

SRK Consulting (Canada) Inc.
Suite 200 – 1066 West Hastings Street
Vancouver, B.C. V6E 3X2
Canada

vancouver@srk.com www.srk.com

Tel: 604.681.4196 Fax: 604.687.5532

August 19, 2010 2CM022.017

Minto Explorations Ltd. Suite 900–999 West Hastings St. Vancouver, BC V6C 2W2 Canada

Attention: Anne Labelle, Manager – Sustainability and Legal Affairs

Dear Anne,

Minto Mine: Groundwater Baseline Conditions

1.0 Requirements and Objectives

Groundwater baseline conditions found at the Minto Mine site are discussed in this report. The report outlines the work done to date to assess the hydrogeological conditions that are currently observed at the mine site, and the potential impacts of proposed mine design on the hydrogeological system.

1.1 Information Requirements

In order to carry out an assessment of the baseline conditions at the site, a conceptual model of the groundwater flow system, and its interaction with receiving surface water bodies, is required. This conceptual model is used to assess the potential flow regime by mapping out the groundwater flow paths, gradients, and geological materials that the water will flow through. These data are used to estimate the volume, or flux of water flowing through the system, and the related impact of groundwater flow on surface water bodies.

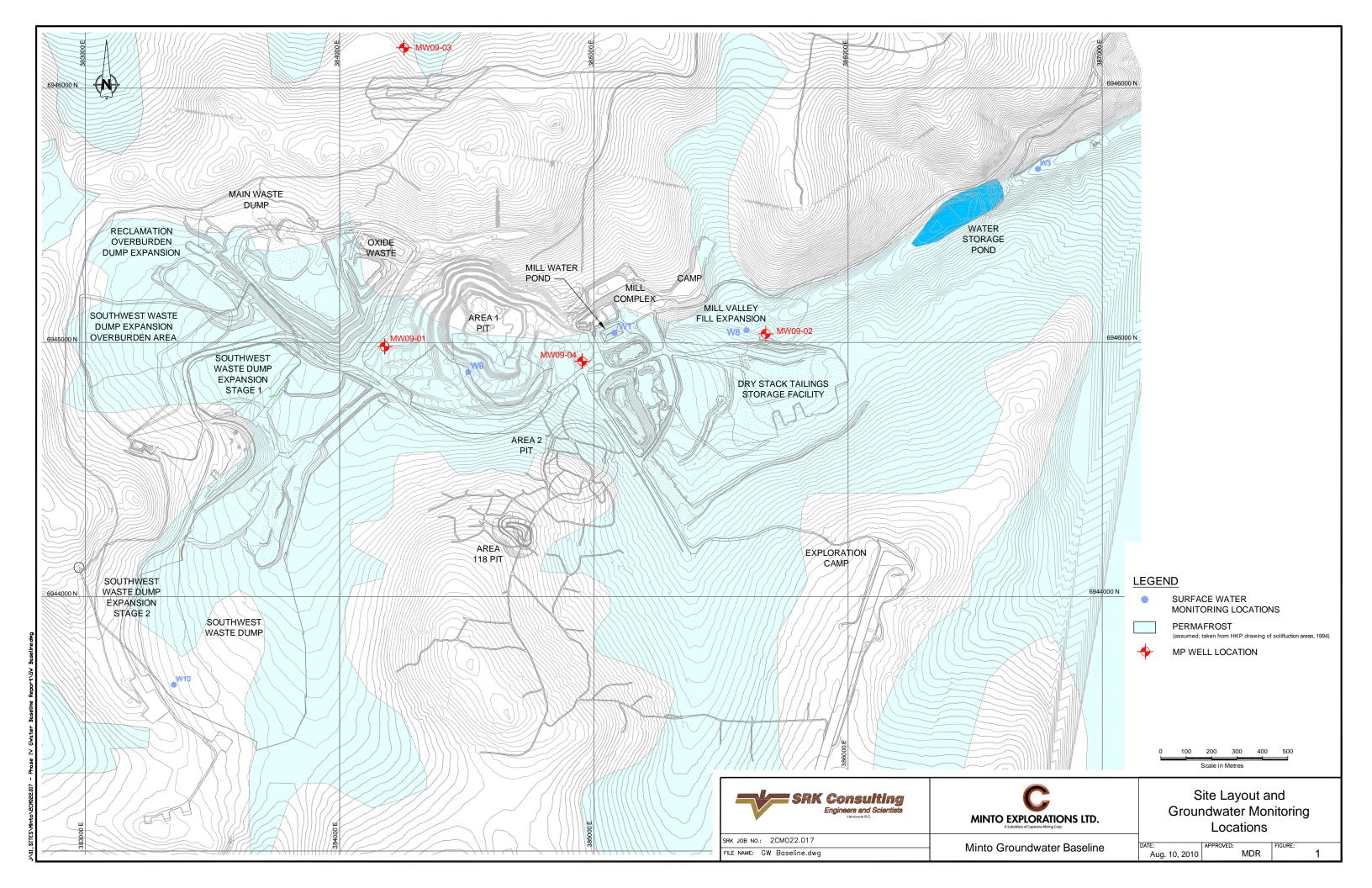
1.2 Monitoring Objectives

A groundwater monitoring program was designed to collect baseline data and monitor potential effects from the open pits, underground workings, tailings facilities (in-pit and dry stack tailings facility (DSTF), and waste rock and overburden dumps at the Minto Mine site (Figure 1). The objective of the groundwater monitoring program is to provide background and on-going water quality data to serve as an early indication of potential impact of the mine on the local groundwater quality.

 $SRK_GWBaseline Conditions_Let Report_2CM022.017_MDR_20100819_FNL.docx and the conditions_2CM022.017_MDR_20100819_FNL.docx and the conditions_2CM022.017_MDR_20100819_FNL.docx and the conditions_2CM022.017_MDR_20100819_FNL.docx and the conditions_2CM022.017_MDR_20100819_FNL.docx and the conditions_2CM022.017_MDR_20100819_FNL.docx and the conditions_2CM$

South America

Yellowknife 867.445.8670


 Denver
 303.985.1333

 Elko
 775.753.4151

 Fort Collins
 970.407.8302

 Reno
 775.828.6800

 Tucson
 520.544.3688

SRK Consulting Page 3 of 25

2.0 Hydrogeological Conditions

To establish baseline conditions, a groundwater monitoring program was carried out in the vicinity of the waste rock, overburden dumps, and the dry stack tailings facility (DSTF) at the Minto Mine site to provide background and on-going water quality data. The objective of the groundwater monitoring program was to provide an early indication of potential impact of the mine workings on the local groundwater quality.

Groundwater at the Minto site will be constrained to the overburden and bedrock flow systems. A complicating factor for monitoring groundwater at the site is the extent of permafrost at the site. The general hydrogeological characteristics are discussed below to give a clearer picture of the conditions that will affect the movement of groundwater on the site, and were used to prepare a conceptual model of the hydrogeological conditions.

2.1 Geology

2.1.1 Overburden

Throughout the mine site the residual soils grade into weathered bedrock. The overburden soils thin out to the south and east of the DSTSF site.

Geotechnical investigations within the plan area of the dry stack tailings facility (DSTF), as reported in EBA, 2007, indicated overburden thicknesses of up to 45m. These deposits are thought to be an extension of an infilled valley, which also passes through the southern end of the open pit. The overburden soils generally comprise a thin veneer of peat and vegetation overlying a fine-grained silt or silt and sand of colluvium origin. The colluvium is underlain by coarse-grained sand with trace gravel that is considered to be a residual soil. The exception to this is at borehole 94-21, in which a clay layer from ground surface to a depth of 18-9m was observed (EBA, 2007).

Detailed soil logging by SRK in the area of the SW Dump (SRK, 2008) indicated that overburden material is comprised of silty, and in certain locations, clayey material, with fractions of sand, gravel and cobbles. Overburden thickness varies in this area (from 10.7m at 08SWC270 to 51.8m at 08SWC273). Typically, the overburden thickness increased along the valley bed, and decreased on the valley slopes. This is expected to be similar for overburden conditions across the project site.

2.1.2 Bedrock

The Minto site is underlain by predominantly igneous rocks of granodiorite composition. Minor amounts of other lithologies consisting of small dykes of simple quartz-feldspar pegmatite, aplite, and an aphanitic textured intermediate composition rock are also observed. Bodies of all of these units are relatively thin and rarely exceed one metre core intersections. These dykes are relatively late, generally postdating the peak ductile deformation event; however, some pegmatite and aplite bodies observed in a rock cut located north of the mill complex are openly folded. Conglomerate and volcanic flows have been logged in drill core by past operators, but have not been recently confirmed as the drill core from previous campaigns was largely destroyed in forest fires and no new drilling has intersected such rocks.

With the possible exception of the lithological contacts of the dykes, the lithology types encountered in the Minto Mine site are not expected to have significant primary porosity as it relates to hydraulic conductivity (K) or transmissivity. The low K values (less than 10^{-9} m/s), make it unlikely that significant groundwater flow will occur in competent bedrock. Flow may; however, occur in bedrock that has been fractured/faulted to produce open, secondary porosity/permeability.

SRK Consulting Page 4 of 25

Bedrock in the vicinity of the DSTF is located at approximately 45m depth (EBA, 2007). In general, outcrop exposure on the property is poor. Where exposure is available, it has been affected by deep weathering and variable oxidation, as the terrain was not glaciated during the last ice age event.

2.1.3 Structure

Secondary porosity/permeability is the dominant flow path in intrusive and metamorphic rocks. For this reason, it is important to have an understanding of the structural and mineralization environment of the site when constructing the conceptual flow model.

The copper-sulphide mineralization at Minto is strongly associated with foliated granodiorite within a deformation zone. The deformation zone forms sub-horizontal horizons within the more massive plutonic rocks of the region and can be traced laterally for more than 1,000 metres in the drill core. The similarity of chemistry and texture of both the deformed and the massive granodiorites suggest the deformation zones are structural in origin and not stratigraphic. The deformation zones are thought to represent healed, shallowly dipping faults that may have formed when the rocks passed through the brittle/ductile transformation zone in the earth's crust in transition from a deep emplacement environment to eventual exhumation of the regional batholith. Because of the inclusion of mineralization and the ductile nature of the main faulting at the site, these healed structures are not expected to represent significant flow paths.

Late, brittle fracturing and faulting is noted throughout the property area and is associated with a conjugate set of regional faults. The DEF Fault strikes more or less east-west and dips north-northwest and cuts off the main zone mineralization at its northern end. This type of faulting can often form significant flow paths within a rock mass. However; recent drilling results and data collected from instrumentation across the DEF fault in the north wall of the Area 1 Pit indicates that a significant hydraulic head is maintained across this feature (SRK, 2009–unreported work in progress). This appears to indicate that the DEF is not a significant flow feature, but rather is holding back water flow across the structure. This characteristic; whereby, fault zones act as barriers to flow has been observed at other mine sites.

Current structural analysis of the site (SRK, 2009 - work in progress) indicates that faults of any sort are not expected to occur within the footprints of the waste and overburden dumps or DSTF.

2.2 Permafrost Conditions

Permafrost conditions on the site will make groundwater monitoring problematic. Permafrost on the site has been found to be extensive and deep (SRK, 2008). Data from drilling at several locations has shown permafrost ranging from depths from within 1.0m of ground surface to depths of up to 10 m.

Geotechnical drilling in 1994 and 1996 by EBA observed permafrost in each of the boreholes drilled within the vicinity of the proposed DSTSF (Figure 1), with the base of the permafrost occurring at varying depths (EBA, 2007). Measurements of the active layer in these areas indicated a maximum depth of only about 1.0 m in September 1996, directly under the DSTSF footprint.

The observed ice contents in boreholes downstream of the DSTF (94-11 and 94-21) and within the footprint of the DSTSF (96-G07 through -G12, excluding -G10), typically ranged from frozen ground to visible ice at 10% to 20% of the total volume. Two of the boreholes, 96-G09 and 96-G12, showed ice intervals of 1.5 and 4.0m thick respectively within the upper 10m.

Initial data from the ground temperature cables installed in 94-11, 94-21, and 96-G08 indicate a relatively uniform ground temperature of close to -0.8°C after equilibration with slight seasonal warming within the top 2 to 4 m. The active layer in 94-G11 and 94G21 are on existing disturbed

SRK Consulting Page 5 of 25

trails, and so will be deeper than the surrounding soils. Readings from 2006 for 94-G11 indicate similar ground temperatures and active layer thickness.

In November 2007, vibrating wire piezometers were installed within and down gradient of the existing dry stack tailings storage facility (DSTSF) in boreholes DSP-1 and DSP-2. Each of these piezometers is equipped with temperature sensors at the piezometer tip. At both of the locations, the sensors were installed at 1 m and 1.7 m respectively. No pore water has been measured in the piezometers to date, as ground conditions have remained frozen.

In addition, three more temperature cables providing profile data were installed in the vicinity of the DSTSF in holes DST-1, DST-2, and DST-5. Initial observations from the piezometer temperature probes indicate that temperatures did not rise above -0.3°C at any time and ranged as low as -2.6°C. Temperature cable DST-5 (Figure 1) is located outside of the footprint of the DSTSF and provided a profile reflecting conditions on an un-insulated site. Temperature averaged approximately -0.5°C below 1 m depth, and fluctuated near surface to values exceeding 5°C.

No groundwater was observed in any of the boreholes during the EBA geotechnical drilling program.

Soil investigation drilling in the region of the SW waste rock dump in February to April, 2008 (SRK, 2008), most cores contained non-visible ice, indicating the pore water was frozen; however, clear chunks of ice were also observed in many cases. Data from thermistors installed in the same drill holes indicate that this permafrost is close to 0°C; however, water in any monitoring standpipes would freeze in the permafrost layer.

The results of the temperature and piezometer monitoring near the SW Dump through June 2008 suggest that unfrozen layers at depth may be limited or non-existent, and that shallow perched water tables within the seasonally thawed active layer may provide the only mechanism for transport within this region of the basin.

2.3 Historical and Existing Groundwater Monitoring

To date, groundwater monitoring has been installed under various initiatives, including:

- Installation of standpipes in 1994 at the proposed dam alignment (P94-20) and the pit vicinity (P93-E):
 - Water chemistry samples collected between 1994 and 2006
 - Water levels observed at ~15m and 26m depth in P94-20 and P93-E respectively
 - Both destroyed during construction and pit excavation, respectively, in 2006)
- Vibrating wire transducers down gradient of the DSTSF;
- Vibrating wire transducers in the dam core; and
- Standpipes installed during the SW dump foundation investigation.

Besides standpipes P93-e and P94-20, it appears that all standpipes installed on the site to date have frozen, indicating that permafrost conditions exist across most of the site at shallow depths.

SRK Consulting Page 6 of 25

2.4 Hydrogeological Implications of the Geological Model and Past Monitoring

The implications of the geology (overburden, lithology, and permafrost conditions) found at the Minto site and the past monitoring events are:

• Permafrost:

- will dominate groundwater flow system below active zone to depths of up to 45m; and
- Conventional "standpipe" monitoring wells installed through the permafrost into the
 underlying unfrozen ground will be inoperable as the piezometric levels will be near surface;
 therefore, the resulting water in them will freeze.

• Shallow flow:

- will be dominated by permafrost conditions;
- will occur in the seasonally thawed layer; and
- will be controlled by overburden composition in the unfrozen areas.

• Deeper flow:

- will occur below the permafrost within the bedrock;
- will concentrate in the shallow, weathered zone if unfrozen; and
- standpipe monitoring wells will not be an effective means of monitoring the deep groundwater system.

Based on this, we expect that groundwater flow related to the waste rock and overburden dumps and the DSTF will only have significant impact on the shallow, active layer system and will report to nearby surface drainages during times of thawed conditions. The deeper, bedrock hosted flow system is expected to be isolated from these facilities, due to the permafrost layer.

Groundwater flow may be impacted by the Area 1 and 2 pits, as well as the 118 Area underground mine, as these penetrate the permafrost and intersect the sub-permafrost groundwater system. However; the impact of these mine components will be controlled by the hydraulic conditions within the deeper bedrock, which is expected to be low K. Furthermore, due to the steep valley walls and location of the pits and underground workings near the Minto Creek catchment centre-line, an upwards gradient (as shown below in the assessment of monitoring data) is expected. Therefore, impact flow would likely report to surface rather than persist as deep groundwater flow.

3.0 Monitoring System Design and Operation

3.1 Monitoring Locations

To provide a means of monitoring potential impacts on the deep groundwater system, a series of multi-level monitoring wells capable of operating in permafrost conditions were installed in 2009. The wells were installed down gradient of the waste rock and overburden piles at the Main and South West Dump area, Area 1 Pit, North Pit, and DSTF. Monitoring well locations are presented in Figure 1.

All monitoring systems were installed outside the final design footprint of the waste rock and overburden piles, pits, and the DSTF as proposed at the time of installation. Consequently, the installation below the DSTF will need to be changed due to the proposal for the valley fill material placement. This is discussed later in the report. Appropriate monitoring points should be determined for the expanded waste rock dumps proposed in the Phase IV mine plan.

3.2 Monitoring Equipment

Multilevel MP System groundwater monitoring systems manufactured by Westbay Instruments (part of Schlumberger Water Services) were installed for the monitoring system. These systems consist of closed PVC pipe that has multiple valved sampling ports that are hydraulically separated using individually inflated external packers. The pressure and water sampling is carried out using a

SRK Consulting Page 7 of 25

wireline tool system that opens each monitoring zone valve independent of the others, and measure pressures and collects a sample from that zone only. The advantage that the MP System has over other monitoring systems is that, because is it a closed pipe system, it can be operated using anti-freeze inside the pipe to allow for access through the permafrost zone. Currently, this system is used at other mine sites with permafrost conditions in the NWT (Giant Mine, Ekati Mine, and the Hope Bay project) and northern Ontario (Victor Mine), and is deemed the only practical means of long-term groundwater monitoring through permafrost. Details of the monitoring equipment are given in the installation report (Appendix A) and the sampling report (Appendix B).

As well as pressures and groundwater samples, the system can also be used for hydraulic testing. All of the monitoring and sampling methods have been used extensively on mine sites, as well as contaminated waste sites, in Canada, the USA, and many other countries around the world, and are considered to meet the requirements for sampling for low level parameter concentrations.

3.3 Groundwater Sampling

3.3.1 Monitoring Parameters and Sampling Schedule

Monitoring of the groundwater network will occur on a quarterly basis as laid out in Table 1. The monitoring and sampling frequencies are based upon conditions encountered in the initial sampling rounds.

Groundwater samples collected will be analyzed for the parameters shown in Table 1.

Table 1: Sample Parameters and Monitoring Frequency for Groundwater and Ground Temperature

Monitored Item	Parameters	Frequency
Groundwater Sample	Conductivity, total dissolved solids, hardness, pH, total suspended solids, dissolved anions, nutrients, cyanides, total metals (trace), dissolved metals (trace).	Quarterly
Piezometric Levels	Water Pressure	Quarterly
Ground Temperatures	Temperature	Quarterly

The groundwater monitoring program would be carried out on a scheduled basis until dumps and tailings facility are reclaimed and the mine site has been closed.

3.3.2 Sampling Protocol

Groundwater samples were collected using best practice methods. Standard SRK sampling procedures are provided in as an appendix in the appended installation report (Appendix A).

3.4 Hydraulic Response Testing

Hydraulic response testing has not been carried out during drilling programs to date. However, these tests can be carried out using the MP System and will be part of the ongoing monitoring program. During installation and initial testing of the MP System, quality assurance (QA) testing of the zones indicated that hydraulic conductivity of all zones was less than 1 x 10⁻⁹ m/s based on the time for recovery from pulse testing (designed to test packer seal integrity).

3.5 Monitoring Program Reporting

Reporting on the findings from the groundwater monitoring plan will be submitted as a component of the Water Use Licence Annual Report. This will include both raw data collected and an interpretive discussion of groundwater quality, elevations and temperature profiles at the monitored locations. An assessment of groundwater flow paths will be made, with a review of suitability of the monitoring locations based on piezometric levels, thermal data, and changes to the geological model as they become available.

SRK Consulting Page 8 of 25

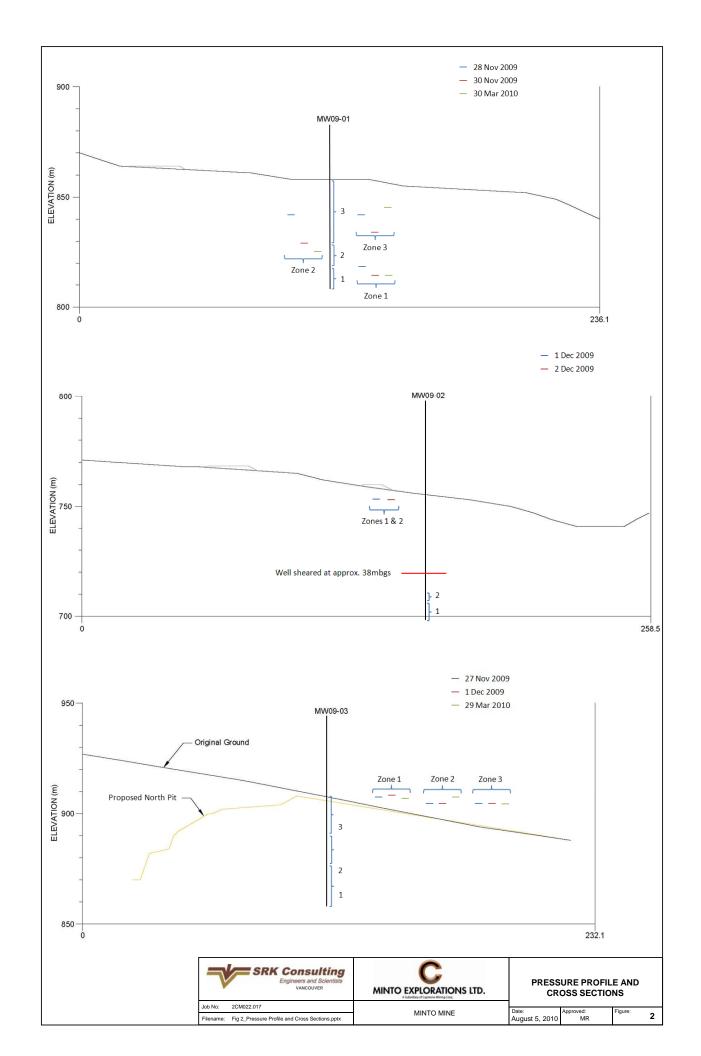
Groundwater monitoring reporting would consist of the following:

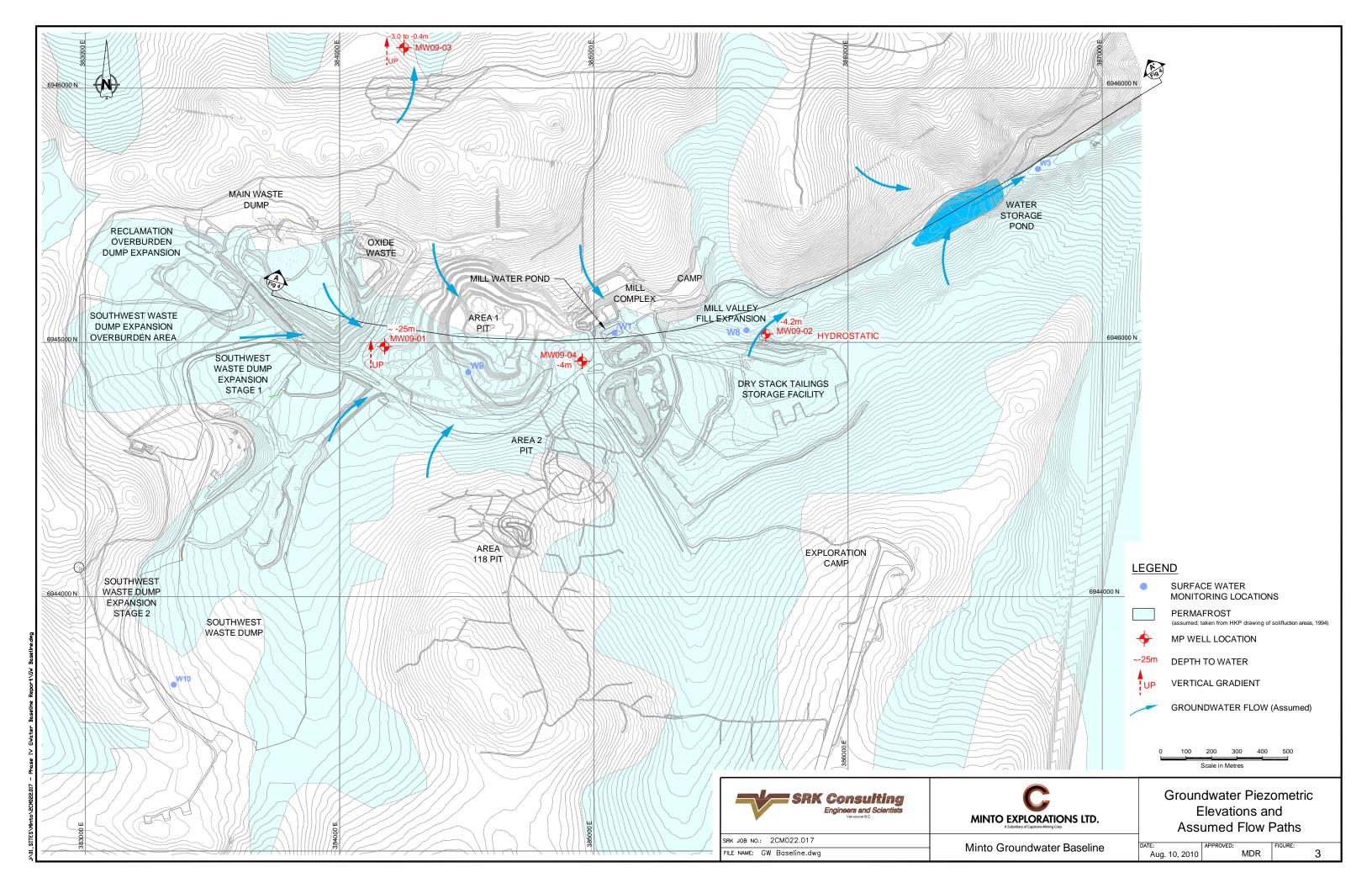
- a. Monitoring system installation and initial sampling report consisting of:
 - i. Detailed field report to document the locations and ground conditions at all monitoring points, methods of installation, equipment specifications, and results of initial sampling and hydraulic testing; and
 - ii. Initial water quality results.
- b. Annual monitoring reports:
 - i. Compilation of all monitoring data collected during the reporting period;
 - ii. Analysis and assessment of data; and
 - iii. Recommendations for changes to the monitoring system if and when deemed necessary.

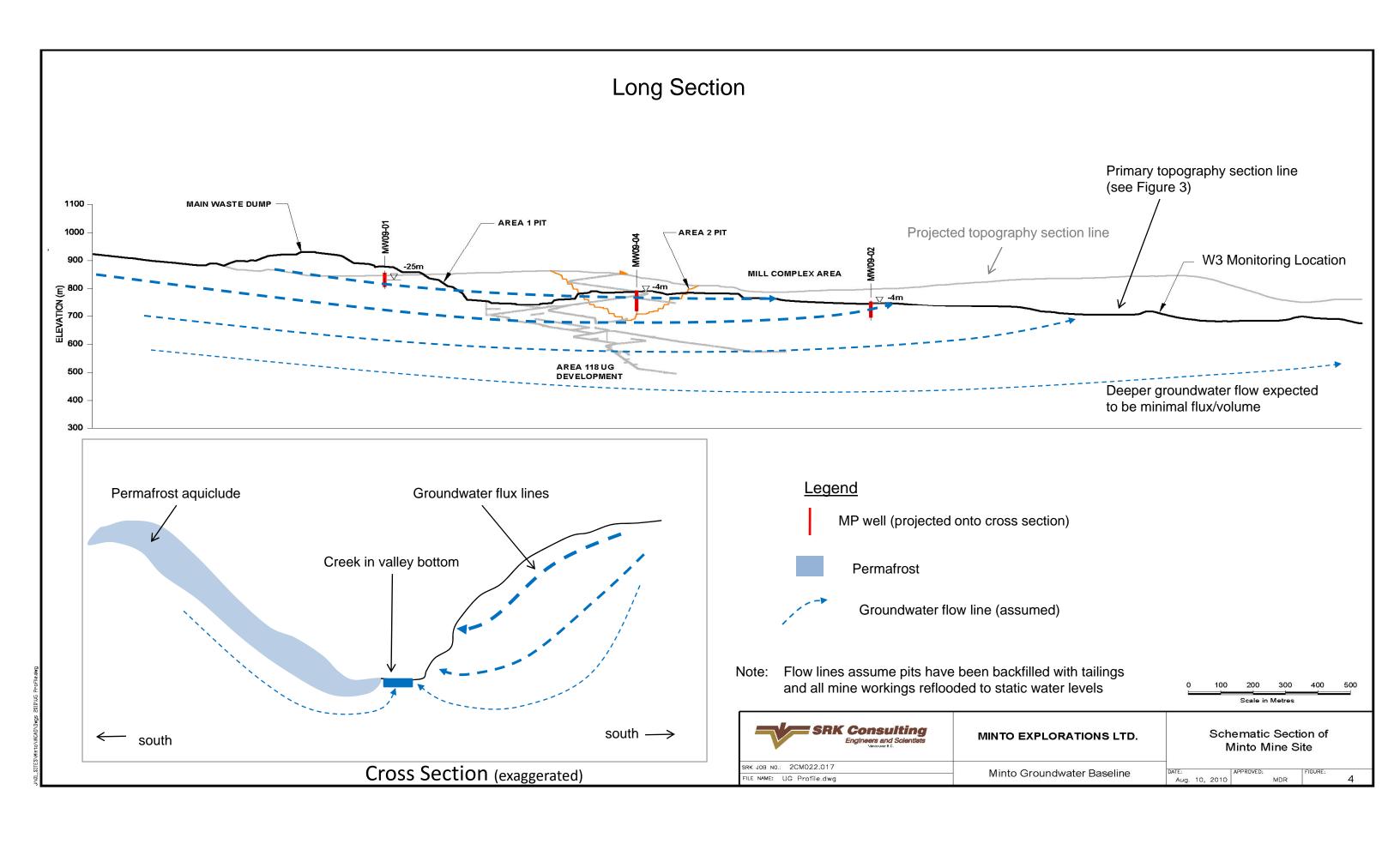
4.0 Baseline Conditions

4.1 Groundwater Flow System

Groundwater flow at the site is expected to mimic the steep topography, with influences from the mine infrastructure during dewatering operations. Pressure data from the three multilevel wells are illustrated on Figure 2, and in plan view on Figure 3.


Measured piezometric data from MW09-04 are not available as this well was damaged prior to initial monitoring; however, the static water level in the open hole prior to installation of the monitoring equipment was approximately 4 m below ground surface. The water level seems to be reasonable based on the depth of permafrost observed (ice observed in the core to 44m depth) and the location relative to the Area 1 Pit. This is also illustrated on Figure 3.


Based on the water levels and gradients observed, the expected flow directions on the site are illustrated on Figure 3. All groundwater is expected to report to the Minto Creek as direct discharge, as illustrated in both long section on Figure 4 (section line position shown on Figure 3) and in typical cross section view also on Figure 4.


The flow lines are drawn to illustrate the decreasing flux (volume) of flow that will occur with increasing depth in the bedrock. The change in flux is caused by the decreasing hydraulic conductivity found in this type of hydrogeological system, related to higher lithostatic pressure closing open fractures, etc as depth increases.

Upwards gradients from the steep valley walls discharging to the creek along the Minto Creek alignment, plus the reduced infiltration in the northern slopes due to permafrost are also illustrated in the cross section.

A long section through the site from roughly west to east, taking in the main mine infrastructure and natural components of the site is illustrated in Figure 4. The section has the monitoring wells superimposed on it, as well as the general outline of the open pits, underground workings, and waste rock dumps in order to illustrate how each of these will interact with the main drainage (Minto Creek) and the regulated surface water monitoring compliance point (W3).

SRK Consulting Page 12 of 25

4.2 Hydrogeochemistry

Groundwater samples were collected from the multilevel monitoring wells in December 2009 and April 2010 (see Appendix A and B for details on well development and sampling). Results of the sampling are given in Table 2, and summarised in Figure 5 to Figure 12, are were compared to the mean annual site background water quality (Minnow, 2010), as shown in the plots as a means of benchmarking the hydrogeochemistry for potential loading influence on the surface water bodies.

As can be seen in Figure 5 and Figure 6, the groundwater chemistry is quite similar to the mean annual values in all sample zones, and that samples collected in December 2009 and April 2010 show little variation. The latter indicates that the zones were properly developed in the initial sampling round and that representative samples were collected.

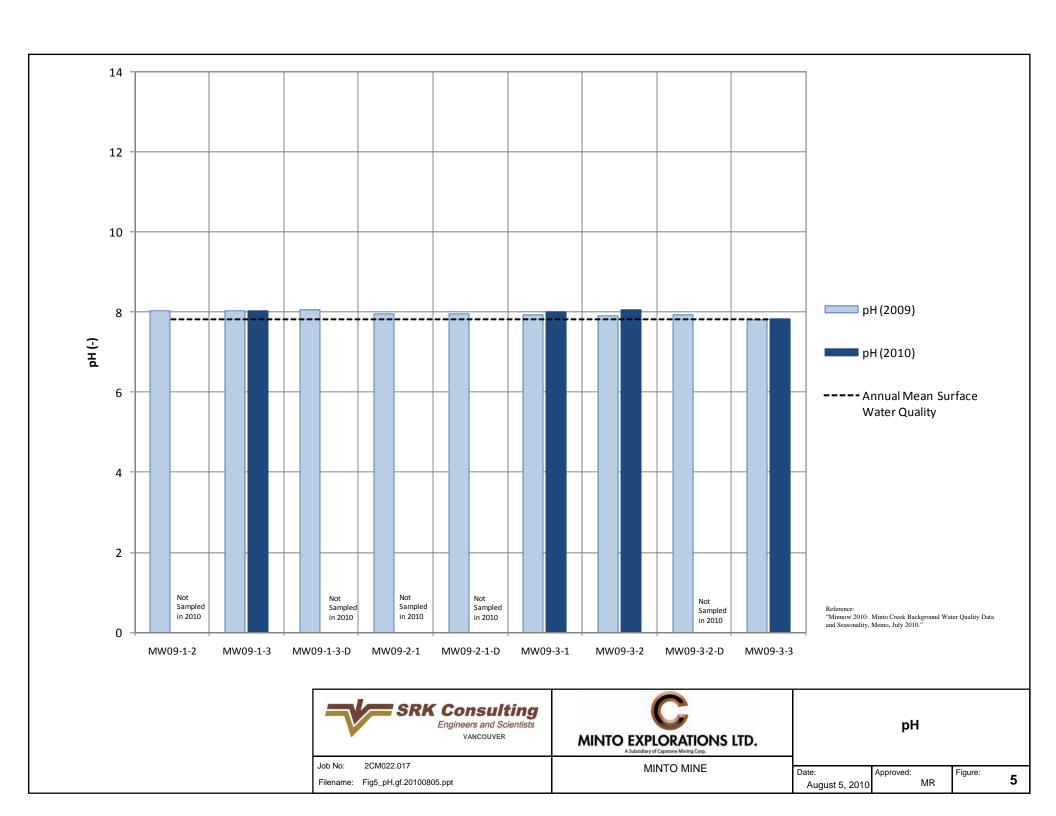
Samples were also analysed for metals concentrations. All samples were analysed for both total and dissolved metals (see detailed lab analysis in Appendices A and B). However, although Total and Dissolved metals results are usually similar (indicating low suspended load in the samples), only dissolved species are presented in this report as these will be more representative of actual groundwater conditions as suspended particles in monitoring well samples are due to drill and well construction, not actual particulate matter moving through the groundwater system.

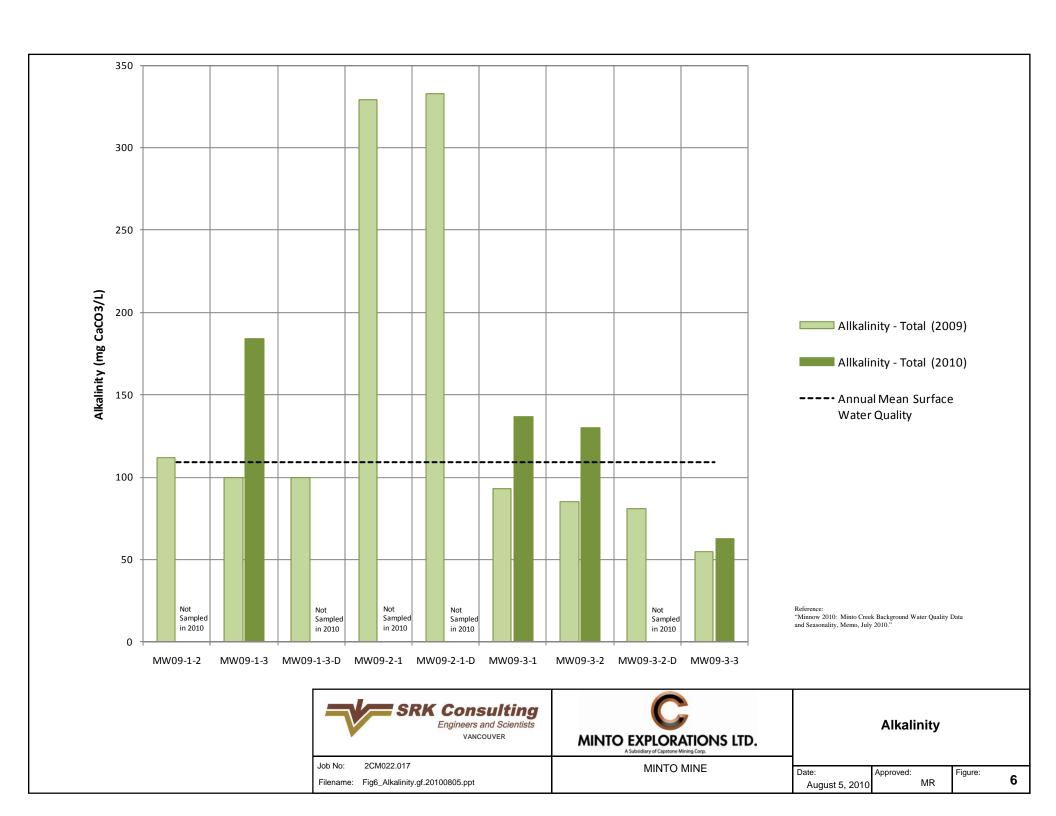
Results of the metals analysis (aluminum, cadmium, copper, iron, manganese, and selenium) are shown in Figure 7 to Figure 12. All samples show little variation (significantly less than 1 order of magnitude) and compare reasonably with the mean annual concentrations. This appears to indicate that the baseline groundwater chemistry is not significantly different than the baseline surface water chemistry on the site.

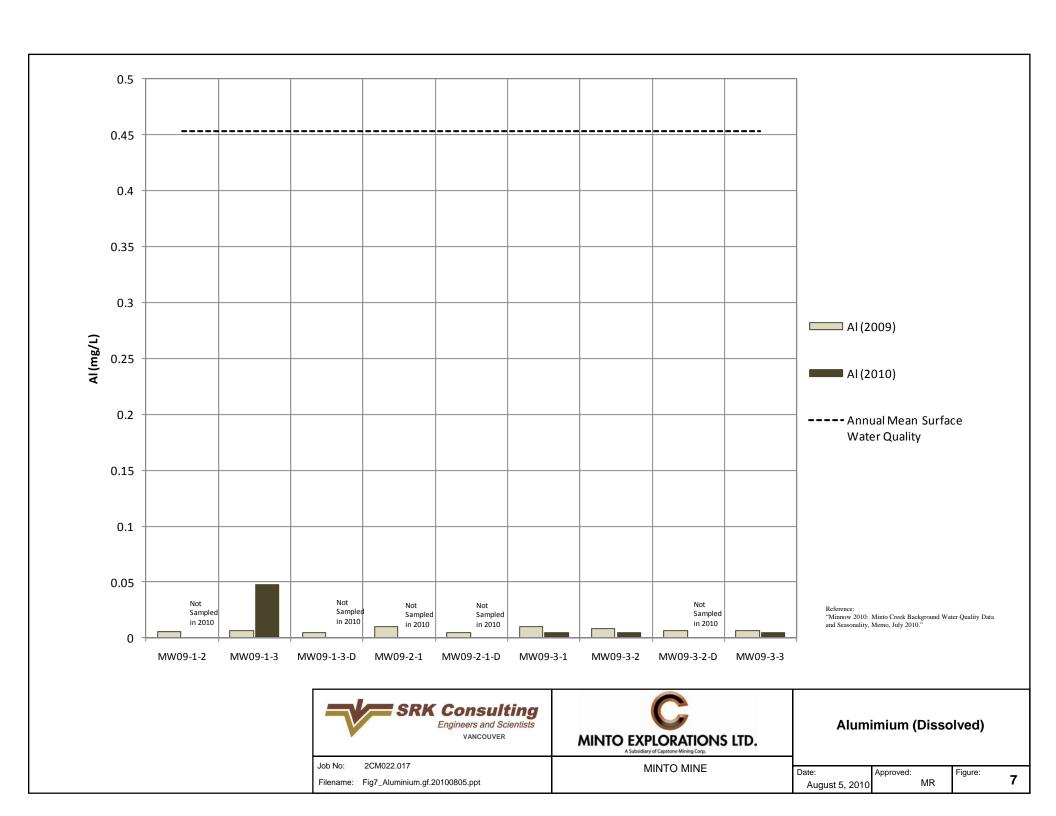
The results also indicate that metals concentrations also did not change significantly, so it is assumed that representative samples were collected in both sampling rounds. This also indicates that it would be reasonable to assume that the initial sampling results obtained from the destroyed well (MW09-02) represent groundwater chemistry with little to no impact from drilling and installation, so can be used for baseline assessment purposes.

