading Frequency
Area 2 Pit	A2T-1	6944162.01	385305.61	822.39	3491	16	63.4	$2013-04-21$	Quarterly
Dry Stack Tailings Storage Facility	DST-10	6944584.06	385489.49	797.13	3492	16	63.4	$2013-04-17$	Quarterly
Dry Stack Tailings Storage Facility	DST-11	6944899.64	385538.89	787.66	3494	16	86.9	$2013-04-05$	Quarterly
Dry Stack Tailings Storage Facility	DST-13	6945014.60	386271.29	777.01	3495	16	101.5	$2013-04-02$	Quarterly
Dry Stack Tailings Storage Facility	DST-14	6944769.09	385713.42	791.47	3497	16	66.5	$2013-04-12$	Quarterly
Dry Stack Tailings Storage Facility	DST-15	6945033.78	385958.17	764.51	3493	16	64.0	$2013-03-25$	Quarterly
Water Storage Pond	WDT-1	6945523.08	386550.83	720.03	2072	16	42.49	$2007-11-16$	Monthly
Water Storage Pond	WDT-2	6945532.89	386574.77	713.66	2073	6	44.50	$2007-11-07$	Monthly
Water Storage Pond	WDT-3	6945544.10	386544.43	719.78	2074	16	49.42	$2007-11-11$	Monthly
Water Storage Pond	WDT-4	6945534.98	386547.90	719.85	2075	16	49.42	$2007-11-10$	Monthly
Water Storage Pond	WDT-5	6945504.57	386557.50	721.03	2076	16	35.13	$2007-11-13$	Monthly
Water Storage Pond	WDT-6	6945505.55	386556.32	721.03	2077	16	33.72	$2007-11-13$	Monthly
Water Storage Pond	WDT-7	6945504.65	386556.39	721.08	2078	$2007-11-13$	Monthly		

Water Storage Pond	WDT-8	6945532.89	386574.77	713.66	2079	16	34.14	$2007-11-07$	Monthly
Southwest Waste Dump	SDT-1	6944766.71	384779.13	836.36	2220	16	59.1	$2010-02-04$	Quarterly
Southwest Waste Dump	SDT-2	6944595.06	383971.30	847.11	2221	16	14.6	$2010-01-31$	Quarterly
Southwest Waste Dump	SDT-3	6944333.87	383824.67	860.17	2222	16	15.8	$2010-01-28$	Quarterly
Southwest Waste Dump	SDT-4	6944163.62	383783.54	860.99	2223	16	13.1	$2010-01-30$	Quarterly

Vibrating Wire Piezometers

Vibrating wire piezometer strings are used to measure piezometric pressure profiles in boreholes. They consist of multiple vibrating wire sensors installed on PVC pipe in grouted boreholes. RST vibrating wire piezometers are installed on site and data is collected with an RST VW2106 readout unit.

Table 8: Vibrating Wire Piezometers

Area	ID	Northing (m)	$\begin{aligned} & \text { Easting } \\ & (\mathrm{m}) \end{aligned}$	Elevati on (m)	Sensor	No.	Sensor Elevati on (m)	Date Installed	Reading Frequenc y
Dry Stack Tailings Storage Facility	DSP-5	6944769	385713	791.47	DSP-5A	VW24851	765.47	2013-04-16	Monthly
					DSP-5B	VW24853	761.47		
Dry Stack Tailings Storage Facility	DSP-6	6944900	385539	787.66	DSP-6A	VW24850	769.56	2013-04-05	Monthly
					DSP-6B	VW24852	765.56		
Dry Stack Tailings Storage Facility	DSP-7	6944990	385390	780.404	DSP-7-1	VW34657	771.404	2015-12-09	Bi-weekly
					DSP-7-2	VW34658	763.404	2015-12-09	Bi-weekly
					DSP-7-3	VW34659	756.404	2015-12-09	Bi-weekly
					DSP-7-4	VW34660	753.404	2015-12-09	Bi-weekly
					DSP-7-5	VW34661	751.404	2015-12-09	Bi-weekly
					DSP-7-6	VW34662	747.404	2015-12-09	Bi-weekly
Dry Stack Tailings Storage Facility	DSP-8	6945058	385872	755.548	DSP-8-1	VW34663	750.548	2015-12-10	Bi-weekly
					DSP-8-2	VW34664	745.548	2015-12-10	Bi-weekly
					DSP-8-3	VW34665	740.548	2015-12-10	Bi-weekly
					DSP-8-4	VW34666	735.458	2015-12-10	Bi-weekly
					DSP-8-5	VW34667	730.458	2015-12-10	Bi-weekly
					DSP-8-6	VW34668	720.458	2015-12-10	Bi-weekly

