Pre-Feasibility Geotechnical Evaluation Phase IV Minto Mine Yukon Territory, Canada

Report Prepared for Minto Explorations Ltd.

December 2009

Pre-Feasibility Geotechnical Evaluation for Phase IV Minto Mine Yukon Territory, Canada

Minto Explorations Ltd.

625 Howe Street Suite 860 Vancouver, BC V6C2T6

SRK Consulting (U.S.), Inc. Suite 3000, 7175 West Jefferson Avenue Denver, Colorado, USA 80235 Tel: 303.985.1333 Fax: 303.985.9947 E-mail: <u>denver@srk.com</u> Web site: www.srk.com

SRK Project Number 2CM022.006

December 2009

Author Michael Levy, P.E., P.G. SRK Consulting (US), Inc. (SRK) was requested by Minto Explorations Ltd. (Minto) to carry out a prefeasibility level geotechnical evaluation for the Area 2, Area 118, Ridgetop and Minto North deposit areas at the Minto Mine in the Yukon Territory, Canada. The following comprised the principle stages of the geotechnical evaluation:

- Discontinuity orientation and geotechnical logging of core;
- Geomechanical laboratory strength testing and geologic materials characterization;
- Development of geotechnical models to provide bases for excavation stability analyses;
- Recommendation of optimal pit slope angles and pit architecture for mine design purposes; and,
- Recommendation of room and pillar dimensions as well as ground support requirements for the alternative underground development of Area 118.

As commissioned, the work reported herein was performed at a pre-feasibility design level.

Geotechnical Data Collection

A geotechnical core logging program was developed to yield information pertinent to modeling of pit slope stability, such as geologic contacts, profiles of rock strength, and characteristics and frequency of discontinuities.

Geotechnical logging, field point load testing and discontinuity orientation of core recovered from a total of eight drill holes were conducted for this investigation. In addition to the eight geotechnical coreholes drilled for this investigation, data from three additional geotechnical coreholes drilled in 2007 as part of the previous SRK (2007) Area 2 Pre-feasibility Pit Slope Evaluation were also considered in the analyses.

Laboratory Testing

Geomechanical testing was conducted at The University of Arizona Rock Mechanics Laboratory in Tucson, Arizona, to determine strength characteristics of the in-situ materials. The overall laboratory program consisted of direct shear, uniaxial and triaxial compressive strength, and direct tensile strength testing and measurement of unit weight and elastic properties. A total of 51 laboratory tests were conducted on samples selected to represent the range of the rock conditions observed in the eight 2009 geotechnical borings.

Laboratory uniaxial axial compressive strength (UCS) testing was conducted on 30 samples, producing the following:

- UCS ranging from 48.9 to 172.3 MPa, with a mean value of 116.0 MPa;
- Young's Moduli ranging from 14.9 to 66.5 GPa, with a mean value of 47.8 GPa; and,
- Poisson's Ratios ranging from 0.084 to 0.302, with a mean value of 0.229.

Triaxial compressive strength (TCS) testing was conducted on six samples of core, yielding compressive strengths $(_1)$ ranging between 213.8 and 294 .1MPa with a mean value of 262.1 MPa under confining pressures $(_3)$ ranging between 6.9 and 20.7 MPa, with a mean value of 13.8 MPa.

Ten samples of naturally-occurring discontinuities encountered in the core were tested using four-point, small-scale direct shear tests to obtain discontinuity shear strength data, resulting in:

Page i

- Calculated friction angles (Φ) ranged from 33° to 46°, with a mean of 36°; and,
- Apparent cohesion values ranging from 1 to 22 kPa, with a mean of 10 kPa.

Brazilian disk tension testing was conducted on five samples producing intact tensile strengths ranging from 7.2 to 10.8 MPa, with a mean value of 8.8 MPa.

Prior to actual testing of UCS and TCS core samples, sample dimensions and weights were measured and used to calculate total unit weights for each sample. The combined data set included 36 unit weight measurements ranging from 24.9 to 26.7 kN/m^3 with a 26.2 kN/m3 mean.

Geotechnical Model

For each area under study, a geotechnical model was developed to provide a framework for slope stability modeling by mathematically simulating site geotechnical conditions and then calculating the anticipated response to stress changes resulting from the proposed open pit excavations. A typical geotechnical model is composed of individual regions (domains), each of which is comprised of materials exhibiting internally similar geomechanical properties. Pertinent geotechnical parameters are assigned to each domain defined, based on engineering properties that are determined during field data collection and laboratory testing programs.

To initiate the geotechnical modeling, the basic geotechnical parameters recorded for each core run were applied to the Laubscher (1990) In-situ Rock Mass Rating (IRMR) system, thereby creating a profile of IRMR with depth for each of the eight geotechnical holes drilled for this investigation. Based upon the IRMR as well as upon its individual components, available site geology information and laboratory test results, drill cores were divided into geotechnical intervals or domains that are expected to behave uniformly when exposed to open pit excavation-induced stresses, for each of the deposit areas. Given the relatively consistent nature of geologic materials at Minto, the materials were divided into two basic domains at Area 2, Area 118 and Ridgetop, i.e., weathered and fresh rock. As explained later, the Minto North rock was classified into a single domain.

The weathered rock domain is typically characterized by relatively higher fracture frequencies, consistently lower intact rock strengths and zones of heavy alteration and oxidation as a result of moderate to heavy surface weathering and is typified by core that also typically shows consistently lower RQD and IRMR values. Consequentially, the weathered bedrock is of significantly lower geomechanical quality than is the fresh rock which underlies it.

In general, the fresh rock is consistently a much more competent rock mass than is the weathered bedrock, possessing relatively lower fracture frequencies and higher intact rock strengths. The fresh rock encountered is relatively massive and exhibits fewer signs of alteration and weathering when compared to the weathered rock and, consequently, possesses higher overall RQD and IRMR values.

The fresh rock domains do contain intermittent zones of weaker material which typically correspond to intervals of increased fracturing, weathering and/or alteration, including minor fault zones and surface weathering. However, such intermittent weaker rock zones represent a relatively small portion of the overall fresh rock domain and are not anticipated to adversely impact the performance of the fresh rock mass.

Several zones of foliated granodiorite were encountered in the fresh rock, but those zones exhibited similar intact rock strengths and rock mass properties as did samples of non-foliated granodiorite collected from the same coreholes. The foliated zones are judged to be discontinuous and are not expected to impact overall pit slope stability differently than will the non-foliated zones. Therefore, the foliated and non-foliated rock was grouped together into their respective weathered or fresh domains.

Area 2

A relatively deep soil overburden deposit exists under the northeast portion of the proposed Area 2 pit, consisting primarily of transported silt and fine sand with occasional lenses of clay and coarse sand to gravel. The soil is high in organic content and is known to contain permafrost. It appears that the soil has filled a relatively deep erosional feature on the order of 60 to 90m deep with an invert located between Area 2 and the Main Pit to the north. Previous geotechnical work done by SRK and others have indicated that the material contains permafrost down to near the bedrock contact at its deepest portions and is most likely frozen down to the bedrock contact in shallower portions. Ubiquitously, the upper 1m is "active", i.e., seasonally freezing and thawing.

Based on available information from resource and geotechnical drilling, Area 2 is covered with soil overburden ranging from about 5 to 15m in depth in the southwest portion, with up 20 to 45m along much of the north and east walls, and reaching a maximum depth of 70m at the far north.

While it is possible that the frozen overburden may extend farther south, available information suggests that the overburden at the south and west ends of the proposed Area 2 pit consists of a thin veneer of organic soil underlain by approximately 5m to 15m of completely weathered, in-situ bedrock (granular soil) or residuum.

Based on geotechnical drillhole data, the Area 2 weathered domain is adjudged to extend to depths of approximately 50 to 100m below the current ground surface.

Area 118

The majority of the proposed Area 118 open pit footprint is covered with up to approximately 5m of overburden, except in its southwestern portion, where the soil locally deepens to approximately16m. The depth of bedrock weathering at Area 118 is generally to about 30 to 60m below the current ground surface.

Ridgetop

The western regions of the proposed Ridgetop pits are anticipated to contain 1 to 5m of soil overburden, deepening to the east to from 5 to 15m on the east side and with a maximum depth of 21m at the northeast portion of Ridgetop North and the east portion of Ridgetop South.

The bedrock at Ridgetop is generally weathered to a depth of approximately 45 to 70m below current ground surface.

Minto North

Due to the relatively shallow depth of the Minto North pit and the presence of multiple structures and weaker zones, there was a less significant distinction between the weathered and fresh rock materials and, consequentially, materials at Minto North were combined together into a single domain for modeling.

Model Methodology

Evaluation of the results of the field and laboratory data collection programs indicates a high degree of variation in rock strength and geologic structure at Minto. This natural variability in rock strength and structure suggests that a probability-based method of analyses is most appropriate, yielding less conservative slope angles than would the selection of a unique, potentially over-conservative value, as is typical to strictly deterministic analyses. As such, for this work, model parameters were characterized by

statistical distributions of values having a central tendency and some variation around that central tendency, rather than by a single, unique value.

A rock mass shear strength/normal stress relationship was developed for each domain using the Generalized Hoek-Brown strength model (Hoek et al, 2002). Probability density functions (PDF) were selected to represent distributions of Geological Strength Index (GSI), material constant (m_i) and disturbance factor (D). The distributions selected were based on the results of field and laboratory testing as well as on SRK's experience.

Interramp/Overall Slope Stability Analysis

The mathematical geotechnical model was input into the commercially available slope stability modeling software package Slide 5.039 (Slide), developed by Rocscience, Inc. (2003). Slide is a two-dimensional, limit equilibrium slope stability analysis program that analyzes slope stability by various methods of slices, from which Spencer's method was chosen for this evaluation due to its consideration of both force and moment equilibrium.

Results of slope stability modeling generally indicated probabilities of failure (PoF) ranging from near zero to approximately 5%. It should be noted that while a near zero percent probability of failure does demonstrate a very low likelihood of slope instability; it does not imply that slope instability is impossible; rather, a reported zero probability simply indicates that, for the potential failure surfaces characterized by one of 300 samples drawn from the strength distributions defined, no surfaces had a Factor of Safety (FoS) less than 1.0.

Deposit	Sector Height (m)		Mean FoS	PoF (%)
Area 2	Northeast	130m	2.5	0.7
Area 2	Southwest	214m	2.1	2.9
Ridgetop	-	130m	2.3	2.4
Minto North	-	130m	2.3	0.0

Results of Interramp/Overall Slope Stability Modeling

Given the small size of the proposed Area 118 pit as well as its close proximity and geotechnical similarities to Area 2, additional interramp slope stability modeling was not deemed necessary for Area 118 at the current, pre-feasibility level.

Geologic Discontinuity Analysis

Geologic discontinuities were analyzed at both the pit wall and bench scales. The term discontinuity refers to any break or fracture, ranging from faults at the upper limit to joints at the lower limit, having negligible tensile strength. Discontinuities are formed by a wide range of geological processes and can collectively include most types of joints, faults, fissures, fractures, veins, bedding planes, foliation, shear zones, dikes and contacts.

Major Structures

Major geologic structures are those features, such as faults, dikes, shear zones, and contacts that have dimensions on the same order of magnitude as the area being characterized. These structures are treated as individual elements for design purposes, as opposed to joints, which are handled statistically.

Typically, high angle structures do not adversely impact pit slopes on the overall scale and as such, were not specifically targeted for this pre-feasibility level evaluation. As such, geotechnical drilling at the pre-feasibility evaluation level is targeted to obtain data representative of overall rock mass conditions and, secondarily, to individual structures such as those previously mentioned.

Several faults or shear zones have been identified in resource and geotechnical drilling at all of the subject Minto sites. Most of these structures are not, however, anticipated to significantly impact pit slope stability due to their apparent lack of persistence and to the generally limited degree of rock degradation, e.g., highly plastic gouge development, associated with them. However, the potential for one or more major structures to adversely impact stability of the Area 2 west wall has been identified and, as discussed in the SRK recommendations, should be further investigated as the project advances.

Specifically, both resource and geotechnical drilling in southwestern Area 2 suggest the presence of a major fault or faults, potentially striking sub-parallel to the Area 2 pit west wall, with a moderate to steep northeast dip similar to faults suggested by resource geology in adjacent Area 118. In particular, exploration holes 06SWC082 and 06SWC106 encountered deep brittle structure(s) approximately 279m and 243m, respectively, down hole. Similar indications of fault intercepts were not observed in adjacent holes, thereby suggesting a high dip angle for the structure or structures.

Geotechnical drillholes C09-03 and C07-07 also encountered zones of major rock disturbance at shallower depths that would be consistent with the potential structure(s) and would coincide with the western Area 2 ultimate pit wall.

Major faults at similar orientations are also anticipated through the Area 118 underground mining areas and development.

Rock Fabric

Minor discontinuities such as joints, foliation and bedding planes, represent an infinite population for practical purposes and, due to sampling limitations, are best modeled with stochastic (probabilistic) techniques. A discontinuity set denotes a grouping of discontinuities that are expected to have similar impact upon the proposed design. In open pit design, this criterion is usually modified so that all discontinuities in a similar range of orientations (dip direction and dip) are designated as a single discontinuity set.

Slope angles within an open pit mine are influenced not only by geologic structure, rock mass strength and porewater pressures, but also by pit wall orientation and other operational considerations. The ultimate pits were evaluated for such regions of similar structural characteristics and pit slope orientation called "design sectors" which are expected to exhibit similar response to pit development.

Both the weathered and fresh rock domains at Minto are characterized by relatively strong intact rock strengths and by very similar discontinuity orientations. As such, pit slope design sectors were delineated based primarily on variations in structural (discontinuity) systems relative to mean pit wall orientations.

Field discontinuity measurements were converted into in-situ orientations and the combined data set of discontinuities was divided into categories of which, given sufficient persistence, had the potential to

create structurally controlled failures. Plane shear and wedge type failures were evaluated for pit sectors assuming an average orientation of the pit walls in each sector.

Preliminary kinematic analyses indicated that the south and west sectors of Area 2, Area 118 and Ridgetop had potential for bench scale instabilities; consequentially, additional, backbreak analyses were carried out for those sectors. SRK's backbreak analyses use stochastic simulations of discontinuity properties (such as orientation, spacing, persistence, and shear strength) to analyze the likelihood for plane shear and wedge type failures to occur in a given bench configuration and orientation. The analyses yield a distribution of achievable bench face angles and catch bench widths. The interramp/overall and bench stability analyses together yield an optimized pit slope angle, providing of sufficient rock fall containment.

Results indicated that, based on the existing data, achievable mean bench face angles of approximately 64 degrees should be expected for the south and west sectors of Area 2 and Area 118. Due to the flatter discontinuity dips at Ridgetop relative to the anticipated shear strength of the discontinuities, steeper achievable bench face angles, on the order of 73 degrees, are expected for both Ridgetop pits.

While discontinuity analyses indicate that there is a slight potential for bench scale instability in the southwest section of the Minto North pit, the relatively low probability and the relatively small size of the pit, recommendations for Minto North are based on interramp slope angles alone.

Pit Slope Design Recommendations

Based on SRK's experience, interramp/overall slope angles that yield probabilities of failure of up to 30% for slopes with low failure consequences and approximately 5% to 10% for high failure consequences are appropriate for most open pit mines. Slopes of high failure consequence are generally those slopes that are critical to mine operations, such as those on which major haul roads are established, those providing ingress or egress points to the pit, or those underlying infrastructure such as processing facilities or structures.

In analyses, the interramp angle is typically incrementally increased until a suitable probability of failure equal to or greater than 30% is achieved. The probabilities of instability are plotted against their respective interramp slope angles for each model and the slope angle expected to yield a suitable probability of instability (5% or 30%, depending on failure consequence) is determined.

For certain geologic environments, the combination of the average anticipated bench face angle and the preferred interramp angle, based on global stability considerations, alone, do not provide a sufficiently wide average catch bench width to efficaciously control rockfall and/or overbank slough accumulation. In such instances, recommended interramp angles are flattened sufficiently to provide adequately wide average catch benches.

Based on the criteria described above, pit slope design recommendations for each of the Minto areas are summarized below.

Deposit Area	Sector(s)	Max. Slope Height (m)	Interramp Angle (°)	Bench Face Angle (°)	Bench Height (m)	Berm Width (m)	Stepout Width* (m)
Area 2	Soil Overburden	50	30	30	-	-	15
Area 2	Rock – Northwest and Northeast	170	53	73	18	8	-
Area 2	Rock – South and West	210	47	64	18	8	-
Area 118	Soil Overburden	18	30	30	-	-	15
Area 118	Rock - Northeast	35	53	73	18	8	-
Area 118	Rock - Southwest	36	47	64	18	8	-
Minto North	Soil Overburden	14	30	30	-	-	15
Minto North	Rock	125	52	72	18	8	-
Ridgetop - North	Soil Overburden	13	30	30	-	-	15
Ridgetop - North	Rock	132	53	73	18	8	-
Ridgetop - South	Soil Overburden	19	30	30	-	-	15
Ridgetop - South	Rock	78	53	73	18	8	-

Summary of Pit Slope Design Recommendations

Where soil overburden depths are anticipated to exceed 7m, a 15m offset or stepout should be incorporated at, or vertically near, the contact between the overburden and the bedrock.

Area 118 Underground Pillar Assessment

In addition to the small open pit at Area 118 previously discussed, underground mining is also planned for Area 118. Based on the geotechnical data previously described, pillar strengths were evaluated in order to recommend suitable pillar dimensions for room and pillar mining. Based on estimates of ore deposit depth and thickness variability, pillar heights of 5m, 10m and 15m were assessed and ore depths, and respective overburden stresses, of 150m, 200m and 250m were considered.

In-situ Rock Mass Rating (IRMR) and Rock Mass Strength (RMS) values were evaluated for the ore zone as well as materials above and below the ore zone in geotechnical drillholes C09-01 and C09-02. An average IRMR and RMS of 55 and 60MPa, respectively, were conservatively estimated for pillar, roof and floor materials. Using Laubscher's (1990) method, the IRMR of 55 was reduced to a Mining Rock Mass Rating (MRMR) of 47 and the 60 MPa RMS to a Design Rock Mass Strength (DRMS) of 51 MPa by applying appropriate reductions for joint orientation, blasting and water.

Based on empirical data presented by Ouchi (2004), assuming a RMR value of 55, the maximum unsupported span distance was estimated to be 6m for all pillar height/deposit depth combinations considered. Subsequently, the tributary area method was used to estimate minimum pillar dimensions required to support 6m x 6m or, if required, lesser, roof spans based on pillar height and overburden stresses. The resultant recommended room and pillar dimensions and extraction ratios are summarized below.

Page v	/111

Depth (m)	Pillar Height (m)	Pillar Dimensions (m)	Room Dimensions (m)	Extraction Ratio
150	5	4x4	6x6	84%
150	10	5x5	6x6	79%
150	15	6x6	6x6	75%
200	5	4.5x4.5	6x6	82%
200	10	6x6	6x6	75%
200	15	7.5x7.5	6x6	69%
250	5	5x5	6x6	79%
250	10	7x7	6x6	71%
250	15	8x8	5x5	62%

Room and Pillar Size Recommendations

Based on geotechnical conditions previously described, ground support requirements for development such as declines were estimated as follows:

- Pattern bolting with 2.4m long bolts at a 2m spacing within and between rings; and,
- Welded wire mesh in back and top of walls.

Recommendations for Additional Geotechnical Work

Additional geotechnical characterization and analyses should be conducted at the feasibility and design levels for each of the areas. Analyses and recommendations presented herein are based on ultimate pit designs as described in this report, and, as such, any significant changes to mine plans or pit architecture should be reviewed by SRK to verify that recommendations will remain valid for the new mine plans.

Geologic structure should be further evaluated to more accurately characterize the rock mass which, according to the current mine plans, will comprise the toe of the Area 2 western slope walls and which will better ascertain the likelihood of the existence and orientation of major structures that may adversely impact stability of that western wall. To do so, two additional geotechnical drillholes are recommended at Area 2 to investigate the potential for such major structures and to further characterize the variability in orientation of joint sets.

Additional geotechnical characterization and analysis will also be necessary at Minto North, to better define rock mass conditions and structural impacts on bench stability as the project advances. To accomplish this, one additional geotechnical corehole is recommended at Minto North drilled into the northwest wall for evaluation of rock mass conditions and structure.

The underground portion of Area 118 will also require additional geotechnical drilling for rock mass characterization at the feasibility and design levels. The Area 118 and Ridgetop open pits most likely will not require additional geotechnical drilling unless major changes are made to the current plans.

Table of Contents

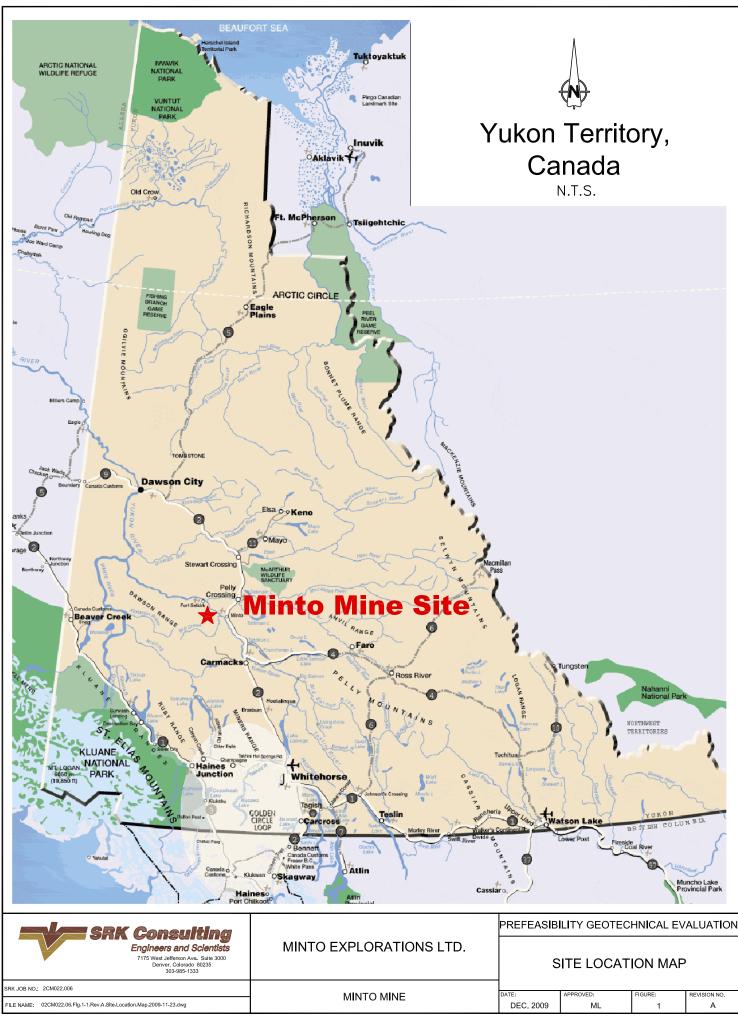
Ex	ecuti	ive Summary	. i
1	Intro	oduction and Background	. 1
2	Prog 2.1 2.2	gram Objectives and Work Program Program Objectives Work Program	.3
3	Geo	logic Setting	4
4	Field 4.1 4.2 4.3	d Data Collection Geotechnical Core Logging. 4.1.1 Geotechnical Logging Procedures 4.1.2 Core Drilling Method Discontinuity Orientation Point Load Testing	.5 .5 .6 .6
5	Lab 5.1 5.2 5.3 5.4 5.5	oratory Testing Unconfined Compressive Strength and Elastic Properties Direct Shear Testing Triaxial Compressive Strength Testing Direct Tensile Strength Testing Unit Weight Measurements	.9 11 12 12
6	Roc 6.1 6.2 6.3	k Mass Assessment 1 Data Analysis 1 6.1.1 Intact Rock Strength 6.1.2 Discontinuity Frequency 6.1.3 Discontinuity Shear Strength Rock Mass Classification 1 6.3.1 Area 2 6.3.2 Area 118	13 13 14 15 15 16 17 19
_	6.4 6.5	Groundwater	23 25 26
7	Inte 7.1	rramp/Overall Slope Stability Modeling Stability Modeling Results of Interramp/Overall Stability Analysis Stability Analysis 7.1.1 Area 2 and Area 118 7.1.2 Ridgetop 7.1.3 Minto North	31 33 34
8	Geo 8.1 8.2	Iogic Discontinuity Analysis 3 Major Geologic Structures 3 8.1.1 Area 2 and Area 118 8.1.2 Ridgetop 8.1.3 Minto North Rock Fabric 3 8.2.1 Discontinuity Orientation	36 36 37 37

	8.2.2 8.2.3	Design Sectors Backbreak Analysis	
9	Pit Slope De	esign Recommendations	45
10	Area 118 Un	nderground Pillar Assessment	
11	Assessmen	t of Future Geotechnical Work	
12	References		

Table 1: Drillholes Oriented and Logged for Geotechnical Data	5
Table 2: Summary of Discontinuity Orientation	7
Table 3: Uniaxial Compressive Strength Testing	10
Table 4: Summary of Residual Shear Strengths	11
Table 5: Triaxial Compressive Strength Testing	12
Table 6: Direct Tensile Strength Testing	12
Table 7: In-situ RMR Distributions per Domain	16
Table 8: Secondary Hoek-Brown Parameters Stochastic Input	25
Table 9: Results of Interramp/Overall Slope Stability Modeling	33
Table 10: Design Discontinuity Sets	
Table 11: Summary of backbreak analyses per sector	
Table 12: Summary of Pit Slope Design Recommendations	
Table 13: Summary of Room and Pillar Size Recommendations	47

List of Figures

Figure 1: Site Location Map	2
Figure 2: Locations of Geotechnical Drillholes	8
Figure 3: Point Load Index – UCS Correlation Factor	14
Figure 4: Distribution of measured discontinuity shear strengths	
Figure 5: Rock Mass Parameters: Area 2	
Figure 6: Critical section through Area 2 geotechnical model: west wall	
Figure 7: Critical section through Area 2 geotechnical model: east wall	
Figure 8: Rock Mass Parameters: Area 118	21
Figure 9: Rock Mass Parameters: Ridgetop	22
Figure 10: Critical section through generalized Ridgetop geotechnical model	23
Figure 11: Rock Mass Parameters: Minto North	24
Figure 12: Rock Mass Shear Strength: Area 2	
Figure 13: Rock Mass Shear Strength: Area 118	
Figure 14: Rock Mass Shear Strength: Ridgetop	
Figure 15: Rock Mass Shear Strength: Minto North	
Figure 16: Explanation of Pit Slope Terminology	
Figure 17: Interramp and overall stability modeling results: Area 2 east wall	
Figure 18: Interramp and overall stability modeling results: Area 2 west wall	
Figure 19: Interramp stability modeling results: Area 2 east wall	
Figure 20: Interramp stability modeling results: Minto North	
Figure 21: Pole plot of oriented faults at Ridgetop	
Figure 22: Pole plot of oriented faults at Minto North	
Figure 23: Discontinuity Pole Plots: Area 2 and Area 118	40
Figure 24: Discontinuity Pole Plots: Ridgetop	41
Figure 25: Discontinuity Pole Plots: Minto North	
Figure 26: Design Sectors: Area 2	
Figure 27: Design Sectors: Ridgetop	
Figure 28: Critical span curve (Ouchi 2004)	


List of Appendices

Appendix A: Geotechnical Core Logs Appendix B: Laboratory Testing Uniaxial Compressive Strength Testing Triaxial Compressive Strength Testing Direct Shear Testing Brazilian Disk Tension Testing

1 Introduction and Background

SRK Consulting (US), Inc. (SRK) was requested by Minto Explorations Ltd. (Minto) to carry out a pre-feasibility level geotechnical evaluation for the Area 2, Area 118, Ridgetop and Minto North deposit areas at the Minto Mine in the Yukon Territory, Canada (Figure 1).

This report presents a complete description of the methods used to collect pertinent information, the information so gathered, the analytical tools employed to produce assessments of the anticipated behavior of the geologic environments to the development of the open pits and, in the case of Area 118, the underground, and the recommendations based upon those assessments.

2 **Program Objectives and Work Program**

2.1 Program Objectives

The primary objectives of the pre-feasibility geotechnical evaluation for each Minto area were:

- To collect and to assimilate geotechnical information pertaining to the in-situ materials;
- To geotechnically characterize the in-situ materials;
- To undertake laboratory testing of geomechanical properties of samples of the in-situ materials;
- To develop a geotechnical model to serve as the basis for geomechanical analyses;
- To conduct geomechanical analyses;
- To make recommendations pertaining to optimal slope angles and pit architecture for mine design purposes; and,
- To make recommendations pertaining to pillar and room dimensions for the potential Area 118 underground development.

2.2 Work Program

The principle stages of the geotechnical evaluation work program were comprised of the following:

- Recommendation of the number, location and orientation of core holes necessary to characterize the in-situ materials in each of the areas;
- Geotechnical core logging and discontinuity orientation of core recovered from the holes;
- Selection of representative drill core samples from the respective lithological units encountered in the geotechnical drill holes;
- Submission of the representative samples to the University of Arizona Rock Mechanics Laboratory in Tucson, Arizona, for geomechanical testing;
- Analyses and interpretation of the geotechnical data and laboratory test results to produce a comprehensive analytical model of in-situ conditions for each of the study areas;
- Examination of the behavior of each geotechnical model to expected mining-induced stresses, using various analytical methods; and,
- The compilation of a pre-feasibility geotechnical evaluation report incorporating recommendations pertaining to optimal pit slope angles and pit architecture for mine design purposes as well as room and pillar dimensions for the Area 118 underground.

As commissioned, the work reported herein was performed at a pre-feasibility design level.

3 Geologic Setting

The Minto region is located within the central portion of the accretionary complex known as the Yukon-Tanana (YT) terrane which lies between continental margin rocks of ancestral North America to the east and arc and oceanic terranes accreted in Mesozoic time to the west. The pericratonic YT terrane is comprised of Proterozoic and Paleozoic metamorphic rock intruded by Mesozoic plutons and covered by extrusive volcanics of Upper Cretaceous and Tertiary age (Colpron 2006).

The YT terrane is located within the western portion of the Omineca Belt of the Cordillera which is composed of variably metamorphosed sedimentary and igneous rocks that have undergone similar geomorphologic processes over the past billion years of geological history, climate and glaciation. Much of the north-western portion of the Omineca Belt including the Minto region was not glaciated during the most recent event resulting in a thicker cover of soil and weathered rock in some areas of the region (Hart 2002).

The Minto Mine site is located within the Klotassin batholith, an intrusive granitic pluton which intruded the YT terrane in early Jurassic time. The Klotassin batholith consists primarily of granodiorite but varies in composition from quartz diorite to quartz monzonite. The area to the south of the Minto mine site is covered with basalt and andesite flows of the Upper Cretaceous, Carmacks Group. The batholith is intruded by basalt and andesite dikes believed to have been feeders of the Carmacks Group volcanics. Quartz-feldspar pegmatite veins and dikes are also common in the Klatossin batholith (Hatch 2006).

Four separate deposits of mineralization were considered for this evaluation. They are the Area 2, Area 118, Ridgetop and Minto North deposits. Each of these deposits has similar shallow dipping copper sulphide mineralized zones. Area 2 and Area 118 area located immediately south of Main Minto deposit which is already exposed in open pit mining. The Ridgetop deposit is located just over 300m south of the Area 2 and Area 118 deposits. The Minto North deposit is located about 700m north of the Main Minto deposit. These deposits define a general north-northwest trend.

Seismically, the Minto deposits lie within an area of moderate to low seismic activity. According to information available from the Canadian Geological Survey (CGS), the Minto area can expect to experience a maximum seismically-induced acceleration of approximately 0.1g (percent of gravity) with a recurrence interval of 50 years. Since each of the Minto deposits are scheduled to be relatively short lived, i.e., on the order of 8 years, the CGS guideline equates to a maximum anticipated acceleration of approximately 0.01g during mine life. This maximum design acceleration is so inconsequential that no seismic loadings were considered in the analyses conducted for this study.

4 Field Data Collection

4.1 Geotechnical Core Logging

Geotechnical logging, field point load testing and discontinuity orientation of core recovered from a total of eight drillholes were conducted for this investigation. Based on the current understanding of the deposits, drillhole locations and orientations were selected to provide the best coverage possible of rock likely to form pit walls in the Ridgetop, Area 118, Area 2 and Minto North areas. The geotechnical drillhole locations were chosen based on preliminary and historic pit shells and, in some instances, drillhole intersections with the final pre-feasibility pit slopes presented herein were not optimal. It is believed, however, that this factor does not adversely impact the analyses conducted to a significant degree.

The geotechnical core drilling program was also designed to collect data for rock mass characterization for potential underground mining at Area 118. In addition to the eight geotechnical coreholes drilled in 2009 for this investigation, data from three additional geotechnical coreholes drilled in 2007 for the previous SRK (2007) Area 2 Pre-feasibility Pit Slope Evaluation were also considered in the analyses.

Drillhole inclinations of approximately 60 degrees below the horizontal were selected since they were judged to be more likely, than would vertical holes, to intersect geologic structures such as joints and fracture systems which, if present, will influence slope stability.

Collar locations and the drillhole azimuths of the eight geotechnical holes drilled for this investigation as well as the three holes considered from the previous (SRK, 2007) investigation are summarized in Table 1 and presented on Figure 2.

SRK	Minto	Col	lar Coordina	ates	Azimuth	Inclination	Length
Hole ID	Hole ID	Northing	Easting	Elevation	(deg)	(deg)	(m)
C09-01	09SWC424	6944462.5	384615.2	876.8	236	-57	325.0
C09-02	09SWC422	6944276.4	384751.3	893.9	239	-58	280.5
C09-03	09SWC420	6944390.8	384933.1	861.4	213	-61	376.5
C09-04	09SWC427	6943813.0	384955.7	890.1	245	-60	175.5
C09-05	09SWC429	6943654.8	384933.1	916.9	058	-59	199.5
C09-06	09SWC431	6943632.3	385112.7	889.2	238	-60	150.0
C09-07	09SWC495	6945925.0	384238.0	951.4	196	-60	153.0
C09-08	09SWC497	6945953.0	384320.0	940.7	047	-55	141.0
C07-06	07SWC206	6944784.8	384609.5	822.6	223	-61	155.1
C07-07	07SWC201	6944506.4	384808.9	861.0	211	-57	243.5
C07-08	07SWC196	6944640.7	384876.9	832.9	070	-60	249.6

Table 1: Drillholes Oriented and Logged for Geotechnical Data

4.1.1 Geotechnical Logging Procedures

Core retrieved from the eight geotechnical coreholes were logged on a 24 hour per day basis, at the rig, in the liners, or splits, prior to boxing and transporting. The geotechnical core logging

program was developed to yield information pertinent to modeling of pit slope stability, such as geologic contacts, profiles of rock strength, and characterization and frequency of discontinuities. Specific parameters that were logged included:

- General lithology and structures;
- Total core recovery;
- Rock Quality Designation (RQD);
- Rock weathering and intact strength indices;
- Frequency of discontinuities;
- Discontinuity characteristics (type, roughness, infillings and wall condition); and,
- Discontinuity orientation.

Geotechnical corehole logs are presented in Appendix A.

During core logging, samples of the core were collected to provide redundant specimens for laboratory strength testing. Samples were collected at approximately 30 meter intervals, or when significant rock type or strength changes were apparent. Each sample was sealed and safely stored at the time of collection. Upon completion of the drilling, samples were shipped to SRK's office in Denver, Colorado, for test sample selection. Select samples were then repackaged and shipped to the University of Arizona Rock Mechanics Laboratory in Tucson, Arizona, for testing.

4.1.2 Core Drilling Method

The coreholes were drilled by Driftwood Diamond Drilling, Ltd., from Smithers, British Columbia, using a skid mounted drill rig with a 45.1mm I.D.(NQ3), 1.5m long triple-tube sampling barrel. The coreholes were advanced with a face discharge bit system using a polymer mixture to facilitate core recovery. This coring method allowed for the recovery of continuous core samples as the holes advanced.

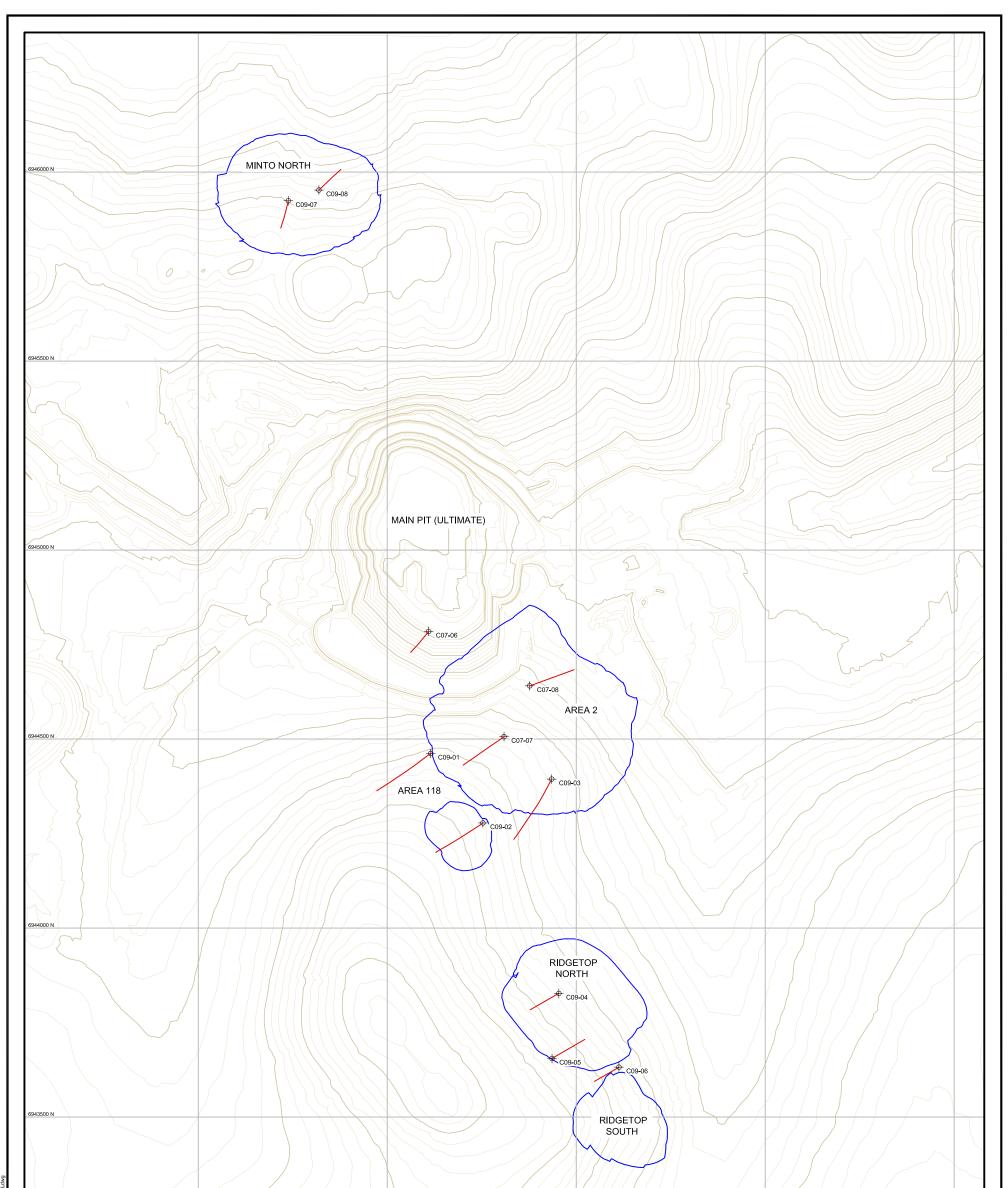
Downhole surveys were conducted by Driftwood upon completion of drilling; subsequently, the surface casing was pulled and the hole allowed to collapse. Depth to groundwater could not be determined at the time of hole advancement due to the 24 hour per day drilling schedule with continuous fluid injection and circulation.

4.2 Discontinuity Orientation

Orientation of discontinuities in each run was accomplished using an A.C.T. core orientation system manufactured by Reflex Instruments. The depth, alpha angle and beta angle were measured for each discontinuity on all core runs that were successfully oriented. The beta angle, i.e., the angle from the lowest part of the ellipse formed by the intersection of each discontinuity with the core, was measured from the bottom of the core in a clockwise direction when looking down hole. The alpha angle was measured as the maximum angle made by the discontinuity with respect to the core axis.

It was possible to orient a total of 4,328 discontinuities out of the total 5,161 discontinuities logged (84%) in the eight geotechnical coreholes drilled for this evaluation. A summary of oriented core information by hole is presented in Table 2.

SRK Hole ID	Drillhole Length (m)	Core Length Oriented (m)	Total Discontinuities Logged	Percentage of Discontinuities Oriented
C09-01	325.0	316.5	841	82%
C09-02	280.5	270.5	821	90%
C09-03	376.5	268.5	815	87%
C09-04	175.5	370.4	515	76%
C09-05	199.5	154.5	573	80%
C09-06	150.0	193.5	472	75%
C09-07	153.0	132.0	602	93%
C09-08	141.0	135.0	522	83%
C07-06	155.1	82.1	315	47%
C07-07	243.5	229.9	560	44%
C07-08	249.6	120.6	1194	60%


Table 2: Summary of Discontinuity Orientation

4.3 Point Load Testing

A Point Load Test (PLT) was performed during core logging at a frequency of approximately one test per every 2 to 3m using a Roctest Pil-7 test machine to provide detailed and nearly continuous profiles of relative rock strength. PLTs were conducted according to International Society for Rock Mechanics (ISRM, 1985) procedures. Both axial (parallel to the long axis of the core) and diametral (perpendicular to the long axis of the core) loading tests were conducted. Axial point load testing was performed as samples suitable for testing in an axial orientation were obtained from coring or were produced by breaking especially long sticks of core in diametral tests.

A combined total of 640 point load tests were conducted on core from the eight geotechnical coreholes; of those, 496 met test criteria for passing test results. Point load indices ($I_{S(50)}$) were calculated from the field PLT data using the ISRM (1985) suggested method. Calculated point load index strengths ($I_{S(50)}$) ranged between 0.1 and 11.1 MPa, with an average of 4.6 MPa.