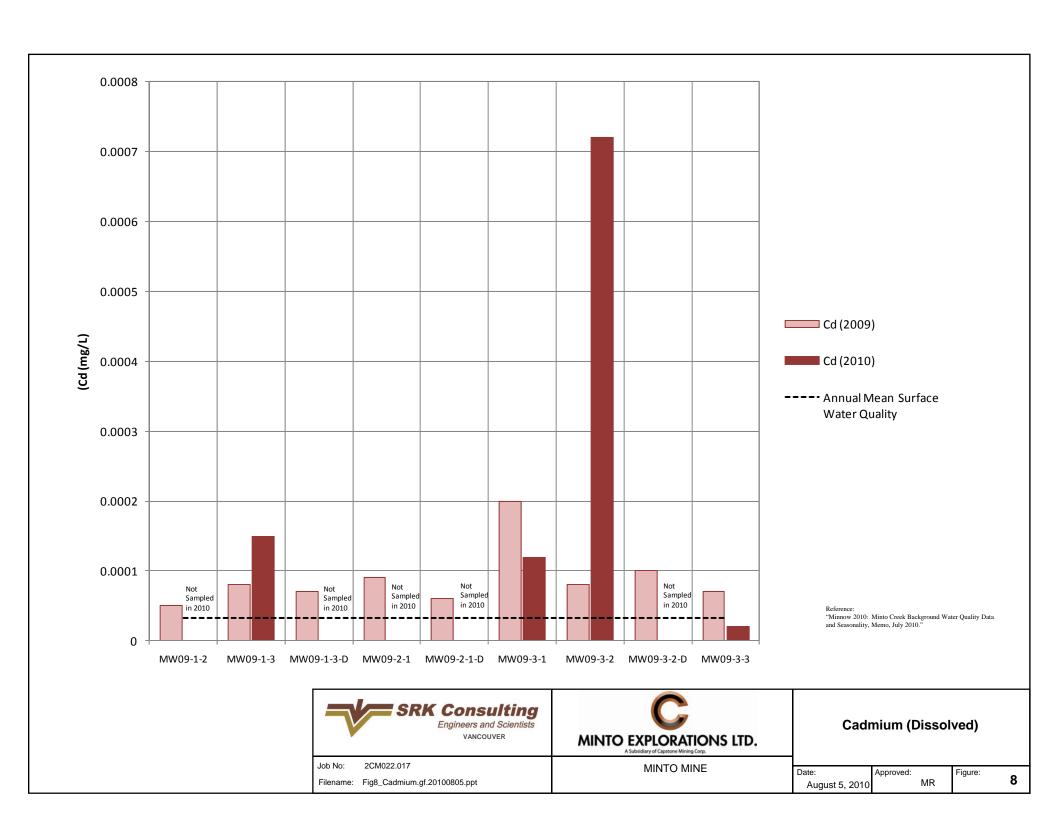
Table 2: 2009 - 2010 Grounwater Quality Results

2009 Groundwater Quality Data

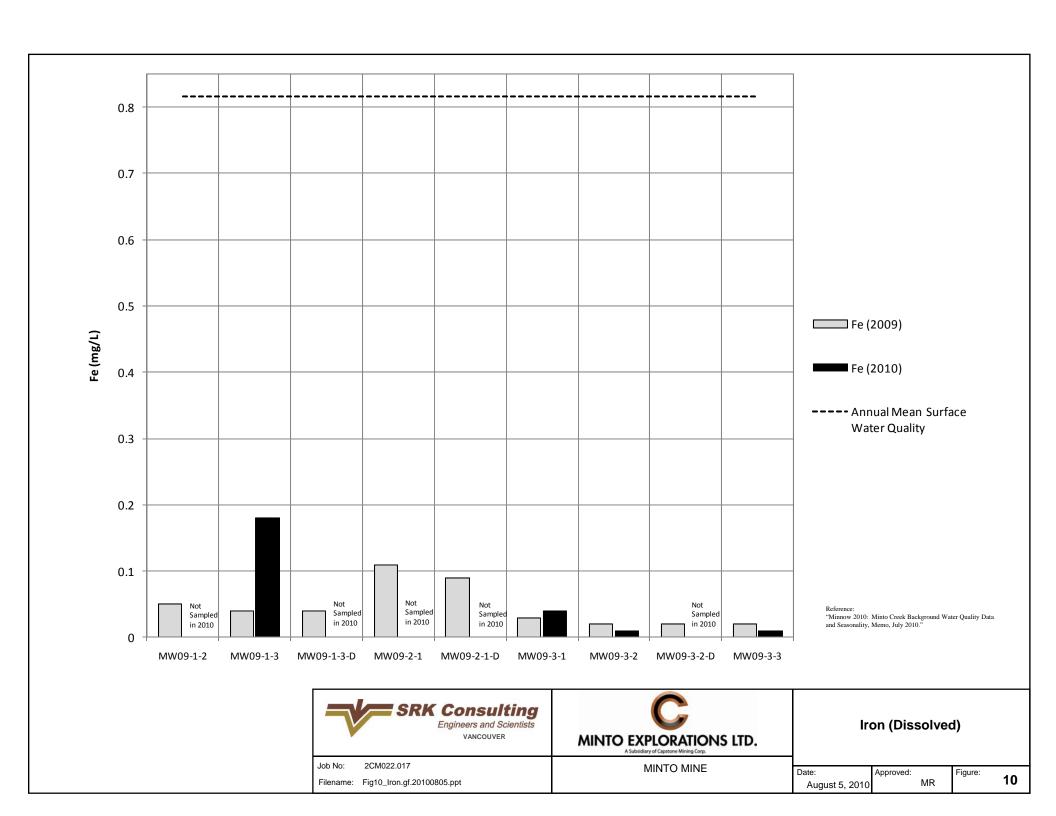

2009 Groundwater	r Quality Dat	а				Well-Zone				
Parameter	Units		MW09-1		MW		MW09-3			
		MW09-1-2	MW09-1-3	MW09-1-3-D	MW09-2-1	MW09-2-1-D	MW09-3-1	MW09-3-2	MW09-3-2-D	MW09-3-3
Date Physical Properties		30-Nov-09	30-Nov-09	30-Nov-09	2-Dec-09	2-Dec-09	1-Dec-09	1-Dec-09	1-Dec-09	1-Dec-09
pH	pH units	8.03	8.02	8.06	7.95	7.95	7.94	7.91	7.92	7.8
Conductivity	uS/cm	729	725	728	1090	1090	976	932	947	158
TDS TSS	mg/L	528 7	364 92	442 66	814 30	812 31	652 399	626 146	672 96	110 21
Misc. Parameters	mg/L	,	92	00	30	31	399	146	90	21
Alkalinity - Bicarbonate	mgCaCO3/L	140	100	100	400	410	100	100	100	70
Alkalinity - Carbonate	mgCaCO3/L	<6	<6	<6	<6	<6	<6	<6	<6	<6
Alkalinity - Hydroxide Alkalinity - Total	mgCaCO3/L mgCaCO3/L	<5 112	<5 100	<5 100	<5 329	<5 333	<5 93	<5 85	<5 81	<5 55
Hardness	mgCaCO3/L	318	262	274	503	508	253	242	255	60
Turbidity	NTU	1.1	32	26	13	16	95	49	47	6.9
Chloride Nitrogen as NH4	mg/L mg/L	7.22 0.72	7.28 3.85	7.27 3.03	5.52 1.29	5.73 1.26	17.9 5.79	16 5.32	16.3 5.6	0.93 0.26
Nitrogen as NO23	mg/L	42.9	42.1	42.1	23.2	24.4	60.9	58.2	59.7	1.87
Total Kjeldahl Nitrogen	mg/L	6.79	6	6.21	1.13	1.01	11.7	12.2	11.6	0.34
Phosphate (total)	mg/L	0.04	0.03	0.03	0.06	0.06	0.03	0.03	0.03	0.04
Sulphate (dissolved) Dissolved Metals	mg/L	77.4	82.5	83.3	166	170	117	110	115	10
Aluminium	mg/L	0.006	0.007	< 0.005	0.01	< 0.005	0.01	0.008	0.007	0.007
Antimony	mg/L	0.0053	0.0032	0.0008	0.0136	0.003	0.002	0.0021	0.0034	0.0021
Arsenic Barium	mg/L mg/L	0.0002 0.034	0.0002 0.1	0.0003 0.095	0.0041 0.11	0.0047 0.111	0.0009 0.106	0.0008 0.088	0.0005 0.091	0.0002 0.011
Berillium	mg/L	<0.0004	<0.00004	<0.0004	<0.0004	<0.0004	<0.00004	<0.0004	<0.0004	<0.0004
Bismuth	mg/L	<0.001	<0.001	<0.001	<0.001	<0.001	<0.001	<0.001	<0.001	<0.001
Boron	mg/L	0.045	0.052	0.044	5.37	6.09	0.32	0.218	0.2	0.044
Cadmium Calcium	mg/L mg/L	0.00005 89.7	0.00008 75.4	0.00007 78.2	0.00009 98.2	0.00006 99.2	0.0002 74.1	0.00008 73.7	0.0001 77.6	0.00007 19.9
Chromium	mg/L	<0.0004	<0.0004	<0.0004	0.0036	0.0038	<0.0004	<0.0004	<0.0004	<0.0004
Cobalt	mg/L	0.00102	0.00076	0.00078	0.00065	0.00062	0.00045	0.00057	0.00054	0.00024
Copper	mg/L	0.012	0.02	0.018	0.004	0.003	0.019	0.022	0.022	0.005
Iron Lead	mg/L mg/L	0.05 0.0001	0.04 <0.0001	0.04 <0.0001	0.11 0.0002	0.09 0.0002	0.03 0.0002	0.02 0.0001	0.02 <0.0001	0.02 0.0001
Lithium	mg/L	0.001	0.003	0.003	0.011	0.01	0.012	0.011	0.011	0.001
Magnesium	mg/L	22.9	18	19.1	62.6	63.1	16.5	14.2	14.9	2.4
Manganese	mg/L	0.0802	0.228	0.189	0.27	0.261 <0.01	0.161	0.135	0.137	0.0184
Mercury Molybdenum	ug/L mg/L	0.03 0.0341	<0.01 0.0892	<0.01 0.0733	<0.01 0.0442	0.0487	<0.01 0.0806	<0.01 0.101	<0.01 0.104	0.01 0.0267
Nickel	mg/L	0.004	0.002	0.002	0.004	0.003	0.008	0.004	0.004	0.002
Phosphorus	mg/L	<0.01	<0.01	<0.01	<0.01	<0.01	0.02	<0.01	<0.01	<0.01
Potassium	mg/L	3.2	6.6	5.8	8.2	8.4	27	26	25	2.6
Selenium Silicon	mg/L mg/L	0.0028 4.37	0.0028 2.87	0.003 3.36	0.0067 6.88	0.0068 6.94	0.008 2.49	0.0067 2.54	0.0068 2.58	<0.0006 4.2
Silver	mg/L	0.00019	<0.00001	0.00002	<0.00001	<0.00001	0.00005	0.00004	0.00005	0.00001
Sodium	mg/L	16.8	28	26.2	70.4	74.2	70.5	63	66.8	5.5
Strontium Sulfur	mg/L mg/L	1.04 25.8	1.51 27.5	1.39 27.8	2.11 55.4	2.14 56.7	2.21 39	1.86 36.7	1.91 38.4	0.168 3.4
Tellurium	mg/L	<0.0001	<0.0001	<0.0001	<0.0001	<0.0001	<0.0001	<0.0001	<0.0001	<0.0001
Thallium	mg/L	<0.00001	<0.00001	<0.00001	<0.00001	<0.00001	<0.00001	<0.00001	<0.00001	<0.00001
Thorium	mg/L	<0.0004	<0.0004	<0.0004	<0.0004	<0.0004	<0.0004	<0.0004	<0.0004	<0.0004
Tin Titanium	mg/L mg/L	<0.0001 <0.01	0.0001 <0.01	<0.0001 <0.01	<0.0001 <0.01	<0.0001 <0.01	0.0002 <0.01	0.0002 <0.01	<0.0001 <0.01	<0.0001 <0.01
Uranium	mg/L	0.0029	<0.0004	0.0008	0.0038	0.0039	0.001	0.0008	0.0008	<0.0004
Vanadium	mg/L	0.0002	0.0001	0.0001	0.0011	0.0012	0.0002	0.0001	0.0001	0.0002
Zinc Zirconium	mg/L	0.009 <0.0001	0.006	0.004	0.01	0.007	0.022	0.01	0.014	0.012 <0.0001
Total Metals	mg/L	<0.0001	0.0001	<0.0001	0.0001	0.0001	0.0001	<0.0001	<0.0001	<0.0001
Aluminium	mg/L	0.141	1.46	1.02	1.03	0.765	15.3	3.85	2.62	0.681
Antimony	mg/L	0.0003	0.0012	0.0003	0.003	0.0038	<0.001	0.0008	0.0032	0.0025
Arsenic Barium	mg/L mg/L	0.0003 0.037	0.0009 0.138	0.0007 0.122	0.0053 0.136	0.005 0.132	0.0068 1.35	0.0007 0.183	0.0006 0.16	<0.0002 0.028
Berillium	mg/L	<0.001	<0.001	< 0.001	<0.001	<0.001	<0.005	<0.001	<0.001	<0.001
Bismuth	mg/L	0.046	0.068	0.048	6.18	6.25	0.514	0.25	0.228	0.064
Boron	mg/L	<0.00004	< 0.00004	0.00004	0.00004	<0.00004	0.00066	0.00008	0.00004	< 0.00004
Cadmium Calcium	mg/L mg/L	0.00004 85.9	0.00008 73.2	0.00008 70.9	0.00017 96	0.00016 95.1	0.00012 85.5	0.00013 74	0.00011 74.4	0.00008 20.4
Chromium	mg/L	0.0011	0.0052	0.0037	0.006	0.0054	0.003	0.002	0.0016	0.0013
Cobalt	mg/L	0.00109	0.00156	0.00145	0.00144	0.00121	0.0175	0.00147	0.00128	0.00027
Copper Iron	mg/L mg/L	0.015 0.324	0.04 2.68	0.035 1.65	0.013 1.76	0.01 1.28	0.056 44	0.047 4.93	0.042 3.47	0.01 0.673
Lead	mg/L	0.0001	0.0007	0.0005	0.0008	0.0006	0.004	0.0008	0.0006	0.0002
Lithium	mg/L	0.001	0.005	0.004	0.013	0.013	0.02	0.012	0.012	0.001
Magnesium	mg/L	22	18	17.8	62.2	61.9	21.8	14.6	14.6	2.54
Manganese Mercury	mg/L ug/L	0.0935 0.05	0.309 <0.01	0.248 0.02	0.34 <0.01	0.332 <0.01	6.78 0.02	0.287 0.02	0.256 0.02	0.0384 0.01
Molybdenum	mg/L	0.0356	0.0944	0.0758	0.0481	0.0499	0.0742	0.108	0.114	0.0288
Nickel	mg/L	0.004	0.005	0.004	0.006	0.005	0.01	0.005	0.005	0.002
Phosphorus Potassium	mg/L mg/L	<0.05 3.3	0.06 7.2	<0.05 5.9	<0.05 8.6	<0.05 8.3	0.19 31	0.07 25.2	0.05 25.2	<0.05 3
Selenium	mg/L	0.0029	0.0032	0.0031	0.0072	0.0073	0.011	0.0078	0.0077	0.0007
Silicon	mg/L	4.54	7.01	5.12	9.32	8.46	38.1	9.99	7.55	5.49
Silver	mg/L	0.00037	0.00013	0.00013	0.00024	0.00019	0.0104	0.00613	0.00377	0.00154
Sodium Strontium	mg/L mg/L	16.7 1.27	28.1 1.84	23.6 1.64	73.4 2.55	71.5 2.53	65.4 2.41	66.1 2.17	66.7 2.31	5.72 0.189
Sulfur	mg/L	27.6	28.5	28.2	60.5	59.9	41	39.1	39.8	3.8
Tellurium	mg/L	<0.0001	<0.0001	<0.0001	<0.0001	<0.0001	<0.0005	<0.0001	<0.0001	<0.0001
Thallium	mg/L	<0.00001	0.00002	0.00001	0.00001	<0.00001	0.00016	0.00002	0.00002	<0.00001
Thorium Tin	mg/L mg/L	<0.0004 <0.0001	<0.0004 <0.0001	<0.0004 <0.0001	<0.0004 <0.0001	<0.0004 <0.0001	<0.002 <0.0005	<0.0004 0.0003	<0.0004 0.0002	<0.0004 <0.0001
Uranium	mg/L	0.0032	0.0001	0.0001	0.0045	0.0044	0.0005	0.0003	0.0002	<0.0001
Vanadium	mg/L	0.0006	0.0046	0.0033	0.0036	0.0029	0.039	0.0065	0.005	0.0012
Zinc	mg/L	0.007	0.029	0.019	0.024	0.018	0.13	0.036	0.033	0.033
Zirconium	mg/L	0.0002	0.0006	0.0004	0.0004	0.0004	0.0006	0.0004	0.0004	0.0001

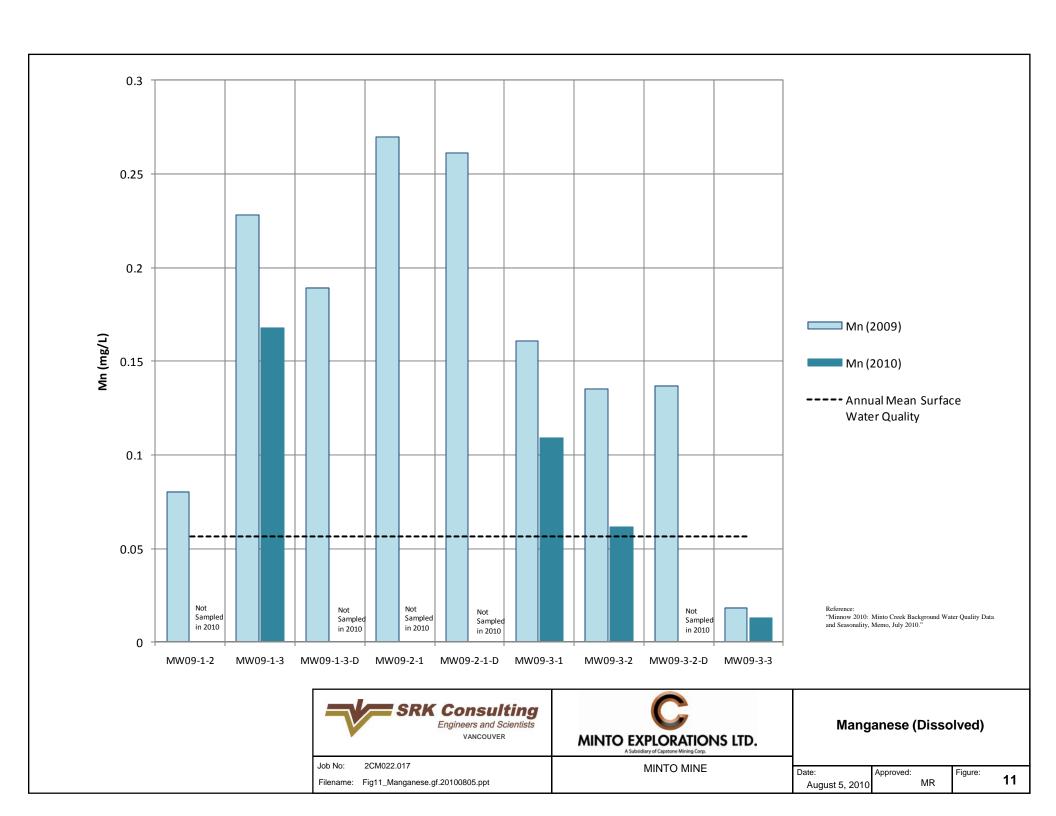

2010 Groundwater Quality Data

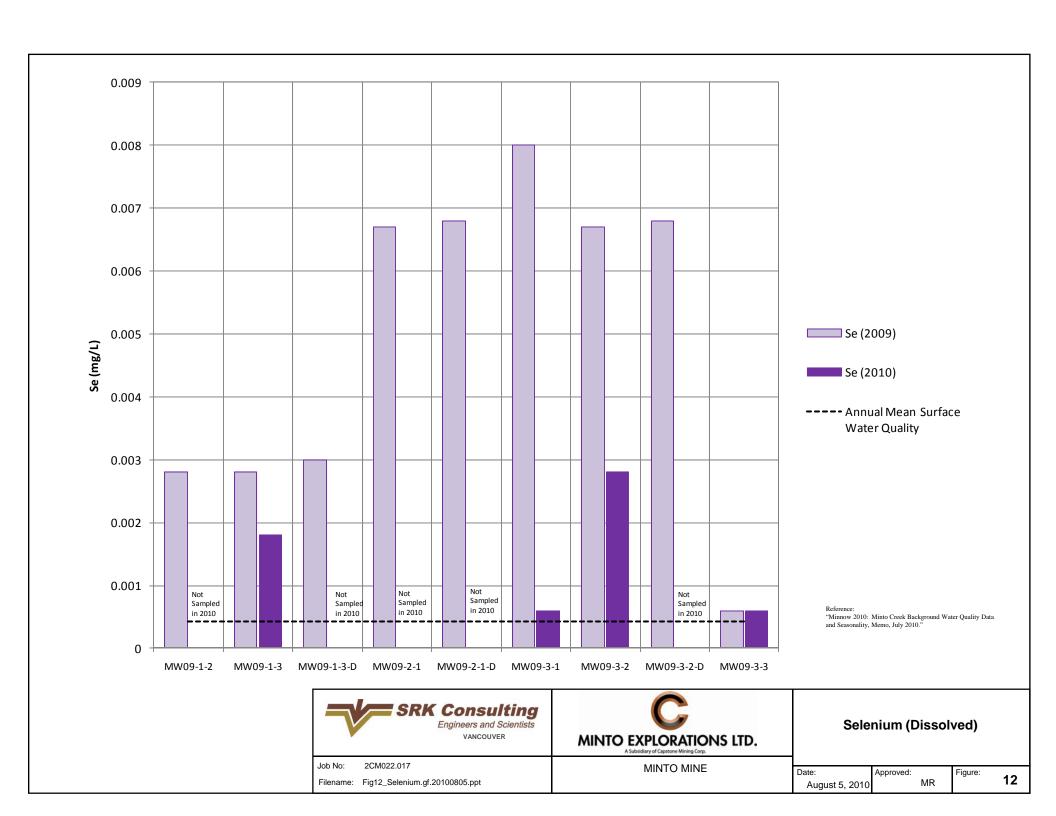

Parameter	Unit	MW	09-1		Well-Zone	MW09-3		
r ai ailletei	Onic	MW09-1-3	MW09-1-5	MW09-3-1	MW09-3-2	MW09-3-3	MW09-3-4	MW09-4-4
Date Sampled		30-Mar-10	30-Mar-10	29-Mar-10	29-Mar-10	29-Mar-10	29-Mar-10	29-Mar-10
Sample Depth Physical Tests	m	24.7	83.4	37.9	24.2	10.5	92.5	15.3
pH @25°C	(1)	8.04	6.46	8	8.05	7.84	7.79	6.15
Electrical Conductivity	µS/cm	941	2	315	502	158	161	1
Hardness as CaCO3	mg/L	336	<5	144	178	69	71	<5
T-Alkalinity as CaCO3 Turbidity	mg/L NTU	184 64	<5 0.4	137 2.5	130 3	63 0.3	67 0.7	<5 0.1
Total Suspended Solids	mg/L	70	<3	2.5 <4		0.3 <4	<4	<3
Total Dissolved Solids	mg/L	630	32	196	324	114	112	12
Colour	CU	<5	<5	<5	<5	<5	<5	<5
Major Anions and Cations Carbonate	mg/L	<6	<6	<6	<6	<6	<6	<6
Calcium	mg/L	93.7	<0.1	41.2	56.3	23.4	24.2	<0.1
Magnesium	mg/L	24.7	<0.1	9.9	9.2	2.4	2.6	<0.1
Sodium	mg/L	53.3	<0.1	5.7	24.9	2.6	2.7	<0.1
Phosphorus Potassium	mg/L mg/L	0.03	<0.01 0.7	<0.01 4.4	<0.01 6.6	<0.01 2.3	<0.01 2.2	<0.01 0.6
Silicon	mg/L	7 3.39	3.38	4.4	3.7	2.3 3.85	3.98	<0.05
Bicarbonate	mg/L	220	<5	170	160	80	80	<5
Hydroxide	mg/L	<5	<5	<5	<5	<5	<5	<5
Ionic Balance Anions and Nutrients	%	106		115	108	116	111	
Ammonium - N	mg/L	6.16	< 0.05	0.35	0.99	<0.05	<0.05	<0.05
Total Kjeldahl Nitrogen	mg/L	8.89	<0.06	0.4	1.22	<0.06	<0.06	<0.06
Total Phosphorus	mg/L	0.09	<0.05	<0.05	< 0.05	<0.05	<0.05	<0.05
Orthophosphate-P	mg/L	0.06	0.06	0.06	0.07	0.06	0.06	<0.01
Nitrate and Nitrite - N Chloride	mg/L mg/l	21.6 18.5	0.02 0.24	0.26 0.4	16.1 3.82	0.47 0.61	0.48 0.61	<0.01 <0.02
Sulfate (SO4)	mg/L mg/L	18.5	< 0.6	23	3.82 48.9	10	10	<0.02 <0.6
Dissolved Metals	g/.L	100	.0.0		10.0			-0.0
Aluminum	mg/L	0.048	<0.005	<0.005	<0.005	<0.005	0.013	< 0.005
Antimony	mg/L	0.0011 0.0007	0.0007	0.0009 0.0002	0.0018 0.0012	0.0009 <0.0002	0.0012 <0.0002	0.0006 <0.0002
Arsenic Barium	mg/L mg/L	0.0007	<0.0002 <0.001	0.0002	0.0012	0.002	<0.0002 0.01	<0.0002
Beryllium	mg/L	<0.00004	<0.0004	<0.00004	<0.00004	<0.00004	<0.00004	<0.00004
Bismuth	mg/L	<0.001	<0.001	<0.001	<0.001	<0.001	<0.001	<0.001
Boron	mg/L	0.095	0.007	0.106	1.99	0.04	0.042	<0.004
Cadmium	mg/L	0.00015	0.00002	0.00012	0.00072	0.00002	<0.00001	<0.00001
Chromium Cobalt	mg/L mg/L	<0.0004 0.00045	<0.0004 0.00004	0.001 0.00014	0.0013 0.0002	<0.0004 0.00009	<0.0004 0.00008	<0.0004 0.00002
Copper	mg/L	0.021	0.001	0.004	0.006	0.005	0.004	<0.001
Iron	mg/L	0.18	<0.01	0.04	<0.01	<0.01	0.03	<0.01
Lead	mg/L	0.0003	0.0001	0.0011	0.0003	0.0007	0.0002	0.0002
Lithium	mg/L	0.003	<0.001	0.003	0.004	<0.001	<0.001	<0.001
Manganese Mercury	mg/L ug/L	0.168 <0.01	0.0003 <0.01	0.109 <0.01	0.0616 <0.01	0.0129 <0.01	0.0087 <0.01	<0.0002 <0.01
Molybdenum	mg/L	0.148	<0.001	0.0052	0.045	0.0064	0.0049	<0.0001
Nickel	mg/L	0.002	<0.001	0.005	0.002	<0.001	<0.001	<0.001
Selenium	mg/L	0.0018	<0.0006	<0.0006	0.0028	<0.0006	<0.0006	<0.0006
Silver	mg/L	<0.00001	<0.00001	<0.00001	0.00001	<0.00001	<0.00001	<0.00001
Strontium Sulfur	mg/L mg/L	1.41 56.2	<0.001 <0.2	0.863 7.6	0.739 16.3	0.125 3.4	0.12 3.5	<0.001 <0.2
Tellurium	mg/L	<0.0001	<0.0001	<0.0001	<0.0001	<0.0001	<0.0001	<0.0001
Thallium	mg/L	< 0.00001	< 0.00001	< 0.00001	< 0.00001	< 0.00001	< 0.00001	< 0.00001
Thorium	mg/L	<0.0004	< 0.0004	<0.0004	<0.0004	<0.0004	<0.0004	<0.0004
Tin	mg/L	0.0003	<0.0001	<0.0001	<0.0001	<0.0001	<0.0001	<0.0001
Titanium Uranium	mg/L mg/L	<0.01 <0.0004	<0.01 <0.0004	<0.01 0.0015	<0.01 0.0014	<0.01 <0.0004	<0.01 <0.0004	<0.01 <0.0004
Vanadium	mg/L	0.0003	<0.0001	0.0001	0.0004	0.0002	0.0004	<0.0001
Zinc	mg/L	0.016	0.004	0.014	0.005	0.005	0.004	0.004
Zirconium	mg/L	0.0002	<0.0001	<0.0001	<0.0001	<0.0001	<0.0001	<0.0001
Total Metals	ma/l	1 21	<0.00E	0.043	0.03	0.01	0.014	<0.00E
Aluminum Antimony	mg/L mg/L	1.31 0.0005	<0.005 <0.0002	0.043 0.0002	0.03 <0.0002	0.01 <0.0002	0.014 0.0003	<0.005 <0.0002
Arsenic	mg/L	0.0012	<0.0002	0.0004	0.0015	<0.0002	<0.0002	<0.0002
Barium	mg/L	0.186	<0.001	0.05	0.036	0.013	0.01	<0.001
Beryllium	mg/L	0.00005	<0.00004	<0.00004	<0.00004	<0.00004	<0.00004	<0.00004
Bismuth Boron	mg/L mg/L	<0.001 0.095	<0.001 0.016	<0.001 0.29	<0.001 1.92	<0.001 0.034	<0.001 0.034	<0.001 0.01
Boron Cadmium	mg/L mg/L	0.095	<0.0001	0.29	0.00004	0.0034	0.0034	<0.0001
Calcium	mg/L	98.7	<0.05	42.5	59.3	24.9	24.9	<0.05
Chromium	mg/L	0.0072	<0.0004	0.0022	0.0014	<0.0004	0.0006	<0.0004
Cobalt	mg/L	0.00147	<0.00002	0.00019	0.00022	0.00007	0.00006	< 0.00002
Copper Iron	mg/L mg/L	0.029 3.37	<0.001 0.026	0.006 0.183	0.008 0.175	0.004 0.027	0.004 0.047	<0.001 <0.01
Lead	mg/L	0.001	0.0001	0.0003	0.0003	0.0002	0.0002	<0.001
Lithium	mg/L	0.003	<0.001	0.003	0.005	<0.001	<0.001	<0.001
Magnesium	mg/L	26.8	<0.05	10.4	9.76	2.62	2.63	<0.05
Manganese (SemiTrace)	mg/L	0.219	< 0.005	0.118	0.06	0.007	< 0.005	<0.005
Manganese (Trace) Mercury	mg/L ug/L	0.225 0.01	0.0002 <0.01	0.123 <0.01	0.0677 <0.01	0.0132 <0.01	0.009 <0.01	<0.0002 <0.01
Molybdenum	mg/L	0.146	<0.001	0.006	0.0468	0.0065	0.0051	<0.001
Nickel	mg/L	0.006	<0.001	0.007	0.002	<0.001	0.001	<0.001
Potassium	mg/L	7.2	0.1	4.2	6.8	2.1	1.9	<0.1
Selenium	mg/L	0.0019	<0.0006	<0.0006	0.0029	<0.0006	<0.0006	<0.0006
Silicon Silver	mg/L mg/L	7 0.00012	3.7 <0.00001	4.6 0.00006	4.11 0.00017	4.4 0.00004	4.39 0.00003	<0.05 <0.00001
Sodium	mg/L	56.9	0.13	7.37	25.7	3.08	3.07	0.00001
	mg/L	1.43	<0.001	0.886	0.785	0.126	0.127	0.001
Strontium								
Sulfur	mg/L	58.3	<0.1	7.3	15.8	3.4	3.4	<0.1
		58.3 <0.0001 0.00002	<0.1 <0.0001 <0.00001	7.3 <0.0001 <0.00001	15.8 <0.0001 <0.00001	3.4 <0.0001 <0.00001	3.4 <0.0001 <0.00001	<0.1 <0.0001 <0.00001


2010 Groundwater Quality Data


	Unit	Well-Zone							
Parameter		MW09-1							
		MW09-1-3	MW09-1-5	MW09-3-1	MW09-3-2	MW09-3-3	MW09-3-4	MW09-4-4	
Date Sampled		30-Mar-10	30-Mar-10	29-Mar-10	29-Mar-10	29-Mar-10	29-Mar-10	29-Mar-10	
Sample Depth	m	24.7	83.4	37.9	24.2	10.5	92.5	15.3	
Thorium	mg/L	<0.0004	< 0.0004	< 0.0004	< 0.0004	< 0.0004	< 0.0004	< 0.0004	
Tin	mg/L	< 0.0001	< 0.0001	< 0.0001	< 0.0001	< 0.0001	< 0.0001	< 0.0001	
Titanium	mg/L	0.079	< 0.001	0.002	< 0.001	< 0.001	< 0.001	< 0.001	
Uranium	mg/L	< 0.0004	< 0.0004	0.0015	0.0014	< 0.0004	< 0.0004	< 0.0004	
Vanadium	mg/L	0.0049	< 0.0001	0.0003	0.0005	0.0003	0.0004	< 0.0001	
Zinc	mg/L	0.025	0.003	0.016	0.01	0.01	0.01	0.005	
Zirconium	mg/L	0.0005	<0.0001	0.0001	<0.0001	<0.0001	<0.0001	<0.0001	







SRK Consulting Page 24 of 25

5.0 Conclusions and Recommendations

Permafrost and piezometric (water level) conditions observed to date on the site support the conceptual model that groundwater flow will be concentrated in the shallow, active surface materials during summer thaw period and in the deeper, sub-permafrost aquifer system.

Based on the piezometric data and topography observed, the deeper groundwater flow is expected to discharge within the mine site, prior to the W3 compliance point. Therefore; any impacted groundwater will enter the surface water system and contribute to surface water loading. However; the expected flux (volume over time) will be low, so even at baseflow conditions we do not expect significant impact.

Groundwater chemistry across the site appears to be fairly consistent. Based on this observation, it is expected that it will be possible to model groundwater chemistry interactions with reasonable confidence across the site. This will be confirmed through additional monitoring of the ground water wells, and from seeps that are not influenced by mine workings (i.e.: not from the toe of an established waste dump, etc).

Going forward, the groundwater monitoring system will be upgraded to take into account new mine infrastructure and tailings facilities as required. At this time, Minto Exploration has committed to re-establishing connection to the damaged MW09-04 and replacement of the destroyed MW09-02 once the design for the valley fill has been finalised.

For monitoring system operation, Minto will:

- conduct quarterly pressure profiles and sampling for all monitoring locations for a minimum of one year. At the end of this period, a review of all available hydrogeological data will be conducted and monitoring locations prioritized for sampling frequency (e.g., quarterly versus bi-annually or annually).
- maintain a clear record of the installation, development, monitoring, and servicing carried out on each groundwater monitoring installation over time, with a log of these events recorded and included in the annual monitoring report.

SRK Consulting Page 25 of 25

This letter report, 'Minto Mine: Groundwater Baseline Conditions', has been prepared by SRK Consulting (Canada) Inc.:

Yours truly,

SRK Consulting (Canada) Inc.

Michael Royle, M.App.Sci., P.Geo. Principal Hydrogeologist

References:

- 1. SRK 2008: Waste Dump Overburden Drilling. Minto Mine, Yukon.
- 2. EBA 2007: Geotechnical Design Report-'Dry' Stack tailings Storage facility. Minto Mine, Yukon.
- 3. Minnow 2010: Minto Creek Background Water Quality Data and Seasonality.

Minto Mine Groundwater Monitoring System Installation Report

Prepared for

Minto Explorations Ltd.

Prepared by

Project Reference Number SRK 2CM022.007

February 2010

Minto Mine

Groundwater Monitoring System Installation Report

Capstone Mining Corp.

Suite 900-999 West Hastings Street Vancouver, B.C. V6C 2W2

SRK Consulting (Canada) Inc. Suite 2200, 1066 West Hastings Street Vancouver, B.C. V6E 3X2

Tel: 604.681.4196 Fax: 604.687.5532 E-mail: vancouver@srk.com Web site: www.srk.com

SRK Project Number 2CM022.007.0001.01

February 2010

Executive Summary

The groundwater monitoring system at the Minto Mine was augmented in 2009 with three multilevel monitoring systems. The main objectives of the Multiport (MP) monitoring wells are to:

- improve the understanding of hydrogeological conditions across the mine site, specifically as it behaves below the permafrost layer; and
- collect background data on piezometric levels and geochemistry of the hydrogeological system with respect to potential impact areas (waste rock piles, TMF, DSTF, etc).

This information will be used to establish baseline groundwater conditions at the site that can be directly monitored to detect possible impacts from mine infrastructure planned for the site.

This report summarizes the work carried out by SRK Consulting (Canada) Inc. during November and December, 2009 designed to drill and log four new holes, and install multi-level monitoring wells in each hole.

The new wells were designed to collect data to assess or enhance the understanding of:

- piezometric pressure distributions in depth discrete intervals in all monitoring wells;
- current pattern of groundwater flow across the site; and
- groundwater geochemistry for discrete depths in all wells.

The original plan called for the installation of four monitoring wells (MW09-01 to -04), located at current and future points of potential groundwater impact. The four new drillholes were all completed successfully to target depths; however, one of the installations (MW09-04) was damaged due to collapse of uncased waste rock near the surface soon after installation of the monitoring well had been completed.

MW09-04 may still be recoverable; however, frozen ground conditions do not allow for safe or easy access and so recovery efforts have been put on hold until the summer of 2010. It should be noted that MW09-04 is located up gradient of the currently dewatered Main Zone pit and so would not see any impacts from tailings or waste rock disposal until such time that mining in the pit ceases and it is converted to a tailings management facility (TMF) sometime in 2012. Therefore, a delay in data collection at this point is not considered to be significant with respect to site monitoring requirements.

Monitoring well and protective casing design and packer locations are illustrated for each drillhole to show the hydrogeological features that the data relate to. Installation details for MW09-04 are included for completeness, and to illustrate how this area will be covered by the recovered or replacement well.

Preliminary data were collected from each MP system and presented in this report. At this time, all available pressure and hydrogeochemistry data and the resulting interpretations are considered to be preliminary, as it is uncertain whether the monitoring zones have equilibrated from the drilling and installation disturbances. Future monitoring data will be used to determine when pressures and water chemistry have reached equilibrium with the surrounding rock.

The piezometric data collected from the new and existing multilevel monitoring wells will be used to better define the patterns of groundwater flow in the rock mass surrounding the currently dewatered Main Zone pit and throughout the site, as well as improve the conceptual model with respect to characteristics of hydrogeological features such as faults and regions on the site with little previous groundwater data. Geochemistry samples will be used to delineate flow paths and sources of water as it flows through the site and moves towards receptor bodies.

Table of Contents

	Executive Summary	l							
1	Introduction	1							
	1.1 Regulatory Requirements	1							
	1.2 Monitoring Objectives								
	5								
2	Hydrogeological Conditions	2							
	2.1 Permafrost Conditions								
	2.2 Overburden								
	2.3 Bedrock								
	2.3.1 Lithology								
	2.3.2 Structure								
	2.3.3 Historical and Existing Groundwater Monitoring								
	2.3.4 Hydrogeological Implications of the Geological Model and Past Monitoring	5							
^	One we deveter Meniterine Cretere	•							
3	Groundwater Monitoring System								
	3.1 Locations								
	3.2 Drilling Techniques and Core Logging								
	3.3 MP Casing Installation Program								
	3.3.2 Details of Installed System								
	3.3.3 Documentation								
	3.3.4 MW09-4								
4	onitoring								
	4.1 Pressure Monitoring	9							
	4.2 Summary of Initial Pressure Data	9							
	4.3 Development and Sampling	10							
	4.4 Initial Sampling Results	11							
_									
5	Monitoring System Recommendations	13							

List of Tables

Table 1:	Monitoring Well Locations and Design Objective	6
Table 2:	Monitoring Zone Details	8
	Preliminary Sampling Results – December 2009	

List of Figures

Figure 1: Site Plan with Mine Infrastructure, Geological Features and Monitoring Locations

Figure 2: SRK-09-01: MP Casing Log and Pressure Data SRK-09-02: MP Casing Log and Pressure Data SRK-09-03: MP Casing Log and Pressure Data

Figure 5: SRK-09-04: MP Casing Log

Figure 6: pH Figure 7: Alkalinity

Figure 8: Dissolved Metals: Cu, Mo, Se

List of Appendices

Appendix A: Drillhole Logs

Appendix B: MP Monitoring Well Casing Design and Installation Records

Appendix C: MP System: Groundwater Pressure Profiling and Sampling Protocols

Appendix D: Pressure Profiles
Appendix E: Sampling Records

Appendix F: MP Monitoring Well History Log

1 Introduction

This report describes the design and installation of multilevel monitoring wells at the Minto Mine, Yukon. The purpose of the monitoring system is to improve the understanding of hydrogeological conditions across the sire and provide background water levels and hydrogeochemistry for environmental monitoring of the site. Four new drill holes were instrumented with the multilevel MP system. Figure 1 shows the general layout of the mine workings, major faults and all monitoring locations on the site. Information from the new monitoring system will be helpful in establishing the probable flow system in a flooded mine scenario and the hydrogeological controls for water entering and exiting the mine workings.

This report provides initial results of post installation pressure monitoring and makes limited recommendations for future monitoring of the MP well network.