Dry Stack Tailings Storage Facility	DSP-10	6945223	385944	724.509	DSP-10	VW34617	717.209	2015-11-27	Weekly
Southwest Waste Dump	SDP-2	6944595.06	383971.30	843.41	SDP-2A	VW12912	843.414	2010-01-31	Monthly
					SDP-2B	VW12911	842.714		
Southwest Waste Dump	SDP-3	6944333.87	383824.67	854.27	SDP-3A	VW12906	854.266	2010-01-28	Monthly
					SDP-3B	VW12907	853.566		
Southwest Waste Dump	SDP-4	6944163.62	383783.54	858.49	SDP-4A	VW12908	858.494	2010-01-30	Monthly
					SDP-4B	VW12909	857.794		
Water Storage Pond	WDP-2	6945632	386545	701.67	WDP-2	VW7212	701.67	2007-11-04	Monthly
Water Storage Pond	WDP-3A	6945618	386498	712.62	WDP-3A	VW7557	712.62	2007-11-28	Monthly
Water Storage Pond	WDP-3	6945609	386500	712.60	WDP-3	VW7202	712.60	2007-11-12	Monthly
Water Storage Pond	WDP-4	6945609	386500	702.60	WD -4	VW7210	702.60	2007-11-14	Monthly
Water Storage Pond	WDP-5	6945605	386526	712.35	WDP-5	VW7204	712.35	2007-11-20	Monthly
Water Storage Pond	WDP-6	6945605	386526	701.50	WDP-6	VW7214	701.50	2007-11-20	Monthly
Water Storage Pond	WDP-7	6945605	386526	689.20	WDP-7	VW7208	689.20	2007-11-20	Monthly
Water Storage Pond	WDP-8	6945554	386542	693.10	WDP-8	VW7200	693.10	2007-11-18	Monthly
Water Storage Pond	WDP-9	6945554	386542	687.93	WDP-9	VW7206	687.93	2007-11-18	Monthly
Water Storage Pond	WDP-10	6945554	386542	676.17	WDP-10	VW7211	676.17	2007-11-18	Monthly
Water Storage Pond	WDP-11	6945523	386551	712.96	WDP-11	VW7201	712.96	2007-11-16	Monthly
Water Storage Pond	WDP-12	6945523	386551	694.64	WDP-12	VW7209	694.64	2007-11-16	Monthly
Water Storage Pond	WDP-13	6945533	386578	684.55	WDP-13	VW7205	684.55	2007-11-07	Monthly

7 Instrumentation Procedures and Documentation

Data collection manuals for all monitoring devices are included in Appendix B.
After collection, data is input into a series of spreadsheets and databases used for storing, tracking and interpreting instrumentation data. Instructions for data input are contained in the instrumentation manuals in Appendix B.

8 Quality Assurance/Quality Control

Planned job obsrevations (PJO's) are routinely performed and documented on Mine Technician Assistants to verify data collection is consistent with the designed procedures.

Data collection equipment is returned to the manufacturers as per their recommended calibration schedules, typically annually.

All data is reviewed and summarized by the Geotechnical Engineer monthly as part of the Water Licence reporting.