In addition to the tests routinely conducted at 2 to 3 meter intervals, at least one PLT was also performed adjacent to each UCS sample obtained for laboratory testing. The reason for the paired PLT and UCS samples was for estimation of a correlation factor for conversion of the field PLT tests to laboratory UCS values.

LEGEND

- 5280 -

EXISTING GROUND CONTOURS (MAJOR/MINOR) 5 METER INTERVAL

84000

GEOTECHNICAL DRILLHOLE COLLAR LOCATION AND HORIZONTAL BOREHOLE PROJECTION

4500

5 Laboratory Testing

Geomechanical testing was conducted at The University of Arizona Rock Mechanics Laboratory in Tucson, Arizona, to determine strength characteristics for the in-situ materials. The overall laboratory program consisted of direct shear, uniaxial and triaxial compressive strength, and direct tensile strength testing and measurements of unit weight and elastic properties. A total of 51 laboratory tests were conducted on samples selected to represent the range of the rock conditions observed in the eight 2009 geotechnical borings. After completion of the laboratory testing program, the tested samples were returned to SRK for further evaluation. Raw laboratory test data is included in Appendix B.

5.1 Unconfined Compressive Strength and Elastic Properties

Uniaxial compressive strength (UCS) testing was conducted on 30 samples according to ASTM Method D7012. Elastic properties (Young's Modulus and Poisson's Ratio) were measured for seven of the 30 UCS samples. Test results indicated UCS values ranging from 48.9 to 172.3 MPa, with a mean value of 116.0 MPa; Young's Moduli ranging from 14.9 to 66.5 GPa, with a mean value of 47.8 GPa; and, Poisson's Ratios ranging from 0.084 to 0.302, with a mean value of 0.229. Results of the UCS and elastic properties testing are summarized in Table 3.

Three samples had an L/D ratio of less than 2.0 and, as a result, a correction factor was applied to more properly estimate UCS.

Valid tests produced UCS values ranging from 48.9 to 172.3 MPa, with a mean of 116.0 MPa; Young's Moduli ranging from 14.9 to 66.5 GPa, with a mean value of 47.8 GPa; and, Poisson's Ratios ranging from 0.084 to 0.302, with a mean value of 0.229.

SRK Hole ID	Sample Depth (m)	UCS (MPa)	Young's Modulus (GPa)	Poisson's Ratio	Unit Wt. (kN/m³)
C09-01	32.10	88.21	50.5	0.217	26.12
C09-01	89.50	119.56			26.25
C09-01	187.00	150.39			26.34
C09-01	220.30	164.68	66.5	0.302	26.61
C09-01	293.16	156.10			26.31
C09-02	122.67	71.69	49.2	0.214	26.17
C09-02	179.54	128.30			26.59
C09-02	271.90	149.87			26.20
C09-03	38.00	48.94	14.9	0.084	25.79
C09-03	77.33	72.30			24.90
C09-03	130.84	66.03			25.90
C09-03	161.03	104.39	47.3	0.228	26.48
C09-03	282.10	102.63			26.34
C09-03	361.70	149.58*			26.56
C09-04	30.40	63.15			25.32
C09-04	91.10	140.72			26.34
C09-04	150.25	153.42			26.52
C09-05	33.00	70.92			26.01
C09-05	92.70	74.34**			25.67
C09-05	150.11	86.71	53.9	0.262	26.26
C09-06	37.20	121.20			26.08
C09-06	71.22	131.32	52.5	0.294	26.01
C09-06	108.35	122.78*			26.04
C09-06	138.00	100.70*			26.30
C09-07	29.32	172.29			26.70
C09-07	86.34	139.69			26.56
C09-07	124.57	124.68			26.33
C09-08	47.53	157.71			26.53
C09-08	89.15	94.31			26.47
C09-08	129.40	153.60			26.37

 Table 3: Uniaxial Compressive Strength Testing

* Correction factor applied to account sample L/D ratio of less than 2.0.

** UCS test results considered invalid and excluded from further analysis.

The intact Young's Moduli determined from laboratory testing were used for empirical calculations of a rock mass deformation modulus for each domain by methods presented by Hoek and Diederichs (2006).

5.2 Direct Shear Testing

Direct shear testing is commonly used for estimating the expected shear strength along natural rock discontinuities such as joints, fractures and faults. Since the stress levels developed within open pits are usually much lower than the rock substance or intact strength, displacement frequently occurs along pre-existing geologic discontinuities, making the determination of discontinuity shear strength a necessity. For open pit design, direct shear testing is preferred over other methods of estimating discontinuity shear strength, such as triaxial compression testing, because direct shear testing permits a higher degree of control over the selection of the actual surface tested.

For this project, ten core samples were selected for four-point, small-scale direct shear (SSDS) tests (ASTM Method D5607) to obtain discontinuity shear strength data. Natural core discontinuities preserved in the field were used for direct shear testing.

The range of normal stresses applied during testing was selected to span estimated ranges of insitu stresses that are expected to develop within the slopes and to reasonably define the characteristics of the shear strength envelopes. The selected normal loads ranged from approximately 170 to 1,700 kPa.

In order to fit a shear strength envelope to the laboratory data points, a linear or curvilinear regression analysis is typically conducted. For a linear fit, the envelope is presented according to the Mohr-Coulomb criterion, i.e., in the form of a friction angle (Φ), which corresponds to the inverse tangent of the slope of the least-squares regression line, and cohesion (c), which corresponds to the shear strength intercept at zero normal stress. When conducting a linear regression with discontinuity shear strength data, the line is commonly forced through the origin simulating zero cohesion.

A curvilinear strength envelope can be presented in terms of a power curve with k and m values as described by Jeager (1971) or other nonlinear relationships such as the Hoek-Brown (Hoek et al, 2002) criterion. For sufficiently strong rock, the curvilinear fit is considered a more realistic representation of the shear strength/normal stress relationship, particularly at relatively low normal stresses, which typify conditions in a majority of open pit mine slopes.

Based on the direct shear testing results, shear strengths were typified using the Mohr-Coulomb and power curve shear strength/normal stress relationships. The results are summarized in Table 4.

SRK	Sample	Line	ear Regres	sion	Power Re	gression	Discontinuity
Hole ID	Depth (m)	Φ* (°)	C (kPa)	Φ**(°)	k	m	Туре
C09-01	49.87	40.7	21.6	49.2	4.9745	0.6630	Natural Joint
C09-01	103.00	35.0	20.5	38.7	2.9505	0.7589	Natural Joint
C09-01	212.15	33.4	1.3	33.8	0.7014	0.9911	Natural Joint
C09-02	211.14	32.9	5.7	34.0	0.8961	0.9474	Natural Joint
C09-03	162.55	33.7	10.0	35.7	1.4628	0.8671	Natural Joint
C09-04	52.02	45.8	6.8	48.7	2.0405	0.8603	Natural Joint
C09-05	61.07	37.6	12.7	40.0	1.9037	0.8465	Natural Joint
C09-06	51.94	37.6	6.0	40.2	1.4533	0.8775	Natural Joint
C09-07	137.2	33.7	13.1	36.3	1.6814	0.8462	Natural Joint
C09-08	54.9	34.2	5.0	36.4	1.1906	0.8935	Natural Joint

Table 4: Summary of Residual Shear Strengths

* Best linear fit friction angle given the apparent cohesion calculated and noted

** Best linear fit friction angle assuming a zero apparent cohesion.

5.3 Triaxial Compressive Strength Testing

For this project, triaxial compressive strength (TCS) tests were conducted on six samples using ASTM Method D7012. The samples were tested at confining pressures selected to range from zero to approximately one-half of the UCS values as suggested by Hoek and Brown (1997).

TCS testing was conducted on six samples of core, yielding compressive strengths (σ_1) ranging between 213.8 and 294.1 MPa with a mean value of 262.1 MPa under confining pressures (σ_3) ranging between 6.9 and 20.7 MPa, with a mean of 13.8 MPa. The results of the TCS testing are summarized in Table 5.

SRK Hole ID	Sample Depth (m)	σ ₃ (MPa)	σ ₁ (MPa)	Unit Wt. (kN/m3)	
C09-01	59.88	6.9	222.1	26.4	
C09-01	153.30	17.2	276.8	26.2	
C09-02	150.10	10.3	213.8	26.4	
C09-02	209.69	13.8	294.1	26.4	
C09-03	250.17	13.8	288.2	26.5	
C09-04	123.25	20.7	277.5	26.3	

Table 5: Triaxial Compressive Strength Testing

5.4 Direct Tensile Strength Testing

Brazilian disk tension testing according to ASTM method D3967 was conducted on five samples indicating intact tensile strengths ranging from 7.2 to 10.8 MPa, with a mean value of 8.8 MPa. Results of the direct tensile strength testing are summarized in Table 6.

SRK Hole ID	Sample Depth (m)	Tensile Strength (Mpa)
C09-02	150.10	10.8
C09-02	271.90	9.4
C09-03	161.03	7.6
C09-05	150.11	7.2
C09-06	37.20	8.9

Table 6: Direct Tensile Strength Testing

5.5 Unit Weight Measurements

Prior to actual testing of UCS and TCS core sample, sample dimensions and weights were measured and used to calculate total unit weights for each sample. The combined data set included 36 unit weight measurements ranging from 24.9 to 26.7 kN/m³ with a mean value of 26.2 kN/m³. Unit weights are summarized along with the various strength measurements in the preceding Tables 3 and 5.

6 Rock Mass Assessment

Rock mass models were developed for each of the deposit areas at Minto to provide a framework for interramp/overall slope stability modeling by mathematically simulating site geotechnical conditions. The term "rock mass" refers to the entire body of rock, including discontinuities; in contrast, "intact rock" or "substance strength" refers to the rock between discontinuities in a rock mass. Primary inputs to the rock mass models included intact rock strength, degree of fracturing and strength of fractures.

6.1 Data Analysis

Evaluation of the field and laboratory data collection programs indicates a high degree of variability in rock strength and geologic structure at Minto. This natural variation in rock strength and structure suggests that a probability-based method of analysis is most appropriate, yielding less conservative slope angles than would the selection of a unique, potentially over-conservative value as is typical in strictly deterministic analyses.

Probabilistic methods differ from deterministic methods in that each model parameter is characterized by a statistical distribution of values having a central tendency and some variation around that central tendency, rather than by a single, unique value. Further details of the probabilistic method used in this evaluation follow. Details of the data analysis methods are discussed in subsequent sections.

6.1.1 Intact Rock Strength

Intact rock strengths were assessed in the field qualitatively using ISRM (1978) methods and by conducting point load tests (PLT) as discussed in Section 4.3. Several samples of core were also selected for laboratory uniaxial compressive strength (UCS) and triaxial compressive strength testing as described in Sections 5.1 and 5.3, respectively. UCS and $Is_{(50)}$ values, as well as the field estimates of intact rock strength, are plotted with depth on the geotechnical logs presented in Appendix A.

Each laboratory UCS test was paired with an adjacent field PLT $I_{s_{(50)}}$ value for estimation of a correlation factor for conversion of the field PLT tests to laboratory UCS values. Overall, a relatively linear relationship was apparent between the two variables, yielding a correlation factor of 23 (UCS:Is₍₅₀₎). The correlation between the laboratory UCS tests and the PLTs is demonstrated on Figure 3.

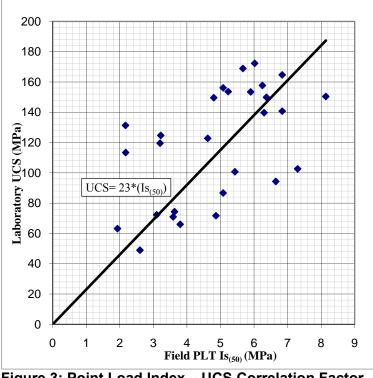
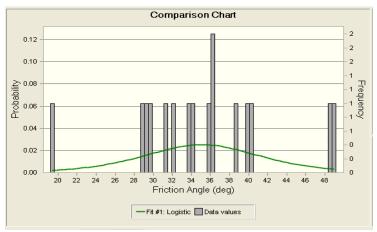


Figure 3: Point Load Index – UCS Correlation Factor

The conversion of the field PLTs to laboratory UCS values allowed nearly continuous profiles of rock strength for each corehole and provided a large population for defining UCS statistical distributions for the probabilistic analyses.

As demonstrated in the plots contained on Figures 4 through 7, the weathered domains have distinctively lower distributions of UCS than do the fresh units. The weathered domains have UCS strengths generally ranging up to about 120 MPa, with the mode (peak concentration) around 20 MPa, while the fresh domains typically have UCS values ranging up to about 240 MPa with the mode around 110 to 140 MPa.

TCS test results, as described in Section 5.3, were used for direct determination of the Hoek-Brown (Hoek, et al, 2002) material coefficient m_i . As described by Hoek (1983), the Hoek-Brown constant m_i is very approximately analogous to the angle of friction of the conventional Mohr-Coulomb failure criterion. Higher m_i values are characteristic of brittle igneous and metamorphic rocks producing relatively steeply inclined strength envelopes and high instantaneous friction angles at lower normal stress levels.


6.1.2 Discontinuity Frequency

The fracture (discontinuity) frequency or its inverse, fracture spacing, is a critical parameter influencing rock mass behavior. Fracture frequency is expressed as the number of fractures per unit length and fracture spacing is defined as the distance between fractures. Fracture frequency per meter was recorded during drilling for each run, thereby enabling calculation of mean fracture spacings for use in rock mass characterization and bench scale analyses, both of which are discussed in more detail in the following sections. For expedience, it was assumed that each measurement began and ended with a fracture, thereby resulting in a maximum possible spacing of about 1.5 meters, the length of the core barrel.

6.1.3 Discontinuity Shear Strength

Discontinuity shear strengths are a function of geologic history as well as rock mass weathering, alteration and/or infilling. Direct shear testing was conducted on a number of rock samples as previously discussed in Section 5.2 to provide information on the distribution of discontinuity shear strengths. Although results of direct shear testing of discontinuities on some of the samples tested demonstrated curvilinear shear strength/normal stress envelopes, most analytical stability models, including those used by SRK for backbreak analyses, utilize linear, Mohr-Coulomb parameters.

Tests results indicate similar shear strengths between the different domains and areas; consequently, discontinuity shear strengths were grouped together into one distribution. For samples tested from the recent 2009 geotechnical coreholes, calculated friction angles (assuming zero apparent cohesion as discussed in Section 5.2) ranged from 33° to 46° with apparent cohesion values ranging from 1 to 22 kPa. The mean friction angle was 36° with an apparent cohesion of 10 kPa. The distribution of friction angles obtained from testing the recent natural fractures as well as six saw cut direct shears from the previous Area 2 (SRK 2007) investigation is shown on Figure 4.

Figure 4: Distribution of measured discontinuity shear strengths

6.2 Rock Mass Classification

Rock mass characterization is a largely empirical process of classification based on information obtained primarily from field data and enhanced with further data analysis and laboratory testing. For typical slope stability applications, materials from ground surface to a depth of approximately 30% of the ultimate slope height below final pit bottom and for a distance approximately two times the ultimate pit height behind the slope crest are characterized and represented within the geotechnical model.

The basic geotechnical parameters recorded for each core run were applied to the Laubscher (1990) In-situ Rock Mass Rating (IRMR) system, thereby creating a profile of IRMR with depth for each of the eight geotechnical holes drilled for this investigation. The Laubscher IRMR system consists of three primary parameters; intact rock strength (IRS), fracture frequency per meter (FF/m) and joint conditions (Jc). The individual parameters as well as the IRMR value out of a total of 100 for each run are displayed on the geotechnical core logs presented in Appendix A. A large scale joint expression of slight undulation and dry conditions were assumed.

The in-situ RMR is typically adjusted to account for the expected mining environment, namely the influence of weathering, structural orientations, induced or changes to stresses and blasting.

The adjustments to the in-situ RMR are introduced in recognition of the type of excavation proposed and the time dependant behavior of the rock mass. These adjustments were not incorporated for the pit slope analyses as they are accounted for in other ways. They were, however, considered for the Area 118 underground, as discussed in Section 9.

Based upon the IRMR as well as upon its individual components, available site geology information and laboratory test results, drill cores were divided into geotechnical intervals or domains that are expected to behave uniformly when exposed to open pit excavation-induced stresses, and, in the case of Area 118, the underground excavation for each of the deposit areas. Given the relatively consistent nature of geologic materials at Minto, the materials were divided into two basic domains at Area 2, Area 118 and Ridgetop, i.e., weathered and fresh rock.

Due to the relatively shallow depth of the Minto North pit and the presence of multiple subhorizontal structures and weaker zones, there was a less significant distinction between the weathered and fresh rock materials and, consequentially, materials at Minto North were combined together into a single domain for modeling.

A summary of IRMR values per domain is presented in Table 7.

Deposit	Domain	Distribution	Sample No.	Mean	Std. Dev.	Min	Мах
Area 2	Weathered	Weibull	162	46.4	8.6	18	68
Area 2	Fresh	Min. Extreme	409	59.8	9.7	29	82
Ridgetop	Weathered	Normal	225	51.8	12.3	18	84
Ridgetop	Fresh	Logistic	99	51.0	10.1	18	76
North	-	Logistic	172	50.5	10.0	19	82
Area 118	Weathered	Logistic	59	50.8	9.2	21	72
Area 118	Fresh	Logistic	334	58.3	10.8	22	81

 Table 7: In-situ RMR Distributions per Domain

6.3 Geotechnical Domains

A typical geotechnical model is composed of individual regions (domains), each of which is comprised of materials exhibiting internally similar geomechanical properties. Pertinent geotechnical parameters are assigned to each domain, based on engineering properties that are determined during field data collection and laboratory testing programs.

Based on the results of data analysis and rock mass classification previously described as well as available site geology information, geotechnical domains were delineated for each area. Given the relatively consistent nature of geologic materials at Minto, the materials were divided into two basic domains at Area 2, Area 118 and Ridgetop, i.e., weathered and fresh rock. The weathered and fresh rock domains are very similar in terms of discontinuity orientations; however, they possess distinctly different rock mass properties.

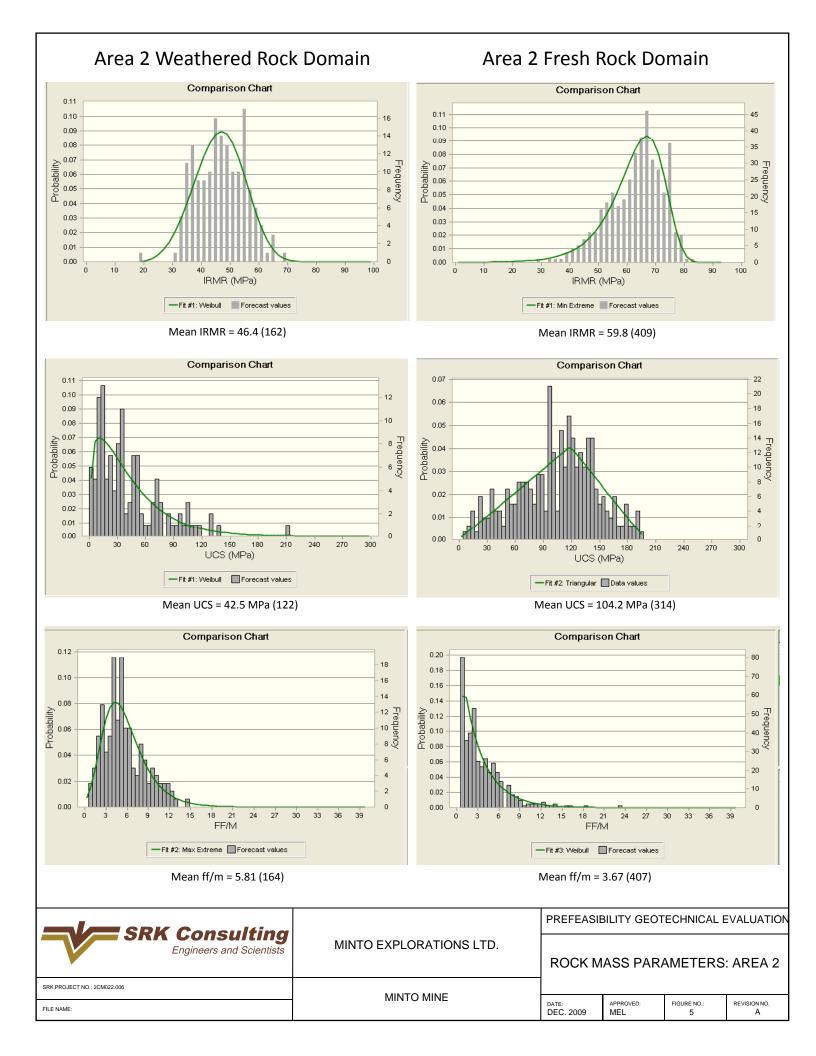
The weathered rock domain is typically characterized by relatively higher fracture frequencies, consistently lower intact rock strengths and zones of heavy alteration and oxidation as a result of moderate to heavy surface weathering and is typified by core that also typically shows consistently lower RQD and IRMR values. Consequentially, the weathered bedrock is of significantly lower geomechanical quality than is the fresh rock which underlies it.

In general, the fresh rock is consistently a much more competent rock mass than is the weathered bedrock, possessing relatively lower fracture frequencies and higher intact rock strengths. The fresh rock encountered is relatively massive and exhibits fewer signs of alteration and weathering when compared to the weathered rock and, consequently, possesses higher overall RQD and IRMR values.

The fresh rock domains do contain intermittent zones of weaker material which typically correspond to intervals of increased fracturing, weathering and/or alteration, including minor fault zones and surface weathering. However, such intermittent weaker rock zones represent a relatively small portion of the overall fresh rock domain and are not anticipated to adversely impact the performance of the fresh rock mass.

Several zones of foliated granodiorite were encountered in the fresh rock, but those zones exhibited similar intact rock strengths and rock mass properties as did samples of non-foliated granodiorite collected from the same coreholes. The foliated zones are judged to be discontinuous and are not expected to impact overall pit slope stability differently than will the non-foliated zones. Therefore, the foliated and non-foliated rock was grouped together into their respective weathered or fresh domains.

6.3.1 Area 2


A relatively deep soil overburden deposit exists under the northeast portion of the proposed Area 2 pit, consisting primarily of transported silt and fine sand with occasional lenses of clay and coarse sand to gravel. The soil is high in organic content and is known to contain permafrost. It appears that the soil has filled a relatively deep erosional feature on the order of 60 to 90m deep with an invert located between Area 2 and the Main Pit to the north. Previous geotechnical work done by SRK and others have indicated that the material contains permafrost down to near the bedrock contact at its deepest portions and is most likely frozen down to the bedrock contact in shallower portions. Ubiquitously, the upper 1m is "active", i.e., seasonally freezing and thawing.

Based on available information from resource and geotechnical drilling, Area 2 is covered with overburden ranging from about 5 to 15m in depth in the southwest portion, with up 20 to 45m along much of the north and east walls, and reaching a maximum depth of 70m at the far north.

While it is possible that the frozen overburden may extend farther south, available information suggests that the overburden at the south and west ends of the proposed Area 2 pit consists of a thin veneer of organic soil underlain by approximately 5m to 15m of completely weathered, insitu bedrock (granular soil) or residuum.

Based on geotechnical drillhole data, the Area 2 weathered domain is adjudged to extend to depths of approximately 50 to 100m below the current ground surface.

Distributions of UCS, fracture frequency and IRMR for the Area 2 weathered and fresh rock domains are presented on Figure 5. Cross sections showing the geotechnical domains of the Area 2 west and east walls are presented in Figures 6 and 7 respectively.

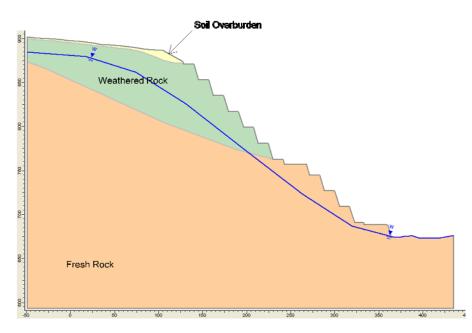
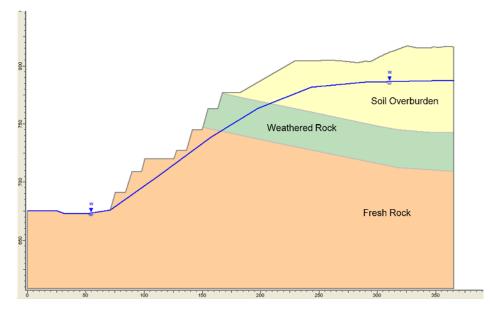
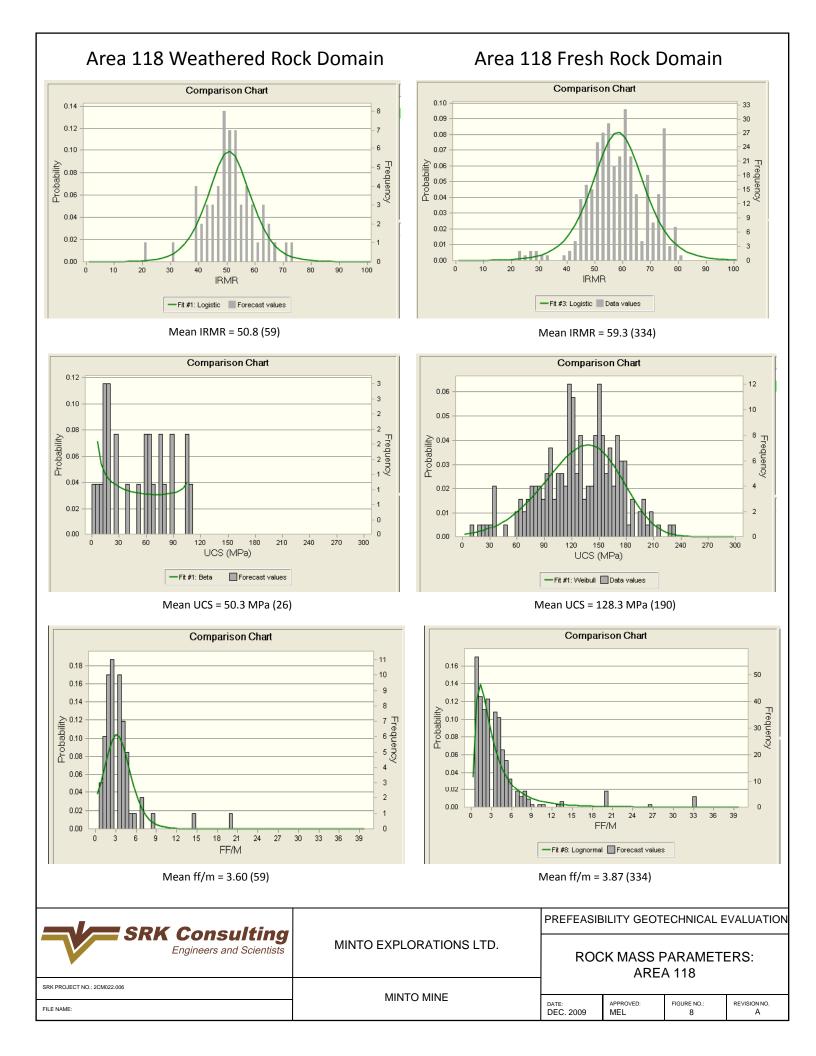
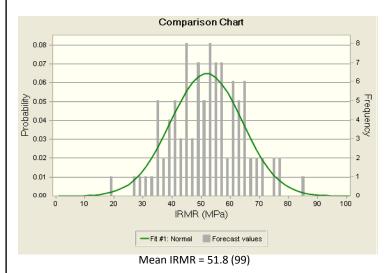



Figure 6: Critical section through Area 2 geotechnical model: west wall



6.3.2 Area 118


The majority of the proposed Area 118 open pit footprint is covered with up to approximately 5m of soil overburden except the southwest portion where the overburden locally deepens to approximately 16m. The depth of bedrock weathering at Area 118 is generally to about 30 to 60m below ground surface.

Given the small size of the proposed Area 118 pit as well as its close proximity and geotechnical similarities to Area 2, additional interramp slope stability modeling was not deemed necessary for Area 118 at the current, Pre-feasibility level. Consequentially, a detailed geotechnical model cross section was not created for Area 118.

Distributions of UCS, fracture frequency and IRMR for the Area 118 weathered and fresh rock domains are presented on Figure 8.

Ridgetop Weathered Rock Domain

Comparison Chart

0.07

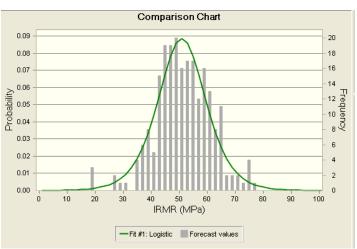
0.06

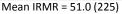
0.05

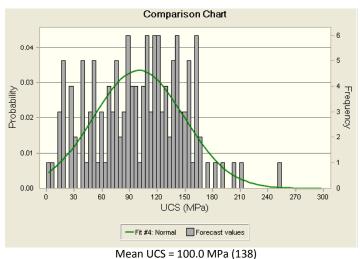
Atopability 0.03

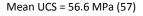
0.02

0.01


0.00


0


30


60

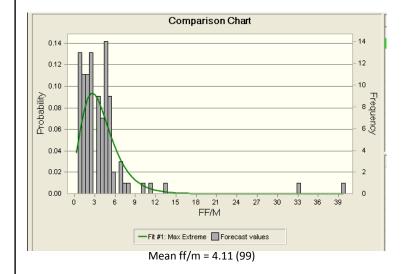
90

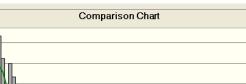
150

UCS (MPa)

180

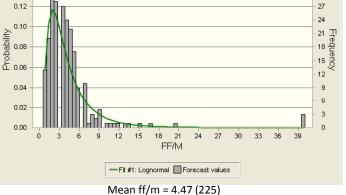
Forecast values


210


240

270

120


— Fit #2: Beta

33

30

SRK Consulting		PREFEASIBILITY GEOTECHNICAL EVALUATION				
Engineers and Scientists	MINTO EXPLORATIONS LTD.	ROCK MASS PARAMETERS: RIDGETOP				
SRK PROJECT NO.: 2CM022.006						
FILE NAME:	MINTO MINE	DATE: DEC. 2009	APPROVED: MEL	FIGURE NO.: 9	REVISION NO. A	

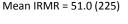
4

3

3

1

1


0

0

0.14

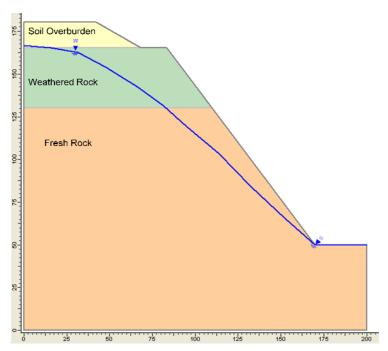
300

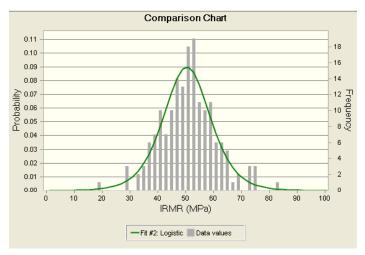
Frequency

Ridgetop Fresh Rock Domain

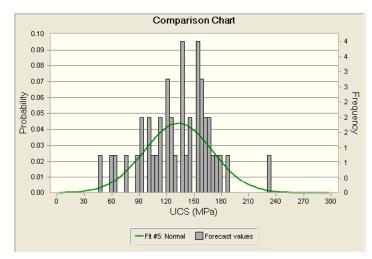
6.3.3 Ridgetop

The western portion of the proposed Ridgetop pits are anticipated to contain 1 to 5m of soil overburden deepening to the east to generally about 5 to 15m at the eastern edge, with a maximum depth of 21m at the far northeast portion of Ridgetop North and at the far east portion of Ridgetop South. The bedrock at Ridgetop is generally weathered to a depth of approximately 45 to 70m below ground surface. Distributions of UCS, fracture frequency and IRMR for the weathered and fresh rock domains are presented on Figure 9. A generalized cross section showing the geotechnical domains at Ridgetop is presented in Figure 10.

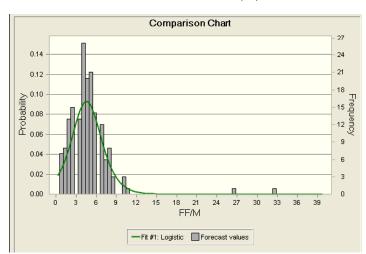



Figure 10: Critical section through generalized Ridgetop geotechnical model

6.3.4 Minto North


Based on geotechnical drillhole C09-07, bedrock weathering is very shallow at Minto North and fairly competent fresh rock lies beneath the soil overburden. Geotechnical drillhole C09-08 also does not indicate extensive weathering at the bedrock surface but did encounter a relatively thick fault zone beneath the overburden.

Due to the relatively shallow depth of the Minto North pit and the presence of multiple structures, there is a less significant distinction, if any, between the weathered and fresh rock materials;, consequentially, materials at Minto North were combined together into a single domain for modeling. As such, a detailed cross section through the Minto North geotechnical model is not presented. A distribution of UCS, fracture frequency and IRMR for the Minto North domain is presented on Figure 11.


Minto North Domain

Mean IRMR = 50.6 (172)

Mean UCS = 132.8 MPa (42)

Mean ff/m = 4.84 (172)

SRK Consulting		PREFEASIBILITY GEOTECHNICAL EVALUATION			
Engineers and Scientists	MINTO EXPLORATIONS LTD.	ROCK MASS PARAMETERS: MINTO NORTH		ERS:	
SRK PROJECT NO.: 2CM022.006	MINTO MINE				
FILE NAME:	MINTO MINE	DATE: DEC. 2009	APPROVED: MEL	FIGURE NO.: 11	REVISION NO. A

6.4 Rock Mass Shear Strength

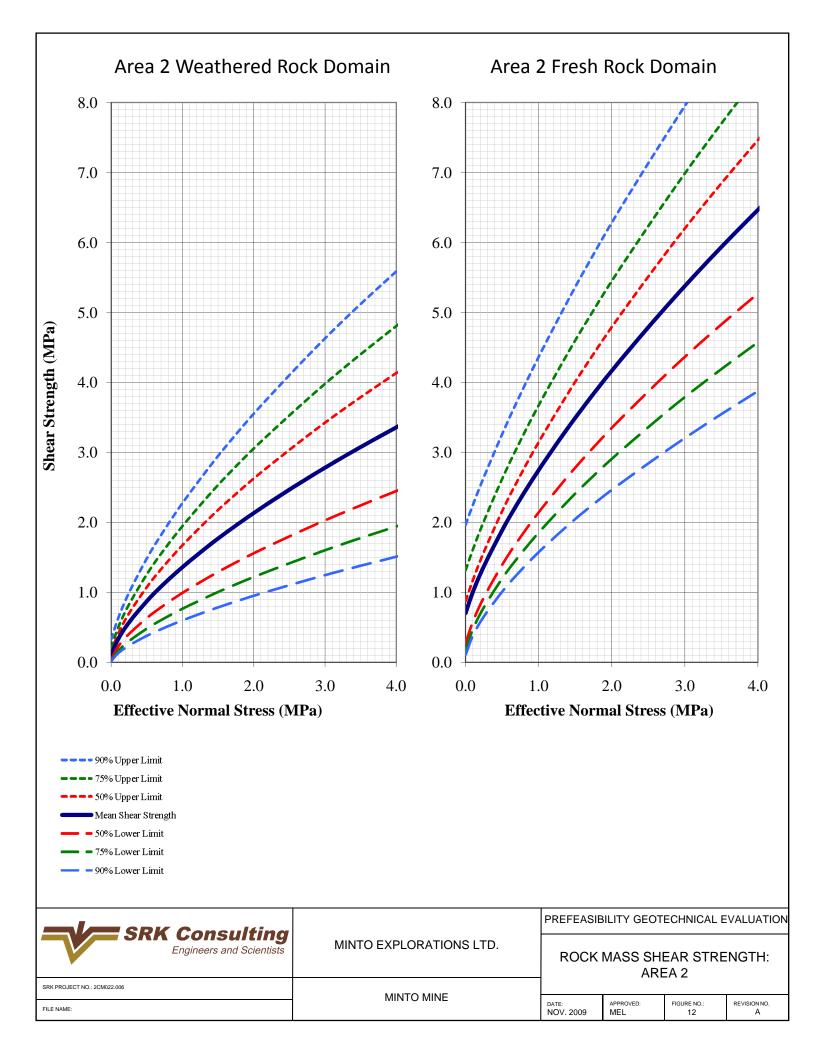
The shear strength/normal stress relationship describes the ultimate shear strength available at a given point within a slope as a function of the effective normal stress acting on that point. Rock mass shear strength/normal stress relationships were developed for weathered and fresh rock domains at each area using the Generalized Hoek-Brown criterion (Hoek et al, 2002).

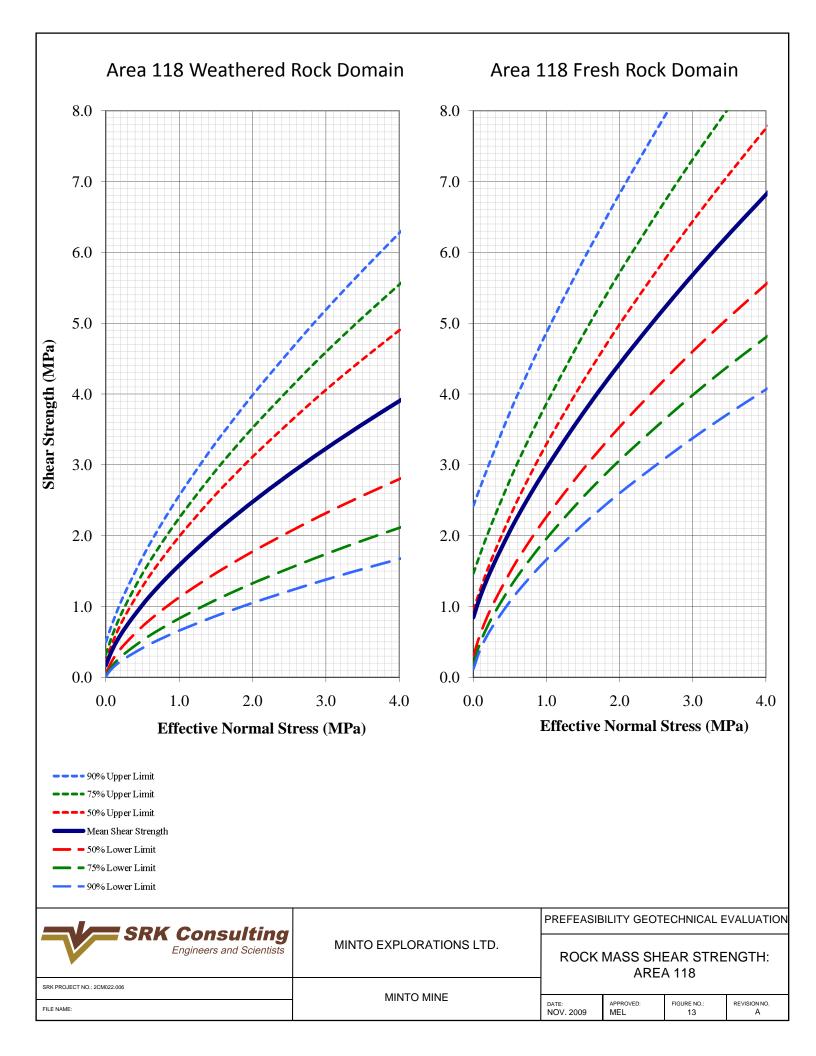
The Generalized Hoek-Brown criterion defines curvilinear shear strength envelopes that are considered effective representations of intact rock and heavily jointed rock mass behavior. Primary input parameters for the Generalized Hoek-Brown jointed rock mass criterion include the Geological Strength Index (GSI), a material constant (m_i) and a disturbance factor (D), as defined by Hoek et al, (2002). Probability density functions (PDF) were selected to represent stochastic (statistical) distributions of each of the primary parameters for each domain. The distributions selected were based upon the results of field and laboratory testing as well as upon SRK's experience.

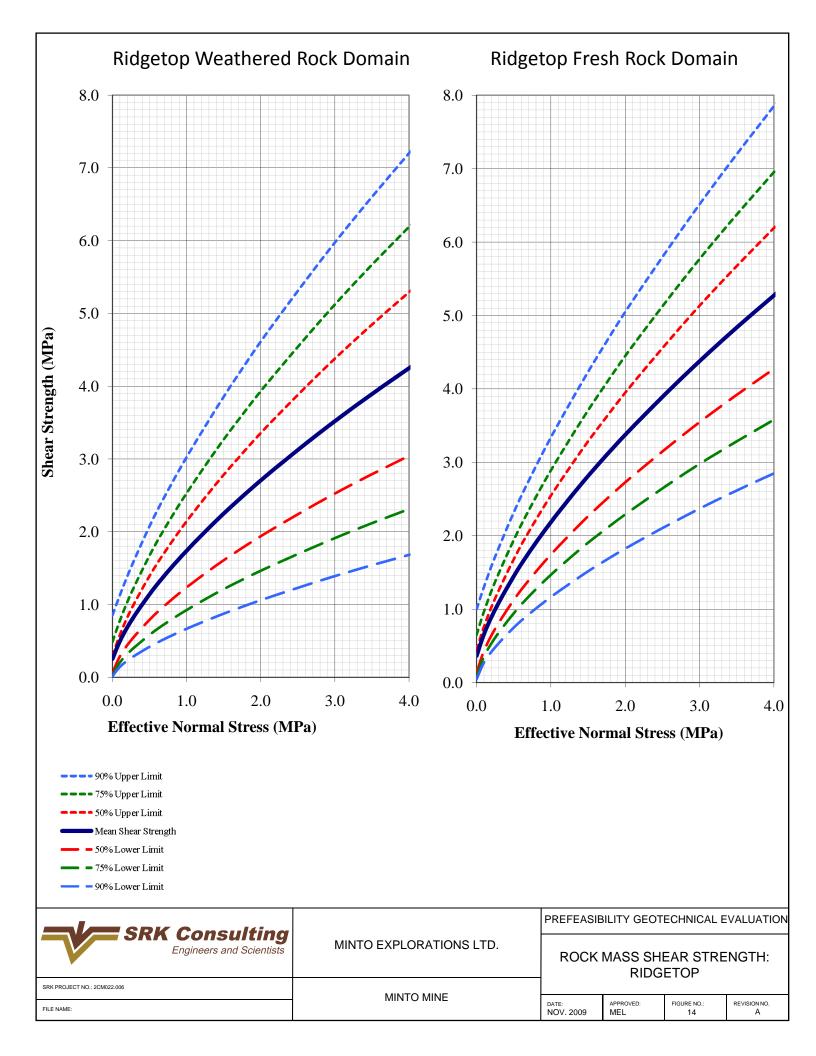
After the PDFs were selected to represent the three primary Generalized Hoek-Brown parameters (m_i , GSI and D), Crystal Ball 7.3.2 (Crystal Ball), commercial software available from Oracle, was utilized to perform a large number of stochastic simulations, sampling each of the three parameter distributions during each simulation. From each set of primary parameters sampled, respective Hoek-Brown secondary parameters (m_b , s and a) were calculated producing PDFs for each of the secondary parameters.