1.1 Regulatory Requirements

The Minto Mine is subject to Type "A" Water Use License QZ96-006 (WUL) issued by the Yukon Water Board. Section 7.0 of the WUL require that a groundwater monitoring plan be prepared for the site, and stipulates that the monitoring plan shall:

Groundwater Monitoring Plan

- 71. On or before the first anniversary of the start up date, the Licensee shall submit to the Board a Groundwater Monitoring Plan.
- 72. The Groundwater Monitoring Plan shall be designed in order to monitor potential groundwater contamination related to the waste rock/overburden dumps.
- 73. The Groundwater Monitoring Plan shall include at least two groundwater monitoring wells below the toe of each of the waste rock and overburden dumps. The siting and depth of these wells shall be based on the hydro geology of the area below the dumps and shall be selected to provide an early indication of the impact of the dumps on local groundwater quality.

Monitoring of groundwater conditions is also a component to the monitoring program for the Dry Stack Tailings Facility (DSTF) at the site, as prescribed in the document Minto Mine Tailings Management Plan (January 2007), which was submitted as a requirement of the project's Quartz Mining License QML-0001 and approved by Yukon Government, Energy Mines and Resources (YG EMR). The requirements for groundwater monitoring in the DSTF are an element of the site groundwater monitoring regime, but will only be identified and referenced in this plan, as they may change with amendments to the Tailings Management Plan.

1.2 Monitoring Objectives

As stipulated in the WUL, a groundwater monitoring program will be carried out in the vicinity of the waste rock, overburden dumps, and the dry stack tailings facility (DSTF) at the Minto Mine site to provide background and on-going water quality data. The objective of the groundwater monitoring program is to provide an early indication of potential impact of the dumps on the local groundwater quality. In addition, this plan contains adaptive management and contingency measures if contamination is detected.

2 Hydrogeological Conditions

Groundwater at the Minto site will be constrained to the overburden and bedrock flow systems. A complicating factor for monitoring groundwater at the site is the extent of permafrost at the site. The general hydrogeological characteristics are discussed below to give a clearer picture of the conditions that will affect the movement of groundwater on the site.

2.1 Permafrost Conditions

Permafrost conditions on the site will make groundwater monitoring problematic. Permafrost on the site has been found to be extensive and deep (SRK, 2008). Data from drilling at several locations has shown permafrost ranging from depths from within 1.0m of ground surface to depths of up to 10 m.

Geotechnical drilling in 1994 and 1996 by EBA observed permafrost in each of the boreholes drilled within the vicinity of the proposed DSTF (See Figure 1), with the base of the permafrost occurring at varying depths (EBA, 2007). Measurements of the active layer in these areas indicated a maximum depth of only about 1.0 m in September 1996, directly under the DSTF footprint.

The observed ice contents in boreholes downstream of the DSTF (94-11 and 94-21) and within the footprint of the DSTF (96-G07 through -G12, excluding -G10), typically ranged from frozen ground to visible ice at 10% to 20% of the total volume. Two of the boreholes, 96-G09 and 96-G12, showed ice intervals of 1.5 and 4.0m thick respectively within the upper 10m.

Initial data from the ground temperature cables installed in 94-11, 94-21, and 96-G08 indicate a relatively uniform ground temperature of close to -0.8°C after equilibration with slight seasonal warming within the top 2 to 4 m. The active layer in 94-G11 and 94-G21 are on existing disturbed trails, and so will be deeper than the surrounding soils. Readings from 2006 for 94-G11 indicate similar ground temperatures and active layer thickness.

In November 2007, vibrating wire piezometers were installed within and down gradient of the existing dry stack tailings facility (DSTF) in boreholes DSP-1 and DSP-2. Each of these piezometers is equipped with temperature sensors at the piezometer tip. At both of the locations, the

sensors were installed at 1 m and 1.7 m respectively. No pore water has been measured in the piezometers to date, as ground conditions have remained frozen.

In addition, three more temperature cables providing profile data were installed in the vicinity of the DSTF in holes DST-1, DST-2, and DST-5. Initial observations from the piezometer temperature probes indicate that temperatures did not rise above -0.3°C at any time and ranged as low as -2.6°C. Temperature cable DST-5 (Figure 1) is located outside of the footprint of the DSTF and provided a profile reflecting conditions on an un-insulated site. Temperature averaged approximately -0.5°C below 1 m depth, and fluctuated near surface to values exceeding 5°C.

No groundwater was observed in any of the boreholes during the EBA geotechnical drilling program.

Soil investigation drilling in the region of the SW waste rock dump in February to April, 2008 (SRK, 2008), most cores contained non-visible ice, indicating the pore water was frozen; however, clear chunks of ice were also observed in many cases. Data from thermistors installed in the same drill holes indicate that this permafrost is close to 0°C; however, water in any monitoring standpipes would freeze in the permafrost layer.

The results of the temperature and piezometer monitoring near the SW Dump through June 2008 suggest that unfrozen layers at depth may be limited or non-existent, and that shallow perched water tables within the seasonally thawed active layer may provide the only mechanism for transport within this region of the basin.

2.2 Overburden

Geotechnical investigations within the plan area of the DSTF (EBA, 2007) indicated overburden thicknesses of up to 45m. These deposits are thought to be an extension of an infilled valley, which also passes through the southern end of the open pit. The overburden soils generally comprise a thin veneer of peat and vegetation overlying a fine-grained silt or silt and sand of colluvium origin. The colluvium is underlain by coarse-grained sand with trace gravel that is considered to be a residual soil. The exception to this is at borehole 94-21, in which a clay layer from ground surface to a depth of 18-9m was observed (EBA, 2007).

Throughout the mine site the residual soils grade into weathered bedrock. The overburden soils thin out to the south and east of the DSTSF site.

Detailed soil logging by SRK in the area of the SW Dump (SRK, 2008) indicated that overburden material is comprised of silty, and in certain locations, clayey material, with fractions of sand, gravel and cobbles. Overburden thickness varies in this area (from 10.7m at 08SWC270 to 51.8m at 08SWC273). Typically, the overburden thickness increased along the valley bed, and decreased on the valley slopes. This is expected to be similar for overburden conditions across the project site.

2.3 Bedrock

2.3.1 Lithology

Bedrock in the vicinity of the DSTF is located at approximately 45m depth (EBA, 2007). In general, outcrop exposure on the property is poor. Where exposure is available, it has been affected by deep weathering and variable oxidation, as the terrain was not glaciated during the last ice age event.

The Minto site is underlain by predominantly igneous rocks of granodiorite composition. Minor amounts of other lithologies consisting of small dykes of simple quartz-feldspar pegmatite, aplite, and an aphanitic textured intermediate composition rock are also observed. Bodies of all of these units are relatively thin and rarely exceed one metre core intersections. These dykes are relatively late, generally postdating the peak ductile deformation event; however, some pegmatite and aplite bodies observed in a rock cut located north of the mill complex are openly folded. Conglomerate and volcanic flows have been logged in drill core by past operators, but have not been recently confirmed as the drill core from previous campaigns was largely destroyed in forest fires and no new drilling has intersected such rocks.

With the possible exception of the lithological contacts of the dykes, the lithology types encountered in the Minto Mine site are not expected to have significant primary porosity as it relates to hydraulic conductivity (K) or transmissivity. The low K values (less than 10^{-9} m/s) make it unlikely that significant groundwater flow will occur in competent bedrock. Flow may; however, occur in bedrock that has been fractured/faulted to produce open, secondary porosity/permeability.

2.3.2 Structure

Secondary porosity/permeability is the dominant flow path in intrusive and metamorphic rocks. For this reason, it is important to have an understanding of the structural and mineralization environment of the site when constructing the conceptual flow model.

The copper-sulphide mineralization at Minto is strongly associated with foliated granodiorite within a deformation zone. The deformation zone forms sub-horizontal horizons within the more massive plutonic rocks of the region and can be traced laterally for more than 1,000 metres in the drill core. The similarity of chemistry and texture of both the deformed and the massive granodiorites suggest the deformation zones are structural in origin and not stratigraphic. The deformation zones are thought to represent healed, shallowly dipping faults that may have formed when the rocks passed through the brittle/ductile transformation zone in the earth's crust in transition from a deep emplacement environment to eventual exhumation of the regional batholith. Because of the inclusion of mineralization and the ductile nature of the main faulting at the site, these healed structures are not expected to represent significant flow paths.

Late, brittle fracturing and faulting is noted throughout the property area and is associated with a conjugate set of regional faults. The DEF Fault strikes more or less east-west and dips north-northwest and cuts off the main zone mineralization at its northern end. This type of faulting

can often form significant flow paths within a rock mass. However; recent drilling results and data collected from instrumentation across the DEF fault in the north wall of the main Pit indicates that a significant hydraulic head is maintained across this feature (SRK, 2009 – unreported work in progress). This appears to indicate that the DEF is not a significant flow feature, but rather is holding back water flow across the structure. This characteristic; whereby, fault zones act as barriers to flow has been observed at other mine sites.

Current structural analysis of the site (SRK, 2009 - work in progress) indicates that faults of any sort are not expected to occur within the footprints of the waste and overburden dumps or DSTF.

2.3.3 Historical and Existing Groundwater Monitoring

To date, groundwater monitoring has been installed under various initiatives, including:

- Installation of standpipes in 1994 at the proposed dam alignment (P94-20) and the pit vicinity (P93-E):
 - Water chemistry samples collected between 1994 and 2006.
 - Water levels observed at ~15m and 26m depth in P94-20 and P93-E respectively.
 - Both destroyed during construction and pit excavation, respectively, in 2006).
- Vibrating wire transducers down gradient of the DSTF;
- Vibrating wire transducers in the dam core; and
- Standpipes installed during the SW dump foundation investigation.

Besides standpipes P93-E and P94-20, it appears that all standpipes installed on the site to date have frozen, indicating that permafrost conditions exist across most of the site at shallow depths.

2.3.4 Hydrogeological Implications of the Geological Model and Past Monitoring

The implications of the geology (thermal conditions, overburden, and lithology) found at the Minto site and the past monitoring events are:

- Permafrost:
 - will dominate groundwater flow system below active zone to depths of up to 45m; and
 - SRK expects that conventional "standpipe" monitoring wells installed through the
 permafrost in to the underlying unfrozen ground will be inoperable as the piezometric levels
 will be near surface; therefore, the resulting water in them will freeze.
- Shallow flow:
 - will be dominated by permafrost conditions;
 - will occur in the seasonally thawed layer; and
 - will be controlled by overburden composition in the unfrozen areas.
- Deeper flow:
 - will occur below the permafrost within the overburden or bedrock;

- will concentrate in the shallow, weathered zone if unfrozen; and
- standpipe monitoring wells will not be an effective means of monitoring the deep groundwater system.

Based on this, we expect that groundwater flow related to the waste rock and overburden dumps and the DSTF will only have significant impact on the shallow, active layer system. The deeper, bedrock hosted flow system is expected to be isolated from these facilities due to the permafrost layer.

We also expect that standpipe monitoring wells will not be an effective means of monitoring groundwater below the permafrost at the Minto site, and would be effective only seasonally when installed in the active layer.

3 Groundwater Monitoring System

3.1 Locations

For the 2009 installation program, Westbay MP (multi-port) monitoring wells were installed in four new drillholes (MW09-01, MW09-02, MW09-03, and MW09-04).

MP systems were installed in order to gain as much depth discrete information as possible from each drillhole, and to allow for operation through the permafrost. This latter aspect is possible due to the MP System being a closed pipe system such that fluids inside the pipe are isolated from the surrounding formation fluid or natural groundwater. The formation water is accessed by a wireline tool that opens individual valves to measure pressure and collect groundwater samples. The water inside the MP Casing within the permafrost is kept from freezing by mixing polypropolene glycol (antifreeze).

Table 1 lists locations and purpose for each of the new monitoring systems. The locations for each monitoring system are illustrated on Figure 1.

Table 1: Monitoring Well Locations and Design Objective

Well ID	Drillhole Type and Diameter	Location	Surveyed Coordinates (UTM NAD83)	Purpose
MW09-01	New; HQ	West Pit Access	384177 E 6944984 N 858 masl	Establish baseline groundwater conditions down gradient of the Main Dump, and the proposed NW, NE, and SW Dumps
MW09-02	New; HQ	Lower Tailings	385676 E 6945034 N 757 masl	Establish groundwater conditions down gradient of the dry stack tailings facility (DSTF)
MW09-03	New; HQ	Minto North	384253 E 6946159 N 908 masl	Establish baseline groundwater conditions down gradient of the proposed North Pit
MW09-04	New; HQ	Phase 1 Confluence	384954 E 6944926 N 794 masl	Establish baseline groundwater conditions down gradient of the Main Zone Pit tailings management facility

Monitoring wells were located to intercept expected flow paths from the adjacent mine waste facilities in order to act as a groundwater monitoring system. The flow paths were based on the current understanding of the site geology and conceptual hydrogeological model.

3.2 Drilling Techniques and Core Logging

MW09-01 to -04 were drilled as HQ3 diameter (96mm) boreholes using a hydraulic diamond coring drill rig operated by Driftwood Drilling of Smithers, BC. Polymer based drilling additives were only used when drilling through highly fractured surface rock. Drillholes were flushed significantly after use of polymer drilling fluids.

Core was collected over the entire drilled interval, boxed, and logged. Core logging included identification of lithology, structures, and hydrogeological features, such as zones or structures showing iron staining or concretion, interpreted to be a result of subsurface water flow. Rock Quality Designation (RQD), core recovery, and qualitative hammer tests to determine rock strength data were also recorded. Complete drillhole logs are included in Appendix A. Depths in the drill logs represent drillhole depth, and all holes were vertical. All holes were logged using imperial units, but have been converted to metric for use in this report.

Specific attention was paid to identification of ice, or frozen soil/rock, in the core. However, slow drilling conditions usually meant that recovered core had been heated to above 0°C so it was difficult to determine if material was frozen *in situ*. Therefore, delineation of the permafrost base is ambiguous at this point. Future monitoring should be able to define this boundary with reasonable accuracy based on casing fluid temperature profiles, and will be part of the regular monitoring data collection process.

All drill core was digitally photographed before the boxes were sealed. These photos are included on the accompanying disk, but have not been reproduced in this report.

The boxed core will be stored as with all other core on site.

3.3 MP Casing Installation Program

3.3.1 Installation Procedures

Installation of the Westbay MP casing consists of the following:

- 1. Design of modular component layout for each well (see component logs in Appendix B) based on drill core observations;
- 2. Lowering and field testing of components to design depth;
- 3. Individual inflation of hydraulic packers to hydraulically isolate the sampling zones;

- 4. Hydraulic integrity testing of MP casing (see if it can maintain a differential water level between it and the open drillhole) to check for leaks; and
- 5. Initial pressure profile to test for ability to maintain differential pressures across packers.

As the MP casing is watertight, it is buoyant in the drillhole and has to be sunk into position by adding clean water. During installation, propylene glycol was also added to protect the water in the casing from freezing in the permafrost zone. The antifreeze will not enter the sampling zone (groundwater) as the MP Casing is sealed until opened by the sampling tool, at which point fluid enters the casing and does not escape, as the piezometric pressure inside the casing is maintained below the outside pressure. This method of preventing casing fluid entering the sampling zone has been reviewed by the USEPA for use at Superfund sites and found to be technically and operationally acceptable.

3.3.2 Details of Installed System

Monitoring zones and related packer locations were identified based on geological logs. The number of monitoring zones for each drillhole was based on a combination of observed features of hydrogeological interest and logical spacing for reasonable sample collection ability in low K rock.

Monitoring zones are numbered from the bottom up. Therefore, zone 1 is at the bottom of the well, and higher numbered zones are shallower. Table 2 summarises monitoring system information at each new location.

Table 2: Monitoring Zone Details

ID	Number of Monitoring Zones	Drillhole Length (m)	Monitoring System Length (m)	Zone Comments
MW09-01	3	50	50	 Zone 1 did not produce a water sample Zone 3 extends to the surface as there is no packer above the measurement port
MW09-02	2	60	60	Zone 2 did not produce a water sample (possibly frozen)
MW09-03	3	50	50	
MW09-04	3	75	75	Well damaged post installationTo be re-established in summer 2010

*NOTE: all depths and lengths rounded to nearest metre

3.3.3 Documentation

Well designs and installation QA documentation are provided in Appendix B. Casing depths listed on well design sheets refer to true depth as all drill holes were vertical.

3.3.4 MW09-4

Installation of MW09-4 was completed on November 24th 2009. When SRK and Minto staff returned to develop and sample the well on December 3rd, the MP casing was no longer vertical, and the wireline tools could not be lowered past an apparent bend in the casing just below the ground surface. Further investigation suggested that the uncased waste rock near the surface had shifted soon after installation of the monitoring well, causing the MP casing to deviate from its original alignment. Attempts were made to expose and straighten the upper part of the well, but the frozen ground conditions did not allow for safe or easy excavation. The well may still be intact and useable, but recovery efforts have been put on hold until the summer of 2010.

4 Monitoring

4.1 Pressure Monitoring

Preliminary pressure profiles for each of the monitoring wells are illustrated in Figures 2 through 4. Although no pressure data available at this time, Figure 5 illustrates the geology and well design for MW09-4 for comparison.

Piezometric data is only available for 2 monitoring events; immediately after installation and during the first sampling event several days later. Piezometric levels in each monitoring zone are plotted as the "equivalent depth to water" on the plots. This refers to the depth the water would be observed in an open standpipe if screened across the MP zone. The equivalent depth to water is calculated by adding the pressure head (height of water column calculated from the zone pressure measured) to the depth of the measurement port where the pressure was measured.

Plots also show an "atmospheric line". This line indicates where the pressure head equals zero (i.e., piezometric head equals elevation head). This condition will occur if the zone is unsaturated (dry), and is analogous to an open borehole where the water level is at, or below, the measurement zone. Therefore, unsaturated zones will plot along the atmospheric line while saturated zones will plot above this line.

Protocols for measuring fluid pressures are given in Appendix C. Tabulated pressure data are included in Appendix D.

4.2 Summary of Initial Pressure Data

Due to the low hydraulic conductivity of the rock observed to date at Minto Mine, it is not known whether piezometric pressures had equilibrated by the time the initial pressures were measured. Assuming that they are reasonably close to actual zone pressures, the following preliminary observations are presented:

Data from MW09-01 indicate that that piezometric pressures in the three zones were slow to
equilibrate (ie: significant change over two days) and that pressures are near atmospheric in the

zones. This may be due to the proximity of the monitoring system to the dewatered Main Zone pit, and indicate that the slope is mainly dewatered.

- Data from MW09-02 indicate that the two zones have the same piezometric pressure (hydrostatic), indicating either a well connected fracture system in the weathered bedrock, or possibly a suspect seal between packers. The latter will be tested during the next sampling round by monitoring an induced pressure between the zones to verify hydraulic performance.
- Data from MW09-03 indicate that generally hydrostatic conditions between the zones, with a slight upwards gradient as would be expected on a slope.
- No data available from MW09-04.

4.3 Development and Sampling

Monitoring wells were developed by opening the pumping ports using a wireline tool and then purging using a Waterra Hydrolift until the water was clear and pH, conductivity and temperature values were stable. The pumping ports were then closed and some of the water in the interior of the MP casing was pumped out in order to maintain a lower head relative to the water outside the casing. Development records are included in Appendix E.

Sampling from the MP wells was completed by attaching sample collection bottles to the wireline pressure measurement tool, and pumping out the air to create a near vacuum inside the bottles. When the tool is connected to a measurement port and the valve to the sample bottles is opened, water flows from outside the casing into the bottles due to the pressure difference. Two sample bottles were used, collecting approximately 500mL with each run. The sample bottles were thoroughly rinsed with distilled water between sampling zones, and with nitric acid at the start of each day. Standard SRK sampling protocols are attached in Appendix C.

Water samples were taken from all monitoring zones in wells MW09-01, MW09-2 and MW09-3, with the following exceptions:

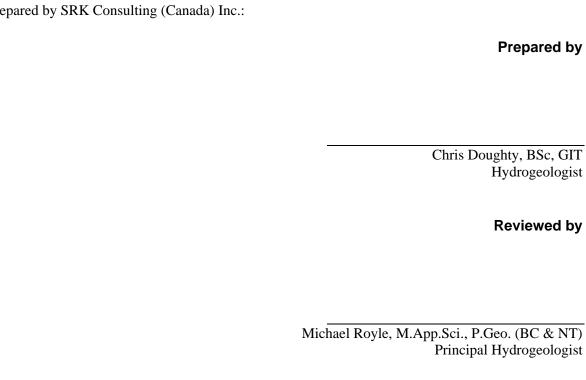
- Zone 1 in MW09-1 showed a pressure reading lower than atmospheric pressure and did not appear to have any water flow; and
- Zone 2 in MW09-2 showed a pressure reading consistent with water in the formation, but no water flowed into the sample bottles on two separate attempts.

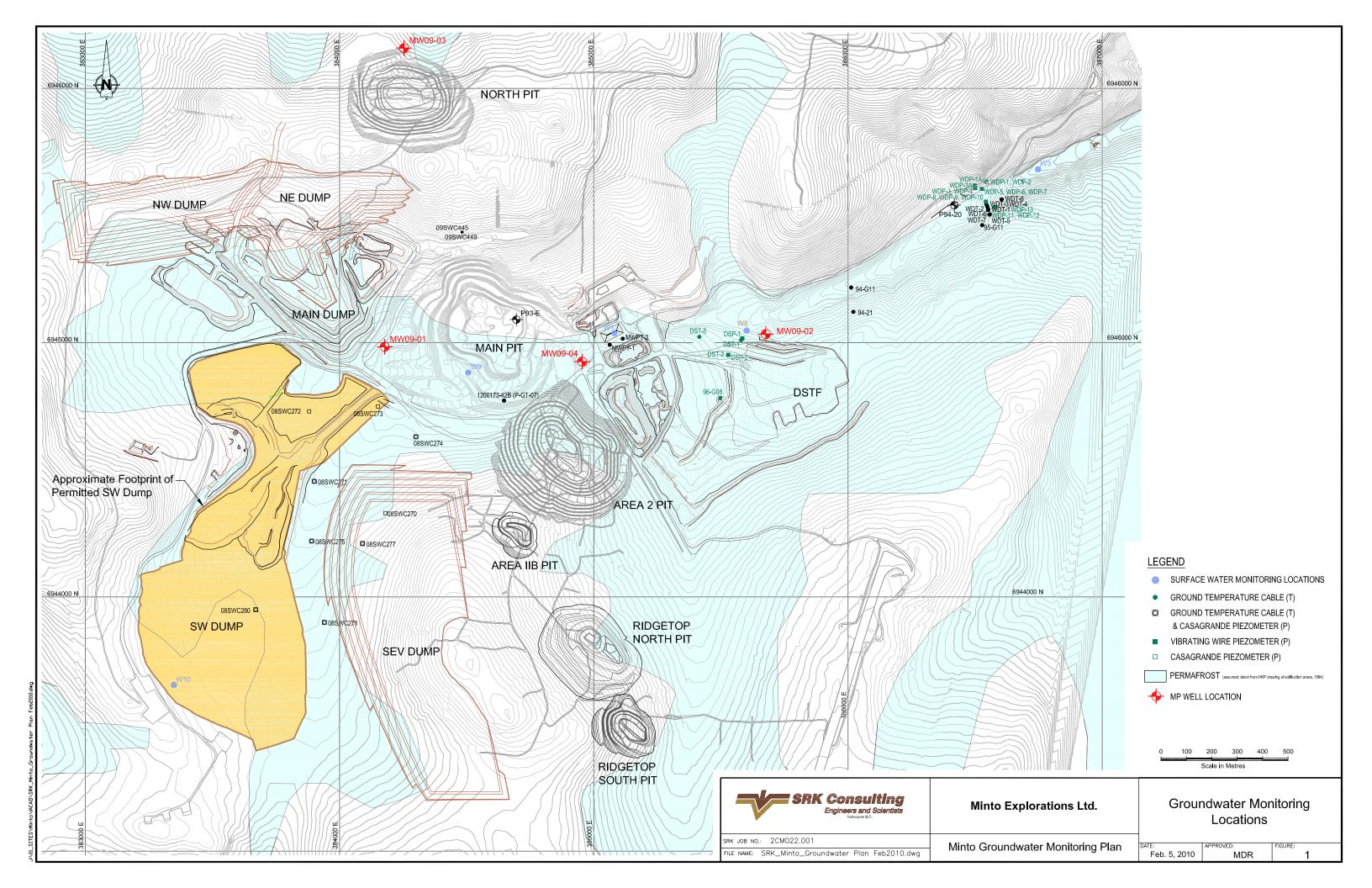
A duplicate sample was taken in each of the wells and labelled as if it were an additional zone, as noted on the sampling records, which are included in Appendix E.

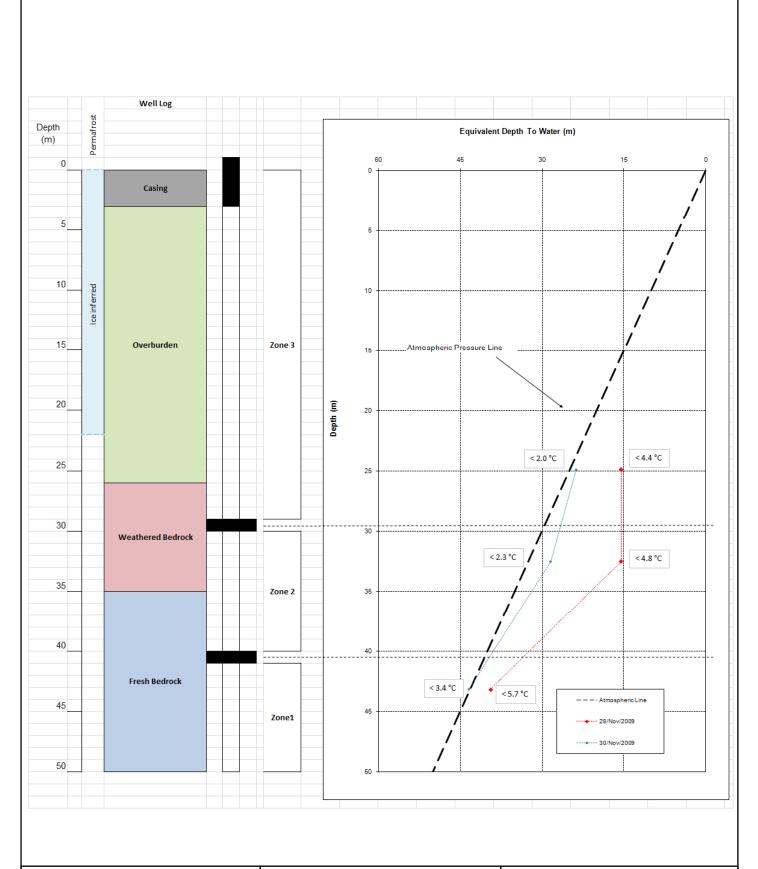
Minto staff assisted with well development and sampling in order to become familiar with the MP system, and were trained to use the wireline sampling tools.

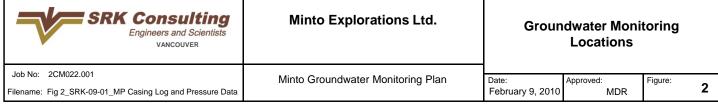
4.4 Initial Sampling Results

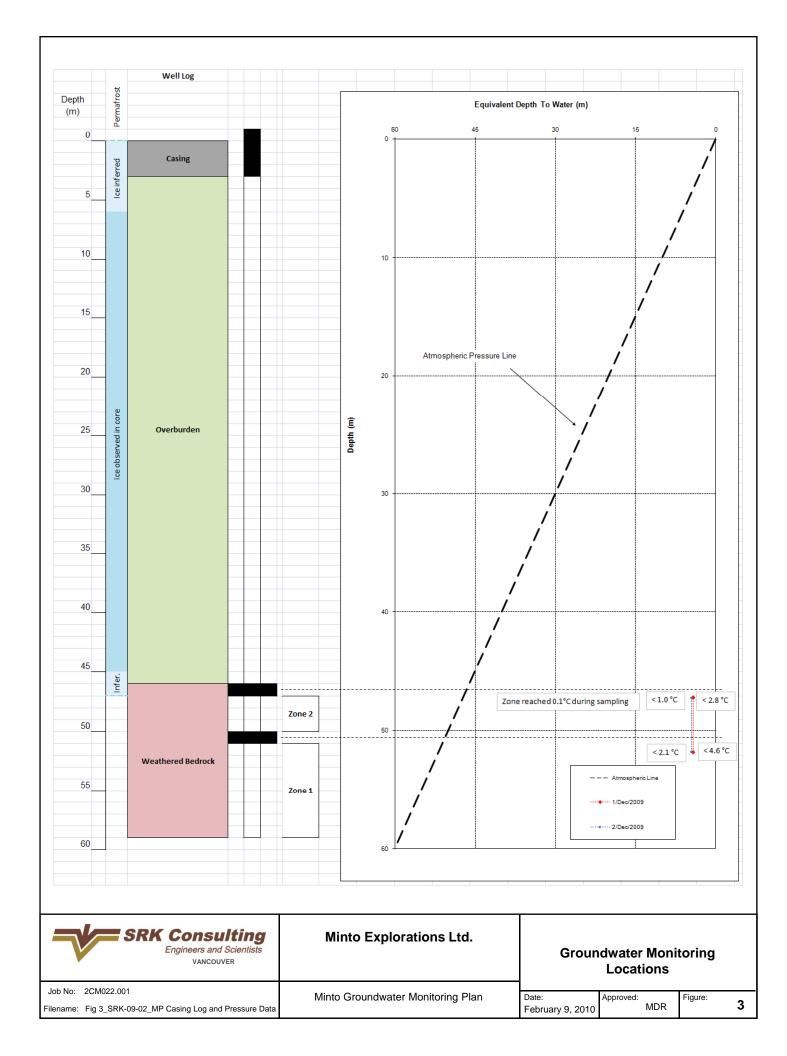
Initial water chemistry results are provided in Table 3 and Figures 6 to 8. Figures 6 and 7 illustrate the pH and alkalinity values from each of the zones sampled. Figure 8 gives the results for dissolved copper, molybdenum, and selenium. All sample results were above minimum detection limits. Results for filtered, dissolved metals have been presented as unfiltered samples are deemed to be unrepresentatively impacted by drill hole cuttings, etc.; therefore, not a good representation of true groundwater.

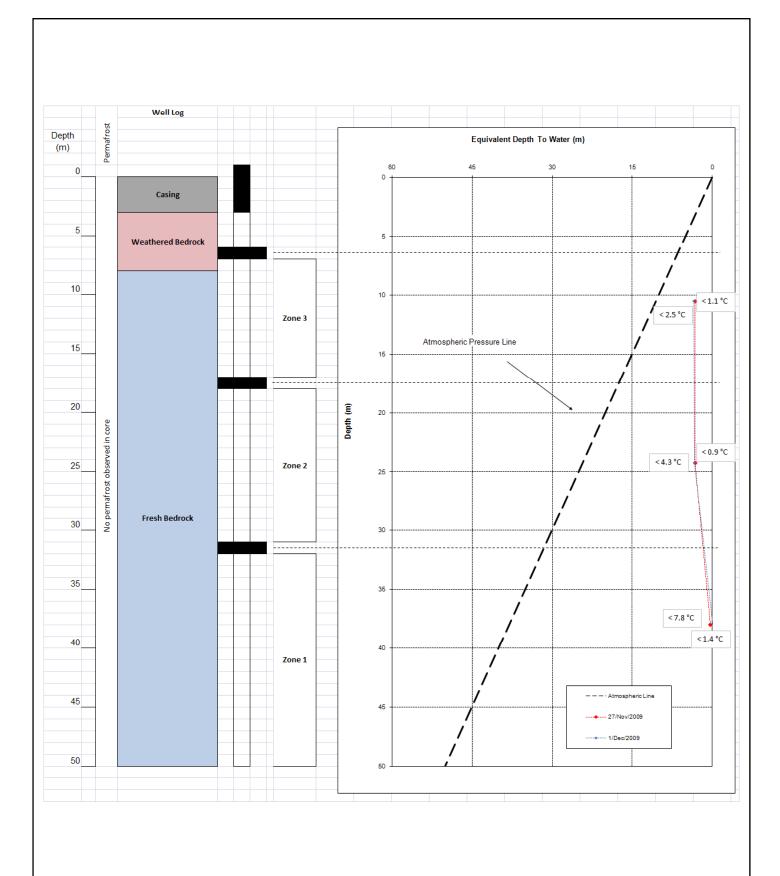

Table 3 presents detailed chemistry data. It should be noted that these data may be impacted by drilling fluids and should only be viewed as preliminary, and will be compared to future sampling results to determine when data are representative of formation hydrogeochemistry.

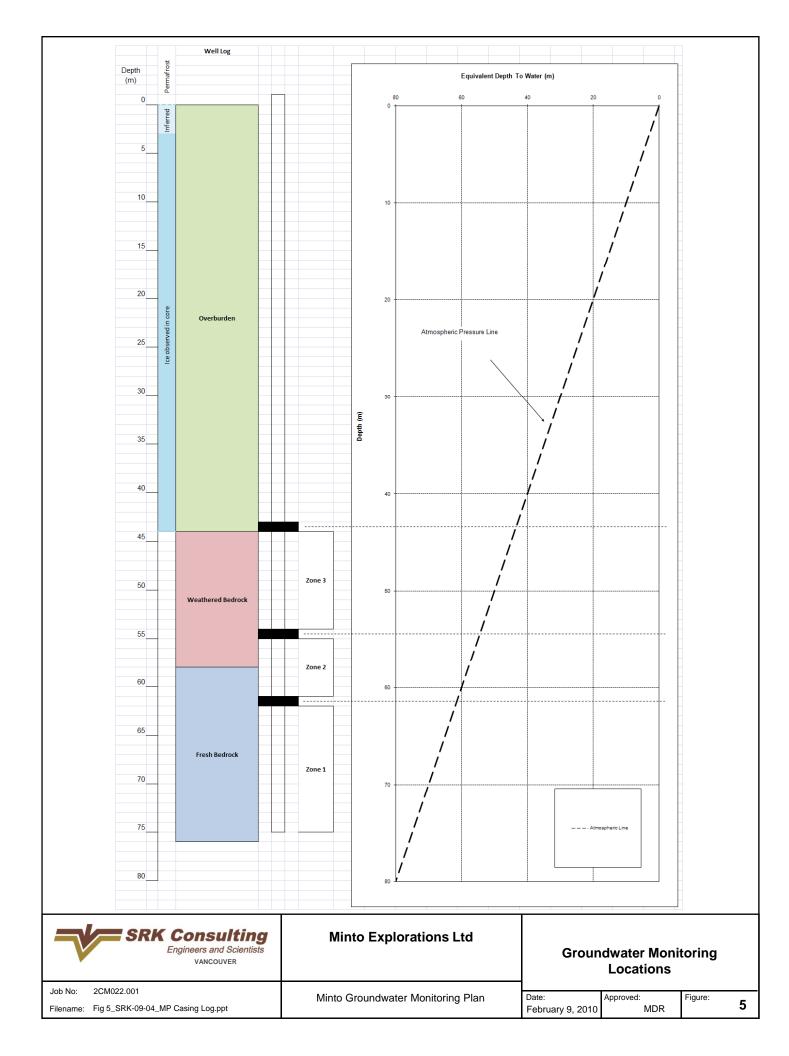

						Well-Zone				
Parameter	Units	MW09-1-2 N	MW09-1 IW09-1-3	MW09-1-3-D	MW0 MW09-2-1 N		MW09-3-1 N	MW0 1W09-3-2 N		1W09-3-3
Date Physical Properties		30-Nov-09	30-Nov-09	30-Nov-09	2-Dec-09	2-Dec-09	1-Dec-09	1-Dec-09	1-Dec-09	1-Dec-09
	pH units	8.03	8.02	8.06	7.95	7.95	7.94	7.91	7.92	7.8
· · · · · · · · · · · · · · · · · · ·	uS/cm	729	725	728	1090	1090	976	932	947	158
	mg/L mg/L	528 7	364 92	442 66	814 30	812 31	652 399	626 146	672 96	110 21
Misc. Parameters	g,	·	<u> </u>			0.				
	mgCaCO3/L	140	100	100	400	410	100	100	100	70
-	mgCaCO3/L mgCaCO3/L	<6 <5	<6 <5	<6 <5	<6 <5	<6 <5	<6 <5	<6 <5	<6 <5	<6 <5
Alkalinity - Total	mgCaCO3/L	112	100	100	329	333	93	85	81	55
	mgCaCO3/L NTU	318 1.1	262 32	274 26	503 13	508 16	253 95	242 49	255 47	60 6.9
•	mg/L	7.22	7.28	7.27	5.52	5.73	17.9	16	16.3	0.93
	mg/L	0.72	3.85	3.03	1.29	1.26	5.79	5.32	5.6	0.26
	mg/L mg/L	42.9 6.79	42.1 6	42.1 6.21	23.2 1.13	24.4 1.01	60.9 11.7	58.2 12.2	59.7 11.6	1.87 0.34
	mg/L	0.04	0.03	0.03	0.06	0.06	0.03	0.03	0.03	0.04
Sulphate (dissolved) Dissolved Metals	mg/L	77.4	82.5	83.3	166	170	117	110	115	10
	mg/L	0.00019	<0.00001	0.00002	<0.00001	<0.00001	0.00005	0.00004	0.00005	0.00001
AI-D	mg/L	0.006	0.007	<0.005	0.01	<0.005	0.01	0.008	0.007	0.007
	mg/L mg/L	0.0002 0.034	0.0002 0.1	0.0003 0.095	0.0041 0.11	0.0047 0.111	0.0009 0.106	0.0008 0.088	0.0005 0.091	0.0002 0.011
	mg/L	0.045	0.052	0.033	5.37	6.09	0.32	0.218	0.031	0.044
Be-D	mg/L	<0.00004	<0.00004	<0.00004	<0.00004	<0.00004	<0.00004	<0.00004	<0.00004	<0.00004
	mg/L mg/L	<0.001 89.7	<0.001 75.4	<0.001 78.2	<0.001 98.2	<0.001 99.2	<0.001 74.1	<0.001 73.7	<0.001 77.6	<0.001 19.9
Cd-D	mg/L	0.00005	0.00008	0.00007	0.00009	0.00006	0.0002	0.00008	0.0001	0.00007
	mg/L	0.00102	0.00076	0.00078	0.00065	0.00062	0.00045 <0.0004	0.00057	0.00054	0.00024
	mg/L mg/L	<0.0004 0.012	<0.0004 0.02	<0.0004 0.018	0.0036 0.004	0.0038 0.003	<0.0004 0.019	<0.0004 0.022	<0.0004 0.022	<0.0004 0.005
Fe-D	mg/L	0.05	0.04	0.04	0.11	0.09	0.03	0.02	0.02	0.02
	ug/L mg/L	0.03 3.2	<0.01 6.6	<0.01 5.8	<0.01 8.2	<0.01 8.4	<0.01 27	<0.01 26	<0.01 25	0.01 2.6
	mg/L	0.001	0.003	0.003	0.011	0.01	0.012	0.011	0.011	0.001
	mg/L	22.9	18	19.1	62.6	63.1	16.5	14.2	14.9	2.4
	mg/L mg/L	0.0802 0.0341	0.228 0.0892	0.189 0.0733	0.27 0.0442	0.261 0.0487	0.161 0.0806	0.135 0.101	0.137 0.104	0.0184 0.0267
Na-D	mg/L	16.8	28	26.2	70.4	74.2	70.5	63	66.8	5.5
	mg/L	0.004	0.002	0.002	0.004	0.003	800.0	0.004	0.004	0.002
	mg/L mg/L	0.0001 <0.01	<0.0001 <0.01	<0.0001 <0.01	0.0002 <0.01	0.0002 <0.01	0.0002 0.02	0.0001 <0.01	<0.0001 <0.01	0.0001 <0.01
Sb-D	mg/L	0.0053	0.0032	0.0008	0.0136	0.003	0.002	0.0021	0.0034	0.0021
	mg/L mg/L	25.8 0.0028	27.5 0.0028	27.8 0.003	55.4 0.0067	56.7 0.0068	39 0.008	36.7 0.0067	38.4 0.0068	3.4 <0.0006
	mg/L	4.37	2.87	3.36	6.88	6.94	2.49	2.54	2.58	4.2
	mg/L	<0.0001	0.0001	<0.0001	<0.0001	<0.0001	0.0002	0.0002	<0.0001	<0.0001
	mg/L mg/L	1.04 <0.0001	1.51 <0.0001	1.39 <0.0001	2.11 <0.0001	2.14 <0.0001	2.21 <0.0001	1.86 <0.0001	1.91 <0.0001	0.168 <0.0001
Th-D	mg/L	<0.0004	< 0.0004	< 0.0004	<0.0004	<0.0004	<0.0004	< 0.0004	<0.0004	<0.0004
	mg/L mg/L	<0.01 <0.00001	<0.01 <0.00001	<0.01 <0.00001	<0.01 <0.00001	<0.01 <0.00001	<0.01 <0.00001	<0.01 <0.00001	<0.01 <0.00001	<0.01 <0.00001
	mg/L	0.0029	<0.0004	0.0008	0.0038	0.0039	0.001	0.0008	0.0008	<0.0004
	mg/L	0.0002	0.0001	0.0001	0.0011	0.0012	0.0002	0.0001	0.0001	0.0002
	mg/L mg/L	0.009 <0.0001	0.006 0.0001	0.004 <0.0001	0.01 0.0001	0.007 0.0001	0.022 0.0001	0.01 <0.0001	0.014 <0.0001	0.012 <0.0001
Total Metals										
_	mg/L mg/L	0.00037 0.141	0.00013 1.46	0.00013 1.02	0.00024 1.03	0.00019 0.765	0.0104 15.3	0.00613 3.85	0.00377 2.62	0.00154 0.681
	mg/L	0.0003	0.0009	0.0007	0.0053	0.005	0.0068	0.0007	0.0006	<0.0002
	mg/L	0.037	0.138	0.122	0.136	0.132	1.35	0.183	0.16	0.028
	mg/L mg/L	<0.00004 <0.001	<0.0004 <0.001	0.00004 <0.001	0.00004 <0.001	<0.00004 <0.001	0.00066 <0.005	0.00008 <0.001	0.00004 <0.001	<0.00004 <0.001
В-Т	mg/L	0.046	0.068	0.048	6.18	6.25	0.514	0.25	0.228	0.064
	mg/L mg/L	85.9 0.00004	73.2 0.00008	70.9 0.00008	96 0.00017	95.1 0.00016	85.5 0.00012	74 0.00013	74.4 0.00011	20.4 0.00008
	mg/L	0.00004	0.00008	0.00008	0.00017	0.00016	0.00012	0.00013	0.00011	0.00008
Cr-T	mg/L	0.0011	0.0052	0.0037	0.006	0.0054	0.003	0.002	0.0016	0.0013
	mg/L mg/L	0.015 0.324	0.04 2.68	0.035 1.65	0.013 1.76	0.01 1.28	0.056 44	0.047 4.93	0.042 3.47	0.01 0.673
Hg-T	ug/L	0.05	<0.01	0.02	<0.01	<0.01	0.02	0.02	0.02	0.073
	mg/L	3.3	7.2	5.9	8.6	8.3	31	25.2	25.2	0.001
	mg/L mg/L	0.001 22	0.005 18	0.004 17.8	0.013 62.2	0.013 61.9	0.02 21.8	0.012 14.6	0.012 14.6	0.001 2.54
Mn-T	mg/L	0.0935	0.309	0.248	0.34	0.332	6.78	0.287	0.256	0.0384
	mg/L mg/L	0.0356 16.7	0.0944 28.1	0.0758 23.6	0.0481 73.4	0.0499 71.5	0.0742 65.4	0.108 66.1	0.114 66.7	0.0288 5.72
	mg/L	0.004	0.005	0.004	0.006	0.005	0.01	0.005	0.005	0.002
Pb-T	mg/L	0.0001	0.0007	0.0005	0.0008	0.0006	0.004	0.0008	0.0006	0.0002
	mg/L mg/L	<0.05 0.0003	0.06 0.0012	<0.05 0.0003	<0.05 0.003	<0.05 0.0038	0.19 <0.001	0.07 0.0008	0.05 0.0032	<0.05 0.0025
Se-T	mg/L	0.0029	0.0032	0.0031	0.0072	0.0073	0.011	0.0078	0.0077	0.0007
	mg/L	4.54	7.01	5.12	9.32	8.46	38.1	9.99	7.55	5.49
	mg/L mg/L	<0.0001 1.27	<0.0001 1.84	<0.0001 1.64	<0.0001 2.55	<0.0001 2.53	<0.0005 2.41	0.0003 2.17	0.0002 2.31	<0.0001 0.189
S-T	mg/L	27.6	28.5	28.2	60.5	59.9	41	39.1	39.8	3.8
	mg/L	<0.0001 <0.0004	<0.0001 <0.0004	<0.0001 <0.0004	<0.0001	<0.0001 <0.0004	<0.0005 <0.002	<0.0001 <0.0004	<0.0001	<0.0001 <0.0004
	mg/L mg/L	<0.0004 <0.00001	<0.0004 0.00002	<0.0004 0.00001	<0.0004 0.00001	<0.0004 <0.00001	<0.002 0.00016	<0.0004 0.00002	<0.0004 0.00002	<0.0004 <0.00001
U-T	mg/L	0.0032	0.0004	0.0008	0.0045	0.0044	0.002	0.0009	0.001	<0.0004
	mg/L mg/L	0.0006 0.007	0.0046 0.029	0.0033 0.019	0.0036 0.024	0.0029 0.018	0.039 0.13	0.0065 0.036	0.005 0.033	0.0012 0.033
	mg/L	0.0002	0.0006	0.0004	0.0004	0.0004	0.0006	0.0004	0.0004	0.0001