9 Reporting

Regular processing and review of monitoring data is completed and presented in the following documents.

Table 9: Reporting

Report	Frequency	Submission
Pit Wall Inspection Reports	Weekly	Submitted internally each week
Minto Mine Type A Water Licence QZ14-031 Monthly Report (Clause 4.4)	Monthly	Submitted to Yukon Water Board maximum 30 days following each month
DSTSF Inspection Reports	Monthly	Filed internally within one week of the inspection
Water Storage Pond Dam Inspection Reports	Monthly	Filed internally within one week of the inspection
Area 2 and Main Pit Tailings Storage Facility Inspection Reports	Quarterly	Filed internally within one month of the inspection
Semi-Annual Site-wide Geotechnical Inspection Report	After spring melt (May/June) and before freeze-up (September)	Submitted to Yukon Water Board within 60 days of inspection.
Minto Mine Type A Water Licence QZ14-031 Annual Report (Clause 4.5)	Annually	Submitted to Yukon Water Board by March 31 each year
Minto Mine Type B Water Licence MS15-094 Annual Inspection Report (Clause 34)	Annually	Submitted to Yukon Water Board with the Annual Report

Appendix A: Instrumentation Map

Appendix B: Data Collection and Input Manuals

Inclinometer Measurements

Please refer to RST MEMS Digital Inclinometer System Instruction Manual for complete instruction.

System Overview:

Figure 1 - System Overview

1. Soft Shell Case
2. Digital Inclinometer Probe ($w /$ protective end cap)
3. Reel Battery Charger
4. $70 \mathrm{~mm} / 2.75^{\prime \prime}$ OD Cable Grip
5. $85 \mathrm{~mm} / 3.34^{\prime \prime}$ OD Cable Grip
6. Ultra-Rugged Field PC
7. 12V DC car adapter for Reel Battery Charger or Ultra-Rugged Field PC
8. Spare Reel Battery
9. Silicone Lubricant (for use on connectors)
10. USB Cable for Ultra-Rugged Field PC
11. AC Adapter ($110-240 \mathrm{~V}$) for Reel Battery Charger
12. AC Adapter (110-240V) for Ultra-Rugged Field PC
13. Cable Reel with Wireless Communication System and protective end cap
14. Reel Carrying Case
15. Make sure the battery for the reel and the Field PC are charged.
16. Lift up protective box with two hands and put it on side as a work bench.

17. Remove cap from inclinometer casing and look for A_{0} marking (black mark).

18. Remove excess water inside the probe and the cable connector.

Probe is very sensitive and susceptible to vibration. DO NOT BANG THE PROBE. Use a paper towel to wipe it.
5. Apply silicon lubricant to probe and cable connector when needed.

6. Connect the inclinometer cable to the probe by aligning the keyways and threading the connector onto the probe. Turn the threaded ring, but not the cable.

7. Turn on the power of the reel. A green light indicates that the power is on. This energizes the accelerometers and makes them less susceptible to shock.

8. Check the depth of the hole. Turn on Field PC and select the hole you are going to measure.

9. Always start with UPPER Wheel in the A_{0} direction.

10. Lower the probe gently and carefully. When it gets close to the bottom lower it very gently to avoid bouncing the probe off the bottom of the hole. The cable has aluminum sleeve marks which are spaced at 0.5 m and it has a red measure mark with label every 5 m .

11. Lower the probe gently to ensure the bottom of the hole is encountered. (Slightly passed the designated depth). Double check your correct depth by pulling out reel to the next 5 m mark and counting back each 0.5 m for each increment.
12. Place the cable grip on top of the casing and hang the cable by the aluminum crimps.

13. Connect the Field PC to the reel. Use the pen attached to the field PC and press "Connections".

14. Once connected, hit "Readings".

15. At each depth allow the A and B readings as well as the noise level become stabilized before you accept the readings. Ideally noise level should be at or below $30 \mu \mathrm{~V}$.