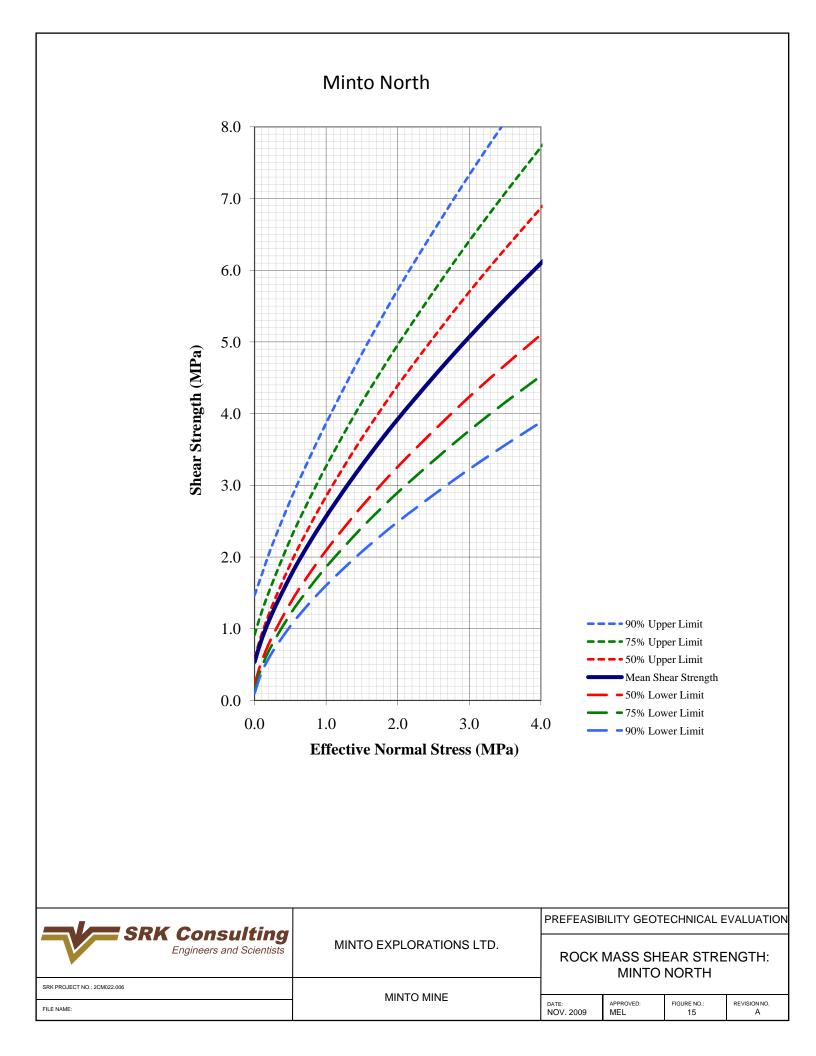
PDFs representing the UCS for each domain were also defined using a mathematical, "best-fit" technique available in Crystal Ball. The distribution types and defining parameters for the Hoek-Brown secondary parameters and for UCS selected for the analyses are summarized in Table 8.

Deposit	Domain	Parameter	Distribution	Mean	Std. Dev.	Min	Max
Area 2	Weathered	Hoek-Brown a parameter	Gamma	0.5087	0.0102	0.5007	0.524
Area 2	Weathered	Hoek-Brown m parameter	Lognormal	1.11	0.64	0.135	3.03
Area 2	Weathered	Hoek-Brown s parameter	Gamma	5.85E-04	1.38E-03	0.00E+00	4.73E-03
Area 2	Weathered	UCS (intact) MPa	Beta	42.51	35.54	0.00	878.22
Area 2	Fresh	Hoek-Brown a parameter	Gamma	0.5036	0.0101	0.5001	0.5108
Area 2	Fresh	Hoek-Brown m parameter	Lognormal	2.69	1.84	0.00	8.21
Area 2	Fresh	Hoek-Brown s parameter	Lognormal	5.86E-03	1.73E-02	0.00E+00	5.78E-02
Area 2	Fresh	UCS (intact) MPa	Triangular	105.68	42.19	0.00	199.77
North	-	Hoek-Brown a parameter	Gamma	0.5072	0.01015	0.5000	0.5228
North	-	Hoek-Brown m parameter	Lognormal	1.41	1.08	0.00	4.65
North	-	Hoek-Brown s parameter	Lognormal	1.65E-03	6.01E-03	0.00E+00	1.97E-02
North	-	UCS (intact) MPa	Normal	132.76	37.34	0.00	282.12
Ridgetop	Weathered	Hoek-Brown a parameter	Lognormal	0.5072	0.0058	0.5000	0.5246
Ridgetop	Weathered	Hoek-Brown m parameter	Lognormal	1.66	1.56	0.00	6.34
Ridgetop	Weathered	Hoek-Brown s parameter	Lognormal	3.37E-03	2.16E-02	0.00E+00	6.82E-02
Ridgetop	Weathered	UCS (intact) MPa	Beta	56.64	37.33	0.00	151.59
Ridgetop	Fresh	Hoek-Brown a parameter	Gamma	0.5068	0.0102	0.5000	0.5209
Ridgetop	Fresh	Hoek-Brown m parameter	Lognormal	1.45	1.1	0.00	4.75
Ridgetop	Fresh	Hoek-Brown s parameter	Lognormal	1.73E-03	6.14E-03	0.00E+00	2.02E-02
Ridgetop	Fresh	UCS (intact) MPa	Normal	100.01	48.94	0.00	246.83


 Table 8: Secondary Hoek-Brown Parameters Stochastic Input


From the repeated, randomized samplings of the secondary Hoek-Brown parameters and UCS, distributions of the shear strength/normal stress relationships were calculated. Graphical representations of the range of shear strength/normal stress envelopes used by the model for each domain are presented on Figures 12 through 15, respectively. In Figures 12 and 15, the 50%, 75% and 90% Upper and Lower Limits represent the ranges within which the shear strength lies, with 50%, 75% and 90% reliability, respectively.


6.5 Groundwater


Groundwater (porewater) pressure is an important component of slope stability. Porewater pressures act in direct opposition (as buoyant forces) to stabilizing forces, and as such, must be considered for the results of stability modeling to be realistic. A relatively free-draining slope will typically allow drawdown of the groundwater surface sufficiently deep within the slope so that porewater pressures are of minimal impact to slope stability. Since the rock mass comprising open pit benches has usually been at least moderately disrupted by production blasting, such rock masses are usually free-draining and, in recognition, porewater pressures are seldom considered in bench scale stability analyses. However, deeper within rock masses that have been intensively weathered, altered and/or sheared, clay-filled discontinuities and/or faults are common, compartmentalizing groundwater and resulting in a greatly reduced rock mass permeability. A lower permeability rock mass frequently inhibits free drainage, leading to a much steeper groundwater drawdown surface closer to the pit face. As a result, significant porewater pressures may be present on potential slip surfaces, thereby reducing effective normal stresses which, in turn, reduce resisting forces within the slope, and, consequentially, adversely impact the stability of the slope.

No recent groundwater data is available in the immediate area of the subject deposits. As a result of the lack of available groundwater information and the very difficult nature of groundwater prediction, SRK approximated a relatively high groundwater drawdown surface for use in slope stability modeling. The purpose of this approach is to determine the sensitivity of groundwater levels on the stability of pit slopes in order to provide guidance regarding the extent of groundwater drawdown which may be necessary for global pit slope stability.

7 Interramp/Overall Slope Stability Modeling

Slope design involves analysis of the three major components of a pit slope, i.e., bench configuration, interramp angle and overall slope angle, all as defined on Figure 16. The bench configuration, which is controlled by the bench face angle, bench height, and berm width, defines the interramp angle. The overall slope angle consists of interramp sections separated by wide step-outs for haulage roads or mine infrastructure. The overall slope angle at Minto will be approximately equal to the interramp angle except in areas where a wide step-out may be planned, e.g., at the contact between overburden and the underlying rock. In order to refine the recommendations of this study, a range of slope angles was analyzed.

As discussed in Section 3, the maximum anticipated seismic acceleration which any of the Minto pits may be subject to during their relatively short lives is sufficiently low, that no analyses were conducted for seismic conditions.

SRK evaluated both global and bench scale stability for the proposed Minto open pits, where global failure is defined as one that occurs relatively deep through the rock mass, is pseudo-rotational, and is of sufficient scale to impact interramp and/or overall slopes. Bench scale failures typically involve only one or two bench levels and can be described as a block type failure involving the translation of a block delineated by one or more structural features, such as discontinuities, within the rock mass. Techniques used by SRK for the global analyses are presented in the remainder of this section. Details regarding bench scale stability analyses are presented in Section 8.

The mathematical geotechnical model was input into the commercially available geotechnical modeling software package Slide 5.039 (Slide), developed by Rocscience, Inc. (2003). Slide is a two-dimensional, limit equilibrium slope stability analysis program that analyzes slope stability by various methods of slices. Spencer's method was selected for the limit equilibrium analyses of this evaluation due to its consideration of both force and moment equilibrium.

Vertical profiles considered most critical and representative of conditions were selected for analysis based on the ultimate pit configurations and the geotechnical model at each deposit location. For Area 2, profiles of the highest sections of the west and east walls were selected for the interramp and overall stability analyses. Given the relatively shallow depths and low interramp slope heights at Ridgetop and Minto North, generalized sections were constructed containing ultimate values for each component. This method represents a conservative or worst case scenario.

The slope angles were optimized in terms of risk, i.e. Probability of Failure (PoF), to ensure that the design slope angles were the optimum based on a quantitative evaluation of alternative designs. The PoF value incorporates the variations associated with the input parameters and the concept of risk into the design.

7.1 Results of Interramp/Overall Stability Analysis

Based on SRK's experience, interramp/overall slope angles that yield probabilities of failure of up to 30% for slopes with low failure consequences and approximately 5% for high failure consequences are appropriate for most open pit mines. Slopes of high failure consequence are generally those slopes that are critical to mine operations, such as those on which major haul roads are established, those providing ingress or egress points to the pit, or those underlying infrastructure such as processing facilities or structures.

o	= OVERALL ANGLE				
1					
В					
H		1、			
N N	f = CATCH BENCH WIDTH = H (TAN) -	TAN B)			
SRK Consulting Engineers and Scientists	MINTO EXPLORATIONS LTD.		LANATION	OF PIT S	EVALUATION
SRK PROJECT NO.: 2CM022.006	MINTO MINE	DATE:		FIGURE NO.:	REVISION NO.
FILE NAME:		NOV. 2009	MEL	16	A

In analyses, the interramp angle is typically incrementally increased until a suitable probability of failure equal to or greater than 30% is achieved. The probabilities of instability are plotted against their respective interramp slope angles for each model and the slope angle expected to yield a suitable probability of instability (5% or 30% depending on failure consequence) is determined.

Results of slope stability modeling are summarized in Table 9 and generally indicated probabilities of failure (PoF) ranging from near zero to approximately 5%. It should be noted that while a near zero percent probability of failure does demonstrate a very low likelihood of slope instability; it does not imply that slope instability is impossible; rather, a reported zero probability simply indicates that, for the potential failure surfaces characterized by one of 300 samples drawn from the strength distributions defined, no surfaces had a Factor of Safety (FoS) less than 1.0.

Deposit	Sector	Height (m)	Mean FoS	PoF (%)
Area 2	Northeast	130m	2.5	0.7
Area 2	Southwest	214m	2.1	2.9
Ridgetop	-	130m	2.3	2.4
Minto North	-	130m	2.3	0.0

Table 9: Results of Interramp/Overall Slope Stability Modeling

7.1.1 Area 2 and Area 118

Results of the interramp/overall slope stability analysis of the Area 2 east wall are shown graphically in Figure 17. The hatched area is the Critical Deterministic Surface which is defined as the slip surface with the lowest safety factor when all the input parameters are equal to their mean values. The remaining surfaces shown are all of the Global Minimum Surfaces that were located by the analyses when the properties were sampled randomly.

The critical slip surface for the east wall is a circular surface initiating at the base of the weathered bedrock. Surfaces initiating at the toe of the slope were also evaluated.

Although the critical failure surface shown in Figure 17 represent a relatively low interramp slope failure, its location directly above the main haul road and suggests that a failure through weathered bedrock materials could have a significant impact on mine operations. Consequentially, critical surfaces were evaluated both at the toe of the slope and at the interface between weathered and fresh bedrock for this model.

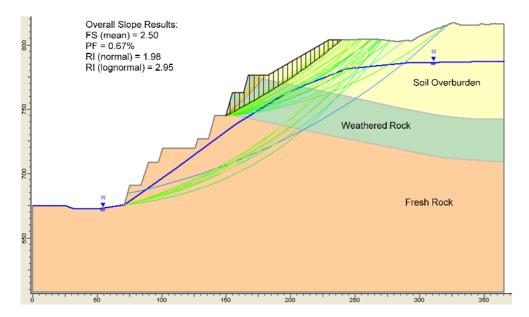


Figure 17: Interramp and overall stability modeling results: Area 2 east wall

Results of interramp/overall slope stability modeling of the Area 2 west wall are shown in Figure 18. Surfaces initiating at the base of the weathered domain and the toe of the overall slope were again considered due to the proximity of the weathered rock to the main haul road. The critical slip surface initiates at the base of the weathered rock.

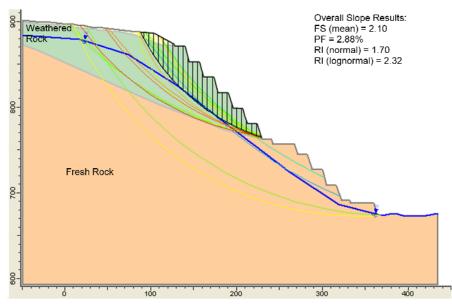


Figure 18: Interramp and overall stability modeling results: Area 2 west wall

Given the small size of the Area 118 pit as well as its close proximity and geotechnical similarities to Area 2, additional interramp slope stability modeling was not deemed necessary for Area 118 at the pre-feasibility level.

7.1.2 Ridgetop

Results of interramp stability modeling of the generalized Ridgetop section indicate a probability of failure of approximately 2.4% and critical slip surface initiating at toe of the slope (Figure 19). Surfaces initiating at the base of the weathered bedrock were also evaluated during the analysis.

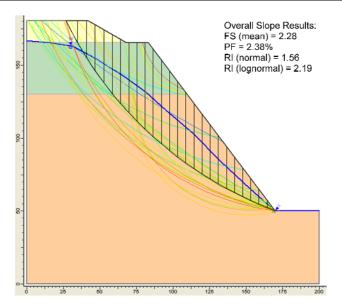


Figure 19: Interramp stability modeling results: Area 2 east wall

7.1.3 Minto North

An interramp slope angle of 52 degrees yields a probability of failure approaching zero percent. Results of the interramp/overall slope stability analysis of the Minto North section are shown graphically in Figure 20.

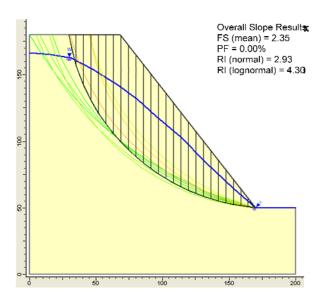


Figure 20: Interramp stability modeling results: Minto North

8 Geologic Discontinuity Analysis

Geologic discontinuity influenced failure mechanisms were analyzed at both the pit wall and bench scales. The term discontinuity refers to any significant mechanical break or fracture having negligible tensile strength in the rock. Discontinuities are formed by a wide range of geological processes and can collectively include most types of joints, faults, fissures, fractures, veins, bedding planes, foliation, shear zones, dikes and contacts.

8.1 Major Geologic Structures

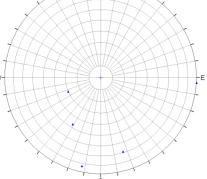
Major geologic structures are those features, such as faults, dikes, shear zones, and contacts that have dimensions on the same order of magnitude as the area being characterized. These structures are treated as individual elements for design purposes, as opposed to joints, which are handled statistically.

Several faults or shear zones have been identified in resource and geotechnical drilling at all of the subject sites. Most of these structures are not anticipated to significantly impact pit slope stability due to their apparent lack of persistence and associated limited degree of rock degradation. However, the potential for one or more major structures to adversely impact stability of the Area 2 west wall has been identified and should be investigated further as the project advances.

Typically, high angle structures do not adversely impact pit slopes on the overall scale and as such, were not specifically targeted for this pre-feasibility level evaluation. For a pre-feasibility level evaluation, geotechnical drilling is targeted to obtain data representative of overall rock mass conditions, and to a lesser extent, individual structures such as those previously mentioned.

8.1.1 Area 2 and Area 118

Both resource and geotechnical drilling in southwestern Area 2 suggest a major fault(s) potentially striking northwest, sub-parallel to the Area 2 pit west wall with a moderate to steep northeast dip, similar to faults suggested by resource geology in adjacent Area 118. In particular, exploration holes 06SWC082 and 06SWC106 encountered disrupted zones at down hole depths of approximately 279m and 243m, respectively. However, the same indications were not observed in adjacent holes, thereby suggesting a high dip angle for the structure.

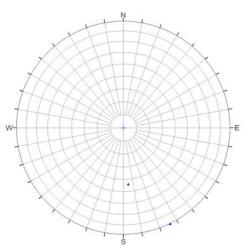

Geotechnical drillholes C09-03 and C07-07 also intersected major structures at shallower depths that would be consistent with the potential structure(s) and would coincide with the western Area 2 ultimate pit wall.

Major faults at similar orientations are also anticipated through the Area 118 underground mining areas and development.

During the recent geotechnical core logging program, three orientations were measured on different striations contained within two different fault zones in core from drillholes C09-02 and C09-03.

8.1.2 Ridgetop

During logging of geotechnical drillholes C09-04 and C09-05, orientation measurements were obtained on seven different zones believed to be related to faulting. Poles to the discontinuities bounding these zones are shown on Figure 21.



8.1.3 Minto North

Geotechnical and resource drilling at Minto North suggests multiple sub-horizontal structures above the ore zone as well as a sub-vertical fault striking approximately north-south through the mid portion of the pit. Given the relatively shallow pit depth at Minto North, the fault zones associated with these structures could potentially form a significant portion of the pit walls.

Two orientations were obtained on potential fault zones in geotechnical drillhole C09-08; poles to the two faults logged are shown on Figure 22.

Figure 22: Pole plot of oriented faults at Minto North

8.2 Rock Fabric

Minor discontinuities such as joints, foliation and bedding planes, represent an infinite population for practical purposes and, due to sampling limitations, are best modeled with stochastic (probabilistic) techniques. A discontinuity set denotes a grouping of discontinuities that are expected to have similar impact upon the proposed design. In open pit design, this criterion is usually modified so that all discontinuities in a similar range of orientations, i.e., dip direction and dip, are designated as a single discontinuity set.

8.2.1 Discontinuity Orientation

The depth of intercept and the angles of the discontinuities relative to the core axis and perpendicular to the core axis, (alpha and beta angles, respectively) were measured during logging to enable the calculation of the true dip direction and dip.

Accounting for the plunge and azimuth of each drillhole, discontinuity alpha and beta angles were converted to dip and dip direction using the commercially available software package, Dips developed by Rocscience, Inc. (2003). Discontinuity data from each of the geotechnical coreholes was contoured on an equal area percent plot for analysis of structural stability. In most cases, visual inspection of these plots revealed preferred discontinuity orientations. The contour plots are presented on Figure 23 through 25.

After the discontinuity measurements were converted into in situ orientations, the combined data set of discontinuities was divided into categories of which, given sufficient persistence, had the potential to create structurally controlled failures. Plane shear and wedge type failures were evaluated for pit sectors assuming an average orientation of the pit walls in each sector.

A summary of discontinuity sets delineated and incorporated in the analysis of bench stability is presented in Table 10.

Discontinuity Set Information			Dip		DDR		
Deposit	Sector	Set ID	No.	Mean	Stdev.	Mean	Stdev.
Ridgetop	-	J1	275	37.1	12.3	104.3	21.8
Ridgetop	-	J2	174	47.4	9.6	35.8	18.9
Area 2	South	J1	135	51.1	8.5	47.9	12.6
Area 2	South	J2	150	46.0	12.9	1.4	13.8
Area 2	West	J3	142	17.7	7.8	25.7	36.0
Area 2	West	J4	107	69.7	11.4	16.4	13.9
Area 2	West	J5	86	48.5	7.8	92.6	17.3
Area 2	North	J6	206	62.5	13.4	13.6	23.8
Area 2	North	J7	123	19.1	9.4	21.3	40.3
Area 2	North	J8	73	50.9	8.1	92.4	16.4

Table 10: Design Discontinuity Sets

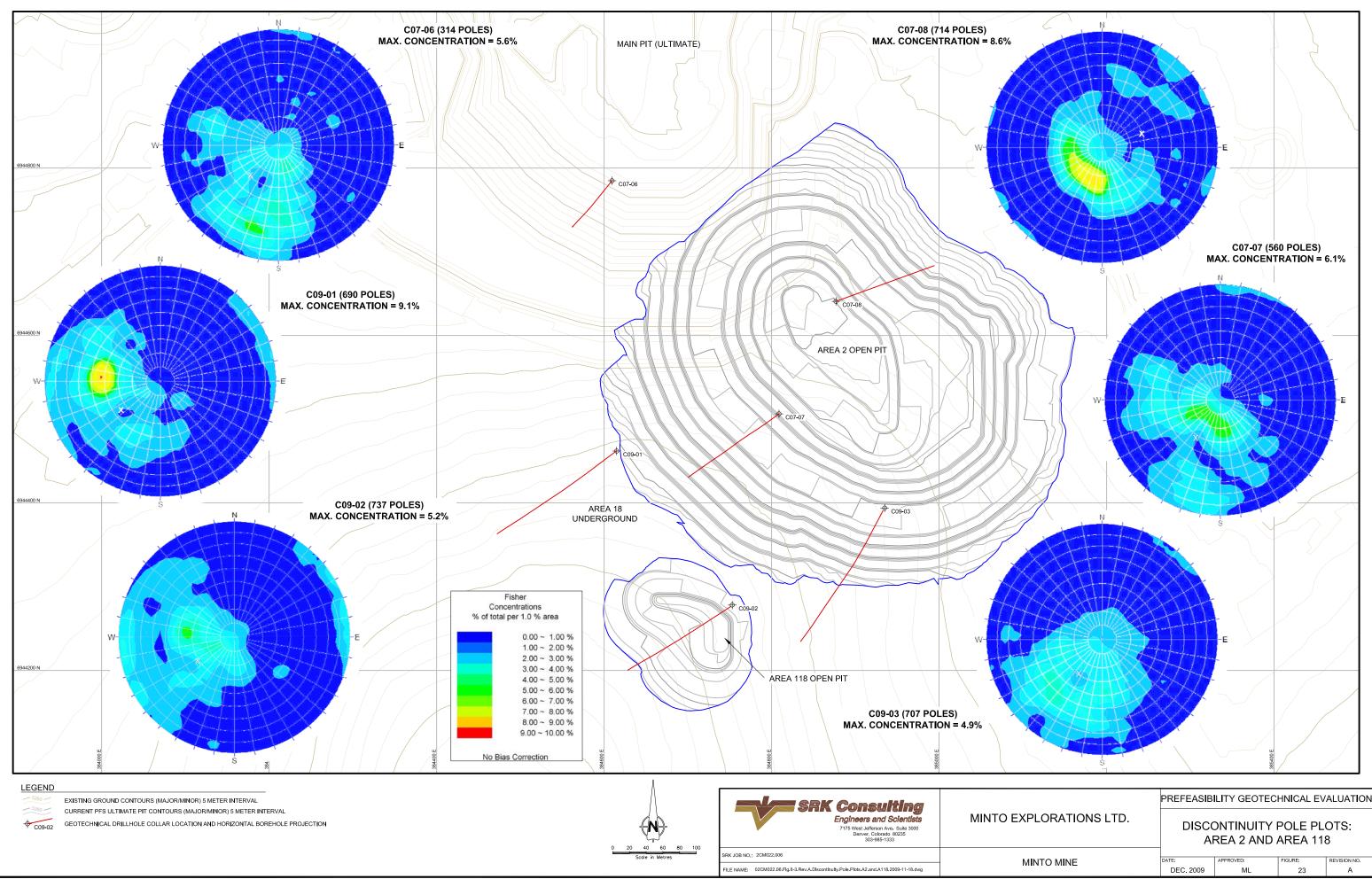
8.2.2 Design Sectors

Slope angles within an open pit mine are influenced not only by geologic structure, rock mass strength and porewater pressures, but also by pit wall orientation and other operational considerations. The ultimate pits were evaluated for such regions of similar structural characteristics and pit slope orientation called "design sectors" which are expected to exhibit similar response to pit development.

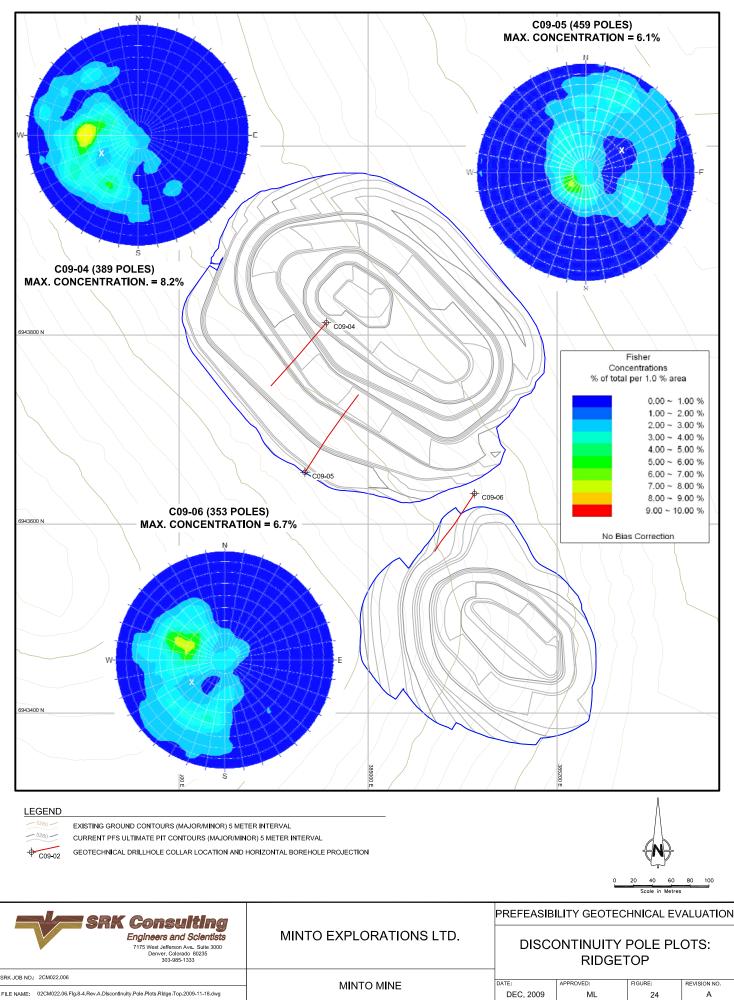
Both the weathered and fresh rock domains at Minto are characterized by relatively strong intact rock strengths and by very similar discontinuity orientations. As such, pit slope design sectors were delineated based primarily on variations in structural (discontinuity) systems relative to mean pit wall orientations. Design sectors for Area 2 and Ridgetop are shown on Figures 26 and 27, respectively.

Both the weathered and fresh rock domains at Minto are characterized by relatively strong intact rock strengths and by very similar discontinuity orientations. As such, pit slope design sectors were delineated based primarily on variations in structural (discontinuity) systems relative to mean pit wall orientations.

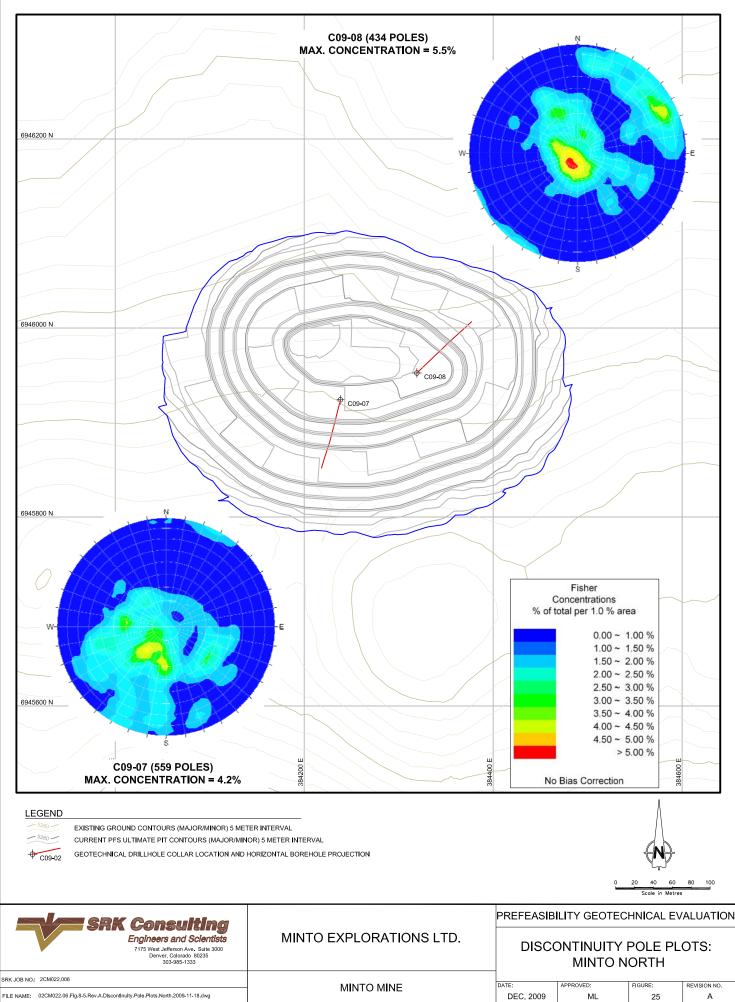
8.2.3 Backbreak Analysis

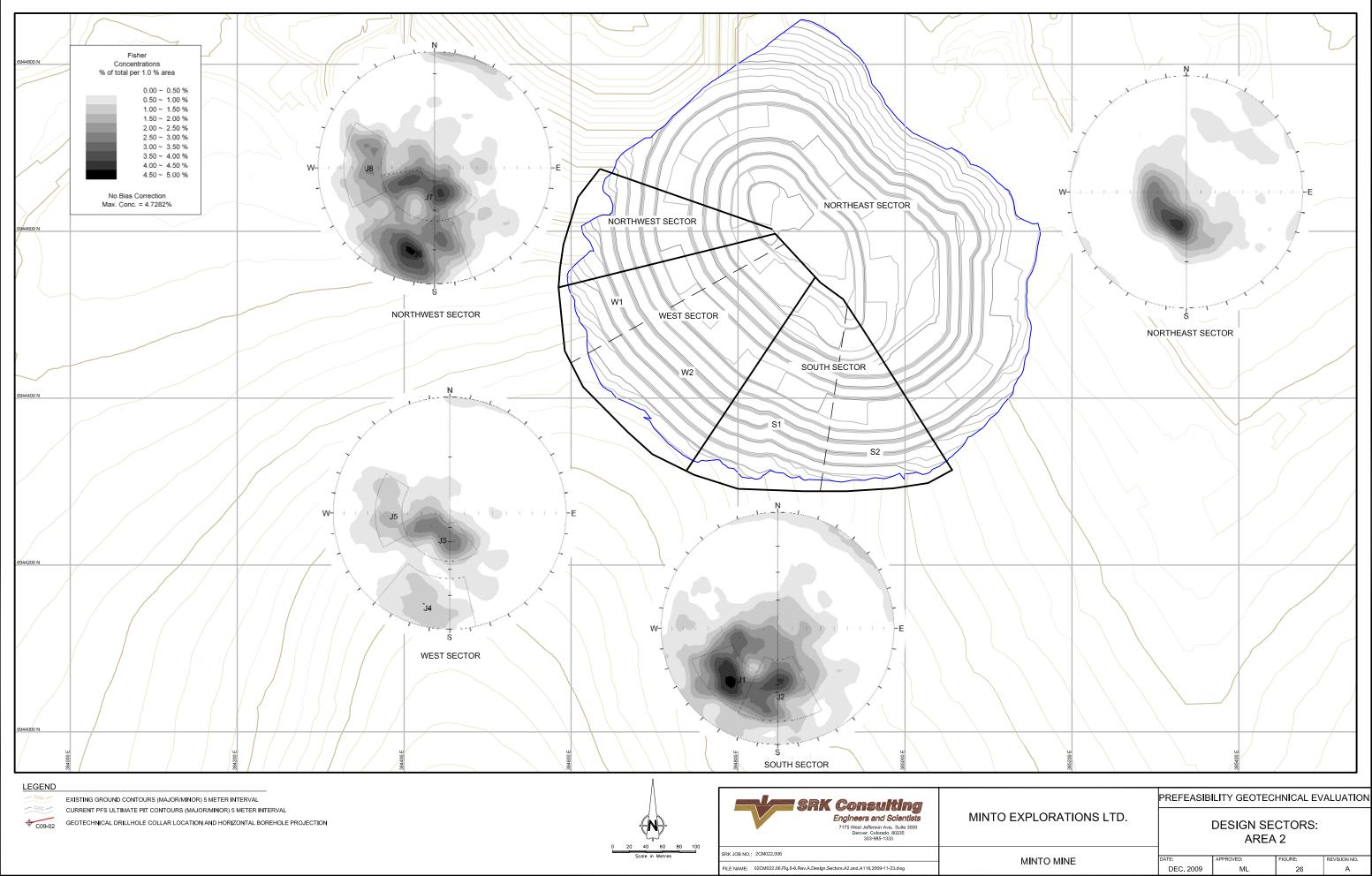

Preliminary kinematic analyses indicated that the south and west sectors of Area 2, Area 118 and Ridgetop had potential for bench scale instabilities; consequentially, additional, backbreak analyses were carried out for those sectors. SRK's backbreak analyses use stochastic simulations of discontinuity properties such as orientation, spacing, persistence, and shear strength to analyze the likelihood for plane shear and wedge type failures to occur in a given bench configuration and orientation. The analyses yield a distribution of achievable bench face angles and catch bench widths. The interramp/overall and bench stability analyses together yield an optimized pit slope angle, providing of sufficient rock fall containment. Pit sectors selected for backbreak analyses and their respective discontinuity sets are summarized in Table 11.

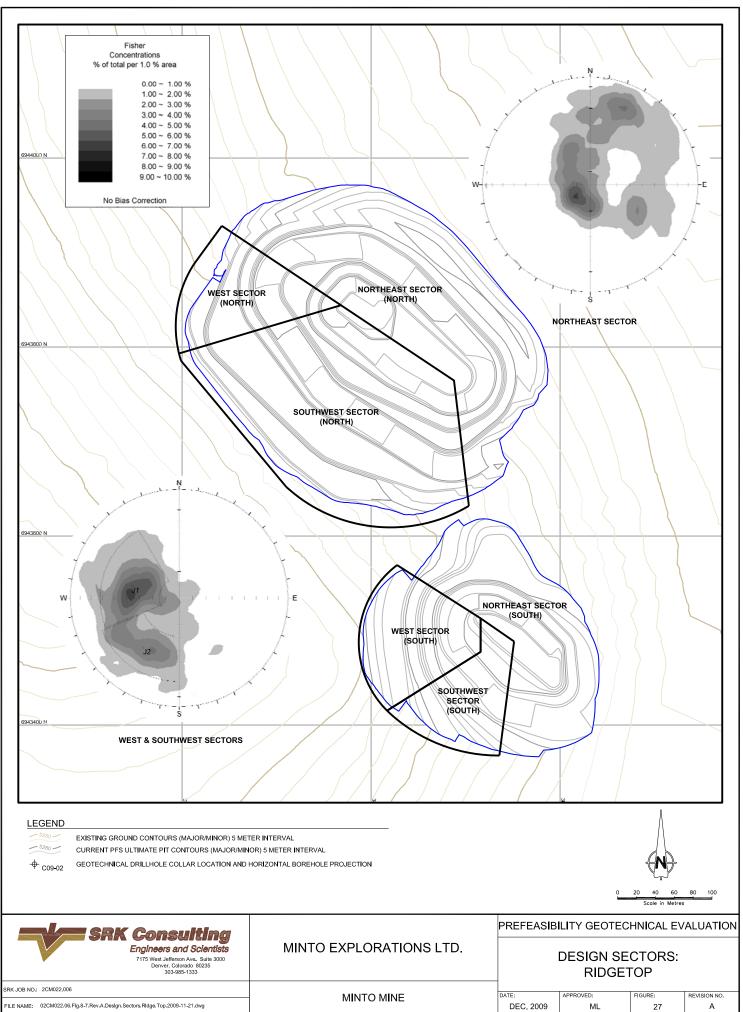
Results indicated that, based on the existing data, achievable mean bench face angles of approximately 64 degrees should be expected for the south and west sectors of Area 2 and Area 118. Due to the shallow discontinuity dip angles relative to the anticipated shear strength of the discontinuities at Ridgetop, steeper achievable bench face angles on the order of 73 degrees are expected for both Ridgetop pits.


While discontinuity analyses indicate that there is a slight potential for bench scale instability in the southwest section of the Minto North pit, the relatively low probability and the relatively small size of the pit, recommendations for Minto North are based on interramp slope angles alone.

Area	Sector	Sub-sector	Plane Shear	Wedge
Area 2	Northwest	-	J8	J6/J8
Area 2	West	W1	-	J4/J5
Area 2	West	W2	-	-
Area 2	South	S1	-	J1/J2
Area 2	South	S2	J2	J1/J2
Area 2	Northeast	-	-	-
Ridgetop	West	-	J1	J1/J2
Ridgetop	Southwest	-	J2	-
Ridgetop	Northeast	-	-	-


Table 11: Summary of backbreak analyses per sector


MINTO MINE	DATE:	APPROVED:	FIGURE:	REVISION NO.
	DEC. 2009	ML	23	А


DEC. 2009 ML А

DEC. 2009 ML А

INTO MINE	DATE:	APPROVED:	FIGURE:	REVISION NO.
	DEC. 2009	ML	26	А

9 Pit Slope Design Recommendations

For certain geologic environments, the combination of the average anticipated bench face angle and the preferred interramp angle, based on global stability considerations, alone, do not provide a sufficiently wide average catch bench width to effectively control rockfall and/or overbank slough accumulation. In such instances, recommended interramp angles are flattened sufficiently to provide adequately wide average catch benches.

Pit slope design recommendations for each area are summarized in Table 12.

Deposit Area	Sector(s)	Max. Slope Height (m)	Interramp Angle (°)	Bench Face Angle (°)	Bench Height (m)	Berm Width (m)	Stepout Width* (m)
Area 2	Soil Overburden	50	30	30	-	-	15
Area 2	Rock – Northwest and Northeast	170	53	73	18	8	-
Area 2	Rock – South and West	210	47	64	18	8	-
Area 118	Soil Overburden	18	30	30	-	-	15
Area 118	Rock - Northeast	35	53	73	18	8	-
Area 118	Rock - Southwest	36	47	64	18	8	-
Minto North	Soil Overburden	14	30	30	-	-	15
Minto North	Rock	125	52	72	18	8	-
Ridgetop - North	Soil Overburden	13	30	30	-	-	15
Ridgetop - North	Rock	132	53	73	18	8	-
Ridgetop - South	Soil Overburden	19	30	30	-	-	15
Ridgetop - South	Rock	78	53	73	18	8	-

 Table 12: Summary of Pit Slope Design Recommendations

Where soil overburden depths are anticipated to exceed 7m, a 15m offset or stepout should be incorporated at, or vertically near, the contact between the overburden and the bedrock.

The Area 2 pit sectors are depicted in Figure 26. A similar delineation of the Area 118 pit, i.e., one based on relative position, is recommended for the Area 118 pit.

*

10 Area 118 Underground Pillar Assessment

In addition to the small open pit at Area 118 previously discussed, underground mining is also planned for Area 118. Based on the geotechnical data previously described, pillar strengths were evaluated in order to recommend suitable pillar dimensions for room and pillar mining. Based on estimates of ore deposit depth and thickness variability, pillar heights of 5m, 10m and 15m were assessed and ore depths, and respective overburden stresses, of 150m, 200m and 250m were considered.

In-situ Rock Mass Rating (IRMR) and Rock Mass Strength (RMS) values were evaluated for the ore zone as well as materials above and below the ore zone in geotechnical drillholes C09-01 and C09-02. A design IRMR and RMS of 55 and 60 MPa, respectively, were conservatively estimated for pillar, roof and floor materials. Using Laubscher's (1990) method, the IRMR of 55 was reduced to a Mining Rock Mass Rating (MRMR) of 47 and the 60 MPa RMS to a Design Rock Mass Strength (DRMS) of 51 MPa by applying appropriate reductions for joint orientation, blasting and water.

Based on empirical data presented by Ouchi (2004), assuming a RMR value of 55, the maximum unsupported span distance was estimated to be 6m for all pillar height/deposit depth combinations considered, as shown in Figure 28.