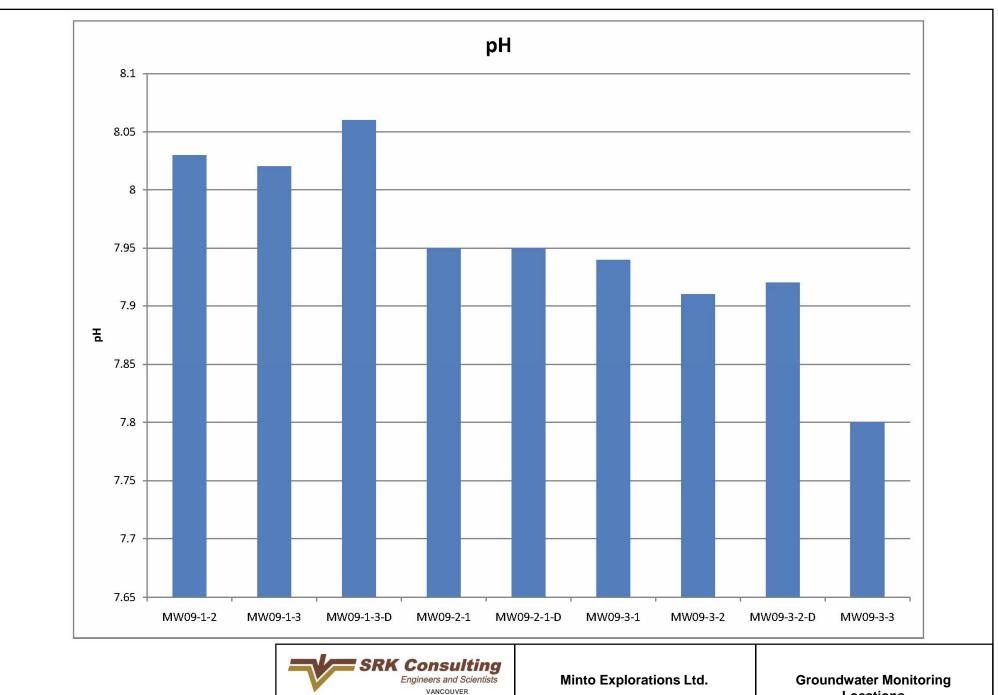

5 Monitoring System Recommendations

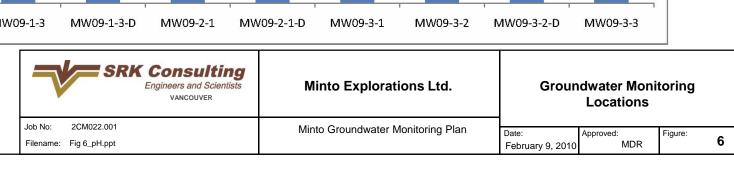

- Pressure profiles and sampling for all monitoring locations should be conducted quarterly for a
 minimum of one year. At the end of this period, a review of all available hydrogeological data
 should be conducted and monitoring locations prioritized for sampling frequency (e.g., quarterly
 versus bi-annually or annually).
- In order to maintain a clear record of the installation, development, monitoring, and servicing that is carried out on each MP installation over time, a log of these events should be recorded in a Monitoring System Well Log. A sample log is attached in Appendix F. This information should be updated any time work is carried out on the MP well(s).

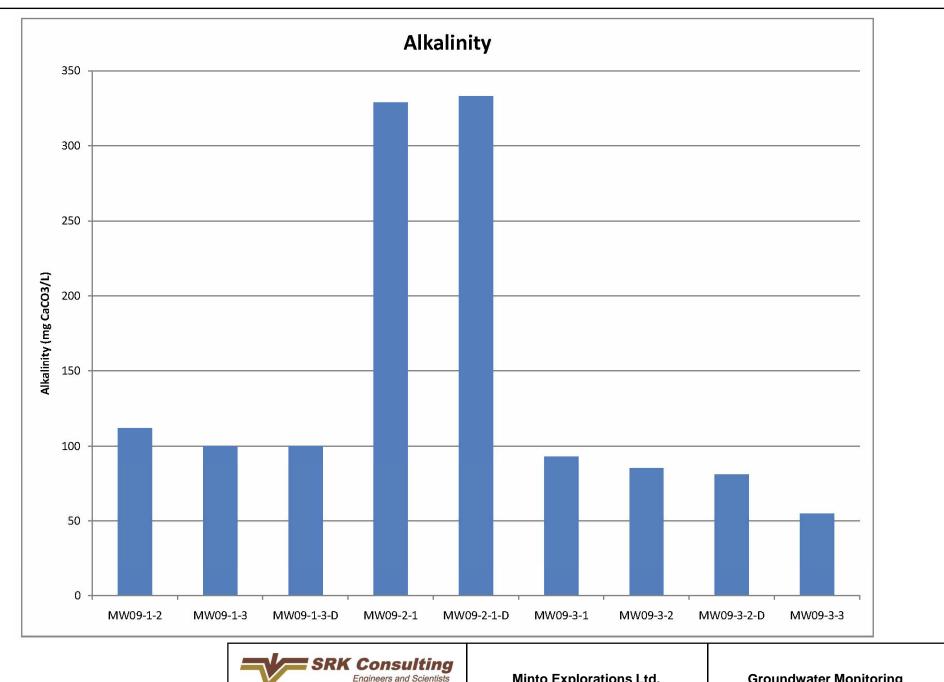

This report, **Minto Mine: Groundwater Monitoring System Installation Report,** has been prepared by SRK Consulting (Canada) Inc.:



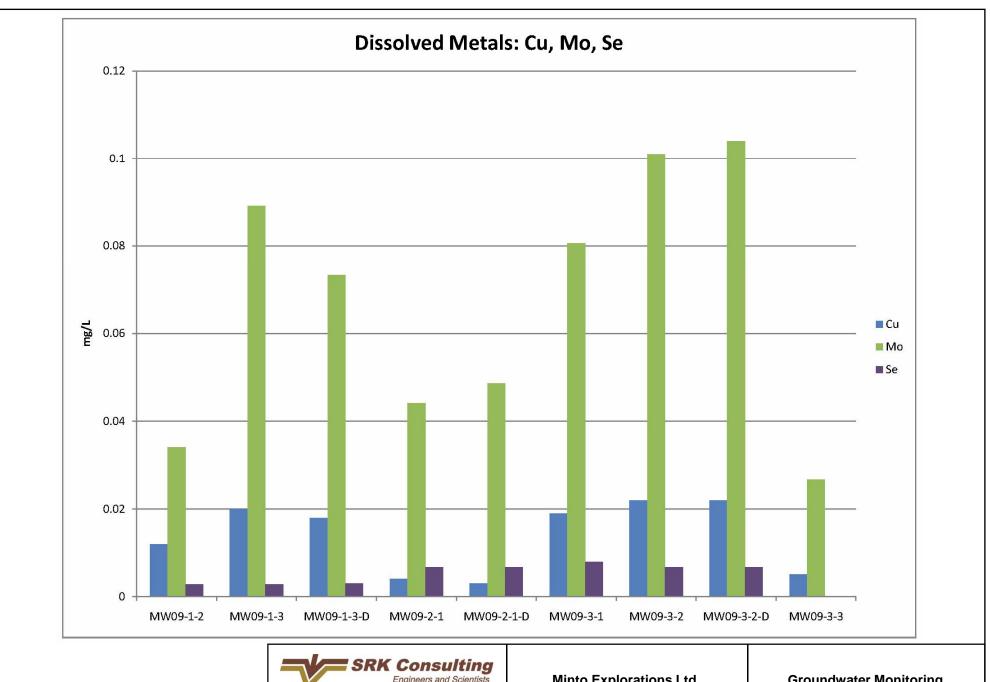








SRK Consulting Engineers and Scientists VANCOUVER	Minto Explorations Ltd.	Groun	dwater Moni Locations	toring	
Job No: 2CM022.001 Filename: Fig 4_SRK-09-03_MP Casing Log and Pressure Data	Minto Groundwater Monitoring Plan	Date: February 9, 2010	Approved: MDR	Figure:	4



MW09-1

overburden

weathered bedrock

Geotechnical log (basic+) * 10ft rods were used, with 5ft core barrel,

HQ3 bit, with split tubes; casing depth 10ft

		Run In	terval				TCR										·c			
Run #	From	To	From	То			ICK									IR	(S			comment
	ft	ft	m	m	ft	inches	decimal ft	m	%							strong	weak			
1	10	15	3.05	4.57	1.5		1.50	0.46	30											
2	15	20	4.57	6.10	2		2.00	0.61	40											
3	20	25	6.10	7.62	3	2	3.17	0.97	63							S2				
4	25	30	7.62	9.14	1.5		1.50	0.46	30							S 3				diamicton material (possibly reworked till)
5	30	35	9.14	10.67	1		1.00	0.30	20											
6	35	40	10.67	12.19	1	3	1.25	0.38	25											
7	40	45	12.19	13.72		8	0.67	0.20	13											
8	45	50	13.72	15.24	0		0.00	0.00	0											
9	50	55	15.24	16.76	1	9	1.75	0.53	35											
10	55	60	16.76	18.29	2	10	2.83	0.86	57							S1				
11	60	65	18.29	19.81		5	0.42	0.13	8											
12	65	70	19.81	21.34		5	0.42	0.13	8											
13	70	75	21.34	22.86	1		1.00	0.30	20											
14	75	77.5	22.86	23.62	4.5		4.50	1.37	180											sluff from drilling (c.sand), not actual recovery
15	77.5	85	23.62	25.91	2.5		2.50	0.76	33											overburden bottom
		Run In	terval						1				-11					micro		
Run #	From	Run In		To			TCR			OF	J	CI	+J from	RO	QD .	IR	RS	micro def.	I - properties	comment
Run #	From	То	From	To	ft	inches	•	m	%	OF	J	CJ	+J from RZ		`			def.	J - properties	comment
Run #	From ft			To m	ft	inches	TCR decimal ft	m	%	OF	J	CI	from	cm	QD %		RS weak		J - properties	comment
	ft	To ft	From	m		inches	decimal ft				-	CJ	from	cm	%	strong		def.		weathered bedrock, jointed, altered near joints and
16	ft 85	To ft 88	From m 25.91	m 26.82	3.5		decimal ft	1.07	117	OF 10	J 10	CI	from		% 66%	strong R3		def.	J - properties rusty colour fill + clay, J surface rough undulating	weathered bedrock, jointed, altered near joints and stained, but fresh away from joints, high FF
16 18	ft 85 88	To ft 88 97	From m 25.91 26.82	26.82 29.57	3.5		3.50 3.50	1.07 1.07	117 39	10	10	CJ	from	cm 0.70	% 66% 65%	strong R3 R3		def.		weathered bedrock, jointed, altered near joints and
16	ft 85	To ft 88	From m 25.91	m 26.82	3.5		decimal ft	1.07 1.07	117		-	CJ	from	cm	% 66%	strong R3		def. 0 to 3	rusty colour fill + clay, J surface rough undulating	weathered bedrock, jointed, altered near joints and stained, but fresh away from joints, high FF
16 18	ft 85 88	To ft 88 97	From m 25.91 26.82	26.82 29.57 30.48	3.5		3.50 3.50	1.07 1.07 0.91	117 39	10	10	CJ	from	cm 0.70	% 66% 65%	strong R3 R3		def. 0 to 3		weathered bedrock, jointed, altered near joints and stained, but fresh away from joints, high FF
16 18 19	85 88 97	To ft 88 97 100	From m 25.91 26.82 29.57	26.82 29.57 30.48	3.5	6	3.50 3.50 3.00	1.07 1.07 0.91 1.52	117 39 100	10	10	CJ 1	from	cm 0.70	% 66% 65% 61%	R3 R3 R3	weak	def. 0 to 3	rusty colour fill + clay, J surface rough undulating at 104.6ft v.weathered near Js, R0 near Js, clay in Js,	weathered bedrock, jointed, altered near joints and stained, but fresh away from joints, high FF
16 18 19 20	85 88 97	To ft 88 97 100	25.91 26.82 29.57 30.48	26.82 29.57 30.48 32.00	3.5 3 3 5	6	3.50 3.50 3.00 5.00	1.07 1.07 0.91 1.52 1.52	117 39 100 100	10 10 7	10		from	cm 0.70	% 66% 65% 61% 90%	R3 R3 R3	weak	def. 0 to 3	rusty colour fill + clay, J surface rough undulating at 104.6ft v.weathered near Js, R0 near Js, clay in Js, orange colour	weathered bedrock, jointed, altered near joints and stained, but fresh away from joints, high FF
16 18 19 20 21	85 88 97 100 105	88 97 100 105 110	25.91 26.82 29.57 30.48 32.00	26.82 29.57 30.48 32.00 33.53	3.5 3 3 5	6	3.50 3.50 3.00 5.00	1.07 1.07 0.91 1.52 1.52 1.52	117 39 100 100	10 10 7 8	10 10 6 7	1	from	0.70 0.56	% 66% 65% 61% 90%	R3 R3 R3 R4 R4	weak R0	def. 0 to 3	rusty colour fill + clay, J surface rough undulating at 104.6ft v.weathered near Js, R0 near Js, clay in Js, orange colour same as above same as above	weathered bedrock, jointed, altered near joints and stained, but fresh away from joints, high FF poor recovery
16 18 19 20 21 22	85 88 97 100 105 110	88 97 100 105 110 120 125	25.91 26.82 29.57 30.48 32.00 33.53	26.82 29.57 30.48 32.00 33.53 35.05 36.58 38.10	3.5 3 3 5	6	3.50 3.50 3.00 5.00 5.00	1.07 1.07 0.91 1.52 1.52 1.52 1.52	117 39 100 100 100 100 100	10 10 7 8 18 11	10 10 6 7	1	from	0.70 0.56	% 66% 65% 61% 90% 79%	R3 R3 R3 R4 R4 R4	weak R0	def. 0 to 3	rusty colour fill + clay, J surface rough undulating at 104.6ft v.weathered near Js, R0 near Js, clay in Js, orange colour same as above same as above	weathered bedrock, jointed, altered near joints and stained, but fresh away from joints, high FF poor recovery 10 cm R0 zone at 112.5ft
16 18 19 20 21 22 23	85 88 97 100 105 110 115 120	88 97 100 105 110 115 120 125 130	25.91 26.82 29.57 30.48 32.00 33.53 35.05	26.82 29.57 30.48 32.00 33.53 35.05 36.58	3.5 3 3 5	6	3.50 3.50 3.00 5.00 5.00 5.00	1.07 1.07 0.91 1.52 1.52 1.52 1.52 1.52	117 39 100 100 100 100	10 10 7 8 18 11 8	10 10 6 7	1	from	0.70 0.56 1.20	% 66% 65% 61% 90% 79% 60% 92%	R3 R3 R3 R4 R4 R4	weak R0	def. 0 to 3	rusty colour fill + clay, J surface rough undulating at 104.6ft v.weathered near Js, R0 near Js, clay in Js, orange colour same as above same as above high weathering at 3 J's; other Js only stained rusty or	weathered bedrock, jointed, altered near joints and stained, but fresh away from joints, high FF poor recovery 10 cm R0 zone at 112.5ft Oz vein present
16 18 19 20 21 22 23 24	85 88 97 100 105 110 115	88 97 100 105 110 120 125	25.91 26.82 29.57 30.48 32.00 33.53 35.05	26.82 29.57 30.48 32.00 33.53 35.05 36.58 38.10	3.5 3 3 5 5 5 5	6	3.50 3.50 3.00 5.00 5.00 5.00	1.07 1.07 0.91 1.52 1.52 1.52 1.52 1.52 1.52	117 39 100 100 100 100 100	10 10 7 8 18 11	10 10 6 7	1	from	0.70 0.56 1.20	% 66% 65% 61% 90% 79% 60%	R3 R3 R4 R4 R4 R4	weak R0	def. 0 to 3	rusty colour fill + clay, J surface rough undulating at 104.6ft v.weathered near Js, R0 near Js, clay in Js, orange colour same as above same as above same as above high weathering at 3 J's; other Js only stained rusty or black	weathered bedrock, jointed, altered near joints and stained, but fresh away from joints, high FF poor recovery 10 cm R0 zone at 112.5ft Oz vein present
16 18 19 20 21 22 23 24 25	85 88 97 100 105 110 115 120	88 97 100 105 110 115 120 125 130	25.91 26.82 29.57 30.48 32.00 33.53 35.05 36.58 38.10	26.82 29.57 30.48 32.00 33.53 35.05 36.58 38.10 39.62	3.5 3 3 5 5 5 5 5	6	3.50 3.50 3.00 5.00 5.00 5.00 5.00	1.07 1.07 0.91 1.52 1.52 1.52 1.52 1.52 1.52	117 39 100 100 100 100 100 100	10 10 7 8 18 11 8	10 10 6 7 14 7 7	1	from	0.70 0.56 1.20 1.40	% 66% 65% 61% 90% 79% 60% 92%	R3 R3 R4 R4 R4 R4 R4 R4	weak R0	def. 0 to 3	rusty colour fill + clay, J surface rough undulating at 104.6ft v.weathered near Js, R0 near Js, clay in Js, orange colour same as above same as above same as above high weathering at 3 J's; other Js only stained rusty or black rusty stained Js	weathered bedrock, jointed, altered near joints and stained, but fresh away from joints, high FF poor recovery 10 cm R0 zone at 112.5ft Oz vein present
16 18 19 20 21 22 23 24 25 26	85 88 97 100 105 110 115 120 125 130	88 97 100 105 110 115 120 125 130 135	25.91 26.82 29.57 30.48 32.00 33.53 35.05 36.58 38.10 39.62	26.82 29.57 30.48 32.00 33.53 35.05 36.58 38.10 39.62 41.15	3.5 3 3 5 5 5 5 5 5	6	3.50 3.50 3.00 5.00 5.00 5.00 5.00 5.00	1.07 1.07 0.91 1.52 1.52 1.52 1.52 1.52 1.52 1.52	117 39 100 100 100 100 100 100 100 100 95	10 10 7 8 18 11 8 7	10 10 6 7 14 7 7 5	1	from	0.70 0.56 1.20 1.40 1.45 1.25	% 66% 65% 61% 90% 79% 60% 92% 95% 82%	R3 R3 R4 R4 R4 R4 R4 R4 R4	weak R0	def. 0 to 3	rusty colour fill + clay, J surface rough undulating at 104.6ft v.weathered near Js, R0 near Js, clay in Js, orange colour same as above same as above same as above high weathering at 3 J's; other Js only stained rusty or black rusty stained Js rusty stained Js	weathered bedrock, jointed, altered near joints and stained, but fresh away from joints, high FF poor recovery 10 cm R0 zone at 112.5ft Oz vein present
16 18 19 20 21 22 23 24 25 26 27	85 88 97 100 105 110 115 120 125 130 135	88 97 100 105 110 120 125 130 145 150	25.91 26.82 29.57 30.48 32.00 33.53 35.05 36.58 38.10 39.62 41.15	26.82 29.57 30.48 32.00 33.53 35.05 36.58 38.10 39.62 41.15 42.67	3.5 3 3 5 5 5 5 5 5	6	3.50 3.50 3.00 5.00 5.00 5.00 5.00 5.00	1.07 1.07 0.91 1.52 1.52 1.52 1.52 1.52 1.52 1.52 1.5	117 39 100 100 100 100 100 100 100 100	10 7 8 18 11 8 7 12 7 8 6	10 10 6 7 14 7 7 5 12	1 3	from	0.70 0.56 1.20 1.40 1.45 1.25	% 66% 65% 61% 90% 79% 60% 92% 95% 82% 96%	R3 R3 R4 R4 R4 R4 R4 R4 R4 R4 R4	weak R0	def. 0 to 3	rusty colour fill + clay, J surface rough undulating at 104.6ft v.weathered near Js, R0 near Js, clay in Js, orange colour same as above same as above same as above high weathering at 3 J's; other Js only stained rusty or black rusty stained Js rusty stained Js rusty stained Js, or weathered Js	weathered bedrock, jointed, altered near joints and stained, but fresh away from joints, high FF poor recovery 10 cm R0 zone at 112.5ft Oz vein present
16 18 19 20 21 22 23 24 25 26 27 28	85 88 97 100 105 110 115 120 125 130 135 140	88 97 100 105 110 120 125 130 140 145	25.91 26.82 29.57 30.48 32.00 33.53 35.05 36.58 38.10 39.62 41.15 42.67	26.82 29.57 30.48 32.00 33.53 35.05 36.58 38.10 39.62 41.15 42.67 44.20	3.5 3 3 5 5 5 5 5 5 5	6	3.50 3.50 3.00 5.00 5.00 5.00 5.00 5.00	1.07 1.07 0.91 1.52 1.52 1.52 1.52 1.52 1.52 1.52 1.5	117 39 100 100 100 100 100 100 100 100 95	10 10 7 8 18 11 8 7 12 7 8	10 10 6 7 14 7 7 5 12 5	1 3	from	0.70 0.56 1.20 1.40 1.45 1.25	% 66% 65% 61% 90% 79% 60% 92% 95% 82% 96% 100%	R3 R3 R4	weak R0	def. 0 to 3	rusty colour fill + clay, J surface rough undulating at 104.6ft v.weathered near Js, R0 near Js, clay in Js, orange colour same as above same as above same as above high weathering at 3 J's; other Js only stained rusty or black rusty stained Js rusty stained Js rusty stained Js, or weathered Js black or rusty staining on Js	weathered bedrock, jointed, altered near joints and stained, but fresh away from joints, high FF poor recovery 10 cm R0 zone at 112.5ft Qz vein present felsic dike present at 120.3ft
16 18 19 20 21 22 23 24 25 26 27 28 29	85 88 97 100 105 110 115 120 125 130 135 140	88 97 100 105 110 120 125 130 145 150	25.91 26.82 29.57 30.48 32.00 33.53 35.05 36.58 38.10 39.62 41.15 42.67 44.20	26.82 29.57 30.48 32.00 33.53 35.05 36.58 38.10 39.62 41.15 42.67 44.20 45.72	3.5 3 3 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5	6	3.50 3.50 3.00 5.00 5.00 5.00 5.00 5.00	1.07 1.07 0.91 1.52 1.52 1.52 1.52 1.52 1.52 1.52 1.5	117 39 100 100 100 100 100 100 100 100 100 10	10 7 8 18 11 8 7 12 7 8 6	10 10 6 7 14 7 7 5 12 5 5	1 3	from	0.70 0.56 1.20 1.40 1.45 1.25 1.47	% 66% 65% 61% 90% 79% 60% 92% 95% 82% 96% 100%	R3 R3 R4	weak R0	def. 0 to 3	rusty colour fill + clay, J surface rough undulating at 104.6ft v.weathered near Js, R0 near Js, clay in Js, orange colour same as above same as above same as above high weathering at 3 J's; other Js only stained rusty or black rusty stained Js rusty stained Js rusty stained Js, or weathered Js black or rusty staining on Js black staining on Js	weathered bedrock, jointed, altered near joints and stained, but fresh away from joints, high FF poor recovery 10 cm R0 zone at 112.5ft Qz vein present felsic dike present at 120.3ft

MW09-1

Overburden Properties * core runs with the same properties

were combined

0	oma	in interva	al					clay hardnes	s
From	То	From	То	description	permafrost	samples	clay plasticity	description (as found)	ISRM code
ft	ft	m	m					description (as round)	ISKIVI COUE
10	25	3.05	7.62	artificial fill of cobbles, boulders, gravel, soil/reworked till				soft	S2
25	30	7.62	9.14	fill: brown moit clayey sand (f-c), with f.gravel (angular) + c.gravel pieces, crumbly		S1 at 29.5ft			
30	55	9.14	16.76	fill: cobbles, boulders, gravel (voids found during drilling), fine gr. materials washed out if present	core hot from drilling, cannot		medium to low	very soft (reworked by drilling process)	S1
55	60	16.76		grey moist/wet diamict with silty clay matrix, containing angular to sub-round gravel, broken sharp rock pieces, and coarse sand	determine ice	S2 at 59.5 ft	medium to low	very soft (reworked by drilling process)	S1
65	70	19.81		grey/white wet clean sub round to ang fine gravel	borehole				
70	75	21.34	22.86	sandy clay and grey wet clayey f-med sand with f-c gravel, sub ang to round				very soft (reworked by drilling process)	S1
75	85	22.86	25.91	m. gravel, rounded to sub ang, trace silt/clay (washed out)					

clay hardness - quantitative measurements

	1
Tor Vane (* 0.1 kg/cm²)	Penetrometer (kg/cm²)
1.1	
1.1	
0.8	

•	.3	
	Tor Vane (MPa)	Penetrometer (MPa)
	0.01	
	0.01	
	0.01	

ISRM Standard - Field Estimate of Rock Strength

Index	Description	Field Test	~ UCS (MPa)
S1	Very Soft Clay	Easily penetrated by fist (flows between fingers)	< 0.025
S2	Soft Clay	Easily penetrated by thumb (>1")	0.025 - 0.05
S3	Firm Clay	Penetrated by thumb with moderate effort (>1")	0.05 - 0.10
S4	Stiff Clay	Indented by thumb but penetrated with great effort	0.10 - 0.25
S5	Very Stiff Clay	Readily indented with thumbnail	0.25 - 0.50
S6	Hard Clay	Indented with difficulty by thumbnail	> 0.50
R0	Extremely Weak	indented by thumbnail, crumbles under soft blow of blunt end of hammer; breaks apart when crushed by fingers	0.25 - 1.0
		when crushed by fingers	
R1	Very Weak	crumbles under firm blow of geologic hammer pick; peeled by knife	1.0 - 5.0
R1 R2	Very Weak Weak	, 3	1.0 - 5.0 5.0 - 25
	•	crumbles under firm blow of geologic hammer pick; peeled by knife	
R2	Weak	crumbles under firm blow of geologic hammer pick; peeled by knife shallow indentation under firm blow of pick end of geologic hammer	5.0 - 25
R2 R3	Weak Medium Strong	crumbles under firm blow of geologic hammer pick; peeled by knife shallow indentation under firm blow of pick end of geologic hammer fractured with single firm blow of geologic hammer	5.0 - 25 25 - 50
R2 R3 R4	Weak Medium Strong Strong	crumbles under firm blow of geologic hammer pick; peeled by knife shallow indentation under firm blow of pick end of geologic hammer fractured with single firm blow of geologic hammer requires more than one blow of hammer to fracture	5.0 - 25 25 - 50 50 - 100

overburden

weathered bedrock

fresh bedrock

Geotechnical log (basic+)

* 10ft rods were used, with 5ft core barrel, HQ3 bit, with split tubes; casing depth 10ft

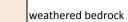
	HQ3 bit, with split tubes; casing depth 10ft																			
Run							TCR						+J from	RC	חו	16	RS	micro		
		Run In					ick			OF	J	CJ		110	Ų.			def.	J - properties	comment
#	From	To	From	To									RZ							
	ft	ft	m	m	ft in	ches	decimal ft	m	%					cm	%	strong	weak	0 to 3		
1	10	15	3.05	4.57	1.5		1.50	0.46	30						0%					
2	15	17	4.57	5.18	2	6	2.50	0.76	125						0%					
3	17	25	5.18	7.62	5	3	5.25	1.60	66						0%	S4				
						3										34				
4	25	30	7.62	9.14	5		5.00	1.52	100						0%					
5	30	35	9.14	10.67	5		5.00	1.52	100						0%	S5				
6	35	40	10.67	12.19	4	10	4.83	1.47	97						0%	S4				
7	40	45	12.19	13.72	5	10	5.00	1.52	100						0%	S4				
						_														
8	45	50	13.72	15.24	5	2	5.17	1.57	103						0%	S4				
9	50	55	15.24	16.76	5		5.00	1.52	100						0%	S4				
10	55	60	16.76	18.29	5		5.00	1.52	100						0%	S4				
11	60	65	18.29	19.81	5		5.00	1.52	100						0%	S4				
12	65	70	19.81	21.34	5		5.00	1.52	100						0%	S5				
13	70	75	21.34	22.86	4		4.00	1.22	80						0%	S5				
14	75	80	22.86	24.38	5		5.00	1.52	100						0%	S5				
15	80	85	24.38	25.91	5		5.00	1.52	100						0%	S5				
16	85	90	25.91	27.43	3.5		3.50	1.07	70						0%	S5				
18	90	95	27.43	28.96	5		5.00	1.52	100						0%	S5				
10	30	93	27.43	28.90			3.00	1.52	100						076	33				
19	95	100	28.96	30.48	2	3	2.25	0.69	45						0%	S5				
																_				
20	100	105	30.48	32.00	5		5.00	1.52	100						0%	S 5				
21	105	110	32.00	33.53	3.5		3.50	1.07	70						0%	S5				
22	110	115		35.05	0		0.00	0.00	70						076					
			33.53						100						00/	S5				
23	115	120	35.05	36.58	5		5.00	1.52	100						0%	S5				
24	120	125	36.58	38.10	5		5.00	1.52	100						0%	S3				
25	125	130	38.10	39.62	5	2	5.17	1.57	103						0%	S3				
20	120	425	20.62	44 45	-		F 00	1.50	100						00/	C4				
26	130	135	39.62	41.15	5		5.00	1.52	100						0%	S4				
27	135	140	41.15	42.67	5		5.00	1.52	100						0%	S5	S4			
							2.00													
28	140	145	42.67	44.20	4		4.00	1.22	80						0%	S3				
20	4.4-	4.50	44.20	45.70	_		F.00	4.50	400						001					
29	145	150	44.20	45.72	5		5.00	1.52	100						0%					
30	150	155	45.72	47.24	5		5.00		100		38		38		0%	R0				
31	155	160	47.24	48.77	0.5		0.50	0.15	10		6		6		0%	R0				grey brown highly weahered curmbly / jointed rock
32	160	165	48.77	50.29	4.9		4.90	1.49	98		30		30		0%	R2	R0		stained J's, smooth, no gouge	R0 crumbly to 163ft, then weak jointed
33	165	170	50.29	51.82	5		5.00	1.52	100	6	25		20		0%	R2	R0		red stained J's, weathered at J's	highly weathered rock
34	170	173	51.82	52.73	2		2.00	0.61	67		16		16		0%	R2	R0		red stained J's, weathered at J's	highly weathered rock
35	173	178	52.73	54.25	1	11	1.92	0.58	38	5	25		20		0%	R2	R0		red stained J's, weathered at J's	highly weathered rock + one Qz vein
26	170	100	F4 3F	F4.00			0.75	0.22	20	,					00/	D2	DO.		black states	bi-bloomada and and
36	178	180	54.25	54.86		9	0.75	0.23	38	4	8		4		0%	R3	R0		black staining	highly weathered rock
37	180	185	54.86	56.39		10	0.83	0.25	17		32		32		0%	R0				highly weathered rock
38	185	190	56.39	57.91		9	0.75	0.23	15	4	4				0%	R1				broken Qz pieces of Qz vein included
39	190	195	57.91	59.44	1	8	1.67	0.51	33		40		40		0%	RO			red stained J's	
33	130	100	37.31	33.74	1	J	1.07	0.51	33		70		40		070	NO			ica stanica y s	1

Overburden Properties * core runs with the same properties were

combined

- * descriptions were modified to match quantitative measurements (TorVane and Penetrometer)
- ** reworked clay (by drill bit) that is caked around harder inner core was ignored here - this soft watery clay does not represent in-situ conditions and is softened by drilling process

							softened by drilling process			
	Domain	interval		description	permafrost	samples	clay	clay hard	Iness	
From	To	From	То		pointail out	Jup.100	plasticity	description (as found,	thawed	ISRM
ft	ft	m	m					usually frozen)	only	code
10.0	15.0	3.05	4.57	wet black/white subangular crs gravel (crs grained rock), rusty staining	N/A					
15.0	20.0	4.57	6.10	grey wet clay	N/A (core hot from drilling)		low-med			
20.0	20.5	6.10	6.25	grey moist clay with organic debris, fine gravel (sub round)	N/A					
20.5	24.0	6.25	7.32	dark grey-black frozen soil/clay with ice intervals	ice inclusions Nbe/Vr and some solid ice intervals		med-high	stiff		S4
24.0	25.0	7.32	7.62	light grey-brown silty clay, with crs gravel (angular clastsa at 25ft depth)	ice in clay	S1 at 22ft		stiff		S4
25.0	27.0	7.62	8.23	brown-grey frozen silty clay, with ice inclusions	ice inclusions (Vt)					
27.0	28.0	8.23	8.53	cobbles with frozen clay matrix	frozen					
28.0	30.0	8.53	9.14	grey frozen clayey fine sand with silt with ice inclusions	ice inclusions					
30.0	32.0	9.14	9.75	grey-brown clay with crs.sand and f.gravel (sub ang)	N/A	S2 at 31ft	med			
32.0	34.5	9.75	10.52	ice with dark grey frozen clay inclusions, with silt and sand	ice w clay inclusions		low-med			
34.5	35.0	10.52	10.67	grey frozen clay, some ice	some ice		med-high	v.stiff		S5
35.0	50.0	10.67	15.24	ice with grey clay inclusions	70 to 85% ice	S3 at 45ft	high	stiff		S4
50.0	60.0	15.24	18.29	ice with grey clay inclusions, more firm clay between ice	50 to 70% ice	S4 at 60ft	med-high	stiff		S4
60.0	65.0	18.29	19.81	ice with dark grey clay inclusions, 20cm frozen clay layers (no ice), cut with pure ice	frozen		mod-high	stiff	firm	S4
65.0	70.0	19.81	21.34	dark grey frozen clay with ice inclusions	<20% ice, Vc/Vx		mod	v.stiff	firm-stiff	S5
70.0	80.0	21.34	24.38	dark grey frozen clay with ice inclusions	30% ice in large veins and smaller ice flakes in clay (Vc/Vs)	S5 at 77ft	mod-high	v.stiff	firm	S5
80.0	100.0	24.38	30.48		few ice inclusions, but some up to 5cm clear ice, big Vc/Vx	S6 at 89ft	high	v.stiff	firm-stiff	S5
100.0	120.0	30.48	36.58	ice with frozen grey clay, and smaller ice inclusions in clay; near 110ft trace med. angular gravel	70% pure ice, especially from 102.5 to 105ft, some Vr ice incl in clay where clay dominant	S7 at 107ft	high	v.stiff	stiff	S5
120.0	125.0	36.58	38.10		N/A	S8 at 120ft	high		firm-stiff	S3
125.0	128.0	38.10	39.01	grey frozen clay with f. sand, tracel sub.ang. f. gravel, and minor ice inclusions	Vt, small veins of ice			firm	v.soft	S3
128.0	129.0	39.01	39.32	frozen clay with sub.ang. to sub.round. f.gravel, with ice inclusions	Vx (minor)					
129.0	132.0	39.32	40.23	frozen clay with clayey f. sand interbeds, with trace gravel	Vx (minor)	S9 at 130ft		stiff	firm	S4
132.0	134.0	40.23	40.84	frozen clay diamict (with sand and f. gravel)	5% ice, Vx			stiff	firm	S4
134.0	135.0	40.84	41.15		Vx (minor)			v.stiff		S5
135.0	138.0	41.15	42.06	interbeds of brown med.sand (with trace clay + f.gravel) AND grey clay with ice inclusions	Vx	S10 at 137ft	mod	v.stiff	firm	S5
138.0	139.0	42.06	42.37	frozen clay diamict (with sand and f. gravel - angular) with ice inclusions	minor ice incl.			stiff	firm	S4
139.0	139.5	42.37	42.52		N/A water in sand frozen holding sand grains together, when		low (crumbly)		firm	
139.5	142.7	42.52	43.49	brown frozen slightly clayey fcrs. sand, with ang.f.gravel	thawed sand is loose					
142.7	143.0	43.49	43.59	clay diamict (f.sand - f.ang-sub.round gravel)	N/A		med	firm	soft	S3
143.0	144.5	43.59	44.04	brown sandy clay (fcrs. sand)	N/A			firm	soft	S3
144.5	145.0	44.04	44.20	grey clay with f.sand	N/A	S11 at 144ft	low	firm	soft	S3
145.0	147.0	44.20	44.81	grey frozen silty clay w. trace c.sand and f.gravel	frozen		low	stiff		
147.0	148.0	44.81	45.11	brown moist clay with f-crs. sand and silt, res. sand lens (clean) at 148ft (2cm)	N/A		low		firm	
148.0	150.0	45.11	45.72	interbeds of silty clay, f.silty sand, and clayeye crs. sand	N/A		med			
150.0	155.0	45.72	47.24	frozen coarse grained weathered bedrock fragments (crs.sand to f.gravel size), Qz frags, trace clay	rock core is cold inside but any ice was melted during drilling process and cannot assess	S12 at 153ft	_			R0
155.0	195.0	47.24	59.44	highly weathered crumbly very weak grey-brown/orange-brown stained rock, some joint structures preserved but mostly decomposed	rock core is cold inside and warm outside (from drilling) so its probably that it is frozen to this depth					RO


clay hardness - quantitative measurements

ciay na		ss - qu		Penetrometer						
Tor Va		_	(*	P			er			
().1 kg/	/cm ²)			(kg/	cm²)				
froz	en	tha	wed	fro	zen	tha	wed			
min	max	min	max	min	max	min	max			
				4.6						
10.0				2.0						
					2.5					
9.5				2.5 3.5	3.5					
				3.0	5.0					
				3.0	4.5	1.0	2.0			
					4.5					
		- 0	0.0	5.0		1.5	2.8			
		5.0	9.0			0.7	3.5			
						1.0	2.0			
				2.0						
		5.5		5.0		1.0	1.5			
4.5										
3.0										
4.0										

To	r Van	e (MF	Pa)	Pene	etrome	eter (I	MPa)
fro	zen	tha	wed	fro	zen	tha	wed
min	max	min	max	min	max	min	max
	max		max		max		max
				0.45			
0.16				0.00			
0.10				0.20			
				0.25	0.34		
0.09				0.34			
				0.29	0.49		
				0.29	0.44	0.10	0.20
				0.49		0.15	0.27
		0.05	0.09			0.07	0.34
						0.10	0.20
				0.20			
		0.05		0.49		0.10	0.15
		0.05		01.15		0.10	0.15
0.01							
0.04							
0.03							
0.04							

N	Л	V	V	0	q	_:	2
ľ	٧ı	v	v	v	J	-,	

Geotechnical log (basic+)