16. Wear gloves as the Envirobind inside the inclinometer casing can be sticky and irritable. Pull up gently to the next marker and let the aluminum crimp to sit on the metal grip. Wait for the readings and noise level to stabilize and then hit "Accept".

17. If you accidentally pull the probe too far (more than an inch), lower the probe back down to the previous bead then pull up to the bead you want to measure. This will ensure that the readings remain consistent.
18. At each 5 m mark, check that you are at the right location. If you miss or overpass a reading, go back to the previous 5 m depth. For examples, if something goes wrong at 41.5 m , go back to 45 m and drop the cable to 45.5 m . Then gently pull up to 45 m and hit "Accept" again. There are arrow keys on the Field PC which allow you to adjust your depth.

19. Once the last reading (0.5 m) is taken, gently take out the probe and turn it 180° so that the Lower wheel

is now in the A_{0} direction.
20. Go back gently to the bottom of hole and take the second set of readings.
21. During the measurement of the second set of readings, checksum data will appear in a smaller font below the current readings. Checksum should be reasonably small and consistent. Ideally it should be somewhere between -0.0035 m to +0.0045 m .
22. If the checksum is large ($>0.01 \mathrm{~m}$) and inconsistent, check the following:

- Is the probe at the right depth?
- Is the probe in the correct direction?
- Lower the probe to the previous depth and retake the reading again.

It is possible that checksum is high due to differential pressure in the ground. In that case continue measurement and keep monitoring checksum.
23. Once readings are completed, take out the probe and wipe away the Envirobind gently. Put the caps back onto the probe and connector.

Data Input

Note: Windows Mobile Device Center must be installed on the computer in order to collect the readout unit to the computer.

1. Connect the USB cable from the readout unit to the computer and turn the power on.
2. Open DMM for Windows
3. File - Open - Project Database

The database for all inclinometer data is stored here:
X:\Mine Technical\03 - Monitoring\! Inclinometers\Master Database
4. File - Import - Import RPP file

Navigate to the mobile device and select the .rpp file for the appropriate monitoring station and date. The data will then import and save in the database automatically.

Thermistor Readings

Two different types of thermistors are currently installed on site - RST and EBA thermistors.
To read RST thermistors:

1. Connect adapter cord to the TH2016B Readout Box.
2. Record the resistivity (Ohms) for each thermistor node on paper or store the data in the readout box with the following steps:
a. Scroll with the Up/Down arrows to the Memory screen and press enter (arrow key)

b. Scroll with the Up/Down arrows to the Store Data screen and press enter

c. Scroll with the Up/Down arrows to the station being monitored and press enter to store the reading

d. The data is now stored and the readbox can be turned off by pressing the escape button (ESC) three times to get back to the main menu and scrolling to Power Off.

To read EBA thermistors:

1. Connect the EBA 16 Point Ground Temperature Dial into the thermistor cable.
2. Connect the multi-meter to the EBA 16 Point Ground Temperature Dial.
3. Record on paper the resistance in Ohm's (Ω) for each point.

Data Downloading

1. Connect USB cord from computer to the readout box.
2. Open the software Multi Readout Host.

3. Turn on the power on the readout box.
4. The software will recognize the readout unit and prompt to download data. Choose "Yes" to download the data from the readout unit.

5. Once data is downloaded you will have the option to save all data as .csv file. Choose "Yes" and the data will be stored in My Documents in a folder named "TH2O16data".

6. The software can be used to setup new locations or view data but no further steps are required.

Data Input

Spreadsheets for piezometer data input and tracking are stored here:

X:\Mine Technical\03 - Monitoring\! Piezo and GTC

1. Open the spreadsheet for the area monitored

2. Open the tab "GTC Readings"

3. In a new column enter the date and copy the resistivity data (Ohms) from the paper records, or from the .csv file saved in either "TH2016data" or "VW2016data" saved in My Documents.