Figure 28: Critical span curve (Ouchi 2004)

Subsequently, the tributary area method was used to estimate minimum pillar dimensions required to support $6m \times 6m$ or, if required, lesser, roof spans based on pillar height and overburden stresses. The resultant recommended room and pillar dimensions and extraction ratios are summarized in Table 13.

Depth (m)	Pillar Height (m)	Pillar Dimensions (m)	Room Dimensions (m)	Extraction Ratio
150	5	4x4	6x6	84%
150	10	5x5	6x6	79%
150	15	6x6	6x6	75%
200	5	4.5x4.5	6x6	82%
200	10	6x6	6x6	75%
200	15	7.5x7.5	6x6	69%
250	5	5x5	6x6	79%
250	10	7x7	6x6	71%
250	15	8x8	5x5	62%

Table 13:	Summary of Room	n and Pillar Size	Recommendations
-----------	-----------------	-------------------	-----------------

Based on geotechnical conditions previously described, ground support requirements for development such as the 5mx5m decline were estimated as follows:

Recommendations for ground support for development include:

- Pattern bolting with 2.4m long bolts at a 2m spacing within and between rings; and,
- Welded wire mesh in back and top of walls.

11 Assessment of Future Geotechnical Work

Additional geotechnical characterization and analyses should be conducted at the feasibility and design levels for each of the areas. Analyses and recommendations presented herein are based on ultimate pit designs as described in this report, and, as such, any significant changes to mine plans or pit architecture should be reviewed by SRK to verify that recommendations will remain valid for the new mine plans.

Geologic structure should be further evaluated to more accurately characterize the rock mass which, according to the current mine plans, will comprise the toe of the Area 2 western slope walls and which will better ascertain the likelihood of the existence and orientation of major structures that may adversely impact stability of that western wall. To do so, two additional geotechnical drillholes are recommended at Area 2 to investigate the potential for such major structures and to further characterize the variability in orientation of joint sets.

Additional geotechnical characterization and analysis will also be necessary at Minto North, to better define rock mass conditions and structural impacts on bench stability as the project advances. To accomplish this, one additional geotechnical corehole is recommended at Minto North drilled into the northwest wall for evaluation of rock mass conditions and structure.

The underground portion of Area 118 will also require additional geotechnical drilling for rock mass characterization at the feasibility and design levels. The Area 118 and Ridgetop open pits most likely will not require additional geotechnical drilling unless major changes are made to the current plans.

12 References

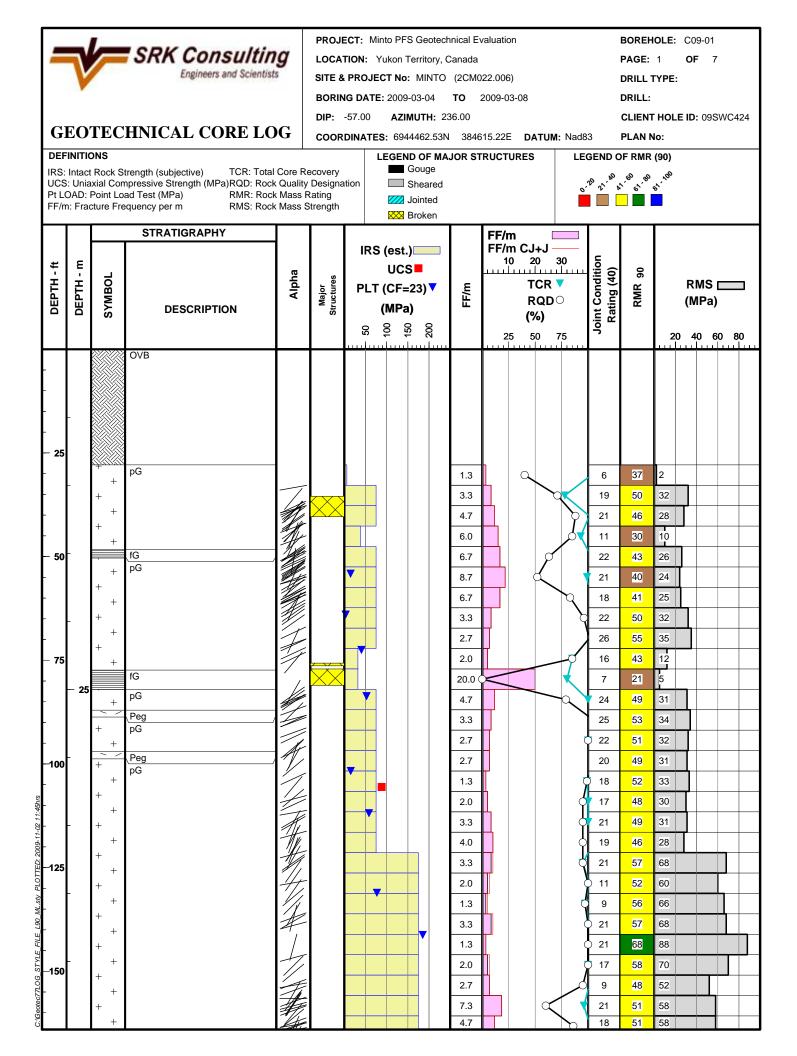
- Colpron, M. (compiler), 2006. Tectonic assemblage map of Yukon-Tanana and related terranes in Yukon and northern British Columbia (1:1,000,000 scale). Yukon Geologic Survey, Open File 2006.
- Hatch Ltd., The Minto Project Detailed Feasibility Study, July 2006.
- Hart, C., The Geologic Framework of the Yukon Territory, The Yukon Geological Survey, 2002.
- Hoek E., Brown E.T., *Practical Estimates of Rock Mass Strength*. International Journal of Rock Mechanics and Mining Sciences & Geomechanics Abstracts, 1997:34 (8):1165-1186.
- Hoek E., *Strength of jointed rock masses*. Twenty-third Rankine Lecture, Geotechnique, 1983:23 (3):187-223.
- Hoek E., Carranza-Torres CT, Corkum B., *Hoek-Brown Failure Criterion 2002 Edition*. In: Proceedings of the Fifth International North American Rock Mechanics Symposium, Toronto, Canada, Vol. 1, 2002. p. 267-273.
- Hoek E., Diederichs M.S. *Empirical Estimation of Rock Mass Modulus*, International Journal of Rock Mechanics and Mining Sciences, 2006:43(2):203-215.
- Institute for Research in Construction, National Research Council of Canada. <u>*The 2005 National Building Code of Canada.*</u>
- International Society for Rock Mechanics Commission on Testing, Suggested Method for Determining Point Load Strength, International Journal of Rock Mechanics and Mining Sciences, Vol. 22, No. 2, 1985. p. 52-60.
- International Society for Rock Mechanics Commission on Standardization of Laboratory and Field Tests, Suggested Methods for the Quantitative Descriptions of Discontinuities in Rock Masses, International Journal of Rock Mechanics, Mining Sciences and Geomechanics Abstracts, Vol. 15, 1978. P. 319-368.
- Jaeger, J.C. Friction of rocks and stability of rock slopes. Geotechnique, 1971: v.21, n.2, 97-103.
- Laubscher D.H., A geomechanics classification system for the rating of rock mass in mine design. Journal of South African Mining and Metallurgy, Vol. 90, No. 10, October 1990. pp 257-273.
- Ouchi A.M., Pakalnis R., Brady T.M. Update of Span Design Curve for Weak Rock Masses. In: Proceedings of AGM-CIM Edmonton, 2004.
- Rocscience, Inc., Toronto, Ontario, 2003 *Dips* 5.106, visualization and analysis software for orientation based geologic data.
- Rocscience, Inc., Toronto, Ontario, 2009 *Slide* 5.039, 2-dimensional limit equilibrium slope stability analysis software.
- SRK Consulting Inc., Pre-feasibility Pit Slope Evaluation for Area 2 Open Pit, Minto Mine, October 2007.

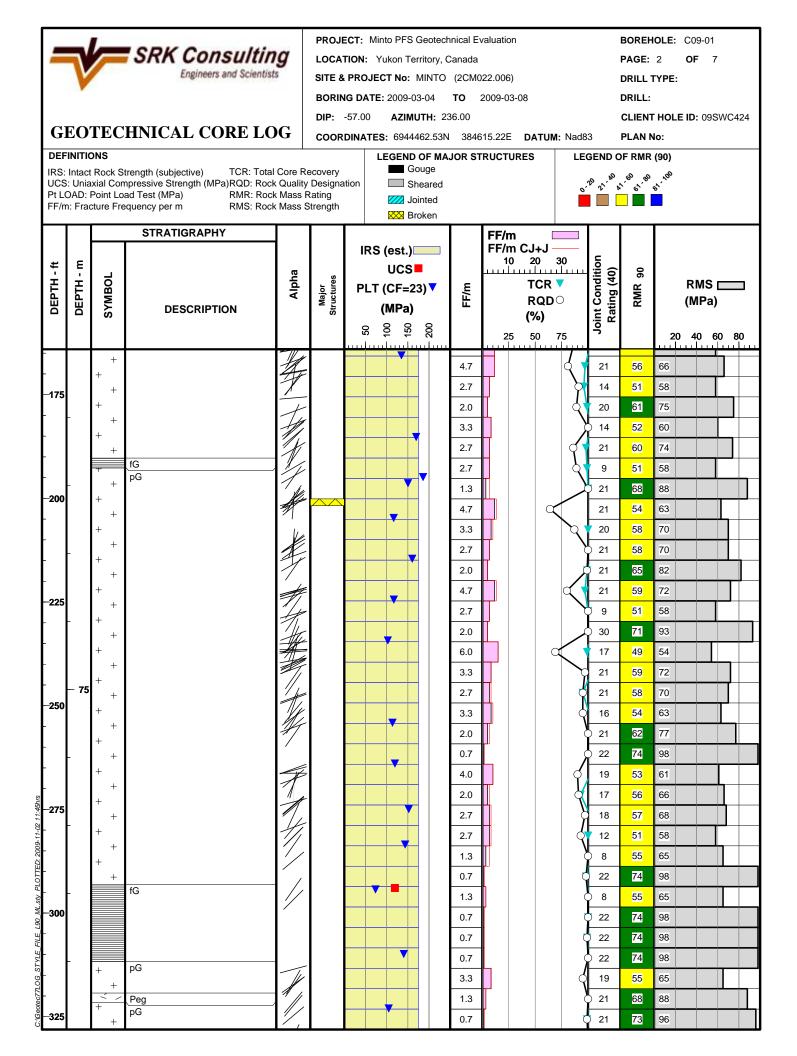
SRK Report Distribution Record

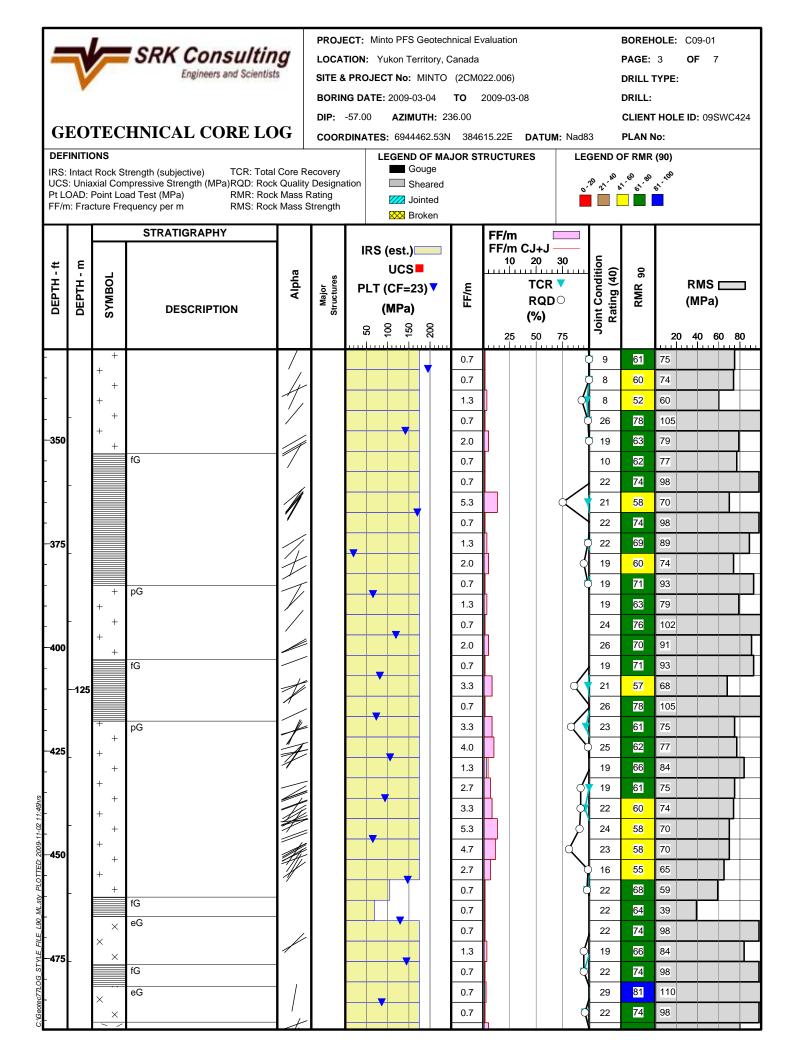
Complete this form and include it as the final page for each copy of the report produced.

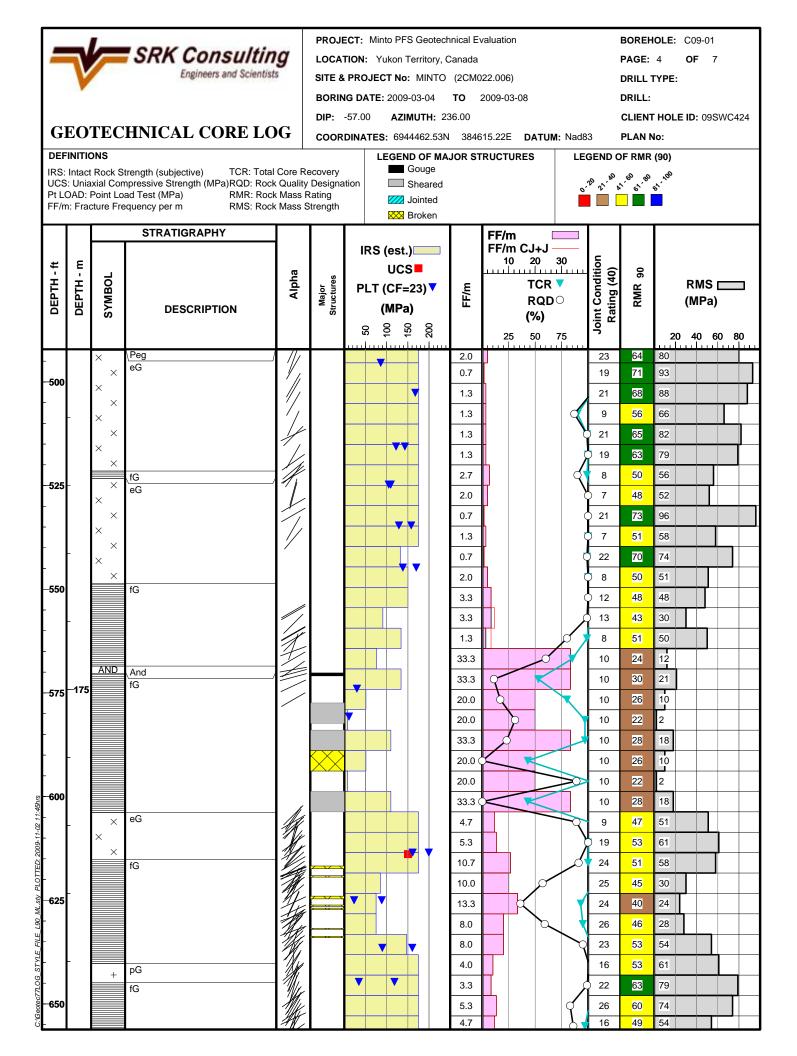
Report No.

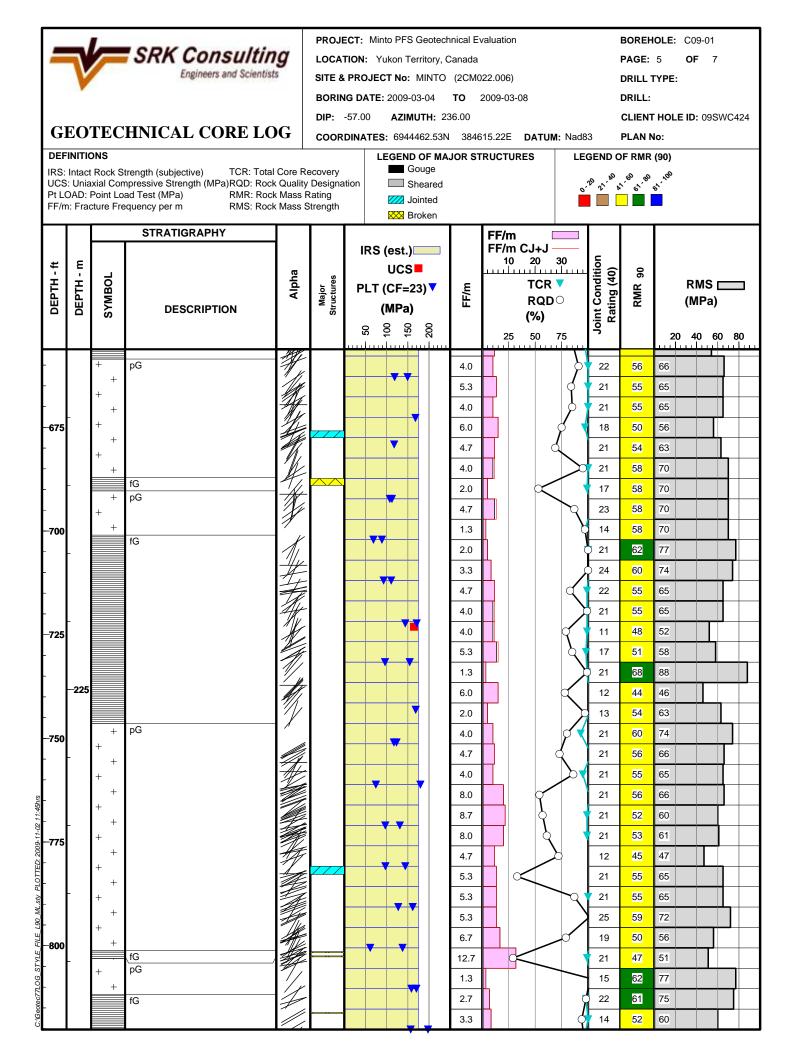
Copy No.

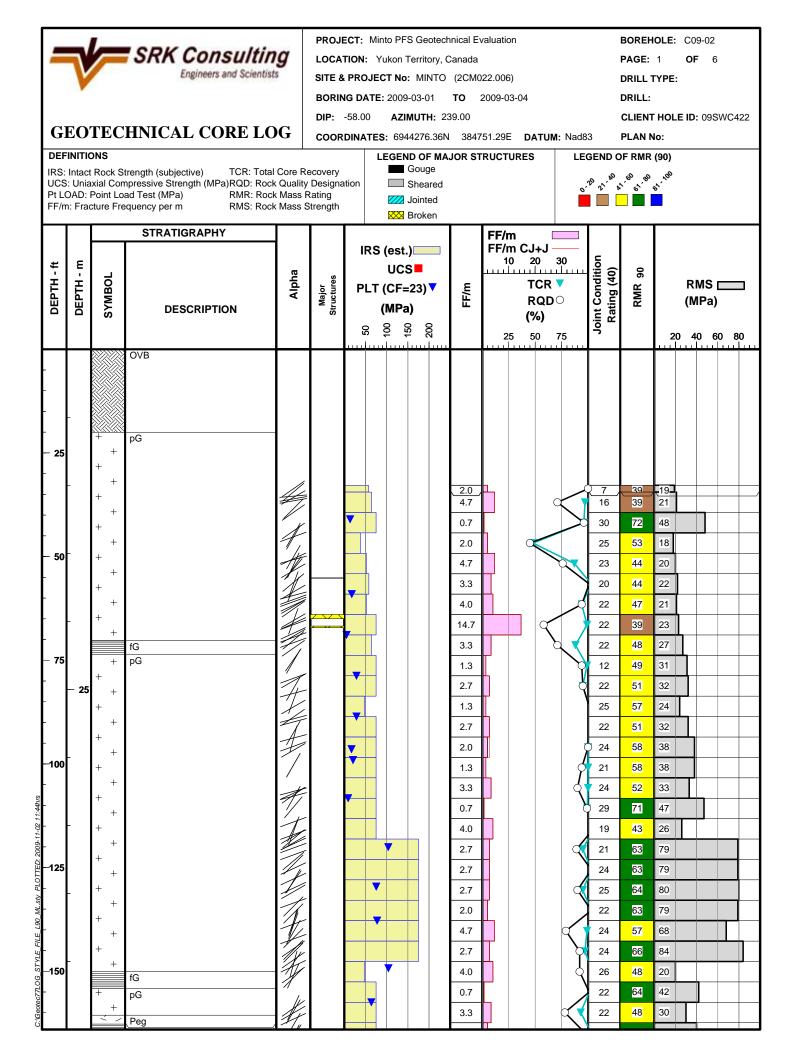

Name/Title	Company	Copy No	Date	Authorized by

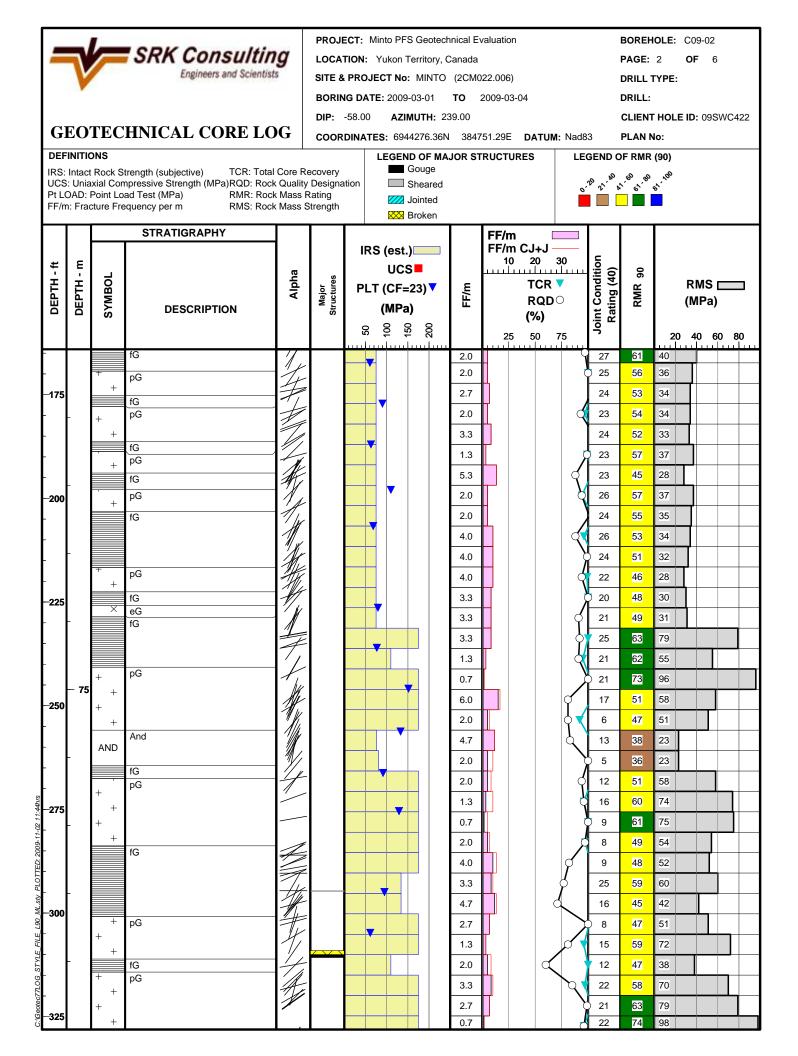

Copy No.	

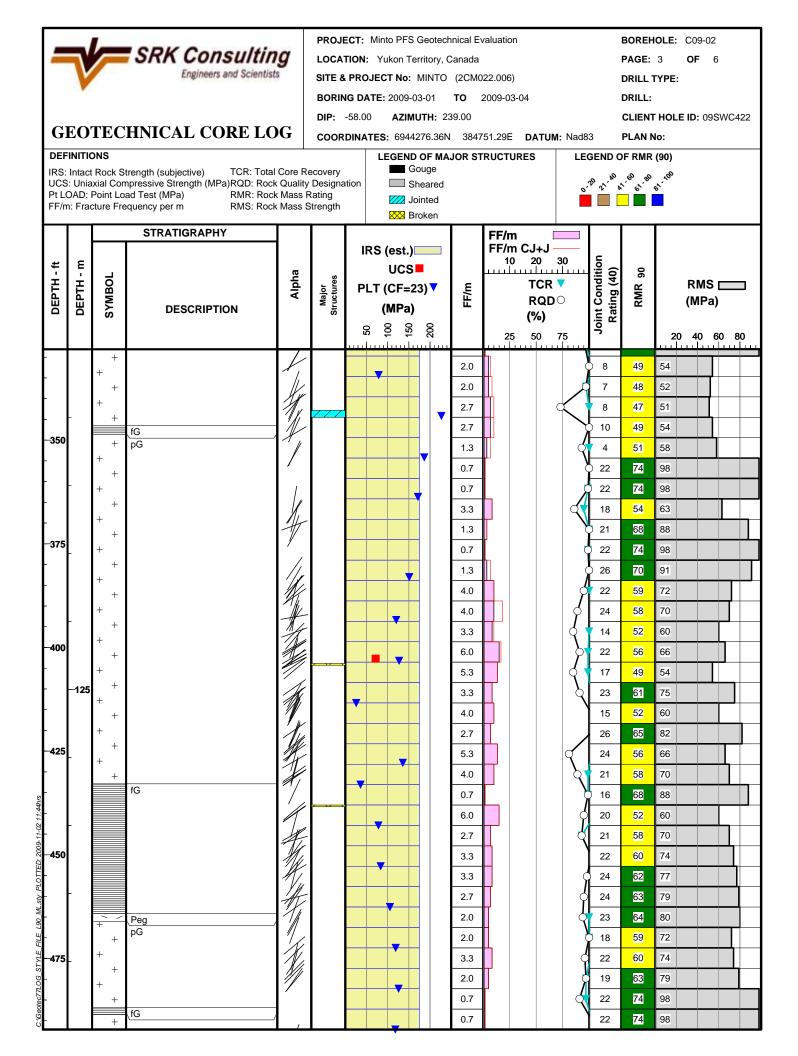

This report is protected by copyright vested in [SRK Company Name]. It may not be reproduced or transmitted in any form or by any means whatsoever to any person without the written permission of the copyright holder, SRK.

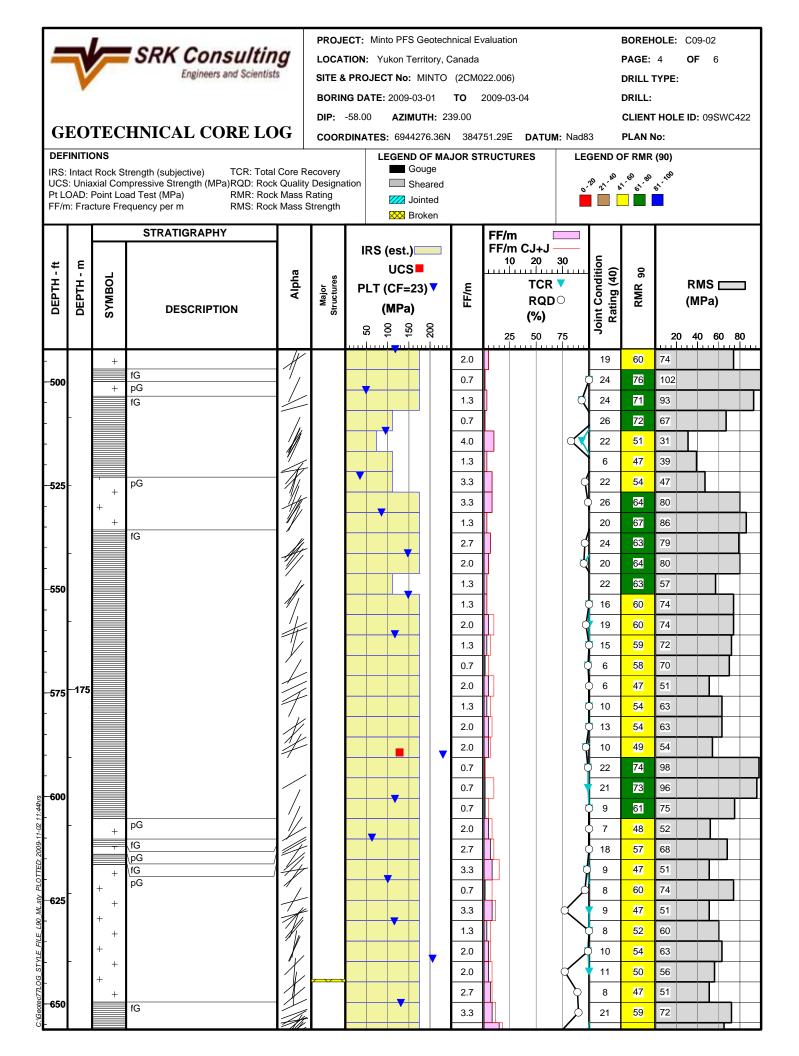

Appendices

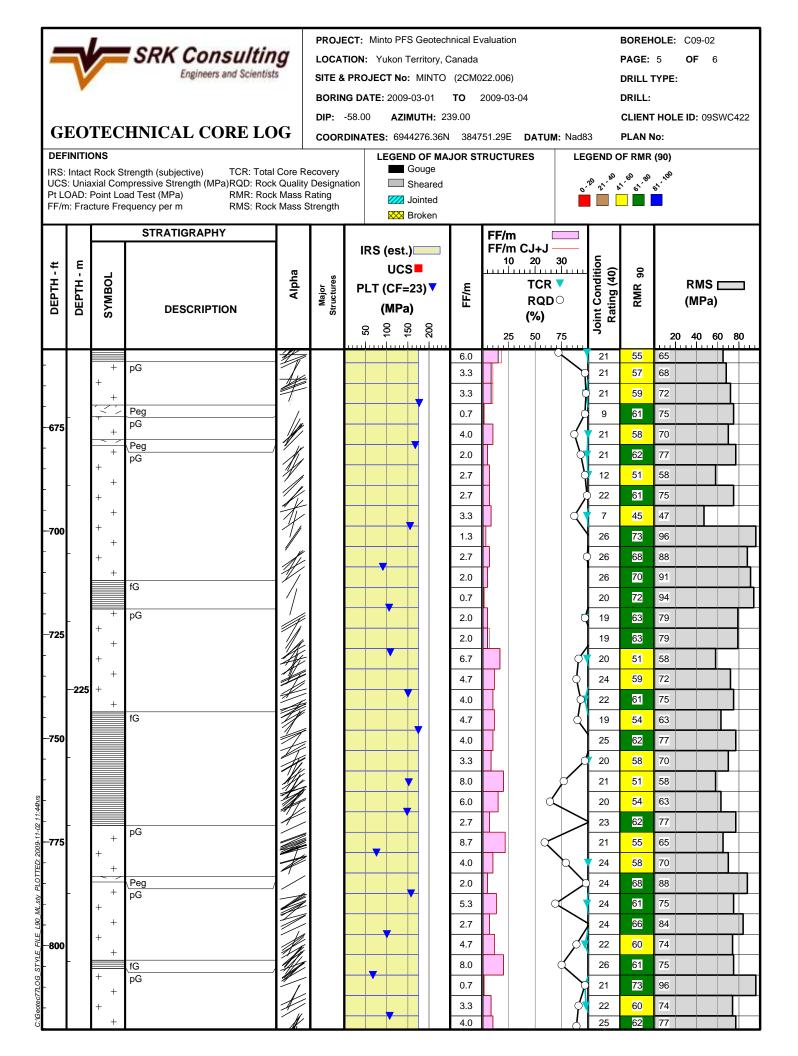

Appendix A: Geotechnical Core Logs

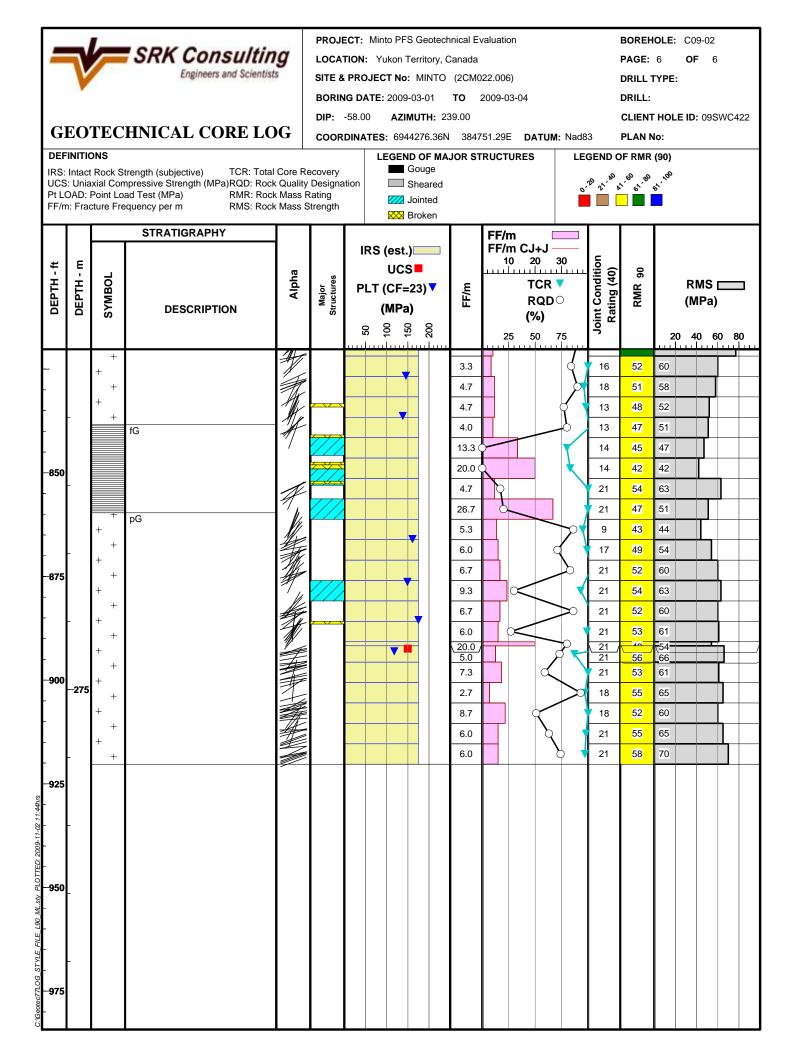


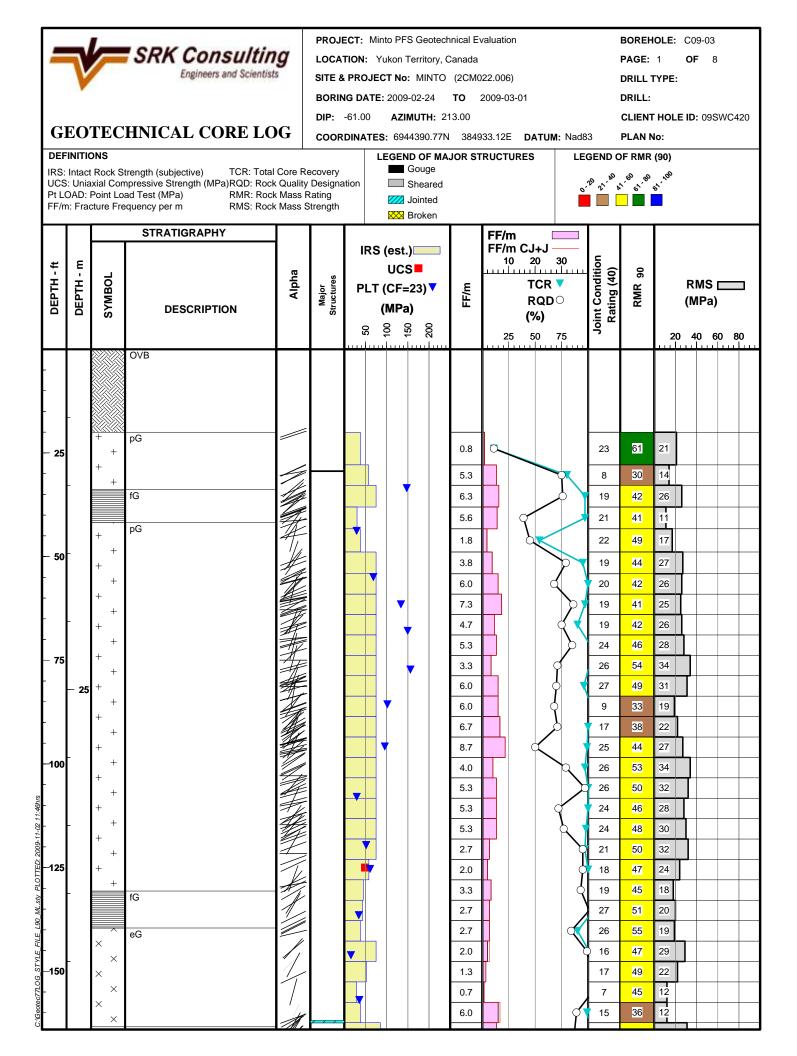


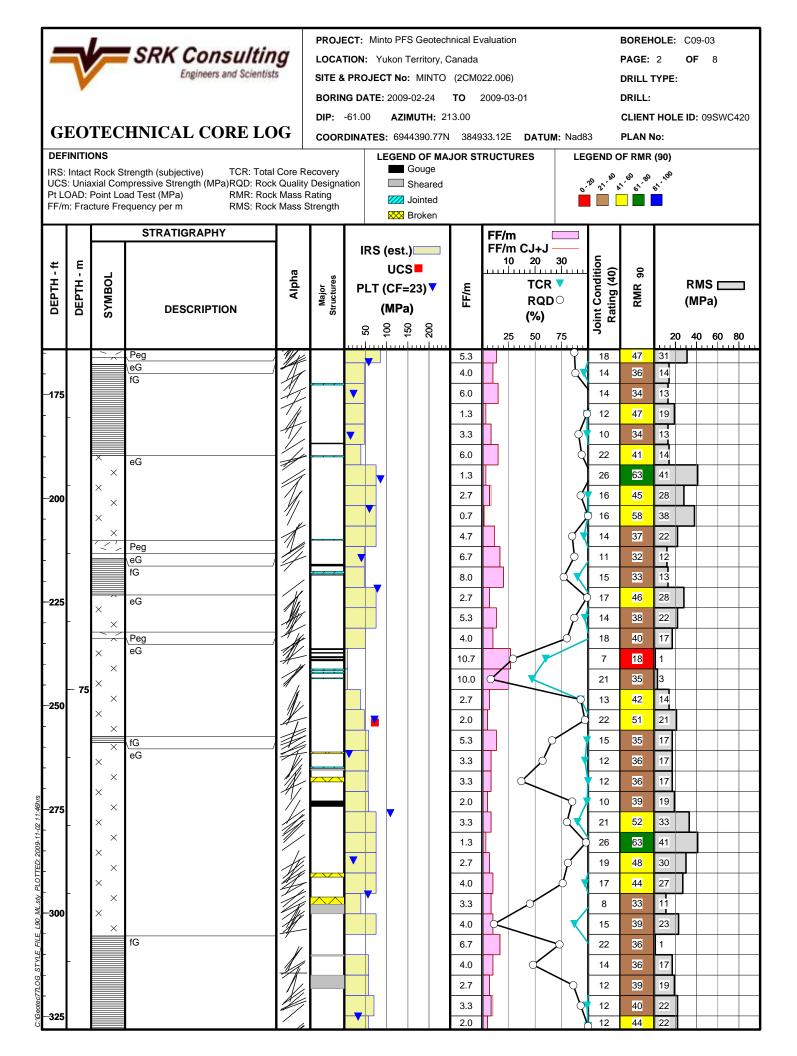


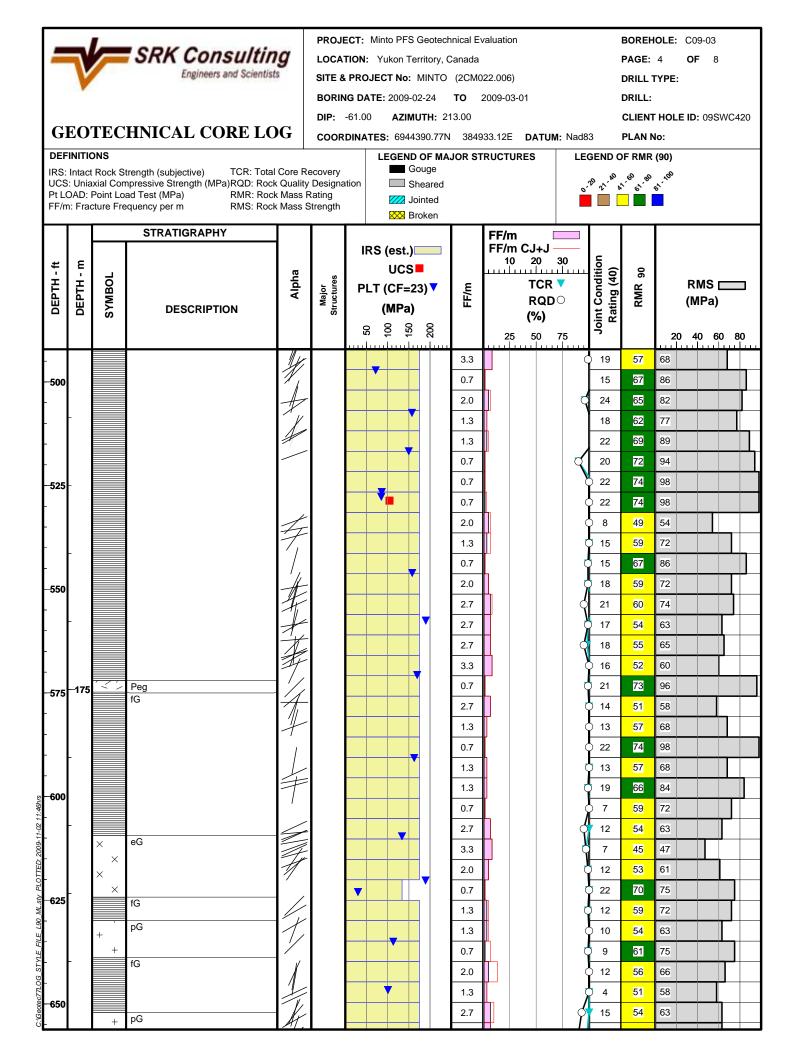

_					PROJE	ECT: Mir	to PFS G	eotech	nnical Ev	valuatior	ו			BOREH	IOLE: C09-01		
	ľ		SRK Consult	ng			ukon Terr	-						PAGE:	6 OF 7		
Engineers and Scientists					SITE & PROJECT No: MINTO (2CM022.006)									DRILL .			
							2009-03			2009-03	-08			DRILL:			
GEOTECHNICAL CORE LOG						DIP: -57.00 AZIMUTH: 236.00									CLIENT HOLE ID: 09SWC42		
			NICAL COKE L		COOR						DATUM			PLAN N			
	INITIC		ath (subjective) TCR: To	otal Core Re	acoverv	L	EGEND (JOR ST	RUCTU	RES		GEND C				
JCS	: Unia	xial Compre	essive Strength (MPa)RQD: R	ock Quality	Designa	tion	She	-				0	20 21.40	, eo , eo	8 ¹ .09		
		Point Load		ock Mass F ock Mass S			ZZZ Joir										
			STRATIGRAPHY		Broken												
			STRATIONALTT	_		IRS	(est.)				l ⊂J+J –						
ŧ.	ε										20 :	30 	tion	06			
Ē	Ξ	BOL		Alpha	or tures	PLT	(CF=23		Ę		TCR		ndi (40				
DEPTH	DEPTH - m	SYMBOL	DESCRIPTION	▲	Major Structures		、 (MPa)	,	FF/m		RQD	С	int Conditi Rating (40)	RMR	(MPa)		
_		0			.,	200 (1)				(%)			Joint Condition Rating (40)				
							– – huutou	∾ ++++++		25	50	75	Ĺ		20 40 60 8		
				ĺ					2.0			5	16	60	74		
		т р(3				.		1.3				20	67	86		
		+ .		″					0.7				22	74	98		
	-	+ fG	i	-				,	1.3				21	68	88		
				1					2.7			(21	60	74		
350		+ pC	ż	1.					1.3				20	67	86		
	-	++							2.0			🖞	22	66	84		
		+							0.7			4	20	72	94		
		+		1			ľ		1.3				24	71	93		
	_	++		1					3.3				22	60	74		
		+		1					2.0				21	62	77		
375		+							0.7				24	76	102		
		++		11					1.3				20	67	86		
	-	+							1.3				21	68	88		
		+							1.3				26	73	96		
		++		Í/					0.7				26	78	105		
900	-275	+		ĺ.					0.7				22	74	98		
		+ +							0.7				21	73	96		
		+		//					1.3				21	68	88		
	_	+		1/				,	0.7				26	78	105		
		+ +		ľ					0.7			<	22	74	98		
925		+							0.7			(26	78	105		
		+		_//_					1.3				21	68	88		
	-	fG pC		-1/					1.3			(17	64	80		
		+ +							2.0				12	56	66		
		+		1					2.0			(17	61	75		
950	-	+		1/					0.7				21	73	96		
		++		ĺ					0.7			<	22	74	98		
		+		K.					2.0				21	65	82		
		+		1,					2.0				17	58	70		
	-	++							1.3			$ \rangle$	6	53	61		
975		+		12				L	2.7			4	12	54	63		
- 1		L		1				V	1.3	ir 🗌		1	2 18	62	77		