* 10ft rods were used, with 5ft core barrel, HQ3 bit, with split tubes; casing depth 10ft

	rigs bit, wit		nterval	ptii 10it	<u> </u>													micro		
Run #	From	To	From	То			TCR			OF		CJ	+J from	RC	D	IF	RS	def.	J - properties	comment
I Kum "	ft	ft	m	m	ft	inches	decimal ft	m	%	0.	•	C.	RZ	cm	%	strong	weak	0 to 3	, properties	Comment
1	10	15	3.05	4.57	3.5		3.50	1.07	70	8	28	0	24	15	14%		RO	2	brown stained J's	crumbly R0 zones, highly weathered
2	15	20	4.57	6.10	3	1	3.08	0.94	62	7	12	0	6	30	32%	R3	R0	2	planar rough, stained, alpha 45 deg	weathered rock, jointed, RZ (15cm) RO, minor Qz vein
3	20	25	6.10	7.62	5		5.00	1.52	100	13	9	0		123	81%	R3		2	7, 4 9 0 staining only; alpha 50 to 60 degrees	weathered rock, jointed
4	25	30	7.62	9.14	5	1	5.08	1.55	102	10	9	0		145	94%	R4	R3	1	4, 7, 8 1, 3, 0 0 brown non softening fill, alpha 60 to 80 degrees	slithly weathered rock / competent rock
5	30	35	9.14	10.67	5		5.00	1.52	100	6	3	0		147	96%	R4	R3	0	4 to 7 0 0, stained brown-orange	1 Qz vein
6	35	40	10.67	12.19			5.00	1.52	100	8	5	0		150	98%		R3	0	4 to 8 0 0, stained brown-orange, alpha 50 to 70 degrees	
7	40	45	12.19	13.72		9	4.75	1.45	95	12	10	0		108	75%		R3	0	7 0 to 3 0 stained orange, alpha 30 to 70 degrees	slightly altered from 41 to 43'
8	45	50	13.72	15.24	5	3	5.25	1.60	105	9	7	1		148	92%	R4	R3	0	7 0 0 stained orange, alpha 45	
9	50	55	15.24	16.76	5		5.00	1.52	100	6	3	0		150	98%	R5	R4	0	4 to 7 0 0, stained, alpha 45 to 70 degrees	
10	55	60	16.76	18.29	4	10.5	4.88	1.49	98	7	4	0		149	100%	R5	R4	0	4 to 7 0 0, slightly stained	very competent fresh rock, crs grained, 1 large vein
11	60	65	18.29	19.81	4	10.5	4.88	1.49	98	6	5	0		149	100%	R5	R4	0	4 to 7 0 0, no staining	
12	65	67	19.81	20.42	2	2	2.17	0.66	108	5	4	1		66	100%	R5	R3	0		competent grey/pink rock (logged from photo)
13	67	70	20.42	21.34	3	6	3.50	1.07	117	2	1	0		100	94%	R5	R4	0		
14	70	75	21.34	22.86	4	10	4.83	1.47	97	6	3	0		148	100%	R5	R4	0	J walls planar, undulating, rough, brown & altered; alpha 30 to 80 degrees	
15	75	80	22.86	24.38	4	10	4.83	1.47	97	6	5	0		138	94%	R5	R4	0	stained J's	grey brown rock, slightly altered
16	80	85	24.38	25.91	1	7.5	4.63	1.41	93	6	2	0		141	100%	R5	R4	0	all J's weathered with non softening fill, altered J wall; alpha 45 to 90 degrees	fluid flow evidence
18	85	90	25.91	27.43	5	7.3	5.17	1.57	103	4	3	0		149	95%	R5	R4	1	to 50 degrees	India now evidence
19	90	95	27.43	28.96			5.00	1.52		11	6	4		149	98%		R4	1	1 J with soft fill 0.5mm brown clay, alpha 15 degrees	
20	95	100	28.96	30.48	5	2	5.17	1.57	103	12	13	0	4	133	84%		R2	0	1J at 99' has 1 cm brown clay gauge fill (alpha 50 degrees)	RZ (10cm) jointed at 96'; R2 rock highly altered, brown from 95- 96'
21	100	105	30.48	32.00	5		5.00	1.52	100	6	5	1		150	98%	R5	R4	0	(εγετικό	
22	105	110	32.00	33.53	5	2	5.17	1.57	103	7	5	1		146	93%		R4	1	1 J has 0.5mm soft fill	
23	110	115	33.53	35.05		1	5.08	1.55	102	10	11	3		122	79%		R4	0		mineralization around micro defects at 111.5'
24	115	120	35.05	36.58		1	5.08	1.55	102	12	7	1		103	66%		R4	1	hard fill in Js	
25	120	125	36.58	38.10		2	5.17	1.57	103	12	6	2		140	89%		R4	1		
26	125	130	38.10	39.62		11	4.92	1.50	98	10	5	1		135	90%		R4	1	1 J has 2mm soft fill	
27	130	135	39.62	41.15			5.00	1.52	100	14	14	0		62	41%		R3	1		
28	135	140	41.15	42.67		2	5.17	1.57	103	8	6	1		141	90%		R4	1		
29	140	145	42.67	44.20	5		5.00	1.52	100	9	7	0		150	98%		R4	1		
30	145	150	44.20	45.72	5		5.00	1.52	100	7	5	0		137	90%	R5	R4	1		
31	150	155	45.72	47.24	5		5.00	1.52	100	7	4	1		144	94%	R5	R4	0		
32	155	160	47.24	48.77	4	10	4.83	1.47	97	10	5	1		133	90%	R5	R4	1	1 J has 2mm soft fill	
33	160	165	48.77	50.29	4	9	4.75	1.45	95	9	7	0		139	96%	R5	R4	0	Js betw 162-163' have 2mm of soft fill	

MW09-4

overburg

weathered bedrock

fresh bedrock

Geotechnical log (basic+)

* 10ft rods were used, with 5ft core barrel,

	HQ3 bit, w	ith split tub	es; casing de	epth 10ft																
		Pun li	nterval				TCR				١.		+J from	RC	QD	IF	RS	micro		
Run #	From	To	From	То						OF	J	CI	RZ		-			def.	J - properties	comment
	ft	ft	m	m	ft	inches	decimal ft	m	%					cm	%	strong	weak	0 to 3		
1	5	6	1.52	1.83	1	menco	1.00	0.30	100					CITT	0%	S3	Weak	0.000		
2	6	11	1.83	3.35	2.2		2.20	0.67	44						0%	S4				
3	11 15	15 20	3.35 4.57	4.57 6.10	3.6		3.00 3.60	0.91 1.10	75 72						0% 0%	S4 S3				
5	20	25	6.10	7.62	5.0		5.00	1.52	100						0%	S4	S2			
6	25	30	7.62	9.14	5		5.00	1.52	100						0%	S4	32			
7	30	35		10.67	5		5.00	1.52	100						0%	S4				
8	35	40	10.67	12.19	5		5.00	1.52	100						0%	S4	S3			
9	40	45	12.19	13.72	1		4.00	1.22	80						0%	S4				
					-															
10	45		13.72	15.24	5		5.00	1.52	100						0%	S4				
11	50 55		15.24	16.76	4.2		4.20	1.28	84						0%	S4				
12	60	65	16.76 18.29	18.29 19.81	5		5.00 5.00	1.52 1.52	100 100						0% 0%	S4 S4				
14	65		19.81	21.34	5		5.00	1.52	100						0%	S4	S3			
15	70		21.34	22.86	5		5.00	1.52	100						0%	S4	33			
16	75		22.86	24.38	5		5.00	1.52	100						0%	S4				
18	80	85	24.38	25.91	5		5.00	1.52	100						0%	S4				
19	85	90	25.91	27.43	5		5.00	1.52	100						0%	S4				
20	90	95	27.43	28.96	0		0.00	0.00	0							S4				
21	95	100	28.96	30.48	5		5.00	1.52	100						0%	S4				
22	100	105	30.48	32.00	3		3.00	0.91	60	_					0%	S4				
23	105		32.00	33.53	5.2		5.20	1.58	104						0%	S4				
24	110	115	33.53	35.05	5		5.00	1.52	100						0%	S4				
25	115	120	35.05	36.58	5		5.00	1.52	100						0%	S4				
26	120	125		38.10	5		5.00	1.52	100						0%	S4				
	125	120			_										00/					
27 28	125 130	130 135	38.10 39.62	39.62 41.15	5		5.00 5.00	1.52	100 100						0% 0%	S4 S4				
29	135	140	41.15	42.67	5		5.00	1.52	100	_					0%	S4				
30	140	145		44.20	4.2		4.20	1.28	84						0%	S4				
	1.15	150		45.72	4.0				0.0						00/		C4			highly weathered rock (brown and pink rock fragments, light brown-orange crs.sand and
31	145	150	44.20	45.72	4.8		4.80	1.46	96		60		60	0	0%	R0	S4			f.gravel), low clay content (10%)
32	150	155	45.72	47.24	5		5.00	1.52	100	51	. 51	0	48	0	0%	R2	R0	1	R0 rock most of this run	highly wethered rock (brown-orange c.sand, clayey, altered rock frags, Qz vein, very weak ro
33	155	160	47.24	48.77	5		5.00	1.52	100	7	, 9	0	. 8	152	100%	R3	RO	1	R0 zone 20cm (also jointed)	highly wethered rock, orange-brown alteration, black/white coarse grains remaining of rock; competent rock at 159ft
													1							
34	160	165	48.77	50.29	3	4	3.33	1.02	67	7	6	0		24	24%	R3	R1	1	soft/hard fill in J's	very weathered jointed rock
35	165	170	50.29	51.82	5		5.00	1.52	100	6	5	0		80	52%	R3	R2	1	soft fill in J's or red staining,	weathered jointed rock
36 37	170 175	175 180		53.34 54.86	5	2	5.00 5.25	1.52	100 105		7	0		140 136	92% 85%	R3 R4	R2	0	crs. fill in J's, red staining	weathered jointed rock
38	180	185		56.39	4	10	4.83	1.47	97			0	Δ	137	93%	R4	R0	2	black stained J's or crs.fill	RZ (10cm) at litho change, R0 rock
39	185	190	56.39	57.91	5	2	5.17	1.57	103	8	_	0		140	89%	R4	R2	0	black rusty staining on all J's	The factory of this change, no rock
40	190	195	57.91	59.44	5	1	5.08	1.55	102	10	8	0		143	92%	R4		0	black rusty staining on all J's	
41	195	199.5	59.44	60.81	4	5	4.42	1.35	98	12	. 8	0		82	61%	R4		0	stained J's, various colours and minerals	
42	199.5	205	60.81	62.48	5	3	5.25	1.60	95	9	6	1		136	85%	R5	R3	0	hard fill on J surfaces	
43	205	210	62.48	64.01	5		5.00	1.52	100	9	7	0		137	90%	R5	R4	0	hard fill on J surfaces	
44	210	215	64.01	65.53	5		5.00	1.52	100			0		78	51%	R4	R3	0	hard fill on J surfaces	
45	215	220	_	67.06	5	2	5.17	1.57	103	14	_	0		93	59%	R4	R1	0	hard fill on J surfaces	
46	220	225	67.06	68.58	5	2	5.17	1.57	103	7		0		158	100%	R4	R3	0	hard fill on J surfaces	
47	225 230	230 235		70.10 71.63	5 5		5.00 5.00	1.52 1.52	100 100			0	 	135 85	89% 56%	R4 R4	D2	1		
48	230	240	71.63	73.15	4	11	4.92	1.52	98	13	1	0		150	100%	R5	R2			
50	240	245	73.15	74.68	5	- 11	5.00	1.50	100	10	9	0		132	87%	R4	R3			
51	245	250		76.20	4	9	4.75	1.45	95			0		70	48%	R4	.13		bright green mineralization on J surfaces	
				0																

MW09-4

Overburden Properties * core runs with the same properties were combined

- * descriptions were modified to match quantitative measurements (TorVane and Penetrometer)
- ** reworked clay (by drill bit) that is caked around harder inner core was ignored here - this soft watery clay does not represent in-situ conditions and is softened by drilling process

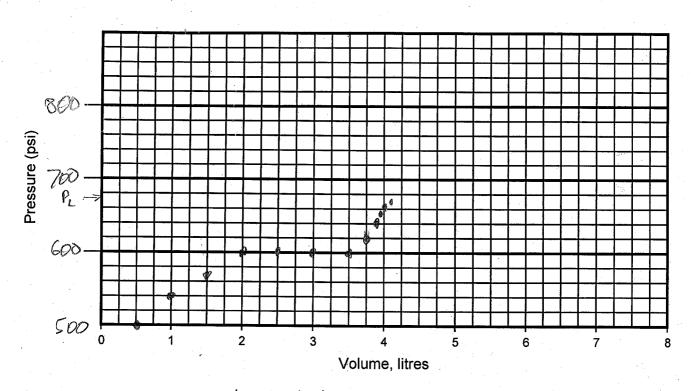
	Domain i	interval		description	permafrost	samples	clay plasticity	clay hard	ness	
From	To	From	To		P-01.11.01.1		, μ,	description (as found,	thawed	ISRM
ft	ft	m	m					usually frozen)	only	code
5.0	6.0	1.52	1.83	cobble						
6.0	11.0	1.83	3.35	dark brown silty clay with fine gravel (sub round)		S1 at 10ft	low	firm		S3
11.0	15.0	3.35	4.57	frozen grey clay with ice inclusions (includes 0.5ft layer of d.brown clay with f.gravel)	Vx / Vr small lenses	S2 at 14ft	med	stiff	soft	S4
15.0	20.0	4.57	6.10	dark grey frozen clay, with ice inclusions	20 to 30% ice, Vr / Vx / Nbe		med	firm	v.soft	S3
20.0	21.5	6.10	6.55	dark grey frozen clay, with ice inclusions	frozen		med	stiff	v.soft	S4
21.5	25.0	6.55	7.62	soft watery clay (reworked by drilling process)	N/A	S3 at 24ft	high		soft	S2
25.0	32.5	7.62	9.91	dark grey frozen clay, with ice inclusions	10 to 15% ice		med	stiff		S4
32.5	35.0	9.91	10.67	dark grey frozen clay	frozen	S4 at 33ft	med-high	stiff	firm	S4
35.0	40.0	10.67	12.19	grey frozen clay, with ice inclusions AND zones of ice with clay inclusions	Vr, Vx, zones of ice		mod-high	stiff	firm	S3
40.0	55.0	12.19	16.76	ice with grey clay inclusions	>50% ice, random pattern, some stiff clay inclusions	S5 at 45ft	mod-high	stiff	soft	S4
55.0	63.0	16.76	19.20	grey frozen clay, with ice inclusions	5% ice, Vx, Vr	S6 at 58ft	high	stiff	firm	S4
63.0	64.5	19.20	19.66	grey frozen clay, with fine sand and fine gravel (sub ang to angular)	frozen	S7 at 63ft	low	stiff	soft	S4
64.5	64.8	19.66	19.75	black-grey moist clay			mod	stiff		S4
64.8	65.0	19.75	19.81	wet clayey coarse sand with fine gravel (sub-ang)						
65.0	69.0	19.81	21.03	clay diamict (fcrs. sand, fcrs. gravel (and - sub ang.), + cobble), frozen	frozen			stiff		S4
69.0	70.0	21.03	21.34	clay with ice inclusions	some ice			firm		S3
70.0	73.1	21.34	22.28	clay diamict (fcrs. gravel, anground, cobble)				stiff		S4
73.1	74.1	22.28	22.59	ice	ice	S8 at 74ft				
74.1	74.8	22.59	22.80	clay				stiff		S4
74.8	84.7	22.80	25.82	grey frozen clay interbeds with clay containing ice inclusions and interbeds of pure ice	frozen, 5% ice, Vr/Vs, some pure ice			stiff		S4
84.7	85.0	25.82	25.91	clay diamict (f.gravel)				stiff		S4
85.0	90.0	25.91	27.43	frozen clay with ice inclusions and with fcrs.gravel	more ice content than above	S9 at 89ft		stiff		S4
90.0	95.0	27.43	28.96	N/A						
95.0	124.0	28.96	37.80	frozen grey clay with ice inclusions (Vr, Vt) and with trace of crs.gravel (sub-ang.) and few beds of clay diamict (with crs. sand / f.gravel)	frozen, once 10cm ice layer,	S10 at 103ft		stiff		S4
124.0	125.0	37.80	38.10	frozen clayey f.sand	frozen	S11 at 119ft				
125.0	141.0	38.10	42.98	clay diamict (c.sand-f.gravel) and beds of clayey f.sand, c.gravel and cobble fragments at 135ft, ice inclusions and small ice layers	ice inclusions	S12 at 130ft	low	stiff		S4
141.0	141.5	42.98	43.13	grey brown clay (thawed) and frozen black/grey clay	frost "flakes" in clay			stiff	soft	S4
141.5	144.0	43.13	43.89	brown moist clayey crs.sand with f.gravel (angular) and trace crs.gravel		S13 at 143ft				
144.0	145.0	43.89	44.20	frozen dark grey clay with crs.sand and f.gravel	frozen			stiff		S4
145.0	146.0	44.20		clay diamict (f.gravel grey rock pieces) and interbeds of medium clayey brown sand	N/A			stiff		S4
146.0	153.5	44.50	46.79	highly weathered rock (brown and pink rock fragments, light brown-orange crs.sand and f.gravel), low clay content (10%)	N/A	S14 at 151ft				RO
153.5	155.0	46.79	47.24	weathered altered rock, Qz vein, very weak						RO/R2
155.0	159.0	47.24	48.46	weathered altered rock, black/white crs.grains, orange-rusty alteration	warm core from drilling process in rock					R0/R1

clay hardness - quantitative measurements

ciay n	ardne	ss - q	uantit	ative	measu	reme	nts
Tor V			(*	P	enetro		er
	0.1 kg	/cm²)			(kg/	cm²)	
fro	zen	tha	wed	fro	zen	tha	wed
min	max	min	max	min	max	min	max
3							
	4.5		1			0.3	0.5
	2.5				1.5		0.0
	3.5				3.2 4.5		0.5 1.5
	3.5				4.5		1.5
				1.9	2		1.0
	7.5		0.5	2	4		0.3
			4				1.5
		7.8	8	3	3.5		
							2.0
							1.0
							1.0
	10				3		
				1.5	5	0.5	2.0
				2	2.5	0.5	2.0
			8	4	5	1.5	3.0
				2.5	5		1.5
			3.5				
					4.5	0.5	1.0

Т	or Van	e (MPa)	Pen	etrome	eter (M	Pa)
fro	zen	thav	wed	froz	zen	thav	wed
min	max	min	max	min	max	min	max
0.03							
	0.04		0.01			0.03	0.05
	0.04		0.01		0.15	0.03	0.05
	0.02				0.15		0.00
	0.07				0.21		0.05
	0.07				0.31		0.05
	0.03				0.44		0.15
				0.19	0.20		0.10
	0.07		0.00	0.20	0.39		0.03
	0.0.		0.04	0.20			0.15
		0.08	0.08	0.29	0.34		0.120
		0.00	0.00	0.120			
							0.20
							0.10
							0.120
	0.10				0.29		
	0.120						
				0.15	0.49	0.05	0.20
				0.20	0.25		
			0.08	0.39	0.49	0.15	0.29
				0.25	0.40		0.15
			0.03	0.25	0.49		0.15
			0.03				
					0.44	0.05	0.10
					0.44	0.03	0.10

Project:_	MINTO 20	M 022.	00	7.0	001.1	0	WB Ref.:			
Location:	WEST PIT		Hole	e No.; _	MWO	9-1	Installed by: J	<u>S, C</u>	D	
	th: 165 FT MP Depth: 165									
Measure	ment Datum: <u>GROUND</u> SURFA	CE	Dat	um Ele	vation:	857.6 m	Date Drawn:	<u>nt</u>	N	116
Depth,	Geological Description	Geologic Log		Casing Log	Serial No Batch No	. Final Packer . Pressure/Volume	Comments		Joir Hassalt	
				18			0.23 m from gro surface to top of piece 17.	und -		
10 -	FILL			17			piece Pt.			
20 -				16				***************************************		
30				<u> </u>						
£‡() -				14						
50-				13						
60 -			***************************************	12						
70 -	1		***************************************	MT COLOR						
80 -				(o <	2801					
90-	WEATHERED BEOROCK			9	2001					
		↓ ↓ Kooli	gneti	8	17025	6.5 L	VALUE OPEN 170 PS			
I M	P Casing MP Packer		ĭar er Sle		● N	Aeasurement Port Coupling	Pumping Port Coupling	Regula Coupli	ar ing	

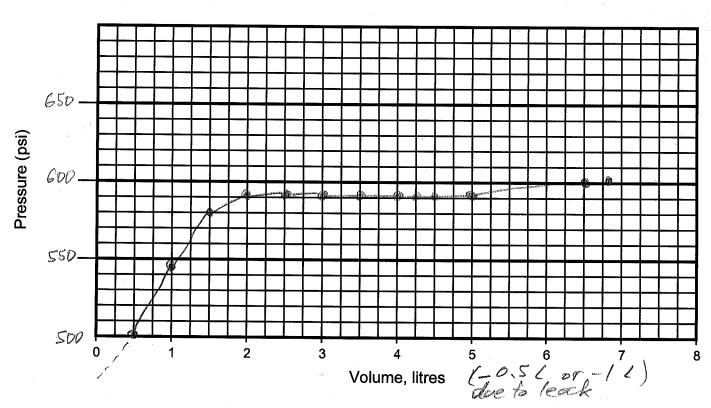

Project:	MINTO		2 <i>(MOZT.</i>	. 00	7.0	01.10		WB Ref.:	
Location:	WEST	PIT		Hol	e No.: _	MWC	9-1	Installed by:	S, CD
Hole Dept	th: 165 FT	MP Depth:	Fr	Hol	e Diam	eter:	10	Date Installed:_28	2 NOU 109
Measurei	ment Datum:_	GROUND S	URFACE	Dat	um Ele	vation:	357.6 m	Date Drawn: 10	OI WAT
Depth,	Geolo	gical Description	Geologic 1.og	MP	Casing Log	Serial No. Batch No.	Final Packer Pressure/Volume	Comments	Joint Install Less
120-	WEATHER	ED BEDROCK BEDROCK END OF HOLE AT 165 F1	l.og	M M	Log 7	2803 7955 17026 2800 7957		VALUE OPEN 165	
	AND FORM		- 						
MF	Casing	MP Packer		ـــا agneti Ilar ter Slo		→ Me	easurement rt Coupling	Pumping Port Coupling	Regular Coupling

SRK Consulting.

Sheet of 2

Westbay Packer Inflation Record

Project:	Mi	ato			Proje		MOZZ_0	07-,) W	ell No.: N	1W 09	garan
Location:	Wes	+ Pit			Comp	oleted by:	CD, J	S Da	te Inflated	d: 28	Nov o
Packer No.	4	Seria	1# 17	7026	Depth	n (ft m):	130	ft_Inf	lation Too	l No.:	. "
Packer Valv	e Pressu	ıre, P _V :	165 ps	i Fina	Line Pre	ssure, P _L	677	psi To	ol Pressu	re, Р _т : <u> </u>	<u>- ⊘0</u> psi
Borehole W	ater Leve	el: <u>33-6</u> ;	5 (ft/m) = 47	<u>√</u> 8 psi (P	w)					
Ρ.	= PE+	110.4 Pr+P+	fb -Pw				nt Pressur			,-P _T =	<u>60</u> psi
Volume	1	0.5	1-0	1.5	20	2.5	3.0	3.5	3.75	3,85	3,25
Pressu	e, psi	500	540	570	600	600	600	600	620	640	650
Volume	, litres	4.05	4.10	*	4.	01	Gehal	V			
Pressur	e, psi	66D	670				·				



Comments: Packer # Normal Inflation Time - 14:10

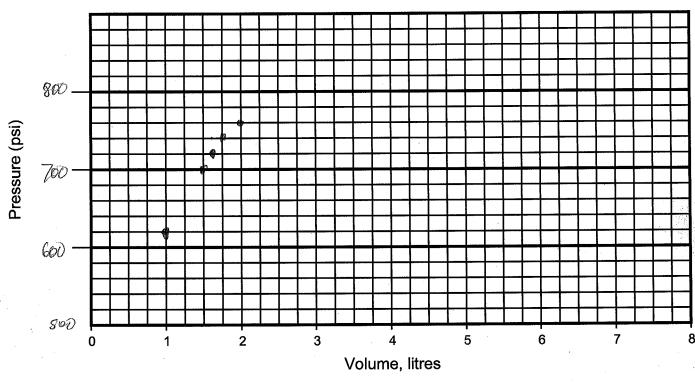
Packer Inflation Record

Project: Minto	2cM	022.00	7.001.	Proje	ct No.:		W	ell No.: 🏸	1W03	gen.	
Location: West	pit			Comp	oleted by:	CD./3	 75 da			276	J
Packer No. 8	5/n 17	2025		Depth	n (ft / m):	95 p	f Inf	lation Too	ol No.:	3	
Packer Valve Pressu			•			682		ol Pressu	re, P _T : 4	<i>©</i> ⊘ psi	j
Borehole Water Lev	el: <u>33,6</u>	<u> 5 (ft //</u> m̃	i) = 47.	∂ psi (P	_W)		_				
	a	Tarange of the Control of the Contro	Calcul	 ated Pack	er Eleme	nt Pressur	e, P _E = P _l	+ P _W - P _V	,-P _T = <u>/</u>	<i>≦</i> ⊘_psi	
Volume, litres	0,5	10	1.5	2.0	2.5	3.0	3,5	5.75	4.0	4.25	
Pressure, psi	500	540	580	5.90	590	590	590	590	590	STO	
Volume, litres	4.5	5.6	6.5	6.8	(6.75 actual	* fine	d vol	because	of leak)
Pressure, psi	590	590	600	600							

Comments: Packer # loss of water volume (0.5 k approx Time- 15:00
from water pitter leak before pump intake), and perhaps when leak?

- stopped because reached packer vol. limit / inflated in weak wear
rock zone)

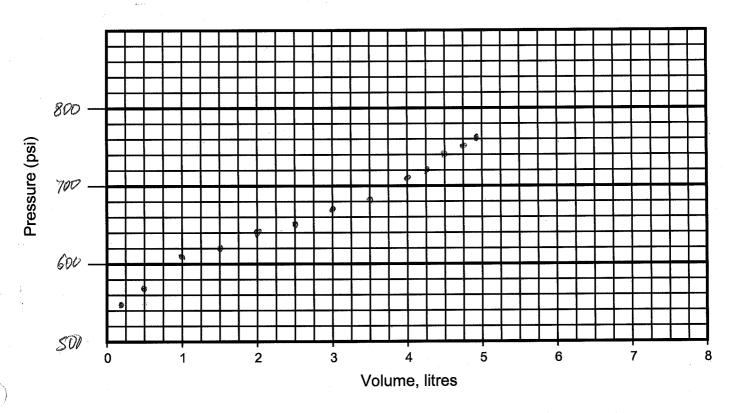
Project:	MINTO 2CMOZZ.	007,00	21.10			WB Ref.:	
Location:	LOWER TAILINGS		Hole No.:	MWC	9-2	Installed by: <u>ナ</u> S _/	CD
Hole Dept	th: 195 FT MP Depth: 195 F	T"	Hole Diame	eter:	1 Q	Date Installed: 26 /	VOV 10
Measurer	ment Datum: <u>GROUND</u> SURFA	CE	Datum Elev	ation:	157.5 m	Date Drawn: <u>19</u>	AN 11
Depth, FT	Geological Description	Geologic I.og	MP Casing Log	Serial No. Batch No.	Final Packer Pressure/Volume	Comments	Joint Install less
			22				
10		-					
20 -	CLAY + 14E		21				
	PERMAPROST		20				
30 -			19				
40 -							
			18			,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	
50 -			17				
60 -			16				
70 -	-						
80 -			15				
			19				
90.			13				
100	<u> </u>	X K Mag	gnetic ar		loacurament	- Pumping Port Do	oular
M	P Casing MP Packer	Filte	ar er Sleeve	Po Po	leasurement ort Coupling	Pumping Port Re Coupling Co	gular upling



Project:	MINTO 2CMOZZ.	007.	00	1.10			WB Ref.:	
Location:	LOWER TAILINGS						Installed by: ゴ	
Hole Dep	th: <u>195 FT</u> MP Depth: <u>195 FT</u>	w-	Hol	e Diam	eter: H	Q	Date Installed: <u>76</u>	NOU 109
Measure	ment Datum: <u>GROUND SURFAC</u>	E	Dat	um Ele	vation:	757.5 m	Date Drawn: 19	JAN 'I
Depth,	Geological Description	Geologic Log	MF	Casing Log	Serial No. Batch No.	Final Packer Pressure/Volume	Comments	Joint Install less
100			7	12		The state of the s		
110 -				11				
120-	CLAY + ICE			10				
130 -				9				
140 -	CLAY + SAND + ICE			8				
150 -			× X	7	17022	760 PSI 4-75 L	MAG COLLAR AT TOP OF PACKER	
160 -	WEATHERED BEDROCK			5	7958	James Andrews Company of the Company		
170 -	VERY POOR CORE RELOVERY		M	4 3	17021 2794 7951	760 PSI 1-75" L	MAG COLLAR AT TOP OF PACKER	
180 -				2				
[90-	V END OF HOLE AT 195 FT	MuD			***************************************			
200								
H	P Casing MP Packer	Ma Col Filt		l I ic eeve	→ M Pc	easurement ort Coupling	Pumping Port Coupling	Regular Coupling

Packer Inflation Record

Project: Minto				Projec	Project No.:			_Well No.: <u>MW<i>D</i>G-2</u>			
Location: Lower	Tailin	45		Comp	Completed by: JScisek			_Date Inflated: Nov 26'09			
Packer No.	5/	Inf	Inflation Tool No.:								
Packer No. 4 $8/n$ $1/D2$ Depth (ff) m): $17D$ Inflation Tool No.: Packer Valve Pressure, P_v : 165 psi Final Line Pressure, P_L : 755 psi Tool Pressure, P_T : 425 psi										125 ps	
Borehole Water Leve	Borehole Water Level: 3.0 (ft (m)) = psi (P _W)										
			Calcul	—– ated Pack	er Elemei	nt Pressur	e, P _E = P _L	+ P _W - P _V	- P _T = <u></u>	65 ps	
	_										
Volume, litres	1.0	1,5	1.6	1.75	2,0		1.75	L fr.	hed Ve	dome	
Pressure, psi	620	700	720	740	76D	Fin	al P				
Volume, litres		111111111111111111111111111111111111111									
Pressure, psi											



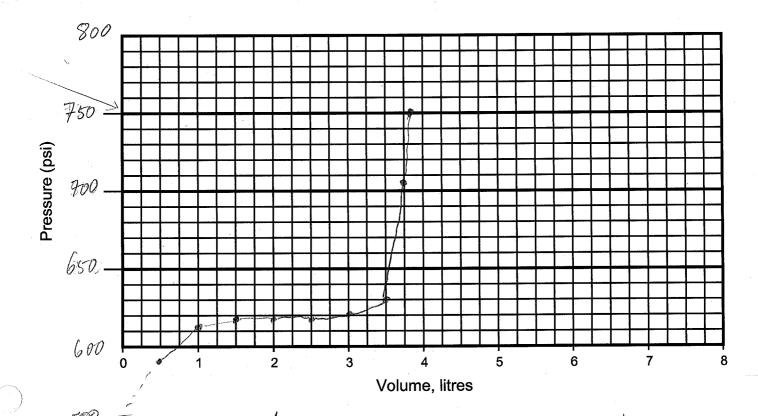
Comments: Packer #	hole	probably	collaps	sed ason	md	perchertin	ne - 20;30	
gesulting		small w		inflated	\ S ²⁷⁶	packer is	just above	
zone of we	ak WE	eath, nock	(RØ sta	ength) w	ith pe	por care re	covery	

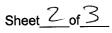
Packer Inflation Record

Project: M					t No.:				1W69-	
Location: Low	er Tail	ings		Comp	leted by:	J Seil	sek Da	te Inflated	: Nov	26'05
Packer No	7 5	/n 170	(ft/m):): 160 ft Inflation Tool No.:						
Packer Valve Pressure, P _V : 170 psi Final Line Pressure, P _L : 755 psi Tool Pressure, P _T : 425 psi										
Borehole Water Level: 3 (ft / m) = 4 psi (P _W)										
	Calculated Packer Element Pressure, $P_E = P_L + P_W - P_V - P_T = 16D$ psi									
Volume, litre	s 0.2	0.5	1.0	1,5	20	2,5	3.0	3,5	4.0	4.25
Pressure, ps	i 550	570	610	620	640	6 <u>2</u> D	670	680	710	720
Volume, litre	s 4.50	4.75	4.9		4.75	ham fil	red vo	vane		
Pressure, ps	i 740	750	760							

Comments: Packer #	influeed	normally	Time - 21 -08
	V		

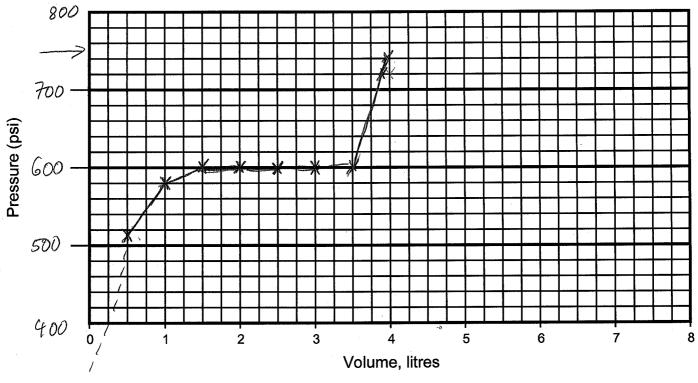
Project:	MINTO 2CMOZZ.	007.00	21.10		and the second second second second	WB Ref.:	
Location:	MINTO NORTH		Hole No.	MWO:	19-3	Installed by: ゴミ	<u>, CD</u>
Hole Dept	h: 165 FT MP Depth: 165 F	T.	Hole Dia	meter:	<u>-1 Q</u>	Date Installed: 27	NOV 'O'
Measurer	ment Datum: <u>GROUND SURFAC</u>	E	Datum E	levation:	108.0 m	Date Drawn: 19	OI WAC
Depth,	Geological Description	Geologic l.og	MP Casin Log	Serial No. Batch No.	Final Packer Pressure/Volume	Comments	Joint Install Test
	WELL CASINA		18			2.9 m from top of casing to top of piece 17.	
10 -	WEATHERED BEORDCH		17				
20 -			16	17023	740 PSI 3.9 L	VALVE OPEN 170 PS1	
30 -	COMPETENT ROCK		M> 15	2805			
40 -	STAINED JOINTS, ALTERATION		14	7956			
50 -			13				
60 -			12	17078	740 PSI 3.75 L	UNLUE OPEN 165 PSI	
70 -			10				
80 -			MX KM	2802			
90.	RZ ROCK, HIGHLY ALTERED		9 0	7949			
<u>ιοο</u> ΜΙ	P Casing MP Packer	Col	anetic	■ M	leasurement ort Coupling	Pumping Port Coupling	Regular Coupling


Project:_	MINTO 2CM 027	.007.	001-11)		WB Ref.:	
Location:	MINTO NORTH	one was the chief and the chief	Hole No.:_	MWC	19-3	Installed by: フ	S, CD
Hole Dep	th: 165 FT MP Depth: 165	Fr	Hole Diame	eter:	HQ	Date Installed: 27	NOV 09
Measure	ment Datum: GROUND SURFA	ILE	Datum Elev	/ation:	(08.0 m	Date Drawn: 19	OI' NAT
Depth,	Geological Description	Geologic I.og	MP Casing Log	Serial No. Batch No.	final Packer Pressure/Volume	Comments	Joint Install Less
100	COMPETENT BEDROCK			17027	750 PS1 3.75 L	VALVE OPEN 170 PSI	
110 -			6				
170 -			M7 5 K				
130 -			4	2804			
140 -			3	7950			
150 -			2				
160 -	END OF HOLE 165'						
17-0-	in the state of th						
М	P Casing MP Packer	<u> </u>	agnetic lar er Sleeve	M PC	leasurement ort Coupling	Pumping Port Coupling	Regular Coupling

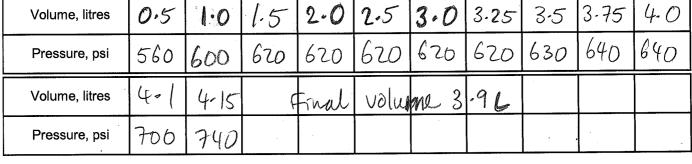

Sheet<u>l</u>of<u>3</u>

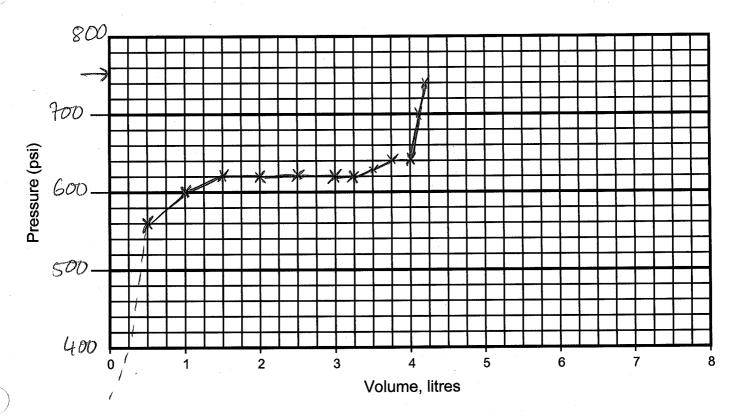
Packer Inflation Record

Project:	Minto	20 1 1		2	Projec	t No.: 24	4022,00			W09-	
Location:	Minto	North			Comp	leted by:	CD/J	SDa	te Inflated	1: 27 N	lov 09
Packer No.	7	Serial	#1702	afar.	Depth	(ft / m):	100	<u> </u>	ation Too	l No.:	/
Packer Val	ve Pressu	re, P _v : <u> </u>	70 ps	i Final	Line Pres	ssure, P _L :	754	psi To	ol Pressu	re, P _T : <u>4</u>	2 <i>5</i> psi
Borehole W	ater Leve	ol: <u>4</u>	(ft /@)) =	psi (P	w)					
				Calcula				1 '		- P _T =/	<i>60</i> psi
	-				425	+ 170	+ 160 +	1=7	54 PS	; i	
Volúme	e, litres	0.5	1. D	1.5	2,0	2.5	3,0	3,5	3.75	3,85	
Pressu	ıre, psi	580	625	635	635	635	645	660	710	750	
Volume	e, litres	fine	el u	vene	3.	75 2					
Pressu	ıre, psi										



Comments: Packer #


Project:	1 m	to			Projec	ot No.: 20	4022.007	,001.10 We	ell No.: /	uw09.	-3
Location:	int	o Nom	th			leted by:					ov 200°
Packer No. 12	- ,	Sevial a	# 170	28	Depth	(ft / m):	55 f	<u>^L</u> Infl	ation Too	l No.:	
Packer Valve P	essu	re, P _V : ℓ	65 psi	Final	Line Pres	ssure, P _L :	749	psi To	ol Pressu	re, P _⊤ : <u> </u>	25 psi
Borehole Water	Leve	el: <u>4</u>	(ft/m)) =	psi (P	w)					
		'		Calcula	 ated Pack	er Elemei	nt Pressur	e, P _E = P _L	+ P _W - P _V	$l - P_T = le$	50 psi
					425-	r 165+	160 -	1 = 7	t9 psi		· · · · · · · · · · · · · · · · · · ·
Volume, litr	es	0.5	1.0	1.5	2.0	2.5	3.0	3.5	38	3.9	FINAL 375
Pressure, p	si	5515	580	600	600	600	600	600	720	740	
Volume, litr	es										
Pressure, p	si										
200 -								,			



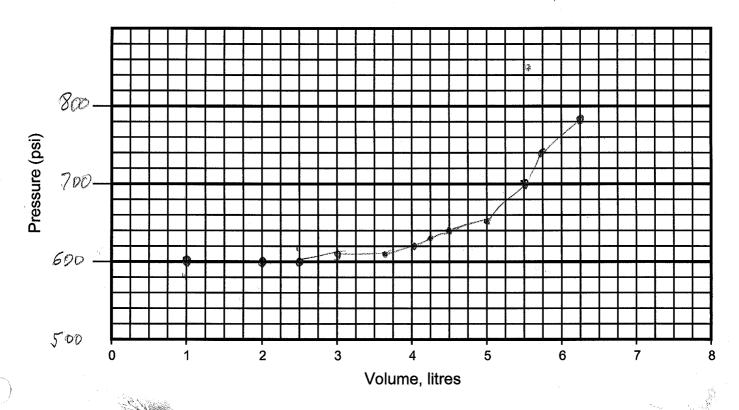
Comments: Packer #	Normal inflation.	Time -

Project:	linto				Projec	ot No.: 2 c	MOZZ_C 001.	07. 10 We	ell No.:	MWO9	7-3
Location:	rinto N	DOVHL			Comp	leted by:	CD, J	<u>S</u> Da	te Inflated	1: 27	NOV OG
Packer No. 16	ser Ser	ial #	17	023	Depth	(ft) m):	20	<u>26_</u> Infl	ation Too	l No.:	
Packer Valve P	ressure, P _v	: 170	psi	Final	Line Pres	ssure, P _L :	754	psi To	ol Pressu	re, P _T : <u> </u>	25 psi
Borehole Water	Level:	4 (f	t/ @	=/	psi (P	w)					
				Calcul	ated Pack	er Elemer	nt Pressur	e, P _E = P _L	+ P _W - P _V	- P _T =	60 psi
											
Volume, litr	res 0,	5 1.	0	1.5	2-0	2.5	3.0	3.25	3 <i>-</i> 5	3-75	4.0
Pressure, p	osi 56	0 60	0	620	620	620	620	620	630	640	640