8												
9	WDT-3											
10	WDT-3											
11	Date Beadido -	15-Sep-11	5-Oct-11	24-Nov-11	28-Feb-12	27-Mar-12	11-Apr-12	18-Apr-12	14-May-12	\#\#\#\#\#\#\#	14-Jul-12	
12	1	9.71	10.24	12.55	13.73	14.00	14.11	14.15	14.17	11.30	9.77	
13	2	10.55	10.86	12.59	13.68	13.87	13.95	13.98	14.04	12.57	10.84	
14	3	11.03	11.11	12.53	13.71	13.90	13.98	14.01	14.08	13.66	11.99	
15	4	11.38	11.26	12.36	13.61	13.80	13.89	13.93	14.02	13.89	12.58	
16	5	11.99	11.71	12.39	13.55	13.75	13.84	13.87	13.97	13.97	13.16	
17	6	12.49	12.16	12.50	13.50	13.69	13.78	13.81	13.91	13.96	13.49	
18	7	13.05	12.70	12.69	13.49	13.67	13.75	13.79	13.89	13.97	13.78	
19	8	13.38	13.10	12.88	13.45	13.61	13.69	13.72	13.82	13.90	13.87	
20	9	13.57	13.40	13.15	13.50	13.63	13.69	13.71	13.80	13.86	13.89	
21	10	13.67	13.61	13.42	13.58	13.66	13.70	13.73	13.79	13.84	13.89	
22	11	13.66	13.66	13.55	13.58	13.63	13.66	13.67	13.72	13.76	13.81	
23	12	13.68	13.70	13.66	13.63	13.66	13.68	13.68	13.72	13.75	13.79	
24	13	13.74	13.77	13.77	13.71	13.71	13.72	13.72	13.74	13.77	13.80	
25	14	13.87	13.89	13.90	13.83	13.82	13.83	13.83	13.85	13.87	13.90	
26	15	13.95	13.96	13.94	13.88	13.87	13.88	13.88	13.90	13.92	13.95	
27	16	13.99	13.99	13.92	13.87	13.88	13.88	13.89	13.91	13.94	13.97	
28												

Vibrating Wire Piezometer Readings

1. Connect adapter cord to the VW2106 Readout Box.
2. Connect the coloured wires to the correct wire clips on the extension cable. Make sure the wires do not touch each other.
3. Record the DATE and TIME as barometric pressure will be needed to calibrate the water level.
4. Record the measurement (between 7000B to 9000B) and the temperature (${ }^{\circ} \mathrm{C}$) for each piezometer. The piezometer ID should be labeled on the wire (eg. P5a and P5b).

5. Alternatively the data can be stored in the readout box:
a. Scroll with the Up/Down arrows to the Memory screen and press enter (arrow key)

b. Scroll with the Up/Down arrows to the Store Data screen and press enter

c. Scroll with the Up/Down arrows to the station being monitored and press enter to store the reading

d. The data is now stored and the readout box can be turned off by pressing the escape button (ESC) three times to get back to the main menu and scrolling to Power Off.

Data Downloading

7. Connect USB cord from computer to the readout box.
8. Open the software Multi Readout Host.

9. Turn on the power on the readout box.
10. The software will recognize the readout unit and prompt to download data. Choose "Yes" to download the data from the readout unit.

11. Once data is downloaded you will have the option to save all data as .csv file. Choose "Yes" and the data will be stored in My Documents in a folder named "VW2016data".

12. The software can be used to setup new locations or view data but no further steps are required.

Data Input

Spreadsheets for piezometer data input and tracking are stored here:
X:\Mine Technical\03 - Monitoring\! Piezo and GTC
4. Open the spreadsheet for the area monitored

5. Open the tab "Piezo Readings"

6. In a new row, input the date, time, barometric pressure, B-unit and temperature readings for each instrument.

Barometric pressure can be obtained from the site's weather monitoring stations. Data is stored here:

X:\Environmental\Environmental Monitoring Program\1 MASTER LOGS\Meteorology Station Data\Met Station 1 and 2 Data Summary.xlsx