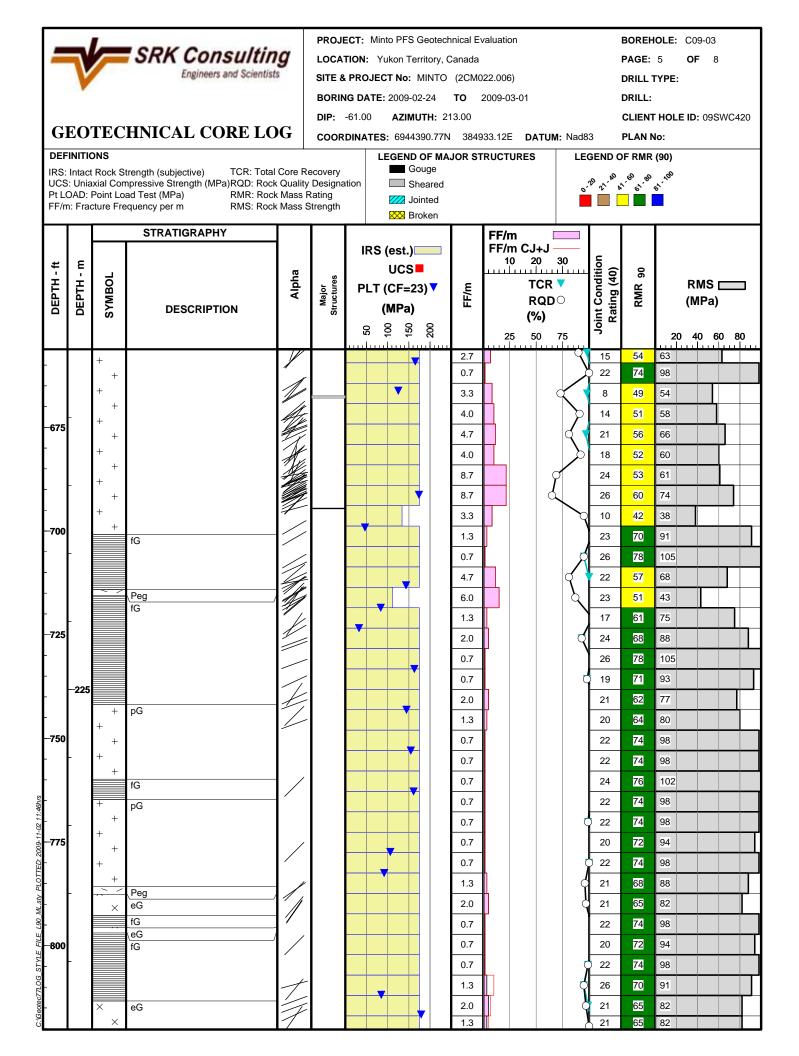

DE IRS UC Pt L	FINITIC Intact S: Unia OAD:	TEC ONS t Rock S axial Cor Point Lo	SRK Consultin Engineers and Scientist HNICAL CORE LO trength (subjective) TCR: Total npressive Strength (MPa)RQD: Rock ad Test (MPa) RMR: Rock equency per m RMS: Rock STRATIGRAPHY DESCRIPTION	Core Re Quality Mass F	LOCA SITE & BORIN DIP: COOR	FION: PROJE IG DATI -57.00 DINATE tion	Yukon T ET No: E: 2009 AZIN S: 694 LEGEN C C C C C C C C C C C C C	AUTH: 2 4462.53N D OF MA Gouge Sheared Jointed Broken	Canada (2CM0 TO 36.00 1 3846	30		PAGE: DRILL 1 DRILL: CLIENT PLAN N DF RMR	TYPE: hole II (90)	F 7	
			IG pG IG pG	THIN IN IN				-	1.3 1.3 0.7 1.3 2.0 0.7 0.7 0.7 0.7 0.7 0.7 0.7 1.3 1.3 0.7 1.3 1.3 0.7 1.3		8 13 22 12 7 26 27 26 29 22 21 26 29 22 21 26 29 22 21 26 29 22 21 26 29 22 21 26 29 22 21 24	55 774 56 48 78 59 73 74 81 74 63 74 63 74 63 74 63 74 63 74	20 65 68 98 66 52 105 72 96 105 98 105 98 99 98 99 99 99		

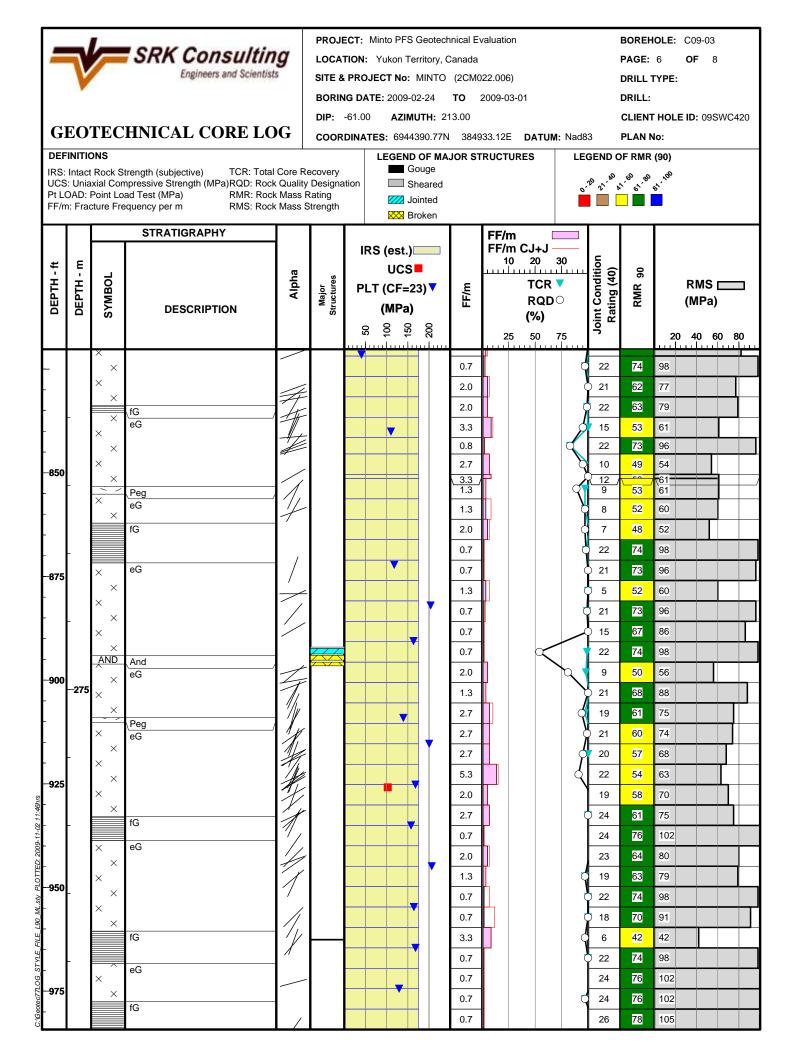


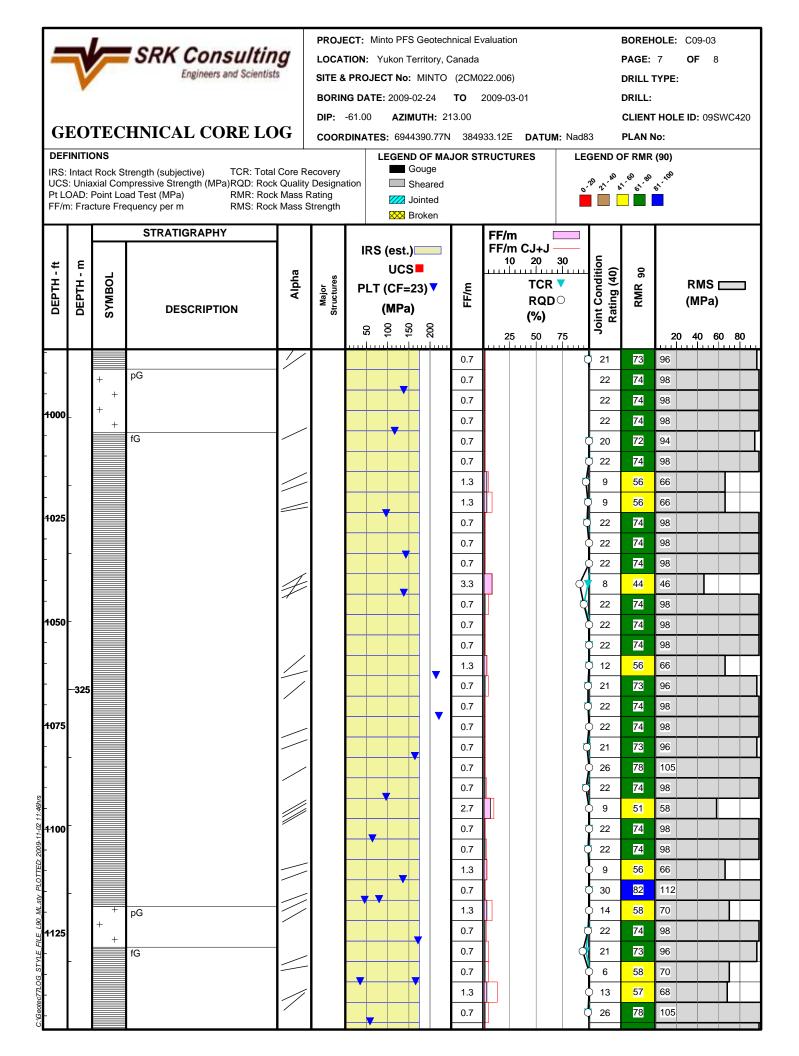


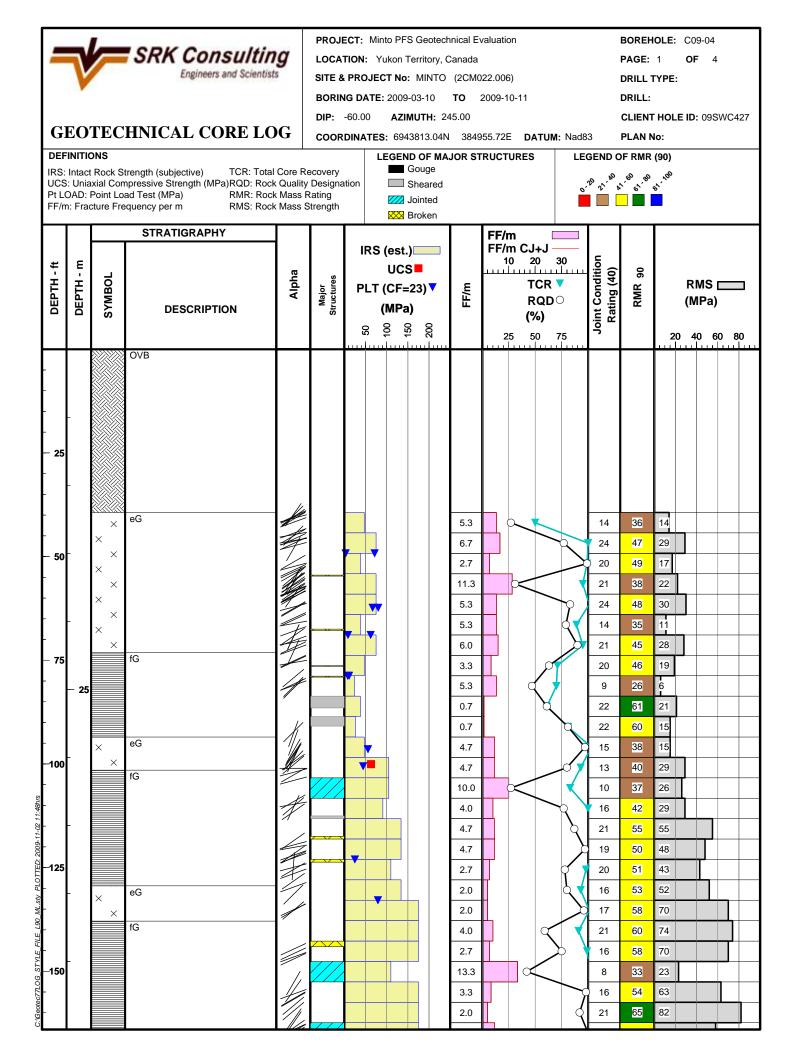


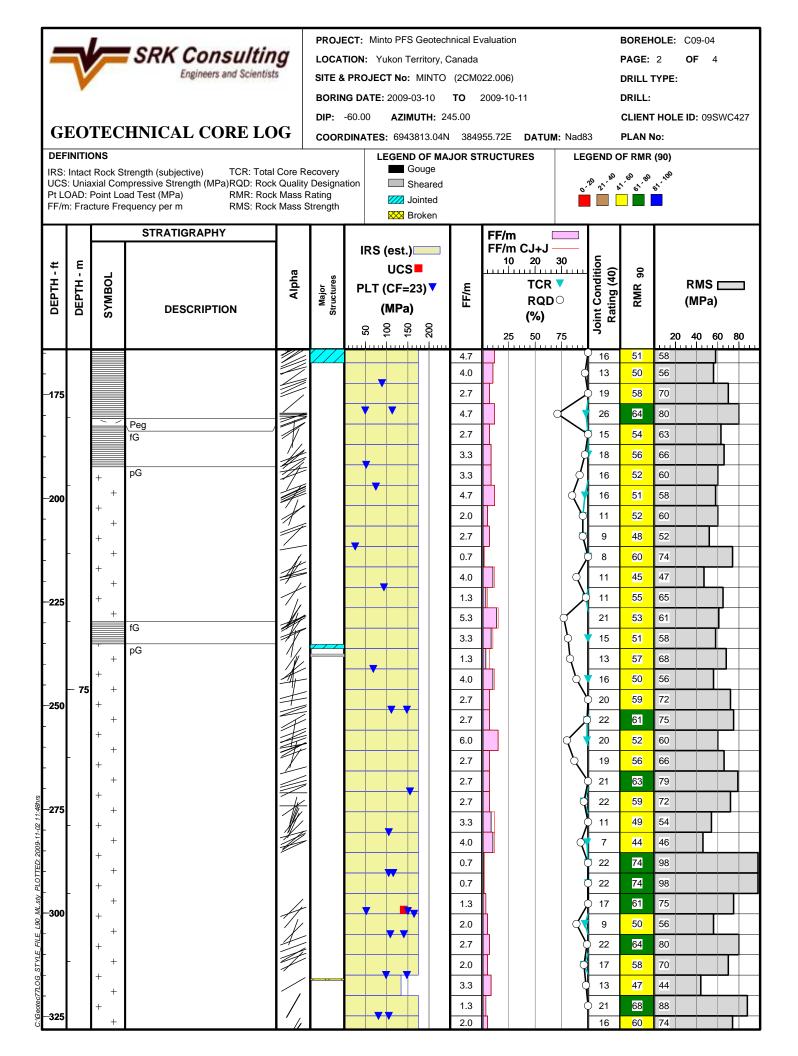


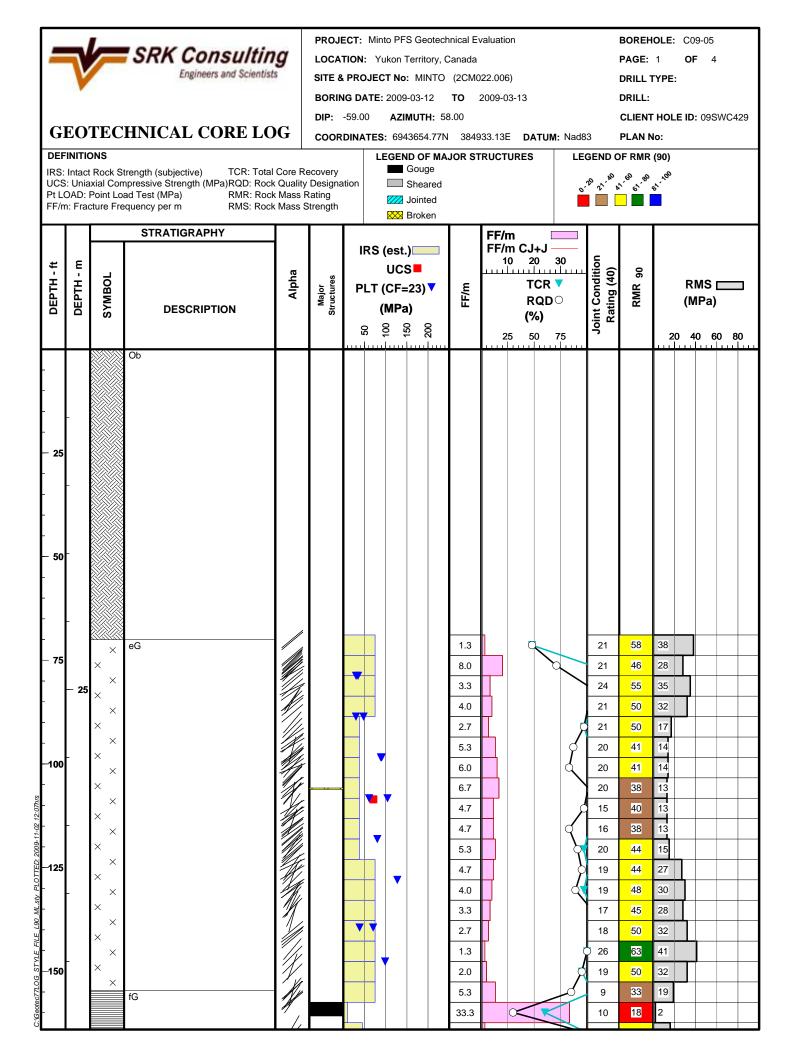


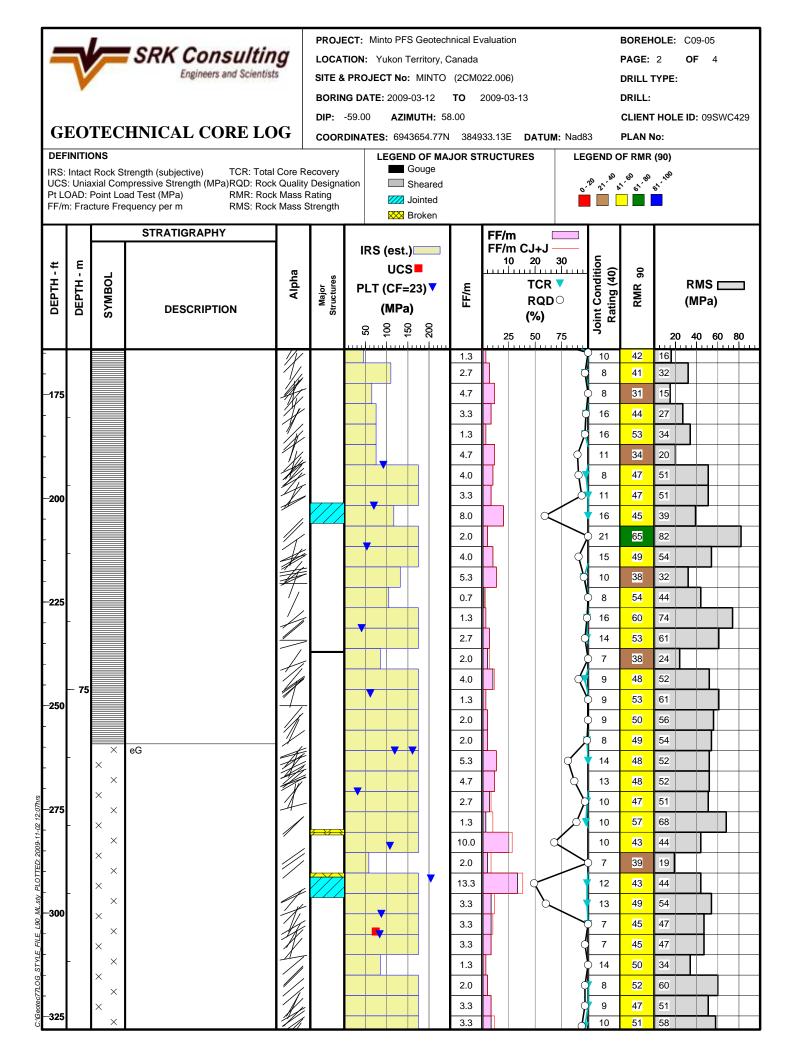


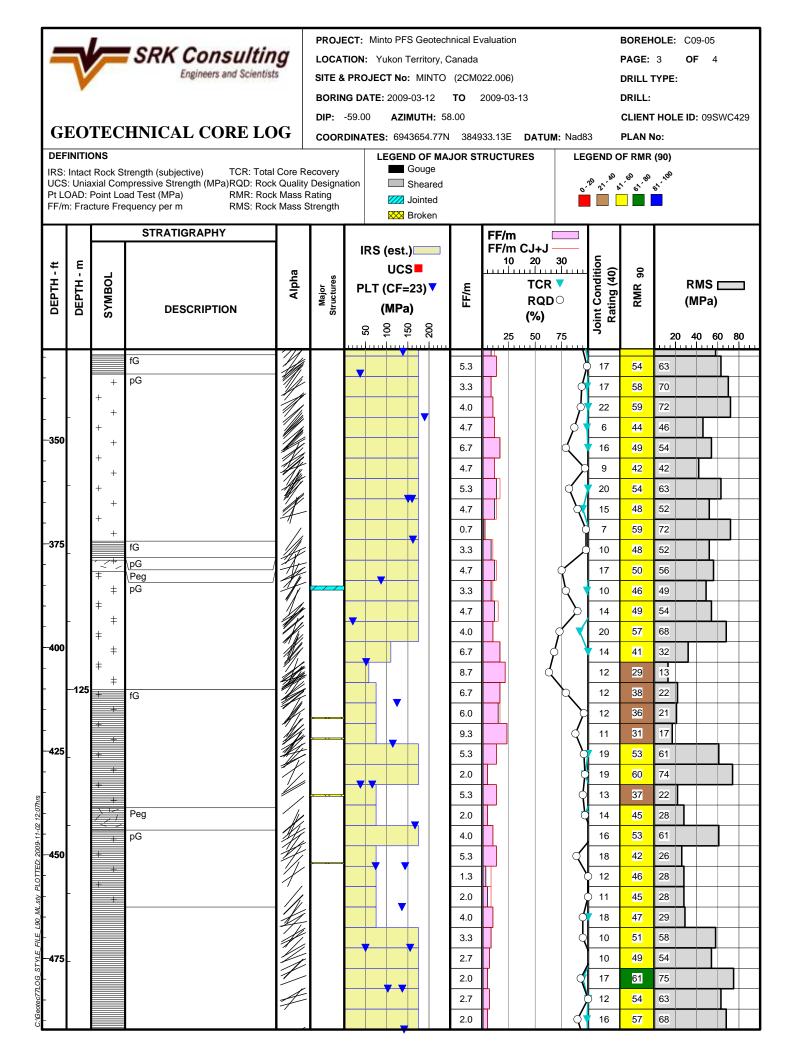


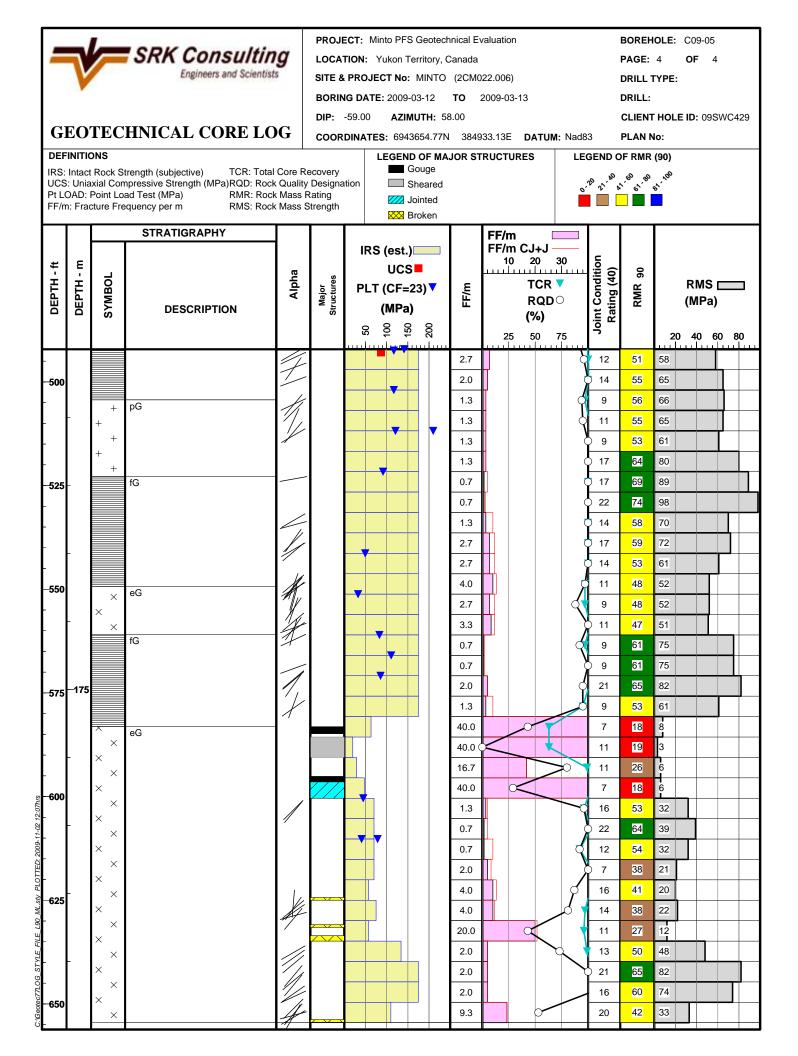


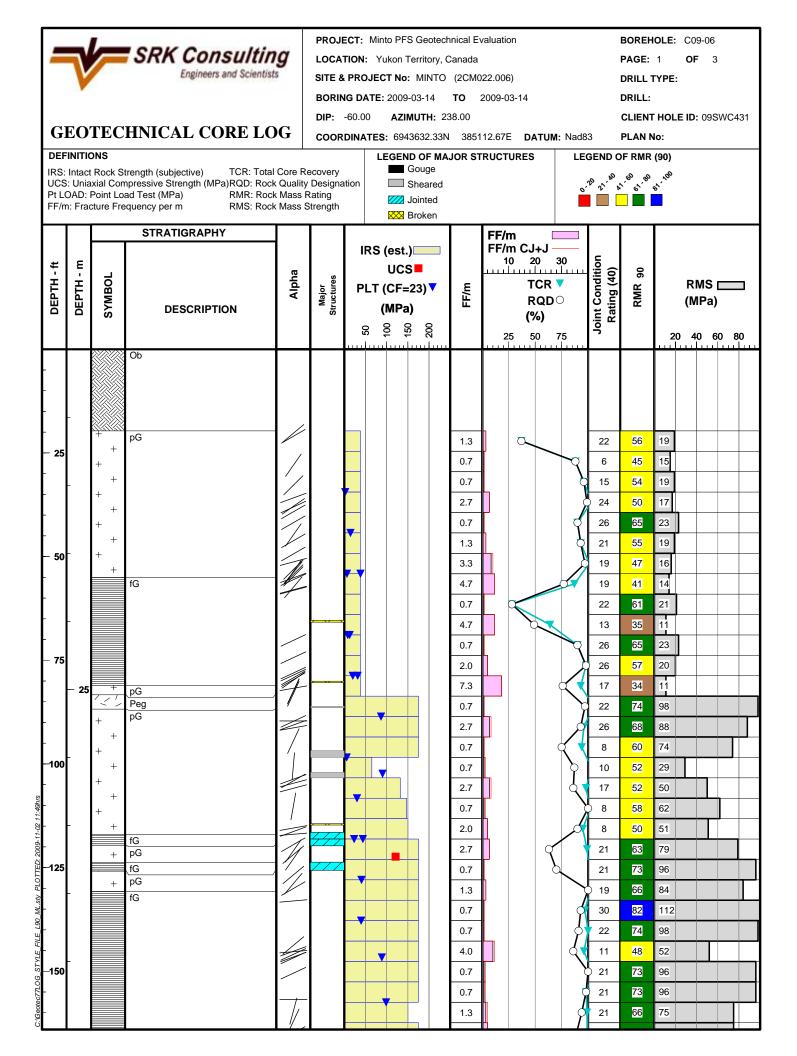


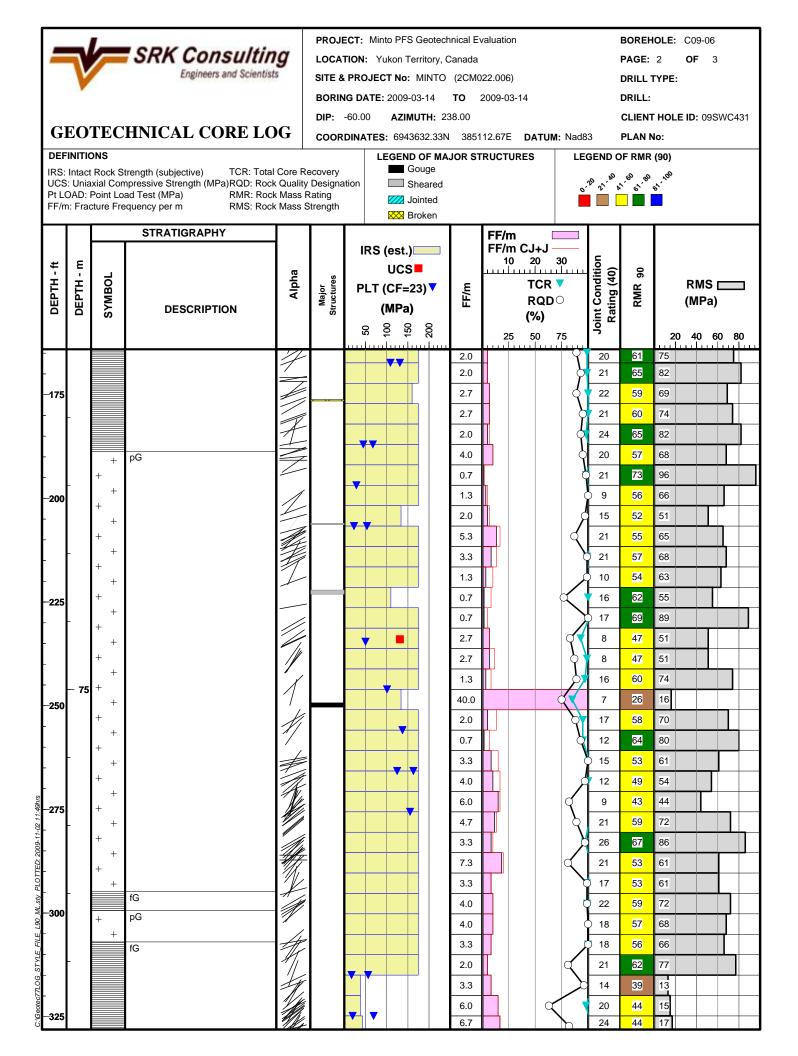

DEF IRS: UCS Pt L	Intac Intac : Unia	TEC DNS t Rock S axial Con Point Lo	SRK Consultin Engineers and Scientist HNICAL CORE LO trength (subjective) TCR: Total npressive Strength (MPa)RQD: Rock ad Test (MPa) RMR: Rock squency per m RMS: Rock STRATIGRAPHY DESCRIPTION	Core Re Quality Mass F	LOCA SITE & BORIN DIP: COOR	FION PRC IG DA -61.0 DINA	: Yu DJEC ATE: 0 TES LE RS (LT (ikon 1 T No : 2009 AZII : 694	Cerrito : MII -02-2 MUTI 4390 D OF Goug Shea Jointo Broko 	ory, C NTO 24 H: 21 0.77N = MA. ge ured ed en	Canada (2CM0 TO 13.00 3849	valuation 22.006) 2009-03-0 33.12E RUCTUR FF/m (10	DATUM: ES	د م ا	3 GEND C	BOREH PAGE: DRILL 1 DRILL: CLIENT PLAN N DF RMR	8 TYPE: HOLI Io: (90)	OF E ID:	8)
	-	+ + + + + + + + + + + + + + + + + + +	pG /fG /pG fG								0.7 0.7 0.7 0.7 0.7 0.7 0.7 0.7 0.7 0.7	25	50 7		22 21 22 21 22 24 22 24 26 22 24 22 24 22 24 22 24 22 22 21 7 22 21 7 7 7	74 73 74 74 76 74 74 76 78 78 74 64 73 73 59 74 73 73 74 73	22 98 98 98 98 98 98 98 98 102 98			
	-																			

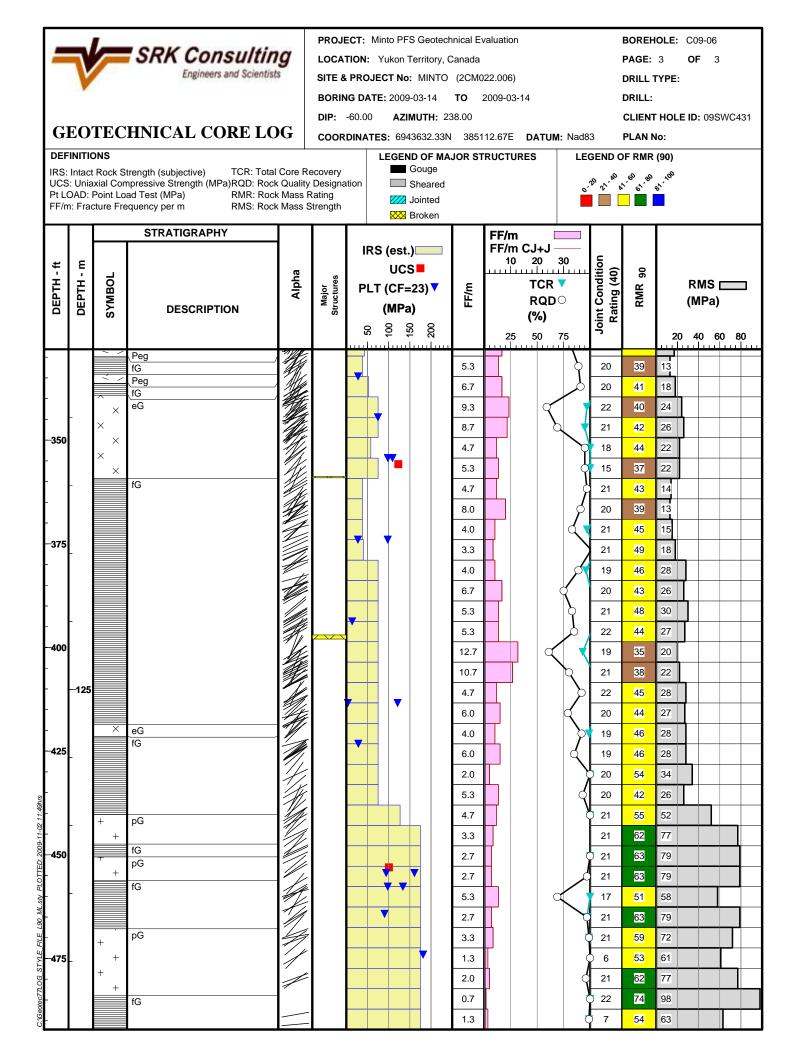


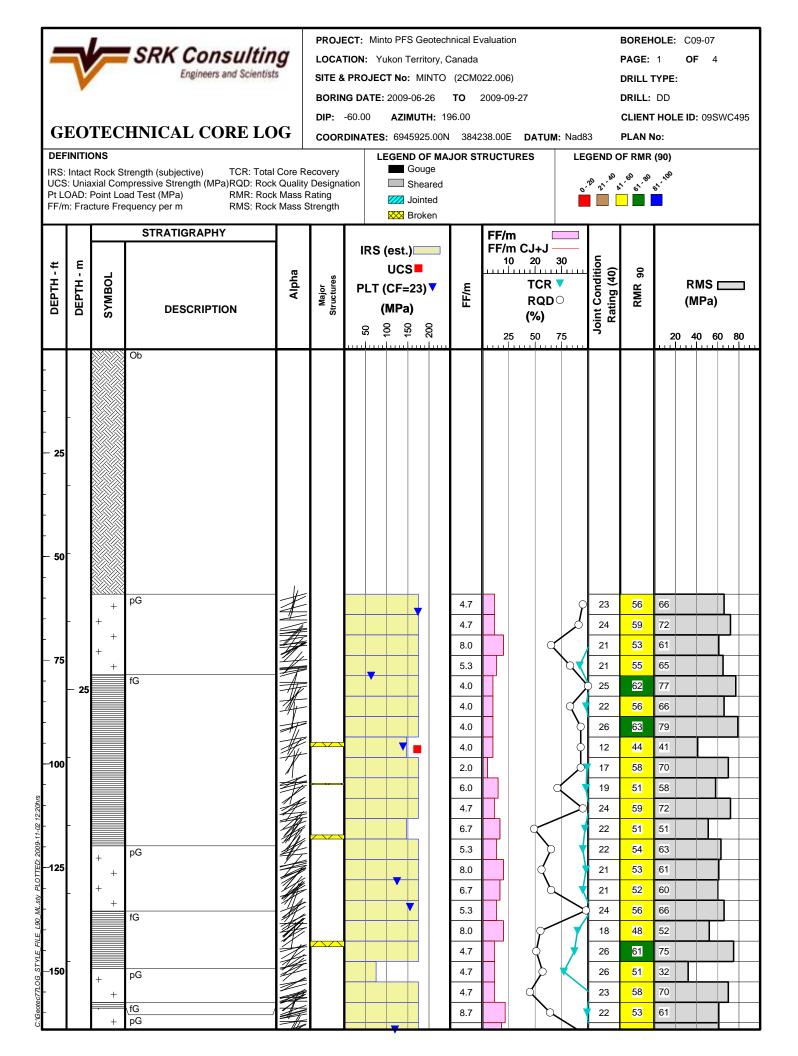


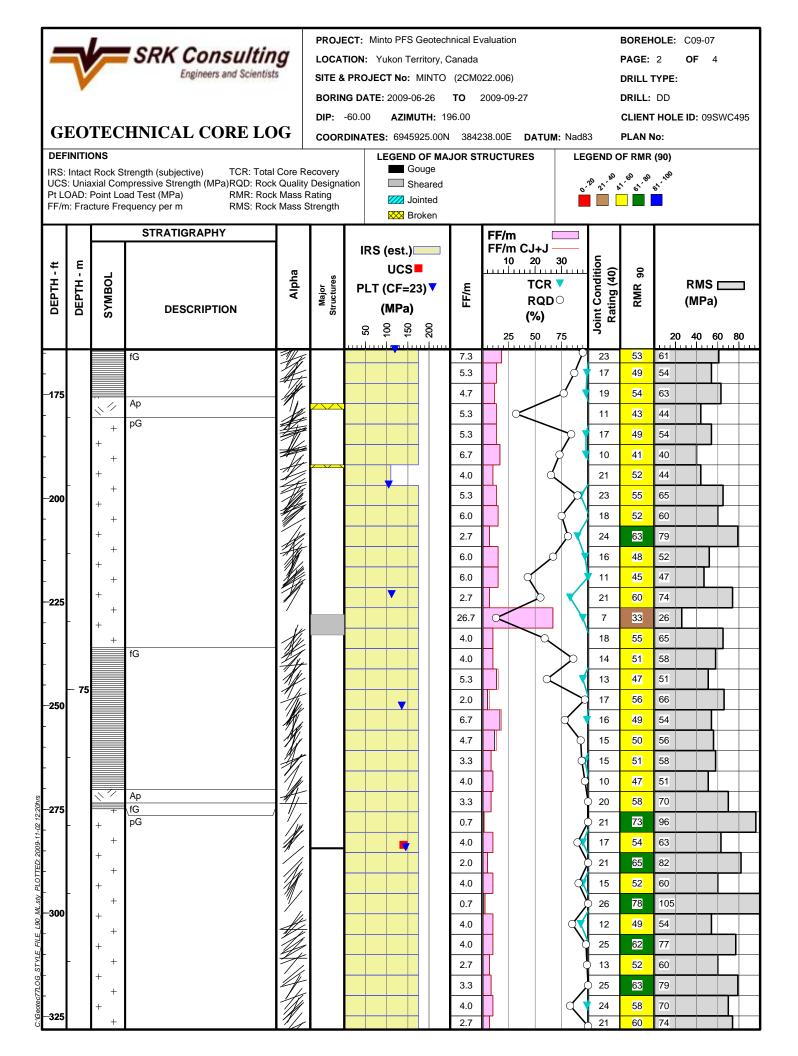

_		_		12.22	PROJ	ECT: Mir	nto PFS	Geote	chnical E	valuation				BOREH	IOLE: C09-04	ļ
	J		SRK Consultin	ng	LOCA	TION: Y	ukon Te	rritory	, Canada					PAGE:	3 OF	4
	V		Engineers and Scientis	72	SITE 8	ROJE	CT No:	MINT	O (2CM	022.006)				DRILL '	TYPE:	
					BORIN	IG DATE	: 2009-0	3-10	то	2009-10-	·11			DRILL:		
~					DIP:	-60.00	AZIM	UTH:	245.00					CLIEN	THOLE ID: 09	SWC42
GI	EO	ТЕСН	INICAL CORE LO)G	COOR	DINATES	6943	813.04	IN 384	955.72E	DATUM:	Nad8	3	PLAN N	lo:	
	ΙΝΙΤΙΟ					L			AJOR S	FRUCTU	RES	LE	GEND C		• •	
			ngth (subjective) TCR: Tota ressive Strength (MPa)RQD: Roc			ation	Gi Gi	-	ł			0	20 21.40	, e ⁰ , e ⁰	8 ¹ ,100	
			Test (MPa) RMR: Roc lency per m RMS: Roc				📶 Jo	ointed				•				
				1			🔀 Br	roken	_							
			STRATIGRAPHY	-		пе				FF/m	CJ+J –					
tt -	ε						(est.) UCS			10	20 3	0	ion			
÷	DEPTH - m	ğ		Alpha	res	ыт	(CF=2		ء				int Conditi Rating (40)	۲ 90	RMS	
DEPTH	ЕРТ	SYMBOL	DECODIDITION	A	Major Structures		-		FF/m		RQD		Cor ting	RMR	(MPa	-
	۵	S	DESCRIPTION		ŭ		(MPa)	0			(%)		Joint Condition Rating (40)			
						20 	1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	500		25	50 7	′5	ŗ		20 40	60 8
		+							1.3				24	71	93	
		+		<i>y</i>			-		2.0			7	24	64	80	
		++		1					2.0				23	68	88	
	-	+		·			-		2.0				24	66	84	
350		fC	3	~					0.7				22	64	42	
						V			1.3	╂ ∣			24	58	20	
	_			\sim					0.7	┦			24	61	20	
				1.									1	43	14	
				H					3.3			۲	18	43 58	20	
75				7		┣━┦│ ▼			0.7				19		10	
	-								2.0	┡		9	9	36		
				1		▼			2.7				23	50	26	
		+ p	G						0.7				20	59	23	
	-	fC	3	/					0.7				26	66	28	
400				1		V			2.0				22	53	18	
+00		+ p	G						2.7				19	<mark>46</mark>	21	
	405	+		\sim					1.3			9	22	69	89	
	-125	fC	3			v v			0.7				16	58	38	
									2.7				23	50	21	
		+ p	G						3.3			9	23	49	25	
125	-	+							1.3	₿│		'	21	64	66	
		+		1					2.0	Ц			21	54	39	
		++		Ħ.					2.7	Ц		5	20	59	72	
	-	+							3.3) 17	58	70	
		+		4					3.3			<	17	55	65	
150		++		H					4.0				21	<mark>58</mark>	70	
		+		1/					2.7			9	18	57	68	
	-	+		Ł					2.7			4	19	<mark>58</mark>	70	
		+							4.0				21	60	74	
		+		7					2.0				23	64	80	
475	-	+							0.7				24	76	102	
		+ fC	3	<i>\</i>					2.0			5	12	51	58	
		<u>,</u>	leg						3.3			🔨	21	<u>59</u>	72	
		fC							3.3			\b	15	53	61	