Comments: Packer #	Time -
on first pumping, pressure rose then	suddenly dropped, then vose again. Packer
ousling loose rock antil it gave was	1? Otherwise normal inflation,

	MINTO ZCMOZZ.007			.	I	WB Ref.:		-
cation:_	Phase 1 confluence				9-4	Installed by: M.Roy E. Dongh Date Installed: Nov 2	<u>le/.</u>	[5
ole Depth	n: 250 FT MP Depth: 250	FT	Hole Diam	eter: <u> </u>	<u> Q</u>	Date Installed: Nov 2	4 0	9
easurem	nent Datum:		Datum Ele	vation:		Date Drawn: Nov 2	4 0	9
Depth,	Geological Description *** プレ	Geologic Log	MP Casing Log	Serial No. Batch No.	Final Packer Pressure/Volume	Comments	Joint Install Test	
5		V	27					
10			BARRETON '			a a		
12		V	26					
20			. 1201507/ *			*		1
25		V	25	They are		* *		
30					a		i	
35		V	24	,				
45	3 4		23			W &		
50		ľ						
55		· 🗸	22	*-ind				
60		,	-					1
65 -			21	* .		·		
70 _								-
75		/	20					
80-			19	:		· · · · · · · · · · · · · · · · · · ·	. 74	
20	 9	4						
95		/	181		· ·			
ļus 🔿				<u> </u>				
MPC	Casing MP Packer		gnetic ar er Sleeve	→ Me	easurement rt Coupling	Pumping Port Regul Coupling	ar ing	

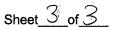
	Measure	nth: <u>250 FT MP Depth: 250</u> ment Datum: ground scriface	}	Datum Ele			Installed by: M. Ro Date Installed: Nov Date Drawn: No L	<u> </u>	41	OE
	Depth,	Geological Description	Geologic Log	MP Casing Log	Serial No.	Final Packer Pressure/Volume	Comments	J	loint III lest	
	105		V	17						
	110 -	mostly diamict ("till") or firm frozen clay								. isi
	· 115	with ice inclusions		16			112/ - 71. 51 - 52	= 7 0	ticlu	Soe
	125	hote: clayer fine sound, (frozen)		IS	·		Wl = 74.82 m 5t ofter install Bomi	,)		(e)
	130-	small ice layer at 136.51		14	·					
	140-	firm clay diamict	V= 165 Vr=140	13						
tol	145 150-	highly weathered bedrock - crumbly, cloquey	✓	12						
J.	155	weath. aftered bedrock, R2 strength, cove jointad	V M V		2798		mag.collar		M Call	
25	160-	RZ strength, cove jointad	<i>\</i>	11						
5 m	165		/	10	7954		/			
m kes ite	175	strong rock, jointed	V 12	3	17031	- Agai	mag collor on bottom		 	
s hoe	180- 185			8	2797		of packer			
60g+	130		\ \ \	0	7953					
	195			7			A Gan		 	

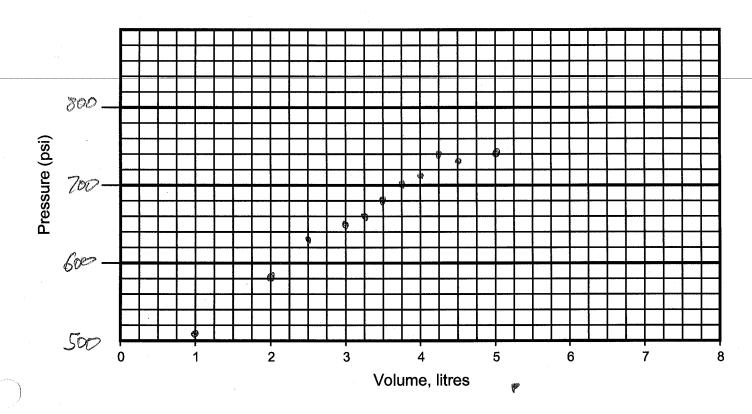


/}}

Project:_	Minto 2CM022.						WB Ref.:		
Location:	Phase 1 confluence	>	Hole	No.:	MWD	9-4	Installed by: M.Royl	<u>le/.</u>	J
	th: <u>250 FT</u> MP Depth: <u>250 F</u>				neter: HE		Date Installed: Nov 21	16	2
Measure	ment Datum: ground surface				vation:		Date Drawn: Nov 21	410	2
Depth,	Geological Description	Geologic Log	MP	Casing Log	Serial No.	Final Packer Pressure/Volume	Commonts	Jo Instalt	iic
	strong rockijointed		1	6	17024				ł
205				-			don't put packer below 2091		1
210-		16/70 V 16/50		5					1
215		-							-
220-		\ \ \		4	M		mag-collar		
225		· ·	1 1		M 2796		V		
230-	<u></u>			3			7: 1 : 2/4	-	-
235				0	7952			\vdash	-
240-				*	7451			-	-
245	E04 at 243'	Edi		in the second			end cap measure wl= helpve	-	_
2sid-				===		drill hole	WI = measure before install	╄	_
EDH ad 250								-	-
	jenial kula						probed hole = 243.1'		-
							probed hole = 243.1' Chartened orig design		
	# 2 Walled France						by 5' by remains #2 pipe (5 ft)	<u> </u>	
							#2 pipe (5th)		
			-						7
							· · ·		

Project:	Minto			Projec	Project No.: 2CM022,007,001 Well No.: MW09-04											
Location: Phase	e 1 Ca	onfluen	W.	Comp	Completed by: MR/なら/CD Date Inflated:スケ/01											
Packer No.					_Depth (ft) m): <u>205</u> Inflation Tool No.:											
Packer Valve Press										75 psi						
Borehole Water Lev	rel: ~_ <i>}\incide{O}</i>	(ft <i>]</i> /m) = 15	psi (P	w)	P. =	PV+Pr	-Pw+	P	*						
			Calcula	ated Pack ISD-IS+	er Elemei	nt Pressur	e, P _E = P _L	+ P _W - P _V	,-P _T =	<i>50</i> psi						
Volume, litres	1	2,0	2.5	3.0	3.5	4.0	4.25	4.5	5.0	5,5						
Pressure, psi	60D	600	600	610	CIO	620	630	640	650	700						
Volume, litres	5.75	6.0		Final	5751	·										
Pressure, psi	740	780														


Comments: Packer # Time -	
A STATE OF THE STA	


Project: Minto									F	^o roj	ect	: No	o.: 2	2CI	10.	22		7.	00 (1D	We	ell N	l o.:	,	M2	VD	9-	0	4	
Location: Ph	use	1	Co	nflu	en	a		Project No.: 2CM022.007.00 Well No.: MW09-04 Completed by: JS/MR Date Inflated: 16 v 25												0									
Packer No.	<u> </u>								Depth (ft Lm): 18D Inflation Tool No.:																				
Packer Valve Pro		re, P _∨	/: <u> </u>	70	_ps	i	Fin	al I	Line	e Pr	ess	sur	e, F	շ _{լ:}	70	SC.)	psi		То	ol F	res	ssu	re, I	P _T :	4	7	ρο 1	psi
Borehole Water	Leve	el: 2	25	(f	_ t / m	ı) =	1	5	ŗ	osi (Pw	_/)		-															
						Ċ	Calcu	ulat	ted	Pad	cke	r E	len	nen	t P	res	sur	e, F	P _E =	PL	+ F	о _W -	·P _V	- P	_T =	. 1	50	<u> </u>	psi
Volume, litre	s			2,													1				FI	nu ol	4=	: 3	را	5	L		
Pressure, ps	si .	550	2	5 6	D	60	D		6	M)	7	41	2	7	61													
Volume, litre	s																												
Pressure, ps	si																												
	*.					•																							
							工	I	Ţ	I	Ţ																		
<u> -</u> -	+	$\vdash\vdash$	+			\vdash		+	+	+	+	\dashv	-	\dashv	-				_	\dashv			\vdash	_				-	
-			士					\pm		\pm	\pm	╛																	_
800												4	\Box	\Box														4	
_	-		<u> </u>	$\vdash\vdash$	+	⊢┼	+	+	+	+	+	\dashv		\dashv	\dashv							_		\vdash		_	\dashv	\dashv	
(psi)	+	$\vdash \vdash$	+	\vdash	+-	H	+	+	+	+	1	\dashv	\dashv	ᅥ	\dashv			-				\vdash	一	_			\Box	\dashv	\dashv
<u> </u>	┪┈		+		+		一十	十		_	胂	_											T					一	\neg

Comments: Packer #	lime -
	,

Project:	Minto				Projec	Project No.: 2CM022, 607,601 Well No.: MW09-4							
Location:	Phase	1 Conf	luence		Comp	_Completed by: <u>JS</u> Date Inflated: <u>Nov</u>							
Packer No	13				Depth	Depth (ft) m): 145 Inflation Tool No.:							
Packer Valve	e Pressur	re, P _V : <u>[</u> {	5 <u>5</u> psi	Final	Line Pres	ssure, P _L :	775	psi To	ol Pressu	re, P _T : _	<u>175</u> psi		
Borehole Wa	ater Leve	l:	(ft / m) =	psi (P	w)							
				Calcula	ated Pack	er Elemei	nt Pressur	e, P _E = P _I	_+ P _W - P _V	, - P _T = <u></u>	∫O psi		
Volume,	litres	1.0	2.0	2,5	3.0	3.25	3,5	3.75	4.0	4,25	4.5		
Pressure	e, psi	516	580	630	650	660	680	700	710	740	730		
Volume,	litres	5.D	5,15		5 L f	ehal							
Pressure	e, psi	740	420		•								

Comments: Pac	ker#		Time -	

Steffen Robertson and Kirsten (Canada.) Inc. 800, 580 Hornby Street Vancouver, BC.

V6C 3B6

email: vancouver@srk.com URL: http://www.srk.com Tel: 604.681.4196 Fax: 604.687.5532

TECHNICAL MEMORANDUM

DATE: May 30, 2007

TO: Field Personnel – SRK

FROM: Michael Royle

RE: MP System: Groundwater Pressure Profiling and Sampling Protocols

In order to ensure we have consistent pressure monitoring and water sampling methodology and sample QA/QC using the Westbay MP System equipment, the following field procedure is provided for all field staff to follow. This will be used to ensure that all pressure monitoring and water sample collection, handling, and equipment decontamination procedures are same for each monitoring round. Good monitoring QA will also help identify possible errors in pressure measurements and sample chemistry.

Please make note of sample volume requirement changes in section 3.2

1. General Operating Procedures

When operating the MP probes, the following points must be kept in mind:

- 1. <u>The probe must be protected from freezing.</u> Water in the sampling and transducer channels will expand and can easily damage/destroy the transducer or valve.
- 2. The probe should always be moved in its case, and never left in an unheated area for any length of time.
- 3. All connections and o-rings must be kept clean and lubricated. O-rings must be inspected regularly for damage. Failure of the connections can lead to leaks and damage the tool electronics.

PROBLEMS – when pressure profiling or sampling

If any problems arise during probe operation, remember the following rules:

- 1. DO **NOT** PULL UP ON THE CABLE IF PROBE OR TAPE APPEARS TO BE JAMMED this will only jam things in tighter.
- 2. STOP ALL WORK AND DRAW A DIAGRAM OF WHAT EQUIPMENT IS DOWN HOLE AND IN WHAT POSITION.
- 3. Check to see if anything may have been dropped down the MP Casing (pens, etc.);

- 4. Ensure water level tape is removed from drillhole, but <u>DO NOT TRY AND REMOVE IF</u> <u>JAMMED</u> as the tape may pull out of the probe head (yup .. it happens).
- 5. Make sure probe shoe is retracted (repeat this operation several times if necessary);
- 6. Gently test to see if probe is still stuck by pulling up GENTLY on the probe by hand. Stop immediately if it seems jammed.
- 7. If still stuck, call Michael Royle (SRK) at (604-681-4196) or Westbay Technical Services (604-984-4215) for advice

Note:

I spent a year at Westbay where I mostly dealt with minor problems that became major problems because people did not follow these steps. Main thing is, <u>as soon as something seems wrong</u>, stop and think about what is going on down the well. Don't worry about wasting a bit of time as most probes that get really stuck are due to haste And really stuck probes usually end up stuck at the bottom of the well, or coming out in pieces after a lot of very expensive work has been spent tearing them apart in order to save the well.

2. Pressure Profiling

A copy of the well log and the previous profile data must be taken to the field when conducting a pressure profile. This will provide the operator with a log of the casing to help in locating the magnetic collars and the measurement ports.

Any significant changes in zone pressure between the current and last reading must be noted. This helps spot operation errors (mislocating probe, testing against blank casing wall, etc.), or alerts the operator that the pressures have changed significantly and should be noted.

3. Water Sampling

3.1. Sampling Supplies

3.1.1. Sample Bottles

Sample bottles will be coordinated through the client. Please ensure that they have at least four days notice to acquire all of the required bottles. Samples will be transported to the appropriate lab by either client staff or SRK staff. This needs to be clarified with the client before sampling takes place.

When ordering the sample bottles for the event, ask the client or lab to supply deionised water from the testing lab suitable for decontaminating equipment, trip blanks and equipment rinsate samples. The lab should be able to provide you with high grade ultra-pure water.

3.1.2. Deionised Water

The lab should also be requested to supply sample bottles with blank labels already affixed. Labels must be applied using water-proof adhesive. The DI water must be tested by the lab as part of the QA process to confirm it is not contested.

3.1.3. Chain of Custody Forms

Chain of Custody (COC) will be supplied by the lab with the bottles.. The COC forms must be filled in completely and signed by either the client or SRK and the lab when samples are relinquished.

The parameters to be analyzed will also be indicated on the COC.

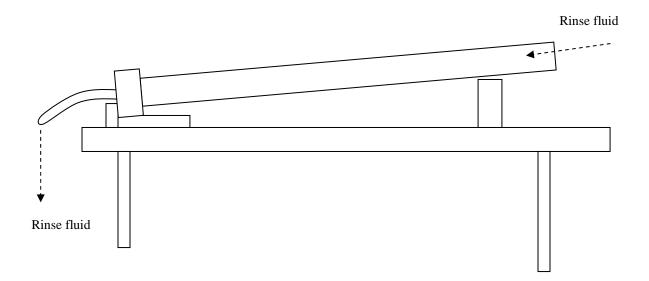
3.2. Sampling Requirements

As the sampling probe only collects approximately 400 to 500ml per sampling trip, the lab should be informed that reduced volumes will be collected from MP wells in order to make appropriate allowances for sample preparation and QA procedures. The following sample types and volumes will be used for these sampling stations:

Parameter	Minimum Sample Vol. (ml)	Preservation	Filtration
Dissolved metals	100	Store between 2 and 10°C	none
Physical Parameters and Major Anions	200	Store between 2 and 10°C	none
TSS	na	na	na
Ammonia	na	na	na

3.3. Decontaminating Sampler and Sample Collection Bottles

See attached figures for explanation.


Decontamination procedure for the sampler and collection bottle/hoses is as follows:

- 1. Throughout this procedure, equipment should be handled with clean nitrile or latex gloves and every effort should be made to keep the equipment clean;
- 2. Hang sampler and collection bottle(s) from tripod on hanger hook, (be careful not to kink cable);
- 3. Dry off excess water on outside of probe and bottles using a clean, lint free cloth or paper towel;
- 4. Disconnect sample collection bottles from the string by detaching connecter hose at top of each bottle;

- 5. Set bottles aside on inclined decon racks (connector hose down);
- 6. Open sampler valve;
- 7. Rinse sampler face plate using lab supplied deionised (DI) water from spray bottle;
- 8. Rinse face plate and sampler internal tubing using dilute (1%) nitric acid solution, allowing fluid to flow through instrument and into collection bucket;
- 9. Rinse face plate and internal tubing three times more with DI water;
- 10. Rinse sample collection bottles by removing top cap and washing out with DI, 1% nitric acid, and then 3 DI rinses;
- 11. Repeat for top cap, making sure all fluids run through sample pathway. Ensure that 0-rings are well rinsed and in good condition.
- 12. Replace top cap onto clean bottle (do not place on table);
- 13. Reconnect collection bottles to sampler;
- 14. Collect rinsate sample by spraying DI water through open sampler valve and out bottom valve of the steel collection bottle (see Figure 1);
- 15. Let bottles drain and then close bottom valve.

Bottle shelf (if available)

3.4. Sample Bottle Labelling

All labels MUST be completed in full. Ensure the well and zone ID are on the label, ie:

"Well ID" - "Zone Number"

No other information should be added to the sample ID.

Date and time, as well as sampler initials, are required as these are useful for tracking potential sample mix ups in lab. To be consistent, time recorded should be when sample is transferred to sample bottle(s).

3.5. Sample Collection

Sample collection procedures are listed in the manual stored in the sampler case lid (under the foam). The general procedures are as follows:

3.5.1. Surface Checks and Preparation

- 1. Set up the MOSDAX Sampler probe following Steps 1 through 8 of Section 2.2 of the manual.
- 2. Record the results of the Surface Checks on the Groundwater Sampling Field Data Sheet.
- 3. Attach the sample containers. Make sure that all the valves except the last one on the bottom sample collection bottle are open.
- 4. Release the location arm (Arm Out command). Locate the probe in the vacuum coupling, making sure that the arm is resting in the groove on the inside of the coupling.
- 5. Activate the shoe in the vacuum coupling (Shoe Out command).
- 6. Close the sampler valve, if not already closed. The motor should run for about 5 seconds. The display should indicate one revolution.
- 7. Use the vacuum pump to apply a vacuum through the vacuum coupling (>18 psi). The vacuum should remain constant. If the vacuum is not maintained, inspect for leaks at the face seal of the probe, the connection to the pump and at the probe sampling valve.
- 8. Once a vacuum has been maintained, open the sampler valve (pressure should decrease rapidly). Apply a vacuum again (>18 psi).
- 9. Hold vacuum for at least 10 seconds (pressure remains constant) to ensure no leaks in connections to sample bottles.
- 10. Close the sampler valve. A vacuum has now been applied to the sample bottles.
- 11. Retract the shoe (Shoe In command).
- 12. Retract the arm (Arm In command).

3.5.2. Zone Sampling

- 1. Check recent pressure logs of the hole and ensure that the head inside the MP casing is lower than the head outside the measurement port to be sampled.
- 2. After completing the surface checks, follow Steps 1 to 5 of Section 2.3 in the manual to locate the sampler at the measurement port in the monitoring zone to be sampled.
- 3. Record the interior casing pressure (P_i) reading.
- 4. Activate the probe (Shoe Out command) and record the formation/zone pressure.
- 5. Open the sampler valve. The outer, or zone pressure (P_o) should drop and then slowly increase as the bottles fill. When the pressure in the bottle equals the zone pressure from Step 4, the bottle is full. Wait a maximum of two minutes per sample bottle if the pressures do not equilibrate. Record the pressure after filling (should not be significantly different than before opening the valve).
- 6. Close the sampler valve.
- 7. Retract the shoe (Shoe In command).
- 8. Record the interior casing pressure (P_i) reading. A reading the same as in Step 3 indicates that the sample is OK. If the interior pressure has dropped, the sample is suspect and may contain MP casing water (assuming $P_i < P_o$).
- 9. Raise probe 1 to 2 m to remove any slack on the cable and to ensure that the probe is no longer landed. Retract the arm (Arm In command).
- 10. Reel the sampler to the surface and remove it from the MP casing. <u>Care must be taken</u> not to bend the probe cable excessively when lifting the tool and bottles from the MP <u>casing.</u> Make sure hose connectors are also not bent excessively.
- 11. Hang probe and bottles from holder on tripod or roof of shack. Spray outside of probe with clean water to remove any soil or dirt on the probe and collection bottles.
- 12. Do not open the sampler valve as damage to the probe or injury to the operator could occur if sample under pressure.
- 13. Dry off excess water on outside of probe and bottles, using clean, lint free paper towels, to make sure it does not drip into sample bottles in next step.
- 14. Check sample bottles to ensure labels are correctly, and fully, filled in with all required details;
- 15. Remove the plastic thread protector cap from the bottom sample bottle and open the valve on the bottom of the bottle to release the pressure and to transfer the sample. Control flow using bottom valve.
- 16. Open the sampler valve to allow the sample to flow from the steel collection bottles directly into the lab supplied sample bottles. Once the pressure in the sampler and steel collection bottles has decreased to atmospheric, the bottles may be disconnected to speed the process.
- 17. Take particular care in handling pressurized samples.
- 18. Thoroughly rinse all equipment, inside and out, with deionised water before continuing to the next sample zone. Equipment does not need to be decontaminated if returning to same sample zone..

3.6. Sample QA/QC

To verify that sample results accurately reflect what was actually collected and not contamination during sample handling and laboratory analysis, a strict sample QA/QC protocol will be used.

<u>NOTE:</u> All QA samples should be labelled with a "dummy" ID that mimics actual well or zone samples. The sample will be labelled with a unique identifier that indicates it is a regular sample from a false sampling zone (ie: Zone 12 in a well that only has 11 zones). The sample will be analyzed for the same analytes as the other sampled zones.

All QA sample IDs MUST be recorded on the sample collection forms to prevent errors in data analysis later.

3.6.1. Travel Blanks

One unlabelled travel blank will be supplied by the laboratory for each sampling episode. The travel blank will consist of a lab prepared, sealed sample bottle containing lab supplied decontamination rinse water (deionised water). This sample will be carried in the sample cooler to the site and with the sampling gear to ensure it is in the same temperature conditions etc.

This sample should be returned to the lab with a "dummy" ID.

3.6.2. Field Blanks

One "field" blank will be prepared by the samplers using the same laboratory supplied DI as that used for the Rinsate Blanks. The field blank will be prepared under clean conditions (indoors or in the back of a clean truck), and will include the steps of rinsing the lab supplied bottles, and filling the bottles. These should be labelled with an ID resembling the sample ID's (as above). This sample is intended to distinguish any constituents that may be present in the lab supplied water from those that may be originating from the sampler.

3.6.3. Equipment Rinsate Blanks

Equipment Rinsate blanks should be collected from the decontaminated equipment to ensure proper decontamination is taking place. It is recommended that at least one rinsate sample be collected during each sampling event. This should be modified to one/sampler if staff changes occur during the sampling period.

3.6.4. Duplicate or Split Samples

Duplicate or splits will be submitted to test repeatability of the lab analysis. Duplicates and splits should be labelled with dissimilar sample IDs (ie: use false zone number for second sample). Collection of duplicate samples will need to take into account sample volume requirements discussed above.

3.6.5. Lab QA

Prior to carrying out the analyses, the lab will be requested to provide a full set of their QA data showing the calibration, detection limit and repeatability of the various analytical methods when they complete the analyses. These should be provided at the same time as the results.

The results of the lab and sample QA procedures should be reviewed at the same time as the data quality review. Any incidences of suspected contamination or mislabelling should be reviewed with the lab and samplers.

Piezometric Pressures/Levels

Field Data and Calculation Sheet

Well No.:	
Date:	

		Datum:			Probe Type:			_		Client:			
	1	Elev. G.S.:			Serial No.:					Job No.:			
Н	leight of MP al	bove G.S.:		Pı	obe Range:			Location:					
	Elev. top of M	of MP Casing: MP Casing Type:								Weather:			
	Reference Elevation: Depth to water in MP:							(at start)		Operator(s):			
	Drillhole angle: Depth to water in MP: (at finish)												
				<u> </u>	•			_	Ambient Readin	g (P _{atm}) (pressure, ter	mperature, time)		
Note: "Por	t position" in a	ngled drillh	oles refer to	position along drillhole. True depth (Dp) needs to	be			Start:	F	Finish:		
	calculated us	sing drillhol	e angle and d	eviation data to calculate zone piezon	netric level (D	z).					Patm	psi	
											-		
Zone No.	Port Position From Log	Port Position From Cable	True Port Depth "Dp"	Fluid Pressure Readings	Probe Temp.	Time H:M:S	Pressure Head Outside Port	Piez. Level Outside Port					

Zone No.	Port Position From Log (m)	Port Position From Cable (m)	True Port Depth "Dp" (m)		Pressure Read	ings	Probe Temp. (°C)	Time H:M:S	Pressure Head Outside Port (m)	Piez. Level Outside Port (m)	Comments
				Inside Casing (P1)	Outside Casing (P2)	Inside Casing (P1)			H = (P2-Patm)/w	Dz = Dp - H	

Notes:

D		
Page	of	

Groundwater Sampling Field Data Sheet

Project:		Date:
Monitoring Well No:		Start Time:
Sampling Zone No(s):	Angled Drillhole (Y/N):	End Time:
	Drillhole Angle:	Technicians:

ON	Depth	pth of (m)	No.	Surface Function Tests (probe in flushing collar)					Position Sample Collection Checks Sampler (probe located at sampling zone in MP casing)						g)	Comments			
Zone No.	Cable Depth (m)	Log Depth of Mport (m)	Run No.	Shoe Out	Close Valve	Check Vacuum	Open Valve		Close Valve	Locate port () Arm out () Land probe ()	Pressure in MP (psi)	Shoe Out	Zone Pressure (psi)	Open Valve	Zone Pressure (psi)	Close Valve	Shoe In	Pressure in MP (psi)	(vol. retrieved)

Additional Comments: (pH, Turbidity, S.C., etc.)

Well Development / Purging Record

Well: Well Inner Diameter : cm								
Total Depth:		mbtc	Static Water	r Level:		mbtc	Static Well Volume:	Litres
Date/Time	Volume Purged (Litres)	рН	EC (uS/cm)	T (C)	Eh (mv)	dO (mg/l)	Comments	

Well No.:	MV	V09-	-/
Date:	28	Nov	09

Datum: to p of	np well	Probe Type:	MOSDAX	
Elev. G.S.:		Serial No.:	EMS 3835	
leight of MP above G.S.:	3 m	Probe Range:	250 psi	_
Elev. top of MP Casing:	<u> </u>	MP Casing Type:	PVC	
Reference Elevation:		Depth to water in MP:	48.8m#	(at start
Drillhole angle: 90	<u> </u>	Depth to water in MP:	n/a	(at finish

Client: Min to Job No.: 2CM 027.007.001-10 Cold .sunny

Note: "Port position" in angled drillholes refer to position along drillhole. True depth (Dp) needs to be calculated using drillhole angle and deviation data to calculate zone piezometric level (Dz). Ambient Reading (P_{atm}) (pressure, temperature, time)
Start: 17-95, 11-7°, Finish: 4.44, 4. Start: 12-95, 11-70.

Zone No.	Port Position From Log (m)	Port Position From Cable (m)	True Port Depth "Dp" (m)	Fluid	Pressure Read		Probe Temp. (°C)	Time H:M:S	Pressure Head Outside Port (m)	Piez. Level Outside Port (m)	Comments
				Inside Casing (P1)	Outside Casing (P2)	Inside Casing (P1)			H = (P2-Patm)/w	Dz = Dp - H	
ı	44.2	43.6	44.2	12.96	19.34	12-99	<3.7°C	16:40			
2	33.5	33.0	33.5	12.93	37-10	13.03	<4.8 °	16:45			
3	25.9	25.3	25.9	13.02	26-28	12-99	< 4.4	16:49			
							ì				
erming the							ļ				
<u> </u>											
ļ											
			·								·
			<u> </u>								
											A
		1									

Notes:

w = 1.422psi/m of H₂O

Dz = piezometric level in zone

Patm = atmospheric pressure

& measured from top of MP yeing MOSDAY proce as water tape not working

Well No.:	MU	10	9-	(
Date:	3/2	N	00	0	9

Datum: TOP OF MP WELL	Probe Type: MoSOAY	_
Elev. G.S.:	Serial No.: <u>@M/5_3835</u>	_
leight of MP above G.S.: 0.29 m	Probe Range: 250 PSI	_
Elev. top of MP Casing:	MP Casing Type: PVC	-
Reference Elevation:	Depth to water in MP: 42.46 M	(at start)
Drillhole angle: 90°	Depth to water in MP:	(at finish)

Client: MNNJob No.: 2CMOZZ-007-00t-10Location: WEST-PLTWeather: COLO+SUNNYOperator(s): CO+RS

Note: "Port position" in angled drillholes refer to position along drillhole. True depth (Dp) needs to be calculated using drillhole angle and deviation data to calculate zone piezometric level (Dz).

Ambient Reading (P_{atm}) (pressure, temperature, time) Start: $\sqrt{3.12}$, $\sqrt{1.4}$ Finish: $\sqrt{3.12}$ Patm $\sqrt{3.12}$ psi

Zone No.	Port Position From Log (m)	Port Position From Cable (m)	True Port Depth "Dp" (m)	Fluid	Pressure Rea	dings	Probe Temp. (°C)	Time H:M:S	Pressure Head Outside Port (m)	Piez. Level Outside Port (m)	Comments
				Inside Casing (P1)	Outside Casing (P2)	Inside Casing (P1)	·		H = (P2-Patm)/w	Dz = Dρ - H	·
				14.70							
2	32.5	37.0	37-5	13-18	18.95	13-19	<2.3	11:40			
3	24-9	24.4	24-9	13-18	14.76	13.20	<2-0	11:43			
		,									
,.											
											· · ·
							 				
		"									
											·

Well No.:	MW09-Z
Date:	1 DEC 09

Datum:_	TOC	Probe Type: MOSDAY	
Elev. G.S.:		Serial No.: <u>FMIS 3835</u>	
Height of MP above G.S.:_	0.16m	Probe Range: 250 PSI	
Elev. top of MP Casing: _		MP Casing Type:	
Reference Elevation:		Depth to water in MP: 17.44m (at sta	irt)
Drillhole angle:	90°	Depth to water in MP: (at finis	sh)

Client: MINTO

Job No.: 2CM 027,007,001,10

Location: LOWER TALLINGS

Weather: COLD + CLEAR

perator(s): CD, RS

Note: "Port position" in angled drillholes refer to position along drillhole. True depth (Dp) needs to be calculated using drillhole angle and deviation data to calculate zone piezometric level (Dz).

Ambient Reading (P_{atm}) (pressure, temperature, time) Start: $13 \cdot 26$, $11 \cdot 01$, Finish: $13 \cdot 23$, $2 \cdot 03$ C P_{atm} $19 \cdot 33$ P_{atm} $13 \cdot 26$ psi

Zone No.	Port Position From Log (m)	Port Position From Cable (m)	True Port Depth "Dp" (m)	Fluid	Pressure Read	dings	Probe Temp. (°C)	Time H:M:S	Pressure Head Outside Port (m)	Piez. Level Outside Port (m)	Comments
				Inside Casing (P1)	Outside Casing (P2)	Inside Casing (P1)			H = (P2-Patm)/w	Dz = Dp - H	
	518	50.0	50.0	62·10 55·36	80.89	62.69	<4-6	19:38			
2	47.7	45.3	45.3	55.36	74.39	55.35	< 2.8	19:40			
								,			
											
				<u> </u>						<u> </u>	

TO TEST PUMP FORTS C

Piezometric Pressures/Levels Field Data and Calculation Sheet

Well No.:	S-90WM
Date:	2 DEC 09

		Datum:	TO	C	Probe Type:	MOS	DAX		Client: M(NTO
	E	Elev. G.S.:			Serial No.:		3835	_	Job No.: 2 CMOZZ.007.001.10
Н	leight of MP ab	ove G.S.:	0/16	<u>m</u> F	robe Range:	25	D _P SI	_	Location: LOWER TAILING
	Elev. top of M	P Casing:		MP (Casing Type:	MP	38	_	Weather: WINDY + COC
	Reference	Elevation:		Depth to	water in MP:			_(at start)	Operator(s): CO
	Drillh	ole angle:	900	Depth to	water in MP:			(at finish)	
te: "Port	•	-		position along drillhole. True depth eviation data to calculate zone piezon					Ambient Reading (P _{atm}) (pressure, temperature, time) Start: /3-/0 , /4 °C Finish: [670 pm P _{atm} psi
one No.	Port Position F From Log F (m)	Port Position From Cable (m)	True Port Depth "Dp" (m)	Fluid Pressure Readings	Probe Temp. (°C)	Time H:M:S	Pressure Head Outside Port (m)	Piez. Level Outside Port (m)	Community

Zone No.	Port Position From Log (m)	Port Position From Cable (m)	True Port Depth "Dp" (m)		i Pressure Rea		Probe Temp. (°C)	Time H:M:S	Pressure Head Outside Port (m)	Piez. Level Outside Port (m)	Comments
				Inside Casing (P1)	Outside Casing (P2)				H = (P2-Patm)/w	Dz = Dp - H	
Affinia	51-8	498	49.8	6 8.03	80.32	68.03	<1°C	16:15			
2	47-2	45.3	45.3	61.51	73.83	61.51	<1°C	16:18			
	·				-						
				:							THEN ADDED ANTIFREEZE
											·
		5, 4									
		I.			*						
	·										
		I				•	1			l	

Notes

w = 1.422psi/m of H₂O

H = pressure head of water in zone

Dz = piezometric level in zone

Dp = true depth of measurement port

Patm = atmospheric pressure

Piezometric Pressures/Levels

Field Data and Calculation Sheet

Well No.:	MW09-	3
Date:	27 NOV	09

Datum:_	D-Smags_	
Elev. G.S.:		
Height of MP above G.S.:	0.35m	
Elev. top of MP Casing:		· N
Reference Elevation:		Depth
Drillhole angle:	900	Depth

Probe Type: MOSDAY Serial No.: EMIS 3835 250 psi Probe Range: MP Casing Type: 12.80 m th to water in MP: (at start) (at finish) th to water in MP:

Client: Minto Job No.: ZCMOZZ,007,001,10 Location: Minto North Weather: Cold, warcast

Note: "Port position" in angled drillholes refer to position along drillhole. True depth (Dp) needs to be calculated using drillhole angle and deviation data to calculate zone piezometric level (Dz).

Ambient Reading (Patrn) (pressure, temperature, time) Start: 12.84 PSI, 19.7 °C Finish:

Patm 12.84 psi

Zone No.	Port Position From Log (m)	Port Position From Cable (m)	True Port Depth "Dp" (m)	Fluid	Pressure Read	dings	Probe Temp. (°C)	Time H:M:S	Pressure Head Outside Port (m)	Piez. Level Outside Port (m)	Comments
				Inside Casing (P1)	Casing (P2)				H = (P2-Patm)/w	Dz = Dp - H	
continue	38.1	37.5	38,1	49.98	66.29	50.04	<1.35	17:35			
2	24.4	23.7	24-4	30/13	42.70	30.13	<0.94 1.05	17:44	- and sometimes		-
3	10.7	10.0	10.7	12.91	23-16	12.94	1.05	17:48			
					* .						
					-		·				
	1										
			·								
				<u> </u>						,	
						-					
			, .								
						ļ				<u> </u>	
				ļ							
ł			l		ľ	1		Į.	1		

Notes:

w = 1.422psi/m of H_2O

H = pressure head of water in zone

by were ver

Dz = piezometric level in zone

Dp = true depth of measurement port

Patm = atmospheric pressure

Well No.:	MW09-3
Date:	I DEC 09

Datum:	Top of casing
Elev. G.S.:	
leight of MP above G.S.:	0.32 m
Elev. top of MP Casing:	
Reference Elevation:	
Drillhole angle:	900

Probe Type: MOSDAY

Serial No.: MIS 3835

Probe Range: 250751

MP Casing Type: MP 38

Depth to water in MP: 17.78 (at start)

Depth to water in MP: (at finish)

Client: MINTO

Job No.: 2 CMOZZ, 007

Location: MINTO NTM

Weather: COLD+ SUNNY

Operator(s): CD, RS, QH

Note: "Port position" in angled drillholes refer to position along drillhole. True depth (Dp) needs to be calculated using drillhole angle and deviation data to calculate zone piezometric level (Dz).

Ambient Reading (P_{atm}) (pressure, temperature, time)
Start: $13\underline{.05}, 18\underline{.06}$ Finish: $13\underline{.06}, 2\underline{.27}$ 9:46 P_{atm} $13\underline{.06}$ psi

Zone No.	Port Position From Log (m)	Port Position From Cable (m)	True Port Depth "Dp" (m)	Fluid Pressure Readings			Probe Temp. (°C)	Time H:M:S	Pressure Head Outside Port (m)	Piez. Level Outside Port (m)	Comments
				Inside Casing (P1)	Casing (P2)	Inside Casing (P1)			H = (P2-Patm)/w	Dz = Dp - H	
	39.0	37-6	39.0	50-18 30-26 13-06	67.13	50.18	<7.8	09:50			
2	25.3	23-8	25-3	30.26	42.75	30,25	<4·3	09:52			
3	11-6	10.1	11-6	13-06	23.13	13.05	< 2.5	09:54	1.2		
		:								,	
 											
								<u> </u>			
											· · · · · · · · · · · · · · · · · · ·
	1										

Notes:

w = 1.422psi/m of H₂O

H = pressure head of water in zone

Dz = piezometric level in zone Dp = true depth of measurement port

zometric level in zone Patm = atmospheric pressure

Well Development / Purging Record

29 Nov 09

otal Depth:		mbtc	Static Wate	r Level:		mbtc	Static Well Volume: Litres	14
Date/Time	Volume Purged (Litres)	рН	Proceed + 0.5 + EC	Т (C)	Eh (mv)	dO (mg/l)	Comments Started with Waterna full of water/a	nti free
15:45	20	9.69	1.2	4.6			bown (red (antifreeze)	
16:00	30	8.96	0.7	<6.0			brown -very middy	
16:12	40	8.84	0.7	6.1		(A)	brown - very muddy	et segret
	XX (8129	0			Ä		and the second
	1	79 1				150		
·					e .	1 1 2 4 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1		
16:33	50	8.29	0.5	6.9		£. /	grey-brown.	7
6245	60	6.21	0.5	7.7	,		grey-brown	r ,
17:00	70	8.07	0.5	6.9	-		grey-brown	
18:20	80	8.02	0.5	71			grey-brown	
18:30	90	8,02	0.5	6.3			grey-brown	
18:45	100.	7.96	0.41	28			grey brown	
19:20	H15	7.9 (0.91	8.0			icloudy-grey	
9:38	125	7.11	0.78	7.5		· V	claudy-grey	
9:50	150	7.80	0.81	6.4			cloudy-grey.	
10:45	175	7.89	0.81	7.0			cloudy-grey.	
21:20	200	7.88	0.82	7.7	£ 191		cloudy-grey	
	. Zagas							1.5
				i ,				
		4	iji.					

	- A							
,	Tip.							

This form is for a standpipe - better form for MP well?
- find it or make it.

Groundwater SamplingField Data Sheet

\$ ⁽²⁰⁰ (\$7)**	1 14	AQ	/	
Well No.:	VITU	0-1		

Date: <u>多の Nov</u> 09

Client: MINTO

Job No.: 2CM 022-007,001.10

Location: 1NEST PIT

Weather: <u>COCD + SV/V/Y</u>

Operator(s): CD + AS

Zones sampled:	4	4
Drillhole angle:	90	degrees
Start Time:	12:	05
End Time:	192	50
	·	

	Label	rom Log	rom (Test	ice I ts (hind	prob	e in			sition mpler	(prob	e lo	Samp cated						asing)		ume ieved	
Zone No.	Sample Bottle	Port Position Fro (m)	Port Position Fr Cable (m)	Run No.	Shoe Out	Close Valve	Check Vacuum	Open Valve	Evacuate Container	Close Valve	Locate Port ()	Arm Out() Land Probe()	Pressure in MP (psi)	Shoe Out	Zone Pressure (psi)	Open Valve	Zone Pressure	Time to Fill	(min) Close Valve	Shoe In	Pressure in MP (psi)	Filtered & Preserved (mL)	Not Filtered / Not Preserved (mL)	Comments
1	MW09-1-1	43-2	43.6	1	/	/	✓	✓	/	/	\int_{J}	J	15.74	V	12.8	2 /	12.6	60	5 V	11	15.73	0	0	one tiny drop in bottle.
				1924											451,450		\$153 1075				Augas.			> Void with air?
2	MW09-1-2	32.5	32-1	1	V	/	$\sqrt{}$	/	v /	V	$V_{\scriptscriptstyle V}$	/ /	13-10	V	18.4	2 /	18-0	12 9		1/	13-18	400		Dissolved Metals HNO3 +
		74.55																						Numents M2504
2	MW09-1-2	37-5	32-1	2	V	$\overline{\ }$	$\sqrt{}$	<u> </u>	J,	\checkmark	$\sqrt{\ }$	//	13-14	1	18.1	2 V	17-7	9 5	V	/ /	13.19		400	Total metals MNO3
2	MW09-1-2	32-5	32.1	3	V	1	\checkmark		\checkmark	✓		/ /	13.15	1	17.80	1 1	7.5	7 5			13-19		200	Routine Parameters.
3	MW 09-1-3	24.9	24.0		abla	\checkmark	\checkmark	<	$\sqrt{}$	V,	V	/	13.14	1	140	0 1	139	8 5	V	//	13.18	400		Dissolved, Total, 1/2 Nutrients.
3	MW09-1-3	24-9	23.8	2	V	V	\checkmark	/	\checkmark	V	V	SV	13-14	V	13.8	71	13-8	5 5	V	/ /	13.14		400	1/2 Numericais, Ve RP
3	MW.09-1-3	24.9	23-8	3	V	V	V	V	V	V	V	//	13-10	V	13.8	V	13.8	1 8	[u	1	13.14		400	YZRP, YZRP for zone 4 +
42	MW09-1-4	24.9	23.6	1	1	0	/		/	V	1/1	11	13-12	_	13.58		13.5			/ 🗸	13.13			V2RP, DM
44	MW09-1-4	24-9	23.5	2	V	$\sqrt{}$	J	1	J	✓		<u>/ √</u>	13-13	V	13.5	1 1	13.4	9 5	I		13.14		300	TM Nutrients
		eras kiribili.																						

Additional Comments: (pH, Turbidity, S.C., etc.)

* "zone 4" is a duplicate of zone 3 for QA/QC

Well Inner Nicotton 14.02.2

Well: MU	J09-	-2		Well Inner D	Diameter :	MPZ	of cm
Total Depth:		mbtc	Static Water	· Level: 3	.77	mbtc	Static Well Volume: MB Casiny Strestove
Date/Time	Volume Purged (Litres)	рН	WS EC	T (C)	Eh (mv)	d O (mg/l)	Comments
20:45	25	9.19	1.07	3.3			black mud tantifreeze
20:50	50	9.01	1.34	2.4	W/1-gyddanian benefes	-	black-grey
20:55	75	8.54	1.16	2-3		-	black-grey
21:00	100	7.68		2.0			black-grey
			AN	IFREE	2E P	15 11	OVERNIGHT
2	066	7009	K 4"				
09:48	125	8.71	1.15	6.0			brown tantifree 2e.
09:58	150	7.97	1.08	4.1	operation and the second	**************************************	cloudy-grey-brown
10:04	175	7.75	1.05	4.1	-		cloudy-grey-brown
10:12	200	7.59	1.05	4.0		, where the same of the same o	cloudy grey/brown
10:19	225	7.49	1.00	2.9			cloudy grey-bown
10:25	250	7-53	1.01	2.3	- Announce		cloudy grey-brown
10:31	275	7.49	0.99	3.1			cloudy grey
10:39	300	7.51	0-99	3.8			cloudy grey
	3 25	7.52	0.97	3.5		,4, 	cloudy grey transment
	350		0.99	3.1	-Bruinsett		cloudy
10:57	375	7.53 7.53	0.98	3-4			Cloudy
11:02	400	7.53	0.99	2.5			cloudy
						30.00	
	,÷	con rii Ve					
		,					
						4	

Groundwater Sampling Field Data Sheet

Well	No.:		M	W	9	a	 2	
		10.00	11110	1,000			 	_

Date: 2 DEC09

Zones sampled: Drillhole angle: degrees 13:10 Start Time: End Time: 16:30

Zone 1 47.2 Fone 2

Pam = 13.12 psi

Client: MINTO Job No.: 7CMOZZ.007.001-10 LOCATION: LOWER TAILINGS Weather: COLD, WINDY & SUNNY

Operator(s):

	Surface For Four Page 1		prob	oe ir		Positio Sample		· •										ume ieved	RP = routine params N = nutrients (H ₂ So ₄) TM = Total metals (HNO ₃					
Zone No.	Sample Bottle	Port Position Fr	Port Position From Cable (m)	Run No.	Shoe Out	Close Valve	Check Vacuum	Open Valve	Evacuate Container	Close Valve	Locate Port () Arm Out ()	Land Probe ()	Pressure in MP (psi)	Shoe Out	Zone Pressure (psi)	Open Valve	Zone Pressure (psi)	Time to Fill (min)	Close Valve Shoe In Pressure in MP (psi) Filtered &		Filtered & Preserved (mL)	Not Filtered / Not Preserved (mL)	DM = Dissolved with (4No Comments	
Î	MW09-2-1	51/8	49.8	elpaine	V	1	\checkmark	1	V	1	VVV	16	0.57	V	80.13	/	74.36	10	V		8059	\$	_	Temp < 0.1°C
												4	i Kaba							***				Sample had anthreasee-pe
- Anna Police	MW09-2-1	51-8	49.5	2	V			4	>		VV	6	3.12	V	80.19	V	80.16	4	V	V	63.13	400		N.TM.OM - noont
1	MW09-2-1	51-8	49.4	3	V	V	V	W	V	V	VV	6	3.88		80.21	\checkmark	80-18	2	W	1	63.95	-	400	RP
3	MW09-2-3	51 18	49.4		V	San	V			1/	VVV	/ 6	4.05		80-20		80.19	2	\bigvee	U	64.10	400		N, TM, DM
3	MW09-2-3	51.8	49-0	2		~		/		Jan San San San San San San San San San S	1/	16	4.44	V	80.26	V	80.23	2	/	1	64.47		400	RP
2	MW09-2-2	47.2	44.3	1	V	V	V	V			VVI	15	8.70	V	73:77	\checkmark	3-10	· parame	V	1	58.9%			No FLOW > ICE?
		K. K. A. I. C.						٠.									N. W. S. C.							T~0.2°C
																		G.					-	
				i i s								3 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 -	alian da Kanaba											10 10 10 10 10 10 10 10 10 10 10 10 10 1
												111									E. (4)			i de la companya de l
					:							4.5				- 34		- Statute						Tan Carlo

Additional Comments: (pH, Turbidity, S.C., etc.)

MW09-2-3

is a duplicate of MW09-2-

DEC 2009

Well: M	VV L			Well Inner D		MP	- V
Total Depth:	50-45	mbtc	Static Water	Level: 5.5 With po	rts open.	mbtc	Static Well Volume: NFWELL prior to alw.
Date/Time	Volume Purged (Litres)	рH	EC (US/SMI) MS/CM	T (C)	Eh (mv)	d O (mg/l)	Comments
11:22	25	NA	NA	2/4		***************************************	Antifreeze solution
11:35	50	9.08	1.65	5.5			Antifreeze solution.
11:40	75	8.80	0.57	3.	angle and the second se	Section Section 1	cloudy-brown
11:46	100	8.38	0.34	2.4		None and the second	cloudy-brown
11:51	125	8.00	0.30	2-2		and the second second	cloudy-brown
11:55	150	7.97	0.26	1.7	Topological Company of the Company o		cloudy - brown, small contain
. 11:59	175	7.93	0.23	2.0		egeneration.	clear insmall container
12:03	200	7,82	0.23		Dilyinga managaring	***************************************	11
12:07	225	7.85		1.7	MUNICIPARENTE	parantination	N v V
12-11	250	7.81	0.21	1-7			
12-16	275	7.79	0.21		profession.	AND PROPERTY OF THE PARTY OF TH	11
							Wb 3-74 after
							WL 3-74 after purging.
							0 0
				·			WL 4.08m from TOC
	r	٠	•				after ports closed
							, ,
	3						
		•					·
				-			
				j			
		·					
J.B. mbtc - mete	rs below top of	casing			r		The second secon

EC is a little off but abs. Values not important for development purposes.

Start Time: 13 5 10

End Time: 16:45

Zones sampled:

Drillhole angle:

MP Groundwater Sampling **Field Data Sheet**

Atmospheric Pressure = 13,06 psia

Well No.: MW09-3

Date: (DEC 7009

Client: MINTO

Job No.: ZCM 022,007.001.10

Location: MINTO NORTH

Weather: SUNNY + COLD

Operator(s): CD, RS, GH

	Label	om Log	Port Position From Cable (m)	Run No.	Surface Function Tests (probe in flushing collar)					Posit Sam		Sample Collection Checks (probe located at sampling zone in MP casing)									Volume Retrieved			spolved motals	h telm	
Zone No.	Sample Bottle	Port Position From (m)			Shoe Out	Close Valve	Check Vacuum	Open Valve	Evacuate Container	Close Valve	Locate Port () Arm Out ()	Land Probe ()	Pressure in MP (psi)	Shoe Out	Zone Pressure (psi)	Open Valve	Zone Pressure (psi)	Time to Fill (min)	Close Valve	Shoe In	Pressure in MP (psi)	Filtered & Preserved (mL)	Not Filtered / Not Preserved (mL)	C RP=1	nutrients omments routine parameter	(HzSO
1	MW09-3-1	37.6	37.4	1	1/		1	/	V	/	11		63-03	V	64.86		62-85	6	V	V	63.08	400		DM, TM	, Nutrieu	1312
1	MW09-3-1	37.6	37.3	2	V	W		W.	V	6	V	V.	63.03		64-38		6vA3	8	1	W	63.03		400	RP	brown cole	MIT
2	MW09-3-2	23.8	23.3	1						V	VV	_ </td <td>43.36</td> <td></td> <td>42.61</td> <td>V</td> <td>41.87</td> <td>13</td> <td>B.</td> <td></td> <td>43.37</td> <td>400</td> <td></td> <td>OM, TM</td> <td></td> <td></td>	43.36		42.61	V	41.87	13	B.		43.37	400		OM, TM		
2	MW09-3-2	13.8	23-2	2	W	V		1	V	6		V	43.33	V	42-48	V	41-88	13	W	V	43.35		400	RP	clear-	
4	MW 09-3-4x	23-8	23-1	1	W		La Service		V	V	1		43-30	$\sqrt{}$	42-54		41.87	13	V	V	43-31	400		DM, TM	, N clea	
4*	MW09-3-4*	23-8	23.0	2	W		\ \	/	1/	/	VV	/1/	43.28	V	42.53	V	41.88	13	Bases	W	43-28		400	RP	clear	
3	MW09-3-3	0.1	17.2	1	V	V	No.	1	\				23.61	V	23.05	V	23.05		V		2340	400		DM, TM,	N clea	en
3	MW09-3-3	10.1	10.2	2		7		\searrow	\	\checkmark	VV		23.60	$\sqrt{}$	23-08	V	23.05	3-5	V	/	23.59		400	LP	clear	
	\$1,500 to 1	• • •					-																			
													*								F. Jack		A 65			
																					1000					
													war e e								117 %					

Additional Comments: (pH, Turbidity, S.C., etc.)

MW09-3-4 is a duplicate of MW09-3-2

Monitoring Well	Date	Comments	Pumping Port Status
MW09-1	Nov28, 09 Nov 29, 09 Nov 30, 09	 installed, pressure profile developed sampled zones 1 to 4 	- all closed
MW09-2	Nov 26, 09 Dec 1, 09 Dec 2, 09	 installed pressure profile and developed sampled zones 1 to 4 	- all closed
MW09-3	Nov 27, 09 Dec 2, 09	 installed, pressure profile developed and sampled zones 1 to 4 	- all closed
MW09-4	Nov 24, 09	- installed	- all closed

Minto Mine Groundwater Monitoring System Sampling Report

Prepared for

Minto Explorations Ltd. Suite 900-999 West Hastings Street Vancouver, B.C. V6C 2W2

Project Reference Number SRK 2CM022.007

Minto Mine

Groundwater Monitoring System Sampling Report

Capstone Mining Corp.

Suite 900-999 West Hastings Street Vancouver, B.C. V6C 2W2

SRK Consulting (Canada) Inc. Suite 2200, 1066 West Hastings Street Vancouver, B.C. V6E 3X2

Tel: 604.681.4196 Fax: 604.687.5532 E-mail: vancouver@srk.com Web site: www.srk.com

SRK Project Number 2CM022.007.0001.03

July 2010

Table of Contents

1	Introduction	1
2	Monitoring	1
	2.1 Pressure Monitoring	1
	2.2 Development and Sampling	2
L	ist of Tables	
	able 1: Pressure Measurements in MP Wells	
Ta	able 2: List of Groundwater Sampling Locations	2
Та	able 3: QA/QC – Blanks and Duplicate Sample	4
	able 4: Summary of Groundwater Sampling Results	

List of Figures

Figure 1: Minto Groundwater Monitoring Plan Figure 2: MW09-01 Groundwater Pressure Profile Figure 3: MW09-03 Groundwater Pressure Profile

List of Appendices

Appendix A: Sampling Records

1 Introduction

This report provides monitoring results collected in March 2010 from the multilevel monitoring wells at the Minto Mine, Yukon. The purpose of the monitoring system is to improve the understanding of hydrogeological conditions across the site and provide background water levels and hydrogeochemistry for environmental monitoring of the site.

Figure 1 shows the general layout of the mine workings and all monitoring locations on the site.

Drillhole logs, methodologies and MP wells installation details are described in "Minto Mine, Groundwater Monitoring System Installation Report", SRK Consulting, Feb.2010.

2 Monitoring

2.1 Pressure Monitoring

Pressure profiles were carried out in wells MW09-1 and MW09-3. It was not possible to access the measurement ports in MW09-2 as the pipe had been sheared off by the ground movement, nor in MW09-04 as a large boulder had bent the pipe at shallow depth, preventing the probe to be lowered.

Table 1: Pressure Measurements in MP Wells

Well ID	Zone #	Port Depth	Initial Pressure Reading*		Press Round		Pressure Round#2*		
		Mbgs*	psi	m	psi	m	psi	m	
	1	43.19	18.34	39.40	12.85	43.38	12.86	43.10	
MW09-01	2	32.52	37.10	15.54	18.95	28.42	13.48	32.00	
	3	24.90	26.28	15.53	18.95 28.42 13.48 32	12.25			
M/M/00 00	1	51.82	-	-	80.89	4.26	4.26 -	-	
MW09-02	2	47.24	-	-	74.39	4.26	-	-	
	1	1 43.19 18.34 39.40 12.85 43.38 12.86 43 2 32.52 37.10 15.54 18.95 28.42 13.48 32 3 24.90 26.28 15.53 14.76 23.75 30.72 12 1 51.82 - - 80.89 4.26 - 2 47.24 - - 74.39 4.26 - 1 37.95 66.29 0.36 67.13 -0.07 65.29 0. 2 24.24 42.70 3.24 42.75 3.36 46.76 0. 3 10.52 23.16 3.26 23.13 3.44 22.54 3.	0.89						
MW09-03	2		0.21						
	3	10.52	23.16	3.26	23.13	3.44	22.54	3.52	
	1	68.58	-	-	-	-	-	-	
MW09-04	2	54.86	-	-	-	-	-	-	
	3	47.24	-	-	-	-	-	-	

NOTE:

mbgs. Meter Below Ground Surface

Initial Pressure reading: November 27th and 28th 2009 Round #1: November 30th and December 1st 2009

Round#2: March 29th and 30th 2010

Figure 2 and Figure 3 show piezometric levels measured in each monitoring zone, plotted as "equivalent depth to water" for each time of measurements. "Equivalent depth to water" refers to the depth the water would be observed in an open standpipe if screened across the MP zone, and calculated by adding the pressure head (height of water column calculated from the zone pressure measured) to the depth of the measurement port where the pressure was measured.

Plots also show an "atmospheric line", which indicates where the pressure head equals zero (i.e., piezometric head equals elevation head). This condition will occur if the zone is unsaturated (dry), and is analogous to an open borehole where the water level is at, or below, the measurement zone. Therefore, unsaturated zones will plot along the atmospheric line while saturated zones will plot above this line.

2.2 **Development and Sampling**

Monitoring wells were sampled using equipment consisting of a "pressure probe/sampler" with stainless steel sample collection bottles to the wireline pressure measurement tool. A vacuum is induced in the bottles so that when the tool is connected to a measurement port and the valve to the sample bottles is opened, water flows from outside the casing into the bottles due to the pressure difference. Two 250ml sample bottles were used in tandem, collecting approximately 500mL with each run. The sample bottles were thoroughly rinsed with distilled water between sampling zones, and with nitric acid at the start of each day. Geochemical analyses were conducted by MEL Laboratory.

Table 2: List of Groundwater Sampling Locations

Well ID	Zone #	Port Depth	Sample ID	Sampled	Comments
		m		Yes/No	
	1	43.19	Dry	No	
MW09-01	2	32.52	Dry	No	o Well broken
	3	24.90	MW09-1-3	Yes	
MW09-02	1	51.82	-	- No Well broken	
1010009-02	2	47.24	-		vveii broken
	1	37.95	MW09-3-1	Yes	0 5 5
MW09-03	2	24.24	MW09-3-2	Yes	One Duplicate sample MW09-03-04
	3	10.52	MW09-3-3	Yes	1010003-03-04
	1	68.58	-	No	
MW09-04	2	54.86	-	No	-
	3	47.24	-	No	

Water samples were taken from:

- MW09-01 in Zone 3. Zone 1 and 2 did not appear to have any water flow; and
- MW09-03 in all zones.

One duplicate sample of MW09-03 in zone 3 and two blanks were taken and labelled as if it were an additional zone, as noted on the sampling records, which are included in Appendix A.

2.3 Sampling Results

Table 3 shows analyses of the laboratory results using blanks and duplicate sample. QA/QC of the groundwater laboratory results are summarized below:

- Ionic balance range between 106 and 116% which is considered reasonable;
- In both blank samples, parameters analyzed in laboratory remain below or close to the limit of detection. Concentration levels that have been measured above the limit of detection have very low concentrations and considered insignificant in terms of potential external contamination;
- There are no significant variations between measured concentrations in the MW09-03 (zone 3) sample and its duplicate; both of them have identical chemistry. The relative difference between the two samples is for most of the parameters less than 20%. Eleven parameters out of 93 show difference higher than 20%, but all within a very close range of the limit of detection which increase measurement sensitivity.

Results of the groundwater sampling are shown in Table 4.

Table 3: QA/QC – Blanks and Duplicate Sample

Description						
Zannell						Relative
Sample Label	7ono#	Unit	DL		MW09-03 DUP	
Sample Location		=			MW/09-3-4	
Sample Location		-	-			
Sample Depth		-	-			-
Completed Date m/dd/yyyy 4/12/2010 4/12/2010	Date Sampled	m/dd/yyyy	-	3/29/2010	3/29/2010	-
Physical Tests Ph	Sample Depth		0.1	10.5	-	-
Physical Tests		m/dd/yyyy				-
Piet 225°C		-	-	Water	Water	-
Electrical Conductivity		(1)	l	7.04	7.70	0.00/
Hardness as CaCO3						
T-Alkalinity as CaCO3 mg/L 5 6.3 6.7 6.2% Turbidity NTU 0.1 0.3 0.7 80.0% Total Suspended Solids mg/L 1 4 4 4 4 0.0% Total Suspended Solids mg/L 5 114 112 1.8% Colour CU 5 5 5 5 5 0.0% Major Anions and Cations Carbonate mg/L 6 6 6 6 6 0.0% Calcitum mg/L 0.1 2.4 2.6 8.0% Sodium mg/L 0.1 2.4 2.6 8.0% Sodium mg/L 0.1 2.4 2.6 8.0% Sodium mg/L 0.1 0.01 0.01 0.01 0.01 Sodium mg/L 0.1 2.3 3 2.2 4.4% Silicon mg/L 0.05 3.85 3.98 Silicon mg/L 5 80 80 80 0.0% Hydroxide mg/L 5 80 80 80 0.0% Hydroxide mg/L 5 80 80 80 0.0% Total Silicon mg/L 5 5 5 5 5 0.0% Ionic Balance mg/L 5 6 5 5 5 0.0% Total Kjeldahl Nitrogen mg/L 0.05 0.05 0.05 0.0% Total Kjeldahl Nitrogen mg/L 0.06 0.06 0.06 0.0% Total Kjeldahl Nitrogen mg/L 0.01 0.06 0.06 0.0% Total Kjeldahl Nitrogen mg/L 0.01 0.06 0.06 0.0% Sulfate (SO4) mg/L 0.01 0.06 0.06 0.06 0.0% Sulfate (SO4) mg/L 0.01 0.06 0.06 0.06 0.0% Total Silicon mg/L 0.00 0.00 0.00 0.00 0.0% Total Silicon mg/L 0.00 0.00 0.00 0.00 0.0% Total Silicon mg/L 0.00 0.00 0.00 0.00 0.0% Total Mitrite N mg/L 0.01 0.06 0.06 0.06 0.0% Sulfate (SO4) mg/L 0.01 0.06 0.06 0.06 0.0% Sulfate (SO4) mg/L 0.01 0.07 0.00 0.00 0.0% Sulfate (SO4) mg/L 0.00 0.00 0.00 0.00 0.0% Sulfate (SO4) mg/L 0.00 0.00 0.00 0.00 0.0% Sulfate (SO4) mg/L 0.00 0.00 0.00 0.00 0.00 0.0% Sulfate (SO4) mg/L 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.						
Turbidity NTU 0.1 0.3 0.7 80.0% Total Suspended Solids mg/L 1 4 4 4 0.0% Total Dissolved Solids mg/L 5 114 112 1.8% Colour CU 5 5 5 0.0% Major Anions and Cations Total Calcium mg/L 6 6 6 0.0% Calcium mg/L 0.1 2.34 2.42 2.34 2.42 2.34 2.42 2.34 2.42 2.34 2.42 2.34 2.44 2.6 8.0% 80 80 80 80 80 80 80 80 80 80 80 80 80 80 80 80 80 80 2.2 4.4% 81 116 111 4.4% 83 180 1.8% 1.9 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0		-				
Total Dissolved Solids	,		0.1	0.3	0.7	80.0%
Colour CU 5 5 5 0.0% Major Anions and Cations Carbonate mg/L 6 6 6 0.0% Carbonate mg/L 0.1 2.34 2.4.2 3.4% Magnesium mg/L 0.1 2.4 2.6 8.0% Sodium mg/L 0.01 0.01 0.01 0.01 0.01 0.01 0.00 0.00 0.0% Phosphorus mg/L 0.01 0.01 2.3 2.2 4.4% Silicon mg/L 0.05 3.85 3.98 3.3% Bicarbonate mg/L 5 80 80 0.0% Hydroxide mg/L 5 80 80 0.0% Hydroxide mg/L 5 5 5 5 0.0% Ionic Balance % - 116 111 4.4% Anions and Nutrients mg/L 0.05 0.05 0.05 0.0% Tota	Total Suspended Solids	mg/L	1	4	4	0.0%
Major Anions and Cations	Total Dissolved Solids	mg/L	5	114	112	1.8%
Carbonate mg/L 6 6 6 0.0% Calcium mg/L 0.1 23.4 24.2 3.4% Magnesium mg/L 0.1 2.4 2.6 8.0% Sodium mg/L 0.01 2.6 2.7 3.8% Phosphorus mg/L 0.01 0.01 0.01 0.01 Potassium mg/L 0.01 2.3 2.2 4.4% Silicon mg/L 0.05 3.85 3.98 3.3% Bicarbonate mg/L 5 80 80 0.0% Hydroxide mg/L 5 5 5 5 0.0% Hydroxide mg/L 5 5 5 5 0.0% Ionic Balance % - 116 111 4.4% Anions and Nutries mg/L 0.05 0.05 0.05 0.0% Total Kiglidahi Nitrogen mg/L 0.05 0.06 0.06 0.06 0.		CU	5	5	5	0.0%
Calcium mg/L 0.1 23.4 24.2 3.4% Magnesium mg/L 0.1 2.4 2.6 8.0% Sodium mg/L 0.1 2.6 2.7 3.8% Phosphorus mg/L 0.01 0.01 0.01 0.06 Potassium mg/L 0.1 2.3 2.2 4.4% Silicon mg/L 0.05 3.85 3.98 3.3% Bicarbonate mg/L 5 5 5 5 0.0% Hydroxide mg/L 5 5 5 5 0.0% Loice Balance % - 116 111 4.4% Anions and Nutrients mg/L 0.05 0.05 0.05 0.0% Anions and Nutrients mg/L 0.05 0.05 0.05 0.06 0.06 Total Phosphorus mg/L 0.05 0.05 0.05 0.05 0.0% Total Phosphorus mg/L 0.01 <t< td=""><td></td><td>1 .</td><td></td><td></td><td></td><td></td></t<>		1 .				
Magnesium mg/L 0.1 2.4 2.6 8.0% Sodium mg/L 0.1 2.6 2.7 3.8% Phosphorus mg/L 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.02 4.4% 3.8% 80 0.0% 0.0% 1.5 80 80 0.0% 0.0% 1.0 0.0% </td <td></td> <td></td> <td></td> <td></td> <td></td> <td></td>						
Sodium mg/L 0.1 2.6 2.7 3.8% Phosphorus mg/L 0.01 0.01 0.01 0.04 0.04 0.04 0.04 0.04 0.05 0.03 2.2 4.4% 8 3.3% 3						
Phosphorus mg/L 0.01 0.01 0.01 0.06 Potassium mg/L 0.05 3.85 3.98 3.3% Bilcarbonate mg/L 5 80 80 0.0% Hydroxide mg/L 5 5 5 0.0% Inoire Balance % - 116 111 4.4% Anions and Nutrients — 1005 0.05 0.05 0.06	•	- · ·				
Potassium						
Silicon mg/L 0.05 3.85 3.98 3.3% Bicarbonate mg/L 5 80 80 0.0% Hydroxide mg/L 5 5 5 5 0.0% Ionic Balance % - 116 111 4.4% Anions and Nutrients Namonium - N mg/L 0.05 0.05 0.06 0.06 Total Kjeldahi Nitrogen mg/L 0.06 0.06 0.06 0.06 0.06 Orthophosphate-P mg/L 0.01 0.05 0.05 0.05 0.05 Orthophosphate-P mg/L 0.01 0.047 0.48 2.1% Chloride mg/L 0.02 0.61 0.61 0.06 0.06 Sulfate (SO4) mg/L 0.002 0.061 0.61 0.0% 0.08 Dissolved Metals 3 3 8.896 8 3 3.88.96 Antimony mg/L 0.0002 0.0002 0.0002 0.0						
Bicarbonate						
Ionic Balance	Bicarbonate					
Anions and Nutrients mmg/L 0.05 0.05 0.05 Total Kjeldahl Nitrogen mg/L 0.06 0.06 0.06 0.06 Total Phosphorus mg/L 0.05 0.05 0.05 0.05 Orthophosphate-P mg/L 0.01 0.06 0.06 0.06 Sulfate (SO4) mg/L 0.02 0.61 0.61 0.0% Sulfate (SO4) mg/L 0.06 10 10 0.0% Sulfate (SO4) mg/L 0.06 10 10 0.0% Sulfate (SO4) mg/L 0.06 10 10 0.0% Sulfate (SO4) mg/L 0.002 0.005 0.013 88.9% Aluminum mg/L 0.0002 0.005 0.013 88.9% Antimony mg/L 0.0002 0.0002 0.0002 0.0002 Arsenic mg/L 0.0001 0.013 0.01 26.1% Arsenic mg/L 0.001 0.0013 0.01	Hydroxide	mg/L	5	5	5	0.0%
Ammonium - N mg/L 0.05 0.05 0.05 0.06 0.06 0.06 0.06 0.06 0.06 0.0% Total Phosphorus mg/L 0.05 0.05 0.05 0.05 0.05 0.05 0.05 0.06 0.0% Orthophosphate- P mg/L 0.01 0.06 0.06 0.06 0.0% Nitrate and Nitrite - N mg/L 0.01 0.47 0.48 2.1% Chloride mg/L 0.02 0.61 0.61 0.06 0.0% Sulfate (SO4) mg/L 0.6 10 10 0.0% Dissolved Metals Aluminum mg/L 0.005 0.005 0.003 0.013 88.9% Antimony mg/L 0.0002 0.0009 0.0012 28.6% Arsenic mg/L 0.0002 0.0002 0.0002 0.0002 Barium mg/L 0.001 0.013 0.01 26.1% Beryllium mg/L	Ionic Balance	%	-	116	111	4.4%
Total Kjeldahl Nitrogen mg/L 0.06 0.06 0.06 0.09 Total Phosphorus mg/L 0.05 0.05 0.05 0.05 Orthophosphate-P mg/L 0.01 0.06 0.06 0.06 Nitrate and Nitrite - N mg/L 0.01 0.47 0.48 2.1% Chloride mg/L 0.02 0.61 0.61 0.09 Sulfate (SO4) mg/L 0.6 10 10 0.0% Bissolved Metals Aluminum mg/L 0.005 0.005 0.013 88.9% Antimony mg/L 0.0002 0.0009 0.0012 28.6% Arsenic mg/L 0.0002 <						
Total Phosphorus mg/L 0.05 0.05 0.05 0.09 Orthophosphate-P mg/L 0.01 0.06 0.06 0.0% Nitrate and Nitrite - N mg/L 0.01 0.47 0.48 2.3% Chloride mg/L 0.02 0.61 0.61 0.0% Sulfate (SO4) mg/L 0.6 10 10 0.0% Sulfate (SO4) mg/L 0.6 10 10 0.0% Aluminum mg/L 0.002 0.009 0.0012 28.6% Antimony mg/L 0.0002 0.0009 0.0012 28.6% Arsenic mg/L 0.0002 0.0002 0.0002 0.0002 0.0002 Bervilium mg/L 0.0001 0.013 0.01 26.1% Beryllium mg/L 0.0001 0.001 0.001 0.00 Bismuth mg/L 0.001 0.001 0.001 0.00 Boron mg/L 0.004 0.04						
Orthophosphate-P mg/L 0.01 0.06 0.06 0.0% Nitrate and Nitrite - N mg/L 0.01 0.47 0.48 2.1% Chloride mg/L 0.02 0.61 0.61 0.61 0.0% Sulfate (SO4) mg/L 0.6 10 10 0.0% Dissolved Metals Aluminum mg/L 0.0002 0.0009 0.0012 28.6% Antimony mg/L 0.0002 0.0009 0.0012 28.6% Arsenic mg/L 0.0001 0.013 0.01 26.1% Beryllium mg/L 0.0001 0.0013 0.01 26.1% Beryllium mg/L 0.0004 0.0004 0.0004 0.0004 0.0004 0.0004 0.0004 0.0004 0.0004 0.0004 0.0004 0.000 0.000 0.0000 66.7% Chromium mg/L 0.0001 0.0001 0.0001 0.0001 0.0000 0.0000 0.0000 0.0000 0.00		_				
Nitrate and Nitrite - N mg/L 0.01 0.47 0.48 2.1% Chloride mg/L 0.02 0.61 0.61 0.0% Sulfate (SO4) mg/L 0.6 10 10 0.0% Sulfate (SO4) mg/L 0.6 10 10 0.0% Dissolved Metals mg/L 0.0002 0.0009 0.0012 28.6% Antimony mg/L 0.0002 0.0009 0.0012 28.6% Arsenic mg/L 0.0001 0.013 0.01 26.1% Barium mg/L 0.0001 0.013 0.01 26.1% Beryllium mg/L 0.0001 0.001 0.001 0.001 0.00 Bismuth mg/L 0.001 0.001 0.001 0.001 0.001 0.00 0.0% Boron mg/L 0.0001 0.0001 0.0001 0.0001 0.0001 0.0001 0.0001 0.0001 0.0001 0.0001 0.0001 0.0000						
Chloride mg/L 0.02 0.61 0.61 0.0% Sulfate (SO4) mg/L 0.6 10 10 0.0% Dissolved Metals Aluminum mg/L 0.005 0.005 0.013 88.9% Antimony mg/L 0.0002 0.0009 0.0012 28.6% Arsenic mg/L 0.0002 0.0002 0.0002 0.0002 0.0002 Barium mg/L 0.001 0.013 0.01 26.1% Beryllium mg/L 0.0001 0.0013 0.001 0.001 Bismuth mg/L 0.0004 0.0004 0.0001 0.0001 0.001 Boron mg/L 0.0004 0.004 0.04 0.042 4.9% Cadmium mg/L 0.00001 0.00002 0.00001 66.7% Chromium mg/L 0.00001 0.0002 0.00001 0.0004 0.0004 Cobalt mg/L 0.0001 0.0005 0.0004 1	_ ' '					
Sulfate (SO4) mg/L 0.6 10 10 0.0% Dissolved Metals Aluminum mg/L 0.005 0.005 0.0013 88.9% Antimony mg/L 0.0002 0.0009 0.0012 28.6% Arsenic mg/L 0.0002 0.00004 0.00004 0.00004 0.0001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.0002 0.00001 0.0002 0.00001 0.0002 0.00001 0.0002 0.00001 0.0004 0.0004 0.0004 0.0004 0.0004 0.0004 0.0004 0.0004 0.0004 0.0004 0.0004 0.0004 0.0004 0.0004 </td <td></td> <td>-</td> <td></td> <td></td> <td></td> <td></td>		-				
Aluminum mg/L 0.005 0.005 0.013 88.9% Antimony mg/L 0.0002 0.0009 0.0012 28.6% Arsenic mg/L 0.0002 0.0002 0.0002 0.0002 Barium mg/L 0.001 0.013 0.01 26.1% Beryllium mg/L 0.0004 0.00004 0.00004 0.00004 Bismuth mg/L 0.001 0.001 0.001 0.001 Boron mg/L 0.004 0.04 0.042 4.9% Cadmium mg/L 0.00001 0.00002 0.00001 66.7% Chromium mg/L 0.0004 0.0004 0.0004 0.004 Cobalt mg/L 0.0004 0.0004 0.0004 0.006 Copper mg/L 0.001 0.005 0.004 22.2% Iron mg/L 0.001 0.001 0.001 0.004 22.2% Iron mg/L 0.001 0.001						
Antimony mg/L 0.0002 0.0009 0.0012 28.6% Arsenic mg/L 0.0002 0.0002 0.0002 0.0002 0.0002 Barium mg/L 0.001 0.013 0.01 26.1% Beryllium mg/L 0.0004 0.00004 0.00004 0.0001 0.0001 Bismuth mg/L 0.0001 0.001 0.001 0.001 0.002 Boron mg/L 0.0004 0.0002 0.00001 66.7% Cadmium mg/L 0.00001 0.00002 0.00001 66.7% Chromium mg/L 0.0004 0.0004 0.0004 0.00 0.06 Cobalt mg/L 0.0001 0.0009 0.0008 11.8% Copper mg/L 0.001 0.005 0.004 22.2% Iron mg/L 0.001 0.001 0.004 22.2% Iron mg/L 0.001 0.007 0.002 111.1% Uthium	Dissolved Metals				•	
Arsenic mg/L 0.0002 0.0002 0.0002 0.0002 Barium mg/L 0.001 0.013 0.01 26.1% Beryllium mg/L 0.00004 0.00004 0.00004 0.00004 Bismuth mg/L 0.001 0.001 0.001 0.001 Boron mg/L 0.0004 0.004 0.042 4.9% Cadmium mg/L 0.00001 0.00002 0.00001 66.7% Chromium mg/L 0.0004 0.0004 0.0004 0.0004 Cobalt mg/L 0.0002 0.00009 0.0008 11.8% Copper mg/L 0.001 0.005 0.004 22.2% Iron mg/L 0.01 0.01 0.03 100.0% Lead mg/L 0.001 0.007 0.002 111.1% Lead mg/L 0.001 0.007 0.002 111.1% Ithium mg/L 0.0001 0.001 0.001 <	Aluminum	mg/L	0.005	0.005	0.013	88.9%
Barium mg/L 0.001 0.013 0.01 26.1% Beryllium mg/L 0.00004 0.00004 0.00004 0.00004 Bismuth mg/L 0.001 0.001 0.001 0.001 Boron mg/L 0.0004 0.04 0.042 4.9% Cadmium mg/L 0.00001 0.00002 0.00001 66.7% Chromium mg/L 0.0004 0.0004 0.0004 0.0004 Cobalt mg/L 0.0002 0.00009 0.00008 11.8% Copper mg/L 0.001 0.005 0.004 22.2% Iron mg/L 0.01 0.01 0.03 100.0% Lead mg/L 0.001 0.007 0.0002 111.1% Lithium mg/L 0.001 0.001 0.001 0.001 Manganese mg/L 0.0002 0.0129 0.087 38.9% Mercury ug/L 0.01 0.01 0.01 <						
Beryllium mg/L 0.00004 0.00004 0.00004 0.00004 Bismuth mg/L 0.001 0.001 0.001 0.001 Boron mg/L 0.004 0.04 0.042 4.9% Cadmium mg/L 0.00001 0.00002 0.00001 66.7% Chromium mg/L 0.0004 0.0004 0.0004 0.0004 Cobalt mg/L 0.0001 0.0009 0.00008 11.8% Copper mg/L 0.001 0.005 0.0004 22.2% Iron mg/L 0.01 0.01 0.03 100.0% Lead mg/L 0.001 0.007 0.002 111.1% Lithium mg/L 0.001 0.001 0.001 0.001 0.001 Marganese mg/L 0.001 0.0129 0.0887 38.9% Mercury ug/L 0.01 0.01 0.01 0.01 0.00 Molybdenum mg/L 0.0001						
Bismuth mg/L 0.001 0.001 0.001 0.001 Boron mg/L 0.004 0.04 0.042 4.9% Cadmium mg/L 0.00001 0.00002 0.00001 66.7% Chromium mg/L 0.0004 0.0004 0.0004 0.0004 Cobalt mg/L 0.0001 0.0009 0.0008 11.8% Copper mg/L 0.001 0.005 0.0004 22.2% Iron mg/L 0.001 0.005 0.0004 22.2% Iron mg/L 0.001 0.007 0.002 111.1% Lead mg/L 0.001 0.007 0.0002 111.1% Lithium mg/L 0.001 0.001 0.001 0.001 0.00 Marganese mg/L 0.0001 0.001 0.001 0.001 0.001 0.00 0.008 38.9% Mercury ug/L 0.01 0.01 0.01 0.01 0.01 0.01 <td></td> <td></td> <td></td> <td></td> <td></td> <td></td>						
Boron mg/L 0.004 0.04 0.042 4.9% Cadmium mg/L 0.00001 0.00002 0.00001 66.7% Chromium mg/L 0.0004 0.0004 0.0004 0.00% Cobalt mg/L 0.00002 0.00009 0.00008 11.8% Copper mg/L 0.001 0.005 0.004 22.2% Iron mg/L 0.001 0.005 0.004 22.2% Iron mg/L 0.001 0.007 0.003 100.0% Lead mg/L 0.001 0.0007 0.0002 111.1% Lithium mg/L 0.001 0.001 0.001 0.001 Marganese mg/L 0.0002 0.0129 0.0087 38.9% Mercury ug/L 0.01 0.01 0.01 0.06 Molybdenum mg/L 0.0001 0.0064 0.0049 26.5% Nickel mg/L 0.001 0.001 0.001						
Cadmium mg/L 0.00001 0.00002 0.00001 66.7% Chromium mg/L 0.0004 0.0004 0.0004 0.0004 Cobalt mg/L 0.00002 0.00009 0.00008 11.8% Copper mg/L 0.001 0.005 0.004 22.2% Iron mg/L 0.01 0.01 0.03 100.0% Lead mg/L 0.001 0.007 0.0002 111.1% Lithium mg/L 0.001 0.001 0.001 0.001 Manganese mg/L 0.0002 0.0129 0.0087 38.9% Mercury ug/L 0.01 0.01 0.01 0.0% Molybdenum mg/L 0.0001 0.0064 0.0049 26.5% Nickel mg/L 0.001 0.001 0.001 0.001 Selenium mg/L 0.0006 0.0006 0.0006 0.0006 Strontium mg/L 0.0001 0.025 0.12						
Chromium mg/L 0.0004 0.0004 0.0004 0.0004 Cobalt mg/L 0.00002 0.00009 0.00008 11.8% Copper mg/L 0.001 0.005 0.004 22.2% Iron mg/L 0.01 0.01 0.03 100.0% Lead mg/L 0.0001 0.0007 0.0002 111.1% Lithium mg/L 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.00 111.1%						
Copper mg/L 0.001 0.005 0.004 22.2% Iron mg/L 0.01 0.01 0.03 100.0% Lead mg/L 0.0001 0.0007 0.0002 111.1% Lithium mg/L 0.001 0.001 0.001 0.001 Manganese mg/L 0.0002 0.0129 0.0087 38.9% Mercury ug/L 0.01 0.01 0.01 0.01 0.01 0.00 Molybdenum mg/L 0.0001 0.004 0.0049 26.5% Nickel mg/L 0.0001 0.001 0.001 0.00 Selenium mg/L 0.0001 0.0001 0.0006 0.006 0.006 0.006 0.006 0.006 0.006 0.006 0.0006 0.0006 0.0006 0.0006 0.0006 0.0006 0.0006 0.0006 0.0006 0.0006 0.0006 0.0006 0.0006 0.0006 0.0006 0.0006 0.0006 0.0006 0.0006 <						
Iron mg/L 0.01 0.01 0.03 100.0% Lead mg/L 0.0001 0.0007 0.0002 111.1% Lithium mg/L 0.001 0.001 0.001 0.001 Manganese mg/L 0.0002 0.0129 0.0087 38.9% Mercury ug/L 0.01 0.01 0.01 0.01 0.01 Molybdenum mg/L 0.0001 0.0064 0.0049 26.5% Mickel mg/L 0.0001 0.001 0.001 0.004 Selenium mg/L 0.0006 0.0066 0.0066 0.006 0.006 Silver mg/L 0.0001 0.0001 0.0001 0.0001 0.0001 Strontium mg/L 0.001 0.0001 0.0001 0.0001 0.0001 Sulfur mg/L 0.001 0.0001 0.0001 0.0001 0.0001 Tellurium mg/L 0.0001 0.0001 0.0001 0.0001 0.0001	Cobalt	mg/L	0.00002	0.00009	0.00008	11.8%
Lead mg/L 0.0001 0.0007 0.0002 111.1% Lithium mg/L 0.001 0.001 0.001 0.001 Manganese mg/L 0.0002 0.0129 0.0087 38.9% Mercury ug/L 0.01 0.01 0.01 0.01 0.01 Molybdenum mg/L 0.0001 0.0064 0.0049 26.5% Mickel mg/L 0.001 0.001 0.001 0.001 Selenium mg/L 0.0006 0.0066 0.0006 0.006 0.006 Silver mg/L 0.0001 0.0001 0.0001 0.0001 0.000 Strontium mg/L 0.001 0.125 0.12 4.1% Sulfur mg/L 0.001 0.0001 0.0001 0.0001 0.0001 Tellurium mg/L 0.0001 0.0001 0.0001 0.0001 0.0001 0.0001 Thorium mg/L 0.0004 0.0004 0.0004 0.00	Copper	mg/L	0.001	0.005	0.004	22.2%
Lithium mg/L 0.001 0.001 0.001 0.00 Manganese mg/L 0.0002 0.0129 0.0087 38.9% Mercury ug/L 0.01 0.01 0.01 0.00 Molybdenum mg/L 0.0001 0.0064 0.0049 26.5% Nickel mg/L 0.0001 0.001 0.001 0.001 0.001 Selenium mg/L 0.0006 0.0006 0.0006 0.0006 0.006 0.006 0.006 0.006 0.006 0.006 0.0006 <td></td> <td></td> <td></td> <td></td> <td></td> <td></td>						
Manganese mg/L 0.0002 0.0129 0.0087 38.9% Mercury ug/L 0.01 0.01 0.01 0.00 Molybdenum mg/L 0.0001 0.0064 0.0049 26.5% Nickel mg/L 0.001 0.001 0.001 0.001 Selenium mg/L 0.0006 0.0006 0.0006 0.0006 Silver mg/L 0.0001 0.0001 0.00001 0.00001 Strontium mg/L 0.001 0.125 0.12 4.1% Sulfur mg/L 0.001 0.0001 0.0001 0.0001 Tellurium mg/L 0.0001 0.0001 0.0001 0.0001 Thorium mg/L 0.0004 0.00001 0.00001 0.00001 Tin mg/L 0.0001 0.001 0.0001 0.0001 Titanium mg/L 0.0004 0.0004 0.0004 0.0004 Vanadium mg/L 0.0001 0.0002						
Mercury ug/L 0.01 0.01 0.01 0.0% Molybdenum mg/L 0.0001 0.0064 0.0049 26.5% Nickel mg/L 0.001 0.001 0.001 0.001 Selenium mg/L 0.0006 0.0006 0.0006 0.0006 Silver mg/L 0.0001 0.0001 0.00001 0.00001 Strontium mg/L 0.001 0.125 0.12 4.1% Sulfur mg/L 0.001 0.001 0.0001 0.0001 0.0001 Tellurium mg/L 0.0001 0.0001 0.0001 0.0001 0.0001 0.0001 Thallium mg/L 0.0004 0.0001 0.0001 0.0001 0.0001 0.0001 Tin mg/L 0.0001 0.0001 0.0001 0.0001 0.0% Titanium mg/L 0.0004 0.0004 0.0004 0.0004 0.0004 Vanadium mg/L 0.0001 0.0002						
Molybdenum mg/L 0.0001 0.0064 0.0049 26.5% Nickel mg/L 0.001 0.001 0.001 0.001 0.0% Selenium mg/L 0.0006 0.0006 0.0006 0.0006 0.00% Silver mg/L 0.0001 0.00001 0.00001 0.00001 0.00001 0.00001 0.00001 0.00 0.00 1.12 4.1% 5.5 2.9% 2.9% 2.9% 2.9% 2.9% 2.9% 2.9% 2.9% 2.9% 2.0001 0.0001 0.0001 0.0001 0.0001 0.0001 0.0001 0.0001 0.0001 0.0001 0.0001 0.0001 0.0001 0.0001 0.0%						
Nickel mg/L 0.001 0.001 0.001 0.006 Selenium mg/L 0.0006 0.0006 0.0006 0.0006 0.0006 Silver mg/L 0.00001 0.00001 0.00001 0.00001 0.00001 Strontium mg/L 0.001 0.125 0.12 4.1% Sulfur mg/L 0.02 3.4 3.5 2.9% Tellurium mg/L 0.0001 0.0001 0.0001 0.0001 0.0001 Thorium mg/L 0.0004 0.0004 0.0004 0.0004 0.000 Tin mg/L 0.0001 0.0001 0.0001 0.0001 0.00 Titanium mg/L 0.01 0.01 0.01 0.01 0.0% Vanadium mg/L 0.0004 0.0004 0.0004 0.0004 0.0004 Zinc mg/L 0.001 0.005 0.004 0.22.2%						
Selenium mg/L 0.0006 0.0006 0.0006 0.0006 Silver mg/L 0.00001 0.00001 0.00001 0.00001 Strontium mg/L 0.001 0.125 0.12 4.1% Sulfur mg/L 0.2 3.4 3.5 2.9% Tellurium mg/L 0.0001 0.0001 0.0001 0.00001 0.00001 Thallium mg/L 0.00001 0.00001 0.00001 0.00001 0.000 Tin mg/L 0.0001 0.0001 0.0001 0.0001 0.000 Titanium mg/L 0.01 0.01 0.01 0.01 0.0% Uranium mg/L 0.0004 0.0004 0.0004 0.0004 0.0004 Vanadium mg/L 0.0001 0.0002 0.0004 66.7% Zinc mg/L 0.001 0.005 0.004 22.2%						
Silver mg/L 0.00001 0.00001 0.00001 0.00001 Strontium mg/L 0.001 0.125 0.12 4.1% Sulfur mg/L 0.2 3.4 3.5 2.9% Tellurium mg/L 0.0001 0.0001 0.00001 0.00001 0.00001 0.0% Thallium mg/L 0.00001 0.00001 0.000001 0.00001 0.0% Tin mg/L 0.0001 0.0001 0.0001 0.0001 0.0% Titanium mg/L 0.01 0.01 0.01 0.00 0.0% Vanadium mg/L 0.0001 0.0002 0.0004 <t< td=""><td></td><td></td><td></td><td></td><td></td><td></td></t<>						
Strontium mg/L 0.001 0.125 0.12 4.1% Sulfur mg/L 0.2 3.4 3.5 2.9% Tellurium mg/L 0.0001 0.0001 0.0001 0.0001 0.0001 Thallium mg/L 0.00001 0.00001 0.00001 0.00001 0.00 Thorium mg/L 0.0004 0.0004 0.0004 0.0004 0.00 Tiranium mg/L 0.01 0.01 0.01 0.01 0.0% Uranium mg/L 0.0004 0.0004 0.0004 0.0004 0.00 Vanadium mg/L 0.001 0.0002 0.0004 66.7% Zinc mg/L 0.001 0.005 0.004 22.2%		_				
Tellurium mg/L 0.0001 0.0001 0.0001 0.0001 Thallium mg/L 0.00001 0.00001 0.00001 0.00001 Thorium mg/L 0.0004 0.0004 0.0004 0.0004 Tin mg/L 0.0001 0.0001 0.0001 0.0001 Titanium mg/L 0.01 0.01 0.01 0.01 Uranium mg/L 0.0004 0.0004 0.0004 0.0004 Vanadium mg/L 0.001 0.0002 0.0004 66.7% Zinc mg/L 0.001 0.005 0.004 22.2%	Strontium		0.001	0.125	0.12	4.1%
Thallium mg/L 0.00001 0.00001 0.00001 0.00001 Thorium mg/L 0.0004 0.0004 0.0004 0.0004 Tin mg/L 0.0001 0.0001 0.0001 0.0001 Titanium mg/L 0.01 0.01 0.01 0.01 Uranium mg/L 0.0004 0.0004 0.0004 0.0004 Vanadium mg/L 0.001 0.0002 0.0004 66.7% Zinc mg/L 0.001 0.005 0.004 22.2%	Sulfur	mg/L	0.2	3.4	3.5	2.9%
Thorium mg/L 0.0004 0.0004 0.0004 0.0004 Tin mg/L 0.0001 0.0001 0.0001 0.0001 Titanium mg/L 0.01 0.01 0.01 0.01 Uranium mg/L 0.0004 0.0004 0.0004 0.0004 Vanadium mg/L 0.001 0.0002 0.0004 66.7% Zinc mg/L 0.001 0.005 0.004 22.2%						
Tin mg/L 0.0001 0.0001 0.0001 0.0001 Titanium mg/L 0.01 0.01 0.01 0.01 Uranium mg/L 0.0004 0.0004 0.0004 0.0004 Vanadium mg/L 0.0001 0.0002 0.0004 66.7% Zinc mg/L 0.001 0.005 0.004 22.2%						
Titanium mg/L 0.01 0.01 0.01 0.09 Uranium mg/L 0.0004 0.0004 0.0004 0.0004 Vanadium mg/L 0.0001 0.0002 0.0004 66.7% Zinc mg/L 0.001 0.005 0.004 22.2%						
Uranium mg/L 0.0004 0.0004 0.0004 0.0004 Vanadium mg/L 0.0001 0.0002 0.0004 66.7% Zinc mg/L 0.001 0.005 0.004 22.2%						
Vanadium mg/L 0.0001 0.0002 0.0004 66.7% Zinc mg/L 0.001 0.005 0.004 22.2%						
Zinc mg/L 0.001 0.005 0.004 22.2%						
	Zirconium	mg/L	0.0001	0.0001	0.0001	0.0%