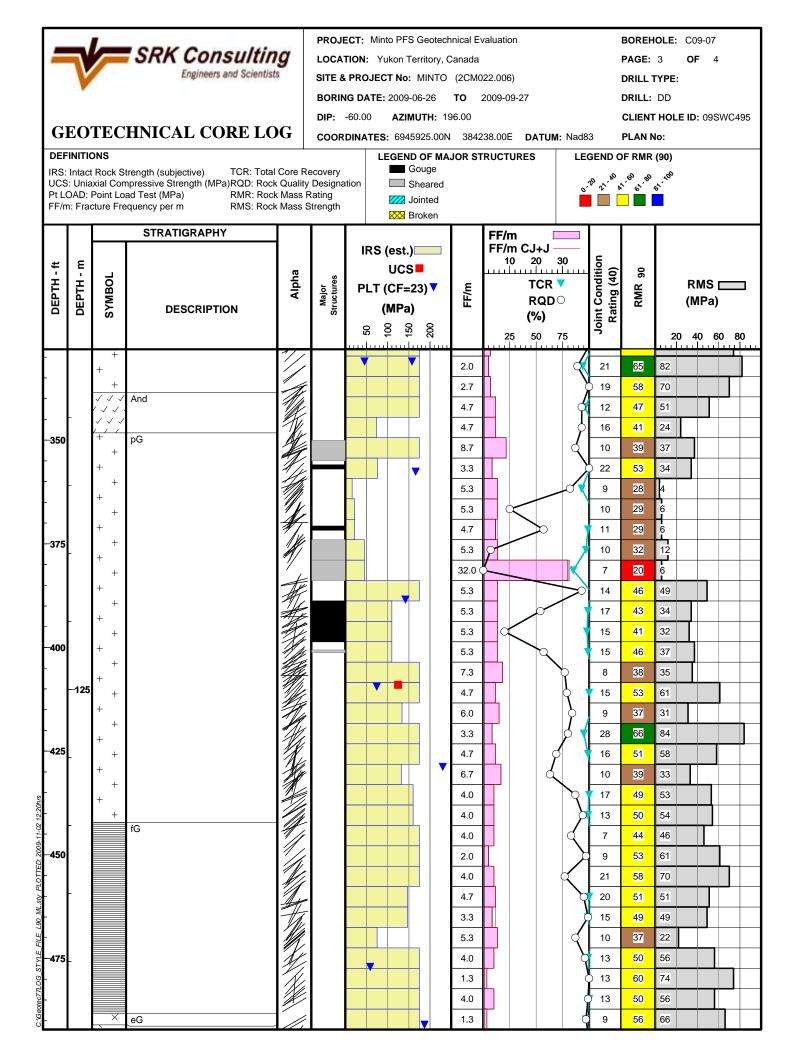

DEF IRS: UCS Pt L	Intact : Unia	TEC DNS t Rock S axial Con Point Lo	SRK Consultin Engineers and Scientist HNICAL CORE LO trength (subjective) TCR: Total npressive Strength (MPa)RQD: Rock ad Test (MPa) RMR: Rock equency per m RMS: Rock STRATIGRAPHY DESCRIPTION	Core Re Quality Mass F	LOCA SITE & BORIN DIP: COOR	TION: PROJI IG DAT -60.00 DINATE	Yukon T ECT No: E: 2009- AZIN ES: 694: LEGEN C () S () S () S () S () S () S () S () S	erritory, MINTO 03-10 AUTH: 2 3813.04 D OF MA Souge Sheared Jointed Broken	Canada (2CM0 TO 45.00 N 3849	valuation 122.006) 2009-10-11 155.72E DATU 155.72E DATU TRUCTURES FF/m CJ+J 10 20 TCR RQE (%) 25 50		3 GEND C	PAGE: DRILL 1 DRILL: CLIEN1 PLAN N	4 TYPE: No: (90)	C09-04 OF 4 EID: 095 RMS (MPa) 40 6	swC427
- - - - - - - - - 525 - - - - 550 - - - - - - - - - - - - -			pG fG pG fG pG (fG pG						0.7 2.7 0.7 2.0 2.7 6.0 4.0 3.3 2.0 2.7 6.0 12.0 13.3 10.0 4.7			9 15 22 11 8 14 9 16 8 17 22 26 6 14	61 52 74 52 47 46 50 57 47 49 49 49 57 35 57 43	75 60 98 60 51 49 56 68 51 54 68 28 39		
-575 - 600 	- 175	+ +							9.3 7.3		2	8	43	44 35		

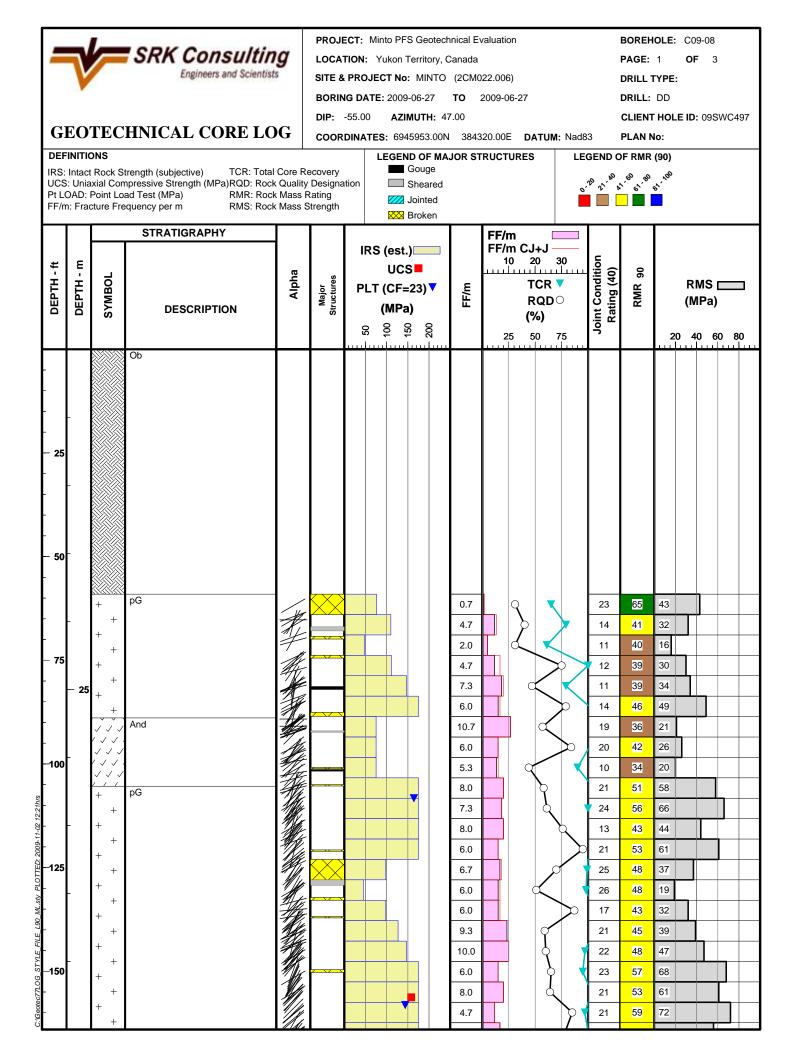


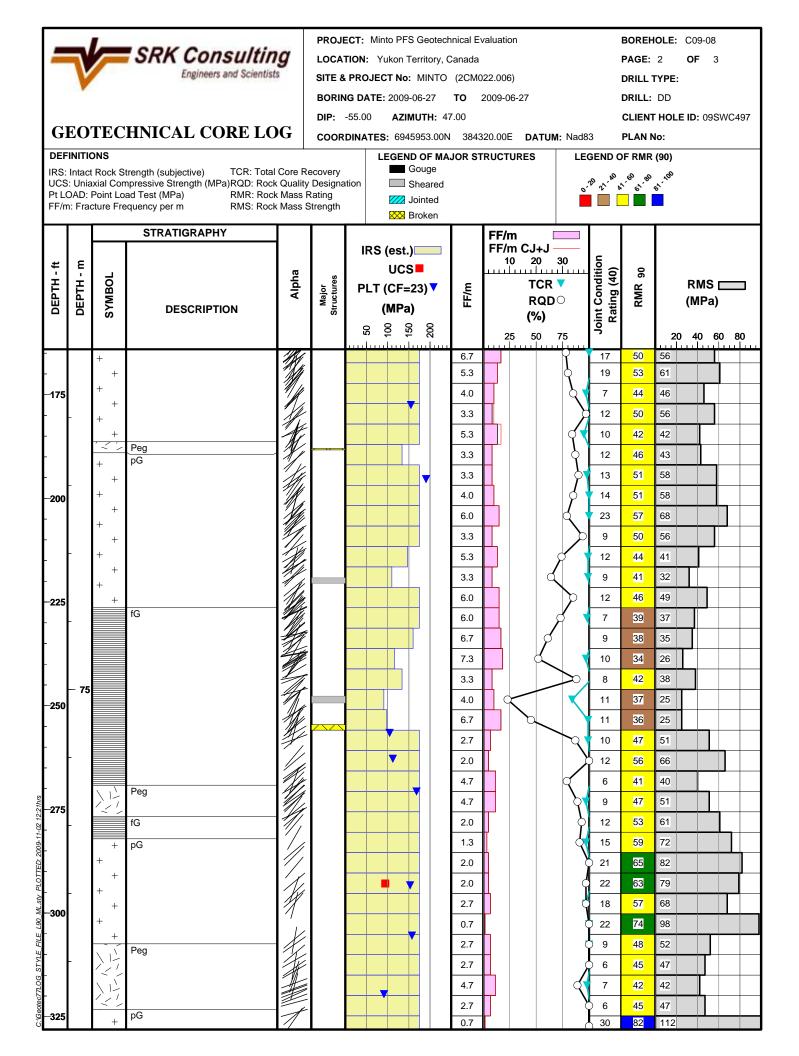


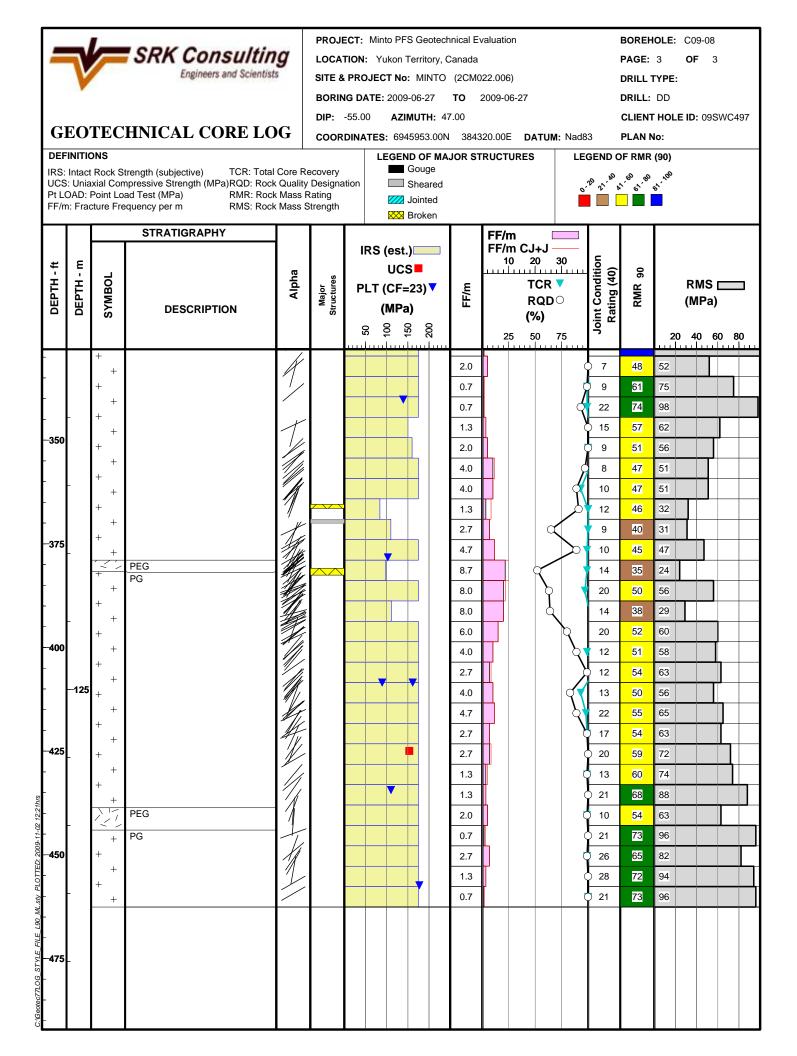






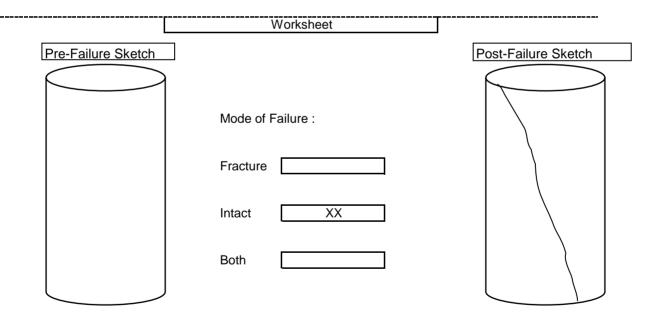






_	V	7	SRK Consultin Engineers and Scientist	g	LOCA	TION: PRO	Yu	kon T T No :	Ferrito	ory, C NTO	(2CM0		6)				BOREH PAGE: DRILL 1 DRILL:	4 [YPE :	OF			
G	EO'	ТЕС	HNICAL CORE LO	G	DIP:						96.00 3842	38.00	- 04	тим	Nad8		CLIENT PLAN N		E ID:	09SV	VC49	95
DEF IRS: UCS Pt L	Intact Intact Cunia	DNS Rock S ixial Con Point Lo	trength (subjective) TCR: Total npressive Strength (MPa)RQD: Rock ad Test (MPa) RMR: Rock equency per m RMS: Rock	Core Re Quality	ecovery Designa Rating		LE	GEN	D OF Goug Shea Jointe	F MA. le red ed	JOR ST				LE	GEND C	DF RMR	(90)				
DEPTH - ft	DEPTH - m	SYMBOL	STRATIGRAPHY	Alpha	Major Structures		LT ((UCS CF= MPa	6 <mark>–</mark> 23))		FF/m	1	n CJ 0 2	0 3 CR ▼ QD⊂ 6))	Joint Condition Rating (40)	RMR 90	2		/IS ⊑ Pa) ○ 60		
╞─			(Ap) fG								2.7) 12	<mark>54</mark>	63				
-500				4							5.3				∕	19	53	61				
- - - - 525 -	_																					
- - 550 - - -	-																					
- 575 - - -	175																					
600																						
625 - 650	_																					

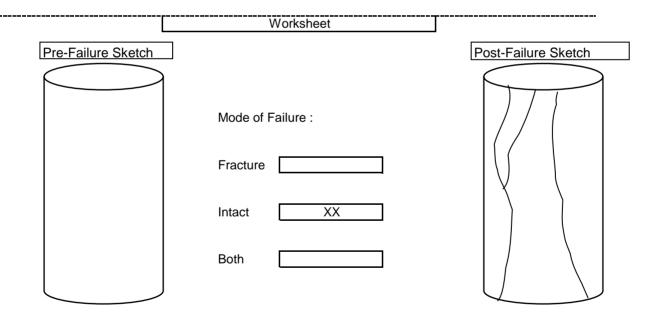
Appendix B: Laboratory Testing


Uniaxial Compressive Strength Testing

University of Arizona

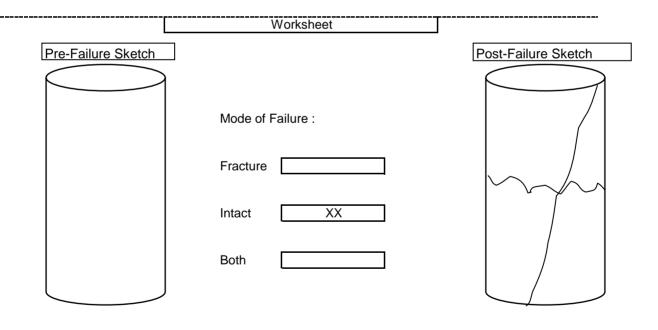
GEOMECHANICAL LABORATORY

TUCSON, ARIZONA USA


Project #	2CM022	Uniovial	Compression Tes	t Poculte	Client	SRK
Date	5/4/2009	Ullaxial	Compression res	i results	Location	
Technician	D.Streeter				Sample #	01-003U
		Sample #	01-003U		Rock Type	GRANIT E
					Density :	167.1 (pcf)
		Fail Stress	17,336	psi		2,677.0 (kg/m ³)
			119.56	Мра	L. L	
Sar	mple Data :				Fail Stress	17,336 (psi)
Sample # :	01-003U	Modulus		psi		119.6 Mpa
Rock Type:	GRANIT E	Poisson's				
Hole # :	C09-01				1	Fest Data:
Depth :	89.5				Disp. Rate :	0.0003 (in/sec)
Alterations:					Load Rate :	(lbs/sec)
Diameter :	1.775 (in)				Gage Reading :	42,900 (lbs)
Height :	3.834 (in)				Mode of Failure	Intact
Weight :	416.25 (gm)				Test Duration :	(sec)
Area :	2.475 (in ²)				2:1 Correction :	1
Volume :	9.488 (in ³)					

Dia. 1	1.779	Ht. 1	3.834			
Dia. 2	1.777	Ht. 2	3.835	Fail Load	42900	lbs
Dia. 3	1.773	Ht. 3	3.835			
Dia. 4	1.772	Ht. 4	3.835			
Dia. 5	1.773	Weight (gm)	416.25			
Dia. 6	1.777	Sample #	01-003U			

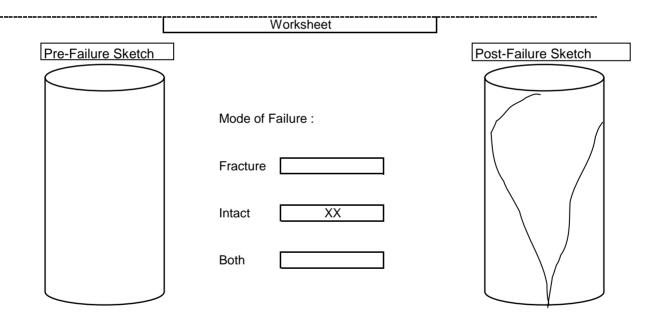
GEOMECHANICAL LABORATORY


Project #	2CM022	Uniovial	Compression Tes	t Poculte	Client	SRK
Date	5/4/2009	Ullaxia	Compression res	i results	Location	
Technician	D.Streeter				Sample #	01-007U
		Sample #	01-007U		Rock Type	GRANITE
					Density :	167.7 (pcf)
		Fail Stress	21,807	psi		2,685.7 (kg/m ³)
			150.39	Мра	-	
Sar	mple Data :				Fail Stress	21,807 (psi)
Sample # :	01-007U	Modulus		psi		150.4 Mpa
Rock Type:	GRANITE	Poisson's				
Hole # :	C09-01				1	Fest Data:
Depth :	187				Disp. Rate :	0.0003 (in/sec)
Alterations:					Load Rate :	(lbs/sec)
Diameter :	1.772 (in)				Gage Reading :	53,800 (lbs)
Height :	3.878 (in)				Mode of Failure	Intact
Weight :	421.13 (gm)				Test Duration :	(sec)
Area :	2.467 (in ²)				2:1 Correction :	1
Volume :	9.569 (in ³)					

Dia. 1	1.771	Ht. 1	3.877			
Dia. 2	1.773	Ht. 2	3.875	Fail Load	53800	lbs
Dia. 3	1.771	Ht. 3	3.883			
Dia. 4	1.771	Ht. 4	3.879			
Dia. 5	1.771	Weight (gm)	421.13			
Dia. 6	1.779	Sample #	01-007U			

GEOMECHANICAL LABORATORY

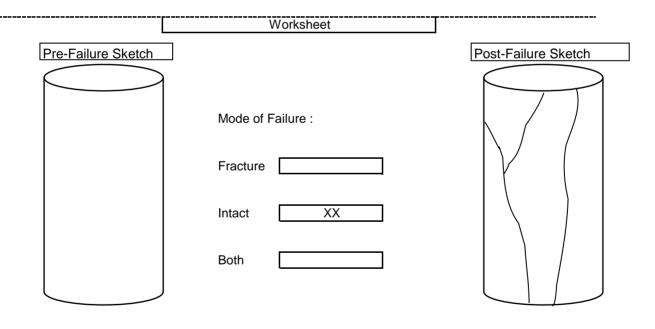
Project #	2CM022	Uniovial	Compression Tes	t Poculto	Client	SRK
Date	5/4/2009	Uniaxiai	Compression res	i Results	Location	
Technician	D.Streeter				Sample #	01-010U
		Sample #	01-010U		Rock Type	GRANITE
					Density :	167.5 (pcf)
		Fail Stress	22,634	psi		2,683.3 (kg/m ³)
			156.10	Мра	-	
Sar	mple Data :				Fail Stress	22,634 (psi)
Sample # :	01-010U	Modulus		psi		156.1 Mpa
Rock Type:	GRANITE	Poisson's			_	
Hole # :	C09-01				Т	est Data:
Depth :	293.16				Disp. Rate :	0.0003 (in/sec)
Alterations:					Load Rate :	(lbs/sec)
Diameter :	1.780 (in)				Gage Reading :	56,300 (lbs)
Height :	3.876 (in)				Mode of Failure	Intact
Weight :	423.95 (gm)				Test Duration :	(sec)
Area :	2.487 (in ²)				2:1 Correction :	1
Volume :	9.641 (in ³)					


Dia. 1	1.785	Ht. 1	3.876			
Dia. 2	1.775	Ht. 2	3.877	Fail Load	56300	lbs
Dia. 3	1.779	Ht. 3	3.877			
Dia. 4	1.782	Ht. 4	3.875			
Dia. 5	1.777	Weight (gm)	423.95			
Dia. 6	1.780	Sample #	01-010U			

GEOMECHANICAL LABORATORY

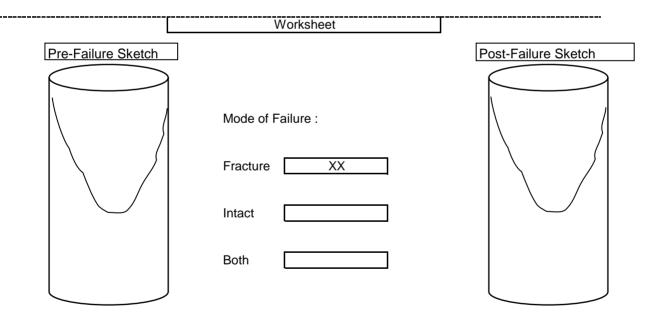
TUCSON, ARIZONA USA

			recount, muzonini obir			
Project #	2CM022	Uniovial	Compression Tes	t Poculte	Client	SRK
Date	5/4/2009	Ullaxia	Complession res	i Results	Location	
Technician	D.Streeter				Sample #	02-006U
		Sample #	02-006U		Rock Type	GRANITE
					Density :	169.3 (pcf)
		Fail Stress	18,603	psi		2,711.4 (kg/m ³)
			128.30	Мра		
Sar	mple Data :				Fail Stress	18,603 (psi)
Sample # :	02-006U	Modulus		psi		128.3 Mpa
Rock Type:	GRANITE	Poisson's				
Hole # :	C09-02					Test Data:
Depth :	179.54				Disp. Rate :	0.0003 (in/sec)
Alterations:					Load Rate :	(lbs/sec)
Diameter :	1.774 (in)				Gage Reading :	46,000 (lbs)
Height :	3.855 (in)				Mode of Failure	Intact
Weight :	423.52 (gm)				Test Duration :	(sec)
Area :	2.473 (in ²)				2:1 Correction :	1
Volume :	9.532 (in ³)					



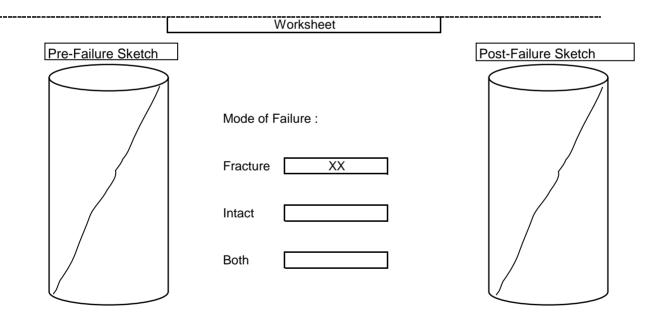
Dia. 1	1.774	Ht. 1	3.855			
Dia. 2	1.774	Ht. 2	3.855	Fail Load	46000	lbs
Dia. 3	1.775	Ht. 3	3.856			
Dia. 4	1.777	Ht. 4	3.855			
Dia. 5	1.773	Weight (gm)	423.52			
Dia. 6	1.774	Sample #	02-006U			

GEOMECHANICAL LABORATORY


Project #	2CM022	Uniovial	Compression Tes	t Poculte	Client	SRK
Date	5/4/2009	Ullaxia	Compression res	i Results	Location	
Technician	D.Streeter				Sample #	02-009U
		Sample #	02-009U		Rock Type	GRANITE
					Density :	166.8 (pcf)
		Fail Stress	21,731	psi		2,671.7 (kg/m ³)
			149.87	Мра	-	
Sar	nple Data :				Fail Stress	21,731 (psi)
Sample # :	02-009U	Modulus		psi		149.9 Mpa
Rock Type:	GRANITE	Poisson's				
Hole # :	C09-02				Т	est Data:
Depth :	271.9				Disp. Rate :	0.0003 (in/sec)
Alterations:					Load Rate :	(lbs/sec)
Diameter :	1.775 (in)				Gage Reading :	53,800 (lbs)
Height :	3.768 (in)				Mode of Failure	Intact
Weight :	408.47 (gm)				Test Duration :	(sec)
Area :	2.476 (in ²)				2:1 Correction :	1
Volume :	9.330 (in ³)					

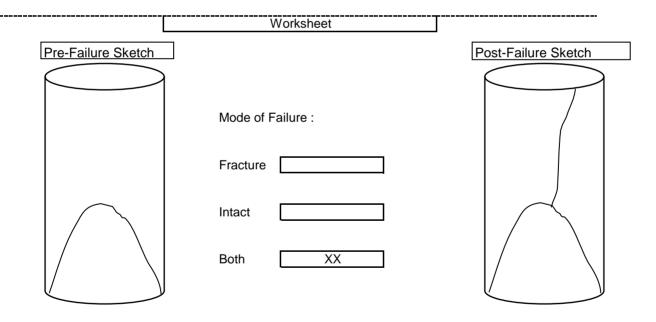
Dia. 1	1.774	Ht. 1	3.768			
Dia. 2	1.772	Ht. 2	3.771	Fail Load	53800	lbs
Dia. 3	1.777	Ht. 3	3.768			
Dia. 4	1.783	Ht. 4	3.768			
Dia. 5	1.776	Weight (gm)	408.47			
Dia. 6	1.771	Sample #	02-009U			

GEOMECHANICAL LABORATORY


Project #	2CM022	Uniovial	Compression Tes	t Poculte	Client	SRK
Date	5/4/2009	Ulliaxiai	Compression res	i Results	Location	
Technician	D.Streeter				Sample #	03-003U
		Sample #	03-003U		Rock Type	PK GRANITE
					Density :	158.5 (pcf)
		Fail Stress	10,483	psi		2,539.1 (kg/m ³)
			72.30	Мра		
Sai	mple Data :				Fail Stress	10,483 (psi)
Sample # :	03-003U	Modulus		psi		72.3 Mpa
Rock Type:	PK GRANITE	Poisson's				
Hole # :	C09-03					Test Data:
Depth :	77.33				Disp. Rate :	0.0003 (in/sec)
Alterations:					Load Rate :	(lbs/sec)
Diameter :	1.773 (in)				Gage Reading :	25,870 (lbs)
Height :	3.876 (in)				Mode of Failure	Fracture
Weight :	398.03 (gm)				Test Duration :	(sec)
Area :	2.468 (in ²)				2:1 Correction :	1
Volume :	9.566 (in ³)					

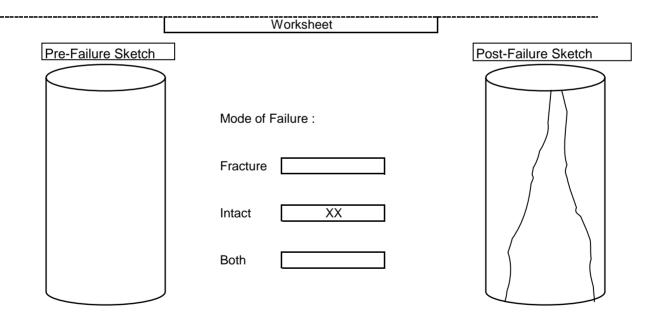
Dia. 1	1.772	Ht. 1	3.785			
Dia. 2	1.772	Ht. 2	4.160	Fail Load	25870	lbs
Dia. 3	1.772	Ht. 3	3.788			
Dia. 4	1.775	Ht. 4	3.773			
Dia. 5	1.773	Weight (gm)	398.03			
Dia. 6	1.772	Sample #	03-003U			

GEOMECHANICAL LABORATORY


Project #	2CM022	Uniovial	Compression Tes	t Poculte	Client	SRK
Date	5/4/2009	Uniaxiai	Compression res	i results	Location	
Technician	D.Streeter				Sample #	03-006U
		Sample #	03-006U		Rock Type	GRANITE
					Density :	164.9 (pcf)
		Fail Stress	9,574	psi		2,641.0 (kg/m ³)
			66.03	Мра		
Sar	nple Data :				Fail Stress	9,574 (psi)
Sample # :	03-006U	Modulus		psi		66.0 Mpa
Rock Type:	GRANITE	Poisson's				
Hole # :	C09-03					Test Data:
Depth :	130.84				Disp. Rate :	0.0003 (in/sec)
Alterations:					Load Rate :	(lbs/sec)
Diameter :	1.772 (in)				Gage Reading :	23,600 (lbs)
Height :	3.833 (in)				Mode of Failure	Fracture
Weight :	408.90 (gm)				Test Duration :	(sec)
Area :	2.465 (in ²)				2:1 Correction :	1
Volume :	9.448 (in ³)					

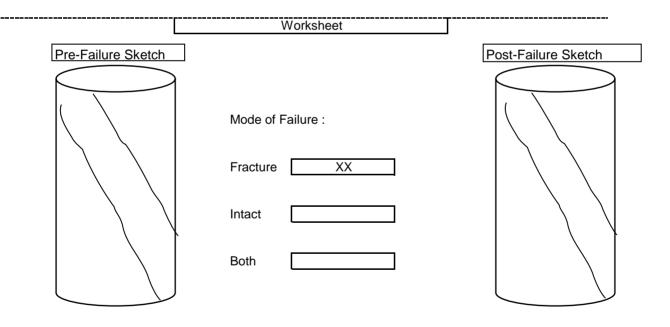
Dia. 1	1.777	Ht. 1	3.814			
Dia. 2	1.768	Ht. 2	3.840	Fail Load	23600	lbs
Dia. 3	1.768	Ht. 3	3.852			
Dia. 4	1.770	Ht. 4	3.825			
Dia. 5	1.770	Weight (gm)	408.90			
Dia. 6	1.776	Sample #	03-006U			

GEOMECHANICAL LABORATORY


Project #	2CM022	Uniovial	Compression Tes	t Poculte	Client	SRK
Date	5/4/2009	Ullaxia	Compression res		Location	
Technician	D.Streeter				Sample #	03-011U
		Sample #	03-011U		Rock Type	GRANITE
					Density :	167.7 (pcf)
		Fail Stress	14,881	psi		2,686.1 (kg/m ³)
			102.63	Мра	-	
Sar	nple Data :				Fail Stress	14,881 (psi)
Sample # :	03-011U	Modulus		psi		102.6 Mpa
Rock Type:	GRANITE	Poisson's				
Hole # :	C09-03				Т	est Data:
Depth :	282.1				Disp. Rate :	0.0003 (in/sec)
Alterations:					Load Rate :	(lbs/sec)
Diameter :	1.774 (in)				Gage Reading :	36,800 (lbs)
Height :	3.953 (in)				Mode of Failure	Both
Weight :	430.35 (gm)				Test Duration :	(sec)
Area :	2.473 (in ²)				2:1 Correction :	1
Volume :	9.777 (in ³)					

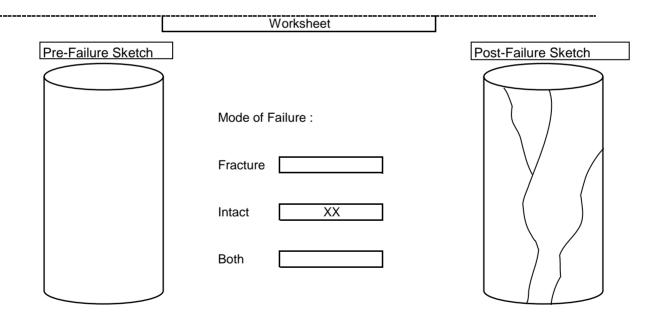
Dia. 1	1.772	Ht. 1	3.957			
Dia. 2	1.775	Ht. 2	3.953	Fail Load	36800	lbs
Dia. 3	1.773	Ht. 3	3.951			
Dia. 4	1.775	Ht. 4	3.953			
Dia. 5	1.777	Weight (gm)	430.35			
Dia. 6	1.775	Sample #	03-011U			

GEOMECHANICAL LABORATORY


Project #	2CM022	Uniovial	Compression Tes	t Poculte	Client	SRK
Date	5/4/2009	Ulliaxiai	Compression res	i Results	Location	
Technician	D.Streeter				Sample #	03-014U
		Sample #	03-014U		Rock Type	GRANITE
					Density :	169.1 (pcf)
		Fail Stress	21,690	psi		2,709.0 (kg/m ³)
			149.58	Мра	-	
Sar	nple Data :				Fail Stress	21,690 (psi)
Sample # :	03-014U	Modulus		psi		149.6 Mpa
Rock Type:	GRANITE	Poisson's			_	
Hole # :	C09-03				Т	est Data:
Depth :	361.7				Disp. Rate :	0.0003 (in/sec)
Alterations:					Load Rate :	(lbs/sec)
Diameter :	1.771 (in)				Gage Reading :	58,400 (lbs)
Height :	1.991 (in)				Mode of Failure	Intact
Weight :	217.79 (gm)				Test Duration :	(sec)
Area :	2.464 (in ²)				2:1 Correction :	0.915
Volume :	4.906 (in ³)					

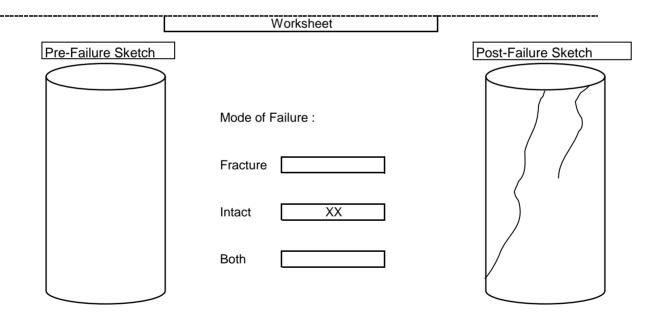
Dia. 1	1.773	Ht. 1	1.989			
Dia. 2	1.771	Ht. 2	1.992	Fail Load	58400	lbs
Dia. 3	1.771	Ht. 3	1.993			
Dia. 4	1.771	Ht. 4	1.992			
Dia. 5	1.770	Weight (gm)	217.79			
Dia. 6	1.772	Sample #	03-014U			

GEOMECHANICAL LABORATORY


Project #	2CM022	Uniovial	Compression Tes	t Poculte	Client	SRK
Date	5/4/2009	Ulliaxiai	Compression res	Results	Location	
Technician	D.Streeter				Sample #	04-001U
		Sample #	04-001U		Rock Type	LT GRANITE
					Density :	161.2 (pcf)
		Fail Stress	9,157	psi		2,581.4 (kg/m ³)
			63.15	Мра		
Sa	mple Data :				Fail Stress	9,157 (psi)
Sample # :	04-001U	Modulus		psi		63.2 Mpa
Rock Type:	LT GRANITE	Poisson's				
Hole # :	C09-04					Test Data:
Depth :	30.4				Disp. Rate :	0.0003 (in/sec)
Alterations:					Load Rate :	(lbs/sec)
Diameter :	1.777 (in)				Gage Reading :	22,700 (lbs)
Height :	3.653 (in)				Mode of Failure	Fracture
Weight :	383.03 (gm)				Test Duration :	(sec)
Area :	2.479 (in ²)				2:1 Correction :	1
Volume :	9.055 (in ³)					