Table 3: QA/QC – Blanks and Duplicate Sample

					Relative
	Unit	DL	MW09-03	MW09-03 DUP	diff%
Zone#	-		3	3	-
Sample Label			MW09-3-3	MW09-3-4	-
Sample Id	-	-	3305939	3305940	-
Sample Location	-	-	Minto North	Minto North	-
Date Sampled	m/dd/yyyy	-	3/29/2010	3/29/2010	-
Sample Depth	m	0.1	10.5	-	-
Completed Date	m/dd/yyyy		4/12/2010	4/12/2010	-
Matrix	-	-	Water	Water	-
Total Metals	•	•		•	
Aluminum	mg/L	0.005	0.01	0.014	33.3%
Antimony	mg/L	0.0002	0.0002	0.0003	40.0%
Arsenic	mg/L	0.0002	0.0002	0.0002	0.0%
Barium	mg/L	0.001	0.013	0.01	26.1%
Beryllium	mg/L	0.00004	0.00004	0.00004	0.0%
Bismuth	mg/L	0.001	0.001	0.001	0.0%
Boron	mg/L	0.004	0.034	0.034	0.0%
Cadmium	mg/L	0.00001	0.00001	0.00006	142.9%
Calcium	mg/L	0.05	24.9	24.9	0.0%
Chromium	mg/L	0.0004	0.0004	0.0006	40.0%
Cobalt	mg/L	0.00002	0.00007	0.00006	15.4%
Copper	mg/L	0.001	0.004	0.004	0.0%
Iron	mg/L	0.01	0.027	0.047	54.1%
Lead	mg/L	0.0001	0.0002	0.0002	0.0%
Lithium	mg/L	0.001	0.001	0.001	0.0%
Magnesium	mg/L	0.05	2.62	2.63	0.4%
Manganese	mg/L	0.0002	0.0132	0.009	37.8%
Manganese	mg/L	0.005	0.007	0.005	33.3%
Mercury	ug/L	0.01	0.01	0.01	0.0%
Molybdenum	mg/L	0.0001	0.0065	0.0051	24.1%
Nickel	mg/L	0.001	0.001	0.001	0.0%
Potassium	mg/L	0.1	2.1	1.9	10.0%
Selenium	mg/L	0.0006	0.0006	0.0006	0.0%
Silicon	mg/L	0.05	4.4	4.39	0.2%
Silver	mg/L	0.00001	0.00004	0.00003	28.6%
Sodium	mg/L	0.02	3.08	3.07	0.3%
Strontium	mg/L	0.001	0.126	0.127	0.8%
Sulfur	mg/L	0.1	3.4	3.4	0.0%
Tellurium	mg/L	0.0001	0.0001	0.0001	0.0%
Thallium	mg/L	0.00001	0.00001	0.00001	0.0%
Thorium	mg/L	0.0004	0.0004	0.0004	0.0%
Tin	mg/L	0.0001	0.0001	0.0001	0.0%
Titanium	mg/L	0.001	0.001	0.001	0.0%
Uranium	mg/L	0.0004	0.0004	0.0004	0.0%
Vanadium	mg/L	0.0001	0.0003	0.0004	28.6%
Zinc	mg/L	0.001	0.01	0.01	0.0%
Zirconium	mg/L	0.0001	0.0001	0.0001	0.0%

Table 3: QA/QC – Blanks and Duplicate Sample

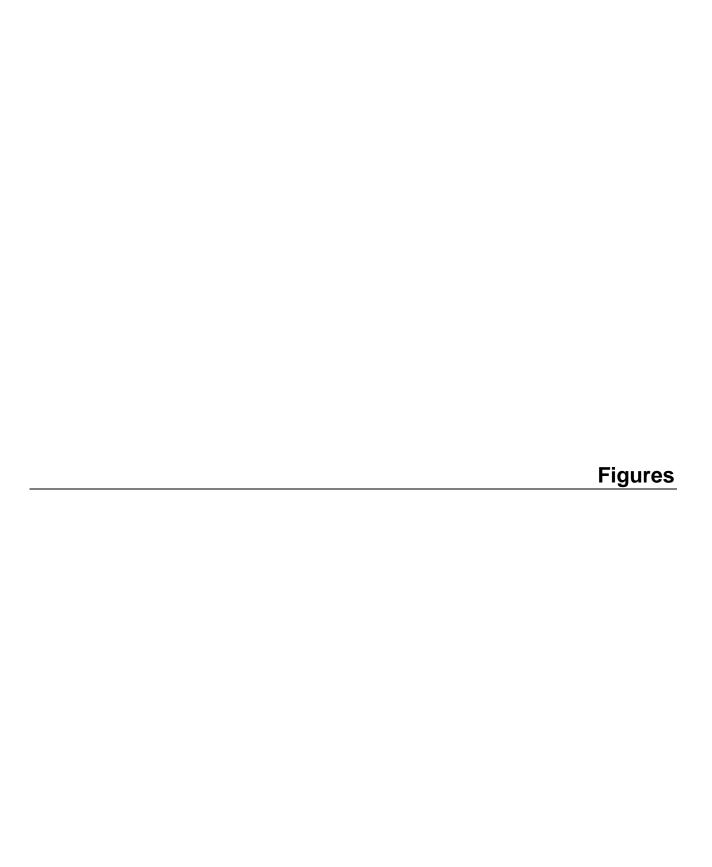
		I		1
	Unit	DL	Blank	Blank
Zone#	-		-	-
Sample Label			MW09-1-5	MW09-04-04
Sample Id	-	-	3305935	3305936
Sample Location Date Sampled	/dd /	-	West Pit	Camp
Sample Depth	m/dd/yyyy m	0.1	3/30/2010	3/29/2010
Completed Date	m/dd/yyyy	0.1	4/12/2010	4/12/2010
Matrix	-	_	Water	Water
Physical Tests	l		Water	Water
pH @25°C	(1)	-	6.46	6.15
Electrical Conductivity	μS/cm	1	2	1
Hardness as CaCO3	mg/L	5	<5	<5
T-Alkalinity as CaCO3	mg/L	5	<5	<5
Turbidity	NTU	0.1	0.4	0.1
Total Suspended Solids	mg/L	1	<3	<3
Total Dissolved Solids	mg/L	5	32	12
Colour	CU	5	<5	<5
Major Anions and Cations		ı	1	
Carbonate	mg/L	6	<6	<6
Calcium	mg/L	0.1	<0.1	<0.1
Magnesium	mg/L	0.1	<0.1	<0.1
Sodium	mg/L	0.1	<0.1	<0.1
Phosphorus	mg/L	0.01	<0.01	<0.01
Potassium Silicon	mg/L	0.1 0.05	0.7 3.38	0.6
Bicarbonate	mg/L mg/L	5	3.38 <5	<0.05 <5
Hydroxide	mg/L	5	<5	<5
Ionic Balance	%	-	75	- \
Anions and Nutrients	,,,	1		ı
Ammonium - N	mg/L	0.05	<0.05	<0.05
Total Kjeldahl Nitrogen	mg/L	0.06	<0.06	<0.06
Total Phosphorus	mg/L	0.05	<0.05	<0.05
Orthophosphate-P	mg/L	0.01	0.06	< 0.01
Nitrate and Nitrite - N	mg/L	0.01	0.02	< 0.01
Chloride	mg/L	0.02	0.24	<0.02
Sulfate (SO4)	mg/L	0.6	<0.6	<0.6
Dissolved Metals		ı	1	
Aluminum	mg/L	0.005	<0.005	<0.005
Antimony	mg/L	0.0002	0.0007	0.0006
Arsenic	mg/L	0.0002	<0.0002	<0.0002
Barium	mg/L	0.001	<0.001	<0.001
Beryllium	mg/L	0.00004	<0.00004	<0.00004
Bismuth Boron	mg/L	0.001 0.004	<0.001 0.007	<0.001 <0.004
Cadmium	mg/L mg/L	0.0004	0.007	<0.0004
Chromium	mg/L	0.0004	<0.0004	<0.0004
Cobalt	mg/L	0.00002	0.00004	0.00002
Copper	mg/L	0.0001	0.001	<0.001
Iron	mg/L	0.01	<0.01	<0.01
Lead	mg/L	0.0001	0.0001	0.0002
Lithium	mg/L	0.001	<0.001	<0.001
Manganese	mg/L	0.0002	0.0003	<0.0002
Mercury	ug/L	0.01	<0.01	<0.01
Molybdenum	mg/L	0.0001	<0.0001	<0.0001
Nickel	mg/L	0.001	<0.001	<0.001
Selenium	mg/L	0.0006	<0.0006	<0.0006
Silver	mg/L	0.00001	<0.00001	<0.00001
Strontium	mg/L	0.001	<0.001	<0.001
Sulfur	mg/L	0.2	<0.2	<0.2
Tellurium	mg/L	0.0001	<0.0001	<0.0001
Thallium	mg/L	0.00001	<0.00001	<0.00001
Thorium	mg/L	0.0004	<0.0004	<0.0004
Tin	mg/L	0.0001	<0.0001	<0.0001
Titanium	mg/L mg/L	0.01 0.0004	<0.01 <0.0004	<0.01
Uranium Vanadium	mg/L mg/L	0.0004	<0.0004	<0.0004 <0.0001
Zinc	mg/L	0.0001	0.0001	0.0001
Zirconium	mg/L	0.0001	<0.004	<0.004
comain	p/ L	0.0001	~0.0001	~0.0001

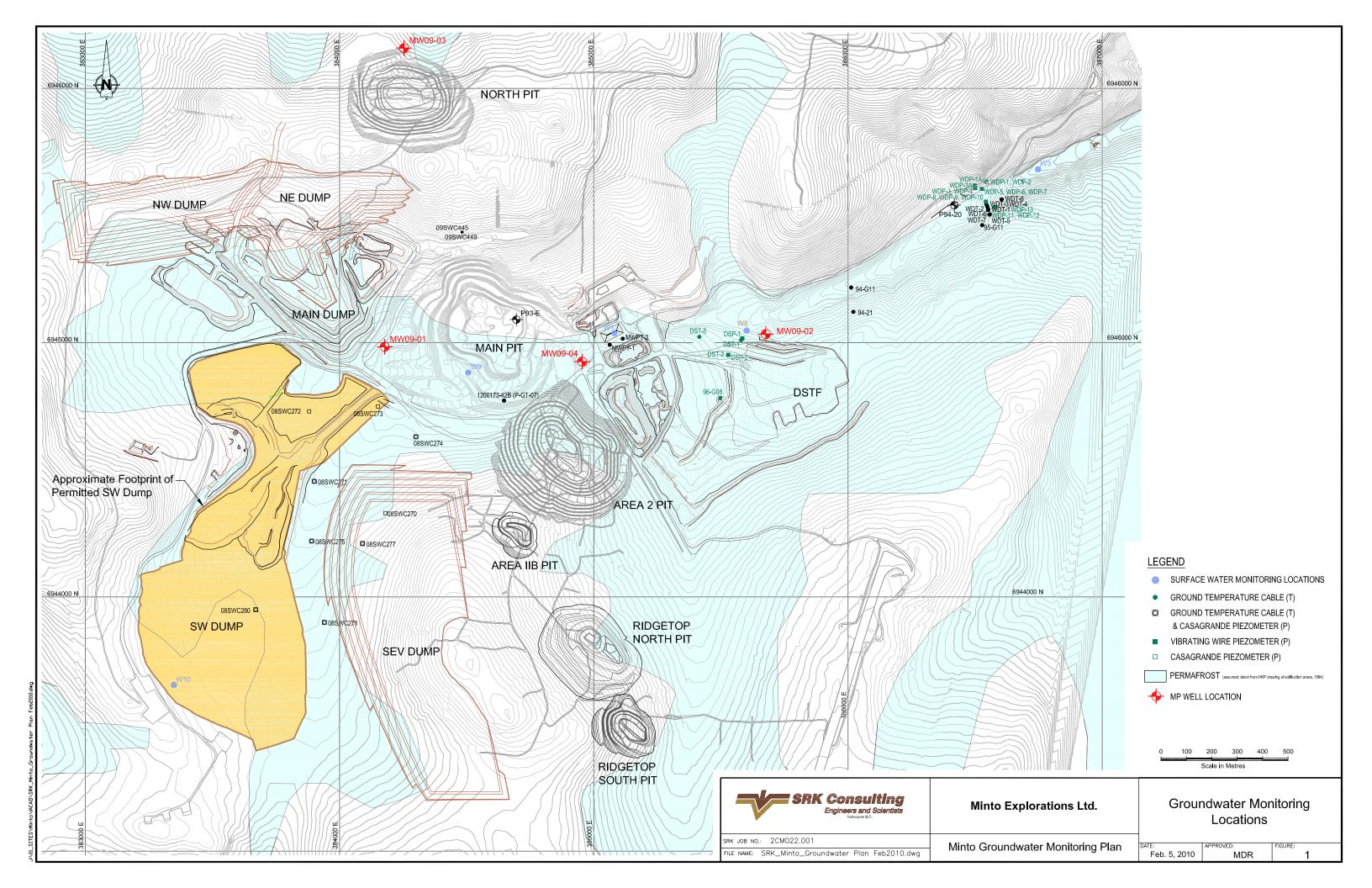
Table 3: QA/QC – Blanks and Duplicate Sample

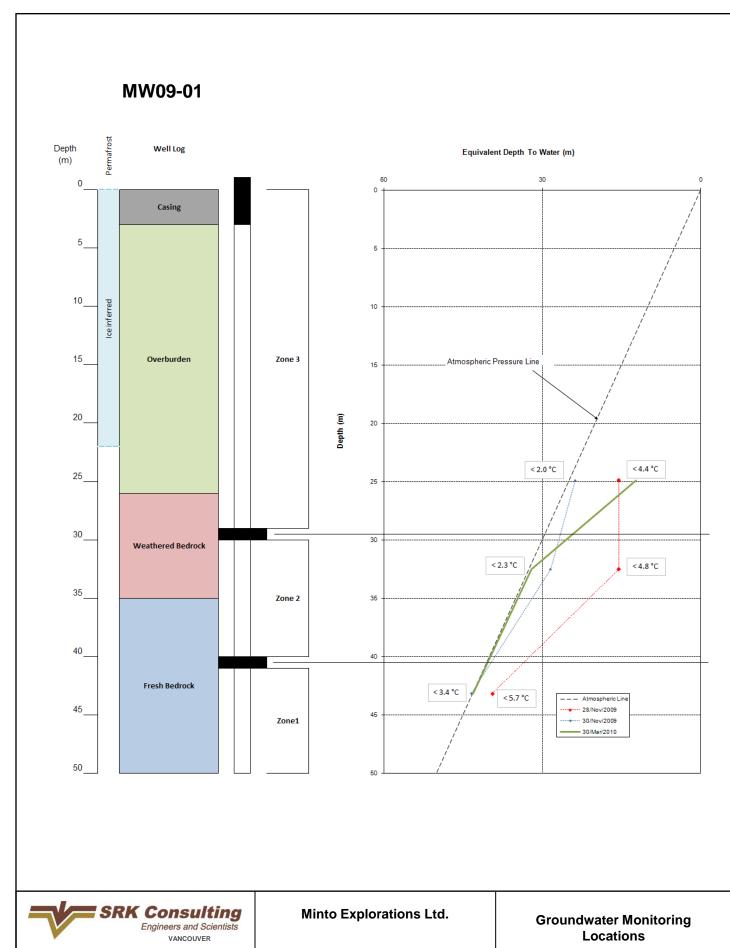
	Unit	DL	Blank	Blank
Zone#	-		-	-
Sample Label			MW09-1-5	MW09-04-04
Sample Id	-	-	3305935	3305936
Sample Location	-	-	West Pit	Camp
Date Sampled	m/dd/yyyy	-	3/30/2010	3/29/2010
Sample Depth	m	0.1	-	-
Completed Date	m/dd/yyyy		4/12/2010	4/12/2010
Matrix	-	-	Water	Water
Total Metals	•	Į.		•
Aluminum	mg/L	0.005	<0.005	< 0.005
Antimony	mg/L	0.0002	<0.0002	<0.0002
Arsenic	mg/L	0.0002	<0.0002	<0.0002
Barium	mg/L	0.001	< 0.001	< 0.001
Beryllium	mg/L	0.00004	<0.00004	<0.00004
Bismuth	mg/L	0.001	<0.001	< 0.001
Boron	mg/L	0.004	0.016	0.01
Cadmium	mg/L	0.00001	<0.00001	<0.00001
Calcium	mg/L	0.05	<0.05	<0.05
Chromium	mg/L	0.0004	<0.0004	<0.0004
Cobalt	mg/L	0.00002	<0.00002	<0.00002
Copper	mg/L	0.001	<0.001	< 0.001
Iron	mg/L	0.01	0.026	<0.01
Lead	mg/L	0.0001	0.0001	<0.0001
Lithium	mg/L	0.001	<0.001	< 0.001
Magnesium	mg/L	0.05	<0.05	< 0.05
Manganese	mg/L	0.0002	0.0002	<0.0002
Manganese	mg/L	0.005	<0.005	<0.005
Mercury	ug/L	0.01	<0.01	< 0.01
Molybdenum	mg/L	0.0001	< 0.0001	<0.0001
Nickel	mg/L	0.001	<0.001	< 0.001
Potassium	mg/L	0.1	0.1	<0.1
Selenium	mg/L	0.0006	<0.0006	<0.0006
Silicon	mg/L	0.05	3.7	<0.05
Silver	mg/L	0.00001	<0.00001	<0.00001
Sodium	mg/L	0.02	0.13	0.3
Strontium	mg/L	0.001	< 0.001	0.001
Sulfur	mg/L	0.1	<0.1	<0.1
Tellurium	mg/L	0.0001	< 0.0001	<0.0001
Thallium	mg/L	0.00001	<0.00001	<0.00001
Thorium	mg/L	0.0004	<0.0004	<0.0004
Tin	mg/L	0.0001	<0.0001	<0.0001
Titanium	mg/L	0.001	<0.001	<0.001
Uranium	mg/L	0.0004	<0.0004	<0.0004
Vanadium	mg/L	0.0001	<0.0001	<0.0001
Zinc	mg/L	0.001	0.003	0.005
Zirconium	mg/L	0.0001	<0.0001	<0.0001

Table 4: Summary of Groundwater Sampling Results

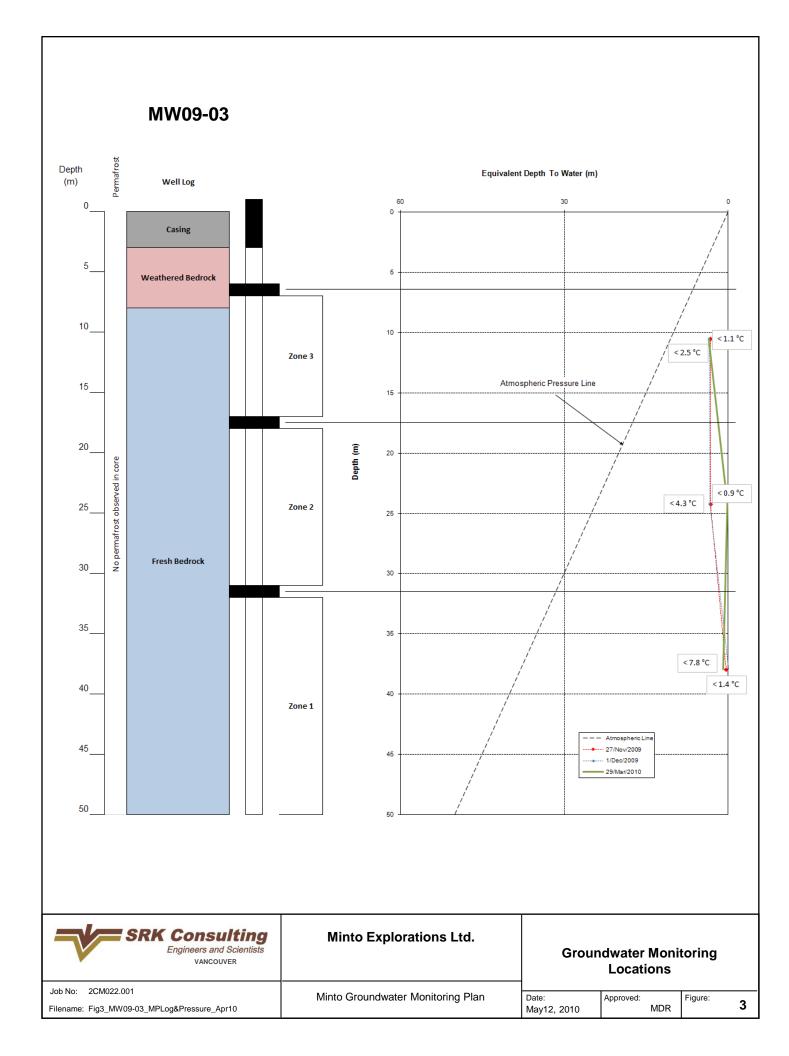
	Unit	DL	MW09-01	MW09-03	MW09-3-2	MW09-03	1W09-03 DUP	Blank	Blank
Zone#	-		3	1	2	3	3	- Dialik	- Blank
Sample Label			MW09-1-3	MW09-3-1	MW09-3-2	MW09-3-3	MW09-3-4	MW09-1-5	MW09-04-04
Sample Id	-	-	3305934	3305937	3305938	3305939	3305940	3305935	3305936
Sample Location	-	-	West Pit	Minto North	Minto North	Minto North	Minto North	West Pit	Camp
Date Sampled	m/dd/yyyy	-	3/30/2010	3/29/2010	3/29/2010	3/29/2010	3/29/2010	3/30/2010	3/29/2010
Sample Depth	m	0.1	24.7	37.9	24.2	10.5	=	ı	-
Completed Date	m/dd/yyyy		4/12/2010	4/12/2010	4/12/2010	4/12/2010	4/12/2010	4/12/2010	4/12/2010
Matrix	-	-	Water	Water	Water	Water	Water	Water	Water
Physical Tests		,							
pH @25°C	(1)	-	8.04	8	8.05	7.84	7.79	6.46	6.15
Electrical Conductivity	μS/cm	1	941	315	502	158	161	2	1
Hardness as CaCO3	mg/L	5	336	144	178	69	71	<5	<5
T-Alkalinity as CaCO3 Turbidity	mg/L NTU	5 0.1	184 64	137 2.5	130	63 0.3	67 0.7	<5 0.4	<5
Total Suspended Solids	mg/L	1	70	2.5 <4	3 <7	0.3 <4	<4	<3	0.1 <3
Total Dissolved Solids	mg/L	5	630	196	324	114	112	32	12
Colour	CU	5	<5	<5	<5	<5	<5	<5	<5
Major Anions and Cations		3	,,		, ,	, ,	,3	,,	, , ,
Carbonate	mg/L	6	<6	<6	<6	<6	<6	<6	<6
Calcium	mg/L	0.1	93.7	41.2	56.3	23.4	24.2	<0.1	<0.1
Magnesium	mg/L	0.1	24.7	9.9	9.2	2.4	2.6	<0.1	<0.1
Sodium	mg/L	0.1	53.3	5.7	24.9	2.6	2.7	<0.1	<0.1
Phosphorus	mg/L	0.01	0.03	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01
Potassium	mg/L	0.1	7	4.4	6.6	2.3	2.2	0.7	0.6
Silicon	mg/L	0.05	3.39	4	3.7	3.85	3.98	3.38	<0.05
Bicarbonate	mg/L	5	220	170	160	80	80	<5	<5
Hydroxide	mg/L	5	<5	<5	<5	<5	<5	<5	<5
Ionic Balance	%	-	106	115	108	116	111	=	-
Anions and Nutrients							1		T
Ammonium - N	mg/L	0.05	6.16	0.35	0.99	<0.05	<0.05	<0.05	<0.05
Total Kjeldahl Nitrogen	mg/L	0.06	8.89	0.4	1.22	<0.06	<0.06	<0.06	<0.06
Total Phosphorus	mg/L	0.05	0.09	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05
Orthophosphate-P	mg/L	0.01	0.06	0.06	0.07	0.06	0.06	0.06	<0.01
Nitrate and Nitrite - N Chloride	mg/L mg/L	0.01	21.6 18.5	0.26 0.4	16.1 3.82	0.47 0.61	0.48 0.61	0.02	<0.01 <0.02
Sulfate (SO4)	mg/L	0.6	169	23	48.9	10	10	<0.6	<0.6
Total Metals	1116/ L	0.0	103	23	40.5	10	10	٧٥.٥	٧٥.٥
Aluminum	mg/L	0.005	1.31	0.043	0.03	0.01	0.014	<0.005	<0.005
Antimony	mg/L	0.0002	0.0005	0.0002	<0.0002	<0.0002	0.0003	<0.0002	<0.0002
Arsenic	mg/L	0.0002	0.0012	0.0004	0.0015	<0.0002	<0.0002	<0.0002	<0.0002
Barium	mg/L	0.001	0.186	0.05	0.036	0.013	0.01	<0.001	< 0.001
Beryllium	mg/L	0.00004	0.00005	<0.00004	<0.00004	<0.00004	<0.00004	<0.00004	<0.00004
Bismuth	mg/L	0.001	< 0.001	<0.001	<0.001	<0.001	< 0.001	<0.001	<0.001
Boron	mg/L	0.004	0.095	0.29	1.92	0.034	0.034	0.016	0.01
Cadmium	mg/L	0.00001	0.00014	0.00011	0.00004	0.00001	0.00006	<0.00001	<0.00001
Calcium	mg/L	0.05	98.7	42.5	59.3	24.9	24.9	<0.05	<0.05
Chromium	mg/L	0.0004	0.0072	0.0022	0.0014	<0.0004	0.0006	<0.0004	<0.0004
Cobalt	mg/L	0.00002	0.00147	0.00019	0.00022	0.00007	0.00006	<0.00002	<0.00002
Copper	mg/L	0.001	0.029	0.006	0.008	0.004	0.004	<0.001	<0.001
Iron	mg/L	0.01	3.37	0.183	0.175	0.027	0.047	0.026	< 0.01
Lithium	mg/L	0.0001	0.001	0.0003	0.0003	0.0002	0.0002	0.0001	<0.0001
Lithium Magnesium	mg/L mg/L	0.001	0.003 26.8	0.003 10.4	0.005 9.76	<0.001 2.62	<0.001 2.63	<0.001 <0.05	<0.001 <0.05
Manganese (Trace)	mg/L	0.0002	0.225	0.123	0.0677	0.0132	0.009	0.0002	<0.002
Manganese (SemiTrace)	mg/L	0.0002	0.219	0.123	0.0077	0.0132	<0.005	<0.005	<0.005
Mercury	ug/L	0.003	0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.003
Molybdenum	mg/L	0.0001	0.146	0.006	0.0468	0.0065	0.0051	<0.0001	<0.0001
Nickel	mg/L	0.001	0.006	0.007	0.002	<0.001	0.001	<0.001	<0.001
Potassium	mg/L	0.1	7.2	4.2	6.8	2.1	1.9	0.1	<0.1
Selenium	mg/L	0.0006	0.0019	<0.0006	0.0029	<0.0006	<0.0006	<0.0006	<0.0006
Silicon	mg/L	0.05	7	4.6	4.11	4.4	4.39	3.7	<0.05
Silver	mg/L	0.00001	0.00012	0.00006	0.00017	0.00004	0.00003	<0.00001	<0.00001
Sodium	mg/L	0.02	56.9	7.37	25.7	3.08	3.07	0.13	0.3
Strontium	mg/L	0.001	1.43	0.886	0.785	0.126	0.127	<0.001	0.001
Sulfur	mg/L	0.1	58.3	7.3	15.8	3.4	3.4	<0.1	<0.1
Tellurium	mg/L	0.0001	<0.0001	<0.0001	<0.0001	<0.0001	<0.0001	<0.0001	<0.0001
Thallium	mg/L	0.00001	0.00002	<0.00001	<0.00001	<0.00001	<0.00001	<0.00001	<0.00001
Thorium	mg/L	0.0004	<0.0004	<0.0004	<0.0004	<0.0004	<0.0004	<0.0004	<0.0004
Tin	mg/L	0.0001	<0.0001	<0.0001	<0.0001	<0.0001	<0.0001	<0.0001	<0.0001
Titanium	mg/L	0.001	0.079	0.002	<0.001	<0.001	<0.001	<0.001	<0.001
Uranium	mg/L	0.0004	<0.0004	0.0015	0.0014	<0.0004	<0.0004	<0.0004	<0.0004
Vanadium	mg/L	0.0001	0.0049	0.0003	0.0005	0.0003	0.0004	<0.0001	<0.0001
	mg/L	0.001	0.025	0.016	0.01	0.01	0.01	0.003	0.005
Zinc Zirconium	mg/L	0.0001	0.0005	0.0001	< 0.0001	<0.0001	<0.0001	<0.0001	< 0.0001


Table 4: Summary of Groundwater Sampling Results


	Unit	DL	MW09-01	MW09-03	MW09-3-2	MW09-03	1W09-03 DUP	Blank	Blank
Zone#	-		3	1	2	3	3	-	-
Sample Label			MW09-1-3	MW09-3-1	MW09-3-2	MW09-3-3	MW09-3-4	MW09-1-5	MW09-04-04
Sample Id	-	-	3305934	3305937	3305938	3305939	3305940	3305935	3305936
Sample Location	-	-	West Pit	Minto North	Minto North	Minto North	Minto North	West Pit	Camp
Date Sampled	m/dd/yyyy	-	3/30/2010	3/29/2010	3/29/2010	3/29/2010	3/29/2010	3/30/2010	3/29/2010
Sample Depth	m	0.1	24.7	37.9	24.2	10.5	-	-	-
Completed Date	m/dd/yyyy		4/12/2010	4/12/2010	4/12/2010	4/12/2010	4/12/2010	4/12/2010	4/12/2010
Matrix	-	-	Water	Water	Water	Water	Water	Water	Water
Dissolved Metals				I	ı				1
Aluminum	mg/L	0.005	0.048	< 0.005	< 0.005	< 0.005	0.013	< 0.005	< 0.005
Antimony	mg/L	0.0002	0.0011	0.0009	0.0018	0.0009	0.0012	0.0007	0.0006
Arsenic	mg/L	0.0002	0.0007	0.0002	0.0012	<0.0002	<0.0002	<0.0002	<0.0002
Barium	mg/L	0.001	0.142	0.047	0.035	0.013	0.01	< 0.001	<0.001
Beryllium	mg/L	0.00004	<0.00004	<0.00004	<0.00004	<0.00004	<0.00004	<0.00004	<0.00004
Bismuth	mg/L	0.001	<0.001	< 0.001	< 0.001	< 0.001	< 0.001	< 0.001	<0.001
Boron	mg/L	0.004	0.095	0.106	1.99	0.04	0.042	0.007	< 0.004
Cadmium	mg/L	0.00001	0.00015	0.00012	0.00072	0.00002	<0.00001	0.00002	<0.00001
Chromium	mg/L	0.0004	<0.0004	0.001	0.0013	<0.0004	< 0.0004	<0.0004	<0.0004
Cobalt	mg/L	0.00002	0.00045	0.00014	0.0002	0.00009	0.00008	0.00004	0.00002
Copper	mg/L	0.001	0.021	0.004	0.006	0.005	0.004	0.001	< 0.001
Iron	mg/L	0.01	0.18	0.04	< 0.01	<0.01	0.03	<0.01	< 0.01
Lead	mg/L	0.0001	0.0003	0.0011	0.0003	0.0007	0.0002	0.0001	0.0002
Lithium	mg/L	0.001	0.003	0.003	0.004	< 0.001	< 0.001	< 0.001	< 0.001
Manganese	mg/L	0.0002	0.168	0.109	0.0616	0.0129	0.0087	0.0003	<0.0002
Mercury	ug/L	0.01	<0.01	< 0.01	< 0.01	<0.01	<0.01	<0.01	< 0.01
Molybdenum	mg/L	0.0001	0.148	0.0052	0.045	0.0064	0.0049	< 0.0001	<0.0001
Nickel	mg/L	0.001	0.002	0.005	0.002	< 0.001	< 0.001	< 0.001	< 0.001
Selenium	mg/L	0.0006	0.0018	<0.0006	0.0028	< 0.0006	<0.0006	<0.0006	<0.0006
Silver	mg/L	0.00001	<0.00001	< 0.00001	0.00001	<0.00001	<0.00001	<0.00001	<0.00001
Strontium	mg/L	0.001	1.41	0.863	0.739	0.125	0.12	< 0.001	< 0.001
Sulfur	mg/L	0.2	56.2	7.6	16.3	3.4	3.5	<0.2	<0.2
Tellurium	mg/L	0.0001	<0.0001	<0.0001	<0.0001	< 0.0001	<0.0001	<0.0001	<0.0001
Thallium	mg/L	0.00001	< 0.00001	< 0.00001	< 0.00001	< 0.00001	<0.00001	< 0.00001	< 0.00001
Thorium	mg/L	0.0004	<0.0004	< 0.0004	< 0.0004	<0.0004	<0.0004	<0.0004	<0.0004
Tin	mg/L	0.0001	0.0003	<0.0001	<0.0001	<0.0001	<0.0001	<0.0001	<0.0001
Titanium	mg/L	0.01	<0.01	<0.01	<0.01	< 0.01	<0.01	<0.01	<0.01
Uranium	mg/L	0.0004	<0.0004	0.0015	0.0014	< 0.0004	<0.0004	<0.0004	<0.0004
Vanadium	mg/L	0.0001	0.0003	0.0001	0.0004	0.0002	0.0004	<0.0001	<0.0001
Zinc	mg/L	0.001	0.016	0.014	0.005	0.005	0.004	0.004	0.004
Zirconium	mg/L	0.0001	0.0002	<0.0001	<0.0001	< 0.0001	<0.0001	< 0.0001	<0.0001


This report, "Minto Mine: Groundwater Monitoring System Sampling", has been prepared by SRK Consulting (Canada) Inc.:

Prepared by


Michael Royle, M.App.Sci., P.Geo. (BC & NT)
Principal Hydrogeologist

SRK Consulting Engineers and Scientists VANCOUVER	Minto Explorations Ltd.	Groundwater Monitoring Locations			
Job No: 2CM022.001 Filename: Fig2_MW09-01_MPLog&Pressure _Apr10	Minto Groundwater Monitoring Plan	Date: May 12, 2010	Approved:	Figure:	2