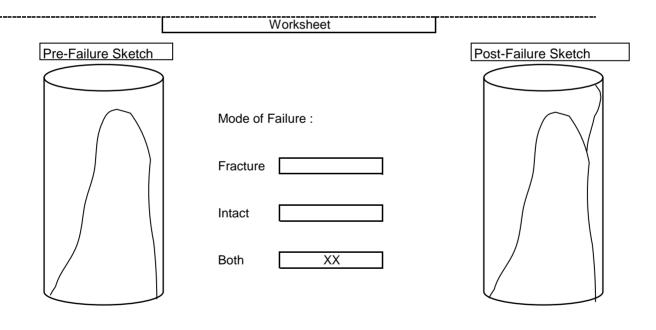
Dia. 1	1.772	Ht. 1	3.653			
Dia. 2	1.772	Ht. 2	3.653	Fail Load	22700	lbs
Dia. 3	1.771	Ht. 3	3.653			
Dia. 4	1.795	Ht. 4	3.652			
Dia. 5	1.773	Weight (gm)	383.03			
Dia. 6	1.776	Sample #	04-001U			

GEOMECHANICAL LABORATORY


Project #	2CM022	Uniovial	Compression Tes	t Poculte	Client	SRK
Date	5/4/2009	Uniaxiai	Compression res	i Results	Location	
Technician	D.Streeter				Sample #	04-003U
		Sample #	04-003U		Rock Type	GRANITE
					Density :	167.7 (pcf)
		Fail Stress	20,404	psi		2,686.2 (kg/m ³)
			140.72	Мра	-	
Sar	mple Data :				Fail Stress	20,404 (psi)
Sample # :	04-003U	Modulus		psi		140.7 Mpa
Rock Type:	GRANITE	Poisson's				
Hole # :	C09-04				Т	est Data:
Depth :	91.1				Disp. Rate :	0.0003 (in/sec)
Alterations:					Load Rate :	(lbs/sec)
Diameter :	1.777 (in)				Gage Reading :	50,600 (lbs)
Height :	3.911 (in)				Mode of Failure	Intact
Weight :	426.91 (gm)				Test Duration :	(sec)
Area :	2.480 (in ²)				2:1 Correction :	1
Volume :	9.698 (in ³)					

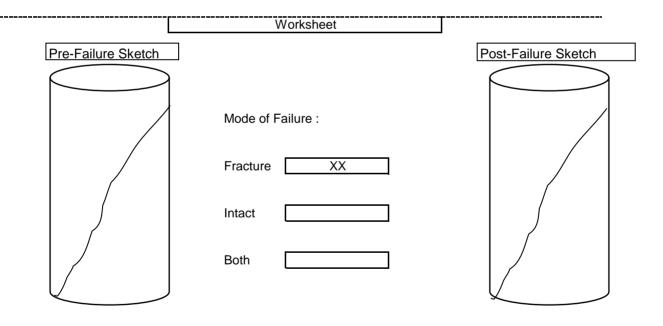
Dia. 1	1.782	Ht. 1	3.912			
Dia. 2	1.775	Ht. 2	3.910	Fail Load	50600	lbs
Dia. 3	1.775	Ht. 3	3.910			
Dia. 4	1.776	Ht. 4	3.911			
Dia. 5	1.775	Weight (gm)	426.91			
Dia. 6	1.779	Sample #	04-003U			

GEOMECHANICAL LABORATORY


Project #	2CM022	Uniovial	Compression Tes	t Poculte	Client	SRK
Date	5/4/2009	Uniaxiai	Compression res	i results	Location	
Technician	D.Streeter				Sample #	04-005U
		Sample #	04-005U		Rock Type	GRANITE
-					Density :	168.8 (pcf)
		Fail Stress	22,246	psi		2,703.6 (kg/m ³)
			153.42	Мра	-	
Sar	mple Data :				Fail Stress	22,246 (psi)
Sample # :	04-005U	Modulus		psi		153.4 Mpa
Rock Type:	GRANITE	Poisson's				
Hole # :	C09-04				Т	est Data:
Depth :	150.25				Disp. Rate :	0.0003 (in/sec)
Alterations:					Load Rate :	(lbs/sec)
Diameter :	1.773 (in)				Gage Reading :	54,900 (lbs)
Height :	3.921 (in)				Mode of Failure	Intact
Weight :	428.69 (gm)				Test Duration :	(sec)
Area :	2.468 (in ²)				2:1 Correction :	1
Volume :	9.676 (in ³)					

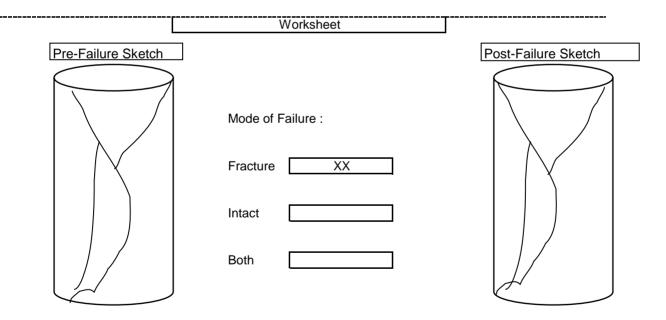
Dia. 1	1.772	Ht. 1	3.923			
Dia. 2	1.774	Ht. 2	3.921	Fail Load	54900	lbs
Dia. 3	1.771	Ht. 3	3.920			
Dia. 4	1.775	Ht. 4	3.919			
Dia. 5	1.774	Weight (gm)	428.69			
Dia. 6	1.770	Sample #	04-005U			

GEOMECHANICAL LABORATORY


Project #	2CM022	Uniovial	Compression Tes	t Poculte	Client	SRK
Date	5/4/2009	Ullaxia	Compression res	i Results	Location	
Technician	D.Streeter				Sample #	05-001U
		Sample #	05-001U		Rock Type	GRANITE
					Density :	165.6 (pcf)
		Fail Stress	10,284	psi		2,653.4 (kg/m ³)
			70.92	Мра	-	
Sai	mple Data :				Fail Stress	10,284 (psi)
Sample # :	05-001U	Modulus		psi		70.9 Mpa
Rock Type:	GRANITE	Poisson's				
Hole # :	C09-05				Т	est Data:
Depth :	33				Disp. Rate :	0.0003 (in/sec)
Alterations:					Load Rate :	(lbs/sec)
Diameter :	1.773 (in)				Gage Reading :	25,400 (lbs)
Height :	3.892 (in)				Mode of Failure	Both
Weight :	417.99 (gm)				Test Duration :	(sec)
Area :	2.470 (in ²)				2:1 Correction :	1
Volume :	9.613 (in ³)					

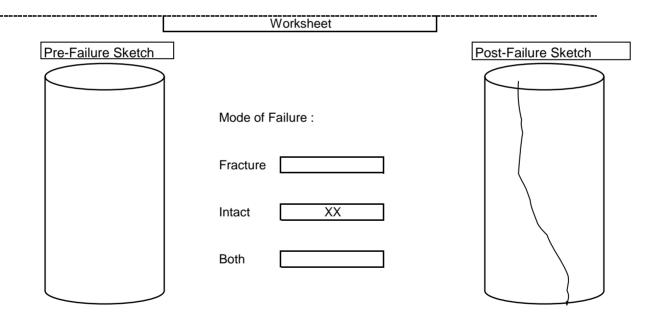
Dia. 1	1.772	Ht. 1	3.893			
Dia. 2	1.767	Ht. 2	3.893	Fail Load	25400	lbs
Dia. 3	1.789	Ht. 3	3.892			
Dia. 4	1.775	Ht. 4	3.891			
Dia. 5	1.768	Weight (gm)	417.99			
Dia. 6	1.770	Sample #	05-001U			

GEOMECHANICAL LABORATORY


Project #	2CM022	Uniovial	Compression Tes	t Doculto	Client	SRK
Date	5/4/2009	Uniaxiai	Compression res	i results	Location	
Technician	D.Streeter				Sample #	05-003U
		Sample #	05-003U		Rock Type	GRANITE
					Density :	163.4 (pcf)
		Fail Stress	10,780	psi		2,616.6 (kg/m ³)
			74.34	Мра		
San	mple Data :				Fail Stress	10,780 (psi)
Sample # :	05-003U	Modulus		psi		74.3 Mpa
Rock Type:	GRANITE	Poisson's				
Hole # :	C09-05					Test Data:
Depth :	92.7				Disp. Rate :	0.0003 (in/sec)
Alterations:					Load Rate :	(lbs/sec)
Diameter :	1.769 (in)				Gage Reading :	26,500 (lbs)
Height :	3.818 (in)				Mode of Failure	Fracture
Weight :	402.49 (gm)				Test Duration :	(sec)
Area :	2.458 (in ²)				2:1 Correction :	1
Volume :	9.387 (in ³)					

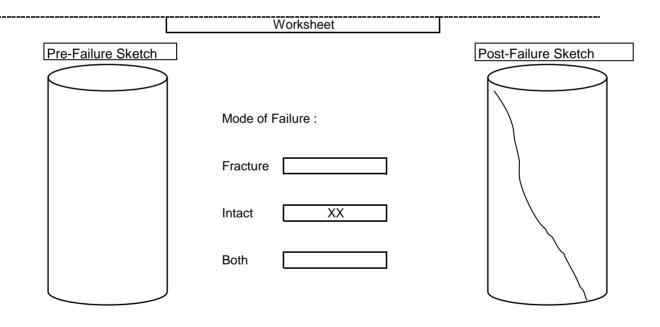
Dia. 1	1.771	Ht. 1	3.819			
Dia. 2	1.767	Ht. 2	3.819	Fail Load	26500	lbs
Dia. 3	1.767	Ht. 3	3.818			
Dia. 4	1.773	Ht. 4	3.818			
Dia. 5	1.771	Weight (gm)	402.49			
Dia. 6	1.767	Sample #	05-003U			

GEOMECHANICAL LABORATORY


Project #	2CM022	Uniovial	Compression Tes	t Poculto	Client	SRK
Date	5/4/2009	Uniaxiai	Compression res	i Results	Location	
Technician	D.Streeter				Sample #	06-001U
		Sample #	06-001U		Rock Type	GRANITE
					Density :	166.0 (pcf)
		Fail Stress	17,574	psi		2,659.8 (kg/m ³)
			121.20	Мра		
Sar	mple Data :				Fail Stress	17,574 (psi)
Sample # :	06-001U	Modulus		psi		121.2 Mpa
Rock Type:	GRANITE	Poisson's				
Hole # :	C09-06				-	Test Data:
Depth :	37.2				Disp. Rate :	0.0003 (in/sec)
Alterations:					Load Rate :	(lbs/sec)
Diameter :	1.771 (in)				Gage Reading :	43,300 (lbs)
Height :	3.841 (in)				Mode of Failure	Fracture
Weight :	412.53 (gm)				Test Duration :	(sec)
Area :	2.464 (in ²)				2:1 Correction :	1
Volume :	9.464 (in ³)					

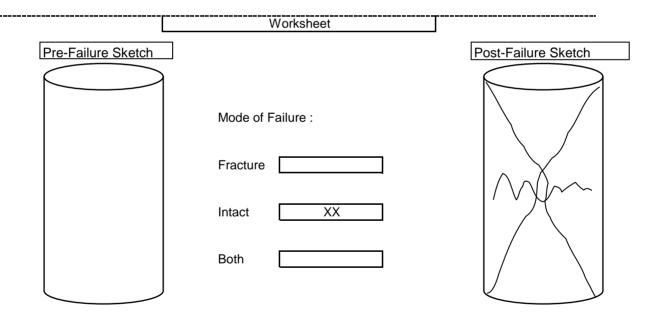
Dia. 1	1.770	Ht. 1	3.839			
Dia. 2	1.768	Ht. 2	3.843	Fail Load	43300	lbs
Dia. 3	1.777	Ht. 3	3.841			
Dia. 4	1.772	Ht. 4	3.843			
Dia. 5	1.770	Weight (gm)	412.53			
Dia. 6	1.771	Sample #	06-001U			

GEOMECHANICAL LABORATORY


Project #	2CM022	Uniovial	Compression Tes	t Poculte	Client	SRK
Date	5/4/2009	Uniaxiai	Compression res	i Results	Location	
Technician	D.Streeter				Sample #	06-003U
		Sample #	06-003U		Rock Type	GRANITE
					Density :	165.8 (pcf)
		Fail Stress	17,803	psi		2,655.7 (kg/m ³)
			122.78	Мра	-	
Sar	nple Data :				Fail Stress	17,803 (psi)
Sample # :	06-003U	Modulus		psi		122.8 Mpa
Rock Type:	GRANITE	Poisson's				
Hole # :	C09-06				Т	est Data:
Depth :	108.35				Disp. Rate :	0.0003 (in/sec)
Alterations:					Load Rate :	(lbs/sec)
Diameter :	1.774 (in)				Gage Reading :	44,400 (lbs)
Height :	3.309 (in)				Mode of Failure	Intact
Weight :	355.87 (gm)				Test Duration :	(sec)
Area :	2.472 (in ²)				2:1 Correction :	0.991
Volume :	8.177 (in ³)					

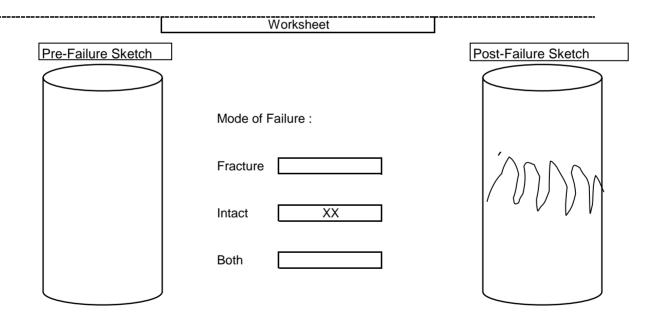
Dia. 1	1.773	Ht. 1	3.308			
Dia. 2	1.773	Ht. 2	3.309	Fail Load	44400	lbs
Dia. 3	1.774	Ht. 3	3.310			
Dia. 4	1.775	Ht. 4	3.309			
Dia. 5	1.778	Weight (gm)	355.87			
Dia. 6	1.772	Sample #	06-003U			

GEOMECHANICAL LABORATORY


Project #	2CM022	Uniovial	Compression Tes	t Poculte	Client	SRK
Date	5/4/2009	Uniaxiai	Compression res	i results	Location	
Technician	D.Streeter				Sample #	06-004U
		Sample #	06-004U		Rock Type	GRANITE
					Density :	167.4 (pcf)
		Fail Stress	14,601	psi		2,680.8 (kg/m ³)
			100.70	Мра	-	
Sar	nple Data :				Fail Stress	14,601 (psi)
Sample # :	06-004U	Modulus		psi		100.7 Mpa
Rock Type:	GRANITE	Poisson's			_	
Hole # :	C09-06				Т	est Data:
Depth :	138				Disp. Rate :	0.0003 (in/sec)
Alterations:					Load Rate :	(lbs/sec)
Diameter :	1.776 (in)				Gage Reading :	39,000 (lbs)
Height :	2.154 (in)				Mode of Failure	Intact
Weight :	234.59 (gm)				Test Duration :	(sec)
Area :	2.479 (in ²)				2:1 Correction :	0.928
Volume :	5.340 (in ³)					

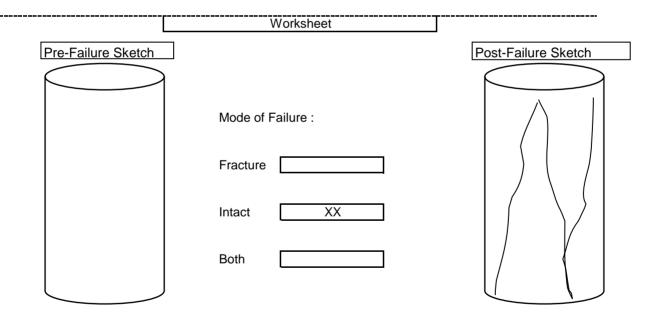
Dia. 1	1.779	Ht. 1	2.156			
Dia. 2	1.774	Ht. 2	2.155	Fail Load	39000	lbs
Dia. 3	1.780	Ht. 3	2.154			
Dia. 4	1.780	Ht. 4	2.153			
Dia. 5	1.774	Weight (gm)	234.59			
Dia. 6	1.773	Sample #	06-004U			

GEOMECHANICAL LABORATORY

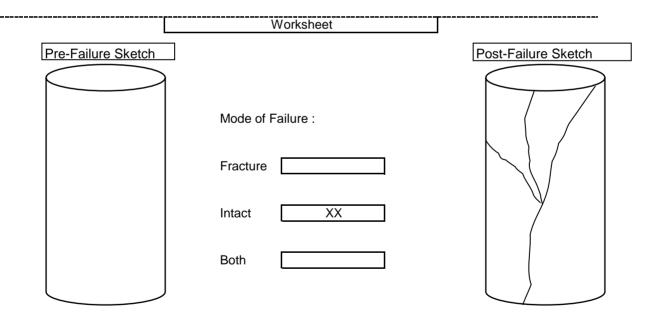

Project #	2CM022_006	Uniovio	I Compression Test	Poculto	Client	SRK
Date	7/22/2009	Ullaxia		Results	Location	MINTO
Technician	D.Streeter				Sample #	C09-07-01U
		Sample #	C09-07-01U		Rock Type	GRANITE
<u> </u>					Density :	170.0 (pcf)
		Fail Stress	24,982	psi		2,723.5 (kg/m ³)
			172.29	Мра	-	
Sa	mple Data :				Fail Stress	24,982 (psi)
Sample # :	C09-07-01U	Modulus		psi		172.3 Mpa
Rock Type:	GRANITE	Poisson's				
Hole # :	C09-07				Т	est Data:
Depth :	29.32-29.48				Disp. Rate :	0.0003 (in/sec)
Alterations:					Load Rate :	(lbs/sec)
Diameter :	1.772 (in)				Gage Reading :	61,600 (lbs)
Height :	3.812 (in)				Mode of Failure	Intact
Weight :	419.54 (gm)				Test Duration :	(sec)
Area :	2.466 (in ²)				2:1 Correction :	1
Volume :	9.400 (in ³)					

Dia. 1	1.771	Ht. 1	3.812			
Dia. 2	1.770	Ht. 2	3.811	Fail Load	61600	lbs
Dia. 3	1.770	Ht. 3	3.813			
Dia. 4	1.779	Ht. 4	3.814			
Dia. 5	1.771	Weight (gm)	419.54			
Dia. 6	1.771	Sample #	C09-07-01U			

GEOMECHANICAL LABORATORY

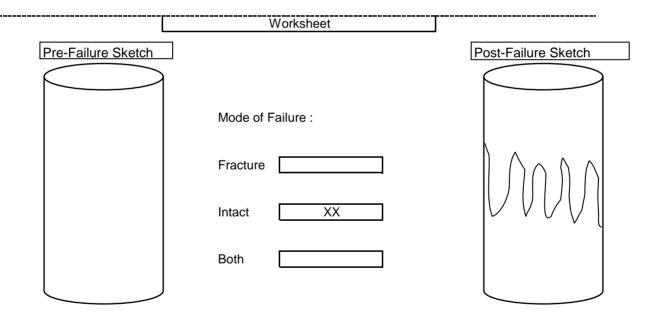

Project #	2CM022_006	Liniavia	al Compression Test	Poculte	Client	SRK
Date	7/22/2009	Ullaxia		Results	Location	MINTO
Technician	D.Streeter				Sample #	C09-07-03U
		Sample #	C09-07-03U		Rock Type	GRANITE
-					Density :	169.1 (pcf)
		Fail Stress	20,255	psi		2,707.8 (kg/m ³)
			139.69	Мра	-	
Sai	mple Data :				Fail Stress	20,255 (psi)
Sample # :	C09-07-03U	Modulus		psi		139.7 Mpa
Rock Type:	GRANITE	Poisson's				
Hole # :	C09-07				Т	est Data:
Depth :	86.34-86.52				Disp. Rate :	0.0003 (in/sec)
Alterations:					Load Rate :	(lbs/sec)
Diameter :	1.775 (in)				Gage Reading :	50,100 (lbs)
Height :	3.858 (in)				Mode of Failure	Intact
Weight :	423.39 (gm)				Test Duration :	(sec)
Area :	2.473 (in ²)				2:1 Correction :	1
Volume :	9.541 (in ³)					

Dia. 1	1.781	Ht. 1	3.857			
Dia. 2	1.773	Ht. 2	3.858	Fail Load	50100	lbs
Dia. 3	1.772	Ht. 3	3.859			
Dia. 4	1.777	Ht. 4	3.858			
Dia. 5	1.772	Weight (gm)	423.39			
Dia. 6	1.773	Sample #	C09-07-03U			


GEOMECHANICAL LABORATORY

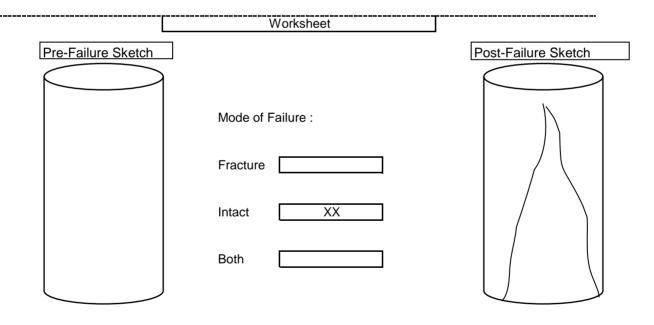
Project #	2CM022_006	Uniovia	I Compression Test	Poculto	Client	SRK
Date	7/22/2009	Ullaxia		Results	Location	MINTO
Technician	D.Streeter				Sample #	C09-07-05U
		Sample #	C09-07-05U		Rock Type	GRANITE
					Density :	167.6 (pcf)
		Fail Stress	18,078	psi		2,685.0 (kg/m ³)
			124.68	Мра	-	
Sa	mple Data :				Fail Stress	18,078 (psi)
Sample # :	C09-07-05U	Modulus		psi		124.7 Mpa
Rock Type:	GRANITE	Poisson's			_	
Hole # :	C09-07				Т	est Data:
Depth :	124.57-124.76				Disp. Rate :	0.0003 (in/sec)
Alterations:					Load Rate :	(lbs/sec)
Diameter :	1.766 (in)				Gage Reading :	44,300 (lbs)
Height :	3.872 (in)				Mode of Failure	Intact
Weight :	417.48 (gm)				Test Duration :	(sec)
Area :	2.450 (in ²)				2:1 Correction :	1
Volume :	9.488 (in ³)					

Dia. 1	1.766	Ht. 1	3.873			
Dia. 2	1.765	Ht. 2	3.874	Fail Load	44300	lbs
Dia. 3	1.767	Ht. 3	3.876			
Dia. 4	1.765	Ht. 4	3.866			
Dia. 5	1.767	Weight (gm)	417.48			
Dia. 6	1.769	Sample #	C09-07-05U			


Project #	2CM022_006	Uniovia	al Compression Test	Poculto	Client	SRK
Date	7/22/2009	Ullaxia		Results	Location	MINTO
Technician	D.Streeter				Sample #	C09-08-01U
		Sample #	C09-08-01U		Rock Type	GRANITE
					Density :	168.9 (pcf)
		Fail Stress	22,867	psi		2,704.7 (kg/m ³)
			157.71	Мра	-	
Sa	ample Data :				Fail Stress	22,867 (psi)
Sample # :	C09-08-01U	Modulus		psi		157.7 Mpa
Rock Type:	GRANITE	Poisson's				
Hole # :	C09-08				1	est Data:
Depth :	47.53-47.74				Disp. Rate :	0.0003 (in/sec)
Alterations:					Load Rate :	(lbs/sec)
Diameter :	1.769 (in)				Gage Reading :	56,200 (lbs)
Height :	3.863 (in)				Mode of Failure	Intact
Weight :	420.80 (gm)				Test Duration :	(sec)
Area :	2.458 (in ²)				2:1 Correction :	1
Volume :	9.494 (in ³)					

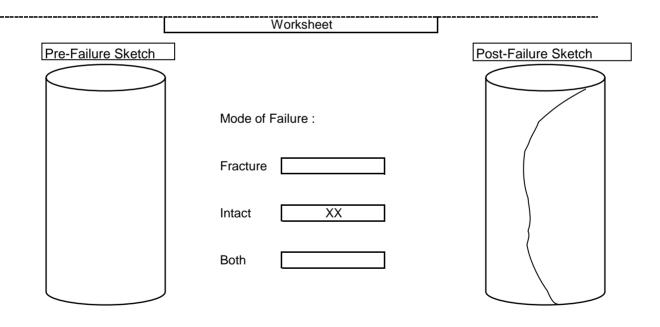
Dia. 1	1.771	Ht. 1	3.864			
Dia. 2	1.769	Ht. 2	3.865	Fail Load	56200	lbs
Dia. 3	1.767	Ht. 3	3.861			
Dia. 4	1.773	Ht. 4	3.862			
Dia. 5	1.767	Weight (gm)	420.80			
Dia. 6	1.767	Sample #	C09-08-01U			

GEOMECHANICAL LABORATORY


Project #	2CM022_006	Uniovia	I Compression Test	Poculto	Client	SRK
Date	7/22/2009	Uniaxia		Results	Location	MINTO
Technician	D.Streeter				Sample #	C09-08-04U
		Sample #	C09-08-04U		Rock Type	GRANITE
					Density :	168.5 (pcf)
		Fail Stress	13,676	psi		2,698.7 (kg/m ³)
			94.31	Мра	-	
Sa	mple Data :				Fail Stress	13,676 (psi)
Sample # :	C09-08-04U	Modulus		psi		94.3 Mpa
Rock Type:	GRANITE	Poisson's				
Hole # :	C09-08				Т	est Data:
Depth :	89.15-89.39				Disp. Rate :	0.0003 (in/sec)
Alterations:					Load Rate :	(lbs/sec)
Diameter :	1.774 (in)				Gage Reading :	33,800 (lbs)
Height :	3.916 (in)				Mode of Failure	Intact
Weight :	428.04 (gm)				Test Duration :	(sec)
Area :	2.472 (in ²)				2:1 Correction :	1
Volume :	9.679 (in ³)					

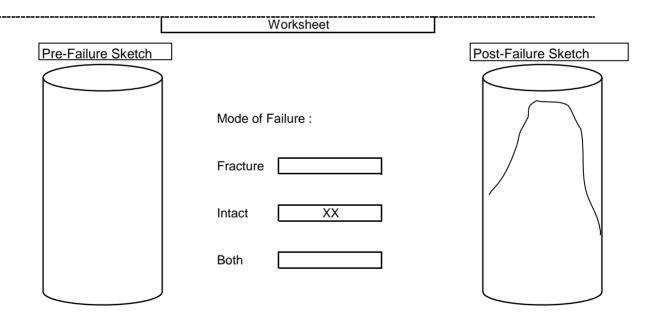
Dia. 1	1.773	Ht. 1	3.915			
Dia. 2	1.772	Ht. 2	3.915	Fail Load	33800	lbs
Dia. 3	1.776	Ht. 3	3.919			
Dia. 4	1.777	Ht. 4	3.916			
Dia. 5	1.773	Weight (gm)	428.04			
Dia. 6	1.774	Sample #	C09-08-04U			

GEOMECHANICAL LABORATORY


Project #	2CM022_006	Uniovia	al Compression Test	Poculto	Client	SRK
Date	7/22/2009	Ullaxia		Results	Location	MINTO
Technician	D.Streeter				Sample #	C09-08-07U
		Sample #	C09-08-07U		Rock Type	GRANITE
					Density :	167.9 (pcf)
		Fail Stress	22,273	psi		2,689.5 (kg/m ³)
			153.60	Мра	-	
Sa	mple Data :				Fail Stress	22,273 (psi)
Sample # :	C09-08-07U	Modulus		psi		153.6 Mpa
Rock Type:	GRANITE	Poisson's				
Hole # :	C09-08				Т	est Data:
Depth :	129.4-129.65				Disp. Rate :	0.0003 (in/sec)
Alterations:					Load Rate :	(lbs/sec)
Diameter :	1.770 (in)				Gage Reading :	54,800 (lbs)
Height :	3.884 (in)				Mode of Failure	Intact
Weight :	421.15 (gm)				Test Duration :	(sec)
Area :	2.460 (in ²)				2:1 Correction :	1
Volume :	9.555 (in ³)					

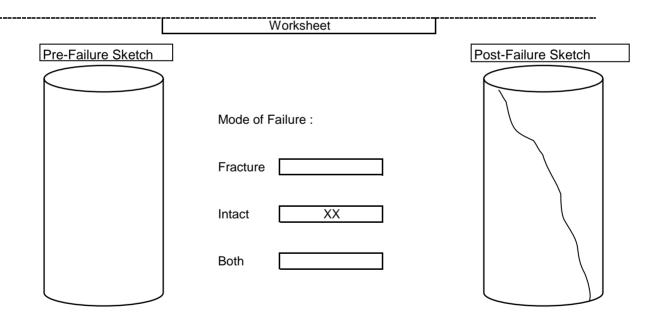
Dia. 1	1.767	Ht. 1	3.883			
Dia. 2	1.770	Ht. 2	3.884	Fail Load	54800	lbs
Dia. 3	1.772	Ht. 3	3.885			
Dia. 4	1.774	Ht. 4	3.884			
Dia. 5	1.770	Weight (gm)	421.15			
Dia. 6	1.768	Sample #	C09-08-07U			

GEOMECHANICAL LABORATORY


Project #	2CM022	Uniovial	Compression Tes	t Doculto	Client	SRK
Date	5/4/2009	Uniaxiai	Compression res	i Results	Location	
Technician	D.Streeter				Sample #	01-001E
		Sample #	01-001E		Rock Type	GRANITE
					Density :	166.3 (pcf)
		Fail Stress	12,790	psi		2,663.7 (kg/m ³)
			88.21	Мра	-	
Sar	nple Data :				Fail Stress	12,790 (psi)
Sample # :	01-001E	Modulus	7.32E+06	psi		88.2 Mpa
Rock Type:	GRANITE	Poisson's	0.217			
Hole # :	C09-01				Т	est Data:
Depth :	32.1				Disp. Rate :	0.0003 (in/sec)
Alterations:					Load Rate :	(lbs/sec)
Diameter :	1.774 (in)				Gage Reading :	31,600 (lbs)
Height :	3.830 (in)				Mode of Failure	Intact
Weight :	413.02 (gm)				Test Duration :	(sec)
Area :	2.471 (in ²)				2:1 Correction :	1
Volume :	9.462 (in ³)					

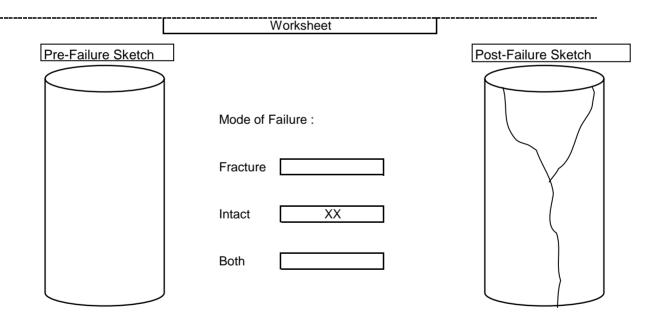
Dia. 1	1.770	Ht. 1	3.840			
Dia. 2	1.774	Ht. 2	3.835	Fail Load	31600	lbs
Dia. 3	1.779	Ht. 3	3.823			
Dia. 4	1.778	Ht. 4	3.822			
Dia. 5	1.771	Weight (gm)	413.02			
Dia. 6	1.771	Sample #	01-001E			

GEOMECHANICAL LABORATORY


Project #	2CM022		Compression Tes	t Poculto	Client	SRK
Date	5/4/2009	Uniaxial			Location	
Technician	D.Streeter				Sample #	01-008E
		Sample #	01-008E		Rock Type	GRANITE
					Density :	169.4 (pcf)
		Fail Stress	23,878	psi		2,713.3 (kg/m ³)
			164.68	Мра	-	
Sar	nple Data :				Fail Stress	23,878 (psi)
Sample # :	01-008E	Modulus	9.65E+06	psi		164.7 Mpa
Rock Type:	GRANITE	Poisson's	0.302			
Hole # :	C09-01				Т	est Data:
Depth :	220.3				Disp. Rate :	0.0003 (in/sec)
Alterations:					Load Rate :	(lbs/sec)
Diameter :	1.775 (in)				Gage Reading :	59,100 (lbs)
Height :	4.038 (in)				Mode of Failure	Intact
Weight :	444.35 (gm)				Test Duration :	(sec)
Area :	2.475 (in ²)				2:1 Correction :	1
Volume :	9.993 (in ³)					

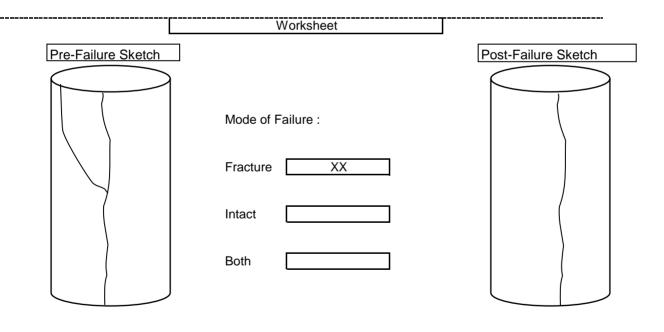
Dia. 1	1.774	Ht. 1	4.048			
Dia. 2	1.775	Ht. 2	4.046	Fail Load	59100	lbs
Dia. 3	1.775	Ht. 3	4.033			
Dia. 4	1.773	Ht. 4	4.025			
Dia. 5	1.778	Weight (gm)	444.35			
Dia. 6	1.776	Sample #	01-008E			

GEOMECHANICAL LABORATORY


Project #	2CM022	Uniovial	Compression Tes	t Doculto	Client	SRK
Date	5/4/2009	Uniaxiai	Compression res	Results	Location	
Technician	D.Streeter				Sample #	02-004E
		Sample #	02-004E		Rock Type	GRANITE
					Density :	166.6 (pcf)
		Fail Stress	10,395	psi		2,668.0 (kg/m ³)
			71.69	Мра	-	
San	nple Data :				Fail Stress	10,395 (psi)
Sample # :	02-004E	Modulus	7.14E+06	psi		71.7 Mpa
Rock Type:	GRANITE	Poisson's	0.214			
Hole # :	C09-02				Т	est Data:
Depth :	122.67				Disp. Rate :	0.0003 (in/sec)
Alterations:					Load Rate :	(lbs/sec)
Diameter :	1.771 (in)				Gage Reading :	25,600 (lbs)
Height :	3.905 (in)				Mode of Failure	Intact
Weight :	420.48 (gm)				Test Duration :	(sec)
Area :	2.463 (in ²)				2:1 Correction :	1
Volume :	9.617 (in ³)					

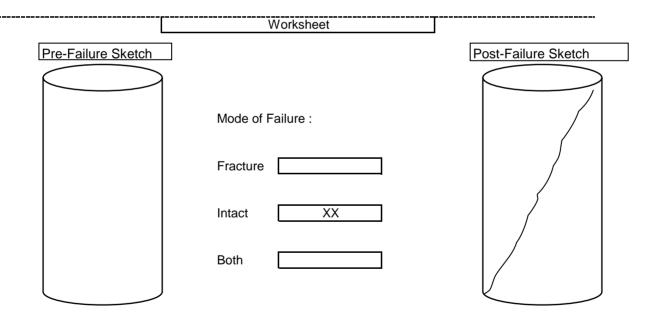
Dia. 1	1.769	Ht. 1	3.907			
Dia. 2	1.773	Ht. 2	3.906	Fail Load	25600	lbs
Dia. 3	1.773	Ht. 3	3.905			
Dia. 4	1.768	Ht. 4	3.904			
Dia. 5	1.768	Weight (gm)	420.48			
Dia. 6	1.774	Sample #	02-004E			

GEOMECHANICAL LABORATORY


Project #	2CM022	Uniovial	Compression Tes	t Poculte	Client	SRK
Date	5/4/2009	Uniaxial			Location	
Technician	D.Streeter				Sample #	03-002E
		Sample #	03-002E		Rock Type	LT GRANITE
•					Density :	164.2 (pcf)
		Fail Stress	7,096	psi		2,630.8 (kg/m ³)
			48.94	Мра	-	
Sai	mple Data :				Fail Stress	7,096 (psi)
Sample # :	03-002E	Modulus	2.16E+06	psi		48.9 Mpa
Rock Type:	LT GRANITE	Poisson's	0.084			
Hole # :	C09-03				Т	est Data:
Depth :	38				Disp. Rate :	0.0003 (in/sec)
Alterations:					Load Rate :	(lbs/sec)
Diameter :	1.767 (in)				Gage Reading :	17,400 (lbs)
Height :	3.699 (in)				Mode of Failure	Intact
Weight :	391.01 (gm)				Test Duration :	(sec)
Area :	2.452 (in ²)				2:1 Correction :	1
Volume :	9.070 (in ³)					

Dia. 1	1.766	Ht. 1	3.681			
Dia. 2	1.765	Ht. 2	3.688	Fail Load	17400	lbs
Dia. 3	1.767	Ht. 3	3.710			
Dia. 4	1.770	Ht. 4	3.717			
Dia. 5	1.767	Weight (gm)	391.01			
Dia. 6	1.767	Sample #	03-002E			

GEOMECHANICAL LABORATORY

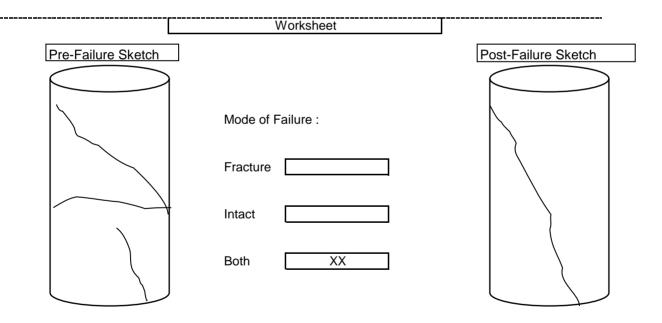

Project #	2CM022	Uniovial	Compression Tes	t Poculte	Client	SRK
Date	5/4/2009	Uniaxiai			Location	
Technician	D.Streeter				Sample #	03-007E
		Sample #	03-007E		Rock Type	GRANITE
					Density :	168.6 (pcf)
		Fail Stress	15,136	psi		2,700.3 (kg/m ³)
			104.39	Мра		
Sar	nple Data :				Fail Stress	15,136 (psi)
Sample # :	03-007E	Modulus	6.86E+06	psi		104.4 Mpa
Rock Type:	GRANITE	Poisson's	0.228			
Hole # :	C09-03				•	Test Data:
Depth :	161.03				Disp. Rate :	0.0003 (in/sec)
Alterations:					Load Rate :	(lbs/sec)
Diameter :	1.774 (in)				Gage Reading :	37,400 (lbs)
Height :	3.890 (in)				Mode of Failure	Fracture
Weight :	425.37 (gm)				Test Duration :	(sec)
Area :	2.471 (in ²)				2:1 Correction :	1
Volume :	9.613 (in ³)					

Dia. 1	1.776	Ht. 1	3.892			
Dia. 2	1.773	Ht. 2	3.890	Fail Load	37400	lbs
Dia. 3	1.772	Ht. 3	3.890			
Dia. 4	1.774	Ht. 4	3.890			
Dia. 5	1.772	Weight (gm)	425.37			
Dia. 6	1.775	Sample #	03-007E			

GEOMECHANICAL LABORATORY

Project #	2CM022	Uniovial	Compression Tes	t Poculte	Client	SRK
Date	5/4/2009	Uniaxiai	Compression res		Location	
Technician	D.Streeter				Sample #	05-005E
		Sample #	05-005E		Rock Type	PK GRANITE
					Density :	167.2 (pcf)
		Fail Stress	12,573	psi		2,677.7 (kg/m ³)
			86.71	Мра	-	
Sai	mple Data :				Fail Stress	12,573 (psi)
Sample # :	05-005E	Modulus	7.82E+06	psi		86.7 Mpa
Rock Type:	PK GRANITE	Poisson's	0.262			
Hole # :	C09-05				Т	est Data:
Depth :	150.11				Disp. Rate :	0.0003 (in/sec)
Alterations:					Load Rate :	(lbs/sec)
Diameter :	1.769 (in)				Gage Reading :	30,900 (lbs)
Height :	3.879 (in)				Mode of Failure	Intact
Weight :	418.29 (gm)				Test Duration :	(sec)
Area :	2.458 (in ²)				2:1 Correction :	1
Volume :	9.532 (in ³)					

Dia. 1	1.768	Ht. 1	3.879			
Dia. 2	1.769	Ht. 2	3.879	Fail Load	30900	lbs
Dia. 3	1.772	Ht. 3	3.879			
Dia. 4	1.768	Ht. 4	3.878			
Dia. 5	1.770	Weight (gm)	418.29			
Dia. 6	1.768	Sample #	05-005E			


GEOMECHANICAL LABORATORY

TUCSON, ARIZONA USA

Project #	2CM022				Client	SRK
Date	5/4/2009	Uniaxial	Compression Tes	t Results	Location	
Technician	D.Streeter				Sample #	06-002E
		Sample #	06-002E		Rock Type	PK GRANITE
					Density :	165.6 (pcf)
		Fail Stress	19,041	psi		2,652.7 (kg/m ³)
			131.32	Мра	-	
Sa	mple Data :				Fail Stress	19,041 (psi)
Sample # :	06-002E	Modulus	7.61E+06	psi		131.3 Mpa
Rock Type:	PK GRANITE	Poisson's	0.294		_	
Hole # :	C09-06				Т	est Data:
Depth :	71.22				Disp. Rate :	0.0003 (in/sec)
Alterations:					Load Rate :	(lbs/sec)
Diameter :	1.773 (in)				Gage Reading :	47,000 (lbs)
Height :	3.942 (in)				Mode of Failure	Both
Weight :	423.02 (gm)				Test Duration :	(sec)
Area :	2.468 (in ²)				2:1 Correction :	1
Volume :	9.731 (in ³)					

Dia. 1	1.777	Ht. 1	3.940			
Dia. 2	1.772	Ht. 2	3.943	Fail Load	47000	lbs
Dia. 3	1.772	Ht. 3	3.946			
Dia. 4	1.774	Ht. 4	3.941			
Dia. 5	1.770	Weight (gm)	423.02			
Dia. 6	1.773	Sample #	06-002E			

Triaxial Compressive Strength Testing

TUCSON, ARIZONA USA

Project #	2CM022		Client	SRK
Date	5/7/2009	Triaxial Compression Test Results	Location	
Technician	D.Streeter	Failure Data:	Sample #	01-002T
		Sample # 01-002T	Rock Type	GRANITE
1		U.S. Standard	Density :	168.3 (pcf)
		Sigma 3 Sigma 1		2,696.0 (kg/m ³)
		(psi) (psi)	L	
San	nple Data :	1,000 32,214 Peak	Test	Data:
Sample # :	01-002T	0	Disp. Rate :	0.0003 (in/sec)
Rock Type	GRANITE	0 7 % %	Load Rate :	(lbs/sec)
Hole # :	C09-01	0 0 0 0 0	Gage Reading :	79,500 (lbs)
Depth :	59.88	0 %	Mode of Failure	Intact
Alterations			Test Duration :	(sec)
Diameter :	1.773 (in)			
Height :	3.939 (in)	Metric Standard		
Weight :	429.42 (gm)	Sigma 3 Sigma 1		
Area :	2.468 (in ²)	(MPa) (MPa)		
Volume :	9.720 (in ³)	6.90 222.2 Peak		
1				
		#VALUE! 0.0		
		#VALUE! 0.0		
		#VALUE! 0.0 #VALUE! 0.0 #VALUE! 0.0 #VALUE! 0.0 #VALUE! 0.0		
	l	Worksheet		
	$\langle \rangle$	l f	+	
			\mathbf{i}	
		Mode of Failure :		
		Fracture		
			\backslash	
		Intact XX		
			\setminus	
	Į .			
		Both		

Pre-Failure Sketch

Dia. 1	1.774	Ht. 1	3.938
Dia. 2	1.774	Ht. 2	3.940
Dia. 3	1.772	Ht. 3	3.940
Dia. 4	1.771	Ht. 4	3.937
Dia. 5	1.773	Weight (gm)	429.42
Dia. 6	1.772	Sample #	01-002T

Sigma 3 (psi)	Fail Load
1,000	gage (lbs) 79,500
	0
	0
	0
	0

TUCSON, ARIZONA USA

Project #	2CM022		Client	SRK
Date	5/7/2009	Triaxial Compression Test Results	Location	
Technician	D.Streeter	Failure Data:	Sample #	01-005T
		Sample # 01-005T	Rock Type	GRANITE
		U.S. Standard	Density :	167.1 (pcf)
		Sigma 3 Sigma 1		2,677.3 (kg/m ³)
		(psi) (psi)	· · · ·	
San	nple Data :	2,500 40,141 Peak	Test	t Data:
Sample # :	01-005T		Disp. Rate :	0.0003 (in/sec)
Rock Type	GRANITE	0 7602	Load Rate :	(lbs/sec)
Hole # :	C09-01	0 94	Gage Reading :	99,500 (lbs)
Depth :	153.3	0 0 0 0 0	Mode of Failure	Intact
Alterations			Test Duration :	(sec)
Diameter :	1.776 (in)			
Height :	3.796 (in)	Metric Standard		
Weight :	412.81 (gm)	Sigma 3 Sigma 1		
Area :	2.479 (in ²)	(MPa) (MPa)		
Volume :	9.409 (in ³)	17.24 276.8 Peak		
	X/	#VALUE! 0.0		
		#VALUE! 0.0 %		
		#VALUE! 0.0		
		#VALUE! 0.0 #VALUE! 0.0 #VALUE! 0.0 #VALUE! 0.0 #VALUE! 0.0		
		Worksheet		
		WORKSHEEL		
			+	
			\backslash	
		Mode of Failure :		
			\backslash	
		Fracture	$\langle \rangle$	
		Intact XX	$\langle \rangle$	
			\setminus	
		Both		

Pre-Failure Sketch

Dia. 1	1.775	Ht. 1	3.797
Dia. 2	1.775	Ht. 2	3.796
Dia. 3	1.779	Ht. 3	3.795
Dia. 4	1.775	Ht. 4	3.796
Dia. 5	1.779	Weight (gm)	412.81
Dia. 6	1.777	Sample #	01-005T

Sigma 3	Fail Load
(psi)	gage (lbs)
2,500	99,500
	0
	0
	0
	0

TUCSON, ARIZONA USA

SRK 02-005T GRANITE 167.8 (pcf) 2,688.3 (kg/m³) Test Data: 0.0003 (in/sec (lbs/sec ng : 76,700 (lbs) lure Intact on : (sec)
GRANITE 167.8 (pcf) 2,688.3 (kg/m ³) Test Data: 0.0003 (in/sec (lbs/sec ng : 76,700 (lbs) lure Intact
GRANITE 167.8 (pcf) 2,688.3 (kg/m ³) Test Data: 0.0003 (in/sec (lbs/sec ng : 76,700 (lbs) lure Intact
167.8 (pcf) 2,688.3 (kg/m³) Test Data: 0.0003 (in/sec (lbs/sec ng : 76,700 (lbs) lure Intact
2,688.3 (kg/m ³ Test Data: 0.0003 (in/sec (lbs/sec ng : 76,700 (lbs) lure Intact
Test Data: 0.0003 (in/sec (lbs/sec ng : 76,700 (lbs) lure Intact
0.0003 (in/sec (lbs/sec ng : 76,700 (lbs) lure Intact
0.0003 (in/sec (lbs/sec ng : 76,700 (lbs) lure Intact
ng : 76,700 (lbs) lure Intact
ng : 76,700 (lbs) lure Intact
lure Intact
on : (sec)
_
\supset
-
$\boldsymbol{\mathcal{X}}$

Pre-Failure Sketch

Dia. 1	1.774	Ht. 1	3.350
Dia. 2	1.774	Ht. 2	3.350
Dia. 3	1.775	Ht. 3	3.349
Dia. 4	1.773	Ht. 4	3.350
Dia. 5	1.779	Weight (gm)	365.03
Dia. 6	1.774	Sample #	02-005T

Sigma 3	Fail Load
(psi)	gage (lbs)
1,500	76,700
	0
	0
	0
	0

TUCSON, ARIZONA USA

			CDK
Triaxial Compression Test Results			SRK
			02-007T
			GRANITE
1	4	Density :	168.2 (pcf)
-		L	2,693.6 (kg/m ³)
			.
,			
			0.0003 (in/sec)
	- Six		(lbs/sec)
	- ¹ 43/6		105,000 (lbs)
0	0.		Intact
		Test Duration :	(sec)
atula Ctau dau d	7		
	-		
-			
, , ,			
	^{'e} sia		
	- ⁴ 43/		
LUE! 0.0	য		
M/orlich oct			
worksneet			
		$\left(+ \right)$	
e of Failure ·			
s of t allaro .			
ture			
t XX	7		
t XX]		
t XX	2		
t XX] 1		
	ailure Data: Die # 02-0071	Failure Data: Del# 02-007T S. Standard na 3 Sigma 1 si) (psi) Peak 0 42,659 Peak 0 0 Residues 00 42,659 Peak 0 0 Residues 0 0 Residues 0 0 Residues 0 0 Residues etric Standard 0 Residues na 3 Sigma 1 Pa) (MPa) Residues .79 294.2 Peak LUE! 0.0 Residues LUE! 0.0 Residues Worksheet Worksheet Worksheet	Failure Data: Sample # De # 02-007T Rock Type Ima 3 Sigma 1 si) (psi) 000 42,659 0 Rescipation 00 Rescipation

Pre-Failure Sketch

Dia. 1	1.772	Ht. 1	3.926
Dia. 2	1.771	Ht. 2	3.925
Dia. 3	1.770	Ht. 3	3.927
Dia. 4	1.771	Ht. 4	3.927
Dia. 5	1.770	Weight (gm)	426.55
Dia. 6	1.769	Sample #	02-007T

Sigma 3	Fail Load
(psi)	gage (lbs)
2,000	105,000
	0
	0
	0
	0

TUCSON, ARIZONA USA

Date 5/7/2009 Inducti Compression rest Results Location Technician D.Streeter Failure Data: Sample # 03-010T Rock Type GRANITE U.S. Standard Sigma 3 Sigma 1 Density: 168.9 (pcf) 2,706.0 (kg/m ²) Sample Data : Sample # 03-010T Rock Type GRANITE Density: 168.9 (pcf) Sample # 1 03-010T (psi) (psi) Color Color Rock Type GRANITE 0 Segma 1 (psi) Color Depth: 20.00 41,796 Peak Disp. Rate : 0.0003 (In/sec) Diameter: 1.771 (in) Height: 3.972 (in) Metric Standard Disp. Rate : Itel (bcl) Weight: 434.02 (gm) Metric Standard MMetric Standard Mode of Failure intact (sec) Worksheet Worksheet Node of Failure : Fracture Itel (bcl)	Project #	2CM022	Triaxial Compression Test Results	Client	SRK
Sample # 03-010T Rock Type GRANITE U.S. Standard Sigma 3 Sigma 1 (psi) Density : 168.9 (pcf) Sample # 03-010T 0 0 168.9 (pcf) 2,706.0 (kg/m²) Sample # 03-010T 0 0 1003 (in/sec) 1003 (in/sec) Depth : 250.17 0 0 0 103,000 (lbs) Mode of Failure 1.0771 (in) Height : 3.972 (n) Wetric Standard Sigma 3 Sigma 1 (MPa) Volume : 9.788 (in ³) 13.79 288.2 Peak Test Data: 106 of Failure Worksheet Worksheet Worksheet Worksheet 1112 <td>Date</td> <td></td> <td>•</td> <td></td> <td></td>	Date		•		
Sample Data : Density : 168.9 (pcf) Sample # : 03-010T (psi)	Technician	D.Streeter	Failure Data:	Sample #	03-010T
Sample Data : Sigma 3 Sigma 1 (psi) Sample # 03-010T (psi) 2,000 41,796 Peak Bample # 03-010T 0 Rock Type GRANITE 0 Test Data: Disp. Rate : 0.0003 (in/sec) Hole # C09-03 0 Rock Type GRANITE 0 Rock Type Grad Rate : (ineskee) Dispret: 2.000 1.771 (in) Intact Test Data: Intact Test Data: Intact			Sample # 03-010T	Rock Type	GRANITE
Sample Data : Cpsi) (psi) Test Data: Sample Data : 2,000 41,796 Peak Disp. Rate :: 0.003 (m/sec) Rock Type GRANITE 0 Rock Type GRANITE Disp. Rate :: 0.003 (m/sec) Hole # : C09-03 0 Rock Type Gage Reading :: 103,000 (fbs) Diameter : 1.771 (in) 0 Retric Standard Sigma 3 Sigma 4 Mode of Failure Test Data: Test Data: Test Data: Test Data: Diameter: Intact Test Data: Diameter: Intact Test Data: Test Data: Test Data: Test Data: Diameter: Test Data: Test Data: Test Data: Test Data: Test Data: Diameter: Test Data: Test			U.S. Standard	Density :	168.9 (pcf)
Sample Data : Sample # 03-010T Rook Type GRANITE Hole #: C09-03 Depth : 250.17 Alterations 0 Diameter : 1.771 (in) Height : 3.972 (in) Weight : 434.02 (gm) Area : 2.464 (in²) Volume : 9.788 (in²)			Sigma 3 Sigma 1		2,706.0 (kg/m ³)
Sample #: 03-010T Rock Type GRANITE Hole #: C09-03 Depth: 250.17 Alterations 0 Diameter: 1.771 (in) Height: 3.972 (in) Weight: 434.02 (gm) Area : 2.464 (in ²) Volume : 9.788 (in ³) Worksheet 0 Worksheet Worksheet			(psi) (psi)	•	
Rock Type GRANITE Hole # : CO9-03 Depth : 250.17 Alterations 0 Diameter : 1.771 (in) Height : 3.972 (in) Weight : 434.02 (gm) Area : 2.464 (in ²) Volume : 9.788 (in ³) Worksheet Worksheet Mode of Failure : #VALUE! 0.0 #VALUE! 0.0 Worksheet Mode of Failure : Intact XX			2,000 41,796 Peak		
Alterations Test Duration : (sec) Diameter : 1.771 (in) Height : 3.972 (in) Weight : 434.02 (gm) Sigma 3 Sigma 1 (MPa) Area : 2.464 (in ²) (MPa) Yolume : 9.788 (in ³) **VALUE! 0.0 #VALUE! 0.0 #VALUE! 0.0 **vectors #value! 0.0 *vectors Worksheet Voice of Failure : Fracture Intact XX			0		0.0003 (in/sec)
Alterations Test Duration : (sec) Diameter : 1.771 (in) Height : 3.972 (in) Weight : 434.02 (gm) Sigma 3 Sigma 1 (MPa) Area : 2.464 (in ²) (MPa) Yolume : 9.788 (in ³) **VALUE! 0.0 #VALUE! 0.0 #VALUE! 0.0 **vectors #value! 0.0 *vectors Worksheet Voice of Failure : Fracture Intact XX			0		
Alterations Test Duration : (sec) Diameter : 1.771 (in) Height : 3.972 (in) Weight : 434.02 (gm) Sigma 3 Sigma 1 (MPa) Area : 2.464 (in ²) (MPa) Yolume : 9.788 (in ³) **VALUE! 0.0 #VALUE! 0.0 #VALUE! 0.0 **vectors #value! 0.0 *vectors Worksheet Voice of Failure : Fracture Intact XX			0 0		
Alterations Test Duration : (sec) Diameter : 1.771 (in) Height : 3.972 (in) Weight : 434.02 (gm) Sigma 3 Sigma 1 (MPa) Area : 2.464 (in ²) (MPa) Yolume : 9.788 (in ³) **VALUE! 0.0 #VALUE! 0.0 #VALUE! 0.0 **vectors #value! 0.0 *vectors Worksheet Voice of Failure : Fracture Intact XX		250.17	0 30		
Height : 3.972 (in) Weight : 434.02 (gm) Area : 2.464 (in ²) Volume : 9.788 (in ³) Weight : 0.0 #VALUE! 0.0 Worksheet Worksheet Intact XX				Test Duration :	(sec)
Weight : 434.02 (gm) Area : 2.464 (in ²) Volume : 9.788 (in ³) #VALUE! 0.0 Worksheet Intact XX Intact					
Area : 2.464 (ir ²) Volume : 9.788 (in ³) #VALUE! 0.0 Worksheet					
Volume : 9.788 (in ³) 13.79 288.2 Peak #VALUE! 0.0 #VALUE! 0.0 #VALUE! 0.0 #vertexe Worksheet Worksheet Image: state st	Weight :				
#VALUE! 0.0 Reserve #VALUE! 0.0 Reserve #VALUE! 0.0 Reserve Worksheet Worksheet + Mode of Failure : Fracture - Intact XX -	Area :	2.464 (in ²)	(MPa) (MPa)		
#VALUE! 0.0 Reserve #VALUE! 0.0 Reserve #VALUE! 0.0 Reserve Worksheet Worksheet + Mode of Failure : Fracture - Intact XX -	Volume :	9.788 (in ³)	13.79 288.2 Peak		
Worksheet Worksheet Mode of Failure : Fracture Intact XX			#VALUE! 0.0		
Worksheet Worksheet Mode of Failure : Fracture Intact XX			#VALUE! 0.0		
Worksheet Worksheet Mode of Failure : Fracture Intact XX			#VALUE! 0.0		
Mode of Failure : Fracture Intact XX			#VALUE! 0.0		
Mode of Failure : Fracture Intact XX			Workshoot		
Mode of Failure : Fracture Intact XX			Worksheet		
Mode of Failure : Fracture Intact XX					
Fracture Intact				+	
Fracture Intact					
Fracture Intact				\bigvee	
Fracture Intact				· \	
			Mode of Failure :	\backslash	
			Fracture		
				$\langle \rangle$	
Both				\backslash	
Both D				N	
			Both		

Pre-Failure Sketch

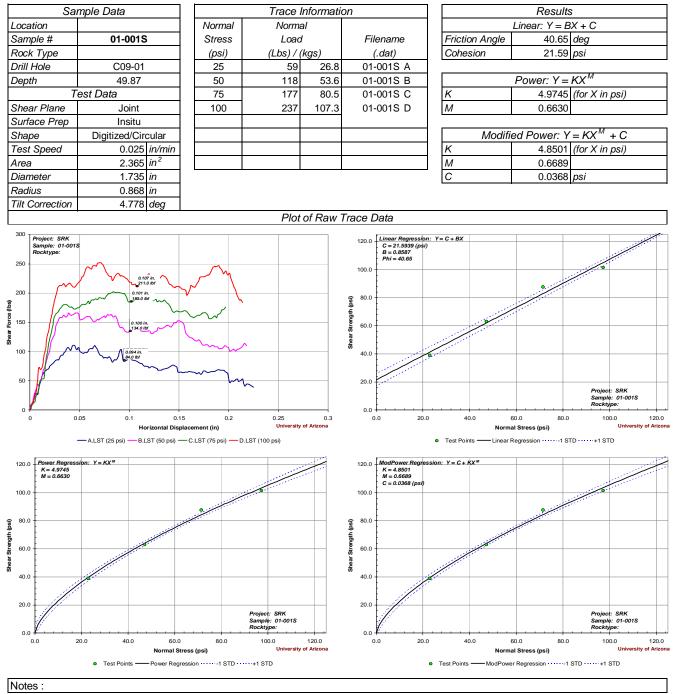
Dia. 1	1.771	Ht. 1	3.971
Dia. 2	1.770	Ht. 2	3.972
Dia. 3	1.776	Ht. 3	3.974
Dia. 4	1.770	Ht. 4	3.971
Dia. 5	1.771	Weight (gm)	434.02
Dia. 6	1.772	Sample #	03-010T

Sigma 3	Fail Load
(psi)	gage (lbs)
2,000	103,000
	0
	0
	0
	0

TUCSON, ARIZONA USA

Project #	2CM022	Triavial Commencian Test Desults					Client	SRK
Date	5/7/2009	- Triaxial Compression Test Results				S	Location	
Technician	D.Streeter	Failure Data:					Sample #	04-004T
		Sample # 04-004T				Rock Type	GRANITE	
· · · · ·			U.S. St	tandard			Density :	167.7 (pcf)
			Sigma 3	Sigma 1				2,687.0 (kg/m ³)
			(psi)	(psi)				
Sample Data :			3,000 40,250		Peak		Test Data:	
Sample # :	04-004T			0			Disp. Rate :	0.0003 (in/sec)
Rock Type	GRANITE			0	Tos		Load Rate :	(lbs/sec)
Hole # :	C09-04			0	Residuals		Gage Reading :	98,800 (lbs)
Depth :	123.25			0	To .		Mode of Failure	Intact
Alterations							Test Duration :	(sec)
Diameter :	1.768 (in)		-		_			
Height :	3.835 (in)			Standard				
Weight :	414.51 (gm)		Sigma 3	Sigma 1				
Area :	2.455 (in ²)		(MPa)	(MPa)				
Volume :	9.414 (in ³)		20.69	277.6	Peak			
			#VALUE!	0.0				
			#VALUE!	0.0	res.			
			#VALUE!	0.0	104			
			#VALUE!	0.0	Residuals			
		r -			·			
			VVo	rksheet				
	$\langle \rangle$	2				$\boldsymbol{\wedge}$	+	1
							<i>۲</i>	
						1	\backslash	
			Mode of Fa	ailuro :		ľ		
			MODE OF 1	allule.				
			Fracture		1			
			Traditio		1		}	
			Intact	XX	1		\backslash	
				,,,,	1		Ì	
	l .	J			_	l	J	
			Both					

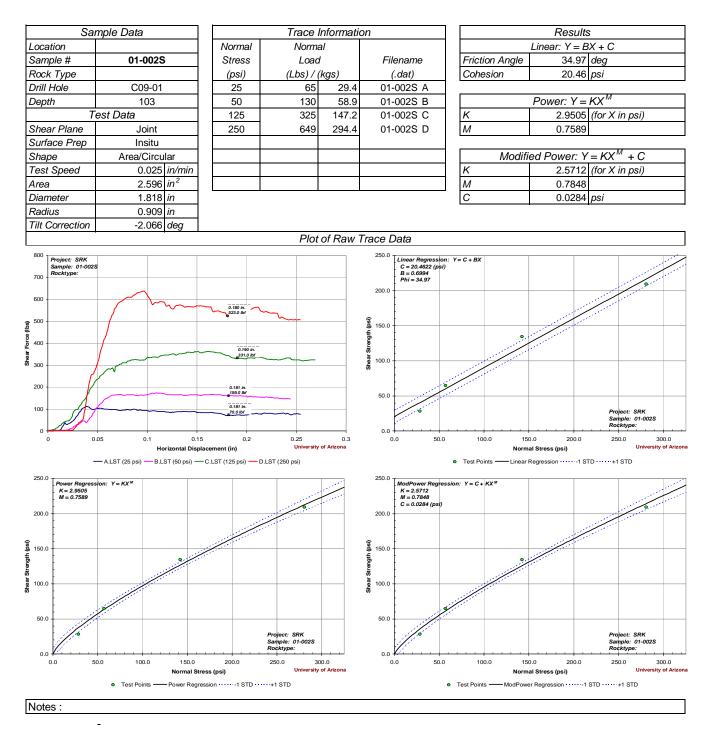
Pre-Failure Sketch


Dia. 1	1.768	Ht. 1	3.838
Dia. 2	1.768	Ht. 2	3.834
Dia. 3	1.767	Ht. 3	3.832
Dia. 4	1.771	Ht. 4	3.837
Dia. 5	1.765	Weight (gm)	414.51
Dia. 6	1.770	Sample #	04-004T

Sigma 3	Fail Load
(psi)	gage (lbs)
3,000	98,800
	0
	0
	0
	0

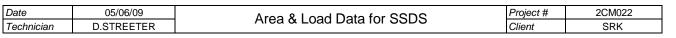
Direct Shear Testing

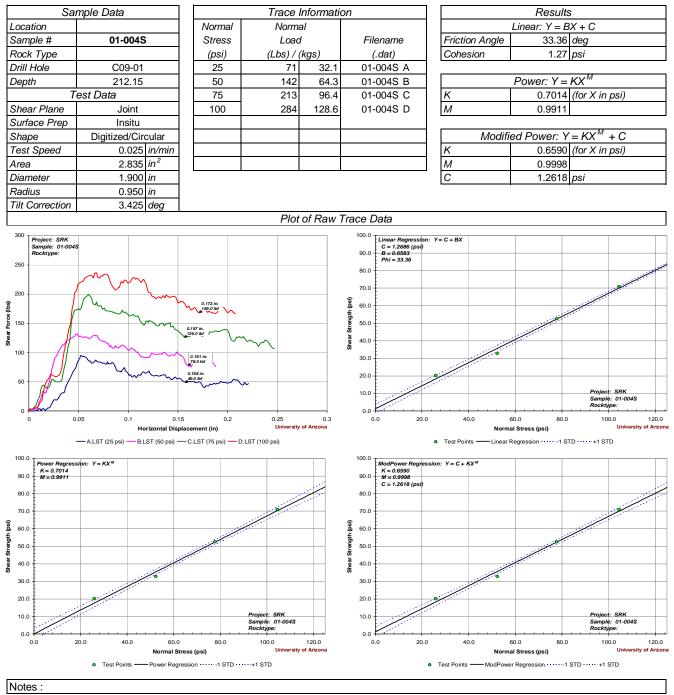
Geomechanical Laboratory Tucson, Arizona USA



_

Tucson, Arizona USA


Date	05/05/09	Area & Load Data for SSDS	Project #	2CM022
Technician	D.STREETER	Area & Load Data for SSDS	Client	SRK

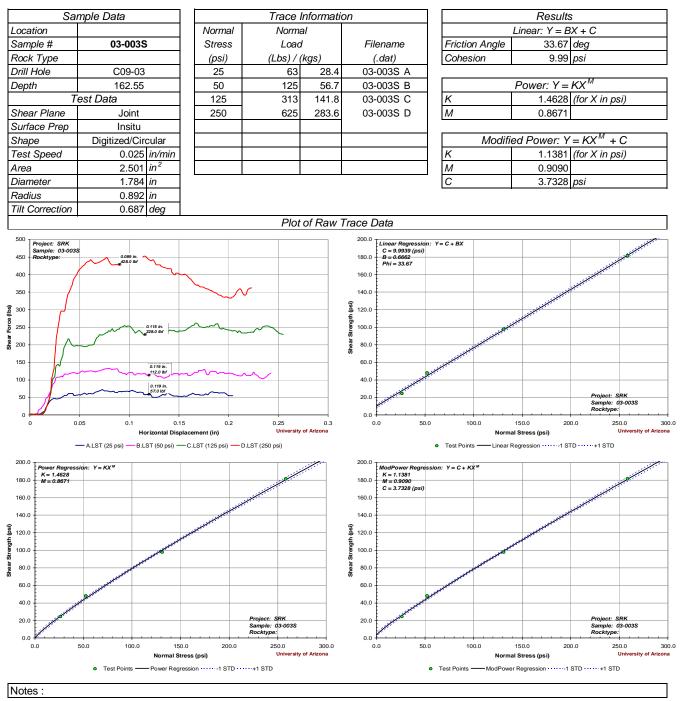


01-002S

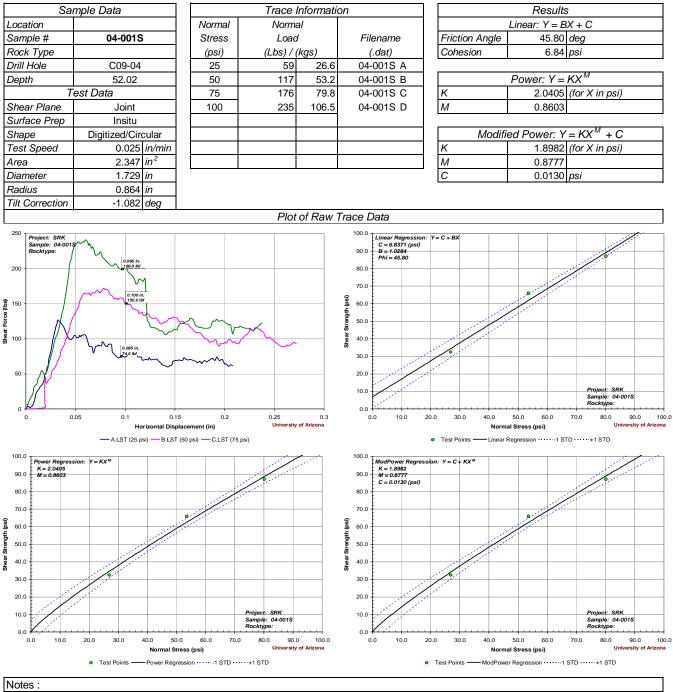
Sample:

Geomechanical Laboratory Tucson, Arizona USA

-

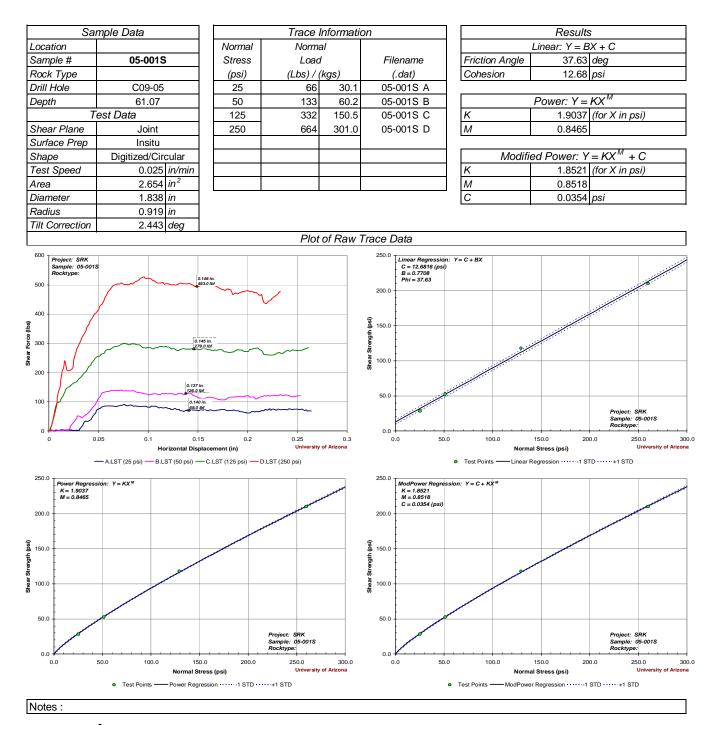

Tucson, Arizona USA

Date	05/06/09	Area & Load Data for SSDS	Project #	2CM022
Technician	D.STREETER	Area & Load Data for SSDS	Client	SRK


Geomechanical Laboratory Tucson, Arizona USA

Tucson, Arizona USA

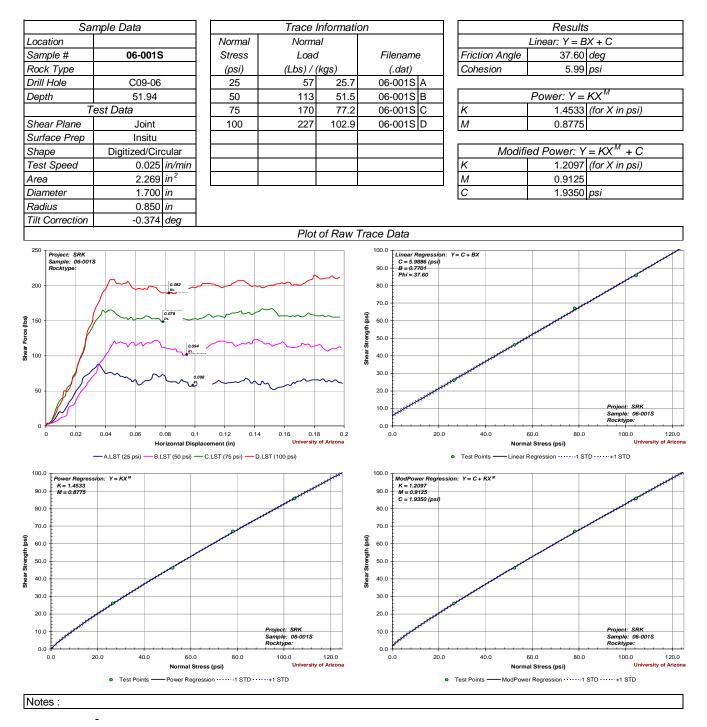
Date	05/05/09	Area & Load Data for SSDS	Project #	2CM022
Technician	D.STREETER	Area & Load Data for SSDS	Client	SRK



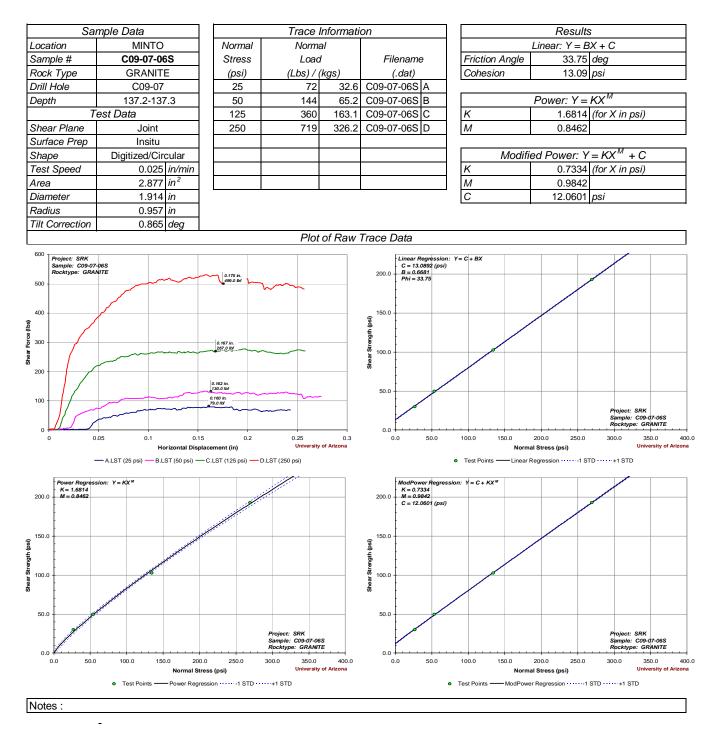
Trace four was not plotted as sample broke during end of trace three

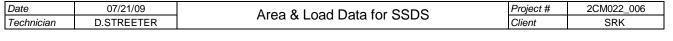
Sample: 04-001S

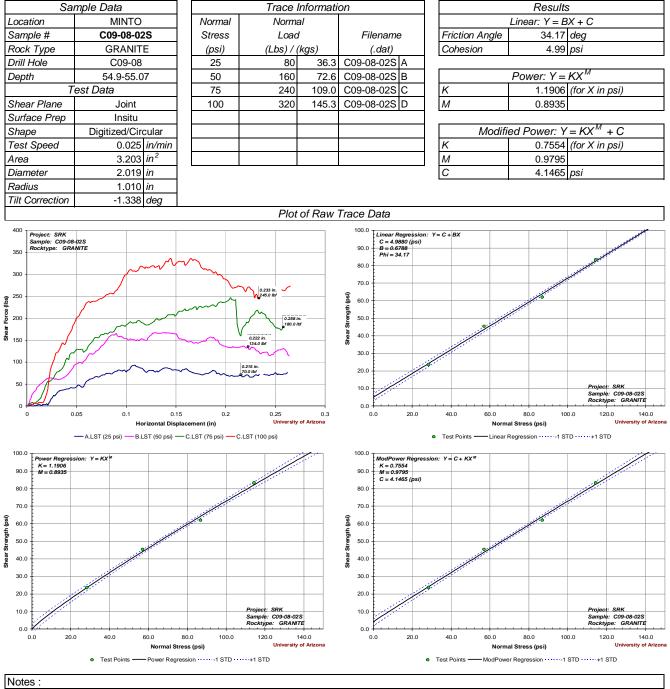
Tucson, Arizona USA


Date	05/05/09	Area & Load Data for SSDS	Project #	2CM022
Technician	D.STREETER	Area & Load Data for SSDS	Client	SRK

Sample: 05-001S


Geomechanical Laboratory Tucson, Arizona USA




Tucson, Arizona USA

Date	07/21/09	Area & Load Data for SSDS	Project #	2CM022_006
Technician	D.STREETER	Area & Load Data for SSDS	Client	SRK

Tucson, Arizona USA

C09-08-02S Sample:

Brazilian Disk Tension Testing

Project #	2CM022	Due	-ilian Diale Teat Dea		Client	SRK
Date	5/4/2009	Bra	azilian Disk Test Res	uits	Location	
Fechnician	D.Streeter				Sample #	02-005B
		Sample #	02-005B		Rock Type	GRANITE
		T psi	1,566	psi		
			10.80	Мра		
Sar	nple Data :	- -	10.00	ivipa	T psi	1,566 (psi)
Sample # :	02-005B	T_= I	Indirect tensile strength			10.8 Mpa
Rock Type:	GRANITE					
Hole # :	C09-02					est Data:
Depth :	150.1				Disp. Rate :	
Alterations:					Load Rate :	54 (lbs/sec)
Diameter : Length:	1.776 (in) 1.058 (in)	_			Gage Reading :	4,620 (lbs)
			Worksheet			
	Pre-Failure Sketch	[Worksheet		Post-Failure	e Sketch
	Pre-Failure Sketch	<u>[</u> w	Worksheet		 Post-Failure	e Sketch
	Pre-Failure Sketch	[w	Worksheet		Post-Failure	e Sketch
[Worksheet		Post-Failure	
[Worksheet		Post-Failure	
[Worksheet		Post-Failure	
[Worksheet		Post-Failure	
[Worksheet		Post-Failure	
[Worksheet		Post-Failure	

-

Dia. 1	1.777	Ht. 1	1.061		-	
Dia. 2	1.777	Ht. 2	1.069	Fail Load	4620	lbs Force
Dia. 3	1.773	Ht. 3	1.045			
				-		

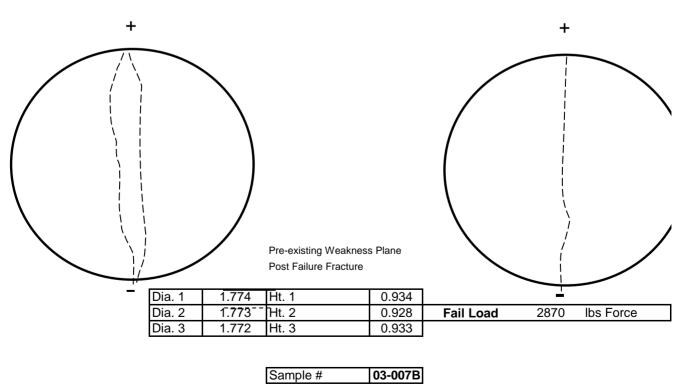
02-005B

Project #	2CM022	Dro-	TUCSON, ARIZONA USA		Client	SRK
Date	5/4/2009	Braz	ilian Disk Test Res	uits	Location	
Technician	D.Streeter				Sample #	02-009B
		Sample #	02-009B		Rock Type	GRANITE
		T psi	1,357	psi		
			9.36	Мра		
San	nple Data :				T psi	1,357 (psi)
Sample # :	02-009B	T= Ind	direct tensile strength		L	9.4 Mpa
Rock Type: Hole # :	GRANITE C09-02	_			Т	est Data:
Depth :	271.9	-			Disp. Rate :	coi Dala.
Alterations:	211.3	-			Load Rate :	52 (lbs/sec)
Diameter :	1.773 (in)	1			Gage Reading :	3,860 (lbs)
Length:	1.022 (in)					· ·
			Morkobaat			
		-[Worksheet			
[Pre-Failure Sketch	 w	Worksheet		Post-Failure	e Sketch
[Pre-Failure Sketch	-[Worksheet		Post-Failure	
[w	Worksheet		Post-Failure	e Sketch
[w	Worksheet		Post-Failure	
[]w	Worksheet		Post-Failure	
[Worksheet		Post-Failure	
[]w	Worksheet		Post-Failure	
[]w	Worksheet		Post-Failure	

Pre-existing Weakness Plane Post Failure Fracture

Ì

-

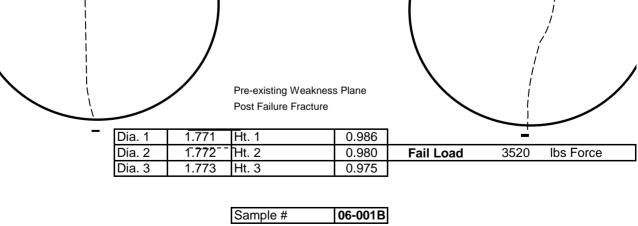

Dia. 1	1.775	Ht. 1	1.028		-	
Dia. 2	1.774	Ht. 2	1.026	Fail Load	3860	lbs Force
Dia. 3	1.772	Ht. 3	1.012			

۱ 1

Sample #	02-009B

GEOMECHANICAL LABORATORY

Project #	2CM022	Dro-	lion Diels Teet Dee		Client	SRK
Date	5/4/2009	Braz	ilian Disk Test Res	suits	Location	
Technician	D.Streeter				Sample #	03-007B
		Sample #	03-007B		Rock Type	GRANITE
		T psi	1,107	psi		
			7.63	Mpa		
San	nple Data :				T psi	1,107 (psi)
Sample # :	03-007B	T= Inc	direct tensile strength			7.6 Mpa
Rock Type:	GRANITE					
Hole # :	C09-03				Te	est Data:
Depth :	161.03				Disp. Rate :	
Alterations:					Load Rate :	47 (lbs/sec)
Diameter :	1.773 (in)				Gage Reading :	2,870 (lbs)
Length:	0.932 (in)					
			Worksheet			
-	Pre-Failure Sketcl				Post-Failure	



Sample #	03-007B

			TUCSON ADIZONIA LICA			
Project #	2CM022	TUCSON, ARIZONA USA			Client	SRK
Date	5/4/2009	Brazilian Disk Test Results			Location	
Technician	D.Streeter			Sample #	05-005B	
		Sample #	05-005B		Rock Type	GRANITE
		T psi	1,045	psi		
			7.20	Мра		
S	Sample Data :				T psi	1,045 (psi)
Sample # :	05-005B	T= Inc	direct tensile strength			7.2 Mpa
Rock Type:	GRANITE					
Hole # :	C09-05					est Data:
Depth :	150.11				Disp. Rate :	
Alterations:					Load Rate :	47 (lbs/sec)
Diameter :	1.772 (in)	_			Gage Reading :	2,680 (lbs)
Length:	0.922 (in)					
			Workshoot			
	Pre-Failure Sketch	<u></u> w	Worksheet		 Post-Failur	re Sketch
	Pre-Failure Sketch		Worksheet		 Post-Failur	re Sketch
			Worksheet		Post-Failur	
			Worksheet		Post-Failur	
			Worksheet		Post-Failur	
			Worksheet		Post-Failur	
			Worksheet		Post-Failur	
			Pre-existing Weak		Post-Failur	
			Pre-existing Weak Post Failure Fractu	ure		
		,,,,,,,,	Pre-existing Weak			

05-005B

Project #	2CM022	Dues	TUCSON, ARIZONA USA		Client	SRK
Date	5/4/2009	Braz	ilian Disk Test Res	Suits	Location	
Technician	D.Streeter				Sample #	06-001B
		Sample #	06-001B		Rock Type	GRANITE
		T psi	1,291	psi		
			8.90	Мра		
Sar	nple Data :				T psi	1,291 (psi)
Sample # :	06-001B	T= Inc	direct tensile strength			8.9 Mpa
Rock Type:	GRANITE					
Hole # :	C09-06					est Data:
Depth :	37.2				Disp. Rate :	
Alterations:					Load Rate :	50 (lbs/sec)
Diameter :	1.772 (in) 0.980 (in)				Gage Reading :	3,520 (lbs)
		[Worksheet			
	Pre-Failure Sketc		Worksheet		Post-Failur	e Sketch
[Pre-Failure Sketc		Worksheet		 Post-Failur	 e Sketch
[Worksheet		Post-Failur	
			Worksheet		Post-Failur	
[Worksheet		Post-Failur	

Sample #	06-001B